
CONTROL DATA
I

CORPORATION

OPERITINB
SYSTEM

Relerance Manual

-------------- ; ,

REVISION
A Manual released

7/15175

Publication No.
22263100

© 1975
by Control Data Corporation

Printed in the United States of America

REVISION RECORD
DESCRIPTION

Address comments concerning this
manual to:

Control Data Corporation
Publications Department
Peripheral Subsystems Division
2200 Berkshire Lane
Plymouth, Minnesota 55441.

or use Comment Sheet in the back of
this manual.

Section

1

2

3

4

5

6

7

8

9

Appendix

A

B

C

D

E

F

G

NUmber

Contents

Title Page

Introduction .. " 1-1

CYBERDA T A System Flow ... 2-1

Requests ... " 3-1

Drivers ... 4-1

Job Processing ... 5-1

Debugging Aids " 6-1

Library Editing .. 7-1

System Maintenance and Utility Routines " 8-1

Engineering File .. ; 9-1

System Installation ~ ... A-1

Special and Own-Code Tests ... B-1

Disk and Memory Allocation " C-1

CYBERDAT A Standard Codes .. D-1

Diagnostic Codes and Messages ~ E-1

System Utility Processor Commands .. ~ F-1

Assembler Commands .. G-1

Figures

Title" Page

3-1 Macro-Generated Calling Sequence ... 3-2

3-2 Mass Memory Address Format ... 3-4

3-3 INDIR Macro Calling Sequence (0 or Blank) ; ",' 3-4

3-4 INDIR Macro Calling Sequence (0 .. 3-5

3-5 MOTION Request Calling Sequence .. 3-5

3-6 MOTION Coding Sequence .. 3-6

4-1 READ Request Calling Sequence " ... 4-1

4-2 READ Binary Buffer Formatting ... 4-2

4-3 First Binary Format Card for FREAD Binary ... 4-3

iii

Number Title Page

4-4 Subsequent Binary Format Cards ... 4-3

4-5 First Data Transfer Request Format ' 4-5

4-6 Second Data Transfer Request Format ... 4-5

4-7 Data Transfer Example ... 4-6

4-8 Example WRITE Request ... 4-6

6-1 Printout of Panic Dump ... 6-8

6-2 Panic Dump to Teletypewriter .. 6-8

8-1 CYBERDAT A Operating System Core Memory ... 8-5

8-2 Standard Field Format for-COSY Cards ; 8-13

8-3 DELI and INSI Card Format .. 8-13

8-4 MRGI Card Format•.. 8-13

8-5 DCKI Card Format .. 8-14

8-6 First-DELI Card Format ... 8-15

8-7 Second DELI Card Format ... 8-15

8-8 INSI Card Format ... 8-15

8-9 First REMI Card Format ... 8-15

8-10 Second REMI Card Format ' 8-16

8-11 First CPY I Card Format .. 8-16

8-12 Second CPYI Card Format ... 8-16

8-13 ENDI Card Format .. 8-17

8-14 HOLI Card Format .. 8-17

8-15 CSY I Card Format .. 8-17

8-16 COSY Library Generation ... ' 8-17

8-17 COSY Deck Updating ... 8-18

8-18 Updating COSY Library Via CPY I Card .. 8-19

8-19 First Example of Merging Two Revision Decks ... 8-20

8-20 Resultant Merged Revision Deck ... 8-20

8-21 Second Example of Merging Two Revision Decks ... 8-21

8-22 Revision Deck B for Example 2 .. 8-21

iv

Number Title Page

8-23 Example 2 - Merged R~vision Deck ... 8-22

8-24 COSY Deck Conversion to Hollerith Library ... 8-22

8-25 Six-Level Nesting of *USE Record .. 8-28

9-1 Q Register ... 9-1

9-2 Push-Down Pointer Table Example ... 9-1

9-3 Engineering File Listing Format .. 9-2

A-1 Printout of Nine-Track Bootstrap ... A-5

A-2 Printout of Seven-Track Bootstrap .. A-6

B-1 Own Code Standard Header ... B-1

B-2 Own Code Header Example .. B-2

B-3 Own Code Exit ... B-2

B-4 Example of Own Code Passing Control .. B-8

B-5 REDWRD Routine Calling Sequence ... B-9

B-6 WRTWRD Routine Calling Sequence ... B-9

B-7 REDSEC Routine Calling Sequence ... B-9

B-8 WRTSEC Routine Calling Sequence ... B-10

B-9 Motion Code Word .. B-10

B-10 . Code-Conversion Structure ... B-10

B-11 TLP Program Header Format Example ... B-12.

B-12 Sample Own Code for Magnetic Tape .. B-13

C-1 Example of Allocatable Memory .. C-2

C-2 Sample VLST Printout .. C-4

C-3 Examples of Partitioning Allocatable Memory .. C-5
~

C-4 COS Mass Memory (System Disk) ... C-7

C-5 COS Mass Memory With Additional Disks ... C-8

F-1 Single-Volume, Unlabeled File ... F-17

F -2 Fixed -Length Records ... F -23

F-3 Fixed-Length, Blocked Records ... F-23

F -4 Variable-Length Records ... F -23

v

Number Tide Page

F-S Variable-Length, Blocke~ Records .. F-23

F-6 Unformatted Dump Example .. F-29

F-7 Formatted Character Dump ... ~ ~ . F-29

F-8 Hexadecimal Dump .. F-30

G-1 Assembler Coding, Example 1. • .. G-3

G-2 Assembler Coding, Example 2 .. G-3

G-3 Assembler Coding, Example 3. .. G-3

G-4 Assembler Coding, Example 4. .. G-4

G-S Assembler Coding, Example S '.' .. G-4

G-6 Assembler Coding, Example 6 .. G-4

G-7 Assembler Coding, Example 7 ' '.' G-4

G-8 Assembler Coding, Example 8. .. G-S

G-9 Assembler Coding, Example 9 ... , G-S

G-10 Assembler Coding, Example 10 .. , G-6

G-11 Program Using Return Jump Instruction .. ,G-13

G-12 Register Reference Instruction Format ... G-13

G-13 Interregister Instruction Format ... G-1S

G-14 Shift Instruction Format ... G-16

G-1S Sample Shift Instruction ... ,G-16'

G-16 Skip Instruction Format ... ,G-17

G-17 ENT Statement ... ,G-19

G-18 EXT Statement, Example 1 .. G-20

G-19 EXT Statement, Example 2 ... G-20

G-20 EXT* Statement ' G-21

G-21 BZS Statement ... ' G-22

G-22 COM Statement ... G-22

G-23 EQU Statement ... G-27

G-24 ORG/ORG* Statements .. G-28

G-2S ElF Statement ... G-29

vi

NUDiber Title Page

G-26 Macro Skeleton .. ~ G-32

G-27 Macro Instruction, Exainple 1 ~ .. G-34

G-28 Macro Instruction, Example 2 .. G-35

G-29 Macro Instruction, Example 3 ... G-35

G-30 Macro Instruction, Example 4 : ... G-36

G-31 Macro Instruction, Example 5 ... G-37

G-32 Macro Instruction, Example 6 ... G-38

G-33 Sample Source Program ' G-41

G-34 Sample Listing for Source Program .. G-41

Tables

Number Title Page

3-1 Monitor Requests .. 3-1

3-2 Bit Positions ... 3-3

3-3 Driver Action for MOTION Request Parameters Pl'P2,P3' 3-7

7-1 Sample Transfer Request Statements ...• 7-7

8-1 Typical SKED Statements ',' 8-24

8-2 Valid Editing Command Formats .. 8-25

8-3 Pseudo Tape Motion Commands for SKED .. 8-25

8-4 CATLOG Commands .. 8-25

8-5 DELETE Commands .. 8-26

8-6 PAULA Commands ... 8-32

8-7 Example of PAULA Program ... 8-33

A~1 ENDOV4 Hexadecimal Values for Install : A-2

A-2 BGNMON Hexadecimal Values for Install ... A-2

B-1 CYBERDAT A Error Codes .. B-7

D-1 COS Standard Codes ... D-1

E-1 Device Failure Codes ... E-1

E-2 1711/1712/1713 Teletypewriter Status Codes ... E-7

E-3 1728-430 Card ReaderlPunch Controller Status Cards E-8

vii

Number Title Page

E-4 1729-3 Card Reader/Controller Status Codes ... E-9

E-5 1732-2/625-73/615-93 Magnetic Tape Controller
Status Codes ... E-I0

E-6 1733-2/856-2/856-4 Cartridge Disk Controller
Status Codes ... E-ll

E-7 1742-30/120 Line Printer Status Codes ... E-14

E-8 Pseudo Tape Status Codes .. E-14

E-9 System Initializer Error Codes ... E-15

E-I0 System Initializer Loader Errors ... E-16

E-ll System Initializer Disk Erro~s .. E-17

E-17 General System Error Messages ... E-18

E-I3. Job Processor Error Codes .. E-19

E-14 Loader Error Codes ... E-21

E-15 LIBEDT Error Codes .. E-21

E-16 COSY Errors ... E-22

E-17 Macro Assembler Errors .. ' E-24

E-18 Utility Program Errors ... E-26

E-19 Monitor Errors .. ' E-30

F-l Action Messages ; .. F-14

F-2 Descriptive Error Messages ... F-I5.

F-3 Critical Errors .. F-15

F -4 Serious Errors ' ~ F -15

F -5 Warning Messages .. F -16

F-6· Structure of Magnetic Tape Files .. '.' F-18

F-7 Volume Header LabeI(VOL1) ... F-19

F-8 File Header Labell ... F-20

F-9 End-of-File Label (EOFl) .. F-21

F-I0 End-of-volume Label (EOVl) ... : F-21

F-ll Second File Header Label ... F-22

F-12 Record Processing Format Conversion .. F-24

viii

Number Title Page

F-13 Collating Sequence ... F-24

G-l Relocation Examples ... G-6

G-2 Special-Character Operands ' ... G-7

G-3 Register Class Characters ... G-7

G-4 Sample Index Class Characters. .. G-7

G-5 Special Characters for Addressing Mode .. G-8

G-6 Constants Used in Addressing .. G-I0

G-7 Constant Addressing Examples ... G-I0

G-8 Data Transmission Instructions ',' .. G-ll

G-9 Arithmetic Instructions ... G-ll

G-I0 Logical Instructions .. G-12

G-ll Jump Instructions .. G-13

G-12 Register Reference Instructions .. G-13

G-13 Restricted Register Reference Instructions ... G-14

G-14 Interregister Mnemonics .. G-l 5

G-15 Shift Mnemonics ... G-16

G-16 Skip Mnemonics ... G-17

G-17 Operations Producing Negative Zero or Overflow .. G-18

G-18 Typewriter Control Characters ... G-24

G-19 ALF Statements Translated to Machine Words ... G-24

G-20 NUM Statements Translated to Machine Words .. G-25

G-21 DEC Statement Translated to Machine Words .. G-25

G-22 OPT Statement Control Options ',' G-29

G-23 Control Options ... G-38

G-24 Assembly List ... G-39

G-25 Pass 1 and 2 Error Messages ; G-40

G-26 Pass 3 Error Messages .. G-40

G-27 Storage Reference Instructions ... G-43

G-28 Register Instructions ... G-43

ix

Number Tide Page

G-29 Shift Instructions '.' ' G-43

G-30 Skip Instructions ... G-43

G-31 Interregister Transfer Instructions ~ G-44

G-32 Subprogram Linkage Pseudo Instructions .. ·G-4S

G-33 Data Storage Pseudo Instructions ... G-4S

G-34 Constant Declaration Pseudo Instructions : G-4S

G-3S Assembler Control Pseudo Instructions .. G-4S

G-36 Listing Control Pseudo Instructions ... G-4S

G-37 Macro Definition Pseudo Instructions ... G-4S

G-38 ASCII Codes .. , .. ' G-46

G-39 Macro Assembler Errors ~ .. G-SO

x

SECTION 1

INTRODUCTION

Introduction

OPERATING SYSTEM

The CDC® CYBERDATA™ Key-to-Disk System is
cont,rolled by a 1784 Computer System. The 1784
Computer is a small, high-speed digital processor which
performs a variety of on-line control, real-time data
acquisition, and batch job processing applications.

FEATURES

The 1700 CYBERDATA Operating System (COS)
provides the following features:

o Reentrant monitor and request pro~essors

o System modularity

o Interrupt handling

o Input/output drivers

o Maximum I/O error detection and recovery by
drivers

• Engineering file for logging 110 errors

o Batch job processing

• Relocatable binary linking loader

• On-line system modification

• System maintenance and utility routines

• Macro assembler

MONITOR

The monitor is the real-time executive program for 1700
COS. It serves as an interface between all programs and
the hardware. The monitor schedules the use of the
central processor and the I/O equipment via various
programs on a priority basis.

Real-time programs that must be executed in a time limit
run at high priority levels (highest - 15). Non-real-time
programs run at the lowest priority levels (lowest - 0).

tThese commands are explained in detail in appendix C.

A program-protect feature is used to segregate central
memory into two areas: protected core and unprotected
core. On-line programs, the monitor, the job processor,
the library editing program, and the recovery program
run in protected areas of core. Batch programs (job
processing) run in unprotected core. This protect feature
ensures that errors in the unprotected programs do not
destroy the on-line system. Unprotected programs,
however, may use protected routines, such as 110
Drivers, through requests to the monitor.

Manual Interrupt Processor

The manual interrupt processor responds to interrupts
generated via the MANUAL INTERRUPT button. The
message. MI is issued on the system comment output
device. At this time, one of the following commands may
be entered on the system comment input device:

Command

*BATCH

*
*R,LU

DB

DX

EF

EFLU

EFMM

VL

VX

VLOSt

Purpose

Initiates job processing

Is a do-nothing command

Restores a failed logical unit

Initiates the on-line debug
package (ODEBUG)

Terminates on-line debug pack
age 110 operations

Prints the system engineering
file information

Prints the system engineering
file for one logical unit

Prints the core-resident mass
memory information for the
engineering file

Initiates the CYBERDA T A
package

Deactivates the CYBERDATA
package

Initiates VLOS, which is used
to set CYBERDAT A activation
to on/off

1-1

VLBGt

VLSTt

VLTPt

SP

Is used to determine the
amount of allocatable memory
that CYBERDAT A requests for
table, buffer, and mass resident
program use

Lists core allocation for
CYBERDATA

Allows modification of terminal
types in a CYBERDATA
system

Puts the control console into a
supervisor mode, at which time
any CYBERDAT A supervisor
command may be entered (SP is
recognized only when CYBER
DATA is active)

JOB PROCESSOR

The job processor is a system program which monitors
the unprotected core programs. This program is a mass
storage resident. It is stored in run-anywhere form in the
system library and is read into protected core by an
operator request. The job processor allows programs to
run in the background (unprotected core) when the
system does not need the central processing unit (CPU)
or background core area. The job processor runs under
monitor control at a low priority level.

The job processor initiates and supervises the following
programs that are running in or utilizing unprotected
core:

• Macro assembler

• COSY

tThese commands are explained in detail in appendix C.

1-2

• Off-line object programs'

• Library editing

• 110 utilities

• System and program maintenance routines

The job processor is initiated by input through the
console typewriter. Subsequent batch control may come
from the teletypewriter console, or it may be assigned to
standard input. The operator has the following options:

• Specify the input device for control statements

• Call the relocatable binary loader

• Instruct the loader to load a specified program

• Start execution

• Reassign standard 1/0 devices for job processing

• Reassign standard 1/0 devices for COSY

• Execute programs after loading, or load and
execute by using load-and-.go

• Rewind andlor unload magnetic tape units

• Temporarily suspend job processing for operator
in terven tion

• Call the library editing 'program

SECTION 2

CYBERDATA SYSTEM FLOW

CYBERDATA" System Flow

START-UP
The CYBERDATA Key-to-Disk System is a table-driven
system which runs under the CYBERDA T A Operating
System (COS). It is started from an inactive condition by
an autoload operation. This causes the Autoload
program, which resides on the mass memory library unit,""
to be loaded into core and executed. The Autoload
program func~bn is reading the core-resident system
image from the library unit to core and then transferring
control to the restart routine. The restart routine
performs the following tasks:

o Sets up the allocatable core area table, which is
located in SYSDAT

o Protects and unprotects all appropriate core
locations

o Sets up the initial overlay program length for
LIBEDT and the protect processor in their
respective system directories

o Starts the system timer and schedules the
diagnostic timer and time-of-day modules

o Issues a system identification message on the
comment device

o Requests an entry of the current date and time

o Transfers control to the CYBERDATA initial
ization program VLSTRT

VLSTRT asks for the required configuration; i.e.,
number of stations, average record length, and then
proceeds to read the necessary tables from disk and
allocate core for buffers. VLSTRT allocates one buffer
which is then able to accommodate disk routines, data
buffers, format buffers, and search and interrogate
buffers. This area must be at least 2K. Power failure
recovery is performed at the same time as general
housekeeping, such as reconstructing system tables,
according to the system's last status. Idle terminals are
then started up with the following message:

*****CYBERDATA SYSTEM*****

INTERRUPT PROCESSING

The terminal controller sends a periodic interrupt to the
system. When the interrupt is received, VLINP performs
the input for each terminal and stores each character in
the terminal (software) input buffer (TIQ). After the
input cycle is complete, output is performed on each
terminal for which display is pending. Up to two

characters or address codes per terminal is sent per
interrupt cycle. For the self-scan (970-32 Key Entry
Station) terminals, an image of the current display is
kept in memory, and only new characters are sent. For
the cathode-ray-tube (CRT) display, blocks of output
(ALD) are strung together by the display driver, and all
characters on the thread are sent. When the output
process is over, the terminal processing routine (MPC) is
scheduled.

PROCESSING THJE TERMINALS

The interrupt handler schedules the terminal processing
routine MPC to begin searching for data input at
terminal O. The MPC routine checks each input queue
for a character which is to be processed. When a
character is found, that terminal is earmarked for
processing. Before processing is begun, the next terminal
that has input is located and is scheduled for processing
at the next opportunity. This system ensures that all
terminals are serviced in turn, even though operators
may be keying at varying rates.

Having decided which terminal is to be processed, a
character is extracted on a first-in/first-out (FIFO) basis
from its buffer. The character is converted according to
format data type and keyboard type, and a decision is
taken as to where to continue processing. The choices
are:

o Entry mode

o Verify mode

o Function processing

o Interrogate mode character string collection

o Terminal Idle mode

If data entry is being performed, basic numeric and
alphabetic validation checks are made by MPC.

When all the terminals have been processed for this
cycle, a special program is entered for memory usage
optimization. As mentioned, one large buffer (FRP) is
allocated in memory for buffers and disk routines. Each
block in this buffer has a header which contains the
length of the block, how many devices are using it, and
whether or not it may be moved. This routine, which is
part of the core allocation module (CAM), checks for
unused blocks and consolidates the buffers. Some
routines which are used frequently have time control and
are eliminated from memory only if the buffer is full and
a request for space is received. When CAM has finished
its task, and the next interrupt has not yet been received,

2-1

the CPU time remaining until the next interrupt is not
used by the system (unless an outstanding 110 request
for one of the terminals is completed).

IDLE MODE
Characters that are received before a terminal is signed
on for data entry, verification, or supervision are
transposed directly to the display as lowercase charac
ters. Function keys show as the symbol @ except for the
interrogate (INT) key, which initializes data entry and
verification and enables a terminal to be used as a
supervisor station.

INTERROGATE MODE
PROCESSING

When the interrogate function (lNT) key is pressed with
the terminal in the idle state, the display is cleared, and
the characters are accepted in a string which may be
terminated by the release (REL) key for a normal exit or
by the cancel (CNCL) key. When the cancel key is
pressed, the terminal reverts to its former state. When
the release key is pressed, control is given to the
interrogate function which analyzes the characters that
have been entered. From the idle state, only the following
three commands' are valid:

o ENT - Sign-on for data entry

oVER - Sign-on for data verification

o SUP - Supervisory mode request for this
terminal

Any other command causes an error message.

Control is then passed to the required routine to validate
the remainder of the character string. For the commands
ENT and VER, if the remaining parameters are valid,
data entry or verification may begin.

ENTRY MODE FOR DATA ENTRY

The operator performs the sign-on procedure, which
consists of pressing the INT function key and entering a
job name, batch number, operator number, and an
optional autosequencing number. The routine ENTRY
checks that the job name exists; i.e., it has been defined
by an EJB command, that the batch number of the
specified job does not presently exist in the system, and
that the operator number and autosequencing number
are within the specified limits. Then a buffer is requested
for the data, and a track on disk is requested for
intermediate storage. Initial values are set up in the

2-2

terminal's active terminal table (ATT), and the display is
set up for data entry.

The operator must now enter a valid format or document
number so entry may begin. When the first character of
the record is entered, the beginning of record processing
(BORENT), which consists of setting up disk addresses
in the terminal's record buffer (TRB) and its ATT, is
performed. Each function determines for itself whether it
has to perform BORENT (SKIP, REL, DUP, etc.) or not
(READ, INT, FMT SEL, etc.). Autosequencing is
performed, and any other automatic fields are processed
in order to enable all pointers to the first field in the
record to be manually entered. Control then passes to the
entry mode module (EMM), which increments the record
and field pointers, stores the character in the TRB
(SBYTE), and displays it. EMM checks for the end of
field (field length is defined by the format). It the end of
field has not been reached, exit is made, and no more
processing is performed for this terminal until the next
character is entered.

When the end of field is reached, validation tests are
performed (V ALDTE). If the data fails one of these tests,
an error is displayed, and flags are set to allow (after the
RESET key is pressed) only replace field (REP FLD) or
error override (ERR OVR) to be pressed. Replace field
sets the pointers back to the beginning of the field and
updates the display. Data entry may then continue as
normal. Error override flags the field which is in error
and continues processing. If automatic flagging was
specified in the format, the error override routine is
called immediately, and the operator is not made aware
of any error condition.

After validation, EMM tests for an end-of-record
condition. If end of record has been reached, control is
passed to EORENT for end-of-record processing. This
consists of resetting record pointers, writing the current
record to disk, updating the number of storage words left
on the current track, and handling document control
(automatic format call), if it is required.

If end of record has not been reached, the A TT pointers
are updated to point to the next field which is to be
keyed, and processing is terminated. When all the
records in the batch have been entered, pressing the INT
key followed by keying EOB calls the end-of-batch (EOB)
processor. This EOB routine performs the batch
balancing test by checking that all seven counters
assigned to the batch are zeros. If an out-of-balance
condition is displayed, the operator may ov~rride the
error; and the batch is marked as unbalanced in the
active batch table (ABT), or the end-of-batch processing
may be canceled by using the cancel (CNCL) key, and the
batch may be examined in Read mode. The EOB routine
updates the entry for this batch in the ABT, storing the
status of the batch (unbalanced, flagged) and what
verification is required, if any. A 16-word statistics

record is then output to a special area on the disk for
subsequent processing, the ATT is written on the disk for
use by the VERIFY routine, and the terminal is returned
to the Idle mode.

VERIFY MODE FOR
DATA VERIFICATION

The sign-on sequence for the VERIFY routine is similar
to the sequence used for the ENTRY routine except that
no autosequence number may be entered. The VERIFY
routine checks that the job name exists and that the
batch is waiting for verification. A data buffer is
requested, and the A TT is set up to include various
parameters [such as counter values, disk tracks used, and
the next available storage space on disk in case an insert
(INS key pressed) is done] obtained from the ATT, which
was written on the disk at the end-of-batch condition
during Entry mode. The ABT entry is updated, and
control is passed to the verify mode module (VMM)
where the format is checked to locate the field to be
verified. Verification may be performed on the fields that
are specified by the formats used, on error-flagged fields,
on fields that contribute to unbalanced counters, or on
any combination of these three fields. The verification
options are defined by EJB. They may be changed by the
CBS command (see the CDC® CYBERDATATM Key
to-Disk System Reference, publication 22262200).
Keying in the verify function sets switches in the A TT to
indicate which verification options are in force. VMM
checks them in the following order:

1. Key verification according to format

2. Sight verification according to format

3. Error-flagged field

4. Field contributing to unbalanced counters

KEY VERIFICATION

When the first record is ready for verification, the format
is scanned until a field which meets the specified
verification options is found. The display is updated to
this field, and exit is made to wait for characters. Each
character entered is checked against the corresponding
character in the TRB. If the field is left-zero or blank
filled, the first nonzero or nonblank character .entered
will be matched against the first nonzero or nonblank
character in the data field. If the character matches, the
pointers are updated, and the character is displayed. An
end-of-field check is made. If end of field has not been
reached, processing is terminated until the next
character is entered. If the character does not match the
original character entered, a mismatch error occurs.

There are now two courses of action open to the operator:

1. Reenter the original character.

2. Use the correction (COR) key. The correction function
enters the new character in place of the original
Entry-mode character. Pressing COR sets a switch
which causes validation at the end of field and also
sets the forced-reverification switch if this option is
specified by the format.

At end of field, revalidation is performed whenever a
change is made; validation errors are treated as in Entry
mode. If forced reverification is required, pointers are set
back to the beginning of the field, the display is updated,
and the characters in the field are reentered as in Verify
mode. At end of record, processing automatically
continues with the next record. At end of batch, a flag is
set to prevent any characters from being entered.

SIGHT VERIFICATION
Sight verification fields are displayed at the terminal.
The operator may use the back space character (BSC) or
space (space bar) functions to move through the field.
Pressing CaNT causes VMM to search for the next
verifiable field.

When verification is complete, EOB updates the ABT
entry for this batch, including status such as balanced,
flagged records, etc. The A TT and a second statistics
record are output to disk.

READ MODE

Read mode may be entered from Entry or Verify modes ..
REDKEY writes the current partial record (unless at end
of record) and saves in the A TT all the pointers to the
present position. Parameters saved include:

• Disk address of the last record written

• Record count

• Format number

This information is used by the RTB routine to return to
the basic mode position from Read mode.

In Read mode, positional function keys may be used to
examine the data. Those which move backwards from
the current position (BSF, BSR, BOR, DOC) are very
similar. The pointers are moved back one field, record,
or document; and the new field is displayed (with
asterisks preceding it if it is error-flagged). When reading
backwards through a batch, a test in the I/O routine
checks a bit in the TRB to determine whether the first

2-3

record has been reached. At this point, no further
backspacing is allowed.

The forward functions (space bar, SKIP key, REL key,
and DOC) position forward to the next character, field,
record, or document which displays the relevant field.
Each routine tests separately for end of data, which is
defined as follows:

1. In Entry mode, it is the last field entered.

2. In Verify mode, it is the last field of the batch. It is
possible to advance over the current field to be
verified.

Changing a field in Read mode is accomplished by using
the REP FLD key. Pointers are set to the beginning of
the field, and the display of the field is cleared. If this
field was added to the counters, the old value is
subtracted. If the field was flagged, the record is checked
for more flags, and the number of records in error is
decremented if no other error flags are found. A pseudo
entry bit is set in the ATT, and the characters entered are
processed by EMM. At the end of the field, validation is
performed with errors treated as they were in Entry
mode. A switch is set which allows only another REP
FLD or COR key to be entered to complete the field.
Pressing the COR key initiates a process to check for
forced reverification in Verify mode. If forced reverifica
tion is required, the pointers are set back to the
beginning of the field, and a pseudo verify bit is set in the
A TT, which causes the characters that are entered next
to be processed by VMM. If reverification is not
required, the field is redisplayed from the beginning, and
the mode reverts from pseudo entry back to read.

2-4

SUPERVISOR CONTROL

The supervisory routines are entered via the COS manual
interrupt processor by using the mnemonic SP.· The
message -SV - appears at the system comment device, and
a read request is issued. When input is terminated by a
carriage return, control is passed to DSKSUP where the
characters are analyzed. If a legal command was entered,
the appropriate routine is called from disk to analyze the
remainder of the parameters. All standard errors are
processed by REJSUP, which takes the contents of the A
register on entry as the index to an error message table.
The supervisor input and output units may be assigned
to any suitable device. The current logical unit numbers
are kept in the supervisor communication area (part of
the A TT for terminal 0). After a command has been
executed, a new read request is issued.

Some supervisor commands are available to key entry
stations through the use of the interrogate function SUP.
A special table in DSKSUP determines whether or not
the requested command is available to the station which
is requesting it.

Whenever a display is ready for a CRT, and the screen is
filled, a call is made to the subroutine CONCAN to wait
for the CONT or CNCL keys. To abort a printout on the
teletype, the manual interrupt SX is used. The manual
interrupt processor sets the cancel flag, which is tested
after each line printed.

SECTION 3

REQUESTS

Requests

INTRODUCTION

Requests are used in programs to instruct the monitor to
perform operations such as reading, writing, loading,
and program scheduling (table 3-1). Requests may be
written in the assembly language as macro instructions,
which the macro assembler converts into calling
sequences. Each calling sequence contains an indirect
return jump to the monitor entry and a list of
parameters.

Table 3-1. Monitor Requests

Request Request Request
Code Mnemonic Function

1 READ Normal read

2 WRITE Normal write

3 STATUS liD request status

4 FREAD Formatted read

6 FWRITE Forma1ted write

14 MOTION Tape motion·

16 INDIR Indirect

ENTRY FOR REQUESTS

Programs make requests of the monitor (NMONI) by
calling the monitor entry. The general format of the
calling sequence is as follows:

RTJ-($F4) Location in fixed communication region
containing address of request entry
processor

:- } Parameters

THREADING

Requests to the monitor that use 110 drivers must wait in
a queue for processing. These requests are processed on a
priority basis (first in/first out-FIFO by priority).

When a request has been threaded, control returns to the
address following the request if no request with higher
priority is waiting to run. The user, therefore, can
continue processing while the input/output requested is
in progress. If the program cannot' continue until
completion of the I/O request, it should exit to the
dispatcher and allow other programs to run until the
completion' address is scheduled. The program should
not loop while it is waiting for completion by testing the
request thread for zero.

INTERRUPT LEVELS
AND PRIORITIES

When pr~grams make monitor requests, there are two
priority systems which are used; that is, request priority
and completion priority. The request priority determines
how a request is to be queued with respect to other
requests which are already queued - the higher the
request priority, the closer it is to the front of the queue.
The completion priority defines the level at which
execution takes place after a request has been
completed; i.e., after input/output is completed, the
completion address is scheduled at the level defined by
the completion priority. Background programs have the
lowest priority and are executed at priority levels 0 and 1.
Priority declarations from background jobs are ignored.
Main processing can be performed at level 0 and levell,
and 110 completion routines are always executed at level
1. All foreground programs should operate at level 3 or
above to avoid being affected by the background
programs at levels 0 and 1 and by the job processor at 2.

REQUEST DESCRIPTIONS

Requests are explained in the following paragraphs.

READ, FREAD, WRITE, FWRITE
Instructions

READ and WRITE instructions transfer data between
the specified input/output device and core. The word
count specified in the request determines the end of the
transfer.

FREAD and FWRITE requests read or write records in a
specific format as associated with each device.

The macro format for READ, FREAD, WRITE, and
FWRITE requests (1, 2, 4, and 6) is shown in the
following example. The parameter descriptions are the

3-1

same except for the n parameter. Refer to the description
of n for an explanation of the difference.

Example:

READ

FREAD

lu,c,s,n,m,rp,cp,a,x,d

WRITE

FWRITE

INSTRUCTION PARAMETERS

The following list of parameters is defined briefly. A
detailed description of each parameter follows immedi
ately after the calling sequence which is macro
generated.

lu -logical unit

c -completion address

s -starting address

n -number of words to transfer

m-mode

rp-request priority

cp-completion priority

a -absolute/indirect indicator for logical unit

x -relative/indirect indicator (affects parameters
c, s, and n)

d -part 1 request indicator (absolute parameter
addresses)

MACRO CALLING SEQUENCE

The request codes are 1 (READ), 2 (WRITE), 4
(FREAD), and 6 (FWRITE). The calling sequence
generated by the macro is shown in figure 3-1.

3-2

o

2
3
4
5

15 1 1 1 1111 1 9 I 8 I 7 I I I
RTJ·($F4)

o I dl rc I x I rp
c

thread
v Iml a I

n
s

1 3 I 1 J 0

I cp

lu

Figure 3-1. Macro-Generated Calling Sequence

FIELD DESCRIPTIONS

The field descriptions for the calling sequence generated
by READ/WRITE requests are:

RC-request code

thread-thread location; used to point to the next
entry on the threaded list

v--error code; passed to the completion
address in bits 15 through 13 of register Q
and set in the request by the system at
completion

PARAMETER DESCRIPTIONS

Detailed parameter descriptions for the requests are:

lu-This is the logical unit. It is an ordinal in the
physical device table which may be modified by
parameter a.

c-This is the completion address which is the
address of the core location to which control
transfers when an I/O operation is completed.
If the completion address is omitted, no com
pletion routine is scheduled, and control is
returned to the interrupted program. The
notation (c) represents an index to the system
library directory, indicating the program to be
executed on completion of the requested 110
operation. Use of the (c) option by unprotected
programs results in job termination.

Completion routines are operated by threading
the 110 requests on the scheduler thread. A
3-bit code in the v field of the fourth word of the
request indicates completion status. See table
3-2 for bit positions of the fourth word
indicating completion status.

When control is returned to the completion
these bits are set in similar positions in the Q
register. If less than n words were transferred on
a read, the location which follows the last word
filled is placed in the last word of the user's
buffer.

s-This signifies the starting address which is the
address of the first block location to be trans
ferred (see parameter x).

n-The number of words to transfer is given by n.

(n}-The number of words to be transferred is
determined by parameter x.

15

0

0

0

0

1

1

1

1

14

0

0

1

1

0

0

1

1

Table 3-2. Bit Positioll9

13 Description

0 No error condition detected by' driver; number of
words requested read or written; device not ready

1 No error; requested number of words read or written;
device ready

0 No error; fewer words read than requested; device
not ready

1 Fewer words read than requested; device ready

0 Error condition; requested words read; device not
ready

1 Error condition and/or end-of-tape; requested words
read or written; device ready

0 Error condition and/or end-of-file; fewer words read
than requested; device not ready

1 Error condition and/or end-of-file detected or end-of-
tape detected; fewer words read than requested;
device ready

0-The mInimUm of information is trans
ferred (one word or one character),
depending on the device.

NOTE

For FREAD and FWRITE,
n cannot be zero. Some
devices signal zero words as
an illegal request.

m-This is the mode which determines the
operating condition (binary/ASCII) of a driver.

Macro

A-Data is converted from ASCII to external
form for output and from external form
to ASCII for input.

B-Data is transferred as it appears in core
or on an I/O device.

Coding

o -This stands for binary.
1 -This refers to ASCII.

rp-This is the request priority (15 through 0, 0
lowest) with respect to other requests for this
device. Priority establishes position in the 1/0

device queue. It is automatically zero for
unprotected requests.

cp-The completion priority (15 through 0) is the
level at which the sequence of code specified by
parameter c is executed. It is automatically one
for unprotected requests.

a-This signifies the absolute/indirect indicator for
the logical unit.

Macro

blank-The first parameter (Iu) specifies the
logical unit.

R-Iu is a signed increment (-lFF16:5lu
:5 1FF16) which is added to the
address of the first word of the
parameter list to obtain the core
location containing the logical unit
number.

I-Iu is the address of the core location
which contains the logical unit
number (Iu ~ 3FF 16)'

Coding

O-lu is a logical unit number.

l-lu is a signed increment (+lFF);
however, it is not allowed if d = 1.

2-lu is a core address which contains
the logical unit number.

x-The relative/indirect indicator parameter af
fects parameters c, s, and n as shown. Because
of the wraparound feature, computed addresses
may be located before or after the parameter
list.

The x parameter affects the c parameter as
follows:

• If (c) is indirect, x is meaningless; c represents
an index to the system directory.

• If x is 0 or blank and c is direct, c is the
completion address.

• If x is not 0 and is not blank and c is direct, c
is a positive increment added to the address
of the first word of the parameter list to form
the completion address.

3-3

The x parameter affects the s parametert as
follows:

e If x is 0 or blank and s is direct, s is the start
ing address. If a request is. made for mass
memory, the mass memory address follows
the request.

• If x is 0 or blank and (s) is indirect, s is a core
location which contains the starting address.
If a request is made for mass memory, the
mass memory address follows the core
location which contains the starting address.

• If x is not 0 and is not blank and s is direct, s
is a positive increment added to the address
of the first word of the parameter list to form
the starting address. If a request is made for
mass memory, the mass memory address
follows the request.

• If x is not 0 and is not blank and (s) is
indirect, s is a positive increment added to the
address of the parameter list to form the
address of a location which contains another
positive increment. If the request is for mass
memory, the loction containing the second
increment is immediately followed by two
words which contain the mass memory
address.

15 14

The mass memory address format is shown in
figure 3-2.

o
Most-si nificant bits of MS address (msb)

least-significant bits of MS address Usb)

Figure 3-2. Mass Memory Address Format

The mass storage address specifies a mass
memory word address (READ/WRITE) or a
mass memory sector (96-word size) address
(FREAD/FWRITE). Return is to the location
following the mass storage address.

The x parameter affects the n parametert as
follows:

• Ifn is direct, x is meaningless; n is the length
of the block to be transferred.

• If x is 0 or blank and (n) is indirect, n is core
location containing the block size.

• If x is not 0 and is not blank and (n) is
indirect, n is a positive increment added to
the address of the first word of the parameter
list to obtain the address of the location con
taining the block size.

d-The part 1 request indicator parameter
indicates that the request requires the use of
16-bit address arithmetic.

o or blank-The preceding description of the
parameter applies.

1-x is ignored; c, n, and s parameters
are interpreted as the 16-bit abso
lute address. lu is processed the
same as for d = 0, but parameter a
may not be set to R.

INDIR Request

The INDIR request (16) allows indirect execution of any
other request as determined by the parameter list
referenced by p.

FORMAT

The macro format is:

INDIR p,i

PARAMETER DESCRIPTIONS

Parameter descriptions for the INDIR request are:

p-The address of the first word of the parameter
list of any other request; p must not be enclosed
in parentheses.

i-This is the indicator for the request used.

o or blank-INDIR has no request code. The
calling sequence generated by the
macro is shown in figure 3-3.

1111 I I 7 I I 3 I
RTJ-($F4)

p

Figure 3-3. INDIR Macro
Calling Seqnence (0 or Blank)

tIf bit 15 is set for (n) or (s). incrementation continues as indirect until bit 15 is not set.

3-4

This form is useful only when the
address of the request to be
executed is at an address below
$8,000.

1-INDIR has a request code of 16.

rc

The calling sequence generated by
the macro is shown in figure 3-4.

Figure 3-4. INDm Macro
Calling Sequence (1)

MOTION Control

The MOTION control request, (14), is used to control
motion and end-of-file processing.

FORMAT

PARAMETER DESCRIPTIONS

Parameter descriptions for the MOTION control request
are:

lu-Logical unit

c-Completion address

P1,P2,P3-Each of these parameters results in an
action as defined in table 3-2. Up to
three motion commands may be defined
in a MOTION request. The commands
are executed in the sequence P1,P2,P3;
the first command with a value of zero
terminates the request.

dy-Magnetic tape density selection is as
follows:

O-no change

1-800 bpi

2-SS6 bpi

4-1600 bpi

External rejects will
result when an illegal
density selection is
attempted.

rp-Request priority

cp-Completion priority

a-Absolute/indirect indicator for the logi
cal unit.

x-Related only to the completion address.

d-The part 1 request indicator indicates
that the request requires 16-bit address
arithmetic.

O-all parameters are processed as de
scribed.

1-this indicates the part 1 request; c is a
16-bit absolute address and must not
equal R for the a parameter.

m-Mode

A-ASCII

B-binary

MOTION Request Calling Sequence

The MOTION control request code is 14, and the calling
sequence generated by the macro is shown in figure 3-S.

15 o

o 0 d rc
c

2 thread
3 v
4 p1 dy

Figure 3-5. MOTION Request Calling Sequence

MOTION Field Description

The field descriptions for the calling sequences are:

rc-Request code

thread-The thread location used to point to the
next entry or the threaded list

v-Error code setting

3-S

MOTION Parameters for Magnetic Tape

One MOTION control can be repeated for magnetic
tape. In this case, the macro request is as follows:

MOTION IU,c,r,p,n,O,rp,cp,a,x,d,m

All of the parameters are the same as in the preceding
MOTION request except for the following which replace
P1,P2,P3, and dy.

r-repeat function indicator must equal R. The
parameter must also equal R.

p-motion code

n-number of times to be executed; not to exceed
4095

~null parameter

MOTION Coding Sequence

The coding sequence generated is the same as figure 3-5
except for the last word, which is generated as shown in
figure 3-6.

I 71
n

Figure 3·6. MOTION Coding Sequence

The field description for the calling sequence is:

1-indicates the request can be repeated

MOTION Request Macros

The following macros can also be used for MOTION
requests. Each macro performs only one motion-type
request. Refer to table 3-3 to determine the action taken
by the driver.

BSR*t IU,a,n,c,P (backspace record)

EOF* IU,a,n,c,P (write file mark)

REW* IU,a,n,c,P (rewind)

UNL* IU,a,n,c,P (rewind unload)

ADF* IU,a,n,c,P (advance file forward)

BSF* IU,a,n,c,P (backspace file)

ADR* IU,a,n,c,P (advance record forward)

MOTION Request Parameters for Additional Macros

These parameters are as follows:

lu-Iogical unit number of device

a-absolute/indirect/relative indicator for logical
unit

blank-Iu is the actual logical unit number.

R-Iu is a signed increment (-1FF16 ~ Iu
~ 1FF16) added to the address of the
first word address of the parameter list
to obtain the address of a location
which contains the actual logical unit
number.

I-Iu is a core address (0 to $3FF16) which
contains the logical unit number.

n-number ofiterations; ifit is blank, it is assumed
to be 1 (not to exceed 4095).

c-completion address; if the macro call
terminator is an *, completion is relative (all
that is required is the label name). If the macro
call terminator is a blank, the completion is
absolute. If c is left blank, there is no
completion.

P-priority level defines both the request and
completion priority; if it is left blank, priority is
zero.

NOTE

All parameters are optional and
may be left blank except lu.

Examples
Requests

of MOTION Control

The following parameters are common to the examples:

• NEXT -completion address

• 6-logical unit of magnetic tape

o l~logical unit of card punch

tAn asterisk (*) specifies relative completion address; if blank, absolute completion (Macro computes the relative address constant).

3-6

Table 3-3. Driver Action for MOTION Request Parameters PI, P2, P3

Refer to the key beiow the table for a description of the column headings.

Code I Description Mn CR LP m MSD I PrO CD*

0 First zero terminates processing the request X X X X X X X

Backspace one record X X X
1

DonothUlQ X X X X

Write one end-of-file mark X X X

2 Page eject; reset line count X X

Do nothing X X

Rewind to loadpoint X X

3 Set pointer to start of tape X

Do nothing X X X X

Rewind and unload; terminates request X X

Terminates processing the request X

Sequence count goes to zero;
Terminates request X

4
Reset line count; terminates request X

Set pointer to start of tape;
terminate this request X

Do nothing X

Skip one file forward X X X

5 Slew cards to end of file X

Do nothing X X X

Skip one file backward X X X
6

Do nothing X X X X

Advance one record X X X
7

Do nothing X X X X

tKey

MT -Magnetic tape MSD-Mass storage driver
CR-Card reader PTD-Pseudo tape driver
lP-line printer CD - COSY driver
TTY -Teletypewriter

*Assumes magnetic tape physical device

3-7

• MT -program location containing a 6

• SF A-low-core location containing standard
binary output device

The following example is a backspace macro. The macro
includes a relative location containing the logical unit
number, backspace 3 records, a relative completion
address, and a request and completio~ priority of 3.

BSR* MT,R,3,NEXT,3

The following sample end-of-file macro has the actual
logical unit number, write one end-of-file, zero
completion and a priority of o.

EOF 10

The following end-of-file macro is the same as above
except that the logical unit number is in a low-core
location.

EOF SFA,I",O

REQUEST RESTRICTIONS

Certain restrictions apply to the use of all requests
executed from unprotected core. Violation of these
restrictions results in job termination. If these restric
tions are violated by requests from protected core,
unpredictable results occur since limited error checking
is performed.

Invalid Addresses

Addresses must be valid for the requesting program. A
program in unprotected core cannot have interrupt or
control information addresses in protected core. An
example of a control information address is the address
of an area of core from or to which a block is to be
transferred.

Dlegal Logical Unit

The logical unit number must be legal. Logical unit
numbers of 0 or greater than the largest available logical
unit number defined in the LOG1A table are illegal.

ruegal Control Information

Requests must not contain illegal control information
(any information that can cause destruction of part of the
system). A read into protected core or a write into system
areas of mass storage, for example, is illegal.

Busy Requests

All 1/0 requests are threaded by using the third word of
the parameter list. A given 1/0 request cannot be
repeated until it is taken off the thread (completed). An
attempt to repeat a busy request in protected core is not
processed. Instead, control returns to the caller at the
normal place, and the Q register is set negative to avoid
delays at high-priority levels. An attempt to repeat a busy
request by an unprotected program is automatically
repeated until its thread is cleared. A limit of five
requests may be queued from unprotected core.

STANDARD SYSTEM INPUT/
OUTPUT DEVICES

The logical units of the devices listed are stored into the
stated core locations. If these locations are used in system
requests, changing equipment does not require reas
sembly. The input/output devices and core location are
as follows:

Device Core Location

Standard input devicet SF9

Standard binary output devicet SFA

Standard print output devicet SFB

Output comment device SFC

Input comment device SFD

Mass storage scratch SB3

Mass storage li~rary SC2

tThe operator can change these values by an *K statement from the comment device. All programs, therefore, can address these particular units (indirectly) or determine
their numbers by interrogating the communication region.

3-8

SECTION 4

DRIVERS

Drivers

INPUr/OUTPUT
REQUEST FORMAT

READ/WRITE calls request processors to transfer data
between a specified input/output device and core
memory. Word count which is specified in the request
determines the end of the transfer.

Format read (FREAD) and format write (FWRITE)
requests cause records to be read or written in a specific
format. A particular format is associated with each
device.

Further explanation and parameter descriptions of the
READ/FREAD/WRITE/FWRITE requests are in sec
tion 3.

MOTION requests are handled by each driver. The
meaning and function of each MOTION command may
differ for each device. Refer to section 3 for parameter
descriptions and device capabilities.

Each device in the system is associated with a device
driver, which is the only piece of software that is allowed
to give direct commands to the device. The driver
controls execution of READ, WRITE, and MOTION
requests passed to the monitor by a user program.

Whenever a program requires input or output of the data
it is processing, it makes a monitor request to affect the
desired transfer. The monitor queues the request for
processing by an 110 driver.

When a request is queued, the request processor
determines whether or not the driver is already busy. If
the driver is not busy, its initiator is scheduled, and the
request exit processor returns to the caller.

The tape MOTION requests are handled in a similar way
through the MOTION request processor.

Completion Routines

The completion address specified in a parameter list is
scheduled when the I/O operation has been completed.
On entry to the completion routine, the Q register
contains the error status (if any) of the 110 operation,
and the A register contains the address of the parameter
list. The Q register is negative (bit 15 = "1") if an error
occurred and should be tested by the completion routine.
The original state of registers at the time of the monitor
request is not preserved. The priority level is that which is
specified as the completion priority in the monitor
request parameter list.

Completion routines which are in unprotected core are
always executed at priority level 1.

TELETYPEWRITER DRIVE

The discussion of the teletypewriter drive defines the
operation of the following device driver:

D1711-1711/1712/1713/713 Keyboard Driver

Teletypewriter Keyboard Requests

Four types of requests (READ, WRITE, FREAD, and
FWRITE) are honored from the keyboard. Each request
specifies the starting address location in core that is
being read into or written from, the number of words,
and the completion address. All data is in ASCII format~

READ REQUEST

The number of words in the READ request is filled,
starting at the specified core location. Two characters fill
one word; the first character is put into the upper half of
the word. Bit 7 of each character is an even parity bit and
is set to "0" after it is checked and before it is packed. If
the parity bit is incorrect, a hardware error is indicated.

READ Request Coding Sequence

If no words are specified, only one character is read into
the upper half of the specified core location. The lower
character is filled with binary ones. The calling sequence
format is shown in figure 4-1.

I~I First Character
I I I I I 10 I
Second Character

Upper Half Lower Half

Figure 4-1. READ Request Calling Sequence

FREAD REQUEST

Words in core are filled, starting at the specific core
locations and continuing until the number of words
specified is. filled or a carriage return is encountered.
Two characters are packed in each word. Bit 7 of each
character is interpreted as an even parity bit before being

4-1

cleared to "0". Line-feed characters are ignored. If
cancel character is encountered, characters are passed
and no information is stored until a carriage return is
detected.

The request is then repeated from the beginning. If a
carriage return is not encountered before the specified
number of characters are read, characters are passed
until a carriage return is detected. A carriage return
before the number of words specified is read constitutes a
short read.

WRITE REQUEST

The number of specified words is printed, starting at the
specified core location. Each word causes two characters
to be printed with the upper half being printed first. If no
words are specified, only one character is printed from
the upper half of the specified core location: If an ASCII
end-of-text character ($03) is encountered, the request is
terminated at that point regardless of the number of
words specified.

FWRITE REQUEST

The FWRITE operation is the same as that of WRITE
request except that before any words are printed, a
carriage return and line-feed function are executed by
the teletypewriter driver.

MOTION REQUEST

A write end-of-file request to the keyboard is honored by
executing a top-of-form function. All other MOTION
request parameters cause no action with the normal
completion of the request.

MANUAL INTERRUPT

A manual interrupt is caused by pressing the MANUAL
INTERRUPT button on the teletypewriter. If a manual
interrupt is detected by the teletypewriter driver, the
manual interrupt processor (MINT) is entered.

Error Conditions

The driver recognizes the following errors:

• Internal reject on input or output instructions

• External reject on input or output instructions

• Failure to interrupt

4-2

• Alarm

• Parity error on input (1711/1712/1713)

• Checksum (1713)

• Lost data (1712/1711/1713)

These errors are considered irrecoverable by the driver.
The driver sets the error fields in the physical device table
and the error parameter in the request. On entry to the
completion program, the Q register is negative, which
indicates an irrecoverable error to the user.

CARD READER DRIVER

The follo\ying discussion defines the operation of the
D17293-1729-3 Card Reader Driver.

Card Reader Requests

The card reader requests are:

• READ binary

• READ ASCII

• FREAD binary

• FREAD ASCII

READ BINARY

The calling sequence specifies the number of words in
core to be filled, starting at a requested beginning
address. Card columns are packed, leaving no unused
bits. After reading in binary mode, the buffer appears as
shown in figure 4-2.

o

2
3
4

15 I I I 111 I I I I 7 I I I I 3 I I JO
column 1 Icolumn2 ...

column2 I column3 ...
column 3 I column 4

column 5 Icolumn6 ...
columnS I

Figure 4-2. READ Binary Buffer Formatting

If no words are requested, only the first column of the
card is read. The unused bits are set to "1"s; the
remainder of the card is unavailable. If a read ends in the
middle of a card, motion continues, but the unread
portion of the card is unavailable.

READ ASCn

Words in core are filled, starting at a given address until
the number of requested words is filled. The READ
proceeds in the same manner as for READ binary except
that each column is converted from Hollerith code to a
7 -bit ASCII equivalent before being stored. These ASCII
characters are stored in two per word, leaving bits 7 and
15 as a "0". If no words are being read, one column is
read, and the character is placed in the upper half of the
word with "l"s placed in the lower half. Refer to the
FREAD ASCIi discussion on page 4-4 for conversion
code information.

FREAD BINARY

Although a formatted read operation may be specified
with the request as binary or ASCII, the format of the
card actually determines the mode. If column 1 of the
card contains a 7/9 punch, it is read as a formatted
binary record; otherwise, it is read as a formatted ASCII
record, regardless of the mode specified in the request.

First Card for FREAD Binary

The first binary record format card is shown in figure
4-3.

Column 2 3
12
11
0
1
2 A
3
4
5
6
7
at
9

E

B

C

B

C

Figure 4-3. First Binary Format Card
for FREAD Binary

In figure 4-3, each area is defined as follows:

A-sequence number (column 1, rows 12 through 5)

B----complemented record length (column 2, rows 2
through 9; column 3, rows 12 through 5 on first
card)

tlf row 8 in column 1 is punched. the driver ignores the checksum.

C----data (first card starts in column 3, row 6; other
cards start in column 2~ row 2)

D-16-bit checksum (follows last data word of a
record)

E-reserved (column 2, rows 12 through 1; blank
unless checksum override is indicated in column
1; overriding the checksum is not recom
mended)

Subsequent Cards for FREAD Binary

Subsequent binary record format cards are as shown in
figure 4-4.

Column 2 3 79 00
12
11
o

,-~-----~-----~-----~

E

1 A
2

C C

3
4
5
6
7
a

C D

D

9 ~ _____ ~ _____ ~ _____ ~ _____ ~ ~ _______________ ~ _____ ~~

Figure 4-4. Subsequent Binary Format Cards

The lettered areas indicated in figure 4-4 are defined as
follows:

A-sequence number (column 1, rows 12 through 5)

B----complemented record length (column 2, rows 2
through 9; column 3, rows 12 through 5 on first
card)

C----data (first card starts in column 3, row 6; other
cards start in column 2, row 2)

D-16-bit checksum (follows last data word of a
record)

E-reserved (column 2, rows 12 through 1; blank
unless checksum override is indicated in column
1; overriding checksum is not recommended)

4-3

SEQUENCE NUMBERS FOR FREAD BINARY

AIl cards in a record must have the sequence numbers in
order. If a record requires multiple-card storage, and a
sequence, error is detected on any card .in the record; the
error is fatal, and the alternate device handler is entered.

Sequence numbers between records are handled as
foIlows:

• If the number is out of sequence, two actions are
possible: 1) the operator resequences the cards,
rereading the out-of-sequence card-respond
with RP to sequence error and 2) the operator
wishes to read the cards out of sequence-reread
the out-of-sequence card twice and respond with
RP to the sequence error.

• If the number of words requested is less than the
length of the record, cards are passed with no
data being transferred until the' entire format
record is passed.

• If the number of words requested is greater than
the length of the record, data transfer ceases at
the end of the record, and no further cards are
read for that request.

Row 8 of column 1 on a formatted binary card is the
checksum override bit. When the driver detects this
condition, the checksum of the card is ignored. The
foIlowing example iIIustrates how this function could be
used.

Example:

Assume that the user is loading a binary deck, and the
card reader jams and damages a card. The user is
successful in duplicating the card using the LIBEDT *T
processor. Now, however, the sequence number of the
card is incorrect. This can be corrected by punching the
sequence number on a keypunch machine. This, in turn,
causes the checksum to be incorrect. The user punches
the checksum override bit, which allows the card to be
read properly.

FREAD ASCn

Columns are read in ASCII mode until either one entire
card is read or the number of words requested is filled,
whichever occurs first. If the number of words requested
is depleted prior to reading one card, the remainder of
the card is unavailable, and the read operation is in
READ ASCII mode.

If a binary card is read when a FREAD ASCII request is
specified, either the card is read in binary (if it is the first
card of a record) or a 7/9-punch error occurs (if it is not
the first card).

4-4

HoUerlth-to-ASCn Code Conversion

The HoIlerith code conversion to ASCII code can be
done by using ASCII63 (026 Keypunch type) or ASCII68
(029 Keypunch type). A table program is appended to the
driver for this conversion:

• CR026-ASCII63 conversion

• CR029-ASCII68 conversion

EOF Processing
Requests

and MOTION

The 1729 Card Reader Driver provides the capability for
handling an end of file (EOF). If an end-of-file record is
detected by the driver during input, the drive offsets the
record, sets bit 11 in word 12 of the physical device table,
and completes the request with an error code. Control is
given to the caIler's completion routine with the error
code set in bits 15 through 13 of the Q register. An end of
file is a card with column 1 punched with the
configuration set into bits 11 through 0 of word 16 of the
physical device table. NormaIly, it is a 6/7/8/9 punch;
therefore, PHYSTB word 16 contains OOOF16. The
MOTION request skip file forward (parameter code 5) is
honored by the driver. AIl other MOTION requests cause
no action.

Error Conditions

AlI errors detected by the driver are caused by equipment
malfunction or improper card decks. The folIowing
conditions are detected:

o Internal or external reject to any INP or OUT
command

• Alarm interrupt

• Illegal HolIerith punch detected during a read
ASCII

• Data interrupt after column 80 on read

• EOP interrupt before column 80 on read

o Incorrect checksum at the conclusion of the read

o Pre-read error

o Incorrect sequence number

• Bit 15 of the complemented length is not "1"

o 7/9-punch error

Refer to appendix E for 110 error codes and
descriptions.

CARTRIDGE DISK DRIVE

Cartridge disks utilize a single fixed disk and a single
removable disk in a cartridge case. Both disks have two
recording surfaces. The disks are referred to as disk 0
and disk 1. They are individually addressed by the
hardware controller and are differentiated by a single bit
designator in the file address word. Autoload is always
loaded from disk 0, which is ordinarily the removable
disk whereas disk 1 is usually the fixed disk. Through the
use of a toggle switch on the maintenance panel, disk
addressing may be reversed. When this toggle switch is
used, disk 0 becomes the fixed disk, and disk 1 is the
removable disk. Note that Autoload is still executed from
disk O.

Software users reference the entire cartridge disk drive as
a single logical unit with disk 0 containing the lowest
sector address and disk 1 containing the highest sector
address. The disk which is referenced depends on the
toggle switch position for disk addressing.

Data Transfer Request Formats

Execution of a data transfer request transfers n words
from mass storage (READ/FREAD) or to mass storage
(WRITE/FWRITE), starting at any first word address
indicated by s and mass storage address indicated by
msa. If n is zero, one word is transferred. No data
formatting is involved since corresponding core and mass
storage locations contain identical 16-bit images. The
disk driver data transfer request differs from conven
tional requests in that the two-word mass storage address
must be included. To accommodate this, two formats are
provided. All parameters are described in section 3.

The first request format is consistent with normal (x
parameter not set) requests by providing a seven-word
format as defined in section 3. If the x parameter is set,
this indicates an indirect reference to the first word
address increment contained in the s parameter. This
positive increment is added to the address of the
parameter list to form the address of a location which
contains another positive increment. The second
increment is added to the address of the parameter list to
obtain the starting address. This second increment is
followed immediately by two words which contain
the mass storage address (msa) and must comply with the
first request format.

If parameter x is zero, both sand s" are absolute
addresses; 'otherwise, they are 1S-bit positive increments
which are added to the address of the first request
parameter (word 0) to form absolute addresses. Control is
returned to the location which follows word 5 after the
request is made. The first request format appears as
shown in figure 4-5.

o
1
2
3
4
5

15 I I

old I

v

1 I

I 11 I I I

rc

10 I a I

7 I I I. I I I 3 I I I o
RTJ·($F41

I x I rp I cp
c

thread
lu

n
sIt

executable
-;:::: code ::

7

8
9

o I s

msa/msb 30-15
oT msa/lsb 14-0

Figure 4-5. First Data Transfer Request Format

The second request format (figure 4-6) adds two
additional words which contain msa in line with the
conventional data transfer format, identified by a direct
reference to s (bit 15 = "0").

The conventions defined previously (section 3) for s in
relation to x and d also apply here. Control is returned to
the location following word 7 after the request is made.

o

2
3
4
5
6
7

15 I I

Old I

v

o I

o I

I 11 I I I

rc

10 I a I

7 I I I I I I 3 I I I o
RTJ·($F41

I x I rp I cp
c

thread
lu

n
s

msal msb 30·15
msa/lsb 14-0

Figure 4-6. Second Data Transfer Request Format

Disk Requests

The disk driver processes requests made by user
programs. for data transfer to mass storage (WRITE/
FWRITE) and from mass storage (READ/FREAD). The
driver also provides a program overlay capability and
handles the transfer of mass storage resident system
directory programs into core as the result of a SCHDLE
request (mode has no meaning).

The number of words specified in the calling sequence is
transferred to or from core, beginning at the specified

4-5

starting address and sector number. Sectors are read or
written sequentially until the requested number of words
has been transferred. If no words are requested, the
driver transfers one word to or from core.

READ/WRITE REQUESTS

READ and WRITE requests provide the ability to
simulate the word address by allowing the msa to be any
word address in the size range of the disk. The word
address is converted by the driver to sector and word in
the sector by dividing by 96.

READ Request

The READ request fills core, starting at a specified
address, with the specified number of words. If no words
are requested, one word is transferred. Transfer is
initiated from the disk word address which is specified by
the most-significant bits (msb) and the least-significant
bits (Isb) of the request (Isb is a 15-bit value). A carry into
bit 15 of lsb should be treated as an overflow condition,
and msb should be incremented by one. The following is
an example of a READ request where C is the
completion address:

READ

ADC

IMP-

BSS

8,C,BUFFER,15,B,4,4,,1

$1,$6D59

($EA)

BUFFER(15)

As a result of this request, 15 words are read from logical
unit 8 (disk), starting from disk word address 1,6D5916
(figure 4-7). The words are read into core, starting from
the first-word address buffer. Disk word address
1,6D5916 is the same as sector 63210, word 8810 (divide
OOOOED5916 by 9610 for sector and word).

From disk word address 1,6059 To core first word address BUFFER

~"§g-----Buffer I" ------
Disk Core

Figure 4-7. Data Transfer Example

4-6

WRITE Request

The WRITE request transfers the requested number of
words from core to disk. The disk starting address (msb,
lsb) is interpreted by the driver as a word address. When
writing on disk in this mode, the remainder of partially
updated sectors is preserved.

A partial sector WRITE request causes:

• The entire sector to be read into a buffer in the
driver

• The user's data to be moved into the appropriate
portion of that buffer

• The entire buffer to be written onto the disk

Figure 4-8 is an example of a word-oriented WRITE
request across several sectors.

Disk
Contents

Sectorx+ 1

msb,lsb word
address (msa)

Sectorx+2 Sectorx+3

WRITE request of n words at msa - msb,lsb

Figure 4-8. Example WRITE Request

FREAD/FWRITE REQUESTS

FREAD and FWRITE requests utilize the sector
orientation of the disk. The formats of FREAD and
FWRITE are the same as READ and WRITE. The msa
represents a sector number; n represents the number of
words to be transferred. If n is not a multiple of 96 for an
FWRITE request, the unused words of the last sector are
set to zero.

FREAD Request

FREAD fills core, starting at a requested address, with
the specified number of words. If no words are requested,
one word is transferred.

FWRITE Request

This request transfers the specified number of words
from core to disk. The starting disk address is

interpreted by the driver as a sector address; the msb
must be zero. If no words are requested, one word is
transferred. The remainder of a partially updated sector
is not preserved. Using the same symbolic conventions as
in the previous example, a normal FWRITE request
appears as:

FWRITE 8,COMP,BUFFER,113,B,4,4,1

ADC 0,103

BSS BUFFER(113)

In this case, 113 words are written from the core first
word address BUFFER onto the disk, starting at sector
103.

The 856-4 Cartridge Disk has more than $7FFF sectors
and requires both words of the request to specify the
mass memory sector address. The sector address is
defined in the same manner as a word address (the 16
msb in word 1 and 15 lsb in word 2 with bit 15 of word 2
set to 0).

word 1 16 msb

word 2 o 15lsb

MOTION REQUEST

Motion requests to the disk result in no action, and
return is through a normal completion.

Error Conditions

The following errors are detected by the drivers:

• Internal and external rejects

• Parity error

• Seek error

• Address error

o Lost-data error

o Protect fault

o Checkword error

• Defective-sector error

• Compare error

• Time-out error

On the following error conditions, error recovery is not
attempted:

• Parity error

• Protect fault

• Time-out error

ERROR DETECTION FOR DISK TRANSFERS

Several methods for error detection are used during disk
transfers. After data reads and writes, a hardware
compare function can be issued to compare the data read
or written with the data contained on the file. On
detection of an error, a reposition and retry is attempted
up to 10 times.

When an irrecoverable error occurs, the driver sets the
error field of the disk physical equipment table and the·
error parameter in the request. The Q register is negative
on entry to the completion program and indicates an
irrecoverable error to the user. No information about the
nature of the error is passed to the user.

LINE PRINTER DRIVER

This section defines the operation of the following device
driver:

D42312-1742-30/1742-120 Line Printer Driver

WRITE/FWRITE REQUESTS

WRITE and FWRITE requests are honored by the line
printer driver. Binary or ASCII mode has no significance
and is ignored.

4-7

The drIver prints up to 136 characters per line. The
requester output buffer may be any length provided it
contains embedded control characters. If more than 136
characters are supplied for one line, the additional
characters °are ignored. Printer control characters aret:

Character Action Before Printing

0 Space two lines

1 Page eject

+ No space

All others Space one line

The FWRITE mode advances one line before printing,
and the first character of the record is printed. The
unformatted WRITE does not cause a preceding
advance . .It prints the buffer only when a control
character which causes a print or paper motion is
encountered. The 1742-120 Printer requires a train
image table to be appended to the driver (TS9S4).

MOTION REQUEST

A MOTION request to write end of file is honored as a
page-eject function. All other MOTION requests cause
no action with normal completion of the request.

Character Editing

All characters are edited as follows before they are sent to
the print buffer:

Character Action

$20-$SF Send to buffer

$60-$?E (Iowe~case) Change to $20-$SE

$03-EOT

$04-EOT

Print buffer; advance
one line; terminate
request

Same as $03

tApplies to FORTRAN line printer only.

4-8

$09-HTAB

r~-

Simulated TAB; send
blanks to buffer

I, J J
° • '-I $OA-Line feed Ignore

:V $OB-VTAB

~ r- $OC-Form feed

Print; select format tape
level 2 and continue

Select format tape level
1 ~ !op of form

IfJ~ "\ _~OD-Carriage return Print buffer; advance

$1B-Escape

one line

U sed for direct function
control of line printer

The next character is interpreted as follows:

$OO-$2F

$30 ° 0"

$31

$32

$33-$3E

$3F

$40

$41-$7F

Ignored

Print buffer; no ad
vance; next line starts at
the beginning

Print buffer; single
space; next line starts at
the beginning

Print buffer; double
space; next line starts at
the beginning

Print buffer; select for
mat tape level (01 to 12);
coritinue printing from
next printing position

Select eight lines per
inch

Clear controller;
continue

Ignored

Tab stops for tab simulation are assumed to exist every n
characters of the print line. Each time a tab character is
encountered, sufficient space characters are sent to the
print buffer to advance the character counter to the next
tab-stop position. n is a maximum of 20 in the released
version. ,,0_

Error Conditions
The following errors are detected by the driver:

• Internal or external reject

• Hang-up

• Alarm

When the driver detects an irrecoverable failure, it sets
the error field in bits 15 through 13 of word 9 of the
physical device table for the device, and sets the error
word in the Q register. Refer to appendix E for I/O error
codes and descriptions.

MAGNETIC TAPE DRIVER

This discussion defines the operation of:

D17322-1732-2/615-73/615-93/10300 Buffered
Magnetic Tape Driver

. The 1732-2 Magnetic Tape Driver provides communica
tion with the 615-73 and 615-93 Tape Transports. The
driver can operate up to four transports. The controller
has a buffered data channel capability in its standard
configuration.

Magnetic Tape Driver Requests

The following paragraphs discuss magnetic tape driver
requests.

READ/WRITE REQUESTS

READ and WRITE requests on the 615-73/615-93 Tape
Transports differ from similar requests on other tape
drives. Record lengths are defined by the requester. The
number of words specified in a READ/WRITE request
defines a logical record.

The type of magnetic tape drive determines the physical
records. For 615-93 WRITE requests, a logical record is
written as a physical record. For READ requests, the
user-defined logical record length may be unrelated to
the length of the physical record. The driver reads
through record gaps until the logical record is complete
or until it encounters a file mark.

For 615-73 requests, binary information must be
repacked in allocatable core to use the
assembly/disassembly hardware feature. The maximum

length of a physical record -is set to 192 words to limit
core use. If a logical record is greater than 192 words, the
record is segmented and written as a series of physical
records. An analogous procedure is used for reading a
logical record. Any unused portion of the last physical
record is lost on subsequent READ operations unless the
user retrieves that particular segment.

FREAD/FWRITE REQUESTS

FREAD and FWRITE requests are oriented toward
physical records. A maximum length is a logical record.
Any record greater than the specified logical record is
truncated.

The necessary ASCII and BCD conversions take place
for ASCII transfers on 615-73 drives. All information on
615-93 drives is transferred as binary in odd parity.
Tapes geperated on nine-track drives are not compatible
with those generated on seven-track drives.

MOTION REQUEST

Refer to the section 3 discussion for the tape MOTION
request.

Error Conditions

The following error conditions are recognized by the
driver:

• No write ring on a write or write end-of-file mark

• Tape unit not ready

• Unit number not dialed

• Parity error

• Failure to interrupt

• Buffer channel not operative

• Lost data switch mode

• Missing processing module

These error conditions are considered irrecoverable. The
. user may continue, repeat the request, or down the

driver.

PSEUDO TAPE DRIVER

The pseudo tape driver drives pseudo devices which, to
the user, have the external characteristics of a magnetic

4-9

tape. The pseudo devices are sequential files which may
be accessed as normal magnetic tape by using the
following monitor requests:

• READ

• WRITE

• FREAD

o FWRITE

• MOTION

The pseudo devices are also accessible with the use of the
following job control statements:

• *REW

• *UNL

• *EOF

Pseudo Tape Driver Requests

The following paragraphs briefly define the pseudo tape
driver requests.

4-10

READ/FREAD/WRITEjFWRITE REQUESTS

READ/FREAD and WRITE/FWRITE requests have a
maximum record length of .192 words. Any attempt to
write a longer record results in an error. Any attempt to
read a longer record results in a short-read condition.
Format and mode have no meaning. All information is
transferred in binary mode.

MOTION REQUEST

The request format is described in section 3. Density has
no meaning. All other motion codes are processed. When
the driver is advancing or backspacing records and a file
mark is encountered, the current MOTION command is
terminated with the end-of-file status (bit 11, word 12) set
in the physical device table.

SECTION 5

JOB PROCESSING

Job Processing

INTRODUCTION

The 1700 COS batch-processing subsystem initiates,
monitors, and terminates all jobs that are executed in
unprotected core. This batch-processing subsystem is
scheduled for execution by the operator who must
manually interrupt COS and type:

*BATCH

On recognition of the *BATCH statement, the
batch-processing sUbsystem is scheduled to begin
processing user jobs. Processing continues until an *Z
control statement is encountered, at which time, all job
processing is terminated, and the batch-processing
sUbsystem is released from core.

Jobs which are recognizable by the batch-processing
sUbsystem consist of all processing features, executable
through the use of the available job control statements. '
Each job to be initiated for execution must have a *JOB
as its first control statement and must be terminated by a
device-detectable, end-of-file statementt. In a job, all
legal batch-processing control statements (except *Y,
*R, and *Z) are permissible only in the bounds defined
by a *JOB and the end-of-file statements. This job
structure permits a continuous flow of jobs through the
subsystem without individual job initiation by operator -
intervention.

In the event of an abnormal job termination, all open
files are closed, and the sUbsystem proceeds to the next
job. This procedure is executed for all job processing
prior to initiation of the next job.

If the control statement input device is the standard
comment device, the character J is output, indicating the
sUbsystem is waiting for a new control statement.

JOB CONTROL STATEMENTS

Control statements to the sUbsystem are format records
in ASCII mode. A maximum of 72 characters is allowed
for each control statement. The first character of an
input statement must be an asterisk; the last must be a
blank or a carriage return if input is on the
teletypewriter. Intervening characters identify the type of
statement and the action.

Legal Conti"ol Statements

The set of legal control statements for the sUbsystem can
be categorized as follows:

o Control statements acceptable in a job

*JOB *x *REW *EOF

*y:t: *LGO *UNL

*U *CTO

IL *PAUS

• Control statements acceptable to both a job and
th~ manual interrupt routine

*Z
*R
*K

}
*CSy

May be entered at any time after
manual interrupt

May be entered only after a *JOB
control statement has been
entered

• Control statements for loader response during a
job

*
*E

*T

Control Statements in a Job

Control statements which are in a job are defined in the
following paragraphs.

*JOB STATEMENT

An *JOB statement instructs the subsystem to begin
accepting a new sequence of control statements. It must
be the first control statement in a job, and only one is
allowed for each job. The date and information on the
JOB card is printed on the list device.

tFor TTY input, a pseudo end of file is recognized by the job processor (*G statement).

**V,lu is also allowed outside the bounds of a job to permit the user to initiate input from a device other than standard input.

5-1

Format

The control statement format is:

*JOB

or

*JOB,n,u,i

Parameters

The following parameters are defined for the *JOB
control statement:

n-job name; first six characters are used by the job
processor

u-user identification; first six characters are saved
by the job processor (required if n is used)

i-comments (optional)

*v STATEMENT

An *V statement directs the sUbsystem to read all
subsequent control statements from the specified logical
unit.

Format

The control statement format is:

*V,lu,m

Parameters

The *V statement parameters are as follows:

lu-Iogical unit number; if not specified, standard
input is assumed

m-mode in which control statements are read:

A or blank-formatted ASCII

B-formatted binary

*u STATEMENT

An *U statement directs the sUbsystem to read all
subsequent control statements from the comment device.
A printout at the comment device indicates that the job
processor is ready to receive statements. An *U
statement may occur in any order with respect to other
statements in a job.

5-2

Format

The control statement format is:

*U

*L STATEMENT

An *L statement instructs the subsystem to call on the
loader to load relocatable binary information. Once it is
initiated, the loader continues loading from each
specified logical unit until it reads an EOL block or a
system control statement. The EOL block is an *T in the
first two character positions. The subsystem can load
from multiple logical units.

Format

The control statement format is:

*L,lu 1 ,Iu 2,lun

Parameter

The parameter for the *L control statement format is:

lun-Iogical unit number for the loading device

If the unit is not specified for loader input, the standard
input device is used. The load~r keeps track of the upper
and lower limits of available core and adjusts limits
according to the amount of core allocated during input.

*x STATEMENT

An *X statement instructs the sUbsystem to begin
program execution.

Format

The control statement format is:

*X,N

Parameters

The *X control statement parameters are:

N = Blank -loader is directed to produce a
memory map after loading

= Specified-no memory map is produced

Statement Execution

When this statement is executed, the loader detects any
unpatched externals and searches the program directory
for a mat<zhing name. For each one found, the library
routine is loaded into unprotected core as part of the job.
If an unpatched external does not match any name in the
program directory, the loader comments with an E on the
standard comment device. When all unpatched externals
are· printed on the standard print device, the loader
interrogates the comment device for an I, an *E, or an
*T statement. If one of these occurs, they are interpreted
as follows:

o * ~auses execution regardless of unpatched
externals

o *E-directory of part 0 core-resident entry points
is searched for missing names; if externals
still undefined, the loader interrogates the
comment device for an *, an *E, or an *T
statement

• *T ~auses job termination

*LGO STATEMENT

*LGO is the load-and-go command. The SUbsystem calls
the loader to load relocatable binary programs. The
loader loads from each specified logical unit until it reads
an EOL block or a system control statement. Loading
may occur from multiple logical units.

Format

The control statement format is:

Parameters

The parameters are defined as follows:

N -no memory map is produced

lu-Iogical unit number for the loading device; if no
parameters are specified (*LGO,N), standard
scratch device is used·

Second *LGO Format

The format for an additional possible *LGO statement
is:

*LGO,lul,lu2,···,lulO

Pnmmeter

In this second *LGO control statement format, the
parameter is:

IUl,lu2, ... ,lulo-logical unit number for the load
ing device; memory map is pro
duced; if no parameters are
specified (*LGO), standard scratch
device is used

*LGO Statement Function

The loader keeps track of the upper and lower limits of
available core and adjusts the limits according to the
amount of core allocated during input. When the go
portion of the *LGO statement is executed, the loader
detects any unpatched externals and searches the
program directory for a matching name. For each one
found, the library routine is loaded into unprotected core
as part of the job.

If an unpatched external does not match any name in the
directory, the loader comments with an E on the
standard comment device. When all unpatched externals
are printed 'on the standard print device, the loader
interrogates the comment device for an *, an *E, or an
*T statement.

After all externals are patched, the user's program is
executed.

Load-and-go operations use the *L, *X, or *LGO
statements as per the following method. The load-and-go
option provides for execution immediately following
compilation or assembly. When load-and-go output is
specified to the assembler, binary output is placed on the
scratch unit, starting at sector 1 of the scratch area. The
assembler produces an EOL statement for the end of
binary output and stores the end of the load-and-go
block count in $E4. The binary output of the next
assembly begins at the sector which contains the EOL
and continues until the assembly is completed. An *LGO
statement is entered to load binary information from the
scratch unit.

Example

The library is on logical unit 8 and programs are to be
assembled, loaded, and executed. The following state
ments are required:

* ASSEM-Ioad and execute the assembler; one of
the parameters to the assembler re
quests load-and-go

*LGO. -loads load-and-go information and exe
cutes the program which was just loaded

5-3

*REW STATEMENT

The *REW statement instructs the sUbsystem to rewind
the specified logical units to their load point. Several
logical units can be specified in oile request. The
maximum number oflogical units which can be specified
in an *REW statement is 5. An error message occurs if
the number exceeds 5.

Format

The *REW statement format appears as follows:

Parameter

The parameter is defined as:

IUl,lu2, ... -logical unit number for the loading
device; memory map is produced; if no
parameters are specified (*LGO), stan
dard scratch device is used

*UNL STATEMENT

An *UNL statement instructs the subsystem to rewind
and unload the specified logical unit. The maximum
number of logical units specified in an *UNL statement
is 5. '

Format

The format for the *UNL statement appears as:

*EOF STATEMENT

An *EOF statement instructs the subsystem to write one
end-of-file mark to the current standard binary output
device.

* CONTROL STATEMENT

An * control statement resets the load-and-go pointer to
1 and clears the loader-in-core flag. When the
load-and-go mass storage area is to be used by more than
one program in a job, this statement should be used to
ensure proper execution.

An * statement should be entered to clear the
loader-in-core flag whenever load operations have been

5-4

performed but not executed and the user wishes to
initiate a new load sequence from the start of
unprotected core.

*CTO STATEMENT

An *CTO statement causes the comments that appear on
the card to be printed on the standard comment device
for operator information. Continuation cards are not
allowed.

Format

*CTO format is:

*CTO,comments

*PAUS STATEMENT

This is the pause indicator.

Format

The format is:

*PAUS

On encountering an *PAUS, the following message is
typed on the standard comment device:

READY?

The next control statement is read only after a carriage
return to reply to this message. This statement can be
used in conjunction with the *CTO statement to control
operations. A time-out causes the message to by typed
and a new request for input to be made.

*ENTRY POINT NAME STATEMENT

An *entry point name statement instructs the sUbsystem
to call on the loader to load a program from the program
library. The entry point name must appear in the
program library directory.

The program, which is stored in the program library in
relocatable binary format, is loaded into available core.
The loader records the limits of available core before and
after the load.

This operation is a program load. A program, which is
loaded into. core by a program load, is entered
immediately for execution. An *X statement is not
needed.

Format

The format is:

*entry point name

END·OF • FILE

This is either a user-supplied or a device-detectable code
which terminates a job. It must be the last control
statement in a j~b. A 6/7/8/9 sequence in column 1 is

. used with the 1729-3 Card Reader. For the teletypewriter
input, an *G control statement serves the function of an
end-of-file.

Statements Acceptable to Job
and Manual Interrupt Routine

These statements are defined in the following
paragraphs.

*K STATEMENT

An *K statement is used to reassign standard system
logical unit numbers. By using an *K statement, the
operator can select devices for system units other than
those currently used.

One location in the communications region contains a
physical device table ordinal for each of the standard
system devices. The logical unit number in an *K
statement replaces the number in the communication
region. If a unit number designates a protected device,
an error exit is taken.

Format

The control statement format is:

*K,Ilu,Llu,Plu

Parameters

The parameters in an *K statement are not ordered, but
must be separated by a comma and followed by a
carriage return or a space. The parameters are:

lu-Iogical unit number in all cases

I-system input unit

L-systm print unit

P-system binary output unit

*CSY STATEMENT

An *CSY statement reassigns standard COSY logical
unit numbers. This sUbsystem control statement is used
with the COSY driver. The I, P, and L parameters may
also be used to assign logical units for the COSY
program control statements. If no logical units are
specified on the COSY control cards, the assigned units
are used.

Format

The control statement format is:

*CSY,Ixx,Lyy,Pzz

Parameters

The parameters in an *CSY statement are not ordered,
but must be separated by commas, and the last
parameter must be followed by a carriage return or by a
space. The parameters for the *CSY statement are:

xx-logical unit of COSY input library

yy-Iogical unit of COSY list output

zz-logical unit of Hollerith or COSY output

*CSY Command Sequence

The following sequence of commands is required to
convert COSY source to Hollerith source:

• *CSY,Ixx,Lyy,Pzz

Where:

xx-logical unit of COSY input
yy-Iogical unit of COSY list output
zz-logical unit of Hollerith output

• *K,Iaa,Lbb,Pcc

Where:

aa-Iogical unit of COSY control statements

* STATEMENT

An * statement restores job execution at the place of
interruption. When execution of a program in unpro
tected core is interrupted by a manual interrupt; typing
an * causes the job execution to continue.

5-5

*z STATEMENT

An *Z statement, which marks the end of batch
processing, is accepted by the sUbsystem regardless of the
order of its appearance.

Format

The format is:

*Z

Functions

After reading an *Z statement, the subsystem performs
the following functions:

• Releases core space occupied by the SUbsystem

• Sets protect bits for all locations previously in
unprotected core

• Releases this core area to the core allocator, which
makes it available to protected system programs

• Resets the load-and-go pointer in location $E4 to
1

Functions After *Z Job Termination

During the execution of a program in unprotected core,
the operator may terminate a job with a manual
interrupt followed by typing an *Z. When this is done,
the following functions are performed:

• Deletes interrupt stack entries that refer to
unprotected core

• Sets the completion of all input/ output into
unprotected core to the address of the dispatcher

• Waits for the completion of all input/output from
unprotected core if unbuffered protect processor
operations are in execution

• Waits for the completion of all timer requests
from unprotected core

• Job is terminated

• New job is initiated

*R STATEMENT

An *R statement informs the operating system that a
device that previously failed is operable and is ready for
input/output.

5-6

Format

The control statement format is:

*R,lu

Parameter

The following parameter is defined for the *R statement:

lu-Iogical number of failed device

Procedure To Assign A1temate Device

If a device fails, and an alternate device has been
assigned, the alternate device is used to process results.

Example

When a device which is associated with logical unit 2 fails
(and logical unit 2 has an alternate), the operator is
notified by a comment, and input/output processing
continues on the alternate device.

When the operator has taken corrective action regarding
the device that failed, he notifies the operating system as
follows: .

Press:

MANUAL INTERRUPT

Type:

*R,2

This procedure restores logical unit 2 to the primary
device.

Loader Response During Job Execution

The following list of control statements is used for loader
response during job execution:

• * statement

• *E statement

• *T statement

These three statements are discussed briefly in this
section under an *X statement and also under an *LGO
statement.

SECTION 6

DEBUGGING AIDS

Debugging Aids

ON-LINE DEBUG PACKAGE

The on-line debug package (ODEBUG) allows the
programmer to access both protected and unprotected
core in order to change core and mass storage locations
and to execute debugging function-s while the system is
running in an on-line state. The program is resident on
mass storage; however, it is executed in allocatable core.
When ODP is initiated, allocatable core is divided into
three parts:

• Area permanently assigned to the executive
program

• Area containing function processors; may extend
into the third area, when necessary

• Area to which subroutines are transferred as
needed

These areas are released when ODEBUG terminates.

OPERATOR PROCEDURES
Debugging is completed via the following initialization
and termination procedures.

INITIATE ODEBUG

ODEBUG is initiated by pressing MANUAL INTER
RUPT on the teletypewriter and keying in the characters
DB. ODEBUG alerts the operator that it is in core and is
ready for operator use by typing the following message:

DEBUG IN

The operator may then type in a request, which must be
terminated by a carriage return. All requests are limited
to one line on the input device. After the request is
completed and all associated messages have been typed,
ODEBUG types:

NEXT

The teletypewriter then waits for the next request from
the operator.

TERMINATE ODEBUG

To terminate ODEBUG, the operator types:

OFF

ODEBUG replies by typing:

DEBUG OUT

The MANUAL INTERRUPT terminates any 110 action
which is initiated by periodic requests to the monitor
(this excludes magnetic tape motion requests). To
terminate input/output, the operator must complete the
following actions:

Press:

MANUAL INTERRUPT

Type:

DX

The 110 action stops, and DEBUG OUT is printed on
the teletypewriter.

Diagnostic messages that are produced by ODEBUG are
prefixed with DB (refer to appendix· E).

Debug Mainframe Requests

The following requests are used to debug the mainframe.

STORE DATA IN CORE REQUEST

Data is stored in core by using this command.

Format

The statement format is:

LHX,cl, b/ d,d, ... ,d

Parameters

The parameters used to store data in core are:

cl--core location

b-base (0 if not specified)

d-data (four-digit hexadecimal number)

6-1

· LHX Examples

The following examples indicate how to utilize the LHX
request.

To store data into core location phIs base, use:

LHX,1600,0/14EA

This stores 14EA into location 1600.

A one-word relative instruction would be as foIlows:

LHX,c1,b/2-digit OP code*address

This loads core with the two-digit OP code which
precedes the asterisk and the 8-bit relative increment
(which is obtained by subtracting the address of the core
location in which the data is to be stored from the
address which follows this asterisk). The relative
increment must be less than ±127; otherwise, an
incorrect relative increment will be stored.

NOTE

The address which follows the
asterisk is always a 16-bit
absolute address.

To store C805 into location 1601; therefore, use:

LHX,1601,0/C8*1606

For a 16-bit relative address, use:

LHX,c1,b/*address

This loads core with the 16-bit relative increment. The
increment is obtained by subtracting the address of the
core location in which the data is to be stored from the
address which follows this asterisk.

NOTE

The address which follows this
asterisk is always a 16-bit
absolute address.

To store FEFE into location 1602; therefore, use:

LHX,1602,0/* 1501

In the example, the address is $0101 locations relative to
the current location.

6-2

NOTE

LHX,1600,0/14EA,C8*1606,
*1501 has the same result as
the three preceding examples.

LOAD DECIMAL INTO CORE REQUEST

A decimal is loaded into core via this request.

Format

The statement format is:

LDC,starting address/d1,d2, ... ,dn

DUMP CORE REQUEST

To dump a five-digit decimal value of core from start
plus base to end plus base, the following format is used:

DDC,sc,ec,b

Parameters

The parameters are:

sc-start core

ec-end core

b-base (O if not specified)

To dump a four-digit hexadecimal value of core from
start plus base to end plus base, the following format is
used:

DPC,sc,ec,b

Parameters

The parameters in this example are:

sc-start core

ec-end core

b-base (O if not specified)

WRITE CORE TO DISK REQUEST

To write core to disk, use this command.

Format

The statement format is:

WCD,sector,word in sector, core location, number of
words

Parameters

The number:'of-words parameter is decimal, and all
other parameters are hexadecimal.

READ DISK TO CORE REQUEST

This statement is used to read disk to core.

Format

The statement format is:

RDC,sector,word in sector,core location, number of
words

Parameters

The number-of-words parameter is decimal, and all
other parameters are hexadecimal.

SEARCH CORE LOCATIONS REQUEST

By using this command, core locations are searched from
start core to end core by the increment for a match
between AND (mask, number) and AND (mask, core).

Format

The statement format is:

SCN ,sc,ec,no,m,i

Parameters

The following parameters are applicable for the search
core request format:

sc-start core

ec--end core

no----number

m-mask; "1" bits in mask indicate the position in
core is examined; "0" bits in mask indicate the
bit position in core is not examined

i-increment

Example of Search Core Location

The following search could be used:

SCN ,0, 7FFF,A1F7 ,FFOO,2

In this example, the command calls for a search
0,2,4,6,8, ... for AND (A1F7,FFOO) or AND (A1xx,FFOO)
where xx may have any value. The locations and contents
of the locations which contain the searched configuration
are printed after the following heading:

CELL CONTENTS

REASSIGN LIST DEVICE
USED BY DEBUG REQUEST

This command allows the user to reassign any list device
which is required for output. .

Format

The statement format is:

CLU,lu,

Parameter

The following parameter is used in the format for the
CLU request:

lu---:-Iogical unit number of list device to be used by
DEBUG

SEARCH CORE FOR PARITY ERROR REQUEST

Core is searched for parity errors via this request.

Format

The format for this command is:

SPE,last location in core

With this command, location of the parity error is
printed. The following comment terminates the request:

SEARCH FINISHED

ADD HEXADECIMAL NUMBERS REQUEST

Hexadecimal numbers can be added through the use of
this request.

Format

The format for adding up to eight hexadecimal numbers
is:

ADH,numberl ,number2, ... ,number8

SUBTRACT HEXADECIMAL NUMBERS REQUEST

To subtract hexadecimal numbers, use this request.

Format

The format for subtracting number 2 from number 1
(hexadecimal) is:

SBH,numberl ,number2

6-3

SCHEDULE COMPLETION WCATION REQUEST

Schedule the specified core location at the specified
priority level by passing the contents in the Q register.
Completion location may also designate 'directory calls.

Format

The statement format is:

SCH,cl,Q,cpl

Parameters

The parameters for this request are:

cl--core location (four-digit hexadecimal number)

Q--contents of Q register

cpl--completion priority level

SET CORE REQUEST

This command enables the operator to set core from the
start to the end with pattern.

Format

The statement format is:

SET,sc,ec,pattern

Parameters

The parameters for the set core request format are
defined as follows:

sc-start core

ec-end core

pattern-word to store in core

SET PROGRAM PROTECT BIT REQUEST

The program protect bit is set via this request.

Format

The statement format is:

SPP,sc,ec

6-4

Parameters

This request uses the following parameters as defined:

sc-start core

ec-end core

CLEAR PROGRAM PROTECT BIT REQUEST

The program protect bit is cleared via this request.

Format

The statement format is:

CPP,sc,ec

Parameters

The parameters for this statement request format are:

sc-start core

ec-end core

MOVE BLOCK IN CORE REQUEST

To move a block in core, this request is used.

Format

The statement format is:

MBC,sc,ec,nl

Parameters

These parameters are as follows:

sc-start core

ec-end core

nl-new location

Debug Core Allocation Requests

The debug core allocation requests are GEN and REL.

GENERATE SCRATCH AREA

Scratch area is generated by the GEN request.

Format

The format to generate scratch area in allocatable core
is:

GEN,length,rp

Parameters

length-given in hexadecimal

rp-request priority (the minimum priority is
three) of the location of allocated core is
printed out as follows:

CORE ALLOCATED FROM hlhlhlhl to

h2h2h2h2

Where:

h 1 h 1 h 1 h l-start of allocated core, excluding the
first two words used by the allocator

RELEASE ALLOCATED CORE

The allocated core is released by the REL request.

. Format

The format to release allocated core is:

REL,scr

Parameter

scr-start of core to be released (h 1 h 1 h 1 h 1 of a
GEN request)

Magnetic Tape Requests

The following requests manipulate the magnetic t3;pe on
a specific unit; lu specifies the logical unit number. The
parameters of these requests are decimal.

NOTE

Limitation on the number of
records or files is 4,095 for all
magnetic tape requests. Other
standard device drivers accept
the ODEBUG magnetic tape
requests for MOTION; how
ever, only one motion function
is performed (that is single file
or record skips, etc.).

ADVANCE FaES REQUEST

The advance files request advances the tape a number of
specified files.

Format

The statement format is:

ADF,lu,number of files

BACKSPACE FaES REQUEST

To backspace the tape a number of specified files, use
the backspace files request.

Format

The statement format is:

BSF,lu,number of files

ADVANCE RECORDS REQUEST

To advance the tape a number of specified records, the
advance records request is used.

Format

The statement format is:

ADR,lu,number of records

BACKSPACE RECORDS REQUEST

The backspace records request is used to backspace the
tape a number of specified records.

6-5

Format

The statement format is:

BSR,lu,number of records

Parameters

The backspace record request uses the following
parameters:

lu-Iogical unit

number of records-one of blank

WRITE END·OF·FILE REQUEST

This request is used to write end-of·file.

Format

The statement format is:

WEF ,Iu,number of records

Parameters

The following parameters apply to the write end-of-file
request format:

lu-Iogical unit

number of records-one if blank

REWIND TAPE REQUEST

This request is used to rewind the tape.

Format

The statement format is:

REW,lu

Debug Mass Storage Device Requests

The mass storage device can be debugged via the
following commands.

6-6

CHANGE CORE·RESIDENT IMAGE
ON SYSTEM LIBRARY UNIT REQUEST .

This statement changes the core-resident image portion
of the system on the system library unit. A maximum of
five words can be changed by one LHC request.

Format

The statement format is:

LHC,c1,b/d,d, ... ,d

Parameters

The parameters for this request are:

cl-start core location

b-base to be added to cl (0 if not specified)

d-data (four-digit hexadecimal number)

LHC Example

The following LHC example can be used to change the
core-resident image on the system library unit:

LHC,OOE9,1400/18FC

In the example, the sector which contains data for core
location 14E9 is changed to 18FC,and the core location
itself is likewise modified. Relative instructions may be
included, as in the debug of the mainframe as previously
discussed.

REQUEST TO MODIFY MASS STORAGE RESI·
DENT PORTION OF OPERATING SYSTEM

This statement allows modification of the mass storage
resident portion of the operating system. Changes are
verified the same as for the LHC statement.

Format

The statement format is:

LHO,ord,loc,b/d,d, ... ,

Parameters

For this modification request, the parameters are:

ord---ordinal number of ordinal to be changed

loc-P location of the listing

b-base added to loc to obtain core location

d-data (four-digit hexadecimal number; ntaxi
mum of five words for each request)

Example

The following statement is used to load hexadecimal data
onto mass storage:

LHM,sector,word in sector/d1,d2,.~.,dn

Where:

n ~ 5

Relative instructions may be included, as in the
discussion of debugging t~e mainframe. .

Since the LHC, LHO, and LHM functions accomplish
writes to the system library, the maximum check for data
integrity is achieved by printing out the image of the
statement typed. If the statem~nt is correct:

Press:

RETURN

The update then proceeds.

If the statement is incorrect:

Type:

* (Function is not performed)

Press:

RETURN

PANIC DUMP TO LINE PRINTER

In the case of a system crash, a dump of core memory
should be taken. All the operations are performed on the
computer front panel. The dump procedure is as follows:

1. Press STOP.

2. Press P and record the value that is displayed.
Press A and record the value that is'displayed.
Press Q and record the value that is displayed.

3. Press MASTER CLEAR.
Press P and enter 0140 in the register.

4. Press A and enter the first word address to be dumped
(usually zero).
Press Q and enter the last word address to be dumped
(usually highest word in memory):

• 7FFF for 32K system
• 6FFF for 28K system
• SFFF for 24K system

S. Ensure that the printer is on-line.

6. Press GO.

The program results after execution of this procedure is
as follows:

• Paper is set to the top of form

• Absolute and relative heading of 16 columns at
the top of each page

• Absolute and relative addresses and 16 words are
printed per printer line

• Lines, for which 16 words are the same as the last
line printed, are ignored by printing a line of
asterisks

• 60 lines are printed per page

• Program hangs when ·the requested number of
words are printed

The panic dump program can be executed as many times
as required to dump selected contents of core by
repeating the operating procedure.

Printout

Figure 6-1 is a sample printout of this dump.

NOTE

In order to conserve core
memory, the train image is not
loaded, assuming an existing
train image.

6-7

ABSL REL

lF75 lA70
lF85 lA80
1 F95 lA90
1 FA5 lAAO
1 FB5 lABO
lFC5 lACO
1 FD5 lADO
1 FE5 lAEO
lFF5 lAFO

00 11 22 33 44 55 66 77 88 99 AA BB CC DD EE FF

lCF7 0000 0000 0000 0000 0180 OBOO 08FB 48BF El05 OFA6 OD03 OAOF 5400 1797 C8F3
E8F3 OF61 48EF 0121 184F C800 Fc67 09FC 0100 D800 FC63 5802 182D OBOO 5800 FD79
OFC7 0132 08E2 0337 lCF8 C800 FC58 09FB 0111 lCDC D800 FC53 OAOO 68D3 58EE 5800
FDOB 18FD D8CE AC3D 011F 58E7 5800 ED04 18FD A02D 0119 D8C5 58EO 5800 FCFD 1800
FFFC A02D 0111 1804 C8BC 09FE 688A 8B9 0113 E888 OFAl lA12 09FE 68B3 5800 FD49
C02B 0309 ODFE 0202 18FE OBOO 5800 ECE4 18FA 18ED OBOO 1800 FCAE 1800 FF1C 1800
FD43 1800 FE15 0800 FC19 09FD 0101 8Bl c80c FC15 D800 FC13 09FD 0138 0111 1820
ocoo 4800 FCOB 4800 FCOA lC90 58A6 EllO OFAA C02C 0172 COOO 022C 2000 oooc 6813
E106 54BF ODFE OF6F 380E 680D 5800 PD11 C80B 03DC 5892 C807 0102 09FE 18F6 6800

Figure 6-1. Printout of Panic, Dump

Panic Dump to Teletype package; however, the only output media is a line
printer. The dump routine in figure 6-2 is given to show a
memory dump to the teletypewriter. A panic memory dump routine is included in the COS

0001
0002

OMPTTY

0003 POOOO 6832
0004 POOOI 4832
0005 P0002 E82E
0006 P0003 C82E
0007 P0004 03FE
0008 P0005 OOFE
0009 P0006 OAOD
0010 P0007 03FE
0011 P000803FE
0012 P0009 03FE
0013 POOOA OAOA
0014 POOOB 03FE
0015 POOOC C826
0016 POOOD 580E
0017 POOOE 03FE
0018 POOOF CC23
0019 P0010 580B
0020 POOll C821
0021 P0012 9821
0022 P0013 0125
0023 P0014 D81E
0024 POOlS OA07
0025 P0016 A81C
0026 P0017 0102
0027 POo18 18F6
0028 P0019 18FF
0029 POOIA 18EB
0030 POOIB 0000
0031 POOIC 5807
0032 POOID 5806
0033 POOlE 5805
0034 POOIF 5804
0035 P0020 OA20
0036 P0021 03FE
0037 P0022 lCF8
0038 P0023 0000
0039 po024 OFC4
0040 P0025 0821
0041 po026 OAOF
0042 P0027 08AC
0043 p0028 09F5
0044 P0029 0131
0045 P002A 0907
0046 P002B 093A
0047 P002C OBOO
0048 P002D 03FE
0049 P002E 080c
0050 P002F lCF3
0051 P0030 0091
0052 P0031 0503
0053 P0032 0000
0054 P0033 0000
0055

PAGE

NAM DMPTTY
EIIT DMPTTY

DMPTTY STA'~ FWA
STQ* LWA
LDQ* WSI
LDA'~ WS2
OUT -1
ItlQ -1

NEWLIN ENA SOD
OUT -1
OUT -1
OUT -1
ENA $A
OUT -1

ADDRES LDA* FWA
RTJ* OUTPUT
OUT -1

WORD LDA'~ (FWA)
RTJ* OUTPUT

WORDI LDA* FWA
SUB* LWA
SAP ENDDMP
RAO* FWA
ENA 7
AND* H/A

WRITE SAZ 2
JMP'~ WORD

ENDDMP NUll $18FF
ENDL III JMP'~ NE\/L I N
OUTPUT ADC 0

RTJ'~ AOUT
RTJ* AOUT
RTJ1, AOUT
RTJ1, AOUT
ENA $20
OUT -1
JMP'~ (OUTPUT)

AOUT ADC 0
ALS 4
TRA M
ENA $F
LAM A
HIA -$A
SAM Al
INA 7

Al INA $3A
NOP 0
OUT -1
TRM A
JMP* (AOUT)

WSI tlUM $91
WS2 NUM $503
FWA ADC 0
L\/A ADC 0

END DMPTTY

DATE: 09/10/74

CORE TO TELETYPE DUMP ROUTINE
TO OPERATE --

PRESS STOP
RECORD ALL REGISTER VALUES
MASTER CLEAR AND SET P TO STARTING
LOCAT I ON AS SPEC I F I ED atl INSTALL
SET A TO FIRST LOCATION TO BE DUMPED
SET Q TO LAST LOCATION
PRESS GO
TO RESTART, RESET P ,Q,A
AND PRESS GO

STOP HERE

Figure 6-2. Panic Dump to Teletypewriter

6-8

SECTION 7

LIBRARY EDITING

Library Editing

INTRODUCTION

The library editing program allows the user to:

e Add a program or ftle to the program library

-. Remove a program or file from the program
library

• Replace one program or file with another in the
program library

• Combine several relocatable binary programs in
absolute binary record and output this record on
the binary output device

• Transfer information between peripheral devices

The program library is comprised of programs that are
stored in either relocatable or absolute form. Each
relocatable biliary program in the library is referenced by
one or more entries in the program library directory.
These entries consist of all entry points which are
declared in the programs which referenced it. No two
programs in the program library may have duplicate
entry point names, although a file may have the same
name as an entry point in a program. Each file is
referenced by a file name in the program library.

LIBEDT PROGRAM

The control statement *LIBEDT, instructs the job
processor to load the library editing program into
protected core and to begin operation. The library
editing program types LIB on the comment device to
indicate it has been entered. After completing its
functions, the program exits to the job processor.

Output for the library editing program is on three
devices. -

• Comment device

This device prints error messages and indicates
the entrance to the library editing program.

• Standard binary output device

This device produces absolute records on an
external device from relocatable binary input.

• Standard print output device

This device lists the system or program library
directory.

CONTROL STATEMENTS

Control statements to the library editing program are
format records. The first character of a control statement
must be an asterisk; the last must be a carriage return.
Intervening characters identify the type of statement and
the action.

Types of Control Statements

The standard list of control statements for the library
editing program includes the following:

• *M-replace program in system library

• *L-add/replace program in program library

• *P-produce absolute record

• *U-return to comment device for next control
statement

• *V -get next control statement

• *Z-terminate processing

• *DL-list program library directory

• *DM-list system library directory

• *N-modify program library files

• *T -transfer information

• *K-change 110 devices

• *R-remove program

• *F-end-of-transfer indicator

• *FOK-transfer indicator

REPLACE PROGRAM IN SYSTEM LmRARY

An *M (replace program in system library) statement
replaces a program in the system library which executes
in allocatable core with another program.

Format

The statement format is:

*M,or,s,d,M,N

7-1

Parameters

The parameters utilized for this statement are as follows:

7-2

or-This is the ordinal number iIi the system library
directory and is a required parameter. If the
ordinal number does not appear in the system
library directory, or if the parameter is not
specified, the statement is illegal.

s-This is a mass storage address. This parameter
is illegal if M is blank.

After the relocatable binary programs are
loaded and linked, a check is made on the
thread of the directory entry which is being
replaced. If the thread of the directory entry is
busy, LIB EDT waits for' it to be freed,
indicating this directory entry is not currently
being operated. The thread is then set to a busy
state to prevent scheduling of the file while
LIB EDT is manipulating the directory and
writing the new file onto mass storage
(beginning at address s). If s is not specified in
the input statement, a search of ' mass storage is
made to find the first block of sectors which is
large enough to contain this file. In most
instances, this block is at the end of the library.
When the new program is shorter than the one
it is supposed to replace, it is stored on the
sectors of the file which it is replacing. At the
completion of the update, the thread is cleared.

d-This is the data base indicator. This parameter
is specified to allow linkage of allocatable core
programs to data which has been previously
linked to the program at initialization.

NOTE

When using this parameter, the following
restriction exists: data cannot be preset
into the 'established labeled common
block by the loader, but program refer
ences will be absolutized properly.

M-M is the mass storage indicator. When M
appears in the statement, the program which is
to be replaced is mass-storage resident, and the
ordinal represents its position in the system lib
rary directory relative to other mass-storage
resident programs. When the length of the
replacement program is less than or equal to
the length of the program being replaced
(rounded-up to the nearest sector), the new one
overlays the old one on mass storage.

If the replacement program is longer than the
program to be replaced, it is added to the
library on the first block of available sectors

which is large enough to contain the rue. The
total length of the rue which is being loaded
cannot exceed the length of allocatable core,
including unprotected core.

If M is omitted in the statement, the program to
be replaced is core-resident, and the ordinal
represents its position in the system library
directory relative to other core-resident pro
grams. The length of the new program, if
core-resident, must be equal to or less than that
of the program which is being replaced. Since
the directory entry for a core-resident ordinal
does not contain length, no error indication can
be given if it is longer than the program being
replaced.

CAUTION

On-line use of LIBEDT for replacement of
system library programs exposes the opera
tion to the following potential faults: 1) The
interrupt system is disabled during core
resident program replacement, which for
large programs, could inhibit system
response for excessive periods of time. The
program length of a core-resident program
which is being replaced cannot be checked
by LIB EDT. 2) A larger program is loaded
without indication of error, potentially
destroying part of the system.

N-This indicates that linking to the program
library is not required. When a new program is
added to the system library, the library editing
program issues a loader request to load one or
more relocatable binary programs from the
standard input device until a loader EOL state
ment (*T), a nonloader statement, or a device
failure is detected. If at this time any unpatched'
externals exists, automatic linkage is performed
to the core resident entry point (CREP) tables.
Any unpatched externals that remain after this
linkage are listed, and the user has the option of
continuing by typing an *. Termination of the
load is performed by manual interrupt followed
by *Z. If the field is blank, automatic linkage to
the program library is performed after the
CREP linkage. Any remaining unpatched
externals are listed, and the user may continue
or terminate as previously described.

If loading is terminated with an EOL
statement, the library editing program looks to
the comment device (*U statement) or standard
input device (*V statement) for the next control
statement. If loading was terminated by a
nonloader statement, the nonloader statement
is processed as a control statement to the
library editing program

ADD OR REPLACE PROGRAM
IN PROGRAM LmRARY

An *L (add/replace program in program library)
statement adds a new program to the library or replaces
a program in the library.

Format

The statement format is as follows:

*L,epn

Parameter

The parameter used in the *L statement is:

epn-Ifthe entry-point name does not appear in the
program library directory, this statement adds
a new program to the library. When an
addition is made to the library, the library
editing program reads format records of
binary input from the standard input device
and writes them onto mass storage.

Entry-point names for programs added to the
library are recorded in the directory along
with the beginning mass storage addresses. .

If the entry-point name does appear in the
directory, the program which contains this
entry point is replaced. The new entry-point
name is placed in the directory. When a pro
gram is replaced in the library, its entry-point
name is removed from the directory.

If a mass storage unit is to be used as a system input
device, the input operation begins at the first scratch
sector. This feature allows the user to assemble and
obtain load-and-go output. By assigning the load-and-go
unit as the system input device with a monitor control
statement (*K,I unit number), the load-and-go unit
becomes the input device for processing an *L,
entry-point name control statement.

PRODUCE ABSOLUTE RECORD

An *p (produce absolute record) statement directs the
library editing program to produce an absolute record
from one or more relocatable binary programs. The
relocatable binary programs are loaded in core by the
loader under control of the library editing program.

Format

The statement format is as follows:

*P,n,P/R,sa

Parameters

The parameters for the request to produce an absolute
record are as follows:

n-The parameter n indicates the record format

n =f. F or omitted

A single format record is written on the
standard binary output device

n=F

Output is in format records of 96 words each.
If binary output is assigned to a mass storage
device, this unit must be the library unit,
since subsequent operations expect the
absolute file to start on the scratch area fol
lowing the library (that is, the sector defined
by the contents of $CO and $C1).

P/R-This parameter indicates the order of linkage.
The use of the P /R option makes it possible
build subprogram parts for foreground
allocatable or partition-core programs. Such
programs can then be stored on the disk as
files by using the *N LIB EDT processor and
can be overlaid in foreground user buffer
areas by using the user programs. The imple
mentation of this technique negates the need
of applying system directory entries for such
files.

P parameter

If the P parameter field is blank, the order of
linkage is the preset table, the program
library, and/or the unprotected, unlabeled
common area. If at this time, unpatched
externals exist, the *p processor links to the
CREP tables. If any unpatched externals still
exist following this linkage, they are listed,
and the user can enter an * to continue or an
*T to terminate.

If the parameter field is set to P, linkage is
performed in the following order: protected
unlabeled common, CREP tables, and the

7-3

7-4

program library. If unpatched externals exist
following the linkage, a list is printed, and the
user can enter an * or an *T.

R parameter

If the parameter field is set to R, linkage is
performed in the following order: protected
unlabeled common, CREP 1 table, CREP
table, and the program library. If unpatched
externals exist following the linkage, a list is
printed, and the user can enter an * or an *T.

If the parameter field is set to a numeric value
between 1 and 16, the relocatable binary pro
grams are absolutized at the beginning of the
partition which was specified by the field. In
all other cases of the P IR parameter,
absolutizing begins at ($F7) plus one.

sa-This indicates the starting address and can be
one of the following:

$hhhh

This is the hexadecimal number of the core
address.

entry point name

This indicates the core address for an entry
point of the relocatable binary program read
in by the loader. The entry point name
DA TBAS is used to reference the data block
set aside during a loader operation.

entry point name + hhhh

hhhh is added to or subtracted from the core
address to find the starting address.

If the starting address is omitted in an *p
statement, the starting address is the
beginning of the load at the address specified
by ($F7) plus one. The binary output
terminates with the last word of the load.

If the starting address is specified, the binary
output extends from the starting address to
the last word of the load. The starting
address, therefore, must not be specified
beyond the last word address of the
relocatable binary load. If the *p statement is
unacceptable to LIB EDT because it exceeds
the last word address of the relocatable
binary load, the error message Ell appears
on the print device. The operator must type in
an acceptable starting address without
repeating an *P,n. A carriage return without
a starting address has the same effect as a

starting address equal to the contents of
location $F7 plus one. The error message is
issued by the loader which is processing the
starting address portion of an *p statem.ent.

RETURN TO COMMENT DEVICE
FOR NEXT CONTROL STATEMENT

An *U (return to comment device· for next control
statement) statement directs the library editing program
to go to the comment device for subsequent control
statements.

Format

The format is as follows:

*U

GET NEXT CONTROL STATEMENT

An *V (get next control statement) statement directs
LIB EDT to read control statements from the specified
logical unit until an *U statement is read.

Format

The format is as follows:

*V,lu,m

Parameters

The parameters for the *V statement are as follows:

lu-Iogical unit; if the logical unit is not specified,
LIB EDT (system) input unit is assumed

m-mode of control statement

A-formatted ASCII mode

B-formatted binary mode

If mode is not specified, the control statements
are read in formatted ASCII mode.

If the control statement *LIBEDT is read under an *V
option in the job processor, LIBEDT continues
processing with the same *V option.

TERMINATE PROCESSING

An *Z (terminate processing) statement terminates the
library editing program processing and returns control to
the job prOCessor. .

Format

The format is as follows:

*Z

UST SYSTEM LIBRARY DIRECTORY

An *DM (list system library directory) statement directs
the library editing program to list the system library
directory on the print output device. The statement
includes an *y or an *YM ordianl at the beginning of
each line.

Format

The format is as follows:

*DM

UST PROGRAM LmRARY DIRECTORY

An *DL (list program library directory) statement directs
the library editing program to list the program library
directory on the standard print output device.

Format

The format is as follows:

*DL

MODIFY PROGRAM LmRARY FILES

An *N (modify program library files) statement is used to
add, replace, or edit a permanent binary file in the
program library.

Format

When a file is added or replaced, only name and mode
have to be specified in the following format:

*N,n,wl,w2,m

Parameters

Parameters for the *N statement are:

N-name of file; name is a I-to-6-character
identification by which the file is addressed

n-name of file; name is a l-to-6-character identi
fication by which the file is addressed

WI-first word of file to be changed; WI and w2,
where WI < w2, are used if only part of a
file is to be changed

wrlast word of file to be changed (refer to WI); if
w2 is omitted, only the word specified by WI .
is changed

m-the mode of input:

A-ASCII format records

B-binary format records

Input to *N Processor

Input to an *N processor consists of format records of 96
words or less. Input is terminated with any valid
LIB EDT or an *Z statement.

The load-and-go unit can be used as an input device for
processing an *N statement in the. same way as for an *L
statement.

SET CORE REQUEST PRIORITY

An *S (set core request priority) statement sets the core
request priority of an entry in the system directory. This
determines the area in core where the file runs.

Format

The format is as follows:

*S,or,v,M

Parameters

or-ordinal number which refers to an entry in the
system directory

7-5

N-Ievel at which the request priority is to be set:
o ~ v .~ 15'

M-s~ecifies mass-storage residen~ or core-resident

M-ordinal number is mass-storage resident

=F M-ordinal number is core-resident

TRANSFER INFORMATION

An *T (transfer information) statement permits the
tran'sfer of information between any two peripheral
devices such as a card-to-tape or a tape-to-printer
devicet.

An *T statement can be used in conjunction with an *F
pseudo LIB EDT statement to perform information
transfer in a batch job. On recognizing an *F during a
transfer operation, LIBEDT outputs the IN message and
proceeds to read the next control card.

Format

The format for an *T statement is as follows:

*T ,i,mi,o,mo,n,f

Parameters

The statement format parameters are identified in the
following manner:

i-input logical unit; if omitted, LIBEDT's
standard input binary unit is selected

tLIBEDT for Phase-Encoded Tapes

mi-mode of input

A-ASCII

B-binary

o-output logical unit; if omitted, LIBEDT's
standard output unit is selected

mo-mode of output

A-ASCII

B-binary

n-sets an upper limit on the number of records to
be transferred; if n is omitted, records are
transferred until the input device is empty or
fails or encounters an *F control statement.'
The upper limit on the number of records to be
transferred is decimal.' At the end of transfer,
the number of records and files encountered is
printed in decimal format on the standard
print device.

f-sets an upper limit on the number of files to be
transferred; iffis omitted, files are transferred
until the input device is empty, fails, or
encounters an *F control statement. The
upper limit of the number of files to be
transferred is decimal. At the end of transfer,
the number of records and files encountered is
printed in decimal format on the standard
print device.

CHANGE INPUT/OUTPUT DEVICES

An *K (change input/output devices) statement, which
may occur in any order in respect to other statements,
allows the operator to change LIB EDT devices. These

LIBEDT does not provide density selection, In order to use LIBEDT to copy tapes, density for each phase-encoded tape unit must be preset by using the following IOUP
commands

• TSD,u,8 (select 800 bpi)

• TSD,u,16 (select 1,600 bpi)

With the appropriate densities selected, LIBEDT wiII copy:

7-6

• 800 to 800 bpi tapes

• 800 to 1,600 bpi tapes

• 1,600 to 1,600 bpi tapes

• 1.600 to 800 bpi tapes

CAUTION

The hardware returns to 1,600 bpi (and lights the HI DEN light) whenever a master clear or clear controller Is Issued. But with word 16 of each
units' physical device table set to the required density, proper density returns to each unit as soon as a connect is made to It.

changes are internal to LIBEDT and do not affect the
system device assignments.

Format

The format for an *K statement is as follows:

*K,Ilu,Plu,Llu

Parameters

The *K statement uses the following parameters:

lu-Iogical unit number; if a unit number
designates a protected device, an error exit is
taken

I-LIBEDT's input unit

P-LIBEDT's binary output unit

L-LIBEDT's print unit

Example of *K Statement

The parameters of an *K statement may be in any order,
but must be separated by commas. In the following
example, this statement sets LIBEDT's input unit to
logical unit 2, its print unit to logical unit 5, and its
binary output unit to logical unit 3.

*K,I2,LS,P3

An *K statement is terminated by a carriage return.

REMOVE PROGRAM

An *R (remove program) control statement removes a
program with entry point n from the program library.

Format

The format is as follows:

*R,n,F

Parameters

The parameters are defined as follows:

n---entry point of program or name of file to be
removed; if F is included, the file name n is
removed

F-specifies that n is a file name

END·OF·TRANSFER INDICATOR

The *F (end-of-transfer indicator) statement is a pseudo
instruction to the *T processor of LIB EDT. When an *F
followed by two spaces is encountered, the current *T
operation is terminated and the next LIB EDT control
statement is read from the standard input device.

TRANSFER INDICATOR

The *FOK (transfer indicator) statement, like an *F
statement, is a pseudo instruction to the *T processor of
LIBEDT. On encountering this statement during input, .
an *F is transferred to the output device.

Table 7-1 shows sample transfer request statements.

Table 7·1. Sample Transfer Request Statements

Type Statement Description

*JOB Call job processor
Call

- -

*LlBEDT Call LlBEDT

*T,6,A,9,A,,2 Transfer two files of information from logical unit 6 to logical unit 9

*L,PROG Put relocatable program on library

Typical uses *N,PROG1",B Put absolutized file on library

*M,10",M Put allocatable core program on system library

*A12,2,1"", Put partition core program on system library

7-7

SECTION 8

SYSTEM MAINTENANCE AND UTILITY ROUTINES

System Maintenance and Utility Routines

INTRODUCTION

To increase the ease of installing, updating, and
debugging programs, the COS has system and mainte
nance routines. These routines are discussed in this
chapter.

CALLING STATEMENTS

The following list gives the calling name for the various
. maintenance routines. Each statement is described in
this sequence in the remainder of this section.

• LCOSY -list COSY

• DTLP-disk-to-tape loading program

• 10UP-inputioutput utility package

• COSY -source program compression

~ SKED-skeleton editor --

.,.-. LIBIL~library builder ___

______ PAULA-update install tape ~

• BOOT-tape bootstrap loader

• PIC-COSY update manipulating utility

• CYFT -COSY formatting progr~m

• SUP-system utility processor

• ASSEM-macro assembler

. LCOSY PROGRAM

The list COSY (LCOSY) program provides a means of
listing the names of programs on a COSy tape and
punching DCKI control cards for each program.

LCOSY Execution

To execute this program, the procedure is as follows:

*JOB

J

*K,Ilu,Plu,Llu

*LCOSY

PARAMETERS

The parameters are:

I-assigns a logical unit of COSY tape to be read

P-assigns logical unit where DCKI control
statements are to be punched; the ENDI
statement is not punched

L-assigns logical unit where names of programs
are listed

LCOSY EXECUTION USTING

The listing appears in the following format:

PBY

PBYA

PBZ

PBZA

CSYI

CSYI

CSYI

CSYI

On executing LCOSY, a typeout occurs such as the
following:

DCK/I,H,C

LCOSY waits for a two-digit logical unit number for each
parameter separated by a comma; for example:

06,07,18

If a parameter is not desired, a slash replaces the logical
unit number; for example:

06,1,18

If a slash is used under the I parameter, no DCKI control
cards are punched; only a listing of the deck names from
the input source is produced.

DTLPPROGRAM

The disk-to-tape loading program (DTLP) has two
purposes:

• Save the contents of the system disk by dumping
the absolute image to magnetic tape

• Load a new disk with the absolute image
previously saved

8-1

DTLP Execution

To execute this program, the procedure is as follows:

*JOB

J

*DTLP

When DTLP is called from the program library for
execution, it prints the following message on the
standard comment device:

DTLP FIRST WORD ADDRESS WILL BE XXXX

Where:

XXXX--.-core location

DTLP then prints the following message on the comment
device:

TURN OFF PROTEC SWITCH,
TYPE CARRIAGE RETURN

The operator should turn the autoload console key to M
(horizontal position), and press the carriage RETURN
key. DTLP then enters into the following message dialog
with the operator.

1. 4 DIG. EQ. CODE FOR ..
MAGTAPE

Response to this first message is the four-digit
. hexadecimal equipment code, 0381.

2. 4 DIG. EQ. CODE FOR ..
MASS MEMORY

Respond to this message by typing the four-digit
hexadecimal equipment code for the mass memory
controller, 0181.

3. ILLEGAL PARAMETERS SPECIFIED

• If either equipment code given contains a
nonhexadecimal digit, this message is printed.

o Control reverts to message 1.

4. SCRATCH SECTOR IN $Cl IS --XXXX

8-2

o When the equipment codes have been properly
specified, this message is typed with XXXX being
the current beginning of scratch mass memory.

• If a system is being saved on tape, all mass mem
ory sectors up to XXXX should be saved.

5. TYPE LOAD FOR TAPE-TO-DISK,
SAVE FOR DISK-TO-TAPE
OR CARRIAGE RETURN

• This message is self-explanatory.

• If LOAD is the response, control goes to message
6.

• If SAVE is the response, control goes to message
7.

• If a carriage return is the response, control goes to
message 11.

6. INPUT TAPE ON UNIT O. READY?

Respond with a carriage return when ready.

7. OUTPUT TAPE ON UNIT O.
HOW MANY SECTORS?

• Mount a blank tape (with write ring) on tape unit
O.

• Respond with the four-digit hexadecimal number
of sectors to be saved. If the number is not valid,
message 7 is repeated.

8. DISK ERROR (XXXX)

Where:

XXXX is the last disk status

If the mass memory device does not respond properly
to 1/0 commands, this message is typed, and control
passes to message 5.

9. TAPE ERROR (XXXX)

Where:

XXXX is the last tape status

If the magnetic tape does not respond, this message
is printed, and control passes to message 5 .

10. XXXX SECTORS LOADED

This message is printed when the LOAD operation
has completed, and control passes to message 11.

11. TYPE V FOR VERIFY, A FOR AUTOLOAD,
OR A CARRIAGE RETURN TO RESTART

• When the SAVE operation is completed, this
message is printed .

• The tape rewinds and unloads.

• If a carriage return is the response, control passes
to message S.

• If the response is a V, the tape is verified against
mas~ memory when message 12 is responded to
with a carriage return.

12. VERIFY TAPE ON UNIT O. READY?

Reload the tape, and press carriage RETURN.

13. XXXX SECTORS VERIFIED

• When the verify is complete, this message is out
put, and control goes to message 11.

• If the response to message 11 is an A, the program
simulates an autoload by reading the first track of
the mass memory device to location 0 and jumping
to o. This is the only exit from DSKTAP.

• When errors are encountered on verify, control
goes to message 14.

14. SECTOR XXXX WORD -- WW -
DOES NOT COMPARE
TYPE C TO CONTINUE OR
A CARRIAGE RETURN TO ABORT.

Where:

XXXX is the sector and WW is the word in the s
sector.

• Only the first verify error in a block of 16 sectors is
logged. Verify errors cause this message.

• When a carriage return is the response, control
passes to message 11.

Tape-to-Disk Load Using
System Save Tape

Loading the CYBERDATA operating system to disk
from the image on the system save tape is done as
follows:

1. Load the seven- or nine-track bootstrap.

Enter the applicable seven- or nine-track bootstrap
manually (see procedure in appendix A), or load
*BOOT from the CYBERDATA program library.

2. Mount the system save tape on unit O.

3. Press MASTER CLEAR and GO on the console.

The first file (disk initializer) is read from tape.

4. Press MASTER CLEAR and GO.

The disk initialization messages appear on the
teletype.

NOTE
Be sure the correct disk is mounted.

S. Execute the disk initializer.

This requires 1 to 3 minutes, depending on the
options selected.

6. When disk initialization is complete, press MAS
ter clear and GO.

Read next file (DTLP) from tape.

7. Press MASTER CLEAR and GO.

DTLP messages will appear on teletypewriter as
follows:

4 DIG. EQ. CODE
FOR .. MAG TAPE

8. Enter 0381

Teletype message:

4 DIG. EQ. CODE
FOR .. MASS MEMORY

9. Enter 0181 ICRI

Teletype message:

SCRATCH SECTOR IN$C1 IS ... xxxx.
TYPE LOAD FOR TAPE-TO-DISK,
SAVE FOR DISK-TO-TAPE
OR A CARRIAGE RETURN

10. Enter LOAD

Teletype message:

INPUT TAPE ON UNIT O. READY?

11. Enter ICRI

This copies the tape to disk, rewinds and unloads the
tape.

Teletype message:

xxxx SECTORS LOADED
TYPE Y FOR VERIFY, A FOR AUTOLOAD,
OR A CARRIAGE RETURN TO RESTART

8-3

12. Enter A

Teletype message:

CYBERDATA LEVEL X.XX LOADED
PP

13. Restore the autoload console key to N (vertical
position)

Teletype message:

ENTER DA TE/TIME
MMDDYYHHMM

14. Enter Date, Time

Teletype message:

month,date,year, time

To verify the load, proceed as follows:

1. Press IMANUAL INTERRUPTI

Teletype message:

MI

2. Enter DB ICRI

Teletype message:

DEBUG IN

3. Mount the system save tape again.

4. Enter ADF,6,2 E!1
This advances over the first two files on tape.

Teletype message:

DEBUG OUT

S. Enter OFF ~

6. Press IMANUAL INTERRUPTI

7. Enter *BATCH ICRI

8. Enter *JOB ICRI

Teletype message:

J

9. Enter *DTLP

8-4

Teletype message:

DTLP FIRST WORD ADDRESS
WILL BE XXXX TURN OFF PROTEC
SWITCH, TYPE CARRIAGE RETURN

10. Turn autoload console key to M (horizontal
position). This removes system protect.

11. Press ICRI

Teletype message:

4 DIG. EQ. CODE FOR ... MAG TAPE

12. Enter 0381

Teletype message:

4 DIG. EQ. CODE FOR .. MASS MEMORY

13. Enter 0181

Teletype message:

SCRATCH SECTOR IN$Cl IS .. xxxx
TYPE LOAD FOR TAPE-TO-DISK,
SAVE FOR DISK-TO-TAPE
OR A CARRIAGE RETURN

14. Enter

Type Y for verify, A for autoload or a carriage return
to restart.

15. Enter V

Teletype message:

VERIFY TAPE ON UNIT O. READY?

16. Press ICRI

After successful verify, teletype message:

xxxxSECTOR VERIFIED
TYPE Y FOR VERIFY, A. FOR AUTOLOAD,
OR A CARRIAGE RETURN TO RESTART.

17. Label the new disk.

SYSSPR ""100-200 ~ MS1ZV4
(Maximum core size)

CYBERDATA
Modules

""4658

CYBERDATA Monitor ""492

Drivers
""5ZIJ

Debugging Aids (Panic Dump, etc.) rv 471

COS Monitor"" 2766
JI BGNMON

(Beginning of monitor)

" ENDOV4

ALLOCATABLE (End of Part 0)

",133111

SLDlRY System Library Directory'" 256 ---------------
SYSDAT

(Tables and
Driver Area)
"'5328

Figure 8·1. CYBERDATA Operating System
Core Memory

INPUT/OUTPUT UTILITY

Via requests entered at the standard input or comment
device, the background 1/0 utility program (IOUP) for
COS enables the user to perform peripheral operations
simultaneously in the background during normal
foreground processing.

*IOUP Statemment

The 10UP program runs in the background and is called
by the job processor when the operator types an *IOUP
statement. 10UP reads control statements from the
standard input device. The operator may switch control
to the standard comment device by entering an *K,14. it

continues to process the 10UI.> requests until it is
terminated by either an OUT or an *Z statement,
followed by a RETURN.

All operator requests are limited to 4010 characters on
the input device.

An *IOUP statement initiates the program, which alerts
the operator that it is in core and ready for use by typing:

UTILITY IN
NEXT IOU

After the request is completed, and all messages
associated with the completed request have· been typed,
the 10UP program types:

NEXT IOU

The 10UP program them waits for the next request from
the operator. To terminate the 10UP program, the
operator must complete the following items:

• Type: OUT

• Press: RETURN

The 10UP program types:

UTILITY OUT

To abort a request which is being executed, the operator
must complete the following steps:

• Press: MANUAL INTERRUPT

• Type: *Z

• Press: RETURN

The job processor terminates the processing of the
request.

Theory of Operation

The three tasks performed by an 10UP request are:

• Transfer of data

• Comparison of data

• Motion control request

8-5

Execution of these tasks is employed by the 10UP
program through the. use of the following devices referred
to by their logical units:

• 1729-3 Card Reader

• 615-93/73 Magnetic Tape

e 1742 Line Printer

References to the I/O devices used by the IOUP program
are made by logical units or the standard I, P, or L
notation assigned by the system or the job processor.

TRANSFER AND COMPARISON OF DATA

Transfer and comparison of data are performed via this
method. Data is read from one logical unit and written to
or compared with the data on the second logical unit.
Multiple copies of the input data can be made on the
output device.

MOTION CONTROL REQUEST

The tape motion request may be forward or backward
skipping of the specified number of files or records,
setting the density, writing an end-of-file, or rewinding or
unloading a magnetic tape.

Data Transfer

The IOUP program uses two methods for data transfer.
The method to be used is governed by the following:

• Intermediate storage is used if the input and
output units are the same and/or multiple copies
of the input data are requested (method 1).

• Intermediate storage is not used (record-by
record transfer· occurs) if the input and output
units are not the s3;me ·and only one copy of the
input data is requested (method 2).

Method 1

Read the entire input data from the input, and write to
an intermediate storage (scratch unit). For transfer
requests, the input data from the intermediate storage is
read one record at a time and then output to the specified
device. If multiple copies of the output are required, the
intermediate storage is read over again and output until
the repeat count is satisfied.

Using this method, the amount of data to be transferred
is restricted by the size of the available scratch unit. if the
input data to be transferred is specified to be larger than

8-6

the available scratch or while actually writing, the
scratch is exhausted, and the request is aborted.

Method 2

The intermediate storage is not used in the execution of
an 10UP request. Data transfer from one record of the
input device is read and written directly to the specified
output device. This record-by-record transfer continues
until either the specified amount of data is transferred or
a physical end-of-the-input device is detected. Only one
copy of the data can be made.

Data Verification

The IOUP program uses one of the following methods
for data verification.

• Two of the same logical units with data to be
compared (method 1)

• Two different logical units with data to be
compared (method 2)

Method 1

When the two logical units are the same, the entire data
from the first logical unit is . read and written on
intermediate storage. This process continues until all the
specified number of records are read and written or until
the end of data on either logical unit is detected. After
the completion of reading from the first logical unit anq
writing on intermediate storage, one record at a time is
read from the second logical unit and compared with the
intermediate storage for record length and data
matching. This comparison continues until the end of the
data on the second unit or to the end of intermediate
storage. When a mismatch occurs, a diagnostic is output.

Method 2

When the data to be compared is on two different logical
units, a record from the first logical unit is read and
compared with the corresponding record of the data on
the second logical unit. The two records are checked for
the same number of words and word-by-word likeness.
The comparison continues until all the specified number
of records are compared or until the end of data on either
logical unit is detected. When a mismatch occurs, a
diagnostic is output.

Data Record Size

The maximum data record sizes for the 110 devices that
are used by an IOUP request are as follows:

• Card reader - 192 words (assembly parameter)

• Magnetic tape - 192 words (assembly parameter)

Peripheral Operations Performed
by IOUPProgram

The peripheral operations performed by the IOUP
program are categorized as follows:

• Data transfer requests

Card to magnetic tape - CM,ul,u2,m,x

Card to printer - CL,ul,u2,m,x

Magnetic tape to printer - ML,ul,u2,RlF,n,m,x

Magnetic tape to magnetic tape -
MM,ul,u2,R/F,n,m

• Data verification requests

Card and card - VCC,ul,u2,x

Card and magnetic tape - VCM,ul,u2,n,x

Magnetic tape and magnetic tape -
VMM,ul,u2,n

• Motion control requests

Advance unit number of files - TAF,u,n

Advance unit number of records - T AR,u,n

Backspace unit number of files - TBF,u,n

Backspace unit number of records - TBR,u,n

Rewind unit - TRW,u

Write end-of-file mark on unit - TEF,u

Set density of unit - TSD,u,d

Unload unit - TUL,u

The u, ul, u2, and u3 of all the preceding IOUP requests
indicate the devices used by the job processor to execute
an IOUP request. If the type of the device indicated by

the I, P, L, u, ul, u2, or u3 do not match the type of the
IOUP request, the request is rejected.

Data Transfer Requests

The following paragraphs discuss the data transfer
requests.

CARD TO MAGNETIC TAPE REQUEST

This request is used to request a card-to-magnetic-tape
data transfer.

Format

The request format is:

Parameters

For this format, the parameters are:

ul--card reader unit

u2-magnetic tape unit

m-number of times the input deck is to be copied .

x-optional

o or blank-format of input data is 1700-
formatted binary/ASCII

1 to 99999-80-column card image in binary

Request Function

The CM request performs the following functions:

• Card deck input at the card reader unit u 1 is
written m (1 to 10) times on the magnetic tape on
u2·

• An end-of-file mark is written at the end of each
copy on the magnetic tape unit.

• The end-of-input information occurs when the
card reader hopper is empty.

• When an end-of-tape condition on magnetic tape
is detected, a diagnostic is printed.

8-7

• The writing of data on magnetic tape u2 begins at
the current physical position of the tape. The tape
density is determined by the setting on unit u2'

• On completion of the request, the number of
records (one record = one card) transferred is
typed.

CARD TO PRINTER REQUEST

This request is used to transfer data from cards to the
printer.

Format

The request format is:

CL,u1,u2,m,x

Parameters

The parameters are as follows:

u 1-card reader unit

m-number of listings required

x-optional

x or blank-first character of the card record is
not interpreted as a carriage
control function; it is printed as a
data character

1 to 99999-first character of the card record is
interpreted as a carriage control
function

Request Function

The CL request functions as follows:

8-8

• Card deck input at the card reader unit u 1 is
written m (1 to 10) times on the printer of unit u2.

• The mode of the data transfer is assumed to be
1700-formatted binary/ASCII mode used for the
input card deck. Non-ASCII input data results in
a garbled printout.

• A paper eject occurs at the end of each listing.

• The end of the information occurs when the card
reader hopper is empty.

• On completion of the request, the number of
records (one record = one card) is typed.

MAGNETIC TAPE TO PRINTER REQUEST

This request transfers data from magnetic tape to the
printer.

Format

The format is:

ML,u1,u2,R/F,n,m,x

Parameters

The format parameters are defined as follows:

u 1-magnetic tape unit

R-n is the number of records to be transferred

F-n is the number of files to be transferred

n-number of records or files to be transferred
(refer to R,F)

m-number of listings required

x-optional

o or blank-first character of magnetic tape
record is not interpreted as a
carriage control function; it is'
. printed as a data character

1 to 99999-first character of magnetic tape
record is interpreted as a carriage
control function

Request Functions

The ML request completes the following functions:

• The magnetic tape on unit u 1 is read in, and the
specified number of records/files are printed on
printer u2'

• Each end-of-file mark encountered on magnetic
tape causes a page eject.

o At the end of each listing, a page eject occurs.

o The number of records or files transferred is less
than the specified number if the end of tape is
detected before all specified input data has been
read in.

o The mode of data transfer is 1700-formatted
binary/ ASCII mode of data on magnetic tape.
The magnetic tape is read by a format read and
the data is written in the mode of the input data.
The printout of binary input data, however, is
garbled.

• On completion of the request, the number of
records or files transferred is typed.

MAGNETIC TAPE TO MAGNETIC TAPE REQUEST

The MM request transfers data from magnetic tape to
magnetic tape.

Format

The req~est format is:

MM,u1,u2,RlF,n,m

Parameters

The following parameters are used:

u1-input magnetic tape unit} d c. u 1 an u2 can reler

to the same unit
u2.,.-output magnetic tape unit .

R-n is the number of records to be transferred (1
to 99999)

F-n is the number of files to be transferred (1 to
99999)

n-number of records or files to be transferred
(refer to R,F)

m-number of copies to be made (1 to 10)

Request Function

The MM request is used for the following functions:

• The magnetic tape in unit u 1 is read in, and the
specified number n of records or files are written
m times on magnetic tape unit u2. Units u1 and
u2 can refer to the same unit.

o The mode of data transfer is that of the data on
the input magnetic tape. The magnetic tape is
format read in 1700-formatted binary/ ASCII
mode, and the data is written in the format mode
of input data. At the end of each copy of data, an
end-of-file mark is written on the output magnetic
tape. Each end-of-file mark detected on the input
magnetic tape is counted as one record when R is
specified. The number of records or files
transferred is less than the specified number if the
end-of-tape mark is sensed on the input magnetic
tape before n is satisfied.

• When an end-of-tape mark is detected on the
output magnetic tape u2, a diagnsotic is typed .

Data Verification Requests

The data verification requests are discussed in the
following paragraphs.

CARD AND CARD REQUEST

The VCC request is used for card-and-card verification.

Format

Parameters

The parameters for this request are as follows:

u 1-card reader unit 1

u2-card reader unit 2

x-optional

o or blank-format of data to be compared is
1700-formatted binary/ASCII

1 to 99999-format of data to be compared is
80-column binary card image

Request Function

The VCC request functions as follows:

• The two card decks to be compared are input at
card reader units u1 and u2.

• The IOUP program compares each card, and in
case of any discrepancy in the data, a diagnostic is

8-9

printed. The comparison continues until the end
of data on unit u1/u2 is detected. When verifica-
tion is completed, the total number of records
checked is printed (one card = one record).

CARD AND MAGNETIC TAPE REQUEST

Verification between cards and magnetic tape is
accomplished via the VCM request.

Format

The request format is:

VCM,u 1,u2,n,x

Parameters

u 1-card reader unit

u 2-magnetic tape unit

n-number of records to be compared (1 to 99999)

x-optional

o or blank-format of data compared is 1700
binary/ ASCII

1 to 99999-format of data compared is 80-
column binary

Request Function

The following functions are done by the VCM request:

• The card to be compared with is read on unit u 1,
until either n cards are read or the reader hopper
is empty, whichever occurs first. This data is
compared with each magnetic tape record until
either an end-of-tape mark is detected or n (actual
number of cards/records of data are read)
whichever occurs first.

• At the end of verification, the total number of
records checked is printed.

• If any discrepancy occurs in a record, a diagnostic
is typed. An end of file on magnetic tape is
counted as one record.

MAGNETIC TAPE AND MAGNETIC TAPE

Verification between magnetic tape and magnetic tape is
via the VMM request.

8-10

Format

Parameters

The format parameters are as follows:

u 1-magnetic tape 1 unit }

u rmagnetic tape 2 unit

u 1 and u 2 can refer

to the same unit

n-number of records of magnetic tape to be
compared (1 to 99999)

Request Function

• u1 Equal to u2

Magnetic tape one on unit u 1 is read by a format
read in the mode of the data on the tape until the
specified number of n records of data is read. If
the end-of-tape mark is detected on tape 1 before
the specified number n has been read, the number
of records actually read is the number of records
to be compared. An end. of file counts as one
record.

Magnetic tape 2 on unit u2 is format-read in the
mode of the data of the corresponding record on
tape 1, and is compared for a match in the num
ber of words and word-by-word equality in each
record. A discrepancy causes a diagnostic to be
typed. At the end of verification, the total number
of records checked is typed. Verification also ends
when the end-of-tape mark is detected on tape
before the specified number of records have been·
checked.

• u1 Not Equal to u2

The comparison of the data is one record from
each of the two units. The verification ends when
either the specified number of records are
checked or the end of tape on u1 and u2.

Motion Control Requests

The motion control requests are discussed and defined in
the following paragraphs.

ADVANCE UNIT NUMBER OF FILES REQUEST

To advance a unit number of files, the T AF request is
used.

Format

The request format is:

TAF,u,n

Parameters

u-magnetic tape unit

n-number of files to be advanced (1 to 4095)

Request Function

The T AF request function is:

• Magnetic tape on unit u is advanced n number of
files. When the end of tape is detected before all
the n files have advanced, the tape motion stops at
the end-of-tape marker. A typed message
indicates the total number of files advanced.

ADVANCE UNIT NUMBER OF RECORDS
REQUEST

This request advances the unit a number of records.

Format

The format is:

TAR,u,n

Parameters

The following parameters apply to this request:

u-magnetic tape unit

n-number of records to be advanced (1 to 4095)

Request Function

The TAR request functions as follows:

• Magnetic tape on unit u is advanced n number of
records. When the end-of-tape mark is detected
before all n records are advanced, the tape motion
stops at the end-of-tape mark. A message is typed
to indicate the total number of records advanced.
An end-of-file mark is counted as one record.

BACKSPACE UNIT
NUMBER OF FILES REQUEST

This request backspaces the unit by a number of files.

Format

The format is:

TBF,u,n

Parameters

The TBF request uses these parameters:

u-magnetic tape unit

n-number of files to be backspaced (1 to 4095)

Request Function

The TBF request functions as follows:

• The magnetic tape on unit u is backspaced n
number of files. If the load point is detected
before all the specified files are backspaced, tape
motion stops at the load ·point. A typed message
indicates the number of files backspaced.

BACKSPACE UNIT
NUMBER OF RECORDS REQUEST

This request backspaces the unit a number of records.

Format

The format is as follows:

TBR,u,n

Parameters

These parameters are used for the TBR request:

u-magnetic tape unit

n-number of records to be backspaced (1 to 4095)

Request Function

The TBR request functions as follows:

• The magnetic tape on unit u is backspaced n
number of records. An end-of-file mark is

8-11

counted as one record. If the load point is
detected before all the specified records are back
spaced, tape motion stops at the load point. A
typed message indicates the number of records
that are backspaced.

REWIND UNIT REQUEST

The rewind unit request is TRW.

Format

The format is:

TRW,u

Parameter

The TRW parameter is defined as follows:

u-magnetic tape unit; the magnetic tape unit u is
rewound to its load point

UNLOAD UNIT REQUEST

The TUL request is the unload unit request.

Format

The format is:

TUL,u

Parameter

The following parameter applies to the TUL request
format:

u-magnetic tape unit

WRITE END-OF-FILE MARK ON UNIT REQUEST

This request is used to write the end-of-file mark on
magnetic tape at unit u.

Format

The format is:

TEF,u

8-12

Parameter

The TEF parameter is:

u-magnetic tape unit

SET DENSITY OF UNIT REQUEST

This request sets the density of the magnetic tape on unit
u to the specified density.

Format

The format is:

TSD,u,d

Parameters

These parameters are used for the TSD request:

u-magnetic tape unit

d-density code

0-<10 nothing

S-select 556 bpi

8-select BOO bpi

16-select 1,600 bpi

COSY PROGRAM

The 1700 COSY program provides a means of
compressing information in source decks by replacing
three or more blanks on a card with two special ASCII
characters. COSY compresses Hollerith source decks
and converts the Hollerith code to ASCII code. The
resulting deck, called a COSY deck, is in COSY format.
COSY reduces average deck size by about 60 percent.

A COSY library consists of a group of COSY decks. Each
COSY deck is preceded by a COSY deck identifier card
and is terminated by an end-of-deck character. The
COSY library may be written on magnetic tape or
punched cards. The library is terminated by an ENOl
card followed by an end-of-file mark.

The COSY program is called from mass storage by
typing *COSY and by pressing the RETURN button at
the teletypewriter console or by using a *COSY punched

card. There are no parameters for the teletypewriter call
to COSY or for the ·COSY card. A COSY revision deck
follows the call to COSY. COSY revision decks allow the
user to prepare, revise, or copy COSY decks. The revision
decks also-provide for the preparation; update, or copy of
COSY libraries. COSY may be used with any source
language that does not use COSY control statements.
COSY output may be in Hollerith or COSY (compressed
ASCII) format and may be listed or punched or the
Hollerith may be sent to a compiler or assembler.

COSY Cards

COSY revision decks are comprised of COSY control
cards and new source cards. There are seven COSY
control cards (MRG/, DCK/, CPY I, DELI, INSI,
REM/, and END/) and two deck identifier cards (HOLI
and CSY I). The fields for all COSY control and identifier
cards (except DEU and INS/) are in the standard format
shown in figure 8-2.

8 13 73

deckname cardname parameters comments id

Figure 8-2. Standard Field Format for COSY Cards

In figure 8-2, the following parameters apply:

deckname-columns 1 through 6; the name of a
deck in a COSY library that is to be
modified or copied. Deckname is used
only on DCK/, CPY/, HOU, and
CSY I cards. The field is blank on all
other COSY cards.

cardname-columns 8 through 11; name of COSY
control card

parameters-start in column 13; parameters are
terminated by a space

comments--can start in any column after the
terminating space for parameters;
comments may run through column
72 and are optional

id--columns 73 through 75; a three
character deck name identifier; used
only on DCK/, HOL/, and CSYI
cards

The control card fields for DELI and INSI cards are
shown in figure 8-3.

8 13 66 n

cardname parameters comments change record

Figure 8-3. DEL/ and INS/ Card Field Format

The cardname, parameter, and comment field are the
same for DELI and INSI as for the standard card in
figure 8-2, except that the comment field ends in column
65. A change record field is added to these cards to add
change identification information. The change record
field is a seven-character field (columns 66 through 72)
which is used to identify the type, nature, or data of a
change. COSY writes an asterisk in column 73 and in the
contents of the change record field in columns 74
through 80 of each new source card following the INSI or
DEU card. This provides a means of identifying new or
changed source cards when a COSY deck is listed.
Adding change record information on an INSI or DEU
card is a user option. It is not required input to COSY.

MRG/CARD

An MRGI card directs COSY to merge two revision
decks.

Format

The MRGI card format is shown in figure 8-4.

8 13

I (MRGI a,b,c

Figure 8-4. MRG/ Card Format.

Parameter

The card format parameters are:

a,b,c-This specifies the actions to be taken. This
card directs COSY to merge the revisions
deck on logical unit a with the revisions deck
on logical unit b and write a merged revisions
deck on logical unit c.

If revisions between a and b conflict, revisions from a are
used. The conflicting revisions from b are listed with
asterisks in columns 2 through 5 on the standard print

8-13

device and are not written on unit c. If either a or b is
missing or zero, COSY assumes that the decks are on the
standard input device. If c is missing or zero, the
standard output device is used.

If a and b are the same logical unit, the first revisions
deck is written onto mass storage and is then merged

. with the second revisions deck on the logical unit.
Revisions on mass storage have priority if conflicts occur.

The DCKI card in the merged deck is the DCKI card
from unit a. The merge terminates when the ENDI card
on both decks is read.

COSY locates a DCKI card on unit a and searches unit b
until the deck names match. Intervening decks on unit b
are copied to unit c. If COSY reaches the end of the
revisions deck on unit b before obtaining a match, it
treats all the remaining decks on unit a as new decks and
inserts them at the end of the merged deck. If revisions
are to be input from different input devices, logical units
must be specified on the MRGI control card.

DCK/ CARD

A DCKI card identifies the COSY or Hollerith deck to be
updated or created and specifies the actions to be taken
with the new deck.

Format

The DCKI card format is shown in figure 8-S.

8 13

(deckname DCK/ id

Figure 8-5. DCK/ Card Format

Parameters

The following parameters are used in the DCKI card
field format:

8-14

deckname-names the COSY or Hollerith deck to
be processed

Pl, ... ,Pn-specifies the actions to be taken. All
parameters are optional, can be in any
order, and are separated by commas.
Blanks are not allowed in the
parameter field. Parameters have the
form p, or p = 10, or D = deckname

where p is I; C, H, or L, and lu is the
logical unit on which input or output
occurs. Deckname specifies a new
deckname for the COSY output.

I parameter-input (I = lu)

I specifies the logical unit containing
the COSY or Hollerith source deck(s) to
be updated or created. If the parameter
is absent or just I, COSY assumes the
source deck is on the COSY standard
input device.

If I = lu is used, and lu is the system
standard input unit, COSY assumes
that a new deck is being added to the
COSY library. If the first card after the
DCKI card is a source deck identifier,
COSY processes the deck until an
ENDI card is read. Additional new .
source decks may follow. Each new
deck must begin with a source deck
identifier card and must end with an
ENDI card. The card which follows the
ENDI card must be a DCKI card,
MRGI card, or another ENDI card to
mark the end of the revision deck.

If the first card after the DCKI card is
not a COSY or Hollerith source-deck
identifier card, COSY assumes that the
cards which follow the DCKI card are
revision cards and the COSY source·
deck will follow the revision cards.
COSY reads the revision cards and
places them on the mass storage
scratch area until an ENDI card is
read. Then COSY reads the new COSY
source deck, which must follow the
revision cards, and modifies the new
deck according to the revision cards.

If I = lu is used, and lu is· not the
system standard input, COSY reads the
revision cards from the system standard
input unit and the source deck which is
specified by the DCKI card from unit
lu. Then COSY updates the source
deck according to the revision cards.

C parameter-COSY output
(C = lu or C)

This specifies the device which is to
receive COSY output. If C is absent,
there is no COSY output. If just C is
used, COSY output is on the standard
output device. C cannot be equated to

DEL/ CARD

the unit which contains the current
COSY library.

H parameter-Hollerith output
(H = lu or H)

This parameter specifies the device
which is receiving Hollerith output. If
H is absent, there is no Hollerith out
put. If just H is used, Hollerith output
is on the COSY standard output device.

D parameter-deckname (D = name)

The D parameter changes the name of
the COSY or Hollerith deck. COSY
uses the six characters (including
blanks and commas) following D = for
the new deckname.

NOTE

If name is fewer than six characters
and an I, C, or H parameter follows
it, COSY misinterprets name.

id parameter (id)

This three-character field changes the
COSY or Hollerith deck identifier. If id
is blank, the old deck identifier on the
HaLl or CSY I card is used.

L parameter-list (L = lu or L)

The L parameter specifies that a listing,
in decompressed Hollerith form, of the
deck is to be made on logical unit lu. If
just L is used, the listing is on the
COSY standard list device.

COSY deletes a specified number of cards from a
previously defined input deck and inserts any Hollerith
source cards immediately following the DELI card up to
the next COSY control card. A DELI card has two forms
as shown in figures 8-6 and 8-7.

8 13 66 n

(DEl/ m change record

Figure 8-6. First DEL/ Card Format

8 13 66 n

(DEU m,n change record

Figure 8-7. Second DEL/ Card Format

In figure 8-6, card m is deleted; in figure 8-7, cards m
through n are deleted. The unsigned decimal numbers m
and n are the sequence numbers in columns 76 through
80 of the Hollerith source cards. Sequence number m
must be less than n.

The number of Hollerith cards following a DELI card
need not equal the number of cards being deleted.

INS/ CARD

COSY inserts the Hollerith source cards immediately
following an INSI card (figure 8-8) into the new COSY or
Hollerith deck.

8 13 66 n

(INS/ m change record

Figure 8-8. INS/ Card Format

The Hollerith source cards are inserted after sequence
number m and are found in columns 76 through 80 of the .
Hollerith source cards.

REM/ CARD

The REMI card is used to remove the DELI or INSI card
and all Hollerith source cards that follow. This operation
occurs only when two revisions decks are being merged.
A REMI card has the two forms shown in figures 8-9 and
8-10.

8 13

(REM/ m

Figure 8-9. First REM/ Card Format

8-15

8 13

(REMI m,n

Figure 8-10. Second REM/ Card Format

The sequence numbers m and n must match the
sequence numbers on DELI or INSI control cards in the
revisions deck that is being merged.

A REM I card detected when COSY is not merging is
ignored.

CPY/ CARD

The CPY I card causes the COSY library to be copied
onto a logical output unit. The CPY I card has the two
forms shown in figures 8-11 and 8-12.

8 13

(CPYI

Figure 8-11. First CPY / Card Format

8 13

feCkname CPVI

FigUre 8-12. Second CPY/ Card Format

The first form, without the deckname, causes the COSY
library to be copied from its current position to the end of
the library. The second form, with a deckname specified,
causes the COSY library to be copied from its current
position through the named deck. COSY places an
END/ card at the end of the new library, followed by an
end-of-file mark.

The COSY library can be positioned at the beginning of
any deck by the use of a CPY / card on which only the
deckname and the I parameter are specified. This card
positions the COSY library to the beginning of the deck
which immediately follows the named deck.

Parameters

The p parameters specify the logical 110 units that are

8-16

used to copy the COSY library. These parameters can
occur in any order and are in the form p = lu where:

p = lor C

lu = a logical 1/0 unit

1= lu-I specifies the logical unit, lu, from which
or I the COSY library is copied. If the I

parameter is omitted or just I is used, the
COSY library is copied from the COSY
standard input device.

C = lu-C specifies the logical unit, lu, to which the
or C COSY library is copied. If just C is used,

the COSY library is copied onto the COSY
standard output device. If C is omitted,
there is no COSY output.

As each COSY deck is read from input unit I and is
copied on output unit C, the deckname is listed on the
COSY standard print device. For example:

Deckname CSYI *COPIED*

For each deck that is read but not copied, the
COPIED notation is omitted. For example:

Deck 1

Deck 2

Deck 9

CSYI

CSYI

CSYI

Deck 10 CSYI

Deck 14 CSY/

Deck 15 CSYI

Deck 16 CSYI

COPIED

COPIED

COPIED

COPIED

COPIED

Decks 10 through 14 were read, but they were not copied.

END/CARD

The ENDI card (figure 8-13) terminates Hollerith input
decks, COSY libraries, Hollerith input libraries, and
revisions. decks.

B

(ENDI

Figure 8·13. ENDI Card Format

BOLl CARD

When a Hollerith deck is input, the first card must be a
Hollerith deck identifier (figure 8-14).

B 1J

(deCkname HOU id

Figure 8·14. BOLl Card Format

Parameters

The HaLl card parameters are:

deckname-'-names the Hollerith deck being pro
cessed

id-three-character deck identifier

A Hollerith deck identifier is not produced for a
Hollerith output deck.

CSYI CARD

When COSY output is requested on the DCKI card
(figure 8-15), COSY generates a COSY deck identifier
card as the first card of the COSY output deck. COSY
deck identifiers must also precede COSY decks on input.

B 1J

~eCkname CSYI id

Figure 8·15. CSYI Card Format

Parameters

The CSY I card format parameters are as follows:

deckname-'-names the COSY deck being processed

id-three-character deck identifier of
original deck

Sample COSY Revision Decks

The following sample COSY revision decks illustrate the
use of COSY control cards.

GENERATING A COSY LmRARY

The example in figure 8-16 generates a COSY library
from two Hollerith source decks and places the library on
output unit 13. The system standard input unit (card
reader) is unit 10.

End of COSY Input Deck ---..(ENOl

End of Source Deck 10 ~ ENOl
I

A
_/HOllERITH SOURCE DECK 10

End of
Source D eck 1

(DECK 10 HOl I

(DECK 10 OCK/ 1:= 10, C= 13

ENOl I ---.. /-
~

/HOllERITH SOURCE DECK I

(DECK I HOlI OKI

(DECK I DCKI 1:= 10, C= 13

* COSY

r -

Figure 8·16. COSY Library Generation

010

I
i~

I i I
IIJ~
V

I

I~I
I II
II~
IY

8-17

UPDATING COSy DECKS

The example in figure 8-17 update~ three COSY decks
and places the updated decks on logical unit 7. Two of

End of Source Deck 3 --..

Identifier Card for
Source Deck 3

End of Revision Deck

Changes the
Name of Deck 18
to FINAL and the
ID to FIN

the COSY decks are on logical unit 6 and the third deck
(deck 3) is input following the revision decks. The system
standard input unit (card reader) is unit 10.

ENOl I

/HOLLERITH SOURCE DECK 3 ijllll
1I1I1

~ 1---

//. SOURCE CAROS ~IIII'III
INSI 24 UPDATE A I

-D-EC-K--3~D-C"';;K~/-1 =-1o-.--C--=7.;....----..:....----,,' II I I

/~L~isO~URiciEic~A;RDls~;I~ii~~/I~I~11
DEL I 120. 121 UPDATE A I I I

DECK 1 DCKI 1=6. C=7. I I Il

Figure 8·17. COSY Deck Updating

8-18

Using the CPY / Card
to Update a COSY Library

The example in figure 8~18 shows how to update a COSY
library by using the CPY / card to replace five old COSY

End of Revision Deck

Position Old library
to Deck 20

decks with five new COSY decks. Logical unit 13
contains the old COSY library (decks 1 through 24) and
logical unit 10 contains five replacement decks. The new
COSY library is output on logical unit 6.

ENOl

1=13.C=6

CPY/ 1= 13

Copy New Decks
18 and 19

CPYI I=IO. C=6

Position
Old library
to Deck 12

Copy New
Decks 9 through 11

CPY I 1=13. C=6

CPY I 1=13

CPVI 1=IO.C=6

CPY I I = 13. C = 6

Figure 8-18. Updating COSY Library Via CPY/ Card

8-19

MERGING TWO REVISION DECKS Example 1

The following are two examples of merging revIsIon
decks. Example 1 merges two decks which both appear
on the same input unit. Example 2 merges two decks that
applJar on different input units.

This job merges two' revision decks (A' and B) which
appear on logical unit 10 (card reader) and writes the
merged output as a revision deck in Hollerith format on
logical unit 13. Figure 8-19 shows the two revision decks,
and figure 8-20 shows the new (merged) revision deck.

End of Revision Deck --___ --:~~----...,

End of Revision Deck B

End of
Revision Deck A

Figure 8·19. First Example of Merging Two Revision Decks

End of Revision D eck • / ENOl

(DELI 102, 106

(~c .. DCKI I,HalO I

:A~
/ / SOURCE CARDS

I!I:! ~I 1-
/ DELI 215 UPDATE 81

/DECK5 DCKI Ial, HaIO,Da" 041
DELI 126 I

/-

~ / SOURCE CARDS

"---
DELI 12, M UPDATE A I

I 1III1
DECK 2 DCKI I, HalO I I-

REMI 215

L ~I ~
/ SOURCE CARDS

~ DELI 2", 52 UPDATE A 1
~

DELI 4,9 I -~
DECK I DCKI I, HalO

"---
~

Figure 8·20. Resultant Merged Revision Deck

8-20

Example 2 (card reader), and revision deck B is on logical unit 6
(magnetic tape).

This job (figure 8-21) merges two revision decks (A and
B) and writes the merged revision deck on logical unit 13
(magnetic tape). Revision deck A is on logical unit 10

Revision deck B, which is input from magnetic tape, is
shown in figure 8-22.

End of Revision Deck ~ (ENOl

End of Revision Deck A ~I' ENOl

(' DELI 29 UPDATE A

(REMI 21,22

(' STA* C

~ ADD* B
I-

t' -
LDA* A

/ DELI UPDATE A -10,11

t'DECK DCKI I=6,H=7
I-

I' MRGI 10,6,13
1-

* COSY
1-

-
I-

I-

1-

Figure 8·21. Second Example of Merging Two Revision Decks

DECKA DCKI I = 6, H = 7
DELI 10, 11 {update B}
LDA* A
SUB* B
STA~~ C
DELI 21,22 {update B}

{source cards for insertion between COSY cards 20 and 2S}
ENOl {end of revision deck B}

Figure 8·22. Revision Deck B for Example 2

8-21

The merged revision deck, which is output on magnetic
tape, is shown in figure 8-23.

Since revision deck A was the primary deck, the DELI
10,11 card and the insert cards that follow it in DECKA
take precedence over the DELI 10,11 card and the insert
cards in revision deck B. Also, the REMI 21,22 cards in
revision deck A remove the DELI 21,22 card and the
following source cards from revision deck B. The DEU
29 card from revision deck A is added to the merged
revision deck.

DECKA DCK/ I = 6, H
DELI 10, 11
LDA* A
ADD* B
STA* C
DELI 29
ENDI

=

CONVERTING COSY DECKS
TO A HOLLERITH LIBRARY

The example in figure 8-24 shows a job that converts
three COSY decks into a Hollerith library and writes the
Hollerith library on logical unit 6. COSY decks 1 and 2
are on logical unit 13, and COSY deck 3 is on logical unit
7.

7
(update A)

(end of merged revision deck)

Figure 8-23. Example 2 - Merged Revision Deck

End of Revision Deck ENOl

DECK! DCKI 1=7, H=6

L/
/ SOURCE CARDS

INSI 249 REVI I

~//._iIi!~xlll/.11 111
/ SOURCE CARDS I yo'"

I REVI I~

DC~:: ::~.'::: '99 I ___ ..I~'-· (

1-

(DECK I DCKI

* COSY

1-

1-

Figure 8-24. COSY Deck Conversion to Hollerith Library

8-22

COSy Library

The COSY library consists of one or more COSY decks
terminated with an ENDI card. The COSY deck is a
series of· compressed source statemeilts that are written
in ASCII format. Each COSY deck begins with a COSY
deck identifier and ends with an end-of-deck character
followed by an end-of-file mark.

COSY compresses a card image by inserting a special
ASCII character and value for three or more sequential
blanks as foHo~lS:

5F16-special ASCII character indicating
compression

5Fxx16-indicates 3 to 62 consecutive blanks where

2116 ~ xx ~ 5D16 except 2616

5F5E16-end of card image

5F5F16-end of deck

The COSY library is kept on magnetic tape. The block
size is 192 words, and all blocks are completely ~led.
Card images may be split across blocks.

Hollerith Input

A Hollerith input library is a group (one or more) of
Hollerith source decks which is terminated by an ENDI
card. Each Hollerith source deck begins with a Hollerith
deck identifier card and ends with an ENDI card. The
Hollerith input decks may be input from cards, a
magnetic tape, or a teletypewriter.

Hollerith Output

Hollerith output consists of source statements in
uncompressed Hollerith code produced from COSY
input. Columns 73 through 75 of the source card images
contain a deck identifier. Asterisks appear in this field if
the source output was inserted by a revision deck.

Columns 76 through 80 of the Hollerith source card
images contain a decimal sequence number. If new
source statements are inserted with revisions that contain
a DELI or INSI card, COSY writes an asterisk in column
73 of each new source card image and writes the change
record field (contents of columns 66 through 72 on the
DELI or INSI card) in columns 74 through 80 of the new
source card images. If the change record field was blank
on the INSI or DELI card, COSY fills columns 73
through 80 with asterisks.

Hollerith output is terminated with an end-of-file mark.
COSY writes an end-of-file mark and rewinds the tape
on completion of the ',COSY run.

Revision Deck

A revision deck is a group of COSY control cards and
new source cards which are used to update or revise an '
existing COSY library. The first card of a revision deck
must be a DCK/, MRG/, or CPY I control card; and the
last card must be an ENDI control card. The new source
cards, if used, must follow an INSI or a DELI control
card. All cards are in Hollerith code.

The revision deck is input to COSY on the system
standard input device. If the source deck, which is to be
revised, is on the system standard input device, COSY
stores the revision deck on mass storage scratch until the
source deck has been read. The revision deck is stored as
card images with 40 words per sector.

Listings

Under normal operation, COSY lists revisions from the
revision deck as they occur on input. When merging two
revision decks, however, COSY lists the final merged
revision deck on the standard print device. Asterisks in
columns 2 through 5 indicate the card was not used in
the COSY operation. Columns 6 through 85 contain the
revision input card. If the L parameter is not present on
the DCKI card and revision cards follow the DCKI card,
the revision cards are listed.

Messages

COSY error messages are written on the COSY standard
list device. The format is:

COSY Cxx

In the format, xx indicates the error code. Refer to
appendix E to interpret COSY error messages.

At the end of a COSY job, the following message is
written on the COSY standard list device (only if errors
exist):

xx ERRORS

In this message, xx is a decimal count of errors in the
COSY job.

8-23

At various times during a COSY job, the following
message may be written on the system standard comment
device: .

REWIND LU xx

In this message, xx (decimal) indicates the logical unit
that is to be rewound. The operator must enter any value
through the system standard input comment device after
rewinding the unit to tell COSY that the unit has been
rewound.

SKELETON EDITOR (SKED)

A skeleton is a file which consists of requests to the
installation file builder program, LIBILD. These
requests specify the order and identification of the binary
programs that are to be retrieved from a set of library
programs and included in the installation file which is
being built. The skeleton itself contains no binary
programs; it merely has commands that specify which
programs are to be put onto the installation file and
which is the output from LIBILD. The skeleton may also
contain LIB EDT and system initializer control
statements which will be included in the installation file.

Sample SKED Statements

Some examples of typical skeleton statements are given
in table 8-1.

Table 8-1. Typical SKED Statements

Statement Function

*B'SYSDAT' Includes binary program SYSDAT

*S,ENDOV4,7FFF Assigns value 7FFF to entry point name ENDOV4

*YM,EFllE,l Defines system directory entry EFllE as ordinal

*l loads part 0 core resident programs

*M loads system library ordinal

*K,15 Changes standard input to lU 5

*P Produces absolute record

*END End of the skeleton file

8-24

SKED Function

The purpose of the skeleton editor (SKED) is to provide
the means for modifying a skeleton to allow changes to
an existing system. SKED cannot be used to modify the
SYSDAT program, but it can be used to redefine the
order and content of the program and the system
libraries .. In addition to the modification commands,
SKED has the facility of listing part or all of the skeleton,
resequencing the record numbers, and allowing tape
motion control.

Generating or Modifying ·SKED

To generate a skeleton of a system, it is necessary to read
the system installation file into SKED via a BUILD
command. To change the skeleton, the user has a
number of commands which enable him to add, delete,
or change the statements in the file. The modified
skeleton may then be output on a convenient medium
and may be used as input to LIBILD.

Executing SKED

SKED runs under the control of the job processor. It can
be brought into execution by entering a *SKED
command. On the console, SKED identifies itself by
typing:

SKED IN

This is followed by:

NEXT

SKED types NEXT whenever it is ready to receive a
command. The user then enters a valid command,
followed by a carriage return. A valid command consists
of a unique command name followed by any necessary
arguments. The command name may be abbreviated to
the least number of letters that permit the name to
remain unique. It may not contain more letters than the
forms given in table 8-2. No imbedded blanks are
allowed in the command; however, commas are required
to separate the arguments.

Table 8-2. Valld Editing Command Formats

Command Function

LIST Types out a brief description of the valid
commands

COMAND,lU Changes the command input device to LU

BUllD,LU Reads the installation file from device LU and
builds the skeleton file in the scratch area

lOAD,LU Reads the skeleton file from device LU and
transfers it to the scratch area

CATlOG,Nl,N2 lists records numbered Nl through N2 from
the skeleton file

DElETE,Nl,N2 Deletes records Nl through N2 from the
skeleton file

INSERT,N,LU Reads new skeleton records from LU and
inserts them in the file immediately following
record number N

DUMP,LU Writes the skeleton file onto device LU

CHANGE,llUl,lU2 Finds all *K records which specify LUl as the
input device and changes LUl to LU2

EXIT Exits from SKED and returns control to the job
processor; can also be accomplished by
responding to the NEXT statement via a
carriage return

The tape motion commands have the same formats as
those in DEBUG. Pseudo tape motion of the skeleton file
is accomplished by specifying SK as the logical . unit.
These commands are given in table 8-3.

Table 8-3. Pseudo Tape Motion Commands for SKED

Command Function

REW,LU RewindsLU

UNl,LU Unloads LU

ADF,LU,N Advances N files on lU

BSF,lU,N Backspaces N files on LU

ADR,LU,N Advances N records on LU

BSR,LU,N Backspaces N records on LU

WEF,lU,N Writes N file marks on LU

Additional SKED Com·mands

The use of SKED involves additional commands which
are discussed in the following paragraphs.

COMAND COMMAND

If LU is a device other than the standard input comment
device, the comments are output on the standard print
output device.

BUILD COMMAND

When an end-of-file condition is detected, the user is
asked the following question:

ANY MORE INPUT. ENTER LU

If there is more input, the operator is to type the logical
unit number from which the informatiQn will be read,
followed by a carriage return. If there is no more input,
the operator should enter· a carriage return. An *END
record is appended as the last record of the skeleton file;
the installation file must not hav~ an *END record in it.

LOAD COMMAND

The LOAD command works the· same as the BUILD
command with the exception that an *END command
may be present as the last record in a skeleton that is
being loaded. If the *END record is present, however, it
must be followed by an end-of-file record. Otherwise,
these two records are optional.

CATLOG COMMAND

There are three forms of the CATLOG command (table
8-4).

Table 8-4. CATLOG Commands

Command Function

CATlOG Resequences and lists the entire skeleton file

CATlOG,N lists record number N of the file

CATlOG,Nl,N2 lists records numbered Nl through N2

8-25

The only to resequence the file, except for the DUMP
command, is by the simple command CATLOG. Prior to
resequencing, there will be gaps in the sequence numbers
where records ·have been deleted, and any inserted record
appears in proper position but without sequence
numbers.

DELETE COMMAND

No record, which has been deleted or inserted since the
file was last resequenced, may be referenced. A
maximum of 5()()10 record deletions is allowed before the
file must be resequenced. When the number of deletions
goes over 5()() on a certain command, the DELETE
command is ignored, and the user receives a message
asking him to resequence the file.

The last record in the file is the *END record, which may
not be deleted. The command has the two forms in table
8-5.

Table 8·5. DELETE Commands

Command Function

DELETE,Nl Deletes record number Nl

DELETE,Nl,N2 Deletes records Nl through N2, where Nl N2

INSERT COMMAND

No record may be referred to which has been deleted or
inserted since the file was last resequenced. No insertions
may be made following the last record.

DUMP COMMAND

The skeleton is dumped onto the specified device with an
end-of-file mark written at the end. The file is
automatically resequenced and listed after the dump is
complete.

Error Conditions and Messages

If a device failure occurs, the appropriate standard
device failure message is printed on the console. This
condition can commonly occur with the device being
used to build or load the skeleton file; e.g., the card
reader has read all the cards without detecting an
end-of-file mark. When the failure is not really an error,
the operator should respond to the message ACTION
with a CU. The CU has the same effect as an end-of-file.
The program then continues. In this case, the user is
asked if there is any more input.

The SKED error messages are described in appendix E.

8-26

LIBRARY BUILDER (LIBILD)

The library and installation file builder (LIBILD)
provides the following capabilities:

• Merges input libraries of relocatable binary pro
grams into a single output library, discarding
duplicated programs

• Produces an installation file suitable for building
a system via the initializer or LIB EDT

• Conversational control statements

• Batch control statements

• Absolutized file input and output to installation
file

• Input and output devices fully selectable via
logical unit designations

• Substantial recovery features

• Diagnostics in English

• Prompting messages and pauses at appropriate
times to allow the operator to mount tapes, etc.

OPERATION PHASES

Operation phases are required or are optional as follows:

• Control statements - required

• Library input - required

• Library output - optional

• Definitions input - optional

• Skeleton input and installation output - optional

Control Statement

This statement is the operator's response to a query
made by LIBILD. The response may be entered via the
standard input comment device or via another device
which is specified by the operator.

Input Library

The input library consists of a set of relocatable binary
programs and subprograms which are terminated by an
*END record or an end-of-file indicator or by an I/O
error answered by a CU. An input library can have any

number of system initializer and LIB EDT control
statements; therefore, an existing installation tape can be
used as a library.

Absolute files such as MACSKL cap be a part of a
library.

Output Library

The output Hbrary is produced from one or more input
libraries. It is a set of relocatable binary programs and
subprograms which are terminated by an *END record.

Duplicate Program

The duplicate program is a relocatable binary program
or subprogram where the NAM block contains a name
and identification equal to a previously input program or
subprogram. In the case of absolute files, only the name
is used as a basis of comparison.

Absolute File

The absolute file consists of a set of binary records where
the first record is not a NAM block or an asterisk,
preceded by a record of the form *N,XXXXXX",B, and
terminated by a record having an asterisk (*) as the first
character. If the macro skeleton, for example, is on an
input library it must take the following form:

*N.MACSKL",B }

*(anything)

absolute
binary
records

The name given to the set of absolute binary records is
that of the name field of the *N record; in this case,
MACSKL.

Skeleton

This is a set of ASCII records, each of which has an
asterisk as the first character and all of which are
terminated by an *END or end-of-file indicator or an
liD error. answered by CU. These can be system
initializer and LIBEDT control statements, LIBILD
control statements, or anything else supported by COS
The skeleton defines the logical sequence and content of
information written to the installation file. Records
recognized as LIBILD statements and their usage are
discussed in the following paragraphs.

*BRECORD

The *B statement appears in the following form:

*B 'A---A' 'BB---B'

The *B s"tatement directs LIBILD to retrieve a
relocatable binary program, subprogram, or absolute
file. It also directs LIBILD to write the entire program on
the installation file. The name of the program is specified
by a one-to-six-character name enclosed by single quote
marks; the program identification (if any) is specified by
a one-to-48-character string enclosed by single quote
marks. The ident field allows differentiation between
programs that have the same name. Leaving the ident
field entirely blank (not even quote marks) causes the
first copy of several copies or the only copy of a program
to be retrieved. The *B record for an absolute file should
have a blank ident field.

An example of the *B record is:

*B 'JOBENT'

Quote marks may begin anywhere after column 2;
however, note that embedded blanks are significant.

*NRECORD

The *N record appears as follows:

*N,AAAAAA",B

This statement is used by LIB EDT to place an absolute
file in the program library. This record is mentioned here
only to the extent that it signifies that the following
records could be an absolute file. The name field
(AAAAAA) begins in column 4, and embedded blanks
are significant. This record is written to the installation .
file.

*WEFRECORD

This statement appears as:

*WEF

The *WEF record directs LIBILD to write an end-of-file
indication on the installation file.

*USE RECORD

The *USE statement is as follows:

*USEA

This record is the counterpart to a 1700 assembler
MACRO call and is used to call out or specify that the

8-27

records grouped under a previous *DEF A record are to
be inserted in the skeleton at this point. Nesting of the
*USE record is permitted to a depth of six levels; for
example, figure 8-25 is a six-level nesting.

*DEF A
*B 'PROGRM '
*TER

Defines symbol A

*DEF B }
*USE A ---Insert A definition
*B 'PROGRA '
*TER
*DEF C }
*USE B --- Insert B definition
*TER
*DEF D
*USE A
*USE B
*USE C
*TER

} Defines symbol D

Defines symbol B

Defines symbol C

Figure 8-25. Six-Level Nesting of *USE Record

When a *USE record is specified, the *DEF and *TER
of the corresponding symbol are not inserted in the
skeleton.

*END RECORD

The statement format is as follows:

*END

This record signifies the end of the skeleton. It is written
to the installation file.

* RECORD

The * record format is:

*(none of B,WEF,DEF,TER,or USE)

This is a record used by other programs in the system
and has no meaning for LIBILD. The record is written to
the installation file; for example:

8-28

*K,15,P8

*LIBEDT

*T

*z

*U

Definitions

The definitions consist of a set of ASCII records, each of
which has an asterisk as the first character and all of
which are terminated by an *END or end-of-file
indication or an 1/0 error answered by CU. A definition
group or set begins with a *DEF record, contains only
valid skeleton records, and ends with an *END record.
The definition records use the following general format:

*DEFA

This record directs LIBILD to set up an internal
directory entry to be identified by the single character A,
which . must be unique for each *DEF record.
Subsequent records are read until a *TER record is
detected. Those records are then to be referred to as a
group by the symbol A. This process is exactly analogous
to a 1700 assembler MACRO definition. Every record in
the group must begin with an asterisk; for example;

*DEF F

*B'RTNSPC'

*B'DEFFIL'

*B'RELFIL'

*B'RTVSEQ'

*B'STOSEQ'

*TER

The ident field may contain any characters with the
exception of single quotation marks which are used as
delimiters.

Installation File

When this file is produced by LIBILD, it consists of the
set of relocatable programs, subprograms, and absolute
files specified by the *B records in the skeleton plus all
other records in the skeleton that have no meaning to
LIBILD. Usually the instaIIation file is suitable input to
the system initializer or LIBEDT.

LIBILD Operation

LIBILD operates according to the following steps:

1. LIBILD resides in the program library and is
executed by the job processor in response to the
foIl owing control statement:

*LIBILD

2. The program always requests its first control
statement from the standard comment input device
as follows:

CONTROL LV =

This query is used for determining the logical unit
from which the program will read subsequent con
trol statements, such as a card reader. If the operator
types only a carriage return, the queries and control
statements remain on the standard comment device.
If a logical unit number is entered, each query is
printed on the standard list device prior to reading
the control statement, which is also printed. A nega
tive reply to any query is either a carriage return on
the comment device or a card image having a blank
in column 1, whichever is appropriate. If a card is
used, the characters which follow the first blank are
ignored except that the entire card is printed on the
list device following the query message. All positive
replies are followed by a carriage return or a blank.

3. The next statement is used for specifying the logical
unit from which definitions will be read. The
statement appears as:

DEFS LV =

4. The next statement is used to specify the logical unit
on which the installation file is to be written. The
statement is:

INSTALL LU =

5. The next statement specifies the output library
logical unit as follows:

NEWLIB LU =

6. Up to nine input libraries may now be specified. The
first query of this type is as follows:

LIB 01 LU =

A logical unit number should be typed at this point.
The next query is:

LIB 02 LU =

On this and ~ubsequent replies, the negative reply
signifies that there are no more library logical units.
The number which follows the symbol LIB is just a
library number counter.

7. The next query is produced when the user has
finished specifying library logical units. The query
appears as:

SKELETON LU =

Following this reply, the first library is read.

During the library input phase, each program name
and ident field is printed on the list device.

Note

The skeleton LU must be different from
the install LU.

8. The following query appears after the first library
and each subsequent library is input:

LOAD LIBRARY INPUT XX ON LU YY.
·CR WHEN READY.

In the query, the symbol XX is the library count, and
the symbol YY is the logical unit number. All such
numbers in this message occur in the same order as
they were defined during the control statement
phase. When this message is printed, the operator
may change tapes, reload the card reader, etc. When
the desired library is finally on the device, pressing
the carriage return key causes that library to be
input.

9. The following message app~ars when an output
library option has been selected:

LOAD OUTPUT LIBRARY.
CR WHEN READY.

When the device is ready, pressing the carriage
return key causes the programs to be alphabetized
by name. Then those relocatable binary programs
are written to the device.

10. During the definitions input phase, the following.
message allows the operator time to load and ready
the device:

LOAD DEFS, CR WHEN READY.

Pressing the carriage return key causes the defini
tions to be input.

11. During the definitions input phase, each definition
record is printed on the list device.

12. During the skeleton input phase, the following
message always appears on the comment device:

LOAD SKEL/INSTALL, CR WHEN READY.

As in the case of libraries, this allows the operator
time to load and ready both the skeleton input device
and the installation file output device. Pressing the
carriage return causes skeleton record to be output
concurrently.

8-29

13. During the skeleton input and installation file
output phase, skeleton records are printed on the list
device normally under one of two conditions. If the
record has no meaning for LIBIL~, it is written to
the installation file. If the record has meaning to
LIBILD, the appropriate substitution or action is
performed. Refer to the discussion of skeleton.

14. The following message appears whenever a *WEF
record is encountered.

END FILE MARK WRITTEN

15. At the completion of skeleton input phase, the
following message is output on the comment device:

LIBRARY BUILD COMPLETE
TYPE *Z TO TERMINATE OR
TYPE *C TO CONTINUE WITH CURRENT
SKELETON AND/OR OUTPUT LIBRARY
LU'S

If the operator types *Z followed by carriage return,
LIBILD exits to the job processor. Ifhe types *C, the
routine recycles to the point at which the skeleton
and installation file devices are loaded and set ready.
In other words, a different skeleton and installation
file may be loaded but only on the same devices used
by the first skeleton and installation file. Also, the
same set of library programs is retained. This feature
could be used 'after skeleton errors are detected and
corrected.

There is no program limit to the number of times
this feature may be exercised.

Recovery 'From Errors

During the library input phase, if a diagnostic message
(NAM record not first record of deck) is output and the
operator thinks there may have been a transient
hardware problem (e.g., tape-positioning or card-feed
problems), he may manually backspace the library and
try again by typing 3 in response to the message.
Backspacing the card reader is straight-forward; simply
refeed the card. Backspacing the magnetic tape presents
problems, however. If the operator has the time, he may
rewind the tape and reprocess it, thereby obtaining
diagnostic messages for every program which was
successfully loaded on the previous pass of that tape.
This technique is entirely valid; however, if the library
input is very large, that technique is time-consuming. It
would require a long time to reject 900 programs.

A slightly more complicated but faster process is as
follows:

1. Manually backspace the tape a few feet. The tape is
now positioned in the middle of a record, at the

8-30

beginning of a record that is, not a NAM block or a
record beginning with an asterisk, or at a NAM or
asterisk record.

2. Type 3 followed by carriage return, and a record will
be read. '

3. If the tape position was at an asterisk or NAM
record, processing of the input library proceeds with
only a few reject messages.

4. If the tape was positioned elsewhere, the following
message is output again:

NAM RECORD NOT 1ST

5. Now, typing 3 will cause LIBILD to slew over records
until a NAM record or a record beginning with an
asterisk is encountered. Processing this input library
proceeds with only a few reject messages.

6. During the skeleton input phase, if skeleton format
errors are detected or certain skeleton records are
out of order or missing, the operator can correct or
rearrange the skeleton deck and try again after the
following message is output:

LIBRARY BUILD COMPLETE
TYPE *Z TO TERMINATE OR
TYPE *C TO CONTINUE WITH CURRENT

SKELETON AND/OR OUTPUT LIBRARY
LU'S

7. During the control statement phase, if the operator,
accidentally specified more input libraries than he
really had and all the libraries have been input (in
lieu of starting over), he can complete steps 8
through 10.

8. When the following message occurs for the
nonexistent library, make sure the device is not ready
and type carriage return. The operating system
outputs a failure message for the device.

LOAD LIBRARY INPUT xx eN LU yy.
CR WHEN READY.

9. Type CU.

10. LIBILD defaults an *END at this point and
proceeds as though a library had been input. Do
steps 8 to 10 for each nonexistent input library.

Restrictions and Limitations

The f.oll.owing limitati.ons must be adhered t.o f.or
LIBILD:

• Maximum number .of unique pr.ogram/ident
c.ombinati.ons - 1024

• Maximum number .of input libraries - 9

• Maximum number .of definiti.on gr.oups .or sets -
20

• Maximum number .of recursive levels in a
definiti.on - 6

• Maximum number .of times a given pr.ogram
name/ident can appear .on a *B rec.ord - n.o limit

• Maximum number .of times a given pr.ogram
name can have a different ident - 1024

• Maximum number .of times the same pr.ogram
name/ident will be rejected if enc.ountered m.ore
than .once - n.o limit

• Maximum number .ofrec.ords in a skelet.on - n.o
limit

• Maximum number .of skelet.ons input - n.o limit

Changing any .of these limits requires a maj.or pr.ogram
modificati.on.

Special Notes

The name and identificati.on inf.ormati.on .of a binary
pr.ogram is .obtained during the BUILD .operati.on fr.om
the NAM rec.ord .of that pr.ogram. It may be desired that
certain inf.ormati.on which appears in the identificati.on
field .of the NAM card (c.olumns 2S t.o 72) is t.o n.ot be
included in the identificati.on field .of the skelet.on rec.ord
that is generated because .of p.ossible problems that may
.occur later when the library builder pr.ogram, LIBILD, is
being run. When a pr.ogram .on .one input library is being
replaced with a pr.ogram .on an.other input library, f.or
example, LIBILD .only rec.ognizes which pr.ogram t.o
replace by the fact that the pr.ogram names and
identificati.on fields in their respective NAM rec.ords are
identical. If any inf.ormati.on is different, such as the
date, LIBILD treats the tw.o pr.ograms as th.ough they
were unique. B.oth pr.ograms, theref.ore, are included in
the installati.on file.

GENERAL CASE

Any inf.ormati.on .on the NAM card that is n.ot t.o be
included in the identificati.on field .of the skelet.on rec.ord
sh.ould foll.ow the inf.ormati.on that is t.o be included by at
least f.our blank c.olumns.

SPECIAL CASE

If n.one of the inf.ormati.on in the identificati.on field is t.o
be included, at least eight blank c.olumns must be left at
the beginning .of the identificati.on field; that is, the
identificati.on inf.ormati.on .on the card sh.ould start in .or
after c.olumn 33 .on the NAM card.

PAULA PROGRAM

The program PAULA all.ows an install-type tape
(relocatable binary f.ormat) t.o be updated. This type .of
tape includes the system install tape and the pr.ogram
library install tape. On release install tapes, these are
c.ombined .on .one tape; h.owever, the user may wish t.o
keep them .on separate tapes f.or c.onvenience.

PAULA Capabilities

PAULA has the f.oll.owing general capabilities:

• Delete rel.ocatable binary modules

• Insert relocatable binary m.odules

• Delete c.ommands imbedded in the tape

• Insert c.ommands int.o the tape

PAULA Operation

PAULA .operates in tw.o passes. On the first pass, an
install tape image .of the desired f.ormat is created .on
disk. On the sec.ond pass, this image is c.opied t.o an
.output tape.

On the first pass, input is fr.om .one .or m.ore tapes (usually
the current install tape) with PAULA c.ommands entered
fr.om either the system c.ons.ole .or fr.om a card reader.

In all the cases in table 8-6, X is either the six-character
name.of a rel.ocatable binary module.or a c.ommand that
may be on the install tape. The install tape c.ommand is
.only c.ompared up t.o the first c.omma.

8-31

Table 8·6. PAULA Commands

Command Comments

L,X Lists all module names and commands on the
system list device; input is from the input tape as
defined in command C,VZ

S,X Skips all modules and commands through X; only
Xis listed

T,X Transfers all modules and commands through X
from the input tape to disk

E,X Transfers modules and commands from disk to the
output tape as defined in command C,VZ; transfer
is complete when either X has been transferred or
when end of file is reached, whichever comes first

D,Z Select the start-sector for an E,X command; Z -
absolute sector number (hexadecimal); if this
command is not used, an E,X command begins
with the file's first sector

M,YZ Tape motion request

Where:

Y -logical unit number

Z - l-backspace

2-write file mark

3-rewind

4-rewind and unload

5-skip one file forward

6-skip one file backward

C,YZ Change logical unit numbers

Y - I-input unit

P-output unit

Z -logical unit number

I, Inserts one statement onto disk; statement that
follows this command is inserted

A, Returns to job processor

R, Repeats E

8-32

Command Comments

W, Replaces one program

The device which contains the old installation
system is specified with:

*K,PX

The device which contains the new program is
specified by:

*K,IX

This routine allows chaining of program names,
which are separated through commas. Other
programs as specified are ignored without com-
ment. If the input name does not exist in the
system, the tape searches until ENDTAP (last
program name in system) and rewinds. An error
message is given, and the tape skips to the last
correct program.

V,Z Changes PAULA command input device
-

Where:

Z-Iogical unit

U, Restores PAULA command input device to system
comments input

PAULA Example

The example in table 8-7 shows how a special test may be
inserted in the install tape. The special test module being
added is named ST021 and has an entry point of SPT21.
Use the current install tape as an example.

Table 8-7. Example of PAULA Program

Command Comments

e,IS Sets input to be from logical unit S, which has the
current install tape

T,STOO5 Transfers all modules and commands to disk
through ST005, which is the last special test
currently on the install tape

e,17 Sets input to be from logical unit 7, which has a
tape containing the relocatable binary for module
ST02l

T,STD2l Transfers the new special test module to disk

e,IS Sets input to be from logical unit 6, which still has
the current install tape

T,*U Transfers the rest of the install tape to disk

M,64 Rewinds and unloads logical unit 6; mounts a
scratch tape on 6 to contain the new install

e,P6 Sets output logical unit to 6

E,*U Transfers disk image to output tape; PAULA will
output:

OUTPUT UNIT IS 6 TYPE IN OK OR PX
X = NEW LU NUMBER

Reply to this message with:

OK

M,S2 Writes file mark on output tape

A, Returns to job processor

In table 8-7, the PAULA command input is from the
system console. An alternative method is to punch the
commands on cards and place them in the card reader.
Then the only PAULA command entered through the
system console is V,5 which tells PAULA to get its
commands from logical unit 5 (which is the card reader).
Any errors cause PAULA to return control to the system
console. Control can also be returned explicitly by using
the command U ,.

*BOOT COMMAND

The *BOOT command loads a magnetic tape (seven- or
nine-track) bootstrap into core, starting at location 0 to
read one file from physical tape unit O. The file is loaded,

starting at location $4000. BOOT is called in under the
job processor by:

*BOOT

In addition, memory is zeroed out, interrupts are
disabled, and another routine is loaded at $100 with a
pointer to $100 at location $FE. This other routine
handles three instances:

o Q = O-zeros core from approximately $250 to
end of core; prints message to mount disk
and/ or tape; gives option of skipping files
on tape; allows teletypewriter console
control of reading in absolute files from
tape

• Q < O-tape error found during read or file
advance; status is printed on teletype
writer; routine jumps to Q = 0 option

• Q > O-file has loaded correctly and file mark
has been found; message printed to that
effect; starting and ending load locations
are printed; gives option to execute the
program or START OVER (start over at
Q = 0 option)

The bootstraps loaded by BOOT have been modified
slightly to jump to this other routine in case of error or
for normal completion. The bootstrap integrity is
maintained such that it may be manually run by pushing
MASTER CLEAR and GO.

Complete instructions are given by the routine on
execution.

NOTE

No checking is being done to test the size of
the file being loaded; i.e., it is possible to
wrap around memory and/ or store data
randomly throughout memory after loca
tion $7FFF if a wrong tape has been
mounted and loaded.

Location $1 contains the starting address
for the load; it may be changed. After a
change, set Q = 0 (or MASTER CLEAR)
and then P to $100 for normal operation (or
P to $0 for manual operation). Suggestion
for changes - do not load before $300.

*PIC COMMAND

The *PIC command allows the user to pick COSY
update decks from an input file (tape) by specifying
the appropriate deck name to pick or to copy through.

8-33

The output or picked decks go onto the punch file. At the
same time, a listing of these decks is output to the
standard list device.

The input. punch, and list units may be specified after
entering PIC. These unit assignments then remain local
to PIC. The unit values may also be changed by using the
*K system command before entering PIC.

Since the program COSY expects update checks to end
with an ENDI card, the user should add this card to the
end of the punch file before rewinding it.

The program PIC gives instructions on how to use all the
options available to the user. It is called in under the job
processor by:

*PIC

CYFT COMMAND

The COSY format program is used to insert the proper
COSY control cards in assembly language programs so
that the generated output can be input to build COSY
source programs. The input source is from the standard
input device (cards, paper tape, magnetic tape). If input
is from magnetic tape, the last deck of the input source
must have an end-of-file mark.

CYFT Execution

The procedure to execute this program is:

8-3.4

*JOB
J
*K,Ilu,Plu,Llu

J
*CYFT

Parameters

The parameters for CYFT are as follows:

I-assigns the logical unit for the source program
input

P-assigns where COSY control cards and source
programs are to be punched (written)

Example:

xxxxxx DCKI I,C (CYFT generated)
xxxxxx HaLl (CYFT generated)

NAM xxxxxx

END
ENDI (CYFT generated)

L-assigns the logical unit for a listing of COSY
DCKI cards to be listed

Example:

xxx xxx DCKI I,C
xxxxxx DCKI I,C

If the logical unit fails on completion of input, type in
CU. This generates the final ENDI for COSY.

SUP COMMAND

Refer to appendix F for the SUP command.

ASSEM COMMAND

Refer to appendix G for the ASSEM command.

SECTION 9

ENGINEERING FILE

Engineering File

INTRODUCTION

The engineering file is provided to preserve driver error
information for system maintenance.

The engineering file is divided into three sections:

o Failu!"e data formatting and collection

• Failure storage on mass memory

• Failure listing

DEVICE FAILURE HANDLING

When an 1/0 driver determines that an error condition
has occurred, it reports the error to the error-logging
routine in EFDATA. The entry is:

RTJ+ LOG

Where the following registers are defined:

• Q register-figure 9-1

15 14 13 12 11 10 9 a 7 6 5 4 3 2 1 0

logical unit error code

Figure 9-1. Q Register

• I register-driver physical device table (PDT)
address

To this data, the current data, time, and hardware status
(PDT word 12) are added relevant to the failure. If the
failure is on a non-mass-memory device, the data is saved
in a push-down pointer table (capacity of five S-word
entries). Each entry is of the form shown in figure 9-2.

When the first failure is placed in the table, the mass
memory failure storage module is scheduled to move the
failure data to mass memory. Return is made to the
driver caller. The LOG sequence is reentrant.

If the failure is on a mass memory device, the failure is
saved in a 10-entry push-down table. Each five-word
entry of the table is of the same form as figure 9-2. This

failure data is saved in core on the premise that mass
memory is not reliable because of the failure.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Word 1 I logical unit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Word 2 I Day Month Year

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Word3 L..1 _______ M_il_ita_ry.:.-Ti_lm_e ______ ---l

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Word 4 L..1 ___ s_ec_o_nd_s ___ -'--___ E_rr_or_c_od_e __ ---J

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Word 5 L..1 ______ H_a_rd_W_a_re_s_ta_tu_s _____ --'

Figure 9-2. Push-down Pointer Table Example

For mass memory failures, EFDAT A also logs the failure
on the system comment output device with the following
message:

MM ERR XX LU=YY T-HHMM:SS S=zz:z;z

Where:

XX - error code

YY - logical unit

HH - hour

MM - minute

SS - second

ZZZZ - hardware status

If the failure occurred during a system directory program
read, the allocated space is released. The mass memory
diagnostic section of EFDAT A operates on the mass
memory failure table at a low priority after return to the
driver.

9-1

DEVICE FAILURE STORAGE

The system initializer defines a mass memory area of 99
sectors (preset to 0) for the engineering file. The address
of this area is found in word 19 of the extended core
table. One sector is allocated for each possible system
logical unit. For each logical unit, 24 failures are saved as
four-word entries in a push-down/fall-off table. The first
entry is the most recent failure.

The EFDA T A program ·schedules the EFSTOR program
from the system library to log failures for non-mass
memory devices. The EFSTOR program takes data from
the five-entry failure table and moves it to mass memory
in the engineering file area for the failed logical unit.
Each table entry is composed of words 2 to 5 of the
core-resident table. The five-entry holding table is
examined, and errors are processed until all entries are
zero.

The core-resident mass memory device failure table is
examined for new entries, and all new entries are moved
to the engineering file. The philosophy of this data
relocation at this time is that the system is operating
following a mass memory error if further system I/O
errors can be logged.

If the five-entry holding table overflows, a diagnostic
message is printed and the system must be restarted with
an autoload.

Device Failure Listing

The device failure listing program EFLIST, is entered via.
the foIl owing manual interrupt mnemonic codes:

• EF-lists all engineering file data for system
logical units

• EFLU-lists engineering file data for a specified
logical unit

• EFMM-lists data from the core-resident mass
memory failure table for all errors in the
table

The EF entry produces a listing of the format of figure
9-3.

The EFMM entry produces a listing of the same form;
however, it contains only failures from the core-resident
mass memory failure table. .

The EFLU entry requests the logical unit number as
foIIows:

ENTER LOGICAL UNIT (XX)

The data for the specified logical unit (XX) is printed in
the same form as for EF.

ENGINEERING FILE INFORMATION LISTING

LOGICAL UNIT 01 CORE ALLOCATOR

DATE TIME FAILURE CODE HARDWARE STATUS

LOGICAL UNIT 02 SO Fl'..JARE DUMMY DEVICE

DATE TIME FAILURE CODE HARDWARE STATUS

LOGICAL UNIT 03 SOFn/ARE DUMMY DEVICE

DATE TIME FAILURE CODE HARD\-1ARE STATUS

LOGICAL UNIT 04 713-10/711-100/713-120 CRT/SLAVE PRINTER

DATE TIME FAILURE CODE HARD\-1ARE STATUS
29 JAN 74 1903:38 00 0611
29 JAN 74 1902:15 00 0611
29 JAN 74 1901:28 00 0611

Figure 9·3. Engineering File Listing Format

9-2

APPENDIX A

SYSTEM INSTALLATION

System Installation

GENERAL PROCEDURE

Installing the CYBERDAT A operating system from
magnetic tape to disk involves the following major steps:

1. Load the seven- or nine-track bootstrap.

2. Use the bootstrap to load the disk initializer from
tape.

3. Execute the disk initializer to write address tags and
data on the disk.

4. Use the routine to read the system initializer from
tape.

s. Execute the system initializer to install the operating
system.

6. Autoload the new operating system and use DEBUG
to put in any necessary patches.

7. Use LIBEDT to set system priorities and to load the
program library from tape.

DETAILED PROCEDURE

These general steps are explained in detail in the
following paragraphs.

Loading the Bootstrap

The seven- and nine-track bootstraps are on the program
library of the CYBERDAT A disks under the name
BOOT. If no system disk is available, the appropriate
bootstrap must be loaded manually at the computer
console. Refer to the discussion on entering the magnetic
tape bootstrap on page A-4. After entering, continue at
the step to load the disk initializer.

LOADING BOOTSTRAP FROM
A CYBERDATA DISK

To load the bootstrap from a CYBERDAT A disk, enter
the job processor, and call the bootstrap loader by
typing:

*BOOT

Instructions are printed on the teletype. After instruc
tions are typed, turn off the program protect. Type a

carriage return. The selected bootstrap is then loaded,
starting at location 0.

Load the Disk InitiaUzer

Be sure that the tape is on-line on unit 0. Press MASTER
CLEAR and then GO to read the file from tape into core,
starting at location 4000.

Execute the Disk InitiaUzer

Type E to execute, and then follow the instructions given
on the teletype.

NOTE

·Be sure the disk to be initialized is the one
that is mounted.

Load the System InitiaUzer

When the disk initializer completes, it types a message.
Type R to read the next file from tape. This loads the
system initializer.

Execute the System Initializer

Type E to execute, and then follow the instructions given
on the teletype.

To input system parameters:

1. Set the initializer list device (default is teletypewriter):

*C,7,0201 - for printer

*C,8,OOOO - for no list

2. Set core memory size if other than 28K (28K is
default):

*S,MSIZV4,XXXX

A-l

Where:

32K-7FFF
36K-8FFF
40K- 9FFF
44K- AFFF
48K- BFFF
s2K-CFFF
s6K - DFFF
60K - EFFF
64K- FFFF

3. Set ENDOV4 if other than 28K and/or if it includes
self-scan 32-character station:

*S,ENDOV4,XXXX

Refer to table A-I for hexadecimal values used with.
ENDOV4.

Table A-I. ENDOV4 hexadecimal Values for Install

Core 32-Character 480-Character 32-and480-
Size Only Only Character

28K 3ABF :tiAF 32FF

32K 4ABF 48AF 42FF

:tiK 5ABF 56AF 52FF

40K 6ABF 66AF 62FF

44K 7ABF 76AF 72FF

4BK 7FFF 7FFF 7FFF

52K 7FFF 7FFF 7FFF

56K 7FFF 7FFF 7FFF

&OK 7FFF 7FFF 7FFF

64K 7FFF 7FFF 7FFF

4. Set BGNMON if other than 28K and/or if it includes
the self-scan 32-character station:

*S,BGNMON,XXXX

Refer to table A-2 for hexadecimal values used with
BGNMON.

A-2

Table A-2. BGNMON Hexadecimal Values for Install

Core :a-Character 480-Character 32-and480-
Size Only Only Character

28K 3A90 :180 3.111

32K 4Aoo 4880 mJ

36K 5Aoo 5680 5lIJ

40K 6Aoo 6680 s:m

44K 7Aoo 7680 7.DI

4BK BA90 B6BO a:m

52K 9A90 9680 s:m

56K MOO A680 AD

&OK BAoo B6BO BD

64K CA90 C680 CD

NOTE

Values may be changed if special test
binaries are added.

ENDOV4 must be smaller than BGNMON,
and not larger than $7FFF.

Examples:

32K system (480 key stations only)

* S,MSIZV 4, 7FFF
*S,ENDOV4,46AF
*S,BGNMON,46BO

44K system (480 key stations and 32 key
stations + 300-hexadecimal word special
test)

*S,MSIZV 4,AFFF
*S,ENDOV4,6FFF
*S,BGNMON,7000

5. Set the ending sector for CYBERDATA data files
(default - end of disk for dual-density disk drives):

*S,SIESEC,XXXX

Where:

XXXX - sB88 for single-density disk
- B780 for double-density disk

This uses all the remaining disk area on fixed and
cartridge disks.

To specify only the removable part of the disk, the
value should be cut in half. Thus, for a double-density
disk but only the removable portion, XXXX = 5B88.

6. Initiate input from the install tape:

*V

System install runs to completion and informs the
user that he may autoload.

NOTE

Do not rewind install tape.

Autoload New System and
Enter Patches

To autoload a new system and to enter a patch:

1. Set the system key to N (normal) mode.

2. Reload the system.

3. Enter the time and the date.

4. Load the patches.

Refer to the discussion on system modification and
update on page A-4 for more information on
DEBUG.

To enter a patch, press MANUAL INTERRUPT.
After the system responds with MI, type DB. The
system responds with DEBUG IN.

At this time, patches should be entered. The patches
are of the form:

LHM"MMMM,N/NNNN,NNNN, ... NNNN

or

LHC,MMMM,N/NNNN,NNNN, ... NNN

Where:

MMMM is a module name

Before entering the patch, replace the module name
with the value that appears beside it in the installation
listing. After replacing the module name in the patch,
enter it on the console. DEBUG prints old and new
contents and waits for verification from the user. If
the command appears correctly, type OK, then press

RETURN. If it is incorrect,. do not type OK, and then
press RETURN. The system then rejects the
command. After all patches have been entered, type
OFF to leave the DEBUG routine.

System Library Priorities and
Loading Program Library

To set system library priorities and to load the program
library:

1. Press MANUAL INTERRUPT and type *BATCH.
Control is passed to the tape, and library installation
is initiated. Near completion of this procedure, the
teletype types the following message:

TYPE *E WHEN E APPEARS

When system types E, operator types:

*ElcRI

When completed, a message informs the operator to
reautoload. The system build is now complete.

SETTING CYBERDATA
PARAMETER

The terminal configuration is set as follows:

1. Autoload the system, and enter the time and the date.

2. Press MANUAL INTERRUPT, and type VLTP. The.
system responds with VLTP IN.

3. Define the terminal configuration. Refer to the
CYBERDATA System Reference manual on
Supervisory Command and Control: authorizing an
operator to enter Supervisory Commands and
Cancelling an Authorization.

4. Type *Z to terminate.

To set the system for automatic CYBERDATA load:

1. Press MANUAL INTERRUPT, and type VLOS. The
system responds with VLOS IN.

2. Type STD. The system responds with VLOS OUT.
For more information concerning this parameter, see
the discussion on disk and memory allocation.

3. Reautoload the system.

A-3

ENTERING MAGNETIC TAPE
BOOTSTRAP

The following procedure is used to enter the magnetic
tape bootstrap into the data entry processor:

1. If power is not on, press START. Allow the autoload
cycle to finish before going to step 2.

2. Turn the autoload console key to M (horizontal
position).

NOTE

Steps 3 to 11 are performed at the
data-entry console.

3. Press MASTER CLEAR.

4. Press x.

5. Set ENTER/SWEEP switch to ENTER (up).

6. Set INSTRUCTION/CYCLE switch to INSTRUC
TION (up).

7. Enter the first/next word of the seven- or nine-track
bootstrap (figures A-1 and A-2) into the console
register.

8. Press GO.

9. Press CLEAR.

NOTE

Do not press MASTER CLEAR.

10. Repeat steps 7, 8, and 9 until all words have been
entered.

11. Return the ENTER switch to the center position.

12. Return the INSTRUCTION switch to the center
position.

The bootstrap is in core. To check the bootstrap:

1. Press MASTER CLEAR.

2. Press x.

3. Set ENTER/SWEEP switch to SWEEP (down).

4. Set INSTRUCTION/CYCLE switch to INSTRUC
TION (up).

5. Press GO.

6. Compare the display with the bootstrap code.

A-4

7. Repeat steps 5 and 6 until all entries have been
checked.

8. Return the ENTER/SWEEP switch to the center
position.

9. Return the INSTRUCTION/CYCLE switch to the
center position.

NOTE

To execute the bootstrap, ensure that the
magnetic tape unit is mounted and ready.
Push MASTER CLEAR and GO.

SYSTEM MODIFICATIONS
AND UPDATES

The system is modified via the commands given in the
following paragraphs.

Patches
Simple system changes can sometimes be made with
patches to the absolutized system modules on the disk.
This method does not require system reinstallation.
Detailed information on the use of patches can be found
in chapter 6. The purpose of this appendix is to describe
patches as they may be received to update the system.

There are two patch commands used to update a system.
One is the LHC command, which is used to patch
core-resident system modules. The other is the LHM
command, which is used to patch mass-resident system
modules.

The format of the released system patch is as follows:

{

LHC} ,aaaaaa(1),nn{2)/nnnn{3), ... ,nnnn{7)
LHM

Where:

(1 }--systems module name

{2}--bias of patch into the module

(3) to (7}--patch in hexadecimal

Before using the patch, the module name in the patch
must be replaced with the value that it represents.

LHCCOMMAND

For the LHC command, the module name must be
replaced with the memory location where that module

begins. This value can be found in the install listing. The
first part of the listing shows the core-resident modules,
and the second part of the listing shows the
mass-resident modules. The beginning address of each
core-resident module is shown immediately to the right
of the module name in the listing.

LHMCOMMAND

For the LHM command, the module name must be
replaced with the beginning disk sector number for the
module. This value can be found in the install listing
immediately to the right of the module name.

Entering the Command

Initiate the debug module when the job processor is not
active. An example of entering a patch, with all the
operator responses underlined, is as follows:

• Operator: Press MANUAL INTERRUPT

• TTY: MI

• Operator: DB ICRI

• TTY: DEBUG IN

• Operator: LHC,47EF,llO/BOO ICRI

• TTY: VERIFY

POOO
POOl
P002
P003
po04
P005
po06
P007
po08
P009
POOA
POOB
POOC
POOD
POOE
POOF
POlO
POll

C810
E80E
03FE
0001
OA 11
03FE
ODFD
C807
03FE
OAOO
02FE
OFCB
0135
18FB
0100
0382
044c
0072

BOOT9
START9

STATUS

Nl00
tn82
N44c
FWAMl
BUFF

EQU BOOT9 (~~)
LDA~~ N44C
LDQ* N382
OUT -1
I NQ 1
ENA FWAM1-BOOT9
OUT -1
INQ -2
LDA~~ Nl00
OUT -1
ENA 0
INP -1

ALS 11
SAM BUFF
JMP~': STATUS
NUM $100
NUM $382
NUM $44C
ADC LWA+l
EQU RUFFU:)

o Operator: OK lCRI (if patch is acceptable)

NO [CRt (if patch is not correct)

o Additional patches may be entered here.

The DEBUG module is terminated by the following:

• Operator: OFF ICRI

• TTY: DEBUG OUT

REASSEMBLIES OF
MASS·RESIDENT MODULES

CYBERDAT A mass-resident modules (with the excep
tion of VLOSOP, VLSTRT, VLTYPE, VLBGOP, and
VLSTTS) can be replaced in the systems through the use
of the CYBERDATA supervisor command LPR.
Changing modules in this manner does not require
reinstallation of the system. Since each module must be
handled individually, this method is not appropriate for
replacing a large number of modules.

The LPR command requires that the module, which is to
be loaded, must be in an absolutized form in the system
scratch area on disk. This can be accomplished by
assembling the module under the job processor and then
absolutiiing the module onto the scratch disk by using
the LIBEDT command *P. Refer to chapter 7 for details.

CONNECT TO TAPE UNIT

ADDRESS OF FWA-l OF BUFFER

READ MOTION

INPUT STATUS
EOP (BIT 4) TO BIT 15
IS IT EOP-
NO, \-IA IT.
READ MOTION
EQUIPMENT CODE
UNIT SELECT, 800 BPI, ASSY/D-ASSY, BINARY
FWA-l OF BUFFER - CONTAINS LWA+l OF BUFFER
BUFFER START

0071 EQU LWA(BUFF+95-BOOT9) BUFFER END

Figure A-l. Printout of Nine-Track Bootstrap

A-S

EQU BOOT7(*)
POOOO C831 LDA* USEL7
POOOl E832 LDQ* EQUIP7
P0002 03FE OUT -1 SELECT UNIT 0, 800 BPI, BINARY
P0003 ODFE INQ -1
poo04 C82E LOOPM7 LDA* RMOTN7
P0005 03FE OUT -1 START READ MOTION
po006 ODFE INQ -1
P0007 0844 CLR A
poo08 0223 LOOP7 INP REJ1-* INPUT FRAME (6 BITS)
P0009 581C RT J;\- ROUTl
POOOA OFC4 ALS 4
POOOB 7C29 SPA* (HOLD7)
POOOC 02FE INP -1 INPUT FRAME (6 BITS)
POOOD 0821 TRA M SAVE IT
POOOE OF42 ARS 2
POOOF BC25 EOR*· (HOLD7)
P0010 7C24 SPA;\- (HOLD7) 1ST \.fORD 6,6,4
POOll 0823 RAO* HOLD7
P0012 OA03 ENA 3
P0013 08AC LAM A RECOVER LAST 2 BITS (FOR 15,14)
poo14 5811 RTJ* ROUTl
P0015 5810 RT J~\- ROUTl
P0016 OFC2 ALS 2
P0017 7C1D SPA;\- (HOLD7)
P0018 02FE INP -1 INPUT FRAME (6 BITS)
P0019 0821 TRA M SAVE IT
P001A OF44 ARS 4 GET FIRST 2 BITS (FOR 1 ,0)
P001B BC19 EOR~\- (HOLD7)
P001C 7C18 SPA;': (HOLD7) 2ND WORD 2,6,6,2
P001D 0817 RAO~\- HOLD7
POOlE OAOF ENA $F
P001F 08AC LAM A GET LAST 4 BITS (FOR 15-12)
P0020 5805 RT J~\- ROUTl
P0021 5804 RT J;\- ROUTl
P0022 7C12 SPA;\- (HOLD7) 3RD HORD 4,6,6
P0023 0811 RAO;\- HOLD7
P0024 18E2 JMP~\- LOOP7-1 RETURN FOR NEXT 8 FRAMES
P0025 OBOO ROUTl NOP 0
P0026 OFc6 ALS 6
P0027 7COD SPA~\- (HOLD7)
po028 02FE LOOPl INP -1 INPUT FRAME
P0029 BCOB EOR* (HOLD7)
P002A lCFA JMP* (ROUT1)
P002B OBOO REJl NOP
P002C 0001 INQ 1
P002D 02FE INP -1 GET DIRECTOR STATUS
P002E OFCB ALS 11 EOP TO BIT 15
P002F 0135 SAM BUFF7 END OF OPERATION?
P0030 1805 JMP~': LOOP7- 2 NOT EOP

P0031 040C USEL7 NUM $40C UNIT 0, 800 BPI, BINARY
P0032 0100 RMOTN7 NUM $100 READ MOTION
P0033 0382 EQUIP7 NUM $382 EQUIP NO. + 02
P0034 0035 HOLD7 ADC BUFF7-BOOT7 POINTER TO BUFFER AREA

EQU BUFF7(;\-) BUFFER START

Figure A-2. Printout of Seven-Track Bootstrap

A-6

REASSEMBLY OF CORE
RESIDENT O~ MASS-RESIDENT
MODULES

The following method requires reinstallation of the
system. This method can also be used for mass-resident
modules.

All modules that are to be changed must be assembled
such that their relocatable binarys appear serially on a
tape in the same sequence that they appear on the install
tape.

Through the use of program PAULA or LIBILD, these
modules can be inserted into the current install tape.
After updating the install tape, the system must be
reinstalled.

INSTALLATION TAPE
MODIFICATION

Modification of the installation tape, other than straight
replacement of system modules, should only be
attempted by analysts who have a thorough knowledge of
both CYBERDAT A and the operating system.

A-7

APPENDIX B

SPECIAL AND OWN-CODE TESTS

'-. ..

............. /

Special and Own-Code Tests

GENERAL

Special tests and own-code tests are user-written
subroutines which enable nonstandard tests to be
performed. The only exceptions are the four check digit
verification (CDV) tests, which are provided as standard
special tests. Four different CDV tests are available.

SPECIAL TESTS

Special tests are integrated into the CYBERDAT A
System at system generation time and reside perma
nently in computer memory. They are linked as
subroutines; Le., a return jump is made to the special test
entry point (SPTxx; where xx is the test number). They
are, therefore, less time-dependent than the own-code
tests. A special test may not perform input/output (I/O)
operations, but it may use any CYBERDAT A System
routine to access data. The CYBERDAT A System can
accept a maximum of 99 special tests, but only one
special test can be specified per field.

Special test numbers 1 through 9 are reserved for
check-digit verification. Numbers 1 through 4 are
currently used; therefore, numbers 5 through 9 are user
check-digit verification identifiers .

Special test numbers 10 through 20 are reserved for
future CDC-developed standard tests which will be
available to all users.

Special test numbers 21 through SO have pointers
assigned in the special test jump table, which are then
available for customer use. Test numbers 51 through 99
must be linked by pointers.

CDV tests ·are standard with the system. These tests
check the accuracy of a base number which has been
assigned a check digit. They may be performed on pure
numeric fields comprising up to 15 digits as data is
entered. The system supervisor may modify the modules
and weights; however, the method of calculation remains
unchanged. Modules may be in the range 1 to 15, and
weights may be in the range 0 to 15.

OWN·CODE TESTS

Own codes are disk-resident subroutines. The CYBER
DA T A System provides for two types of own-code tests:
END OF FIELD (EOF) and end of batch (EO B). They
may perform 110 operations by using standard 110

routines. The maximum subroutine length is 2K words.
The maximum number of own codes in the system is
established by an installation parameter and may not
ex~eed 127.t

The EOF own code is specified in the field format
information for each field which uses the own code. More
than one own code may be called by a given format, but
only one may be called per field.

The EOB own codes are specified on a job basis and are
called at the end of batch in Entry and Verify modes.
These routines may have access to all the standard
functions of the CYBERDAT A System. Own codes must
be written in run-anywhere code. As a disk-resident
program, the own code must begin with a standard
header as shown in figure B-1.

OCHDR VFD Nl/l,Nl/l,~3/0,Xll/ENDOC-*
VFD Xl0/TIME,N6/1
NUM 0,0
ADS START-OCHDR

{

Figure B-1. Own Code Standard Header

In figure B-1, the words are defined as follows:

• OCHDR VFD N1/1,N1/1,N3/0,X11/ENDOC-*
(Word 1)

Bit 15--110 status

1-program may not be moved
O-program may be moved

This bit is set to 1 on the disk and is set/unset at
the discretion of the user (see SETMOV). The bit
must be set while input/output is being
performed into a buffer in the program. It must
be set if the program calls a subroutine using disk
input/ output.

The bit must be cleared by the last user exiting
from the subroutine.

Bit 14

O-area free if user count is zero

1-area not free even if user count is zero (see the
following discussion of the time parameter)

tFor customers. the own-code numbers 1 through 40 for the standard system installation parameters are linked. If numbers 41 through 127 are to be used, an installation
parameter must be defined to permit the use of these numbers.

B-1

Bits lO-O-length

Number of words in program including header,
excluding backwards pointer (word 0 of DRP);
ENDOC is equated to (*) at end of program.

• VFD XIO/TIME,N6/1 (Word 2)

Bits lS-6-interval in seconds after which
program is to be released

Bits S-O-user count

Number of users currently referencing this
routine; on the disk this is set to 1.

• NUM 0 (Word 3)

Disk address-this word is zero on the disk.

When the program is loaded into core, its disk
address is saved in this word until the program is
released.

• NUM 0 (Word 4)

Time-this word is zero on the disk.

It represents the time in seconds when the
program is to be released. It is set by EXDFUN. If
the interval (see word 2) is not equal to zero, the
program is not considered free to be released until
the time specified in this word has arrived. If the
interval equals zero, this word is disregarded.

• ADC START-OCHDR (Word 5)

This and following words (if any) in the header is
the displacement from the beginning of program
header to the first executable instruction
(ST ART). If there is more than one entry point,
an ADC is required for each entry point. The
value of each ADC is the displacement from the
first word of the header (OCHDR) to the entry
point.

When ENTPRG is called, the value in the A
register is used as an index to these ADC's. For a
program with only one entry point, A = 0 selects
the single ADC.

An example of a header, therefore, would be
figure B-2.

B-2

NAM EXAMPL

OCHDR VFD NS/$18,Xll/ENDOC-* Wo~l
NUM 1, 0 , 0 Word 2, 3, 4
ADC START-OCHDR Word 5

START LDA- FCNT, I START OF PROGRAM

Figure B-2. Own Code Header Example

The own code is retained in core for a time proportionate
to the time control factor. If it is equal to zero, the area in
the memory is immediately released for other system use
when the execution of the routine has been completed,
providing the user count is zero. Programs under time
control with a user count of zero are normally retained in
core until the time is elapsed, but if an outstanding core
request is waiting and CAM cannot otherwise get enough
core, it releases these areas even though time has not
elapsed .

START Instruction

START is the first own-code instruction. Exit from the
own code is standard and must comply with the coding in
figure B-3.

EQU EXDFUN($9F),EXTSR($92)

RTJ
JMP-

(EXDFUN)
(EXTSR)

EQU
END

ENDOC (~,,) LAST CARD OF PROGRAM

Figure B-3. Own-Code Exit

If an error exit has to be made from the own code, the
error routine is as follows:

ENQ
JMP
EQU

$B
(ERROR)
ERROR ($96)

Own-code installation does not require system
regeneration. It may be added to the own-code library by
using the load program (LPR) supervisor command.

--,.,-"

,/

LPR Command
-~,, ,-" Active Terminal Table (A'fT)

This table contains information that relates to the
terminal which is executing the own-code or special test.
The 1 register points to this table when a test routine is
activated.

The LPR command is used to incorporate a new system
function/ own code or to replace an existing one in the
PRD. Refer to the PRD table and also'to the listing of the
PRD program. To load a new function, the program is
assembled, and a relocatable binary punch is obtained
(on tape, for example). Using the system routine
LIB EDT, ,an absolutized punch (*P command in
LIB EDT) is placed on the scratch area of the disk; for
example, the following statements are typed in:

Get Current Character (GBYTE) (G 5 t: ')

*LIBEDT

*K,I6,P8

*p

*Z

(Assume relocatable
binary on 6)

Get into supervisor mode, and enter the LPR command
(refer to the CYBERDATA System Reference manuaI).
The system function number is determined by referring
to the PRD program listing for the appropriate index
value. The program number (and system function
number) for any own-code routine should fit the limit
requirements as set at the beginning of this appendix and
should not conflict with any routines already installed in
the system. Refer to the PPR command in the
CYBERDATA System Reference manual.

Examples of the LPR command are as follows:

• To replace the present. supervisory command
module THW:

The PRD listing label for the ADC SISTHW is
SI1. The following command will put the new
binary version of THW on the library:

LPR,II,S

• To add a magnetic tape own-code, enter:

LPR,I,T,O

This loads the magnetic tape own code el.

TEST RESOURCES

The following resources are available to special and
own-code tests.

The character to be returned is defined by RCNT
(Character count in current record - word 4 in A TT).
The calling sequence is:

EQU
RTJ-

On exit:

GBYTE($94)
(GBYTE)

A-7-bit ASCII character

Q-character including error indicator (bit 7)

Store Current Character (SBYTE)
.~

This routine stores the character found in word 2 (bits 0
through 7) of ATT into the location in the current record
as defined by ~CNT. The SBYTE routine uses the first
temporary location in system status table (SST). The
calling sequence is:' .

EQU
RTJ-

SBYTE($9S)
(SBYTE)

ADD (SUB) Routine

This routine adds (subtracts) two four-word BCDt
numbers for which the respective first word addresses
(FWA) are AA and BB. See PACK and UNP .

On entry:

A-FW A of four-w9rd buffer for BCD number
AA (subtrahend for SUB routine)

Q-FW A of four-word BCD number BB
(minuend for SUB routine)

I = O-result not passed to user's buffer

=f 0-1 = FWA of four-word user's buffer for
. answer

tA BCD number is a packed decimal number, using the low-order 4 bits of the BCD code for the number. Exceptions are the digit zero, which is represented by a binary
zero, and the plus and minus signs. The four-word BCD numbers then, have 15 digits plus a sign. The sign is the high-order 4 bits of the first word of the four-word
buffer. A plus sign is all zeros (binary 00(0), and a minus sign is all ones (binary 1111).

B-3

, \' "

On exit from ADD (SUB)

Q-FW A of a' four-word result buffer in ARITH
module

<Q -·5 ~ F~A- ((.1) q -10 ~ r:w4 (c< 'J
The I register ~ restored to the A TT address at the
completion of these functions.

Calling sequence:

EXT ADD,SUB

RTJ+ ADD

\ S
RTJ+ SUB

:

PACK Routine

This routine packs up to 15 digits of ASCII into a
four-word BCD number. The field to be packed is the
current field in the current record as defined in the ATT.

On exit from PACK:

Q-FW A of a four-word buffer containing 4-word
BCD number (buffer is internal to ARITH
module)

Calling sequence:

EXT PACK,UNP (c:~/'-~\t;.::-
, '~.-

; f

RTJ+ PACK:-

RTJ+ UNP

UNP Routine

This routine changes a packed four-word BCD number
(16 characters) into its equivalent ASCII value. See the
PACK routine for calling sequence. ~

On entrance to UNP:

A-FW A of BCD number (four-word buffer)

On exit from UNP:

Q-FWA of an eight-word internal buffer in
ARITH module containing the eight-word
ASCII character string

B-4 (q tS):: 0 (;\ &' I,ll"!" {~

\
Decimal to Binary (DB) (A \': ! ;:-- ~. ')

r- n c... 7~ -
'':) L?/ 5) ~"J t)

This routine converts decimal to binary.

On entering DB:

A-the BCD number in the range ()()()() to 9999

On exit from DB:

A-binary (hexadecimal) equivalent of BCD
number ~

@...= AOV\..~
Calling sequence:

EXT DB,BD

RTJ+ DB

RTJ+ BD

Binary to Decimal (BD) ((\1.
S {~ ,~.~::~- .

This routine converts binary to decimal.

On entering BD:

;' 1

A-binary number in the range 0000 to 999910

On exit from BD:

A-BCD equivalent of the binary number

'D-i?/~~J~Q1~ q :: 0
"---' ~ .r

.......... ~ ~I

OWN CODE TEST RESOURCES

The following resources are available for own-code tests
only.

(
---- f I

ENTSR, EXTSR Routines l~'~' ~l r

These routines are used to make a subroutine reentrant.
When using these routines, exit from the subroutine
should be through EXTSR. The call to ENTSR must
immediately follow the subroutine entry' point. ENTSR
and EXTSR must be used for all routines which perform
input/output, including display.

f N -rS R c C FI\ $;" RtC/l TN' C~ s Tr:.~ c 1-\

Calling sequence:

EQU ENTSR($91),EXTSR($92)

NAM ADC O~ ENTRY POINT
RTJ - (ENTSR) q I l? i ~r ,!

Ho 'p'rilr;Jl.. -I,:,';-r

"

~f

RTNSR Routine (
-:" ~) ," \,j '~-, t"<)
I. I' L I

'-

This routine returns the last address from the exits stack
and removes it from the stack (see ENTSR).

On exit:

Q-Iast address in exits stack

Cal~ing Sequence:

EQU RTNSR($98) Prj T 5 ~U'(,O
)

RTJ- (RTNSRl.

GETBUF Routine (PI 0)

This routine allocates the user (interrogate) buffer and
sets the interrogate buffer pointers in the ATT.

On entry:, /
A-number of characters to be read, J

J.tLD
Calling sequence:

EXT GETBUF

RTJ+ GETBUF

, ",,'

GETSTR Routine

This routine initiates a read request from a key display
into an interrogate buffer to read in a string of
characters.

On entry into GETSTR:

A-number of characters to be read; GETSTR does
a call to GETBUF and exits to Dispatcher;
actual character transfer is done by MPC;
return to caller on the following conditions:

1. Requested number of characters read

2. REL key pressed

3. CANCEL key pressed

Calling sequence:

EQU
RTJ-

GETSTR($A2)
(GETSTR)

GETBIN, GETALP, and
GETCOM Routines

The get binary number (GETBIN), get one alphanumeric
character (GETALP), and get comma (GETCOM)
routines scan the interrogate buffer starting at the
current character position as defined in SST + STEMP
(word 20 of SST). GETBIN accepts only 0 to 9, comma,
and EOR. Any other character "causes all input to be
rejected. Blanks are treated as part of the input stream.

Calling sequence:

EQU
EQU
EQU

GETBIN($99)
GETALP($9B)
GETCOM($9C)

RTJ- (entry) entry - name of module

GETBIN exit conditions

A ~ 0 Q = 0 Comma (A-binary number)

A ~ 0 Q < 0 EOR (A:-binary number)

A < 0 Q < 0 Error: nonnumeric

GET ALP exit conditions:
-:: ,-

A I- 0 Q -j:. 0 A-ASCII character

A = Q Q = 0 Comma
r-f" '.

A ~ 0 Q~""O EOR (A = $FF)

A ~-o Q 3:-0 Error (not ASCII)

B-S

GETCOM exit conditions:

A=O Q=O Comma

A =#=·0 Q < 0 EOR (A = SFF)

A 1= 0 Q 1= 0 A-nonblank character

A < 0 Q '# 0 Error: non-ASCII character

GFCORE Routine

The gej format (GFCORE) routine releases the current
format which is in use, gets a new format as specified,
and sets up linkage in ATT.

On entry:

Q-format number (bits 14 to 0)

bit 15 = O-return to ERROR in case of error
= I-return to caller regardless; set A=O,

if error

Calling sequence:

EQU GFCORE($9D)

RTJ- (GFCORE)

CAM Routine

The core allocation module (CAM) routine honors
requests for core space by allocating a contiguous block
of core in the formats records programs (FRP) buffer
area. If a contiguous block of sufficient length is not
available, CAM attempts to create an adequate block by
squeezing active blocks in the FRP buffer.

On entry:

Q-block length requested (includes three-word
header)

On exit from CAM:

A-O, if space was allocated

-IFFFF, if not

Q-beginning address of allocated space, if space
was allocated

-block length, if not

o S?=-O
B-6 I L.."n-\ -:: Q. J
~ U,6f ~ I

Calling sequence:

EQU CAM($AE)

RTJ- (CAM)

RELFOR Routine (~I
The release format (RELFOR) routine is used to release a
buffer allocated by CAM. RELFOR decrements the user
count in the buffer header by one . ..If the user count 1= 0,
RELFOR exits to the caller;. otherwise, it sets the
location addressed by the backwa~ds pointer to 0, sets bit
14 of word 1 in the SST (the storage move flag) to 1, and
exits to the caller.

On entry:

Q-FW A of buffer to be released

Calling sequence:

EQU RELFOR($AD)

RTJ- (RELFOR)

·~ir Q: Cc~m;cJrS G.P- ir;
Vs.;.If-l.D~~ ::- 0

SETMOV Routine
/.

\ f (, i I \ .'

This routine allows program movement by CAM by
clearing bit 15 of word 1 of the program header (I/O
status bit). It also sets bit 15 (relative/absolute) of word-
21 in the ATT. ENTSR checks this bit to see if a return
address should be relative or absolute. This routine is not
necessary for one-shot routines.

Calling sequence:

EXT SETMOV

RTJ+ SETMOV

EXDFUN Routine
.... _0

The exit disk function (EXDFUN) routine allows release
of a disk-resident program from cor~e~d must be called
prior to exiting to the dispalcher or $ CLRSij.. When
exiting to ERROR, EXDFUN is called by that routine.
EXDFUN decrements the user count by 1, and if the

program is under time control, the time until release is
updated. If the program is not under time control, the
program area is released. EXDFUN is an internal
subroutine in ENTPRG.

Calling sequence:

'EQU EXDFUN($9F)

RTJ- (EXDFUN)

ERROR Routine

This is the error exit routine for CYBERDAT A routines.

On entry:

Q-error number
Q = 9 is special test error
Q = $B is own-code error

Calling sequence:

EQU ERROR($96)

:BE
j"''{T\P~

(ERROR)

ERROR CODES

Error codes currently defined for CYBERDATA are
listed in table B-l.

MOVREC Routine (\: - ,. / (.') ')

This routine moves a block from one core address to
another. There are two forms available for the MOVREC
routine. Form 1 moves the block from a relative address
to another relative address. The second form moves the
block from an absolute address to an absolute address.

Table B·l. CYBERDATA Error Codes

Code Index Meaning Code Index Meaning

A1 $1 Data type error X D4 $10 Invalid job name

A2 $2 Sign missing D5 $11 Invalid batch number

A3 $3 Illegal character X E1 $12 Illegal request .

A4 $4 Illegal function key E2 $13 Illegal parameter

A5 $5 Mismatch ch X (Y) F1 $14 Format number in document error

B1 ,$6 Beginning of data F2 $15 Own code is not on disk

B2 $7 End of data F3 $16 Disk full

C1 $8 Limit error F4 $17 Core full, please wait

C2 $9 Special test error F5 $18 Function busy, please wait

C3 $A Check digit error II $19 System lock wait

C4 $B Own-code test error PP $lA Parity error

C5 $C Nonzero error i ** $lB Field with error flag

D1 $D Invalid operator number C6 $lC Balancing error

D2 $E Invalid format number D6 $10 Invalid auto sequence count

D3 $F Invalid document number F6 $lE Disk deselected

B-7

~IOIR:

Form'l calling sequence:

MOVREC
MOVREC
(FROM-*)
(TO-*)

EXT
RTJ
ADC
ADC
NUM NUMWRD NUMBER OF WORDS

Form 2 calling sequence:

EXT MOVREC
RTJ MOVREC
ADC FROM
ADC TO
NUM NUMWRD

NOTE

These forms can be mixed.

WRITEC Routine

The write current record (WRITEC) routine is used to
write out a record from the terminal record buffer (TRB)
which has not been written before.

Calling sequence:

EQU WRITE($A3)
RTJ - (WRITEC)

REWRIT Routine)

This routine rewrites the current record in TRB after
corrections have been made to it.

Calling sequence:

EQU
RTJ-

REWRIT($A4)
(REWRIT)

READP Routine I _.-, /~ \ \, \// ,--_ .. / j'
"".,

Read the previous record as specified in TRB. If the
previous disk address (PREVDA) is negative, then the
current record is the first record of the batch.

Calling sequence:

B-8

EQU
RTJ-

READP($A5)
(READP)

A =: E-s ,ArE:.
Q --- () 6·'1$

READN Routine

This routine is used to read the next record as in TRB. If
the next disk address (NXDA) bit 15 is set, the current
record is the last record of the batch. .

Calling sequence:

EQU READN($A6) .,
RTJ- (READN)

ENTPRG Routine / ' \., l\ " :
This routine loads disk-resident programs as defined in
the PBD module. P.rior to calling:

ri:::- :i:NfJr-:-I' II'iTo "Et-,ll'R/"{ POI ['ITS
QI5-0 -load and go

1 -load only
QI4-12-program group

O-miscellaneous functions
I-key function
2-interrogate function'
3-supervisor function'
4-magnetic tape function"
S-undefined

_,6-undefined
7-:-own code ~ e bE:· \3 iT" 9'

Ql1-O -if core"is not available, ·Yeturn·.tocaller
_with-(0)----O orl t~ REJSUP if a
. supervisor function ,

1 -wait till core is av'ailable ,
QI0-0 -called routine is not a subroutine ,

". ~b 1 -Called routine is a subroutine .CALC. t;Jus-., Ee ~('J.R. r:-
.... , l) 7-unused I GO 7-0 ;:r: !\'C'!\ I\',-,~j'{ (t.!, t:.f: .. ,; ":'1

Q~index ing p~gJ~ilit g~~{r~; (. (~- (Q)::: 0

A ~7-O-entry-point numb~r (0 for own code)

This routine uses temporary storage words 2 to ~
(STEMP) in the ATT. An example of one own code
passing control to another is in tgure B-4.

~ Coc)NT'""

EQU ENTPRG($9E),EXDFUN($9F),EXTSR($92)

Own code number

RTJ- (EXDFUN)

RTJ- (ENTPRG)
r

\

exit

release this routine

call next own code

Own code number 2 exit

RTJ- (EXDFUN)

RT J- (EXTSR)

release this routine

exit subroutine

Figure B-4. Example of Own Code Passing Control

' I ,.' " \
(

r' f .. \ ~-', \,
CLCDW A Routine '.. (:)

This routine calculates a disk word address for use with
unformatted reads or writes (see REDWRD and
WRTWRD).

On entry:

(A)-sector number
(Q~offset in number of words

On exit:

(A)-least-significant bits
(Q~most-significant bits

Calling sequence:

EQU CLCDW A($90)
RTJ- (CLCDWA)

REDWRD Routine

This routine reads a string of words, starting at a
specified disk word address (unformatted read). If only
the sector address and offset are known, use CLCDW A
to obtain the word address prior to performing
REDWRD. The format is shown in figure B-S.

EQU REDWRD($A9)

RTJ- (REDWRD)

{ ADC buf'
Select Buffer address

one ADC (bu'f-;") 00u..Jf:(2. 5'2, {l'
C,,,,- ,

NUM ' msb Most·significant bits

NUM lsb least·significant bits

NUM nw Number of words

NUM 1 u logical unit number

Figure B-5. REDWRD Routine Calling Sequence/'

WRTWRD Routine

This routine writes a string of words, starting at a
specified disk word address (unformatted write). if only
the sector address and offset are known, use CLCDW A
to obtain the word address prior to performing
WRTWRD. The format is shown in figure B-6.

EQU WRTWRD($AA)

RTJ- (WRTWRD)

{ ADC buf
Select Buffer address

one ADC (buf-;") t..' C~·~ ~",' (. (I,~o :; ~
~~':" C'" (..' t.r'

NUM msb Most-significant bits

NUM lsb least-significant bits

NUM nw Number of words ,

NUM lu logical unit number .

Figure B-6. WRTWRD Routine Calling Sequence

REDSEC Routine (p l-:c.))
The REDSEC routine reads either: ,J

• A specified number of sectors

• The first 96-nwds words of one sector into core
(formatted read)

The routine format is given in figure B-7.

EQU REDSEC($A7)

RTJ- (REDSEC)

{ ADC buf
Select Buffer address

one ADC (buf-;") ~owr: IL 3"1. ii
c:->N ~ {/

NUM sec Sector address

Select { NUM nsec Number of sectors

one NUM -nwds Minus the number of words

NUM lu logical unit number

0--3

Figure B-7. REDSEC Routine Calling Sequence

~f ,,., L~eL \"Ik, UN(. EI6~ f2-.,rT 1t6:5frOD B-9

\;~ ~~- ~ec4JtU)J v~tu~) ~~O,£c...J0~(S(S(...
.. ~ .. .L!i"'. l _ __ ~ • , ... __

WRTSEC Routine (~)JC)}
\..,.-This routine writes either:

• A specified number of sectors

• The first 96-nwds of one sector onto a disk
(formatted write)

The format is given in figure B·8.

EQU WRTSEC($A8)

RTJ- (WRTSEC)

Select
one {

ADC

ADC (buf-*) . ~

buf
Buffer address

LI 0 w i~ ,'Z,.. .~ ''L n (?\'-~ (,.~ {

NUM sec Sector address

Select { NUM
one NUM

nsec Number of sectors

-nwds. Minus the number of words

NUM lu Logical unit number

Figure B·8. WRTSEC Routine Calling Sequence

rOlt C;upY_!?-~, '\
) DT" \ SUPRW /TAPIO Routine \. I' -".0 ~)

"--

The supervisor READ/WRITE and MOTION routine is
used for reading from the supervising input unit and
writing to the supervisory list unit. The TAPIO routine is
for reading/writing magnetic tape.

On entry:

Q :;:=O-READ ASCII
1 -WRITE ASCII

_2 -F~AD ASCII
3-FWRITE ASCII,

---4 -MOTION of input unit 1<,:": \ (..: .. :
5 -MOTION of output unit _-===-
8-READ binary
9 -WRITE binary
A-FREAD binary

For the following requests, .A specifies the code
conversion:

Q = 1~READ code
17-;;::-WRITE code
1~FREAD code
1 ~FWRITE code

/0

A = 1-BCD
~-EBCDIC
3-ASCII
4-user code 1
S-user code 2
6-user code 3
7-user code 4

Calling sequence:

The calling sequences are based on EQU
SUPRW($97),TAPIO($9A). Entry is either SUPRW or
TAPIO.

The sequence for data transfer is one of the following:

• RTJ- (ENTRY) ~
ADC BUFF
NUM X .

• RTJ- (ENTRY~
ADC (BUFF·*)
NUM X

• RTJ- (ENTRY)/
ADC 0
NUM X

Where:

ADC
ADC
ADC
NUM

BUFF -absolute buffer address
(BUFF-*)-relativ~ b~ffer address IT/o T3 i~l ... rC:F;'r

o -buffer IS mterrogate buffer.d"t',pr 0 1
•

X -number of words to be
transferred

The sequence for motion is:

RTJ- (ENTRY)
NUM X

Where:

NUM X-standard system motion code word
(figure B-9)

15 12 11 8 7 4 3 o

P2 P3 I dy

,~ B-FWRITE binary Figure B·9. Motion Code Word

B-10
J3iT 0

)

o -== R En;.:' , .:, t, ...) Ii: (Il~. , Co.:: INfl J ~oVT)
o -:: Ur-' (-=-c r,··r,t \',(; l =: rei:' I;' TC~ [>

l··~· ~ ,_ .. l'"\ .~.! r .'

In figure B-9, the word is defined as follows:

PI, P2, P3-motion control parameters
O--terminate request
I-backspace one record

(2-write end of file
3-rewind

,; 4-rewind and unload
~skip one file forward
6-skip one file backward
7-advance one record

dy-density parameter
O--no change
1-800 bpi
2-556 bpi
3-200 bpi
4-1,600 bpi

-/
l
o
C)
-0
-0

I

Up to three motion requests can be made with the .
standard word; for example:

NUM $1101

This request means to backspace two records on an
800-bpi tape.

If several iterations of a motion request are needed, use
the following format: .

o

n

In this request, the 1 in bit 15 indicates that the request

HOW TO WRITE CODE
CQNVERSION ROUTINE

[:. "IT l~ 12..(:;[: f:~) A c:". .;::. () }.-.~ (r;.> "····,,.-'·F'
- - .~ - ~,,,,-, --' • ',. ...," ..• ,- I • I

In addition to the system's recording codes (ASCII, BCD,
EBCDIC), the customer may add four more recording
codes. The recording code routines are installed by the
following command:

LPR,n,T,C

In this command, n is the code number (1, 2, 3,4). These
code numbers are used to identify the recording code in
the EMT command. The code-conversion routines
receive three parameters:
rAal'rhll't17~tf., I

• Address of the data to be converted
p f((l(1;H t:':1E e t.

• Number of words
A I~ f;':C:'! :~J"I I,;

• Sign to convert the data from ASCII to the code
(positive number) or from the code to ASCII
(negative number)

According to these parameters, the code-conversion
routines replace the original data with the converted
data.

A code-conversion program should have the structure in
figure B-I0.

*
PRGHDR

NAM CODEX T REG

{
/, ~.

i '(>1 ,-: I
Program equates 11,:(' :', I /: (-

VFD N2/3, N3/0, XII /PRGEtlD-*.
ADC 1,0,0,EtlTRY-PRGHDR

~

POINr':, I'C~~~'

~~ ~.~-:~. /) 1./'

:'" \ .').~, '/ - ,-f .",'

}
,. . ,

Program header

can be repeated, p is the motion control parameter, and ENTRY ADC 0 EtlTRY POI NT
STA* SIGN· COtlVERS I ON SIGN I n is the number of iterations (maximum is 4095).

Note

1. If the interrogate buffer is used to read data
into, and no buffer is available or the buffer is
not long enough, the program allocates a new
buffer.

2. The supervisor input/list units being a zero
indicate a CYBERDAT A keydisplay unit.

3. Keydisplay units honor only write end-of-file
motion requests which are executed as a clear
display.

4. If the list unit is a keydisplay unit, and end-of
display area is indicated by Q = $COOO on
completion.

5. If the read unit is a keydisplay unit, function
lock is not turned on during the read.

LDA* (ENTRY)
STA* ADORES DATA ADDRESS
RAO* ENTRY Program entry
LDA* (ENTRY)
STA* tlm~RDS NUMBER OF IJORDS
RAO* ENTRY RETURN ADDRESS
JMP* CONVRT I

LDA* PRGHDR I AND- LPMA's.K+15 CLEAR I/O BIT
EXIT

STA* PRGHDR
LDA* PRG~DR+I Program exit
INA -I DECREASE PROGRAM
STA* PRGHDR+I USER COUtlT 1 JMP* (ENTRY) RETURN

*
BZS SIGN,ADDRES ,NOWRDS locals words

CONVRT

EQU PRGEtlD(*)
END

f End of program

Figure B-I0. Code-Conversion Structure

B-l1

{ 1

HOW TO WRITE A TAPE-LABEL
PROGRAM

Tape-label programs are disk-resident routines for
writing volume headers and trailers as well as file headers
and trailers. Labels are written on the tape at the position
it is in when the label program receives control. Code
conversion is performed according to the table specified
by the magnetic tape format which is being used. To
write a label program, the programmer must be familiar
with the CYBERDAT A table structure and the more
frequently used internal routines. Of special interest are
the following areas as well as the SST, EST, A TT, and
INT:

• MTCA-magnetic tape communication area
(A TT) contains the magnetic tape format,
pointers to the EOD area (head.er and
trailer information), and entry and exit
parameters

• EOD-CYBERDAT A trailer which contains all
relevant information about the last set of
data recorded on the tape

The TLP program header has four fixed words and four
entry points. The first entry is used for the volume
header, the second for the file header, the third for the
file trailer, and the last for the volume trailer. A sample
TLP program header is shown in figure B-11.

LBL7 VFD Nl/l,Nl/0~N3/0,Nll/ELBL7-*
VFD Nl0/0,N6/1
NUM 0
NUM 0
ADC VOLHDR-LBL7 (Volume header)
ADC FILHDR-LBL7 (File header)
ADC FILTRL-LBL7 (File trailer)
ADC VOLTRL-LBL7 (Volume trailer)

Figure B·l1. TLP Program Header Format Example

Label routines may be designed specially by the analyst,
following the previously mentioned guidelines for fixed
headers and entry points as well as the following
guidelines for exiting from a label program. The
program LBL1, which deals with IBM standard labels,
contains many subroutines. Two exits should exist in the
program:

weT

B-12

The first exit is done by the following instructions:

RTJ
ENA
LDQ-

(EXDFUN)
o
MTFEXT,I (Second word

ofMTCA;
RTJ- (ENTPRG)

Error exit:

RTJ
ENA
LDQ
RTJ-

~DFUN)
W-~
MTFEXT, I
(ENTPRG)

NOTE

When the program takes new areas using
CAM, it must release those areas, too.

MAGNETIC TAPE OWN CODES

The user has the opportunity to manipulate the data,
arrange his own blocking, or add constant data by
defining a magnetic ,tape own code. The system gives
control to this routine at three stages of processing,
passing a parameter indicating the stage:

• Next record in TRB buffer (MTFENT = -1)

• End of batch-no record in buffer (MTFENT =
1)

• End o~ tape-n~ reco~9 in buff~!-'~,M, TF, ENT = 2)
gr~lU~v'~'1 10 A ~Q.

For the processing, MTFENT is word 4610 of the ATT

and the TRB address is in word 6 of the A TT.

When the magnetic tape own code has completed its own
processing, it must load the index of MFTMON (set in
word 4710 of the ATT and known as MTFEXT) in

register Q and perform a return jump to ENTPRG with
the A register set to one of the following:, \

• A = O-get next record (delete current record
" fro in output ~uffer)

• A = I-put current record into the output b~ffer
and getJnext record

A = 2-write the output buffer to tape, excluding
the current record

, M lOe,.. f\~5U!eat1~tt-D
A = 3-terminate this WBT command

(0"

As a disk-resident routine, each magnetic tape own code
must have the standard header and must perform an
RTJ- (EXDFUN) before exiting: A FIr;Ie: r=A~/·l

consists of 80 characters. Define an MTF with undefined
blocking and a maximum block length of 960. Then
write a short own code as in figure B-12.

RI::C:::of?.O
EQU EXDFUN ($9F)

NOTE

OWN CODE EXAMPLE

Blocking by document is required, but the number of
records in a document can vary. Assume that the
maximum number of records is 12, each of which 0

RTJ- (EXDFUN) should be performed after
any input/output that may be necessary. In
the routine in figure B-12, no input/output is
performed. To save code, the EXDFUN may
be performed earlier.

MTCOl PAGE DATE: 02/21/74

NAM MTCOl CYBERDATA SUMMARY REL
*

0001
0002
0003
0004
0005

* MAG. TAPE OWN CODE TO BLOCK BY DOCUMENT

0006
0007
0008
0009
0010
0011

009E
009F
002E
002F
0006
0023
0033

*

0012 POOOO COlE HDR
0013 POOO 1 0001
0014 P0002 0000

EQU

EQU
EQU
EQU
EQU
EQU
EXT
VFD
NUM
NUM

ENTPRC($9E),EXDFUN($9F)

MTFENT(46)
MTFEXT(47)
TRB(6)
ONEBIT($23)

ZROBIT($33)

ENTRY PARAMETER (-1,1 OR 2)
INDEX FOR EXIT VIA ENTPRG

ADDRESS OF RECORD BUFFER

SETMOV
N2/3,N3/0,Xll/ENDMOC-*

1
0,0

P0003 0000
0015 P0004 0005
0016 P0005 5400 X START

poo06 7FFF X
0017 P0007 549F "
0018 P0008 C12E
0019 P0009 0136
0020 POOOA 09FE

ADC
RTJ*

START-HDR
SETMOV

RTJ- (EXDFUN)

ENABLE PROGRAM MOVEMENT] UO"(I'I'c€-oeQ
RELEASE ROUTINE

0021 POOOB 0102
0022
0023 POOOC OAOO
0024 POOOD 180F
0025
0026 POOOE OAOO
0027 POOOF 1800
0028
0029
0030
0031

o LDA- MTFENTf, I
SAM NEWREC
INA -1 '

FIND OUT WHICH ENTRY THIS IS
NEW RECORD IN TRB

SAZ EOB
o

• END OF BATCH
* END OF TAPE - CONTINUE (GO TO EOV ENTRY OF THE LABEL)

ENA 0"
JMP* EXIT

* END OF BATCH - CONTINUE (GET liST RECORD OF NEXT BATCH)
EOB ENA 0

JMP* EXI]

* * NEW RECORD - CHECK FOR BEGINNING OF BATCH, THEN FOR START
* OF NEW DOCUMENT

* 0032 P0010 El06 NEWREC
0033 POOll C204

LDQ- "
LDA
SAM
LDA
AND
SAZ
LDA
AND
STA
ENA
JMP*
ENA
LDQ
RTJ
EQU
END

TRB, I
4,Q
PUTREC
3,Q
ONEBIT+l0
PUTREC
3,Q
ZROBIT+10
3,Q

IF FIRST RECORD IN BATCH,PUT IN
O/P,BUFFER,AND GET NEXT RECORD 0034 P0012 0138

0035 P0013 C203
0036 P0014 AC2D
0037 POOlS 0105
0038 poo16 C203
0039 P0017 A03D
0040 P0018 6203
0041 P0019 OA02
0042 P001A 1802
0043 P001B OAOl PUTREC
0044 P001C E12F EXIT
0045 P001D 549E
0046 OOlE P
0047

2
EXIT
1
MTFEXT, I
(ENTPRG) ,
ENDMOC(*)

IF FIRST IN DOCUMENT,WRITE
CURRENT BUFFER

CLEAR NEW DOCUMENT BIT FOR NEXT PASS

Figure B-12. Sample Own Code for Magnetic Tape

B-13

APPENDIX C

DISI(AND MEMORY ALLOCATION

I
\......

Disk and Memory Allocation

GENERAL

This appendix summarizes the operating system and the
CYBERDA T A memory-resident and disk-resident rou
tines and tables. The discussion includes a description of
the allocation of memory.

MEMORY-RESIDENT MODULES

The memory-resident modules are discussed on the
following pages.

Operating System

The operating system used for CYBERDAT A has the
following assigned with special definitions:

• SYSDAT

This contains system data as described in the
CYBERDA T A system status table (SST) and the
extended status table (EST).

• SPACE

This is modified to allow different configurations
of allocatable core and background depending on
tlags and values in the CYBERDAT A extended
status table (EST); detailed discussion in allocat
able memory

• Memory-Resident Drivers

self-scan terminals. If a particular system
configuration does not include these terminals,
these routines can be removed from the system to
reduce the size of the memory-resident portion of
the system.

• CRT routines

These routines are used to drive the 480-character
CRT terminals. If a particular system configura
tion does not include these terminals, these
routines can be removed from the system to
reduce the size of the memory-resident portion of
the system.

• Processing routines

These are the high-usage routines in the
CYBERDA T A system. The modules CON029
and CONTTY are necessary for using 029 key
punch keyboards and TTY keyboards on
terminals. If one of these keyboards is not used in
a particular configuration, its corresponding
module can be removed from the system.

• Special test area

The check-digit tests are special tests and are
already in this area on the released system.
Additional tests can be added here.

DISK-RESIDENT ROUTINES
The only operating system drivers'tliar'-are--~--·.

'd t D17332 'd' k d') d The routmes, which are disk-resident, are discussed tn memory-resl en are \; IS nve an .
D1711 (TTY d ·) II th' d' k 'd _...-.-"t the followmg paragraphs. river ; a 0 ers are IS -resl en
(The CYBERDA T A terminal drivers are not a
part of the operating system.)

All other memory-resident operating system modules are
in their standard form.

CYBERDATA Memory-Resident
Modules

The following special memory-resident modules apply to
the CYBERDATA System:

• Display drivers

These are general display routines and do not
apply to a specific type of terminal.

• Self-scan routines

These routines are used to drive the 32-character,·

Operating System

All of the standard routines for job processing, library
editing, system maintenance, and utilities are disk
resident.

CYBERDATA Routines

• Start-up routines

There are five CYBERDAT A routines which are
accessible through the use of MIPRO. They are
VLSTRT, VLTYPE, VLBGOP, VLOSOP, and
VLSTTS. These routines are accessed with the
mnemonics VL, VLTP, VLBG, VLOS, and
VLST. For more information on these routines,
see allocatable memory also in this appendix.

C-l

• Terminals type table

This table is modified by VLTYPE and contains
information for each terminal in the system.

• Disk buffers

Buffers are defined and reserved on disk using
module DUMMYV, which is a one-word dummy,
and various LIB EDT commands.

• Miscellaneous routines

Routines in this category do not have a direct
relationship to function keys, interrogate com
mands, or supervisor commands. A typical
routine in this category is PB2, which is called by
the module PBS. These modules may be placed in
the library by using the LPR command.

• Key functions

These routines have a one-to-one correspondence
to function keys. These routines may also be
placed in the library by using the LPR command.

• Interrogate functions

These functions have a one-to-one correspon
dence to interrogate commands. These routines
also may be placed in the library by using the LPR
command.

• Supervisor functions

The supervisor functions have a one-to-one
correspondence to supervisor commands. They
also can be placed in the library by using the LPR
command.

• Own-code insertion area

As an alternative to loading all the own code by
using the LPR command each time the system is
reinstalled, they can be inserted in the install tape
so that they are automatically linked and loaded
when the install is done. To load a new own code
by using the LPR command, an entry for that own
code must have been defined on the install tape in
the form *S,SICXXX where XXX is the own-code
number. The install tape, as released, contains
entries for 40 own codes.

ALLOCATABLE MEMORY

To enhance the capability of running the CYBERDATA
operating system with execution of background pro
grams (either simultaneously or separately) several
parameters have been specified to control partitioning of
allocatable memory. See figure C-1.

C-2

At system configuration time, standard COS operation
allows the specification of levels in allocatable memory.
These levels determine what portion of memory can be
available to a program requesting memory at a certain
priority.

Memory Resident

A
I

t I 1
0

c
t a 2

t
a t . b 3
I
e

Memory Resident

Figure C-l. Example of Allocatable Memory

In the example in figure C-l, only area 1 is available to
programs requesting space at priority 1. Areas 1, 2, and 3
are available to programs requesting memory at priority
3.

At startup, the VLSTRT module requests one large
partition of allocatable memory for table, data-buffer,
and disk-resident program use. This request is made at
priority levelS; therefore, the length of area 5 determines
in what area CYBERDA T A will always be able to receive
even if lower-priority programs are running.

The following parameters in SYSDAT determine the
length of area 5 and the way in which allocatable memory
is requested by CYBERDA T A:

• VLOS
• VLBCKG
• VLASS
• BGCORE
• LFTOVR
• TOTAVL

VLOS Parameter

VLOS is used by the Restart program to determine the
size of area S.

• VLOS = NONE

Area 5 is set to O. No area is specially reserved for
level 5 programs.

• VLOS = STD ..---"

Area 5 is set to length VLASS, which is an
installation parameter (currently 100016).

• VLOS = BCKG

Area 5 is set to the total length of allocatable
memory minus BGCORE (an area to be left
available to background programs) minus areas 1
through 3 specified at install time.

For both the STD and BCKG options, TOT A VL (total
available) is set to the full length of allocatable memory
minus LFTOVR. LFTOVR is an installation parameter
(currently 28016) that defines an area that will be avail-
able for loading DEBUG when CYBERDATA has taken
the maximum memory.

The value of VLOS may be changed by using the
program VLOSOP. VLOSOP is called with the following
sequence:

VLOS

System response:

VLOSIN

Enter one of the following:

• STD
• BCKG
• NONE

Any other input results in the message DATA ERROR.
The program then exits with the response:

VLOS OUT

The new value of VLOS takes effect at the next Autoload
and Restart.

VLBG Parameter

VLBG is used by the CYBERDATA start-up program to
determine the number of words to be requested from
allocatable memory for the CYBERDATA buffer.

• VLBG = NONE

TOT A VL words are requested.

• VLBG = MUST

Area 5 is requested.

• VLBG = RQST

An optimum number of words is requested. This
figure is based on the NO. OF STATIONS and
A VERAGE RECORD LENGTH parameters
entered at start-up time.

The value of VLBG may be changed by using the
program VLBGOP. VLBGOP is called with the
following sequence:

VLBG

System response:

VLBG IN

Enter one of the following:

• xxxx,NONE
• xxxx,MUST
• xxxx,RQST

The xxx x is the hexadecimal value desired for the
BGCORE parameter. Any other input results in the
message DATA ERROR.

The program responds with:

VLBG OUT

The new value of VLBG takes effect at the next Autoload
and Restart.

The five examples in figure C-3 show how allocatable
memory would be partitioned when given the different
values of the parameters VLOS and VLBG.

VLST Program

The program VLST can be called to give a printout of
what the result of the different allocation schemes will
be. The program is called with the following sequence:

VLST

The resulting printout is shown in figure C-2.

C-3

C-4

AREA LEFT FOR SYSTEM USE XXXl
REQUESTED BACKGROUND XXX2
CYBERDATA ACTIVATION XXX3
BACKGROUND ACTIVATION xxx4

VLOS BCKG CYBR BCKG
ACTV ACTV CORE CORE

STD NONE xxx5 0000
MUST xxx6 xxx7
RQST DYNM UNDF

NONE 0000 xxx8

BCKG NONE xxx5 0000
MUST xxx9 xxx2
RQST DYNM UNDF

WHERE xxx 1 = LEFOVR
xxx2 = BGCORE
xxx3 = Value of VLOS (STD, NONE, or BCKG)
xxx4 = Value of VLBG (NONE, MUST, or RQST)
xxx5 = TOTAVL (All of allocatable - LFTOVR)
xxx6 = VLA5S
xxx7 = All of allocatable - VLA5S - Areas 1 to 3
xxx8 = All of allocatable - Areas 1 to 3
xxx9 = All of allocatable - BGCORE - Areas 1 to 3

Figure C-2. Sample VLST Printout

Beginning
of
Allocatable

Vl-

\1')<

-

.,

2

Fixed Back-
ground Area Remainder for
(BGCORE) Background

Areas
lto 3
~T"CI b
,':';1\(.:((~'~' .. , c:'f;,'

Remainder
for
CYBERDATA
(Area 5=AII
Allocatable
-BGCORE
-Areas 1 to 3)

Areas 1 to 3

- . ", .. -. """-

::'..'\ t < C"" Ii ~~~

1", 1,\" -,'
\. \ .. (. ,.) (k')

Fixed
CYBERDATA
Area (Area 5
= VLA5S)

VLOS = BCKG VLOS = STD
VLBG=MUST ',,:';:'/Y VLBG=MUST ..

3

Remainder for
Background

Areas 1 to 3

4

SYS Leftover
(LFTOVR)

1-:-- .-..--------1

--I o

~
r-

Remainder
for
CYBERDATA

~-----------~~--------~

VLOS=NONE VLOS = STD,BCKG
VLBG=NONE

Figure C-3. Examples of Partitioning Allocatable Memory

5

Remainder for
Background
and Areas 1 to 3

Optimum
CYBERDATA
Area

VLOS=STD,BCKG
VLBG=RQST

c-s

DISK DATA FILES

The size of the CYBERDATA data file area on the
system disk is determined at installation time. To change
the size, the system must be reinstalled.

To add additional disks to the system, SYSDAT must be
changed and reassembled and the system must be
reinstalled. The SYSDAT changes are to the CYBER
DATA system equates, which are in the SYSDAT listings
under conditional assembly options. Disks 1, 2, and 3 are
added, if needed, by changing the equate cards for
DISK1, DISK2, and/or DISK3 from NONE to SINGLE
(single density) or DUAL (dual density).

The first 880010 sectors are reserved for the CYBER-

C-6

DATA operating system modules and scratch which is
required during installation. This area is not available
for data. The remaining area is available for data as
follows:

Disk

856-2 Single Density

856-4 Dual Density

Sectors
for Data

14,62410

38,04810

Character
Capacity Left

2,807,80810

7,305,21610

Refer to figure C-4 for the CYBERDAT A mass memory
(system disk). Figure C-5 shows additional disk mass
memory.

Sector Address16

B780

Additional
CYBERDATA
Data File
Areat

Available
on double
density
disk

) 23,548

5888 - - -- - -+-----~----

Minimum required
to install

Scratch Size

Beginning of
System Scratch 185A

Beginning
of Program
Library

lID)

CYBERDATA
Data File
Area

2!iII

24FO

System
Scratch

Program Library

Operating
System

-

tl. Additional disks have a total area available for data (46,97010 sectors).

}~

Sectors1D

> 14,(0)

> 3222

2. Sector 0 and 1 of the first track in a batch contains the table image and other track addresses in batch.

3. If a two-disk system is used, the next batch is assigned to the second disk.

4. Batch limit is 90 tracks or 250.000 characters per batch.

5. Sectors 0 through 5B88 represent the 856-2 single-density disk. Sectors 0 through B780 represent an 856-4 dual-density disk.

6. Scratch size is set at the system installation time.

7. Each record of a batch requires five additional words for linkage.

Figure C-4. COS Mass Memory (System Disk)

C-7

C-8

Sector Address16

87111

IDIiJ
IXDI

Sectorsl0

Data area 46,970

~--------------~
-,(Reserved)

Figure CoS. COS Mass Memory With Additional Disks

APPENDIX D

CYBERDATA STANDARD CODES

CYBERDA T A Standard Codes

GENERAL

The CYBEROATA codes in table 0-1 are represented in
hexadecimal.

Table D-l. COS Standard Codes

Symbol ASCII Code BCD Code EBCDIC Code Symbol

Space 20 10 40 8

! 21 2A 5A 9

" 22 OF 7F

23 3F 7B ,

$ 24 2B 5B <
% 25 10 6C =

& 26 10 50 >
, (apostrophe) 27 DC 70 ?

(28 1C 40 @

) 29 3C 50 A

* 2A 2C 5C B

+ 2B 1I 4E C

, (comm'a) 2C 1B 6B 0

20 20 60 E

2E 3B 4B F

/ 2F 11 61 G

0 1I oA FO H

1 31 01 F1 I

2 32 D2 F2 J

3 33 03 F3 K

4 34 04 F4 l

5 35 05 F5 M

6 36 06 F6 N

7 37 07 F1 a

ASCII Code

38

39

3A

3B

3C

3D

3E

3F

40

41

42

43

44

45

46

47

48

49

4A

4B

4C

40

4E

4F

r ')
/.,

BCD Code

08

09

00

2E

3E

DB

DE

3A

1F

31

32

33

34

35

36

37

38

39

21

22

23

24

25

26

EBCDIC Code

F8

F9

7A

5E

4C

. 7E

6E

6F

7C

C1

C2

C3

C4

C5

C6

C7

CO

C9

D1

02

03

04

05

06

0-1

Table D·l. COS Standard Codes (cont)

Symbol ASCII Code BCD Code EBCDIC Code Symbol ASCII Code BCD Code EBCDIC Code

p 50 27 D7 X 58 17 E7

Q 51 28 08 Y 59 18 E8

R 52 29 D9 Z 5A 19 E9

S 53 12 E2 [58 3D 5F

T 54 13 E3 \ 5C 1E EO

U 55 14 E4] 50 20 4A

V 56 15 E5 A 5E 2F 4F

W 57 16 E6 - 5F 1A 60

D-2

APPENDIX E

DIAGNOSTIC CODES AND MESSAGES

Diagnostic Codes and Messages

EQUIPMENT MALFUNCTION
CODES

When a 'system 110 device driver has detected an error,
the alternate device handler is called. The alternate
device handler prints the following diagnostic message
on the standard comment device if no alternate device is
defined:

LU,nn FAILED xx
ACTION

Where:

nn-number of the logical unit which has failed
xx-failure code

Respond to the error by typing on~ of the following:

• RP-to repeat the request

• CU-to report the error to the requesting
program; the device is allowed to continue
processing requests.

• CD-to cause any future programs calling the
device to be informed of the failure by their
completion addresses; the error is reported
to the calling program, and the device is
marked down. no subsequent attempt is
made to operate this device.

• DU-to activate CU and suspend job processing;
if job processing is not in progress; this
action is not taken, and ACTION is
retyped. Another option may be selected.

• DD-to activate CD and suspend job processing;
if job processing is not in progress, this
action is not taken, and ACTION is
retyped. Another option may be selected.

When the system initializer device detects an 1/0 failure,
the following message is printed:

L,nn FAILED xx (yyyy)
ACTION

Where:

nn-initializer logical unit which has failed

xx-failure code

yyyy-last hardware status of the failed device

The error response is one of the following two entries:

• RP-to repeat the request

• CU-to complete the failed operation and cause
the initializer to return to the comment
device for a subsequent control statement
entry

DEVICE FAILURE CODES

The device failure codes for the system or initializer
driver are given in table E-l.

Table E-l. Device Failure Codes

Error Code Error Description

0 Time-out error This indicates a failure to interrupt within the allotted time (requires
TIMER package)

• Teletype

Operator failed to supply input within allotted time. Ignore message
and continue normally.

• All other devices

Hardware failed to generate an interrupt within the allotted time.
Hardware maintenance is required.

E-l

Table E·1. Device Failure Codes (cont)

Error Code Error Description

1 lost data Data was not transferred out of the read register before the next data
word appeared.

• 171111713Teletypewriter

Retype the statement.

• Magnetic tape

Use the CU option to continue without processing the lost record or
abort the read option.

2 Alarm This indicates the presence of an abnormal condition.

• line printer

Paper is out, paper is torn, a fuse alarm is sounded, or interlock is
open. Correct the problem, and use the RP option.

• 1728-4l1 Card Reader

Interlock is open, or the chip box is full. Correct the problem, and
take the RP option.

• Pseudo tape

This is a failure to fulfill a request due to mass-storage device
failure.

• COSY driver

The first record is not a CSY I control record.

3 Parity error • 1711/1713 Teletypewriter

Attempt recovery by retyping the command.

• Magnetic tape

The tape is positioned after the bad record. Either take the CU option
to continue processing (the bad record is ignored), or abort the
operation.

• COSY driver

The last record was not an ENOl record.

4 Checksum error (FREAD binary) The sum of the header word and data in a record did not
balance to zero when added to the checksum word.

• Card readers

Holes are not cleanly punched. Check cards for tears between holes.
If the cards are all right, attempt recovery; otherwise, perform the
followin aerations: 9 P

E-2

Table E·l. Device Failure Codes (cont)

Error Code Error Description

1. Remove the cards from the input hopper.

2. Single-cycle the card in the transport area to the output stacker.

3. Take the last two cards in the output hopper, and put them into
the input hopper ahead of the unread cards. If this is a multi card
record, reread all cards in the record.

4. Ready the card reader.

5. Take the RP option.

• COSY driver

There was no end-of-file mark following the ENOl record.

5 Internal reject The 1/0 device did not send a reply to the computer within the allotted
time.

• The computer cannot communicate with the device. Check the
hardware address switch and the POWER ON switch. The RP option
may be used if the problem has been corrected.

• COSY driver

A read on the write unit or a write on the read unit occurs before the
end-of-deck mark was encountered.

6 External reject The 1/0 device has replied to the computer that it is not ready to per-
form the specified request.

• The device is busy or not ready. If the device is not busy, check the
ready switch. Attempt to continue by typing RP.

• COSY driver

Motion request on read unit is encountered after end-of-deck
marker.

7 Compare This is a hardware problem. A compare error occurs when if faulty sig-
nal is detected in the area of the punch solenoid and the echo amplifier
circuits during an echo check.

• 1728-4lJ Card Reader

Remove, and discard the last card punched. Ready the device, and
type RP.

• 1729-3 Card Reader

Attem t recove p ry as for card checksum error (see error code 4).

E-3

Table E-l. Device FaUure Codes (cont)

Error Code Error Description

Preread A pre read error occurs if all read amplifiers are not off during a dark
check.

• 1728-4JJ Card Reader

Remove, and discard the last card punched. Ready the device, and
typeRP.

• 1729-3 Card Reader

Attempt recovery as for card checksum error (see error code 4).

B Illegal Hollerith punch This error occurs when the card reader encounters a punch sequence
which does not comply with the Hollerith-to-ASCII conversion table
being used by the driver.

• Software recovery allows the user to locate the illegal punch by
setting an ASCII? in the buffer word for the bad column. Select the
reply option to continue or to abort the job and correct the
mispunched cards.

9 Sequence error Cards in a record are not in sequential order.

• Abort for read operation and restore sequential order to the record.

10 Nonnegative record length The first word of a formatted binary record is the complement of the
number of records in the record. The word may bea negative number,
indicating that the card read was not the first card of the record.

• Attempt recovery by using the procedure for checksum error (see
error code 4).

11 Read/write mode change This error indicates a switch from read or write mode.

• 172B-4lJ Card Reader

This message is issued only as a warning to the operator.

If mode switch is allowable, repeat the request using the RP option.

12 7/9 punch error The error occurs if a 7/9 punch in column 1 is read when an FREAD ASCII
request is specified.

• Card reader

1. If column 1 is a 7/9 punch, there is no recovery .. Abort operation
request is the wrong mode.

2. If column 1 was misread, read card as for checksum error (see
error code 4).

E-4

Table E-l. Device Failure Codes (cont)

Error Code Error Description

13 No write ring An attempt was made to write on magnetic tape without write being
enabled.

• Insert write ring, and use RP option.

• Pseudo tape

Attempt to write on the file which was opened to read only.

14 Not ready Ready the device, and use the RP option.

15 Not used None

16 Controller seek error The controller seek error occurs when the controller has failed to obtain
the file address that was selected during a read, write, compare, or
checkword operation. This is usually an indication of a positioning error.

17 Drive seek error A drive seek error occurs when the drive unit detects that the cylinder
positioner moved beyond the legal limits of the device during a load
address, write, read, compare, checkword check, or write address
function.

18 Address This error occurs when an illegal file address obtained from the
computer is detected or when the controller has advanced beyond the
limits of file storage.

-'- 19 Protect fault The protect fault occurs when an unprotected controller operation
attempt is made to write in a protected core location.

20 Checkword error The checkword error occurs when the controller logic detects an
incorrect checkword in data read from file storage during a read,
compare, or checkword operation.

21 Not used None

22 Card output stacker full Card readers

Empty output hopper, and take RP option.

24 Card feed failure The read ready station does not contain a card after a feed cycle has
occurred, and the input hopper is not empty.

• Card readers

Card feed failure error can occur as a result of warped or damaged
cards. If the card reader can be made ready, take the RP option.

25 Cardjam A card transport problem has occurred. It is possible for a card jam to
occur in anyone or more of four read stations in the 1nB Card Reader.

CAUTION
Do not attempt to single-cycle the machine.
Damage to the card transport or punch head may
result. Call customer engineering to aid in
clearing the jam.

E-S

Table E·l. Device FaUure Codes (cont)

Error Code Error Description

• Jam while reading

1. Examine the transport area.

2. Remove all cards that have completely passed under the read
station.

3. The cards that have not completely passed the read station have
not been read. Put these cards back into the hopper. Ready the
card reader, and repeat the request via the RP option. The cards
must be recycled in proper sequence.

4. If the procedure results in failure, abort the read.

26 Not enough file space is available for this request to pseudo tape driver.

27 Notused None

28 Reserved None

29 Read error A read error occurred in reading the mass storage resident driver.

30 Reserved None

31 Short record Attempt was made to write a record with a length less than the
standard noise-record length.

32 Notused None

33 Reserved None

34 Data interrupt A data interrupt occurred after reading 80 columns.

• Card readers

This error indicates a hardware failure, possibly due to improper
card travel.

Reread the card (see the recovery procedure for error code 4).

35 End of operation An end-of-operation interrupt occurred prior to reading 80 columns.

• Card readers

Continuous failures may indicate card slippage in feeding.

Reread the card as for error code 4.

36 Reserved None

37 Wrong address Buffered data channel is using. the first-word address other than the
address sent by a buffered driver.

40 Repeated the request due to an error The driver is attempting recovery.

41 Incomplete request The request was not successfully completed. The driver attempted to
re eat the re uest the maximum number of times. p q

E-6

Table E-l. Device Failure Codes (cont)

EnorCode Error Description

42 Reserved None

43 Incomplete directory call of overlay read request This is due to an irrecoverable error.

44 Guarded address Error is on write.

45 Reserved None
"

46 External reject Error occurs on output.

47 External reject The error occurred on input.

(48) Controller address error The controller address status is not the expected value.

49 Drive address error The drive address status is not the expected value.

50 NolD This is an ID abort; no ID burst (1732-2).

51 Illegal density An attempt to select illegal density (1732-2) was made.

52 Reserved None

53 Reserved None

54 Reserved None

55 Reserved None

56 Mass memory buffer expired No more buffer space is available (software buffer driver).

57 Buffer transfer error Mass memory error on buffer transfer (software buffer driver)
occurred.

58 Reserved None

EQUIPMENT STATUS CODES

The hardware status codes listed in tables E-2 to E-8 may
appear in the A register if the STATUS request is used.
These codes also appear in the engineering file printout.

Table E-2. 1711/1712/1713 Teletypewriter Status Codes

Register A
Status Description

Bits

0=1 Ready The teletypewriter power switch is in the ON-LINE position; power is
applied to the teletypewriter.

1 =1 Busy If the controller is in Read mode, it is in the process of receiving a char-
acter from the teletypewriter, or the holding register contains data for
transfer to the computer. The busy status drops when the data transfer
to the computer is completed, if data has not been lost in the meantime.

E-7

Table E·2. 1711/1712/1713 Teletypewriter Status Codes (cont)

Register A
Status Description Bits

If the controller is in Write mode, the data register contains data and is
in the process of transferring it to the teletypewriter. Busy status drops
when the transfer is complete. In either mode, the teletypewriter mode
control relays are in the process of switching from one mode to another.

2=1 Interrupt An interrupt condition exists in the controller.

3 ... 1 Data If the controller is in Read mode, the holding register contains data for
transfer to the computer. The data status drops when the read is
completed. One character (located in the lower 7 bits of the A register)
is transmitted at a time.

If the controller is in Write mode, it is ready to accept another write from
the computer. The data status drops when the write is completed.

4 ... 1 End of operation The clutch in the teletypewriter is disengaged. A change of controller
mode may be accomplished at this time. This status is equivalent to a
not-busy status.

5=1 Alarm The ready status is a 0 or the lost data status is a 1. The alarm status
drops when the condition it caused is corrected or when the interrupt
request is cleared.

6=1 lost data The holding register contained data for transfer to the computer, and
the teletypewriter began to send a new character sequence. The
lost-data status may be cleared by a clear-controller function or a
select-write-mode function after the teletypewriter is stopped and the
character in the holding register is read or when the interrupt request is
cleared.

7 Notused None

8 Notused None

9==1 Read mode The controller is conditioned for input operations.

10=1 Motor on (ready) This is identical to a ready status; the teletypewriter is turned on.

11 =1 End of file This is used for the 1713 paper tape reader only.

Table. E·3. 1728·430 Card Reader/punch Controller Status Codes

Register A
Status Description

Bits

0=1 Ready The card reader is operational.

1=1 Busy The controller is busy whenever a card is being entered into the buffer
memory.

2=1 Interrupt Interrupt status is available if one or more of the selected interrupts has
occurred. Other bits must be monitored to determine the condition
causing the interrupt.

E-8

Table E-3. 1728~430 Card Reader/punch Controller Status Codes (cont)

Register A
Status Description Bits

3=1 Data The card reader is ready to transfer data to the computer.

4=1 End of operation last card column was read, or a reload memory function was sent.

5=1 Alarm Card reader has one or more of the following alarm conditions:

• Compare or pre read error

• Stacker full or jammed

• Fail to feed

• Separator card transferred to memory

• AUTO/MAN switch in manual position

6=1 lost data Indicates data was not transferred out of the holding register before the
next column that was being read appeared. The status drops when a
clear (0= 1) is sent to the controller.

NOTE

When lost data occurs, no further transfe~s occur
from that card. An end-of-operation status is
generated.

7=1 Protected The controller recognizes only the I/O instructions with the protect bit
present. Bit 7 is 1 when the PROTECT switch is in the PROTECT
position.

8=1 Error A pre read or compare error occurred.

9=1 Motion failure This indicates that during a card cycle, the transport of the card failed.

10=1 End of file The end-of-file condition is caused by an empty input tray, unloaded
buffer memory, or the END-OF-FllE switch being on. When the input
tray does not contain the last card of a file, the switch should be off to
inhibit the status.

11 =1 End of file This indicates an end-of-file card has been read. This bit is set by the
driver.

12= 1 Chip box error The chip box is full.

Table E-4. 1729-3 Card Reader/Controller Status Codes

Register A Status Description
Bits

0=1 Ready The card reader is operational.

1=1 Busy The card reader is busy.

E-9

Table E-4. 1729-3 Card Reader /Controller Status Codes (cont)

Register A
Status Description Bits

2=1 Interrupt This indicates the interrupt response generated by the card reader.
Other status bits must be monitored to determine the cause of the
interrupt.

3=1 Data This indicates that data transfer may occur. For the reader data, the
data hold register contains information ready for transfer to the
computer.

4=1 End of operation End of operation indicates the card reader has completed operation.

5=1 Alarm An alarm status indicates the presence of an alarm condition.

6=1 lost data This indicates that data was not transferred out of the holding register
before the next column that is being read appeared. The status drops
when a clear (0 ... 1) is sentto the controller.

NOTE

When lost data occurs, no further transfers occur
from that card, and an end-of-operation status is
generated.

7=1 Protected This indicates the protect switch on the card is in the PROTECT
position. Whlln it is in this position, the card reader only accepts
instructions with a 1 on the program protect line. All other instructions
are rejected. A protected instruction is used with either a protected or
unprotected card reader.

8=0 Not used None

9=1 Not ready This is always the inverse of bit O.

10= 1 END-OF·FllE switch This status indicates the END-Of-FilE switch is on.

11 = 1 End-of-file card This indicates an end-of-file card has been read. The bit is set by the
driver.

Table E-S. 1732-2/61S-73/61S-93 Magnetic Tape Controller Status Codes

Register A Status Description
Bits

0=1 Ready The tape unit is connected and ready.

1 = 1 Busy The equipment is busy.

2=='1 PEwarning None

3=1 PE lost data None

4=1 End of operation Data transfer is completed.

5=1 Alarm An error condition occurred (see other error status lists).

6=1 lost data None

E-IO

Table E·5. 1732·2/615·73/615·93 Magnetic Tape Controller Status Codes (cont)

Register A Status Description Bits

7 ... 1 PE transport The controller is connected to a phase-encoding transport.

8=1 Parity error A parity error has been detected.

9=1 End of tape The end-of-tape marker has been sensed.

10-1 Loadpoint None

11-1 File mark A file mark or tape mark is sensed.

12-1 556 bpi The tape is set to 556 bpi.

13=1 800 bpi The tape is set to 800 bpi.

14=1 Seven-track None

15 ... 1 Write enable A write enable ring is present.

Table E·6. 1733·2/856·2/856·4 Cartridge Disk Controller Status Codes

Register A Status Description
Bits

0=1 Ready The ready status bit indicates that the drive is available and is ready to
operate. The drive becomes not ready for the following reasons:

• Disk pack not in drive unit

• Disk drive motor not up to operating speed

• Read/write heads not in operating position

• A fault condition develops in the drive

The status condition is affected by the· operating program only if it
selects a nonexisting device or a device which is not ready.

Normally the ready status bit indicates that manual intervention is
required at the selected drive unit.

1=1 Busy The busy status bit indicates that the controller and/or the drive unit is
presently involved in the performance of an operation.

The bit is set by the acceptance of a load address, write, read,
compare, checkword check, or write address function.

The busy status bit is cleared when the controller and/or drive unit has
completed its operation or when an abnormal condition is detected
which aborts the operation . .once initiated, the computer cannot clear
the busy condition.

2=1 Interrupt The interrupt status bit indicates that a selected interrupt condition has
occurred.

The bit is cleared by the acceptance of any output function.

E-ll

Table E·6. 1733.2/856.2/856·4 Cartridge Disk Controller Status Codes (cont)

Register A
Status Description Bits

3-1 On cylinder The on cylinder status bit is set when the drive positioner is on cylinder.

The bit is cleared if the drive unit is presently positioning or if a seek
error is detected.

4-1 End of operation The end-of-operation status bit is set whenever the controller portion of
an operation is complete. The busy status bit may remain set if the
selected unit is positioning.

The bit is cleared by any output function.

5-1 Alarm The alarm status bit indicates that one of the following abnormal condi-
tions occurred:

• Notready

• Checkword error

• Lostdata

• Seek error

• Address error

• Storage parity error

• Protect fault

Any output function clears the bit. The not ready condition can be
changed by manual intervention.

6=1 No compare The data received from the computer core storage does not compare
with the data read from file storage during a compare operation .

. ---------.
The bit is cleared by any output function.

7=1 protected) The controller is presently reserved for or being operated on by
protected computer instructions, or the drive unit is protected and may
only be accessed by protected computer instructions.

--- ---/ If the controller is reserved or being operated on by a protected instruc-
tion, it can be cleared by a protected director function which has the
release bit set in register A.

If the drive unit is protected by the PROTECT switch on the operator's
panel, it can -be cleared by changing the PROTECT switch to its off
position (down) or by deselecting the unit with a director function which
has the proper protect code set in register A.

8=1 Checkword error The controller logic has detected an incorrect checkword in data read
from file storage during a read, compare, or checkword check
operation.

The bit is cleared by any output function.

E-12

Table E-6. 1733-2/856-2/856-4 Cartridge Disk Controller Status Codes (cont)

Register A
Status Description Bits

9=1 lost data The computers direct-access bus has not been able to keep up to the
file data transfer rate during a write, read, or compare operation.

The bit is cleared by any output function.

10=1 /~ddress error The controller has detected an illegal file address receilJ~d from the
computer, or the controller has advanced the file address beyond the
limits of file storage.

The bit is cleared by any output function.

11 =1 Controller seek error The controller has been unable to obtain the file address selected
during a write, read, compare, or checkword check operation. This
error usually indicates a positioning error. The error can be corrected by
doing a status of the drive cylinder, comparing this with the cylinder
register (to find out how many tracks and in what direction the posi-
tioning error is from the selected file address). The first load address
function which follows a controller seek error moves 'the COD posi-
tioner without changing the cylinder register, and can therefore, correct
the positioning error.

The bit is cleared by any function which sets the busy status.

12 Drive type An 856-2 Drive is connected.

13=1 Storage parity error The controller has received a parity error signal from the direct-storage
bus while receiving data or control information. If the error is detected
on control information transfer, the operation ends immediately. If the
error is detected during a data transfer, the operation ends at the end of
the sector which is being operated on.

The bit is cleared by any output function.

14=1 Protect fault An unprotected controller operation attempts to read or write in a pro-
tected computer storage area. If the error is detected while control
information is being received from storage, the operation ends
immediately. If the error is detected while data is being transferred to
or from storage, the operation ends at the end of the sector which is
being operated on.

The bit is cleared by any output function.

15= 1 Drive seek The drive unit has detected that the cylinder positioner has moved
beyond the legal limits of the device (below cylinder 0 or above
maximum cylinder) during a load address, write, read, compar.e,
checkword check, or write address function.

The bit is cleared by any function that sets the busy status.

E-13

Table E-7. 1742-30/120 Line Printer Status Codes

Register A Status Description Bits

0 ... 1 Ready The printer is operational.

1=1 Busy The printer is busy during the transfer and storage of each character. It
is also busy after the initiation of a print cycle and remains busy until the
content of memory is printed. Paper motion also activates the printer.
Transfer of data to memory, however, is allowed.

2=1 Interrupt The printer indicates an interrupt response. The other status bits deter-
mine the cause of the interrupt.

3=1 Data The printer is ready to receive data. If an interrupt on data has been
selected, data status also indicates that the interrupt has occurred.

4=1 EOP The printer has completed an operation. If the bit is 1, no operation is in
progress.

5=1 Alarm The printer has an alarm condition.

6=1 Error A parity synchronization or compare error has occurred.

7=1 Protected The PROTECT switch on the printer is in the protected position. In this
position, the printer accepts only those instructions with a 1 on the
program protect line. All other instructions are rejected. A protected
instruction can be used with either a protected or unprotected printer.

B=l load image The image memory of the line printer must be loaded (1742-120 only).
The next2BB characters will be sent to the image memory.

Table E-8. Pseudo Tape Status Codes

Status Bits Status Description

0=1 Ready Always set

1=1 Busy Always set

2 Notused None

3=1 Data Set on completion of read or write

4=1 End of operation Set at end-of-operation

5=1 Alarm Set on malfunction/error

6 Not used None

7 Not used None

B Not used None

9=1 End of tape The last existing record on the file has been accessed

10=1 loadpoint The internal pointers are pointing to the beginning of the file

E-14

Table E-8. Pseudo Tape Status Codes (cont)

Status Bits Status Description

11-1 File mark A pseudo file mark has been sensed

12 Notused None

13 Notused None

14-1 BOO bpi Always set

15-1 Write enable The file may be written on

SYSTEM INITIALIZER CODES

Table E-9 defines the system initializer error codes.

Table E-9. System InitiaIizer Error Codes

Message Significance

ERROR 1 Asterisk initiator missing

ERROR2 Number appears in name field

ERROR3 Illegal control statement

ERROR4 Input mode illegal

ERROR5 Statement other than *Y or *YM previously entered

ERROR6 Statement other than *Y previously entered

ERROR7 *Y not entered prior to first *L

ERROR8 Name appears in number field

ERROR9 Illegal hexadecimal core relocation field

ERROR A Illegal mass storage sector number

ERRORB Error return from loader module

ERROR C Unpatched external at conclusion of an *M load

ERRORD Unpatched external at conclusion of an *L or *LP load

ERROR E Field terminator invalid

ERROR F More than 120 characters in control statement

ERROR 10 Ordinal name without ordinal number

ERROR 11 Doubly defined entry point

ERROR 12 Invalid ordinal number

E-15

Table E-9. System Initializer Error Codes (cont)

Message

ERROR13

ERROR 14

ERROR 15

ERROR16

ERROR 17

ERROR18

ERROR 19

ERROR20

ERROR21

ERROR22

ERROR23

ERROR24

ERROR25

ERROR26

SYSTEM INITIALIZER
LOADER ERRORS

Significance

Loader control statement out of order; correct order is L,
LP,M,MP

Data declared during an *M load but not by first seg-
ment; initialization restarted

Not used

Irrecoverable mass storage input! output error

Irrecoverable loader error; last program loaded was
ignored

Not used

Not used

*S,ENDOV4,hhhh not defined before first *L

*S,MSIZV4,hhhh not defined before first *LP or *MP

Attempt to load part 1 core resident into nonexistent
memory

The name used in the second field of an *M control
statement was not previously defined as an entry point

The entry point, SECTOR, was not defined at the start of
initialization and is not available to the initializer

Illegal partition number in first field of an *MP statement
or illegal number of partitions in second field of
statement

Attempt made to load an *MP program when no
partitioned core table exists in SYSDAT

The system initializer loader errors are defined in table
E-10.

Table E-IO. System Initializer Loader Errors

Message Significance

LOADER ERROR 1 Unrecognizable input

LOADER ERROR 2 Mass storage overflow

LOADER ERROR 3 Out of order input block

LOADER ERROR 4 Ille al data or common declaration g

E-16

Table E-IO. System InitiaIizer Loader Errors (cont)

Message

LOADER ERROR 5

LOADER ERROR 6

LOADER ERROR 7

LOADER ERROR B

LOADER ERROR 9

LOADER ERROR 10

LOADER ERROR 11

LOADER ERROR 12

LOADER ERROR 13

LOADER ERROR 14

LOADER ERROR 15

LOADER ERROR 16

LOADER ERROR 17

SYSTEM INITIALIZER
DISK ERRORS

The disk errors for the system initializer are given in
table E-ll.

Significance

Core overflow

Overflow of entry-point table

Data block overflow

Duplicate entry point

15/16-bit arithmetic error

Unpatched externals

Insufficient core for both SYSDAT and paging

Illegal page number used

Undefined transfer address

Invalid function for loader

link table overflow

External table overflow

Entry point absolutized to $7FFF

Table E-ll. System Initia.izer Disk Errors

Message Significance

DISK ERROR Address tag write sequence attempted but
internal/ external reject found

DISK FAILURE xx Surface test operation caused error xx; refer
to device error codes to interpret xx

DISK COMPARE Surface test pattern error on sector aaaa at
ERROR SECT aaaa word bbbb; only one error will be listed per
WORD bbbb is cccc sector. Data read was cccc but it should be
SBdddd dddd

E-17

GENERAL SYSTEM
ERROR MESSAGES

Table E-12 lists general system errors.

Table E-12. General System Error Messages

Message Significance

ALT,no. This informs the operator an alternate device number has
been assigned.

B01,statement A statement or parameters are unintelligible for. the
breakpoint program.

B02,address The specified hexadecimal address cannot be processed
by the breakpoint program because it is protected.

B03,address The breakpoint limit is exceeded. The specified hexa-
decimal address is the last breakpoint processed.

CHECK TAPE UNIT Restart the disk-to-tape program.

CHECKING FILE -ERRORS Errors were detected in the file manager files when
checked after autoload.

DATE/TIME ENTRY Reenter COS date/time.

DB FORMAT INCORRECT Some part of the remaining portion of request is incorrect
forODEBUG.

DB INVALID REQUEST The mnemonic does not agree with any known
mnemonic for ODEBUG.

DB I/O ERROR The monitor request returned with the error bit set for
ODEBUG.

DB LHO/LHC ERROR Data written on mass storage does not match LHO/LHC
inputfor ODEBUG.

DB NO CORE AVAILABLE No allocatable core is available for ODEBUG.

EF STACK OVERFLOW There is currently no space in the engineering file stack to
record this device failure.

EFSTOR LU ERROR An illegal logical unit has been passed to the engineering
file which is outside the range 1 to 99.

EFSTOR MASS MEMORY FAILURE An error occurred in updating the engineering file on mass
memory.

ILLEGAL PARAMETERS SPECIFIED Disk to tape has detected a nonhexadecimal character
for equipment code. Respecify equipment codes.

L,no. FAILED code ACTION The number of the failed device appears when a driver
cannot recover from an error. Type RP to repeat the
request; or, type CU to report the error condition to the
requesting program and continue. Press RETURN.

E-18

Table E-12. General System Error Messages (cont)

Message Significance

L,no. FAILED code status This informs operator of device failure in the initializer:

no. -logical unit of failed device

code-indicates cause of failure (see equipment mal-
function codes forthe code description)

status-hardware status

LUno.DOWN If a device is marked down and yet is requested by a pro-
gram, and this device contains no alternate, this message
is typed on the comment device only the first time it is
requested after being downed. The completion address is
always scheduled with error. The requesting program
should not continually request downed units.

MIINPUT ERROR A statement presented to the manual interrupt processor
is unrecognizable or the requested program is not
supplied.

MMERRxx xx ... Error number

LU=nn nn = Logical unit

T =hhmm:ss hhmm - Hours/minutes

S=ssss ssss = Hardware status

OV This shows an overflow of volatile storage. The message
appears on the output comment device. No recovery is
possible.

PARITY,address A memory parity error occurred at the specified hexa-
decimal location. The message appears on the output
comment device. No recovery is possible.

SET PROGRAM PROTECT The system is waiting for the PROGRAM PROTECT
switch to be set.

TIMER REJECT The timer start up was rejected (SPACE or MIPRO).

TROUBLE WITH THE DISK Restart the disk-to-tape program.

JOB PROCESSOR ERROR CODES
Table E-13 defines the job processor error codes.

Table E-13. Job Processor Error Codes

Message

JOB ABORTED

Significance

The current batch job has abnormally terminated. If the job
card included a job name, that name replaces JOB.

E-19

Table E-13. Job Processor Error Codes (coot)

Message Significance

JP,yyyyyy yyyyyy is the last program library program that was executed
before the job terminated.

JP01,hhhh This is a program protect violation. hhhh is the current con-
tents of the P register. The message is on the standard
comments device.

JP02,address An illegal request or parameters occurred at the specified
hexadecimal address. The message is on the standard
comments device.

JP03,statement An unintelligible control statement is output with the diag-
nostic. The message is on the standard comments device.

JP04,statement There are illegal or unintelligible parameters in the control
statement. The message is on the standard comments
device.

JP(!j The statement that was entered after manual interrupt is
illegal. The message is on the standard comments device.

JP06 A threadable request was made at level 1 when no protect
processor stack space was available, or an unprotected
threaded request was made at level 1. The message is on the
standard comments device.

JP07 An unprotected program tried to access the protected device.
The message is on the standard comments device.

JPOB An attempt was made to access the read-only unit for write
or the write-only unit for read, or an attempt to access an
unprotected request on a protected unit. The message is on
the standard comments device.

JP09 An liD error occurred while accessing the job processor file
directory table.

JP10 An operation was attempted on a file that is not in the file
table. Define the file.

JPll The file name that is being defined already exists for another
file. Dump the file table to select a name that was not used
previously, or attempt a new define with another name.

JP12 An attempt was made to access a file that has not been

\
opened.

JP13 No files are available for definition. Purge the file table to
make available any expired files.

! JP14 An attempt to open a previously opened file has been made.
I
J

JP15,xxx The JOB card was not the first control statement in job, or
more than one job card was detected in a job. xxx is the
control statement in error.

E-20

LOADER ERROR CODES

Loader error codes are defined in table E-14.

Table E-14. Loader Error Codes

Message Significance

El Irrecoverable input/output error; terminates load

E2 [lverflow of entry external table reservation on mass
storage; terminates load

E3 Illegal or out-of-order input block; terminates load

E4 Incorrect common or data block storage reservation; occurs
if the largest common storage declaration is not on first
NAM block to declare common or data storage or occurs if
when protected common or data was being used, the NAM
block declared a reservation longer that protected common
or data; terminates load

E5 Program longer than area or partitions allotted to it;
terminates load

E6 Attempt to load information in protected core; terminates
load

E7 Attempt to begin data storage beyond assigned block;
terminates load

EB Ouplicate entry point

E9 High-order bit of a relocatable address is set or negative
relocation has been encountered during part 1 load;
terminates load

ElO Unpatched externals; external name is printed following
the diagnostic; when all unpatched externals have been
printed, the operator may terminate the job by typing in an
*T CR or continue execution by typing in an *CR; core-
resident entry point tables may also be linked by typing in an
*E

LIBEDT ERROR CODES

The error codes assigned to LIBEDT are defined in table
E-lS.

Message Significance

Ell Minimum amount of core not available for load; at least 195
words plus the length of the loader must be available;
terminates load

E12 Overflow of command sequence storage reservation on
mass storage; terminates load

E13 Undefined or missing transfer address; this code is not
given if the loading operation is part of system initialization;
occurs when loader does not encounter a name for the
transfer address or the name encountered is not defined in
loader's table as entry-point name; loading is terminated

E14 loader request operation code word illegal; terminates load

E15 Overflow of loader table used to store relocatable
addresses that have been absolutized to $7FFF; terminates
load

E16 Entry-point name not in loader table; operator must type in
correct entry-point name

E17 Informative diagnostic; relocatable entry point has been
absolutized to location $7FFF; if any program in system is
testing for an entry-point value of $7FFF to indicate that this
entry point is not present, the test is not valid

Table E-15. LIBEDT Error Codes

Message Significance Message Significance

lOl More than six characters in a parameter name are lO3 An improper system directory ordinal was presented to the
presented to the library editing program library editing program.

lO2 More than six digits in a number are presented to the library L04 An invalid control statement was presented to the library
editing program. editing program.

E-21

Table E·15. LmEDT Error Codes (cont)

Message Significance

L05 An illegal field delimiter in a control statement was
presented to the library editing program.

LOS An illegal field in the control statement was presented to
the library editing program, or inputloutput was attempted
on a protected device.

L07 Errors occurred in loading as a result of a library editing pro-
gram control statement.

LOB A program to be added to the program library has an entry
point which duplicates one already in the directory.

L09 Standard input failed on the first input record following an
*N request.

110 The operator is deleting a program which is not in the
library.

111 No header record is on file input from mass storage.

112 On an *L entry statement, either there was an input error or
the first record was not a NAM block.

113 The common area declared by the program being loaded
exceeds available common or system common not specified
in system when requested.

COSY ERRORS

Table E-161ists COSY errors with the appropriate COSY
action for the error.

MQssage Significance

L14 The program which is being loaded is longer than the size of
unprotected core but is not longer that the distance from the
start of unprotected core to the top of core.

L15 An illegal input block is encountered. The last program
stored in the library is not complete.

US An 1/0 input error occurred. The last program stored is not
complete.

U7 An *L program being installed exceeds the capacity of
UBEDT to input from mass storage.

UB An attempt was made to load a zero-length program during
an *M request.

L19 No data-base entry point was specified in the system for
use by an *A statement and parameters.

120 An irrecoverable error occurred during loading.

121 An attempt was made to write beyond the maximum sector
number specified for MAXSEC at initialization.

Table E·16. COSY Errors

Message Significance COSY Action

no. ERRORS This message appears at the end of a COSY
job if errors exist. The number specified is the
decimal count of errors in the COSY job.

****COSY
Cno****

------- ---- -------- ---- -------- - ---
01 The first card of the revisions deck is not a COSY reads the revisions and lists them with asterisks in columns 1

DCK/, MRGI, CPY I, or ENOl control card. through 4 until it reads a DCK/, MRGI, CPY I, or ENOl card.

02 Illegal parameters occurred on the MRGI COSY aborts.
control card.

03 The first card from merge input is not a DCKI COSY reads the revisions and lists them with asterisks in columns 1
control card. through 4 until it reads a DCKI or ENOl card.

E-22

Table E-16. COSy Errors (cont)

MeS$8go' Significance COSY Action

04 An MRGI control card is in revisions decks. COSY aborts.

05 Illegal parameters occurred on the DEU, COSY reads revisions and lists them with asterisks in columns 1
INS/, or REMI control card. through 4 until it reads next control card.

06 Sequence numbers are out of order in the COSY reads the revisions and lists them with asterisks in columns 1
revisions set. through 4 until it reads next control card.

07 Two sequence numbers occurred on the INSI COSY reads the revisions and lists them with asterisks in columns 1
control card. through 4 until it reads next control card.

08 The control card does not follow DCKI card COSY reads the revisions and lists them with asterisks in columns 1
when revisions are being merged. through 4 until it reads next control card.

09 The first card of the source deck is not a COSY aborts.
CSY lor HOU control card.

10 The requested deck is not on the input COSY reads the revisions and lists them with asterisks in columns 1
library. through 4 until it reads a DCKI, MRG/, or ENDI card.

11 Decknames on the DCKI and HOU cards do COSY aborts.
not agree when adding a new deck to COSY
library.

12 The revision card following the DCKI card is COSY reads the revisions and lists them with asterisks in columns 1
not a control card. through 4 until it reads a control card.

13 The DEU or INSI card contains a sequence COSY reads the revisions and lists them with asterisks in columns 1
number beyond the end of the input deck. through 4 until it reads a DCKI, MRG/, or ENDI card.

14 An illegal parameter occurred on the DCKI COSY reads the revisions and lists them with asterisks in columns 1
card. through 4 until it reads a DCK/, MRG/, or ENDI card.

15 A parameter occurred on the DCKI card COSY uses the second parameter.
twice.

16 A DCKI card requests both Hand Cor Hand L The C or L parameter is ignored. Processing continues.
on the same unit.

17 A DCKI card requests input from a logical COSY reads the revisions and lists them with asterisks in columns 1
unit previously used for output. through 4 until it reads a DCK/, MRG/, or ENDI card.

18 COSY output is requested on a unit pre- The illegal output request is cleared. Processing continues.
viously used for Hollerith output, or Hollerith
output is requested on a unit previously used
for COSY.

19 The maximum number of output units is Output is cleared. Processing continues.
exceeded.

20 The DCKI card requests output on a logical The output is removed. Processing continues.
unit previously used as input.

21 The DCKI card requests C and L output on The L parameter is ignored. Processing continues.
the same unit.

E-23

Table E-16. COSy Errors (cont)

Message Significance COSY Action

22 The CPY I control card is not the first card of The CPY I control card is listed with asterisks in the first four
the revisions deck. columns, and the next control card is read.

23 The CPY / card was not followed by a CPY / or COSY aborts.
ENOl card.

L,lu,FAILED ec COSY driver errors output by the alternate For protected requests:
device handler. All errors are catastrophic:

Type DU
1 Not assigned

For unprotected requests:
2 Rrst record read not a CSY / record

TypeDU
3 ENOl card not last card on COSY input

4 No end-of-file on COSY input

5 Read request was made to a logical unit
assigned to output, or write request was
made to a logical unit assigned to input

6 MOTION request was made to a logical unit
assigned to input/output and no end-of-deck
marker was encountered

REWIND LU no. This message may appear at various times The operator must enter any value through the standard input
during a COSY job. The specified number is comment device after rewinding the unit.
the decimal logical unit to be rewound.

MACRO ASSEMBLER
Table E-17 lists macro assembler errors.

Table E-17. Macro Assembler Errors

Message Significance

xxxxyy********** This is the format for pass 1 and 2 error messages:

Where:

xxxx - four-digit line number

yy - two-character error code explained in table

******yy********** This is the format for pass 3 error messages. If the L option is
selected, errors in pass 3 precede the source line on the list
output. If L is not selected, error messages are output on the
standard comment unit.

ABS BASE ERR The assembler was loaded at a different location from where it
was absolutized.

E-24

Table E·17. Macro Assembler Errors (cont)

Message Significance

**DS A double-defined symbol occurred; a name is in:

• Location field of a machine instruction

• ALF, NUM, or ADC pseudo instruction

• Address field of an EaU, COM, DATA, EXT, BSS, or BZS
pseudo instruction

**EX This indicates an illegal expression; either:

• No forward referencing of some symbolic operands

• No relocation of certain expression values

• A violation of relocation

• Illegal register reference

• Symbol other than a, I, or B is specified

INPUT ERROR An error was returned by the driver when doing a read.

**lB A numeric or symbolic label contains an illegal character. The
label is ignored.

MASS STORAGE OVERFLOW There is not enough room for the input image on mass storage.

**MC This is a macro call error:

• Illegal parameter list

• No continuation card where one was indicated

**MD A macro definition error occurred.

**MO An overflow of the load-and-go area has occurred; affects only
the X option.

**NN There is a missing or misplaced NAM statement.

**OP An illegal operation code is encountered:

• Illegal symbol in operation code field

• Illegal operation code terminator

**OV One of the following occurred:

• Numeric constant or operand overflow value is greater than
allowed

• Operand overflowed

E·25

Message

**pp

**Rl

**sa

**UD

UTILITY PROGRAMS

Table E·17. Macro Assembler Errors (cont)

Significance

An error in the previous pass of the compilation assembly has
occurred; the output page immediately preceding the first page
of listing for pass 1 or pass 2 error message.

An illegal relocation is found:

• Violation of relocation

• Violation of a rule for instructions that requires the
expression value to either be absolute or have no forward
referencing of symbolic operands

A sequence error is indicated; this tags instructions with
sequence numbers that are out of order. This is not fatal and is
not counted in the number of errors reported at the bottom of
the symbol table.

An undefined symbol in an address expression is found.

Table E-18 defines the utility program errors.

Table E·18. Utility Program Errors

IOUP

Message Significance

END OFTAPE LU nnnn ACTION? An end-of-tape mark is sensed while data is being written on
magnetic tape. The operator must respond with either $RES to
resume action from the point of last interruption or $END to
terminate the request.

FILE BACKD FILE nnnn The specified unit has been backspaced by nnnn files or records.
FILE BACKD RECS nnnn

FILE SKIPD FILE nnnn The specified unit has been advanced by nnnn files or records.
FILE SKIPD RECS nnnn

FORMAT ERROR This indicates an invalid control statement; reenter the statement.

IN/OUT ERROR LU nnnn An error occurred in an input! output operation on logical unit nnnn.

MISMATCH REC nn*32768+nnnnn The indicated record is not the same on both the data being verified.

NOTE

The nn and nnnn are defined as follows:

nn-OO through 03

E-26

Table E-18. Utility Program Errors (cont)

IOUP

Message Significance

The quotient is obtained by dividing the total num-
ber of records by 32768. If nn is 0, only nnnn will be
typed out.

nnnnn-O through 32767

The remainder is obtained by dividing the total
number of records by 32768.

UTFORMATINCORRECT The request is not correctly formatted. Parameters and/or
delimiters are incorrect.

UT INVALID REQUEST The mnemonic request code is illegal.

DTLP

Message Significance

ILLEGAL PARAMETERS SPECIFIED The equipment code which was specified for disk to tape contains a
nonhexadecimal character.

DISK ERROR (xxxx) A disk error has occurred. The last status read was xxxx.

TAPE ERROR (xxxx) A tape error has occurred. The last status read was xxxx.

LlBILD

Message Significance

INVALID LU The logical unit is illegal.

INVALID CLASS CODE The device is incompatible with the function to be performed.

LAST DECK REJECTED -NOT UNIQUE This refers to duplicate copies of program. The program
identification must be unique.

LAST DECK REJECTED -NO XFR RECORD The binary program does not have a transfer record.

NAME RECORD NOT 1ST RECORD OF DECK. The expected relocatable binary deck did not have a NAM block
TYPE 1,CR TO TERMINATE EXECUTION. format.
TYPE 2,CR TO PROCEED TO SUBSEQUENT LIBRARY OR SKELETON.
TYPE 3,CRTO CONTINUE ON WITH CURRENT LIBRARY

XFR RECORD MISSING FOR LAST PGM LISTED. PGM DElETED. The relocatable binary deck was not terminated with XFR block.
TYPE 1,CRTO TERMINATE EXECUTION.
TYPE 2,CR TO PROCEED TO SUBSEQUENT LIBRARY OR SKElETON.
TYPE 3,CR TO CONTINUE ON WITH CURRENT LIBRARY.

TOO MANY BINARY DECKS LOADED. This library has more programs that LlBILD can process.
CHANGE LIMIT AND RECOMPILE.

'E-27

Table E-18. UtHIty Program Errors (cont)

LlBILD

Message Significance

CHECKSUM ERROR NOTED IN LAST PROGRAM. Previously generated checksum does not compare with the current
BAD *DEF RECORD. NO IDENT CHARACTER. checksum when the program is read from mass memory.
BAD *DEF RECORD.IDENT CHAR ALREADY USED~ IGNORED.

INVALID DEFINITION RECORD. IGNORED. *DEF is not the first record of the definition group.
NO DEFINITIONS WERE SUCCESSFULLY LOADED.
TOO MANY DEFINITION SETS. IGNORED.
PROGRAM SPECIFIED BY THIS RECORD NOT FOUND.
PROGRAM HAVING THIS 10 INFO NOT FOUND.

MORE THAN ONE PGM HAS THIS NAME. (NO 10 INFO.) The first program on the library with this name will be written to
installation file.

ILLEGAL CHARACTER STARTS IDENT FIELD. The ident field must start with a single quote.

ILLEGAL IDENT FIELD. RECORD IGNORED. The *B record was not terminated by a single quote prior to column
73.

ILLEGAL *B RECORD. RECORD IGNORED. The name field of *B must be enclosed by single quotes.

NULL PROGRAM NAME. RECORD IGNORED. The name field consists of two single quotes.

PROGRAM NAMETOO LONG. RECORD IGNORED. The name on *B contains more than six nonblank characters.

NO DEFINITIONS ARE STORED. RECORD IGNORED. *USE was encoulltered but no definitions were made.

INVALID *USE RECOflD.IDENT FIELD. RECORD IGNORED. No nonblank character was detected prior to column 73.
INVALID *USE RECORD. MAX IMBEDDED LEVEL IS SIX.
RECORD IGNORED.

INVALID *USE RECORD. REQUESTED SET IS IN USE. This *USE is infinitely recursive.
RECORD IGNORED.

SKED

Message Significance

INVALID COMMAND The command was not valid for SKED.

ERROR IN COMMAND FORMAT A comma, argument, etc. has been omitted.

COMMAND NAME NOT UNIQUE Not enough letters were included to uniquely define command.

LU NOT LEGAL FOR COMMANDS The device type was not valid for the command requiring.

SKELETON NOT LOADED The skeleton was not previously loaded prior to operation on it.

RECORD NUMBER IS ZERO The record number of zero is illegal.

INVALID CHARACTER IN NUMBER Nondecimal characters were specified in the number argument.

INVALID RECORD NUMBER The record number is out of range, or the second argument is less
than the first argument.

E-28

Table E-18. Utility Program Errors (cont)

SI(ED

Message

RANGE CONTAINS NUMBER ALREADY DELETED

RECORDS HAVE BEEN PREVIOUSLY DELETED

-.•

NO INSERTION RECORDS FOUND AT SPECIFIED LU

RECORDS NOT DELETED PLEASE RESEQUENCE SKELETON

RESPONSE MUST BE LU(CR) OR (CA)

ENTER COMMANDS ON INPUT COMMENT DEVICE

PAULA

Message

ILLEGAL INPUT STATEMENT

ERROR ON INPUT DEVICE

ILLEGAL M, STATEMENT

ILLEGAL D, STATEMENT

NAM NOT FOUND

DEBUG ASSISTANCE

The following paragraphs explain COS debug.

Monitor

A module in CYBERDATA was created to point to a
serious system failure if a certain test performed by this
module is not satisfied. This module, called MONITR, is
a debug routine which checks for corruption of system
tables, low core, etc. This module is not always alive in
the system.

Significance

The record has been referenced which has been deleted.

Range of record numbers of the catalog command includes numbers
which have been deleted.

A device which was defined for insertion records does not contain
any.

An attempt was made to delete more than 500 records since the file
was last resequenced.

There was an invalid response to message:

ANY MORE INPUT
ENTERLU

An error has been detected; input command device is not the
console.

Significance

The command cannot be recognized.

An irrecoverable error was detected on the device.

A tape motion request cannot be interpreted.

There is an invalid sector number parameter.

The designated module could not be located.

NOTE

For tracking down bugs and/or for testing own
codes, etc., the monitor should be used to help
spot problems. To use the monitor in this manner,
turn on the SELECTIVE SKIP switch (up
position). (This will generate extra system
overhead which could affect otherwise heavy
system use.)

E-29

Table E-19 is a list of error codes and the error printout
descriptions.

The system prints out the following message to note the
errors which have occurred. See table E-19 for the error
codes.

T=XX E=XX P=XXXX Q=XXXX

A=XXXX M=XXXX I=XXXX H:MM:SS

Table E·19. Monitor Errors

E T n A I

olt·
I

Terminal number Unused TRBADR ATTADR

02 Terminal number Unused Unused ATTADR

03 Terminal number Unused Unused ATTADR

04 Terminal number Unused Unused ATTADR

05 Unused Unused Unused Unused

06 Terminal number Unused Unused ATTADR

07 Terminal number Unused Unused ATT ADR

DB Number of terms Unused Unused Unused

09 Terminal number Unused Unused ATT ADR

10 Terminal number Unused Word/Term; ATT ADR

11 Terminal number Unused Unused ATTADR

12

13 Terminal number Unused Unused ATT ADR

99-r Unused Core location PRD index ATT ADR

NOTE

Description

Disk address loop (Terminal-accessing
disk left locked)

Stack full

No index (EXDFUN)

FRP chain corrupted

low-core checksum error

Nonexistant function called (ENTPRG)

Supervisors TJQ non-zero

Illegal number of terminals

No conversion table

Error in ATT

No supervisor when SV called

Unused

Format number 0 referenced

Not an error

1'I%S8OB
tThis printout can be caused with the patch lHC,MONITR,m; 5BoE. Each time a disk-resident module is loaded into core the message is printed giving
information on the module loaded.

:tHigh-order B bits contain index into ATT; low-order B bits contain terminal number.

(

E-30

APPENDIX F

SYSTEM UTILITY
PROCESSOR COMMANDS

System Utility Processor Commands

INTRODUCT][ON

The system utility processor (SUP) is 'a generalized tape
utility for the 1700 series Computer Systems under
control of COS. The system utility processor is designed
to provide a set of functional operations to process
magnetic tape files created on CDC or other manufac
turer's equipment. The SUP capabilities encompass the
more complex record formats and labeling structures
usually found in data processing environments.

DESIGN REQUIREMENTS

The system utility processor is designed to provide a
medium through which the user can utilize a 1700 series
system to reduce 110 processing such as off-line printing
of listable tapes on other systems. The system utility
processor also provides data manipulation of 1700-
system-created tapes to augment other 1700 series
features, such as readable tape dumps and improvement
of 110 efficiency, through the blocking and deblocking of
data files.

SYSTEM CONFIGURATION
REQUIREMENTS

SUP is designed to run under COS control with a
minimum of SK of available storage beyond the basic
system. Under COS, SUP is installed in the program
library and is executed as a background job.

MINIMUM HARDWARE
CONFIGURATION

When using COS, the minimum hardware required for
the system utility processor includes a minimum SK to be
available for background processing, a teletypewriter or
CRT, tape transports, disk pack, and a printer (if PRINT
and DUMP functions are used extensively).

NOTATIONAL CONVENTIONS

Parameters are defined as keyword identifiers and may
be entered via the teletypewriter in any order, unless
otherwise specified. The OPEN and CLOSE statements
are the only exceptions. These two statements require the
first parameter following the operator (OPEN, CLOSE)
to be either Inn, Onn, VFnn, or PRnn. A value may be
associated with the keyword parameter, which may be

either numeric (deciman, hex-numeric, or alphabetic. To
assign a value to a keyword, the following rules apply:

o Numeric

A numeric value may be attached to a keyword by
following the keyword with a numeric value such
as P ARM12, where 12 is the associated numeric
value. Numeric values may be assigned to a
keyword through the equal sign as in PARM=12.

o Hex-numeric

A hexadecimal number may be assigned to a
keyword in the same manner as decimal numerics
except a dollar sign ($) is inserted immediately
preceding the hexadecimal number such as
PARM$C or PARM=$C.

o Alphabetic

An alphabetic string may be assigned to a
keyword via the equal sign, but it must also be
delimited by quotes as in PARM=' ALPHA
STRING'.

The symbols [], (), , ... ,_, and' are used to define all the
SUP control statements. The symbols are not parts of
any statement but are only used to indicate how a control
statement should be entered on the console.

The symbols are defined as follows:

· []
The brackets represent optional parameters. Any
parameters enclosed in brackets mayor may not
be entered on the console depending on the user's
needs. If more than one parameter is enclosed in
the brackets, only one item can be entered on the
console.

· ()

•

The parentheses indicate that a choice must be
made between parameters. One of the parameters
from the vertical stack must be coded.

This symbol indicates more than one set of
parameters may be entered on the console.

· -
To select a parameter or operator, the underline
symbol must be used. All following capital letters

F-l

which are not underlined may be included
without intervening blanks; however, they may be
ignored.

· '
This symbol indicates a single quote or
apostrophe.

FEATURES

The features of the system utility processor are selected
by the user to best satisfy his requirements. The feature
package is modularly designed such that optional
modules may be included or excluded in any system
utility processor. Standard modules are required. The
following are features that include both standard and
optional modules: .

F-2

• Copy

This optional module copies data from tape to
~ape.

• Dump

This optional module prints a dump from the
tape to the printer in either hexadecimal or
character mode.

• Initialize

This optional module writes volume 1 tape
headers with volume serial numbers on any tape.

• Labels

This optional module provides for the reading
and writing of. standard tape labels and trailer
records.

• Print

This optional module prints standard listings
from a tape.

• Selection

The selection optional module selects records for
processing based on specified criteria.

• Verify

The verify optional module verifies data on two
tape files and checks for equality.

• Blocking

This standard module allows the processing of
either blocked or unblocked records.

• Conversion

The conversion standard module allows the
selection of the following data conversion options:

- ASCII to EBCDIC
- EBCDIC to ASCII
- ASCII to BCD
- BCD to ASCII
- EBCDIC to BCD
- BCD to EBCDIC

• Positioning

This standard module positions tapes to given
records, blocks, or records in blocks, using any of
the processing functions.

• Record formats

This is a standard module in which all functions
of SUP can process the following record formats:

- Variable-length unbloc"ked records
- Variable-length blocked records
- Fixed-length records
- Fixed-length, blocked records
- Undefined records; for example, fixed-· or

variable-length records that follow no standard
or are intermixed

SYSTEM UTILITY PROCESSOR
LOADING PROCEDURE

SUP is loaded into memory, for execution, from the COS
program library. The following is the instruction for
loading and execution of the system utility processor:

*SUPLP
TAPE UTILITY
*NEXT:

UTILITY CONTROL LANGUAGE
FUNCTION

SUP executes through the use of a declarative and
operational utility control language. Declarative control
statements define file characteristics and internal
processing options such as data conversion and blocking.
The operational control statements define functional

operations such as tape copy and transferring of data on
tape to the printer. Control statements consist of an
OPERATOR, which is a mnemonic describing the
function to be executed, and a list of parameters.
Parameters in a control statement may be either optional
or required, depending on the function. If a parameter is
required in a function but is omitted, a message is
generated to request that the parameter be stated. If a
parameter is optional in a function but is required
because of prt;~'ious options, a message is generated to
request that the parameter be stated.

The general format for all declarative and operation
control statements is:

OPERATOR,PARMl,PARM2, ... ,

Declarative Control Statements

The two declarative control statements (OPEN and
CLOSE) are used to control the following functions:

• Blocking
o Conversion
o Labeling
• Record format
o File termination
• Positioning to files or records
• Data processing

By using the OPEN statement, the user specifies the
characteristics of the file or files on which a function is to
be applied.

The OPEN statement must be issued for all logical units
used by a function prior to the function's use.

After a process is terminated, the user must specify the
CLOSE statement. This statement provides for end-of
volume termination, tape marks, labels, and tape
positioning options.

OPEN Statement

The OPEN statement defines the characteristics of the
magnetic tape files that are used in a process. The
statement is used to assign blocking factors, record
lengths, record formats, label formats, conversion
information on' either input or output data files, and
positioning to records or files.

The format for the OPEN statement is:

OPEN,

[SFnn J [BRnnnnnJ

[LBnnnnnJ [LRnnnnnJ

Where:

~
PNAM [='XXXXXX'~
TNAM [='XXXXXX'],
SNAM [='XXXXXX']
NAM [='XXXXXX']

[LCnnn]

• Either I, 0, VF, or PR must be the first parameter
entered after the function statement. The
remaining parameters may be input in any order.

• Inn-input

! indicates that the OPEN statement applies to
the input device, where nn specifies the one- or
two-digit logical number of the input device. If nn
is omitted, the standard input logical unit number
is assumed.

o Qnn-output

Q indicates that the OPEN statement applies to
the output device, where nn specifies the one- or
two-digit logical number of the output device. If
nn is omitted, the standard output logical unit
number is assumed.

• VFnn-verify

VF indicates that the OPEN statement applies to
the verify file, where nn specifies the one- or
two-digit logical unit number of that file. If nn is
omitted, the standard output logical unit number
is assumed. .

o PRnn-print

PR indicates that the OPEN statement applies to
the list device, where nn specifies the one- or
two-digit logical number of that device. If nn is
omitted, the standard list device is assumed.

LABEL TYPES

The label types for the OPEN statement are:

• SL

This means to process labels as standard tape
labels.

• BL

This means to bypass labels.

F-3

• "NL

This indicates no labels, meaning perform no
label processing.

Definition of the label types are as follows:

• SL-standard

Input label processing involves the verification of
the volume, header, and trailer labels. Output
processing requires a volume label and header
labels or two tape "marks. Label processing
ensures all labels are correct and a volume has
expired before it is written over. Automatic
sequencing to the next input volume and multi
volume output processing is included in standard
label processing. Labels may be American
National Standard labels or EBCDIC standard
labels (see conversion option on page F-2). Input
label processing requires HDR1, EOF1, or EOV1
labels. Output processing generates HDR1,
HDR2, EOF1, EOF2, EOV1, and EOV2labels.

If open processing of the HDR2 label is featured,
it eliminates the need for specifying block size,
record size, or record formats in the OPEN
statement.

The discussion on page F -17 contains a complete
description of label processing and label content.

• BL-bypass labels

If BL is specified the tape is positioned to the first
record of the specified file. No attempt is made to
verify the volume, header, or trailer labels. BL
must not be specified for output files.

• NL-no labels

If NL is specified the tape is not positioned. If the
label parameter is omitted, NL is assumed.

RECORD FORMAT

The record format is defined as follows:

F-4

• y-variable-Iength records

In the first 32 bits of a record, 16 bits must con
tain a binary number specifying the record length.
The last 16 bits must be zero-filled.

• VB-variable-length, blocked records

In the first 32 bits of a block, 16 bits must contain

a binary number which specifies the block length .
The next 16 bits must be zero-filled. The frrst
variable-length record of the block must follow
the 32 bits.

• E-fixed-Iength records

Each record must be exactly the same length.

• FB-fixed-Iength, blocked records

Each block must contain an integral number of
fixed-length records. There is no requirement that
the block length remain fixed. Fixed blocking
usually has a maximum length.

• V-undefined record format

Each record is treated as an undefined, variable
length record. Blocking cannot be used in the
undefined format. Print files may be specified as
1! only. If the format parameter is omitted, V is
assumed. Refer to page F-23 for a description of
each record format.

DATA FORMAT

The following parameters specify data conversion. To
specify conversion, both the input and output file data
formats must be defined. For example, if the input data
format is specified as A (ASCII) and the output tape is
specified as g (EBCDIC) the conversion of ASCII to
EBCDIC takes place. If the data format of the specified
input and output files is the same or not given, no
conversion takes place.

• B

B indicates the specified tape file contains BCD
data (seven-track only).

• E

E specifies the tape file contains EBCDIC data. If
SL is specified, E implies EBCDIC labels are to be
read or written.

• A

This indicates the specified tape file contains
ASCII or binary. ASCII or binary is assumed if a
code is not entered.

Label processing uses the conversion code to imply the
label type. Since EBCDIC codes are primarily IBM
standard, E causes System/360/370, OS/DOS/VS
compatible labels to be generated.

The data format code may be necessary to list or dump
certain data tapes since the system printer can accept
only one data format. If the file is to be properly printed,
therefore, the conversion code must be specified. Binary
data does not require conversion. The default is either
binary or ASCII. Refer to the conversion tables on page
F-24.

POSITIONING AND SELECTIVE
RECORD PROCESSING

Parameters, which cause input or output files to be
positioned to a given record and file, may be specified.
Other parameters may be specified to selectively process
records used as input to or output of the COS assembler.

These parameters are:

o SFnn-skip files

This parameter specifies skip nn files before
processing where nn is a one- or two-digit decimal
number. Skip files may be used on either input or
output files.

o BRnnnnn-bypass records

This parameter specifies bypass nnnnn records
before processing where nnnnn is a one-to-five
digit decimal number not greater than 32,767.
Bypass records may be used on either input or
output files.

Note

The BR parameter may not be used
with the parameters PNAM, TNAM,
SNAM, or NAM because the result
ing output is unreliable.

o PNAM (='XXXXXX'}-position to name

This parameter specifies positioning of a data file
to a name statement or name block which con
tains the name specified by XXXXXX where
XXXXXX is a one-to-six-character name. If
XXXXXX is not specified, the first NAM block or
statement is used. The PNAM parameter
bypasses all records prior to the specification
condition. Positioning of files occurs during an
operational function; therefore, the input file is
not positioned during OPEN processing.

SELECTIVE PROCESSING OF PARAMETERS

Selective processing which uses the SNAM, TNAM, and
NAM parameters specifies positioning to given records

as in PNAM and termination of the process when the
record is found. Selective processing can occur only on
input files. Processing files that are not 1700 source data,
listable, or relocatable records produce unreliable
results. Selective processing does not require a specified
type of file (source listable or relocatable).

o TNAM (='XXXXXX'}-terminate name

This indicates the termination of processing on
the specified name statement or block. If
XXXXXX is specified, termination occurs when
the name specified by XXXXXX is located. If
XXXXXX is not specified, the file is terminated
on the first name statement or block. Where
TNAM and PNAM are used jointly, termination
tests are not executed until at least one record has
been processed. This feature allows the processing
of all records between specified name statements
and blocks.

o SNAM (='XXXXXX'}-select name
and terminate

This specifies the selection of records following
and including the specified name statement or
block and terminates processing on the next name
statement or block. SNAM is similar to using the
PNAM and TNAM parameters where PNAM
specifies the name block and TNAM does not
specify a particular name block. SNAM may be
used, therefore, to selectively process one file
delimited by name statements.

o NAM (='XXXXXX'}-name blocks
or statements

This specifies the selection of records which are
only name blocks or statements. If XXXXXX is
specified, the selection is limited to name blocks
with the name specified by XXXXXX. Usually a
name is not specified since the NAM parameter
generally is used to determine the names of all
programs on a given file. The NAM parameter
when used with the PR function, for example,
results in a listing of all name statements on the
associated input file.

SPECIFICATION OF RECORD SIZES

Before processing a data file, the block size and/ or
record size should be specified; however, for con
venience, block and record sizes have default values of
136 characters. If files are unblocked, either record or
block sizes may be specified. If both are specified, they
must be equal. Block and record sizes are generally
maximum values; however, if fixed-length records or
blocks are specified, the record size must be the exact

F-S

record size. If record and block sizes are incorrectly
specified, a warning message is used to indicate the error.
Processing is possible if a warning occurs; however,
results are unpredictable.

Since records are read and written from allocated
storage, it is possible that excessive block or record sizes
could exceed the available storage. The OPEN statement
precludes this possibility by terminating and issuing a
severe error message, indicating insufficient storage. (see
page F-14). The following parameters may be used to
specify associated block and record sizes.

• LBnnnnn-length of block

This indicates the maximum block length where
nnnnn is a one-to-five-digit decimal number (not
greater than 32,767), specifying the number of
characters in a block. For undefined-, fixed-, or
variable-length records, LB must equal LR. For
blocked records, LB must be greater than or
equal to LR. For PR files, LB is used as the form's
width.

• LRnnnnn-length of record

This indicates the maximum record length where
nnnnn is a one-to-five-digit decimal number (not
greater than 32,767) specifying the maximum
number of characters in a record. If fixed block is
specified, LR is the exact length of each record.
For PR files, LR is used as the form's width.

• LCnnnnn-line count per page

This specifies the number of lines per page before
ejecting the page (only valid for PR files). If LC is
unspecified, S6 lines per page is assumed. By
specifying zero, line counting is inhibited.

NOTE

Because of operating restrictions,
block and record sizes must be a
multiple of two characters.

CLOSE Statement

The CLOSE statement terminates file processing and
positions the file for further processing. All output files
must be closed to ensure the last block will be written.

F-6

NOTE

If SUP is terminated by the EXIT instruc
tion, all open files are closed and unloaded.

The format for the CLOSE statement is:

CLOSE, 1~~T 'I [~~LOA~ VF LEAVE
PR EOV

Where:

• Either IN, OUT, VF, or PR must be specified

• IN

! specifies the CLOSE statement applies to the
input file.

• OUT

Q specifies the CLOSE statement applies to the
output file.

• VF

VF specifies the CLOSE statement applies to the
verify file.

• PR

PR specifies the CLOSE statement applies to the
print file.

On termination of a procedure on the tape, the tape may
be positioned according to one of the following functions:

• RW-rewind

The tape is rewound and positioned at the load
point. If the tape is an output file, a tape mark is
written and all end-of-file labels are written
before rewinding. Rewind is assumed if no
parameters are specified.

• UN-unloaded

The same procedure occurs as in rewind, except
the tape is unloaded following rewind.

• EOV-end of volume

The function causes all trailer labels to be written,
including end-of-file labels (if tape is to be
labeled), followed by a double tape mark. The
tape is rewound to load point and unloaded.

• LEAVE-leave tape positioned

This indicates the tape is left positioned at the
next file. On input, the tape is positioned at the
next file. On output, the last record is written

followed by labels if they are specified. The tape is
left positioned following the last tape mark,
terminating the file.

Backspace Statement

The backspace function is available for tape control to
provide an easy method for positioning back to a name
statement, which was just used to complete an operation.
The backspace instruction backspaces physical records,
and the instruction may cause unreliable results when
working with blocked files.

The format for this statement is:

1!SPACE. {~F}' [nnnnnJ

Where:

• Either !N, QUT, or VF must be specified.

• IN

! specifies the input file is to be backspaced.

• QUT

• 0 specifies the output file is to be backspaced.

• VF

VF specifies the verify file is to be backspaced.

• nnnnn

This indicates the number of blocks or physical
records to be backspaced.

Date Processing

When label-processing options are utilized, the user has
the ability to initialize dates used in the generation or
verification of header labels. The two date initialization
functions included in the SUP package are:

• SDA TE=yyddd-system date

This is used to specify the system date, which is
used to set creation dates on output volumes and
verify expiration dates of output volumes. In this
function, yy is the current year, and ddd is the
current Julian calendar day.

o EDATE=yyddd-expiration date

This is used to specify the expiration date, which
is set on the output volumes. When the expiration
date is reached, the tape may be used for other
data. In this function, yy is the year, and ddd is
the Julian calendar day.

NOTE

The SDATE and EDATE instruc
tions may be inserted at any point in
the program. If the two instructions
are not used, both dates are assumed
to be 99999. Verification of the date
is not attempted.

OPERATIONAL CONTROL
STATEMENTS

Operational control statements provide instructions to
execute any of the following functional modules:

. , ,

• DUMP

• PRINT

• COpy

• VERIFY

• Initialize volume labels

Operational control statements usually follow OPEN
control statemen~s. Functions which require input or
output files are not executed unless the required files
have been opened. In some cases, files may be improperly
defined such as improper record type or length
specifications. Recovery under these circumstances is not
possible. The file or files must be closed and reopened
before any function can be executed.

Through proper definition of input and output file
characteristics, files may be blocked, unblocked,
converted, and/or labeled.

DUMP Statement

The DUMP statement prints the input tape file on the
standard list device or any list device assigned in a
preceding OPEN command. The dump list may be in
either hexadecimal or character mode and may be
formatted or unformatted.

F-7

The format for this statement is:

[DUMP J [FCnnJ [RCnnnnJ

r.Hex 1
L£har J

ForMat TNAM (='XXXXXX')

U
PNAM (='XXXXXX'~

%n,Eormat J SNAM(='XXXXXX') U J NAM (='XXXXXX')

Where:

• FCnn-number of files

This specifies the number of files to be dumped
where nn is a one-to-two-digit number indicating
the number of files to be dumped.

• RCnnnn-record count

The number of records to be used, where nnnn is
a one-to-four-digit decimal number. If RC is
omitted all records are used until a tape mark or
End of Tape marker is detected.

• !i-hex dump

H indicates a hexadecimal dump is to be printed.

• C-character dump

C indicates a character dump is to be printed.

DUMP TYPE

See page F-29 for sample dumps.

• FM-formatted

This initiates a formatted dump. In the character
mode where 100 characters per line are printed, .
the record number is printed with each number,
and the records are separated by triple spacing.

• UF-unformatted

This is used to initiate an unformatted dump in
character mode. Single spacing is assumed with
S6 lines per page. If the record length is greater
than the listing format width, the record is
continued on the following line. If UF is omitted,
a formatted dump listing is assumed. Hexadeci
mal unformatted dumps are not given.

SELECTIVE PARAMETERS

Selective parameters (as previously defined in the OPEN

F-8

statement) may be used in the· DUMP statement. It is
possible, therefore, to dump selected records without
closing and reopening files. Caution, however, must be
exercised when using the selective parameters PNAM,
TNAM, SNAM, and NAM. The conditions which cause
termination are determined from the record following
the last record dumped. It is impossible to obtain the
record which caused termination for subsequent
processing, without first issuing the backspace function.

The following parameters may be used whether or not
they are specified in the OPEN statement:

• mAM (='XXXXXX'}-position to name

Specifies a NAM block in which all records are
dumped until either an end of file or the
conditions specified by TNAM are detected.

• TNAM ('XXXXXX'}-terminate name

Indicates dump is terminated upon detection of
the specified NAM block or statement.

• SNAM (='XXXXXX'}-select name

Indicates the selection of the set of records
following the specified NAM block or statement.
SNAM then dumps the records and terminates
the dump at the next NAM block or statement.

• NAM (='XXXXXX'}-name

Indicates only the specified NAM block or blocks
are dumped until an end of file or the conditions
specified by TNAM are detected.

The DUMP statement requires an OPEN statement list
file and input file. The list file may be a teletypewriter or
line printer, but it may not be a tape file since forms
control records may be less than the minimum tape
record size.

The list file, as defined under the OPEN statement,
specifies printer or teletypewriter forms information.

By specifying block or record sizes, the user may control
the length of a single output line. The number of lines
per page can be specified by setting the LC parameter of
the OPEN statement to the required size. If LC is not
specified, the number of lines per page will be S6
(decimal).

The following is an example of a DUMP command
sequence:

TAPE UTILITY
*NEXT: OPEN,PR9,LB134
*NEXT: OPEN,I,LB100
*NEXT: DUMP,RCSO

This sample dump puts SO records on the printer (unit 9)
after opening the print and input files.

PRINT Statement

The PRINT statement may print an input tape on the
standard list device or a device assigned in the OPEN
statement. The print module provides for printer control
characters which are in the first position of each record.
The PRINT histruction is generally used for printing
listable tapes.

The format for this statement is:

PRINT, [FCnnJ [RCnnnn~ ~J

~
NAM (='XXXXXX'~

TNAM (='XXXXXX')
SNAM (='XXXXXX')
NAM (='XXXXXX')

Where:

• FCnn-number of files

The number of files to be printed is specified
where nn is a one-to-two-digit number.

• RCnnnn-record count

The number of records to be used is specified. In
this instance, nnnn is a one-to-four-digit decimal
number. If RC is omitted, all records are used
until a tape mark or end-of-tape mark is detected.

• US-control character

This specifies USASCI standard printer control
characters are in the first character position on
each record. COS listable output has USASCI
coded characters.

SELECTIVE PARAMETERS

Selective parameters (as previously specified in the
OPEN statement) may be used in the PRINT statement.
It is possible, therefore, to print selected records without
closing and reopening the files. Caution must be
exercised, however, when using the selective parameters
PNAM, TNAM, SNAM, and NAM. The conditions
which cause termination are determined from the record
following the last record dumped. If is impossible to
obtain the record which caused termination for
subsequent processing without issuing the backspace
function. The succeeding parameters may be used
whether or not they are specified in the OPEN statement.

o PNAM (='XXXXXX')-position to name

This parameter specifies a NAtvI block in which
all records are printed until either an end of file or
the conditions specified by TNAM are detected.

o TNAM (='XXXXXX')-terminate name

This parameter indicates printing is terminated
on detection of the specified NAM block or
statement.

• SNAM (='XXXXXX')-select name

This indicates the selection of the set of records
following the specified NAM block or statement,
which represents a specified name or NAM block.
NAM prints the records and terminates the
printing of the next NAM block or statement.

• NAM (='XXXXXX')-name

This indicates only the specified NAM block or
blocks are printed until an end of file or the
conditions specified by TNAM are detected.

Printing continues until an end-of-file or end-of-volume
mark is detected or until all tape marks counted equal
the number of files specified for printing.

The PRINT statement requires an OPEN input and list
file. The block-size parameter is required as described in
the DUMP statement. Line counts are not used since the
input records are assumed to have standard print control
characters.

FORMS ALIGNMENT STATEMENT

Since the PRINT statement is used as a tape-to-print
operation, a means to ensure proper forms alignment is
included. After the PRINT instruction is issued, the
forms in the line printer are ejected, and the first record
is printed followed by a page eject. The following
message is typed on the operator's console:

*FORMS ALIGNED?

The operator's response may be any character or the
carriage return. The carriage return directs the PRINT
module to continue after reprinting the first line. Any
character instructs the printer that the forms are not
aligned. The operator may realign the printer forms
before responding. The forms alignment statement and
the printing is repeated until the carriage return is
entered. The following is a sample print command
sequence:

F-9

*NEXT: OPEN,PR9,LB134,LC=60 ICRI
*NEXT: OPEN,I7,LB200 ~
*NEXT: PRINT,US,RCSOO ~
*FORMS ALIGNED: ICRI

The preced ing set of instructions prints up to 500 records
on unit 9, page ejecting every 60 lines or every time a
NAM statement is found in the input file.

COpy Statement

The COPY statement is designed to copy a tape file from
the standard input device to the standard output device
unless otherwise specified. By using a declarative control
statement blocking, unblocking, and/or code conversion
may be implemented.

The format for this statement is:

COpy, ~
NAM (='XXXXXX'~

TNAM (='XXXXXX')
[RCnnnnJ [FCnnJ SNAM (='XXXXXX')

NAM (='XXXXXX')

Where:

• RCnnnn-record count

This parameter specifies the number of records to
be copied where nnnn is a one-to-four-digit
decimal number. If RC is omitted, all records are
copied until a tape mark or end-of-volume mark
is detected.

• FCnn-file count

This indicates the number of files to be copied
where nn is a one- or two-digit decimal number. If
FC is omitted, one file is copied.

SELECTIVE PARAMETERS

Selective parameters (as previously specified in the
OPEN statement) may be used in the COpy statement.
I t is possible, therefore, to copy selected records without
closing and reopening the files. Caution, however, must
be exercised when using the selective parameters PNAM,
TNAM, SNAM, and NAM. The conditions that cause
termination are determined from the record that follows
the last record copied. It is impossible to obtain the
record which caused termination for subsequent
processing without issuing the backspace function. The
following parameters may be used whether or not they
are specified in the OPEN statement:

• PNAM (='XXXXXX')-position to name

This parameter specifies a NAM block in which

F-IO

all records are copied until either an end of file or
the conditions specified by TNAM are detected.

• TNAM (='XXXXXX')-terminate name

This indicates copy is terminated on detection of
the specified NAM or block statement.

• SNAM (='XXXXXX')-select name

This parameter indicates the selection of the set of
records following the specified NAM block or
statement, which represents a specified NAM-,-:-::-------
block and terminating copy when the next NAM
block or statement is detected.

• NAM (='XXXXXX')-name

This indicates only the specified NAM block or
blocks are copied until an end of file or the
conditions specified by TNAM are detected.

The COpy statement can be used to block, unblock,
convert, etc. any data tape or 1700 system tape. It also
can be used by proper specification of selection
parameters to replace, delete, or select relocatable
program modules, listable program modules, and source
program modules on 1700 system tape. The following is
an example of a copy command sequence.

*NEXT: OPEN,I,F,LR80
*NEXT: OPEN,O,VB,LB4oo,LR80,E
*NEXT: COPY,RC403
*NEXT: CLOSE,O
*NEXT: CLOSE,I

This example copies 403 records (or one file) from the
input file, converting the ASCII input data to EBCDIC
data and reformats the input records to variable, blocked
output records.

The following example copies an assembly listing tape. It
copies the ASCII input tape starting from VLOSOP and
continues up to but not including MTTYPE. The output
tape is blocked EBCDIC. A warning error occurs
because input and output record lengths are defined
differently; this error is informative only.

*NEXT: OP,16,NL,U,A,PNAM='VLOSOP'
*NEXT: OP,07,NL,VB,E,LB500,LRIOO
*NEXT: CO,TNAM='MTTYPE'
**** W003****

VERIFY Statement

The VERIFY statement is designed to verify two tape
files on a specified unit, or tapes mounted on a standard
input and output device. Tapes may be verified with or

without the blocking or conversion options.

The format for this statement is:

VERIFY, [RCnnnn,] IfCnnJ ffi]

~
NAM (='XXXXXX'~

[Up 1 TNAM (='XXXXXX')
lfM J SNAM (='XXXXXX')

NAM (='XXXXXX')

Where:

• RCnnnn-record count

This is used to specify the number of records to be
verified, where nnnn is a one-to-four-digit
decimal number. If RC is omitted, all records are
verified until a tape mark or end-of-volume mark
is detected on the input file.

• PCnn-file count

This indicates the number of files to be verified,
where nn is a one- or two-digit decimal number. If
PC is omitted, one file is verified.

• H- hex dumps

This specifies a hexadecimal record dump of each
error printed. (The dump module must be
present.)

• C-character dump

The character dump specifies a character record
dump of each error record printed.

• UP-unformatted dump

If UP is specified, the error records are formatted
to either hexadecimal or character formats. Each
record is preceded by header lines which specify
block size, record size, and the sequence of the
record. If dump is not present, UP is not
available.

SELECTIVE PARAMETERS

Selective parameters (as specified in the OPEN
statement) may be used in the DUMP function. It is
possible, therefore, to verify selected records without
closing and reopening the files. Caution must be
exercised, however, when using the selective parameters
PNAM, TNAM, SNAM, and NAM. The conditions
which cause termination are determined by the record

following the last record duinped. It is impossible,
therefore, to obtain the record which caused termination
for subsequent processing without issuing the backspace
function.

The following characters may be used whether or not
they are specified in the OPEN statement.

o PNAM (='XXXXXX')-position to name

This parameter specifies a NAM block in which
all records are verified until either an end of file or
the conditions specified by TNAM are detected.

• TNAM (='XXXXXX')-terminate name

The TNAM parameter indicates that verification
is terminated on detection of the specified NAM
block or statement.

• SNAM (='XXXXXX')-select name

This indicates the selection of the set of records
following the specified NAM block or statement,
which is terminated following verification of the
next NAM block or statement.

• NAM (='XXXXXX')-name

NAM specifies that only the special NAM block
or blocks are verified until either an end of file or
the conditions specified by TNAM are detected.

The VERIPY statement verifies data files on a record
basis. Data files may be verified if the blocking factors
are different; if the data is in different external codes
(ASCII, EBCDIC, or BCD); or in some cases, if the data
is in different record formats (see page P-23>. If records
fail to match, the VERIPY instruction dumps both the
input and output records to the standard list device. The
number of characters not matching and the first
character of the record in error are also printed. The
dump format is the same as that used in a character
record dump. In the event that more than 10 consecutive
records are in error, the system interrogates the
operator as to .whether to continue or to terminate. A
carriage return response designates termination. Any
other character response followed by a carriage return
designates program continuation.

SAMPLE VERIFICATION OPERATION

The following sample instructions verify two files or
1,000 records, whichever occurs first. T.he input file
contains undefined records, not greater than 100
characters; the verify file contains variable blocked
records with each record not greater than 100 characters;

P-l1

and the external codes are in EBCDIC. The differences
in record format and content of the records require all
conversions be completed before any comparison takes
place.

T APE UTILITY
*NEXT: OPEN,PR,LB134,LC=S6
*NEXT: OPEN,I,LB=100
*NEXT: OPEN, VF7,VB,LB=400,LR=100,E
*NEXT: VERIFY,FC=2,RC=1000,H
*NEXT:

In the preceding sample, if 10 consecutive mismatching
records were found the following sequence would occur:

10 ERRORS
*CONTINUE: Y ICRI

Verification continues.

Initialize Statement

The initialize statement is used to write volume 1 header
records following the load point on a specified unit. The
initialize function differs from other functions in that
once the initialize process is implemented, it must be
specially terminated. Once initialization is started, it
requests a volume serial number and then writes the first
header on the mounted tape. On completion, the tape is
unloaded and a request for the next tape is made. The
previous volume serial number is incremented (if
numeric) and may be used as the next volume serial
number.

The format for this statement is:

[INIT J [OnnJ [IJ
Where:

F-12

• Qnn-output unit

o specifies the output unit number where nn is a
one- or two-digit decimal number. If nn is
omitted, the standard tape output unit is
assumed.

• g-EBCDIC labels

g specifies EBCDIC IBM-standard volume 1
labels are to be generated. the VOL 1 label is
compatible with System/360/370 OS/DOS/VS.

• !!-BCD code labels

This specifies BCD codes are to be used in the
generation of VOL 1 labels.

• A-American National Standard Labels

This is used to specify American National
Standard VOL 1 labels are to be generated.

The label type may be specified by using the OPEN
conversion parameters. If the OPEN parameters are
omitted, A is assumed. The initialize statement
communicates with the operator through a series of
messages. Operator responses are used to terminate the
initialize statement, to determine if a tape is mounted
and ready, and to assign the volume serial number. Th~
following mount message instructs the operator to mount
a scratch tape on the specified logical unit:

*MOUNT,OUTPUT,SCRATCH:

Response of a carriage return designates the tape is
mounted. Any other character followed by a carriage
return terminates the initialize function.

The volume serial number message VOLSER=nnnnn:
indicates the next volume serial number to be written on
the mounted scratch tape. To change the serial number,
the operator enters a one-to-six-character volume serial
identifier. The identifier may be a1pha, alphanumeric, or
numeric. Only characters from A to Z and numerics 0 to
9 are permitted. A carriage return terminates the
identifier. If the identifier is completely numeric, the
next VOLSER message contains the last number plus
one; otherwise, the next VOLSER message contains
VOLSER=OOOOOl. To use the serial number contained
in the message, the operator responds with a carriage
return.

The following example illustrates the various features of
the initialize statement.

• **TAPE UTILITY**

• *NEXT: INIT,06

(Use logical unit 5.)

• *MOUNT,OUTPUT,SCRATCH: ICRI

(When the tape is mounted, type a carriage
return.)

• *VOLSER=000001:

(The first volume serial number is assumed to be
1. A carriage return designates the user does not
want to change what is typed.)

• *MOUNT,OUTPUT,SCRATCH:

o *VOLSER=QOOO02: 670002

(This instruction changes the serial number.;)

o *MOUNT,OUTPUT,SCRATCH:

• VOLSER=670003:

(The last serial number is incremented.)

• *MOUNT,OUTPUT,SCRATCH: ICRt

• *VOLSER=670004: SYSAB1 ICRI

(The volume serial number is changed to
alphanumeric.)

• *MOUNT,OUTPUT,SCRATCH: ICRt

• *VOLSER=OOOOOl: SYSOO2 ICRI

(Since alphanumeric data cannot be incremented,
the VOLSER is reset.)

• *MOUNT,OUTPUT,SCRATCH: TERM ICRt

(Terminate initialize.)

• *NEXT:

EXIT Statement

The EXIT statement returns control to the operating
system after job termination. All files not already closed

. by a CLOSE statement are closed with the rewind and
unload function. If SUP is used to position a file for
processing, the operator must ensure the file is closed
without the rewind function prior to issuing an EXIT
request. The format for this statement is:

EXIT:

DIAGNOSTIC PROCESSING
When a diagnostic appears in any of the functions, SUP
allows for the correction of the errors by use of the
following procedure:

1. To delete a line of type, use a rubout, then a line feed,
followed by a carriage return.

2. If there is a syntax error in the function statement,
SUP allows a reentry of only the parameter or
parameters in error. The unrecognized parameters
are retyped by SUP for ease in discerning which
parameter is in error.

The following functions illustrate sample parameter
errors. The functions underlined are the only commands
actually entered.

o *NEXT: OPEN,PR,LB134,LN=S4

• INVALID PARM='LN=S4.'

(LN is not a valid parameter.)

o RETYPE PARM: LC=S4 ICRI

(The proper parameter is entered.)

• *NEXT:

(NEXT implies the function was acceptable.)

• OPEN,I,SNAM=CLRRGN,LB80

(No quotes appear around CLRRGN.)

o INVALID PARM='SNAM=CLRRGN,'
RETYPE PARM: SNAM='CLRRGN'
*NEXT:

(Reentered with quotes.)

SYSTEM MESSAGES
System messages are designed to inform the operator of
the systems functions, cue the operator to take a certain
action, output statistical data, and indicate that errors
have occurred during execution. The messages are
written either on the system console or the system list
device depending on the purpose of the message.

Information Message
Statistical data and information messages such as those
that indicate errors during the verify process should
appear on the standard list device if a standard device
has been activated by an OPEN statement. If not, the
messages will appear on the console.

The format for the statistical data message is:

*NEXT: COPY,RC100
00100 INPUT BLOCKS
00100 INPUT RECORDS
00020 OUTPUT BLOCKS
00100 OUTPUT RECORDS

NOTE

Output block and record totals may not
reflect the same information as input totals.
The 1/0 discrepancy is a result of blocking,

F-13

unblocking, multiple files, and other
functions.

All totals reflect the total number of records that have
been read and written. For INPUT files, the total
number of records are cumulative over the entire volume.
For OUTPUT files, the totals reflect only the last file
written minus the last applicable unwritten block.
Labeled files may generate zero totals in the block field
because the counts are cleared during EOF processing.

Action Messages
Whenever action messages occur, an operator response is
required. The action message indicates that a decision as
to whether to proceed is possible, an operation has been
completed, or more information is necessary before
processing can continue. Table F-l lists all action
messages.

Table F -1. Action Messages

Message Response Description

*NEXT: Any utility operational or declarative System has completed all prior requests and
statement can accept next request

*INVALID PARM""XXX .. .' Enter corrected parameter The characters in quotes are invalid and may
*RETYPE PARM: be corrected (referto functional actions)

10 ERRORS Type carriage return [ill to terminate or Verify function has located 10 consecutive
*CONTINUE: type one character followed by carriage records that contain errors

return to continue

*MOUNT,OUTPUT,SCRATCH: Type carriage return, which implies tape is See initialize
ready; or type any other character followed
by a carriage return to terminate the initialize
function

*VOlSER=nnnnnn: See initialize function See initialize function

VOL NOT EXPIRED USE: Carriage return implies 'do not use', U implies label processing:
use, ignoring expiration date Output volume header records are checked

against the system date

*DATASET NAME: DSN = 'XXXXX' label processing:
Output volumes require a data set name if
not available from input (see page F-17)

VOlSER = nnnnnn None Informative tape file just opened with the
specified volume serial number

System Error Messages DESCRIPTIVE ERROR MESSAGES

System error messages are always issued to a comment
device, teletypewriter, etc. There are four types of system
errors. They include:

The descriptive error messages indicate what the error is
and directs that the previous instruction could not be
executed. The descriptive error messages are listed in
table F-2.

• Descriptive

• Critical

• Serious

• Warning errors

F-14

CRITICAL, SERIOUS, AND
WARNING ERROR MESSAGES

Critical error messages imply an error has occurred
which prevents further processing by SUP. If the critical
error occurs, control is returned to the operating system.

Table F -2. Descriptive Error Messages

Message Description Action

FILE(S) NOT OPEN A required file is not open, and the specified function cannot be Open file and reenter function.
executed.

*INVALIO OPEN OR CLOSE The file being opened or closed is already in that state. Open or close the proper file.

*FUNCTION NOT AVAILABLE An attempted function is not available in the system. The function is Use another function, if possible.
not invalid; rather, the system was configured without the
requested module.

*PARM NOT AVAILABLE A parameter is not available in the system. The parameter is not Use another parameter, if possible.
invalid; rather, the system was configured without the requested
module.

*INCORRECT VOL MOUNT: The volume mounted does not contain a volume label, or the header Mount the correct volume, and
label sequence is incorrect; i.e., the wrong volume of a multiple type a carriage return.
volume file is mounted.

Serious errors are a result of mistakes such as improper
specification of valid parameters and tape errors. If a
serious error occurs, control returns to SUP, and the user
may continue programming.

Warning messages indicate parameters may be inconsis
tent or a possible processing error has occurred.
Execution continues following a warning. Warning
. messages are used to allow processing flexibility since the

inconsistent parameters may be required to execute a
function; for example, when converting fixed-length
records to variable-length records, the copy function
checks for length mismatches. In this case, the warning
may be ignored.

Tables F-3, F-4, and F-S describe corrective action for all
coded error messages .

Table F -3. Critical Errors

Error Code Description Action

****COOO**** Data buffer linkage has been destroyed - cause: lID malfunction, Reload utility
CPU malfunction

Table F -4. Serious Errors

Error Code Description Action

****SOOO**** Available memory has been filled Free memory by closing a file

****SOO1 **** Attempt to close file already closed Close proper file

****SOO2**** 1. Read end offile Retry the function
2. Attempt to write on file not opened for write
3. lID error; i.e., parity, read or write error, lost data or alarm

****SOO3**** Variable-length block does not match actual length read, or variable Close all files; open input as undefined, and
read length is greater than specified block size dump records to locate the erroneous record;

file cannot be processed as variable length

F-1S

Table F -4. Serious Errors (cont)

Message Description Action

****8004**** Blocking has been requested, and specified block size is smaller Reopen file with proper parameters
than specified record size

****8005**** Variable size error detected prior to write Attempt to reexecute function after closing
and reopening all files; possible hardware
malfunction

****8006**** Fixed block error detected prior to write; record length is not Close file, and reopen with proper record
specified size, or dump file to locate erroneous records

****8007**** labeled file sequence number in error (file is not opened) Mount proper volume, and reopen

****8008**- labeled file EOFl trailer label contains invalid information which This file cannot be processed with standard
does not correspond to header label 1 labels

****8009**** labeled file is missing EOF trailer labels File cannot be processed as labeled

****8010**** End of tape sensed on output file (unlabeled) Close the file with EOV, and reopen after
mounting new tape

Reenter function to complete processing

****8011**** A double file mark has been sensed on an input file; processing is Close input file, and mount next volume;
terminated reenter function to complete processing

****8012**- Invalid date Reenter date function with proper date

****8013**** labeled volume sequence number incorrect (occurs after OPEN; file Mount proper volume and reopen file
is not opened)

****8014**** Zero-length block specified in OPEN; file is not opened Reopen, specifying proper block length

****8015**** Block or record length specified is not a multiple of two; file is not Reopen, specifying even block and record
opened length; if either block or record length is odd,

the data cannot be processed by the system

Table F -5. Warning Messages

Error Code Description Action

xxxWOODxxx Blocking not specified, but block size and record size have been Open file with proper parameters, or con-
specified differently in OPEN tinue statement

xxxWD01xxx File count specified as zero Reenter function with proper parameters or
continue statement

xxxWD02xxx Record count specified as zero Reenter function with proper parameters or
continue statement

xxxWD03xxx Input and output record lengths have been specified differently for Reenter function with proper parameters or
COPY continue statement

F-16

LABEL PROCESSING

Label processing is discussed in the following
paragraphs.

Labeling

During the OPEN, READ, WRITE, and CLOSE
operations, lab~ls may be processed. The three potential
processing techniques available include: no labels,
bypass labels, and standard labels. Each technique
requires a specific file structure.

NO LABELS

When no labels are defined, the volume may contain one
or more files. The file structure for a single volume,
unlabeled file is defined in figure F-1.

Single File File A *

Multifile File N *

Figure F-l. Single-Volume, Unlabeled File

The volume is terminated by two tape marks. Specific
provisions to process files extending to more than one
volume have been excluded; however, a double tape
mark on input terminates all processing, which allows
mounting of the next volume. Output processing
terminates at the end-of-tape mark. An error message is
issued. A new tape is mounted, and processing is
continued by reexecuting the function.

BYPASS LABELS

The bypass label processing ignores all labels; however,
SUP expects the normal sequence of tape marks found in
standard labels. The bypass label option is not available
for output files.

STANDARD LABELS

Standard-labeled volumes may contain one or more files
and may extend to more than one volume. Each volume
must contain a VOL I header label as the initial record.
Each file must be preceded by a HDRI label and
terminated by an end-of-file label. The system utility
processor processes VOLI, HDRI, HDR2, EOFI, EOF2,
EOVI, and EOV2 labels.

Definitions

The following definitions apply to COS label processing:

FILE

A file is a collection of data consisting of records
pertaining to a general subject. The delineation of a file
may be arbitrary. The absence of information may result
in the creation of a file, delineated by adjacent tape
marks, without information.

VOLUME

A volume is a physical unit of storage media. In the
discussion of SUP, volume is synonymous with a reel of
magnetic tape.

FILE SET

A file set is a collection of one or more related files,
recorded on one or more volumes. A file set consists of:

• One file recorded on a single volume
• More than one file recorded on a single volume
• One file recorded on more than one volume
• More than one file recorded on more than one

volume

LABEL

A label is defined as a block at the beginning or end of a
volume or a file, which serves to identify and/or delineate
that volume or file.

LABEL GROUPS

Label groups are defined as a collection of contiguous
labels related to a file. The label group either precedes or
follows the related file on a single volume. The volume
header labels and the following file header labels are the
first label group on a volume.

TAPE MARK

A tape mark is a special configuration record on
magnetic tape, synonymous with an end-of-file mark,
indicating the boundary between files and labels and
between certain label groups. The tape mark configura
tion for nine-track tape is defined in CDC-STD 1.10.005
and CDC-STD 1.10.006. The tape mark configuration
for seven-track tape is an octal 17 written in even parity.

F-17

FIELD

A field is a specified area in a record which is used for a
particular category of data.

Requirements

The requirements defined in the following paragraphs
are necessary for SUP.

GRAPmc REPRESENTATION

In this section, n means any numeric digit (0 through 9).
An a means any of the characters occupying the center
four columns of ASCII, except position S/1S, and those
positions where there is a provision for alternative
graphic representation.

The limitation of the a characters is intended as a guide
to provide maximum interchangeability and consistent
print especially when international interchange is a
possibility. Checking for conformity to this limitation is
not implied.

LABEL FORMAT

Each required label is an 80-character block recorded in
even parity mode at the same density as the rest of the
tape for seven-track tapes or in convert mode ASCII for
nine-track tapes.

TAPE MARKS

Use of tape marks is not permitted in positions that are
not specified in this manual. A file which contains
nonstandard tape marks cannot be considered as a
legitimate interchange tape.

LABELLED FILE STRUCTURE

Required labels and tape marks must be used to
establish the file structure according to the formats
displayed in table F-6. The table shows that the
beginning of the tape is on the left and the end of the
tape is on the right. Required labels are specified by their
first four characters, and tape marks are specified by
asterisks.

VOLUME HEADER LABEL

Every volume shall have a volume header label (VOLl) asl
the first block in the volume. No volume header label
shall be used at any other place in the volume.

F-l8

END·OF·VOLUME LABEL

An end-of-volume label (EOV) should follow the last
block of a file when a volume ends in the file. One tape
mark should immediately precede, and two tape marks
should immediately follow every end-of-volume label
group. No file sets should be terminated by an
end-of-volume label.

FILE HEADER LABEL

Every file must be preceded by a file header label
(HDRl). Whenever a volume ends in a file, the
continuation of the file in the next volume must also be
preceded by a file header label. Every file header label
group must immediately be followed by a tape mark.

END·OF·FILE LABEL

The last block of every file must be followed by an
end-of-file label (EOFl). A tape mark must immediately
precede, and another tape mark must immediately
follow, every end-of-file label group. The end-of-file label
that appears at the end of the last file in a set must be
followed by two tape marks.

If end-of-file and end-of-volume labels coincide on a
multifile, multivolume tape, the following configurations
will be used. Letters in parentheses indicate to which file
the labels belong. A dash indicates the label belongs to
neither file.

VOLI HDRI *(FILE A)------------------*EOFI *HDRI **EOVI **
(-) (A) (8) (-)

VOLI HDRI *-------------------------(FILE B)----
(-) (8)

Table F -6. Structure of Magnetic Tape Files

Type of File File Format

Single-volume file \ VOll HDR1*·-~-------*EOF1** \ -~ '-_/

.-

Multivolume file .; VOL 1 HDR1*---~-.------*EOV1**
VOL 1, HOR1*------------*EOF1**

... 'I

Multifile ~olume file VOll "fIDR1*------------*EOF1*HDH1*--*EOF1**
~ \ 'J . ,

Multifile, multivolume file VOll HDR1*--(A)--*EOF1*HDR1*---(B)---*EOV1**
I '''~ 1

VOL 1-l:IDR1* --(B)--~-------*EOV1**
VOll HDR1*--(B)---*EOF1*HQR1*---(C)--*EOF1**

Optional Label Format

Optional operating system labels and user labels must be
titted into the file structure according to the following
rules so the relationship between required labels and file
is not affected.

OPTIONAL P!ELDS

When optional is used in defining a field, it means the
tield may contain information already described. If an
optional field does not contain the designated informa
tion, the tield contains blanks.

REQUIRED FIELDS

Fields which are not defined as optional are required and
are written or read as specified in SUP.

VOLUME HEADER LABEL (VOLt)

The fields in the volume header label are arranged as
shown in table F-7. Anyone who is using a magnetic tape
that is not his must return the entire volume header label
unless otherwise authorized by the user; however, a
volume header label may be written if authorized.

Table F-7. Volume Header Label (VOLt)

Character
Field Name Length Position

lt03 1 label identifier 3

4 2 label number 1

5 to 10 3 Volume serial number 6 , , ",

11 4 Accessibility 1

~

12 to 31 5 Reserved for future use 20

32 to 37 6 Reserved for future use 6

3B to 51 7 owner identification 14

,

52 to 79 8 Reserved for future use 28

80 9 label standard level 8 1

FILE HEADER LABEL

The fields in the file header label are arranged as shown
in table F-8.

Description

Must be VOL

Must be 1

Six a characters permanently assigned by the user to identify this
physical volume; i.e., reel of tape

As an a character which indicates any restrictions on who may have
access to the information in the volume; a blank means unlimited
access; any other character means special handling, in the manner
agreed between the interchange parties; field is not edited

Must be blanks

Must be blanks

Any a characters, identifying the owner of the physical volume; may
be blank

Must be blanks

1 means the labels and data format on this volume conform to the
requirements of this manual; blanks means the labels and data
formats on this volume require the agreement of the interchange
parties

F-19

r~()!/

I~S~l

J
Table F ·8. FUe Header Labell

Character
Field Name Length Position

1 t03 1 label identifier 3

4 2 label number 1

5t021 3 File identifier 17

22 to 27 4 Set identification 6

LJO~ :£D
28 t031 5 File section number 4

G EI\/ (=f(..l1-n~~1
Ne)rwl3t$1(,

32 to 35 6 File sequence number 4
..

36 to 39 7 Generation number 4
(optional)

40 and 41 8 Generation version 2

42 to 47 9 Creation date 6

48 to 53 10 Expiration date 6

54 11 Accessibility 1

55 to 60 12 Block count 6

61 to 73 13 System code (optional) 13

74 to 80 14 Reserved for future use 7

END·OF·FILE LABEL (EOFl)

The fields of the end-of-file label are arranged as shown
in table F -9.

F-20

Description

MustbeHDR

Must be 1

Any a characters agreed on between originator and recipient

Any a characters to identify the set of files of which this is one;
this identification must be the same for all files of a multifile set

The file section number of the first header label of each file is 1IXJ1;
applies ~o the first or only file on a volume and to subsequent files on
a multifile volume; field is incremented by one on each subsequent
volume of the file

Four n characters denoting the sequence; i.e., 0001,0002, etc. of files
in the volume or set of volumes; in all the labels for a given file, this
field contains the same number

Four n characters denoting the current stage in the succession of
one file generation by the next; when a file is first created, its
generation number is 0001

Two n characters distinguishing successive repetitions of the same
generation; generation version number of the first attempt to
produce a file is 00

A blank followed by two n characters for the year followed by three
n characters for the day (001 to 3(6) in the year

Same format as field 9; this file is regarded as expired when today's
date is equal to or later than the date given in this field; when this
condition is satisfied, the remainder of this volume may be over-
written; to be effective on multifile volumes, therefore, the
expiration date of a file must be less than or equal to the expiration
date of all previous files on the volume

An a character which indicates restrictions en who may have access
to the information in this file; a blank means unlimited access; any
other character means special handling, in a manner agreed
between the interchange parties

Must be zeros

Thirteen a characters identifying the operation system that
recorded this file

Must be blanks

38

d,
I

Eo.9

\.

Table F-9. End-of-File Label (EOFl)

Character
Field Name Position

lt03 1 label identifier

4 2 label number

5t054 3through11 Same as correspond-
ing fields in the first
file header label
(optional)

55 to 60 12 Block count

61 t080 13 and 14 Same as correspond-
ing fields in the first
file header label
(optional)

SECOND END-OF-FILE LABEL

This option constitutes a second end-of-file label
specified by EOF2 as the label identifier and label
number. The label contains the same information in
fields 3 through 8 (all optional) as does HDR2.

Length Description

3 Must be EOF

1 Must be 1

Total 50 Same as corresponding fields in the first file header label

6 Six n characters denoting the number of data blocks
(exclusive of labels and tape marks) since the preceding
HDR label group

Total 20 Same as corresponding fields in the first file header label

END-OF-VOLUME LABEL (EOVl)

The fields of the end-of-volume label are arranged as
shown in table F-I0.

Table F-IO. End-of-Volume Label (EOVl)

Character
Field Name Length Description Position

lt03 1 label identifier 3 MustbeEOV

4 2 label number 1 Must be 1

5t054 3 through 11 Same as correspond- Total 50 Same as corresponding fields in the first file header label
ing fields in the first
file header label
(optional)

55 to 60 12 Block count 6 Six n characters denoting the number of data blocks
(exclusive labels and tape marks) since the preceding
HDR label group

61 to 80 13 and 14 Same as correspond- Total 20 Same as corresponding fields in the first file header label
ing fields in the first
file header label
(optional)

F-21

SECOND END· OF· VOLUME LABEL

This option constitutes a second end-of-volume label
specified by EOV2 as the label identifier and label

number. The label contains the same information in
fields 3 through 8 (all optional) as does HDR2. The
fields of the second file header label are arranged as
shown in table F-l1.

Table F·ll. Second FOe Header Label

Character
Field Name Length Position

1t03 1 label identifier 3

4 2 label number 1

5 3 Record format 1

6to 10 4 Block length 5

l1to 15 5 Record length 5

16to 50 6 Reserved for 35
operating systems

51 and 52 7 Buffer offset (optional) 2

53 to 80 8 Reserved for future use 28

I/O Processing With Standard Labels

The following paragraphs discuss input and output
processing using standard labels.

INPUT FILE PROCESSING
WITH STANDARD LABELS

The OPEN statement initiates label processing by
reading the VOLI header record. Header I overlays the
VOLI header in a 40-word buffer label. Header 1 is
retained. If header 2 is available, it is added to the
40-word buffer, and if necessary, the contents of the
block length and record length fields are used to
complete open processing. All other label records are
placed in a chained buffer until a tape mark is
encountered. The saved labels may be used by SUP for
output labels with the copy function.

F-22

Description

Must be HDR

Mustbe2

F-fixed length
V-variable with the number of characters in the record specified in

binary
U-undefined

Five n characters specifying the maximum number of characters per
block

Five n characters specifying: If record format is F, record length is
V, maximum record length including any count fields; if U, then
undefined

Reserved for operating systems; any a characters

Input ignored; output zeros

Must be blanks

OUTPUT FILE PROCESSING
WITH STANDARD LABELS

All output tiles must contain a VaLl header record,
however, output files may contain other header records.
If the output file contains a HDRI header, the expiration
date is checked against the system date. The output
volume may not be used if the expiration date is greater
than the system date unless the operator responds to the
following message:

VOL NOT EXPIRED: ¥
I

U-implies use of volume
X-implies the volume is not available

Once the initial verification is complete, new headers
must be written. Since COpy is the only instruction that

uses output files, the new headers may originate from
either of two sources: the input volume or the operator.
If the new headers are to be copied from the input
volume, the input volume must contain standard labels.
All labels except the VOL1label are transferred from the
input to the output file. To specify new output labels, the
input file inust be opened as BL (bypass labels) or NL (no
labels), and the output must be opened as SL (standard
labels). In this instance, the operator enters the following
label information:

Data Set Name - DSN = 'a ... a'

Where:

a is an alphanumeric character from 1 to 17

All other header fields are generated by SUP in
accordance with the preceding standards.

END-OF-VOLUME AND END-OF-PROCESSING
OF STANDARD LABELS

The system utility processor recognizes and writes
end-of-volume (EOV) or end-of-file (EOF) labels.
Automatic volume sequencing occurs on input and when
the EOV label is sensed. On output, the sensing of the
EOT marker causes an EOV label to be written and
automatic sequencing t<;> a new volume.

RECORD PROCESSING
REQUIREMENTS

The following descriptions describe record formats and
processing requirements for the various record types.

Record Formats

FIXED-LENGTH RECORDS

Each record must be exactly the same length (figure F-2).

label T REG G R G REG G T Trailer T T A REG A A
(it any) M 1 P 2 P 11 P M (it any) M M

Figure F-2. Fixed-Length Records

FIXED-LENGTH, BLOCKED RECORDS

Each block must contain an integral number of
fixed-length records. There is no requirement, however,

that the block length must remain fixed. Only the last
block may be shorter than any preceding blocks. A
maximum length is associated with fixed blocking. The
fixed -length, blocked record is shown in figure F-3.

T label
M

Block 1
~

REG REG REG
G
A

1 2 3 P
....

BlockN
~

GREG REG G
A A T
P N-l N P M

Trailer

Figure F-3. Fixed-Length, Blocked Records

VARIABLE-LENGTH RECORDS

T T
M M

A standard variable-length record consists of a record
descriptor word (RDW) and data characters. The
number of characters is contained in the RDW. Refer to
figure F-4.

T
R REG G R REG G R G

T T T label 0 A 0 N A 0 REG A Trailer
M W 1 P W P W P M M M

Figure F-4. Variable-Length Records

In figure F-4, RDW is 32 bits. The upper 16 bits is record
size and the lower 16 bits is 0 (res~rved).

VARIABLE-LENGTH, BLOCKED RECORDS

A variable-length, blocked record consists of a block
descriptor word (BDW) and any number of variable
length records. The BDW holds the block length, i.e., the
sum of the RDW's + 4 (figure F-S).

T B R REG R REG G B R REG G
T T T label M o 0

1 o 2 A···· 0 o N A
M

Trailer
M M WW W P W W P

Figure F-5. Variable-Length, Blocked Records

In figure F-S, BDW is 32 bits. The upper 16 bits is the
block size and the lower 16 bits is O.

Undefined Records

An undefined record is either variable or fixed length.
The user must provide record length by using the LR

F-23

paraineter. The record format is uncontrolled, and
blocking is not possible.

Itecord ProcessbBg

Record processing of the acceptable format types is
related to the OPEN statement. Formats may be
converted only as indicated in table F-12.

Table F-12. Record Processing Format Conversion

Record Convert To

Rxed length Rxed blocked
Variable
Variable blocked
Undefined

Fixed length Blocked Fixed
Variable
Variable blocked
Undefined

Variable length Records Variable blocked
Undefined

Variable length Blocked Variable
Undefined

Undefined Records Rxed - if undefined records are fixed length
Fixed blocked - if undefined records are

. fixed length
Variable
Variable blocked

The open parameters LB and LR must conform to the
rules for fixed block and for variable and variable
blocked records if blocking is used.

FIXED BLOCK

The rules are:

• LB must be equal to or greater than the longest
record to be read or written.

• LR must be less than or equal to LB.

VARIABLE AND VARIABLE BLOCKED

The rules are:

• LB must be equal to or greater than the largest
record.

• LR must be equal to or greater than the largest
record.

• LR must be less than or equal to LB.

CONVEItSION CODES

Table F-13 shows the relationships among codes in an
ascending collating sequence. The chart explains the
equivalence between characters in the various machine
and teletype codes.

Table F-13. Collating Sequence

Internal Tape Tape
Collating EBCDIC ANSI and ASCII Code Code
Sequence Character Character Tape Code BCD EBCDIC

(Hex) (Octal) (Hex)

00 Others Del 7F 3E

01 Reject @ 40 56 3F
02 Space Space 20 20 40
03
04
05
06
07
08
09
10
11

F-24

Table F·13. CoUating Sequence (cont)

Internal Tape Tape
Collating EBCDIC ArJSI end ASCII Code Coda
Sequenco Character Chnractor Tape Coda BCD EBCDIC

(He;c) (Octnl) Ulex)

12 \ [left 8racket 58 4A
13 2E 73 48
14 < 4C
15 { (left Paren 28 34 40
16 + + 28 60 4E
17 I 4F
18 & & 26 15 SO

19
20
21
22
23
24
25
26
27
28 ! ! 21 52 5A
29 $ $ 24 53 58
30 * * 2A 54 5C
31)) Right Paren 29 74 50
32 , , 38 77 5E
33 ----, -- 5F :Ji 5F
34 - - 20 40 60
35 / / 2F 21 61
36
37
38
39
40
41
42
43
44 7C 6A
45 , , 2C 33 68
46 % % 25 16 6C
47 -- 1\ 5E 37 60
48 > 6E
49 ? ? 3F 75 6F
50
51
52
53
54
55

F-25

Table F-13. Collating Sequence (coot)

Internal Tape Tape
Collating EBCDIC ANSI and ASCII Code Code
Sequence Character Character Tape Code BCD EBCDIC

(Hex) (Octal) (Hex)

56
57
58
59 \ \ 60 79
60 3A III 7A
61 # I: 23 55 78
62 @ ~ 7C
63 ,.J ,-J '[J 14 70
64 - - 3D 13 7E
65 " " 22 76 7F
66
67 a a 61 81
68 b b 62 82
69 c c 63 83
70 d d 64 84
71 e e 65 85
n f f 66 86
73 9 9 67 87
74 h h 68 88
75 i i 69 89
76
n
78
79
80
81
82
83 j j 6A 91
84 k k 68 92
85 I I 6C 93
86 m m 60 94
87 n n 6E 95
88 0 0 6F 96
89 p p 70 97
90 q q 71 98
91 r r n 99
92
93
94
95
96
97
98
99 ,...., -.", 7E A1

F-26

Table F-13. Collating Sequence (cont)

Internal Tape Tape
Collating EBCDIC ANSI and ASCII Code Code
Sequence Character Character Tape Code BCD EBCDIC

(Hex) (Octal) (Hex)

100 s s 73 A2
101 t t 74 A3
102 u u 75 A4
103 v v 76 A5
104 w w 77 A6
105 x x 78 A7
100 V V 79 A8
107 z z 7A A9
108
109
110
111
112
113
114
115
116
117
118
119
1~0

121
122
123
124
125
126
127
128
129
130 { { left Brace 7B CO
131 A A 41 61 C1
132 B B 42 62 C2
133 C C 43 63 C3
134 "0 0 44 64 C4
135 E E 45 65 C5
136 F F 46 66 C6
137 G G 47 67 C7
138 H H 48 70 C8
139 I I 49 71 C9
140
141
142 J1] Right Bracket 50 32 CC
143

F-27

Table F-13. Collating Sequence (cont)

Internal Tape Tape
Collating EBCDIC ANSI and ASCII Code Code
Sequence Character Character Tape Code BCD EBCDIC

(Hex) (Octal) (Hex)
144 y < 3C n CE
145
146 } } Right Brace 70 00
147 J J 4A 41 D1
148 K K 4B 42 02
149 L L 4C 43 03
150 M M 40 44 04
151 N N 4E 45 05
152 0 0 4F 46 06
153 P P 50 47 D7
154 Q Q 51 50 08
155 R R 52 51 09
156
157
158
159
160
161
162
163
164 S S 53 22 E2
165 T T 54 23 E3
166 U U 55 24 E4·
167 V V 56 25 E5
168 W W 57 26 E6
169 X X 58 27 E7
170 Y Y 59 :J) E8
171 Z Z 5A 31 E9
In
173
174 rI > 3E 57 EC
175
176
In
178 0 0 :J) 12 FO
179 1 1 31 01 Fl
180 2 2 32 02 F2
181 3 3 33 03 F3
182 4 4 34 04 F4
183 5 5 35 IE F5
184 6 6 36 00 F6
185 7 7 37 07 F7
186 8 8 38 10 F8
187 9 9 39 11 F9
188 I \ 5C 35 FA

F-28

SAMPLE DUMPS Unformatted Dump Example

The following are lists of dumps that include an Refer to figure F-6.
unformatted dump, a formatted character dump, and a
hexadecimal dump.

NAM DELMOD DELETE MODULES VER 1.0 OF SUP 06/15/73 DELOOOOl
NAM TAPUTL TAPE UTILITY VER 1.0 OF SUP 06/15/73 TAPOOOOl
NAM FNN FIND FUNCTION VER 1.0 OF SUP 06/15/73 FNNOOOOl
NAM SCAN SCAN COMMAND VER 1.0 OF SUP 06/15/73 SCAOOOOl
NAM OPENIO OPEN FUNCTION VER 1.0 OF SUP 06/15/73 OPEOOOOl
NAM RD~JTR READ AND WRITE VER 1.0 OF SUP 06/15/73 RDWOOOOl
NAM LIOC LOGICAL I/O VER 1.0 OF SUP 06/15/73 LIOOOOOl
NAM COPY COpy FUNCTION VER 1.0 OF SUP 06/15/73 COPOOO01
NAM EXIT EXIT SYSTEM VER 1.0 OF SUP 06/15/73 EXIOOOOl

Figure F -6. Unformatted Dump

Formatted Character Dump Example

Refer to figure F -7.

ASCII DUMP PAGE 00001

BLK = 00001
CHAR POSITION

00 05

BLEN= 00080

10 15

REC = 00001 RLEN = 00080

20 25 30 35 40 45

0000
0050

NAM DELMOD DELETE MODULES VER 1.0 OF
DELOOOOl

BLK =
CHAR

0000 =
0050

BLK =
CHAR

SUP 06/15/73

00071
POSITION

00 05

BLEN = 0080

10 15

REC = 00002 RLEN = 00080

20 25 30 35 40 45

NAM
06/15/73

TAPUTL TAPE UTILITY VER 1.0 OF SUP
TAPOOOOl

00563 BLEN = 00080 REC = 00003 RLEN = 00080
POSITION
00 05 10 15 20 25 30 35 40 45

49

49

49

0000
0050

NAM FNN
OF SUP 06/15/73

FIND FUNCTION VER 1.0
FNNOOOOl

Figure F -7. Formatted Character Dump

F-29

Hexadecimal Dump Example

Refer to figure F -8.

F-30

HEX DUMP

BlK = 00196
CHAR +00

BlEN = 00060
+02 +04

REC = 00017
+06 +08

0000 - 2050 0000 0000 01CE 5441
0010 - 5055 544C 0000 0000 0000 -
0020 - 2054 4150 4520 5554 494C -
0030 - 4954 5920 5645 5220 312E -
0040 - 3020 4F46 2053 5550 2030 -
0050 - 362F 3135 2F37 3320 2020 -

BlK = 00214 BlEN = 00060 REC = 00018
CHAR +00 +02 +04 +06 +08

0000 - 2050 0000 0000 00A7 464E -
0010 - 4F20 2020 0000 0000 0000 -
0020 - 2046 494E 4420 4655 4E43 -
0030 - 5449 4F4E 2056 4552 2031
0040 - 2E30 204F 4620 5355 5020 -
0050 - 3036 2F31 352F 3733 2020 -

HEX DUMP

BlK = 00225 BlEN = 00060 REC = 00019
CHAR +00 +02 +04 +06 +08

0000 - 2050 0000 0000 OOFA 5343 -
0010 - 414E 2020 0000 0000 0000 -
0020 - 2053 4341 4E20 434F 4040 -
0030 - 414E 4420 5645 5220 312E -
0040 - 3020 4F46 2053 5550 2030 -
0050 362F 3135 2F37 3320 2020 -

BlK = 00235 BlEN = 00060 REC = 00020
CHAR +00 +02 +04 +06 +08

0000 - 2050 0000 0000 0224 4F50 -
0010 - 454E 494F 0000 0000 0000 -
0020 - 204F 5045 4E20 4655 4E43 -
0030 - 5449 4F4E 2056 4552 2031
0040 - 2F30 204F 4620 6355 5020 -
0050 - 3036 2F31 352F 3733 2020 -

Figure F -8. Hexadecimal Dump

Page 00001

RlEN = 00060

~"P TA~"
~"PUTl ~ ..
~ .. TAPE UT I l~"
~ .. I TV V E R 1.~"
~"O OF SUP 01•

*6/15/73 1.

RlEN = 00060

;~N ••••••••• i~
~.. F I NO FUNC~'·

~"TION VER 1~"

~".O of SUP ~ ..
~'·06/ 15/75 ~'.

PAGE 00002

RlEN = 00060

~'. P •••••• SC~"
;'·AN ~'.
~" SCAN COMM~'·

~'·ANO VER 1. ~'.
~':O OF SUP O~':

~"6/15/75 ;':

RlEN = 00060

~': P $OP;':
~':EN 10 •••••• ~':
~'·OPEtJ FUNC ~':

~'·T ION VER 1 ~':
;':.0 OF SUP ~'.

~':06/ 15/75 ;':

SUP Commands

The following two commands are used to enter and exit
from SUP.

Tapes and printer flIes must be opened before the units
can be accessed. I, 0, VF, or PR parameters must
immediately follow OPEN or CLOSE. Only one logical
unit of each type (I, 0, VF, or PR) may be open at the
same time. Other parameters can be in any order. Only
the underlined portion of a parameter needs to be
entered. In the following commands, nn is the logical
unit number and nnnnn is the number of physical
records.

• ~SUPLP

This calls the SUP load program to load SUP
from the program library.

• EXIT Write header record on tape .

This returns to the operating system. Tape files
which are not closed will rewind and unload.

TERM-terminate initialize (lNIT repeats until
terminated)

[LRnnnnnJ [LCnnn]

CLOSE, 1 ~~T I VF '
PR

~
NAM(='XXXXXX'~

TNAM(='XXXXXX')
[SFnn J [BRnnnnn,] SNAM(='XXXXXX') [LBnnnnnJ

NAM (='XXXXXX')

~~~LOAD] LEAVE 
EOV 

[nnnnnJ BSPACE, 

DUMP, [FCnn,] [RCnnnn,] [~~~r J [
ForMat ] 
!:!nEormat ' ~

NAM (='XXXXXX'~ 
TNAM (='XXXXXX') 
SNAM (='XXXXXX') 
NAM (='XXXXXX') 

PRINT, [FCnn,] [RCnnnnJ 

COPY, [RCnn~n,] [FCnn,] 

VERIFY, [RCnnnnJ [FCnn,] 

~
PNAM (='XXXXXX'~' 
TNAM (='XXXXXX') 
SNAM (='XXXXXX') 
NAM (='XXXXXX') 

U
PNAM (='XXXXXX'~ 
TNAM (='XXXXXX') 
SNAM (='XXXXXX') 
NAM (='XXXXXX') 

~
NAM (='XXXXXX'~ 

TNAM (='XXXXXX') 
SNAM (='XXXXXX') 
NAM (='XXXXXX') 

[INIT,] COnn,] [i] 
F-31 



SUP COMMAND PARAMETERS 

The following parameters are used in the SUP 
commands: 

A 

ASCII mode or ANS VOL 1 labels 

B 

BCD mode for seven-track only 

BL 

bypass labels 

BR 

bypass records before processing 

C 

character dump 

E 

EBCDIC mode or EBCDIC standard volume labels 

EOV 

end of volume writes trailer labels, any end of file 

LB 

length of block (decimal); maximum is 32767 

LC 

line count per page; default is S6 

LEAVE 

leave tape positioned; labels and tape marks are 
written 

LR 

length of records (decimal); maximum is 32767 

NAM 

select NAM statements 

NL 

no labels 

o and OUT 

output logical unit 

PNAM 

position to name 

labels, double tape mark, and rewinds and unloads PR 
tape 

F 

fixed -length records 

FB 

fixed-length, blocked records 

FC 

file count; number of files to be dumped 

FM 

formatted dump 100 characters per line 

H 

hexadecimal dump 

I and In 

input logical unit 

F-32 

print logical unit 

RC 

record count 

RW 

rewind to load point; writes tape mark and required 
end-of-file labels before rewinding 

SF 

skip files before processing 

SL 

standard tape labels 

SNAM 

select and process by specific name 



TNAM 

terminate processing at name 

U 

undefined record format 

UF 

unformatted dump in character mode 

UN 

rewind and unload; writes tape mark and required 
end -of-file labels 

US 

USASCI printer control character in first character 
position 

v 

variable-length record 

VB 

variable-length, blocked records 

VF 

verify file logical unit 

F-33 





APPENDIX G 

ASSEMBLER COMMANDS 





Assembler Commands 

INTRODUCTION 

The macro assembler for the 1700 Computer System is a 
three-pass assembler which can convert source language 
input. including macro instructions, to relocatable 
output and can generate list output. The source 
programs are written with symbolic machine. pseudo, 
and macro instructions. 

Macro definitions may be defined by the user in the 
source program. or they may be placed on a separate 
macro library. 

Input is from the standard input device, binary output is 
to the standard output device. and list output is to the 
standard list device. 

The following describe functions occurring in each pass 
of the assembler: 

• Pass 1 

Programmer-defined macros are processed. and 
appropriate tables are built. Whenever a macro 
instruction is encountered. the macro skeleton 
with actual parameters substituted is inserted into 
the source input on the mass storage device. 

The source input is copied onto the mass storage 
device. 

Sequence numbers of the input source images are 
checked. 

• Pass 2 

Each source image on the mass storage device is 
read. and pass 2 errors are listed as they occur. 

Conditional assembly pseudo instructions are 
processed. 

Symbol and external tables are built. 

• Pass 3 

Each image is read, and pass 3 errors are listed. 

List and relocatable binary output are generated 
according to the input options. 

• TABLST 

T ABLST prints and punches the entry points and 
external images. The transfer image is punched. 

An EOF image is output to the next load-and-go 
sector on mass storage. 

A symbol table listing is given. 

• XREF 

XREF creates and prints the cross-reference lists. 

INSTRUCTION FORMAT 

The following paragraphs discuss the ASSEM instruc
tion format. 

Source Program 

The number of independent subprograms which 
comprise a source program is limited only by available 
space. Each subprogram may be assembled indepen
dently. or several may be assembled as a "group. The 
main subprogram of a group is the one to which initial 
control is given; it need not be the first subprogram. The 
last subprogram of a group must be followed by the 
MON pseudo instruction which indicates the end of 
assembly and return to the operating system. 

Communication between subprograms is accomplished 
by the subprogram linkage pseudo instructions and by 
the use of common and data storage. 

At execution time, the entry point named in the END 
pseudo instruction specifies the entry point to which 
initial control passes. A jump to the dispatcher or an exit 
request signals return of control to the operating system 
on job completion. EXIT or a jump to the dispatcher 
must be the last statement to be executed. 

Source Statement 

A source statement consists of location, instructions, 
address, remarks, and sequence fields. The first four 
fields may not exceed 72 characters; in that limitation 
they are free field. The sequence field is used when the 
source image is 80 characters; it is restricted to columns 
73 through 80. 

Each field is terminated by a tab ($B; paper tape only), 
carriage return (end-of-statement mark). or blanks. Any 
number of blanks may separate fields. A carriage return 
is always the end-of-statement mark on paper tape. 

G-l 



LOCATION FmLD 

The location field of a source statement must begin in 
column 1. 

This field is used to specify a labeled (label starting in 
column 1) or an unlabeled (blank or tab in column 1) 
statement. 

The statement label is a symbolic name which consists of 
from one to six alphanumeric characters; the first must 
be alphabetic. Characters in excess of six are ignored. A 
two-character name makes the most efficient use of 
storage and assembly time. 

Examples of statement label are: 

• LOOPl-Iegal 

• l23456-illegal;first character is numeric 

• Pl-Iegal 

• Al23456-legal; only Al2345 is processed 

REMARKS 

An asterisk in column 1 of the location field specifies that 
the source statement is a remark. Comments, written in 
columns 2 through 72, arc_ printed with the assembly list 
output but have no effect on the object program. An 
asterisk elsewhere in the location field is illegal. Remarks 
may also follow the address field of any instruction. 
There must be at least one blank separating the address 
field from the remarks. 

INSTRUCTION 

The instruction field begins to the right of the location 
field and must be separated from it by at least 1 blank 
character or a tab. If the location field contains no label 
(blank or tab on column 1), the operation code may begin 
in column 2. 

The operation code field contains the three-letter 
instruction codes for machine and pseudo instructions; 
or it contains macro instructions, which may be up to six 
characters. Certain instructions may be followed by a 
one-character terminator. 

ADDRESS FIELD 

The address field, which begins to the right of the 
operation code field, is separated from it by at least one 
blank character or a tab. It is terminated by a blank or 
tab or by the 72nd character of the source statement. 
Exceptions are the macro instructions which may have a . 

G-2 

continuation line and the pseudo instruction ALF (page 
G-23). 

This field contains an address expression which consists 
of an operand or string of operands joined by arithmetic 
operators. It may also contain a series of operands 
separated by commas. An operand may be any of the 
following: 

• Symbolic name 

• Numeric constant 

• One of the special characters: * A Q MOl B 

Symbolic Operand 

A symbolic name used as an operand in the address field 
must be defined in one of the following ways. 

• Label in the location field of any machine 
instruction 

• Label in the location field of any macro 
instruction 

• Label in the location field of constant declaration 
pseudo instructions (ADC, ALF, NUM, DEC, 
VFD) 

• Symbolic name in the address field of the pseudo 
instructions (EXT, COM, DAT, BSS, BZS, EQU) 

A defined symbolic name references a specific location in 
memory. It may be relocatable or absolute. A relocatable 
symbol refers to a location that may be relocated during 
loading. 

Storage is divided into three areas: program, data, and 
common. These areas are defined at assembly time, and 
the initial location of each is set to a relocation address of 
zero. The object code produced by the assembler 
contains addresses which are modified by a relocation 
factor to produce the actual address in memory. 

A symbol is program relocatable if it references a 
location in the subprogram, data relocatable if it 
references a location in data storage, and common 
relocatable if it references a location in common storage. 
All other symbols are absolute. A symbol is made 
absolute by equating it to a number, an arithmetic 
expression, or another absolute symbol. 

In all cases, a symbolic label and a symbol defined by 
BSS or BZS take the relocation and value of the current 
location counter. The location counter of a program is 
originally program relocatable; however, its relocation 
may be changed by the ORG instruction. 



1-

An address expression which includes more than one 
operand must reference only one relocatable area. Terms 
of different relocation types must reduce to one 
relocatable area or to an absolute address. When the 
address mode of an instruction is made one-word relative 
by an asterisk terminator, the relocation type of the 
address expression must agree with the type of the 
current location counter. 

A symbolic operand may be preceded by a plus or a 
minus sign. If preceded by a plus or no sign, the symbol 

RT LABEL OPERATION ADDRESS 

COM1, COM2 
DAT1, DAT2 

refers to its associated value; if preceded by a minus, the 
symbol refers to the ones complement of its associated 
value. When an expression contains more than one 
symbol, the final sign of the expression is the algebraic 
sum of the operands. The following paragraphs give 
examples of symbolic operands. In the examples, RT 
relocation type of current location counter are P 
(program relocatable), C (common relocatable), D (data 
relocatable), and A (absolute address). 

COMMENTS 

COM 
OAT 
EQU 
BZS 
BZS 

0(1) ,E(3) ,G(E-D) ,H($1000), I (DAT1) 
P 
P 

A,B,C 
J,K(10) 

Figure G-l. Assembler Coding, Example 1 

In figure G-l, the symbols D, E, G, and H are absolute. 
DAT1, DAT2, and I are data relocatable. COMl and 
COM2 are common relocatable. A, B, C, I, and K are 
program relocatable. 

RT Label Operation Address 

P START ADC 0 
P LDA* START 
P STA~': DAT1 
P STAi: COM1 

Figure G-2. Assembler Coding, Example 2 

The errors in figure G-2 resulted because the relocation 
types of the symbols in the address field do not match 
that of the location counter, and the one-word relative 
address mode was requested by an asterisk terminator. 

RT Label Operation Address 

P LDA+ 

Figure G-3. Assembler Coding, Example 3 

Relocations need not match as in figure G-3 when the 
mode is two-word absolute. 

Comments 

(Error) 
(Error) 

Comments 

(Not an er ror) 

G-3 



RT 

P 
P 

LABEL OPERATION 

LDA 
LDA 

ADDRESS 

START 
COMl 

Figure G-4. Assembler Coding, Example 4 

The assembler changes the instruction in figure G-4 to a 
two-word absolute because relocations do not match, but 
no error is indicated. 

RT LABEL OPERATION ADDRESS 

COMMENTS 

(Okay, relocations match) 
(Not an error) 

COMMENTS 

P LDA COM2-DAT1+COM1-D+E-COM2+START-K+DAT2 

Figure G-S. Assembler Coding, Example 5 

The address expression in figure G-S results in a 
common relocation type; all other relocations cancel out 
(refer to address expressions). 

RT LABEL OPERATION ADDRESS 

ORG DATl 

Figure G-6. Assembler Coding, Example 6 

In figure G-6, ORG changes the relocation of the 
location counter to data. 

RT 

D 
D 

LABEL OPERATION 

LDA~" 
STA~', 

ORG~', 

ADDRESS 

START 
DAT2+9 

Figure G-7. Assembler Coding, Example 7 

ORG* returns the location counter to the original 
relocation (figures G-7 and G-8). 

G-4 

COMMENTS 

COMMENTS 

(Error) 



RT LABEL OPERATION ADDRESS COMMENTS 

P LDA~~ START (Not an error) 
ORG H 

A LDA~~ START (Error) 
A STA~'~ DAT1 (Error) 
A LDA~~ $1001 
A STA- B 

ORG~'~ 

END 

Figure G-8. Assembler Coding, Example 8 

Numeric Operand 

A numeric operand in the address field may be decimal 
or hexadecimal. A decimal number is represented by up 
to five decimal digits and must be in the range ±32767. 
A hexadecimal number is represented by a dollar sign 
and not more than four hexadecimal digits in the range 
of ± 7FFF (hexadecimal operands in the NUM pseudo 
instruction may be in the range of ± FFFF). 

Numeric operands in the address field may be preceded 
by a plus or a minus sign. If a plus or no sign is specified, 
the binary equivalent of the number is the value used; a 
minus means the one's complement of the binary 
equivalent is the value. 

A numeric operand has no relocation type; it is always 
absolute. 

Address Expression 

An address expression may be a single operand or a 
string of operands joined by the following arithmetic 
operators. 

NAM EXAMPL 
COM A,B 
EQU C(l),D(S) 
EXT G 
BZS E(10),F 

START LOA D-C/S+~'d~2 

ADD A-B/2 
ADD E+S 
STA G 
END 

• + (Addition) 

• - (Subtraction) 

• * (Multiplication) 

• / (Division) 

Arithmetic operators may not follow each other without 
an intervening operand. Parentheses are not permitted 
for grouping terms. 

The asterisk has an additional meaning as an operand. 
When it is used as the multiplication operator (refer to 
special characters), it must be immediately preceded by 
an operand which may be another asterisk. When the 
asterisk is used as an operator, only one of its associated 
operands may be relocatable. 

The slash, used as the division operator, must be between 
two operands. The operand which follows may not be 
zero or relocatable. 

An external name may be used in an address expression 
only as a single operand. Arithmetic operators preceding 
or following an external operand are illegal (figure G-9). 

Figure G-9. Assembler Coding, Example 9 

G-S 



The first asterisk in the LDA instruction refers to the 
value of the current location counter. 

START LDA 
ADD 
ADD 
STA 

D-C**5+2 
A-2/B 
E~'tF 

G+5 

The instructions in figure G-10 are illegal assuming the 
same pseudo instructions precede the ·ST ART. 

*5 has no intervening operator 
Division by relocatable. operand 
80th operands are relocatable 
An external must stand alone 

Figure G-I0. Assembler Coding, Example 10 

The hierarchy for the evaluation of arithmetic expres
sions is: 

• 1 or * (Evaluated first) 

• + or - (Evaluated next) 

Expressions which contain operators at the same level 
are evaluated from left to right. The expression 
A/B+C*D is evaluated algebraically as follows: 

A/B+(C)(D) 

The expression should not be evaluated as any of the 
following: 

• (A)(D) 
B-FC 

• A 
(B+C)(D) 

• A 
B+(C)(D) 

Parentheses may not be used for grouping operands. The 
algebraic expression (A-D)(B+C/E) must be specified as 
follows: 

A *B+ A *C/E-D*B-D*C/E 

The following expression is illegal. 

(A-D)*(B+C/E) 

Division in an address expression always yields a 
truncated result; therefore, 11/3=3. The expression 
A *B/C may result in a value different from B/C* A. For 
example, if A=4, B=3, and C=2 then: 

A *B/C=4*3/2=6 

However: 

B/C* A=3/2*4=4 

All expressions are evaluated modulo 215_1: An address 
expression which consists solely of numeric operands is 

G-6 

absolute. If an expression contains symbolic operands, 
the final relocation for the expression is determined by 
the relocations of the symbolic operands. If the 
relocation of the operands is expressed by the following 
terms, the final relocation is the algebraic sum of the 
relocation terms: 

• ±P-Positive or negative program relocation 

• ±C-Positive or negative common relocation 

• + D-Positive or negative data relocation 

The relocation must reduce to one of the relocation terms 
or to zero. If it is zero, the location is absolute (table G-l). 

Table G-l. Relocation Examples 

Source Statements Relocation Fonnula 

COM A,8 

DAT C,D 

EQU E(1),F(D) 

STRT LOA 8 + C-E*2-A-D + C + D-C-D - 0 (absolute) 

LOA 8+D-F+STRT-A-C + C + D-D + P-C-D - P-O (illegal) . 

LOA 8 + O-E + STRT-A-C + C + 0 + P-C-O - P (program) 

LOA 8-0-A + C-O-C - -0 (negative data) 

Special Characters 

Special characters may be used as operands in the 
address field of a source statement. Their definition may 
not be changed by the user. The three classes of special 
characters are storage, register, and index. (table G-2). 

Storage class characters (*, I) reference storage locations. 
The asterisk refers to the location of the current 
instruction. For a word instruction, an asterisk 
references the location of the first word. Special 
character I refers to location FF 16. I is the only indexing 



character that may stand alone as an operand with 
storage reference instructions. It may not be defined as a 
location symbol in a program. 

Table G-2. Special-Character Operands 

Class Character Referenced Location 

* Current location counter Storage I Location FF16 

A A register 

Register 
Q Qregister 
M Mask register 
0 Destination registers 

Q Index 1; Q register 
Index I Index 2; location FF16 

B Index 1 plus index 2 

The register class characters (A, Q, M, and 0) are used 
only with interregister transfer instructions. They refer to 
the A, Q, and M (mask) registers. Character 0 sets the 
destination registers to zero (page G-17). Refer to table 
G-3. 

Table G-3. Register Class Characters 

Instruction Function 

SETA,Q,M Set A, Q, and mask registers to ones 

TRAQ Transfer contents of A register to Q register 

LAMM Transfer logical product of A and mask register 
to mask register 

Index class characters (Q, I, and B) are used in 
conjunction with an address expression to refer to the 
index registers. Anyone character may follow an address 
expression. It is separated from the expression by a 
comma with no intervening blank. Indexing may be used 
only with storage reference instructions. 

• Q-contents of Q register are added to contents 
of the expression to form the actual address 

• I-contents of location FF 16 are added to 
contents of address expression to form the actual 
address 

• B-contents of Q register are added to address 
expression, and this sum is added to contents of 
FF 16 to produce the actual address 

For examples of the index class characters, refer to table 
G-4. 

Table G-4. Sample Index Class Characters 

Address Legality Function 
Field 

LOC1,B Legal Contents of registers Q and FF16 and the 

contents of LOCl are added to produce the 
actual address 

"I Illegal Character following first comma is assumed 
to be index character 

TAG2,Q,1 Illegal Only one index notation allowed 

Q Illegal Unless Q has been previously defined as a 
location symbol or is being used with the 
interregister transfer instruction, it must 
follow a location symbol 

TAG3,1 Legal Contents of FF16 and TAG3 are added to 

produce the actual address 

COMMENT FmLD 

The address field is followed by the comment field, which 
is used for remarks. Remarks do not affect the object 
code, but are printed as part of the list output. The 
comment field terminates at column 72 or with a carriage 
return (paper tape). Blanks are permitted in the 
comment field. 

SEQUENCE FmLD 

When the input image is 80 characters, columns 73 
through 80 are available for sequencing; 73 through 7S 
may be used for program identification, and 76 through 
80 for a sequence number. 

Sequence numbers are checked for errors only if the 
input image is 80 characters. Each sequence number 
must be greater than or equal to the previous sequence 
number. The value of a character in the sequence 
number is in ASCII code except that a blank is treated as 
zero. 

MACHINE INSTRUCTIONS 

Machine instructions represented by a three-letter 
mnemonic code are divided into six classes. 

• Group A storage reference - shift 

• Group B storage reference - skip 

G-7 



• Register reference - interregister transfer 

Storage reference instructions result in one or two 
machine words, depending on modification. Other 
machine instructions result in one machine word. 

The function of each machine instruction is discussed in 
detail in the COS manual sections. Starting on page 
G-42, a list of the machine instructions is given in the 
order in which they are discussed in the following 
paragraphs. 

Storage Reference Instructions 
Group A and B storage reference instructions use storage 
addresses as operands or as operand addresses. Group B 
instructions include jump instructions and may not use 
the constant mode of addressing. 

ADDRESS MODES 

Group A storage reference instructions allow three 
modes of addressing: absolute, relative, and constant. 
Group B does not allow the use of the constant mode, but 
is otherwise the same as group A. 

Special characters designate the mode of addressing, the 
number of words for the instruction, and indirect 
addressing (table G-5). 

Table G-5. Special Characters for Addressing Mode 

Character Description 

* Asterisk, as the last character of operation 
code, specifies relative addressing in a 
one-word instruction 

- Minus, as the last character of operation code, 
specifies absolute addressing in a one-word 
instruction 

+ Plus, as the last character of operation code, 
specifies absolute addressing in a two-word 
instruction 

= Equal sign, as the first character in address field 
preceding a constant, indicates constant 
addressing; instruction is always two words 

() Parentheses enclosing the address expression 
indicate indirect addressing 

If no character is specified as a terminator to the 
operation code, two-word relative addressing is assumed 
with the following exceptions. 

G-8 

• If a constant is specified, the constant mode is 
assumed. 

• If the relocation type of the address expression 
differs from the relocation type of the location 
counter, two-word absolute addressing is 
assumed. 

• If a nonrelative external is referenced, absolute 
addressing is assumed. 

The machine language format which results from a 
storage reference instruction is illustrated as follows. 

First Word 

The first-word machine language format is: 

15 11 10 9 8 7 o 
f 

Parameters for the first word are: 

f-4-bit operation code is described previously 

r-specifies relative addressing 

d-specifies indirect addressing 

q-index register 1 flag; specifies adding contents of 
Q register to address 

i-index register 2 flag; specifies adding contents of 
storage register FF 16 to address 

-8-bit field; may be relative or absolute address 
for one-word instructions; when zero, indicates 
two-word instruction 

Second Word 

When the second word is used, it appears as follows: 

15 o 
c 

The parameter for the second word is: 

c-16-bit field for constant addressing or relative 
address; when it contains relative address, bit 15 
is the sign 

Second Word - Alternate 

15 14 o 
m 



The parameters are: 

b-indirect address bit 

m-memory address 

Address expressions are evaluated modulo 215_1. 

ABSOLUTE ADDRESSING 

The value of the address expression of a one-word 
absolute instruction must be nonrelocatable. The 
evaluated result is stored in 8 bits of the machine word. If 
this value is greater than 256, it is flagged as an error. If 
the 8-bit 6 field is zero, two machine words are assumed 
regardless of the operation code terminator; no error 
message is printed. If the address expression is enclosed 
in parentheses for indirect addressing, bit 10 of the first 
word is set to 1. Refer to the following examples. 

One-Word, Direct Addressing 

The instruction is: 

LDA- e 

The following machine word shows the instruction 
format: 

15 11 10 9 8 7 o 
LDA e 

One-Word, Indirect Addressing 

The instruction is: 

ADQ- (e) 

The machine word format is: 

15 11 10 9 8 7 o 
ADQ e 

The value of the address expression of a two-word 
absolute instruction is stored in the least-significant bits 
of the second word. If the expression is enclosed in 
parentheses for indirect addressing, bit 15 of the second 
word is set to 1. The indirect address bit lOin the first 
word is always set to 1 when two-word absolute 
addressing is specified whether the address expression is 
specified as indirect or direct. This indicates that the 
address expression is in the second word. The 
8-bit t::::. field of the first word is set to zero for two-word 
instructions. Refer to the following examples. 

Two-Word, Direct Addressing 

The following instruction is used: 

EOR+ e 

The machine words for the two-word, direct addressing 
are: 

15 11 10 9 8 7 o 
EOR 00 

15 14 o 
e 

Two-Word, Indirect Addressing 

The instruction is: 

AND+ (e) 

The following machine words show the format for the 
two-word, indirect addressing: 

15 11 10 9 8 7 o 
AND 00 

15 14 o 
e 

RELATIVE ADDRESSING 

When one-word relative addressing is specified, the value 
of the current location counter is subtracted (16-bit ones 
complement arithmetic) from the evaluated address 
expression. The result is placed in the 8-bit field. If 
the value of the result is outside the range ±7FI6' an 
error condition is flagged. An error condition is also 
flagged if the relocation type of the address expression 
differs from that of the location counter. If the 
8-bit 6 field is zero, two words are assumed, regardless 
of the operation code terminator. No error message is 
printed for this condition. Refer to the following 
examples. 

One-Word, Direct Addressing 

The instruction is: 

AND* e 

The machine word format is: 

15 11 10 9 8 7 o 
.I AND e-* 

G-9 



One-Word, Indirect Addressing 

The instruction is: 

MUI* (e) 

The machine word format for one-word, indirect 
addressing is: 

15 11 10 9 8 7 o 
MUI e-* 

In the expression e-*, the asterisk indicates the value of 
the current location counter. 

When a two-word instruction is specified, the value of the 
current location counter plus one is subtracted (using 
16-bit ones complement arithmetic) from the value of the 
address expression to obtain the 16-bit second word. If 
the relocation type of the address expression differs from 
that of the location counter, and the address does not 
reference an external, the assembler forces a two-word 
absolute instruction. If the address expression is an 
external reference, the instruction is absolute or relative 
depending on the definition of the external. Refer to the 
following examples. 

Two-Word, Direct Addressing 

The instruction is: 

LDQ e 

The following format applies to the machine words: 

15 11 10 9 8 7 o 
LDQ 11\ 0\ 0\ 0 I 00 

15 o 
e-*-1 

Two-Word, Indirect Addressing 

The instruction is: 

LDA (e) 

The machine word formats are: 

15 11 10 9 8 7 o 
LDA I 1 I 1 I 0 I 0 I 00 

15 o 
e-*-1 

G-I0 

In the expression, e-*-I, the asterisk indicates the value 
of the current location counter. 

CONSTANT ADDRESSING 

Constant addressing may be used only for group A 
storage reference instructions. Constants in the address 
field are preceded by an equal sign and a one-letter code. 
A constant may be one as listed in table G-6. Refer to 
table G-7 for examples. 

Table G-6. Constants Used in Addressing 

Code Type Meaning 

A aa Two alphanumeric characters 

N +ddddd Five-digit decimal number with or without a 
leading sign 

N +$hhhh Four-digit hexadecimal number preceded by $, 
with or without a sign 

X e Address expression evaluated modulo 215_1 

X (e) Address expression evaluated modulo 215_1, 
with bit 15 set 

Table G-7. Constant Addressing Examples 

Operation Description 

DVI =N$1000 Hexadecimal constant 

ADD '"' N-l2345 Decimal constant 

. lOA -AXY ASCII constant 

AND =XTAG1+5 Address expression constant 

An instruction which contains a constant in the address 
field results in two machine words. Refer to the following 
example. 

The instruction is: 

DVI =nc 

Where: 

n-the code 

c-the constant 



The machine word formats are: 

15 11 10 9 8 7 ° 
L-...-_D_VI_..L...I 0-,1_0 -1-1 0---lIL...-0-,-1 ___ 0 __ -----II' 

15 ° c 

DATA TRANSMISSION INSTRUCTIONS 

Refer to table G-8. 

Table G-8. Data Transmission Instructions 

Operation Description 

STO (F ... 4) Store 0; store the contents of the a register in 
the storage location specified by the effective 
address; contents of a are not altered 

STA (F .. 6) Store A; store the contents of the A register in 
the storage location specified by the effective 
address; contents of A are not altered 

SPA (F", 7) Store A, parity to A; store the contents of the 
A register in the storage location specified by 
the effective address; clear A if the number of 
"1" bits in A is odd; set A equal to 000116 if the 
number of "1" bits in A is even; contents of A 

. are not altered if the write into storage is 
aborted because of parity error or protect fault 

LDA (F = C) Load A; load the A register with the contents 
of the storage location specified by the 
effective address; contents of the storage 
location are not altered 

LDO (F = E) Load 0; load the a register with the contents 
of the storage location specified by the 
effective address; contents of the storage 
location are not altered 

ARITHMETIC INSTRUCTIONS 

All the arithmetic operations in table G-9 use one's 
complement arithmetic. 

Table G-9. Arithmetic Instructions 

Operation 

MUI (F - 2) 

Description 

Multiply Integer; multiply the contents of the 
storage location, specified by the effective 
address, by the contents of the A register; 

Table G-9. Arithmetic Instructions (cont) 

Operation Description 

32-bit product replaces the contents of a and 
A, the most-significant bits of the product in 
the a register 

DVI (F ... 3) Divide integer; divide the combined contents 
of the a and A registers by the contents of the 
effective address; a register contains the 
most-significant bits before dividing. If a 16-bit 
dividend is loaded into A, the sign bit of A must 
be extended throughout O. The quotient is in 
the A register, and the remainder is in the a 
register at the end of the divide operation. 

The OVERFLOW indicator is set if' the 
magnitude of the quotient is greater than the 
capacity of the A register. Once set, the 
OVERFLOW indicator remains set until a skip 
on overflow (SOV) or skip on no overflow 
(SNO) instruction is executed. 

ADD (F = B) Add to A; add the contents of the storage 
location, specified by the effective address, to 
the contents of the A register 

The OVERFLOW indicator is set if the 
magnitude of the sum is greater than the 
capacity of the A register. Once set, the 
OVERFLOW indicator remains set until a skip 
on overflow (SOV) or skip on no overflow 
(SNO) instruction is executed. 

SUB (F = 9) Subtract from A; subtract the contents of the 
storage location, specified by the effective 
address, from the contents of the A register. 
Operation on overflow is the same as for an 
add-to-A instruction. 

RAO (F = D) Replace add one in storage; add one to the 
contents of the storage location specified by 
the effective address; contents of A are not 
altered. Operation on overflow is the same as 
for an add-to-A instruction 

ADO (F = F) Add to 0; add the contents of the storage 
location, specified by the effective address, to 
the contents of the a register. Operation on 
overflow is the same as for an add-to-A 
instruction. 

LOGICAL INSTRUCTIONS 

The AND (AND with A) instruction achieves its results 
by forming a logical product. A logical product is a 

G-ll 



bit-by-bit multiplication of two binary numbers 
according to the following rules: 

Ox 0 = 0 
Ox 1 = 0 

1 xO = 0 
1 xl = 1 

An example of the AND process is: 

0011 (Operand A) 
x 0101 (Operand B) 

0001 (Logical product) 

A logical product is used, in many cases, to select only 
specific portions of an operand for use in some 
operation; for example, if only a specific portion of an 
operand in storage is to be entered into the A register, the 
operand is subjected to a mask in A. This mask is 
composed of a predetermined pattern of O's and l's. 
Executing the AND instruction causes the operand to 
retain its original contents only in those bits which have 
1's in the mask in A. 

The EOR (exclusive OR with A) instruction achieves its 
result by forming an exclusing OR. Executing the EOR 
instruction causes the operand to complement its 
original contents only in those bits which have l's in 
the mask in A. An exclusive OR is a bit-by-bit logical 
subtraction of two binary numbers according to the 
following rules: 

Exclusive OR 

A B A-¥-B 

1 1 0 
1 0 1 
o 1 1 
000 

An example of the EOR process is: 

0011 (Operand A) 
x 0101 (Operand B) 

0110 (Exclusive OR) 

Refer to table G-I0. 

Table G-IO. Logical Instructions 

Operation 

AND (F = A) 

Description 

AND withA; form the logical product, bit-by-bit 
of the contents of the storage location 
specified by the effective address and the 
contents of the A register. The result replaces 

Table G-IO. Logical Instructions (cont) 

Operation Description 

the contents of A. The contents of storage are 
not altered. 

EOR (F ... B) Exclusive OR with A; fonn the logical 
difference (exclusive OR), bit-by-bit, of the 
contents of the storage location specified by 
the effective address and the contents of the 
A register. The result replaces the contents of 
A. The contents of storage are not altered_ 

JUMP INSTRUCTIONS 

A jump (JMP) instruction causes a current program 
sequence to terminate and initiates a new sequence at a 
different location in storage. The program address 
register, P, provides continuity between program 
instructions and always contains the storage location of 
the current instruction in the program. 

When a jump instruction occurs, P is cleared and a new 
address is entered. t In the jump instruction, the effective 
address specifies the beginning address of the new 
program sequence. The word at the effective address is 
read from storage and is interpreted as the first 
instruction of the new sequence. 

A return jump (RTJ) instruction enables the computer to 
leave the main program, jump to some subprogram, 
execute the subprogram, and return to the main program 
via another instruction. The return jump provides the 
computer with the necessary information to enable 
returning to the main program. Figure G-ll shows how a 
return jump instruction can be used. 

A return jump instruction is executed at main program 
address P. The computer jumps to effective address 
002516 and stores P ± 1 or P ± 2 (depending on the 
address mode of RTJ) at this location. Then program 
address counter P is set to 002616, and the computer 
starts executing the subprogram. At the end of the 
subprogram, the computer executes a jump instruction 
(JMP) with indirect addressing. This causes the computer 
to jump to the address specified by the subprogram 
address 002516 (P + 1 or P + 2 of the main program). 
Now main program execution continues at P + 1 or 
P + 2. Refer to table G-l1. 

tJumps or return jumps from unprotected to protected storage cause a fault. but the address that is saved in the trap location is the destination address; i.e .. the address 
of the next sequential main program instruction. 

G-12 



Main 
Program 
Address 

Main 
Pr,ogram 

,. Effective I 
~a=======~A~=-________ ~, 

P ~ __ RT_J __ ~ ___ A_d_dr_es_s~=_OO_~_1_6 __ ~ 

Subprogram 

Computer Stores P+ 1/P+2 Here 

OO~16 

-------------GD~---------------·--------------

P+1 1ST Instruction of Subprogram 

P+2 L......l _______ ......J 

Last Instruction of Subprogram 

Figure G·l1. Program Using Return Jump Instruction 

Table G·l1. Jump Instructions 

Operation Description 

JMP (F = 1) Jump; jump to the address specified by the 
effective address; this effectively replaces 
the contents of program address counter P 
with the effective address specified in the 
jump instruction. 

RTJ(F=5) Return jump; replace the contents of the 
storage location specified by the effective 
address with the address of the next 
consecutive instruction. The address stored in 
the effective address is P + 1 or P + 2, 
depending on the addressing mode of RT J. 
The contents of P are then replaced with the 
effective address plus one. 

Register Reference Instructions 

Register reference instructions use the address mode 
field for the operation code. Register reference 
instructions are identified when the upper 4 bits (15 
through 12) of an instruction are 0' s. 

The format is given in figure G-12. 

15 12 11 a 7 o 

100001 Fl I 
~"-...... --~---.",,, 

Instruction Modifier ( 6 ) 

Figure G-12. Register Reference Instruction Format 

Refer to table G-12 for instructions. 

Table G·12. Register Reference instructions 

Operation 

SLS (F1 = 0) 

INP (Fl = 2) 

Description 

Selective stop; stops the computer if this 
instruction is executed when the SELECTIVE 
STOP switch is on. On restart, the computer 
executes the instruction at P + 1. This 
becomes a pass instruction when the 
SELECTIVE STOP switch is off. 

Input to A; reads one word from an external 
device into the A register. The word in the Q 
register selects the sending device. If the 
device sends a reply, the next instruction 
comes from P + 1. If the device sends a 
reject, the next instruction comes from P + 1 
+ 6 ,where delta is an a-digit signed 

G-13 



Table G-12. Register Reference Instructions (cont) 

Operation Description 

number. If an internal reject occurs, the next 
instruction comes from P +. 6 . 

OUT (Fl - 3) Output from A; outputs one word from theA 
register to an external device. The word in the 
Q register selects the receiving device. If the 
device sends a reply, the next instruction 
comes from P + 1. If the device sends a 
reject, the next instruction comes from 
P+ 1 + 6 , where delta is an B-bit signed . 
number. If an internal reject occurs, the next 
instruction comes from P + 6 

INA (Fl- 9) Increase A; replaces the contents of A with 
the sum of the initial contents of A and delta, 
where delta is treated as a signed number 
with the sign extended into the upper B bits. 
Operation on overflow is the same as for an 
add-to-A instruction. 

ENA (Fl = A) Enter A; replaces the contents of the A 
register with the B-bit delta, sign extended. 

NOP (Fl = B) No operation; this is a pass instruction (no 
operation is performed); compares to selec-
tive stop instruction with the STOP switch off. 

ENQ (Fl = C) Enter Q; replaces the contents of the Q 
register with the B-bit delta, sign extended. 

INQ (Fl = D) Increase Q; replaces the contents of Q with 
the sum of the initial contents of Q and delta, 
where delta is treated as a signed number 
with the sign extended into the upper B bits. 
Operation on overflow is the same as for an 
add-to-A instruction. 

The following instructions (Fl equals 4, 5, 6, 7, or E) are 
legal only if the program protect switch is off or if the 
instructions themselves are protected. If an instruction i~ 
illegal, it becomes a selective stop and an interrupt on 
program protect fault is possible (if selected). Refer to 
table G-13. 

• PROTECT switch on 

Selective stop unless instruction is protected 

• PROTECT switch off 

G-14 

Normal instruction execution (no program 
protection) 

Table G-13. Restricted Register Reference Instructions 

Operation Description 

EIN (Fl- 4) Enable interrupt; activates the interrupt 
system after one instruction following EIN has 
been executed. The interrupt system must be 
active, and the appropriate mask bit must be 
set for an interrupt to be recognized. 

liN (Fl ... 5) Inhibit interrupt; deactivates the interrupt 
system. If the interrupt occurs during 
execution of this instruction, the interrupt is 
not recognized until one instruction after the 
next EIN instruction is executed. 

SPB (Fl .. 6) Set program protect bit; sets the program 
protect bit in the address specified by Q. 

CPB (Fl - 7) Clear program protect bit; clears the program 
protect bit in the address specified by Q. 

EXI (Fl .. E) Exit interrupt state; this instruction must be 
used to exit from any interrupt state. Delta 
defines the interrupt state from which the exit 
is taken. At the time an interrupt occurs, the 
value of P is stored in the interrupt trap 
location assigned to that particular interrupt 
state. This value is called the return address 
as it enables return to the next unexecuted 
instruction after interrupt processing. The 
EXI instruction automatically reads the 
address containing the return address, then 
jumps to the return address. In addition, if the 
computer is in 32K mode, this instruction also 
sets the OVERFLOW indicator to the state of 
bit 15 in the return address. This bit records in 
state of the OVERFLOW in the return address. 
This bit records the state of the OVERFlOW 
indicator when the interrupt occurred. In 65K 
models, this instruction does not reset the 
OVERFlOW indicator. 

Interregister Instructions 

These instructions cause data from certain combinations 
of two origin registers to be sent through the adder to any 
combination of destination registers. Various operations, 
selected by the adder control lines, are performed on the 
data as it passes through the adder. 

The format is shown in figure G-13. 

If bit 0 of an interregister instruction is set (M is the 
destination register) and the instruction is not protected, 
it is a program protect violation and becomes a 
non protected selective stop instruction. The program 
protect fault bit is set, and interrupt occurs. 



Operand 1 

Adder Control Lines Operand 2 

---- ----15 12 11 8 7 6 5 4 3 2 1 0 

Logical Product ~~.. Origin Destinatio~ 
Registers Registers 

Exclusive OR 

Figure G·13. Interregister Instruction Format 

The origin registers are considered as operands. There 
are two kinds: 

• Operand 1 may be FFFF (bit 5 is 0) or the 
contents of A (bit 5 is 1). 

o Operand 2 may be FFFF (bit 4 is 0 and bit 3 is 0); 
the contents of M (bit 4 is 0 and bit 3 is 1); the 
contents of Q (bit 4 is 1 and bit 3 is 0); or the 
inclusive OR, bit-by-bit, of the contents of Q and 
M (bit 4 is 1 and bit 3 is 1). 

The following operations are possible: 

o Exclusive OR (LP = 0 and XR = 1) 

The data placed in the destination register(s) is 
the exclusive OR, bit-by-bit, of operand 1 and 
operand 2. 

• Logical product (LP = 1 and XR = 0) 

The data placed in the destination register(s) is 
the logical product, bit-by-bit, of operand 1 and 
operand 2. 

• Complement logical product (LP = 1 and 
XR = 1) 

The data placed in the destination register(s) is 
the complement of the logical product, bit-by-bit, 
of operand 1 and operand 2. 

• Arithmetic sum (LP = 0 and XR = 0) 

The data placed in the destination register(s) is 
the arithmetic sum of operand 1 and operand 2. 
The OVERFLOW indicator operates the same for 
an add-to-A instruction. 

INTERREGISTER MNEMONICS 

Refer to table G-14. 

Table G·14. Interregister Mnemonics 

Operation Description 

SET (Fl - 8, bits 7 through 3 - llD1J) Set to ones 

CLR (Fl = 8, bits 7 through 3 - 01000) Clear to zero 

TRA (Fl = 8, bits 7 through 3 = 10100) Transfer At 

TRM (Fl = 8, bits 7 through 3 = 100(1) Transfer Mt 

TRQ (Fl = 8, bits 7 through 3 = 10010) TransferQt 

TRB (Fl = 8, bits 7through 3 = 10011) Transfer Q + M11 

TCA (Fl = 8, bits 7 through 3 = 01100) Transfer complement At 

TCM (Fl = 8, bits 7 through 3 = 01001) Transfer complement Mt 

TCQ (Fl = 8, bits 7 through 3 = 01010) Transfer complement Qt 

TCB (Fl = 8, bits 7 through 3 = 01011) Transfer complement Q + Mt 

AAM (Fl = 8, bits 7 through 3 = 00101) Transfer arithmetic sum A, M 

AAQ (Fl ... 8, bits 7 through 3 = 00110) Transfer arithmetic sum A, Q 

G-15 



Table G-14. Interregister Mnemonics (cont) 

Operation 

AAB (Fl - 8, bits 7 through 3 - 00111) 

EAM (Fl - 8, bits 7 through 3 - 01101) 

EAO (Fl - 8, bits 7through 3 - 01110) 

EAB (Fl - 8, bits 7 through 3 - 01111) 

LAM (Fl - 8, bits 7 through 3 - 10101) 

LAO (Fl EO 8, bits 7 through 3 - 10110) 

LAB (Fl ... 8, bits 7through 3 ... 10111) 

CAM (Fl ... 8, bits 7 through 3 ... 11101) 

CAO (Fl ... 8, bits 7 through 3 co 11110) 

CAB (Fl = 8, bits 7 through 3 EO 11111) 

tThe use of bit 7 is optional; it may be a 1 or a 
O. The assembler uses bit 7 ... O. 

*Note that the + implies an inclusive OR. 

Shift Instructions 

The shift instructions shift A, Q, or QA left or right the 
number of places specified by the S-bit shift count. Right 
shifts are end-off with sign extension in the upper bits. 
Left shifts are end-around. The maximum long-right or 
long-left shift is IF places. 

The format for shift instructions is given in figure G-14. 

15 12 11 8 7 6 5 4 o 

100 0 o I Pl = F I I I I I 
1 ~ Shift Left t 11-;;-o = Shift Right . Cit 

oun 
1 = Shift A 

1 = Shift 0 

Figure G-14. Shift Instruction Format 

An example of the shift instruction is shift A right two 
places - OF42. The example is as in figure G~IS. 

G-16 

Description 

Transfer arithmetic sum A, 0 + M 

Transfer exclusive OR A, M 

Transfer exclusive OR A, 0 
.J • 

Transfer exclusive OR A, 0 + M 

Transfer logical product A, M 

Transfer logical product A, 0 

Transfer logical product A, 0 + M 

Transfer complement logical product A, M 

Transfer complement logical product A, 0 

Transfer complement logical product A, 0 + M 

15 12 11 87654 o 

o Fl~F I I I I 
00001 1 1 101 0 0 001 0 

Figure G-15. Sample Shift Instruction 

SHIFT MNEMONICS 

The shift mnemonics are listed in table G-IS. 

Table G-15. Shift Mnemonics 

Operation Description 

ARS (Fl = F, bits 7 through 5 = 010) A right shift 

QRS (Fl = F, bits 7 through 5 = 001) Q right shift 

LRS (Fl = F, bits 7 through 5 = 011) Long right shift (GA) 

ALS (Fl = F, bits 7 through 5 = 110) A left shift 

QLS(Fl = F,bits7through5 = 101) Q left shift 

LLS (Fl = F, bits 7through 5 = 111) Long left shift (GA) 



Sidp Instructions The skip instruction format is shown in figure G-16. 

15 12 11 8 7 6 5 4 3 o Skip instructions result in one machine word: a 12-bit 
operation code and a 4-bit unsigned skip count. The first 
4 bits of the operation code field are set to zero, the next 
4 bits contain the skip instruction code 0001, and the last 
4 bits contain a unique identifier, F2, for each skip 
instruction. The expression in the address field of the 

.. ~~"' .. '~ 

instruction is evaluated modulo 215_1. 
(F2) 

Instruction (F) t Skip Instruction 1 
Subinstruction (F) Skip Count 

Figure G-16. Skip Instruction Format 

This expression may be absolute or relocatable. If the 
expression is absolute, the value of the expression is the 
skip count. If it is relocatable, the value of the skip count 
is obtained by subtracting (16-bit one's complement 
arithmetic) the value of the current location counter plus 
one from the expression. The skip count is then placed in 
the last 4 bits of the machine word. The final value of the 
skip count must not exceed 4 bits, or an error message is 
printed. If the expression is relocatable, the relocation 
type of the expression must match the relocation type of 
the location counter or an error results. 

When the skip condition is met, the skip count plus one 
is added to P to obtain the address of the next instruction 
e.g., when the skip count is zero, go to P + 1). When the 
skip condition is not met, the address of the next 
instruction is P + 1 (skip count ignored). The skip count 
does not have a sign bit. See table G-16. 

Table G-16. Skip Mnemonics 

Operation Description 

SAZ(F2 = 0) Skip if A is positive zero (all bits are 0) 

SAN (F2 = 1) Skip if A is not positive zero (not all bits are 0) 

SAP(F2 = 2) Skip if A is positive (bit 15 is 0) 

SAM (F2 = 3) Skip if A is negative (bit 15 is 1) 

SOZ(F2 = 4) Skip if Q is positive zero (all bits are 0) 

SQN (F2 = 5) Skip if Q is not positive zero (not all bits are 0) 

SQP(F2 = 6) Skip if Q is positive (bit 15 is 0) 

SQM (F2 = 7) Skip if Q is negative (bit 15 is 1) 

SWS(F2 = 8) Skip if SELECTIVE SKIP switch is set 

SWN (F2 = 9) Skip if SELECTIVE SKIP switch is not set 

SOV(F2 = A) Skip on overflow; this instruction skips if an overflow 
condition is sensed. This instruction clears the OVERFLOW 
indicator. 

SNO (F2 = B) Skip on no overflow; this instruction skips if an overflow 
condition is not present. This instruction clears the 
OVERFLOW indicator. 

SPE (F2 = C) Skip on storage parity error; this instruction skips if a 
storage parity error occurred; it clears the storage parity 
error interrupt signal and the PARITY FAULT indicator. 

G-17 



Table G·16. Skip Mnemonics (cont) 

Operation Description 

SNP(F2 - OJ Skip on no storage parity error 

SPF(F2 - E) Skip on program protect fault; the program protect fault is 
set by: 

• A nonprotected instruction attempting to write into an 
address that is protected. 

• An attempt to execute a protected instruction 
immediately following a nonprotected instruction, 
unless an interrupt caused the instruction sequence. 

• Execution of any non protected instruction affecting 
interrupt mask or enables. 

The program protect fault is cleared when it is sensed by 
the SPF instruction. The program protect fault cannot be 
set it the program protect system is disabled. 

SNF(Fs'" F) Skip on no program protect fault 

Negative Zero/Overflow Set 

Negative zero and/or overflow set can be caused by two 
characteristics of the computer: 

• The computer has a one's complement 
subtractive adder. 

• Multiplication and division are done with positive 
numbers only; therefore, a sign correction occurs, 
if required, before and after the multiplication or 
division symbols. 

Arithmetic operations that produce a negative zero result 
and/or set overflow in the computer are given in table 
G-17. 

Table G·17. Operations Producing Negative Zero 
or Overflow 

Function Operation 

Addition (-0) + (-0) E: (-0) 

Subtraction (-0)-(+0) = (-0) 

Multiplication (+0) x (-N) ... (-0) 

(-Nh (+0) E: (-0) 

(-0) X (+ N) = (-0) 

(+N)x(-O) = (-0) 

Division (+0) 
- =(-0 R=(+O) (-N) , 

G-18 

Table G·17. Operations Pro~ucing Negative Zero 
or Overflow (cont) 

Function Operation 

Where: 
(-0) 

N =0 
- E: (-0) R - (-0) (+N) , 

R ... Remainder 
(-0) 
(-N) .. (+0), R .. (-0) 

(+N) 
f:;:(j) .. (-0), R .. (+ N) overflow set 

(-N) f-iif - (-0), R ... (-N) overflow set 

!1ID = (-2) R = (-0) (+N) , 

~~~~) -= (+2), R ... (-0) 

(+0)
(+0) = (-0), R = (+0) overflow set

(+0)
Hi) = (+O),R ... (+0) overflow set

(-0)
(+0) = (+0), R = (-0) overflow set

(-0)
(-0) = (-0), R = (-0) overflow set

PSEUDO INSTRUCTIONS

Pseudo instructions control the assembler, provide
subprogram linkage, control output listing, reserve
storage, convert data, and so on.

Pseudo instructions may be placed anywhere in a source
language subprogram. However, OPT or NAM must be
the first statement of a subprogram and MON or END
must be the last statement.

Subprogram Linkage

These instructions identify and link subprograms. A
sym bolic name in the location field is ignored.

NAM STATEMENT

NAM identifies a source language subprogram and must
be the first statement of the subprogram. Only the
assembler control pseudo instruction OPT (page G-29)
may precede it.

The format is:

NAM s

Where:

s-optional symbolic name of the subprogram
which is printed as part of the assembly list
output

END STATEMENT

END must be the last statement of a source language
subprogram. If END terminates a subprogram
assembled separately or the last subprogram of a group,
the MON instruction follows END. Otherwise END is
followed by NAM or OPT.

ENTl
ENT2

NAM
ENT
LDA
STA

ENT

PROGl
ENT1,ENT2
XYZl
XYZ2

ENTX

END ENTl

The format is:

END s

Where:

s-optional symbolic name of an entry point to the
first subprogram to be executed

If specified, s must be defined as an entry point
in the subprogram to which control passes. This
entry point may be in the same subprogram as
the END statement or in a subprogram loaded at
the same time.

An example of the. END statement is as follows:

END START

. START is the location of the first statement to be
executed.

ENT STATEMENT

The ENT instruction lists the symbolic names of entry
points which may be referenced from other programs.

The format is:

Where:

si-entry points listed in the address field of ENT
which must be defined in the subprogram
containing the ENT instruction. si must not
refer to a location outside the subprogram,
common storage, or data storage.

An example of the use of the ENT statement is shown in
figure G-17.

(Lega 1)

(111ega1; ENTX not defined)

Figure G·17. ENT Statement

G-19

EXT STATEMENT

The EXT instruction lists the symbolic names of entry
points in external subprograms which inay be referenced
from this subprogram. .

The format is:

Where:

si-entry points in the address field of EXT, which
must be symbols defined in the subprograms
they reference.

si must not refer to symbols in the same
subprogram.

Examples of the use of the EXT statement are shown in
figures G-18 and G-19.

NAM
EXT
LOA
COM
EXT
EXT
EXT
EXT

ENT1,ENT2
XYZ

(Lega I)
ENT3

ENT5
ENT3·
ENT4

(Illegal; ENT3 is same subprogram)
(Legal)

ENT5
ENTl

(Illegal; ENT5 in common storage)
(Legal; defined in same way as above)

ENO

Figure G·18. EXT Statement, Example 1

EXT ENT1,ENT2

LOA ENTl

Figure G·19. EXT Statement, Example 2

This reference to ENTl results in the following two
machine words:

15 11 10 9 8 7 0

I LDA 10 1110 10 I 00 I
15 0

external link I
External link is a pointer to the location of ENTl used by
the loader at load time.

EXT* STATEMENT

The EXT* instruction is the same as EXT except that si
represent absolute locations in EXT and references to si
are made relative in EXT*.

G-20

The format is:

The plus terminator cannot be used with an operation
code when the address references a relative external entry
point. It is also illegal to enclose an external in
parentheses in the address field of an ADC instruction.

An example of the EXT* statement is shown in figure
G-20.

The reference to NAMEl in figure G-20 results in the
following two machine words.

15 11 10 9 8 7 o
I LDA 00

15 o
external link

External link is a pointer to the location of NAMEI used
by the loader at load time.

EXT·'.
LOA
LOA+

LOA
AOC

NAME1,NAME2,NAME3
NAMEl
NAMEl

(NAME2)
(NAME3)

(111 ega 1)

(111 ega 1)

EXT* NAME1,NAME2

LOA NAMEl

Figure G·20. EXT* Statement

Data Storage

The following instructions allocate data storage. BSS and
BZS assign storage local to the subprogram in which they
appear. COM and DAT assign data common to any
number of subprograms. Symbolic names in the location
fields of data storage instructions are ignored.

BSS STATEMENT

The BSS instruction assigns symbolic names to segments
of storage in the instruction sequence of the subprogram.

The format is:

Where:

This symbolic name defines the first location of
the named segment.

omitted

When omitted from a subfield, a segment is
assigned with the length e, but no name is
assigned to the segment.

ei-expression

These corresponding expressions of -the
symbolic name define the length of the segment
in words. Segments are assigned contiguously to
form one block of data starting at location sl.

The size of the block is equal to the sum of the
sizes of the segments. ei are evaluated modulo

215_1 and must be absolute.

o

The associated symbolic name is assigned to the
next segment which in effect assigns two names
to that segment.

omitted

The length is assumed to be one computer word.

symbolic name

This must be previously defined. It can be
assigned by an EQU instruction.

BZS STATEMENT

This statement functions in the same way as the BSS,
except that the specified storage locations are set to zero.

The format is:

An example of using the BZS statement is shown in
figure G-21.

COM STATEMENT

The COM instruction names and defines segments in a
block of storage common to more than one subprogram.

The format is:

Where:

This is the symbolic name which defines the first
location of the named segment.

omitted

When omitted from a sub field , a segment is
assigned with the length e, but no name is
assigned to the segment.

ei-expression

Corresponding expressions of the symbolic
name which defines the length of the segment in

G-21

G-22

NAM
NAM3 LOA XYZl

BSS NAM4(3) (Assign three words to NAM4)
BZS NAMS(S) (Assign five words, set to zero,

to NAMS)
BSS NAM1,NAM2(9) (Assign one word to NAM1; assign

nine words to NAM2)
BSS NAM3 (Illegal; NAM3 already assigned)
BSS NAM6, (4) (Assign one word to NAM6, assign

four words to unnamed segment)
BSS NAM7 (Assign one word to NAM7)
EQU NAM8(4),NAM9(2)

BZS NAM10(NAM8-NAM9) (Assign two words, set to zero, to
NAM10)

BSS NAM8(NAM10-l) (Illegal; NAM8 already assigned)
BSS LOC1(O),LOC2 (Assign the same word to LOCl and

LOC2)

END

Figure G-21. BZS Statement

\.Vords. Segments are assigned contiguously to
form one block of data starting at location sl.

The size of the block is equal to the sum of the
sizes of the segments. ei are evaluated modulo

215_1, and must be absolute.

o

The associated symbolic name is assigned to the
next segment which, in effect, assigns two
names to that segment.

omitted

The length is assumed to be one computer word.

sym bolic name

NAM4

This must be previously defined; can be
assigned by an EQU instr"uction.

If a program includes more than one COM statement,
they define consecutive segments of common storage in
the order of their appearance. The area used by common
storage is assigned by the loader at load time to locations·
outside the program area. Data in common storage
cannot be preset by the ORG pseudo instruction.

An example of the COM statement is figure G-22.

DAT STATEMENT

The DAT instruction reserves area for common storage
which is assigned within the program area and may be

NAM3

NAM
COM
STA
COM
EQU
COM
COM

XYZl
NAM7($lEF),NAM8
NAMl (6) ,NAMZ(2)
NAMS(NAM1-MANZ)
NAM6(NAM3) (Illegal)

END

Figure G-22. COM Statement

preset with data or instructions by using the ORG
pseudo instruction.

The format is:

Where:

This is the symbolic name ~hich defines the first
location of the named segment.

omitted

When omitted from a subfield, a segment is
assigned with the length e, but no name is
assigned to the segment.

ei-expression

The corresponding expressions of the symbolic
name define the length of the segment in words.
Segments are assigned contiguously to form one
block of data starting at location s1. The size of
the block is equal to the sum of the sizes of the
segments. ei are evaluated modulo 215_1 and
must be absolute.

o

The associated symbolic name is assigned to the
next segment which in effect assigns two names
to that segment.

omitted

The length is assumed to be one computer word.

sym bolic name

The symbolic name must be previously defined;
can be assigned by an EQU instruction.

Constant Declarations

These pseudo in~tructions introduce constant values into
the instruction sequence.

ADC/ADC* STATEMENTS

The ADC/ ADC* instruction evaluates numerical
constants or address expressions and inserts the results
in line. When ADC is followed by an asterisk, the
evaluated address expressions are made relative to the

current location counter. The relocation type of the
expression must be the same as that of the location
counter. The value of the locations counter is subtracted
from the value of the evaluated expression {16-bit one's
complement arithmetic} and the result is the 16-bit
address constant.

The format is:

Where:

s-this is the symbolic name in the location field
which is assigned to the first constant in the
address field.

ei-This represents the numerical constant or
address expression to be evaluated. The result is
evaluated modulo 215_1. Bit 15 is set if the
expression is enclosed in parentheses (indicating
an indirect reference). The results correspond
ing to e1,e2, ... ,en are stored in consecutive
storage locations.

NOTE

Indirect addressing cannot be specified in
the ADC* statement.

ALF STATEMENT

The ALP instruction translates a message into ASCII .
format. .

The format is:

s ALP n,message

Where:

s-This is the symbolic name in the location field
which is assigned to the first constant in the
address field.

n-This represents the unsigned integer, specifying
the number of words to be stored; 2n equals the
number of characters.

If n is an integer, 2n characters of the message
are stored. Excess characters are treated as a
remark. (The ALP statement, including the
message, will not be processed beyond the 72nd
character of the source image.) If the message is
less than 2n characters, the unused portion of
the specified area is blank filled.

It can be a noninteger character which signals
the end of the message. When n is a special

G-23

terminating character, the storage of the
message terminates the first time this character
is encountered in the message if it occurs before
the 72nd character. If the character just prior to
n is the first character of a word, a blank is
placed in the second character to complete the
word.

A character message is stored into consecutive
locations in the instruction sequence. The
message is convert~d to ASCII characters and is
stored two 8-bit characters per word.

The typewriter control characters in table G-18 may be
input with the ALF statement.

Table G-18. Typewriter Control Characters

Code Meaning Hexadecimal Value

:R ' Carriage return D

:T Horizontal tab 9

:L line feed A
.-

:B Bell 7

:F Topofform C

:V Vertical tab B

These codes are converted to a single output character
with the corresponding hexadecimal value and are
counted as one character in determining the value of n,
when n is an integer character count. A colon is an 8-to-5
keypunch code with the ASCII value of 3A16'

A symbolic name in the location field is assigned to the
first word of the message.

The following source language statements, for example,
are translated into machine words as shown in table
G-19.

G-24

ALF
NAM1 ALF

ALF
NAM2 ALF

4,EXAMPLE1
.,EXAMPLE2
6,EXMP3:TEXMP4:R
4,EXMP5

Table G-19. ALF Statements Translated to
Machine Words

Location
Character

Left Right

E X

A M

P L

E 1

NAMl E X

A M

p L

E 2

6 6

6 6

E X

M P

3 Tab

E X

M P

4 Carriage return

NAM2 E X

M P

-5

In this example, 6 is a blank. Three dots indicate blanks
fill in the words between EXAMPLE2 and EXMP3. This
is because the special terminating character, ., does not
occur in the message before the 72nd character. If, in the
example, n is in column 13, then 25 words of blanks are
used to fill the words between EXAMPLE2 and EXMP3.

NUM STATEMENT

The NUM instruction defines numeric constants.

The format is:

Where:

s-This represents the symbolic name in the
location which is assigned to the first constant
in the address field.

ki-These are the specified integer constants stored
into consecutive locations in the instruction
sequence. Each constant may be a decimal
integer in the range ±32767 or a hexadecimal
integer preceded by a $ in the range +7FFF.
The constant may be signed. If it is not signed,
the constant is assumed to be positive. When
the sign is minus, the one's complement of the
number is used.

The following source language statements are translated
into machine words as shown in table G-20.

NUM
NAM1 NUM

1,2,3,$A
+14,-10,-$13B,$7FF

Table G-20. NUM Statements Translated to
Machine Words

Location Contents Location Contents

0001 NAM1 OOOE
11112 FFF5
0003 FEC4
OOOA 07FF

DEC STATEMENT

The DEC instruction converts decimal constants into
fixed-point binary.

The format is:

s DEC

Where:

s-The symbolic name in the location is assigned to
the first constant in the address field.

ki-The specified integer constants are stored into
consecutive locations in the instruction
sequence. It is a signed decimal integer followed

by a decimal and/or binary scaling factor. The
decimal scaling factor consists of the letter D
followed by a signed or unsigned decimal
integer. The binary scaling factor is the letter B
followed by one or two signed or unsigned
decimal digits. The form of a constant in the
address field may be:

fDdBb

which is equivalent to the algebraic expression:

The fixed-point binary number resulting from
the conversion must have a magnitude less than
215. If the result of scaling is greater than
215_1, an error diagnostic is printed.

A symbolic name in the location field is assigned to the
location of the first constant. The source language
statements are converted to machine words as indicated
in table G-21.

DEC
NAM1 DEC

DEC
NAM2 DEC
NAM3 DEC

35D-1B6
-35B6
32760B-4
32761D-5B15, +625D-2B3
10D3

Table G-21. DEC Statement Translated to
Machine Words

Location Contents of Bits 15 Through 0

DIDlOOOO111 OOODO
NAM1 1111011100111111

0000011111111111
NAM2 0010100111101111

0000000000110010
NAM3 0010011100010000

VFD STATEMENT

The VFD (variable field definition) instruction assigns
data to' consecutive locations in the instruction sequence
without regard for computer words. Data is stored in bit
strings rather than word units. Data may be numeric
constants, ASCII characters, or expressions. A symbolic
name in the location field is assigned to the first word of
data.

The format is:

s VFD

G-25

Where:

s-name

This is the symbolic name, which defines the
first location of the named segment.

mi-mode of the data

G-26

N

When the value of the data is a numeric
constant, the mode is specified as N, and the
number of bits must not be greater than 16. If
n is larger than necessary, the value is right
justified in the field and the sign is extended in
the remaining high-order bits. If n is less than
is required, the value is truncated and the least
significant bits are stored. The value, v, is a
decimal integer or a hexadecimal integer
preceded by a dollar sign. Integers may be
signed or unsigned; if the sign is omitted, the
number is assumed to be positive. A decimal
number must be in the range +32767 and a
hexadecimal integer in the range ± 7FFF.

A

When v is a string of characters, m must be A,
and n must be a multiple of 8. The number of
characters in the string should be equal to n/8
including embedded blanks. The last character
must be followed by a blank or a comma. The
characters are converted to ASCII code and
stored as in the ALF instruction.

x

When v is an expression, m must be X, and n
must be less than or equal to 16. If n is less
than 16, the final value of the expression may
be relocatable or absolute. It is evaluated
modulo 215_1~7FFF16. If the final value is
absolute and n exceeds the size required, the
value is right-justified in the field. If absolute
and n is less than the required size, the value is
truncated and the least-significant bits are
stored in the field. If the final value is
relocatable, n must equal 15, and the
expression must be positioned so that it will be
stored right-justified at bit position 0 of the
computer word.

Ifn equals 16, the expression must be absolute;
it is evaluated, using 16-bit one's complement
arithmetic. If a symbol is used in a 16-bit
expression, bit 14 of the value of the symbol is
extended to bit 15, and therefore, the
calculation of the value of the symbol is

accurate only to 214_1. If the symbol A is
equated to the value -1, for example, the value
of A in the symbol table is 7FFE16, but the
value used in the 16-bit calculation of this
symbol is FFFE16. Numeric operands used in
a 16-bit expression may be 16 bits in
magnitude.

ni-number of bits to be allocated

Vi-value of the data

The following source language statements:

NAM
VFD N3/1,X5/6-4,A16/XY,X4/NAM1-NAM2
BSS NAM2(3),NAM1

END

Result in the following machine words:

Word 1

15 12 7 o
10 0 1 00010 o 1 0 1 1 000

Word 2

15 7 3 0

101011001 o 0 1 1 000 0

The following source language statements:

NAM
VFD N8/-1,A8/L,N1/0,X15/NAM1
BSS NAM1

END

Result in machine words as follows:

Word 1

15 7 0

1 1 1 1 1 1 1 1 0 o 1 001 1 0 0 I
Word 2

15 14 o
loc ofNAM1

The following source language statements:

A(-l),B(2)
NAM
EQU
VFD X161 A,XI6/B,XI6/$7FFF*2

END

Result in the following machine words:

Word 1

15 0

111 1 111 1 1 1 1 1 1 1 1 101

Word 2

15 0

10000000000000010

Word 3

15 0

I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 101

Assembler Control
The assembly process is controlled or modified by the
pseudo instructions defined in the following paragraphs.
A symbolic name in the location field is ignored except
where specifically noted.

EQU STATEMENT

The EQU instruction equates each symbolic name to the
expression value.

The format is:

NAM EXAMPL
PICKUP LOA XYZl
NAM6 ADD XYZ2

EQU

Where:

Symbolic name si is equated to the value ei.

ei--expression

Any symbolic operand used in the expression
must be previously defined and not external to
the subprogram in which the EQU statement
appears. ei are evaluated modulo 215_1 and

must be absolute.

omitted

The expression is assumed to be zero.

An example of the EQU statement is given in figure
G-23.

ORGjORG*STATEMENT

The ORG statement specifies an address expression to
which the current location counter is set.

The format is:

ORG e

Where:

e--expression

The expression, e, is evaluated modulo 215_1,
and the location counter is set to the resultant
value. The value of the expression may be
program or data relocatable. Or it can be abso-

EQU NAM3($4F),NAM4(-39)
EQU NAM7(NAM6-1)
EQU NAM8(STORE) (I 11 ega 1)

STORE STA XYZ3
EQU NAM9(STORE) (Legal)

END

Figure G-23. EQU Statement

G-27

lute. If it is relocatable, it must be positive. Any
symbolic operands in the expression must have
been previously defined.

The . instructions following an ORG statement are
assembled into consecutive locations beginning at the
location of the evaluated address expression, e. This
sequence may be changed by another ORG or
terminated by an ORG* statement. In the range of a
data relocatable ORG, any reference to an external
symbol is illegal.

The format is:

ORG*

This instruction is used to return to the normal
instruction sequence previously interrupted by an ORG.
More than one ORG may be specified without an
intervening ORG*; however, when an ORG* does occur,
the location counter is reset to the value it had prior to
the first ORG.

An example of ORG and ORG* statements is given in
figure G-24.

BSS
NAMl ENA

ORG1(10),ORG2,ORG3(S)
o

NAM2 JMP~~ NAM3
ORG NAMl
(sequence of code beginning at NAM1)
ORG~'~

(resume sequence of code at NAM2+1)
NAM3 JMP~~ NAM4

ORG ORGl
(sequence of code beginning at ORG1)
ORG ORG3
(sequence of code beginning at ORG3)
ORG~'~

(resume sequence of code at NAM3+1)

END

Figure G-24. ORG/ORG* Statements

IFA STATEMENT

The IF A instruction assembles a set of coding lines only
if a specified conditions is true.

The format is:

s IFA

Where:

G-28

s-The symbolic name in the location field is used
as an identifying tag only; it is·not defined as a
location symbol in the program .. If it is specified,
the first two characters of the identifier, s, must
match the first two characters of the symbolic
name in the address field of the corresponding
ElF. If s is blank in an IFA statement, it must
also be blank in the corresponding ElF.

ei-The expressions e1 and e2 are evaluated modulo

21S_1 and must result in an absolute value. Any
symbolic name in either expression must have
been previously defined.

c-If the conditions specified by c exist between e1
and e2, the code is assembled; if the condition
does not exist, the code following the IF A state
ment is skipped until a corresponding ElF
statement is encountered.

The following conditions may be specified by c.

Condition Meaning

EQ

NE

GT

LT

ElF STATEMENT

The ElF instruction signals the termination of an IF A or
IFC instruction when coding lines are skipped as a result
of an untrue condition. When the condition in the IFA or
IFC is true, ElF is ignored.

The format is:

ElF s

Where:

s-The symbolic name, s, in the address field estab
lishes the correspondence between an IF A or IFC
and an ElF instruction. The first two characters
of s must be the same as the first two characters
in the location field of the corresponding IF A or
IFC. An ElF with a blank address field
terminates an unlabeled IFA or IFC.

An example of the ElF statement is given in figure
G-2S.

NAM

LOCl BSS A (20) , B (10) , C (2)
EQU NAM1(10),NAM4(B),NAM2(2)

NAM3 IFA NAM1,EQ,NAM2+8
OPl SAZ 1

ElF NAM3
IFA NAM1,GT,NAM2+8

OP2 SAZ 2
ElF

END

Figure G-25. ElF Statement

In figure G-2S, OPl is assembled and OP2 is skipped if
the value of NAMl equals the value of NAM2+8; OPl is
skipped and OP2 is assembled if the value of NAMl is
greater than the value of NAM2+8; both OPl and OP2
are skipped if the value ofNAMl is less than the value of
NAM2+8.

OPT STATEMENT

The OPT pseudo instruction signals the input of control
options to the assembler.

The format is:

OPT

When OPT appears, the assembler requests input of
control options by typing:

OPTIONS

The control options in table G-22 are entered in any
order on the teletypewriter. Imbedded spaces and illegal
characters are ignored. A carriage return signals the end
of co~trol options input.

Table G-22. OPT Statement Control Options

Option Meaning

L List output on standard list device

P Punch output on standard punch device

X Execute output on mass storage device

M List called macro skeletons

A Abandon all remaining assemblies and return
control to operating system

lIu Input from unit lu; reads instructions until the
END statement is encountered, then returns to
the standard input device; lu may be any ASCII
or BCD input device

C List cross references at end of assembly listing

OPT is not a part of the source language program. It is
used strictly for control of the assembler and has no code
associated with it.

OPT may precede any NAM instruction in. any
subprogram. If the first statement encountered is not
OPT, standard options are assumed until END is
encountered. If OPT is encountered between the first
statement of a program and the END statement, a
diagnostic is issued. The standard options are L, P, X,
and C.

MON STATEMENT

The MON instruction returns control to the operating
system after the last subprogram has been assembled.

G-29

The format is:

MON

MON may be used only after the EN'D statement. The
location and address fields are ignored. This statement is
part of the source language program and is used strictly
for control of the assembler; no code is associated with it.

Listing Control

The following pseudo instructions control the printing· of
assembly output. The location and address fields are
ignored unless they are specified.

NLS STATEMENT

The NLS instruction inhibits list output.

The format is:

NLS

Normally list output is enabled initially until an NLS
occurs and then remains inhibited until an LST
instruction or the end of the program occurs.

LST STATEMENT

The LST instruction initiates list output after an NLS has
inhibited it.

-The format is:

LST

SPC STATEMENT

The SPC instruction control line spacing on the list
output unit.

The format is:

SPC e

Where:

e-The number of lines to be skipped; the

expression is evaluated modulo 215_1 and must
be absolute.

EJT STATEMENT

-The EJT instruction causes page ejection during printing
of the list output.

G-30

The format is:

EJT

MACROS

An often used set of instructions may be grouped
together to form a macro. Once a macro is defined, it
may be used as a pseudo instruction. The 1700 macro
assembler includes two types of macros.

• Programmer defined

These are macros which must be declared by
MAC pseudo instructions immediately following
the NAM image. Comment cards may, however,
be placed anywhere in the macro definition.

• Library

These are definitions contained on the system
library and may be called from any subprogram.

Macro Pseudo Instructions

These pseudo instructions are used only in a macro
definition.

MAC STATEMENT

The MAC instruction is required and names a macro and
lists its formal parameters. The location field contains
the name used to call the defined macro. It may be any
name which is not a machine or pseudo instruction.

The format is:

s MAC

Where:

s-This is a symbolic name in the location field
which is assigned to the first word of the
generated code.

Pi-These symbolic names are local to the macro

definition and may be used anywhere else in the
program without ambiguity. The formal
parameters must conform to the following
rules:

• They must be symbolic names of 1 or 2
characters.

o The parameter list must not extend beyond
the 72nd character of the line containing
MAC.

• The parameter list must terminate with a
blank or the 72nd character of the line.

• Each parameter in the list is separated from
the next by a comma.

EMC STATEMENT

The EMC instruction is required and signals the end of a
macro definition. A symbolic name in the location or
address field is ignored. EMC is always the last
instruction in a macro definition.

The format is:

EMC

LOC STATEMENT

The LOC instruction is optional and allows the use of the
same symbols in macros and programs to avoid doubly
defined symbols. Symbols, other than formal param
eters, that are local to the macro being defined are listed
in this instruction. Local symbols have meaning only in
the macro in which they are listed by LOC, thereby
allowing the same symbols to be used elsewhere in the
program without ambiguity.

The LOC instruction must immediately follow the MAC
instruction. A symbol in the location field of the LOC
instruction is ignored.

The format is:

Where:

si-These local symbols in the address field must
conform to the following rules:

• They must be symbolic names of one or two
characters.

• The list cannot extend beyond the 72nd
character of the line containing the LOC
instruction.

• The list terminates with a blank or the 72nd
character of the line.

• Each symbol in the list is separated from the
next by a comma.

o No local symbol in the list may be the same as
a formal parameter specified for the macro.

• No more than 256 local symbols can be used
in one program .

IFe STATEMENT

The IFC instruction is optional and allows a set of
instructions in a macro definition to be assembled only if
a specified condition is true. This instruction is
meaningful only in the range of a MAC pseudo
instruction.

The format is:

s IFC

Where:

s-The symbol in the location field is an identifying
tag used to establish correspondence with the
terminating ElF. An ElF terminates an IFC
when the first two characters of the symbol in
the address field of ElF are the same as the
location symbol of the IFC or when both
symbols are blank and it is the first ElF
encountered.

ai-This must be a string of from one to six charac
ters or a formal parameter specified in the MAC
statement. The character string should not
contain commas, blanks, or apostrophes. Two
character strings are equal when they contain
the same characters in the same position and
are of the same length. Characters in excess of
six are ignored.

c-The specified condition meets the following
rules:

Condition Meaning

EQ

NE

If the condition specified exists between a 1 and
a2, the code is assembled; if not, the code
following the IFC is skipped until a correspond
ing ElF pseudo instruction is encountered.

Source language examples of macro definitions
and instructions are given on page G-34.

G-31

Macro Skeleton
A macro skeleton is the set of instructions in a macro
definition that is the prototype of the operations to be
performed when the macro is called.

The instructions may be any machine or pseudo
instruction except MAC, LaC, EMC, NAM, END, or
MON. A macro skeleton may also contain macro
instructions calling other macros. A macro skeleton may
not contain a macro instruction which caIIs itself. Formal
parameters, enclosed in apostrophes, may appear
anywhere in the instruction format of a prototype
instruction. Local symbols defined by a LaC statement
may be used anywhere in the macro skeleton; they also
must be enclosed in apostrophes. The only legal use of
the apostrophe in a macro definition is to enclose formal
parameters or local symbols. Formal parameters that

extend past the 72nd character into the sequence field
are ignored. Formal parameters in a remark statement
signaled by an * in column 1 are also ignored.

In addition to the formal parameters specified in the
MAC pseudo instruction, a special formal parameter (a
period enclosed in apostrophes) may be used in the
macro skeleton. It is replaced by the instruction
terminator of the calling macro instruction when a
terminator is specified.

Let A, B, C, ... be distinct arbitrary macro skeletons. A
may contain a macro instruction calling B, B a macro
calling C, etc. Up to 10 such successive macro calls are
allowed by the assembler. Further successive caIIs are
ignored.

A sample macro skeleton is illustrated by figure G-26.

XYZ MAC
LOC

Pl,P2,P3,P4,P5
A

I Pl1
'P3 1

LOA
'p2 1

s'p4 l z
JMP I. I

I A 1-''''-1 Macro skeleton
'P5 1

'A' ENA 1

EMC

Figure G-26. Macro Skeleton

Macro Instruction
With a macro instruction, the code generated from the
named macro is inserted in the instruction sequence
beginning at the location of the macro instruction.

The format is:

s N

Where:

s-A symbolic name in the location field is
assigned to the first word of the generated code.

N-This is the symbolic name of the macro in the
operation code field. It is the name specified in
the location field of the MAC statement of the
macro definition it calls. The macro name may
be followed by one of the special terminators +,
-, or *.

Pi-These symbolic names are local to the macro

definition and may be used anywhere else in the
program without ambiguity.

G-32

PARAMETERS

Parameters are defined in the foIl owing paragraphs.

Actual

The actual parameters must be listed in the same order
as the formal parameters in the MAC statement. The list
of actual parameters must conform to the following
rules.

• Each parameter in the list is separated from the
next by a comma.

• The list is terminated with a blank or the 72nd
character unless the 72nd character is a comma.

• The list may be continued onto the next line; if so,
the last parameter on the list is terminated by a
comma and a blank or the 72nd character.

• The continuation line must contain the macro
name in the operation code field. A symbolic
name in the location field is ignored.

• An actual parameter containing embedded
blanks or commas must be enclosed by
apostrophes.

The internal buffer for storage of actual parameters is 96
words long; this allows approximately three continuation
lines. If the buffer overflows, an error message is given.

An example of actual parameters is where the macro
defined in the previous example as XYZ could be called
by the following macro instruction:

TAG1 XYZ* SYMB1,STA,'SYMB2,I',
XYZ* Q,LABEL1 (Continuation line)

This macro instruction would generate the following
code starting at location TAG1:

TAG1 LDA
STA
SQZ
JMP*

[nn ENA

SYMB1
SYMB2,I
[nn-*-l
LABELl
1

NOTE

[nn is a unique identifier assigned at assembly time.

Null

Actual parameters may be omitted from a macro
instruction. An omitted (null) parameter in the middle of
the list is indicated by its terminating comma only.
Parameters at the end of the list may be omitted with no
indication.

An example of the use of null parameters would be:

XYZ MAC P1,P2,P3,P4,PS,P6

The macro instruction, with P2, P4, and P6 omitted in
the actual parameter list, would be:

XYZ MUI"SYMBS,,3

Empty fields are allowed in all machine and pseudo
instructions with the following exceptions:

Macro Definition

ALF n,message (n must be specified)

EQU s(e)

} (If e is specified, s
COM s(e) must be specified) DAT s(e)

IFA e1,c,e2 } (c must be specified)
IFC a1,c,a2

Actual parameters to be inserted into the value of a VFD
instruction using mode A must agree with the number of
characters that are specified. A null actual parameter
can cause an error in the generated code unless the VFD
allows for null parameters, for example:

x MAC
VFD

P,Q,R
AS/'P' ,AS/'Q' ,AS/'R'

For the macro defined, the calling macro instruction
must specify each actual parameter as one character
long. If an actual parameter is more than one character,
an error message is given. If an actual parameter is
omitted, however, a code is generated, and an error
results, for example:

X
VFD

A"B
AS/ A,AS/ ,AS/B

(Q is omitted)
(Code generated)

If actual parameters might be omitted, the VFD
instruction in the macro skeleton should include empty
sub fields for each character, for example, the macro
definition should be written:

x MAC
VFD

P,Q,R
AS/'P' "AS/'Q' "AS/'R',

A calling sequence with no actual parameters generates
the following code and no error results.

VFD AS/ "AS/ ,AS/,

EXAMPLES OF MACRO INSTRUCTIONS

The examples in figures G-27 to G-32 show macro
definitions and the code generated by macro instructions
calling the defined macros.

XYZ MAC
LDQ
LOA
'P l'

Pl,P2,P3,P4,PS,P6
=N'PS','P6'

I 1

ADD
IFA
I FC
STA

'P3'
'P2'
SYMB1
'PS' ,NE,O
'P1',EQ,MUI
SYMB3

G-33

LOA SYMB2
ElF
ElF 11
EMC

Macro Instruction
CALL1 XYZ MUI,'SYMB4,1 ',SYMBS,HERE,3,1

Gimerated Code
CALL1 LOQ =N3, I
HERE LOA SYMBS

MUI SYMB4, I
ADD SYMB1
IFA 1,NE,O (Condition satisfied)

11 IFC MUI,EQ,MUI (Condition satisfied)
STA JSYMB3 (Assembled)
LOA SYMB2 (Assembled)
ElF
ElF 11

Macro Instruction
CALL2 XYZ OVI,SYMB7,'SYMB8,1' ,THERE,2

Generated Code

CALL2 LOQ =N2
THERE LOA SYMB8, I

OVI SYMB7
ADD SYMBl
IFA 2,NE,O (Condition satisfied)

11 IFC OVI,EQ,MUI (Condition not satisfied)
STA SYMB3 (Not assembled)
LOA SYMB2 (Not assembled)
ElF
ElF 11

Figure G·27. Macro Instruction, Example 1

Macro Definition

A MAC Pl,P2,P3,P4
I 1 IFC i~, EQ, • Pl'

LOA 'P2'
ElF 11

12 IFC i':,NE, 'Pl'
LOA 'P3'
ElF 12
STA 'p4'
EMC

G-34

Macro Instruction

Generated Code

I 1

12

Macro Definition

JAN MCA
IFC
SAZ
ElF
IFC
SAZ
ElF
JMP'. I
EMC

Macro Instruction

Generated Code

Macro Instruction

Generated Code

A

IFC
LOA
ElF
IFC
LOA
ElF
STA

SY
I, EQ,
1

I, NE,
2

ISyl

JANi',

IFC
SAZ
ElF
IFC
SAZ
ElF
JMPi'\

NAM

IFC
SAZ
ElF
IFC
SAZ
ElF
JMP

I I .

I I .

*,NAM1,NAM2,NAM3

i', , EQ, i',
NAMl
I 1
i",NE,i'\
NAM2
12
NAM3

(Condition satisfied)
(Assembled)

(Condition not satisfied)

Figure G-28. Macro Instruction, Example 2

SYMBl

i': , EQ, ·k

1

i'\,NE,i"
2

SYMBl

SYMB2

i'" EQ,
1

i':,NE,
2

SYMB2

(Condition satisfied)
(Assembled)
(Ignored)

(Condition not satisfied)
(Not assembled)
(Skip terminated)

(Condition not satisfied)
(Not assembled)
(Skip terminated)

(Condition satisfied)
(Assembled)
(Ignored)

Figure G-29. Macro Instruction, Example 3

G-35

Macro Definition

IFEXM~ MAC
Z IFC

NUM
ElF

Y IFC
X IFC

NUM
ElF

Y IFC
NUM
ElF
EMC

Macro Instruction

Generated Code

Z IF
NUM
ElF

Y I FC
X IFC

NUM
ElF

Y IFC
NUM
ElF

Macro Instruction

Generated Code

Z IFC
NUM
ElF

Y IFC
X IFC

NUM
ElF

Y IFC
NUM.
ElF

Macro Instruction

Generated Code

Z IFC
NUM
ElF

Y IFC
X IFC

NUM
ElF

Y IFC
NUM
ElF

G-36

Pl
*,EQ,'pl l

2
Z
*,NE,'pl l

O,EQ,'pl l

1
X
O,NE,'pl l

° Y

IFEXMP

,EQ,
2
Z
*,NE,~':

O,EQ,*
1
X
O,NE,~':

° Y

IFEXMP

~':, EQ, °
2
Z
~':,NE,O

O,EQ,O
1
X
O,NE,O

° Y

IFEXMP

~':, EQ,
2
Z
~'" NE,
O,EQ,
1
X
O,NE,

° Y

*

°

(Condition satisfied)
(Assembled)

(Condition not satisfied)
(Not assembled)
(Not assembled)
(Not assembled)
(Not assembled)
(Not assembled)
(Skip terminated)

(Condition not satisfied)
(Not assembled)
(Skip terminated
(Condition satisfied)
(Condition satisfied)
(Assembled)

(Condition not satisfied)
(Not assembled)
(Skip terminated)

(Condition not satisfied)
(Not assembled)
(Skip terminated)
(Condition satisfied)
(Condition not satisfied)
(Not assembled)
(Skip terminated)
(Condition satisfied)
(Assembled)

Figure G·30. Macro Instruction, Example 4

Macro Definitions
DEPTH1 MAC A

DEPTH2 'A I, PARAMl
EMC

DEPTH2 MAC A,B
DEPTH3 IA ' ,PARAM2
EMC

DEPTH3 MAC C,D
LDA 'c'
STA 'D'
EMC

Macro Instruction
DEPTH1 SVMB1

Generated Code

DEPTH2
DEPTH3
LDA
STA

SVMB1,PARAM1
SVMB1,PARAM2
SVMB1
PARAM2

Figure G-31. Macro Instruction, Example 5

Macro Definition
B MAC A,B,C,D,E,F,G,H,I,J,K

LOC LO
ALF I A, I B '6 ERROR
VFO 'C'/'O' ,A16/'E' ",A32/TEST
IFC 'G' ,EQ,SKIP
LOA 'H'
ElF

I J ' INA IJI
'K' 1
SAN 'LQ'
ENA -1

I LO' STA IF'
EMC

Macro Instruction
B 4,1 ,N4,-1 ,XV, 'TEMP, I' ,SKIP, 'TEMP, I',
B NAM2,10,NOP

Generated Code
ALF .4. 16 ERROR
VFO N4/-1 ,A16/XV, "A32/TEST
IFC SKIP,EQ,SKIP

G-37

NAM2

nn

LOA
ElF
INA
NOP
SAN
ENA
STA

TEMP, I

10
1
nn

-1
TEMP, I

Figure G-32. Macro Instruction, Example 6

Macro Library

LIBMAC is released as a separate library macro
preparation routine. Input to this routine is in the form
of a set of macro definitions, each starting with a MAC
statement and ending with an EMC statement. The
complete set of macro definitions to be input to the
library is terminated by the characters ENDMAC
starting in column 1 of the source image.

The library macro preparation routine outputs two files
on the standard 110 device for binary output. One
contains a macro directory; the other contains the macro
skeletons. The routine checks for errors and prints an
error message along with the line containing the error.

Binary output is in two sections; the macro skeleton file
and the macro directory file. After the skeleton file has
been output, the message MACSKL END is output on
the typewriter and a carriage return must be typed to
start output of the macro directory.

The output files are placed on the program library in two
permanent files using the system initializer or library
editor of COS.

The library editor is used to put the macros on the
program library.

The following control statement places the macro
directory file on the program library:

*N,MACROS",B

The following control statement places the macro
skeletons on the program library:

*N,MACSKL",B

ASSEMBLER OUTPUT

The following paragraphs discuss the output of the
assembler.

G-38

Control Options

Four standard options (table G-23) determine the type of
output from the assembler. All four are automatically
selected if no OPT statement is encountered before the
first NAM.

Table G-23. Control Options

Option Meaning

p Relocatable binary output on standard output unit

X load and go; execute output loaded on a mass storage device

l list output on standard list unit

C list cross-references at end of assemblv listing

P OPTION

Relocatable binary output is selected by the P option.

The standard output binary device is used for relocatable
binary information. If the binary output device is
magnetic tape, the final relocatable program terminates
with the EOL record *T. If the binary output device is
paper tape, a blank trailer terminates each assembly.

X OPTION

If the X option is selected, relocatable binary output is
placed on the mass storage unit for subsequent loading
and execution.

L OPTION

The L option results in an assembly listing described as
follows. With the OPT pseudo instruction, any or all of
the preceding options may' be omitted. OPT also provides
options for listing macro skeletons and abandoning
assembly.

C OPTION Each page has a ~ader which contai)1.s the program
name, page number, and date.

The C option produces a cross-reference list which is
printed at the end of the assembly list.

Following the assembly list, the lengths of the program,
common, and data are given in hexadecimal and decimal
values.

Assembly Listing • PGM = 0155(341)

The assembly list as output to standard list output
device, consists of 18 columns of information related to
the source statement, followed by a maximum of 80
columns listing the source statement (table G-24).

• COM = 2BE(702)

o DAT = 0000(0)

Table G-24. Assembly LIst

CohIm Contents

1 through 4 Card number; truncated from five to four decimal digits

5 Space

6 Relocation designator for location

P-program relocation
D-data relocation

7 through 10 Location in hexadecimal

11 Space

12 through 15 Machine word in hexadecimal

16 through 17 Relocation designator for word

P-program relocation
-P-negative program relocation
C-common relocation

-C-negative common relocation
D-data relocation

-D-negative data relocation
X-external

blank -absolute

18 Space

19 through 98 Input source statement

The data length includes those areas reserved by DAT
pseudo instructions.

ERROR LISTING

option is selected, errors in pass 3 precede the source line
on the list output. A decimal error count is printed at the
end of each subprogram. If L is not selected, error
messages are output on the standard comment unit.

A list of errors which 'occur in passes 1 and 2 precedes the
program listing on the standard list 110 unit. If the L

The format for pass 1 and 2 error messages is given in
table G-25.

G-39

Table G·25. Pass 1 and 2 Error Messages

Column Contents

1 and 2 **

3 through 6 4-digit line number

6and7 **

Band9 Two-character error code

10 through 19 ••••••••••

CROSS·REFERENCE LISTING

Cross-references are listed at the end of an assembly
listing if the option C was specified by the ·user.
Cross-references are also listed if no OPT statement was
found since the C option is a default option.

The cross-references are divided into four functional
parts:

• Equivalences

• Symbols

• Externals

• Symbols in alphabetical order
The format for pass 3 error messages is given in table
G-26.

if cross-references are to be listed and there is not enough
core to process all four parts of the cross-references
listing, the assembler attempts to sort the symbol table
alphabetically. If there is not enough core to sort the
symbol table alphabetically, the symbol table is dumped.

Table G-26. Pass 3 Error Messages

Column Contents

1 through 6 ******

7and8 Two-character error code

9 through 18 ••••••••••

The equivalences, symbols, and externals are listed
according to the line number at which they are defined.
In addition to the definition line number, the value or
address and the line numbers of all references to that
symbol are given. The list of symbols in alphabetical
order includes all the symbols in the program. The
number following each symbol is the corresponding
definition line.

SAMPLE PROGRAM

The error codes and their meanings are given on page
G-SO.

The source program in figure G-33 results in the
assembly listing in figure G-34.

NAM TEST2 ERS MACRO EXAMPLEX
XYZ MAC Pl,P2,P3,P4,P5,p6

LOQ =N'P5 1 ,'P6 1

'p4 1 LOA 'P3 1

I Pl' 'p2 1

AOO SYMBl
IFA 'P5 1 ,NE,O

11 IFC 'Pl',EQ,MUI
STA SYMB3
LOA SYMB2
ElF
ElF 11
EMC

MACRO MAC Pl,P2,P3,P4,P5,P6
LOC A
LOA I Pl'
'p2 1 'P3 1

s' p4 l z I A I -1~-1
JMP ' p5 1 'P6 1

'A' ENA 1

G-40

SYMBl
SYMB2

SYMB5
CALL 1
SYMB4
CALL2
SYMB8
SYMB7

EMC
MACRO
MACRO
ADC
ADC
XYZ
ADC
XYZ
ADC
XYZ
ADC
ADC
END

SYMB1,STA,'SYMB2,1',
Q, ~':, LABEL 1
o
o
MUI"SYMB5,,3
o
MUI,'SYMB4, II ,SYMB5,HERE,3,1
o
DV I , SYMB7 , "SYMB8, II , THERE, 2
o
o

Figure G-33. Sample Source Program

SAMPLE LISTING

The assembly listing in figure G-34 is output from the
assembly of the source program in figure G-33.

0001
0002 XYZ
0003
0004 'p4 1
0005
0006
0007
0008 11
0009
0010
0011
0012
0013
0014 MACRO
0015
0016
0017
0018
0019
0020 'A'
0021
0022
0023
0023 POOOO C800

POOOl 0006
0023 P0002 6900

P0003 0005
0023 P0004 0141
******UD**********
******RL**********
0023 P0005 1000
0023 poo06 OAOl

NAM
MAC
LDQ
LOA
I Pl1

ADD
IFA
IFC
STA
LDA
ElF
ElF
EMC
MAC
LOC
LDA
'p2 1

s' p4 l z
JMP ' p5 1

ENA
EMC

TEST2 ERS MACRO EXAMPLEX
Pl,P2,P3,P4,P5,P6
=N'P5 1,'P6 1
'P3 1

'p2 1

SYMBl
I P5 I , NE, 0
I P 1 I , EQ, MU I
SYMB3
SYMB2

I 1

Pl,P2,P3,P4,P5,p6
A
I Pl1
'P3 1

'A'-~~-l

'P6 1

1

MACRO SYMB1,STA, 'SYMB2,1',
MACRO Q, ~':, LABEL 1

G-41

0024 P0007 0000 SYMBl ADC 0
0025 poo08 0000 SYMB2 ADC 0
0026 XYZ MU I , SYMB5, ,3
0026 P0009 EOOO

POOOA 0003
0026 POOOB c800

POOOC 0009
0026 POOOD 2400

POOOE 0000
0026 POOOE 8800

P0010 FFE6
-;";-lc·l:-;'ci'c* J **-;'ci'\i";'c*;"

0026 POOll 6400
P0012 0000

0026 P0013 c800
P0014 FFE3

0027 P0015 0000 SYMB5 ADC 0
0028 CALL 1 XYZ MUI,'SYMB4, I ',SYMB5,HERE,3,1
0028 poo16 E100

P0017 0003
0028 poo18 C800

P0019 FFE8
0028 P001A 2900

P001B 0007
0028 P001C 8800

P001D FFE9
I': i': i': *;'c -;': i': J i': -;': ,,;': i': i': i'\ ole -;,':

0028 POOlE 6400
P001F 0000

0028 P0020 c800
P0021 FFE6

0029 P0022 0000 SYMB4 ADC 0
0030 CALL2 XYZ DVI,SYMB7,'SYMB8,1' ,THERE,2
0030 P0023 FOOO

po024 0002
0030 P0025 C900

po026 0005
0030 P0027 3800

po028 0004
0030 P0029 8800

P002A FFDC
0031 P002B 0000 SYMB8 ADC 0
0032 P002C 0000 SYMBl ADC 0
0033 END

Figure G-34. Sample Listing for Soorce Program

MNEMONIC INSTRUCTION CODES
Machine Instructions

There are six classes of machine instruction codes.

• Storage reference, group A

• Storage reference, group B

G-42

• Register

• Shift

• Skip

• Interregister transfer

STORAGE REFERENCE INSTRUCTIONS

These instruction codes and corresponding definitions
are listed in table G-27.

Table G·27. Storage Reference Instructions

Operation Code Definition

LOA Load A register

LDO Load 0 register

ADD Add to the A register

Group A
SUB Subtract from A register

ADO Add to 0 register

- AND Perform logical AND with A register

EOR Perform logical exclusive OR with A register

MUI Multiply integer with A register

DVI Divide integer into a Register

STA Store A register

STO Store 0 register
Group B

JMP Unconditional jump

RTJ Return jump

RAO Replace add one in storage

SPA Store A register, return parity to A register

REGISTER INSTRUCTIONS

The register instructions are defined in table G-28.

Table G·28. Register Instructions

Operation CodE Definition

SLS Selective stop

INP Input to A register

OUT Output from A register

ENA Enter A register

Table G·28. Register Instructions (cont)

Operation Code Definition

ENO Enter 0 register

INA Increase A register

INO Increase 0 register

NOP No operation

EIN Enable interrupt

liN Inhibit interrupt

EXI Exit interrupt state

SPB Set program protect bit

CPB Clear program protect bit

SHIFT INSTRUCTIONS

Table G-29 lists the shift instructions and their
corresponding definitions.

Table G·29. Shift Instructions

Operation Code Definition

ARS A right shift .

ORS o right shift

LRS Long right shift (Q and A combined)

ALS A left shift

I,OLS o left shift

LLS Long left shift (Q and A combined)

SKIP INSTRUCTIONS .

Refeito table G-30 for the skip instructions.

Table G·30. Skip Instructions

Operation Code Definition

SAZ Skip if A-O

SAN Skip if A"O

G-43

Table G-30. Skip Instructions (cont)

Operation Code Definition

SAP Skip if A is positive

SAM Skip if A is negative

SOl Skip if 0-0

SON Skip if 0",,0

SOP Skip if 0 is positive

SOM Skip if 0 is negative

SWS Skip if switch is set

SWN Skip if switch is not set

SOV Skip on overflow

SNO Skip on no overflow

SPE Skip on storage parity error

SNP Skip on no storage parity error

SPF Skip on program protect fault

SNF Skip on no program protect fault

INTERREGISTER TRANSFER INSTRUCTIONS

The interregister transfer instructions are listed and
defined in table G-31.

Table G-31. Interregister Transfer Instructions

Operation
Definition

Code

SET Set specified register to ones

CLR Clear specified reg,ister to zelos

TRA Transfer A to specified register

TRM Transfer M to specified register

TRO Transfer 0 to specified register

TRB Transfer both (Q + M) to specified register

TCA Transfer complement of A to specified register

TCM Transfer complement of M to specified register

G-44

Table G-31. Interreglster Transfer Instructions (cont)

Operation
Definition

Code

TCO Transfer complement of 0 to specified register

TCB Transfer complement of both (O+M) to specified
register

AAM Transfer arithmetic sum of A and M to specified register

AAO Transfer arithmetic sum of A and 0 to specified register

AAB Transfer arithmetic sum of A and both (Q+M) to
specified register

EAM Transfer exclusive or of A and M to specified register

EAO Transfer exclusive or of A and 0 to specified register

EAB Transfer exclusive or of A and both (Q + M) to specified
register

LAM Transfer logical product of A and M to specified register

LAO Transfer logical product of A and 0 to specified register

LAB Transfer logical product of A and both (Q+M) to
specified register

CAM Transfer complement of logical product of A and M to
specified register

CAO Transfer complement of logical product of A and 0 to
specified register

CAB Transfer complement of logical product of A and both
(Q + M) to specified register

Note: + indicates an inclusive OR.

Pseudo Instructions

There are six classes of pseudo instructions.

• Subprogram linkage

• Data storage

• Constant declaration

• Assembler control

• Listing control

• Macro definition

SUBPROGRAM LINKAGE

For the subprogram linkage pseudo instructions refer to
table G-32.

Table G-32. Subprogram Linkage Pseudo Instructions

Operation Code Definition

NAM Identify source language subprogram

END End source language subprogram

ENT Designate internal entry point names

EXT Designate external entry point names

EXT* Designate relative external entry point names

DATA STORAGE

Table G-33 defines the data storage pseudo instructions

Table G-33. Data Storage Pseudo Instructions

Operation Code Definition

BSS Define a block of storage starting at symbol

BZS Define a block of zero storage

COM Define a block of common storage

DAT Define a block of data storage
"",-

,~

CONSTANT DECLARATIONS

Refer to table G-34 for the definitions and codes for the
constant declaration pseudo instructions.

Table G-34. Constant Declaration Pseudo Instruction

Operation Code Definition

ADC Store address constants

ADC* Store relative address constants

AlF Store an alphanumeric message

NUM Store numeric constants

DEC Convert and store decimal constants in fixed-point
format

VFD Variable field definition and storage

ASSEMBLER CONTROL

The assembler control pseudo instruction is listed in
table G·3S.

Table G-35. Assembler Control Pseudo Instructions

Operation Code Definition

EQU Equate symbols to addresses

ORG Defines origin for assembly of instructions following
ORG

ORG* Terminate ORG

IFA If condition is true, assemble following instructions

ElF Terminate IFA (or IFC macro pseudo instruction)

OPT Signal input of control options

MON Return control to operating system

LISTING CONTROL

For the listing control pseudo instructions, refer to table
G-36.

Table G-36. Listing Control Pseudo Instructions

Operation Code Definition

NlS Inhibit list output

LST Resume list output after NlS .

SPC Space lines on list output

EJT Eject page on list output

MACRO DEFINITION

Table G-37 defines the -codes used in the macro
definition pseudo instruction.

Table G-37. Macro Definition Pseudo Instruction

Operating Code Definition

MAC Specify name of macro

EMC End macro definition

G-4S

Table G-37. Macro Definition Pseudo Instruction (cont)

Operating Code Definition

LOC Define local symbolic labels

IFC If condition is true, assemble following
instructions in macro

PROGRAMMING
CONSIDERATIONS

Programming considerations for COS are discussed in
the following paragraphs.

Coding Techniques

The following limitations should be observed when
coding program to run in 65K mode.

All 16 bits of an address word are needed to address all
the available core. This means that bit 15 can no longer
be used to indicate the conditions it can be used for in a
32K-mode system.

Multilevel indirect addressing cannot be used in 65K
mode which signifies that instructions of the following
form can no lo~ger be used:

ADC
LDA+

(TAG)
(TAG)

If relative addresses are generated, the following
instruction is allowed:

LDA (TAG)

The following instruction is allowed in 65K mode if there
are no storage instructions that make indirect reference
to this location and the program containing this
expression will never be loaded into part 1 of a 65K
system.

ADC (TAG)

ASCII CODES

The 1963 Control Data Subset of ASCII (CDC-STD
1.10.003, revision C) is used by the macro assembler.
ASCII code uses 8 bits. The eighth bit, which is always
zero, is omitted in table G-38.

Table G-38. ASCn Codes

ASCII Bit Hexadecimal
Meaning Symbol Configuration Number

NULL 0000000 0 Nulllidle

SOM 0000001 1 Start of message

EOA 0000010 2 End of address

EOM 0000011 3 End of message

EOT 0000100 4 End of transmission

WRU 0000101 5 Who are you

RU 0000110 6 Are you

BELL 0000111 7 Audible signal,

FED 0001000 8 Format effector

HT/SK 0001001 9 Horizontal tab/skip (punched card)

LF 000 1010 A Line feed

VTAB 0001011 B Vertical tabulation

FF 0001100 C Form feed

G-46

Table G-38. ASCn Codes (cont)

ASCII Bit Hexadecimal
Symbol Configuration Number Meaning

CR IDJ 1101 D Carriage return

Ii
SO IDJ 1110 E Shift out

SI 1DJ1111 F Shift in
I

DCo 11110000 10 Device control/ data link escape

DCl 1II11DJ1 11

D~ 111111110 12 Device controls

DC3 111111111 13
I

DC4(STOP) 00101111 14 Device control/stop

ERR 11110101 15 Error

I

,SYNC 11110110 16 Synchronous idle

LEM 11110111 17 Logical end of media

So IIIl11DJ 18

Sl 111111111 19

S2 11111010 lA

S3 11111011 18
Information separators

84 111111111 lC

S5 11111101 10

Sa 11111110 lE

S7 11111111 IF

6 0100000 20 Word separator (space)

! ololDJl 21 Exclamation point

II OlD 11110 22 Ouotation mark

0100011 23 Number

$ OlD 0100 24 Dollar sign (hexadecimal)

% 0100101 25 Percent

& 0100110 26 Ampersand

G-47

Table G-38. ASCII Codes (cont)

ASCII Bit Hexadecimal Meaning Symbol Configuration Number

'(APOS) 0100111 'lI Apostrophe

(olOllDJ 2B Left parenthesis

) 0101001 29 Right parenthesis

* 0101010 2A Asterisk

+ 0101011 2B Plus

,(Comma): 0101100 2C Comma

- 0101101 20 Minus

0101110 2E Decimal point or period

I 0101111 2F Slash

0 011 OIDJ :II

1 011IDJJ 31

2 0110010 32

3 0110011 33

4 0110100 34
Numbers

5 011 0101 :Ii

6 0110110 :Ii

7 0110111 37

8 0111000 :II

9 0111001 39

0111010 3A Colon

, 0111011 3B Semi-colon

< 0111100 3C Less than

. 0111101 3D Equals

> 0111110 3E Greater than

? 0111111 3F Question mark

@ 100 OOIIJ 40 Each

A 1000001 41

B 100 0010. 42

G-48

Table G-38. ASCn Codes (cont)

ASCII Bit Hexadecimal Meaning Symbol Configuration Number

C 1000011 43

0 1000100 44

E 1000101 45

F 1000110 46
-

G 1000111 47

H 100 1000 48

I 100 1001 49

J 100 1010 4A

K 100 1011 48

L 100 1100 4C

M 100 1101 40
Letters

N 100 1110 4E

0 100 1111 4F

p 1011Il00 !iJ

Q 1010001 51

R 1010010 52

S 1010011 53

T 1010100 54

U 1010101 55

V 1010110 56

W 1010111 57

X 1011000 58

Y 1011001 59

Z 1011010 5A

[1011011 58 Left bracket

\ 1011100 5C Reverse slant

] 1011101 50 Right bracket

t 1011110 5E Up arrow (exponentiation)

G-49

Table G-38. ASCn Codes (cont)

ASCII I Bit Hexadecimal Meaning Symbol ~ Configuration Number

~
1011111 5F left arrow (replaced by)

ACK 1111100 7C Acknowledge

t 1111101 7D Unassigned control

ESC 1111110 7E Escape

DEL 1111111 7F Delete/idle

tThe numbers between 5F and 7C have no ASCII code assigned to them.

MACRO ASSEMBLER ERRORS
The macro assembler errors are defined in table G-39.

Message

XXXXyyl I ••••••••

******yy**********

ABSBASE ERR

**DS

**EX

G-SO

Table G-39. Macro Assembler Errors

Significance

Format for pass 1 and 2 error messages

Where: xxxx-is a four-digit line number

yy-is a two-character error code

Format for pass 3 error messages. If the l option is selected, errors in pass
3 precede the source line on the list output. If l is not selected, error
messages are output on the standard comment unit

Assembler was loaded at a different location from where it was
absolutized

Double defined symbol; a name in either:

• The location field of a machine instruction or an AlF, NUM, or ADC
pseudo instruction

• The address field of an EQU, COM, DATA, EXT, BSS, or a BZS pseudo
instruction

Illegal expression, either:

• No forward referencing of some symbolic operands

• No relocation of certain expression values

• A violation of relocation

• Illegal register reference

Table G-39. Macro Assembler Errors (cont)

Message Significance

• A symbol other than 0, 1, or 0 is specified

INPUT ERROR An error was returned by driver when doing a read

**lO Numeric or symbolic label contains illegal character; label is ignored

MASS STORAGE OVERflOW Not enough room for input image on mass storage

**Me Macro call error:

• Illegal parameter list
:

• No continuation card where one was indicated

**MD Macro defmition error

**MO Overflow of load-and-go area; affects only X option

**NN Missing or misplaced NAM statement

**OP Illegal operation code, either:

• Illegal symbol in operation code field

• Illegal operation code terminator

**OV Numeric constant or operand value is greater than allowed

**PP Error in previous pass of compilation assembly. See output page
immediately preceding first page of listing for pass 1 or pass 2 error
message

**Rl Illegal relocation, either:

• Violation of relocation

• Violation of a rule for instructions that requires the expression value to
either be absolute or have no forward referencing of symbolic
operands

**SO Sequence error - tags instructions with sequence numbers that are out of
order; this is not fatal and is not counted in the number of errors reported
at the bottom of the symbol table

**UD An undefined symbol in an address expression

G-Sl

APPENDIX H

INDEX

a

A command 8-32
Abnormal job termination 5-1
ABT 2-2
Active batch table 2-2
Active terminal table 2-2 to 2-4,B-3
ADD routine B-3 .

Calling sequence B-4

Add hexadecimal numbers request (ADH) 6-3
Add/replace program in program library (·L) 7-3
Adding disks to system C-6,C-8
ADF 6-5

Format 6-5

ADH format 6-3
ADR format 6-5
Advance files request (ADF) 6-5
Advance records request (ADR) 6-5
Advance unit number of files (TAF) 8-7,8-10
Advance unit number of records (TAR) 8-7,8-11
Allocatable memory C-2,C-5
ASSEM 8-34,G-l

Absolute addressing G-9
ADC· statement G-23

Format G-23

Address field, numeric constant G-2
Address field, special characters G-2,G-7
Address field, symbolic name G-2
Addressing mode. special characters G-8
ALF statement G-23

Format G-23
Translated to machine words G-24

Arithmetic instructions G-ll
ASCII codes G-46
Assembler coding G-3 to G-6
Assembler control G-27

ElF G-29
EQU G-27
IFA G-28
MON G-29
OPT G-29
ORG G-27,G-28
ORG· G-27.G-28

Assembler control. pseudo instructions G-45
Assembler output G-38

C option G-38,G-39
L option G-38 .
P option G-38
X option G-38

Assembly cross-reference listing G-4O
Assembly error listing G-39
Assembly listing G-39
Assembly sample program listing G-39.G-4O
BSS statement G-21

Format G-21

BZS statement G-2I.G-22

Example G-22
Format G-21

Coding examples G-3.G-4
COM statement G-21.G-22

Example G-22
Format G-21

Comment field G-7
Constant addressing G-1O

Examples G-1O

Index
Constant declarations G-23

ADC G-23
ADC· G-23
ALF G-23,G-24
DEC G-25
NUM G-25
VFD G-25,G-26

Constant declaration, pseudo instructions G-23
Constants used in addressing G-I0
Control options for output G-38
DAT statement G-22

Format G-22

Data storage G-21

BSS G-21
BZS G-21,G-22
COM G-21,G-22
DAT G-22

Data storage, pseudo instructions G-44
Data transmission instructions G-11
DEC statement G-25

Format G-25
Translated to machine words G-25

ElF statement G-29

Example G-29
Format G-29

EJT statement G-30

Format G-30

EMC statement G-31

Format G-31

END statement G-19

Format G-19

ENT statement G-19

Format G-19

EQU statement G-27

Example G-27
Format G-27

Errors G-SO
EXT statement G-20

Example G-20
Format G-20

EXT· statement G-20

Example G-21
Format G-20

IFA statement G-28

Format G-28

IFC statement G-31

Format G-31

Index class characters G-7
Instruction format G-l
Interregister instructions G-14

Format G-15
Mnemonics G-IS
Operations G-15
Transfer G-44

Jump instructions (JMP) G-12,G-13
Listing control G-30

EJT G-30
LST G-30
NLS G-30
SPC G-30

H-l

Listing control. pseudo instructions G-45
LOC statement G-31

Format G-31

Logical instructions G-ll.G-12
LST statement G-30

Format G-30

Machine instructions G-7. G-42
MAC statement G-30

Format G-30

Macro definition instructions G-45
Macro instructions G-32

Actual parameters G-32
Examples G-33 to G-38
Format G-32
Null parameter G-33

Macro library G-38
Macro pseudo instructions G-30

EMC G-31
IFC G-31
LOC G-31
MAC G-30

Macro skeleton G-32
Macros G-30
Mnemonic instruction codes G-42
MON statement G-29

Format G-29

NAM statement G-19

Format G-19

Negative zer%verflow G-18
NLS statement G-30

Format G-30

NUM statement G-25

Format G-25

One-word. direct addressing G-9
One-word. indirect addressing G-9.G-1O
OPT statement G-29

Control options G-29
Format G-29

ORG statement G-27.G-28

Example G-28
Format G-27

ORG* statement G-27.G-28

Example G-28
Format G-27

Pass I G-I
Pass 2 G-I
Pass 3 G-I
Program with RTJ G-13
Pseudo instructions G-19.G-44

END G-19
ENT G-t9
EXT G-20
EXT* G-20
NAM G-t!)

Register class characters G-7
Register instructions G-43
Register reference format G-13
Register reference instructions G-13
Relative addressing G-9
Relocation examples G-6
Restricted register reference instructions G-14
Return jump (RTJ) G-12.G-13
Sample assembly program G-40
Sample shift instruction G-16
Sequence field G-7

H-2

Shift instructions G-16.G-43

Example G-16
Format G-16
Mnemonics G-16

Skip instructions G-17. G-43

Format G-17
Mnemonics G-17

Source program G-I
Source statement G-I

Address field G-2
Instruction G-2
Location field G-2
Remarks G-2

SPC statement G-30

Format G-30

Special characters G-6
Special character operands G-7
Storage reference G-8

Address modes G-8
First word machine language G-8
Instructions G-8.G-43
Second word machine language G-8

Subprogram linkage G-19

Pseudo instructions G-44 .

Symbolic operand G-2
TABLST G-I
Two-word. direct addressing G-9.G-1O
Two-word. indirect addressing G-9.G-1O
Typewriter control characters G-24
VFD statement G-25

Format G-25

XREF G-I
Assigning alternate device 5-6
* statement 1-1.5-1 to 5-3.5-5.8-28
A IT 2-2 to 2-4.B-3
Autoload 2-1

b

*B 8-27
Backspace character 2-3
Backspace files request (BSF) 6-5
Backspace records request (BSR) 6-5
Backspace unit number of files (TBF) 8-11
Backspace unit number of records (TBR) 8-11
*BATCH 1-1.5-1
BGCORE C-2
BOOT (*BOOT) 8-33
BORENT 2-2
BSC 2-3
BSF request 6-5

Format 6-5

BSR request 6-5

Format 6-6
Parameters 6-6

BUILD command 8-25
Busy requests. restrictions 3-8

c

Calculate disk word address (CLCDW A) B-9
CAM 2-I.B-6

Calling sequence B-6

Card and card (VCC) 8·9
Card and magnetic tape (VCM) 8·10
Card reader controller E·9

Status codes E·9

Card reader driver 4·2
Card reader/punch controller E·8

Status codes E·8

Card reader requests 4·2
Card to magnetic tape (CM) 8·7
Card to printer (CL) 8·8
Cartridge disk controller E·ll

Status codes E·ll

Cartridge disk drivl!; 4·5
CATLOG 8·25
CHANGE command 8·25
Change core· resident image on system library unit (LHC) 6·6
Change I/O devices (*K) 7·6
Changing disk size C·6
Character count in current record (RCNT) B·3
Character editing 4·8
Check digit verification (CDV) B·t
CL request 8·8

Format 8·8
Function 8·8
Parameters 8·8

CLCDWA B·9

Calling sequence B·9

Clear program protect bit (CPP) 6-4
CLU request 6·3

Format 6·3
Parameters 6·3

CM request 8·7

Format 8·7
Function 8·7
Parameters 8·7

Code·conversion routines (LPR) B·ll
Code·conversion structure B·ll
COMAND 8·25
Completion priority 3·1,3·2
Completion routines 4·1
Control statements in a job 5·1
Core allocation module (CAM) 2·1,B·6
Core·resident entry point tables (CREP) 7·2
COS 1·1,2·1

Batch·processing subsystem 5·1
Core memory 8·5
Features 1·1
Standard codes D·1

COSY 1·2.8·12

Deck updating 8·18,8·19
Decks converted to Hollerith 8·22
Decks merged 8·20,8·21
DEU field format 8·12
Errors 8·23,E·22
Hollerith 110 8·23
INS/ field format 8·13
Library 8·17.8·23
Library generation 8·17
Listing 8·23
Messages 8·23
Program 8·12
Revision decks 8·17,8·23
Standard field format 8·13

COSY cards 8·13

CPY/ 8·16
CSY/ 8·17
DCK/ 8·14
DEU 8·13.8·15
END/8·17
HOU 8·17
INS/ 8·13.8·15.8·16

MRG/8·13
REM/8·15

COSY formatting program (CYFT) 8·1,8·34
COSY update manipulating utility (PIC) 8·1,8·33
CPP request 6·4

Format 6·4
Parameters 6·4

CPY / card 8·16

Format 8·16

CRT routines C·1
*CSY statement 5·5

Command sequence 5·5
Format 5·5
Parameters 5·5

CSY / card 8·17

Format 8·17
Parameters 8·17

*CTO statement 5·1,5-4

Format 5·4

CYBERDATA

Error codes B· 7
Memory·resident modules C·1
Miscellaneous routines C·2

CYBERDATA operating system (COS) 1·l,2·1.C·2

Features 1·1

CYBERDAT A programs

COSY 1·2
110 utilities 1·2
Library editing 1·2
Macro assembler G·l
Off·line object 1·2
System/program maintenance 1·2
System utility processor F·l

CYBERDAT 1 routines C·l

Disk buffers C·2
Interrogate functions C·2
Key functions C·2
Miscellaneous C·2
Own·code insertion area C·2
Start· up C·l
Supervisor Functions C·2
Terminals type table C·2
VLBGOP C·1
VLOSOP C·1
VLSTRT C·l
VLSTTS C·l
VLTYPE C·l

CYBERDA T A system flow 2·1
CYFT command 8·34

Execution 8·34

d

D command 8·32
Data entry 2·2
Data transfer calling sequence B·lO
Data transfer format 4·5
Data transfer request 4·5,4·6
Data verification 2·3
DB command 1·1
DB routine B·4

Calling sequence B-4

DCK/ card 8·14

Format 8·14

H-3

DDC request 6-2

Format 6-2
Parameters 6-2

Debug E-29

Assistance E-29
Core allocation requests 6-4
Mainframe requests 6-1
Mass,storage device requests 6-6

Change core-resident image on system library unit (LHC) 6-6
Modify mass storage resident of operating system (LHO) 6-6

Debugging aids 6-1
Decimal to binary routine (DB) B-4
*DEF 8-28
DEU card 8-13,8-15

Format 8-15

DELETE 8-25,8-26
Device errors codes E-l
Diagnostic codes E-l
Diagnostic messages E-l
Disk C-l

Allocation C-l
ButTers C-2
Data files C-6
Driver data transfer 4-5
Driver error conditions 4-4,4-7
Requests 4-5
Transfer error detection 4-7

Disk-resident routine B-13,C-l
Disk-to-tape loading program (DTLP) 8-1
Display drivers C-I
*DL request 7-1,7-5

Format 7-5

*DM request 7-1,7-5

Format 7-5

DPC request 6-2

Format 6-2
Parameters 6-2

Drivers 4-1,4-2,4-5,4-7,4-9
DSKSUP 2-4
DTLP 8-1

Errors E-27
Execution 8-2

Dual-density disk C-6
DUMP command 8-25.8-26
Dump core request (DDC) 6-2
DX command 1-2

e'

E command 8-32
*E command 5-1.5-3,5-6
EF command 1-1
EFLU command 1-1
EFMM command 1-1
EMM 2-2
*END 8-26
ENDI card 8-17
ENDI format 8-17
End of batch 2-2.B-l
End-of-field check 2-2.B-l
End of file (EOF) 4-4,5-5
End-of-record condition 2-2
End-of-transfer indicator (*F) 7-7
Engineering file 9-1

Device failure handling 9-1
Device failure listing 9-2 ,
Device failure storage 9-2

H-4

Enter magnetic tape bootstrap A-4
Enter patch command A-S
ENTPRG routine B-8
Entry for requests 3-1
Entry mode 2-2
Entry mode module 2-2,2-4
*entry point name 5-4
ENTSR calling sequence B-S
ENTSR routine B-4
EOB 2-2,B-l
EOD B-12
EOF processing 4-4
*EOF statement 5-1,5-4
EOR condition 2-2
Equipment malfunction codes E-l
Equipment status codes E-7
Error conditions

Cartridge disk drive 4-7
Magnetic tape driver 4-9
Printer 4-9
Teletypewriter driver 4-2
1729-3 Card Reader Driver 4-4

Error detection for, disk transfers 4-7
Error exit from own code B-2
Error override 2-2
ERROR routine B-7

Calling sequence B-7
Codes B-7

EXDFUN routine B-6

Calling sequence B-7

Execution of background programs C-2
EXIT command 8-25
Exit disk function (EXDFUN) B-6
Extended status table (EST) C-I
EXTSR routine B-4

Calling sequence B-S

f

*F request 7-1,7-7
FIFO 2-1.3-1
File headers B-12
File trailers B-12
First-in/first-out 2-1,3-1
*FOK request 7-1,7-7
Formats records programs (FRP) B-6
FREAD 3-1 to 3-3,4-1,4-3,4-5,4-6,4-9,4-10

ASCII 4-4
Binary 4-3,4-4
Binary format cards 4-3
Binary sequence numbers 4-4
Calling sequence 3-2
Field descriptions 3-2
Format 3-2
Instruction parameters 3-2

FRP 2-3,B-6
Function keys. 32/480 KES 2-2
FWRITE 3-1.3-3,4-2,4-5 to 4-7. 4-9. 4-10

g

Calling sequence 3-2
Field descriptions 3-2
Format 3-2
Instruction para'meters 3-2

GBYTE B-3
GEN request 6-4.6-5

Format 6-5
Parameters 6-5

General system error messages E-18
Generate scratch area request (GEN) 6-5
Generating a COSY library 8-17
Get current character (GBYTE) B-3
Get next control statement (*V) 7-4
GETALP routine B-5

Calling sequence B-5
Exit conditions B-5

GETBIN routine B-5

Calling sequence B-5
Exit conditions B-5

GETBUF routine B-5

Calling sequence B-5

GETCOM routine B-5

Calling sequence B-5
Exit conditions B-6

GETSTR routine B-5

Calling sequence B-5

GFCORE routine B-6

Calling sequence B-6

h

Hardware status codes E-7
HOLI card 8-17

Format 8-17
Parameters 8-17

Hollerith/ ASCII conversion 4-4
Hollerith input 8-23
Hollerith output 8-23

i

I command 8-32
Idle mode 2-2
IL command 5-1
Illegal control information. request restriction 3-8
Illegal logical unit. request restriction 3-8
INDIR request 3-1.3-4

Calling sequence 3-4
Format 3-4
Parameters 3-4

Initiate ODEBUG 6-1
Input/output utility program (I0UP) 8-5
Input system parameters A-I
Input to *N processor 7-5
INS/ card 8-13

Format 8-13

INSERT command 8-25,8-26
Installation of system A-I

Autoloading new system A-3
Entering patches A-3.A-4
Executing disk initializer A-I
Executing system initializer A-I
Loading bootstrap A-I
Loading disk initializer A-I
Loading program library A-3
Loading system initializer A-3
Setting system priorities A-3

Installation tape modification A-7
Interrogate functions C-2

Interrogate mode processing 2-2
Interrupt levels and priorities 3-1
Interrupt processing 2-1
Invalid addresses, request restriction 3-8
1/0 device driver error E-l
1/0 request format 4-1
1/0 utilities 1-2
*IOUP statement 8-5

Data record size 8-7
Data transfer 8-6
Data verification 8-6
Errors E-27
Operation 8-5
Peripheral operations 8-7

10UP data transfer 8-6,8-7

Card to magnetic tape (CM) 8-7
Card to printer (CL) 8-7,8-8
Magnetic tape to magnetic tape (MM) 8-7,8-9
Magnetic tape to printer (ML) 8-7,8-8

10UP data verification 8-7,8-9

Card and card (VCC) 8-7,8-9
Card and magnetic tape (VCM) 8-7,8-10
Magnetic tape and magnetic tape (VMM) 8-7,8-10

10UP motion control 8-7,8-10

j

Advance unit number of files (TAF) 8-7,8-10
Advance unit number of records (TAR) 8-7,8-11
Backspace unit number of files (TBF) 8-7,8-11
Backspace unit number of records (TBR) 8-7,8-11
Rewind unit (TRW) 8-7,8-12
Set density of unit (TSD) 8-7,8-12
Unload unit (TUL) 8-7,8-12
Write end-of-file mark on unit (TEF) 8-7,8-12

Job control statements 5-1
*JOB command 5-1

Format 5-2
Parameters 5-2

Job processing 5-1
Job processor 1-2,5-1

Error codes E-19

k

*K request 5-1,5-5,7-1,7-6

Example 7-7
Format 5-5,7-7
Parameters 5-5,7-7

Key functions C-2
Key verification 2-3

1

L command 8-32
*L request 5-2,7-1,7-3

Format 5-2,7-3
Parameters 5-2,7-3

H-S

LCOSY 8-1

Execution 8-1
listing 8-1
Parameters 8-1

LDC request 6-2

Format b-2

Least-significant bits (lsb) 4-6
Level-specification of allocatable memory C-2,C-5
LFTOVR C-l.C-2
*LGO 5-1.5-3

Example 5-1.5-3
Format 5-3
Function 5-3
Parameters 5-3

LHe command 6-6.A-4

Example 6-b
Format bob
Parameters 6-6

LHM command A-5
LHO request 6-6

Example 6-7
Format bob
P"rameters b-7

LHX request b-I

Exnmples b-2
Format b-l
Pnrameters b-I

LlBEDT program requests

Add/repl;lce program in program library (*L) 7-1.7-3
Change 1/0 devices (*K) 7-1.7-b
End-of-transfer indicator (*F) 7-1.7-7
Get next control statement (*V) 7-1.7-4
*L1BEDT 7-1
list program library directory (*DL) 7-1.7-5
list system library directory (*DM) 7-1.7-5
Modify program library tiles (*N) 7-1.7-5
Produce ubsolute record (*P) 7-1.7-3
Remove program (*R) 7-1.7-7
Replace program in system library (*M) 7-1
Return to comment device for next control statement (*U) 7-1.7-4
SCI core request priority (*S) 7-5
Terminate processing (*Z) 7-1.7-5
Transfer indicator (*FOK) 7-1.7-7
Tr'lI1sfer information (*T) 7-1.7-6

*L1BEDT statement 7-1

Control statements 7-1
Error codes E-21
Output devices 7-1
Program 7-1

L1B1LD 8-26

Absolute tile 8-27
Capabilities 8-26
Control statement 8-26
Duplicate program 8-27
Error recovery 8-30
Errors E-27
Input library 8-26
Installation tile 8-28
Operation 8-28
Operation phases 8-26
Output library 8-27
Restrictions 8-31
Skeleton 8-27

L1BILD statements

* 8-28
*B 8-27
*DEF 8-28
*END 8-28
*N 8-27
*USE 8-27.8-28
*WEF 8-27

H-6

library builder (LiBILD) 8-24,8-26
library editing 1-2,7-1 .
line printer driver 4-7
line printer error conditions 4-9
line printer status codes E-14
LIST command 8-25
list COSY (LCOSY) 8-1
list program library directory (*DL) 7-1,7-5
list system library directory (*DM) 7-1,7-5
Load-and-go command (*LGO) 5-3
LOAD command 8-25
Load decimal into core (LDC) 6-2
Load program (LPR) B-3
Loader error codes E-21
Loader response during job execution 5-6
LPR command A-5,B-3,B-ll

m

M command 8-32
*M request 7-1

Format 7-1
Parameters 7-1

Macro assembler (see ASSEM) 1-2.8-1.G-l
Macro assembler errors E-24
Magnetic tape communication area (MTCA) B-12
Magnetic tape controller status codes E-IO
Magnetic tape driver 4-9

Error conditions 4-9
Requests 4-9

Magnetic tape own codes B-12.B-13

Magnetic tape requests (debug)

Advance files (ADF) b-5
Advance records (ADR) 6-5
Backspace files (BSF) 6-5
Backspace records (BSR) 6-5.6-6
Rewind tape (REW) 6-6
Write end-of-tile (WEF) 6-6

Magnetic tape and magnetic tape (VMM) 8-10
Magnetic tape to magnetic tape (MM) 8-9
Magnetic tape to printer (ML) 8-8
Maintenance routine calling statements 8-1
MANUAL INTERRUPT 1-1.4-2
Manual interrupt 4-2

Mnemonic codes 9-2
Processor 1-1.2-4.4-2

Mass memory C-6.C-7.C-8
Address format 3-4
Failure 9-1

Mass storage address (msa) 4-5
Maximum own codes in system B-1
MBC request 6-4

Format 6-4
Parameters 6-4

Memory allocation C-l
Memory-resident drivers C-l
Memory-resident modules C-l
Merging COSY revision decks 8-19 to 8-22
ML request 8-8

Format 8-8
Function 8-8
Parameters 8-8

MM request 8-9

Format 8-9
Function 8-9
Parameters 8-9

Modify mass storage resident portion of operating system (LHO) 6-6
Modify program library tiles (*N) 7-1.7-5

Monitor 1-1

Errors E-30
Requests 3-1

Most-significant bits (msb) 4-6
MOTION request 3-1,3-5 to 3-8,4-1,4-2,4-4,4-8 to 4-10

Calling sequence 3-6
Driver action 3-7
Examples 3-6,3-7
Field descriptions 3-6
Format 3-5
Macros 3-6
Parameters 3-5,3-6
Parameters for magnetic tape 3-6

Motion B-1O

Code word B-I0
Control 8-IO,B-ll
Control parameters B-ll

Move block in core request (MBC) 6-4
MOVREC routine B-7

Calling sequence B-8

MPC routine 2-1
MRG/ card 8-13

Format 8-13
Parameter 8-13

MTCA B-12

n

*N 7-1,7-5,8-27

Format 7-5
Parameters 7-5

Nine-track bootstrap A-5

o

ODEBUG 6-1

Initialization 6-1
Operator procedures 6-1
Termination 6-1

ODEBUG requests 6-1

Add hexadecimal numbers (ADH) 6-3
Clear program protect bit (CPP) 6-4
Dump core request (DDC) 6-2
Generate scratch area (GEN) 6-5
Load decimal into core (LDC) 6-2
Move block in core (MBC) 6-4
Read disk to core (ROC) 6-3
Reassign list device used by debug (CLU) 6-3
Release allocated core (REL) 6-5
Schedule completion location (SCH) 6-4
Search core for parity error (SPE) 6-3
Search core locations (SCN) 6-3
Set core (SET) 6-4
Set program protect bit (SPP) 6-4
Store data in core (LHX) 6-1
Subtract hexadecimal numbers (SBH) 6-3
Write core to disk (WCD) 6-2

Off-line object program 1-2
On-line debug package (ODEBUG) 6-1
Operating system 1-1,2-1,C-l,C-2

Features 1-1

Own code B-I,B-12

Exit B-2
Header example B-2
Insertion area C-2
Installation B-l,B-2
Passing control B-8
Standard header B-1
Test resources B-3,B-4
Tests B-1

Own code routines

CAM B-6
CLCDWA 8-9
ENTPRG B-8
ENTSR B-4
ERROR B-7
EXDFUN B-6
EXTSR B-4
GETALP B-5
GETBIN B-5
GETBUF B-5
GETCOM 8-5
GETSTR B-5
GFCORE B-6
MOVREC 8-7
READN B-8
READP B-8
REDSEC B-9
REDWRD B-9
RELFOR B-6
REWRIT B-8
RTNSR B-5
SETMOV 8-6
SUPRW B-1O
TAPIO B-IO
WRITEC B-8
WRTSEC B-1O
WRTWRD B-9

p

*p request 7-1.7-3

Format 7-3
Parameters 7-3

PACK routine B-4

Calling sequence B-4

Panic dump 6-7.6-8

Printout 6-8
To line printer 6-7
To teletype 6-8

Patch core-resident modules (LHC) A-4
Patch mass-resident modules (LHM) A-4
PAULA 8-31

Capabilities 8-31
Commands 8-32
Errors E-29
Operation 8-31
Program example 8-32

*PAUS command 5-1,5-4

Format 5-4

*PIC command 8-1,8-33
Printer control characters 4-8
Processing routines C-l
Processing the terminals 2-1
Produce absolute record (*P) 7-3
Program-protect feature 1-1
Pseudo tape driver 4-9,4-10

Requests 4-10

Pseudo tape job control statements 4-10
Pseudo tape status codes E-14
Push-down pointer table 9-1

H-7

r

R command 8·32
·R request 5·1,5-6,7·1,7·7

Format 5-6,7·7
Parameter 5-6,7·7

RCNT B·3
ROC request 6·3

Format 6·3
Parameters 6·3

Read disk to core (RDC) 6·3
Read mode 2·3
Read next record (READN) B·8
Read previous record (READP) B·8
READ request 3·1,3·2,4·1,4·6,4·9,4·10

ASCII 4·3
Binary 4·2
Binary buffer format 4·2
Calling sequence 3·2
Coding sequence 4·1
Field descriptions 3·2
Format 3·2
Instruction parameters 3·2

Read words (REDWRD) B·9
READN routine B·8

Calling sequence B·8

READP routine B·8

Calling sequence B·8

Reassembly of core· resident modules A· 7
Reassembly of mass·resident modules A·5,A· 7
Reassign list device used by debug (CLU) 6·3
REDSEC routine B·9

Calling sequence B·9

REDWRD routine B·9

Calling sequence B·9

Register A 2·4
Register Q 4·2
REJSUP 2·4
REL request 6·5

Format 6·5
Parameter 6·5

Release allocated core (REL) 6·5
RELFOR routine B·6

Calling sequence B·6

REM/ card 8·15,8·16

Format 8·15,8·16

Remove program (·R) 7·1,7·7
Replace program in system library (*M) 7·1
Requests 3·1,3·8

Descriptions 3·1
Priority 3·1
Queuing 3·1
Restrictions 3·8

Requests/instructions

FREAD 3·1 to 3·3,4·1,4·3,4·5,4·6,4·9,4·10
FREAD ASCII 4·4
FREAD binary 4·3,4·4
FWRITE 3·1,3·3,4·2,4·5 to 4·7,4·9,4·10
INDIR 3·1,3·4
MOTION .3·1,3·5 to 3·8,4·1,4·2,4·4,4·8 to 4·10
READ 3·1,3·2,4·1,4·6,4·9,4·10
READ ASCII 4·3
READ binary 4·2
STATUS 3·1
WRITE 3·1,3·2,4·1,4·2,4·6,4·7,4·9,4·10

H-8

Restart routine 2·1

Functions 2·1

Return to comment device for next control statement (·U) 7·1,7·4
REW request 6·6

Format 6·6

·REW command 5·1,5-4

Format 5·4

Rewind tape (REW) 6·6
Rewind unit (TRW) 8·7,8·12
REWRIT routine B·8

Calling sequence B·8

Rewrite current record (REWRIT) B·8
·R,LU command 1·1
RTNSR routine B·5

Calling sequence B·5

s

S command 8·32
·S request 7·5

Format 7·5
Parameters 7·5

SBH request 6·3

Format 6·3

SBYTE routine B·3

Calling sequence B·4

Search core for parity error (SPE) 6·3
Search core location (SCN) 6·3
SCH request 6·4

Format 6·4
Parameters 6·4

Schedule completion location (SCH) 6·4
SCN request 6·3

Example 6·3
Format 6·3
Parameters 6·3

Sector WRITE request 4·6
Self·scan routines C·l
Set core (SET) 6·4
Set core request priority (·S) 7·5
Set density of unit (TSD) 8·12
Set ending sector of data file A·2
Set program protect bit (SPP) 6·4
SET request 6·4

Format 6·4
Parameters 6·4

SETMOV routine B·6

Calling sequence B·6

Setting CYBERDAT A parameter A·3
Setting terminal configuration A·3
Seven·track bootstrap A·6
Sight verification 2·3
Single·density disk C·6
Six·level nesting of *USE 8·28
SKED 8·24

Editing command formats 8·25
Error conditions 8·26
Errors E·28
Execution 8·24
Function 8·24

Generation 8-24
Messages 8-26
Modification 8-24
Motion commands 8-25
Pseudo tape motion commands 8-25
Statements 8-24

SKED commands 8-25

BUILD 8-25
CATLOG 8-25
CHANGE 8-25
COMAND 8-25
DELETE 8-25,8-26
DUMP 8-25,8-26
EXIT 8-25
INSERT 8-25,8-26
LIST 8-25
LOAD 8-25

Skeleton editor (SKED) 8-24
Source program compression (COSY) 8-1,8-12
SP command 1-2,2-4
SPACE C-l
SPE request 6-3

Format 6-3

Soecial/own-code test resources

Active terminal table (ATI) B-3
ADD B-3
Binary to decimal (BD) B-4
Decimal to binary (DB) B-4
Get current character (GBYTE) B-3
LPR B-3
PACK B-4
START B-2
Store current character (SBYTE) B-3
SUB B-3
UNP B-4

Special test B-1

Area Col
Resources B-1

SPP request 6-4

Format 6-4
Parameters 6-4

START instruction B-2
Start-up routines Col
Statements for job routine 5-5
Statements for manual interrupt routine 5-5
STATUS request 3-1
Store current character (SBYTE) B-3
Store data in core request (LHX) 6-1
SUB routine B-3

Calling sequenceB-4

Subtract hexadecimal numbers (SBH) 6-3
SUP command 8-34,F-l

Action message F-14
Backspace statement F-7

Format F-7
Parameters F-7

Blocking feature F-2
CLOSE control statement F-3,F-6

Format F·6
Functions F-3
Parameters F-6
Tape positioning F"6

Collating sequence F-24
Command parameters F-32
Commands F-31
Control language function F-2
Conversion codes F-24
Conversion feature F-2
Copy feature F-2
COpy statement F-lO

Command sequence F-lO
Format F-lO

Parameters F-lO
Selective parameters F-IO

Critical errors F-14,F-15
Date processing F-7
Declarative control language F-2
Declarative control statements F-3

CLOSE F-3
OPEN F-3

Descriptive error messages F-14,F-15
Diagnostic processing F-13
Dump feature F-2
DUMP statement F-7

Command sequence F-8
Dump types F-8
Format F-8 .
Parameters F-8
Selective parameters F-8

End-of-file label F-18 to F-21
End-of-processing label F-23
End-of-volume label F-18,F-2l to F-23
EXIT statement F-13

Format F-13

Features F-2
File header label F-18 to F-20,F-22
Fixed-length records F-23
Formatted character dump F-29
Forms alignment statement F-9

Command sequence F-9,F-lO

Hardware F-I
Hexadecimal dump F-30
Information message F-13
INIT statement F-12

Format F-12
Parameters F-12
Sample F-12

Initialize feature F-2
Initialize statement (INIT) F-12
Input file processing with standard labels F-22
I/O processing with standard labels F-22
Label feature F-2
Label format F-18
Labelled file structure F-18
Labeling F-17

Bypass labels F-17
Definitions F-17

Field F-18
File F-17
File set F-17
Label F·17
Label groups F-17
Tapemark F-17
Volume F-17

Graphic representation F-18
No labels F-17
Processing F-17
Requirements ·F-18
Standard labels F-17
Tape marks F-18
Techniques F-17

Loading procedure F-2
Notation F-I

Alphabetic F-l
Hex-numeric F-l
Numeric F-I

OPEN control statement F-3

Data format F-4
Format F·3
Functions F-3
Labels F-3
Parameters F-3
Positioning F-5
Record format F-4

H-9

Record-size specification F-S
Selective parameter processing F-S
Selective record processing F-S

Operational control language F-2
Operational control statements F-2,F-3
Optional fields F-19
Optional label format F-19
Output file processing with standard labels F-22
Positioning feature F-2
Print feature F-2
PRINT statement F-9

Format F-9
Parameters F-9
Selective parameters F-9

Record format feature F-2
Record formats F-2,F-23

Fixed-length, blocked records F-2
Fixed-length records F-2
Undefined records F-2
Variable-length, blocked records F-2
Variable-length, unblocked records F-2

Record processing F-23,F-24

Format conversion F-24
Requirements F-23

Required fields F-19
Sample dumps F-29
Sample verification operation F-II
Selection feature F-2
Serious errors F-14,F-IS
Statistical data message format F-13
Structure of magnetic tape files F-18
System configuration F-I
System error messages F-14
System messages F-13
Undefined records F-23
Unformatted dump F-29
Utility control language function F-2
Variable-length, blocked records F-2,F-23,F-24
Variable-length records F-2,F-23,F-24
Verify feature F-2
VERIFY statement F-lO

Format F-l1
Parameters F-l1
Selective parameters F-II

Volume header label F-18,F-19
Warning error F-14 to F-16

Supervisor control 2-4
Supervisor functions C-2
SUPRW routine B-lO

Calling sequence B-IO

SYSDAT C-1.C-2
SYSDAT parameters C-2

BGCORE C-2
LFfOVR C-2
TOTAVL C-2
VLASS C-2
VLBCKG C-2
VLOS C-2

System

Crash 6-7
Disk C-6
Installation (see installation) A-I
110 devices 3-8
Maintenance and utility routines 8-1
Modification A-4
Patches A-4
Start-up 2-1
Status table (SST) B-3,C-I
Update A-4
Utility processor commands F-I
Warning error messages F-14,F-16

H-IO

System and program maintenance routines 1-2
System initializer

Device errors E-I
Disk errors E-17
Error codes E-IS
Loader errors E-16

System maintenance statements

t

COSY formatting program (CYFf) 8-1,8-34
COSY update manipulating utility (PIC) 8-1,8-33
Disk-to-tape loading program (DTLP) 8-1,8-2
I/O utility program (IOUP) 8-1,8-5
Library builder (LIBILD) 8-1,8-26
List COSY (LCOSY) 8-1
Macro assembler (ASSEM) 1-2,8-I,8-34,G-I
Skeleton editor (SKED) 8-1,8-24
Source program compression (COSY) 8-1,8-12
System utility processor (SUP) 8-I,8-34,F-1
Tape bootstrap loader (BOOT) 8-1,8-33
Update install tape (PAULA) 8-1,8-32

T command 8-33
*T request 5-1,5-3,5-6,7-1,7-6

Format 7-6
Parameters 7-6

TAF request 8-7,8-10

Format 8-11
Function 8-11
Parameters 8~11

Tape bootstrap loader (BOOT) 8-1.8-33
Tape-label program (TLP) B-12
Tape-to-disk load using system save tape 8-3
TAPIO B-lO

Calling sequence B-lO

TAR request 8-7,8-11

Format 8-11
Function 8-11
Parameters 8-11

TBF request 8-7,8-11

Format 8-11
Function 8-11
Parameters 8-11

TBR request 8-7,8-11

Format 8-11
Function 8-11
Parameters 8-11

TEF request 8-7,8-12

Format 8-12
Parameter 8-12

1e1etypewriter 4-1

Drive 4-1
Keyboard requests 4-1
Status codes E-7

Terminal

Input buffer (TIQ) 2-1
Processing routine 2-1
Record buffer (TRB) 2-2,2-3
Type table C-2

Terminate

Debug module A·5
ODEBUG 6·1
Processing (·Z) 7·1,7·5

Threading 3·1
Threading completion status 3·2
TIQ 2·1
TLP B·12
TOTAVL C·2
Transfer and comparison of data 8·6
Transfer indicator (·FOK) 7·1,7·7
Transfer information (·T) 7·1,7·6
Transfer request statements 7·7
TRB 2·2.2·3
TRW request 8·7.8·12

Format 8·12
Parameter 8·12

TSD request 8·7.8·12

Format 8·12
Parameters 8·12

TUL request 8·7.8·12

Format 8·12
Parameter 8·12

u

U command 8·32
·U request 5·1.5·2.7·1.7-4

Format 5·2.7·4

·UNL command 5·1.5·4

Format 5·4

Unload unit (TUL) 8·12
UNP routine B-4

Calling sequence (see PACK) B-4

Update install tape (PAULA) 8·1.8·32
Updating COSY decks 8·18
·USE 8·27.8·28
Utility control language function F·2
Utility program errors E·26

v

V command 8·32
·V request 5·1.5·2.7·1.7-4

Format 5·2.7·4
Parameters 5·2.7·4

VALDTE 2·2
Validation tests 2·2
VCC request 8·7.8·9

Format 8·9
Functions 8·9
Parameters 8·9

VCM request 8·7.8·10

Format 8·10
Functions 8·10
Parameters 8·10

Verify mode 2·3

Module 2·3

VL command l·l,C·l
VLA5S C·2
VLBCKG C·2
VLBG parameter 1·2,C·l to C·3
VLBGOP C·l
VLlNP 2·1
VLOS l·l,C·l
VLOSOP C·l
VLST program 1·2,C·l,C·3
VLSTRT 2·1,C·l
VLSTTS C·l
VLTP 1·2,C·l
VLTYPE C·l
Volume headers B·12
Volume trailers B·12
VMM 2·3,8·7,8·10

Format 8·10
Function 8·10
Parameters 8·10

VX command 1·1

w

W command 8·32
WCD request 6·2

Format 6·2
Parameters 6·2

·WEF .8·27
WEF request 6·6

Format 6·6
Parameters 6·6

Write core to disk request (WCD) 6·2
Write current record (WRITEC) B·8
Write end·of·file (WEF) 6·6
Write end·of·file mark on unit (TEF) 8·7,8·12
WRITE request 3·1,3·2,4·1,4·3.4·6,4·7.4·9,4·10

Calling sequence 3·2
Field descriptions 3·2
Format 3·2
Instruction parameters 3·2

Write words (WRTWRD) B·9
WRITEC routine B·8

Calling sequence B·8

WRTSEC routine B·lO

Calling sequence B·lO

WRTWRD routine B·9

Calling sequence B·9

x

·X command 5·1.5·2

Format 5~2

z

Parameters 5·2
Statement execution 5·3

·Z request 5-1.5.6.7.1..1.5

Format 5·6.7·5
Functions 5-6
Job termination functions 5-6

H-ll

equipment

01711-1711/1712/17131713 Keyboard Driver 4·I.C·1
017293-1729·3 Card Reader Driver 4·2.4·4
DI 7322-1 732·2/615·73/615·93/10300 Buffered Magnetic Tape Driver 4·9.C·1
042312-1742·3011742·120 Line Printer Driver 4·7
615·93173 Magnetic Tape 8·6
856·4 Cartridge Disk 4·5.C·6.E·1I
856·2 Single· Density Disk C·6.E·11
1711/1712/1713 Teletypewriter E·7
1728-430 Card ReaderlPunch Controller E·8
1729·3 Card Reader 8·6
1729·3 Card Reader Contrcller E·9
1732·2/615·73/615-93 Magnetic Tape Controller E·IO
1732·2/856·2/856·4 Cartridge Disk Controller E·II
1733·2 Cartridge Disk Controller E·II
1742 Line Printer 8·6
1742·30/120 Line Printer E·14
1784 Computer System 1·1

H-12

I
",I
§I
~I
~I
al
I
I
I
I
J
I
1
I
I
I

~I
~I

II
I

:'·1
"-

=:1

~ I
01

~ I

COMMENT SHEET

MANUAL TITLE ___ C_D_C_®_C_Y_B_E_R_D_A_T_A __ O_p_e_ra_t_in_g_S_y_s_te_m ___________ _

Reference Manual

PUBLICATION NO. __ 2_2_2_63_1_00 _____ _ REVISION ___ A __ _

FROM: NAME: __ ~~---
BUSINESS AOORESS: __ ~

COMMENTS.:
This form is not intended to be used as an order blank. Your evaluation of this manual will be welcomed
by Control Data Corporation. Any errors. suggested additions or deletions. or general comments may
be made below. Please include page number referen~es and fill in publication revision level as shown by
the last entry on the Record of Revision page at the front of the manual. Customer engineers are urged
to use the TAR.

NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A.
FOLD ON DOTTED LINES AND STAPLE

STAPLE STAPLE

f

~ . ~I
---~ I .

FOLD

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION
Publications Department
Peripheral Subsystems Division
2200 Berkshire Lane
Plymouth, Minnesota 55441

FIRST CLASS I
PERMIT NO. 8241

MINNEAPOLIS, MINN.

FOLD

w
Z
::::;
C)
z
9
< ...
:)
u

