DOLLAR

 SLOT MACHINESSERVICE INSTRUCTIONS \& PARTS CATALOG Covering High Capacity Dollar Lowboy, 3 Reel Intermediate \& 3 Wide Reel Games

TABLE OF CONTENTS

In regards to parts references throughout this book, often parts numbers are qualified by referring to the particular machine by the number of (narrow) reels wide it is, such as a 3 reel, 4 reel or 5 reel machine. This in turn clarifies the part by machine width thus clarifing a particular part no. If a game is an intermediate 3 reeler ($21 / 4^{\prime \prime}$ reel width) it is the same cabinet width as a 4 reeler (narrow reel game). If a game is a wide reel, 3 reeler, ($31 / 4^{\prime \prime}$ reel width) it is the same cabinet width as a 5 reel (narrow reel game).

Page No.

FRONT DOOR ASSEMBLY - 4 REEL WIDE 2
FRONT DOOR ASSEMBLY - 5 REEL WIDE 3
FRONT DOOR ASSEMBLY - FRONT VIEW4
FRONT DOOR ASSEMBLY - 4 REEL AND5 REEL, FRONT VIEW PARTS LIST
5
FRONT DOOR ASSEMBLY - EXPLODED VIEW 6
FRONT DOOR ASSEMBLY - 4 REEL AND
5 REEL, REAR VIEW PARTS LIST 7
CABINET ASSEMBLY - 4 REEL WIDE 8
CABINET ASSEMBLY - 4 REEL PARTS LIST 9
CABINET ASSEMBLY - 5 REEL WIDE 10
CABINET ASSEMBLY - 5 REEL PARTS LIST 11
HANDLE MECHANISM ASSEMBLY -
(USED ON MACHINES THRU MAY 1977) 12
HANDLE MECHANISM ASSEMBLY -
(USED ON MACHINES THRU MAY 1977) 13
HANDLE MECHANISM ASSEMBLY (NEW HANDLE
MECH. IN PRODUCTION, JUNE ' 77 MACHINES 14
HANDLE MECHANISM ASSEMBLY (NEW HANDLE
MECH. IN PRODUCTION, JUNE $\cdot 77$ MACHINES)
\& HANDLE LOCKOUT ASSEMBLY 15
HOPPER ASSEMBLY (NICKEL, QUARTER) 16
HOPPER ASSEMBLY (NICKEL, QUARTER) 17
DOLLAR HOPPER ASSEMBLY 18
DOLLAR HOPPER ASSEMBLY 19
HOPPER PAYOUT UNIT INTRODUCTION 20
HOPPER PAYOUT UNIT FUNCTION 21
HOPPER PAYOUT UNIT FUNCTION 22
DOLLAR HOPPER PAYOUT CUT OFF CIRCUIT 23
HOPPER SERVICE 24
HOPPER SERVICE 25
REEL MECHANISM INTORDUCTION 26
REEL MECHANISM FUNCTION 27
REEL MECHANISM FUNCTION 28
REEL MECHANISM (SCHEMATIC
INTERPRETATION) 29
REEL MECHANISM FUNCTION 30
REEL MECHANISM SERVICE 31
REEL MECHANISM SERVICE 32
REEL MECHANISM SERVICE 33
REEL MECHANISM SERVICE 34
REEL MECHANISM SERVICE 35
REEL MECHANISM - RIGHT SIDE DETAIL 36
REEL MECHANISM - RIGHT SIDE DETAIL 37
REEL MECHANISM ASSEMBLY - LEFT SIDE 38
REEL MECHANISM ASSEMBLY - LEFT SIDE 39
REEL MECHANISM ASSEMBLY - CENTER 40
REEL MECHANISM ASSEMBLY 41
INSERT ASSEMBLY 42
MOLEX PLUG SERVICE 43
D.C. COUNTER SERVICE 43

FRONT DOOR ASSEMBLY

4 REEL WIDE
$\mathrm{C}-780-5$
$\mathrm{C}-1059-2$
AS-2360-50
$\mathrm{E}-664-5$
AS-2334-35

AS-2360-29
A-2875-1
AS-2360-48
A-2937-35
C-1054-5
E-409-1
AS-2538-34
A-3018-74
AS-2872-1

Window Frame	1	
Upper Door Casting	.	1
Light Shield Assy.	.	1
Impulse Ctr. \& Plug Assy.	1	
Florescent Light Brkt.		
Assembly.	1	
Light Shield Assy.	.	1
Hinge Assy.	1	
Light Shield Assy.	.	2
Light Shield Assy. . . .	1	
Lower Door Casting	.	1
Ballest	1	
Plug in Relay Assy.	1	
Coin Exit Ramp	.	1
Cover Plate Assy.	.	.

FRONT DOOR ASSEMBLY
 5 REEL WIDE

FRONT DOOR ASSEMBLY
 FRONT VIEW

NOTE:
THIS EXPLODED VIEW IS BEING USLD WITH INDEX
PARTS FOR BOTH \$1.00 MACHINES, THE 4 REEL
WIDE DOOR AND THE 5 REEL WIDE DOOR.

FRONT VIEW 5 REEL WIDE

Inde No.

Description

No.

Lock Crank 1
P-6427
P-7120
Lock Sd. Door Shield
1
3 P-6428
Lock Slide Guide
1
A-2928
Lock Slide Assy
1
A-2930 Lock Cam Assy 1
M-281-40
Lock \& Hardware
1
C-1159-2
'"Dollar Door' Upper Casting 1

8 C-1154
''Dollar Door' Lower Casting

1
C-657-2 Door Frame (Lock Side). 1
10 P-6426 Scavenger Brkt. 1
11 LSPR-00832-1104 Screw 4
12 SP-399-9 Torsion Spring 1
13 A-2929 Scavenger Assy. 1
14 C-980-1 Window Frame 1
15 A-3085 Scavenger Button Assy. . 1
16 C-674-17
Coin Drop Casting . . .
Compression Spring . .
18 P-448-1 Snap Ring ($1 / 4^{\prime \prime}$ Shaft)
19 LSPR-00832-1108 Screw
20 M-1376 Instruction Disc 1
21 S-287-8 Button Housing 1
22 A-3085-3 Push Button 1
23 AS-2358-34 Display Case 1
24 P-6665-304 Baffle (Anti-Wire Guard) 1
25 CA-1188-21 Wood Panel 1
26 AS-2548-10 Wood Panel Assy.w/Cup 1
27 P-7209 Guard Plate 1
28 P-3389-2 Retaining Ring 2
29 P-6441-11 Trim Panel 1
30 C-1160-Coin Extruded Trim 1
31 M-606
32 P-1925-164 Flat Plate 1
33 N-01024-2112 Nut
34 P-6665-272 Bottom Door Shield . . 1
35 LSPR-00832-1108 Screw
36 C-657-3 Door Frame (Hinge Sd.) . 1
37 E-108-97 Push Button Sw. 1
38 MSPB-00832-1108 Screw
39 MSPT-00832-1112 Screw
40 P-6416-4 Snap Ring
41 C-933
42 C-655-4
43 P-6688-56

Coin Cover 1
Coin Cup (Dollar) . . . 1
Trim Panel (Dollar Machine)

FRONT DOOR ASSEMBLY

 REAR VIEW

NOTE:

THIS EXPLODED VIEW IS BEING USED WITH INDEX
PARTS FOR BOTH \$1.00 MACHINES, THE 4 REEL
WIDE DOOR AND THE 5 REEL WIDE DOOR.

FRONT DOOR ASSEMBLY

REAR VIEW 5 REEL WIDE		
Index No.	x Part No.	Description $\begin{array}{r}\text { No. } \\ \text { Req. }\end{array}$
11	E-120-119	Socket 2
2	P-7786	Reel Mask
3	LSPR-632-1103	Screw
4	E-112-5	Flour. Tube
5	C-1159-2	Top Door Casting
6	A-2957-8	Coin Slide
7	MSSB-25020-1108	Screw
8	A-2875-1	Hinge Assy. 2
9	E-125-6	Bulb \#63 2
10	AS-2360-50	Light Shield \& Socket Assy.
11	LSPR-832-1104	Screw . .
12	A-3096-3	Light Brkt. Assy.
13	LSPR-832-1104	Screw .
14	E-125-5	Bulb \#55
15	C-1154-8	Lower Door Casting . . 1
16	E-660-1200	Male Molex 2
17	P-1560-1	Bracket 2
18	E-660-1200	Female Molex 2
19	LSPR-832-1110	Screw
20	A-3018-74	Coin Exit Ramp
21	LSPR-632-1112	Screw 2
22	P-6665-512	Bracket
23	M-1481-3	Spacer 2
24	M-319-6	Nut 2
25	LSPR-832-1105	Screw 2
26	AS-2517-11	Coin Diverter 1
27	P-6429-10	Cover Plate
28	P-569-98	Coin Chute
29	P-6798-2	Coin Chute
30	SFPA-832-1104	Screw 4
31	P-6649-1	Coin Ramp Cover
32	P-6702-1	Coin Guide Side 1
33	A-3018-72	Coin Slide Assy.
34	A-3039-2	Coin Ramp Plate
35	MSPR -440-1110	Screw 2
36	E-108-148	Coin Switch 1
37	P-6805	Bracket 1
38	C-657-2	Door Frame (Lock Side). 1
39	M-281-40	Lock \& Hardware . . . 1
40	AS-2360-50	Light Shield \& Socket Assy. 1
41	G-348	Glass Window 1
42	A-2930	Lock Cam 1
43	P-6442-159	Meter Bracket 1
44	E-664-5	Meter 1
45	AS-2452	Electric Door Lock . . 1
46	A-2937-25	Brkt. \& Socket Assy. . . 1
47	A-2937-34	Light Baffle (20 Sp.) . . 1
48	E-125-6	Bulb \#63 2
49	E-108-97	Push Button Switch . . . 1
50	C-271-2	Cable Clip
51	PW-8-12	Washer 1
52	$\mathrm{N}-832-2112$	Nut 1
53	MS-440-10-111	Screw 2
54	AS-277-163	Rejector Mount
55	E-108-148	Switch

NOTE:

CABINET ASSEMBLY
 4 REEL WIDE

Index No.	$\begin{gathered} \text { xart } \\ \text { No. } \end{gathered}$	Description	No. Req.	Index No.	$\begin{array}{ll} \mathrm{x} & \text { Part } \\ & \text { No. } \end{array}$	Description	No. Req.
1	CA-1164-0401	Cabinet	1	36	P-6665-345	Rail Assembly	1
2	E-664-1	Bell Assembly	1	37	AS-797-415	Payout Unit Assembly.	1
3	E-664-6	Chime Assembly	1	38	A -3018-66	Coin Chute	1
4	E-103-67	Terminal Strip	2	39	WS-800-1108	Screw	2
5	WSPR-800-1108	Screw	4	40	E-148-13	Fuse Holder	4
6	P-6417-3	Plug Bracket	1	41	P-6500	Fuse Holder Brkt.	1
7	A-2303	Handle Assembly	1	42	E-664-7	Counter	1
8	E-108-106	Push Button Sw.	1	43	E-574-1	Beauplug	1
9	P-6665-164	Switch Bracket	1	44	LSPR-632-1103	Screw	4
10	P-6280	Mtg. Disc	1	45	P-6417-3	Socket Bracket	1
11	P-1158-6	Washer .	1	46	SWPR-832-1105	Screw	4
12	C-641	Hub	1	47	LSPR-832-1104	Screw	2
13	M-1348-1	Carriage Bolt . . As	Reqd.	48	E-580	Indicator Lite	1
14	P-6416-1	Bar Lock	1	49	E-119-348	Timer Motor Unit	1
15	WSPR-1000-1110	Screw .	3	50	WSPR-800-1108	Screw	2
16	AS-435-Series	Handle Lockout Assy. (Specify Model)	1	51 52	E-110-1 $\mathrm{P}-6665-504$	Convenience Outlet Panel Guide Brkt.	2
17	N-1024-2112	Nut	2	53	A-2974-21	Cabinet Bottom Plate	1
18	E-122-105	Transformer	1	54	P-1973-383	Spacer	2
19	M-1372	Bolt .	1	55	P-801-107	Washer	2
20		5/16' Lockwasher	1	56	S-231-777	Bushing	2
21	P-6288	Actvating Arm .	1	57	WSPR-800-1108	Screw	Reqd.
22	AS-2301-11	Handle Mech. Assy.	1	58	P-6665-273	Timer Reset Bar	1
23	P-6281	Mounting Plate .	1	59	P-6688-58	Side Plate	2
24	P-6406-74	Rail Guide .	1	60	P-6688-60	Back Plate.	1
25	P-6406-75	Rail Guide	1	61	E-126-43	Cord Set .	1
26	TFPP-1032-1806	Screw	6	62	P-6641-3	Spacer Set.	Reqd.
27	P-6415-6	Plug Mounting Bracket	1	63	P-6455	Hinge Guard	2
28	LSPR-1032-1106	Screw	4	64	P-6414-1	Hinge Protector Brkt.	2
29	P-7444-2	18 Pt . Plug Mtg. Brkt.	2	65	A-2919-17	Cabinet Liner	1
30	P-7444-1	24 Pt. Plug Mitg. Brkt.	2	66	A-2875-1	Hinge Assembly	2
31	LSPR-832-1104	Screw .	8	67	P-6295-1	Mtg. Plate Brkt.	2
32	P-511-1	Base Plate	1	68		1/4" Lockwasher	4
33	SAPP-1032-1106	Screw	4	69	N-25020-2112	Nut .	4
34	P-6268-4	Rail Mtg. Bracket	1	70	LSPR-1032-1104	Screw -	2
35	P-6268-3	Rail Mtg. Bracket . .	. 1	71	P-6513-2	Timer Mounting Brkt.	1
				72	SAPT-800-1112	Screw .	2
				73	P-1560-2	Plug Mtg. Brkt. .	1
				74	AS-2896-3	Stepping Unit Assy.	1
				75	WSPR-800-1132	Screw	2

CABINET ASSEMBLY
5 REEL WIDE

CABINET ASSEMBLY
 5 REEL WIDE

HANDLE MECHANISM ASSEMBLY USED ON MACHINES THRU MAY 77

Note: Index No.'s $1-2$ is the auxiliary anti-cheat "Handle Micro-Switch" which is normally used on games with a Replay Register. The function of this unit is to prevent a free play when collecting win credits from the Replay Register. On some games this Micro-Switch is also used to replace the 'Dashpot Switch' since the function is somewhat the same but with a faster action.

HANDLE MECHANISM ASSEMBLY USED ON MACHINES THRU MAY 77

Index No.	Part No.	Description	No. Req.	Index No.	x Part No.	Description	No. Req.
1	MSPR -00440-1108	Screw	2	26	A-3411	Front Plate Assy.	1
2	E-108-91	Micro-Switch	1	27	LSPR-25020-1106	Screw	4
3	LSPR-01032-1106	Screw	2	28	A-2904	Handle Bearing Assy.	1
4	PW-010-10	Washer	2	29	LSPR-01032-1105	Screw	10
5	P-7242-1	Mtg. Brkt. \& Shield	1	30	R-116	Rubber Bumper	4
6	P-2891-8	'E'Ring (3/8' Shaft)	2	31	P-474	Bumper Housing	4
7	P-6279	Angle Mtg. Brkt.	2	32	LSPR-00832-1103	Screw .	12
8	P-2293-6	Cup Washer	1	33	A-203-2	Bearing Stop Plate Assy.	. 1
9	S-475-11	Sleeve Shaft	1	34	C-537-30	Nyliner	1
10	SP-200-163	Compression Spring	1	35	P-6535-1	Pawl (new)	1
11	C-662	Sleeve . . .	1	36	P-800-2	Washer .	2
12	P-2293-7	Cup Washer	1	37 A	A-3060	Actuating Link Assy.	1
13	S-231-665	Spacer	1	38 M	M-319-2	Elastic Stop Nut .	1
14	S-475-12	Shaft	1	39 S	SP-100-1	Extension Spring .	1
15	P-2891-6	' $\mathrm{E}^{\prime \prime}$ Ring ($1 / 4$ " Shaft)	2	40 P	P-6316-4	"E' Ring ($3 / 16$ ' ${ }^{\text {S }}$ Shaft).	2
16	A-3410	Rack Lock Lever \& Shaft Assembly		41	$\begin{aligned} & \mathrm{S}-739-192 \\ & \mathrm{P}-801-528 \end{aligned}$	Pin . . . Washer	
17	LSPR-00632-1103	Screw .	2	43 C	C-537-24	Nyliner	2
18	P-1973-243	Plate (fast pulladjust.)	1	44 A	A-2873-6	Lock Link Assy. (new)	1
19	P-712-2	Retaining Ring(1'truarc)) 2	45	P-1972-15	Lock Link . .	1
20	A-3412	Latch Pawl Assy. (antifast pull unit)	1	46	$\begin{aligned} & \text { P-2891-6 } \\ & \text { P-800-10 } \end{aligned}$	'E" Ring (1/4" Shaft) Washer	1
21	P-2891-7	'E' Ring (5/16' Shaft) .	4	48	P-6737	Support Link	1
22	AS-2766	Full Stroke Pawl Assy. (new)	1	49 S	$\begin{aligned} & S-1784-3 \\ & S P-399-21 \end{aligned}$	Hex. Stud . . Return Spring	
23	SP-100-12	Extension Spring (pawl)	1	51	A-3059	Pivot Link Assembly	1
24	A-181-1	Lock Pawl Assy. . .	1	52	P-405-58	Lug	1
25	SP-100-7	Extension Spring	1	53	LSPR-832-1106	Screw	1

HANDLE MECHANISM SERVICE

It is the Handle Mechanism which initially receives the impact of a hard Handle pull. Because of the tough service requirements, this unit must be of the strongest construction. As a safety factor the Handle Mechanism is built to specifications tentimes the necessary strength to protect the Reel Mechanism from the most aggressive player.

There have been several new developments designed to strengthen \& protect the Handle Mech. First an anti-fast pull Speed Lock (Note Ratchet) was added in 1970. In mid-1973 the Full Stroke Pawl \& Locking Links were redesigned \& strengthened. If you check the Exploded View Parts List, you will notice that these improvements can be incorporated on older machines. It is also suggested that the new front, Anti-Wiring Shield be in place at all times.

Because of the heavy duty use, the Handle Mech. should be lubricated periodically. Use our Lubriplate No. 1 Oil on the light duty pivot points \& our Hydrotex Lube \#651 on points of heavy stress \& sliding parts.

Be sure the anti-fast pull, Speed Lock Pawl swings freely on its pivot, since it engages the Ratchet on a centrifugal force principle (do not lubricate).

HANDLE MECHANISM ASSEMBLY
 NEW HANDLE MECH. IN PRODUCTION ,JUNE 77 MACHINES

Index No.	Part No.	Description	No. Req.		x Part No.	Description	No. Req
1	MSPR-440-1108	Screw	2	26	SP-100-12	Spring	1
2	E-108-91	Micro Switch	1	27	S-143-30	Spacer (w/Allen Screw)	1
3	TFPP-1032-1806	Screw	10	28	S-423-201	Shaft	1
4	RLPP-1032-1804	Screw	2	29	P-2891-7	'E" Ring	2
5	P-7242-1	Brkt. \& Shield	1	30	A-3412	Latch Pawl (Anti-Fast	
6	P-2891-8	'E"' Ring	2			Pull Unit) .	1
7	P-6279	Angle Brkt.	2	31	P-474	Bumper Housing	4
8	P-2293-6	Cup Washer	1	32	R-116	Rubber Bumper	4
9	S-475-11	Sleeve Shaft	1	33	A-203-3	Bearing Stop Plate	1
10	SP-200-163	Compression Spring	1	34	C-537-30	Nyliner -	
11	C-662	Sleeve	1	35	LSPR-832-1103	Screw	10
12	P-2293-7	Cup Washer	1	36	MSPP-832-1103	Screw (See Note on Pw.)	2
13	S-231-665	Spacer . .	1	37	P-6629-118	Lock Pawl.	1
14	S-475-12	Shaft	1	38	P-6629-116	Lock Link	
15	P-2891-6	' $\mathrm{E}^{\prime \prime}$ Ring	2	39	S-231-818	Spacer	3
16	A-3410	Rack Lock Lever \& Shaft	1	40	SP-399-40	Spring	1
17	LSPR-632-1104	Screw	2	41	P-6629-117	Actuating Lever	
18	P-1973-243	Plate (Fast Pull Adjustment)	1	42 43	$\begin{aligned} & S-231-817 \\ & S-739-219 \end{aligned}$	Spacer Pin .	
19	P-712-2	Retaining Ring	2	44	M-1721-0	Cotter Pin	2
20	A-2904	Handle Bearing Assy.	1	45	P-6717-31	Support Link	
21	A-3411-1	Front Plate	1	46	SP-200-208	Spring .	1
22	SP-100-7	Spring	1	47	S-739-218	Pin	
23	A-181-3	Lock Pawl Assy.	1	48	P-2891-5	'E' Rings	2
24	S-231-790	Spacer	1	49	LSPR-25020-110	6 Screw	
25	S-2100	Ratchet Pawl	1	50	SP-200-208	Spring.	

HANDLE LOCKOUT ASSEMBLY

Index No.	x Part No.	Description
1	A-636-19	Relay Frame \& Mtg. Assembly
2	MSPR-540-1824	Screw
3	P-126-154	Plate
4	ASW-A1-48	Switch
5	ASW-A3-10	Switch
6	ASW-A2-13	Break Sw.
7	ASW-A1-10	Make Sw. Handle Release
8	A-2867-4	Latch Arm Assy.
9	P-2891-5	'E' Ring .
10	SP-341	Return Spring
11	SP-100-38	Extension Spring
12	A-637-5	Armature
13	F-31-2100	Handle Release Coil

OPERATION \& SERVICE

On your Slot Machine Schematic the Handle Lockout Unit components are usually referred to as the 'Handle Release Coil \& Switches''.

The Handle Lockout Unit is activated by a pulse from a Coin Relay Switch (via the Coin Drop's Coin Switch). At this time the energized Handle release Coil releases the Armature Latch Lever which drops in front of the Handle Mechanism's top Lock Pawl. With the Handle Mech. Lock Pawl thus en-

gaged the Handle can now be pulled. Also at this time the Released armature latch lever has operated the Handle Release Switches whose various functions are described in the previous Reel Mech. Function Section. As the Handle is pulled to initiate play the Handle Mechanism's Reset Shaft mechanically resets the Armature Latch Lever just prior to the Reels kick-off \& spin. At this time the Handle Lockout \& Switch Units are reset \& ready for another play cycle.

The Lockout Unit needs very little service except for occasional switch cleaning and spring, coil and latch inspection.

HOPPER ASSEMBLY NICKEL QUARTER

Adjustments: No. 2 Rocker Pin. Draw Hex Set Screw No. 5 snugly so that all play is taken up in rocker pin no. 2. Over-tightening will overload bearing and pinwheel will not turn freely.

HOPPER ASSEMBLY
 NICKEL QUARTER

Parts Index No.s 12, 16 and 59 are obsolete, use new agitator R-526 for all coins using bushing and screw index parts $61 \& 62$ which drive the pinwheel with motor E-119-455.

NOTE: The above side Illustrations shows the Hopper Stop, a Screw and Washer which screws into lower back of Wheel Housing Cashing. (Not shown in Exploded View) 2-Washers P-800-6, 2 Screws-LSPR-01032-1106.

DOLLAR HOPPER ASSEMBLY

The Hopper Payout Unit is the virtual brain of the Slot Machine controlling the vital banking functions. Some of these functions are the retention \& storage of incoming coins (enough to cover repeated jackpot payouts), the flawless payout and accounting of all winners and the diversion of incoming coins to the Cashbox when there is sufficient reserve in the Hopper. In addition a variety of Re-
lays and Switches are mounted in the Unit according to the requirements of the game. Relays normally installed on the Hopper Payout Unit are the Payout Relay, Hopper Mixer Relay (operates Hopper Motor occasionally to level coins), the Delay Relay (Safety Timer System) \& ''Plum'', ''Cherry'', \& 'Jackpot'' Relays which assist complex win circuits in the Reel Contact Plate Discs.

PAYOUT COUNTER UNIT

PAYOUT SAFETY TIMER SYSTEM

The Safety Timer System is designed to protect the Hopper Payout Unit from overpayments, if a malfunction should occur, by snutting down the game. Two types of Timer Systems are used, a standardSystem \& a Delay Relay System. The Standard System is used on the majority of Mechanically Stepped Counters This Timer is set to cover the top machine payout (usually a 200 payout measured in seconds) then cut-off. The normal factory Timer Setting is 45 Seconds for Nickels \& Dimes, and 50 Seconds for Quarters. The Timer is adjustable with a range of 112 seconds .

The Delay Relay Safety Timer System is used on both Mechanical and Electrically Stepped P. O. Counters.

Many times a malfunction situation is caught even before the payout is complete. This system uses a constantly repeating timer reset cycle of several seconds in duration during a payout with a factory Timer Setting of only 15 Seconds (adjustable). So the maximum over-run is less than 15 seconds and then only if the malfunction occurred at the end of a payout cycle. Check the included Schematic with the Delay Timer Circuit for further details.

TIMER UNIT OPERATION

If the Hopper unit runs for a longer time than required to dispense largest payout (plus margin), the cam on the Timer Motor operates the safetysw. which opens the power supply to machine and lights the neon pilot lite indicating "trouble." After correcting the trouble, the machine can be put back in service by manually resetting the safety switch. The time cycle on the safety timer motor can beadjusted by loosening the lock nut holding the cam and setting the pointer to the number of seconds desired, as indicated on the dial under the cam. The time adjustment varies from 5 seconds to 112 seconds. When the desired time setting is made, lock the cam securely and check by cycling cam several times.

ELECTRICALLY STEPPED COUNTER CIRCUIT FUNCTION

The payout circuit as shown illustrates a three oranges winner. You see the three Reel Mechanism Wipers completing a win circuit on the Reel Mech.'s Contact Plate Discs (Note: Or-Or-Or/Bar = 10) to the P. O. Counter Printed Circuit Disc 10 pay segment. The P.O. Counter Wiper picks up this "hot" circuit \& energizes the P. O. Relay. The "hot" P. O. Relay Switches now complete circuits' to the Hopper Motor, Over-Ride Solenoid, Safety Timer System and a hold-in circuit to the P.O. Relay. The Unit is now conditioned to dispense coins.

As the coins are being dispensed the action of the coins rolling out under the Pivot Arm pulses the three Pivot Arm Switches. This action in turn completes circuits to the Total-Out Meter \& the Payout Unit Step-Up Coil (via the Odds Disc \& Multiplier Units). When more than one coin is played (2-5) the Odds Unit advances completing a circuit to one of the Multiplier Units. On a winner the specific Multiplier Unit pulses the Payout Unit Step-Up Coil on a proportional basis. As an example, if 3 coins were played the P.O. Counter advances once for 3 coins dispensed. This action provides the multiplication factor in payout amounts.

When the P.O. Counter advances to a point where it steps off the 'hot' 10 pay segment on the P. O. Counter Disc, the payout is complete \& the entire circuit is de-energized (P.O. Relay cuts off all circuits \& the Over-Ride Solenoid cuts off coin flow). The P. O. Counter is reset on the next pull of handle as the Reel Mech "B' Switch (just as reels kick off) the Reset Coil (via closed Carriage Zero Switch). The Reset Circuit now opens itself \& the payout cycle is complete.

HOPPER PAYOUT UNIT FUNCTION
 DELAY RELAY SAFETY TIMER SYSTEM CIRCUIT FUNCTION

The Delay Relay Timer has the advantage of a very quick coin cut-off if a payout malfunction or over-run situation occurs. This system uses a cam operated Micro Switch Unit installed on the P. O. Counter Ratchet Gear causing the circuit to the Safety Timer to open every few seconds during a payout. This action causes the Timer to constantly reset itself every few seconds (every 5 th step) until the payout is complete. Because the timer cycle is only a few seconds in duration the Timer over-run is adjusted to only 15 seconds (factory set-adjustable). This means if a malfunction occurs causing an inability of the counter to step, this fault will be immediately caught (at anytime during payout) and the Timer will quickly run out (15 sec . maximum). In many cases this will cut off the game even before a payout is complete which is in contrast to the 45 50 second run of the Standard Timer System.

The Delay Relay itself protects the Timer System in two ways. When the P. O. Relay Switches energize the circuit, the Delay Relay Switches (2 for
insurance) complete a circuit from the Ratchet Cam Micro Switch to the Safety Timer. As the Counter steps-up, the Ratchet Cam Micro Switch opens every 5 th step causing the Timer circuit to open \& reset. The Delay Relay remains energized momentarily (Lg. Capacitor) to allow sufficient time for the timer to reset \& at the same time momentarily preventing the second Safety Circuit (heavier line) from connecting into the circuit. If this Micro-Switch Circuit does not pulse (counter does not step) \& the Micro Switch does not open, the 15 seconds on the Timer will run out $\&$ shut off the game.

If the Micro-Switch is stuck in an open position(Counter not stepping), circuit continuity to this Timer is maintained by a second safety circuit (heav.line). At this time the momentary charge held by the Delay Relay Capacitor will be gone, de-energizing the Delay Relay. Now circuit continuity to the timer will be maintained via the Hopper Motor Feed(heavier line). Again the Timer will be allowed to run out cutting off the game.

USED IN DOLLAR MACHINES AND HIGH CAPACITY HOPPER MACHINES

HOPPER CUT OFF RELAY

The primary purpose of this circuit is to prevent cheating by means of a wire being inserted thru the coin outlet chute, holding up the hopper roller arm and preventing the payout counter from stepping during a payout.

The hopper cut off relay is pulled in when the handle release trips or by pushing the reset button. Once energized, the relay is held in thru its own make switch and the parallel combination of normally closed payout relay and hopper pulse switches. When the payout relay is energized, the only path
for current to keep the hopper cut off relay held in is thru the hopper pulse switch, which opens for only a very short period of time as a coin passes under the roller. This is not long enough to discharge the capacitor to the point where the relay will drop out. The components in this circuit have been selected so as to provide a 300 milisecond time delay. This is approximately the amount of time it takes for 2 coins to pass under the roller. When the hopper cut off relay drops out, it disables the payout relay and lights the TILT light.

HOPPER SERVICE INTRODUCTION

Hopper payout stepping units are either electrically or mechanically stepped. The dollar machines are electrically stepped with the payout counter unit mounted separately from the hopper. Machines of lesser denominations such as half dollars, quarters and nickels will have the payout counters mounted to the hopper. In machines were multiple coin step-up odds are featured, electrically stepped payout counters are used. Other machines such as single coin or multiple pay line machines use the mechanical step-up payout counters.

HOPPER PAYOUT UNIT SERVICE

First a good cleaning of the unit is in order. An aerosol type de-greaser or contact cleaner can be used, however all parts must be wiped off with a clean cloth to remove any residue \& desolved scum, especially on electrical contacts \& printed circuits.

For a complete service overhaul of the Hopper Payout Unit, remove the unit from the game \& disassemble the various protective shields \& scoop cover. Now follow the general point by point procedure.

Now check the Hopper Knife (case hardened). The forward edge should fit as close to the disc as possible with no binding. No coin should be able to wedge itself between the blade \& the coin disc when being dispensed. The forward point of the knife should ride down as close as possible in the coin channel without binding. Absolutely no grease or oil should be applied to the area or any other area that comes in contact with coins.

PAYOUT COUNTER ADJUSTMENTS

II. Now the Payout Counter can be adjusted. Remove the top mounting screw, detach the step-up arm spring link (where applic.) \& swing the counter down in a service position. Be sure the following adjustments are made in the order presented.

SPRING ADJUSTMENTS

A. First check out the springs for good tension \& proper operation. The torsion spring should have enough strength to reset any step-up amount back to zero. This spring is installed with 2 turns on the shaft for proper initial tension (do not allow coils of spring to lap over). When the unit is in a reset position both pawls should be free of the gear teeth \& the ratchet should be free to rotate (spring loaded). At this point check out the ratchet teeth for good condition. The ratchet teeth are lightly greased.
B. Now check out the pawls for binding against the frame \& for bent or broken parts. The pawls should engage the ratchet gear at a 90° angle \& pick up a tooth on the first step (see zero stop \& step-up arm stop adjustments). Because the pawls are case hardened bending can easily crack off parts, extreme care in adjusting or replacement is recommended.

The pawl pivot points should be lubricated with our lubriplate \#1 oil \& the point where the step-up arm rides on the frame (reset pawl engage) should be greased.

STEP-UP ARM STOP

C. The step-uparm has two stop adjustments. One stop (lower stop bracket) controls the amount of overtravel so that only one tooth is picked up at a time. The other stop (top tab) limits the return stroke so that the trailing reset arm picks up its tooth with MINIMUM OF BACKLASH.

A correctly adjusted step-up arm pawl has a $1 / 64^{\prime \prime}$ of $1 / 32^{\prime \prime}$ overtravel beyond the full down stroke. This overtravel is adjusted by moving the bracket up or down. If the overtravel is too much, the unit advances with an uneven or jerky motion (\& poss. 2 steps at a time). If there is no overtravel the unit may not pickup teeth on high jackpot amounts (affected by torsion spring pressure).

NOTE: This stop is not installed on electrically stepped counters.

The return stroke stop (top tab) is adjusted so that there is approx. $1 / 64^{\prime \prime}$ overtravel between the reset pawl \& the face of the ratchet tooth when it is engaged. This tab is usually formed down to achieve a proper stroke, If there is too much back stroke action, certain amount of backlash can occur \& a extra payout step may result. This stop is used on both mechanical \& electrically stepped counters.

CONTACT PLATE DISC CLEANING

D. Before we adjust the step-up \& zero switch acttion it is suggested that the contact plate disc spiral cam \& wiper be thoroughly cleaned. Probably the biggest single cause of payout malfunctions is a dirty printed circuit on the contact plate disc. For proper access remove the carriage unit, cam \& wiper unit. Now clean $\&$ wipe off this disc until it is spotless. A very small amount of lubrication is recommended however. Put a drop of fine oil on the tip of your finger \& wipe around on the printed circuit $\&$ then wipe off with clean cloth - this will leave just enough lubrication to prevent excess wiper friction. Now clean \& reassemble the wiper \& carriage units. Check the wipers for good even contact plate pressure.

HOPPER SERVICE

E. Now make adjustments to Printed Circuit Disc. Proper position of disc is indicated by resetting the counter unit to zero and manually stepping the outside finger on the rotating wiper should be centered in the segment identified on the wiring tab at the bottom of the disc by the number 10 . On the next step, this finger should move off and clear the segment. This position may be checked at the tabs marked 2-5-10-14 and 18. If the printed circuit disc is not properly positioned, the 2 hex head screws should be loosened slightly to allow the disc to be rotated to the proper position by tapping at a corner. When the proper position is reached the 2 hex head screws should be tightened securely.
F. Now we can adjust the carriage unit's zero stop. This adjustable rubber cushioned stop unit performs several functions. First, it controls the position of the ratchet (\& wiper) so that the pawls can engage the ratchet gear teeth correctly, picking up the first tooth \& stepping-up the unit smoothly during a payout. Secondly, it stops \& absorbs the reset action of the wiper \& spiral cam after a payout cycle. Third, the stop controls the zero switches. The 'open at zero switch' ($71 \& 48$ wires) controls a payout counter reset coil circuit \& a "closed at zero switch" (hold \& draw machines only) de-energizes the draw relay preventing a second play after a win.

When the printed circuit disc is moved to its proper position relative to the finger wiper (paragraph E), the zero stop adjustment must be checked. This is done to coordinate the action of the step-up pawl \& ny lon ratchet drive on the reverse side of the Counter unit.

To check the setting of the zero stop, step the unit manually several steps. Now rotate the spiral cam manually until the unit has made 1 rotation of at least 360 degrees or 100 steps. Manually depress the plunger on the reset coil and allow the unit to reset to zero. This will latch both pawls out of the ratchet tooth \& insure zero position.

The zero stop is adjusted so that when the counter makes its first step-up stroke from zero the reset pawl falls smoothly in front of a tooth face on the ratchet gear (engaged into the gear \& not on a peak). the step-up pawl should then engage into the ratchet gear \& make one step-up with the reset pawl trailing. To move the ratchet gear into this correct initial position for a smooth pawl engagement the zero stop is adjusted.

On machines produced before August 1973 the zero stop is a concentric rubber washer which has an adjustable cam effect which can move the zero position. On new post - August 1973 - zero stops, a set screw \& lock nut controlled zero stop is adjusted.

FEED CARRY-OVER CIRCUIT

G. Now adjust the Outboard Wipers. To check top wiper which carries the 100 step circuit, step unit to 100 steps position. The top finger of the wiper should be off of the contact segment and have enough clearance to that the circuit stays open when the carriage is moved manually to the extremities of the clearances. If adjustment is necessary, the 2 screws holding the wiper assembly should be loosened sufficiently to allow the wiper assembly to be moved to the proper position and when properly positioned, tightened securely.

To check the lower wiper which carries the 200 Steps circuit, repeat the procedure above when the unit is stepped to the 200 step position.
H. Now adjust Step Up Arm Lower Switch the N.C. s witch with wire colors grey yellow, grey black). This adjustment is very important to the life of the printed circuit disc as this switch takes the arc generated by the collapse of the payout relay coil. Although this switch is pre-set electrically, the above adjustments change the original setting, therefore the setting is made as follows. Step the payout counter manually to 9 steps; now step once more, but do not release the step-up arm yet; now slowly release the armand observe that the wiper armfingers must move off the printed circuit 10 strip before the step up arm switch opens. As a guide, if the switch contacts have moved together to a gap of $1 / 32$ this should take care of the setting.

DELAY RELAY MICRO-SWITCH ADJUSTMENT

I. On machines using a Delay Relay type Safety Timer System an additional micro-switch cam is installed on the counter ratchet gear. This cam operated micro-switch circuit has a five step pulse which energizes the safety timer motor (See the Schematic circuit explanation). The micro-switch position is adjustable. When the counter is at zero the micro-switch should be on the first step of its five step cycle (circuit is closed). On the counters fourth step the micro-switch follower should drop into the gear through which opens the circuit (Fifth Micro-Switch position). As the counter continues to step-up, the micro-switch opens its circuit every fifth step during a payout cycle. Adjust accordingly.

REEL MECHANISM INTRODUCTION

4 REEL GAME SHOWN

REEL MECHANISM FUNCTION

INTRODUCTION

The purpose of this Chapter is to acquaint you with the General Reel Mechanism electro-mechanical switch functions \& sequence of switch operation.

On the Reel Mechanism's left side you will notice the Coin Relay Unit, "A" Switches, ' ${ }^{\prime}$ ' Switches and "C" Switches. When the Game is coined it is the Coin Relay which initially releases a trip arm which actuates Coin Relay Switches (\& in-turn the Handle Release Unit). The Game is now ready to play. On the downward stroke of the Handle the Trip Shaft Lever operates the "A" Switches. The Timer Link (with "B' \& ' C "' Switch actuation \& Timer Shaft activation) \& the Coin Unit Reset Lever. Also on the downward handle stroke the Handle Mech. resets the Handle Release Unit.

As the reels kickoff the Trip Shaft Lever closes the "A" Switches. The spring loaded Timer Shaft which is Clock controlled now resets the Timer Link (note Variator) which pulses the "B" Switch and closes the "C" Switches.

Note: On all new Schematics the "C-1", "C-2" \& "C-3" Switches correspond to the "C", 'D" \& 'E" Switches. This is just a change in nomenclature. the Number 1 indicates this Sw. is closest to the Actuator, then '"C-2", 'C-3" etc. This also indicates they are part of the same switch unit.

On the Right Side of the Reel Mechanism is the Reel's start motion \& trip system operated via the Handle Mechanism. You will also notice the Air Cylinder Pump which cushions the shock of hard handle pulls and gives a smooth handle return. The Dashpot Switch is also operated via the Air Cylinder Pump.

Toward the rear of the Reel Mechanism you notice the Reel Contact Plate Discs \& Wiper Arm Units. It is the position of the Wipers that bridge win contact circuit patterns in the Contact Plate Disc which determines winners. The position of the Wiper on the Disc is determined by its engagement in the different Reel Index Plate slotted stops. These stops have a specific slot depth which correspond to each symbol on the Reel.

SWITCH FUNCTION SEQUENCE

The sequence of Reel Mechanism related switch operations from the initial coin deposit thru the Handle pull to the reel index is as follows:

1. Game is Coined.
A. Coin Relay Unit is energized \& actuated.
B. Handle Release Unit is energized \& actuated.
2. Initial Handle Pull
A. Dashpot Switch opens.
B. '"A"' Switches Open.
C. ''C"' Switches Open.
D. Coin Relay Unit Resets.
E. Handle Release Unit Resets.
3. Reels Kick \& Spin
A. 'B' Switch(es) are pulsed.
B. ' A '' Switches close.
4. Reels Index
A. ' C " ' Switches close.
5. Handle Return
A. Dashpot switch closes.

COIN RELAY UNIT OPERATION

The Coin Relay Unit is a major coil operated (trip arm) switching unit on the left side of the Reel Mech. This unit is energized by a pulse from the Coin Drop Sw. \& is mechanically reset by a Timer Shaft Lever as the Reels trip off.

When the Coin Relay Unit is activated the the switch functions are as follows:

1. The circuit to the Coin Relay Coil is de-energized after tripping the switches.
2. The circuit to the 'Insert Coin" Lite is transferred to "Coin Accepted" Lite.
3. The Feed Circuit to the Reel Mech. Contact Plate Discs is instantly opened to prevent any possibility of the Payout Relay from being energized (P.O. Counter malfunction) before the play cycle has been completed.
4. After the initial coin has been deposited (single coin game) the Coin Lockout Coil is de-energized to return any further deposited coins until the play cycle is complete. Multi-coin games use additional Odds/Line Coin Limit Switches \& Jackpot Lock-Up Switches in this circuit.
5. The circuit to the Handle Release Coil \& TotalIn Meter is now energized. The handle Release Coil releases a spring loaded Armature Latch \& actuates its Switches which perform the following functions:
A. The released Armature Latch acts against the Handle Mech. Lock Pawl allowing the Handle to be pulled.
B. A Handle Rel. Sw. de-energizes the Handle Release Coil after the Latch Arm is released.
C. A Feed Circuit to the Reel Mech. Contact Plate Discs is opened until the Reels trip off (payout safety circuit).

Note: The Handle Release Unit is mechanically reset by the Handle Mech. just as the reels kickoff.

REEL MECHANISM FUNCTION

DASHPOT SWITCH OPERATION

At the onset of the game it should be noted until the Handle is fully back in a reset position the Dashpot Switch will prevent the Handle Lockout Coil \& Handle Release Coil from being energized. This feature forces a Player to complete a full Handle stroke in eitherdirection(in conjunction with Handle Mech. full stroke features).

A, B \& C SWITCH OPERATION

The detailed functions of the various Dashpot, "A', ' $\mathrm{B}^{\prime \prime} \&{ }^{\prime} \mathrm{C}^{\prime}$ ' Switches as the Handle is being pulled is as follows (in sequence):

1. As the Handle is initially pulled the Dashpot $S w$. opens, dropping out the Coin Lockout Circuit \& assuring that the Handle Release Coil is de-energized.
2. As the Handle movement engages the Reel Mech. (first click) the Trip Shaft Lever opens the " A " Switches assuring that all Reel Disc \& Payout Circuits are Open. The " A " Switches then reset when the Reels kickoff.
3. A few more inches into the Handle Pull (second click) \& the Timer Link Lever opens the "C'" Switches. The " C " Switches remain open until a moment after the Reels have indexed. This action assures that the Reel Disc Feed remains open('C-1" with brown \& grav-red Wires), until the Reel Mech Wipers have came to a rest on the Disc Contacts \& after all other Reel Sw. Units have completed their tasks. At this time the Game is conditioned for a possible payout cycle. Other " C "'Switches have closed a Handle Release Circuit \& closed a 'Insert Coin" Lite Circuit (multiple coin games only) conditioning the Game for another play cycle.
4. The " B " $S w$. is pulsed by the Timer Link Lever just as the Reels kickoff. This action resets the Payout Counter back to zero if there was a winner on the previous Games play cycle. As you remember on a win the P.O. Counter steps-up until its Wiper steps off the 'hot' printed circuit segment on the Disc. The 'Open at Zero' Carriage Sw. also closes as the Counter steps-up. It is the action of the " B " Sw. which energizes the Counter Reset Coil, resetting the previous winner \& opening this circuit again. This entire action is completed before the reel spin is complete, so that the P. O. Counter is conditioned for a nother win cycle as the reels index.
5. Upon completion of the play cycle \& the return of the Handle, the Dashpot Sw. closes. This action closes a circuit to the Coin Lockout Coil which allows a deposited coin to be accepted for a new game.

ANTI-CHEAT RELAY OPERATION

On many new Slots there is an additional AntiCheat Relay Safety Switch installed on the Feed Circuit to the Reel Mech. Contact Plate Discs (not shown on the illustrated Schematic). This Anti-Cheat Relay is energized via a pulse from a Reel Mech. "A-1" Transfer Switch. A lock-in circuit keeps this Relay continuously energized until shut-off or its TiltSwitch circuit is disturbed.

The main reason for this Tilt Switch AntiCheat Circuit (sensitive 3 -way Tilt action) is to prevent vigorous handle pounding pulls and general abuse to the Machine. If the Tilt-Switch causes the Relay to de-energize the Feed Circuit to the Reel Mech. Contact Plates is opened ending any payout possibilities instantly. At this time the Machine must be re-coined \& a new game initiated. This circuit is reset on the next pull of the Handle when the "A-1" Switch re-energizes the Relay.

SCHEMATIC INTERPRETATION

The Schematic shows a simplified 3 Reel, single coin game, showing the various Reel Mechanism Switch Functions. Assume that you are looking at the game the moment the Reels have indexed, the 10 pay "Orange" win has not yet energized the payout circuit. All Relays, Coils \& Switches are in their normal de-energized or reset position.

Also assume that this Game has a Mechanically Stepped P. O. Counter \& that all jackpots are machine paid (50, 100, 150, 200 - no lock-ups). This Jackpot Circuit is also tied into a Jackpot Bell Relay, which when energized completes a circuit to the Jackpot Bell. The Bell in this instance rings until the jackpot has been paid \& P. O. Relay drops out. Bell operation is usually custom ordered per casino requirements so check your Schematic for specialized circuitry. You will find many games set to ring on 20 coin winners \& up. On multiplier type slots a Jackpot Lock-Up System is used on large jackpot wins ($400 \&$ up). In these games a common set-up has the J. P. Bell set to ring until the Attendant releases the Game Lock-Up \& the Player pulls off the winner.

The biggest circuit difference between the single coin game as shown \& a multiple coin game (multiplier on 3-5 Line Pay type) is the addition of a Line or Odds Stepping Unit. This Line/Odds Unit conditions the game for multiple coin play, with Limit Sw. action on the Coin Lockout \& "Insert Coin" Light. In addition the Total-In circuit is altered \& the Line/Odds Unit Disc provides additional payout circuitry.

REEL MECHANISM FUNCTION

MICRO SWITCH

Common circuit to multiple coin machines prevents inadvertent resetting of odds when last coin is dropped and handle is pulled before last coin passes coin switch.

A Transfer Sw., breaks pay circuit and handle release circuit.

B1 Resets Win Meter
B3 Resets Payout Counter
C1 Breaks Payout and Handle Release Circuits
C2 Feed Insert Coin Light
C3 Breaks Handle Release Circuit
C4 Completes Circuit to Coin Scavenger Coil

REELMECHANISM SERVICE

INTRODUCTION

Adjusting the Switches is facilitated by a good knowledge of the Schematic, the Switch \& Coil functions and the sequence of electro-mechanical operation. The various Switches \& Coils can easily be identified thru Schematic wire color code information \& labels on the machine itself.

With the Reel Mechanism out of the Game, operate it with the auxiliary Service Handle (avail. thru Bally Service Dept.). Now watch the action of the Switches for correct actuation good contact follow through \& reset action (hold the fan to control reset speed). Adjust the switches accordingly. Also clean the Contacts (if necessary) using a fine burnishing tool \& wipe clean with soft paper.

The Switch Actuating Arms \& Bars should be free of grime \& excess grease and move freely with good reset action (check springs). The slides \& pivot points should be lightly greased with our new Hydrotex Lub \#651.

As a final check look over the Mechanism to see if the Wires are properly tied down as not to interfere with moving levers \& arms (note rear Plug Wires). Also check for good soldered switch connections.

REEL MECH.SWITCH ADJUSTMENTS

The next series of adjustments deals with the various Switches on the Reel Mechanism.
A. Cn the right side of the Reel Mech. is the Dashpot Switch. The preliminary adjustment of this Switch can be done with the unit outside of the machine but the final adjustment must be made when the Reel Mech is installed into the cabinet. When in rest position, Dashpot Switch is normally closed and the Link Assembly Arm is approximately $3 / 16^{\prime \prime}$ from the Stop Flate.
B. The next set of Switches to adiust are on the left side of the Reel Mech. First, there is the "A" Switch Stack. With Index Arm in deepest Reel Index Slot (which causes wiper arm to make last row of rivets on contact plate). The " A " Switch should be open.
C. Perpendicular to the "A" Switch stack are the "B" Switches. To adjust, set the timer link to its longest st roke byturning the Variator Counterclockwise until the Scrambler Arm reaches its shortest length. Hold the Fan and trip out Reel Mech. "B" Switch should make. The "B" Swit ch should make clean and stay made until it is off the Timer I in's rann. Now turn the var-

iator until the Scrambler Arm reaches its longest length. Hold the Fan and trip out Reel Mech. Again "B" Switch should make. Now turn Variator to longest length. Repeat procedure as a double check. If the Switches are properly adjusted in the first case, they will automatically be adjusted in the second case.
D. To adjust the "C" Switch located just opposite of the " A " Switch you turn the 3rd Reel Variator to its shortest length. While holding the Varitor Latch away from the Variator, pull Handle slightly. The Latch will now stay clear of Variator. Hold Fan and trip out Mech., allow the Clock to run slowly until the last reel indexes. At that exact point stop the Fan, the " C " Switch must be open. This Switch should be made only after the clock has been released \& the Clock Unit has come to a complete stop.

CONTACT PLATES \& WIPER ARMS

Probably the biggest problem with the Contact Plate Disc \& Wiper Units is dirt \& grease deposits which foul up the payout circuits. If there is a payout malfunction of any kind check the Contact Plates first. For proper operation the Contacts must be perfectly clean \& shiny with very small amount of a good non-conductive lubricant (Bally LB550X lube)" wiped in over the face. The Wipers must center on the contact rows in all positions with even finger pressure. Tough corrosion on the Contacts can be removed with a Plastic Scouring Pad designed for Teflon surfaces.

Centering the Wiper Fingers on the Contacts can be accomplished thru adjusting the Wiper Arm via the mounting screws.

It is very important not to put too much Wiper Pressure on the Contact Plate Discs. Too much wiper drag can prevent the Index Lever Arms fron disengaging from the Reel Index Wheels causing erratic Reel "holds" during game play.

REEL MECHANISM SERVICE

CLOCK UNIT OPERATION

The Clock controls the timed return action of the Timer Shaft after the Reels kick off. Its the Timer Shaft Lever Action which drops out the Reel Trip Pawls (Toggle Levers are released). This Clock controlled action allows the Index Lever Arms to index back into the Reel Stops to halt the spin. The Clock is precision engineered totake heavy duty use but it must be cleaned \& lubricated occasionally (use our Lubriplate No. 1 Oil).

Complete Clock Unit Parts Information is shown in the Reel Mech. Left Side Exploded View. Also note the new anti-magnetic Brass Fan \& AntiWiring shield. These new parts are also available from Bally Parts \& Service.

SPRING IMPROVEMENTS

The included Reel Mechanism Exploded Views snow the latest (March '74) improvements in play operation via new spring developments. All of the included Spring changes can be incorporated on earlier models.

Refer to the Reel Mech. Center Exploded View. The following important changes have been made (Jan. 74):
A. A new stronger Toggle Spring is now used for improved Index \& Wiper Lever Arm return action. See Index No. 34.
B. The Timer Idler, - Latch Pawl Extension Springs are now all the same (all Reels applies to $3,4 \& 5$ reel games). See Index No. 19 .
C. The Index Lever Extension Spring on 'Hold \& Draw" Games is stronger to prevent reel bounce on "holds'". See Index No. 37.

Now refer to the Reel Mech. - Right Side Exploded View. The following important changes have been made (Jan. 74):
A. The Trip Lever Extension Spring is now stronger for a better reel spring. See Index No. 23.
B. The Drive Shaft Compression Spring is also stronger to compensate for the heavier Trip Spring, install as a pair. See Index No. $33 \& 34$
C. The Drive Gear Return Torsion Spring has now been replaced by a more accessible \& reliable Extension Spring. To convert older machines simply order the new Spring Bushing \& longer Screw - fits on old gear (old Torsion Spring can be released \& left on shaft). See Index No.'s 17-19.

REEL MECH. INTERNAL SERVICE 8. ADJUSTMENTS

For good service access to the internal working parts, remove the Reel Unit. Now wipe off excess grease \& grime. The Unit can now be lightly lubricated with our lubriplate \#1 Oil. Slides \& units with heavy duty loads can be lightly greased using our Hydrotex Lube \#651.

The only internal part variations are different Drive Lever Arms (20, 22, \& 25 stop units) Contact Wipers, Index Arms for 22 \& 25 'Hold \& Draw' Games \& Timer Latch Arms Links. The Timer Latch Links have slightly different length adjustments (longer to shorter) so that the Index Lever Arms can release in a timed 1-2-3(-4)(-5) reel stop sequence. See the exploded view for adjustments.

With the Reel Unit out of the mechanism you can easily see if the Trip Operating Lever is tripping off the Stop Bracket at the correct moment (Note: Reel Mech-Right Side Stop Brkt. Adjust. Illustration). The stop Bracket Adjustment can be checked by observing the action of the Toggle Levers as the Handle is slowly pulled.

Observe the Toggle Levers as they rise up to the point where they almost touch the Toggle Stop Shaft (M). At this time the Latching Pawls will move under the Toggles, latching them in place (making a clicking sound as they latch up). At this exact moment the Trip Arm should be ready to trip off the Stop Bracket to fire off the Reels. See the Right Side Reel Mech. Adjustments.

REEL MECHANISM SERVICE

RIGHT SIDE REEL TRIP \& SPIN ADJUSTMENTS

The following Illustrations show the Right Side of the Reel Mechanism in the 3 positions prior to Kick-off. These Illustrations show the factory standard average settings of the Trip Arm Stop Bracket (J) \& Trip Arm Drive Shaft (G). Also shown
are the center line dimensions \& operating distances of various levers \& Shafts (as per engineering design). It should also be noted that because of variations in tolerances, these given dimensions are a general guide \& may need calibrating when working on an individual machine.

REST POSITION ADJUSTMENT

The illustration of the Reel Mechanism is shown in a rest position with all adjust nents completed for a proper operating mechanism. The dimensions shown are reference points for checking an adjusted unit.

Set lise reel mechanism on a flat surface. The first setting to be made is the height of the Roller Stud on the 12 Gear Assembly "A". When checking the dimension be sure Link Assembly " B " is against Stop Plate "C' at rear of Cylinder " D ".

To make this adjustment, turn the outer nut " E ' on the threaded Drive Shaft " F "' of the Trip Operating Lever " G '" to obtain a $1-11 / 16$ " dimension shown.

The inner nut " H " is now adjusted to give a minimum of $1 / 16^{\prime \prime}$ to a maximum of $3 / 32^{\prime \prime}$ of play between nut and coupling ' I ' as shown.

These figures are dependent on the Trip Arm Stop Bracket " J " being adjusted exactly as described above.

REEL MECHANISM SERVICE

RIGHT SIDE REEL TRIP \& SPIN ADJUSTMENTS

STOP BRACKET ADJUSTMENT

The next setting to be made is the Stop Bracket ' J '. This is done by moving the bracket to a position when measured, that should read approximantly $1-7 / 8^{\prime \prime}$ from the end of the Side Plate " K " to the inside form of bracket (see previous page).

If the Stop Bracket is set in too far the Trip Arm will fire off before the Toggles are locked up (Latch Pawl) causing a uncoordinated reel spin. If the Stop Bracket is set out too far the Trip Operating Lever Pawl cannot trip off the Stop Bracket because the Handle is in a full 'down' position(full stroke limit). At this time the Handle will stick in a down position until a Service Man opens the Machine \& manually releases the Trip Pawl.

The setting of the Trip Arm Stop Bracket is extremely critical for a proper kick-off \& spin. As you see in the Reel Mechanism's Trip Position Illustration the Toggle Levers (L) are in a "full up" position against the Toggle Stop Rod (M) \& the Timer Latch Pawl (\mathbf{P}) has moved under the Toggle Levers almost against the ToggleStop Rod Locking the Toggles in a 'up" position(in-turn cocking back the Index Levers which releases the Reels). Also notice that the Trip Operating Lever Pawl (O) is against the Stop Bracket \& ready to fire off. This is the correct Stop Bracket adjustment position.

TRIP ARM DRIVE SHAFT ADJUSTMENT

The Trip Arm Drive Shaft Adjust. " F "' is factory set according to the dimensions shown in the First Illustration. This setting gives a full stroke to the Trip Arm Levers \& aligns the roller stud (actuating Gear) with the Handle Mech. Actuating Arm. The alignment into the Handle Mech. Actuating Arm is essential so that the Handle Mechanism's full stroke actuation corresponds to the Trip Operating I evers full stroke actuation \& tripoff. When installing a Reel Mech. back into the Cabinet see that the Roller Stud aligns perfectly with the Handle Mech. Actuating Arm.

If a Reel Mech. is malfunctioning \& it appears the trip-off timing is off, first check the Trip Arm Stop Bracket. If the Stop Bracket adjustment appears correct check out the Trip Arm Drive Shaft Adjustment. Many times a half turn on the Nuts solves the problem. It should be noted that a maladjusted Stop Bracket or Drive Shaft cause similar problems. If a Drive Shaft is adjusted too long the Trip Operating Lever will trip off too soon(Toggles not latched up) causing an uncoordinated Reel spin. If the Drive Shaft is adjusted too short the Trip Operating Lever cannot trip off the Stop (too long stroke) causing the Handle to lock in a "down" position (Reels still cocked). However, the essential Drive Shaft Adjustment is the proper engagement into the Handle Mech. Actuator for co-ordinated full stroke action.

This illust ration shows the starting movement of the 1/2 Gear Assembly " A "', Threaded Shaft Assembly ' F '' and Trip Operating Lever Assembly Pawl "O"
until making contact with Trip Lever Assembly ' N ". At this point the internal mechanism's cycle begins its motion for cocking the Reels.

REEL MECHANISM SERVICE

RIGHT SIDE REEL TRIP \& SPIN ADJUSTMENTS

TRIP POSITION AOJUSTMENT

This illustration shows the cocked mechanism just at the time of tripping the Trip Operating Lever Pawl ' O^{\prime} ' which in turn fires the Drive Lever (not
shown) to spin the Reels and unlatch the Latch Pawl Assembly ' P^{\prime} ".

AIR CYLINDER OPERATION \& SERVICE

The Air Cylinder Unit cushions the Reel Mechanism from stress caused by hard \& fast Handle pulls (in conjunction with the Drive Shaft Compression Spring) and also provides a smooth Handle return. If it appears there is undue resistance to a Handle Pull check to see if the tiny hole in the end of Cylinder (center) is plugged (causing compression resistance. If it appears there is no delay action to cushion hard, fast handle pulls, you may need a new Piston Cup Seal. The Piston Cylinder should be greased occasionally.

It is very important that this Unit function correctly to prevent undue strain on the Trip Shaft's Levers \& Arms, and also to prevent erratic Reel motion during repeated fast, jerking Handle pulls.

REEL UNIT OPERATION \& SERVICE

The Reel Units should spin smoothly and freely on the Shaft with no resistance. They should also spin straight \& true with no warpage or wobble.

The Reel Hubs are equipped with Needle Bearings for top perfor mance \& long life. Lubricate this Hub Unit (note Hole) orcasionally with a drop
our Lubriplate No. 1 Oil, then wipe the Unit oft to prevent any oil spin-off on the Reel Tapes.

You will also notice a Screw Operated Brake on the Hub. At the present time factory adjusted machines do not use the Brakes. It is felt that a good spin gives the best reel symbol mix. However the Breaking Screw has certain applications where an excess Reel Speed must be controlled. A high speed Reel spin is difficult to index without excessive Reel bounce \& noise. In this case a small a mount of breaking pressure is advised.

In 1973 Bally introduced a new stainless steel, anti-magnetic reel as standard equipment. This Reel is now available as a replacement part from Bally Parts \& Service. When re-installing or replacing Reel Tapes be sure they are securely fastened. The Reel Tapes are plastic laminated \& have a very tough smooth surface which is virtually stain proof \& indestructable. Because of the very slick surface, the Tape must be properly clamped down in the Reel gripping edge or slippage can occur. Any slippage can throw off the relationship of the Symbol to the Index Wheel causing a confused payout pattern.

It should also be noted that there is a slight difference in the $20,22 \& 25$ stop index wheel diameters. The correct 20,22 or 25 stop drive lever must be used for proper engagement \& kick-off. Note exploded view parts list.

REEL MECHANISM - RIGHT SIDE DETAIL REEL START MOTION AND TRIP MECHANISM

REEL MECHANISM -RIGHT SIDE DETAIL
 REEL START MOTION AND TRIP MECHANISM

REEL MECH. ASSEMBLY - LEFT SIDE

REEL MECH. ASSEMBLY - LEFT SIDE

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Index No. \& \[
\begin{array}{ll}
\text { Part } \\
\& \text { No. }
\end{array}
\] \& \(\begin{array}{rr}\text { Description } \& \text { No. } \\ \& \text { Req. }\end{array}\) \& \begin{tabular}{l}
Index \\
No.
\end{tabular} \& \begin{tabular}{l}
Part \\
No.
\end{tabular} \& \(\begin{array}{lr}\text { Description } \& \text { No. } \\ \& \text { Req. }\end{array}\) \& \begin{tabular}{l}
Index \\
No.
\end{tabular} \& \[
\begin{gathered}
\text { x Part } \\
\text { No. }
\end{gathered}
\] \& Description

Req.

\hline \multirow[t]{3}{*}{1} \& P-6373-3 \& 3 Reel, Tie Bar Brkt. \& 30 \& AS-353-2 \& C.lock Assy. \& 75 \& LSPR-00832-110 \& 04 Screw 2

\hline \& P-6373-4 \& 4 Reel, Tie Bar Brkt. \& 31 \& A-305- \& Clock Base Assy. \& 76 \& A-2869-1 \& Reset Link 1

\hline \& P-6373-5 \& 5 Reel, Tie Bar Brkt. \& 32 \& A-301 \& Pinion \& Gear Assy. \& 77 \& LSPR-01032-1104 \& 04 Screw (tie bar) 2

\hline 2 \& E-573-1 \& Beau Plug, 24 pt. Male \& 33 \& A-302 \& Pinion \& Gear Assy. \& \& LSPR-01032-110 \& 06 Screw (w/cable clip) . . 1

\hline 3 \& LSPR-00632-1103 \& 03 Screw. 8 \& 34 \& A-307-1 \& Gear \& Pawl Assy. 1 \& 78 \& P-1637-53 \& Roll Pin.

\hline 4 \& E-573 \& Beauplug, 18 Pt . Male \& 35 \& SP-100-31
A-634-1 \& ExtensionSpring (pawl)
Pinion \& Ratchet Assy. \& 79

80 \& $$
\begin{aligned}
& \mathrm{A}-205-7 \\
& \mathrm{P}-126-520
\end{aligned}
$$ \& Sw. Operating Lever . . .

"B"Sw. Brkt. - std. . . . 1

\hline \multirow[t]{8}{*}{5} \& P-495-12 \& 3 Reel, Selector Base - Std. \& 36 \& A-306-2 \& Cover \& Gear (Note: oil \& \& P-126-616 \& "B"Sw. Brkt.(w/'B-3"'

\hline \& P-495-13 \& 4 Reel, Selector Base - Std. \& \& \& bearings freq.) \& \& \& Sw. Provision) . . As Req.

\hline \& P-495-14 \& 5 Reel, Selector Base - Std. 1 \& 37 \& A-300 \& Fan Shaft \& Pinion \& 81 \& ASW-A1 X-3 \& 'B-1" Sw. 1

\hline \& \multirow[t]{2}{*}{A-638-5} \& 3 Reel, Selector Base \& Stud \& 38 \& M-254 \& Hair Pin \& \& ASW-A3-X \& 'B-2"Sw. (top unit) . As Req.

\hline \& \& Assy. (Hold \& Draw type). \& 39 \& P-800-10 \& Washer \& 82 \& ASW-CLX-3 \& "B-3" Sw. As Req.

\hline \& \multirow[t]{3}{*}{A-638-8} \& 4 Reel Selector Base \& Stud \& 40 \& P-1158-3 \& Spring Washer \& 83 \& SP-100-266 \& Extension Spring 2

\hline \& \& Assy. (Hold \& Draw Type - \& 41 \& P-608-14 \& Fan(brass, non-magnetic) \& \& \&

\hline \& \& first 3 Reels only) 1 \& 42 \& S-1158 \& Hub \& \& Note: Index No. \&

\hline 6 \& \multicolumn{2}{|l|}{LSPR-01032-1106 Screw 1} \& 43 \& \multicolumn{2}{|l|}{MSSL-00256-1123 Screw 2} \& \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{C-2, C-3" (old "C-D-E") Switch Unit, \#AS-982-Series. Specify Game Model No., Switch \& Function (N.O., N.C., T.).}}

\hline 7 \& \multicolumn{2}{|l|}{LSPR-00832-1106 Screw} \& \& \multicolumn{3}{|l|}{} \& \&

\hline 8 \& PW-008-11 \& Washer \& \& \multicolumn{2}{|l|}{Note: Index No.'s 44-60 comprise the Coin} \& 84 \& MSSR-00540-112 \& 20 Screw 2

\hline \multirow[t]{2}{*}{10} \& C-291-8
P-1973-274 \& Cable Clip - (for Hold \& Draw \& \& \multicolumn{2}{|l|}{the same except for Switches. Specify} \& 85 \& P-137-5 \& Spring Plate 1

\hline \& P-1973-274 \& \multicolumn{2}{|l|}{Cable Plate (for Hold \& Draw clearance as shown) . . .} \& your Model No drawing indicati \& - Specify sw. with a ting location. \& 86 \& ASW-Series \& | "C-1" - inside, "C-2"- Middle |
| :--- |
| "C-3" - Outside Sw. Specify |

\hline 11 \& \multicolumn{2}{|l|}{LSPR-01032-1104 Screw 4} \& 44 \& P-126-154 \& Retaining Plate . \& \& \& Model \& Sw. No. . . As Req.

\hline 12 \& \multirow[t]{2}{*}{$$
\begin{aligned}
& \text { A-2874 } \\
& \text { AS-982-Series }
\end{aligned}
$$} \& Side Plate Assy. - Right \& 45 \& \multicolumn{2}{|l|}{} \& 87 \& P-126-84 \& Switch Brkt. 1

\hline 13 \& \& Dash Pot Sw. Unit (specify single or double sw.). \& 46 \& LSPR-00832-110 \& Relay Frame Ass \& 88 \& LSPR-00632-110 \& 04 Screw 4

\hline \multirow[t]{4}{*}{14} \& \multirow[t]{2}{*}{LSPR-00632-110} \& \multirow[t]{3}{*}{03 Screw 2} \& 48 \& P-137-5 \& Spring Plate \& \& Note: Index No. 's \& 's 89-92 comprise the "A-1"

\hline \& \& \& 49 \& MSSR-00540-112 \& 6 Screw . . \& \& A-2' Switch Un \& nit, \#AS-982-Series. Specify

\hline \& \multicolumn{2}{|l|}{\multirow[t]{3}{*}{Note: Index No. 's 15-17 are optional AntiWiring Shields, used primarily on games with no steel cab. liner.}} \& 50 \& LSPR-00632-110 \& 05 Screw (mtg.) \& \& Game Model No \& No., Sw. \& Function (N.O.,

\hline \& \& \& 51

52 \& SP-341 \& $\begin{array}{lll}\text { Torsion Spring } & \text {. . . . } & 1 \\ \text { Extension Spring }\end{array}$ \& 89 \& $$
\begin{aligned}
& \text { N. C., T.). } \\
& \text { P-126-84 }
\end{aligned}
$$ \&

\hline \multirow[t]{3}{*}{15} \& \& \& 53 \& A-637-5 \& Armature Plate 1 \& 90 \& ASW-Series \& "A-1" - Inside, "A-2" ${ }^{\text {St }}$

\hline \& P-6442-89 \& Mtg. Brkt. 1 \& 54 \& F-31-1500 \& Coin Re. Coil \& \& \& Outside Sw. (Specify Model

\hline \& \multicolumn{2}{|l|}{LSPR-00832-1104 Screw 2} \& 55 \& P-801-15 \& Washer 1 \& \& \& \& Sw. No.) . . . As Req.

\hline \multirow[t]{3}{*}{16} \& P-7118-2 \& Reel Mech. Baffle - Left \& 56 \& C-271-4 \& Cable Clip \& 91 \& P-137-5 \& Spring Plate 1

\hline \& \multicolumn{2}{|l|}{P-6442-89 Mtg. Brkt.} \& 57 \& \multicolumn{2}{|l|}{SAST-00600-1106 Screw 1} \& 92 \& MSSR-00540-111 \& 15 Screw 2

\hline \& \multicolumn{2}{|l|}{LSPR-00832-1104 Screw 2} \& 58 \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{$\begin{array}{lll}\text { SAST-00600-1106 Screw } & \text {. } \\ \text { M-254-2 Hair Pin } & \text {. }\end{array}$}} \& 93 \& MSPT-01032-110 \& 06 Screw 6

\hline 17 \& P-7605 \& Fan Guard 1 \& 59 \& \& \& 94 \& A-184-Series \&

\hline 18 \& LSPR-00832-110 \& 4 Srrew 2 \& $$
\begin{gathered}
60 \\
61
\end{gathered}
$$ \& \[

$$
\begin{aligned}
& \text { A-635-7 } \\
& \text { SP-100-241 }
\end{aligned}
$$
\] \& Armature Latch Assy. . . 1 \& \& W-1041-Series \& Contact Plate Disc (rivet \& wired - give complete

\hline \multirow[t]{4}{*}{19} \& \& 3 Reel. Timer Shaft Assy. \& 62 \& SP-253 \& Torsion Spring (variator) . 1 \& \& \& model no. \& reel no.) 3-4-5

\hline \& \multicolumn{2}{|l|}{AS-2294-4 4 Reel, Timer Shaft Assy.} \& 63 \& P-2891-6 \& ' $\mathrm{E}^{\prime \prime}$ Ring (1/4' Shaft) . . . 4 \& \& \multirow[t]{3}{*}{A-184-49} \& Auxiliary Terminal Strip

\hline \& \multicolumn{2}{|l|}{AS-2294-7 5 Reel, Timer Shaft Assy.} \& 64 \& P-801-513 \& Washer 1 \& \& \& (if ordering a W-1041-

\hline \& \multicolumn{2}{|l|}{(includes index no.'s 20 \& 21)} \& 65 \& P-801-10 \& Washer 2 \& \& \& Series it is included if

\hline 20 \& A-2860 \& Timer Lever Assy. . \& \& \& \& \& \& nec.) As Req'd.

\hline 21 \& P-1637-53 \& Roll Pin(timer shaft) . 3-4-5 \& \& \multicolumn{2}{|l|}{Note: Index No.'s 66-71 comprise the Timer} \& 95 \& P-494-6 \& Contact Plate Brkt. . 3-4-5

\hline 22 \& \multicolumn{3}{|l|}{LSPD-00632-1106 Hex Hd. Screw (clock). . 3} \& \multicolumn{2}{|l|}{Link \& Variator Assy. - Series. Specify your game model no.} \& 96

97 \& | SFPB-00832-110 |
| :--- |
| LSPR-00632-1104 | \& \[

$$
\begin{aligned}
& 06 \\
& 04 \\
& 04 \\
& \text { Screw (ends) }
\end{aligned}
$$ 2-8-10
\]

\hline \multirow[t]{3}{*}{23} \& P-704-6 \& 3 Reel, Front Plate 1 \& 66 \& A-432-6 \& Variator Ratchet 1 \& 98 \& LSPR-00632-110 \& 06 Screw 1-2-3

\hline \& \multirow[t]{2}{*}{$$
\begin{aligned}
& \text { P-704-9 } \\
& \text { P-704-14 }
\end{aligned}
$$} \& 4 Reel, Front Plate 1 \& 67 \& \multirow[t]{2}{*}{A-196-Series} \& \multirow[t]{2}{*}{Timer Link \& Stud Assy. (specify model no.)} \& 99 \& P-6635-2 \& Stiffener Bracket . . 2-3-4

\hline \& \& 5 Reel, Front Plate 1 \& \& \& \& \& \&

\hline 24 \& A-2874-2 \& Side Flate Assy. - Left \& 68 \& P-1973-129 \& Ratchet Link 1 \& \& \&

\hline 25 \& P-1158-25 \& Spring Washer 2 \& 69 \& P-1158-23 \& Spring Washer 1 \& \& \&

\hline \multirow[t]{2}{*}{26} \& \multirow[t]{2}{*}{$$
\begin{aligned}
& \mathrm{P}-6282-8 \\
& \mathrm{P}-6282-7
\end{aligned}
$$} \& Lock Lever - Left 1 \& 70 \& P-801-214 \& Washer 1 \& \& \&

\hline \& \& Lock Lever - Right 1 \& 71 \& P-631 6-8 \& "E" Ring 1 \& \& \&

\hline 27 \& P-2891-7 \& "E" Ring (5/16" shaft) . . . 2 \& 72 \& P-6644 \& Variator Ratchet Pawl . . 1 \& \& \&

\hline 28 \& \multicolumn{2}{|l|}{LSPR-01032-1105 Screw} \& 73 \& A-301 6-1 \& Variator Brkt. Assy . . . 1 \& \& \&

\hline 29 \& \multicolumn{2}{|l|}{P-1637-11 Roll P} \& 74 \& \& \& \& \&

\hline
\end{tabular}

ALWAYS GIVE MODEL AND PART NO. WHEN ORDERING SERVICE PARTS

REEL MECHANISM ASSEMBLY-CENTER

REELMECHANISM ASSEMBLY

$\begin{aligned} & \text { Index } \\ & \text { No. } \end{aligned}$	x Part No.	Description	$\begin{aligned} & \text { No. } \\ & \text { Req. } \end{aligned}$
1	A-2874	Side Plate Assy. - Rt.	
2	P-2891-6	' E ' ${ }^{\text {R }}$ Ring ($1 / 4$ ' Shaft)	10
3	P-2891-10	'E' Ring (1/2'' Shaft)	8
4			21
5	LSPR-01032-1106 Screw		
6	'E'	'E' Ring (3/16' shaft)	5
7	P-6771	Link (3rd reel variator) .	
8	P-1158-23	Spring Washer	
9	P-801-214		
10	P-6316-8	Washer 'E"' Ring (3/8'' Shaft)	
11	A-432-7	Timer Ratchet \& Stud Assy.	
12	P-6770	Timer Link	
13	P-6769	Ratchet Pawl (Variator Actuation)	
14	SP-100-248	Extension Spring (Variator Actuation)	
15	A-2861	Timer Link Idler Assy.	3
16	P-1637-53	Roll Pin	
17	A-194-7	Crank (Timer Index Lever Release)	2
18	S-1912-3	3 Reel Timer Shaft (clock)	
19	SP-100-240	Ext. Spring (Latch Pawls)	3
20	P-917-2	Timer Latch Link	2
21	A-2860	Timer Lever Assy.	
22	A-174-2	Latch Pawl Assy.	3
23	A-2874-2	Side Plate Assy. - Left	
24	A-205-7	Switch Operating Lever (trip shaft)	
25	A-167-2	Drive Lever Assy. -20 Stop	p
	A-167-6	Drive Lever Assy.-22 Stop	3
	A-167-3	Drive Lever Assy. -25 Stop	3
26	S-231-41	Bushing (Kicker)	3
27	P-6316-4	Retaining Ring	3
28	C-537-21	Nyliner (Trip Shaft - Lf.)	1
29	SP-10021	Ext. Spring (Drive Lever)	3
30	P-466-2	Drive Link	3
31	A-194-6	Crank - Trip Shaft	3
32	A-168-1	Toggle Lever \& Link Assy.	
33	S-231-41	Trip Shaft Bushing	2
34	SP-100-311	Ext. Spring (Index Return)	2
35	N-00632-1111	Nut	
36		\# 6 Lockwasher	6
37	SP-100-240	Ext. Spring (Std. Index Arm)	$)$
38	P-491-5	Index Lever Arm	3
39	S-231-43	Bushing (Index Stop)	3
40	A-332	Index Lever Arm Assy.	3
41	P-1158-22	Spring Washer	3
42	SP-311	Torsion Spring	3
43	P-471	Toggle Link	
44	S-739-158	Pivot Pin	6
45	S-413-432	Latch Pawl Shaft (5 Reel)	
	S-413-395	Latch Pawl Shaft (4 Reel)	
46	S-181-74	Index Lever Shaft (5 Reel)	
	S-181-78	Index Lever Shaft (4 Reel)	
	S-181-47	Index Lever Shaft (3 Reel)	
47	S-164-58	Trip Shaft (5 Reel)	
	S-164-60	(4 Reel)	
	S-164-52	(3 Reel)	
48	A-193-1	Wiper Lever Assy.	
49	LSOD-01032-1106 Hex Hd. Screw.		
6	P-2891-5		

Index No.	Part No.	Description	No. Req.
50	P-801-35	Washer	6
51	A-3013-3	Contact Wiper Assy.	3
52	S-739-190	Toggle Stop Rod (5 Reel)	1
	S-739-178	(4 Reel) •	1
	S-739-159	(3 Reel) -	1
53	S-231-804	Trip Shaft Bushing (Rt. Side))
54	P-704-15	Front Plate (5 Reel)	1
	P-704-20	(4 Reel) . .	
	P-704-6	(3 Reel)	
55	P-6373-5	Tie Bar Brkt. (5 Reel)	
	P-6373-4	(4 Reel) .	
	P-6373-3	(3 Reel)	
56	A-631-2	Hub \& Bearing Assy.	3
57	P-658-4	Reel (2 per Tape).	6
58	P-484-Series	20 Stop Index Wheel - Reel No. 1 (Specify Model No. \& Reel No.)	1
	P-684-Series	22 Stop Index Wheel-Reel No. 1 (Specify Model No. \& Reel No.)	1
	P-584-Series	25 Stop Index Wheel - Reel No. 1 (Specify Model No. \& Reel No.).	
59	Reel Tapes no according to th Tapes or give specify percen	listed here, order Tapes numbers listed on old ame no., name, and age if possible.	
60	P-2891-8	'E"' Ring	6
61	S-181-75	Reel Shaft (5 Reel)	
	S-181-79	(4 Reel)	
	S-181-46	(3 Reel)	
62	LSPR-1032-11	6 Screw	12
63	LSPR-832-112	Screw R-H	12
64	C-949	Spacer (Wide Reel)	
	C-949-1	Spacer (Intermediate)	
65	SP-200-165	Compression Spring	3
66	M-1715	Set Screw	3
67	P-495-17	Selector Base (5 Reel)	1
	P-495-19	(4 Reel)	1
	P-495-9	(3 Reel)	1
68	P-494-6	Contact Plate Brkt.	3
69	A-3013-3	Wiper Plate Assy.	3
70	P-7726	Reel Shaft Support	2
71	P-6665-458	Frt. Reel Mech. Baffle	1
72	P-663 5-4	Stiffener Bracket	2
73	MSPT-01032-1	106 Screw	
74	SFPB-00832-1	06 Screw	

INSERT ASSEMBLY
HIGHBOY STYLE 5 REEL WIDE

SFPB-00832-1106	Screw	2
A-613-94	Core Plug Assembly	1
CD-29-1600	Coil	1
A-2214-26	Base Plate Assembly	. 1
AS-2293-5	Drive Pawl Assy.	. 1
SP-100-121	Extension Spring	- 1
A-2212-7	Contact Plate Disc	1
LSPR-00540-1103	Screw	1
C-720-5-8	Wheel	- 1
SAPB-00400-1106	Screw	3
M-254	Hair Pin	1
C-704	Ratchet	1
A-1618-3	Wiper Assembly	1
SAPB-00400-1104	Screw .	2
M-254-1	Hair Pin	1
C-708	Hold Pawl	- 1
SP-100-80	Extension Spring	- 1

NOTE: The Molex Pin Extractor Tool enables easy service of the Molex Plug, Pins both male and female are removable. Holding Extractor Tool as shown in Illustration, placing Forefinger over shaft as to hold it from turning (as shown), push Shaft over Pin giving Tool a slight twist allowing the Pin Fins to compress easily, thus enabling the Pin to be pushed through Nylon Housing.

BALLY	NO.	MOLEX NO.	TYPE
FEMALE	E-663-2	$02-09-1104$	1190
FEMALE	E-663-4	$02-09-1119$	1381
MALE	E-661-2	$02-09-2103$	1189
MALE	E-661-4	$02-09-2118$	1380
	TYPE 1189-90 LONG EAR		
	TYPE 1380-81 SHORT EAR		
	HAND CRIMPING TOOL HT-1031		

NOTE: REPLACEMENT ITEMS CAN BE ORDERED THRU BALLY DIST. OR NEAREST MOLEX REP. IN COUNTRY OF USE.

MOLEX PLUG RECEPTACLES MALE FEMALE

2	PIN PLUG	$660-2$	$662-2$
4	PIN PLUG	$660-4$	$662-4$
12	PIN PLUG	$660-12$	$662-12$

D.C.COUNTER SERVICE

D.C. Counter Service

The only replacement available for any non-resettable counter used in Bally slot machines is part No. E-130-29. There are two advantages in using this counter. The first is that it is more accurate. The second is that, when properly connected, it prevents a loop thru the meter circuit which occured when the door interlock switch was open.

NOTE:
WHEN USED ON D.C., POSITIVE SUPPLY MUST BE CONNECTED TO RED LEAD.

DIODES IN 4007 OR EQIVALENT MOUNTED INTERNALLY AND CONNECTED AS SHOWN IN THE ABOVE DIAGRAM.

