
ON-OFF ----·•
POWER SWITCH

MICROPROCESSOR
IM6100

MONITOR ROM

INTERCEPT JR.
TUTORIAL SYSTEM

FROM INTERSIL

II

OWNER'S HANDBOOK

USER GENERATED
ROM SOCKET

RESET
SWITCH

MODULE SOCKETS
(BEHIND CE.HS)

/

DISPLAY ADDRESS
INTERFACE

LOGIC

Rev. A-November 15, 1976

--~--FOUR(4)

D-CELL
BATTERIES

Intersil cannot assume responsibility for use of any
circuitry described other than circuitry entirely
embodied in an Intersil product. No other circuit
patent licenses are implied. Intersil reserves the
right to change without notice at any time the
circuitry and specifications.

CHAPTER

1

2

3

TABLE OF CONTENTS

INTRODUCTION

WORKING WITH THE INTERCEPT JR. MODULE
INTERCEPT JR. START-UP

RES ET SW ITCH
ENTERING THE CONTROL MODE
SELECTING A FUNCTION

SHIFT
SETPC
DECREMENT PC, DECPC
DEPOSIT DATA INTO MEMORY, MEM
RUN
HALT
RESET
SIN
DIS
BIN LOADER
MICRO

MICROINTERPRETER FUNCTIONS
MEMORY REFERENCE INSTRUCTIONS
INPUT/OUTPUT TRANSFER (IOT) INSTRUCTIONS
OPERATE INSTRUCTIONS
LEAVING MICRO MODE
PROGRAM EDITING AND CORRECTION

TABLE OF INSTRUCTION CODES

INTERCEPT JR. PROGRAMMING EXAMPLES
EXAMPLE 1 - INCREMENTING MEMORY DATA
EXAMPLE 2 - DECREMENTING MEMORY DATA
EXAMPLE 3 - PROGRAMMING TIME DELAYS
EXAMPLE 4 - ADDRESSING MODES
EXAMPLE 5 - INDIRECT ADDRESSING USED IN TABLE

MANIPULATION
EXAMPLE 6 - THE JMS INSTRUCTION AND INDIRECT

ADDRESSING
EXAMPLE 7 - AUTOINDEXING
EXAMPLE 8 - ADDRESS FIELD MODIFICATION
EXAMPLE 9 - USING CONDITIONAL SKIPS
EXAMPLE 10 - FLOWCHARTING A PROGRAM
EXAMPLE 11 - BIT MANIPULATION
EXAMPLE 12 - LOGICAL OPERATIONS
EXAMPLE 13 - 1/0 PROGRAMMING
EXAMPLE 14 - TELETYPE 1/0 USING MONITOR CALLS
EXAMPLE 15 - PRINTING UNDER KEYPAD CONTROL
EXAMPLE 16 - PROGRAM TO DEMONSTRATE 1/0 USING THE

6957 AUDIO MODULE

I

PAGE

1-1

2-1
2-1
2-2
2-2
2-2
2-3
2-3
2-3
2-3
2-4
2-4
2-4
2-5
2-5
2-5
2-5
2-5
2-6
2-6
2-6
2-7
2-7
2-9

3-1
3-1
3-1
3-2
3-2

3-3

3-5
3-6
3-7
3-8
3-10
3-13
3-14
3-14
3-16
3-17

3-18

4

5

6

7

8

INTERCEPT JR. MODULE
INTRODUCTION
TYING ON TO THE DX BUS
ADDRESS DEMULTIPLEXING
DATA DEMULTIPLEXING
KEYBOARD INPUT
DIGITAL DISPLAY OUTPUT
IOT PROCESSING
OPTIONS
SCHEMATIC

JR. RAM MODULE
INTRODUCTION
DISCUSSION
SCHEMATIC

JR. P/ROM MODULE
INTRODUCTION
DISCUSSION
SCHEMATIC

JR. PIEART SERIAL I/O MODULE
INTRODUCTION
DISCUSSION
SCHEMATIC

INTERCEPT JR. TUTORIAL SYSTEM MONITOR PROGRAM
INITIALIZATION OF RAM
REFSH - DISPLAY REFRESH
SWDB - SWITCH DEBOUNCE
CLKPD - CLEAR KEYPAD
HEX
EXIT
INCAC - INCREMENT ACCUMULATOR
DECPC - DECREMENT PROGRAM COUNTER
HALT
RUN
RESET
MEM - DEPOSIT INTO MEMORY
DIS - BLANK FLAG TOGGLE
SETPC - SET PROGRAM COUNTER
MICRO - MICROINTERPRETER
SIN - SINGLE INSTRUCTION EXECUTE
INPIE - INITIALIZE PIE
TALK - PRINT TO TELETYPE
LISN - RECEIVE FROM TELETYPE KEYBOARD/PRINTER
BIN - BINARY LOADER
DUMP - MEMORY DUMP
MONITOR PROGRAM LISTING

II

4-1
4-1
4-1
4-2
4-2
4-3
4-3
4-4
4-7
4-8

5-1
5-1
5-1
5-4

6-l
6-1
6-2
6-4

7-1
7-1
7-1
7-9

8- l
8-l
8-6
8-6
8-7
8-7
8-7
8-8
8-8
8-8
8-8
8-8
8-8
8-9
8-9
8-10
8-12
8-15
8-15
8-15
8-15
8-15
8-17

9

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

APPENDIX F

APPENDIX G

APPENDIX H

INTERCEPT JR. AUDIO CARD
INTRODUCTION
DISCUSSION
SCHEMATIC

APPENDICES

INTERCEPT JR. PROGRAMMING FUNDAMENTALS
NUMBERING SYSTEMS

BINARY
OCTAL
HEX IDEC IMAL
TWO'S COMPLEMENT

ARITHMETIC PROGRAMMING EXAMPLE #1 - ADDITION
ARITHMETIC PROGRAMMING EXAMPLE #2 - TWO'S COMPLEMENT
ARITHMETIC PROGRAMMING EXAMPLE #3 - LINKING PROGRAMS
BINARY AND OCTAL ADDITION AND MULTIPLICATION TABLES

INTRODUCTION TO LOGIC

OCTAL-DECIMAL INTEGER CONVERSION TABLE

INSTRUCTION SUMMARY AND BIT ASSIGNMENTS

GLOSSARY

ASCII CHARACTER CODES
CHARACTER CODES
CONTROL CODES

LOADING CONSTANTS INTO THE ACCUMULATOR

KEYBOARD TENNIS PROGRAM WITH THE INTERCEPT JR.
DESCRIPTION
PROGRAM LISTING

II I

9-1
9-1
9-2
9-3

A-1
A-1
A-1
A-4
A-4
A-4
A-6
A-9
A-10
A-12

B-1

C-1

D-1

E-1

F-1
F-1
F-3

G-1

H-1
H-1
H-2

FIGURES

1-1 INTERCEPT JR. TUTORIAL SYSTEM 1-2
2-1 INTERCEPT JR. MODULE 2-1
2-2 MEMORY REFERENCE INSTRUCTION FORMAT 2-10
2-3 IOT INSTRUCTION FORMAT 2-11
2-4 GROUP 1 MICROINSTRUCTION FORMAT 2-14
2-5 GROUP 2 MICROINSTRUCTION FORMAT 2-16
2-6 GROUP 3 MICROINSTRUCTION FORMAT 2-17
5-1 JR. RAM MODULE 5-1
6-1 JR. P/ROM MODULE 6-1
7-1 JR. SERIAL I/O MODULE 7-1
7-2 IM6402 UART TIMING USING THE ICM7213 7-9
8-l MEMORY ALLOCATION MAP 8-1
8-2 INTERCEPT JR. MAIN FLOWCHART 8-2
8-3 STATUS WORD 8-4
8-4 CONTROL STATE KEY SELECTION/CONNECTIONS KEY - DX BUS 8-5
8-5 LED DISPLAY WORD FORMAT 8-6

TABLES

2-1 TABLE OF INSTRUCTION CODES 2-9
3-1 PAGE VS MEMORY LOCATIONS 3-5
5-1 JUMPER CONNECTIONS FOR MAPPING 5-2
6-1 ADDRESS RANGE IN OCTAL IM5623/IM5624 6-2
7-1 CONTROL REGISTER A CONSTANTS 7-2
7-2 CONTROL REGISTER B CONSTANTS 7-3
7-3 VECTOR REGISTER 7-3
7-4 UART CONTROL REGISTER BIT 7-4
7-5 20 mA LOOP/EIA RS232-C CONNECTOR PINOUTS 7-6
7-6 PIE-UART INSTRUCTIONS 7-7

IV

CHAPTER 1
INTRODUCTION

The theoretical principles underlying digital computers were first
enunciated by Charles Babbage in 1833, but the technology available
at the time was not equal to the task of actually building a working
machine. John Von Neumann developed the stored program concept at
the Institute for Advanced Studies at Princeton University and, since
then electronic computers have undergone several reiterations from
the early vacuum tube machines to transistorization to integrated
circuit systems, and now the age of LSI is evident. Architectural
advances from the first use of hardware index registers, microprogrammed
control, interrupt processing, direct memory access channels, and
distributed processing have been numerous, but the history of digital
computers has yet to be fully written.

In the late 1930's and early 1940's, wartime requirements and the
deve1opment of vacuum tubes led to the construction of extremely
expensive and complex digital computers used mainly to speed up
numerical calculations. As the technology progressed, computers
became faster, smaller and less expensive. Advances in hardware
architecture and programming languages evolved rapidly. As a resu1t,
the 1960's saw significant increases in the application of business
and data processing computers.

The first minicomputer, the PDP-8*, was introduced by Digital
Equipment Corporation in 1965 and made dedicated applications for
digital computers possible. This first minicomputer, costing
approximately $50,000, was considered so inexpensive that it found
itself being used in universities, laboratories, and in numerous
process control applications. Many versions of this machine were
brought out in succeeding years.

Computers, big and small, must all have a processor, main memory and
input/output. Decreasing hardware costs and increasing sophistication
of processing technology led to multiplicity of computer architecture.
The early 1970's saw the microprocessor, the heart of a computer,
enter the scene. Its function is to accept data from the user, process
it according to instructions provided by the user, and stored in
memory, and return usable results to the user in some convenient
fashion.

LSI techniques, with their high density capability, have enabled
semiconductor manufacturers to produce processing units and memory
devices on single monolithic silicon chips. Input and output devices
which constitute the man/machine interface, have remained relatively
bulky.

* Trademark of Digital Equipment Corporation, Maynard, Mass.

1-1

FIGURE 1-1

1-2

The INTERCEPT JR. TUTORIAL SYSTEM, pictured in Figure 1-1, recognizes
the instruction set of Digital Equipment Corporation's PDP-8/E and is
designed with a modular concept to enable the user to purchase only
those modules which meet his requirements. The design permits the user
to participate in the future of digital computers by yielding an
understanding of the microprocessor and related component functions as
well as progra11111ing fundamentals.

Large Scale Integration (LSI) of Intersil 's digital CMOS components
results in the system being battery operable and, thereby, yields
the flexibility of a portable system. Experience can be gained with
the components required for a classical computer architecture--a
processor, or central processing unit (CPU), memory and input/output.
The IM6100 microprocessor serves as the CPU and memory is available
in the form of CMOS RAM, ROM and bipolar P/ROM. Input/output can be
experienced in its simplest form via the keyboard and LED displays
or can be studied in greater detail by utilizing the JR. SERIAL I/O
MODULE.

This Owner's Handbook presents a step-by-step learning experience
for the INTERCEPT JR. TUTORIAL SYSTEM. Chapter 2 entitled "Working
With The Intercept Jr. Module" instructs the user in the fundamentals
of the basic module--the start-up and the selection of a function.
The console control, or keyboard, is discussed in detail. Chapter 3,
"Programming Fundamentals", presents the user with simple programming
examples and the ability to progress to more complex problems.
Chapters 4, 5, 6 and 7 explain the hardware aspects of the four
modules via pictorial representation, text and the corresponding
schematics. Chapter 8 discusses the monitor ROM program, presents
the flow chart and listing, and, thereby, gives the user a greater
degree of programming insight. The Appendices contain fundamental
information on number systems, two's complement arithmetic, an intro
duction to logic, and other miscellaneous information that will be of
interest to the user.

It is Intersil Incorporated's opinion that the INTERCEPT JR. TUTORIAL
SYSTEM will enable you to embark upon a truly rewarding educational
experience. The microprocessor has resulted in a natural evolutionary
step in electronic circuitry design. This is only the beginning.
We sincerely wish that your participation in this evolution will be
rewarding to you.

1-3

ON-OFF
POWER SWITCH

CRYSTAL

MICROPROCESSOR
IM6100

MONITOR ROM

CHAPTER 2
WORKING WITH THE INTERCEPT JR. MODULE

USER GENERATED
ROM SOCKET

MODULE SOCKETS
(BEHIND CELLS)

/

RESET
SWITCH

DISPLAY AOORESS
INTERFACE

LOGIC

FIGURE 2-1

,.----- FOUR (4)
0-CELL
BATTERIES

RAM 256 x 12

MEMORY

CONSOLE CONTROL

Figure 2-1 provides a pictorial representation of the INTERCEPT JR.
MODULE with the pertinent components discussed in this chapter highlighted.

INTERCEPT JR. START-UP

Turn the module 11 0N 11 with the 11 0N-OFF 11 power switch. Power is
provided by the four (4) D-Cell batteries which must be inserted,
with the sleeve, in the module. When facing the module, with the
keyboard in front and connectors on t he far side, the left hand

2-1

I

battery clip is positive and the right hand battery clip is negative.
BATTERY REVERSAL WILL DAMAGE THE SYSTEM. The module does a power-
up RESET so that it will always come up halted with the Program
Counter, PC (ADDRESS) equal to 7777. The CONSOLE CONTROL timer will
be active so that the ADDRESS and MEMORY displays will be valid
provided a "BLANK DISPLAY" is not in effect. The information displayed
will be PC = 7777 in the ADDRESS and the MEMORY data in that location
will be 5366. This instruction branches the microprocessor to
routines which save registers, initialize the RAM stack and search
for keyboard depressions. If the display does not illuminate, press I to turn it on.

RESET SWITCH

The RESET SWITCH does a complete hardware reset of the micro
processor and can be used at any time for this purpose.
Therefore, it is not necessary to turn power off to reset
the microprocessor. When switching the module OFF it is
recommended that the RESET SWITCH be depressed while the
power is turned off. This keeps the microprocessor from
running during the power down process thereby eliminating
the possibility of writing bad data into the RAM as the
voltage level goes lower than the minimum specified. If
the RAM data is not required to be preserved, use of the RESET
SWITCH is not required during power-off.

ENTERING THE CONTROL MODE

The operator will now enter the control mode by
pressing the control key, CNTRL, on the KEYBOARD.
This key will cause the module to enter what is
referred to as an undefined control mode when
the CONSOLE CONTROL timer is enabled, or at any
point during the execution of a control function.
This state is referred to as undefined as we
have not yet chosen a CONSOLE CONTROL function to
be performed. We may leave this state, without
choosing any function, by pressing what we will

... ,A-c• refer to as the SHIFT key, S, or the key designated
REv IAC REV IND. This will take the module out of the
iNo control mode and place it in the user mode, be it

running, or halted. In the user mode, the module
is either waiting for or executing user programs.

SELECTING A FUNCTION

After pressing the CNTRL key, we are now ready to choose
a function to be performed. This is accomplished by
pressing any of the ten (10) function keys which are
described below.

2-2

SHIFT

--1A-c• As SHIFT, this is not a function key and
REV pressing it will cause the module to return
iNo to the user mode. This key also has special

meaning for certain functions and its use is
described with each of those functions. This
key is color-coded yellow.

SET PC

This function allows the user to control the
Program Counter, PC, in the module for purposes
of depositing words, or examining words or
conditions. Following the activation of this
key, the user will load an octal number into
the PC by entering the digits on keys 0-7. The
digits will be displayed in ADDRESS and will be
entered from the right, shifting the previously
entered digits to the left. Any number of digits
may be entered until the display contains the
value desired. Then the SHIFT key is pressed to
indicate that the value is entered and that we
wish to return to user mode. A CNTRL key will
enter the value displayed into the PC and will
return the state to undefined control mode. Note
that leading zeros may be needed to clear the
display before entering the desired octal numbers.

DECREMENT PC, DECPC

... This function will decrement the value of the
DECPC
SZA-aL PC by one and return the module to user mode.
OP~ This function is useful when examining sequences

of memory locations.

DEPOSIT DATA INTO MEMORY, MEM

-- This function allows the user to enter instructions
S:!~ and data in the RAM as well as set the values of

•o•P•Ra• the internal registers of the module by depositing
the data into memqry locations used by the monitor
program to save and update the data in these
registers. After a closure of the MEM key, the user
will proceed to enter digits on to MEMORY with
keys 0-7 as he did for SETPC. The new digits will
be displayed on MEMORY, entering from the right and
shifting to the left. When the MEMORY display
contains ~he desired value, the user will deposit
it in the RAM by pressing either DECPC, or MEM. If

2-3

RUN

DECPC is pressed, the MEMORY display will be
deposited into RAM in the memory location
addressed by the ADDRESS display. The ADDRESS
display will be decremented and the RAM information
in the decremented address will be displayed in
MEMORY. If MEM is pressed, the value shown in
the MEMORY display will be deposited into the
RAM in the memory location addressed by the
ADDRESS display, the ADDRESS display will be
incremented and the next word in RAM will be
displayed in MEMORY. Successive depressions of
MEM will increment the memory ADDRESS. Digits
can now be entered from the right, as before. If
the user wishes to skip a location, he presses
MEM again. This will retain the value of that
location in RAM and the ADDRESS will move to the
next location. By pressing SHIFT, the user will
deposit the value of MEMORY into the location
specified by ADDRESS, the module will exit the
control mode and enter the user mode. If the
user presses CNTRL, the value shown in MEMORY will
be deposited and the module will enter the undefined
control mode. RAM locations 0000 and 0140-0177
are reserved for the MONITOR and should not be
modified (see Chapter 8).

00 This function will set the microprocessor Run
flip flop to RUN and will exit the control mode.
The module will come out in the user mode at the

· - · PC point specified during control mode, running.

HALT

00 This function will clear the RUN flip flop in
the microprocessor so that the module will come
out of the control mode halted.

RESET

This function will be a complete software RESET
of the module. All internal microprocessor

· flags are initialized, the accumulator and link
are cleared and the PC is set to 7777. It will
also remove a BLANK DISPLAY status.

2-4

SIN

DIS

BIN LOADER

MICRO

This function, referred to as Single Instruction,
will cause the module to perform, in the user
mode, a single instruction. Following this, the
possible changes of state can be observed by
inspecting the contents of the appropriate
memory locations. Due to the MONITOR program
structure, the user can not single step through
ROM-P/ROM locations or JMP.-1 instruction (see
Chapter 8). SIN may be successively depressed
to single step through a program.

This function will BLANK and RESTORE the
ADDRESS and MEMORY display thereby conserving
power. The BLANK/RESTORE function is achieved
by depressing CNTRL followed by DIS to BLANK
the display and then CNTRL followed by DIS to
RESTORE the display. A blanked display will
carry over from a power-down but will be
cleared by a software RESET (depression of
CNTRL and RESET). The RESET switch does not
affect display status.

This function will activate the firmware loader
which will load BINary tapes using the 6953-
PIEART, JR. SERIAL I/O MODULE. This loader
will return to the halted user mode when data
has finished loading.

This function will place the CONSOLE CONTROL
at the control of the MICROINTERPRETER in the
MONITOR ROM. The MICROINTERPRETER functions
are elaborated on in the next section.

MICROINTERPRETER FUNCTIONS

Pressing CNTRL followed by MICRO causes INTERCEPT JR. to
execute the microinterpreter routines which are resident
in the MONITOR ROM. These routines will interpret key
closures as opcode bits, relative address bits, page bits,
address mode bits, and microinstruction bits according to
the specific sequence in which the keys are depressed.

2-5

This enables the user to rapidly enter programs via the
keyboard without constantly referring to the instruction
format listings. The user should be familiar with the
use of the instructions and the rules for combining micro
instructions in order to make the most efficient use of
the microinterpreter.

MEMORY REFERENCE INSTRUCTIONS

IAC
REV
IND

In the MICRO mode, if any of the keys marked AND, TAD,
ISZ, DCA, JMS, or JMP are pressed, the MEMORY display
at the current memory ADDRESS will show 0000, 1000,
2000, 3000, 4000, or 5000, respectively.

All the following key closures are interpreted as address
bits. The numerical keys may be depressed as many
times as desired, entering octal address digits from
right to left. If the resulting relative address is
outside the page boundary (0-1778 is the allowable
relative addressing range), the displays will flash.
Depression of the SHIFT key will stop the flashing and
clear the address field. The user should again attempt
to enter a valid address.

At any time after the opcode is entered and the display
is not flashing, thereby representing a valid address,
depression of the SHIFT key will set the indirect bit
of the instruction (add 4 to the next-to-most significant
octal digit). After entering the instruction, depressing
CNTRL will advance the ADDRESS counter. SHIFT may be
pressed repeatedly to advance the ADDRESS counter.

INPUT/OUTPUT TRANSFER (IDT) INSTRUCTIONS

In the MICRO mode, depression of the IDT key will cause
6000 to be entered into the currently addressed memory
location. Subsequent numeric key depressions are performed

· to enter the required device address and control bits
into the IDT instruction.

Depressing CNTRL will advance the ADDRESS counter to the
next location. Depressing SHIFT will cause the ADDRESS
counter to step.

OPERATE INSTRUCTIONS

Operate instructions are divided into three groups of
operate microinstructions. Thus, in the MICRO mode,
the desired microinstruction group is selected by
depressing the keys marked OPRl, OPR2 or OPR3. This will
enter 7000, 7400 or 7401, respectively, into the MEMORY

2-6

MEM
SMA-QA
OPR3

DECPC
SZA-OL
OPR1

display. If no additional keys are depressed and the
address counter is advanced, these instructions, which
are all NO OPERATION, NOP, will be entered. Further key
depressions will set various bits in the instruction
enabling the user to select valid microinstruction
combinations. The microinterpreter does not check for
illegal microinstruction combinations so the user must
be careful about the combinations being selected. The
tables show the more useful combinations. The user should
become familiar with the rules of combinations and logical
execution sequence in order to create microinstructions
not shown in the tables.

On the CONSOLE CONTROL, in general, the designations in
red are associated with OPRl microinstructions, and the
designations in green, except for -QA and -QL, are
associated with OPR2 microinstructions. The -QA and
-QL designations stand for MQA and MQL which are OPR3
microinstructions. '

Conditional skip microinstructions in the OPR2 group may
have their skip condition inverted by pressing the REV
key while setting the microinstruction bits.

Rotate instructions in the OPRl group may be changed
from a single bit rotate to a two bit rotate by pressing
the key with T/BSW designation on it. (This key is
used for both two bit rotates as well as Byte SWap.)

The CLA command is used in all the operate microinstruction
groups and the key may be pressed in any of these groups.

LEAVING MICRO MODE

Depressing the CNTRL key twice puts the user back into
the undefined control state and free to choose the next
function.

PROGRAM EDITING AND CORRECTION

If an instruction is entered incorrectly, the user must
exit MICRO by depressing CNTRL twice. This will
result in advancing the ADDRESS counter by one. Decre
menting the ADDRESS counter by one is achieved by pressing
DECPC. The user must then reenter the MICRO mode by
pressing CNTRL and MICRO. Now the correct instruction
is reentered in full.

2-7

The program may be examined location by location by
successively pressing DECPC or MEM from the undefined
control state. DECPC results in stepping backward
through memory, and MEM results in stepping forward.
These two keys may be pressed without going through the
undefined control state in order to go backwards and
forwards through the program in any sequence.

Memory data may be changed at will while stepping back
and forth through the program simply by depressing the
numeric keys in any desired fashion.

When editing in the MICRO mode, an instruction may be
changed by entering a new sequence of keys. If an
instruction is correct, the address counter may be
stepped simply by pressing the yellow SHIFT key
(immediately after CNTRL has been pressed to step the
address) as many times as desired.

2-8

KEYS DEPRESSED
LEFT TO RIGHT

KEYS DEPRESSED
LEFT TO RIGHT

nn •••• n

IAC
REV
IND

TABLE 2-1

TABLE OF INSTRUCTION CODES

MEMORY
OCTAL CODE

MEMORY REFERENCE INSTRUCTIONS

MNEMONIC

AND*

TAD

ISZ

MEMORY
OCTAL CODE

0000

OOnn or
Olnn

04nn or
05nn

1000

2000

OPERATION

Enter MICROINSTRUCTION Mode

OPERATION

Logical AND

Depress numeric keys as
required for valid address

Depress IND key if INDirect
MRI is required

Advances ADDRESS counter to
next location

Binary ADD

Increment and Skip if Zero

* The sequence of key depressions required to enter the opcode, address field, indirect
bit (if necessary) and advance the address counter is shown in full for this case.
The same sequence is true for the other memory reference instructions, but only the
initial operation of entering the opcode is shown for the remainder to avoid duplication

2-9

KEYS DEPRESSED
LEFT TO RIGHT

MEMORY REFERENCE

INSTRUCTION FORMAT

DCA

JMS

JMP

0

OPCODE0-5

3000

4000

Deposit and Clear
Accumulator

JuMp to Subroutine

5000 JuMP

2 3 4 5 6 7 8 9 10 11

IA MP ADDRESS

PAGE
RELATIVE ADDRESS

'---!-INDIRECT ADDRESSING
0 =DIRECT
1 =INDIRECT

MEMORY PAGE
0 =PAGE 0
1 =CURRENT PAGE

FIGURE 2-2

MICROPROCESSOR INPUT /OUTPUT TRANSFER (IOT) INSTRUCTIONS

MNEMONIC

SKON

ION

IOT

SRQ

GTF

MEMORY
OCTAL CODE

6000

6001

6002

6003

6004

2-10

OPERATION

Skip if Interrupt on

Interrupt Turn on

Interrupt Turn off

Skip if INT Request

Get Flags

Eel!i]

rel"e]

~EYS DEPRESSED
~EFT TO RIGHT

n, n, n, n ••• n

KEYS DEPRESSED
LEFT TO RIGHT

DEC PC
SZA·QL
OPR1

DECPC IAC
SZA·QL REV
OPR1 IND

0

11 : 1

DEVICE

RTF 6005

SGT 6006

CAF 6007

2 3 4 5 6 7 8

0 I D~VICE S~LECTlf N

IOT INSTRUCTION FORMAT

FIGURE 2-3

INPUT/OUTPUT TRANSFER (IOT)

MNEMONIC MEMORY
OCTAL CODE

As applicable 6000

6nnn

Return Flags

Operation is Determined
by External Device, if
Any

Clear All Flags

10 11

~ONTR+

INSTRUCTION

OPERATION

Depress numeric keys as
required to enter specific
address and control bits

GROUP 1 OPERATE MICROINSTRUCTIONS

MNEMONIC

NOP

IAC

MEMORY
OCTAL CODE

7000

7001

2-11

OPERATION

No operation

Increment Accumulator

DECPC I
SZA-QL
OPR1

DECPC a
SZA·QL
OPR1

DECPC r-B SZA-QL
OPR1

DECPC ~
SZA·QL 1:
OPR1 1:

DECPC 9
SZA-QL
OPR1

T~

T5E
...; ;..,j

DECPC 9 IAC
SZA·QL REV
OPR1 IND

DECPC Rlf
SZA-QL
OPR1

~~ R~ mi
OPR1 ~ j5

RAL 7004

RTL 7006

RAR 7010

RTR 7012

BSW 7002

CML 7020

CMA 7040

CIA 7041

CLL 7100

CLL RAL 7104

2-12

Rotate Accumulator Left

Rotate Two Left
The T in T/BSW indicates
bit 10 is set to give two
shifts. Key may be pressed
before RAL if desired.

Rotate Accumulator Right

Rotate Two Right
Except for OPRl key,
order of depression is
irrelevant.

Byte Swap
Only bit 10 set g1v1ng
byte swap function.

Complement Link

Complement Accumulator

Complement and Increment
Accumulator
Logical execution sequence
is CMA, !AC, but keys may
be pressed in IAC, CMA order.

Clear Link

Clear Link-Rotate Accumulator
Left
Logical sequence first
clears link, then rotates.

DEC PC
SZA·QL
OPR1

DECPC
SZA·QL
OPR1

DECPC
SZA-QL
OPR1

DECPC
SZA·OL
OPR1

DECPC
SZA·QL
OPR1

Rlr

--- - -

Rrr

!f

gz

gz

I T~ CLL RTL 7106

.. -

CLL RAR 7110

a T~ CLL RTR 7112

I STL 7120

CLA 7200

CLA IAC 7201

I GTL 7204

CLA CLL 7300

STA 7240

Clear Link-Rotate Two Left

Clear Link-Rotate Accumulator
Right

Clear Link-Rotate Two
Right

Set the Link
Logical sequence first clears,
then complements link.

Clear Accumulator
Common to all groups, so
not colored.

Clear Accumulator-Increment
Accumulator
Loads accumulator with 1.

Get the Link
Accomplished by rotating
it into cleared accumulator.

Clear Accumulator-Clear Link

Set the Accumulator
Sets accumulator to all
ones.

Example of microprogrammed instruction to set accumulator to
octal six.

Logical sequence: CLA CLL

Key sequence:

Octal instruction: 7327

2-13

CML IAC

IAC
REV
IND

RTL

I T~

KEYS DEPRESSED
LEFT TO RIGHT

~
~

S~ T~T" 0~2 'TJD•

s~ IAC
REV

0 2 IND

[!!Jw]
s~ ~o
g~2 ~

IAC
REV
IND

0 2 3 4 5 6 7 8 9 10 11

BSWIFBITS
8 & 9 ARE 0
AND BIT 10 IS 1.

LOGICAL SEQUENCES:
1-CLA. CLL
2-CMA, CML
3-IAC
4-RAR, RAL, RTR, RTL, BSW

GROUP 1 MICROINSTRUCTION FORMAT

FIGURE 2-4

GROUP 2 OPERATE MICROINSTRUCTIONS

MNEMONIC

NOP

HLT

OSR

SKP

SNL

SZL

SZA

MEMORY
OCTAL CODE

7400

7402

7404

7410

7420

7430

7440

2-14

OPERATION

No operation

Halt

Or with Switch Register

Skip
REV key sets bit 8 giving
the AND condition of skips
specified in bits 5, 6, 7.
This results in unconditional
skip.

Skip on Non-Zero Link

Skip on Zero Link
REV reverses selected skip
condition by setting bit 8.

Skip On Zero Accumulator

gz

sgz

sgr

sgz

gz

DECPC
SZA-QL
OPR1

DECPC
SZA·QL
OPR1

MEM
SMA-OA
OPR3

IAC
REV
IND

if
IAC
REV
IND

MEM ir IAC
SMA-QA N REV
OPR3 IND

MEM DEC PC
SMA-OA SZA·QL
OPR3 OPR1

MEM DECPC IAC
SMA-QA SZA-QL REV
OPR3 OPR1 IND

MEM DECPC if
SMA-OA SZA·QL
OPR3 OPR1

SNA

SZA SNL

SNA SZL

SMA

SPA

SMA SNL

SPA SZL

SMA SZA

SPA SNA

SMA SZA
SNL

2-15

7450

7460

7470

7500

7510

7520

7530

7540

7550

7560

Skip on Non-Zero Accumulator

Skip on Zero Accumulator,
or Skip on Non-Zero Link,
or both
OR'ed skip conditions.

Skip on Non-Zero Accumulator,
and Skip on Zero Link
AND'ed skip conditions.

Skip on Minus Accumulator

Skip on Positive Accumulator

Skip on Minus Accumulator, or
Skip on Non-Zero Link, or both
OR'ed skip conditions.

Skip on Positive Accumulator
and Skip on Zero Link
AND'ed skip conditions.

Skip on Minus Accumulator or
Skip on Zero Accumulator or
both.
OR'ed skip conditions.

Skip on Positive Accumulator
and Skip on Non-Zero Accumulator
AND'ed skip conditions.

Skip on Minus Accumulator or
Skip on Zero Accumulator or
Skip on Non-Zero Link or all
OR'ed skip conditions.

-~
MEM DECPC 11° SMA-QA SZA-Ql
OPR3 OPR1

T~

sgz DECPC ~ SZA·Ql
OPR1

DECPC IAC sgz
SZA-QL REV
OPR1 IND

,...-.Ill sgz MEM IAC sgz SMA-OA REV
OPR3 IND

sgz MEM DECPC if SMA-OA SZA·Ql
OPR3 OPR1

IAC
REV
IND

IAC
REV
IND

SPA SNA
SZL

CLA

LAS

SZA CLA

SNA CLA

SMA CLA

SPA CLA

SPA SNA
SZL CLA
OSR

7570

7600

7604

7640

7650

7700

7710

7774

Skip on Positive Accumulator
and Skip on Non-Zero Accumulate
and Skip on Zero Link
REV AND'ed skip conditions.

Clear Accumulator
Common to all groups.

Load Accumulator with
Switch Register
Logical sequence clears AC
then loads it with switch
register.

Skip on Zero Accumulator
then Clear Accumulator

Skip on Non-Zero Accumulator
then Clear Accumulator
Order of key depression is
irrelevant.

Skip on Minus Accumulator
then Clear Accumulator

Skip on Positive Accumulator
then Clear Accumulator

Skip on Positive Accumulator
and Skip on Non-Zero Accumulate
and Skip on Zero Link, then
clear accumulator and load
accumulator with the content of
the switch register

0 2 3 4 5 6 7 8 9 10 11

LOGICAL SEQUENCES:
1 (Bit 8 is Zero)- SMA or SZA or SNL

(Bit 8 is One) - SPA and SNA and SZL
2 -CLA
3 -OSR, HLT

GROUP 2 MICROINSTRUCTION FORMAT

FIGURE 2-5

2-16

KEYS DEPRESSED
LEFT TO RIGHT

MEM
SMA·OA
OPR3

MEM DECPC
SMA·OA SZA·OL
OPR3 OPR1

MEM MEM
SMA·OA SMA·OA
OPR3 OPR3

MEM MEM
SMA-OA SMA-OA
OPR3 OPR3

MEM Se:f.OC
SMA·QA CliA
OPR3 Oli!2

MEM SEitff
SMA·QA

c,
OPR3 olil2

DEC PC
SZA·QL
OPR1

DECPC
SZA·QL
OPR1

MEM SEi'l MEM
SMA·OA C . SMA·OA
OPR3 0 , 2 OPR3

MEM Siil'jC DEC PC
SMA·OA C!fi\ SZA·QL
OPR3 OPR2 OPR1

MEM
SMA-OA
OPR3

GROUP 3 OPERATE MICROINSTRUCTIONS

MNEMONIC

NOP

MQL

MQA

SWP

CLA

CAM

ACL

CLA SWP

MEMORY
OCTAL CODE

7401

7421

7501

7521

7601

7621

7701

7721

0 3 4 5 7 8

LOGICAL SEQUENCE:
1-CLA
2-MQA, MOL
3-ALL OTHERS

GROUP 3 MICROINSTRUCTION FORMAT

FIGURE 2-6

2-17

OPERATION

No operation

MQ Register Load

MQ Register into Accumulator

Swap Accumulator and MQ
Register

Clear Accumulator
Common to all groups.

Clear Accumulator and MQ
Register

Clear Accumulator and
Load MQ Register into
Accumulator

Clear Accumulator and
Swap Accumulator and
MQ Register

10 11

*Don't Care

CHAPTER 3
INTERCEPT JR. PROGRAMMING EXAMPLES

INTRODUCTION

The reader who is not familiar with elementary programming
techniques, two's complement arithmetic and octal coding,
should study Appendix A and the IM6100 brochure for a
description of the instruction set before continuing with
this section. The MONITOR program will be used to illustrate
the use of various techniques.

EXAMPLE l - INCREMENTING MEMORY DATA

6400 2140 INCAC,

6401 7000

ISZ SAVAC /Increment data in
0140s, location SAVAC

NOP /In case location contained
7777

This technique uses the ISZ instruction to directly increment
memory data without needing to bring it into the AC first. Note
the use of the NOP in case the data was 7777 and a skip was
performed. In applications where the programmer knows this
cannot happen, the NOP could be omitted.

EXAMPLE 2 - DECREMENTING MEMORY DATA

6403
6404

6405

7340
1000

3000

DECPC, CLA CLL CMA /Set AC to -1
TAD SAVPC /Add data in SAVPC

(location 0000)
DCA SAVPC /Restore decremented data

Note the use of the microinstruction combination CLA CLL CMA to
clear the AC and the link and then to complement the AC, resulting
in 7777 in the AC and 0 in L. By adding the contents of location
SAVPC to the AC in two's complement arithmetic, a decrement is
effectively performed. Note that the logical sequence of micro
instruction execution is chosen for usefulness. It would be of
no value to complement the AC first and then to clear it.

3-1

EXAMPLE 3 - PROGRAMMING TIME DELAYS

. .
6203 3145 DCA SAVE /Store AC in SAVE and clear AC
6204 1233 TAD TKl /Get Time constant #1
6205 3144 DCA TIME /Store in timer
6206 2144 ISZ TIME /Time out 4 ms at 3.33 MHz
6207 5206 JMP.-1 /Jump back one location .

6233 7400 TKl , 7400 /-256

This sequence is part of SWDB, the switch debounce routine
described in Chapter 8. The AC is cleared (incidentally while
depositing in SAVE), and the constant TKl is fetched from the
current page address 6233. It is stored in the page 0 location
0144 and ISZ instructions are successively executed until the
timer goes to zero and the jump-back instruction is skipped.
The delay produced may be calculated by counting the number of
major states in each instruction executed and multiplying by
the state time. Thus, ISZ requires 16 states and JMP requires
10, so these 26 states are gone through a total of 256 times,
for a total of 6656 states. Adding in the states for the DCA,
TAD and DCA (11 + 10 + 11 = 32) we have 6688 states. With a
3.3 MHz clock rate, the state timer is 600 ns so the delay is
(0.6 x 6688) microseconds = 4012.8 microseconds or approximately
4 milliseconds. At 4 MHz, if the constant is not changed, the
delay will be reduced by the factor 5/6 to 3.33 ms.

It is also instructive to note that the location TIME is in
page 0, whereas the constant TKl is stored in the current page
(page 31). In this case, RAM happens to be available only in
page 0 and 1 and by keeping TIME in page 0, the ISZ instruction
in page 31 was able to directly reference the location TIME in
page O. Obviously, ISZ instructions may only reference RAM
locations.

EXAMPLE 4A - ADDRESSING MODES

The user should note that a characteristic of page addressing
results in the octal coding for two memory reference instructions
on different pages being identical when their operands are in
the same relative location on the respective pages.

3-2

0020 5225

0220 5225

/JMP to location 25 on current
page, for example to 0025

/JMP to location 25 on current
page, for example to 0225

The user should enter these instructions. By using the SIN,
single instruction key, to execute the instruction, the user will
see how the addresses are referenced.

Note that memory reference instructions can reference 4003 locations
directly, 2003 on page 0, and 2003 on the page containing this
instruction. If the instruction happens to be on page 0, then only
locations 0 to 1773 are directly addressable.

EXAMPLE 4B - ADDRESSING MODES

0020 5625 /JMP indirect via 0025

0025 0010 /Pointer to 00103

.
0220 5625 /JMP indirect via 0225

0225 0010 /Pointer to 00103

Now, by using the single step key at locations 0020 or 0220, the
address should change to 0010 showing that an indirect reference
has been made.

The pointer (location containing the effective address) can
contain a full 12 bits of address, so the program can branch
anywhere in the 4K address space by jumping indirect.

When constants and pointer addresses are stored in page 0,
references may be made to them from any page, avoiding the
necessity of storing them on each page that needs them.

EXAMPLE 5 - INDIRECT ADDRESSING USED IN TABLE MANIPULATION

This example is taken from the UDCS routine described in Chapter 8.
It is a common technique of passing program control to one of
several possible sequences by adding an index to a base address.

3-3

At the point that the following sequence is entered, the accumulator
contains an octal number from 0 to 13 which stands for the routines
MICRO, BIN, BLK, SIN, RUN, HALT, RESET, SETPC, DECPC, DEP, INCAC
and UDCS respectively •

.
6123
6124
6125
6126
6127
6130
6131
6132
6133
6134
6135
6136
6137
6140
6141
6142
6'143
6144

1330
' 3147

1547
3147
5547
6131
6633
7600
6566
7301
6411
6407
6414
6600
6403
6524
6400
6117

GOTO,

TAD GOTO /add base address to constant
DCA POINT /store pointer in POINT
TAD I POINT /get routine starting address
DCA POINT /phase starting address in POINT
JMP I POINT /go to the routine
GOTO +l /base address
MICRO)
BIN)
BLK)
SIN)
RUN) TABLE OF ROUTINE
HALT) STARTING ADDRESSES
RESET)
SETPC)
DECPC)
DEP)
INC AC)
UDCS)

Note that location 6130, labeled GOTO contains base address 6131, so
by adding a number from 08 to 13a to 6131, a number from 6131 to
6144 is obtained. This number is stored in POINT.

Now, the effective starting address is obtained by executing a TAD
indirect through POINT, for example contents of POINT used as
operand address. Thus, is AC contained 3a, then 6134 would be
stored in POINT, and TAD I POINT would place 7301 in the AC to be
again stored in POINT. This time an indirect jump through POINT
loads 7301 into the program counter.

Of course, POINT had to be stored in RAM and since pages 0 and l
are in RAM, POINT was chosen to be in page O, in order that the upper
ROM pages could reference it. It can be seen that indirect
addressing makes writing programs easier in mixed RAM-ROM memory
where memory references cannot be easily confined to small relative
address displacements. See Table 3-1 for a list of pages and
their memory locations.

3-4

PAGE

0
l
2
3
4
5
6
7

10
11
12
13
14
15
16
17
20
21
22
23
24
25
26
27
30
31
32
33
34
35
36
37

TABLE 3-l

MEMORY LOCATIONS

0-177
200-377
400-577
600-777

l 000-1177
1200-1377
1400-1577
1600-1777
2000-2177
2200-2377
2400-2577
2600-2777
3000-3177
3200-3377
3400-3577
3600-3777
4000-4177
4200-4377
4400-4577
4600-4777
5000-5177
5200-5377
5400-5577
5600-5777
6000-6177
6200-6377
6400-6577
6600-6777
7000-7177
7200-7377
7400-7577
7600-7777

EXAMPLE 6 - THE JMS INSTRUCTION AND INDIRECT ADDRESSING

A very important use of indirect addressing is in returning to
a main program from a subroutine. Appendix A shows how two
programs may be linked using JMP instructions. The JMS instruction's
usefulness lies in the fact that only one copy of a subroutine
need be stored, for example in page 0, and a program anywhere in
main memory may call it. INTERCEPT JR. uses a 11 last-in-first-out11

(LIFO) or "pushdown" stack in page 0 to store subroutine return
addresses. This allows nesting of subroutines and calling sub
routines stored in the MONITOR ROM by linking through RAM. For
further details refer to INTERSIL Applications Bulletin M008.

3-5

Our example will demonstrate the use of the JMS instruction in
RAM, and the use of indirect addressing to return.

To enter the program, use the microinterpreter as described in
Chapter 2.

0020 7240 CLA CMA I AC set to 7777
0021 4100 JMS 0100 /Jump to subroutine starting

at 0100
0022 7240 CLA CMA I AC set to 7777
0023 7402 HLT

0100 0000 /This location will contain
return address

0101 7200 CLA I AC set to 0000
0102 5500 JMP I 0100 /Return to main program

Single step through this program (by successive depressions of
SIN key after initial 11 CNTRL 11 "SIN 11 sequence at program starting
address) and the program sequencing will be seen to go from 0020 -
0021 - 0100 - 0101 - 0102 - 0022 - 0023. In between, it will be
instructive to look at location 0140 where the AC is saved by
the MONITOR. The AC will initially be set to 7777, then the
subroutine clears it, and then the main program again sets it to
7777. The JMS instruction stores the return address, namely
0022 in location 0100 so that upon executing the JMP indirect via
0100, the main program can be rejoined in sequence.

If a lK RAM option card is available, the user could relocate
the main program in an upper page and execute the same program
provided the subroutine remained in page O. The subroutine
could be moved to a page different from page 0 or the main program's
page but then an indirect JMS would have to be executed. We can
illustrate this in page Oas follows:

0020 7240 CLA CMA /AC = 7777
0021 4424 JMS I 0024 /Jump via pointer in
0022 7240 CLA CMA /AC = 7777
0023 7402 HLT
0024 0100 /pointer address

.
0101 7200 CLA /AC = 0000
0102 5500 JMP I 0100 /Return

An extra location to store the pointer is needed.

EXAMPLE 7 - AUTOINDEXING

Example 3 showed how a simple loop could be programmed using the
ISZ and JMP instructions.

3-6

0024

The IM6100 treats memory locations 0010 through 0017, in page 0,
in a unique manner. Whenever an instruction makes an indirect
reference to any of these locations, the content of the location
is incremented before it is used as an operand. These locations
can, therefore, be used in indexing applications. The incre
mentation is done automatically, provided the location was referenced
indirectly, without needing ISZ or TAD and IAC instructions, so
this feature is known as autoindexing. When these locations
are addressed directly, they act as any other location.

Since the autoindex location is incremented before it is used
as an operand, it must be set to one less than the first value
desired.

0010 /Autoindex location

.
0200 7200 CLA /Clear AC to 0000
0201 1212 TAD 0212 /Get # of locations to be cleared
0202 7041 CMA IAC /2's complement of AC
0203 3212 DCA 0212 /Store in loop counter
0204 1213 TAD 0213 /Get "starting address -1 11

0205 3010 DCA 0010 /Store in autoindex location
0206 3410 DCA I 0010 /Clear location pointed to by
0207 2212 ISZ 0212 /Increment loop counter
0210 5206 JMP 0206 /Jump back two places
0211 7402 HLT /Stop. All locations cleared
0212 0100 CONSTANT /# of locations to be cleared
0213 0277 START-1 /Starting address (0300) -1

Note that the autoindex location supplies successive memory address
pointers until the counter goes to zero and the program halts.
The program will clear locations 0300 to 0377.

EXAMPLE 8 - ADDRESS FIELD MODIFICATION

Instructions and program data may be stored in the same memory.
Thus, it is possible to treat instructions as data or data as
instructions if this would be of any use.

A powerful programming technique involves performing arithmetic
on memory reference instructions in order to alter the location
being referenced. In this case, the instruction is treated as an
operand and incremented, decremented, etc. Logical operations
such as masking certain bits may also be useful. Such techniques
are useful when manipulating large data tables. Example 5 has
shown one technique of manipulating jump address pointers.

Consider the following example:

3-7

0010

0200 7300 CLA CLL /Clear AC and L
0201 1213 TAD 0213 /Get # of data items
0202 7041 CMA IAC /2's complement of constant
0203 3213 DCA 0213 /Store TALLY
0204 7240 CLA CMA /AC = 7777
0205 0300 AND 0300 /AND contents of 0300 with AC
0206 7450 SNA
0207 5215 JMP 0215
0210 2205 ISZ 0205 /Increment address field
0211 2213 ISZ 0213 /Increment TALLY
0212 5204 JMP 0204 /Jump back to check next item
0213 0100 TALLY /Constant giving # of items to

be checked
0214 0777 MASK /Used to mask off opcode bits
0215 1205 TAD 0205 /Get instruction referencing

zero data item
0216 0214 AND 0214 /Zero opcode bits
0217 3221 DCA 0221 /Store address of zero
0220 7402 HALT /Halt
0221 /Address of zero item

This program checks data stored in locations 03008 to 03778, when
it encounters a zero data item in the list, it stores the address
of this item in 0221 and stops.

Location 0213 initially contains the number of items stored
starting in location 0300. The program replaces this number
with its negative by two's complementing it. Successive data
items are then read, AND'ing with 7777 in the AC. Note that

item

if the AND leaves a non-zero AC, the AND instruction is incremented,
stepping to the next item. A logical operation is done with
this instruction to strip off the opcode bits when and if a
zero data item is eventually detected. For this purpose, the
mask 0777 is stored in 0214.

On powering up most locations will be non-zero, so the user can
put a zero anywhere he chooses to check Example 8 operation. This
technique of modifying instructions is a dangerous one to use in
many situations because programs may be unintentionally changed
because of an undiscovered 11 bug 11 • (Modern concepts of structured
programming discourage the use of this technique, but it is
included because in some microprocessor applications, it might
save memory locations.) For example, in this case, every time the
program is rerun, locations 0205 and 0213 must be initialized.

EXAMPLE 9 - USING CONDITIONAL SKIPS

Group 2 microinstructions are primarily conditional skips and may
be used to test conditions other than the number of passes that have
been made through a loop. That is, the program may be made to
loop an indefinite number of times until a specific condition is
present in the accumulator or link bit. When two or more skip
conditions are microprogrammed into a single instruction, the
resulting condition on which the decision will be based is the
logical OR of the individual conditions when bit 8 is O, or, when
bit 8 is 1, the decision will be based on the logical AND.

3-8

In the last example, the SNA instruction was used to skip on
non-zero accumulator. The loop would continue as long as the
next instruction was skipped and when the AC became zero, the
program would jump out of the loop.

Very often conditional skips are used along with Group 1 operate
microinstructions. The Group 1 instructions are used to
manipulate the AC and L with shift, rotate, set, clear operations
to set up these registers for testing with conditional skip
instructions. This is used extensively in the MONITOR program,
for example, in the routine called HEX (see listing of MONITOR
and Chapter 8).

The following segment of code is in the MONITOR locations 6503-
6507.

.
6503
6504
6505
6506
6507

7006
7420
5310
7325
5564

RTL
SNL
JMP.+3
CLA CLL CML IAC RAL
RETURN

This segment shows how a rotate is used to "set up 11 the link and bit
O of the AC for a test with skip instructions. AC (0) can be
tested with instructions such as SMA, skip if AC is less than O,
SPA, skip if AC is greater than or equal to 0, and their combinations,
and the Link can be tested with instructions such as SZL, skip if
Link= 0, SNL, skip if Link= 1. Combinations are possible which
test these bits in one instruction, for example, SMA SNL, skip
if AC is less than 0 OR if Link= 1, or SPA SZL, skip if AC is greater
than or equal to 0 and Link = O.

The user should note that SMA SNL will produce a skip on minus AC
OR non-zero link OR both, whereas SPA SZL will produce a skip on
j)Tus AC AND zero Tfnk (both conditions must be present for a skip).

The example also shows how microprogrammed combinations of micro
instructions may be used to set various constants into the AC.

In this case, the AC is set to 0003. The sequence is as follows:
AC and L are cleared, L is set, the AC is incremented and by
shifting left one, the L is shifted into the LSB and the former
LSB is shifted into bit 10, so the AC contains 0003 and the L
contains 0.

Refer to the HEX routine for more examples of this nature.

3-9

EXAMPLE 10 - FLOWCHARTING A PROGRAM

Flowcharts may be used to represent hardware operation as well
as to represent an algorithm to be implemented in software.

As an example of an algorithm, or computational procedure, we
shall work out a program to compute the product of two octal
numbers.

PROBLEM: Compute the product of two octal numbers

ASSUMPTION: The numbers are positive integers and their
product does not exceed 409510 or 7777g.
The 1st operand is not zero.

SOLUTION: Many different multiplication algorithms exist. We
shall choose a simple, inefficient one which is
easy to understand and flowchart.

Add one number repeatedly to itself using~ second
number to determine the number of additions.

The program will make use of a memory reference instruction known
as "Increment and Skip on Zero". The ISZ instruction adds a 1 to
the referenced data word and then examines the result of the
addition. If the result is not zero, the program continues in
sequence, performing the instruction following the ISZ. If the
result is zero, the instruction following the ISZ is skipped (by
incrementing the Program Counter again). In either case, the
result of the addition replaces the original data word in memory.

By computing the 2's complement of one operand (data word) and
referencing it with the ISZ instruction, we can repeatedly add
the second operand to itself until the desired product is obtained.
At this point, the counter becomes zero and the loop exit is
taken.

After entering the program as shown, data may be entered into
locations 0032 and 0033, the Program Counter is set to the
starting address, and the program is run.

3-10

INITIALIZE

Read 1st Operand

Compute 2's Complement
of 1st Operand

Store Loop Counter

ADD 2nd Operand

Increment Loop Counter

YES

Store Product

HALT

3-11

NO

0020
0021
0022
0023
0024
0025
0026
0027
0030
0031
0032
0033

7300
1032
7041
3031
1033
2031
5024
3031
7402

CLA CLL
TAD 0032
CMA IAC
DCA 0031
TAD 0033
ISZ 0031
JMP 0024
DCA 0031
HLT
loop counter and final product
1st OPERAND
2nd OPERAND

PROGRAM TO MULTIPLY TWO OCTAL NUMBERS TOGETHER

CNTRL SETPC 0 0 2 0
CNTRL MICRO OPRl CLA CLL
CNTRL TAD 0 0 3 2
CNTRL OPRl CMA IAC
CNTRL DCA 0 0 3 l
CNTRL TAD 0 0 3 3
CNTRL ISZ 0 0 3 l
CNTRL JMP 0 0 2 4 enter program
CNTRL DCA 0 0 3 l
CNTRL OPR2 HALT
CNTRL
CNTRL SETPC 0 0 3 2
CNTRL MEM 1st OPERAND

MEM 2nd OPERAND
CNTRL SETPC 0 0 2 0 execute program
CNTRL RUN Display shows product

For example, if 1st operand is 0004 and 2nd operand is 0010,
the display will show 0040. The user will also find it instructive
to load small numbers as operands and single-step through the
program to verify that the program follows the flowchart. Thus,
set the PC to 0020, then press 11 CNTRL 11 , 11 SIN 11 and then press the
11 SIN 11 key repeatedly. Each time it is pressed, the program executes
one SINgle instruction. At any point, the user may set the PC
to 0140 to examine the contents of the accumulator (this is explained
further in Chapter 8) and resume execution of single instructions
by resetting the PC to the last address he had stopped at and
continuing with SIN key depressions.

The user will find it useful to rewrite the program to make the
assumptions less restrictive. For example, a check could be
included to test for a zero 1st operand and, if the test was true,
the product zero could be immediately calculated. Tests for
negative operands could be included and/or checks for arithmetic
overflow.

3-12

EXAMPLE 11 - BIT MANIPULATION

Often, it is necessary to set, clear or determine the status
of individual bits in a word. For example, a peripheral inter
face may be returning the status of various devices, and the
processor must take action conditional on the status of these
flags.

There are several methods. In one, the AC is rotated until
the desired bit is in the link and then group 2 operate
microinstructions are used to skip conditionally on the link
status. This technique is illustrated in Example 9. Another
method is to AND a mask word with the AC, zeroing out all bits
except the one to be tested and then testing the AC for zero.

This technique will be illustrated with an example from the SIN
routine in the MONITOR •

.
7343 1400 INDB, TAD I SAVPC /Get the instruction
7344 0355 AND LOT /Mask out indirect bit
7345 7650 SNA CLA /Test; is bit set
7346 5564 RETURN /No; return with true

address in TIME
7347 1544 TAD I TIME /Yes; get true address
7350 3144 DCA TIME /Place it in TIME
7351 5564 RETURN /Return with true

in TIME
7355 0400 LOT, 0400 /AND mask word

This routine INDB, determines the effective address referenced
by an instruction and places it in location TIME. By AND'ing
the instruction with 0400, the AC will be non-zero if the indirect
bit, bit 3, is set and zero if this bit is zero.

The methods for setting and clearing bits are similar. One can
rotate the bit into the link and then use group l microinstructions
to clear or set the link. This has the advantage that rotates
may be combined with link bit operations in one instruction.

To clear a bit, one can AND the word in AC with a word containing
one's everywhere except in the desired bit position. To set a bit,
one can add a word containing zero's everywhere except in the
desired bit position. This technique is used by the bit set
routines in the MICROINTERPRETER, ROM locations 7246-7300, listing
lines 1006-1045.

address

The next example shows the use the MQ register in logical operations.
It will be seen that this register may also be used in bit
manipulation operations.

3-13

EXAMPLE 12 - LOGICAL OPERATIONS

Boolean operations play an important role in computer logic.
We have seen examples of how the AND instruction can be used
to mask out selected bits.

The NOT or logical complement operation is easily performed by
placing the logical data word in the accumulator and executing
a CMA, complement AC, instruction.

The inclusive OR operation is performed by placing one logical
operand into the MQ register (executing an MQL - load MQ from
AC), loading the second logical operand into the AC, then
executing an MQA instruction (contents of the MQ are OR'ed with
contents of the AC).

Any Boolean operation may be synthesized using combinations of
the basic AND, OR and NOT operations.

EXAMPLE 13 - 1/0 PROGRAMMING

Chapter 7 and Chapter 8 give examples of 1/0 instructions as
used in INTERCEPT JR.

There are three methods by which information may be transferred
between INTERCEPT JR. and peripheral devices:

1) OMA 1/0 transfer
2) Interrupt 1/0 transfer
3) Programmed 1/0 transfer

The first method involves Direct Memory Access, OMA, by an 1/0
devices and allows for high speed transfers of blocks of data
at essentially the memory cycle rate. The transfer is controlled
without processor intervention on a 11 cycle stealing 11 basis.
That is, the 1/0 device requests a OMA cycle and the processor
grants it at the end of the current instruction. (See Figure 17
of the IM6100 brochure.) The processor tri-states its bus
drivers and from that point on, as long as the OMA REQ line is
active, the device controls the DX bus and data transfers on the
bus. Typical OMA using devices are disks, tapes and CRT screen
refresh circuits.

INTERCEPT JR. primarily uses the last two methods. Both of
these require CPU intervention. Interrupt transfers use the
interrupt system to service one or more peripheral devices
simultaneously, permitting processing to be performed concurrently
with data 1/0 operations.

3-14

Both methods use the AC as a data buffer for transfers in
both directions.

Interrupt programming is especially useful in real time systems
which are required to respond to real time events. The time
spent waiting for a change in device status is greatly reduced or
even eliminated. This is done by writing I/O handling routines
which are separate from the main program and using the interrupting
capability of I/O devices to enter these routines only when the
I/0 device is either ready to perform a data transfer or requires
CPU intervention. Thus, as long as the device does not request
an interrupt, the mainline program may continue to run and time
is not wasted 11 polling 11 I/O devices for changes in status.

In INTERCEPT JR., the control panel timer generates interrupt
requests at periodic intervals. The display refresh routine that
periodically drives the LED displays is an example of an I/O
handling routine. When the main program is interrupted, a
method of returning to it after servicing the interrupt request
is necessary. INTERCEPT JR. saves the current content of the PC
in location 00003 of the memory and fetches the next instruction
from location 00013 if an external I/O device requests an interrupt.

In the case of a control panel interrupt, the return address is
stored in location 00003 of panel memory. This is the same as
00008 of page 0 memory in INTERCEPT JR.; status word bit 0
differentiates between panel and user memory. The CPU resumes
operation at location 77778 of panel memory, for example 77778
of MONITOR ROM ISD002 with status word bit 0 = 0.

For further details on device interrupts and CP interrupts, refer
to the IM6100 and IM6101 data sheets.

The third, and slowest method, that of programmed data transfer,
is also the simplest, needing a minimum of hardware support. The
INTERCEPT JR. PIEART board uses this technique. The processor,
upon recognizing an I/O instruction, opcode 63, places the
instruction on the DX bus during IOTA • LXMAR. The selected
device communicates with the CPU through four control lines--
Co, C1, C2 and SKP. The control line SKP, when low during an IOT,
causes the CPU to skip the next sequential instruction.

The INPIE, TALK, LISN, READ routines of the MONITOR should be
studied to see the use of IOT 1 s in programmed data transfer.

For example, the print to TTY routine is as follows:

3-15

.
7466 6163 TALK, SKIP2 /Skip on clear Xmit buffer
7467 5266 JMP.-1 /Xmit buffer not yet clear
7470 6161 WRITEl /Write AC to buffer
7471 3144 DCA TIME /Store data for possible

recovery
7472 5564 RETURN

Note the use of the SKIP2 instruction to implement a "wait"
loop. When the condition is satisfied, the loop is exited. The
device must activate the SKP line back to the CPU in order for
the CPU to skip the next instruction.

The WRITEl instruction is another IOT used to write the AC to the
UART. (See Chapter 7 for device address codes and command codes.)
Refer to the IM6100 and IM6101 data sheets for more information.

The next chapter describes dedicated IOT instructions used in
INTERCEPT JR. namely, 6400, Load Display, 6402, Enable/Disable
CP Timer, 6403, TOT CPREQ, 6406, IOT Reset, 6407, IOT RUN.
The experienced user may use these to shut off the timer and
perhaps use subroutines in the MONITOR for his own purposes,
for instance, display information other than the USERPC and its
contents.

EXAMPLE 14 - TELETYPE I/O USING MONITOR CALLS

The fol lowing program makes use of the MONITOR ROM PIE-UART
subroutines by calling them via the software stack mechanism.

The control panel interr~pt requests must be shut off to prevent
timing difficulties.

0100 7340 Set AC to 7777
0101 6402 Disable CP request timer
0102 4161 CALL
0103 7445 PIE initialization routine in PIE
0104 4161 CALL READ from
0105 7501 Teletype routine
0106 4161 CALL TALK, the print
0107 7466 to TTY routine
0110 5104 Jump back for next character

3-16

Note that the stack mechanism requires that the CALL instruction
(JMS 0161) be followed by the entry address of the subroutine.

EXAMPLE 15 - PRINTING UNDER KEYPAD CONTROL

The following program will print ASCII characters on a Teletype
under control of the INTERCEPT JR. board.

Refer to Appendix F for the ASCII character set.

100
101
102
103
104
105
106
107
110
111
112
113

114

115

116

117
120
121
122
123
124
125
126
127
130
131
132

7340
6402
4161
7445
7300
4161
6110
4161
6425
7004
7006
7002

1131

7500

7001

7002
3132
4161
6110
4161
6425
1132
4161
7466
5104
0002
0000

BACK,

K0002,
TEMPl,

STA STL
IOT TIMER
CALL
INPIE
CLA CLL
CALL
CLKPD
CALL
HEX
RAL
RTL
BSW

TAD K0002

SMA

IAC

BSW
DCA TEMPl
CALL
CLKPD
CALL
HEX
TAD TEMPl
CALL
PRINT
JMP BACK
0002
0000

/Disable
/Control panel timer
/Initialize
/PIEART interface

/Wait for keypad
/To clear
/Read octal
/Data from keypad
/Shift three places
/Left and swap bytes
/To determine leading
code di git

/MSB of ASCII code
always one

/Is 2nd ASCII digit
4,5,6,7?

/No, 1st digit must
therefore be 3

/Yes, 1st digit must be 2
/Store temporarily
/Wait for clear
/Keypad
/Read 2nd octa 1
/Digit
/Assemble ASCII character
/Transmit' character
/To printer
/Go back for next character

Appendix F shows that the 8-bit ASCII character codes have the
property that if the left octal digit is 2, the second octal
digit is 4, 5, 6 or 7, and if the left octal digit is 3, then
the second octal digit is 0, 1, 2 or 3.

This program allows the user to enter characters as two successive
octal digits.

3-17

/

Note that this assumes the eighth (parity) bit is always set.

EXAMPLE 16 - PROGRAM TO DEMONSTRATE I/O TO 6957 AUDVIS MODULE

0225 7201 CLA IAC /Set AC=OOOl
0226 6402 ENDIS TIMER /Shut off CP timer
0227 7000 NOP
0230 7000 NOP
0231 7604 READ, LAS /Load keypad to AC
0232 7450 SNA /Key depressed?
0233 5231 JMP READ /No, go back to try

again
0234 6401 LD DISPLAY /Display AC on LED

register
0235 6404 CLOCK /Click speaker
0236 5231 JMP READ

The first two instructions shut off the control panel interrupt
timer. The three instruction loop in locations 231, 232, and 233
cause the processor to wait until a key is depressed, and when
this occurs, to load the LED register with the AC and CLICK the
speaker.

While a key is depressed, the processor executes the instructions

LAS
SNA
LD DISPLAY
CLOCK
JMP READ

(15 major states)
(10 major states)
(17 major states)
(17 major states)
(10 major states)

continuously, and the speaker 11 clicks 11 merge into a high pitched
beep. The fundamental frequency of this 11 beep 11 is easily
calculated by counting the number of major states in the above
instruction sequence, multiplying by twice the clock period and
taking the reciprocal of this number.
In this case, there are 69 major states; and, assuming a 2.56 MHz
crystal, the clock period is 390 ns, and the 11 beep 11 frequency is
l I (69 X 2 X 390 X l0-6) ~ 18 KHz.
Now change the instruction in location 0236 to 5230. This adds a NOP,
or 10 more major states to the loop, decreasing the frequency of the
beep. By placing 5227 in location 0236, the frequency is lowered
further. This program enables the user to find out which DX line
each key is connected to.

Instead of a beep, the program can be made to click on each key
depression by replacing the two NOPs with 4161 and 6110. This calls
the CLKPD subroutine which waits for a clear (fully released)
keypad before returning to the calling program.

3-18

The action of the HEX program which encodes key depressions in
order to generate MONITOR program subroutine starting addresses
may be easily seen by replacing the three instruction keypad read
loop in locations 231, 232 and 233 with the sequence 7000, 4161,
and 6425. As before, 4161 is a JMS to the top of the RAM sub
routine stack and 6425 is the starting address of the HEX
routine. Descriptions of these programs may be found in Chapter
8, and a discussion of the software stack may be found in
Applications Bulletin M008 of the IM6100 databook.

The program just entered should have looked like this:

0225 7201
0226 6402
0227 4161
0230 6110
0231 7000
0232 4161
0233 6425
0234 6401
0235 6404
0236 5227

3-19

INTRODUCTION

CHAPTER 4
INTERCEPT JR. MODULE

As shown on the schematic, all memory and I/O devices are
connected to the IM6100 DX bus. The twelve (12) bit bus carries
time-multiplexed addresses and data from memory and I/O devices.

Timing information must be provided to strobe data on and off
the bus and select lines are needed to enable the proper devices.

The MONITOR ROM and 256 X 12 RAM are mapped in upper and lower
areas of the 4K address space, and it is necessary to select the
proper devices during memory I/O.

The keyboard commands must be interpreted after making sure switch
bounce does not cause erroneous operation.

The ADDRESS and MEMORY display digits are multiplexed in order to
reduce the number of decoder/drivers required.

The IM6100 microprocessor used in the INTERCEPT JR. is the commercial
temperature range device and a 2.46 MHz crystal is used in order to
ensure operation of the system as battery voltage falls from 6. V to
4.5 v.

TYING ON TO THE DX BUS

The DX bus carries addresses and data at different times. All
peripherals and memory address inputs, peripherals and memory
data inputs and outputs are connected to the bus. All elements
connected to the bus are, therefore, tri-state devices.

Data strobes~and device signals must be generated in order to
demultiplex data from the bus or multiplex data onto the bus.

The MONITOR ROM, a 1024 X 12 device is mask-programmed at the
factory to decode the lower ten (10) bits as an address, and the
upper two (2) bits as a chip enable. For example, the MONITOR
ROM, as supplied by the factory, has the upper two bits mask
programmed to 11 to select the ROM for 6000 to 7777.

When data is read out, the chip puts its data out onto the DX
bus. Thus the DX pins on the 6312 are bidirectional {addresses
in and data out). ' ·

The RAM is a 256 X 12 array implemented in CMOS.

The Ao-A7 address inputs and the I/O data pins are connected to the
DX bus.

4-1

ADDRESS DEMULTIPLEXING

Both the ROM chips and the RAM chips have internal address latches.
These latches are loaded from the address inputs when the strobe
input STR is driven low. When STR is low, the latches are not
affected.

When the processor places memory address data on the bus, it
drives the signal LXMAR at pin 10 low. This signal, Load External
Memory Address Register, is intended to strobe the memory address
latches. Note that the chip does not have to be selected in order
to latch address information.

DATA DEMULTIPLEXING

After the CPU places a memory address on the bus, a data transfer
must take place either into the CPU from memory or from the CPU to
memory. The direction is indicated by the XTC line. The various
SELECT lines are activated during the data-in and data-out phases
of the memory cycle. XTC is high for the first half of a memory
cycle (when memory read operations may be performed) and low for the
second half (when memory may be written into). Thus XTC may be
directly connected to OEH, Output Enable Active High, of the ROM
chips and WE, Write Enable Active Low, of the RAM chips to enable
these chips for reading or writing. During XTC high, of course, the
RAM may be selected for reading. The memory outputs will not be
activated unless the chip has been selected as well as had its
output enabled. Otherwise, many chips would be activated at the
same time.

Obviously, it would be undesirable to simultaneously read from
several devices onto the same DX lines at once.

For this reason, the active low chip select pins on the RAM chips
and OEL, Output Enable Active Low, on the IM6312's are connected
to the SEL line. This line may be strapped to either the 11 MEM SEL 11

line or the AND'ed combination of 11 MEM SEL 11 and 11 CP SEL 11 • These
are active low signals generated by the CPU to select user memory,
MEM SEL, or control panel memory, CP SEL. With only the Intersil
provided control panel ROM in the system, the jumpers should provide
the combination AND signal. This combination signal will select
memory when either MEM SEL or CP SEL goes low.

Another aspect to be considered is how addressable memory space is
partitioned. In the INTERCEPT JR., the MONITOR ROM occupies the
highest lK of the basic 4K address space and the RAM occupies the
lowest 256 words of this space. It is possible to program 256 word
pages of the 4K address space for RAM into the IM6312 ROM such that
it will generate an RSEL, RAM SELECT, signal by decoding the high

4-2

order four bits of the address. These fields must obviously be aligned
with page. boundaries. RSEL is connected to CS3 of the IM6524 1 s. In
the IM6312-002 MONITOR ROM, RSEL is activated by 11 0000 11 on DXO, DXl,
DX2 and DX3.

RSEL allows random mapping of double page RAM fields within the 4K
address space. Note that the base page, or at least the first 16
locations mut be writable in order for the autoincrement instructions
and interrupt instructions to work. Also note that the highest
location (7777) should normally be in ROM as it is used as a pointer
to power up initialization routines. See Figure 8-1 for a memory
map.

Normally the RAM area does not overlap with the ROM area, therefore,
one of the RAM chip select pins is kept permanently low by a jumper
to GND so that selection depends only on the chip select connected
to the SEL line. RAM VCC is always present for data retention.

The mapping_of RAM into ROM space is of significance should the
user generate a ROM to be placed in the spare socket which requires
this feature. In such a case, the RAM chip select jumper must be
connected to the appropriate RSEL pin. The ROM is mask programmed
to generate RSEL appropriately.

Please refer to the IM6312 data sheet for further details.

KEYBOARD INPUT

The INTERCEPT JR. uses a 12 switch keyboard which is an ideal
situation as there are 12 DX lines. Each key is connected through
a 3-state inverting buffer to the corresponding DX line.

When the CPU executes an OSR instruction, OR Switch Register with
accumulator contents, it activates the SW SEL, Switch Select, line
and OR's the DX bus with the accumulator. SW SEL is used to enable
the keyboard buffers thereby giving the means to read the keyboard.

Naturally, it must not respond to illegal key closures (illegal
combinations, bouncing, or too many keys being depressed, etc.).
These conditions are checked by the firmware, to be described later.

To improve noise immunity, the inputs to the buffers are pulled up
to VCC via lOK resistors in a DIP package. This is done to the DX
bus as well, because lines floating at threshold are sensitive to noise.

DIGITAL DISPLAY OUTPUT

The INTERCEPT JR. has two display registers, each with four decimal
(BCD) digits.

4-3

Each register is driven by a type 4511 CMOS BCD-T0-7 segment latch/
decoder/driver and four transistors that enable successive digits
in turn (E2, F2, Ql, Q2, Q3, Q4)*.

The CPU loads the BCD latch with a digit each, and the 34042
quad CMOS latch (02) with a single bit and this enables two
particular digits to display the decoded contents of the BCD
latches. In the next cycle, the BCD latches get loaded with the
contents of the two adjacent digits and the bit shifts one position
in the quad latch, enabling the next digits, and so on. The CPU
can blank the displays under keyboard control in order to conserve
battery power.

The data in the AC is loaded into the display latches by 'LOAD
DISPLAY' at IOTA • XTC • DEVSEL The 'LOAD DISPLAY' command is
generated by IDT decoding circuitry to be described in the next
section.

The 2N2222 transistors, when turned on by the shifting bit, connect
the LED common cathode to a low voltage. The drivers source current
to individual segments, lighting these up for the time that the
bit keeps that digit selected (nominally 8 ms at 4 MHz).

IDT PROCESSING

The INTERCEPT JR. uses Programmed Data Transfer techniques for all
I/0 operations. This technique uses the IM6100 IDT instructions,
which have an octal opcode of 6, to initiate peripheral I/0 operations.
These operations could be sensing of peripheral device status flags,
for example, "is TTY ready", or controlling device operation, for
example, "move disk head to next track", or a data transfer operation,
for example, "read character". The nature of the operation depends
entirely on the device interface circuitry.

The IM6100 also has the capability for INTERRUPT data transfers
and OMA data transfer, but these are unused in the INTERCEPT JR.
except for console interrupts described in the next section.

When the IM6100 fetches an IDT instruction, it executes an IOTA
cycle, during which the entire IDT instruction is placed on the DX
bus during LXMAR time. This means external address registers, such
as the ones on board memory chips, will all be loaded with the IDT
instruction. In order not to have a memory chip respond falsely,
the CPU suppresses the MEM SEL signal, and activates the DEV SEL, Device
Select, signal. The device address and control information present
in bits 3-11 of the IDT instruction are decoded and the DEV SEL signal
is used by the peripheral to enable the selected functions.

* These designations are used to identify the devices on the
schematic and on the assembled board.

4-4

The 340175 CMOS quad latch (D3) is strobed by LXMAR to latch DX3
and DX9, DXlO, DXll from the bus. The 74C42 CMOS BCD to decimal
decoder (E3) is fed with AXll, AXlO, AX9 and 7\X3. The AX3 line
acts as an enable to the decoder and must be high in order for
the D input to the decoder, which is the most significant bit, to
be low.

This means that all device addresses in this system should be
of the form lXXXXX. The 74C42 is a control decoder and only eight
of its outputs, corresponding to the possible permutations of the
three bit control field in the IOT instruction, may be used. Of
these eight, only five, corresponding to IOT's with DX3 high and
0, 2, 3, 6 and 73 in their control field, are used. For simplicity
we shall assume a device address of 100000 or 403.

These IOT instructions will now be described:

LOAD DISPLAY, or 6400 is gated along with XTC and DEVSEL
through an OR, the 34025 NOR (F3) followed by the 34069
inverter (F4), into the Load Enable pins of the display
drivers. During IOTA • XTC • DEVSEL time, this control
function will load the latches in the display drivers
(E2, F2) and the 34042 quad latch (D2) which drives the
multiplexing transistors.

IOT RESET, or 6406 is gated along with DEVSEL through the
two NOR's (E4) to generate an active low RESET. RESET is
also generated on power-up, when the one input of the 34001
NOR gate (E4) is pulled high by the charging .47 microfarad
capacitor. The RESET line driven low will clear the IM6100
accumulator, load 77773 into the program counter, and halt
the CPU, besides resetting external logic. RESET is activated
on power-up through the RC circuit, at any time by pressing
the RESET switch or under program control. The RESET line
into the IM6100 is sampled at Tl time of the last cycle of an
instruction, and the worst case response time is 14 µsec at 4 MHz.
The IOT RESET is a software simulation of th~ direct RESET
line needing approximately a dozen instructions. Including
the time needed to debounce the keypad, executing the routine,
etc., the response time is many milliseconds. Thus the CPU
does not actually do a RESET; it is made to clear all registers
initialize the PC to 7777 and is then halted.

IOT RUN, or 6407 from the control decoder is gated along with
DEVSEL. When enabled by XTC, the RUN/HLT line is driven by a
negative going pulse. Each such pulse causes the CPU to
alternatively run and halt by changing the state of the
internal RUN/HLT flip flop.

4-5

IOT CPREQ, or 6403 is gated with DEVSEL through the 34025
NOR (F3) and 34069 inverter (F4) into the active low direct
set input of the DFF 74C74 (F5). During IOTA time, DEVSEL
will set the DFF and provided that INTGNT is not active and
holding off the 34011 NANO (E5), a CPREQ will be issued.
The 74C74 is reset by CPSEL.

CP TIMER EN/DIS, or 6402 is an IOT instruction that is used
to turn the control panel interrupt timer or or off under
program control. The CP timer circuit is formed by two
gates (34001 NOR at E4 and 34011 inverter at E5) and an RC
circuit (6.8 K R4 and .47 microfarad Cl6) and as long as
pin 8 of the NOR at E5 is low, the oscillator is enabled,
running and clocking the DFF at F5 at a 30 Hz rate. Thus,
CP REQuests are issued at a 30 Hz rate (the DFF being reset
by CPSEL in between). When IOT instruction 6402 is executed,
during IOTA • DEVSEL • XTC time, clock input pin 3 of the
74C74 DFF at F5 is driven low and the rising edge of DEVSEL
clocks in the data on DXll into the flip flop. At this time,
the IM6100 is driving the DX bus with the accumulator so if
ACll is high, the DFF is set, and if ACll is low, the DFF is
cleared. If the DFF is set, the CP timer is disabled by
holding pin 10 of the NOR gate at E4 at a low. If the DFF
is cleared, this gate is allowed to toggle and the timer runs.
Note that during normal operation, the CP timer is running,
and CPREQ and CPSEL are being generated.

The reason that CPREQ is not activated unless INTGNT is inactive
is that control panel interrupt requests have higher priority
than device interrupt requests or even DMA requests. Since
INTERCEPT JR. uses main memory for both control panel as well
as user routines, interru~t return addresses are saved in location
00008. Thus, if CPREQ were allowed to be active at all times,
the user's device interrupt return address could be destroyed
by a CPREQ. INTGNT is activated only by INTREQ and is reset
by executing the first· IOT instruction in the interrupt service
routine. At this time, the CPREQ is allowed to get through,
as long as the IOT did not disable the CP timer. If the
user is implementing an interrupting device interface
with PIE interrupts enabled, a single IOT would be used
to reset INTGNT, disable CPREQ and get an interrupt vector
from the PIE. At the conclusion of the service routine,
CPREQ would be re-enabled under program control.

The monitor firmware will be more fully discussed in Chapter
8. For a more detailed discussion of the control panel
capabilities of the IM6100, refer to the IM6100 brochure.
INTERCEPT JR. uses the same memory address space for control
panel, monitor functions and user memory. The monitor keeps
track of memory use by periodically examining a status word.
See the discussion on the monitor program for further details.

4-6

OPTIONS

The user may put another IM6312 ROM in the second socket provided
on the INTERCEPT JR. board. Extra decoders are not required. The
second ROM could contain user and/or factory generated programs such
as floating point math routines, I/O handlers, diagnostics programs,
utilities, etc.

The following chapters will describe the optional boards that
may be plugged into the 6950-INTERCEPT JR. to expand its capabilities
The three connectors on the 6950 board are in parallel and bring out
the DX bus, IM6100 control lines, select lines, power connections
and unused !OT control lines from the 74C42 decoder (E3).

The basic 256 words of RAM may be disabled by tying chip select
high through the jumper option pins provided. This is done when
the 6951-MlKX12 JR. RAM MODULE board is to be mapped into the
lower lK field in 0000s to 1777s.

The information in this manual and in the IM6100 Family brochure
should help the user to design his own I/O interface boards if
required.

4-7

INTERCEPT JRo MODULE SCHEMATIC

4-8

Vee

TP3

RAM
JUMPERS

tt~4 t.: t.= t= t:. ~~
7. S · r:Xg ~~10 r---13 3 DX7 oxa I DX5 DX& Xa DX4

DL3
DL2 B27R

I
ADDRESS

6 1 6 1

DL6 I DL7
B27R

I
MEMORY

IN914

RAM4 I tEJ
Vee ON POWER

JUMPER R POWER '" . l~ :::::.. '
GND4 l

Vee

(+

BATTERY
CLIP

<-

SV-10V
DISPLAY
JUMPER

INTRODUCTION

CHAPTER 5
JR. RAM MODULE

The JR. RAM MODULE, 6951-MlKX12, pictured in Figure 5-1, allows
the user to expand the complexity and size of the programs that
may be written.

FIGURE 5-1

TWELVE IM6518
1024 x 12 CMOS

RAM ARRAY

ADDRESS, STR ~
& WE BUFFERS

ADDRESS BUFFERS

BATTERY BACKUP
FOR RAM
NON-VOLATILITY

CHIP & FIELD
SELECT LOGIC

FIELD JUMPERS

The board is fully nonvolatile using penlite chips to retain the RAM
chips in the low power data retention mode. Thus, the user may
write programs on a board, unplug it and use a different board with
out losing programs. The board may be mapped into memory space
according to several jumper options. The board may also be configured
as either an Instruction Field or a Data Field by jumper option.
(Refer to the IM6100 brochure and Applications Bulletin MOO?)

DISCUSSION

Twelve (12) IM6518 CMOS RAM chips are used to implement the 1024 X
12 array for this board. The IM6518 is organized as 1024 X 1 with
separate data-in and data-out pins and ten (10) address pins. (Refer
to the IM6508/18 data sheet for further information.) INTERCEPT JR.
uses a single bus for all address and data I/0, therefore, the DI
and DO pins on the RAM chips are both connected to the respective DX
line. The ten (10) address lines are buffered using ten gates from

5-1

INTRODUCTION

CHAPTER 5
JR. RAM MODULE

The JR. RAM MODULE, 6951-MlKX12, pictured in Figure 5-1, allows
the user to expand the complexity and size of the programs that
may be written.

FIGURE 5-1

TWELVE IM6518
1024 x 12 CMOS

RAM ARRAY

ADDRESS, STR
& WE BUFFERS

ADDRESS BUFFERS

BATTERY BACKUP
FOR RAM
NON-VOLATILITY

POWER FAIL
DETECTOR

FIELD JUMPERS

CHIP & FIELD
SELECT LOGIC

FIELD JUMPERS

The board is fully nonvolatile using penlite chips to retain the RAM
chips in the low power data retention mode. Thus, the user may
write programs on a board, unplug it and use a different board with
out losing programs. The board may be mapped into memory space
according to several jumper options. The board may also be configured
as either an Instruction Field or a Data Field by jumper option.
(Refer to the IM6100 brochure and Applications Bulletin MOO?)

DISCUSSION

Twelve (12) IM6518 CMOS RAM chips are used to implement the 1024 X
12 array for this board. The IM6518 is organized as 1024 X 1 with
separate data-in and data-out pins and ten (10) address pins. (Refer
to the IM6508/18 data sheet for further information.) INTERCEPT JR.
uses a single bus for all address and data I/0, therefore, the DI
and DO pins on the RAM chips are both connected to the respective DX
line. The ten (10) address lines are buffered using ten gates from

5-1

two 34050 hex CMOS buffers (Gl and G2). Two gates are used to buffer
LXMAR and XTC. These two signals, as previously explained in the
oiscussion of the 6950 board, strobe memory addresses into the RAM
chips and enable the chip for data write operations.

The SUP SEL signal is also buffered. This signal selects the
RAM for both control panel and main memory use.

The two most significant bits of address are latched in the 340175
quad D-type latch (G3)o This latch provides both true and
complemented outputs, and, by connecting the appropriate jumpers
to the 34023 three input NANO (F3), the lK RAM field provided by
the board may be mapped into any of the four lK fields of the
total 4K memory space addressable by the IM6100 microprocessor.

Since the highest lK field is occupied by the MONITOR ROM and
256 words of RAM are provided in the lower lK field by the 6950
module, normally the jumper should be placed to map the RAM into
one of the middle lK areas, for example 20003-37773 or 40003-
57773.

If these two fields are being allocated for the PROM board, 6952,
the RAM may be mapped into the lK base field in which it will
overlay the 256 words provided in the 6950 board. This will
provide the additional 768 words that would otherwise be unobtainable.

Table 5-1 provides the jumper connections for different mappings.

TABLE 5-1

Desired Maeeing Strae* Pins 9' 10
0-1777 To Pins 5 & 8

2000-3777 To Pins 5 & 6
4000-5777 To Pins 7 & 8

6000-7777 To Pins 7 & 6

* These strapping option pins are numbered and located
between the 340175 at G3 and the connector pins. As
an example, for mapping 2000-3777, pins 9 and 5 should
be strapped and pins 10 and 6 must be strapped, or
alternatively, pins 9 and 6 strapped together and pins
10 and 5 strapped together.

The board may also be configured to be either an instruction field
or a data field by an appropriate jumper connected to the DATAF
pin. Normally, the field jumper from test point 2 is connected
to Vee and distinctions are not made between IF and OF. These
distinctions are usually required only in extended memory systems
(Refer to Applications Bulletin MOO?)

5-2

The RAM on this board may be made nonvolatile by using two 11 AA 11

type penlite cells in the chips provided. If Vee from the 11 011

cells falls below 3.9 volts, the zener diode eR2 turns off,
turning off transistor Q2, which in turn cuts off the series
transistor Ql. Diode eRl becomes forward biased, and the 11 AA 11

cells power the RAM array in the data retention mode.

5-3

JRo RAM MODULE SCHEMATIC

5-4

DATA F 18

DXo 3

LXMAR 1

XTC R

DX2 5
DX3 6
DX4 7
DX5 8
DX6 g
DX7 10
DXa 11
DXg 12

DX10 13
DX11 14

Z,22

1--------1----91--'-14 D

1-------------=5:..io G3
40175

,.---E D

J
Yee

4 4023

5 F3'):>Ll

NOTE: 4023 & 40175 ON
RAM Vee.

T1P1

1-------jf-------"'19 E3>C~8'-----------------~-----------J
406g

'------'1~4~'1G11>1-5--------------------------'
4050

l-------~5-1 1G11>~4----------------------------'
4050

i..!:!.J

rlTND

17 CS2
1 cs,
2 STR

15 WE
3 Ao
4
5 A1

6
A2

7
10 :
11 .
12 .
13

r--1il Ag

16 01

F1
6518

DO

17 CS2 17
1
2

1 cs,
2 STR

15 WE 15

3
4

3 Ao
4
5 5
6 E1 6
7 • 6518 7

10 : 10
11 . 11
12 12
13 13
14 Ag 14

~01
DO L.....1!i

JS

CS2
cs,
STR
WE

Ao

01 . 6518 . . .
Ag

01 DO

8

t--- - - 17 CS2
I---- - -·---~1 .,.cs1
1------ 2 STR
1----- 15 WE

t------ : Ao
t------- ----~5"

1--- - - - -----'6'-1 A2

t------ 7 : 6518
t-------- 10 •
t------ 11 •
t------ 12
I------ 13

~-== 14A Uo:
,__o,.o _ _.

8

+

~1
CR1
JNg14

2N2222
02

~---~-------Vee

406g

CR2
3.g v
ZENER
400mW
IN748

INTRODUCTION

CHAPTER 6
JR. P/ROM MODULE

The JR. P/ROM MODULE, 6952-P2KX12, pictured in Figure 6-1, enables
user developed programs to be stored in user programmable read
only memory.

ADDRESS RANGE {
5000g - 5777g

ADDRESS RANGE {
40008 - 47778

ADDRESS RANGE {
Figure 6-1 30008 - 37778

ADDRESS RANGE {
20008 - 2777 8

ADDRESS
LATCH

BIPOLAR P/ ROM
SOCKETS

POWER STROBE
ORIVERS

I

MEMORY ENAB.LE
AND POWER STROBE
DECODING LOGIC

The user has the option of utilizing the IM5623, 256 X 4, or IM5624,
512 X 4, three-state output Avalanche Induced Migration (AIM)
programmable bipolar P/ROMs to obtain from 256 to 2048 words of
program. Power dissipation is minimized by supplying power, via
the POWER STROBE DRIVERS, only to those P/ROMs which are enabled.
ADDRESS LATCH, MEMORY ENABLE AND POWER STROBE DECODING LOGIC are
pictured in Figure 6-1.

The figure shows the address range for IM5624, 512 X 4 P/ROMs. For
the user's convenience, the address range for the IM5623. 256 X 4,
P/ROM and IM5624 are shown in TABLE 6-1. The user should change
address range, as required, when mixing IM5623 and IM5624 on a given
module.

6-1

DISCUSSION

TABLE 6-1
ADDRESS RANGE IN OCTAL IM5623/IM5624

IM5623 (256 X 4)

2000-2377

3000-3377
4000-4377
5000-5377

IM5624 (512 X 4)

2000-2777
3000-3777
4000-4777
5000-5777

This text should be used in conjunction with the enclosed
schematic for a complete understanding of the 6952-P2KX12
JR. P/ROM MODULE.

The memory address is latched from the DX bus by the two 74LS174
hex latches when they are strobed by LXMAR.

The lower nine bits of the address go to the address inputs of
all the twelve P/ROMs, which are arranged in a matrix of four
rows of three.

The higher order three bits of the address are decoded by the
74LS138, and it generates a chip enable to the appropriate row
of P/ROMs. This chip enable is also used to turn on the two
transistors in the appropriate power strobe circuit in order
to connect Vee (less a VcE(SAT)) to the power pins of the enabled
row of P/ROMs. There is no delay penalty in power strobing
because the bipolar P/ROMs are much faster than required by the
CMOS processor. The average power dissipation is reduced to
approximately 5% of the non-strobed case. With the chip enable
high, the P/ROM outputs are in a high impedance state permitting
XTC to be used as one of the signals enabling the 74LS138
decoder. The P/ROM outputs, therefore, may be directly connected
to the DX bus. The XTC line signals the read and write phases of
the memory cycle. Thus, XTC when high, enables decoder pin Gl
during the time that the address is latched into the 74LS174's,
and remains enabled during the time the address is decoded, the
P/ROMs are enabled, strobed and accessed. XTC goes low during the
second half of the memory cycle, disabling the P/ROMs.

Decoder pin G2A is enabled only during the SUP SEL time, that is,
when either MEMSEL or CPSEL is active. Therefore, the memory is
really powered only for three clock cycles.

The uppermost lK of memory is in the monitor ROM on the processor
board, so the decoder does not use the pins for a decoded zero
and one.

6-2

In the event that extended memory is used, the DATAF (DATA Field)
pin is jumpered to the G2B enable pin of the 74LS138 decoder.
This signal is normally low, enabling the decoder, and is activated
to the high state during the execute phase of indirectly addressed
AND, TAD, ISZ and DCA instructions (see IM6100 data sheet) so that
data transfers are controlled by the Data Field, DF, and not the
Instruction Field, IF, when addressing more than 4K words. Otherwise,
the G2B pin may be left grounded by a jumper.

Table 6-1 shows the address space occupied by the P/ROMs. The
user must supply at least three P/ROMs and can use them anywhere
in the address space provided.

6-3

JRo P/ROM MODULE SCHEMATIC

6-4

XTC R

!lUP1m: x
DATA F 18

t------------~-----------------------'6'-<>IG1
t-----------1-1~ 2 4 G2A

t-------------_......'--~-----02 C1>------------------'5'-IG2B -- -

r;;O-;;RBTR;m - - - - ~;;-1
I .REPEATED 4TIMES I

II ":I: :JI, ~ :;.... I
IN QB ~ I
I cs 2N2222 I :::l:::c1 I

o~
1~
2!0-'1~3 __ __. _____ ___,

3 12

4 11

L _.001,.F -- ---- -- _J; _J 054
OUT

,------, ,------1
I I I I
I POWER STROBE I I POWER STROBE I

REPEAT REPEAT

~ I -~ I

L_ ____ -f=_J os
10 L ____ .~_J 05

6

OUT OUT
11

IN

,------,
I
I

POWER STROBE

REPEAT

I
I
I

L ____ t-:-_J
OUT.

\/cc 22, Z 1----------·Vcc ~~~~ER 2 B

INSTUCTIONJ; 3 C
5 10

1 A

Gnd 2, B t---------.and
cs

74LS138

6~
1pl--o

4 ;

DXo

DX1

5

DX5

DX&

DX7 10

DX9 11

DXg 12

13

14

LXMAR

3 D

4 D

6 D

11 D

13 D

74LS174
Q 2

Q 5

MONITOR
JUMPERS

Vee l-1'-'6------~-t VCc l-1"6'------.,..,.--1
~ CE t---------;.~!"'°'cE 13 CE

Vee 1-'=16 _ __.J

AS
Q 7

Q 10
r----------------+-+-1--~1 ~~5-1As ~==============:15~": 1~5 Ae

1 • 1 1 •
r--------------+-+-+----'2-1 • 5624 t-----------,2-1 • 5624 2 •

3• A4 3• C4 3•
5624
B4 0"1_2 _______ -+-___

r-----------+-+-1----:4-1 • 1--------4-1 • 4 •

~--------+-+-+----'~-! : ~==============~~;:: : ~ :
.------+-+-1----'5-IAo 04 03 02 01 1--------5-1Ao 04 03 02 01 1----------'5'-IAo 04 03 02 01

.............. ...-~..-. --~ ~~..P..~i--i''--..P..--'

12 9 10 11 12 9 10 I11 T2

t-------++-+-l--+-e---------1~4-ID Q~1=•--------+--+

CLK

l 10 11
74LS174

2000 - 2777

1------+--+-+-1--+-+-e---------3~0 Q>'2~--------f-+--+-....

1------+-+-+-l--+-+-++-------~4-10 Q~5'----------t-+--+--+_. ~CE
Veel-1'-'6 _______ _, Veei-1~&------~-1

13 CE
Vee l-1"'&'----------1

~! CE
1:5 A9

t------+-+-+-l--+-+++-.-------6-ID BS Q 1-7------1~ •_,>-+--+---+_,>-+--+--------+-+---~1~ •

t------+-+-+-1--+-+-+-+-+-<1-----1~1-10 Q 10 : :

t------l-+-+-+-l-+-l-l-+-++----1"-13 D Q ~1"'2--~l l '---l-l-+-+--+-..... -1--+--l------+-+---~.!.I :

5624
A3

1~. ":

t----------'2"-1 •
3 •
4 •

7 •
6 •

5624
C3

15 A9
1 •

2 • 5624

1--------!-1 : 83

7 •

3000 - 3777

t------+-+-+-l--+-+-+-+-+-H-.---1_4-ID Q h 6 •
'-------t-+--+--+--l-+--+--+-4t-------+-1----~•-1Aoo4 03 o2 CLK 01

12

1----------'5'-IAO 04 03 02· 01

6 •

1----------'5'-IAo 04

9 D5

74LS04

9 10 11

16
Vee t--------...,1-=-3--ICE

1~5 As
1 •

Vee,_1_6 _______ _.

'----'1"'3 o1 :: CE '-+--+-+-+-+--+--t-+------------'1~~.-1~! 15 As
1 • 1 •

'-+--+--+_,>-+--+-----------2-t • 5624 2 •

3 • A1 3 • '-+--+--t-+-----------:4-1 • 4 •

'--+--1-----------'7-I • 7 •

9 10 11 12

9 10

5624
C1

vice ,_1~6'--------<
13 CE

01

12

1:. As
1 •
2 •
3 •
4 •
7 •
6 •

Vee ,_1_6 ______ ~-1

:: CE
15 A9

1 •
2 •
3 •
4 •
7 •
6

9

56~4

B2

5624
B1

Vee"1-'6~----------~

4000 - 4777

Vee"1_6 _____________________ ~

5000 - 5777

'-+-----------6:-i • 6 •

'-----------5-1Ao 04 03 02 01 1--------5'-<AD 04 03 02 01

t-----------,-1•
o--------•-1Ao:o4 oa D2 D1

~-.~-.-~.--.~~

9 10 11 12 9 10 11 12 9]o]11 y2
I J
J

CHAPTER 7
JR. SERIAL I/O MODULE

INTRODUCTION

The JR. SERIAL I/O MODULE, 6953-PIEART, pic t ured in Figure 7-1,
allows the user to communicate with a 110 baud full duplex terminal
with either an EIA RS-232C type differential voltage interface or
a 20 mA current loop interface.

Figure 7-1

TTY TRANSMIT
OUT (20mA FOX)

READER
RELAY

DRIVER

EIA RS-232C
TRANSMIT

OUT

IM6101
ADDRESS

SELECT
SWITCHES

IM6101
ADDRESS
PULL-UPS

ASYNCHRONOUS
SERIAL
INTERFACE
CONNECTOR

EIA RS-232C
RECEIVER IN

IM6403 UNIVERSAL
ASYNCHRONOUS
RECEIVER
TRANSMITTER UART

IM6101 PARALLEL
INTERFACE
ELEMENT PIE .

This board uses two CMOS LSI chips, the IM6101 Programmable Interface
Element (PIE) and the IM6403 Universal Asynchronous Receiver/
Transmitter (UART). The MONITO R ROM provided with the 6950-INTERCEPT
JR. MODULE contains a bootstrap loader for loading programs from the
6953-PIEART using BIN formatted media, such as paper tape punched
out by the 6950-INTERCEPT JR. via the 6953-PIEART and an ASR-33
Teletype using the Memory Dump routines contained in the MONITOR ROM.
This allows the user to create programs, dump them out on paper tape
and use them at a later date by simply reading the tape back in.

DISCUSS ION

The data sheets on the PIE and UART should be studied in order to
fully understand the description of the operation of this module.

7-1

rt will also be beneficial to study the listing of the PIE-UART
routines in the MONITOR ROM. These routines are listed in line
numbers 1171 through 1511.

The PIE address used is 00111, therefore, all IOT instructions
to the PIE are of the form 616X or 617X in octal.

By using a UART, the amount of code required to do serial I/O
is considerably reduced because bit timing is taken care of by
the UART. Also, the programs become insensitive to the CPU
clock frequency. Both the PIE (B3) and the UART (Bl) are
general purpose programmable devices and, therefore, need to
be programmed or initialized to specific system requirements.

Some functions are programmed by hardwired pin connections and
others by MONITOR ROM firmware routines.

The DIP switch is set up to program the PIE SEL 3-7 inputs to
the address 00111. It also grounds CNTRL pin 2 of the 6403
UART selecting the internal 11 stage divider. This divider's
output is the 16X clock used by the receiver register and
transmitter register. The 6403 is designed to be directly
clocked by a crystal. The crystal used is a TV colorburst crystal
of 3,579,545 Hz. When this is divided by 211 and 16, the baud
rate of 109.2 Hz is within the tolerance limits of a 110 baud
Teletype interface. The DIP package of lOK resistors (A3)
pulls up the SEL 5, 6, 7 inputs and the PIE series priority input
pin 3. The PIE control registers A and B and the vector register
are i'nit'falized by the INPIE routine in firmware. Table 7-1
shows the constants loaded into these registers.

TABLE 7-1
CONTROL REGISTER A

0 l 2 3 4 5 6

WPl
0

7 8 9 10

FL4 FL3 FL2 FLl WP2 IE4 IE3 IE2
1 1 1 0 1 0 0 0 0 0

FL 2, 3, 4

FL 1

WP 2

bits set high cause the unused FLAG outputs
2, 3, 4 to be at high level

bit set low causes FLAG output 1 (Reader Run
Relay Flag) to be at low level

set high means positive WRITE POLARITY or
positive pulses at WRITE output 2 (used to
load the UART CONTROL REGISTER)

7-2

11

I El
0

WP l set low causes negative pulses at WRITE output
l (used to load the UART TRANSMITTER BUFFER
REGISTER from the data inputs)

IE l , 2, 3, 4 set at 0 disables all PIE interrupts.

TABLE 7-2
CONTROL REGISTER B

0 1 2 3 4 5 6 7
SL4 SL3 SL2 Sll SP4 SP3 SP2 SPl

0 0 l l 0 1 1 1

NOTE:
1. Sense input S4 is not used, therefore, SL4 and SP4 bits

are irrelevant.

2. SL 3 = O and SP 3 = 1 program the SENSE3 flip flop to be
set by a positive going edge. SENSE3 is connected to the
serial data input of the UART and is used for start bit
detection.

3. SL 2 = 1 and SP 2 = 1 program the SENSE2 flip flop to be
set by a high level. SENSE2 is connected to the TRANSMITTER
BUFFER REGISTER EMPTY (TBRE) output of the UART which indicates
that the UART transmitter is ready for new data. The TBRE
signal is a high level.

4. SL 1 = l and SP l = 1 program the SENSEl flip flop to be
set by a high level. SENSEl is connected to the DATA
READY (DR} output of the UART, which is a high level indicating
that a character has been received and transferred to the
receiver buffer register.

TABLE 7-3
VECTOR REGISTER

0 1 2 3 4 5 6 7 8 9 10 11

INTERRUPT VECTOR VPRl
0 0 0 0 0 0 0 0 0 0 0 0

NOTE: The PIE interrupts are disabled in this application, and
the sense flip flops are tested by the firmware with
SKIP instructions.

7-3

The PIE's READ2 output is unused and the READl output is connected
to the UART RECEIVER REGISTER DISABLE (RRD) and DATA RECEIVED
RESET (ORR, an active low input) so that when a received character
is ready, Rl which is normally high (keeping the RECEIVER REGISTER
disabled) pulses low during IOTA-DEVSEL, transferring the receiver
data to the IM6100 via the DX bus while simultaneously clearing the
DR flag in readiness for the next character.

The UART is also initialized both via hardwired connections and
under program control.

STATUS FLAGS DISABLE (SFD pin 16) is grounded to enable all UART
status flags. The UART CONTROL REGISTER bits are loaded from the
DX bus as shown in Table 7-4.

PI =

SBS =

EPE = l

CLSl = l)
CLS2 = 1)

TABLE 7-4

DX Lines 0 2 3 4

Designations PI SBS EPE CLSl CLS2

Constant 1

PARITY INHIBIT - Parity generation and checking
is inhibited and PARITY ERROR (PE) output is
forced low.

STOP BIT SELECT - In conjunction with CLSl and CLS2,
this selects two (2) stop bits.

EVEN PARITY ENABLE Irrelevant as parity is
inhibited.

CHARACTER LENGTH SELECTED - These bits select on
eight-bit character.

All unused pins are brought out to test points, to facilitate
experiments by the user.

The UART TBR parallel data input bus and RBR parallel data output
bus are connected to DX4-ll.

The serial input and output pins of the UART go to both EIA-RS-
232C and 20 mA current loop interface drivers and receivers.

7-4

Table 7-5 shows the connector and jumper options for the two
interfaces.

Serial output bits from the UART cause the push-pull EIA driver
to switch between Vee and -12 volt (-12 volt must be provided
externally) and transistor Q2 to supply 25 mA nominally (5 volt 7

(R5 + R4)) to the current loop interface.

Briefly, the PIEART interface works as follows once the interface
is initialized. When transmitting to a terminal, the IM6100
executes a waiting loop using a SKIP on SENSE2 instruction
followed by a jump back. SENSE2 as shown in Table 7-3 is set
when the TRANSMITTER BUFFER is empty. When the character has
been transmitted, the waiting loop is exited and a WRITEl
instruction is executed writing a new character into the UART
transmit buffer. The PIE strobes the DX bus at the proper time
when this instruction is performed.

When receiving from a terminal, the IM6100 resets the SENSE3
flip fl op by executing a SKIP on SENSE3 instruction. This flip
flop senses the start bit of a character. The READER RUN flag
is set by executing a SET FLAG 1 instruction to the PIE. Now the
interface is ready for a character from either a tape reader or a
keyboard and a wait loop is entered. This loop is exited when
a start bit is detected and the READER RUN flag is cleared just
in case the data source was a reader. This stops the reader from
advancing until the CPU is ready for another character. Another
wait loop is entered and this time it is exited when the DATA
RECEIVED flag goes true, setting the SENSEl flip flop. The
accumulator may then be cleared and a READl command executed. This
causes the PIE to enable the UART receiver buffer onto the DX
bus, simultaneously clearing the DR flag.

When reading BIN tape, the above transmit and receive program
sequences are called as subroutines, while the main program performs
functions such as testing characters for a rubout, accumulating
checksums, testing for leader-trailer, etc. (Refer to MONITOR
description)

Whenever SKIP on SENSE flip flop instructions are executed, the
PIE will test the state of the desired flip flop and, if it has
been set, it will assert the SKP/INT output causing the IM6100 to
skip the next instruction. The sense flip flop is then cleared.
For more details, refer to the PIE data sheet.

7-5

TABLE 7-5
20 mA LOOP/EIA RS232-C CONNECTOR PINOUTS

OPTION

Voltage Change
Option

Driver/Receiver
Change Option

EIA Earth
Ground Option

20 mA Loop

Pin

1
2
3
4
5
6
7
8
9

10

STANDARD CONNECTION

+5 VDC on Vee
Connect points #1 and
#2

20 mA loop
Connect points #4 and
#5

No EIA Earth ground

CONNECTOR PINOUTS

Signal

XMIT+
KEY
XMIT-
RCVE+
RCVE-
RDR+
RDR-
-12 voe
N.C.
N.C.

7-6

MODIFIED CONNECTION

+10 VDC on Vee
Cut between points #1
and #2 and connect
points #1 and #3

EIA RS232-C
Cut between points #4
and #5 and connect
points #5 and #6

To connect Earth
ground, tie points #7
and #8 together

EIA RS232-C

Pin Signal

1 Earth Ground
2 XMIT
3 RCVE
7 Signal Ground

18 -12 voe
All others are N.C.

Pins 5 (Clear to Send)
6 (Data Set Ready)
8 (Received Line Signal

Detector)
may have to be tied to VCC
with some terminals

In order to use the module, it must first be connected to a serial
ASCII 110 baud tape reader, typically an ASR-33 Teletype equipped
with the reader. The connection is done by a cable connecting the
20 mA loop connector pins to the Teletype terminal strip (Figures
7 and 8 of Intersil Applications Bulletin M005 11 Teletype Interface
for the IM6100 Microprocessor 11). The external -12 VDC supply is
connected and the Teletype is turned to the LINE position.

Note that the Teletype must be equipped for 20 mA full duplex
operation and should have a reader run relay installed.

To read BIN format tape, the tape is placed in the reader, the key
is put in the START position and the sequence CNTRL l is pressed
on the INTERCEPT JR.

As explained on page 2-5, this function will activate the loader.
At the end of the load sequence, the machine is halted showing
the AC (SAVAC location 0140) whose contents represent the checksum
and should be zero for a valid load.

To dump memory onto tape, the starting and ending address of the
block should be entered into locations 0176 and 0177 and the program
run starting at location 7510. Naturally, the tape punch should
be turned on.

Chapter 8 page 14 describes these routines in more detail.

Table 7-6 lists the PIE-UART instructions as used by the MONITOR.
These instructions are also listed in the program listing on
page 8-l6C.

6160

6170
6161
6171
6162

6163

6172

6173

READl

READ2
WRITEl
WRITE2
SKI Pl

SKIP2

SKIP3

SKIP4

TABLE 7-6
PIE-UART INSTRUCTIONS

(Reset UART Data Received Flag and read
received character)
(Generate read strobe 2) - Not used
(Load UART Transmit Buffer)
(Load UART Control Register)
(Test state of sense FFl; skip if set
by UART Data Received Flag)
(Test state of sense FF2; skip if set
by UART Transmit Buffer Empty Flag)
(Test state of sense FF3; skip if set
by START bit)
(Test state of sense FF4; skip if set) -
Not used

7-7

6164 RCRA (Read control register A)
6165 WCRA (Write control register A)
6175 WCRB (Write control register B)
6174 WVR (Write vector register)
6166 SFLAGl (Set FLAG 1) - Reader Relay Flag - ON
6176 SFLAG3 (Set FLAG 3)
6167 CFLAGl (Clear FLAG 1) - Reader Run Relay Flag
6177 CFLAG3 (Clear FLAG 3)

In addition to these, the IM6100 internal IOT instruction 6007s
or GAF (Clear All Flags) clears the sense flip-flop thus
clearing all interrupt requests.

The serial I/O module is typically used with the INTERCEPT JR.
BINARY LOADER and MEMORY DUMP routines in order to read BIN
format tape and dump a block of memory onto BIN formatted tape.

The PIE-UART interface is initialized only when the BIN and
DUMP programs are used. The user has access to these routines
via the software subroutine call stacking mechanism in case the
serial port is to be used for other purposes, such as printing
characters on the Teletype.

The user may also write his own code in RAM for interface
utilization and handling Teletype I/O.

Example 14 in Chapter 3 shows how the MONITOR subroutine may be
called to implement Teletype keyboard and printer operation.

7-8

- OFF

JRa PIEART SERIAL I/O MODULE SCHEMATIC

7-9

RESET 17

DXo 3

DX1 4

DX2 S

DX3 6

DXs 8

DX5 9

DX7 10

DX9 11

DX9 12

TP10Q- 13 PE

TP17CJ- 14 FE

4069 TP16 Q-CJ>------1=<S OE

>-----------------19 A1">c>8=-------------------=21"-!MR

3S Pl

1--------------------t~0---------------~3"-!6 S8S

>--------------------+---il--9---------------3-19 EPE

1--------------------t--;r--+--.--------------3-t8 CLS1

,_ ___ 3_7 .. CLS2

rT9
1--------------------t--iC-+--t---.---------e--... l___,! Re

rT7
>--------------------+---il--+--+--+---.>-----------~R7

1--------------------t--l--l+--t--t--l-9--------... ~Ts
~Rs

rTs 1--------------------t--l--l+--t--t--l-+--e-------...
L__! Rs

rT4
1--------------------t--l--l+--t--t--l-+--t---.-----...

L__! R4

rT3
1--------------------t--iC-+--t--t--i-+--t--t~O------l...._.!E_ R3

6403
UART

81

rT2
DX10 13 1--------------------t--ll--+--t--t--i-+--t--t--il--... --...

L..!!_ R2

DX11 14

XTC R

LXMAR 1

DEV SEL E

INT GNT N

,SKP/INT U

rT1
>--------------------+---il--+--+--+---i-+--+--+---il--+--+---9l....._g_R1

._ ___ 2_6-tDX11

'-----2-tS DX10

'--------'2~4-IDX9

'--------"2-t3 DX9
._ ________ 2_2-IDX7

'----------2-<1 DX5
._ __________ 2_0 .. DXs

'-------------1-<9 DX4
._ _____________ 1_8 .. DX3

'---------------1-<7 DX2
._ _______________ 1_0-tDX1

'-----------------~1 s oxo

'---------------------13~XTC
'----------------------1 0 LXMAR

28
'-------------------------<~DEVSEL

'-------------------------~2~1NTGNT
33 C1

34 C2

'-----------------------------~3~91:llSKP/INT

Vee= 1

Yee= 1
Gnd = 3

6101
PIE
83

Gnd = 27 Pl

NOTE: ALL RESISTORS ARE ·v, WAiT

TP19

PO

40.

TP7

C1N t-1~7------.---------t;> TP15

I
40

COUT

Y1-XTAL

I -0 TP6

as
2N3638

Yee

•
< R10

~ 4700

04
2N2222

+Sv

Rs

< 1000

.. r-'02
~2N3636

TTY TRANSMIT
OUTPUT

R11
10K

"" 03
2N3638

e-~~~-~~#3 XMT·

TOUTl-2:::S'------e----------

RIN 20

C3 I~
.001 µF

R1
< S.6K

4069

'-----------1~1-IAl ~ 10

EIAJUMPERS

J....:.. 12

·12V

4069 R17
10K

A113 VY'

+sv

• 117
.------
< 820

R1l
*CR7
.. IN914

-:?#4 RCVE+
---Q-..-

6

' =i=~4
LA7µF

-rcR6
..,.. IN914

TTY RECEIVER
INPUT

CNTRLl-2=-----~

TBRE~2=2'-----+--+-----~

TRE~
DR 19

CRLt-3~4'-----t-+--,
T8RL~2~3-----+,
RRD t-4~----.
DRR 1-1...,8,_ __ •

SFD p!......,

R1 3S

W1 36

W2 38

S1 7

S2 6

R2 37

S3 S

S4 4

117

-0 TP8

-0 TP21

>-C> TP20

-0TP14

-0.TP3

-0.TPS

-0 TP13

-0TP4

4069

1.-----~s ... A1 6

~TF1

10K
< R16

.96
2N2222

2.4K
R1S

117

R14
3.6K

+Sv

88-2 ,............ - •
R12
270

-12v

r8 FI~ CR1

~~ S.1VOLT

TTY POWER c :..o----~ ~:~F
JUMPERS (> - 3

1

+Sv~-----.------~

~#S• 1RCVE-

7·#6 RDR +

EIA-AA JUMPER

AA-1

;R3
S.6K

2N3638
01

=*=·1~F
C1

T CR3 + IN914

READER
RELAY
DRIVER

F1 32

F2 31

F3 30

F4 29

-0 TP10

r? r-<==> ~#7 RDR·

-0 TP11

-0TP12

SEL3h

SEL4 J!!-----l 1 8
2 ~ -7

SELSl-1~1-----e--t--11--....::-ft
SEL& l-1"'2'------1--t---'1----"3-<~0 ~ 6

SEL71-1~4'---<o--+--1--t-1----'4-<::0 :.s

r.: I -=I - I DIP SWITCH /j7 I '1.~ 12 13 10 3 I r_J ? 10:1 1 ~ DIP
I 1 114

T T _.,Yee

L---..,.---~3_J

117

-

> 1200
R1

-12v

C> =TEST POINT

_.......... #8
/

·12 VOLT SUPPLY
60 MA LOAD MAX

---7 = CONNECTOR POINT ~=EIAPOINT

CHAPTER 8

INTERCEPT JR. TUTORIAL SYSTEM MONITOR PROGRAM

The MONITOR uses main memory to store control panel routines in
order to keep the system inexpensive. The IM6100 architecture,
however, will allow control panel programs to exist in separate
memory totally transparent to the user.

Figure 8-1 shows the memory allocation map for INTERCEPT JR.

The MONITOR uses several locations in page O. These are listed
in the program.

Some of these locations, SAVAC, SAVMQ, SAVFL in locations 01408,
01418, 01428, are used by the MONITOR to store IM6100 registers
and flags and enable the user to conveniently examine and alter
these registers.

Most other locations are used as temporary workspace by the
MONITOR routines. Locations 167 to 177 are used as a software
stack for subroutine return addresses.

The stack is initialized on power-up and on every pass through
the control panel interrupt service routine.

WORD PAGE -o-

377

6000

7777

256 BIT RAM 0
IM6524 l

ROM
IM6312-002

FIGURE 8-1

8-1

START
ADDRESS
7777

NO

&O TO .Q.llI

ESTABLISH CP STACI\
LOCATIONS IN RAM

YES

SEi

RETURN TO

USER SUTU5
THROU6H

LOC ~

START
ADDRESS

6000

UNDEFll\IED CONTROL STATE
~~~~~~ ~ 

8-2 

JUMP THRU 
POINTE.II. T~au:. 

TO PRDP&R 
ROUTIN~ 

SITO 

lllTI 

&IH 

BIT3 

BIT4 

BITS 

& 

BIT7 

BITS 

e1n 

SIT 10 

BITll 

G,O TO Tl!E 
J.M. MUTINE 

G.D TO THE 
DEPOSIT ROUTINE. 

&O TO THE. 

fil.li ROUTINE. 

&OTO THE 

~ROUTINE 

GoO TO THE 
Wil ROUTINE 

GO TO THE 
J::iAJ.I ROUTINE 

r,o TO THE 
.BJl.li ROUTINE 

GoO TO THE 
SING.LE INSTRUCTION ROUTINE 

Wt 

GO TO THE. 
DISPLn BLANK/RESTORE ROUTINE 

.llJJl 

GO TO THE 
LOADER ROUTlll/E 

A1tL 

GO TO THE 
tfil!2 A ~~EMBLER 



:uit.il 
SAVE LINK 

RnURN WITH 
SW REC. 

IN THE AC 

EHABLISH PROPER SHl'T AND LOAO 
CONDITIONS 'FO~ DIC.Ii 

~ 
Rt.O 

YULOW 
''MEW 

,\CEC. PC.• 

7 
E> 
5 
4 
3 
2. 
I 
0 

SHln DIC.ITS AND 
LOAD THEM TO DISPLAY 

FIND THE HEll NUMBER 
COP.RESPOOIN& TO THE 

KEY PRESS 

LOAD THE HEX BINARY 

NUMB"" TO ens 
"B THRU•11 OFAC. 

VALUE TABLE FM HEX 

SW R"; 
~ 

0 

i. 

" :5 

6 
7 
a 
'I 
10 
JI 

8-2A 

HU .. ~ 
8 
A 
q 

s 

6 
5 
4 
:5 
2. 

0 

SUBROUTINE OVERHEAD 

JUMP TO A suaROUTINE 
THRU A LINK IN RAM, 

STOU VIER PC IN 
LOtATION '-&W 

GENERATE TME RETURN 
AoDRc&S FROM THE OLD 
PC STORED 1 N THE RAM 

$TOR£ THE RHURN 
ADDRESS OM THE STAGK 

GO TO THI' 
SUBROUTINE 

CALL A 
SUBROUTINE 

gm 
SAVE THE K. 

RETURN FROM 
SUllROUTINE 

RETUR!J TO 

THE PRO&l\Al'I 

CLEAi\: 
SAVAC 
SAVMG 
SAVFL 
STATUS 

&OTO 1:1&.l" 



FET(l-I 11\JSTRllC. Tlo!J 

SPECIFIH 8~ ;Av Pc 

\'ES 

YES 

COMPUTE .,1NE-'i:l'• AND "'NEtT,..I '~ 
BY ADDllJ~ ON! AMb TWO T"O 

THE VALLIE; 11\J SAVPC 

E;TABL.15H A POIN1ER 

TD Tl-IE P~OPER 

JUMP INOIREC1 

ON THAT POINTE~ 

RFPLACE WITH BRENll\:)ill'TS TH~ 11/JTRUTl<WI 
SPECIFIED 8Y ''NE'lT"AtJD "~eir .. 1" AND 

STOU T"11£ 010 llYI T~UCTIOMS "' ~AM 

EXEC.UTE THE INSTRVCT"ION 
SPitlFIED 8Y SAYPC 

RETVRN THROU&H THE 81\EA~PC>IAIT 
AND THE RAM Ll~IC. 

PJ;~TORE THE 010 IUSTRUCTIDWS 
TO"NEll'' AAJ()''IJ&XT·ll'' 

1.11£1\EMENT" 'NHT" 

TOG.6LE BLANK !'>IT" 
IN STATUS 

G,O TO £XJZ 

8-2B 

GET" THE MEMORY WOl\O' 

INDIRECT USll\IC, SAVPC 

SHIFT IT TO T"HE 
LEF"T" "3 T"IMES 

RESTORE THE UPDATED' 
WORD TO T"HE R.AM 

COMBINE THE PA&E NUM6ER 
WrrH T~I\ PAl.E ADO~ESS 

&ET THE TRUE APORESS 
THRU THe ADDRESS 
SP&VFIEO ALREADY 

-lf"Lll\JK "ND AC 
DESTllO'(EO 

ESTABLISH A POINTER 
TO TME P~OPER 

RDU"TINE 

ot------JI GD TO ~ 

ot----~ GO TO WJ 

DEC SAVPC 

GOTO~ 



[ CALL C.LKPP} 

""""J" 
[CALL \olt.Xd 

""J 
rA))jUST VALUE. J 

TO USE A5 A 
POINTER 

-!. 
[ THEN JIA'IP J 

THRU POINTER 

'. KEY C 
BIT "'0 

' . KEY 5 
+t 

' " KEY ? 
• z 

. " l<EY 8 
4 -4-

' . KEY 7 
,. a 

II ft 
KEV I. 

.. s 

I II 
KE"f 5 

.., " 
I. 

KEY + 
• 7 

II U 
KEY 3 

t 8 

l\ II 
l(E:Y 'i?. 

'*., 

K£Y 11 111 

• IO 

I II f II 
KEY 0 

f GO TO AANI) ] 

GO TO UDCS j 

"""'t INCREMENT SAVPC. j 

GOT0~·1 

GO TO AOPR 1 J 

&oTo~J 

J GOTO~ 
J 

, 

J liO"TO~ I 

_.J Go TO UllS J 

Go TC> AD(I\ J 

Go TO AIS~ ] 

GO TO _llil. J 

8-2C 

CLEAR THE INSTRUCTION 
WoRI> AT LOCATION (SIWPC) 

LOA.0 1'5' IN10 TH£ OP 
C.Ol)E oF THE lNSTRUC TION 

<iOTO~ 

C.LE:/\R T"E lNSTRUC.T~Olol 

WORD /\"T LOCATION (SAVl'C) 

LOAD '4" INTO "t"llE DP 
c.ooe. or THE INSTRU c T ION 

GOTO~ 

CL.EAR THE lMSTRVCilON 
WORD /\T LOC.AT10N (SAV PC) 

LO~I> '3' :INTO THE OP 
<OPE OF' THE. lt.IST~UC..TlON 

COO TO~ 

CLE~R THE. lNSTRUC.T[oN 
l,JORD l\T UlC:ATION (5AVPC.) 

LOAD ·~· ! IJTO 1"HE 0 P 
COl>E OF THE lll5"fllUCIION 

Go TO llRPA 

CLEAR THE LNS"TKUCTLON 
WORD AT LOCATION (SAVPc.) 

LO~b '1' INTO THE. DP 
cooe: or 1"KE !N5TRUC.T10M 

Go "TO~ 



NO 

CL.EAR INSTRUCTION 
WORD ~T LOC (~AVPt) 

SllIF T THE ll.DDR1'ff.> 
OVER ONE I> rGo!T 

AbO THE NEW bI<OtT 

!>OUND THE N>DP.t:SS 
TO !>!TS "'~ ·rn1w •11 

PLl\Q 11\E PAGE "DORE.SS 
IN T\IE INSiRVtTI ON 

GO !>"CK FOR 
Tf\E NE.H DIGIT 

YES 

YES 

INCRf.t\ENT SAV PC. 

GO ,..0 MICRO 

TOGGLE Tl\E 
HID!RECT ~IT 
IN THE 11./ 

f"LA~H 

<:RROR COND!TlON 
CLEAR THt 11.DDRESS 

8-2D 

SET "fHE IN~TROtTION 
WOl<.I> TO lo~~p 

CLEAR !OT Col>E 
CALL CLWPD 

SH I FT :i:o-r CODE 
OVER orJE DI 61"'£ 

Al>b "fHt NEW DIGIT 
-ro THE lOT COOE 

BOUND IOT. c.ol>E 
TO 'BIT'5 *~"fHRU"ll 

CLE~!\ lllT' "~ THRU" II 
HI tlJ<jTRUCTION 

COM'BlNE THE 

W'TlllXTroN ANb 
"TIIE NEW :taT CObE 

YES 

NO 

GO ?>~ti\ lb---------' 



S[T TM" INS.TR.\JC.TJOr,I 

woiu ro 1'4DO 

ESTA6l15H Tl-IE PO!AJTE.R. TO Tl-IE. VALUE Of' 
1~£ R.OllT JIJE: Au Oats~ 

:JVMt) TIHlU T"HE. POJk!TC~ T() 

7Ht HoPE~ Rocrn/£ 

~ ''c." "0''~11 
G.0 TO~ .:.__ ___ __:::_:c_+_:__c_ ___ --41 CALL lliI.1'----

CA LL \liEL9_ 

CALL llill 

CALL filli 

CALL~ 

., T 1\1 • ~/o 

»z "9" ''Z'' ~'i 

.. 4 's" '3""'8 

I 
", •'7" "4•~7 

•.s "(," ";-" 't 

5ET THE- IN STRUC..T10N 
WO!\~ TO 740( 

CALL~~ 

CALL filI!_Q 

ES.TAaL1s..i THE P()lk!TC-R. TO TIIE: \/AL\JE. OF 
Tl-IE ROUrl,IJ~ ADC~HS 

.:H;M P T)HtL.l nH: POJ/\/TE R.. 'TO 

TH~ PRO PER ROUTlllE 

#-o "c'' 110''-»11 
GO TO ~ I'-----=-__::-+------

8-2E 



"O 
Go TO NEXT 

Go •o BSET 11 
•1 

C.ALL~ 
,. ?> 

CALL BSET 5 
"15 

CALL llSET lo ·~ 

CALL MEJ 7 
'/;7 

BSET 4 BSET 4 

GO TO Mil 

!lli!.2 

GE"f "fHE ?>1T5" 
COlllS"f~NT 

Go TO !',lli GO ,-o l'lf>S• 

SE"f Tt\E :I:NSTilUC. TlON 
\>/ORI) TO 7f>f>fJ 

ESTA.BLISH THE. 
POINTER TO TAl!LE 

J1"ll> Tt\RU T.AeLE TO 
THE Rt6HI ROUTINE 

"c." ' " ' ~z. 

'' "e" "+ 5 

' " "'11 7 0 

.. "'. '1 •10 

,, 
5 

"C ... , 

. ' '. •e -i :I 

!l<;E.T 6 

GE1 "T~E BlTB 
Coll5TANT 

Go iO l'lllST 

BSET 9 

GE"T THE. BIT' 
CONSTANT 

!;O TO MBST 

8-2F 

CALL ~ 

C.ALL~ 

C~Ll BSET" 8 

!fill 

PL~CE -rHE 
!IIT C:ONSTl.NT 

IN TllE MQ 

•01f' Ttt£ MQ 

wrrK TME 
rN'STRU,TI Oii 

BSEi ll 
WORb 

GET THE Bll"ll. 
CONS"f~Ni 

GO "TO l\llST 
RE"TURN 



INITIALIZE RAM LOCATIONS 

USED 8Y illil. 
-Ui"Ec,«sli..\~~ ---

rnA R. ADDRoSS = 0/77 
UIT CUAR.• OZOO 

LAIT cµAR, ~t.AC, =-I 

__________________ _j srou <>IA" 
IN "SAVE1' 

%S 
>-,;....._----~J'UM~ TO Uk 

ASSEMBLE TME LAST 

TWO CUAR. REtEIVEO 

~UfiTRAlT nHS VALVE 
~RO)>I) C.1-1£(.ICSUM 

SUBTRlllT" T>I!. TWO 
HALVES OF TUE. LAST 

WDRO S:ROM Ti.IF. 11.E\l.ILT 

r-----:li GH ADDRlSS FROM 
C~AR.. ADOR.US 

8-2G 

GE1' TUE FIRST ~ALF 
OF LO~b CUAIUN 

''SMIFT" A;JD PO~ITID/J 
1T 11.J "SAU~" 

DEPOS!l WOl\b FROM 
SAV3" UJ RA/II 5PE.ltl=JED 

B~ CUU. ADORE.I> 

G.<T NOXT ~IR\T UALF 
AND PULE. IN '\HiFT" 

c;,.r llEH I-Alf HALF 
AtJC PlA£.E. HJ ''SA\15" 

fRA>.JSF6R '1S1\.\J PC" 
TO THf: cuH, ADDlE.\S 

/JO 

READ VART 6UFFER MIO 
CLEAR Dl'fA UAOY Fi-Aq 



TURN TflPE PUN<.H 
To ON -l...1NE 

ESTA(?,L.ISH ST .. RT AND 
STCP Po1NTS IN L.oc.. 
l"lC. AN!) ,.,., IJSIN<. 

~ 

.SET Pc TC '7:1"/0 
USIN~ ~ 

US£ ll.UN TO STPIRT 
MACHINE IN US&iiR 

Mo OE 

DISA6LE CP TIMER 
\"iTERRUPTS 

FETGH CRtGl"l Ai>cRess 
l= RoN\ Loe. l ft~ 

FORMA> TOP '4A\.F AS 
e1N FOl\MlllT ORIG.IN. 

Fo R MA"T LAST HALF As 
BIN FoRt'\"T C .... A~oPt<TER. 

l'kfl<E A LEADERjTRA11.EI\ 
CHAl\ACTER. IN THI!! Ac 

FET'H Of\i"fll 1N MEMORY l.O.C... 

NO 

SPEC. I Fl!;O 13'1 l-OC. 1'1IO 

F0'1MAT LA~r HAL-~ 

L__.:::>-_;;..-~ TO A C\IN FOl'(t'\AT 

FORM""; ToP HALF 
To A (31N FORMAT 
CHARA<. TIH~. 

CHAl<AciER 

8-2H 

CALL. IA\.."< 

TO Pu Ne 1-1. ouT 
T">-IE CHARf\C.TER 

AOO TflE Cfl1'r..Ac:.Te.R 
To Cf\ECI< Sil M 

RETURN 

-::>-----'!II FORM AT THE 
FIRST ~H\L.F 

CF C.HE<:.K~UM 

FORMAT THE LAST 

r\AL-1' OF CHEct<SUM 

NO 



Referring to Figure 8-2, the INTERCEPT JR. MAIN FLOW CHART, the 
MONITOR is entered on power-up or on every CPREQ through l oca ti on 
7777 of control panel memory and the return address is saved in 
location 0000. Since in INTERCEPT JR. control panel routines and 
user programs share the same memory, bit 0 of the status word, 
Figure 8-3 is used to keep track of who is executing currently, 
the MONITOR or the user. For example, the programmer may disable 
the CP TIMER and yet use MONITOR SUBROUTINES in the "user" mode. 

Thus the MONITOR updates the register save locations, CP/user mode 
bit O in the status word, and goes on to the initialization 
routines. The CP subroutine stack is established. (Refer to 
Applications Bulletin MOOS for a description of software stack 
operation with the IM6100.) Returns from subroutine calls should 
normally leave AC, MQ and L unchanged. 

The Display Refresh subroutine, REFSH, is executed 100-200 times a 
second in order to keep the display flicker-free. 

Next, the keypad is tested for depression of the CNTRL key. If 
this is not detected, the monitor goes to the exit point, restores 
registers and flags and returns via the pointer in location 0000 
or in the old MQ according to the memory mode status bit. The 
return via MQ feature is provided as a convenience in writing 
user mode programs that do not use MQ for any other purpose. 

If a CNTRL key depression is detected, the switch debounce routine, 
SWDB, is called, and the test for CNTRL is made again. In case 
the test fails, the routine waits for the keypad to become inactive, 
by calling CLKPD, and exits as before. If the CNTRL key is 
definitely detected, the MONITOR enters the undefined control state 
and subsequent key depressions will have to be detected and analyzed. 
The MONITOR waits for the keypad to clear, by calling CLKPD, and 
calls HEX, a routine which generates starting addresses for the 
subroutines that are used to service each of the different key 
depressions that define a control state. Figure 8-4 shows the 
connections between the keys and the DX bus, and the control state 
selected by the key. 

The MONITOR is directed to the proper service routine, and may or 
may not need further data (more key depressions, external conditions, 
status word bit settings, etc.) to properly execute the routine. 

We shall now study some frequently called subroutines in the MONITOR 
ROM, REFSH, SWDB, CLKPD, HEX and EXIT. 

8-3 



0 

MEM 
FLAG 

6 

BLANK 
FLAG 

1 2 

7 8 

0 - CP/MAIN MEMORY MODE BIT 

6 - DISPLAY BLANK = 1 

3 4 

9 10 

BIT DISPLAY 
BUCKET CODE 

#1 

9 - CATCHES "OVERFLOW" FROM BIT 1 o. rs PERIOD I CALL y 
TESTED AND CLEARED. 

10 & 11 - SELECTS ONE OUT OF FOUR LED DIGITS IN DISPLAY 

FIGURE 8-3 STATUS WORD 

8-4 

5 

11 

DISPLAY 
CODE 

#2 



DX LINE 0 

KEYBOARD 

CONTROL CNTRL 
STATE 

VALUE 00138 
RETURNED or 
BY HEX B15 

DX LINE 6 

KEYBOARD 00 
CONTROL HALT 
STATE 

VALUE 00058 
RETURNED or 
BY HEX 515 

1 

IAC 
REV 
IND 

SHIFT 

00128 
or 
A15 

7 

00 
RUN 

00048 
or 
415 

2 

MEM 
SMA-QA 
OPR3 

MEMory 
data 

deposit 

00118 
or 
915 

8 

Ci] 

SINgle 
instruction 

execute 

00038 
or 
316 

FIGURE 8-4 

8-5 

3 

SETPC 

00078 
or 
716 

9 

rn 
DISplay 
blank/ 
restore 

00028 
or 
215 

4 

DECPC 
SZA·QL 
OPR1 

DECPC 

00108 
or 
816 

10 

Ei] 

binary 
loader 

00018 
or 
116 

5 

RESET 

00068 
or 
615 

11 

[¥l 

MICRO 
interpreter 

00008 
or 
016 



REFSH - ROM locations 6236-6373, listing line numbers 237-346, flow 
chart Figµre 8-1 

This routine first saves the AC and LINK as it uses them and then 
looks at the display blank flag, bit # 6 of the status word, 
Figure 8-3. It does this by doing a byte swap, bringing bit # 6 
into bit 0 and testing for a negative sign. If the blank flag is 
set, all zeros are loaded to the display, resulting in disabling 
all the multiplexing transistors and thus blanking the display. 
The routine would return in this case to the calling program after 
restoring the AC and L. 

If the flag was clear, the display must be refreshed. Bits 10 
and 11 of the status word encode the digit to be driven. Bit 9, the 
"bit bucket", is cl eared every time a refresh is performed in order 
to prevent other bits in the status word from being affected when 
the status word is incremented to select the next digit to be 
refreshed. Constants stored in ROM are used as "AND masks" to 
clear bit 9 and select the digit code. The digit code is added to 
a base address to generate a pointer to one of four ~outines, DIGO, 
DIGl, DIG2, DIG3, that set up constants and loop counters with 
which to enter the LOAD routine. LOAD uses a mask to select the 
particular digit to be displayed from the user PC and data at the 
user PC. Then LOAD uses the loop counter constants to rotate these 
digits into the proper position and adds the multiplexer select 
bit (stored in TEMP). Figure 8-5 shows the format of this IOT 
word. 

0 l 2 3 4 5 6 7 8 9 10 11 

D4 D3 D2 Dl BCD BCD 
Address Memory data 

FIGURE 8-5 

SWDB - ROM locations 6200-6235, listing line numbers 190-230, flow 
chart, Figure 8-1 

This routine reads the keypad into the accumulator, waits for 25 
milliseconds, and again reads the keypad to see if it matches the 
first reading, thus indicating the end of switch bounce. If the 
readings do not match another 25 milliseconds timeout is allowed. 
During the timeout, the display is refreshed approximately every 
five milliseconds. 

8-6 



CLKPD - ROM locations 6110-6116, listing line numbers 350-361, flow 
chart Figure 8-1 

This routine calls SWDB in order to timeout bounces, and 
checks for a zero reading from the keypad (indicating 
keypad clear) as long as required then returns to the 
calling program. 

HEX - ROM locations 6425-6523, listing line numbers 434-514, flow 
chart Figure 8-1 

This routine determines whick key was pressed and generates a 
different number for each key. These numbers are used by the 
UNDEFINED CONTROL STATE routine to generate starting addresses 
to the control state routines for each key. 

EXIT - ROM locations 6061-6076, listing line numbers 152-170, flow 
chart Figure 8-1 

This routine is entered when no keypad activity can be detected. 
The routine waits for the keypad to clear by executing CLKPD, 
then restores all registers and flags from RAM save locations. 
The memory mode bit in the status word is checked to make sure 
that the routine was entered by the control panel MONITOR. 

There is another entry point to this routine called OUT which is 
used if no keypad activity was detected even before key debouncing 
is needed, indicating the keypad was already clear. By entering 
at OUT, CLKPD does not have to be called, saving at least the 25 
milliseconds it takes to execute SWDB. 

If EXIT was entered in the main mode, the routine clears the 
memory mode bit, restores flags and registers and exits indirect 
via the contents of the SAVMQ location. This feature is provided 
to enable the user to store his return address in the MQ and 
not have to alter other registers. This is useful when writing 
programs that use subroutines in the MONITOR. The MONITOR itself 
rarely uses MQ for anything (for example, routine MBST at 72738). 

CONTROL STATE SERVICE ROUTINES 

Five of the control states possible through key depressions require 
extremely simple service routines. These five along with the 
symbolic starting address are: 

8-7 



INCREMENT AC 
DECREMENT PC 
HALT 
RUN 
RESET 

INCAC 
DECPC 
HALT 
RUN 
RESET 

These routines are stored in ROM locations 6400-6424, listed on 
lines 393-430 and the flow charts are in Figure 8-2. 

These routines are each a few instructions long and self-explanatory. 
They modify the RAM save locations. 

The control panel program when executing the EXIT routine restores 
all flags and registers in the IM6100 from these RAM save locations. 

The RUN routine uses the IDT RUN, 6407, command described in 
Chapter 4. 

The RESET routine clears all save locations, executes the IDT 
RESET command, 6406, sets the PC to 7777 and goes to the HALT 
routine. 

Except for DECPC, the above routines, when complete, branch to 
the EXIT routine described previously by jumping indirect via the 
location labeled UG. DECPC, upon completion, jumps indirect via BUG 
which is the starting address of UDCS, returning INTERCEPT JR. to the 
undefined control state. This enables the user to pick the next 
control state without again pressing the CNTRL key. 

DEPOSIT INTO MEMORY, MEM, ROM locations 6524-6556, listing line 
numbers 516-550, flow chart Figure 8-2 

This. routine with starting address at DEP may be executed 
repeatedly when a sequence of numbers is entered from the 
keypad. It begins by calling CLKPD, then HEX. The 
value passed on by HEX is tested for being greater than 7. 
If it is not greater than 7, it is interpreted to be an 
octal digit to be deposited into memory by shifting it into 
the rightmost digit. This is done by getting the current 
memory data indirect via 00008, SAVPC, shifting left three 
bits, while clearing the link each time so that zeros are 
shifted into the LSB, then adding the new digit. The 
updated data word is restored via the pointer in SAVPC and 
the routine jumps back to the beginning for the next digit 
from HEX. 

If the digit is greater than 7, it is not to be entered into 
memory, but rather a pointer is computed to force a branch 
to the proper routine to be executed next. This is done 
by adding the contents of TAB, 65348, to the value returned 
by HEX, 10, 11, 12, 13, resulting in 65448, 65458, 65468, 

8-8 



65478. These locations contain pointers to routines DC!, 
PC!, EXIT and UDCS, respectively. 

In other words, pressing DECPC at this time results in 
routine DC! being executed, pressing MEM results in routine 
PC! being executed, pressing the yellow key results in the 
EXIT routine being executed and pressing the CNTRL key 
results in UDCS being executed, meaning a return to 
undefined control state. 

Routine DC! decrements the PC by adding -1, 77778, to it, 
and returns to DEP to get the next digit, indicating the 
contents of the decremented memory location may now be 
altered. 

Routine PC! increments the PC when key MEM is pressed and 
returns to DEP so that data may be entered into the incremented 
memory location. 

These routines a 11 ow the user to step forwards and backwards 
through memory and alter data at will, as long as the memory area 
being addressed is not in ROM. ROM may be examined but not altered. 

BLANK FLAG TOGGLE, DIS, ROM locations 6566-6575, listing line 
numbers 564-579, flow chart Figure 8-2 

This routine is executed when the key marked DIS RAL ISZ 
is pressed when in the undefined control state. Bit #6 · 
in the status word, Figure 8-3, is called the blank flag, 
and this routine toggles it every time it is executed, 
therefore, allowing the user to shut off the display to 
conserve power and to turn it back on. The routine clears 
the AC and L, gets the status word, shifts bit #6 into 
the link (by doing a byte swap and left shift), complements 
the link, shifts it back, swaps bytes again, restores 
status and goes to EXIT. 

SET PROGRAM COUNTER, SETPC, ROM locations 6600-6632, listing 
line numbers 578-612, flow chart Figure 8-2 

This routine, like DEP, accepts octal digits from the 
keypad. It begins by calling CLKPD, and then HEX to get 
a valid number from a key depression. The value is checked 
for being over 7. If not, the routine goes on to GOON, 
which loads the digit into the rightmost octal position 
in the PC and jumps back to SETPC to pick up a new key 
depression. 

8-9 



If the value returned by HEX is greater than 7, a base 
address in location ADJT is added to it, and the sum 
is used as an indirect pointer back to SETPC (if the 
DECPC or MEM keys are pressed) to EXIT (if yellow key 
is pressed) or to UDCS (if CNTRL is pressed). 

MICROINTERPRETER, MICRO, ROM locations 6633-7300, listing 
line numbers 613-1045, fl~w chart Figure 8-2 

Routine MICRO calls HEX and gets an index to compute a 
pointer to the routines servicing the individual keys 
(see Example 5 in Chapter 3 for a detailed description). 

Pressing the SHIFT key causes AINC to be executed, 
incrementing SAVPC. Pressing any of the keys with memory 
reference instruction opcodes on them causes routines 
ATAD, AISZ, ADCA, AJMS or AJMP to be executed. These 
routines load the opcode into the AC and jump to AAND. 
(Note that the opcodes are sometimes stored as constants, 
and sometimes are instructions located elsewhere in the same 
page.) This results in the AC being placed into the 
location being addressed by the user. The MONITOR, therefore, 
displays the address and opcode selected by the user. 

Routine MRPA continues to scan digits entered from the 
keypad and checks to see if they are address digits, 0-7, 
a CNTRL key depression (routine NEXT is executed in which 
the user PC is incremented, and control returns to MICRO 
to interpret the next instruction) or a SHIFT key depression 
(in which case routine ZONK is entered in order to set 
indirect bit 3). This is done by rotating the bit into the 
link, setting it and rotating back. Control is passed back 
to MRPA so it makes no difference if the indirect bit is 
set before or after the address bits are supplied. 

Address digits are shifted into the address field from 
right to left and the resulting address is checked for 
validity (in page 0 or in current page). If the address 
is outside valid page boundaries, then the program branches 
to routine FLASH. If the address is valid, MRPA is re
entered to get the next digit. Routine FLASH flashes the 
display to indicate an invalid address field. 

The routine blanks the display using IOT instruction 6400 
and times out approximately (4096 X (16 + 10) X 10) or 
1064960 states. This takes over half a second at 3.33 or 
4 MHz. 

~8-10 



The routine then checks to see if the keypad has been 
depressed. If it has, the address field is loaded with 
the new digits. If it has not, the routine continues 
to time out a different constant, TKB. 

Routine AIOT is entered if in the MICRO mode, key IOT is 
pressed. An opcode of 6 is entered into the AC with a 
microprogrammed combination of Group I microinstructions 
and the routine collects digits from the keypad, while 
checking for a CNTRL key entry. 

Detection of a CNTRL causes a branch to NEXT which 
increments SAVPC and returns to MICRO as before. Octal 
digits are shifted into the device address and control 
fields of the IOT instruction from right to left. 

Routine AOPRl is entered when an operate group 1 instruction 
is to be loaded via the keypad. The routine starts by 
loading 7000 into the user addressed location, then calling 
CLKPD and HEX as further digits are expected. 

A table of jump addresses is used as described in Example 5, 
Chapter 3 to branch to the proper routine. 

The branches either cause the program to ignore the key 
and ·1ook for the next key depression, AOPRl + 2, or to 
call an appropriate bit set subroutine, JA10-JA4. The 
bit set routines are used by routines in all three operate 
groups so they are coded as subroutines that may be nested 
in the MONITOR stack. 

The bit set routines work by reading a constant, AAA-AAG, 
corresponding to the appropriate bit being set into the AC, 
then jumping to the MBST routine. This routine stores the 
constant temporarily in MQ, clears the AC, gets the 
instruction in its current state, updates it by OR'ing in 
the MQ, replaces it at the user addressed location and 
returns. 

This procedure is followed by all the operate group micro
instruction service routines. 

In other words, a table of jump addresses is used to 
comput~ a branch to either a bit set routine or back to 
the keypad reading sequence. 

8-11 -



SINGLE INSTRUCTION EXECUTE, SIN, ROM locations 7301-7444, listing 
line numbers 1047-1170, flow chart Figure 8-2 

This routine is useful in program development as a single 
instruction at a time may be executed allowing intermediate 
results to be examined under MONITOR control. This routine 
may only be used to single step through programs in RAM and 
not in ROM because software 11 breakpoints 11 are implemented 
by replacing the instruction at a breakpoint with a jump 
to the breakpoint processing subroutine and this requires 
writing into the memory. 

SIN first initializes page 0 locations 0152 and 0153 labeled 
STORE and SHIFT to contain the instruction JMP I SHIFT 
and the address 7427. Then it checks the instruction to 
see if it is a JMP or JMS. It does this by extracting the 
opcode bits with an AND mask, adding -4000 or -5000 to 
them and checking for AC = O. 

It also checks the address mode bits with routines INAD 
and INDB and computes the effective address for the next 
memory reference. This address is in location TIME. In 
case of a JMS, location TIME is incremented (to point to 
the next instruction to be fetched which follows the 
location where the return address is to be stored). 

Routines INAD and INDB determine whether the current page 
bit and indirect bit are set by masking of all other bits 
and testing for a non-zero AC. If the page bit is set, 
the current page number is obtained by masking off other 
bits. This page number is concatenated with the page 
address. If the indirect bit is set, the effective address 
is fetched and replaced in TIME. In any event, when 
location EXEC + 4 is reached, TIME contains the address 
of the next instruction to be fetched. Now the program 
gets the contents of this location, NEXT, and the next 
sequential one (NEXT+ 1) and saves them in SAVE and SAVl. 
The contents of these two locations are replaced by the 
instruction JMS BACK, which is 4151, a JMS to page 0 
location 0151 labeled BACK. Then both these locations 
are tested to see if the instruction was actually placed 
there, that is, if RAM exists there. The program does 
this by reading the locations back, adding the two's 
complement of 41518 to them and checking for a zero AC. 

If the locations were indeed loaded correctly, the program 
proceeds to restore the MQ, LINK and AC and performs an 
indirect jump via SAVPC, executing the instruction 
specified by the user. 

8-12 



This instruction is executed, and, when the user program 
fetches the next instruction, it turns out to be the JMS 
BACK breakpoint placed by the MONITOR, so the user program 
stores the return address in BACK, 0151, and executes the 
instruction in location 0152 which happens to be the JMP I 
SHIFT which was placed there earlier. Thus, control is 
returned to the SIN routine at the point 7427 labeled RET. 
The routine saves away the AC, L and MQ again, restores 
the two instructions at the breakpoints, updates the user PC 
using the address stored in BACK and returns to the undefined 
control state. 

The reason for storing JMS BACK in two successive locations 
can now be seen to provide for the case when the single 
instruction to be executed may skip the next location. 

A limitation of this program is that JMP.-1, JMS.-1 and 
JMS.-2 instructions cannot be single stepped. There is 
not much application for a JMS.-1 or a JMS.-2, so the real 
limitation is with the instruction JMP.-1. 

What happens is that one breakpoint will be placed in the 
location of the actual instruction that is to be performed. 
Thus, the effective address referred to as NEXT will be 
the location containing JMP.-1 and the location NEXT + 1 will 
actually be the location containing JMP.-1. As these two 
locations are replaced by the JMS BACK, the program in 
attempting to perform the JMP.-1 will immediately see the 
breakpoint. Control will return without any action having 
been taken and the state of the machine when restored will be 
identical to what it was before. The effect is that of not 
performing the instruction. 

To get around this limitation, when writing skip and test 
loops, always provide an additional NOP so that the JMP will 
not be a 11 .-1 11 • 

Example: 

Address 

A 

A + 1 

A+ 2 

Instruction 

NOP 
SKIP on condition 
JMP.-2 

This limitation affects only the single instruction function 
and does not apply to running in normal mode. 

8-13 



This limitation applies to the TAD, ISZ and DCA memory 
reference instructions when they try to reference a 
*+2 or *+l location. (There is not much application 
for a program that uses instructions referencing the 
next sequential location, and especially, alters it). 

The instruction TAD *+2 will add the breakpoint 
instruction 4151 to the contents of the AC. 

The instruction ISZ*+2 will increment the value 4151 to 
4152 and then the original datum is restored so there is 
no net effect when single stepping this instruction. 

The instruction DCA*+2 is useful in the INTERCEPT JR. to 
display a result when the location following this 
instruction contains the HALT instruction 7402. However, 
when single stepping this instruction, the DCA will write 
over the breakpoint instruction, then the original content 
is restored, so there is no net effect. It is recorrmended 
that the sequence 

DCA*+3 

NOOP 

HALT 

is used to display data in programs when single stepping 
is desired. Alternatively, the user, after single stepping 
through the previous part of the program, can depress 
CNTRL RUN for the display sequence. 

8-14 



PIE INITIALIZE, INPIE, PRINT TO TTY, TALK, RECEIVE FROM TTY KEYBOARD 
OR READER, LISN 

These routines in ROM locations 7445-7507, listed in lines 
1170-1248 are described in Chapter 7 on the PIEART board. 
See Figure 8-2 for the flow chart. 

INTERCEPT JR. BINARY LOADER, BIN, ROM locations 7600-7755, listing 
line numbers 1249-1385, flow chart Figure 8-2 

This loader uses the PIEART interface board. The BIN format 
is described in Applications Bulletin M003, and the Teletype 
modifications are descri.bed in Applications Bulletin M005. 
The routine initializes the PIE-UART checksum and RAM 
locations it uses, then gets a character by calling LISN. 
The character is checked for being a rubout (all channels 
punched) or part of leader-trailer (only channel 8 punched), 
and if it is either, the program branches to RUM or LTC 
respectively. RUM continues to scan characters until another 
rubout is detected at which point it returns to BEG, the 
beginning of the character processing program. Thus the 
system ignores text enclosed by rubouts. 

LTC checks if the character is a first, LT character or not. 
If so, the load routine is ended, the checksum computed, the 
SAVAC location placed in the address display and the machine 
is halted showing the checksum. 

If the character received was neither a rubout nor an LT 
character, the program updates the checksum, checks for a 
11 change field 11 character (if it is, it is ignored and the 
next character is processed), checks for 11 origin 11 data (if 
so, it gets the address data in two successive characters) and 
checks to make sure the starting address does not fall in the 
range 0140-0177 which is used by the MONITOR. If the address 
falls in this range, the RAM is not loaded. Data is loaded 
by routine DL2 only when conditions are valid. 

INTERCEPT JR. MEMORY DUMP, DUMP, ROM locations 7510-7576, listing 
line numbers 1410-1511, flow chart Figure 8-2 

This program requires that the first and last locations, of 
a block of memory to be dumped on tape, should be entered 
in locations 0176 and 0177, and the program run starting at 
location 7510. 

The program uses the leader-trailer routine contained in 
locations 7757-7765 and 6173-6176. It will punch out a 
BIN formatted tape complete with leader-trailer and checksum. 

8-15 



The program disables the CP request timer, initializes 
the PIE-UART, calls routine TWTY in the leader-trailer 
program to punch 63 LT characters. (Note that TWTY 
uses a constant KM63, which happens to be an instruction 
located in address 7723 that conveniently lies in the 
same page and has the numerical value required. This 
programming device saves valuable memory locations.) 

The program next punches out the origin address, user 
entered in 0176, in two successive ASCII characters 
along with the channel 7 punch. 

The data is also punched out using two characters per 12 
bit word. The program counts the 1st and 2nd characters 
by looking at location BACK which is loaded with 7776 
and incremented as a character is output. After two 
characters, the location becomes zero and the ISZ that 
incremented it will skip the BSW that is used to position 
the 2nd half of the character. 

After every data item is transmitted, the address is 
checked to see if the end of the block has been reached. 

As each character is punched (by calling the PUNCH routine, 
which in turn calls TALK, then jumps to LINKER) the check
sum is updated in location SAV5 (by routine LINKER). 

After the last data item has been punched, the checksum 
is punched by CHSUM and routine TWTY is again called to 
punch out the leader-trailer tape. 

Finally, the CP request timer is restored and the processor 
halted. 

8-16 



fllJCROlNlER 

eec IN PASS l 

END Of PASS l 
BEGIN FASS 2 

l 
2 

' 4 
5 
6 coco 
1 
8 oooc 0000 
9 

10 
11 OlltO 
12 
ll 0140 ooco 
14 0141 0000 
15 Cl42 COCO 
16 0143 0000 
11 
18 0144 0000 
iq 0145 ooco 
20 01-46 0000 
21 0147 0000 
22 Cl 5C 0000 
2' 
21t 0151 0000 
25 C152 0000 
26 Cl 53 OCOO 
27 Cl 51t 0000 
28 Cl 55 0000 
2q o15ili ccco 
30 0151 ccoo 
31 C16C CCHlC 
32 
33 
34 OlEl ,. 
'36 0161 ocoo 
31 

" ,. 
40 0164 
41 
42 0164 oooc 
43 0165 0000 
44 OlH CCOC 
45 4• 
47 
48 
49 
50 
51 4161 

52 5564 

" 54 
55 
56 7777 
51 
58 7777 5366 
59 
60 7766 
61 
62 7766 3140 
63 7767 6004 
61t 7770 :3142 
65 777l 1143 
u nn 1104 
67 7773 7110 
68 7711t 3143 
6q 7775 5776 
70 17"16 6007 
Tl 
12 
13 
74 

. 15 
76 IJOCO 
11 
78 IJOOO 3140 
7q 6001 L'i004 
80 6002 3142 
81 6()03 1143 
1!2 60C4 1101t 
83 1:005 7130 
84 6()(j6 3143 
85 
86 6007 7521 
87 1:010 3141 
88 ,. 
90 
91 
92 
q3 6011 1234 
'14 6012 3162 
CJ5 601:! 1235 
q6 6014 3163 
97 6015 1236 
q5 6016 3164 
qq 6017 1237 

100 6020 3165 
101 
102 
103 
104 6C21 4161 
105 6022 1:236 
106 602'3 1604 
107 6024 750(; 
108 60 25 5263 
109 6026 4161 
110 6027 6200 
111 60JO 7500 
112 6031 5261 
113 6032 56~3 
114 EOJ3 6117 
115 
116 
111 
118 
119 
120 6034 5563 
121 E035 6040 
122 E036 6051 
123 6037 0167 
124 
125 
126 604C 3166 
127 l:O'il 2165 
128 60'i2 1161 
12'1 604'3 7001 
130 60H 35E5 
131 6045 1561 • 
132 6046 3161 
133 604 7 1166 
134 605C 5561 
135 
136 
137 6051 3166 
138 6052 1565 
13~ t0~3 31El 
l"t0 6054 7060 
141 t055 1165 
142 

S.f\IPC, 0 

S&"AC, 
SA"MQ, 
S.11\FL, 
STAfUS, 

TlflEt 
SA\E, 
HCLO, 
PCINT, 
TEfiP, 

BACK, 
STCRE, 
S~IFT, 

SA\l, 
SA'w2, 
SA\3, 
SA\lt, 
'H\5, 

CAlLX, 0 

*0164 

RElX, 
STICK, 
AC, 

CALL:JfllS CALLX 

RElURto.=Jl"P t RETX 

•7177 

JPP CPMOCE 

*7766 

CPl'ODE, CCA SAVAC 
GTF 

•6COO 

CCA SAVfL 
TAD STATUS 
CLL RAL 
CLL RAR 
OCA STATLS 
JJllP l 1776 
?NIT 

SlAR T, DCA SAVAC 
Glf 
OCA SAVFL 
TAD STATUS 
CLL RAL 
CLL CML RAR 
DCA STATUS 

JN IT, SWP 
OCA SA\IHQ 

TAD JMPI 
DCA CA llX•l 
TAD KCALLY 
CCA CALLX+2 
TAD KRETY 
CCA RETX 
TAD BA SE 
CC:A STACK 

CALL 
REfSH 
LAS 
SMA 
JMP au·T 
CALL 
SWDB 
SMA 
JHP EXIT 
JfllP I .•l 
uccs 

JflFI, JfilP I C.llLLX+2 
KCILLY, CALLY 
KllETYt llETY 
BA~E, STACK+2 

CALLY, DCA AC 
ISZ STACI< 
lAO CALLX 
!AC 
OCA I STACK 
TAO I CALL)( 
CCA CALLX 
TAO AC 
JJilP I (ALLX 

RETY, DCA AC 
TAl'J I STACK 
OCA CALLX 
Cf'A CHL 
TAD STACI< 

THE MDNI TOR PllCGllAH FDR Tt-E 
INTERCEPT JR. 

I 1H: PAGE ZERC LOCATIONS 

I TH: PAGE l.ERO LOCATIONS FCR THE 
/. CP MONITOR STACK 

THE LDCAT IONS 167 TO 177 ARE THE 
STACK POI t.TER TABLE LDCAT IONS 

I THE PROGRAM ,.ACRCS 

I THI: CP ENTRY PCOT 

I GO TO THE CPfllGCE START PD INT 

I SAVE THE AC 

I SAYE THE FLAGS 
I G6T THE SUTUS WORD 
I POSITION BIT 110 
I CLEAR THE HE"' FLAG ~IT IN STATUS 
I RESTORE STATUS 
I GO TO INIT 
I THE CO~HJN START POINTER 

I THE USER STAllT PCINT 

I SAVE THE AC 
I GET THE FLAGS 
I SAVE THE FLAGS 
I GET THE s T nus WCRD 
I PCS JT ION 8 IT to 
I SET THE HEH FLAG BIT IN STATl.S 
I RESTORE STATUS 

GET THE HQ 
SAVE THE HQ 

I ESfABLISH THE CP SUBROUTINE STACK 

I fHI S Id LL CLEAR Tt-E STACK POINTER 

I GO ON WITH HE PROGRAM 

I CALL THE FIRST DISPLAY REFRESt

/ LOAD THE KEYPAC lQ THE AC 
I TEST; IS THE •C• KEY PRESSED 
I NO; GD TO OUT 
I YES; CALL A SWOB TO BE SURE 

I TES.Ti 15 THERE A VAL ID 11 C" KEYPRESS 
I NO; GD TO EXll 
I YES; GD TO THE UNDEFINEC CONTROL 
I STATE 

I Tttl S IS THE S'-8RCUT1 NE STACK 
I Rat OVERHEAD 

I SAVE THE AC 
I UPDATE THE STACK POINTER 
I CALLX HAS THE RETURN ADDRESS 
I INCREHENT THE RETURN ADDRESS 
I SAVE LlN THE llFO STACK 
I GET Tl-tE USER SUBROUTINE 
I PUT IT lN CAUX 
I RESTORE: THE AC 
I GO TO THE sue11ou1 INE 

I SAVE THE AC 
I GET THE RHURf\ ADORE SS FROM THE STACI< 
I ANl PUT IT 1 N CALLX 
I COMPLIMENT THE AC &.NO ltNft 
I DEC.REMENT ft.E STACK POINTER ANO 
I RESTORE THE LINK 

143 6056 3165 
144 ~0~7 1166 
145 &OfiO 5561 
146 
141 
148 
14• 
150 
151 
152 
153 
154 
155 
156 
157 

"" 159 
1•0 
161 
162 
16 ~ 
164 ,., 
166 
167 
168 
169 
110 
111 
112 
113 

'" 115 
116 
ITT 
178 
119 
180 ,,, 
182 
183 
184 
185 
1R6 
181 
188 
189 
l•D 
191 
192 ,., , .. 
195 
196 
l<T 
198 
199 
2CO 
201 
202 
203 
204 
205 
206 
201 
208 
209 
210 
211 
212 
213 
214 
215 
216 
211 
218 
219 
220 
221 
222 
223 
224 
225 
226 
227 
228 
22• 
230 
211 
232 
233 
234 
235 
236 
2'1 

"' 239 
2<0 
241 
242 
243 
244 
245 
246 
247 
24B 
249 
250 
251 
252 
253 
254 
255 
256 
257 
258 
259 
260 
261 
262 
263 
264 
265 
266 
267 
268 
269 
270 
211 
212 
213 
274 
215 
216 
271 
218 
219 
280 
281 
282 
283 
284 
285 
28• 
281 
288 
26' 
290 
.(91 
192. ,., 

E061 
6062 
6063 
6064 
6065 
fOH 
6CH:7 
607C 
6071 
6072 
607~ 
6074 
6075 

6076 

6077 
HOC 
f.lCl 
610.( 
6103 
6104 
6\0'5 
6106 
6107 

l:20C 
6201 
62C2 

620:! 
6204 
f:2C5 
6206 
6207 
E210 
6211 
6212 
l:213 
6214 
6215 
6216 
6217 
622C 
l:22l 
6222 
E223 
6224 
6225 
6226 
6227 
623C 
6231 

6232 

6233 
623'i 
6235 

6236 
6237 
6240 
6241 
6242 
6243 

6244 
f245 
6246 
6247 
6250 
6251 

€::252 
E253 
t254 
&255 
E256 
E251 
6260 
6261 

62l:2 
6263 
6264 
6265 
6266 

6267 
621( 
6271 
6212 
t.27? 
6274 
6275 
6276 
6277 
63CO 

6301 
63C2 
E3C3 
6304 
·ncs 
6306 
E3C7 
631C 
63ll 

6312 
6313 
6314 
'6315 
6316 
6317 

4161 
6110 
7300 
1141 
7421 
1143 
7710 
5277 
1142 
7104 
7200 
ll4C 
6COl 

5400 

1143 
71C4 
711 c 
:!143 
1141 
60C5 
7200 
tl4C 
5541 

6200 

7210 
315~ 
76C4 

3145 
1233 
3144 
2l'o4 
5206 
1tl61 
623E 
123'5 
3157 
1234 
3144 
2144 
52H 
4161 
6236 
2157 
5214 
7604 
7041 
1145 
7440 
'5202 
1145 

5564 

7500 
'142C 
77H 

3151 
7Cl0 
3146 
1143 
7002 
7700 

5252 
64CC 
1146 
71C4 
1151 
5564 

1143 
C371 
3143 
1143 
0373 
1262 
3147 
5547 

6263 
5267 
5301 
5112 
5323 

7332 
7Cl2 
3150 
1365 
3l'i7 
1366 
3152 
1360 
'H5'3 
5333 

133~ 
3150 
1311 
3141 
1367 
:n~2 
1361 
3153 
5333 

73'32 
3150 
1364 
3147 
1"310 
3152. 

a .. 17 

D'- t, 

,.CLT, 

S\o.C~, 

GAii, 

Tl<l, 
T1<2, 
TCH, 

REF SH, 

Tt-llU, 

AQ.;, 
TAeLE, 

OIGO, 

OIGl, 

OIG21 

CCA STACI< 
TA~ 11.C 
J,.P I CAllX 

CALL 
CLKPD 
ClA CLL 
TAO SAVMC 
>CL 
TAO STATUS 
SPA CLA 
J"'P MOUT 
1A.D SA'tFL 
CLL RAL 
CLA 
TA.O SAVAC 
!CN 

JHP 1 SAVPC 

lAO STATUS 
Cl.L RAL 
Cll «!:AP 
CCA STA ns 
UO SAVFL 
RTF 
CLA 
TAO SAYAC 
JMP I SAVMQ 

CLA RAR 
CCA SAV2 
LA5 

OCA SA\IE 
TAO TKl 
CCA Tt"'E 
I SZ TIME 
J,.P .-1 
CALL 
REfSH 
TAO TCNl 
DCA SAV4 
TAD TK2 
CCA Tll"E 
tSZ Tl ME 
Jl"P .-1 
CALL 
REF SH 
ISZ SAV4 
JP'IP .-7 
LAS 
CIA 
TAD SAVE 
qA 
J,..P GAR 
HO SAVE 

RETURN 

7500 
742C 
1114 

CCA BACK 

••• 
DCA HOLD 
TA.Q ST .HUS 
"5W 
S,.A ClA 

J14P .+6 
640[ 
TAO HOLD 
CLL RAL 
HO BACI< 
PETl.)11.N 

lAO STATUS 
Afl."0 MS.Kl 
QCA STATUS 
TAO ST.ATlS 
Afl.0 MSK2 
TAO ADJ 
CCA POINT 
J"'P t POINT 

TABLE 
JJilP OIGO 
JM!> ClGl 
J"'P OIG2 
JJilP 01G3 

l'U. CLt CML ATll. ... 
CCA TEMP 
HO KH8 
DCA POINT 
TAO KM4 
DCA STORE 
TAO "IASKC 
DCA SHIFT 
JMP LOAD 

l"AO LOAD 
CCA TE,.P 
TAO KMll 
DCA POINT 
TAO Kl47 
CCA SlORE 
TAO MASKl 
oca SHIFT 
JMP LO llC 

CLA CLL C"'L IHA. 
OCA TE"1P 
TAO K.Ml4 
CCA POTNT 
TAO K,.10 
CCA STCRE 

I RESTORE THE SlACK POINTER 
I RESTORE THE H 
I RETURN fO THE PRCGRA"1 

I •E NO!iril CONTifl.lE ... ITH THE CP 
I PROGRAM 

I HIS IS THE EXIT POINT 

I WAIT FDR THE KEYPAD TO CLEAR 

I CLEAR THE AC ANO THE L 1 NK 
I GET THE MQ 
I RESTORE THE fllC 
I GET THE STATlJ5 WORD 
I TEST; IS JHE ,.EM FLAG SET? 
I YES; GO TO H'f MEMORY EXl T ROUTINE 
I GEl THE FLAGS 
I RESTORE JHE llNK 
I CLEAR THE AC 
I GET THE: AC 
I RES TORE THE IENFF ANO COME OUT 
I Of THE CP MOCE 
I RESTORE THE PC 

I GET THE STATUS WORD 
I POSITlON BIT •O 
I CLEAR THE HEM FLAG IN STATUS 
I RE:S.TORE THE SUT\JS WORO 
I GET THE flAGS 
I RES TORE ThE FLAGS 
I CLE.AR THE AC 
I RESTORE THE CLO AC 
I RETURN IHRU T .. E CLO MQ 

I THE MONITOR SUBRDUT INES 

I Tit S~IlCH DEfOUNCE ANO 
I DISPLAY REFRESH llCUTINE 

I POSUIDN THE LINtl IN A CLEARED AC 
I SAVE THE LINK tN SAV2 
I LOAC THE SWITCH llEGISTER IKEYPADJ 
I TO THE: AC 
I SJORE IT IN SAVE 
I GET THE TIME CONSTANT 11 
I STORE IT IN HE T !MER 
I TlME OUT 4 Milli SECONDS AT 2.5 MHZ 
I JUMP BACK ONE PL ACE 
I CALL THE DISPLJY REFRESH 

I Ger THE llAIT COUNT 
I PLACE THE COUH IN HE COUNTER 
I GET THE TIME CONSTANT #2 
I PL.ACE: IN THE TIMER 
I TIME OUT 5 MILLISECONDS AT 2.5 HHZ 
I JMP BACK Df'IE PLACE 
I REFRESH THE DISPLAY 

I CWNT DOWN THE CCUNTER 
I GO BACK fC.R AP..CHER WAIT CYCLE 
I Lc.:AD THE KEYP"C .II SECOND TIME 
I NEGATE THE VALUE 
I ADD THE f IRST READING 
I TEST; ARE THE \IALIJES THE SAME 
I NO; GO BACK Af\D CO IT AGAIN 
I YES; GET THE READING OTC THE 
I AC 
I RETURN TO THE FRCGRAH 

I -192 
I -240 

I -• 

I THE: DISPLAY llEFRESH SUBROUTit<;E 

I SAVE THE AC lN BACK 
I PCS IT ION THE L INI< 
I SAVE THC LINI' IN t10LD 
I GET THE STATl.'S MORD 
I POSIT ION THE eLAhK FLAG. BIT lf6 
I TEST; IS THE flAfl.K FLAG SET. 
I CLEAR THE AC 
I NO; SKIP TC THE DISPLAY REFRESH 
I YES;"LOAO ZERCS TO THE DISPLAY 
I GET THE LINK 
I RESTORE JHE LINK. 
I RESTORE THE AC 
I RETURN TO THE PROGRAM 

I GET THE STATUS Wl]RD 
I CLEAR THf: Bll BUCKET 
I RESTORE THE STATUS WORD 
I GET THE sun.s WORD 
I MASK OUT THE C1GIT CODE 
I ADJUST FOR Tf1E TABLE 

I GO TO THE PRCPER llOUTINE THRU 
I THE TABLE 

I GO TO THE PRDPER RClJTlhE 

I SET THE AC ECl:AL TO 2000 
I SET JHE AC EQUAL TO 0400 
I PLACE IN THE TEMP 
I SET THE AC ECUAL TO -8 
I STORE IN POif\'T 
I SE:T THE AC E CUAL TO -4 
I PLACE l N STOFE 
I GET MASK 7000 
I PLACE IT IN St-IFT 
I GO TO LOAD 

I SEJ THE AC E C'-AL TO 1000 
I PLACE IN THE JCT IOORO 
I SET THE AC EQUAL TO -11 
I PLACE IN POI NT 
I SET THE AC ECUAL TO -7 
I Pt.ACE IN STO~E 
I GET THE MASK C70C 
I PLACi IN SHI FT 
I GO TO LJAO 

I SET THE AC ECUAL TD 2000 
I PLACE THE BJT cor:E JN THE IDT WORD 
I SET THE AC EC\.;Al lO -14 
I PLACE IT IN PO[NT 
I SEJ THE: AC ECt.6L TO -10 
I PLACE IT IN STORE 



294 
295 
296 
2"7 
298 
299 
300 
301 
302 
303 
304 
305 
3C6 
307 
308 
?OQ 
310 
:n1 
312 
313 
314 
315 
310 
317 
318 
31• 
320 
321 
322 
.?2? 
324 
325 
326 
327 
328 
329 
330 
331 
332 
333 
334 
!!15 
3?6 
337 
338 
339 
340 
341 
142 
343 
344 
345 
346 
347 
'48 
149 
350 
351 
352 
353 
354 
155 
356 
357 
358 
35• 
360 
?61 
362 
363 
364 
365 
366 
367 
368 
369 
370 

'" 312 
373 
374 
375 
376 
377 
378 
379 
300 
381 
382 
383 
384 
?85 
:!B6 
387 
?88 
389 

"' ,., 
3<2 
303 
394 
395 
3% 
397 
398 
399 
400 
401 
402 
403 
404 
405 
406 
407 
408 
409 
410 
411 
412 

'" 414 
415 
416 
417 
418 ... 
420 
421 
422 
423 
424 
425 
426 
421 
428 
429 
430 
431 
432 
4]3 
434 
435 
436 
437 .,, 
439 
440 
441 
442 
443 
444 

6320 1362 
&321 315?-
6322 5333 

632:! 73"0 
6324 3150 
63215 1366 
6326 1141 
6327 7240 
6"?0 ?152 
6331 1363 
63'32 3153 

6333 lCCC 
6334 C153 
633!: 2147 
6336 534C 
63?1 5342 
63'<0 700'. 
634 l 53~5 
6H2 115C 
6343 3150 
6344 1400 

6345 0153 
6346 2152 
E34l 5351 
635C 5353 
E351 7CC4 

t:352 5346 
6353 1150 
6354 6'900 
6355 2143 
6356 1300 
6'Hl 5246 

6360 7000 
6361 0700 
6362 G07C 
6363 0007 

6364 1'7El 
6365 7767 
l:3H 7773 
6367 7170 
6370 7165 
6311 7164 

f372 7173 
6373 0003 

6llC 

6110 1154 
l:lll 4161 
6112 6200 
611:\ 7440 
6114 5311 
6115 1154 
6116 5564 

61 l7 4161 
6120 6110 
El21 4161 

6122 6425 
6123 1330 
6124 3147 
612! 15li7 
6126 31'il 
6127 5547 
6130 6131 
6131 6l:33 
6132 7600 
6133 6566 
6134 73tl I 
6135 6411 
H:!E l:4C7 
l:l37 6414 
l:l'iC "66CC 
6141 6403 
6142 6524 
6143 E4CC 
6144 6117 

6400 

6400 2140 
6401 70CO 
l:4C2 5146 

E4C3 7340 
64C4 lOCO 
l:405 3CCC 
640l: 5747 

64C7 7402 
641C 5746 

6411 7402 
6412 6407 
641'! 5746 

6414 7300 
6415 314C 
6416 31't2 
6411 31'11 
642C 3143 
6421 6406 
E422 7040 
6ft23 3CCC 
647.4 52C7 

6425 4161 
f.426 62CO 
l:427 745C 
6410 5225 

HO MASK2 
DCA SHIFT 
JffP LCAD 

OJO, ClA Cll CML RAR 
IJCA TE!i!P 
TAO KJlll'i 
DC:A POINT 
Clo\ C"'IA 
DCA STCRf 
HD !ol!ASK3 
DCA SHIFT 

LC!O, TAO SA\IPC 
AfltO SH TFT 
I SZ POif..IT 
JfilP .+2 
Jl<!P .+3 
P'L 
JlilP .-4 
TAD TEMP 
CCA TEMP 
TAD I SAVPt; 

ANJ SHJ'fT 
TSZ STGRE 
JMP .+2 
Jlo'P ,.+3 
PAL 

JMP .-4 
l!\O Ht!P 
6400 
t SZ STATUS 
CLA CLL 
JMP T.HqU 

HASKO, 7COO 
JillASKlt 0700 
MA !K2, 0070 
MASK3, 0007 

Kl'l4, 7761 
KI'S, 7767 
KJll~, 7773 
Kf"'l, 7170 
KMlO, 1765 
KJilllr 7764 

t1 ~Ml, 777? 
MS1<2, COO:!! 

•E 110 

CUPO, OCA SA\ll 
CALL 
swoe 

'" JP'P .-3 
UD SAVI 
RETURN 

UDCS, C:ALL 
f.LKPD 
COLL 

""" TAn GOTO 
DCA PCINT 
TAO I POINT 
OCA POINT 
JP'P I POlfllT 

GOlQ, GQTO+l 
JlllC RC 

"" eLK 
SIN 
RUN 
HALT 
RESET 
SET PC 
DEC PC 
OE• 
JNCllC 
tJDC S 

INUC, ISZ SAVAC •t• 
JJlllP I UG 

OECPC, CU CLL CMll 
lAO SAVPC 
CCA SAVPC 
JMP t BUG 

HALT, .. LT 
JMP I UG 

Rl!Nr tilt 
6407 
J"'P I UG 

RESET, CLA Cll 
DCA SA\IAC 
[lCA SA\IFL 
DCA SAVMQ 
t:CA STATUS 
6406 
CMA 
OCA SAVPC 
J/'P HALT 

HE), CALL 

'"°' SNA 
JffP HEX 

I GET MASK. Oll7C 
I PLACE IT I J\I ~/-!If l 
I GG TO LOAD 

I SEf THE AC EC:llAL TO 4000 
I PLACE IT IN Tl-E ICT loORO 
I SET THE AC ECILAL TO -4 
I PLACE:' IT IN PCINT 
I SET THE AC HlJAL TO -l 
I PLACE IT IN .slCRE 
I GET MASK 0007 
I PLAC.E IT IN SHIFT 

I 6ET THE USER PC 
I MllSK JUT TH CfSlRED OtGtT 
I ENTER THE: SHI FT LOOP 

I SHIFT TO POSI110tl. FOR DISPLAY tt 

I CCMBINE WITH THE IOT WCRO 
I RESTORE THE ICT \!ORO 
I GET THE MEMOR'I DATA THRU THE 
I USER PC 
I MASK OUT THF DESIRED DIGIT 
I ENT ER THE SHIFT LCOP 

I SHIFT TO Tt<E PFIOPER LOtATION FOR 
I OISPLAY #Z 

I COMBINE .. I TH Tl-IE IOT WCRIJ 
I LOAD IT TO THE 01 SPLAY 
I UPDATE THE 0 IG TT CQl)f 

I GC TO THE EXH POINT OF THE RCJJTINE 

I THE hlAJT fCR CLE.8R KEYPAD ROUTINE 

I SAVE THE AC II\ Sll\11 
I CALL THI:. SWI 1Cl-I CEBOUNCE 

I TEST; IS THE ICEYPAO CLEA.fl? 
I NO; GO BACK UNTIL (T IS 
I YES; RESTORE Tl-tE AC 
I GO BACK. TO HE PROGRAM 

I HE UNOEF INEC COtl.TROL STATE 

I MAil FOR THE KF.Y PAO TO CLEAR 

I LCOK FOR A HEX 0 I (IT FROM THE 
I KEYPAU 

I ADJUST A POTNlER. TO THE TABLE 
I PLACE THE POINTER IN POINT 
I GET THE RUUTil'IE ACORESS 
I PLACE THAT ACCf!ESS IN POINT 
I GO TO THAT RCUTt~E 

I Tl-tIS IS THE TABLE OF ROUTINE 
I ADDRESSES 

I HE INCREMENT .llC ROUT INF. 

I INCREME~T THE AC 
I IN CASE AC WA5 7717 
I GO TO HIT 

I TtE DECREMENT PC ROUTINE 

I SET THE AC EC:UAL TO -l 
I ADO THE USER PC 
I RESTORE THE CECREMENTED USER PC 
I GO TO UNDt:FINEt CONTROL STATE 

I THE HALT SUPllCUT INE 

I CLEAR r HE RU" FL IP/FLOP 
I GC TO EX.IT 

I THE RUN ROUT I PIE 

I CLEAR THE RU!\ FLIP/FLOP 
I JCT RUN COMMaPlt 
I GC TO f:XJT 

I THE RESET ~OUTrNE 

I CLEAR THE AC llNO L t"IK 
I CLEAR THE USEfl AC 
I CLEAR THE: Fl aG ~ 
I CLEAR THE MC 
I CLEAR THE STATUS WORD 
I lOT RESET COPIMANC 
I SET THE AC EC:LAL TO 7777 
I SET Tl-IE PC. ECl\JAL Tn 7777 
I GO TO THE t<Al T RCUT INE TO CLEAR 
I THE RUN FLIP/FLOP 

I THE HE:X DIGIT ROUTINE 
I TAKES A KEVPllESS FROM TH KEYPAD 
I ANl CONVERfS IT TIJ A HEX BINARY 
I DIGIT FROM 0 TC 12 

I GET A KfYPAO VALUE 

I TEST FOR A KEYPRESS 
I NO; GO SAC!< LNTIL THERE IS A 
I KEVPRESS 

445 
446 
447 
448 
449 
450 
451 
452 
453 
454 
455 
'i56 
457 
45' 
459 
460 
461 
462 
463 
464 
465 
466 
467 
468 
469 
470 
471 
472 
473 
474 
475 
476 
477 
47B 
470 
4BC 
4AI 
482 
483 
484 
485 
486 
487 
488 
489 
400 
491 
492 
493 
494 
495 
496 
4'7 
498 
4QQ 
500 
501 
502 
503 
504 
505 
506 
507 
508 
509 
510 
5LL 
512 
513 
514 
515 
516 
517 
518 
51• 
520 
521 
522 
523 
524 
525 
526 
527 
528 
529 
5'0 
531 
532 
533 
534 
535 
536 
537 
538 
5?9 
540 
541 
542 
543 
544 
545 
546 
547 
548 
549 
550 
551 
552 
553 
554 
555 
556 
557 
55B 
55• 
560 
561 
562 
563 
564 
565 
566 
567 
568 
569 
570 
571 
572 
573 
574 
575 
576 
577 
578 
57' 
500 
581 

'" 583 
5'4 

"' 586 
511·; 

58f 
5R<: 
590 
591 
592 
593 
594 
505 

8-17A 

t431 7CC'i 
6432 7420 
f:433 5237 
64:!4 7)07 
l:435 1323 
l:436 5564 
6437 7500 
6440 5244 
64'il 7325 
6442 1"323 
6443 5564 
6444 7CC6 
61t45 7'i20 
64'i6 5252 
6447 1305 
6450 1323 
t451 5564 
6452 7500 
1:453 5257 
t454 7327 
1:455 7CCI 
6456 55El4 
6457 7006 
64l:O 742C 
6461 5265 
6462 730 I 
6463 1323 
6464 5564 
l:4l:5 7500 
f46l: 5271 
6467 7327 

6470 5564 
6471 7006 
6472 742C 
6473 5277 
1:474 7307 
6475 7001 
f47t 5564 
6471 7500 
65CC 53C3 
6501 73C7 

6502 5564 
6503 7006 
65C4 7420 
l:5C.5 5310 
65C6 7325 

65C7 5564 
6510 75CC 
6511 5314 
6512 7305 

651'3 5564 
6514 7006 
f515 1'42C 
6516 53Zl 
6'il 1 7301 

6520 5564 
6521 73CC 

6522 5564 

6523 0007 

6524 4161 
6515 6110 
6526 4161 
6527 6425 
f;530 3150 
l:531 ll5C 
65"!2 0H3 
6533 7650 
e,534 535C 
6535 1150 
65:\6 1343 
65:!7 3150 
654C 1550 

65ftl 3150 
6542 'i550 

l:5'i3 6534 
6544 6557 
E-54~ 6563 
6546 EOH 
6547 6117 

6550 1400 
6551 7104 
6552 71C4 
655~ 71C4 
(:554 1150 
6555 34CC 
65i:6 532'i 

f557 736C 
656C 1000 
6561 3000 
6562 5324 

6563 2000 
6564 7000 
6565 5324 

6566 7300 
6567 1141 
657C 7002 
6571 7CC4 
t5 l'2 7030 
f:5l3 1'CC2 
6574 3143 
6575 57~6 

ucc 

6600 'ilEl 
&6Cl 611C 
6602 4161 
6603 6425 
66C4 H5C 
66C5 1150 
!:6Ct C207 
l:607 765C 
f;61 c 5224 
6611 ll5C 
6612 1217 
tl:l3 3150 
l:6l4 15"iC 

KOC07 1 

OH, 

TA1!1 

UG, 
@~c, 

P(PI, 

OCY, 

PCl1 

SETPCt 

"L 
<•L 
JfllO .+4 
CLA CLL IAC. RTL 
TAO KOOO? 
P.ETl,;llN 

'"' J~P .+-4 

I YES; POSI TICN f!ITS IJO ANO U 
I TEST FOR A "C" KEYPRESS, BIT •o 
I NO; GO ON 
I Y.t:S; SET THE H EQ'J.U TO 0004 
I ACJUST THE: AC TO 00131 HEX = B 
I GO BACK TO HE Pf'IOGRAM 
I TEST FOR A •s• KEYPllESS, BIT n 
I NO; GO ON 

CLA CLL CML 
TAI) K0007 
RETURN 

tAC RAL I YES; SET THE AC EQUU TO 0003 
/·ADJUST THE AC TO 00\2, t'EX "' A 
I GO BACK TO Tt-E PFIOGRAM 

RTL 
SM. 
J/i'P .+4 
CLA Cll IAC RAL 
TAO K0007 
RETURJ\ 

"' J/i'P .+4 

I POSITION BITS #2 AND •3 
I TEST FOR A "ll" KEYPRESS, BIT #2 
I NO; GO ON 
I Yf;S; SET THE AC EQ'JAL TO 0002 
I ADJUST THE AC TO coll, tlEX = c; 
I GO BACK ro TH PRCGU.M 
I TEST F(H. "7" MEY PRESS., Bl T "3 
I "C; GO ON 

CLA Cll Cl'll 
!At 

IAC R ll I YES i SET THE AC EC:UA.L TO 0006 

Rl:ll~N 
RTL 
SNL 
JMP .+4 
CLA CLL tAC 
TAO K0007 
PET\JRf,1 
SMA 
JMP .+3 

I SH THE AC. FQLAL TO 0007, HE>I = 7 
I GG BACK TO THE PROGRAM 
I POSITION tslTS #4 ANO 111:5 
I TEST FOR "8" ICEYPRESS, !UT •4 
I NC; GO ON 
I YES; ser THE AC EQUM.. TO 0001 
I ADJUST THE AC TO 0010, HEX= 8 
I GO SACK TO T t-E PROGRAM 
I TEST FOR "6" llEYPRESS, RIT 111:5 
I NO; GO ON 

CLA CLL CML ur. RTL I YES; SET THE ac EQUAL TO 0006 
I HEX E 6 

RETl.RN 
OTL 
S~L 
JMP .+4 
CLA CLL 
IAC'. 
fl ET URN 
SMA 
JP'P .+, 
CLA CLL 

RETURN 
RTL 

IAC RTL 

IAC RTL 

I G( SACK TO Tt-1E PROGRAM 
I PGS I Tl Oh Btl!: #6 ANO n 
I HST FOR 115" KEYPRESS, BIT #6 
I NO; GO Of.ii 
I YES; SET THE .&C EQUAL TO 0004 
I SET THE AC EC:Ul TO OOCS, HEX = 5 
I RETURh TO HE PRCGR.AH 
I TEST FOR A "Ii" KEYPRESS, BIT f7 
I NG; GCi ON 
I \'ES; SET THE AC EQ:J.U TO 0004t 
I HEX : 4 
I GO BACK T Q THE PROGRAM 
I POSI TJON BITS #8 ANO 111:9 
I TEST FOR "3" KEYPRESS, SIT 1118 

JMP .+3 I NO; GO ON 
CLA Cll CML IAC RAL I YES; SET HE AC EQUAL TC 0003, 

FIETURt. 
~Ml\ 
JMP ~+3 
CLA Cll 1AC RAL 

llETLRN 
RTL 
SNL 
JP'P .+3 
CLA Cll tAC 

RETURN 
CLA Cll 

RETURN 

C007 

CALL 
CLKFO 
CALL 

"FX 
DC.A TEJilP 
T.AO TEJllP 
AM) SNEAD 
SNA CLA 
J"'P PON 
TAO TEMP 
lAO TAB 
CCA TEMP 
lAO t TEp.!P 

CCA TEMP 
Jfl'P I lEMP 

TAB-7 
CCI 
Pt! 
EXIT 
uocs 

TAO 1 SAVPC 
CLL RAL 
Cll RAL 
CLL qAL 
TAO lEMP 
CC.A I SAVPC 
JMP OEP 

CLA CLL CML CMA 
TllD S.AYPC 
DCA SAVPC 
JMP IJEP 

JSZ SAYPC •t• 
.JMP OEP 

CLA CLL 
TAD STATUS 
f!SM 
PAL 
Cfl'll RAR 
esw 
DC.A SUTLS 
JfllP I UG 

CALL 
CLKFO 
CALL 
HEX 
OCA TF.l"P 
TAO TE,..P 
Atl.O J.tASK 
~NA CLA 
Jl"P GOCN 
lAD TEMP 
TAO AOJT 
DC.A TE!i'P 
TAD I TE~P 

I HEX = 3 
I GO SACK TO TliE PROGRAM 
I TEST FOR A "2" KEYPRESS, SIT #9 
I NO; GO ON 
I YES; SET THE AC EOJAL TO 0002, 
I HEX = 2 
I GC SACK TO Tl-E PROGRAM 
I POSITION BITS no ANO #11 
I TEST FOR A "l" KEYPRESS 
I NO; GO ON 
I YES SET THE AC EC:UAL TC oco1, 
/HEX=l 
I GO BACK TO THE PROGRAM 
I DEFAULT CONO IT ION; YT MUST HAVE BEEN 
I THE •o• KEY SC SET THE AC EQUAL TO 
I 0000, HEX ,. 0 
I RETURN 10 THE PRCGRAH 

I THE DEPOSIT l"TD fEMORY ROUTINE 

I ~All FOR THE KEYPAD TD CLEAR 

I GET A HEX \IALl.!E FROM THE KEYPAD 

I PLACE JT IN TEJllP 
I GET THE VALUE FROM TEMP 
I MASK OUT 81 T tB 
I TEST; IS VALUE > 7 
I NC; GO TO LO.et MEJllORY 
I YES; GET THE YAllE 
I ADJUST TO POl~T .&T THE TABLE 
I AN> PUCE IT IN A POINTER LOCATION 
I 6ET THE AUDRESS OF THE ROUTINE 
I FROM THE TABLE 
I ANU Pl ACE 1 T 1N TEMP 
I GO TO THE PROPER ROUTINE 

I GET THE MEMOll'I DATA THRU SAVPC 
I SHIFT ll OVEfl ClNE DIGIT 

I ADC IN THE NEM DIGIT 
I RESTORE THE CATA TO THE MEMORY 
I GC GET THE NEXT CIGJT 

I SET THE AC AM LINK 
I DECREMENT THE PC 
I RESTORE THE PC 
I GO GET THE NEXT ClGIT 

I UCREMENT THE PC 
I IN CASE Tt1E PC W.llS 7771 
I GO GET THE f,IEXT DIGIT 

I THE BLANK FLAG TCGGLE ROUTINE 

I CLEAR THE AC AND LINK 
I GET THE STATUS WCRO 
I POSI TJON THE 13LAtl.K FLAG, •nT 16 
I PUT THE FLAG !NTC THE lINK 
I TOGGLE THE FLAG llNO RESTORE 
I RESTORE ThE POStTtoN OF AC 
I RESTORE THE SHTUS WORD 
I GO TO EXIT 

I THE SET PRCJGflAM COUNTER IPCI 
I SUBROUTINE 

I WAIT FDR THE MEY PAC TO CLEAR 

I GET A HEX YALU FRO~ THE KEYPAD 

I STORE Illl rEf'iF 
I GET THE VALUE fftCP" TENP 
I !':ASK OUT an .a 
I TESH IS \IALl..E > 7 
I 1'40; GO ON T'l LOAC THE PC 
I YES; GET THE UlUE 
I ADJUST TO PDIN"t .61 THE TABLE 
I PLACE: IN A PC IPvTER liORO 
I GET THE JUMP AOCRESS FROM THE TABI F 



596 ,., 
598 
599 
HO 
6Cl 
602 
603 
604 
605 
606 
607 
60B 
609 
610 
611 
612 . " '14 
615 
616 
617 .,. 
619 
620 
621 
622 .,, 
624 
625 
626 
627 .,, 
629 
6:-0 
631 
6'2 

"' 614 
6 ?5 
636 .,, 
638 
639 
640 .. , 
642 

"' 644 
645 
646 
647 
648 
649 
650 
651 
l:~Z 
65' 
654 
655 
656 
657 
6,8 
659 
660 
661 
662 
663 
664 
665 
666 
667 
668 
669 
670 
671 
672 
673 
674 
675 
676 
677 
678 
679 
680 
681 
682 
683 
684 
685 
686 
687 
688 
689 
690 
691 
692 
693 
694 
6'5 
696 
697 
69B 
699 
700 
701 
702 
703 
704 
705 
7C6 
707 
70B 
709 
710 
711 
712 
1B 
714 
715 
716 
717 
71B 
719 
720 
721 
722 
723 
724 
725 
726 
727 
12• 
72" 
730 
7?1 
732 

"' 734 
735 
736 
737 
73' 
739 
740 
741 
742 

"' 744 
745 
746 

6615 3150 
6616 5550 

6617 6610 
6620 6600 
6b2l 660C 
6622 Hf:l 
6623 bll7 

6624 1000 
6625 7104 
f:6U: llC4 
6627 7104 
f:63C l l!:iO 
66?1 3000 
l:b32 52CC 

f:633 4161 
663'4 6110 
6635 4161 
66?f: 6425 
6631 1244 
f:64C 3147 
6641 15li7 
6642 3147 
f:6'1:0 5547 

6644 6645 
66'15 f:lCl 
66lil: 6664 
6647 66b6 
6650 6671 
6651 6613 
6652 6676 
6653 7027 
f:651i 1153 
f655 7C71 
f:656 7204 
6657 6661 
HH 6117 

6661 2000 
6662 52')3 
6663 5233 

666'i 1224 
6665 5301 

6666 1270 
6667 5301 
66"'1C 2000 

6671 1231 
6672 5301 

6673 1275 
6614 5301 
6675 4000 

6676 l3CC 
661"'1 5301 
6700 5000 

670 l 340C 
67C2 3156 
67C3 4161 
l:H4 61lC 
6705 4161 
67C6 6425 
6707 315C 
671C 1150 
E11 l C312 
6712 7650 
6713 5344 
f714 ll5C 
671!'> 1325 
6116 7650 
6717 5336 
672C 1150 
6721 1326 
l:l22 765C 
67 2~ 5327 
6724 5303 

6725 7765 
nu 7766 

6727 140C 
6730 7106 

6731 700(: 
6732 7132 
6733 7012 
6734 3400 
6n5 5303 

6Bf 2000 
6737 5233 
fl4C 5233 

6741 0177 
6742 7t:CC 
6743 7400 

6744 1156 
6745 l1C4 
6746 7104 
6747 7104 
675C 1150 
6151 3156 
t:752 1400 
6753 C343 

6754 3400 
6755 1156 
6756 0341 
t:757 l'tOO 
6760 3400 
6761 1156 
E762 C.342 
6H3 745C 

6764 5303 
i:7t:5 3146 
6766 1000 
6767 0342 
€:770 7C4l 
6771 1146 
6772 7640 

fl73 5377 
6774 -4161 
671'; 7255 
6776 5303 

OCA TE'4P 
J"P 1 HMP 

ACJT, lliCJ T-7 
5ETPC 
SETFC 
FXIT 
uoc s 

GOCN, TAO SAi/PC 
rll IUL 
rLL RU 
Cll Qft,l 

TAO TEf'P 
KHOO, CCII. SA'tlPC 

J,..f' SFTPC 

fUCPC, C"All 
C:LKFO 
CALL 
.ex 
TAO XEO 
CCA POINT 
TAO I POINT 
r:CA PC!lNT 
JfrilP I POINT 

xEc, );Ef1+1 

'"'c ATAO 
ATSZ 
~oc A 
AJMS 
AJMP 
AIDT 
AOPR2 
ACPRI 
ACPR3 
Alfo.:C: 
1.mcs 

..\I Ko:, I Sl SAVPC 
JfrilP HICRC: 
JMP JlllCRC 

Al 10, lAIJ GOON 
JfrilP AAr..O 

Al~l, TAO K2000 
J,.P AA~O 

K2COO, 2000 

ACeA, TAO K300C 
JMP lANC 

AJflS, T.110 K4000 
Jl<IP AANO 

K4COO, 4000 

AJMP, TAO K500C 
Jl'IP ONO 

K5COO, 5000 

UNO, CCA I SAVPC 
OCA SA'\13 

MR.PA, CALL 
CLKPO 
CALL 
f.EX 
OCA TEfi!P 
TAD TE,..P 
Ar..O lQT 

lOl, SNA CLA 
J,..P T(ll 
T.110 Tl:;MP 
l Arl BOOR 
SM ClA 
JM> NEXT 
lAO TEMP 
TAD MOB2 
Sfo.A CLA 
JMP ZONK 
JfrilP MAPA 

BOCB, 1765 
BGCB2, 1766 

ZCflK, lAD I SAVPC 
CLl Q.TL 

RTL 
CLL CML PTR 
RTR 
C:CA I SAVPC 
JMP MRPA 

NE>T, IH SAVPe 
JMP MJCRCl 
JJilP MtCR.C 

TUC::, 0177 
lL<:l, 760C 
TUC2, 140C 

TCZ, TAO SAV3 
CLL RAL 
CLL RAL 
CLL RAL 
TAO TEMP 
DCA SAV3 

PLP, TAO I SA\tPC 
AND TUG2 

CCA I SAVPC 
HD SA'tl3 
.AND TUG 
TAO I SA'tlPC 
~CA I SAVPC 
T.110 SAV3 
ANO TUGl 
SNA 

JfrilP MR.FA 
!'.:CA HOLD 
T&D Sll\tP( 
A.NO TUGl 
CIA 
1AO HOLD 
SZA CLA 

J/ll'P FLASH 
CALL 
eSET4 
JMP MRPA 

PLACE. THAT ACCAESS IN THE PCIMER 
GO TO THE PROPER RQ'JTINE 

I GET JHE PC 
I SHIH Ir OVER ONE DIGIT 

I PLACE: THE: ~EW OIC:JT 
I PLAC.f: IN THE PC LDCATIC'-1 
I GU tlACK FOQ A NElol DIGIT 

I Tl-15 IS THE MICA.Ci ASSEMBLER 
I PROGRAM lfioH(Ct- IS ENTER.ED FRC:/ri1 THE 
I MCNITGR BY DEPRESSING THE 
I H.ChITOR SELECT KEY 

I WAIT FOR A CLEAR KEYBOARD 

I GET A HEX VAll.E FR;O"l THE KEYFAO 

I ADJUST A POlt..TER. TO THE TABLE 
I PLACE: JN HE POtN"Elt 
I GET THE JUflP .eco11ess FRO"' THE TABLE 
I PLACE: THIS ADDRESS IN THE POINTER 
I GC TO THE PRCPER ROUTI~F 

I THl S l S THE 1 ~BLE OF JUMP ADORE SSE c; 

I IN:REME:NT THE USfR PC 
I GD ASSEMSLE THE NEXT I NSTAUCTtON 
I 1111 CASE THE l:SER PC WAS 7777 

SET fHE AC EQl.AL TO lOCO 
GO TO HM.PA 

SET THE AC EQLAL fO 2000 
GC TO HRPA 

I SET THE AC EC:l.AL TO 3000 
I GO TO MRPA 

I SET THE AC EQUAL TO 40CO 
I GC JO MRPA 

SET THE AC EQUAL TO ljOCO 
GG ro HRPA 

747 
74' ,.. 
750 
151 
752 
753 
7 '!4 
75' 
756 
757 
758 
750 
760 
7'1 
762 
763 
764 
76, 
766 
767 
76' 
769 
770 
771 
772 

"' 774 
775 
776 
777 
77B ,,. 
780 
7'1 
782 
783 
784 
785 
786 
7'7 
7~8 

789 
790 
791 
792 ,., 
794 
795 
7% 
797 ,.. 
79q 
BOO 
BOl 
•02 
B03 
B04 
805 
806 
807 
BOB 
809 
'10 
811 
812 
813 
814 
815 
816 
Bl7 
Bl8 

'" 820 
821 

I PLACE THE OP COOE HHO THE 
I CLEAR THE ABSCLUTE AOIJRESS 
I hAJ T FOR A CLEAR KEY PAO 

JfljSTRUCUON ::; 

924 
B25 

I GET A HEX VALl.E fROi'4 THE KEYPAD 

I PLACE IN TEMP 
I GET THE VALUE 
I HAS!!. IJUT BIT rre 
I TEST: IS THE \ALl.:E > 1 
I NG; GO TO LOAC TH AODAESS 
/·YES; GET THE I/All.IE AGAIN 
I ADD -11 
I TEST; IS THEFIE A "C" KEYPRESS 
I YES; GJ A.SSEtoBLE THE NEXT Pi!STRUCTllJN 
I t-.C; GET THE '-.9LIH 
I ADD -10 
I TEST; IS Tl-ERE A "5" KEYPRESS 
I YES; SET THE INDIRECT BIT 
I NG; GO BACK AND HT ANOTHER VALUE 

I -ll AND -10 

I GET THE lt.ISTRLCTION 
I CLEAR THE l1 t-.K AM ROTATE THE AC TWICE 
I lEfT 
I PLAC.E THC lNCIRECT 1UT IN THE LINK 
I SET THE INDIRECT en ANO ROTATE 
I BACK. 
I REST':JRE THE lNSTRUC:TIOf\ 
I GO GET THE NEXl 'tl.9LUE 

I 11>.CREMEf'tl THE USER PC 
I GO TO MICRO 
I IN CASE PC EQl.AL 7777 

I GET THE ABSOLUTE ADORE SS 
I SHIH IT OVER CNE 01 GIT 
I 

I ADO lN THE NH DIGIT 
I RESTORE THE AeSOLUTE ADDRESS 
I GET THE ABSDLl.TE ADDRESS 
I HASK OUT fHE CP CODE AND INDIRECT 
I BIT 
I REPLACC THE t~STRUCTlON 
I GET THE ABSDLI. TE ADDRESS 
I MASK OUT THE PAGE ADDRESS 
I COHB lfliE ltlll ITH THE INS TRUCTtON 
I PLACE THE INSTRUCTION 1111 HEMCRY 
I GET THE ABSOLUTE ADORES') 
I MASK our BITS •o THRIJ 114 
I TEST; JS Tl"E ABSOL'JTE ADDRESS IN 
I PAGE ZERO 
I \'ES; GJ GET THE NEXT DIGIT 
I l\C; PLACE: HE BI TS llQ THRU f4 lN HOLC 
I GET THE USER PC 
I MASK Lli.JT B ns 110 THlt'J •4 
I NE:iATt THE: VALU0E 
I ADO THE A6SIJLUTE PAGE NUMBER 
I TEST; IS THE ABSCLUTE AOORESS IN Tl-E 
I CURRt:NT PA(E 
I fl.G; GO TO ER.RCR 
I SET THE CURii' E"'- T Pti.GE 81 T 

I GO GET THE ~HT C!Gf T 

820 
827 
828 
829 
830 
S?l 
B32 
833 ,,. 
'35 
B'6 
!!37 
B?B 
8'9 
840 
841 

'" B43 
844 
845 
846 
847 
848 
849 
850 
R5l 
B'!Z .,, 
854 
1!55 
856 
857 
B5B 
85• 
860 
861 ••2 
86' 
B64 
B65 
866 ,., 
868 
B69 
870 
871 
872 
873 
874 
075 
876 
877 
878 
87• 
880 
ROI 
882 

"" ... 
885 

••• 
887 
"8 
8R9 
890 
891 
802 
'93 
894 
B95 
8Q6 

6'177 1l5b 

7000 4ll:1 
7:lCl 6110 
10C2 6'oeC 
7CC3 1213 
700'o 314 1• 

7:l0~ H5C 
7001> '1150 
100 52Cb 
7010 2144 
1011 5206 
7012 1224 
7013 316C 
7014 4161 
7015 6200 
101t 764C 
7Jl 7 5625 
702C 2lt:C 
7:121 521'-
7022 5626 

7023 7765 
1'024 77')7 

7025 6752 
70U 6777 

7:J27 7333 
7030 ~'41)0 
7031 'H56 
7032 4161 
70'!3 f:llC 
7034 4161 
7035 6425 
70?l:: ?150 
10:!7 ll5C 
704C OHl 
7041 765C 
7042 525'3 
7043 1150 
7044 125C 
7'l45 761\C 
704l:: 572C 
7047 5232 

705C 77f5 
7051 7000 
7052 0777 

7053 lliOO 
7054 0251 
7055 340C 
7056 1156 
7057 7104 
70(:0 11e4 
706 l 7104 
7062 l 15C 
706'3 0252 
1064 3156 
7065 1156 
7066 140C 
7067 3400 

71)70 5232 

7071 1251 
7072 3400 
7073 4161 
1074 6110 
7075 4161 
7076 6425 
7077 1304 
HOO 3147 
71 Cl 1547 
7102 3147 
7103 5547 

7104 7105 
7105 7073 
710f 711,3 
7107 7140 
711C 713S 
1111 7132 
7112 7127 
7113 7124 
7114 7121 
111'5 ran 
7116 1073 
7111 7146 
7120 6736 

7121 4161 
7122 7255 
7123 5213 

7124 4161 
7125 7257 
1126 5273 

7127 4161 
7l?C 7261 
7l3l 527'3 

7132 4161 
71 B 7261 
7134 5273 

713S 4161 
7136 7265 
7137 5273 

7140 4161 
714( 7267 
7142 5273 

7143 4161 
1144 7271 
7145 5ZH 

714f: 14CC 
7147 701D 
7150 7124 
1151 3400 
H52 5273 

7153 1366 
7154 340r} 
715': 4161 

8-178 

CALL 
r.LKPO 
b400 
TAO TKA 
CC:A !t.,E 
CCA TEJrillP 
tSZ TF14P 
Jl"P .-1 
ISZ TIME 
JJllP .-3 
TAO TKq 
£:CA SAVS 
rALL 
swoe 
'5ZA ClA 
Jl'P I SOUP 
ISZ SAYS 
JMP .-5 
Jl'P t lOK 

7765 
7757 

sc1.o. PUP 
ZO, FLASH 

I E:PRLJR C.OhlJITION. FLASI- Tl-'E DISPLAY 
I TC INDICATE ,et-, ATHMPT TC LOAC AN 
I AODRl:SS JHAT IS MH IN THE CURRENT 
I PAGE 1..ll. PAH lf.RC. CLEAR THE ABSOLUTE 
I AOORt:SS. 
I ltAIT FOR A CLEAR KEYPAC 

I l:lLANK THE Cl~PLAY 
I GET THE T JME CCNSTA~T lltA 
I PLACE IT IN 11-E l1MER 
I CLEAR TEMP 
I COUNT OUT TE/'IP 4(96 T1MES 

I CGU/\jT OUT Tl ME 

I GET TIME CONSTANT _.B 
I PLACE IN SAV5 
I GET A KEYPAO \.ALl,;f 

I TEST; IS THERE A KEYBOARD PRESS 
I "tES; GO TCJ GET TH PROPER AOCRESS 
I NO; C.UUNT TIME 
I GC BACK TO SH(! 
I GO BAlk TO FLASH THE DISPLAY 

I -0012 1-lOJ 
I -OOlb 1-161 

AtcT, f.LA c:tL CML 1AC ATR I SET THE AC EC::l.AL TO 6000 
OCA I SAVPr. I PLACE IT IN THF. INSTRIJr.tTCN 
OCA SAVJ I CLEAR THE ASSCLUTE h'lDRESS 
CALL I WAIT FOR A CLE.ell KEYPAD 
CLKPD 
CALL I GE:T A VALUE FRCM THE KEYPAD 
>EK 
CCA TEMP I PLACE IN TEMF 
TAO TF"'P I GET THE VALUE 
fo"1.0 COD. I MASK OUT BIT lllB 

cce. c;NA r.t.4 I TEST; IS THE \'ALUE) 1 
JJri'P SGA I NC; GO TLl AOCHSS LOAO 
TAO TEJilP I YES; GET THE 'tlALUE 
1AO SNOT I AOO -11 
SNA CLA I TEST; IS IT A "C" KEYPRESS 
J,.P I SCT I YES; GU TO '4E)!T 
J"'IP A10H3 I H; DEFAULT, GO GET H'E NEXT DIGIT 

SJ\eT, 776~ 

sec, 1ooc 
C\JS, C777 

see, TAO 1 SA\tPC 
ANJ SOC 
OCA 1 'iAVPC 
TAD SAV3 
CLL RAL 
CLL RAL 
CLL RAL 
TAO THP 
ANO CUS 
OCA SAV3 
UD SAV3 
HO I SAVPt: 
OCA I SA"JPC 

JMP Al CT+3 

ACFR1' TAO sec 
Or.A I SA'-IPC 
CALL 
CLKPO 
CALL 

"" HO GUM 
er.A POINT 
TAD t PCtNT 
CCA PCINT 
JMP T POINT 

GU to, GUM+l 
ACPAl+Z 
J.AlC 
JA9 
JAR 
JA7 
JA6 
JA5 
JA4 
ACPR1+2 
ACPRl+Z 
BSE Tll 

SOl NEXT 

JA'i, CALL 
eSEl4 
JMP AOPR1+2 

JA'!, CALL 
BSET5 
jp.ip 40PR1+2 

JA6, CALL 
ASE 16 
JMP AOPR.1+2 

JAlr CALL 
BSET7 
J"1rt l\OPR.1+2 

JA f, CALL 
ASETB 
JflP AOPR1+2 

JA~, CALL 
ASE T<J 
J~P ACFR1+2 

JAIO, CALL 
esE no 
JMP AOPR l+Z 

B~Elll, lAI) I SAVPC ,,. 
CLL CML R.at.. 
CCA. l SAVPC 
Jl'P ACPA.1+2 

ACPR2, TAO ZOLZ 
OCA I SAVPC 
CALL 

I -OOl3 t- L 1J 

I GET THE I NS TPUCT lON 
I MASK CJUT BITS ea THR.U 42 
I PLACE BALK IN THE MEMORY 
I GET THE ABSOLt. TF ADDRESS 
I ROTATE IT OVER OJ\E DIGIT 

I AC:O IN THE NEW 0 !GIT 
I BOJND THE AOCRESS TO BITS i3 THRU #11 
I PLACE THE NEW ADDRESS IN SAV'3 
I GET THE Nl:\t ADDRESS 
I COMBINE WITH THE INSTRUCTION 
I PLACE lHE NH INSTRUCT ION INTO 
I THE MEHOR Y 
I GC GET THE NEXT CIGIT 

I THE JPERATE GROUPS ASSEMBLY 
I ROUTINES 

SET THE AC EQUAL TO 7000 
PLACE THIS 0 THE tNSTRUCTIOfli 
lllAIT FOR THE KEY!!ClAD TO CLEAR 

I GET A HEX VALl.E FROM THE KEYPAD 

I ADJUST A POINTER TO THE TABLE 
I PLACE IN THE POINTER 
I GET THE JUMP ADOPESS FROM THE TABLE 
I PLACE IN THE POINTER 
I GC TO THE PRCPER ROUTINE 

TH: TABLE ADJLSTMENT VALUE 
THE TABLE OF JUMP lDDRESSES 

I GO TO THE: APRCPRIATE BIT SET RDUTO.E 

I GET THE INSTRLCT ION 
I PCSITION BIT Ul IN THE LINK 
I SET THE LINK ANO ROTATE THE WORD BACK 
I RESTORE: TU Tl-E "'IEMORY 

SET THE AC. EQUL TO 7400 
STORE IN THE INSTRUCTIOP\I 
iilAIJ FOR THE KEYl!OO.O TO CLEAR 



e97 
8•8 
59q 
•OO 
qo1 
•02 
q03 

••• ... 
9C6 
9C7 
90R 
qoq 
010 
911 ••2 
913 
91' 
915 
916 
•17 
918 
919 
'20 
'21 
922 
•23 
924 
9Z5 
926 
921 
928 
929 
930 
•'1 
932 
933 
934 
935 
936 
931 
938 
939 ••o 
941 
942 
943 
944 
945 
946 
9'7 
948 
949 
950 
951 
952 
953 
954 
955 

••• 
957 
958 
959 
960 
961 
962 
963 
964 
965 
966 
967 
968 
969 
910 
971 
97Z 
973 
974 .,. 
976 
911 
978 
979 
980 
981 ••2 
983 
9R4 
985 
986 
907 
988 
989 
990 
991 
992 
993 

••• 995 
996 
997 
908 
999 

1000 
lCCl 
1002 
1003 
lOO'i 
1005 
1006 
1007 
1008 
lOOQ 
1010 
1011 
1012 
1013 
1014 
lCLS 
1016 
1017 
1018 
1011J 
1020 
1021 
1022 
1023 
1024 
1C25 
1026 
1027 
1028 
1029 
10~0 
1031 
1032 
ten 
1034 
1035 
1036 
1037 
1038 
lQ)q 

1040 
lO'il 
1042 
1043 
1044 
1045 
1046 

7156 6110 
7157 4161 
7160 6425 
11 l'::l l '3b1 
7162 3141 
7163 1541 
716'1 314.., 
7165 5547 

1166 7400 

7167 7170 
7170 6156 
7171 6164 
7172 7155 
n 13 nss 
7L 74 7155 
117~ 6167 
1176 715~ 

7171 f.145 
7200 6153 
72Cl 61"i0 
7202 Hfl 
7203 6736 

6145 

6145 4161 
6llt6 725S 
6147 5712 

615<l 4161 
HSI 7257 
1:152 5772 

H53 4161 
E:l54 72l:l 
6155 5172 

6156 4161 
H 51 7263 
6160 '5772 

6161 4161 
6162 7265 
6163 5772 

6164 4U:l 
6165 1267 
6166 5772 

6167 4161 
6170 7271 
6171 5772 

6172 7155 

7204 

7204 1217 
7205 3400 
1206 4161 
72C7 6110 
721(1 4161 
72ll flr125 
1212 IZZO 
7213 3147 
7214 1547 
721~ 3147 
7216 5547 

7217 '7401 

7220 7221 
7221 7206 
7222 7206 
1223 72C6 
7224 7206 
1225 7ZC6 
7226 72CE: 
7227 72C6 
7Z3C 7235 
7231 7243 
7232 7 21,0 
7233 7206 
7234 6136 

7235 4161 
7236 1255 
1237 52C6 

12.t,C 4161 
72'il 7257 
7242 5206 

7243 4161 
7Z'i4 7263 
72'i5 5ZC6 

1246 OCC2 
7247 0004 
125c cote 
7251 CC2C 
7252 OO'tO 
7253 0 100 
7254 0200 

7255 1254 
7Z5t: 5273 

7257 1253 
726C S213 

12f:l 1252 
7262 5273 

12f3 1251 
7261, 5273 

7265 1250 
7266 52'73 

7267 121,7 
727C 5273 

7271 1246 
7272 5273 

7273 7521 
72.l't 7'300 
7275 · 14CC 
7276 75Cl 
7277 3400 
7300 5564 

l".LKFO 
CALL 
HX 
TAI) GUe 
CCA PO lNT 
HO I POINT 
OCA PO lN'T 
Jfi4P I POINT 

ZCl2, 740C 

G\.!I!, GFJS•l 

•6145 

J81 
J~9 
A[PP2+2 
ACPR?.+2 
Af'!PR2+2 
Jl310 
.ll[P"2+2 

·JP4 
Jl!6 
JBS 
J'9 
N1=XT 

Je4, CALL 
RSE T4 
Jfi4P I TOK 

JB~, CALL 
BSET5 
J"4P t TOK 

JE6, CALL 
BSET6 
Jil'P 1 TCK 

JBl, CALL 
8SET7 
JMP l TOK 

Jee, t.aLL 
BSET8 
JP'P t TOK 

JBc;, CALL 
RSET9 
JMP 1 TOK 

JelOr CAll 
BSE HO 
JMP I TOK 

TOK, AOPR2+2 

ACPR3, TAD ZOl3 
OCA I SAYPC 
OLL 
CLK~D 

CALL 

"" TAO BOB 
CCA POINT 
TAO I POINT 
OCA PCI"IT 
Jp.IP I POINT 

ZClJ, 7401 

Ree, EOB•l 
ACPJl3• 2 
ACPP3+2 
anPP3+2 
ACPR3+2 
ACPP;H2 
AOPR3+2 
ACPR3+2 
JC4 
JC1 
JCS 
AOPR3+2 
flEXT 

JC'i, CUL 
PSET4 
JP'P ACPJl3+2 

JCS, CALL 
ASET5 
J~P ~(.IPP3+2 

JClt CALL 
P.SEl7 
JMP AOPR:+2 

AH., 0002 
UE 9 0004 
UC, OOlC 
uc, ooze 
A.AE• CC4C 
.ti.AF, ClOC 
UG, 0200 

BHT4, TAD AAG 
JMP p.!B'.'\T 

~SETS, TAD AAF 
JP'\P l"lBSl 

BHT6 9 lAO AAE 
JMP MBST 

B~E1'7, 1.110 AAO 
JMP ll!F.!ST 

BSET8, HO AAC 
JftP "BST 

ASH9, ""OD ue 
J~P f'!Bn 

BSETlC, TAD AA/l 
J,..P "'~ST 

MEST, SWP 
CLA CLL 
TAD t SAVPr. 

•<• 
OCA I SAYPC 
PfTURN 

I CET A HEX VALLE um1 Tt-if l<E't'PAO 

I AOJUST A POI"tTER TO THE TABLE 
I PLACE IN THE FOi NTER 
I GET THE: JUJll:P .600PESS FROM THE TABLE 
I PLACE IN Tl-\E PCl,,,TER 
I GC TO THE: PRCPER Rl)IJTlNE 

I OPERATE: GMOUP 2 C:P CODE 

I THE: TABLE AOJLSTMENT VALUE 
I THE. TABLE GF JUMP A~OR ESSES 

7301 4161 
7302 tl tc 
7103 7300 
BC'i 1323 
7305 31'5? 
net 1326 
H07 3153 
7310 1400 
7311 0324 
7312 1325 
7313 lf5C 
7314 5356 
'1315 14CC 
1316 032" 
7317 1327 
132<! 1l:!:'C 
7321 5363 
7322 5366 

7323 5553 
1324 1000 
732'5 4CCC 
7326 7"27 
7327 3000 

I GO TO THE APROPR UTE Bl T SET ROUT! NE 

1047 
1048 
1049 
10~0 

1051 
10 ~2 
1053 
1C54 
1055 
1056 
1C57 
1C58 
1C5Q 
1060 
1061 
1062 
1C63 
1064 
1065 
10(:6 
1067 
1060 
1069 
1071) 
lCll 
1072 
ten 
1074 
1075 
1C76 
1C17 
1018 
1079 
1080 
lOBl 
1Cf!2 
1083 
1084 
1085 
1CB6 
1Cfl7 
1088 
108q 
10110 
teen 
1092 
10'93 
1C<J4 
10115 
1cc;6 
1097 
1098 
10qq 
1100 
1101 
1102 
1103 
1104 
1105 
1106 
ll07 
llCR 
ll0'9 
1110 
1111 
1112 
1113 
1114 
lll5 
1116 
1117 
1118 
1119 
1120 
1121 
1122 
1123 
1124 
1125 
1126 
1127 
1128 
112'9 
1130 
ll 31 
ll32 
1133 
1134 
11:!5 
lt36 
11'.!7 
1138 
1139 
ll40 
1141 
1142 
1143 
1144 
lllt5 
1146 
1147 
1148 
ll4'9 
1150 
1151 
11'52 
1153 
1154 
1155 
1156 
l157 
1158 
11'59 
1161) 
llbl 
1162 
llf:3 
1164 
1165 
1166 
1167 
lll:S 
1169 
ll70 
1171 
ll7Z 
ll 73 
1174 
1175 
1176 
1177 
117R 
111q 
HBO 
lL!H 
1182 
11A3 
llB't 
lt85 
1186 
llfl7 
1188 
118'9 
11qo 
1191 
ll'92 
ll'n 
11'94 
1195 
11% 

7330 14CC 
73'1 0352 
7332 3144 
733~ 14CC 
7334 0354 
113'5 765( 
733l: '5343 
7337 1000 
714C 0353 
7341 1144 
7342 3144 

I GO BACK TO ACPR2 

I PCl NTER TO GO eACK 

I SET THE AC EC!UAL TO 7401 
I PLACE THJ S tt. THE tNSTRUCTIOt. 
I iolAIT FOR HE KEYeOAD TO CLEAR 

I GET A HEX VALUE FROM THE KEYFAO 

I ADJUST A POINTER TO THE TABLE 
I PLACE IN TH PClt..TER 
I GET THC JUMP ADDRESS FRC:p.I THE TABLE 
I PLACE IN 1HE PClt.TER 
I GG TO THE PRCPER ROUTINE 

I CPERATE G~CIJP 3 CP r.ooE 

I TABLE OF Jt.:MP ADDRESSES 

I Tl1E BIT SET SUBROUTINES 

I SET BIT UO 
I SET Bl T •9 
I SET BIT #8 
I SET BJT #7 
I SET BIT #6 
I SET BIT r.5 
I SET en #4 

I Gf;T THE PROPER SET WORD 

I PLACE: lHE: SET COflSHNT TN THE MQ 
I CLEAR THE l\C 
I GET THE lNSTRLCT 10~ 
I OR lN THE SET CONSTANT 
I REPLACE THE lf\STRUCTION 
I GO BACK TO TH PRCGRA.~ 

73't3 l'tQC 
7344 0355 
73"5 765C 
7)46 556.t, 

7347 154'i 
13'5C 3144 
7151 5564 

7352 Cl71 
7353 7600 
735.t, czco 
73~5 C4CC 
1356 4161 
1357 133C 
1360 2144 
7361 7CCO 
7362 '5311 

7363 4161 
7364 7330 
7365 5371 

13H lOOC 
1361 7001 
n1c 3l't4 

1371 1144 
7372 7001 
7373 311,5 
73'14 l54't 
7375 3154 
7376 1545 
7377 3155 
7400 1226 
7401 354'i 
1402 1226 
7403 351,5 
7404 1226 
1405 7C4l 
7406 1544 
7407 7640 
7410 5625 
7411 1226 
7412 7041 
1"13 1545 
7414 7640 
7415 5625 

7416 1141 
7411 7421 
7420 1142 
1421 7CC4 
742( 7200 
742:! ll4C 

7424 5400 

1425 6407 
H-26 4151 

7427 31"0 
143C 6CC4 
7431 3142 
n3z 1s21 
7433 3141 
7434 1154 
7435 3544 
7"3(: 1155 
74:0:7 3545 
7't40 7340 

8-17C 

7441 llH 
7't42 3000 
'11,4:_>. 5644 
1t,.t,~ l:ll 7 

6160 
H10 
6161 
6l 71 
6161. 
6163 
6172 
6173 
6164 
6165 
617': 
6174 
6166 
6176 
6167 
6177 

S ll'i, CALL 
CLKPO 
CLA CLL 
TAD l<J~P 

rcA 5Tr:R.F. 
TAO PLUI' 
DCA SHI"'T 
TAO t SAVPC 
Afll'J ,..K 
TAO KTT 
SM CLA 
JMP EJ,_.S 
TAO I SAVPC 
At.ID "IK 
HO KAT 
Sf.A r::LA 
JMP F.JMP 
J~P EXEC 

KJ•P, JP'P I St<JFT 
MK, 700C 
Kl 1, 4000 
PLU.. PET 
K.111, :rnoo 

H.olD, TAO I SllVPC 
AflO NOT 
C:CA T TP'E 
1AO I SA\IPC 
.11~0 GUT 
Sr..:A CLA 
JMP INDR 
TAIJ SAVPC 
ANn PUC 
UO TJME 
DCA lT ME 

I ~cs. lAD ' Sll\IPC 
AND l .. nT 
S"A CUI 
RETt!RN 

TAO I Tl~E 

CCA TifllE 
RETt!RN 

NCt, Cl77 
PLC, 760C 
Gl 1, 0200 
LOl, 0400 
EJflS, f.Alt 

Tf.OA!: 
TSZ TIME 
NO• 
JMP .,+7 

EJttP, CllLL 
I fl.At 
JfllP +'t 

EXEC, TAO SAVPC 
!AC 
CCA TtflE 

TAO TittE 
UC 
CCA SAVE 
TAD I Hf'E 
CCA SAVl 
TAD I SA .. E 
CCA SAYZ 
HO TAL 
DCA I Tt1":E 
TAO TAL 
CCA I SAYE 
T.llD TAl 
ClA 
TAO I TIME 
SU C:LA 
JMP l HCT 
T.11.0 TAL 
C!A 
TllO I SAVE 
SZA CLA 
Jfl'P I HOT 

T.110 SAVMC: 
•CL 
TAO SAVFL 
RAL 
CLA 
TIO SAVAC 

JPIP I SA\IPC 

HOT, HAL l 
TH, JMS BACK 

RET, CCA SA.VAC 
GlF 
CCA SA'-/fl 
SWP 
CCA SAYMO 
TAD SAVI 
OCA I TIP'E 
Tiii) SllV2 
DCA t SA\tE 
CU Cll CHA 
TAO BACK 
oc.e. SAYPC 
J"4P I .+l 
LCCS 

REIDl=6lt:C 
RE ioz.,,61'1C 
WR ITEl,,,l:16l 
WltlT':O!:(:l71 
SKIP1=b162 
Sl<IP2.,f:163 
'iK TP3=6172 
SKJP.(,,=6173 
RCPA=i:l64 
WCPA::-61E:5 
WCPS:f:l75 
WV11=6174 
SHAG l::-(:H:6 
SFUr.'3=~176 
r:Fl<\Gl=Hfl 
ci: L ~G3.,,6 l 77 

I WAIT fOR A CLEAR KEYPAD 

I CLEAR THE AC 
I GET THE INSTRUCT ICN "JMP I StFtFT" 
I PLACE l T I~ PiGE ZERO 
I GET THE kE:TUR~ ACORESS 
I PLACE IT IN Sl-IFT 
I GET Tt<E: INSTRlCTION TO BE PREFORMED 
I MASK GUT THE !:PCODE 
I ADD -4000 
I TEST; IS THE INSlRUCTION A JMS 
I YES; GO TO THE JfllS ROUTINE 
I ~O; GET THE lt.STRLJCT ION 
I MASK lJUT THE (P C!JOE 
I AOO -5000 
I TEST; IS THE INSTRUCTICN A Ji-P 
I YES; GO TO THE J"P ROUTINE 
I NCJ; GO TO THE EXECUTE ROIJTJNE 

I GET THE INSTPlCT ION 
I 1'\ASK OUT THE PAGE ADDRESS 
I PLACC IN TIME 
I GET ThE l NSTPUCT ION 
I MASK OUT THE CUUENT PAGE BIT 
I TEST; IS HIS Bil SET 
I ~C; NO GO TC INCB 
I YES; GET THE CURRENT AOORfSS 
I MASK OUT THE PAGE NUMBER 
I COtBlNE WI TH THE PAGE A CORE SS 
I Pl.ACE IN TIME 

I GET THE INSTPl.ICTION 
I MASK OUT THE INDIRECT en 
I TEST; IS THE !!IT SET 
I NC; RETURN \oilTH lHO:: TRUE AODPESS 
I IN LOCA Tl ON T fli!E 
I YES; GET Tt-!E TRUE ADDRESS 
I PLACE lT IN T1"'E 
I RETURN Wllh Tt-F TRUE ADDPESS IN TIME 

I GET THE JMS AllORESS 

I IfCREMENT t T TC •NEXT• 
I FCR ftRAP ARCU~Cl 

I GC TO EXEC 

I GET THE JMP ACDRESS 

I GC. TO EXEC 

I GET THE CURRENT ADDRESS 
I INCREMENT tT rn t.EXT 
I PLACE IT I~ T JME 

I NO.- hE CONTUUE U WITH •NEXT• 
I IN TIME 

I GET THE NEXT ADDRESS 
I HCREMENT IT 
I PLACE IT IN SAVE 
I GET THE NEXT INSTRUCTICN 
I STORE IT IN S~Vl 
I GET fHE •NEXT+!• INSTRUCT toN 
I PLACE IT IN SAV2 
I GE'f THE lhSnl.'CTtON •JMS BACK" 
I PLACE IT IN Tt'E ~EXT LDCAlION 
I GH THE INSTRUCT ION AGAIN 
I PLAC.E IT IN lHE NEXT+l LOCATION 
I CM:E MORE 
I NEGATE IT 
I TEST FOR RAM 
I TEST; 010 IT GET PLACEC? 
I NO; fHER.f: IS f\C RAM THERE 
I YES; AlSD TEST Tl"E NEXl+l LOCATION 

I ADD THE NEXT+l LOCATION 
I TEST; 010 It GET PLACED? 
I NO; THERE IS ~O RAM THERE 

I EVERYTHING IS DK SD ME CAN 
I NOii EXECUTE TH INSUUCTTON 

I RESTORE THE ftQ 

I RESTORE THE LINK 

I RESlDRE 7HE At 

I GO EXECUTE THE SINGLE INSTRUCTION 

I HALT ROUTINE PC1fl.TER 

I SAVE THE AC .llf.C FLAGS 

I GET THE MQ 
I SAVE IT 
I GET THE ORIGINAL FIRST INSTRUCTION 
I REPlACE 1 T 
I GET THE DTl-IER 
I REPLACE IT 
I SET THE AC ECUAL TO -1 
I DECREMENT THE ltETURN PC 
I LPDATE THE USER PC 

I THE FOLLOlif ING ROUTINES USE 
I THE PI E-U/IRT INT ER FACE. 

I ThE PIE-UAft.T INSTRUCTlCNS 



11q7 
ll9El 
1199 
1200 
lZOl 
1202 
l203 
120'0 
1205 
1206 
1207 
l2CR 
120Q 
1210 
1211 
1212 
1213 
1214 
1215 
1216 
1217 
1218 
1219 
1220 
1221 
1222 
1223 
1224 
1225 
1226 
1227 
1228 
1229 
1230 
1231 
1232 
1233 
1234 
1235 
1236 
1217 
1238 
1239 
1240 
1241 
1242 
1243 
1244 
1245 
1246 
1247 
1240 
1249 
1250 
1251 
12 52 
12 53 
1254 
1255 
1256 
12 57 
1258 
125'l 
1260 
1261 
1262 
1263 
1264 
1265 
1U6 
1267 
1268 
1269 
1270 
1271 
12 72 
1213 
1274 
1275 
1276 
1277 
1278 
1279 
121!0 
1281 
1282 
1283 
12114 
1285 
1286 
1287 
128B 
12~<) 

1290 
12<Jl 
1292 
1293 
12'14 
12'15 
12Q6 
12'l7 
1298 
12'19 
1300 
1301 
B02 
13C3 
1304 
1305 
1306 
1301 
BOB 
1309 
1310 
1311 
l 3 l2 
1313 
1314 
1315 
13lb 
131 7 
1318 
1319 
1320 
1321 
1322 
1323 
1324 
1325 
1326 
1327 
132A 
1329 
1330 
1331 
1332 
13B 
1334 
1335 
1336 
1337 
l33t' 
133Q 
1340 
1341 
1342 
1343 
1344 
13«5 

7445 60C7 
7446 64DO 
7447 1263 
7450 616'i 
74".:l 13CG 
7452 1264 
14'3.3 6175 
7454 HCC 
7455 1265 
740:.t: 6171 
7457 7300 
7460 61 74 
7461 3160 
7462 55t:4 

7463 7 200 
746'1 l SE:O 
7465 7600 

7466 E:l63 
7467 5266 
747C 6161 
7471 3144 

74-72 5564 

7473 6172 
74 74 7000 
7475 6166 
7476 61 72 
7477 5276 
75CC 6167 

7501 6162 
7502 5101 
7503 7200 
75C4 616C 

75C5 0307 
7506 5564 
1'>C7 0377 

7600 

760C 4161 
76Cl 7445 
7602 3152 
760 135C 
7604 3H:O 
76C5 1350 
76C6 70Cl 
7607 3151 
761C 7240 
7611 3154 
7612 7240 
7613 3150 
7614 '3l47 

7615 4161 
76H 7473 
7617 3146 

762C 1146 
7621 1351 
7622 77CO 
7623 532C 
7621, ll't6 
7625 1353 
762t 765C 
7627 5326 
763C 1146 
7631 3151 
7632 1146 
7633 1152 
1634 3152 
7635 11'46 
7636 1352 
1631 7700 
76'40 5215 
7641 1146 
16l.2 0354 
7643 764C 
7644 5311 
7645 1154 
7646 7640 
1647 5215 
7650 2147 
7651 7410 
76"i2 5~Clj 

7653 2150 
1654 526C 
1655 1146 
7656 3145 
7657 5214 

766C 1160 
7661 1353 
7662 7700 
7663 52 7C 
766« l 16C 
7665 1243 
7666 7700 
7667 'i274 
767C 1l ':3 

7671 7CC2 
7672 1156 
7673 ?o56C 

7674 1145 
7675 3153 
7676 1146 
7677 3156 

77 cc 1000 
7701 316C 
7702 2000 
7703 5212 
77C4 5212 

7705 1146 
7706 1000 
T1C7 300C 
7710 5212 

7711 1354 
1712 7040 
1713 0146 
7714 7002 
7715 3CCC 
7716 701,C 
7717 5214 

I J\ Pl E, CAF 
6400 
TAO KCRA 
l.ICR A 
CLA CLL 
Tt..O KCRB 
kCRE 
CU. CLL 
TAO K TTY 
'-Pl TE2 
CU C:Ll 

"' OCA SAV5 
PETLPN 

KCRA, 720C 
KrnB, 1560 
KTTY, noc 

TALK, SKIP2 
JP'P .-1 
"'RI TE l 
OCA T1 "'E 

RETURN 

LJSN, SKI P3 

'" SFL AGl 
SKI F3 
JJilP .-1 
fFL .tGl 

REtO, SKI Fl 
JP'P .-1 
CLA 
REA Cl 

Af'IO TTYf'I 
RF.TURN 

TT'lf'I, 0371 

nttoo 

BIN, CALL 
I /'IP IE 
DCA STORE 
TAO Kl77 
OCA SA \15 
TAO Kll7 

'" OCA BA CK 
CLA CMA 
CCA SAVI 

BECG, Cl<IA CLA 
OCA TE MP 
CCA POll\f 

IHG, CALL 
USN 
OCA HO LO 

TAO HJLD 
TAO KRUB 
S,..A (LA 
JMP RUM 
TAD HOLD 
TAO KCHB 
SNA CLA 
JMP L lC 
I AO !-<OLD 
OCA BACK 
l AO HCLO 
TAO STORE 
CCA STORE 
TAO HGLD 
TAD KFO 
SMA CLA 
JMP BEG 
TAD HOLD 
AND KLONG 

Kl ING, SZA CLA 
JMP PCL 
HO SAVl 
SlA CLA 
J~P 13EG 
I SZ POINT 
S<P 
JI-IP PCL2 
I SZ lfMP 
JMP Dl2 
TAO HOLD 
OCA SA\I E 
Jfo'P AEGG-t2 

OU., 1AD SAIJ5 
TAD l<CI-'~ 

SMA CLA 
J"P .•5 
1110 SA'v5 
TAO Kl ING 
S'°'A CLA 
JMP .•5 
TAD SHIFT 

esw 
TAO SA\13 
tCA I SA\15 

T.l!D SAVE 
CCA St- Ifl 
HO HOLC 
CCI\ SAV3 

TAO Sti.\IPC 
CCA SA\15 
I Sl SA\IPC 
JMP BEGG 
J~P 1JECG 

O(L2, lAO HOLD 
TAO SA\IP( 
CCA SA\IPC 
JMP AEGG 

oct. TAD 11..LCNG 
CMA 
Af\D HOLO 
ASW 
OCA SA\IP( 
Cl'A 
JtolP <IFC.(+2 

CALL 

I TH2 PIE lN(TALIZE ll.CIUTINE 

I CLEAR All FLACS 
I CLEAR lHt: l"ll SPLAY 
I GET THE CRA ..._CRO 
I LOAD IT TO CRA It- PIE 

I GET THE CRB \oCRD 
I LOAD IT ro Tl-E CRB "ORD IN PIE 

I GU THI: TfY-UARl CONTROL WORI) 
I LUAD IT TG UA!H CCNTROL OICRO 
I 
I kRITE All ZERCS INTO T!-<E VECTOR WCRD 
I CLEAR SA\I ~ 
I GC BACK H. Hf Ps:tCGRAM 

I lhE: PRINT TO TTY ROUTINE 
I SKIP ON CLEAR XMTT BUFFER 
I XMIT bUFfER r-;cT YET CLEAR 
I r.RI TE THE AC TC THE UART 
I C.LEAR THt: ti.C AND STORE THE IJti.TA 
I lJ\ l!ME Ft;R PCSSleLE RECOVERY 
I GO BACK TO lt<E PRCGRAM 

I LISN IS THE RCUTINE TO GET A 
I CHARACTER FROM Tl-'E TfY KEVBOARO 
I GR REAOtR. 

I RESET THE SlAPT fIT SENSE FLAG 

I SET THE Rfti.DER Rl,;N FLAG 
I loAH FOR Tl-'E FIRST START 131T 
I NOT YET 
I CLEAR THE i:t.F.ACER RIJ"I FLAG 

I I.Alf FOR 011.Tti. READY FLAG 

CLEAR THE ti.C 
READ THE UART BUFFER AND ERROR 

I FLAGS, CLE.AR 1HE CATA READY FLAG. 
I CLEAR OUT THE UNWANTED BllS 
I GO BACK TO HE PP.CGIUM 

I THE INTERJEPT JR .. BTN LCAOER 
I USING THE PIE-UART 1NTERFACE 

I INITIAlllE HE PIE-c.IART 

I CLEAR THE CHEOSLP' 
I SET THE PC ECl.:Al TD 177 

I SET THE AC ECUAL TO ZOO 
I SET THE AC E!;LAL TO 200 
I STORE rn BACK 
I SET THE AC E<;U.AL TO 7717 
I SET SAV l 
I SET AC TO 7777 
I SET TEMP 
I CLEAR PJltiT 

I GET THE FIRST TTY CHARAr:TER 
I STORE THE CHAR I" HOLO FOR 
I SAFE KEEP IN(; 
I GET THE CHAR 
I ADV -H7 
I TEST; IS IT A RUBDUT7 
I YES; GO TO Rt.:~OIJT R1J!JT TNE 
I NC; GET THE CHAR 
I ADO -200 
I TEST; ~AS IT .A LE.ADER-lRAILEP 
I YES; GO TO THE LT ROUTINE. 
I GET THE CHARACTER 
I PLACE IT IN Tt--E LAST CHARACTER HOLE 
I GET THE CHARACTER 
I AOO TO THE ChECKSUM SUlllCTAL 
I PLACE l!>t Ct-ECKSU'" 
I GET THE CHAR 

ADO -277 
1EST; IS IT A CH.ANGE FIELD CHAR 
YES; IGNORE 11 
GET THE CHARACTER 
MASK OUT CH.AJljJ\El 7 
TEST; IS IT AN ORGIN? 
'!'ES; GO TU LO.AO THE PC 

I NO; GET THE FlRST CHAR FLAG 
I TEST; HAVE kE GOTTEN A LT YET? 
I NO; IGNORE THE DA TA 
I YES; IS THIS .A SEC0!\10 PC CHAR? 
I NO; GO ON 
I YES; LDAO Tt<E SECOND HALF OF THE PC 
I TEST; IS THIS .A SECOND DATA CHAR 
I YES; GO TO SECClNO DATA LOAO 
I NO; GET THE Ct-ARACTER 
I STORE IT IN SA'iE 
I GO BACK FGQ. TH 5ECDNO PART 

I GET THE ADDRESS INTO THE AC 
I ADD -177 
I TEST; JS PC> 177 
I YES; OK TD LCAC Tl-E RAM 
I f\C; GCT THE t('CRESS 
I ADD -140 
I TEST; IS PC < 14C 
I NO; BYPASS THE LCAD OF RAt' 
I YES; GET TH f!R.Sl HALF OF T!-<E 
I LCAO CHARACTE? 
I P0Slll01't IT 
I GET THE SECOND HALF 
I PLACE THE lof)RQ I f'I THE RAM 

I GET THE NEXT FIRST HALF 
I PlACE IT l"I S1->IFT 
I GET THE NEXT' SF.CONO HALF 
I PLACE IT lN SA\13 

I GET THE ADORE SS 
I fLACf: 1 T [N TH tCAD PC INTER 
I lf'£REMENT THE PC 
I GO GtT THE NEXT CHARACTER 

I GET lHE CHllRHTER 
I PLACE IN THF. LJ\Sl HALF OF PC 
I RES TORE 
I GET "-NOTH E:.R (\-<AR l\CTER 

I SET THE AC TC 0100 
I SET THE AC TO 1611 
I GET THE CHA!l.ACTEll MINUS CHllNNEL 7 
I POSITIJN THF ~tr<:; 

I PLACE AS THE FIRST HALF C-"" "C: 
I SET THE l\C T( 1117 
I GO GE:T THE SE:CONC f•t.1" '""' . .,~ 

I Gi:T ANOTHER lt-llKACH;R Fl-(Q"I THE 

1349 
1349 
1350 
13'il 
1352 
1?';3 
13'1'· 
1355 
13!36 
1357 
13~8 

1359 
13l:C 
13l: 1 
1362 
l3l:3 
1361+ 
13t:5 
13f:l: 
l3(;7 
1368 
136'1 
H70 
lHl 
1172 
1373 
1374 
1H5 
t:H 
1377 
1178 
lH9 
1380 
HSI 
1382 
U83 
I: 84 
1385 
11 P.6 
1387 
1389 
138Q 
1390 
lJ<H 
1392 
uc;3 
13<;4 
1 ;95 
1396 
n<n 
1398 
1399 
1400 
140 l 
l4C2 
1403 
1404 
14C5 
1406 
1«07 
1'008 
1'109 
1410 
1411 
1412 
1"13 
1'114 
1415 
1416 
1417 
1418 
1419 
1420 
1421 
1422 
1423 
1424 
1425 
1"26 
1427 
1428 
142'1 
1430 
14} I 
1432 
14D 
1434 
1435 
1436 
1437 
1438 
1439 
1440 
1441 
1442 
1'143 
1444 
11,45 
1446 
1447 
1448 
14'o<J 
1450 
1451 
1452 
1453 
1454 
1455 
14 ~6 
1457 
1458 
1'159 
1460 
1«61 
1462 
1463 
l4l:4 
14t5 
1466 
1467 
146~ 

l46q 
14 70 
1471 
147?. 
1'173 
1'17" 
14 75 
14H: 
1477 
1478 
14 lQ 
1480 
1481 
1482 
1'183 
1484 
141l5 
1486 
1'197 
I 4fl~ 
1'189 
1'1GC 
I 4<l I 
1492 
I 4<;~ 

8-170 

<Ill 

7722 1351 
7723 770C 
7724 5115 
772~ 532C 

7126 3154 
7727 l l5l 
1130 1353 
7731 7l:5( 
77 32 5215 

77 33 11 '3.3 

7734 7C02 
7715 1156 
7736 7041 
7737 1152 
77 .:,o 7041 
774 l 115 3 

7742 1156 
7743 3140 
7744 1355 
7745 }000 
774t 5747 
1747 64(7 

77% 0177 
7751 74Cl 
i752 75CC 
775~ HOO 
7754 OlCC 
11~~ Cl4C 

7757 

11~7 1323 
l7H 3145 
776 I 13 ~3 

7762 4Hl 
716_~ 7466 
7764 576'5 
7H:5 !:173 

6113 

61 73 2145 
61 74 5776 
61 7~ 5564 
61 76 7761 

751C 

7510 7)40 
7511 64C? 
7512 4161 
7513 7445 
7514 7341, 
75 l 5 3151 

7516 4161 
7517 7 757 

75 20 l 176 
7521 7002 
7522 0371 
752; 1372 
7524 4161 
7525 7'573 
7526 11 n 
7527 0371 
7530 41U 
7531 7573 

7532 15 76 
75 33 z 151 
7534 7002 
7535 (371 
75~6 4ttl 
7537 7573 
754C 1151 
7541 7&40 
7542 5l32 
7543 7344 
7544 3151 
7545 117& 
751,l: 7CH 
7547 1177 
755C 765C 
7551 5354 
7552 2176 
7553 5332 

7554 1160 
Vi55 2151 
7556 7CC2 
7557 0371 
756C 416 l 
7561 74~6 

7562 1151 
7563 7640 
7564 5354 

7565 4161 
75~6 7757 

l5t7 64Cl 
7570 740?. 

7''71 0077 
7'i 1 2 C ll'lO 

I I ::d\ 

TAD KRUP. 
Kt'O, S"il. CLA 

JIAP B~G 

J/o'P RIJ,_ 

L lC, r..Cll. SllV l 
TAO !JACK 
TAil KC~ll 

Sf\11 CL A 
J~I' P.EG 

lAD SHIFT 

~SW 

lAO SA\13 
C: IA 
TAD HCRE 
CIA 
TAO SHIFT 

l AD SA\13 
CCA SA\/AC 
TAD Kl 4C 
fJCA SA\iP( 
Jt-'P I .-tl 
!-'All 

Kl 77, 0177 
K~LB. 7401 
KF[, 7500 
Kr:l--8+ 760C 
KUNG, 0100 
<. HC • C 14C 

•7 757 

T"'TYt TAD KMO 
CCA SAVE 
lAD KCHB 

•6173 

CALL 
T Al K 
J,..P I .•l 
l I~ K 

llf'.K, ISZ SAVE 
JVP I .-tZ 
RETURN 
TloTY-t 2 

OUJllP, CLA CLL CMA 
t402 
CALL 
lf\P IE 
CLA CLl CMA RAL 
OCA BACK 

C All 
,..,.,. y 

HO 176 
SSW 
At-.D HALF 
lAI) nRGTN 
CAL t 
PUN CH 
lAD 176 
Af'ID !-'ALF 
CALL 
Pl..'N (H 

'HlAL, T.110 I 17t 
I Sl BAO 
RSW 
ANIJ t<A LF 
CAL l 
~UNCH 

TA!) 9ACK 
S 2&, CL fl 
J"'P [M lAL 
ClA Cll CMA RAL 
OCA 9ACK 
TA[) 176 

c" 
TAO 17 7 
SM Clfl 
J~P .-t 3 
I SZ 176 
Jt'P 1111 lAL 

Ci-<SU"• TAO SAV5 
ISZ i:!ACK.. 
p ~ ... 

AN!) HALF 
ULL 
TALK 
TAD BACK 
'llA CLA 
JI'!' CHSUP' 

CALL 
T\oTY 

640 2 
>LT 

--lALF • (C77 
QACTN, 0100 

I L.ART 
I ADO -371 
I TEST; IS IT A RUeOUT? 
I 'YE~; CONTINUE \.ITH THE LC"-Dlf'.G 
I NO; IC.NORE Ut-.T Tl tr. RUBGUT OCCURS 

I CLEAR THt. LF HAC: 
I GET THE LAST Cf'AR 
I ADU -200 
I TEST; IS IT .A LT CHAR7 
I YES; (.HARACTEll RECEl\/EC WAS NOT THE 
I FIRST U 
I J'.C; THE CHARACTER RECEIVED "1AS 
I A FIKST LT Ct-.ARACTER ANO 
I THEREFORE THIS St-OULD ENO THE LOAD 
I ROUTINE. GET THE FIRST HALF CF THE 
I LAST FIRST Cl-'JIRACTER 
I POSITION IT 
I ADD THI: LAST I-ALF OF ll-'E LAST CHARACTER 
I NEGATE THE VALl!E 
I ACD THE C.liECKSUM 
I NEGA lf: Trlf: R ESIJL l 
I NO!o ADJJST FOR THE SECOND 
I TIME Id TH TH Cl-!ECKSUM 

I SlC.RE IN THE AC 
I GET JHE SAVAC ADDRESS 
I PLACE IN T!-<E PC 

I GO TO THE 1-iAL l ROUTINE 

I THIS IS THE LEADER-TR.A ILER 
I ROJT !NE FOR T!-<E MEMORY OUMP 
I PROGP:AM. PLEASE NOTE THAT 
I IT LltiKS THROLGH TWO PAGES. 

SET THE AC TO -63 
PLACE IT IN 1:AIJE 
GH THE CHARflCTER YOU \!ANT TC 
PRINT 
PRINT IT C..UT U.. H·E TTY 

I GC Tel ROUGH THE L tr-;K TD THE 
I REST OF THE SUBROUTINE 

I COUNT our 1HE NUf'BER OF LOOPS 
I NOT DONE YET. GC DO ANOTHER 
I CCMPLETE. GO EACI< ID P~OGRAM 
I RETURN TJ Tl-IS POINT 

I TtiIS IS THE MEMOllY DUMP 
I PRDGRA'I I.HTC!- CAN BE I "'PLIMENTED 
I BY SURHNG TH INTERCEPT 
I JUNIOR RUNNINC IN THE NORMAL 
I 1100.E ~ITH A STARTING ADIJRESS 
I 751 O. TO SET THE ADDRESSES 
J OF THE RA~GE CF l'!EMORY YOU 

\.A'H PUNCHED OUT IN BIN FORMAT 
PLACE THE ADDRESS OF Tl-<E FIRST 
LOC A Tl ON YOU \ro.&N l PUNCHED IN 
LOCATIJ'l 176 ANO THE LAST 
t.O:ATJONS ADCRESS IN 177. 
THE PROGRAM Will THEN PUNCH OUT ALL 
t4EMOR'Y LDC AT ins IN BETWEEN \olllH 

I t.EADER-TRAILEfl Af'..D "- CHECKSUI'!. 

I SET ThE AC TC 7777 
I DISABLE THE CF REQUEST TIMER 
I INITIALlZE 1HE PlE;Ul\RT 

I SET THE AC Ec;LAL TO 7776 
I PL"-CE THIS fN BACK 

I PRINT OUT 63 LEADER-TRAILER CHARACTERS 

I PRINT OUT THI: OR.GIN 
I POSITJDN FCR THE FIRST BITS 
I MASK OUT THE BITS 
I ADO THE CHANNEL 1 PUNCI-' 
I PIJNCH IT OUT GN lHE TTY 

I GET THE STllRTING J\QDRESS AGAIN 
I MASK OUT THE LAST HALF 
I PUNCH IT OUT CN 1H TTY 

I PRINT our THE CATA 
I TEST; IS THIS FIRST OR SECOND 
I FIRST; PUSTTl(ti THE BfTS 
I MASK OUT Tl-<E e ITS 
I PUNCH OUT CN THE TTY 

I GET THE FIRST FLAG 
I TEST: IS THIS THE FIRST? 
I 'YES: GO BACK .AND DCI THE LAST HALF 
I NO; RESH BACK TC 7776 

I GET THE ADDRE.!:S 
I NEGATE IT 
I ADD THE LAST tDDRESS 
I TEST; ARE lHE"f Tt-E SAME7 
I 'YES; GD TO EJ\0 OF DUMP 
I NO; INCREMENT THE ADDRESS 
I GO GET THE F>.EXT Ir.ORO. NOTE 
I THAT IF THE "-ODRESS i<jAS 7777 THEN THE 
I DUMP PROGRllM \,,Ill DEFAULT TO ENO 

I GET THE CHECl<SUM AND PUNCH IT OUT 
I TEST; IS THIS FIRST OR LAST 
I FIRST; POSITICN TH B[TS 
I MASK OUT THE BIT5 
I PUNCH OUT THE CHECKSUM 

I GET THE FIRST FLAG 
I TEST IF FIRST OF SECOND HALF 
I FIRST HAL f, C:O BACK FOR SECOND 

I Pl.NCH our LEACER-TRA ILER 

I RESTORE THE CP Q.EQUEST THIE~ 
I EJIV THE PROGRAM 



llt97 
1"'98 7573 ltl61 PUt.CH, CALL I OUTPUT THE AC TO fHE TTY 
149'9 7574 7466 TALK 
1500 7575 5776 J,.P I ·'' I LlNK TO THE REST OF THE SUBROUTINE 
1501 757(: 637" LINKER 
1502 
1!503 
l501t 6374 •t:H4 
l5C5 
1506 6374 llltlt Lltof(EA, TAD Tl ME I RECOVER THE Ct-.ARACTER 
1507 6375 1160 TAO SAV5 I ADO TO THE CHECK SUM 
1!508 6376 3160 OCA SAV5 I UPDATE THE hEW Ct'ECKSUM 
15C'9 6377 5564 P:ETURN I GO BACK TO THE PRCGRAM 
1510 
1511 

END OF PASS 2 

0 ERltQR S DETECTED 

SY~BOL une ... 7246 UB 11"7 AAC 7250 AAD 
AC 0166 ACCA 6E71 AOJT 6617 ACJ 
AJMS 6673 AOPRl 1C7l AOPR2 1153 AOPR3 
BEG 7615 BIN 7600 !LK E:566 •o• 
eSET4 7255 eSET5 7'57 BSET6 7261 f\SET7 
CALLY 6040 ULL 4161 CFltiG l Hfl CFU.G3 
cus 7052 OATAL 7!12 oc l 6557 OECPC 
OIG3 6323 CL2 7l:60 °""' 7510 EJf'\P 
GAR 62<l2 GCCN f.E24 GOTO 6130 Gue 
HEX 6425 HOLD Cl46 "Ol 7425 INAD 
JAlO 7143 JA4 7121 JA5 1124 JA6 
H4 6145 JBS 6150 JB• U53 JB1 
JCT 7243 JMPI 6C34 KAT 7327 Kf:l\LLY 
KIT 7325 KJMP 7?23 KLING 7643 KLCNG 
K,_63 7723 KM1 6:!67 KMB 6365 KRETY 
Kl77 7750 K2000 6670 1(3000 6611 K4000 
LCAO 6333 LOT 7'3'ii5 LTC 7726 HASKO 
MBST "1273 MICRO 6E33 MK 7324 MCUT 
•OT 7.352 ORGIN B72 out 6063 PC! 
PC. 6550 PUO 7353 PU~CH 7573 PUP 
ltEFSH 6236 RESET 6414 RE TURN 5564 REU 
SA\IAC 0140 SAVE 0145 SAVFL 0142 5AVMQ 
S.eV4 0157 SAYS 0160 SETPC 6600 SFlillGl 
SKIPZ 6163 SKIP] 6172 SK IP't H73 SNERD 
SOUP 7025 STACK Cl65 START 6000 STATUS 
TALK 7466 lAL 7426 TC~T 6235" TEMP 
TKI 6233 lK2 6234 TOK 6172 TCZ 
T\rriTV 7757 uocs 611 7 LG 6546 WCRA 
•ec 6644 lOK 7C26 ZOL2 7166 ZOL3 

8-17E 

7251 AAE 7252 AAF 7253 
6262 AINC 6661 A IDT 7027 
7204 ATAC 6664 BACK . 0151 
7220 BOOB2 l:726 BOOB 6725 
7263 BSETB 7265 ASET9 7267 
6177 CHSl:fll: 7554 CLKPD 6l1C 
6403 OEP 652't OIGO 6267 
7363 EJMS 7356 EXEC 7366 
7167 Gu• 7104 GUT 7354 
7330 INCAC 6400 INDB 7343 
1127 JO 7132 JAB 7135 
6156 JBO 6161 JB• 6164 
6035 KCHB 7753 KCRA 7463 
7754 KflllO 6370 ic.-11 637l 
6036 KRUS 7751 KTTY 7465 
6615 K5000 6700 LINKER 637'9 
6360 MASfCl 6361 MASK2 6362 
6071 MRPA 6703 MSKl 6372 
6563 PCL2 nos PCL 7711 
6752 RCRA 6164 READl 616C 
0164 RETY 6051 REl 7427 
0141 SAVPC 0000 SAVI 0154 
6166 SFLAC:l 6176 SHIFT 0153 
6533 SNOT 7050 see 705:! 
0143 STOllE 0152 SWOA 6200 
0150 THRU 6246 TIME 0144 
6744' TTY" 1507 TUGl 6742 
6165 WCRe f.175 WRIT El 6161 
7217 lONK 6727 ZOt 6712 

AAG 7254 
AISZ 6666 
BASE 6037 
BSETLO 727l 
BUG 6547 
cc• 7041 
OIGl 6301 
EXIT biJU 
HALF 7571 
INIT 6007 , .. 7140 
JC4 7.l.35 
KCRB 7464 
KMlli 6J64 
K0007 6523 
LINK 617;1 
MAS Kl 6361 
MSK2 6373 
PL'.IM 7326' 
A.EA02 6170 
RUM 7720 
SAVZ 0155 
SIN 7301 
soc 7051 
TABLE 6263 
lKA 7023 
TUG2 6743 
WRITE2 6171 

AA Nil 6701 
AJMP 6676 
BEGG 7612 
BSETll 714!» 
ClLLX 0161 
CPMCJDE 77flb 
OlGl 6312 
FLASH 6777 
HALT 6407 
l.,.PI E 7445 
JfHO 6167 
J:S 7240 
KfD 7752 
K"\4 6366 
Kl40 7755 
l.l SN 7473 
'4AS'( 6607 
NEXT 6736 
POINT 0147 
READ 7501 
RJN 6411 
SAV'3 Ol5ilo 
S< lP l 616.? 
SOT 7120 
ua 6543 
T< B 7024 
ru:; 6741 
lf'iR 6174 



7-SEGMENT 
DISPLAY 

LINK 

AUDIO DRIVE 

INTERRUPT 
REllUEST 

SKIP 
REllUEST 

SPEAKER 
AND 

VOLUME 
CONTROL 

INTRODUCTION 

CHAPTER 9 
INTERCEPT JR. AUDIO CARD 

FIGURE 9-1 

DISPLAY 
CONTROL 

SWITCH REGISTER 

DISPLAY LATCHES 
AND DECODERS 

TRISTATE 
BUFFERS 

IOT DECODE 

The INTERCEPT JR. AUDIO MODULE, 6957-AUD/VIS, pictured in Figure 9-1, 
is used in microprocessor tutorial courses developed by INTERSIL INC. 

The user can 11 click 11 the speaker or produce tones by controlling the 
rate at which the speaker clicks; the user can read a switch register 
and load data to an LED display register in either binary or in both 
binary and octal. 

9-1 



DISCUSSION 

The AUDIO card makes use of the three unused IDT instruction codes 
64 X 1, 64 X 4 and 64 X 5 brought out to connector pins Y, C and 15 
of the INTERCEPT JR. module. 

The card should be plugged in with the LED display on top and the 
speaker below using the card edge connector designated "to INTERCEPT 
JUNIOR". 

The switch. register is connected to the DX bus via two 340098 three-state 
hex buffers. The LED binary register is driven by three 74Cl75 quad 
D-latches with their inputs connected to the DX bus. The true outputs 
of the latches drive three 4511 BCD to 7 segment decoder drivers. The 
D input of each of the 4511 's is grounded so that the seven segment 
display can only display in octal. The display can be blanked by 
pulling the blanking inputs on the 45ll's low via the Display Control 
Switch_ S12 • 

All the switch. outputs are pulled up to Vee via the lOK resistor pack. 

IDT 6401 along with DEVSEL and XTC drives a 4025 three input NOR so 
that during IOTA·DEVSEL·XTC the 74C74 flip-flop is clocked by the 
execution of this instruction. The flip-flop toggles every time it 
is clocked as its 'Q" output is connected back to the D input. This 
turns the transistors in the push-pull driver alternately ON or OFF, 
charging and dis·charging the 68 microfarad capacitor through the 
speaker votce coil and producing an audible click. 

IOT 6404 is also an output instruction and thus is gated with DEVSEL 
and XTC to produce a load pulse (inverted by a 4069) to the three quad 
D-latches connected to the DX bus. The latches will thus store the 
contents of the AC which are placed on the bus oy the IM6100 during 
IOTA·DEVSEL·XTC. 

IDT 6405 is an input instruction and is decoded along with DEVSEL and 
~TC to produce a strobe pulse at IOTA·DEVSEL·XTC time. This pulse is 
inverted by a 4069 and enables the tristate buffers onto the DX bus 1 

and also turns ON the two 2N2222 transistors driving the Ce and C1 
lines. The IM6100 thus reads the DX bus during IOTA·OEVSE ·XTC and 
loads the data into the accumulator. 

The INTREQ and SKP lines to the IM6100 are multiplexed onto the same 
1 ine. The data read strobe generated by an IDT 6405 enables the SKP 
1 i.ne so that depression of the SKP switch will drive the SKP 1 ine low. 
The INTREQ line is always enabled except during DEVSEL time. Actually, 
tfte SKP line is sampled only during DEVSEL•XTC 2 but for simplicity, 
interrupt requests are disabled even during DEVSEL·"XTC. In any case, 
the INTREQ line is sampled only during the last cycle of an instruction 
execution during the first major state time. 

The LINK bit drives an LED diode directly via a 4069. 

9-2 



\.0 
I 
w 

Vee 

~ 
17 

RESET Ill 

3 
DXo 

4 
mDX1 

'----"---' DX2 
6 ox3 

7 
(BJ DX4 

(8J DX5 

'---"---' DX 6 
10 

DX7 

lll)DX 

(12} ox8 

(13)- 9 

(1"4}- DX10 

~ox11 

SIGNAL 
NAME 

H 
Co 

J 
C1 

~ 

6957-AUDVIS 
VccO INTERCEPT JRo AUDIO CARD SCHEMATIC ALL Tl LEDs 

Vee 

1 
6404 

~ ff . ' =1 ~ ~ ~ DISPLAY 

J DXo DX11 5 
-= 13 10 

2 LE LT a 
12 

a 
4 CLR 0 2 c b 9 b D Q 3 1 11 8 c c 13 0 15 8 CD4511 10 5 B·27R 

D 74C175 g j4- 7 d d 
5 A 10 9 4 e 1F 

e D 20 Ci. t--zo--
tDJJ 

f 
15 2 f 12 

D 0 

CLKQ 
11 

J 9 

CLR 
4 D Q 2 

Q 3 

S D 74C175 g 7 
6 

12 40 Q 10 
D Q 11 

13 0 15 
D 14 

CLKQ 

J 9 

CLR QI 5 7 
D Q 6 

13 0 15 
D 74C175 Q 14 

4 60 Q 2 
D Q 3 

12 Q 10 D Q 11 
CLK 

9 

s~~~~L o0 
14 

2N2222 

01 
Rl 

20k -= 
2N2222 

02 
R2 
20k -= 

Big 14 

4 

13 
'-----2.. c 

LE LT a 
12 

b 

L 1 c 11 
B CD4511 10 

d 
7 A 30 

e 
9 

tDJJ 

15 
f 

14 Big 

4 

2 LE LT a 
c b 

1 c 
B CD4511 d 7 50 A e 

tDJ31 

f 
Big 

'ly"'V 7~~'¢7,1 
4 

13 
LE LT a 2 c 12 

b 
o1 o2 03 04 05 06 07 0 8 Og 010011 1 c 11 

B C04511 10 13 p N L 10 9 K F 5 6 E 
7 70 

d 
A e 

9 to f 
15 

PIN NUMBERS OF 
14 

TOP EDGE CONNECTOR Big 

4 

~ 
BECKMAN 10k RESISTOR PACK 

6Ar 

~ CD4069 899-1-lOk SC 

10 

1stl1 13 11 9 2 10 8 3 5 6 1 7 4 12( 

2 6E2 6E4 2 

5 4 
40098 

7 

4 
6 

13 14 

11 6C 12 

9 10 

15 1 

13 OE 2 OE4 14 

11 
40098 

12 

7 -4 6 

3 2 

9 7C 10 

5 4 

SIGNAL NAME 
7'7 i7v' 7vv 
ro '1 l2 l3 14 15 16 17 la rg 110111 

16 S R 12 M 11 J 8 7 D 4 3 

PIN NUMBERS OF 
Tl"IP >:nr,>: rl"ll\11\l>:rTl"IR 

t--

SWITCH ........... 

-o"'-o-- ........... 

6 TIMES 
t--
t--

t---< 

1--1 
SWITCH 1--1 

-o"'-o- 1--1 

6 TIMES 
1--1 
1--1 
1--1 

6405 J ~ 
SWITCH 

REGISTER 

3 g 

10 a 
9 b 
8 c 
5 B·27R 

d 2F 
4 e 
2 

f 
3 

9 

10 a 
9 b 
8 c 

B-27R 5 d 3F 4 e 
2 f 
3 g 

10 a 
9 b 
8 c 
5 B-27R 

d 4F 4 e 
2 f 
3 g 

DISPLAY 
ON/OFF 
SWITCH 

-<)~ 
-= 

Ovcc 

R5 
1 k p 05 

2N2222 

:::! ~::::: Hl r :::! ~ 
i-L 

375E 05 
POT 

J2N363B an 1W 
R5 
1k 

~ ~ 6 
~ --.i-~ ~ -

~ 1-=:il 5 ~ 
[ Q Q 

4 
74C74 PAE 

Vee 
CLR CD4025 0 68 1 

13 64Xt{L)-C°r) 

~ 3 
10_,./7A 

12----, DEVSEL ILi 
11 E 

XTC 8 loJ 11...L _liJ_ 
R 

6 

--,.r !J4 n J-
CD4069 CD4025 

A 
3 

8 6 <7A (4 64 X 4{L) 

6?4 c -s 
5 

~ 9 6 

-0,.., ' -----< 64X5(L) 
15 -1 

CD4069 CD~ 3 12 13 

4 6A'I 6~ 
R7 Vee 

-D 
R3 _),;;NT 

1K 
u 

SKP/INT(L) ;p 2N2222 

y -= 
Cg .001µF -0~ 

R4 04 SKP 

IA. 
2N2222 

20k 

LINK -= 
...liJ_ 2 LINK 

D 

Tii._IED -;:: 
TOP EDGE 

CONNECTOR 

C> 0 POWER GRID -I> µ 

C:=) = 44 PIN INTERCEPT JR. BUSS 

[:> =TOP EDGE CONNECTOR 





APPENDIX A 
INTERCEPT JR. PROGRAMMING FUNDAMENTALS 

NUMBER SYSTEMS 

INTERCEPT JR., as most digital computers, uses the binary system. 
Representation of binary numbers by positional notation is 
analogous to the common representation of decimal numbers by 
assigning ten different 11 weights 11 to each position. Any number 
of n digits may be written as the string of digits. 

where C1 s can range from 0 to 9. 

This actually stands for 

Cn-l followed by (n-1) zeros+ 

Cn_2 followed by (n-2) zeros + 

~n-3 followed by (n-3) zeros+ 
. 
c1 followed by 1 zero + 

CO 

or cn-l (lO)n-l + cn_2 (lO)n-2 + ••• c1 (10) 1 +Ca (la)a 

For example, 1234 is laoa + 2oa + 3a + 4 or 1 X la3 + 2 X la2 + 

3 x la1 + 4. 

Similarly, in the binary system, any number may be represented 
by a string of coefficients 

which stands for 

Bn-1 (2)n-l + Bn-2 (2)n-2 +Bl (2)1 +Ba (2)a 

where the B 1 s may be a or 1 • 

The 11 radix 11 , or base of the binary system is 2, whereas it is a 
in the case of the decimal system. 

A-1 



The reason that the binary system is universally used in digital 
computers is that it is very convenient and easy to provide for 
two states in digital circuits and this makes a binary representation 
of digital system states very practical. 

Other physical systems may be easier to describe in a number system 
with a different number of states. To illustrate, consider this 
puzzle: 

Given a scale balance, how many different weights would 
be needed to balance any object that could weigh a 
whole (integer) number of pounds up to 1000 pounds? 

One way of looking at this puzzle is by imagining that the object 
is placed on one pan of the balance and the weights are added, or 
taken off, the other side until the pan balances. 

Since a weight could either be on the pan, or not on the pan, we 
have two possible states for each weight--on or off the pan. By 
now, it may be intuitively apparent that we could take a group of 
weights, in ascending powers of two, and using them or not using 
them on the pan, we could balance any weight up to the sum total 
of a 11 weights. 

It takes ten binary digits, or 11 bits 11 for short, to represent any 
number from 0 to 1023. Our problem is solved by having ten weights, 
weighing 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 pounds each. 

We have gone from 1000 to 10 by making the binary connection. 
Can we do better? Actually, we can, by going just a little further 
along the same train of thought. 

What if we were allowed to place the weight on the opposite pan, 
along side the object? This adds a third possible state to each 
weight. Now it can either be on the 11 norma 111 side, on the 11 object 11 

side, or not on the balance at all. We have a three-valued, or a 
ternary system. 

By putting the object on the 11 object11 side, we are effectively 
giving it a negative weight, as it acts to force the 11 normal 11 

side of the pan upwards. So each physical weight has three 
mathematical 11weights 11 assigned to it, O +l, -1 according to 
where it is--off, on or opposite side of the pan. 

It can be proved, but it should also be intuitively apparent that 
now we need weights in ascending powers of three. The weights 
required are 1, 3, 9, 27, 81, 243, 729 so we have bettered our 
previous score by three. 

Digital circuits are composed of vast quantities of two-state 
or bi-stable devices known as flip-flops. 

A-2 



In theory, binary numbers may be used to describe the condition 
of these flip-flops. 

A system with 12 flip-flops could be represented by a 12 bit 
number, for example 1 0 1 1 0 0 1 1 1 0 0 1, where each bit 
represents the set or reset state of a particular flip-flop. 
Binary numbers are unwieldy to handle because of the long strings 
involved, so often a simplification is introduced. 

Consider the numbers 0 through 15 written in their binary 
equivalent. 

23 22 21 20 

8 4 2 1 

0 0 0 0 0 
0 0 0 1 1 
0 0 1 0 2 
0 0 1 1 3 
0 1 0 0 4 
0 1 0 1 5 
0 1 1 0 6 
0 1 1 1 7 
1 0 0 0 8 
1 0 0 1 9 
1 0 1 0 10 
1 0 1 1 11 
1 1 0 0 12 
1 1 0 1 13 
1 1 1 0 14 
1 1 1 1 15 

Observe that in the 11 units 11 , or 2° position, the state changes, or 
11 toggles 11 most often, for example every time the number increments. 
In the next or 21 position, the bits toggle every two increments, 
and in the 22 position, every four times, etc. 

Or, looking at this another way, the one bit groups 0 and 1 
alternate every time, the two bit groups 00, 01, 10, 11 recur 
every fourth time, the three bit groups 

000 ) 
001 ) 
010 ) 
011 ) 
100 ) 
101 ) 
110 ) 
111 ) 

recur every eight times, and so on. 

Thus, to shorten binary numbers, we could encode these groups. 
The tradeoff is between the length of the number string, and the 
number of symbols required. 

A-3 



~Je could encode the two bit groups with four symbols. 

00 0 
01 l 
l 0 2 
11 3 

Then we could represent the same number we had before as shown: 

l 0 11 00 11 10 01 
2 3 0 3 2 l 

The string has half the number of digits, but it took twice the 
number of symbols. 

We could go further, and take three bit groups. Let us encode 
the group as follows: 

000 0 
001 l 
010 2 
011 3 
100 4 
101 5 
110 6 
111 7 

The previous example is split up into three bit groups as shown: 

l 01 l 00 111 001 
5 4 7 l 

We now have one-third the number of digits in the string, but 
instead of only three times the number of symbols, we have four 
times the number of symbols. This is because the number of 
symbols is doubled every time we increase the group size by 
one more. 

Proceeding further, using four bit groups. We will run out 
of numerals, so we will use some alphabetic characters to 
help encode the group. 

' 0000 0 
0001 l 
0010 2 
0011 3 
0100 4 
0101 5 
0110 6 
0111 7 

1000 8 
l 001 9 
1010 A 
l 011 B 
1100 c 
1101 D 
1110 E 
1111 F 

A-4 



Our 12 bit number may now be represented by three of the above 
codes: 

or 

1011 

B 

0011 

3 

1001 

9 

So, we have doubled the number of symbols to sixteen but reduced 
the length of our string only by one, from four to three. The 
code itself has also become a little unwieldy because the number 
of different symbols. 

As a matter of fact, this representation by four bit groups is 
known as the hexadecimal system (base 16 system) and is widely 
used. 

The system of representation with three bit groups encoded with 
the eight symbols 0 through 7 is known as the octal number system 
and is also in wide use. 

We shall adopt the octal numbering system for INTERCEPT JR. 

It should be evident by now that the choice is based purely on 
convenience and consistency with the available literature as 
almost all digital computers are fundamentally binary machines. 

At this point, it is instructive to turn your machine ON. Press 
the CNTRL key and the MEM key and then keep pressing the MEM 
key. The address display will increment in an octal progression. 
By watching the addresses increment, the user can become familiar 
with the octal system. 

To recapitulate, conversion from binary to octal is done by 
taking groups of three bits, starting from the least significant 
bit, filling in a zero or zeros to the most significant group, 
if necessary, and writing down the octal equivalent for each 
group. 

Conversion from octal to binary is done by directly writing down 
three bits from each octal number. 

INTERCEPT JR. uses two's complement arithmetic in its processing 
1 ogic. 

The processor performs binary addition between two operands but 
binary subtraction is best done adding the "negative" of one 
operand to the other. This requires an extra symbol to indicate 
the sign of the number. To avoid this, a form of representation 
known as two's complement has been devised to represent negative 
numbers. 

A-5 



To illustrate the concept involved, let us look at a couple of 
analogies in the decimal system. In the decimal system, we 
could use the "ten's complement" to represent negative decimal 
numbers. Consider a ruler marked off in centimeters. If zero is 
your reference point, then 11 111 would be the same as +l. To 
measure 11 -1 11 , you would have to turn the ruler around. Or, 
you could slide it so that the number 10 was opposite your 
reference point. Now, the point 11 -1 11 is marked by the number 9. 
That is, 9 is the lO's complement of 1. Similarly, 8 is the 
ten's complement of 2, 7 is the ten's complement of 3, etc., 
these numbers representing -1, -2, -3, etc. 

To subtract one number from another, we add their ten 1 s complement 
together and ignore the carry. 

Thus 8 - 3 is given by adding 8 and 7 to get 15 and ignoring the 
carry to finally give 5. 

The one's complement, by definition is obtained by subtracting 
each digit from one. In the binary system, this is particularly 
easy. All one has to do is to invert the bits. 

One's complement 
Add 1 to get 21 s complement 

00000101 
11111010 
11111011 

By taking the two 1 s complement again, we get the negative of 
a negative number, so we should get the original number back 
again. 

One's complement 
Add 1 to get 2's complement 

11111011 
00000100 
00000101 

Thus 8 - 3 in binary is 1000 - 0011, or taking two's complement 
1000 + (1100 + 1) = 1000 + 1101 = 10101 or 1010 = 5 neglecting 
the high order carry. 

ARITHMETIC PROGRAMMING EXAMPLE #1 

ADDRESS 

0020 
0021 
0022 
0023 
0024 

MEMORY 

7200 
1026 
1027 
3025 
7402 

A-6 

SYMBOL 

CLA 
TAD 0026 
TAD 0027 
DCA 0025 
HLT 



We shall enter this program with INTERCEPT JR. via the keyboard 
to practice binary arithmetic. At this point, it is sufficient 
to know that CLA stands for clear accumulator, TAD for binary 
ADD, DCA for deposit into memory and HLT for halt. 

The octal numbers on the left are successively numbered memory 
locations or 11 addresses 11 and the numbers on the right are the 
octal representations for the binary data that will be stored 
in these memory locations. 

Each location can 
digits, or bits. 
twelve flip-flops 
be stored. 

store four octal digits, that is, twelve binary 
Each location may be thought of as a row of 
that are set or reset according to the data to 

To enter this program, turn on the machine and perform the 
following sequence of key depressions: 

CONTRL SETPC 0 0 2 0 

This enters the starting address. 

CONTRL MEM 7 2 0 0 

This enters the first instructions. 

MEM 

CNTRL 

This increments the address. 

MEM 0 2 6 

This enters the second instruction in location 0021. 

MEM Increments address. 

Finally, after HLT is entered, press MEM twice to step the 
address to 0026. 

Now, enter an octal number, for example 7, into this address, 
step MEM again and enter a second octal number, for example 10. 
These are the operands in location 0026 and 0027. The program 
will add them and place the result in lcoation 0025. In this 
case, 0017 will be seen in this location. 

Now, to run the program, we have to get back to the beginning, 
so press 

CONTRL SETPC 0 0 2 0 

The display will show the address and the instruction. 

A-7 



Press 

CONTRL RUN 

The program will be executed, and the processor will halt, 
showing the result in location 0025. Note that if the sum of 
the two numbers is greater than 7777 in octal, a carry out or 
overflow will occur from the most significant bit position, 
setting the LINK bit in the processor. 

Practice different addition problems on paper, in binary, 
then in octal and check them on INTERCEPT JR. 

At this point, think of all the numbers as unsigned positive 
integers. Now, think of the numbers as signed two's complement 
numbers. 

i~rite down two numbers, and subtract one from the other using 
this program to add one operand to the two's complement of the 
other operand. 

EXAMPLE: 000 111 000 111 or 0707 
111 000 111 000 or 7070 
added together 
111 111 111 111 or 7777 

If 7070 is considered as a negative number, then, by taking the 
two's complement, we get: 

ODO 111 ODO 111 + l = 
000 111 001 000 or 0710 

That is 0707 - 0710 = 7777. This can be seen to be true because 
0710 is just one greater than 0707 and 7777 is obviously -1 
(two's complement= 0000 + 1). 

Since data entry and readout in INTERCEPT JR. is in octal, it 
may be convenient to work in eight's complement notation. This 
is a direct extension of the previously described technique: 

EXAMPLE: 

A) 

B) 

C) 

D) 

Subtract 34568 from 71428 

7's complement of 34568 
add l to get 2's complement 
add to 7142 

discard high order 
carry to give answer 

A-8 

= 

4321 8 
43228 
71428 

134648 

34648 



ARITHMETIC PROGRAMMING EXAMPLE #2 

We shall now explore in greater detail the advantages of two's 
complement arithmetic. 

As explained previously, to form the two 1 s complement of a 
binary number, the one's complement is taken and one is added to 
it. 

In general, this works with any radix (base). That is, the 
complement with respect to the largest single digit integer 
in the system is taken, and one is added to it to give the 
radix complement. 

In particular, the binary system lets us implement the one's 
complement in a simple way. You simply invert the bits. This 
is very easily done in almost all modern digital logic families 
because inversion is a function basic to them all. 

In many circuits, the true and inverted levels are available 
at the same time (flip-flops) and one just has to select the 
desired level. 

The addition of 1 is also easy to do because the capability to 
add must be present anyway. 

Thus 2's complement conversion, in conjunction with standard adders, 
allows the processor to do signed arithmetic. Multiplication and 
division are done by programming suitable algorithms, that is, 
computational sequences. We shall study these techniques later 
in this text. 

The following program computes the two's complement of a binary 
number. Bear in mind that the number is entered in octal, and 
the two's complement is also displayed in octal. 

ADDRESS MEMORY SYMBOLIC 

0020 7200 CLA I Clear accumulator 
0021 1026 TAD 0026 I Read data in 26 
0022 7040 CMA I Complement accumulator 
0023 1027 TAD 0027 I Add one 
0024 3026 DCA 0026 I Deposit into 26 
0025 7402 HLT I Halt 
0026 I Result and user entered data 
0027 0001 0001 I DATA = 1 

Enter this program exactly as explained in example one. Notice 
that this program uses data supplied by the user as well as data 
contained in the program itself 

A-9 



What if we would like to use both the program examples together? 

If you look at the memory addresses used by the two programs, 
they look very similar. In fact, we just wrote over the first 
example and effectively lost it. 

Let us assume we want to keep both example l and example 2 in 
memory. Since we wrote over example l, let us choose to relocate 
it. Go back to the listing for that example and take a look at 
the symbolic code. 

The octal numbers following the mnemonics are memory addresses that 
are referenced by the instructions. 

All we have to do is to alter the memory references according to 
where the program is going to be relocated and make sure that the 
data is entered in the proper addresses where the program expects 
to find it. 

Let us move the program up to twenty locations. All addresses 
must have twenty added to them and the three memory reference 
instructions must also have twenty added to them. 

0040 7200 
0041 1046 
0042 7040 
0043 1047 
0044 3046 
0045 7402 
0046 
0047 0001 

Enter this as explained before. Naturally, the data must be 
entered into 46 and the result will also be in 46. Run a few 
examples and check out the program 

Now we can do signed arithmetic by using one program for addition 
and the other for calculating two's complement. The only problem 
is, each time we have to enter data, execute, read data and then 
repeat the process for the other program. 

ARITHMETIC PROGRAMMING EXAMPLE #3 

This brings us to the concept of linking programs together and 
passing parameters between them. 

A-10 



For example, we can link the two programs into a single program 
that subtracts one number from another and displays the result 
in two's complement notation. 

One program must give the other program the number to be converted 
and receive the two's complement result from it so it can finish 
the addition, for example subtraction of the original number, and 
display the result. 

We pass parameters by storing data where both programs can reference 
it. We pass control by using unconditional branch or jump 
instructions to change the flow of the program. A jump instruction 
specifies the location from which the next instruction is to be 
fetched. 

ADDRESS MEMORY SYMBOLIC 

0020 7200 CLA 
0021 1026 TAD 0026 
0022 7040 CMA 
0023 1027 TAD 0027 
0024 3046 DCA 0046 
0025 5040 JMP 0040 
0026 I DATA 1 
0027 0001 0001 

0040 7200 CLA 
0041 1046 TAD 0046 
0042 1047 TAD 0047 
0043 3045 DCA 0045 
0044 7402 HLT 
0045 I RESULT DISPLAYED : DATA 2 - DATA 1 
0046 I DATA STORED BY FIRST PART OF PROGRAM 
0047 I DATA 2 

Note that location 24 is changed to store the two's complement of 
DATA l in location 46 instead of 26. Location 25 contains a 
JUMP to 0040 instead of a HLT. This causes the computer to 
fetch the next instruction from location 40 and, thus, execute 
the second segment of the program which finally halts showing the 
result of the subtraction in location 45. 

Note that we could have relocated the data in 27 elsewhere and 
filled the space from 25 to 40 with NOP instruction, No Operation. 
This would have let the computer ripple down to the second segment 
of the program but would have been wasteful of memory space and 
not permitted the introduction of the JMP instruction. 

A further simplification would have been to use the instruction 
CMA !AC or 7041 in location 0022. This would have eliminated 
the TAD instruction in 0023 and the data stored in 0027. CMA !AC 

A-11 



0 

1 
2 
3 
4 
5 
6 
7 

01 

02 

complements the accumulator, then increments it in the same memory 
cycle. This is an example of the use of combinations of micro
instructions. When using such combinations, the 11 logical 
sequence 11 of .execution of the microinstructions must be carefully 
studied. In this example, for instance, CMA must be performed 
before the IAC. Refer to the IM6100 brochure for details on 
logical sequences. 

Additional Reference: 11 Introduction to Programming 11 , Digital 
Equipment Corporation Software Distribution 
Centers - 146 Main Street, Maynard, MA 
01754 or 1400 Terrabella Road, Mountain 
View, CA 94040 

ADDITION AND MULTIPLICATION TABLES 

Addition 

0 + 0 = 0 
0 + 1 = 1 + 0 = l 

1+1=10 

02 03 04 05 

03 04 05 06 

Binary Scale 

Octal Scale 

06 07 

07 10 

1 02 

2 04 

Multiplication 

0 x 0 = 0 
0 x 1 = 1 x 0 = 0 

1 x 1 = 1 

03 04 05 06 07 

06 10 12 14 16 
03 04 05 . 06 07 10 11 3 06 11 14 17 22 25 
04 05 06 07 10 11 12 4 10 14 20 24 30 34 
05 06 07 10 11 12 13 5 12 17 24 31 36 ~3 

06 07 10 11 12 13 14 6 14 22 30 36 44 52 
07 10 11 12 13 14 15 7 16 25 34 43 52 61 
10 11 12 13 14 15 16 

A-12 



INTRODUCTION 

APPENDIX B 
INTRODUCTION TO LOGIC 

This appendix briefly reviews truth tables as applied to simple 
logic elements, both combinatorial and sequential. Timing 
diagrams and state diagrams are illustrated using flip-flops 
as examples. 

TRUTH TABLES 

AND FUNCTION 

Symbol for AND gate 
l __ __.--........ 

:------1 )------
Output is true only if all inputs are true, that is, 
input 1 AND input 2 AND ••• AND input N 

Input 1 Input 2 Input N Output 

0 1 1 0 
0 0 1 0 
0 0 0 0 
1 0 1 0 
1 0 0 0 

1 1 a11 l's 

This table shows a conventional positive logic AND gate, 
with 1 representing logic high or true, and 0 representing 
logic low or false. Thus, only one combination of the 
inputs gives a high output. -

B-1 



OR FUNCTION SYMBOL FOR OR GATE 

Output is true if at least one of the inputs is true, for 
example Input l OR Input 2 OR ••• Input NOR any combination 
of true inputs yields a true output. 

Input l 

0 
0 
l 
0 

Input 2 

0 
l 
l 
0 

all O's 

Input N 

0 
0 
0 
l 

Output 

0 
l 
l 
l 

Here, only one of the 2N possible input combinations 
namely all O's will yield a false or low output. 

NOT FUNCTION 

Symbol for inverter 

A) 

OR 

B) 

Output is logical inversion of input. 

Input Output 

l 0 
0 l 

The position of the 11 bubble 11 tells you what the active level 
of the input is expected to be by the designer. Quite often, 
it is drawn as in A above. 

B-2 



NANO FUNCTION 

Symbol for NANO gate 

: 1-.-) c 

A 

1 
0 
1 
0 

B 

1 
1 
0 
0 

c 

0 
1 
1 
1 

This is the same as an AND gate followed by an inverter. 

NOR FUNCTION 

Symbol for NOR gate 

A ) > c 
B 

A B c 

0 0 1 
0 1 0 
1 0 0 
1 1 0 

This is the same as an OR gate followed by an inverter. 

EXCLUSIVE-OR FUNCTION 

Symbol for EX-OR gate 

:=jJ ) c 



A 

0 
0 
1 
1 

B 

0 
1 
0 
1 

c 

0 
1 
1 
0 

Output is true if Input A OR B but not BOTH are true. 
Note that this gate can be used to detect the fact that 
the inputs are identical. Thus, it is used quite often 
in digital comparators. 

D-TYPE FLIP-FLOPS 

Symbol 
Preset 

----110 Q ------

Clock Q 

Clear 

TRUTH TABLE 

D 

x 
x 
x 
x 
x 
x 
0 
1 

Input Output 
Clock Clear Preset Q Q 

x 0 0 1 1 
x 0 1 0 1 
x 1 0 1 0 
0 1 1 STABLE 
1 1 1 STABLE 
+ 1 1 STABLE 
t 1 1 0 1 
t 1 1 1 0 

The truth table for a D flip-flop is complicated 
by the sequential nature of this logic device. 
Strictly speaking, truth tables should represent 
combinatorial logic properties only. 

In this case, the truth table also shows the edge
triggered action of the flip-flop with + representing 
the negative going edge and t the positive going 
edge. 0 and 1 show stable levels. 

B-4 



The table is really a hybrid of a combinatorial 
truth table and a state table. 

This flip-flop is a synchronous storage element. In 
other words, it stores data using a clock signal to 
synchronize the operation. In this case, the device 
is positive-going edge triggered, or simply, positive 
edge triggered. 

The bottom two lines show that as long as the clear 
and present inputs are high, the positive clock edge 
loads the flip-flop with the data at D such that the 
Q output reflects the D input. The Q output is 
always supposed to be the inverse of the Q input. 

All other conditions of the clock--high, low, or 
negative edge, have no effect and the outputs remain 
stable (at the value loaded on the previous positive 
edge). 

The D flip-flop thus delays data by one clock period. 
Note that during the preceding discussion, the clear 
and preset inputs were assumed high. 

These inputs are asynchronous, and so can change the 
outputs regardless of the clock or data input. 

The bubbles indicate active low operation. 

When both asynchronous, or 11 direct 11 inputs are low, 
both Q and Q go high, so this condition is normally 
forbidden. 

In sequential circuits, other time related parameters 
are generally specified. Thus data inputs generally 
have to meet setup and hold times with respect to 
the active edge of the clock, or 11 interrogating 11 

edge. A setup time is the time the data must be present 
before the active edge, and the hold time is the time 
for which it must continue to be present-- 11 held 11 , after 
the active edge in order for proper operation. Sequential 
device operation can be much better understood using 
another graphical technique known as a timing diagram. 
Such diagrams bring out the time-sequential interactions 
in these devices much more clearly. The next section 
will deal with timing diagrams. 

B-5 



TIMING DIAGRAMS 

Shown below is a timing diagram for a D flip-flop. 

Preset LI 

Clear lJ Li 

Clock 

Data I I 
Q • Ifl_J 

Q • '---flil_ 

STATE DIAGRAMS 

Sequential circuits inherently contain storage elements each of 
which may be in one of two stable states. Each 11 state 11 of a 
digital system, as explained in the section on truth tables, 
could be represented by a binary number. The system changes 
states in response to internal and/or external conditions. 
The state transition may be synchronous to a clock pulse train 
or asynchronous. Asynchronous sequential circuits will not be 
covered in detail in this book, and we shall deal only with 
clocked logic. 

State tables and state transition diagrams are additional tools 
of analysis and design that digital engineers use. 

As an example, we shall show the state table and state transition 
diagram for the J-K flip-flop. 

Qn Jn Kn Qn+l 

0 0 0 0 
0 0 1 0 
0 1 0 1 
0 1 1 1 
1 0 0 1 
1 0 1 0 
1 1 0 1 
1 1 1 0 

B-6 



The transition, if any, from Qn to Qn+l (Q at time tn and Q at 
time tn+l) is triggered by the negative going edge of the clock. 

In words, when J and K are zero, the outputs do not change. When 
J and Kare both one, the output toggles at every clock pulse 
and when J and Kare at opposite levels, Q follows J (and 'Q" 
follows K). 

Another form of the state table shows this relationship: 

J =O K =O n ' n J =O K =l n ' n J =l K =O n ' n J =l K =l n ' ,n 

Present State Next State Next State Next State Next State 
Qn Qn+l Qn+l Qn+l Qn+l 

0 0 0 1 1 
1 1 0 1 0 

The number of inputs and outputs in a digital system are not 
related to the number of states. They only determine the number 
of paths along which a change of state may occur. In this 
specific case, the output is also the state. 

11 

10 

01 

11 

The state diagram shows the different states of a digital system 
and the conditions necessary to cause the system to change states. 

Information that is not shown on a state transition diagram is 
presented in other visual aids such as timing diagrams. 

Thus, in general, a complex system must be studied with the aid 
of many different tools in order to gain insight into the operation 
of the system from many different angles. 

B-7 



Digital systems may be 11 hardwired 11 or programmable. Hardwired 
digital systems have many logic devices scattered at random 
and many operations are done in parallel. 

This "random logic" consists of such standard SSI and MSI 
functions as counters, multiplexers, decoders, latches, registers, 
etc. 

Programmable logic systems usually have denser, more regularly 
arrayed chips such as ROMs, PROMs, RAMs, FPLAs, microprocessors, 
etc. and substitute many sequential operations for a single 
parallel operation, though this is not always the case. 

Such systems replace the "randomness" in the logic with random 
bit patterns in the memory components. Programmable logic 
systems are gaining popularity with the advent of inexpensive LSI 
storage and processor devices. 

B-8 



APPENDIX C 
OCTAL-DECIMAL INTEGER CONVERSION TABLE 

I 0 7 

I 1-0000 I 0000 
1000 I 0512 2000 I "21 

lo lo 0000 0000 000 I 0002 0003 0004 0005 0006 0007 
to lo 1000 0012 .... 0 ... 0'10 0016 0017 0018 o'" I lo lo 2000 1024 1025 1026 1027 lOZll 1029 1030 1031 

0777 0511 OOIO 0008 0009 0010 0011 0012 0013 0014 0015 
1777 1023 1010 0520 0521 0522 0523 0.524 0525 0526 0527 fl77 1636 2010 1032 1033 103t 1035 1036 1037 103'1 1039 

{Octal) (Decimal) 0020 0016 OOli 0018 0019 0020 0021 0022 0023 
(Octal) (Dtcimal) 1020 0528 0529 0530 06.11 0532 0533 0534 CM:JS (0 .... ) CDocimal) 2020 lfUO IOU lot2 10t3 IOff IOU 1046 104.7 

0030 0024 0025 0026 002i 002R 0029 0030 0031 1030 0636 0537 0538 0539 0540 Mil OM2 0543 2030 1048 l()f,9 1050 10.51 1052 1053 1054 1055 

OOfO 0032 0033 003'1 0035 0036 0037 0038 003Q .... .... OMO OMO OM7 .... OM• 0550 OMI I 20<0 10:i6 1057 1058 1o:;9 1060 1061 1062 1063 

Ocl&I Decimal 0050 0040 oou ooo oon oou oou 0046 oou 1030 0552 0553 0554 0555 0556 0557 0558 0659 20!0 1064 106.5 1066 1067 1068 1069 1070 1071 

10000- -1096 0060 0048 0049 0050 0051 0052 0053 OOH 00!5 1060 0560 0561 0562 0563 055' 0565 0566 05R7 2060 1072 1073 1014 1075 1076 1077 1078 1079 

20000- 1192 0070 0066 0057 0058 OW9 0060 U061 0062 0063 1070 0568 0569 0570 057l 0572 0573 0514 0575 2070 1080 1081 1082 1083 108' 1085 1086 1087 

30000-12281 
40000-16331 0100 OOM 0065 0066 OOGi 0068 0069 0070 Otli I 1100 C576 0577 0578 0579 0580 0581 0582 0583 I 2100 1088 1089 1090 1091 1092 1093 109' 1095 

50000-20480 0110 0072 0073 OOH oon 0076 00i7 0078 0079 lllO 0584 0585 0586 0587 0588 0589 0590 0591 I 2110 1096 1007 1098 1099 HOO 1101 ll02 1103 

60000-2"576 0120 0080 0081 0082 0083 0084 DOSS 0086 0087 1120 0592 0593 05!H 0595 0596 0597 0598 0599 2120 llot 1105 1106 1107 1108 1109 1110 llll 

70000.21672 0130 0088 0089 0090 0091 0092 0093 0094 0095 1130 0600 0601 0602 0003 0604 0605 0606 060i 2130 1112 1113 llH 11115 1116 1117 1118 1119 

0140 0096 0097 0098 00911 0100 0101 0102 0103 1140 0608 0609 0610 0611 0612 0613 0614 0615 ""' 1120 1121 1122 1123 1124 1125 1126 1127 

0130 0104 0105 0106 0107 0108 0109 0110 0111 1130 ! 0616 0617 0618 0619 0620 0621 0622 0623 21!0 1128 1129 1130 1131 1132 1133 1134 1135 

0160 0112 0113 0114 Olt5 0116 0117 0118 0119 1160 I 0624 0625 0626 0627 0628 062'.I 0630 0631 2160 1136 1137 1138 1139 lHO IHI IH2 1H3 

0170 0120 0121 0122 0123 0124 0125 0126 0127 1170 0632 0633 0634 0635 0636 0637 0638 0639 2170 UH 1H5 1146 IH7 1148 IH9 1150 1151 

0200 0128 0129 0130 0131 0132 Ol33 0134 0135 1200 0640 060 0042 0043 0044 OMi OM6 064 7 2200 11.52 1153 1154 1155 1156 1157 llM 1159 

0210 0136 0137 0138 0139 OHO 0141 0142 OH3" 1210 OMS O&l9 0650 0651 0652 065.'I 0654 0655 2210 1160 1161 1162 1163 UM 1165 1166 1167 

0220 0144 OHS OH6 0147 OHS 0149 0150 0151 1220 0056 QM7 0658 0659 0660 OMI 0662 0663 2220 1168 1169 1170 1171 1172 1173 1174 1175 

0230 0152 0153 0154 0155 0156 0157 0158 0159 1230 006' 0665 0666 06G7 0668 0669 0670 0671 2230 11761177117811791180 118111821183 

0240 0160 0151 0162 016.1 0154 oms 0166 0161 I 1240 0672 0673 0674 0675 0676 0677 0078 0679 2210 1184 llSS 11861187 1188 11891190 1191 

0250 0168 0169 0170 0171 0172 Oli3 0174 0175 1230 0680 OBl!I 0682 061J3 06M 0686 0686 0687 2260 1192 1193 119' 1195 1196 1197 1198 1199 

0260 0176 0177 0178 Oli9 0180 0181 0182 0183 1260 0688 0689 0690 0691 0692 0693 0694 0695 2260 1200 1201 1202 1203 1204 1205 1206 1207 

0270 0184 0185 0186 0187 0188 0189 0190 0191 1270 0696 0697 0698 0699 0700 0701 0702 0703 2270 1208 1209 1210 1211 1212 1213 1214 1215 

0300 0192 0193 0194 0195 0196 01!17 0198 0199 1300 0704 07M 0706 0707 0708 0709 0710 O:'ll 2300 1216 1217 1218 1219 1220 1221 1222 1223 

0310 0200 0201 0202 0203 0204 0205 0206 0207 1310 0712 0713 07H 0715 0716 0717 0718 0719 2310 122.fi 1225 1226 1227 1228 1229 1230 1231 

0320 0208 0209 0210 0211 0212 0213 0214 0215 1320 0720 0721 0722 0723 0724 0725 0726 0727 2320 1232 1233 1234 1235 1236 1237 1238 1239 

0330 0216 0217 0218 0219 0220 0221 0222 0223 1320 1 ·728 0729 0730 0731 0732 0733 07" 0735 ' 2330 1240 1241 1242 12'3 12H 1245 1246 1247 

0340 0224 0225 0226 0227 0228 0229 0230 0231 .... one 0131 07as 0739 0140 0141 on2 0743 I 2340 1248 1249 1250 1251 1252 1253 12M 12M 

03!0 0232 0233 0234 0235 0236 0237 0238 0239 l!aO 07f4 0746 07d 0747 0748 07411 0750 0751 i 2330 1256 1257 1258 1259 1260 1261 1262 1263 

0360 0240 0241 02•2 0243 020 OHS 0246 0247 I 1360 070 0753 07M 075& 0756 0757 0758 0759 2360 1264 126S 1266 1287 1268 1269 1270 1271 

0370 0248 0249 0250 0251 0252 0253 0254 0255 1170 0760 0761 0782 0783 076« 0765 07158 0767 2370 1272 1273 127' 1275 1278 1277 1278 1279 

O•OO 0256 0257 0251! 0259 0260 0261 0262 028.1 HOO 0768 0769 0770 1)771 0772 0773 0774 0775 2<00 1280 1281 1282 1283 1284 1285 1286 1287 

0410 0264 0265 026G 0267 02fi8 0269 0270 0271 HIO 0776 0777 0778 0779 0780 0781 0782 07~ 2410 1288 1289 1290 1291 1292 1293 12M 1295 

0•20 0272 0273 0274 0275 0276 0277 0278 0270 1'20 0784 0785 0786 0787 0788 0789 U7llO 0791 2'20 !~: ~:; ~3: ~=; ~~~~ !: !~~~ !~~~ 
0•30 02811 021!1 02N2 0283 0284 0285 02116 02R7 1'30 0792 0793 0794 079S 0796 0797 0798 0799 2'30 

o•to 0288 028!l 0290 0291 0292 0293 0294 0295 IHO 0800 0801 0802 0803 0804 080S 0806 0807 2110 1312 1313 13H 131S 1316 1817 1318 1319 

o•"' 0296 0297 02118 0299 0300 0301 0302 0303 1'30 0808 0809 0810 0811 CIJH2 0813 08H 0815 2f30 1320 1321 1322 1323 1324 1325 1326 1327 

o•oo 0304 0305 0306 0307 0308 0309 0310 0311 1'60 0816 0817 0818 0819 0820 0821 0822 0823 .... 1328 1329 1330 1331 1332 1333 1334 1335 

0470 0312 0313 03H 031~ 0:116 0317 0318 0319 1470 0824 0825 0826 U827 0828 0829 0830 0831 2170 1336 1337 1338 1339 IHO 1341 1342 1343 

0500 0320 0321 0322 0323 0324 0325 0326 0327 1300 0&12 0833 0834 0&15 0836 0&17 08.18 0839 2300 13H 1345 1346 1347 1348 1349 1350 1351 

0510 0328 0329 0330 0331 0332 0333 0334 0335 1510 0840 OHi 0842 0843 0844 0845 0846 0847 2510 1352 1353 1354 13M 1356 13S7 1358 1359 

0•20 0336 0337 0338 0339 0340 OHi 03f.2 0343 1520 084:8 0849 0850 0851 0852 0853 OSM 0855 2620 1360 1361136213631364136513661367 

OS30 03H 0345 0346 0347 0348 0349 0350 0351 1630 0856 0857 085!1 0859 0860 0861 0862 ORM 2.130 1368 1369 1370 1371 1372 1373 1374 1375 

OHO 0352 0353 0354 O:W 0356 0357 03M OM9 IMO 0864 0865 0866 0867 01168 0869 0870 0871 2"0 1376 1377 1378 1379 1380 1381 1382 1383 

.. 30 0360 0361 0362 0363 0364 0365 0366 0367 IMO 0872 01173 0874 0875 08i6 0877 0878 0879 2530 1384: 1385 1388 1387 1388 1389 1390 1391 

0060 0368 03611 0370 0371 0372 0373 0374 0375 .... 0880 0881 0882 0883 0884 0885 08S6 0887 2'60 1392 1393 131M 13951396139713981399 

0570 0376 0377 0378 0379 0380 0381 0382 0383 1570 0888 0889 0890 0891 0892 0893 0894 0895 2570 HOO HOI H02 H03 lfi<M 1405 H06 H07 

0600 0384 0385 0386 0387 0388 0389 0390 0391 1600 0896 0897 0898 0899 0900 0901 0902 0903 2600 HOS H09 1410 lUl 1412 1413 HH ms 
0610 0392 0393 031M 0395 0396 0397 0398 0399 1610 O!MM 09CM 0906 0907 0908 0909 0910 0911 2610 1416 Hl7 1418 1419 1420 1421 102 H23 

0620 OtOO 0401 0402 0403 0404 CHOS 0406 <M07 1620 0!112 0913 0914 0915 CMll6 0917 0918 0919 2620 1424 H25 H26 1427 1428 1429 1430 1431 

0630 0408 0409 0410 0411 0412 0413 0414 OU5 1630 0020 0921 0922 0923 0924 092S 0926 0927 26110 1432 1433 H34 1435 H36 1437 1438 1439 

°""' 0416 0417 0418 0419 0420 0421 0422 0423 1640 09'l8 0929 0930 0931 0932 0933 0934 0935 2640 lHO lHl 1H2 H"3 1H4 14415 IH6 1447 

0600 0424 CM25 0426 0427 0428 0429 0430 0431 1830 0936 0937 0938 0939 O!HO 094 t 0942 0943 2630 ~::: :::; ~:: ::~ ::~ ·::~ ::: ~:: 
0660 0432 0433 0'34 0435 0436 0437 0'38 0439 1660 OOH OHS 0946 0947 0948 0949 0950 0951 2660 

0670 0440 OH I OH2 OH3 OH4 OHS 0446 OH7 1670 0952 0953 0954 095S 01156 0957 0958 0959 2670 HM 1465 1466 1467 1468 H69 1470 H71 

0700 0448 OH9 0450 0451 Df.52 ow out 0455 1700 0960 0961 0962 0983 0964 0965 0966 0967 2700 H72 1473 1474 1476 1476 1477 1478 1479 

0710 0'56 0457 Ot5A 0459 0460 0461 0462 .0463 1710 0968 0969 0970 0971 0972 0973 0974 0975 2710 1480 1481 H82 1483 1484: 1485 1486 H87 

0720 04&4 046S 0466 0467 0468 0469 0470 CH71 1720 0976 0977 0978 09711 0980 0981 0982 0983 2720 1488 1489 1490 1491 1492 1493 H94 1495 

0730 C472 0473 on• 0475 lH76 0477 CH78 oug. '"" 0984 0985 0986 0987 0988 098t 0990 09111 2730 lt96 1497 1498 H99 1500 1501 1502 1503 

0740 04'16 0481 0482 0483 Of.St 0485 0486 0487 1740 0992 0911:1 01194 Oll96 0996 011117 0998 0999 2740 1504 IS<M 1506 1507 1508 1509 1510 151 I 

0730 0488 0489 0490 0491 Gf.92 0493 Of.IH CH95 17!0 I '000 1001 1002 1003 1004 1003 1006 1007 2760 1512 1513 1514 1515 1516 1617 1518 1519 

0760 0496 0497 0498 0499 0500 0501 0502 0503 1760 1008 1009 1010 1011 1012 1013 1014 1015 2760 1520 1521 1522 1523 1524 1525 1526 1527 

0770 0504 050S 0506 05()7 0508 Ul9 0510 0511 1770 1016 1017 1018 1019 1020 1021 1022 1023 2770 1528 1529 15.10 1531 1532 1533 1534 153.\ 

C-1 



- I '"' to to 
3777 2047 

(Om!) (Docim.t) 

fiOOO I 30i2 
to tu 

6777 3583 
(Octal) (Decimal) 

3000 1536 1537 1538 1539 IMO lMI 1542 1543 
3010 !SH IMS 1546 1M7 1548 1549 1550 ISSI 
3020 1552 1553 1554 ISM lli66 1557 1558 1559 
3030 11i60 1561 1562 1.563 1564 1565 1566 1567 
3040 1568 1569 1570 1.571 1572 1573 1574 1575 
3050 1576 1577 1578 1579 1500 I:i81 1M)2 J!j83 
3060 1584 1585 1586 1587 1588 1589 1590 1591 
3070 1592 1593 1594 1595 1596 1597 1598 1599 

3100 
3110 
3120 
3130 
3140 
3150 
3160 
3170 

3200 
3210 
3220 
3230 
3240 
3260 
3260 
3270 

3iloo 
3310 
3320 
3330 
33<0 
3360 
3360 
3370 

3•00 
3410 
3f20 
3430 
3«0 
3450 
3460 
3470 

3600 
3510 
3520 
3530 

"'° 35.10 
3.560 
3570 

3600 
3610 
3620 
3630 
36'0 
3650 
3660 
3670 

3700 
3710 
3720 
3730 
3740 
3750 
3760 
3770 

1600 1601 1602 1603 161}4 1605 1606 1607 
1sos t609 1s10 is11 1s12 ma 1514 1s1s 
1616 1617 1618 1619 1620 1621 1622 1623 
1624 1625 1626 1627 1628 1629 1630 1631 
1632 1633 1634 1635 1636 1637 1638 1639 
1640 1641 1642 1643 1644 1645 1646 1647 
1648 1649 1650 1661 1652 1663 1654 1655 
1656 1667 IMS 1659 1660 1661 1662 1663 

166t 16M 1666 1667 1668 1669 1670 1671 
1672 1673 1674 167li 1676 1677 1678 1679 
1680 1681 1682 1683 1684 1685 1686 1687 
1688 1689 1690 1691 1692 1693 1694 1695 
1696 1697 1698 1699 1700 1701 1702 1703 
1704 170S 1706 1707 1708 1709 1710 1711 
1712 1713 1714 1715 1716 1717 1718 1719 
1720 1721 1722 1723 1724 1725 1726 1727 

1728 1729 1730 1731 1732 1733 1734 1735 
1736 1737 1738 1739 m,o 1741 1742 1743 
11« 1745 1746 1747 1748 17f9 m;o 1751 
1762 1753 17M 1755 1756 1757 1758 1759 
1760 1761 1762 1763 1764 1765 1766 1767 
1768 1769 1770 1771 1772 1773 1774 177!) 
1776 1777 1778 1779 1780 1781 1782 1783 
1784 1785 1786 1787 1788 1789 1790 1791 

1792 1793 1794 1795 1796 1797 1798 1799 
1800 1801 1802 1803 1804 1805 1806 1807 
1808 1809 1810 1811 1812 1813 1814 1815 
1816 1817 1818 1819 1820 1821 1822 1823 
1824 1825 1826 1827 1828 1829 1830 1831 
1832 1833 1834 1835 1836 1837 1838 1839 
1840 1841 1842 1843 1844 1845 1846 1847 
1848 1849 1850 1851 1852 1853 ISM 1855 

1856 1857 1858 1859 1860 1861 1862 1863 
1864 1865 1866 1867 1868 1869 1870 1871 
1872 1873 1874 1875 1876 1877 1878 1879 
1880 1881 1882 1883 18!<4 1885 1886 1887 
1888 1889 1890 1891 1892 1893 1894 1895 
1896 1897 1898 1899 1900 1901 1902 1903 
1904 1905 1906 1907 1908 1909 1910 1911 
1912 1913 1914 1915 1916 11m 1918 1919 

1920 1921 1922 1923 1924 1925 192fi 1927 
1928 1929 1930 1931 1932 1933 1934 1935 
1936 1937 1938 1939 1940 1941 1942 1943 
1944 19.U 1946 1947 1948 1949 1950 1951 
1952 1953 1964 1955 1956 1957 1958 1959 
1960 1961 1962 1963 196" 1965 1966 1967 
1968 1969 1970 1971 1972 1973 1974 1975 
1976 1977 1978 1979 1980 1981 1982 1983 

1984 1985 t98fi 1987 1988 1989 11no 1991 
19~1993199419~1~1m1m1m 
2000 200 I 2002 2003 2004 2005 2006 :Hl07 
2008 2009 2010 2011 2012 2013 2014 2{115 
2016 2017 2018 2019 2020 2021 2022 2023 
2024 2025 2026 2027 2028 2029 2030 2031 
2032 2033 2034 2035 2036 2037 2038 2039 
2CMO 2CM 1 2042 2CM3 20H 20fl 2046 2047 

0 I 2 3 4 5 6 7 

6000 3072 3073 3074 3075 3076 3077 307S 3079 
6010 3080 3081 3082 3083 3084 3085 3086 3087 
6020 3088 3089 3090 3091 3092 3093 3094 3095 
6030 3096 3097 3098 3099 3100 3101 3102 3103 
6040 3104 3105 3106 3107 3108 3109 3110 3111 
6050 3112 3113 3114 3115 3116 3117 3118 3119 
6060 3120 3121 3122 3123 3124 3125 3126 3127 
G070 3128 3129 3130 3131 3132 3133 3134 3135 

6100 3136 3137 3138 3139 3140 3141 31-42 3143 
6110 31H 3145 3146 3147 3148 3149 3150 3151 
6120 3152 3153 3154 3155 3156 3157 3158 3159 
6130 3160 3161 3162 3163 3J64 315.; 3166 3167 
6140 3168 3169 3170 3171 3172 3173 3174 3175 
6150 3176 3177 3178 3179 31SO 3181 3182 3183 
6160 3184 3185 3186 3187 3188 3189 3190 3191 
6170 3192 3193 3194 3195 319~ 3197 3198 3199 

6200 3200 3201 3202 3203 3204 3205 3206 3207 
6210 3201' 3209 3210 3211 3212 3213 3214 3215 
6220 3216 3217 3218 3219 3220 3221 3222 3223 
6230 3224 3225 3226 3227 3228 3229 3230 3231 
6240 3232 3233 3234 3235 3231) 3237 3238 3239 
6250 3240 3241 3442 3243 3244 3245 3246 3247 
6260 3248 3249 3250 3251 3252 3253 3254 3255 
6270 3256 3257 3258 3259 3260 3261 3262 3263 

6300 3264 3265 3266 3267 3268 3269 3270 3871 
6310 3272 3273 3274 3275 3276 3277 3278 3279 
6320 3280 3281 3282 3283 3284 3285 3286 3287 
l\330 3288 3289 3290 3291 3292 3293 3294 3295 
6340 3296 3297 3298 3299 3300 3301 3302 3003 
6350 3304 3305 3306 3307 3308 3309 3310 3311 
6360 3312 3313 3314 3315 3316 3317 3318 3319 
6370 3320 3321 3322 3323 3324 3325 332fi 3327 

fi400 3328 3329 3330 3331 3332 3333 3334 3335 
6410 3336 3337 3338 3339 3340 3341 3342 3343 
6420 3344 3345 3346 3347 3348 3349 3350 3351 
6430 3352 3353 3354 3355 3356 3357 3358 3359 
6440 3360 33tH 3302 3363 3364 3365 3366 3367 
6450 3368 3369 3370 3371 3372 3373 3374 3375 
6460 3376 3377 33i8 3379 3380 3381 3382 3383 
6470 3384 33~5 338fi 3387 3388 3389 3390 33111 

6500 3392 33U3 3394 3395 3396 3397 3398 3399 
6510 3400 3401 3402 3403 3404 3405 3406 340i 
6520 3408 3409 3410 3411 3412 3413 3414 3415 
6530 34!& 3417 3418 3419 3420 3421 3422 3423 
6540 3424 3425 342& 342i 3428 3429 3430 3431 
6550 3432 3433 3434 3435 3436 3437 3438 3439 
6560 3440 3441 3442 3443 3444 3445 3446 3447 
6570 3448 3449 3450 3451 3452 3453 3454 3455 

6600 3456 3457 3458 3459 3460 3461 3462 3463 
6610 3464 3465 3466 3467 34611 346\J 3470 3471 
6620 3472 34i3 3474 3475 3476 3477 34iS 3479 
6630 3480 3481 3482 3483 3484 34S5 3486 3487 
6640 3488 3489 3490 349! 3492 3493 3494 3495 
6650 3496 3497 349!< 3499 3500 3501 3502 3503 
66&0 3504 3505 3506 3507 3!i08 3509 3510 3511 
66i0 3512 3513 3514 3515 3516 3517 3518 35HI 

6700 3520 3521 3522 3523 3524 3525 3526 3527 
6710 3528 3529 3530 3531 3532 3533 3534 3535 
6720 3536 3537 3538 3539 3540 3541 3542 3543 
6730 3544 3545 3546 3547 3548 3549 3550 3551 
6740 3552 3553 3554 3555 3556 3557 3558 3559 
6750 3MO 3561 3562 3563 3564 3655 3566 3567 
6760 3568 3569 3570 3571 3572 3573 35i4 3575 
6770 3576 3577 3578 3579 3580 3581 3582 3583 

•OOO I 204' 
to to 

4777 2559 
(Octal} {Decimal) 

4000 2048 2049 2050 2051 20~2 2053 2054 2055 
4010 20."i6 2057 2058 2059 2060 2061 2062 2063 
4020 2064 2065 20fl6 20fl7 2068 2069 2070 2071 
4030 2072 2073 2074 2075 2076 2077 2078 207!1 
4040 2080 2081 2082 2083 2084 2085 2086 2087 
4050 2088 2089 2090 2091 2092 2093 2094 2095 
4060 2096 2097 209S 2099 2100 2101 2102 2103 
4070 2104 2105 2106 2107 2108 2109 2110 211 l 

f!OO 
4110 
4120 
4130 
4140 
4150 
4160 
4170 

4200 
4210 
4220 
4230 
4240 
4250 
4260 
4270 

4300 
4310 
4320 
4330 
4340 
4350 
4370 
4370 

.. 00 
HlO 
H20 
H30 
4HO 
ff.'jQ 
H60 
H70 

4500 
4510 
4520 
4.530 .... 
4550 
4560 
4570 

4600 
4610 
4620 
•630 
•MO .... 
4660 
4670 

4700 
4710 
4720 
4730 
4740 
4750 
4760 
4770 

2112 2113 21\f 2115 2116 2117 2118 2119 
2120 2121 2122 2123 2124 21~5 2126 2127 
2128 2129 2130 2131 2132 2133 2134 2135 
2136 2137 2138 2139 2140 2141 2142 2143 
2144 2145 2146 214.7 2148 2149 2!50 21.51 
2152 21~3 2154 2155 2156 2157 2158 2159 
2160 2161 2162 2163 2164 2165 2166 2167 

! 2168 2169 2170 2171 2172 2173 2174 2175 

2176 2177 21i8 2179 2180 2181 2182 2183 
2184 2185 2186 2187 2188 2189 2190 21!11 
2192 2!93 2194 2195 2196 2197 2198 2199 
2200 2201 2202 2203 2204 22{15 2206 2207 
2208 2209 2210 2211 2212 2213 2214 2215 
2216 2217 22!8 2219 2220 2221 2222 2223 
2224 2225 '2226 222i 2228 2229 22~0 2231 
2232 2233 2234 2235 2236 2237 2238 2239 

I 2240 2241 2242 2243 2244 2245 2245 2241 
2248 2249 2250 2251 2252 2253 2254 2255 
2251) 2257 2258 225!1 2260 2261 2262 2263 
2264 2265 2266 2267 2268 2269 22i0 2271 
2272 2273 2274 2275 2276 2277 2278 2279 
22RO 2281 2282 2283 2284 2285 2286 2287 
2288 2289 2290 2291 2292 2293 2294 2295 
2296 2297 2298 2299 2300 2301 2302 2303 

2304 2305 2306 2307 2308 2309 2310 2311 
2312 2313 2314 2315 2316 231'7 2318 2319 
2320 2321 2322 2323 2324 2325 2326 2327 
232R 2329 2330 2331 2332 2333 2334 2335 
2336 2337 2338 2339 2340 2341 2342 2343 
2344 234!1 2346 2347 2348 2349 2350 2351 
2352 2353 2354 2355 2356 2357 2358 2359 
2360 2Ml 23fi2 2363 2364 2365 2366 23fl7 

2368 2369 2370 2371 2372 2373 2374 2375 
2376 2377 2:!78 2379 2380 2381 2382 2383 
2384 2385 2386 2387 23R8 2389 2390 2391 
2392 2393 23\H 2395 2396 2397 2398 2399 
2400 2401 2402 2403 2404 2405 2406 2407 
2408 2409 2410 2411 2f12 2413 2114 2415 
2416 2417 2418 2419 2420 2421 2422 2423 
2424 2425 2426 2427 2428 2429 2430 2431 

2432 2433 2434 2435 243fi 2437 2438 2439 
2440 2441 2442 2443 2444 2445 2446 2447 
2H8 2449 2450 2451 2452 2453 2454 24~ 
2456 2457 2458 2459 2460 2411 I 2462 2463 
2464 2455 24116 2467 2468 2469 2470 24il 
2472 2473 2474 2475 2476 2477 2478 2479 
W!O 2481 2482 2483. 2484 2485 2486 2487 
2488 2489 2490 2491 2492 2493 2494 2495 

2496 2497 2498 2499 2500 2501 2502 2503 
2504 2505 2506 2507 2508 2509 2510 2.511 
2.512 2.513 2514 2515 2516 2517 2518 2519 
2520 2521 2522 2523 2524 2525 2526 2527 
2.s28 2529 2.~o 2531 2sa2 2saa 2534 2535 
2531l 2537 2.~8 2539 2540 2541 2542 2543 
25H 2545 2546 2547 2548 2549 2550 2551 
2552 2553 2554 2~5 2~6 2~1 2558 22.w 

C-2 

6000 I 2560 to to 
5777 3071 

(Octal) rDtcimal) 

7000 I 3584 
to to 

7777 4095 
(Octal) (Decimal) 

.5000 2560 2561 2562 2563 2564 256S 2566 25fl7 
5010 256S 2569 2570 2571 2572 2573 2574 2575 
5020 2576 2577 2578 2579 2580 2581 2582 251!3 
5030 2584 2585 2586 2587 2588 25"9 2590 2591 
5040 2592 2593 2594 2595 2596 2597 2598 2599 
5050 2600 260 I 2602 2003 2!KM 2605 24>0fl 2fl07 
5000 2608 2609 2610 2611 2612 2613 2614 2615 
5070 2616 2617 2618 2619 2620 2621 2622 2623 

5100 
5110 
5120 
5130 
5140 
5160 
.~160 

5170 

5200 
5210 
0220 
5230 
5240 
5260 
.5260 
.5270 

5300 
5310 
5320 
'330 .... 
"''° '160 
5370 

6'00 
5410 
.'H20 
5430 
5440 
6'50 
5460 
5470 

5500 
SSIO 
5.120 
6530 .... 
5.150 
5560 
5.170 

5600 
51110 
51i20 
5630 , ... 
5ti50 
51160 
5670 

5700 
5710 
5720 
5730 
5740 
57!)0 
."i7fl0 
5770 

2624 2625 2626 2627 2628 2629 2630 2631 
21132 26.33 2634 21135 26.36 2637 2638 2639 
2640 2641 2642 2643 26U 2645 2646 2647 
2648 21)49 2650 2651 2652 2653 2654 2655 
2ti56 2657 21)58 2659 2660 2661 2662 2663 
26114 2665 2666 2667 2668 2009 2670 2671 
2672 2fi73 2674 2675 2676' 2677 2ti78 2679 
21i.llO 2681 2682 2683 26M 268S 2fiSfi 2687 

2fi8.li 26R9 2690 2691 2692 2693 2694 269.5 
21)96 21197 269'1 21199 2700 2701 2702 2703 
2704 2705 2706 2707 2708 2709 2710 2711 
2712 2713 2714 2715 2716 2717 2718 2719 
2720 2721 2722 2723 2724 2725 27211 2727 
272'1 2729 2730 2731 2732 2733 2734 2735 
2i3fi 2737 2738 271!1 2740 27fl 2742 2743 
2744 2745 2741'1 2747 2m1 2749 2750 2751 

2752 2753 2754 275."i 275"1 2757 27.511 2759 
2760 27111 27G2 27113 27flf 271i5 27fili 27fi7 
216!~ 27&J 2770 2i71 2772 2773 2774 2775 
277fi 2777 277.11 2779 27RO 27RI 27112 27.113 
27114 2785 27'i6 2787 2788 27'19 2790 2791 
2792 2793 2794 2795 2796 2797 279R 2799 
2ROO 2ROI 2.li02 2803 2804 2805 2'100 21107 
2'!011 21109 21110 281 I 21112 2813 2Rl4 2RU 

2816 2817 2818 2819 2820 2821 2822 2823 
2824 2825 2826 2827 2828 2829 2830 2!131 
2832 2833 2834 2835 2836 2837 2838 2839 
2840 2841 2842 2843 28-lf 2845 2846 2847 
2848 2849 2850 2851 2852 2853 2!i54 2855 
28.51) 2857 28511 2859 2860 2861 2862 2863 
2864 2865 28611 2867 2868 2869 2870 2871 
2872 2.1173 21174 2875 2876 2877 2878 2879 

2880 2881 2882 2883 2884 2885 2886 2887 
288'1 2889 2890 2891 2892 28113 2894 2895 
2896 2897 28911 2899 2900 200 I 2902 2903 
2904 2905 2906 2907 2908 2909 2910 2911 
2912 2913 2914 2915 2916 2917 2918 2919 
2920 2921 2922 2!123 2924 2925 292fi 292i 
292"1 2P29 2930 2931 2932 2933 293, 2935 
2936 293i 2938 2939 2940 2941 2942 2943 

2944 2945 2946 2947 21148 2949 2950 2951 
2!152 2953 29.54 2955 2956 2957 2!158 2959 
2960 2fllll 2962 2963 2964 296."i 2966 2967 
296.11 29fi9 2970 2971 2972 2973 2974 2975 
297fi 2!177 ~97R 2979 29'10 29111 2982 2983 
29114 29115 2911fl 2987 291!.ll 2~119 2990 21191 
2992 2993 2fl9f 29'15 299fi 2997 29911 2999 
3000 3001 3002 3003 3004 3005 3006 3007 

3{)(Jj) 3009 3010 3011 3012 3013 3014 3015 
30111 3017 30111 3019 3020 3021 3022 3023 
3024 302.5 3026 3027 30211 3029 3030 3031 
3032 3033 3034 3035 3036 3037 30311 3039 
3040 3041 3042 3043 3044 3045 3046 3047 
30411 3049 30SO 3os1 3052 3053 3054 :KIM 
3051i 3057 20511 3059 30110 30111 30112 301}3 
30fi4 3065 30fili 30117 JOOR 3069 3070 3071 

7000 3584 3585 3586 3587 3588 3589 3590 3591 
70!0 3592 3593 3!:94 3595 3596 3597 3598 3599 
'7020 3600 3601 3602 3603 3604 3605 3606 3607 
7030 3608 3609 3610 3611 3612 3613 3614 3515 
7040 3616 3617 3618 3619 3620 3621 3622 3623 
70.50 3624 2625 3626 3627 3628 3629 3630 3631 
7060 3632 3633 3634 36.35 3636 3537 3538 3639 
7070 3640 3641 3642 3643 :164-i 3645 3646 3647 

7100 3648 3649 3650 3651 36.52 3653 3654 3655 
7110 3656 26.57 26.58 2559 3660 3661 3662 3663 
7120 3664 3665 3666 3667 3668 3669 3670 3671 
7130 3672 3673 3674 3675 3676 3677 3678 3579 
7140 3680 3681 3682 3683 3684 3685 3686 36S7 
7150 3688 2689 2690 3691 3692 3693 3694 3695 
7160 3696 3697 3698 3699 3700 3701 3702 3703 
7170 3704 3705 3706 3707 3708 3709 3710 3711 

7200 3712 3713 3714 3715 3716 3717 3718 3719 
7210 3720 3721 3722 3723 3724 3725 3726 3727 
'7220 3728 3729 3730 3731 3732 3733 3734 3735 
7230 3736 3737 3738 3739 3740 3741 3742 3743 
7240 37H 3745 3746 3747 3748 3749 3750 3751 
7250 37.52 3753 3754 3755 3756 3757 3758 3759 
7260 3760 3761 3762 3763 3764 376.~ 3766 3767 
7270 3768 37119 3770 3771 3772 3773 3774 3775 

7300 3776 3777 3778 3779 3780 3781 3782 3783 
7310 3784 3785 3786 3787 3798 3789 3'790 3791 
7320 3792 3893 3794 3795 3796 3797 3798 3799 
7330 3800 3801 3802 3803 3804 3805 3806 3807 
7340 3808 3809 3810 3811 3812 3813 3814 3815 
7350 38Je 3817 31118 3819 3820 3821 3822 3823 
7360 3824 3825 3826 3827 3828 3829 3830 3831 
7370 3832 3833 3834 3835 3836 3837 3838 3839 

7400 3S40 am 3482 3843 3844 3845 3846 3847 
7410 3qs 3."'69 3850 3851 3852 3S53 3854 31\55 
7420 2856 3857 3S5S 3859 3860 3861 3S62 3S63 
7430 3864 3855 3860 3867 3Sll8 3869 3870 3S71 
7HO 3872 3873 3574 3875 3876 387i 3878 3879 
7450 3S80 3$1'1 3SS2 3883 3884 38.'15 3886 3S87 
7460 3888 3S89 3890 3891 3892 3893 3894 380·~ 
7HO 3896 3897 3S9S 3899 3900 3901 3902 3903 

7500 3904 3905 39'05 3907 3908 3909 3910 3911 
7510 3912 3913 3914 3915 3916 3917 391S 391!1 
7520 3920 3921 3n2 3923 3924 3925 3fl25 3927 
7530 392!! 3929 3!130 3931 3!132 3933 3934 393,5 
7540 3936 3937 393S 3939 3\l40 3941 3942 3943 
i550 3944 2945 3946 3947 3948 3!149 3950 3951 
7560 3952 3953 3954 3955 3956 3957 395S 3\l59 
i!:iiO 3960 3%l 3%2 3963 3964 3!ltl5 39tltl 39tl7 

7600 396$ 391)\l 4970 3\Jjl 3\172 3\173 3974 3975 
7610 3976 397i 397S 3979 3\lSO 3\l"'I 3\l-"2 3%::1 
7620 39S4 3985 3%6 :l'lS7 3\lSS ::1\1-"\l 3!1\10 3\1\1\ 
ifi30 3\'l\l2 3993 3\l94 39!!5 3\l!H\ 3!1!17 3!l!l"' 3!1!l\1 
7640 4000 4001 4002 4!Ml3 4004 4005 4006 40117 
7650 4008 4009 40!0 4011 4tl12 4013 4014 4lll5 
7660 4016 401-i 401S 4tll\I 4020 402\ 4022 4023 
7670 4024 4025 4026 4027 402-" 402\l 4030 4031 

7700 4032 4033 403~ 4035 4ll3ti 40:l7 403-" 4039 
7710 4040 4041 40·t2 4043 4044 4045 404ti 4047 
7720 4048 4049 4050 4051 4052 4tl53 40M 4055 
7730 f0.56 4057 405S 4059 4060 40ti 1 40ti2 40t13 
7740 4064 4065 4U66 40~7 40tlS 40ti\l 4070 40il 
7750 4072 4073 4074 4075 40iti 4\177 407S 4079 
7760 4080 4081 4.U.!12 40S3 411~4 4USS 40~fi 40S7 
7770 4U!lS 4089 4090 4091 4092 4093 4094 4095 



BASIC INSTRUCTIONS 
MNEMONIC 

AND 
TAD 
ISZ 
DCA 
JMS 
JMP 
IOT 
QPR 

OCTAL 
CODE 
0000 
1000 
2000 
3000 
4000 
5000 
6000 
7000 

APPENDIX D 
INSTRUCTION SUMMARY 

AND 
BIT ASSIGNMENTS 

OPERATION DIR 

Logical AND 10 
Binary ADD 10 
Increment, and skip if zero 16 
Deposit and clear AC 11 
Jump to subroutine 11 
Jump 10 
In/out transfer 17 
Operate 10/15' 

NO. OF STATES 
IND AUTO 
15 16 
15 16 
21 22 
16 17 
16 17 
15 16 

MEMORY 
REFERENCE 
INSTRUCTION 
FORMAT 

10 11 'For ROTATES 
~:._,,.......:_.,._:_....,.._:_....,......:.....,--...:....,---,~--.-~-.-~.,--~.,.--, andOSR 

OP CODE0·5 

PROCESSOR IOT INSTRUCTIONS 
MNEMONIC 

SKON 
ION 
IOF 
SRO 
GTF 
RTF 
SGT 
GAF 

OCTAL 
CODE 
6000 
6001 
6002 
6003 
6004 
6005 
6006 
6007 

ADDRESS 

PAGE 
RELATIVE ADDRESS 

INDIRECT ADDRESSING 
0 =DIRECT 
1 =INDIRECT 

MEMORY PAGE 
0 = PAGEO 
1 = CURRENT PAGE 

OPERATION 

___J 

NO. OF STATES 
Skip if interruption on 17 
lnterruptturn on 17 
Interrupt turn off 17 
Skip if INT request 17 
Get flags 17 
Return flags 17 
Operation is determined by external devices, if any 17 
Clear all flags 17 

BIT ASSIGNMENTS ~~--~-·--~---'----'-10_11_ 
IOT 1 : 1 0 I +CE +EC+ ~ONTR+ 

D-1 



GROUP I OPERATE MICROINSTRUCTIONS 

MNEMONIC 

NOP 
IAC 
RAL 
RTL 
RAR 
RTR 
BSW 
CML 
CMA 
CIA 
CLL 
CLL RAL 
CLLRTL 
CLL RAR 
CLL RTR 
STL 
CLA 
CLAIAC 
GLT 
CLA CLL 
STA 

OCTAL 
CODE 

7000 
7001 
7004 
7006 
7010 
7012 
7002 
7020 
7040 
7041 
7100 
7104 
7106 
7110 
7112 
7120 
7200 
7201 
7204 
7300 
7240 

OPERATION 

No operation 
Increment accumulator 
Rotate accumulator left 
Rotate two left 
Rotate accumulator right 
Rotate two right 
Byte swap 
Complement link 
Complement accumulator 
Complement and increment accumulator 
Clear link 
Clear link-rotate accum. left 
Clear link-rotate two left 
Clear link-rotate accum. right 
Clear link-rotate two right 
Set the link 
Clear accumulator 
Clear accumulator-Increment accumulator 
Get the link 
Clear accumulator-clear link 
Set the accumulator 

LOG 
SEQ. 

1 
3 
4 
4 
4 
4 
4 
2 
2 
2.3 
1 
1 .4 
1.4 
1,4 
1,4 
1,2 
1 
1,3 
1,4 
1 
1,2 

10 BIT ASSIGNMENTS 
GROUPl CLA CLL CMA CML 

AAA RAL ~ 

ATA RTL 1 

BSW IF BITS 
B&9AAEO 
AND BIT 10 IS 1 

LOGICAL SEQUENCES 
1--CLA. CLL 
2---CMA, CML 
3-IAC 
4-RAR, AAL. RTR, RTL, BSW 

GROUP 2 OPERATE MICROINSTRUCTIONS 

MNEMONIC 

NOP 
HLT 
OSR 
SKP 
SNL 
SZL 
SZA 
SNA 
SZASNL 

SNA SZL 

SMA 
SPA 
SMA SNL 

SPASZL 

SMASZA 

SPASNA 

SMASZASNL 

SPA SNASZL 

CLA 
LAS 
SZACLA 
SNA CLA 

SMACLA 

SPACLA 

OCTAL 
CODE 

7400 
7402 
7404 
7410 
7420 
7430 
7440 
7450 
7460 

7470 

7500 
7510 
7520 

7530 

7540 

7550 

7560 

7570 

7600 
7604 
7640 
7650 

7700 

7710 

BIT ASSIGNMENTS 
GROUP2 

OPERATION 

No operation 
Halt 
Or with switch register 
Skip 
Skip on non-zero link 
Skip on zero link 
Skip on zero accumulator 
Skip on non-zero accumulator 
Skip on zero accum, or _skip on non-zero 

I ink, or both 
Skip on non-zero accum. and skip on 

zero link 
Skip on minus accumulator 
Skip on positive accumulator 
Skip on minus accum. or skip on 

non-zero link or both 
Skip on positive accum. and skip on 

zero link 
Skip on minus accum. or skip on 

zero accum. or both 
Skip on positive accum. and skip on 

non-zero accum. 
Skip on minus accum. or skip on 

zero accum. or skip on non-zero link 
or all 

Skip on positive accum. and skip on 
·non-zero accum. and skip on zero link 

Clear accumulator 
Load accumulator with switch register 
Skip on zero accum. then clear accum. 
Skip on non-zero accum. then clear 

accumulator 
Skip on minus accum. then clear 

accumUlator 
Skip on positive accum. then clear 

accumulator 

CLA 

LOGICAL SEQUENCES: 
1 (Bit 8 is Zero}- SMA or SZA or SNL 

[Bit Bis One) - SPA and SNA and SZL 
2 -CLA 
3 - OSA, HTL 

SMA SZA SNL 0 
SPA SNA SZL 1 

GROUP 3 OPERATE MICROINSTRUCTIONS 

MNEMONIC 

NOP 
MOL 
MOA 
SWP 
CLA 
CAM 
ACL 

CLASWP 

OCTAL 
CODE 

7401 
7421 
7501 
7521 
7601 
7621 
7701 

7721 

BIT ASSIGNMENTS 
GROUP3 

OPERATION 

No operation 
MO register load 
MQ register into accumulator 
Swap accum. and MO register 
Clear accumulator 
Clear accum. and MO register 
Clear accum. and load MQ register 

into accumulator 
Clear accum. and swap_accum. and 

MQ register 

LOG 
SEQ 

1 
3 
3 
1 
1 
1 
1 
1 

1 
2 
1,3 
1,2 

1.2 

1,2 

1,2 

10 

OSR HLT 

LOG 
SEQ 

3 
2 
2 
3 
1 
3 

3 

10 

11 

lAC 

11 

LOGICAL SEQUENCE 
1-CLA 

'Oon't Care 

2-MQA, MOL 
3-ALL OTHERS 

0-2 

NO.OF 
STATES 

10 
10 
15 
15 
15 
15 
15 
10 
10 
10 
10 
15 
15 
15 
15 
10 
10 
10 
15 
10 
10 

NO.OF 
STATES 

10 
10 
15 
10 
10 
10 
10 
10 

10 

10 
10 
10 

10 

10 

10 

10 

10 

10 
10 
15 
10 

10 

10 

10 

NO.OF 
STATES 

10 
10 
10 
10 

10 

10 

10 



APPENDIX E 
GLOSSARY 

ABSOLUTE ADDRESS: A binary number that is permanently assigned 
as the address of a memory storage location. 

ACCESS TIME: The time required to locate an off-line storage 
location. 

ACCESSING DATA: The process of locating the off-line storage 
location with which data is to be transferred. 

ACCUMULATOR: A 12-bit register in which the result of an 
operation is formed; abbreviation: AC. 

ADDRESS: A label, name, or number which designates a location 
where information is stored. 

ADDRESSING: The term given to the act of selecting a word in 
memory. 

ALGORITHM: A prescribed set of well-defined rules or processes 
for the solution of a problem in a finite number of steps. 

ALPHANUMERIC: Pertaining to a character set that contains both 
letters and numerals, and usually other characters. 

ARGUMENT: 
1. A variable or constant which is given in the call of a 

subroutine as information to it. 
2. A variable upon whose value the value of a function depends. 
3. The known reference factor necessary to find an item in a 

table or array (i.e. the index). 

ARITHEMETIC AND LOGIC UNIT (ALU): The unit which performs both 
arithmetic and logic operations. 

ARITHMETIC UNIT: The component of a computer where arithmetic 
and logical operations are performed. 

ASCII: An abbreviation for American Standard Code for Information 
Interchange. 

ASSEMBLE: To translate from a symbolic program to a binary 
program by substituting binary operation codes for symbolic 
operation codes and absolute or relocatable addresses for 
symbolic addresses. 

ASSEMBLER: A program which translates symbolic op-codes into 
machine language and assigns memory locations for variables and 
constants. 

AUTO-INDEXING: When one of the absolute locations from 0010 
through 0017 is addressed indirectly, the content of that 
location is incremented by one, rewritten in that same location, 
and used as the effective address of the current instruction. 

E-1 



AUXILLARY STORAGE: Storage that supplements memory such as disk 
or tape. 

BASE ADDRESS: A given address from which an absolute address is 
derived by combination with a relative address, synonymous 
with address constant. 

BINARY: Pertaining to the number of system with a radix of two. 

BINARY CODE: A code that makes use of exactly two distinct 
characters, 0 and 1. 

BIT: A binary digit. In the IM6100 microprocessor each word is 
composed of 12 bits. 

BLOCK: A set of consecutive machine words, characters, or 
digits handled as a unit, particularly with reference to I/O. 

BOOTSTRAP: A technique or device designed to bring a program 
into the computer from an input device. 

BRANCH: A point in a routine where one of two or more choices 
is made under control of the routine. 

BUFFER: A storage area. 

BUG: A mistake in the design or implementation of a program 
resulting in erroneous results. 

BYTE: A group of binary digits usually operated upon as a 
unit. 

CALL: To transfer control to a specified routine. 

CALLING SEQUENCE: A specified set of instructions and data 
necessary to set up and call a given routine. 

CENTRAL PROCESSING UNIT: The unit of a computing system that 
includes the circuits controlling the interpretation and 
execution of instructions--the computer proper, excluding 
I/O and other peripheral devices. 

CHARACTER: A single letter, numeral, or symbol used to 
represent information. 

CLEAR: To erase the contents of a storage location by 
replacing the contents, normally with zeros or spaces; to 
set to zero. 

CODING: To write instructions for a computer using symbols 
meaningful to the computer, or to an assembler, compiler 
or other language processor. 

E-2 



COMMAND: A user order to a computer system, usually given 
through a Teletype keyboard. 

COMMAND DECODER: That part of a computer system which 
interprets used commands. Also called command-string 
decoder. 

COMPATIBILITY: The ability of an instruction or source 
language to be used on more than one computer. 

COMPILE: To produce a binary-coded program from a program 
written in source (symbolic) language, by selecting 
appropriate subroutines from a subroutine library, as 
directed by the instructions or other symbols of the 
source program. The linkage is supplied for combining 
the subroutines into a workable program, and the sub
routine and linkage are translated into binary code. 

COMPILER: A program which translates statements and 
formulas written in a source language into a machine 
language program, e.g. a FORTRAN Compiler. Usually 
generates more than one machine instruction for each 
statement. 

COMPLEMENT: (One 1 s) To replace all 0 bits with 1 bits 
and vice versa. (Two 1 s} To form the one 1 s complement 
and add 1. 

CONDITIONAL ASSEMBLY: Assembly of certain parts of a 
symbolic program only if certain conditions have been met. 

CONDITIONAL SKIP: Depending upon whether a condition within 
the program is met, control may transfer to another point 
in the program. 

CONSOLE: Usually the external front side of a device where 
controls and indicators are available for manual 
operation of the device. 

CONVERT: 
1. To change numerical data from one radix to another. 
2. To transfer data from one recorded format to another. 

CORE MEMORY: The main high-speed storage of a computer in 
which binary data is represented by the switching polarity 
of magnetic cores. 

COUNT: The successive increase or decrease of a cumulative 
total of the number to times an event occurs. 

COUNTER: A register or storage location (variable) used to 
represent the number of occurrences of an operation. 

E-3 



CURRENT LOCATION COUNTER: A counter kept by an assembler to 
determine the address assigned to an instruction or constant 
being assembled. 

CURRENT PAGE: The page of memory "pointed to 11 or addressed by 
the Program Counter. The page we are on. 

CYCLE TIME: The length of time it takes the computer to 
reference one word of memory. 

DATA: A general term used to denote any or all facts, numbers, 
letters and symbols. It connotes basic elements of 
information which can be processed or produced by a computer. 

DATA BREAK: A facility which permits I/O transfers to occur on 
a cycle-stealing basis without disturbing program execution. 

DEBUG: To detect, locate and correct mistakes in a program. 

DEVICE FLAGS: One-bit registers which record the current 
status of a device. 

DIGITAL COMPUTER: A device that operates on discrete data, 
performing sequences of arithmetic and logical operations on 
this data. 

DIRECT ADDRESS: An address that specifies the location of an 
instruction operand. 

DOUBLE PRECISION: Pertaining to the use of two computer words 
to represent one number. In the IM6100 a double precision 
result is stored in 24 bits. 

DUMP: To copy the contents of all or part of core memory, 
usually onto an external storage medium. 

EFFECTIVE ADDRESS: The address actually used in the execution 
of a computer instruction. 

EXECUTE: To carry out an instruction or run a program on the 
computer. 

EXTERNAL STORAGE: A separate facility or device on which data 
usable by the computer is stored (such as paper tape, tape 
or disko 

FIELD: 
1. One or more characters treated as a unit. 
2. A specified area of a record used for a single type of 

data. 
3. A division of memory on a IM6100 computer referring to 

a 4K section of core. 

E-4 



FILE: A collection of related records treated as a unit. 

FLAG: A variable or register used to record the status 
of a program or device. In the latter case, also called 
a device flag. 

FLIP-FLOP: A device with two stable statesa 

FLOATING POINT: A number system in which the position of 
the radix point is indicated by one part of the number 
(the exponent) and another part represents the significant 
digits (the mantissa), I/O. 

FLOWCHART: A graphical representation of the operations 
required to carry out a data processing operation. 

HARDWARE: Physical equipment, e.g., mechanical, electrical 
or electronic devices. 

HEAD: A component that reads, records or erases data on 
a storage device. 

INDIRECT ADDRESS: An address in a computer instruction which 
indicates a location where the address of the referenced 
operand is to be found. 

INITIALIZE: To set counters, switches, and addresses to zero 
or other starting values at the beginning of, or at pre
scribed points in, a computer routine. 

INSTRUCTION: A command which causes the computer or system to 
perform an operation. Usually one line of a source program. 

INSTRUCTION FETCH (!FETCH): The act of completing an instruction 
address to memory and returning to the Microprocessor with the 
instruction. 

INSTRUCTION REGISTER (IR): The register which holds the 
instruction when it is obtained, or received, from memory. 

INTERNAL STORAGE: The storage facilities forming an integral 
physical part of the computer and directly controlled by the 
computer. Also called main memory. 

INTERPRETER: A program that translates and executes source 
language statements at run time. 

I/O: Abbreviation for input/output. 

E-5 



JOB: A unit of code which solves a problem, i.e. a program and 
all its related subroutines and data. 

JUMP: A departure from the normal sequence of executing 
instructions in a computer. 

K: An abbreviation for the prefix kilo, i.e. 1000 in decimal 
notation. 

LABEL: One or more characters used to identify a source 
language statement or line. 

LANGUAGE, ASSEMBLY: The machine-oriented programming language 
used by an assembly system. 

LANGUAGE, COMPUTER: A systematic means of communicating 
instructions and information to the computer. 

LANGUAGE, MACHINE: Information that can be directly processed 
by the computer, expressed in binary notation. 

LANGUAGE, SOURCE: A computer language such as PAL III or 
FOCAL in which programs are written and which require 
extensive translation in order to be executed by the computer. 

LEADER: The blank section of tape at the beginning of the tape. 

LEAST SIGNIFICANT DIGIT: The right-most digit of a number. 

LIBRARY ROUTINES: A collection of standard routines which can 
be incorporated into larger programs. 

LINE FEED: The Teletype operation which advances the paper by 
one line. 

LINE NUMBER: In source languages such as FOCAL, BASIC, and 
FORTRAN, a number which begins a line of the source program 
for purposes of identification. A numeric label. 

LINK: 
1. A one-bit register in the IM6100. 
2. An address pointer generated automatically by the PAL-D 

or MACR0-8 Assembler to indirectly address an off-page 
symbol. 

3. An address pointer to the next element of a list, or 
the next block number of a file. 

LIST: 
1. A set of items. 
2. To print out a listing on the line printer or Teletype. 

LOAD: To place data into internal storage. 

E-6 



LOCATION: A place in storage or memory where a unit of data or 
an instruction may be stored. 

LOOP: A sequence of instructions that is executed repeatedly 
until a terminal condition prevails. 

MACHINE LANGUAGE PROGRAMMING: In this text, synonymous with 
assembly language programming. This term is also used to mean 
the actual binary machine instructions. 

MACRO INSTRUCTION: An instruction in a source language that is 
equivalent to a specified sequence of machine instructions. 

MANUAL INPUT: The entry of data by hand into a device at the 
time of processing. 

MANUAL OPERATION: The processing of data in a system by 
direct manual techniques. 

MASK: A bit pattern which selects those bits from a word of 
data which are to be used in some subsequent operation. 

MASS STORAGE: Pertaining to a device such as disk or tape 
which stores large amounts of data readily accessible to 
the central processing unit. 

MATRIX: A rectangular array of elements. Any table can be 
considered a matrix. 

MEMORY: 
1. The alterable storage in a computer. 
2. Pertaining to a device in which data can be stored 

and from which it can be retrieved. 

MEMORY ADDRESS REGISTER (MAR): The register which contains 
the address where information is to be read from memory or 
written (stored) into memory. 

MEMORY PAGING: A system by which a memory is subdivided in order 
to permit addressing with a limited number of binary bits. 

MEMORY PROTECTION: A method of preventing the contents of some 
part of main memory from being destroyed or altered. 

MICROCOMPUTER: A complete small computing system that usually 
sells for less than $5,000 and whose main processor building 
blocks are made of semiconductor integrated circuits. In 
function and structure it is similar to a minicomputer, with 
the main difference being price, size, speed and computing 
power. 

E-7 



MICROPROCESSOR: The semiconductor central processing unit (CPU) 
and one of the principal components of the microcomputer. The 
elements of the microprocessor are frequently contained on a 
single chip or within the same package but sometimes 
distributed over several chips. Microprocessors can contain 
registers, an arithmetic logic unit, a PLA, and associated 
timing and control logic. 

MINICOMPUTER: A computer whose main frame sells for less than 
$25,000. Usually it is a parallel binary system with 8, 12 
16, 18, or 24-bit word lengths incorporating semiconductor 
or magnetic memory offering 4K words to 32K words of storage. 
A naked minicomputer is one without cabiriet~ console and 
power supplies and consists of as little as a single PC 
card selling for less than $1,000. 

MONITOR: The master control program that observes, supervises, 
controls or verifies the pperation of a system. 

MQ REGISTER: A register which is program accessible and 
interacts with the Accumulator. 

NESTING: 
1. Including a program loop inside loop. Special rules 

apply to the nesting of FORTRAN DO-loops. 
2. Algebraic nesting, such as (A+B* (C+D)), where 

execution proceeds from the innermost to the outermost 
level. 

NORMALIZE: To adjust the exponent and mantissa of a floating
point number so that the mantissa appears in a prescribed 
format. 

OBJECT PROGRAM: The binary coded program which is the output 
after translation of a source language program. 

OCTAL: Pertaining to the number system with a radix of eight. 

OFF-LINE: Pertaining to equipment or devices not under 
direct control of the computer, or processes performed 
on such devices. 

ON-LINE: Pertaining to equipment or devices under direct 
control of the computer and to programs which respond 
directly and immediately to user commands. 

OPERAND: 
1. A quantity which is affected, manipulated or operated 

upon. 
2. The address, or symbolic name, portion of an assembly 

language instruction. 

E-8 



OPERATOR: The symbol or code which indicates an action (or 
operation) to be performed, e.g. + or TAD. 

OR: (Inclusive) A logical operation such that the result 
is true if either or both operands are true, and false 
if both operands are false. (Exclusive) A logical operation 
such that the result is true if either operand is true, 
and false if either or both operands are false. When 
neither case is specifically indicated, Inclusive OR is 
assumed. 

ORIGIN: The absolute address of the beginning of a section 
of code. 

OUTPUT: Information transferred from the internal storage 
of a computer to output devices or external storage. 

OVERFLOW: A condition that occurs when a mathematical 
operation yields a result whose magnitude is larger than 
the program is capable of handling. 

PAGE: A 128-word section of IM6100 memory beginning at an 
address which is a multiple of 200. 

PASS: One complete cycle during which a body of data is 
processed. An assembler usually requires two passes 
during which a source program is translated into binary 
code. 

PATCH: To modify a routine in a rough or expedient way. 

PERIPHERAL EQUIPMENT: In a data processing system, any unit 
of equipment distinct from the central processing unit 
which may provide the system with outside storage or 
communication. 

POINTER ADDRESS: Address of a memory location containing 
the actual (effective) address of desired data. 

PRIORITY INTERRUPT: An interrupt which is given preference 
over other interrupts within the system. 

PROCEDURE: The course of action taken for the solution of 
a problem. 

PROGRAM COUNTER (PC): The register which contains, at any 
given time, the address in memory of the next instruction. 

PROGRAMMED LOGIC ARRAY (PLA): That section of the 
Microprocessor which correctly sequences the Microprocessor 
for the appropriate instruction. 

E-9 



PSEUDO-OP: See Pseudo-operation. 

PSEUDO-OPERATION: An instruction to the assembler; an 
operation code that is not part of the computer's 
hardware command repertoire. 

PUSHDOWN LIST: A list that is constructed and maintained 
so that the next item to be retrieved is the item most 
recently stored in the list. 

QUEUE: A waiting list. In time-sharing, the monitor 
maintains a queue of user programs waiting for processing 
time. 

RADIX: The base of a number system; the number of digits 
symbols required by a number system. 

RANDOM ACCESS: A storage device in which the address
ability of data is effectively independent of the 
location of the data. Synonymous with direct access. 

RANDOM ACCESS MEMORY: A memory whose content can be pre
determined, stored indefinitely, changed at will and 
retrieved at random 

READ ONLY MEMORY: A memory whose content, once predetermined, 
is permanent and can not be changed. 

REAL-TIME: Pertaining to computation performed while the 
related physical process is taking place so that results 
of the computation can be used in guiding the physical 
process. 

RECORD: A collection of related items of data treated as 
a unit. 

RECURSIVE SUBROUTINE: A subroutine capable of calling itself. 

REGISTER: A device capable of storing a specified amount of 
data, usually one word. 

RELATIVE ADDRESS: The number that specified the difference 
between the actual address and a base address. 

RELOCATABLE: Used to describe a routine whose instructions 
are written so that they can be located and executed in 
different parts of core memory. 

RESPONSE TIME: Time between initialing an operation from a 
remote terminal and obtaining the result. Includes 
transmission time to and from the computer, processing time 
and access time for files employed. 

E-10 



RESTART: To resume execution of a program. 

ROUTINE: A set of instructions arranged in proper sequence 
to cause the computer to perform a desired task. A program 
or subprogram. 

RUN: A single, continuous execution of a program. 

SEGMENT: 
l. That part of a long program which may be resident 

in memory at any one time. 
2. To divide a program into two or more segments or to 

store part of a routine on an external storage device 
to be brought into core as needed. 

SERIAL ACCESS: Pertaining to the sequential or consecutive 
transmission of data to or from memory, as with paper tape: 
contract with random access. 

SHIFT: A movement of bits to the left or right frequently 
performed in the accumulator. 

SIMULATE: To represent the function of a device, system or. 
program with another device, system or program. 

SINGLE STEP: Operation of a computer in such a manner that 
only one instruction is executed each time the computer 
is started. 

SOFTWARE: The collection of programs and routines associated 
with a computer. 

SOURCE LANGUAGE: See Language, source. 

SOURCE PROGRAM: A computer program written in a source 
language. 

STATEMENT: An expression or instruction in source language. 

STORAGE ALLOCATION: The assignment of blocks of data and 
instructions to specified blocks of storage. 

STORAGE CAPACITY: The amount of data that can be contained 
in a storage device. 

STORAGE DEVICE: A device in which data can be entered, 
retained and retrieved. 

STORE: To enter data into a storage device. 

STRING: A connected sequence of entities such as characters 
in a command string. 

E-11 



SUBROUTINE, CLOSED: A subroutine not stored in the main part 
of a program, such a subroutine is normally called or 
entered with a JMS instruction and provision is made to 
return control to the main routine at the end of the sub
routine. 

SUBROUTINE, OPEN: A subroutine that must be relocated and 
inserted into a routine at each place it is used. 

SUBSCRIPT: A number or set of numbers used to specify a 
particular item in an array. 

SWAPPING: In a time-sharing environment, the action of 
either temporarily bringing a user program into core or 
storing it on the system device. 

SWITCH: A device or programming technique for making 
selections. 

SYMBOL TABLE: A table in which symbols and their corresponding 
values are recorded. 

SYMBOLIC ADDRESS: A set of characters used to specify a 
memory location within a program. 

SYMBOLIC EDITOR: A system library program which helps users 
in the preparation and modification of source language 
programs by adding, changing or deleting lines of text. 

SYSTEM: A combination of software and hardware which performs 
specific processing operationso 

TABLE: A collection of data stored for ease of reference, 
generally as an array. 

TEMPORARY REGISTER (TEMP):_ A register which is used primarily 
as a latch for the result and ALU operation before it is 
sent to the destination register to avoid race conditions. 

TEMPORARY STORAGE: Storage locations reserved for immediate 
results. 

TERMINAL: A peripheral device in a system through which data 
can enter or leave the computer. 

TIMESHARING: A method of allocating central processor time 
and other computer resources to multiple users so that the 
computer, in effect, processes a number of programs 
simultaneously. 

TIME QUANTUM: In time-sharing, a unit of time allotted to 
each user by the monitor. 

E-12 



TOGGLE: To use switches to enter data into the computer memory. 

~RANSLATE: To convert from one language to another. 

TRUNCATION: The reduction of precision by dropping one or more 
of the least significant digits, e.g. 3.141592 truncated to 
four decimal digits is 3.141. 

UNDERFLOW: A condition that occurs when a floating point 
operation yields a result whose magnitude is smaller than 
the program is capable of expressing. 

USER: Programmer or operator of a computer. 

VARIABLE: A symbol whose value changes during execution of 
a program. 

WORD: With the IM6100, a 12-bit unit of data which may be 
stored in one addressable location. 

WRITE: To transfer information from memory to a peripheral 
device or to auxiliary storage. 

ZERO PAGE: The first page in the subdivided memory. 

ZOMBIE: Appearance assumed by programmer attempting to debug 
undocumented object code. 

E-13 





APPENDIX F 

ASCII CHARACTER CODES 

CHARACTER CODES 

8-bit 6-bit CHARACTER REMARKS 
ASCII REPRESENTATION 
CODE CODE 

240 40 space (non-printing) 
241 41 ! exclamation point 
242 42 II quotation marks 
243 43 # number sign 
244 44 $ dollar sign 
245 45 % percent 
246 46 & ampersand 
247 47 I apostrophe or acute accent 

250 50 ( opening parenthesis 
251 51 ) closing parenthesis 
252 52 * asterisk 
253 53 + plus 
254 54 comma 
255 55 minus sign or hyphen 
256 56 . period or decimal point 
257 57 I slash 

260 60 0 
261 61 l 
262 62 2 
263 63 3 
264 64 4 
265 65 5 
266 66 6 
267 67 7 

270 70 8 
271 71 9 
272 72 colon 
273 73 . semicolon ' 274 74 < less than 
275 75 = equals 
276 76 > greater than 
277 77 ? question mark 

F-1 



8-b1t 6-bit 
-

CHARACTER REMARKS 
ASCII REPRESENTATION 
CODE CODE 

300 00 @ at sign1 
301 01 A 
302 02 B 
303 03 c 
304 04 D 
305 05 E 
306 06 F 
307 07 G 

310 10 H 
311 11 I 
312 12 J 
313 13 K 
314 14 L 
315 15 M 
316 16 N 
317 17 0 

320 20 p 
321 21 Q 
322 22 R 
323 23 s 
324 24 T 
325 25 u 
326 26 v 
327 27 w 

330 30 x 
331 31 y 
332 32 z 
333 33 [ opening bracket, SHIFT/K 
334 34 \ backslash, SHIFT/L 
335 35 ] closing bracket, SHIFT/M 
336 36 t up arrow 
337 37 + back arrow2 

Footnotes: 

(1) In 6-bit code, OOa represents CARRIAGE RETURN 
(2) In 6-bit code, 37a represents TAB 

F-2 



CONTROL CODES 

8-bit 
ASCII 
CODE 

000 
200 

203 

207 
211 
212 

213 
214 
215 

217 

225 
232 

233 

375 
376 

377 

CHARACTER 
NAME 

null 
leader/trailer 

CTRL/C 

BELL 
TAB 
LINE FEED 

VT 
FORM 
RETURN 

CTRL/O 

CTRL/U 
CTRL/Z 

ESC 

ALTMODE 
PREFIX 

RUBOUT 

REMARKS 

Ignored in ASCII input 
Leader/trailer code precedes and 
follows the data portion of binary files 

(1) IFDOS break character, forces return 
to Keyboard Monitor, echoed as tC 
CTRL/G 
CTRL/I, horizontal tabulation 

(2) Used as a control character by the 
Command Decoder and ODT 
CTRL/K, vertical tabulation 
CTRL/L, form feed 
Carriage return, generally echoed as 
carriage return followed by a line feed 
Break Character, used conventionally to 
suppress Teletype output, echoed as tO 
Delete current input line, echoes as tU 

(3) End-of-File character for all ASCII and 
binary files (in relocatable binary files 
CTRL/Z is not a terminator if it occurs 
before the trailer code) 
Escape replaces ALTMODE on some terminals 
Considered equivalent to ALTMODE 
Special break character for Teletype input 
PREFIX replaces ALTMODE on some 
terminals. Considered equivalent to 
ALTMODE 
Key is labeled DELETE on some terminals 
Deletes the previous character typed 

(1) IFDOS break character--does not affect INTERCEPT JR. MONITOR 
(2) OCTAL DEBUGGING TECHNIQUE program as supplied on IM63l 2 ROM 
(3) Applies to IFDOS (INTERSIL FLOPPY DISK OPERATING SYSTEM) 

F-3 





APPENDIX G 
LOADING CONSTANTS INTO THE ACCUMULATOR 

MNEMONIC DECIMAL OCTAL INSTRUCTIONS COMBINED 
CONSTANT CODE 

KOOOO = 0 7300 CLA CLL 
KOOOl = l 7301 CLA CLL IAC 
K0002 = 2 7305 CLA CLL IAC RAL 

(or) 

K0002 = 2 7326 CLA CLL CML RTL 
K0003 = 3 7325 CLA CLL CML IAC RAL 
K0004 = 4 7307 CLA CLL IAC RTL 
K0006 = 6 7327 CLA CLL CML IAC RTL 
KOlOO = 64 7203 CLA IAC BSW 
K2000 = 1024 7332 CLA CLL CML RTR 
K3777 = 2047 7350 CLA CLL CMA RAR 
K4000 = -0 7330 CLA CLL CML RAR 
K5777 = -1025 7352 CLA CLL CMA RTR 
K6000 = -1024 7333 CLA CLL CML !AC RTL 
K7775 = -3 7346 CLA CLL CMA RTL 
K7776 = -2 7344 CLA CLL CMA RAL 
K7777 = -1 7340 CLA CLL CMA 

G-1 





APPENDIX H 

KEY BOARD TENNIS PROGRAM WITH INTERCEPT JR. 

DEMO PROGRAM: ''PING" 

IN 'PING', THE PLAYER PLAYS AGAINST THE 
MACHINE. THE COMPUTER "SERVES" FROM THE 
LEFT, AND THE "BALL" TRAVELS ALONG THE 
LED'S UNTIL IT REACHES BIT 11, THE 
RIGHTMOST LED. 

IF THE PLAYER PRESSES THE YELLOW BUTTON 
(IAC), THE BALL WILL BE RETURNED WITH A 
'CLICK'. THE MACHINE WILL RETURN THE BALL 
AND THE SEQUENCE IS REPEATED. 

IN ORDER TO ADD EXCITEMENT TO THE GAME, 
EACH TIME THE PLAYER RETURNS THE BALL, IT 
SPEEDS UP. 

WHEN THE PLAYER MISSES, BY PRESSING THE 
BUTTON TOO SOON OR TOO LATE, THE MACHINE 
BUZZES, DELAYS, THEN SERVES AT U-IE 
SLOWEST RATE. 

HAVE FUN! 

(NOTE: THE CONTENTS OF LOCATION 0262 
DETERMINE THE ORIGINAL SPEED OF THE BALL, 
AND LOCATION 0263 DETERMINES HOW FAST IT 
SPEEDS UP.) 

H-1 



"PING" 
ADDRESSs CONTENTS8 ADDRESS8 CONTENTS8 ADDRESS8 CONTENTS8 

0201 7300 0223 7320 0245 1263 
0202 1262 0224 6404 0246 3264 
0203 3264 0225 6401 0247 7004 
0204 7330 0226 2265 0250 3265 
0205 6401 0227 5223 0251 1264 
0206 6404 0230 7010 0252 3266 
0207 3265 0231 2265 0253 1265 
0210 1264 0232 5231 0254 6404 
0211 3266 0233 7440 0255 7450 
0212 7604 0234 5230 0256 5204 
0213 7440 0235 5201 0257 2266 
0214 5236 0236 6401 0260 5255 
0215 2266 0237 7300 0261 5247 
0216 5212 0240 1265 0262 0000 
0217 1265 0241 7010 0263 1000 
0220 7010 0242 7440 0264 
0221 7440 0243 5223 0265 
0222 5206 0244 1264 0266 

H-2 



FLOWCHART FOR KEYBOARD 
TENNIS PROGRAM WITH INTERCEPT 

JR. 

START 

TIMER OFF 

:ROUTINE TO DISPLAY 
SCORES. 

ADD +1 TO 
THE HITTER'S 

SCORE 

ADD +1 TO 
THE 

OPPONENT'S 
SCORE 

YES 

NO 

CLICK SPEAKER 

NO 

ROTATE A BALL IN DISPLAY 

NO 

BRING BALL TO SERVER'S SIDE 

SHIFT A BALL ONE PLACE TO 
THE OPPONENT DIRECTION 

DISPLAY WHERE BALL IS. 

H-3 

* 

NO 

YES 

CHANGE DIRECTION 
& BALL SPEED 

ACCORDING TO WHERE 
IT IS HIT. 



8111128 
88821 
88822 
18123 
88824 
te825 
18826 
18827 
81838 
18831 
88132 
81833 
81834 
8H35 
18836 
81837 
Hll48 
11141 
11842 

11843 
8114.e 
111145 
81846 
81147 
88851 
811851 
18852 
88853 
88854 
HISS 
88856 
88857 
88868 
88861 
88862 
88863 
88864 
88865 
88866 
88867 
8HTI 
88811 
18172 
88813 

11114 
HITS 
18176 
11117 
88118 

6488 
6481 
6482 
6414 

11111128 
111111111111 
738111 
7684 
7884 
7438 
5141 
7814 
7628 
542111 
114111 
312111 
761114 
7648 
5833 
21112111 
s .. 21 
731111 
3121 
511133 

11111111 
7311 
3117 
1124 
411174 
ll 16 
3121 
1111 
3122 
3117 
1125 
41'14 
1116 
7186 
7886 
1121 
1133 
411116 
1111 
7116 
71111116 
1122 
1132 
411116 
5443 

IHI 
7188 
1127 
742111 
511113 

/KEY BOARD TDINIS VITH INTERCEPT JRe 
I 
I 
I 
I 
I 
I 
I 
/RULES1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

START AT LOCATION 1218• 
SINCE JR IS WAITING FOR SIGN OF STARTER• 
PRESS IAC OR CTR WHCIHEVER STARTS FIRST 
TO PREPARE FOR SERVI CE• 
THEN. SERVE THE BALL B'f PRESSING THE KEY• 
THE OPPONEllT MUST PRESS KEY BEFORE BALL 
HITTING THE SIDE BUT IN THE NEAREST 2 BITS 
NOT TO LOSE POINTS• 
SCORE IS +I FOR ONE SUCCESSFUL GOAL .AND 
+I B'f THE OPPONENT'S FAULT• THE HIGHEST 
SCORE VHI CH CllN BE HANDLED IS 99• 

/DEFINITIONS1 
I 
I 

WRITE0-64118 
CLICK•6411 
TIMER-641112 
VRI TES• 6484 

/WRITE DI SPLAY• 
/CLICK SPEAKEl'lo 
/TIMER ON OR OFF'• 
/WRITE DISPLAY OF 1/0 BRD• 

I SUBPROGRAMS I 
•2111 
KEY• 

GO. 

I 
I 
SHOW. 

I 
I 
DEC I ML• 

I /TO DETECT KEY BOARD• 
CLA CLL 
LAS 
RAL 
SZL 
JlllP IDlll 
RAL 
SNL CLA 
JMP I KEY 
CLL CMA 
DCA ID 
LAS 
SZA CLA 
JMP •-2 
ISZ KEY 
JMP I KEY 
CLL CLA 
DCA ID 
JMP GO 

/LOAD AC WITH SR• 
/CTR•41Jllllil• 
/CTR KEY PRESSED? 
/YES• 
/IAC•28lillil• 
/IAC KEY PRESSED? 
/NEITHER PRESSED• 
/PUT ALL I 'S IN AC• 
II0-1 FOR IAC PLAYER• 
/STOP FURTHER EXECUTION 
/~TIL KEY IS RELEASEl>o 

/TO GET OUT OF WAITING LOOP• 

/ID-Iii FOR CTR PLAYER· 
/RETU~• 

I /SUBROUTINE TO DISPLAY SCORES1 
CLA CLL 
DCA DI GIT2 
TAD SCOREI 
JMS DECIML 
TAD DIGITI 
DCA SAVEi 
TAD DIG1T2 
DCA SAVEllll 
DCA DIGIT2 
TAD SCORES! 
JMS DECIML 
TAI> DIGITI 
CLL RTL 
RTL 
TAD SAVEi 
TAD K4Hlll 
JMS DELAY 
TAD DlGITll 
CLL RTL 
RTL 
TAD SAVEllll 
TAD K281118 
JlllS DELAY 
JMP I SHOW 

/CLEAR REGISTER DI GI T2• 
/BRING IAC PLAYER'S SCORE• 
/CONVERT OCTAL TO DECIMAL• 
/IST DECIMAL DIGIT• 
/STORE IT IN SAVEi• 
/STORE 2ND DECIMAL DI GIT 
/IN SAVEllil• 
/Cl.EAR DI GIT2• 
/BRING CTR PLAYER'S SCORE· 
/CONVERT IT INTO DECIMAL NO• 
/SHIFT IST DECIMAi. NO. INTO 
/2ND BITE FROM RIGHT• 

/JOIN TO IAC PLAYER'S SCORE• 
/SET BIT 18 TO DISPLAY THEM• 
/DISPLAY IST DECIMAi. DIGITS 
/OF BOTH PLAYER'S SCORES• 
/SHIFT 2ND DECIMAL NO• 

/JOIN TO IAC PLAYER'S SCORE• 
/SET BIT II• 
/DISPLAY 2ND DECIMAL DIGITS 
/OF BOTH SCORES & RETURh 

Ill 
CLL 

/SUBROUTINE TO CONVERT OCTAi. TO DECIMAi.• 
/KILL LINK BIT• 

TAD Miii 
SNL 
JlllP OUT 

H-4 

IAC•-12• 
/NO KORE: 2ND DECIMAL DIGITS? 
II P' NOT• OUTPUT RESULTS• 



HUil 
llllilllil2 
81/J I 83 
filfilllil4 
filfil185 

lill/ll86 
filfil187 
8811 lil 
88111 
88112 
118113 
lillill 14 
88115 

811116 
88117 
81120 
88121 
88122 
""123 
88124 
88125 
88126 
88127 
1118130 
121111131 
08132 
811133 
00134 

lillil288 
00201 
88282 
0fll211J3 
88284 
00205 
88286 
88207 
1!1111218 
H21l 
1118212 
81/l213 
illfll214 
"8215 
H216 
88217 
"8228 
88221 
81/l222 
18223 
88224 
88225 
88226 
81227 
lillil238 
81231 
1118232 
181!33 
88234 
88235 
80236 
8111237 
81!1240 
llil24 l 
81242 
lillil243 
8111244 
10245 
1118246 
88247 
18250 
88251 
88252 
88253 
81254 
H255 
88256 
08257 
88261 
111261 
88262 
81263 
11264 

2117 
51175 

/IF YES. COUNT THE DI Gl TS• 
/EXHAUST 11/JTH DIGIT• 

1138 OUT. 
3116 

lSZ: DlGIT2 
JMP DEC I ML+ 1 
TAD P12 
DCA DIGlTl 
JMP I DECIML 

/ADD 10 TO COMPENSATE• 
/STORE IT• 

5474 
I 
I 

0888 DELAY• B 
WRITED 

/SUBROUTINE TO DISPLAY ' DELAY TIME• 
/DI SPLAY AC CONTENTS• 64011 

7381/l 
1131 
3123 
2123 
5113 
5586 

8888 
111888 
11111100 
8800 
Hts 
888111 
8888 
HH 
7774 
7766 
8812 
781illil 
2881il 
4888 
771!l8 

11121!18 
731111 
641112 
7280 
3124 
3125 
1134 
3361 
6481 
4843 
2361 
521117 
7381 
641114 
3362 
4355 
4043 
4843 
1362 
7Hli 
7428 
5214 
781111 
6484 
3362 
4355 
4843 
41143 
1362 
7818 
7428 
5226 
781114 
5214 
1128 
7658 
5251 
71111 
6484 
3362 
1364 
5255 
1133 
6484 
3362 
1365 
3266 
4828 
5261 
5263 
4843 
5256 
1274 
3273 

I 
I 

CLA CLL 
TAD M71i!188 
DCA TEMP 
lSZ: TEMP 
JHP ·-I 
JMP I DELAY 

/DATA C 1)1 

I 
DIGIT I, 
DI GI T2• 
ID. 
SAVEi• 
SAVEllil• 
TEMP. 
SCORE I• 
SCORE2• 
H4• 
1'112. 
Pl2• 
H7li!IBB• 
K28lillil• 
K48lillll• 
K778B1 

Iii 
e 
Ill 
Iii 
Iii 
Iii 
8 
Iii 
-4 
-12 
11111112 
7lilli!l8 
2088 
4Blillil 
7788 

/TO COWT 512• 

/COMPLETED COIJllTING? 
/NOT YET. 
/YES· 

/PROGRAM FOR GAME STARTS HERE1 
•21110 /STARTING ADDRESS• 

CLA CLL lAC /AC• I FOR TIMER OFF• 
TIMER /AC MUST BE Iii FOR TIMER ON• 
CLA 
DCA SCORE! 
DCA SCORE2 

DISPLY• TAD K771i18 
DCA COWT 
CLICK 
JMS SHOW 
lSZ: COUllT 
JHP ·-3 
CLA CLL IAC 

RLEFT • WRITES 
DCA SR 
JMS BOARD 
JMS SHOW 
JHS SHOW 
TAD SR 
RAL 
SNL 
JMP I'll.EFT 
RAR 

RRI GHT. WRITES 
DCA SR 
.JMS BOARD 
.JHS SHOW 
JHS SHOW 
TAD SR 
RAR 
SNL 
JHP RRIGHT 
RAL 
JMP RLEFT 

START• TAO ID 
SNA CLA 
.JMP • +6 
CLL lAC 
WRITES 
DCA SR 
TAD LEFT 
JMP .+5 
TAD K488B 
WRITES 
DCA SR 
TAD RIGHT 
DCA ROTATE 
JMS KEY 
JMP o+2 
JMP ~+3 
JMS SHOW 
JMP • -4 
TAD SPEED+! 
DCA SPEED 

H-5 

/INITIAL SCORE• 

/CLICK SPEAKER 64 TIMES 
/IN 1•5 SEC FOR STARTING SIGN• 

/TO KEEP DISPLAYING. 

/AC•lo 
/DI SPLAY AC• 
/SAVE DISPLAY BIT• 
/CHECK KEY COMM.AND• 
/41 MS TIME DELAY 
/TO KEEP DI SPLAYING• 
/BRING DISPLAY BIT BACK• 
/SHI FT LEFT ONE• 
/REACHED TO EDGE? 
/NOT YET• 
/YES• 
/DISPLAY• 
/SAVE IT• 
/CHECK KEY INPUT• 
/48 MS TIME DELAY TO 
/DISPLAY• 

/SHIFT RIGHT ONE• 
/REACHED TO EDGE? 
/IF NOT• KEEP SHIFTING. 
/IF YES# CHllN GE DI REC TI ON• 

/CKCK WHICH PLAYER FIRST• 
/THE FOLLOWING l'IOUTINE 
/BRINGS BALL TO THE 
/PLAYER'S SIDE• 

I SAVE DI SPLAY BIT• 
/LEFT•ltAL• 

/SAVE DISPLAY BIT• 
/RIGHTaRAR• 
/DEFINE SHIFT DIRECTION• 
/GAME STARTED? 
/NOT YET• 
/YES, STARTED-
/TO KEEP DISPLAYING
/CHECK KEY AGAIN• 
/INITIALIZE SPEED• 



llll!l265 
99266 
98267 
00278 
00271 
90272 
99273 
01!1274 
1!11!1275 
99276 
99277 
09300 
1!18391 
99302 
flll31l3 
1!10304 
01!1305 
99306 
01!131117 
lll9319 
lillil31 I 
99312 
09313 
99314 
99315 
00316 
99317 
01!1321!1 
90321 
l!ll!l322 
1!10323 
01!1324 
1!10325 
00326 
1!10327 
91!1331!1 
00331 
1!10332 
01!1333 
1!19334 
lillil335 
1!10336 
l!ll!l337 
88341!1 
181341 
00342 
88343 
81!1344 
l!ll!l345 
1!10346 
1!111347 
l!lfl351!l 
1!11351 
l!ll!l352 
l!ll!l353 

1362 
l!ll!ll!ll!I 
7431!1 
5341 
641!14 
3362 
41!143 
4043 
41!143 
41!143 
411l43 
4021!1 
5265 
1120 
7640 
5321 
1362 
1131 
7440 
5314 
1131 
3273 
5331!1 
7711!1 
5351 
1363 
3273 
5330 
1362 
1126 
7451l 
5311 
7700 
5351 
5316 
ll21l 
7651!1 
5335 
1364 
5336 
1365 
3266 
711!ll!l 
5265 
73llll 
1121!1 
76511l 
5347 
2124 
!52"5 
2125 
.5285 
1121!1 
71!141!1 
3121!1 

TAO SR 
ROTATE. 0 

SZL 
JMP SCORE 
WRITES 
OCA SR 

SPEED. JMS SHOW 
JMS SHOW 
JMS SHOW 
JMS SHOW 
JMS SHOW 
JMS KEY 
JMP RO TATE• I 
TAO IO 
SZA CLA 
JMP CTR 
TAO SR 
TAO M7118 
SZA 
JMP Al 

EASY. TAO M7111 
OCA SPEED 
JMP CHANGE 

Al• SPA CLA 
JMP FAULT 

OFFCLT• TAO JMPOFF 
OCA SPEED 
JMP CHANGE 

CTR. TAO SR 
TAO M4 
SNA 
JMP EASY 
SMA CLA 
JMP FAULT 
JMP DFFCLT 

CHAN GE. TAO 1 0 
SNA CLA 
JMP • +3 
TAD LEFT 
JMP • +2 
TAO RIGHT 
OCA ROTATE 
CLL 
JMP MTATE·I 

SCORE. CLA CLL 
TAO 10 
SNA CLA 
JMP • +3 
ISZ SCOREI 
JMP OlSPLY 
lSZ SCORE2 
JMP OISPLY 

FAULT. TAD 10 
CMA 
OCA IO 

/BRING 01 SPLAY BIT TO SHI FT• 
/RAL OR RAR IS STORED HERE• 
/SUCCEEDED TO GOAL? 
/IF YES• SCORE & CLICK• 
/DI SPLAY NEW SHI FTEO Bl T• 
/SAVE DISPLAY BIT• 
/THIS IS ONLY FOR SERVER• 
121!1 MS TIME DELAY• 
/21!1 MS· 
/21!1 MS• 
/FASTEST•41!l MS• SLOWEST-ll!llll MS• 

./OPPONENT KEY PRESSED? 
/NOT YET• SO KEEP SHIFTING• 

/WHICH PLAYER RECEIVED BALL? 
/CTR SI OE• 
/IAC SIDE· 
/DETERMINE RETURN SPEED• 
/HIT BALL AT 2ND BIT? 
/NO• 
/IF YES• GIVE EASY BALL• 
/M711ll!l0.,"NOP"• 
/RETURN THE BALL• 
/IS IT FAULT OR BEST BIT? 
/HIT IN WRONG REGION• 
/IT WAS BEST KIT• SO• RETURll 
/BALL FASTEST• 

IAC•-4• 
/Kl T AT 2NO Bl T• 
/YES• 
llS IT FAULT HIT? 
/YES• 
/NO. "IT WAS BEST HIT• 
/CHANGE DIRECTION• 

/DEFINE NEW DIRECTION• 
/CLEAR USELESS LINK BIT• 
/SHIFT TO THE DIRECTION• 

/WKI CH SCORED? 

/lAC SIDE• 

/CTR SIDE• 

/CHECK WHO WAS AGAINST RULE• 
/GIVE POINT TO THE OPPONENT• 

08354 5342 JMP SCORE+I 

l!ll!l355 
l!ll!l356 
H357 
1!11!1369 

18361 
18362 
18363 
H364 
18365 

/ 
88fill!l SOARD• 
4120 
5755 
5241 

I 
/ 

0 /SUBMUTlNE BOARD• 
JMS KEY /CHECK KEY• 
JMP I BOARD /IF NO INPUT• RETUJll TO LOOP· 
JMP START /IF SIGN• START GAME• 

/DATA <2>r 
I 

8fil8fil 
888fil 
5276 
7184 
7111!1 

/ 
I 

coun. 
SR. 
JMPDFF. 
LEFT. 
RIGHT. 

" 8 
5276 
7884 
71!118 

18366 78fillll NOP 

H-6 



Al 1314 
BOARD 1355 
CHANGE 1331 
CLICK 6481 
CO'IJfT 1361 
CTR 8321 
Dl:ClllL 8174 
DELAY 1196 
DFFCLT 1316 
DIGIT! 1116 
DIGIT2 8117 
DISPLY 1285 
EASY 1311 
FAULT 8351 
GO 8133 
1 D 8128 
IDB 1848 
JMPDFF 8363 
KEY 8128 
K288fl 8132 
K481fl 8133 
K 77flfJ 8134 
LEFT 8364 
Ml2 8127 

"" 8126 
1'17888 8131 
OUT 8183 
Pl2 8138 
RIGHT 8365 
JU.EFT 8214 
ROTATE 8266 

. -RRI GHT 1226 
SAVEi 8121 
SAVEi& 8122 
SCORE 1341 
SCORE! 8124 
SCORE2 812!5 
SHOV 1843 
SPEED 1273 
SR 1!1362 
START 1!1241 
TEMP 1123 
TIMER 641!12 
VRITED 6481 
WRITES 641!14 

H-7 



II 
10900 N. Tantau Ave., Cupertino, Calil. 95014, (408) 996-5000, TWX 910-338-0228 


	0001
	0002
	001
	002
	003
	004
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-08a
	5-01
	5-01
	5-02
	5-03
	5-04
	5-04a
	6-01
	6-02
	6-03
	6-04
	6-04a
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-09a
	8-01
	8-02
	8-02a
	8-02b
	8-02c
	8-02d
	8-02e
	8-02f
	8-02g
	8-02h
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-17a
	8-17b
	8-17c
	8-17d
	8-17e
	9-01
	9-02
	9-03
	9-04
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	C-01
	C-02
	D-01
	D-02
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	E-13
	E-14
	F-01
	F-02
	F-03
	F-04
	G-01
	G-02
	H-01
	H-02
	H-03
	H-04
	H-05
	H-06
	H-07
	xBack

