Sharing the Pie: Undernutrition, Intra-household Allocation, and Poverty Caitlin Brown*1, Rossella Calvi^{†2}, and Jacob Penglase^{‡3} 1 Georgetown University 2 Rice University 3 University of Bordeaux and Boston College July 2018 #### **Abstract** Anti-poverty policies often assume that targeting poor households is effective in reaching poor individuals. However, intra-household inequality may mean many poor individuals reside in non-poor households. Using Bangladeshi data, we show that undernourished individuals are spread across the household percapita expenditure distribution. Next, we quantify the extent of food and total consumption inequality within families. Based on a collective model, we develop a new methodology to compute individual-level poverty rates that account for intra-household inequality. We show that women, children, and the elderly face significant probabilities of living in poverty even in households with per-capita expenditure above the poverty threshold. JEL Codes: D1, I31, I32, J12, J13, O12, O15 Keywords: intra-household resource allocation, poverty, collective model, undernutrition, Bangladesh ^{*}Georgetown University, Department of Economics, 37th & O St, N.W., Washington, D.C. 20057 (e-mail: cb575@georgetown.edu). [†]Rice University, Department of Economics, Backer Hall 274, 6100 Main Street, Houston, TX 77005, USA (e-mail: rossella.calvi@rice.edu). ^{*}Boston College, Department of Economics, Maloney Hall 315, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA (e-mail: jacob penglase@bc.edu) We thank Samson Alva, Valerie Lechene, Arthur Lewbel, Martin Ravallion, Alexandros Theloudis, Denni Tommasi, Dominique van de Walle, Alex Wolf, and the seminar participants at UC Denver, the Institute for Fiscal Studies and the University of Verona for their helpful comments. All errors are our own. ## 1 Introduction Anti-poverty programs are a major focus of government and international development organizations. A key component of anti-poverty policy is identifying poor individuals. This task is especially hard in developing countries where income is difficult to observe and consumption data is onerous to collect. These problems are compounded further in the presence of intra-household inequality. Standard poverty measures are typically based on household aggregate consumption and assume an equal distribution of resources among family members. As a result, they may underestimate poverty rates for individuals who have less power within the household. Anti-poverty policies based on household consumption can therefore fail to reach their intended targets, particularly if disadvantaged individuals live in households with per capita consumption above the poverty threshold. In this paper, we provide measures of poverty at the *individual* level in terms of nutritional status and of total consumption. We rely on a dataset from Bangladesh that contains anthropometric indicators for each household member as well as individual-level records of food intake and detailed recalls of household-level expenditure. First, we assess the extent of nutritional inequality both across and within Bangladeshi households. Second, we use a structural model of intra-household allocation to estimate how total consumption is divided among family members. Based on these estimates, we calculate poverty rates that take into account intra-household inequality. We show that a large fraction of the total variation in nutritional status and consumption is *within* household. As a result, anti-poverty policies based on household consumption may miss a significant number of poor individuals: in our sample, one third of individuals with estimated levels of consumption below the poverty line are in fact considered non-poor based on household per capita expenditure. We begin our analysis by quantifying the extent of inequality in individuals' nutritional status. Undernutrition can stem from insufficient caloric and protein intakes or from illness, and is ostensibly one important dimension of individual welfare (Brown, Ravallion, and van de Walle, 2018). Using data from the Bangladesh Integrated Household Survey (hereafter BIHS), we show that undernourished individuals are spread across the household expenditure distribution. For instance, we find that the bottom half of household per capita expenditure comprise only two thirds of undernourished adults and children. We also document the existence of substantial within-household variation in caloric and protein intakes, and in individual-level food consumption. Even when we adjust for differences in needs by age and gender, we find that within-household inequality accounts for almost half of the total inequality in caloric intake, for roughly 40 percent of the total inequality in protein intake, and for one fifth of inequality in food consumption. Next, we investigate the role played by intra-household total consumption allocation. Identifying the existence of consumption inequality within the household is challenging as consumption surveys are conducted at the household level and goods can be shared. We therefore develop a ¹To overcome this issue, many social programs are targeted using proxies for household income or consumption; for example, the demographic composition of the household or household assets. For reviews of targeting and social programs see Coady et al. (2004), Del Ninno and Mills (2015), and Ravallion (2016). ²For instance, the World Bank regularly uses consumption per capita in its poverty analyses; see World Bank (2015) for details. ³Brown et al. (2018) provide an extensive review of the evidence on poverty targeting. household model with efficient bargaining to structurally estimate how resources are allocated among household members. We rely on the *collective* household framework, where each family member has a separate utility function over goods and the intra-household allocation of goods is Pareto efficient (see Chiappori (1988, 1992) and Apps and Rees (1988) for seminal papers). The goal of the model is to estimate *resource shares*, defined as each member's share of total household consumption (Browning et al., 2013). Resource shares are not identified without adding more structure to the model (see e.g. Browning et al., 1994; Browning and Chiappori, 1998; Vermeulen, 2002; Chiappori and Ekeland, 2009). Dunbar, Lewbel, and Pendakur (2013) show that resource shares are identified via the comparison of Engel curves if one private assignable good is observed for each household member and by imposing similarity restrictions on preferences for these goods (either across individuals or across household types). We provide a new identification method that can reduce the restrictiveness of such assumptions by making use of *multiple* assignable goods for each individual. Based on the BIHS 24-hour food module that records detailed food consumption for each household member, we construct individual-level expenditure on several food groups (e.g., cereals and vegetables). We then apply our novel approach to study intra-household resource sharing in Bangladeshi families. Our estimates indicate that men consume a larger share of the budget relative to women, who in turn consume relatively more than boys and girls. Interestingly, we do not find substantial evidence of gender inequality among children. For instance, in households comprising one man, one woman, one daughter and one son, the man consumes 36 percent of the budget, the woman consumes 30 percent, and the boy and girl each consume 17 percent, respectively. We also assess inequality in access to household resources *among* adults by age and find that older men and women consume significantly less than younger adults (Calvi, 2017). Lastly, we document the existence of preferential treatment for first-born children relative to later-born children (Jayachandran and Pande, 2017). We use our structural estimates to calculate poverty rates that account for intra-household inequality and compare them to those obtained using household per capita expenditure (which assumes resources are allocated equally within the household). Two observations stand out. First, we find that household-level measures substantially understate poverty: allowing for unequal resource allocation within the household increases the overall poverty rate from 17 precent to 27 percent. Second, we show that women, children, and the elderly face significant probabilities of living in poverty even in households with per capita expenditure above the poverty line. By contrast, men living in poor households are not necessarily themselves poor. This paper makes several key contributions. The first is to document the existence and quantify the extent of intra-household inequality in Bangladesh along several dimensions of individual welfare. The richness of the BIHS dataset combined with the intra-household allocation model allows ⁴A good is *private* if it is not shared or consumed jointly. A good is *assignable* if it appears in just one (known) household member's utility function, and so is only consumed by that household member. ⁵These are estimates for a reference household, defined as one comprising one working man age 15 to 45, one non-working woman aged 15 to 45, one boy 6 to 14, one girl 6 to 14, living rural northeastern Bangladesh, surveyed in year 2015, with all other covariates at median values. for direct comparisons between one's nutritional status, access to food, consumption, and likelihood of living in poverty. Such comparisons generate a number of policy-relevant insights, while providing a validation of the structural model. Our second contribution is to compute individual-level poverty rates for Bangladesh that are adjusted for unequal resource allocation within the house-hold. While the use of collective models to improve poverty measures in developing countries has recently received some attention (see e.g. Dunbar et al. (2013)
and Penglase (2018) for Malawi, Calvi (2017) for India, and Sokullu and Valente (2018) and Tommasi (2018) for Mexico), we are the first to provide such calculations separately for prime-aged women and men, the elderly, boys, girls, and by birth order. Our third contribution is a new methodology to identify the fraction of total household expenditure that is devoted to each household member in the context of a collective household model. Our strategy exploits the observability of two assignable goods. While most consumption surveys do not include assignable food (which we use in this paper), they do contain data on more than one assignable good (such as clothing and footwear). Our approach is therefore applicable to a variety of contexts. The policy implications of our findings pertain to poverty measurement and how anti-poverty programs should be targeted when intra-household inequality is present. Accounting for intra-household inequality may yield poverty rates that are much higher than what current estimates suggest, particularly for vulnerable groups such as women, children, and the elderly. Poor individuals across different welfare dimensions are often found in non-poor households. While the existing practice for most large-scale programs is to target poor households, our findings suggest that more finely targeted policies with broader coverage are required to ensure that individuals who need help actually receive it. Programs that are designed to improve the relative standing of women, children, and the elderly in the household may be beneficial. The rest of the paper is organized as follows. Section 2 provides an overview of the related literature and further discusses the contributions of this paper. In Section 3, we show that undernourished individuals do not necessarily reside in poor households. In Section 4, we set out a collective model for extended families and present our novel identification approach. In Section 5, we discuss estimation and the structural results. A comparison between individual-level and household-level poverty rates is provided in Section 6. Section 7 compares our various measures of individual welfare. Section 8 concludes. Proofs and additional material are in an Appendix. ### 2 Related Literature Our study pertains broadly to research on measuring intra-household inequality. Within this large literature, we first contribute to recent work on the identification and estimation of consumption allocation within the household. Second, we relate to research on poverty measurement, health, and nutrition. Standard poverty measures typically rely on household-level indicators to draw inferences on individual welfare. A recent World Bank report, for instance, states that consumption per capita is the preferred welfare indicator for the World Bank's analysis of global poverty (World Bank, 2015, 31). Household-level indicators have a number of practical advantages, such as reducing the costs involved with data collection and avoiding assumptions regarding sharing of public goods within the household. These measures, however, implicitly assume that resources within the household are distributed evenly across all household members.⁶ There is substantial evidence to suggest that this is not the case. A broad body of works have examined, for instance, the unequal treatment of widows (Chen and Drèze, 1992; Drèze and Srinivasan, 1997; Jensen, 2005; van de Walle, 2013), orphans (Bicego et al., 2003; Case et al., 2004; Evans and Miguel, 2007), and first and later-born children (Behrman and Tubman, 1986; Behrman, 1988; Black et al., 2005; Price, 2008; Booth and Kee, 2009; De Haan, 2010; Black et al., 2011; Jayachandran and Pande, 2017). Brown et al. (2018) document that in sub-Saharan Africa around one half of undernourished women and children are not found in the poorest 40 percent of households. Other work has also found evidence of intra-household inequality in body-mass index (Sahn and Younger, 2009), non-food expenditures (De Vreyer and Lambert, 2018) and multidimensional poverty indices (Klasen and Lahoti, 2016). We contribute to both research on intra-household inequality in health and nutrition, as well as research on consumption allocation within the household. The starting point of our analysis is the collective household model of Chiappori (1988, 1992), which only assumes that the household reaches a Pareto efficient allocation of goods. While this is an important assumption, it is still not sufficient to identify how resources are allocated within the household (Browning et al., 1994; Browning and Chiappori, 1998; Vermeulen, 2002; Chiappori and Ekeland, 2009). A growing literature has sought to solve this identification problem by adding more structure to the model. Several approaches have been developed. Browning et al. (2013) demonstrate that if we assume some preference similarity across household compositions between singles and married couples, we can identify the sharing rule as well as economies of scale in consumption. Studies using this type of identification restriction include Lewbel and Pendakur (2008), Bargain and Donni (2012), and Lise and Seitz (2011). These preference stability assumptions, however, are somewhat unattractive. Other studies relax such restrictions and achieve set-identification (as opposed to point-identification) of the sharing rule using axiomatic revealed preference methods (Cherchye et al., 2011, 2015, 2017). A different strand of the identification literature that closely relates to our approach obtains point-identification of the sharing rule via comparisons of Engel curves of goods that are not shared and are consumed by specific household members known to the researcher (that is, *private assignable goods*). The key assumption is that resource shares are independent of total household expenditure.⁷ This restriction is quite powerful, and requires only modest additional assumptions to identify resource shares. Dunbar et al. (2013) use this assumption along with semi-parametric restrictions on ⁶Adult equivalence scales are sometimes used to account for differences in needs due to age or gender, as well as economies of scale that larger households may benefit from. These, however, do not account for intra-household inequality. ⁷This assumption needs to be satisfied at least at low levels of household expenditure. Menon et al. (2012) show that for Italian households resource shares do not exhibit much dependence on household expenditure, therefore supporting identification of resource shares based on this particular assumption. Bargain et al. (2018) find similar results in Bangladesh. Moreover, Cherchye et al. (2015) use detailed data on Dutch households to show that revealed preferences bounds on women's resource shares are independent of total household expenditure. Finally, this restriction still permits resource shares to depend on other variables related to expenditure, such as measures of wealth. individual preferences for a single assignable good to identify resource shares. No price variation is needed and the only data requirement is an assignable good for each person within the household. Recent work by Dunbar et al. (2017) slightly modifies this approach and shows that the preference restrictions of Dunbar et al. (2013) are no longer necessary if there are a sufficient number of distribution factors (variables affecting how resources are allocated, but neither preferences nor budget constraints) in the data.⁸ Our approach extends this recent literature. Like Dunbar et al. (2013, 2017), we analyze Engel curves of assignable goods and require that resource shares be independent of household expenditure. Unlike Dunbar et al. (2013), we require multiple assignable goods for each household member (which are available in the BIHS as well as in other popular datasets, such as the PROGRESA dataset and the World Bank's Living Standards Measurement Study), but we impose weaker preference restrictions (preferences for the assignable goods are allowed to differ quite flexibly across people and household compositions). Unlike Dunbar et al. (2017), we do not require distribution factors. A growing literature applies Engel curve comparisons to quantify intra-household inequality. These methods have been used to study inequality between children and adults (Bargain and Donni, 2012; Dunbar et al., 2013; Bargain et al., 2014, 2017; Dunbar et al., 2017; Calvi et al., 2017; Tommasi, 2018; Sokullu and Valente, 2018), the wellbeing of older women in India (Calvi, 2017), and the treatment of foster children in Malawi (Penglase, 2018). We add to this literature in two ways. First, we analyze several new dimensions of inequality within the household. We are the first, to our knowledge, to study the existence *and extent* of consumption inequality among children by gender and birth order. Second, the existing literature has used assignable clothing to identify inequality within the household. Recent work by Bargain et al. (2018) suggests that clothing functions quite well as a means to identify consumption inequality. However, using food instead of clothing has several estimation advantages that we discuss in more detail in Section 5.1. # 3 A Descriptive Analysis of Nutrition and Inequality Bangladesh has seen a large decrease in undernourishment over the past two decades: Headey (2013) reports reductions of more than 1 percentage points per annum in the proportion of underweight and stunted children. However, undernutrition still remains a serious concern. Recent figures show that 36 percent of children under five are stunted, 14 percent are wasted, and 19 percent of women are underweight (NIPORT, 2016). Undernutrition can stem from poor dietary intake (such as low calorie intake or protein deficiencies) or disease (which oftentimes results in poor dietary intake). It is an important dimension of individual poverty: combating undernutrition in developing
countries has been a key component of the Millennium Development Goals and features prominently in the Sustainable Development Goals. In this section, we analyze the relationship between nutritional outcomes and household ex- ⁸In some ways, a distribution factor can be thought of as a preference restriction, in that these variables are required to not affect preferences. One limitation of this approach is that distribution factors may be difficult to find (especially when children are included in the model) and their validity (that they do not impact preferences or the budget constraint) might be hard to prove. penditure using the first two waves of the Bangladesh Integrated Household Survey (BIHS) conducted in 2011/12 and 2015 (we will later use the same data to estimate the structural model). This nationally-representative survey was implemented by the International Food Policy Research Institute (IFPRI) and was designed specifically to study issues relating to food security and intrahousehold inequality. In 2011, 6,500 households were drawn from 325 primary sampling units. Households were interviewed beginning in October, 2011 and the first wave was completed by March, 2012. Households were then resurveyed in 2015. 10 The BIHS collected anthropometric measures for *all* household members in both survey rounds. For individuals aged 15 and over, we calculate their body-mass index (hereafter BMI), defined as weight (in kilograms) divided by height (in meters) squared. We categorize adult individuals to be underweight if their BMI is less than 18.5 according to the WHO classification (World Health Organization, 2006). For children of age 5 or younger, we construct height-for-age and weight-for-height z-scores which are used to indicate stunting or wasting, respectively. A child is considered stunted if their height-for-age z-score is two standard deviations below the median of the reference group, and wasted if their weight-for-height z-score is less than two standard deviations below the median. These key indicators of undernutrition for children arise out of different circumstances: the former is typically an indicator of chronic nutritional deficiencies and has more severe consequences for long-term outcomes, while the latter is often due to short-term deprivations or illnesses. Among individuals 15 and older, we find that 27 percent are underweight in 2015, while 36 percent of children are stunted and 18 percent are wasted. Men and boys are more likely to be underweight and stunted than women and girls. Excluding older (over 49) and young adults (under 20) reduces the overall incidence of undernutrition among adults. Table A2 in the Appendix lists summary statistics for nutritional outcomes for adults and children across both survey rounds. Adult undernutrition and child stunting has improved over time, while wasting in the 2015 round is higher than in the earlier round. #### **Undernutrition and Household Expenditure.** To examine how the incidence of under- ⁹The evidence regarding the impact of income on nutritional outcomes is mixed, particularly in the context of Bangladesh. Well known is the *Asian enigma*: children in South Asia are shorter on average relative to children who are poorer on average (Ramalingaswami et al., 1997). Across countries, the income effects on nutritional outcomes have been found to be modest, particularly in the short run (Behrman and Deolalikar, 1987; Haddad et al., 2003; Smith and Haddad, 2015). On the other hand, there is also a large literature that demonstrates evidence of a positive relationship between nutritional status and economic growth; see, for example, Headey (2013). However, Hong et al. (2006) finds that children in the poorest 20 percent of households in Bangladesh are more than three times as likely to suffer from stunting as children from the top 20 percent of households. This echoes similar findings from Headey et al. (2015) that wealth accumulation is one of the biggest drivers behind the reduction in undernutrition in Bangladesh. ¹⁰Attrition was relatively low at 1.26 percent per year. The survey team included a male and female enumerator for each household. Over a two day period, the male enumerator interviewed the head adult male in the household, and the female enumerator interviewed the head adult female, who was typically the wife of the male household head. These interviews were closely monitored by the field supervisor and extensive measures were taken to ensure a high survey quality. ¹¹We exclude women who are pregnant or lactating at the time of the survey; this equals 12 percent of women in 2011 and 10 percent of women in 2015. We also exclude individuals who have a BMI value smaller than 12 or greater than 60 as these values are almost certainly due to measurement error. This follows Demographic and Health Surveys (DHS) convention. ¹²The Stata command zscore06 is used to convert height (in centimeters) and weight (in kilograms) along with age in months into a standardized variable using the WHO 2006 classification. We do not include nutritional indicators for children between 6 and 14 years of age given known problems with accurate anthropometric measurement for this age group; see e.g. Woodruff and Duffield (2002). ¹³NIPORT (2016) report similar levels of stunting and wasting using DHS 2014 data. ¹⁴Svedberg (1990), Svedberg (1996), Wamani et al. (2007) and Brown et al. (2018) show similar findings for sub-Saharan Africa. For Pakistan, Hazarika (2000) finds that girls are as nourished (or better) than boys. nutrition among adults and children varies with per capita household expenditure, we construct concentration curves.¹⁵ These curves show the cumulative share of undernourished individuals by cumulative household expenditure percentile (that is, households ranked from poorest to richest). A higher degree of concavity implies that a larger share of undernourished individuals are found in the poorest households; for example, if all undernourished individuals lived in poor households, the concentration curve would reach its maximum (equal to 1) at the poverty rate and become flat for the remaining expenditure percentiles. If individuals faced the same probability of being underweight at any point of the per capita expenditure distribution, the concentration curve would coincide with the 45-degree line. Figure 1 presents concentration curves for adults and children. Given the similarity of the curves between the two survey waves, we focus here on the 2015 sample only. While there is concavity across adults and children as well as by gender, it is striking to note how close the curves are to the 45-degree line, particularly for underweight adults and wasted children. For example, only around 65 percent of undernourished adults and children are found among the bottom 50 percent of households. Stunted and wasted girls tend to be found in poorer households than boys (though this is true only up until the 60th percentile), while the difference between men and women is negligible. In the Appendix, we discuss potential biases that could be driving the results; namely, the role of excess mortality among the undernourished and measurement error in anthropometric outcomes. We do not find these to significantly affect our findings. ¹⁷ How much variation in nutritional status is there *within* households? To facilitate comparisons across family members, we create an indicator variable equal to 1 if an adult is underweight or if a child is either stunted or wasted and zero otherwise. For each household, we then compute the share of household members who are undernourished. With no intra-household inequality, we should expect this number to equal either 0 or 1; that is, either all household members are adequately nourished or they are all undernourished. We find instead that 55 percent of households in the 2015 round have some intra-household inequality in nutritional status (and almost 60 percent in 2011). Only 7 percent of households in 2015 contain household members who are all undernourished (and 9 percent in 2011). Among households with at least one undernourished member (and excluding those with all undernourished members), 42 percent of household members are undernourished on average. Figure A8 in the Appendix plots the average rate of undernourishment within households by household expenditure percentile, excluding households with no intra-household inequality in nutritional outcomes. Poorer households with nutritional intra-household inequality have a slightly higher pro- ¹⁵Concentration curves are often used to examine inequalities in child nutritional status; see e.g. Kakwani et al. (1997), Wagstaff (2000), Wagstaff et al. (2014), and Bredenkamp et al. (2014). ¹⁶Brown et al. (2018) find similar results when using household wealth as given by the DHS wealth index. The authors also compare these results with those obtained using household consumption data and find consumption is a slightly better indicator of nutritional status. ¹⁷In the Appendix, we also include concentration curves for severely undernourished individuals. We do find a higher concentration of severely stunted children in the lower household expenditure percentiles relative to Figure 1, but less so for severely underweight adults and wasted children. We also present concentration curves that exclude individuals who have reported suffering from weight-loss due to illness in the past four weeks, and find that these figures display more curvature, particularly for children. This suggests that health shocks are likely affecting both poor and non-poor households and may partly responsible for some of the heterogeneity in nutritional outcomes across the expenditure distribution. <u>Note:</u> BIHS data. The graphs show concentration curves for the cumulative proportion of women and men who are underweight, and children aged 0-5 who are stunted and wasted at each household per capita
expenditure percentile. Observations with missing values and pregnant or lactating women have been dropped. The Stata command glcurve is used to construct the curves. **Figure 1:** Undernutrition Concentration Curves (2015) portion of members who are undernourished than wealthier ones; however, it is also the case that around 40 percent of individuals in the wealthiest households are undernourished. In line with evidence from the concentration curves, we see that there is substantial within households variation in nutritional outcomes, and this persists across expenditure percentiles. Calorie Intake, Food Consumption and Inequality. A key advantage of the BIHS is that in addition to anthropometric data, it contains a measure of individual food consumption for each household member. This measure is based on a 24-hour recall of individual dietary intakes and food weighing. In conducting the individual dietary module, a female enumerator visited each household and surveyed the woman most responsible for the household's food preparation. The enumerator first collected information regarding the food items consumed by the household the previous day. This information included both the raw and cooked weights of each ingredient. For example, the respondent would tell the enumerator that the household had jhol curry for lunch, and would then provide the weight of each ingredient (onions, potatoes, fish, etc.) used in the recipe. Next, the enumerator would ask what share of that meal was consumed by each household member. Lastly, the survey accounted for food given to guests, animals, or food that was left over.¹⁸ From these individual food consumption records, we are able to derive a person's calorie intake. We can also derive other measures of nutritional adequacy such as protein intake, which is often used to indicate the quality of calories consumed.¹⁹ Given that nutritional requirements for ¹⁸If a household member did not have the meal, the enumerator determined the reason. Note that in calculating individual food consumption this way, we implicitly assume that food consumption over the previous day is representative of that food consumption over the year. This could be problematic, e.g., if the 24-hour recall coincided with a special occasion or a festivity; however, this does not seem to be too much of a concern in our setting. Conveniently, survey respondents were asked whether the previous day was a "special day" in terms of the types of food eaten. If the answer was "yes", then the respondent was asked to describe the most recent "normal day" instead. Moreover, during the 2015 wave of the BIHS, a 10 percent subsample of households completed the 24 hour food recall module on multiple visits. A comparison of the computed shares across visits reveals little variation in reporting, suggesting the 24-hour food recall data is quite representative. Finally, survey enumerators record the number of "guests" the household fed during the recall day. We erred on the side of caution and excluded from the analysis household's guests. To further examine the extent of measurement error in the food data, we compare household-level food consumption in the 24-hour food recall with that originating from the 7-day recall. We rank households by food consumption using both measures, and determine the correlation of the percentile ranks. We find a correlation coefficient between the two rankings of 0.74, suggesting little reordering in the data. ¹⁹These are important measures of individual welfare: for official poverty measures in Bangladesh, the poverty line is based on the cost of a maintaining a healthy weight clearly differ across individuals (for example, adult males require a higher caloric intake than young children), we rescale calorie and protein intake to allow for more consistent comparisons between individuals. We draw from the 2015-2020 Dietary Guidelines for Americans which contain requirements for males and females by age group. We normalize calorie intake and food consumption using a 2,400 calories per day reference level (which is the amount typically recommended for moderately active adult males). We similarly rescale protein intake to 46 grams per day, the recommended amount for most adults. Table A3 in the Appendix presents descriptive statistics for the actual and scaled calorie intake, protein intake, and individual food consumption variables for adults and children using data from the two waves of the survey. As expected, all three measures are increasing in household per capita expenditure; the elasticities are 0.14, 0.22 and 0.52 for scaled calorie intake, protein intake and the value of food consumption, respectively, and statistically significant at the 1 percent level (for the unscaled versions, the elasticities are 0.22, 0.33, and 0.60). To separate the contributions of within-household inequality and between-household inequality to overall inequality in nutritional intake, we use the Mean Log Deviation measure of inequality (hereafter MLD).²² Following Ravallion (2016), the MLD in nutritional intake is equal to: $$MLD = \frac{1}{N} \sum_{i=1}^{N} \ln \left(\frac{\bar{c}}{c_i} \right) \tag{1}$$ where c_i is individual nutritional intake, \bar{c} is average nutritional intake among all individuals, and N is the total number of individuals. Assuming that each individual i belongs to household j that has a total of N_j members and an average household nutritional intake of c_j , Equation (1) can be decomposed into the following equation (see the Appendix for details): $$MLD = \underbrace{\frac{1}{N} \sum_{i=1}^{N} \ln\left(\frac{\bar{c_j}}{c_{i,j}}\right)}_{\text{Within}} + \underbrace{\frac{1}{N} \sum_{j=1}^{N} N_j \ln\left(\frac{\bar{c}}{c_j}\right)}_{\text{Between}}$$ (2) We implement this decomposition for the three nutritional intake variables using both the unscaled and scaled versions of the variable. Results for 2015 are presented in Table 1 (results for 2011 are similar and available upon request). Food consumption has the highest overall inequality relative to calorie and protein intake (for both scaled and unscaled). For calorie and protein intakes, within household inequality represents almost 50 percent and 40 percent once differences in regards to age and gender are accounted for. Within-household inequality for individual food con- fixed bundle of food goods that provides minimum nutritional requirements for the average individual, to which a non-food allowance is then added (World Bank, 2008). ²⁰We acknowledge that caloric requirements may differ between the United States and Bangladesh due to physiological, environmental, and societal differences; however, we believe the relative differences between ages and genders should be similar. ²¹We exclude children younger than 12 months of age, since many of those will rely on breast milk as part of their calorie intake (this is not measured by the survey). For simplicity, we here do not account for potential differences in activity levels between individuals. The Dietary Guidelines for Americans are put together by the Department of Health and Human Services and the Department of Agriculture. Specifically, we use Table A2-1 and the caloric requirements for moderately active adults. The file can be accessed here: https://health.gov/dietaryguidelines/2015/guidelines/. ²²This measure was first proposed by Theil (1967) as part of the "generalized entropy measures". Unlike the more popular Gini index, MLD exactly decomposable into between- and within-group components. **Table 1:** Inequality in Nutritional Intake | | Calorie Intake | | Protein Intake | | Food Consumption | | |-------------------------------|----------------|--------|----------------|--------|------------------|----------------| | | Actual | Scaled | Actual | Scaled | Actual | Scaled | | Total MLD | 0.115 | 0.056 | 0.135 | 0.088 | 0.201 | 0.150 | | Within share
Between share | 0.705
0.295 | | 0.607
0.393 | | 0.395
0.605 | 0.210
0.790 | <u>Note:</u> BIHS data 2015. Within and between components of MLD are given as share of total MLD. Scaled values account for recommended dietary intake by age and gender. sumption is less prevalent (but still quite remarkable) and accounts for 21 percent of total inequality once adjusted for age and gender. While nutrition and food consumption are clearly important components of individual welfare, other dimensions of expenditure, such as expenditure on housing, health and education, also matter significantly. In the next sections, we develop a new methodology to estimate how *total* consumption is divided among family members, which will allow us to investigate the role played by intra-household resource allocation directly and the resulting impacts on estimates of poverty and inequality. ### 4 Theoretical Framework and Identification Results In this section, we set out a collective household model to identify and estimate resource sharing among co-resident family members. Since only half of households in our sample consists of nuclear households (comprising two parents and their children), we develop a flexible theoretical framework for extended families that can account for the presence of multiple decision makers (e.g., of grandparents). ### 4.1 Collective Households and Resource Sharing Let households consist of J categories of people (indexed by j), such as children, men, women, and the elderly. Denote the number of household members of category j by $\sigma_j \in \{\sigma_1,...,\sigma_J\}$. Households differ according to their composition or type, defined by the number of people in each category. We denote a household type by s. In practice, households also differ along a wider set of observable attributes, such as age of household members, location, and other socio-economic characteristics. Such characteristics may affect both preferences and resource shares. To reduce notational clutter, we omit household characteristics
for now. We will introduce them explicitly in estimation.²³ Each household consumes K types of goods with market prices $p = (p^1, ..., p^K)$. Let $z = (z^1, ..., z^K)$ be the vector of observed quantities of goods purchased by each household and $x_j = (x_j^1, ..., x_j^K)$ ²³Any characteristics affecting bargaining power and how resources are allocated within the household, but neither preferences nor budget constraints, are called *distribution factors* (Browning et al. (2014)). Since such variables are not required for identification, we exclude them from our discussion. be the vector of *private good equivalents* which is then divided among the household members. Following Browning et al. (2013) and Dunbar et al. (2013), we allow for economies of scale in consumption through a Barten type consumption technology. This technology assumes the existence of a $K \times K$ matrix A_s such that $z = A_s \sum_{j=1}^J \sigma_j x_j$, and allows the sum of the private good equivalents to be weakly larger than what the household purchases. All members face the same shadow price vector $A_s'p$. If good k is a private good (which is never jointly consumed) the kth row of A would be equal to 1 in the kth column and zeros elsewhere.²⁴ Each household member has a monotonically increasing, continuously twice differentiable and strictly quasi-concave utility function. Let $U_j(x_j)$ be the sub-utility function of individual j over her consumption. Each individual's total utility may depend on the utility of other household members, but we assume it to be weakly separable over the sub-utility functions for goods. The household chooses what to consume using the following maximization program: $$\max_{x_1,\dots,x_J} \widetilde{U}_s[U_1(x_1), \dots, U_J(x_J), p/y]$$ such that $$y = z_s' p \text{ and } z_s = A_s \sum_{j=1}^J \sigma_j x_j$$ (3) where the function \widetilde{U} describes the social welfare function of the household. The solution of the problem above yields the bundles of private good equivalents that each household member consumes. Pricing these vectors at within household shadow prices $A_s^{'}p$ (which may differ from market prices because of the joint consumption of goods within the household) yields the fraction of the household's total resources that are devoted to each household member, i.e., their resource share η_{is} . Following the standard characterization of collective models (based on duality theory and decentralization welfare theorems), the household program can be decomposed into two steps: the optimal allocation of resources across members and the individual maximization of their own utility function. Conditional on knowing η_{js} , household members choose x_j as the bundle maximizing U_j subject to a personal shadow budget constraint. By substituting the indirect utility functions $V_j(A'p,\eta_{js}y)$ in Equation (3), the household program simplifies to the choice of optimal resource shares subject to the constraint that total resources shares must sum to one. For simplicity, we assume all household members of a specific category to be the same, and interpret resources as being divided equally within categories. In estimation, however, we allow preference parameters and resource shares to vary according to a set of household characteristics, including family composition and the age of the household members, so that, e.g., households with older children may allocate more resources to children than households with younger children. Define a private good to be a good that does not have any economies of scale in consumption ²⁴This framework also allows for a simple household production technology with constant returns to scale through which market goods are transformed into household commodities. (e.g., food) and an *assignable* good to be a private good consumed exclusively by household members of known category j (which we observe in the BIHS data). While the budget share functions for goods that are not private are more complicated, the ones for private assignable goods, W_{js}^k , have much simpler forms and are given by: $$W_{js}^{k}(y,p) = \sigma_{j} \eta_{js}(y,p) \,\omega_{js}^{k}(\eta_{js}(y,p)y, A_{s}^{'}p) \tag{4}$$ where ω_{js}^k is the budget share function of each household member when facing their personal shadow budget constraint, η_{js} is her resource share, and σ_j is the number of individuals in group j. Note that one cannot just use W_{js} as a measure of η_{js} , because different household members may have very different tastes for their private assignable good. For example, a woman might consume the same amount of resources as her husband but less food because she derives less utility from it (e.g., she has lower caloric requirements). We instead estimate food Engel curves for each group j. We then implicitly invert these Engel curves to solve for resource shares.²⁵ #### 4.2 Identification of Resource Shares The main goal of the model outlined above is to estimate resource shares. Resource shares, however, are not point-identified without additional structure. In this section, we summarize the methodology developed in Dunbar et al. (2013) (hereafter DLP). We also discuss two identification approaches that expand upon the DLP identification results. We first introduce some notation. Let $p = [p_j, \bar{p}, \tilde{p}]$, where p_j are the prices of the private assignable goods for each person type j = 1,...,J. We define \bar{p} to correspond to the subvector of private non-assignable good prices, and \tilde{p} to correspond to the subvector of shared good prices. In the empirical section, we assume individuals have piglog (price independent generalized logarithmic) preferences over the private assignable goods. This functional form facilitates the discussion of identification, so we use it henceforth. ²⁶ In the Appendix, however, we discuss identification with a more general functional form. The standard piglog indirect utility function takes the form: $V_j(p,y) = e^{F_j(p)}(\ln y - \ln a_j(p))$. By Roy's Identity, the budget share functions are as follows: $w_j(y,p) = \alpha_j(p) + \gamma_j(p) \ln y$. Thus, the budget share functions are linear in $\ln y$. Substituting them into Equation (4), and holding prices fixed, results in the following household-level Engel curves: $$W_{js} = \sigma_j \eta_{js} [\alpha_{js} + \gamma_{js} \ln \eta_{js}] + \sigma_j \eta_{js} \gamma_{js} \ln y.$$ (5) ²⁵Dunbar et al. (2013) and other works using similar methodologies (Dunbar et al. (2017); Calvi (2017); Penglase (2018); Tommasi (2018); Sokullu and Valente (2018)) estimate resource shares using Engel curves of private assignable clothing. Clothing purchases, however, may be infrequent and estimation issues may arise due to zero expenditures. In our sample, for example, assignable clothing shares equal 0.8 percent for children, 1.3 for women, and 1.1 for men. Moreover, the BIHS does not allow to identify assignable clothing for boys and girls separately, for children by birth order, or for prime-aged adults vs. the elderly. We overcome these issues by looking at assignable food consumption instead. ²⁶Jorgenson et al. (1982) Translog demand system and the Deaton and Muellbauer (1980) Almost Ideal Demand System have Engel curves of the piglog form, and piglog Engel curves were also used in empirical collective household models estimates by DLP. The identification results in DLP are (at least partially) based on semi-parametric restrictions on the shape parameter γ_{js} , where γ_{js} can be interpreted as each person's marginal propensity to consume the private assignable good as their expenditure increases. Similarity Across People (SAP) and Similarity Across Types (SAT). When (at least) one assignable good is observable for each person type, DLP make two key assumptions for the identification of resource shares. First, they assume that resource shares are independent of household expenditure, and secondly, they impose one of two semi-parametric restrictions on individual preferences for the assignable good: either preferences are *similar across people* (SAP), or preferences are *similar across household types* (SAT).²⁷ The indirect utility function under SAP is $V_j(p,y) = e^{F(p)}(\ln y - \ln a_j(p))$, with budget share functions $w_j(y,p) = \alpha_j(p) + \gamma(p) \ln y$. Notice that F(p) and $\gamma(p)$ do not have a j subscript, and therefore they do not vary across family members. Using this budget share function, Equation (5) is modified such that $\gamma_{js} = \gamma_s$, and resource shares are identified by comparing the Engel curve slopes across individuals within the same household. To fix ideas, suppose that the household receives a positive income shock (i.e., log expenditure increases). If as a result men's food consumption increases by a lot, and women's food consumption by relatively less, then we can infer that the man in the household controlled more of the additional expenditure, and therefore has a higher resource share. The alternative preference restriction DLP impose is SAT, which is consistent with the following indirect utility function: $V_j(p,y) = e^{F_j(p_j,\bar{p})}(\ln y - \ln a_j(p))$, with budget share functions $w_j(y,p) = \alpha_j(p) + \bar{\gamma}_j(p_j,\bar{p}) \ln y$. Unlike SAP, preferences differ relatively flexibly across individuals. However, SAT restricts how the prices of shared goods enter the utility function. In effect, it restricts changes in the prices of shared goods to have a pure income effect on the demand for the private assignable goods. With SAT, the shape preference parameter does not vary across household types since $\bar{\gamma}_j(p_j,\bar{p})$ is not a function of the prices of shared goods \tilde{p} . Equation (5) is then modified such that $\gamma_{js} = \gamma_j$, and resource shares are identified by comparing the Engel curve slopes across
household types. Both SAP and SAT are practical ways to recover resource shares using expenditure on a single private assignable good. However, evidence on the validity of these restrictions is mixed. Dunbar et al. (2017), Calvi (2017), and Bargain et al. (2018) find evidence supporting the use of SAP or SAT with clothing expenditures as the assignable good, but Bargain et al. (2018) rejects both SAP and SAT using food expenditures. Since we observe multiple private assignable goods for each person type, we develop two new approaches that employ this additional data to weaken the necessary preference restrictions. SAP and SAT are not nested in our approaches (or vice versa). Thus, the choice of one approach over another varies by context and is driven by data availability. **Differenced SAT (D-SAT).** In our first approach, we demonstrate that the SAT restriction can be weakened by using multiple private assignable goods. Unlike DLP, we do not assume that prefer- ²⁷A household type is determined by the household composition, which is similar, though not the same as the household size. In a slight abuse of terminology, we refer to household type and household size interchangeably henceforth. ²⁸This is a weaker form of shape invariance. See Pendakur (1999) for details. ences for the assignable goods are similar across household types. Rather, we allow preferences to differ considerably across household types, but require them to do so in the same way across two different private assignable goods.²⁹ For our identification strategy to work, we therefore require the observability of two such goods (k = 1, 2) for each person type j, with prices denoted by p_j^1 and p_j^2 , respectively. For reasons that will become clear later on, we call our approach *Differenced SAT*, or D-SAT. Using the piglog indirect utility function $V_j(p,y) = e^{F_j(p)}(\ln y - \ln a_j(p))$, our assumption requires that $$\frac{\partial F_j(p)}{\partial p_i^1} - \frac{\partial F_j(p)}{\partial p_i^2} = \theta_j(p_j^1, p_j^2, \bar{p})$$ (6) where $\theta_j(p_j^1,p_j^2,\bar{p})$ does not vary across household types.³⁰ D-SAT holds if $F_j(p)$ takes the following form: $F_j(p) = b_j(p_j^1 + p_j^2, \bar{p}, \tilde{p}) + r_j(p_j^1, p_j^2, \bar{p})$, where $r_j(\cdot)$ does not depend on the prices of shared goods, and therefore does not vary by household type. Moreover, p_j^1 and p_j^2 are additively separable in $b_j(\cdot)$. Altogether, these restrictions result in preferences that differ across households types, but in a similar way across goods. We can use Roy's Identity to derive the budget share functions for goods k = 1, 2: $$\frac{h_j^k(p,y)}{y} = \left(\frac{\partial b_j(p_j^1 + p_j^2, \bar{p}, \tilde{p})}{\partial p_i^k} + \frac{\partial r_j(p_j^1, p_j^2, \bar{p})}{\partial p_i^k}\right) \ln y + \alpha_j^k(p)$$ (7) The household-level Engel curves for person j's two assignable goods can then be written as follows: $$W_{js}^{1} = \sigma_{j} \eta_{js} [\alpha_{js}^{1} + (\beta_{js} + \gamma_{j}^{1}) \ln \eta_{js}] + \sigma_{j} \eta_{js} (\beta_{js} + \gamma_{j}^{1}) \ln y$$ $$W_{js}^{2} = \sigma_{j} \eta_{js} [\alpha_{js}^{2} + (\beta_{js} + \gamma_{j}^{2}) \ln \eta_{js}] + \sigma_{j} \eta_{js} (\beta_{js} + \gamma_{j}^{2}) \ln y$$ (8) Consistent with the SAT restriction, preferences for the assignable goods are allowed to differ across people in γ_j^k and α_{js}^k . We weaken the SAT restriction by including an additional preference parameter β_{js} in the Engel curve, which allows preferences for the assignable goods to differ more flexibly across household types. However, we restrict preferences to differ across household types in a similar way across goods, that is, β_{js} is the same for both goods. To better understand our assumptions, consider the following example. Suppose we observe assignable cereals and proteins (meat, dairy and fish) for men, women and children in a sample of nuclear households with one to three children. The SAT restriction would require that the man's marginal propensity to consume cereals be the same regardless of the number of children in the household. With D-SAT, we allow his marginal propensity to consume cereals to differ considerably across household types. However, we require the difference in the man's preferences for cereals across household types be similar to the difference in his preferences for proteins across household types. The same must be true for women and children. ²⁹Having a third assignable good would not meaningfully reduce the assumptions necessary for identification. ³⁰DLP impose a stronger version of this on one of the goods, that is $\partial F_j(p)/\partial p_j^1 = \tilde{\theta}_j(p_j^1, \bar{p})$. To show that resource shares are identified, first let $\lambda_{js} = \beta_{js} + \gamma_j^1$ and $\kappa_j = \gamma_j^2 - \gamma_j^1$. Then, we can rewrite System (8) as follows for j = 1, ..., J: $$W_{js}^{1} = \sigma_{j} \eta_{js} [\alpha_{js}^{1} + \lambda_{js} \ln \eta_{js}] + \sigma_{j} \eta_{js} \lambda_{js} \ln y$$ $$W_{js}^{2} = \sigma_{j} \eta_{js} [\alpha_{js}^{2} + (\lambda_{js} + \kappa_{j}) \ln \eta_{js}] + \sigma_{j} \eta_{js} (\lambda_{js} + \kappa_{j}) \ln y$$ (9) If we subtract person j's budget share function for good 2 from their budget share function for good 1, we are left with a set of differenced Engel curves that are similar to the SAT system of equations from DLP (i.e., Equation (5) with $\gamma_{js} = \gamma_j$). An OLS-type regression of $W_{js}^1 - W_{js}^2$ on log expenditure identifies the slope coefficient for each person type j. Comparing the slopes of the differenced Engel curves across household types, and assuming that resource shares sum to one allows us to recover the resource share parameters. The order condition is satisfied with J household types. To see this, first note that there are J differenced Engel curves for each of the J household types, resulting in J^2 equations. Moreover, for each household type resource shares must sum to one. This results in J(J+1) equations in total. In terms of unknowns, there are J^2 resource shares, and J preference parameters (κ_j) , or J(J+1) unknowns in total. A proof of the rank condition can be found in the Appendix. **Differenced SAP (D-SAP).** In our second approach, we demonstrate that the SAP restriction of DLP can also be weakened by using multiple private assignable goods. Unlike DLP, we do not assume that preferences for the assignable goods are similar across people. We allow preferences to differ considerably across people, but require them to do so in the same way across two different private assignable goods. Here, we call our assumption *Differenced Similar Across People*, or D-SAP. Under this assumption, we require that $$\frac{\partial F_j(p)}{\partial p_j^1} - \frac{\partial F_j(p)}{\partial p_j^2} = \theta(p) \tag{10}$$ where $\theta(p)$ does not vary across people.³¹ Our assumption holds if $F_j(p)$ takes the following form: $F_j(p) = b_j(p_j^1 + p_j^2, \bar{p}, \tilde{p}) + r(p)$, where r(p) does not vary across people. Moreover, p_j^1 and p_j^2 are again additively separable in $b_j(\cdot)$ which results in preferences that differ across people in a similar way across goods. We again use Roy's Identity to derive the budget share function for goods k = 1, 2: $$\frac{h_j^k(p,y)}{y} = \left(\frac{\partial b_j(p_j^1 + p_j^2, \bar{p}, \tilde{p})}{\partial p_j^k} + \frac{\partial r(p)}{\partial p_j^k}\right) \ln y + \alpha_j^k(p) \tag{11}$$ The household-level Engel curves for person j's two assignable goods can then be written as ³¹DLP impose a stronger version of this on one of the goods, that is $\partial F_j(p)/\partial p_j^1 = \tilde{\theta}(p)$. follows: $$W_{js}^{1} = \sigma_{j} \eta_{js} [\alpha_{js}^{1} + (\beta_{js} + \gamma_{s}^{1}) \ln \eta_{js}] + \sigma_{j} \eta_{js} (\beta_{js} + \gamma_{s}^{1}) \ln y$$ $$W_{js}^{2} = \sigma_{j} \eta_{js} [\alpha_{js}^{2} + (\beta_{js} + \gamma_{s}^{2}) \ln \eta_{js}] + \sigma_{j} \eta_{js} (\beta_{js} + \gamma_{s}^{2}) \ln y$$ (12) Consistent with the SAP restriction, preferences for the assignable goods are allowed to differ entirely across household types in γ_s^k and α_{js}^k . We weaken the SAP restriction by including an additional preference parameter β_{js} in the Engel curve, which allows preferences for the assignable goods to differ more flexibly across people. However, we restrict preferences to differ across people in a similar way across goods; that is, β_{js} is the same for both goods. We can again use an example to illustrate the differences between DLP and our method. Suppose we observe assignable cereals and proteins for men, women and children in a nuclear household. The SAP restriction would require that the man's marginal propensity to consume cereals be the same as the woman's and the children's. With our assumption, we allow his marginal propensity to consume cereals to differ considerably from that of other household members. However, we require the difference in the man's and woman's (or children's) preferences for cereals be similar to the difference in their preferences for proteins. To show that resource shares are identified, let $\lambda_{js} = \beta_{js} + \gamma_s^1$ and $\kappa_s = \gamma_s^2 - \gamma_s^1$. System (12) can be rewritten as follows: $$W_{js}^{1} = \sigma_{j} \eta_{js} [\alpha_{js}^{1} + \lambda_{js} \ln \eta_{js}] + \sigma_{j} \eta_{js} \lambda_{js} \ln y$$ $$W_{is}^{2} = \sigma_{j} \eta_{js} [\alpha_{js}^{2} + (\lambda_{js} + \kappa_{s}) \ln \eta_{js}] + \sigma_{j} \eta_{js} (\lambda_{js} + \kappa_{s}) \ln y$$ (13) Subtracting person j's budget share function for good 2 from their budget share function for good 1, we obtain a set of differenced Engel curves that are similar to the SAP system of equations for j (i.e., Equation (5) with $\gamma_{js} = \gamma_s$). Identification of resource shares is then
straightforward. An OLS-type regression of $W_{js}^1 - W_{js}^2$ on log expenditure identifies the slope coefficients $c_{js} = \eta_{js}\kappa_s$. Since resource shares sum to one, $\sum_{j=1}^J c_{js} = \sum_{j=1}^J \eta_{js}\kappa_s = \kappa_s$ is identified. It follows that $\eta_{js} = c_{js}/\kappa_s$. To fix ideas, Section A.4 in the Appendix provides a graphical illustration of the D-SAP approach. In comparing our identification approach to DLP, it is important to note one advantage of their identification assumptions over ours: they require preference restriction for a single assignable good, whereas we place structure on preferences of two assignable goods. Stated differently, we impose a weak preference restriction on two goods, whereas DLP make a stronger preference restriction on one good. With two assignable goods one could assume SAP or SAT for the first good, and place no structure on preferences for the second assignable good. As an example, System (14) presents how resource shares could be identified with two goods using SAP. Note that SAP is assumed to hold for good k = 1 as $\gamma_{js}^1 = \gamma_s^1$, and no restrictions are imposed on γ_{js}^2 for good 2. $$W_{js}^{1} = \sigma_{j} \eta_{js} [\alpha_{js}^{1} + \gamma_{s}^{1} \ln \eta_{js}] + \sigma_{j} \eta_{js} \gamma_{s}^{1} \ln y$$ $$W_{is}^{2} = \sigma_{j} \eta_{js} [\alpha_{js}^{2} + \gamma_{js}^{2} \ln \eta_{js}] + \sigma_{j} \eta_{js} \gamma_{js}^{2} \ln y$$ (14) The relative merits of each approach is an empirical matter that depends on the context. In some situations, preferences for certain goods may be mostly identical across people, in which case SAP is preferable. Alternatively, D-SAP may be the correct method if preferences differ across people, but in the same way across goods. The same is true when thinking about preference differences across household types (SAT, D-SAT). In our context, we find that D-SAP is the preferred specification as we consistently fail to reject the D-SAP assumptions, but not the others (see Section A.6 in the Appendix for details). Nonetheless, in what follows we estimate the model on a sample of Bangladeshi households using each identification approach. # 5 Estimating Resource Sharing and Individual Consumption ### 5.1 Empirical Strategy **Data.** The Bangladesh Integrated Household Survey (BIHS) contains detailed data on expenditure, together with information on household characteristics, and demographic and other particulars of household members. We rely on three main components of the survey: the 7-day recall of household food consumption, the 24-hour recall of individual dietary intakes and food weighing, and the annual consumer expenditure module. To compute individual food budget shares, we combine data from the individual-level 24-hour recall module with the household-level 7-day food consumption module. Specifically, we first calculate the total value (in taka) of household food consumption over the previous 24 hours. We then determine the percentage of that total value consumed by each individual household member; this is the main output of the 24-hour recall module. Next, we use the household-level 7-day food consumption module to calculate the total value of household food consumption over that time period, and extrapolate this value to annual terms. Multiplying total annual food household consumption by the percentage of the total value consumed by each individual household member over the previous 24 hours results in individual food consumption over the previous year. Finally, dividing by total annual household expenditure results in individual-level food budget shares. Given the richness of the dataset, we can also compute individual food-group budget shares. The different food groups include cereals, pulses, vegetables, fruit, meat and dairy, fish, spices, and drinks. This breakdown provides a clearer picture of how individual spending on different food items varies with household expenditure and allows for the observation of more than one private assignable good per individual, which is required for the implementation of D-SAP and D-SAT. In our empirical analysis, we focus on cereals, vegetables, and proteins (meat, eggs, fish, dairy products), which are the three largest components for food consumption. For computational reasons, we pool data from the two rounds of the BIHS dataset. We select a sample of 6,417 households. We exclude households with zero men, women, and children, or with more than five individuals in each category (4,247 households). To eliminate outliers, we exclude any households in the top or bottom one percent of total household expenditure (172 households). **Table 2:** Descriptive Statistics | Household Expenditures: Total Expenditure (PPP dollars) 6,417 5,302 4,654 2,59 Per Capita Expenditure (PPP dollars) 6,417 1,132 1,018 50 Budget Shares Cereals 6,417 0.204 0.194 0.08 Budget Shares Vegetables 6,417 0.068 0.062 0.03 Budget Shares Proteins 6,417 0.107 0.090 0.08 Household Composition: Boys 0-5 6,417 0.349 0.000 0.53 Girls 0-5 6,417 0.338 0.000 0.53 Boys 6-14 6,417 0.623 1.000 0.72 Girls 6-14 6,417 0.611 0.000 0.72 Adult Males 15-45 6,417 1.021 1.000 0.62 Adult Females 15-45 6,417 1.151 1.000 0.53 | |--| | Total Expenditure (PPP dollars) 6,417 5,302 4,654 2,59 Per Capita Expenditure (PPP dollars) 6,417 1,132 1,018 500 Budget Shares Cereals 6,417 0.204 0.194 0.08 Budget Shares Vegetables 6,417 0.068 0.062 0.03 Budget Shares Proteins 6,417 0.107 0.090 0.08 Household Composition: Boys 0-5 6,417 0.349 0.000 0.53 Girls 0-5 6,417 0.338 0.000 0.53 Boys 6-14 6,417 0.623 1.000 0.72 Girls 6-14 6,417 0.611 0.000 0.72 Adult Males 15-45 6,417 1.021 1.000 0.62 | | Per Capita Expenditure (PPP dollars) 6,417 1,132 1,018 502 Budget Shares Cereals 6,417 0.204 0.194 0.08 Budget Shares Vegetables 6,417 0.068 0.062 0.03 Budget Shares Proteins 6,417 0.107 0.090 0.08 Household Composition: Boys 0-5 6,417 0.349 0.000 0.53 Girls 0-5 6,417 0.338 0.000 0.53 Boys 6-14 6,417 0.623 1.000 0.72 Girls 6-14 6,417 0.611 0.000 0.72 Adult Males 15-45 6,417 1.021 1.000 0.62 | | Budget Shares Cereals 6,417 0.204 0.194 0.08 Budget Shares Vegetables 6,417 0.068 0.062 0.03 Budget Shares Proteins 6,417 0.107 0.090 0.08 Household Composition: Boys 0-5 6,417 0.349 0.000 0.53 Girls 0-5 6,417 0.338 0.000 0.53 Boys 6-14 6,417 0.623 1.000 0.72 Girls 6-14 6,417 0.611 0.000 0.72 Adult Males 15-45 6,417 1.021 1.000 0.62 | | Budget Shares Vegetables 6,417 0.068 0.062 0.03 Budget Shares Proteins 6,417 0.107 0.090 0.08 Household Composition: Boys 0-5 6,417 0.349 0.000 0.55 Girls 0-5 6,417 0.338 0.000 0.55 Boys 6-14 6,417 0.623 1.000 0.72 Girls 6-14 6,417 0.611 0.000 0.72 Adult Males 15-45 6,417 1.021 1.000 0.62 | | Budget Shares Proteins 6,417 0.107 0.090 0.08 Household Composition: Boys 0-5 6,417 0.349 0.000 0.58 Girls 0-5 6,417 0.338 0.000 0.58 Boys 6-14 6,417 0.623 1.000 0.72 Girls 6-14 6,417 0.611 0.000 0.72 Adult Males 15-45 6,417 1.021 1.000 0.62 | | Household Composition: Boys 0-5 6,417 0.349 0.000 0.55 Girls 0-5 6,417 0.338 0.000 0.55 Boys 6-14 6,417 0.623 1.000 0.72 Girls 6-14 6,417 0.611 0.000 0.72 Adult Males 15-45 6,417 1.021 1.000 0.62 | | Boys 0-5 6,417 0.349 0.000 0.55 Girls 0-5 6,417 0.338 0.000 0.55 Boys 6-14 6,417 0.623 1.000 0.72 Girls 6-14 6,417 0.611 0.000 0.72 Adult Males 15-45 6,417 1.021 1.000 0.62 | | Girls 0-5 6,417 0.338 0.000 0.55 Boys 6-14 6,417 0.623 1.000 0.72 Girls 6-14 6,417 0.611 0.000 0.72 Adult Males 15-45 6,417 1.021 1.000 0.62 | | Boys 6-14 6,417 0.623 1.000 0.72 Girls 6-14 6,417 0.611 0.000 0.72 Adult Males 15-45 6,417 1.021 1.000 0.62 | | Girls 6-14 6,417 0.611 0.000 0.72 Adult Males 15-45 6,417 1.021 1.000 0.62 | | Adult Males 15-45 6,417 1.021 1.000 0.62 | | • | | Adult Females 15 45 6 417 1 151 1 000 0 55 | | Audit remaies 13-43 0,41/ 1.151 1.000 0.53 | | Adult Males 46+ 6,417 0.380 0.000 0.49 | | Adult Females 46+ 6,417 0.307 0.000 0.48 | | Household Characteristics: | | Average Age Boys 4,502 7.385 7.500 3.19 | | Average Age Girls 4,243 7.437 7.500 3.05 | | Average Age Men 6,417 38.768 37.000 11.2 | | Average Age Women 6,417 34.700 33.000 9.30 | | 1(Muslim) 6,417 0.875 1.000 0.33 | | Working Men (share) 6,417 0.869 1.000 0.27 | | Working Women (share) 6,417 0.632 1.000 0.41 | | Average Education Men 6,417 1.420 1.000 1.33 | | Average Education Women 6,417 1.444 1.500 1.21 | | 1(Rural) 6,417 0.826 1.000 0.38 | | 1(Barisal) 6,417 0.096 0.000 0.29 | | 1(Chittagong) 6,417 0.128 0.000 0.33 | | 1(Dhaka) 6,417 0.305 0.000 0.46 | | 1(Khulna) 6,417 0.157 0.000 0.36 | | 1(Rajshahi) 6,417 0.102 0.000 0.30 | | 1(Rangpur) 6,417 0.091 0.000 0.28 | | 1(Sylhet) 6,417 0.123 0.000 0.32 | | Log Distance to Shops 6,417 -1.053 -1.347 1.34 | | Log Distance to Road 6,417 -0.166 0.000 1.70 | | Year=2011 6,417 0.528 1.000 0.49 | Note: BIHS data. Expenditure data based on annual recall. Per capita expenditure is defined as total expenditure (PPP dollars) divided by household size. Individual education ranges from 0 (no schooling) to 5 (completed secondary school). Indicators for employment equal 1 if individuals worked for
pay during the week prior to the survey. To avoid issues related to special events and food consumption (see footnote 18), we drop from the analysis households reporting to have had guests during the the food consumption recall day (1,554 households). A small number of households have individuals with food budget shares that take a value of zero due to illness, fasting, being an infant, or currently being away from the household. Households in which these individuals reside are excluded from the analysis (546 households). Finally, households with missing data for any of the household characteristics are removed from the sample. Tables 2 contains some descriptive statistics for the variables included in the empirical analysis. Table A4 in the Appendix describes the budget shares of specific food groups consumed by men, women, boys, and girls. On average, households report consuming 135,727 taka over the year prior to the survey, which corresponds to 5,302 PPP dollars.³² The corresponding per capita expenditure (obtained dividing total expenditure by household size) amounts to 28,931 taka on average. Cereals account for a substantial fraction of household expenditure (20 percent), followed by proteins (11 percent) and vegetables (7 percent). The descriptive statistics related to household composition confirm the widespread existence of extended families. The average household size in our sample is 4.80 and the average number of adults (household members aged 15 and older) equals 2.86. For simplicity and tractability, we categorize household members based on their gender and age. There is a link between this categorization and members' specific roles in the family, but that is not perfect. For instance, grandmothers are present in 79 percent of households with women aged 46 and older, but only 46 percent of households with older men comprise grandfathers.³³ An overwhelming majority of households are muslim (87 percent) and live in rural areas (83 percent). **Estimation.** To estimate the model, we add an error term to each Engel curve in either System (9) or (13) depending on the set of identification assumptions. Recall that the empirical implementation of our novel identification approaches, D-SAP and D-SAT, requires two assignable goods (k = 1, 2). In our main specification, we include four categories of family members j (boys (b), girls (g), men (m), and women (w)) and focus on cereals and vegetables as private assignable goods. Since the estimation of resource shares should be invariant to the choice of assignable goods, in the Appendix we check the robustness of our estimates to using different food categories (e.g., milk, fish, and meat) as assignable goods. For households with children of both genders, we take the following system of eight equations to the data: $$\begin{cases} W_{js}^{1} = \sigma_{j} \eta_{js} [\alpha_{js}^{1} + \lambda_{js} \ln \eta_{js}] + \sigma_{j} \eta_{js} \lambda_{js} \ln y + \epsilon_{js}^{1} \\ W_{js}^{2} = \sigma_{j} \eta_{js} [\alpha_{js}^{2} + (\lambda_{js} + \kappa_{js}) \ln \eta_{js}] + \sigma_{j} \eta_{js} (\lambda_{js} + \kappa_{js}) \ln y + \epsilon_{js}^{2} \end{cases}$$ $$(15)$$ where W_{js}^1 and W_{js}^2 (j=b,g,w,m) are budget shares for boys', girls', women's, and men's cereals and vegetables consumptions, respectively. y is the total household expenditure and σ_j is the number of household members of category j, so that $\sigma_m \eta_{ms} = 1 - \sigma_b \eta_{bs} - \sigma_g \eta_{gs} - \sigma_w \eta_{ws}$. For households with only boys or only girls, the system comprises six Engel curves and either $\sigma_m \eta_{ms} = 1 - \sigma_b \eta_{bs} - \sigma_w \eta_{ws}$ or $\sigma_m \eta_{ms} = 1 - \sigma_g \eta_{gs} - \sigma_w \eta_{ws}$. Note that W_{js}^k , y and σ_j are observed in the data. Figure A9 in the Appendix shows the results of non-parametric regressions of W_{js}^k on $\ln y$. While Engel curves are negatively sloped for cereals and vegetables, the share of expenditure devoted to proteins increases with total expenditure. No substantial non-linearity can be detected in these relationships, providing support to the appropriateness of our empirical specification.³⁴ ³²We here focus on expenditure on non-durable consumption goods and treat savings as separable. In what follows, we refer to consumption and expenditure interchangeably. ³³This can partly attributed to the quite high average spousal age difference. According to the 2014 Bangladesh demographic and health survey, husbands are on average 9 years older than their wives. ³⁴Tommasi and Wolf (2018) shows that if the data exhibit relatively flat Engel curves in the consumption of the private assignable goods, then the DLP model can be weakly identified. In our dataset, households display a large variation in the consumption of private assignable Let a be a vector of household size variables, which includes the number of boys and girls aged 0-5 and 6-14, and the number of men and women aged 15-45 and 46 and above. Let X be a vector containing all other demographic characteristics presented in Table 2. We model resource shares η_{js} and food preference parameters λ_{js} , α_{js} , and κ_{js} as linear functions of a and X.³⁵ To achieve identification of resource shares, we impose the four alternative preference restrictions discussed in Section 4.2. Given D-SAP, $\kappa_{js} = \kappa_s$ is linear in a constant, a and a; given D-SAT, a0 is linear in a constant and a1 for each person category a2. For completeness, we provide estimates obtained using the original SAP and SAT restrictions from Dunbar et al. (2013). We recall that SAP and SAT can be implemented using a single assignable good. To improve efficiency and to ease comparability, however, we here include Engel curves for both assignable goods in the system, but impose SAP and SAT restrictions on the first set of assignable goods only (cereals). Since the error terms may be correlated across equations, we estimate the system of (up to) eight Engel curves using non-linear Seemingly Unrelated Regression (SUR) method. Non-linear SUR is iterated until the estimated parameters and the covariance matrix settle. Iterated SUR is equivalent to maximum likelihood with multivariate normal errors.³⁶ Alternatively, the model can be estimated as a system of four differenced Engel curves, that is $W_{js}^1 - W_{js}^2$ (see Section 4.2 for more details). While this is a more parsimonious approach and might be preferable in some situations, it has a couple of important limitations. First, it does not allow to recover preference parameters for the assignable goods. Moreover, it might reduce the efficiency gains stemming from the correlation across equations. ### 5.2 Estimation Results We start by briefly discussing the role of covariates. Point estimates and robust standard errors are reported in Tables A5 (for the D-SAP and D-SAT approaches) and A6 (for SAP and SAT) in the Appendix. For the sake of brevity, the tables present the covariates of resource shares η_{js} only (analogous tables for the covariates of preference parameters are available upon request). Household composition matters substantially. As expected, women's resource shares increase with the number of women in the household, and decrease as the numbers of men, boys, and girls increase. The same holds true for boys and girls. Interestingly, with the exception of women's and men's education, no statistically significant association is found between the sharing rule and other socio-economic characteristics. Based on these estimates, we compute women's, men's and children's resource shares for each household as linear combinations of the underlying covariates. In Table 3, we present the estimated resource shares for reference households. We define a reference household as one comprising one working man age 15 to 45, one non-working woman aged 15 to 45, one boy 6 to 14, one girl 6 goods as well as in the budget shares differences. Hence, we do not appear to have a weak identification problem with our data. ³⁵That resource shares change linearly with the household composition variables is due to computational reasons. Adding indicator variables for each possible household composition (as in Dunbar et al. (2013)) would result in an intractable increase in the number of parameters needed to be estimated. ³⁶The sum-of-squared residuals function has multiple local minima. We therefore performed a grid search over 300 starting values and selected the estimates corresponding to the minimum sum-of-squared residuals. Table 3: Estimated Resource Shares - Reference Household | | D-SAP | | D-SAT | | SAP | | SAT | | |-----------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------| | | Estimate | Standard
Error | Estimate | Standard
Error | Estimate | Standard
Error | Estimate | Standard
Error | | | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | | Boy
Girl
Woman
Man | 0.173
0.175
0.297
0.355 | 0.014
0.015
0.016
0.018 | 0.167
0.163
0.306
0.364 | 0.025
0.019
0.045
0.036 | 0.178
0.172
0.286
0.364 | 0.015
0.015
0.015
0.019 | 0.161
0.163
0.303
0.373 | 0.023
0.019
0.042
0.036 | Note: Estimates based on BIHS data and Engel curves for cereals and vegetables. The reference household is defined as one with 1 working man 15-45, 1 non-working woman 15-45, 1 boy 6-14, 1 girl 6-14, living rural northeastern Bangladesh (Sylhet division), surveyed in year 2015, with all other covariates at median values. SAP and SAT restrictions are imposed on the first set of assignable goods (cereals), while the second set (vegetables) is unrestricted. to
14, living rural northeastern Bangladesh (Sylhet division), surveyed in year 2015, with all other covariates at median values. In such households, we find that men consume a larger share of the budget relative to women, who in turn consume relatively more than boys and girls. Interestingly, our estimates do not reveal the existence of gender inequality among children, which is in line with encouraging trends in gender equality in Bangladesh (Talukder et al., 2014).³⁷ Under D-SAP, for instance, we find that the man consumes 36 percent of the budget, the woman consumes 30 percent, and the boy and girl each consume around 17 percent.³⁸ The difference between women's and men's predicted shares is statistically significant at the 5 percent level; the difference between adults' and children's share is significant at the 1 percent level. Our findings are consistent across specifications (that is, across identification restrictions), with little variation between them. Relative to D-SAT and SAT, in D-SAP and SAP fewer parameters need to be estimated, which is likely determining their lower standard errors. Results obtained comparing Engel curves for cereals and proteins are similar and presented in Table A7 in the Appendix. Table 4 (columns (2) to (4)) reports descriptive statistics for the individual estimated resource shares, that is the fraction of household resources that is consumed by each boy, girl, woman, or man. Contrary to the estimates reported in Table 3, these figures take into account the empirical distributions of the household composition variables *a* and of all other covariates *X*. For simplicity, we here discuss results obtained using the D-SAP restriction. This choice is not arbitrary. Using an alternative identification approach introduced by Dunbar et al. (2017) based on distribution factors, we test our four preference restrictions. We estimate the model without restrictions using women's command of household assets as distribution factors. The Wald tests never reject the D-SAP restriction. Section A.6 in the Appendix contains the full analysis. The reader should note that the mean and median of the estimated resource shares do not need to sum to one because there can be more than one individual of the same type in each family and ³⁷According to the 2014 Bangladesh Demographic and Health Survey, for instance, the difference between the ideal number of boys and the ideal number of girls for women aged 15 to 19 is roughly 80 percent lower than the difference for women aged 45 to 49. ³⁸These results are mostly consistent with the *observed* resource shares found in Bargain et al. (2018), who also study Bangladesh. They use a different dataset, the Household Income and Expenditure Survey, that exceptionally contains individualized expenditure for all the members of 1,039 households in year 2004. The main difference between our results and theirs is that we do not find evidence of a pro-boy bias in resource allocation. It is important to note that Bargain et al. (2018) do not separately estimate resource shares for boys and girls, but model the proportion of boys in a family as a covariate of resource shares. Table 4: Estimated Resource Shares and Individual Consumption | | | Resource
Shares | | | Individual Consumption
(PPP dollars) | | | |--------------|----------------|--------------------|----------------|----------------|---|----------------------|------------------| | | Obs. | Mean | Median | St. Dev. | Mean | Median | St. Dev. | | _ | (1) | (2) | (3) | (4) | (5) | (6) | (7) | | Boys | 4,502 | 0.158 | 0.162 | 0.042 | 829.70 | 724.15 | 443.75 | | Girls | 4,243 | 0.149 | 0.152 | 0.041 | 792.49 | 693.02 | 423.09 | | Women
Men | 6,417
6,417 | 0.251
0.333 | 0.270
0.340 | 0.068
0.115 | 1,263.21
1,620.19 | 1,122.05
1,461.49 | 607.40
737.28 | <u>Note:</u> Estimates based on BIHS data and D-SAP identification method with Engel curves for cereals and vegetables. Mean and median of resource shares do not need to sum to one because there can be more than one individual of the same type in each family. Individual consumption is obtained multiplying total annual household expenditure (PPP dollars) by individual resource shares. SAP and SAT restrictions are imposed on the first set of assignable goods (cereals), while the second set (vegetables) is unrestricted. because not all households have children of both boys and girls. It is reassuring that the minima and maxima of the estimated resource shares do not fall outside the 0 to 1 range, despite them being modeled as linear (and hence not bounded) functions of household characteristics. Women's resource shares are on average 75 percent of men's; when present, boys' (girls') resource shares are on average 48 (45) percent of men's and 63 (60) percent of women's. In Figure A10 in the Appendix, we show the empirical distributions of the estimated resource shares for year 2015 and for households with children of both genders (to avoid including households with zero resource shares for either boys or girls). While there is considerable variation in the sample, the results indicate that there is substantial inequality in allocation of resources inside the family, with men commanding the majority of household resources. We compute individual consumption as the product of the total household expenditure and the individual resource shares predicted by the model. In columns (5) to (7) of Table 4, we present mean, median and standard deviations of the estimated individual expenditures in PPP dollars. It is interesting to compare these estimates to the per capita expenditure figures presented in Table 2, which implicitly assume that individuals within a family share resources equally. On average, men consume 43 percent more than what per capita calculations would indicate, while boys and girls consume 27 and 30 percent less, respectively. Interestingly, women's average individual consumption is similar to the average per capita level of consumption. The discrepancies between per capita expenditures and our estimates of individual consumption suggest that the probability of living in poverty may be non-trivial even for individuals that reside in households with per capita expenditure above the poverty line. Before further investigating this issue in Section 6, we briefly present some additional results related to recent results in the literature. Specifically, we focus on possible differences in the treatment of young vs. older adults in extended families (Calvi, 2017) and of first-born vs. later-born children (Jayachandran and Pande, 2017).³⁹ ³⁹These studies focus on India, not Bangladesh. We recognize the existence of clear and important differences between the two countries. However, no dataset containing assignable goods by age and birth order is available for India. For a list of other papers looking at the unequal treatment of specific household members, see Section 2. #### 5.3 Additional Results Young vs. Older Adults. Life expectancy at birth in Bangladesh is 71 years, with women having slightly longer lifespans than men. The age structure of the population is changing rapidly, too. Since 1989, for instance, the proportion of population under age 15 declines from 43 percent in 1989 to 34 percent in 2014. In contrast, populations age 15-59 and age 60 and over have increased substantially (by 14 percent and 44 percent, respectively). Roughly half of households in our sample are non-nuclear families, where young and older adults likely coexists (one out of five households comprise women or men aged 46 and older). Assessing the differences in the access to household resources by gender and age is therefore of primary importance. Studying resource sharing in Indian households, Calvi (2017) shows that women's resource shares relative to men's decline steadily at post-reproductive ages (that is, at age 45 and above), when on average women get as low as 65 percent of men's resources. Due to data availability, however, her analysis requires younger and older women within the same family to have identical preferences (even though preferences can vary across families). Given the richness of the BIHS dataset, we can here overcome this limitation. Specifically, we consider young and older men and women as separate household members, with their own preferences and resource shares. We categorize adults in four groups: women aged 15 to 45, men aged 15 to 45, women 46 and above, and men 46 and above. As before, we maintain the distinction between adults and children. We take to the data a system of (up to) 12 Engel curves analogous to (15), where W_{js}^1 and W_{js}^2 ($j = b, g, w^y, m^y, w^o, m^o$) are now budget shares of cereals and vegetables consumption for boys', girls', women's and men's aged 15 to 45 and women's and men's aged 46 or older, respectively. Again, σ_j is the number of household members of category j, so that $\sigma_{m^y} \eta_{m^y s} = 1 - \sigma_b \eta_{bs} - \sigma_g \eta_{gs} - \sigma_{w^y} \eta_{w^y s} - \sigma_{w^o} \eta_{m^o s} - \sigma_m \eta_{m^o s}$. The estimates are presented in Panel A of Table A8. Consistent with our main results, we find that men consume more than women regardless of their age. The average resource share of men aged 15-45 is more than double that of women in the same age range (43 percent to 21 percent). Moreover, resource shares for women aged 46 and older are on average 41 percent lower than those of younger women and 60 percent lower than men aged 46 and older.⁴² **Birth Order.** Motivated by recent work by Jayachandran and Pande (2017), who find that laterborn children in India are substantially more likely to be stunted relative to first-born children, we analyze the importance of birth order in intra-household resource allocation. We divide children aged 14 and under into four categories: first-born boys, first-born girls, later-born
boys, and laterborn girls denoted by b^f , g^f , b^l , and g^l , respectively. Note that birth order is not directly provided in ⁴⁰Bangladesh Demographic and Health Survey Report (2014). ⁴¹While theoretically possible, given the size of our dataset, including more than six categories is computationally intractable. ⁴²Resource shares for older women may decline due to widowhood. Existing research has highlighted the plight of widows in a variety of different contexts (van de Walle, 2013; Chen and Drèze, 1992; Drèze and Srinivasan, 1997; Jensen, 2005). To examine the role of widowhood in driving the results in Table A8, we estimate the model on a restricted sample that excludes households with widows. These results are presented in Panel A of Table A9. Resource shares for non-widowed women aged 46 and above is 14 percent, which is above the 12 percent we find using the full sample in Table A8, suggesting widowhood is a potential factor in declining consumption for older women. ⁴³Consistent with the Hindu-Muslim difference in eldest son preference, Jayachandran and Pande (2017) show that the birth order gradient for children's height in India exceeds that in Bangladesh and Pakistan. Nevertheless, they find that the height disadvantage of later-born children is statistically significant and economically relevant for these countries too (see online Appendix of Jayachandran and Pande (2017), Table 4). the BIHS. We work around this problem using several sections of the survey, including the household roster and the migration module. Details of how we constructed this variable can be found in Appendix A.5. By construction, households can have either one first-born boy, or one first-born girl, but not both (we drop households that have first-born twins, or both a first-born grandchild and a first-born child). Households can have multiple later-born children. As before, we divide adults into men and women which results in a system of up to 10 Engel curves. We restrict resource shares to sum to one so that resource shares for adult men are defined as $\sigma_m \eta_m = 1 - \eta_{b^f} - \sigma_{b^l} \eta_{b^l} + \sigma_{g^l} \eta_{g^l} - \sigma_w \eta_w$ in households with one first-born boy, and as $\sigma_m \eta_m = 1 - \eta_{g^f} - \sigma_{b^l} \eta_{b^l} + \sigma_{g^l} \eta_{g^l} - \sigma_w \eta_w$ in households with one first-born girl. Consistent with Jayachandran and Pande (2017), we find evidence that households favor first-born boys. Table A8 (Panel B) presents the results for households with a first-born boy in column (2). In these households we find that the first-born boy consumes on average 16 percent of the total budget, whereas later-born boys and girls consume 13 and 12 percent, respectively. In households with a first-born girl, the first-born girl consumes 15 percent of the budget, and later-born boys and girls consume 14 and 13 percent on average, respectively. These results are presented in column (2) of Panel C. We should note that first-born children are older on average than later-born children, and older children have higher consumption (see Table A5). However, as we further discuss in Section 6, this alone is not enough to account for the difference in resource shares we see between first-born boys and other children. ### 6 Do Poor Individuals Live in Poor Households? We use the model estimates to construct poverty rates that take into account *unequal* resource allocation within the household. These are different from standard poverty measures which by construction assume *equal* sharing of household resources. Specifically, based on our estimates of individual consumption, we calculate the headcount index, which is equal to the proportion of individuals below the poverty line. Note that the absolute levels of poverty discussed in this section are based on our estimation sample and on specific modeling assumptions. For these reasons, we do not wish to emphasize them too much, but rather focus on the relative levels of poverty. Setting an appropriate poverty line is a difficult task (see Ravallion and Sen (1996) and Wodon (1997) for a comparison of different poverty lines used in Bangladesh). Typically, global poverty rates (such as the number of people living in extreme poverty) are based on household per capita expenditure and compared to the World Bank's extreme poverty line of US\$1.90 per day. This threshold is meant to reflect the amount of resources below which a person's minimum nutritional, clothing, and shelter needs cannot be met. ⁴⁴ Yet using the same line for every individual may lead to welfare-inconsistent poverty comparisons if some individuals (such as children) require fewer resources to ⁴⁴The international poverty line is ultimately based on the national poverty lines of the 15 poorest countries in the world in 2005. Since October 2015, the World Bank uses updated international poverty line of US\$1.90/day in 2011 PPP, which incorporate new information on differences in the cost of living across countries (Ferreira et al., 2017). The new lines preserve the real purchasing power of the previous line of US\$1.25/day in 2005 prices (Chen and Ravallion, 2010). achieve the same level of welfare. Equivalence scales are sometimes used to adjust for differences between groups within the household, such as child vs. adult consumption. There are obvious problems with these scales that have been well documented; for example, equivalence scales are often ad hoc and sensitive to the type of scale used (Batana et al., 2013; Ravallion, 2015). Moreover, they lack theoretical foundations and involve untestable assumptions related to welfare comparisons across individuals in different household environments.⁴⁵ To account for differences in needs (but acknowledging the limitations discussed above), we adjust the \$1.90/day poverty line for children and the elderly in two different ways. In a first approach (which we refer to as *rough adjustment*), we fix the poverty line for children (individuals 14 and younger) to 60 percent of the extreme poverty line; i.e., to \$1.14/day. Recognizing that elderly adults may have different consumption from working-age adults, we assign adults over the age of 45 a poverty line set at 80 percent of \$1.90/day, or \$1.52/day. In a second approach (which we call the *calorie-based adjustment*), we create an additional equivalence scale based on relative caloric requirements which accounts for the differences in needs between ages and genders. Specifically, we assume \$1.90/day is the relevant threshold for adults aged 15 to 45 and rescale individual poverty lines based on the 2015-2020 Dietary Guidelines for Americans (see footnote 21 for details). For simplicity, we here abstract from joint consumption and economies of scale. We also ignore differences in the activity levels of individuals, which may help explain differences in consumption. Sections A.7 and A.8 in the Appendix discuss sensitivity tests along these dimensions. We start by further exploring the differences between per capita household expenditure and our estimates of individual expenditure. For simplicity, we discuss results obtained by imposing the D-SAP restriction and focus on year 2015 (results obtained with the other three identification approaches and for 2011 are similar and available upon request). Panel A of Figure 2 shows the empirical distributions of annual individual expenditure and per capita expenditure (expressed in PPP dollars). The vertical line equals \$693.5; that is, the annual amount consumed by an individual who lives on \$1.90/day for 365 days. When intra-household inequality is accounted for, the expenditure distribution becomes more skewed and significantly more unequal. The coefficient of variation (i.e., the ratio between the standard deviation and the mean) equals 0.44 for per capita expenditure, while it equals 0.58 for individual expenditure. Using the Mean Log Deviation measure of inequality described in Section 3, we find that overall inequality almost doubles once we allow for intra-household inequality, from 0.08 under the per capita measure to 0.15 using individual-level consumption. Within-household inequality represents about 45 percent of total inequality in individual consumption, which is similar ⁴⁵The deficiencies in equivalence scales has motivated recent work on *indifference scales* (Browning et al. (2013), Chiappori (2016)). Introduced by Browning et al. (2013), indifference scales improve upon equivalence scales in a number of ways. Unlike equivalence scales, which seek to determine the level of income an individual living alone would need to attain the same level of utility as a family with a certain composition, indifference scales ask how much income an individual would need to reach the same indifference curve as they would were they a member of a different type of household. To analyze poverty using indifference scales, we would need to estimate the extent of consumption sharing in Bangladeshi households. We leave that for future work. ⁴⁶We follow previous works that used estimated sharing rules to compute poverty rates, such as Dunbar et al. (2013, 2017), Calvi (2017), and Tommasi (2018), who used the adjustment implied by OECD standard equivalence scales. Note: Individual consumption is obtained multiplying total annual household expenditure (PPP dollars) by individual resource shares. The vertical line corresponds to the percentile of the \$1.90/day threshold. Estimates are based on BIHS data and D-SAP identification method with Engel curves for cereals and vegetables. Figure 2: Per Capita and Individual Expenditures to the contribution found for caloric and protein intake (see Table 1).⁴⁷ In Panel B, we show estimated individual expenditures by household per capita expenditure percentiles. Individual expenditures increase as per capita household expenditure increases. However, there are significant differences between women, men, boys
and girls, which confirm our previous findings. Notice that in our model resource shares are not allowed to vary with household expenditure (this restriction is required for identification; see footnote 7 and Section 4.2). Thus, it is not surprising that the lines are roughly parallel to each other. We also find a large increase in the poverty rate once intra-household inequality is accounted for. This is primarily driven by higher poverty among women and children. For the extreme poverty line of \$1.90/day, we find that the poverty rate increases from 17 percent using per capita expenditures to 27 percent using estimated individual expenditures in 2015 (and 17 percent to 28 percent in 2011). Of those who are poor, 57 percent are female and 80 percent are 14 years and younger; with per capita-based rates, 52 percent are female and 45 percent are 14 and younger. Using our rough adjustment equivalence scale, the overall poverty rate falls to 11 percent; adjusting for differences in caloric needs yields a poverty rate of 15 percent. The proportion of children among the poor falls to 62 percent and 64 percent for the rough and calorie-based adjustments respectively, while female representation is 65 percent and 55 percent. However, even after adjusting for differences in needs, we find that women and children still comprise a large proportion of the poor. Almost 70 percent of households contain at least one poor person under the \$1.90/day poverty ⁴⁷These figures are in line with Bargain et al. (2018), who also find that that 40 to 50 percent of total individual inequality in Bangladesh is due to within-household inequality (see footnote 38). The contribution of within-household inequality to overall consumption inequality is larger than that found in De Vreyer and Lambert (2018) in Senegal. However, De Vreyer and Lambert (2018) do not include inequality in food consumption, which we find to be non-negligible. Note: Individual consumption is obtained multiplying total annual household expenditure (PPP dollars) by individual resource shares. The vertical line corresponds to the percentile of the \$1.90/day threshold. Estimates are based on BIHS data and D-SAP identification method with Engel curves for cereals and vegetables. No adjustment for relative needs in Panel A. In Panel B, the poverty line for children (aged 14 or less) is set to 0.6*1.90 and the poverty line for the elderly (aged 46 plus) is set to 0.8*1.90. In Panel C, we assume poverty lines for children and the elderly to be proportional to their caloric requirements relative to young adults (aged 15-45). We rely on the daily calorie needs by age and gender estimated by the United States Department of Health and Human Services and assume young adults require 2,400 calories per day. **Figure 3:** Poverty Rates by Per Capita Expenditure Percentile line. Results are similar for the line based on the rough adjustment and caloric-based adjustments. In households with poor and non-poor members, on average around 50 percent of members are poor. Strikingly, of the households considered poor based on per capita expenditures, only 8 percent have all poor household members. The joint probability of a poor household with all poor members is only 1 percent. Figure 3 shows how individual poverty rates vary over the per capita expenditure distribution. If individual expenditure corresponded exactly to per capita household expenditure, then everyone would be poor below the percentile corresponding to the poverty line and no one would poor above that threshold (see Figure A11 in the Appendix). We find this not to be the case. In Panel A, we plot individual poverty rates for women, men, boys, and girls by percentiles of the per capita expenditure distribution. As expected, individual poverty rates decline as per capita household expenditure increases. However, a substantial number of poor individuals (primarily women and children) reside in households that are not poor in terms of per capita expenditure. Poverty rates for women are higher than men's up until the 45th percentile of per capita household expenditure, and children's rates are higher up until the 90th percentile. Adjusting for differences in needs reduces the proportion of poor children (and to a lesser extent women) found in non-poor households, though a substantial number of poor are still found across the expenditure distribution. In effect, household-level measures of poverty are likely to misclassify women and children as non-poor more frequently than men. Based on our additional estimates that account for differences between young and older adults in extended families and between first-born and later-born children (see Section 5.3), we compute poverty rates for men and women by age and for boys and girls by birth order. The fraction of women aged 46 and older increases from 16 percent using per capita expenditures to 52 percent using estimated individual consumption in 2015 under the \$1.90 a day poverty line (or to 28 and 32 if the rough or the calorie-based adjustments are used, respectively). Even when we account for differences in needs, older women are three times more likely to live in poverty than older men, who in turn are four times more likely to live in poverty that prime-aged men. Turning to poverty rates by birth order, our calculations indicate that the unequal treatment in access to resources documented in Section 5.3 has consequences for children's likelihood to live in poverty. We find, for instance, that later-born children are about 50 percent more likely to live below the poverty threshold than first-born children. This is true both for boys and girls even when we adjust the poverty lines by relative calorie requirements, therefore accounting for the fact first-born children are likely older than later-born children. We do not find significant differences by gender among first-born children or among later-born children. Figures A12 and A13 in the Appendix show the empirical distribution of the estimated individual consumption (Panel A), estimated individual consumption by per capita household expenditure percentile (Panel B), and poverty calculations adjusted for relative calorie requirements by per capita household expenditure percentile (Panel C). As before, the vertical line corresponds to the percentile of the \$1.90/day threshold. To avoid clutter in the figures, we do not display graphs for children in Figure A12 and for adults in Figure A13. # 7 Comparing Different Measures of Individual Welfare Our findings thus far indicate that accounting for intra-household inequalities is crucial for a comprehensive assessment of poverty and inequality. Relatedly, we have stressed throughout the paper that in presence of intra-household inequality, anti-poverty policies based on household consumption may fail to reach their targets if disadvantaged individuals live in households with per capita consumption above the poverty line. Based on the poverty calculations discussed in the previous section, we now quantify the extent of this *mistargeting*. Specifically, we provide an answer to the following question: how many poor individuals would *not* be reached by anti-poverty programs that are based on household per capita expenditure? In Figure 4, we plot estimated individual consumption against household per capita expenditure for men, women, boys and girls. Each dot corresponds to one individual in our sample. As before, we focus on year 2015 and use estimates for individual consumption based on the D-SAP approach. We partition each graph into four regions based on whether one's estimated individual consumption or per capita consumption is above or below the \$1.90/day poverty threshold. For individuals falling in the lower left or in upper right areas, the two measures of poverty (unadjusted for relative needs) coincide. In other words, accounting for intra-household inequality does not impact their categorization as living above or below the poverty threshold. By contrast, individuals falling in the lower right quadrant would be considered non-poor according to household per capita measures despite having an estimated level of individual consumption below the standard poverty line. Analogously, individuals in the upper left quadrant would be considered poor according to household per capita Note: Only households surveyed in 2015 are included. Individual consumption is obtained by multiplying total annual household expenditure (PPP dollars) by individual resource shares. Per capita consumption is obtained by dividing total annual household expenditure (PPP dollars) by household size. Reference lines correspond to the 1.90 dollar/day poverty line. Estimates are based on BIHS data and D-SAP identification method with Engel curves for cereals and vegetables. Figure 4: Individual Expenditure and Per Capita Expenditure measures despite having an estimated level of individual consumption above the standard poverty line. A substantial fraction of boys and girls are found in the lower right quadrant, while a number of men fall in the upper left area. Interestingly, women seem to be as likely to be in the lower right as in the upper left quadrant. Overall, when we adjust poverty lines for relative caloric needs, we find that 37 percent of individuals in our sample with estimated levels of consumption below the poverty line are in fact considered non-poor based on household per capita expenditure. This figure is much higher (58 percent) for unadjusted figures. As expected, children face the highest mistargeting probabilities: 45 percent of boys and 41 percent of girls consume less than their own poverty threshold (calorie-based adjusted), but they would not be reached by anti-poverty programs that are based on household per capita expenditure. For women, this probability equals 24 percent. By contrast, only 11 percent of men who are categorized as poor based on household per capita expenditure
have levels of estimated individual consumption below the poverty line. One final question remains: how much overlap is there between our estimates of individual consumption and other indicators of welfare, such as nutritional status and food intake? We assess whether individual consumption is a better indicator of nutritional outcomes relative to per capita expenditure. First, we compute individual-level expenditure percentiles based on individual and per capita consumption and construct concentration curves (note that in Figure 1 the percentiles were at the household level). To account for the issue that children may be found disproportionately in the lower percentiles due to their lower average consumption levels, we construct separate percentiles for adults and children. That is, when looking at the new concentration curves, we consider the proportion of undernourished adults (children) found among the poorest x percent of adults (children). There are at least two features to note in Figure 5. First, with the exception of underweight males, more undernourished individuals are found in the lower percentiles of estimated individual consumption relative to per capita consumption. Second, concentration curves based on individual expenditures for females display much more curvature than those for males. These findings indicate that individual consumption may be a better indicator of one's nutritional status and a better measure of welfare, especially for those individuals who have less power within the household. Next, we calculate the amount of variation in individuals' food intake and nutritional status that is explained by the estimated individual consumption vs. per capita consumption. For food intakes, we estimate linear regression models of nutritional variables on either of the two measures of consumption (in logarithms). For the binary measures of undernutrition, we estimate logistic regressions. The corresponding R^2 values (pseudo R^2 values for the logistic regressions) are reported in Table A10. For simplicity we report results for year 2015 (results for year 2011 are similar). Our analysis shows that, relative to per capita consumption, individual consumption accounts for substantially more variation in caloric intake, protein intake, and food consumption. For caloric intake, the R^2 values are 0.21 and 0.02 for individual consumption and per capita consumption, respectively; for protein intake, they equal 0.21 and 0.05. When we look at individual food consumption, we find that estimated individual consumption accounts for about one fifth of its variation, while per capita consumption explains 12 percent only. We also estimate regression models separately for men, women, boys, and girls. Even within category (with the exception of men), our estimates of individual consumption explain more variability in food intake than per capita consumption. Turning to our measures of underweight, stunting, and wasting, we do not find such substantial differences in terms of explained variation. It should be noted, however, that the R^2 values are quite low overall. Factors other that consumption (such as the health environment, exposure to diseases, sanitation, and access to infrastructure) are therefore likely to play a critical role in determining Note: BIHS data. Individuals who report having lost weight due to illness in the past four weeks are excluded. The graphs show concentration curves for the cumulative proportion of women and men who are underweight, and children aged 0-5 who are stunted and wasted at each household per capita expenditure percentile (dashed line) and at each individual consumption percentile. Individual consumption is estimated using the D-SAP approach and Engel curves for cereals and vegetables. Observations with missing values and pregnant or lactating women have been dropped. The Stata command glcurve is used to construct the curves. **Figure 5:** Undernutrition Concentration Curves with Estimated and Per Capita Individual Consumption one's nutritional and health status (see e.g. Banerjee et al. (2004); Guiteras et al. (2015); Coffey and Spears (2017); Duh and Spears (2017); Geruso and Spears (Forthcoming)). Nonetheless, for women and children, increases in their individual consumption are associated with much larger decreases in their likelihood to be undernourished as compared to increases in their household per capita consumption. For instance, for women, the average marginal effect of individual consumption is about fifteen times larger than that for per capita consumption (-0.15 vs. -0.01). For children, even conditional on household per capita expenditure, a one percent increase in their individual consumption is associated with a statistically significant 12 percentage points decrease in their likelihood to be undernourished. # 8 Conclusions Policies aimed at reducing poverty in developing countries often assume that targeting poor households will be effective in reaching poor individuals. However, intra-household inequality in resource allocation may mean many poor individuals reside in non-poor households. Using a detailed dataset from Bangladesh that contains both individual-level food consumption and anthropometric outcomes for all household members, we first show that undernourished individuals are spread across the distribution of household per capita expenditure. We also find substantial variation in caloric intake, protein intake and food consumption within households. We then study the allocation of total resources within families and document that in fact resources are *not* shared equally. We develop a new methodology to identify and estimate the fraction of total household expenditure that is devoted to each household member in the context of a collective household model. Our approach exploits the observability of multiple assignable goods to substantially weaken the assumptions required by existing identification methods. We use our model estimates to compute individual-level poverty rates that account for disparities within families. Specifically, we assess the relative consumption (and therefore the relative poverty risk) of prime-aged and older men and women, boys and girls, first-born and later-born children. Women, children, and the elderly face significant probabilities of living in poverty even in house-holds with per capita expenditure above the poverty threshold. Under the assumptions of the model, we find that the poverty rate almost doubles once intra-household inequality is accounted for. Consistent with our findings for nutrition and food intake, we show that within household consumption inequality comprises a substantial portion of overall consumption inequality. There are some caveats that deserve mention. First, our empirical analysis is entirely descriptive. We estimate how resources are allocated within households, but refrain from taking a stand on *why* certain types of individuals consume less. Second, while our poverty estimates are an improvement on existing household-level per capita measures, we are unable to quantify the extent of joint consumption within the household, which may bias our poverty estimated upwards. This issue, however, is mostly irrelevant for *relative* poverty measures, which is the source of our policy recommendations. While much progress has been made on reducing extreme poverty over the past few decades, our work suggests that much more is still to be done. Based on our findings, we argue that policies aimed at poor households may not be sufficient in reaching poor individuals, and in particular, poor women, children, and elderly adults. Going forward, policies that have a wider coverage of these groups may be helpful; for example, comprehensive school feeding programs or maternal health programs that reach individuals outside households may be beneficial. Context-specific cost-benefit analyses of individual vs. household targeting, however, are necessary to guide the design of efficient, successful anti-poverty programs. We hope future work will address these issues. # References - AGARWAL, N., A. AIYAR, A. BHATTACHARJEE, J. CUMMINS, C. GUNADI, D. SINGHANIA, M. TAYLOR, AND E. WIGTON-JONES (2017): "Month of Birth and Child Height in 40 Countries," *Economics Letters*, 157, 10–13. [39] - APPS, P. F. AND R. REES (1988): "Taxation and the Household," *Journal of Public Economics*, 35, 355–369. [2] - BANERJEE, A., A. DEATON, AND E. DUFLO (2004): "Wealth, Health, and Health Services in Rural Rajasthan," *American Economic Review*, 94, 326–330. [31] - BARGAIN, O. AND O. DONNI (2012): "Expenditure on Children: A Rothbarth-Type Method Consistent with Scale Economies and Parents' Bargaining," *European Economic Review*, 56, 792–813. [4], [5] - BARGAIN, O., O. DONNI, AND P. KWENDA (2014): "Intrahousehold Distribution and Poverty: Evidence from Cote d'Ivoire," *Journal of Development Economics*, 107, 262–276. [5] - BARGAIN, O., P. KWENDA, AND M. NTULI (2017): "Gender Bias and the Intrahousehold Distribution of Resources: Evidence from African Nuclear Households in South Africa," *Journal of African Economies*, 27, 201–226. [5] - BARGAIN, O., G. LACROIX, AND L. TIBERTI (2018): "Validating the Collective Model of Household Consumption Using Direct Evidence on Sharing," *Unpublished Manuscript*. [4], [5], [13], [21], [26], [50] - BATANA, Y., M. BUSSOLO, AND J. COCKBURN (2013): "Global Extreme Poverty Rates for Children, Adults, and the Elderly," *Economics Letters*, 120, 405–407. [25] - BEHRMAN, J. (1988): "Nutrition, Health, Birth Order and Seasonality," *Journal of Development Economics*, 28, 43–62. [4] - BEHRMAN, J. AND P. TUBMAN (1986): "Birth Order, Schooling, and Earnings," *Journal of Labor Economics*, 3, 5121–5145. [4] - BEHRMAN, J. R. AND A. B. DEOLALIKAR (1987): "Will Developing Country Nutrition Improve with Income? A Case Study for Rural South India," *Journal of Political Economy*, 95, 492–507. [6] -
BICEGO, G., S. RUTSTEIN, AND K. JOHNSON (2003): "Dimensions of the Emerging Orphan Crisis in Sub-Saharan Africa," *Social Science and Medicine*, 56, 1235–1247. [4] - BLACK, S., P. DEVEREUX, AND K. SALVANES (2005): "The More the Merrier? The Effect of Family Size and Birth Order on Children's Education," *The Quarterly Journal of Economics*, 120, 669–700. [4] - ——— (2011): "Older and Wiser? Birth Order and IQ of Young Men," *CESifo Economic Studies*, 57, 103–120. [4] - BOERMA, T., E. SOMMERFELT, AND G. BICEGO (1992): "Child Anthropometry in Cross-Sectional Surveys in Developing Counties: An Assessment of the Survivor Bias," *American Journal of Epidemiology*, 135, 438–439. [39] - BOOTH, A. AND H. J. KEE (2009): "Birth Order Matters: The Effect of Family Size and Birth Order on Educational Attainment," *Journal of Population Economics*, 22, 367–397. [4] - Bredenkamp, C., L. Buisman, and E. van de Poel (2014): "Persistent Inequalities in Child Undernutrition: Evidence from 80 Countries, from 1990 to Today," *International Journal of Epidemiology*, 43, 1328–1335. [7] - BROWN, C., M. RAVALLION, AND D. VAN DE WALLE (2018): "Most of Africa's Nutritionally-Deprived Women and Children are Not Found in Poor Households," *Review of Economics and Statistics*, Forthcoming. [1], [4], [6], [7], [39] - BROWNING, M., F. BOURGUIGNON, P.-A. CHIAPPORI, AND V. LECHENE (1994): "Income and Outcomes: A Structural Model of Intrahousehold Allocation," *Journal of Political Economy*, 1067–1096. [2], [4] - BROWNING, M. AND P.-A. CHIAPPORI (1998): "Efficient Intra-household Allocations: A General Characterization and Empirical Tests," *Econometrica*, 1241–1278. [2], [4] - BROWNING, M., P.-A. CHIAPPORI, AND A. LEWBEL (2013): "Estimating Consumption Economies of Scale, Adult Equivalence Scales, and Household Bargaining Power," *The Review of Economic Studies*, 80, 1267–1303. [2], [4], [11], [25], [42], [52] - BROWNING, M., P.-A. CHIAPPORI, AND Y. WEISS (2014): *Economics of the Family*, Cambridge University Press. [10], [51] - CALVI, R. (2017): "Why Are Older Women Missing in India? The Age Profile of Bargaining Power and Poverty," *Unpublished Manuscript*. [2], [3], [5], [12], [13], [22], [23], [25], [50] - CALVI, R., A. LEWBEL, AND D. TOMMASI (2017): "LATE with Mismeasured or Misspecified Treatment: An Application to Women's Empowerment in India," Working Papers ECARES 2017-27, ULB Universite Libre de Bruxelles. [5] - CASE, A., C. PAXSON, AND J. ABLEIDINGER (2004): "Orphans in Africa: Parental Death, Poverty, and School Enrollment," *Demography*, 41, 483–508. [4] - CHEN, M. AND J. DRÈZE (1992): "Widows and Health in Rural North India," *Economic and Political Weekly*, WS81–WS92. [4], [23] - CHEN, S. AND M. RAVALLION (2010): "The Developing World Is Poorer than We Thought, but No Less Successful in the Fight Against Poverty," *The Quarterly Journal of Economics*, 125, 1577–1625. [24] - CHERCHYE, L., B. DE ROCK, A. LEWBEL, AND F. VERMEULEN (2015): "Sharing Rule Identification for General Collective Consumption Models," *Econometrica*, 83, 2001–2041. [4] - CHERCHYE, L., B. DE ROCK, AND F. VERMEULEN (2011): "The Revealed Preference Approach to Collective Consumption Behaviour: Testing and Sharing Rule Recovery," *The Review of Economic Studies*, 78, 176–198. [4] - CHERCHYE, L., T. DEMUYNCK, B. DE ROCK, F. VERMEULEN, ET AL. (2017): "Household Consumption When the Marriage Is Stable," *American Economic Review*, 107, 1507–1534. [4] - CHIAPPORI, P.-A. (1988): "Rational Household Labor Supply," Econometrica, 63–90. [2], [4] - ——— (1992): "Collective Labor Supply and Welfare," *Journal of Political Economy*, 437–467. [2], [4] - ——— (2016): "Equivalence versus Indifference Scales," *Economic Journal*, 523–545. [25] - CHIAPPORI, P.-A. AND I. EKELAND (2009): "The Microeconomics of Efficient Group Behavior: Identification," *Econometrica*, 77, 763–799. [2], [4] - COADY, D., M. GROSH, AND J. HODDINOTT (2004): Targeting Transfers in Developing Countries: Review of Lessons and Experience, World Bank, Washington D.C. [1] - COFFEY, D. AND D. SPEARS (2017): Where India Goes: Abandoned Toilets, Stunted Development and the Costs of Caste, Harper Collins. [31] - DE HAAN, M. (2010): "Birth Order, Family Size and Educational Attainment," *Economics of Education Review*, 29, 576–588. [4] - DE VREYER, P. AND S. LAMBERT (2018): "By Ignoring Intra-Household Inequality Do We Underestimate the Extent of Poverty?" Working Paper 2018-12, Paris School of Economics. [4], [26] - DEATON, A. AND J. MUELLBAUER (1980): "An Almost Ideal Demand System," *American Economic Review*, 70, 312–26. [12] - DEATON, A. AND S. ZAIDI (2002): "Guidlines for Constructing Consumption Aggregates for Welfare Analysis," Living Standards Measurement Study Working Paper 1135, World Bank, Washington DC. [52] - DEL NINNO, C. AND B. MILLS (2015): Safety Nets in Africa: Effictive Mechanisms to Reach the Poor and Most Vulnerable, World Bank, Washington D.C. [1] - DRÈZE, J. AND P. SRINIVASAN (1997): "Widowhood and Poverty in Rural India: Some Inferences from Household Survey Data," *Journal of Development Economics*, 54, 217–234. [4], [23] - Duh, J. and D. Spears (2017): "Health and Hunger: Disease, Energy Needs, and the Indian Calorie Consumption Puzzle," *The Economic Journal*, 127, 2378–2409. [31] - DUNBAR, G. R., A. LEWBEL, AND K. PENDAKUR (2013): "Children's Resources in Collective Households: Identification, Estimation, and an Application to Child Poverty in Malawi," *American Economic Review*, 103, 438–471. [2], [3], [4], [5], [11], [12], [20], [25], [42], [50] - ——— (2017): Identification of Random Resource Shares in Collective Households Without Preference Similarity Restrictions, Bank of Canada. [5], [12], [13], [21], [25], [50], [51] - EVANS, D. AND E. MIGUEL (2007): "Orphans and Schooling in Africa: A Longitudinal Analysis," *Demography*, 44, 35–57. [4] - FERREIRA, F., S. CHEN, A. DABALEN, Y. DIKHANOV, N. HAMADEH, D. J. JOLLIFFE, A. NARAYAN, E. BEER PRYDZ, A. REVENGA, P. SANGRAULA, U. SERAJUDDIN, AND N. YOSHIDA (2017): "A Global Count of the Extreme Poor in 2012: Data Issues, Methodology, and Initial Results," *The Journal of Economic Inequality*, 14, 141–172. [24] - GERUSO, M. AND D. SPEARS (Forthcoming): "Neighborhood Sanitation and Infant Mortality," *American Economic Journal: Applied Economics*. [31] - GUITERAS, R., J. LEVINSOHN, AND A. M. MOBARAK (2015): "Encouraging Sanitation Investment in the Developing World: A Cluster-randomized Trial," *Science*, 348, 903–906. [31] - HADDAD, L., H. ALDERMAN, S. APPLETON, L. SONG, AND Y. YOHANNES (2003): "Reducing Child Malnutrition: How Far Does Income Growth Take Us?" *The World Bank Economic Review*, 17, 107–131. [6] - HAZARIKA, G. (2000): "Gender Differences in Children's Nutrition and Access to Health Care in Pakistan," *The Journal of Development Studies*, 37, 73–92. [6] - HEADEY, D. (2013): "Developmental Drivers of Nutritional Change: A Cross-Country Analysis," *World Development*, 42, 76–88. [5], [6] - HEADEY, D., J. HODDINOTT, D. ALI, R. TESFAYE, AND M. DEREJE (2015): "The Other Asian Enigma: Explaining the Rapid Reduction of Undernutrition in Bangladesh," *World Development*, 66, 749–761. [6] - HONG, R., J. E. BANTA, AND J. A. BETANCOURT (2006): "Relationship Between Household Wealth Inequality and Chronic Childhood Under-Nutrition in Bangladesh," *International Journal for Equity in Health*, 5, 1–10. [6] - JAMAIYAH, H., G., M. A., SAFIZA, G. KHOR, N. WONG, C. KEE, R. RAHMAH, A. AHMAD, S. SUZANA, W. CHEN, AND M. RAJAAH (2010): "Reliability, Technical Error of Measurements and Validity of Length and Weight Measurements for Children Under Two Years Old in Malaysia," *Medical Journal of Malaysia*, 65, 131–137. [39] - JAYACHANDRAN, S. AND R. PANDE (2017): "Why Are Indian Children So Short? The Role of Birth Order and Son Preference," *American Economic Review*, 107, 2600–2629. [2], [4], [22], [23], [24] - JENSEN, R. (2005): *Caste, Culture, and the Status and Well-Being of Widows in India*, University of Chicago Press, 357–376. [4], [23] - JORGENSON, D., L. J. LAU, T. M. STOKER, R. BASMANN, AND G. RHODES (1982): "The Transcendental Logarithmic Model of Aggregate Consumer Behavior," *Advances in econometrics*. [12] - KAKWANI, N., A. WAGSTAFF, AND E. VAN DOORSLAER (1997): "Socioeconomic Inequalities in Health: Measurement, Computation and Statistical Inference," *Journal of Econometrics*, 77, 87–103. [7] - KLASEN, S. AND R. LAHOTI (2016): "How Serious is the Neglect of Intra-Household Inequality in Multi-Dimensional Poverty Indices?" CRC-PEG Discussion Paper 200. [4] - LAFAVE, D. AND D. THOMAS (2017): "Extended Families and Child Well-being," *Journal of Development Economics*, 126, 52–65. [51] - LARSEN, A. F., D. HEADEY, AND W. A. MASTERS (1999): "Misreporting Month of Birth: Implications for Nutrition Research," Discussion Paper 01617, IFPRI. [39] - LEWBEL, A. AND K. PENDAKUR (2008): "Estimation of Collective Household Models with Engel Curves," *Journal of Econometrics*, 147, 350–358. [4] - LISE, J. AND S. SEITZ (2011): "Consumption Inequality and Intra-Household Allocations," *The Review of Economic Studies*, 78, 328–355. [4] - MENON, M., K. PENDAKUR, AND F. PERALI (2012): "On the Expenditure-Dependence of Children's Resource Shares," *Economics Letters*, 117, 739–742. [4] - MORADI, A. (2010): "Selective Mortality or Growth After Childhood? What Really is Key to Understand the Puzzling Tall Adult Heights in Sub-Saharan Africa," Working paper, University of Sussex. [39] - NIPORT (2016): "Bangladesh Demographic and Health Survey 2014: Policy Briefs." . [5], [6] - PENDAKUR, K. (1999): "Semiparametric Estimates and Tests of Base-Independent Equivalence Scales," *Journal of Econometrics*, 88, 1–40. [13] - PENGLASE, J. (2018): "Consumption Inequality among Children: Evidence from Child Fostering in Malawi," *Unpublished Manuscript*. [3], [5], [12] - PRICE, J. (2008): "Parent-Child Quality TIme: Does Birth Order Matter?" *Journal of Human
Resources*, 43, 240–265. [4] - RAMALINGASWAMI, V., U. JONSSON, AND J. RHODE (1997): Malnutition: A South Asia Enigma, UNICEF, New York. [6] - RAVALLION, M. (2015): "On Testing the Scale Sensitivity of Poverty Measures," *Economics Letters*, 137, 88–90. [25] - ——— (2016): *The Economics of Poverty: History, Measurement, and Policy*, New York: Oxford University Press. [1], [9] - RAVALLION, M. AND B. SEN (1996): "When Method Matters: Monitoring Poverty in Bangladesh," *Economic Development and Cultural Change*, 44, 761–792. [24] - SAHN, D. AND S. YOUNGER (2009): "Measuring Intra-Household Health Inequality: Explorations Using the Body Mass Index," *Health Economics*, 18, S13–S36. [4] - SMITH, L. AND L. HADDAD (2015): "Reducing Child Undernutrition: Past Drivers and Priorities for the Post-MDG Era," *World Development*, 68, 180–204. [6] - SOKULLU, S. AND C. VALENTE (2018): "Individual Consumption in Collective Households: Identification Using Panel Data with an Application to PROGRESA," *Unpublished Manuscript*. [3], [5], [12] - SVEDBERG, P. (1990): "Undernutrition in Sub-Saharan Africa: Is There A Gender Bias?" *The Journal of Development Studies*, 26, 469–486. [6] - ——— (1996): "Gender Biases in Sub-Saharan Africa: Reply and Further Evidence," *The Journal of Development Studies*, 32, 933–943. [6] - TALUKDER, M. N., U. ROB, AND F. R. NOOR (2014): Assessment of Sex Selection in Bangladesh, Population Council, Bangladesh Country Office. [21] - THEIL, H. (1967): Economics and Information Theory, Amsterdam: North Holland. [9] - TOMMASI, D. (2018): "Control of Resources, Bargaining Power and the Demand for Food: Evidence from PROGRESA," *Unpublished Manuscript*. [3], [5], [12], [25] - TOMMASI, D. AND A. WOLF (2018): "Estimating Household Resource Shares: A Shrinkage Approach," *Economics Letters*, 163, 75–78. [19] - ULIJASZEK, S. AND D. KERR (1999): "Anthropometric Measurement Error and the Assessment of Nutritional Status," *British Journal of Nutrition*, 82, 165–177. [39] - VAN DE WALLE, D. (2013): "Lasting Welfare Effects of Widowhood in Mali," *World Development*, 51, 1–19. [4], [23] - VERMEULEN, F. (2002): "Collective Household Models: Principles and Main Results," *Journal of Economic Surveys*, 16, 533–564. [2], [4] - WAGSTAFF, A. (2000): "Socioeconomic Inequalities in Child Mortality: Comparisons Across Nine Developing Countries," *Bulletin of the World Health Organization*, 78, 19–29. [7] - WAGSTAFF, A., C. Bredenkamp, and L. Buisman (2014): "Progress on Global Health Goals: Are the Poor Being Left Behind," World Bank Research Observer, 29, 137–162. [7] - Wamani, Henry and Åstrøm, A. N., S. Peterson, J. Tumwine, and Tylleskär (2007): "Boys Are More Stunted Than Girls in Sub-Saharan Africa: A Meta-Analysis of 16 Demographic and Health Surveys," *BMC Pediatrics*, 7, 1–10. [6] - WODON, Q. (1997): "Food Energy Intake and Cost of Basic Needs: Measuring Poverty in Bangladesh," *The Journal of Development Studies*, 34, 66–101. [24] - WOODRUFF, B. AND A. DUFFIELD (2002): "Anthropometric Assessment of Nutritional Status in Adolescent Populations in Humanitarian Emergencies," *European Journal of Clinical Nutrition*, 56, 1108–1118. [6] - WORLD BANK (2008): "Poverty Assessment for Bangladesh: Creating Opportunities for Bridging the East-West Divide," *Development Series Paper No. 26. Poverty Reduction, Economic Management, Finance & Private Sector Development Sector Unit South Asia Region.* [9] - ——— (2015): A Measured Approach to Ending Poverty and Boosting Shared Prosperity: Concepts, Data, and the Twin Goals, Washington, DC: World Bank. [1], [4] - WORLD HEALTH ORGANIZATION (2006): "Global Database on Body Mass Index," http://apps.who.int/bmi/index.jsp?introPage=intro_3.html. [6] # A Appendix This Appendix contains nine main sections. Additional details and results on nutritional outcomes and food intake are discussed in Appendix A.1. Our identification assumptions and theorems are presented in Appendix A.2; proofs are discussed in Appendix A.3. Appendix A.4 contains a graphical illustration of the D-SAP identification approach. In Appendix A.5, we discuss how we determine birth order from the information included in the Bangladesh Integrated Household Survey. In Appendix A.6, we provide tests of the preference restrictions required for identification. In Appendix A.7 and Appendix A.8, we check the sensitivity of our poverty calculations to accounting for joint consumption and for individuals' activity levels, respectively. Additional figures and tables are in Appendix A.9. ## A.1 Nutrition and Inequality: Additional Results **Potential Biases.** There are several potential biases that could be influencing our findings regarding the link between household expenditure and individuals' nutritional outcomes (Section 3). The first is that the relatively weak relationship between household expenditure and undernutrition, particularly among poorer households, could be driven by excess mortality among the undernourished; that is, the sample may not include those who are too undernourished to survive. ⁴⁸ This is particularly true if excess mortality was concentrated among the poor. Survivorship bias, however, has been found not to be too much of an issue. For instance, Boerma et al. (1992) report that the effect of survivorship bias on the estimates of child anthropometric indicators is marginal; Moradi (2010) also finds little evidence of such bias. Finally, Brown et al. (2018) simulate the potential effect of selective child mortality and find little difference in their results. Nonetheless, we acknowledge that the relationship between household expenditure and nutritional outcomes may be stronger if individuals who did not survive were to be included. Another possible bias is measurement error in the anthropometric outcomes, particularly among very young children. Larsen et al. (1999) and Agarwal et al. (2017), for instance, find evidence of misreporting of child age in DHS surveys, which impacts height-for-age z-scores. Larsen et al. (1999), however, find little resulting impact on estimated rates of stunting. Moreover, Ulijaszek and Kerr (1999) note that height and weight are least susceptible to measurement error, while Jamaiyah et al. (2010) concludes that height and weight measurements for children under 2 are reliable. Nevertheless, to account for potential measurement error in the stunting and wasting indicators, we construct concentration curves excluding children younger than 18 months. We also replicate our analysis excluding teenagers (who may still be growing) and older adults (who may be frail or ill, and difficult to measure). These concentration curves (shown in Figure A1) look very similar to those shown in Figure 1 in Section 3. ⁴⁸According to World Bank estimates, the mortality rate in Bangladesh for children under 5 in 2015 was 36.3 per 1000 live births (the average for South Asia was 50.3). Male children had a higher mortality rate (38.8) than female children (33.7). <u>Note:</u> BIHS data. The graphs show concentration curves for the cumulative proportion of women and men aged 20 to 49 who are underweight, and children 18 months or older aged 0-5 who are stunted and wasted at each household per capita expenditure percentile. Observations with missing values and pregnant or lactating women have been dropped. The Stata command glcurve is used to construct the curves. Figure A1: Undernutrition Concentration Curves For the Restricted Sample (2015) Note: BIHS data. The graphs show concentration curves for the cumulative proportion of adults aged 15 to 49 and children aged 0-5 who are severely undernourished at each household per capita expenditure percentile. Severely underweight is defined as a BMI of 17 or lower. Severely stunted and wasted are defined as 3 SDs below the median for height-for-age and weight-for-height respectively. The Stata command glourve is used to construct the curves. Figure A2: Undernutrition Concentration Curves For Severely Undernourished Individuals (2015) Children in Bangladesh may also be smaller on average than children in other regions, for example Africa, and the definition of stunting and wasting may be including children who are not undernourished. We also include concentration curves for severely stunted and wasted children, where severe stunting and wasting is defined as 3 standard deviations below the median heightfor-age and weight-for-height scores (see Figure A2). We see slightly more curvature for stunted children, but the curves for wasted children are not dissimilar from those in Figure 1. While it does seem that poorer households are more likely to contain severly undernourished children, we still find these children across the expenditure distribution. We do not think that the definition of stunting and wasting is necessarily inappropriate for Bangladesh or is driving the results found in Figure 1. Finally, we construct concentration curves excluding individuals who report having lost weight due to illness in the past four weeks (see Figure A3). Particularly among children, we find a higher <u>Note:</u> BIHS data. Individuals who report having lost weight due to illness in the past four weeks are excluded. The graphs show concentration curves for the cumulative proportion of women and men who are underweight, and children aged 0-5 who are stunted and wasted at each household per capita expenditure percentile. Observations with missing values and pregnant or lactating women have been dropped. The Stata command glcurve is used to construct the curves. Figure A3: Undernutrition Concentration Curves Excluding Sick Individuals (2015) concentration of the undernourished in the poorer percentiles (that is, higher curvature). This suggests that health shocks may affect both poor and non-poor households and may partly responsible for some of the heterogeneity in nutritional outcomes across the expenditure distribution. That exposure to diseases plays a role is
indisputable and to some extent reassuring. This, however, does not dismiss our analysis of intra-household consumption inequality. In effect, it might be the case that individuals are exposed to diseases exactly because they do not receive enough resources (or vice versa). Given the data at hand, it is hard to assess how illness and resource sharing interact. We leave the answer to this interesting question to future research. **MLD Decomposition.** Mean Log Deviation (as discussed in Section 3) can be decomposed into between and within household inequality as follows: $$\begin{split} MLD &= \ln \bar{c} - \frac{1}{N} \sum_{j=1}^{N} \sum_{i=1}^{N_{j}} \ln c_{i,j} \\ &= \frac{1}{N} \sum_{j=1}^{N} N_{j} \ln \bar{c_{j}} - \frac{1}{N} \sum_{j=1}^{N} \sum_{i=1}^{N_{j}} \ln c_{i,j} + \ln \bar{c} - \frac{1}{N} \sum_{j=1}^{N} N_{j} \ln \bar{c_{j}} \\ &= \frac{1}{N} \sum_{j=1}^{N} \left(N_{j} \ln \bar{c_{j}} - \sum_{i=1}^{N_{j}} \ln c_{i,j} \right) + \frac{1}{N} \left(\sum_{j=1}^{N} N_{j} \ln \bar{c} - \sum_{j=1}^{N} N_{j} \ln \bar{c_{j}} \right) \\ &= \underbrace{\frac{1}{N} \sum_{i=1}^{N} \ln \left(\frac{\bar{c_{j}}}{c_{i,j}} \right)}_{\text{Within}} + \underbrace{\frac{1}{N} \sum_{j=1}^{N} N_{j} \ln \left(\frac{\bar{c}}{c_{j}} \right)}_{\text{Between}} \end{split}$$ #### A.2 Theorems The section provides the two main theorems of the paper. Both are extensions of Theorems 1 and 2 in Dunbar et al. (2013) (hereafter DLP), and therefore share much of the same content. The main differences are in the data requirements (we need more) and the assumptions (we need fewer). The key differences can be found in Assumptions A2['], A3['], B3[']. Otherwise, we follow DLP: #### A.2.1 Theorem 1 Let j denote individual person types with $j \in \{1,...,J\}$. The Marshallian demand function for a person type j and good k is given by $h_j^k(p,y)$. Each individual chooses x_j to maximize their own utility function $U_j(x_j)$ subject to the budget constraint $p^{'}x_j = y$, where p is vector of prices and y is total expenditure. Denote the vector of demand functions as $h_j(p,y)$ for all goods k. Let the indirect utility function be given by $V_j(p,y) = U_j(h_j(p,y))$. Let z_s denote the vector of goods purchased by a household of composition s, where the subscript s indexes the household types. Let σ_j denote the number of individuals of type j in the household. From the Browning et al. (2013), we write the household's problem as follows: $$\max_{x_1,...,x_J,z_s} = \tilde{U}[U_1(x_1),...,U_J(x_J),p/y]$$ such that $z_s = A_s \left[\sum_{j=1}^J \sigma_j x_j\right]$ and $y = z_s'p$ where A_s is a matrix that accounts for the sharing of goods within the household. From the household's problem we can derive household-level demand functions $H_s^k(p, y)$ for good k in a household of composition s: $$z_{s}^{k} = H_{s}^{k}(p, y) = A_{s}^{k} \left[\sum_{j=1}^{J} h_{j}(A_{s}^{'}p, \eta_{js}y) \right]$$ (A2) where A_s^k denotes the row vector given by the k'th row of matrix A_s , and η_{js} is the resource share for a person of type j in a household of size s. Lastly, resource shares sum to one: $$\sum_{i=1}^{J} \sigma_j \eta_{js} = 1 \tag{A3}$$ ASSUMPTION A1: Equations (A1), (A2), and (A3) hold, and resource shares are independent of household expenditure at low levels of household expenditure. Definition: A good k is a private good if the Matrix A_s takes the value one in position k, k and has all other elements in row and column k equal to zero. Definition: A good k is assignable if it only appears in one of the utility functions U_i . ASSUMPTION A2 : Assume that the demand functions include at least 2 private, assignable goods, denoted as goods j^1 and j^2 for each person type. DLP require a single assignable good for each person j. We differ in that we require at least 2 different goods for each person. Let \tilde{p} be the price of the goods that are not both private and assignable. Let p_j^k be the prices of the private assignable goods, with $k \in \{1, 2\}$. ASSUMPTION A3': For $j \in \{1,...,J\}$ let $$V_{j}(p,y) = I(y \le y^{*}(p))\psi_{j} \left[\nu(\frac{y}{G_{j}(p)}) + F_{j}(p), \tilde{p} \right] + I(y > y^{*}(p))\Psi(y,p)$$ (A4) where $F_j(p) = b_j(p_j^1 + p_j^2, \bar{p}, \tilde{p}) + e(p)$, and $y^*, \psi_j, \Psi, \nu, b_j e$, and G_j are functions with y^* is strictly positive, G_j is nonzero, differentiable, and homogenous of degree one. The function ν is differentiable and strictly monotonically increasing. The functions b_j and e are homogenous of degree 0. Lastly, Ψ and ψ are differentiable and strictly increasing in their first arguments, differentiable, and homogenous of degree zero in their remaining arguments. This assumption differs from Assumption A3 in DLP in the function $F_j(p)$. DLP restrict $F_j(p)$ to not vary across people with $\partial F_j(p)/\partial p_j = \phi(p)$. Here, we allow $F_j(p)$ to vary across people in the function $b_j(\cdot)$. However, the way $F_j(p)$ varies across people is restricted to be the same across goods 1 and 2: $\partial b_j(\cdot)/\partial p_j^1 = \partial b_j(\cdot)/\partial p_j^2$. This holds since the prices for goods 1 and 2 enter $b_j(\cdot)$ in an additively separable way. The function e(p) does not vary across people. We use Roy's Identity to derive individual-level demand functions for goods $k \in \{1, 2\}$: • For $$I(y>y^*)$$ $$h_j^k(y,p) = -\Big[\partial \Psi_j(y,p)/\partial p_j^k\Big]/\Big[\partial \Psi_j(y,p)/\partial y\Big]$$ • For $I(y \le y^*)$ $$h_{j}^{k}(p,y) = -\frac{\frac{\partial V_{j}(p,y)}{\partial p_{j}^{k}}}{\frac{\partial V_{j}(p,y)}{\partial y}}$$ $$= \frac{y}{G_{j}(p)} \frac{\partial G_{j}(p)}{\partial p_{j}^{k}} + \left(\frac{\partial b_{j}(p_{j}^{1} + p_{j}^{2}, \bar{p}, \tilde{p})}{\partial p_{j}^{k}} + \frac{\partial e(p)}{\partial p_{j}^{k}}\right) \frac{1}{\nu'(\frac{y}{G_{j}(p)})} G_{j}(p)$$ $$= \frac{y}{G_{j}(p)} \frac{\partial G_{j}(p)}{\partial p_{j}^{k}} + \left(\frac{\partial b_{j}(p_{j}^{1} + p_{j}^{2}, \bar{p}, \tilde{p})}{\partial p_{j}^{k}} + \frac{\partial e(p)}{\partial p_{j}^{k}}\right) \frac{1}{\nu'(\frac{y}{G_{j}(p)})} \frac{y}{y/G_{j}(p)}$$ $$= a_{j}^{k}(p)y + \left(\frac{\partial b_{j}(p_{j}^{1} + p_{j}^{2}, \bar{p}, \tilde{p})}{\partial p_{j}^{k}} + \frac{\partial e(p)}{\partial p_{j}^{k}}\right) g(\frac{y}{G_{j}(p)})y$$ For $I(y \le y^*)$, we can then write the household-level Engel curves for the private, assignable goods for $j \in \{1, ..., J\}$ in a given price regime p: $$H_{js}^{k}(y) = a_{js}^{k} \eta_{js} y + \left(\tilde{b}_{js} + \tilde{e}_{s}^{k}\right) g_{s} \left(\frac{\eta_{js} y}{G_{js}}\right) \eta_{js} y \tag{A5}$$ ASSUMPTION A4: The function $g_s(y)$ is twice differentiable. Let $g_s'(y)$ and $g_s''(y)$ denote the first and second derivatives of $g_s(y)$. Either $\lim_{y\to 0} y^{\zeta} g_s''(y)/g_s'(y)$ is finite and nonzero for some constant $\zeta \neq 1$ or $g_s(y)$ is a polynomial in $\ln y$. Theorem 1: Let Assumptions A1, A2, A3, and A4 hold. Assume the household-level Engel curves for the private assignable goods H_{js}^1 and H_{js}^2 are identified for $j \in \{1,...,J\}$. Then the resource shares η_{js} are identified for $j \in \{1,...,J\}$. #### A.2.2 Theorem 2 Let \tilde{p} be the price of the goods that are not both private and assignable. Let p_j^k be the prices of the private assignable goods, with $k \in \{1,2\}$ and $j \in \{1,...,J\}$. Let \bar{p} be the price of the private goods that are not assignable. ASSUMPTION B3': For $j \in \{1,...,J\}$ let $$V_{j}(p,y) = I(y \le y^{*}(p))\psi_{j}\left[u_{j}\left(\frac{y}{G_{j}(p)}\right) + b_{j}(p_{j}^{1} + p_{j}^{2}, \bar{p}, \tilde{p}) + e_{j}(p_{j}^{1}, p_{j}^{2}, \bar{p}), \tilde{p}\right] + I(y > y^{*}(p))\Psi(y, p)$$ (A6) where y^* , ψ_j , Ψ , u_j , b_j e, and G_j are functions with y^* is strictly positive, G_j is nonzero, differentiable, and homogenous of degree one. The function ν is differentiable and strictly monotonically increasing. The functions b_j and e are homogenous of degree 0. Lastly, Ψ and ψ are differentiable and strictly increasing in their first arguments, differentiable, and homogenous of degree zero in their remaining arguments. This assumption differs from Assumption B3 in DLP as follows: We replace $u_j(\frac{y}{G(\bar{p})},\frac{\bar{p}}{p_j})$ with $u_j(\frac{y}{G_j(p)}) + b_j(p_j^1 + p_j^2, \bar{p}, \tilde{p}) + e_j(p_j^1, p_j^2, \bar{p})$. The function $u_j(\cdot)$ is still restricted to not depend on the prices of shared goods, however, we have included the function $b_j(\cdot)$ which is allowed to depend on the prices of shared goods, and therefore varies across household size. However, the way in which $b_j(\cdot)$ varies across household size is restricted to be the same across goods 1 and 2: $\partial b_j(\cdot)/\partial p_j^1 = \partial b_j(\cdot)/\partial p_j^2$. This holds since the prices for goods 1 and 2 enter $b_j(\cdot)$ in an additively separable way. We use Roy's Identity to derive individual-level demand functions for goods $k \in \{1,2\}$: • For $I(y > y^*)$ $h_i^k(y,p) = - \left[\frac{\partial \Psi_i(y,p)}{\partial p_i^k} \right] / \left[\frac{\partial \Psi_i(y,p)}{\partial y} \right]$ • For $I(y \le y^*)$ $$\begin{split} h_{j}^{k}(p,y) &= -\frac{\frac{\partial V_{j}(p,y)}{\partial p_{j}^{k}}}{\frac{\partial V_{j}(p,y)}{\partial y}} \\ &= \frac{u_{j}^{'}(\frac{y}{G_{j}(p)})\frac{y}{G_{j}(p)^{2}}\frac{\partial G_{j}(p)}{\partial p_{j}^{k}} + (\frac{\partial b_{j}(p_{j}^{1} + p_{j}^{2},\bar{p},\tilde{p})}{\partial p_{j}^{k}} + \frac{\partial e_{j}(p_{j}^{1} + p_{j}^{2},\bar{p})}{\partial p^{k})j})}{u_{j}^{'}(\frac{y}{G_{j}(p)})\frac{1}{G_{j}(\tilde{p})}} \\ &= \frac{y}{G_{j}(p)}\frac{\partial G_{j}(p)}{\partial p_{j}^{k}} + (\frac{\partial b_{j}(p_{j}^{1} + p_{j}^{2},\bar{p},\tilde{p})}{\partial p_{j}^{k}} + \frac{\partial e(p_{j}^{1},p_{j}^{2},\bar{p})}{\partial
p_{j}^{k}}))\frac{1}{u_{j}^{'}(\frac{y}{G_{j}(p)})}\frac{y}{y/G_{j}(p)} \\ &= a_{j}^{k}(p)y + (\frac{\partial b_{j}(p_{j}^{1} + p_{j}^{2},\bar{p},\tilde{p})}{\partial p_{j}^{k}} + \frac{\partial e(p_{j}^{1},p_{j}^{2},\bar{p})}{\partial p_{j}^{k}})f_{j}(\frac{y}{G_{j}(p)})y \end{split}$$ For $I(y \le y^*)$, we can then write the household-level Engel curves for the private, assignable goods for $j \in \{1, ..., J\}$ in a given price regime p: $$H_{js}^{k}(y) = a_{js}^{k} \eta_{js} y + \left(\tilde{b}_{js} + \tilde{e}_{j}^{k}\right) f_{j} \left(\frac{\eta_{js} y}{G_{js}}\right) \eta_{js} y \tag{A7}$$ We take the ratio of resource shares for person j across two different household types, which results in the following equation: $$\frac{\eta_{j1}}{\eta_{js}} = \zeta_{js} \tag{A8}$$ for $j \in \{1, ..., J-1\}$ and $s \in \{2, ..., S\}$. In total, this results in (S-1)(J-1) equations. Moreover, in the proof we will use that resource shares sum to one to write the following system of equations: $$\sum_{j=1}^{J-1} (\zeta_{js} - \zeta_{Js}) \eta_{js} = 1 - \zeta_{Js}$$ (A9) for $s \in \{2, ..., S\}$. Equation (A9) results in S-1 equations. We can stack the system of equations given by Equations (A8) and (A9). This results in a system of J(S-1) equations. In matrix form, let E be a $J(S-1) \times 1$ vector of η_{js} for $j \in \{1,...,J-1\}$ and $s \in \{1,...,S\}$ such that $\Omega \times E = B$, where Ω is a $J(S-1) \times J(S-1)$ matrix, and B is a $J(S-1) \times 1$ vector. ASSUMPTION B4: The matrix Ω is finite and nonsingular, and $f_i(0) \neq 0$ for $j \in \{1,...,J\}$. Theorem 2: Let Assumptions A1, A2, B3, and B4 hold. Assume there are $S \ge J$ household types. Assume the household-level Engel curves for the private assignable goods H^1_{js} and H^2_{js} are identified for $j \in \{1,...,J\}$. Then the resource shares η_{js} are identified for $j \in \{1,...,J\}$. ### A.3 Proofs #### A.3.1 Proof of Theorem 1 The proof will consist of two cases. In the first case, we assume g_s is not a polynomial of degree λ in logarithms. In the second case we assume that it is. Define $$\tilde{h}_{js}^{k}(y) = \partial [H_{js}^{k}(y)/y]/\partial y = (\tilde{b}_{js} + \tilde{e}_{s}^{k})g_{s}'(\frac{\eta_{js}y}{G_{js}})\frac{\eta_{js}^{2}}{G_{js}}$$ $$\lambda_{s} = \lim_{y \to 0} [y^{\zeta}g_{s}''(y)/g_{s}'(y)]^{\frac{1}{1-\zeta}}$$ Case 1: $\zeta \neq 1$ Then since $H_{js}^k(y)$ are identified, we can identify $\kappa_{js}^k(y)$ for $y \leq y^*$: $$\begin{split} \kappa_{js}^{k}(y) = & \Big(y^{\zeta} \frac{\partial \tilde{h}_{js}^{k}(y) / \partial y}{\tilde{h}_{js}^{k}(y)} \Big)^{\frac{1}{1-\zeta}} \\ = & \Big((\frac{\eta_{js}}{G_{js}})^{-\zeta} (\frac{\eta_{js}y}{G_{js}})^{\zeta} \Big[(\tilde{b}_{js} + \tilde{e}_{s}^{k}) g_{s}^{"} (\frac{\eta_{js}y}{G_{js}}) \frac{\eta_{js}^{3}}{G_{js}^{2}} \Big] / \Big[(\tilde{b}_{js} + \tilde{e}_{s}^{k}) g_{s}^{'} (\frac{\eta_{js}y}{G_{js}}) \frac{\eta_{js}^{2}}{G_{js}^{2}} \Big] / \Big[(\tilde{b}_{js} + \tilde{e}_{s}^{k}) g_{s}^{'} (\frac{\eta_{js}y}{G_{js}}) \frac{\eta_{js}^{2}}{G_{js}^{2}} \Big] \Big)^{\frac{1}{1-\zeta}} \\ = & \frac{\eta_{js}}{G_{is}} \Big(y_{js}^{\zeta} \frac{g''(y)}{g'(y)} \Big)^{\frac{1}{1-\zeta}} \end{split}$$ Then we can define $\rho_{js}^1(y)$ and $\rho_{js}^2(y)$ by $$\rho_{js}^{1}(y) = \frac{\tilde{h}_{js}^{1}(y/\kappa_{js}^{1}(0))}{\kappa_{js}^{1}(0)} = (\tilde{b}_{js} + \tilde{e}_{s}^{1})g_{s}'(\frac{y}{\lambda_{s}})\frac{\eta_{js}}{\lambda_{s}}$$ $$\rho_{js}^{2}(y) = \frac{\tilde{h}_{js}^{2}(y/\kappa_{js}^{2}(0))}{\kappa_{js}^{2}(0)} = (\tilde{b}_{js} + \tilde{e}_{s}^{2})g_{s}'(\frac{y}{\lambda_{s}})\frac{\eta_{js}}{\lambda_{s}}$$ Taking the difference of the above two equations, we derive the following expression similar to DLP: $$\rho_{js}^{2}(y) - \rho_{js}^{1}(y) = \hat{\rho}_{js}(y) = (\tilde{e}_{s}^{2} - \tilde{e}_{s}^{1})g_{s}'(\frac{y}{\lambda_{s}})\frac{\eta_{js}}{\lambda_{s}} = \phi_{s}\eta_{js}$$ Then since resource shares sum to one, we can identify resource shares as follows: $$\eta_{js} = \frac{\hat{\rho}_{js}}{\sum_{j=1}^{J} \hat{\rho}_{js}}$$ Case 2: g_s is a polynomial of degree λ in logarithms. $$g_s(\frac{\eta_{js}y}{G_{js}}) = \sum_{l=0}^{\lambda} \left(\ln\left(\frac{\eta_{js}}{G_{js}}\right) + \ln y \right)^l c_{sl}$$ for some constants c_{sl} . We can then identify $$\tilde{\rho^{1}}_{js} = \frac{\partial^{\lambda} [H_{s}^{1}(y)/y]}{\partial (\ln y)^{\lambda}} = (\tilde{b}_{js} + \tilde{e}_{s}^{1}) d_{s\lambda}^{1} \eta_{js}$$ $$\tilde{\rho^{2}}_{js} = \frac{\partial^{\lambda} [H_{s}^{2}(y)/y]}{\partial (\ln y)^{\lambda}} = (\tilde{b}_{js} + \tilde{e}_{s}^{2}) d_{s\lambda}^{2} \eta_{js}$$ Taking the difference of the above two equations, we derive the following expression similar to DLP: $$\tilde{\rho}_{js}^{2}(y) - \tilde{\rho}_{js}^{1}(y) = \hat{\rho}_{js}(y) = (\tilde{e}_{s}^{2}d_{s\lambda}^{2} - \tilde{e}_{s}^{1}d_{s\lambda}^{1})\eta_{js} = \phi_{s}\eta_{js}$$ Then since resource shares sum to one, we can identify resource shares as follows: $$\eta_{js} = \frac{\hat{\rho}_{js}}{\sum_{i=1}^{J} \hat{\rho}_{is}}$$ #### A.3.2 Proof of Theorem 2 The household-level Engel curves for person $j \in \{1, ..., J\}$ and good k: $$H_{js}^{k}(y) = a_{js}^{k} \eta_{js} y + \left(\tilde{b}_{js} + \tilde{e}_{j}^{k}\right) f_{j} \left(\frac{\eta_{js} y}{G_{js}}\right) \eta_{js} y$$ For each $j \in \{1,...,J\}$ take the difference of the Engel curves for private, assignable goods k = 1 and k = 2. $$\tilde{H}_{js}(y) = H_{js}^{2}(y) - H_{js}^{1}(y) = \tilde{a}_{js}\eta_{js} + \tilde{e}_{j}\tilde{f}_{j}(\frac{\eta_{js}y}{G_{js}})\eta_{js}y$$ Let s and 1 be elements of S. Since the Engel curves are identified, we can identify ζ_{js} defined by $\zeta_{js} = \lim_{y\to 0} \tilde{H}_{j1}(y)/\tilde{H}_{js}(y)$ as follows for $j \in \{1,...,J\}$ and $s \in \{2,...,S\}$ $$\zeta_{js} = \frac{\tilde{e}_j \tilde{f}_j(0) \eta_{j1} y}{\tilde{e}_i \tilde{f}_i(0) \eta_{is} y} = \frac{\eta_{j1}}{\eta_{js}}$$ (A10) Then since resource shares sum to one, $$\sum_{j=1}^{J} \zeta_{js} \eta_{js} = \sum_{j=1}^{J} \eta_{j1} = 1$$ $$\sum_{j=1}^{J-1} \zeta_{js} \eta_{js} + \zeta_{Js} \left(1 - \sum_{j=1}^{J-1} \eta_{js} \right) = 1$$ $$\sum_{j=1}^{J-1} (\zeta_{js} - \zeta_{Js}) \eta_{js} = 1 - \zeta_{Js}$$ (A11) for $s \in \{2, ..., S\}$. We then stack Equation (A10) for $j \in \{1,...,J-1\}$ and $s \in \{2,...,S\}$ and Equation (A11) for $s \in \{2,...,S\}$. This results in a system of J(S-1) equations. In matrix form, this can be written as the previously defined system of equations $\Omega \times E = B$, where E is a $J(S-1) \times 1$ vector of η_{js} for $j \in \{1,...,J-1\}$ and $s \in \{1,...,S\}$, Ω is a $J(S-1) \times J(S-1)$ matrix, and B is a $J(S-1) \times 1$ vector. By Assumption B4, Ω is nonsingular. It follows that for any given household type s, we can solve for J-1 of the η 's. Then since resource shares sum to one, we can solve for η_{Js} . ## A.4 Graphical Illustration for D-SAP To understand the D-SAP identification results graphically, we first plot hypothetical *individual-level* Engel curves for two assignable goods (e.g., cereals and proteins). Under SAP, DLP assume that preferences for one assignable good (either cereals or proteins) are similar across person types. With piglog preferences, this results in individual-level Engel curves with the same slopes as shown in Panel A of Figure A4. We differ in that we allow allow preferences for the assignable goods to vary substantially across individuals. Panels B and C of Figure A4 illustrate this point as the slopes are no longer identical across people. However, we restrict preferences to differ across people in a similar way across goods. Intuitively, this means that if women have a higher marginal propensity to consume cereals than men, then they also have a higher marginal propensity to consume proteins than men. Under this assumption, if we difference the Engel curves we end up with Figure A5. Here, the differenced *individual-level* Engel curves are parallel, similar to SAP, and we can therefore use the DLP identification results to recover resource shares. In effect, any difference in the slopes of the *household-level* differenced Engel curves can be attributed to differences in resource shares, as in SAP. Note: Individual-level Engel curves for assignable cereals and proteins. Figure (A) illustrates Engel curves under the SAP restriction (on cereals). The Engel curves in Figures (B) and (C) do not exhibit shape invariance, however, the difference in slopes across men, women, and children differ in the same way across goods. $w_{js}^{cereals} - w_{js}^{proteins}$ Men Women Children Log Expenditure $\ln y$ Figure A4: SAP and D-SAP Comparison <u>Note:</u> Differences in individual-level Engel curves across assignable cereals and proteins. The Engel curves are derived by taking the difference of Panels C and B from Figure A4. By assumption, the difference across Engel curves will have the same slope and we can therefore use the DLP identification results. **Figure A5:** Differenced Engel Curves (D-SAP) ## A.5 Determining Birth Order To determine birth order, we begin by sorting children, grandchildren, and nephews and nieces by their age. This allows us to determine the *relative* birth order of children currently residing in the household. To determine the actual birth order this is not sufficient, since it is likely that for some households the first or second born children have already moved out. We use several different aspects of the survey to correct this measure. First, the BIHS provides provides information on any household member who has left the house- hold in the previous five years. So if we see that a child has moved out, we adjust the birth order of the children currently residing in the household to reflect this. Second, the BIHS does include birth order for children age zero to two
in 2011, and also for children age zero to five in 2015. We combine this data with our existing "best guess" measure of birth order to again update the data. If we see that a child's stated birth order is one higher than our existing guess, we increase each child's birth order by one. We do this for children, grandchildren, and nephews and nieces separately. We are left with a measure of birth order that combines all the information available to us in the survey. We use the full sample in our main analysis of the relationship between birth order and individual consumption. To be cautious, we also conduct our birth order analysis on a restricted sample where we expect less misclassification. We drop households with mother's who may have adult-age children who have left the household. Specifically, we estimate the model on households without mother's who are above age 35. The reason we choose 35 is that we assume the earliest a woman gives birth is 15, and that the earliest a child moves out is 15. Moreover, we know children who have migrated in the previous five years. It follows that we should be entirely accurate for women age 35 and under (15+15+5=35). Because women who are 35 in 2011 are 39 in 2015, we drop households with women above 39 in 2015. ## A.6 Testing Preference Restrictions As discussed in Section 4.2 distribution factors (i.e., variables that affect bargaining power but not individual preferences or the budget constraint) are not required for identification when using our novel strategies (D-SAP and D-SAT) as well as when using the methodologies developed by Dunbar et al. (2013) (SAP and SAT). Recent work by Dunbar et al. (2017), however, shows that when such variables are available the preference restrictions required for identification are no longer necessary. Specifically, if there are a sufficient number of distribution factors (or if there is a distribution factor with enough support points), if one maintains the assumption that resource shares not depend on total expenditures, and if one observes some assignable goods, then the level of resource shares can be identified. No similarity restrictions on tastes like those discussed in Section 4.2 are needed. One limitation of this approach is that distribution factors may be difficult to find (especially when children are included in the model) and their validity (that they do not impact preferences or the budget constraint) might be hard to prove. Nonetheless, we exploit this alternative approach to test the validity of the D-SAP, D-SAT, SAP, and SAT preference restrictions. Looking at the Engel curves for clothing, both Dunbar et al. (2017) and Calvi (2017) find evidence supporting the similarity across people assumption. In contrast, Bargain et al. (2018) mostly reject both SAP and SAT using observed individual-level Engel curves for several different assignable goods, including rice and protein. SAT with clothing, however, is not rejected by Bargain et al. (2018). Thus, we first apply the Dunbar et al. (2017) approach to estimate an unrestricted system of Engel curves of cereals and vegetables and then implement Wald tests for the similarity of preferences restrictions. For Table A1: Testing Preference Restrictions With Distribution Factors | | Share of Assets
Owned by
Women | Share of Land
Owned by
Women | Share of Animals
Owned by
Women | First
Principal
Component | |--------------------------------|--------------------------------------|------------------------------------|---------------------------------------|---------------------------------| | | (1) | (2) | (3) | (4) | | | | Resource Sh | ares (Mean) | | | Dunbar et al. (2017) Approach: | | | | | | Boys | 0.149 | 0.153 | 0.147 | 0.150 | | Girls | 0.131 | 0.132 | 0.127 | 0.133 | | Women | 0.286 | 0.267 | 0.278 | 0.268 | | Men | 0.317 | 0.333 | 0.319 | 0.324 | | | | Testing Prefere | nce Restrictions | | | D-SAP: | | | | | | Wald statistic | 5.43 | 4.41 | 5.09 | 4.40 | | p-value | 0.1428 | 0.2200 | 0.1653 | 0.2212 | | D-SAT: | | | | | | Wald statistic | 13.83 | 14.04 | 16.51 | 17.20 | | p-value | 0.0079 | 0.0072 | 0.0024 | 0.0018 | | SAP: | | | | | | Wald statistic | 6.86 | 5.69 | 5.78 | 4.97 | | p-value | 0.0766 | 0.1278 | 0.1182 | 0.1742 | | SAT: | | | | | | Wald statistic | 8.14 | 8.28 | 8.04 | 8.22 | | p-value | 0.0865 | 0.0818 | 0.0902 | 0.0839 | Note: Estimates based on BIHS data, Engel curves for cereals and vegetables, and the Dunbar et al. (2017) identification approach simplicity, we present test for a model that comprises four types of individuals (women, men, boys and girls). Several recent studies have used relative unearned income or assets as distribution factors (see, e.g., LaFave and Thomas (2017); see Browning et al. (2014) for a discussion of the most widely used distribution factors in the literature). Conveniently, the BIHS data contains information about the ownership of assets, land, and animals. Based on this information, we construct three distribution factors capturing the share of such assets that is owned by women. By ranging between zero and one, these variables satisfy the requirement that the distribution factor must take on as many values as family member types. For example, if J = 4 (men, women, boys, girls), then a distribution factors that take on four values are enough. We also consider a fourth distribution factor computed as the first principal component of the other three. The first panel of Table A1 contains the average resource shares for boys, girls, women, and men estimated using the Dunbar et al. (2017) approach and different distribution factors. It is reassuring to see that the estimates do not deviate significantly from the restricted models discussed in Section 5.2 (Table 4). In the second panel, we report the results of Wald tests for our preference restrictions. Interestingly, D-SAT and SAT are always rejected at conventional levels of significance. The SAP restriction on cereals preferences (preferences for vegetables are completely unrestricted) is rejected one out of four times, but the generally low p-values are not encouraging. By contrast, the D-SAP restriction is never rejected at at conventional levels. We recall from Section 4.2 that D-SAP allows one's marginal propensity to consume cereals to differ considerably from other family members. However, it requires these differences to be similar to the difference in their preferences for vegetables. ## A.7 Economies of Scale and Joint Consumption The theoretical model of the household consumption presented in Section 4 does allow for economies of scale to consumption through a linear consumption technology function that transforms quantities purchased by the household in quantities consumed by each member. The structural parameters capturing the extent of joint consumption, however, are not estimated (this requires detailed price variation and substantially complicates the empirical exercise; see Browning et al. (2013) for details on point identification). Thus, in Section 6, we provide poverty calculations that ignore the existence and the extent of joint consumption (public and shared goods) in Bangladeshi families. Deaton and Zaidi (2002) recommend low levels of scale economies in poor countries when incorporating joint consumption in poverty calculations (around 7 percent of the total budget): when the budget share of food is high, there is not much scope for economies of scale. We here consider varying levels of consumption jointness in the family by allowing the sum of individual resources to be larger than the observed total household expenditure. Four levels of consumption jointness are obtained by multiplying the household total expenditure by $(1 + \alpha)$, with $\alpha = 0.05, 0.1, 0.15, 0.2$. Figure A6 shows the results of this analysis. Similarly to Figure 3, we display the fraction of individuals with an estimated level of individual consumption below the poverty line by household per capita expenditure. For simplicity, we present results for year 2015 and obtained using the D-SAP approach. To account for differences in needs, we adjust the poverty lines for children and the elderly following the rough adjustment discussed in Section 6 (unadjusted poverty rates and rates obtained using a calorie-based adjustment are available upon request). Allowing for some degree of joint consumption has clear implications for our poverty calculations since it increases the amount of resources available to each individual. As we increase the extent of scale economies, poverty headcount ratios declines slightly. The relative poverty ranking for men, women, boys, and girls, however, is maintained. ## A.8 Accounting for Individuals' Activity Levels In Section 6, we adjust the \$1.90/day poverty line using relative caloric requirements to account for differences in needs by age and gender. In that exercise, however, we ignore possible differences in individuals' *activity levels*. Individuals who work in agriculture or construction may expend more energy on a day-to-day basis than individuals who live a more sedentary lifestyle. As a result, more active individuals require more calories, and therefore more resources. We modify our constructed individual-level poverty lines to account for differences in need by Note: Only households surveyed in 2015 are included. Individual consumption is obtained by multiplying total annual household expenditure (PPP dollars) by individual resource shares. The vertical line corresponds to the percentile of the \$1.90/day threshold. Estimates are based on BIHS data and D-SAP identification method with Engel curves for cereals and vegetables. In all panels, the poverty line for children (aged 14 or less) is set to 0.6*1.90 and the poverty line for the elderly (aged 46 plus) is set to 0.8*1.90. Three levels of consumption jointness are obtained by multiplying the household total expenditure by $(1 + \alpha)$, with $\alpha =
0.05, 0.1, 0.15, 0.2$. **Figure A6:** Scale Economies and Joint Consumption activity level. Using occupational data provided in the BIHS, we classify individuals as high-activity if they work in a strenuous job (e.g., farming, construction, carpentry). We consider an individual as employed in one of these occupations if they worked at least eight hours in the previous week in this job (the BIHS labor module is limited to a 7-day recall). In 2015, 47 percent of adult men worked in a high-activity occupation, whereas only 5 percent of women did. The USDA suggested caloric requirements specify thresholds for sedentary, moderately active, and active adults and children by age. For higher activity levels, the necessary calorie requirements increases by 200 to 400 calories per day. For simplicity we assume that individuals in high-activity occupations require 200 more calories per day than individuals not in those occupations. Note: Only households surveyed in 2015 are included. Individual consumption is obtained by multiplying total annual household expenditure (PPP dollars) by individual resource shares. The vertical line corresponds to the percentile of the \$1.90/day threshold. Estimates are based on BIHS data and D-SAP identification method with Engel curves for cereals and vegetables. We assume poverty lines to be proportional to their caloric requirements relative to young adults (aged 15-45) and we adjust them for the one's likely activity level. We rely on the daily calorie needs by age and gender estimated by the United States Department of Health and Human Services and assume that young adults that do not perform high-activity work require 2,400 calories per day. We classify individuals as high-activity if they work in a strenuous job (e.g., farming, construction, carpentry). Figure A7: Poverty Rates Adjusted for Activity Levels Figure A7 presents poverty rates using this adjustment. A consequence of the adjustment is that, compared to the results presented in Section 6 (Figure 3), poverty rates for men increase slightly. No substantial difference, however, can be detected. It is important to note that this is a crude exercise that does not fully capture differences in needs. First, daily activity levels comprise much more than just employment. There are certain activities, such as fetching wood and fetching water, that require a significant amount of energy that we are unable to account for. These unaccounted for activities may have a gender component that affect the results presented above. Lastly, we only observe work in the previous week and therefore are not able to fully capture highly active individuals. # A.9 Additional Tables and Figures **Table A2:** BIHS Nutritional Outcomes | | | 2011 | | | 2015 | | |-------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------| | | Adults | Chile | dren | Adults | Chile | dren | | | Underweight | Stunting Wasting | | Underweight | Stunting | Wasting | | Male
Female
Total | 31.372
30.428
30.912 | 45.585
45.180
45.382 | 13.721
13.981
13.851 | 29.517
25.224
27.370 | 37.784
33.975
35.974 | 17.234
18.588
17.878 | <u>Note:</u> BIHS data. The table lists the incidence of undernutrition for adults and children. Adults are defined as 15 years and older; children as 5 years and younger. Statistics are population weighted. Table A3: Individual Caloric, Protein and Food Intake | | | 20 | 11 | | 2015 | | | | | |--------------------------|--------|--------|--------|----------|--------|--------|--------|--------|--| | | Adı | Adults | | Children | | Adults | | dren | | | | Actual | Scaled | Actual | Scaled | Actual | Scaled | Actual | Scaled | | | Caloric Intake (kcal): | | | | | | | | | | | Male | 2,635 | 2,464 | 1,456 | 2,221 | 2,415 | 2,268 | 1,360 | 2,082 | | | Female | 2,243 | 2,682 | 1,407 | 2,270 | 2,084 | 2,516 | 1,302 | 2,100 | | | Total | 2,427 | 2,579 | 1,431 | 2,246 | 2,237 | 2,401 | 1,331 | 2,091 | | | Protein Intake (grams): | | | | | | | | | | | Male | 64.482 | 53.391 | 35.631 | 66.358 | 59.215 | 49.093 | 33.649 | 62.265 | | | Female | 54.771 | 54.771 | 34.300 | 55.910 | 50.965 | 50.965 | 32.232 | 52.897 | | | Total | 59.331 | 54.123 | 34.955 | 61.048 | 54.779 | 50.100 | 32.943 | 57.563 | | | Food Consumption (taka): | | | | | | | | | | | Male | 50,367 | 47,130 | 27,152 | 41,046 | 55,530 | 52,184 | 30,649 | 46,793 | | | Female | 42,489 | 50,830 | 26,016 | 41,356 | 48,246 | 58,265 | 30,063 | 48,486 | | | Total | 46,188 | 49,093 | 26,576 | 41,204 | 51,614 | 55,453 | 30,035 | 47,643 | | Note: BIHS data. Statistics are population weighted. Consumption is in local currency units (taka). Children are defined as 14 years and younger. Calories have been scaled to 2,400 calories per day; protein has been scaled to 56 grams per day. Food consumption uses the same scale as caloric intake and is converted to annual values (see section 5.1 for details). Recommended intakes have been taken from the 2015-2020 Dietary Guidelines for Americans. Table A4: BIHS Food Consumption - Descriptive Statistics | | Obs. | Mean | Median | Std. Dev | |------------|-------|-------|--------|----------| | Boys: | | | | | | Total Food | 4,502 | 0.118 | 0.105 | 0.069 | | Cereals | 4,502 | 0.043 | 0.035 | 0.033 | | Vegetables | 4,502 | 0.014 | 0.011 | 0.012 | | Proteins | 4,502 | 0.025 | 0.016 | 0.031 | | Girls: | | | | | | Total Food | 4,243 | 0.116 | 0.103 | 0.068 | | Cereals | 4,243 | 0.041 | 0.034 | 0.032 | | Vegetables | 4,243 | 0.014 | 0.011 | 0.012 | | Proteins | 4,243 | 0.024 | 0.016 | 0.030 | | Women: | | | | | | Total Food | 6,417 | 0.182 | 0.171 | 0.072 | | Cereals | 6,417 | 0.069 | 0.063 | 0.034 | | Vegetables | 6,417 | 0.023 | 0.020 | 0.014 | | Proteins | 6,417 | 0.034 | 0.025 | 0.034 | | Men: | | | | | | Total Food | 6,417 | 0.205 | 0.195 | 0.078 | | Cereals | 6,417 | 0.077 | 0.070 | 0.040 | | Vegetables | 6,417 | 0.025 | 0.022 | 0.015 | | Proteins | 6,417 | 0.039 | 0.030 | 0.039 | Note: BIHS data. Budget shares reported in the table, ranging between 0 and 1. Proteins include meat, fish, milk, and eggs. Table A5: Engel Curves Estimates - Resource Shares (D-SAP and D-SAT) | | | D-SAP | | | D-SAT | | |--------------------------|-----------------------|-----------------------|------------------------|-----------------------|-----------------------|------------------------| | | Boys | Girls | Women | Boys | Girls | Women | | | (1) | (2) | (3) | (4) | (5) | (6) | | Adult Males 15-45 | -0.0112** | -0.0117** | -0.0288*** | -0.0109* | -0.0123*** | -0.0266*** | | | (0.00544) | (0.00507) | (0.00662) | (0.00660) | (0.00477) | (0.00653) | | Adult Females 15-45 | -0.0185*** | -0.0151*** | 0.0682*** | -0.0207*** | -0.0149*** | 0.0702*** | | A dealth N/Lalan AC | (0.00527) | (0.00513) | (0.00887) | (0.00613) | (0.00494) | (0.00801) | | Adult Males 46+ | -0.00931
(0.00840) | -0.00447
(0.00754) | -0.0324***
(0.0116) | -0.00755
(0.00944) | -0.00629
(0.00678) | -0.0311***
(0.0114) | | Adult Females 46+ | -0.0122 | -0.0196** | 0.0648*** | -0.0105 | -0.0191*** | 0.0618*** | | Addit Temales 401 | (0.00794) | (0.00811) | (0.0108) | (0.00907) | (0.00723) | (0.0010 | | Boys 0-5 | 0.0445*** | -0.0154** | -0.0225** | 0.0405*** | -0.0145** | -0.0196** | | J | (0.00977) | (0.00733) | (0.00981) | (0.0114) | (0.00719) | (0.00943) | | Girls 0-5 | -0.0160** | 0.0411*** | -0.0171* | -0.0146* | 0.0372*** | -0.0153* | | | (0.00794) | (0.0114) | (0.00896) | (0.00844) | (0.0124) | (0.00866) | | Boys 6-14 | 0.0544*** | -0.0176*** | -0.0226*** | 0.0507*** | -0.0163*** | -0.0217*** | | | (0.00801) | (0.00474) | (0.00622) | (0.0117) | (0.00472) | (0.00681) | | Girls 6-14 | -0.0142*** | 0.0524*** | -0.0209*** | -0.0119** | 0.0409*** | -0.0157*** | | 3.5 3.4 () | (0.00483) | (0.00675) | (0.00566) | (0.00579) | (0.00810) | (0.00572) | | Men's Age (avg.) | -0.0526
(0.135) | -0.0820
(0.133) | 0.0128 | -0.0781
(0.130) | -0.0761
(0.100) | -0.0367 | | Men's Age (avg) Sq. | (0.125)
0.0859 | (0.122)
0.0874 | (0.162)
0.0321 | (0.129)
0.0948 | (0.109)
0.0860 | (0.209)
0.0513 | | wich a rige (avg) oq. | (0.128) | (0.119) | (0.167) | (0.133) | (0.117) | (0.213) | | Women's Age (avg.) | 0.109 | -0.00804 | -0.0464 | 0.133) | -0.0422 | 0.230 | | Women's rige (avg.) | (0.195) | (0.162) | (0.180) | (0.173) | (0.148) | (0.276) | | Women's Age (avg.) Sq. | -0.159 | -0.00882 | 0.0809 | -0.0868 | 0.0391 | -0.206 | | 0 (0) 1 | (0.244) | (0.175) | (0.207) | (0.198) | (0.171) | (0.321) | | Boys' Age (avg.) | 0.331 | -0.0390 | -0.596 | -0.755 | 0.111 | -0.184 | | | (0.379) | (0.385) | (0.438) | (0.806) | (0.398) | (0.594) | | Boys' Age (avg.) Sq. | -0.223 | -0.312 | 2.932 | 4.211 | -0.955 | 1.685 | | | (2.163) | (2.153) | (2.579) | (4.289) | (2.231) | (3.539) | | Girls' Age (avg.) | -0.341 | 0.442 | -0.229 | -0.458 | 0.221 | -0.0430 | | C:114 () C | (0.428) | (0.400) | (0.437) | (0.531) | (0.416) | (0.577) | | Girls' Age (avg.) Sq. | 0.521 | -1.022 | 0.394 | 2.030 | -1.326 | -0.421 | | 1 (Muslim) | (2.420)
0.000762 | (2.174)
0.00839 | (2.532)
0.00475 | (3.670)
-0.00285 | (2.185)
0.00751 | (3.468)
0.00769 | | 1(Muslim) | (0.00948) | (0.00839) | (0.00475) | (0.0101) | (0.00751) | (0.0132) | | Working Women (share) | 0.00950 | 0.00372 | 0.000310) | 0.0140 | 0.00923) | -0.00556 | | working women (onare) | (0.00769) | (0.00787) | (0.00737) | (0.00957) | (0.00683) | (0.0111) | | Working Men (share) | 0.00604 | 0.00720 | -0.00773 | 0.00517 | 0.00454 | -0.00376 | | | (0.0116) | (0.0131) | (0.0137) | (0.0144) | (0.0117) | (0.0181) | | Women's Education (avg.) | 0.00861*** | 0.00608* | 0.00761** | 0.00933** | 0.00677** | 0.0107^{**} | | | (0.00325) | (0.00313) | (0.00309) | (0.00373) | (0.00310) | (0.00478) | | Men's Education (avg.) | 0.00518* | 0.00556** | 0.00777*** | 0.00596* | 0.00712*** | 0.00824** | |
| (0.00271) | (0.00253) | (0.00275) | (0.00341) | (0.00255) | (0.00405) | | 1(Rural) | 0.00917 | 0.00549 | -0.00275 | 0.00745 | 0.00444 | -0.00776 | | 1 (Darias) | (0.00765) | (0.00975) | (0.0102) | (0.00874) | (0.00789) | (0.0140) | | 1(Barisal) | -0.00336
(0.0126) | -0.00563
(0.0124) | -0.00707
(0.0154) | 0.000960
(0.0132) | -0.00450
(0.0108) | -0.0173
(0.0193) | | 1(Chittagong) | -0.00266 | -0.0124) | 0.0134) | 0.0132) | -0.0114 | 0.00392 | | #(Cilittagolig) | (0.0110) | (0.0105) | (0.0132) | (0.0170 | (0.00937) | (0.0156) | | 1(Dhaka) | 0.00375 | -0.00830 | 0.00242 | 0.00878 | -0.00679 | 0.000595 | | _(=, | (0.0102) | (0.00890) | (0.0111) | (0.0121) | (0.00844) | (0.0151) | | 1(Khulna) | 0.00421 | -0.0109 | -0.00653 | 0.0104 | -0.0120 | -0.00847 | | | (0.0116) | (0.0104) | (0.0125) | (0.0125) | (0.0114) | (0.0178) | | 1 (Rajshahi) | 0.0113 | 0.00210 | -0.00589 | 0.0128 | 0.000547 | 0.00460 | | | (0.0123) | (0.0117) | (0.0128) | (0.0136) | (0.0106) | (0.0194) | | 1(Rangpur) | -0.00721 | 0.00600 | -0.00346 | -0.0121 | 0.00502 | -0.00717 | | | (0.0131) | (0.0129) | (0.0134) | (0.0138) | (0.0118) | (0.0202) | | Distance to Shops (log.) | -0.000211 | -0.000739 | 0.000970 | 0.000176 | -0.000205 | 0.000187 | | Distance to Dood (1) | (0.00210) | (0.00233) | (0.00235) | (0.00297) | (0.00206) | (0.00328) | | Distance to Road (log.) | 0.000823 | 0.000366 | 0.00146 | 0.00110
(0.00186) | 0.000190
(0.00186) | 0.000736 | | 1(2011) | (0.00166)
0.00328 | (0.00171)
0.0135** | (0.00174)
0.00185 | 0.00186) | 0.0123** | (0.00252)
0.00739 | | ±(4011) | (0.00609) | (0.00629) | (0.00704) | (0.00180) | (0.0123) | (0.0102) | | Constant | 0.125** | 0.135*** | 0.327*** | 0.206*** | 0.150*** | 0.235** | | | (0.0536) | (0.0512) | (0.0593) | (0.0600) | (0.0466) | (0.0923) | | | (3.200) | CIID octimate 57 | | (1.1000) | (1.1.100) | (21-7-0) | Note: * p < 0.10, ** p < 0.05, *** p < 0.01. BIHS data. NLSUR estimates. Robust standard errors in parentheses. Age variables are divided by 100 to ease computation. Sylhet is the excluded region. Table A6: Engel Curves Estimates - Resource Shares (SAP and SAT) | | | SAP | | | SAT | | |--------------------------|-------------------------|-------------------------|------------------------|-------------------------|-------------------------|------------------------| | | Boys | Girls | Women | Boys | Girls | Women | | | (1) | (2) | (3) | (4) | (5) | (6) | | Adult Males 15-45 | -0.0126** | -0.0138*** | -0.0273*** | -0.0114* | -0.0130** | -0.0252*** | | A 1 1. T. 1 1 1 4 5 | (0.00550) | (0.00532) | (0.00631) | (0.00597) | (0.00510) | (0.00654) | | Adult Females 15-45 | -0.0179***
(0.00565) | -0.0145***
(0.00512) | 0.0724***
(0.00772) | -0.0189***
(0.00581) | -0.0158***
(0.00509) | 0.0721***
(0.00741) | | Adult Males 46+ | -0.0122 | -0.00601 | -0.0286*** | -0.0108 | -0.00752 | -0.0279*** | | riduit Marcs (0) | (0.00859) | (0.00751) | (0.0100) | (0.00808) | (0.00693) | (0.0101) | | Adult Females 46+ | -0.0168* | -0.0199** | 0.0621*** | -0.0135* | -0.0194*** | 0.0601*** | | | (0.00873) | (0.00794) | (0.0106) | (0.00814) | (0.00737) | (0.0102) | | Boys 0-5 | 0.0424*** | -0.0172** | -0.0163* | 0.0370*** | -0.0156* | -0.0125 | | Cirls O F | (0.00904) | (0.00774) | (0.00874) | (0.0101) | (0.00798) | (0.00891) | | Girls 0-5 | -0.0147*
(0.00829) | 0.0373***
(0.0110) | -0.0164**
(0.00772) | -0.0132
(0.00827) | 0.0326***
(0.0123) | -0.0136*
(0.00805) | | Boys 6-14 | 0.0441*** | -0.0159*** | -0.0209*** | 0.0396*** | -0.0141*** | -0.0185*** | | 20,0011 | (0.00726) | (0.00493) | (0.00534) | (0.00765) | (0.00498) | (0.00605) | | Girls 6-14 | -0.0139*** | 0.0449*** | -0.0189*** | -0.0104** | 0.0345*** | -0.0140** | | | (0.00516) | (0.00660) | (0.00510) | (0.00521) | (0.00707) | (0.00552) | | Men's Age (avg.) | -0.0531 | -0.110 | -0.0123 | -0.0605 | -0.0874 | 0.0180 | | Man'a Age () C | (0.132) | (0.126) | (0.143) | (0.131) | (0.120) | (0.207) | | Men's Age (avg) Sq. | 0.0821
(0.134) | 0.112
(0.125) | 0.0546
(0.146) | 0.0794
(0.135) | 0.0934
(0.126) | 0.00355
(0.212) | | Women's Age (avg.) | 0.134) 0.0519 | 0.0563 | -0.0517 | 0.133) | 0.120) | 0.212) 0.218 | | violiteit brige (avg.) | (0.215) | (0.159) | (0.182) | (0.193) | (0.156) | (0.275) | | Women's Age (avg.) Sq. | -0.0608 | -0.0692 | 0.0837 | -0.0400 | -0.0164 | -0.202 | | | (0.278) | (0.173) | (0.217) | (0.234) | (0.173) | (0.310) | | Boys' Age (avg.) | 0.741* | -0.192 | -0.519 | -0.479 | -0.114 | -0.0491 | | Dove' Ago (ove) Ca | (0.447)
-1.900 | (0.415)
0.603 | (0.436)
2.091 | (0.716)
2.861 | (0.504)
0.373 | (0.620)
0.916 | | Boys' Age (avg.) Sq. | (2.584) | (2.304) | (2.521) | (3.926) | (2.737) | (3.739) | | Girls' Age (avg.) | -0.0359 | 0.545 | -0.445 | -0.360 | 0.111 | -0.236 | | 0 (0) | (0.465) | (0.366) | (0.399) | (0.520) | (0.466) | (0.609) | | Girls' Age (avg.) Sq. | -1.339 | -1.216 | 1.635 | 1.485 | -0.402 | 0.950 | | -0-1 | (2.754) | (2.050) | (2.344) | (3.544) | (2.507) | (3.705) | | 1(Muslim) | 0.00299 | 0.00658 | 0.00364 | -0.00410 | 0.00646 | 0.00963 | | Working Women (share) | (0.0103)
0.00685 | (0.00827)
0.00405 | (0.00853)
0.00535 | (0.0105)
0.0132 | (0.0117)
0.00513 | (0.0142)
-0.00611 | | Working Women (share) | (0.00798) | (0.00755) | (0.00685) | (0.00921) | (0.00773) | (0.0118) | | Working Men (share) | 0.00964 | 0.0153 | -0.0179 | 0.00652 | 0.00812 | -0.0138 | | _ | (0.0117) | (0.0142) | (0.0131) | (0.0144) | (0.0132) | (0.0194) | | Women's Education (avg.) | 0.00884*** | 0.00632** | 0.00524* | 0.00936*** | 0.00803** | 0.00840^* | | Mania Education (ann) | (0.00330) | (0.00318) | (0.00288) | (0.00362) | (0.00338) | (0.00481) | | Men's Education (avg.) | 0.00580**
(0.00277) | 0.00573**
(0.00242) | 0.00810*** (0.00260) | 0.00617*
(0.00340) | 0.00647** (0.00284) | 0.0113***
(0.00432) | | 1(Rural) | 0.00277) | 0.00242) | -0.00477 | 0.00340) | 0.00254) | -0.00433 | | I (Tuliul) | (0.00746) | (0.0102) | (0.00970) | (0.00901) | (0.00901) | (0.0149) | | 1(Barisal) | -0.00361 | -0.000725 | 0.000233 | 0.00150 | -0.00253 | -0.0174 | | | (0.0133) | (0.0121) | (0.0139) | (0.0130) | (0.0124) | (0.0205) | | 1(Chittagong) | -0.00404 | -0.00651 | 0.0150 | 0.00162 | -0.00805 | 0.00223 | | 1(Dhaka) | (0.0109)
0.00293 | (0.0108)
-0.00230 | (0.0133)
0.00283 | (0.0109)
0.00919 | (0.0112)
-0.00588 | (0.0175)
0.00183 | | I(Dilaka) | (0.0108) | (0.00230 | (0.0105) | (0.00919) | (0.0103) | (0.0171) | | 1(Khulna) | -0.000224 | -0.00260 | -0.00109 | 0.00902 | -0.0102 | -0.00779 | | , , | (0.0124) | (0.0104) | (0.0121) | (0.0125) | (0.0124) | (0.0190) | | 1(Rajshahi) | 0.0102 | 0.00377 | 0.000921 | 0.0121 | 0.00118 | 0.00633 | | . ~ | (0.0129) | (0.0115) | (0.0123) | (0.0137) | (0.0116) | (0.0209) | | 1(Rangpur) | -0.00162 | 0.00825 | 0.00218 | -0.0119
(0.0141) | 0.00355 | -0.00155 | | Distance to Shops (log.) | (0.0135)
-0.000314 | (0.0124)
-0.000276 | (0.0129)
0.00105 | (0.0141)
-0.0000215 | (0.0132)
0.000127 | (0.0221)
0.000625 | | Distance to onops (108.) | (0.00224) | (0.00270) | (0.00103) | (0.00303) | (0.000127) | (0.00350) | | Distance to Road (log.) | 0.00153 | 0.00138 | 0.000822 | 0.00160 | 0.000412 | 0.0000340 | | | (0.00172) | (0.00173) | (0.00165) | (0.00195) | (0.00250) | (0.00272) | | 1(2011) | 0.00402 | 0.0114* | 0.000588 | 0.00154 | 0.0118* | 0.00987 | | Constant | (0.00616) | (0.00628) | (0.00636) | (0.00788) | (0.00683) | (0.0111) | | Constant | 0.110*
(0.0563) | 0.125**
(0.0494) | 0.336***
(0.0534) | 0.188***
(0.0595) | 0.156***
(0.0492) | 0.223**
(0.0902) | | | (0.0303) | (0.0774) | (0.0334) | (0.0373) | (0.0774) | (0.0704) | Note: $^{\circ}$ p < 0.10, ** p < 0.05, *** p < 0.01. BIHS data. NLSUR estimate bushes standard errors in parentheses. Age variables are divided by 100 to ease computation. Sylhet is the excluded region. SAP and SAT restrictions are imposed on the first set of assignable goods (cereals), while the second set (vegetables) is unrestricted. Table A7: Estimated Resource Shares - Reference Household | | D-SAP | | D-9 | SAT | SAP SAT | | | АТ | |--------------|------------------|-------------------|----------------|-------------------|----------------|-------------------|----------------|-------------------| | | Estimate | Standard
Error | Estimate | Standard
Error | Estimate | Standard
Error | Estimate | Standard
Error | | | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | | Boy | 0.176 | 0.014 | 0.164 | 0.021 | 0.169 | 0.014 | 0.145 | 0.019 | | Girl | 0.1676 | 0.014 | 0.146 | 0.016 | 0.162 | 0.013 | 0.135 | 0.016 | | Woman
Man | 0.2901
0.3662 | 0.014
0.018 | 0.273
0.417 | 0.036
0.033 | 0.296
0.373 | 0.014
0.018 | 0.308
0.413 | 0.038
0.033 | Note: Estimates based on BIHS data and Engel curves for cereals and proteins (meat, fish, dairy). The reference household is defined as one with 1 working man 15-45, 1 non-working woman 15-45, 1 boy 6-14, 1 girl 6-14, living rural northeastern Bangladesh (Sylhet division), surveyed in year 2015, with all other covariates at median values. SAP and SAT restrictions are imposed on the first set of assignable goods (cereals), while the second set (proteins) is unrestricted. **Table A8:** Additional Results | | | | Resource
Shares | | Individual Consumption
(PPP dollars) | | | | |-------------------------------|-------|-------|--------------------|----------|---|----------|----------|--| | | Obs. | Mean | Median | St. Dev. | Mean | Median | St. Dev. | | | - | (1) | (2) | (3) | (4) | (5) | (6) | (7) | | | A) Young vs. older adults: | | | | | | | | | | Boys | 4,502 | 0.130 | 0.142 | 0.037 | 668.85 | 593.67 | 333.91 | | | Girls | 4,243 | 0.125 | 0.135 | 0.038 | 653.86 | 578.30 | 336.49 | | | Women 46+ | 1,908 | 0.123 | 0.132 | 0.027 | 777.47 | 698.05 | 346.45 | | | Men 46+ | 2,398 | 0.315 | 0.199 | 0.179 | 1,723.37 |
1,403.33 | 1,085.79 | | | Women 15-45 | 6,073 | 0.210 | 0.227 | 0.048 | 1,070.34 | 956.80 | 499.37 | | | Men 15-45 | 5,403 | 0.431 | 0.444 | 0.127 | 2,165.45 | 1,929.09 | 1,036.70 | | | B) Hhs. with first born boy: | | | | | | | | | | First born boy | 1,885 | 0.155 | 0.158 | 0.019 | 726.09 | 659.52 | 310.55 | | | Higher birth order boys | 746 | 0.128 | 0.139 | 0.029 | 629.39 | 571.60 | 286.17 | | | Higher birth order girls | 668 | 0.120 | 0.130 | 0.029 | 599.22 | 559.14 | 262.96 | | | Women | 1,885 | 0.252 | 0.283 | 0.065 | 1,152.06 | 1,031.86 | 528.86 | | | Men | 1,885 | 0.408 | 0.408 | 0.101 | 1,883.21 | 1,687.91 | 891.53 | | | C) Hhs. with first born girl: | | | | | | | | | | First born girl | 1,804 | 0.146 | 0.148 | 0.019 | 703.85 | 628.71 | 322.39 | | | Higher birth order boys | 775 | 0.142 | 0.155 | 0.034 | 726.79 | 639.89 | 367.50 | | | Higher birth order girls | 768 | 0.132 | 0.145 | 0.034 | 666.18 | 590.75 | 332.97 | | | Women | 1,804 | 0.233 | 0.261 | 0.060 | 1,097.46 | 961.25 | 546.05 | | | Men | 1,804 | 0.405 | 0.408 | 0.113 | 1,914.54 | 1,669.56 | 962.87 | | Note: Estimates based on BIHS data and D-SAP identification method with Engel curves for cereals and vegetables. Mean and median of resource shares do not need to sum to one because there can be more than one individual of the same type in each family. Individual consumption is obtained multiplying total annual household expenditure (PPP dollars) by individual resource shares. Table A9: Additional Results - Restricted Samples | | | | Resource
Shares | | Individual Consumption
(PPP dollars) | | | | |-------------------------------|-------|-------|--------------------|----------|---|----------|----------|--| | | Obs. | Mean | Median | St. Dev. | Mean | Median | St. Dev. | | | - | (1) | (2) | (3) | (4) | (5) | (6) | (7) | | | A) Young vs. older adults: | | | | | | | | | | Boys | 3,906 | 0.132 | 0.145 | 0.037 | 664.42 | 588.21 | 336.50 | | | Girls | 3,653 | 0.127 | 0.138 | 0.037 | 649.96 | 577.95 | 335.65 | | | Women 46+ | 1,092 | 0.143 | 0.144 | 0.026 | 871.87 | 778.39 | 385.48 | | | Men 46+ | 2,212 | 0.314 | 0.199 | 0.177 | 1,704.19 | 1,395.82 | 1,062.02 | | | Women 15-45 | 5,244 | 0.218 | 0.236 | 0.048 | 1,090.46 | 972.97 | 512.40 | | | Men 15-45 | 4,626 | 0.434 | 0.443 | 0.129 | 2,125.18 | 1,893.08 | 1,019.85 | | | B) Hhs. with first born boy: | | | | | | | | | | First born boy | 1,463 | 0.157 | 0.159 | 0.016 | 714.99 | 645.80 | 310.94 | | | Higher birth order boys | 596 | 0.119 | 0.129 | 0.026 | 567.35 | 507.94 | 264.21 | | | Higher birth order girls | 535 | 0.111 | 0.121 | 0.027 | 540.59 | 501.67 | 241.41 | | | Women | 1,463 | 0.256 | 0.281 | 0.058 | 1,146.28 | 1,027.08 | 530.23 | | | Men | 1,463 | 0.429 | 0.429 | 0.093 | 1,940.28 | 1,726.89 | 933.57 | | | C) Hhs. with first born girl: | | | | | | | | | | First born girl | 1,417 | 0.147 | 0.150 | 0.016 | 698.47 | 622.06 | 322.37 | | | Higher birth order boys | 625 | 0.133 | 0.145 | 0.032 | 674.19 | 601.56 | 345.46 | | | Higher birth order girls | 607 | 0.124 | 0.137 | 0.032 | 612.00 | 546.77 | 305.30 | | | Women | 1,417 | 0.234 | 0.258 | 0.055 | 1,090.68 | 957.72 | 542.76 | | | Men | 1,417 | 0.426 | 0.428 | 0.107 | 1,990.65 | 1,722.85 | 996.89 | | Note: Estimates based on BIHS data and D-SAP identification method with Engel curves for cereals and vegetables. Mean and median of resource shares do not need to sum to one because there can be more than one individual of the same type in each family. Individual consumption is obtained multiplying total annual household expenditure (PPP dollars) by individual resource shares. **Table A10:** R^2 for Estimated Individual Consumption and Per Capita Consumption | | | oric
ake | | tein
ake | Food
Consumption | | Underweight | | Stunting | | Wasting | | |-------|-------|-------------|-------|-------------|---------------------|-------|-------------|-------|----------|-------|---------|-------| | | Ind. | PC | | | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) | | Total | 0.205 | 0.021 | 0.205 | 0.049 | 0.210 | 0.124 | 0.013 | 0.015 | 0.009 | 0.007 | 0.003 | 0.002 | | Men | 0.019 | 0.013 | 0.040 | 0.045 | 0.085 | 0.113 | 0.015 | 0.014 | | | | | | Women | 0.039 | 0.021 | 0.077 | 0.059 | 0.140 | 0.135 | 0.021 | 0.016 | | | | | | Boys | 0.040 | 0.018 | 0.057 | 0.036 | 0.157 | 0.135 | | | 0.007 | 0.004 | 0.001 | 0.001 | | Girls | 0.057 | 0.027 | 0.083 | 0.057 | 0.138 | 0.143 | | | 0.011 | 0.011 | 0.005 | 0.004 | Note: BIHS data 2015. Adults are defined as 15 years and older. For the nutritional outcomes, children are 5 years and younger. For the nutritional intake variables, children are 14 years and younger. Nutritional intake variables are unscaled. Columns (1) to (6) report R^2 for linear regressions of food intake on estimated individual consumption (log) or per capita consumption (log) or per capita consumption (log). Regressions are run separately for estimated individual consumption and per capita consumption. Odd-numbered columns refer to the estimated individual consumption (Ind.); even-numbered columns refer to per capita consumption (PC). Note: BIHS data. The figure shows the rate of undernourishment within households by expenditure percentile, where a household member is defined as undernourished if he or she is underweight (for adults), stunted or wasted (for children). Adults are defined as 15 years and older; children as 5 years and younger. Households with no intra-household inequality in nutritional outcomes, i.e. those with either all nourished or undernourished members, are excluded. **Figure A8:** Within Household Inequality in Nutritional Outcomes by Household Expenditure Percentile Note: BIHS data. Proteins include meat, fish, milk, and eggs. Figure A9: Non-Parametric Engel Curves $\underline{\text{Note:}}$ Estimates based on BIHS data. Only households with both boys and girls and surveyed in 2015 are included. Graphs for 2011 are similar and available upon request. Figure A10: Estimated Resource Shares - Empirical Distributions (2015) Figure A11: Poverty Rate by Per Capita Expenditure Percentile Note: Only households surveyed in 2015 are included. Individual consumption is obtained by multiplying total annual household expenditure (PPP dollars) by individual resource shares. The vertical line corresponds to the percentile of the \$1.90/day threshold. Estimates are based on BIHS data and D-SAP identification method with Engel curves for cereals and vegetables. In Panel C, we assume poverty lines for the elderly to be proportional to their caloric requirements relative to young adults (aged 15-45). We rely on the daily calorie needs by age and gender estimated by the United States Department of Health and Human Services and assume young adults require 2,400 calories per day. Figure A12: Additional Results - Young vs. Older Adults Note: Only households surveyed in 2015 are included. Individual consumption is obtained by multiplying total annual household expenditure (PPP dollars) by individual resource shares. The vertical line corresponds to the percentile of the \$1.90/day threshold. Estimates are based on BIHS data and D-SAP identification method with Engel curves for cereals and vegetables. In Panel C, we assume poverty lines for children to be proportional to their caloric requirements relative to young adults (aged 15-45). We rely on the daily calorie needs by age and gender estimated by the United States Department of Health and Human Services and assume young adults require 2,400 calories per day. Figure A13: Additional Results - Birth Order