

Electronic Design Automation

The Morgan Kaufmann Series in Systems on Silicon

Series Editor

Wayne Wolf
Georgia Institute of Technology

The Designer’s Guide to VHDL, Second Edition
Peter J. Ashenden

The System Designer’s Guide to VHDL-AMS
Peter J. Ashenden, Gregory D. Peterson, and Darrell A. Teegarden

Modeling Embedded Systems and SoCs
Axel Jantsch

ASIC and FPGA Verification: A Guide to Component Modeling
Richard Munden

Multiprocessor Systems-on-Chips
Edited by Ahmed Amine Jerraya and Wayne Wolf

Functional Verification
Bruce Wile, John Goss, and Wolfgang Roesner

Customizable and Configurable Embedded Processors
Edited by Paolo Ienne and Rainer Leupers

Networks-on-Chips: Technology and Tools
Edited by Giovanni De Micheli and Luca Benini

VLSI Test Principles & Architectures
Edited by Laung-Terng Wang, Cheng-Wen Wu, and Xiaoqing Wen

Designing SoCs with Configured Processors
Steve Leibson

ESL Design and Verification
Grant Martin, Andrew Piziali, and Brian Bailey

Aspect-Oriented Programming with e
David Robinson

Reconfigurable Computing: The Theory and Practice of FPGA-Based Computation
Edited by Scott Hauck and André DeHon

System-on-Chip Test Architectures
Edited by Laung-Terng Wang, Charles Stroud, and Nur Touba

Verification Techniques for System-Level Design
Masahiro Fujita, Indradeep Ghosh, and Mukul Prasad

VHDL-2008: Just the New Stuff
Peter J. Ashenden and Jim Lewis

On-Chip Communication Architectures: System on Chip Interconnect
Sudeep Pasricha and Nikil Dutt

Embedded DSP Processor Design: Application Specific Instruction Set Processors
Dake Liu

Processor Description Languages: Applications and Methodologies
Edited by Prabhat Mishra and Nikil Dutt

Three-dimensional Integrated Circuit Design
Vasilis F. Pavlidis and Eby G. Friedman

Electronic Design Automation: Synthesis, Verification, and Test
Edited by Laung-Terng Wang, Kwang-Ting (Tim) Cheng, Yao-Wen Chang

Electronic Design Automation:
Synthesis, Verification, and Test
Edited by

Laung-Terng Wang
Yao-Wen Chang

Kwang-Ting (Tim) Cheng
AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Morgan Kaufmann Publishers is an imprint of Elsevier

Morgan Kaufmann Publishers is an imprint of Elsevier.

30 Corporate Drive, Suite 400, Burlington, MA 01803, USA

This book is printed on acid-free paper.

2009 by Elsevier Inc. All rights reserved.
Designations used by companies to distinguish their products are often claimed as trademarks or

registered trademarks. In all instances in which Morgan Kaufmann Publishers is aware of a claim, the

product names appear in initial capital or all capital letters. Readers, however, should contact the

appropriate companies for more information regarding trademarks and registration.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or

by any means—electronic, mechanical, photocopying, scanning, or otherwise—without prior written
permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford,

UK: phone: (þ44) 1865 843830, fax: (þ44) 1865 853333, E-mail: permissions@elsevier.com. You may
also complete your request online via the Elsevier homepage (http://elsevier.com), by selecting

“Support & Contact” then “Copyright and Permission” and then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data

Electronic design automation : synthesis, verification, and test/edited by
Laung-Terng Wang, Yao-Wen Chang, Kwang-Ting (Tim) Cheng.

p. cm.

ISBN: 978-0-12-374364-0 (alk. paper)

1. Electronic circuit design–Data processing. 2. Computer-aided design.
I. Wang, Laung-Terng, II. Chang, Yao-Wen. III. Cheng, Kwang-Ting, 1961–

TK7867.E4227 2008

621.39’5–dc22

2008041788
For information on all Morgan Kaufmann publications,

visit our Web site at www.mkp.com

Printed in the United States of America

08 09 10 11 12 10 9 8 7 6 5 4 3 2 1

Contents
Preface xxi

In the Classroom xxv

Acknowledgments xxvii

Contributors xxix

About the Editors xxxiii

CHAPTER 1 Introduction. 1
Charles E. Stroud, Lang-Terng (L.-T.) Wang, and

Yao-Wen Chang
1.1 Overview of electronic design automation 2

1.1.1 Historical perspective . 2

1.1.2 VLSI design flow and typical EDA flow. 4

1.1.3 Typical EDA implementation examples 9

1.1.4 Problems and challenges . 12

1.2 Logic design automation. 13

1.2.1 Modeling . 13

1.2.2 Design verification . 14

1.2.3 Logic synthesis . 17

1.3 Test automation . 18

1.3.1 Fault models . 19

1.3.2 Design for testability . 21

1.3.3 Fault simulation and test generation 23

1.3.4 Manufacturing test . 24

1.4 Physical design automation. 25

1.4.1 Floorplanning . 27

1.4.2 Placement . 27

1.4.3 Routing . 28

1.4.4 Synthesis of clock and power/ground networks 29

1.5 Concluding remarks . 32

1.6 Exercises . 33

Acknowledgments. 35

References . 35
v

vi Contents
CHAPTER 2 Fundamentals of CMOS design 39
Xinghao Chen and Nur A. Touba
2.1 Introduction . 39

2.2 Integrated circuit technology . 40

2.2.1 MOS transistor . 41

2.2.2 Transistor equivalency . 44

2.2.3 Wire and interconnect. 46

2.2.4 Noise margin . 48

2.3 CMOS logic . 49

2.3.1 CMOS inverter and analysis 49

2.3.2 Design of CMOS logic gates and circuit blocks 52

2.3.3 Design of latches and flip-flops 55

2.3.4 Optimization techniques for high performance 57

2.4 Integrated circuit design techniques 58

2.4.1 Transmission-gate/pass-transistor logic 59

2.4.2 Differential CMOS logic . 61

2.4.3 Dynamic pre-charge logic . 62

2.4.4 Domino logic . 63

2.4.5 No-race logic . 67

2.4.6 Single-phase logic . 70

2.5 CMOS physical design . 71

2.5.1 Layout design rules . 72

2.5.2 Stick diagram . 75

2.5.3 Layout design . 79

2.6 Low-power circuit design techniques 84

2.6.1 Clock-gating . 85

2.6.2 Power-gating. 85

2.6.3 Substrate biasing . 87

2.6.4 Dynamic voltage and frequency scaling 88

2.6.5 Low-power cache memory design 89

2.7 Concluding remarks . 92

2.8 Exercises . 92

Acknowledgments. 95

References . 95
CHAPTER 3 Design for testability . 97
Laung-Terng (L.-T.) Wang
3.1 Introduction . 98

3.2 Testability analysis .100

Contents vii
3.2.1 SCOAP testability analysis .101

3.2.1.1 Combinational controllability and

observability calculation.102

3.2.1.2 Sequential controllability and observability

calculation .103

3.2.2 Probability-based testability analysis105

3.2.3 Simulation-based testability analysis108

3.3 Scan design .109

3.3.1 Scan architectures .109

3.3.1.1 Muxed-D scan design109

3.3.1.2 Clocked-scan design.111

3.3.1.3 LSSD scan design .113

3.3.2 At-speed testing .114

3.4 Logic built-in self-test .118

3.4.1 Test pattern generation .119

3.4.1.1 Exhaustive testing .121

3.4.1.2 Pseudo-random testing121

3.4.1.3 Pseudo-exhaustive testing.125

3.4.2 Output response analysis .129

3.4.2.1 Ones count testing130

3.4.2.2 Transition count testing131

3.4.2.3 Signature analysis .131

3.4.3 Logic BIST architectures .135

3.4.3.1 Self-testing with MISR and parallel

SRSG (STUMPS) .135

3.4.3.2 Built-in logic block observer (BILBO)136

3.4.3.3 Concurrent built-in logic block

observer (CBILBO).138

3.4.4 Industry practices .138

3.5 Test Compression .139

3.5.1 Circuits for test stimulus compression141

3.5.1.1 Linear-decompression-based schemes141

3.5.1.2 Broadcast-scan-based schemes145

3.5.2 Circuits for test response compaction.149

3.5.2.1 Combinational compaction.152

3.5.2.2 Sequential compaction.156

3.5.3 Industry practices .159

3.6 Concluding remarks .161

3.7 Exercises .162

Acknowledgments. .165

References .165

viii Contents
CHAPTER 4 Fundamentals of algorithms 173
Chung-Yang (Ric) Huang, Chao-Yue Lai, and

Kwang-Ting (Tim) Cheng
4.1 Introduction .173

4.2 Computational complexity .175

4.2.1 Asymptotic notations. .177

4.2.1.1 O-notation .178

4.2.1.2 O-notation and Y-notation179

4.2.2 Complexity classes .180

4.2.2.1 Decision problems versus optimization

problems .180

4.2.2.2 The complexity classes P versus NP181

4.2.2.3 The complexity class NP-complete182

4.2.2.4 The complexity class NP-hard184

4.3 Graph algorithms .185

4.3.1 Terminology .185

4.3.2 Data structures for representations of graphs187

4.3.3 Breadth-first search and depth-first search.188

4.3.3.1 Breadth-first search188

4.3.3.2 Depth-first search .190

4.3.4 Topological sort .192

4.3.5 Strongly connected component193

4.3.6 Shortest and longest path algorithms195

4.3.6.1 Initialization and relaxation195

4.3.6.2 Shortest path algorithms on directed

acyclic graphs .196

4.3.6.3 Dijkstra’s algorithm196

4.3.6.4 The Bellman-Ford algorithm199

4.3.6.5 The longest-path problem200

4.3.7 Minimum spanning tree. .200

4.3.8 Maximum flow and minimum cut202

4.3.8.1 Flow networks and the maximum-flow

problem .202

4.3.8.2 Augmenting paths and residual

networks. .203

4.3.8.3 The Ford-Fulkerson method and the

Edmonds-Karp algorithm204

4.3.8.4 Cuts and the max-flow min-cut

theorem .205

4.3.8.5 Multiple sources and sinks and maximum

bipartite matching .207

Contents ix
4.4 Heuristic algorithms .208

4.4.1 Greedy algorithm .209

4.4.1.1 Greedy-choice property210

4.4.1.2 Optimal substructure211

4.4.2 Dynamic programming .211

4.4.2.1 Overlapping subproblems213

4.4.2.2 Optimal substructure214

4.4.2.3 Memoization .214

4.4.3 Branch-and-bound .215

4.4.4 Simulated annealing .217

4.4.5 Genetic algorithms .219

4.5 Mathematical programming. .221

4.5.1 Categories of mathematical programming

problems .221

4.5.2 Linear programming (LP) problem222

4.5.3 Integer linear programming (ILP) problem223

4.5.3.1 Linear programming relaxation and

branch-and-bound procedure224

4.5.3.2 Cutting plane algorithm225

4.5.4 Convex optimization problem226

4.5.4.1 Interior-point method227

4.6 Concluding remarks .230

4.7 Exercises .230

Acknowledgments. .232

References .232
CHAPTER 5 Electronic system-level design and
high-level synthesis. 235
Jianwen Zhu and Nikil Dutt
5.1 Introduction .236

5.1.1 ESL design methodology .236

5.1.2 Function-based ESL methodology239

5.1.3 Architecture-based ESL methodology241

5.1.4 Function architecture codesign methodology243

5.1.5 High-level synthesis within an ESL

design methodology .244

5.2 Fundamentals of High-level synthesis.246

5.2.1 TinyC as an example for behavioral descriptions250

5.2.2 Intermediate representation in TinyIR251

5.2.3 RTL representation in TinyRTL.253

x Contents
5.2.4 Structured hardware description in FSMD.254

5.2.5 Quality metrics .257

5.3 High-level synthesis algorithm overview261

5.4 Scheduling. .263

5.4.1 Dependency test .263

5.4.2 Unconstrained scheduling .266

5.4.3 Resource-constrained scheduling268

5.5 Register binding. .273

5.5.1 Liveness analysis .273

5.5.2 Register binding by coloring277

5.6 Functional unit binding .281

5.7 Concluding remarks .289

5.8 Exercises .293

Acknowledgments. .294

References .294
CHAPTER 6 Logic synthesis in a nutshell 299
Jie-Hong (Roland) Jiang and Srinivas Devadas
6.1 Introduction .299

6.2 Data Structures for Boolean representation

and reasoning .302

6.2.1 Quantifier-free and quantified Boolean formulas303

6.2.2 Boolean function manipulation308

6.2.3 Boolean function representation309

6.2.3.1 Truth table .309

6.2.3.2 SOP .310

6.2.3.3 POS .311

6.2.3.4 BDD .312

6.2.3.5 AIG .321

6.2.3.6 Boolean network .323

6.2.4 Boolean representation conversion.324

6.2.4.1 CNF vs. DNF .324

6.2.4.2 Boolean formula vs. circuit.326

6.2.4.3 BDD vs. Boolean network326

6.2.5 Isomorphism between sets and

characteristic functions .328

6.2.6 Boolean reasoning engines.331

6.3 Combinational logic minimization332

6.3.1 Two-level logic minimization332

Contents xi
6.3.1.1 PLA implementation vs. SOP

minimization .333

6.3.1.2 Terminology .334

6.3.2 SOP minimization .336

6.3.2.1 The Quine-McCluskey method336

6.3.2.2 Other methods .340

6.3.3 Multilevel logic minimization340

6.3.3.1 Logic transformations.341

6.3.3.2 Division and common divisors344

6.3.3.3 Algebraic division .344

6.3.3.4 Common divisors .350

6.3.3.5 Boolean division .356

6.3.4 Combinational complete flexibility357

6.3.5 Advanced subjects. .361

6.4 Technology mapping .362

6.4.1 Technology libraries .363

6.4.2 Graph covering. .365

6.4.3 Choice of atomic pattern set366

6.4.4 Tree covering approximation367

6.4.5 Optimal tree covering .369

6.4.6 Improvement by inverter-pair insertion370

6.4.7 Extension to non-tree patterns370

6.4.8 Advanced subjects. .371

6.5 Timing analysis .371

6.5.1 Topological timing analysis374

6.5.2 Functional timing analysis .376

6.5.2.1 Delay models and modes of operation.377

6.5.2.2 True floating mode delay380

6.5.3 Advanced subjects. .383

6.6 Timing optimization .384

6.6.1 Technology-independent timing optimization384

6.6.2 Timing-driven technology mapping386

6.6.2.1 Delay optimization using tree covering386

6.6.2.2 Area minimization under

delay constraints .390

6.6.3 Advanced subjects. .391

6.7 Concluding remarks .392

6.8 Exercises .393

Acknowledgments. .400

References .400

xii Contents
CHAPTER 7 Test synthesis . 405
Laung-Terng (L.-T.) Wang, Xiaoqing Wen, and

Shianling Wu
7.1 Introduction .406

7.2 Scan design .408

7.2.1 Scan design rules .408

7.2.1.1 Tristate buses .408

7.2.1.2 Bidirectional I/O ports409

7.2.1.3 Gated clocks .411

7.2.1.4 Derived clocks .412

7.2.1.5 Combinational feedback loops412

7.2.1.6 Asynchronous set/reset signals413

7.2.2 Scan design flow. .414

7.2.2.1 Scan design rule checking and repair415

7.2.2.2 Scan synthesis .417

7.2.2.3 Scan extraction .422

7.2.2.4 Scan verification .422

7.3 Logic built-in self-test (BIST) design425

7.3.1 BIST design rules .425

7.3.1.1 Unknown source blocking426

7.3.1.2 Re-timing .430

7.3.2 BIST design example .430

7.3.2.1 BIST rule checking and violation repair431

7.3.2.2 Logic BIST system design431

7.3.2.3 RTL BIST synthesis437

7.3.2.4 Design verification and fault coverage

enhancement .438

7.4 RTL Design for testability .438

7.4.1 RTL scan design rule checking and repair.440

7.4.2 RTL scan synthesis .441

7.4.3 RTL scan extraction and scan verification442

7.5 Concluding remarks .443

7.6 Exercises .443

Acknowledgments. .446

References .446

Contents xiii
CHAPTER 8 Logic and circuit simulation. 449
Jiun-Lang Huang, Cheng-Kok Koh, and Stephen F. Cauley
8.1 Introduction .450

8.1.1 Logic simulation .451

8.1.2 Hardware-accelerated logic simulation452

8.1.3 Circuit simulation .452

8.2 Logic simulation models .453

8.2.1 Logic symbols and operations453

8.2.1.1 “1” and “0” .453

8.2.1.2 The unknown value u453

8.2.1.3 The high-impedance state Z453

8.2.1.4 Basic logic operations454

8.2.2 Timing models .455

8.2.2.1 Transport delay .455

8.2.2.2 Inertial delay .456

8.2.2.3 Functional element delay model457

8.2.2.4 Wire delay. .457

8.3 Logic simulation techniques .459

8.3.1 Compiled-code simulation .460

8.3.1.1 Preprocessing .460

8.3.1.2 Code generation .461

8.3.1.3 Applications .462

8.3.2 Event-driven simulation .462

8.3.2.1 Zero-delay event-driven simulation462

8.3.2.2 Nominal-delay event-driven simulation463

8.4 Hardware-accelerated logic simulation465

8.4.1 Types of hardware acceleration467

8.4.2 Reconfigurable computing units.468

8.4.3 Interconnection architectures470

8.4.3.1 Direct interconnection470

8.4.3.2 Indirect interconnect471

8.4.3.3 Time-multiplexed interconnect472

8.4.4 Timing issues .474

8.5 Circuit simulation models .475

8.5.1 Ideal voltage and current sources476

8.5.2 Resistors, capacitors, and inductors476

8.5.3 Kirchhoff’s voltage and current laws477

8.5.4 Modified nodal analysis .477

xiv Contents
8.6 Numerical methods for transient analysis.480

8.6.1 Approximation methods and

numerical integration .480

8.6.2 Initial value problems .483

8.7 Simulation of VLSI interconnects.485

8.7.1 Wire resistance .486

8.7.2 Wire capacitance .487

8.7.3 Wire inductance .489

8.7.4 Lumped and distributed models491

8.7.5 Simulation procedure for interconnects491

8.8 Simulation of nonlinear devices. .495

8.8.1 The diode. .496

8.8.2 The field-effect transistor .498

8.8.3 Simulation procedure for nonlinear devices502

8.9 Concluding remarks .504

8.10 Exercises. .506

Acknowledgments .509

References .510
CHAPTER 9 Functional verification 513
Hung-Pin (Charles) Wen, Li-C. Wang, and

Kwang-Ting (Tim) Cheng
9.1 Introduction .514

9.2 Verification hierarchy .515

9.2.1 Designer-level verification517

9.2.2 Unit-level verification .518

9.2.3 Core-level verification .518

9.2.4 Chip-level verification .519

9.2.5 System-/board-level verification520

9.3 Measuring verification quality .520

9.3.1 Random testing .520

9.3.2 Coverage-driven verification522

9.3.3 Structural coverage metrics524

9.3.3.1 Line coverage (a.k.a. statement coverage) . .524

9.3.3.2 Toggle coverage. .524

9.3.3.3 Branch/path coverage525

9.3.3.4 Expression coverage526

9.3.3.5 Trigger coverage (a.k.a. event coverage) . . .528

9.3.3.6 Finite state machine (FSM) coverage529

9.3.3.7 More on structural coverage.530

9.3.4 Functional coverage metrics.531

Contents xv
9.4 Simulation-based approach .532

9.4.1 Testbench and simulation environment

development .533

9.4.2 Methods of observation points535

9.4.3 Assertion-based verification537

9.4.3.1 Assertion coverage and classification.538

9.4.3.2 Use of assertions .539

9.4.3.3 Writing assertions540

9.5 Formal approaches .540

9.5.1 Equivalence checking .541

9.5.1.1 Checking based on functional

equivalence. .543

9.5.1.2 Checking based on structural search.543

9.5.2 Model checking (property checking)547

9.5.2.1 Model checking with temporal logic553

9.5.3 Theorem proving .556

9.6 Advanced research .561

9.7 Concluding remarks .563

9.8 Exercises .564

Acknowledgments .570

References .570
CHAPTER 10 Floorplanning. 575
Tung-Chieh Chen and Yao-Wen Chang
10.1 Introduction .575

10.1.1 Floorplanning basics .575

10.1.2 Problem statement. .577

10.1.3 Floorplanning model .577

10.1.3.1 Slicing floorplans577

10.1.3.2 Non-slicing floorplans578

10.1.4 Floorplanning cost. .579

10.2 Simulated annealing approach. .580

10.2.1 Simulated annealing basics581

10.2.2 Normalized Polish expression for slicing

floorplans .583

10.2.2.1 Solution space .585

10.2.2.2 Neighborhood structure586

10.2.2.3 Cost function .588

10.2.2.4 Annealing schedule590

10.2.3 B*-tree for compacted floorplans.593

10.2.3.1 From a floorplan to its B*-tree594

xvi Contents
10.2.3.2 From a B*-tree to its floorplan594

10.2.3.3 Solution space .598

10.2.3.4 Neighborhood structure598

10.2.3.5 Cost function .600

10.2.3.6 Annealing schedule600

10.2.4 Sequence pair for general floorplans600

10.2.4.1 From a floorplan to its sequence pair . . .600

10.2.4.2 From a sequence pair to its floorplan . . .601

10.2.4.3 Solution space .604

10.2.4.4 Neighborhood structure604

10.2.4.5 Cost function .605

10.2.4.6 Annealing schedule605

10.2.5 Floorplan representation comparison605

10.3 Analytical approach .607

10.4 Modern floorplanning considerations612

10.4.1 Soft modules .612

10.4.2 Fixed-outline constraint .615

10.4.3 Floorplanning for large-scale circuits617

10.4.4 Other considerations and topics622

10.5 Concluding remarks .625

10.6 Exercises .625

Acknowledgments .631

References .631
CHAPTER 11 Placement . 635
Chris Chu
11.1 Introduction .635

11.2 Problem formulations .637

11.2.1 Placement for different design styles637

11.2.1.1 Standard-cell placement637

11.2.1.2 Gate array/FPGA placement637

11.2.1.3 Macro block placement637

11.2.1.4 Mixed-size placement638

11.2.2 Placement objectives .638

11.2.2.1 Total wirelength638

11.2.2.2 Routability .639

11.2.2.3 Performance. .640

11.2.2.4 Power .640

11.2.2.5 Heat distribution640

11.2.3 A common placement formulation641

Contents xvii
11.3 Global placement: partitioning-based approach641

11.3.1 Basics for partitioning .642

11.3.1.1 Problem formulation.642

11.3.1.2 The Fiduccia-Mattheyses algorithm643

11.3.1.3 A multilevel scheme645

11.3.2 Placement by partitioning646

11.3.2.1 The basic idea .646

11.3.2.2 Terminal propagation technique647

11.3.3 Practical implementations648

11.3.3.1 The Capo algorithm648

11.3.3.2 The Fengshui algorithm649

11.4 Global placement: simulated annealing approach649

11.4.1 The placement algorithm in TimberWolf650

11.4.1.1 Stage 1 .650

11.4.1.2 Stage 2 .651

11.4.1.3 Annealing schedule651

11.4.2 The Dragon placement algorithm652

11.5 Global placement: analytical approach.653

11.5.1 An exact formulation .653

11.5.2 Quadratic techniques .655

11.5.2.1 Quadratic wirelength655

11.5.2.2 Force interpretation of quadratic

wirelength .658

11.5.2.3 Net models for multi-pin nets659

11.5.2.4 Linearization methods.661

11.5.2.5 Handling nonoverlapping constraints664

11.5.3 Nonquadratic techniques668

11.5.3.1 Log-sum-exponential wirelength

function. .669

11.5.3.2 Density constraint smoothing by

bell-shaped function670

11.5.3.3 Density constraint smoothing by inverse

laplace transformation672

11.5.3.4 Algorithms for nonlinear programs672

11.5.4 Extension to multilevel .673

11.5.4.1 First choice .673

11.5.4.2 Best choice .674

11.6 Legalization .674

11.7 Detailed placement .675

11.7.1 The Domino algorithm. .675

11.7.2 The FastDP algorithm. .677

xviii Contents
11.8 Concluding Remarks .679

11.9 Exercises .680

Acknowledgments .682

References. .682
CHAPTER 12 Global and detailed routing 687
Huang-Yu Chen and Yao-Wen Chang
12.1 Introduction .688

12.2 Problem definition .689

12.2.1 Routing model. .689

12.2.2 Routing constraints .691

12.3 General-purpose routing .692

12.3.1 Maze routing .693

12.3.1.1 Coding scheme694

12.3.1.2 Search algorithm694

12.3.1.3 Search space .695

12.3.2 Line-search routing .695

12.3.3 A*-search routing .697

12.4 Global routing .697

12.4.1 Sequential global routing697

12.4.2 Concurrent global routing699

12.4.3 Steiner trees .700

12.5 Detailed Routing .704

12.5.1 Channel routing .704

12.5.2 Full-chip routing .710

12.6 Modern routing considerations .715

12.6.1 Routing for signal integrity716

12.6.1.1 Crosstalk modeling716

12.6.1.2 Crosstalk-aware routing.718

12.6.2 Routing for manufacturability720

12.6.2.1 OPC-aware routing721

12.6.2.2 CMP-aware routing725

12.6.3 Routing for reliability .729

12.6.3.1 Antenna-avoidance routing731

12.6.3.2 Redundant-via aware routing736

12.7 Concluding remarks .738

12.8 Exercises .740

Acknowledgments .745

References .745

Contents xix
CHAPTER 13 Synthesis of clock and power/ground
networks . 751
Cheng-Kok Koh, Jitesh Jain, and Stephen F. Cauley
13.1 Introduction .751

13.2 Design considerations. .753

13.2.1 Timing constraints .753

13.2.2 Skew and Jitter .755

13.2.3 IR drop and L�di/dt noise760

13.2.4 Power dissipation .761

13.2.5 Electromigration .762

13.3 Clock Network design .763

13.3.1 Typical clock topologies.763

13.3.2 Clock network modeling and analysis770

13.3.3 Clock tree synthesis. .774

13.3.3.1 Clock skew scheduling775

13.3.3.2 Clock tree routing779

13.3.3.3 Zero-skew routing781

13.3.3.4 Bounded-skew routing793

13.3.3.5 Useful-skew routing807

13.3.4 Clock tree optimization .811

13.3.4.1 Buffer insertion in clock routing811

13.3.4.2 Clock gating. .816

13.3.4.3 Wire sizing for clock nets819

13.3.4.4 Cross-link insertion.826

13.4 Power/ground network design .829

13.4.1 Typical power/ground topologies829

13.4.2 Power/ground network analysis833

13.4.3 Power/ground network synthesis836

13.4.3.1 Topology optimization837

13.4.3.2 Power pad assignment837

13.4.3.3 Wire width optimization338

13.4.3.4 Decoupling capacitance839

13.5 Concluding remarks .843

13.6 Exercises .843

Acknowledgments .846

References .846

xx Contents
CHAPTER 14 Fault Simulation and Test Generation 851
James C.-M. Li and Michael S. Hsiao
14.1 Introduction .851

14.2 Fault Collapsing .854

14.2.1 Equivalence fault collapsing854

14.2.2 Dominance fault collapsing858

14.3 Fault Simulation .861

14.3.1 Serial fault simulation. .861

14.3.2 Parallel fault simulation .863

14.3.2.1 Parallel fault simulation.864

14.3.2.2 Parallel pattern fault simulation866

14.3.3 Concurrent fault simulation868

14.3.4 Differential fault simulation871

14.3.5 Comparison of fault simulation techniques874

14.4 Test Generation .876

14.4.1 Random test generation .876

14.4.1.1 Exhaustive testing879

14.4.2 Theoretical Background: Boolean difference880

14.4.2.1 Untestable Faults881

14.4.3 Designing a stuck-at ATPG for

combinational circuits .882

14.4.3.1 A naive ATPG algorithm882

14.4.3.2 A basic ATPG algorithm886

14.4.3.3 D algorithm .890

14.4.4 PODEM. .895

14.4.5 FAN .900

14.5 Advanced Test Generation .902

14.5.1 Sequential ATPG: Time frame expansion902

14.5.2 Delay fault ATPG .905

14.5.3 Bridging fault ATPG .908

14.6 Concluding Remarks .909

14.7 Exercises .910

Acknowledgments .913

References .913
Index . 919

Preface
xxi
New applications enabled by advances in semiconductor manufacturing technol-

ogy continue to grow at an amazing rate. A wide spectrum of novel products,

ranging from high-performance processors to a broad array of low-power porta-

ble devices to micro sense/communicate/actuate chips, facilitates various

new applications that have changed, and will continue to change, our daily lives.
However, as the semiconductor industry moves to ever-smaller feature sizes and

the number of transistors embedded within a very-large-scale integration (VLSI)

circuit continues to grow, under the relentless pressure of time-to-market for

high-quality, reliable products, the semiconductor industry is increasingly depen-

dent on design technology for design closure and for meeting productivity goals.

The design technology we refer to here covers all of the core knowledge,

software tools, algorithms, methodologies, and infrastructure required to assist

in the synthesis, verification, testing, and manufacturing of a functioning and
reliable integrated circuit.

Electronic design automation (EDA) has driven advances in design technol-

ogies for the past 30 years and will continue to do so. Traditional EDA tools sup-

port the design process starting from the register-transfer level (RTL) through to

layout. The tasks assisted by these tools can be coarsely classified into RTL/logic

synthesis, physical design, design verification, and design for testability (DFT).

Since the late 1990s, the landscape of EDA has rapidly expanded such that it

now includes an even broader range of tasks. These new tasks cover the sup-
port of electronic-system-level (ESL) design that includes system specification,

transaction-level modeling, and behavioral synthesis as well as tasks related to

manufacturing and post-silicon activities such as design for manufacturability

and reliability (DFM/DFR), post-layout manipulations for yield optimization,

and post-silicon debug. At the same time, the traditional RTL-to-layout tasks

are also refined, resulting in a synthesis process which involves many steps of

design refinements and employs highly complex optimizations and analysis.

The design environment has evolved from a set of point tools to a highly sophis-
ticated and integrated system able to manipulate a huge amount of design data

at several different levels of design abstraction.

The fast and continuing evolution of design technology and the enormous

growth in the complexity and sophistication of an EDA system has made it such

that very few people can master all fronts of this field. New problems, new algo-

rithms, new methodologies and tools, and new start-ups offering new solutions,

emerge every year. This trend will continue, perhaps at an even faster pace in

the future! As a result, it is becoming difficult even for experts to follow and

xxii Preface
comprehend the progress on a continuing basis. Training students to prepare

them for careers in academia or industry as the next generation of leaders in
VLSI design and EDA is a challenging task!

While a comprehensive treatment of all EDA subjects is infeasible for either

the undergraduate or entry-level graduate VLSI curriculum, integrating more

EDA subjects into existing VLSI and logic design courses is essential for giving

the students a balanced, and more accurate, view of modern system-on-chip

(SOC) design. To facilitate that goal and to evolve the VLSI design curriculum,

this textbook selects a set of core EDA topics which, in our opinion, provides

an essential, fundamental understanding of the EDA tasks and the design pro-
cess. These topics range from the basics of complementary metal oxide semi-

conductor (CMOS) design to key algorithms used in EDA. Also covered are

various modeling and synthesis techniques at the system, register-transfer, and

gate levels, as well as physical synthesis, including floorplanning, placement,

routing, and synthesis of clock and power/ground networks. We have also cho-

sen key topics on functional verification, including both simulation and formal

techniques, and a range of testing topics, such as design for testability, test syn-

thesis, fault simulation, and test generation. The intent is to allow the readers to
understand fundamental EDA algorithms as well as VLSI test principles and DFT

architectures, preparing them to tackle EDA and test problems caused by

advances in semiconductor manufacturing technology and complex SOC

designs in today’s nanometer era.

Each chapter of this book follows a specific format. The subject matter of

the chapter is first introduced. Related methods are explained in detail next.

Then, industry practices, if applicable, are described before concluding

remarks. Each chapter contains a variety of exercises to allow the use of this
book as a textbook for an entry-level EDA course. Every chapter concludes with

acknowledgment to contributors and reviewers and a list of references.

Chapter 1 provides an introduction to electronic design automation (EDA). It

begins with an overview of the EDA historic perspective. This is followed by a dis-

cussion of the importance of EDA – why EDA plays a central role in meeting time-

to-market pressure and manufacturing quality of the nanometer design era. Typi-

cal design flows and examples are illustrated at different levels of abstraction –
how a system-level design is automated through the modeling, synthesis, verifica-
tion, and test stages.

Chapter 2 covers fundamental complementary metal oxide semiconductor

(CMOS) design principles and techniques that are required knowledge for the

understanding of system-on-chip (SOC) designs and EDA applications. While

the topic is quite broad, we mainly focus on the widely used CMOS design

and automation techniques and introduce them in an easy-to-grasp manner with

extensive illustrations and examples. Emerging low-power design techniques

that can be utilized to lengthen battery life or to reduce system failures due to
overheat are also included in the chapter.

Preface xxiii
Chapter 3 covers fundamental design-for-testability (DFT) architectures to

ensure high product quality and low test cost for VLSI or SOC designs. This
chapter puts great emphasis on three basic DFT techniques that have been

widely used in industry today for digital circuit testing: scan design, logic

built-in self-test (BIST), and test compression. Testability analysis methods

to assess the testability of a logic circuit are first described. The three DFT tech-

niques are then explained in detail including schemes for at-speed testing and

practiced in industry.

Chapter 4 introduces the fundamentals of algorithms that are essential to

EDA tasks including synthesis, verification, and test. This chapter starts with
an introduction to computational complexity, followed by various graph algo-

rithms that are commonly used to model and solve EDA problems. It also covers

several heuristic algorithms for practical use on real-life designs. The remainder

of the chapter briefly surveys the mathematical programming techniques that

can provide a theoretical background on the optimization problems.

Chapter 5 begins with electronic-system-level (ESL) design modeling and

high-level synthesis – the first step of EDA after a design is specified for imple-

mentation. The role of high-level synthesis in the context of ESL design model-
ing is discussed. An example is given to describe the generic structure required

to build a high-level synthesis tool and the tasks involved. This is followed by a

detailed description of the key algorithms, including scheduling and binding.

Advanced topics are discussed at the end of the chapter.

Chapter 6 jumps into logic synthesis – the essential step bridging high-level

synthesis and physical design. Important data structures for Boolean function

representation and reasoning are first introduced, followed by the classical

issues of logic optimization (which includes two-level and multilevel logic min-
imization), technology mapping, timing analysis, and timing optimization.

Advanced and emerging topics are outlined for further reading.

Chapter 7 discusses the test synthesis process that automatically inserts the

DFT circuits, discussed in Chapter 3, into a design during or after logic synthesis.

Design rules specific to scan design and logic BIST are given to comply with

DFT requirements. Test synthesis flows and examples are then described to

show how the test automation is performed. The remainder of the chapter

is devoted to illustrating the automation of DFT circuit insertion at the register-

transfer level (RTL).

Chapter 8 covers various logic and circuit simulation techniques that allow

a designer to understand the dynamic behavior of a system at different stages of

the design flow. The chapter begins with a discussion of logic simulation tech-

niques that are fundamental to software simulators. Next, hardware-accelerated

logic simulation, which is commonly referred to as emulation, is introduced.

Both logic simulation and emulation of systems are typically performed at a

higher level of design abstraction. The last part of the chapter deals with the
simulation of the most basic components of a circuit, namely, devices and

interconnects.

xxiv Preface
Chapter 9 is devoted to functional verification. This chapter first introduces

the verification processes at various design stages. Common structural and func-
tional coverage metrics which measure the verification quality are described.

This chapter also discusses the key tasks involved in simulation-based verifica-

tion, such as stimulus generation, assertion-based verification, and random

testing. The mathematical backgrounds and examples for various formal

approaches are also provided. Advanced verification techniques are presented

as supplements at the end of the chapter.

Chapter 10 addresses floorplanning of the physical design process. The two

most popular approaches to floorplanning, simulated annealing and analytical

formulations, are covered. Based on simulated annealing, three popular floorplan

representations, normalized Polished expression, B*-tree, and sequence pair are

further discussed and compared. Some modern floorplanning issues related to

soft modules, fixed-outline constraints, and large-scale designs are also addressed.

Chapter 11 covers placement of the physical design process. This chapter

focuses on techniques to solve the global placement problem. Algorithms for

the most common global placement approaches, namely partitioning-based

approach, simulated annealing approach and analytical approach, are
presented. The analytical approach is particularly emphasized as the best global

placement algorithms are all based on the analytical approach. Techniques

for legalization and detailed placement are also discussed.

Chapter 12 covers signal routing. This chapter classifies the routing algo-

rithms into three major categories: general-purpose routing, global routing,

and detailed routing. For general-purpose routing, maze routing, line-search

routing, and A*-search routing are discussed. For global routing, both sequential

and concurrent techniques are covered. Steiner tree construction is also
addressed to handle the interconnection of multi-terminal nets. Some modern

routing considerations in signal integrity, manufacturability, and reliability such

as crosstalk optical proximity correction (OPC), chemical-mechanical polishing

(CMP), antenna effect, and double-via insertion, are also briefly discussed.

Chapter 13 addresses the synthesis of clock and power/ground networks,

with a stronger emphasis on clock network synthesis. Following a discussion

of the key issues that affect the integrity of clock networks and power/ground

networks, the chapter delves into the automated analysis, synthesis, and optimi-
zation of both types of large-scale interconnection networks.

Chapter 14 consists of two major VLSI testing topics – fault simulation and

automatic test pattern generation (ATPG) – for producing high-quality test pat-

terns to detect defective chips during manufacturing test. The chapter starts

with fault collapsing, which helps speed up fault simulation and ATPG. Several

fault simulation techniques, including serial, parallel, concurrent, and differen-

tial fault simulation, are introduced and compared. Next, basic ATPG techni-

ques, including Boolean difference, PODEM, and FAN, are described. The
chapter concludes with advanced test generation techniques to meet the needs

of covering defects that arise in deep-submicron devices, including sequential

ATPG, delay fault ATPG, and bridging fault ATPG.

In the Classroom
This book is designed to be used as an entry-level text for undergraduate seniors

and first-year graduate students in computer engineering, computer science, and

electrical engineering. Selected chapters can also be used to complement existing

logic or system design courses. The book is also intended for use as a reference

book for researchers and practitioners. It is self-contained with most topics
covered extensively from fundamental concepts to current techniques used in

research and industry. However, we assume that students have had basic courses

in logic design, computer programming, and probability theory. Attempts are

made to present algorithms, wherever possible, in an easy-to-understand manner.

To encourage self-learning, the instructor or reader is advised to check the

Elsevier companion Web site (http://www.elsevierdirect.com/companions/

9780123743640) to access up-to-date software and lecture slides. Instructors

will have additional privileges to assess the Solutions directory for all exercises
given in each chapter by visiting www.textbooks.elsevier.com and registering a

username and password.

Laung-Terng (L.-T.) Wang

Yao-Wen Chang

Kwang-Ting (Tim) Chang
xxv

This page intentionally left blank

Acknowledgments
xxvii
The editors would like to acknowledge many of their colleagues who helped

create this book. First and foremost are the 25 chapter/section contributors

listed in the next two pages. Without their strong commitments to contributing

the chapters and sections of their specialty to the book in a timely manner,

it would not have been possible to publish this book.
We also would like to thank the external reviewers in providing invaluable

feedback to improve the contents of this book. We would like to thank

Prof. Robert K. Brayton (University of California, Berkeley), Prof. Hung-Ming

Chen (National Chiao Tung University), Prof. Jiang Hu (Texas A&M University),

Professors Alan J. Hu and Andre Ivanov (University of British Columbia,

Canada), Prof. Jing-Yang Jou (National Chiao Tung University), Prof. Shinji

Kimura (Waseda University, Japan), Prof. Chong-Min Kyung (Korea Advanced

Institute of Science and Technology, Korea), Prof. Yu-Min Lee (National Chiao
Tung University), Prof. Eric MacDonald (University of Texas at El Paso), Prof.

Subhasish Mitra (Stanford University), Prof. Preeti Ranjan Panda (India Institute

of Technology at Delhi, India), Prof. Kewal K. Saluja (University of Wisconsin -

Madison), Prof. Tsutomu Sasao (Kyushu Institute of Technology, Japan), Prof.

Sheldon X.-D. Tan (University of California at Riverside), Prof. Ren-Song Tsay

(National Tsing Hua University, Taiwan), Prof. Natarajan Viswanathan (Iowa

State University), Prof. Ting-Chi Wang (National Tsing Hua University, Taiwan),

Prof. Martin D. F. Wong, (University of Illinois at Urbana-Champagne), Prof. Hir-
oto Yasuura (Kyushu University, Japan), Prof. Evangeline F. Y. Young (Chinese

University of Hong Kong, China), Prof. Tian-Li Yu (National Taiwan University),

Khader S. Abdel-Hafez (Synopsys, Mountain View, CA), Dr. Aiqun Cao

(Synopsys, Mountain View, CA), Wen-Chi Chao and Tzuo-Fan Chien (National

Taiwan University), Dr. Tsung-Hao (Howard) Chen (Mentor Graphics, San Jose,

CA), William Eklow (Cisco, San Jose, CA), Dr. Farzan Fallah (Fujitsu Laboratories

of America, Sunnyvale, CA), Dr. Patrick Girard (LIRMM/CNRS, Montpellier,

France), Dr. Sumit Gupta (Nvidia, San Jose, CA), Meng-Kai Hsu and Po-Sen
Huang (National Taiwan University), Dr. Rohit Kapur (Synopsys, Mountain View,

CA), Dr. Brion Keller (Cadence Design Systems, Endicott, NY), Benjamin Liang

(University of California, Berkeley), T. M. Mak (Intel, Santa Clara, CA), Dr. Alan

Mishchenko (University of California at Berkeley), Dr. Benoit Nadeau-Dostie

(LogicVision, Ottawa, Canada), Linda Paulson (University of California, Santa

Barbara), Chin-Khai Tang (National Taiwan University), Jensen Tsai (SpringSoft,

Hsinchu, Taiwan), Dr. Chung-Wen Albert Tsao (Cadence Design Systems, San

Jose, CA), Natarajan Viswanathan (Iowa State University), Dr. Bow-Yaw Wang

xxviii Acknowledgments
(Academia Sinica, Taipei, Taiwan), Dr. Ming-Yang Wang (SpringSoft, Fremont,

CA), Ho-Chun Wu (Cadence Design Systems, Hsinchu, Taiwan), Dr. Jin Yang
(Intel, Hillsboro, OR), and all chapter/section contributors for cross-reviewing

the manuscript. Special thanks also go to Wan-Ping Lee and Guang-Wan Liao

of National Taiwan University and many colleagues at SynTest Technologies,

Inc., including Dr. Ravi Apte, Boryau Sheu, Dr. Zhigang Jiang, Jianping Yan,

Jianghao Guo, Fangfang Li, Lizhen Yu, Ginger Qian, Jiayong Song, Sammer Liu,

and Teresa Chang who helped draw symbolic layouts, review the manuscript,

solve exercises, develop lecture slides, and draw figures and tables.

Finally, we would like to acknowledge the generosity of SynTest Technologies
(Sunnyvale, CA) for allowing Elsevier to put an exclusive version of the com-

pany’s most recent VLSI Testing and DFT software on the Elsevier companion

Web site for readers to use in conjunction with the book to become acquainted

with DFT practices.

Contributors
Stephen F. Cauley, Ph.D. Student (Chapters 8 and 13)
School of Electrical and Computer Engineering, Purdue University,
West Lafayette, Indiana

Huang-Yu Chen, Ph.D. Student (Chapter 12)
Graduate Institute of Electronics Engineering, National Taiwan
University, Taipei, Taiwan

Tung-Chieh Chen, Post-Doctoral Fellow (Chapter 10)
Graduate Institute of Electronics Engineering, National Taiwan
University, Taipei, Taiwan

Xinghao Chen, Ph.D. (Chapters 2 and 3)
CTC Technologies, Endwell, New York

Chris Chu, Associate Professor (Chapter 11)
Department of Electrical and Computer Engineering, Iowa State
University, Ames, Iowa

Srinivas Devadas, Professor and Associate Head,
EECS, IEEE Fellow (Chapter 6)
Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, Cambridge, Massachusetts

Nikil Dutt, Chancellor’s Professor, IEEE Fellow (Chapter 5)
Department of Computer Science, University of California,
Irvine, California

Yinhe Han, Associate Professor (Chapter 3)
Institute of Computing Technology, Chinese Academy
of Sciences, Beijing, China

Michael S. Hsiao, Professor and Dean’s Faculty Fellow (Chapter 14)
Bradley Department of Electrical and Computer Engineering, Virginia
Tech, Blacksburg, Virginia

Chung-Yang (Ric) Huang, Assistant Professor (Chapter 4)
Graduate Institute of Electronics Engineering, National Taiwan
University, Taipei, Taiwan
xxix

xxx Contributors
Jiun-Lang Huang, Associate Professor (Chapter 8)
Graduate Institute of Electronics Engineering, National Taiwan
University, Taipei, Taiwan

Jitesh Jain, Post-Doctoral Fellow (Chapters 8 and 13)
School of Electrical and Computer Engineering, Purdue University,
West Lafayette, Indiana

Jie-Hong (Roland) Jiang, Assistant Professor (Chapter 6)
Graduate Institute of Electronics Engineering, National Taiwan
University, Taipei, Taiwan

Cheng-Kok Koh, Associate Professor (Chapters 8 and 13)
School of Electrical and Computer Engineering, Purdue University,
West Lafayette, Indiana

Chao-Yue Lai, Research Assistant (Chapter 4)
Graduate Institute of Electronics Engineering, National Taiwan
University, Taipei, Taiwan

James C.-M. Li, Associate Professor (Chapter 14)
Graduate Institute of Electronics Engineering, National Taiwan
University, Taipei, Taiwan

Xiaowei Li, Professor (Chapter 3)
Institute of Computing Technology, Chinese Academy of Sciences,
Beijing, China

Charles E. Stroud, Professor, IEEE Fellow (Chapter 1)
Department of Electrical and Computer Engineering,
Auburn University, Auburn, Alabama

Nur A. Touba, Professor, IEEE Fellow (Chapters 2 and 3)
Department of Electrical and Computer Engineering,
University of Texas, Austin, Texas

Li-C. Wang, Associate Professor (Chapter 9)
Department of Electrical and Computer Engineering,
University of California, Santa Barbara, California

Ruilin Wang, Ph.D. Student (Chapter 13)
School of Electrical and Computer Engineering, Purdue University,
West Lafayette, Indiana

Hung-Pin (Charles) Wen, Assistant Professor (Chapter 9)
Department of Communication Engineering, National Chiao Tung
University, Hsinchu, Taiwan

Contributors xxxi
Xiaoqing Wen, Professor (Chapters 3 and 7)
Graduate School of Computer Science and Systems Engineering,
Kyushu Institute of Technology, Fukuoka, Japan

Shianling Wu, Vice President of Engineering (Chapter 7)
SynTest Technologies, Inc., Princeton Junction, New Jersey

Jianwen Zhu, Associate Professor (Chapter 5)
Department of Electrical and Computer Engineering,
University of Toronto, Toronto, Ontario, Canada

This page intentionally left blank

About the Editors
xxxiii
Laung-Terng (L.-T.) Wang, Ph.D., is chairman and chief executive officer

(CEO) of SynTest Technologies (Sunnyvale, CA). He received his BSEE and MSEE

degrees from National Taiwan University in 1975 and 1977, respectively, and his

MSEE and EE Ph.D. degrees under the Honors Cooperative Program (HCP) from

Stanford University in 1982 and 1987, respectively. He worked at Intel (Santa
Clara, CA) and Daisy Systems (Mountain View, CA) from 1980 to 1986 and

was with the Department of Electrical Engineering of Stanford University as

Research Associate and Lecturer from 1987 to 1991. Encouraged by his advisor,

Professor Edward J. McCluskey, a member of the National Academy of Engineer-

ing, he founded SynTest Technologies in 1990. Under his leadership, the com-

pany has grown to more than 50 employees and 250 customers worldwide.

The design for testability (DFT) technologies Dr. Wang has developed have

been successfully implemented in thousands of ASIC designs worldwide.
He currently holds 18 U.S. Patents and 12 European Patents in the areas of scan

synthesis, test generation, at-speed scan testing, test compression, logic built-in

self-test (BIST), and design for debug and diagnosis. Dr. Wang’s work in at-speed

scan testing, test compression, and logic BIST has proved crucial to ensuring the

quality and testability of nanometer designs, and his inventions are gaining

industry acceptance for use in designs manufactured at the 90-nanometer scale

and below. He spearheaded efforts to raise endowed funds in memory of his

NTU chair professor, Dr. Irving T. Ho, cofounder of the Hsinchu Science Park
and vice chair of the National Science Council, Taiwan. Since 2003, he has

helped establish a number of chair professorships, graduate fellowships, and

undergraduate scholarships at Stanford University, National Taiwan University

and National Tsing Hua University in Taiwan, as well as Xiamen University,

Tsinghua University, and Shanghai Jiaotong University in China. Dr. Wang has

co-authored and co-edited two internationally used DFT textbooks – VLSI Test

Principles and Architectures: Design for Testability (2006) and System-on-Chip

Test Architectures: Nanometer Design for Testability (2007). A member of
Sigma Xi, he received a Meritorious Service Award from the IEEE Computer

Society in 2007 and is a Fellow of the IEEE.

Yao-Wen Chang, Ph.D., is a Professor in the Department of Electrical

Engineering and the Graduate Institute of Electronics Engineering at National

Taiwan University. He is currently also a Visiting Professor at Waseda University,

Japan. He received his B.S. degree from National Taiwan University in 1988, and

his M.S. and Ph.D. degrees from the University of Texas at Austin in 1993 and

xxxiv About the Editors
1996, respectively, all in Computer Science. He was with the IBM T.J. Watson

Research Center, Yorktown Heights, NY, in the summer of 1994. From 1996 to
2001, he was on the faculty of National Chiao Tung University, Taiwan. His current

research interests include VLSI physical design, design for manufacturability, design

automation for biochips, and field programmable gate array (FPGA). He has been

working closely with industry on projects in these areas. He co-authored one book

on routing and has published over 200 technical papers in these areas, including a

few highly cited publications on floorplanning, routing, and FPGA. Dr. Chang is a

winner of the 2006 ACM Placement Contest and the 2008 Global Routing Contest

at the International Symposium on Physical Design (ISPD), Best Paper Awards at
the IEEE International Conference on Computer Design (ICCD) in 1995 and the

VLSI Design/CAD Symposia in 2007 and 2008, and eleven Best Paper Award Nomi-

nations from the ACM/IEEE Design Automation Conference (DAC) (2000, 2005,

2007, 2008), the IEEE/ACM International Conference on Computer Aided Design

(ICCAD) (2002, 2007), ISPD (two in 2007), the IEEE/ACM Asia and South Pacific

Design Automation Conference (ASP-DAC; 2004), ICCD (2001), and ACM Transac-

tions on Design Automation of Electronic Systems (2003). He has received many

research awards, such as the 2007 Distinguished Research Award, the inaugural
2005 First-Class Principal Investigator Award, and the 2004Dr.Wu Ta YouMemorial

Award from National Science Council of Taiwan. He held the 2004 MXIC Young

Chair Professorship sponsored by the MXIC Corp. and received excellent teaching

awards from National Taiwan University (2004, 2006, 2007, 2008) and National

Chiao Tung University (2000). He is an associate editor of the IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems (TCAD) and an

editor of Journal of Information Science and Engineering (JISE) and Journal of

Electrical and Computer Engineering (JECE). He currently serves on the ICCAD
Executive Committee, the ASPDAC Steering Committee, the ACM/SIGDA Physical

Design Technical Committee, and the ISPD and FPT Organizing Committees. He

has also served on the technical program committees of ASP-DAC (topic chair),

DAC, IEEE/ACM Design Automation and Test in Europe Conference (DATE), IEEE

International Conference on Field Programmable Logic and Applications (FPL),

IEEE Field-Programmable Technology (FPT; program co-chair), ACM Great Sympo-

sium on VLSI (GLSVLSI), ICCAD, ICCD, The Annual Conference of the IEEE Indus-

trial Electronics Society (IECON; topic chair), ISPD, IEEE SOC Conference (SOCC;
topic chair), IEEE TENCON, and IEEE-TSAVLSI Design Automation and Test Confer-

ence (VLSI-DAT; topic chair). He is currently an independent board director of

Genesys Logic Inc., a technical consultant of RealTek Semiconductor Corp., a prin-

cipal reviewer of the SBIR project of the Ministry of Economics Affairs of Taiwan,

and a member of board of governors of Taiwan IC Design Society.

Kwang-Ting (Tim) Cheng, Ph.D., is a Professor and Chair of the Electrical

and Computer Engineering Department at the University of California, Santa
Barbara. He received the B.S. degree in Electrical Engineering from National

Taiwan University in 1983 and the Ph.D. degree in Electrical Engineering and

About the Editors xxxv
Computer Science from the University of California, Berkeley in 1988.

He worked at Bell Laboratories in Murray Hill, NJ, from 1988 to 1993. His
current research interests include design verification, test, silicon debug,

and multimedia computing. He has published over 300 technical papers,

co-authored three books, and holds ten U.S. Patents in these areas. He has also

been working closely with U.S. industry and government agencies for projects

in these areas. He serves on the Executive Committee of the MARCO/DARPA

Gigascale System Research Center (sponsored by the Semiconductor Industry

Association, U.S. semiconductor equipment, materials, software and services

industries, and the U.S. Dept. of Defense) and is Co-Director of the International
Center of System-on-Chip (jointly sponsored by National Science Foundation,

USA, Chinese National Science Foundation, China, and National Science Coun-

cil, Taiwan) leading their test and verification research efforts. He served on

both Design Working Group (DWG) and Test Working Group (TWG) for the

International Technology Roadmap for Semiconductors (ITRS). A fellow of the

IEEE, he received Best Paper Awards at the AT&T Conference on Electronic

Testing in 1987, the ACM/IEEE Design Automation Conference in 1994 and

1999, the Journal of Information Science and Engineering in 2001, and the IEEE
Design Automation and Test in Europe Conference in 2003. He currently serves

as Editor-in-Chief for IEEE Design and Test of Computers, Editor for IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, Associate Editor for

ACM Transactions on Design Automation of Electronic Systems, Associate Editor

for Formal Methods in System Design, Editor for Journal of Electronic Testing:

Theory and Applications, and Editor for Foundations and Trends in Electronic

Design Automation. He has been General Chairs and Program Chairs for a number

of international conferences on design, design automation, and test.

This page intentionally left blank

CHAPTER
1
Introduction
Charles E. Stroud
Auburn University, Auburn, Alabama

Laung-Terng (L.-T.) Wang
SynTest Technologies, Inc., Sunnyvale, California

Yao-Wen Chang
National Taiwan University, Taipei, Taiwan
IS CHAPTER
ABOUT TH

Electronic design automation (EDA) is at the center of technology advances

in improving human life and use every day. Given an electronic system modeled

at the electronic system level (ESL), EDA automates the design and test pro-

cesses of verifying the correctness of the ESL design against the specifications
of the electronic system, taking the ESL design through various synthesis and

verification steps, and finally testing the manufactured electronic system to

ensure that it meets the specifications and quality requirements of the elec-

tronic system. The electronic system can also be a printed circuit board
(PCB) or simply an integrated circuit (IC). The integrated circuit can be a sys-
tem-on-chip (SOC), application-specific integrated circuit (ASIC), or a

field programmable gate array (FPGA).

On one hand, EDA comprises a set of hardware and software co-design, syn-
thesis, verification, and test tools that check the ESL design, translate the cor-

rected ESL design to a register-transfer level (RTL), and then takes the RTL

design through the synthesis and verification stages at the gate level and switch

level to eventually produce a physical design described in graphics data sys-
tem II (GDSII) format that is ready to signoff for fabrication and manufacturing

test (commonly referred to as RTL to GDSII design flow). On the other hand,

EDA can be viewed as a collection of design automation and test automation

tools that automate the design and test tasks, respectively. The design automa-
tion tools deal with the correctness aspects of the electronic system across all

levels, be it ESL, RTL, gate level, switch level, or physical level. The test automa-

tion tools manage the quality aspects of the electronic system, be it defect level,

test cost, or ease of self-test and diagnosis.
1

2 CHAPTER 1 Introduction
This chapter gives a more detailed introduction to the various types and uses

of EDA. We begin with an overview of EDA, including some historical perspec-
tives, followed by a more detailed discussion of various aspects of logic design,

synthesis, verification, and test. Next, we discuss the important and essential

process of physical design automation. The intent is to orient the reader for

the remaining chapters of this book, which cover related topics from ESL design

modeling and synthesis (including high-level synthesis, logic synthesis, and

physical synthesis) to verification and test.
1.1 OVERVIEW OF ELECTRONIC DESIGN AUTOMATION

EDA has had an extraordinary effect on everyday human life with the develop-

ment of conveniences such as cell phones, global positioning systems
(GPS), navigation systems, music players, and personal data assistants
(PDAs). In fact, almost everything and every daily task have been influenced

by, and in some cases are a direct result of, EDA. As engineers, perhaps the most

noteworthy inventions have been the microprocessor and the personal com-
puter (PC), their progression in terms of performance and features, and the

subsequent development of smaller, portable implementations such as the note-

book computer. As a result, the computer has become an essential tool and part

of everyday life—to the extent that current automobiles, including safety fea-

tures in particular, are controlled by multiple microprocessors. In this section,

we give a brief overview of the history of EDA in its early years.
1.1.1 Historical perspective
The history of electronic design automation (EDA) began in the early 1960s

after the introduction of integrated circuits (ICs) [Kilby 1958]. At this very early
stage, logic design and physical design of these ICs were mainly created by

hand in parallel. Logic design constructed out of wired circuit boards that mimic

the physical design of the IC was built to simulate and verify whether the IC will

function as intended before fabrication. The ACM and IEEE cosponsored the

Design Automation Conference (DAC) debut in 1964 in a joint effort to auto-

mate and speed up the design process [DAC 2008]. However, it was not until

the mid-1970s when mainframe computers and minicomputers were, respec-

tively, introduced by IBM and Digital Equipment Corporation (DEC) that design
automation became more feasible.

During this period, EDA research and development was typically internal to

large corporations such as Bell Labs, Hewlett Packard, IBM, Intel, and Tektronix.

The first critical milestones in EDA came in the form of programs for circuit simu-
lation and layout verification. Various proprietary simulation languages and

device models were proposed. The SPICE models were used in circuit simulation

(commonly referred to as SPICE simulation now) to verify whether the then

so-called logic design specified at the transistor level (called transistor-level

1.1 Overview of electronic design automation 3
design) will behave the same as the functional specifications. This removes the

need to build wired circuit boards. At the same time, layout verification tools that
took SPICE models as inputs were developed to check whether the physical design

would meet layout design rules and then tape out the physical design in the gra-
phics data system II (GDSII) format introduced by Calma in the mid-1970s.

Although circuit simulation and layout verification ensure that the logic design

and physical design will function correctly as expected, they are merely verifica-
tion tools;design automation tools are needed to speed up the design process.

This requires logic simulation tools for logic design at the gate level (rather

than at the transistor level) and place and route (P&R) tools that operate at
the physical level to automatically generate the physical design. The Tegas logic
simulator that uses the Tegas description language (TDL) was the first logic

simulator that came to widespread use until the mid-1990s, when industry began

adopting the two IEEE developedhardware description language (HDL) stan-
dards: Verilog [IEEE 1463-2001] and VHDL [IEEE 1076-2002]. The first graphical

software to assist in the physical design of the IC in the late 1960s and early 1970s

was introduced by companies like Calma and Applicon. The first automatic place

and route toolswere subsequently introduced in themid-1970s. Proprietary sche-
matic capture and waveform display software to assist in the logic design of the IC

was also spurring the marketplace.

Although much of the early EDA research and development was done in

corporations in the 1960s and 1970s, top universities including Stanford, the

University of California at Berkeley, Carnegie Mellon, and California Institute

of Technology had quietly established large computer-aided design (CAD)

groups to conduct research spreading from process/device simulation and mod-

eling [Dutton 1993; Plummer 2000] to logic synthesis [Brayton 1984;
De Micheli 1994; Devadas 1994] and analog and mixed signal (AMS) design

and synthesis [Ochetta 1994] to silicon compilation and physical design automa-

tion [Mead 1980]. This also marks the timeframe in which EDA began as an

industry with companies like Daisy Systems, Mentor Graphics [Mentor 2008],

and Valid Logic Systems (acquired by Cadence Design Systems [Cadence

2008]) in the early 1980s. Another major milestone for academic-based EDA

research and development was the formation of the Metal Oxide Semicon-
ductor Implementation Service (MOSIS) in the early 1980s [MOSIS 2008].

Since those early years, EDA has continued to not only provide support and

new capabilities for electronic system design but also solve many problems

faced in both design and testing of electronic systems. For example, how does

one test an IC with more than one billion transistors to ensure with a high prob-

ability that all transistors are fault-free? Design for testability (DFT) and auto-
matic test pattern generation (ATPG) tools have provided EDA solutions.

Another example is illustrated in Figure 1.1 for mask making during deep-

submicron IC fabrication. In this example, the lithographic process is used to
create rectangular patterns to form the various components of transistors and

their interconnections. However, sub-wavelength components in lithography

cause problems in that the intended shapes become irregular as shown in

Printed wafer

Mask patterns Printed layout

Drawn layout Printed wafer

Proximity corrected layout

FIGURE 1.1

Sub-wavelength lithography problem and EDA solution.

4 CHAPTER 1 Introduction
Figure 1.1. This problem posed a serious obstacle to advances in technology in
terms of reducing feature size, also referred to as shrinking design rules, which

in turn increases the number of transistors that can be incorporated in an IC.

However, EDA has provided the solution through optical proximity correc-
tion (OPC) of the layout to compensate for rounding off feature corners.
1.1.2 VLSI design flow and typical EDA flow
When we think of current EDA features and capabilities, we generally think of
synthesis of hardware description languages (HDLs) to standard cell–based

ASICs or to the configuration data to be downloaded into FPGAs. As part of the

synthesis process, EDA also encompasses design audits, technology mapping,

and physical design (including floorplanning, placement, routing, and design rule

checking) in the intended implementation medium, be that ASIC, FPGA, PCB, or

any other media used to implement electronic systems. In addition, EDA com-

prises logic and timing simulation and timing analysis programs for design verifica-

tion of both pre-synthesis and post-synthesis designs. Finally, there is also awealth
of EDA software targeting manufacturing test, including testability analysis, auto-

matic test pattern generation (ATPG), fault simulation, design for testability

(DFT), logic/memory built-in self-test (BIST), and test compression.

1.1 Overview of electronic design automation 5
In general, EDA algorithms, techniques, and software can be partitioned into

three distinct but broad categories that include logic design automation, verifi-
cation and test, and physical design automation. Although logic and physical

design automation are somewhat disjointed in that logic design automation is

performed before physical design automation, the various components and

aspects of the verification and test category are dispersed within both logic

and physical design automation processes. Furthermore, verification software

is usually the first EDA tool used in the overall design method for simulation

of the initial design developed for the intended circuit or system.

The two principal HDLs currently used include very high-speed
integrated circuits (VHSIC) hardware description language (VHDL)

[IEEE 1076-2002] and Verilog hardware description languages [IEEE

1463-2001]. VHDL originally targeted gate level through system-level design

and verification. Verilog, on the other hand, originally targeted the design of

ASICs down to the transistor level of design, but not the physical design. Since

their introduction in the late 1980s, these two HDLs have expanded to cover a

larger portion of the design hierarchy illustrated in Figure 1.2 to the extent that

they both cover approximately the same range of the design hierarchy. These
HDLs owe their success in current design methods to the introduction of syn-

thesis approaches and software in the mid- to late 1980s. As a result, synthesis

capabilities enabled VHDL and Verilog to become the design capture medium

as opposed to “an additional step” in the design process.

There are many benefits of high-level HDLs such as VHDL and Verilog when

used in conjunction with synthesis capabilities. They facilitate early design veri-

fication through high-level simulation, as well as the evaluation of alternate

architectures for optimizing system cost and performance. These high-level
simulations in turn provide baseline testing of lower level design representa-

tions such as gate-level implementations. With synthesis, top-down design meth-

ods are realized, with the high-level HDLs being the design capture medium

independent of the implementation media (for example, ASIC versus FPGA).
System Specifications/Requirements

Electronic System Level Design

Register-Transfer Level Design

Logical (Gate) Level Design

Physical (Transistor) Level Design

FIGURE 1.2

Design hierarchy.

6 CHAPTER 1 Introduction
This not only reduces design development time and cost but also reduces the

risk to a project because of design errors. In addition, this provides the ability
to manage and develop complex electronic systems and provides the basis for

hardware/software co-design. As a result, electronic system level (ESL) design
includes partitioning the system into hardware and software and the co-design

and co-simulation of the hardware and software components. The ESL design

also includes cost estimation and design-space exploration for the target system

to make informed design decisions early in the design process.

The basic domains of most high-level HDLs include structural, behavioral,

and RTL hierarchical descriptions of a circuit or system. The structural domain
is a description of components and their interconnections and is often referred

to as a netlist. The behavioral domain includes high-level algorithmic descrip-

tions of the behavior of a circuit or system from the standpoint of output

responses to a sequence of input stimuli. Behavioral descriptions are typically

at such a high level that they cannot be directly synthesized by EDA software.

The RTL domain, on the other hand, represents the clock cycle by clock cycle

data flow of the circuit at the register level and can be synthesized by EDA soft-

ware. Therefore, the design process often implies a manual translation step
from behavioral to RTL with baseline testing to verify proper operation of the

RTL design as illustrated in the example design flow for an integrated circuit

(IC) in Figure 1.3. It should be noted that the behavioral domain is contained

in the ESL design blocks in Figures 1.2 and 1.3. If the behavior of the ESL

design is described in C, Cþþ, SystemC [SystemC 2008], SystemVerilog
[SystemVerilog 2008], or a mixture of these languages, modern verification
Specifications

Transistor
Level Design

Device
Fabrication

Device Test

Wafer Test

Packaging

Behavioral
Simulation

RTL
Simulation

Timing
Simulation

Product Development Manufacturing

Register-Transfer
Level Design

Timing
Simulation

Physical
Design

Logic
Simulation

Electronic System
Level Design

Gate
Level Design

FIGURE 1.3

IC design and verification flow.

1.1 Overview of electronic design automation 7
and simulation tools can either convert the language to VHDL or Verilog or

directly accept the language constructs.
Although the simulation of behavioral and RTL descriptions is an essential

EDA feature, most EDA encompasses the design and verification flow from the

point of RTL design onward. This includes synthesis to a technology-indepen-

dent gate-level implementation of the circuit followed by technology mapping

to a specific implementation media such as a standard–cell–based ASIC design

which in turn represents the transistor-level design in the IC design flow of Fig-

ure 1.3. Physical design then completes technology-specific partitioning, floor-

planning, placement, and routing for the design. As the design flow
progresses through various stages in the synthesis and physical design pro-

cesses, regression testing is performed to ensure that the synthesized implemen-

tation performs the correct functionality of the intended design at the required

system clock frequency. This requires additional simulation steps, as indicated

in Figure 1.3, with each simulation step providing a more accurate representa-

tion of the manufactured implementation of the final circuit or system.

A number of points in the design process impact the testability and, ulti-

mately, the manufacturing cost of an electronic component or system. These
include consideration of DFT and BIST, as well as the development of test stim-

uli and expected good-circuit output responses used to test each manufactured

product [Bushnell 2000; Stroud 2002; Jha 2003; Wang 2006, 2007]. For exam-

ple, the actual manufacturing test steps are illustrated in the IC design flow of

Figure 1.3 as wafer test and packaged-device test.

Physical design is one of the most important design steps because of its crit-

ical impact on area, power, and performance of the final electronic circuit or

system. This is because layout (component placement) and routing are integral
parts of any implementation media such as ICs, FPGAs, and PCBs. Therefore,

physical design was one of the first areas of focus on EDA research and develop-

ment. The result has been numerous approaches and algorithms for physical

design automation [Preas 1988; Gerez 1998; Sait 1999; Sherwani 1999; Scheffer

2006a, 2006b]. The basic flow of the physical design process is illustrated in

Figure 1.4.
Floorplanning

Placement

Routing

Extraction & Verification

FIGURE 1.4

Typical physical design flow.

Modeling Physical
Design

Fabrication

Debug

Regression
Test

Logic
Synthesis

Design
Verification

Regression
Test

Manufacturing
Test

Functional
Test

FIGURE 1.5

Typical EDA flow.

8 CHAPTER 1 Introduction
An alternate view of a typical EDA flow is illustrated in Figure 1.5, which

begins with modeling and design verification. This implies a recursive process

with debugging until the resultant models reach a level of detail that can be pro-

cessed by logic synthesis. As a result of current EDA capabilities, the design pro-

cess is highly automated from this point. This is particularly true for physical

design but to a lesser extent for manufacture test and test development. There-

fore, the functional stimuli developed for the device and output responses
obtained from simulations during design verification typically form the basis

for functional tests used during manufacturing test.

Many design space issues may be critical to a given project, and many of

these issues can require tradeoffs. For example, area and performance are two

of the most frequently addressed tradeoffs to be considered in the design space.

Area considerations include chip area, how many ICs on a PCB, and how much

board space will be required for a given implementation. Performance consid-

erations, on the other hand, often require additional area to meet the speed
requirements for the system. For example, the much faster carry-look-ahead

adder requires significantly more area than the simple but slow ripple-carry

adder. Therefore, EDA synthesis options include features and capabilities to

select and control area and performance optimization for the final design. How-

ever, additional design space issues such as power consumption and power

integrity must be considered. Inevitably, cost and anticipated volume of the final

product are also key ingredients in making design decisions. Another is the

design time to meet the market window and development cost goals.
The potential risk to the project in obtaining a working, cost-effective product

on schedule is an extremely important design issue that also hinges on reuse

of resources (using the same core in different modes of operation, for example)

and the target implementation media and its associated technology limits. Less

frequently addressed, but equally important, design considerations include

designer experience and EDA software availability and capabilities.

1.1 Overview of electronic design automation 9
1.1.3 Typical EDA implementation examples
To better appreciate the current state of EDA in modern electronic system
design, it is worth taking a brief look at the state and progression of EDA since

the mid-1970s and some of the subsequent milestones. At that time, ASICs were

typically hand-designed by creating a hand-edited netlist of standard cells and

their interconnections. This netlist was usually debugged and verified using

unit-delay logic simulation. Once functional verification was complete, the net-

list was used as input to computer-aided design (CAD) tools for placement of

the standard cells and routing of their interconnections. At that time, physical

design was semiautomated with considerable intervention by physical design
engineers to integrate input/output (I/O) buffers and networks for clocks,

power, and ground connections. Timing simulation CAD tools were available

for verification of the design for both pre-physical and post-physical design

using estimated and extracted capacitance values, respectively. It is interesting

to note that resistance was not considered in timing simulations until the mid-

1980s, when design rules reached the point that sheet resistance became a

dominant delay factor.

Graphical schematic entry CAD tools were available for PCBs for design
capture, layout, and routing. However, schematic capture tools for ASIC

design were generally not available until the early 1980s and did not signifi-

cantly improve the design process other than providing a nicely drawn sche-

matic of the design from which the standard-cell netlist was automatically

generated. The actual digital logic continued to be hand-designed by use of

state diagrams, state tables, Karnaugh maps, and a few simple CAD tools for

logic minimization. This limited the complexity of ASICs in terms of the num-

ber of gates or transistors that could be correctly designed and verified by a
typical designer. In the early 1980s, an ASIC with more than 100,000 transis-

tors was considered to be near the upper limit for a single designer. By the

late 1980s, the limit was significantly increased as a result of multi-designer

teams working on a single IC and as a result of advances in EDA capabilities,

particularly in the area of logic synthesis. Currently, the largest ICs exceed

1 billion transistors [Naffziger 2006; Stackhouse 2008].

One of the earliest approaches to EDA in terms of combinational logic syn-

thesis was for implementing programmable logic arrays (PLAs) in very
large-scale integrated (VLSI) circuits in the late 1970s [Mead 1980]. Any

combinational logic function can be expressed as Boolean logic equations,

sum-of-products (SOP) or product-of-sums (POS) expressions, and truth

tables or Karnaugh maps. There are other representations, but these three are

illustrated for the example circuit in Figure 1.6 and are important for under-

standing the implementation of PLAs and other programmable logic. We can

program the truth table onto a read-only memory (ROM) with eight words

and two bits/word and then use the ROM address lines as the three input signals
(A, B, C) and the ROM outputs as the output signals (X, Y). Similarly, we can

ABC XY
00000
00001
10010
10011
11100
11101
01110
00111

X = A ≈ B
Y = A ∑ (B ∑ C)

X = A’ ∑B + A ∑B ’
Y = A ∑B ’ + A ∑C ’

ABC XY
10
11
01

01x
10x
1x0

A
B
C

X

Y

(a)

(c)

(b)

(d)

(e)

FIGURE 1.6

Combinational logic implementation example: (a) Logic diagram. (b) Logic equations. (c) SOP

expressions. (d) Truth table. (e) Connection array.

10 CHAPTER 1 Introduction
also write the truth table into a random-access memory (RAM) with eight

words and two bits/word and then disable the write enable to the RAM and use

the address lines as the inputs. Note that this is the same thing as the ROM,

except that we can reprogram the logic function by rewriting the RAM; this also

forms the basis for combinational logic implementations in FPGAs.

Another option for implementing a truth table is the PLA. In the connection

array in Figure 1.6e, only three product terms produce logic 1 at the output signals.
The PLA allows implementing only those three product terms and not the

other five, which is much smaller than either the ROM or RAM implementation.

Any SOP can be implemented as a 2-level AND-OR or NAND-NAND logic func-

tion. Any SOP can also be implemented as a 2-level NOR-NOR logic function

if we invert the inputs and the output as illustrated in Figure 1.7a. Note that

AB0 is a shared product term and allows us to share an AND gate in the gate-

level implementation. PLAs take advantage of this NOR-NOR implementation

of logic equations and the large fan-in limit of N-channel metal oxide semi-
conductor (NMOS) NOR gates, as illustrated in Figure 1.7b, for PLA implemen-

tation of the example circuit. Note that there is a direct relationship between

the crosspoints in the PLA and the AND-OR connection array in Figure 1.6e.

A logic 1 (0) in the input columns of the connection array corresponds to a

crosspoint between the bit (bit-bar) line and the AND line, also called the prod-

uct term line. A logic 1 in the output columns corresponds to a crosspoint

between the AND line and the OR line, also called the output line. Therefore,

the physical design of the PLA is obtained directly from the connection array.
It is also important to note that a connection array is derived from a minimized

truth table but is not equivalent to a truth table as can be seen by considering

the X output for the last two entries in the connection array.

PLAs are of historical importance because they not only led to the develop-

ment of programmable logic devices (PLDs) including FPGAs, but they also

led to the further development of CAD tools for logic minimization and auto-

mated physical design, because the physical design could be obtained directly

A
B ’

A’
B

A’
C

B B’

A A’

Y ’ Y

X ’ X

bit-bar
line

bit
line OR lines or

output lines

AND lines or
product term

lines

A

AA’

B

BB ’

C

CC ’
Vdd

Vdd

Vdd

X Y

cross-
points

Vdd Vdd

X ’ Y ’

(a)

(b)

FIGURE 1.7

PLA implementation example: (a) 2-level NOR-NOR implementation. (b) PLA implementation.

1.1 Overview of electronic design automation 11
from the connection array. For example, the outputs of early logic minimization

tools, like Espresso, were usually in terms of a connection array for PLA imple-

mentations. These minimization CAD tools were the predecessors to high-level

synthesis and many of the current physical design tools.

The quest for the ability to synthesize high-level descriptions of hardware
began in earnest in the mid-1980s. One of the first successful synthesis tools,

called CONES, was capable of synthesizing RTL models written in C to either

standard–cell–based ASICs or to PLD-based PCBs and was used extensively inter-

nal to Bell Labs [Stroud 1986]. This timeframe also corresponds to the formation

of EDA companies dedicated to synthesis, such as Synopsys [Synopsys 2008], as

well as the introduction of VHDL and Verilog, which have been used extensively

throughout industry and academia since that time.

The successful introduction of functional modeling into the VLSI design
community was due, in part, to the development of logic synthesis tools and

systems. Modeling a system at the functional level and simulating the resultant

models had been previously used with simulation languages such as ADA

[Ledgard 1983] to obtain a simulation environment that emulates the system

to be designed. These simulation environments provided a platform from which

12 CHAPTER 1 Introduction
the design of the various modules required for implementation of the system

could proceed independently with the ability to regression test the detailed
designs at various points in the design process. In addition, this model-based

simulation environment could ensure a degree of coherence in the system long

before hardware components were available for integration and testing in the

final system. Despite the advantages of this approach, it did not receive wide-

spread attention until logic synthesis tools and systems were developed to

synthesize the detailed gate-level or transistor-level design from the functional

description of the circuit. As a result, the design entry point for the designer

became the functional model rather than gate-level or transistor-level descrip-
tions of the VLSI device. Once removed from time-consuming and often error-

prone gate-level or transistor-level design, designers had the ability to manage

higher levels of design complexity. In addition, the speed at which the logic

synthesis systems can implement the gate-level or transistor-level design signifi-

cantly reduced the overall design interval.
1.1.4 Problems and challenges
With exponentially increasing transistor counts in ICs brought on by smaller fea-

ture sizes, there are also demands for increased bandwidth and functionality

with lower cost and shorter time-to-market. The main challenges in EDA are

well documented in the International Technology Roadmap for Semicon-
ductors (ITRS) [SIA 2005, 2006]. One of the major challenges is that of design

productivity in the face of large design teams and diversity in terms of heteroge-

neous components in system-level SOC integration. This includes design speci-

fication and verification at the system level and embedded system software co-
design and analog/mixed-signal (AMS) circuitry in the hierarchy along with

other system objectives such as fault or defect tolerance. To accurately verify

the design before fabrication, the challenges include the ability to accurately

extract physical design information to efficiently model and simulate full-chip

interconnect delay, noise, and power consumption.

A primary trend in testing is an emphasis to provide information for failure
mode analysis (FMA) to obtain yield enhancement. Another trend is reliabil-
ity screening in which testing targets weak transistors and the location of non-
uniformities in addition to hard defects; this includes detecting the symptoms

and effects of line width variations, finite dopant distributions, and systemic

process defects. Finally, there is a need to avoid potential yield losses as a result

of tester inaccuracies, power droop, overly aggressive statistical postprocessing,

defects occurring in test circuitry such as BIST, overtesting delay faults on non-

functional paths, mechanical damages resulting from the testing process, and

faulty repairs of repairable circuits, to name a few.

In the remaining sections of this chapter, we give a more detailed overview
of the three fundamental components of EDA: logic design automation, testing,

and physical design automation.

1.2 Logic design automation 13
1.2 LOGIC DESIGN AUTOMATION

Logic design automation refers to all modeling, synthesis, and verification

steps that model a design specification of an electronic system at an electronic
system level (ESL), verify the ESL design, and then compile or translate the ESL

representation of the design into an RTL or gate-level representation. The design

hierarchy illustrated in Figure 1.2 has described all the levels of abstraction
down to physical design, a step solely responsible for physical design auto-
mation. In the design hierarchy, a higher level description has fewer implemen-

tation details but more explicit functional information than a lower level

description. The design process illustrated in Figure 1.3 and the EDA process

flow illustrated in Figure 1.5 essentially represent the transforming of a higher

level description of a design to a lower level description. The following subsec-

tions discuss the various steps associated with logic design automation, which

include modeling, design verification, and logic synthesis.
1.2.1 Modeling
Starting from a design specification, a behavioral description of a system is

developed in ESL languages, such as SystemC, SystemVerilog, VHDL, Verilog,

and C/Cþþ, and simulated to determine whether it meets the system require-

ments and specifications. The objective is to describe the behavior of the
intended system in a number of behavioral models that can be simulated for

design verification and then translated to RTL for logic synthesis. In addition,

behavioral models representing existing or new hardware that interfaces with

the system may be developed to create a simulation environment in which

the behavioral models for the system to be designed can be verified in the pres-

ence of existing hardware. Alternately, such hardware can be directly embedded

in an emulator for design verification [Scheffer 2006a, 2006b]. During design

verification, a number of iterations of modeling and simulation steps are usually
required to obtain a working behavioral description for the intended system to

be implemented.

Once the requirements for the system to be designed have been defined, the

designer faces the task of describing the functionality in models. The goal is to

write models such that they can be simulated to verify the correct operation of

the design and be synthesized to obtain the logic to implement the function. For

a complex system, SOC, or VLSI device, this usually requires that the function-

ality be partitioned into multiple blocks that are more easily managed in terms
of complexity. One or more functional models may represent each of these

blocks. There are different ways to proceed to achieve the goal of functional

models being synthesizable. One approach is to ignore the requirement that

the models be synthesizable and to describe the function at as high a level

as can be handled by the designer and by the simulation tools. These high-level

14 CHAPTER 1 Introduction
descriptions can then be verified in the simulation environment to obtain cor-

rect functionality with respect to the system requirements and specifications.
At that point, the high-level models can be partitioned and written as functional

models of a form suitable for synthesis. In this case, the simulation environment

is first used to verify the high-level models and later used as a baseline for

regression testing of the synthesizable models to ensure that correct function-

ality has been maintained such that the synthesized design still meets the system

requirements and specifications. At the other end of the spectrum, an alternate

approach is to perform the partitioning and generation of the functional models

at a level of detail compatible with the synthesis tools. Once sufficient design
verification has been achieved, the design can move directly to the logic synthe-

sis step.

Modeling the circuit to be simulated and synthesized is, in some respects,

simply a matter of translating the system requirements and specifications to

the ESL or HDL description. The requirements and specifications for the system

or circuit to be modeled are sometimes quite specific. On the other hand, on

the basis of inputs and outputs from other blocks necessary to construct the

complete system, arbitrary values may be chosen by the designer.
1.2.2 Design verification
Design verification is the most important aspect of the product development

process illustrated in Figures 1.3 and 1.5, consuming as much as 80% of the total

product development time. The intent is to verify that the design meets the sys-

tem requirements and specifications. Approaches to design verification consist

of (1) logic simulation/emulation and circuit simulation, in which detailed
functionality and timing of the design are checked by means of simulation or

emulation; (2) functional verification, in which functional models describing

the functionality of the design are developed to check against the behavioral

specification of the design without detailed timing simulation; and (3) formal
verification, in which the functionality is checked against a “golden” model.

Formal verification further includes property checking (or model checking),
in which the property of the design is checked against some presumed “proper-

ties” specified in the functional or behavioral model (e.g., a finite-state machine
should not enter a certain state), and equivalence checking, in which the

functionality is checked against a “golden” model [Wile 2005]. Although equiv-

alence checking can be used to verify the synthesis results in the lower levels

of the EDA flow (denoted “regression test” in Figure 1.5), the original design

capture requires property checking.

Simulation-based techniques are the most popular approach to verifica-

tion, even though these are time-consuming and may be incomplete in finding

design errors. Logic simulation is used throughout every stage of logic design
automation, whereas circuit simulation is used after physical design. The most

commonly used logic simulation techniques are compiled-code simulation and

1.2 Logic design automation 15
event-driven simulation [Wang 2006]. The former is most effective for cycle-

based two-valued simulation; the latter is capable of handling various gate and
wire delay models. Although versatile and low in cost, logic simulation is too

slow for complex SOC designs or hardware/software co-simulation applications.

For more accurate timing information and dynamic behavior analysis, device-

level circuit simulation is used. However, limited by the computation complex-

ity, circuit simulation is, in general, only applied to critical paths, cell library

components, and memory analysis.

For simulation, usually, a number of different simulation techniques are used,

including high-level simulation through a combination of behavioral modeling
and testbenches. Testbenches are behavioral models that emulate the surround-

ing system environment to provide input stimuli to the design under test and

process the output responses during simulation. RTL models of the detailed

design are then developed and verified with the same testbenches that were

used for verification of the architectural design, in addition to testbenches that

target design errors in the RTL description of the design. With sufficient design

verification at this point in the design process, functional vectors can be cap-

tured in the RTL simulation and then used for subsequent simulations
(regression testing) of the more detailed levels of design, including synthe-

sized gate-level design, transistor-level design, and physical design. These latter

levels of design abstraction (gate, transistor, and physical design) provide the

ability to perform additional design verification through logic, switch-level,

and timing simulations. These three levels of design abstraction also provide

the basis for fault models that can be used to evaluate the effectiveness of

manufacturing tests.

The design verification step establishes the quality of the design and ensures
the success of the project by uncovering potential errors in both the design and

the architecture of the system. The objective of design verification is to simulate

all functions as exhaustively as possible while carefully investigating any possi-

bly erroneous behavior. From a designer’s standpoint, this step deserves the

most time and attention. One of the benefits of high-level HDLs and logic syn-

thesis is to allow the designer to devote more time and concentration to design

verification. Because much less effort is required to obtain models that can be

simulated but not synthesized, design verification can begin earlier in the design
process, which also allows more time for considering optimal solutions to

problems found in the design or system. Furthermore, debugging a high-level

model is much easier and faster than debugging a lower level description, such

as a gate-level netlist.

An attractive attribute of the use of functional models for design verification

(often called functional verification) is that HDL simulation of a collection of

models is much faster than simulations of the gate-level descriptions that would

correspond to those models. Although functional verification only verifies cycle
accuracy (rather than timing accuracy), the time required to perform the design

verification process is reduced with faster simulation. In addition, a more

16 CHAPTER 1 Introduction
thorough verification of the design can be performed, which in turn improves

the quality of the design and the probability of the success of the project as a
whole. Furthermore, because these models are smaller and more functional

than netlists describing the gate-level design, the detection, location, and cor-

rection of design errors are easier and faster. The reduced memory require-

ments and increased speed of simulation with functional models enable

simulation of much larger circuits, making it practical to simulate and verify a

complete hardware system to be constructed. As a result, the reduced probabil-

ity of design changes resulting from errors found during system integration can

be factored into the overall design schedule to meet shorter market windows.
Therefore, design verification is economically significant, because it has a defi-

nite impact on time-to-market. Many tools are available to assist in the design

verification process, including simulation tools, hardware emulation, and formal

verification methods. It is interesting to note that many design verification tech-

niques are borrowed from test technology, because verifying a design is similar

to testing a physical product. Furthermore, the test stimuli developed for design

verification of the RTL, logical, and physical levels of abstraction are often used,

in conjunction with the associated output responses obtained from simulation,
for functional tests during the manufacturing process.

Changes in system requirements or specifications late in the design cycle

jeopardize the schedule and the quality of the design. Late changes to a design

represent one of the two most significant risks to the overall project, the other

being insufficient design verification. The quality of the design verification pro-

cess depends on the ability of the testbenches, functional vectors, and the

designers who analyze the simulated responses to detect design errors. There-

fore, any inconsistency observed during the simulations at the various levels
of design abstraction should be carefully studied to determine whether

potential design errors to be corrected exist before design verification continues.

Emulation-based verification by use of FPGAs provides an attractive alter-

native to simulation-based verification as the gap between logic simulation

capacity and design complexity continues growing. Before the introduction of

FPGAs in the 1980s, ASICs were often verified by construction of a breadboard

by use of small-scale integration (SSI) and medium-scale integration (MSI)

devices on a wire-wrap board. This became impractical as the complexity and
scale of ASICs moved into the VLSI realm. As a result, FPGAs became the pri-

mary hardware for emulation-based verification. Although these approaches

are costly and may not be easy to use, they improve verification time by two

to three orders of magnitude compared with software simulation. Alternately,

a reconfigurable emulation system (or reconfigurable emulator) that

automatically partitions and maps a design onto multiple FPGAs can be used

to avoid building a prototype board and can be reused for various designs

[Scheffer 2006a, 2006b].
Formal verification techniques are a relatively new paradigm for equiva-

lence checking. Instead of input stimuli, these techniques perform exhaustive

1.2 Logic design automation 17
proof through rigorous logical reasoning. The primary approaches used for for-

mal verification include binary decision diagrams (BDDs) and Boolean
satisfiability (SAT) [Velev 2001]. These approaches, along with other algo-

rithms specific to EDA applications, are extensively discussed in Chapter 4.

The BDD approach successively applies Shannon expansion on all variables

of a combinational logic function until either the constant function “0” or “1”

is reached. This is applied to both the captured design and the synthesized

implementation and compared to determine their equivalence. Although BDDs

give a compact representation for Boolean functions in polynomial time for

many Boolean operations, the size of BDD grows exponentially with input size,
which is usually limited to 100 to 200 inputs. On the other hand, SAT techni-

ques have been very successful in recent years in the verification area with

the ability to handle million-gate designs and both combinational and sequential

designs.
1.2.3 Logic synthesis
The principal goal of logic synthesis is to translate designs from the behavioral
domain to the structural domain. This includes high-level synthesis, in which

system behavior and/or algorithms are transformed into functional blocks such

as processors, RAMs, arithmetic logic units (ALUs), etc. Another type of syn-

thesis takes place at the register-transfer level (RTL), where Boolean expres-

sions or RTL descriptions in VHDL or Verilog are transformed to logic gate

networks.

Logic synthesis is initially technology independent where RTL descriptions

are parsed for control/data flow analysis. Initial gate-level implementations are
in terms of generic gate implementations (such as AND, OR, and NOT) with

no relationship to any specific technology. As a result, the structure at this point

is technology independent and can be ultimately implemented in any technology

by means of technology mapping into specific libraries of cells as illustrated in

Figure 1.8. Before technology mapping, however, a number of technology-

independent optimizations can bemade to the gate-level implementation by basic

logic restructuring with techniques such as the Quine-McCluskey method
for two-level logic optimization [McCluskey 1986] or methods for multilevel
logic optimization that may be more appropriate for standard cell–based designs

[Brayton 1984; De Michele 1994; Devadas 1994]. Once technology mapping has

been performed, additional optimizations are performed such as for timing

and power. This may be followed by insertion of logic to support design for
testability (DFT) features and capabilities. However, it should be noted that once

technology mapping is performed, most subsequent synthesis and optimizations

fall into the domain of physical design automation.

Regression testing of the synthesized gate-level description ensures
that there are no problems in the design that are not apparent from the func-

tional model simulation, such as feedback loops that cannot be initialized.

RTL to Boolean Functions

Technology-Independent Optimizations

Technology Mapping

Technology-Dependent Optimizations

Test Logic Insertion

FIGURE 1.8

Logic synthesis flow.

18 CHAPTER 1 Introduction
This additional effort may seem to be avoidable with proper consideration given

to undefined logic values in the function model. However, developing a func-
tional model that initializes the same as a gate-level description requires consider-

able effort and knowledge of the gate-level structure of a circuit. Hence, the

functional model may not behave exactly the same way as the synthesized circuit.

Designers must be careful to avoid constructs in HDLs that allow the model to

self-initialize but cannot be reproduced in the final circuit by the synthesis sys-

tem. Therefore, regression testing is necessary and, fortunately, undefined logic

values are relatively easy to trace to their source to determine the root cause.

Good coding and reusability styles, as well as user-defined coding style rules, play
an important role in avoiding many of the synthesis errors [Keating 1999].
1.3 TEST AUTOMATION

Advances in manufacturing process technology have also led to very complex

designs. As a result, it has become a requirement that design-for-testability

(DFT) features be incorporated in the register-transfer level (RTL) or gate-
level design before physical design to ensure the quality of the fabricated

devices. In fact, the traditional VLSI development process illustrated in Fig-

ure 1.3 involves some form of testing at each stage, including design verifica-

tion. Once verified, the VLSI design then goes to fabrication and, at the same

time, test engineers develop a test procedure based on the design specification

and fault models associated with the implementation technology. Because the

resulting product quality is in general unsatisfactory, modern VLSI test develop-

ment planning tends to start when the RTL design is near completion. This test
development plan defines what test requirements the product must meet,

often in terms of defect level and manufacturing yield, test cost, and

whether it is necessary to perform self-test and diagnosis. Because the test

1.3 Test automation 19
requirements mostly target manufacturing defects rather than soft errors,
which would require online fault detection and correction [Wang 2007],
one need is to decide what fault models should be considered.

The test development process now consists of (1) defining the targeted fault

models for defect level and manufacturing yield considerations, (2) deciding

what types of DFT features should be incorporated in the RTL design to meet

the test requirements, (3) generating and fault-grading test patterns to calculate

the final fault coverage, and (4) conducting manufacturing test to screen bad

chips from shipping to customers and performing failure mode analysis
(FMA) when the chips do not achieve desired defect level or yield requirements.
1.3.1 Fault models
A defect is a manufacturing flaw or physical imperfection that may lead to a

fault, a fault can cause a circuit error, and a circuit error can result in a failure
of the device or system. Because of the diversity of defects, it is difficult to gen-

erate tests for real defects. Fault models are necessary for generating and evalu-
ating test patterns. Generally, a good fault model should satisfy two criteria: (1)

it should accurately reflect the behavior of defects and (2) it should be compu-

tationally efficient in terms of time required for fault simulation and test genera-

tion. Many fault models have been proposed but, unfortunately, no single fault

model accurately reflects the behavior of all possible defects that can occur.

As a result, a combination of different fault models is often used in the genera-

tion and evaluation of test patterns. Some well-known and commonly used fault

models for general sequential logic [Bushnell 2000; Wang 2006] include the
following:
1. Gate-level stuck-at fault model: The stuck-at fault is a logical fault

model that has been used successfully for decades. A stuck-at fault trans-

forms the correct value on the faulty signal line to appear to be stuck-at a
constant logic value, either logic 0 or 1, referred to as stuck-at-0 (SA0) or

stuck-at-1 (SA1), respectively. This model is commonly referred to as the

line stuck-at fault model where any line can be SA0 or SA1, and also

referred to as the gate-level stuck-at fault model where any input or out-

put of any gate can be SA0 or SA1.

2. Transistor-level stuck fault model: At the switch level, a transistor can

be stuck-off or stuck-on, also referred to as stuck-open or stuck-
short, respectively. The line stuck-at fault model cannot accurately
reflect the behavior of stuck-off and stuck-on transistor faults in comple-
mentary metal oxide semiconductor (CMOS) logic circuits because

of the multiple transistors used to construct CMOS logic gates. A stuck-

open transistor fault in a CMOS combinational logic gate can cause the

gate to behave like a level-sensitive latch. Thus, a stuck-open fault in a

CMOS combinational circuit requires a sequence of two vectors for

FIG

Brid

20 CHAPTER 1 Introduction
detection instead of a single test vector for a stuck-at fault. Stuck-short
faults, on the other hand, can produce a conducting path between power

(VDD) and ground (VSS) and may be detected by monitoring the power

supply current during steady state, referred to as IDDQ. This technique

of monitoring the steady state power supply current to detect transistor

stuck-short faults is called IDDQ testing [Bushnell 2000; Wang 2007].

3. Bridging fault models: Defects can also include opens and shorts in

the wires that interconnect the transistors that form the circuit. Opens

tend to behave like line stuck-at faults. However, a resistive open does
not behave the same as a transistor or line stuck-at fault, but instead

affects the propagation delay of the signal path. A short between two

wires is commonly referred to as a bridging fault. The case of a wire

being shorted to VDD or VSS is equivalent to the line stuck-at fault model.

However, when two signal wires are shorted together, bridging fault

models are needed; the three most commonly used bridging fault mod-

els are illustrated in Figure 1.9. The first bridging fault model proposed

was the wired-AND/wired-OR bridging fault model, which was origi-
nally developed for bipolar technology and does not accurately reflect

the behavior of bridging faults typically found in CMOS devices. There-

fore, the dominant bridging fault model was proposed for CMOS

where one driver is assumed to dominate the logic value on the two

shorted nets. However, the dominant bridging fault model does not

accurately reflect the behavior of a resistive short in some cases. The

most recent bridging fault model, called the 4-way bridging fault model

and also known as the dominant-AND/dominant-OR bridging fault
model, assumes that one driver dominates the logic value of the shorted

nets for one logic value only [Stroud 2002].
AS

BS

AD

BD

source

bridging fault

destination

AS

BS

AD

BD

Wired-AND

AS

BS

AD

BD

Wired-OR

AS

BS

AD

BD

A dominates B

AS

BS

AD

BD

B dominates A

A dominant-AND B

AS

BS

AD

BD

A dominant-OR B

AS

BS

AD

BD

B dominant-AND A

AS

BS

AD

BD

B dominant-OR A

AS

BS

AD

BD

URE 1.9

ging fault models.

1.3 Test automation 21
4. Delay fault models: Resistive opens and shorts in wires and parameter
variations in transistors can cause excessive delay such that the total

propagation delay falls outside the specified limit. Delay faults have

become more prevalent with decreasing feature sizes, and there are dif-

ferent delay fault models. In gate-delay fault and transition fault mod-

els, a delay fault occurs when the time interval taken for a transition

through a single gate exceeds its specified range. The path-delay fault
model, on the other hand, considers the cumulative propagation delay

along any signal path through the circuit. The small delay defect model
takes timing delay associated with the fault sites and propagation paths

from the layout into consideration [Sato 2005; Wang 2007].
1.3.2 Design for testability
To test a given circuit, we need to control and observe logic values of internal

nodes. Unfortunately, some nodes in sequential circuits can be difficult to con-

trol and observe. DFT techniques have been proposed to improve the controlla-
bility and observability of internal nodes and generally fall into one of the

following three categories: (1) ad-hoc DFT methods, (2) scan design, and
(3) built-in self-test (BIST). Ad-hoc methods were the first DFT technique

introduced in the 1970s [Abramovici 1994]. The goal was to target only por-

tions of the circuit that were difficult to test and to add circuitry (typically test
point insertion) to improve the controllability and/or observability of internal

nodes [Wang 2006].

Scan design was the most significant DFT technique proposed [Williams
1983]. This is because the scan design implementation process was easily auto-

mated and incorporated in the EDA flow. A scan design can be flip-flop based

or latch based. The latch-based scan design is commonly referred to as level-
sensitive scan design (LSSD) [Eichelberger 1978]. The basic idea to create a

scan design is to reconfigure each flip-flop (FF) or latch in the sequential circuit

to become a scan flip-flop (SFF) or scan latch (often called scan cell),
respectively. These scan cells, as illustrated in Figure 1.10, are then connected

in series to form a shift register, or scan chain, with direct access to a primary
input (Scan Data In) and a primary output (Scan Data Out). During the shift

operation (when Scan Mode is set to 1), the scan chain is used to shift in a test

pattern from Scan Data In to be applied to the combinational logic. During one

clock cycle of the normal system operation (when Scan Mode is set to 0), the

test pattern is applied to the combinational logic and the output response is

clocked back or captured into the scan cells. The scan chain is then used in scan

mode to shift out the combinational logic output response while shifting in the

next test pattern to be applied. As a result, scan design reduces the problem of
testing sequential logic to that of testing combinational logic and, thereby,

facilitates the use of automatic test pattern generation (ATPG) techniques

and software developed for combinational logic.

TPG

Circuit
Under
Test

Primary Inputs
Primary Outputs

BIST Mode ORA
Pass
Fail

0

1

FIGURE 1.11

Simple BIST architecture.

FFs

Combinational
Logic

Primary
Inputs

Primary
Outputs

FF

(a)
(b)

Di

Clk

Qi
FF

Clk

Qi
Di

Qi-1
Scan
Mode

0
1

SFFs

Combinational
Logic

Primary
Inputs

Primary
Outputs

Scan
Data
OutScan Mode

Scan Data In

Scan
flip-flop
(SFF)

FIGURE 1.10

Transforming a sequential circuit to flip-flop-based scan design: (a) Example of a sequential

circuit. (b) Example of a scan design.

22 CHAPTER 1 Introduction
BIST was proposed around 1980 to embed test circuitry in the device or sys-

tem to perform self-test internally. As illustrated in Figure 1.11, a test pattern
generator (TPG) is used to automatically supply the internally generated test
patterns to the circuit under test (CUT), and an output response analyzer
(ORA) is used to compact the output responses from the CUT [Stroud 2002].

Because the test circuitry resides with the CUT, BIST can be used at all levels

of testing from wafer through system level testing. BIST is typically applied on

the basis of the type of circuit under test. For example, scan-based BIST

approaches are commonly used for general sequential logic (often called logic
BIST); more algorithmic BIST approaches are used for regular structures such

as memories (often called memory BIST). Because of the complexity of cur-
rent VLSI devices that can include analog and mixed-signal (AMS) circuits,

as well as hundreds of memories, BIST implementations are becoming an

essential part of both system and test requirements [Wang 2006, 2007].

Test compression can be considered as a supplement to scan design and is

commonly used to reduce the amount of test data (both input stimuli and out-

put responses) that must be stored on the automatic test equipment (ATE)
[Touba 2006]. Reduction in test data volume and test application time by 10�
or more can be achieved. This is typically done by including a decompressor
before the m scan chain inputs of the CUT to decompress the compressed input

1.3 Test automation 23
stimuli and a compactor after the m scan chain outputs of the CUT to compact

output responses, as illustrated in Figure 1.12. The compressed input stimulus
and compacted output response are each connected to n tester channels on

the ATE, where n < m and n is typically at least 10� smaller than m. Modern

test synthesis tools can now directly incorporate these test compression fea-

tures into either an RTL design or a gate-level design as will be discussed in

more detail in Chapter 3.
1.3.3 Fault simulation and test generation
The mechanics of testing for fault simulation, as illustrated in Figure 1.13, are

similar at all levels of testing, including design verification. First, a set of target

faults (fault list) based on the CUT is enumerated. Often, fault collapsing is

applied to the enumerated fault set to produce a collapsed fault set to reduce

fault simulation or fault grading time. Then, input stimuli are applied to the

CUT, and the output responses are compared with the expected fault-free

responses to determine whether the circuit is faulty. For fault simulation,

the CUT is typically synthesized down to a gate-level design (or circuit netlist).
Ensuring that sufficient design verification has been obtained is a difficult

step for the designer. Although the ultimate determination is whether or not

the design works in the system, fault simulation, illustrated in Figure 1.13, can

provide a rough quantitative measure of the level of design verification much

earlier in the design process. Fault simulation also provides valuable information
Circuit
Under
Test

Compacted
Output

Response
Decompressor Compactorm

Compressed
Input
Stimulus

m
nn

FIGURE 1.12

Test compression architecture.

Compare

Undetected
Faults

mismatch

no mismatch
Fault Simulator

Detected
Faults

Circuit
Netlist

Fault
List

Input
Stimuli

Fault-Free
Simulation

Expected Response

Fault
Simulation

Output Responses

FIGURE 1.13

Fault simulation.

24 CHAPTER 1 Introduction
on portions of the design that need further design verification, because design

verification vectors are often used as functional vectors (called functional
testing) during manufacturing test.

Test development consists of selecting specific test patterns on the basis of

circuit structural information and a set of fault models. This approach, called
structural testing, saves test time and improves test efficiency, because the

total number of test patterns is largely decreased since the test patterns target

specific faults that would result from defects in the manufactured circuit. Struc-

tural testing cannot guarantee detection of all possible manufacturing defects,

because the test patterns are generated on the basis of specific fault models.
However, fault models provide a quantitative measure of the fault detection cap-

abilities for a given set of test patterns for the targeted fault model; this measure

is called fault coverage and is defined as:

fault coverage ¼ number of detected faults

total number of faults

Any input pattern, or sequence of input patterns, that produces a different out-

put response in a faulty circuit from that of the fault-free circuit is a test pattern,

or sequence of test patterns, which will detect the fault. Therefore, the goal of

automatic test pattern generation (ATPG) is to find a set of test patterns

that detects all faults considered for that circuit. Because a given set of test pat-
terns is usually capable of detecting many faults in a circuit, fault simulation is

typically used to evaluate the fault coverage obtained by that set of test patterns.

As a result, fault models are needed for fault simulation and for ATPG.
1.3.4 Manufacturing test
The tester, also referred to as the automatic test equipment (ATE), applies
the functional test vectors and structural test patterns to the fabricated circuit

and compares the output responses with the expected responses obtained from

the design verification simulation environment for the fault-free (and hopefully,

design error-free) circuit. A “faulty” circuit is now considered to be a circuit

with manufacturing defects.
Some percentage of the manufactured devices, boards, and systems is

expected to be faulty because of manufacturing defects. As a result, testing is

required during the manufacturing process in an effort to find and eliminate

those defective parts. The yield of a manufacturing process is defined as the

percentage of acceptable parts among all parts that are fabricated:

yield ¼ number of acceptable parts

total number of parts fabricated

1.4 Physical design automation 25
A fault is a representation of a defect reflecting a physical condition that causes

a circuit to fail to perform in a required manner. When devices or electronic sys-
tems are tested, the following two undesirable situations may occur: (1) a faulty

circuit appears to be a good part passing the test, or (2) a good circuit fails the

test and appears as faulty. These two outcomes are often due to a poorly

designed test or the lack of DFT. As a result of the first case, even if all products

pass the manufacturing test, some faulty devices will still be found in the man-

ufactured electronic system. When these faulty circuits are returned to the man-

ufacturer, they undergo failure mode analysis (FMA) or fault diagnosis for

possible improvements to the manufacturing process [Wang 2006]. The ratio
of field-rejected parts to all parts passing quality assurance testing is referred

to as the reject rate, also called the defect level:

reject rate ¼ number of faulty parts passing final test

total number of parts passing final test

Because of unavoidable statistical flaws in the materials andmasks used to fabricate

the devices, it is impossible for 100% of any particular kind of device to be defect

free. Thus, the first testing performed during the manufacturing process is to test

the devices fabricated on the wafer to determine which devices are defective.

The chips that pass the wafer-level test are extracted and packaged. The packaged

devices are retested to eliminate those devices that may have been damaged during

the packaging process or put into defective packages. Additional testing is used to
ensure the final quality before shipping to customers. This final testing includes

measurement of parameters such as input/output timing specifications, voltage,

and current. In addition, burn-in or stress testing is often performed when chips

are subject to high temperature and supply voltage. The purpose of burn-in testing

is to accelerate the effect of defects that could lead to failures in the early stages of

operation of the device. FMA is typically used at all stages of the manufacturing test

to identify improvements to processes that will result in an increase in the number

of defect-free electronic devices and systems produced.
In the case of a VLSI device, the chip may be discarded or it may be investi-

gated by FMA for yield enhancement. In the case of a PCB, FMA may be per-

formed for yield enhancement or the board may undergo further testing for

fault location and repair. A “good” circuit is assumed to be defect free, but this

assumption is only as good as the quality of the tests being applied to the man-

ufactured design. Once again, fault simulation provides a quantitative measure

of the quality of a given set of tests.
1.4 PHYSICAL DESIGN AUTOMATION

Physical design refers to all synthesis steps that convert a circuit representation

(in terms of gates and transistors) into a geometric representation (in terms of poly-

gons and their shapes) [Sherwani 1999; Chang 2007]. An example is illustrated in

VDD

VSS

VSS

VDD

b

b a d
4

e
3

c

a

d
Circuit

Physical
design

Layout
e

Z

1
2

c c b a e d

FIGURE 1.14

The function of physical design.

26 CHAPTER 1 Introduction
Figure 1.14. The geometric representation, also called layout, is used to design

masks and then manufacture a chip. Because the design process is fairly compli-

cated in nature, modern physical design typically is divided into three major steps:

(1) floorplanning, (2) placement, and (3) routing. Floorplanning is an essential

design step for a hierarchical, building block design method. It assembles circuit

blocks into a rectangle (chip) to optimize a predefined cost metric such as area

and wire length. The circuit blocks could be flexible or rigid in their shapes. Place-
ment is the process of assigning the circuit components into a chip region. It can be

considered as a restricted floorplanning problem for rigid blocks with some dimen-

sion similarity. After placement, the routing process defines the precise paths for

conductors that carry electrical signals on the chip layout to interconnect all pins

that are electrically equivalent. After routing, some physical verification pro-

cesses (such asdesign rule checking [DRC]),performance checking, and reli-
ability checking) are performed to verify whether all geometric patterns, circuit

timing, and electrical effects satisfy the design rules and specifications.
As design and process technologies advance at a breathtaking speed, feature

size and voltage levels associated with modern VLSI designs are decreasing drasti-

cally while at the same time die size, operating frequency, design complexity, and

packing density keep increasing. Physical design for such a system must consider

the integration of large-scale digital and analog and mixed-signal (AMS) circuit

blocks, the design of system interconnections/buses, and the optimization of cir-

cuit performance, area, power consumption, and signal and power integrity.

On one hand, designs with more than a billion transistors are already in produc-
tion, and functional blocks are widely reused in nanometer circuit design, which

all drive the need for a modern physical design tool to handle large-scale designs.

On the other hand, the highly competitive IC market requires faster design con-

vergence, faster incremental design turnaround, and better silicon area utilization.

Efficient and effective design methods and tools capable of optimizing large-scale

circuits are essential for modern VLSI physical designs.

1.4 Physical design automation 27
1.4.1 Floorplanning
Floorplanning is typically considered the first stage of VLSI physical design. Given
a set of hard blocks (whose shapes cannot be changed) and/or soft blocks
(whose shapes can be adjusted) and a netlist, floorplanning determines the

shapes of soft blocks and assembles the blocks into a rectangle (chip) so a prede-

fined cost metric (such as the chip area, wire length, wire congestion) is opti-

mized [Sait 1999; Chen 2006]. See Figure 1.15 for the floorplan of the Intel

Pentium 4 microprocessor.

Floorplanning gives early feedback that suggests architectural modifications,

estimates the chip area, and estimates delay and congestion caused by wiring
[Gerez 1998]. As technology advances, designs with more than a billion transis-

tors are already in production. To cope with the increasing design complexity,

hierarchical design and functional blocks are widely used. This trend makes

floorplanning much more critical to the quality of a VLSI design than ever.

Therefore, efficient and effective floorplanning methods and tools are desirable

for modern circuit designs.
1.4.2 Placement
Placement is the process of assigning the circuit components into a chip region.

Given a set of fixed cells/macros, a netlist, and a chip outline, placement assigns

the predesigned cells/macros to positions on the chip so that no two cells/macros

overlap with each other (i.e., legalization) and some cost functions (e.g., wire

length, congestion, and timing) are optimized [Nam 2007; Chen 2008].
FIGURE 1.15

Floorplan of the Intel Pentium 4 microprocessor. (Courtesy of Intel Corporation.)

28 CHAPTER 1 Introduction
The traditional placement problem seeks to minimize wire length under the

constraint that cells/macros do not overlap with each other. Two major chal-
lenges arise because of this high complexity for modern circuit design. First,

the predesigned macro blocks (such as embedded memories, analog blocks,

predesigned data paths) are often reused, and thus many designs contain

hundreds of macro blocks and millions of cells. See Figure 1.16 for two example

placements with large-scale cells and macros of very different sizes. Second,

timing and routability (congestion) optimization become more challenging

because of the design complexity and the scaling of devices and interconnects.

As a result, modern design challenges have reshaped the placement problem.
The modern placement problem becomes very hard, because we need to han-

dle large-scale designs with millions of objects. Furthermore, the objects could

be very different in their sizes. In addition to wire length, we also need to con-

sider many placement constraints such as timing, routability (congestion), and

thermal issues.
1.4.3 Routing
After placement, routing defines the precise paths for conductors that carry

electrical signals on the chip layout to interconnect all pins that are electrically

equivalent. See Figure 1.17 for a two-layer routing example [Chang 2004]. After

routing, some physical verification processes (such as design rule checking, per-

formance checking, and reliability checking) are performed to verify whether all

geometric patterns, circuit timing, and electrical effects satisfy the design rules

and specifications.
25000

20000

15000

10000

5000

0
0 5000 10000

Adaptec5.plt, block = 8843224, net = 867798, HPWL = 387222315

15000

(b)(a)
20000 25000

FIGURE 1.16

Two IBM placement examples: (a) The ibm01 circuit with 12,752 cells and 247 macros.

(b) The adapetc5 circuit with 842 K cells, 646 macros, and 868 K nets.

FIGURE 1.17

A two-layer routing example with 8109 nets. All horizontal wires are routed on one layer, and

so are vertical ones.

Tile

Global routing Detailed routing

FIGURE 1.18

Global routing and detailed routing.

1.4 Physical design automation 29
Typically, routing is a verycomplexproblem.Tomake itmanageable, a traditional

routing system usually uses the two-stage technique of global routing followed by

detailed routing. Global routing first partitions the entire routing region into tiles

(or channels) and decides tile-to-tile paths for all nets while attempting to optimize
some specified objective functions (e.g., the total wire length and the critical timing

constraints). Then, guided by the results of global routing, detailed routing deter-

mines actual tracks and routes for all nets according to the design rules. See Fig-

ure 1.18 for an illustration of the global and detailed routing [Ho 2007].
1.4.4 Synthesis of clock and power/ground networks
The specifications for clock and power/ground nets are significantly different
from those for general signal nets. Generic routers cannot handle the require-

ments associated with clock and power/ground nets well. For example, we

30 CHAPTER 1 Introduction
often need to synchronize the arrivals of the clock signals at all functional units

for clock nets and minimize the IR (voltage) drops while satisfying the current
density (electromigration) constraint for power/ground nets. As a result, it is

desirable to develop specialized algorithms for routing such nets.

Two strategies are used to implement a digital system: synchronous and

asynchronous systems. In a typical synchronous system, data transfer among

circuit components is controlled by a highly precise clock signal. In contrast,

an asynchronous system usually applies a data signal to achieve the communi-

cation for data transfer. The synchronous system dominates the on-chip cir-

cuit designs mainly because of its simplicity in chip implementation and
easy debugging. Nevertheless, the realization and performance of the synchro-

nous system highly rely on a network to transmit the clock signals to all circuit

components that need to be synchronized for operations (e.g., triggered with a

rising edge of the clock signal). Ideally, the clock signals should arrive at all cir-

cuit components simultaneously so that the circuit components can operate

and data can be transferred at the same time. In reality, however, the clock sig-

nals might not reach all circuit components at the same time. The maximum dif-

ference in the arrival times of the clock signals at the circuit components,
referred to as clock skew, should be minimized to avoid the idleness of the com-

ponent with an earlier clock signal arrival time. The smaller the clock skew, the

faster the clock. Consequently, a clock-net synthesis problem arises from such

a synchronous system: routing clock nets to minimize the clock skew (prefera-

bly zero) and delay [Tsay 1993]. More sophisticated synchronous systems might

intentionally schedule nonzero clock skew to further reduce the clock period,

called useful clock skew. More information can be found in Chapter 13. There

are also some other important design issues for clock-net synthesis, for example,
total wire length and power consumption optimization.
Example 1.1 Fi
gure 1.19 shows two clock networks. The clock network in Figure 1.19a incurs a skew

of 16 units and the maximum delay of 30 units, whereas the clock network in

Figure 1.19b has zero clock skew and the same delay as that in Figure 1.19a.

For modern circuit design, the power and ground networks are usually laid out

on metal layers to reduce the resistance of the networks. See Figure 1.20 for a

popular two-layer meshlike power/ground network, in which parallel vertical

power (VDD) and ground (GND) lines run on the metal-4 layer, connected by

horizontal power and ground lines on the metal-5 layer. All the blocks that need
power supply or need to be connected to ground can thus connect to the

appropriate power and ground lines.

The power and ground lines are typically much wider than signal nets

because they need to carry much larger amounts of current. Therefore, we

need to consider the wire widths of power/ground networks for the area

requirement. As technology advances, the metal width decreases while the

global wire length increases. This trend makes the resistance of the power line

clock
entry

clock
entry

clock skew = 30−14 = 16
(a) (b)

clock skew = 0

14 30

30

30
30

22

20 30

FIGURE 1.19

Two clock networks: (a) Clock network with a skew of 16 units and the maximum delay of

30 units. (b) Clock network with zero skew and 30-unit delay.

VDD GND

M4

MS

FIGURE 1.20

A typical power/ground network.

1.4 Physical design automation 31
increase substantially. Furthermore, the threshold voltage scales nonlinearly,

raising the ratio of the threshold voltage to the supply voltage and making the
voltage drop in the power/ground network a serious challenge in modern cir-

cuit design. Because of the voltage drop, supply voltage in logic may not be

an ideal reference. This effect may weaken the driving capability of logic gates,

reduce circuit performance, slow down slew rate (and thus increase power con-

sumption), and lower noise margin. As a result, power/ground network synthe-

sis attempts to use the minimum amount of wiring area for a power/ground

network under the power-integrity constraints such as voltage drops and elec-

tromigration. There are two major tasks for the synthesis: (1) power/ground net-
work topology determination to plan the wiring topology of a power/ground

network and (2) power/ground wire sizing to meet the current density and

reliability constraints [Sait 1999; Sherwani 1999; Tan 2003].

32 CHAPTER 1 Introduction
Example 1.2 Fi
gure 1.21a shows a chip floorplan of four modules and the power/ground network. As

shown in the figure, we refer to a pad feeding supply voltage into the chip as a power

pad, the power line enclosing the floorplan as a core ring, a power line branching from

a core ring into modules inside as a power trunk, and a pin in a module that absorbs

current (connects to a core ring or a power trunk) as a P/G pin. To ensure correct

and reliable logic operation, we will minimize the voltage drops from the power pad to

the P/G pins in a power/ground network. Figure 1.21a shows an instance of voltage

drop in the power supply line, in which the voltage drops by almost 26% at the right-

most P/G pin. Figure 1.21b shows that by having a different chip floorplan, the worst-

case voltage drop is reduced to approximately 5% [Liu 2007]. Recent research showed

that a 5% voltage drop in supply voltage might slow down circuit performance by as

much as 15% or more [Yim 1999]. Furthermore, it is typical to limit the voltage drop

within 10% of the supply voltage to guarantee proper circuit operation. Therefore, volt-

age drop is a first-order effect and can no longer be ignored during the design process.
1.5 CONCLUDING REMARKS

The sophistication and complexity of current electronic systems, including
printed circuit boards (PCBs) and integrated circuits (ICs), are a direct

result of electronic design automation (EDA). Conversely, EDA is highly

dependent on the power and performance of ICs, such as microprocessors

and RAMs used to construct the computers on which the EDA software is exe-

cuted. As a result, EDA is used to develop the next generation of ICs, which, in

turn, are used to develop and execute the next generation of EDA, and so on in an

ever-advancing progression of features and capabilities.
1.62V

1.76V

1.72V

1.71V

1.74V

1.67V

1.77V

1.53V

1.33V

P/G pin

core ring

1.8V, power pad 1.8V, power pad
power trunk

(a) (b)

FIGURE 1.21

Two floorplans with associated power/ground network structures: (a) Worst-case voltage drop

at the P/G pins approximately 26% of the supply voltage. (b) Worst-case voltage

drop approximately only 5% [Liu 2007].

1.6 Exercises 33
The current drivers for EDA include such factors as manufacturing volume,

die size, integration heterogeneity, and increasing complexity [SIA 2005]. The
primary influencing factors include system-on-chips (SOCs), microproces-

sors, analog/mixed-signal (AMS) circuits, and embedded memories, as well

as continuing increases in both silicon and system complexity. Silicon complex-

ity results from process scaling and introduction of new materials and device/

interconnect structures. System complexity results from increasing transistor

counts produced by the smaller feature sizes and demands for increased func-

tionality, lower cost, and shorter time-to-market. Collectively, these factors and

influences create major EDA challenges in the areas of design and verification pro-
ductivity, power management and delivery, manufacturability, and manufacturing

test, aswell as product reliability [SIA 2005].Other related challenges include higher

levels of abstraction for ESL design, AMS codesign and automation, parametric yield

at volume production, reuse and test of intellectual property (IP) cores in hetero-

geneous SOCs, cost-driven design optimization, embedded software design, and

design process management. The purpose of this book is to describe more thor-

oughly the traditional and evolving techniques currently used to address these

EDA challenges [SIA 2006, 2007].
The remaining chapters provide more detailed discussions of these topics.

For example, general CMOS design techniques and issues are presented in

Chapter 2 and fundamental design for testability techniques for producing quality

CMOS designs are provided in Chapter 3. Most aspects of EDA in synthesis (includ-

ing high-level synthesis, logic synthesis, test synthesis, and physical design), verifica-

tion, and test, rely heavily on various algorithms related to the specific task at hand.

These algorithms are described in Chapter 4. Modeling of a design at the electronic

system level (ESL) and synthesis of the ESL design to the high level are first presented
in Chapter 5. The design then goes through logic synthesis (Chapter 6) and

test synthesis (Chapter 7) to generate a testable design at the gate level for further

verification before physical design is performed. Design verification that deals with

logic and circuit simulation is presented in Chapter 8, and functional verification is

discussed in Chapter 9. The various aspects of physical design are addressed in

Chapter 10 (floorplanning), Chapter 11 (placement), Chapter 12 (routing), and

Chapter 13 (synthesis of clock and power/ground networks). Finally, logic testing

that includes the most important fault simulation and test generation techniques
to guarantee high product quality is discussed in Chapter 14 in detail.
1.6 EXERCISES
1.1. (Design Language) What are the two most popular hardware descrip-

tion languages (HDLs) practiced in the industry?

1.2. (Synthesis) Synthesis often implies high-level synthesis, logic synthe-

sis, and physical synthesis. State their differences.

FIG

Sho

Figu

34 CHAPTER 1 Introduction
1.3. (Verification) Give three verification approaches that can be used to
verify the correctness of a design. State the differences between model

checking and equivalence checking.

1.4. (Fault Model) Assume a circuit has a total of n input and output

nodes. How many single stuck-at faults, dominant bridging faults, 4-way

bridging faults, and multiple stuck-at faults are present in the circuit?

1.5. (Design for Testability) Assume a sequential circuit contains n flip-

flops and each state is accessible from an initial state in m clock cycles.

If a sequential ATPG is used and p test patterns are required to detect
all single stuck-at faults in the design, how many clock cycles would

be required to load the sequential circuit with predetermined states?

If all flip-flops have been converted to scan flip-flops and stitched

together to form one scan chain, how many clock cycles would be

required to load the combinational circuit with predetermined states?

1.6. (Testing) State the differences between fault simulation and test gener-

ation. Give three main reasons each why sequential test generation is

difficult and why the industry widely adopts scan designs.
1.7. (Design Flow) As technology advances, interconnects dominate the

circuit performance. When are the interconnect issues handled during

the traditional VLSI design flow? How can we modify the design flow to

better tackle the interconnect issues?

1.8. (Clock-net Synthesis) Give the clock entry point p0 located at the

coordinate (3, 0) and four clock pins p1, p2, p3, and p4 located at

(1, 1), (5, 1), (1, 5), and (5, 5), respectively. Assume that the delay is

proportional to the path length and the wire can run only on the grid
lines. Show how to interconnect the clock entry point p0 to the other

four clock pins pi, 1 � i � 4, such that the clock skew is zero and the

clock delay is minimized. What is the resulting clock delay?

1.9. (Programmable Logic Array) A shorthand notation commonly used

for programmable logic arrays (PLAs) and combinational logic in

programmable logic devices (PLDs) is illustrated in Figure 1.22, which
YX

A B C

URE 1.22

rthand notation for the connection array in Figure 1.6 and the PLA implementation in

re 1.7.

References 35
corresponds to the connection array in Figure 1.6 and the PLA implemen-
tation in Figure 1.7. Give the connection array and draw the PLA shorthand

diagram and PLA transistor-level implementation for the following set

of Boolean equations, sharing product terms where possible:
O2 ¼ I3 � I2
O1 ¼ I3 � I2 � I 01 � I 00 þ I 03 � I 02 � I1 � I0
O0 ¼ I3 � I2 þ I2 � I1 þ I1 � I0 þ I3 � I0
ACKNOWLEDGMENTS

We wish to thank Professor Ren-Song Tsay of National Tsing Hua University, Professor Jie-Hong

(Roland) Jiang of National Taiwan University, and Professor Jianwen Zhu of University of Toronto

for reviewing the Logic Design Automation section; Professor Wen-Ben Jone of University of Cincin-

nati for reviewing the Test Automation section; and Professor James C.-M. Li, Wen-Chi Chao, Po-Sen

Huang, and Tzro-Fan Chien of National Taiwan University for reviewing the manuscript and

providing very helpful comments.
REFERENCES

R1.0 Books

[Abramovici 1994] M. Abramovici, M. A. Breuer, and A. D. Friedman, Digital Systems Testing and

Testable Design, IEEE Press, Revised Printing, Piscataway, NJ, 1994.

[Brayton 1984] R. Brayton, G. Hachtel, C. McMullen, and A. Sangiovanni-Vincentelli, Logic Minimi-

zation Algorithms for VLSI Synthesis, Kluwer Academic, Boston, 1984.

[Bushnell 2000] M. L. Bushnell and V. D. Agrawal, Essentials of Electronic Testing for Digital, Mem-

ory & Mixed-Signal VLSI Circuits, Springer, Boston, 2000.

[De Micheli 1994] G. De Micheli, Synthesis and Optimization of Digital Circuits, McGraw-Hill,

New York, 1994.

[Devadas 1994] S. Devadas, A. Ghosh, and K. Keutzer, Logic Synthesis, McGraw-Hill, New York,

1994.

[Dutton 1993] R. Dutton and Z. Yu, Technology CAD: Computer Simulation of IC Processes and

Devices, Kluwer Academic, Boston, 1993.

[Gerez 1998] S. Gerez, Algorithms for VLSI Design Automation, John Wiley & Sons, Chichester,

England, 1998.

[Ho 2007] T.-Y. Ho, Y.-W. Chang, and S.-J. Chen, Full-Chip Nanometer Routing Techniques, Springer,

New York, 2007.

[IEEE 1076-2002] IEEE Standard VHDL Language Reference Manual, IEEE, Std. 1076-2002, IEEE,

New York, 2002.

[IEEE 1463-2001] IEEE Standard Description Language Based on the Verilog Hardware Descrip-

tion Language, IEEE, Std. 1463-2001, IEEE, New York, 2001.

[Jha 2003] N. Jha and S. Gupta, Testing of Digital Systems, Cambridge University Press, London,

2003.

36 CHAPTER 1 Introduction
[Keating 1999] M. Keating and P. Bricaud, Reuse Methodology Manual for System-on-a-Chip

Designs, Springer, Boston, 1999.

[Ledgard 1983] H. Ledgard, Reference Manual for the ADA Programming Language, Springer,

Boston, 1983.

[McCluskey 1986] E. J. McCluskey, Logic Design Principles: With Emphasis on Testable Semicon-

ductor Circuits, Prentice-Hall, Englewood Cliffs, NJ, 1986.

[Mead 1980] C. Mead and L. Conway, Physical Design Automation of VLSI Systems, Addison

Wesley, Reading, MA, 1980.

[Nam 2007] G.-J. Nam and J. Cong, editors, Modern Circuit Placement: Best Practices and Results,

Springer, Boston, 2007.

[Plummer 2000] J. D. Plummer, M. Deal, and P. Griffin, Silicon VLSI Technology–Fundamentals,

Practice and Modeling, Prentice-Hall, Englewood Cliffs, NJ, 2000.

[Preas 1988] B. Preas and M. Lorenzetti, Physical Design Automation of VLSI Systems, Benjamin/

Cummings, Menlo Park, CA, 1997.

[Sait 1999] S. Sait and H. Youssef, VLSI Physical Design Automation: Theory and Practice, World

Scientific Publishing Company, 1999.

[Scheffer 2006a] L. Scheffer, L. Lavagno, and G. Martin, editors, EDA for IC System Design, Verifica-

tion, and Testing, CRC Press, Boca Raton, FL, 2006.

[Scheffer 2006b] L. Scheffer, L. Lavagno, and G. Martin, editors, EDA for IC Implementation, Circuit

Design, and Process Technology, CRC Press, Boca Raton, FL, 2006.

[Sherwani 1999] N. Sherwani, Algorithms for VLSI Physical Design Automation, 3rd Ed., Kluwer

Academic, Boston, 1999.

[Stroud 2002] C. Stroud, A Designer’s Guide to Built-In Self-Test, Springer, Boston, 2002.

[Wang 2006] L.-T. Wang, C.-W. Wu, and X. Wen, editors, VLSI Test Principles and Architectures:

Design for Testability, Morgan Kaufmann, San Francisco, 2006.

[Wang 2007] L.-T. Wang, C. Stroud, and N. Touba, editors, System-on-Chip Test Architectures: Nano-

meter Design for Testability, Morgan Kaufmann, San Francisco, 2007.

[Wile 2005] B. Wile, J. Goss, and W. Roesner, Comprehensive Functional Verification, Morgan Kauf-

mann, San Francisco, 2005.
R1.1 Overview of Electronic Design Automation

[Cadence 2008] Cadence Design Systems, http://www.cadence.com, 2008.

[DAC 2008] Design Automation Conference, co-sponsored by Association for Computing Machinery

(ACM) and Institute of Electronics and Electrical Engineers (IEEE), http://www.dac.com, 2008.

[Kilby 1958] J. Kilby, Integrated circuits invented by Jack Kilby, Texas Instruments, Dallas, TX, http://

www.ti.com/corp/docs/company/history/timeline/semicon/1950/docs/58ic_kilby.htm, September

12, 1958.

[Mentor 2008] Mentor Graphics, http://www.mentor.com, 2008.

[MOSIS 2008] The MOSIS Service, http://www.mosis.com, 2008.

[Naffziger 2006] S. Naffziger, B. Stackhouse, T. Grutkowski, D. Josephson, J. Desai, E. Alon, and

M. Horowitz, The implementation of a 2-core multi-threaded Itanium family processor, IEEE

J. of Solid-State Circuits Conf., 41(1), pp. 197–209, January 2006.

[Ochetta 1994] E. Ochetta, R. Rutenbar, and L. Carley, ASTRX/OBLX: Tools for rapid synthesis of

high-performance analog circuits, in Proc. ACM/IEEE Design Automation Conf., pp. 24–30, June

1994.

[SIA 2005] SIA, The International Technology Roadmap for Semiconductors: 2005 Edition, Semi-

conductor Industry Association, San Jose, CA, http://public.itrs.net, 2005.

[SIA 2006] SIA, The International Technology Roadmap for Semiconductors: 2006 Update, Semi-

conductor Industry Association, San Jose, CA, http://public.itrs.net, 2006.

References 37
[Stackhouse 2008] B. Stackhouse, B. Cherkauer, M. Gowan, P. Gronowski, and C. Lyles, A 65nm

2-billion-transistor quad-core Itanium processor, in Digest of Papers, IEEE Int. Solid-State Circuits

Conf., pp. 92, February 2008.

[Stroud 1986] C. Stroud, R. Munoz, and D. Pierce, CONES: A system for automated synthesis of VLSI

and programmable logic from behavioral models, in Proc. IEEE/ACM Int. Conf. on Computer-

Aided Design, pp. 428–431, November 1986.

[Synopsys 2008] Synopsys, http://www.synopsys.com, 2008.

[SystemC 2008] SystemC, http://www.systemc.org, 2008.

[SystemVerilog 2008] SystemVerilog, http://systemverilog.org, 2008.
R1.2 Logic Design Automation

[Velev 2001] M. N. Velev and R. Bryant, Effective use of Boolean satisfiability procedures in the for-

mal verification of scalar and VLIW microprocessors, in Proc. ACM/IEEE Design Automation

Conf., pp. 226–231, June 2001.
R1.3 Test Automation

[Eichelberger 1978] E. Eichelberger and T. Williams, A logic design structure for LSI testability,

J. of Design Automation and Fault-Tolerant Computing, 2(2), pp. 165–178, February 1978.

[Sato 2005] Y. Sato, S. Hamada, T. Maeda, A. Takatori, Y. Nozuyama, and S. Kajihara, Invisible delay

quality–SDQM model lights up what could not be seen, in Proc. IEEE Int. Test Conf., Paper 47.1,

November 2005.

[Touba 2006] N. A. Touba, Survey of test vector compression techniques, IEEE Design & Test of

Computers, 23(4), pp. 294–303, July-August 2006.

[Williams 1983] T. Williams and K. Parker, Design for testability—A survey, Proceedings of the IEEE,

71(1), pp. 98–112, January 1983.
R1.4 Physical Design Automation

[Chang 2004] Y.-W. Chang and S.-P. Lin, MR: A new framework for multilevel full-chip routing, IEEE

Trans. on Computer-Aided Design, 23(5), pp. 793–800, May 2004.

[Chang 2007] Y.-W. Chang, T.-C. Chen, and H.-Y. Chen, Physical design for system-on-a-chip,

in Essential Issues in SOC Design, Y.-L. Lin, editor, Springer, Boston, 2007.

[Chen 2006] T.-C. Chen and Y.-W. Chang, Modern floorplanning based on B*-trees and fast simulated

annealing, IEEE Trans. on Computer-Aided Design, 25(4), pp. 637–650, April 2006.

[Chen 2008] T.-C. Chen, Z.-W. Jiang, T.-C. Hsu, H.-C. Chen, and Y.-W. Chang, NTUplace3: An analyti-

cal placer for large-scale mixed-size designs with preplaced blocks and density constraints, IEEE

Trans. on Computer-Aided Design, 27(7), pp. 1228–1240, July 2008.

[Liu 2007] C.-W. Liu and Y.-W. Chang, Power/ground network and floorplan co-synthesis for fast

design convergence, IEEE Trans. on Computer-Aided Design, 26(4), pp. 693–704, April 2007.

[Tan 2003] S. X-D. Tan and C.-J. R. Shi, Efficient very large scale integration power/ground network

sizing based on equivalent circuit modeling, IEEE Trans. on Computer-Aided Design, 22(3),

pp. 277–284, March 2003.

[Tsay 1993] R.-S. Tsay, An exact zero-skew clock routing algorithm, IEEE Trans. on Computer-Aided

Design, 12(2), pp. 242–249, February 1993.

[Yim 1999] J. S. Yim, S. O. Bae, and C. M. Kyung, A Floorplan-based planning methodology for

power and clock distribution in ASICs, in Proc. ACM/IEEE Design Automation Conf.,

766–771, June 1999.

38 CHAPTER 1 Introduction
R1.5 Concluding Remarks

[SIA 2005] SIA, The International Technology Roadmap for Semiconductors: 2005 Edition,

Semiconductor Industry Association, San Jose, CA, http://public.itrs.net, 2005.

[SIA 2006] SIA, The International Technology Roadmap for Semiconductors: 2006 Update,

Semiconductor Industry Association, San Jose, CA, http://public.itrs.net, 2006.

[SIA 2007] SIA, The International Technology Roadmap for Semiconductors: 2007 Edition,

Semiconductor Industry Association, San Jose, CA, http://public.itrs.net, 2007.

CHAPTER
2
Fundamentals of
CMOS design
Xinghao Chen
CTC Technologies, Endwell, New York

Nur A. Touba
University of Texas, Austin, Texas
IS CHAPTER
ABOUT TH

The first integrated circuit (IC), called a phase shift oscillator composed of

one transistor, one capacitor, and three resistors, was created by Jack Kilby of
Texas Instruments on September 12, 1958. Today, a typical IC chip can easily

contain several hundred millions of transistors and miles of interconnect wires.

This very large-scale integration (VLSI) ability has been enabled by the mod-

ern use of the many electronic design automation (EDA) technologies and

applications discussed in this book.

In this chapter, we discuss a few basic and very important concepts of

complementary metal oxide semiconductor (CMOS) technology to aid in

the learning process and facilitate greater understanding of the EDA subjects
in the subsequent chapters. We first start with an overview of the fundamental

integrated-circuit technology and CMOS logic design. Then, we discuss a fewmore

advanced CMOS technologies that can be used to reduce transistor count, increase

circuit speed, or reduce power consumption formodern VLSI designs. The physical

design aspects, how to translate a CMOS logic design to a CMOS physical design for

fabrication, is reviewed and included for completeness. For more in-depth study of

specific CMOS technology areas, readers are referred to the various interesting

topics thoroughly discussed in the references listed at the end of this chapter.
2.1 INTRODUCTION
39
The first integrated circuit (IC) was created by Jack Kilby of Texas Instruments

on September 12, 1958. Called a phase shift oscillator, the integrated circuit

consisted of only one transistor, one capacitor, and three resistors, as shown in

Figure2.1. Since then, IC technologyhas evolved fromTTL (transistor-transistor
logic) and nMOS toCMOS. AlthoughCMOSwas first introduced as an alternative to

FIGURE 2.1

The first integrated circuit invented by Jack Kilby in 1950 (http://www.ti.com/corp/docs/

company/history/timeline/semicon/1950/docs/58ic_kilby.htm, February 8, 2008. Courtesy

of Texas Instruments.).

40 CHAPTER 2 Fundamentals of CMOS design
bipolar technologies (such as TTL and ECL), it soon overtook and became the domi-

nant circuit implementation technology. This is becauseCMOSconsumesmuch less
power than TTL and nMOS, as well as the very large-scale integration (VLSI)

capability it provides.

Now, with advanced CMOS process technologies, a chip can contain as many

as 2 billion transistors (such as the Intel Quad-Core Itanium Processor, February 5,

2008). CMOS integrated circuits have been the primary digital system implemen-

tation technology for consumer electronics, personal, commercial, and enterprise

computing systems, as well as electronic systems for scientific exploration.

However, the very large-scale integration ability of CMOS has also created
problems that did not seem to be significant in the early days of CMOS technol-

ogies. We have seen more and more issues, such as power consumption, ther-

mal effects, small delay defects, cost of test, and validation, dominating the

agenda and schedule of a chip design project. Oftentimes, engineers have to

make difficult tradeoffs to balance competing design parameters. Aside from

providing the reader with fundamental CMOS design and layout principles, this

chapter covers some advanced CMOS circuit technologies to assist the reader

comprehend the learning process in designing modern VLSI circuits.
2.2 INTEGRATED CIRCUIT TECHNOLOGY

In this section, we first discuss the basic constructs and characteristics of a metal
oxide semiconductor (MOS) transistor (a.k.a., MOS device). Most transistors in

digital circuits are switching devices that operate to perform desired Boolean func-

tions.MOS transistors can also be configured as load devices that are used for circuit
performance enhancements. Next, transistor equivalency is described, which is a

widely used technique for analyzing large and complex circuits. We then discuss

2.2 Integrated circuit technology 41
the wire and interconnects that connect the many transistors to form circuits and

systems, followed by a discussion of the basic concepts related to noise margin,
which is becoming ever more important in low-power applications.
2.2.1 MOS transistor
A MOS transistor is a 4-terminal device on a silicon substrate [Martin 2000]. Circuit

schematic diagrams often show transistors in 3-terminal symbols, with the assump-

tion that the fourth terminal (known as the substrate terminal) is either grounded or

connected to power supply on the basis of the device type. Figure 2.2a shows the
dimensions of a MOS transistor, where L is the n-channel length,W is the n-channel

width, and tOX is the thickness of the thin oxide layer under the gate. Figure 2.2b

shows a cross-section view of a typical n-channel transistor. The three terminals

of the devices areGate, Source, andDrain. A fourth terminal connecting the Sub-
strate is sometimes provided with devices as well. Common symbols used for n-

channel and p-channel transistors are shown in Figure 2.3.

The switching characteristic of a MOS device is determined by its threshold
voltage, denoted as Vtn for an n-channel transistor and Vtp for a p-channel tran-
sistor. When the effective gate-to-source voltage (VGS) is greater than Vtn, a chan-

nel will form in a MOS transistor. For an n-channel device, this means

Veff ¼ VGS � Vtn > 0 and Veff ¼ VSG þ Vtp > 0 for a p-channel device, where
(a)

(b)

n-channel

W

L
n+ n+

gate plate

SiO2

tOX

Source Drain
Gate

 n+ n+
L

Polysilicon SiO2
Metal (A.1)

p-Substrate

FIGURE 2.2

Illustrations of an n-channel transistor [Martin 2000]: (a) The dimensions of a MOS transistor.

(b) A cross-section view of a MOS transistor.

(a)

(b)

FIGURE 2.3

MOS transistor symbols: (a) For n-channel transistors. (b) For p-channel transistors.

42 CHAPTER 2 Fundamentals of CMOS design
typically Vtn � 0:7V and Vtp � �0:7V . When the drain-to-source voltage (VDS) is

large, the channel current of an n-channel transistor is approximately

ID ¼ mn �COX � Wn

Ln
� ðVGS � VtnÞ �VDS � V 2

DS

2

� �
ð2:1Þ

(where COX ¼ eOX
tOX

is the gate-oxide capacitance) for VDS < Veff and

ID ¼ mn �COX

2
� Wn

Ln
� ðVGS � VtnÞ2 ð2:2Þ

for VDS > Veff . When VDS is very small, the channel current is approximately

ID ¼ mn �COX � Wn

Ln
� ðVGS � VtnÞ �VDS ð2:3Þ

and the channel resistance is approximately

rds ¼ VDS

ID
� Ln

mn �COX �Wn � ðVGS � VtnÞ ð2:4Þ

Equations 2.1 and 2.2 are known as large-signal equations, whereas Equa-

tions 2.3 and 2.4 are known as small-signal equations. For p-channel devices,
mn, Wn, Ln, Vtn, and VGS in the preceding equations are replaced with mp, Wp,

Lp, Vtp; and VSG, respectively. Note that the preceding equations assume the sub-
strate to be zero-biased, where Vsb ¼ 0. Considerations with body effect,

channel-length modulation, and process variations, etc. can be found in the

references with in-depth discussions.

With small VDS, a MOS transistor’s ID is linearly related to VDS. As VDS

increases beyond a certain value, ID will start to tap off as illustrated in Figure 2.4.

This means that a MOS transistor is essentially a nonlinear device.

Figure 2.5 illustrates the n-channel conditions with respect to VDS. When voltage

applied on the gate terminal is greater than Vtn, channel current ID starts to flow
between the drain and source terminals, as depicted in Figure 2.5a. When VDG >¼
�Vtn, channel pinch-off takes place at the drain end, as depicted in Figure 2.5b.

There are several sources of capacitance within and in the periphery of a

MOS transistor. Figure 2.6 illustrates their existences and notations. These

capacitors are often known as parasitic capacitors, because their presence

is due to the physical construction of the MOS device.

Active
Region

Triode
Region

VDS

ID

]
2

V 2DS

L

WID = mn
.COX

. .[(VGS -Ttn).VDS -

L

WID = mn
.COX

. .(VGS -Vtn).VDS

VGS (Constant)

VDG = -Vtn

2 . L
ID = . (VGS - Ttn)2

mn
. COX

. W

FIGURE 2.4

Nonlinear ID versus VDS relationship [Martin 2000].

VS = 0

n+n+

Depletion region

(b)

(a)

-

+
VDG

VS = 0

n+ n+

Depletion region

Qn(0) = COX . (VGS -Vtn) Qn(L) = COX . (VGD -Vtn)

Qn(x) = COX . (VGS -Vch (x) -Vtn)

Increasing x

VG >> Vtn VDG > - Vtn

VG >> Vtn VD > 0

Pinch-off for VGD < Vtn

FIGURE 2.5

Illustration of n-channel conditions [Martin 2000]: (a) N-channel charge density. (b) N-channel

pinch-off.

2.2 Integrated circuit technology 43

n+ n+

p-Substrate p+ field implant LOV

Leff

Cs-sw Csb

Cgs Cgd

Cdb
Cd-sw

VDG > - Vtn
VGS > Vtn

VSB = 0

FIGURE 2.6

MOS device capacitance [Martin 2000].

44 CHAPTER 2 Fundamentals of CMOS design
It is worth noting that for IC engineering and manufacturing process control

purposes, most transistors on the same chip are made with identical channel

length. In addition, devices are often connected in parallel to form transistors

having wider effective channels.

With nanometer technologies, process variations can affect the characteris-

tics of individual transistors even on the same chips. We can no longer assume

transistors on the same chip have the exact same threshold voltages. The ideal-

case equations discussed in this section need to be adjusted to reflect process
variation. We encourage readers to consult books on advanced CMOS modeling

methods that take into account the effects of process variations.
2.2.2 Transistor equivalency
When a digital circuit uses many transistors, circuit analysis can get very com-

plex and time-consuming. Transistor equivalency [Martin 2000] is a technique

that simplifies larger circuits to smaller ones so that circuit analysis can be
performed much more efficiently. The principles of transistor equivalency are

illustrated in Figure 2.7. The first principle is scaling. When a MOS transistor’s

W and L are scaled by the same factor, as shown in Figure 2.7a, it has no effect

on a first-order approximation. The second principle is called parallel-connec-
tion equivalence. When two MOS transistors T1 and T2 are connected in par-

allel, as shown in Figure 2.7b, the result is equivalent to a single transistor

having the width equal to W1 þW2, with which

ID�eqv ¼ ID�1 þ ID�2 ¼ m �COX

2
� W1 þW2

L
� ðVGS � VtÞ2 ð2:5Þ

The third principle is called serial-connection equivalence, as depicted in

Figure 2.7c, with which

(c)

TeqW/L1

T2 W/L2

(b)

TeqT1

T1

T2

(a)

T1

W/L

Teq

(kW)/(kL) for any k

W2/LW1/L
(W1+W2)/L

W/(L1+L2)

FIGURE 2.7

Illustration of transistor equivalency [Martin 2000]: (a) Scale equivalency. (b) Parallel-

connection equivalency. (c) Serial-connection equivalency.

Vout
Teq

Vout
Vbias

Vbias

8/2

6.85/2

T8

T1

T4

T8

T7T5 T6

T2 T3

8/2

8/2

12/2

12/2

12/2

12/2
12/2 12/2

‘0’

‘0’

‘1’

‘1’
‘1’

‘1’
‘1’ ‘1’

FIGURE 2.8

Application of transistor equivalency [Martin 2000].

2.2 Integrated circuit technology 45
ID�eqv ¼ ID�1 ¼ ID�2 ¼ m �COX

2
� W

L1 þ L2
� ðVGS

�
1 � VtÞ2 ð2:6Þ

Consider the circuit shown in Figure 2.8. It uses the classic pseudo-nMOS
technology, with which a single p-channel transistor (set by a constant biasing

voltage, Vbias) is used as the load, whereas the inputs determine the switching

46 CHAPTER 2 Fundamentals of CMOS design
states of the n-channel transistors, which in turn determine the output of the

circuit block. To apply transistor equivalency, the first step is to identify
the n-channel transistors whose gate terminals are applied with “0” signals,

because these transistors (T3 and T6, in this case) are set to the OFF state and

can be ignored. Next, T5 and T7 are in parallel and are merged into a single

one, T5*, with W ¼ 24/L ¼ 2. Because T5* and T2 are in series, an equivalent

transistor T2* can be determined by first scaling T2 to W ¼ 24/L ¼ 4 and then

computing T2* size as W ¼ 24/L ¼ 6. Repeat the same steps with T4 followed

by T1. The resulting equivalent transistor, T1*, is to have the size W ¼ 6.857/

L ¼ 2. The resulting equivalent circuit is much easier to analyze than the original
circuit with the given inputs.
2.2.3 Wire and interconnect
With CMOS technologies scaling down to the nanometer arena, wires that con-

nect transistors to each other are becoming a dominant factor in almost all

aspects of IC manufacturing, ranging from complexity and timing to silicon area

and yield. Advanced CMOS technologies today provide 9 to 11 metal layers in
interconnect space. Many application-specific integrated circuits (ASICs)

require at least 7 metal layers to connect transistors.

For a typical single wire, the resistance-capacitance (RC) effects are

distributed along its length, as illustrated in Figure 2.9a. However, the lumped

RC model, as illustrated in Figure 2.9b, is often used for circuit analysis.

Figure 2.10 illustrates the RC tree network of a source driving a number of

output branches (a.k.a. fanouts).
(a) Distributed C model (b) Lumped C model

Cwire

Vout

Vs

Rs Clumped

Vout

FIGURE 2.9

RC models for wire [Rabaey 2003].

s
1

2

3

4

i
R1

R2

R3

R4

Ri

C1

C2

C3

C4

C
i

1

0

FIGURE 2.10

A tree-structured RC wire model [Rabaey 2003].

2.2 Integrated circuit technology 47
To calculate the RC effects between two nodes denoted as ti;j with i the

source node and j the destination node, we have the following for the nodes
in Figure 2.10:

ts;2 ¼ C1 �R1 þ C2 � ðR1 þ R2Þ þ ðC3 þ C4 þ CiÞ �R1

ts;4 ¼ C1 �R1 þ C2 �R1 þ ðC3 þ C1Þ � ðR1 þ R3Þ þ C4 � ðR1 þ R3 þ R4Þ
ts;i ¼ C1 �R1 þ C2 �R1 þ ðC3 þ C4Þ � ðR1 þ R3Þ þ Ci � ðR1 þ R3 þ RiÞ

As an exercise, readers are encouraged to figure out ti; j for other pairs of nodes.
In multilayer interconnect designs, wires placed in higher layers are usually

wider and thicker than those in the lower layers, as illustrated in Figure 2.11,

in which a six-metal layer hierarchy is depicted. This is to reduce resistance of

long interconnects, because they are often placed in metal layers higher in

the hierarchy. Lower metal layers are often reserved for shorter connections

and for special purposes (such as distributing clocks). In addition, wires in

higher layers are separated farther from each other to reduce coupling effects.

Coupling (inductive as well as capacitive) effects (a.k.a. crosstalk) between

two or more parallel wires can affect signal integrity with unwanted circuit
noise. Coupling effects also exist between wires on different layers. When

long wires are placed in parallel next to each other, special care must be taken

to reduce these effects.

Many of the IC routing technologies use two adjacent interconnect layers to

complete one wiring. One layer would contain wires placed in North–South

directions, and the other layer would contain wires placed in East–West direc-

tions. One advantage of this routing method is reduced interference between

wires placed on adjacent layers. For this reason, wires on the two layers usually
have the same width and thickness.
substrate

M6

Global signal routing

M5

M4
Inter-module signal routing

M3

M2
M1

poly

Inter-cell signal routing

FIGURE 2.11

Multilayer interconnect hierarchy [Rabaey 2003].

48 CHAPTER 2 Fundamentals of CMOS design
2.2.4 Noise margin
Noise margin is a measure of design margins to ensure circuits functioning
properly within specified conditions. Sources of noise include the operation

environment, power supply, electric and magnetic fields, and radiation waves.

On-chip transistor switching activity can also generate unwanted noise. To

ensure that transistors switch properly under specified noisy conditions, circuits

must be designed with specified noise margins.
Figure 2.12 illustrates noise margin and the terms, assuming that the signal

generated by the driving device is wired to the input of the receiving device

and that the wire is susceptible to noise. The minimum output voltage of the
driving device for logic high, VOH min, must be greater than the minimum input

voltage, VIH min, of the receiving device for logical high. Because of noise being

induced on the wire, a logic high signal at the output of the driving device may

arrive with lower voltage at the input of the receiving device. The noise margin,

NMH ¼ jVOH min � VIH minj, for logical high is the range of tolerance for which a

logical high signal can still be received correctly. The same can be said with

noise margin, NML ¼ jVIL max � VOL maxj, for logical low, which specifies the

range of tolerance for logical low signals on the wire. Smaller noise margins
mean circuits are more sensitive to noise.

It is important to note that as CMOS technologies continue to advance,

device feature size gets smaller, and channel length gets shorter. The miniaturi-

zation of transistors forces ever lower supply voltages, resulting in smaller noise

margins. Table 2.1 shows the typical noise margin measurements with respect

to technology advances.
Output
Characteristics

Input
Characteristics

GND

NMH

NML

VIH min

VIL max

VOH min

VOL max

Logical high
output range

Logical low

output range

Logical high
input range

Logical low
input range

Driving device Receiving device

Indeterminate
region

VDD

FIGURE 2.12

Noise margin and terms.

Table 2.1 Noise Margin Measures for Some Technologies [Wakerly 2001]

Technology

Noise-Margin Measures

VDD VOH VIH VTH VIL VOL

5-V CMOS 5.0 4.44 3.5 2.5 1.5 0.5

5-V TTL 5.0 2.4 2.0 1.5 0.8 0.4

3.3-V LVTTL 3.3 2.4 2.0 1.5 0.8 0.4

2.5-V CMOS 2.5 2.0 1.7 1.2 0.7 0.4

1.8-V CMOS 1.8 1.45 1.2 0.9 0.65 0.45

2.3 CMOS logic 49
2.3 CMOS LOGIC

In this section we highlight some CMOS circuit design principles. We first review
the classic CMOS inverter, with which the major measurements are discussed.

The principles are carried over to the design of elementary logic gates and com-

plex circuit blocks. Next, we discuss the design of latches and flip-flops, followed

by discussion of some simple circuit optimization techniques.
2.3.1 CMOS inverter and analysis
The CMOS inverter consists of a pair of p-channel and n-channel transistors, as

shown in Figure 2.13. Unlike pseudo-nMOS circuits, the p-channel transistor in

this CMOS inverter is also a switching device, always in a complement switch-

ing state of the n-channel transistor, as shown in the truth table in Figure 2.13.

Timing characteristics of this CMOS inverter include three measurements: tr as

the rise time at the output, tf as the fall time, and tp as the propagation time
(a.k.a. delay) between an input transition and the output response. Figure 2.14

illustrates these measurements in graphic form.

Note that tr and tf are measured graphically by the pair of 10% and 90% change

points on the output transition curves. In practice, however, the two intersecting
Vin Tp Tn Vout

high OFF ON low
low ON OFF high

VDD

GND

Vin Vout

Tp

Tn

FIGURE 2.13

CMOS inverter and transistor state table.

Vin

t

Vout

t

50%

50%

90%

10%
tf tr

tpHL tpLH

FIGURE 2.14

Illustrations of tr, tf, and tp measurements [Rabaey 2003].

50 CHAPTER 2 Fundamentals of CMOS design
points on each transition curve by horizontally overlaying VIH min and VIL max are

used. For VDD ¼ 3.3V, estimates of tr and tf can also be obtained as follows:

tr ¼ CL

ID�p
�DVout � 2 �CL�DVout

mp �COX � Wp

Lp � VDD

2
þ Vtp

� �2 ð2:7Þ

and

tf ¼ CL

ID�n
�DVout � 2 �CL�DVout

mn �COX � Wn

Ln � VDD

2
� Vtn

� �2 ð2:8Þ

where CL is the collective capacitance on the output of the CMOS inverter.

In practice, for process control and meeting engineering objectives (such as

yield), both types of transistors are often manufactured with identical channel

length. With this in mind and on the basis of Equations 2.7 and 2.8, making

tr ¼ tf leads to

Wp

Wn

����
tr¼tf
¼ mn � ðVDD � VtnÞ

mp � ðVDD þ VtpÞ ð2:9Þ

With most CMOS technologies thisWp/Wn ratio (for tr ¼ tf) is between 1.5 and 3.

Readers are encouraged to substitute data for specific technologies and verify.

Instead of tr ¼ tf being used, sometimes the criteria can be to minimize the
average rise and fall time, where

tavg�r� f ¼ tr þ tf

2
ð2:10Þ

Substituting Equation 2.10 with Equations 2.7 and 2.8 and assuming Ln ¼ Lp ¼
L, we have

tavg
�
r
�
f ¼ CL�DVout � L

COX
� 1

mp �Wp � VDD

2
þ Vtp

� �2 þ 1

mn �Wn � VDD

2
� Vtn

� �2
 !

ð2:11Þ

2.3 CMOS logic 51
Assuming that CL � COX � L � ðWn þWpÞ and jVtnj ’ jVtpj, the optimal Wp/Wn

ratio is obtained by first rearranging Equation 2.11 to:

tavg
�
r
�
f � DVout � L2

mn � VDD

2
� Vtn

� �2 � 1þ mn �Wn

mp �Wp

 !
� 1þWp

Wn

� �

¼ DVout � L2
mp � VDD

2
þ Vtp

� �2 � 1þ mn �Wn

mp �Wp

 !
� 1þWp

Wn

� � ð2:12Þ

and then differentiating Equation 2.12 with respect to Wp/Wn as:

@ðtavg
�
r
�
f Þ

@ðWp=WnÞ ¼
DVout � L2

mn � VDD

2
� Vtn

� �2 � 1� mn
mp
� Wp

Wn

� �2
" #

¼ DVout � L2
mp � VDD

2
þ Vtp

� �2 � 1� mn
mp
� Wp

Wn

� �2
" # ð2:13Þ

and finally setting Equation 2.13 to zero. Therefore, we have:

Wp

Wn

����
min�

�
tavg

�
r
�
f

¼
ffiffiffiffiffi
mn
mp

r
ð2:14Þ

For many CMOS technologies, this Wp/Wn ratio (minimizing tavg_r_ f) is approxi-

mately 2. In practice, Equations 2.9 and 2.14 are often applied in sizing transistors.

Compared with a pseudo-nMOS inverter, this CMOS inverter consumes

much less energy, because there is no direct current path between VDD and
the ground. Power dissipation of the CMOS inverter has three types: static,

dynamic, and short-circuit. The static power dissipation is proportional to

the leakage current when the inverter is not switching; the dynamic power
dissipation is proportional to the switching frequency; and the short-circuit
power dissipation is proportional to tr and tf.

Ideally, when the CMOS inverter is in either output high (Tp is ON and Tn is

OFF in Figure 2.13) or output low (Tp is OFF and Tn is ON) state, there should

be no current passing through the two transistors. However, in either state, a
small current (a.k.a. leakage current) passes through the OFF-state transistor,

hence, causing static power dissipation. The channel leakage currents can be

obtained by calculating the channel resistance in the OFF state. The average

static power dissipation is then:

Pstatic
�
avg ¼ VDD � Ileak�n þ Ileak

�
p

2
ð2:15Þ

Dynamic power dissipation is proportional to operating frequency, fclock, which

is the synchronization clock(s) in most digital circuits. Assuming Vin is a square

wave signal running at fclock, the average dynamic power dissipation is:

Pdyn
�
avg ¼ CL �V2

DD � fclock ð2:16Þ

Vin

Id-p

Ipeak

FIGURE 2.15

Illustration of direct-path current occurrences.

52 CHAPTER 2 Fundamentals of CMOS design
Short-circuit power dissipation is unique to CMOS circuits. It occurs while one of

the two transistors is changing from the ON state to the OFF state and the other

transistor from OFF to ON. During the transitions a direct-path current passes

through both transistors. Figure 2.15 depicts the triangular Id-p waves.

The average short-circuit power dissipation is then:

Psc
�
avg ¼ VDD � Ipeak � tr þ tf

2
� fclock ð2:17Þ

and

Ipeak ¼ mn �Cox

2
� Wn

Ln
� ðVth � VtnÞ2 ð2:18Þ

where Vth is the threshold voltage of the CMOS inverter and Vtn is the threshold

voltage of the n-channel transistor. The total average dynamic power dissipation

is then:

Ptotal
�
dyn

�
avg ¼ Pdyn

�
avg þ Psc

�
avg ð2:19Þ
2.3.2 Design of CMOS logic gates and circuit blocks
An elementary CMOS logic gate consists of an N-block and a P-block, each con-

taining the number of corresponding channel transistors equal to the number

of inputs of the gate. For example, with the 1-input CMOS inverter, the N-block con-

tains one n-channel transistor and the P-block contains one p-channel transistor.

Furthermore, the gate terminal of each n-channel transistor in the N-block is always
connected to a corresponding p-channel transistor in the P-block. In addition, if two

(or more) inputs are connected to the gate terminals of two n-channel transistors

whose drain and source terminals are connected in series in the N-block, the

same inputs are also connected to the gates terminals of two (or more) p-channel

transistors whose drain and source terminals are connected in parallel.

Consider a 2-input (a and b) 1-output (c) NAND gate whose Boolean func-

tion is defined as c ¼ a � b. Its symbol and truth table are shown in Figure 2.16,

a
b

INPUT OUTPUT
a b c

Low Low High
Low High High
High Low High
High High Low

VDD

GND

Tp_1

Tn_1

Tp_2

Tn_2

a

b

c

P-Block

N-Block

FIGURE 2.16

A NAND gate, its truth table, and a CMOS circuit implementation.

VDD

GND

Tp_1

Tn_1

Tp_2

Tn_2

a

b

c

P-Block

N-Block

a
b

INPUT OUTPUT
a b c

Low Low High
Low High Low
High Low Low
High High Low

FIGURE 2.17

A NOR gate, its truth table, and a CMOS circuit implementation.

2.3 CMOS logic 53
alongwith a typical CMOS circuit implementation. The ANDoperator (shown as �)
indicates that the two n-channel transistors controlled by the inputs must be
placed next to each other in series and the two p-channel transistors controlled

by the same inputs must be placed next to each other in parallel. When inputs a

and b are both set to high, transistors Tn_1 and Tn_2 are turned ON such that

output c is pulled down by means of discharge through the N-block, while both

transistors in the P-block are OFF. In other input conditions at least one of the

two transistors in the N-block is OFF and at least one of the two transistors in the

P-block is ON, such that output c is being charged to high through the P-block.

Estimation of tf is straightforward by identifying Wn_eqv, which comprises
the width of both n-channel transistors. However, estimation of the rise time

is somewhat complicated by the two p-channel transistors connected in paral-

lel. Assuming that Wn_1 ¼ Wn_2 and Wp_1 ¼ Wp_2, which is often the case, then

tr_min is the rise time for both p-channel transistors to be turned ON and tr_max

is the rise time for only one of them to be turned ON, where tr_max ¼ 2 tr_min.

It is often desired to make tf ¼ tr_max in this and similar cases, for smaller Wp_1

and Wp_2.

Figure 2.17 shows a typical CMOS implementation for a 2-input 1-output
NOR gate whose Boolean function is defined as c ¼ aþ b. When both inputs

a and b are low, the output is driven to high by the P-block, because both

54 CHAPTER 2 Fundamentals of CMOS design
p-channel transistors are turned to ON and both n-channel transistors are turned

to OFF. In other input conditions, at least one of the n-channel transistors is ON,
pulling the output c down to low.

Similar to the analysis of the NAND gate, estimation of tr is straightforward

by identifying Wp_eqv, which comprises the width of both p-channel transistors.

Because the two n-channel transistors are connected in parallel, the fall time

comprises tf_min (when both n-channel transistors are to be turned ON) and

tf_max (when only one of the two n-channel transistors is to be turned ON).

Assuming that Wn_1 ¼Wn_2, we have tf_max ¼ 2 tf_min. Oftentimes, it is desirable

to also make tr ¼ tf_max in this and similar cases.
To illustrate designing CMOS circuits implementing complex gates and ran-

dom logic functions, as an example we use the carry bit circuit whose Boolean

function is defined as carry ¼ a �bþ ðaþ bÞ � c and a typical CMOS implemen-

tation is shown in Figure 2.18. In the N-block, transistors Tn_3 and Tn_5 imple-

ment a �b, Tn_1 and Tn_2 for aþ b, which is ANDed with c (implemented by

Tn_4). Note that to implement the two ORs, Tn_3 and Tn_5 are placed in parallel

alongside the other three n-channel transistors (for the first OR); Tn_1 and Tn_2
are placed in parallel with each other (for the second OR); Tn_3 is placed in
series with Tn_5 to implement the first AND; and Tn_4 is placed in series with

Tn_1 and Tn_2 to implement the second AND.

Configuring the p-channel transistors in the P-block is to complement the con-

figurations of the n-channel transistors. Here, Tp_3 and Tp_5 are placed in parallel

with each other to complement Tn_3 and Tn_5; Tp_1 and Tp_2 are placed in series

to complement Tn_1 and Tn_2; and Tp_4 complements Tn_4 and is placed in

parallel with Tp_1 and Tp_2, which are then placed in series with Tp_3 and Tp_5.
VDD

GND

Tp_1

Tn_1

Tp_2

Tn_2

Carry

P-Block

N-Block

a b

c

a

b

Tn_3

Tn_4 Tn_5

cb

a

a bTp_3

Tp_4

Tp_5

FIGURE 2.18

A CMOS implementation of a carry bit.

G1

G2

QD

clock
Tn

Tp

clock

FIGURE 2.19

Implementation of a transmission-gate–based D latch.

G1

G2

Q

D

clock

Tn_1

Tn_2

Tn_3

Q

G3

FIGURE 2.20

Implementation of an inverter-based D latch.

2.3 CMOS logic 55
2.3.3 Design of latches and flip-flops
The simplest latch implementation uses two cross-coupled inverters and one trans-
mission gate, as shown in Figure 2.19. The positive feedback allows the holding of

a single bit of data at the output of G1 with its collective load capacitance. Tran-
sistors Tn and Tp are functioning together as a transmission gate.When the transmis-
sion gate is turned ON by the clock, the output bit �Q is updated by the input Dwith
�Q ¼ �D. For this implementation to work reliably, the feedback inverter G2 must

be significantly (approximately 10 times) smaller than the forward inverter G1.

A smaller G2 will not interfere with input D to drive the G1 as desired.

Figure 2.20 shows an inverter-based D latch design with both Q and �Q out-

puts. In this design, inverters G1 and G2 of identical sizes form the cross-

coupled loop to hold a single bit of data. When the clock turns Tn_3 to ON,

input D will turn either Tn_1 or Tn_2 ON such that the outputs will be updated
accordingly. When Tn_3 is turned OFF, input D is disconnected from internal

signals, and outputs Q and �Q are driven by the cross-coupled inverters with

the stored data. Note that G3 is a small inverter, because it only drives one tran-

sistor. By sizing the transistors properly, this inverter-based D latch can produce

outputs Q and �Q with similar timing characteristics. Figure 2.21 shows another

inverter-based D latch implementation of two complementary outputs with the

same timing measures—a characteristic important for dual-rail processing.

clock

clockD

Q
Q

D

Tp_1 Tp_2

Tn_1 Tn_2

Tn_3 Tn_4Tn_5

Tn_6

FIGURE 2.21

Implementation of a dual-rail inverter-based D latch.

clock

QQ

Tp_3 Tp_4

Tn_6 Tn_7

Tn_8 Tn_9

Tn_10

clock

D D

Tp_1 Tp_2

Tn_1 Tn_2

Tn_3 Tn_4

Tn_5

SET
RESET

RESET
SET

Tn_11
Tn_12

Tn_13
Tn_14

G1
G2

FIGURE 2.22

Implementation of a positive edge–triggered D flip-flop [Martin 2000].

56 CHAPTER 2 Fundamentals of CMOS design
A typical flip-flop contains two latches: one is called amaster latch and the other

is called a slave latch. The two latches work in complementary modes: when one

latch is updating its content, the other is holding its outputs. Figure 2.22 shows a

positive-edge-triggered dual-rail D flip-flop with asynchronous SET and RESET.

Larger inverters G1 and G2 give greater driving capability. The SETand RESET func-

tions are carried out in both the master and the slave latches.

2.3 CMOS logic 57
2.3.4 Optimization techniques for high performance
In this section, we highlight several techniques for improving circuit perfor-
mance. Other techniques that optimize circuits for low-power applications will

be discussed in Section 2.6.

To improve circuit performance, it is often desirable to minimize the maxi-

mum number of transistors in series in the N-block and P-block. Consider the

circuit shown in Figure 2.18. In the N-block, any path between the output

and GND consists of two transistors. However, for the P-block there can be

either two or three transistors between the output and VDD. Carefully reviewing

transistor configurations in the P-block, an equivalent implementation can be
devised by rearranging the connections of the p-channel transistors as shown

in Figure 2.23. This equivalent implementation has symmetric transistor config-

urations between the N-block and the P-block, hence improving performance.

Sometimes a small transistor is used to improve circuit performance. Figure

2.24 illustrates the concept of the use of a small full-swing transistor (a.k.a.

keeper). As Vout goes low, Tp is turned ON, providing additional pulling of Vin

to VDD, which, in turn, speeds up Vout going low faster. When a CMOS logic

block takes inputs from a pass-transistor logic block, the addition of this
VDD

GND

Tp_1

Tn_1

Tp_2

Tn_2

Carry

P-Block

N-Block

a b

c

a

b

Tn_3

Tn_4 Tn_5

aba

c bTp_4

Tp_3

Tp_5

VDD

GND

Tp_1

Tn_1

Tp_2

Tn_2

Carry

P-Block

N-Block

a b

c

a

b

Tn_3

Tn_4
Tn_5

cb

a

a bTp_3

Tp_4

Tp_5

FIGURE 2.23

An optimized implementation of a carry bit.

Tp

Vin Vout

FIGURE 2.24

Application of a small full-swing transistor.

58 CHAPTER 2 Fundamentals of CMOS design
p-channel transistor eliminates the voltage drop because of the pass transistor.

Note that the addition of Tp improves the tf measure on Vout. Hence, it is a tech-
nique often used to balance circuit-timing measurements and optimize circuit

implementations.

Because large digital systems often contain more than half a million latches

in data path circuit structures and control logics, at times it becomes desirable

to optimize their designs for a smaller area on silicon (a.k.a. footprint), as well

as less power dissipation. Figure 2.25 shows a design known as an inverter-

based three-state dynamic latch. Tn_1 and Tp_1 function as a traditional

inverter. Tn_2 and Tp_2 control the periodical updating of the Vout node accord-
ing to Vin. Capacitor Cjp, which is not explicitly included but rather is used to

represent the junction and parasitic capacitance on the node, provides the sin-

gle bit storage. This dynamic latch is approximately half the size of the transmis-

sion gate–based D latch shown in Figure 2.19 and approximately one fifth the

size of the inverter-based D latch shown in Figure 2.20.

It should be pointed out that with the dynamic latch, as the data is stored on

Cjp, the periodic updating (a.k.a. refresh) of Vout by clock must be performed

before Cjp loses its charge through leakage to the substrate. Higher refresh rates
mean higher power dissipation, which sometimes can be prohibitive. Meeting

the clock frequency requirement with respect to Cjp and other design objectives

can sometimes be challenging.
2.4 INTEGRATED CIRCUIT DESIGN TECHNIQUES

As modern digital systems demand more from circuit implementations, many
new circuit technologies have emerged. These circuit technologies improve in

one or more of the following areas: simplify implementation complexity, reduce

silicon area, improve performance, and reduce power consumption. In this

subsection, we highlight some of the techniques widely used in practice.
VDD

GND

Vin Vout

Tp_2

Tn_1

Tp_1

Tn_2clock

clock

Cjp

FIGURE 2.25

An inverter-based three-state dynamic latch.

2.4 Integrated circuit design techniques 59
2.4.1 Transmission-gate/pass-transistor logic
Transmission-gate/pass-transistor logic simplifies circuit implementations and
yet does not require power supply to its circuit blocks. Consider a 2-to-1 multi-

plexer [Karim 2007]. Figure 2.26 compares a NAND gate implementation with a

transmission-gate based implementation and a pass-transistor implementation.

TheNAND-gate based implementation uses a total of 14 transistors, whereas the

transmission-gate basedand thepass-gatebased implementationsuse6and4 transis-

tors, respectively. The NAND-gate based implementation incurs 2 gate delays

between the data inputs and the output, whereas the transmission-gate based and

the pass-transistor based implementations incur the channel resistance only.
One of the limiting factors with transmission-gate based and pass-transistor

based implementations is the voltage drop when signals pass through them.

Table 2.2 summarizes the transmission characteristics. Another is the higher

internal capacitances in transmission-gate and pass-transistor configurations,

because the junction capacitors are directly exposed to the signals passing

through. Therefore, it is recommended that each transmission-gate based circuit

block be followed with an active logic block, such as a CMOS inverter aided

with a full-swing p-channel transistor (as shown in Figure 2.24).
Sel
0

 MUX

1

Din_0

Din_1

Dout

Select
Select Dout

0 Din_0

1 Din_1

(a)

(b)

(c)

(d) (e)

Dout

TG1

TG2

Din_0

Din_1

Select

Din_0

Din_1

Select

Dout

PT1

PT2

Dout

Din_0

Select

Din_1

G1

G2

G3

FIGURE 2.26

Comparison of 2-to-1 multiplexer implementations: (a) 2-to-1 MUX block symbol.

(b) Truth table. (c) A NAND-gate-based implementation. (d) A transmission-gate-based

implementation. (e) A pass-transistor-based implementaion.

Table 2.2 Measures of Transmission Characteristic [Wakerly 2001]

Transmission Characteristic

Device High Low

Transmission gate Good Good

N-channel pass transistor Poor Good

P-channel pass transistor Good Poor

b

a

c
f = a⋅b + b⋅c

b

a
c f = a⋅b + b⋅c

bc
a 00

00 0 1 0
01111

01 11 10
bc

a 00
a0 a c c

ccaa0

01 11 10

(a) (b)

(c) (d)

FIGURE 2.27

Comparison of 2-to-1 multiplexer implementations: (a) A normal Karnaugh map. (b) The

modified Karnaugh map. (c) A transmission-gate-based design. (d) A pass-transistor-based

design.

60 CHAPTER 2 Fundamentals of CMOS design
One of the key steps in the use of transmission gates and pass transistors for logic

implementation is the identification of pass variable(s) to replace the 1’s and 0’s in

normal Karnaugh maps. Instead of grouping 1’s, as one would do in a normal Kar-

naugh map, variables are identified as pass variables or control variables and

grouped accordingly. Pass variables are those to be connected to the data terminals

of a multiplexer, whereas control variables are those to be connected to the select
terminals. To illustrate this, consider a Boolean function f ða; b; cÞ ¼ a � �bþ b � c.
Figure 2.27 shows the normal Karnaugh map (a) and its modified version (b) the

use of pass variables, along with a transmission-gate based implementation (c)

and a pass-transistor based implementation (d). After examining the normal Kar-

naugh map, one can conclude that when b ¼ 0, the output f is determined by a;

when b ¼ 1, f is determined by c. This analysis results in the modified Karnaugh

map, which indicates that b is the control variable, and a and c are the pass vari-

ables, resulting in the transmission-gate based and the pass-transistor based imple-
mentations shown in Figure 2.27. Readers are encouraged to try implementing

other Boolean functions with this approach.

2.4 Integrated circuit design techniques 61
It should be noted that although transmission-gate based and pass-transistor

based designs can reduce silicon area, placing a pass transistor on a normal sig-
nal path could lead to difficulty in testing, because a high-impedance state is

introduced at the output of the pass transistor when the pass transistor is stuck

at the OFF state.
2.4.2 Differential CMOS logic
Differential CMOS logic holds a unique place in dual-rail data processing cir-

cuits. This is because its two complementary outputs have identical timing char-
acteristics. As illustrated in Figure 2.28, a differential CMOS circuit block

consists of two symmetric left and right sub-blocks; each has one p-channel

transistor in the P-block serving as the load device for the n-channel switching

block below it. The two p-channel load devices are cross-coupled. The config-

urations of the n-channel transistors in the two sub–N-blocks follow the same

AND-to-series OR-to-parallel constructions used with CMOS circuits. The sym-

metric circuit structures ensure identical timing characteristics at the two com-

plementary outputs with respect to inputs.
Consider an XOR/XNOR combo block. Figure 2.29 compares three designs,

an optimized CMOS NAND-based implementation (which is not for dual-rail), a

differential CMOS logic implementation, and a hybrid of differential CMOS and

pass-transistor implementation. With the CMOS NAND–based implementation

shown in Figure 2.29b, the two complementary outputs have different delays.

Hence, it is not suitable for dual-rail processing circuits. With the differential

CMOS implementation shown in Figure 2.29c, the symmetric structures used

by both output blocks ensure identical delay and, therefore, it is one of the
desired circuit configurations for dual-rail processing. The implementation

shown in Figure 2.29d simplifies the differential CMOS implementation by

combining it with pass-transistor logic.

It should be noted that when complementary signals are not needed, the use

of differential CMOS logic might result in a larger circuit footprint and more

power consumption. Therefore, the circuit implementation must be chosen

with respect to the requirements.
Tp_1

f f

Tp_2

inputs

FIGURE 2.28

A generic diagram of a differential CMOS circuit block.

Tp_1

a a

b b

aa

ba≈ ba ≈
Tp_2

(b) (d)

(c)

(a)

a

INPUTS OUTPUTS

0 0 0 1

b XOR XNOR

0 1 1 0

1 0 1 0

1 1 0 1

b

a

a

b b

a

a

b

ba ≈
ba ≈

Tp_1

a a

bb

aa

ba≈ ba ≈Tp_2

FIGURE 2.29

Comparison of implementations for XOR/XNOR: (a) Truth table for XOR/XNOR. (b) A differential

CMOS implementation. (c) An optimized CMOS NAND-based implementation. (d) A hybrid

implementation using differential CMOS and pass-transistor.

Vout

Tp_dyn

Tn_dyn

n-channel
switching
network

inputs

pre-charge

pre-charge

FIGURE 2.30

Generic structure of a dynamic pre-charge circuit block using n-channel switching transistors.

62 CHAPTER 2 Fundamentals of CMOS design
2.4.3 Dynamic pre-charge logic
Dynamic pre-charge logic has been widely used in high-performance micro-

processors. Figure 2.30 illustrates the generic structure of a dynamic pre-charge

circuit block, in which transistors Tp_dyn and Tn_dyn are dynamic transistors

2.4 Integrated circuit design techniques 63
and Tp_dyn is also known as the dynamic load. When the pre-charge signal is

high, Tp_dyn is turned ON to charge the Vout node to high, while Tn_dyn is turned
OFF to prevent currents going through the n-channel switching block to the

ground. This period is called pre-charge phase, during which the output on Vout
is ignored. This pre-charge phase is followed by an evaluation phase, during

which Tp_dyn is turned OFF, Tn_dyn is turned ON, and Vout is determined by

the n-channel switching network controlled by the inputs. If the inputs are eval-

uated for Vout to go low, the pre-charged voltage on Vout is discharged through

the n-channel switching network, because it has at least one path connecting

Vout to ground. Otherwise, Vout remains floating at the pre-charged high value.
Transistor configurations in the n-channel switching network follow the

same design steps as those used for classic CMOS circuits. Figure 2.31 shows

the NAND and NOR blocks using dynamic pre-charge logic.

Similarly, instead of using an n-channel switching network, dynamic pre-

charge circuits can use p-channel switching transistors. A generic structure of

dynamic pre-charge logic by use of a p-channel switching network is shown

in Figure 2.32. During the pre-charge phases, Tn_dyn is turned ON and Tp_dyn
is turned OFF, and Vout is discharged to low. During the evaluation phases,
Tn_dyn is turned OFF and Tp_dyn is turned ON, and Vout is determined by the con-

figurations of p-channel transistors in the p-channel switching network.

If inputs are evaluated for Vout to go high, the output node gets charged from

VDD through at least one path in the p-channel switching network that

connects Vout with VDD. Otherwise, Vout remains low. Figure 2.33 shows the

implementations for a 2-input NAND and 2-input NOR gate using p-channel

switching transistors.
2.4.4 Domino logic
Cascading dynamic pre-charge logic blocks one after another may result in erro-

neous outputs because of a phenomenon known as partial discharge, as
Vout

Tp_dyn

Tn_dyn pre-charge

pre-charge

Tn_a

Tn_b

a

b

A dynamic 2-input NAND gate

Vout

Tp_dyn

Tn_dynpre-charge

pre-charge

a b

Tn_a

Tn_b

A dynamic 2-input NOR gate

FIGURE 2.31

Dynamic 2-input NAND and NOR implementations using n-channel switching transistors gate.

Vout

Tp_dyn

Tn_dyn

p-channel
switching
network

inputs

pre-charge

pre-charge

FIGURE 2.32

Generic structure of a dynamic pre-charge circuit block using p-channel switching transistors.

A dynamic 2-input NAND gate A dynamic 2-input NOR gate

Vout

Tp_dyn

Tn_dynpre-charge

pre-charge

a b
Tp_a

Tp_b

Tp_a

Tp_b

a

b
Vout

Tp_dyn

Tn_dynpre-charge

pre-charge

FIGURE 2.33

Dynamic 2-input NAND and NOR gate implementations using p-channel switching

transistors.

Vout_2

Tp_dyn_1

Tn_dyn_1pre-charge

pre-charge

Tn_1Vin=”1”

Tp_dyn_2

Tn_dyn_2pre-charge

pre-charge

Tn_2

Vout_1

FIGURE 2.34

Partial discharge in cascaded dynamic pre-charge inverters.

64 CHAPTER 2 Fundamentals of CMOS design
illustrated in Figure 2.34 with respect to Vin ¼ 1. First, both outputs of the two

inverters will be pre-charged to high. Next, Vout_1 is to be discharged to low. Ide-

ally, Vout_2 would remain high, because the input to the second inverter is going

low. However, because Tn_2 is initially in the ON state right after the evaluation

2.4 Integrated circuit design techniques 65
phase begins, Vout_2 may be partially discharged, potentially resulting in an erro-

neous output. (Readers are encouraged to analyze cascaded dynamic inverters
by use of p-channel switching transistors.) To avoid this partial discharge prob-

lem in practice, a dynamic pre-charge block is often followed by a CMOS

inverter, and the resulting circuit structure is known as Domino CMOS logic
whose generic circuit structure is illustrated in Figure 2.35.

To demonstrate the applications of Domino logic, consider a 4-bit compara-

tor. The truth table for a single-bit slice comparator is shown in Table 2.3,

and the Boolean function is f ðCin;A;BÞ ¼ A �Bþ A �Cin þ B �Cin ¼ A �Bþ
ðAþ BÞ �Cin. By use of Domino logic with n-channel switching transistors, the
single-bit comparator circuit implementation is shown in Figure 2.36, along

with the 4-bit block diagram.
Vout

Tp_dyn

Tn_dyn

n-channel
switching
network

inputs

pre-charge

pre-charge

Vout

Tp_dyn

Tn_dyn

p-channel
switching
network

inputs

pre-charge

pre-charge

FIGURE 2.35

Generic structure of a Domino CMOS logic circuit block.

Table 2.3 Single-Bit Comparator

Inputs Output

Cin A B A > B

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

Cout

pre-charge

pre-charge

A

B
B A

Cin

A

Cin Cout

B

A

Cin Cout

B

A

Cin Cout

B

A

Cin Cout

B

A3A2A1A0

B3B2B1B0

A > B

FIGURE 2.36

A 4-bit comparator implementation by use of Domino logic.

66 CHAPTER 2 Fundamentals of CMOS design
It should be pointed out that because transistor Tp_dyn acts as a dynamic

load, the outputs of dynamic precharge logic and Domino logic will leak away

over time and thus may not be valid in certain situations where clocking is

halted. For example, when diagnosis of digital circuits is performed, it is often

necessary for engineers to apply a certain number of clock cycles to a circuit,

stop, and then probe selected signals to take necessary measurements. These
and similar operations may not be possible with dynamic pre-charge and

Domino logics, because they require constant pre-charge and evaluation cycles.

To overcome this shortcoming, a small (often of minimum size) static load

p-channel transistor (a.k.a. keeper) is added alongside the dynamic load, as illu-

strated in Figure 2.37. This small keeper transistor provides just enough current

to overcome the leakage current during probing, in the case with dynamic

pre-charge logic, and it also improves the high-to-low transition at Vout.

For dynamic circuit blocks implementing complex logic functions, the
n-channel switching network often contains many stacked transistors, which

may cause erroneous outputs during the evaluation phases. The phenomenon

is known as charge sharing, which is illustrated in Figure 2.38. During an eval-

uation phase, transistors A, B, and E are OFF and transistor D is ON, and the

charge on C1 is now shared with C2, which is much bigger than C1. This would

cause the voltage at the input of the inverter to drop, which may lead to an erro-

neous Vout. To prevent this charge-sharing problem, selected internal nodes in

Vout

n-channel
switching
network

inputs

Small W/L

Vout

n-channel
switching
network

inputs

pre-charge

pre-charge pre-charge

pre-charge

Small W/L

A dynamic pre-charge block with
a small static load

A Domino logic block
with a small static load

FIGURE 2.37

Illustration of dynamic circuit blocks with static load.

Vout

C2A B E

D
C1

pre-charge

pre-charge

Charge sharing

FIGURE 2.38

Charge sharing in a dynamic CMOS circuit.

2.4 Integrated circuit design techniques 67
the switching network can be pre-charged as well. This is illustrated in the

implementation of a multi-output dynamic circuit block shown in Figure 2.39.

No explicit dynamic transistor is placed at internal nodes where pre-charge

is guaranteed. Readers are encouraged to identify these internal nodes as

an exercise.
2.4.5 No-race logic
One of the limitations with Domino logic is the insertion of an inverter at each

block’s output. When Domino logic circuit blocks are cascaded, the added

inverters can result in excessive delay. One way to reduce such delay is alternat-

ing between n-channel pre-charge blocks and p-channel pre-charge blocks, a

technique known as NORA [Martin 2000] (for no-race logic), as illustrated in

Figure 2.40, when dynamic circuit blocks are cascaded one after another.

A dynamic latch (a.k.a. clocked latch) has also been used in the place

of the inverter in a Domino logic circuit block. During a pre-charge phase,
the dynamic latch appears as high impedance. During an evaluation phase,

a

pre-charge

pre-charge

pre-charge

pre-charge

a

a ⊕ b

a ⊕ b ⊕ c

a ⊕ b ⊕ c ⊕ d

bb b b

c ccc

d d

FIGURE 2.39

Precharge of selected internal nodes in a multi-output Domino logic circuit block.

n-channel
switching
network

inputs

pre-charge

pre-charge

pre-charge

p-channel
switching
network

Inputs from
n-channel
pre-charge
blocks

pre-charge

To n-channel
pre-charge
blocks

n-channel pre-charge block p-channel pre-charge block

FIGURE 2.40

Altering n-channel pre-charge and p-channel pre-charge blocks.

n-channel
switching
network

pre-charge

pre-charge

pre-charge

pre-charge To blocks with
pre -charge
evaluation phase

FIGURE 2.41

A dynamic circuit block with a dynamic latch output buffer.

68 CHAPTER 2 Fundamentals of CMOS design

2.4 Integrated circuit design techniques 69
the dynamic latch samples the output of the dynamic block and stores its output

during the next pre-charge phase. The dynamic circuit block and the latch are
pre-charged and evaluated in opposite phases, therefore, eliminating the partial

discharge problem.

A circuit structure combining the preceding two approaches is known as

No-Race logic, as illustrated in Figure 2.42 with two stages. The first is the

pre-charge evaluation stage because its circuit blocks are evaluated in that

phase. This stage consists of an n-channel Domino block, which is followed

by a p-channel Domino block, with the output being clocked by a dynamic

latch. Outputs of the two Domino logic circuit blocks can feed other circuit
blocks as indicated, without being latched. In the second stage, switching net-

works are evaluated in the pre-charge phase. Hence, this stage is called the
n-channel
switching
network

pre-charge

pre-charge

pre-charge

pre-charge

pre-charge

pre-charge

pre-chargep-channel
switching
network

pre-charge

pre-charge

To n-channel pre-charge blocks

To p-channel pre-charge blocks

A

pre–charge

evaluation stage

n-channel
switching
network

pre-charge

p-channel
switching
network

pre-charge

pre-charge

A

To n-channel pre-charge blocks

To p-channel pre-charge blocks

To blocks with
pre–charge
evaluation phase

pre-charge-
evaluation stage

-

FIGURE 2.42

Circuit structure of No-Race logic.

70 CHAPTER 2 Fundamentals of CMOS design
pre-charge-evaluation stage. It consists of the same circuit components and

structure as the first stage, except that the dynamic control signals are replaced
with the complemented version. This two-stage section can be repeated several

times to form highly efficient pipeline structures.

Note that the circuit blocks in the two-stage structure illustrated in

Figure 2.42 use dynamic loads. When static loads are used, there are constraints

on the number of inversions to guarantee race-free operation in the presence of

clock skews. Techniques such as reverse clock distribution and local clock
generation that use differential circuits are also used in practice to ensure race-

free operation in high-performance CMOS circuits. For the analysis and design
principles, readers are encouraged to explore further with the references listed

at the end of this section.
2.4.6 Single-phase logic
As described and illustrated in the previous subsections on dynamic CMOS cir-

cuit implementations, both pre-charge and pre-charge phases are used. Techni-

ques that use only one phase are known as single-phase logic, which
simplifies dynamic implementations. Figure 2.43 illustrates the generic diagram

of two basic single-phase logic components, with one that uses an n-channel

switching network and the other that uses p-channel switching network. Note
n-channel
switching
network

pre-charge

pre-charge

pre-charge

p-channel
switching
network

pre-charge

pre-charge

pre-charge

FIGURE 2.43

Generic diagram of single-phase logic blocks.

D

Q
Clock

(a)

(b)

p-channel
block

n-channel
block

D

QClock

p-channel
block

n-channel
block

FIGURE 2.44

Single-phase edge-trigged dynamic D flip-flops: (a) Positive edge-triggered dynamic D

flip-flop. (b) Negative edge-triggered dynamic D flip-flop.

2.5 CMOS physical design 71
that each dynamic circuit block uses one phase of the pre-charge signal.

Figure 2.44 shows two single-phase edge-trigged dynamic D flip-flops. Readers are
encouraged to analyze theway that these two dynamic flip-flopswork. Single-phase

logic can simplify the clock distribution that can be very complex in many large

digital systems in which high-performance dynamic circuits are used.
2.5 CMOS PHYSICAL DESIGN

Once transistor schematics are ready, the next design step is to translate the
circuit schematic designs into the device and wire placements on silicon.

This design step is known as physical design, which produces silicon blue-

prints specifying the exact size and location of each transistor, wire, contact,

and other components before manufacturing masks are generated.

Circuit simulation incorporating physical design specifics can more accu-

rately mimic the real chip behavior than schematic-based circuit simulation.

This is because at the circuit schematic level, oftentimes the exact length of

each wire is not known yet. Therefore, circuit designs with small design mar-
gins are often simulated again with physical design data to further ensure that

design metrics are satisfied.

72 CHAPTER 2 Fundamentals of CMOS design
In this section, we highlight some basic concepts and practices in physical

design. For more in-depth study, readers are encouraged to explore the refer-
ences further. To help with visualizing layout designs, the Mead-Conway
color-coordination is often used to differentiate CMOS structures [Weste

1994]. Table 2.4 shows the color representation for the n-well CMOS process.

When color display is not available, varying fill-in patterns and shades are used.
2.5.1 Layout design rules
Layout design rules specify geometric constraints with respect to physical
constructs. These layout design rules are intended to ensure that designs can

be properly manufactured through the manufacturing processes and satisfy all

engineering metrics. Because layout design rules are technology and process

specific, care must be taken to ensure that only certified layout design rules

of the intended technology and processes are used.

Layout design rules are defined in terms of feature sizes, separations, and
overlaps. Feature size defines the dimensions of constructs, such as the chan-

nel length and the width of wires. Separation defines the distance between
two constructs on the same layer. Overlap defines the necessary overlap of

two constructs on adjacent layers in a physical construction, such as a contact

connecting a Poly wire with a Metal 1 wire, in which the Metal 1 wire must

overlap with the Poly wire below. Table 2.5 lists two typical sets of CMOS layout

design rules for an n-well–based process. One is called the l-Rule set and the

other is called the m-Rule set. The l-Rule set is scalable with l (which is typi-

cally twice the channel feature size), therefore, giving designs much flexibility

in choosing manufacturing facilities and stability in dealing with multiple
manufacturing lines and vendors. The m-Rule set specifies the exact feature
Table 2.4 N-Well CMOS Process Color-Layer Representation [Weste 1994]

Layer Color Symbolic

N-well Brown

Thin-oxide Green n-channel transistor

Poly Red Poly-silicon

pþ Yellow p-channel transistor

Contact-cut, via Black Contact

Metal 1 Blue Metal 1

Metal 2 Tan Metal 2

Metal 3 Gray Metal 3

Metal 4 Purple Metal 4

Table 2.5 CMOS Layout Design Rules [Weste 1994]

l-Rule m-Rule

A. N-well layer

A.1 Minimum size 10l 2m

A.2 Minimum spacing (well at same potential) 6l 2m

A.3 Minimum spacing (well at different potential) 8l 2m

B. Active Area

B.1 Minimum size 3l 1m

B.2 Minimum spacing 3l 1m

B.3 N-well overlap of pþ 5l 1m

B.4 N-well overlap of nþ 3l 1m

B.5 N-well space to nþ 5l 5m

B.6 N-well space to pþ 3l 3m

C. Poly

C.1 Minimum size 2l 1m

C.2 Minimum spacing 2l 1m

C.3 Spacing to Active 1l 0.5m

C.4 Gate Extension 2l 1m

D. pþ/nþ

D.1 Minimum overlap of Active 2l 1m

D.2 Minimum size 7l 3m

D.3 Minimum overlap of Active in substrate contact 1l 2m

D.4 Spacing of pþ/nþ to nþ/ pþ gate 3l 1.5m

E. Contact

E.1 Minimum size 2l 0.75m

E.2 Minimum space on Poly 2l 1m

E.3 Minimum space on Active 2l 0.75m

E.4 Minimum overlap of Active 2l 0.5m

E.5 Minimum overlap of Poly 2l 0.5m

E.6 Minimum overlap of Metal 1 1l 0.5m

continued

2.5 CMOS physical design 73

Table 2.5 CMOS Layout Design Rules [Weste 1994]—cont.

E.7 Minimum space to Gate 2l 1m

F. Metal 1

F.1 Minimum size 3l 1m

F.2 Minimum spacing 3l 1m

G. Via

G.1 Minimum size 2l 0.75m

G.2 Minimum spacing 3l 1.5m

G.3 Minimum Metal 1 overlap 1l 0.5m

G.4 Minimum Metal 2 overlap 1l 0.5m

H. Metal 2

H.1 Minimum size 3l 1m

H.2 Minimum spacing 4l 1m

I. Via 2

I.1 Minimum size 2l 1m

I.2 Minimum spacing 3l 1.5m

I.3 Minimum Metal 2 overlap 2l 1m

I.4 Minimum Metal 3 overlap 3l 1.5m

J. Metal 3

J.1 Minimum size 8l 4m

J.2 Minimum spacing 5l 2.5m

J.3 Minimum Metal 2 overlap 2l 1m

J.4 Minimum Metal 3 overlap 2l 1m

K. Passivation

K.1 Minimum opening 100m

K.2 Minimum spacing 150m

74 CHAPTER 2 Fundamentals of CMOS design
sizes, required separations, and overlaps for a targeted line of technology and

processes. It is often used for high-volume designs.

Entries in Table 2.5 are mostly self-explanatory. For example, Rule A.1 speci-

fies that, for the intended n-well technology, the dimensions of the n-well must

be at least 10l� 10l in a layout design following the l-Rule set and 2m� 2m

2.5 CMOS physical design 75
following the m-Rule set. Rule A.2 specifies that the minimum space between

two separate n-wells of the same potential must be 6l and 2m, respectively.
Rule C.1 specifies that a Poly section must be 2l wide with l-Rule and 1m with

m-Rule. Rule C.2 specifies that there must be at least 2l (or 1m) separation

between two neighboring Poly sections. As readers may observe in Table 2.5,

layout designs following the l-Rule set almost always end up occupying more

silicon space than those following the m-Rule set. This is because the l-Rule
set incorporates built-in scalability, whereas the m-Rule does not have this

flexibility (therefore, it can be optimized for minimum use of the silicon area).

Figures 2.45 and 2.46 illustrate graphically the layout design rules in Color
and Black/White, respectively.
2.5.2 Stick diagram
Stick diagrams are useful tools for planning custom physical layout designs of

complex circuit blocks. In a stick diagram, transistors are represented by col-

ored sticks, contacts are represented by black dots, and wires are represented

by lines; all are placed on a square-grid background. Transistor representations

in a stick diagram are the same regardless of their size. Figure 2.47 illustrates

two stick diagrams of a CMOS inverter, illustrating that different transistor place-

ment orientations result in layouts with different aspect ratios.
One of the applications of a stick diagram is to investigate the best place-

ment of transistors, including their orientations and relative positions. This is

an important step in designing layouts of complex circuit blocks, because tran-

sistor placements can affect wiring complexity and many circuit performance

characteristics. The common objectives used in devising stick diagrams are

minimizing the overall block area and the use of wires. Other objectives can

be proper alignment of input and output signals, such that when a block is to

be cascaded in series, the layout block can be repeated without much reconnec-
tion. Oftentimes, layout design engineers can find themselves in a position in

which minimizing block area and the use of wires cannot be achieved at the

same time, and hence a tradeoff must be made to proceed. The simplicity of

stick diagrams gives layout design engineers a “quick-and-dirty” approach to

investigate the potential impacts to aid in making layout design decisions.

Another application of stick diagrams is for estimating the block layout

dimensions. In this case, the background grid X and Y dimensions are indexed.

With a given layout stick diagram along with the set of layout design rules, sizes
of constructs on the X and Y axis are added up to determine the total length on

that index. For example: X(3) for the stick diagram in Figure 2.47a passes

through the width of the GND wire and the source contact of the n-channel

transistor, the n-channel length, the n-channel transistor drain terminal contact,

the separation space of the terminal contacts, the p-channel drain terminal

contact, the p-channel length, the p-channel source terminal contact, and the

VDD wire; X(8) for stick diagram in Figure 2.47b intersects with the GND wire,

B1=3

C1=2 C3=1

B2=3
B5=5

B4=3
B3=5

B6=3

Active Area Rules

N-well Rules

Poly 1 Rules

C2=2

C4=2 (same for p-channel transistor)

The figures show n-diffusion (n+ in p-well or
substrate), vddn (n+ in n-well), vssp (p+ in p-

well or substrate by color. In reality, these
areas are the active layer surrounded by an
n+ or p+ layer. These layers are preferred for
design as they present layouts that are
conceptually easier to visualize.

N+/p+ Rules

D1=2 D1=2

D2=7 D2=7

n+ active layer p+ active layer

p-diffusion
or vssp

NOTE: n+ and p+ may be omitted for clarity

Contact Rules and Metal 1 Rules

F2=3

F1=3

A1=10

A2=6

wells at same potential wells at different potential

A2=8

E1=2 E2=2

E6=1 E6=1

E5=2 E1=2 E3=2 E4=2

(a)

(b)

(c)

(d)

(e)

FIGURE 2.45

Continued

76 CHAPTER 2 Fundamentals of CMOS design

Via Rules and F. Metal 2 Rules

G1=2

G4=1 G2=3 G3=1

H2=4

H1=3

I1=2

J4=2 J3=2 I2=3

J1=8

J2=5

p-channel transistor

n-channel transistor

VDD

GND (or VSS)

butting substrate
 contact

Vin Vout

Example: A CMOS n-well inverter designed with
Lambda Rules (with n+ and p+ layers omitted)

FIGURE 2.45

Illustration of layout rules and color designations [Weste 1994].

2.5 CMOS physical design 77
the source terminal contact of the n-channel transistor, spacing between M1 and
the contact, the M1 wire, the source contact of the p-channel transistor, and the

VDD wire; X(9) goes through the GND wire, the n-channel gate extension,

the width of the n-channel transistor, spacing between M1-Poly contact

and the n-channel, the M1-Poly contact, spacing between p-channel and M1-Poly

contact, the width of the p-channel transistor, the p-channel gate extension, the

width of the VDD wire. By use of the l-Rule, Table 2.6 lists the estimates on

the X and Y index for Figures 2.47a and 2.47b layouts, with the assumption that

the transistors have an identical channel width of 2l.
Because a custom physical layout design often requires several iterations of

floorplanning, placement, and routing, estimates of block dimensions on the

basis of stick diagrams can help to reduce the number of iterations, hence,

improving the efficiency of design activities. Although in recent years, CAD

Active Area Rules

Poly 1 Rules

C4=2 (same for p-channel transistor)

The figures show n-diffusion (n+ in p-well or
substrate), vddn (n+ in n-well), vssp (p+ in p-

well or substrate) by B&W patterns. In reality,
these areas are the active layer surrounded by
an n+ or p+ layer. These layers are preferred
for design as they present layouts that are
conceptually easier to visualize. N+/p+ Rules

D1=2 D1=2

D2=7 D2=7

p-diffusion
or vssp

NOTE: n+ and p+ may be omitted for clarity

Contact Rules and F. Metal 1 Rules

F2=3

F1=3

(a)

(b)

(c)

(d)

(e)

N-well Rules

wells at same potential

A2=6 A2=8

A1=10

wells at different potential

B1=3

B2=3
B5=5

B4=3
B3=5

B6=3

C1=2 C3=1

C2=2

n+ active layer p+ active layer

E1=2 E2=2

E6=1 E6=1

E5=2 E1=2 E3=2 E4=2

FIGURE 2.46

Continued

78 CHAPTER 2 Fundamentals of CMOS design

Via Rules and F. Metal 2 Rules

G1=2

(g)

(i)

H2=4

H1=3

Via 2 Rules and J. Metal 3 Rules

I1=2

J1=8

J2=5

p-channel transistor

n-channel transistor

VDD

GND (or VSS)

butting substrate
 contact

Vin Vout

CMOS n-well inverter designed with Lambda Rules
(with n+ and p+ layers omitted)

G4=1 G2=3 G3=1

J4=2 J3=2 I2=3

FIGURE 2.46

Illustration of layout rules with designated B&W patterns [Weste 1994].

2.5 CMOS physical design 79
tools have largely automated the floorplanning, placement, and routing tasks

and processes, some designers still use stick diagrams in planning block layout

designs and functional units.
2.5.3 Layout design
Although most of the chip-level physical layout design activities are done by run-

ning automated EDA tools, most physical layout design library cells (a.k.a.

books) are still created and fine-tuned manually with the help of EDA tools such

as a layout editor. In this subsection, we highlight a few physical layout design

examples of small CMOS circuit blocks. The layer-overlapping color display seen
on designers’ computer screens is known as symbolic layout. A chip-level

symbolic layout display is often called the artwork. Once a chip-level physical

layout design is verified against engineering metrics (such as DRC, timing, yield)

8

7

6

5

4

3

2

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13

GND

Vin
Vout

VDD VDD

GND

Vin Vout

(a) (b)

FIGURE 2.47

Stick diagrams for a CMOS inverter.

Table 2.6 Estimated Length on Stick Diagram X and Y Indexes

Index Items Length

For stick diagram of Figure 2.47a

X(3) (4 þ 1þ 2 þ 1 þ 4 þ 2 þ 4 þ 1 þ 2 þ 1 þ 4) � 26�

Y(2) (2 þ 4 þ 2) � 8�

Y(5) (2 þ 2 þ 2 þ 4 þ 2) � 12�

Y(6) (2 þ 2 þ 2) � 6�

Estimated block layout dimensions: 26 � by 12 �

For stick diagram of Figure 2.47b

X(9) (4 þ 2 þ 2 þ 2 þ 4 þ 2 þ 2 þ 2 þ 4) � 24�

X(11) (4 þ 2 þ 4 þ 2 þ 4 þ 2 þ 4) � 22�

Y(4) (4 þ 1 þ 2 þ 1 þ 4) � 12�

Y(5) (2 þ 4 þ 2 þ 2 þ 2) � 12�

Estimated block layout dimensions: 24� by 12�

80 CHAPTER 2 Fundamentals of CMOS design
and approved, EDA tools are used to extract manufacturing mask data from the

physical layout data for production masks.

Figure 2.48 shows a symbolic layout of a classic CMOS inverter that uses the

n-well process. The layout design uses one metal layer. Typically, cells and

blocks in a library have the same height so that wires for VDD and GND can

2.5 CMOS physical design 81
be aligned precisely throughout a chip. With this CMOS inverter, space is left

between the n-channel transistor and the p-channel transistor so that this
inverter cell maintains the same height as the other cells to be described in this

subsection. Note that, whenever possible, n-well contacts (with VDD) are placed

along the VDD supply line, and substrate contacts are placed along GND. These

contacts are necessary to provide good grounding for the well and the sub-

strate. Once a cell is created manually, it is important to check for any physical

layout design rule violations. Typically, EDA tools provide such a function

known as a design rule check (DRC). It is important to note that, when

performing DRC with an EDA tool, a correct rule set must be specified. For
example, to check this CMOS inverter layout design for any DRC violations,

the n-well–based design rule set must be specified in the application. Inappro-

priate use of design rule set would result in either not discovering or wrongly

identifying DRC violations.
FIGURE 2.48

Symbolic layout of a CMOS inverter.

FIGURE 2.49

Symbolic layout of a 2-input 1-output CMOS NAND gate.

82 CHAPTER 2 Fundamentals of CMOS design
Figure 2.49 shows a symbolic layout for a 2-input NAND gate that uses one

metal layer and the n-well process. Because of this limitation, its two inputs

are accessed at different sides. Typically, library cells would have their inputs
on one side and their outputs on the other side. This can effectively reduce

the overall wire length when cells are used in functional blocks. When a second

metal layer is available, input b in Figure 2.49 can easily be rerouted to the West

along the side of input a.

Figure 2.50 shows a symbolic layout of a 3-input OR followed by a 2-input

NAND block, which uses one metal layer and the n-well process. Because it also

uses one metal layer, the inputs of the block are accessed from both sides, and

the output goes out on the left side. When a second metal layer is available, one
can reroute inputs to the West and the output to the East. As an alternative, the

inputs can also be routed for access from the South by extending the Poly wires

beyond GND.

Note that in Figure 2.50, the n-channel transistor controlled by input a is one

third of the size of the p-channel transistors controlled by inputs b, c, and d.

This is because the p-channel transistors of inputs b, c, and d are in series con-

nection, and by the transistor equivalence theory, the equivalent transistor size

a

b
c
d

Z

FIGURE 2.50

Symbolic layout of a 3-input-OR 2-input-NAND block.

2.5 CMOS physical design 83
of p-channel transistors controlled by inputs b, c, and d is the same as the size of

p-channel transistor of input a.

Figure 2.51 shows a symbolic layout of grading-series transistors in an AND

dynamic CMOS block [Weste 1994] with 4 inputs. The layout design uses

transistors of varying sizes according to the position in the series structure to
reduce delay. The n-channel transistor closest to the output is the smallest, with

n-channel transistors increasing their size as they are placed nearer GND.

The switching time is reduced, because there is less capacitance at the output.

With older technologies, it provided 15% to 30% performance boost. However,

with submicron technologies, this improvement is much less, at 2% to 4% in

some cases. Nevertheless, the example demonstrates how layout designs of

blocks can be optimized.

It is worth noting that often multiple techniques can be applied to a block.
As an exercise, readers can attempt to improve the design of Figure 2.51 by first

analyzing and identifying the problems associated with the design and then

F
clk

A<0>

A<1>

A<2>

A<3>

FIGURE 2.51

Symbolic layout of a 4-input AND gate by use of grading-series transistors. [Martin 2000].

84 CHAPTER 2 Fundamentals of CMOS design
modifying the circuit and layout designs that use the techniques discussed in

this chapter to improve circuit speed, reduce transistor count, silicon area,
and power consumption.
2.6 LOW-POWER CIRCUIT DESIGN TECHNIQUES

As mentioned earlier, there are three sources of power dissipation in CMOS cir-

cuits: dynamic power dissipation, short-circuit power dissipation, and static

(leakage) power dissipation. Traditionally, dynamic power dissipation has been
the dominant source of power dissipation. With continued scaling of CMOS

2.6 Low-power circuit design techniques 85
technology, however, leakage power dissipation has become a significant source

of power consumption as well. This subsection describes some commonly used
circuit-level techniques for reducing power dissipation.
2.6.1 Clock-gating
One commonly used technique to reduce power dissipation is to use clock-
gating. The idea is that clock lines to circuits that are not being used are ANDed

with a gate-control signal that disables the clock line to avoid unnecessary

charging and discharging of unused circuits. Not all circuits are used at all times.

Individual circuit use varies widely across applications and time, so there are

many opportunities to use clock-gating.

The clock tree distributes the clock to sequential elements like flip-flops and
latches, as well as to dynamic logic gates. Portions of the clock tree can be

pruned by gating them with an AND gate as illustrated in Figure 2.52. When

the gate-control signal is set to 0, it holds the clock line at a constant 0. This

avoids charging and discharging of the capacitive load on the clock line and also

prevents latches from changing state, thereby avoiding additional switching

activity in any combinational logic being driven by the latch. For dynamic logic

circuits, holding the clock at a constant 0 prevents the evaluate phase from

occurring, thereby preventing the output from switching values. In practice,
transparent latches are often used to gate clocks and prevent potential glitches

that can happen with logic AND.

Clock-gating is effective at reducing dynamic power dissipation in unused

sequential circuits and dynamic logic gates. Some limitations of clock-gating are

that it does not prevent switching in static logic gates that may occur because

of changes in the primary input values, and it does not reduce leakage power con-

sumption. These limitations can be addressed by the use of power-gating.
2.6.2 Power-gating
Another way to reduce power dissipation in unused circuits is to use power-
gating [Mutoh 1993; Sakata 1993]. The idea in power-gating is to switch off

the power supply to unused circuits, thereby putting them in a “sleep” mode.

This is typically implemented by having a gating transistor that can be turned

off when the circuit is to be idle for an extended period of time. The gating
&
Gate-Control

Clock

Circuit

FIGURE 2.52

Clock-gating.

A

GND

BA

B

Gate
Control

Vout

VDD

FIGURE 2.53

Power-gated 2-input NAND gate.

86 CHAPTER 2 Fundamentals of CMOS design
transistor can be either a header (p-channel transistor) or footer (n-channel tran-

sistor) transistor. Figure 2.53 illustrates a footer transistor. The gating transistor

must be sized large enough to handle the amount of switching current at any

given time so that there is no measurable amount of voltage drop across it.

A footer transistor tends to require less area for a given switching current
because of the higher mobility of electrons in an n-channel transistor compared

with a p-channel header transistor. In a multiple-VT technology, the gating

transistor is typically implemented with a high VT to minimize subthreshold leak-

age current through it. Power-gating can thus provide significant leakage power

reduction, particularly when used in conjunction with circuits containing low

VT transistors.

Power-gating can be done at either a fine-grain or coarse-grain level. In fine-
grain power-gating, the gating transistor is part of the standard cell logic. The
advantage of this is that the burden of designing the gating transistor is left to

the standard cell designer, and the cells can be easily handled by EDA tools.

The drawback is that the gating transistor must be sized assuming worst-case

conditions in which every cell is switching every clock cycle because nothing

can be assumed about the module-level function. In coarse-grain power-
gating, the gating transistor is part of the power distribution network rather

than the standard cell and thus is shared among many gates. One advantage of

this is that because only a fraction of the gates switch at any given time, the gat-
ing transistors can be sized smaller on aggregate compared with fine-grain

power-gating. One issue for coarse-grain power-gating is that if too many gating

transistors are switched simultaneously when going in and out of sleep mode,

the current demand may overwhelm the power distribution network. Thus,

some means for limiting the number of gating transistors that are simultaneously

switched is needed.

Because the gating transistors are high VTH devices, they can take several

clock cycles to switch on and off and cause additional power dissipation. Thus,
for power-gating to be efficient, the circuit must be idle for a sufficient number

2.6 Low-power circuit design techniques 87
of clock cycles so that the power savings justifies the time and cost of switching

in and out of sleep mode.
When power-gating is implemented in sequential circuits, a means for

retaining the sequential state is needed when the circuit goes into sleep mode.

One simple approach is to scan the values in the storage elements into a mem-

ory before going into sleep mode, and then scan them back from the memory

when the circuit wakes up.

Whereas clock-gating can only reduce dynamic power dissipation, power-

gating can reduce both dynamic and leakage power dissipation. Because leakage

power dissipation has become a sizable portion of overall power dissipation,
power-gating has become a very important power reduction method. A draw-

back of power-gating compared with clock-gating is that it takes several clock

cycles to switch in and out of sleep mode, and hence it is only efficient if the

circuit will be idle for a sufficiently long time.
2.6.3 Substrate biasing
Another way to reduce leakage current (hence, leakage power dissipation)
when a circuit is not being used is through substrate biasing [Seta 1995],

which is also known as variable threshold CMOS. The idea is to adjust the

threshold voltage by changing the substrate bias voltage (VSB). Increasing the

substrate bias voltage induces a body effect on the transistor that increases its

threshold voltage (VT). By having a substrate bias control circuit as illustrated

in Figure 2.54, the substrate bias can be adjusted for normal operation to mini-

mize VT and maximize performance, and then when the circuit is in standby

mode, the substrate bias can be adjusted to increase VT to reduce the subthresh-
old leakage current. For example, the voltage on VBp could be set to VDD in nor-

mal mode and 2VDD in standby mode. The voltage on VBn could be set to 0 in

normal mode and �VDD in standby mode. This would significantly reduce the

leakage power dissipation.
Substrate
Bias

Control

Vin Vout

VBp

VBn

FIGURE 2.54

Substrate biasing.

88 CHAPTER 2 Fundamentals of CMOS design
One drawback of substrate biasing is that it requires a twin- or triple-well

CMOS technology to apply different bias voltages to different parts of the chip.
There is also a need to generate voltages outside of the normal 0 to VDD power

rail range that may require additional power pins on the chip.
2.6.4 Dynamic voltage and frequency scaling
The speed of a circuit depends linearly on the supply voltage. The idea in

dynamic voltage scaling [Flautner 2001] is that during times when the circuit

is not needing high performance, both its clock frequency and supply voltage
can be scaled down. Because dynamic power dissipation depends on the square

of the supply voltage and linearly on the frequency (P ¼ CV
2
f), if both the sup-

ply voltage and frequency are scaled down, there is a cubic reduction in power

consumption.

Dynamic voltage scaling has been implemented in several commercial

embedded microprocessors including the Transmeta Crusoe [Transmeta

2002], Intel Xscale [Intel 2003], and ARM IEM [ARM 2007]. When the processor

is lightly loaded, the frequency and supply voltage are scaled down to save
power, and when it is heavily executing, it is run at full frequency and voltage.

Figure 2.55 illustrates how a dynamic voltage–scaling scheme works. On the

basis of the workload, the system requests a frequency change. First, the fre-

quency is reduced, which takes on the order of hundreds of picoseconds, and

then the voltage is ramped down, which takes on the order of hundreds of

microseconds. Later, when switching back to high frequency, the voltage is first

scaled back up to the normal voltage level, and then the frequency is raised

back up.
Dynamic voltage scaling is a highly efficient way of reducing power con-

sumption while still preserving functionality and meeting user expectations. It

has been widely deployed.
Vcc

Frequency

Time

fMIN

fMAX

VIDmin

Request
frequency
 change

1

2

3

4

Transition1, 3 in
range of 100s of pS

Transition 2, 4 in
range of 100s of μS

VIDnom

FIGURE 2.55

Dynamic voltage and frequency scaling.

2.6 Low-power circuit design techniques 89
2.6.5 Low-power cache memory design
Because microprocessor and ASIC chips contain cache memory often taking up
more than half of the silicon space, power dissipation of these on-chip memory

blocks can significantly contribute to the overall power consumption. In some

cases, the static leakage power dissipation of cache memory contributes more

than half of the chip’s power consumption. Therefore, modern designs often

use on-chip memory technologies with low-power features.

Power dissipation of on-chip memory blocks largely comes from the follow-

ing functional units: the memory cells, the word and bit lines, and the periph-

eral circuits such as address decoders and sense amplifiers. In this subsection,
we outline some of the low-power techniques applied with word and bit lines.

Figure 2.56 illustrates the memory cell of a typical on-chip cache SRAM

memory block. A cell is being accessed (either READ or WRITE) by selected

word and bit lines, which are connected to the outputs of address decoder cir-

cuits. The arrows indicate the leakage currents (because of bit lines being

pre-charged to high) when the cell holds a 0 at the BL side and a 1 at the com-

plementary side. For large on-chip memory, a word or bit line is a long intercon-

nect that would connect to several thousands of cells. Longer word and bit lines
not only require larger driving circuits at the outputs of address decoders but

also cause concerns with respect to word/bit line delay and more power dissi-

pation during word/bit line pre-charge.

To address these concerns, large on-chip memory is typically divided in

many small sections so that each word or bit line drives a small number of cells.

This technique is known as banked cache design. Both word and bit lines are

also sectioned into a hierarchical structure such that each of the selected word
WL

T
rue B

it

 T6 T5

T1

T2

T3

T4

BL

C
om

plim
ent B

it

BL

10

FIGURE 2.56

A typical SRAM cell.

90 CHAPTER 2 Fundamentals of CMOS design
and bit lines drives a few hundreds or fewer cells. A local sense amplifier bus is

also used such that selected cache banks can connect to the nearest sense
amplifiers, effectively reducing the length of active word and bit lines.

A technique known as sub bit lines [Karandikar 1998; Yong 2005] is illu-

strated in Figure 2.57. Each memory cell is connected to the main bit line by

a sub bit line. A sub bit line is a short interconnect line that connects to a

few cells. Only one selected sub bit line is connected to the main bit line at a

time. Therefore, it significantly reduces the number of memory cells that load

the main bit line at any time, which improves the bit-line response time. It also

reduces leakage current, because inactive sub bit lines no longer need to be pre-
charged. The disadvantage is that the addition of sub bit lines doubles the area

used by bit line interconnects.

With multicore processor technologies becoming mainstream applications,

more and more chips are making use of multi-port on-chip cache memory to

maintain performance requirements. Classic hard-wired multi-port memory

architecture usually uses dedicated word and bit lines to each memory cell for

each port. Figure 2.58 illustrates a cell with 2 hard-wired ports. The addition

of the second port not only increases the footprint of cache memory on silicon
but also introduces additional leakage current (as indicated by arrows in

Figure 2.58).

Figure 2.59 illustrates a new technique called dynamic memory partition-
ing with isolation nodes [Bajwa 2006, 2007; Chen 2007]. In theory, isolation

nodes are placed on bit lines between neighboring memory cells. One port

access is from the bottom of the bit line and the other port access is from the

top of the bit line. When the two ports are accessing different cells, a selected

isolation control line turns off the isolation nodes and divides the memory bank
Word
lines

Sub
bit
line

BL

Sub bit line
selection

Sub bit lines

A main bit line

BL

SRAM
Cell

Sub
bit
line

A sub bit
line section

A main bit line

SRAM
Cell

Sub bit line
selection

FIGURE 2.57

Illustration of sub bit lines.

BL BL

WL (Port 0)

T
rue B

it (P
ort 1)

T
rue B

it (P
ort 0)

C
om

plim
ent B

it (P
ort 1)

C
om

plim
ent B

it (P
ort 0)

T1

T2

T3

T4

T5

T7

T6

T8

WL (Port 1)

0 1

FIGURE 2.58

A typical hard-wired dual-port SRAM cell.

WL (i+1)

WL (i)

ICL (i)

Upper Port

Lower Port

Isolation
Nodes

FIGURE 2.59

Illustration of energy-efficient and area-efficient dual-port SRAM.

2.6 Low-power circuit design techniques 91
into two virtually isolated sections to be accessed through the lower and upper

ports. When the two ports are accessing the same memory location, all isolation

nodes on the bit lines remain in the ON state.

92 CHAPTER 2 Fundamentals of CMOS design
One of the advantages of this dynamic memory partitioning technique that

uses isolation nodes is the shared bit lines for the two ports. The length of
active bit lines for both ports is shorter. Therefore, it reduces the silicon foot-

print of multi-port cache memory and improves bit-line response time.

Another advantage is the low-power dissipation, because the shared bit line

consumes no more power than the single-port configuration. In addition, leak-

age current remains the same as it is in a single-port configuration. This is

because no dedicated bit lines and access transistors are used for the second

port. By the use of local sense amplifiers and port multiplexing, this dynamic

memory partitioning technique can be applied to on-chip cache memory with
more than two ports. The same technique is applicable to DRAM. The disad-

vantage is that a port may need to pass through several isolation nodes to

access a memory cell. The channel resistance of the pass transistors imple-

menting the isolation nodes adds to the bit line response time. However, as

the technology advances down to the 32-nanometer node and below, transis-

tor channel resistance will become insignificant compared with wire resis-

tance of the bit lines.
2.7 CONCLUDING REMARKS

CMOS technology has been the backbone of the many advances that have taken

place in the past two decades, powering consumer appliances, automotives,

personal and scientific computing, as well as many fascinating science and

space explorations. Its advances have also made electronic design automation

(EDA) tools possible and readily accessible to engineers. It is ironic that CMOS
chips now power the computers on which engineers rely to design new chips.

This chapter is intended to stimulate the reader’s interest in the topic and pro-

vide background information for the reader to relate CMOS design to the EDA

techniques to be discussed in the subsequent chapters.

New CMOS circuit technologies are still being developed. Currently, major

improvements center on three fronts: transistors are used more efficiently to

provide more computing and functionality, increasing circuit speed, and con-

suming less power. This chapter has provided some examples in all three of
these improvements. For readers who wish to explore further on CMOS design,

refer to more recent textbooks cited in the chapter and IEEE publications such

as IEEE Journal of Solid-State Circuits (JSSC) and IEEE International Solid-

State Circuit Conference (ISSCC).
2.8 EXERCISES

The following transistor parameters are used in Exercises 2.1 to 2.13:

2.8 Exercises 93
For n-channel transistors:

mnCox ¼ 190 mA=V 2

Cox ¼ 3:4� 10�3 pF=ðmmÞ2
Vtn ¼ 0:7 V

rdsðOÞ ¼ 5000 LðmmÞ=IDðmAÞ � � � in active region

Cj ¼ 5� 10�4 pF=ðmmÞ2
Cj�sw ¼ 2:0� 10�4 pF=mm
CgsðoverlapÞ ¼ CgdðoverlapÞ ¼ 2:0� 10�4 pF=mm

For p-channel transistors:

mpCox ¼ 50 mA=V2

Cox ¼ 3:4� 10�3 pF=ðmmÞ2
Vtn ¼ �0:8 V

rdsðOÞ ¼ 6000 LðmmÞ=IDðmAÞ � � � in active region
Cj ¼ 6� 10�4 pF=ðmmÞ2
Cj�sw ¼ 2:5� 10�4 pF=mm
CgsðoverlapÞ ¼ CgdðoverlapÞ ¼ 2:0� 10�4 pF=mm
2.1. (Integrated-Circuit Technology) An n-channel (or p-channel) tran-

sistor in the active region is measured to have ID ¼ 20 mA when

VDS ¼ Veff. As VDS increases by 0.5 V, ID increases to 23 mA, estimate

the output impedance rds.
2.2. (Integrated-Circuit Technology) Estimate the capacitances Cgs, Cgd,

Cdb, and Csb for an n-channel transistor and a p-channel transistor with

W ¼ 10 mm and L ¼ 1.2 mm, assuming the junction areas As (at the
source) and Ad (at the drain) are 40 (mm)2 and the perimeter of each

(Ps and Pd) is 12mm.

2.3. (Integrated-Circuit Technology) Consider the circuit below, when

Vin is 1.2 V. Estimate Vout when the n-channel pass transistor

(W ¼ 2.4 mm and L ¼ 1.2 mm) is turned ON.

Vin Vout

CL=1pF

1.5V

2.4. (Integrated-Circuit Technology) The effects of technology scaling

are outlined in the following table. Now assume that all dimensions

are scaled by S, but the voltage and doping levels are only scaled

by
ffiffiffi
S
p

, and estimate the scaling factor for other parameters listed in

the Table 2.7.

2.5. (CMOS Logic) Design a CMOS circuit that implements F ¼ a �b ��c þ
�a � c � d. Choose transistor sizes to give equal rise and fall times at the

output.

Table 2.7 Effects of Scaling

Parameter Scaling Factor

Device dimensions (tox, L, W, junction depth) 1/S

Doping concentration S

Voltage 1/S

Current 1/S

Capacitance 1/S

Delay time 1/S

Power dissipation (per gate) 1/S2

Power-delay product 1/S3

94 CHAPTER 2 Fundamentals of CMOS design
2.6. (CMOS Logic) Design a circuit that converts 5.0 V TTL logic outputs

to a CMOS logic block that uses a 3.3 V power supply.

2.7. (CMOS Logic) Design a circuit that interfaces the outputs of a 1.3 V

CMOS logic block with the inputs of a 3.3 V CMOS block.

2.8. (CMOS Logic) Consider the circuit design in Exercise 2.5 and ana-
lyze and estimate the static power dissipation. Also, assuming the cir-

cuit block switches at 5 MHz, estimate the dynamic power dissipation.

2.9. (Advanced Integrated-Circuit Design) Design a 2-input differential

AND/NAND circuit block. Specify individual transistor sizes such that

the rise and fall times at each output are roughly the same. Assume

VDD ¼ 3.3 V and an external CL ¼ 1 pF is at each output.

2.10. (CMOS Physical Design) Construct a stick diagram of a transmission-

gate and inverter-based D latch. Draw the transistor schematic first.
2.11. (CMOS Physical Design) Construct a stick diagram of a single-bit

full-adder by first drawing its transistor schematic.

2.12. (CMOS Physical Design) Use a layout editor to design a physical lay-

out for the D latch shown in Figure 2.21.

2.13. (CMOS Physical Design) Use a layout editor to design a physical lay-

out for the single-bit carry circuit shown in Figure 2.23.

2.14. (CMOS Physical Design) Analyze the circuit block and layout design

in Figure 2.51. Identify further improvements. Improve the circuit
block by use of the techniques discussed in this chapter. Use an

EDA layout editor to modify the original layout design by use of the

same n-well process.

2.15. (Low-Power Design) List the advantages and disadvantages of

power-gating versus clock-gating.

2.16. (Low-Power Design) Describe the advantages and disadvantages of

substrate biasing.

References 95
ACKNOWLEDGMENTS

We thank Wan-Ping Lee, Guang-Wan Liao, and Professor Yao-Wen Chang of National Taiwan

University for helping with generating the symbolic layouts, and Andrew Wu, Meng-Kai Hsu, and

Professor James C.-M. Li for reviewing the manuscript. We also thank Professor Eric MacDonald of

University of Texas at El Paso and Professor Martin Margala of University of Massachusetts at Lowell

for their constructive comments and suggestions.
REFERENCES

R2.0 Books

[Karim 2007] M. Karim and X. Chen, Digital Design: Basic Concepts and Principles, CRC Press,

New York, 2007.

[Martin 2000] K. Martin, Digital Integrated Circuit Design, Oxford University Press, New York,

2000.

[Rabaey 2003] J. M. Rabaey, A. Chandrakasan, and B. Nikolić, Digital Integrated Circuits: A Design

Perspective, Second Edition, Prentice-Hall, Englewood Cliffs, NJ, 2003.

[Wakerly 2001] J. F. Wakerly, Digital Design: Principles and Practices, Third Edition, Prentice-Hall,

Englewood Cliffs, NJ, 2001.

[Weste 1994] N. H. E. Weste and K. Eshraghian, Principles of CMOS Design—A System Perspective,

Second Edition, Addison-Wesley, Reading, MA, 1994.

R2.6 Low-Power Design

[ARM 2007] ARM Ltd., 1176JZ(F)-S Documentation, http://www.arm.com/products/CPUs/

ARM1176.html, 2007.

[Bajwa 2006] H. Bajwa and X. Chen, Area-efficient dual-port memory architecture for multi-core pro-

cessors, in Proc. Junior Scientists Conf., pp. 49–50, April 2006.

[Bajwa 2007] H. Bajwa and X. Chen, Low-power high-performance and dynamically reconfiguredmulti-

port cache memory architecture, in Proc. IEEE Int. Conf. on Electrical Engineering, April, 2007.

[Chen 2007] X. Chen and H. Bajwa, Energy-efficient dual-port cache architecture with improved

performances, Institution of Engineering and Technology. J. of Electronics Letters, 43(1),

pp. 12–13, January, 2007.

[Flautner 2001] K. Flautner, S. Reinhardt, and T. Mudge, Automatic performance setting for dynamic

voltage scaling, in Proc. Int. Conf. on Mobile Computing and Networking, pp. 260–271, May 2001.

[Intel 2003] Intel Corp., Intel Xscale Core Developer’s Manual, http://developer.intel.com/design/

intelxscale/, 2003.

[Karandikar 1998] A. Karandikar and K. K. Parhi, Low power SRAM design using hierarchical

divided bitline approach, in Proc. Int. Conf. Computer Design, pp. 82–88, October 1998.

[Mutoh 1993] S. Mutoh, T. Douseki, Y. Matsuya, T. Aoki, and J. Yamada, 1V high-speed digital circuits

technologywith0.5mmmulti-thresholdCMOS, inProc. IEEE Int.ASICConf., pp. 186–189, September

1993.

[Sakata 1993] T. Sakata, M. Horiguchi, and K. Itoh, Subthreshold-current reduction circuits for multi-

gigabit DRAM’s, in Proc. Symp. on VLSI Circuits, pp. 45–46, May 1993.

[Seta 1995] K. Seta, H. Hara, T. Kuroda, M. Kakumu, and T. Sakurai, 50% active-power saving with-

out speed degradation using standby power reduction (SPR) circuit, Proc. Int. Solid-State

Circuits Conf., pp. 318–319, February 1995.

[Transmeta 2002] Transmeta Corp., Crusoe Processor Documentation, http://www.transmeta.com,

2002.

[Yong 2005] B. D. Yong and L.-S. Kim, A low power SRAM using hierarchical bit line and local sense

amplifier, IEEE J. Solid-State Circuits, 40(6), pp. 1366–1376, June 2005.

This page intentionally left blank

CHAPTER
3
Design for testability
Laung-Terng (L.-T.) Wang
SynTest Technologies, Inc., Sunnyvale, California
IS CHAPTER
ABOUT TH

Design for testability (DFT) has become an essential part for designing very-
large-scale integration (VLSI) circuits. The most popular DFT techniques in

use today for testing the digital portion of the VLSI circuits include scan and

scan-based logic built-in self-test (BIST). Both techniques have proved to

be quite effective in producing testable VLSI designs. In addition, test com-
pression, a supplemental DFT technique for scan, is growing in importance

for further reduction in test data volume and test application time during

manufacturing test.

To provide readers with an in-depth understanding of the most recent DFT
advances in scan, logic BIST, and test compression, this chapter covers a num-

ber of fundamental DFT techniques to facilitate testing of modern digital cir-

cuits. These techniques are required to improve the product quality and

reduce the defect level and test cost of a digital circuit, while at the same time

simplifying the test, debug, and diagnosis tasks.

In this chapter, we first cover the basic DFT concepts and methods for

performing testability analysis. Next, scan design, the most widely used

structured DFT method, is discussed, including popular scan cell designs, scan
architectures, and at-speed clocking schemes. After a brief introduction to the

basic concept of logic BIST, we then discuss BIST pattern generation and output

response analysis schemes along with a number of logic BIST architectures for

in-circuit self-test. Finally, we present a number of test compression circuit

structures for test stimuli compression and test response compaction. The chap-

ter also includes a description of logic BIST and test compression architectures

currently practiced in industry.
97

98 CHAPTER 3 Design for testability
3.1 INTRODUCTION

With advances in semiconductor manufacturing technology, integrated cir-
cuits (ICs) can now contain tens to hundreds of millions of transistors running

in the gigahertz range. The production and use of these integrated circuits has

run into a variety of test challenges during wafer probe, wafer sort, preship

screening, incoming test of chips and boards, test of assembled boards, system
test, periodic maintenance, repair test, etc. During the early stages of IC pro-

duction history, design and test were regarded as separate functions, performed

by separate and unrelated groups of engineers. During these early years, a

design engineer’s job was to implement the required functionality on the basis

of design specifications, without giving any thought to how the manufactured

device was to be tested. Once the functionality was implemented, the design

information was transferred to test engineers. A test engineer’s job was to

determine how to best test each manufactured device within a reasonable
amount of time and to screen out the parts that may contain manufacturing

defects while shipping all defect-free devices to customers. The final quality

of the test was determined by keeping track of the number of defective parts

shipped to the customers on the basis of customer returns. This product qual-

ity, measured in terms of defective parts per million (DPM) shipped, was a

final test score for quantifying the effectiveness of the developed test.

Although this approach worked well for small-scale integrated circuits that

mainly consisted of combinational logic or simple finite-state machines, it was
unable to keep up with the circuit complexity as designs moved from small-
scale integration (SSI) to very large-scale integration (VLSI). A common

approach to testing these VLSI devices during the 1980s relied heavily on fault

simulation to measure the fault coverage of the supplied functional patterns.

Functional patterns were developed to navigate through the long sequential

depths of a design, hoping to exercise all internal states and to detect all possi-

ble manufacturing defects. A fault simulation or fault-grading tool was used

to quantify the effectiveness of the functional patterns. If the supplied func-
tional patterns did not reach the target fault coverage goal, additional functional

patterns were added. Unfortunately, this approach typically failed to improve

the circuit’s fault coverage beyond 80%, and the quality of the shipped products

suffered.

Gradually, it became clear that designing devices without paying much atten-

tion to test resulted in increased test cost and decreased test quality. Some

designs, which were otherwise best-in-class with regard to functionality and per-

formance, failed commercially because of prohibitive test costs or poor product
quality. These problems have since led to the development and deployment of

DFT engineering in the industry.

The first challenge facing DFT engineers was to find simpler ways of exercis-

ing all internal states of a design and reaching the target fault coverage goal.

3.1 Introduction 99
Various testability measures and ad hoc testability enhancement methods

were proposed and used in the 1970s and 1980s to serve this purpose. These
methods were mainly used to aid in the circuit’s testability or to increase the

circuit’s controllability and observability [McCluskey 1986; Abramovici

1994]. Although attempts to use these methods have substantially improved

the testability of a design and eased sequential automatic test pattern gener-
ation (ATPG), their end results at reaching the target fault coverage goal were

far from satisfactory; it was still quite difficult to reach more than 90% fault cov-

erage for large designs. This was mostly because even with these testability aids,

deriving functional patterns by hand or generating test patterns for a sequential
circuit is a much more difficult problem than generating test patterns for a com-

binational circuit [Fujiwara 1982; Bushnell 2000; Jha 2003].

Today, the semiconductor industry relies heavily on two techniques for test-

ing digital circuits: scan and logic built-in self-test (BIST) [Abramovici 1994;

McCluskey 1986]. Scan converts a digital sequential circuit into a scan design

and then uses ATPG software [Bushnell 2000; Jha 2003; Wang 2006a] to detect

faults that are caused by manufacturing defects (physical failures) and manifest

themselves as errors, whereas logic BIST requires the use of a portion of the
VLSI circuit to test itself on-chip, on-board, or in-system. To keep up with the

design and test challenges [SIA 2005, 2006], more advanced design-for-test-
ability (DFT) techniques, such as test compression, at-speed delay fault testing,

and power-aware test generation, have been developed over the past few years

to further address the test cost, delay fault, and test power issues [Gizopoulos

2006; Wang 2006a, 2007a].

Scan design is implemented by first replacing all selected storage elements

of the digital circuit with scan cells and then connecting them into one or
more shift registers, called scan chains, to provide them with external access.

With external access, one can now control and observe the internal states of the

digital circuit by simply shifting test stimuli into and test responses out of the

shift registers during scan testing. The DFT technique has since proved to

be quite effective in improving the product quality, testability, and diagnosability

of scan designs [Crouch 1999; Bushnell 2000; Jha 2003; Gizopoulos 2006;

Wang 2006a, 2007a]. Although scan has offered many benefits during manufac-

turing test, it is becoming inefficient to test deep submicron or nanometer VLSI
designs. The reasons are mostly because (1) traditional test schemes that use

ATPG software to target single faults have become quite expensive and (2) suf-

ficiently high fault coverage for these deep submicron or nanometer VLSI

designs is hard to sustain from the chip level to the board and system levels.

To alleviate these test problems, the scan approach is typically combined

with logic BIST that incorporates BIST features into the scan design at the

design stage [Bushnell 2000; Mourad 2000; Stroud 2002; Jha 2003]. With logic

BIST, circuits that generate test patterns and analyze the output responses of
the functional circuitry are embedded in the chip or elsewhere on the same

board where the chip resides to test the digital logic circuit itself. Typically,

100 CHAPTER 3 Design for testability
pseudo-random patterns are applied to the circuit under test (CUT), while

their test responses are compacted in a multiple-input signature register
(MISR) [Bardell 1987; Rajski 1998; Nadeau-Dostie 2000; Stroud 2002; Jha

2003; Wang 2006a]. Logic BIST is crucial in many applications, in particular,

for safety-critical and mission-critical applications. These applications, com-

monly found in the aerospace/defense, automotive, banking, computer, health-

care, networking, and telecommunications industries, require on-chip, on-

board, or in-system self-test to improve the reliability of the entire system,

as well as the ability to perform in-field diagnosis.

Since the early 2000s, test compression, a supplemental DFT technique to
scan, is gaining industry acceptance to further reduce test data volume and test

application time [Touba 2006; Wang 2006a]. Test compression involves

compressing the amount of test data (both test stimulus and test response)

that must be stored on automatic test equipment (ATE) for testing with

a deterministic ATPG-generated test set. This is done by use of code-based
schemes or adding additional on-chip hardware before the scan chains to decom-

press the test stimulus coming from the ATE and after the scan chains to compress

the test response going to the ATE. This differs from logic BIST in that the test
stimuli that are applied to the CUT are a deterministic (ATPG-generated) test set

rather than pseudo-random patterns. Typically, test compression can provide

10� to 100� or evenmore reduction in test application time and test data volume

and hence can drastically save scan test cost.
3.2 TESTABILITY ANALYSIS

Testability is a relative measure of the effort or cost of testing a logic circuit. In

general, it is based on the assumption that only primary inputs and primary out-
puts can be directly controlled and observed, respectively. Testability reflects

the effort required to perform the main test operations of controlling internal

signals from primary inputs and observing internal signals at primary outputs.

Testability analysis refers to the process of assessing the testability of a logic

circuit by calculating a set of numeric measures for each signal in the circuit.

One important application of testability analysis is to assist in the decision-

making process during test generation. For example, if during test generation, it

is determined that the output of a certain AND gate must be set to 0, testability
analysis can help decide which AND gate input is the easiest to set to 0. The con-

ventional application is to identify areas of poor testability to guide testability

enhancement, such as test point insertion, for improving the testability of the

design. For this purpose, testability analysis is performed at various design stages

so that testability problems can be identified and fixed as early as possible.

Since the 1970s, many testability analysis techniques have been proposed

[Rutman 1972; Stephenson 1976; Breuer 1978; Grason 1979]. The Sandia

3.2 Testability analysis 101
Controllability/Observability Analysis Program (SCOAP) [Goldstein

1979, 1980] was the first topology-based program that populated testability
analysis applications. Enhancements based on SCOAP have also been devel-

oped and used to aid in test point selection [Wang 1984, 1985]. These meth-

ods perform testability analysis by calculating the controllability and

observability of each signal line, where controllability reflects the difficulty

of setting a signal line to a required logic value from primary inputs, and

observability reflects the difficulty of propagating the logic value of the signal

line to primary outputs.

Traditionally, gate-level topologic information of a circuit is used for testabil-
ity analysis. Depending on a target application, deterministic and/or random

testability measures are calculated. In general, topology-based testability
analysis, such as SCOAP or probability-based testability analysis, is computa-

tionally efficient but can produce inaccurate results for circuits containing many

reconvergent fanouts. Simulation-based testability analysis, on the other

hand, can generate more accurate estimates by simulating the circuit behavior

with deterministic, random, or pseudo-random test patterns, but may require

a long simulation time.
In this section, we first describe the method for performing SCOAP testabil-

ity analysis. Then, probability-based testability analysis and simulation-based test-

ability analysis are discussed.
3.2.1 SCOAP testability analysis
The SCOAP testability analysis program [Goldstein 1979, 1980] calculates six

numeric values for each signal s in a logic circuit:
n CC0(s): Combinational 0-controllability of s

n CC1(s): Combinational 1-controllability of s

n CO(s): Combinational observability of s
n SC0(s): Sequential 0-controllability of s

n SC1(s): Sequential 1-controllability of s

n SO(s): Sequential observability of s
Roughly speaking, the three combinational testability measures, CC0, CC1, and
CO, are related to the number of signals that need to be manipulated to control

or observe s from primary inputs or at primary outputs, whereas the three

sequential testability measures, SC0, SC1, and SO, are related to the number

of clock cycles required to control or observe s from primary inputs or at pri-

mary outputs [Bushnell 2000]. The values of controllability measures range

between 1 and infinite, whereas the values of observability measures range

between 0 and infinite. As a boundary condition, the CC0 and CC1 values of

a primary input are set to 1, the SC0 and SC1 values of a primary input are
set to 0, and the CO and SO values of a primary output are set to 0.

102 CHAPTER 3 Design for testability
3.2.1.1 Combinational controllability and observability calculation

The first step in SCOAP is to calculate the combinational controllability mea-

sures of all signals. This calculation is performed from primary inputs toward

primary outputs in a breadth-first manner. More specifically, the circuit is

leveled from primary inputs to primary outputs to assign a level order for

each gate. The output controllability for each gate is then scheduled in level

order after the controllability measures of all of its inputs have been calcu-

lated. The rules for combinational controllability calculation are summarized

in Table 3.1, where a 1 is added to each rule to indicate that a signal passes

through one more level of logic gate. From this table, we can see that CC0

(s) � 1 and CC1(s) � 1 for any signal s. A larger CC0(s) or CC1(s) value implies

that it is more difficult to control s to 0 or 1 from primary inputs.

Once the combinational controllability measures of all signals are calculated,

the combinational observability of each signal can be calculated. This calcula-
tion is also performed in a breadth-first manner while moving from primary out-

puts toward primary inputs. The rules for combinational observability

calculation are summarized in Table 3.2, where a 1 is added to each rule to indi-

cate that a signal passes through one more level of logic. From this table, we can

see that CO(s) � 0 for any signal s. A larger CO(s) value implies that it is more

difficult to observe s at any primary output.
Table 3.1 SCOAP Combinational Controllability Calculation Rules

0-Controllability (Primary
Input, Output, Branch)

1-Controllability (Primary
Input, Output, Branch)

Primary Input 1 1

AND min {input 0-controllabilities} þ 1 S (input 1-controllabilities) þ 1

OR S (input 0-controllabilities) þ 1 min {input 1-controllability} þ 1

NOT Input 1-controllability þ 1 Input 0-controllability þ 1

NAND S (input 1-controllabilities) þ 1 min {input 0-controllability} þ 1

NOR min {input 1-controllability) þ 1 S (input 0-controllabilities) þ 1

BUFFER Input 0-controllability þ 1 Input 1-controllability þ 1

XOR min {CC1(a) þ CC1(b),
CC0(a) þ CC0(b)} þ 1

min {CC1(a) þ CC0(b),
CC0(a) þ CC1(b)} þ 1

XNOR min {CC1(a) þ CC0(b),
CC0(a) þ CC1(b)} þ 1

min {CC1(a) þ CC1(b),
CC0(a) þ CC0(b)} þ 1

Branch Stem 0-controllability Stem 1-controllability

a, b: inputs of an XOR or XNOR gate

Table 3.2 SCOAP Combinational Observability Calculation Rules

Observability (Primary Output, Input, Stem)

Primary Output 0

AND/NAND S (output observability, 1-controllabilities of other inputs) þ 1

OR/NOR S (output observability, 0-controllabilities of other inputs) þ 1

NOT/BUFFER Output observability þ 1

XOR/XNOR a: S (output observability, min {CC0(b), CC1(b)}) þ 1
b: S (output observability, min {CC0(a), CC1(a)}) þ 1

Stem min {branch observabilities}

a, b: inputs of an XOR or XNOR gate

2/3/3

2/5/3
5/4/0

5/5/0
1/1/4A

B

Cin

Sum

Cout

3/3/2

1/1/4

1/1/4

1/1/4
1/1/4

1/1/5
1/1/5

3/3/2
1/1/4

3/3/5
1/1/7

FIGURE 3.1

SCOAP full-adder example.

3.2 Testability analysis 103
Figure 3.1 shows the combinational controllability and observability mea-

sures of a full-adder. The three-value tuple v1/v2/v3 on each signal line repre-

sents the signal’s 0-controllability (v1), 1-controllability (v2), and observability

(v3). The boundary condition is set by initializing the C0 and C1 values of the

primary inputs A, B, and Cin to 1, and the CO values of the primary outputs

Sum and Cout to 0. By applying the rules given in Tables 3.1 and 3.2 and starting
with the given boundary condition, one can first calculate all combinational

controllability measures forward and then calculate all combinational obser-

vability measures backward in level order.

3.2.1.2 Sequential controllability and observability calculation

Sequential controllability and observability measures are calculated in a similar

manner as combinational measures, except that a 1 is not added as we move

from one level of logic to another, but rather a 1 is added when a signal passes

through a storage element. The difference is illustrated in the sequential circuit

example shown in Figure 3.2, which consists of an AND gate and a positive

CK

d
q

r

a
b

Reset

D Q

FIGURE 3.2

SCOAP sequential circuit example.

104 CHAPTER 3 Design for testability
edge–triggered D flip-flop. The D flip-flop includes an active-high asynchronous

reset pin r. SCOAP measures of a D flip-flop with a synchronous, as opposed to

asynchronous, reset are shown in [Bushnell 2000].
First, we calculate the combinational and sequential controllability measures

of all signals. To control signal d to 0, either input a or b must be set to 0. To

control d to 1, both inputs a and b must be set to 1. Hence, the combinational

and sequential controllability measures of signal d are:

CC0(d) ¼min {CC0(a), CC0(b)} þ 1
SC0(d) ¼min {SC0(a), SC0(b)}

CC1(d) ¼ CC1(a) þ CC1(b) þ 1

SC1(d) ¼ SC1(a) þ SC1(b)

To control the data output q of the D flip-flop to 0, the data input d and the

reset signal r can be set to 0, while applying a rising clock edge (a 0-to-1 transi-

tion) to the clock CK. Alternately, this can be accomplished by setting r to 1
while holding CK at 0, without applying a clock pulse. Because a clock pulse

is not applied to CK, a 1 is not added to the sequential controllability calculation

in the second case. Therefore, the combinational and sequential 0-controllability

measures of q are:

CC0(q) ¼min{CC0(d) þ CC0(CK) þ CC1(CK) þ CC0(r), CC1(r) þ CC0(CK)}

SC0(q) ¼min{SC0(d) þ SC0(CK) þ SC1(CK) þ SC0(r) þ 1, SC1(r) þ SC0(CK)}

Here, CC0(q) measures how many signals in the circuit must be set to con-

trol q to 0, whereas SC0(q) measures how many flip-flops in the circuit must

be clocked to set q to 0. To control the data output q of the D flip-flop to 1,

the only way is to set the data input d to 1 and the reset signal r to 0, while

applying a rising clock edge to the clock CK. Hence,

CC1(q) ¼ CC1(d) þ CC0(CK) þ CC1(CK) þ CC0(r)

SC1(q) ¼ SC1(d) þ SC0(CK) þ SC1(CK) þ SC0(r) þ 1

Next, we calculate the combinational and sequential observability measures

of all signals. The data input d can be observed at q by holding the reset signal
r at 0 and applying a rising clock edge to CK. Hence,

CO(d) ¼ CO(q) þ CC0(CK) þ CC1(CK) þ CC0(r)

SO(d) ¼ SO(q) þ SC0(CK) þ SC1(CK) þ SC0(r) þ 1

3.2 Testability analysis 105
The asynchronous reset signal r can be observed by first setting q to 1, and

then holding CK at the inactive state 0. Again, a 1 is not added to the sequential
controllability calculation because a clock pulse is not applied to CK:

CO(r) ¼ CO(q) þ CC1(q) þ CC0(CK)

SO(r) ¼ SO(q) þ SC1(q) þ SC0(CK)

There are two ways to indirectly observe the clock signal CK at q: (1) set q

to 1, r to 0, d to 0, and apply a rising clock edge at CK, or (2) set both q and r

to 0, d to 1, and apply a rising clock edge at CK. Hence,

CO(CK) ¼ CO(q) þ CC0(CK) þ CC1(CK) þ CC0(r) þ
min{CC0(d) þ CC1(q), CC1(d) þ CC0(q)}

SO(CK) ¼ SO(q) þ SC0(CK) þ SC1(CK) þ SC0(r) þ
min{SC0(d) þ SC1(q), SC1(d) þ SC0(q)} þ 1

To observe an input of the AND gate at d requires setting the other input

to 1. Therefore, the combinational and sequential observability measures for

both inputs a and b are:

CO(a) ¼ CO(d) þ CC1(b) þ 1

SO(a) ¼ SO(d) þ SC1(b)

CO(b) ¼ CO(d) þ CC1(a) þ 1

SO(b) ¼ SO(d) þ SC1(a)

It is important to note that controllability and observability measures calcu-
lated with SCOAP are heuristics, and only approximate the actual testability of

a logic circuit. When scan design is used, testability analysis can assume that

all scan cells are directly controllable and observable. It was also shown in

[Agrawal 1982] that SCOAP may overestimate testability measures for circuits

containing many reconvergent fanouts. However, with the capability of

performing testability analysis in an O(n) computational complexity for n sig-

nals in a circuit, SCOAP provides a quick estimate of the circuit’s testability that

can be used to guide testability enhancement and test generation.
3.2.2 Probability-based testability analysis
Topology-based testability analysis techniques, such as SCOAP, have been found

to be extremely helpful in supporting test generation, which is a main topic of

Chapter 14. These testability measures are able to analyze the deterministic
testability of the logic circuit in advance and during the ATPG search process

[Ivanov 1988]. On the other hand, in logic built-in self-test (BIST), which is the
main topic of Section 3.4, random or pseudo-random test patterns are generated

without specifically performing deterministic test pattern generation operations

on any signal line. In this case, topology-based testability measures that use sig-

nal probability to analyze the random testability of the circuit can be used

[Parker 1975; Savir 1984; Jain 1985; Seth 1985]. These measures are often

referred to as probability-based testability measures or probability-based

testability analysis techniques.

106 CHAPTER 3 Design for testability
For example, given a random input pattern, one can calculate three mea-

sures for each signal s in a combinational circuit as follows:
Tab

Prim
Inp

AN

OR

NO

NA

NO

BU

XO

XNO

Bra

a, b
n C0(s): Probability-based 0-controllability of s

n C1(s): Probability-based 1-controllability of s

n O(s): Probability-based observability of s
Here, C0(s) and C1(s) are the probability of controlling signal s to 0 and 1 from

primary inputs, respectively. O(s) is the probability of observing signal s at pri-

mary outputs. These three probabilities range between 0 and 1. As a boundary

condition, the C0 and C1 probabilities of a primary input are typically set to 0.5,
and the O probability of a primary output is set to 1. For each signal s in the

circuit, C0(s) þ C1(s) ¼ 1.

Many methods have been developed to calculate the probability-based test-

ability measures. A simple method is given in the following, whose basic proce-

dure is similar to the one used for calculating combinational testability measures

in SCOAP, except that different calculation rules are used. The rules for proba-

bility-based controllability and observability calculation are summarized in

Tables 3.3 and 3.4, respectively. In Table 3.3, p0 is the initial 0-controllability
chosen for a primary input, where 0 < p0 < 1.

Compared with SCOAP testability measures, where non-negative integers are

used, probability-based testability measures range between 0 and 1. The smaller
le 3.3 Probability-Based Controllability Calculation Rules

0-Controllability (Primary Input,
Output, Branch)

1-Controllability (Primary
Input, Output, Branch)

ary
ut

p0 p1 ¼ 1 � p0

D 1 � (output 1-controllability) P(input 1-controllabilities)

P(input 0-controllabilities) 1 � (output 0-controllability)

T Input 1-controllability Input 0-controllability

ND P(input 1-controllabilities) 1 � (output 0-controllability)

R 1 � (output 1-controllability) P(input 0-controllabilities)

FFER Input 0-controllability Input 1-controllability

R 1 � 1-controllability S (C1(a) � C0(b),C0(a) � C1(b))

R 1 � 1-controllability S (C0(a) � C0(b),C1(a) � C1(b))

nch Stem 0-controllability Stem 1-controllability

: inputs of an XOR or XNOR gate

Table 3.4 Probability-Based Observability Calculation Rules

Observability (Primary Output, Input, Stem)

Primary output 1

AND/NAND P (output observability, 1-controllabilities of other inputs)

OR/NOR P (output observability, 0-controllabilities of other inputs)

NOT/BUFFER Output observability

XOR/XNOR a: P (output observability, max {0-controllability of b,
1-controllability of b})

b: P (output observability, max {0-controllability of a,
1-controllability of a})

Stem max {branch observabilities}

1/1/3
1/1/3
1/1/3

(a) (b)

2/4/0
0.5/0.5/0.25
0.5/0.5/0.25
0.5/0.5/0.25

0.875/0.125/1

FIGURE 3.3

Comparison of SCOAP and probability-based testability measures: (a) SCOAP combinational

measures. (b) Probability-based measures.

3.2 Testability analysis 107
a probability-based testability measure of a signal, the more difficult it is to con-

trol or observe the signal. Figure 3.3 illustrates the difference between SCOAP

testability measures and probability-based testability measures of a 3-input

AND gate. The three-value tuple v1/v2/v3 of each signal line represents the sig-

nal’s 0-controllability (v1), 1-controllability (v2), and observability (v3).
Signals with poor probability-based testability measures tend to be difficult

to test with random or pseudo-random test patterns. The faults on these signal

lines are often referred to as random pattern resistant (RP-resistant) [Savir
1984]. That is, either the probability of these signals randomly receiving a

0 or 1 from primary inputs, or the probability of observing these signals at pri-

mary outputs is low, assuming that all primary inputs have the equal probability

of being set to 0 or 1.

The existence of such RP-resistant faults is the main reason why fault cover-
age that uses random or pseudo-random test patterns is low compared with the

use of deterministic test patterns. In applications such as logic BIST, to solve

this low fault coverage problem, test points are often inserted in the circuit to

enhance the circuit’s random testability. A few commonly used test point inser-

tion techniques are discussed in [Wang 2006a].

108 CHAPTER 3 Design for testability
3.2.3 Simulation-based testability analysis
In the calculation of SCOAP and probability-based testability measures as described
previously, only the topologic information of a logic circuit is explicitly explored.

These topology-basedmethods are static, in the sense that they do not use input test

patterns for testability analysis. Their controllability and observability measures can

be calculated in linear time, thus making them very attractive for applications that

need fast testability analysis, such as test generation and logic BIST. However, the

efficiency of these methods is achieved at the cost of reduced accuracy, especially

for circuits that contain many reconvergent fanouts [Agrawal 1982].

As an alternative or supplement to static or topology-based testability analysis,
dynamic or simulation-based methods that use input test patterns for testability

analysis or testability enhancement can be performed through statistical sam-
pling. Logic simulation and fault simulation techniques can be used [Bushnell

2000; Wang 2006a].

In statistical sampling, a sample set of input test patterns is selected, which

is either generated randomly or derived from a given pattern set, and logic sim-

ulation is conducted to collect the responses of all or part of signal lines of inter-

est. The commonly collected responses are the number of occurrences of 0’s,
1’s, 0-to-1 transitions, and 1-to-0 transitions, which are then used to profile sta-

tistically the testability of a logic circuit. These data are then analyzed to find

locations of poor testability. If a signal line exhibits only a few transitions or

no transitions for the sample input patterns, it might be an indication that the

signal likely has poor controllability.

In addition to logic simulation, fault simulation has also been used to enhance

the testability of a logic circuit with random or pseudo-random test patterns. For

instance, a random resistant fault analysis (RRFA) method has been success-
fully applied to a high-performance microprocessor to improve the circuit’s ran-

dom testability in logic BIST [Rizzolo 2001]. This method is based on statistical

data collected during fault simulation for a small number of random test patterns.

Controllability and observability measures of each signal in the circuit are calcu-

lated by use of the probability models developed in the statistical fault analy-
sis (STAFAN) algorithm [Jain 1985]. (STAFAN is the first method able to give

reasonably accurate estimates of fault coverage in combinational circuits purely

by use of input test patterns and without running fault simulation.) With these
data, RRFA identifies signals that are difficult to control and/or observe, as well

as signals that are statistically correlated. On the basis of the analysis results, RRFA

then recommends test points to be added to the circuit to improve the circuit’s

random testability.

Because it can take a long simulation time to run through all input test pat-

terns, these simulation-based methods are, in general, used to guide testability

enhancement in test generation or logic BIST, when it is required to meet a very

high fault coverage goal. This approach is crucial for life-critical and mission-
critical applications, such as in the healthcare and defense/aerospace industries.

3.3 Scan design 109
3.3 SCAN DESIGN

Scan design is currently the most widely used structured DFT approach. It is

implemented by connecting selected storage elements of a design into one or

more shift registers, called scan chains, to provide them with external access.

Scan design accomplishes this task by replacing all selected storage elements with

scan cells, each having one additional scan input (SI) port and one shared/addi-
tional scan output (SO) port. By connecting the SO port of one scan cell to the SI

port of the next scan cell, one or more scan chains are created.

The scan-inserted design, called scan design, is now operated in three

modes: normal mode, shift mode, and capture mode. Circuit operations

with associated clock cycles conducted in these three modes are referred to

as normal operation, shift operation, and capture operation, respectively.

In normal mode, all test signals are turned off, and the scan design operates

in the original functional configuration. In both shift and capture modes, a test
mode signal TM is often used to turn on all test-related fixes in compliance with

scan design rules. A set of scan design rules that can be found in [Cheung

1997; Wang 2006a] are necessary to simplify the test, debug, and diagnose

tasks, improve fault coverage, and guarantee the safe operation of the device

under test. These circuit modes and operations are distinguished by use of addi-

tional test signals or test clocks. Fundamental scan architectures and at-speed

clocking schemes are described in the following subsections.
3.3.1 Scan architectures
In this subsection, we first describe a few fundamental scan architectures.

These fundamental scan architectures include (1) muxed-D scan design, in

which storage elements are converted into muxed-D scan cells, (2) clocked-scan

design, in which storage elements are converted into clocked-scan cells, and (3)

LSSD scan design, in which storage elements are converted into level-sensitive

scan design (LSSD) shift register latches (SRLs).

3.3.1.1 Muxed-D scan design

Figure 3.4 shows a sequential circuit example with three D flip-flops. The
corresponding muxed-D full-scan circuit is shown in Figure 3.5. An edge-trig-

gered muxed-D scan cell design is shown in Figure 3.5a. This scan cell is com-

posed of a D flip-flop and a multiplexer. The multiplexer uses a scan enable
(SE) input to select between the data input (DI) and the scan input (SI).

In normal/capture mode, SE is set to 0. The value present at the data input

DI is captured into the internal D flip-flop when a rising clock edge is applied.

In shift mode, SE is set to 1. The scan input SI is now used to shift in new

data to the D flip-flop, while the content of the D flip-flop is being shifted out.
Sample operation waveforms are shown in Figure 3.5b. The three D flip-flops,

D Q D Q D Q

FF1

CK

X2 Combinational logic
X3

X1

Y2

Y1

FF2 FF3

FIGURE 3.4

Sequential circuit example.

CK

D Q
DI

SI

0

1

SE

Q/SO

(a)

CK

SE

DI

SI

Q/SO

D1 D2 D3 D4

T4

D1 D3 D4D1 D2

T1 T2 T3

D1 T3

(b)

FIGURE 3.5

Edge-triggered muxed-D scan cell design and operation: (a) Muxed-D scan cell. (b) Sample

waveforms.

110 CHAPTER 3 Design for testability
FF1, FF2, and FF3, shown in Figure 3.4, are replaced with three muxed-D scan

cells, SFF1, SFF2, and SFF3, respectively, shown in Figure 3.6.

In Figure 3.6, the data input DI of each scan cell is connected to the output

of the combinational logic as in the original circuit. To form a scan chain, the

scan inputs SI of SFF2 and SFF3 are connected to the outputs Q of the previous

scan cells, SFF1 and SFF2, respectively. In addition, the scan input SI of the
first scan cell SFF1 is connected to the primary input SI, and the output Q of

the last scan cell SFF3 is connected to the primary output SO. Hence, in shift

mode, SE is set to 1, and the scan cells operate as a single scan chain, which

allows us to shift in any combination of logic values into the scan cells.

X2
Combinational logicX3

X1

Y2

Y1
PI

PPI

PO

PPO

Q

SFF1 SFF2
DI
SI
SE

SE

Q

SFF3
DI
SI
SE

CK

SI SO
DI
SI
SE

Q

FIGURE 3.6

Muxed-D scan design.

3.3 Scan design 111
In capture mode, SE is set to 0, and the scan cells are used to capture the test

response from the combinational logic when a clock is applied.

In general, combinational logic in a full-scan circuit has two types of inputs:

primary inputs (PIs) and pseudo primary inputs (PPIs). Primary inputs

refer to the external inputs to the circuit, whereas pseudo primary inputs refer

to the scan cell outputs. Both PIs and PPIs can be set to any required logic

values. The only difference is that PIs are set directly in parallel from the exter-

nal inputs, whereas PPIs are set serially through scan chain inputs. Similarly, the
combinational logic in a full-scan circuit has two types of outputs: primary
outputs (POs) and pseudo primary outputs (PPOs). Primary outputs refer

to the external outputs of the circuit, whereas pseudo primary outputs refer to

the scan cell inputs. Both POs and PPOs can be observed. The only difference

is that POs are observed directly in parallel from the external outputs, whereas

PPOs are observed serially through scan chain outputs.

3.3.1.2 Clocked-scan design

An edge-triggered clocked-scan cell can also be used to replace a D flip-flop in

a scan design [McCluskey 1986]. Similar to a muxed-D scan cell, a clocked-scan

cell also has a data input DI and a scan input SI; however, in the clocked-scan
cell, input selection is conducted with two independent clocks, data clock

DCK and shift clock SCK, as shown in Figure 3.7a.

In normal/capture mode, the data clock DCK is used to capture the contents

present at the data input DI into the clocked-scan cell. In shift mode, the shift

clock SCK is used to shift in new data from the scan input SI into the

clocked-scan cell, while the content of the clocked-scan cell is being shifted

out. Sample operation waveforms are shown in Figure 3.7b.

The major advantage of the use of a clocked-scan cell is that it results in no
performance degradation on the data input. A major disadvantage, however, is

that it requires additional shift clock routing.

SCK

Q/SO
DI

SI

DCK

(a)

DCK

DI

SI

Q/SO

T1 T2 T3 T4

T3

SCK

D1 D2 D3 D4

D1

(b)

FIGURE 3.7

Clock-scan cell design and operation: (a) Clocked-scan cell. (b) Sample waveforms.

X2
Combinational logicX3

X1

Y2

Y1
PI

PPI

PO

PPO

SFF1 SFF2

DCK
SCK

SI SO
DI

QSI
DCK SCK

DI
QSI

DCK SCK

DI
QSI

DCK SCK

SFF3

FIGURE 3.8

Clocked-scan design.

112 CHAPTER 3 Design for testability
Figure 3.8 shows a clocked-scan design of the sequential circuit given in Fig-

ure 3.4. This clocked-scan design is tested with shift and capture operations,

similar to a muxed-D scan design. The main difference is how these two opera-

tions are distinguished. In a muxed-D scan design, a scan enable signal SE is

3.3 Scan design 113
used, as shown in Figure 3.6. In the clocked scan shown in Figure 3.8, these

two operations are distinguished by properly applying the two independent
clocks SCK and DCK during shift mode and capture mode, respectively.

3.3.1.3 LSSD scan design

Figure 3.9a shows a polarity-hold shift register latch (SRL) design described

in [Eichelberger 1977] that can be used as an LSSD scan cell. This scan cell con-

tains two latches, a master two-port D latch L1 and a slave D latch L2. Clocks C,

A, and B are used to select between the data input D and the scan input I to

drive þL1 and þL2.
To guarantee race-free operation, clocks A, B, and C are applied in a nonover-

lapping manner. In designs in which þL1 is used to drive the combinational

logic, the master latch L1 uses the system clock C to latch system data from
the data input D and to output this data onto þL1. In designs in which þL2 is
+L2

C

D

A

I .

.
B

+L1
L1

L2

SRL

.

.

(a)

C

D

I

+L1

D1 D2 D3 D4

T1 T2 T3 T4

D1 T3

A

B

+L2 T3

(b)

FIGURE 3.9

Polarity-hold SRL design and operation: (a) Polarity-hold SRL. (b) Sample waveforms.

114 CHAPTER 3 Design for testability
used to drive the combinational logic, clock B is used after clock C to latch the

system data from latch L1 and to output these data onto þL2. In both cases, cap-
ture mode uses both clocks C and B to output system data onto þL2. Finally, in
shift mode, clocks A and B are used to latch scan data from the scan input I and

to output these data onto þL1, and then latch the scan data from latch L1 and to

output these data onto þL2, which is then used to drive the scan input of the

next scan cell. Sample operation waveforms are shown in Figure 3.9b.

LSSD scan designs can be implemented with either a single-latch design or

a double-latch design. In single-latch design [Eichelberger 1977], the output

port þL1 of the master latch L1 is used to drive the combinational logic of the
design. In this case, the slave latch L2 is used only for scan testing. Because LSSD

designs use latches instead of flip-flops, at least two system clocks C1 and C2 are

required to prevent combinational feedback loops from occurring. In this case,

combinational logic driven by the master latches of the first system clock C1 are

used to drive the master latches of the second system clock C2, and vice versa.

For this to work, the system clocks C1 and C2 should be applied in a nonoverlap-

ping fashion. Figure 3.10a shows an LSSD single-latch design with the polarity-

hold SRL shown in Figure 3.9.
Figure 3.10b shows an example of LSSD double-latch design [DasGupta

1982]. In normal mode, the C1 and C2 clocks are used in a nonoverlapping man-

ner, where the C2 clock is the same as the B clock. The testing of an LSSD scan

design is conducted with shift and capture operations, similar to a muxed-D

scan design. The main difference is how these two operations are distinguished.

In a muxed-D scan design, a scan enable signal SE is used, as shown in Fig-

ure 3.6. In an LSSD scan design, these two operations are distinguished by prop-

erly applying nonoverlapping clock pulses to clocks C1, C2, A, and B. During the
shift operation, clocks A and B are applied in a nonoverlapping manner, and the

scan cells SRL1 � SRL3 form a single scan chain from SI to SO. During the cap-

ture operation, clocks C1 and C2 are applied in a nonoverlapping manner to load

the test response from the combinational logic into the scan cells.

The major advantage of the use of an LSSD scan cell is that it allows us to

insert scan into a latch-based design. In addition, designs that use LSSD are guar-

anteed to be race-free, which is not the case for muxed-D scan and clocked-scan

designs. A major disadvantage, however, is that it requires routing for the addi-
tional clocks, which increases routing complexity.

The operation of a polarity-hold SRL is race-free if clocks C and B, as well as

A and B, are nonoverlapping. This characteristic is used to implement LSSD cir-

cuits that are guaranteed to have race-free operation in normal mode and in test

mode.
3.3.2 At-speed testing
Although scan design is commonly used in the industry for slow-speed stuck-at

fault testing, its real value is in providing at-speed testing for high-speed and

X2

Combinational logic 1
X1

Y2

SO
D

+L2

SRL1

I
C

+L1A
B

D
+L2

SRL2

I
C

+L1A
B

D
+L2

SRL3

I
C

+L1A
B

SI

C1
A
B

C2

Combinational logic 2
X3

Y1

(a)

X2 Combinational logic
X3

X1

Y2

Y1

SO
D

+L2

SRL1

I
C

+L1A
B

D
+L2

SRL2

I
C

+L1A
B

D
+L2

SRL3

I
C

+L1A
B

SI

C1
A

C2 or B

(b)

FIGURE 3.10

LSSD designs: (a) LSSD single-latch design. (b) LSSD double-latch design.

3.3 Scan design 115
high-performance circuits. These circuits often contain multiple clock domains,

each running at an operating frequency that is either synchronous or asyn-

chronous to the other clock domains. Two clock domains are said to be

synchronous if the active edges of both clocks controlling the two clock

domains can be aligned precisely or triggered simultaneously. Two clock domains

are said to be asynchronous if they are not synchronous.
There are two basic capture-clocking schemes for testing multiple clock

domains at-speed: (1) skewed-load [Savir 1993] (also called launch-on-shift

[LOS]) and (2) double-capture [Wang 2006a] (also called launch-on-capture

[LOC] or broad-side [Savir 1994]). Both schemes can be used to test path-delay

faults and transition faults within each clock domain (called intra-clock-domain

116 CHAPTER 3 Design for testability
faults) or across clock domains (called inter-clock-domain faults). Skewed-

load uses the last shift clock pulse followed immediately by a capture clock pulse
to launch the transition and capture the output test response, respectively. Dou-

ble-capture uses two consecutive capture clock pulses to launch the transition

and capture the output test response, respectively. In both schemes, both launch

and capture clock pulses must be running at the domain’s operating speed or at-

speed. The difference is that skewed-load requires the domain’s scan enable sig-

nal SE to switch its value between the launch and capture clock pulses making

SE act as a clock signal. Figure 3.11 shows sample waveforms that use the basic

skewed-load and double-capture at-speed test schemes.
Scan designs typically include a few clock domains that will interact with

one another. To guarantee the success of the capture operation, additional care

must be taken in terms of the way the capture clocks are applied. This is mainly

because the clock skew between different clock domains is typically large. To

prevent this from happening, clocks can be applied sequentially (with the stag-
gered clocking scheme [Wang 2005a, 2007b]), such that any clock skew that

exists between the clock domains can be tolerated during the test generation

process. It is also possible to apply only one clock during each capture opera-
tion by use of the one-hot clocking scheme. Most modern ATPG programs

used currently can also automatically mask off unknown values (X’s) at the ori-

ginating scan cells or receiving scan cells across clock domains. In this case, all

clocks can also be applied simultaneously with the simultaneous clocking
scheme [Wang 2007b]. During simultaneous clocking, if the launch clock pulses

[Rajski 2003; Wang 2006a] or the capture clock pulses [Nadeau-Dostie 1994;

Wang 2006a] can be aligned precisely, which applies only for synchronous

clock domains, then the aligned clocking scheme can be used, and there is
no need to mask off unknown values across these synchronous clock domains.

These clocking schemes are illustrated in Figure 3.12.

In general, one-hot clocking produces the highest fault coverage at the

expense of generating many more test patterns than other schemes. Simulta-

neous clocking can generate the smallest number of test patterns but may result
(a) (b)

Shift Shift Last
Shift

Shift

SE
CK

C
ap

tu
re

La
un

ch

Shift Shift Dead
Cycles

Shift

SE
CK

C
ap

tu
re

La
un

ch

FIGURE 3.11

Basic at-speed test schemes: (a) Skewed-load. (b) Double-capture.

(a)

Shift Window Capture Window Shift Window Capture Window Shift Window

CK1 … … …

C1 C2

CK2 …

C4

 ……

C3

GSE

(b)

Shift Window Capture Window Shift Window

…

…

…

…

CK1

CK2

C1C2

C3 C4

Shift Window Capture Window Shift Window

(c)

…

…

…

…

CK1

CK2

C1C2

C3 C4

GSE

(d)

Shift Window Capture Window Shift Window

…

…

…

…CK2

C1 C2

CK1

GSE

C3 C4

GSE

FIGURE 3.12

At-speed clocking schemes for testing two interacting clock domains: (a) One-hot clocking.

(b) Staggered clocking. (c) Simultaneous clocking. (d) Aligned clocking.

3.3 Scan design 117
in high fault coverage loss because of unknown (X) masking. The staggered

clocking scheme is a happy medium because of its ability to generate test pat-

tern count close to simultaneous clocking and fault coverage close to one-hot

clocking. For large designs, it is no longer uncommon for transition fault ATPG

118 CHAPTER 3 Design for testability
to take more than 2 to 4 weeks to complete. To reduce test generation time

while at the same time obtaining the highest fault coverage, modern ATPG pro-
grams tend to either (1) run simultaneous clocking followed by one-hot clock-

ing or (2) use staggered clocking followed by one-hot clocking. As a result,

modern at-speed scan architectures now start supporting a combination of

at-speed clocking schemes for test circuits comprising multiple synchronous

and asynchronous clock domains. Some programs can even generate test

patterns by mixing skewed-load and double-capture schemes.
3.4 LOGIC BUILT-IN SELF-TEST

Logic built-in self-test (BIST) requires using a portion of the circuit to test itself

on-chip, on-board, or in-system. A typical logic BIST system is illustrated in

Figure 3.13. The test pattern generator (TPG) automatically generates test

patterns for application to the inputs of the circuit under test (CUT). The out-
put response analyzer (ORA) automatically compacts the output responses

of the CUT into a signature. Specific BIST timing control signals, including scan
enable signals and clocks, are generated by the logic BIST controller for

coordinating the BIST operation among the TPG, CUT, and ORA. The logic BIST

controller provides a pass/fail indication once the BIST operation is complete. It

includes comparison logic to compare the final signature with an embedded

golden signature, and often comprises diagnostic logic for fault diagnosis.

Because compaction is commonly used for output response analysis, it is

required that all storage elements in the TPG, CUT, and ORA be initialized to

known states before self-test, and no unknown (X) values are allowed to prop-
agate from the CUT to the ORA. In other words, the CUT must comply with

more stringent BIST-specific design rules [Wang 2006a] in addition to those

scan design rules required for scan design.
Logic
BIST

Controller

Test Pattern Generator
(TPG)

Output Response Analyzer
(ORA)

Circuit Under Test
(CUT)

FIGURE 3.13

A typical logic BIST system.

3.4 Logic built-in self-test 119
3.4.1 Test pattern generation
For logic BIST applications, in-circuit TPGs constructed from linear feedback
shift registers (LFSRs) are most commonly used to generate test patterns or test

sequences for exhaustive testing, pseudo-random testing, and pseudo-exhaustive

testing.

Exhaustive testing always guarantees 100% single-stuck and multiple-stuck

fault coverage. This technique requires all possible 2n test patterns to be applied

to an n-input combinational CUT, which can take too long for combinational cir-

cuits where n is huge. Therefore, pseudo-random testing [Bardell 1987] is

often used for generating a subset of the 2n test patterns and uses fault simula-
tion to calculate the exact fault coverage. In some cases, this might become quite

time-consuming, if not infeasible. To eliminate the need for fault simulation while

at the same time maintaining 100% single-stuck fault coverage, we can use

pseudo-exhaustive testing [McCluskey 1986] to generate 2w or 2k – 1 test

patterns, where w < k < n, when each output of the n-input combinational

CUT at most depends on w inputs. For testing delay faults, hazards must also be

taken into consideration.

Standard LFSR
Figure 3.14 shows an n-stage standard LFSR. It consists of n D flip-flops

and a selected number of exclusive-OR (XOR) gates. Because XOR gates are

placed on the external feedback path, the standard LFSR is also referred to as

an external-XOR LFSR [Golomb 1982].

Modular LFSR
Similarly, an n-stage modular LFSR with each XOR gate placed between two

adjacent D flip-flops, as shown in Figure 3.15, is referred to as an internal-XOR
LFSR [Golomb 1982]. The modular LFSR runs faster than its corresponding
standard LFSR, because each stage introduces at most one XOR-gate delay.
Si0 Si1 Sin-2 Sin-1

hn-1 hn-2 h2 h1

FIGURE 3.14

An n-stage (external-XOR) standard LFSR.

Si0 Si1 Sin-2 Sin-1

h1 h2 hn-2 hn-1

FIGURE 3.15

An n-stage (internal-XOR) modular LFSR.

120 CHAPTER 3 Design for testability
LFSR Properties
The internal structure of the n-stage LFSR in each figure can be described by

specifying a characteristic polynomial of degree n, f(x), in which the symbol

hi is either 1 or 0, depending on the existence or absence of the feedback path,

where

f ðxÞ ¼ 1þ h1x þ h2x
2 þ . . .þ hn�1xn�1 þ xn

Let Si represent the contents of the n-stage LFSR after ith shifts of the initial con-
tents, S0, of the LFSR, and Si(x) be the polynomial representation of Si. Then,

Si(x) is a polynomial of degree n�1, where

Si(x) ¼ Si0 þ Si1x þ Si2x
2 þ . . . þ Sin-2x

n�2 þ Sin�1x
n�1

If T is the smallest positive integer such that f(x) divides 1 þ x
T, then the inte-

ger T is called the period of the LFSR. If T ¼ 2n�1, then the n-stage LFSR gen-

erating the maximum-length sequence is called a maximum-length LFSR.
For example, consider the four-stage standard and modular LFSRs shown in

Figures 3.16a and 3.16b below. The characteristic polynomials, f(x), used to

construct both LFSRs are 1 þ x
2 þ x

4 and 1 þ x þ x
4, respectively.

The test sequences generated by each LFSR, when its initial contents, S0, are

set to {0001} or S0(x) ¼ x
3, are listed in Figures 3.16c and 3.16d, respectively.
(b)

0 0 0 1 0 0 0 1
1 1 0 01 0 0 0
0 1 1 00 1 0 1
0 0 1 11 0 1 0
1 1 0 10 1 0 1
1 0 1 00 0 1 0

0 0 0 1 0 1 0 1
1 1 1 01 0 0 0
0 1 1 10 1 0 1
1 1 1 11 0 1 0
1 0 1 10 1 0 1
1 0 0 10 0 1 0

0 0 0 1 1 0 0 0
0 1 0 01 0 0 0
0 0 1 00 1 0 0

1 0 1 0 0 0 0 1

(d)(c)

(a)

FIGURE 3.16

Example four-stage test pattern generators (TPGs): (a) Four-stage standard LFSR. (b) Four-

stage modular LFSR. (c) Test sequence generated by (a). (d) Test sequence generated by (b).

3.4 Logic built-in self-test 121
Because the first test sequence repeats after 6 patterns and the second test

sequence repeats after 15 patterns, the LFSRs have periods of 6 and 15, respec-
tively. This further implies that 1 þ x

6 can be divided by 1 þ x
2 þ x

4, and

1 þ x
15 can be divided by 1 þ x þ x

4.

Define a primitive polynomial of degree n over Galois field GF(2), p(x),

as a polynomial that divides 1 þ x
T, but not 1 þ x

i, for any integer i < T, where

T ¼ 2n � 1 [Golomb 1982]. A primitive polynomial is irreducible. Because

T ¼ 15 ¼ 24 � 1, the characteristic polynomial, f(x) ¼ 1 þ x þ x
4, used to con-

struct Figure 3.16b is a primitive polynomial, and thus the modular LFSR is a

maximum-length LFSR. Let

rðxÞ ¼ f ðxÞ�1 ¼ xnf ðx�1Þ
Then r(x) is defined as a reciprocal polynomial of f(x) [Peterson 1972]. A

reciprocal polynomial of a primitive polynomial is also a primitive polynomial.

Thus, the reciprocal polynomial of f(x) ¼ 1 þ x þ x
4 is also a primitive polyno-

mial, with p(x) ¼ r(x) ¼ 1 þ x
3 þ x

4.

Table 3.5 lists a set of primitive polynomials of degree n up to 100. It was

taken from [Bardell 1987]. A different set was given in [Wang 1988a]. Each poly-
nomial can be used to construct minimum-length LFSRs in standard or modular

form. For primitive polynomials of degree up to 300, consult [Bardell 1987].
3.4.1.1 Exhaustive testing

Exhaustive testing requires applying 2n exhaustive patterns to an n-input

combinational CUT. Any binary counter can be used as an exhaustive
pattern generator (EPG) for this purpose. Figure 3.17 shows an example of

a 4-bit binary counter design for testing a 4-input combinational CUT.

Exhaustive testing guarantees that all detectable, combinational faults (those

that do not change a combinational circuit into a sequential circuit) will be
detected. This approach is especially useful for circuits in which the number

of inputs, n, is a small number (e.g., 20 or less). When n is larger than 20, the

test time may be prohibitively long and is thus not recommended. The following

techniques are aimed at reducing the number of test patterns. They are recom-

mended when exhaustive testing is impractical.
3.4.1.2 Pseudo-random testing

One approach, which can reduce test length but sacrifices the circuit’s fault

coverage, uses a pseudo-random pattern generator (PRPG) for generating

a pseudo-random sequence of test patterns [Bardell 1987; Rajski 1998; Bushnell

2000; Jha 2003]. Pseudo-random testing has the advantage of being applica-

ble to both sequential and combinational circuits; however, there are difficulties

in determining the required test length and fault coverage.

Table 3.5 Primitive Polynomials of Degree n up to 100

n Exponents n Exponents n Exponents n Exponents

1 0 26 8 7 1 0 51 16 15 1 0 76 36 35 1 0

2 1 0 27 8 7 1 0 52 3 0 77 31 30 1 0

3 1 0 28 3 0 53 16 15 1 0 78 20 19 1 0

4 1 0 29 2 0 54 37 36 1 0 79 9 0

5 2 0 30 16 15 1 0 55 24 0 80 38 37 1 0

6 1 0 31 3 0 56 22 21 1 0 81 4 0

7 1 0 32 28 27 1 0 57 7 0 82 38 35 3 0

8 6 5 1 0 33 13 0 58 19 0 83 46 45 1 0

9 4 0 34 15 14 1 0 59 22 21 1 0 84 13 0

10 3 0 35 2 0 60 1 0 85 28 27 1 0

11 2 0 36 11 0 61 16 15 1 0 86 13 12 1 0

12 7 4 3 0 37 12 10 2 0 62 57 56 1 0 87 13 0

13 4 3 1 0 38 6 5 1 0 63 1 0 88 72 71 1 0

14 12 11 1 0 39 4 0 64 4 3 1 0 89 38 0

15 1 0 40 21 19 2 0 65 18 0 90 19 18 1 0

16 5 3 2 0 41 3 0 66 10 9 1 0 91 84 83 1 0

17 3 0 42 23 22 1 0 67 10 9 1 0 92 13 12 1 0

18 7 0 43 6 5 1 0 68 9 0 93 2 0

19 6 5 1 0 44 27 26 1 0 69 29 27 2 0 94 21 0

20 3 0 45 4 3 1 0 70 16 15 1 0 95 11 0

21 2 0 46 21 20 1 0 71 6 0 96 49 47 2 0

22 1 0 47 5 0 72 53 47 6 0 97 6 0

23 5 0 48 28 27 1 0 73 25 0 98 11 0

24 4 3 1 0 49 9 0 74 16 15 1 0 99 47 45 2 0

25 3 0 50 27 26 1 0 75 11 10 1 0 100 37 0

Note: “24 4 3 1 0” means p(x) ¼ x24 þ x4 þ x3 þ x1 þ x0 ¼ x24 þ x4 þ x3 þ x þ 1.

122 CHAPTER 3 Design for testability
3.4.1.2.1 Maximum-length LFSR

Maximum-length LFSRs are commonly used for pseudo-random pattern genera-

tion. Each LFSR produces a sequence with 0.5 probability of generating 1’s

X1 X2 X3 X4

FIGURE 3.17

Example binary counter as EPG.

3.4 Logic built-in self-test 123
(or with probability distribution 0.5) at every output. The LFSR pattern gener-
ation technique that uses these LFSRs, in standard or modular form, to gener-

ate patterns for the entire design has the advantage of being very easy to

implement. The major problem with this approach is that some circuits may
be random pattern resistant (RP-resistant). For instance, consider a 5-input

OR gate. The probability of applying an all-zero pattern to all inputs is 1/32. This

makes it difficult to test the RP-resistant OR-gate output stuck-at-1.

3.4.1.2.2 Weighted LFSR

It is possible to increase fault coverage (and detect most RP-resistant faults) in

RP-resistant designs. A weighted pattern generation technique that uses

an LFSR and a combinational circuit was first described in [Schnurmann
1975]. The combinational circuit inserted between the output of the LFSR and

the CUT is to increase the frequency of occurrence of one logic value while

decreasing the other logic value. This approach may increase the probability

of detecting those faults that are hard to detect with the typical LFSR pattern

generation technique.

Implementation methods for realizing this scheme are further discussed in

[Chin 1984]. The weighted pattern generation technique described in that paper

modifies the maximum-length LFSR to produce an equally weighted distribution
of 0’s and 1’s at the input of the CUT. It skews the LFSR probability distribution

of 0.5 to either 0.25 or 0.75 to increase the chance of detecting those faults

that are hard to detect with just a 0.5 distribution. Better fault coverage was also

found in [Wunderlich 1987], where probability distributions in a multiple of

0.125 (rather than 0.25) are used. Figure 3.18 shows a four-stage weighted

(maximum-length) LFSR with probability distribution 0.25 [Chin 1984].

3.4.1.2.3 Cellular automata

Cellular automatawere first introduced in [Wolfram 1983]. They yielded better

randomness property than LFSRs [Hortensius 1989]. The cellular automaton

based (or CA-based) pseudo-random pattern generator (PRPG) is attractive for

BIST applications [Khara 1987; Gloster 1988; Wang 1989; van Sas 1990] because

it (1) provides patterns that lookmore random at the circuit inputs, (2) has higher

opportunity to reach very high fault coverage in a circuit that is RP-resistant, and

(a)

(b) (c)

‘0’ X0 X1 X2 X3

‘0’

‘0’ Cell
0

Cell
1

Cell
n-2

Cell
n-1 ‘0’

0 0 0 1
0 0 1 0
0 1 1 1
1 1 1 1
0 0 1 1
0 1 0 1
1 0 0 0
1 1 0 0
0 1 1 0
1 1 0 1
0 1 0 0
1 0 1 0
1 0 1 1
1 0 0 1
1 1 1 0

FIGURE 3.19

Example cellular automaton (CA) as PRPG: (a) General structure of an n-stage CA. (b) Four-

stage CA. (c) Test sequence generated by (b).

X1

X2

X3

0

X4

01 0

FIGURE 3.18

Example weighted LFSR as PRPG.

124 CHAPTER 3 Design for testability
(3) has implementation advantages because it only requires adjacent neighbor

communication (no global feedback unlike the modular LFSR case).

A cellular automaton (CA) is a collection of cells with forward and back-

ward connections. A general structure is shown in Figure 3.19a. Each cell can

only connect to its local neighbors (adjacent left and right cells). The connec-

tions are expressed as rules; each rule determines the next state of a cell on

the basis of the state of the cell and its neighbors. Assume cell i can only talk
with its neighbors, i � 1 and i þ 1. Define:

Rule 90 : xiðt þ 1Þ ¼ xi�1ðtÞ þ xiþ1ðtÞ

3.4 Logic built-in self-test 125
and

Rule 150 : xiðt þ 1Þ ¼ xi�1ðtÞ þ xiðtÞ þ xiþ1ðtÞ
Then the two rules, rule 90 and rule 150, can be established on the basis of the

following state transition table:

xi�1ðtÞxiðtÞxiþ1ðtÞ 111 110 101 100 011 010 001 000

Rule 90: xi(t þ 1) 0 1 0 1 1 0 1 0

26 þ 24 þ 23 þ 21 ¼ 90

Rule 150: xi(t þ 1) 1 0 0 1 0 1 1 0

27 þ 24 þ 22 þ 21 ¼ 150

The terms rule 90 and rule 150 were derived from their decimal equivalents

of the binary code for the next state of cell i [Hortensius 1989]. Figure 3.19b

shows an example of a four-stage CA generated by alternating rules 150 (on

even cells) and 90 (on odd cells). Similar to the four-stage modular LFSR given

in Figure 3.16b, the four-stage CA generates a maximum-length sequence of

15 distinct states as listed in Figure 3.19c.

It has been shown in [Hortensius 1989] that by combining cellular automata

rules 90 and 150, an n-stage CA can generate a maximum-length sequence of
2n�1. The construction rules for 4 � n � 53 can be found in [Hortensius 1989]

and are listed in Table 3.6.

The CA-based PRPG can be programmed as a universal CA for generating

different orders of test sequences. A universal CA-cell for generating patterns

on the basis of rule 90 or rule 150 is given in Figure 3.20 [Wang 1989]. When

the RULE150_SELECT signal is set to 1, the universal CA-cell will behave as a

rule 150 cell; otherwise, it will act as a rule 90 cell. This universal CA structure

is useful for BIST applications where it is required to obtain very high fault
coverage for RP-resistant designs or detect additional classes of faults.
3.4.1.3 Pseudo-exhaustive testing

Another approach to reduce the test time to a practical value while retaining

many of the advantages of exhaustive testing is the pseudo-exhaustive test
technique. It applies fewer than 2n test patterns to an n-input combinational
CUT. The technique depends on whether any output is driven by all of its

inputs. If none of the outputs depends on all inputs, a verification test
approach proposed in [McCluskey 1984] can be used to test these circuits.

In circuits in which there is one output that depends on all inputs or the test

time that uses verification testing is still too long, a segmentation test
approach must be used [McCluskey 1981]. Pseudo-exhaustive testing guaran-

tees single-stuck fault coverage without any detailed circuit analysis.

Table 3.6 Construction Rules for Cellular Automat of Length n up to 53

n Rule* n Rule*

4 05 29 2,512,712103

5 31 30 7,211,545,075

6 25 31 04,625,575,630

7 152 32 10,602,335,725

8 325 33 03,047,162,605

9 625 34 036,055,030,672

10 0,525 35 127,573,165,123

11 3,252 36 514,443,726,043

12 2,252 37 0,226,365,530,263

13 14,524 38 0,345,366,317,023

14 17,576 39 6,427,667,463,554

15 44,241 40 00,731,257,441,345

16 152,525 41 15,376,413,143,607

17 175,763 42 11,766,345,114,746

18 252,525 43 035,342,704,132,622

19 0,646,611 44 074,756,556,045,302

20 3,635,577 45 151,315,510,461,515

21 3,630,173 46 0,112,312,150,547,326

22 05,252,525 47 0,713,747,124,427,015

23 32,716,532 48 0,606,762,247,217,017

24 77,226,526 49 02,675,443,137,056,631

25 136,524,744 50 23,233,006,150,544,226

26 132,642,730 51 04,135,241,323,505,027

27 037,014,415 52 031,067,567,742,172,706

28 0,525,252,525 53 207,121,011,145,676,625

*Rule is given in octal format. For n ¼ 7, Rule ¼ 152 ¼ 001,101,010 ¼ 1,101,010, where "0" denotes a
rule 90 cell and "1" denotes a rule 150 cell, or vice versa.

126 CHAPTER 3 Design for testability

xi

xi-1 D Q xi

xi +1

RULE150_SELECT

FIGURE 3.20

A universal CA-cell structure.

x1

y1

x2

y2

x3

y3

x4

y4

FIGURE 3.21

An (n,w) ¼ (4,2) CUT.

3.4 Logic built-in self-test 127
Verification testing [McCluskey 1984] divides the circuit under test into m

cones, where m is the number of outputs. It is based on backtracing from each
circuit output to determine the actual number of inputs that drive the output.

Each cone will receive exhaustive test patterns, and all cones are tested

concurrently.

Assume the combinational CUT has n inputs and m outputs. Let w be the

maximum number of input variables on which any output of the CUT depends.

Then, the n-input m-output combinational CUT is defined as an (n,w) CUT,

where w < n. Figure 3.21 shows an (n,w) ¼ (4,2) CUT that will be used as an

example for designing the pseudo-exhaustive pattern generators (PEPGs).

3.4.1.3.1 Syndrome driver counter

The first method for pseudo-exhaustive pattern generation was proposed in

[Savir 1980]. Syndromedriver counters (SDCs) are used to generate test patterns
[Barzilai 1981]. The SDC can be a binary counter, amaximum-length LFSR, or a com-

plete LFSR. Thismethod checkswhether somecircuit inputs can share the same test

signal. If n-p inputs, p < n, can share the test signalswith the other p inputs, then
the circuit can be tested exhaustively with these p inputs. In this case, the test

length becomes 2p if p ¼ w, or 2p � 1 if p > w. Figure 3.22 shows a three-stage

SDC used to test the circuit given in Figure 3.21. Because both inputs x1 and x4 do

0 0 1 0

1 0 0 1

1 1 0 1

1 1 1 1

0 1 1 0

1 0 1 1

0 1 0 0

X1 X2 X3

X4

FIGURE 3.22

Example syndrome driver counter as PEPG.

128 CHAPTER 3 Design for testability
not drive the same output, one test signal can be used to drive both inputs. In this

case, p is 3, and the test length becomes 23 � 1 ¼ 7. Designs based on the SDC

method for in-circuit test pattern generation are simple. The problem with

this method is that when p is close to n, it may still take too long to test the circuit.
3.4.1.3.2 Condensed LFSR

The problem can be solved by use of the condensed LFSR approach proposed

in [Wang 1986a]. Condensed LFSRs are constructed on the basis of linear
codes [Peterson 1972]. An (n,k) linear code over GF(2) generates a code space

C containing 2k distinct code words (n-tuples) with the following property: if

c1 2 C and c2 2 C, then c1 þ c2 2 C. Define an (n,k) condensed LFSR as an n-
stage modular LFSR with period 2k�1. A condensed LFSR for testing an (n,w)

CUT is constructed by first computing the smallest integer k such that:

w � dk=ðn� kþ 1Þe þ bk=ðn� kþ 1Þc
where dxe denotes the smallest integer equal to or greater than the real number

x, and byc denotes the largest integer equal to or smaller than the real number y.

Then, by use of:

f ðxÞ ¼ gðxÞpðxÞ ¼ ð1þ x þ x2 þ . . .þ xn�kÞpðxÞ
an (n,k) condensed LFSR can be realized, where g(x) is a generator polyno-
mial of degree n-k generating the (n,k) linear code, and p(x) is a primitive poly-

nomial of degree k.

Consider the (n,k) ¼ (4,3) condensed LFSR shown in Figure 3.23a used to

test the (n,w) ¼ (4,2) CUT. Because n ¼ 4 and w ¼ 2, we obtain k ¼ 3 and

(b)

(a)

X1 X2 X3 X4

1 1 0 0
0 1 1 0
0 0 1 1
1 0 1 0
0 1 0 1
1 0 0 1
1 1 1 1

FIGURE 3.23

Example condensed LFSR as PEPG: (a) (4,3) condensed LFSR. (b) Test sequence

generated by (a).

3.4 Logic built-in self-test 129
(n � k) ¼ 1. Selecting p(x) ¼ 1 þ x þ x
3, we have f(x) ¼ (1 þ x)(1 þ x þ x

3) ¼
1 þ x

2 þ x
3 þ x

4. Figure 3.23b lists the generated period-7 test sequence. It is

important to note that the seed polynomial S0(x) of the LFSR must be divisible

by g(x). In the example, we set S0(x) ¼ g(x) ¼ 1 þ x, or S0 to {1100}.

For any given (n,w) CUT, this method uses at most two seeds and has shown

to be effective when w � n/2. Designs based on this method are simple. How-

ever, this technique uses more patterns than the combined LFSR/SR
approach, which uses a combination of an LFSR and a shift register (SR)

[Barzilai 1983; Tang 1984; Chen 1987] and the cyclic LFSR approach [Wang
1987, 1988b] when w < n/2. For other verification test approaches, refer to

[Abramovici 1994; Wang 2006a].
3.4.2 Output response analysis
For scan designs, our assumption was that output responses coming out of the

circuit under test (CUT) are compared directly on a tester. For BIST operations,

it is impossible to store all output responses on-chip, on-board, or in-system to
perform bit-by-bit comparison. An output response analysis technique must

be used such that output responses can be compacted into a signature and

compared with a golden signature for the fault-free circuit either embedded

on-chip or stored off-chip.

Compaction differs from compression in that compression is loss-less,

whereas compaction is lossy. Compaction is a method for dramatically reducing

the number of bits in the original circuit response during testing in which some

information is lost. Compression is a method for reducing the number of bits
in the original circuit response in which no information is lost, such that the

original output sequence can be fully regenerated from the compressed sequence

[Bushnell 2000]. Because all output response analysis schemes involve informa-

tion loss, they are referred to as output response compaction. However, there is

no general consensus in academia yet as to when the terms compaction or

compression are to be used. However, for output response analysis, throughout

the book, we will refer to the lossy compression as compaction.

130 CHAPTER 3 Design for testability
In this section, we will present three different output response compaction

techniques: (1) ones count testing, (2) transition count testing, and (3) sig-
nature analysis. We will also describe the architectures of the output response

analyzers (ORAs) that are used. The signature analysis technique will be

described in more detail, because it is the most popular compaction technique

in use today.

When compaction is used, it is important to ensure that the faulty and fault-

free signatures are different. If they are the same, the fault(s) can go undetected.

This situation is referred to as error masking, and the erroneous output

response is said to be an alias of the correct output response [Abramovici
1994]. It is also important to ensure that none of the output responses contains

an unknown (X) value. If an unknown value is generated and propagated

directly or indirectly to the ORA, then the ORA can no longer function reliably.

Therefore, it is required that all unknown (X) propagation problems be fixed

to ensure that the logic BIST system will operate correctly. Such X-blocking
or X-bounding techniques have been extensively discussed in [Wang 2006a].

3.4.2.1 Ones count testing

Assume that the CUT has only one output and the output contains a stream of L

bits. Let the fault-free output response, R0, be {r0 r1 r2 . . . rL�1}. The ones
count test technique will only need a counter to count the number of 1’s in
the bit stream. For instance, if R0 ¼ {0101100}, then the signature or ones count

of R0, OC(R0), is 3. If fault f1 present in the CUT causes an erroneous response

R1 ¼ {1100110}, then it will be detected because OC(R1) ¼ 4. However, fault f2
causing R2 ¼ {0101010} will not be detected because OC(R2) ¼ OC(R0) ¼ 3. Let

the fault-free signature or ones count be m. There will be C(L,m) possible

ways having m 1’s in an L-bit stream. Assuming all faulty sequences are

equally likely to occur as the response of the CUT, the aliasing probability
or masking probability of the use of ones count testing having m 1’s [Savir
1985] can be expressed as

POCðmÞ ¼
�
CðL;mÞ � 1

�
=ð2L � 1Þ

In the previous example, where m ¼ OC(R0) ¼ 3 and L ¼ 7, POC(m) ¼ 34/

127 ¼ 0.27. Figure 3.24 shows the ones count test circuit for testing the CUT

with T patterns. The number of stages in the counter design must be equal to
or greater than dlog2ðLþ 1Þe:
SignatureCUTT Counter

CLK

FIGURE 3.24

Ones counter as ORA.

3.4 Logic built-in self-test 131
3.4.2.2 Transition count testing

The theory behind transition count testing is similar to that for ones count test-

ing, except the signature is defined as the number of 0-to-1 and 1-to-0 transitions.

The transition count test technique [Hayes 1976] simply requires the use of

a D flip-flop and an XOR gate connected to a ones counter (see Figure 3.25) to

count the number of transitions in the output data stream. Consider the exam-
ple given previously. Because R0 ¼ {0101100}, the signature or transition count

of R0, TC(R0), will be 4. Assume that the initial state of the D flip-flop, r�1, is 0.
Fault f1 causing an erroneous response R1 ¼ {1100110} will not be detected

because TC(R1) ¼ TC(R0) ¼ 4, whereas fault f2 causing R2 ¼ {0101010} will be

detected because TC(R2) ¼ 6.

Let the fault-free signature or transition count be m. Because a given L-bit

sequence R0 that starts with r0 ¼ 0 has L � 1 possible transitions, the number

of sequences with m transitions can be given by C(L � 1,m). Because R0 can
also start with r0 ¼ 1, there will be a total of 2C(L � 1,m) possible ways having

m 0-to-1 and 1-to-0 transitions in an L-bit stream. Assuming all faulty sequences

are equally likely to occur as the response of the CUT, the aliasing probability

or masking probability of the use of transition count testing having m transi-

tions [Savir 1985] is

PTCðmÞ ¼
�
2CðL� 1;mÞ � 1

�
=ð2L � 1Þ

In the previous example, where m ¼ TC(R0) ¼ 4 and L ¼ 7, PTC (m) ¼ 29/

127 ¼ 0.23. Figure 3.25 shows the transition count test circuit. The number

of stages in the counter design must be equal to or greater than dlog2ðLþ 1Þe:

3.4.2.3 Signature analysis

Signature analysis is the most popular response compaction technique used

today. The compaction scheme, based on cyclic redundancy checking
(CRC) [Peterson 1972], was first developed in [Benowitz 1975]. Hewlett-

Packard commercialized the first logic analyzer, called HP 5004A Signature Ana-

lyzer, based on the scheme and referred to it as signature analysis [Frohwerk
1977].
CUTT SignatureCounter

CLK

D Q

ri
ri-1

FIGURE 3.25

Transition counter as ORA.

132 CHAPTER 3 Design for testability
In this subsection, we will discuss two signature analysis schemes: (1) serial
signature analysis for compacting responses from a CUT having a single output
and (2) parallel signature analysis for compacting responses from a CUT hav-

ing multiple outputs.

3.4.2.3.1 Serial Signature Analysis

Consider the n-stage single-input signature register (SISR) shown in

Figure 3.26. This SISR uses an additional XOR gate at the input for compacting an

L-bit output sequence, M, into the modular LFSR. Let M ¼ {m0 m1 m2 . . . mL�1},
and define:

MðxÞ ¼ m0 þm1x þm2x
2 þ . . .þmL�1xL�1

After shifting the L-bit output sequence, M, into the modular LFSR, the con-

tents (remainder) of the SISR, R, is given as {r0 r1 r2 . . . rn�1}, or

rðxÞ ¼ r0 þ r1x þ r2x
2 þ . . .þ rn�1xn�1

The SISR is basically a CRC code generator [Peterson 1972] or a cyclic code

checker [Benowitz 1975]. Let the characteristic polynomial of the modular

LFSR be f(x). The authors in [Peterson 1972] have shown that the SISR performs

polynomial division of M(x) by f(x), or

MðxÞ ¼ qðxÞf ðxÞ þ rðxÞ
The final state or signature in the SISR is the polynomial remainder, r(x), of

the division. Consider the four-stage SISR given in Figure 3.27 with f(x) ¼ 1 þ
x þ x

4. Assuming M ¼ {10011011}, we can express M(x) ¼ 1 þ x
3 þ x

4 þ
x
6 þ x

7. By use of polynomial division, we obtain q(x) ¼ x
2 þ x

3 and r(x) ¼
1 þ x

2 þ x
3 or R ¼ {1011}. The remainder {1011} is equal to the signature

derived from Figure 3.27a when the SISR is first initialized to a starting pattern

(seed) of {0000}.

Now, assume fault f1 produces an erroneous output stream M0 ¼ {11001011}

or M0(x) ¼ 1 þ x þ x
4 þ x

6 þ x
7, as given in Figure 3.27b. By use of polynomial

division, we obtain q0(x) ¼ x
2 þ x

3 and r0(x) ¼ 1 þ x þ x
2 or R0 ¼ {1110}.

Because the faulty signature R0, {1110}, is different from the fault-free signature

R, {1011}, fault f1 is detected. For fault f2 with M00 ¼ {11001101} or M00(x) ¼
1 þ x þ x

4 þ x
5 þ x

7 as given in Figure 3.27c, we have q00(x) ¼ x þ x
3 and

r00(x) ¼ 1 þ x
2 þ x

3 or R00 ¼ {1011}. Because R00 ¼ R, fault f2 is not detected.
r0 rn-2 rn-1

h1 h2 hn-2 hn-1

M r1

FIGURE 3.26

An n-stage single-input signature register (SISR).

M r0 r1 r2 r3

1 0 0 0 0
1 1 0 0 0
0 1 1 0 0
1 0 1 1 0
1 1 0 1 1
0 0 0 0 1
0 1 1 0 0
1 0 1 1 0
R 1 0 1 1

M’ r0 r1 r2 r3

1 0 0 0 0
1 1 0 0 0
0 1 1 0 0
1 0 1 1 0
0 1 0 1 1
0 1 0 0 1
1 1 0 0 0
1 1 1 0 0
R’ 1 1 1 0

M” r0 r1 r2 r3

1 0 0 0 0
0 1 0 0 0
1 0 1 0 0
1 1 0 1 0
0 1 1 0 1
0 1 0 1 0
1 0 1 0 1
1 0 1 1 0
R” 1 0 1 1

(a) (b) (c)

M

FIGURE 3.27

A four-stage SISR: (a) Fault-free signature. (b) Signature for fault f1. (c) Signature for fault f2.

3.4 Logic built-in self-test 133
The fault detection or aliasing problem of an SISR can be better understood

by looking at the error sequence E or error polynomial E(x) of the fault-free

sequence M and a faulty sequence M0. Define E ¼ M þ M0, or:

EðxÞ ¼ MðxÞ þM 0ðxÞ
If E(x) is not divisible by f(x), then all faults generating the faulty sequenceM0 will

be detected. Otherwise, these faults are not detected. Consider fault f1 again. We

obtain E ¼ {01010000} ¼ M þ M0 ¼ {10011011} þ {11001011} or E(x) ¼ x þ x
3.

Because E(x) is not divisible by f(x) ¼ 1 þ x þ x
4, fault f1 is detected. Consider

fault f2 again. We have E ¼ {01010110} ¼ M þ M00 ¼ {10011011} þ {11001101}

or E(x) ¼ x þ x
3 þ x

5 þ x
6. Because f(x) divides E(x), i.e., E(x) ¼ (x þ x

2) f(x),

fault f2 is not detected.
Assume the SISR consists of n stages. For a given L-bit sequence, L > n, there

are 2(L�n) possible ways of producing an n-bit signature of which one is the

correct signature. Because there are a total of 2L � 1 erroneous sequences in

an L-bit stream, the aliasing probability with an n-stage SISR for serial signa-

ture analysis (SSA) is:

PSSAðnÞ ¼
�
2ðL�nÞ � 1

�
=ð2L � 1Þ

If L >> n, then PSSA(n) � 2�n. When n ¼ 20, PSSA(n) < 2�20 ¼ 0.0001%.

3.4.2.3.2 Parallel Signature Analysis

A common problem when using ones count testing, transition count testing,

and serial signature analysis is the excessive hardware cost required to test an

m-output CUT. It is possible to reduce the hardware cost by use of an m-to-1

multiplexer, but this increases the test time m times.

134 CHAPTER 3 Design for testability
Consider the n-stage multiple-input signature register (MISR) shown in

Figure 3.28. The MISR uses n extra XOR gates for compacting n L-bit output
sequences, M0 to Mn�1, into the modular LFSR simultaneously.

[Hassan 1984] has shown that the n-input MISR can be remodeled as a sin-

gle-input SISR with effective input sequence M(x) and effective error polyno-

mial E(x) expressed as:

MðxÞ ¼ M0ðxÞ þ xM1ðxÞ þ . . .þ xn�2Mn�2ðxÞ þ xn�1Mn�1ðxÞ
and

EðxÞ ¼ E0ðxÞ þ xE1ðxÞ þ . . .þ xn�2En�2ðxÞ þ xn�1En�1ðxÞ
Consider the four-stage MISR shown in Figure 3.29 that uses f(x) ¼ 1 þ x þ x

4.
Let M0 ¼ {10010}, M1 ¼ {01010}, M2 ¼ {11000}, and M3 ¼ {10011}. From this

information, the signature R of the MISR can be calculated as {1011}. With

M(x) ¼ M0(x) þ xM1(x) þ x
2
M2(x) þ x

3
M3(x), we obtain M(x) ¼ 1 þ x

3þ
x
4 þ x

6 þ x
7 or M ¼ {10011011} as shown in Figure 3.30. This is the same data

stream we used in the SISR example in Figure 3.27a. Therefore, R ¼ {1011}.
M1 M2M0 Mn-2 Mn-1

h1 h2 hn-2 hn-1

r0 r1 rn-1rn-2

FIGURE 3.28

An n-stage multiple-input signature register (MISR).

M0 M1 M2 M3

FIGURE 3.29

A four-stage MISR.

M0
M1
M2
M3

1 0 0 1 0
0 1 0 1 0

1 1 0 0 0
1 0 0 1 1

1 0 0 1 1 0 1 1M

FIGURE 3.30

An equivalent M sequence.

3.4 Logic built-in self-test 135
Assume there are m L-bit sequences to be compacted in an n-stage MISR,

where L > n �m � 2. The aliasing probability for parallel signature analysis

(PSA) now becomes:

PPSAðnÞ ¼
�
2ðmL�nÞ � 1

�
=ð2mL � 1Þ

If L >> n, then PPSA(n) � 2�n. When n ¼ 20, PPSA(n) < 2�20 ¼ 0.0001%. The

result suggests that PPSA(n) mainly depends on n, when L >> n. Hence, increas-

ing the number of MISR stages or the use of the same MISR but with a different
f(x) can substantially reduce the aliasing probability [Hassan 1984; Williams

1987].
3.4.3 Logic BIST architectures
Several architectures for incorporating offline BIST techniques into a design

have been proposed. These BIST architectures can be classified into two classes:

(1) those that use the test-per-scan BIST scheme and (2) those that use the

test-per-clock BIST scheme. The test-per-scan BIST scheme takes advantage

of the already built-in scan chains of the scan design and applies a test pattern
to the CUT after a shift operation is completed; hence, the hardware overhead

is low. The test-per-clock BIST scheme, however, applies a test pattern to the

CUT and captures its test response every system clock cycle; hence, the scheme

can execute tests much faster than the test-per-scan BIST scheme but at an

expense of more hardware overhead.

In this subsection, we only discuss three representative BIST architectures,

the first two for pseudo-random testing and the last for pseudo-exhaustive test-

ing. Although pseudo-random testing is commonly adopted in industry, the
exhaustive and pseudo-exhaustive test techniques are applicable for designs

that use the test-per-clock BIST scheme. For a more comprehensive survey of

these BIST architectures, refer to [Abramovici 1994; Bardell 1987; McCluskey

1985; Wang 2006a]. Fault coverage enhancement with the pseudo-random test

technique can also be found in [Tsai 1999; Wang 2006a; Lai 2007].

3.4.3.1 Self-testing with MISR and parallel SRSG (STUMPS)

A test-per-scan BIST design was presented in [Bardell 1982]. This design, shown

in Figure 3.31, contains a PRPG (parallel shift register sequence generator
[SRSG]) and a MISR. The scan chains are loaded in parallel from the PRPG.

The system clocks are then triggered, and the test responses are shifted to the
MISR for compaction. New test patterns are shifted in at the same time while

test responses are being shifted out. This BIST architecture that uses the test-

per-scan BIST scheme is referred to as self-testing with MISR and parallel
SRSG (STUMPS) [Bardell 1982].

Because of the ease of integration with traditional scan architecture, the

STUMPS architecture is the only BIST architecture widely used in industry to

PRPG

MISR

CUT

FIGURE 3.31

STUMPS.

CUT

Linear Phase Compactor

MISR

Linear Phase Shifter

PRPG

FIGURE 3.32

A STUMPS-based architecture.

136 CHAPTER 3 Design for testability
date. To further reduce the lengths of the PRPG and MISR and improve the ran-

domness of the PRPG, a STUMPS-based architecture that includes an optional

linear phase shifter and an optional linear phase compactor is often used in

industrial applications [Nadeau-Dostie 2000; Cheon 2005]. The linear phase

shifter and linear phase compactor typically comprise a network of XOR gates.

Figure 3.32 shows the STUMPS-based architecture.

3.4.3.2 Built-in logic block observer (BILBO)

The architecture described in [Könemann 1979, 1980] applies to circuits that

can be partitioned into independent modules (logic blocks). Each module is

assumed to have its own input and output registers (storage elements), or such
registers are added to the circuit where necessary. The registers are redesigned

so that for test purposes they act as PRPGs for test generation or MISRs for

signature analysis. The redesigned register is called a built-in logic block
observer (BILBO).

3.4 Logic built-in self-test 137
The BILBO is operated in four modes: normal mode, scan mode, test genera-

tion or signature analysis mode, and reset mode. A typical three-stage BILBO,
which is reconfigurable into a TPG or a MISR during self-test is shown in

Figure 3.33. It is controlled by two control inputs B1 and B2. When both control

inputs B1 and B2 are equal to 1, the circuit functions in normal mode with the

inputs Yi gated directly into the D flip-flops. When both control inputs are equal

to 0, the BILBO is configured as a shift register. Test data can be shifted in

through the serial scan-in port or shifted out through the serial scan-out port.

Setting B1 ¼ 1 and B2 ¼ 0 converts the BILBO into a MISR. It can then be used

in this configuration as a TPG by holding every Yi input to 1. The BILBO is reset
after a system clock is triggered when B1 ¼ 0 and B2 ¼ 1.

This technique is most suitable for testing circuits, such as random-access

memories (RAMs), read-only memories (ROMs), or bus-oriented circuits, where

input and output registers of the partitioned modules can be reconfigured inde-

pendently. For testing finite-state machines or pipeline-oriented circuits as

shown in Figure 3.34, the signature data from the previous module must be
B1 B2 Operation mode
1 1 Normal
0 0 Scan
1 0 Mixed Test Generation and Signature Analysis
0 1 Reset

Scan-In X0

0

1
D Q

B1

B2

Y0 Y2Y1

D Q D Q

SCK X1 Scan-Out/X2

FIGURE 3.33

A three-stage built-in logic block observer (BILBO).

B
IL

B
O

B
IL

B
O

(a) (b)

C
om

bi
na

tio
na

l
C

U
T

M
IS

R

C
C

1

M
IS

R

C
C

2

BILBOBILBO

FIGURE 3.34

BILBO architectures: (a) For testing a finite-state machine. (b) For testing a pipeline-oriented

circuit.

138 CHAPTER 3 Design for testability
used as test patterns for the next module, because the test generation and signa-

ture analysis modes cannot be separated. In this case, a detailed fault simulation
is required to achieve 100% single-stuck fault coverage.

3.4.3.3 Concurrent built-in logic block observer (CBILBO)

One technique to overcome the above BILBO fault coverage loss problem is to

use the concurrent built-in logic block observer (CBILBO) approach [Wang

1986b]. Reconfigured from the BILBO design, the CBILBO is based on the

test-per-clock BIST scheme and uses two registers to perform test generation and

signature analysis simultaneously. A CBILBO design is illustrated in Figure 3.35,

where only three modes of operation are considered: normal, scan, and test genera-

tion and signature analysis. When B1 ¼ 0 and B2 ¼ 1, the upper D flip-flops act as a

MISR for signature analysis, whereas the lower two-port D flip-flops form a TPG for
test generation. Because signature analysis is separated from test generation, an

exhaustive or pseudo-exhaustive pattern generator (EPG/PEPG) can now be used

for test generation; therefore, no fault simulation is required, and it is possible to

achieve 100% single-stuck fault coverage with the CBILBO architectures for testing

designs shown in Figure 3.36. However, the hardware cost associated with the use

of the CBILBO approach is generally higher than for the STUMPS approach.
3.4.4 Industry practices
Logic BIST has a history of more than 30 years since its invention in the 1970s.

Although it is only a few years behind the invention of scan, logic BIST has yet
B1 B2 Operation mode
- 0 Normal
1 1 Scan
0 1 Test Generation and Signature Analysis

Scan-In X0

B1

Y0 Y1 Y2

SCK

D Q
0

1

1D
2D
SEL

D Q

0

1 1D
2D
SEL

Q Q

D Q

1D
2D
SEL

Q

B2 X2X1

Scan-Out

FIGURE 3.35

A three-stage concurrent BILBO (CBILBO).

M
IS

R
M

IS
R

T
P

G

T
P

G
CBILBO

C
om

bi
na

tio
na

l
C

U
T

CBILBO

(a) (b)

CBILBOCBILBO

C
C

1

C
C

2

T
P

G

M
IS

R

T
P

G

M
IS

R

FIGURE 3.36

CBILBO architectures: (a) For testing a finite-state machine. (b) For testing a pipeline-oriented

circuit.

3.5 Test compression 139
to gain strong industry support. The worldwide market is estimated to be close

to 10% of the scan market. The logic BIST products available in the marketplace
now include Encounter Test from Cadence Design Systems [Cadence 2008],

ETLogic from LogicVision [LogicVision 2008], LBIST Architect from Mentor

Graphics [Mentor 2008], and TurboBIST-Logic from SynTest Technologies

[SynTest 2008]. The logic BIST product offered in Encounter Test by Cadence

currently includes support for test structure extraction, verification, logic simu-

lation for signatures, and fault simulation for coverage. Unlike all other three

BIST vendors that provide their own logic BIST structures in their respective

products, Cadence offers a service to insert custom logic BIST structures or to
use any customer-inserted logic BIST structures, including working with the

customer to have custom on-chip clocking for logic BIST. A similar case exists

in ETLogic from LogicVision when the double-capture clocking scheme is used.

All these commercially available logic BIST products support the STUMPS-

based architectures. Cadence supports a weighted-random spreading network

(XOR network) for STUMPS with multiple-weight selects [Foote 1997]. For at-

speed delay fault testing, ETLogic [LogicVision 2008] uses a skewed-load-
based at-speed BIST architecture; TurboBIST-Logic [Wang 2005b, 2006b;
SynTest 2008] implements the double-capture-based at-speed BIST archi-
tecture; and LBIST Architect [Mentor 2008] adopts a hybrid at-speed BIST
architecture that supports both skewed-load and double-capture. In addition,

all products provide inter-clock-domain delay fault testing for synchronous

clock domains. On-chip clock controllers for testing these inter-clock-domain

faults at-speed can be found in [Rajski 2003; Furukawa 2006; Nadeau-Dostie

2006, 2007; Keller 2007], and Table 3.7 summarizes the capture-clocking

schemes for at-speed logic BIST that is used by the EDA vendors.
3.5 TEST COMPRESSION

Test compression can provide 10� to 100� reduction or even more in the

amount of test data (both test stimulus and test response) that must be stored

on the automatic test equipment (ATE) [Touba 2006; Wang 2006a] for testing

Table 3.7 Summary of Industry Practices for At-Speed Logic BIST

Industry Practices Skewed-Load Double-Capture

Encounter test Through service Through service

ETLogic
ffip

Through service

LBIST Architect
ffip ffip

TurboBIST-Logic ffip

140 CHAPTER 3 Design for testability
with a deterministic ATPG-generated test set. This greatly reduces ATE memory

requirements and even more importantly reduces test time, because less data
have to be transferred across the limited bandwidth between the ATE and the

chip. Moreover, test compression methods are easy to adopt in industry because

they are compatible with the conventional design rules and test generation

flows used for scan testing.

Test compression is achieved by adding some additional on-chip hardware

before the scan chains to decompress the test stimulus coming from the tester

and after the scan chains to compact the response going to the tester. This is

illustrated in Figure 3.37. This extra on-chip hardware allows the test data to
be stored on the tester in a compressed form. Test data are inherently highly

compressible because typically only 1% to 5% of the bits on a test pattern that

is generated by an ATPG program have specified (care) values. Lossless com-

pression techniques can thus be used to significantly reduce the amount of test

stimulus data that must be stored on the tester. The on-chip decompressor
expands the compressed test stimulus back into the original test patterns

(matching in all the care bits) as they are shifted into the scan chains. The on-

chip compactor converts long output response sequences into short signa-
tures. Because the compaction is lossy, some fault coverage can be lost because
Compressed
Stimulus

Low-Cost
ATE

Scan-Based
Circuit
(CUT)

Stimulus Response
Compacted
Response

D
e
c
o
m
p
r
e
s
s
o
r

C
o
m
p
a
c
t
o
r

FIGURE 3.37

Architecture for test compression.

3.5 Test compression 141
of unknown (X) values that might appear in the output sequence or aliasing

where a faulty output response signature is identical to the fault-free output
response signature. With proper design of the circuit under test (CUT) and
the compaction circuitry, however, the fault coverage loss can be kept negligi-

bly small.
3.5.1 Circuits for test stimulus compression
A test cube is defined as a deterministic test vector in which the bits that are

not assigned values by the ATPG procedure are left as don’t cares (X’s). Nor-

mally, ATPG procedures perform random fill in which all the X’s in the test

cubes are filled randomly with 1’s and 0’s to create fully specified test vectors;
however, for test stimulus compression, random fill is not performed during

ATPG so the resulting test set consists of incompletely specified test cubes.

The X’s make the test cubes much easier to compress than fully specified test

vectors.

As mentioned earlier, test stimulus compression should be an information

lossless procedure with respect to the specified (care) bits to preserve the fault

coverage of the original test cubes. After decompression, the resulting test pat-

terns shifted into the scan chains should match the original test cubes in all the
specified (care) bits.

Many schemes for compressing test cubes have been surveyed in [Touba

2006; Wang 2006a]. Two schemes based on linear decompression and broadcast

scan are described here in greater detail mainly because the industry has

favored both approaches over code-based schemes from area overhead and

compression ratio points of view. These code-based schemes can be found in

[Wang 2006a].

3.5.1.1 Linear-decompression-based schemes

A class of test stimulus compression schemes is based on the use of linear
decompressors to expand the data coming from the tester to fill the scan
chains. Any decompressor that consists of only XOR gates and flip-flops is a lin-
ear decompressor [Könemann 1991]. Linear decompressors have a very use-

ful property: their output space (i.e., the space of all possible test vectors that

they can generate) is a linear subspace that is spanned by a Boolean matrix.

In other words, for any linear decompressor that expands an m-bit compressed

stimulus from the tester into an n-bit stimulus (test vector), there exists a Bool-

ean matrix An�m such that the set of test vectors that can be generated by the

linear decompressor is spanned by A. A test vector Z can be compressed by a
particular linear decompressor if and only if there exists a solution to a system

of linear equations, AX ¼ Z, where A is the characteristic matrix of the linear

decompressor and X is a set of free variables stored on the tester (every bit

stored on the tester can be thought of as a “free variable” that can be assigned

any value, 0 or 1).

142 CHAPTER 3 Design for testability
The characteristic matrix for a linear decompressor can be obtained by sym-

bolic simulation where each free variable coming from the tester is represented
by a symbol. An example of this is shown in Figure 3.38, where a sequential lin-

ear decompressor containing an LFSR is used. The initial state of the LFSR is

represented by free variables X1 to X4, and the free variables X5 to X10 are

shifted in from two channels as the scan chains are loaded. After symbolic sim-

ulation, the final values in the scan chains are represented by the equations for

Z1 to Z12. The corresponding system of linear equations for this linear decom-

pressor is shown in Figure 3.39.

The symbolic simulation goes as follows. Assume that the initial seed X1 to

X4 has been already loaded into the flip-flops. In the first clock cycle, the top

flip-flop is loaded with the XOR of X2 and X5; the second flip-flop is loaded with

X3; the third flip-flop is loaded with the XOR of X1 and X4; and the bottom flip-

flop is loaded with the XOR of X1 and X6. Thus, we obtain Z1 ¼ X2 � X5,

Z2 ¼ X3, Z3 ¼ X1 � X4, and Z4 ¼ X1 � X6. In the second clock cycle, the top

flip-flop is loaded with the XOR of the contents of the second flip-flop (X3)

and X7; the second flip-flop is loaded with the contents of the third flip-flop

(X1 � X4); the third flip-flop is loaded with the XOR of the contents of the first
flip-flop (X2 � X5) and the fourth flip-flop (X1 � X6); and the bottom flip-flop is

loaded with the XOR of the contents of the first flip-flop (X2 � X5) and X8.

Thus, we obtain Z5 ¼ X3 � X7, Z6 ¼ X1 � X4, Z7 ¼ X1 � X2 � X5 � X6, and

Z8 ¼ X2 � X5 � X8. In the third clock cycle, the top flip-flop is loaded with
Z9 = X1 ⊕ X4 ⊕ X9 Z5 = X3 ⊕ X7 Z1 = X2 ⊕ X5

Z10 = X1 ⊕ X2 ⊕ X5 ⊕ X6 Z6 = X1 ⊕ X4 Z2 = X3

Z11 = X2 ⊕ X3 ⊕ X5 ⊕ X7 ⊕ X8 Z7 = X1 ⊕ X2 ⊕ X5 ⊕ X6 Z3 = X1 ⊕ X4

Z12 = X3 ⊕ X7 ⊕ X10 Z8 = X2 ⊕ X5 ⊕ X8 Z4 = X1 ⊕ X6

Z9 Z5 Z1

Z10 Z6 Z2

Z11 Z7 Z3

Z12 Z8 Z4

+

X1

X3

X4

X2

X9 X 7 X5

+X10 X8 X6

+

FIGURE 3.38

Example of symbolic simulation for linear decompressor.

0 1 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 1 0 0 0
1 0 0 1 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0
0 1 0 0 1 0 0 1 0 0
1 0 0 1 0 0 0 0 1 0
1 1 0 0 1 1 0 0 0 0
0 1 1 0 1 0 1 1 0 0
0 0 1 0 0 0 1 0 0 1

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

Z1

Z2

Z3

Z4

Z5

Z6

Z7

Z8

Z9

Z10

Z11

Z12

=

FIGURE 3.39

System of linear equations for the decompressor in Figure 3.38.

3.5 Test compression 143
the XOR of the contents of the second flip-flop (X1 � X4) and X9; the second

flip-flop is loaded with the contents of the third flip-flop (X1 � X2 � X5 �
X6); the third flip-flop is loaded with the XOR of the contents of the first flip-

flop (X3 � X7) and the fourth flip-flop (X2 � X5 � X8); and the bottom flip-flop

is loaded with the XOR of the contents of the first flip-flop (X3 � X7) and X10.

Thus, we obtain Z9 ¼ X4 � X9, Z10 ¼ X1 � X6, Z11 ¼ X2 � X5 � X8, and

Z12 ¼ X3 � X7 � X10. At this point, the scan chains are fully loaded with a test
cube, so the simulation is complete.

3.5.1.1.1 Combinational linear decompressors

The simplest linear decompressors use only combinational XOR networks.
Each scan chain is fed by the XOR of some subset of the channels coming

from the tester [Bayraktaroglu 2001, 2003; Könemann 2003; Mitra 2006;

Han 2007; Wang 2004, 2008]. The advantage compared with sequential linear

decompressors is simpler hardware and control. The drawback is that, to

encode a test cube, each scan slice (the n-bits that are loaded into the n scan

chains in each clock cycle) must be encoded with only the free variables that

are shifted from the tester in a single clock cycle (which is equal to the num-

ber of channels). The worst-case most highly specified scan slices tend to
limit the amount of compression that can be achieved, because the number

of channels from the tester has to be sufficiently large to encode the most

highly specified scan slices. Consequently, it is very difficult to obtain a high

encoding efficiency (typically it will be less than 0.25); for the other less

specified scan slices, a lot of the free variables end up getting wasted, because

those scan slices could have been encoded with many fewer free variables.

One approach for improving the encoding efficiency of combinational linear

decompressors that was proposed in [Krishna 2003] is to dynamically adjust the
number of scan chains that are loaded in each clock cycle. So for a highly

144 CHAPTER 3 Design for testability
specified scan slice, four clock cycles could be used in which 25% of the scan

chains are loaded in each cycle, whereas for a lightly specified scan slice, only
one clock cycle can be used in which 100% of the scan slices are loaded. This

allows a better matching of the number of free variables with the number of

specified bits to achieve a higher encoding efficiency. Note that it requires that

the scan clock be divided into multiple domains.

3.5.1.1.2 Sequential linear decompressors

Sequential linear decompressors are based on linear finite-state machines

such as LFSRs, cellular automata, or ring generators [Mrugalski 2004]. The advan-
tage of a sequential linear decompressor is that it allows free variables from ear-

lier clock cycles to be used when encoding a scan slice in the current clock

cycle. This provides much greater flexibility than combinational decompressors

and helps avoid the problem of the worst-case most highly specified scan slices

limiting the overall compression. The more flip-flops that are used in the

sequential linear decompressor, the greater the flexibility that is provided.

[Tobua 2006] classifies the sequential linear decompressors into two classes:
FIG

Typ
1. Static reseeding that computes a seed (an initial state) for each test cube

[Touba 2006]. This seed, when loaded into an LFSR and run in autono-

mous mode, will produce the test cube in the scan chains [Könemann

1991]. This technique achieves compression by storing only the seeds
instead of the full test cubes.

2. Dynamic reseeding calls for the injection of free variables coming from

the tester into the LFSR as it loads the scan chains [Krishna 2001; Köne-

mann 2001; Rajski 2004].
Figure 3.40 shows a generic example of a sequential linear decompressor that

uses b channels from the tester to continuously inject free variables into the

LFSR as it loads the scan chains through a combinational linear decompressor

that typically is a combinational XOR network.
Scan Chain 1 (m bits)
L

F

S

R

Scan Chain 2 (m bits)

Scan Chain n (m bits)

b Channels
from Tester

C
om

b
in

a
ti

on
a

l
L

in
e

a
r

D
e

co
m

p
re

s
s

or

URE 3.40

ical sequential linear decompressor.

3.5 Test compression 145
3.5.1.2 Broadcast-scan-based schemes

Another class of test stimulus compression schemes is based on broadcasting

the same value to multiple scan chains. This was first proposed in [Lee 1998]

and [Lee 1999]. Because of its simplicity and effectiveness, this method has

been used as the basis of many test compression architectures, including some

commercial design for testability (DFT) tools.

3.5.1.2.1 Broadcast scan

To illustrate the basic concept of broadcast scan, first consider two indepen-

dent circuits C1 and C2. Assume that these two circuits have their own test sets

T1 ¼ < t11,t12, . . . , t1k > and T2 ¼ < t21,t22, . . . , t2l >, respectively. In general,

a test set may consist of random patterns and deterministic patterns. In the

beginning of the ATPG process, usually random patterns are initially used to

detect the easy-to-detect faults. If the same random patterns are used when gen-
erating both T1 and T2, then we may have t11 ¼ t21, t12 ¼ t22, . . . , up to some ith

pattern. After most faults have been detected by the random patterns, determin-

istic patterns are generated for the remaining difficult-to-detect faults. Generally,

these patterns have many “don’t care” bits. For example, when generating

t1(i þ 1), many “don’t care” bits may still exist when no more faults in C1 can be

detected. By use of a test pattern with bits assigned so far for C1, we can further

assign specific values to the “don’t care” bits in the pattern to detect faults in C2.

Thus, the final pattern would be effective in detecting faults in both C1 and C2.
The concept of pattern sharing can be extended to multiple circuits as illu-

strated in Figure 3.41. One major advantage of the use of broadcast scan for

independent circuits is that all faults that are detectable in all original circuits

will also be detectable with the broadcast structure. This is because if one test

vector can detect a fault in a stand-alone circuit, then it will still be possible to

apply this vector to detect the fault in the broadcast structure. Thus, the broad-

cast scan method will not affect the fault coverage if all circuits are indepen-

dent. Note that broadcast scan can also be applied to multiple scan chains of
a single circuit if all subcircuits driven by the scan chains are independent.
1 2 3 … N1

C1

SC1

1 2 3 … N2

C2

SC2

1 2 3 … Nk

Ck

SCK

Scan_input

…

…

FIGURE 3.41

Broadcasting to scan chains driving independent circuits.

146 CHAPTER 3 Design for testability
3.5.1.2.2 Illinois scan

If broadcast scan is used for multiple scan chains of a single circuit where the
subcircuits driven by the scan chains are not independent, then the property of

always being able to detect all faults is lost. The reason for this is that if two scan

chains are sharing the same channel, then the ith scan cell in each of the two

scan chains will always be loaded with identical values. If some fault requires

two such scan cells to have opposite values to be detected, it will not be possi-

ble to detect this fault with broadcast scan.

To address the problem of some faults not being detected when broadcast

scan is used for multiple scan chains of a single circuit, the Illinois scan archi-
tecture was proposed in [Hamzaoglu 1999] and [Hsu 2001]. This scan architec-

ture consists of two modes of operations, namely a broadcast mode and a serial

scan mode, which are illustrated in Figure 3.42. The broadcast mode is first

used to detect most faults in the circuit. During this mode, a scan chain is

divided into multiple subchains called segments, and the same vector can be

shifted into all segments through a single shared scan-in input. The response

data from all subchains are then compacted by a MISR or other space/time com-

pactor. For the remaining faults that cannot be detected in broadcast mode, the
serial scan mode is used where any possible test pattern can be applied. This

ensures that complete fault coverage can be achieved. The extra logic required

to implement the Illinois scan architecture consists of several multiplexers and

some simple control logic to switch between the two modes. The area overhead

of this logic is typically quite small compared with the overall chip area.

The main drawback of the Illinois scan architecture is that no test compres-

sion is achieved when it is run in serial scan mode. This can significantly

degrade the overall compression ratio if many test patterns must be applied
in serial scan mode. To reduce the number of patterns that need to be applied

in serial scan mode, multiple-input broadcast scan or reconfigurable broadcast

scan can be used. These techniques are described next.
Scan In

Scan In

Segment 1

Segment 2

Segment 3

Segment 4

M
IS

R

Scan Out

Scan Out

(a)

Scan Chain

(b)

FIGURE 3.42

Two modes of Illinois scan architecture: (a) Broadcast mode. (b) Serial scan mode.

3.5 Test compression 147
3.5.1.2.3 Multiple-input broadcast scan

Instead of the use of only one channel to drive all scan chains, a multiple-input
broadcast scan could be used where there is more than one channel [Shah

2004]. Each channel can drive some subset of the scan chains. If two scan

chains must be independently controlled to detect a fault, then they could be

assigned to different channels. The more channels that are used and the shorter

each scan chain is, the easier to detect more faults because fewer constraints are

placed on the ATPG. Determining a configuration that requires the minimum

number of channels to detect all detectable faults is thus highly desired with a

multiple-input broadcast scan technique.

3.5.1.2.4 Reconfigurable broadcast scan

Multiple-input broadcast scanmay require a large number of channels to achieve

high fault coverage. To reduce the number of channels that are required, a recon-
figurable broadcast scan method can be used. The idea is to provide the

capability to reconfigure the set of scan chains that each channel drives. Two pos-

sible reconfiguration schemes have been proposed, namely static reconfigura-
tion [Pandey 2002; Wang 2002; Samaranayake 2003; Chandra 2007], and

dynamic reconfiguration [Li 2004; Sitchinava 2004; Wang 2004, 2008; Mitra

2006; Wohl 2007a]. In static reconfiguration, the reconfiguration can only be

done when a new pattern is to be applied. For this method, the target fault set

can be divided into several subsets, and each subset can be tested by a single
configuration. After testing one subset of faults, the configuration can be changed

to test another subset of faults. In dynamic reconfiguration, the configuration

can be changed while scanning in a pattern. This provides more reconfiguration

flexibility and hence can, in general, lead to better results with fewer channels.

This is especially important for hard cores, when the test patterns provided by

core vendor cannot be regenerated. The drawback of dynamic reconfiguration

versus static reconfiguration is that more control information is needed for recon-

figuring at the right time, whereas for static reconfiguration the control informa-
tion is much less because the reconfiguration is done only a few times (only

after all the test patterns that use a particular configuration have been applied).

Figure 3.43 shows an example multiplexer (MUX) network that can be used

for dynamic configuration. When a value on the control line is selected, partic-

ular data at the four input pins are broadcasted to the eight scan chain inputs.

For instance, when the control line is set to 0 (or 1), the scan chain 1 output

will receive input data from Pin 4 (or Pin 1) directly.

3.5.1.2.5 Virtual scan

Rather than the use of MUX networks for test stimulus compression, combina-

tional logic networks can also be used as decompressors. The combinational logic

network can consist of any combination of simple combinational gates, such as

buffers, inverters, AND/OR gates, MUXs, and XOR gates. This scheme, referred

to as virtual scan, is different from reconfigurable broadcast scan and

Scan Chain 1

Scan Chain 2

Scan Chain 3

Scan Chain 4

Scan Chain 5

Scan Chain 6
Scan Chain 7

Scan Chain 8

0

1

0

1

0

1

0

1

0

1

Pin
1

Pin
2

Pin
3

Pin
4

Control Line

FIGURE 3.43

Example MUX network with control line(s) connected only to select pins of the multiplexers.

148 CHAPTER 3 Design for testability
combinational linear decompression where pure MUX and XOR networks are

allowed, respectively. The combinational logic network and the order of the scan
chains can be specified as a set of constraints or just as an expanded circuit for

ATPG. In either case, the test cubes that ATPG generates are the compressed

stimuli for the decompressor itself. There is no need to solve a system of linear

equations, and dynamic compaction can be effectively used during the ATPG

process. Hence, only one-pass ATPG is required during test stimulus compression.

The virtual scan scheme was proposed in [Wang 2002, 2004, 2008]. In these

papers, the decompressor was referred to as a broadcaster. The authors also pro-
posed adding additional logic, when required, through VirtualScan inputs to
reduce or remove the constraints imposed by the broadcaster on the circuit,

thereby yielding very little or no fault coverage loss caused by test stimulus com-

pression. For instance, a scan connector consisting of a set of multiplexers that

places scan cells in the scan chains in a particular order can be connected to the

outputs of the combinational logic network during each virtual scan test mode.

Because the scan chains are reordered in each test mode, the imposed constraints

of the combinational logic network on the circuit are reduced or removed.

3.5 Test compression 149
In a broad sense, virtual scan is a generalized class of broadcast scan, Illinois

scan, multiple-input broadcast scan, reconfigurable broadcast scan, and combina-
tional linear decompression. The advantage of the use of virtual scan is that it

allows the ATPG to directly search for a test cube that can be applied by the

decompressor and allows very effective dynamic compaction. Thus, virtual scan

may produce shorter test sets than any test stimulus compression scheme based

on solving linear equations; however, because this scheme may impose XOR or

MUX constraints directly on the original circuit, it may take longer than those

based on solving linear equations to generate test cubes or compressed stimuli.

Two example virtual scan decompression circuits are shown in Figures 3.44a
and 3.44b, respectively [Wang 2008]. Additional VirtualScan inputs are used

to further reduce the XOR or MUX constraints imposed on the original circuit.

An XOR network similar to the broadcaster shown in Figure 3.44a is sometimes

referred to as a space expander or a spreading network in logic BIST

applications.
3.5.2 Circuits for test response compaction
Test response compaction is performed at the outputs of the scan chains. The

purpose is to reduce the amount of test response that needs to be transferred

back to the tester. Although test stimulus compression must be lossless, test

response compaction can be lossy. A large number of different test response

compaction schemes and associated (response) compactors have been pre-

sented in the literature [Wang 2006a]. The effectiveness of each compaction

scheme and the chosen compactor depends on its ability to avoid aliasing

and tolerate unknown test response bits or X’s. These schemes can be grouped

into three categories: (1) space compaction, (2) time compaction, and (3)

mixed space and time compaction.
A space compactor compacts an m-bit-wide output pattern to an n-bit-wide

output pattern (where n < m). A time compactor compacts p output patterns

to q output patterns (where q < p). A mixed space and time compactor has

both space and time compaction performed concurrently. Typically, a space

compactor is composed of XOR gates [Saluja 1983]; a time compactor includes
a multiple-input signature register (MISR) [Frohwerk 1977]; and a mixed space

and time compactor adds a space compactor at either the input or the output

side of a time compactor [Saluja 1983; Wohl 2001]. Because test response com-

paction can be combinational-logic-based or sequential-logic-based, without loss

of generality, we refer space compaction to as a combinational compaction
scheme, and time compaction as well as mixed space and time compaction to

as sequential compaction schemes.

There are three sources of aliasing according to [Wohl 2001]: (1) combina-
tional cancellation occurs when two or more erroneous scan chain outputs

(compactor inputs) are XORed in the compactor during the same cycle, which

(a)

(b)

SI2SI1

External Scan Input Ports

VI1 VI2

VirtualScan Inputs

s10 s11 s12 s13 s20 s21 s22 s23

Internal Scan Chain Inputs

•
•

s10 s11 s13 s20 s22 s23

Internal Scan Chain Inputs

s21s12

SI1 SI2

External Scan Input Ports

VI1 VI2

VirtualScan Inputs

FIGURE 3.44

Example virtual scan decompression circuits: (a) Broadcaster that sees an example XOR

network with additional VirtualScan inputs to reduce coverage loss. (b) Broadcaster that uses

an example MUX network with additional VirtualScan inputs that can be also connected to

data pins of the multiplexers.

150 CHAPTER 3 Design for testability
cancel out the error effects in that cycle; (2) shift cancellation occurs when

one or more erroneous scan chain output bits captured into the compactor

are cancelled out by other erroneous scan chain output bits when the former

are shifted down the shift path of the compactor; and (3) feedback cancella-
tion occurs when one or more errors captured into the compactor during

one cycle propagate through some feedback path of the compactor and cancel

out with errors in later cycles. Combinational cancellation will exist in space
compaction as well as mixed space and time compaction, because non-aliasing

3.5 Test compression 151
space compactors are impractical for real designs [Chakrabarty 1998;

Pouya 1998]. On the other hand, shift cancellation and feedback cancellation
are only present when either time compaction or mixed space and time com-

paction is used; however, shift cancellation is independent of the compactor

feedback structure and its polynomial, whereas feedback cancellation depends

on the compactor polynomial chosen.

Because unknown test response bits (X’s) can potentially reduce the fault

coverage of the circuit under test when a combinational compactor is used

and corrupt the final signature in a sequential compactor, one safe approach

is to completely block these X’s before they reach the response compactor
(combinational compactor or sequential compactor). During design, these

potential X-generators (X-sources) can be identified with a scan design rule

checker. When the X effects of an X-generator are likely to reach the response

compactor, these X’s must be blocked before they reach the compactor

[Gu 2001]. The process is often referred to as X-blocking or X-bounding.
In X-blocking, an X-source can be blocked either at the X-source or any-

where along its propagation paths before X’s reach the compactor. In case

the X-source has been blocked at a nearby location during test and will not
reach the compactor, there is no need to block the X-source; however, care

must be taken to ensure that no observation points are added between the

X-source and the location at which it is blocked to avoid capturing potential

X’s into the compactor.

A simple example illustrating the X-blocking scheme for an X-source is

shown in Figure 3.45. The output of the X-source is blocked and forced to

0 by setting the select signal of the multiplexer (MUX) to a fixed value (selecting

the 0 input) in test mode. As a separate example, a non-scan flip-flop that is nei-
ther scanned nor initialized is a potential X-generator (X-source). If the flip-flop

has two outputs (Q and QB), one can add two multiplexers forcing both outputs

to opposite values in test mode. Alternately, if the flip-flip has an asynchronous

set/reset pin, an AND/OR control point can be added to permanently force the

flip-flip to 0 or 1 during test. Although an AND/OR control point can be added

to force the non-scan flip-flop to a constant value, it is recommended that for
X-source

select

0

X Compactor

FIGURE 3.45

A simple illustration of the X-blocking scheme.

152 CHAPTER 3 Design for testability
better fault coverage inserting a MUX control point driven by a nearby existing

scan cell is preferred.
X-blocking can ensure that no X’s will be propagated to the compactor;

however, it also blocks the fault effects that can only propagate to an observable

point through the now-blocked X-source (e.g., the non-scan flip-flop). This can

result in fault coverage loss. This problem can be addressed by use of a more flexi-

ble control on the select signal such that the X-source is blocked only during the

cycles at which it may generate X’s. Alternately, if the number of such faults for

a given bounded X-generator justifies the cost, one or more observation points

can be added before the X-source (e.g., at the D input of the non-scan flip-flop)
to provide an observable point to which those faults can propagate. These X-

blocking or X-bounding methods have been extensively discussed in [Wang

2006a].

In this subsection, we only present some compactor designs that are widely

used in industry along with some emerging compactors. For more information,

refer to the key references cited in [Patel 2003; Mitra 2004b; Rajski 2004;

Volkerink 2005; Wang 2006a; Touba 2007; Wohl 2007b].

3.5.2.1 Combinational compaction

A combinational compactor uses a combinational circuit to compact m outputs

of the circuit under test into n test outputs, where n <m. If each output
sequence contains only known (non-X) values (0’s and 1’s), then a combina-

tional compactor that uses XOR gates with each internal scan chain output

connected to only one XOR gate input is sufficient to guarantee no-fault cover-

age loss when the number of errors appearing at the m outputs is always odd

[Saluja 1983]. A compactor that uses such XOR gates is referred to as a conven-
tional combinational compactor or simple space compactor. An example

is illustrated in Figure 3.46 [Wang 2008]. On the contrary, if any output

sequence contains unknown values (X’s), the combinational compaction
scheme must have the capability to mask off or tolerate unknowns to prevent

faults from going undetected. A compactor able to mask off or tolerate X’s is

referred to as an X-tolerant combinational compactor or X-tolerant space
compactor. Two representative schemes currently practiced in industry are

discussed in the following: (1) X-compact and (2) X-impact. Other schemes to

further tolerate the amount of X’s can be found in [Patel 2003; Rajski 2004;

Wohl 2004, 2007b; Wang 2008].

3.5.2.1.1 X-compact

X-compact [Mitra 2004a] is an X-tolerant space compaction technique that
connects each internal scan chain output to two or more external scan output

ports through a network of XOR gates to tolerate unknowns. A response

compaction circuit designed by use of the X-compact technique is called an

X-compactor. Figure 3.47 shows an X-compactor with eight inputs and five

outputs. It is composed of four 3-input XOR gates and eleven 2-input XOR gates.

External Scan Output Ports

Internal Scan Chain Outputs

FIGURE 3.46

A conventional combinational compactor with nine inputs and three outputs.

Out1

SC1 SC2

XOR XOR XOR XOR XOR XOR XOR XOR XOR XOR

SC3 SC4 SC5 SC6 SC7 SC8

XOR

Out2

XOR

Out3

XOR

Out4

XOR

Out5

XOR

FIGURE 3.47

An X-compactor with eight inputs and five outputs.

3.5 Test compression 153
Only one aliasing source, namely combinational cancellation, can exist in

an X-compactor because of its combinational property. As an extreme example,

if an X-compactor has only one output, it is, indeed, a parity checker, and any

two error bits occurring simultaneously from the internal scan chain outputs
will lead to aliasing.

Although aliasing may still exist when the X-compact technique is used, one

can design an X-compactor that guarantees zero-aliasing in many practical cases.

Consider Figure 3.47 again. If only one error bit occurs at the SC inputs, the

error will be propagated to some output of the compactor and thus detected.

One can also find that the compactor can detect any two or any odd number

of errors that occur at the same cycle. In the following we use a binary matrix,

called an X-compact matrix, to represent an X-compactor and to illustrate the
fault detectability and X-tolerability of the compactor.

154 CHAPTER 3 Design for testability
Suppose that the outputs of m scan chains are to be compacted into n bits

for each scan cycle with an X-compactor. The associated X-compact matrix

then contains n rows and k columns, in which each row corresponds to a scan

chain output (e.g., SC in Figure 3.47), and each column corresponds to an

X-compactor output (e.g., Out in Figure 3.47). The entry at row i and column

j of the matrix is 1 if and only if the jth X-compactor output depends on the

ith scan chain output; otherwise, the matrix entry is 0. Thus, the corresponding

X-compact matrix M of the X-compactor shown in Figure 3.47 is:

1

1

1

1
=M

1

1

0

0

1

0

1

1

0

0

1

0

1

1

0

0

1

0

0

1

0

1

1

0

0

1

1

1

0

0

0

1

1

1

1

1

With the help of an X-compact matrix, it was shown in [Mitra 2004a] that

errors from any one, two, or an odd number of scan chains at the same scan-

out cycle are guaranteed to be detected by an X-compactor if every row of
the corresponding X-compact matrix of the compactor is distinct and contains

an odd number of 1’s. This can be proved by the observation that (1) if all rows

of the X-compact matrix are distinct, then a bitwise XOR of any two rows is

nonzero, and (2) if each row further contains an odd number of 1’s, then the

bitwise XOR of any odd number of rows also contains an odd number of 1’s.

The most distinctive feature of the X-compact technique is its X-tolerant capa-

bility (i.e., detecting error bits even when the scan chain outputs have unknown

bits). Refer to Figure 3.47 again. If one unknown bit occurs at SC1, then the
unknown value will be spread to Out1, Out2, and Out3. Thus, after the XOR oper-

ation, the values at Out1, Out2, and Out3 are masked (becoming unknown). How-

ever, if there is only one error bit in all other scan chain outputs, then the error bit

will still be detected, because the error bit will be spread to at least one output that

is not Out1, Out2, or Out3. For example, an error bit occurring at SC2 will be

detected from Out4. Thus, we have the following X-tolerant theorem:

Theorem 3.1:

An error from any scan chain with one unknown bit from any other scan chain at

the same cycle is guaranteed to be observed at the outputs of an X-compactor if

and only if:
1. No row of the X-compact matrix contains all 0’s.

2. For any X-compact matrix row, the submatrix obtained by removing the

row responding to the scan chain output with unknown bit and all col-

umns having 1’s in that row does not contain a row with all 0’s.

3.5 Test compression 155
The X-compact matrix of Figure 3.47 satisfies the preceding theorem. For exam-

ple, if we remove row 1 and columns 1, 2, and 3, then each of the remaining
rows in the submatrix contains at least a 1. Theorem 3.1 can be further

extended to deal with errors from any k1 or fewer scan chains with unknown

bits from any k2 or fewer scan chains (k1 þ k2 � n) as follows:

Theorem 3.2:

Errors from any k1 or fewer scan chains with unknown bits from any k2 or fewer scan

chains at the same cycle, where k1 þ k2 � n and n is the number of scan chains, are

guaranteed to be observed at the outputs of an X-compactor if and only if:
1. No row of the X-compact matrix contains all 0’s.

2. For any set S of k1 X-compact matrix rows, any set of k2 rows in the sub-

matrix obtained by removing the rows in S and the X-compact matrix col-

umns having 1’s in the rows in S are linearly independent.
Designing an X-compact matrix to satisfy Theorem 3.2 is a complicated problem

when an X-compactor is expected to tolerate three or more unknown bits.

In some cycles, the number of actual knowns appearing at the scan chain out-

puts could exceed the number of unknowns designed to be tolerated by the

X-compactor. Hence, the fault detectability and X-tolerability of an X-compactor

highly depends on its actual implementation and the number of unknowns to

be tolerated.

3.5.2.1.2 X-impact

Although X-blocking and X-compact each can achieve significant reduction in

fault coverage loss caused by X’s present at the inputs of a combinational com-

pactor, the X-impact technique described in [Wang 2004] is helpful in that it

can further reduce fault coverage loss simply by use of ATPG to algorithmically

handle the impact of residual X’s on the combinational compactor without add-

ing any extra circuitry. The combinational compactor in use can be either a con-
ventional combinational compactor or an X-tolerant combinational compactor.
Example 3.1 An
 example of algorithmically handling X-impact is shown in Figure 3.48. Here, SC1 to

SC4 are scan cells connected to a conventional combinational compactor composed

of XOR gates G7 and G8. Lines a, b, . . . , h are internal signals, and line f is assumed

to be connected to an X-source (memory, non-scan storage element, etc.). Now con-

sider the detection of the stuck-at-0 (SA0) fault f1. Logic value 1 should be assigned to

both lines d and e to activate f1. The fault effect will be captured by scan cell SC3. If

the X on f propagates to SC4, then the compactor output q will become X and f1 cannot

be detected. To avoid this, ATPG can try to assign either 1 to line g or 0 to line h to block

the X from reaching SC4. If it is impossible to achieve this assignment, ATPG can then try

to assign 1 to line c, 0 to line b, and 0 to line a to propagate the fault effect to SC2. As a

result, fault f1 can be detected. Thus, X-impact is avoided by algorithmic assignment

without adding any extra circuitry.

G1

G2
G3

G4

G5
G6

G7

G8

a

b
c

g
h

f1

p

q

SC1

SC2

SC3

SC4

1
1

X
?
?

?
?

?

d
e

f

FIGURE 3.48

Handling of X-impact.

G1

G2
G3

G4

G5
G6

G7

G8

d

f2

p

q

SC1

SC2

SC3

SC4

a

b
c

e

f
g
h

0
1

1
1

?

FIGURE 3.49

Handling of aliasing.

156 CHAPTER 3 Design for testability
Example 3.2 It
 is also possible to use the X-impact approach to reduce combinational cancellation (an

aliasing source). An example of algorithmically handling aliasing is shown in Figure 3.49.

Here, SC1 to SC4 are scan cells connected to a conventional combinational compactor

composed of XOR gates G7 and G8. Lines a, b, . . . , h are internal signals. Now consider

the detection of the stuck-at-1 fault f2. Logic value 1 should be assigned to lines c, d,

and e to activate f2, and logic value 0 should be assigned to line b to propagate the fault

effect to SC2. If line a is set to 1, then the fault effect will also propagate to SC1. In this

case, aliasing will cause the compactor output p to have a fault-free value, resulting in an

undetected f2. To avoid this, ATPG can try to assign 0 to line a to block the fault effect

from reaching SC1. As a result, fault f2 can be detected. Thus, aliasing can be avoided

by algorithmic assignment without any extra circuitry.

3.5.2.2 Sequential compaction

In contrast to a combinational compactor that typically uses XOR gates to com-

pact output responses, a sequential compactor uses sequential logic instead.
The sequential compactor can be a time-space compressor or a space-time
compressor as described in [Saluja 1983], although the authors only consid-

ered output bit streams of 0’s and 1’s. The type of sequential logic to be used

3.5 Test compression 157
for response compaction depends on whether the output responses contain

unknown values (X’s). A sequential compactor capable of masking off or toler-
ating these X’s is often referred to as an X-tolerant sequential compactor.

3.5.2.2.1 Signature analysis

If X-bounding as described previously has been used such that each output

response does not contain any unknown (X) values, then the multiple-input

signature register (MISR) widely used for logic BIST applications can be simply

used [Frohwerk 1977]. Referred to as a conventional sequential compactor,
the MISR uses an XOR gate at each MISR stage input to compact the output
sequences, M0 to M3, into the linear feedback shift register (LFSR) simulta-

neously. The final contents stored in the MISR after compaction is often called

the (final) signature of the MISR. A conventional sequential compactor that

uses a four-stage MISR is illustrated in Figure 3.50. For more information on sig-

nature analysis and the MISR design, the reader is referred to Section 3.4.2.3.

3.5.2.2.2 X-masking

On the contrary, if the output response contains unknown (X) values, then one
must make sure when the sequential compactor is used that no X’s from the cir-

cuit under test will reach the compactor. Although it may not result in fault cov-

erage loss, the X-bounding scheme described previously does add area overhead

and may impact delay because of the inserted logic. It is not surprising to find

that, in complex designs, more than 25% of scan cycles could contain one or

more X’s in the test response. It is difficult to eliminate these residual X’s by

DFT; thus, an encoder with high X-tolerance is very attractive. Instead of block-

ing the X’s where they are generated, the X’s can also be masked off right
before the sequential compactor. This scheme is referred to as X-masking. A
typical X-masking circuit is shown in Figure 3.51. The mask controller applies

a logic value 1 at the appropriate time to mask off any scan output that contains

an X before the X reaches the compactor.

The X-masking compactor is one type of X-tolerant sequential compactors.

Typically, it implies that sequential logic (comprising one or more MISRs or SISRs)

is used in the compactor for response compaction. Almost all existing X-tolerant

sequential compactors proposed in the literature use X-masking, including
OPMISRþ [Barnhart 2002; Naruse 2003], ETCompression [Nadeau-Dostie 2004],
M1 M2M0 M3

FIGURE 3.50

A conventional sequential compactor that uses a four-stage MISR.

Scan Out 1

Compactor

Mask
Controller

Scan Out 2

Scan Out 3

Mask Bit 1

Mask Bit 2

Mask Bit 3

FIGURE 3.51

An example X-masking circuit in use with a compactor.

158 CHAPTER 3 Design for testability
and convolutional compactors [Mitra 2004b; Rajski 2005, 2008]. In fact, combina-

tional logic (such as XOR gates) can also be used in the compactor. Such an X-

masking compactor that uses combinational logic is referred to as a selective
compactor [Rajski 2004]. Mask data are needed to indicate when the masking

should take place. These mask data can be stored in compressed format and

can be decompressed with on-chip hardware. Possible compression techniques

are weighted pseudo-random LFSR reseeding or run-length encoding [Volkerink
2005].

Another type of X-tolerant sequential compactor is an X-canceling MISR
[Touba 2007, 2008] that does not mask the X’s before they enter the MISR. It

allows the X’s to be compacted in a MISR and then selectively XORs together

combinations of MISR signature bits that are linearly dependent in terms of

the X’s such that all the X’s are canceled out.

3.5.2.2.3 q-compact

In case none of the X-bounding, X-masking, or X-canceling schemes is available

to block, mask off, or cancel all X’s, the sequential logic in use must not have a

feedback path so these X’s will only stay in the sequential compactor for a few

clock cycles. Such an X-tolerant sequential compaction scheme is referred to as

q-compact. A q-compactor that uses this X-tolerant compaction scheme is

illustrated in [Han 2006].

Figure 3.52 shows an example of a q-compactor assuming the inputs are

coming from internal scan chain outputs [Han 2006]. The spatial part of the
q-compactor consists of single-output XOR networks (called spread networks)

connected to the flip-flops by means of additional 2-input XOR gates inter-

spersed between successive storage elements. As can be seen, every error in

a scan cell can reach storage elements and then outputs in several possible

ways. The spread network that determines this property is defined in terms of

D D D D D

inputs

output

FIGURE 3.52

An example q-compactor with single output.

3.5 Test compression 159
spread polynomials indicating how particular scan chains are connected to the

register flip-flops.

Different from a conventional MISR, the q-compactor presented in Figure 3.52

does not have a feedback path; consequently, any error or X injected into the

compactor is shifted out after at most five clock cycles. The shifted-out data will

be compared with the expected data and then the error will be detected.
3.5.3 Industry practices
Several test compression products and solutions have been introduced by some

of the major DFT vendors in the CAD industry. These products differ signifi-

cantly with regard to technology, design overhead, design rules, and the ease

of use and implementation. A few second-generation products have also been

introduced by a few of the vendors [Kapur 2008]. This subsection summarizes

a few of the products introduced by companies such as Cadence Design Systems

[Cadence 2008], LogicVision [LogicVision 2008], Mentor Graphics [Mentor
2008], Synopsys [Synopsys 2008], and SynTest Technologies [SynTest 2008].

Current industry solutions can be grouped under two main categories for

stimulus decompression. The first category uses linear-decompression–based

schemes, whereas the second category uses broadcast-scan–based schemes.

The main difference between the two categories is the manner in which the

ATPG engine is used. The first category includes products, such as ETCompres-

sion [LogicVision 2008] from LogicVision, TestKompress [Rajski 2004]

from Mentor Graphics, XOR Compression [Cadence 2008] from Cadence, and
SOCBIST [Wohl 2003] from Synopsys. The second category includes products,

such as OPMISRþ [Barnhart 2002; Cadence 2008] from Cadence, VirtualScan

[Wang 2004, 2008] from SynTest, and DFT MAX [Sitchinava 2004; Wohl

2007a] from Synopsys.

160 CHAPTER 3 Design for testability
For designs that use linear-decompression–based schemes, test compression

is achieved in two distinct steps. During the first step, conventional ATPG is used
to generate sparse ATPG patterns (called test cubes), in which dynamic compac-

tion is performed in a nonaggressive manner, while leaving unspecified bit loca-

tions in each test cube as X. This is accomplished by not aggressively performing

the random fill operation on the test cubes, which is used to increase coverage

of individual patterns, and hence reduce the total pattern count. During the second

step, a system of linear equations, describing the hardware mapping from the

external scan input ports to the internal scan chain inputs, are solved to map each

test cube into a compressed stimulus that can be applied externally. If a mapping is
not found, a new attempt at generating a new test cube is required.

For designs that use broadcast-scan–based schemes, only a single step is

required to perform test compression. This is achieved by embedding the con-

straints introduced by the decompressor as part of the ATPG tool, such that

the tool operates with much more restricted constraints. Hence, whereas in

conventional ATPG, each individual scan cell can be set to 0 or 1 independently,

for broadcast-scan–based schemes the values to which related scan cells can

be set are constrained. Thus, a limitation of this solution is that in some cases,
the constraints among scan cells can preclude some faults from being tested.

These faults are typically tested as part of a later top-up ATPG process if

required, similar to the use of linear-decompression–based schemes.

On the response compaction side, industry solutions have used either combina-

tional compactors such as XOR networks, or sequential compactors such as MISRs,

to compact the test responses. At present, combinational compactors have a

higher acceptance rate in the industry because they do not involve the process

of guaranteeing that no unknown (X) values are generated in the circuit under test.
A summary of the different compression architectures used in the commer-

cial products is shown in Table 3.8. Six products from five DFT companies

are included. Since June 2006, Cadence has added XOR Compression as an alter-

native to the OPMISRþ product described in [Wang 2006a].
Table 3.8 Summary of Industry Practices for Test Compression

Industry Practices Stimulus Decompressor
Response
Compactor

XOR Compression or
OPMISRþ

Combinational XOR Network or
Fanout Network

XOR Network with or
without MISR

TestKompress Ring Generator XOR Network

VirtualScan Combinational Logic Network XOR Network

DFT MAX Combinational MUX Network XOR Network

ETCompression (Reseeding) PRPG MISR

Table 3.9 Summary of Industry Practices for At-Speed Delay Fault Testing

Industry Practices Skewed-Load Double-Capture

XOR Compression or OPMISRþ ffip ffip
TestKompress

ffip ffip
VirtualScan

ffip ffip
DFT MAX ffip ffip
ETCompression ffip Through Service

3.6 Concluding remarks 161
It is evident that the solutions offered by the current EDA DFT vendors are

quite diverse with regard to stimulus decompression and response compaction.

For stimulus decompression, OPMISRþ, VirtualScan, and DFT MAX are

broadcast-scan–based, whereas TestKompress and ETCompression are linear-

decompression–based. For response compaction, OPMISRþ and ETCompression
can include MISRs, whereas four other solutions purely adopt (X-tolerant) XOR

networks. What is common is that all six products provide their own diagnostic

solutions.

Generally speaking, any modern ATPG compression program supports at-

speed clocking schemes used in its corresponding at-speed scan architecture.

For at-speed delay fault testing, ETCompression currently uses a skewed-
load–based at-speed test compression architecture for ATPG. The product

can also support the double-capture clocking scheme through service. All other
ATPG compression products, including OPMISRþ, TestKompress, VirtualScan,

and DFT MAX, support the hybrid at-speed test compression architecture
by use of both skewed-load (a.k.a. launch-on-shift) and double-capture (a.k.a.

launch-on-capture). In addition, almost every product supports inter-clock-

domain delay fault testing for synchronous clock domains. A few on-chip clock

controllers for detecting these inter-clock-domain delay faults at-speed have

been proposed in [Beck 2005; Nadeau-Dostie 2005, 2006; Furukawa 2006;

Fan 2007; and Keller 2007].
The clocking schemes used in these commercial products are summarized in

Table 3.9. It should be noted that compression schemes might be limited in

effectiveness if there are a large number of unknown response values, which

can be exacerbated during at-speed testing when many paths do not make the

timing being used.
3.6 CONCLUDING REMARKS

Design for testability (DFT) has become vital for ensuring circuit testability and

product quality. Scan design, which has proven to be themost powerful DFT tech-

nique ever invented, allowed the transformation of sequential circuit testing into

162 CHAPTER 3 Design for testability
combinational circuit testing and has since become an industry standard. Cur-

rently, a scan design can contain a billion transistors [Naffziger 2006; Stackhouse
2008]. To screen all possible physical failures (manufacturing defects) caused by

manufacturing imperfection, test compression coupled to scan design has rapidly

emerged, becoming a crucial DFT technique to address the explosive test data vol-

ume and long test application time problems. At the same time, scan-based logic

built-in self-test (BIST) is of growing importance because of its inherent advantage

of performing self-test on-chip, on-board, or in-system, which can substantially

improve the reliability of the system and the ability of in-field diagnosis.

Whereas the STUMPS-based architecture [Bardell 1982] is the most popular
logic BIST architecture practiced currently for scan-based designs, the efforts

required to implement the BIST circuitry and the loss of the fault coverage for

the use of pseudo-random patterns have prevented the BIST architecture from

being widely used in industry. As the semiconductor manufacturing technology

moves into the nanometer design era, it remains to be seen how the CBILBO-

based architecture proposed in [Wang 1986b], which can always guarantee

100% single stuck-at fault coverage and has the ability of running 10 times more

BIST patterns than the STUMPS-based architecture, will perform. Challenges lie
ahead with regard to whether or not pseudo-exhaustive testing will become a

preferred BIST pattern generation technique.

Because the primary objective of this chapter is to familiarize the reader with

basic DFT techniques, many advanced DFT techniques, along with novel design-

for-reliability (DFR), design-for-manufacturability (DFM), design-for-yield (DFY),

design-for-debug-and-diagnosis (DFD), and low-power test techniques, are left

out. For advanced reading, the reader is referred to [Gizopoulos 2006; Wang

2006a, 2007a]. These techniques are of growing importance to help us cope with
the physical failures of the nanometer design era.

The DFT chapter is the first of a series of three chapters devoted to VLSI test-

ing. These chapters are chosen to equip the reader with basic DFT skills to design

quality digital circuits. Chapter 7 discusses the design rules and test synthesis

steps required to implement testability logic into these digital circuits. Chapter

14 jumps into the important fault simulation and test generation techniques for

generating quality test patterns to screen defective chips frommanufacturing test.
3.7 EXERCISES
3.1. (Testability Analysis) Calculate the SCOAP controllability and

observability measures for a 3-input XOR gate and for its NAND-NOR

implementation.

3.2. (Testability Analysis) Use the rules given in Tables 3.3 and 3.4 to cal-

culate the probability-based testability measures for a 3-input XNOR

gate and for its NAND-NOR implementation. Assume that the

3.7 Exercises 163
probability-based controllability values at all primary inputs and the
probability-based observability value at the primary output are 0.5

and 1, respectively.

3.3. (Testability Analysis) Repeat Exercise 3.2 for the full-adder circuit

shown in Figure 3.1.

3.4. (Muxed-D Scan Cell) Show a possible CMOS implementation of the

muxed-D scan cell shown in Figure 3.5a.

3.5. (Low-Power Muxed-D Scan Cell) Design a low-power version of the

muxed-D scan cell given in Figure 3.5a by adding gated-clock logic
that includes a lock-up latch to control the clock port.

3.6. (At-Speed Scan) Assume that a scan design contains three clock

domains running at 100 MHz, 200 MHz, and 400 MHz, respectively.

In addition, assume that the clock skew between any two clock

domains is manageable. List all possible at-speed scan ATPG methods

and compare their advantages and disadvantages in terms of fault cov-

erage and test pattern count.

3.7. (At-Speed Scan) Describe two major capture-clocking schemes for at-
speed scan testing and compare their advantages and disadvantages.

Also discuss what will happen if three or more captures are used.

3.8. (BIST Pattern Generation) Implement a period-8 in-circuit test pat-

tern generator (TPG) with a binary counter. Compare its advantages

and disadvantages with a Johnson counter (twisted-ring counter).

3.9. (BIST Pattern Generation) Implement a period-31 in-circuit test pat-

tern generator (TPG) with a modular linear feedback shift register

(LFSR) with characteristic polynomial f(x) ¼ 1 þ x
2 þ x

5. Convert the
modular LFSR into amuxed-D scan designwithminimum area overhead.

3.10. (BIST Pattern Generation) Implement a period-31 in-circuit test pat-

tern generator (TPG) with a five-stage cellular automaton (CA) with

construction rule ¼ 11001, where “0” denotes a rule 90 cell and “1”

denotes a rule 150 cell. Convert the CA into an LSSD design with min-

imum area overhead.

3.11. (Cellular Automata) Derive a construction rule for a cellular autom-

aton of length 54, and then construction rules up to length 300 to
match the list of primitive polynomials up to degree 300 reported in

[Bardell 1987].

3.12. (BIST Response Compaction) Discuss in detail what errors can and

cannot be detected by a MISR.

3.13. (STUMPS versus CBILBO) Compare the performance of a STUMPS

design and a CBILBO design. Assume that both designs operate at

400 MHz and that the circuit under test has 100 scan chains each hav-

ing 1000 scan cells. Compute the test time for each design when
100,000 test patterns are to be applied. In general, the shift (scan)

speed is much slower than a circuit’s operating speed. Assume that

164 CHAPTER 3 Design for testability
the scan shift frequency is 50 MHz, and compute the test time for the
STUMPS design again. Explain further why the STUMPS-based archi-

tecture is gaining more popularity than the CBILBO-based

architecture.

3.14. (Scan versus Logic BIST versus Test Compression) Compare the

advantages and disadvantages of a scan design, a logic BIST design,

and a test compression design in terms of fault coverage, test applica-

tion time, test data volume, and area overhead.

3.15. (Test Stimulus Compression) Given a circuit with four scan chains,
each having five scan cells, and with a set of test cubes listed:

1 X X 1 0

0 1 0 0 0

X 1 X 0 X

X 0 1 1 0
a. Design the multiple-input broadcast scan decompressor that ful-

fills the test cube requirements.

b. What is the compression ratio?

c. The assignment of X’s will affect the compression performance

dramatically. Give one X-assignment example that will unfortu-
nately lead to no compression with this multiple-input broadcast

scan decompressor.
3.16. (Test Stimulus Compression) Derive mathematical expressions for

the following in terms of the number of tester channels, n, and the
expansion ratio, k.
a. The probability of encoding a scan slice containing 2 specified

bits with Illinois scan.

b. The probability of encoding a scan slice containing 3 specified

bits, where each scan chain is driven by the XOR of a unique

combination of 2 tester channels such that there are a total of

Cn
2 ¼ n(n � 1) / 2 scan chains.
3.17. (Test Stimulus Compression) For the sequential linear

decompressor shown in Figure 3.38 whose corresponding system of lin-

ear equations is shown in Figure 3.39, find the compressed stimulus,

X1 � X10, necessary to encode the following test cube: < Z1,. . .,
Z12 > ¼ <0 - - - 1 - 0 - - 010>.

3.18. (Test Stimulus Compression) For the MUX network shown in Fig-

ure 3.43 and then the XOR network shown in Figure 3.44a, find the

compressed stimulus at the network inputs necessary to encode the

following test cube: <1 - 0 - - - 01>.

References 165
3.19. (Test Response Compaction) Explain further how many errors and
howmany unknowns (X’s) can be detected or tolerated by theX-compac-

tor and q-compactor as shown in Figures 3.47 and 3.52, respectively.

3.20. (Test Response Compaction) For the X-compact matrix of the

X-compactor given below:

0 1 1 1 0

0 1 0 1 1

1 1

1

1

1

0

0

0

0 1

1 0

1 0 1

1 0 0 1 1

1 0 1 1 0

0 0 1 1 1
a. What is the compaction ratio?
b. Which outputs after compaction are affected by the second scan

chain output?

c. How many errors can be detected by the X-compactor?
ACKNOWLEDGMENTS

I wish to thank Dr. Xinghao Chen of CTC Technologies for contributing the Testability Analysis sec-

tion; Professor Xiaowei Li and Professor Yinhe Han of Chinese Academy of Sciences, Professor

Kuen-Jong Lee of National Cheng Kung University, Professor Nur A. Touba of the University of Texas

at Austin for contributing a portion of the Circuits for Test Stimulus Compression and Circuits for

Test Response Compaction sections. I also express my gratitude to Professor Xiaoqing Wen of Kyushu

Institute of Technology, Professor Nur A. Touba of the University of Texas at Austin, Professor Kewal K.

Saluja of the University of Wisconsin–Madison, Professor Subhasish Mitra of Stanford University,

Dr. Rohit Kapur and Khader S. Abdel-Hafez of Synopsys, Dr. Brion Keller of Cadence Design Systems,

and Dr. Benoit Nadeau-Dostie of LogicVision for reviewing the text and providing helpful comments,

and Teresa Chang of SynTest Technologies for drawing most of the figures.
REFERENCES

R3.0 Books

[Abramovici 1994] M. Abramovici, M. A. Breuer, and A. D. Friedman, Digital Systems Testing and

Testable Design, IEEE Press, Revised Printing, Piscataway, NJ, 1994.

[Bardell 1987] P. H. Bardell, W. H. McAnney, and J. Savir, Built-In Test for VLSI: Pseudorandom Tech-

niques, John Wiley & Sons, Somerset, NJ, 1987.

[Bushnell 2000] M. L. Bushnell and V. D. Agrawal, Essentials of Electronic Testing for Digital,

Memory & Mixed-Signal VLSI Circuits, Springer, Boston, 2000.

166 CHAPTER 3 Design for testability
[Crouch 1999] A. Crouch, Design for Test for Digital IC’s and Embedded Core Systems, Prentice-

Hall, Englewood Cliffs, NJ, 1999.

[Gizopoulos 2006] D. Gizopoulos, editor, Advances in Electronic Testing: Challenges and Meth-

odologies, Morgan Kaufmann, San Francisco, 2006.

[Golomb 1982] S. W. Golomb, Shift Register Sequence, Aegean Park Press, Laguna Hills, CA, 1982.

[Jha 2003] N. Jha and S. Gupta, Testing of Digital Systems, Cambridge University Press, London,

2003.

[McCluskey 1986] E. J. McCluskey, Logic Design Principles: With Emphasis on Testable Semicus-

tom Circuits, Prentice-Hall, Englewood Cliffs, NJ, 1986.

[Mourad 2000] S. Mourad and Y. Zorian, Principles of Testing Electronic Systems, John Wiley &

Sons, Somerset, NJ, 2000.

[Nadeau-Dostie 2000] B. Nadeau-Dostie, Design for At-Speed Test, Diagnosis and Measurement,

Springer, Boston, 2000.

[Peterson 1972] W. W. Peterson and E. J. Weldon, Jr., Error-Correcting Codes, MIT Press, Cambridge,

MA, 1972.

[Rajski 1998] J. Rajski and J. Tyszer, Arithmetic Built-In Self-Test for Embedded Systems, Prentice-

Hall, Englewood Cliffs, NJ, 1998.

[Stroud 2002] C. E. Stroud, A Designer’s Guide to Built-In Self-Test, Springer, Boston, 2002.

[Wang 2006a] L.-T. Wang, C.-W. Wu, and X. Wen, editors, VLSI Test Principles and Architectures:

Design for Testability, Morgan Kaufmann, San Francisco, 2006.

[Wang 2007a] L.-T. Wang, C. E. Stroud, and N. A. Touba, editors, System-on-Chip Test Architectures:

Nanometer Design for Testability, Morgan Kaufmann, San Francisco, 2007.

R3.1 Introduction

[Fujiwara 1982] H. Fujiwara and S. Toida, The complexity of fault detection problems for combina-

tional circuits, IEEE Trans. on Computers, C-31(6), pp. 555–560, June 1982.

[SIA 2005] SIA, The International Technology Roadmap for Semiconductors: 2005 Edition—

Design, Semiconductor Industry Association, San Jose, CA, http://public.itrs.net, 2005.

[SIA 2006] SIA, The International Technology Roadmap for Semiconductors: 2006 Update, Semi-

conductor Industry Association, San Jose, CA, http://public.itrs.net, 2006.

[Touba 2006] N. A. Touba, Survey of test vector compression techniques, IEEE Design & Test of

Computers, 23(4), pp. 294–303, July–August 2006.

R3.2 Testability Analysis

[Agrawal 1982] V. D. Agrawal and M. R. Mercer, Testability measures—What do they tell us?, in Proc.

IEEE Int. Test Conf., pp. 391–396, November 1982.

[Breuer 1978] M. A. Breuer, New concepts in automated testing of digital circuits, in Proc. EEC

Symp. on CAD of Digital Electronic Circuits and Systems, pp. 69–92, November 1978.

[Goldstein 1979] L. H. Goldstein, Controllability/Observability analysis of digital circuits, IEEE

Trans. on Circuits and Systems, CAS-26(9), pp. 685–693, September 1979.

[Goldstein 1980] L. H. Goldstein and E. L. Thigpen, SCOAP: Sandia controllability/observability anal-

ysis program, in Proc. ACM/IEEE Design Automation Conf., pp. 190–196, June 1980.

[Grason 1979] J. Grason, TMEAS—a testability measurement program, in Proc. ACM/IEEE Design

Automation Conf., pp. 156–161, June 1979.

[Ivanov 1988] A. Ivanov and V. K. Agarwal, Dynamic testability measures for ATPG, IEEE Trans. on

Computer-Aided Design, 7(5), pp. 598–608, May 1988.

[Jain 1985] S. K. Jain and V. D. Agrawal, Statistical fault analysis, IEEE Design & Test of Computers,

2(2), pp. 38–44, February 1985.

[Parker 1975] K. P. Parker and E. J. McCluskey, Probability treatment of general combinational net-

works, IEEE Trans. on Computers, 24(6), pp. 668–670, June 1975.

References 167
[Rizzolo 2001] R. F. Rizzolo, B. F. Robbins, and D. G. Scott, A hierarchical approach to improving ran-

dom pattern testability on IBM eServer z900 chips, in Digest of Papers, IEEE North Atlantic Test

Workshop, pp. 84–89, May 2001.

[Rutman 1972] R. A. Rutman, Fault detection test generation for sequential logic heuristic tree

search, IEEE Computer Repository, Paper R-72-187, September/October 1972.

[Savir 1984] J. Savir, G. S. Ditlow, and P. H. Bardell, random pattern testability, IEEE Trans. on Com-

puter, C-33(1), pp. 79–90, January 1984.

[Seth 1985] S. C. Seth, L. Pan, and V. D. Agrawal, PREDICT—Probabilistic estimation of digital circuit

testability, in Proc. IEEE Fault-Tolerant Computing Symp., pp. 220–225, June 1985.

[Stephenson 1976] J. E. Stephenson and J. Garson, A testability measure for register transfer level

digital circuits, in Proc. IEEE Fault-Tolerant Computing Symp., pp. 101–107, June 1976.

[Wang 1984] L.-T. Wang and E. Law, Daisy testability analyzer (DTA), in Proc. IEEE/ACM Int. Conf.

on Computer-Aided Design, pp. 143–145, November 1984.

[Wang 1985] L.-T. Wang and E. Law, An enhanced Daisy testability analyzer (DTA), in Proc. Auto-

matic Testing Conf., pp. 223–229, October 1985.

R3.3 Scan Design

[Cheung 1997] B. Cheung and L.-T. Wang, The seven deadly sins of scan-based designs, in

Integrated System Design, www.eetimes.com/editorial/1997/test9708.html, August 1997.

[DasGupta 1982] S. DasGupta, P. Goel, R. G. Walther, and T. W. Williams, A variation of LSSD and its

implications on design and test pattern generation in VLSI, in Proc. IEEE Int. Test Conf.,

pp. 63–66, November 1982.

[Eichelberger 1977] E. B. Eichelberger and T. W. Williams, A logic design structure for LSI testability,

in Proc. ACM/IEEE Design Automation Conf., pp. 462–468, June 1977.

[Nadeau-Dostie 1994] B. Nadeau-Dostie, A. Hassan, D. Burek, and S. Sunter, Multiple Clock Rate Test

Apparatus for Testing Digital Systems, U.S. Patent No. 5,349,587, September 20, 1994.

[Rajski 2003] J. Rajski, A. Hassan, R. Thompson, and N. Tamarapalli, Method and Apparatus for

At-Speed Testing of Digital Circuits, U.S. Patent Application No. 20030097614, May 22, 2003.

[Savir 1993] J. Savir and S. Patil, Scan-based transition test, IEEE Trans. on Computer-Aided Design,

12(8), pp. 1232–1241, August 1993.

[Savir 1994] J. Savir and S. Patil, Broad-side delay test, IEEE Trans. on Computer-Aided Design,

13(8), pp. 1057–1064, August 1994.

[Wang 2005a] L.-T. Wang, M.-C. Lin, X. Wen, H.-P. Wang, C.-C. Hsu, S.-C. Kao, and F.-S. Hsu, Multiple-

Capture DFT System for Scan-Based Integrated Circuits, U.S. Patent No. 6,954,887, October 11, 2005.

[Wang 2007b] L.-T. Wang, P.-C. Hsu, and X. Wen, Multiple-Capture DFT System for Detecting or Locat-

ing Crossing Clock-Domain Faults During Scan-Test, U.S. Patent No. 7,260,756, August 21, 2007.

R3.4 Logic Built-In Self-Test

[Bardell 1982] P. H. Bardell and W. H. McAnney, Self-testing of multiple logic modules, in Proc. IEEE

Int. Test Conf., pp. 200–204, November 1982.

[Barzilai 1981] Z. Barzilai, J. Savir, G. Markowsky, and M. G. Smith, The weighted syndrome sums

approach to VLSI testing, IEEE Trans. on Computers, 30(12), pp. 996–1000, December 1981.

[Barzilai 1983] Z. Barzilai, D. Coppersmith, and A. Rosenberg, Exhaustive bit pattern generation in

discontiguous positions with applications to VLSI testing, IEEE Trans. on Computers, 32(2),

pp. 190–194, February 1983.

[Benowitz 1975] N. Benowitz, D. F. Calhoun, G. E. Alderson, J. E. Bauer, and C. T. Joeckel, An

advanced fault isolation system for digital logic, IEEE Trans. on Computers, 24(5),

pp. 489–497, May 1975.

[Cadence 2008] Cadence Design Systems, http://www.cadence.com, 2008.

168 CHAPTER 3 Design for testability
[Chen 1987] C. L. Chen, Exhaustive test pattern generation with cyclic codes, IEEE Trans. on Com-

puters, 37(3), pp. 329–338, March 1987.

[Cheon 2005] B. Cheon, E. Lee, L.-T. Wang, X. Wen, P. Hsu, J. Cho, J. Park, H. Chao, and S. Wu, At-

speed logic BIST for IP cores, in Proc. IEEE/ACM Design, Automation, and Test in Europe Conf.,

pp. 860–861, March 2005.

[Chin 1984] C. K. Chin and E. J. McCluskey,Weighted PatternGeneration for Built-In Self-Test, Center

for Reliable Computing, Technical Report (CRC TR) No. 84-7, Stanford University, August 1984.

[Foote 1997] T. G. Foote, D. E. Hoffman, W. V. Huott, T. J. Koprowski, B. J. Robbins, and M. P. Kusko,

Testing the 400 MHz IBM generation-4 CMOS chip, in Proc. IEEE Int. Test Conf., pp. 106–114,

November 1997.

[Frohwerk 1977] R. A. Frohwerk, Signature analysis: A new digital field service method, in Hewlett-

Packard J., 28, pp. 2–8, September 1977.

[Furukawa2006] H. Furukawa, X.Wen, L.-T.Wang, B. Sheu, Z. Jiang, and S.Wu,Anovel andpractical con-

trol scheme for inter-clock at-speed testing, in Proc. IEEE Int. Test Conf., Paper 17.2, October 2006.

[Gloster 1988] C. S. Gloster, Jr. and F. Brglez, Boundary scan with cellular built-in self-test, in Proc.

IEEE Int. Test Conf., pp. 138–145, September 1988.

[Hassan 1984] S. Z. Hassan and E. J. McCluskey, Increased fault coverage through multiple signa-

tures, in Proc. IEEE Fault-Tolerant Computing Symp., pp. 354–359, June 1984.

[Hayes 1976] J. P. Hayes, Transition count testing of combinational logic circuits, IEEE Trans. on

Computers, C-25(6), pp. 613–620, June 1976.

[Hortensius 1989] P. D. Hortensius, R. D. McLeod, W. Pries, D. M. Miller, and H. C. Card, Cellular

automata-based pseudorandom number generators for built-in self-test, IEEE Trans. on Com-

puter-Aided Design, 8(8), pp. 842–859, August 1989.

[Keller 2007] B. Keller, A. Uzzaman, B. Li, and T. Snethen, Using programmable on-product clock

generation (OPCG) for delay test, in Proc. IEEE Asian Test Symp., pp. 69–72, October 2007.

[Khara 1987] M. Khara and A. Albicki, Cellular automata used for test pattern generation, in Proc.

IEEE Int. Conf. on Computer Design, pp. 56–59, October 1987.

[Könemann 1979] B. Könemann, J. Mucha, and G. Zwiehoff, Built-in logic block observation techni-

ques, in Proc. IEEE Int. Test Conf., pp. 37–41, October 1979.

[Könemann 1980] B. Könemann, J. Mucha, and G. Zwiehoff, Built-in test for complex digital circuits,

IEEE J. of Solid-State Circuits, 15(3), pp. 315–318, June 1980.

[Lai 2007] L. Lai, W.-T. Cheng, and T. Rinderknecht, Programmable scan-based logic built-in self test,

in Proc. IEEE Asian Test Symp., pp. 371–377, October 2007.

[LogicVision 2008] LogicVision, http://www.logicvision.com, 2008.

[McCluskey 1981] E. J. McCluskey and S. Bozorgui-Nesbat, Design for autonomous test, IEEE Trans.

on Computers, 30(11), pp. 860–875, November 1981.

[McCluskey 1984] E. J. McCluskey, Verification testing—A pseudoexhaustive test technique, IEEE

Trans. on Computers, 33(6), pp. 541–546, June 1984.

[McCluskey 1985] E. J. McCluskey, Built-in self-test structures, IEEE Design & Test of Computers,

2(2), pp. 29–36, April 1985.

[Mentor 2008] Mentor Graphics, http://www.mentor.com, 2008.

[Nadeau-Dostie 1994] B. Nadeau-Dostie, A. Hassan, D. Burek, and S. Sunter, Multiple Clock Rate Test

Apparatus for Testing Digital Systems, U.S. Patent No. 5,349,587, September 20, 1994.

[Nadeau-Dostie 2006] B. Nadeau-Dostie and J.-F. Côté, Clock Controller for At-Speed Testing of Scan

Circuits, U.S. Patent No. 7,155,651, December 26, 2006.

[Nadeau-Dostie 2007] B. Nadeau-Dostie, Method and Circuit for At-Speed Testing of Scan Circuits,

U.S. Patent No. 7,194,669, March 20, 2007.

[Rajski 2003] J. Rajski, A. Hassan, R. Thompson, and N. Tamarapalli, Method and Apparatus for At-

Speed Testing of Digital Circuits, U.S. Patent Application No. 20030097614, May 22, 2003.

[Savir 1980] J. Savir, Syndrome-testable design of combinational circuits, IEEE Trans. on Computers,

29(6), pp. 442–451, June 1980.

References 169
[Savir 1985] J. Savir and W. H. McAnney, On the masking probability with ones count and transition

count, in Proc. IEEE/ACM Int. Conf. on Computer-Aided Design, pp. 111–113, November 1985.

[Schnurmann 1975] H. D. Schnurmann, E. Lindbloom, and R. G. Carpenter, The weighted random

test-pattern generator, IEEE Trans. on Computers, 24(7), pp. 695–700, July 1975.

[SynTest 2008] SynTest Technologies, http://www.syntest.com, 2008.

[Tang 1984] D. T. Tang and C. L. Chen, Logic test pattern generation using linear codes, IEEE Trans.

on Computers, 33(9), pp. 845–850, September 1984.

[Tsai 1999] H.-C. Tsai, K.-T. Cheng, and S. Bhawmik, Improving the test quality for scan-based BIST

using a general test application scheme, in Proc. ACM/IEEE Design Automation Conf.,

pp. 748–753, June 1999.

[van Sas 1990] J. van Sas, F. Catthoor, and H. D. Man, Cellular automata-based self-test for program-

mable data paths, in Proc. IEEE Int. Test Conf., pp. 769–778, September 1990.

[Wang 1986a] L.-T. Wang and E. J. McCluskey, Condensed linear feedback shift register (LFSR) test-

ing—A pseudoexhaustive test technique, IEEE Trans. on Computers, 35(4), pp. 367–370, April

1986.

[Wang 1986b] L.-T. Wang and E. J. McCluskey, Concurrent built-in logic block observer (CBILBO), in

Proc. IEEE Int. Symp. on Circuits and Systems, 3(3), pp. 1054–1057, May 1986.

[Wang 1987] L.-T. Wang and E. J. McCluskey, Linear feedback shift register design using cyclic codes,

IEEE Trans. on Computers, 37(10), pp. 1302–1306, October 1987.

[Wang 1988a] L.-T. Wang and E. J. McCluskey, Hybrid designs generating maximum-length

sequences, Special Issue on Testable and Maintainable Design, IEEE Trans. on Computer-Aided

Design, 7(1), pp. 91–99, January 1988.

[Wang 1988b] L.-T. Wang and E. J. McCluskey, Circuits for pseudo-exhaustive test pattern genera-

tion, IEEE Trans. on Computer-Aided Design, 7(10), pp. 1068–1080, October 1988.

[Wang 1989] L.-T. Wang, M. Marhoefer, and E. J. McCluskey, A self-test and self-diagnosis architecture

for boards using boundary scan, in Proc. IEEE European Test Conf., pp. 119–126, April 1989.

[Wang 2005b] L.-T. Wang, X. Wen, P.-C. Hsu, S. Wu, and J. Guo, At-speed logic BIST architecture for

multi-clock designs, in Proc. Int. Conf. on Computer Design, pp. 475–478, October 2005.

[Wang 2006b] L.-T. Wang, P.-C. Hsu, S.-C. Kao, M.-C. Lin, H.-P. Wang, H.-J. Chao, and X. Wen,

Multiple-Capture DFT System for Detecting or Locating Crossing Clock-Domain Faults During

Self-Test or Scan-Test, U.S. Patent No. 7,007,213, February 28, 2006.

[Williams 1987] T. W. Williams, W. Daehn, M. Gruetzner, and C. W. Starke, Aliasing errors in signa-

ture analysis registers, IEEE Design & Test of Computers, 4(2), pp. 39–45, April 1987.

[Wolfram 1983] S. Wolfram, Statistical mechanics of cellular automata, in Review of Modern Phys-

ics, 55(3), pp. 601–644, July 1983.

[Wunderlich 1987] H.-J. Wunderlich, Self test using unequiprobable random patterns, in Proc. IEEE

Fault-Tolerant Computing Symp., pp. 258–263, July 1987.
R3.5 Test Compression

[Barnhart 2002] C. Barnhart, V. Brunkhorst, F. Distler, O. Farnsworth, A. Ferko, B. Keller, D. Scott, B.

Koenemann, and T. Onodera, Extending OPMISR beyond 10x scan test efficiency, IEEE Design &

Test of Computers, 19(5), pp. 65–73, May-June 2002.

[Bayraktaroglu 2001] I. Bayraktaroglu and A. Orailoglu, Test volume and application time reduction

through scan chain concealment, in Proc. ACM/IEEE Design Automation Conf., pp. 151–155,

June 2001.

[Bayraktaroglu 2003] I. Bayraktaroglu and A. Orailoglu, Concurrent application of compaction and

compression for test time and data volume reduction in scan designs, IEEE Trans. on Computers,

52(11), pp. 1480–1489, November 2003.

[Beck 2005] M. Beck, O. Barondeau, M. Kaibel, F. Poehl, X. Lin, and R. Press, Logic design for

on-chip test clock generation—Implementation details and impact on delay test quality, in Proc.

IEEE/ACM Design, Automation, and Test in Europe Conf., pp. 56–61, March 2005.

170 CHAPTER 3 Design for testability
[Cadence 2008] Cadence Design Systems, http://www.cadence.com, 2008.

[Chakrabarty 1998] K. Chakrabarty, B. T. Murray, and J. P. Hayes, Optimal zero-aliasing space com-

paction of test responses, IEEE Trans. on Computers, 47(11), pp. 1171–1187, November 1998.

[Chandra 2007] A. Chandra, H. Yan, and R. Kapur, Multimode Illinois scan architecture for test appli-

cation time and test data volume reduction, in Proc. IEEE VLSI Test Symp., pp. 84–92, May 2007.

[Fan 2007] X.-X. Fan, Y. Hu, and L.-T. Wang, An on-chip test clock control scheme for multi-clock at-

speed testing, in Proc. IEEE Asian Test Symp., pp. 341–348, October 2007.

[Frohwerk 1977] R. A. Frohwerk, Signature analysis: A new digital field service method, in Hewlett-

Packard J., 28, pp. 2–8, September 1977.

[Furukawa2006] H. Furukawa, X.Wen, L.-T.Wang, B. Sheu, Z. Jiang, and S.Wu,Anovel andpractical con-

trol scheme for inter-clock at-speed testing, in Proc. IEEE Int. Test Conf., Paper 17.2, October 2006.

[Gu 2001] X. Gu, S. S. Chung, F. Tsang, J. A. Tofte, and H. Rahmanian, An effort-minimized logic BIST

implementation method, in Proc. IEEE Int. Test Conf., pp. 1002–1010, October 2001.

[Hamzaoglu 1999] I. Hamzaoglu and J. H. Patel, Reducing test application time for full scan embed-

ded cores, in Proc. IEEE Fault-Tolerant Computing Symp., pp. 260–267, July 1999.

[Han 2006] Y. Han, X. Li, H. Li, and A. Chandra, Embedded test resource for SoC to reduce required

tester channels based on advanced convolutional codes, IEEE Trans. on Instrumentation and

Measurement, 55(2), pp. 389–399, April 2006.

[Han 2007] Y. Han, Y. Hu, X. Li, H. Li, and A. Chandra, Embedded test decompressor to reduce the

required channels and vector memory of tester for complex processor circuit, IEEE Trans. on

Very Large Scale Integration Systems, 15(5), pp. 531–540, May 2007.

[Hsu 2001] F. F. Hsu, K. M. Butler, and J. H. Patel, A case study on the implementation of Illinois scan

architecture, in Proc. IEEE Int. Test Conf., pp. 538–547, October 2001.

[Kapur 2008] R. Kapur, S. Mitra, and T. W. Williams, Historical perspective on scan compression,

IEEE Design & Test of Computers, 25(2), pp. 114–120, March-April 2008.

[Keller 2007] B. Keller, A. Uzzaman, B. Li, and T. Snethen, Using programmable on-product clock

generation (OPCG) for delay test, in Proc. IEEE Asian Test Symp., pp. 69–72, October 2007.

[Könemann 1991] B. Koenemann, LFSR-coded test patterns for scan designs, in Proc. IEEE Euro-

pean Test Conf., pp. 237–242, April 1991.

[Könemann 2001] B. Koenemann, C. Barnhart, B. Keller, T. Snethen, O. Farnsworth, and D. Wheater,

A SmartBIST variant with guaranteed encoding, in Proc. IEEE Asian Test Symp., pp. 325–330,

November 2001.

[Könemann 2003] B. Koenemann, C. Barnhart, and B. Keller, Real-Time Decoder for Scan Test

Patterns, U.S. Patent No. 6,611,933, August 26, 2003.

[Krishna 2001] C. V. Krishna, A. Jas, and N. A. Touba, Test vector encoding using partial LFSR

reseeding, in Proc. IEEE Int. Test Conf., pp. 885–893, October 2001.

[Krishna 2003] C. V. Krishna and N. A. Touba, Adjustable width linear combinational scan vector

decompression, in Proc. IEEE/ACM Int. Conf. on Computer-Aided Design, pp. 863–866, Septem-

ber 2003.

[Lee 1998] K.-J. Lee, J. J. Chen, and C. H. Huang, Using a single input to support multiple scan

chains, in Proc. IEEE/ACM Int. Conf. on Computer-Aided Design, pp. 74–78, November 1998.

[Lee 1999] K.-J. Lee, J. J. Chen, and C. H. Huang, Broadcasting test patterns to multiple circuits, IEEE

Trans. on Computer-Aided Design, 18(12), pp. 1793–1802, December 1999.

[Li 2004] L. Li and K. Chakrabarty, Test set embedding for deterministic BIST using a reconfigurable

interconnection network, IEEE Trans. on Computer-Aided Design, 23(9), pp. 1289–1305,

September 2004.

[LogicVision 2008] LogicVision, http://www.logicvision.com, 2008.

[Mentor 2008] Mentor Graphics, http://www.mentor.com, 2008.

[Mitra 2004a] S. Mitra and K. S. Kim, X-Compact: An efficient response compaction technique, IEEE

Trans. on Computer-Aided Design, 23(3), pp. 421–432, March 2004.

[Mitra 2004b] S. Mitra, S. S. Lumetta, and M. Mitzenmacher, X-tolerant signature analysis, in Proc.

IEEE Int. Test Conf., pp. 432–441, October 2004.

References 171
[Mitra 2006] S. Mitra and K. S. Kim, XPAND: An efficient test stimulus compression technique, IEEE

Trans. on Computers, 55(2), pp. 163–173, February 2006.

[Mrugalski 2004] G. Mrugalski, J. Rajski, and J. Tyszer, Ring generators—new devices for embedded

test applications, IEEE Trans. on Computer-Aided Design, 23(9), pp. 1306–1320, September 2004.

[Nadeau-Dostie 2004] B. Nadeau-Dostie, Method of Masking Corrupt Bits During Signature Analysis

and Circuit for Use Therewith, U.S. Patent No. 6,745,359, June 1, 2004.

[Nadeau-Dostie 2005] B. Nadeau-Dostie, J.-F. Côté, and F. Maamari, Structural test with functional

characteristics, in Proc. IEEE Current and Defect-Based Testing Workshop, pp. 57–60, May 2005.

[Nadeau-Dostie 2006] B. Nadeau-Dostie and J.-F. Côté, Clock Controller for At-Speed Testing of Scan

Circuits U.S. Patent No. 7,155,651, December 26 2006.

[Naruse 2003] M. Naruse, I. Pomeranz, S. M. Reddy, and S. Kundu, On-chip compression of output

responses with unknown values using LFSR reseeding, in Proc. IEEE Int. Test Conf.,

pp. 1060–1068, October 2003.

[Pandey 2002] A. R. Pandey and J. H. Patel, Reconfiguration technique for reducing test time and

test volume in Illinois scan architecture based designs, in Proc. IEEE VLSI Test Symp.,

pp. 9–15, April 2002.

[Patel 2003] J. H. Patel, S. S. Lumetta, and S. M. Reddy, Application of Saluja-Karpovsky compactors

to test responses with many unknowns, in Proc. IEEE VLSI Test Symp., pp. 107–112, April 2003.

[Pouya 1998] B. Pouya and N. A. Touba, Synthesis of zero-aliasing space elementary-tree space com-

pactors, in Proc. IEEE VLSI Test Symp., pp. 70–77, April 1998.

[Rajski 2004] J. Rajski, J. Tyszer, M. Kassab, and N. Mukherjee, Embedded deterministic test, IEEE

Trans. on Computer-Aided Design, 23(5), pp. 776–792, May 2004.

[Rajski 2005] J. Rajski, J. Tyszer, C. Wang, and S. M. Reddy, Finite memory test response compactors for

embedded test applications, IEEETrans. onComputer-AidedDesign, 24(4), pp. 622–634,April 2005.

[Rajski 2008] J. Rajski, J. Tyszer, G. Mrugalski, W.-T. Cheng, N. Mukherjee, and M. Kassab, X-Press:

Two-stage X-tolerant compactor with programmable selector, IEEE Trans. on Computer-Aided

Design, 27(1), pp. 147–159, January 2008.

[Saluja 1983] K. K. Saluja and M. Karpovsky, Test compression hardware through data compression

in space and time, in Proc. IEEE Int. Test Conf., pp. 83–88, October 1983.

[Samaranayake 2003] S. Samaranayake, E. Gizdarski, N. Sitchinava, F. Neuveux, R. Kapur, and

T. W. Williams, A reconfigurable shared scan-in architecture, in Proc. IEEE VLSI Test Symp.,

pp. 9–14, April 2003.

[Shah 2004] M. A. Shah and J. H. Patel, Enhancement of the Illinois scan architecture for use with

multiple scan inputs, in Proc. IEEE Computer Society Annual Symp. on VLSI, pp. 167–172,

February 2004.

[Sitchinava 2004] N. Sitchinava, S. Samaranayake, R. Kapur, E. Gizdarski, F. Neuveux, and T. W.Williams,

Changing the scan enable during shift, in Proc. IEEE VLSI Test Symp., pp. 73–78, April 2004.

[Synopsys 2008] Synopsys, http://www.synopsys.com, 2008.

[SynTest 2008] SynTest Technologies, http://www.syntest.com, 2008.

[Touba 2006] N. A. Touba, Survey of test vector compression techniques, IEEE Design & Test of

Computers, 23(4), pp. 294–303, July-August 2006.

[Touba 2007] N. A. Touba, X-canceling MISR—An X-tolerant methodology for compacting output

responses with unknowns using a MISR, in Proc. IEEE Int. Test Conf., Paper 6.2, October 2007.

[Touba 2008] N. A. Touba and L.-T. Wang, X-Canceling Multiple-Input Signature Register (MISR) for

Compacting Output Responses with Unknowns, U.S. Patent Application No. 12,007,693, January

14, 2008.

[Volkerink 2005] E. H. Volkerink and S. Mitra, Response compaction with any number of unknowns

using a new LFSR architecture, in Proc. ACM/IEEE Design Automation Conf., pp. 117–122, June

2005.

[Wang 2002] L.-T. Wang, H.-P. Wang, X. Wen, M.-C. Lin, S.-H. Lin, D.-C. Yeh, S.-W. Tsai, K. S. Abdel-

Hafez, Method and Apparatus for Broadcasting Scan Patterns in a Scan-Based Integrated Circuit,

U.S. Patent Application No. 20030154433, January 16, 2002.

172 CHAPTER 3 Design for testability
[Wang 2004] L.-T. Wang, X. Wen, H. Furukawa, F.-S. Hsu, S.-H. Lin, S.-W. Tsai, K. S. Abdel-Hafez, and

S. Wu, VirtualScan: A new compressed scan technology for test cost reduction, in Proc. IEEE Int.

Test Conf., pp. 916–925, October 2004.

[Wang 2008] L.-T. Wang, X. Wen, S. Wu, Z. Wang, Z. Jiang, B. Sheu, and X. Gu, VirtualScan: Test

compression technology using combinational logic and one-pass ATPG, IEEE Design & Test of

Computers, 25(2), pp. 122–130, March-April 2008.

[Wohl 2001] P. Wohl, J. A. Waicukauski, and T. W. Williams, Design of compactors for signature-

analyzers in built-in self-test, in Proc. IEEE Int. Test Conf., pp. 54–63, October 2001.

[Wohl 2003] P. Wohl, J. A. Waicukauski, S. Patel, and M. B. Amin, Efficient compression and applica-

tion of deterministic patterns in a logic BIST architecture, in Proc. ACM/IEEE Design Automa-

tion Conf., pp. 566–569, June 2003.

[Wohl 2004] P. Wohl, J. A. Waicukauski, and S. Patel, Scalable selector architecture for X-tolerant

deterministic BIST, in Proc. ACM/IEEE Design Automation Conf., pp. 934–939, June 2004.

[Wohl 2007a] P. Wohl, J. A. Waicukauski, R. Kapur, S. Ramnath, E. Gizdarski, T. W. Williams, and

P. Jaini, Minimizing the impact of scan compression, in Proc. IEEE VLSI Test Symp.,

pp. 67–74, May 2007.

[Wohl 2007b] P. Wohl, J. A. Waicukauski, and S. Ramnath, Fully X-tolerant combinational scan

compression, in Proc. IEEE Int. Test Conf., Paper 6.1, October 2007.
R3.6 Concluding Remarks

[Bardell 1982] P. H. Bardell and W. H. McAnney, Self-testing of multiple logic modules, in Proc. IEEE

Int. Test Conf., pp. 200–204, November 1982.

[Naffziger 2006] S. Naffziger, B. Stackhouse, T. Grutkowski, D. Josephson, J. Desai, E. Alon, and

M. Horowitz, The implementation of a 2-core multi-threaded Itanium family processor, IEEE

J. of Solid-State Circuits, 41(1), pp. 197–209, January 2006.

[Stackhouse 2008] B. Stackhouse, B. Cherkauer, M. Gowan, P. Gronowski, and C. Lyles, A 65 nm

2-billion-transistor quad-core Itanium processor, Digest of Papers, IEEE Int. Solid-State Circuits

Conf., pp. 92, February 2008.

[Wang 1986b] L.-T. Wang and E. J. McCluskey, Concurrent built-in logic block observer (CBILBO), in

Proc. IEEE Int. Symp. on Circuits and Systems, 3(3), pp. 1054–1057, May 1986.

CHAPTER
4
Fundamentals of
algorithms
Chung-Yang (Ric) Huang
National Taiwan University, Taipei, Taiwan

Chao-Yue Lai
National Taiwan University, Taipei, Taiwan

Kwang-Ting (Tim) Cheng
University of California, Santa Barbara, California
IS CHAPTER
ABOUT TH

In this chapter, we will go through the fundamentals of algorithms that are

essential for the readers to appreciate the beauty of various EDA technologies

covered in the rest of the book. For example, many of the EDA problems can

be either represented in graph data structures or transformed into graph prob-
lems. We will go through the most representative ones in which the efficient

algorithms have been well studied.

The readers should be able to use these graph algorithms in solving many of

their research problems. Nevertheless, there are still a lot of the EDA problems

that are naturally difficult to solve. That is to say, it is computationally infeasible

to seek for the optimal solutions for these kinds of problems. Therefore, heuris-

tic algorithms that yield suboptimal, yet reasonably good, results are usually

adopted as practical approaches. We will also cover several selected heuristic
algorithms in this chapter. At the end, we will talk about the mathematical pro-

gramming algorithms, which provide the theoretical analysis for the problem

optimality. We will especially focus on the mathematical programming problems

that are most common in the EDA applications.
4.1 INTRODUCTION

An algorithm is a sequence of well-defined instructions for completing a task or

solving a problem. It can be described in a natural language, pseudocode, a flow-

chart, or even a programming language. For example, suppose we are interested

in knowing whether a specific number is contained in a given sequence of num-
bers. By traversing the entire number sequence from a certain beginning number
173

Inputs: a sequence of number S
 a number n

Let variable x = S.begin()

x == n ?

x == S.end() ?

x = x.next()

FOUND

NOT
FOUND

yes

yes

no

no

FIGURE 4.1

Flowchart of the “Linear Search” algorithm.

174 CHAPTER 4 Fundamentals of algorithms
to a certain ending number, we use a search algorithm to find this specific number.

Figure 4.1 illustrates this intuitive algorithm known as linear search.

Such kinds of algorithms can be implemented in a computer program and
then used in real-life applications [Knuth 1968; Horowitz 1978]. However, the

questions that must be asked before implementation are: “Is the algorithm effi-

cient?” “Can the algorithm complete the task within an acceptable amount of

time for a specific set of data derived from a practical application?” As we will

see in the next section, there are methods for quantifying the efficiency of an

algorithm. For a given problem, different algorithms can be applied, and each

of them has a different degree of efficiency. Such metrics for measuring an

algorithm’s efficiency can help answer the preceding questions and aid in the
selection of the best possible algorithm for the task.

Devising an efficient algorithm for a given EDA problem could be challenging.

Because a rich collection of efficient algorithms already exists for a set of standard

problems where data are represented in the form of graphs, one possible

approach is to model the given problem as a graph problem and then apply a

known, efficient algorithm to solve the modeled graph problem. In Section 4.3,

we introduce several graph algorithms that are commonly used for a wide range

of EDA problems.
Many EDA problems are intrinsically difficult, because finding an optimal

solution within a reasonable runtime is not always possible. For such problems,

certain heuristic algorithms can be applied to find an acceptable solution first.

If time or computer resources permit, such algorithms can further improve the

result incrementally.

In addition to modeling EDA problems in graphs, it is sometimes possible to

transform them into certain mathematical models, such as linear inequalities or

nonlinear equations. The primary advantage of modeling an EDA problem with

4.2 Computational complexity 175
a mathematical formula is that there are many powerful tools that can automati-

cally handle these sorts of mathematical problems. They may yield better results
than the customized heuristic algorithms. We will briefly introduce some of these

useful mathematical programming techniques near the end of this chapter.
4.2 COMPUTATIONAL COMPLEXITY

A major criterion for a good algorithm is its efficiency—that is, how much time
and memory are required to solve a particular problem. Intuitively, time and

memory can be measured in real units such as seconds and megabytes. However,

these measurements are not subjective for comparisons between algorithms,

because they depend on the computing power of the specific machine and on

the specific data set. To standardize the measurement of algorithm efficiency,

the computational complexity theory was developed [Ullman 1984; Papadi-

mitriou 1993, 1998; Wilf 2002]. This allows an algorithm’s efficiency to be esti-
mated and expressed conceptually as a mathematical function of its input size.

Generally speaking, the input size of an algorithm refers to the number of

items in the input data set. For example, when sorting n words, the input size is

n. Notice that the conventional symbol for input size is n. It is also possible for

an algorithm to have an input size with multiple parameters. Graph algorithms,

which will be introduced in Section 4.3, often have input sizes with two pa-

rameters: the number of vertices jV j and the number of edges jE j in the graph.

Computational complexity can be further divided into time complexity
and space complexity, which estimate the time and memory requirements

of an algorithm, respectively. In general, time complexity is considered much

more important than space complexity, in part because the memory require-

ment of most algorithms is lower than the capacity of current machines. In

the rest of the section, all calculations and comparisons of algorithm efficiency

refer to time complexity as complexity unless otherwise specified. Also, time

complexity and running time can be used interchangeably in most cases.

The time complexity of an algorithm is calculated on the basis of the number
of required elementary computational steps that are interpreted as a function of

the input size. Most of the time, because of the presence of conditional con-

structs (e.g., if-else statements) in an algorithm, the number of necessary steps

differs from input to input. Thus, average-case complexity should be a more

meaningful characterization of the algorithm. However, its calculations are often

difficult and complicated, which necessitates the use of a worst-case complexity

metric. An algorithm’s worst-case complexity is its complexity with respect to

the worst possible inputs, which gives an upper bound on the average-case
complexity. As we shall see, the worst-case complexity may sometimes provide

a decent approximation of the average-case complexity.

The calculation of computational complexity is illustrated with two simple

examples in Algorithm 4.1 and 4.2. Each of these entails the process of looking

176 CHAPTER 4 Fundamentals of algorithms
up a word in a dictionary. The input size n refers to the total number of words

in the dictionary, because every word is a possible target. The first algorithm—
linear search—is presented in Algorithm 4.1. It starts looking for the target word

t from the first word in the dictionary (Dic[0]) to the last word (Dic[n-1]). The

conclusion “not found” is made only after every word is checked. On the other

hand, the second algorithm—binary search—takes advantage of the alphabetic

ordering of the words in a dictionary. It first compares the word in the middle

of the dictionary (Dic[mid]) with the target t. If t is alphabetically “smaller” than

Dic[mid], t must rest in the front part of the dictionary, and the algorithm will

then focus on the front part of the word list in the next iteration (line 5 of
Binary_Search), and vice versa. In every iteration, the middle of the search

region is compared with the target, and one half of the current region will be

discarded in the next iteration. Binary search continues until the target word

t is matched or not found at all.

Algorithm 4.1 Linear Search Algorithm

Linear_Search(Array_of_words Dic[n], Target t)
1.

2.

3.

1

2

3

4

5

6

7

8

9

10
for counter ctr from 0 to n-1

if (Dic[ctr] is t) return Dic[ctr];

return NOT_FOUND;
Algorithm 4.2 Binary Search Algorithms

Binary_Search(Array_of_words Dic[n], Target t)
. Position low = 0, high = n-1;

. while (low <= high) do

. Position mid = (low + high)/2;

. if (Dic[mid] < t) low = mid;

. else if (Dic[mid] > t) high = mid;

. else // Dic[mid] is t

. return Dic[mid];

. end if

. end while

. return NOT_FOUND;
In linear search, the worst-case complexity is obviously n, because every

word must be checked if the dictionary does not contain the target word at

all. Different target words require different numbers of executions of lines

1-2 in Linear_Search, yet on average, n/2 times of checks are required.

4.2 Computational complexity 177
Thus, the average-case complexity is roughly n/2. Binary search is apparently

quicker than linear search. Because in every iteration of the while loop in
Binary_Search one-half of the current search area is discarded, at most

log2 n (simplified as lg n in the computer science community) of lookups are

required—the worst-case complexity. n is clearly larger than lg n, which proves

that binary search is a more efficient algorithm. Its average-case complexity can

be calculated as in Equation (4.1) by adding up all the possible numbers of

executions and dividing the result by n.

average� case� complexity ¼ 1�1þ 2�2þ 4�3þ 8�4þ . . .þ n

2
�lg n

0
@

1
A=n

¼ lg n� 1þ 3

n

ð4:1Þ
4.2.1 Asymptotic notations
In computational complexity theory, not all parts of an algorithm’s running time

are essential. In fact, only the rate of growth or the order of growth of the run-

ning time is typically of most concern in comparing the complexities of different

algorithms. For example, consider two algorithms A and B, where A has longer run-

ning time for smaller input sizes, and Bhas a higher rate of growth of running time as

the input size increases. Obviously, the running time of B will outnumber that of

A for input sizes greater than a certain number. As in real applications, the input size
of aproblem is typically very large, algorithmBwill always runmore slowly, and thus

we will consider it as the one with higher computational complexity.

Similarly, it is also sufficient to describe the complexity of an algorithm con-

sidering only the factor that has highest rate of growth of running time. That is,

if the computational complexity of an algorithm is formulated as an equation,

we can then focus only on its dominating term, because other lower-order

terms are relatively insignificant for a large n. For example, the average-case

complexity of Binary_Search, which was shown in Equation (4.1), can be
simplified to only lg n, leaving out the terms �1 and 3/n. Furthermore, we

can also ignore the dominating term’s constant coefficient, because it contrib-

utes little information for evaluating an algorithm’s efficiency. In the example

of Linear_Search in Algorithm 4.1, its worst-case complexity and average-

case complexity—n and n/2, respectively—are virtually equal under this crite-

rion. In other words, they are said to have asymptotically equal complexity for

larger n and are usually represented with the following asymptotic notations.

Asymptotic notations are symbols used in computational complexity the-
ory to express the efficiency of algorithms with a focus on their orders of growth.

The three most used notations are O-notation, O-notation, and Y-notation.

Also called n = 100 n = 10,000 n = 1,000,000
O(1) 0.000001 sec.

O(lg n)
O(n)

O(nlg n)
O(n2)
O(n3)
O(2n)
O(n!)

Constant time 0.000001 sec.0.000001 sec.
0.00002 sec.0.000013 sec.0.000007 sec.Logarithmic time

1 sec.0.01 sec.0.0001 sec.Linear time
20 sec.0.13 sec.0.00066 sec.

278 hours100 sec.0.01 sec.Quadratic time
317 centuries278 hours1 sec.Cubic time

1030087centuries102995 centuries1014 centuriesExponential time
N/A1035645 centuries10143 centuriesFactorial time

FIGURE 4.2

Frequently used orders of functions and their aliases, along with their actual running time

on a million-instructions-per-second machine with three input sizes: n ¼ 100, 10,000, and

1,000,000.

178 CHAPTER 4 Fundamentals of algorithms
4.2.1.1 O-notation

O-notation is the dominant method used to express the complexity of algo-

rithms. It denotes the asymptotic upper bounds of the complexity functions.

For a given function g(n), the expression O(g(n)) (read as “big-oh of g of n”)

represents the set of functions

OðgðnÞÞ ¼ ff ðnÞ: positive constants c and n0 exist such that

0 � f ðnÞ � cgðnÞ for all n � n0g
A non-negative function f(n) belongs to the set of functions O(g(n)) if there is a

positive constant c that makes f(n) � cg(n) for a sufficiently large n. We can

write f(n) 2 O(g(n)) because O(g(n)) is a set, but it is conventionally written

as f(n) ¼ O(g(n)). Readers have to be careful to note that the equality sign
denotes set memberships in all kinds of asymptotic notations.

The definition of O-notation explains why lower-order terms and constant

coefficients of leading terms can be ignored in complexity theory. The following

are examples of legal expressions in computational theory:

n2 ¼ Oðn2Þ
n3 þ 1000n2 þ n ¼ Oðn3Þ

1000n ¼ OðnÞ
20n3 ¼ Oð0:5n3 þ n2Þ

Figure 4.2 shows the most frequently used O-notations, their names, and the

comparisons of actual running times with different values of n. The first order

of functions, O(1), or constant time complexity, signifies that the algorithm’s

running time is independent of the input size and is the most efficient. The
other O-notations are listed in their rank order of efficiency. An algorithm can

be considered feasible with quadratic time complexity O(n2) for a relatively

small n, but when n ¼ 1,000,000, a quadratic-time algorithm takes dozens of

4.2 Computational complexity 179
days to complete the task. An algorithm with a cubic time complexity may han-

dle a problem with small-sized inputs, whereas an algorithm with exponential
or factorial time complexity is virtually infeasible. If an algorithm’s time com-

plexity can be expressed with or is asymptotically bounded by a polynomial

function, it has polynomial time complexity. Otherwise, it has exponential
time complexity. These will be further discussed in Subsection 4.2.2.

4.2.1.2 O-notation and Q-notation

O-notation is the inverse of O-notation. It is used to express the asymptotic
lower bounds of complexity functions. For a given function g(n), the expres-

sion O(g(n)) (read as “big-omega of g of n”) denotes the set of functions:

O ðgðnÞÞ ¼ ff ðnÞ: positive constants c and n0 exist such that

0 � cgðnÞ � f ðnÞ for all n � n0g
From the definitions of O- and O-notation, the following mutual relationship

holds:

f ðnÞ ¼ OðgðnÞÞ if and only if gðnÞ ¼ O ðf ðnÞÞ

O-notation receives much less attention than O-notation, because we are usu-

ally concerned about how much time at most would be spent executing an

algorithm instead of the least amount of time spent.

Y-notation expresses the asymptotically tight bounds of complexity func-

tions. Given a function g(n), the expression Y(g(n)) (read as “big-theta of g of
n”) denotes the set of functions

YðgðnÞÞ ¼ f f ðnÞ: positive constants c1; c2; and n0 exist such that

0 � c1gðnÞ � f ðnÞ � c2gðnÞ for all n � n0g
A function f(n) can be written as f(n) ¼ Y(g(n)) if there are positive coefficients

c1 and c2 such that f(n) can be squeezed between c1g(n) and c2g(n) for a suffi-

ciently large n. Comparing the definitions of all three asymptotic notations, the

following relationship holds:

f ðnÞ ¼ YðgðnÞÞ if and only if f ðnÞ ¼ OðgðnÞÞ and f ðnÞ ¼ OðgðnÞÞ
In effect, this powerful relationship is often exploited for verifying the
asymptotically tight bounds of functions [Knuth 1976].

Although Y-notation is more precise when characterizing algorithm com-

plexity, O-notation is favored over Y-notation for the following two reasons:

(1) upper bounds are considered sufficient for characterizing algorithm com-

plexity, and (2) it is often much more difficult to prove a tight bound than it

is to prove an upper bound. In the remainder of the text, we will stick with

the convention and use O-notation to express algorithm complexity.

180 CHAPTER 4 Fundamentals of algorithms
4.2.2 Complexity classes
In the previous subsection, complexity was shown to characterize the efficiency
of algorithms. In fact, complexity can also be used to characterize the problems

themselves. A problem’s complexity is equivalent to the time complexity of the

most efficient possible algorithm. For instance, the dictionary lookup problem

mentioned in the introduction of Section 4.2 has a complexity of O(lg n), the

complexity of Binary_Search in Algorithm 4.2.

To facilitate the exploration and discussion of the complexities of various

problems, those problems that share the same degree of complexity are

grouped, forming complexity classes. Many complexity classes have been estab-
lished in the history of computer science [Baase 1978], but in this subsection

we will only discuss those that pertain to problems in the EDA applications.

We will make the distinction between optimization and decision problems first,

because these are key concepts within the area of complexity classes. Then,

four fundamental and important complexity classes will be presented to help

readers better understand the difficult problems encountered in the EDA

applications.

4.2.2.1 Decision problems versus optimization problems

Problems can be categorized into two groups according to the forms of their

answers: decision problems and optimization problems. Decision problems
ask for a “yes” or “no” answer. The dictionary lookup problem, for example,

is a decision problem, because the answer could only be whether the target is

found or not. On the other hand, an optimization problem seeks for an opti-

mized value of a target variable. For example, in a combinational circuit, a criti-

cal path is a path from an input to an output in which the sum of the gate and

wire delays along the path is the largest. Finding a critical path in a circuit is an

optimization problem. In this example, optimization means the maximization

of the target variable. However, optimization can also be minimization in other
types of optimization problems.

An example of a simple decision problem is the HAMILTONIAN CYCLE prob-

lem. The names of decision problems are conventionally given in all capital let-

ters [Cormen 2001]. Given a set of nodes and a set of lines such that each line

connects two nodes, a HAMILTONIAN CYCLE is a loop that goes through all the

nodes without visiting any node twice. The HAMILTONIAN CYCLE problem

asks whether such a cycle exists for a given graph that consists of a set of nodes

and lines. Figure 4.3 gives an example in which a Hamiltonian cycle exists.
A famous optimization problem is the traveling salesman problem (TSP). As

its name suggests, TSP aims at finding the shortest route for a salesman who

needs to visit a certain number of cities in a round tour. Figure 4.4 gives a sim-

ple example of a TSP. There is also a version of the TSP as a decision problem:

TRAVELING SALESMAN asks whether a route with length under a constant k

exists. The optimization version of TSP is more difficult to solve than its

(a) (b) (c)

FIGURE 4.4

(a) An example of the traveling salesman problem, with dots representing cities.

(b) A non-optimal solution. (c) An optimal solution.

FIGURE 4.3

A graph with one HAMILTONIAN CYCLE marked with thickened lines.

4.2 Computational complexity 181
decision version, because if the former is solved, the latter can be immediately
answered for any constant k. In fact, an optimization problem usually can be

decomposed into a series of decision problems by use of a different constant

as the target for each decision subproblem to search for the optimal solution.

Consequently, the optimization version of a problem always has a complexity

equal to or greater than that of its decision version.

4.2.2.2 The complexity classes P versus NP

The complexity class P, which stands for polynomial, consists of problems that

can be solved with known polynomial-time algorithms. In other words, for any

problem in the class P, an algorithm of time complexity O(nk) exists, where k is

a constant. The dictionary lookup problem mentioned in Section 4.2 lies in P,

because Linear_Search in Algorithm 4.1 has a complexity of O(n).

The nondeterministic polynomial or NP complexity class involves the concept

of a nondeterministic computer, so wewill explain this idea first. A nondeterminis-

tic computer is not a device that can be created from physical components but is a
conceptual tool that only exists in complexity theory. A deterministic computer, or

an ordinary computer, solves problems with deterministic algorithms. The charac-

terization of determinism as applied to an algorithm means that at any point in

the process of computation the next step is always determined or uniquely defined

by the algorithm and the inputs. In other words, given certain inputs and a deter-

ministic computer, the result is always the samenomatter howmany times the com-

puter executes the algorithm. By contrast, in a nondeterministic computer multiple

182 CHAPTER 4 Fundamentals of algorithms
possibilities for the next step are available at each point in the computation, and

the computer will make a nondeterministic choice from these possibilities, which
will somehow magically lead to the desired answer. Another way to understand

the idea of a nondeterministic computer is that it can execute all possible options

in parallel at a certain point in the process of computation, compare them, and then

choose the optimal one before continuing.

Problems in the NP complexity class have three properties:
1. They are decision problems.

2. They can be solved in polynomial time on a nondeterministic computer.

3. Their solution can be verified for correctness in polynomial time on a

deterministic computer.
The TRAVELING SALESMAN decision problem satisfies the first two of these

properties. It also satisfies the third property, because the length of the solution

route can be calculated to verify whether it is under the target constant k in

linear time with respect to the number of cities. TRAVELING SALESMAN is,

therefore, an NP class problem. Following the same reasoning process, HAMIL-

TONIAN CYCLE is also in this class.
A problem that can be solved in polynomial time by use of a deterministic

computer can also definitely be solved in polynomial time on a nondeterminis-

tic computer. Thus, P � NP. However, the question of whether NP ¼ P remains

unresolved—no one has yet been able to prove or disprove it. To facilitate this

proof (or disproof), the most difficult problems in the class NP are grouped

together as another complexity class, NP-complete; proving P ¼ NP is equiva-

lent to proving P ¼ NP-complete.

4.2.2.3 The complexity class NP-complete

Informally speaking, the complexity class NP-complete (or NPC) consists of the

most difficult problems in the NP class. Formally speaking, for an arbitrary prob-

lem Pa in NP and any problem Pb in the class NPC, a polynomial transforma-

tion that is able to transform an example of Pa into an example of Pb exists.

A polynomial transformation can be defined as follows: given two problems
Pa and Pb, a transformation (or reduction) from Pa to Pb can express any exam-

ple of Pa as an example of Pb. Then, the transformed example of Pb can be

solved by an algorithm for Pb, and its answer can then be mapped back to an

answer to the problem of Pa. A polynomial transformation is a transformation

with a polynomial time complexity. If a polynomial transformation from Pa to

Pb exists, we say that Pa is polynomially reducible to Pb. Now we illustrate this

idea by showing that the decision problem HAMILTONIAN CYCLE is polynomi-

ally reducible to another decision problem—TRAVELING SALESMAN.
Given a graph consisting of n nodes and m lines, with each line connecting

two nodes among the n nodes, a HAMILTONIAN CYCLE consists of n lines that

traverse all n nodes, as in the example of Figure 4.3. This HAMILTONIAN CYCLE

problem can be transformed into a TRAVELING SALESMAN problem by assigning

4.2 Computational complexity 183
a distance to each pair of nodes. We assign a distance of 1 to each pair of nodes

with a line connecting them. For the rest of node pairs, we assign a distance
greater than 1, say, 2. With such assignments, the TRAVELING SALESMAN prob-

lem of finding whether a round tour of a total distance not greater than n exists

is equal to finding a HAMILTONIAN CYCLE in the original graph. If such a tour

exists, the total length of the route must be exactly n, and all the distances

between the neighboring cities on the route must be 1, which corresponds to

existing lines in the original graph; thus, a HAMILTONIAN CYCLE is found. This

transformation from HAMILTONIAN CYCLE to TRAVELING SALESMAN is merely

based on the assignments of distances, which are of polynomial time complex-
ity—or, more precisely, quadratic time complexity—with respect to the number

of nodes. Therefore the transformation is a polynomial transformation.

Now that we understand the concept of a polynomial transformation, we

can continue discussing NP-completeness in further detail. Any problem in

NPC should be polynomially reducible from any NP problem. Do we need to

examine all NP problems if a polynomial transformation exists? In fact, a prop-

erty of the NPC class can greatly simplify the proof of the NP-completeness of a

problem: all problems in the class NPC are polynomially reducible to one
another. Consequently, to prove that a problem Pt is indeed NPC, only two

properties have to be checked:
1. The problem Pt is an NP problem, that is, Pt can be solved in polynomial
time on a nondeterministic computer. This is also equivalent to showing

that the solution checking of Pt can be done in polynomial time on a

deterministic computer.

2. A problem already known to be NP-complete is polynomially reducible to

the target problem Pt.
For example, we know that HAMILTONIAN CYCLE is polynomially reducible to

TRAVELING SALESMAN. Because the former problem is an NPC problem, and

TRAVELING SALESMAN is an NP problem, TRAVELING SALESMAN is, therefore,

proven to be contained in the class of NPC.

Use of transformations to prove a problem to be in the NPC class relies on

the assumption that there are already problems known to be NP-complete.

Hence, this kind of proof is justified only if there is one problem proven to be
NP-complete in another way. Such a problem is the SATISFIABILITY problem.

The input of this problem is a Boolean expression in the product of sums form

such as the following example: x1 þ x2 þ x3ð Þ x2 þ x4ð Þ x1 þ x3ð Þ x2 þ x3 þ x4ð Þ.
The problem aims at assigning a Boolean value to each of the input variables

xi so that the overall product becomes true. If a solution exists, the expression

is said to be satisfiable. Because the answer to the problem can only be true or

false, SATISFIABILITY, or SAT, is a decision problem.

The NP-completeness of the SAT problem is proved with Cook’s theorem

[Cormen 2001] by showing that all NP problems can be polynomially reduced

to the SAT problem. The formal proof is beyond the scope of this book [Garey

NPCP

NP

(a) (b)

All problems

P = NP = NPC

All problems

P ≠ NP P = NP

FIGURE 4.5

Relationship of complexity classes if (a) P 6¼ NP or (b) P ¼ NP.

184 CHAPTER 4 Fundamentals of algorithms
1979], so we will only informally demonstrate its concept. We have mentioned

that all NP problems can be solved in polynomial time on a nondeterministic

computer. For an arbitrary NP problem, if we record all the steps taken on a

nondeterministic computer to solve the problem in a series of statements,

Cook’s theorem proves that the series of statements can be polynomially trans-

formed into a product of sums, which is in the form of an SAT problem. As a
result, all NP problems can be polynomially reduced to the SAT problem; conse-

quently, the SAT problem is NP-complete.

An open question in computer science is whether a problem that lies in both

the P and the NPC classes exists. No one has been able to find a deterministic

algorithm with a polynomial time complexity that solves any of the NP-

complete problems. If such an algorithm can be found, all of the problems in

NPC can be solved by that algorithm in polynomial time, because they are poly-

nomially reducible to one another. According to the definition of NP-complete-
ness, such an algorithm can also solve all problems in NP, making P ¼ NP, as

shown in Figure 4.5b. Likewise, no one has been able to prove that for any of

the problems in NPC no polynomial time algorithm exists. As a result, although

the common belief is that P 6¼ NP, as shown in Figure 4.5a, and decades of

endeavors to tackle NP-complete problems suggest this is true, no hard

evidence is available to support this point of view.

4.2.2.4 The complexity class NP-hard

Although NP-complete problems are realistically very difficult to solve, there are

other problems that are even more difficult: NP-hard problems. The NP-hard

complexity class consists of those problems at least as difficult to solve as NP-
complete problems. A specific way to define an NP-hard problem is that the

solution checking for an NP-hard problem cannot be completed in polynomial

time. In practice, many optimization versions of the decision problems in NPC

are NP-hard. For example, consider the NP-complete TRAVELING SALESMAN

problem. Its optimization version, TSP, searches for a round tour going through

all cities with a minimum total length. Because its solution checking requires

computation of the lengths of all possible routes, which is a O(n � n!) procedure,
with n being the number of cities, the solution definitely cannot be found in

v1

v3

v2 v4

v5

e1

e2 e3

e4

e5

FIGURE 4.7

An exemplar graph.

A
B

C

D
E

A

B
C

D
E

FIGURE 4.6

A combinational circuit and its graph representation.

4.3 Graph algorithms 185
polynomial time. Therefore, TSP, an optimization problem, belongs to the NP-
hard class.
4.3 GRAPH ALGORITHMS

A graph is a mathematical structure that models pairwise relationships among

items of a certain form. The abstraction of graphs often greatly simplifies

the formulation, analysis, and solution of a problem. Graph representations
are frequently used in the field of Electronic Design Automation. For example,

a combinational circuit can be efficiently modeled as a directed graph to

facilitate structure analysis, as shown in Figure 4.6.

Graph algorithms are algorithms that exploit specific properties in various

types of graphs [Even 1979; Gibbons 1985]. Given that many problems in the

EDA field can be modeled as graphs, efficient graph algorithms can be directly

applied or slightly modified to address them. In this section, the terminology

and data structures of graphs will first be introduced. Then, some of the most fre-
quently used graph algorithms will be presented.
4.3.1 Terminology
A graph G is defined by two sets: a vertex set V and an edge set E. Customarily, a

graph is denoted with G(V, E). Vertices can also be called nodes, and edges can

be called arcs or branches. In this chapter, we use the terms vertices and edges.

Figure 4.7 presents a graph G with V ¼ {v1, v2, v3, v4, v5} and E ¼ {e1, e2, e3,
e4, e5}. The two vertices connected by an edge are called the edge’s endpoints.

An edge can also be characterized by its two endpoints, u and v, and denoted as

(u, v). In the example of Figure 4.7, e1 ¼ (v1, v2), e2 ¼ (v2, v3), etc. If there is an

edge e connecting u and v, the two vertices u and v are adjacent and edge e is

v1
v2

v3

v5v4

v3
v2

v5
v4

v1
e1

e3

e2

e4

e5

e1

e2
e3

e4

e5

G1: G2:

FIGURE 4.8

Two examples of directed graphs.

186 CHAPTER 4 Fundamentals of algorithms
incident with u (and also with v). The degree of a vertex is equal to the number

of edges incident with it.

A loop is an edge that starts and ends at the same vertex. If plural edges are

incident with the same two vertices, they are called parallel edges. A graph

without loops and parallel edges is called a simple graph. In most discussions

of graphs, only simple graphs are considered, and, thus, a graph implicitly
means a simple graph. A graph without loops but with parallel edges is known

as a multigraph.

The number of vertices in a graph is referred to as the order of the graph, or

simply jV j. Similarly, the size of a graph, denoted as jE j, refers to its number of

edges. It is worth noting that inside asymptotic notations, such as O and Y, and

only inside them, jV j and jE j can be simplified as V and E. For example, O(jV j þ
jE j) can be expressed as O(V þ E).

A path in a graph is a sequence of alternating vertices and edges such that
for each vertex and its next vertex in the sequence, the edge between these ver-

tices connects them. The length of a path is defined as the number of edges in a

path. For example, in Figure 4.7, <v5, e4, v3, e3, v4> is a path with a length of

two. A path in which the first and the last vertices are the same is called a cycle.

<v5, e4, v3, e3, v4, e5, v5> is a cycle in Figure 4.7. A path, in which every vertex

appears once in the sequence is called a simple path. The word “simple” is

often omitted when this term is used, because we are only interested in simple

paths most of the time.
The terms defined so far are for undirected graphs. In the following, we

introduce the terminology for directed graphs. In a directed graph, every edge

has a direction. We typically use arrows to represent directed edges as shown

in the examples in Figure 4.8. For an edge e ¼ (u, v) in a directed graph, u

and v cannot be freely exchanged. The edge e is directed from u to v, or equiv-

alently, incident from u and incident to v. The vertex u is the tail of the edge e;

v is the head of the edge e. The degree of a vertex in a directed graph is divided

into the in-degree and the out-degree. The in-degree of a vertex is the number
of edges incident to it, whereas the out-degree of a vertex is the number of

edges incident from it. For the example of G2 in Figure 4.8, the in-degree of

v2 is 2 and its out-degree is 1.

The definitions of paths and cycles need to be revised as well for a directed

graph: every edge in a path or a cycle must be preceded by its tail and followed

by its head. For example, <v4, e4, v2, e2, v3> in G1 of Figure 4.8 is a path and

<v1, e1, v2, e2, v3, e3, v1> is a cycle, but <v4, e4, v2, e1, v1> is not a path.

4.3 Graph algorithms 187
If a vertex u appears before another vertex v in a path, u is v’s predecessor on

that path and v is u’s successor. Notice that there is no cycle in G2. Such
directed graphs without cycles are called directed acyclic graphs or DAGs.

DAGs are powerful tools used to model combinational circuits, and we will

dig deeper into their properties in the following subsections.

In some applications, we can assign values to the edges so that a graph can

convey more information related to the edges other than their connections. The

values assigned to edges are called their weights. A graph with weights assigned

to edges is called a weighted graph. For example, in a DAG modeling of a com-

binational circuit, we can use weights to represent the time delay to propagate a
signal from the input to the output of a logic gate. By doing so, critical paths can

be conveniently determined by standard graph algorithms.
4.3.2 Data structures for representations of graphs
Several data structures are available to represent a graph in a computer, but

none of them is categorically better than the others [Aho 1983; Tarjan 1987].

They all have their own advantages and disadvantages. The choice of the data
structure depends on the algorithm [Hopcroft 1973].

The simplest data structure for a graph is an adjacency matrix. For a graph

G ¼ (V, E), a jV j � jV j matrix A is needed. Aij ¼ 1 if (vi, vj) 2 E, and Aij ¼ 0 if (vi,

vj) =2 E. For an undirected graph, the adjacency matrix is symmetrical, because

the edges have no directions. Figure 4.9 shows the adjacency matrices for the

graph in Figure 4.7 and G2 in Figure 4.8.

One of the strengths of the use of an adjacency matrix is that it can easily repre-

sent a weighted graph by changing the ones in the matrix to the edges’ respective
weights. However, the weight cannot be a zero in this representation (otherwise

we cannot differentiate zero-weight edge from “no connection” between two verti-

ces). Also, an adjacency matrix requires exactlyY(V 2) space. For a dense graph for

which jE j is close to jV j2, this couldbe amemory-efficient representation.However,

if the graph is sparse, that is, jE j is much smaller than jV j2, most of the entries in the

adjacency matrix would be zeros, resulting in a waste of memory.

A sparse graph is better represented with an adjacency list, which consists

of an array of size jV j, with the ith element corresponding to the vertex vi.
The ith element points to a linked list that stores those vertices adjacent to vi
00000

01010

00001

00100

00010

(a) (b)

01100

10100

11010

00101

00010

FIGURE 4.9

The adjacency matrices: (a) for Figure 4.7. (b) for G2 in Figure 4.8.

1

2

3

4

5

2

3

1

2 5

FIGURE 4.10

The adjacency list for G1 of Figure 4.8.

188 CHAPTER 4 Fundamentals of algorithms
in an undirected graph. For a directed graph, any vertex vj in the linked list of
the ith element satisfies the condition (vi, vj) 2 E. The adjacency list for G1 in

Figure 4.8 is shown in Figure 4.10.
4.3.3 Breadth-first search and depth-first search
Many graph algorithms rely on efficient and systematic traversals of vertices and

edges in the graph. The two simplest and most commonly used traversal meth-

ods are breadth-first search and depth-first search, which form the basis for

many graph algorithms. We will examine their generic structures and point
out some important applications.

4.3.3.1 Breadth-first search

Breadth-first search (BFS) is a systematic means of visiting vertices and edges in

a graph. Given a graph G and a specific source vertex s, the BFS searches

through those vertices adjacent to s, then searches the vertices adjacent to
those vertices, and so on. The routine stops when BFS has visited all vertices

that are reachable from s. The phenomenon that the vertices closest to the

source s are visited earlier in the search process gives this search its name. Sev-

eral procedures can be executed when visiting a vertex. The function BFS in

Algorithm 4.3 adopts two of the most frequently used procedures: building a

breadth-first tree and calculating the distance, which is the minimum length

of a path, from the source s to each reachable vertex.

Algorithm 4.3 Breadth-first Search Algorithm

BFS (Graph G, Vertex s)
1

2

3

4

5

6

7

. FIFO_Queue Q = {s};

. for (each v 2 V) do

. v.visited = false; // visited by BFS

. v.distance = 1; // distance from source s

. v.predecessor = NIL; // predecessor of v

. end for

. s.visited = true;

8

9

10

11

12

13

14

15

16

17

18

19

FIG

App

righ

dist

4.3 Graph algorithms 189
. s.distance = 0;

. while (Q 6¼ �) do

. Vertex u = Dequeue(Q);

. for (each (u, w) 2 E) do

. if (!(w.visited))

. w.visited = true;

. w.distance = u.distance + 1;

. w.predecessor = u;

. Enqueue(Q, w);

. end if

. end for

. end while
The function BFS implements breadth-first search with a queue Q. The

queue Q stores the indices of, or the links to, the visited vertices whose adjacent

vertices have not yet been examined. The first-in first-out (FIFO) property of a
queue guarantees that BFS visits every reachable vertex once, and all of its adja-

cent vertices are explored in a breadth-first fashion. Because each vertex and

edge is visited at most once, the time complexity of a generic BFS algorithm is

O(V þ E), assuming the graph is represented by an adjacency list.

Figure 4.11 shows a graph produced by the BFS in Algorithm 4.3 that also

indicates a breadth-first tree rooted at v1 and the distances of each vertex to v1.

The distances of v7 and v8 are infinity, which indicates that they are disconnected

from v1. In contrast, subsets of a graph in which the vertices are connected to
one another and to which no additional vertices are connected, such as the set

from v1 to v6 in Figure 4.11, are called connected components of the graph.

One of the applications of BFS is to find the connected components of a graph.

The attributes distance and predecessors indicate the lengths and the

routes of the shortest paths from each vertex to the vertex v1. A BFS algorithm
v1 v3 v7v5

v6v4v2 v8 v2 v4 v6 v8

v1 v3 v5 v7

0 0 3 4

321

�

�

�

�

�

�

�

��

URE 4.11

lying BFS on an undirected graph with source v1. The left is the graph after line 8 and the

t shows the graph after the completion of the BFS. Numbers in the vertices are their

ances to the source v1. Thick edges are breadth-first tree edges.

190 CHAPTER 4 Fundamentals of algorithms
can also compute the shortest paths and their lengths from a source vertex to all

other vertices in an unweighted graph. The calculation of the shortest paths in a
weighted graph will be discussed in Subsection 4.3.6.

4.3.3.2 Depth-first search

While BFS traverses a graph in a breadth-first fashion, depth-first search (DFS)

explores the graph in an opposite manner. From a predetermined source vertex

s, DFS traverses the vertex as deep as possible along a path before backtracking,

just as the name implies. The recursive function DFSPrototype, shown in

Algorithm 4.4, is the basic structure for a DFS algorithm.

Algorithm 4.4 A Prototype of the Depth-first Search Algorithm

DFSPrototype(Vertex v)
1.

2.

3.

4.

5.

6.

7.

1

2

3

4

5

6

7

8

// Pre-order process on v;

mark v as visited;

for (each unvisited vertex u adjacent to v)

DFSPrototype(u);

// In-order process on v;

end for

// Post-order process on v
The terms pre-order, in-order, and post-order processes on the lines 1, 5,

and 7 in Algorithm 4.4 refer to the traversal patterns on a conceptual tree

formed by all the vertices in the graph. DFS performs a pre-order process on
all the vertices in the exact same order as a pre-order tree traversal in the result-

ing “depth-first forest.” This is also the case for in-order and post-order pro-

cesses. The functionality of these processes, which will be tailor-designed to

an application, is the basis of DFS algorithms. The function DFS in Algorithm

4.5 provides an example of a post-order process.

Algorithm 4.5 A Complete Depth-first Search Algorithm

DFS(Graph G)
. for (each vertex v 2 V) do

. v.visited = false;

. v.predecessor = NIL;

. end for

. time = 0;

. for (each vertex v 2 V)

. if (!(v.visited))

. DFSVisit(v);

9

10

1.

2.

3.

4.

5.

6.

7.

8.

9.

FIG

App

Pos

4.3 Graph algorithms 191
. end if

. end for
DFSVisit(Vertex v)
v.visited = true;

for (each (v, u) 2 E)

if (!(u.visited)) do

u.predecessor = v;

DFSVisit(u);

end if

end for

time = time + 1;

v.PostOrderTime = time;
Notice that it is guaranteed that every vertex will be visited by lines 6 and 7

in DFS. This is another difference between DFS and BFS. For most applications
of DFS, it is preferred that all vertices in the graph be visited. As a result, a

depth-first forest is formed instead of a tree. Moreover, because each vertex

and edge is explored exactly once, the time complexity of a generic DFS

algorithm is O(V þ E) assuming the use of an adjacency list.

Figure 4.12 demonstrates a directed graph on which DFS(G1) is executed.

The PostOrderTimes of all vertices and the tree edges of a depth-first forest,

which is constructed from the predecessor of each vertex, are produced as

the output. PostOrderTimes have several useful properties. For example, the
vertices with a lower post-order time are never predecessors of those with a

higher post-order time on any path. The next subsection uses this property

for sorting the vertices of a DAG. In Subsection 4.3.5, we will introduce some

important applications of the depth-first forest.
6 4 8

735

9 2 1

v1 v2 v3

v4 v5 v6

v7 v8 v9

v1 v2 v3

v4 v5 v6

v7 v8 v9

Unvisited: All visited:

URE 4.12

lying DFS on a directed graph G1. The numbers in the vertices are their

tOrderTimes. Thickened edges show how a depth-first forest is built.

v7 v3 v6 v1 v4 v2 v5 v8 v9

FIGURE 4.13

A topological sort of the graph in Figure 4.12.

192 CHAPTER 4 Fundamentals of algorithms
4.3.4 Topological sort
A topological sort is a linear ordering of vertices in a directed acyclic graph
(DAG). Given a DAG G ¼ (V, E), a topological sort algorithm returns a sequence

of vertices in which the vertices never come before their predecessors on any

paths. In other words, if (u, v) 2 E, v never appears before u in the sequence.

A topological sort of a graph can be represented as a horizontal line of ordered

vertices, such that all edges point only to the right (Figure 4.13).
DAGs are used in various applications to show precedence among events.

In the EDA industry, DAGs are especially useful because they are capable of

modeling the input-output relationships of combinational circuits, as shown in

Figure 4.6. To effectively simulate a combinational circuit with EDA tools, inputs

of a gate should usually be examined before the output is analyzed.

A topological sort of a DAG provides an appropriate ordering of gates for

simulations.

The simple algorithm in Algorithm 4.6 topologically sorts a DAG by use of
the depth-first search. Note that line 2 in Algorithm 4.6 should be embedded

into line 9 of the function DFSVisit in Algorithm 4.5 so that the complexity

of the function TopologicalSortByDFS remains O(V þ E). The result of

running TopologicalSortByDFS on the graph in Figure 4.12 is shown in

Figure 4.13. The vertices are indeed topologically sorted.

Algorithm 4.6 A Simple DFS-based Topological Sort Algorithm

TopologicalSortByDFS(Graph G)
1.

2.

3.
call DFS(G) in Algorithm 4.5;

as PostOrderTime of each vertex v is computed, insert v onto the front of a
linked list ll;

return ll;
Another intuitive algorithm, shown in Algorithm 4.7, can sort a DAG topo-

logically without the overhead of recursive functions typically found in DFS.

With careful programming, it has a linear time complexity O(V þ E). This ver-

sion of a topological sort is also superior because it can detect cycles in a

directed graph. One application of this feature is efficiently finding feedback

loops in a circuit, which should not exist in a combinational circuit.

4.3 Graph algorithms 193
Algorithm 4.7 A Topological Sort Algorithm that can Detect Cycles

TopologicalSort(Graph G)
1

2

3

4

5

6

7

8

9

10

11

12
. FIFO_Queue Q = {vertices with in-degree 0};

. LinkedList ll = �;

. while (Q is not empty) do

. Vertex v = Dequeue(Q);

. insert v into ll;

. for (each vertex u such that (v, u) 2 E) do

. remove (v, u) from E;

. if (in-degree of u is 0) Enqueue(Q, u);

. end for

. end while

. if (E 6¼ �) return “G has cycles”;

. else return ll;
4.3.5 Strongly connected component

A connected component in an undirected graph has been defined in Subsection

4.3.3.1. For a directed graph, connectivity is further classified into “strong con-

nectivity” and “weak connectivity.” A directed graph is weakly connected if all

vertices are connected provided all directed edges are replaced as undirected

edges. For a strongly connected directed graph, every vertex must be reachable
from every other vertex. More precisely, for any two vertices u and v in a

strongly connected graph, there exists a path from u to v, as well as a path from

v to u. A strongly connected component (SCC) in a directed graph is a subset of

the graph that is strongly connected and is maximal in the sense that no addi-

tional vertices can be included in this subset while still maintaining the property

of strong connectivity. Figure 4.14a shows a weakly connected graph with four

strongly connected components. As an SCC consisting of more than one vertex

must contain cycles, it follows naturally that a directed acyclic graph has no
SCCs that consist of more than one vertex.

The algorithm used to extract SCCs, SCC in Algorithm 4.8, requires the

knowledge of the transpose of a directed graph (line 2). A transpose of a

directed graph G, GT, contains the same vertices of G, but the directed edges

are reversed. Formally speaking, for G ¼ (V, E), GT ¼ (V, ET) with E
T ¼ {(u,

v): (v, u) 2 E}. Transposing a graph incurs a linear time complexity O(V þ E),

which preserves the efficiency of the algorithm for finding SCCs.

(a)

9

8

3

v1 v2 v3

v6v5v4

v7 v8 v9

6

2
5

4
1

7
v1 v2 v3

v6v5v4

v7 v8 v9

(b)

{v1,v2,v4} {v3,v5,v6} {v7,v8} v9

(c)

FIGURE 4.14

(a) A directed graph G after running DFS with depth-first tree edges thickened. Post-order

times are labeled beside each vertex and SCC regions are shaded. (b) The graph GT, the

transpose of G, after running SCC in Algorithm 4.8 (c) Finding SCCs in G as individual

vertices result in a DAG.

194 CHAPTER 4 Fundamentals of algorithms
Algorithm 4.8 An Algorithm to Extract SCCs from a Directed Graph

SCC(Graph G)
1.

2.

3.

4.
call DFS(G) in Algorithm 4.5 for PostOrderTime;

GT = transpose(G);

call DFS(GT), replacing line 6 of DFS with a procedure
examining vertices in order of decreasing PostOrderTime;

return different trees in depth-first forest built in DFS(GT) as separate SCCs;
SCC is simple: a DFS, then a transpose, then another DFS. It is also efficient

because DFS and transpose incur only a linear time complexity, resulting in a
time complexity of O(V þ E). Figure 4.14 gives an example of running SCC

on a graph G. The four SCCs are correctly identified by the four depth-first trees

in G
T. Moreover, if we view an SCC as a single vertex, the resultant graph,

shown in Figure 4.14, is a DAG. We also observe that examining vertices in a

descending order of the post-order times in DFS is equivalent to visiting the

resultant SCCs in a topologically sorted order.

If we model a sequential circuit as a directed graph where vertices represent

registers and edges represent combinational signal flows between registers,
extracting SCCs from the graph identifies clusters of registers, each of which

includes a set of registers with strong functional dependencies among them-

selves. Extracting SCCs also enables us to model each SCC as a single element,

which greatly facilitates circuit analysis because the resultant graph is a DAG.

4.3 Graph algorithms 195
4.3.6 Shortest and longest path algorithms
Given a combinational circuit in which each gate has its own delay value, suppose
we want to find the critical path—that is, the path with the longest delay—from

an input to an output. A trivial solution is to explicitly evaluate all paths from the

input to the output. However, the number of paths can grow exponentially with

respect to the number of gates. A more efficient solution exists: we can model the

circuit as a directed graph whose edge weights are the delays of the gates. The

longest path algorithm can then give us the answer more efficiently.

In this subsection, we present various shortest and longest path algorithms. Not

only can they calculate the delays of critical paths, but they also can be applied to
other EDA problems, such as finding an optimal sequence of state transitions from

the starting state to the target state in a state transition diagram. In the shortest-path

problem or the longest-path problem, we are given a weighted, directed graph.

The weight of a path is defined as the sum of the weights of its constituent edges.

The goal of the shortest-/longest-path problem is to find the path from a source ver-

tex s to a destination vertex d with minimum/maximum weight. Three algorithms

are capable of finding the shortest paths from a source to all other vertices, each

of whichworks on the graphwith different constraints. First, we will present a sim-
ple algorithm used to solve the shortest-path problem on DAGs. Dijkstra’s algo-

rithm [Dijkstra 1959], which functions on graphs with non-negative weights, will

then be presented. Finally, we will introduce a more general algorithm that can be

applied to all types of directed graphs—the Bellman-Ford algorithm [Bellman

1958]. On the basis of these algorithms’ concepts, we will demonstrate how to

modify them to apply to longest-path problems.

4.3.6.1 Initialization and relaxation

Before explaining these algorithms, we first introduce two basic techniques

used by all the algorithms in this subsection: initialization and relaxation.

Before running a shortest-path algorithm on a directed graph G ¼ (V, E), we
must be given a source vertex s and the weight of each edge e 2 E, w(e). Also,

two attributes must be stored for each vertex v 2 V: the predecessor pre(v)

and the shortest-path estimate est(v). The predecessor pre(v) records the

predecessor of v on the shortest path, and est(v) is the current estimation of

the weight of the shortest path from s to v. The procedure in Algorithm 4.9,

known as initialization, initializes pre(v) and est(v) for all vertices.

Algorithm 4.9 Initialization Procedure for Shortest-path Algorithms

Initialize(graph G, Vertex s)
1.

2.

3.

4.

5.
for (each vertex v 2 V) do

pre(v) = NIL; // predecessor

est(v) = 1; // shortest-path estimate

end for

est(s) = 0;

196 CHAPTER 4 Fundamentals of algorithms
The other common procedure, relaxation, is the kernel of all the algorithms

presented in this subsection. The relaxation of an edge (u, v) is the process of
determining whether the shortest path to v found so far can be shortened or

relaxed by taking a path through u. If the shortest path is, indeed, improved

by use of this procedure, pre(v) and est(v) will be updated. Algorithm 4.10

shows this important procedure.

Algorithm 4.10 Relaxation Procedure for Shortest-path Algorithms

Relax(Vertex u, Vertex v)
1.

2.

3.

4.

1.

2.

3.

4.

5.

6.

7.
if (est(v) > est(u) + w(u, v)) do

est(v) = est(u) + w(u, v));

pre(v) = u;

end if
4.3.6.2 Shortest path algorithms on directed acyclic graphs

DAGs are always easier to manipulate than the general directed graphs, because
they have no cycles. By use of a topological sorting procedure, as shown in

Algorithm 4.11, this Y(V þ E) algorithm calculates the shortest paths on a

DAG with respect to a given source vertex s.

The function DAGShortestPaths, used in Algorithm 4.11, sorts the verti-

ces topologically first; in line 4, each vertex is visited in the topologically sorted

order. As each vertex is visited, the function relaxes all edges incident from it.

The shortest paths and their weights are then available in pre(v) and est(v) of

each vertex v. Figure 4.15 gives an example of running DAGShortestPaths
on a DAG. Notice that the presence of negative weights in a graph does not

affect the correctness of this algorithm.

Algorithm 4.11 A Shortest-path Algorithm for DAGs

DAGShortestPaths(Graph G, vertex s)
topologically sort the vertices of G;

Initialize(G, s);

for (each vertex u in topological sorted order)

for (each vertex v such that (u, v) 2 E)

Relax(u, v);

end for

end for
4.3.6.3 Dijkstra’s algorithm

Dijkstra’s algorithm solves the shortest-path problem for any weighted, directed

graph with non-negative weights. It can handle graphs consisting of cycles,

v0 v1 v2 v3 v4 v5
4

3

5 -1

-2 7

2

4
4 7

7
7
7
7

2
2
2
2
2

6
6
6
6

9
8
8

4
4
4
4

Shortest-Path Estimates Predecessorsvisited
vertex

NIL NIL NIL
NIL NIL

NIL

v0 v0
v0

v0
v1

v1 v2 v3 v4 v5 v1 v2 v3 v4 v5

v0 v1
v1
v1
v1

v1
v1
v1
v1
v1 v2

v2

v2

v4

v4

v3

v2
v0
v0
v0

∞ 5 ∞ ∞
v1 ∞ ∞
v2 ∞
v3

v5

v4

non NIL NIL NIL NIL NILNIL ∞ ∞ ∞ ∞ ∞

FIGURE 4.15

The upper part is a DAG with its shortest paths shown in thickened edges, and the lower

part is the changes of predecessors and shortest-path estimates when different vertices

are visited in line 3 of the function DAGShortestPaths.

4.3 Graph algorithms 197
but negative weights will cause this algorithm to produce incorrect results.

Consequently, we assume that w(e) � 0 for all e 2 E here.

The pseudocode in Algorithm 4.12 shows Dijkstra’s algorithm. The algo-

rithm maintains a priority queue minQ that is used to store the unprocessed ver-

tices with their shortest-path estimates est(v) as key values. It then repeatedly
extracts the vertex u which has the minimum est(u) from minQ and relaxes

all edges incident from u to any vertex in minQ. After one vertex is extracted

from minQ and all relaxations through it are completed, the algorithm will treat

this vertex as processed and will not touch it again. Dijkstra’s algorithm stops

either when minQ is empty or when every vertex is examined exactly once.
Algorithm 4.12 Dijkstra’s shortest-path algorithm

Dijkstra(Graph G, Vertex s)
1.

2.

3.

4.

5.

6.

7.

8.
Initialize(G, s);

Priority_Queue minQ = {all vertices in V};

while (minQ 6¼ �) do

Vertex u = ExtractMin(minQ); // minimum est(u)

for (each v 2 minQ such that (u, v) 2 E)

Relax(u, v);

end for

end while

(a)

5 9

2
20

1 6
4 2

3

v1

v2 v3

v4

v0

(b)

4 2

5 9
2

20
1 6

3

v1

v2 v3

v4

v0

(c)

5 9
2

20
1 4 2

6

3

v1

v2 v3

v4

v0

0
0

0 3
5

3
3
3

2
2
2
2

8
8

7
7

5
5

0
0
0

Shortest-Path Estimates Predecessors
vertex

NILv0 v0
v2

v0

v0 v1 v2 v3 v4 v0 v1 v2 v3 v4

v2
v2
v2

v0
v0
v0
v0 v4

v4
v1

v1

v1v2

v2 v2

v0 2 ∞ 9
v2 6
v1 5
v4
v3

non NIL
NIL
NIL
NIL
NIL
NIL

NIL NIL NIL NILNIL ∞ ∞ ∞ ∞

FIGURE 4.16

An example of Dijkstra’s algorithm: (a), (b), and (c) respectively show the edges belonging to

the shortest paths when v0, v2, and v3 are visited. The table exhibits the detailed data when

each vertex is visited.

Predecessors
Shortest-Path

Estimates
v0 v1 v2 v0 v1 v2

Dijkstra’s NIL
NIL

v0 v0 0 2 3
Correct path v2 v0 0 1 3

v0

v2v1

2 3

−2

FIGURE 4.17

Running Dijkstra’s algorithm on a graph with negative weights causes incorrect results on v1.

198 CHAPTER 4 Fundamentals of algorithms
Dijkstra’s algorithm works correctly, because all edge weights are non-negative,

and the vertex with the least shortest-path estimate is always chosen. In the first

iteration of the while loop in lines 3 through 7, the source s is chosen and its

adjacent vertices have their est(v) set tow((s, v)). In the second iteration, the vertex

uwith minimalw((s, u)) will be selected; then those edges incident from uwill be

relaxed. Clearly, there exists no shorter path from s to u than the single edge
(s,u), because all weights are not negative, and any path traced that uses an interme-

diate vertex is longer. Continuing this reasoning brings us to the conclusion that the

algorithm, indeed, computes the shortest paths.

Figure 4.16 illustrates the execution of Dijkstra’s algorithm on a directed

graph with non-negative weights and containing cycles. However, a small exam-

ple in Figure 4.17 shows that Dijkstra’s algorithm fails to find the shortest paths

when negative weights exist.

Dijkstra’s algorithm necessitates the use of a priority queue that supports the
operations of extracting a minimum element and decreasing keys. A linear array

can be used, but its complexity will be as much as O(V2 þ E) ¼ O(V2). If a more

4.3 Graph algorithms 199
efficient data structure, such as a binary or Fibonacci heap [Moore 1959], is

used to implement the priority queue, the complexity can be reduced.

4.3.6.4 The Bellman-Ford algorithm

Cycles should never appear in a shortest path. However, if there exist negative-
weight cycles, a shortest path can have a weight of �1 by circling around

negative-weight cycles infinitely many times. Therefore, negative-weight cycles

should be avoided before finding the shortest paths. In general, we can catego-

rize cycles into three types according to their weights: negative-weight, zero--

weight, and positive-weight cycles. Positive-weight cycles would not appear in

any shortest paths and thus will never be threats. Zero-weight cycles are unwel-

come in most applications, because we generally want a shortest path to have

not only a minimum weight, but also a minimum number of edges.
Because a shortest path should not contain cycles, it should traverse every

vertex at most once. It follows that in a directed graph G ¼ (V, E), the maximum

number of edges a shortest path can have is jV j � 1, with all the vertices visited

once. The Bellman-Ford algorithm takes advantage of this observation and

relaxes all the edges (jV j � 1) times. Although this strategy is time-consuming,

with a runtime of O((jV j � 1) � jE j) ¼ O(VE), it helps the algorithm handle

more general cases, such as graphs with negative weights. It also enables the

discovery of negative-weight cycles.
The pseudocode of the Bellman-Ford algorithm is shown in Algorithm 4.13.

The negative-weight cycles are detected in lines 5 through 7. They are identi-

fied on the basis of the fact that if any edge can still be relaxed after (jV j � 1)

times of relaxations (line 6), then a shortest path with more than (jV j � 1)

edges exists; therefore, the graph contains negative-weight cycles.

Algorithm 4.13 Bellman-Ford algorithm

Bellman-Ford(Graph G, Vertex s)
1

2

3

4

5

6

7

8

9

10

11
. Initialize(G, s);

. for (counter = 1 to |V| - 1)

. for (each edge (u, v) 2 E)

. Relax(u, v);

. end for

. end for

. for (each edge (u, v) 2 E)

. if (est(v) > est(u) + w(u, v))

. report “negative-weight cycles exist”;

. end if

. end for

200 CHAPTER 4 Fundamentals of algorithms
4.3.6.5 The longest-path problem

The longest-path problem can be solved by use of a modified version of the

shortest-path algorithm. We can multiply the weights of the edges by �1
and feed the graph into either the shortest-path algorithm for DAGs or the

Bellman-Ford algorithm. We cannot use Dijkstra’s algorithm, which cannot han-

dle graphs with negative-weight edges. Rather than finding the shortest path,
these algorithms discover the longest path. If we do not want to alter any attri-

butes in the graph, we can alter the algorithm by initializing the value of est(v)

to �1 instead of 1, as shown in the Initialize procedure of Algorithm

4.9, and changing a line in the Relaxation procedure of Algorithm 4.10 from:
1. if (est(v) > est(u) þ w(u, v)){
to
1. if (est(v) < est(u) þ w(u, v)){
Again, this modification cannot be applied to Dijkstra’s algorithm, because

positive-weight cycles should be avoided in the longest paths, but avoiding

them is difficult, because all or most weights are positive in most applications.

As a result, the longest-path version of the Bellman-Ford algorithm, which can

detect positive-weight cycles, is typically favored for use. If we want to find

the longest simple paths in those graphs where positive cycles exist, then no

efficient algorithm yet exists, because this problem is NP-complete.
4.3.7 Minimum spanning tree
Spanning trees are defined on connected, undirected graphs. Given a graphG¼
(V, E), a spanning tree connects all of the vertices in V by use of some edges in E

without producing cycles. A spanning tree has exactly (jV j � 1) edges. For example,

the thickened edges shown in Figure 4.18 form a spanning tree. The treeweight of a

spanning tree is defined as the sumof theweights of the tree edges. Therewould be

many spanning trees in a connected, weighted graph with different tree weights.
Theminimum spanning tree (MST) problem searches for a spanning tree whose

treeweight is minimized. TheMST problem canmodel the construction of a power

network with a minimumwire length in an integrated circuit. It can also model the

clock network, which connects the clock source to each terminal with the least

number of clock delays. In this subsection, we present an algorithm for the MST

problem, Prim’s algorithm [Prim 1957].

Prim’s algorithm builds an MST by maintaining a set of vertices and edges.

This set initially includes a starting vertex. The algorithm then adds edges (along
with vertices) one by one to the set. Each time the edge closest to the set—with

the least edge weight to any of the vertices in the set—is added. After the set

contains all the vertices, the edges in the set form a minimum spanning tree.

The pseudocode of Prim’s algorithm is given in Algorithm 4.14. The function

PrimMST uses a priority queue minQ to store those vertices not yet included in

v0 v1

v5

3

10 4 5

9
14

11

987

6

4
2

5

3

7

(v0,v5)

(v6,v1)

(v0,v6)

(v6,v4)

(v1,v2)

(v2,v7)

(v2,v3)

(v3,v8)v6

v4

v7 v8

v3v2

FIGURE 4.18

An example of an MST returned by Prim’s algorithm. The MST consists of the thickened

edges. The order of choices is shown on the right.

4.3 Graph algorithms 201
the partial MST. Every vertex in minQ is keyed with its minimum edge weight to

the partial MST. In line 7, the vertex with the minimum key is extracted from
minQ, and the keys of its adjacent vertices are updated accordingly, as shown

in lines 8 through 11. The parameter predecessor refers to MST edges.

Algorithm 4.14 Prim’s MST algorithm

PrimMST(Graph G)
1

2

3

4

5

6

7

8

9

10

11

12

13

14
. Priority_Queue minQ = {all vertices in V};

. for(each vertex u 2 minQ) u.key = 1;

. randomly select a vertex r in V as root;

. r.key = 0;

. r.predecessor = NIL;

. while (minQ 6¼ �) do

. Vertex u = ExtractMin(minQ);

. for (each vertex v such that (u, v) 2 E) do

. if (v 2 minQ and w(u, v) < v.key) do

. v.predecessor = u;

. v.key = w(u, v);

. end if

. end for

. end while
Like Dijkstra’s algorithm, the data structure of minQ determines the runtime

of Prim’s algorithm. PrimMST has a time complexity of O(V2 þ E) if minQ is

implemented with a linear array. However, less time complexity can be achieved

by use of a more sophisticated data structure.

Figure 4.18 shows an example in which Prim’s MST algorithm selects the ver-

tex v0 as the starting vertex. In fact, an MST can be built from any starting ver-

tex. Moreover, an MST is not necessarily unique. For example, if the edge (v7,

v8) replaces the edge (v3, v8), as shown in Figure 4.18, the new set of edges still
forms an MST.

202 CHAPTER 4 Fundamentals of algorithms
The strategy used by Prim’s algorithm is actually very similar to that of Dijk-

stra’s shortest-path algorithm. Dijkstra’s algorithm implicitly keeps a set of pro-
cessed vertices and chooses an unprocessed vertex that has a minimum

shortest-path estimate at the moment to be the next target of relaxation. This

strategy follows the principle of a greedy algorithm. This concept will be

explained in Subsection 4.4.1.
4.3.8 Maximum flow and minimum cut
4.3.8.1 Flow networks and the maximum-flow problem

A flow network is a variant of connected, directed graphs that can be used to

model physical flows in a network of terminals, such as water coursing through

interconnecting pipes or electrical currents flow through a circuit. In a flow net-

work G ¼ (V, E), every edge (u, v) 2 E has a non-negative capacity c(u, v) that

indicates the quantity of flow this edge can hold. If (u, v) =2 E, c(u, v) ¼ 0. There
are two special vertices in a flow network, the source s and the sink t. Every flow

must start at the source s and end at the sink t. Hence, there is no edge incident

to s and neither an edge leaving t. For convenience, we assume that every vertex

lies on some path from the source to the sink. Every edge (u, v) in a flow network

has another attribute, flow f(u, v), which is a real number that satisfies the follow-

ing three properties:

Capacity constraint: For every edge (u, v) 2 E, f (u ,v) � c(u, v).

Skew symmetry: For every flow f (u, v), f (u, v) ¼ �f (v, u).
Flow conservation: For all vertices in V, the flows entering it are equal to the

flows exiting it, making the net flow of every vertex zero. There are two

exceptions to this rule: the source s, which generates the flow, and the

sink t, which absorbs the flow. Therefore, for all vertices u 2 V � {s, t},
the following equality holds:X

v2V
f u; vð Þ ¼ 0

Notice that the flow conservation property corresponds to Kirchhoff’s Current
Law, which describes the principle of conservation in electric circuits. There-

fore, the flow networks can naturally model electric currents.

The value of a flow f is defined as:

fj j ¼
X
v2V

f s; vð Þ

which is the total flow out of the source. In a maximum-flow problem, the

goal is to find a flow with the maximal value in a flow network. Figure 4.19 is
an example of a flow network G with a flow f. The values shown on every edge

(u, v) are f (u, v)/c(u, v). In this example, j f j ¼ 19, but it is not a maximum

flow, because we can push more flow into the path s!v2!v3!t.

v2

v1

v3

s t

8/8

11/16

4/4 0/12
2/9

10/15

9/11
0/6

7/17

FIGURE 4.19

A flow network G with a flow f ¼ 19. The flow and the capacity of each edge are denoted

as f(u, v)/c(u, v).

4.3 Graph algorithms 203
4.3.8.2 Augmenting paths and residual networks

The path s!v2!v3!t in Figure 4.19 can accommodate more flow and, thus, it

can enlarge the value of the total flow. Such paths from the source to the sink

are called augmenting paths. An intuitive maximum-flow algorithm operates
by iteratively finding augmenting paths and then augmenting a corresponding

flow until there is no more such path. However, finding these augmenting paths

on flow networks is neither easy nor effective. Residual networks are hence

created to simplify the process of finding augmenting paths.

In the flow network G ¼ (V, E) with a flow f, for every edge (u, v) 2 E we

define its residual capacity cf (u, v) as the amount of additional flow allowed

without exceeding c(u, v), given by

cf ðu; vÞ ¼ cðu; vÞ � f ðu; vÞ ð4:2Þ
Given a flow network G ¼ (V, E), its corresponding residual network Gf ¼ (V, Ef)

with respect to a flow f consists of the same vertices in V but has a different set of

edges, Ef. The edges in the residual network, called the residual edges, are

weighted edges, whose weights are the residual capacities of the corresponding

edges in E. The weights of residual edges should always be positive. For every

pair of vertices in E, there exist up to two residual edges connecting them with

opposite directions in Gf. Figure 4.20 shows the residual network Gf of the flow
network G in Figure 4.19. Notice that, for the vertex pair v1 and v3 in G, there are

two residual edges in Gf, (v1, v3) and (v3, v1). We see that cf (v3, v1) ¼ 2, because

we can push a flow with a value of two in G to cancel out its original flow. On

the other hand, there should be three residual edges between v2 and v3 in Gf,

one from v2 to v3 and two from v3 to v2. However, the residual edges of the same

direction will be merged as one edge only. Therefore, cf (v3, v2) ¼ 7 þ 6 ¼ 13.

We can easily find augmenting paths in the residual network, because they

are just simple paths from the source to the sink. The amount of additional flow
that can be pushed into an augmenting path p is determined by the residual

capacity of p, cf (p), which is defined as the minimum residual capacity of all

edges on the path. For example, s!v2!v3!t is an augmenting path p in

Figure 4.20. Its residual capacity cf (p) ¼ 2 is determined by the residual edge

(v3, t). Therefore, we can push extra flow with a value of two through p in

the original flow network. By repeatedly finding augmenting paths in the

v1

v2 v3

s t

8

5

16 7

5

2

13

10
11 2

9

10

FIGURE 4.20

The residual network Gf of the flow network G in Figure 4.19 in which the augmenting path is

shown by the thickened lines.

204 CHAPTER 4 Fundamentals of algorithms
residual network and updating the residual network, a maximum-flow problem
can be solved. The next Subsection shows two algorithms implementing this

idea.

4.3.8.3 The Ford-Fulkerson method and the Edmonds-Karp
algorithm

The Ford-Fulkerson method is a classical means of finding maximum flows

[Ford 1962]. It simply finds augmenting paths on the residual network until

no more paths exist. The pseudocode is presented in Algorithm 4.15.

Algorithm 4.15 Ford-Fulkerson method

Ford-Fulkerson(Graph G, Source s, Sink t)
1

2

3

4

5

6

7

8

9

10
. for (each (u, v) 2 E) f [u, v] = f [v, u] = 0;

. Build a residual network Gf based on flow f;

. while (there is an augmenting path p in Gf) do

. cf(p) = min(cf(u, v) : (u, v) 2 p);

. for (each edge (u, v) 2 p) do

. f [u, v] = f [u, v] + cf(p);

. f [v, u] = -f [u, v];

. end for

. Rebuild Gf based on new flow f;

. end while
We can apply the Ford-Fulkerson method to the flow network G in
Figure 4.19. Figure 4.21a shows the result of adding the augmenting path

to G in Figure 4.20. The function Ford-Fulkerson gives us the result in

Figure 4.21c. The maximum flow, denoted as f *, has a value of 23.

We call this the Ford-Fulkerson method rather than algorithm, because the

approach to finding augmentingpaths in a residual graph is not fully specified. This

ambiguity costs precious runtime. The Ford-Fulkerson method has a time com-

plexity of O(E � j f *j). It takes O(E) time to construct a residual network and each

augmenting path increases the flow by at least 1. Therefore, we build the residual

v1

v2 v3

s t

8/8

13/16

4/4 0/12 2/9

10/15

11/11
0/6

9/17

(a) (b)

(c)

t

v1

v2 v3

s

8

3

16 7

5

15

 8
13 2

11

10

v1

v2 v3

s t

8/8

15/16

4/4 0/12
0/9

12/15

11/11
0/6

11/17

FIGURE 4.21

(a) Adding the augmenting path found in Figure 4.20 to G of Figure 4.19. (b) The resultant

residual network of (a) with an augmenting path p. (c) Adding p to (a) results in a maximum

flow of value 23. The dashed line is the minimum cut with a value of 23.

4.3 Graph algorithms 205
networks at most j f *j times. j f *j is not an input parameter for the maximum-flow

problem, so the Ford-Fulkersonmethod does not have a polynomial-time complex-

ity. It will be a serious problem if j f *j is as great as, say, 1,000,000,000.
The ambiguity present in the Ford-Fulkerson method is fixed by the Edmonds-

Karp algorithm [Edmonds 1972]. Instead of blindly searching for any augment-

ing paths, the Edmonds-Karp algorithm uses breadth-first search to find the

augmenting path with a minimum number of edges in the residual network. For

an edge in the residual work, there can be many augmenting paths passing

through it in different iterations. It can be proven that for every edge in the resid-

ual network, the lengths of the augmenting paths passing through it will only

increase with the advancement of iterations [Ahuja 1993; Cormen 2001]. Because

the upper limit of the length of an augmenting path is jV j � 1, there exist O(V)
different augmenting paths passing through a specific edge. Therefore, there

exist O(VE) different augmenting paths and thus O(VE) constructions of residual

networks, resulting in a time complexity of O(E � VE) ¼ O(VE
2).

4.3.8.4 Cuts and the max-flow min-cut theorem

Until now we have not proven the correctness of finding the maximum flow by

use of residual networks. In this subsection, we introduce an important concept

in the flow network—cuts. The max-flow min-cut theorem is used to prove the

correctness of the Ford-Fulkerson method and the Edmonds-Karp algorithm.

A cut (S, T) of the flow network G ¼ (V, E) is a partition of V that divides V

into two subsets, S and T ¼ V � S, such that the source s 2 S and the sink t 2 T.

The net flow across the cut (S, T) is denoted as f (S, T):

206 CHAPTER 4 Fundamentals of algorithms
f S; Tð Þ ¼
X

u2S;v2T
f u; vð Þ ð4:3Þ

The capacity of the cut (S, T), c(S, T), is defined as

c S; Tð Þ ¼
X

u2S;v2T
c u; vð Þ ð4:4Þ

Notice that only those edges incident from S to T are counted according to (4.4).

Take Figure 4.21a as an example. For the cut ({s, v2, v3}, {v1, t}), its net flow is:

f ðs; v1Þ þ f ðv2; v1Þ þ f ðv3; v1Þ þ f ðv3; tÞ ¼ 8þ 4þ ð�2Þ þ 11 ¼ 21

and its capacity is:

cðs; v1Þ þ cðv2; v1Þ þ cðv3; tÞ ¼ 8þ 4þ 11 ¼ 23

We can observe that for any cut (S, T), the property f (S, T) � c(S, T) always

holds. The number of possible cuts in a flow network grows exponentially with

the number of vertices. We are particularly interested in finding a minimum
cut, which is the cut with a minimum capacity among all possible cuts in a

network.

With the knowledge of cuts in a flow network, we can explain the max-flow

min-cut theorem. For a flow f in a flow network G ¼ (V, E), the max-flow
min-cut theorem states that the following three conditions are equivalent:
(1) f is a maximum flow in G.

(2) The residual network Gf has no augmenting paths.

(3) j f j ¼ c(S, T) for some cut of G.
We first prove (1))(2). If f is a maximum flow in G and there is still an aug-

menting path p in Gf, then the sum of flow j f j þ cf (p) > j f j, which is a contra-

diction. Secondly, we prove (2))(3). Suppose Gf has no augmenting path or,

equivalently, there is no path in Gf from s to t. We define S ¼ {v 2 V such that

v is reachable from s in Gf } and T ¼ V � S. The partition (S, T) is a cut. For any

edge (u, v) across the cut, we have f (u, v) ¼ c(u, v) because (u, v) =2 Gf, so f (S,

T) ¼ c(S, T). It can be reasoned that j f j ¼ f (S, T) as follows:

jf j ¼ f ðs;V Þ ¼ f ðs;V Þ þ f ðS � s;V Þ ¼ f ðS;V Þ ¼ f ðS;V Þ � f ðS; SÞ ¼ f ðS; TÞ
with f (S � s, V) ¼ 0, because the source s is excluded. As a result, we can see

that j f j ¼ f (S, T)¼ c(S, T). Finally, we prove (3))(1) by use of the property j f j �
c(S, T) of any cut (S, T). Because f (u, v) � c(u, v) for any edge across the cut

(S, T), j f j ¼ f (S, T) � c(S, T). And if a flow f * has j f * j ¼ c(S*, T*) � j f j for a
specific cut (S*, T*), then the flow f * must be a maximum flow and the cut
(S *, T *) must be a minimum cut.

The max-flow min-cut theorem not only proves that finding augmenting

paths in a residual network is a correct way to solve the maximum-flow prob-

lem, it also proves that finding a maximum flow is equivalent to finding a

4.3 Graph algorithms 207
minimum cut. In Figure 4.21c, we see that the maximum flow found indeed has

the same value as the cut ({s, v2, v3}, {v1, t}).
Finding a minimum cut has many EDA applications, such as dividing a mod-

ule into two parts with a minimum interconnecting wire length. We can thus

solve this kind of problem with a maximum-flow algorithm.

4.3.8.5 Multiple sources and sinks and maximum bipartite
matching

In some applications of the maximum-flow problem, there can be more than

one source and more than one sink in the flow network. For example, if we

want to count the number of paths from a set of inputs to a set of outputs in

an electrical circuit, there would be multiple sources and multiple sinks. How-

ever, we can still model those flow networks as a single-source, single-sink net-

work by use of a supersource and a supersink. Given a flow network with

sources si, 1 � i � m and sinks tj, 1 � j � n, a supersource s connects the

sources with edges (s, si) and capacities c(s, si) ¼ 1. Similarly, a supersink t is
created with edges (tj, t) and capacities c(tj, t) ¼1. With this simple transforma-

tion, a flow network with multiple sources and sinks can be solved with com-

mon maximum-flow algorithms.

Maximum bipartite matching is an important application of the multiple-

source, multiple-sink maximum flow problem. A bipartite graph G ¼ (V, E) is

an undirected graph whose vertices are partitioned into two sets, L and R. For

each edge (u, v) 2 E; if u 2 L, then v 2 R, and vice versa. Figure 4.22a gives

an example of a bipartite graph. A matching on an undirected graph G ¼
(V, E) is a subset of edges M � E such that for all v 2 V, at most one edge of

M is incident on V. Maximum matching is a matching that contains a maximum

number of edges. The maximum bipartite matching problem is the problem of

finding a maximum matching on a bipartite graph. Figure 4.22a shows such a

maximum matching with three edges on a bipartite graph.

The maximum bipartite graph problem itself has many useful applications in

the field of EDA. For example, technology mapping can be modeled as a
(a) (b)

s t

FIGURE 4.22

(a) A bipartite graph with its maximum matching indicated by thickened lines. (b) The

corresponding flow network provides the solution to the maximum bipartite matching

problem. Every edge has unit capacity.

208 CHAPTER 4 Fundamentals of algorithms
bipartite graph. The functional modules to be mapped are modeled as vertices

on one side, and all cell libraries of the target technology are vertices on the
other side. We can solve the maximum bipartite graph problem by solving the

corresponding multiple-source, multiple-sink maximum graph problem as

shown in Figure 4.22b. The Ford-Fulkerson method can solve this problem with

a time complexity of O(VE) because j f *j � jV j/2.
4.4 HEURISTIC ALGORITHMS

Heuristic algorithms are algorithms that apply heuristics, or rules of thumb, to

find a good, but not necessarily optimal, solution for the target problem.

The heuristics in such algorithms function as guidelines for selecting good solu-
tions from possible ones. Notice that good solutions, rather than optimal solu-

tions, are found in heuristic algorithms, which is the biggest difference

between heuristics and other types of algorithms. To compensate for this disad-

vantage, heuristic algorithms generally have much lower time complexity. For

problems that are either large in size or computationally difficult (NP-complete

or NP-hard, or both) other types of algorithms may find the best solutions but

would require hours, days, or even years to identify such a solution. Heuristic algo-

rithms are the preferred method for these types of problems because they sacrifice
some solution quality while saving a huge amount of computational time.

NP-complete and NP-hard problems are currently prevalent in the EDA appli-

cations. For example, the Traveling Salesman Problem (TSP, see Section 4.2) has

many EDA applications such as routing, but TSP optimization is an NP-hard prob-

lem. In a TSP problem with n cities (nodes), a brute-force search for the shortest

route results in an overwhelmingly high time complexity of O(n!). For these sorts

of problems, heuristic algorithms are often a better and necessary choice.

Heuristic algorithms empirically yield good, and sometimes optimal, solu-
tions. The solution quality, however, cannot be guaranteed. For example, there

is a greedy algorithm (see Subsection 4.4.1 for more details) called the Nearest

Neighbor (NN) algorithm that can be used to solve the TSP problem. NN lets

the salesman start from any one city and then travel to the nearest unvisited city

at each step. NN quickly generates a short route with a O(n2) time complexity,

given n as the number of cities. Nevertheless, there are some examples showing

that this intuitive algorithm yields inefficient routes. In Figure 4.23, applying NN

and starting from city C results in the route C!B!D!A!E!C whose total
length is 1 þ 3 þ 7 þ 15 þ 10 ¼ 36; however, traversing the cities in the loop

C!D!E!A!B!C is a shorter route: 2 þ 8 þ 15 þ 4 þ 1 ¼ 31. This example

shows that we have to be cautious when we use heuristic algorithms, because

they can sometimes yield poor solutions.

In this section, we discuss several frequently used heuristic algorithms.

Greedy algorithms, dynamic programming, and branch-and-bound algo-

rithms are heuristic algorithms that direct the search toward a solution space

A

B E

C D

4
5

1

7

15

8
2

11

3 10

FIGURE 4.23

An inefficient route yielded by the Nearest Neighbor algorithm.

f(x)

x

global optimum

a better local
optimum

a worse local
optimum

FIGURE 4.24

Local versus global optima for a one-dimensional function. From a current solution (gray dot),

greedy algorithms try to make a greedy choice that bring it toward a local optimum, which

may be different from a global optimal one.

4.4 Heuristic algorithms 209
that promises a better solution quality. Simulated annealing and genetic algo-

rithms exert a series of perturbations on current solutions, trying to ameliorate

them through the process. These heuristic algorithms have extensive EDA appli-

cations [Reeves 1993].
4.4.1 Greedy algorithm
Algorithms targeting an optimization problem typically consist of a series of stages

with choices made at each of these stages. A greedy algorithm, which aims to

solve an optimization problem, makes choices at every stage toward a local opti-

mum and with the hope of eventually reaching a globally optimal solution.

Greedy algorithms get their name from the fact that these algorithms always make

a choice that looks like the best possible solution at the moment without thor-

oughly considering the underlying conditions and consequences that may result

from that choice, acting much like a greedy person. Figure 4.24 illustrates the dif-
ference between local and global optima for a one-dimensional function.

In fact, we often exploit the concept of greedy algorithms in our daily lives

without knowing it. For instance, making change in sequence by use of the min-

imum number of coins is a typical situation illustrating this concept. Suppose

we want to give change of 36 cents in U.S. currency. The coins that can be used

consist of the 25-cent quarter, the 10-cent dime, the 5-cent nickel, and the

210 CHAPTER 4 Fundamentals of algorithms
1-cent penny. Then, we apply a rule of thumb: pick the coin of the greatest

value that is less than the change amount first. The change will consequently
be made in this sequence: a quarter (25 cents), a dime (10 cents), and a penny

(1 cent)—a total of three coins. This rule of thumb leads to the minimum num-

ber of coins, three, because it perfectly embodies the essence of greedy algo-

rithms: making greedy choices at each moment. In this particular problem, a

greedy algorithm yields the optimal solution.

However, greedy algorithms do not always produce optimal solutions. Let us

revisit the making change example. If a coin with a value of 20 cents exists, the

rule of thumb just mentioned would not lead to the minimum number of coins
if the amount of change needed was 40 cents. By applying the rule of picking

the coin of highest value first, we would be giving change of a quarter (25

cents), a dime (10 cents) and a nickel (5 cents), a total of three coins, but,

in fact, two, 20-cent coins would be the optimal solution for this example.

The greedy algorithm fails to reach the optimal solution for this case.

Actually, the example given previously is not ideal for illustrating the concept of

greedy algorithms, because it violates theoptimal substructureproperty. Ingeneral,

problems suitable for greedy algorithms must exhibit two characteristics: the
greedy-choice property and the optimal substructure property. If we can demon-

strate that a problem has these two properties, then a greedy algorithm would be

a good choice.

4.4.1.1 Greedy-choice property

The greedy-choice property states that a globally optimal solution can always
be achieved by making locally optimal, or greedy, choices. By locally optimal

choices we mean making choices that look best for solving the current problem

without considering the results from other subproblems or the effect(s) that

this choice might have on future choices.

In Section 4.4, we introduced the Nearest Neighbor (NN) algorithm for solv-

ing—more precisely, for approximating—an optimal solution to TSP. NN is a

greedy algorithm that picks the nearest city at each step. NN violates the

greedy-choice property and thus results in suboptimal solutions, as indicated
in the example of Figure 4.23. In Figure 4.23, the choice of B!D is a greedy

one, because the other remaining cities are further from B. In a globally optimal

solution, the route of either D!C!B or B!C!D is a necessity, and the choice

of B!D is suboptimal. Hence, NN is not an optimal greedy algorithm, because

TSP does not satisfy the greedy-choice property.

Making change with a minimum number of coins is an interesting example.

On the basis of the current U.S. coins, this problem satisfies the greedy-choice

property. But when a 20-cent coin comes into existence, the property is
violated—when making change for 40 cents, the greedy choice of picking a

quarter affects the solution quality of the rest of the problem.

How do we tell if a particular problem has the greedy-choice property? In a

greedy algorithm designed for a particular problem, if any greedy choice can be

4.4 Heuristic algorithms 211
proven better than all of the other available choices at the moment in terms of

solution quality, we can say that the problem exhibits the greedy-choice property.

4.4.1.2 Optimal substructure

A problem shows optimal substructure if a globally optimal solution to it con-
sists of optimal solutions to its subproblems. If a globally optimal solution can

be partitioned into a set of subsolutions, optimal substructure requires that

those subsolutions must be optimal with respect to their corresponding subpro-

blems. Consider the previous example of making change of 36 cents with a min-

imum number of coins. The optimal solution of a quarter, a dime, and a penny

can be divided into two parts: (1) a quarter and a penny and (2) a dime. The first

part is, indeed, optimal in making change of 26 cents, as is the second part for

making change of 10 cents.
The NN algorithm for TSP lacks both greedy-choice and optimal substructure

properties. Its global solutions cannot be divided into solutions for its subpro-

blems, let alone optimal solutions.

To determine whether a particular problem has an optimal substructure, two

aspects have to be examined: substructure and optimality. A problem has substruc-

tures if it is divisible into subproblems.Optimality is the property that the combina-

tion of optimal solutions to subproblems is a globally optimal solution.

Greedy algorithms are highly efficient for problems satisfying these two
properties. On top of that, greedy algorithms are often intuitively simple and

easy to implement. Therefore, greedy algorithms are very popular for solving

optimization problems. Many graph algorithms, mentioned in Section 4.3, are

actually applications of greedy algorithms—such as Prim’s algorithm used for

finding minimum spanning trees. Greedy algorithms often help find a lower

bound of the solution quality for many challenging real-world problems.
4.4.2 Dynamic programming
Dynamic programming (DP) is an algorithmic method of solving optimization
problems. Programming in this context refers to mathematical programming,

which is a synonym for optimization.

DP solves a problem by combining the solutions to its subproblems. The

famous divide-and-conquer method also solves a problem in a similar manner.

The divide-and-conquer method divides a problem into independent subprob-

lems, whereas in DP, either the subproblems depend on the solution sets of other

subproblems or the subproblems appear repeatedly. DP uses the dependency of

the subproblems and attempts to solve a subproblem only once; it then stores its
solution in a table for future lookups. This strategy spares the time spent on recal-

culating solutions to old subproblems, resulting in an efficient algorithm.

To illustrate the superiority of DP, we showhow to efficiently multiply a chain of

matrices by use of DP. When multiplying a chain of matrices, the order of the multi-

plications dramatically affects the number of scalar multiplications. For example,

212 CHAPTER 4 Fundamentals of algorithms
consider multiplying three matrices A, B, and C whose dimensions are 30 � 100,

100 � 2, and 2 � 50, respectively. There are two ways to start the multiplication:
either A � B or B � C first. The numbers of necessary scalar multiplications are:

ðA � BÞ � C : 30� 100� 2þ 30� 2� 50 ¼ 6000þ 3000 ¼ 9000;
A � ðB � CÞ : 100� 2� 50þ 30� 100� 50 ¼ 10; 000þ 150; 000 ¼ 160; 000

(A � B) � C is clearly more computationally efficient.

The matrix-chain multiplication problem can be formulated as follows:
given a chain of n matrices, <M1, M2, . . . , Mn>, where Mi is a vi�1 � vi matrix

for i ¼ 1 to n, we want to find an order of multiplication that minimizes the

number of scalar multiplications.

To solve this problem, one option is to exhaustively try all possible multipli-

cation orders and then select the best one. However, the number of possible

multiplication orders grows exponentially with respect to the number of matri-

ces n. There are only two possibilities for three matrices, but it increases to

1,767,263,190 possibilities for 20 matrices. A brute-force search might cost
more time finding the best order of multiplications than actually performing

the multiplication.

Here, we define m[i, j] as the minimum number of scalar multiplications

needed to calculate the matrix chain MiMiþ1 . . . Mj, for 1 � i � j � n. The target

problem then becomes finding m[1, n]. Because a matrix chain can be divided

into two smaller matrix chains, each of which can be multiplied into a single

matrix first, the following recurrent relationship holds:

m i; j½ � ¼ min
i�k<j

m i; k½ � þm kþ 1; j½ � þ vi�1vkvj
� �0 if i ¼ j

if i < j

8>><
>>: ð4:5Þ

A simple recursive algorithm on the basis of recurrence (4.5) can provide the

answer to m[1, n]; however, such an algorithm will be extremely inefficient
because, in the process of computing m[1, n], many entries of m[i, j] are com-

puted multiple times. For example, if we wish to compute m[1, 6], the value

of m[3, 4] will be repeatedly computed in the process of calculating m[1, 4],

m[2, 5], and m[3, 6]. However, we could store the values in a table, which leads

to the dynamic programming algorithm BottomUpMatrixChain shown in

Algorithm 4.16.

Algorithm 4.16 A dynamic programming algorithm for solving the matrix-chain

multiplication problem

BottomUpMatrixChain(Vector v)
1

2

3

. n = v.size – 1;

. for (i = 1 to n) m[i, i] = 0;

. for (p = 2 to n) do // p is the chain length

4

5

6

7

8

9

10

11

12

13

14

15

4.4 Heuristic algorithms 213
. for (i = 1 to n – p + 1) do

. j = i + p – 1;

. m[i, j] = 1;

. for (k = i to j - 1) do

. temp = m[i, k] + m[k + 1, j] + vi-1vkvj;

. if (temp < m[i, j]) do

. m[i, j] = temp;

. d[I, j] = k;

. end if

. end for

. end for

. return m and d;
The BottonUpMatrixChain perfectly embodies the property of recur-

rence (4.5). A triangular table m[i, j], where 1 � i � j � n, records the mini-

mum numbers of scalar multiplications for its respective matrix chains,
whereas another triangular table d[i, j], where 1 � i < j � n, tracks where

the separations of matrix chains should be. We can see in line 3 that the m table

is filled in the ascending order of the length of the matrix chains, so that in line

8, the items to be added are already in place. Finally, the fully filled m and d

tables are returned as answers in line 15.

BottonUpMatrixChain handles recurrence (4.5) by making use of the

repetitive nature of the subproblems. The three loops in lines 3, 4, and 7 indi-

cate that this algorithm has a time complexity of O(n3). Compared with the
exponential time needed to search through all possible multiplication orders,

BottomUpMatrixChain is highly efficient.

BottomUpMatrixChain is a typical example of dynamic programming. It

solves the matrix-chain multiplication problem by systematically combining

solutions to multiplication of smaller matrix chains. In fact, the matrix-chain

multiplication problem contains two key ingredients that make BottomUpMa-

trixChain a successful function: overlapping subproblems and optimal sub-

structure. These two properties are indispensable for any DP algorithm to work.

4.4.2.1 Overlapping subproblems

We say that a problem has overlapping subproblems when it can be decom-
posed into subproblems that are not independent of one another. Often several

subproblems share the same smaller subproblems. For example, running a

recursive algorithm often requires solving the same subproblem multiple times.

DP solves each subproblem only once and stores the answer in a table, so that

214 CHAPTER 4 Fundamentals of algorithms
recurrences of the same subproblems take only constant time to get the answer

(by means of a table lookup).
The matrix-chain multiplication problem is an instance of this property.

Repeated multiplications of smaller matrix chains cause a high complexity for

a simple recursive algorithm. In contrast, the DP algorithm BottomUpMa-

trixChain creates the m table for the overlapping subproblems to achieve

high efficiency.

4.4.2.2 Optimal substructure

A problem exhibits an optimal substructure if its globally optimal solution con-

sists of optimal solutions to the subproblems within it. Recall that in Subsection

4.4.1, having an optimal substructure ensures that greedy algorithms yield opti-

mal solutions. It fact, if a problem has an optimal substructure, both greedy algo-

rithms and DP could yield optimal solutions. One key consideration in choosing

the type of algorithm is determining whether the problem has the greedy-choice

property, the overlapping subproblems, or neither. If the problem shows overlap-
ping subproblems but not the greedy-choice property, DP is a better way to solve

it. On the other hand, if the problem exhibits the greedy-choice property instead

of overlapping subproblems, then a greedy algorithm fits better. A problem rarely

has both of the properties because they contradict each other. The matrix-chain

multiplication problem has an optimal substructure, reflected in recurrence

(4.4), but it does not have the greedy-choice property. It consists of overlapping

subproblems. Therefore, DP is a suitable approach to address this problem.

4.4.2.3 Memoization

BottomUpMatrixChain, as its name suggests, solves the problem iteratively

by constructing a table in a bottom-up fashion. A top-down approach, on the

other hand, seems infeasible, from this simple recursive algorithm. In fact, the
unnecessary recomputations that prevent the recursive algorithm from being

efficient can be avoided by recording all the computed solutions along the

way. This idea of constructing a table in a top-down recursive fashion is called

memoization. The pseudocode of a memoized DP algorithm to solve the

matrix-chain multiplication problem is shown in Algorithm 4.17.

Algorithm 4.17 Solving matrix-chain multiplication problems with memoization

TopDownMatrixChain(Vector v)
1.

2.

3.

4.

1.
n = v.size – 1;

for (i = 1 to n)

for (j = i to n) m[i, j] = 1;

return Memoize(v, 1, n);
Memoize(Vector v, Index i, Index j)
if (m[i, j] < 1) return m[i, j];

2.

3.

4.

5.

6.

7.

8.

9.

4.4 Heuristic algorithms 215
if (i = j) m[i, j] = 0;

else

for (k = i to j - 1) do

temp = Memoize(v, i, k) + Memoize(v, k + 1, j) + vi-1vkvj;

if(temp < m[i, j]) m[i, j] = temp;

end for

end if

return m[i, j];
The time complexity of the TopDownMatrixChain shown in Algorithm

4.17 is still O(n3), because it maintains the m table. The actual runtime of the

TopDownMatrixChain will be slightly longer than the BottomUpMatrix-

Chain because of the overhead introduced by recursion. In general, memoriza-

tion can outperform a bottom-up approach only if some subproblems need not

be visited. If every subproblem has to be solved at least once, the bottom-up

approach should be slightly better.
4.4.3 Branch-and-bound
Branch-and-bound is a general technique for improving the searching process

by systematically enumerating all candidate solutions and disposing of obviously

impossible solutions.

Branch-and-bound usually applies to those problems that have finite solu-

tions, in which the solutions can be represented as a sequence of options.

The first part of branch-and-bound, branching, requires several choices to be
made so that the choices branch out into the solution space. In these methods,

the solution space is organized as a treelike structure. Figure 4.25 shows an

instance of TSP and a solution tree, which is constructed by making choices

on the next cities to visit.

Branching out to all possible choices guarantees that no potential solutions

will be left uncovered. But because the target problem is usually NP-complete

or even NP-hard, the solution space is often too vast to traverse. The branch-

and-bound algorithm handles this problem by bounding and pruning. Bound-
ing refers to setting a bound on the solution quality (e.g., the route length for

TSP), and pruning means trimming off branches in the solution tree whose solu-

tion quality is estimated to be poor. Bounding and pruning are the essential con-

cepts of the branch-and-bound technique, because they are used to effectively

reduce the search space. We demonstrate in Figure 4.25 how branch-and-bound

works for the TSP problem.

The number under a leaf node of the solution tree represents the length of

the corresponding route. For incomplete branches, an expression in the form
of a þ b is shown. In this notation, a is the length of the traversed edges, and

A

B E

C D

2

9
1

3

8

3

7

5

4 6

A

B

A

B

B

C

C

C

C

C

D

6+12

D

D

EE

E

A

D

E

E

9+10

7+12 7+8 10+8

12+5

12+3

8+10

21 15

FIGURE 4.25

A TSP and its solution tree after applying branch-and-bound.

216 CHAPTER 4 Fundamentals of algorithms
b is a lower bound for the length of the remaining route that has not been

explored. The lower bound is derived by use of a minimum spanning tree that

consists of the unvisited vertices, as well as the root and leaf vertices of the par-

tial route. For example, for the unfinished route A!B!E, a minimum spanning

tree is built for nodes A, C, D, and E, and its value is 12. This lower bound is a

true underestimate for the length of the remaining route. The sum of these two
numbers provides the basis for bounding.

The solution tree is traversed depth-first, with the length of the current

shortest route as the upper bound for future solutions. For example, after

A!B!C!D!E!A is examined, the upper bound is 21, and after the next

route is explored, the bound drops to 15. Every time a partial route is extended

by a vertex, a lower bound for the length of the rest of the route is computed.

If the sum a þ b is over or equal to the current upper bound, the solutions on

that branch guarantees to be worse than the current best solution, and the
branch can be pruned. Most branches are pruned in Figure 4.25.

An exhaustive search will build a search tree with 89 nodes,1 but the solu-

tion tree with branch-and-bound has only 20 nodes. Branch-and-bound acceler-

ates the search process by reducing the solution space en masse. Although

branch-and-bound algorithms generally do not possess proven time complexity,

their efficiency has made them the first choice for many problems, especially for

NP-complete problems.

Branch-and-bound mainly addresses optimization problems, because bound-
ing is often based on numerical comparisons. TSP that uses the route length

as the bound is a classical application; however, it can also be applied to some

decision problems. In these cases, the bounding criteria are often restrictions or
1Let n be the number of cities and f (n) be the number of nodes in the exhausted search tree.

Then f(2) ¼ 3, f(3) ¼ 7, and f(n) ¼ (n�1)f(n�1) þ 1.

4.4 Heuristic algorithms 217
additional descriptions of possible solutions. The Davis-Putnam-Logemann-
Loveland (DPLL) search scheme for the Boolean Satisfiability problem is a
typical and important application for this kind of branch-and-bound algorithm.
4.4.4 Simulated annealing
Simulated annealing (SA) is a general probabilistic algorithm for optimization

problems [Wong 1988]. It uses a process searching for a global optimal solution

in the solution space analogous to the physical process of annealing. In the pro-

cess of annealing, which refines a piece of material by heating and controlled
cooling, the molecules of the material at first absorb a huge amount of energy

from heating, which allows them to wander freely. Then, the slow cooling pro-

cess gradually deprives them of their energy, but grants them the opportunity to

reach a crystalline configuration that is more stable than the material’s original

form. The idea to use simulated annealing on optimization problems was first

proposed by S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi in [Kirkpatrick

1983] for the placement and global routing problems.

Simulated annealing (SA) is analogous to annealing in three ways:
1. The energy in annealing corresponds to the cost function in SA. The

cost function evaluates every solution, and the cost of the best-known

solution generally decreases during the SA process. The goal of an optimi-
zation problem is to find a solution with a minimum cost.

2. The movements of molecules correspond to small perturbations in the

current solution, such as switching the order of two consecutive vertices

in a solution to TSP. SA repeatedly perturbs the current solution so that

different regions in the solution space are explored.

3. The temperature corresponds to a control parameter temperature T in

SA. T controls the probability of accepting a new solution that is worse

than the current solution. If T is high, the acceptance probability is also
high, and vice versa. T starts at the peak temperature, making the current

solution changes almost randomly at first. T then gradually decreases, so

that more and more suboptimal perturbations are rejected. The algorithm

normally terminates when T reaches a user-specified value.
An SA algorithm typically contains two loops, an outer one and an inner one.

In the outer loop, T dwindles every time, and the outer loop terminates when

T reaches some user-specified value. In the inner loop, the solution is perturbed,

and the cost function of the perturbed solution is evaluated. If the new solution

has a lower cost, it directly replaces the current solution. Otherwise, to accept

or reject the new, higher-cost solution is based on a probability function that is

positively related to T and negatively related to the cost difference between the

current and new solutions. The inner loop continues until a thermal equilib-

rium is reached, which means that T also controls the number of iterations

218 CHAPTER 4 Fundamentals of algorithms
of the inner loop. After both loops terminate, the best solution visited in the

process is returned as the result.
The pseudocode in Algorithm 4.18 outlines the SA algorithm. There are a

few details worth discussion: in line 2 of the function Accept, the number

e
�Dc
T ensures that a higher cost solution has a greater likelihood of acceptance

if T is high or the cost difference (△c) is small. Although there is no strong the-

oretical justification for the need of strictly following this exact formula, this for-

mula has been popular among SA users.

Algorithm 4.18 Simulated annealing algorithm

Accept(temperature T, cost Dc)
1.

2.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17
Choose a random number rand between 0 and 1;

return (e-Dc/T > rand);
SimulatedAnnealing()
. solution sNow, sNext, sBest;

. temperature T, endingT;

. Initialize sNow, T and endingT;

. while (T > endingT) do

. while (!ThermalEquilibrium(T))do

. sNext = Perturb(sNow);

. if (cost(sNext) < cost(sNow))

. sNow = sNext;

. if (cost(sNow) < cost(sBest))

. sBest = sNow;

. else if (Accept(T, cost(sNext)-cost(sNow)))

. sNow = sNext;

. end if

. end while

. Decrease(T);

. end while

. return sBest;
The combination of the functions ThermalEquilibrium, Decrease,

and the parameter endingT in Algorithm 4.18 characterize an SA algorithm.

In combination, they determine the cooling schedule or the annealing sched-

ule. The cooling schedule can be tuned in many ways, such as making T drop

faster at first and slower afterwards in the function Decrease or allowing more

perturbations when T is small in the function ThermalEquilibrium. Every

4.4 Heuristic algorithms 219
adjustment in the cooling schedule affects the solution quality and the time

taken to find a solution. In practice, empirical principles and a trial-and-error
strategy are commonly used to find a good cooling schedule [Hajek 1988].

SA has many advantages over other optimization algorithms. First, because

there is a non-zero probability of accepting higher cost solutions in the search

process, SA avoids becoming stuck at some local minima, unlike some greedy

approaches. Also, the runtime of SA is controllable through the cooling sched-

ule. One can even abruptly terminate this algorithm by changing the parameter

endingT in line 4 of SimulatedAnnealing. Finally, there is always a best-

known solution available no matter how little time has elapsed in the search
process. With SA, the user can always get a solution. In general, a longer run-

time would result in a better-quality solution. This flexibility explains SA’s wide

popularity. SA is considered the top choice for several EDA problems, such as

placement and Binary Decision Diagram (BDD) variable reordering.
4.4.5 Genetic algorithms
Just like simulated annealing, genetic algorithms are another general rando-
mized algorithm catering to optimization problems [Goldberg, 1989; Davis

1991]. They also perform a series of computations to search for a global optimal

solution in the solution space. As the name suggests, genetic algorithms use

techniques inspired by operations found in evolutionary biology such as

selection, crossover, and mutation.

Genetic algorithms are different from other global search heuristics in many

ways. First of all, other global search algorithms, such as simulated annealing,

perform a series of perturbations on a single solution to approach a global opti-
mum. Genetic algorithms simultaneously operate on a set of feasible solutions

or a population. Moreover, the solutions in a genetic algorithm are always

encoded into strings of mathematical symbols, which facilitate future manipula-

tions on them. Many types of coding symbols can be used, such as bits, inte-

gers, or even permutations. In the simplest versions of genetic algorithms,

fixed-length bit strings are used to represent solutions. A bit string that speci-

fies a feasible solution is called a chromosome. Each bit in a chromosome is

called a gene.
Genetic algorithms have many variations [Holland 1992]. Here we will focus

on the simple genetic algorithm (SGA) to get a taste of the mechanics of genetic

algorithms. SGA can be separated into six phases: initialization, evaluation,

selection, crossover, mutation, and replacement. After the initial population is

generated in the initialization phase, the other five actions take place in turns

until termination. Figure 4.26 shows the flow of SGA.

In the evaluation phase, chromosomes in the population are evaluated with

a fitness function, which indicates how good the corresponding solutions are.
Their fitness values are the criteria of selection in the next phase. Advanced

Mutation

Replacement

Initialization

Evaluation Selection

Crossover

FIGURE 4.26

The flow of a simple genetic algorithm.

220 CHAPTER 4 Fundamentals of algorithms
genetic algorithms can even handle multi-purposed optimization problems with

plural fitness functions.

The selection phase aims at finding the best parents or a group of solutions

to generate the next population. Many schemes can be implemented to exercise
selection in SGA. The simplest scheme is truncation selection, in which the

s chromosomes with the highest fitness values are chosen, and l/s copies are

duplicated for each of them, in which l is the population size. Notice that the

population size will not change after selection. Another simple selection

scheme, Roulette-Wheel selection, chooses a chromosome with the probability

of the ratio of its fitness value to the sum of all fitness values of the population.

In the crossover phase, children chromosomes are produced by inheriting

genes from pairs of parent chromosomes. As always, there are many methods to
implement the crossover, each with its pros and cons. Uniform crossover states

that every gene of a child chromosome comes from a dad with a probability of

p (usually 0.5) and from a mom with a probability of (1 � p). Conventionally,

two parents give birth to two children so that the population size remains

unchanged.

Mutation means changing a tiny fraction of the genes in the chromosomes.

Although in biology mutations rarely happen, they do prevent genetic algo-

rithms from getting stuck in local minima. After the processes of evaluation,
selection, crossover, and mutation are complete, the new population replaces
the old one and the next iteration begins.

Figure 4.27 shows a tiny example of an SGA, with a population size of four

and chromosome length of six. The fitness function simply counts “1” genes.

Truncation selection and uniform crossover with a probability of 0.5 are used

in this example. Notice that the average and highest fitness values increase after

one generation.

In this example, the best solution seems very easy to achieve, so an SGA
seems unnecessary; however, in real-life applications of SGA, a population size

can be as large as 100,000 and a chromosome can contains up to 10,000 genes.

The fitness function will be much more complex as well.

11 0 0 1 0 11 0 0 1 1 11 0 0 0 111 0 0 1 03

11 0 0 1 0 11 0 1 1 1 11 0 1 1 100 0 0 1 12 5

10 0 1 1 1 10 0 0 1 0 11 0 0 1 001 1 0 0 13 3

2

10 0 1 1 010 0 1 1 010 0 1 1 110 0 1 1 14 4

Selection Crossover Mutation

Average fitness: 3
Highest fitness: 4

Average fitness: 3.5
Highest fitness: 5

FIGURE 4.27

One-generation simulation of a simple genetic algorithm.

4.5 Mathematical programming 221
SGA is just a small part of the broad subject of genetic algorithms. Genetic
algorithms remain an active research topic for various applications. In addition

to EDA, they have applications in a variety of fields, including designing shapes

for high-speed trains and human face recognition.
4.5 MATHEMATICAL PROGRAMMING

Mathematical programming, or mathematical optimization, is a systematic

approach used for optimizing (minimizing or maximizing) the value of an objec-

tive function with respect to a set of constraints. The problem in general can be

expressed as:

Minimize ðor maximizeÞ f ðxÞ;
Subject to X ¼ fXjgiðxÞ � bi; i ¼ 1 . . .mg

where

x ¼ ðx1; . . . ; xnÞ are optimization ðor decisionÞ variables;
f : Rn ! R is the objective function; and

gi : R
n ! R and bi 2 R form the constraints for the valid values of x
4.5.1 Categories of mathematical programming
problems
According to the natures of f and X, mathematical programming problems can

be classified into several different categories:
1. If X ¼ R
n, the problem is unconstrained;

2. If f and all the constraints are linear, the problem is called a linear

programming (LP) problem. The linear constraints can then be repre-

sented in the matrix form:
Ax � b
where A is an m � n matrix corresponding to the coefficients in gi(x).

222 CHAPTER 4 Fundamentals of algorithms
3. If the problem is linear, and all the variables are constrained to integers,
the problem is called an integer linear programming (ILP) problem.

If only some of the variables are integers, it is called a mixed integer lin-

ear programming (MILP or MIP) problem.

4. If the constraints are linear, but the objective function f contains some

quadratic terms, the problem is called a quadratic programming (QP)

problem.

5. If f or any of gi (x) is not linear, it is called a nonlinear programming

(NLP) problem.
6. If all the constraints have the following convexity property:
gi axa þ bxbð Þ � agi xað Þ þ bgi xbð Þ

where a � 0, b � 0, and aþ b ¼ 1, then the problem is called a convex

programming or convex optimization problem.

7. If the set of feasible solutions defined by f and X are discrete, the problem

is called a discrete or combinatorial optimization problem.
Intuitively speaking, different categories of mathematical programming problems

should involve different solving techniques, and, thus, they may have different

computational complexities. In fact, most of the mathematical optimization

problems are generally intractable—algorithms to solve the preceding optimiza-
tion problems such as the Newton method, steepest gradient, branch-and-

bound, etc., often require an exponential runtime or an excessive amount of

memory to find the global optimal solutions. As an alternative, people turn to

heuristic techniques such as hill climbing, simulated annealing, genetic algo-

rithms, and tabu search for a reasonably good local optimal solution.

Nevertheless, some categories of mathematical optimization problems, such

as linear programming and convex optimization, can be solved efficiently and

reliably. Therefore, it is feasible to examine whether the original optimization
problem can be modeled or approximated as one of these problems. Once

the modeling is completed, the rest should be easy—there are numerous share-

ware or commercial tools available to solve these standard problems.

In the following, we will briefly describe the problem definitions and solving

techniques of the linear programming and convex optimization problems.

For more theoretical details, please refer to other textbooks or lecture notes

on this subject.
4.5.2 Linear programming (LP) problem
Many optimization problems can be modeled or approximated by linear forms.

Intuitively, solving LP problems should be simpler than solving the general

mathematical optimization problems, because they only deal with linear con-

straint and objective functions; however, it took people several decades to

4.5 Mathematical programming 223
develop a polynomial time algorithm for LP problems, and several related theo-

retical problems still remain open [Smale 2000].
The simplex algorithm, developed by George Dantzig in 1947, is the first

practical procedure used to solve the LP problem. Given a set of n-variable lin-

ear constraints, the simplex algorithm first finds a basic feasible solution that

satisfies all the constraints. This basic solution is conceptually a vertex (i.e., an

extreme point) of the convex polyhedron expanded by the linear constraints

in R
n hyperspace. The algorithm then moves along the edges of the polyhedron

in the direction toward finding a better value of the objective function. It is

guaranteed that the procedure will eventually terminate at the optimal solution.
Although the simplex algorithm can be efficiently used in most practical

applications, its worst-case complexity is still exponential. Whether a polyno-

mial time algorithm for LP problems exists remained unknown until the late

1970s, when Leonid Khachiyan applied the ellipsoid method to this problem

and proved that it can be solved in O(n4
w) time. Here n and w are the number

and width of variables, respectively.

Khachiyan’s method had theoretical importance, because it was the first

polynomial-time algorithm that could be applied to LP problems; however, it
did not perform any better than the simplex algorithm for most practical cases.

Many researchers who followed Khachiyan focused on improving the average

case performance, as well as the computational worst-case complexity. The

most noteworthy improvements included Narendra Karmarkar’s interior point

method and many other revised simplex algorithms [Karmarkar 1984].
4.5.3 Integer linear programming (ILP) problem
Many of the linear programming applications are concerned with variables only

in the integral domain. For example, signal values in a digital circuit are under a

modular number system. Therefore, it is very likely that optimization problems

defined with respect to signals in a circuit can be modeled as ILP problems.

On the other hand, problems that need to enumerate the possible cases, or

are related to scheduling of certain events, are also often described as ILP.

The ILP problem is in general much more difficult than is LP. It can be shown

that ILP is actually one of the NP-hard problems. Although the formal proof of
the computational complexity of the ILP problem is beyond the scope of this

book, we will use the following example to illustrate the procedure and explain

the difficulty in solving the ILP problem.

The ILP problem in Figure 4.28 is to maximize an objective function f, with

respect to four linear constraints {g1, g2, g3, g4}. Because the problem consists of

only two variables, x and y, it can be illustrated on a two-dimensional plane,

where each constraint is a straight line, the four constraints form a closed region

C, and the feasible solutions are the lattice or integral points within this region.
The objective function f, represented as a stright line to the right of region C,

moves in parallel with respect to different values of k. Intuitively, to obtain

maximize f : 12x + 7y
subject to g1: 2x – 3y ≤ 6
 g2: 7x + 4y ≤ 28
 g3: −x + y ≤ 2
 g4: −2x – y ≤ 2
where x, y ∈ Z

x

y

g1

g2

g3g4

f = k

C
p1

p2

FIGURE 4.28

An ILP example.

224 CHAPTER 4 Fundamentals of algorithms
the maximum value of f, we can move the line f ¼ k from where it is located in

the figure until it intersects the region C on a lattice point for the first time.

From the figure, it is clear that the maximum value must occur on either

point p1 (3, 1) or p2 (2, 3). For p1, f ¼ 12 � 3 þ 7 � 1 ¼ 43, and for p2, f ¼
12 � 2 þ 7 � 3 ¼ 45. Therefore, the maximum value of f is 45, which occurs
at (x, y) ¼ (2, 3).

This solving procedure is not applicable for ILP problems with more vari-

ables—it will be impossible to visualize the constraints and to identify the can-

didate integral points for the optimum solutions. In fact, to find a feasible

assignment that satisfies all the constraints of an ILP problem is already an NP-

complete problem. Finding an optimal solution is even more difficult.

4.5.3.1 Linear programming relaxation and branch-and-bound
procedure

Because it is very difficult to directly find a feasible solution that satisfies all the

constraints of the ILP problem, one popular approach is to relax the integral
constraints on the variables and use a polynomial-time linear programming

solver to find an approximated nonintegral solution first. Then, on the basis

of the approximated solution, we can apply a branch-and-bound algorithm to

further narrow the search [Wolsey 1998].

In the previous example, the LP relaxation tells us that the optimal solution

occurs at (x, y) ¼ (108/29, 14/29). Because x is an integer, we can branch on

variable x into two conditions: x � 3 and x � 4. For x � 4, the LP solver will

report infeasibility because the union of the constraints is an empty set. On
the other hand, for the x � 3 case we will have the optimal solution at (x, y) ¼
(3, 7/4). Because y is not yet an integer, we further branch on y—y � 1

and y � 2. For y � 1, we obtain an integral solution (x, y) ¼ (3, 1) and f ¼
43. For y � 2, the LP optimal solution will be (x, y) ¼ (20/7, 2). Repeating

the above process, we will eventually acquire the integral optimal solution

x = 108/29
y = 14/29

x ≤ 3

x = 3
y = 7/4

y ≥ 2

x = 20/7
y = 2

x ≤ 2

x = 2
y = 7/2

y ≤ 3

x = 2
y = 3

f = 45

x = 3
y = 1f = 43

infeasible

infeasible

infeasible

FIGURE 4.29

Decision tree of the LP-based branch-and-bound.

4.5 Mathematical programming 225
(x, y) ¼ (2, 3) and f ¼ 45. The decision graph of the branch-and-bound process
is shown in Figure 4.29.

4.5.3.2 Cutting plane algorithm

Another useful approach for solving ILP problems is the cutting plane algo-

rithm. This algorithm iteratively adds valid inequalities to the original problem

to narrow the search area enclosed by the constraints while retaining the feasi-

ble points. Figure 4.30 illustrates an example of such valid inequalities.

In Figure 4.30, the cuts c1 and c2 are said to be valid inequalities, because all

the feasible points (i.e., the integral points within the dash region C) are still

valid after adding the new constraints. On the other hand, cut c3 is not a valid

inequality because one feasible point p1 becomes invalid afterward.
It is clear to see that the addition of the valid inequality c2 will not help the

search for the optimal solution because it does not narrow the search region.

On the contrary, cut c1 is said to be a strong valid inequality because it makes

the formulation “stronger.” The goal of the cutting plane algorithm is to add

such strong valid inequalities in the hope that the optimal solution will eventu-

ally become an extreme point of the polyhedron so that it can be found by the

polynomial-time LP algorithm.

There are many procedures to generate valid inequalities such as Chvátal-

Gomory [Gomory 1960], 0-1 Knapsack [Wolsey 1999], and lift-and-project

[Balas 1993] cuts. However, sheer use of these valid inequality generation proce-

dures in the cutting plane algorithm will not go too far in solving difficult ILP

p1

x

y

C

c1: x ≤ 4

c2: x+y ≤ 4

c3: 2x+y ≥ 2

FIGURE 4.30

Valid and invalid inequalities.

226 CHAPTER 4 Fundamentals of algorithms
problems—it may take an exponential number of steps to approach an integral

extreme point. A better approach would be combining the cutting plane algo-

rithm with the branch-and-bound process. This combined technique is called
the branch-and-cut algorithm.
4.5.4 Convex optimization problem
As mentioned in Subsection 4.5.1, the constraints in the convex optimization

problem are convex functionswith the following convexity property (Figure 4.31):

gi axa þ bxbð Þ � agi xað Þ þ bgi xbð Þ
where a � 0, b � 0, and aþ b ¼ 1. Conceptually, the convexity property can be

illustrated as follows:
g(x)

x
xaxb

ag(xa) + bg(xb)

g(axa + bxb)

axa + bxb

FIGURE 4.31

The convexity property.
In other words, given two points xa and xb from the set of points defined by a con-

vex function, all thepoints on the line segment between xa and xbwill also belong to

the set (i.e., the dash region),which is called a convex set. Moreover, it can be shown

that for a convex function, a local optimal solution is also a global optimal solution.

In addition, the intersection of multiple convex sets is also convex [Boyd 2004].

Polyhedron formed by
linear inequalities has
the convexity property

(a) (b) (c)

Convex epigraph Non-convex epigraph

FIGURE 4.32

Examples of convex functions.

4.5 Mathematical programming 227
More examples of convex functions can be found in Figure 4.32. The

LP problem, where its constraints form a polyhedron in the n-dimensional

hyperspace, is a special case of the convex optimization problem.

4.5.4.1 Interior-point method

Similar to linear programming, there is, in general, no analytical formula for the

solution of a convex optimization problem. However, there are many effective

methods that can solve the problems in polynomial time within a reasonably
small number of iterations. The interior-point method is one of the most suc-

cessful approaches.

Although detailed comprehension of the interior-point method requires the

introduction of many mathematical terms and theorems, we can get a high-level

view of the method by comparing it with the simplex method as shown in

Figure 4.33. In the simplex method, we first obtain an initial feasible solution

and then refine it along the edge of the polyhedron until the optimal solution

is reached. In the interior-point method, the initial feasible solution is approxi-
mated as an interior point. Then, the method iterates along a path, called a

central path, as the approximation improves toward the optimal solution.

One popular way to bring the interior-point solution to the optimal one is by

the use of a barrier function. The basic idea is to rewrite the original problem

into an equality formula so that Newton’s method can be applied to find the

optimal solution.2

Let’s first define an indicator function I(u) such that I(u) ¼ 0 if u � 0, and

I(u) ¼ 1 otherwise (Figure 4.34). We can then combine the convex objective
function min f(x), and the constraints gi(x) � 0 j i ¼ 1 	 m as:

min f xð Þ þ
Xm
1

I gi xð Þð Þ
 !
2To apply the Newton’s method, the formula needs to be an equality and twice differentiable.

initial
feasible
solutionoptimum

solution

(a) Simplex method

initial
feasible
solution

optimum
solution

(b) Interior-point method

FIGURE 4.33

Comparison of simplex and interior-point methods.

u

I(u)

−1
BL(t) as t ∞

FIGURE 4.34

Indicator I(u) and logarithmic functions BL.

228 CHAPTER 4 Fundamentals of algorithms
This formula describes the same problem as the original convex optimization

problem and after the rewrite, there are no more inequalities. However, this for-

mula is not twice differentiable (i.e., not smooth) near u ¼ 0, so Newton’s

method cannot work. One solution is to use the following logarithmic barrier

function to approximate the indicator function:

BLðu; tÞ ¼ �ð1=tÞlogð�uÞ
where t > 0 is a parameter to control the approximation. As t approaches infin-

ity, the logarithmic barrier function BL(u) gets closer to the indicator function

I(u).

By use of the logarithmic barrier function, the objective function then

becomes:

min f xð Þ þ
Xm
1

� 1=tð Þlog �gi xð Þð Þ
 !

Please note that now the optimization formula is convex and twice differentia-

ble (we assume that both f(x) and gi(x) are twice differentiable here). Therefore,

we can apply Newton’s method iteratively and eventually reach an optimal

InteriorMethod (objFunction f, Constraints g)

1. Let (x, t) ¼ min f xð Þ þPm
1 � 1=tð Þlog �gi xð Þð Þ� �

2. Given initial t, tolerance e

3. Find an interior feasible point xp s.t. 8i.gi(xp) < 0

4. Starting from xp, apply Newton’s method to find the optimal

solution xopt
5. If (1t < e) return optimality as {xopt, (xopt, t)};

6. Let xp ¼ xopt, t ¼ k�t for k > 1, repeat 4

Original constraints: ∏gi(x)

Objective
function: f(x)

Optimal
solution

Φ(x, t0)

xpOptimal
solution for t0

Φ(x, t1)
for t1 = k⋅t0

xp <= xopt

Optimal
solution
for t1

FIGURE 4.35

Interior-point algorithm and an illustration of its concept.

4.5 Mathematical programming 229
solution. However, please remember that this will be just an approximate solu-
tion because of the introduction of the logarithmic barrier function.

The questions then arise: How close is this solution to the solution of the

original problem? What is the effect of t? Intuitively, if t gets larger, the final solu-

tion will be closer to the solution of the original convex optimization problem.

However, with a larger t, it will take a longer time for Newton’s method to con-

verge. On the other hand, the use of a smaller t will lead to a faster solution at

the cost of accuracy.

The pseudocode in Figure 4.35 is an interior-point algorithm that gives a
solution balancing runtime and accuracy. We first start with a smaller t so

that Newton’s method converges faster. Once the optimal solution for this

t value is obtained, we then increase t so that the optimal solution gradually

approaches the real optimization of the original problem. This process

terminates when the inverse of the variable t becomes less than the specified

tolerance e.

230 CHAPTER 4 Fundamentals of algorithms
4.6 CONCLUDING REMARKS

In this chapter, we present various fundamental algorithms to the EDA research

and development—from the classic graphic theories, the practical heuristic

approaches, and then to the theoretical mathematical programming techniques.

The readers are advised to get acquainted with these algorithms to completely

appreciate the spirit of the research in different areas of the later chapters.
In addition, please note that a good EDA algorithm is usually hybrid. In other

words, it should act as a strategy, or say problem-solving tactic that is able to

apply different algorithms in different situations. It should be working efficiently

for the most common cases, taking advantage of the easy ones, and at the same

time, handling the worst-case scenarios gracefully. In summary, do not just take

the algorithms in this chapter as ready solutions; instead, thoroughly understand

the problems first, consider the trade-offs between runtime and memory, and

then treat the algorithms as different utilities, or weapons, for the different chal-
lenges in the EDA problem solving process.
4.7 EXERCISES
4.1. (Computational Complexity) Rank the following functions by order

of growth by use of asymptotic notations. One function is neither O(fi)
nor O(fi) for any other functions fi. Which is that?
a. 4lg n

b. n � 2n
c. n

n � cos n

d. n � lg n

e. (n þ 1)! f. lg999 n g. n � lg n h. n1/lg n
4.2. (Computational Complexity) A Hamiltonian path in a graph is a

simple path that visits every vertex exactly once. The decision problem

HAMILTONIAN PATH for a graph G and vertices u and v asks whether a

Hamiltonian path exists from u to v in G.
a. Prove that HAMILTONIAN PATH is NP.
b. Given that HAMILTONIAN PATH is NP-complete, prove that

HAMILTONIAN CYCLE is also NP-complete.
4.3. (Graph Algorithms) Figure 4.36 shows a directed graph of 10 verti-

ces. How many strongly connected components does this graph have
and which are they?

4.4. (Graph Algorithms) Given an undirected, weighted graph G ¼ (V, E)

and two vertices u and v in V. Find an efficient path from u to v such

that the biggest edge weight on the path is minimized.

A B C D E

JIHGF

FIGURE 4.36

A directed graph to find strongly connected components.

s1

s2

s3

a

b

c

d

e

f

g

t

3

7
6

12

7

11

8

10

6
1

8

9

12

7

10
4

FIGURE 4.37

A model for a combinational circuit in which vertices represent gates and edge weights stand

for the number of connecting wires, where gates s1, s2, and s3 have to be in one module and

t in the other, and meanwhile minimizing the number of wires crossing two modules. What is

the minimal number of crossing wires and where should the cut of two modules be?

4.7 Exercises 231
4.5. (Graph Algorithms) The weighted, undirected graph illustrated in

Figure 4.37 models a combinational circuit. We want to divide these

gates (vertices) into two modules.

4.6. (Heuristic Algorithms) In a dance class, n male students and n female

students should be paired. If we want to minimize the sum of height
differences of the n pairs,
a. Design a greedy algorithm to efficiently solve this problem.

b. Prove that the algorithm works because the problem exhibits both

the greedy-choice and optimal substructure properties.
4.7. (Heuristic Algorithms) Solve the matrix-chain multiplication problem

if the dimensions of the matrices are 5 � 10, 10 � 3, 3 � 12, 12 � 5,

5 � 50, and 50 � 6. What are the minimum number of scalar multipli-

cations needed and the order of the multiplications?

4.8. (Heuristic Algorithms) Use the branch-and-bound technique to

solve the TSP problem in Figure 4.38. What is the length of the shortest

route? If only the branching technique is used to form the search tree,
what is the number of tree nodes?

4.9. (Linear Programming) Given an n � m rectangular, which is com-

posed of equal-length (length ¼ 1) matches as shown in Figure 4.39.
In this problem, we will try to remove as few as possible matches so

that all the squares (including 1 � 1, 2 � 2, 3 � 3, . . .) in the

C

DE

F

A B

5

7

4
53 4 1

3

8

2

6

219 7

FIGURE 4.38

A TSP instance.

n

m

FIGURE 4.39

A square-breaking problem.

232 CHAPTER 4 Fundamentals of algorithms
rectangular are broken. Please model this problem as an integer linear

programming (ILP) problem.
4.10. (Convex Optimization) Prove that a local optimum of a convex

function must be a global optimum.
ACKNOWLEDGMENTS

We thank Dr. Bow-Yaw Wang of Academia Sinica, Taiwan, and Mr. Benjamin Liang of University of

California, Berkeley, for their thorough reviews of the entire chapter, and Professor Tian-Li Yu of

National Taiwan University for providing valuable comments on the “Genetic Algorithm” subsection.
REFERENCES

R4.1 Books

[Aho 1983] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, Data Structures and Algorithms, Addison-

Wesley, Reading, MA, January 1983.

[Ahuja 1993] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory, Algorithms and

Applications, Prentice Hall, Englewood Cliffs, NJ, February 1993.

[Baase 1978] S. Baase, Computer Algorithms: Introduction to Design and Analysis, Addison-

Wesley, Reading, MA, December 1978.

References 233
[Boyd 2004] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press,

Cambridge, UK, March 2004.

[Cormen 2001] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms,

Second Edition, MIT Press, Cambridge, MA, September 2001.

[Davis 1991] L. Davis, Handbook of Genetic Algorithms, Van Nostrand Reinhold, New York, NY,

January 1991.

[Even 1979] S. Even, Graph Algorithms, Computer Science Press, Rockville, MD, June 1979.

[Ford 1962] R. W. Ford and D. R. Fulkerson, Flows in Networks, Princeton University Press, Prince-

ton, NJ, June 1962.

[Garey 1979] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory

of NP-Completeness, W.H. Freeman and Company, San Francisco, CA, January 1979.

[Gibbons 1985] A. Gibbons, Algorithmic Graph Theory, Cambridge University Press, Cambridge,

UK, July 1985.

[Goldberg 1989] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine

Learning, Reading, MA, Addison-Wesley, January 1989.

[Holland 1992] J. H. Holland, Adaptation in Natural and Artificial Systems, MIT Press, Cambridge,

CA, April 1992.

[Horowitz 1978] E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms, Computer

Science Press, Rockville, MD, January 1978.

[Knuth 1968] D. E. Knuth, Fundamental Algorithms: The Art of Computer Programming, Volume

1, Reading, MA, Addison-Wesley, February 1968.

[Papadimitriou 1993] C. H. Papadimitriou, Computational Complexity, Reading, MA, Addison-

Wesley, December 1993.

[Papadimitriou 1998] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization,

Algorithms and Complexity, Englewood Cliffs, NJ, Prentice Hall, January 1998.

[Reeves 1993] C. R. Reeves, Modern Heuristic Techniques for Combinatorial Problems, McGraw-

Hill, London, UK, February 1993.

[Tarjan 1987] R. E. Tarjan, Data Structures and Network Algorithms, Society for Industrial and

Applied Mathematics, Philadelphia, PA, January 1987.

[Ullman 1984] J. D. Ullman, Computational Aspects of VLSI, Computer Science Press, Rockville,

MD, August 1984.

[Wilf 2002] H. S. Wilf, Algorithms and Complexity, Second Edition, A. K. Peters, Ltd., Wellesley, MA,

December 2002.

[Wong 1988] D. F. Wong, H. W. Leong, and C. L. Liu, Simulated Annealing for VLSI Design, Kluwer

Academic, Boston, MA, March 1988.

[Wolsey 1998] L. A. Wolsey, Integer Programming, Wiley-Interscience, Hoboken, NJ, September

1998.

[Wolsey 1999] L. A. Wolsey and G. L. Nemhauser, Integer and Combinatorial Optimization,

Wiley-Interscience, Hoboken, NJ, November 1999.
R4.2 Computational Complexity

[Knuth 1976] D. E. Knuth, Big Omicron and big Omega and big Theta, in ACM SIGACT News, 8(2),

pp. 18–24, April–June 1976.
R4.3 Graph Algorithms

[Bellman 1958] R. Bellman, On a routing problem, in Quarterly of Applied Mathematics, 16(1),

pp. 87–90, December 1958.

[Dijkstra 1959] E. W. Dijkstra, A note on two problems in connection with graphs, in Numerische

Mathematik, 1, pp. 269–271, June 1959.

234 CHAPTER 4 Fundamentals of algorithms
[Edmonds 1972] J. Edmonds and R. M. Karp, Theoretical improvements in the algorithmic efficiency

for network flow problems, in J. of the ACM, 19, pp. 248–264, April 1972.

[Hopcroft 1973] J. E. Hopcroft and R. E. Tarjan, Efficient algorithms for graph manipulation, in Com-

munications of the ACM, 16(6), pp. 372–378, March 1973.

[Moore 1959] E. F. Moore, The shortest path through a maze, in Proc. Int. Symp. on the Theory of

Switching, pp. 285–292, November 1959.

[Prim 1957] R. C. Prim, Shortest connection networks and some generalizations, in Bell System

Technical J., 36, pp. 1389–1401, November 1957.
R4.4 Heuristic Algorithms

[Hajek 1988] B. Hajek, Cooling schedules for optimal annealing, in Mathematics of Operational

Research, 13(2), pp. 311–329, May 1988.

[Kirkpatrick 1983] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Optimization by simulation anneal-

ing, in Science, 220(4598), pp. 671–690, May 1983.
R4.5 Mathematical Programming

[Balas 1993] S. Balas, S. Ceria, and G. Cornuéjols, A lift-and-project cutting plane algorithm for

mixed 0-1 programs, in Mathematical Programming, 58(1-3), pp. 295–324, January 1993.

[Gomory 1960] R. E. Gomory, An algorithm for the mixed integer problem, Research Memoran-

dum, RM-2597, The Rand Corp., 1960.

[Karmarkar 1984] N. Karmarkar, A new polynomial-time algorithm for linear programming, in Proc.

ACM Symposium on Theory of Computing, pp. 302–311, April 1984.

[Smale 2000] S. Smale, Mathematical Problems for the Next Century, in Mathematics: Frontiers and

Perspectives, pp. 271–294, 2000.

CHAPTER
5

Electronic system-level
design and high-level

synthesis
Jianwen Zhu
University of Toronto, Toronto, Canada

Nikil Dutt
University of California, Irvine, California
IS CHAPTER
ABOUT TH

System designers conceptualize designs at an abstract functional level where

outputs are typically described as (algorithmic or transfer) functions of the sys-

tem inputs. This design abstraction level, called electronic system level (ESL),
enables ease of design capture and early design space exploration of multiple

design implementation alternatives. ESL designs can be refined into lower levels

of abstraction through a number of steps that gradually map abstract functions

into register-transfer level (RTL) components. An enabling technology for

ESL design is high-level synthesis (HLS), also known as behavioral synthesis.
A high-level synthesis tool bridges the gap between an algorithmic description

of a design and its structural implementation at the register transfer level and

is the next natural step in design automation, succeeding logic synthesis. The

need for high-level synthesis becomes more pressing with the proliferation of

billion-transistor designs. High-level synthesis has been researched actively since

the 1980s, and has yielded several promising results. However, it also faces a

number of challenges that has prevented its wide adoption in practice.

In this chapter, we first introduce the notion of ESL design and an ESL design
method. Next, we describe high-level synthesis in the context of an ESL design

method. We then describe the generic structure of the high-level synthesis

process and the basic tasks accomplished by high-level synthesis. This is fol-

lowed by a detailed description of the key high-level synthesis algorithms and

exercises designed to reinforce understanding. The reader will have been

exposed to the basic principles of high-level synthesis and its applicability in

an ESL design flow by the end of the chapter.
235

236 CHAPTER 5 Electronic system-level design and high-level synthesis
5.1 INTRODUCTION

A key goal of electronic design automation (EDA) is to shrink the rapidly

growing “designer productivity gap” that exists between how many transistors

we can manufacture per chip, and how many person-years we need to complete

a design with that many transistors. Collectively, EDA provides to chip designers

a design method, which can be considered as a set of complementary design

tools built on a design abstraction (i.e., a mechanism to conceptualize the chip

design), as well as a set of processes and guidelines that indicate the flow of

design, ordering of tool application, strategies for incorporating late engineering

changes, etc. The software design tools include design entry tools, which cap-

ture design specification; design synthesis tools, which target different parts

of the design specification and bring them down to low level implementation;

and design verification tools, which either simulate/verify the specification or

compare a specification against its implementation.
As discussed in Chapter 1, the EDA design method has traditionally pro-

gressed by raising the abstraction at which designs are conceptualized and spe-

cified. As a step in this progression, the basic components used by designers

grow in complexity, which results in fewer, but more complex, components;

therefore, designer productivity improves because designers need to manipu-

late fewer components and can reason about the design at abstractions that

are closer to how systems are specified and conceptualized. Historically, the

basic design component has evolved from polygons, to transistors, to gates,
and then to register transfer level blocks. To cope with the challenges of design-

ing emerging billion transistor system-on-chips (BTSOCs), it is widely

believed that the chips have to be designed at an abstraction level well above

RTL. Indeed, system designers typically reason about and conceptualize designs

at an abstract functional level where system outputs are described as algorithms

or transfer functions of the system inputs. This design abstraction, called elec-
tronic system level (ESL), enables ease of design capture and early design

space exploration of multiple design implementation alternatives. ESL designs
can be refined into lower levels of abstraction through a number of steps that

gradually map abstract functions into register-transfer level (RTL) compo-

nents, which is the next level of design abstraction. In this section, we discuss

the main drivers and the basic elements of the emerging ESL design method.
5.1.1 ESL design methodology
Moore’s law, which states that chip complexity doubles every 18 months, has
been the key driver behind the paradigm shift in EDA methodology. Although

RTL design methods are dominant currently, rapid growth in chip complexity

coupled with shrinking time-to-market windows result in RTL design methods

not being able to scale with the complexity of emerging designs. This trend

5.1 Introduction 237
necessitates fundamental changes that force the move toward higher levels of

abstraction. Let us examine two such fundamental changes.
The first fundamental change is that the cost of a new chip design by use of

an RTL design method is no longer economically viable.
Example 5.1 C
onsider a startup company designing a new chip at 65-nm technology. The average

design cost with the RTL design method is $30 million. Assuming a fivefold return on

investment, the company has to make at least $150 million in sales. Assuming a 10% mar-

ket share (a respectable goal for a startup), the chip design has to target a $1.5 billion mar-

ket. The reality is that few such markets exist, and if they do, they would be very crowded.

To dramatically reduce the design cost, the basic building blocks have to be

one order of magnitude larger than what is used in RTL. It has been suggested

that the basic component becomes a design block with 10,000 to 50,000 gates.

The 50,000 gate limit is set so that contemporary RTL-to-GDSII tools can com-

fortably handle each block without running into issues relating to design com-
plexity explosion that lead to excessive memory requirements and long run

times. Note that the complexity of these new building blocks coincides with

the complexity of an embedded processor. Indeed, many view processors to

be the basic building blocks (i.e., the “gates”) of an ESL method.
Example 5.2 Fi
gure 5.1 shows a prediction by the international technology roadmap for semi-

conductors (ITRS) as an implication of Moore’s law [SIA 2007]. Assume a constant
50

45

40

35

30

25

20

15

10

5

0

32

Number of Processing Engines
(Right Y Axis)

Total Logic Size
(Normalized to 2007, Left Y Axis)

Total Memory Size
(Normalized to 2007, Left Y Axis)

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 20212007 2022

44 58 79 101 126 161
212

268
348

424

526

669

878

1028

1435

of

 P
ro

ce
ss

in
g

E
ng

in
es

Lo
gi

c,
 M

em
or

y
S

iz
e

(N
or

m
al

iz
ed

 to
 2

00
7)

2,000

1,800

1,600

1,400

1,200

1,000

800

600

400

200

0

FIGURE 5.1

ITRS 2007 prediction of processing engine count.

238 CHAPTER 5 Electronic system-level design and high-level synthesis
die size of 66 mm2 and that the sizes of the main processor and peripherals remain

unchanged. The number of processing engines (PEs)—i.e., processors that perform

fixed functions—will grow from 32 in 2007 to 79 in 2010 and 268 in 2015. Conceivably,

chip designs with below a thousand components are easier to conceptualize and

implement.

The second fundamental change is the rapid growth in chip complexity that

enables integration of previously separate components on a printed circuit

board (e.g., CPU, Ethernet controller, or memory) into a single chip. This inte-

gration of heterogeneous “content” comprises not only hardware but also soft-
ware. Indeed, a chip is more often designed as a programmable computer

system, requiring not only hardware but also firmware, operating systems,

and application software, with applications often downloaded after the end

product is deployed to consumers.
Example 5.3 Fi
gure 5.2 shows a block diagram of Texas Instrument’s OMAP platform designed for

the cellular phone market. On this chip, one can find a mixture of heterogeneous com-

ponents, including an ARM programmable processor, an image signal processor,

numerous hardware processing engines for acceleration, and peripherals that interface

with the outside world.
ARM11 DSP

Security

OMAP2420

P
ow

er

P
eripherals

P
eripherals P

er
ip

he
ra

ls

ImagingVideo
Accelerator

2D/3D Graphics
Accelerator

SharedMemoryController/DMA

Timers,InterruptController,RTC

InternalSRAM,Boot/SecureROM

USB
OTG

FIGURE 5.2

Texas Instrument’s OMAP platform.

5.1 Introduction 239
To better understand emerging ESL methods, we examine three necessary

elements of a design abstraction that allow a chip design to be conceptualized
as a connected set of components:
n Computation: How to specify what each component does?

n Composition: How to assemble different components and coordinate
their computation to form a larger system?

n Communication: How do the components exchange information?
It is instructive to first examine the RTL design abstraction against these three

elements, and consider the design method we build around the RTL abstraction.
Example 5.4 A
 component in an RTL abstraction can be captured with objects in a hardware

description language (HDL) (e.g., a module in Verilog, or an entity in VHDL). The com-

putation of a component is captured by its per-cycle behavior, specifying the transforma-

tion of register values at each clock cycle. The components can be composed together

into a larger design by connecting the ports of components with wires (e.g., with the port

map construct in Verilog or VHDL). The communication between components is effected

by the transfer of values through wires. With the three design abstraction elements

clearly defined, an RTL method can be constructed: RTL synthesis tools convert each

module into a gate level design according to its per-cycle behavior, and all modules

are stitched together with wires, after which gate level optimizations are performed;

RTL simulation tools convert each module into a concurrent software process triggered

by events such as the rising edge of a clock.

The ESL abstraction typically conceptualizes the computation of a component at

a more abstract level by use ofuntimed behavior. In other words, chip designers do

not make the decision as to how computation is mapped to a particular clock step.

Currently C/Cþþ and Matlab are among the most commonly used languages for

capturing system behavior. However, themechanisms for composition and commu-

nication differ widely on the basis of the semantics of each specification language.

Next, we examine two ESL methods that are becoming increasingly
accepted. For each method, we examine the design abstraction used for compo-

sition and communication. We also examine how we map each component to

RTL (called component synthesis), how we map the full system into RTL (called

system synthesis), and how we verify the full system.
5.1.2 Function-based ESL methodology
The function-based ESL design method uses a computational model [Lee 1996]

to compose different functional components into a complete system. The
computational model determines how the components execute in parallel

and how they communicate with each other. Note that the manner in which

components exchange information is also more abstract than RTL.

240 CHAPTER 5 Electronic system-level design and high-level synthesis
Example 5.5 A
 process network [Kahn 1974] is a design abstraction in which functional components,

called processes, communicate through data items called tokens. On each execution of a

process, input tokens are consumed, and output tokens are produced. A process is exe-

cutedwhenever its input tokensare available.ComparedwithRTL, all threeelements of com-

putation, composition, and communication are more abstract: the computation of each

process is an untimed algorithm; the execution of processes follow a partial order; and the

communication between processes are through unbounded first-in first-outs (FIFOs).

A plethora of computational models has been developed in the past. Some

are developed as special cases of a general model. For example, synchronous

data flow [Lee 1987] is a special case of process networks that imposes the con-

straint in which the number of input and output tokens consumed and
produced by each process is statically determined to be constant. The synchro-

nous data flow model is useful to capture multi-rate signal processing systems.

Other computational models are designed for particular application domains.

For example, synchronous models [Halbwachs 1991; Berry 1992], which cap-

ture a system as atomic actions in response to external events, are very expres-

sive in capturing control-dominated applications.

In practice, the most widely used computational models arise frommodels used

for the simulation of dynamic physical systems. This is not surprising: HDLs at the
RTL abstraction (e.g., Verilog/VHDL) were in fact languages originally used for the

simulation of digital systems. One of the most widely used ESL computation models

in the industry is Simulink developed by MathWorks. Like a process network, Simu-

link graphically captures a system as a connected network of components, called a

block diagram. Here each block captures the instantaneous behavior of a compo-

nent, in other words, how the component output changes given component input

and state variable. The connections between components, or signals, serve as con-

straints, subject to which the entire dynamic system can be solved to find the rela-
tionship between signals and state variables over a time period. As a result,

Simulinkcanbeused to simulatebothcontinuous time systems (often analog subsys-

tems) anddiscrete time systems (oftendigital subsystems).A certainexecutionorder

of the blocks is imposed in each iteration of system solving. For example, if block A’s

output drives the input of another block B, it is required, according to the execution

semantics of Simulink block diagram, that A is executed before B. This execution

order coincides with process network. Therefore, Simulink can serve as an execut-

able modeling environment for process network and other computational models.
Verification in a function-based method is achieved through simulation.

A simulator respecting the underlying computational model is typically used.

In a function-based design method, component synthesis can be achieved

through a number of paths:
1. Direct translation to RTL

2. Direct mapping to predesigned intellectual property component

1Pin

com

pro

5.1 Introduction 241
3. High-level synthesis to RTL
4. Compilation to software programs
The most widely used forms of system component synthesis are to directly

map each component into separate hardware or map all components into soft-

ware running on a single processor. In the former case, point-to-point communi-
cation is implemented by hardware FIFOs or ping-pong memories.1 In the latter

case, communication is trivially implemented by shared memory.
Example 5.6 C
onsider the digital signal processor (DSP) builder product from Altera. It uses Simu-

link as the design specification and simulation environment. In addition, it supplies a large

library of predesigned, configurable intellectual property (IP) components, each with both

a Simulink simulation model, and an RTL implementation. When a DSP designer uses

Simulink to design a system with the predesigned components, DSP builder can auto-

matically generate a full-system RTL by mapping each component to its corresponding

IP component, as well as the top level interconnection. Xilinx’ SystemGenerator product

and Berkeley’s Chip-In-A-Day, share a similar methodology.
5.1.3 Architecture-based ESL methodology
The architecture-based ESL method follows closely the traditional discipline of

computer organization. Here a design is conceptualized as a set of components,

including processors, peripherals, and memories. Because these components

are often available as reused designs, either from previous projects or acquired
from third parties, they are referred to in the industry as intellectual property

components, or simply IPs. The components are connected through buses,

switch fabric, or point-to-point connections. Components connected to buses

and switches typically contain a set of master and/or slave ports. Each slave port

is assigned an address range so that targeted communication can be identified.

Several bus-based communication protocols are commonly used for this pur-

pose, including AMBA from ARM and CoreConnect from IBM. Furthermore,

the industry-wide SPIRIT consortium has developed IP-XACT, a standard to help
specify the composition of architecture-based systems with IP blocks.

A key difference in the architecture-based method is that a processor compo-

nent is not required to implement a fixed function. Instead, the computation of

the processor can be “programmed.” Such programming can happen in the tra-

ditional sense in which the component is a programmable processor and is pro-

grammed post-silicon. Or it can happen in the design exploration phase in

which an accelerator is assigned a certain function to be synthesized into hard-

ware. In this context, it is important for a processor to present a programming
g-pong memories are two SRAMs alternately accessed by a producer and a consumer

ponent. By switching the access of the SRAMs, data can be exchanged between the

ducer and the consumer without the need for copying data.

242 CHAPTER 5 Electronic system-level design and high-level synthesis
model to facilitate software development. For example, a RISC processor

defines an instruction set into which application software can be compiled.
We use the term program broadly to refer to system software, application soft-

ware, as well as the accelerator functions.

Communication in the architecture-based method is abstracted as a set of

transactions. Typically, a transaction is either a bus transaction, which repre-

sents a (burst) read or write operation to peripherals or memories, or a point-

to-point data transfer. Transaction level modeling is a popular modeling style

in which a construct called channel is used to encapsulate or abstract away the

concrete protocols for such transactions [Zhu 1997]. The use of abstract chan-
nels allows faster high-level design exploration, because unnecessary details are

abstracted away. In addition, it significantly eases the task of verification

because testbenches can be written at a high abstraction level. The abstract

channel can be replaced easily by a transactor, which encapsulates the timed

protocol, whenever a detailed simulation or implementation is required.

In the architecture-based method, the system architecture and its program

are simulated together. Two popular approaches for simulation exist currently.

The SystemC–based approach [Grötker 2002] models the architecture and pro-
gram together in a single environment. Here the program for a processor is

directly modeled as a Cþþ class by extending a predefined SystemC class.

The communication ports (an architectural element) of the processor are

directly accessible to the program. On the other hand, the virtual prototyping

approach has a clear separation between the architecture and the program it

runs. Here a system is first constructed by connecting a set of virtual compo-

nents predesigned for emulating hardware devices. Such virtual components

are referred to in the industry as verification IPs. Together, they present a pro-

grammer’s view or a programming model. The program is typically captured

as a binary executable and can be loaded for simulation. The SystemC approach

is suitable for the design phase when the system architecture is not yet well

defined and requires extensive exploration. Virtual prototyping is more suitable

for use when the system architecture is relatively well defined, enabling concur-

rent development of the software and the hardware.

In the architecture-based design method, component (IP) synthesis can be

achieved by the following approaches:
1. Direct instantiation of a predesigned IP component.

2. Extension of the processor design with processor configuration and

instruction set extension.
3. Synthesis of the processor from an architecture description language

(ADL) specification [Mishra 2008].

4. High-level synthesis to RTL.
Approach 1 requires the least involvement with users. However, mechanisms
have to be established to ensure that the simulation model and the instantiated

RTL model are consistent with each other. Approaches 2 and 3 are used for

5.1 Introduction 243
application-specific instruction processors, with varying degrees of user freedom

in defining the processor instruction set and microarchitecture. Typically, suppli-
ers of such components create the compiler and simulator tool chain according

to the instruction set definition or extension. Approach 4 is used when a hard-

wired accelerator has to be created to meet exacting performance, power/energy,

or cost constraints, when an existing IP cannot satisfy such constraints.

In the architecture-based design method, system synthesis mainly involves

the synthesis of system-level interconnect and the generation of the top level

design. Such a method is often referred to as a communication-centric design

method. Many computer-aided design (CAD) vendors offer IP assembly tools
to help assemble these architectural components into a computer system. For

instance, given a system description in the form of IP-XACT, tools such as

Synopsys coreAssembler and Mentor Graphics Platform Express can be used

to generate the top level netlist, as well as the interconnect fabric. Xilinx’s

EDK, and Altera’s SOPC Builder, fill the same role for field programmable
gate arrays (FPGAs). The generated fabric typically respects an on-chip bus

protocol standard. One of the most widely used bus standards is ARM’s

AMBA/AXI bus. Commercial products are available to generate specialized
circuits for on-chip buses conforming to the AMBA bus standards.
5.1.4 Function architecture codesign methodology
A more ambitious form of ESL design methodology is function architecture

codesign. As shown in Figure 5.3, this method follows a top-down, stepwise

refinement approach in which designers start with design requirements fol-

lowed by the development of a functional model. As in the case of the
function-based ESL method, here the functional model consists of a network

of functional components under a specific computational model, thereby cap-

turing the system function as a relation between system output and input. This

functional model is gradually refined into an architectural model, which as in

the case of architecture-based ESL method, consists of a network of architec-

tural components that communicate at the transaction level. The architectural

model can be further refined into RTL by a step of high-level synthesis as

described in the next section. Finally, the RTL model can be implemented in
silicon by means of “RTL-handoff ” to the ensuing steps of logic synthesis

and physical design.

An important aspect of this method is verifiability. In an ideal function archi-

tecture codesign method, a common executable modeling language is used for

both functional and architectural modeling. This ensures that at every refine-

ment step, an executable model is created that can be simulated to confirm cor-

rectness or to collect performance metrics. Thus, this method is particularly

useful for system architects to perform architecture exploration. A pioneering
modeling language to support such methodology is SpecC developed at Univer-

sity of California at Irvine [Gajski 2000]. A pioneering commercial environment

algorithm selection
optimization

application
requirements

functional model INPUT OUTPUT

CPU

CPU

CPU

CPU

M
IP

IP

IP

IP

M

MM

S

SS

S
architecture model

RTL model

physical
implementation

High level synthesis

RTL-to-GDSII

HW/SW partitioning
behavior mapping

architecture exploration
Protocol generation
Topology synthesis

FIGURE 5.3

Function architecture codesign method.

244 CHAPTER 5 Electronic system-level design and high-level synthesis
is the VCC tool developed in Cadence [Krolikoski 1999]. Today, SystemC-based

environments are widely used for this purpose.

Although top-down function architecture codesign is one of the earliest ESL

methods advocated by several researchers, its deployment as a commercially via-

ble method has not yet been realized. The reasons are twofold. First, many

system-on-chips (SOCs) are typically designed as a platform that can be
extended with many derivatives to serve many applications. The idealized top-

down approach, which ties the architecture to a particular function or applica-

tion, makes it difficult to extend the platform for derivatives. In this case, the

architecture-based method is more practical. Second, when a system is captured

in a domain-specific computational model, it is often the case that the best archi-

tecture template is already known, and the architecture instance is best gener-

ated by automation rather than through manual refinement. In this case, the

functional-based method may be more practical. However, in general, a more prac-
tical meet-in-the-middle method (that combines the top-down and bottom-up

approaches) may be best suited for a number of applications.
5.1.5 High-level synthesis within an ESL
design methodology
We now examine the role of high-level synthesis within an ESL design method.

High-level synthesis is an automated method of creating RTL designs from

5.1 Introduction 245
algorithmic descriptions. Within an ESL design method flow, we consider the

following usage models of high-level synthesis:
1. Functional component synthesis

2. Co-processor synthesis

3. Application processor synthesis
Functional component synthesis is used in a function-based ESL method.

Because the communication semantics are well defined under a computation

model, high-level synthesis can be used to create the internal design of each

component, while respecting the communication constraints at the inputs
and outputs of each component. This enables the construction of larger sys-

tems. For example, in a process network–based ESL method, each component

has a set of FIFO ports for communication. Therefore, each component can

be synthesized to run asynchronously with respect to other components.

Coprocessor synthesis is used in an architecture-based ESL method when

part of an application is implemented as software running on a programmable

processor and part of the application is implemented as a hardware accelerator.

In this case, hardware/software partitioning, be it manual or automated, has to
be performed to decide on the division of responsibility. Two criteria are typi-

cally used to make partitioning decisions: performance/power and flexibility.

It is preferable to implement performance/power critical portions of the appli-

cation in hardware, and it is preferable to implement those that require post sil-

icon changes into software. Once the partitioning is performed, high-level

synthesis is used to create the accelerator, and interface synthesis is used to

create the software/hardware communications.
Example 5.7 C
onsider the implementation of an MPEG video encoder. The algorithm divides a video

stream into frames, and each frame is divided into slices, where each slice contains a

sequence of macro blocks, which are 8 � 8 pixels. Although most of the algorithm deals

with management and configuration, the profiling result shows that much of the program

run time is spent on processing each macro block: including stages such as motion esti-

mation (ME), discrete cosine transform, Huffman encoding, and run length encoding.

Consequently, a typical hardware/software partitioner would synthesize the processing

pipeline (with high-level synthesis) into hardware accelerators, whereas the rest of the

design is implemented as software.

In many occasions where performance or power is more important than

post silicon programmability, application processor synthesis is used in an archi-

tecture-based method to synthesize the entire, stand-alone program into custom

hardware. Because in an architecture-based method, component processors

communicate through transaction-level ports (such as streaming or bus ports),

the mapping from a C programming model to interface hardware is well defined.

RTL synthesized by high-level synthesis can be considered as “drop-in”

246 CHAPTER 5 Electronic system-level design and high-level synthesis
replacement of programmable processors. Large systems can thus be con-

structed with the well-established IP assembly method.
High-level synthesis has seen intensive research in academia since the 1980s,

and many believed that it would succeed RTL synthesis as the dominant design

method. Unfortunately, this transition did not happen for a number of reasons.

One factor limiting the commercial success of high-level synthesis is its lack of

scalability: although large RTL designs can be constructed by composing smaller

RTL designs, it is not as easy to compose designs created by high-level synthesis

together with legacy RTL designs. Without a well-defined system-level design

method, there is no standard way of defining how algorithmic components
communicate with each other. Given today’s complex heterogeneous systems-

on-chip, high-level synthesis in practice has to become a component synthesis

tool in the context of an ESL method as opposed to a full chip synthesis method

originally envisioned in the early days of HLS research.

Furthermore, both functional and architecture-based ESL methods have

matured sufficiently that the standard design flow is converging in the industry.

Because the design of new hardware logic is often where it costs chip compa-

nies labor and where they achieve product differentiation, it has become
increasingly important to add high-level synthesis to the emerging design flow.
5.2 FUNDAMENTALS OF HIGH-LEVEL SYNTHESIS

In a nutshell, high-level synthesis (HLS) takes as input an algorithmic descrip-

tion (e.g., in C/Cþþ) and generates as output a hardware implementation of a

microarchitecture (e.g., in VHDL/Verilog). Algorithmic languages such as

C/Cþþ capture what we refer to as the behavioral-level (or high-level) descrip-

tion of the design; whereas hardware description languages such as VHDL/Ver-

ilog capture the register-transfer level (RTL) description of the design.
Figure 5.4a shows a typical example of an input behavioral level description.

Here a design is described as a sequence of statements and expressions

operating on program variables. Such description captures the function of the

design without any hardware implementation detail.

Figure 5.4b shows a typical output of HLS as an RTL description in a form

known as finite state machine with datapath (FSMD) [Gajski 1992]. The

FSM controller sequences the design through states of the machine by following

the flow of control in the algorithmic behavior, whereas the datapath performs
computations on the abstract data types specified in the behavior. The datapath

contains a set of registers, functional units, and multiplexers connecting the out-

put of registers to the inputs of functional units, and vice versa. The controller

takes as input a set of status signals from the datapath and outputs a set of con-

trol signals to the datapath. The control signals include those that control the

datapath multiplexers, the loading of datapath registers, and the opcode used

to select different functions in a functional unit. The state, that is, the control

status0

sel6

sel4

sel2

sel0

we2

we0

func0

sel5

sel3

sel1

we3

we1

Controller

(a) (b)

Datapath

p
state

C
o

n
tro

l
L

o
g

ic

N
ext S

tate
L

o
g

ic

int sum , i;

sum = i = 0;
while (i < 100) {

sum = sum + A[i] * B[i];
i = i + 1;
}

int A[100], B[100];

ADD

R3

MUL

R2
R1

R0

FIGURE 5.4

High-level synthesis input/output.

5.2 Fundamentals of high-level synthesis 247
step a circuit is currently in, is remembered in the controller with a set of flip-
flops. Thus, the datapath performs register transfers, or computations, that

transform values retrieved from some registers and stores the results to other

registers; whereas the controller determines “when” certain register transfers

are executed by specific valuation of control signals.

HLS effectively transforms an untimed behavioral specification into a clocked

RTL design, resulting in a substantial semantic gap between the RTL description

and the behavioral description. To bridge this gap, HLS involves a complex

sequence of design steps that gradually refines the design behavior into an
FSMD design. As shown in Figure 5.5, the structure of an HLS tool naturally

resembles a software compiler: it includes a set of compilation components.

Each component transforms one program form to another more detailed

program form. We distinguish between two types of program forms: we use

code to refer to the textual human-readable form, and representation to refer

to the in-memory machine-readable form (e.g., data structures such as graphs).

The front-end component performs the lexical and syntactical analysis of the

behavioral program code to build an intermediate representation (IR) in
memory. The IR can be considered as a sequence of operations transforming

values retrieved from memory or generated as the result of other operations.

The operations typically correspond to arithmetic (addition, subtraction, etc.)

or logic computations (AND, OR, etc.).

The optimizer component performs program analysis on the IR to extract useful

information about the program and transforms the IR to a semantically equivalent

but improved IR. Virtually all code optimization algorithms found in software com-

pilers can be applied here, although their effectsmay differ [Gupta 2003]. For exam-
ple, common subexpression elimination and dead code elimination can be used to

remove redundant code. Tree height reduction, strength reduction, and algebraic

Backend

Verilog/VHDL
Code

Frontend Optimizer

…

Partial redundancy
elimination,

Strength reduction,
Dead code elimination,
Constant propagation,

Code motion,
Tree height reduction,
Algebraic optimization,

Loop unrolling,
Software pipelining

Code Generator

C/C++
Code

Intermediate
Representation

RTL
Representation

Allocation

Scheduling

Binding

FIGURE 5.5

Typical high-level synthesis flow.

248 CHAPTER 5 Electronic system-level design and high-level synthesis
transformations can be used to simplify or speed up the evaluation of expressions.

Loop unrolling and software pipelining can significantly improve code in loops.

The core of high-level synthesis resides in the backend, which includes sev-

eral critical steps to transform the IR into an RTL representation. To facilitate
the generation of an FSMD in the form of Verilog/VHDL, which performs com-

putation one clock cycle at a time, the RTL representation has to capture more

detailed implementation information than initially available in the IR. These crit-

ical steps include allocation, scheduling, and binding.

The allocation step determines the hardware resources required to implement

the operations within the IR to satisfy certain performance requirements. The

resources required include storage resources such as registers and functional units

such as adders and multipliers. Often, a library of such resources, called modules,
is created and characterized in advance for a specific standard cell library. Then allo-

cation involves the choice ofwhichmodule to use, among potentially many alterna-

tives with differing area and timing, and how many of them.

The scheduling step maps each operation in the IR into a particular clock

cycle, called a control step. Note that multiple operations can be mapped to

the same control step, in which case they run in parallel. In fact, the key objec-

tive of scheduling is to find and exploit the parallelism in the sequential code

5.2 Fundamentals of high-level synthesis 249
represented by the IR. The extent to which operations can run in parallel is lim-

ited by the dependency among them. For example, if operation A uses the result
of operation B, then A can only be executed in later steps than B. It is not

always easy to exactly determine the dependency relationship, especially when

indirect memory references are involved. In addition, the availability of

resources (determined in the allocation step) also constrains what can be sched-

uled in parallel.

The binding step maps each operation to a functional unit (functional unit

binding) and the value it computes into a storage resource (storage binding).

The purpose of binding is to recognize the fact that not all operations and
values require the use of hardware resources at the same time. The nonoverlap-

ping use can be exploited for hardware sharing, thereby minimizing the hard-

ware circuitry demand.

It is important to note that each of the allocation, scheduling, and binding

steps involves the solution of a complex optimization problem. These pro-

blems can all be elegantly formulated as mathematical optimization problems

solving for some decision variables to minimize an objective subject to certain

constraints. There are many challenges in solving these problems. First,
abstracting each problem mathematically inevitably introduces approxima-

tions. For example, the objective to optimize area through the minimization

of functional units is often an indirect measure of the true objective designers’

concern about reducing silicon area, because this includes not only functional

units but also the area of interconnects. Second, it has been shown that all

allocation, scheduling and binding problems are NP hard problems. There-

fore, one often devises heuristics-based algorithms for practical solution of

large-scale problems. Third, the allocation, scheduling, and binding tasks are
tightly interdependent. In fact, the preceding three-phase approach is not

necessarily the best. Often, one faces the phase-ordering problem, where

the optimal solution of one phase leads to the suboptimal solution of the

other phase. It is thus often necessary to have an iterative improvement solu-

tion where these tasks are applied multiple times.

Finally, the code generator generates the Verilog/VHDL code that is ready for

RTL and logic synthesis. The output code is in FSMD form. The datapath can be

derived directly from the allocation and binding decisions. The controller FSM
can be derived from scheduling and binding.

Without HLS, designers have to manually generate the RTL design, a pains-

taking process that requires the manual tasks of scheduling, allocation, and

binding. In contrast, HLS automates the task of RTL design, allowing designers

to more productively focus their design activities at the behavioral level. Often,

there is an order of magnitude difference between the size of the RTL descrip-

tion and the corresponding behavioral description. In addition, the automati-

cally generated RTL can be guaranteed to be correct by construction. This
design automation process results in a significant reduction of RTL development

and verification effort, yielding a large gain in design productivity.

250 CHAPTER 5 Electronic system-level design and high-level synthesis
In the sequel, we use an example to illustrate the process of transforming a

behavioral code into Verilog code. For now, we treat compilation components
as black boxes and leave the discussion until Section 5.3, while focusing on

the series of program forms that are generated at each stage. To enhance under-

standing and allow for a hands-on treatment of HLS that will permit construc-

tion of simple HLS tasks/components, we present simple but completed

program forms, called TinyC, TinyIR, and TinyRTL; these can be used as vehicles

to construct software implementations of high-level synthesis tools. We begin

by defining the three exemplar program forms.
5.2.1 TinyC as an example for behavioral descriptions
The behavioral description of a design is typically captured by a program in a proce-
dural programming language, also known as an imperative programming language.

An imperative program captures the computation as a sequence of actions on pro-

gram state. The program state is defined by the set of all program variables. The

actions are statements that change program states by updating the values of one

or many variables. Because this style of programming prescribes the steps to solve

a problem, an imperative program is often called an algorithmic description.

We use an instruction language, TinyC, throughout this text. TinyC resem-

bles the commonly used C language, but a number of simplifying assumptions
are made to facilitate the discussion, as follows:
n All statements are captured in a single procedure, and there are no proce-

dural calls.

n Only 32-bit signed integer (int) and Boolean (bool) primitive types are
supported.

n Only one-dimensional arrays are supported for aggregate types.

n No pointers are supported, as a result, the address variables cannot be

taken, and no memory is allocated dynamically.
Although TinyC is a fully functional language that captures the essence of imper-

ative languages, it is important to recognize that the excluded features present

in the real-world languages make the job of high-level synthesis substantially

more difficult. We will deal with this subject in Section 5.4.
Example 5.8 Fi
gure 5.4a shows the dot product algorithm in TinyC. Dot product is widely used in engi-

neering. The dot product of two vectors, A and B, is defined to be the sum of products of

their respective elements. In TinyC, the two vectors, A and B, are declared as arrays. Two

scalar variables, sum and i are declared. A while-loop is used to calculate the result, in

which each loop iteration is used to calculate the partial sum up until the ith iteration.

The language definition of TinyC can be defined with a set of production

rules in Backus-Naur Form (BNF). Each production rule defines a language
construct, called a non-terminal, by the composition of other non-terminals,

5.2 Fundamentals of high-level synthesis 251
or terminals. Like a word in English, terminals are atomic units of a language.

The non-terminals can be recursively defined.
Definition 5.1 The syntax of TinyC is defined as follows, which includes

the following constructs:
n Declarations, which define scalars or array variables

n Statements, which are either assignment statements, leading to a

change of program state, or control flow statements

n Expressions, which are either transformations of scalar values using

predefined operators, or defined primitive values, such as integer or

Boolean literals, or program variable values.
program:
declaration* statement*

statement:
variable '=' expression ';',

 'if' '(' expression ')' statement
 ('else' statement)* ,
 'while' '(' expression ')' statement ,
 'break' ';',
 '{' declaration* statement* '}'

declaration:
 type identifier ['=' expression]';',
 type identifier '[' expression ']' ';'

type:
'int' , 'bool'

expression:
 '-' expression , '!' expression ,
 expression '+' expression ,
 expression '-' expression ,
 expression '*' expression ,
 expression '/' expression ,
 expression '^' expression ,
 expression '>>' expression ,
 expression '<<' expression ,
 expression '&' expression ,
 expression '|' expression ,
 expression '=' expression ,
 expression '!=' expression ,
 expression '<' expression ,
 expression '<=' expression ,
 expression '>' expression ,
 expression '>=' expression ,
 '(' expression ')' ,
 integer , identifier , 'TRUE' , 'FALSE' ,
 identifier '[' expression ']'

The language can be used to construct a parser, which parses the textual

program into a data structure suitable for machine manipulation. In the case

of HLS, the parser generates an intermediate representation (as represented

by the front-end component in Figure 5.5).
5.2.2 Intermediate representation in TinyIR
The purpose of the intermediate representation (IR) is to separate the optimization

algorithms from input languages and target architectures.

Before we discuss the IR in detail, we need a notation to capture an IR.

In practice, an IR is implemented in software as a complex data structure. However,

presenting the IR in this form introduces unnecessary implementation details. To be

concise and precise, we elect to use a more abstract mathematical notation to

describe the IR. In the following, we outline how we can replace data structures

withmathematical objects. The readers should do the oppositewhen they translate
the algorithms presented in this chapter into software implementation.

252 CHAPTER 5 Electronic system-level design and high-level synthesis
n A data type T corresponds to a set T; in particular the integer type Z

corresponds to set Z.

n A linked list or arrays whose elements are of type T corresponds to the

power set of T, or the set of all subsets of T, denoted as T[].

n A record with fields a of type A, and b of type B corresponds to a set of

named tuples, denoted as ha : A,b : Bi.
n A graph R whose nodes are of type A corresponds to a relation R : A � A.

n A hash table or dictionary F that maps a value of type A to a value of type
B corresponds to a function F : A 7!B.
This mathematical notation is used later in Section 5.3 to present HLS algo-

rithms, because we can use it to represent complex operations on data struc-

tures. For example,
n Use function application F(a) to represent a dictionary lookup.

n Use a 2 A to perform a set membership test, and use 8a 2 A to enumerate

all members in A; and use A[i] to retrieve the ith element in A.

n Use a R b to check whether b is a predecessor of a in graph (relation) R.
We are now ready to discuss TinyIR, a simple IR designed to sufficiently capture

programs in TinyC.

Definition 5.2 A TinyIR is a tuple hO, S, V, Bi with the following elements:
n A set O ¼ {lds, sts, lda, sta, ba, br, cnst, þ , �, *, /, <<, >>, . . . } of oper-
ation codes, which corresponds to the set of all virtual instruction types.

n A set S of symbols, which corresponds to the scalar and array variables.

n A set V: hopcode:O,src1: V, src2: V, symb: S [B[Zi of virtual instructions,
which corresponds to the expressions and control transfers in the program.

n A set B: V[] of basic blocks, each containing a sequence of virtual

instructions.
Constructs in TinyC (e.g., declarations, statements, and expressions) have equiv-

alent representation in TinyIR: declarations correspond to symbols, and state-

ments and expressions correspond to virtual instructions. In particular, the

control transfer statements are converted into ba (branch always) or br (branch

if true) instructions. Variable accesses are converted to lds (load scalar) or lda

(load array) instructions, and assignments are converted into sts (store scalar)

or sta (store array) instructions. Expressions in TinyC have a one-to-one corre-

spondence to virtual instructions in TinyIR.
Each instruction is a tuple with an opcode field; zero, one, or two source oper-

ands; and optionally a symb field. For branch instructions, the symb field defines

its branching target, that is, which basic block it branches to. For load/store instruc-

tions, the symb field defines the symbol corresponding to the scalar or array variable

it accesses. For constants, it defines the Boolean or integer constant value.

Although the sequence of virtual instructions completely defines the behav-

ior of the program, in TinyIR the virtual instructions are grouped within differ-

ent basic blocks. Only the last instruction of a basic block could be a branch

5.2 Fundamentals of high-level synthesis 253
instruction. In the other words, the instructions in a basic block are what we

usually referred to as “straight line code.”
Example 5.9 In
 the following we show the dot product program in Example 5.8 in TinyIR form. There

are two basic blocks, B1 and B2. Each virtual instruction is uniquely numbered. When

the result of an instruction is used as an operand for another instruction, its number is

used. Note that B2 is a loop, indicated by the bt instruction (15), which is a branch

branching to the beginning of B2.

scalar sum;
scalar i;
array A[100];
array B[100];

B1:
(0) cnst 0
(1) sts (0), sum
(2) sts (0), i

B2:
(3) lds i

(4) lda (3), A
(5) lda (3), B
(6) * (4) (5)
(7) lds sum
(8) + (6) (7)
(9) sts (8), sum
(10) cnst 1
(11) + (3) (10)
(12) sts (11), i
(13) cnst 100
(14) < (11) (13)
(15) bt (14), B2
5.2.3 RTL representation in TinyRTL
An RTL representation is to HLS what assembly is to a software compiler. Like

assembly, the RTL representation captures key microarchitectural information.
In the case of a software compiler, the processor architecture is predetermined;

therefore, the assembly only exposes these microarchitecture features, for

example, the architectural registers available, the instruction set, etc. In the case

of HLS, the microarchitecture is synthesized; therefore, the RTL representation

has to convey what architecture resources are allocated and how they are used.

One key difference between an RTL representation and an IR is that micro-

architecture resources are introduced. There are two types of microarchitec-

tural resources: computational resources, which are functional units that
perform logical, relational, and/or arithmetic functions; and storage resources,
which include memories and registers. A memory typically corresponds to a

on-chip static RAM used to store scalar or array variables, whereas a register is

an array of flip-flops used to store scalar or temporary values.

An instruction in RTL representation is referred to as a register transfer.

A key difference between a register transfer and a virtual instruction in an IR

is that the former is annotated with microarchitecture resource use. For exam-

ple, most register transfers designate a destination register. Likewise, the source
operands of a register transfer are registers. In addition, each register transfer

designates the functional unit executing the instruction.

The register transfer representation is cycle accurate in the sense that

the clock cycle (control step) at which a register transfer is executed is fully

specified. This level of detail makes it possible to generate a sequential circuit

implementation of the program.

254 CHAPTER 5 Electronic system-level design and high-level synthesis
Definition 5.3 A TinyRTL is a tuple hM, R, U, I, Ci with the following

elements:
n A set M of memories used to store scalar and array variables.

n A set R of registers used to store scalar variables or temporary instruction

results.
n A set U of functional units, such as adders, subtractors, multipliers,

shifters, etc.

n A set I : hunit : U, opcode : O, dest : R, src1 : R [S [Z [C, src2 : Ri of reg-
ister transfers, each of which uses a functional unit to transform values,

which are either constants or retrieved from registers, and stores the

result back to a register.

n A set C: I[] of control steps, each of which contains a set of register transfers.
Example 5.10 Th
e dot product algorithm of Example 5.8 is shown in TinyRTL form. Here C0-C4

corresponds to the set of control steps. Each control step contains one or more register

transfers. It is instructive to compare the TinyIR form and TinyRTL form. Note that most

virtual instructions in TinyIR are translated into register transfers. Some virtual instructions

(e.g., constants) degenerate into direct operands, because it takes nothing to compute

them. Also note that almost all register transfers are annotated with the computational

resources they use, with the exception of scalar store (in C0) and branch instructions

(in C4), because they involve simply copying values to registers but not computation.

register R0, R1, R2, R3;
memory M;
unit U0, U1;

C0: sts 0, R0; sts 0, R1;
C1: M.lda R2, R1, A;
C2: M.lda R3, R1, B; U0. + R1, R1, 1;
C3: U1. * R2, R2, R3; U0. < R3, R1, 100;
C4: U0. + R0, R0, R2; bt C1, R3;
5.2.4 Structured hardware description in FSMD
Given an RTL representation in memory, we are ready to produce Verilog/VHDL

code to drive the downstream RTL-to-GDSII design flow. The key task of the

code generator is thus to convert the RTL representation, still in a functional

form, to a structural form, that is, as a connected network of components. We

use FSMD as a template and generate the controller and datapath separately.
Example 5.11 Th
e FSM diagram and Verilog code for the controller are shown in the following. Note the

correspondence between the control steps in the RTL representation and the states in

the FSM. Also note the correspondence between the register transfers in each control

step and the control signal valuations.

5.2 Fundamentals of high-level synthesis 255
C0 C1 C2 C3 C4

T

F

 // control signals
 always@(pstate) begin
 we0 = 1'b0; we1 = 1'b0;
 we2 = 1'b0; we3 = 1'b0;
 sel0 = 1'bx; sel1 = 1'bx;
 sel2 = 1'bx; sel3 = 1'bx;
 sel4 = 1'bx; sel5 = 1'bx;
 sel6 = 2'bxx; func0 = 1'bx;
 case(pstate)
 `C0:begin
 we0 = 1'b1; we1 = 1'b1; sel0 = 1'b0;
 sel1 = 1'b0;
 end
 `C1:begin
 we2 = 1'b1; sel2 = 1'b0; sel4 = 1'b0;
 end
 `C2:begin
 we1 = 1'b1; we3 = 1'b1; sel1 = 1'b1;
 sel3 = 1'b0; sel4 = 1'b1; sel5 = 1'b0;
 sel6 = 2'b00; func0 = 1'b0;
 end
 `C3:begin
 we2 = 1'b1; we3 = 1'b1; sel2 = 1'b1;
 sel3 = 1'b1; sel5 = 1'b0; sel6 = 2'b01;
 func0 = 1'b1;
 end
 `C4:begin
 we0 = 1'b1; sel0 = 1'b1; sel5 = 1'b1;
 sel6 = 2'b10; func0=1'b0;
 end
 endcase
 end

endmodule

`define C0 3'b000
`define C1 3'b001
`define C2 3'b010
`define C3 3'b011
`define C4 3'b100

module ctrl(
 clk, rst, status0,
 we0, we1, we2, we3,
 sel0, sel1, sel2, sel3, sel4, sel5, sel6,
 func0
);

 input clk, rst;
 input status0;
 output we0, we1, we2, we3;
 output sel0, sel1, sel2, sel3, sel4, sel5;
 output [1:0] sel6;
 output func0;

 reg [2:0] pstate, nstate;
 reg we0, we1, we2, we3;
 reg sel0, sel1, sel2, sel3, sel4, sel5;
 reg [1:0] sel6;
 reg func0;

 // present state register
 always@(posedge clk or negedge rst)
 if(!rst)
 pstate <= `C0;
 else
 pstate <= nstate;

 // next state logic
 always@(pstate or status0)
 case(pstate)
 `C0: nstate = `C1;
 `C1: nstate = `C2;
 `C2: nstate = `C3;
 `C3: nstate = `C4;
 `C4: if(status0)
 nstate = `C1;
 else
 nstate = `C0;
 default: nstate = `C0;
 endcase
Example 5.12 Th
e datapath of the dot product example is shown in the following as a schematic dia-

gram and its corresponding Verilog code. Note that each r 2 R and u 2 U is mapped

directly to a hardware resource. Multiplexers are inserted at the input of each register

and inputs of each functional unit. A multiplexer degenerates into a wire if it has only

one input. For example, both inputs of the multiplier connect only to R2 and R3, respec-

tively; therefore, there is no need for multiplexers.

256 CHAPTER 5 Electronic system-level design and high-level synthesis
R0
(sum)

R1
(i)

R2 R3

U1
(MUL)

U0
(ADD/COMP)

M

1 100

0 0

sel0 sel1 sel2

sel6sel5

sel3

we0 we2 we3we1

func0

status0

A B

sel4

 case(sel1)
 1'b0: nR1 = 8'b0;
 1'b1: nR1 = U0;
 endcase
 case(sel2)
 1'b0: nR2 = rdata;
 1'b1: nR2 = U1;
 endcase
 case(sel3)
 1'b0: nR3 = rdata;
 1'b1: nR3 = U0;
 endcase
 end

 // functional units
 assign U1 = U1In0 * U1In1;
 assign U0 = !func0 ? U0In0 + U0In1 :
 U0In0 < U0In1;

 // functional units'/memory input multiplexers
 always@(sel4 or sel5 or sel6 or
 R0 or R1 or R2 or R3) begin
 baseIn = R1;
 case(sel4)

1'b0: offsIn = `A;
1'b1: offsIn = `B;

 endcase
 case(sel5)
 1'b0: U0In0 = R1;
 1'b1: U0In0 = R0;
 endcase
 case(sel6)
 2'b00: U0In0 = 8'd1;
 2'b01: U0In0 = 8'd100;
 2'b10: U0In0 = R2;
 endcase
 U1In0 = R2;
 U1In1 = R3;
 end

 // outputs
 assign status0 = R3[0];
 assign base = baseIn;
 assign offs = offsIn;

endmodule

`define A 8'd0
`define B 8'd100

module datapath(
 clk, rst,
 we0, we1, we2, we3,
 sel0, sel1, sel2, sel3, sel4, sel5, sel6,
 func0, rdata,
 status0, base, offs
);

 input clk, rst;
 input we0, we1, we2, we3;
 input sel0, sel1, sel2, sel3, sel4, sel5;
 input [1:0] sel6;
 input func0;
 input [7:0] rdata;
 output status0;
 output [7:0] base, offs;

 reg [7:0] R0, R1, R2, R3;
 reg [7:0] nR0, nR1, nR2, nR3;
 wire [7:0] U0, U1;
 reg [7:0] baseIn, offsIn;
 reg [7:0] U1In0, U1In1;
 reg [7:0] U0In0, U0In1;

 // registers
 always@(posedge clk or negedge rst)
 if(!rst) begin
 R0 <= 8'b0;
 R1 <= 8'b0;
 R2 <= 8'b0;
 R3 <= 8'b0;
 end
 else begin
 if(we0) R0 <= nR0;
 if(we1) R1 <= nR1;
 if(we2) R2 <= nR2;
 if(we3) R3 <= nR3;
 end

 // registers' input mu1tiplexers
 always@(sel0 or sel1 or sel2 or sel3 or
 U0 or U1 or rdata) begin
 case(sel0)
 1'b0: nR0 = 8'b0;
 1'b1: nR0 = U0;
 endcase

5.2 Fundamentals of high-level synthesis 257
5.2.5 Quality metrics
When using high-level synthesis to create RTL hardware for a given application,
it is important to, first, satisfy the performance requirements of the application

and, second, choose among the best implementation alternatives. To quantify

both requirements and quality, we need to establish certain metrics.

Because most applications targeted by high-level synthesis consume and pro-

duce large volumes of data, the performance requirement is often dictated by

input/output bandwidth, defined to be the amount of data consumed/pro-

duced per second. The unit of bandwidth varies, depending on the domain of

application. For example, triangles per second for 3-D graphics; packets per
second for networking; and pixels per second for imaging or video.

The bandwidth requirement can be translated into a performance require-

ment for the datapath. Typically, the work, or the amount of computation an

algorithm applies per unit of data, can be measured by the number of instruc-

tions required for the computation. Although the precise meaning of an instruc-

tion varies depending on the architecture used for implementation, we can use

elementary operations, such as those defined by the virtual instruction set of

TinyIR, as a rough but implementation-independent measure. Combining band-
width and work, we can obtain the performance requirement for the datapath

in millions of instructions per second (MIPS).

perf ðTinyIRÞ ¼ bandwidth�work
Example 5.13 C
onsider an Ethernet application in which the wire speed is 4 gigabits per second (raw

bandwidth). Assuming a minimum packet size of 64 bytes and a 20-byte preamble

between packets, the application needs to process 5.95 million packets per second

(bandwidth). Assuming the work is 1000 instructions per packet, then the performance

requirement is 5.95 * 1000 ¼ 5950 MIPS.

We now turn to quality metrics of the RTL implementation. Although it is possi-
ble to evaluate the metrics accurately after the Verilog/VHDL is generated and

synthesized, these metrics are often too late to be useful for HLS at these down-

stream stages. We, therefore, need an early, fast, yet reasonably accurate estimation

of important metrics. In this section, we develop a “back-of-the-envelope” method

that can quickly assess quality metrics directly from the RTL representation.

To calculate the performance of the RTL, we need to estimate the “wall

clock” time used for completion of the synthesized algorithm. Assuming the

algorithm processes one unit of data, we then have:

perf ðTinyRTLÞ ¼ work

CycleCountðTinyRTLÞ � CycleTimeðTinyRTLÞ
Here CycleCount is the number of clock cycles it takes to complete the algo-

rithm, whereas CycleTime is the shortest clock period for correct operation of

the synthesized circuit.

258 CHAPTER 5 Electronic system-level design and high-level synthesis
To estimate CycleCount(TinyRTL), we need to know the number of times

each control step is executed. This can be obtained by statically examining
the RTL. Alternately, functional simulation can be performed to collect execu-

tion count statistics, a process known as profiling.
Example 5.14 C
onsider the dot product algorithm in TinyRTL shown in Example 5.12. It can be shown

that C0 will be executed once, whereas C1-C4 will be executed 100 times. Therefore

CycleCount(TinyRTL) = 1 þ 4 * 100 ¼ 401. Note that this is significantly less than the total

number of virtual instructions, which can be calculated from TinyIR as 3 þ 13 * 100 ¼
1303. This type of speedup is achieved by executing multiple instructions in parallel in RTL.

CycleTime(RTL) is more difficult to estimate. Recall that the cycle time of a

sequential circuit equals the worst-case delay along all register-to-register paths.

To calculate such a delay, we first have to establish the delay of individual com-

ponents along a path.

The delay of a component (in nanoseconds or picoseconds)—if not already
available—can be obtained by precharacterizing commonly used components.

However, such a method depends on the cell library, as well as the fabrication

process. We choose to use fanout four delay (FO4) as the delay unit. FO4 is the

delay of a minimal sized inverter driving four identical copies of itself. It has been

shown that FO4 delay scales linearly with the feature size (the drawn gate length)

of the fabrication process and can be estimated with the following:

FO4 ¼ 0:36ns=um � Ldrawn

With FO4 delay, we can express our delay estimation in a process-indepen-

dent manner and use the preceding formula when we need to find out the abso-

lute delay value.
Example 5.15 Th
e FO4 delay of commonly used 32-bit components is shown in Table 5.1. Under

90nm fabrication technology, FO4 ¼ 0.36ns/um*0.09um ¼ 32.4ps. Therefore, Delay

(adder) ¼ 10*32.4ps ¼ 0.324ns. Delay(multiplier) ¼ 35*32.4ps ¼ 1.13ns.

Table 5.1 Component delays

FO4
setup

hold

clock skew/jitter

clock to Q

multiplexerfunctional unit SRAMregister

4.0 inverter 1.0 16-input 8.0 64KB 15.0

4.0 multiplier 35.0 8-input 4.8 8KB 12.8

0.0 comparator 6.0 4-input 3.2 4KB 12.0

2.0 adder 10.0 2-input 2.4 1KB 10.5
FO4 FO4 FO4

Without examining the structural representation, we attempt to estimate the

cycle time from TinyRTL representation. We can find all true register-to-register

paths by examining each register transfer in TinyRTL.

CycleTimeðTinyRTLÞ ¼ MAXrt2TDelayðrtÞ

5.2 Fundamentals of high-level synthesis 259
Wenow consider the delay of a register transfer rt¼ hu,op,dest,src1,src2i. Let us
denote the state register of controller to be pstate and the multiplexers for the two
operands of the functional unit and the destination register to bemux1,mux2, and

muxd, respectively. Recall that in an FSMD model, the register-to-register delays

involve paths within the datapath, to the FSM controller, and between the datapath

and the FSM controller. Accordingly, we have the following paths to consider:
n Path 1: src1!mux1!u!muxd!dest

n Path 2: src2!mux2!u!muxd!dest

n Path 3: pstate!c1!mux1!u!muxd!dest

n Path 4: pstate!c2!mux2!u!muxd!dest

n Path 5: pstate!cu!u!muxd!dest

n Path 6: pstate!cd!muxd!dest
Paths 1 and 2 are from source operand to destination register in the datapath.

Paths 3 and 4 are from state register (FSM) to destination register (datapath)

through the source operand multiplexer. Here c1 and c2 correspond to control

logic for the select signals of the respective multiplexers. Path 5 is from state reg-

ister (FSM) to destination register (datapath) through the control logic cu used for
selecting the function used in the functional unit. Path 6 is from state register

(FSM) to destination register (datapath) through control logic cd used to select

the destination operand in multiplexer. Note that not all paths are realizable.

For example, mux1 might not exist because there is no need for a multiplexer

before the unit’s only input. This happens in the case that only one register is

ever used as its first operand. In this case, the delay of mux1 should be taken

as 0 in Path 1, and Path 3 should be ignored. As another example, if a unit per-

forms a single function, the controller does not have to generate a control signal
for selecting the function to perform; therefore, Path 5 can be ignored.

For every path, time has to be reserved for the correct functioning of the reg-

isters. Their sum is called the sequential overhead.

SeqOverhead ¼ Tsetup þ TCQ þ Tskew

We can, therefore, calculate the worst case delay of all paths in a register

transfer as follows:

DelayðrtÞ ¼ SeqOverhead þ

Max Max

DelayðcdÞ

Delayðc1Þ þ Delayðmux1Þ;
Delayðc2Þ þ Delayðmux2Þ;
DelayðcuÞ

2
64

3
75þ DelayðuÞ;

2
66664

3
77775 þ

DelayðmuxdÞ
Althoughwe can determine the delay of the functional unit by looking up Table 5.1,

delays of the multiplexers and the control logic are not readily available. There are

two complications. First, as discussed earlier, there are degenerate cases where

mux1, mux2, muxd, c1, c2, cd, and cu are not needed. In these cases, they assume

a zero delay value. Second, when the multiplexers do exist, their delays depend on

260 CHAPTER 5 Electronic system-level design and high-level synthesis
the number of inputs they have. This requires us to find, for each functional unit, the

total number of different operands for each input and the total number of different
opcodes by scanning the entire RTL representation.

Assuming the delay of all control signals assume a value of Tc, we then have:

DelayðcuÞ ¼ 0 jOpcodesðuÞj ¼ 1

Tc jOpcodesðuÞj > 1

�

where

OpcodesðuÞ ¼ frt:opcodej 8rt 2 T :½rt:u ¼ u�g
Similarly, we have

Delayðc1Þ ¼ 0 jSrc1ðuÞj ¼ 1

Tc jSrc1ðuÞj > 1

�

Delayðc2Þ ¼ 0 jSrc2ðuÞj ¼ 1

Tc jSrc2ðuÞj > 1

�

DelayðcdÞ ¼ 0 jSrcdðdestÞj ¼ 1

Tc jSrcdðdestÞj > 1

�

where

Src1ðuÞ ¼ frt:src1j8rt 2 T :½rt:u ¼ u�g
Src2ðuÞ ¼ frt:src2j8rt 2 T :½rt:u ¼ u�g
SrcdðdestÞ ¼ frt:uj8rt 2 T :½rt:dest ¼ dest�g:

Because the numbers of inputs of mux1, mux2, and muxd, are given by

|Src1(u)|, |Src2(u)|, and |Srcd(dest)| respectively, we can determine their

delays by looking up the multiplexer delays, which are listed according to the

input count in Table 5.1.
Example 5.16 To
 estimate the cycle time of the dot product example, we assume Tc ¼ 5 FO4.With the

method developed previously, we can find the delay of each register transfer and deter-

mine that the cycle time of the RTL is 47.4 FO4. In 90nm technology, this is equivalent to

32.4ps*47.4 ¼ 1.54ns. In other words, the maximum speed at which the circuit can run

is 649Mhz. Recall that the cycle count is 401, and the work (number of virtual instruc-

tions) is 1303, we can conclude that

PerfðTinyRTLÞ ¼ 1303

401 � 1:54 ¼ 2108MIPS

Register transfer
Seq

overhead u muxd cd cu c1 c2 mux1 mux2 Delay
sts 0, R0 10.0 0.0 2.4 5.0 0.0 0.0 0.0 0.0 0.0 17.4
sts 0, R1 10.0 0.0 2.4 5.0 0.0 0.0 0.0 0.0 0.0 17.4

M.lda R2, R1, A 10.0 10.5 2.4 5.0 0.0 0.0 5.0 0.0 2.4 30.3
M.lda R3, R1, B 10.0 10.5 2.4 5.0 0.0 0.0 5.0 0.0 2.4 30.3
U0.+ R1, R1, 1 10.0 10.0 2.4 5.0 5.0 5.0 5.0 2.4 3.2 33.2

U1.* R2, R2, R3 10.0 35.0 2.4 5.0 0.0 0.0 0.0 0.0 0.0 47.4
U0.< R3, R1, 100 10.0 10.0 2.4 5.0 5.0 5.0 5.0 2.4 3.2 33.2
U0.+ R0, R0, R2 10.0 10.0 2.4 5.0 5.0 5.0 5.0 2.4 3.2 33.2

5.3 High-level synthesis algorithm overview 261
Of course, other quality metrics such as silicon area and power consumption are

also very important. Similar procedures can be developed to estimate these metrics
directly from RTL representation and currently are active areas of research.

Walking through the dot product example reveals that to transform an appli-

cation in behavioral (C/Cþþ) form to RTL (Verilog) form, several key decisions

have to be made to convert the application into an IR form and eventually into

RTL form. Performance analysis gives us further insight that these decisions

impact the performance the RTL implementation can achieve, both in terms

of cycle count, and cycle time, in a non-trivial manner. In the next section,

we develop CAD algorithms that allow these key decisions to be made to
optimize the various quality metrics.
5.3 HIGH-LEVEL SYNTHESIS ALGORITHM OVERVIEW

In the previous section, we outlined the steps required to transform a behav-

ioral description of the dot product algorithm in TinyC into its RTL implementa-

tion in Verilog. Although we defined the intermediate program forms, we did
not describe how the input form is transformed into the output form. For the

frontend and optimizer components, the techniques used are largely no differ-

ent from those used by software compilers. We refer the readers to [Aho

2006] for a detailed treatment. For the code generator component, it is relatively

simple to output the HDL code from the RTL representation. Thus in this sec-

tion we focus on the backend component containing the core synthesis algo-

rithms that take as input an IR in terms of virtual instructions, and generate as

output an RTL representation in terms of register transfers.
As discussed in Section 5.2.5, we are not only interested in generating the

correct RTL that is functionally equivalent to the IR, but also with the best

quality of result (QoR). Therefore, the synthesis problem can be formulated

as an optimization problem targeting multiple objectives such as performance,

area, and power. For example, the backend synthesis problem can be formu-

lated as the following.
PROBLEM 5.1

Given: TinyIR ¼ hO,S,V,Bi
Find: TinyRTL ¼ hM,R,U,I,Ci
Maximize: Perf(TinyRTL)

Minimize: Area(TinyRTL)
Recall that because this is a complex, phase-coupled optimization, it is not obvi-

ous how this problem can be solved. As discussed in Section 5.2, a divide-and-

conquer strategy is usually followed, and high-level synthesis is further

262 CHAPTER 5 Electronic system-level design and high-level synthesis
decomposed into allocation, scheduling, and binding problems, and solved

in sequence. To simplify the presentation, in this section we make further
simplifications:
n Assumption 1: The functional unit allocation (i.e., the hardware resources

used in the implementation), is specified by the user as a constraint. The
rationale behind this assumption is that the user could try out different

hardware resource allocations, and let the automated synthesis tool gener-

ate solutions for comparison, a process known as design exploration. We

further assume that each allocated unit can implement all virtual

instructions.

n Assumption 2: Storage allocation and binding is performed partially by

assuming all array variables are mapped to a single memory, and all scalar

variables are mapped to separate registers. Therefore, only the temporary
values produced by virtual instructions need to be mapped to registers.

n Assumption 3: Other than the constant instruction, each virtual instruc-

tion is implemented by one and only one register transfer. This does not

have to be the case in a production synthesis tool, because a subset of vir-

tual instructions can be grouped together and implemented by a single

register transfer, a process known as chaining.

n Assumption 4: Each register transfer can be completed in a single clock

cycle without degrading cycle time. In practice, this is not true because
a virtual instruction could be implemented by a functional unit with lon-

ger delay than the desired cycle time, a process known as multicycling.
We can then refine Problem 5.1 as follows.
PROBLEM 5.2

Given: TinyIR ¼ hO,S,V,Bi
Find: (1) Schedule Sched: B 7! (V 7! Z)

(2) Register binding BR: V 7! Z

(3) Functional unit binding BU: V 7! U

Minimize: Objective (1) 8b 2 B, |range Sched(b) |

Objective (2) |range BR|

Objective (3) Su2UjSrc1ðuÞj þ Su2UjSrc2ðuÞj þ Sr2RjSrcdðrÞj
Subject to: Constraint 8b 2 B,8s 2 Z,|Sched(b)�1(s) | � | U |
Here we attempt to make three key decisions. For each basic block, the sched-

ule Sched maps each instruction contained in the basic block to a control step.

The register binding B
R maps the value computed by each instruction to a reg-

ister. The functional unit binding B
U maps each instruction to a functional unit.

The decisions have to satisfy the resource constraint; in other words, the num-
ber of instructions scheduled at each control step cannot exceed the number of

5.4 Scheduling 263
available functional units. Combined with the simplifying assumptions, it is triv-

ial to find the TinyIR representation hM,R,U,I,Ci from Sched, BR, and B
U.

We now relate the objectives in Problem 5.1 to the objectives in

Problem 5.2. To maximize performance, Problem 5.2 states that it is equivalent

to minimizing the number of control steps in each basic block (objective 1).

Recall performance is the product of cycle count and maximum clock fre-

quency. Although cycle count is not the same as control step count (because

a control step could be executed many times), minimizing the latter does

minimize the former. Here we assumed that maximum clock frequency is inde-

pendent of scheduling and binding, which does not hold in general.
To minimize area, Problem 5.2 states that it is equivalent to minimizing the reg-

ister count (objective 2), and minimizing the total number of multiplexer inputs

(objective 3). This makes sense because the functional units, memory, and reg-

isters for scalar variables are pre-allocated and therefore fixed. Here we have

assumed that the area of the synthesized circuit is dominated by the datapath

(controller area is therefore ignored), and areas of multiplexers are proportional

to the input count.

The next two sections describe the scheduling and register allocation
steps.
5.4 SCHEDULING
5.4.1 Dependency test
Because the objective of scheduling is to minimize the total number of control

steps (i.e., maximize performance), we wish to schedule as many instructions in

the same step as possible, thereby executing all of them in parallel to maximize

design performance. However, this is not always possible. For an RTL imple-

mentation to preserve the semantics of the original algorithm, data dependen-

cies have to be respected. We illustrate the notion of data dependency below.

Consider the following scenarios in a basic block, where virtual instruction A

precedes virtual instruction B:
1. Instruction A is the operand of instruction B, in other words, instruction

A produces a value consumed by instruction B;

2. Instruction A stores a value to symbol x, whereas instruction B loads a
value from symbol y;

3. Instruction A loads a value to symbol x, whereas instruction B stores a

value to symbol y;

4. Instruction A stores a value to symbol x, whereas instruction B stores a

value to symbol y.
For scenario 1, there is a definite data dependency between A and B: B has to

be scheduled at least one step later than A, because the value of A has to be

264 CHAPTER 5 Electronic system-level design and high-level synthesis
produced first before it can be consumed. This relation is explicitly represented

in, and easily extracted from, the IR.
For each of the scenarios 2, 3, and 4, there is a potential data dependency

between A and B: as soon as one can determine that symbols x and y are the

same (i.e., they are aliased to each other), then B has to be scheduled at least

one step later than A. This relation is implicitly induced by the runtime value

of memory addresses, and thus not easy to extract from the IR.

A dependency tester is an algorithm that statically determines whether two

instructions depend on each other. In TinyRTL, all scalar symbols are explicitly

named, in other words, symbols x and y either have the same name, or they
are not aliased to each other. It is therefore straightforward to compute the

data dependency induced by scalar variables by comparing symbol names.

Dependency through indexed accesses to arrays is more difficult to detect.

Given array access x[i], and array access x[j], the dependency test amounts

to determining whether values i and j can be equal to each other at runtime.

The supercomputing research community has developed comprehensive

methods for array-based dependency tests [Aho 2006]. A simple dependency

tester for TinyRTL can be constructed by simply comparing symbol names,
even for array accesses (in other words, conservatively assume that all indices

are potentially equal).

In a real-world language (e.g., C/Cþþ), anonymous symbols exist through

the use of pointer dereferences. Pointers can be created either by taking

the address of a named symbol, or by dynamic memory allocation. Because

pointers can be copied, manipulated, and stored as any other value, two poin-

ters in a program can assume the same value at runtime, in which case the

corresponding pointer dereferences become aliases. Computing runtime
pointer values statically, known as pointer analysis, or statically detecting if

two pointer dereferences alias, known as alias analysis, are both undecidable.

Many pointer/alias analysis algorithms have been developed, with varying preci-

sion and scalability. The simplest pointer analysis algorithm collects the set of all

symbols in the program whose addresses have been taken, as well as the set of

all dynamic memory allocation sites, and assumes all pointers in the program

can carry one of those values.

To facilitate scheduling, a precedence graph is first constructed to capture the
dependency relation among the instructions in a basic block. The precedence

graph is named so because it captures the partial order of instructions.

Definition 5.4 A precedence graph hE,s,ti is a polar graph where E � V �
V is the set of edges, and s,t 2 V is the source and sink node, respectively.

The precedence graph is sometimes also referred to as the dataflow graph

in the literature. A minor difference is that the dataflow graph captures the data

dependency of all instructions in a procedure, whereas the precedence graph is

its subgraph for instructions within a basic block. In particular, the source and
sink nodes are introduced to lump all instructions defined outside the basic

block under consideration. All instructions outside the basic block that are

5.4 Scheduling 265
depended on by the instructions in the basic block are lumped into the source

node. All instructions outside the basic block that depend on the instructions in
the basic block are lumped into the sink node.
Example 5.17 C
F

(

onsider the TinyC code fragment in Figure 5.6a. The corresponding TinyIR is shown in

Figure 5.6b. A simple dependency test algorithm can establish the dependency relation

by examining the chain of operations in each instruction. For example, consider instruc-

tion (28) in basic block B4, whose chain of operands is shown in Figure 5.7a. It can be

inferred that it depends on instruction (26), which in turn depends on instructions (24)

and (25), and so on. This process can be repeated, which yields the precedence graph

for basic block B4, as graphically depicted in Figure 5.7b. Note that instructions (4) and

(6) are defined outside B4, and they are lumped together as source node s. Likewise

instructions (27) and (28) are also defined outside B4, and they are lumped together as

sink node t. Thus, we have the following edges defined E ¼ {hs,15i, hs,16i, hs,24i,
hs,25i, h15,17i, h16,17i, h24,26i, h25,26i, h17,18i, h18,20i, h20,ti, h26,ti}.
 int a, b, c, d;

 c = ...;
 d = ...;

 if(...) {
 c = (((a + b) * (a - b)) * 13) + 16;
 d = (a + 12) * (a * 12);
 }

 ... = c + d;

..
.

..
.

 scalar c;
 scalar d;

 B3:
 ...
 (4) lds a
 (6) lds b
 ...
 (13) bt ..., B5
 B4:
 (14) cnst 13
 (15) + (4) (6)
 (16) - (4) (6)
 (17) * (15) (16)
 (18) * (14) (17)
 (19) cnst 16
 (20) + (18) (19)
 (23) cnst 12
 (24) + (4) (23)
 (25) * (23) (4)
 (26) * (24) (25)
 (27) sts (20), c
 (28) sts (26), d
 B5:
 (30) lds c
 (31) lds d
 (32) + (30) (31)
 ...

(b)(a)

IGURE 5.6

a) TinyC code. (b) TinyIR representation.

15 16 24 25

17 26

18

20

4 6

27 28

s

t

sts

*

*+

lds

28

26

24

4
12

a

d

25

(b)(a)

FIGURE 5.7

(a) Chain of instructions. (b) Precedence graph of basic block B4.

266 CHAPTER 5 Electronic system-level design and high-level synthesis
We are now ready to examine some commonly used scheduling formulations.
5.4.2 Unconstrained scheduling
We first consider the simple case where the allocation constraints are ignored.

In other words, we assume an unlimited number of functional units are avail-

able. The unconstrained scheduling problem for a basic block can then be

formulated as follows.
PROBLEM 5.3

Given: Precedence graph hE,s,ti
Find: S:V 7! Z

Minimize: S(t)�S(s)
Subject to: 8hu,vi 2 E,S(v) � S(u)>0
Assuming the control steps are sequentially numbered, then the total num-

ber of steps is defined as S(t)�S(s), which becomes the objective to minimize.
To respect data dependency, for every edge hu,vi, the schedule of the sink,

S(v), has to be “later” than the schedule of the source, S(u).

To solve Problem 5.3, one can use an iterative approach. In each iteration, a

set of nodes (instructions) in the precedence graph is scheduled to a control step.

5.4 Scheduling 267
The set of nodes that can be scheduled, or are “ready,” should be those whose

predecessors are all scheduled; otherwise, the dependency constraint would
be violated. In addition, we will schedule all nodes as soon as they are ready.

This strategy is referred to as as-soon-as-possible (ASAP) scheduling.

To implement ASAP scheduling, one can maintain a set Ready, representing

the set of nodes ready to be scheduled in the current control step. Initially,

Ready contains a single element, s. In each iteration, one chooses a node v from

Ready, and assigns its schedule as the current control step. In addition, it needs

to examine each successor w of v, and add it to NextReady, if it becomes ready

because v is scheduled. To judge if w becomes ready, one could check if all
its predecessors have been scheduled. This results in an algorithm with a

complexity of O(|V|þ|E|2).
A better approach is shown in Algorithm 5.1. The key insight is that one only

needs to maintain the number of unscheduled predecessors for each node, called

counter in line4ofAlgorithm5.1. It is initialized tobe thenumberof incomingedges

for each node in line 7-8.When node v is scheduled, this number is decremented for

each of its successors w. When this number becomes 0, node w becomes ready

(lines 14-16). Algorithm 5.1, therefore, has a complexity of O(|V|þ|E|).

Algorithm 5.1 ASAP Scheduling

algorithm asapSched(E : (V � V)[], s : V, t : V) returns V 7! Z
1. var S : V 7! Z;
2. var Ready, NextReady : V[];
3. var step : Z;
4. var counter : V 7! Z;
5. step ¼ �1;
6. Ready ¼ {s};
7. foreach (v 2 V)
8. counter(v) ¼ |{u|hu,vi 2 E }|;
9. while (Ready 6¼ �) do

10. NextReady ¼ �;
11. foreach (v 2 Ready) begin
12. S(v) ¼ step;
13. foreach (hv,wi 2 E) begin
14. counter(w) ¼ counter(w) �1;
15. If (counter(w) ¼¼ 0)
16. NextReady ¼ NextReady [{w};
17. end foreach
18. end foreach
19. step ¼ step þ 1;
20. Ready ¼ NextReady;
21. end while
22. return S;

268 CHAPTER 5 Electronic system-level design and high-level synthesis
Example 5.18 C
onsider applying Algorithm 5.1 to the precedence graph shown in Figure 5.7b. The

source node s is first scheduled (step -1). Because all its successors {15, 16, 24, 25}

have only one predecessor s, they become ready next. Scheduling node 15 to step 0

decrements counter for node 17 from 2 to 1. Scheduling node 16 to step 0 further

decrements counter for node 17 from 1 to 0, which triggers node 17 to become

ready in the next step. The same would apply to node 24 and node 25 to node 26.

So, {17, 26} are scheduled at step 1. In the subsequent iterations, node 18, with node

17 as the only predecessor, is scheduled at step 2; and its dependent, node 20, is

scheduled at step 3. The complete ASAP schedule is shown in Figure 5.8a; it shows that

it takes 4 steps at minimum to schedule all instructions, excluding s and t.

Note that ASAP scheduling is not the only possible solution to the unconstrained

scheduling problem. An equally viable solution is the as-late-as-possible
(ALAP) algorithm. Opposite to the ASAP, the ALAP starts scheduling in reverse

time order.
Example 5.19 C
i

l

t

g

n

s

F

(

onsider applying ALAP scheduling to the precedence graph in Figure 5.7b. In the first

teration of the algorithm, all immediate predecessors of the sink will be scheduled at the

ast step of the schedule. So, {20, 26} are scheduled at step 3. In the subsequent itera-

ions, an instruction is scheduled as soon as all of its successors in the precedence

raph have been scheduled at some later step. For example, in the second iteration,

ode 18 is scheduled at step 2, because it has the already scheduled node 20 as its only

uccessor. Figure 5.8b is the complete ALAP schedule.
5.4.3 Resource-constrained scheduling
We now turn to solving the scheduling problem under resource constraints.

Inparticular, a preallocationof functional unitsU is available. To simplify discussion,
step 0

step 1

step 2

step 3

s

15 16 24 25

17 26

18

20

15 16

24 25

17

26

18

20

15 16 17 18 20 24 25 26

(b) (c)(a)

t t

s

IGURE 5.8

a) ASAP schedule. (b) ALAP schedule. (c) Mobility.

5.4 Scheduling 269
we assume each unit u 2 U can implement a subset of virtual instructions.

The resource-constrained scheduling problem can then be formulated as follows.
F

P

PROBLEM 5.4

Given: Precedence graph hE, s, ti
Find: Schedule S: V 7! Z

Minimize: S(t)�S(s)
Subject to: Constraint (a) 8hu,vi2E : S(v)�S(u)>0

Constraint (b) 8i 2 Z,|S�1(i)|�|U|
Note that compared with Problem 5.3, a new constraint is added such that the

number of instructions scheduled at any control step cannot exceed the num-
ber of functional units available. This seemingly simple constraint dramatically

changes the combinatorial structure of the problem. Although Problem 5.3

can be optimally solved in linear time, Problem 5.4 is shown to be an NP com-

plete problem and requires heuristics for practical implementations.
Example 5.20 C
onsider again the scheduling problem that we solved in Example 5.18 and

Example 5.19. The precedence graph is redrawn in Figure 5.9, where each node is

annotated with its corresponding opcode. Assuming that we only have 2 add/sub units

and 1 multiplier, both of our ASAP and ALAP schedules will become infeasible. Referring

to the ASAP schedule in Figure 5.8a, our resource constraint is violated by the schedule

at step 0 and that at step 1, because 3 add/sub units and 2 multipliers will be needed,
t

s

15 16 24 25

17 26

18

20

+ − + *

* *

*

+

IGURE 5.9

recedence graph annotated with opcodes.

270 CHAPTER 5 Electronic system-level design and high-level synthesis
respectively. Referring to Figure 5.8b, the schedule at step 2 requires at least 2 multi-

pliers, so it also violates the constraint. To satisfy the resource constraint, we will use a

list-scheduling algorithm to schedule these operations again.

List scheduling, shown in Algorithm 5.2, is a modified version of the

ASAP scheduling algorithm. Like ASAP, a list of nodes ready for scheduling

is maintained, hence its name. The difference is that in each iteration, only a

subset of nodes can be scheduled depending on the availability of resources

at the current control step. The availability information is maintained with a

“reservation table” at line 5 of Algorithm 5.2. We define a Boolean vector restab,
in which each entry indicates the availability of a unit. At each control step,

restab is initialized to be all false. Whenever a resource u is available, one of

the instructions is selected for assignment to the current step. The case in

which a unit can only implement a subset of instructions can be trivially

handled by an additional test impl. Meanwhile, restab(u) is assigned to true,

indicating it is “occupied.” This ensures constraint (b) is always satisfied.

Algorithm 5.2 List Scheduling

algorithm listSched (E : (V � V)[], s : V, t : V) returns V 7! Z
1. var S : V 7! Z;
2. var Ready, NextReady : V[];
3. var step: Z;
4. var counter: V 7! Z;
5. var restab: U 7! {true, false};
6. step ¼ 0;
7. Ready ¼ {s};
8. foreach (v 2 V)
9. counter(v) ¼ |{u|hu,vi 2 E }|;

10. while (Ready 6¼ �) do
11. NextReady ¼ �;
12. foreach (u 2 U)
13. restab(u) ¼ false;
14. while (∃u 2 U,∃y 2 Ready | !restab(u) ∧ impl(u, y)) do
15. v ¼ choose(Ready, u);
16. restab(u) ¼ true;
17. S(v) ¼ step;
18. Ready ¼ Ready � {v};
19. foreach (hv,wi 2 E) begin
20. counter (w) ¼ counter(w) �1;
21. If (counter(w) ¼ ¼ 0)
22. NextReady ¼ NextReady [{w};
23. end foreach
24. end while
25. step ¼ step þ 1;

5.4 Scheduling 271
26. Ready ¼ Ready [NextReady;
27. end while
28. return S;

Note that at each scheduling step, the number of ready nodes is often more

than the resources available to implement them. Therefore, we need to decide

which subset of nodes should be chosen for scheduling, in other words, how

we implement the choose function in line 15 of Algorithm 5.2. It is this key step

that impacts the quality of the solution. If a node is chosen too late, then it can

potentially lengthen the total schedule. If a node is chosen too early, then poten-

tially more clock steps are needed to keep its value in a register before it is con-
sumed by all its successors. This is referred to as “register pressure,” which can

lead to an excessive use of registers.

A common way to solve this problem is to assign a priority for each node

indicating the desirability of scheduling the node early. The priority can be

assigned according to several heuristics or as a weighted sum of them.

One heuristic is to exploit the flexibility of the nodes: in general, there can

be potentially many different clock steps a node can be scheduled to. We have

already seen that ASAP and ALAP give different solutions, both satisfy the depen-
dency constraint. However, the degree of flexibility can differ. The less-flexible-

first heuristics says that we should assign high priority to those nodes that are

less flexible. On the other hand, we can afford to schedule highly flexible nodes

later because there are more options. To quantify the schedule flexibility, one

can use mobility range, defined to be the difference between the ALAP sched-

ule and the ASAP schedule for each node.
Example 5.21 Th
e mobility range of all nodes in Figure 5.7b is shown in Figure 5.8c. It can be observed

that nodes {15, 16, 17, 18, 20} have zero mobility, whereas the others have a mobility

of 2.

We now consider the use of mobility range as the priority function for list

scheduling.
Example 5.22 C
onsider the application of Algorithm 5.2 on the precedence graph in Figure 5.7b,modified

in Figure 5.9with each node annotatedwith the opcode they require. At step 0, each of {15,

16, 24} in the ready list is requesting an add/sub unit, and {15, 16} are chosen to fill the two

available resource slots because both of them have lower mobility than node 24. At the

same step, operation 25 is the only candidate requesting a multiplier in the ready list, so

it is selected without competition. Such competition happens again at step 2: the multiplier

is requested by both ready operations. With lower mobility than operation 26, operation 18

272 CHAPTER 5 Electronic system-level design and high-level synthesis
wins. As shown in the following, the schedule generated by this algorithm takes 4 steps,

which yields the same minimum latency for ASAP and ALAP scheduling without resource

constraints.

Ready List STEP ADD/SUB 1 ADD/SUB 2 MULT
{15, 16, 24, 25} 0 15 16 25
{24, 17} 1 24 - 17
{18, 26} 2 - - 18
{26, 20} 3 20 - 26

We can also deploy a priority function that selects randomly; it is instructive

to compare list scheduling with a mobility-based priority function and with a

random priority function.
Example 5.23 As
sume the priority function in list scheduling gives random selections. This could lead to

two possible schedules. In the first case, nodes {15, 24} are selected to fill the two add/

sub slots instead of {15, 16}.

Ready List STEP ADD/SUB 1 ADD/SUB 2 MULT
{15, 16, 24, 25} 0 15 24 25
{16, 26} 1 16 - 26
{17} 2 - - 17
{18} 3 - - 18
{20} 4 20 - -

In Figure 5.10b, we can see that the result of delaying operation 16 is taking 1 more

cycle than optimal to complete the computation. In the second case, we choose to

delay operation 18 at step 3 as shown in the following table, and it also leads to an

increase in latency by 1 as shown in Figure 5.10c.

Ready List STEP ADD/SUB 1 ADD/SUB 2 MULT
{15, 16, 24, 25} 0 15 24 25
{24, 17} 1 24 - 17
{18, 26} 2 - - 26
{18} 3 - - 18
{20} 4 20 - -

Because 16!17!18!20 is a critical path in the precedence graph as shown in

Figure 5.9, it is impossible to generate a schedule that takes less than 5 cycles if we

delay any node on this path.

Many other heuristics can be developed and are used in practice as well.

For example, the distance of a node v to the sink node; in other words, the differ-

ence of unconstrained schedules of t and v, wither ASAP or ALAP, can be used as

penalty (the inverse of priority). The rationale being that the closer a node is
to the sink, the more likely it is to extend the overall schedule if not scheduled

early. As another example, the out degree of a node can be used as a priority

(a)

t

18
*

20
+

26
*

s

15 + 16
-

25 *

17
*

24
+

(b)

*
15 24 25

16 26

18

20

t

s

17

+ +

+

- *

*

*

(c)

26

18

20

t

+

*

*

s

15 + 16
-

25 *

17
*

24
+

step 0

step 1

step 2

step 3

step 4

FIGURE 5.10

List scheduling with priority functions.

5.5 Register binding 273
function: the more number of successors a node has, the more likely additional

nodes would become ready after the scheduling of such a node.
5.5 REGISTER BINDING

In an IR, a virtual instruction may compute a value, which needs to be kept in a

register and later used by other instructions as operands.2 In a simplistic imple-

mentation, one could allocate a distinct register to hold each value. This leads to

excessive use of storage resources. In contrast, one could exploit the fact that

the values do not need to be held all the time, because they have limited life-

times. The values that have nonoverlapping lifetimes can then share the same

register to save silicon area. The task of mapping values to registers to maximize

sharing is called register binding.
5.5.1 Liveness analysis
To enable register binding, we have to establish the condition under which

variables can share a common register.

Definition 5.5 A value (instruction) v is live at a control step s1 if there

exists another control step s2 reachable from s1, such that v is used as an
2Not all virtual instructions compute a value, for example, the memory store instructions. For

most instructions that do compute a value, we do not distinguish the virtual instruction and

the value it computes.

274 CHAPTER 5 Electronic system-level design and high-level synthesis
operand by one of the instructions scheduled at s2. A live set at control step
s1 is the set of all values alive at s1.

Clearly, a value v scheduled at control step s cannot share a common register

with a value w live at s, otherwise, the new value v would corrupt the value w,

that is used later.

We use a liveness analysis algorithm to compute the live set. We first

consider a single basic block.

The strategy we take is to start at the end of the schedule and scan each

control step backwards (in reverse order). At each control step s, we define,
r

s

F

c

Live(s):
 Set of live values at the beginning of step s
Def(s):
 Set of values defined at step s
Use(s):
 Set of values used at step s.
The relationship between them can be established as follows, assuming all

control steps are sequentially numbered.
Live(s) ¼ Use(s) [[Live(s þ 1) � Def(s)]
Note that, Def(s) is the set of all instruction scheduled at step s; and Use(s) is

the set of all operands used by instructions scheduled at step s.

A liveness analysis algorithm for a basic block can then be developed, as

shown in Algorithm 5.3. It takes the schedule of the basic block as input. An

additional input to the algorithm is the set of live values leaving the basic block,

called liveOut.

Algorithm 5.3 Basic Block Liveness Analysis

algorithm liveBB (S : V 7! Z, liveOut : V []) returns Z 7! V []
1. var Live: Z 7! V [];
2. var l : Z;
3. l ¼ | range S |; Live(l) ¼ liveOut;
4. foreach (s 2 [l�1. . .0]) begin
5. Live(s) ¼ Live(s þ 1)�S�1(s);
6. foreach (v 2 S�1(s))
7. Live(s) ¼ Live(s)

S
{v.src1}

S
{v.src2};

8. end foreach
9. return Live;
Example 5.24 C
onsider the scheduled basic block in Example 5.22, re-created in Figure 5.11a. The live

ange of each value can be visualized by an interval, starting from just after the control

tep when it is defined and ending at the control step when it is last used as shown in

igure 5.11b. The live set of each control step can then be visualized as a horizontal

ut line through the live ranges, in other words, the set of all values crossing the control

step 0

step 1

step 2

step 3

6 4

15 16

24

25

17

26

18

20

15 16 17 18 20 24 25 264 6

(a) (b)

Live values

{4, 6}

{4, 15, 16, 25}

{17, 24, 25}

{18, 24, 25}

{20, 26}

FIGURE 5.11

(a) Results of liveness analysis. (b) Live ranges of values.

5.5 Register binding 275
step. We now consider how Algorithm 5.3 can compute the correct live set. In the begin-

ning, the liveOut value is {20, 26}, because they are used by other basic blocks. As we

scan step 3, we remove {20, 26} from the live set (Line 5, where S�1(s) applies the

inverse function of schedule S on step s, or returning the set of a value scheduled at

step s), because they are defined in step 3, and add {18, 24, 25}, because they are used

by {20, 26}. This leaves {18, 24, 25} as the live set for step 3. This process repeats until

we reach step 0, where the live set is {4, 6}, defined in other basic blocks.

STEP Def Use Live
0 {15, 16, 25} {4, 6} {4, 6}
1 {17, 24} {4, 15, 16} {4, 15, 16, 25}
2 {18} {17} {17, 24, 25}
3 {20, 26} {18, 24, 25} {18, 24, 25}
4 {20, 26}

We now extend liveness analysis to the whole program. As shown in Algo-

rithm 5.4, we are now given the schedule for all basic blocks and attempt to

find the live set for each control step in all basic blocks. We use a standard data-

flow analysis framework deployed for software compiler analysis. In this frame-

work, a control flow graph (CFG) is constructed so that there is one edge

from basic block A to basic block B if there is an instruction in block A that

branches or jumps to B. The framework traverses all basic blocks following

276 CHAPTER 5 Electronic system-level design and high-level synthesis
the CFG order and derives the information of interest by processing each basic

block. In this case, we use the post depth first order to make sure all successors
of a basic block are processed before a given basic block. As each basic block is

processed by calling liveBB (in Line 12), the liveOut of the basic block is com-

puted by combining the set of live values flowing out of all its successors

(Lines 8–13). This process repeats and is terminated when reaching a fixed

point; in other words, the computed live set values no longer change.
Algorithm 5.4 Liveness Analysis

algorithm live(Sched: B 7! (V 7! Z)) returns B 7! (Z 7! V [])
1. var Live: B 7! (Z 7! V []);
2. var LiveOut: B 7! V [];
3. var New: V [];
4. var changed: {true, false} ¼ true;
5. while (changed) do
6. changed ¼ false;
7. foreach (b 2 B in postorder) begin
8. New ¼ S

s2succðbÞ
Live (s,0);

9. if (New 6¼ LiveOut(b)) begin
10. LiveOut(b) ¼ New;
11. changed ¼ true;
12. Live(b) ¼ liveBB(Sched(b), liveOut(b));
13. end if
14. end foreach
15. end while
16. return Live;

With liveness information, we can then capture the relation between values

with a graph, called an interference graph. In an interference graph, a node

represents a value, and an edge between two nodes indicates that they cannot

share a common register. The interference graph can be derived from liveness

information with Algorithm 5.5.
Algorithm 5.5 Interference Graph Construction

algorithm intf(Sched: B 7! (V 7! Z), Live: B 7! (Z 7! V [])) returns (V � V)[]
1. var Eintf : (V � V)[];
2. foreach (b 2 B) foreach (v 2 b) begin
3. s ¼ Sched(b, v);
4. Eintf ¼ Eintf [{hu,vi,hv,ui|u 2 Live(b,s þ 1) ∧ u 6¼ v};
5. end foreach
6. return Eintf;

5.5 Register binding 277
Example 5.25 Fi
gure 5.12 shows the interference graph constructed from the liveness information in

Example 5.24. For example, for instruction 20, it is scheduled at control step 3. The live

set for step 4 is {20, 26}. Therefore an interference graph edge between 20 and 26 is

created. This process is repeated for every instruction.

4

6

15

17

18

20

26

1624

25

FIGURE 5.12

Interference graph.
5.5.2 Register binding by coloring
Given an interference graph, the register-binding problem reduces to assigning

each node to a register number, while ensuring that two nodes connected by an

edge are assigned different register numbers. This is equivalent to the classic

graph coloring problem, if each register number is treated as a color.
PROBLEM 5.5

Given: Interference graph Eintf
Find: Register binding BR:V 7! Z

Minimize: | range BR|

Subject to: 8hu,vi2Eintf,BR(u) 6¼BR(v)
Minimizing the number of registers is then equivalent to minimizing the chro-

matic number, or the minimum number of colors used to color the interference
graph.

The coloring problem is an NP-complete problem and thus requires heuristic

solutions. A typical heuristic algorithm colors one node at a time by choosing

the minimum color not used by its neighbors. Of course, one can only choose

a color different from the neighbors that have already been colored. Therefore,

278 CHAPTER 5 Electronic system-level design and high-level synthesis
it is sufficient to consider only the remainder graph (i.e., the subgraph of the

interference graph where all uncolored nodes and their incident edges are
removed).

Algorithm 5.6 uses this strategy by first finding the so-called vertex elimina-

tion order s (Line 6), which can be considered as the order in which the

sequence of the remainder graph is generated by removing one node at a time

starting from the full interference graph. The inverse of the vertex elimination

order is, therefore, the order in which the nodes are colored. In fact, in each

iteration of the loop in Line 7, a node v is selected according to s and added

to the remainder graph (Lines 9–10) and colored (Line 11).

Algorithm 5.6 Register Binding by Coloring

algorithm color(Eintf : (V � V)[]) returns V 7! Z
1. var C : V 7! Z;
2. var s : V 7! Z;
3. var V 0 : V [];
4. var E0 : Eintf[];
5. var v : V;
6. s ¼ vertexElim(Eintf);
7. foreach (i 2 [1. . .|V|]) begin
8. v ¼ s�1(i);
9. V 0 ¼ V 0 [{v};

10. E 0 ¼ E 0 [{hu,vi,hv,ui | u 2 V 0∧hu,vi 2 Eintf};
11. C(v) ¼min({c 2 Z | 8hu,vi 2 E0,C(u) 6¼ c});
12. end foreach
13. return C;
Example 5.26 C
{

1

2

s

s

i

c

r

w

onsider the interference graph in Example 5.25. Assume the vertex elimination order is

6, 20, 26, 17, 18, 24, 4, 15, 16, 25}. Then the coloring order is {25, 16, 15, 4, 24, 18,

7, 26, 20, 6}. We start with an empty remainder graph. The first node chosen is node

5. Because it has no neighbors, color 1 is chosen. In the next iteration, node 16 is cho-

en, and the remainder graph is expanded with the node, as well as the incident edges,

hown in Figure 5.13a. Color 2 is chosen as the minimum number besides 1. In the next

teration, node 15 is added to the remainder graph, shown in Figure 5.13b, and assigned

olor 3, the minimum color different from its neighbors 25 and 16. This process is

epeated in Figure 5.13b–e. In the end, all 10 nodes in the interference graph are colored

ith 4 colors. In other words, 10 values can share 4 registers. The mapping is as follows.
R0: {6, 25, 26}

R1: {16, 20, 24}

R2: {15, 17, 18}

R3: {4}

(a)
16

25

1

2 (b)

15

16

25
1

2

3

(c)

4

15

16

25

1

2

3

4

(d) 2
24

4

15

16

25
1 3

4

2

(e)

17
18

24

4

15 25
1 3

4

2

3
3

2
16

20

26

(f)

6

17
18

24

4

15 25
1 3

4

2

3
3

1

2

1

2
16

FIGURE 5.13

Coloring with s ¼ {6, 20, 26, 17, 18, 24, 4, 15, 16, 25}.

5.5 Register binding 279
Although the coloring process itself is rather straightforward, the key
step requires computing the appropriate vertex elimination order, or the

coloring order.

We first consider the special case in which the interference graph is derived

from a basic block. As shown in Example 5.24, each value is associated with a

live range characterized by a control step when the value is defined, and a con-

trol step when it is last used. This live range can be considered as an interval on

the integer set. An interference graph constructed by creating one edge for each

pair of overlapping intervals is called an interval graph. For an interval graph,
one could pick a coloring order by sorting all intervals according to the left edge

of the interval. This left-edge algorithm is optimal for an interval graph.

280 CHAPTER 5 Electronic system-level design and high-level synthesis
We now consider the general case in which the interference graph may not

have the structural property of an interval graph. This may partly be due to the
presence of complex control structures, such as branches and loops. This may

also be due to the special requirements that certain values have to be mapped

to the same register.

A typical heuristic we can use is called less-flexible-first, which we have used

in list scheduling. Here, the more neighbors a node has, the less choices it may

have to assign a color, and, therefore, the earlier we should color it. We can,

therefore, pick a vertex elimination order according to the degree of a node.

This strategy is used in Algorithm 5.7.

Algorithm 5.7 Vertex Elimination

algorithm vertexElim (Eintf : (V � V)[]) returns V 7! Z
1. var s : V 7! Z;
2. var V 0 : V [];
3. var E0 : (V � V)[];
4. var v : V;
5. V 0 ¼ V;
6. E 0 ¼ Eintf;
7. foreach (i 2 [1..|V|]) begin
8. v ¼ argminv2V0 | {hu,vi 2 E 0}|;
9. s(v) ¼ i;

10. V 0 ¼ V 0�{v};
11. E 0 ¼ E 0�{hu,vi,hv,ui 2 E 0}
12. end foreach
13. return s;
Example 5.27 Th
e vertex elimination process is illustrated in Figure 5.14. Here we use a stack to keep

track of the vertex elimination order, which facilitates the use of its inverse as coloring

order. With one adjacent node, 6, 20, and 26 are pushed to the stack first, as shown

in Figure 5.14a. These nodes, as well as their incident edges, are removed, which results

in a remainder graph shown in Figure 5.14b. With the degree of 2, vertices 17 and 18

score highest to be the next two nodes to be eliminated. After removing both 17 and

18, vertex 24 has its degree reduced to 1 and becomes the next candidate to be

removed, as shown in Figure 5.14c. As we can see in Figure 5.14d, the remaining nodes

have the same degree, and vertex 4 is selected arbitrarily. The same happens in the

subsequent iterations, and we choose to push vertices 15, 16, and 25 to stack in order,

as shown in Figure 5.14e–f. With the vertex elimination order stored in the stack, coloring

can be performed by popping one node at a time from the stack and reconstructing the

remainder graph, as illustrated in Example 5.25.

4

15

1624

25

24

18

17

26

20

6
(c)

4

15

17

18

1624

25

18

17

26

20

6

(b) stack

4

6

15

17

18

20

26

1624

25

26

20

6

(a) stack

4

15

16

25

4

24

18

17

26

20

6
(d) stack

16

25

25

16

15

4

24

18

17

26

20

6
(f) stack

15

16

25 15

4

24

18

17

26

20

6
(e) stack

FIGURE 5.14

Vertex elimination.

5.6 Functional unit binding 281
5.6 FUNCTIONAL UNIT BINDING

Although the coloring algorithm can minimize the register count, the register

sharing decision may affect the size of multiplexers. The silicon area of multi-

plexers can be quite significant. For example, in an application-specific
integrated circuit (ASIC), the area of a six-input multiplexer is close to the
area of an adder. For today’s FPGAs, the area of multiplexers, typically imple-

mented as lookup tables, is often larger than adders, typically available as hard-

wired logic.

282 CHAPTER 5 Electronic system-level design and high-level synthesis
Example 5.28 To
F

b

a

i

s

a

a

t

r

F

F

I

see how register binding may affect multiplexer area, consider the code fragment in

igure 5.15a. Assume both instructions will be mapped to the same adder. If all possi-

le input operands, which are values {t0, t1, t3, t4}, are mapped to different registers,

s shown in Figure 5.15b, two 2-to-1 multiplexers will be needed. However, as shown

n Figure 5.15c, the multiplexers can be eliminated by mapping values {t0, t3} to the

ame register and values {t1, t4} to another one. In general, even in the cases that only

subset of possible input operands share the same register, there is still a benefit from

smaller multiplexer. Sharing registers among the possible output values of a func-

ional unit can also simplify the interconnection between the functional unit and the

egisters. This is as illustrated by the mapping of values {t2, t5} to register R3 in

igure 5.15c.
t2 = t0 + t1;

t5 = t3 + t4;

t0 t3 t1 t4

.

.

.

(a)

MUX

R0 R1 R2 R3

R4 R5

t2 t5
(b)

MUX R0 R1

R3

t0/t3 t1/t4

t2/t5

(c)

adder adder

IGURE 5.15

mpact of register sharing on multiplexers.
Likewise, although the silicon area of functional units is determined by alloca-
tion, functional unit binding affects the area of multiplexers. Ideally, if the

source operand of one instruction A maps to the same register of the source

operand of another instruction B, then it is desirable to map A and B to the same

functional unit, because no extra multiplexer input needs to be introduced at

the functional unit input. This scenario is called common source. Likewise, if

the destination operand of instruction A maps to the same register as the desti-

nation operand of another instruction B, then it is desirable to map A and B

to the same functional unit, because no extra multiplexer input needs to be
introduced at the destination register input. This scenario is called common

destination.
Example 5.29 C
onsider the design in TinyRTL in Figure 5.16a. Here two addition operations scheduled

at C0 are bound to U0 and U1, respectively; whereas the one scheduled at C1 is bound

to U0. To share unit U0, as shown in Figure 5.16b, three 2-input multiplexers are

F

I

5.6 Functional unit binding 283
needed in the corresponding datapath. However, because the operation scheduled at

C1 shares common sources and common destinations with the other scheduled oper-

ation at C0, the multiplexers can be eliminated by binding both instructions to the same

unit, as shown in Figure 5.16c.
MUX

R2 R3R0

MUX

R1

U0

R 4 R 5
MUX

U1

register R0, R1, R2, R3, R4, R5;
unit U0, U1;
C0:

C1: U1.+ R5, R2, R3;
U0.+ R4, R0, R1;
U1.+ R5, R2, R3;
U0.+ R5, R2, R3; U0 → U1

R 1

U0

R4 R 5

U1

R0 R2 R3

(a)

(b) (c)

IGURE 5.16

mpact of functional unit binding on multiplexers.
Mathematically, the register binding and functional unit binding problems for

multiplexer area minimization are equivalent, although they depend on each

other (called the phase ordering problem). Recall in Section 5.5 that the regis-

ter-binding problem can be formulated as the coloring of an interference graph.

Each edge indicates that the connected nodes cannot be assigned the same

color, or they cannot share the same register. We now take a different perspec-

tive. Two instructions are said to be compatible if they can be mapped to the

same resource. Like the interference graph, we can establish a compatibility

graph whose nodes are instructions, and edges between nodes indicate that

they are compatible. The binding problem can then be formulated as a clique

partitioning problem, or an integer labeling of nodes in the compatibility graph,

such that all nodes with the same label are fully connected to each other. In

other words, all nodes with the same label form a clique, or a complete sub-

graph of the compatibility graph.

Interestingly, the interference graph and compatibility graph are dual of each

other: one can find the compatibility graph as the inverse of interference graph
and vice versa, and clique partitioning of a compatibility graph is equivalent to

the coloring of the corresponding interference graph. Thus, an alternate way of

performing register binding is to inverse the interference graph to obtain the

284 CHAPTER 5 Electronic system-level design and high-level synthesis
compatibility graph, and then solve the clique partitioning problem. Likewise,

we can solve the functional unit binding problem by clique partition. The com-
patibility graph for functional unit binding can be established directly: an edge is

created for every pair of instructions that satisfy the following:
a

{

c

s

r

F

FIG

Inte

3Tw

they

bec
n Their opcodes are of the same class.3

n They are not scheduled at the same control step.
Example 5.30 C
onsider the example in Figure 5.6. Consider only the instructions that perform additions

nd subtractions, which belong to the same class. This gives the set of instructions

15, 16, 20, 24}. Given the schedule in Example 5.22, shown in Figure 5.10a, we con-

lude that only 15 and 16 interfere with each other, because they are scheduled at the

ame clock step and, as a result, cannot be bound to the same functional unit. This is

eflected in the interference graph in Figure 5.17a. The compatibility graph is shown in

igure 5.17b, essentially by complementing the edges in the interference graph.
(b)

15 16

20

24

(a)

15 16

20

24

URE 5.17

rference graph and compatibility graph.
We can then refine functional unit binding problem as follows.
PROBLEM 5.6

Given: Compatibility graph Ecomp

Find: Unit binding BU: V 7! U

Minimize: Su2UjSrc1ðuÞj þ Su2UjSrc2ðuÞj þ Su2UjDestðuÞj
Subject to: 8u,v 2 V,BU(u) ¼ BU(v))hu,vi 2 Ecomp
o instruction opcodes are of the same class if there is significant chance of logic sharing if

are bound to the same functional unit. Addition and subtraction are of the same class,

ause it requires only a few extract logic gates to convert an adder into an adder/subtractor.

5.6 Functional unit binding 285
Note that the third term Su2U jDestðuÞj of the objective in Problem 5.6,

where Dest(u) is defined as the different registers a functional unit u connects
to, is derived from Srcd(r) of each register r from the third term of objective (3)

in Problem 5.2, where Srcd(r) is the different functional units outputs to

register r. In fact, they are just different ways of estimating the total number

of multiplexer inputs to the registers.

Like graph coloring, clique partitioning that minimizies the number of cli-

ques is also an NP-hard problem. Problem 5.6 is harder, because its objective

is the total number of multiplexers, which nontrivially depends both on func-

tional unit binding and register binding.
To solve the problem heuristically, we again take the iterative approach,

which makes one decision at a time. More specifically, as we show in Algorithm

5.8, we start by assuming each node in the compatibility graph forms its own

clique. In each iteration, we select and contract one edge hu,vi in the graph

(Lines 11–17); in other words, we merge the pair of nodes incident to the edge

into a larger clique. With some bookkeeping (Line 16), the larger clique is repre-

sented by one of the pair, say u; therefore, edges incident to the other node v

are removed (Line 14). To ensure further merging leads to cliques, any edges
incident to u that do not share a common neighbor with v should also be

removed (Line 13). This process repeats until all edges are removed, and what

is left is a set of nodes, each representing a clique. After this, all virtual instruc-

tions in a clique v are assigned a common unit u (line 18–22).

The key step of the algorithm is the criterion used to select the edge in each

iteration, so that it positively improves, if doesn’t optimizes, our objective. Algo-

rithm 5.8 uses the partial binding result to approximate the objective. It assumes

that each clique corresponds to a functional unit and maintains its Src1, Src2, and
Dest, calculated as the set of registers for the corresponding operands of all nodes

in the clique they are mapped to, according to register binding BR. These sets are

called the operand sets. In each iteration, when two nodes (cliques) are merged,

their corresponding operand sets are merged as well by unions (Line 15). With

operand sets defined for each node, we can, in turn, define the edge weight as

the total number of common operands in respective operand sets. The edge that

leads to the least changes, that is, having themost number of common sources and

destinations, is greedily selected (Line 11).

Algorithm 5.8 Weighted Clique Partitioning

algorithm CliquePartition(Ecmpat : (V � V)[], BR : V 7! Z) returns V 7! Z
1. var V0 : V[] ¼ V;
2. var E0 : (V � V)[] ¼ E;
3. var Clique : V 7! V [];
4. var BU : V 7! Z;
5. var Src1,Src2,Dest : V 7! Z [];
6. foreach (v 2 V 0) begin

286 CHAPTER 5 Electronic system-level design and high-level synthesis
7. Src1(v) ¼ {BR(v.src1)}; Src2(v) ¼ {BR(v.src2)}; Dest(v) ¼ {BR(v.dest)};
8. Clique(v) ¼ {v};
9. end foreach

10. while (E 0 6¼ �) do
11. hu,vi ¼ argmaxhu,vi 2 E0 | Src1(u) \ Src1(v)| þ |Src2(u) \ Src2(v)|

þ |Dest(u) \ Dest(v)|;
12. V 0¼V 0�{v};
13. E 0 ¼ E 0�{hu,wi,hw,ui|hw,vi =2 E 0};
14. E 0 ¼ E 0�{hv,wi,hw,vi 2 E 0};
15. Src1(u) ¼ Src1(u) [Src1(v); Src2(u) ¼ Src2(u) [Src2(v);

Dest(u) ¼ Dest(u) [Dest(v);
16. Clique(u) ¼ Clique(u) [Clique(v);
17. end while
18. foreach (v 2 V 0) begin
19. u ¼ next(U);
20. foreach (w 2 Clique(v))
21. BU(w) ¼ u;
22. end foreach
23. return BU;

We now illustrate the application of Algorithm 5.8 for Example 5.30.

We start by computing the initial operand sets.
Example 5.31 Fr
om the TinyIR representation in Figure 5.6b, we can find the source operands of the

instructions as follows,

INSTRUCTION SRC 1 SRC 2
15 4 6
16 4 6
20 18 ‹16›
24 4 ‹12›

Note: constant inputs are bracketed by ‹ ›

From the register allocation result of the previous section (Example 5.26), we have
R0: {6, 25, 26}

R1: {16, 20, 24}

R2: {15, 17, 18}

R3: {4}
We can, therefore, establish the operand sets in Figure 5.18a. In addition, we mark

each edge with a weight, valued as the number of common elements in the respective

operand sets.

We can now start the iterative clique partitioning process.

(a) (b)

15 16

20

24

0 1

1 2

1

(c) (d)

15
16
24

20

0 1

(e) (f)

16
24
20

15

Iteration 1

Iteration 2

After iteration 2

INSTRUCTION SRC 1 SRC 2 DEST

15

16, 24

20

INSTRUCTION SRC 1 SRC 2 DEST

15 R3

16, 24, 20 R3, R2 R0 R1

R0 R2

R3

R3

R0

R0

R2

R2

R1

R1

INSTRUCTION SRC 1 SRC 2 DEST

15 R3

R3

R3

16

20

24

R0

R0

R2

R2

R1

R1

R1

FIGURE 5.18

Operand sets and iterative clique partitioning.

5.6 Functional unit binding 287
Example 5.32 Fr
om Figure 5.18a, the edge h16,24i is the only edge with the maximum weight of 2. So in

the first iteration it is selected first for contraction. In doing so, nodes 16 and 24 are

merged into one node. Note in particular that the original edge h15,24i is removed,

because 15 and 16 are not compatible. Also note that the operand sets are updated

in Figure 5.18c, as well as the edge weights in Figure 5.18d. In the second iteration,

the edge between 20 and the merged node in the first iteration has the maximum

weight of 1 and is selected next for contraction. The result of this step is shown in

Figure 5.18e-f. Examining the remainder of the compatibility graph, there are no more

edges left, and the iterative process terminates.

We now have enough information to generate the full datapath.

288 CHAPTER 5 Electronic system-level design and high-level synthesis
Example 5.33 C
ombining scheduling, register binding, and functional unit binding, we can summarize

the decisions made in high-level synthesis by the following tables.

REGISTER VALUES
R0 6, 25, 26
R1 16, 20, 24
R2 15, 17, 18
R3 4

UNIT INSTRUCTIONS
ADD/SUB 0 16, 20, 24
ADD/SUB 1 15
MULT 17, 18, 25, 26

With the resource binding result, we can complete the datapath of the design by

adding multiplexers before functional unit and register input ports. To accomplish this,

we need to identify the set of all possible unit-to-register and register-to-unit transfers,

given the virtual instructions, as well as the binding result. According to the resource bind-

ing result in the above tables, we can identify the sources of registers as in the following

table. For example, register R0 takes values {25, 26} from the MULT unit and takes value

6 from an external input, so it needs a 2-input multiplexer to take values from the both

sources.

REGISTER INPUTS VALUES
external input 6R0
MULT 25, 26

R1 ADD/SUB 0 16, 20, 24
ADD/SUB 1 15R2
MULT 17, 18

R3 external input 4

To identify the sources of functional units, we first identify the source registers of each

instruction, as follows,

SRC 1 SRCREG 1 SRC 2

15 4 R3 6 R0
16 4 R3 6 R0
17 15 R2 16 R1
18 ‹13› 17 R2
20 18 R2 ‹16›
24 4 R3 ‹12›
25 ‹12› 4 R3
26 24 R1 25 R0

INSTRUCTION SRCREG 2

Note: constant inputs are bracketed by ‹ ›

Then, the sources of each functional unit are the union of the sources of all instructions

bound to the unit. For example, the sources of input port 1 of the add/sub 0 unit is the

union of {R3}, {R2}, and {R3}, which are the corresponding sources of instructions 16,

5.7 Concluding remarks 289
20, and 24, respectively. So, a 2-input multiplexer is needed at the port. The sources of the

rest of the functional unit ports are summarized as follows,

UNIT INPUT PORT 1 INPUT PORT 2
ADD/SUB 0 R2, R3 R0, ‹12›, ‹16›
ADD/SUB 1 R3 R0
MULT R1, R2, ‹12›, ‹13› R0, R1, R2, R3

The complete synthesized datapath is as illustrated in Figure 5.20a.

It is constructive to examine whether the heuristic in Algorithm 5.8 is effective.

To see this, we apply the same clique partitioning process, except that in each iter-
ation, an edge is randomly selected for contraction. Figure 5.19 shows a possible

result, and the corresponding datapath is as illustrated in Figure 5.20b. It shows

that the random unit binding–based datapath takes 20 multiplexer inputs com-

pared with 17 multiplexer inputs from the clique-partitioning unit binding. In

terms of wiring complexity at the output port, it has a total of 16 destinations from

all sources, whereas the clique partitioning unit binding synthesizes a datapath

with only 15, which shows that in this instance the clique partitioning heuristic

yielded a superior design.
(a) (b) (c)

15
20

16
24

15 16

20

24

0 1

1 2

1

15
20

2 2
16

24

FIGURE 5.19

Random unit binding.
5.7 CONCLUDING REMARKS

In this chapter, we described a complete, although simplified high-level synthesis

system. The presented algorithms are distilled from a rich body of research since

the 1980s. The representative early academic efforts include CMU [McFarland

1978; Gyrczyc 1984; Thomas 1988], IMEC [De Man 1986], USC [Parker 1986],

and Illinois [Pangrle 1987; Brewer 1988]. The representative early industry efforts
include IBM [Camposano 1991] and Bell Lab [Bhasker 1990]. Readers are referred

(a)

(b)

MUL ADD/SUB 0

12 13 16

sel3 sel3 sel4

func

sel1

sel5 sel6

12

MUL ADD/SUB 0

R0 R1

12 13 1612

(4)

(6)

sel0 sel1

sel2 sel3 sel4 sel5

we0 we1 we2 we3

func

R2 R3

R0 R1

(4)

(6)

sel0 sel2

we0 we1 we2 we3
R2 R3

ADD/SUB 1

ADD/SUB 1

FIGURE 5.20

Synthesized datapaths.

290 CHAPTER 5 Electronic system-level design and high-level synthesis
to [Gajski 1992] and [De Micheli 1994] for a comprehensive treatment of

development in this period. In particular, list scheduling is due to [Landskov

1980]. Left edge algorithm for register binding is due to [Kurdahi 1987]. Clique

partitioning based binding is due to [Tseng 1986].

Although in this chapter we chose to present a resource-constrained–based

formulation of high-level synthesis, a large body of literature was devoted to

5.7 Concluding remarks 291
performance-constrained (or time-constrained) formulations of scheduling. A

representative work in this area is force-directed scheduling [Paulin 1989],
which attempts to minimize resource count under a cycle count constraint of

a basic block.

Despite the intensive research efforts, high-level synthesis was not embraced

by the design community as much as it was intended. As discussed in Section 5.1,

one reason behind the reluctance of acceptance is methodologic: because the

chip content has become increasingly heterogeneous, high-level synthesis has

to be integrated into an electronic system–level design method before it can

replace register transfer level synthesis as the dominant synthesis technology.
Toward this end, hardware/software codesign [Gupta 1992; Gajski 1994]

emerged in the mid-1990s as a research field to address the issue of how

one can partition an application into software and hardware components,

select the processors, and generate the interface between them. Attempts to

fully automate the task, called hardware/software cosynthesis [Ernst 1996;

Yen 1996], largely failed in practice because the partitioning decisions are

often dictated by non-technical factors, such as the availability of legacy intel-
lectual property (IP) components that populate the ecosystem of processor
IPs. Although the cosynthesis approach will remain effective for domain-

specific subsystems, the full system-level design method has given way to

the architecture-based method described in Section 5.2, which gives more dis-

cretion to system architects, enables concurrent development of hardware and

software, and allows for derivative implementations to amortize the design

cost to multiple products.

A restricted form of hardware/software codesign that has gained success in

practice is application-specific instruction set processor (ASIP) design.
Here a programmable processor is designed; however, the instruction set is

adapted to a family of applications. The main attractiveness of ASIPs is that it

allows for post-silicon programmability (which is not possible for traditional

high-level synthesis that generates custom hardware); furthermore, ASIPs can

achieve a certain level of application acceleration through the use of custom

instructions. The ASIP based design methodologies pioneered in [Marwedel

1986], [Fauth 1995], [Halambi 1999], and [Hoffmann 2001] are summarized in

[Mishra 2008], where different forms of architecture description languages
(ADLs) are advocated to specify processor architectures. Often, both the proces-

sor RTL and a compiler/simulator tool chain can be generated automatically.

Recent efforts attempt to automatically extract custom instructions from appli-

cation, given a tight budget of available instruction slots. Because the main

mechanism of application customization is through instruction extension, the

amount of acceleration an ASIP can achieve is limited. Therefore, ASIP designs

cannot completely replace what can be offered by high-level synthesis. Further-

more, they have to compete against the existing design ecosystem (including
legacy software) made available by dominant embedded processor vendors

who continually enhance their instruction sets for each processor generation.

292 CHAPTER 5 Electronic system-level design and high-level synthesis
For high-level synthesis to be successful as a component technology within

an ESL design method, many advanced issues beyond the scope of this chapter
have to be solved. The key drivers for these issues are that design productiv-
ity and quality of result (QoR) have to be substantially better than RTL to jus-

tify the departure from a mature, well-tested design flow.

On the design productivity front, classical high-level synthesis only tackles

behavioral description with loop kernel level complexity and accepts only a sub-

set of software program constructs. As a result, the design flow requires signifi-

cant manual partitioning and rewriting effort from designers, diminishing the

productivity gain promised by high-level synthesis. To succeed, high-level synthe-
sis has to scale analysis and optimization algorithms to handle applications in their

entirety and target architectures beyond FSMD. For example, performance-

constrained–based algorithms work only on a basic block, and it is impractical

to ask users to specify the cycle count constraint of every basic block in a com-

plex program. Therefore, either resource-constrained algorithms driven by a

design exploration environment have to be applied or new performance-budget-

ing algorithms capable of distributing end-to-end performance constraints to indi-

vidual blocks have to be developed. As another example, classical high-level
synthesis does not permit the use of pointers in the behavioral description, yet

pointers are pervasively used in C/Cþþ programs. Pointer analysis [Hind 2000]

was demonstrated to relax such limitations [Panda 2001a; Semeria 2001; Zhu

2002]. As another example, multi-processor system-on-chip (MPSOC) archi-

tectures [Dutt 2001; Helmig 2002; Intel 2002; Artieri 2003] were explored to

enable coarse-grained parallelism, and both bus-based communication schemes

[Pasricha 2008] and network-on-chips (NOC) [Dally 2001] were proposed to

provide on-chip communication support among the processing elements.
Although it is debatable whether the new acronyms above truly advance the

state-of-the-art in high-level synthesis, it is the QoR a synthesis tool can achieve

that would finally earn acceptance by designers. As a discipline, high-level syn-

thesis sits at the intersection of multiple domains, including parallelizing com-

pilers, computer architecture, and circuit optimization. Therefore, it has to

exploit and adapt existing techniques in these domains, and innovations likely

result by crossing boundaries of these domains. For example, presynthesis

transformations were shown to have significant impact on QoR [Bhasker
1990; Nicolau 1991; Gupta 2003], yet a different strategy needs to be taken

from those in optimizing compilers. As another example, like in general pur-

pose computing, memory accesses are often the performance bottleneck. The

freedom in creating a customized memory system in high-level synthesis led

to many innovative memory optimization algorithms exploiting memory

access patterns at the application side and available bandwidth at the architec-

ture and circuit level [Panda 2001b; Wolf 2003]. Another problem that led to

the poor performance of classical high-level synthesis is the lack of a link to
downstream logic synthesis and place-and-route tools. The classical methods

abstract away the effects of downstream tools by use of area and timing

5.8 Exercises 293
estimation models that are often too crude to be useful. This leads to the well-

known timing closure problem. A promising direction is the so-called C-to-gate

methodology in which behavioral and logic synthesis are integrated in an effec-

tive fashion. Finally, there is an urgent need to tightly couple physical design

with high-level synthesis to allow for better predictability of design results at

the later stages of chip design [Xu 1998; Um 2003].
5.8 EXERCISES
5.1. (Frontend/IR Design) Use lex/yacc to build a frontend for TinyC, which

is given in Section 5.2.1.

5.2. (Resource-Constrained Scheduler) Implement the list scheduler with
the frontend built in Problem 5.1. The resource constraint is passed as

command line in the following format:
n behsyn -R constraint_spec foo.c

n constraint_spec: ¼ component [; component]*

n component: ¼ opcode [, opcode]* : num
For example, behsyn -R “OP_ADD: 2; OP_MUL: 1’’ foo.c specifies that two

adder components (which implements OP_ADD) and one multiplier com-

ponent (which implements OP_MUL) are allocated. Your program should
optimize the expected cycle count under the specified resource

constraint.

5.3. (Register Binder) Implement a register binder with one of the following

algorithms:
n Left edge algorithm

n Coloring algorithm

n Weighted clique partitioning algorithm
Your program should optimize the number of registers used while
respecting the result of scheduling in Exercise 5.2.

5.4. (Functional Unit Binder) The goal of this exercise is to implement a func-

tional unit binder. The result of binding should respect the result of sched-

uling (Problem 5.2) and register allocation (Problem 5.3) in the previous

exercises, while minimizing the cost of multiplexers.

5.5. (HDL Generation) The goal of this exercise is to export the result of

behavioral synthesis to a form that is acceptable to commercial logic syn-

thesis and backend tools:

n A component generator that can output VHDL/Verilog code that uses

the Synopsys DesignWare components to implement the necessary

RTL component in your synthesis result.

n A controller/datapath generator that outputs the VHDL/Verilog code

for the controller, datapath, and the top-level design, respectively.

294 CHAPTER 5 Electronic system-level design and high-level synthesis
5.6. (Multicycling and Functional Unit Pipelining) Modify Algorithm 5.1 to
incorporate realistic timing:
n Functional unit latency is larger than one.

n Functional unit latency is larger than one, but can process data every

cycle.
5.7. (Register Binding) It has been shown in [Golumbic 1980] that the color-

ing problem can be optimally solved in linear time, if the interference

graph is chordal.
n Show that the interference graph for values in a basic block is chordal.
n Show that the interference graph for values in a TinyC program is

chordal.
5.8. (Phase Ordering) Create an example to demonstrate that scheduling can

significantly impact the register allocation result. Devise a strategy to miti-

gate this so-called phase ordering problem.
ACKNOWLEDGMENTS

We thank Rami Beidas and Wai Sum Mong of University of Toronto for their help in preparing the

examples used in the text. We also thank Professor Jie-Hong (Roland) Jiang of National Taiwan Uni-

versity, Professor Preeti Ranjan Panda of Indian Institute of Technology, Delhi, and Dr. Sumit Gupta

of Nvidia, for their valuable feedback on this chapter.
REFERENCES

R5.0 Books

[Aho 2006] A. Aho, R. Sethi, J. Ullman, and M. Lam, Compilers: Principles and Techniques and

Tools, Second, Addison-Wesley, Reading, MA, 2006.

[De Micheli 1994] G. De Micheli, Synthesis and Optimization of Digital Circuits, McGraw-Hill,

Hightstown, NJ, 1994.

[Gajski 1992] D. D. Gajski, N. D. Dutt, A. C.-H. Wu, and S. Y.-L. Lin, High-level Synthesis: Introduc-

tion to Chip and System Design, Kluwer Academic, Norwell, MA, 1992.

[Gajski 1994] D. D. Gajski, F. Vahid, Narayan, and J. Gong, Specification and Design of Embedded

Systems, Prentice-Hall, Englewood Cliffs, NJ, 1994.

[Gajski 2000] D. D. Gajski, J. Zhu, R. Domer, A. Gerstlauer, and S. Zhao, SpecC: Specification

Language and Methodology, Kluwer Academic, Norwell, MA, 2000.

[Golumbic 1980] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press,

1980.

[Grötker 2002] T. Grötker, S. Liao, G. Martin, and S. Swan, System Design with SystemC, Kluwer

Academic, Norwell, MA, 2004.

[Mishra 2008] P. Mishra and N. Dutt, Processor Description Languages, Morgan Kauffman, San

Francisco, 2008.

[Pasricha 2008] S. Pasricha and N. Dutt, On-Chip Communication Architectures: System on Chip

Interconnect, Morgan Kauffman, San Francisco, 2008.

[Yen 1996] T.-Y. Yen and W. Wolf, Hardware-Software Co-synthesis of Distributed Embedded

Systems, Kluwer Academic, Norwell, MA, 1996.

References 295
R5.1 Introduction

[Berry 1992] G. Berry and G. Gonthier, The Esterel Synchronous Programming Language: Design,

Semantics, Implementation, Science of Computer Programming, 19(2), pp. 87–152, November

1992.

[Halbwachs 1991] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, The synchronous data flow

programming language LUSTRE, Proceedings of the IEEE, 79(9), pp. 1305–1320, September

1991.

[Kahn 1974] G. Kahn, The semantics of a simple language for parallel programming, in Information

Processing, pp. 471–475, August 1974.

[Krolikoski 1999] S. J. Krolikoski, F Schirrmeister, B. Salefski, J. Rowson, and G. Martin, Methodology

and technology for virtual component driven hardware/software co-design on the system-level,

in Proc. IEEE Int. Symp. on Circuits and Systems, 6, pp. 456–459, July 1999.

[Lee 1996] E. Lee and A. Sangiovanni-Vincentelli, Comparing models of computation, in Proc. IEEE/

ACM Int. Conf. on Computer-Aided Design, pp. 234–241, November 1996.

[Lee 1987] E. A. Lee and D. G. Messerschmitt, Static scheduling of synchronous data flow programs

for digital signal processing, IEEE Trans. on Computers, 36(1), pp. 24–35, January 1987.

[SIA 2007] Semiconductor Industry Association, The International Technology Roadmap for Semi-

conductors: 2007 Edition, http://public.itrs.net, 2007.

[Zhu 1997] J. Zhu, R. Doemer, and D. Gajski, Syntax and semantics of SpecCþ language, in Proc.

Seventh Workshop on Synthesis and System Integration of Mixed Technologies, pp. 75–82,

December 1997.
R5.7 Concluding Remarks

[Artieri 2003] A. Artieri, V. D’Alto, R. Chesson, M. Hopkins, and M. C. Rossi, NomadikTM open mul-

timedia platform for next-generation mobile devices, STMicroelectronics Technical Article

TA305, http://www.si.com, 2003.

[Bhasker 1990] J. Bhasker and H.-C. Lee, An optimizer for hardware synthesis, IEEE Design & Test of

Computers, 7(5), pp. 20–36, September–October 1990.

[Brewer 1988] F. D. Brewer, Constraint driven behavioral synthesis, Ph.D. thesis, Dept. of Computer

Science, University of Illinois, May 1988.

[Camposano 1991] R. Camposano, Path-based scheduling for synthesis, IEEE Trans. on Computer-

Aided Design, 10(1), pp. 85–93, January 1991.

[Dally 2001] W. J. Dally and B. Towles, Route packets, not wires: On chip interconnection networks,

in Proc. ACM/IEEE Design Automation Conf., pp. 684–689, June 2001.

[De Man 1986] H. De Man, J. Rabaey, P. Six, and L. Claesen, Cathedral-II: A silicon compiler for digi-

tal signal processing, IEEE Design & Test of Computers, 3(6), pp. 73–85, November-December

1986.

[Dutt 2001] S. Dutt, R. Jensen, and A. Rieckmann, Viper: A multiprocessor SOC for advanced set-top

box and digital TV systems, IEEE Design & Test of Computers, 18(5), pp. 21–31, September–

October 2001.

[Ernst 1996] R. Ernst, J. Henkel, T. Benner, W. Ye, U. Holtmann, D. Herrmann, and M. Trawny, The

COSYMA environment for hardware/software cosynthesis of small embedded systems,

J. Microprocessors and Microsystems, 20(3), pp. 159–166, May 1996.

[Fauth 1995] A. Fauth, J. Van Praet, and M. Freericks, Describing instruction set processors with

nML, in Proc. IEEE/ACM Design, Automation and Test in Europe Conf., pp. 503–507, March

1995.

[Gomez 2004] J. I. Gomez, P. Marchal, S. Verdoorlaege, L. Pinuel, and F. Catthoor, Optimizing the

memory bandwidth with loop morphing, in Proc. IEEE Int. Conf. on Application-Specific Sys-

tems, Architectures and Processors, pp. 213–223, September 2004.

296 CHAPTER 5 Electronic system-level design and high-level synthesis
[Grun 2001] P. Grun, N. Dutt, and A. Nicolau, APEX: Access pattern based memory architecture

exploration, in Proc. Int. Symp. on System Synthesis, pp. 25–32, September 2001.

[Gupta 1992] R. K. Gupta, C. N. Coelho, and G. De Micheli, Synthesis and simulation of digital sys-

tems containing interacting hardware and software components, in Proc. ACM/IEEE Design

Automation Conf., pp. 225–230, June 1992.

[Gupta 2003] S. Gupta, N. D. Dutt, R. K. Gupta, and A. Nicolau, SPARK: A high-level synthesis frame-

work for applying parallelizing compiler transformations, in Proc. IEEE Int. Conf. on VLSI

Design, pp. 461–466, January 2003.

[Gyrczyc 1984] E. Gyrczyc, Automatic generation of micro-sequenced data paths to realize ADA cir-

cuit descriptions, Ph.D. thesis, Carleton University, 1984.

[Halambi 1999] A. Halambi, P. Grun, V. Ganesh, A. Khare, N. D. Dutt, and A. Nicolau, EXPRESSION:

A language for architectural exploration through compiler/simulator retargetability, in Proc.

IEEE/ACM Design, Automation and Test in Europe Conf., pp. 485–490, March 1999.

[Helmig 2002] J. Helmig, Developing core software technologies for TI’s OMAPTM platform, Texas

Instruments, http://www.ti.com, 2002.

[Hind 2000] M. Hind and A. Pioli, Which pointer analysis should I use?, in Proc. ACM SIGSOFT Int.

Symp. on Software Testing and Analysis, pp. 113–123, August 2000.

[Hoffmann 2001] A. Hoffmann, O. Schliebusch, A. Nohl, G. Braun, O. Wahlen, and H. Meyr, A meth-

odology for the design of application specific instruction set processors (ASIP) with the machine

description language LISA, in Proc. IEEE/ACM Int. Conf. on Computer-Aided Design,

pp. 625–630, November 2001.

[Intel 2002] Intel, Product Brief: Intel IXP2850 Network Processor, http://www.intel.com, 2002.

[Kurdahi 1987] F. J. Kurdahi and A. C. Parker, REAL: A program for register allocation, in Proc. ACM/

IEEE Design Automation Conf., pp. 210–215, June 1987.

[Landskov 1980] D. Landskov, S. Davidson, B. Shriver, and P. W. Mallett, Local microcode compac-

tion techniques, ACM Computing Surveys, 12(3), pp. 261–294, September 1980.

[Marwedel 1986] P. Marwedel, A new synthesis for the MIMOLA software system, in Proc. ACM/

IEEE Design Automation Conf., pp. 271–277, June 1986.

[McFarland 1978] M. C. McFarland, The Value Trace: A database for automated digital design, Tech-

nical Report DRC-01-4-80, Design Centre, Carnegie-Mellon University, December 1978.

[Nicolau 1991] A. Nicolau and R. Potasman, Incremental tree height reduction for high-level synthe-

sis, in Proc. ACM/IEEE Design Automation Conf., pp. 770–774, June 1991.

[Panda 2001a] P. R. Panda, L. Semeria, and G. De Micheli, Cache-efficient memory layout of aggre-

gate data structures, in Proc. Int. Symp. on System Synthesis, pp. 101–106, September 2001.

[Panda 2001b] P. R. Panda, F. Catthoor, N. D. Dutt, K. Danckaert, E. Brockmeyer, C. Kulkarani,

A. Vandercappelle, and P. G. Kjeldsberg, Data and memory optimization techniques for embed-

ded systems, ACM Trans. on Design Automation of Electronic Systems, 6(2), pp. 149–206,

February 2001.

[Pangrle 1987] B. M. Pangrle and D. D. Gajski, Slicer: A state synthesizer for intelligent silicon com-

pilation, in Proc. IEEE/ACM Int. Conf. on Computer-Aided Design, pp. 42–45, November 1987.

[Parker 1986] A. C. Parker, J. Pizarro, and M. Mlinar, MAHA: a program for datapath synthesis, in

Proc. ACM/IEEE Design Automation Conf., pp. 461–466, June 1986.

[Paulin 1989] P. Paulin and J. Knight, Force-directed scheduling for the behavioral synthesis of

ASIC’s, IEEE Trans. on Computer-Aided Design, 8(6), pp. 661–679, June 1989.

[Semeria 2001] L. Semeria and G. De Micheli, Resolution, optimization, and encoding of pointer

variables for the behavioral synthesis from C, IEEE Trans. on Computer-Aided Design, 20(2),

pp. 213–233, February 2001.

[Thomas 1988] D. E. Thomas, E. M. Dirkes, R. A. Walker, J. V. Rajan, J. A. Nestor, and R. L. Blackburn,

The system architect’s workbench, in Proc. ACM/IEEE Design Automation Conf., pp. 337–343,

June 1988.

[Tseng 1986] C.-J. Tseng and D. P. Siewiorek, Automated synthesis of data paths in digital systems,

IEEE Trans. on Computer-Aided Design, 5(3), pp. 379–395, March 1986.

References 297
[Um 2003] J. Um and T. Kim, Synthesis of arithmetic circuits considering layout effects, IEEE Trans.

on Computer-Aided Design, 22(11), pp. 1487–1503, November 2003.

[Wolf 2003] W. Wolf and M. Kandemir, Memory system optimization of embedded software,

Proceedings of The IEEE, 91(1), pp. 165–182, January 2003.

[Wuytack 1999] S. Wuytack, F. Catthoor, G. D. Jong, and H. J. De Man, Minimizing the required mem-

ory bandwidth in VLSI system realizations, IEEE Trans. on Very Large Scale Integration Systems,

7(4), pp. 433–441, April 1999.

[Xu 1998] M. Xu and F. J. Kurdahi, Layout-driven high level synthesis for FPGA based architectures,

in Proc. IEEE/ACM Design, Automation and Test in Europe, pp. 446–450, February 1998.

[Zhu 2002] J. Zhu, Symbolic pointer analysis, in Proc. IEEE/ACM Int. Conf. on Computer-Aided

Design, pp. 150–157, November 2002.

This page intentionally left blank

CHAPTER
6
Logic synthesis in a
nutshell
Jie-Hong (Roland) Jiang
National Taiwan University, Taipei, Taiwan

Srinivas Devadas
Massachusetts Institute of Technology, Cambridge

Massachusetts
IS CHAPTER
ABOUT TH

What is logic synthesis? As the name itself suggests, logic synthesis is the pro-
cess of automatic production of logic components, in particular digital circuits.

It is a subject about how to abstract and represent logic circuits, how to manip-

ulate and transform them, and how to analyze and optimize them. Why does

logic synthesis matter? Not only does it play a crucial role in the electronic

design automation flow, its techniques also find broader and broader applica-

tions in formal verification, software synthesis, and other fields. How is logic

synthesis done? Read on!

This chapter covers classic elements of logic synthesis for combinational cir-
cuits. After introducing basic data structures for Boolean function representa-

tion and reasoning, we will study technology-independent logic minimization,

technology-dependent circuit optimization, timing analysis, and timing optimi-

zation. Some advanced subjects and important trends are presented as well

for further exploration.
6.1 INTRODUCTION

Since Jack Kilby’s invention of the first integrated circuit (IC) in 1958, there

have been unprecedented technological advances. Intel co-founder Gordon E.

Moore in 1965 predicted an important miniaturization trend for the semicon-

ductor industry, known as Moore’s Law, which says that the number of available

transistors being economically packed into a single IC grows exponentially, dou-

bling approximately every two years. This trend has continued for more than

four decades, and perhaps will continue for another decade or even longer.
At this time of 2008, the number of transistors in a single IC can be as many
299

300 CHAPTER 6 Logic synthesis in a nutshell
as several billion. This continual increase in design complexity under stringent

time-to-market constraints is the primary driving force for changes in design
tools and methodologies. To manage the ever-increasing complexity, people

seek to maximally automate the design process and deploy techniques such as

abstraction and hierarchy. Divide-and-conquer approaches are typical in the

electronic design automation (EDA) flow and lead to different abstraction

levels, such as the behavior level, register-transfer level (RTL), gate level,

transistor level, and layout level from abstract to concrete.

Logic synthesis is the process that takes place in the transition from the

register-transfer level to the transistor level. It is a highly automated procedure
bridging the gap between high-level synthesis and physical design automation.

Given a digital design at the register-transfer level, logic synthesis transforms it

into a gate-level or transistor-level implementation. The highly engineered process

explores different ways of implementing a logic function optimal with respect to

some desired design constraints. The physical positions and interconnections of

the gate layouts are then further determined at the time of physical design.

The main mathematical foundation of logic synthesis is the intersection of

logic and algebra. The “algebra of logic” created by George Boole in 1847, a.k.
a. Boolean algebra, is at the core of logic synthesis. (In our discussion we focus

on two-element Boolean algebra [Brown 2003].) One of the most influential

works connecting Boolean algebra and circuit design is Claude E. Shannon’s

M.S. thesis, A Symbolic Analysis of Relay and Switching Circuits, completed

at the Massachusetts Institute of Technology in 1937. He showed that the design

and analysis of switching circuits can be formalized using Boolean algebra, and

that switching circuits can be used to solve Boolean algebra problems. Modern

electronic systems based on digital (in contrast to analog) and two-valued (in
contrast to multi-valued) principles can be more or less attributed to Shannon.

The minimization theory of Boolean formulas in the two-level sum-of-
products (SOP) form was established by Willard V. Quine in the 1950s. The

minimization of SOP formulas found its wide application in IC design in

the 1970s when programmable logic arrays (PLAs) were a popular design

style for control logic implementation. It was the earliest stage of logic design

minimization. When multilevel logic implementation became viable in

the 1980s, the minimization theory and practice were broadened to the multi-
level case.

Switching circuits in their original telephony application were strictly combi-

national, containing no memory elements. Purely combinational circuits how-

ever are not of great utility. For pervasive use in computation a combinational

circuit needs to be augmented by memory elements that retain some of the

state of a circuit. Such a circuit is sequential and implements a finite state
machine (FSM). FSMs are closely related to finite automata, introduced in the

theory of computation. Finite automata and finite state machines as well as their
state minimization were extensively studied in the 1950s. Even though FSMs

have limited computation power, any realistic electronic system as a whole

6.1 Introduction 301
can be seen as a large FSM because, after all, no system can have infinite mem-

ory resources. FSM state encoding for the two-level and multilevel logic imple-
mentations was studied extensively in the 1980s.

In addition to two-level and multilevel logic minimization, important algorith-

mic developments in logic synthesis in the 1980s include retiming of synchronous

sequential circuits, algorithmic technology mapping, reduced ordered binary

decision diagrams, and symbolic sequential equivalence checking using character-

istic functions, just to name a few. Major logic synthesis tools of this period

include, for example, ESPRESSO [Rudell 1987] and later MIS [Brayton 1987],

developed at the University of California at Berkeley. They soon turned out to be
the core engines of commercial logic synthesis tools.

In the 1990s, the subject of logic synthesis was much diversified in response

to various IC design issues: power consumption, interconnect delay, testability,

new implementation styles such as field programmable gate array (FPGA),

etc. Important algorithmic breakthroughs over this period include, for instance,

sequential circuit synthesis with retiming and resynthesis, don’t care computa-

tion, image computation, timing analysis, Boolean reasoning techniques, and

so on. Major academic software developed in this period include, e.g., SIS
[Sentovich 1992], the descendant of MIS.

In the 2000s, the directions of logic synthesis are driven by design chal-

lenges such as scalability, verifiability, design closure issues between logic syn-

thesis and physical design, manufacture process variations, etc. Important

developments include, for instance, effective satisfiability solving procedures,

scalable logic synthesis and verification algorithms, statistical static timing anal-

ysis, statistical optimization techniques, and so on. Major academic software

developed in this period include, e.g., MVSIS [Gao 2002] and the ABC package
[ABC 2005], with first release in 2005.

The advances of logic synthesis have in turn led to blossoming of EDA com-

panies and the growth of the EDA industry. One of the first applications of logic

optimization in a commercial use was to remap a netlist to a different standard

cell library (in the first product, remapper, developed by Synopsys, an EDA

company founded in 1986). It allowed an IC designer migrate a design from

one library to another. Logic optimization could be used to optimize a gate-level

netlist and map it into a target library. While logic optimization was finding its
first commercial use for remapping, designers at major corporations, such

as IBM, had already been demonstrating the viability of a top-down design meth-

odology based on logic synthesis. At these corporations, internal simulation

languages were coupled with synthesis systems that translated the simulation

model into a gate-level netlist. Designers at IBM had demonstrated the utility

of this synthesis-based design methodology on thousands of real industrial ICs.

Entering a simulation model expressed using a hardware description lan-
guage (HDL) makes logic synthesis and optimization move from a minor tool
in a gate-level schematic based design methodology to the cornerstone of a

302 CHAPTER 6 Logic synthesis in a nutshell
highly productive IC design methodology. Commercial logic synthesis tools

evolve and continue to incorporate developments addressing new design
challenges.

The scope of logic synthesis can be identified as follows. An IC may

consist of digital and analog components; logic synthesis is concerned with

the digital part. For a digital system with sequential behavior, its state transition

can be implemented in a synchronous or an asynchronous way depending on

the existence of synchronizing clock signals. (Note that even a combinational

circuit can be considered as a single-state sequential system.) Most logic synthe-

sis algorithms focus on the synchronous implementation, and a few on the asyn-
chronous one.

A digital system can often be divided into two portions: datapath and control

logic. The former is concerned with data computation and storage, and often

consists of arithmetic logic units, buses, registers/register files, etc.; the latter

is concerned with the control of these data processing units. Unlike control

logic, datapath circuits are often composed of regular structures. They are typi-

cally laid out manually by IC designers with full custom design to ensure that

design constraints are satisfied, especially for high performance applications.
Hence datapath design involves less logic synthesis efforts. In contrast, control

logic is typically designed using logic synthesis. As the strengths of logic syn-

thesis are its capabilities in logic minimization, it simplifies control logic. Conse-

quently logic synthesis is particularly good for control-dominating applications,

such as protocol processing, but not for arithmetic-intensive applications, such

as signal processing.

Aside from the design issues related to circuit components, market-oriented

decisions influence the design style chosen in implementing a product. The
amount of design automation and logic synthesis efforts depends heavily on

such decisions. Design styles based on full custom design, standard cells,

and FPGAs represent typical trade-offs. In full custom design, logic synthesis is

of limited use, mainly only in synthesizing performance non-critical controllers.

For standard cell and FPGA based designs, a great portion of a design may

be processed through logic synthesis. It is not surprising that logic synthesis

is widely applied in application specific ICs (ASICs) and FPGA-based

designs.
6.2 DATA STRUCTURES FOR BOOLEAN
REPRESENTATION AND REASONING
The basic mathematical objects to be dealt with in this chapter are Boolean

functions. How to compactly represent Boolean functions (the subject of logic

minimization) and how to efficiently solve Boolean constraints (the subject of

6.2 Data structures for Boolean representation and reasoning 303
Boolean reasoning) are closely related questions that play central roles in logic

synthesis. There are several data structures for Boolean function representation
and manipulation. For Boolean representation, we introduce some of the most

commonly used ones, in particular, sum-of-products (SOP), product-of-sums
(POS), binary decision diagrams (BDDs), and-inverter graphs (AIGs), and

Boolean networks, among many others. For Boolean reasoning, we discuss

how BDD, SAT, and AIG packages can serve as the core engines for Boolean func-

tion manipulation and for automatic reasoning of Boolean function properties.

The efficiency of a data structure ismainly determined by its succinctness in repre-

senting Boolean functions and its capability of supporting Boolean manipulation.
Each data structure has its own strengths andweaknesses; there is not a single data

structure that is universally good for all applications. Therefore, conversion

among different data types is a necessity in logic synthesis, where various circuit

transformation and verification techniques are applied.
6.2.1 Quantifier-free and quantified
Boolean formulas
We introduce (quantifier-free) Boolean formulas for Boolean function represen-

tation and quantified Boolean formulas (QBFs) for Boolean reasoning.

A Boolean variable is a variable that takes on binary values B ¼ {false,

true}, or {0, 1}, under a truth assignment; a literal is a Boolean variable or its

complement. In the n-dimensional Boolean space or Boolean n-space B
n,

an atomic element (or vertex) a 2 B
n is called a minterm, which corresponds

to a truth assignment on a vector of n Boolean variables.

An n-ary completely specified Boolean function f : Bn ! B maps every
possible truth assignment on the n input variables to either true or false. Let

symbol “–”, “X”, or “2” denote the don’t care value. We augment B to Bþ ¼
B [{–} and define an incompletely specified Boolean function f : Bn! Bþ,
which maps every possible truth assignment on the n input variables to true,

false, or don’t care. For some a 2 B
n, f (a) ¼ – means the function value of f

under the truth assignment a does not matter. That is, a is a don’t care con-

dition for f. Unless otherwise stated, we shall assume that a Boolean function

is completely specified.
The mapping induced by a set of Boolean functions can be described by a

functional vector or a multiple-output function f, which combines m > 1

Boolean functions into a mapping f : Bn ! B
m if f is completely specified, or

a mapping f : Bn ! Bþ
m if f is incompletely specified.

For a completely specified function f, we define its onset f on¼ {a 2 B
n j f(a)¼

1} and offset f off¼ {a 2 B
n j f(a)¼ 0}. For an incompletely specified function f, in

addition to the onset and offset, we have the dcset f dc ¼ {a 2 B
n j f (a) ¼ –}.

Although the onset, offset, and dcset are named sets rather than functions,
we will see later that sets and functions can be unified through the use of

the so-called characteristic functions.

x1

x2

x3

100

010

101

110

000

001

011 111
onset minterm

offset minterm

dcset minterm

0 1

11

FIGURE 6.1

Boolean 3-space and a 3-ary Boolean function.

304 CHAPTER 6 Logic synthesis in a nutshell
Example 6.1 Th
e Boolean 3-space spanned by the variable vector (x1, x2, x3) can be viewed as a com-

binatorial cube as shown in Figure 6.1, where the labeled vertices represent the min-

terms and two minterms are connected by an edge if their Hamming distance is one

(that is, their binary codes differ in one position). The onset f on ¼ {000, 011, 100, 101,

110}, offset f off ¼ {001, 111}, and dcset f dc ¼ {010} of some function f are embedded

in the combinatorial cube.

A completely specified Boolean function f is a tautology, written as f� 1 or f, 1,

if its onset equals the universal set, i.e., the entire Boolean space. In other words,

the output of f equals 1 under every truth assignment on the input variables.

Any Boolean function can be expressed in a Boolean formula. Table 6.1

shows the building elements (excluding the last two symbols, 9 and 8) of a Bool-
ean formula. Symbols :, ^, _,), , are Boolean connectives. A Boolean for-
mula j can be built recursively through the following formation rules:

’ ::¼ 0 1 Aj j:’1 ’1 ^ ’2j j’1 _ ’2 ’1) ’2j j’1 , ’2j ð6:1Þ
where the symbol “::¼” is read as “can be” and symbol “j” as “or”. That is, a Bool-
ean formula j can be a constant 0, a constant 1, an atomic Boolean variable from a
variable set A, :j1, j1 ^ j2, j1 _ j2, j1) j2, or j1, j2, built from Boolean for-

mulas j1 and j2. To save on parentheses and enhance readability, we assume the

precedence of the Boolean connectives,,), _, ^, : is in an ascending order.

Also we often omit expressing the conjunction symbol ^ in a formula.
Example 6.2 Th
e Boolean formula

x1 _ :x2ð Þð Þ _ :x1ð Þ ^ x3ð Þð Þ ^ x1 ^ :x2ð Þð Þ
can be shortened to

x1 _ :x2ð Þ _ :x1x3ð Þ x1:x2ð Þ

Table 6.1 Symbolic Notation and Meaning

Symbol Symbol Name English Meaning

(left parenthesis for punctuation

) right parenthesis for punctuation

:, 0 complement symbol logical “not”

^, . conjunction symbol logical “and”

_, þ disjunction symbol logical “(inclusive) or”

) implication symbol logical “if . . . , then . . . ”

,, � bi-implication symbol logical “. . . if and only if . . . ”

9 existential quantifier “there exists . . . ”

8 universal quantifier “for all . . . ”

6.2 Data structures for Boolean representation and reasoning 305
Using the associativity of disjunction and conjunction, we can further shorten the formula

to

x1 _ :x2 _ :x1x3ð Þx1:x2
but we can no longer trace a unique sequence of rules used to derive this formula.

A set of Boolean operators is called functionally complete if they are sufficient to
generate any Boolean function. Note that not all of the above Boolean connectives

are necessary to form a set of functionally complete operators. For example, the
sets {:, ^} and {:,)} are functionally complete, whereas {^,)} is not.

Wemay consider a Boolean function as the semantics of someBoolean formulas.

There are different (syntactical) Boolean formulas representing the same (semanti-

cal) Boolean functions. It is this flexibility that makes logic synthesis an art.

Boolean operations over Boolean functions can be defined in terms of set

operations, such as union [, intersection \, and complement over sets. Boolean

function h ¼ f ^ g has onset hon ¼ f
on \ g

on and offset hoff ¼ f
off [g

off; Boolean

function h ¼ f _ g has onset hon ¼ f
on [g

on and offset hoff ¼ f
off \ g

off; Boolean
function h ¼ :f (also denoted as �f or f 0) has onset hon ¼ f

off and offset hoff ¼ f
on.

The dcset of function h can be derived using the fact that the union of the onset,

offset, and dcset is equal to the universal set.

Quantified Boolean formulas (QBFs) generalize (quantifier-free) Boolean

formulas with the additional universal and existential quantifiers: 8 and 9,
respectively. In writing a QBF, we assume that the precedences of the quanti-

fiers are lower than those of the Boolean connectives. In a QBF, variables being

quantified are called bound variables, whereas those not quantified are called
free variables.

306 CHAPTER 6 Logic synthesis in a nutshell
Example 6.3 C
onsider the QBF 8x1, 9x2.f(x1, x2, x3), where f is a Boolean formula. It is read as “For

every (truth assignment of) x1, there exists some (truth assignment of) x2, f (x1, x2, x3).”

In this case, x1 and x2 are bound variables, and x3 is a free variable.

Any QBF can be rewritten as a quantifier-free Boolean formula through quanti-
fier elimination by formula expansion (among other methods), e.g.,

8x:f x; yð Þ ¼ f 0; yð Þ ^ f 1; yð Þ
and
9x:f x; yð Þ ¼ f 0; yð Þ _ f 1; yð Þ
where f is a Boolean formula. Consequently, for any QBF j, there exists an

equivalent quantifier-free Boolean formula that refers only to the free variables

of j. For a QBF of size n with k bound variables, its quantifier-free Boolean for-

mula derived by formula expansion can be of size O (2n � k). QBFs are thus of

the same expressive power as quantifier-free Boolean formulas, but can be

exponentially more succinct.
Example 6.4 Th
e QBF 8x1, 9x2.f(x1, x2, x3) can be rewritten as

8x1� f x1; 0; x3ð Þ _ f x1; 1; x3ð Þð Þ
¼ 9x2�f 0; x2; x3ð Þð Þ ^ 9x2�f 1; x2; x3ð Þð Þ
¼ f 0; 0; x3ð Þ _ f 0; 1; x3ð Þð Þ ^ f 1; 0; x3ð Þ _ f 1; 1; x3ð Þð Þ
Note that 8x1, 9x2.f(x1, x2, x3) differs from and is, in fact, weaker than

9x2, 8x1.f(x1, x2, x3). That is, (9x2, 8x1.f(x1, x2, x3))) (8x1, 9x2.f(x1, x2, x3)).
In contrast, 8x1, 8x2.f(x1, x2, x3) is equivalent to 8x2, 8x1.f(x1, x2, x3), and
similarly 9x1, 9x2.f(x1, x2, x3) is equivalent to 9x2, 9x1.f(x1, x2, x3).

Moreover, it can be verified that the universal quantification 8 commutes

with the conjunction ^, whereas the existential quantification 9 commutes with

the disjunction _. That is, for any QBFs j1 and j2, we have

8x: ’1 ^ ’2ð Þ ¼ 8x:’1 ^ 8x:’2
whereas 9x: ’1 _ ’2ð Þ ¼ 9x:’1 _ 9x:’2
Nonetheless in general 8 does not commute with _, whereas 9 does not com-

mute with ^. That is, in general

8x: ’1 _ ’2ð Þ 6¼ 8x:’1 _ 8x:’2

and
 9x: ’1 ^ ’2ð Þ 6¼ 9x:’1 ^ 9x:’2
On the other hand, for any QBF j, we have
:8x:’ ¼ 9x::’ ð6:2Þ

6.2 Data structures for Boolean representation and reasoning 307
and :9x:’ ¼ 8x::’ ð6:3Þ

Because 8 and 9 can be converted to each other through negation, either quan-

tifier solely is suffcient to represent QBFs.

An important fact about QBFs is that they are equivalent under renaming of

bound variables. For example, 8x.f(x, y) ¼ 8z.f(z, y) and 9x.f(x, y) ¼ 9z.f(z, y).
Renaming bound variables is often necessary if wewant to rewrite a QBF in a differ-

ent way. Being able to identify the scope of a quantifier is crucial for such renaming.
Example 6.5 In
 the QBF

Q1x;Q2y: f1 x; y; zð Þ _ f2 y; zð Þ ^Q3x:f3 x; y; zð Þð Þ
with Qi 2 {8, 9}, quantifier Q1 is applied only to the variable x of f1, quantifier Q2 is applied

to the y variables of all the functions, and quantifier Q3 is applied only to the variable x of

f3. The QBF can be renamed as

Q1a;Q2b: f1 a; b; zð Þ _ :f2 b; zð Þ ^Q3x:f3 x;b; zð Þð Þ
In studying QBFs, it is convenient to introduce a uniform representation, the

so-called prenex normal form, where the quantifiers of a QBF are moved to

the left leaving a quantifier-free Boolean formula on the right. That is,

Q1x1;Q2x2; . . . ;Qnxn�f x1; x2; . . . ; xnð Þ
where Qi 2 {8, 9} and f is a quantifier-free Boolean formula. Such movement is

always possible by Equations (6.2) and (6.3) as well as the following equalities:

For QBFs j1 and j2,

’1 e Qx:’2ð Þ ¼ Qx: ’1 e ’2ð Þ if x is not a free variable in ’1 ð6:4Þ
where Q 2 {8, 9} and e 2 {^, _},

’1) 8x:’2ð Þ ¼ 8x: ’1) ’2ð Þ if x is not a free variable in ’1 ð6:5Þ
’1) 9x:’2ð Þ ¼ 9x: ’1) ’2ð Þ if x is not a free variable in ’1 ð6:6Þ
8x:’1ð Þ) ’2ð Þ ¼ 9x: ’1) ’2ð Þ if x is not a free variable in ’2: and ð6:7Þ
9x:’1ð Þ) ’2ð Þ ¼ 8x: ’1) ’2ð Þ if x is not a free variable in ’2 ð6:8Þ

With the renaming of bound variables, we know that the above conditions, x

not a free variable in ji, can always be satisfied. Thereby any QBF can be con-

verted into an equivalent formula in prenex normal form.

Prenex normal form is particularly suitable for the study of computational
complexity. The number of alternations between existential and universal quanti-

fiers in a QBF in prenex normal form directly reflects the difficulty in solving the

308 CHAPTER 6 Logic synthesis in a nutshell
formula. (In solving aQBFj,we shall assume that all variables ofj arequantified, i.e.,

no free variables inj.) For instance, there are three alternations of quantifiers in the
QBF8x1,8x2,9x3,8x4,9x5.f(x1, . . . , x5). Themore alternations of quantifiers are in a

QBF inprenexnormal form, thehigher the computational complexity is in solving it.

The levels of difficulties induce the polynomial hierarchy, a hierarchy of com-

plexity classes, in complexity theory (see, e.g., [Papadimitriou1993] for comprehen-

sive introduction). The problem of solving QBFs is known as quantified
satisfiability (QSAT); in particular, the problem is known asQSATi forQBFs in pre-

nex normal form with i alternations of quantifiers. The entire polynomial hierarchy

is containedby thePSPACEcomplexity class; theproblemQSAT (without anapriori
alternation bound i) is among the hardest in PSAPCE, i.e., PSPACE-complete. A par-

ticularly interesting special case is QSAT0 with all variables quantified existentially.

It is known as the Boolean satisfiability (SAT) problem, which is NP-complete

[Garey 1979]. Solving QBFs is much harder than solving the satisfiability of Boolean

formulas.

In the above discussion of QBF solving, we assumed all variables are not free.

For a QBF j with free variables, we say that it is satisfiable (respectively valid)
if it is true under some (respectively every) truth assignment on the set of free
variables. Hence asking about the satisfiability of a Boolean formula f(x) is the
same as asking about the validity/satisfiability of the QBF 9x.f(x); asking about

the validity of a Boolean formula f(x) is the same as asking about the validity/

satisfiability of the QBF 8x.f(x). Note that the validity and satisfiability of a for-

mula are the same if there are no free variables.

Although QBFs are not directly useful for circuit representation, many

computational problems in logic synthesis and verification (such as image com-

putation, don’t care computation, Boolean resubstitution, combinational equiv-
alence checking, etc.) can be posed as QBF solving. Once a computational task

is written in a QBF, its detailed algorithmic solution is almost apparent and can

be derived using Boolean reasoning engines.
6.2.2 Boolean function manipulation
In addition to Boolean AND, OR, NOT operations, cofactor is an elementary

Boolean operation. For a function f(x1, . . . , xi, . . . , xn), the positive cofactor and
negative cofactor of f with respect to xi are f(x1, . . . , 1, . . . , xn), denoted as fxi
or fjxi ¼ 1, and f(x1, . . . , 0, . . . , xn), denoted as f:xi or fjxi ¼ 0, respectively.We can also

cofactor a Boolean functionwith respect to a cube, namely the conjunction of a set

of literals, by iteratively cofactoring the function with each literal in the cube.
Example 6.6 C
ofactoring the Boolean function f ¼ x1x2:x3 _ x4:x5x6 with respect to the cube c ¼
x1x2:x5 yields function fc ¼ :x3 _ x4x6.

Universal and existential quantifications can be expressed in terms of cofactor,
with

8xi�f ¼ fxi ^ f:xi ð6:9Þ

6.2 Data structures for Boolean representation and reasoning 309
and

9xi�f ¼ fxi _ f:xi ð6:10Þ
Moreover, the Boolean difference @f

@xi
of fwith respect to variable xi is defined as

@f

@xi
¼ : fxi � f:xið Þ ¼ fxi� f:xi ð6:11Þ

where � denotes an exclusive-or (XOR) operator. Using the Boolean difference

operation, we can tell whether a Boolean function functionally depends on a

variable. If @f
@xi

equals constant 0, then the valuation of f does not depend on

xi, that is, xi is a redundant variable for f. We call that xi is a functional
support variable of f if xi is not a redundant variable.

By Shannon expansion, every Boolean function f can be decomposed

with respect to some variable xi as

f ¼ xifxi _ :xif:xi ð6:12Þ

Note that the variable xi needs not be a functional support variable of f.
6.2.3 Boolean function representation
Below we discuss different ways of representing Boolean functions.

6.2.3.1 Truth table

The mapping of a Boolean function can be exhaustively enumerated with a truth
table, where every truth assignment has a corresponding function value listed.
Example 6.7 Fi
gure 6.2 shows the truth table of the majority function f(x1, x2, x3), which valuates to

true if and only if at least two of the variables {x1, x2, x3} valuate to true.

Truth tables are canonical representations of Boolean functions. That is, two

Boolean functions are equivalent if and only if they have the same truth table.
x1 x2 x3 f

00 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0

0

1

0

1

1

1

FIGURE 6.2

Truth table of the 3-ary majority function.

310 CHAPTER 6 Logic synthesis in a nutshell
Canonicity is an important property that may be useful in many applications of

logic synthesis and verification.
For practical implementation, a truth table is effective in representing func-

tions with a few input variables (often no more than 5 or 6 variables for modern

computers having a word size 32 or 64 bits). By storing a truth table as a com-

puter word, basic Boolean operations over two small functions can be done in

constant time by parallel bitwise operation over their truth tables. Truth tables

however are impractical to represent functions with many input variables.

6.2.3.2 SOP
Sum-of-products (SOP), or disjunctive normal form (DNF) as it is called in

computer science, is a special form of Boolean formulas consisting of disjunc-

tions (sums) of conjunctions of literals (product terms or cubes). It is a flat

structure corresponding to a two-level circuit representation (the first level of

AND gates and the second level of an OR gate). In two-level logic minimization,

the set of product terms (i.e., cubes) of an SOP representation of a Boolean

function is called a cover of the Boolean function. A Boolean function may have

many different covers, and a cover uniquely determines a Boolean function.
Example 6.8 Th
e expression f ¼ ab:c þ a:bc þ :abc þ :a:b:c is in SOP form. The set {ab:c,
a:bc, :abc, :a:b:c} of cubes forms a cover of function f.

In our discussion, we often do not distinguish a cover and its represented

function.

Every Boolean formula can be rewritten in an SOP representation. Unlike the

truth table representation, the SOP representation is not canonical. In fact, how

to express a Boolean function in the most concise SOP-form is intractable (in
fact, NP-complete), and is termed two-level logic minimization.

Given SOP as the underlying Boolean representation, we study its usefulness

for Boolean manipulation. Consider the conjunction of two cubes. It is comput-

able in time linear in the number of literals because, having defined cubes as

sets of literals, we compute the conjunction of cubes c and d, denoted q ¼
c \ d, by actually taking the union of the literal sets in c and d. However if

q ¼ c \ d computed in this fashion contains both a literal l and its complement

:l, then the intersection is empty. Similarly the conjunction of two covers can
be obtained by taking the conjunction of each pair of the cubes in the covers.

Therefore, the AND operation of two SOP formulas is of quadratic time com-

plexity. On the other hand, the OR operation is of constant time complexity

since the disjunction of two SOP formulas is readily in SOP form. The comple-

ment operation is of exponential time complexity in the worst case.
Example 6.9 C
omplementing the function

f ¼ x1 � y1 þ x2 � y2 þ . . .þ xn � yn
will result in 2n product terms in the SOP representation.

6.2 Data structures for Boolean representation and reasoning 311
In addition to the above basic Boolean operations, SAT and TAUTOLOGY check-

ings play a central role in Boolean reasoning. Checking whether an SOP formula
is satisfiable is of constant time complexity since any (irredundant) SOP formula

other than constant 0 must be satisfiable. In contrast, checking whether an SOP

formula is tautological is intractable, in fact, coNP-complete. When compared

with other data structures to be introduced, SOP is not commonly used as the

underlying representation in Boolean reasoning engines, but mainly used in

two-level and multilevel logic minimization.

For the purposes of minimizing two-level logic functions, efficient proce-

dures for performing Boolean operations on SOP representations or covers are
desirable. A package for performing various Boolean operations such as con-

junction, disjunction, and complementation is available as part of the ESPRESSO

program [Rudell 1987].

6.2.3.3 POS
Product-of-sums (POS), or conjunctive normal form (CNF) as it is called in

computer science, is a special form of Boolean formulas consisting of conjunc-

tions (products) of disjunctions of literals (clauses). It is a flat structure
corresponding to a two-level circuit representation (the first level of OR gates

and the second level of an AND gate).
Example 6.10 Th
e formula (a þ b þ :c)(a þ :b þ c)(:a þ b þ c)(:a þ :b þ :c) is in POS form.

Every Boolean formula has an equivalent formula in POS form. Even though POS
seems just the dual of SOP, it is not as commonly used in circuit design as SOP partly

due to the characteristics of CMOS circuits, where NMOS is preferable to PMOS.

Nevertheless it is widely used in Boolean reasoning. Satisfiability (SAT) solving over

CNF formulas is one of the most important problems in computer science. In fact,

every NP-complete problem can be reformulated in polynomial time as a SAT

problem.

Given POS as the underlying data structure, we study its usefulness for Boolean

function manipulation. For the AND operation, it is of constant time complexity
since the conjunction of two POS formulas is readily in POS. For the OR operation,

it is of quadratic time complexity since in theworst case the disjunctionof twoPOS

formulas must be converted to a POS formula by the distributive law.
Example 6.11 G
iven POS formulas ’1 ¼ (a)�(b) and ’2 ¼ (c)�(d), their disjunction ’1 þ ’2 equals (a þ c)�
(a þ d)�(b þ c)�(b þ d).

On the other hand, the complement operation is of exponential time complex-

ity since in the worst case a POS formula may need to be complemented with

De Morgan’s Law followed by the distributive law.

312 CHAPTER 6 Logic synthesis in a nutshell
Example 6.12 C
omplementing the 2n-input Achilles heel function

f ¼ x1 þ y1ð Þ � x2 þ y2ð Þ� � � xn þ ynð Þ
will result in 2n clauses in the POS representation.

As for the SAT and TAUTOLOGY checkings of POS formulas, the former is NP-

complete, and the latter is of constant time complexity because any (irredun-

dant) POS formula other than constant 1 cannot be a tautology. The POS repre-

sentation is commonly used as the underlying representation in Boolean

reasoning engines, called SAT solvers.

6.2.3.4 BDD
Binary decision diagrams (BDDs) were first proposed by Lee [Lee 1959] and

further developed by Akers [Akers 1978]. In their original form, BDDs are not

canonical in representing Boolean functions. To canonicalize the representa-

tion, Bryant [Bryant 1986, 1992] introduced restrictions on BDD variable order-

ing and proposed several reduction rules, leading to the well-known reduced
ordered BDDs (ROBDDs). Among various types of decision diagrams, ROBDDs
are the most widely used, and will be our focus.

Consider using an n-level binary tree to represent an arbitrary n-input Boolean

function f(x1, . . . , xn). The binary tree, called a BDD, contains two types of nodes.

A terminal node, or leaf, u has as an attribute a value value(u) 2 {0, 1}. A non-
terminal node u has as attributes an argument level-index index(u) 2 {1, � � � , n}
and two children: the 0-child, denoted else(u) 2 V , and the 1-child, denoted then

(u)2V. If index(u)¼ i, thenxi is called thedecisionvariable for nodeu. Every node
u in a BDD corresponds to a Boolean function f[u] defined recursively as follows.
1. For a terminal node u,

(a) If value(u) ¼ 1, then f [u] ¼ 1.

(b) If value(u) ¼ 0, then f [u] ¼ 0.
2. For a non-terminal node u with index(u) ¼ i,

f v½ � x1; . . . ; xnð Þ ¼ :xi � f else vð Þ½ � x1; . . . xnð Þ þ xi � f then vð Þ½ � x1; . . . ; xnð Þ

Recall that, in Shannon expansion, a Boolean function f can be written as f ¼ xi
fxi þ :xi f:xi . Suppose a BDD node representing some function f is controlled

by variable xi. Then its 0-child and 1-child represent functions f:xi and fxi,

respectively. Accordingly a BDD in effect represents a recursive Shannon expan-

sion. For a complete binary tree, it is easily seen that we can always find some

value assignment to the leaves of a BDD to implement any n-input function f(x1,

. . . , xn) because every truth assignment of variables x1, . . . , xn activates exactly
one path from the root node to a unique leaf with the right function value. Note

that a BDD represents the offset and the onset of a function as disjoint covers,

where each cube in the cover corresponds to a path from the root node to some

terminal node.

1 1 1

x1x1

x2 x2

x3 x3 x3 x3

x2 x3 f

00 0 0

0

0

0 1

0

0 0 0 1 0

1 0 1 0 1 0 1

1 0 1

0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0

0

1

0

1

1

1

FIGURE 6.3

Binary tree representation of the majority function.

6.2 Data structures for Boolean representation and reasoning 313
Example 6.13 Th
e binary tree representation of the majority function is shown in Figure 6.3, where a

circle (square) represents a non-terminal (terminal) node and a dotted (solid) edge

indicates the pointed 0-child (1-child) of its parent node.

Definition 6.1. A BDD is ordered (i.e., an OBDD) if the nodes on every

path from the root node to a terminal node of the BDD follow the same vari-

able ordering.

Definition 6.2. Two OBDDs D1 and D2 are isomorphic if there exists a one-

to-one function � from the nodes of D1 onto the nodes of D2 such that for any

node u if �(u)¼w, then either both u and w are terminal nodes with value(u)¼
value(w), or both u and w are non-terminal nodes with index(u) ¼ index(w),

�(else(u))¼ else(w) and �(then(u))¼ then(w).
Since anOBDDonly contains one root and thechildrenof anynon-terminal nodeare

distinguished, the isomorphicmapping � betweenOBDDsD1 andD2 is constrained

and easily checked for. The root inD1mustmap to the root inD2, the root’s 0-child in

D1 must map to the root’s 0-child inD2, and so on all the way to the terminal nodes.

Testing two OBDDs for isomorphism is thus a simple linear-time check.

Definition 6.3. ([Bryant 1986]). An OBDD D is reduced if it contains no

node u with else(u) ¼ then(u) nor does it contain distinct nodes u and w such

that the subgraphs rooted in u and w are isomorphic.

An reduced OBDD (ROBDD) can be constructed from an OBDD with the fol-

lowing three reduction rules:
1. Two terminal nodes with the same value attribute are merged.
2. Two non-terminal nodes u and u with the same decision variable, the

same 0-child, i.e., else(u) ¼ else(u), and the same 1-child, then(u) ¼
then(u) are merged.

3. A non-terminal node u with else(u) ¼ then(u) is removed, and its incident

edges are redirected to its child node.
Iterating the reduction steps bottom-up on anOBDDuntil no further modification

can be made, we obtain its unique corresponding ROBDD. These rules ensure

314 CHAPTER 6 Logic synthesis in a nutshell
that no two nodes of the ROBDD are structurally (also functionally) isomorphic,

and that the derived ROBDD has fewest nodes under a given variable ordering.
It can be shown that no two nodes of an ROBDD represent the same Boolean func-

tion, and thus two ROBDD of the same Boolean function must be isomorphic.

That is, ROBDDs are a canonical representation of Boolean functions. Every func-

tion has a unique ROBDD for a given variable ordering.

Theorem 6.1 (ROBDD Canonicity [Bryant 1986]). For any Boolean func-

tion f, there is a unique (up to isomorphism) ROBDD denoting f, and any

other OBDD denoting f contains more nodes.

Proof. A sketch of the proof is given using induction on the number of

inputs.
Base case: If f has zero inputs, it can be either the unique 0 or 1 ROBDD.

Induction hypothesis: Any function g with a number of inputs < k has a

unique ROBDD.

Choose a function f with k inputs. Let D and D0 be two ROBDDs for f under

the same ordering. Let xi be the input with the lowest index in the ROBDDs D

and D0. Define the functions f0 and f1 as fxi and f:xi , respectively. Both f0 and f1
have less than k inputs, and by the induction hypothesis these are represented

by unique ROBDDs D0 and D1.
We can have nodes in common between D0 and D1 or have no nodes in com-

mon between D0 and D1. If there are no nodes in common between D0 and D1

in D, and no nodes in common between D0 and D1 in D0, then clearly D and D0

are isomorphic.

Consider the casewhere there is a nodeu that is shared byD0 andD1 inD. There

is a nodeu0 in theD0 ofD
0 that corresponds tou. Ifu0 is also inD1 ofD

0, thenwehave

a correspondence between u in D and u0 in D0. However, there could be another

node u00 in theD1 of u
00 that also corresponds to u. While the existence of this node

implies thatD andD0 are not isomorphic, the existence of u0 andu00 inD0 is a contra-
diction to the statement of the theorem, since the two nodes root isomorphic sub-

graphs corresponding to u. (This would imply that D0 is not reduced.) Therefore,
u00 cannot exist, and D and D0 are isomorphic. ¨
Example 6.14 Fi
gure 6.4, from 6.4a to 6.4c, shows the derivation of the ROBDD from the binary tree of

the majority function.
Example 6.15 C
onsider the OBDD of Figure 6.5a. By the first reduction rule, we canmerge all the terminal

nodes with value 0 and all the terminal nodes with value 1. The functions rooted in the two

nodes with control variable x3 are identical, namely x3. By the second reduction rule, we

can delete one of the identical nodes andmake the nodes that were pointing to the deleted

node (those nodeswhose 0- or 1-child correspond to the deleted node) point instead to the

other node. This does not change the Boolean function corresponding to the OBDD. The

simplified OBDD is shown in Figure 6.5b. In Figure 6.5b there is a node with control variable

x2 whose 0-child and 1-child both point to the same node. This node is redundant because

the function f rooted in the node corresponds to function

(a) (b) (c)

0 1

x3

x1

x2

0 1

x3

x1

x2x2

0 1 0 1

x3 x3

x1

x2 x2

FIGURE 6.5

OBDD and simplified OBDDs.

0 0 0 1 0 1 1 1

x3 x3 x3 x3

x2

x1

x2

x3 x3 x3 x3

x2x2

x1

0 1

x3

x2 x2

x1

0 1

(c)(b)(a)

FIGURE 6.4

From binary tree to ROBDD.

6.2 Data structures for Boolean representation and reasoning 315
f ¼ x2 � x3 þ :x2 � x3 ¼ x3

Thus, by the third reduction rule, all the nodes that point to f can be made to point to its

0- or 1-child without changing the Boolean function corresponding to the OBDD as illu-

strated in Figure 6.5c.
Example 6.16 Fi
gure 6.6 shows a reduction example using a labeling technique for the ROBDD taken

from [Bryant 1986]. We first assign the 0 and 1 terminal nodes a and b labels, respectively,

in Figure 6.6a. Next, the right nodewith control variable x3 is assigned label c. Upon encoun-

tering the other nodewith nodewith control variable x3, we find that the second reduction rule

is satisfied and assign this node the label c as well. Proceeding upward we assign the label c

to the right nodewith control variable x2 since the third reduction rule is satisfied for this node.

(The 0-child and the 1-child of this node have the same label.) The left node with control

variable x2 is assigned label d, and the root node is assigned the label e. Note that the nodes

are labeled in such a way that each label indicates a unique (sub-)ROBDD. Sorting and

deleting redundant nodes results in the ROBDD of Figure 6.6b.

0 1

(a) (b)

x3

x2

x1

0 10a

c c

cd

e

b a b1

x3 x3

x1

x2 x2

FIGURE 6.6

Reduction example.

10 0 10 1

(a) (b) (c)

x3

xn xn

x3

x1 x1

x1

x2 x2

x2 x2

FIGURE 6.7

ROBDD examples: (a) ROBDD of function f ¼ x1 ^ x2. (b) ROBDD of function f ¼ x1 _ x2.

(c) ROBDD of the n-ary odd parity function.

316 CHAPTER 6 Logic synthesis in a nutshell
Example 6.17 To
 see that ROBDDs represent the offset and the onset of a function as disjoint

covers, consider the examples of Figure 6.7. The ROBDD in (a) represents the function

f ¼ x1 ^ x2. There are exactly two paths leading to the 0 terminal node. If x1 is a 0, then

the function represented by the ROBDD evaluates to a 0 since the 0-child of the node

with index x1 is the 0 terminal node. If x1 is a 1 and x2 is a 0, the function evaluates to

a 0. Thus, the offset is represented as {:x1, x1:x2}. The two cubes in the cover are dis-

joint. If x1 and x2 are both 1, the function evaluates to a 1. The onset is the singleton

{x1x2}. Note that a cube of these covers corresponds to a single path from the root node

to some terminal node. Similar analysis can be applied for the ROBDDs in (b) and (c).

In representing a Boolean function, different variable orderings may result in

ROBDDs with very different sizes (in terms of the number of nodes).

6.2 Data structures for Boolean representation and reasoning 317
Example 6.18 If
 the variables in the function f ¼ ab þ cd are ordered as index(a) < index(b) < index(c) <

index(d) (a on top and d at bottom), the resulting ROBDD has only 4 non-terminal nodes.

However, if the order index(a) < index(c) < index(b) < index(d) is chosen, there are 7

non-terminal nodes.

Due to the sensitivity of ROBDD sizes to the chosen variable ordering, finding a

suitable ordering becomes an important problem to obtain a reasonably sized

ROBDD representing a given logic function. Finding the best variable ordering

that minimizes the ROBDD size is coNP-complete [Bryant 1986]. However,

there are good heuristics. For example, practical experience suggests that sym-

metric and/or correlated variables should be ordered close to each other. Other

heuristics attempt to generate an ordering such that the structure of the ROBDD
under this ordering mimics the given circuit structure.

It is not surprising that there exists a family of Boolean functions whose BDD

sizes are exponential in their formula sizes under all BDD variable orderings. For

instance, it has been shown that ROBDDs of certain functions, such as integer

multipliers, have exponential sizes irrespective of the ordering of variables [Bry-

ant 1991]. Fortunately for many practical Boolean functions, there are variable

orderings resulting in compact BDDs. This phenomenon can be explained intu-

itively by the fact that a BDD with n nodes may contain up to 2n paths, which
correspond to all possible truth assignments. ROBDD representations can be

considerably more compact than SOP and POS representations.
Example 6.19 Th
e odd parity function of Figure 6.7c is an example of function which requires 2n – 1

nodes in an ROBDD representation but 2n–1 product terms in a minimum SOP

representation.

We examine how well ROBDDs support Boolean reasoning. Complementing

the function of an ROBDD can be done in constant time by simply interchanging
the 0 and 1 terminal nodes.

In cofactoring an ROBDD with respect to a literal xi (respectively : xi), the

variable xi is effectively set to 1 (respectively 0) in the ROBDD. This is accom-

plished by determining all the nodes whose 0- or 1-child corresponds to any

node u with index(u) ¼ i, and replacing their 0- or 1-child by then(u) (respec-
tively else(u)).
Example 6.20 Fi
gure 6.8 illustrates a cofactor example, where the given ROBDD of (a) has been cofac-

tored with respect to x3 yielding the ROBDD of (b). Similarly, an ROBDD can be cofac-

tored with respect to :xi by using else(u) to replace all nodes u with index(u) ¼ i.

Binary Boolean operations, such as AND, OR, XOR, and so on, over two

ROBDDs (under the same variable ordering) can be realized using the recursive
BDDAPPLY operation. In the generic BDDAPPLY operation, ROBDDs D1 and D2 are

combined as D1 hopi D2 where hopi is a Boolean function of two arguments.

(a) (b)

0 1

x1

0 1

x3

x1

x2 x2

FIGURE 6.8

Cofactor example.

318 CHAPTER 6 Logic synthesis in a nutshell
The result of the BDDAPPLY operation is another ROBDD. The operation can be

customized by replacing hopi with a specific operator, e.g., AND, OR, XOR, etc.

The algorithmproceeds from the roots of the two argument graphs downward,

creating nodes in the resultant graph. It is based on the following recursion

f hopi g ¼ xi � fxi hopi gxið Þ þ :xi � f:xi hopi g:xið Þ
From an ROBDD perspective we have

f v½ �hopig w½ � ¼ xi � f then vð Þ½ �hopig then wð Þ½ �ð Þ þ :xi � f else vð Þ½ �hopig else wð Þ½ �ð Þ ð6:13Þ
where f[u] and g[w] are the Boolean functions rooted in the nodes u and w.

There are several cases to consider.
1. If u and w are terminal nodes, we simply generate a terminal node u with

value(u) ¼ value(u) hopi value(w).

2. Else, if index(u) ¼ index(w) ¼ i, we follow Equation (6.13). Create node

u with index(u) ¼ i, and apply the algorithm recursively on else(u) and
else(w) to generate else(u) and on then(u) and then(w) to generate
then(u).

3. If index(u) ¼ i but index(w) > i, we create a node u having index i, and

apply the algorithm recursively on else(u) and w to generate else(u) and

on then(u) and w to generate then(u).

4. If index(u) > i and index(w) ¼ i we create a node u having index i and

apply the algorithm recursively on u and else(w) to generate else(u) and

on u and then(w) to generate then(u).
Implementing the above algorithm directly results in an algorithm of expo-

nential complexity in the number of input variables, since every call in which

one of the arguments is a non-terminal node generates two recursive calls.

Two refinements can be applied to reduce this complexity. Firstly, if the algo-

rithm is applied to two nodes where one is a terminal node, then we can return
the result based on some Boolean identities. For example, we have f _ 1 ¼ 1 and

6.2 Data structures for Boolean representation and reasoning 319
f _ 0 ¼ f for hopi ¼ OR, f ^ 0 ¼ 0 and f ^ 1 ¼ f for hopi ¼ AND and f � 0 ¼ f

and f � 1 ¼ : f for hopi ¼ XOR. Secondly, more importantly the algorithm need
not evaluate a given pair of nodes more than once. We can maintain a hash table

containing entries of the form (u, w, u) indicating that the result of applying the

algorithm to subgraphs with roots v and w was u. Before applying the algorithm

to a pair of nodes we first check whether the table contains an entry for these

two nodes. If so, we can immediately return the result. Otherwise we make the

two recursive calls, and upon returning, add a new entry to the table. This

refinement drops the time complexity to O(jD1j�jD2j), where jD1j and jD2j are
the number of nodes in the two given graphs.
Example 6.21W
e illustrate the BDDAPPLY algorithm with an example taken from [Bryant 1986]. The two

ROBDDs to be operated on by an OR operator are shown in Figure 6.9a and 6.9b. Each

node in the two ROBDDs has been assigned a unique label. This label could correspond

to the labels generated during ROBDD reduction. The labels are required to maintain the

table entries described immediately above.

The OBDD resulting from the OR of the two ROBDDs is shown in Figure 6.9c. First,

we choose the pair of root nodes labeled a1 and b1. We create a node with control

variable x1 and recursively apply the algorithm to the node pairs a3, b1 and a2, b1.
Since a3 corresponds to the 1 terminal node, we can immediately return the 1 terminal

node as the result of the OR. We must still compute the OR of the a2, b1 node pair.

This involves the computation of the OR of a2, b3 and a2, b2, and so on. Note that

a3, b3 will appear as a node pair twice during the course of the algorithm.

Reducing the OBDD of Figure 6.9c results in the ROBDD of Figure 6.9d.

On the other hand, SAT and TAUTOLOGY checkings using BDDs are of constant

time complexity due to the canonicity of BDDs. More specifically, SAT (respec-
tively TAUTOLOGY) checking corresponds to checking if the BDD is not equal

to the 0-terminal (respectively 1-terminal) node. Another application of BDDs is
(a) (b) (c) (d)

01

a1

a2

a3 a4

x3

x1

10

x2

x3

x1

b3 b4 10

b1

b2

x2

x3

a4,b3 a3,b3 a4,b411

a1,b1

0

1
a3,b1 a2,b1

a2,b2a2,b3

x2

x1

x3x3

FIGURE 6.9

ROBDD examples for the BDDAPPLY operation: (a) ROBDD of function f1 ¼ :x1 _ :x3.
(b) ROBDD of function f2 ¼ x2 ^ x3. (c) Intermediate OBDD after the BDDAPPLY operation

for f1 _ f2. (d) Final ROBDD of f1 _ f2.

320 CHAPTER 6 Logic synthesis in a nutshell
checking if two functions f1 and f2 are equivalent. The problem is of constant

time complexity given that f1 and f2 are already represented in BDDs under
the same variable ordering. Two BDDs (under the same variable ordering) rep-

resent the same function if and only if they have the same root node.

As all the above Boolean manipulations are efficiently solvable (i.e., in polyno-

mial time), BDDs are a powerful tool in logic synthesis and verification. We are by

nomeans saying that Boolean reasoning is easy because the BDD size of a function

can be exponential in the number of variables. Building the BDD itself risks expo-

nential memory blow-up. Consequently BDD shifts the difficulty from Boolean

reasoning to Boolean representation. Nevertheless once BDDs are built, Boolean
manipulations can be done efficiently. In contrast, CNF-based SAT solving is mem-

ory efficient but risks exponential runtime penalty. Depending on problem

instances and applications, the capability and capacity of state-of-the-art BDD

packages vary. Just to give a rough idea, BDDs with hundreds of Boolean variables

are still manageable in memory but not with thousands of variables. In contrast,

state-of-the-art SAT solvers typically may solve in reasonable time the satisfiability

problem of CNF formulas with up to tens of thousands of variables.

For the implementation of effective BDDpackages, there are several important
techniques. Firstly, complemented edges can be used to compactly represent a

function aswell as its complement [Madre 1988]. A complemented edge indicates

that the function rooted in the node that the edge points to has be complemented.

Introducing complemented edges does not destroy the canonicity of the ROBDD if

the edges to be complemented are selected properly.
Example 6.22 Th
e ROBDDs for a function with and without complemented edges are shown in Figure

6.10. Complemented edges are indicated by dots on them.
x

a

(a)

0

y

a

1

bb

x

(b)

y

a

1

b

FIGURE 6.10

ROBDDs (a) without and (b) with complemented edges.

6.2 Data structures for Boolean representation and reasoning 321
Secondly, a global unique table can be maintained wherein every node repre-

senting a unique function is given a unique label. Before creating a new node
the table is checked to see if the function corresponding to this new node exists

in the table. If not, the node is created, given a new label, and added to the

unique table. If the function already exists, the node in the table corresponding

to this function is returned.

Thirdly, dynamic variable ordering [Rudell 1993] can effectively reduce BDD

sizes. A BDD variable ordering good for some functions may be bad for other

functions. In the manipulation of ROBDD, new functions can be created. As a

result, originally good variable ordering may become inadequate. Dynamic vari-
able ordering provides a way of adjusting variable ordering to keep BDD sizes

small. The description of an efficient implementation of an ROBDD package

can be found in [Rudell 1990].

6.2.3.5 AIG
An and-inverter graph (AIG) is a directed acyclic graph (DAG) G ¼ (V, E)

consisting of vertices V representing AND2 (two-input AND) gates and directed

edges E � V � V connecting gates. Inverters are denoted by markers on edges.
Since operators {^, :} are functionally complete, any Boolean function can be

represented in an AIG. Most Boolean functions can be represented compactly

using AIGs.

The simple AIG data structure allows quick and cheap structural hashing
among AIG nodes. Two AIG nodes with the same inputs under the same comple-

mentation conditions are merged (similar to the second reduction rule of

ROBDD). Unlike ROBDD, however, the AIG representation is not canonical even

when structural hashing is applied.
Example 6.23 Fi
gure 6.11 shows the AIGs of function f ¼ a:cd þ :b:cd without and with structural

hashing in 6.11a and 6.11b, respectively.
(a)

a b c

f

d

(b)

a b c d

f

FIGURE 6.11

AIGs (a) without and (b) with structure hashing.

322 CHAPTER 6 Logic synthesis in a nutshell
From the practical point of view, what make AIGs distinct from circuit netlists

composed of AND2 gates and inverters are threefold:
1. Structural hashing — Structural hashing is applied during AIG construc-

tion; it propagates constants and ensures that each node is structurally

unique. Accordingly AIGs are stored in a compact form.
2. Complemented edges—AIGs represent inverters as attributes on edges and

thus do not require extra memory. Such complemented edges facilitate

fast manipulation of AIGs and, in particular, lead to efficient structural

hashing.

3. Regularity—Asa resultof regularity,memorymanagementofanAIGpackage

can be done by a simple customized memory manager which uses fixed

amount of memory for each node (thanks to the fixed number of inputs

of each node). By allocating memory for nodes in a topological order, we
can optimize AIG traversal, which is repeatedly performed in many logic

synthesis algorithms, in the same order. Experience suggests that many

AIG-based applications have reduced memory footprint (namely, the

amount of main memory used or referenced during a program’s

execution).
These features make a modern AIG package particularly efficient for Boolean

function representation and reasoning.

We analyze the usefulness of AIGs for Boolean manipulation. The AND opera-

tion has a constant time complexity since the conjunction of two given AIGs can

be done by adding an AIG node. The OR operation is essentially the same as the

ANDoperation except for themarkings on the input andoutput edges of the added

AIG node, and thus is of constant time complexity. The complementation corre-
sponds to marking an edge and is therefore of constant time complexity, too.

SAT and TAUTOLOGY checkings using AIGs are NP-complete and coNP-com-

plete, respectively. When used as a Boolean reasoning engine, an AIG package can

be viewed as a solverperforming satisfiability checkingovercircuits rather thanover

CNF formulas, and is similar to automatic test pattern generation (ATPG).

AIGs can also be used in verification applications, such as equivalence checking

and evenmodel checking. For instance, checking if two given AIGs under compari-

son are functionally equivalent can be reduced to TAUTOLOGY (SAT) checking by
adding an XNOR (XOR) gate, which can be expressed in terms of AND2 and INV

gates, with its two-inputs feeded in by the outputs of the two AIGs. The two AIGs

are equivalent if and only if the output of the XNOR (XOR) gate is tautological (unsa-

tisfiable). Hence the equivalence checking problem is coNP-complete. When it

comes to synthesis, AIGs are used in multilevel logic minimization and technology

mapping. In the academic system ABC [ABC 2005], AIGs are used as a unifying data

structure for both logic synthesis and verification.

A new binary format called AIGER [Biere 2007] was recently proposed to
enable compact representation of AIGs in files and memory. With memory

requirements of about three bytes per AIG node, AIGER has become a standard

6.2 Data structures for Boolean representation and reasoning 323
representation for circuit-based problems in SAT Competitions and Hardware

Model Checking Competitions, organized annually as satellite events of Interna-
tional Conference on Theory and Applications of Satisfiability Testing and

International Conference on Computer Aided Verification, respectively.

6.2.3.6 Boolean network
A (combinational) logic circuit can be represented with a Boolean network, a
directed graph G ¼ (V, E) with nodes V and directed edges E. Every node i 2 V is

associatedwith a logic function fi and a Boolean variable xi, called the output var-
iable of node i, representing the output of function fi. Hence the relation between
variable xi and function fi obeys (xi � fi). Every edge (i, j) 2 E connecting from

node i to node j signifies that variable xi is an input to function fj, and we call that

node i (j) is a fanin (fanout) of node j (i). That is, variable xi syntactically appears
in the Boolean expression of fj as xi or:xi.We say xi is a (structural) support var-
iable of fj . If, in addition, the Boolean difference @f

@xi
is satisfiable, then xi is a func-

tional support variable of fj, as defined previously.

A node iwithout any fanin is aprimary input and its associated logic function
is xi, i.e., identical to its output variable. Moreover, a subset of V is specified as pri-
mary outputs. Among the variables of node outputs, we say those of the primary

inputs are theprimary input variables, those of the primary outputs are thepri-
mary output variables, and others are local (or intermediate) variables.

The sets of fanins and fanouts of node i are denoted as FI(i) and FO(i),

respectively. The transitive fanins TFI(i) and transitive fanouts TFO(i) of a

node i are defined recursively as

TFI ið Þ ¼ k 2 V k ¼ i; or k 2 FI jð Þ for j 2 TFI ið Þj gf
and

TFO ið Þ ¼ k 2 V k ¼ i; or k 2 FO jð Þ for j 2 TFO ið Þj gf
respectively.

A (combinational) Boolean network can be acyclic or cyclic. Any acyclic circuit

must behave combinationally because no internal states can bemaintained and the

output only depends on the current input assignment, rather than on the prior

input assignments; a cyclic circuit, in contrast,maypossibly exhibit combinational
behavior as well [Kautz 1970]. Because the existence of cyclic structures substan-

tially complicates the analysis and optimization of logic design, most logic synthe-

sis systems assume that combinational circuits are acyclic. In the sequel we shall

assume that a Boolean network is acyclic. Therefore, TFI(i) \ TFO(i) ¼ {i}.

A node function fi is a local function, in the sense that it is in terms of the

output variables of the immediate fanins of node i. The function of node i can

be alternatively expressed purely in terms of the primary input variables. In this

case, it is called the global function gi of node i. Function gi can be derived
from fi by recursively substituting fj for yj, for j 2 TFI(i), until no further substi-

tution is possible. This substitution process is guaranteed to terminate because

of the assumption of acyclic combinational Boolean networks.

f6 = x3x5

f5 = x1x4+ ¬x1¬x4

f4 = x1+ x2

x4

x1 x2 x3

x5

x6

5

6

1 2 3

4

f1 = x1 f2 = x2 f3 = x3

FIGURE 6.12

Boolean network example.

324 CHAPTER 6 Logic synthesis in a nutshell
Example 6.24 Fi
gure 6.12 shows a Boolean network example, where nodes 1, 2 and 3 are the primary

inputs, and nodes 5 and 6 are the primary outputs. A local function fi is shown in the

corresponding node i. The global function of node i can be obtained by either recursive

composition or quantification. For instance, the global function

g5 ¼ x1 x1 þ x2ð Þ þ :x1: x1 þ x2ð Þ
by recursive composition, or equivalently

g5 ¼ 9x4: x1x4 þ :x1:x4ð Þ x4 � x1 þ x2ð Þð Þ
by quantification.

As for the implementation issue, how to represent the logic function fi of a node i

in a Boolean network is a matter of choice. Our previously mentioned data struc-

tures, such as the truth table, SOP, BDD, AIG, and Boolean network representations,

can be adopted. Compared with AIGs, generic Boolean networks may lack special
structures to be exploited for effective Boolean reasoning. They however are suit-

able for generic circuit representation.
6.2.4 Boolean representation conversion
6.2.4.1 CNF vs. DNF
SOP-to-POS and POS-to-SOP conversions can be achieved by applying double
complements. By applying De Morgan’s Law, an SOP (a POS) formula ’
becomes a POS (an SOP) one ’0 after the first complement. We can then

6.2 Data structures for Boolean representation and reasoning 325
convert the POS (SOP) formula ’0 to an SOP (a POS) one ’00 by the distributive

law. Finally, applying De Morgan’s Law again for the second complement, we
convert the SOP (POS) formula ’00 to a POS (an SOP) one ’000. Note that the con-

versions may suffer from an exponential blow-up in formula sizes due to the

intermediate step of applying the distributive law.
Example 6.25 Th
e 2n-input Achilles heel function (x1 þ y1)(x2 þ y2) � � � (xn þ yn) has 2n product terms in

an SOP representation but has a linear-sized POS representation.

There exist Boolean functions whose SOP- and POS-formula sizes are inevitably

exponential in the number of input variables. For example, the n-input odd parity
function (x1�x2 � � ��xn) has 2n–1 product terms in an SOP representation and is

equally large in a POS representation. As another example, integer multiplication

overn-bitoperands, comparisonof twon-bit operands, andaddition and subtraction

of n-bit operands all have SOP and POS realizations that grow exponentially with n.

An interesting application of Boolean representation conversion is on Boolean

reasoning. Recall that SAT (respectively TAUTOLOGY) checking is trivial for DNF

(respectively CNF) formulas. If we are interested in knowing the satisfiability of a

CNF formula, we may covert it into DNF and then check the satisfiability of the
DNF formula, which is a constant time checking. Similarly we may check the tau-

tology of a DNF formula by converting it into CNF. The hardness of Boolean

reasoning, of course, is shifted to the representation conversion process. Another

application of Boolean representation conversion is on quantifier elimination for

QBFs. Observe that the universal (respectively existential) quantification is easy

for CNF (respectively DNF) formulas. The QBF 8xi.j(x) with j(x) in CNF equals

the induced quantifier-free Boolean formula of removing every appearance of

literals xi and :xi in j(x); similarly the QBF 9xi.j(x) with j(x) in DNF equals
the induced quantifier-free Boolean formula of removing every appearance of lit-

erals xi and :xi in j(x). It is thus of linear time complexity. Therefore given a

QBF, we can convert the formula back and forth between CNF and DNF to elimi-

nate quantifiers. As a consequence, any SOP-POS converter can be used as a

Boolean reasoning engine and QBF solver.
Example 6.26 Th
e QBF

8a: aþ bþ :cð Þ aþ :bþ cð Þ :aþ bþ cð Þ
equals the quantifier-free Boolean formula

bþ :cð Þ :bþ cð Þ bþ cð Þ
The QBF

9a: ab:cþ a:bcþ :abcð Þ
equals the quantifier-free Boolean formula

b:cþ :bcþ bc

(a) (b)

x1 x1 x2 x1 x2 x1 x2 x1 x2 x1 x2 x3

(c) (d) (e) (f)

FIGURE 6.13

(a) AIG of :x1. (b) AIG of (x1 ^ x2). (c) AIG of (x1 _ x2). (d) AIG of (x1) x2). (e) AIG of (x1, x2).

(f) AIG of (x1 ^ :x2) _ (x2) x3).

326 CHAPTER 6 Logic synthesis in a nutshell
6.2.4.2 Boolean formula vs. circuit
A Boolean formula j can be translated into a circuit, e.g., an AIG, in linear time.

The translation can be done by following the inductive construction of j with

the rules of Equation (6.1).
Example 6.27 Fi
gure 6.13a-e show the AIGs of :x1, x1 ^ x2, x1 _ x2, x1) x2, and x1 , x2. They form

the templates of the basic formation rules of Equation (6.1). Given an arbitrary Boolean

formula, its AIG can be built from these templates, e.g., the AIG of (x1 ^ :x2) _ (x2)
x3) is shown in Figure 6.13f.

Any (combinational) circuit, on the other hand, represents some Boolean func-
tion f : Bn! B, which can be specified with a Boolean formula. Recall Example

6.24, which shows how an output function of a circuit can be obtained.

6.2.4.3 BDD vs. Boolean network
A two-input multiplexor is a switch with two data inputs i0, i1, one control

input c, and one output o, with o ¼ i0 if c ¼ 0 and o ¼ i1 if c ¼ 1. Because a

non-terminal node in a BDD can be seen as a two-input multiplexor and BDDs

are universal for functional representation, any Boolean function can be imple-
mented using a circuit whose only constituent gates are two-input multiplexors.

Translating a BDD to a multiplexor-based Boolean network is a straightforward

process by substituting every BDD node with a multiplexor, and can be accom-

plished in time linear in the size of the BDD.

Given a Boolean network, the ROBDD of a primary output function in terms of

the primary input variables can be constructed. A naı̈ve approach is to build an

OBDD representing the global function of the Boolean network and then reduce

it. Rather, a more effectiveway is to traverse the circuit from primary inputs to pri-
mary outputs using a series of Booleanmanipulations over ROBDDs based on node

0 1

a

10

a

b

(c)(b)(a)

1 0

a

FIGURE 6.15

(a) ROBDD for primary input a. (b) ROBDD for :a. (c) ROBDDs for a ^ b.

g

f

e

c

b

a

d

FIGURE 6.14

Multilevel circuit.

6.2 Data structures for Boolean representation and reasoning 327
functions. For a primary input, its ROBDD is a graph with a single non-terminal

node and two terminal nodes. For a functional node, its ROBDD can be con-

structed using a series of complement and/or BDDAPPLYoperations.
Example 6.28 C
onsider the circuit of Figure 6.14. The ROBDD for primary input a is shown in

Figure 6.15a. Similarly, the ROBDD for primary input b will have one node with control

variable b with a 0-child (1-child) corresponding to the 0 (1) terminal node. The ROBDD

for :a is shown in Figure 6.15b. We can create the ROBDD for signal d by performing an

AND operation on the ROBDDs for the primary inputs a and b. This ROBDD is shown in

Figure 6.15c. We can create the ROBDD for signal f by performing an OR operation on

the ROBDD for signal d and the ROBDD for the primary input c.

As an application, ROBDD-based circuit equivalence checking can be achieved

by the conversion from Boolean networks to ROBDDs. Since ROBDDs are a
canonical representation of Boolean functions, in order to check two circuits

C1 and C2 for equivalence, we can use the following method.
1. Choose an ordering for the primary inputs of the circuits.

2. Create ROBDDs for the primary outputs of the two circuits.
3. Check if the ROBDDs are isomorphic. If so, the circuits are equivalent. If

not, the circuits are not equivalent.
In order to check two ROBDDs for equivalence, we can use the canonicity
property of ROBDDs and perform a linear-time graph isomorphism check as

328 CHAPTER 6 Logic synthesis in a nutshell
per Definition 6.2. Notice that any ordering will suffce, as long as the same

ordering is chosen for both circuits. However, the size of the ROBDDs created
is strongly dependent on the ordering chosen.
6.2.5 Isomorphism between sets and
characteristic functions
A very profound application of Boolean functions is the concept of characteristic

functions in representing sets. It is a very important idea leading to a leap in capac-

ity ofmany logic synthesis and verification algorithms. A characteristic function
is a (total) function wA : U! B, where U is a finite set often in the form of Bn for
some n, such that wA(e) ¼ 1 if and only if e 2 A, that is, the onset of wA equals A.

It serves as a predicate indicating the membership property. In other words, the

function wA answers a query, whether an element e 2 U is in A � U. Essentially,

any finite set A�U can be represented with a characteristic function wA. Thereby
set operations (e.g., intersection \, union [, and complement) over sets are in

effect Boolean operations (e.g., conjunction ^, disjunction _, and negation :,
respectively) over characteristic functions. Note that constant functions 0 and 1

are characteristic functions of the empty set � and universal set U, respectively.
Some applications of characteristic functions are given below.

Incompletely Specified Function as Characteristic Function. To repre-

sent an incompletely specified Boolean function I : Bn! {0, 1, –}, three charac-

teristic functions r, f, d can be used to represent its onset, offset and dcset,

respectively. That is, for a minterm m 2 B
n,

r mð Þ ¼ 1 if and only if I mð Þ ¼ 0

f mð Þ ¼ 1 if and only if I mð Þ ¼ 1; and

d mð Þ ¼ 1 if and only if I mð Þ ¼ �
As the three sets form a partition on B

n, i.e., the three sets are pairwise disjoint

and union to B
n, two characteristic functions are suffcient in representing an

incompletely specified function. However, even so three characteristic functions

are often used for the sake of convenience in Boolean manipulation.

Boolean Relation as Characteristic Function. A relation is more general
than a function as it allows one-to-many mappings, which are prohibited in a

function. A Boolean relation can be treated as a set of input-output mapping

pairs, and thus can be represented by a characteristic function.
Example 6.29 G
iven a set of Boolean functions f1(x), . . . , fm(x), they can be converted into a Boolean

relation

R x; yð Þ ¼ ^m
i¼1

yi � fi xð Þð Þ

by introducing a vector of output variables y ¼ (y1, . . . , ym). For truth assignments a 2 B
n

and b 2 B
m on variables x and y, respectively, relation R(a, b) valuates to true if and only

if the ith bit of b equals the value of fi(a) for i ¼ 1, . . . , m. In other words, R(a, b) ¼ 1 if and

only if a and b are consistent assignments under the mapping of functions f1, . . . , fm.

6.2 Data structures for Boolean representation and reasoning 329
Circuit Consistency Condition as Characteristic Function. The consis-

tency condition imposed by a circuit can be converted into a Boolean formula,
in particular, a CNF formula by Tseitin’s procedure [Tseitin 1970], where every

gate of a circuit translates into a set of clauses of fixed sizes and, further, the

CNF formula of a circuit is the conjunction of the clauses of all gates. Therefore

the conversion is done in time linear to the circuit size.
Example 6.30 Th
e CNF formula of the consistency condition imposed by an AND2 gate with inputs a, b

and output c is

a ^ bð Þ , c
¼ a ^ bð Þ) cð Þ c) a ^ bð Þð Þ
¼ :a _ :b _ cð Þ :c _ a ^ bð Þð Þ
¼ :a _ :b _ cð Þ :c _ að Þ :c _ bð Þ

Using the above three clauses for an AND2 gate, we can obtain the CNF formula

:x1 _ x2 _ x4ð Þ :x4 _ x1ð Þ :x4 _ x2ð Þ^
:x2 _ x3 _ x5ð Þ :x5 _ x2ð Þ :x5 _ :x3ð Þ^
x4 _ :x5 _ x6ð Þ :x6 _ :x4ð Þ :x6 _ x5ð Þ^
x6 _ x7ð Þ :x6 _ :x7ð Þ

for the consistency condition imposed by the AIG of Figure 6.16. Note that the first three

clauses correspond to the AIG node of x4, the second three clauses correspond to

the AIG node of x5, the third three clauses correspond to the AIG node of x6, and the

last two clauses correspond to the inversion of x6 for x7. Hence for given an AIG,

the so-constructed CNF formula is of size linear in the number of nodes.
x7

x6

x5x4

x1 x2 x3

FIGURE 6.16

AIG example for CNF conversion.

330 CHAPTER 6 Logic synthesis in a nutshell
Note that the function represented by the so-constructed CNF formula is not

the same as the primary output functions of a given circuit. A circuit and its CNF
formula are equivalent only in the sense that the CNF formula is true under a

truth assignment if and only if the truth assignment is consistent in the circuit.

A circuit implements some Boolean functions whereas such a CNF formula

represents a Boolean relation.

At first glance, Tseitin’s linear-time translation from circuits to CNF formulas

seems contradictory to the exponential cost of the SOP-to-POS conversion

because we may covert in linear time any SOP formula to an AIG and then fur-

ther convert the AIG to a CNF formula by Tseitin’s procedure. This paradox can
be clarified by observing that in Tseitin’s conversion new extra variables are

present in the resultant POS/CNF formula. It differs from the previous SOP-to-

POS conversion where no new variables are created. In fact, a Boolean relation

derived from the new conversion reduces to a Boolean function as derived from

the old one when the intermediate variables (those other than the primary

input and output variables) are existentially quantified out and further a positive

co-factor is performed on the Boolean relation with respect to the primary out-

put variable. The existential quantification and conversion back to a POS for-
mula, however, may result in exponential blow-up in formula sizes.
Example 6.31 Fi
gure 6.17 shows the AIG of function f ¼ x1x2 þ x3x4 þ . . . þ x2n–1x2n. By Tseitin’s

conversion, the CNF formula is of size linear to n due to the allowance of intermediate vari-

ables. Without intermediate variables, the POS representation of fmust have 2n clauses.

Set Manipulation as Boolean Manipulation. By dealing with characteris-

tic functions, we are able to manipulate sets of elements simultaneously rather

than manipulate individual elements separately. For instance, the intersection of
x1 x2 x3 x4 x5 x6 x7 x8 x2n-1 x2n

FIGURE 6.17

AIG of function f ¼ x1x2 þ x3x4 þ . . . þ x2n–1x2n.

6.2 Data structures for Boolean representation and reasoning 331
two sets A and B can be done by performing wA ^ wB instead of examining, for

every element e 2 A, whether e is in B as well. It leads to substantial improve-
ments to many logic synthesis and verification algorithms. Such approaches that

manipulate sets of objects simultaneously are known as (implicit) symbolic
algorithms, in contrast to the traditional (explicit) enumerative algorithms
(which enumerate individual objects separately).
Example 6.32 Le
t set U be the universe {0, 1, 2, 3, 4, 5, 6, 7}, set A � U be {0, 1, 2, 4}, and set B � U

be {2, 3, 4, 6}. Consider the binary encoding with Boolean variables x1, x2, and x3 such

that element 0 is encoded as :x1:x2:x3, 1 as :x1:x2x3, 2 as :x1x2:x3, 3 as :x1x2x3,
4 as x1:x2:x3, 5 as x1:x2x3, 6 as x1x2:x3, and 7 as x1x2x3. Then the characteristic func-

tions of these sets with respect to the binary encoding are

wU ¼ 1
wA ¼ :x1:x2 þ :x1:x3 þ :x2:x3; and
wB ¼ :x1x2 þ x1:x3

It can be checked that formula :wA corresponds to the characteristic function of the set

U \ A, formula wA ^ wB corresponds to that of A \ B, and formula wA _ wB corresponds to

that of A [B.
Example 6.33 Im
age and pre-image computations are key operations in logic synthesis and formal ver-

ification. The image of A � B
n under the functional vector f ¼ (f1, . . . , fm) is the set {q 2

B
m j q ¼ f (p), p 2 A}. The characteristic function of the image is

Imgf Að Þ ¼ 9x : ^
m

i¼1
yi � f i xð Þð Þ ^ wA xð Þ

which refers to the newly introduced y variables taking on the function values. In con-

trast, the pre-image of B � B
m under the functional vector f ¼ {f1, . . . , fm} is the set

{p 2 B
n j q ¼ f (p), q 2 B}. The characteristic function of the pre-image is

PreImgf Bð Þ ¼ 9y : ^
m

i¼1
yi � f i xð Þð Þ ^ wB yð Þ

which refers to the x variables only.
6.2.6 Boolean reasoning engines
Among the introduced data structures, BDD packages and SAT solvers are the

most widely used Boolean reasoning engines. They are extensively used in various

symbolic, or called implicit, algorithms, such as image computation, don’t care

computation, state reachability analysis, and so on. Any Boolean reasoning engine

can be more or less used in developing symbolic algorithms. In the sequel when a

computational task is expressed in terms of a QBF, we should be aware that its

computation is already achievable by Booleanmanipulation using a BDD package.

332 CHAPTER 6 Logic synthesis in a nutshell
Although BDD-based algorithms and symbolic algorithmswere once almost syn-

onymous in the 1990s, recently other data structureswere developed as alternatives
to BDDs. Due to the capacity limit of BDDs,more andmore symbolic algorithms are

based on other data structures. Notably, Boolean reasoning engines using SAT and

AIGs, for instance, are gaining in popularity in hardware synthesis and verification.

Moreover, hybrid Boolean reasoning engines combining complementary data struc-

tures may become important tools. In fact, combinational equivalence checking of

multi-million gate designs has been demonstrated in an industrial setting through

such hybrid solvers combining BDD and AIG [Kuehlmann 1997].
6.3 COMBINATIONAL LOGIC MINIMIZATION

Logic synthesis is typically divided into two phases: technology independent
optimization and technology dependent optimization. The former aims at

simplifying Boolean expressions and logic netlist structures regardless of the tar-

get technology node for manufacturing, whereas the latter aims at optimizing cir-

cuits under the target implementation technology. This divide-and-conquer

separation is often beneficial in orthogonalizing various design concerns. Simpli-

fied Boolean expressions are often good for optimizationwith respect to the target

implementation technology. Also it allows a designer to migrate a design from one

technology node to another without substantial re-optimization. Our study will
begin with the first phase, and then proceed to the second one in Section 6.4.

In technology independent optimization, combinational logic minimization

consists of two-level and multilevel logic minimization. Two-level logic minimi-

zation is a relatively simple and well-studied subject in both theory and practice.

As a multilevel logic netlist can be seen as a network of two-level logic compo-

nents, the results of two-level minimization are in part applicable to multilevel

minimization. Not only optimized two-level SOP representations can be used

as a starting point for multilevel synthesis, but two-level minimization techni-
ques can also be used in minimizing multilevel netlists. Hence we delve into

two-level logic minimization before considering the multilevel counterpart.
6.3.1 Two-level logic minimization
There are a variety of two-level logic implementations. The most common one is
the SOP implementation, where the first level of logic corresponds to AND

gates and the second level to OR gates. NOR-NOR structures, NAND-NAND

structures, AND-XOR structures, and OR-AND structures are also possible.
Example 6.34 Th
e function of Figure 6.18a can be reexpressed in POS form and implemented as the

circuit shown in Figure 6.18c. An SOP implementation can be directly converted into

an equivalent NAND-NAND implementation by replacing all the AND gates and OR gates

by NAND gates. A NAND-NAND implementation of the function of Figure 6.18a is shown

b

a

c

b

a

c

b

a

c

b

a

c

(a) (b)

(c) (d)

FIGURE 6.18

Two-level logic implementations.

6.3 Combinational logic minimization 333
in Figure 6.18b. Similarly, a POS implementation can be directly converted into a

NOR-NOR implementation as shown in Figure 6.18d.

Two-level logic is typically implemented as a programmable logic array
(PLA) [Fleisher 1975] in aNOR-NOR form followed by inverters at the outputs. PLAs

have the advantage of being very structured and are therefore amenable to auto-

mated logic and layout synthesis. Even thoughPLAs areno longer apopular IC imple-

mentation style, they can be an important ingredient in modern system designs

because their regular structures [Mo 2004] provide a solution to alleviate the infa-

mous process variation problem of IC manufacturing in the nanometer regime.

6.3.1.1 PLA implementation vs. SOP minimization

Despite the fact that many regular functions have a minimum two-level logic

representation whose size grows exponentially with the number of inputs to
the function (e.g., parity functions and adders), two-level logic circuits can effi-

ciently implement control logic.

The hardware cost of a PLA implementing some SOP formula is directly reflected

in the formula. The number of literals (respectively product terms) of the formula

corresponds to the number of transistors (respectively product lines) of the PLA.

Therefore, minimizing an SOP expression not only reduces PLA area cost, but also

improves circuit performance due to the reduction in capacitive loads.
Example 6.35 An
 NMOS PLA is shown in Figure 6.19a, whose output marked f implements the logic

function of Figure 6.18. Note that while the input plane and output plane are both

NOR-planes, we have inverters at the outputs. An SOP representation can be directly

mapped to a NOR-NOR PLA with output inverters by complementing each literal in the

input plane. The function f ¼ a � b þ :a � c has been implemented as

: : : :aþ :bð Þ þ : aþ :cð Þð Þð Þ

ba c gf

(a) (b)

a b c f g
0 – 1 1 0
1 1 – 1 1

FIGURE 6.19

(a) Programmable logic array. (b) Multiple-output cover.

334 CHAPTER 6 Logic synthesis in a nutshell
PLAs can implementmultiple-output functions that share product terms across outputs

as shown in Figure 6.19a. The multiple-output cover is represented as shown in

Figure 6.19b. The two outputs share the cube a � b in their onsets. Therefore, in the PLA

of Figure 6.19a the first row from the bottom feeds transistors in both columns in the output

plane. Thenumber of columns in aPLAequals two times thenumber of inputs plus thenum-

ber of outputs, the number of rows equals the number of product terms in the cover, the

number of transistors in the input plane equals the number of “1” or “0” literals in the input

part of the multiple-output cover, and the number of transistors in the output plane equals

the number of 1’s in the output part of the multiple-output cover.

6.3.1.2 Terminology
We define terminology and notation used for two-level logic minimization.

As a notational convention, we write a cube (i.e., a product term) c in a bit-

vector form c ¼ [c1 . . . cn], where ci is “0” if the i
th variable xi appears comple-

mented in c, ci is “1” if variable xi appears uncomplemented in c, and ci is “–” if

variable xi does not appear in c.
Example 6.36 A
 cube c ¼ x1:x2 in the Boolean space spanned by variables x1, x2, x3 can be repre-

sented as [10–].

For multi-output functions, the notion of cubes is slightly generalized. A cube of a

Boolean function fwith n inputs andm outputs is written as c¼ [c1 � � � cnjcnþ1 � � �
cnþm], which consists of the input partwith ci’s for 1	 i	 n and output partwith

ci’s fornþ1	 i	nþm. In the input part, ci is defined the same as before; in the out-

put part, ci is “0,” “1,” and “–” if the input part of c belongs to the offset, onset, and

6.3 Combinational logic minimization 335
dcset, respectively, of the (i – n)th output of f. For single-output functions, we may

not write the (nþ1)st bit of the cube if the function is fully specified.
Aminterm, defined in Section 6.2, corresponds to a cube in which every vari-

able of a Boolean space appears. Minterms and cubes may be used to represent

the values of a set of input variables, e.g., x:yz is shorthand for x ¼ 1, y ¼ 0, and

z ¼ 1. Therefore, there is a natural correspondence between an input assignment

and a vertex in the Boolean n-space. This correspondence may be extended to

cubes where absent variables are assumed to be unassigned. Thus, if a circuit C

has inputsv,w,x, y, and z then applying the cubex:yz toC is shorthand for applying

v¼X,w¼X,x¼1,y¼ 0, and z¼ 1,where “X” is used todenote anunknownvalue.
A cube q contains another cube r if the literals in the input part of cube q are

a subset of the literals in the input part of cube r and the outputs in the output

part of q are a superset of the outputs in the output part of cube r. In bit-vector

notation, the cube [0�|1] of a two-input, single-output function contains the

cube [00|1]. Similarly, the cube [0�|11] of a two-input, two-output function

contains the cube [0�|10]. A cube is said to be contained by a cover if every min-

term contained by the cube is contained by some cube in the cover. For example,

the cover {00��, �1�1} contains the cube [0��1].
If a cube q contains only onset and dcset vertices of a Boolean function f, then q

is called an implicant of f. A prime implicant (or prime) of f is an implicant

which is not contained by any other implicant of f and which is not entirely

contained in the dcset of f. An alternate operational definition, which is crucial

in ESPRESSO, of a prime implicant is as follows. An implicant is prime if no 0- or

1-literal can be “raised” (to include more minterms) to a “�” without resulting in

the implicant intersecting the offset of anycomponent of themultiple-output func-

tion. For instance, a cube [111] of a three-input, single-output functionwould be a
prime cube if each of [11�], [1�1] and [�11] intersected the offset. A literal in a

cube is said to be prime if raising that particular literal to a “�” results in a cube that
intersects the offset. Thus, [110] may not be a prime cube of a function f because

[11�] is an implicant of f, but the first two literals may be prime in the implicant

[110] because [�10] and [1�0] intersect the offset of f. All the literals contained
in a cube have to be prime in order for the cube to be prime.

An essential prime implicant (or essential prime) is a prime implicant

which includes one or more onset vertices which are not included in any other
prime implicant. These vertices are termed essential vertices. An optional
prime implicant is a prime implicant for which all vertices are included in

other prime implicants.

A minimal cover for a function f is generated by selecting all of the essential

prime implicants and a minimal set of optional prime implicants such that all

vertices in the onset of f are included in the cover.
Example 6.37 Fo
r the example in Figure 6.1b, there are three essential prime implicants and no optional

prime implicants. The minimal cover would be f¼ :x3þ :x1x2þ x1:x2.

A relatively essential vertex of a cube q in a cover C is a vertex in the

onset that is contained by q and is not contained in any other cube in C.

336 CHAPTER 6 Logic synthesis in a nutshell
Example 6.38 In
 Figure 6.1b, x1:x2x3 is a relatively essential vertex of the cube x1:x2, while the other

vertex in this cube, x1:x2:x3, is not a relatively essential vertex since it is also contained

in the cube :x3.

A two-input, two-output function can also be represented as a multiple-out-

put cover, with cubes that have input as well as output parts.
Example 6.39 Th
e two-output function F ¼ {11|01, 00|10, 10|11} has two cubes in each of its compo-

nents F1 and F2. If the inputs are a and b, then F1 can be represented as :a:b þ a:b,
and F2 is ab þ a:b. The cube a:b is shared by F1 and F2, because its output part

indicates that it belongs to both their onsets.

In order to keep cover sizes small, it is desirable to ensure some form of

minimality for the cover. An easily satisfiable property is that no cube c of a

cover contains another cube d of the cover. Such a cover is minimal with

respect to single cube containment.
An implicant in a cover is irredundant if it contains an essential or a

relatively essential vertex. Thus, removing the implicant changes the functional-

ity of the cover. Else it is redundant and can be safely removed from the cover.

A cover is prime if each of the implicants in the cover is prime. A cover is
irreundant if each of the implicants is irredundant. The definitions apply to both

completely specified and incompletely specified functions.
6.3.2 SOP minimization
Two-level Boolean minimization is used to find an SOP representation for a Bool-

ean function that is optimum according to a given cost function. The typical

cost functions used are the number of product terms, the number of literals,
or a combination of both.

With any of these cost functions, the problem of two-level minimization con-

tains the subproblem of finding the solution of a minimum covering problem

which has been shown to be NP-complete [Garey 1979]. Nevertheless, sophisti-

cated exact minimizers (e.g., [Dagenais 1986; Rudell 1987) have been developed

whose average-case behavior formost commonly encountered functions is accept-

able. Furthermore, heuristic minimization methods exist (e.g., [Hong 1974;

Brayton 1984]) which have been shown to produce results that are close to the
minimum within reasonable amounts of time, even for large Boolean functions.

Two-level Boolean minimization for a given function consists of two steps:
1. generating the set of prime implicants, and

2. selecting a minimum set of prime implicants to cover all onset minterms.
6.3.2.1 The Quine-McCluskey method
The first algorithmic method proposed for two-level minimization is the
Quine-McCluskey method [McCluskey 1956], which follows the two steps
outlined above.

6.3 Combinational logic minimization 337
Prime Implicant Generation. The set of prime implicants can be generated

by iteratively merging two cubes which differ in exactly one position, where one is
of literal x and the other is of literal :x assuming variable x is the corresponding

variable in the position. For instance, two cubes c1 ¼ [00�1] and c2 ¼ [01�1]
can be merged as [0��1]. This merging process continues until no more merging

is possible. Initially all onset and dcset minterms are the cubes to start with. Upon

termination, a maximal cube (not contained by every other cube) is a prime impli-

cant provided that it is not entirely contained by the dcset.
Example 6.40 C
onsider the completely specified Boolean function shown in Figure 6.20a. It has been

represented as a list of minterms. Each minterm has an associated decimal value

obtained by converting the binary number represented by the minterm into a decimal

number; for instance the value of 0000 is 0 and that of 1100 is 12. The cubes generated

by merging the pairs of cubes are shown in Figure 6.20b and 6.20c. We have five prime

implicants, marked as A, B, C, D, and E, for the function in this example.

Prime Implicant Table.Aprime implicant table is a tablewith rows indexed

by onset minterms and columns indexed by prime implicants. An entry at position

(i, j) in the table is marked “X” if prime implicant j contains onset minterm i.
Example 6.41 Fi
gure 6.21 shows the prime implicant table of the previous example.

Since we want a minimum set of prime implicants that covers all the onset min-

terms, we have to select a minimum set of columns in a prime implicant table

such that there is at least one X in every row. This is the classical minimum

unate covering problem which has been shown to be NP-complete [Garey

1979]. Nevertheless there are several reduction techniques that help simplify

solving the unate covering problem:

Simplification by Essential Prime Implicants. A row with a single X

represents a (relatively) essential vertex, and the corresponding column repre-
sents a (relatively) essential prime implicant. The column must be selected in

the final cover because any prime cover for the function will have to contain
D
E

C

(a)

B
A

0 0000
5 0101
7 0111
8 1000
9 1001
10 1010
11 1011
14 1110
15 1111

(b)

0, 8 –000
5, 7 01–1
7, 15 –111
8, 9 100–
8, 10 10–0
9, 11 10–1
10, 11 101–
10, 14 1–10
11, 15 1–11
14, 15 111–

(c)

8, 9, 10, 11 10––
10, 11, 14, 15 1–1–

FIGURE 6.20

Prime implicant generation.

X
A

0000

0101

0111

1000

1001

1010

1011

1110

1111

X
XX

XX
X
X
X

X

X
X
X
X

ED C B

FIGURE 6.21

Prime implicant table.

338 CHAPTER 6 Logic synthesis in a nutshell
the prime that contains the onset minterm corresponding to this row. Therefore

we can simplify the prime implicant table by removing the columns

corresponding to (relatively) essential prime implicants and removing the rows

covered by these removed columns.
Example 6.42 In
 the prime implicant table of Figure 6.21 A, B, D, and E are essential prime implicants.

We select the essential prime implicants since they have to be contained in any prime

cover. This results in a cover for the function, since selecting columns A, B, D, and E

results in the presence of X in every row.

Some functions may not have essential prime implicants. Consider the hypothetical

prime implicant table of Figure 6.22a. There is no row with a single X. It is necessary

to make an arbitrary selection of a prime to begin with. Assume that prime A is selected.

We obtain the reduced table of Figure 6.22b after deleting column A and the first two

rows contained by A from the table of Figure 6.22a.

Simplification by Column Dominance. A column U of a prime implicant

table is said to dominate another column V if U contains every row contained by

V. We can delete the dominated columns, since selecting the dominating col-

umn will result in covering more uncontained minterms than the dominated

column. Note that the dominating column might not exist in a minimum solu-

tion. Further if minimizing the literal count was our objective, then we can only

delete dominated columns that correspond to primes with equal or more literals
than the dominating prime.

X
A B C D E F G H

0000

0001

0101

0111

1000

1010

1110

1111

X

X
X

X

X
X

X

X

X

X

X

XX
XX

B C D E F G H
0101

0111

1000

1010

1110

1111

X
X

X

X
X

XX
X

XX
XX

C D E F G
0101

0111

1000

1010

1110

1111

X
X
X

XX
X

XX
XX

(a) (b) (c)

FIGURE 6.22

Cyclic prime implicant table.

6.3 Combinational logic minimization 339
Example 6.43 In
 the reduced table of Figure 6.22b column B is dominated by column C and column H

is dominated by column G. Reducing the table of Figure 6.22b yields the table of

Figure 6.22c. In this table C and G are relatively essential prime implicants. Choosing

C and G results in the selection of E, which completes the cover f ¼ {A, C, E, G}. We

are not guaranteed that this cover is minimum; we have to backtrack to our arbitrary

choice of selecting prime A and delete prime A from the table, i.e., explore the possibility

of constructing a cover that does not have A in it. This results in f ¼ {B, D, F, H}.

Simplification by Row Dominance. A row i of a prime implicant table is

said to dominate another row j if i has a 1 in every column in which j has a 1.
Any minimum expression derived from a table which contains both rows i and j

can be derived from a table which only contains the dominated row.
Example 6.44 In
 Figure 6.22c, row 0111 dominates row 0101 and can be deleted; row 1010 dominates

row 1000 and can be deleted as well.

A Branch-and-Bound Covering Strategy. The covering procedure of the

Quine-McCluskey method is summarized below. The input to the procedure is

the prime implicant table T.
1Th
1. Delete the dominated primes (columns) and the dominating minterms

(rows) in T. Detect essential primes1 in T by checking to see if any minterm

is contained by a single prime implicant. Add these essential prime impli-

cants to the selected set. Repeat until no new essential primes are detected.

2. If the size of the selected set of prime implicants equals or exceeds the

best solution thus far, return from this level of recursion. If there are no

elements left to be contained, declare the selected set as the best solution
recorded thus far.
ese primes may not be essential primes of the original function or table.

340 CHAPTER 6 Logic synthesis in a nutshell
3. Heuristically select a prime implicant.
4. Add this prime implicant to the selected set and recur for the sub-table result

ing from deleting the prime implicant and all minterms that are contained

by this prime implicant. Then, recur for the sub-table resulting from delet-

ing this prime implicant without adding it to the selected set.
6.3.2.2 Other methods
State-of-the-art exact two-level logic minimization algorithms, such as
ESPRESSO [Rudell 1987] and Scherzo [Coudert 1995], are all based on the
Quine-McCluskey method, but are able to outperform the Quine-McCluskey
method significantly due to superior prime generation, implicant table gen-
eration, and covering techniques. In particular, with decision diagram based
data structures, Scherzo [Coudert 1995] was able to outperform ESPRESSO
by two orders of magnitude in terms of speed. Introductions to ESPRESSO
and decision diagram based two-level logic minimization can be found in
[Devadas 1994] and [Minato 1996], respectively. A good overview on two-
level logic minimization can be found in [Coudert 1994].
6.3.3 Multilevel logic minimization
Two-level logic is limited because not all Boolean functions can be efficiently

represented in the SOP form. Multilevel logic implementation of a function is

often faster and smaller than two-level logic. Therefore multilevel realizations

are the preferred means of implementing combinational logic in very large
scale integrated (VLSI) systems. Because of the increased potential for reusing
sub-circuits, there are more degrees of freedom in implementing a Boolean func-

tion than in the two-level case. This increased freedom, however, largely

expands the search space in identifying an optimal solution.

The area ofmultilevel logic synthesis has blossomed since themid-1980s.Many

of the methods developed have been successfully used in commercially available

computer-aided design packages. There are two types of basic approaches, rule-

based local transformations and algorithmic transformations. Rule-based local

transformationswere developed at IBM in the late 1970s, known as the LSS system
[Darringer 1981]. A rule transforms a pattern for a local set of gates and intercon-

nections into another equivalent one when certain patterns are recognized in

logic netlists. The transformations have somewhat limited optimization capability

since they are local in nature and do not have a global perspective of the design.

Algorithmic transformations began to evolve in about 1981, in parallel with

activity in two-level logic synthesis and influenced by it. The algorithmic coun-

terpart uses two phases: a technology-independent step based on algorithms for

manipulating general Boolean functions [Brayton 1982] and a technology
mapping step (the subject of Section 6.4) where the design described in terms

of generic Boolean functions is mapped into a set of gates that can be imple-

mented in the design method of choice (gate arrays, standard cells, or macro-

cells). Both rule-based methods (e.g., [Darringer 1984; Bartlett 1986]) and

6.3 Combinational logic minimization 341
algorithmic methods (e.g., [Brayton 1987; Bostick 1987]) have been successful.

Algorithmic methods for logic synthesis are our main focus.
We describe the various logic transformations used in algorithmic logic syn-

thesis systems, most of which use algebraic [Brayton 1982, 1984] and Boolean

[Bostick 1987; Devadas 1989] operations in technology-independent optimiza-

tion, and use graph covering methods [Keutzer 1987] in technology mapping.

We first introduce technology-independent optimization and focus primarily

on area minimization. Implementation details of the algorithms can be found

in [Brayton 1987, 1990].

6.3.3.1 Logic transformations

The goal of multilevel logic optimization is to obtain multilevel representation

of a Boolean function optimal with respect to some design constraints. In order
to restructure a logic function, a collection of different operations is helpful.

The operations described below are commonly used and can be composed in

a script file for orchestrated optimization.

Decomposition. Decomposition of a Boolean function is the process of

reexpressing a single function as a composition of new functions.
Example 6.45 Th
e process of translating the expression

F ¼ a � b � cþ a � b � d þ :a � :c � :d þ :b � :c � :d

to the set of expressions

F ¼ X � Y þ :X � :Y
X ¼ a � b; and
Y ¼ cþ d

is decomposition.

Extraction. Extraction, related to decomposition, is applied to multiple
functions. It is the process of identifying and creating new intermediate func-

tions and their corresponding output variables, and reexpressing the original

functions in terms of the original as well as the new variables.

Extraction creates nodes which feed multiple outputs. The operation identi-

fies common subexpressions among different logic functions forming a network.

New nodes corresponding to the common subfunctions are created and each of

the logic functions in the original network is simplified with respect to these new

nodes. The optimization problem of extraction is to find a set of intermediate
functions such that the resulting network has minimum area, delay, or power.
Example 6.46 Ex
traction applied to the following three functions

F ¼ aþ bð Þ � c � d þ e
G ¼ aþ bð Þ � :e; and
H ¼ c � d � e

may yield

F

F

342 CHAPTER 6 Logic synthesis in a nutshell
F ¼ X � Y þ e
G ¼ X � :e
H ¼ Y � e
X ¼ aþ b; and
Y ¼ c � d
Factoring. A factored form is a parenthesized representation of a tree net-

work where each internal node is an AND or an OR gate and each leaf is a literal.
Like SOP, factored forms are a way of representing Boolean functions and are per-

haps a more natural way for multilevel circuits than the SOP representation.

A factored-form Boolean expression can be implemented using a complex

CMOS gate. The number of transistors of the logic gate is closely related to the

number of literals of the factored form as can be seen from the following example.
Example 6.47 Fi
gure 6.23 shows a complex CMOS gate implementing the factored form f¼ aþ (bþ c)d.

In general, excluding the possible output buffer, 2n transistors are needed to implement a

factored form with n literals.

Consequently the literal count of a factored form can be used as a good estimate

of hardware cost. The optimization problem associated with factoring is to find

a factored form with a minimum number of literals.

Factoring is the process of deriving a factored form from an SOP represen-

tation of a function.
Example 6.48 Th
e expression

F ¼ a � cþ a � d þ b � cþ b � d þ e

can be factored into

F ¼ aþ bð Þ � cþ dð Þ þ e
f = a+(b+c)d

a

d

Cb

a

b

c
d

IGURE 6.23

actored form vs. complex CMOS gate implementation.

6.3 Combinational logic minimization 343
Substitution. Substitution, also called resubstitution, of a function G into

F is the process of reexpressing F as a function of its original inputs and G.
Example 6.49 Su
bstituting

G ¼ aþ b

into

F ¼ aþ b � c
produces

F ¼ G � aþ cð Þ
This operation creates an arc in the Boolean network connecting the node of

the substituting function, namely G, to the node of the function being substi-
tuted into, namely F.

Elimination. Elimination, collapsing, or flattening is the the inverse

operation of substitution. If G is a fanin node of F, collapsing G into F reex-

presses F without G. It undoes the operation of substituting G into F.
Example 6.50 If
F ¼ G � aþ :G � b and
G ¼ cþ d

then collapsing G into F results in

F ¼ a � cþ a � d þ b � :c � :d and
G ¼ cþ d
If the node G is not a primary output and does not fan out to other nodes, then

it may be removed from the Boolean network, resulting in a network with one

less node.

Flattening a logic function into the SOP form could result in an exponential

growth in representation.
Example 6.51 C
onsider the flattening of the nodes g1 through gk into F with

F ¼ g1 � g2 � � � gk
g1 ¼ a1 þ b1

g2 ¼ a2 þ b2

..

.

gk ¼ ak þ bk

After flattening, the SOP representation for F will have 2k product terms.

344 CHAPTER 6 Logic synthesis in a nutshell
Given a Boolean network, wemay compute the value of a node, which represents

the saved literal count due to the existence of this node rather than collapsing this

node into its fanout nodes. For nodes with little or negative values, we may elimi-

nate them from the Boolean network by collapsing them into their fanouts. It

should be noted that eliminating a node may change other nodes’ values.

6.3.3.2 Division and common divisors
To realize the above logic transformations, it is important to define opera-
tions which, when given functions f and p, find functions q and r such that
f ¼ p � q þ r, if such q and r exist. This operation is called the division of f
by p generating quotient q and remainder r. The function p is called a
divisor of f if r is not null and a factor if r is null.

The conditions for p being a Boolean factor or a Boolean divisor are stated in
the following propositions.

Proposition 6.1. A logic function p is a Boolean factor of a logic function

f if and only if f �:p ¼ 0 (that is, the onset of f is contained in the onset of p).

Proposition 6.2. If f � p 6¼ 0, then p is a Boolean divisor of f.

For a given division operation, the resulting q and r may depend upon the

particular representation of f and p. Moreover for any logic function, there are

many Boolean factors and divisors. This fact poses a problem in choosing a good

factor and divisor. If the domain is restricted to a particular subset of expres-
sions, then the division operation is unique and much easier to carry out. A

restricted version of such division is called algebraic division.

6.3.3.3 Algebraic division
Webegin the description of algebraic divisionwith some definitions. The sup-
portof a Boolean expression fdenoted as sup(f) is the set of all variablesv that
syntactically occur in f as v or:v. For example, if f¼aþ:aþ b � c, then sup(f)
¼ {a,b, c}.We say that f isorthogonal to g,written as f? g, if sup(f)\ sup(g)¼
�. For example, f¼ aþ b and g¼ cþ d are orthogonal.

The function g is an algebraic divisor of f if there exist h and r such that

f ¼ g � h þ r, where h 6¼ 0, g ? h, and the remainder r is minimal, i.e., has as

few cubes as possible. Under this condition on the remainder, the quotient
h, denoted as f/g, is in fact unique. We say the function g divides f evenly if

f ¼ g � h, where h 6¼ 0, g ? h, and r ¼ 0.
We consider two main problems of algebraic optimization, namely comput-

ing quotients f/g given f and g, and determining divisors g of a given function f.

Computing the Quotient. Given two covers (i.e., sets of cubes) f ¼ {b1,

b2, . . . , b|f|} and g ¼ {a1, a2, . . . , a|g|}, we define hi ¼ {cj | ai � cj 2 f }

for all i ¼ 1, 2, . . . , |g|, i.e., hi corresponds to all the multipliers of the cube

ai in g that produce elements of f. It is easy to see that

f =g ¼
\gj j
i¼1

hi ¼ h1 \ h2 . . . \ h gj j

6.3 Combinational logic minimization 345
Example 6.52 C
onsider two covers

f ¼ a � b � cþ a � b � d þ d � e; and
g ¼ a � bþ e:

We have |g| ¼ 2 and | f | ¼ 3. With 3 � 2 ¼ 6 comparisons, we obtain

h1 ¼ c;df g; and
h2 ¼ df g

Hence h1 \ h2 ¼ d, and

f ¼ a � bþ eð Þ � d þ a � b � c
The above algorithm requires O(|f| � |g|) operations. Encoding and sorting the

cubes of f and g can reduce the complexity to O((|f| þ |g|) log(|f| þ |g|))

[McGeer 1987].

Kernels and Algebraic Divisors. Given an efficient method for algebraic
division, optimization can be carried out if good algebraic divisors can be found.

The set of algebraic divisors is defined as D(f) ¼ {g | f/g 6¼ 0}. The primary
divisors of f are defined as P(f) ¼ { f/c | c is a cube}.
Example 6.53 If
f ¼ a � b � cþ a � b � d � e
then

f=a ¼ b � cþ b � d � e
is a primary divisor.
Proposition 6.3. Every divisor of f is contained in a primary divisor, i.e., if g

divides f, then g � p 2 P(f).

Proof. Let c 2 f/g be a cube. Then g � f/(f/g) and f/(f/g) � f/c 2 P(f). ¨

A function g is termed cube-free if the only cube that divides g evenly is 1.

The kernels of f are defined as K(f) ¼ {k | k 2 P(f), k is cube-free}. For a kernel

k 2 K(f), its cokernel is the cube c with f/c ¼ k.
Example 6.54 If
f ¼ a � b � cþ a � b � d � e
then

f=a ¼ b � cþ b � d � e
is a primary divisor but not cube-free since b is a factor of f/a ¼ b � (c þ d � e). However,
f/(a � b) ¼ c þ d � e is a kernel, and a � b is a cokernel.

The following theorem (originally proven in [Brayton 1982]) is the basis of alge-

braic optimization methods.

346 CHAPTER 6 Logic synthesis in a nutshell
Theorem 6.2. Two expressions f and g have a non-cube common divisor d

if and only if there exist kernels kf 2 K(f) and kg 2 K(g) such that kf \ kg has

two or more terms (i.e., kf \ kg is not a cube).

Proof. For the “if” part, kf \ kg is clearly a common divisor of f and g. It

remains to prove the “only if” part. ¨

Assume d divides both f and g, and d has two or more terms. Then there is a

cube-free SOP expression e such that e divides d. Also e divides f and g as well.

By Proposition 6.3, e � kf 2 P(f) and e � kg 2 P(g) for some kf and kg. Since e is

cube-free, kf and kg are cube-free as well. Hence, kf 2 K(f) and kg 2 K(g).

Finally, since e � kf \ kg, kf \ kg must have two or more terms. ¨

Wecan therefore use the kernels of f and g to locate commondivisors. Note that

these are not the only common divisors of f and g, but they are good common divi-

sors to consider during logic optimization. We compute the set of kernels for each

logic expression, then form intersections among kernels from the different logic

expressions. If this intersection set contains no non-cube elements, then by Theo-

rem 6.2, we need only look for divisors consisting of single cubes. Otherwise, we

have found an algebraic divisor common to two or more expressions.

Computing the Kernels. The kernels of a function f can be computed
using the algorithm of Figure 6.24. The kernel generation algorithm first makes

f cube-free by finding its largest cube factor. It then selects the literals of f in a

lexicographical order and divides them into f; the resulting quotient is a kernel

if it is cube-free. (Note that this kernel might contain other kernels, too.) If it is

not cube-free, then it is made cube-free by selecting its largest cube factor. Note

that in this context the largest cube is the cube with the most number of
KERNELS(ƒ){
 cƒ = largest cube (with maximum number of literals) factor of ƒ ;
 K = KERNEL1(0, ƒ/cƒ) ;
 if (ƒ is cube-free)
 return(ƒ K) ;
 return(K) ;
}

KERNEL1(j, g){
 R = g ;
 N = Maximum index of variables in g ;
 for(i = j + 1; i ≤ N ; i = i + 1) {
 if (li in 1 or no cubes of g) continue ;
 c = largest cube dividing g / li evenly ;
 if (for all k ≤ i, lk œ c) /* Pruning Condition */
 R = R KERNEL1 (i, g/ (li c)) ;
 }
 return(R) ;
}

…
…

…

FIGURE 6.24

Procedure to determine all the kernels of a single-output logic function.

6.3 Combinational logic minimization 347
literals. The procedure is repeated on the resulting functions until functions

with no kernels (called the level-0 kernels of f) are found. A major efficiency
is obtained by noting that if the largest cube factor extracted contains an already

selected literal, then the current branch can be terminated, since all the kernels

that can be found by continuing have already been generated. This leads to an

algorithm in which no cokernel is duplicated.
Example 6.55 C
onsider

f ¼ a � b � c � d þ a � b � c � eþ a � b � e � f
In the routine KERNELS cf ¼ a � b. Therefore,

f=cf ¼ c � d þ c � eþ e � f
In the next step we call KERNEL1(0, c � d þ c � e þ e � f).

InKERNEL1wesetR¼ {c �dþ c � eþ e � f }. Since the ordering is lexicographic,we have
l1¼ a, l2¼ b, etc. Note thatN¼ 6. The literals l1 and l2 are in none of the terms of R, and we

move to l3¼ c. The largest cube dividing (c � dþ c � e þ e � f)/c, which is dþ e, is 1.

We thereforemake a recursive call toKERNEL1(3, (c � dþ c � eþ e � f)¼ (c\ 1)). This call
returns with {dþ e}. In the parentKERNEL1 R is set to {c � dþ c � eþ e � f, d þ e}. We skip

l4¼ d andmove to l5¼ e. The largest cube evenly dividing (c � dþ c � e þ e � f)/e, which is
c þ f, is 1. We next call KERNEL1(5, (c � d þ c � e þ e � f)/(e \ 1)). This returns with c þ f.

We end with K ¼ R ¼ {c � d þ c � e þ e � f, d þ e, c þ f }.

If the largest cube factor extracted contains an already selected literal, then the

current branch can be terminated, since all kernels that can be found by
continuing have already been generated. We illustrate the pruning condition

with the following example.
Example 6.56 C
onsider

f ¼ a � b � c � d þ eð Þ � k þ lð Þ þ a � f � gþ h

In the first call to KERNEL1, we will generate the kernels corresponding to

f=a ¼ b � c � d þ eð Þ � k þ lð Þ þ f � g
KERNEL1 calls itself recursively to compute

f= a � bð Þ ¼ c � d þ eð Þ � k þ lð Þ
Since f/(a � b) is not cube-free, the next recursive call to KERNEL1 will use (d þ e) � (k þ l).

All the kernels of this expression will be generated.

We move up one level in the recursion and compute

f= a � cð Þ ¼ b � d þ eð Þ � k þ lð Þ

348 CHAPTER 6 Logic synthesis in a nutshell
At this stage, we note that f/(a � c) is not cube-free, and the largest cube dividing this

expression evenly is b. However, b is an already selected literal implying that we have

already generated the kernels for the cube-free expression (dþe)�(kþl). We do not have

to recursively call KERNEL1 for this branch and can go ahead to f/(a � d).

It is possible to modify the KERNEL1 procedure to generate only the level-0 ker-

nels which do not contain other kernels. This modification is based on the obser-

vation that if no kernels of g are found in the for loop, then g is a level-0 kernel.

Factoring Algorithm. A function can be algebraically factored using the

generic factoring algorithm shown in Figure 6.25.
The procedureDIVIDE performs algebraic division and reexpresses f as g�hþr.

TheprocedureCHOOSE_DIVISOR is critical to obtaining a good factorization.One

alternative is to select an arbitrary level-0 kernel as a divisor. This may not produce

the best final result. Another alternative is to select a kernelwhichwhen substituted

into the original function maximally reduces the total number of literals.
Example 6.57 G
iven

X ¼ a � cþ a � d þ a � eþ a � gþ b � cþ b � d þ b � eþ b � f þ c � eþ c � f þ d � f þ d � g
if, in the procedure CHOOSE_DIVISOR, we choose literals in lexicographical order, we

obtain

X ¼ a � cþ d þ eþ gð Þ þ b � cþ d þ eþ fð Þ þ c � eþ fð Þ þ d � f þ gð Þ
However, if we choose kernels, we obtain a better factorization

X ¼ cþ d þ eð Þ � aþ bð Þ þ f � bþ cþ dð Þ þ g � aþ dð Þ þ c � e
which has fewer literals.

Extraction and Resubstitution Algorithm. To identify cube-free expres-

sions that occur in multiple functions {fi}, we do the following.
FIG

Pro
1. Generate kernels for each fi.

2. Select a pair of kernels k1 2 K(fi) and k2 2 K(fj) for i 6¼ j such that k1 \
k2 is not a cube. If no such pair exists, stop.
GFACTOR(ƒ){
 if (number of terms in ƒ is 1)
 return(ƒ) ;
 g = CHOOSE_DIVISOR(ƒ) ;
 (h, r) = DIVIDE(ƒ, g) ;
 ƒ = GFACTOR(g) . GFACTOR(h) + GFACTOR(r) ;
 return(ƒ) ;
}

URE 6.25

cedure to algebraically factor a function.

6.3 Combinational logic minimization 349
3. Set a new variable v equal k1 \ k2.
4. Update the associated functions to
fi ¼ v � fi= k1 \ k2ð Þð Þ þ ri

where ri is the remainder of the division fi/(k1 \ k2).
Common cubes are extracted as follows.
1. Select a pair of cubes c1 2 fi, c2 2 fj for i 6¼ j such that c1 \ c2 consists of

two or more literals. If no such pair exists, stop.
2. Set a new variable u equal c1 \ c2.

3. Update each function fi with the new variable u wherever possible in the

network.
Example 6.58 C
onsider the factored functions

X ¼ a � b � c � d þ eð Þ þ f þ gð Þ þ h; and
Y ¼ a � i � c � d þ eð Þ þ f þ jð Þ þ k

We have d þ e being a level-0 kernel of both functions. Extraction results in

L ¼ d þ e;
X ¼ a � b � c � Lþ f þ gð Þ þ h; and
Y ¼ a � i � c � Lþ f þ jð Þ þ k

Now, we select c � L þ f þ g as a level-0 kernel of the reexpressed X and c � L þ f þ j as

a level-0 kernel of reexpressed Y. We obtain

M ¼ c � Lþ f
L ¼ d þ e
X ¼ a � b � Mþ gð Þ þ h; and
Y ¼ a � i � Mþ jð Þ þ k

Now X and Y have no kernel intersections that are not cubes. We now extract common

cubes. The cubes a � b � M in X and a � i � M in Y have two literals in common. Extraction

produces

N ¼ a �M
M ¼ c � Lþ f
L ¼ d þ e
X ¼ b � Nþ a � gð Þ þ h; and
Y ¼ i � Nþ a � jð Þ þ k

Because we are continually recomputing level-0 kernels on the reexpressed func-

tions, it is possible to obtain decompositions corresponding to level-k kernels for

k > 0. If we collapse L into M into N above, we obtain

N ¼ a � c � d þ eð Þ þ fð Þ
X ¼ b � Nþ a � gð Þ þ h; and
Y ¼ i � Nþ a � jð Þ þ k

350 CHAPTER 6 Logic synthesis in a nutshell
where N contains a level-1 kernel of the original X and Y, since it contains the level-1

kernel M which contains the level-0 kernel d þ e.

Algebraic Resubstitution with Complement. Algebraic factorization and

resubstitution can be performed with the complement of a given divisor.
Example 6.59 C
onsider

f ¼ a � bþ a � cþ :b � :c � d
where we choose b þ c as a level-0 kernel of f and decompose f as

f ¼ a � X þ :b � :c � d; and
X ¼ bþ c

In many cases it is useful to check if the complement of the new variable is an algebraic

divisor for the function. In this case we can obtain

f ¼ a � X þ :X � d; and
X ¼ bþ c:
6.3.3.4 Common divisors
One of the key problems in algebraic optimization is the identification of good
(common) divisors. We have described the use of kernels for determining a
good set of divisors for algebraic factoring, decomposition, and extraction.
Theproblemof finding a kernel and finding a single-cube ormultiple-cube divi-
sor can be reduced to the combinatorial optimization problem of rectangle
covering [Rudell 1989]. This formulation of the problem is not only elegant,
but it also favors the development of fast and effective algorithms.

Before introducing the method, we give some definitions.

A (combinatorial) rectangle (R, C) of a matrix B, with entries Bij 2 {0,1,*},

is a subset of rows R and subset of columns C such that Bij 2 {1, *} for all i 2 R

and j 2 C. Note that the rows and columns forming the rectangle do not have to

be contiguous.

A rectangle (R1, C1) is said to strictly contain rectangle (R2, C2) if R2 � R1

and C2
 C1, or R2
 R1 and C2 � C1.

A rectangle (R, C) of B is said to be a prime rectangle if it is not strictly

contained in any other rectangle of B.

The corectangle of a rectangle (R, C) is the pair (R, C0) where C0 is the set

of columns not in C.
A set of rectangles {(Rk, Ck)} forms a rectangle cover of matrix B if Bij ¼ 1

implies that i 2 R
k and j 2 C

k for some k. Thus, each 1-entry in B must be cov-

ered by at least one rectangle from the cover. A covering need not be disjoint, and

therefore a 1-entry in B can be covered by more than one rectangle. The *-entries

of B are not required to be covered by any rectangle in the cover and therefore

represent don’t-care points in the matrix.

6.3 Combinational logic minimization 351
Example 6.60 In
 the following matrix

1 2 3 4 5
1 1 1 1 0 0
2 1 * 1 0 *
3 0 1 1 0 1
4 1 0 1 1 1

The tuple ({1,2}, {2,3}) is a rectangle, but it is not prime as it is contained by the prime
rectangle ({1,2}, {1,2,3}). The tuple ({2,4}, {1,3,5}) is another prime rectangle while ({2,3},

{1,2}) is not a rectangle.

Each rectangle (Rk, Ck) has an associated weight or cost defined by a weight

function w(Rk, Ck). The weight of a rectangle cover is then defined as the sumX
k

w Rk;Ck
� �

The minimum-weighted rectangle covering problem is that of finding a rectan-

gle cover of a matrix with minimum total weight.

Rectangles and Kernels. Rectangles provide an alternate way of looking at

the kernels of a function. By representing a Boolean expression as a cube-literal
matrix, where each rowcorresponds to a cube in the expression and the columns

correspond to all the distinct literals, eachprime rectangle is a cokernelwhile each
corectangle of a prime rectangle is a kernel of the expression.
Example 6.61 C
onsider the expression g ¼ a � b � e þ a � c � d þ b � c � d. It can be represented using a

cube-literal matrix shown below.

a b c d e
a · b · e 1 1 0 0 1
a · c · d 1 0 1 1 0
b · c · d 0 1 1 1 0

Consider the prime rectangle (R, C) ¼ ({2,3}, {3,4}) and its corectangle (R, C0) ¼ ({2,3},
{1,2,5}). The rectangle obviously corresponds to a cube c � d that is common to all the prod-

uct terms corresponding to rows in R. Since the rectangle is prime, it is the largest cube

common to all the product terms in R. If this cube is extracted from these product terms,

the resulting expression is cube-free and is also a divisor of the original function g. In other

words, the resulting expression is a kernel of g. The expression resulting from the extraction

of the cube corresponds to the corectangle (R, C0) ¼ ({2,3}, {1,2,5}), which is a þ b.

From the rectangle interpretation of kernels, it is also possible to understand
more clearly the notion of the level of a kernel. A level-0 kernel is the corectan-

gle of a prime rectangle which has no other rectangle containing its column set,

352 CHAPTER 6 Logic synthesis in a nutshell
i.e., a rectangle of maximal width. The corectangle of a prime rectangle of max-

imal height, i.e., one whose row set is not contained in any other rectangle, cor-
responds to a kernel of maximal level.

Common-Cube Extraction. Common-cube extraction is the process of

finding cubes common to two or more expressions and extracting the common

cube to simplify each of the expressions. To optimize the network it is neces-

sary to find the particular cubes to introduce that provide an optimal decompo-

sition. The optimal decomposition can be defined as minimizing the total

number of literals summed over all expressions or minimizing the total number

of literals given a bound on the number of levels of logic in the final circuit.
Common cubes can be easily identified using the cube-literal matrix

described above.
Example 6.62 C
onsider the equations

F ¼ a � b � cþ a � b � d þ e � g
G ¼ a � b � f � g; and
H ¼ b � d þ e � f

The cube-literal matrix for these expressions is

a b c d e f g
F1 : a · b · c 1 1 1 0 0 0 0
F2 : a · b · d 1 1 0 1 0 0 0
F3 : e · g 0 0 0 0 1 0 1
G1 : a · b · f · g 1 1 0 0 0 1 1
H1 : b · d 0 1 0 1 0 0 0
H2 : e · f 0 0 0 0 1 1 0

The rectangle ({1,2,4}, {1,2}) corresponds to the common cube a�b which is present in

functions F and G. If this common cube is extracted as a new function X, the equations

can be rewritten as

F ¼ X � cþ X � d þ e � g
G ¼ X � f � g
H ¼ b � d þ e � f ; and
X ¼ a � b
The process of extracting a cube modifies a Boolean network. A new node is
added to the Boolean network with a logic function which is the common-cube

divisor. All functions which the cube divides are replaced with the algebraic

division of the function by the single cube. In order to extract cubes efficiently

in an iterative algorithm, it is necessary to modify the cube-literal matrix incre-

mentally to reflect the extraction of the cube. The advantage is that the cube-

literal matrix does not have to be recreated as each cube is extracted.

The modifications required to form the new cube-literal matrix are the fol-

lowing. A new row is added to reflect the new single cube expression added

6.3 Combinational logic minimization 353
to the network. The entries covered by the rectangle are marked with a * to

reflect that the position has been covered. However, the * allows other rectan-
gles to cover the same position.

The choice of the weight function for a rectangle measures the optimization

goal for cube extraction. To minimize the total number of literals in the net-

work, the weight of a rectangle is chosen so that the weight of a rectangle cover

of the cube-literal matrix equals the total number of literals in the network after

the new single-cube functions are added to the network. Hence, a minimum

weighted rectangle cover corresponds to the optimal simultaneous extraction

of a collection of cubes. The weight of a rectangle is defined as:

w R;Cð Þ ¼ jCj if Rj j ¼ 1
jCj þ Rj j if Rj j > 1

�

If there is a single row in the rectangle, then it corresponds to leaving the cube

unchanged in the network. Hence, the weight of the rectangle counts the num-
ber of literals in the cube, which equals the number of columns. When the

number of rows is greater than one, this corresponds to creating a new single

cube function with |C| literals and substituting this new function into |R|

other cubes at a cost of |R| literals.

Note that the above weight does not reflect the savings obtained in terms of

the number of literals by extracting a common cube. Therefore, when searching

for a cube to extract it is useful to define a second function called the value of

the rectangle. For cube extraction, the value of the rectangle should indicate the
savings obtained from extracting the corresponding cube. Since the number of

literals before cube extraction is the number of 1-entries in the rectangle and

the number of literals after cube extraction is the weight of the rectangle, the

value v(R, C) of a rectangle is defined as

v R;Cð Þ ¼ i; jð Þ Bij ¼ 1; i 2 R; j 2 C
�� �� ���w R;Cð Þ��
Example 6.63 Fo
r the rectangle ({1,2,4}, {1,2}) in the cube-literal matrix of the previous example, the

weight is the number of rows plus the number of columns, which equals 5. There are

6 positions in this rectangle and each of them has a 1. Therefore, the value of the rect-

angle is 6 � 5 ¼ 1. Therefore only one literal can be saved by extracting this rectangle, as

illustrated in the previous example.

Kernel Intersection. As described previously, intersections among the ker-
nels of a collection of expressions are useful for finding common multiple-cube

divisors between two or more expressions. If two functions share a common

multiple-cube divisor, then the common divisor can be found as the intersection

of a kernel from each of the functions.

The Boolean matrix associated with the optimal kernel intersection problem is

called the cokernel-cube matrix. A row in this matrix corresponds to a coker-

nel (and its associated kernel) and each column corresponds to a cube present in

some kernel, called a kernel-cube. The entry Bij is set to 1 if the kernel

354 CHAPTER 6 Logic synthesis in a nutshell
associated with row i contains the cube associated with column j. Then a rectan-

gle of the cokernel-cube matrix identifies an intersection of kernels. The columns
of the rectangle identify the cubes in the subexpression, and the rows in the rect-

angle identify the particular functions the subexpression divides.
Example 6.64 C
onsider the functions

F ¼ a � f þ b � f þ a � gþ c � gþ a � d � eþ b � d � eþ c � d � e
G ¼ a � f þ b � f þ a � c � eþ b � c � e; and
H ¼ a � d � eþ c � d � e
The kernels and cokernels of each of the functions are shown below.

Function Cokernel Kernel
F a d · e + f + g
F b d · e + f
F d · e a + b + c
F f a + b
F c d · e + g
F g a + c
G a c · e + f
G b c · e + f
G f a + b
G c · e a + b
H d · e a + c

Note that functions F and G are themselves kernels but have not been shown above for

ease of presentation. Let us number the cubes in the original function from 1 to 13, with

a � f being 1, b � f being 2, and so on. The cokernel-cube matrix for this set of kernels is

shown below. Note that instead of 1’s in the matrix, we have numbers. These numbers

indicate a cube of the original functions formed by multiplying the cokernel corresponding

to a row and the cube corresponding to a column. For example, in the third row under

column a we have the number 5 corresponding to the the fifth cube a � d � e.
a b c ce de f g

F : a 0 0 0 0 5 1 3
F : b 0 0 0 0 6 2 0
F : d · e 5 6 7 0 0 0 0
F : f 1 2 0 0 0 0 0
F : c 0 0 0 0 7 0 4
F : g 3 0 4 0 0 0 0
G : a 0 0 0 10 0 8 0
G : b 0 0 0 11 0 9 0
G : f 8 9 0 0 0 0 0
G : c · e 10 11 0 0 0 0 0
H : d · e 12 0 13 0 0 0 0

6.3 Combinational logic minimization 355
Rectangle ({3,4,9,10}, {1,2}) identifies the subexpression a þ b. This corresponds to

the factorization of the equations into the form

F ¼ d � e � X þ f � X þ a � gþ c � gþ c � d � e
G ¼ c � e � X þ f � X
H ¼ a � d � eþ c � d � e and
X ¼ aþ b
Whenever a new subexpression is identified, it is inserted into the Boolean net-

work. This insertion consists of adding a new node to the network and dividing

the node into each of the expressions which this node divides. A new cokernel-

cube matrix is then created for the modified Boolean network.

To reduce the complexity of extracting each factor from the network it is

desirable to modify the cokernel-cube matrix incrementally as each subexpres-

sion is identified. To do this, new rows are added to the cokernel-cube matrix
for each kernel of the new subexpression. The cubes which are formed by

the insertion of this new factor into the network are then marked as covered.

This includes the points directly contained in the rectangle and other points

which are labeled with the same number. These points are marked * so that

other rectangles can cover them.

The weight of a rectangle of the cokernel-cube matrix is chosen to reflect the

number of literals in the network if the corresponding common subexpression is

inserted into the network. A minimum weighted rectangle cover of the cokernel-
cube matrix then corresponds to a simultaneous selection of a set of subexpres-

sions to add to the network in order to minimize the total number of literals.

Let wc
j be the number of literals in the kernel-cube for column j. wc

j is also

called the column weight of column j. If a rectangle (R, C) is used to identify a

subexpression, then a new function is formed from the columns of C. This new

function has
P

j2C w
c
j literals. Let w

r
i be 1 plus the number of literals the cokernel

corresponding to row i. wr
i is also called the row weight of row r. The chosen

subexpression divides the expressions indicated by the rows R of the rectangle.
After algebraic division by the subexpression, each of these expressions consists

of a sum of the corresponding cokernel cubes multiplying the literal for the

new expression. The number of literals in the affected functions after the extrac-

tion of the subexpression corresponding to the rectangle is
P

i2R w
r
i . Therefore,

the weight of a rectangle (R, C) in the cokernel-cube matrix is defined as:

w R;Cð Þ ¼
X
i2R

wr
i þ

X
j2C

wc
j

The value of a rectangle measures the difference in the number of literals in the

network if the particular rectangle is selected. The number of literals after the

rectangle is selected is the weight of the rectangle as defined above. Let Vij be

the number of literals in the cube which is covered by position (i, j) of the coker-

nel-cube matrix. Then the number of literals before extraction of the rectangle is

356 CHAPTER 6 Logic synthesis in a nutshell
simply
P

i2R; j2C Vij. As elements of the cokernel-cube matrix are covered, their

values Vij are set to 0. This includes the elements Vij covered by the matrix and
all other elements which represent the same cube in the network. The value of

a rectangle (R, C) of the cokernel-cube matrix is thus defined as

v R;Cð Þ ¼
X

i2R;j2C
Vij �w R;Cð Þ
Example 6.65 FoP
r the rectangle ({3,4,9,10}, {1,2}) of the cokernel-cube matrix in the previous example,

i2R; j2C Vij ¼ 3 þ 3 þ 2 þ 2 þ 2 þ 2 þ 3 þ 3 ¼ 20,
P

i2R wr
i ¼ 3 þ 2 þ 2 þ 3 ¼ 10,P

j2C wc
j ¼ 1 þ 1 ¼ 2. Therefore, the value of the rectangle is 20 – 10 – 2¼ 8. Eight literals

can be saved by extracting the expression corresponding to the rectangle, as can be

verified in the example above.

Rectangle Covering. Since minimum-weighted rectangle covering corre-

sponds to optimum algebraic extraction, it offers a unified approach to the extrac-

tion, factorization, and decomposition of Boolean expressions. However, the

minimum-weighted rectangle covering problem is NP-complete [Rudell 1989]

and thus heuristic algorithms are resorted.
There are two types of algorithms for rectangle covering. The first type of

algorithm is greedy and selects one rectangle at a time and modifies the matrix

to reflect the extraction of the rectangle. The advantage of this technique is that

it immediately takes into account common factors between the newly extracted

function and the rest of the logic network. The disadvantage of this approach is

that it selects only one rectangle at a time and does not easily account for the

simultaneous extraction of multiple rectangles. The second type of algorithm

finds the best collection of factors to extract at each step by solving the mini-
mum-weighted rectangle covering problem heuristically. First, all the prime rec-

tangles are generated, and a collection of rectangles are then extracted. Second,

the matrix is updated, and the entire process is repeated to find factors between

the new expressions and the remainder of the logic network. A detailed exposi-

tion of this approach can be found in [Rudell 1989].

6.3.3.5 Boolean division

So far we have primarily described algebraic optimization methods. Apparently

the optimality of algebraic division is limited. For example, the Boolean expres-

sion f ¼ a:b þ ad þ :ab þ bd þ :ac þ :bc þ cd can not be factored into f ¼
(a þ b þ c)(:a þ :b þ d) through algebraic division. It motivates the develop-

ment of Boolean division.
To do so, in Boolean resubstitution we would like to reexpress a given

Boolean function f(x) in terms of a given divisor g(x). The computation can

be done by first building the function

h x; yð Þ ¼ f xð Þ ^ y � g xð Þð Þ

6.3 Combinational logic minimization 357
where y is a newly introduced Boolean variable representing the output signal

of function g. We then minimize function h with respect to the don’t care set
y � g(x) while insisting y to be a support variable of h. If h after minimization

is “simpler” than function f, then the resubstitution is successful.

Boolean resubstitution can be formalized more generally as functional
dependency [Jiang 2004]. We say that a function f(x) functionally depends
on a set of functions g1(x), . . . , gm(x) if there exists some function h such that

f xð Þ ¼ h g1 xð Þ; . . . ; gm xð Þð Þ
The necessary and sufficient condition, informally speaking, is that the set {g1, . . . ,
gm} of functions must bemore distinguishing than f on the domain elements. That

is, for every a, b 2 B
n with f(a) 6¼ f(b) there must exist some gi such that gi(a) 6¼

gi(b). ROBDD and SAT based computation of functional dependency can be found

in [Jiang 2004] and [Lee 2007; Mishchenko 2007a], respectively.

To see that Boolean resubstitution is a special case of functional dependency,

for x ¼ (x1, . . . , xn) we set gi(x) ¼ xi for i ¼ 1, . . . , n and gnþ1(x) ¼ g(x). Thus
functional dependency reduces to Boolean resubstitution f(x) ¼ h(x, g(x)). In
fact, we can minimize the support variables of h by setting as many gi(x) ¼
0 (or 1) as possible to remove xi from the support set of h.
6.3.4 Combinational complete flexibility
The aforementioned multilevel logic minimization approaches, such as decom-

position, extraction, factoring, substitution, and elimination, change the struc-

ture of a Boolean network. In contrast, in this section we study how to

perform logic minimization without changing a multilevel network structure.
More specifically, given a structurally optimized multilevel network, we may fur-

ther minimize it by simplifying the logic expression within every node.

Tominimize the logic function of a nodeu in a Boolean network,wewould like

to characterize the don’t care conditions of the node u, such that we may choose

the best among the set of valid functions, called permissible functions, that can

implement u without changing the functionality of the entire Boolean network.

Notice that node u imposes a topological constraint on a permissible function

whose inputs are restricted to the fanins of node u in the Boolean network.
In fact, don’t cares exist pervasively in a multilevel logic netlist because the

Boolean space is largely expanded due to the existence of many intermediate

variables. Let X be the set of primary input variables and Y the set of all other

variables of a Boolean network. In the B
jXjþjYj Boolean space, only 2jXj valua-

tions are consistent because the valid valuations are determined by the assign-

ments on the primary input variables. Consequently a lot of invalid valuations

may not appear in the Boolean network and can be exploited for logic minimi-

zation. Moreover the effect of one signal may be conditionally blocked by other
signals and cannot affect the valuations of primary outputs. Based on these rea-

sons, flexibility may exist to some extent in a multilevel logic network.

358 CHAPTER 6 Logic synthesis in a nutshell
The don’t-care conditions arising in multilevel logic can either be specified

by the user or can be an artifact of the network structure. Essentially there
are three types of don’t cares: satisfiability don’t cares (SDC), observability don’t

cares (ODC), and external don’t cares (XDC). Internal don’t-cares arise in mul-

tilevel logic because of the structure of a Boolean network. They are divided

into satisfiability and observability don’t-cares. User specified don’t-cares or

don’t-cares derived from considerations other than the network structure are

called external don’t-cares.

In the following discussion, for a Boolean network, let X be the set of

primary input variables, Y the set of all other variables, and Z � Y the set of pri-
mary output variables. For a node i in a Boolean network, its output variable is

denoted as yi and its local or intermediate input variables, other than primary

input variables, are denoted as Yi; its local function is denoted as fi(X, Yi) and

its global function, in terms of only primary input variables, is denoted as

gi(X). Of course, since we consider only acyclic Boolean networks, fi depends

only on a subset of the Y variables that are not in the transitive fanout cone TFOi

of node i.

External Don’t-Cares. External don’t-cares are specified for every primary
output, which indicate under what valuations on the primary input variables X

the value of the output is immaterial.

Satisfiability Don’t-Cares. Satisfiability don’t-cares are a result of the exis-

tence of the additional intermediate variables introduced at the intermediate

nodes of a Boolean network. A node with output variable yi and immediate

function fi(X, Yi) of a Boolean network imposes the relation

yi � fi X;Yið Þ ð6:14Þ
which characterizes the set of valuations on variables X and Y that are consis-

tent under the constraint imposed by node i. Therefore the set of satisfiability

don’t cares of the entire Boolean network is given by

SDC X;Yð Þ ¼
_
i

yi � fi X;Y ið Þð Þ ð6:15Þ

which gives all the valuations on variables X and Y that will never occur due to

the network structure and is so called because each of the relations yi � fi(X, Yi)

must be satisfied during the correct operation of the network. In order to opti-

mize a given node i we are typically interested in the satisfiability don’t cares
imposed by the transitive fanin cone TFIi of node i.
Example 6.66 C
onsider the network

y1 ¼ x1 ^ x2
y2 ¼ x2 _ x3; and
y3 ¼ y1 � y2 ¼ :y1y2 _ y1:y2

6.3 Combinational logic minimization 359
It implements function g3 ¼ (x1 ^ x2) � (x2 _ x3). We have the option of eliminating y1 and

y2 or expanding the Boolean space to include these variables. If we do the latter there

are assignments of variables which will never occur. For example, the assignment y1 ¼
1 and y2 ¼ 0 will never happen. The assignments that will never occur are expressed by

SDC ¼ y1� x1 ^ x2ð Þð Þ _ y2� x2 _ x3ð Þð Þ _ y3� y1� y2ð Þð Þ
To optimize f3, the satisfiability don’t care set

SDC3 ¼ y1� x1 ^ x2ð Þð Þ _ y2� x2 _ x3ð Þð Þ
imposed by the fanin nodes 1 and 2 of node 3 is of particular interest. Furthermore,

SDC3 in terms of the local input variables of node 3 can be computed by

8x1; x2; x3: y1� x1 ^ x2ð Þð Þ _ y2� x2 _ x3ð Þð Þ ¼ y1:y2
which ensures that the computed SDC in term of variables y1 and y2 is valid under any

valuation on the X variables. Accordingly, we may optimize f3 using the impossible con-

dition y1:y2. So f3 ¼ :y1y2 is another permissible function for node 3.

Observability Don’t-Cares. Observability don’t-cares occur in a network

because at each node there is a network structure that limits the observability

of the value of the node as seen at primary outputs.

To compute the observability don’t cares ODCi of a node i in a Boolean net-

work N. We construct a new Boolean network N0 from N by treating yi as a

(pseudo) primary input and removing node i and other induced nodes without
fanouts from N. The condition that node i is observable at primary output j is

given by

@gj
0

@yi
¼ gj X; yi ¼ 0ð Þ�gj

0 X; yi ¼ 1ð Þ� 	 ð6:16Þ

where gj
0 is the global function of j in network N0. That is, Formula (6.16) gives

the input conditions under which the gj
0 produces different values under differ-

ent yi values, i.e., the conditions under which output j is sensitive to yi. There-

fore the conditions under which the value of yi cannot be observed at any

output are characterized by

ODCi Xð Þ ¼
V
yj2Z

gj
0 X; yi ¼ 0ð Þ � gj

0 X; yi ¼ 1ð Þ� �

¼ V
yj2Z
: @gj

0

@yi

0
@

1
A

The above computation assumes the external don’t-care set is empty. For non-

empty XDC, the observability of a node at some primary output should be

conditioned on the external don’t care set of the primary output.

Local Don’t-Cares and Node Minimization. Note that SDC is in terms of

X and Y variables; XDC and ODC are in terms of X variables. To minimize a

360 CHAPTER 6 Logic synthesis in a nutshell
node i, they are not directly useful unless they are expressed in terms of the

local input variables of node i. Don’t cares in terms of the local input variables
are called local don’t cares. Let

DCi Xð Þ ¼
^
yk2Z

XDCk Xð Þ _ ODCi Xð Þ

Let Di be the local don’t cares of node i. Then it can be computed by

Di Yið Þ ¼ : 9X:
V
yj2Y i

yj � gj Xð Þ

 �

^ :DCi Xð Þ
 !

ð6:17Þ

It should be noted that we cannot simply project DCi(X) to the local space
spanned by Yi using image computation. Rather we should project the care

set into the local input space and then take the complement. It is because the

former may mistakenly include some care minterm in the local space if there

exists some care minterm and don’t care minterm in the global space mapping

to the same image. On the other hand, notice that, even though SDC is absent

from Formula (6.17), it has been implicitly computed in the image computation.

With the local don’t cares Di(Yi) of node i, we can minimize the SOP expres-

sion of node i using two-level logic minimization methods. The don’t-care gen-
eration and logic minimization procedure can be summarized as follows.
1. Select a node i in the Boolean network.

2. Compute its local don’t care set Di.

3. Minimize the cover of node i with respect to Di.
Therefore by treating a multilevel netlist as a network of PLAs, two-level minimiza-

tion methods can be applied as a baseline tool for multilevel logic minimization.

The above computation assumes that the rest of the Boolean network is not
changed. One generalization is to consider compatible don’t cares among mul-

tiple nodes simultaneously. Since the don’t care conditions of different nodes

may be conflicting with each other, they must be made compatible. The high

computational complexity however restricts the application of compatible

don’t cares. Often a network is iteratively optimized one node at a time with

respect to its local don’t cares.

Complete Flexibility. The characterization of don’t cares, including SDC,

ODC, and XDC, can be unified through the concept of complete flexibility

[Mishchenko 2002]. The complete flexibility (CF) of a node in a Boolean net-

work is a Boolean relation that characterizes the set of all possible input-output

behaviors of the node assuming that the rest of the network is not changed. The

complete flexibility subsumes all the above don’t cares. In addition, it is more

powerful in capturing non-determinism, and can be generalized for a non-

deterministic Boolean network [Mishchenko 2006a] where each node repre-

sents some relation allowing one-to-many mappings, not possible for functions.

Consider computing the complete flexibility of node i in a Boolean network
N. Let S(X, Z), given from specification, be the specification relation specifying

6.3 Combinational logic minimization 361
all the allowed input-output behavior of the Boolean network. Hence S(X, Z)

subsumes XDC. Let

Ei X;Yið Þ ¼ V
yj2Yi

yj � gj
0 Xð Þ� �

be the environment relation characterizing the set of consistent assignments

on variables X and Yi. Hence :Ei(X, Yi) subsumes the SDC of node i. Let

Ii X; yi;Zð Þ ¼ V
yj2Z

yj � gj
0 X; yið Þ� �

be the influence relation characterizing the allowed valuations on yi consistent

with those on X and Z, where gj
0 is a primary output function of network N0,

same as that obtained in the ODC computation. Hence

Ri X; yið Þ ¼ 8Z: Ii X; yi;Zð Þ) S X;Zð Þ½ �
subsumes the ODC of node i. The complete flexibility CFi of node i in terms of
the local input variables Yi can be obtained by

CFi Yi; yið Þ ¼ 8X: Ei X;Yið Þ) Ri X; yið Þ½ �
¼ 8X: Ei X;Yið Þ) 8Z: Ii X; yi;Zð Þ) S X;Zð Þ½ �½ �
¼ 8X;Z: :Ei X;Yið Þ _ :Ii X; yi;Zð Þ _ S X;Zð Þ½ �
¼ 8X;Z:: Ei X;Yið Þ ^ Ii X; yi;Zð Þ ^ :S X;Zð Þ½ � ð6:18Þ
ROBDD Implementation. Notice that all of the above computations can be

realized using ROBDDs as operations over Boolean functions.
6.3.5 Advanced subjects
AIG-based Multilevel Logic Minimization. In addition to the division-based

transformations, we may approach the multilevel logic minimization problem
with a new view using the AIG representation.

Any Boolean expression can be converted into an AIG in polynomial time

while structural hashing can be applied during the AIG construction. The

obtained AIG can then be further simplified through rewriting [Bjesse 2004;

Mishchenko 2006b]. This simplification is in terms of AIG nodes and/or levels,

rather than the conventional literal or cube counts.

By grouping the nodes of the AIG into clusters (such that each cluster con-

sists of a set of connected nodes rooted at some node producing its output,
and the fanins of a cluster are outputs of some other clusters), each cluster

can be seen as a complex logic node in a Boolean network. Therefore an AIG

can be considered as a data structure that encompasses a set of multilevel logic

netlists subject to different interpretations of cluster boundaries, called cuts.
Given an AIG, the problem of multilevel logic minimization now boils down

to the enumeration of good cuts, see, e.g., [Ling 2007; Mishchenko 2007b]. This

approach to logic minimization is taken by the ABC package [ABC 2005].

362 CHAPTER 6 Logic synthesis in a nutshell
Sequential Logic Minimization. The aforementioned combinational logic

minimization methods can be applied to simplify sequential circuits. For a given
sequential circuit, treating the register outputs as primary inputs and register

inputs as primary outputs results in the combinational methods being applica-

ble to sequential circuit optimization. The optimization, of course, does not take

full advantage of sequential flexibilities.

We can in fact pursue more progressive logic transformations. State minimi-

zation [Kohavi 1978], state encoding [Villa 1997], and logic minimization using

unreachable states or state equivalence [Kohavi 1978] as don’t cares, for exam-

ple, are valid transformation methods because they do not change the input-out-
put behavior of a sequential circuit. Furthermore, it is possible to characterize

complete flexibility in the sequential domain [Yevtushenko 2001; Mishchenko

2005], similar to the combinational counterpart. In the computation, however,

we have to manipulate finite automata, rather than Boolean formulas.

The above approaches are state-based in the sense that we have to know

some state information for a given sequential circuit. The expensive derivation

of state information limits their applicability to large designs. In contrast, there

are structure-based transformations, which are carried out according to circuit
structures and do not rely on state information. Retiming [Leiserson 1983,

1991] and resynthesis [Malik 1991], for example, are practical transformation

methods for sequential logic minimization.

Although most designs are sequential and practical sequential optimization

techniques are available, logic synthesis flows for the industrial design typically

consist of only combinational optimization methods. This phenomenon can

be attributed to the hardness of sequential circuit equivalence verification

[Jiang 2006]. From the complexity viewpoint, sequential equivalence checking
is PSPACE-complete, which is considered much harder than the coNP-complete

combinational equivalence checking problem. In industrial practice, combina-

tional equivalence checking is considered “solvable.” (In fact, equivalence

checking of industrial circuits with multi-million gates has been demonstrated

[Kuehlmann 1997]. Of course there are special cases of combinational circuits

that are hard to verify, e.g., multipliers with different circuit structures.) On

the contrary, for sequential equivalence checking, there are almost no good

approaches that are general enough and work for the majority of practical
test-cases. Making sequential circuit optimization scalable and verifiable is an

important research subject.
6.4 TECHNOLOGY MAPPING

The logic optimization algorithms described thus far operate on Boolean networks.

The optimization aims at simplifying logic expressions and is independent of the tar-

get implementation technology. To finish the logic synthesis steps, we need to

implement logic gates with physical layouts. One solution to it is to perform

6.4 Technology mapping 363
technology mapping, which is one of the most important tasks in technology

dependent optimization. It takes on a technology-independently optimized logic
netlist, and expresses the netlist using a set of pre-designed and pre-characterized

gate layouts from a technology library. Typically, the goal is to make optimal use

of all of the gates in the library to produce a circuit with minimum area subject to

the delay constraint for critical-path delay no greater than a target value.

Technology mapping algorithms are constrained by the structure of the logic

netlists produced by technology-independent optimization. It is not the role of

technology mapping to change the structure of the circuit radically, for exam-

ple, by finding common sub-expressions between two or more parts of the cir-
cuit. Likewise, it is not the main role of technology mapping to reduce the

number of levels of logic along the critical path. The role of technology

mapping is to make the actual gate choice to implement the logic netlist, for

example, choosing the fastest gates along the critical path and using the most

area-efficient combination of gates off the critical path.

A technology mapping algorithm should ideally achieve several goals. It

should be able to adapt to a variety of different libraries because an algorithm

which depends on characteristics of a particular library is of limited use, and
an algorithm which is geared to a subset of the gates in a library is limited in

its optimization potential. To practically achieve this goal of adaptability, a user

must be able to provide new gates to the technology mapper without under-

standing its detailed operation, and these gates should be used effectively.
6.4.1 Technology libraries
The introduction of gate arrays and standard cells brought comparable ben-
efits to IC designers. A gate array is an array of transistors and routing channels

which can be configured into an IC through a metalization process during semi-

conductor fabrication. The metalization phases are used for cell definition, such

as defining a NOR cell, and for interconnecting the cells. The electrical charac-

teristics of cells after metalization have been carefully defined and are embodied

in a databook. Standard cells are combinational and sequential logic gates whose

electrical characteristics have been carefully defined and embodied in a library.

Standard cells are similar to gate arrays in that they are precharacterized in a
databook, but they offer additional degrees of freedom since they go through

all the mask steps of semiconductor processing.

Logic gates of VLSI circuits, especially for ASICs, are usually restricted to be

implemented by selections from a technology library of gates. A gate is a prim-

itive element available in a particular implementation technology; a technology
library is a collection of these gates. A technology library is assumed to consist

of a finite collection of gates. For example, the gates in a static CMOS gate-array

(or standard-cell) design typically include inverters, NAND gates, NOR gates,
and a variety of complex gates, whereas the gates in an emitter-coupled logic
(ECL) gate-array are typically NOR gates and XOR gates.

364 CHAPTER 6 Logic synthesis in a nutshell
These libraries are typically composed of a few hundred gates and sequential

elements like latches and flip-flops for which highly optimized layouts have
been manually designed for a particular technology. Each gate is assigned a num-

ber of values associated with the different cost functions under which it will be

optimized. For example, each gate is assigned a value called the area of the gate

representing the physical area occupied by the gate. The logic designers are

then restricted to using these gates in their logic circuits.
Example 6.67 Th
e combinational subset of a very simple library is shown in Figure 6.26. The library cell

names, associated area costs, their functions, and their representations in terms of two-

input NAND (NAND2) gates and inverters (INV’s) are shown.
INV

NAND2

NAND3

NAND4

AOI21

AOI22

XOR

2

3

4

5

4

5

4

Gate Cost Symbol Pattern DAG

FIGURE 6.26

Gate library.

6.4 Technology mapping 365
Given a technology library, the problem of technology mapping is finding a

multilevel circuit equivalent to the given Boolean network such that it is com-
prised of gates in the library and has minimum cost, which could be the area,

delay, testability, or power consumption of the resulting circuit.
6.4.2 Graph covering
A systematic approach to technology mapping is based on the notion of graph

covering. With this formulation, the technology mapping problem can be

viewed as the optimization problem of finding a minimum cost covering of
the subject graph by choosing from the collection of pattern graphs for all

gates in the library. A cover is a collection of pattern graphs such that every

node of the subject graph is contained in one or more of the pattern graphs.

Moreover, one restriction of any cover is that the inputs of one pattern in the

covering must be the outputs of some other pattern in the covering. Otherwise

it would imply that the inputs of one pattern come from internal nodes in

another pattern. As these internal signal values are not visible outside the

pattern, any covering without such a restriction would not be meaningful.
Example 6.68 Th
e cover shown in Figure 6.27a is legitimate while that in Figure 6.27b is not.

In graph covering, the Boolean network to be covered is often represented in

a special form, where each gate is either of a NAND2 or an INV. It is termed the

subject graph, or subject DAG. In addition to the Boolean network to be cov-

ered, each library gate is also represented in this special form. Each realization is

termed a pattern graph, or pattern DAG. Note that a gate may have more

than one associated pattern DAG.
Example 6.69 In
 Figure 6.26, the pattern DAGs of the library cells are shown. The NAND4 gate has

more than one pattern DAGs.
(b)(a)

AOI21

AOI21

NAND2

AOI21

INVNAND3

FIGURE 6.27

Graph coverings: (a) legal and (b) illegal.

(a) (b)

FIGURE 6.28

(a) Subject DAG example. (b) Subject DAG decomposed into a forest of trees.

366 CHAPTER 6 Logic synthesis in a nutshell
Example 6.70 Fi
gure 6.28a shows a subject DAG example.

The optimization problem of technology mapping can now be stated as: Find a

minimum cost covering of the subject DAG by the pattern DAGs.
6.4.3 Choice of atomic pattern set
The choice of which atomic patterns to use for the subject and pattern graphs is

an important consideration for graph covering algorithms. This decision influ-

ences the range of solutions for the covering problem and the number of
patterns needed.

Why subject and pattern graphs are in terms of NAND2 and INV is motivated

by the following observation. Adding additional functions such as a NOR2 gate,

an AND2 gate, or an OR2 gate cannot provide higher-quality solutions; likewise,

adding NAND, NOR, AND, or OR gates with more than two inputs cannot pro-

vide higher-quality solutions. This observation is based on the fact that given a

cover for a subject graph using a larger set of functions, it is possible to show

an equivalent cover where each function is replaced by an equivalent set of
NAND2 gates and inverters.

Restricting ourselves to only a NAND2 gate and inverter does come at the

price of increasing the number of patterns needed to represent some logic func-

tions, as can be seen from the following example. Experience has shown that

the increase in the number of patterns (and hence the increase in the memory

and time required for technology mapping) is not significant.
Example 6.71 Th
e logic function

f ¼ a � b � c � d þ e � f � g � hþ i � j � k � l þm � n � o � p

6.4 Technology mapping 367
requires only one pattern corresponding to a tree of five NAND4 gates. However, repre-

senting all patterns for this same function using NAND2 gates and INV’s requires 18

patterns.
6.4.4 Tree covering approximation
One technique (following the paradigm established in the domain of code gener-
ation [Aho 1976]) for solving the graph covering problem is to partition the sub-

ject graph into a forest of trees and solve the covering problem on each of the

trees. A tree is a DAGwhere every node (including primary inputs) has a single fan-

out. The tree necessarily has a single sink (primary output) called the root and the

sources (primary inputs) of the tree are called the leaves of the tree.
Example 6.72 Th
e subject DAG of Figure 6.28a can be partitioned into a forest of trees as shown in

Figure 6.28b.

The motivation for looking at the problem of tree covering is the existence of an

efficient algorithm for the optimal tree covering problem [Keutzer 1987].

The application of the tree covering to technology mapping proceeds as fol-

lows. The first step is to convert the Boolean network into the NAND2-INV form,

that is, every logic gate after the conversion is of type either NAND2 or INV. This
subject DAG is then partitioned into a forest of trees by cutting the graph at each

multiple-fanout stem. The resulting trees are optimally covered one tree at a time.

Finding the optimum covering of a tree is done by generating the complete set of

matches for each node in the tree (that is, the set of tree patterns which are can-

didates for covering a particular node) and then selecting the optimum match

from among the candidates using a dynamic programming algorithm.
Example 6.73 C
onsider a Boolean network given by

Z ¼ X þ �Y þ h
Y ¼ W � �d
X ¼ e � f � g; and
W ¼ a � bþ c

A NAND2-INV representation of the Boolean network is given in Figure 6.29a. The trivial

covering of the subject DAG by pattern DAGs from the library of Figure 6.26 is also illu-

strated in Figure 6.29a. The cost of this trivial covering corresponds to the cost for seven

NAND2 gates and five INV’s, giving a cost of 31. A substantially better covering that

exploits the larger gates in the library is shown in Figure 6.29b. The cost of this

covering is the cost of two INV’s, two NAND2’s, one NAND3, and one NAND4 for a total

cost of 19. A covering which utilizes an AOI gate with a lower cost of 17 is shown in

Figure 6.29c.

(a)

(b)

(c)

FIGURE 6.29

Tree coverings: (a) Trivial covering. (b) Better covering. (c) Optimum covering.

368 CHAPTER 6 Logic synthesis in a nutshell

6.4 Technology mapping 369
6.4.5 Optimal tree covering
A solution to establishing the initial set of candidate matches for a tree is to
attempt to match each pattern at each node in the tree. If there are p patterns

in the pattern set and n nodes in the subject graph, then this approach has com-

plexity O (n � p).
Having generated a set of candidate matches for each node in the subject

graph, an optimal tree cover must then be selected from among the candidates.

Dynamic programming can be used for this purpose. Dynamic programming is a

general technique for algorithm design which can be applied when the solution

to a problem can be built from the solutions of a number of sub-problems.
Consider the problem of finding a minimum area cover for a subject tree T.

A scalar cost is assigned to each tree pattern, and the cost for a cover is the

sum of the costs for each pattern in the cover. The key observation is that the

minimum-area cover for a tree T can be derived from the minimum-area covers

for every node below the root of T. This is the principle of optimality for tree

covering and is used as follows to find an optimal cover for T. For every match

at the root of the tree the cost of an optimal cover containing that match equals

the sum of the cost of the corresponding gate and the sum of the costs of the
optimal covers for the nodeswhich are inputs to thematch.2 Note that the optimal

covers for each input to thematch at the root can be computed once and stored; it

is not necessary to recompute the optimal cover for each input of each match.

Because each node in the tree is visited only once, the complexity of this

algorithm is proportional to the number of nodes in the subject tree times the

maximum number of matches at any node in the subject tree. The maximum

number of matches is a function of the library size and is therefore a constant

independent of the subject tree size. As a result the covering algorithm has lin-
ear complexity in the size of the subject tree, and the memory requirements are

also linear in the size of the subject tree.
Example 6.74W
e illustrate the optimum covering algorithm on the tree of Figure 6.30. We walk from

the primary inputs to the primary output of the tree and determine the best match at

each gate output. At each gate output, the match selected for the sub-tree whose root

is the gate output has been shown along with the total cost of the optimal cover for this

sub-tree. For the first-level gates, only NAND2 and INV matches are possible. At the out-

put of gate 2 the only match is with a NAND2, and therefore the total cost is 8. At the

output of gate 12 two matches are possible, with a NAND2 or with a NAND3. The former

will result in a cost of 8, so we pick the latter which has a cost of 4. At the output of gate 4

the best match corresponds to an AOI gate with a cost of 9. The final cost at the primary

output is 17. The optimum covering corresponds to that of Figure 6.29c.
2Recall the rules for legal coverings stated in Section 6.4.2.

NAND2
(3) NAND2

(8) NAND2
(13)

INV (2)

INV (2)

NAND2
(3) INV (5) NAND3

(4)

AOI21
(9) NAND2

(16)
INV
(18) NAND3

(17)

1

2
3 4

5 6

7

8

9

10

11

12

FIGURE 6.30

Dynamic programming for optimum tree covering.

370 CHAPTER 6 Logic synthesis in a nutshell
6.4.6 Improvement by inverter-pair insertion
A simple way to improve the quality of circuits produced by the tree covering

algorithm is by inserting inverter pairs. Redundant inverters are added to each

tree to improve the number of patterns which can match at each node. This

leads to an examination of more possible covers for each tree, leading directly

to an improvement in the optimization quality.

The technique works as follows. Each edge in the subject tree and each edge

in a pattern which connects two NAND gates is replaced with a pair of inver-

ters. An extra pattern consisting of a pair of inverters is added to the matching
patterns. This extra pattern is given zero area cost and zero delay cost. The tree

covering algorithm is then applied unmodified.

Because of the optimality of the tree covering algorithm adding these extra

inverters cannot lead to a cover with a greater cost. Each pair of inverters can

be covered by the inverter-pair pattern, which leads to the solution which

existed before the inverters were added. However, the advantage is that the tree

covering algorithm is able to make the optimal choice between covering the

extra inverters with the inverter-pair pattern at no cost or splitting the inverters
between two patterns if this leads to a cover with less cost. The only disadvan-

tage is that the number of nodes in the subject tree and the pattern trees has

increased. The increase in the number of nodes is bounded by a factor of three

(two extra inverter nodes for each node in the subject tree); however, the actual

increase is typically less because redundant inverters are added only at the out-

put of a NAND gate and not at the output of each inverter in the subject tree.
6.4.7 Extension to non-tree patterns
Some gates in a technology library cannot be represented in a tree form. Com-

mon examples are the XOR gate shown at the bottom of Figure 6.26, a

6.5 Timing analysis 371
two-to-one multiplexor, and a three-input majority gate (logic function f¼ a � bþ
a � cþ b � c). However, a simple extension allows these patterns to be included.

A leaf-DAG is a DAG where the only nodes with fanout greater than one are

the primary inputs. Patterns which are trees, and patterns which are leaf-DAGs

can be used directly by the tree covering algorithm. Hence the leaf-DAG pat-

terns may include the XOR pattern shown in Figure 6.26. Note, however, that

because of the multiple-fanout of one of these matches, the XOR gate must

match at the leaves of the tree.
6.4.8 Advanced subjects
The success of the graph covering formulation has helped formulate the logic

synthesis and optimization problem as an integration of technology-independent

and technology-dependent portions. Graph covering based technology mapping

is able to address a morass of technology specific issues, such as technology

libraries and their area and timing characterization, which would significantly

complicate higher level optimizations. The major limitation of graph covering,

however, is its dependence on the structure of the given subject graph. This lim-
itation was overcome in [Lehman 1997], where logic decomposition during

technology mapping is proposed as a way of bridging the gap between technol-

ogy-independent optimization and technology mapping. The approach was fur-

ther developed in [Chatterjee 2006].

In our discussion, we focused on standard cell technology mapping. As the

mapping algorithms heavily depend on the target implementation technology,

different design styles may need different technology mapping methods. For

instance, technology mapping for FPGAs [Scholl 2001], and even for standard
cells [Kravets 2001], can be formulated very differently.
6.5 TIMING ANALYSIS

After correct logical functioning, the speed of an integrated circuit is one of the

most important design characteristics. Timing optimization is thus an important

aspect of logic synthesis. Any optimization system is only as good as the models

that guide it, and as a result good timing optimization is entirely dependent on

accurate timing analysis. For these reasons we spend a good deal of attention on

techniques for accurate timing estimation of synchronous sequential circuits.
Accurate timing estimation relies on component delay calculation and

circuit delay calculation. Component delay calculation is the method used

for actually calculating the delay of individual components, such as gates and

wires, within a circuit. In calculating gate delays, timing data such as the iner-
tial and propagation delays of gates are typically gathered from extensive

transistor-level and/or device-level simulation of the circuit components. In cal-

culating wire delays, timing data arising from the parasitic capacitances and

372 CHAPTER 6 Logic synthesis in a nutshell
resistances of wires can be estimated through simulation or can be back-

annotated from the final circuit layout. In our discussion we are mainly
concerned about gate delays as wire delays can be embedded into the gate

delays by the delay model to be introduced.

If we view a circuit as a graph, then the method used for delay calculation at

the vertices of the graph is gate delay calculation while circuit delay calculation

is the model used for calculating delay for the entire graph.

Below we present a simple gate delay model and then focus on the topic of

circuit delay calculation, which is the most challenging and relevant problem in

timing estimation for the developer of a logic optimization system.
Gate Delay Model. A popular (CMOS) gate delay model is a simple linear

model [Sutherland 1999]: The delay Td of a gate g is given by the equation

Td ¼ Tp þ Te � Cout

Cin
ð6:19Þ

where Tp is the parasitic delay of the gate, Te is the logical effort, Cin is the

input capacitance, and Cout is the capacitive load at the gate output. It does

not consider more refined details such as the effect of slow rising or falling tran-

sitions on the transistors associated with this gate. In this model, parameters

Tp, Te, and Cin are fixed constants for a standard cell whereas Cout varies depend-
ing on the fanout load of a gate (which may include wiring capacitances).

Gate delay calculations are performed extensively in timing analysis and

logic optimization, and as a result tradeoffs have evolved between the accuracy

of a model and the runtime of calculation. Although Equation (6.19) is a simple

approximation, it is good enough for logic optimization purposes. More accu-

rate nonlinear models are possible and often stored as look-up tables. Delay

calculation often depends on the circuit implementation method.

Circuit Delay Calculation. We explain how to use gate delay calculation to
compute the delay of an entire synchronous circuit. A simple implementation

model of a clocked, or synchronous, sequential circuit is shown in Figure 6.31,

where a clocked memory element (register), e.g., an edge-triggered flip-flop, is

used. At each active clock edge the next state is loaded into the flip-flops and

becomes the current state.

Registers have a propagation delay associated with the interval between a

clock edge and valid outputs. In order to guarantee that an input is not sampled

when invalid, a period of validity extending slightly before and after the active
edge is specified. Specification of a setup time ts and hold time th dictates that

the register inputs must be valid and stable during a period that begins ts before

the active clock edge and ends th after the edge.

Given a sufficiently long clock period and appropriate constraints on the

timing of transitions on the inputs, the inputs to the flip-flops can be guaranteed

to be stable at each active clock edge, ensuring correct operation. Correct oper-

ation depends on the assumptions that:

Combinational Logic

clock

outputsinput

current state next state

FIGURE 6.31

Clocked model for a sequential circuit.

6.5 Timing analysis 373
1. The clock period is longer than the sum of the maximum propagation

delay through the combinational logic, the setup time of the registers,

and the maximum propagation delay through the registers.

2. The circuit’s input signals are stable and valid for a sufficient period sur-

rounding each active clock edge to accommodate both the maximum
propagation delay through the combinational logic and the setup time

of the registers.

3. The minimum propagation delay through the combinational logic exceeds

the hold time requirement of the registers.
The most important constraint above is the first one. The length of the clock

period of a sequential circuit is directly related to the maximum propagation

delay through the combinational logic of the circuit.

Given that the delay calculation of the sequential circuit primarily depends

on the delay of the combinational logic, we will focus on the problem of cor-

rectly computing the maximum propagation delay of a multilevel combinational

circuit. We will show in the next section how to optimize a circuit so as to min-
imize the delay through the circuit.

For some time the most common approach to estimating and validating the

delay of a synchronous circuit was timing simulation. The approach is dimin-

ishing in utility because of the incompleteness and excessiveness of input sti-

muli required to accurately determine circuit performance. Instead, timing
verification is being used for validating the timing of circuits, and we will focus

exclusively on using timing verification for estimating and validating the timing

of a synchronous circuit.
Terminology. Before delving into timing analysis, we introduce terminology

that will allow us to discuss timing issues. A combinational circuit can be viewed

as a DAG G¼ (V, E) where vertices or nodes V in the graph correspond to gates in

the circuit and edges E correspond to connections in the circuit. Primary inputs

374 CHAPTER 6 Logic synthesis in a nutshell
are sources� Vwhile primary outputs are sinks� V. A path in a combinational

circuit is an alternating sequence of vertices and edges, {u0, e0, . . ., un, en, unþ1},
where edge ei ¼ (ui, uiþ1), 1 	 i 	 n, connects the output of vertex vi to an input

of vertex uiþ1. For 1 	 i 	 n, vi is a gate gi, u0 is a primary input, and unþ1 is a pri-
mary output. Each ei is a wire (or a two-terminal net) in the actual circuit.

Let p ¼ {u0, e0, . . ., un, en, unþ1} be a path. The inputs of ui other than ei–1 are

referred to as the side-inputs to p, that is, the set of signals not on p but feed-

ing to the gates on p.

Each gate gi (or wire ei) is assumed to have a delay which can be a fixed

quantity under the fixed delay model or can vary in a given range under the
monotone speedup delay model.

A controlling value at a gate input is the value that determines the value at

the output of the gate independent of the other inputs. For example, 0 is a

controlling value for an AND gate. A non-controlling value at a gate input

is the value which is not a controlling value for the gate. For example, 1 is a

non-controlling value for an AND gate. We say that a gate g has the controlled
value if one of its inputs has a controlling value; otherwise, we say that g has

the non-controlled value.
Path sensitization studies the conditions under which signals can propa-

gate from the primary inputs to the primary outputs of a combinational circuit.

The conditions depend on the delay models and modes of operation assumed

for the circuit.

We will precisely characterize the delay of a multilevel logic circuit, and see

that the delay of a multilevel circuit depends on various assumptions relating

to the mode of operation of the circuit and the delay model chosen. We begin

with the simplest topological timing analysis, which is conservative but
sound. The complexity of the analysis is linear in the circuit size. We will then

introduce functional timing analysis, which is accurate at the cost of compu-

tation overhead.
6.5.1 Topological timing analysis
Most timing analyzers fall into the topological timing analysis category, where

the topologically longest path in the circuit is assumed to dictate the critical delay
of the circuit. We describe a topological timing analyzer that determines the lon-

gest path in the circuit without regard to the Boolean functionality of the circuit.

Circuit speed is measured by most optimization systems using a fixed delay

model, where each gate and wire in the network has a given and fixed delay. Typ-

ically, a worst-case design methodology is followed, where the given delay for the

gate is an upper bound on the actual delay of the fabricated gate.

The arrival time of a signal s, denoted As, is the time at which the signal set-

tles to its steady state value. For a given circuit, using the arrival times of the pri-
mary inputs we can compute the arrival time of every signal in the circuit. For a

gate in the circuit, the arrival time of the gate output equals the maximum

6.5 Timing analysis 375
among the arrival times of the gate inputs plus the gate delay. That is, the arrival

time of the output signal o of a gate g with gate delay d can be computed by

Ao ¼ max
i2FI gð Þ

Aif g þ d

where FI(g) denotes the set of fanin signals of g.

The required time of a signal s, denoted Rs, is the time at which the signal

is required to be stable. For a given circuit, using the required times of the pri-

mary outputs we can compute the required time of every signal in the circuit.

For a gate in the circuit, the required time of any input of the gate equals the

minimum among the required times of the gate outputs minus the gate delay.

That is, the required time of any input signal i of a gate g with gate delay d

can be computed by

Ri ¼ min
o2FO gð Þ

Rof g � d

where FO(g) denotes the set of fanout signals of g.

The slack time of a signal s, denoted Ss, is the difference between its

required time and arrival time, i.e.,

Ss ¼ Rs � As

The slack value of a signal measures its looseness in terms of timing criticality.

Negative slack values indicate timing violation.

Starting with the primary input arrival times, we can compute the arrival time
for every signal in a topological order from primary inputs to primary outputs.

Similarly, using the primary output required times, we can compute the required

times for every signal in a reverse topological order from primary outputs to pri-

mary inputs. Thus the slack at each node can be obtained as well.
Example 6.75 Th
e arrival time, required time, and slack of each signal in Figure 6.32 are shown as a

3-tuple. We are given the arrival times for the four primary inputs and the required time

for the output. The delay of each node is indicated within the node. The arrival time of

signal e is the maximum of the arrival times of primary inputs a and b (¼ 1) plus the delay

of the node (¼ 1), equaling 2. Similarly the arrival times of the other signals can be calcu-

lated. On the other hand, given a required time of 8 at output h, the required times for-

signals f and g can be computed as 8 minus the delay of the output node (¼ 2),

equaling 6. However, given the required time of 6 at f, the required times at signals

e and g are calculated to be 4. The required time for signal g is the minimum of the com-

puted required times, namely 4. This is intuitive because, if g does not stabilize by time 4,

f will not stabilize by time 6 and the output h will not stabilize by time 8. Similarly, the

required times at the other signals can be calculated.

The topologically longest path of a circuit is a path where each signal has the

minimum slack. Static timing analyzers assume that the critical delay of the cir-

cuit is the delay of the topologically longest path. Under this (pessimistic)

assumption the longest path is also called the critical path.

2

1 2

2

(0 2 2)(0 3 3) (1 3 2) (1 2 1)

(2 4 2)

(5 6 1)

(7 8 1)

(3 4 1)

a b c d

e

f

g

h

FIGURE 6.32

Topological timing analysis.

376 CHAPTER 6 Logic synthesis in a nutshell
6.5.2 Functional timing analysis
The problem with topological analysis of a circuit is that not all critical paths in

a circuit need be responsible for the circuit delay. Critical paths in a circuit can

be false, i.e., not responsible for the delay of a circuit. The critical delay of a

circuit is defined as the delay of the longest true path in the circuit. Thus, if the

topologically longest path in a circuit is false, then the critical delay of the circuit
will be less than the delay of the longest path. The critical delay of a combina-

tional logic circuit is dependent on not only the topological interconnection

of gates and wires, but also the Boolean functionality of each node in the circuit.

Topological analysis only gives a conservative upper bound on the circuit delay.
Example 6.76 As
sume the fixed delay model, and consider the carry bypass circuit of Figure 6.33. The

circuit uses a conventional ripple-carry adder (the output of gate 11 is the ripple-carry

output) with an extra AND gate (gate 10) and an additional multiplexor. If the propagate

signals p0 and p1 (the outputs of gates 1 and 3, respectively) are high, then the carry-

out of the block c2 is equal to the carry-in of the block c0. Otherwise it is equal to the

output of the ripple-carry adder. The multiplexor thus allows the carry to skip the

ripple-carry chain when all the propagate bits are high. A carry-bypass adder of arbitrary

size can be constructed by cascading a set of individual carry-bypass adder blocks,

such as those of Figure 6.33.

Assume the primary input c0 arrives at time t ¼ 5 and all the other primary inputs

arrive at time t ¼ 0. Let us assign a gate delay of 1 for AND and OR gates and gate

delays of 2 for the XOR gates and the multiplexor. The longest path including the late

mux
1

0

1

2

3

4

5

6
7 8

9

10

11

c0

a0
b0

a1
b1

s0

s1

c2

p0

p1

FIGURE 6.33

2-bit carry-bypass adder.

6.5 Timing analysis 377
arriving input in the circuit is the path shown in bold, call it P, from c0 to c2 through

gates 6, 7, 9, 11, and the multiplexor (the delay of this path is 11). A transition can never

propagate down this path to the output because in order for that to happen the propa-

gate signals have to be high, in which case the transition propagates along the bypass

path from c0 through the multiplexor to the output. This path is false since it cannot

be responsible for the delay of the circuit.

For this circuit, the path that determines the worst-case delay of c2 is the path from

a0 to c2 through gates 1, 6, 7, 9, 11, and the multiplexor. The output of this critical path

is available after 8 gate delays. The critical delay of the circuit is 8 and is less than the

longest path delay of 11.

6.5.2.1 Delay models and modes of operation

Whether a path is a true or false delay path closely depends on the delay
model and the mode of operation of a circuit.

In the commonly used fixeddelaymodel, the delay of a gate is assumed to be a

fixednumberd,which is typically anupper boundon the delayof the component in

the fabricated circuit. In contrast, themonotone speedupdelaymodel takes into
account the fact that the delayof each gate can vary. It specifies the delays as an inter-

val [0, d], with the lower bound 0 and upper bound d on the actual delay.

Consider the operation of a circuit over the period of application of two con-

secutive input vectors u1 and u2. In the transition mode of operation, the cir-

cuit nodes are assumed to be ideal capacitors and retain their values set by u1
until u2 forces the voltage to change. Thus, the timing response for u2 is also a

function of u1 (and possibly other previously applied vectors). In contrast, in

the floating mode of operation the nodes are not assumed to be ideal capaci-
tors, and hence their state is unknown until it is set by u2. Thus, the timing

behavior for u2 is independent of u1.
Transition Mode and Monotone Speedup. In our analysis of the carry-

bypass adder we assumed fixed delays for the different gates in the circuit

378 CHAPTER 6 Logic synthesis in a nutshell
and applied a vector pair to the primary inputs. It was clear that an event (a sig-

nal transition, either 0 ! 1 or 1 ! 0) could not propagate down the longest
path in the circuit. A precise characterization is that the path cannot be sensi-
tized, and thus false, under the transition mode of operation and under (the

given) fixed gate delays. Varying the gate delays in Figure 6.33 does not change

the sensitizability of the path shown in bold.

False path analysis under the fixed delay model and the transition mode of

operation, however, may be problematic as seen from the following example.
Example 6.77 C
onsider the circuit of Figure 6.34a, taken from [McGeer 1989]. The delays of each of

the gates are given inside the gates. In order to determine the critical delay of the circuit

we will have to simulate the two vector pairs corresponding to a, making a 0! 1 transi-

tion and a 1! 0 transition. Applying 0! 1 and 1! 0 transitions on a does not change

the output f from 0. Thus, one can conclude that the circuit has critical delay 0 under the

transition mode of operation for the given fixed gate delays.

Now consider the circuit of Figure 6.34b which is identical to the circuit of

Figure 6.34a except that the buffer at the input to the NOR gate has been sped up from

2 to 0. We might expect that speeding up a gate in a circuit would not increase the criti-

cal delay of a circuit. However, for the 0! 1 transition on a, the output f switches both

at time 5 and time 6, and the critical delay of the circuit is 6.
(a)

(b)

2

a f2

2

2

2

1

1
0

2

1

3

2

a f2

2

2

0

1

1
0

2

1

1

2 2-4

3-4

5-6

FIGURE 6.34

Transition mode with fixed delays.

6.5 Timing analysis 379
This example shows that a sensitization condition based on transition mode and

fixed gate delays is unacceptable in the worst-case design methodology,
where we are given the upper bounds on the gate delays and are required to

report the (worst-case) critical path in the circuit. Unfortunately, if we use only

the upper bounds of gate delays under the transition mode of operation, an

erroneous critical delay may be computed.

To obtain a useful sensitization condition, one strategy is to use the transition

mode of operation and monotone speedup as the following example illustrates.
Example 6.78 C
onsider the circuit of Figure 6.35, which is identical to the circuit of Figure 6.34a, except that

each gate delay can vary from0 to its given upper bound. As before, in order to determine the

critical delay of the circuit, we will have to simulate the two vector pairs corresponding to a
making a 0! 1 transition and a 1! 0 transition. However, the process of simulating the cir-

cuit ismuchmore complicated since the transitions at the internal gatesmay occur at varying

times. In the figure, the possible combinations of waveforms that appear at the outputs of

each gate are given for the 0! 1 transition on a. For instance, the NOR gate can either stay

at 0 ormake a 0! 1! 0 transition,where the transitions can occur between [0, 3] and [0, 4],

respectively. In order to determine the critical delay of the circuit, we scan all the possible

waveforms at output f and find the time at which the last transition occurs over all the wave-

forms. This analysis provides us with a critical delay of 6.

Timing analysis for a worst-case design methodology can use the above strategy

of monotone speedup delay simulation under the transition mode of operation.

The strategy however has several disadvantages. Firstly, the search space is 22n

where n is the number of primary inputs to the circuit, since we may have to

simulate each possible vector pair. Secondly, monotone speedup delay simula-

tion is significantly more complicated than fixed delay simulation. These diffi-

culties have motivated delay computation under the floating mode of operation.

Floating Mode and Monotone Speedup. Under floating mode, the delay

is determined by a single vector. As compared to transition mode, critical delay

under floating mode is significantly easier to compute for the fixed or mono-

tone speedup delay model because large sets of possible waveforms do not need
2

a f2

2

2

2

1

1
0

0-2

0-1

0-1

0-2 0-2 0-4

0-3 0-4

0-5 0-6

FIGURE 6.35

Transition mode with monotone speedup.

380 CHAPTER 6 Logic synthesis in a nutshell
to be stored at each gate. Single-vector analysis and floating mode operation, by

definition, make pessimistic assumptions regarding the previous state of nodes
in the circuit. The assumptions made in floating mode operation make the fixed

delay model and the monotone speedup delay model equivalent.3

6.5.2.2 True floating mode delay
The necessary and sufficient condition for a path to be responsible for circuit

delay under the floating mode of operation is a delay-dependent condition.

The fundamental assumptions made in single-vector delay-dependent analy-

sis are illustrated in Figure 6.36. Consider the AND gate of Figure 6.36a. Assume
that the AND gate has delay d and is embedded in a larger circuit, and a vector

pair hu1, u2i is applied to the circuit inputs, resulting in a rising transition occur-

ring at time t1 on the first input to the AND gate and a rising transition at time t2
on the second input. The output of the gate rises at a time given bymax{t1, t2}þ d.

The abstraction under floating mode of operation only shows the value of u2. In
this case a 1 arrives at the first and second inputs to the AND gate at times t1 and

t2, respectively, and a 1 appears at the output at time max{t1, t2} þ d. Similarly, in

Figure 6.36b two falling transitions at the AND gate inputs result in a falling transi-
tion at the output at a time that is the minimum of the input arrival times plus the

delay of the gate.

Now consider Figure 6.36c, where a rising transition occurs at time t1 on the

first input to the AND gate and a falling transition occurs at time t2 on the sec-

ond input. Depending on the relationship between t1 and t2 the output will either

stay at 0 (for t1 � t2) or glitch to a 1 (for t1 < t2). It is possible to accurately deter-

mine whether the AND gate output is going to glitch or not if a simulation is car-

ried out to determine the range of values that t1 and t2 can have on hu1, u2i.
(This was illustrated in Figure 6.35.) However, under the floating mode of oper-

ation we only have the vector u2. The 1 at the first input to the AND gate arrives

at time t1, and the 0 at the second input arrives at time t2. The output of the

AND on u2 obviously settles to 0 on u2, but at what time does it settle? If t1 �
t2, then the output of the gate is always 0, and the 0 effectively arrives at time
3To understand this effect, consider a circuit C with fixed values on its gate delays. Let p be a path

through C and u be a vector applied to C. In order to determine if p is responsible for the delay of C

on v, we inspect the side-inputs of p. At any gate g on p, the side-inputs have to be at non-

controlling values when the controlling or non-controlling value propagates along p through g. If

the value at a side-input i to g is non-controlling on v, monotone speedup (under the transition

or floating mode) allows us to disregard the time that the non-controlling value arrives, since we

can always assume that it arrives before the value along p. Let the delay of all paths from the

primary inputs to i be greater than the delay of the sub-path corresponding to p ending at g.

Under monotone speedup, we can speed up all the paths to i, ensuring that the non-controlling

value arrives in time. Under floating mode with fixed delays we cannot change the delays of the

paths to i, but we can assume that u1, the vector applied before u, was providing a non-

controlling value! We do not have to wait for u to provide the non-controlling value. In either

case, the arrival time of non-controlling values on side-inputs does not matter.

dt1

t1

t1

t1

t1

t2

t2

t2

t1

t2

t2

t2

t1+d t2+d t2+d

d

(a)

d d

(b)

d d

(c)

MAX{t1,t2}+d

MIN{t1,t2}+d

MAX{t1,t2}+d

MIN{t1,t2}+d

FIGURE 6.36

Fundamental assumptions made in floating mode operation.

6.5 Timing analysis 381
0. If t1 < t2, then the gate output becomes 0 at t2 þ d. In order not to underes-

timate the critical delay of a circuit all single-vector sensitization conditions

have to assume that the 1 (the non-controlling value for the AND gate) arrives

before the 0 (the controlling value for the AND gate), i.e., that t1 < t2. Under

the floating mode of operation this corresponds to assuming that the values

on the previous vector u1 were non-controlling. (The above assumption also

captures the essence of transition mode delay under the monotone speedup
delay model. Given that the AND gate is embedded in a circuit, under the mono-

tone speedup model the sub-circuit that is driving the first input can be sped up

to cause the rising transition to arrive before the falling transition.)

The rules in Figure 6.36 represent a timed calculus for single-vector simula-

tion with delay values that can be used to determine the correct floating mode

delay of a circuit under an applied vector u2 (assuming pessimistic unknown

values for u1) and the paths that are responsible for the delay under u2. The
rules can be generalized as follows:
1. If the gate output is at a controlling value, pick the minimum among the

delays of the controlling values at the gate inputs. (There has to be at least

one input with a controlling value. The non-controlling values are ignored.)
Add the gate delay to the chosen value to obtain the delay at the gate output.

2. If the gate output is at a non-controlling value, pick the maximum of all

the delays at the gate inputs. (All the gate inputs have to be at non-

controlling values.) Add the gate delay to the chosen value to obtain

the delay at the gate output.

382 CHAPTER 6 Logic synthesis in a nutshell
To determine whether a path is responsible for floating mode delay under a vec-

tor u2, we simulate u2 on the circuit using the timed calculus. As shown in
[Chen 1991], a path is responsible for the floating mode delay of a circuit on

u2 if and only if for each gate along the path:
FIG

Firs
1. If the gate output is at a controlling value, then the input to the gate
corresponding to the path has to be at a controlling value and further-

more has to have a delay no greater than the delays of the other inputs

with controlling values.

2. If the gate output is at a non-controlling value, then the input to the gate

corresponding to the path has to have a delay no smaller than the delays

at the other inputs.
Letus apply the aboveconditions todetermine thedelayof the followingcircuits.
Example 6.79 C
onsider the circuit of Figure 6.34a reproduced in Figure 6.37. Applying the vector a ¼ 1

sensitizes the path of length 6 shown in bold, illustrating that the sensitization condition

takes into accountmonotone speedup (unlike transitionmode fixed delay simulation). Each

wire has both a logical value and a delay value (in parentheses) under the applied vector.
Example 6.80 C
onsider the circuit of Figure 6.38. Applying the vector (a, b, c) ¼ (0, 0, 0) gives a

floating mode delay of 3. The paths {a, d, f, g} and {b, d, f, g} can be seen to

be responsible for the delay of the circuit.
Example 6.81 C
onsider the circuit of Figure 6.39. Applying a ¼ 0 and a ¼ 1 results in a floating mode

delay of 5.

We presented informal arguments justifying the single-vector abstractions of

Figure 6.36 to show that the derived sensitization condition is necessary and

sufficient for a path to be responsible for the delay of the circuit under the float-

ing mode of operation. For a topologically oriented formal proof of the necessity

and sufficiency of the derived condition, see [Chen 1991].
2

a f2

2

2

2

1

1

1(0)

1(2)

0(1)
0(3)

0(2)

0(4)

0(4)

0(6)

URE 6.37

t example of floating mode delay computation on a circuit.

0(0)

0(0)

a

b

c
0(0)

e

d

1

1
1

1 g

f

1(1)

0(1)

0(2)

0(3)

FIGURE 6.38

Second example of floating mode delay computation on a circuit.

0a 0

1

2

1(0) 3

4

1(2)
1(1)

1(2)

1(5)

1(6)

1(5)
f

0a 0

1

2

0(0) 3

4

0(1)
0(1)

0(2)

0(4)

0(5)

0(5)
f

(a)

(b)

FIGURE 6.39

Third example of floating mode delay computation on a circuit.

6.5 Timing analysis 383
6.5.3 Advanced subjects
There has been significant research done in an effort to arrive at the correct sen-
sitization criterion in the late 1980s and early 1990s. A detailed history may be

found in [McGeer 1991]. The computation of true critical delay of a circuit can

be formulated with satisfiability solving [McGeer 1991; Guerra E Silva 2002] or

timed automatic test pattern generation [Devadas 1992].

As for sequential circuit timing analysis, depending on the register types

(e.g., edge-triggered flip-flops and level-sensitive latches) and the number of

clock phases used, their timing correctness requires careful analysis and verifi-

cation. On the other hand, for IC manufacturing in the nanometer regime, pro-
cess variations may cause substantial variations in circuit performance. This

fabrication imperfection has motivated the development of statistical static
timing analysis in replacement of the traditional (worst-case) static timing

analysis (i.e., the presented topological timing analysis). A good introduction

to sequential circuit timing analysis and statistical static timing analysis can be

found in [Sapatnekar 2004].

384 CHAPTER 6 Logic synthesis in a nutshell
6.6 TIMING OPTIMIZATION

Being able to meet timing requirements is absolutely essential in synthesizing

logic circuits. Timing optimization of combinational circuits can be performed

both at the technology-independent level and during technology mapping. We

consider the restructuring operations used in logic synthesis systems to improve

circuit speed. We give an overview of basic restructuring methods that take into
account timing constraints specified as input-arrival times of the primary inputs

and output-required times of the primary outputs. The goal is to meet the

timing constraints while keeping the area increase to a minimum. The methods

use topological timing analysis, described in Section 6.5.1, to compute arrival

times, required times, and slack times. Topological timing analysis is typically

deployed in timing optimization tools due to its simple and fast calculation;

functional timing analysis, in contrast, is mostly used for timing verification

purposes instead due to its expensive computation cost.
6.6.1 Technology-independent timing optimization
For a given circuit to be delay minimized, the timing constraints are specified as

the arrival times at the primary inputs and required times at the primary out-

puts. The optimization algorithm manipulates the network topology to achieve

improved speed until the timing constraints are satisfied or no further decrease

in the delay can be achieved.
The critical section of a Boolean network is composed of all the critical

paths from primary inputs to primary outputs. Given a critical path, the total

delay on the path can be reduced if any section of the path is sped up. Collaps-
ing and redecomposition are the basic steps taken in restructuring. The

nodes along the critical paths chosen to be collapsed and redecomposed form

the redecomposition region.
Example 6.82 In
 Figure 6.40a we have a critical path {a, x, y}. The critical path can be reduced by

first collapsing x and y and then redecomposing y in a different way to minimize the criti-

cal path as shown in Figure 6.40b.

Since a critical section usually consists of several overlapping critical paths,

we select a minimum set of subsections, called redecomposition points,
which when sped up will reduce the delays on all of the critical paths. (Note

that it is not always possible to do so.) A weight is assigned to each candidate

redecomposition point to account for possible area increase and for the total

number of redecomposition points required. The goal is to select a set of points

which cut all the critical paths and have the minimum total weight.

a b c

x

y

cba

z

y

(b)(a)

FIGURE 6.40

Collapsing and redecomposition.

6.6 Timing optimization 385
Once the redecomposition points are chosen, they are sped up by the col-

lapsing-decomposing procedure as described in Section 6.3.3. Since in a multi-

level network we can reduce the area by sharing common functions, we first
attempt to extract area saving divisors that do not contain critical signals. After

all such divisors have been extracted, we decompose the node into a tree and

place late arriving signals closer to the outputs, thus making them pass through

a smaller number of gates.
Example 6.83 In
 Figure 6.41, the critical paths in the original network are shown in bold and begin from

signals c and d. Node f is collapsed, and a divisor k is selected which has the desired

property that substituting k into f, places the critical signals c and d closer to the output.

Note that the critical paths in the decomposed network may have changed.

The collapsing-decomposing procedure can be iterated by identifying a new
a

b
c

f

(a)

d

e a

b c

f

d

e

Collapsed Node

(b)

b c

f

(c)

d

e

divisor

a

k

FIGURE 6.41

Basic idea of timing decomposition.

386 CHAPTER 6 Logic synthesis in a nutshell
critical section. The algorithm proceeds until the requirement is satisfied or no

improvement in delay can be made. A detailed exposition of speed optimization
algorithms can be found in, e.g., [Singh 1992; Devadas 1994].
6.6.2 Timing-driven technology mapping
Technology-independent delay optimization algorithms cannot estimate the

delay of a circuit accurately, largely due to the lack of accurate technology-

independent delay models. Therefore, such algorithms are not guaranteed to

produce faster circuits, when circuit speed is measured after technology

mapping and physical design. We will present a more accurate approach to

delay optimization during technology mapping. The tree covering algorithm
presented in Section 6.4.5, in the context of technology mapping for minimum

area, will be modified to target circuit speed.

The most accurate estimation of the delay of a gate in a circuit can only be

obtained after the entire circuit has been placed and routed. Since technology

mapping has to be performed before placement and routing, an approximate

delay model with reasonable accuracy has to be used. We adopt the linear delay

model of Equation (6.19) of Section 6.5 in the following discussion.

6.6.2.1 Delay optimization using tree covering

The tree covering algorithm of Section 6.4.5 can only be used if the cost of a

match at a gate can be determined by examining the cost of the match and
the cost of the inputs to the match (for which the cost has already been deter-

mined). For area optimization the cost of a gate depends on the area cost of the

match and the area cost of the inputs of the match. For delay optimization, the

cost is signal arrival time at the output of the match. Therefore, the cost of a

match for delay optimization depends not only on the structure of the tree

beneath the gate, but also on the capacitive load seen by the match. This load

cannot be determined at the time of the selection of the match as it depends

on the unmapped portion of the tree. Several attempts have been made to gen-
eralize tree covering to produce minimum delay implementations [Rudell 1989;

Touati 1990; Chaudhary 1992].

Load-Independent Tree Covering. The tree covering algorithm of Section

6.4.5 can be used to produce a minimum delay implementation of a circuit

provided the loads of all the gates in the circuit are the same. Under the assump-

tion that the delay of a gate is independent of the fanout of the gate, the tree

covering algorithm provides the minimum arrival time cover, if we compute

and store the arrival time at each node and choose the minimum arrival time
match at each node.
Example 6.84 C
onsider the technology library shown in Figure 6.42 and the circuit shown in Figure 6.43a.

For each gate in the library, its name, area, symbol, and pattern DAG are presented. In

addition, the delay parameters for our delay model are shown. By Equation (6.19), the

Gate Area

INV

NAND2

NAND3

NAND4

AOI21

1

2

3

4

3

Delay Parameters

A=0,B=1,G=1

A=1,B=1,G=2

A=1,B=2,G=3

A=5,B=2,G=5

A=1.5,B=1,G=3

Symbol Pattern DAG

FIGURE 6.42

Gate library.

3

1

4

2

(a)

3

1

4

2

(b)

NAND3

INV

NAND3

FIGURE 6.43

Circuit and its mapped implementation.

6.6 Timing optimization 387
intrinsic delay,Tp, is denoted byA, the load dependent coefficientTe/Cin is denoted byB, and

the loadCin presented by the gate to any input gate is denoted byG. Note that in order to cal-

culate the delay of a gate using Equation (6.19), we will use A and B for the gate and sum up

the G values for all its fanout gates.

388 CHAPTER 6 Logic synthesis in a nutshell
If the load of each gate in the circuit is considered to be 1, then the perfect match at

each gate can be determined in one bottom-up pass, as in Section 6.4.5. For gate 1, this

corresponds to a 2-input NAND gate with a delay of 2. The best match at gate 2 is a

3-input NAND gate with a delay of 3. The best covering for this circuit under the fixed

load assumption is shown in Figure 6.43b.

Load-Dependent Tree Covering. The above load-independent tree cover-

ing does not necessarily produce the optimal solution because the load of all

gates is not the same. As can be seen from the library in Figure 6.42, different

gates provide different load values to their inputs.
An algorithm, originally presented in [Rudell 1989], can be used to take into

account the effect of different loads. The first step of the algorithm is a pre-proces-

sing step over the technology library in order to create n load bins and quantize the

load values for all the pins in the library. For each load bin, a representative load

value is selected, and the remaining load values are mapped to their closest value

in the chosen set. The value of n determines the accuracy and the run time of the

algorithm. If n is equal to the number of distinct loads in the library, then the algo-

rithm is most accurate. However, the larger the value of n, the more computation
will be required. Instead of quantizing load valuesa priori based on the library infor-

mation, a better way is to adapt the quantization intervals to each gate. In one

pre-computation phase,we can determine all possible load values at a gate by exam-

ining all the possible matches at the gate. These load values can then be used to

determine the values of the quantization intervals.

For a match at a gate, an array of costs (one for each load value) is calculated.

The cost is the arrival time of the signal at the output of the gate. For each bin or

load value, the match that gives the minimum arrival time is stored. For each
input i of the match, the optimum match for driving the pin load of pin i of

the match is assumed, and the arrival time for that match is used. This calcula-

tion can be done by traversing the tree once forward from the leaves of the tree

to its root. The tree is then traversed backward from the root to the leaves,

whereby the load values are propagated down and, for each gate, the best

match at the gate is selected depending on the value of the load seen at the gate.
Example 6.85W
e illustrate the algorithmusing the circuit of Figure 6.43a and the library of Figure 6.42. Con-

sider the best matches shown in Figure 6.44. Since the number of distinct load values in our

example is only four, four bins are considered. For gate 1 the onlymatch is aNAND2gate. For

each load value, the delay of this gate then gives the arrival time at the output of the match

(assuming zero arrival time at the inputs). For the inverter at the output of this NAND gate,

the onlymatch is that of an inverter. Since the inverter presents a load of 1 to the NAND gate,

the arrival time at the input of the inverter is the arrival time corresponding to the first bin of the

NAND gate. Using this arrival time, the arrival times at the output of the inverter for all possible

load values are computed and are shown in the figure.

3

1

4

2

load=1: NAND2: delay=2
load=2: NAND2: delay=3
load=3: NAND2: delay=4
load=5: NAND2: delay=6

load=1: NAND3: delay=3
load=2: NAND3: delay=5
load=3: NAND3: delay=7
load=5: NAND2: delay=10

load=1: NAND2: delay=7
load=2: NAND2: delay=8
load=3: NAND2: delay=9
load=5: NAND2: delay=11

load=1: NAND3: delay=10
load=2: NAND2: delay=11.5
load=3: NAND2: delay=12.5
load=5: NAND2: delay=14.5

load=1: INV: delay=3
load=2: INV: delay=4
load=3: INV: delay=5
load=5: INV: delay=7

load=1: INV: delay=1
load=2: INV: delay=2
load=3: INV: delay=3
load=5: INV: delay=5

load=1: AOI21: delay=7.5
load=2: AOI21: delay=8.5
load=3: AOI21: delay=9.5
load=5: AOI21: delay=11.5

FIGURE 6.44

Technology mapping considering load values.

6.6 Timing optimization 389
At gate 2, there are two possible matches corresponding to 2-input and 3-input

NAND gates. If we consider the NAND2 gate, the two arrival times at the inputs of the

match are 0 (corresponding to the primary input connection to gate 2) and 4

(corresponding to the inverter connection to gate 2 seeing a load of 2). The maximum

arrival time at the inputs is 4. The arrival times at the output of the gate for the four

different load values are 6, 7, 8, and 10. E.g., for a load value of 5, a NAND2 gate has

a delay 1 þ 1 � 5 ¼ 6. This delay added to the arrival time of 4 at the input of the NAND

gate produces an arrival time of 10 at the output. For the NAND3 gate, the arrival times

of all inputs are 0, and therefore the arrival times at the output are 3, 5, 7, and 11. There-

fore, for the first three load values, the NAND3 is a better choice, while for the last load

value the NAND2 is a better choice.

The final mapping is determined during backward traversal and depends on the load

seen by gate 4. Assuming a load of 1, the best match at gate 4 is a NAND3 gate. This

gate presents a load of 3 to its inputs, implying that the best match for a load value of

3 at gate 2 has to be chosen. This match is another NAND3 gate. The resulting mapping

is shown in Figure 6.45a, which is coincidentally the same mapping obtained assuming

constant load (Figure 6.43b). However, if the load is greater than 1, then the mapping of

Figure 6.45b is better.

To improve the computation, we may apply adaptive quantization of load values. For

instance, for gate 1 in the circuit of Figure 6.44, only a load value of 1 has to be consid-

ered because all possible matches at the inverter consist of only an inverter; for gate 2,

load values of 2 and 3 have to be considered. This type of adaptive quantization pro-

duces results close to the optimum within reasonable amounts of computation time.

(a)

(b)

3
1

4
2

NAND3

INV

NAND3

load = 1

3
1

4
2

load > 1

NAND2

AOI21INVNAND2

FIGURE 6.45

Two different implementations of the circuit depending on load value.

390 CHAPTER 6 Logic synthesis in a nutshell
Note that, under the more general linear delay model, the principle of opti-

mality of tree covering does not apply.

6.6.2.2 Area minimization under delay constraints
The tree covering algorithm used above can be generalized to minimize the area

under a delay constraint. It may not be necessary to obtain the fastest circuit,

but instead we may want to obtain a circuit that meets certain timing con-

straints and has the minimum possible area. This timing constraint is expressed

as a required time at the root of the tree and can be propagated down the tree

together with load values during backward traversal. In this case the cost of a
match at a gate includes not only the arrival time but also the area of a match.

During backward traversal the minimum area solution that meets the required

timing constraint is chosen. If no such solution is available, then the minimum

delay solution is chosen. Since not all of the sub-trees need to be maximally fast,

the area of the circuit can be minimized.
Example 6.86 C
onsider the mapping shown in Figure 6.46a. The circuit has been mapped for minimum

delay, and the arrival time at the output of gate 7 is 7. However, the required time at the

output of this gate is 9, and the other match at gate 7 has an arrival time of 9 but a smal-

ler area. Selecting this match gives us a circuit with the same delay but a smaller area, as

shown in Figure 6.46b.

(a)

(b)

1

2

7

3

4

8

5

6

9

10

11

delay = 7
slack = 2

delay = 9
slack = 0

delay = 12
area = 24

1

2

7

3

4

8

5

6

9

10

11

delay = 9
slack = 0

delay = 9
slack = 0

delay = 12
area = 20

FIGURE 6.46

Example illustrating area recovery.

6.6 Timing optimization 391
6.6.3 Advanced subjects
Fanout Optimization. Tree covering alone does not generate good quality solu-

tions because most circuits are not trees but DAGs. In such circuits, a signal may

feed two or more destinations. Due to the large amount of capacitance that has to
be driven, the delay through the gate that drives this signal could be large. The

optimization of this delay is called fanout optimization. Buffer insertion and gate

sizing, among other techniques, are important approaches to fanout optimization.

A survey on fanout optimization can be found in [Hassoun 2002].

392 CHAPTER 6 Logic synthesis in a nutshell
Sequential Circuit Timing Optimization. In addition to logic restructur-

ing, we may exploit optimization techniques special for sequential circuits.
Promising sequential timing optimization methods include, for instance, retim-

ing [Leiserson 1983, 1991] and clock skew scheduling. See, e.g., [Sapatnekar

2004] for introduction.
6.7 CONCLUDING REMARKS

This chapter presents some important classic problems in combinational logic
synthesis and basic techniques to solve them. Since logic synthesis has become

very broad and continues to evolve, many important developments cannot be

covered and only a few of them are mentioned here.

To invite and motivate future investigations, we list some logic synthesis trends:

Scalable Logic Synthesis. The capacity of logic synthesis tools is con-

stantly being challenged by the ever-increasing complexity of modern industrial

designs commonly consisting of millions of gates. The data structures and algo-

rithms of logic synthesis tools must be effective and robust enough in order to
handle large problem instances. It is interesting to note that every capacity leap

in the history of logic synthesis can be attributed to some data structure revolu-

tion, e.g., from truth tables to covers, from covers to BDDs, and from BDDs to

AIGs and SAT. As SAT solvers have become much faster in recent years, a para-

digm shift is taking place in logic synthesis. More and more SAT-based algo-

rithms emerge in replacement of BDD-based ones. Searching for new effective

data structures may transform logic synthesis tools.

Verifiable Logic Synthesis. As noted earlier, due to the hardness of verifi-
cation, industrial synthesis methodologies are often conservative and mostly

conduct only combinational optimization, despite the existence of practical

sequential synthesis techniques.4 This phenomenon is changing because pro-

gressive optimization methods are necessary to meet more stringent timing con-

straints, and also verification techniques are made more effective, especially for

circuits optimized in particular ways [Jiang 2007]. To completely overcome the

verification barrier, a general consensus is that essential synthesis information

should be revealed to verifiers. Verifiable logic synthesis sets forth the criterion
that whatever can be synthesized can be verified effectively [Brayton 2007].

Parallelizable Logic Synthesis. One way to speed up logic synthesis algo-

rithms is to take advantage of hardware and software technologies. As multi-

core computers support more and more parallelism, EDA tools can benefit from

this technology advancement. How to utilize parallelism in logic synthesis algo-

rithms is a challenge for EDA companies.
4One exception is FPGA synthesis, where sequential optimization methods find wide

applications. The reconfigurability of FPGAs makes verification not as critical as general ASIC

designs because incorrect logic transformations can be rectified later through reconfiguration.

6.8 Exercises 393
Statistical Logic Synthesis. The continuous miniaturization of semiconduc-

tor devices imposes serious threats to circuit design robust against process var-
iations and environmental fluctuations. Various uncertainties appear in both

pre- and post-design phases. How to synthesize a robust circuit optimal in a sta-

tistical sense with respect to design constraints is an important challenge that

needs to be addressed.

Physically Aware Logic Synthesis. Logic synthesis and physical design are

traditionally separated to enable a divide-and-conquer approach to VLSI design

automation. This separation becomes problematic when interconnect becomes

the dominating factor of circuit delays. Lacking wiring information, logic synthe-
sis cannot produce accurate timing estimation and precise timing optimization;

lacking logic information, physical design cannot exploit logic flexibility and has

limited optimization power. Therefore, before timing constraints are met, often

several iterations of logic synthesis and physical design are performed in order

to reach timing closure. Unfortunately there is no guarantee that the process will

converge. This phenomenon leads to a serious design closure problem, which

slows down design cycles and therefore time to market. Even though there are

approaches to timing closure, such as gain-based synthesis, incremental place-
ment and resynthesis, etc., there is still plenty of room for improvement.

Logic Synthesis for Emerging Technologies. As the miniaturization of

electronic devices approaches physical limits, Moore’s Law is expected to be

broken sooner or later. Alternatives to silicon-based computation devices are

actively being researched. For the next computation model, we might need very

different logic synthesis tools, perhaps even beyond propositional logic and

Boolean algebra.
6.8 EXERCISES
6.1. (Commutativity between Cofactor and Boolean Operations)
Given two Boolean functions f and g and a Boolean variable v, prove

or disprove the following equalities:
(a) (:f)v ¼ :(fv)
(b) (f hopi g)v ¼ (fv) hopi (gv) for hopi ¼ {^, �}
6.2. (Boolean Difference) Let f(x, y, z) ¼ h(g(x, y, z), y, z). Prove or dis-

prove the following equalities:
(a)
@2f x; y; zð Þ

@x@y
¼ @2f x; y; zð Þ

@y@x

(b)
@f x; y; zð Þ

@x
¼ @h u; y; zð Þ

@u

@g x; y; zð Þ
@x

394 CHAPTER 6 Logic synthesis in a nutshell
(c)
@f x; y; zð Þ

@y
¼ @h u; y; zð Þ

@u

@g x; y; zð Þ
@y

� @2h u; y; zð Þ
@u@y

@g x; y; zð Þ
@y

@y

@y
6.3. (Quantified Boolean Formula) For Boolean functions f and g, show

that
(a) : 9x:f x; yð Þð Þ ¼ 8x::f x; yð Þ

(b) : 8x:f x; yð Þð Þ ¼ 9x::f x; yð Þ

(c) 9x: f x; yð Þ ^ g x; yð Þð Þ 6¼ 9x:f x; yð Þð Þ ^ 9x:g x; yð Þð Þ

(d) :8x; 9z: f x; yð Þ ^ g x; zð Þð Þ ¼ 9x: :f x; yð Þ _ 8z::g x; zð Þð Þ

6.4. (Boolean Function Bi-decomposition) For a given Boolean function

f(XA, XB) with non-empty variable sets XA and XB, with XA \ XB ¼ �,

what is the condition on f(XA, XB) such that the rewriting f(XA, XB)

¼ fA(XA) ^ fB(XB) is possible for some fA(XA) and fB(XB) to exist?
(Express the condition with a quantified Boolean formula.)

6.5. (Characteristic Functions) Let f : B3! B
2 be the vector (f1, f2) of

Boolean functions with f1 ¼ x1 _ :x1x2 and f2 ¼ x3 ^ (x1 _ :x1x2);
let wS ¼ x1 _ x2 be a characteristic function representing a set S � B

3.
(a) Write down the characteristic function Imgf (S) (in terms of a quan-

tified Boolean formula) of the image of S under the mapping of f,
that is, the set {q 2 B

2 j q ¼ f (p), p 2 S}.

(b) Perform quantifier elimination to obtain a quantifier-free formula

equivalent to Imgf (S) in (a).

(c) Justify that the formula in (b) indeed represents the image of S

under f by enumerating all the truth assignments of (x1, x2, x3)

and the corresponding valuations of wS and f.
6.6. (BDD APPLY) Let F and G be the ROBDDs of Boolean functions f ¼
abc and g ¼ bd þ b0d, respectively, under the variable ordering index

(a) < index(b) < index(c) < index(d).
(a) Draw F and G.

(b) Derive the ROBDD of F�G using the BDDAPPLY procedure.

(c) Derive the ROBDD of F þ G using the BDDAPPLY procedure.

(d) Derive the ROBDD of F � G using the BDDAPPLY procedure.
6.7. (ROBDD Variable Ordering) Let F be the ROBDD of an arbitrary

Boolean function f(a, b, c, d, e) under variable ordering

index(a) < index(b) < index(c) < index(d) < index(e).

6.8 Exercises 395
Show that the new ROBDD F
{ under variable ordering

index(a) < index(b) < index(d) < index(c) < index(e),
must have the same BDD structure as F except for the nodes con-

trolled by variables c and d.

6.8. (ROBDD Variable Ordering) Consider the Boolean function

f ¼ a1b1 þ a2b2 þ ��� þ anbn.
(a) Show that the ROBDD under variable ordering

index(a1) < index(b1) < ��� < index(an) < index(bn)

has 2n þ 2 nodes.

(b) Show that the ROBDD under variable ordering

index(a1) < ��� < index(an) < index(b1) < ��� < index(bn)

has 2nþ1 nodes.
6.9. (ROBDDs of Symmetric Functions) Totally symmetric functions

are characterized by the fact that the value of each such function is

determined by the number of variables which are 1 under a truth

assignment; it does not matter which particular variables are. For

example, functions f1 ¼ x1^ ��� ^xn, f2 ¼ x1_ ��� _ xn, and f3 ¼ x1 �
��� � xn are totally symmetric. A totally symmetric function on n vari-

ables can be described by a set S � {0, 1, . . . , n} such that for a min-

term a 2 B
n, f(a) ¼ 1 iff the number of 1’s in a is a member of S.

Prove that the ROBDD of any n-ary totally symmetric function has at

most O(n2) nodes under any variable ordering.

6.10. (Circuit-to-CNF Conversion) Convert each of the following circuits

to a CNF formula representing the consistency condition. In each

case, list the truth assignments to the input/output variables that
make the CNF true.
(a) An inverter with input a and output b.

(b) An OR2 gate with inputs a, b and output c.
(c) An XOR gate with inputs a, b and output c.
6.11. (Global Function Derivation) Consider the AIG of Figure 6.16.

Derive the global function of x7 (in terms of primary inputs x1, x2,

x3) using the following two methods.
(a) Existentially quantify out the intermediate variables x4, x5, x6 from
its corresponding consistency CNF formula and then perform a

positive cofactor with respect to the variable x7.
(b) Derive the global function of x7 by recursively substituting inter-
mediate variables with their local functions.
Verify that the above two methods yield the same result. Explain why

these two approaches are equivalent.

6.12. (SOP and Tautology) Show that the tautology checking of any SOP

formula with at most 2 literals in each product term can be done with

time complexity polynomial in the formula size.

396 CHAPTER 6 Logic synthesis in a nutshell
,

f

.

-

-

-

-

,

(Remark: The dual problem is the 2SAT problem in computer science

which is checkable in polynomial time.)
6.13. (Prime and Irredundant Cubes) Let

C ¼ a0c0d0; abd0; a0b0d0; a0bc0; ab0c0; a0b0c; abc; a0bdf g
be a cover of a completely specified function f.
(a) For each cube in C, determine whether it is prime and/or
irredundant.

(b) Can we delete all the redundant cubes at once without affecting

the function of f? Which redundant cubes can we delete from C i

we successively delete removable cubes from left to right? How

about from right to left? (Assume the cubes listed in C is ordered.)
6.14. (Quine-McCluskey Two-Level Logic Minimization) Given function

f ¼ w0x0y0z0 þwx0z0 þwxz þw0x0z

with don’t care set

d ¼ w0xyz0 þwx0yz þw0xyz

minimize f using the Quine-McCluskey procedure.

6.15. (Column Covering) Column covering is an essential computation

step in Quine-McCluskey procedure. It can be solved in different ways

(a) Show that the column covering problem can be formulated as a

CNF satisfiability problem. Give an algorithm that performs such
conversion. (The so-derived covering need not be minimum.)

(b) Show that the minimum column covering problem can be formu

lated in term of ROBDD. Give a polynomial-time algorithm solving

the problem.

6.16. (Number of Prime Implicants) Show that

Cn
n�2
3d e2

n� n�2
3d e

n� n�2
3

l m
is a lower bound on the number of prime implicants for any n-ary
Boolean function.

6.17. (Node Value and Elimination) Recall that the value of a node repre

sents the saved literal count due to the existence of the node rather

than collapsing it into its fanouts. Given the Boolean network of Fig

ure 6.47, what are the values of nodes 5 and 6? What is the new value

of node 6 after collapsing node 5 into its fanouts? (Here we treat Bool

ean formulas as polynomials in an algebraic sense, and assume that

Boolean simplifications, such as x ^ :x ¼ 0, x _ :x ¼ 1, x ^ x ¼ x

and x _ x ¼ x, are not involved.)

6.18. (Algebraic Division) Prove that algebraic division produces a unique

quotient and remainder. (Note that by definition the remainder is

made as few cubes as possible.)

(x4+ x5)x6

x1x5+ ¬x5

¬x2+ ¬x3

x5

x6

x7

x2 x3 x4x1

FIGURE 6.47

Boolean network.

6.8 Exercises 397
6.19. (Kernels and Cokernels) Let expression
F ¼ aefh þ aegh þ aei þ befh þ begh þ bei þ cdefh þ cdegh þ cdei.

Apply KERNEL1(0, F) to compute the kernels and corresponding

cokernels of F. Identify which kernels are of level 0.

6.20. (Factoring) Continuing Exercise 6.19, apply GFACTOR to factor the

function F. Use different level-0 kernels as divisors. What is the best

factoring for F ? For an arbitrary expression, can GFACTOR always pro-
duce a minimum-literal factoring with some proper level-0 kernels as

divisors?

6.21. (Common Divisor Extraction) Let expressions
F ¼ ac þ ad þ bc þ bd þ adf þ aef þ ag þ bcdf þ bcef þ bcg, and

G ¼ ag þ bcg þ bcf þ bcg þ bdf þ bdg þ bef þ beg
(a) Iteratively reexpress F and G in terms of a common expression

that yields the most reduction in literal count until no more com-

mon expressions exist. (A common expression can be a cube-free

expression or a cube.)

(b) Extract an optimal common divisor of F and G by finding rectan-

gles in the cokernel-cube matrix.
6.22. (Kernel Intersection) For two expressions F and G, suppose any

kernel kf of F and any kg of G have at most one term in common.

Show that F and G have no common algebraic divisor with more than

one term.

¬y1¬y2y3 ∨ y1y2¬y3

x2 ∨ x3

y1

z1

x2 x3 x4x1

x1 ∧ x2 ¬x3 ∨ ¬x4

y3 ∧ y4y1 ∨ y4

y2 y3

y4

z2

FIGURE 6.48

Boolean network.

398 CHAPTER 6 Logic synthesis in a nutshell
6.23. (SDC and ODC) Consider the Boolean network of Figure 6.48.
(a) Write down a Boolean formula representing the SDC of the entire

circuit. That is, it represents the inconsistency condition of the

circuit.

(b) Write down a Boolean formula for the satisfiability don’t cares
SDC4 of node 4 (with output y4). Since SDC4 is induced by the

transitive fanins of node 4, the formula should depend on vari-

ables x1, . . . , x4, y1, . . . , y3. How can you make SDC4 refer only

to y1, y2, y3 such that we can minimize node 4 directly?

(c) Compute the observability don’t cares ODC4 of node 4.
6.24. (Don’t Cares in Local Variables) Continuing Exercise 6.23, suppose

the XDC for z1 is :x1:x2:x3:x4 and that for z2 is x1x2x3x4.
(a) Compute the don’t cares D4 of node 4 in terms of its local input

variables y1, y2, and y3. (Note that in general the computation

of ODC may be affected by XDC especially when there exist dif-

ferent XDCs for different primary outputs.)

(b) Based on the computed don’t cares, what is the best implementa-

ble function for node 4 (in terms of the literal count and cube

count)?

6.8 Exercises 399
6.25. (Complete Flexibility) Continuing Exercise 6.24, let Y ¼ {y1, y2, y3}
and Z ¼ {z1, z2}.
FIG

Circ

FIG

Sub
(a) Suppose the XDC for z1 is :x1:x2:x3:x4 and that for z2 is

x1x2x3x4. Write down the specification relation S(X,Z).

(b) What is the influence relation I4(X, y4,Z) of node 4?
(c) What is the environment relation E4(X, Y) of node 4?

(d) What is the complete flexibility CF4(Y, y4) of node 4?

(e) Is the previously computed don’t care set D4 of node 4 subsumed

by CF4?
6.26. (Static Timing Analysis) Given the circuit of Figure 6.49 with gate

delays shown, assume the arrival times for the primary inputs are

0 except for input b with arrival time 1ns, and the required times

for the primary output are 8ns. Compute the arrival time, required

time, and slack of every net. Identify the critical path(s).

6.27. (Time Slack and Critical Path) Prove or disprove the following state-

ment: Themost critical path (with the smallest slack)must be a thorough
path all the way from some primary input to some primary output.

6.28. (Arrival/Required Time Computation) Given a black box that

computes arrival times for a Boolean network with specified gate

delays and input arrival times, devise a way of reusing this black box

to compute required times for a Boolean network.

6.29. (Tree Mapping) Decompose the subject DAG of Figure 6.50 into

trees and perform dynamic programming to find optimum tree
a

g

3

b
c

d

e

2

2

2
2

2

f

h
i

j

URE 6.49

uit for timing analysis.

URE 6.50

ject graph.

400 CHAPTER 6 Logic synthesis in a nutshell
mappings with respect to the pattern graphs of Figure 6.26. What is

the optimum solution that you can get among different decomposition
approaches?

6.30. (DAG Mapping as SAT Solving) Formulate the DAG mapping feasi-

bility problem as a satisfiability problem. For the subject graph of Fig-

ure 6.50 and the pattern graphs of Figure 6.26, what is the CNF

formula representing feasible DAG mappings?
ACKNOWLEDGMENTS

The authors are grateful to Professor Robert Brayton and Dr. Alan Mishchenko

of the University of California at Berkeley, and Professor Jianwen Zhu of the

University of Toronto for valuable feedback on the manuscript.
REFERENCES

R6.0 Books

[Brayton 1984] R. K. Brayton, G. Hachtel, C. McMullen, and A. Sangiovanni-Vincentelli, Logic Mini-

mization Algorithms for VLSI Synthesis, Kluwer, 1984.

[Brown 2003] F. M. Brown, Boolean Reasoning: The Logic of Boolean Equations, Dover, 2003.

[Devadas 1994] S. Devadas, A. Ghosh, and K. Keutzer, Logic Synthesis, McGraw-Hill, 1994.

[Garey 1979] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory

of NP-Completeness, W. H. Freeman, 1979.

[Hassoun 2002] S. Hassoun and T. Sasao, Logic Synthesis and Verification, Kluwer, 2002.

[Kohavi 1978] Z. Kohavi, Switching and Finite Automata Theory, McGraw-Hill, 1978.

[McGeer 1991] P. McGeer and R. K. Brayton, Integrating Functional and Temporal Domains in

Logic Design, Kluwer, 1991.

[Mo 2004] F. Mo and R. K. Brayton, Regular Fabrics in Deep Sub-Micron Integrated-Circuit Design,

Kluwer, 2004.

[Minato 1996] S. Minato, Binary Decision Diagrams and Applications to VLSI CAD, Kluwer, 1996.

[Papadimitriou 1993] C. Papadimitriou, Computational Complexity, Addison Wesley, 1993.

[Sapatnekar 2004] S. Sapatnekar, Timing, Springer, 2004.

[Scholl 2001] C. Scholl, Functional Decomposition with Applications to FPGA Synthesis, Kluwer,

2001.

[Sutherland 1999] I. Sutherland, R. Sproull, and D. Harris, Logical Effort: Designing Fast CMOS Cir-

cuits, Margan Kaufmann, 1999.

[Villa 1997] T. Villa, T. Kam, R. K. Brayton, and A. Sangiovanni-Vincentelli, Synthesis of Finite State

Machines: Logic Optimization, Kluwer, 1997.
R6.1 Introduction

[ABC 2005] Berkeley Logic Synthesis and Verification Group, ABC: A system for sequential synthesis

and verification, http://www.eecs.berkeley.edu/�alanmi/abc/, 2005.

[Brayton 1987] R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. Wang, MIS: Multiple-level

interactive logic optimization system, IEEE Trans. on Computer-Aided Design, 6(6),

pp. 1062–1081, November 1987.

References 401
[Gao 2002] M. Gao, J.-H. R. Jiang, Y. Jiang, Y. Li, A. Mishchenko, S. Sinha, T. Villa, and R. K. Brayton,

Optimization of multi-valued multilevel networks, in Proc. IEEE Int. Symp. on Multiple-Valued

Logic, pp. 168–177, May 2002.

[Rudell 1987] R. Rudell and A. Sangiovanni-Vincentelli, Multiple-valued minimization for PLA optimi-

zation, IEEE Trans. on Computer-Aided Design, 6(5), pp. 727–751, September 1987.

[Sentovich 1992] E. Sentovich, K. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H. Savoj,

P. Stephan, R. K. Brayton, and A. Sangiovanni-Vincentelli, SIS: A system for sequential circuit

synthesis, Memo. UCB/ERL M92/41, 1992.
R6.2 Data Structures for Boolean Representation
and Reasoning

[ABC 2005] Berkeley Logic Synthesis and Verification Group, ABC: A system for sequential synthesis

and verification, http://www.eecs.berkeley.edu/�alanmi/abc/, 2005.

[Akers 1978] S. B. Akers, Binary decision diagrams, IEEE Trans. on Computers, C-27(6),

pp. 509–516, June 1978.

[Biere 2007] A. Biere, The AIGER and-inverter graph (AIG) format, http://fmv.jku.at/aiger/, 2007.

[Bryant 1986] R. E. Bryant, Graph-based algorithms for Boolean function manipulation, IEEE Trans.

on Computers, C-35(8), pp. 677–691, August 1986.

[Bryant 1991] R. E. Bryant, On the complexity of VLSI implementations and graph representations

of Boolean functions with application to integer multiplication, IEEE Trans. on Computers,

C-40(2), pp. 205–213, February 1991.

[Bryant 1992] R. E. Bryant, Symbolic Boolean manipulation with ordered binary decision diagrams,

ACM Computg Surveys, 24(3), pp. 293–318, September 1992.

[Kautz 1970] W. Kautz, The necessity of closed circuit loops in minimal combinational circuits, IEEE

Trans. on Computers, C-19(2), pp. 162–164, February 1970.

[Kuehlmann 1997] A. Kuehlmann and F. Krohm, Equivalence checking using cuts and heaps, in

Proc. ACM/IEEE Design Automation Conf., pp. 263–268, June 1997.

[Lee 1959] C. Y. Lee, Representation of switching circuits by binary-decision programs, Bell Systems

Techncal J., 38(4), pp. 985–999, July 1959.

[Madre 1988] J-C. Madre and J-P. Billon, Proving circuit correctness using formal comparison

between expected and extracted behaviour, in Proc. ACM/IEEE Design Automation Conf.,

pp. 205–210, June 1988.

[Rudell 1990] R. L. Rudell, K. S. Brace, and R. E. Bryant, Efficient implementation of a BDD package,

in Proc. ACM/IEEE Design Automation Conf., pp. 40–45, June 1990.

[Rudell 1993] R. Rudell, Dynamic variable ordering for binary decision diagrams, in Proc. IEEE/ACM

Int. Conf. on Computer-Aided Design, pp. 42–47, November 1993.

[Rudell 1987] R. Rudell and A. Sangiovanni-Vincentelli, Multiple-valued minimization for PLA optimi-

zation, IEEE Trans. on Computer-Aided Design, 6(5), pp. 727–751, September 1987.

[Tseitin 1970] G. S. Tseitin, On the complexity of derivation in propositional calculus, Studies in

Constructive Mathematics and Mathematical Logic, Part II, (A. O. Slisenko, editors),

pp. 115–125. Consultants Bureau, New York, 1970.
R6.3 Combinational Logic Minimization

[ABC 2005] Berkeley Logic Synthesis and Verification Group, ABC: A system for sequential synthesis

and verification, http://www.eecs.berkeley.edu/�alanmi/abc/, 2005.

[Bartlett 1986] K. Bartlett, W. Cohen, A. J. De Geus, and G. D. Hachtel, Synthesis of multilevel logic

under timing constraints, IEEE Trans. on Computer-Aided Design, CAD-5(4), pp. 582–595, Octo-

ber 1986.

402 CHAPTER 6 Logic synthesis in a nutshell
[Bjesse 2004] P. Bjesse and A. Boralv, DAG-aware circuit compression for formal verification, in Proc.

IEEE/ACM Int. Conf. on Computer-Aided Design, pp. 42–49, November 2004.

[Bostick 1987] D. Bostick, G. D. Hachtel, R. Jacoby, M. R. Lightner, P. Moceyunas, C. R. Morrison,

and D. Ravenscroft, The Boulder optimal logic design system, in Proc. IEEE/ACM Int. Conf. on

Computer-Aided Design, pp. 62–65, November 1987.

[Brayton 1982] R. K. Brayton and C. McMullen, The decomposition and factorization of Boolean

expressions, in Proc. IEEE Int. Symp. on Circuits and Systems, pp. 49–54, May 1982.

[Brayton 1984] R. K. Brayton and C. McMullen, Synthesis and optimization of multistage logic, in

Proc. IEEE Int. Conf. on Computer Design, pp. 23–28, October 1984.

[Brayton 1987] R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. Wang, MIS: Multiple-level

interactive logic optimization system, IEEE Trans. on Computer-Aided Design, 6(6),

pp. 1062–1081, November 1987.

[Brayton 1990] R. K. Brayton, G. D. Hachtel, and A. Sangiovanni-Vincentelli, Multilevel logic synthe-

sis,Proceedgs of the IEEE, 78(2), pp. 264–300, February 1990.

[Coudert 1994] O. Coudert, Two-level logic minimization: An overview, Integrato,17(2),

pp. 97–140, October 1994.

[Coudert 1995] O. Coudert, Doing two-level logic minimization 100 times faster, in Proc. ACM/SIAM

Symp. on Discrete Algorithms, pp. 112–121, January 1995.

[Dagenais 1986] M. Dagenais, V. K. Agarwal, and N. Rumin, McBOOLE: A procedure for exact Boolean

minimization, IEEE Trans. on Computer-Aided Design, CAD-5(1), pp. 229–237, January 1986.

[Darringer 1981] J. Darringer, W. Joyner, L. Berman, and L. Trevillyan, Logic synthesis through local

transformations, IBM J. of Research and Development, 25(4), pp. 272–280, July 1981.

[Darringer 1984] J. Darringer, D. Brand, J. Gerbi, W. Joyner, and L. Trevillyan, LSS: A system for produc-

tion logic synthesis, IBM J. of Research and Development, 28(5), pp. 537–545, September 1984.

[Devadas 1989] S. Devadas, A. R. Wang, A. R. Newton, and A. Sangiovanni-Vincentelli, Boolean

decomposition in multilevel logic optimization, IEEE J. of Solid State Circuits, 24(2),

pp. 399–408, April 1989.

[Fleisher 1975] H. Fleisher and L. I. Maissel, An introduction to array logic, IBM J. of Research and

Development, 19(3), pp. 98–109, March 1975.

[Hong 1974] S. J. Hong, R. G. Cain, and D. L. Ostapko, MINI: A heuristic approach for logic minimi-

zation, IBM J. of Research and Development, 18(4), pp. 443–458, September 1974.

[Jiang 2004] J.-H. R. Jiang and R. K. Brayton, Functional dependency for verification reduction, in

Proc. Int. Conf. on Computer Aided Verification, pp. 268–280, July 2004.

[Jiang 2006] J.-H. R. Jiang and R. K. Brayton, Retiming and resynthesis: A complexity perspective,

IEEE Trans. on Computer-Aided Design, 25(12), pp. 2674–2686, December 2006.

[Keutzer 1987] K. Keutzer, DAGON: Technology mapping and local optimization, in Proc.

ACM/IEEE Design Automation Conf., pp. 341–347, June 1987.

[Kuehlmann 1997] A. Kuehlmann and F. Krohm, Equivalence checking using cuts and heaps, in

Proc. ACM/IEEE Design Automation Conf., pp. 263–268, June 1997.

[Lee 2007] C.-C. Lee, J.-H. R. Jiang, C.-Y. Huang, and A. Mishchenko, Scalable exploration of func-

tional dependency by interpolation and incremental SAT solving, in Proc. IEEE/ACM Int. Conf.

on Computer-Aided Design, pp. 227–233, November 2007.

[Leiserson 1983] C. Leiserson and J. Saxe, Optimizing synchronous systems, J. of VLSI and Com-

puter Systems, 1(1), pp. 41–67, Spring 1983.

[Leiserson 1991] C. Leiserson and J. Saxe, Retiming synchronous circuitry, Algorithmica, 6(1),

pp. 5–35, December 1991.

[Ling 2007] A. Ling, J. Zhu, and S. Brown, BddCut: Towards scalable symbolic cut enumeration, in

Proc. Asia and South Pacific Design Automation Conf., pp. 408–413, January 2007.

[Malik 1991] S. Malik, E. Sentovich, R. K. Brayton, and A. Sangiovanni-Vincentelli, Retiming and

resynthesis: Optimizing sequential networks with combinational techniques, IEEE Transactions

on Computer-Aided Design, 10(1), pp. 74–84, 1991.

References 403
[McCluskey 1956] E. J. McCluskey, Minimization of Boolean functions, Bell Systems Technical J.,

35(6), pp. 1417–1444, November 1956.

[McGeer 1987] P. C. McGeer and R. K. Brayton, Efficient, stable algebraic operations on logic

expressions, in Proc. IFIP Int. Conf. on Very Large Scale Integration, August 1987.

[Mishchenko 2002] A. Mishchenko and R. K. Brayton, Simplification of non-deterministic multi-val-

ued networks, in Proc. IEEE/ACM Int. Conf. on Computer-Aided Design, pp. 557–562, Novem-

ber 2002.

[Mishchenko 2005] A. Mishchenko, R. K. Brayton, J.-H. R. Jiang, T. Villa, and N. Yevtushenko, Effi-

cient solution of language equations using partitioned representations, in Proc. Design Automa-

tion and Test in Europe, pp. 418–423, March 2005.

[Mishchenko 2006a] A. Mishchenko and R. K. Brayton, A theory of non-deterministic networks,

IEEE Trans. on Computer-Aided Design, 25(6), pp. 977–999, June 2006.

[Mishchenko 2006b] A. Mishchenko, S. Chatterjee, and R. K. Brayton, DAG-aware AIG rewriting: A

fresh look at combinational logic synthesis, in Proc. ACM/IEEE Design Automation Conf.,

pp. 532–536, June 2006.

[Mishchenko 2007a] A. Mishchenko, R. K. Brayton, J.-H. R. Jiang, and S. Jang, SAT-based logic opti-

mization and resynthesis, in Proc. Int. Workshop on Logic Synthesis, pp. 358–364, May 2007.

[Mishchenko 2007b] A. Mishchenko, S. Cho, S. Chatterjee, and R. K. Brayton, Combinational and

sequential mapping with priority cuts, in Proc. IEEE/ACM Int. Conf. on Computer-Aided Design,

pp. 354–361, November 2007.

[Rudell 1987] R. Rudell and A. Sangiovanni-Vincentelli, Multiple-valued minimization for PLA optimi-

zation, IEEE Trans. on Computer-Aided Design, 6(5), pp. 727–751, September 1987.

[Rudell 1989] R. Rudell, Logic Synthesis for VLSI Design, Ph.D. dissertation, University of California,

Berkeley, 1989.

[Yevtushenko 2001] N. Yevtushenko, T. Villa, R. K. Brayton, A. Petrenko, and A. Sangiovanni-Vincen-

telli, Solution of parallel language equations for logic synthesis, in Proc. IEEE/ACM Int. Conf. on

Computer-Aided Design, pp. 103–110, November 2001.
R6.4 Technology Mapping

[Aho 1976] A. Aho and S. Johnson, Optimal code generation for expression trees, J. of the ACM,

23(2), pp. 488–501, July 1976.

[Chatterjee 2006] S. Chatterjee, A. Mishchenko, R. K. Brayton, X. Wang, and T. Kam, Reducing struc-

tural bias in technology mapping, IEEE Trans. on Computer-Aided Design, 25(12),

pp. 2894–2903, December 2006.

[Keutzer 1987] K. Keutzer, DAGON: Technology mapping and local optimization, in Proc.

ACM/IEEE Design Automation Conf., pp. 341–347, June 1987.

[Kravets 2001] V. Kravets, Constructive Multilevel Synthesis by Way of Functional Properties, Ph.D.

dissertation, University of Michigan, Ann Arbor, 2001.

[Lehman 1997] E. Lehman, Y. Watanabe, J. Grodstein, and H. Harkness, Logic decomposition during

technology mapping, IEEE Trans. on Computer-Aided Design, 16(8), pp. 813–834, August 1997.
R6.5 Timing Analysis

[Chen 1991] H.-C. Chen and D. H. Du, Path sensitization in critical path problem, in Proc.

IEEE/ACM Int. Conf. on Computer-Aided Design, pp. 208–211, November 1991.

[Devadas 1992] S. Devadas, K. Keutzer, S. Malik, and A. Wang, Computation of floating mode delay

in combinational logic circuits: Practice and implementation, in Proc. Int. Symp. on Logic Syn-

thesis and Microprocessor Architecture, pp. 68–75, July 1992.

404 CHAPTER 6 Logic synthesis in a nutshell
[Guerra E Silva 2002] L. Guerra E Silva, J. Marques-Silva, L. Silveira, and K. Sakallah, Satisfiability

models and algorithms for circuit delay computation, ACM Trans. on Design Automation of Elec-

tronic Systems, 7(1), pp. 137–158, January 2002.

[McGeer 1989] P. McGeer and R. K. Brayton, Efficient algorithms for computing the longest viable

path in a combinational network, in Proc. ACM/IEEE Design Automation Conf., pp. 561–567,

June 1989.

[McGeer 1991] P. McGeer, A. Saldanha, P. Stephan, R. K. Brayton, and A. Sangiovanni-Vincentelli,

Timing analysis and delay-fault test generation using path-recursive functions, in Proc. IEEE/ACM

Int. Conf. on Computer Aided-Design, pp. 180–183, November 1991.
R6.6 Timing Optimization

[Chaudhary 1992] K. Chaudhary and M. Pedram, A near optimal algorithm for technology mapping

minimizing area under delay constraints, in Proc. ACM/IEEE Design Automation Conf.,

pp. 492–498, June 1992.

[Leiserson 1983] C. Leiserson and J. Saxe, Optimizing synchronous systems, J. of VLSI and Com-

puter Systems, 1(1), pp. 41–67, Spring 1983.

[Leiserson 1991] C. Leiserson and J. Saxe, Retiming synchronous circuitry, Algorithmica, 6(1),

pp. 5–35, December 1991.

[Rudell 1989] R. Rudell, Logic Synthesis for VLSI Design, Ph.D. dissertation, University of California,

Berkeley, 1989.

[Singh 1992] K. Singh, Performance Optimization of Digital Circuits, Ph.D. dissertation, University

of California, Berkeley, 1992.

[Touati 1990] H. Touati, Performance-Oriented Technology Mapping, Ph.D. dissertation, University

of California, Berkeley, 1990.
R6.7 Trends in Logic Synthesis

[Brayton 2007] R. K. Brayton, The synergy between logic synthesis and equivalence checking, in

Proc. Formal Methods in Computer Aided Design, (Tutorial), November 2007.

[Jiang 2007] J.-H. R. Jiang and W.-L. Hung, Inductive equivalence checking under retiming and resyn-

thesis, in Proc. IEEE/ACM Int. Conf. on Computer-Aided Design, pp. 326–333, November 2007.

CHAPTER
7
Test synthesis
Laung-Terng (L.-T.) Wang
SynTest Technologies, Inc., Sunnyvale, California

Xiaoqing Wen
Kyushu Institute of Technology, Fukuoka, Japan

Shianling Wu
SynTest Technologies, Inc., Princeton Junction,

New Jersey
IS CHAPTER
ABOUT TH
405
Test synthesis is an important step in VLSI testing for automating the process of

producing testable VLSI designs. The test synthesis flow typically includes test-

ability rule checking and repair in the beginning to guarantee that the design
has complied with all given testability rules. Once all rules are met, test synthesis

is then performed to automatically insert test logic into the design. The test logic

can include design-for-testability (DFT) circuitry used for scan design, logic

built-in self-test (BIST), and/or test compression. Depending on the test require-

ments, additional circuitries for design-for-debug-and-diagnosis (DFD) and

design-for-reliability (DFR) could also be inserted. These circuitries altogether

are intended for improving the quality and reducing the test cost of the manufac-

tured devices as well as simplifying the test, debug, and diagnosis tasks.
The focus of this chapter is on widely used scan synthesis flow and an

emerging BIST synthesis flow. A set of scan design rules used in the scan synthe-

sis flow, with which a design must comply, is described first. This is followed by

the gate-level scan synthesis flow. Discussion then moves to new design rules

required for logic BIST in the emerging BIST synthesis flow. This is followed

by a BIST design example with all necessary steps involved in designing the

logic BIST system, verifying its correctness, and further improving its fault cov-

erage. The chapter concludes with a discussion of the scan design flow at the
register-transfer level (RTL) which helps further reduce DFT design itera-

tions and test development time. The RTL scan design flow can be readily

extended for logic synthesis and integrated with other advanced DFT, DFD,

and DFR features implemented at the RTL.

406 CHAPTER 7 Test synthesis
7.1 INTRODUCTION

Test synthesis is a test automation process to audit whether a digital design

complies with all testability rules and then insert the required test logic into

the digital design. In modern test synthesis tools, the automatic repair function,

which automatically modifies the digital design to make it comply with the test-
ability rules, is often provided. The digital design can be specified at the gate
level or at the register-transfer level (RTL). After all testability rule violations are

identified and repaired either manually or automatically, the resulting digital

design is often referred to as a testable design or test-ready core.
By using the scan method, the test logic to be incorporated into the testable

design will require conversion of internal storage elements, such as D flip-flops

or D latches, into scan cells, such as muxed-D scan cells or LSSD scan cells.

The resulting testable design is often called a scan design. In addition to being

the dominant DFT architecture used for detecting manufacturing defects, scan
design has become the backbone for more advanced DFT techniques, such as

logic BIST and test compression [Wang 2006a]. Furthermore, as designs continue

to move toward the nanometer scale, scan design is being used as a design feature

to facilitate silicon debug, fault diagnosis, failure analysis, and reliability enhance-

ment against soft errors [SIA 2005, 2006; Gizopoulos 2006; Wang 2007].

Recently, design for testability (DFT) has started to migrate from the gate

level to the RTL. The motivation for this migration is to allow integration of addi-

tional DFT features, such as logic BIST and test compression, at the RTL to
reduce test development time and to create reusable and testable RTL cores.

This further allows the integrated RTL DFT design to be processed as part of

synthesis-based optimization as to reduce test power, performance degradation,

and area overhead.

Figure 7.1 shows a typical logic BIST system that has been synthesized in a

scan design with embedded logic BIST and test compression circuitry. The logic

BIST circuitry is composed of a logic BIST controller, a test pattern generator
(TPG), and an output response analyzer (ORA). The test compression cir-
cuitry includes a decompressor and a compactor. Depending on the nature

of the circuit under test (CUT) or scan design, the decompressor and the

compactor can be a part of the TPG and the ORA, respectively. However, for

the purpose of illustration, we separate the logic BIST circuitry from the test

compression circuitry. Generally speaking, the logic BIST system will, at the

minimum configuration, operate in five modes: normal mode, logic BIST mode,

ATPG compression mode, ATPG mode, and serial debug and diagnosis mode.

In normal mode, all test logic will be disabled, and the CUT will function as
intended. When the logic BIST system operates in BIST mode, the TPG will

bypass the decompressor and automatically generate test patterns for applica-

tion to the CUT (refer to Figure 3.13 in Chapter 3). The compactor will be

bypassed, and the ORA will automatically compact the output responses of

the CUT into a signature. Specific BIST timing control signals, including scan

enable signals and clocks, are generated by the logic BIST controller for

Logic
BIST

Controller

Test Pattern Generator
(TPG)

Output Response Analyzer
(ORA)

Circuit Under Test
(CUT)

Decompressor

Compactor

Test Response

Stimulus Mode

FIGURE 7.1

A typical logic BIST system with test compression circuitry.

7.1 Introduction 407
coordinating the BIST operation among the TPG, CUT, and ORA. The logic BIST

controller provides a pass/fail indication once the BIST operation is complete. It

includes comparison logic to compare the final signature with an embedded

expected or golden signature, and often comprises diagnostic logic for fault

diagnosis. Because the ORA usually cannot tolerate unknown (X) values during

output response analysis, it is required that all storage elements in the TPG,
CUT, and ORA be initialized to known states before self-test, and no unknown

(X) values be allowed to propagate from the CUT to the ORA. In other words,

the CUT must comply with additional BIST-specific design rules.
When the system operates in ATPG compression mode, the TPG will be

bypassed, and the decompressor will take over and decompress external com-

pressed scan patterns (compressed stimuli) from automatic test equipment

(ATE) for application to the scan data inputs of the CUT. At the same time,

the compactor will compact the scan data outputs of the CUT, bypass the
ORA, and shift the compressed test responses out to the ATE for comparison.

When the system operates in ATPG mode, both logic BIST and test compres-

sion circuitry will be bypassed. Scan patterns (stimuli) are directly shifted in from

the ATE to the CUT, and the test responses are immediately shifted out to the ATE

for comparison. In contrast to the ATPG mode, the serial debug and diagnosis

mode requires that all scan chains be concatenated into one serial scan chain so

408 CHAPTER 7 Test synthesis
test responses from the CUT can be shifted out bit-by-bit to a target computer or

the ATE for analysis. This mode of operation is especially important for on-board
or in-system diagnosis when the chip operates in the field.
7.2 SCAN DESIGN

Scan design is currently the most widely used structured DFT approach. As dis-

cussed in Chapter 3, it is implemented by connecting selected storage elements

of a design into one or more shift registers, called scan chains, to provide

external access to the storage elements. Scan design is obtained by replacing

all selected storage elements with scan cells, each scan cell having one addi-

tional scan input (SI) port and one shared or additional scan output (SO)
port. By connecting the SO port of one scan cell to the SI port of the next scan

cell, one or more scan chains are created.

For a scan design to achieve the desired defective parts per million (PPM)

goal, specific circuit structures and design practices that may affect fault cover-

age must be identified and repaired. This requires compiling a set of scan
design rules that the design must adhere to. Hence, it is required to identify

and fix scan design rule violations in the design before inserting or synthesizing

scan chains into the design and generating test patterns for the scan design.
7.2.1 Scan design rules
To implement scan into a design, the design must comply with a set of scan

design rules [Cheung 1997]. In addition, certain design styles must be avoided,
because they may limit the fault coverage that can be achieved. A number of

scan design rules that are required to successfully use scan and achieve the tar-

get fault coverage goal are listed in Table 7.1. In this table, a possible solution is

recommended for each scan design rule violation. Scan design rules that are

labeled “avoid” must be repaired throughout the shift and capture operations.

Scan design rules that are labeled “avoid during the shift” must be fixed only

during the shift operation. Detailed descriptions are provided for some critical

scan design rules.

7.2.1.1 Tristate buses

Bus contention occurs when two bus drivers force opposite logic values onto a

tristate bus, which can damage the chip. Bus contention is designed not to hap-
pen during the normal operation and is typically avoided during the capture

operation, because advanced ATPG programs can generate test patterns that

guarantee only one bus driver controls a bus. However, during the shift opera-

tion, no such guarantees can be made; therefore, certain modifications must

be made to each tristate bus to ensure that only one driver controls the bus.

For example, for the tristate bus shown in Figure 7.2a, which has three bus dri-

vers (D1, D2, and D3), circuit modification can be made as shown in Figure 7.2b,

Table 7.1 Typical Scan Design Rules

Design Style Scan Design Rule Recommended Solution

Tristate buses Avoid during shift Fix bus contention during shift

Bidirectional I/O
ports

Avoid during shift Force to input or output mode
during shift

Gated clocks
(muxed-D full-scan)

Avoid during shift Enable clocks during shift

Derived clocks
(muxed-D full-scan)

Avoid Bypass clocks

Combinational
feedback loops

Avoid Break the loops

Asynchronous set/
reset signals

Avoid Use external pin(s)

Clocks driving data Avoid Block clocks to the data portion

Floating buses Avoid Add bus keepers

Floating inputs Not recommended Tie to VDD or VSS

Cross-coupled
NAND/NOR gates

Not recommended Use standard cells

Non-scan storage
elements

Not recommended for
full-scan design

Initialize to known states,
bypass, or make transparent

7.2 Scan design 409
where EN1 is forced to 1 to enable the D1 bus driver, whereas EN2 and EN3 are

set to 0 to disable both D2 and D3 bus drivers, when SE ¼ 1.

In addition to bus contention, a bus without a pull-up, pull-down, or bus
keeper may result in fault coverage loss. The reason is that the value of a float-

ing bus is unpredictable, which makes it difficult to test for a stuck-at-1 fault at

the enable signal of a bus driver. To solve this problem, a pull-up, pull-down, or

bus keeper can be added. The bus keeper added in Figure 7.2b is an example of

fixing this problem by forcing the bus to preserve the logic value driven onto it

prior to when the bus becomes floating.

7.2.1.2 Bidirectional I/O ports

Bidirectional I/O ports are used in many designs to increase the data transfer

bandwidth. During the capture operation, a bidirectional I/O port is usually spe-

cified as being either input or output; however, conflicts may occur at a bidirec-
tional I/O port during the shift operation. An example is shown in Figure 7.3a,

in which a bidirectional I/O port is used as an input, and the direction control is

provided by the scan cell. Because the output value of the scan cell can vary

CK

DI
SI Q
SE

DI
SI Q
SE

DI
SI Q
SE

DI
SI Q
SE

DI
SI Q
SE

DI
SI Q
SE

SFF1

EN2

Bus

SFF2Functional
enable
logic

SFF3

SE
SI

EN3

EN1

D1

D2

D3

(a)

CK

SFF1

EN2

Bus

SFF2Functional
enable
logic

SFF3

SE
SI EN3

EN1

D1

D2

D3

Bus keeper

(b)

• • •

• • •

• • •

• • •

• • •

• • •

FIGURE 7.2

Fixing bus contention: (a) Original circuit. (b) Modified circuit.

410 CHAPTER 7 Test synthesis
during the shift operation, the output tristate buffer may become active, result-

ing in a conflict if BO and the I/O port driven by the tester have opposite logic

values. Figure 7.3b shows an example of how to fix this problem by forcing

the tristate buffer to be inactive when SE ¼ 1, and the tester is used to drive

I/OCK BO

BI

DI
SI Q
SE

DI
SI Q
SE

I/OBO

BI

SE

CK

(a) (b)

FIGURE 7.3

Fixing bidirectional I/O ports: (a) Original circuit. (b) Modified circuit.

A

D Q

CK

CEN

D Q

D Q

•
•

•

•
•

•

Clock
gating
logic

D Q
G

EN
GCK

DFF

LAT

(a)

D Q

CK

CEN

D Q

D Q

Clock
gating
logic

D Q
G

EN GCK

DFF

LAT

TM
or

SE B

(b)

FIGURE 7.4

Fixing gated clocks: (a) Original circuit. (b) Modified circuit.

7.2 Scan design 411
the I/O port during the shift operation. During the capture operation, the

applied test vector determines whether a bidirectional I/O port is used as input

or output and controls the tester appropriately.

7.2.1.3 Gated clocks

Clock gating is a widely used design technique for reducing power by eliminat-

ing unnecessary switching activity at storage elements. An example is shown in

Figure 7.4a. The clock enable signal (EN) is generated at the rising edge of CK

412 CHAPTER 7 Test synthesis
and is loaded into the latch LAT at the failing edge of CK to become CEN. CEN is

then used to enable or disable clocking for the flip-flop DFF. Although clock gat-
ing is a good approach for reducing power consumption, it prevents the clock

ports of some flip-flops from being directly controlled by primary inputs. As a

result, modifications are necessary to allow the scan shift operation to be con-

ducted on these storage elements.

The clock gating function should be disabled, at least during the shift opera-

tion. Figure 7.4b shows how the clock gating can be disabled. In this example,

an OR gate is used to force CEN to 1 with either the test mode signal TM or the

scan enable signal SE. If TM is used, CEN will be held at 1 during the entire scan
test operation (including the capture operation). This will make it impossible to

detect faults in the clock gating logic, causing fault coverage loss. If SE is used,

CEN will be held at 1 only during the shift operation but will be released during

the capture operation; hence, higher fault coverage can be achieved but at the

expense of increased test generation complexity.

7.2.1.4 Derived clocks

A derived clock is a clock signal generated internally from a storage element or a

clock generator, such as phase-locked loop (PLL), frequency divider, or pulse

generator. Because derived clocks are not directly controllable from primary

inputs, to test the logic driven by these derived clocks, these clock signals must
be bypassed during the entire test operation. An example is illustrated in

Figure 7.5a, in which the derived clock ICK drives the flip-flops DFF1 and

DFF2. In Figure 7.5b, a multiplexer selects CK, which is a clock directly control-

lable from a primary input, to drive DFF1 and DFF2 during the entire test oper-

ation when TM ¼ 1.

7.2.1.5 Combinational feedback loops

Depending on whether the number of inversions on a combinational feedback

loop is even or odd, it can introduce either sequential behavior or oscillation into

a design. Because the value stored in the loop cannot be controlled or determined
D Q

D Q

ICK

CK

DFF1

DFF2
D Q

(a) (b)

0

1

ICK

CK

TM

D Q

D Q

DFF1

DFF2

D Q

FIGURE 7.5

Fixing derived clocks: (a) Original circuit. (b) Modified circuit.

7.2 Scan design 413
during test, this can lead to an increase in test generation complexity or fault cov-

erage loss. Because combinational feedback loops are not a recommended design
practice, the best way to fix this problem is to rewrite the RTL code generating the

loop. In cases where this is not possible, a combinational feedback loop, as shown

in Figure 7.6a, can be fixed by using a test mode signal TM. This signal perma-

nently disables the loop throughout the entire shift and capture operations by

inserting a scan point (i.e., a combination of control and observation points) to

break the loop, as shown in Figure 7.6b.

7.2.1.6 Asynchronous set/reset signals

Asynchronous set/reset signals of scan cells that are not directly controlled from

primary inputs can prevent scan chains from shifting data properly. To avoid

this problem, it is required that these asynchronous set/reset signals be forced
to an inactive state during the shift operation. These asynchronous set/reset sig-

nals are typically referred to as being sequentially controlled. An example of a

sequentially controlled reset signal RL is shown in Figure 7.7a. A method for
D S

Combinational logic

Q DI
 SI

 SE
SI
SE

CK

TM

0

1

(a) (b)

D S

Combinational logic

FIGURE 7.6

Fixing combinational feedback loops: (a) Original circuit. (b) Modified circuit.

(a) (b)

CK

SFF1

R

DI
SI Q
SE

DI
SI Q
SE

SFF2

RL
DI
SI
SE

TM

DI
SI Q
SE

R

CK

SFF1

SFF2

RL
Q

FIGURE 7.7

Fixing combinational feedback loops: (a) Original circuit. (b) Modified circuit.

414 CHAPTER 7 Test synthesis
fixing this asynchronous reset problem with an OR gate with an input tied to

the test mode signal TM is shown in Figure 7.7b. When TM ¼ 1, the asynchro-
nous reset signal RL of scan cell SFF2 is permanently disabled during the entire

test operation.

The disadvantage of using the test mode signal TM to disable asynchronous

set/reset signals is that faults within the asynchronous set/reset logic cannot

be tested. The use of the scan enable signal SE instead of TM makes it possible

to detect faults within the asynchronous set/reset logic, because during the cap-

ture operation (SE ¼ 0), these asynchronous set/reset signals are not forced to

the inactive state. However, this might result in mismatches because of race
conditions between the clock and asynchronous set/reset ports of the scan

cells. A better solution is to use an independent reset enable signal RE to

replace TM and to conduct test generation in two phases. In the first phase,

RE is set to 1 during both shift and capture operations to test data faults through

the DI port of the scan cells while all asynchronous set/reset signals are held

inactive. In the second phase, RE is set to 1 during the shift operation and 0 dur-

ing the capture operation without applying any clocks to test faults within the

asynchronous set/reset logic.
7.2.2 Scan design flow
Although conceptually scan design is not difficult to understand, the practice of

inserting scan into a design to turn it into a scan design requires careful

planning. This often requires many circuit modifications for which care must

be taken not to disrupt the normal functionality of the circuit. In addition, many

physical implementation details must be taken into consideration to guarantee
that scan testing can be performed successfully. Finally, a good understanding

of scan design, with respect to which scan cell design and scan architecture

to use, is required to better plan in advance which scan design rules must be

complied with and which debug and diagnose features must be included to

facilitate simulation, debug, and fault diagnosis [Gizopoulos 2006; Wang 2007].

The shift operation and the capture operation are the two key scan opera-

tions in which care needs to be taken to guarantee that the scan design can

operate properly. The shift operation, which is common to all scan designs,
must be designed to perform successfully, regardless of the clock skew that

exists within the same clock domain and between different clock domains.

The capture operation is also common to all scan designs, albeit with more

stringent scan design rules in some scan designs compared with others. It must

be designed such that the ATPG tool is able to correctly and deterministically

predict the expected responses of the generated test patterns. This requires a

basic understanding of the logic simulation and fault models used for ATPG,

as well as the clocking scheme used during the capture operation.
A typical design flow for implementing scan in a sequential circuit is shown

in Figure 7.8. In this figure, scan design rule checking and repair are first

Test generation

Scan replacement

Scan configuration

Scan stitching

Scan reordering Layout
information

Testable
design

Scan
design

Constraint
&

control
information

Scan design rule checking and repair

Scan extraction

Scan verification

Scan synthesis

Original
design

FIGURE 7.8

Typical scan design flow.

7.2 Scan design 415
performed on a pre-synthesis RTL design or on a post-synthesis gate-level

design, typically referred to as a netlist. The resulting design after scan repair
is referred to as a testable design. Once all scan design rule violations are iden-

tified and repaired, scan synthesis is performed to convert the testable design

into a scan design. The scan design now includes one or more scan chains for

scan testing. A scan extraction step is used to further verify the integrity of

the scan chains and to extract the final scan architecture of the scan chains

for ATPG. Finally, scan verification is performed on both shift and capture opera-

tions to verify that the expected responses predicted by the zero-delay simulator

used in test generation or fault simulation match with the full-timing behavior of
the circuit under test. The steps shown in the scan design flow are described in

the following subsections in more detail.

7.2.2.1 Scan design rule checking and repair

The first step in implementing a scan design is to identify and repair all scan

design rule violations to convert the original design into a testable design.

416 CHAPTER 7 Test synthesis
Repairing these violations allows the testable design to meet target fault cover-

age requirements and guarantees that the scan design will operate correctly.
These scan design rules were described in the previous section. In addition to

these scan design rules, certain clock control structures may have to be added

for at-speed delay testing. Typically, scan design rule checking is also performed

on the scan design after scan synthesis to confirm that no new violations occur.

On successful completion of this step, the testable design must guarantee

the correct shift and capture operations. During the shift operation, all clocks

controlling scan cells of the design are directly controllable from external pins.

The clock skew between adjacent scan cells must be properly managed so as to
avoid any shift failure. During the capture operation, fixing all scan design rule

violations should guarantee correctness for data paths that originate and termi-

nate within the same clock domain. For data paths that originate and terminate

in different clock domains, additional care must be taken in terms of the way

the clocks are applied to guarantee the success of the capture operation. This

is mainly because the clock skew between different clock domains is typically

large. A data path originating in one clock domain and terminating in another

might result in a mismatch when both clocks are applied simultaneously, and
the clock skew between the two clocks is larger than the data path delay from

the originating clock domain to the terminating clock domain. To avoid the mis-

match, the timing governing the relationship of such a data path shown in the

following equation must be observed:

Clock skew < Data path delayþ Clock-to-Q delay ðoriginating clockÞ
If this is not the case, a mismatch may occur during the capture operation. To
prevent this from happening, clocks belonging to different clock domains can

be applied sequentially (with the staggered clocking scheme), as opposed

to simultaneously, such that any clock skew that exists between the clock

domains can be tolerated during the test generation process. It is also possible

to apply only one clock during each capture operation with the one-hot
clocking scheme. On the other hand, a design typically contains a number of

noninteracting clock domains. In this case, these clocks can be applied simulta-

neously, which can reduce the complexity and the final pattern count of the pat-
tern generation and fault simulation process. Clock grouping is a process used

to identify all independent or noninteracting clocks that can be grouped and

applied simultaneously.

An example of the clock grouping process is shown in Figure 7.9. This exam-

ple shows the results of performing a circuit analysis operation on a testable

design to identify all clock interactions, marked with an arrow, where a data

transfer from one clock domain to a different clock domain occurs. As seen in

Figure 7.9, the circuit in this example has seven clock domains (CD1 � CD7)
and five cross-clock-domain data paths (CCD1 � CCD5). From this example, it

can be seen that CD2 and CD3 are independent from each other; hence, their

related clocks can be applied simultaneously during test as CK2. Similarly, clock

CD4

CD1

CCD2CCD1

CD2 CD3

CD5 CD6 CD7

CCD3 CCD4

CCD5

CK1

CK2

CK3

FIGURE 7.9

Clock grouping example.

7.2 Scan design 417
domains CD4 through CD7 can also be applied simultaneously during test as

CK3. Therefore, in this example, three grouped clocks instead of seven individ-

ual clocks can be used to test the circuit during the capture operation.

7.2.2.2 Scan synthesis

When all the repairs of scan design rule violations have been made to the cir-

cuit, the scan synthesis flow is commenced. The scan synthesis flow converts

a testable design into a scan design without affecting the functionality of the

original design. Static analysis tools and equivalence checkers, which compare

the logic circuitry of two circuits under given constraints, are typically used

to verify that this is, indeed, the case. Depending on the types of scan cells used
and the types of scan architecture implemented, minor modifications to the

scan synthesis flow shown in Figure 7.8 may be necessary.

During the 1990s, this scan synthesis operation was typically performed

with a separate set of scan synthesis tools, which were applied after the logic

synthesis tool had synthesized a gate-level netlist out of an RTL description

of the design. Recently, these scan synthesis features are being integrated into

the logic synthesis tools, and scan designs are synthesized automatically from

the RTL. The process of performing scan synthesis during logic synthesis is
often referred to as one-pass synthesis or single-pass synthesis.

The scan synthesis flow shown in Figure 7.8 includes four separate steps:

(1) scan configuration, (2) scan replacement, (3) scan reordering, and (4) scan

stitching. Each of these steps is described in the following in more detail.

7.2.2.2.1 Scan configuration

Scan configuration describes the initial step in scan chain planning, in which

the general structure of the scan design is determined. The main decisions that

418 CHAPTER 7 Test synthesis
are made at this stage include: (1) the number of scan chains used; (2) the types

of scan cells used to implement these scan chains; (3) storage elements to be
excluded from the scan synthesis process; and (4) the way the scan cells are

arranged within the scan chains.

The number of scan chains used is typically determined by analyzing the

input and output pins of the circuit to determine how many pins can be allo-

cated for the scan use. So as not to increase the number of pins of the circuit,

which is typically limited by the size of the die, scan inputs and outputs are

shared with existing pins during scan testing. In general, the larger the number

of scan chains used, the shorter the time to perform a test on the circuit. This is
because the maximum length of the scan chains dictates the overall test applica-

tion time required to run each test pattern. One limitation that can preclude

many scan chains from being used is the presence of high-speed I/O pads.

The addition of any wire load to the high-speed I/O pads may adversely affect

the timing of the design. An additional limitation is the number of tester chan-

nels available for scan testing.

The second issue regarding the types of scan cells to use typically depends

on the process library. In general, for each type of storage element used, most
process libraries have a corresponding scan cell type that closely resembles

the functionality and timing of the storage element during the normal operation.

The third issue relates to which storage elements to exclude from scan syn-

thesis. This is typically determined by investigating parts of the design where

replacing storage elements with functionally equivalent scan cells may adversely

affect timing. Therefore, storage elements lying on the critical paths of a design

where the timing margin is very tight are often excluded from the scan replace-

ment step to guarantee that the manufactured device will meet the restricted
timing. In addition, certain parts of a design may be excluded from the scan

for many different reasons, including security reasons (e.g., parts of a circuit that

deal with encryption). In these cases, individual storage element types, individ-

ual storage element instances, or a complete section of the design can be speci-

fied as “don’t scan.”

The remaining issue is to determine how the storage elements are arranged

within the scan chains. This typically depends on how the number of clock

domains relates to the number of scan chains in the design. In general, a scan
chain is formed out of scan cells belonging to a single clock domain. For clock

domains that contain a large number of scan cells, several scan chains are con-

structed, and a scan-chain balancing operation is performed on the clock

domain to reduce the maximum scan-chain length. Oftentimes, a clock domain

will include both negative-edge and positive-edge scan cells. If the number of

negative-edge scan cells in a clock domain is large enough to construct a sepa-

rate scan chain, these scan cells can be allocated as such. In cases where a scan

chain has to include both negative-edge and positive-edge scan cells, all nega-
tive-edge scan cells are arranged in the scan chains such that they precede all

CK

SC1 SC2

DI
SI Q
SE

DI
SI Q
SE

X YSI

(a)

D2

D1

CK

D2 D3

D1 D3

X

Y

(b)

FIGURE 7.10

Mixing negative-edge and positive-edge scan cells in a scan chain: (a) Circuit structure.

(b) Timing diagram.

7.2 Scan design 419
positive-edge scan cells to guarantee that the shift operation can be performed

correctly.

Figure 7.10a shows an example of a circuit structure made up of a negative-

edge scan cell followed by a positive-edge scan cell. The associated timing dia-
gram, shown in Figure 7.10b, illustrates the correct shift timing of the circuit

structure. During each shift clock cycle, Y will first take on the state X at the

rising CK edge before X is loaded with the SI value at the falling CK edge. If

we accidentally place the positive-edge scan cell before the negative-edge scan

cell, both scan cells will always incorrectly contain the same value at the end

of each shift clock cycle.

In cases where scan chains must include scan cells from several different

clock domains, a lock-up latch is inserted between adjacent cross-clock-domain
scan cells to guarantee that any clock skew between the clocks can be toler-

ated. Clock skew between different clock domains is expected, because clock

skew is controlled within a clock domain to remain below a certain threshold

but not controlled across different clock domains. As a result, a race caused

by a hold time violation could occur between these two scan cells if a lock-up

latch is not inserted.

Figure 7.11a shows an example of a circuit structure having a scan cell SCp

belonging to clock domain CK1 driving a scan cell SCq belonging to clock
domain CK2 through a lock-up latch. The associated timing diagram is shown

in Figure 7.11b, where CK2 arrives after CK1, to demonstrate the effect of clock

skew on cross-clock-domain scan cells. During each shift clock cycle, X will first

take on the SI value at the rising CK1 edge, then Z will take on the Y value at

DI
SI Q
SE

D Q

Clock domain 1

CK1

Lock-up latch

CK2

SCp SCq

DI
SI Q
SE

Clock domain 2

X Y Z
SI

(a)

D1

CK1

CK2

D2 D3X

Y

Z

(b)

D1 D2 D3

D1 D2 D3

FIGURE 7.11

Adding a lock-up latch between cross-clock-domain scan cells: (a) Circuit structure.

(b) Timing diagram.

420 CHAPTER 7 Test synthesis
the rising CK2 edge. Finally, the new X value is transferred to Y at the falling CK1

edge to store the SCp contents. If CK2 arrives earlier than CK1, Z will first take

on the Y value at the rising CK2 edge. Then, X will take on the SI value at the
rising CK1 edge. Finally, the new X value is transferred to Y at the falling

CK1 edge to store the SCp contents. In both cases, the lock-up latch design in

Figure 7.11a allows correct shift operation regardless of whether CK2 arrives

earlier or later than CK1. It is important to note that this scheme works only

when the clock skew between CK1 and CK2 is less than the width (duty cycle)

of the clock pulse. If this is not the case, then slowing down the shift clock fre-

quency or enlarging the duty cycle of the shift clock can guarantee that this

approach will work for any amount of clock skew. Other lock-up latch and
lock-up flip-flop designs can also be used.

Once the clock structure of the scan chains is determined, it is still necessary

to determine which scan cells should be stitched together into one scan chain

and the order in which these scan cells should be placed. In some scan

7.2 Scan design 421
synthesis flows, a preliminary layout placement is used to allocate scan cells to

different scan chains belonging to the same clock domain. Then, the best order
in which to stitch these scan cells within the scan chains is determined to mini-

mize the scan routing required to connect the output of each scan cell to the

scan input of the next scan cell. In cases where a preliminary placement is

not available, scan cells can be assigned to different scan chains on the basis

of an initial floorplan of the testable design by grouping scan cells in proximate

regions of the design together. Once the final placement is determined, the scan

chains can then be reordered and stitched, and the scan design is modified on

the basis of the new scan chain order.

7.2.2.2.2 Scan replacement

After scan configuration is complete, scan replacement replaces all original
storage elements in the testable design with their functionally equivalent scan

cells. The testable design after scan replacement is often referred to as a

scan-ready design. Functionally equivalent scan cells are the scan cells that

most closely match power, speed, and area characteristics of the original storage

elements. The scan inputs of these scan cells are often tied to the scan outputs

of the same scan cell to prevent floating inputs from being present in the

circuit. These connections are later removed during the scan-stitching step.

In cases where one-pass or single-pass synthesis is used, scan replacement is
transparent to tool users. Recently, some RTL scan-synthesis tools have imple-

mented scan replacement at the RTL, even before going to the logic/scan

synthesis tool, to reflect the scan design changes in the original RTL design.

7.2.2.2.3 Scan reordering

Scan reordering refers to the process of reordering scan cells in scan chains

on the basis of the physical scan cell locations to minimize the number of inter-

connect wires used to implement the scan chains. During design implementa-
tion, if the physical location of each scan cell instance is not available, a

“random” scan order based purely on the module-level and bus-level connectiv-

ity of the testable design can be used. However, if a preliminary placement is

available, scan cells can be assigned to different scan chains on the basis of

the initial floorplan of the design. Only after the final placement process of

the physical implementation is performed on this testable design is the physical

location of each scan cell instance taken into consideration. During the routing

process of the physical implementation, scan reordering can be performed with
intrascan-chain reordering, interscan-chain reordering, or a combination of

both. Intrascan-chain reordering, in which scan cells are reordered only

within their respective scan chains, does not reorder any scan cells across clock

or clock-polarity boundaries. Interscan-chain reordering, in which scan cells

are reordered among different scan chains, must make sure that the clock struc-

ture of the scan chains is preserved. In both intrascan-chain reordering and

interscan-chain reordering, care must also be taken to limit the minimum

422 CHAPTER 7 Test synthesis
distance between scan cells to avoid timing violations that can destroy the integ-

rity of the shift operation.
Advanced techniques have also been proposed to further reduce routing

congestion while avoiding timing violations during the shift operation [Duggir-

ala 2002, 2004]. For deep submicron circuits, the capacitance of the scan chain

interconnect must also be taken into account to guarantee correct shift opera-

tion [Barbagallo 1996].

7.2.2.2.4 Scan stitching

Finally, the scan-stitching step is performed to stitch all scan cells together to

form scan chains. Scan stitching refers to the process of connecting the output

of each scan cell to the scan input of the next scan cell on the basis of the scan
order specified previously. An additional step is also performed by connecting the

scan input of the first scan cell of each scan chain to the appropriate scan chain

input port and the scan output of the last scan cell of each scan chain to the

appropriate scan chain output port to make the scan chains externally accessible.

In cases where a shared I/O port is used to connect to the scan chain input or the

scan chain output, additional signals must be connected to the shared I/O port to

guarantee that it always behaves as either input or output, respectively, through-

out the shift operation. As mentioned earlier, it is important to avoid the use of
high-speed I/O ports as scan chain inputs or outputs, because the additional load-

ing could result in a degradation of the maximum speed at which the device can

be operated. In addition to stitching the existing scan cells, lock-up latches or

lock-up flip-flops are often inserted during the scan-stitching step for adjacent

scan cells where clock skew may occur. These lock-up latches or lock-up flip-

flops are then stitched between adjacent scan cells.

7.2.2.3 Scan extraction

When the scan stitching step is complete, the scan synthesis process is com-

plete. The original design has now been converted into a scan design; however,

an additional step is often performed to verify the integrity of the scan chains,

especially if any design changes are made to the scan design. Scan extraction
is the process used for extracting all scan cell instances from all scan chains

specified in the scan design. This procedure is performed by tracing the design
for each scan chain to verify that all the connections are intact when the design

is placed in shift mode. Scan extraction can also be used to prepare for the test

generation process to identify the scan architecture of the design in cases where

this information is not otherwise available.

7.2.2.4 Scan verification

When the physical implementation of the scan design is completed, including

placement and routing of all the cells of the design, a timing file in standard
delay format (SDF) is generated. This timing file resembles the timing

7.2 Scan design 423
behavior of the manufactured device. This is then used to verify that scan test-

ing can be successfully performed on the manufactured scan design.
Other than the trivial problems of scan chains being incorrectly stitched, ver-

ification errors during the shift operation are typical because of hold time viola-

tions between adjacent scan cells, where the data path delay from the output of

a driving scan cell to the scan input of the following scan cell is smaller than the

clock skew that exists between the clocks driving the two scan cells. In cases

where the two scan cells are driven by the same clock, this may indicate a fail-

ure of the clock tree synthesis (CTS) process in guaranteeing that the clock

skew between scan cells belonging to the same clock domain be kept at a mini-
mum. In cases where the two scan cells are driven by different clocks, this may

indicate a failure of inserting a required lock-up latch between the scan cells of

the two different clock domains.

Apart from clock skew problems, other scan shift problems may occur.

Often, they stem from (1) an incorrect scan initialization sequence that fails to

put the design into test mode; (2) incomplete scan design rule checking and

repair in which the asynchronous set/reset signals of some scan cells are not

disabled during the shift operation or the gated/generated clocks for some scan
cells are not properly enabled or disabled; or (3) incorrect scan synthesis in

which positive-edge scan cells are placed before negative-edge scan cells.

Scan capture problems typically occur because of mismatches between the

zero-delay model used in test generation and fault simulation tools and the

full-timing behavior of the real device. In these cases, care must be taken during

the scan design and test application process to (1) provide enough clock delay

between the supplied clocks such that the clock capture order becomes deter-

ministic, and (2) prevent simultaneous clock and data switching events from
occurring. Failure to take clock events into proper consideration can easily

result in a breakdown of the zero-delay (cycle-based) simulator used in the test

generation and fault simulation process. More detailed information regarding

scan verification of the shift and capture operations is described in the

following.

7.2.2.4.1 Verifying the scan shift operation

Verifying the scan shift operation involves performing flush tests with a full-

timing logic simulator during the shift operation. A flush test is a shift test in
which a selected flush pattern is shifted all the way through the scan chains

to verify that the same flush pattern arrives at the end of the scan chains at

the correct clock cycle. For example, a scan chain containing 1000 scan cells

requires 1000 shift cycles to be applied to the scan chain for the selected flush

pattern to begin arriving at the scan output. If the data arrive early by a number

of shift cycles, this may indicate that a similar number of hold time problems

exist in the circuit.

To detect clock skew problems between adjacent scan cells, the selected
flush pattern is typically a pattern that is capable of providing both 0-to-1 and

424 CHAPTER 7 Test synthesis
1-to-0 transitions to each scan cell. To ensure that a 0-to-0 or 1-to-1 transition of a

scan cell does not corrupt the data, the selected flush pattern is further
extended to provide these transitions. A typical flush pattern used for testing

the shift operation is “01100,” which includes all four possible transitions. Dif-

ferent flush patterns can also be used for debugging different problems, such

as the all-zero and all-one flush patterns used for debugging stuck-at faults in

the scan chain.

Because observing the arrival of the data on the scan chain output cannot

pinpoint the exact location of any shift error in a faulty scan chain, flush

testbenches are typically created to observe the values at all internal scan cells
to identify the locations at which the shift errors exist. By use of this technique,

the faulty scan chain can be easily and quickly diagnosed and fixed during the

scan shift verification process; for example:
n Scan hold time problems that exist between scan cells belonging to differ-

ent clock domains indicate that a lock-up latch may be missing. Lock-up

latches should be inserted between these adjacent scan cells.

n Scan hold time and setup time problems that exist between scan cells

belonging to the same clock domain indicate that the CTS process was

not performed correctly. In this case, either the CTS has to be redone or

additional buffers need to be inserted between the failing scan cells to

slow down the path.
n Scan hold time problems caused by positive-edge scan cells followed by

negative-edge scan cells indicate that the scan chain order was not per-

formed correctly. Lock-up flip-flops rather than lock-up latches can be

inserted between these adjacent scan cells or the scan chains may have to

be reordered by placing all negative-edge scan cells before all positive-edge

scan cells.
An additional approach to scan shift verification that has become more popular

in recent years involves performing static timing analysis (STA) on the shift

path in shift mode. In this case, the STA tool can immediately identify the loca-

tions of all adjacent scan cells that fail to meet timing. The same solutions men-

tioned earlier are then used to fix problems identified by the STA tool.

7.2.2.4.2 Verifying the scan capture operation

Verifying the scan capture operation involves simulating the scan design with a

full-timing logic simulator during the capture operation. This is used to identify

the location of any failing scan cells in which the captured response does not

match the expected response predicted by the zero-delay logic simulator used

in test generation or fault simulation. To reduce simulation time, a broadside-
load testbench is often used, in which a test pattern is loaded directly into

all scan cells in the scan chains and only the capture cycle is simulated. Because

the broadside-load test does not involve any shift cycle in the test pattern,
broadside-load testbenches often include at least one shift cycle in the capture

verification testbench to ensure that each test pattern can at least shift once.

7.3 Logic built-in self-test (BIST) design 425
This requires loading the test pattern into the outputs of the previous scan cells

rather than directly into the outputs of the current scan cells. In addition, veri-
fying the scan capture operation often includes a serial simulation, in which a

limited number of test patterns, typically three to five or as many as can be

simulated within a reasonable time, are simulated. In this serial simulation, a test

pattern is simulated exactly the same as how it would be applied on the tester

by shifting in each pattern serially through the scan chain inputs. Next, a cap-

ture cycle is applied. The captured response is then shifted out serially to verify

that the complete scan chain operation can be performed successfully.

As mentioned before, mismatches in the capture cycle indicate that the zero-
delay simulation model used by the test generator and the fault simulator failed

to capture all the details of the actual timing occurring in the device. Debugging

these types of failures is tedious and may involve observing all signals of the mis-

matching scan cells and signal lines (also called nets) driving these scan cells.

One brute-force method commonly used by designers for removing these mis-

matches is to mask off the locations by changing the expected response of

the mismatching location into an unknown (X) value. A new approach that

has become more popular is to use the static timing analysis tool for both scan
shift and scan capture verification.
7.3 LOGIC BUILT-IN SELF-TEST (BIST) DESIGN

Compared with scan synthesis, considerable efforts are required to implement

or synthesize a BIST design. Because logic BIST is mostly scan-based, the BIST

design must first comply with all scan design rules. In addition, because BIST

designs usually cannot tolerate unknown (X) values propagated to the output

response analyzers, BIST-specific design rules are required to deal with
unknown sources originating from analog blocks, memories, non-scan storage

elements, asynchronous set/reset signals, tristate buses, false paths, and multi-

ple-cycle paths, to name a few. The need to implement a logic BIST controller

that automatically coordinates BIST pattern generation and response analysis

for at-speed testing of delay faults further complicates the process. Last, because

pseudo-random patterns (as opposed to deterministic patterns) are commonly

used for BIST pattern generation, additional test points (including control points

and observation points) may have to be added to improve the circuit’s fault
coverage.
7.3.1 BIST design rules
Because logic BIST requires many more stringent design restrictions than con-

ventional scan, many scan design rules discussed in Section 7.2 that are

optional for scan designs become mandatory for BIST designs. The major logic

BIST design restriction relates to the propagation of unknown (X) values.
Because any unknown (X) value that propagates directly or indirectly to the

426 CHAPTER 7 Test synthesis
output response analyzer (ORA) will corrupt the signature and cause the BIST

signature to become useless, no unknown (X) values can be tolerated. This is
different from scan designs in which unknown (X) values present in a scan

design only result in fault coverage degradation. Therefore, when designing a

logic BIST system, it is essential that the circuit under test (CUT) meet all scan

design rules and BIST-specific design rules, called BIST design rules. The pro-

cess of taking a scan-based design and making it meet all additional BIST-specific

design rules turns the design into a BIST-ready core.

7.3.1.1 Unknown source blocking

There are many unknown (X) sources in a CUTor BIST-ready core. Any unknown

(X) source in the BIST-ready core, which is capable of propagating its unknown

(X) value to the ORA directly or indirectly, must be blocked and fixed with a
DFT repair approach often calledX-bounding orX-blocking. Figure 7.12 shows

a few of the more typically used X-bounding methods for blocking an unknown

(X) source: The 0-control point forces an X source to 0; the 1-control point
controls the X source to 1; the bypass logic allows the output of the X source

to receive both 0 and 1 from a primary input (PI) or an internal node; the con-
trol-only scan point drives both 0 and 1 through a storage element, such as

D flip-flop; and finally, the scan point can capture the X-source value and drive

both 0 and 1 through a scan cell, such as scan D flip-flop or level-sensitive scan
design (LSSD) shift register latch (SRL) [Eichelberger 1977].

Depending on the nature of each unknown (X) source, several X-bounding

methods can be appropriate for use. The most common problems inherent in

these approaches include: (1) that they might increase the area of the design,

and (2) that they might impact timing.
(d) (e)

(a) (b) (c)

0

1

BIST_mode

X

D Q

CKCK

D D

0

1

BIST_mode

X

D Q

CKCK

0

1

SE

X

BIST_mode

X

BIST_mode

0

1

BIST_mode

X

from PI or
Internal node

FIGURE 7.12

Typical X-bounding methods for blocking an unknown (X) source: (a) 0-control point.

(b) 1-control point. (c) Bypass logic. (d) Control-only scan point. (e) Scan point.

7.3 Logic built-in self-test (BIST) design 427
7.3.1.1.1 Analog blocks

Examples of analog blocks are analog-to-digital converters (ADCs). Any ana-
log block output that can exhibit unknown (X) behavior during a test has to be

forced to a known value. This can be accomplished by adding a 0-control point,

a 1-control point, bypass logic, or a control-only scan point. We recommend the

latter two approaches, because they yield higher fault coverage than the former

two approaches.

7.3.1.1.2 Memories and non-scan storage elements

Examples of memories are dynamic random-access memories (DRAMs), static
random-access memories (SRAMs), or flash memories. Examples of non-scan

storage elements are D flip-flops or D latches. Bypass logic is typically used to

block each unknown (X) value originating from a memory or non-scan storage

element. Another approach is to use an initialization sequence to set a memory

or non-scan storage element to a known state. This is typically done to avoid

adding delay to critical (functional) paths. Care must be taken to ensure that

the stored state is not corrupted throughout the BIST operation.

7.3.1.1.3 Combinational feedback loops

All combinational feedback loops must be avoided. If they are unavoidable, then

each loop must be broken with a 0-control point, a 1-control point, or a scan

point. We recommend adding scan points because they yield higher fault cover-

age than the other approaches.

7.3.1.1.4 Asynchronous set/reset signals

As indicated in the preceding section, asynchronous set or reset can destroy the

data during the shift operation if a pattern causes the set/reset signal to become

active. The asynchronous set or reset can be disabled with an external set/reset

disable (RE) pin given in Figure 7.7. This set/reset disable pin must be set to 1
during the shift operation. This may become cumbersome for BIST applications

in which there is a need to use the pin for other purposes. Thus, we recom-

mend using the existing scan enable (SE) signal to protect each shift operation

and adding a set/reset clock point (SRCK) on each set/reset signal to test the

set/reset circuitry as illustrated in Figure 7.13.

In addition, we recommend testing all data and set/reset faults with two sep-

arate BIST sessions as shown in Figure 7.14. The timing diagram in this figure is

used for testing a circuit having one system clock (CK) and one added set/reset
clock. To test data faults in the functional logic, a clock pulse C1 is triggered

from CK while SRCK is held inactive in one capture window. Similarly, to test

set/reset faults in the set/reset circuitry, C2 is enabled while CK is held inactive

in another capture window. By use of this approach, we can avoid races and

hazards and prevent data in scan cells from being destroyed by the set/reset

signals.

CK

SRCK

SE

Shift Window Capture Window

…

C1

Shift Window

C2

…

Capture Window

…

Shift Window

FIGURE 7.14

Example timing control diagram for testing data and set/reset faults.

Set/Reset
Circuitry

R
D Q

Functional
Logic

CK

0

1

Scan-In

SE

SRCK

FIGURE 7.13

Set/reset clock point for testing a set/reset-type scan cell.

(a) (b)

EN1

D1

EN2

D2

D1

D2

SE

BIST_mode

EN1

EN2

FIGURE 7.15

A one-hot decoder for testing a tristate bus with two drivers: (a) A tristate bus. (b) A one-hot

decoder.

428 CHAPTER 7 Test synthesis
7.3.1.1.5 Tristate buses

Bus contention occurs when two drivers force different values on the same bus
that can damage the chip; hence, it is important to prevent bus conflicts during

the normal operation and the shift operation [Cheung 1997]. For BIST applica-

tions, because pseudo-random patterns are commonly used, it is also crucial

to prevent bus contention from happening during the capture operation

[Al-Yamani 2002]. To avoid potential bus contention, it is best to resynthesize

each bus with multiplexers. If this is impractical, make sure only one tristate

driver is enabled at any given time. The one-hot decoder shown in Figure 7.15

is an example of a circuit that can ensure only one driver is selected during each
shift or capture operation.

7.3 Logic built-in self-test (BIST) design 429
7.3.1.1.6 False paths

False paths are not normal functional paths. They do no make any harm to the
chip during the normal operation; however, for delay fault testing, a pseudo-

random pattern might adversely attempt to test a selected false path. Because

false paths are not exercised during the normal circuit operation, they typically

do not meet timing specifications, which can result in a mismatch during logic

BIST delay fault testing. To avoid this potential problem, we recommend adding

a 0-control point or 1-control point to each false path.

7.3.1.1.7 Critical paths

Critical paths are timing-sensitive functional paths. Because the timing of such a

path is critical, no extra gates are allowed to be added to the path to prevent

increasing the delay of the critical path. To remove an unknown (X) value from

a critical path, we recommend adding an extra input pin to a selected combina-

tional gate, such as an inverter, NAND gate, or NOR gate, on the critical path to

minimize the added delay. The combinational gate is then converted to an

embedded 0-control point or embedded 1-control point as shown in

Figure 7.16, where an inverter is selected for adding the extra input.

7.3.1.1.8 Multiple-cycle paths

Multiple-cycle paths are normal functional paths, but data are expected to arrive

after two or more cycles. Similar to false paths, they can cause mismatches if

exercised during delay fault testing, because they are intended to be tested in

one cycle. To avoid this potential problem, we recommend adding a 0-control

point or 1-control point to each multiple-cycle path or holding certain scan cell

output states to avoid those multiple-cycle paths.

7.3.1.1.9 Floating ports

Neither primary inputs (PIs) nor primary outputs (POs) can be floating. These

ports must have a proper connection to power (VDD) or ground (VSS). Also,

floating inputs to any internal modules must be avoided. This has a potential

chance to propagate unknown (X) values to the ORA.
X

BIST_mode

X

BIST_mode

X

(a) (b) (c)

FIGURE 7.16

Embedded control points for testing a critical path having an inverter: (a) An inverter.

(b) Embedded 0-control point. (c) Embedded 1-control point.

430 CHAPTER 7 Test synthesis
7.3.1.1.10 Bidirectional I/O ports

Bidirectional I/O ports are commonly used in a design. For BIST operations, the
direction of each bidirectional I/O port should be forced to either input or out-

put mode. Figure 7.17 shows an example of forcing a bidirectional I/O port to

output mode.

7.3.1.2 Re-timing

Because the TPG and the ORA are typically placed far from the CUT, races and

hazards caused by clock skews may occur between the TPG and the (scan

chain) inputs of the CUT and between the (scan chain) outputs of the CUT

and the ORA. To avoid these potential problems and ease physical implementa-

tion, we recommend adding re-timing logic between the TPG and the CUT

and between the CUT and the ORA. The re-timing logic should consist of at least

one negative-edge pipelining register (D flip-flop) and one positive-edge pipe-
lining register (D flip-flop). Figure 7.18 shows an example re-timing logic among

the TPG, CUT, and ORA that uses two pipelining registers on each end. Note

that the three clocks (CK1, CK2, and CK3) could belong to one clock tree.
7.3.2 BIST design example
In this subsection, we show an example of designing a logic BIST system for

testing a scan-based design (core) composed of two clock domains with
s38417 and s38584. The two clock domains are taken from the ISCAS-1989

benchmark circuits [Brglez 1989], and their statistics are shown in Table 7.2.

The design we consider is described at the register-transfer level (RTL). We
CK CK

O
R
A

CK3

D Q D Q D Q D Q

CK CK

T
P
G

CK1 CK2

CUT

FIGURE 7.18

Re-timing logic among the TPG, CUT, and ORA.

BIST_mode

EN

D IO
Z

SE

FIGURE 7.17

Forcing a bidirectional port to output mode.

Table 7.2 Design Statistics

Clock Domain No. of PIs No. of POs
No. of
Flip-Flops No. of Gates

CD1 (s38417) 28 106 1,636 22,179

CD2 (s38584) 12 278 1,452 19,253

7.3 Logic built-in self-test (BIST) design 431
show all the necessary steps to arrive at the logic BIST system design, verify its

correctness, and improve its fault coverage.

7.3.2.1 BIST rule checking and violation repair

The first step is to perform logic BIST design rule checking on the RTL design.
All DFT rule violations of the scan design rules and BIST-specific design rules

provided in preceding sections must be repaired. Once all DFT rule violations

are repaired, the design should meet all scan and logic BIST design rules. In

addition, we should be aware of the following design parameters:
n The number of test clocks present in the design, each used for controlling

one clock domain.

n The number of set/reset clocks present in the design to be used for break-

ing all asynchronous set/reset loops.
In the preceding example, the design contains two test clocks and does not

require any additional set/reset clock. The new RTL design (core) after BIST rule

repair is performed is referred to as an RTL BIST-ready core.

7.3.2.2 Logic BIST system design

The second step is to design the logic BIST system at the RTL. The decisions

that need to be made at this stage include:
n The type of logic BIST architecture to adopt.

n The number of PRPG-MISR (or PEPG-MISR) pairs to use

n The length of each PRPG-MISR (or PEPG-MISR) pair.

n The faults to be tested and BIST timing control diagrams to be used for

testing these faults.

n The types of optional logic to be added to ease physical implementation

and facilitate debug and diagnosis, as well as improve the circuit’s fault
coverage.
7.3.2.2.1 Logic BIST architecture

We choose to implement STUMPS-based logic BIST architecture, because it is

easy to integrate with scan/ATPG and is the architecture widely used in the

industry. We recommend the use of one PRPG-MISR pair for each clock domain,

whenever possible, because the resulting BIST architecture is easier to debug.

Clock
Domain

CD1

TPG

Input Selector

Clock
Domain

CD2

BIST-Ready Core

ORA

MISR1 MISR2

SpC1 SpC2

PIs/SIs

POs/SOs
Clock
Gating
Block

Test
Controller

SCK1
SCK2

Start
Finish
Result

TCK1
TCK2 C

CCK1
CCK2

PRPG1

PS1/SpE1 PS2/SpE2

PRPG2
PLL

Data/
Control

Logic BIST Controller

CK2

CK1

FIGURE 7.19

A logic BIST system for testing a design with two cores.

432 CHAPTER 7 Test synthesis
In addition, the use of one PRPG-MISR pair for each clock domain can eliminate

the need for additional design efforts for managing clock skews between inter-

acting clock domains, even when they operate at the same frequency. If it is

required to use a single PRPG-MISR pair to test multiple clock domains, these
clock domains should be placed within physical proximity to simplify physical

implementation. An example of logic BIST system based on the STUMPS archi-

tecture for testing the design given in Table 7.2 is shown in Figure 7.19.

The BIST architecture used for testing the BIST-ready core consists of a TPG

for generating test stimuli, an input selector for providing pseudo-random or

ATPG patterns to the core-under-test, an ORA for compacting the test

responses, and a logic BIST controller for coordinating the overall BIST opera-

tion. The logic BIST controller consists of a test controller and a clock-gating
block. The test controller initiates the BIST operation on receiving a Start signal,

issues a Finish signal once the BIST operation is complete, and reports the pass/

fail status of the test through the Result bus. The clock-gating block accepts

internal PLL clocks (CK1 and CK2) derived from external functional clocks

(SCK1 and SCK2), and generates the required test clocks (TCK1 and TCK2) and

controller clocks (CCK1 and CCK2) for controlling the BIST-ready core and test

controller, respectively. During normal functional operation, both CK1 and

CK2 can run faster or slower than SCK1 and SCK2, respectively.

7.3.2.2.2 TPG and ORA

Next, we need to determine the length of each PRPG-MISR pair. The use of a

separate PRPG-MISR pair for each clock domain allows us to reduce the length

7.3 Logic built-in self-test (BIST) design 433
of each PRPG and MISR. In the example shown in Figure 7.19, the linear phase

shifters, PS1 and PS2, and space expanders, SpE1 and SpE2, can be used to fur-
ther reduce the length of the PRPGs, whereas the space compactors, SpC1

and SpC2, can be used to further reduce the length of the MISRs. Each space

expander or space compactor typically consists of an XOR-gate tree.

Now, suppose we decide to (1) synthesize the two clock domains, CD1 and

CD2, each with 20 balanced scan chains; (2) run 100,000 pseudo-random pat-

terns to obtain very high BIST fault coverage by adding additional test points;

and (3) perform top-up ATPG after BIST to further increase the circuit’s fault

coverage. Because CD1 has 28 PIs, a logical conclusion would be to expect
the length of the PRPG1 to be 48 for the use of a 48-stage PRPG to drive

28 PIs and 20 scan chains. Because we plan to perform top-up ATPG, which

requires sharing 20 out of the 28 PIs with scan inputs (SIs), and another

20 POs with scan outputs (SOs), another possible length for the PRPG1 would

be 28. What we need to determine is whether a 28-stage PRPG, constructed

from a maximum-length LFSR or cellular automata (CA), is adequate for

generating the required 100,000 pseudo-random patterns.

For a CD1 with 20 balanced scan chains, 82 shift clock pulses are required
(1636 flip-flops/20 scan chains) to scan in a single pseudo-random pattern. This

means that a total of 8.2 million shift clock pulses are required to scan in all

100,000 patterns. This number is much smaller than the 256 million (228�1)
patterns generated with a 28-stage maximum-length LFSR or CA for the PRPG1.

From Table 3.5 given in Chapter 3, we chose a 28-stage maximum-length LFSR

with characteristic polynomial, f(x) ¼ 1 þ x
3 þ x

28.

A similar analysis applies for CD2. The main difference is that CD2 has 12 PIs.

Suppose we pick 10 out of the 12 PIs to share with 10 SIs for top-up ATPG.
We will need to use a 10-to-20 space expander (SpE2) for driving the 20

scan chains and a 20-to-10 space compactor (SpC2) for driving the 10 SOs.

Because testing this clock domain requires a total of 7.3 million (1452/20 �
00,000) shift clock pulses, we need to use at least a 23-stage maximum-length

LFSR or CA as PRPG2 to drive the 12 PIs. From Table 3.5 given in Chapter 3,

we chose a 25-stage maximum-length LFSR with characteristic polynomial,

f(x) ¼ 1 þ x
3 þ x

25.

As indicated in Section 3.4.2.3, each MISR can cause an aliasing problem,
but the problem is of less concern when the MISR length is greater than 20.

Because CD1 and CD2 both have 106 and 278 POs, we choose a 106-to-27 space

compactor (SpC1) and a 278-to-35 space compactor (SpC2), respectively. Thus,

we will use a 47-stage MISR and a 45-stage MISR to compact the test responses

from both CD1 and CD2, respectively, where 47 ¼ 27 (shared POs) þ 20 (SOs)

and 45 ¼ 35 (shared POs) þ 10 (SOs). From Table 3.5 given in Chapter 3,

we choose to implement the 47-stage MISR with f(x) ¼ 1 þ x
5 þ x

47, and the

45-stage MISR with f(x) ¼ 1 þ x þ x
3 þ x

4 þ x
45. Table 7.3 shows the decisions

made for each PRPG-MISR pair so far.

Table 7.3 PRPG-MISR Choices

Clock
Domain

No. of
Scan
Chains

No. of
Shared SIs
or SOs

Max. Scan
Chain
Length

PRPG
Length

MISR
Length

CD1

(s38417)
20 20 82 28 47

CD2

(s38584)
20 10 73 25 45

434 CHAPTER 7 Test synthesis
7.3.2.2.3 Test controller

The test controller plays a central role in coordinating the overall BIST opera-

tion. In general, a finite-state machine written at the RTL is used to implement

the test controller for interfacing with all external signals, such as Start, Finish,

and Result, and generating the required timing control signals for controlling

each PRPG-MISR pair and the BIST-ready core. Comparison logic is included in
the test controller to compare the final signature with an embedded golden

signature.

Often, these interface signals are controlled through an IEEE 1149.1 boundary-

scan-standard-based test access port (TAP) controller [IEEE 1149.1-2001].

In this case, all signals can be assessed through the TAP: TDI (Test Data In),

TDO (Test Data Out), TCK (Test Clock), and TMS (Test Mode Select). Optionally,

an IEEE 1500 standard-based wrapper may be also used to isolate each selected

clock domain [IEEE 1500-2005].
To test structural faults in the BIST-ready core, we chose the staggered sin-

gle-capture approach rather than the one-hot single-capture approach. The

slow-speed timing control diagram is shown in Figure 7.20, where test clocks

TCK1 and TCK2 are staggered and generated by the clock-gating block shown

in Figure 7.19.

To test delay faults in the BIST-ready core, we chose the staggered double-

capture approach if CD1 and CD2 are asynchronous or the aligned double-

capture approach if they are synchronous. This is because either approach
TCK1

TCK2

Shift Window Capture Window Shift Window

…

…

…

…

C1

C2

GSE

FIGURE 7.20

Slow-speed timing control using staggered single-capture.

7.3 Logic built-in self-test (BIST) design 435
allows us to operate a global scan enable (GSE) signal at slowspeed for driving all

clock domains simultaneously in both BIST and scan ATPG modes. The at-speed
timing control diagrams with the staggered double-capture and launch aligned

double-capture schemes are shown in Figures 7.21 and 7.22, respectively.

7.3.2.2.4 Clock gating block

To generate an ordered sequence of single-capture or double-capture clocks,

clock suppression [Rajski 2003], daisy-chain clock-triggering, or token-ring

clock-enabling [Wang 2005a] can be used. The clock suppression scheme typi-

cally requires the use of a reference clock operating at the highest frequency.
Daisy-chain clock-triggering means that a completion of one event automatically

triggers the next event as the arrows shown in Figure 7.23. The only difference
Shift Window

…

…

…

…

TCK1

TCK2

C1 C2

C3 C4

GSE

d

Capture WindowShift Window

FIGURE 7.21

At-speed timing control using staggered double-capture.

Shift Window Capture Window Shift Window

…

…

…

…

TCK1

TCK2

C1C2

C3 C4

GSE

FIGURE 7.22

At-speed timing control using launch aligned double-capture.

TCK1

TCK2

GSE

…

…

C1 C2

C3 C4d

FIGURE 7.23

Daisy-chain clock-triggering.

2-Pulse
Controller

TCK1

TCK2

CK1

SE1
Generator

BIST
mode

CK2
CK2

2-Pulse
Controller

CK1

SE2SE2
Generator

SE1

FIGURE 7.24

A daisy-chain clock-triggering circuit for generating the waveform given in Figure 7.23.

CK1

CK1

CK1

TCK21 1 1 1

CK2

GSE
Generator

BIST
mode

GSE

0 0 1 1 TCK1
‘0’

‘0’

FIGURE 7.25

A clock suppression circuit for generating the waveform given in Figure 7.22.

436 CHAPTER 7 Test synthesis
between daisy-chain clock-triggering and token-ring clock-enabling is that the

former uses a clock edge to trigger the next event, whereas the latter uses a sig-

nal level to enable the next event.

Figure 7.24 shows a daisy-chain clock-triggering circuit for generating the

staggered double-capture waveform given in Figure 7.23. When the BIST mode

is activated, the SE1/SE2 generators and 2-pulse controllers will generate the
required scan enable and double-capture clock pulses, per the arrows shown

in Figure 7.23. Each SE1/SE2 can be treated as a GSE signal for CD1/CD2.

Figure 7.25 shows a clock suppression circuit for generating the launch

aligned double-capture waveform given in Figure 7.22. This circuit uses a refer-

ence clock (CK1) to program the capture window. The contents of the 8-bit

shift register are preset to {0011,1111} during each shift window. Because of

its programmability, the approach can also be used to generate timing wave-

forms for testing asynchronous designs. One major requirement is that we guar-
antee that the delay measured by the number of reference clock pulses be

longer than delay d between C2 and C3, as shown in Figure 7.21.

7.3.2.2.5 Re-timing logic

The main difference between ATE-based scan testing and logic BIST is that the

latter requires that more complex BIST circuitry be implemented on the

7.3 Logic built-in self-test (BIST) design 437
functional circuitry. Successfully completing the physical implementation of the

functional circuitry of a high-speed and high-performance design is a challenge
in itself. If the BIST circuitry adds a large number of timing critical signals and

requires strict clock-skew management, the physical implementation of logic

BIST can become extremely difficult. Therefore, we recommend adding two

pipelining registers (see Figure 7.18) between each PRPG and the BIST-ready

core and two additional pipelining registers between the BIST-ready core and

each MISR. In this case, the maximum scan chain length for each clock domain,

CD1 or CD2, is effectively increased by 2, not 4.

7.3.2.2.6 Fault coverage enhancing logic and diagnostic logic

The drawback of using pseudo-random patterns is that the circuit may not meet

the target fault coverage goal. To improve the circuit’s fault coverage, we recom-

mend adding extra test points and additional logic for top-up ATPG support at

the RTL. A general rule of thumb is to add one extra test point for every 1000

gates. For top-up ATPG support, the inserted logic includes an input selector

for selecting test patterns either from the PRPGs or PIs/SIs, as shown in Fig-

ure 7.19, as well as circuitry for reconfiguring the scan chains to perform top-
up ATPG in (1) ATPG mode or (2) ATPG compression mode, which is discussed

in more detail in Chapter 3.

We also recommend including diagnostic logic in the RTL BIST code to

facilitate debug and diagnosis [Wang 2006b]. One simple approach is to con-

nect all PRPG-MISR pairs (and all scan chains) as a serial scan chain and make

them externally accessible. (Refer to Chapter 7 [Wang 2006a] for more advanced

BIST diagnosis techniques.) Table 7.4 summarizes all possible test modes of the

logic BIST system along with the effective scan chain counts for each test mode.

7.3.2.3 RTL BIST synthesis

Once all decisions regarding the logic BIST architecture are made, it is time to
create the RTL logic BIST code. At this stage, it is possible to either design the
Table 7.4 Example Test Modes Supported by the Logic BIST System

Test Mode
CD1 Effective
Chain Count

CD2 Effective
Chain Count

Normal 0 0

BIST 20 20

ATPG 20 10

ATPG compression 20 20

Serial debug and
diagnosis

1 1

Test Point Selection at RTL Design

Logic/Scan Synthesis

Gate-Level Test
Point Insertion

Yes

Done

No Coverage
Acceptable ?

Fault Simulation

FIGURE 7.26

Fault simulation and test point insertion flow.

438 CHAPTER 7 Test synthesis
logic BIST system by hand or generate the RTL code automatically with an RTL

logic BIST tool (commercially available). In either case, the number of scan
chains for each clock domain should be specified along with the names of their

associated scan inputs and scan outputs without inserting the actual scan chains

into the circuit. The scan synthesis task can be handled as part of the general

synthesis task, implemented with any commercially available synthesis tool for

converting the RTL BIST-ready core and the logic BIST system into a gate-level

netlist.

7.3.2.4 Design verification and fault coverage enhancement

Finally, the synthesized netlist needs to be verified with functional or timing ver-

ification to ensure that the logic BIST system functions as intended. If any pat-

tern mismatch occurs, the problem must be identified and resolved. Next,
fault simulation must be performed on the pseudo-random patterns generated

by the TPG to determine the circuit’s fault coverage. If the circuit does not

reach the target fault coverage goal, additional test points should be inserted

or top-up ATPG should be used. The extra test points that were added in

advance at the RTL design should allow you to achieve the target fault coverage

goal; otherwise, the test point insertion and fault simulation process may have

to be repeated until the final fault coverage goal is reached. Once this process

is complete, the golden signature can be either recorded to be compared exter-
nally or hard-coded into the comparison logic. The fault simulation and test

point insertion flow is illustrated in Figure 7.26.
7.4 RTL DESIGN FOR TESTABILITY

During the 1990s, the testability of a circuit was primarily assessed and

improved at the gate level. The reason was because the circuits were not too

7.4 RTL design for testability 439
large that the logic/scan synthesis process took an unreasonable amount of

time. As device size grows toward tens to hundreds of millions of transistors,
tight timing, potential yield loss, and low power issues begin to pose serious

challenges. When combined with increased core reusability and time-to-market

pressure, it is becoming imperative that most, if not all, testability issues be

addressed at the RTL. This allows the logic/scan synthesis tool and the physical

synthesis tool, which takes physical layout information into consideration, to

optimize area, power, and timing after DFT repairs are made. Fixing DFT pro-

blems at the RTL also allows designers to create testable RTL cores that can

be reused without having to repeat the DFT checking and repair process for a
number of times.

Figure 7.27 shows a design flow for performing testability repair at the gate

level. It is clear that performing testability repair at the gate level introduces a

loop in the design flow that requires repeating the time-consuming logic synthe-

sis process every time testability repair is made. This makes it logical to attempt

to perform testability checking and repair at the RTL instead, so testability viola-

tions can be detected and fixed at the RTL, as shown in Figure 7.28, without

having to repeat the logic synthesis process.
An additional benefit of performing testability repair at the RTL is that it

allows scan to be more easily integrated with other advanced DFT features

implemented at the RTL, such as memory BIST, logic BIST, test compression,

boundary scan, and analog and mixed-signal (AMS) BIST. This makes it possi-

ble to perform all testability integration at the RTL as opposed to the current

practices of integrating the advanced DFT features at the RTL and later integrat-

ing them with scan at the gate level. In the following, we describe the RTL DFT

problems by focusing mainly on scan design.
Logic synthesis

Gate-level design

Testable design

RTL design

Testability repair

Scan design

Scan synthesis

FIGURE 7.27

Gate-level testability repair design flow.

Testable RTL design

RTL design

Testability repair

Scan design

Logic/scan synthesis

FIGURE 7.28

RTL testability repair design flow.

440 CHAPTER 7 Test synthesis
Some modern synthesis tools now incorporate testability repair and scan

synthesis as part of the logic synthesis process, such that a testable design free
of scan rule violations is generated automatically. In this case, if the DFT fixes

made are acceptable and do not have to be incorporated into the RTL, the flow

can proceed directly to test generation and scan verification.
7.4.1 RTL scan design rule checking and repair
To perform scan design rule checking and repair at the RTL, a fast synthesis
step of the RTL is usually performed first. In fast synthesis, combinational RTL
code is mapped onto combinational primitives and high-level models, such as

adders and multipliers. This allows us to identify all possible scan design rule

violations and infer all storage elements in the RTL design.

Static solutions for identifying testability problems at the RTL without having

to perform any test vector simulation or dynamic solutions that simulate the

structure of the design through the RTL have been developed. These solutions

make it possible to identify almost all testability problems at the RTL. Although a

few testability problems remain that can be identified only at the gate level, this
approach does reduce the number of iterations involving logic synthesis, as

shown in Figure 7.28. In addition, it has become common to add scan design

rules as part of RTL “lint” tools that check for good coding and reusability styles,

as well as user-defined coding style rules [Keating 1999]. To further optimize

testability results, clock grouping can also be performed at the RTL as part of

scan design rule checking [Wang 2005b].

Automatic methods for repairing RTL testability problems have also been

developed [Wang 2005b]. An example is shown in Figure 7.29. The RTL code
shown in Figure 7.29a, which is written in the Verilog Hardware Description
Language (HDL) [IEEE 1463-2001], represents a generated clock. In this exam-

ple, a flip-flop clk_15 can be inferred, whose value is driven to 1 when a

counter value q is equal to “1111.” The output of this flip-flop is then used to

trigger the second “always” statement, where an additional flip-flop can be

always @(posedge clk)
if (q == 4�b1111)

clk_15 <= 1;
else

begin
clk_15 <= 0;
q <= q + 1;

end
always @(posedge clk_15)

d <= start;

clk

Q Q
start

d
Dclk_15

clk_15

(a)

always @(posedge clk)
if (q == 4�b1111)

clk_15 <= 1;
else

begin
clk_15 <= 0;
q <= q + 1;

end
assign clk_test = (TM) ? clk : clk_15;
always @(posedge clk_test)

d <= start;

clk

Q Q
start

d
D

0

1

clk_test

TM

(c)

(b)

(d)

FIGURE 7.29

Automatic repair of a generated clock violation at the RTL: (a) Generated clock (RTL code).

(b) Generated clock (schematic). (c) Generated clock repair (RTL code). (d) Generated clock

repair (schematic).

7.4 RTL design for testability 441
inferred. Figure 7.29b shows a schematic of the flip-flop generating the clk_15

signal, as well as the flip-flop driven by the generated clock, which is likely to

be the structure synthesized out of the RTL with a logic synthesis tool. This scan

design rule violation can be fixed with the test mode signal TM by modifying the

RTL code as shown in Figure 7.29c. The schematic for the modified RTL code is

shown in Figure 7.29d.
7.4.2 RTL scan synthesis
When storage elements have been identified during RTL scan design rule check-

ing, either RTL scan synthesis or pseudo RTL scan synthesis can be per-

formed. In RTL scan synthesis, the scan synthesis step as described in Section

7.2.2.2 is performed. The only difference is that the scan equivalent of each stor-

age element does not refer to a library cell but to an RTL structure that is equiv-

alent to the original storage element in normal mode. In this case, the scan
chains are inserted into the RTL design. In pseudo RTL scan synthesis, the scan

synthesis step is not performed; only pseudo primary inputs and pseudo

442 CHAPTER 7 Test synthesis
primary outputs are specified and stitched to primary inputs and primary out-

puts, respectively. This approach is becoming more appealing to designers
now, because it can cope with many advanced DFT structures, such as logic

BIST and test compression, where scan chains are driven internally by additional

test structures synthesized at the RTL. Once all advanced DFT structures are

inserted at the RTL, a one-pass or single-pass synthesis step is performed with

the RTL design flow as shown in Figure 7.28.

Several additional steps are actually performed to identify the storage ele-

ments in the RTL design. First, all clocks are identified, either explicitly by

tracing from specified clock signal names or implicitly by analyzing the sensitiv-
ity list of all “always” blocks. When the clocks have been identified, all registers,

each consisting of one or more storage elements in the RTL design, are inferred

by analyzing all “assign” statements to determine which assignments can be

mapped onto a register while keeping track of the clock domain to which each

register belongs. In addition, the clock polarity of each register is determined.

After all registers have been identified and each converted into its scan

equivalent at the RTL, the next step is to stitch these individual scan cells into

one or more scan chains. One approach is to allocate scan cells to different scan
chains on the basis of the driving clocks and to stitch all scan cells within a scan

chain in a random fashion [Aktouf 2000]. Although this approach is simple and

straightforward, it can introduce wiring congestion as well as high interconnect

area overhead. To solve these issues, it is better to take full advantage of the rich

functional information available at the RTL [Roy 2000; Huang 2001]. Because

storage elements are identified as registers as opposed to a large number of

unrelated individual storage elements, it is beneficial to connect the scan cells

(which are scan equivalent of these storage elements) belonging to the same
register sequentially in a scan chain. This has been found to be able to dramati-

cally reduce wiring congestion and interconnect area overhead.
7.4.3 RTL scan extraction and scan verification
To verify the scan-inserted RTL design (also called RTL scan design), both scan

extraction and scan verification must be performed. Scan extraction relies on

performing fast synthesis on the RTL scan design. This generates a software
model where scan extraction can be performed by tracing the scan connections

of each scan chain in a similar manner as scan extraction from a gate-level scan

design. Scan verification relies on a flush testbench that is used to simulate flush

tests on the RTL scan design. Because the inputs and outputs of the RTL scan

design should match the inputs and outputs of its gate-level scan design, the

same flush testbench can be used to verify the scan operation for both RTL

and gate-level designs. It is also possible to apply broadside-load tests for verify-

ing the scan capture operation at the RTL. In this case, either random test pat-
terns or deterministic test patterns generated at the RTL can be used [Ghosh

2001; Ravi 2001; Zhang 2003].

7.6 Exercises 443
7.5 CONCLUDING REMARKS

This chapter has discussed the design rules and test synthesis steps required to

implement the basic design-for-testability (DFT) techniques presented in Chap-

ter 3 into modern digital circuits. By modeling the circuit at the gate level or the

register-transfer level (RTL), modern test synthesis programs can perform

design rule checking and repair before scan synthesis (including synthesis of
test compression logic) or logic built-in self-test (BIST) synthesis. Modern RTL

(logic) synthesis programs can further incorporate test synthesis into the logic

synthesis flow.

In this chapter, we have presented a comprehensive discussion of scan syn-

thesis. This includes scan design rules and a typical scan design flow. We have

also provided a comprehensive description of scan-based logic BIST synthesis.

This includes BIST-specific design rules and a BIST design example. These

BIST-specific design rules are mandatory for logic BIST in addition to following
all scan design rules. The RTL DFT techniques that include RTL scan design rule

checking and RTL scan synthesis were briefly touched on at the end of the

chapter; these techniques were used to enable DFT integration at the RTL.

Implementing testability logic in a design could require many dedicated test

pins. Modern test synthesis programs have incorporated support of a few IEEE-

endorsed standards into the test synthesis flow to reduce additional pin count

or to facilitate test, debug, and diagnosis. The most popular standard supported

is the IEEE 1149.1 boundary-scan standard [IEEE 1149.1-2001], because it
requires only four or five dedicated pins regardless of what testability logic is

to be implemented. A few others that start to gain popularity include the IEEE

1149.6 boundary-scan standard for advanced digital networks [IEEE 1149.6-

2003] and the IEEE 1500 embedded core-test standard [IEEE 1500-2005]. For

more information on these emerging standards, refer to [Wang 2006a, 2007].
7.6 EXERCISES
7.1. (Lock-Up Latch) Suppose that a scan chain is configured as SI!
SFF1!SFF2!SFF3!SFF4!SFF5!SO, where SFF1 through SFF5 are
muxed-D scan cells, and SI and SO are the scan input pin and scan out-

put pin, respectively. Suppose that this scan chain fails scan shift verifi-

cation, in which the flush test sequence <t1 t2 t3 t4 t5> ¼ <01010> is

applied but the response sequence is <r1 r2 r3 r4 r5> ¼ <01100>.

Identify the scan flip-flops that may have caused this failure, and show

how to fix this problem by use of a lock-up latch.

7.2. (Lock-Up Latch) A scan chain may contain both positive-edge-

triggered and negative-edge-triggered muxed-D scan cells. If, by
accident, all positive-edge-triggered scan cells are placed before all

444 CHAPTER 7 Test synthesis
negative-edge-triggered muxed-D scan cells, show how to stitch them
into one single scan chain. (Hint: Positive-edge–triggered muxed-D

scan cells and negative-edge–triggered muxed-D scan cells should be

placed into two separate sections.)

7.3. (Lock-Up Latch) Refer to Figure 7.11. The scheme works only when

the clock skew between CK1 and CK2 is less than the width (duty

cycle) of the clock pulse. If CK2 is delayed more than the duty cycle

of CK1 (i.e., CK1 and CK2 become nonoverlapping), show whether

or not it is possible to stitch the two cross-clock-domain scan cells into
one single scan chain with a lock-up latch. If not, can it be done with a

lock-up flip-flop instead?

7.4. (Scan Stitching) Use examples to show why a scan chain may not be

able to perform the shift operation properly if two neighboring scan

cells in the scan chain are too close to or too far from each other. Also

describe how to solve these problems.

7.5. (Test Signal) Describe the difference between the test mode signal

TM and the scan enable signal SE used in scan testing.
7.6. (Clock Grouping) Show an algorithm to find the smallest number of

clock groups in clocking grouping.

7.7. (BIST Design Rules) A scan design can contain many asynchronous

set/reset signals that may require adding two or more set/reset clock

points to break all ripple set/reset loops. A ripple set/reset loop is a

combinational feedback loop. Assume that the design now contains

two system clocks (CK1 and CK2) and two set/reset clocks (SRCK1

and SRCK2). Derive two BIST timing control diagrams, including a
scan enable (SE) signal, to test all data faults and set/reset faults con-

trolled by these four clocks. Explain which timing control diagram

can detect more faults.

7.8. (BIST Design Rules) Design a one-hot decoder for testing a tristate

bus with four independent tristate drivers in BIST mode.

7.9. (BIST Design Rules) Design an X-bounding circuit for improving the

fault coverage of a bidirectional I/O port by forcing it to input mode

during BIST operation.
7.10. (Aligned Skewed-Load versus Aligned Double-Capture) Assume

there are four synchronous clock domains each controlled by a cap-

ture clock CK1, CK2, CK3, or CK4, and each operated at a frequency

F1 ¼ 2 � F2 ¼ 4 � F3 ¼ 8 � F4. Derive BIST timing control diagrams

with aligned skewed-load and aligned double-capture to test all intra-

clock-domain and inter-clock-domain delay faults. Specify by arrows

the delay faults that can be detected in the diagram.

7.11. (Staggered Skewed-Load versus Staggered Double-Capture)
Assume there are four asynchronous clock domains each controlled

by a capture clock CK1, CK2, CK3, or CK4, and each operated at a

7.6 Exercises 445
frequency F1 > F2 > F3 > F4. Derive BIST timing control diagrams
with staggered skewed-load and staggered double-capture to test all

intra-clock-domain and inter-clock-domain delay faults. Specify by

arrows the delay faults that can be detected in the diagram.

7.12. (Hybrid Double-Capture) Assume there are four mixed synchro-

nous and asynchronous clock domains controlled by a capture clock,

CK1, CK2, CK3, and CK4, operating at F1 ¼ 100 MHz, F2 ¼ 50 MHz,

F3 ¼ 60 MHz, and F4 ¼ 30 MHz, respectively. Derive a BIST timing

control diagram with a hybrid double-capture scheme composed of
staggered double-capture and aligned double-capture to test all intra-

clock-domain and inter-clock-domain delay faults. Specify by arrows

the delay faults that can be detected in the diagram.

7.13. (RTL Testability Enhancement) Read the following Verilog HDL

code and draw its schematic. Then determine whether there is any

scan design rule violation. If there is any violation, then modify the

RTL code to fix the problem, and draw the schematic of the modified

RTL code.

reg [3:0] tri_en;

always @(posedge clk)

begin

case (bus_sel)

0: tri_en[0] ¼ 1’b1;

1: tri_en[1] ¼ 1’b1;

2: tri_en[2] ¼ 1’b1;

3: tri_en[3] ¼ 1’b1;

endcase

end

assign dbus ¼ (tri_en[0])? d1 : 8’bz;

assign dbus ¼ (tri_en[1])? d2 : 8’bz;

assign dbus ¼ (tri_en[2])? d3 : 8’bz;

assign dbus ¼ (tri_en[3])? d4 : 8’bz;
7.14. (A Design Practice) Use the scan design rule checking programs and

user’s manuals provided on the companion Web site to show whether

you can detect any asynchronous set/reset signal violation and bus

contention. Try to redesign a Verilog circuit to include such violations.

Then, fix the violations by hand, and see whether the problems have

disappeared.
7.15. (A Design Practice) Use the scan synthesis programs and user’s man-

uals provided on the companion Web site to convert the two ISCAS-

1989 benchmark circuits s27 and s38417 [Brglez 1989] into scan

designs. Perform scan extraction and then run Verilog flush tests

and broadside-load tests on the scan designs to verify whether the

generated testbenches pass Verilog simulation.

446 CHAPTER 7 Test synthesis
7.16. (A Design Practice) Use the logic BIST programs and user’s manuals
provided on the companion Web site to design the logic BIST system

with staggered double-capture for the circuit given in Section 7.3.2.

Report the circuit’s BIST fault coverage at every 10,000 increments

up to 100,000 pseudo-random patterns.

7.17. (A Design Practice) Repeat Exercise 7.16, but instead implement the

two pseudo-random pattern generators, PRPG1 and PRPG2, with a 28-

stage CA and a 25-stage CA, respectively, with the construction rules

given in Table 3.6. Explain why the CA-based logic BIST system can
or cannot reach higher BIST fault coverage than the LFSR-based logic

BIST system given in Exercise 7.16.

7.18. (A Design Practice) Use the ATPG programs and user’s manuals

provided on the companion Web site to report the circuit’s ATPG fault

coverage when the logic BIST system is reconfigured in ATPG mode. If

the BIST fault coverage in Exercise 7.16 is lower than the ATPG fault

coverage, insert as many test points as needed in the logic BIST system

to reach the ATPG fault coverage; alternately, run top-up ATPG in both
ATPG compression and ATPG modes and report the circuit’s final fault

coverage.
ACKNOWLEDGMENTS

We thank Khader S. Abdel-Hafez of Synopsys and formerly of SynTest Technologies for providing a

portion of the materials in the Scan Design Flow section, Professor Wen-Ben Jone of the University

of Cincinnati and Dr. Ravi Apte of SynTest Technologies for reviewing the chapter, and Teresa Chang

of SynTest Technologies for drawing most of the figures.
REFERENCES

R7.0 Books

[Gizopoulos 2006] D. Gizopoulos, editor, Advances in Electronic Testing: Challenges and

Methodologies, Morgan Kaufmann, San Francisco, 2006.

[Keating 1999] M. Keating and P. Bricaud, Reuse Methodology Manual for System-on-a-Chip

Designs, Springer, Boston, 1999.

[Wang 2006a] L.-T. Wang, C.-W. Wu, and X. Wen, editors, VLSI Test Principles and Architectures:

Design for Testability, Morgan Kaufmann, San Francisco, 2006.

[Wang 2007] L.-T. Wang, C. E. Stroud, and N. A. Touba, editors, System-on-Chip Test Architectures:

Nanometer Design for Testability, Morgan Kaufmann, San Francisco, 2007.
R7.1 Introduction

[SIA 2005] SIA, The International Technology Roadmap for Semiconductors: 2005 Edition, Semi-

conductor Industry Association, San Jose, CA, http://public.itrs.net, 2005.

References 447
[SIA 2006] SIA, The International Technology Roadmap for Semiconductors: 2006 Update, Semi-

conductor Industry Association, San Jose, CA, http://public.itrs.net, 2006.
R7.2 Scan Design

[Barbagallo 1996] S. Barbagallo, M. Bodoni, D. Medina, F. Corno, P. Prinetto, and M. Sonza Reorda,

Scan insertion criteria for low design impact, in Proc. IEEEVLSI Test Symp., pp. 26–31, April 1996.

[Cheung 1997] B. Cheung and L.-T. Wang, The seven deadly sins of scan-based designs, Integrated

System Design, www.eetimes.com/editorial/1997/test9708.html, August 1997.

[Duggirala 2002] S. Duggirala, R. Kapur, and T. W. Williams, System and Method for High-Level Test

Planning for Layout, U.S. Patent No. 6,434,733, August 13, 2002.

[Duggirala 2004] S. Duggirala, R. Kapur, and T. W. Williams, System and Method for High-Level Test

Planning for Layout, U.S. Patent No. 6,766,501, July 20, 2004.
R7.3 Logic Built-In Self-Test (BIST) Design

[Al-Yamani 2002] A. A. Al-Yamani, S. Mitra, and E. J. McCluskey, Avoiding Illegal States in Pseudo-

random Testing of Digital Circuits, Center for Reliable Computing, Technical Report (CRC

TR) No. 02-2, Stanford University, December 2002.

[Brglez 1989] F. Brglez, D. Bryan, and K. Kozminski, Combinational profiles of sequential benchmark

circuits, in Proc. IEEE Int. Symp. on Circuits and Systems, pp. 1929–1934, August 1989.

[Cheung 1997] B. Cheung and L.-T. Wang The seven deadly sins of scan-based designs, Integrated

System Design, www.eetimes.com/editorial/1997/test9708.html, August 1997.

[Eichelberger 1977] E. B. Eichelberger and T. W. Williams, A logic design structure for LSI testability,

in Proc. ACM/IEEE Design Automation Conf., pp. 462–468, June 1977.

[IEEE 1149.1-2001] IEEE Std. 1149.1-2001, IEEE Standard Test Access Port and Boundary Scan

Architecture, IEEE Press, New York, 2001.

[IEEE 1500-2005] IEEE Std. 1500-2005, IEEE Standard for Embedded Core Test, IEEE Press,

New York, 2005.

[Rajski 2003] J. Rajski, A. Hassan, R. Thompson, and N. Tamarapalli, Method and Apparatus for

At-Speed Testing of Digital Circuits, U.S. Patent Application No. 20030097614, May 22, 2003.

[Wang 2005a] L.-T. Wang, X. Wen, P.-C. Hsu, S. Wu, and J. Guo, At-speed logic BIST architecture for

multi-clock designs, in Proc. IEEE Int. Conf. on Computer Design, pp. 475–478, October 2005.

[Wang 2006b] L.-T. Wang, X. Wen, K. S. Abdel-Hafez, S.-H. Lin, H.-P. Wang, M.-T. Chang, P.-C. Hsu, S.-

C. Kao, M.-C. Lin, and C.-C. Hsu, Method and Apparatus for Unifying Self-Test with Scan-Test dur-

ing Prototype Debug and Production Test, European Patent No. 1,364,436, May 24, 2006.
R7.4 RTL Design for Testability

[Aktouf 2000] C. Aktouf, H. Fleury, and C. Robach, Inserting scan at the behavioral level, IEEE

Design & Test of Computers, 17(3), pp. 34–42, July 2000.

[Ghosh 2001] I. Ghosh and M. Fujita, Automatic test pattern generation for functional register-trans-

fer level circuits using assignment decision diagrams, IEEE Trans. on Computer-Aided Design, 20

(3), pp. 402–415, March 2001.

[Huang 2001] Y. Huang, C. C. Tsai, N. Mukherjee, O. Samoan, W.-T. Cheng, and S. M. Reddy, On RTL

Scan Design, in Proc. IEEE Int. Test Conf., pp. 728–737, November 2001.

[IEEE 1463-2001] IEEE Std. 1463-2001, IEEE Standard Description Language Based on the Verilog

Hardware Description Language, IEEE Press, New York, 2001.

[Ravi 2001] S. Ravi and N. Jha, Fast test generation for circuits with RTL and gate-level views, in

Proc. IEEE Int. Test Conf., pp. 1068–1077, November 2001.

448 CHAPTER 7 Test synthesis
[Roy 2000] S. Roy, G. Guner, and K.-T. Cheng, Efficient test mode selection and insertion for RTL-

BIST, in Proc. IEEE Int. Test Conf., pp. 263–272, October 2000.

[Wang 2005b] L.-T. Wang, A. Kifli, F.-S. Hsu, S.-C. Kao, X. Wen, S.-H. Lin, and H.-P. Wang, Computer-

Aided Design System to Automate Scan Synthesis at Register-Transfer Level Test, U.S. Patent No.

6,957,403, October 18, 2005.

[Zhang 2003] L. Zhang, I. Ghosh, and M. S. Hsiao, Efficient sequential ATPG for functional RTL cir-

cuits, in Proc. IEEE Int. Test Conf., pp. 290–298, October 2003.
R7.5 Concluding Remarks

[IEEE 1149.1-2001] IEEE Std. 1149.1-2001, IEEE Standard Test Access Port and Boundary Scan

Architecture, IEEE Press, New York, 2001.

[IEEE 1149.6-2003] IEEE Std. 1149.6-2003, IEEE Standard for Boundary Scan Testing of Advanced

Digital Networks, IEEE Press, New York, 2003.

[IEEE 1500-2005] IEEE Std. 1500-2005, IEEE Standard for Embedded Core Test, IEEE Press, New

York, 2005.

CHAPTER
8
Logic and circuit
simulation
Jiun-Lang Huang
National Taiwan University, Taipei, Taiwan

Cheng-Kok Koh
Purdue University, West Lafayette, Indiana

Stephen F. Cauley
Purdue University, West Lafayette, Indiana
IS CHAPTER
ABOUT TH

Logic simulation and circuit simulation are typically used in conjunction with

functional verification to verify the correctness of an integrated circuit. During

the logic design stage, designers rely on logic simulation to verify whether the

design meets its specifications and contains any design errors. During the circuit
design stage, designers use circuit simulation to test and characterize digital

cell libraries, memory models, and analog and mixed-signal (AMS) circuits

that require detailed timing analysis to ensure the correct operation of these

circuits.

This chapter begins with a discussion of logic simulation. After an intro-

duction to the logic circuit models, the popular compiled-code and event-driven

logic simulation techniques are described. This is followed by hardware-

accelerated logic simulation that is commonly referred to as hardware emulation
and is intended to bridge the growing gap between circuit complexity and soft-

ware simulator efficiency. Commonly used hardware emulation techniques are

introduced first, followed by a description of the two crucial ingredients of emu-

lators: reconfigurable computing units and interconnection architectures. The

second half of the chapter is devoted to circuit-level simulation. After describing

the circuit simulation models and essential numerical methods, the chapter

explains the procedures required to simulate very large-scale integration
(VLSI) circuits with interconnects and nonlinear devices. By working through
this chapter, the reader will learn about the major logic simulation, hardware

emulation, and circuit simulation techniques. This background will be valuable

in selecting the simulation method that best meets the design needs.
449

450 CHAPTER 8 Logic and circuit simulation
8.1 INTRODUCTION

Simulation empowers a designer to predict a design’s behavior without physi-

cally implementing it. In the design phase, the main purpose of simulation is

design verification. Figure 8.1 depicts the flow of using simulation for design

verification. During each design stage, the functional specification documents

the required functionality and performance for the design and a corresponding
circuit description is generated in conformance with the given specification.

To ensure conformance, verification testbenches consisting of a set of input

stimuli and expected output responses are created. The simulator then takes

the circuit description and the input stimuli as inputs and produces the

simulated responses. Any discrepancy between the simulated and expected

responses (detected by the response analysis process) indicates that redesign

or modification is necessary. Once the circuit has been verified to an acceptable

confidence level, the design process advances to the next design stage.
Specification

Manual Design
or via Synthesis

Circuit
Description

Input Stimuli

Simulation
Simulated

Responses

Testbench
Development

Expected
Responses

Response
Analysis

yes

Mismatch?

Next Design
Stage

no

FIGURE 8.1

Simulation for design verification.

Table 8.1 Design Descriptions at Different Circuit Abstraction Levels

Design Stage Circuit Description

Behavioral Level or Electronic
System Level (ESL)

C/Cþþ, SystemC [SystemC 2008]
SystemVerilog [SystemVerilog 2008]

Register-Transfer Level (RTL)
Verilog [IEEE 1463–2001] [Thomas 2002]
VHDL [IEEE 1076–2002]

Gate Level Gate-Level Netlists

Circuit Level Transistor-Level Schematics

8.1 Introduction 451
8.1.1 Logic simulation
Digital circuit simulation can be performed at different abstraction levels—from

the highest behavioral level to the lowest device level. At each level, a suitable

description language that captures the required functional specification is used

to describe the design. Table 8.1 lists the commonly used abstraction levels and

the corresponding circuit descriptions.

In general, design verification begins at the behavioral level or electronic-system

level (ESL) where the algorithm correctness and system throughput are the major
concerns. Then, at the register-transfer level (RTL), the design is described in

terms of blocks such as registers, counters, data processing units, and controllers,

aswell as the data/control flowbetween these blocks. Because ESL/RTL verification

usually does not involve detailed timing analysis, ESL or RTL design verification is

also referred to as functional verification [Wile 2005].

Logic/scan synthesis comes into play after the RTL design stage. The gate-level

netlist corresponding to the RTL design, which includes scan cells, is synthesized

with logic elements provided in a cell library. Finally, the transistor-level descrip-
tion provides the most accurate model of the design. However, because it is much

slower than gate-level simulation, transistor-level simulation is usually used only

for characterizing timing critical paths and library cells.

This chapter first discusses gate-level logic simulation. Although digital cir-

cuits use two-valued Boolean algebra as the underlying mathematics, most logic

simulators include two more values, unknown (u) and high-impedance (Z), to

handle the inevitable uncertainties in practical circuits. Understanding the cap-

abilities and limitations of the 4-valued logic system prevents the users from
incorrectly interpreting the simulation results. Furthermore, to deal with timing,

delay information must be incorporated into the logic element descriptions.

Thus, both gate and wire delays must be taken into account for modern designs.

The two major logic simulation techniques are compiled-code simulation
and event-driven simulation. Grounded in distinct principles, each of them

has its own advantages and drawbacks and finds applications in different areas

of the design process.

452 CHAPTER 8 Logic and circuit simulation
8.1.2 Hardware-accelerated logic simulation
As the circuit complexity continues growing, logic simulation becomes the bottle-
neck of design verification—available logic simulators are too slow for practical

system-on-chip (SOC) designs or hardware/software (HW/SW) co-simulation
applications. Several types of hardware-accelerated logic simulation tech-

niques have been proposed, including simulation acceleration, (in-circuit)
emulation, and hardware prototyping, each of which has its advantages and

shortcomings. Amodern emulatormay be a hybrid of the preceding types or be able

to execute several types to meet the requirements of different design stages.

Most emulator systems consist of arrays of reconfigurable logic computing
units that are directly or indirectly interconnected. Although field program-
mable gate array (FPGA) is a natural choice for the computing unit, the

emulation system performance is severely limited by the available input/output

(I/O) pins. Indirect interconnect architectures such as full and partial crossbars

and time-multiplexed I/O are possible solutions to improve the inter-chip data

bandwidth. Other approaches include exploring different use models of FPGA

and the use of programmable processors as the reconfigurable computing units.
8.1.3 Circuit simulation
Circuit simulation is an increasingly indispensable tool for the design of

integrated circuits (ICs). The turnaround time and cost of fabrication, along

with the sheer number of design parameters under consideration, prevent cir-

cuit designers from relying on intuition and extensive experimentation to meet

their design specifications. Instead, designers can use an understanding of the

dynamic behavior for their circuits, learned through circuit simulation, to save
both time and resources for fabrication.

The simulation of ICs is a very structured area that is grounded in the first prin-

ciples of current and voltage relationships. The process of simulating a circuit

begins with the “modeling” of each element from the circuit in terms of basic

building blocks such as current and voltage sources, resistors, capacitors,

and inductors. The parameters for each element in the model may be time-varying

or time-invariant. The goal of these models is to accurately mimic the dynamic

behavior of the elements while providing the simplest possible representation.
Specifically, with these models, the designer can easily construct a set of current

and voltage relationships that describe the behavior of the entire circuit.

There are several different representations of circuit equations that primarily rely

on theKirchhoff ’s voltage law (KVL) andKirchhoff ’scurrent law (KCL) in the

formulations. Although the behavior of some very simple circuits can be described

analytically,wemust investigate general numerical techniques for evenmodest sized

ICs. The scalability of these techniques is crucial when considering the growth of

modern designs. Thus, in practice, the modeling of circuit elements and the
subsequent formulation of circuit equations should be performed while keeping in

mind the computation load required for the resulting numerical techniques.

8.2 Logic simulation models 453
8.2 LOGIC SIMULATION MODELS

In this section, we discuss the gate-level simulation models for combinational

and sequential networks, which have widespread acceptance in the integrated

circuit community.
8.2.1 Logic symbols and operations
In addition to 1 and 0, logic simulators often include two more symbols: u

(unknown) and Z (high-impedance); the former represents the uncertain circuit

behavior, and the latter helps resolve the behavior of tristate logic. For cases in

which 0, 1, u, and Z are insufficient to meet the required simulation accuracy,

intermediate logic states that incorporate both value and strength may be used.

8.2.1.1 “1” and “0”

The basic mathematics for most digital systems is the two-valued Boolean alge-

bra. In two-valued Boolean algebra, a variable can assume only one of the two

values, true or false, which are represented by the two symbols 1 and 0, respec-
tively. Note that 1 and 0 here do not represent numerical quantities. Physical

representations of the two symbols depend on the logic family of choice. Con-

sider the most popular CMOS logic as an example; the two symbols 1 and 0 rep-

resent two distinct voltage levels, power (VDD) and ground (VSS), respectively.

Here we assume positive logic is used. Whether a signal’s value is 1 or 0 depends

on which voltage source it is connected to.

8.2.1.2 The unknown value u

Almost all practical digital circuits contain memory elements (e.g., flip-flops and

memories) to store the circuit state; however, when these circuits are powered

up, the initial states of their memory elements are usually unknown. To handle
such situations, the logic symbol u is introduced to indicate an unknown logic

value. By associating u with a signal, we mean that the signal is 1 or 0, but we

are not sure which one is the actual value.

8.2.1.3 The high-impedance state Z

Until now, the logic signal states that we have discussed are 1 and 0, indicating

that the signal is connected to either VDD or VSS. (The unknown symbol indi-

cates uncertainty; however, the signal of interest is still 1 or 0.) In addition to

1 or 0, tristate gates have a third, high-impedance state, denoted by logic symbol

Z. Tristate gates permit several gates to time-share a common wire, called a bus.

A signal is in the Z state if it is connected to neither VDD nor VSS.
Figure 8.2 depicts a typical bus application. In this example, three bus dri-

vers (G1, G2, and G3) drive the bus wire y. Each driver Gi is controlled by an

enable signal ei, and its output oi is determined as follows:

Resolution
Function

pull-up
or down

DFF

o1

y

G1

e1

e2e2

e3

x1

x2

x3

G2

G3

o2

o3

FIGURE 8.2

A tristate circuit example.

454 CHAPTER 8 Logic and circuit simulation
oi ¼ xi if ei ¼ 1

Z if ei ¼ 0

�

When oi ¼ Z, Gi has no effect on the bus wire y, leaving the control to other

drivers.

A bus conflict occurs if at least two drivers drive the bus wire to opposite
binary values. Such situations may cause the circuit to be permanently damaged.

In addition to design errors, abnormal bus states could occur during testing

when the circuit is not in its normal operating environment and may receive ille-

gal input sequences. On the other hand, if no driver is activated, the bus is in a

floating state, because it is not connected to VDD or VSS. A pull-up or pull-

down network that connects the bus to VDD or VSS by means of a resistor

may be added to provide a default 1 or 0 logic value (Figure 8.2); otherwise,

the bus wire will retain its previous value as a result of trapped charge in the
parasitic wire capacitance. Because the charge could decay in time, a bus
keeper consisting of two weak inverters is usually added to the bus wire to

keep its previous value as long as the bus is in the floating state.

8.2.1.4 Basic logic operations

The input/output relationships of the three basic logic operations (AND, OR,

and NOT) that use the four logic symbols (0, 1, u, and Z) are summarized in

Table 8.2. It is worth noting that:
1. Simulation results based on these truth tables are pessimistic (i.e., a signal

may be reported as unknown even though its value can be uniquely

determined as 0 or 1 [Breuer 1972]).

2. The four symbols are insufficient to handle intermediate signal values

(e.g., values in the middle of VDD and VSS, which may occur in tristate

buses, switch-level networks, or defective circuits). To enhance the

table
// select a b : out
// 0 0 ? :
// 0 1 ? : 1
// 1 ? 0 : 0

0

// 1 ? 1 : 1
// ? 0 0 : 0
// ? 1 1 : 1

endtable

FIGURE 8.3

The truth table of a two-input multiplexer.

Table 8.2 Truth Tables of AND, OR, and NOT

AND 0 1 u z OR 0 1 u z NOT 0 1 u z

0 0 0 0 0 0 0 1 u u 1 0 u u

1 0 1 u u 1 1 1 1 1

u 0 u u u u u 1 u u

z 0 u u u z u 1 u u

8.2 Logic simulation models 455
simulation resolution, intermediate logic states that incorporate both

signal value and strength may be used [Miczo 2003].
To support customized logic elements with complex sequential or combinational

behavior, modern simulation tools support user-defined primitives (UDPs).

Figure 8.3 shows how Verilog models a two-input multiplexer with a truth table.

Here, a and b are the data inputs, select is the control input, and out is the

multiplexer output. The symbol “?” is a shorthand notation for 0, 1, or u.
8.2.2 Timing models
Delay is a fact of life for all electrical components, including logic gates and

interconnection wires. In this section, we discuss the commonly used gate

and wire delay models.

8.2.2.1 Transport delay

The transport delay refers to the time duration it takes for the effect of gate

input changes to appear at gate outputs. Several transport delay models charac-

terize this phenomenon from different aspects.

The nominal delay model specifies the same delay value for the output
rising and falling transitions. Consider the AND gate G in Figure 8.4 as an exam-

ple. Here B is fixed at 1; thus, the output of G is only affected by A. Assuming

that G has a nominal delay of dN ¼ 2 ns and A is pulsed to 1 for 1 ns, the

2

2

2

2

2

1

F

A

F

A

F

A

F

A
G

B = 1

(a) Nominal delay
dN= 2 ns

(b) Rise/fall delay
dr= 2 ns

df= 1.5 ns

(c) Min-max delay
dmin=1 ns
dmax= 2 ns

1

1

1

1.5

1.5

FIGURE 8.4

Transport delay models.

456 CHAPTER 8 Logic and circuit simulation
corresponding simulation result is shown in Figure 8.4a. Under the nominal

delay model, the output waveform at F is simply a version of A delayed by 2 ns.

For cases in which the rising and falling times are different (e.g., the pull-up and
pull-down transistors of the gate have different driving strengths), one may opt for

the rise/fall delaymodel. In Figure 8.4b, the setup is the same as that in Figure 8.4a

except that the rise/fall delaymodel is used instead; the rise and fall delays are dr¼ 2

ns and df¼ 1.5 ns, respectively. Because of the difference between the two delays,

the duration of the output pulse shrinks from 1 to 0.5 ns.

If the gate transport delay cannot be uniquely determined (e.g., because of

process variations), one may use the min–max delay model. In the min–max

delay model, the minimum and maximum gate delays (dmin and dmax) are speci-
fied to represent the ambiguous time interval in which the output change may

occur. In Figure 8.4c, the minimum and maximum delays are 1 and 2 ns, respec-

tively, and a 1.5-ns pulse is applied at A. In response to the delay uncertainty,

two ambiguous intervals (the shaded regions), corresponding to the rising and

falling transitions, are observed at output F. Within the two ambiguous intervals,

the exact output value is unknown.

8.2.2.2 Inertial delay

The inertial delay is defined as the minimum input pulse duration necessary

for the output to switch states. Pulses shorter than the inertial delay cannot pass

(a) Pulse duration less than dI

A

A

F

F

G

1

2

2

3

3

A

F

dI= 1.5 ns dN= 3 ns

B = 1

(a) Pulse duration longer than dI

FIGURE 8.5

Inertial delay.

8.2 Logic simulation models 457
through the circuit element. The inertial delay models the limited bandwidth of

logic gates. Figure 8.5 illustrates this filtering effect. Assume that the AND gate

has an inertial delay (dI) of 1.5 ns and a nominal delay of 3 ns. Let us fix B at 1

and apply a pulse on A. In Figure 8.5a, the 1-ns pulse is filtered and the output

remains at a constant 0. In Figure 8.5b, the pulse is long enough (2 ns) and an

output pulse is observed 3 ns later.

8.2.2.3 Functional element delay model

Functional elements, such as flip-flops, have more complicated behaviors than

simple logic gates and require more sophisticated timing models. In Table 8.3,

the I/O delay model of the positive-edge-triggered D flip-flop is depicted. Take
the asynchronous preset operation (second row) as an example. Regardless of

the Clock and D values, if the current flip-flop state (q) is 0 and ClearB remains

1, changing PresetB from 1 to 0 (denoted by the down arrow) will cause output

transitions at Q and QB after 1.6 and 1.8 ns, respectively. Besides the input-

to-output transport delay, the flip-flop timing model usually contains timing

constraints, such as setup/hold times and inertial delays for each input.

8.2.2.4 Wire delay

Figure 8.6a illustrates the distributed RLC model of a metal wire. In the pres-

ence of the passive components, it takes finite time, called the propagation
delay, for a signal to travel from point p to point q.

In general, wire delays are specified for each connected gate output and gate

input pair, because the physical distances and thus the propagation delays

between the driver and receiver gates vary. In Figure 8.6b, the inverter output

Table 8.3 The D Flip-Flop I/O Delay Model

Input Condition Present
State

Outputs Delay (ns)

D Clock PresetB ClearB q Q QB to Q to QB Comments

X X # 1 0 " # 1.6 1.8 Asynchronous
preset

X X 1 # 1 # " 1.8 1.6 Asynchronous
clear

1 " 1 1 0 " # 2 3 Q: 0!1

0 " 1 1 1 # " 3 2 Q: 1!0

Note: X indicates “don’t care.”

FIGURE 8.6

Wire delay model.

458 CHAPTER 8 Logic and circuit simulation
a branches out to drive three gates. To model the wire delays associated with
the three signal paths, one may insert delay elements da�b, da�c, and da�d into

the fanout branches. For convenience, wire delays may also be viewed as the

receiver gate input delays and become part of the receiver gate delay model.

8.3 Logic simulation techniques 459
8.3 LOGIC SIMULATION TECHNIQUES

The general model of a gate-level or RTL network consists of the combinational

network and memory elements as depicted in Figure 8.7. In this figure, X and Z

denote the primary inputs (PI) and primary outputs (PO), and Q and Q
þ

denote the present and next states of the flip-flops. Q and Q
þ are also called

the pseudo primary inputs (PPI) and pseudo primary outputs (PPO),
respectively.

For ease of illustration, we assume that a single clock and D-type flip-flops

are used. The simplified synchronous sequential circuit simulation flow is

depicted in Figure 8.8. At the beginning of each clock cycle, the simulator eval-

uates the flip-flops and then makes the necessary updates (i.e., Q Q
þ
). Then,

the input vector is read in and the combinational part is evaluated. The simula-

tion continues until the specified simulation time has been reached or there is

no more input vector left.
Combinational
Network

F
lip

-F
lo

ps

Z

Q+Q

X

clock

FIGURE 8.7

A general sequential circuit model.

start

next clk cycle?

yes

evaluate and update the registers

read input vector

evaluate combinational circuits

no
end

FIGURE 8.8

The simplified synchronous circuit simulation flow.

460 CHAPTER 8 Logic and circuit simulation
In this section, we will discuss two commonly used logic simulation meth-

ods: compiled-code simulation and event-driven simulation. Although the cir-
cuits are combinational in the discussions, these techniques can be easily

extended to deal with sequential circuits.
8.3.1 Compiled-code simulation
The idea of compiled-code simulation is to translate the digital circuit into a
series of machine instructions that model the functions of individual gates and

the interconnects between them.

8.3.1.1 Preprocessing

In practice, logic optimization and levelization are performed before the actual

code generation process. The purpose of logic optimization is to enhance the

simulation efficiency. A typical optimization process consists of the transforma-

tions illustrated in Figure 8.9 [Wang 1987]. Because each gate corresponds to

one or more statements in the compiled code, logic optimization reduces the

program size and execution time.

To avoid unnecessary computations, logic gates must be evaluated in an
order such that a gate will not be evaluated until all its driving gates have been

evaluated. The logic levelization algorithm starts by assigning all the PI’s and
(a)

1

1

A

A

A

A

A

B

A

A

A

A

B

(b)

0

(c)

(d)

(e)

before optimization after optimization

FIGURE 8.9

Logic optimization for compiled-code simulation.

8.3 Logic simulation techniques 461
PPI’s level 0. For each logic element, its level is equal to the maximum of its

driving elements’ levels plus 1.

8.3.1.2 Code generation

Depending on performance, portability, and maintainability needs, different
code generation techniques may be used [Wang 1987]. The three approaches

are interpreted code, high-level programming language source code, and native

machine code.

In the interpreted code approach, the target machine is a software emulator.

During simulation, the instructions are interpreted and executed one at a time.

This approach offers the best portability andmaintainability at the cost of reduced

performance. Mapping the simulated digital network to a high-level programming

language such as C enhances performance and is portable to any target machine
that has a C compiler. The compilation time could be a severe limitation for fault

simulators that require recompilation for each faulty circuit. The native machine

code approach generates the native machine code directly without the need of

compilation; this makes it a more viable solution to fault simulation. High simula-

tion efficiency can be achieved if code optimization techniques are used to maxi-

mize the use of the target machine’s data registers.

Take the network in Figure 8.10 as an example. The generated pseudocode

is shown in the following. In the actual implementation, each statement is
replaced with the corresponding language constructs or machine instructions.

while true
read(A, B, C);
E ¼ OR(B, C);
H ¼ AND(A, E);
J ¼ NOT(E);
K ¼ NOR(H, J);
output(K);

end
G2

A

B

C E F J

L

H

KG4

G3G1

FIGURE 8.10

An example network for native machine code generation.

462 CHAPTER 8 Logic and circuit simulation
8.3.1.3 Applications

The main limitation of compiled-code simulation is that it is incapable of timing

modeling. As a result, it fails to detect timing problems such as glitches and race

conditions. Despite the limitations, compiled-code simulation finds its applica-

tion in cycle-based simulation, where only the logic function correctness is

of interest and zero-delay model is used. Compiled-code simulation is most
effective when binary logic simulation suffices. In such cases, machine instruc-

tions are readily available for Boolean operations (e.g., AND, OR, and NOT). Fur-

ther speedup is possible with the bit-wise logic operation instructions that

allow concurrent simulation of independent vectors or vector sequences. With

3 or more logic symbols, which is usually the case, the logic evaluation pro-

cesses are more complicated but still manageable.
8.3.2 Event-driven simulation
In contrast to compiled-code simulation, event-driven simulation exhibits high

simulation efficiency by performing gate evaluations only when necessary.

We will use Figure 8.11 to illustrate the event-driven simulation concept. In this

example, two consecutive input patterns ABC ¼ 001 and 111 are applied to the

circuit, and the corresponding circuit values are shown. Note that the applica-

tion of the second vector does not change the input of G3, so G3 is not evalu-

ated for the second vector. In event-driven simulation, the switching of a
signal’s value is called an event, and an event-driven simulator monitors the

occurrences of events to determine which logic elements to evaluate.

8.3.2.1 Zero-delay event-driven simulation

Figure 8.12 depicts the zero-delay event-driven simulation flow. (A zero-delay

simulation is one in which gates and interconnections are assumed to have zero

delay.) At the beginning of the simulation flow, the initial signal values, which

may be given or simply unknown, are read in and assigned. Then, a new input

vector is loaded and the primary inputs at which events occur (called active PIs)

are identified. To propagate the events toward primary outputs, gates driven by
G2

G4

G3G1

A

C

B

E: 1
1 J: 0

0 → 1

0 → 1

H:0 → 1

K:1 → 0

FIGURE 8.11

Signal transitions between consecutive input vectors.

output
change?

yes

no

yes

yes

no

start

read in initial
condition

next
vector?

read in new
input vector

put active Pls’
fanout gates in Q

end

no

evalute next
gate g from Q

Q empty?

put g’s fanout
gates in Q

FIGURE 8.12

The zero-delay event-driven simulation flow.

8.3 Logic simulation techniques 463
active primary inputs are put in the event queue Q, which stores the gates to be

evaluated. As long as Q is not empty, a gate g is dequeued from Q and evaluated.

If the output of g changes (i.e., a new event occurs), the fanout gates of g are

placed in Q. When Q becomes empty, the simulation for the current input

vector is finished, and the simulator proceeds to process the next input vector.

8.3.2.2 Nominal-delay event-driven simulation

The greatest advantage of event-driven simulation over compiled-code simula-
tion is that it can handle any delay model. A sophisticated event scheduler
keeps track of event occurrences and schedules the necessary gate evaluations

at the proper time points. Because events must be evaluated in chronological

order, the scheduler is implemented as a priority queue.

Figure 8.13 depicts one possible priority queue implementation for a nomi-

nal delay event-driven simulator. In the priority queue, the vertical list is an

ordered list that stores the time stamps when events occur. Attached to each

time stamp ti is a horizontal list of events that occur at time ti. During simula-
tion, a new event that will occur at time ti is appended to the event list of time

stamp ti. For example, in Figure 8.13, the value of signal w will switch to vw
þ at

ti. If ti is not in the time stamp list yet, the scheduler will first place it in the list

according to the chronological order.

For the priority queue scheduler in Figure 8.13, the time needed to locate a

time stamp to insert an event grows with the circuit size. To improve the event

scheduler efficiency, one may use, instead of a linked list, an array of evenly

spaced time stamps. Although some entries in the array may have empty event

t0 p, vp

t1

ti

+

s, vs
+r, vr

+q, vq
+

w, vw
+

FIGURE 8.13

Priority queue event scheduler.

464 CHAPTER 8 Logic and circuit simulation
lists, the overall search time is reduced, because the target time stamp can be

indexed by its value. Further enhancement is possible with the concept of

timing wheel [Ulrich 1969]. Let the time resolution be one time unit and the

array size M. A time stamp that is d time units ahead of current simulation time

(with array index i) is stored in the array and indexed by (i þ d) modulo M if d is

less than M; otherwise, it is stored in an overflow remote event list similar to

that shown in Figure 8.13. The array is referred to as the timing wheel because
of the modulo-M-induced circular structure. Remote event lists are brought into

the timing wheel once their time stamps are within M-1 time units from current

simulation time.

A two-pass strategy for nominal delay event-driven simulation is depicted in

Figure 8.14. When there are still events with future time stamps to process, the

event list LE of next time stamp t is retrieved. LE is processed in a two-pass man-

ner. In pass one (the left shaded box), the simulator determines the set of gates

to be evaluated. The notation (g, vg
þ) indicates that the output of gate g is to

become vg
þ. For each event (g, vg

þ), if vg
þ is the same as g’s current value vg, this

event is false and is discarded. On the other hand, if vg
þ 6¼ vg, i.e., (g, vg

þ) is a

valid event, then vg is updated to vg
þ, and the fanout gates of g are appended

to the activity list LA. In the second pass (the right shaded box), gates are eval-

uated and new events are scheduled. As long as the activity list LA is non-empty,

a gate g is retrieved and evaluated. Let the evaluation result be vg
þ. The scheduler

will schedule the new event (g, vg
þ) at time stamp t þ delay(g), where delay(g)

denotes the nominal delay of gate g. The two-pass strategy avoids repeated
evaluation of gates with events on multiple inputs.

In the following, we will use the circuit in Figure 8.10 to demonstrate the

two-pass event-driven strategy. In this example, the nominal delays for G1, G2,

G3, and G4 are 8, 8, 4, and 6 ns, respectively, and there are four input events:

(A, 1, 0), (C, 0, 2), (B, 0, 4), and (A, 0, 8), where the notation (w, vw
þ, t)

end

start

no

no no

no

yes

yes

yes

yes

next time
stamp?

get next time
stamp t

get next gate g
from LA

evaluate g and
schedule (g, vg

+)
at t+delay(g)

1. vg ̈ vg
+

2. append g’s fanout
 gates to activity list
 LA

retrieve current
event list LE

LE empty?

get next event
(g, vg

+) from LE

vg
+ == vg ?

LA empty?

FIGURE 8.14

The two-pass nominal-delay event-driven simulation flow.

8.4 Hardware-accelerated logic simulation 465
represents the event that signal w switches to vw
þ at time t. The simulation prog-

ress is shown in Table 8.4. At time 0, there is only one primary input event (A,
1). Because A drives G2, G2 is added to activity list LA. Evaluation of G2 returns

H ¼ 1; therefore, the event (H, 1) is scheduled at time 8 (i.e., 8 ns, the delay of

G2 after the current time). At time stamps 2 and 4, the two input events at C and

B are processed in the same way. There are two events at time 8: the input

event (A, 0) and the scheduled event (H, 1) from time stamp 0. Because both

events are valid, the two affected gates, G2 and G4, are put in LA for evaluation.

The corresponding events (H, 0) and (K, 0) are scheduled at times 16 and 14,

respectively. Note that the event (E, 1) at time 10 is false, because it does not
cause a signal transition; therefore, no gate evaluation is performed.
8.4 HARDWARE-ACCELERATED LOGIC SIMULATION

As the IC density and complexity continue growing, verifying the correctness of

a new design before its first silicon has become the key to success. Although

versatile and accurate, logic simulation is too slow for large designs, not to men-
tion SOC designs that necessitate hardware/software (HW/SW) co-simulation.

Various hardware-acceleration techniques have been developed to bridge

the gap between the IC complexity and logic simulation efficiency. A simplified

block diagram of an FPGA-based hardware emulator is illustrated in Figure 8.15.

Table 8.4 A Two-Pass Event-Driven Simulation Example

Time LE LA Scheduled Events

0 {(A,1)} {G2} {(H,1,8)}

2 {(C,0)} {G1} {(E,1,10)}

4 {(B,0)} {G1} {(E,0,12)}

8 {(A,0),(H,1)} {G2,G4} {(H,0,16),(K,0,14)}

10 {(E,1)}

12 {(E,0)} {G2,G3} {(H,0,20),(J,1,16)}

14 {(K,0)}

16 {(H,0),(J,1)} {G4} {(K,0,22)}

20 {(H,0)}

22 {(K,0)}

Clock
Generator

Interface
Circuit

FPGA FPGA FPGA FPGA

FPGA FPGA

Programmable Routing

External
Equipment

FPGA FPGA

FIGURE 8.15

A simplified hardware emulator block diagram.

466 CHAPTER 8 Logic and circuit simulation
(In some hardware emulators, programmable application-specific integrated
circuits [ASICs] are used instead of FPGAs.) The hardware emulator (called

emulator hereafter) includes a circuit board holding a set of FPGAs, a routing
system, and an interface circuit. For the emulator to emulate an IC, an external

host computer programs each FPGA to emulate a portion of the IC and programs

the routing system to route inter-FPGA signals. External test equipment or the

target system board can then verify the emulated IC by supplying test signals to

the FPGAs and monitoring the output responses from the FPGAs by means of

the interface circuit.

8.4 Hardware-accelerated logic simulation 467
The fundamental differences between software simulators and hardware

emulators are as follows.
1. A logic simulator executes the RTL code or evaluates the logic elements

serially. An emulator, on the other hand, executes the whole design con-

currently or in massive parallelism.
2. Logic simulators are more flexible in terms of supported logic symbols

and timing models. Emulators are basically 2-state machines and are more

suitable for verifying logic correctness (e.g., cycle-based simulation).

3. Logic simulators support a rich set of debugging capabilities. For exam-

ple, one can stop the design at the middle of a cycle or even return to

a previous state if stored. Emulators in general provide limited signal

observability, although 100% visibility is possible at the cost of execution

speed and hardware resources.
This section will introduce the commonly used hardware acceleration methods

and the supporting technologies.
8.4.1 Types of hardware acceleration
Among the different methods to imitate a logic design, logic simulation and sili-

con implementation represent the two extremes in terms of resemblance to the

final silicon. In between, various hardware acceleration techniques have been

proposed to provide different balances among simulation speed, debugging

capability, compilation time, and cost.

Figure 8.16a depicts a typical verification setup in which the “verification

environment” provides the input vectors to the “design under verification”
and analyzes the design’s output responses. As illustrated in Figure 8.16b, in

“simulation acceleration,” the synthesizable part of the design under verification

is mapped into hardware and executed in the emulator, whereas the remaining

portions, in general the verification environment and the behavior code of the

design, are executed in the workstation. High-speed channels exist between

the workstation and the emulator to transport the simulation vectors and the

responses. Because the simulator on the workstation is slower than the emula-

tor, it becomes the bottleneck. However, with optimized testbench and simula-
tion techniques, the high-speed channels could become the bottleneck.

In emulation (Figure 8.16c), the verification environment is also executed on

the emulator to further increase the simulation speed. The communication

between the workstation and the emulator is on demand, for example, to dis-

play the execution process. To do so, both the verification environment and

the design itself must be synthesizable, implying a restricted coding style to

the synthesizable subset.

In-circuit emulation (ICE) shown in Figure 8.16d relies on external hard-
ware, which is usually the target system board, to provide “live-stimuli” and thus

provides a more realistic verification environment. The target system may be

FIGURE 8.16

Simulation acceleration, emulation, and in-circuit emulation.

468 CHAPTER 8 Logic and circuit simulation
“static” or “dynamic.” In the former case, the emulator supplies clock to the tar-

get system. Thus, one may stop and resume or slow down the simulation with-

out causing problems. In the latter case, care must be taken to make sure that

the whole system functions correctly (e.g., to handle the differences in data
and clock rate). As a result, the execution cannot be arbitrarily stopped, which

limits debugging capability.

Hardware prototyping with FPGA is a well-known and widely adopted

approach to verify the design correctness. The designers use the tool set

provided by the FPGA vendors, including synthesis, placement, and routing,

to map the design onto their FPGA technology. For small and medium-size

ASIC’s that can fit into a single FPGA, this approach is inexpensive and offers

good simulation speed. However, as the number of FPGAs needed to realize
the design increases, the partitioning and mapping process becomes cumbersome

and error-prone.

The main ingredients of an emulator are the reconfigurable computing units

programmed to perform the assigned tasks after design partitioning and the

interconnection network that joins these computing units. They are discussed

in the following sections.
8.4.2 Reconfigurable computing units
Today, the reconfigurable computing units for emulators are generally in the

form of arrays of FPGAs or customized ASICs.

8.4 Hardware-accelerated logic simulation 469
For an FPGA-based emulator, there are two FPGA use models. In one use

model, the RTL design is partitioned into sub-circuits that can be fit into an FPGA.
Then, each sub-circuit is synthesized at the gate level and mapped onto the target

FPGA technology (Figure 8.17a). Because the gate count to I/O pin count ratios of

the sub-circuits are very often greater than those of available commercial FPGAs,

the FPGA logic is usually underused. As a result, the I/O pin resource becomes a

severe limitation on this use model. Time-multiplexed interconnection schemes

(Section 8.4.3.3) help relieve this I/O pin resource limitation.

In the second FPGA use model, the design is compiled into RCC (ReCon-

figurable Computing) elements [Lin 2002] (Figure 8.17b). Each RCC element
is a small compact processor dedicated to perform one function (e.g., Boolean

expression, addition, multiplication, and case statement) at the RTL or gate

level. This way, the design can be verified at different levels of abstraction,

and the user does not have to debug at the gate level.

In [Beausoleil 1996], customized ASICs consisting of bit-wise Boolean pro-

cessors are used as the computing units. The Boolean processors are designed

to evaluate any n-input Boolean operations, and their inputs are selected with

multiplexers. In this method, a circuit simulation cycle is divided into several
emulator cycles, and the processors can perform different tasks and receive

inputs from different sources in each emulator cycle according to the stored

instructions. In Figure 8.18, the combinational network is simulated with three

processors in 7 emulator cycles. The scheduling table shows one of the possible

schedules. Processor 1, for example, samples A, B, and C in the first three

emulator cycles and performs NOR(A, B, C) in the fourth emulator cycle.
RTL Design Synthesis Gate-level
design

Traditional RTL synthesis flow

(a)

RCC compilation flow

(b)

: RCC element

RTL Design Complier RCC
elements

FIGURE 8.17

Traditional and RCC synthesis/compilation flows.

A P
B
C D

E
F Q G

R

Cycle I/P I/P I/PO/P O/P O/P

Processor 1 Processor 2 Processor 3

Function Function Function

NOR(A,
B,C)

AND(D,
E,F)

OR(G,P,
Q)

QP

A

B

C

D G

P

Q

R

E

F

1

2

3

4

5

6

7

FIGURE 8.18

A processor scheduling example.

470 CHAPTER 8 Logic and circuit simulation
8.4.3 Interconnection architectures
The interconnection architectures can be divided into two categories: direct
and indirect. In the former architecture, FPGA or ASIC chips are connected to

each other directly through a fixed set of physical wires. In the latter architec-

ture, dedicated routing chips are used to connect the chips, which relieves

the computing units of inter-chip routing.

8.4.3.1 Direct interconnection

Because the computing units are usually arranged in a 2D array structure, the
2D-mesh-type direct interconnection architecture is an apparent choice.

However, for the simple 2D-mesh interconnection scheme in Figure 8.19a, the

valuable I/O pins may be used up by global interconnects routed through

several computing units. In [Lin 2002], another mesh-type direct connection

architecture (Figure 8.19b) is proposed. In this scheme, two “hops” and

“jumps” are sufficient for any type of net; however, because each chip is used

for routing as well as computing, the I/O pin resource limitation still exists.

In the direct interconnection architecture, the available I/O pin resource
severely limits the logic use and the system routability. Because the chip I/O

pin count grows at a slower rate than the gate count, either some logic

resources must be used to route signals or some logic resources are wasted.

Both indirect/time-multiplexed interconnection schemes and dynamically

reconfigurable or programmable computing units help relieve this problem.

2D mesh direct interconnection
(a)

Another mesh direct interconnection
(b)

B

A

FIGURE 8.19

Direct interconnection architectures.

Chip 1

Chip 3

Full crossbar

Full-crossbar
(a) (b)

Partial-crossbar

Crossbar 1 Crossbar 2

w x y z

w x y z
Chip 4

w x y z
Chip 3

w x y z
Chip 4

w x y z

Chip 2
w x y z

Chip 1
w x y z

Chip 2
w x y z

FIGURE 8.20

The full and partial-crossbar schemes.

8.4 Hardware-accelerated logic simulation 471
8.4.3.2 Indirect interconnect

The crossbar-based indirect interconnection scheme can be used to relieve the

computing units of inter-chip routing. In the full-crossbar configuration

(Figure 8.20a), one full-crossbar chip, after programming, is able to make con-

nections between any two pins; however, this scheme soon runs out of steam,

because the crossbar chip size increases quadratically with the total pin count.
In the partial-crossbar configuration [Varghese 1993], the I/O pins are divided

into groups, and one crossbar is assigned to connect pins of the same group.

In Figure 8.20b, pins are divided into two groups (w and x in one group; y

and z in the other), and two crossbars are used to realize intragroup connec-

tions. To further reduce the crossbar size, one may use the multilevel partial

crossbar configuration.

472 CHAPTER 8 Logic and circuit simulation
8.4.3.3 Time-multiplexed interconnect

Alternatively, time-multiplexed interconnection schemes are used to overcome

the pin resource limitation by dividing the pin bandwidth among several inter-

chip logical signals.

The virtual wire technique in [Babb 1997] exploits the fact that logic values

between circuit partitions only need to be transmitted once and that circuit
communication patterns repeat in a predictable fashion.1 As shown in

Figure 8.21a, a physical wire is multiplexed among pipelined shift registers.

Each register in the pipeline carries a single bit of information from one

logical output to the corresponding logical input in the neighboring FPGA.

Figure 8.21b illustrates the phase-based virtual wire operating principle. The

simulation clock is divided into micro cycles; micro cycles are grouped into

sequential phases to support combinational paths that extend across multiple

chips. Each phase consists of the evaluation and communication time spans.
In the former, logic outputs are evaluated according to the inputs; in the latter,

the evaluation results are transferred to the other combinational logic partition.
1Assume that the circuit is synchronous and has no combinational loops.

Chip 1

phase 1

phase 1

evalution communication

phase 2

mClock

mEnable

phase 3

phase 2

logic
outputs

logic
inputs

shift loop MUX

Virtual wire interconnect
(a)

(b)

Virtual wire clocking framework

Emulation clock

Chip 2

FIGURE 8.21

The virtual wire interconnection scheme.

8.4 Hardware-accelerated logic simulation 473
In [Li 1998], a dynamic field programmable interconnect device (FPID), which

consists of several layers of reprogrammable switching networks, is proposed.
In Figure 8.22, there are n such reprogrammable switching networks, each of

which can be a full or a partial crossbar. Here,n is the ratio of the speed of the phys-

ical wires and the switching network to that of the computing units. The n select

lines are used to activate only one switching network at one time; thus, the I/O pin

connections can be dynamically configured as expected.

The time-multiplexed interconnect scheme may be combined with the partial

crossbar architecture as in Figure 8.23 [Sample 1999]. If n-to-1 multiplexers and

de-multiplexers are used, the number of required pins can be reduced by a factor
of n. In Figure 8.24, two signals share one I/O pin (i.e., n ¼ 2). Figure 8.24

depicts an example timing diagram for the wire pq. The mux_clock is divided

by 2 to produce the divided clock div_clock, and the clock divider is reset by

the sync signal to ensure that all clock dividers in the system are synchronized.

div_clock is used to sample internal signal p at the rising edge and q at the falling
Selection

Dynamic FPID Computing Units

nth switching
network

1
2
3
4

n

FIGURE 8.22

The dynamic FPID architecture.

Chip 1

Crossbar

MUX Chip 1

Crossbar

MUX Chip 2

p

pq

q

p q

w x

w x

p x

p x

s y

s y

q w

q w

r

r

y

y

r s

r s

Chip 2 Chip 3 Chip 4

FIGURE 8.23

An interconnect scheme that combines TDI and partial crossbar.

p

q

mux_clock

div_clock

sync

pq q p q p q p q p q p q p q p q p

FIGURE 8.24

An example timing diagram of pq in Figure 8.23.

474 CHAPTER 8 Logic and circuit simulation
edge. Both p and q are stored in a flip-flop or a latch. When div_clock is high, p is
transferred to the output; when div_clock is low, q is transferred to the output.
8.4.4 Timing issues
Achieving timing closure is a challenging task for emulators. Although many

timing issues can be resolved by lowering the emulation frequency, this practice

not only sacrifices the emulation throughput but also is insufficient for SOC

designs that use multiple clock domains and different clock phases.
Consider the emulator architecture in Figure 8.15. The on-board clock gener-

ator supplies one or more clock signals to the FPGAs through PCB traces. These

traces are carefully designed so that the clock edges arrive at the FPGAs concur-

rently; the clock trees inside each FPGA then forward these clock signals to the

flip-flops and latches with as little skew as possible. However, things get compli-

cated for internally generated secondary clocks. For example, the secondary

clock signal clk_2 in Figure 8.25a is derived from the primary clock clk_1; it

is generated in FPGA 1 but is also shared by FPGA 2. Because of the large
inter-FPGA signal path delay, clk_2 signal can exhibit excessive skew. One solu-

tion to this problem is to duplicate the clock logic for each FPGA that requires

clk_2 as shown in Figure 8.25b—each FPGA has its own copy of clk_2

(i.e., clk_20 and clk_200, respectively).
Another timing issue is related to the hold-time error. In Figure 8.26, d1

denotes the delay from clk_1 to D1’s clock input, d2 denotes the total delay

from clk_1 to D2’s clock input, and d3 denotes the delay of the logic block.

For flip-flop D2 to capture the correct logic block output, d2 must be no less
than the sum of d1 and d3. However, if d2 gets too long, the next clk_1 edge

may have arrived and cause the logic block output to change value before D2

can capture it; this leads to hold-time error. In an emulator, d1, d2, and d3
depends on the emulator architecture; it is very difficult to adjust their values

to ensure that hold-time errors do not occur. In [Wang 2006], the circuit to

be emulated is modified so that the emulator can adequately control the clock

edge timing relationship; correct operation of the modified circuit can be

ensured by adjusting the clock frequency. The readers may refer to

FPGA 1

FPGA 2

(a) (b)

FPGA 2

Clock
logic

D

D

D

D

clk_2

FPGA 1

Clock
logic

Clock
logic

D

D

D

D

clk_2�

clk_2��

clk_1

gate

clk_1

gate

FIGURE 8.25

Duplicate clock logic to reduce clock skew.

D1 D2logic block

clock logic

d1

d3

d2

gate

clk_1

clk_2

FIGURE 8.26

Hold-time error.

8.5 Circuit simulation models 475
[Dai 1995], [Selvidge 1997], and [Tseng 2001] for other emulation techniques to
eliminate hold-time errors.
8.5 CIRCUIT SIMULATION MODELS

In order to understand the modeling and simulation of ICs, we begin by visiting

several basic circuit elements, namely, voltage and current sources, resistors,

capacitors, and inductors. We also highlight several fundamental concepts from
linear circuit analysis, specifically, the governing relationships for current and

476 CHAPTER 8 Logic and circuit simulation
voltage throughout a circuit consisting of these basic elements. Next, we discuss

the formulation of structured representations for circuit equations. In general,
using analytical expressions for the solutions of these circuit equations would

be computationally impractical for large-scale analysis. Hence, we will explore

alternate numerical techniques for their solution.
8.5.1 Ideal voltage and current sources
An ideal voltage source is a circuit element where the voltage across the device

is independent of the current flowing through it. There can be two kinds of
ideal voltage sources.
n Independent voltage source: The voltage across the terminals is indepen-

dent of any other variables in the circuit.
n Dependent voltage source: The voltage across the terminals is a function

of some other variables in the circuit.
In a similar fashion, we can describe an ideal current source. An ideal current

source is a circuit element where the current flowing through the device is
independent of the voltage across it. Again, there are two kinds of ideal current

sources.
n Independent current source: The current flowing through the device is
independent of any other variables in the circuit.

n Dependent current source: The current flowing through the device is a

function of some other variables in the circuit.
8.5.2 Resistors, capacitors, and inductors
Resistors, capacitors, and inductors are passive circuit elements. The amount of

current flowing through a resistor is proportional to the voltage supplied across

it. Ohm’s law gives us the relationship between branch voltage (V), branch cur-
rent (I), and resistance (R), which is measured in ohms (O):

V ¼ IR

The charge Q stored on a capacitor is proportional to the voltage applied

across it, and is given by

Q ¼ CV

where C denotes the capacitance value measured in farads (F). Differentiating

the preceding equation with respect to time t gives the following circuit equa-

tion for a capacitor:

I ¼ C
dV

dt

8.5 Circuit simulation models 477
It is a well understood physical phenomenon that an electric current flowing

through an inductor of inductance value L, which is measured in henrys (H),
produces a magnetic flux F as follows:

F ¼ LI

Differentiating the preceding equation with respect to time gives the following

circuit equation for an inductor:

V ¼ L
dI

dt
8.5.3 Kirchhoff’s voltage and current laws
Kirchhoff ’s current law (KCL) states that at each node in a circuit, the sum

of currents entering it is zero. This law is derived from the principle of conser-

vation of charge. Consider the example circuit as shown in Figure 8.27. Apply-

ing KCL at node A gives Is � Il1 ¼ 0. Applying KCL at node B gives Il1 � Il2 � Ic1
¼ 0. Applying KCL at node C gives Il2 � Ic2 ¼ 0.

Kirchhoff ’s voltage law (KVL) states that the voltage drop across every

loop in a circuit is zero. This law is derived from the principle of conservation

of energy. For the circuit shown in Figure 8.27, applying KVL on loop 1 gives
VA � Il1R1 � L1 (dIl1/dt) � VB ¼ 0. Applying KVL across loop 2 gives VB �
Il2R2 � L2 (dIl2/dt) � VC ¼ 0.
8.5.4 Modified nodal analysis
Through the combination of the branch equations and Kirchhoff’s laws,

governing equations can be systematically constructed to describe the dynamic

behavior of the circuit. These formulations are often designed to exploit specific
numerical methods for their solution. In addition, different formulations may be

used in order to calculate quantities of interest. Specifically, the tableau

formulation preserves all of the branch currents, branch voltages, and nodal

voltages for the circuit. Alternatively, the nodal analysis (NA) formulation is used

to solve only the nodal equations. Here, the nodal voltages are available during
I
l1 I

l2

I
c1

I
c2

L
1 L

2
R

1 R
2

C
2

C
1

A B C

Loop 2Loop 1I
s

FIGURE 8.27

Example circuit.

478 CHAPTER 8 Logic and circuit simulation
simulation, which is the information most relevant to digital integrated circuit

designers. However, the NA formulation cannot be used directly when the branch
equations are dependent on branch currents (e.g., when inductors and voltage

sources are included). The modified nodal analysis (MNA) formulation also

includes branch currents as unknown variables for these types of circuit elements

[Ho 1975]. Due to the generality and computational efficiency of the MNA formu-

lation, it is of broad interest to the circuit community, and we will focus on its

development.

Given a linear circuit, we first define the adjacency matrix, AJ, for the system

as follows:

AJ ði; jÞ ¼
þ1 if node j is the source of branch i;
�1 if node j is the sink of branch i;
0 otherwise:

8<
:

The adjacency matrix can be decomposed into sub-matrices according to the

types of the branches:

AJ ¼
Ai

Ag

Ac

Al

 !

Here, Ai, Ag, Ac, and Al, respectively, correspond to the adjacency matrices for

current sources, resistances, capacitances, and inductances. We also define

the corresponding branch voltages and branch currents,

vb ¼
vi
vg
vc
vl

 !
; ib ¼

ii
ig

ic
il

 !

which are related as follows:

ii ¼ Is; ig ¼ R�1vg; ic ¼ Cv�c; vl ¼ Li
�
l

R is the resistance matrix and C is the capacitance matrix, both of which are diag-

onal. L is the inductance matrix. The corresponding adjacency matrices for R, L,

and C are Ag,Al, andAc, respectively. Is is the current source vectorwith adjacency

matrix Ai. Here, we consider only current sources in the formulation due to the

ability to convert voltage sources into their Norton equivalent circuits.
Now, we introduce vn, the node voltages, which are related to vg, vc, and vl

through KVL as follows:

vg ¼ Agvn; vc ¼ Acvn; vl ¼ Alvn

Applying KCL, AJ
T
ib ¼ 0 and eliminating most branch currents except for those

flowing through inductors, we obtain the MNA formulation, which allows for a

structured accumulation of current–voltage relationships in the form of matrix

equations as follows:
~Gx þ ~C x� ¼ b ð8:1Þ

8.5 Circuit simulation models 479
where

~G ¼ G AT
l

�Al 0

� �
; ~C ¼ Ĉ 0

0 L

� �
; x ¼ vn

il

� �

b ¼ �AT
i Is
0

� �
; G ¼ AT

g R
�1Ag; and Ĉ ¼ AT

c CAc
Example 8.1 Fo
r the circuit shown in Figure 8.27, the adjacency matrix is illustrated below:

AJ ¼
Ai

Ag

Ac

Al

 !
¼

1 �1 0 0 0 0
0 1 �1 0 0 0
0 0 0 1 �1 0
�1 0 0 1 0 0
�1 0 0 0 0 1
0 0 1 �1 0 0
0 0 0 0 1 �1

0
BBBBBBB@

1
CCCCCCCA

The nodes, which correspond to the columns in AJ, are GND, A, AB, B, BC, and C,

where nodes AB and BC are the nodes to the right of R1 and R2, respectively. As

GND is the reference node in this example, we eliminate that column from AJ before con-

structing the matrices G~ and C~ as follows:

~G ¼

1=R1 �1=R1 0 0 0 0 0
�1=R1 1=R1 0 0 0 1 0

0 0 1=R2 �1=R2 0 �1 0
0 0 �1=R2 1=R2 0 0 1
0 0 0 0 0 0 �1
0 �1 1 0 0 0 0
0 0 0 �1 1 0 0

2
666666664

3
777777775

~C ¼

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 C1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 C2 0 0
0 0 0 0 0 L1 0
0 0 0 0 0 0 L2

2
666666664

3
777777775

where

R ¼ R1 0
0 R2

� �
; L ¼ L1 0

0 L2

� �
; C ¼ C1 0

0 C2

� �

The corresponding input vector b and the vector of voltage and current variables x are as

follows:

b ¼ Is 0 0 0 0 0 0½ �T
x ¼ VA VAB VB VBC VC Il1 Il2½ �T

480 CHAPTER 8 Logic and circuit simulation
Equation (8.1) can be separated into two smaller matrix differential equations as

follows [Chen 2003]:

G vn þ AT
l il þ Ĉv�n ¼ �AT

i Is
�Alvn þ Li

�
l ¼ 0

ð8:2Þ

Although an analytic solution for Equation (8.1) or (8.2) exists, the evaluation

of the solution is computationally expensive. Therefore, we shall explore
numerical methods for solving ordinary differential equations of this type.
8.6 NUMERICAL METHODS FOR TRANSIENT ANALYSIS

Ordinary differential equations, or ODEs, are encountered when modeling

the behavior of numerous physical systems. In order to construct a procedure

for solving ODEs, we first have to understand general approximation methods
for functions. This will serve as a foundation for the development of numerical

techniques for integration. Finally, the application of these techniques to

the solution of ODEs similar to the MNA Equations (8.1) and (8.2) will be

addressed.
8.6.1 Approximation methods and numerical
integration
First, we examine a general integration problem

I fð Þ ¼
Zb
a

f xð Þdx

where [a, b] is a closed and bounded interval. If no explicit form of the antide-
rivative exists or the evaluation time is prohibitively slow, the use of approxima-

tion methods becomes necessary. Let f~(x) be an approximation of f(x) such that

the approximation of our integral I ~f
� � ¼ R b

a
~f xð Þdx can be solved more readily

or more efficiently.

In order to analyze how well I(f~) can be used to approximate the original

integral I(f), we define the error for the estimate as follows:

E fð Þj j ¼ I fð Þ � I ~f
� ��� ��

¼
Zb
a

f xð Þ � ~f xð Þ� 	
dx

������
������

�
Zb
a

f xð Þ � ~f xð Þ�� ��dx
� b� að Þ supa�x�b f xð Þ � ~f xð Þ�� ��

8.6 Numerical methods for transient analysis 481
In general, we would like the error to be as small as possible. In the following,

we define a set of functions: {f~n|n � 1} for the increasingly more accurate
approximation of our integral, where

In fð Þ ¼
Zb
a

~fn xð Þdx ¼ I ~fn
� �

We would like the error En fð Þj j ¼ I fð Þ � In ~f
� ��� �� ¼ R b

a
f xð Þ � ~f n xð Þ� 	

dx

��� ���
to diminish as n increases, that is, supa�x�b f xð Þ � ~f n xð Þ�� ��! 0 as n!1:

We choose { f~n|n � 1} such that

In fð Þ ¼
Xn
j¼0

wj;nf xj;n
� � ð8:3Þ

where wj,n are called the weights (or quadrature weights) and xj,n are the inte-

gration nodes. For convenience of representation, we will leave out the n

dependency.
If we choose to approximate f on [a, b] by a straight line (see Figure 8.28)

joining the points (a, f (a)) and (b, f (b)), then the single approximating function

would be

~f 1 xð Þ ¼ f að Þ þ x � að Þ
b� að Þ f bð Þ � f að Þ½ �
with the integral being of the form:

I1 xð Þ ¼
Zb
a

~f 1 xð Þdx ¼ b� a

2

 �
f að Þ þ f bð Þ½ �
0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

FIGURE 8.28

Approximation of the integral of y ¼ x2, 1 � x � 2.

482 CHAPTER 8 Logic and circuit simulation
If we assume that f is twice differentiable, the error for our estimate is

E1 fð Þ ¼ b� að Þ3
12

f 00 �ð Þ; � 2 a; b½ �
Example 8.2 y
 ¼ x2, 1 � x � 2.

IðfÞ ¼
Z2
1

x2dx ¼ x3

3

�����
2

1

¼ 8

3
� 1

3

¼ 7

3

E1ðfÞ ¼ � ð2� 1Þ3
12

f 00ð�Þ

¼ � 1

12
ð2Þ

¼ �1

6

I1ðfÞ ¼ 2� 1

2

0
@

1
A½ fð1Þ þ fð2Þ�

¼ 1

2

0
@
1
A½1þ 4�

¼ 5

2

IðfÞ � I1ð fÞ ¼ 7

3
� 5

2

¼ 14� 15

6

¼ � 1

6
¼ E1ð fÞ

As E1(f) / (b � a)3, this estimate is inaccurate for large intervals. The gen-

eral framework in Equation (8.3) allows us to break up the integral into smaller

sub-regions as shown in Figure 8.29.

Specifically, we can form the composite rule as follows:

n � 1; h ¼ b� að Þ=n; xj ¼ aþ jh; j ¼ 0; 1; . . . ;n

Assigning a linear function to approximate the function between the boundary

points of each sub-region, we arrive at what is classically referred to as the

Trapezoidal Rule:

I fð Þ ¼
Zb
a

f xð Þdx ¼
Xn
j¼1

Zxj
xj�1

f xð Þdx

¼
Xn
j¼1

h

2

0
@
1
A f xj�1

� �þ f xj
� �� 	� h3

12
f 00ð�jÞ

8<
:

9=
;; xj�1 � �j � xj

ð8:4Þ
...x1 x2 x3 xn = ba = x0

FIGURE 8.29

Defining subregions for the composite rule.

8.6 Numerical methods for transient analysis 483
Therefore, we can write the approximating integral as:

In fð Þ ¼ h
1

2
f x0ð Þ þ f x1ð Þ þ . . .þ f xn�1ð Þ þ 1

2
f xnð Þ

� �

with the error now quadratically dependent on the width of the sub-regions:

En fð Þ ¼ I fð Þ � In fð Þ
¼
Xn
j¼1
� h3

12
f 00ð�jÞ

¼ � b� að Þh2

12
f 00 �ð Þ;a � � � b

ð8:5Þ

In order to further reduce the error, quadratic polynomials can be used to
approximate the function, a method known as Simpson’s Rule. Furthermore,

the use of higher order approximations has been developed, and these approx-

imations are called the Newton-Cotes formulas [Atkinson 1989].
8.6.2 Initial value problems
In general, we are interested in studying the initial value problem:

y0 ¼ f x; yð Þ; y x0ð Þ ¼ Y0 ð8:6Þ
where the function f(x, y) is continuous for all (x, y) in some domain D, and Y0

describes the initial condition for the differential equation. One of the simplest

and most popular approaches to solving problems of this type is the finite

difference method. Here we approximate the solution of Equation (8.6) at a

discrete set of equally spaced grid points:

x0 < x1 < x2 < . . . < xn < . . .
xj ¼ x0 þ jh; j ¼ 0; 1; . . .

where the true solution Y(x) satisfies Equation (8.6), and we will denote our

approximation at each grid point yj ¼ y(xj), j � 0. Euler’s method gives us a first

order method for relating future values of our approximate solution to past

values, given the underlying differential equation and initial condition:

ynþ1 ¼ yn þ hf xn; ynð Þ; n ¼ 0; 1; . . .

y0 ¼ Y0
Example 8.3 y0
 ¼ 3x2 þ x þ 1, y0 ¼ 0.

The solution is of the form:

Y xð Þ ¼ x3 þ 1

2
x2 þ x þ c

484 CHAPTER 8 Logic and circuit simulation
where c is a constant. Applying initial condition gives Y 0ð Þ ¼ 03 þ 1
2 0

2 þ 0þc ¼ c. As

y0 ¼ 0, we have c ¼ 0. Therefore,

Y xð Þ ¼ x3 þ 1

2
x2 þ x

On the other hand, Euler’s method gives the following approximation:

ynþ1 ¼ yn þ h 3x2n þ xn þ 1
� �

The following table gives the errors Y(xj) – yj across varying step sizes:
h ¼ 0.01 h ¼ 0.1 h ¼ 0.25 h ¼ 0.5

x ¼ 0.0 0 0 0 0

x ¼ 0.5 –0.006275 –0.065 –0.171875 –0.375

x ¼ 1.0 –0.02005 –0.205 –0.53125 –1.125

x ¼ 1.5 –0.041325 –0.42 –1.078125 –2.25
Finally, we conclude by examining the relationship between numerical inte-

gration and the solution of ODEs. We first integrate Equation (8.6) across a

region [xk, xkþ1] to obtain

Y xkþ1ð Þ ¼ Y xkð Þ þ
Zxkþ1
xk

f x;Y xð Þð Þdx

Then, we apply Equation (8.4), the trapezoidal rule for integration, to reduce

the preceding equation to

Y xkþ1ð Þ ¼ Y xkð Þ þ h

2
f xk;Y xkð Þð Þ þ f xkþ1;Y xkþ1ð Þð Þ½ �

� h3

12
Y 3ð Þð�jÞ; xk � �j � xkþ1

which gives us the standard recursion for the trapezoidal method:

ykþ1 ¼ yk þ h

2
f xk; ykð Þ þ f xkþ1; ykþ1ð Þ½ �; k � 0 ð8:7Þ

Consequently, the trapezoidal method has O(h2) convergence rate, which it

inherits from the O(h2) error bound of the trapezoidal rule for integration in

x ¼ 2.0 –0.0701 –0.71 –1.8125 –3.75

8.7 Simulation of VLSI interconnects 485
Equation (8.5). It is also important to note that Equation (8.7) contains the

unknown quantity ykþ1 on both sides of the equality.
We can directly construct a numerical solution for the MNA circuit equations

in Equation (8.1) by reformulating the problem in the form of Equation (8.6):

y0 ¼ ~C �x
f t; x t; yð Þð Þ ¼ �~Gx þ b

x t0; yð Þ ¼ x0

From here we can use the trapezoidal method in Equation (8.7), assuming a

uniform discretization of the time axis with resolution h:

ykþ1 ¼ ~Cxkþ1

¼ yk þ h

2
f tk; x tk; yð Þð Þ þ f tkþ1; x tkþ1; yð Þð Þ½ �

¼ ~Cxk þ h

2
�~Gxk þ bk
� �þ �~Gxkþ1 þ bkþ1

� �� 	

Thus, we solve the following recursion for each time step of our simulation:

~G

2
þ

~C

h

 �
xkþ1 ¼ �

~G

2
�

~C

h

 �
xk þ bkþ1 þ bk

2
ð8:8Þ
8.7 SIMULATION OF VLSI INTERCONNECTS

On-chip interconnects, such as that shown in Figure 8.30, introduce capacitive,

resistive, and inductive effects that can have a dominant impact on the circuit
FIGURE 8.30

Distributed model of a typical three-dimensional VLSI interconnect structure.

486 CHAPTER 8 Logic and circuit simulation
operation and performance. In modern designs, the delay of global intercon-

nects, possibly larger than the clock period, often dominates the gate delay.
Moreover, coupling among interconnects can exacerbate the problem of signal

integrity throughout the circuit. In this section, we will focus on the modeling

and simulation of interconnects. The inclusion of nonlinear devices in a tran-

sient simulation procedure will be covered in the next section.

The capacitance of awire is a typical component in nearly all interconnectmod-

els. The inclusion of resistive and inductive parameters in themodeling of intercon-

nects is a recent trend. The scaling of devices reduces the resistance of a transistor.

However, wire resistance increases significantly due to the scaling of the cross-
sectional dimensions of interconnects and the increase in global interconnect

lengths. As the relative significance of wire resistance increases, accurate models

for the wire resistances must be employed. At higher frequencies, the impedance

of an interconnect is mainly due to the inductance, which should be accounted for

in a full-fledged interconnect model. In this section, we will examine a few com-

monly used models [Rabaey 1996, 2003; Cheng 1999], beginning with an analysis

of the three physical quantities that are the building blocks for the models.
8.7.1 Wire resistance
The resistance of a rectangular wire with uniform cross-section, as shown in

Figure 8.31, is given by:

R ¼ rl
wh

ð8:9Þ

where r is the resistivity of the material, and h, w, and l are, respectively, the

height, width, and length of the wire. It is important to note that at lower

frequencies, current flowing through a conductor can be assumed to be

distributed uniformly throughout the cross-section of the conductor. Therefore,

the resistance is accurately given by Equation (8.9). For higher frequencies,

however, it is important to consider an electromagnetic induction phenomenon

known as the skin effect. At high frequencies, current tends to crowd near the

surface of the conductor, resulting in non-uniform distribution of current in a
conductor, as shown in Figure 8.32, where a darker region indicates a higher
w

l

h

FIGURE 8.31

Rectangular wire.

FIGURE 8.32

Non-uniform current distribution in a conductor caused by the skin effect.

8.7 Simulation of VLSI interconnects 487
current density. As most of the current is carried by a small portion of the cross-

section of the conductor, the effective resistance increases.

To formalize this concept, we introduce the current density of a conductor
as a function of depth d from the surface:

J ¼ Jse
�d=d

Skin depth d is defined as the depth at which current density is attenuated to

e
�1 of its value at the surface:

d ¼
ffiffiffiffiffiffiffi
2r
om

r

where o ¼ 2pf is the angular frequency and m is the permeability of the conduc-

tor. It is important to note that for higher frequencies and higher conductivity

values, there is less penetration of current into the conductor.
8.7.2 Wire capacitance
Traditionally, the capacitance of interconnects is the most influential parasitic

parameter that the designer of a CMOS circuit has to consider, especially before

the emergence of sub-micron technologies. Moreover, this methodology

remains adequate when considering short interconnects that are not part of a

critical path for the circuit.

In order to accurately model the behavior of interconnects we have to
consider several capacitive components. Specifically, we examine area, fringing,

and coupling capacitance components for the model. Both the area capaci-

tance and the fringing capacitance are considered to be the grounded

488 CHAPTER 8 Logic and circuit simulation
capacitance between the interconnect and the substrate. The coupling capac-

itance is the parasitic effect due to interactions between two neighboring
interconnects. When compared to the grounded capacitance, we consider

the coupling capacitance to be floating.

A simple capacitive model for a typical wire is given in Figure 8.33. The par-

allel plate capacitance is a result of the electrical field, shown normal to the sur-

face of the conductor terminating at the ground plate, and is described by the

following equation:

C ¼ ewl

tox

where w and l are, respectively, the width and length of the wire, e is the per-

mitivity of the insulating material between the plates, and tox is the thickness

of the insulator.

As the ratio w/h for the conductors decreases, which is typical when we

scale the dimensions of interconnects, the parallel plate model becomes increas-
ingly inaccurate. In this case, the capacitance between the side walls of the

wires and the substrate (described by the fringing capacitance component)

becomes a dominant contributor to the overall grounded capacitance. When

approximating the total grounded capacitance, a typical approach treats the

wires as rectangular sections with two hemi-spherical end caps, as described

in [Yuan 1982] and illustrated in Figure 8.34. For this model, the total grounded

capacitance is the sum of two components: a parallel-plate capacitance between

a wire of width w � h/2 and the ground plane and a fringing capacitance mod-
eled by a cylindrical wire with a radius of h/2. The interconnect grounded

capacitance Cgrounded can be calculated as follows:

Cgrounded ¼ e � l � w� h
2

tox
þ 2p

ln 1þ 2tox
h
þ

ffi
2tox
h
� 2tox

h
þ 2

� �qn o
2
64

3
75

The preceding discussion concerns the capacitance of a single interconnect.

It is typical that every wire on a chip is surrounded by a number of neighboring
w

l

h
tox

SiO2

Substrate

FIGURE 8.33

Parallel plate capacitance model of a wire.

w

l

h

tox
SiO2

Substrate

w-h/2

+

h

Fringing component Area component

FIGURE 8.34

Fringing and area capacitance of a wire.

8.7 Simulation of VLSI interconnects 489
wires. These neighboring wires may completely or partially shield the wire of

interest from the ground plane. As a result, the area capacitance and the fringing

capacitance depend on the neighborhood configuration or the spacings from

the neighboring wires as well.

While neighboring wires may reduce the grounded capacitance of a wire,

they contribute to the coupling capacitances, which is due to electrical fields

between adjacent wires that reside not only in the same layer, but also in differ-
ent layers. Typically, three components of the coupling capacitance are consid-

ered. First, the area component of coupling capacitance is due to the parallel

plates formed by the overlapping surfaces of wires in different routing layers.

Second, the fringing component of the coupling capacitance is formed between

the side-wall of one wire and the surface of a second wire above or below.

Third, the lateral component of the coupling capacitance is due to the parallel

plates formed by the side-walls of neighboring wires on the same layer. While

there exist approximate models, fields-based solvers such as FastCap [Nabors
1991] are usually used to extract capacitive parameters of 3-D interconnect

structures.
8.7.3 Wire inductance
With both the increase in clock frequencies and the decrease in signal transition

times, on-chip inductance of interconnect wires has become a concern for cir-

cuit designers. The modeling of inductance effects is necessary when analyzing

490 CHAPTER 8 Logic and circuit simulation
signal overshoot/undershoot and crosstalk noise. The self-inductance of a rect-

angular wire with uniform cross-section, as shown in Figure 8.31, can be
approximated by the following equation [Keiser 1979]:

L ¼ m0
2p

l ln
2l

wþ h

 �
þ l

2
þ 0:2235 wþ hð Þ

� �

where m0 is the permeability of free space.
Exact formulas for computing the self-inductance and mutual inductance of

rectangular wires are available in [Hoer 1965; Wu 1992; Zhong 2003]. As each

of these formulas easily takes up more than half a page, we omit them in this

textbook. These closed-form formulas are valid only at low frequencies, when

the current distribution varies very little in the cross-sections and can be

assumed to be uniform throughout the conductors. Consequently, the self and

mutual inductances can be respectively computed one-by-one and pairwise

even for a multi-conductor system.
At high frequencies, the current in a conductor is not uniformly distributed

due to the skin effect. Moreover, the presence of neighboring wires also causes

uneven distribution of current within a conductor, as shown in Figure 8.35. In

this example, the currents in the two conductors flow in opposite directions.

As current tends to flow in the path with the least loop impedance, the currents

in the two conductors tend to crowd near the two closest surfaces of the con-

ductors. This is known as the proximity effect. As the current distributions in

the conductors affect each other, the inductive parameters of the whole system
must be extracted at the same time, as is the extraction of capacitive parameters
(b) Right conductor(a) Left conductor

FIGURE 8.35

Non-uniform current distribution in two parallel conductors caused by the proximity effect.

8.7 Simulation of VLSI interconnects 491
of a multi-conductor system. The representative work is FastHenry [Kamon

1994], a parallel of FastCap [Nabors 1991].
8.7.4 Lumped and distributed models
The simplest model for an interconnect wire is a lumped capacitor model.

As the resistive component of the wire becomes more significant, a resistive-
capacitive (RC) model has to be adopted. The lumped RC model for a wire

is shown in Figure 8.36. The use of a simple lumped RC model offers the poten-

tial to greatly simplify the analysis and optimization of interconnects, albeit with
less accuracy.

The resistive and capacitive parasitics of a wire are in reality distributed

along its length. In order to address the inaccuracy associated with a lumped

model, especially when considering long interconnect wires, a distributed

model can be formed by dividing a long wire into several segments, each of

length DL. Let r and c be the unit-length wire resistance and capacitance,

respectively. Each of the segments can be viewed as a lumped RC element with

resistance rDL and capacitance cDL. The distributed RC model for a wire is
shown in Figure 8.37a.

In order to further improve upon the model, inductance can incorporated

into the distributed framework; the distributed RLC line model is shown in

Figure 8.37b, where l denotes the unit-length wire inductance. It is important

to recall that in practice, there often exists significant coupling between parallel

groups of interconnect wires. Therefore, in general we will consider both induc-

tive and capacitive coupling between neighboring wire segments when we

examine the dynamic behavior of the circuit as a whole. Consequently, the
capacitance and inductance matrices are usually of large sizes. While capaci-

tance matrices are in general sparse, the inductance matrices are dense.
8.7.5 Simulation procedure for interconnects
If we consider the structure of the MNA equations from Equation (8.2) in more

detail, we arrive at the Nodal Analysis (NA) equations, used in [Chen 2003].

Specifically, using the trapezoidal method shown in Equation (8.7), we can for-
mulate the following recursions:
VS

R

C

FIGURE 8.36

Lumped RC model of a wire.

(a) Distributed RC model of a wire.

rDL

rDL rDL rDL

VS

VS

rDL

cDL cDL cDL cDL

cDL

IDLIDLIDL

cDLcDL

rDL rDL

(b) Distributed RLC model of a wire.

FIGURE 8.37

492 CHAPTER 8 Logic and circuit simulation
G þ 2

h
Ĉ þ h

2
S

 �
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

U

vkþ1n ¼ �G þ 2

h
Ĉ � h

2
S

 �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

V

vkn � 2AT
l i

k
I � AT

l Ikþ1s þ Iks
� � ð8:10Þ

and

2AT
I i

kþ1
I ¼ 2AT

l i
k
I þ hS vkþ1n þ vkn

� � ð8:11Þ
where S ¼ Al

T
L
�1

Al. In order to avoid overloaded subscripts for both node vol-

tages and branch currents, the time steps are embedded in the superscripts of

these variables in Equations (8.10) and (8.11). In contrast, we use subscripts
to denote the time steps in Equation (8.8).

Equation (8.10) allows for the determination of the voltages vn
kþ1 at each time

step, which can then be used for the calculation of the currents il
kþ1 in Equation

(8.11). The voltage and current variables can then be carried back to be used for

solving the voltage equation in the next time step. The first advantage of the NA

equations over the MNA representation is the reduced problem size. Separating

the equations as shown in Equation (8.2) allows for the solution of a smaller pair

of equations, which yields computational savings. In addition, the NA representa-
tion allows us to observe specific structures or sparsity in the matrices, thereby

improving efficiency of simulation.

When large numbers of interconnects are modeled using a distributed frame-

work, the inductance matrix L will be extremely large and dense (all entries are

non-zero). The computation load involved in the simulation of even modestly

sized problems using direct numerical techniques will be prohibitive. However,

if we examine the inverse of the inductance matrix, we see specific structures

that can potentially be exploited.

Distributed wire models.

8.7 Simulation of VLSI interconnects 493
Consider, for example, a group of 16 parallel wires. Each row of the induc-

tance matrix describes the mutual coupling between all of the conductors
and a specific conductor (corresponding to the row being examined). In partic-

ular, each entry relates how the rate of change of current in an conductor, say j,

contributes to the voltage of the conductor being examined, say k:

vk ¼
X16
j¼1

Lkj
dij

dt

Now, let us take a look at the inverse relationship due to L
�1:

dik

dt
¼
X16
j¼1

L�1kj vj

Each entry in the inverse of the inductance matrix relates how the voltage

change in a conductor affects the current in the conductor being examined.

This is, in fact, what we are more concerned with in a digital circuit—how does

the voltage switching in a conductor affect the signal delay or signal integrity of

other conductors. From Figure 8.38 we can clearly see a substantial decrease in
the magnitude of the entries for the first row of the inverse of the inductance

matrix. This is due to the fact that the conductor number here corresponds

directly to their spatial location, that is, the conductors are placed in rows

beginning with the number with 1 and finishing with 16. Therefore, the farther

away the conductors are from conductor 1, the less coupled they are. This is
0 2 4 6 8 10 12 14 16

0

2

4

6

8

10

12
x 109

Conductor Number

−2

L
−1 1j
, j

 is
 c

on
du

ct
or

 n
um

be
r

FIGURE 8.38

First row of the inverse of the inductance matrix for 16 parallel wires.

494 CHAPTER 8 Logic and circuit simulation
known as the locality effect or shielding effect. In other words, only conductors

in close proximity of the conductor being examined are strongly coupled to the
conductor of interest. These tightly coupled conductors shield faraway conduc-

tors from the conductor of interest.

This serves as the foundation for several approximation methods that reduce

the amount of computation for simulation, while aiming to preserve accuracy.

Several of these techniques rely on the fact that through the use of a threshold

most of the entries in L
�1 can be truncated (assumed to be identically zero), and

all mathematical operations for the simulation can be performed with the result-

ing “sparse” L�1 matrices [Chen 2003]. Matrices U and V in Equation (8.10) are
made up of sparse symmetric matrices G, Ĉ, and S. Cholesky factorization of

sparse U can, therefore, be computed efficiently. The stored Cholesky factor

of U can then be used for the repeated solves of vn
kþ1.

An alternate formulation that also allows us to exploit the inherent structure

in matrices in the MNA equations can be constructed by rewriting the separated

MNA Equation (8.2) as follows [Jain 2004]:

Alil þ Ĉtvn ¼ �AT
i Is;

�Aglvn þ Ril þ L �il ¼ 0
ð8:12Þ

where Agl is the adjacency matrix formed by combining Ag and Al and removing

any zero columns created (from non-zero columns) as a result of inductor to

resistor connections. Similarly, Ĉt is a truncated version of Ĉ obtained by remov-
ing the zero rows and columns in Ĉ, which correspond to inductor-to-resistor

connections. Typical VLSI interconnect has both resistance and inductance; this

formulation relies on, as well as takes advantage of this property. For the exam-

ple seen in Figure 8.27 we would have:

Ag þ Al ¼ 1 0 �1 0 0

0 0 1 0 �1

 �

As the third and fifth columns from Ag þ Al are created from non-zero columns,

we remove them to form Agl:

Agl ¼ 1 �1 0

0 1 �1

 �

In this example, Ĉt ¼ Ĉ.

Using the trapezoidal method shown in Equation (8.7) we can formulate the

following recursions

L

h
þR

2
þ h

4
AglPA

T
gl

 �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

X

ikþ1l ¼ L

h
þR

2
þ h

4
AglPA

T
gl

 �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Y

ikl þAglv
k
nþ

h

4
AglP Ikþ1s þ Iks

� �
;

ð8:13Þ

8.8 Simulation of nonlinear devices 495
and

vkþ1n ¼ vkn �
h

2
PAT

gl ikþ1l þ ikl
� �þ h

2
P Ikþ1s þ Iks
� � ð8:14Þ

where P is the inverse of capacitance matrix, that is, P ¼ Ĉt
�1. The first equa-

tion allows for the determination of the currents il
kþ1 at each time step, which

can then be used to solve for the voltages vn
kþ1. The voltage can then be carried

back to be used for the next time step of the current equation.

ThematrixX is dense as it is made up of densematrices P¼ Ĉt
�1 and L. As both

P
�1 ¼ Ĉt and L

�1 exhibit sparsity structure due to locality and shielding effects,
X
�1 can be expected to be sparse as well. Indeed, for a three-dimensional inter-

connect topology, we might find the significant entries for X�1 to have a pattern

similar to that shown in Figure 8.39. Therefore, a truncated X
�1 helps to reduce

the computational complexity required of the repeated solves of il
kþ1.
8.8 SIMULATION OF NONLINEAR DEVICES

Metal-oxide-semiconductor field-effect transistors (MOSFETs) and parasitic

diodes constitute the basic circuit elements of modern digital circuits. In order

to describe the dynamic behavior of a digital circuit, it is essential to construct
0 100 200 300 400 500 600

0

100

200

300

400

500

600

FIGURE 8.39

Significant entries for X�1 of three-dimensional interconnect structure.

496 CHAPTER 8 Logic and circuit simulation
models for these circuit building blocks. In general, the choice for a model is gov-

erned by both the accuracy in terms of describing the behavior of an actual circuit
element in practice and the complexity (analysis time) associatedwith that model.

Different models for devices exist based on the type of simulation performed by

the designer. In this section, we limit our focus to device models used for transient

simulation.
8.8.1 The diode
The diode, the schematic symbol of which is shown in Figure 8.40, is an impor-
tant modern circuit element that is found in every MOSFET, the workhorse of

modern digital circuits. Each source or drain diffusion region of a MOSFET nat-

urally forms a pn-junction diode with the well in which the MOSFET resides.

The current-voltage characteristics or I–V characteristics for a typical diode

can be divided into two regions: forward-biased and reverse-biased. When

the voltage difference across the diode is smaller than a certain threshold volt-

age, it offers a very high resistance to the active current. Specifically, in the sit-

uation where no current is allowed to flow across the device we say that the
diode is in the reverse-bias mode. As the potential drop is increased, the current

can flow across the diode and the diode is said to be in the forward-bias mode.

The I–V characteristics of a typical diode are shown in Figure 8.41. We can for-

mulate the I–V characteristics of an ideal diode through the following equation:

ID ¼ IS e
qVD
nkT � 1

� �
ð8:15Þ

Here IS is the reverse saturation current, q is the charge carried by an electron, k

is Boltzmann’s constant, T is the temperature in Kelvins, and n is the emission

coefficient. The equivalent circuit model that provides us with Equation
(8.15) is shown alongside the schematic symbol in Figure 8.40. The resistor Rs

captures the series resistance due to the neutral regions on both sides of the

junction. The nonlinear capacitance CD, which is voltage-dependent, has two

components, namely the junction capacitance and diffusion capacitance.
RS

ID CD

+

-

VD

FIGURE 8.40

Circuit symbol for a diode and its equivalent circuit for transient analysis.

−1 −0.5 0 0.5 1
−1

0

1

2

3

4

5

6

7
x 10−3

VD (V)

I D
 (

A
)

FIGURE 8.41

I–V characteristics of a diode.

8.8 Simulation of nonlinear devices 497
The charge variation in the depletion region of a pn-junction diode due to vari-

ation in the potential difference across the junction is modeled as a nonlinear

junction capacitance. The junction capacitance can be seen as the parallel-plate

capacitance between the n-regions and p-regions of a pn-junction diode, and is
given by the following expression [Rabaey 1996]:

Cj ¼ dQj

dVD

¼ AD

ffi
qesi
2

NAND

NA þ ND

f0 � VDð Þ�1
r

where AD is the junction area, esi is the permittivity of silicon, f0 is the zero bias

potential across the junction, and NA and ND are the acceptor and donor con-

centrations, respectively. The preceding equation is valid only for an abrupt

junction that has an instantaneous transition from p-material to n-material. For

a linearly graded junction, a variation of the preceding equation can be used

to model the junction capacitance [Rabaey 1996].

Under forward bias, excess carriers are stored at the boundaries of the deple-
tion region. This effect is modeled by the diffusion capacitance, which is

approximated by the following expression [Rabaey 1996]:

Cd ¼ dQd

dVD
¼ qtTIS

kT
eqVD=nkT

where tT is the mean transit time for the charge to flow across the diode.

498 CHAPTER 8 Logic and circuit simulation
8.8.2 The field-effect transistor
The metal-oxide-semiconductor field-effect-transistor (MOSFET) is the key com-
ponent in present-day VLSI circuits. There are several existing models with vary-

ing degrees of sophistication that have been presented in literature [Tsividis

1987]. In this section, we will concentrate on an NMOS transistor, whose sche-

matic symbol is shown in Figure 8.42. The behavior of a MOS transistor can be

separated into three modes of operation depending on the voltages applied

across its terminals: gate (G), source (S), drain (D), as well as body (B) or bulk.

For simplicity, we assume that the body is tied to ground. The I–V characteris-

tics of a long-channel NMOS transistor for each of the three modes can be
described by the following equations:
FIG

Circ
n Cutoff Region (VGS � VT), where VT is the threshold voltage of the

transistor:
IDS ¼ 0
n Linear Region (VDS < VGS – VT):
IDS ¼ mnCox
W

L
VGS � VTð ÞVDS � V 2

DS

2

 �
Gate

Drain

Source

Substrate

Drain

Source

Gate Substrate

Cgs

Cgb

Cgd

Cbd

Cbs

IDS

Rs

Rd

URE 8.42

uit symbol of an NMOS transistor and its equivalent circuit for transient analysis.

8.8 Simulation of nonlinear devices 499
Here, mn is the mobility of the transistor, Cox is the per unit area capaci-

tance of the oxide, and W and L are, respectively, the width and length
of the transistor.

n Saturation Region (VDS � VGS � VT)

IDS ¼ mnCox
W

L

VGS � VTð Þ2
2

In the preceding equation, we assume that in saturation mode the transistor

will act like a perfect current source. However, the applied voltage at the

drainwould shorten the channel length. To account for that,wemust include

some dependence of the actual effective channel length on VDS. This is

accomplished through the inclusion of a channel-lengthmodulation factor l:

IDS ¼ mnCox
W

L

VGS � VTð Þ2
2

1þ lVDSð Þ

The I–V characteristics for a typical long-channel NMOS transistor are shown in

Figure 8.43a.

Short-channel devices exhibit current-voltage characteristics that are consid-

erably different from the long-channel devices. In particular, we have to incor-
porate the velocity-saturation effect of carriers in the equations for ID. In a

long-channel device, we assume that the velocity of carriers is proportional to

the electrical field. For a short-channel device, the velocity remains constant

or saturates at usat when the electrical field reaches a critical value, xc. An in-

depth analysis of this effect is outside the scope of this book. Interested readers

are encouraged to explore [Rabaey 2003]. For short-channel devices, the equa-

tion for ID in the linear region is

IDS ¼ mnCox
W

L
VGS � VTð ÞVDS � V 2

DS

2

 �
k VDSð Þ

where

k Vð Þ ¼ 1

1þ V= xcLð Þ
When the velocity of carriers saturates, the transistor operates in the saturation

region, and the equation for ID becomes

IDS ¼ usatCoxW VGS � VT � VDSATð Þ
where VDSAT ¼ (VGS – VT)k(VGS – VT) is the drain-source voltage at which veloc-

ity saturation occurs. Again, the accuracy of the model can be further improved

by including the channel length modulation factor. The I–V characteristics for a

short-channel NMOS transistor is shown in Figure 8.43b.

While it is fine to assume IDS ¼ 0 when VGS � VT for long-channel devices,

sub-threshold leakage is no longer negligible for short-channel devices. The cur-

rent in the sub-threshold region can be approximated as follows [Rabaey 2003]:

IDS ¼ IS e
qVGS
nkT 1� e�

qVDS
kT

� �
1þ lVDSð Þ

0 0.5 1 1.5 2 2.5
0

1

2

3

4

5

6
x 10−4

VDS (V)

I D
S
 (

A
)

VGS = 1.0V

VGS = 1.5V

VGS = 2.0V

VGS = 2.5V

(a) Long-channel

0 0.5 1

(b) Short-channel

1.5 2 2.5
0

1

2

x 10−4

VDS (V)

I D
S
 (

A
)

VGS = 2.5V

VGS = 2.0V

VGS = 1.5V

VGS = 1.0V

FIGURE 8.43

I–V characteristics of an NMOS transistor.

500 CHAPTER 8 Logic and circuit simulation

8.8 Simulation of nonlinear devices 501
where IS and n are empirical parameters, with n � 1.5.

We now describe the different capacitances associated with an MOS transis-
tor. First, due to lateral diffusion under the poly gate during the ion implanation

of source and drain, the gate overlaps with source and drain by xd. Conse-

quently, a transistor of gate length L has an effective length of Leff ¼ L � 2xd.

The overlap capacitance at the source or drain is CoxWxd, where W denotes

the channel width of the transistor. The gate-to-channel capacitance of a

MOSFET can be divided into three capacitances, with Cgs, Cgb, Cgb being

the capacitances between the gate and source, drain, and body respectively.

These capacitances vary as the operating condition varies. An approximation
of these capacitance values are given in Table 8.5.

Alternatively, a more accurate piecewise-linear approximation is typically

used to make these capacitances continuous, resulting in a more stable simula-

tion. For example, we can represent the gate-to-drain capacitance as:

Cgd ¼ � dQg

dVD

ð8:16Þ

where the rate of change for both the gate charge Qg and drain voltage VD are

obtained from the estimated increases over a fixed period of time. While it

should be clear that the drain voltage can be determined directly from KVL-type

equations, there are several different models available to approximate the

charges seen at different areas of the MOSFET. If we consider the BSIM4 model

[Dunga 2007], which is often provided as part of commercially available simula-

tion packages, the amounts of charge observed at different terminals (i.e., gate,
body, drain and source) of a MOSFET in the saturation region will be as follows:

Qg ¼ CoxeWactiveLactive Vgs � VFB � Fs � VDSAT

3

2
4

3
5

Qb ¼ �CoxeWactiveLactive VFB þ Fs � VT þ
1� A0bulk
� �

VDSAT

3

2
4

3
5

Qd ¼ � 4

15
CoxeWactiveLactive VGS � VTð Þ

Qs ¼ � Qg þ Qd þ Qb

� �

ð8:17Þ
Table 8.5 Approximation of gate capacitances

Mode Cgs Cgd Cgb

Cutoff CoxWLeff 0 0

Linear 0 CoxWLeff
2

CoxWLeff
2

Saturation 0 2CoxWLeff
3 0

502 CHAPTER 8 Logic and circuit simulation
The model shown above is dependent on several parameters such as the effec-

tive gate oxide capacitance, Coxe, the effective length and width of transistor,
Lactive and Wactive, the surface potential Fs, the flat-band voltage VFB, as well as

A0bulk, a parameter related to the bulk charge effect. Default values for these

and other parameters can be found in resources similar to [Dunga 2007], along

with a complete description of the charge relationships in all operating regions

for the device.

The other two capacitances Cbs and Cbd shown in Figure 8.42 are the diffu-

sion capacitances, contributed by the reverse biased source-bulk and drain-bulk

pn junctions, respectively. They can be modeled by the nonlinear capacitance
CD associated with a pn-junction diode, as described in Section 8.8.1.
8.8.3 Simulation procedure for nonlinear devices
It is often the case that simulation problems involve nonlinear circuit device

components. In this context, the nonlinearity refers to the nonlinear current-

voltage relationship over time. Many nonlinear devices can be described using

the simple building blocks of voltage/current sources, resistors, capacitors,
and inductors. It is important to note that both the values of the voltage/current

sources and the parasitic values for the model may change with time. This is due

to the fact that the dynamic behavior for nonlinear devices is governed by the

voltages seen at the terminals of the device. For example, if we consider the

model of the MOSFET it should be clear that the drain current IDS is dependent

on the voltages seen at terminals, for example, VGS and VDS. In addition, from

Figure 8.42 we can see that the capacitance values between the terminals, for

example, Cgd and Cgs, would again be dependent on the potential difference
seen across the terminals. Therefore, we should consider a simple “black box”

approach to analyzing these nonlinear devices. Here, we will assume for our

simulation a device that is dependent on both the current and voltage values

seen at the terminals over time.

For example, the current seen at the output terminal can be described by

some nonlinear function g of the voltage seen at each of the terminals across

time:

iout ¼ g vin; vout; tð Þ
If we place this black box inside a simple circuit consisting of a voltage source

and a load capacitance, shown in Figure 8.44, we can write down the voltage

current relationships. For simplicity of illustration we will consider the

nonlinear device to be the diode described in Section 8.8.1. Moreover, we

ignore the nonlinear capacitance CD associated with the diode. Here the current

across the diode is given as:

iD ¼ IS e
q

nkT
vs�v1ð Þ � 1

h i

8.8 Simulation of nonlinear devices 503
and the current across the capacitor is:

iC ¼ C
dv1

dt

Combining the equations we get the ODE:

v0I ¼
Is

C
e

q

nkT
vs�v1ð Þ � 1

h i
¼ g t; v1ð Þ

Using the integration technique described in Section 8.6.2, we are left with a
nonlinear expression

vkþ11 ¼ vk1 þ
h

2
g tk; v

k
1

� �þ g tkþ1; vkþ11

� �� 	
or

vkþ11 � vk1 �
h

2
g tk; v

k
1

� �þ g tkþ1; vkþ11

� �� 	 ¼ 0 ð8:18Þ

In this formulation, we know the value of v1
k and we are interested in solving for

the value of v1
kþ1, that is, the voltage at the next instant in time. There are sev-

eral classical methods that can be used to find the “zero” of this nonlinear equa-

tion. We will focus on Newton’s method, which offers a computationally

efficient and numerically stable approach to solve for a zero. If we denote the
unknown variable to be x ¼ v1

kþ1, and the left-hand side of Equation (8.18) to

be z(x), then we are attempting to determine a solution x* such that our nonlin-

ear equation z(x*) ¼ 0. This is accomplished by forming a sequence of iterates

that will converge to this point x*, starting with an initial guess x0:

xnþ1 ¼ xn � z xnð Þ
z0 xnð Þ ; n ¼ 0; 1; . . . ð8:19Þ

where xn! x* as n ! 1. Note here that the subscripts in the preceding equa-

tion refer to the iteration numbers of the iterative procedure. In general, this

procedure can be followed exactly when dealing with the inclusion of nonlinear

devices into the MNA framework. Specifically, the effect of the nonlinear

devices can be explicitly seen in the variable b below:

~Gx þ ~Cx� ¼ b ð8:20Þ
+

V1

CVS −

FIGURE 8.44

Circuit example including nonlinear device model.

504 CHAPTER 8 Logic and circuit simulation
where

~G ¼ G AT
l

�Al 0

� �
; ~C ¼ Ĉ 0

0 L

� �
; x ¼ vn

il

� �

b ¼ �AT
i Is þ Inl
0

� �
; G ¼ AT

gR
�1Ag; and Ĉ ¼ AT

c CAc

The vector Inl captures the effect of nonlinear loads and depends on the node

voltages as Inl ¼ f(vn). Here, f is a function that varies depending on the load

characteristics and in general, can be a nonlinear function. In addition, it is
important to note that the values of the capacitance matrix C will change as

the simulation progresses. This can clearly be seen by revisiting the piece-

wise-linear approximations which were used for the junction capacitances in

Equation (8.16). As the node voltages vn change with time, we will see a

corresponding change in the capacitance values reflected by changes to the

matrices seen in Equation (8.20).

The result is a voltage-dependent system of linear equations that must be

solved at each time step of the simulation process. At first glance, this would
numerically lend itself to the use of an iterative solver. We can, for example,

apply Equation (8.19) iteratively to solve for each x
k at the kth time step. This

is due to the fact any preprocessing or initial factorization would not directly

be of benefit from one time step to the next as the matrices change over time.

However, the matrix equations observed during the trapezoidal integration and

Newton’s method steps described above have a very special structure when

combining nonlinear devices with various interconnect topologies. Specifically,

the matrices can be grouped into those that remain constant with respect to
time, and those components that are time-dependent or voltage-dependent.

Based upon a nodal analysis scheme, it should be clear that these two sets

are not independent, that is, there exist branches or coupling between the

nodes, and they must be eventually solved together. However, the special nature

of the underlying matrix elements lends itself to the use of different numerical

techniques for efficient solution. Specifically, the linear portion is time-indepen-

dent and a direct factorization (e.g., LU or Cholesky) can be reused for each

time-step. The nonlinear, time-dependent portion will not benefit from this
preprocessing; however, a preconditioned iterative method can be employed

(see [Jain 2006] and [Zhu 2007], for details relating to this procedure).
8.9 CONCLUDING REMARKS

We have presented two classes of fundamental techniques, logic simulation and

circuit simulation, which are useful for predicting the behavior of a design

before its physical implementation is built. During this design stage, designers

8.9 Concluding remarks 505
heavily rely on simulation to verify and debug their designs. Oftentimes, simula-

tion is combined with functional verification, which is a major topic in Chapter 9,
to further ensure the correctness of their designs. Commercial simulation tools

have been available for modern system-on-chip (SOC) designs modeled at the

behavioral level down to the lowest transistor level. This chapter covered the

fundamental logic simulation, hardware-accelerated logic simulation, and circuit

simulation techniques at the gate level and the transistor level.

For logic simulation, event-driven simulation that can take timing (delay)

models and sequential circuit behavior into consideration is the technique most

widely used in commercially available logic simulators. Examples of logic simu-
lators include Verilog-XL, NC-Verilog (both from Cadence [Cadence 2008]),

ModelSim (from Mentor Graphics [Mentor 2008]), and VCS (from Synopsys

[Synopsys 2008]). These logic simulators can accept gate-level models as well

as RTL and behavioral descriptions of the circuits written in hardware descrip-

tion languages, such as Verilog and VHDL, both of which are IEEE standards.

HDLs are beyond the scope of this book but are important topics for digital

designers to learn. More detailed descriptions of both languages can be found

in books or Web sites, such as [Palnitkar 1996], http://www.verilog.com, and
http://www.verilog.net.

Although flexible and low-cost, software simulators are becoming too slow

for modern SOC designs and hardware/software co-simulation applications.

Hardware-accelerated logic simulation techniques have been developed to

bridge the growing gap. Emulators are differentiated by their interconnection

architectures and the types and use models of the reconfigurable computing

units. Each combination has its advantages and disadvantages and finds its appli-

cations in different verification environments. A few popular commercially avail-
able emulators include Incisive Acceleration and Emulation (from Cadence

[Cadence 2008]), ZeBu (from EVE [EVE 2008]), and Veloce (from Mentor

Graphics [Mentor 2008]).

Circuit simulation (commonly referred to as SPICE simulation [Nagel 1975])

at the transistor level, although too slow for practical designs, is important

when the circuit’s dynamic behavior or accurate timing information is desired.

In general, circuit simulation is used to characterize the cell library, memory

models, and the timing critical portion of the circuit. A few popular circuit simu-
lators include Hspice (from Synopsys [Synopsys 2008]) and Spectre (from

Cadence [Cadence 2008]).

As the design complexity continues growing and has reached two billion

transistors [Stackhouse 2008], verifying the correctness of these designs has

become a much more challenging task than ever. As a result, it is becoming

imperative that advanced techniques for both logic simulation and circuit simu-

lation, either hardware-accelerated or pure software-based, be developed to

address the high-performance and high-capacity issues.

506 CHAPTER 8 Logic and circuit simulation
8.10 EXERCISES
FIG

The

FIG

The
8.1. (3-Valued Logic Simulation) By use of 3-valued logic simulation,

what is the output value of circuit M in Figure 8.45 if the input pattern

is ABCD ¼ 1u0u? Show that there is information loss in this example.

8.2. (Timing Models) For circuit M shown in Figure 8.45, complete the

timing diagram in Figure 8.46 with respect to each timing model given

below:
URE 8.

exampl

A

B

C

D

E

F

G

H

K

URE 8.

timing d
a. Nominal delay—Two-input gate, 10 ns; three-input gate, 12 ns;

inverter, 8 ns.
Inertial delay—All gates, 4 ns.
A E

F

G

H

K

B

C

D

45

e circuit M.

0 5

7

2

2

10 15 20 25 30 35 40 45

46

iagram.

8.10 Exercises 507
b. Rise delay—Two-input gate, 8 ns; three-input gate, 10 ns; inverter,
6 ns.

Fall delay—Two-input gate, 6 ns; three-input gate, 8 ns; inverter, 4 ns.

c. Minimum delay—Two-input gate, 8 ns; three-input gate, 10 ns;

inverter, 6 ns.

Maximum delay—Two-input gate, 10 ns; three-input gate, 12 ns;
inverter, 8 ns.
8.3. (Compiled-Code Simulation) One approach to speed up compiled-

code simulation is to use the bit-wise logic operations. If two-valued

logic is used and the host computer’s data word width is 32-bit, one

can store in a single word 32 copies of a signal (with respect to differ-

ent input vectors) and process them at the same time. In this problem,

we consider a logic simulator with four logic symbols (0, 1, u, and Z)

that are encoded as follows: v0 ¼ (00), v1 ¼ (11), vu ¼ (01), and vZ ¼
(10). To simulate w input vectors in parallel, two words (X1 and X2)

are allocated for each signal X to store the first and second bits of

the logic symbol codes, respectively.
a. Derive the gate evaluation procedures for AND, OR, and NOT

operations.

b. Derive the evaluation procedures for 2-to-1 multiplexer, XOR, and

tristate buffer.
8.4. (Event-Driven Simulation) Redo Problem 8.2a, using the nominal-

delay event-driven simulation technique. Show the event and activity

lists of each time stamp.

8.5. (Interconnection Architectures) It is known that the full-crossbar
chip complexity (Figure 8.20a) grows quadratically with the total

pin count. How about the partial-crossbar solution (Figure 8.20b)?

8.6. (Numerical Integration) Show that the degree of precision for Sim-

pon’s rule is 3. Begin first by considering the integration formula:
I3ð f Þ ¼
X2
j¼0

a j f ðxjÞ

Assuming a uniform time step h, show that the formula is exact for

the functions f(x) ¼ 1, x, x2 across the points x0 ¼ �h, x1 ¼ 0, and

x2 ¼ h (this should involve solving a system of three equations for

the coefficients aj). Finally, try these coefficients for higher order

polynomials, i.e., f(x) ¼ x
3, x4 to determine the error scaling as a func-

tion of h.
8.7. (Numerical Integration) With the formula for I3 derived above,

write a simple script to evaluate

508 CHAPTER 8 Logic and circuit simulation
I3 ð f Þ ¼
Z5
�5

5x4 þ 3x2 � 1

Use three different values of the time step h and compare with the

expected error scaling determined in Exercise 8.6.
FIG

RLC

FIG

Par
8.8. (Modified Nodal Analysis) Formulate the MNA equation representa-

tion for the circuit shown in Figure 8.47. The equations should be in

terms of the parameters (vs, R1, R2, C1, C2) and the unknown voltages

and currents (v1, v2, i1, i2, i3, i4).

8.9. (Modified Nodal Analysis) Given resistance values: R1 ¼ R2 ¼ 10 O
and capacitance values: C1 ¼ C2 ¼ 10�10 F, use the MNA equations

constructed in Exercise 8.8 to plot v2(t) for a step input from the

source vs.

8.10. (Wire Capacitance) Assuming the following dimensions for the two

parallel wires shown in Figure 8.48: h ¼ 1 mm, w/h ¼ 2, l ¼ 100 mm,

d ¼ 2 mm, and t ¼ 0.75 mm, compute both the total and coupling

capacitances of the wires. Assume that the field terminates as shown
R1

v1

vs

v2
+

-
R2

C1 C2

i1 i2

i4i3

URE 8.47

circuit example.

w

h

l

w

d

h

t

l

URE 8.48

allel wires.

Acknowledgments 509
in Figure 8.48. Now, assume that the ratio w/h is doubled. How does
this affect the capacitances? Finally, assume instead that the distance

between the wires is doubled. How does this affect the capacitances?

8.11. (Newton’s Method) Write a simple program that implements the

Newton’s method seen in Equation (8.19). Follow the pseudocode

shown in Algorithm 8.1.
Algorithm 8.1 Newton’s Method

Newton ðf ; x0; EÞ
1. n ¼ 0;
2. xnþ1 ¼ xn � fðxnÞ

f 0ðxnÞ ;
3. if fðxnþ1Þ � E then
4. return x� ¼ xnþ1;
5. else n ¼ nþ 1;goto step 2;
8.12. (Newton’s Method) Use the routine from Exercise 8.11 to solve the

nonlinear equation (8.18) for the three consecutive time points

assuming:

h ¼ 10�11 s;
C ¼ 1 F;
R ¼ 1 O;
IS ¼ 1A;
n ¼ 1;
VS ¼ 2V;
V1 ¼ 1V;
T ¼ 300K:
Provide the number of iterations and tolerance assumed.
ACKNOWLEDGMENTS

We thank Dr. Jitesh Jain of Purdue University for his invaluable contribution to the development of

Sections 8.5 to 8.8. We also thank Dr. Tsung-Hao Chen of Mentor Graphics and Professor Yu-Min Lee

of National Chiao Tung University, Jensen Tsai of SpringSoft, Professor Ren-Song Tsay of National

Tsing Hua University, Dr. Ming-Yang Wang of Fortelink, and Professor Duncan M. (Hank) Walker of

Texas A&M University for reviewing this chapter.

510 CHAPTER 8 Logic and circuit simulation
REFERENCES

R8.0 Books

[Atkinson 1989] K. Atkinson, An Introduction to Numerical Analysis, John Wiley & Sons, New

York, 1989.

[Cheng 1999] C.-K. Cheng, J. Lillis, S. Lin, and N. Chang, Interconnect Analysis and Synthesis, John

Wiley & Sons, New York, 1999.

[Dunga 2007] M. V. Dunga, W. M. Yang, X. J. Xi, J. He, W. Liu, M. Cao, X. Jin, J. J. Ou, M. Chan, A. M.

Niknejad, and C. Hu, BSIM4.6.1 MOSFET Model—User’s Manual, University of California,

Berkeley, CA, 2007.

[IEEE 1076–2002] IEEE Standard, VHDL Language Reference Manual (IEEE Std. 1076-2002), IEEE

Press, New York, 2002.

[IEEE 1463-2001] IEEE Standard Description Language Based on the Verilog Hardware Descrip-

tion Language (IEEE Std. 1463-2001), IEEE Press, New York, 2001.

[Keiser 1979] B. E. Keiser, Principles of Electromagnetic Compatibility, Artech House, Dedham,

MA, 1979.

[Miczo 2003] A. Miczo, Digital Logic Testing and Simulation, 2nd ed., John Wiley & Sons,

Hoboken, New Jersey, 2003.

[Palnitkar 1996] S. Palnitkar, Verilog HDL: A Guide to Digital Design and Synthesis, Sunsoft,

Mountain View, CA, 1996.

[Rabaey 1996] J. M. Rabaey, Digital Integrated Circuits: A Design Perspective, Prentice-Hall, Upper

Saddle River, NJ, 1996.

[Rabaey 2003] J. M. Rabaey, A. Chandrakasan, and B. Nikoli‘c, Digital Integrated Circuits: A Design

Perspective, 2nd ed., Prentice-Hall, Upper Saddle River, NJ, 2003.

[Thomas 2002] D. E. Thomas and P. R. Moorby, The Verilog Hardware Description Language,

Springer Science, New York, 2002.

[Tsividis 1987] Y. Tsividis, Operation and Modeling of the MOS Transistor, McGraw-Hill, New York,

1987.

[Wile 2005] B. Wile, J. C. Goss, and W. Roesner, Comprehensive Functional Verification, Morgan

Kaufmann, San Francisco, 2005.

R8.1 Introduction

[SystemC 2008] SystemC, http://www.systemc.org, 2008.

[SystemVerilog 2008] SystemVerilog, http://systemverilog.org, 2008.
R8.2 Logic Simulation Models

[Breuer 1972] M. A. Breuer, A note on three valued logic simulation, IEEE Trans. on Computers,

C-21(4), pp. 399–402, April 1972.
R8.3 Logic Simulation Techniques

[Ulrich 1969] E. G. Ulrich, Exclusive simulation of activity in digital networks, Communications of

the ACM, 12(2), pp. 102–110, February 1969.

[Wang 1987] L.-T. Wang, N. E. Hoover, E. H. Porter, and J. J. Zasio, SSIM: A software levelized com-

piled-code simulator, in Proc. ACM/IEEE Design Automatic Conf., pp. 2–8, June 1987.

References 511
R8.4 Hardware-Accelerated Logic Simulation

[Babb 1997] J. Babb, R. Tessier, M. Dahl, S. Z. Hanono, D. M. Hoki, and A. Agarwal, Logic emulation

with virtual wires, IEEE Trans. on Computer-Aided Design, 16(6), pp. 609–626, June 1997.

[Beausoleil 1996] W. F. Beausoleil, T.-K. Ng, and H. R. Palmer, Multiprocessor for Hardware Emula-

tion, U.S. Patent No. 5,551,013. August 27, 1996.

[Dai 1995] W.-J. Dai, L. Galbiati, III, J. Varghese, and D. V. BuiS. P. Sample, Method of Removing

Gated Clocks from the Clock Nets of a Netlist for Timing Sensitive Implementation of the Netlist

in a Hardware Emulation System, U.S. Patent No. 5,452,239, September 19, 1995.

[Li 1998] J. Li and C.-K. Cheng, Routability improvement using dynamic interconnect architecture,

IEEE Trans. on Very Large Scale Integration Systems, 6(3), pp. 498–501, September 1998.

[Lin 2002] S. S.-P. Lin, and P.-S. Tseng, Converification System and Method, U.S. Patent No.

6,389,379, May 14, 2002.

[Sample 1999] S. P. Sample, M. Bershteyn, M. R. Butts, and J. R. Bauer, Emulation System with Time-

Multiplexed Interconnect, U.S. Patent No. 5,960,191, September 28, 1999.

[Selvidge 1997] C. W. Selvidge and M. L. Dahl, Transition Analysis and Circuit Resynthesis Method

and Device for Digital Circuit Modeling, U.S. Patent No. 5,649,176, July 15, 1997.

[Tseng 2001] P.-S. Tseng, S. S.-P. Lin, and Q. K.-H. Shen, Timing-Insensitive Glitch-Free Logic System

and Method, U.S. Patent No. 6,321,366, November 20, 2001.

[Varghese 1993] J. Varghese, M. Butts, and J. Batcheller, An efficient logic emulation system, IEEE

Trans. on Very Large Scale Integration Systems, 1(2), pp. 171–174, June 1993.

[Wang 2006] M. Y. Wang, S. Shei, and V. Chiu, Clock Distribution in a Circuit Emulator, U.S. Patent

No. 7,117,143, October 3, 2006.

R8.5 Circuit Simulation Models

[Chen 2003] T.-H. Chen, C. Luk, and C. C.-P. Chen, INDUCTWISE: Inductance-wise interconnect

simulator and extractor, IEEE Trans. on Computer-Aided Design, 22(7), pp. 884–894, July 2003.

[Ho 1975] C. W. Ho, A. E. Ruehli, and P. A. Brennan, The modified nodal approach to network

analysis, IEEE Trans. on Circuits and Systems, 22(6), pp. 504–509, June 1975.

R8.7 Simulation of VLSI Interconnects

[Chen 2003] T.-H. Chen, C. Luk, and C. C.-P. Chen, INDUCTWISE: Inductance-wise interconnect

simulator and extractor, IEEE Trans. on Computer-Aided Design, 22(7), pp. 884–894, July 2003.

[Hoer 1965] C. Hoer and C. Love, Exact inductance equations for rectangular conductors with appli-

cations to more complicated geometries, J. of Research of the National Bureau of Standards,

69C, pp. 127–137, April-June 1965.

[Jain 2004] J. Jain, C.-K. Koh, and V. Balakrishnan, Fast simulation of VLSI interconnects, in Proc.

IEEE/ACM Int. Conf. on Computer-Aided Design, pp. 93–98, November 2004.

[Kamon 1994] M. Kamon, M. J. Tsuk, and J. K. White, FASTHENRY: A multipole-accelerated 3-D

inductance extraction program, IEEE Trans. on Microwave Theory and Techniques, 42,

pp. 1750–1758, September 1994.

[Nabors 1991] K. Nabors and J. White, Fastcap: A multipole accelerated 3-D capacitance extraction

program, IEEE Trans. on Computer-Aided Design, 10(11), pp. 1447–1459, November 1991.

[Wu 1992] R.-B. Wu, C.-N. Kuo, and K. K. Chang, Inductance and resistance computations for three-

dimensional multiconductor interconnect structures, IEEE Trans. on Microwave Theory and

Techniques, 40, pp. 263–270, February 1992.

[Yuan 1982] C. P. Yuan and T. N. Trick, A simple formula for the estimation of the capacitance of

two-dimensional interconnects in VLSI circuits, IEEE Electronic Device Letters, EDL-3(12),

pp. 391–393, December 1982.

512 CHAPTER 8 Logic and circuit simulation
[Zhong 2003] G. Zhong and C.-K. Koh, Exact closed form formula for partial mutual inductances

of on-chip interconnects, IEEE Trans. on Circuits and Systems I: Fundamental Theory and

Applications, 50(10), pp. 1349–1353, October 2003.
R8.8 Simulation of Nonlinear Devices

[Jain 2006] J. Jain, S. Cauley, C.-K. Koh, and V. Balakrishnan, SASIMI: Sparsity-aware simulation of

interconnect-dominated circuits with nonlinear devices, in Proc. IEEE/ACM Asia and South

Pacific Design Automation Conf., pp. 422–427, January 2006.

[Zhu 2007] Z. Zhu, H. Peng, K. Rouz, M. Borah, C. K. Cheng, and E. S. Kuh, Two-stage Newton-

Raphson method for transistor level simulation, IEEE Trans. on Computer-Aided Design,

26(5), pp. 881–895, May 2007.
R8.9 Concluding Remarks

[Cadence 2008] Cadence Design Systems, http://www.cadence.com, 2008.

[EVE 2008] EVE, http://eve-team.com, 2008.

[Mentor 2008] Mentor Graphics, http://www.mentor.com, 2008.

[Nagel 1975] L. W. Nagel, SPICE2: A computer program to simulate semiconductor circuits, Tech-

nical Report ERL-M520, University of California, Berkeley, May 1975.

[Stackhouse 2008] B. Stackhouse, A 65nm 2-billion-transistor quad-core itanium processor, in Proc.

IEEE International Solid-State Circuits Conference, pp. 592–598, February 2008.

[Synopsys 2008] Synopsys, http://www.synopsys.com, 2008.

CHAPTER
9
Functional verification
Hung-Pin (Charles) Wen
National Chiao-Tung University, Taiwan

Li-C. Wang
University of California, Santa Barbara, California

Kwang-Ting (Tim) Cheng
University of California, Santa Barbara, California
IS CHAPTER
ABOUT TH
513
In a typical integrated circuit (IC) design flow, functional verification ensures

that the implementation conforms to the specification. Because of the rapid

growth of both design size and complexity, functional verification has become

one of the key bottlenecks in the design process. For example, it has been
reported in [Bailey 2002] that the functional verification process consumes

more than 70% of the design effort, and this number might continue to increase.

Functional verification is critical, because an undetected bug in a design may

result in significant financial loss for a company. The Pentium recall for the

famous FDIV bug, for example, cost Intel more than $450 million in 1995.

Therefore, effective verification strategies and techniques have become indis-

pensable to the design flow to ensure high verification quality.

This chapter starts with an overview of the basic concepts of functional ver-
ification and its general flow. Current challenges are explained to help readers

to understand the complexity of functional verification. Meanwhile, modern

designs usually follow the principle of hierarchism by decomposing a complex

system into multiple components. Each decomposition boundary is referred to

as a level. A brief discussion of verification at each of these levels is introduced.

To assess the verification quality, coverage metrics are developed for measur-

ing the extent of an intended verification task. Coverage metrics can be divided

into two categories: structural and functional. Structural coverage metrics calcu-
late a coverage number on the basis of specific structural representations, such

as lines and branches, in the hardware description model and are the most pop-

ular measures. Functional metrics, on the other hand, focus on the semantics or

the design intent of the hardware description model. In this chapter, various

structural coverage metrics will be reviewed in detail.

514 CHAPTER 9 Functional verification
Simulation-based verification is the most widely used approach in func-

tional verification. Simulation is based on testbenches. In a typical verification
task, testbenches accompanied with a design description model are developed

and include input stimuli and expected output responses by the design. The

efficiency of the simulation determines the efficiency of the verification, and,

hence, having compact and high-quality stimuli is critical to this approach. An

alternative to simulation-based verification is formal verification. Formal veri-

fication relies on mathematical reasoning techniques to verify a design. There

can be two types of formal verification methods, one to prove specific proper-

ties of a design and the other to prove that two models of a design are equiva-
lent. The former is called property checking, and the later is often referred to

as equivalence checking. At the end of this chapter, some of these formal verifi-

cation techniques will be introduced as supplemental materials.
9.1 INTRODUCTION

Verification processes happen everywhere in our daily life. One general defini-

tion of verification given in [ANSI/ASQC 1978] is “the act of reviewing, inspect-

ing, testing, checking, auditing, or otherwise establishing and documenting

whether or not items, processes, services or documents conform to specified

requirements.” Within the context of design automation of IC design, shown

in Figure 9.1, functional verification is the step to ensure that the specifications
algorithmic modeling
& simulation

customer
requirements

system
model

RTL modeling
& simulation

RTL

RTL synthesis
& simulation

gate-level simulation
& place and route

gate-level netlist

GDSII

IGURE 9.1
F
Typical design flow overview.

9.2 Verification hierarchy 515
and/or the implementations of the design at various abstraction levels are in

accord with the design intent.
In a typical design flow, representations for a design at different abstraction

levels often contain thousands of lines or more of Hardware Description
Language (HDL) code. These representations are error-prone because of the

high complexity of the design. Verification plays an important role in identifying

various kinds of problems that may have occurred at different design stages. For

many medium-scale to large-scale processors, application-specific integrated
circuits (ASICs), or system-on-chips (SOCs), functional verification can con-

sume more than 70% of the total labor effort in the design process [Piziali
2006]. The difficulty inherent in functional verification is a result of the following

three issues:
1. Ambiguous specifications: Customer requirements are often written
colloquially into the specification. It may be difficult to precisely specify

the requirements with a natural language such as English. Moreover, a

specification is often described at the system level. When verifying a unit

or block inside a system, a clear specification for the unit or the block

usually is not available.

2. Complexity explosion: In general, the complexity of a Boolean circuit

can grow exponentially in terms of both the number of inputs and the

number of internal states. Exhaustive simulation (of all input value combi-
nations and/or state combinations) is simply infeasible for any nontrivial

design.

3. Quality concerns: Ensuring highest-quality verification with limited

engineering resources and within limited time is the challenge to every

verification task. To effectively use resources and time, one needs cover-

age metrics to guide the spending of verification effort. Although various

coverage metrics exist to measure verification coverage, none of these

metrics have been shown to be the golden metric that can reliably and
accurately reflect the verification quality. As a result, signing off a design

with respect to functional verification can become a managerial decision

that heavily depends on one’s experience and is often influenced by time-

to-market pressure as well.
9.2 VERIFICATION HIERARCHY

Modern IC designs typically follow a top-down implementation flow in which

a system is hierarchically partitioned into components. Each partitioning bound-

ary defines the level of the design components. Within the hierarchy, verifica-

tion tasks need to be performed before individual components are assembled.

The V diagram in Figure 9.2 illustrates the design, verification, and integration

start

end

Architectural Modeling

Design Specification

Functional Verification
Plan

Functional Verification
Environment

Design Under Verification

Analysis/Coverage

Match w/
Expected Results

Yes

No

- DUV created by logic design
- Simulated by designers and
 verification engineers

1
2

3

4

FIGURE 9.3

Generic design verification flow.

system/board level

chip level

unit/core level

designer

level

R
efine & Partition

Ve
rif

y
&

In
te

gr
at

e

FIGURE 9.2

V diagram of design, verification, and integration.

516 CHAPTER 9 Functional verification
flow starting from the system/board level, through the chip and core/unit

levels, to the designer level.

A generic verification flow [Palnitkar 2003a] for each level consists of several

steps, as shown in Figure 9.3. In Step 1, architects need to prepare a design

specification for the best architecture on the basis of analysis of simulation

9.2 Verification hierarchy 517
result. In Step 2, a functional verification plan is created to define the basic pa-

rameters that are used later in the functional verification environment. Test vec-
tors and testbenches are either generated manually or automatically by tools

during Step 3. A software simulator applies these test vectors and testbenches

to the design under verification (DUV) and collects the related information

after simulation. In Step 4, the output data are analyzed and checked against

the expected results to calculate verification coverage. If the desired coverage

goal is not achieved, Step 3 is repeated to generate more test vectors to improve

the coverage. After the coverage goal is met, optional steps of hardware-acceler-

ated simulation, emulation, and assertion-based verification could be applied to
further improve verification quality and to reduce the risk of needing a future

re-spin.
9.2.1 Designer-level verification
In the top-down implementation flow shown in Figure 9.2, the designer level is

the lowest level that defines the smallest of the RTL modules such as an arbiter

or a first-in first-out (FIFO) that one designer can be in charge of in a project.
Designer-level blocks are usually verified individually to ensure that the basic

functionalities of the blocks understood by the designer from the system speci-

fication are correctly implemented. As the tasks involved in verifying a designer-

level block do not require interaction with other blocks, the designer is given

full control of the block, and thus a high standard of verification is expected

at this level.

During the early phase of a design project, the functionality of a block would

not be completely fixed and likely will be modified frequently. For example,
part of a block’s functionality may need to move across the interface to other

blocks for better unit/core/chip optimization. It is, therefore, not uncommon

to repeat the designer-level verification process multiple times.

A variety of verification techniques are available at this level. Testbench

development is relatively easy because the block inputs and outputs are treated

as primary inputs and outputs at this stage. The designers often explore most of

or even the entire input space of the target block by simulation. Formal meth-

ods such as property checking can also be applied relatively easily at this level
because of the small design size. It is important to note that, for designer-level

verification, the main challenge is not in verifying the block itself as an indepen-

dent design, but in verifying the block in the context of the environment in

which it will be placed. For example, a property may not be verified as always

true if the block operates independently. However, under specific constraints

imposed by the environment surrounding the block, the property could become

always true. Establishing proper environmental constraints for designer-level

verification is, therefore, an important (and usually not trivial) task.

518 CHAPTER 9 Functional verification
9.2.2 Unit-level verification
A complex design is usually divided into several logical components that are
referred to as units. The units intercommunicate through buses following pre-

specified protocols. Figure 9.4 shows an AMBA bus-based SOC design. Memory,

UART, Bridge, and Arbiter are among the units created from many different

designer-level components. In this example, the communications between units

go through two PCI buses. [Scafidi 2004] reported that even when the full-chip

model of Intel’s Itanium-2 processor was close to the tape-out quality, unit-level

verification still uncovered additional bugs.

The functionality at the unit level is specified more clearly, and usually the
specification is more stable than that at the designer level. Each unit usually

has a precise specification where its physical and timing characteristics will

abide by the requirements of the bus protocol. Each unit implements a set of

specified operations. Therefore, the goal of unit-level verification is to guarantee

that each operation performed by the unit conforms to the desired functionality

and satisfies the bus interface’s communication constraints.

Because of the high accessibility of units through buses, high-quality verifica-

tion that guarantees each unit correctly meets its formal specification is usually
achievable. In an ideal situation, once the unit-level verification is completed,

bugs residing within these units can be excluded from the list of candidates.

When performing verification at the next level, only those bugs originated from

the communication and physical interfaces need to be considered.
9.2.3 Core-level verification
In the example of Figure 9.4, units such as the ARM processor core, the DMA
core, and the third-party IPs are initially designed for general purpose use and

are equipped with more generalized functionalities. They are incorporated into
ARM
Processor

Core

On-chip
SRAM

DMA
Core

Arbiter

AHB/APB
Bridge

UART Timer GPIO
3rd Party

IP

AHB/ASP

APB

FIGURE 9.4

AMBA bus-based SOC.

9.2 Verification hierarchy 519
an SOC design to avoid the need for developing dedicated logic, which often

requires only a subset of the original functionalities. Such reusable components
are referred to as cores and can be either acquired from other companies or

developed internally in a company. In modern SOC designs, a core is often used

multiple times within a system or across different systems. For core providers, it

is necessary to thoroughly verify the functionality of the core before it is deliv-

ered to the core integrators.

Cores are often designed as a stand-alone component in the first place.

In addition to core-specific functionalities, standardized bus protocols and/or

physical interface standards are then incorporated to offer core reusability.
The corresponding verification components used to stimulate and monitor

these standard buses or interfaces can, therefore, be reused and shared among

cores by use of the same bus protocols or physical interfaces.

Even if a core has its own stand-alone specification, this specification can

change because of bug fixing or functionality enhancement, either of which

may alter the original functionality. Therefore, it is necessary to re-ensure that

operations defined in a previous version of the core will still work correctly

in a subsequent version. This requirement is called backward compatibility.
To meet this requirement, a regression test suite is commonly used. Such a

test suite is developed by collecting interesting and useful tests from verification

conducted on previous versions of the design. A new version must pass these

tests to ensure backward compatibility. Note that if a bug exists in old versions

of the design, we should not expect regression tests to capture this bug in the

new version even if a fix to the bug has been inserted. For that purpose, new

tests are required to verify the correctness of the inserted fix.
9.2.4 Chip-level verification
A chip-level design consists of multiple units/cores that have complete RTL and

bus functional models with well-defined I/O boundaries. At this level, the speci-

fication usually does not change significantly from its initial architecture. Hence,

the verification requirement is usually well defined.

The aim of chip-level verification is to ensure that the components are prop-

erly connected through the interfaces and the entire design abides by the speci-
fication. For a regular interface structure such as a bus protocol, only a

restricted set of sequences of control and data signals, typically called transac-
tions, are permitted. On the basis of the specified interactions between the

units, transaction-based tests can be developed to verify the interfaces.

A transaction-based test usually consists of one top-level RTL file that

includes all units and bus interfaces and one testbench file that produces trans-

actions to propagate events from one unit to another through the bus interface.

Responses at the primary I/Os and/or memory contents are monitored to check
the overall behavior of the system.

520 CHAPTER 9 Functional verification
9.2.5 System-/board-level verification
System-level integration is a complex task that requires many tools for design
creation, simulation, and analysis. In [Bailey 2007], system-level verification is

defined as “the utilization of appropriate abstractions to increase comprehen-

sion about a system, and to enhance the probability of a successful implementa-

tion of functionality in a cost-effective manner.”

Verification at this level involves checking the integration through the inter-

connections between different chips on the board. The functionality at the

lower levels is assumed to have been fully verified. Often, the application soft-

ware is applied at this stage to verify the entire system.
Verification engineers frequently use programmable logic devices, such as

field programmable gate arrays (FPGAs), to emulate the design. With the

design implemented in programmable devices, the testbenches can be executed

directly on such emulated implementations, which is significantly faster than

executing the testbenches with a software simulator.
9.3 MEASURING VERIFICATION QUALITY

“When can one claim that the verification is complete?” This is a perpetual and still

unanswerable question. Even if a verification team performs all the scheduled

tasks, and even if no more new bugs can be discovered over an extended verifica-

tion period, say a few weeks, there is no guarantee that additional simulation

would not discover a new bug. The total space to be verified is well beyond what

can be exhaustively simulated. Considering a logic block with 64-bit inputs, the

combinatorial possibilities for its input space reach 16� 1018 billion. If simulating
one instance takes one nanosecond, then simulating all of themwill take 5.07 cen-

turies. Obviously, some modeling, analysis, and optimization techniques need to

be used to avoid simulating all tests exhaustively. Various measures are developed

to guide the selection of tests for simulation. Thesemeasures are typically referred

to as coverage metrics. Rather than simulating all tests, the idea is to simulate

just enough tests to reach a desired coverage goal on the basis of the givenmetric.

The assumption is that achieving the coverage goal implies that a sufficient verifi-

cation quality has been accomplished.
In this section, we will first introduce the concept of random testing fol-

lowed by the coverage-driven verification paradigm to outline the concept of

coverage in verification. We will also introduce a classification of verification

metrics and common coverage metrics within each category.
9.3.1 Random testing
Random testing is the most intuitive verification approach. A test generation
program is used to generate random tests according to a set of test templates

9.3 Measuring verification quality 521
along with a seed. Multiple random instances of each test template are gener-

ated and applied to exercise a variety of scenarios for exploring various design
corners. A refinement of this approach, called constrained randomverification,
relies on a collection of additional constraints to guide the generation of tests.

Figure 9.5 illustrates the concept of the random testing approach.

Random test generation requires two types of inputs to constrain the test

generation process: (1) a template that serves as the skeleton of the test case,

which contains a set of unknown input fields, and (2) a set of arguments for

which the values can be set during the generation process. Instead of hand-

crafting tests directly, users specify these arguments for input fields within their
legal ranges. Multiple instances of physical test cases are then automatically gen-

erated from each template by specifying values in the input fields. Templates,

along with the changeable arguments, provide an abstract mechanism for hiding

the structural details from users while simultaneously satisfying all architectural

constraints.

Take microprocessor verification as an example. Its test template is an

assembly program with a set of predefined bias arguments. On the basis of these

parameters, one can create arguments to:
FIG

Flow
1. Select an instruction,

2. Select the next instruction on the basis of the current one,

3. Select an operand,
4. Use branch and jump,

5. Cause an overflow or underflow,

6. Interrupt to cause an exception.
However, all the preceding arguments must conform to the architectural con-
straints, such as, for instance, 32 registers (20 general-purpose, 12 special-pur-

pose), 24-bit addressing, and indirect addressing.
Create Coverage
Goals

Write Test Templates

Generate Random
Tests

Perturb Bias
Arguments or Write

Extra Templates

Run Tests & Collect
Coverage Metrics

URE 9.5

of random testing.

522 CHAPTER 9 Functional verification
One corresponding template may look like the following:

MUL < random R1-R4 >< random R4-R8 >< random R8-R20 >

or

< Pr ADDð Þ ¼ 90% & Pr SUBð Þ ¼ 10% > R3 R5 < random R4-R7 >

In the first template, the instruction is designated to be MUL (multiplication),

and its three operands can be selected from different registers. In the second

example, the actual instruction is decided with a probability, where 90% is to

be an ADD (addition) and 10% is a SUB (subtraction) where the third operand
is randomly selected from registers R4 through R7.

Random testing is usually applied at the beginning of the verification process

for modern designs. Random tests are applied to randomly exercise the design

space that often can cover some nontrivial cases and some corner cases.

Advanced constrained random test generation uses architecture knowledge of

the design and past experience to better guide the test generation process. Both

templates and bias arguments help hide the detailed information from users

while still being able to generate legal tests that conform to the architectural
constraints of the design.
9.3.2 Coverage-driven verification
Storing information during simulation is necessary to identify those scenarios
that have been previously verified. Such a task is called functional coverage
analysis. The stored information facilitates the generation of new test cases.

Coverage-driven verification (CDV) represents such a method. It measures

the current verification progress [James 2003] and then guides the development

of new strategies for uncovering any missing features or scenarios.

CDV uses a single test stimulus to explore multiple scenarios automatically.

Inheriting the characteristics of random testing, CDV can also discover corner

cases that might occur beyond a user’s expectations. Coverage points such
as assertions are often placed in the environment to collect data for analysis.

After collecting and analyzing the data, the constraints for guiding test genera-

tion can be modified, either automatically or manually, to target the missing fea-

tures or scenarios before the next round of test generation is called. This

iterative test generation process is known as coverage-directed generation
(CDG). Figure 9.6 illustrates a typical coverage-driven verification design flow.

CDV [Benjamin 1999; Bergeron 2000; Verisity 2001; Gluska 2003; Palnitkar

2003b] is more effective than constrained random verification and thus achieves
verification closure faster. Figure 9.7 illustrates the effectiveness comparison of

these two approaches.

Coverage is created to identify the error-prone areas in which bugs may

reside. It originates from software testing, which provides a means of assessing

the thoroughness of software development. A general definition of coverage is a

constrained random
verification

coverage-driven
verification

Time

co
ve

ra
ge

closure %

FIGURE 9.7

Effectiveness comparison between coverage-driven verification and constrained random

verification approaches.

Generate Random
Tests

Analyze Simulation
Data

Run Tests &
Measure Coverage

Metrics

Coverage Results

Desired Coverage
Acheived ?

Modify Test
Generation
Constraints

End

Existing Templates
& Constraints

FIGURE 9.6

Coverage-driven verification design flow.

9.3 Measuring verification quality 523
measure of the extent to which the features and scenarios of the design under

verification are covered.
Coverage metrics can be classified into two categories—functional cover-

age and structural coverage—according to the verification intent. Functional

coverage checks the concordance of the semantic design intent with the

designer’s implementation, and it is measured by the number of features and

scenarios defined in the design specification that are exercised by the test set.

Structural coverage aims at measuring the degree of confidence for syntactic
correctness of the physical implementation that the test set achieves.

524 CHAPTER 9 Functional verification
9.3.3 Structural coverage metrics
Structural coverage measure is also referred to as code coverage metric,
because the objective is to evaluate whether various kinds of elements in the

HDL implementation are exercised by a given test set. Because code coverage

metric ties with test vectors and physical representation in the hardware descrip-

tion language, simulation engines can be easily modified to provide the coverage

information. Code coverage comes in many forms. The following describes a few

among the commonly used metrics.

9.3.3.1 Line coverage (a.k.a. statement coverage)

This metric takes the syntactical HDL implementation and counts the number of

lines exercised during the simulation run. The line coverage is defined as:

Line Coverage ¼#of exercised lines in HDL

Total#of lines in HDL
� 100%

Consider the following Verilog HDL code in Box 9.1:
BOX 9.1
1.

2.

3.

4.

5.

6.
always @(in or reset) begin

out ¼ in;

if (reset)

out ¼ 0;

en ¼ 1;

end
If the testbench exercises lines 1, 2, 3, 5, and 6, the line coverage would be

5/6 ¼ 83.3%. The line coverage is easy to comprehend, and the missed line

explicitly indicates the absence of signal activities. One obvious drawback of

line coverage is its lack of a clear connection between the number of exercised

lines and the correctness of design intent.

9.3.3.2 Toggle coverage

This metric checks whether signals in the design change their values during

simulation. It helps verify the quality of the test set and locate the unexercised

areas. Signals that fail to be initialized or to toggle by the test cases can be easily
identified. Box 9.2 is a sample toggle coverage report.
BOX 9.2

1. //net toggle coverage
2. //name Toggle 0!1 1!0

3. clk Yes

9.3 Measuring verification quality 525
4. reset No Yes No

5. start Yes

6. state[6:0] Yes

7. state[9:7] No No No

8. op[2:0] Yes

9. op[3] No No Yes

10. op[4] Yes

11. op[5] No No Yes

12. round[1:0] Yes

13. src1[63:0] Yes

14. src2[63:0] Yes
Although the toggle coverage is easy to compute, it has similar drawbacks to the

line coverage in that it does not provide any insight about the design intent from

the toggle events.

9.3.3.3 Branch/path coverage

This metric evaluates the control flow, such as if and case, in RTL statements.

It counts the number of branches at decision points that are exercised during

simulation. The branch coverage is defined as:

Branch Coverage ¼ #of exercised branches

Total#of possible branches
� 100%

The path coverage refines the branch coverage concept. It does not look at decision

points independently. Instead, it considers the whole sequence of decision points,

called a path, which could possibly be involved in one clock cycle. Note that

when ifor case statements are nested, the total number of possible paths may grow

exponentially. Therefore, reaching a 100% path coverage may become difficult.
Consider the preceding exemplar Verilog HDL code in the discussion of line

coverage. Assume the signal reset is always 1. Then, for the if statement, only

the reset ¼ 1 branch is exercised. Thus, the branch coverage is 1/2 ¼ 50%.

Now consider another example:
BOX 9.3

1. if (x !¼ y)

2. z ¼ 0;

3. w ¼ z;
In Figure 9.8, the RTL code is represented in two flowcharts — each of which is

from the line and branch coverage viewpoints, respectively. Assume the values

of signal x are never equal to those of y during simulation. Then line 2 will be

exercised, resulting in a final line coverage of 100%. But the branch (x ¼¼ y),

x != y

z = 0;

w = z;

x != y

z = 0;

w = z;

truefalse

(a) (b)

FIGURE 9.8

(a) Flowchart for line coverage. (b) Flowchart for branch coverage.

526 CHAPTER 9 Functional verification
represented by the dotted line in Figure 9.8b, is never exercised, resulting in a

branch coverage of only 50%.

Note that designers can implement the branch condition implicitly without

the use of if or case statements. For example, an if-else condition can be imple-
mented by a multiplexer that uses AND or AND-NOT operations. Hence, it may

not be always apparent to know exactly where to collect the branch statistics to

calculate a branch coverage. Inmany situations, a branch not explicitly implemen-

ted by use of if or case statements may not be accounted for in the coverage.

9.3.3.4 Expression coverage

The expression coverage enhances the line and branch coverages and provides

more information about concurrent signal assignments. It focuses the analysis

on the expression in the right-hand side of an assignment or the expression in

a condition statement.

Typically, one expression can be recursively decomposed into multiple sub-
expressions, which are either a single variable or two variables connected by a

logical operator. These sub-expressions are monitored individually during simu-

lation. An expression is fully covered if all of the sub-expressions are exercised.

Otherwise, the expression coverage for a line is calculated by deriving the ratio

of the total number of exercised cases to the total number of possible cases

among all of its sub-expressions.

Expression Coverage ¼ Sk
i¼1#of exercised cases for sub-expressions i

Sk
i¼1#of possible cases for sub-expressions i

� 100%

The expression coverage can be further classified into three categories: multiple
sub-condition, basic sub-condition, and focused expression coverages
[Dempster 2002].

Themultiple sub-condition coverage (MSC) is themost popular and straight-

forward one. It enumerates all possible combinations of the sub-expressions.

That is, if there are N sub-expressions, then 2N cases need to be covered to achieve

a 100% multiple sub-condition coverage. Consider the following expression in

Box 9.4:

9.3 Measuring verification quality 527
BOX 9.4

1. if ((A ¼¼ 0) || ((B ¼¼ 1) && (C ¼¼ 0)))
The participating sub-expressions are (A ¼¼ 0), (B ¼¼ 1), and (C ¼¼ 0). Thus,

the test vectors have to cover all 23 ¼ 8 possible cases to achieve a 100% multi-

ple sub-condition coverage.

The basic sub-condition coverage (BSC) checks both the true and false

states of each sub-expression during simulation. For the preceding example,

there are six possible cases: (A ¼¼ 0) is true, (A ¼¼ 0) is false, (B ¼¼ 1) is true,

(B ¼¼ 1) is false, (C ¼¼ 0) is true, and (C ¼¼ 0) is false. A sample report, after
the basic sub-condition coverage is derived, is listed in Box 9.5:
BOX 9.5
1. Count Sub-expression Outcome

2. 4 A ¼¼ 0 true

3. 6 A ¼¼ 0 false

4. 8 B ¼¼ 1 true

5. 2 B ¼¼ 1 false

6. 0 C ¼¼ 0 true

7. 10 C ¼¼ 0 false
In this report, because the condition “(C ¼¼ 0) is true” has never been exer-

cised during simulation, the basic sub-condition coverage is (5/6) ¼ 83.33%.

An expression is a function of the participating variables combined with

Boolean operators. If one variable in focus can control the result of the expres-

sion, there should be a pair of variable assignments for which the values at all
other variables, except the focused variable, are the same so that one assign-

ment evaluates the expression to be true and the other assignment to be false.

On the basis of this notion, the focused expression coverage (FEC) is devel-

oped, which helps identify the minimum set of tests required for verifying a

complicated branching expression. To achieve a 100% FEC for an expression,

for each participating variable in the expression, the test set must include a pair

of vectors that assign identical values to all other variables except the target var-

iable, and these two vectors evaluate the expression to different values.
To illustrate this notion, consider the expression in Box 9.6:
BOX 9.6

1. if (A && B)
The focused expression coverage criteria for variable A are [A, B] ¼ [0, 1] and

[A, B] ¼ [1, 1]. Note that in both cases, B has to be 1 for the effect of changing

528 CHAPTER 9 Functional verification
A to be observed. Similarly, the criteria for variable B are [A, B] ¼ [1, 0] and

[A, B] ¼ [1, 1]. Because [A, B] ¼ [1, 1] is a common assignment, it would
require only three assignments to fully validate expression (A && B).

Now consider the following example in Box 9.7:
BOX 9.7

1. if (((X ¼¼ 1) && (Y ¼¼ 0)) || (Z ¼¼ 0))
The three sub-expressions are expr_1 ¼ (X ¼¼ 1), expr_2 ¼ (Y ¼¼ 0), and
expr_3 ¼ (Z ¼¼ 0). To achieve a 100% FEC, the test set must include the follow-

ing tests:
n To target expr_1, [expr_1, expr_2, expr_3] ¼ [0, 1, 0] and [expr_1,

expr_2, expr_3] ¼ [1, 1, 0] are required. Note that expr_2 has to be 1
because it is ANDed with expr_2. Similarly, expr_3 has to be 0 because

it is ORed with the rest of the expression. The result is that (X, Y, Z) ¼
(0, 0, 1) and (1, 0, 1) must be covered.

n To target expr_2, [expr_1, expr_2, expr_3] ¼ [1, 0, 0] and [expr_1,

expr_2, expr_3] ¼ [1, 1, 0] are required. Therefore, (X, Y, Z) ¼ (1, 1, 1)

and (1, 0, 1) must be covered.

n To target expr_3, there are three different ways to ensure expr_3

controlling the overall expression: [expr_1, expr_2] ¼ [0, 0], [0, 1] and
[1, 0] respectively. Therefore, one of following three pairs, (X, Y, Z) ¼
{(0, 1, 1), (0, 1, 0)}, {(0, 0, 1), (0, 0, 0)}, and {(1, 1, 1), (1, 1, 0)} must be

included in the test set.
Combining these three requirements, the minimum test set for a 100% FEC

includes 4 tests which are either {(0, 0, 1), (1, 0, 1), (1, 1, 1), (0, 0, 0)} or {(0,

0, 1), (1, 0, 1), (1, 1, 1), (1, 1, 0)}.

Suppose a given test set contains only two tests, (X, Y, Z) ¼ (1, 0, 1) and

(X, Y, Z) ¼ (1, 0, 0), which evaluate [expr_1, expr_2, expr_3] to [1, 1, 0] and

[1, 1, 1], respectively. With respect to the focused expression notion, none of

the three sub-expressions is satisfied by these two tests and, thus, its focused

expression coverage is 0%.

9.3.3.5 Trigger coverage (a.k.a. event coverage)

This metric simply measures the number of exercised variables in the sensitivity

list. Consider the example given in Box 9.8:
BOX 9.8

1. always @(a or b or c)

2. begin

3. . . .

4. end

9.3 Measuring verification quality 529
Signals a, b, and c are monitored throughout the simulation. If only b and c

change values during simulation, then the trigger coverage would be 2/3 ¼
66.67%.

9.3.3.6 Finite state machine (FSM) coverage

The FSM coverage plays an important role in verifying the control unit of a design.

As its name implies, this metric is tied to the HDL structure of finite state

machines in a design and can be divided into three sub-classes. The state cover-
age reports the states that are visited and their frequencies during simulation. The

arc coverage records the state transitions that are traversed during simulation.

Even if 100% state and arc coverages are achieved, there is no guarantee that

the FSM is bug-free. Therefore, the third class of FSM coverage, called sequential
arc coverage (a.k.a. transition coverage), was designed. The metric measures
the coverage on the basis of an increased sequential depth of state visitation or arc

traversal. It also identifies the fundamental cyclic sequences in various lengths.

Figure 9.9 shows an FSM example and the arc sequences starting from s1 for cal-

culating the sequential arc coverage. For example, {s1!s2!s2} is a 2-arc transition

starting from s1 to be monitored for the sequential arc coverage.

In calculating the coverage, the conventional FSM coverage interprets the

RTL code syntactically. That is, it treats each state as a unique state and its state

transition to any other state as a unique arc. Although each state has a unique
state code, it is common that a group of states have identical or very similar

behavior. Therefore, interpreting the FSM syntactically may result in many

unnecessary checks. Consider the following partial RTL code of a 4-bit binary

counter with reset and load signals in Box 9.9:
BOX 9.9

1. always @(posedge clk) begin

2. if (reset) count ¼ 0;

3. if (load) count ¼ in;

4. else if (count ¼¼ 15)

5. count ¼ 0;

6. else

7. count ¼ count þ 1;

8. end
The implementation has 16 states. Because any state can go to anyother state includ-

ing itself (either through incrementing the count variable or through loading a new

state value in), each state has 16 outgoing arcs, resulting in a total of 256 arcs.

Figure 9.10a illustrates this conventional interpretation of the FSM. If the counter

is 8-bit, the total number of states will increase to 256 states with 65,526 arcs.

To represent the design as an FSM, it is better to interpret it semantically,

which defines the states on the basis of the unique actions taken during the

(a) (b)

count = 0

count = 1

count = 2

count = 15

count = 14

•••

count = 0

count = in
count =

count + 1

FIGURE 9.10

Illustration of (a) the conventional FSM coverage. (b) the semantic FSM coverage.

length of transition 1-arc

(a) (b)

2-arc

s1→s1 s1→s1→s1

s1→s2 s1→s1→s2

s1→s2→s1

s1→s2→s2

sequence of states
from s1

A

C D

B

FE

s0

s1

s2

FIGURE 9.9

(a) FSM example. (b) Transition sequences from s1.

530 CHAPTER 9 Functional verification
operation. For the preceding example, there are only three different actions:
count ¼ 0, count ¼ in, and count ¼ count þ 1. Figure 9.10b shows the FSM

of this interpretation, which consists of only three states and nine arcs. The

semantic FSM coverage, calculated on the basis of this representation, can

greatly reduce the number of tests required for achieving a high coverage.

9.3.3.7 More on structural coverage

Different metrics for structural coverage can be associated with different HDL

structures at different design stages. In general, during the behavioral-level

design stage, only line, branch, condition, path, trigger, and FSM coverage can

be measured. Toggle coverage is often applied to gate-level designs only. The

RTL-level design stage has the broadest possible coverage spectrum, and all
types of metrics can be applied.

Table 9.1 Typical Coverage Targets for Different Metrics

Metric Coverage Goal (%)

Line 100

Branch 100

Condition 60�100
Path >50

Trigger 100

Toggle 100

FSM (state and arc) 100

9.3 Measuring verification quality 531
Because these metrics are simple and straightforward, it is often desirable to

achieve a high structural coverage. The typical coverage goals for various

metrics are listed in Table 9.1 [Dempster 2002].

Even if the desired coverage for these metrics is achieved, it does not guaran-

tee a bug-free design. None of these metrics — or even were we to combine

them all — can be guaranteed to cover all the possible erroneous scenarios.
The structural coverage attempts to explore the design space from the

implementation perspective. Although the targets of the structural coverage

do not necessarily have direct correlation to functional bugs, achieving a high

structural coverage can likely increase the chance of bug discovery. A bug

may be revealed by a new test that was designed to detect a not-yet-covered

structural target.
9.3.4 Functional coverage metrics
Functional coverage metrics guide test generation and verification from a

semantic perspective. They supplement the deficiencies in the code coverage

and help improve verification quality. Some companies have stated that func-

tional coverage would be an important component of their next-generation ver-

ification methods [Drucker 2002].

Functional coverage metrics usually involve the interpretation of functional-

ity and the related measurements from the specification, and require domain
knowledge and instrumentation from the designer and/or verification engi-

neers. Therefore, an automated means of creating functional coverage models

does not exist. Typically, verification engineers need to manually develop a list

of target functionalities to be verified and to devise different strategies to exer-

cise each case in the list. A functional bug is claimed to be found if the design

does not behave as expected with respect to the functional specification after

exercising the related verification scenarios.

532 CHAPTER 9 Functional verification
The verification method based on the functional coverage includes four

major tasks:
FIG

Re-
1. Determining the coverage events to be verified

2. Preparing stimuli to exercise the target events

3. Collecting data from the design under verification
4. Analyzing results to quantify the coverage and identify missing events
Basically, it is the designer’s job to determine the functions to be covered. Veri-

fication engineers are required to create a verification plan on the basis of their

understanding of the design’s functional specification. In addition to enumerat-
ing the functions under verification, external resource expenditures, including

verification time, manpower, and related software and tool costs, should also

be carefully considered.

The verification plan forms the basis for developing the corresponding test

programs. Random testing techniques are often used at the transaction level

to facilitate test program development. For the AMBA APB part of the example

in Figure 9.4, transactions considered for functional coverage could be based on

either a simple operation, like a Read/Write to RAM, or a complicated opera-
tion, like a sequence of back-to-back Reads to the same address in RAM.
9.4 SIMULATION-BASED APPROACH

[Bergeron 2000] introduced a re-convergence model for the general design and

verification process. Figure 9.11 illustrates the application of this model to func-

tional verification. The designer’s effort is dedicated to transforming the func-
tional specification into an implementation in HDL, whereas the verification

effort ensures that the transformation is as intended without misinterpreting

any functionality.

The functional verification process is typically associated with the concept

of testbench, which refers to the environment used to apply the predetermined

sequence of input vectors to the design under verification (DUV) and to

observe the responses. Figure 9.12 illustrates a DUV surrounded by a testbench.

No external communication is required in this system. The testbench models
certain aspects of the design intent and is responsible for delivering the input

sequences to the DUV and for receiving the output responses for subsequent

analysis.
HDL Codingspecification

transformation

verification

URE 9.11

convergence model for the design and verification process.

Design Under
Verification (DUV)

Testbench

FIGURE 9.12

Generic structure of the design under verification and its testbench.

9.4 Simulation-based approach 533
9.4.1 Testbench and simulation environment
development
In general, the testbench is an HDL description used to create a closed system
on top of the design under verification. A testbench consists of three fundamen-

tal components: a stimuli driver, a monitor, and a checker.
The stimuli driver is responsible for providing stimuli to the DUV. The sti-

muli can be either predetermined or generated during simulation. The purpose

of the stimuli driver is not to mimic the behavior of the entire neighboring

blocks but to maintain the interface coherence to the DUV.

The monitor is used to observe signal at the inputs, outputs, and any inter-

nal wires of interest on the DUV. The values at the input and output signals must
be consistent with the interface protocol, and the monitor will issue an error if

any exception occurs.

A checker can be viewed as a special type of monitor for checking the func-

tionality of the design intent. Traditionally, designers create the functionality

checkers manually and use them to compare the responses from the design

with the specification. As designs become more complicated, the need to auto-

mate the development of such checkers increases.

On the basis of the coverage metrics, verification engineers try to prepare a
set of test cases to cover the target functional events. In developing such test

cases, experience plays a crucial role. Creating meaningful test cases for some

specific events often rely heavily on a designer’s knowledge and interpretation

of the specifications.

Consider a 16-bit one-hot encoding bus protocol. To achieve an optimal cov-

erage for all scenarios, the test cases would require each bit taking a turn to be 1

with others being 0. In deriving the test cases, it could be difficult to observe

the regularity solely from the structure of a design implementation. However,
having knowledge of the functionality of the protocol would help capture the

regularity and similarity for each bit that make test generation easier and more

efficient.

Enumerating deterministic test cases to cover all functions is tedious. An

alternative is to convert a design specification into an HDL model to automate

the checking. Such a testbench is called a self-checking testbench, because

checking instrumentation is no longer needed. The self-checking testbench

534 CHAPTER 9 Functional verification
paradigms can be divided into three types: checking with golden vectors,
checking against a reference model, and transaction-based checking.

Checking with golden vectors is the most widely used approach among

the three. Given coverage metrics, the verification engineers search for test

cases at inputs and derive the corresponding output responses manually or by

use of an auxiliary program. Such combinations of input and output vectors

are called the golden vectors. After the testbench applies the input vectors to

the DUV, the actual responses are captured and compared with the golden vec-

tors. A bug is found when a mismatch occurs between the golden and the actual

responses. Figure 9.13 shows the components of this method.
The checking-against-a-reference-model paradigm uses a reference

model that captures all functions in the specification. The reference model is

typically implemented at a more abstract level with either a high-level program-

ming or a verification language. All input vectors are applied to both the refer-

ence model and the DUV, and their responses are evaluated and compared. If

the comparison takes place at the end of each cycle, the reference model must

be cycle-accurate. The checker compares the responses from both the DUV

and the reference model, as illustrated in Figure 9.14. If the specifications
change, the reference model would need to be modified accordingly. This mod-

ification effort is usually much lower than the effort of reproducing all golden

vectors required for the checking-with-golden-vectors paradigm.

Transaction-based checking is applicable to the DUV that can correspond

to commands and data in a transaction. It uses a scoreboard to record the veri-

fied command and data. The checker is used to query the scoreboard. It issues

an error if the identifier cannot match any transaction in the scoreboard or if the
DUV

Checker

Golden
Vectors

Stimuli

FIGURE 9.13

Self-checking testbench with golden vectors.

DUV

Checker

Stimuli

Reference
Model

FIGURE 9.14

Self-checking testbench with a reference model.

DUV

Checker

Stimuli

Scoreboard

FIGURE 9.15

Transaction-based self-checking testbench.

DUV

Testbench
Checker and

Monitor

FIGURE 9.16

Black-box verification.

9.4 Simulation-based approach 535
command and data are not the expected values given by the scoreboard. This

concept is illustrated in Figure 9.15.
9.4.2 Methods of observation points
As we can see in the preceding, the monitor and checker in one testbench are

tightly tied to the concept of observation of signal changes in the DUV. Such

observation approaches will also determine the strategy used for generating
stimuli. The three common verification paradigms regarding the observation

points are the black-box, the white-box, and the grey-box methods.

The black-box method assumes the internal signals of the DUV are not

accessible during verification. Only the external input/output interfaces are

directly controllable and observable. The verification plan, including the test-

bench development, is developed based only on input/output functionality.

Figure 9.16 illustrates this method.

The major advantages of black-box verification are its simplicity and inde-
pendence from specific implementation information. Of all the verification

methods, it requires the least amount of knowledge about the DUV. Even if

the design’s HDL code is not ready, the verification process can be started,

and stimuli can be developed as long as a reliable specification for the DUV

becomes available. Whether the DUV is realized as an ASIC, an FPGA, a circuit

board, or a software program is irrelevant. The black-box method only aims at

verifying the functionality defined with respect to the design boundaries.

536 CHAPTER 9 Functional verification
On the other hand, without any structural information, black-box verifica-

tion lacks the observability and controllability internal to the DUV, which some-
times might be required to determine whether the DUV passes or fails a specific

test. It is challenging to precisely identify what and where a problem is in the

DUV with this method. It may not be feasible for the black-box verification to

check for DUV’s low-level features and structural changes. Black-box verifica-

tion may not be suitable for designer-level blocks, because many interesting cor-

ner cases may be observed only when implementation details are provided.

In short, the black-box method requires no implementation knowledge and

demands only design specification to complete the testbench development.
Being independent of the implementation makes the generated stimuli more

reusable for different realizations, but it also makes the stimuli generation pro-

cess more difficult because of the lack of observability and controllability inter-

nal to the DUV.

The white-box method, which is illustrated in Figure 9.17, represents

another extreme scenario. Here, the full observability and controllability inter-

nal to the DUV is assumed to be available. For controllability, verification engi-

neers can easily derive stimuli for the desired events by setting up the
required internal states and justifying these states backward toward the inputs.

Likewise, regarding observability, any changes in internal signals can be directly

observed. Therefore, the white-box method can pinpoint the problematic area

in the DUV once a mismatch from the expected value is observed.

Low-level features and implementation changes can be incorporated in the

white-box approach, because such verification is tied to a specific implementa-

tion. Therefore, the generated test cases may only be valid for the specific imple-

mentation. Modification to the generated test cases would be necessary if the
implementation changes. Therefore, the maintenance efforts required for the

white-box method would be much greater than those for the black-box method.

White-box verification can ensure that implementation-dependent features

are verified. For example, it becomes feasible to generate test cases to exercise

a timing-critical path when the full observability and controllability to the inter-

nal structure of the DUV is available.
Checker Monitor

DUV

a

c

b

FIGURE 9.17

White-box verification.

9.4 Simulation-based approach 537
The grey-box approach is a compromise between the black-box and the

white-box approaches, which inherits the advantages from both methods. This
approach intends to exercise only those significant features associated with the

implementation.

The general architecture of the DUV is assumed to be known by the verifica-

tion engineers, and only a limited number of internal points are accessible.

These observation points are often located in the inter-block interface and

adhere to specific communication protocols. In other words, the grey-box veri-

fication method observes only a select set of important internal signals, which

are typically located at the boundary of a building block. Therefore, for the illus-
tration in Figure 9.17, a grey-box method would preclude observation of the

monitor c but would include the other two observation points.

Similar to the white-box approach, the grey-box approach could exercise a

desired event by applying a test case directly at inter-block interfaces. Even if

the implementation of the components changes, as long as the interfaces

between the components within the DUV remain unchanged, the generated test

cases can be reused.
9.4.3 Assertion-based verification
Assertion-based verification is becoming popular in the industry and has drawn

much attention in the recent literature [Foster 2004]. This method embeds a set

of assertions in various parts of the implementation for monitoring design prop-

erties. Assertion-based verification can be viewed as a variant of the white-box

method.

The concept of assertions is originated from software testing. An assertion is
a line in the program that checks the validity of an expression. A correct pro-

gram must guarantee that such expressions are always true; otherwise, a warn-

ing or exit signal should be issued. Software engineers frequently write

assertions to check the possible existence of unexpected scenarios. Many

high-level programming languages such as C/Cþþ, Java, and Eiffel support

assertions by the use of a system library or by the use of the language definition

itself. Actually, the first standardization of VHDL defined its language constructs

to support simple assertions, as shown in Figure 9.18.
assert Boolean-expression

(a) (b)

report string-expression
severity severity-level;

assert parity = '0'
report "Parity Error"
severity error;

FIGURE 9.18

(a) Syntax. (b) example of an even-parity assertion in VHDL.

538 CHAPTER 9 Functional verification
Similar to software testing, assertions in hardware design are also expressed

as part of the design description in the HDL code. Many contemporary hard-
ware verification languages (HVLs), such as SystemVerilog [Accellera

2002a] and OpenVera [Synopsys 2001], were developed to facilitate the

writing of assertions in conjunction with the design itself. Another flavor of

practical solutions is to use an auxiliary specification language. Several different

proprietary formats of specification languages exist, such as PSL/Sugar [Accel-

lera 2002b]. Assertions can be written in the specification language with a

proper interface to the design.

The use of assertions in verification has various advantages. In black-box ver-
ification, for example, assertions can be used to replace the original monitors

for the purpose of collecting coverage data. In white-box verification, the origin

of an assertion failure could be confined to a limited area to facilitate the debug-

ging process. It is also a good practice to use assertions as formal comments in

place of comments in natural language. Meanwhile, assertions can be reused as

part of the verification IP associated with the IP core delivered to the customers.

Moreover, because assertions are placed in the HDL code, they can be directly

used as properties to be checked for the use of formal methods.

9.4.3.1 Assertion coverage and classification

The term assertion coverage has a variety of definitions. It could be used to
indicate the ratio of the number of assertions to the number of HDL code lines.

However, assertion density, suggested in [Piziali 2004], is considered a better

term for this definition. The better definition for assertion coverage should be

similar to that of functional coverage, which is defined on the basis of the num-

ber of exercised scenarios over the total number of scenarios to be covered.

Assertion coverage counts the number of exercised assertions to the total

number of assertions extracted from the design implementation.

Assertions can be classified into two types: static and temporal.
n Static assertions dictate those legal scenarios that are not related to time,

and, as such, they are required to be held for all time. These scenarios can

be described by the first-order logic. The one-hot encoding bus is an exam-

ple. Only one bit in such a bus can be one, and the rest should be zero. A
static assertion monitors the bus during the course of simulation and

sends an error message whenever this rule is violated.

n Temporal assertions extend the capability of static assertions to tempo-

ral logic. The consequent statement needs to be evaluated during the spe-

cified period of time after which the antecedent condition is triggered.

Consider the following SystemVerilog example in Box 9.10:

BOX 9.10

1. @(posedge clk)

2. init_event |¼> abort_event;

9.4 Simulation-based approach 539
where |¼> denotes the non-overlapping implication operator. This example

states that once an antecedent condition, init_event, successfully completes,
a consequent statement, abort_event, will occur in the next clock cycle.

The behavior of temporal assertions can be illustrated by a finite state

machine, as shown in Figure 9.19. In the idle state, the assertion moves to the

evaluate state when its antecedent condition is triggered. The evaluate state

repeatedly checks the consequent statement before a Pass/Fail result is issued.

Once there is a result, either an error signal is generated or the system moves

back to the idle state.

To illustrate a SystemVerilog Assertion (SVA) example, assume that the
intended property in a design is the following: “after the request signal is

asserted, the acknowledge signal must be generated from 1 to 3 cycles later.”

Figure 9.20 shows its timing diagram and the corresponding code in SVA.

9.4.3.2 Use of assertions

For different types of properties, assertions can be divided into two categories:

coverage assertions and checker assertions. Coverage assertions primarily

record the occurrence frequency of a specified event. Such assertions usually

monitor events defined in the functional coverage metrics. For the example of

a 16-bit one-hot coded bus, the assertion defines all possible combinations of

16 one-hot cases and records the case(s) exercised during simulation.
Checker assertions function as sentinels. They watch the violation of static

or temporal properties. At the module level, in white-box verification, assertions
evaluateidle

Pass/Fail

Trigger!Trigger

!(Pass/Fail)

FIGURE 9.19

Finite state machine for generic assertions.

(a)

0

reg

ack

1 2 3 4 5

Timing Diagram

property req_ack;
@(posedge_clk) req##[1:3] $rose(ack);

endproperty
as_req_ack: assert property (req_ack);

SVA Sample Code
(b)

FIGURE 9.20

Example of a temporal assertion in SVA.

540 CHAPTER 9 Functional verification
can check implementation details, whereas in black-box verification, assertions

check against the specification through both module inputs and outputs. For
higher-level verification, checker assertions are used to monitor the interfaces

across components. Because the interfaces must abide by their corresponding

protocols, checker assertions signal errors once unexpected scenarios occur.

A two-hot message in a one-hot coded bus is such an example.

9.4.3.3 Writing assertions

One of the most frequently asked questions in assertion-based verification is

“Who should write the assertions?” In practice, this job is shared by the entire

design and verification team. At different levels of the design abstraction, differ-

ent properties are converted into assertions. It may be difficult to ask a designer

responsible for designing a small block and lacking a system-level view to write
high-level assertions.

At the architectural level, a design is described by use of the input/output

functions of each component and the interface protocols that connect them,

without implementation detail. Assertions at this level model high-level relation-

ships and ensure that system-level behavior is consistent with the system-level

specification. Also at this level, observation points are located at inputs and out-

puts of the components and at bus interfaces only.

Assertions try to capture one’s understanding of the design intent. Once a
design component is created, the designer can write assertions for it on the

basis of the functionality from the specification and the implementation he or

she chooses. At this level, assertions are frequently used for debugging and for

measuring coverage.

If applicable, verification engineers may use formal methods to prove asser-

tions to complement the deficiencies of simulation-based methods. Also, asser-

tions accompanied with IP cores from IP providers would need to be

integrated into the verification plan.
9.5 FORMAL APPROACHES

Advances in modern simulators allow full-chip simulation to be efficiently con-

ducted. Nevertheless, the success of simulation-based verification remains

dependent largely on the quality of the stimuli. The stimuli exercise a design
under verification (DUV) and traverse its state space. Verification can be con-

sidered as a process of exploring reachable state space of the design. Modern

designs rapidly increase in size and complexity, and, consequently, their reach-
able state space can grow exponentially. As a result, it becomes difficult to

exhaust all reachable states for complete verification by use of only simulation.

Formal approaches aim to make complete verification possible, where com-

pleteness is in the sense that all reachable states are explored. The underlying

idea is to infer the design properties by reasoning without explicitly simulating

9.5 Formal approaches 541
stimuli. A property models certain aspects of design behavior associated with all

or a subset of reachable states. Proving design properties with formal approaches
requires the use of efficient search or reasoning engines, many of which have

been developed over the years. Significant advances have been achieved in

recent years.

The remainder of this chapter provides an overview of modern formal verifi-

cation approaches. Three major types of formal approaches are introduced:

model checking, equivalence checking, and theorem proving. For each

approach, we explain the underlying theory, illustrate its use, give examples,

and discuss the advantages and disadvantages. Finally, we include a brief review
of advanced research topics in the area.
9.5.1 Equivalence checking
Modern VLSI design flow is partitioned into a number of synthesis steps that

take the idea from system specification into GDSII. This results in descriptions

at different abstraction levels, which include behavioral, RTL, gate, and switch

levels. Ensuring equivalence between two alternative descriptions of the same
design is a commonly encountered problem in a design process. This task is

referred to as equivalence checking. Although such a general concept can be

applied to detect any mismatch from two descriptions given at any level, com-

mercially available equivalence checking tools typically address the equivalence

between the design’s RTL code and its various gate-level netlists, as shown in

Figure 9.21. That is the focus of this section.
RTL Code

Logic Synthesis

Gate-Level Netlist 1

Place & Route

Gate-Level Netlist 2

DFT Synthesis

Gate-Level Netlist 3

Clock Tree Synthesis

Gate-Level Netlist 4

FIGURE 9.21

RTL to gate-level design flow.

542 CHAPTER 9 Functional verification
Boolean circuits, in general, can be viewed as finite state machines
(FSMs), and, therefore, Boolean equivalence checking (BEC) over two cir-
cuits, FSM1 and FSM2, can be formulated as the problem of checking for the

output of the miter circuit, as shown in Figure 9.22, being constant 0 or

not. FSM1 consists of combinational logic C1 and a state-holding element set,

S1, whereas FSM2 consists of combinational logic C2 and a state-holding element

set, S2. Both primary inputs are m bits and primary outputs are n bits. PPO1

(PPO2) denotes the pseudo-primary outputs from to C1 (C2) to S1 (S2). Note that

the number of state-holding elements can be different in the two FSMs. Each

pair of corresponding primary output bits — one from C1 and the other from
C2 — connects to an XOR gate. If any XOR output becomes 1 with respect to

any input vector or sequence, these two FSMs are not equivalent.

A simplified version of the BEC problem is combinational equivalence
checking (CEC). This problem assumes that FSM1 and FSM2 have a complete,

one-to-one mapping between the state-holding elements and that they start with

the same initial state. The assumption is also made that PPO1 always has the

same value as PPO2. Hence, the original miter circuit can be recast as that

shown in Figure 9.23; here, we only focus on the comparison between combi-
national logic C1 and C2 without any sequential elements. The combinational

equivalence checking problem is thus formulated as the following: Given two

combinational Boolean netlists C1 and C2, check whether the corresponding

outputs of C1 and C2 are equal for all input combinations. There are two

types of approaches for solving the CEC problem: functional equivalence and

structural equivalence.
PI combinational
logic C1

state-holding
elements S1

combinational
logic C2

state-holding
elements S2

primary
inputs

primary
outputs

m

n

n
FSM2

FSM1

PPO1

PPO2

PO1

PO2

XORs

n

FIGURE 9.22

Miter circuit for checking equivalence of two FSMs.

combinational
logic C1

combinational
logic C2

XORs

n

PI

primary
inputs

m
n

n

primary
outputs

PO1

PO2

FIGURE 9.23

Combinational equivalence checking.

9.5 Formal approaches 543
9.5.1.1 Checking based on functional equivalence

The first step of functional CEC is to translate the combinational circuits into a

canonical representation. A representation of a Boolean function is canonical

if the representation for each function is unique and independent of the imple-

mentation of the function. A truth table is one example of a canonical represen-

tation for Boolean functions. Equivalence can be determined by directly

comparing the two canonical representations. Among all canonical representa-

tions, the reduced ordered binary decision diagram (OBDD), introduced
in Chapter 4, is the most prevalent, because OBDD yields a more compact rep-

resentation than other representations. The CEC problem can be resolved by

building the OBDDs for the outputs of the circuits on the basis of their primary

inputs. Two circuits are equivalent if the OBDDs from each pair of correspond-

ing outputs are graphically isomorphic.

9.5.1.2 Checking based on structural search

A structural search approach checks to see whether any vector exists at primary

inputs that would cause a mismatch between the two circuits at their primary

outputs. If no such input vector can be found, the two circuits are proven equiv-

alent. The satisfiability (SAT) solvers, introduced in Chapter 4, can be used as
the structural search engine for checking equivalence. A SAT solver can be used

to check if an assignment at PIs exists to satisfy a 1 at the miter’s output.

An UNSAT answer from the solver proves the equivalence of the two circuits.

An ATPG tool developed for generating manufacturing tests for stuck-at faults

can also be used for checking structural equivalence. As illustrated in Fig-

ure 9.24, if the stuck-at-0 fault at the XOR output is proven a redundant fault

by an ATPG tool, the two circuits are equivalent. A thorough treatment of ATPG

techniques will be provided in Chapter 14.
For complex circuits, directly applying SAT solving at the miter’s output signal

may result in an exponential number of backtracks, which makes the approach

inefficient. Structural similarity between the two circuits under checking can be

explored to improve its efficiency, which attempts to solve the structural equiva-

lence problem by incrementally solving a sequence of easier sub-problems

combinational
logic C1

combinational
logic C2

PI

s-a-0?

PO

FIGURE 9.24

Checking structural inequivalence by generating a test for XOR output stuck-at-0 fault.

544 CHAPTER 9 Functional verification
[Brand 1993; Kunz 1993; Goldberg 2000; Huang 2000]. On the basis of a

divide-and-conquer strategy, various heuristics have been developed to identify

internal equivalent points from the two circuits under checking. For example,
when two signals are proved to be equivalent, the equivalence of the two sig-

nals can be encoded as a SAT clause and added back to the SAT formulation of

the problem. Such equivalence clauses can then help to speed up the SAT

search, as shown in [Lu 2003].

For the sequential equivalence checking (SEC) problem, shown in

Figure 9.22, state traversal techniques are often used. The most common state

traversal technique is reachability analysis. Note that two FSMs, M1 and M2,

are equivalent if, and only if, the output of the miter circuit M1�2 is constant
0 under all combinations of input assignments for all reachable states of M1�2.
Therefore, checking sequential equivalence would require the ability of deriving

the set of states reachable from a given initial state set I for a given FSM M. An

intuitive approach that explicitly enumerates state transitions over the state

graph of the FSM is not scalable to large design and, thus, is often impractical.

Practical solutions usually adopt a symbolic technique implemented by OBDD

that implicitly derives the reachable state set by use of transition functions.

Symbolic reachable analysis consists of two steps: (1) encoding the FSM
symbolically and (2) performing reachability analysis iteratively. Given FSM

M1 ¼ (Q1, I1,
P

1, O1, d1, l1) and FSM M2 ¼ (Q2, I2,
P

2, O2, d2, l2), where Qi
0s,

Ii
0s,

P
i
0s, Oi

0s, di0s, li0s denote the state spaces, the initial state sets, the input

and output alphabets, transition functions, and output functions, respectively,

the FSM M1�2 ¼ (Qm, Im,
P

m, Om, dm, lm) for the miter circuit can be con-

structed as follows:
n The state space Qm ¼ Q1 � Q2

n The initial state set Im ¼ I1 � I2
n

P
m and Om are the same input and output alphabet sets as in M1 and M2

(that is,
P

m ¼
P

1 ¼
P

2 and Om ¼ O1 ¼ O2)

n The transition function dm(s, a):
P

m � Qm!Qm, where s and a represent

for one state in Qm and one input vector in S, respectively
n The output function lm(s, x):

P
m � Qm!Om
We define a new function, called transition relation, which is denoted as R(x, s, s0):
(
P

m�Qm)�Qm! {0, 1}.R(a,p,q)¼ 1 if there exists a transition from the statep to
the state q under an input vector a for M1�2; otherwise, R(a, p, q) ¼ 0. Assume

9.5 Formal approaches 545
given an input vector set x ¼ (x1, x2, . . . , xk) with the corresponding sequence

of state transitions dx ¼ (d1, d2, . . . , dk), the transition relation from the state s to
the state s’ can be formulated as:

R x; s; s0ð Þ ¼ s1
0 � d1 s; xð Þð Þ ^ s2

0 � d2 s; xð Þð Þ ^ . . . ^ sk
0 � dk s; xð Þð Þ ¼ Pi si

0 � di s; xð Þð Þ

Therefore, if the input vector set x can bring the finite state machine from the

state s to the state s0, then R(x, s, s0) ¼ 1; otherwise, R(x, s, s0) ¼ 0.

We then annotate the existential quantification operator 9 to the transition
relation R. A pair of states (p, q) 2 R9 if, and only if, there exists an input vector

x such that the machine transitions from state p to state q after applying x.

Applying the existential quantification notation 9 to the preceding transition

relation results in R9(s, s0). Such a notation is called quantified transition
relation and represented as:

R9 s; s0ð Þ ¼ 9x: s1 0 � dl s; xð Þð Þ ^ s2
0 � d2 s; xð Þð Þ ^ . . . ^ sk

0 � dk s; xð Þð ÞÞ
¼ 9x: Pi si

0 � di s; xð Þð Þ
Given M1�2 ¼ (Qm, Im,

P
m, Om, dm, lm) and its quantified transition relation,

we can apply R9 to derive all reachable states. Such a process is called reachability

analysis and can be done by the image computation denoted as Img(S, R9),
where S is a set of given states and R9 is the quantified transition relation

defined by M1�2. The output of Img(S, R9) is the set of states reachable from S

in one clock cycle. One approach to reachability analysis is to iteratively perform

image computation starting from the initial state set Im. Such an approach is called
forward reachability analysis, and the generic pseudocode is outlined as follows:

Algorithm 9.1 Forward_Reachability

1. i :¼ 0 // counter for looping
2. Qi:¼ I // i-th set of reachable states
3. do {
4. Qnew:¼ Img(Qi, R9); // compute image from current states
5. Qiþ1 :¼ Qi _ Qnew; // update the state set for next iteration
6. i :¼ i þ 1; // counter increments
7. } until (Qiþ1 � Qi) // stop when state set is stable
8.
9. return Qiþ1

Consider the 7-state FSM shown in Figure 9.25 for which state 0 is the only ini-

tial state. The forward reachability algorithm derives all reachable states from

state 0 as follows in Table 9.2:
The iterative process stops at iteration 4 for which the current set of reach-

able states is equivalent to the next set of reachable states. Therefore, the set of

reachable states from state 0 is {0, 1, 2, 3}. From this analysis, we find that states

Table 9.2 Reachable States by Forward Reachability Algorithm

Iteration 1 2 3 4

Qi {0} {0, 1, 2} {0, 1, 2, 3} {0, 1, 2, 3}

Qnew {0} {1, 2} {1, 3} {0, 1, 3}

Qiþ1 {1, 2} {1, 3} {0, 1, 3} {0, 1, 2, 3}

0 1

3 2

5

4

6

FIGURE 9.25

Example of forward reachability analysis.

init F1 F2 Fk badB1B2Bk

(a) (b)

……

FIGURE 9.26

Intuitions behind forward and backward reachability analysis.

546 CHAPTER 9 Functional verification
4, 5, and 6, which are surrounded by the dotted line in Figure 9.25, can never

be reached from the initial state 0. These states form the set of unreachable

states for state 0.

Reachability analysis can be also conducted through a background traversal of

the state space [Abdulla 2000]. For a target final state (which could be a state that

causes non-equivalence of the two FSMs), the search attempts to compute the set
of previous states that can transition into this target state. If the backward reach-

ability analysis can eventually reach an initial state, the search stops, and the

two FSMs are proven not equivalent. Intuitions behind the forward and backward

reachability analysis are illustrated in Figure 9.26a and Figure 9.26b, respectively.

Image computation may suffer from too many iterations and/or memory

explosion. Several techniques that attempt to avoid memory explosion, such

as the use of SAT solving instead of BDD-based techniques [Abdulla 2000], have

been proposed.

9.5 Formal approaches 547
Boolean equivalence checking has been widely accepted and incorporated

into industrial design flows. Most leading EDA vendors offer BEC tools that
include Encounter Conformal from Cadence and Formality from Synopsys. Com-

binational equivalence checkers have enjoyed tremendous success, partially

thanks to the recent advances in SAT solving, which help to improve both per-

formance and scalability of CECs. Sequential equivalence checking has also

made significant progress in recent years. SEC tools such as SLEC from Calypto

[Calypto 2008] are also commercially available.
9.5.2 Model checking (property checking)
Given a property and a design, a model checking tool allows a user to check

whether the property holds true on the design. To develop such a tool, one

needs to ask two basic questions: how to specify or describe a property and

how to efficiently prove that a property holds true or is violated. The first ques-

tion concerns the language used to express properties. Such a language deter-

mines what properties can be described and what properties cannot be

described and, hence, limits the applicability of a model checking tool. The sec-
ond question concerns the computation engine used to prove properties. Like

equivalence checking described previously, OBDD and SAT are two prevalent

methods that are used to implement the core computation engine of a model-

checking tool. In this section, we begin by introducing the (formal) languages

used to describe properties, followed by a brief review of how OBDD and

SAT can be used to implement a model checking tool.

Temporal logic, introduced by Arthur Prior in 1960s [Prior 1957] and initi-

ally known as Tense Logic, provides a formal system for qualitatively describing
and inferring how the values of statements for properties vary over time in a

system. In temporal logic, a statement’s truth value can change over time. In

contrast, in traditional predicate logic, a statement’s truth value is either true

or false, which does not change over time. Application of temporal logic in ver-

ification started to receive attention in 1980s.

Temporal logic consists of two types of formulas: (1) state formulas, a form of

atomic propositions (AP) that indicate the validity of specific states; and (2)

path formulas, in which the property of a path holds constant. Note that a path
here refers to a sequence of states. According to the views taken with respect

to the underlying nature of time, temporal logic can be classified into (1) linear
temporal logic (LTL), where the future value can only be derived along its linear

computation path; and (2) branching time temporal logic (BTTL), which is a

tree-like structure that allows quantifications over many different futures at each

moment. Whether LTL or BTTL is more suitable for model checking depends on

the property and the design being checking [Emerson 1990].

LTL allows applications to reason about the nondeterministic behavior. It
models time as a sequence of discrete states starting from an initial moment

with no predecessors and extending infinitely into the future. Such a sequence

548 CHAPTER 9 Functional verification
of states is known as either a computation path or an execution path. LTL

derives the change over time with a linear time model M ¼ (S, !, L), which
is also known as a Kripke structure [Kripke 1963]. Here,

S: a set of state formulas {s0, s1, . . .}
!: the transition relation where 8s 2 S, 9s0 2 S, s.t. s!s0

L: a labeling function L:S!P(AP) in which each state is labeled with a set

of atomic propositions from AP.

Figure 9.27 shows a simple example of a linear time model, M1, where

S ¼ {s0, s1, s2, s3}

! ¼ {(s0, s1), (s0, s2), (s1, s0), (s1, s3), (s2, s3), (s3, s0), (s3, s3)}

L ¼ {(s0, {p,q}), (s1, {r,t}), (s2, {q,t}), (s3, {r})}

A path p in M ¼ (S,!, L) is an infinite sequence of ordered states {si 2 S} such
that for each i � 1, si ! siþ1. Therefore, path p can be expressed as p ¼ {s1 !
s2 ! . . . ! si ! . . .}. Particularly, pk denotes the suffix of a path starting from

the k
-th state. For example, p3 ¼ {s3! s4! . . .}. The notations � and 6� denote

the satisfaction relation and the unsatisfaction relation, respectively. Given a
Kripke structure M ¼ (S, !, L), p � f denotes that the formula f holds true

(i.e., is satisfied by the system) at the starting point of the path p in M. Let

I(s1) be the set of formulae that hold true at the starting point of path p. Then,
“p � f” means “f 2 I(s1).”

LTL is built up from a set of propositional variables p1, p2, . . . ,>(true) and ?
(false), the usual logic connectives :(negation), _(disjunction), ^(conjunction),
!(imply), and the following temporal modal operators: X(Next), G(Always),

F(Finally), U(Until), and R(Release):
FIG

Exa
n Next (X) operator is unary and specifies that a formula holds at the second

state on the path p:

p � Xf iff p2 � f
n Always (G) operator is unary and specifies that a formula holds along

every state on the path p:
p � Gf iff 8i � 1; pi � f
q,t r

r,tp,q

s0 s1

s2 s3

URE 9.27

mple of an LTL model.

FIG

Exa

9.5 Formal approaches 549
n Finally (F) operator is unary and specifies that a formula holds at some

future state on the path p:
p � Ff iff 9i � 1; pi � f

0 k�1

n Until (U) operator is binary and specifies that for some i� 1, p to p satis-

fies the first formula f and pk satisfies the second formula c:
p � fUc iff 9i � 1; s:t: pi � c and 8j < i; pj � f
n Release (R) operator is binary and specifies that for some i � 1, we have

either there exists j < k such that pj satisfies the first formula f or pk satis-
fies the second formula c:
p � fRc iff either 9i > 1; s:t: pi � f and 8j 	 i; pj � c

or

8k � 1; pk � c

Figure 9.28 illustrates examples for the semantics of various LTL operators

assuming that all examples show on a path p in M ¼ (S, !, L). We can apply

LTL to the Kripke structure M1 in Figure 9.27 and derive the following formulas:
1. s0 � Xt for all path p, and s0 6� X q ^ rð Þ because the next state of s0 can

not satisfy both q and r.
X f:

G f:

F f:

f f

~ f~ f

f U y:

f R y:
(case 1)

f f f f f

f

f

f

y y y f, y

y

f R y:
(case 2)

yyyyy

p

URE 9.28

mples for semantics of LTL operations.

550 CHAPTER 9 Functional verification
2. s0 � G: p ^ tð Þ and s3 � Gr because M1 can loop at s3 forever.
3. s0 6� GFp denotes that not every path starting from s0 can finally hold the

formula p. p ¼ s0 ! s1 ! s3 ! s3. . .f g is such one example.

4. s0 � GFp! GFr denotes that every path starting from s0 which satisfies

the formula p will always satisfy the formula r, but not for the case

s0 6� GFr ! GFp.
5. 8s 2 S in M1, s � X q _ rð Þ ! Fr denotes that the next state of one path

starting from every state in M1 can be q or r, and then the formula r will

also hold on the path finally.
The expressive power of LTL is limited and implicitly quantifies universally

over paths. An LTL formula can be satisfied if, and only if, all paths starting from

the given state satisfy such a formula. A LTL system cannot decide whether one

specific formula can be satisfied along some paths in M. Therefore, computa-
tion tree logic (CTL), one type of BTTL, is evaluated over a branching-time

structure and it quantifies the paths explicitly by introducing both the existen-

tial operator (E) and the universal operator (A) over paths.
The Existential (E) operator is defined as follows:
n EXf specifies that there is a path such that f holds at the next state:
s � EXf iff 9p ¼ v1 ! v2 ! . . . vi ! . . . jv1¼sg s:t: v2 � f
�

n EGf specifies that there is a path along which f holds at every state:
s � EGf iff 9p ¼ v1 ! v2 ! . . . vi ! . . . jv1¼sg s:t: 8vi; vi � f
�

n EFf specifies that there is a path along which f holds finally:
s � EFf iff 9p ¼ v1 ! v2 ! . . . vi ! . . . jv1¼sg s:t: 9vi; vi � f
�

n E fUc½
 specifies that there is a path along which f holds until c holds:
s � E fUc½
 iff 9p ¼ v1 ! v2 ! . . . vi ! . . . jv1¼sg s:t: p � fUc
�

The Universal (A) operator is defined as follows:
n AXf specifies that for all paths, f holds at the next state:
s � AXf iff 8p ¼ v1 ! v2 ! . . . vi ! . . . jv1¼sg s:t: v2 � f
�

n AGf specifies that for all paths, f holds at every state of the path:
s � AGf iff 8p ¼ v1 ! v2 ! . . . vi ! . . . jv1¼sg s:t: 8vi; vi � f
�

n AFf specifies that for all paths, f holds finally:
s � AFf iff 8p ¼ v1 ! v2 ! . . . vi ! . . . jv1¼sg s:t: 9vi; vi � f
�

•••

•••

•••

•••

•••

•••

•••

•••

•••

•••

•••

•••

•••

•••

•••

•••

•••

•••

•••

•••

•••

•••

•••

•••

•••

•••

•••

•••

•••

•••

n1n1n1

n1 n1 n1

EFf:EGf:EXf:

AXf: AGf: AFf:

f

f f

f

f

f

f

f

ff f

f

f

f

f

f

f

f

f

f

f

f

FIGURE 9.29

Illustrations for CTL Existential and Universal operations.

9.5 Formal approaches 551
n A fUc½
 specifies that for all paths, f holds until c holds:
s � A fUc½
iff 8p ¼ v1 ! v2 ! . . . vi ! . . . jv1¼sg s:t: p � fUc
�

Figure 9.29 illustrates partial examples for the Existential and Universal

operations according to the preceding definitions.

CTL is capable of specifying branching behaviors such as AG(EFf), which is

also known as resetability—meaning there is always a path back to f. This

property cannot be modeled by LTL because of the lack of the path quantifier

E. Likewise, there exists some LTL formulas that cannot be expressed in CTL.

For example, FGf in LTL means that the formula f will finally hold along every

path from the given point. Its semantic should be expressible as A(FGf). How-

ever, in CTL, every temporal operator (F and G) must be preceded by a path
quantifier (E or A). Hence, CTL cannot express A(FGf). CTL* extends the

expressiveness from both LTL and CTL and primarily allows a path quantifier

to be used followed by an arbitrary LTL formula. The relationships between

the expressiveness of LTL, CTL, and CTL* can be viewed as LTL [CTL �
CTL*, which are illustrated in Figure 9.30. Particularly, there is a set {f4} of

CTL* formulas that can be expressed neither in CTL nor in LTL. E(GFf) is such
an example, saying that there is a path where from one certain state, f’s holds
through arbitrarily many states to the end [Huth 2004].

CTL*

CTLLTL

f4

f1 f2 f3

FIGURE 9.30

Relationships between the expressiveness of LTL, CTL, and CTL*.

552 CHAPTER 9 Functional verification
The properties of design systems can be divided into two types [Owicki

1982]:
1. Safety properties that indicate that some bad event will never happen.

For a sequential program, safety guarantees that no incorrect outcome will

be produced by the program. For a finite state machine, safety checking

denotes those properties whose violation can always find a finite trace.

Another typical example of safety is a mutual exclusive property that states

that having more than one process in the critical section will never occur.
2. Liveness properties that indicate that some good event will eventually

happen. For a sequential program, the program will terminate as it pro-

duces a legal outcome. For a finite state machine, those properties that

may be violated will never have a finite witness. CTL can model the simple

liveness for the phrase “The light will turn green” as light � AF(green).
“Any request will eventually be satisfied” is another example semantic

phrase that can be expressed and the corresponding CTL expression is

AG(Req)) AF(Sat). Liveness focuses on a slice in the tree structure and
may incur the witness as a computation path of infinite steps.
To illustrate the safety and liveness properties, consider a two-input Muller C-

element used for asynchronous circuit connections. Figure 9.31a shows its
gate-level netlist with two Boolean inputs (x, y) and one output (z). The

corresponding dynamic behavior is represented by the state transition graph

in Figure 9.31b.

A safety property of the C-element is that if all inputs and outputs are equal,

then the output z will not change its value until all inputs flip their values.

There are two situations: all values are 0 and all values are 1.
n AG((x ¼ 0 ^ y ¼ 0 ^ z ¼ 0)) A(z ¼ 0 U (x ¼ 1 ^ y ¼ 1)))

n AG((x ¼ 1 ^ y ¼ 1 ^ z ¼ 1)) A(z ¼ 1 U (x ¼ 0 ^ y ¼ 0)))
A liveness property of the C-element is that if both inputs become equal, then

the output z will eventually change to the corresponding value. There are

two situations: both input values are 0 and both input values are 1.

x

y

z

(a) (b)

z = 0

(x = 0∩y = 0)∪(x! = y)

(x = 1∩y = 1)∪(x! = y)
(x=0∩y=0)

(x =1∩y = 1)

z = 1

FIGURE 9.31

(a) Gate-level netlist. (b) state transition graph of a C-element.

9.5 Formal approaches 553
n AG(A(x ¼ 0 ^ y ¼ 0) U (z ¼ 0 _ x ¼ 1 _ y ¼ 1))

n AG(A(x ¼ 1 ^ y ¼ 1) U (z ¼ 1 _ x ¼ 0 _ y ¼ 0))
9.5.2.1 Model checking with temporal logic

Let a Kripke structure M ¼ (S,!, L) represent a finite state concurrent system.

The model-checking problem can be formulated as: given a model M, a property
p specified as a temporal formula, and a state s, does s � p hold in M? The

corresponding result is either (1) yes, s � p in M, or (2) no, s 6� p in M. Espe-

cially for the latter case, such a result is derived from finding a counterexample

that invalidates p in M. Therefore, the modeling checking problem can be

addressed by computing the state set Sp that satisfies p in M.

The labeling algorithm, proposed by E. Clarke, E. Emerson, and A. Sistla

[Clarke 1986], is a basic algorithm for the model checking problem. Given a

CTL formula, the labeling algorithm labels the set of states in which the target
formula p holds, which is denoted as p½
½
≜ 8s 2 S inM; s � pf g, and called

the denotation of p. Deriving p½
½
 starts by decomposing p into a set of sub-

formulas in a bottom up manner. Because {?;:; ^} and {AF, EX, EU} can form

an adequate set of connectives for CTL [Martin 2004], and all other proposi-

tional and temporal connectives can be written in terms of this set, a preproces-

sing step to convert the target formula p into an equivalent form in terms of this

adequate set is first invoked and then followed by labeling states in M for p½
½
.
Later, the denotation p½
½
 is compared with the set Sinit of all initial states to
check whether Sinit � p½
½
.

The labeling algorithm explicitly enumerates the states in the model whose

size often grows exponentially in terms of the numbers of variables in the sys-

tem. This problem is typically referred to as the state explosion problem. To

overcome this issue, a more efficient technique called fix-point computation
is proposed, which incorporates OBDD for symbolic computation and implicit

representation of states. Model checking with OBDDs is often referred to as

symbolic model checking [Burch 1990], and SMV, developed at Carnegie
Mellon University, is one such verifier [McMillan 1992].

554 CHAPTER 9 Functional verification
Fix-point computation finds the set of states that satisfies the specific global

CTL formula. A function xiþ1 ¼ f(xi) is called a fix-point if 9xk, where k � 0,
s.t. xkþ1 ¼ f(xk) ¼ xk. Given a starting value x0, a fix-point can be found by itera-

tively mapping f to xi until f(xk)¼ xk. To help calculate the fix-points on a Kripke

structure M ¼ (S,!, L), we define a function t called a predicate transformer,

which takes a subset of S and outputs another subset. In other words, the function

t is defined on the basis of the power set P(S), which is the set of all subsets of S.
t i(S0) denotes i applications of t to the given subset S0 � S. That is,

tiðS0 Þ ¼ tðtð. . .ðt|fflfflfflfflffl{zfflfflfflfflffl}
i times

ðS0 ÞÞÞ

t is monotonic, provided that for any two subsets of S, P, and Q, if P � Q � P

(S), then t (P) � t (Q). Note that because t is monotonic, by starting from a sub-

set of S and continuously applying t, a fixed point can always be reached.

Let t be monotonic, � be the empty set, and U be a finite set {s0,s1, . . ., sn} �
P(S) of n elements in M, then 9l, s.t. t l(�) ¼ t lþ1(�) and 9u, s.t. t u(U) ¼ t uþ1

(U). t l(�) and t u(U) are called the least and greatest fix-points of t, which are

denoted by fpmin and fpmax, respectively. Each basic CTL* operator can be fur-

ther represented by either fpmin or fpmax over an appropriate predicate trans-

former. For a complete treatment of the underlying theory and proof, please

refer to [Granas 2003].

Suppose that we would like to apply the fix-point computation to check

AG f) AFcð Þ, then sub-annotations will be computed in a bottom-up manner.
That is then c½
½
; AFc½
½
; f½
½
; f) AFc½
½
; and AG f) AFcð Þ½
½
 in this example.

Assuming c ¼ p and f ¼ q, let’s check the process of calculating the formula on

the basis of the example given in Figure 9.27.
n c½
½
 ¼ r½
½
 ¼ s3f g
n AFc½
½
 ¼ AFr½
½
 ¼ s0; s1; s2; s3f g can be computed as the union of
� c½
½
 ¼ r½
½
 ¼ s3f g
� r _ AXr½
½
 ¼ s3f gU s1; s2f g ¼ s1; s2; s3f g
� r _ AX r _ AXrð Þ½
½
 ¼ s3f gU s0; s1; s2; s3f g ¼ s0; s1; s2; s3f g
� no need to repeat since {s0, s1, s2, s3} converges

n f½
½
 ¼ p½
½
 ¼ s0f g
n f) AFc½
½
 ¼ :f _ AFcð Þ½
½
 ¼ :p _ AFrð Þ½
½

� :p _ AFrð Þ½
½
 ¼ s1; s2; s3f gU s0; s1; s2; s3f g ¼ s0; s1; s2; s3f g

n AGm½
½
 can be computed as the intersection of m½
½
; m ^ AXm½
½
;
m ^ AX m ^ AXmð Þ½
½
, and etc. Therefore, AG f) AFcð Þ½
½
 can be obtained

from the following and result in {s0, s1, s2, s3}:

n m½
½
 ¼ f) AFc½
½
 ¼ s0; s1; s2; s3f g
n m ^ AXm½
½
 ¼ s0; s1; s2; s3f g \ s0; s1; s2; s3f g ¼ s0; s1; s2; s3f g
n m ^ AX m ^ AXmð Þ½
½
 ¼ s0; s1; s2; s3f g
n . . . all remaining computations converge to {s0, s1, s2, s3}

9.5 Formal approaches 555
Because every state belongs to AG f) AFcð Þ½
½
 ¼ s0; s1; s2; s3f g, the Kripke

structure M ¼ (S, !, L) satisfies this property. As we can see, computing the
state set for propositional connectives is straightforward. The computation for

temporal connectives such as EXf is relatively sophisticated and requires apply-

ing the temporal operations over the current state set repeatedly until there is

no change.

Symbolic model checking is often limited by the sizes of corresponding

OBDDs used in the computation. Typically, a good variable ordering is crucial

for minimizing OBDD size. However, finding optimal ordering is a proven NP-

complete problem. In some cases, even with the best ordering, the OBDD size
is still larger than the available computation resource. To address this problem,

an alternative method, called bounded model checking (BMC), was proposed,

which only tries to find counterexamples for properties within a bounded num-

ber of clock cycles (state transitions). Most of the bounded model checkers use

a propositional decision (SAT) procedure [Biere 1999]. Several efficient satisfia-

bility solvers have been developed in recent years that are capable of solving

problems with more than thousands of variables. Bounded model checking

can find minimal length counterexamples as the propositional decision proce-
dure traverses the state-transition graph step by step. This feature can also make

users easily understand counterexamples and consequently facilitate the debug-

ging process.

Given the Kripke structure M ¼ (S,!, L) and a safety property f, by use of

BMC we can determine whether a length-k execution path of M that satisfies f
exists. That is, M�kEf. Let a propositional formula T(s,s0) define the relation-

ship of the state transition in M and let I(s), a predicate over the state variables,

define the initial states. The BMC problem is equivalent to the satisfiability prob-
lem of a Boolean formula M;f½

k ¼ M½

k ^ f½

k

���
where M½
½
k and f½
½
k,

respectively, encode the set of length-k execution paths of M and the set of

length-k paths that satisfy f in M.

For a valid length-k path p ¼ s0 ! s1 ! s2 ! . . .! skf g; M½
½
k can be

defined as

M½
½
k ¼ I s0ð Þ ^ T s0; s1ð Þ ^ T s1; s2ð Þ ^ . . . ^ T sk�1; skð Þ ¼ I s0ð Þ ^
Yk�1

i¼0 T si; siþ1ð Þ

The core of encoding for a formula f with k steps depends on whether M
contains any loop that starts at sl and ends at sk. Therefore, f½
½
k can be com-

puted as the disjunction of two cases:
1. Without loopback in M: f½
½
k≜ :
Qk

l¼0T sl; skð Þ ^ f½
½
0k
� �� �

, where for

every :½
½
ik, k is the length of the prefix of the path and i is the current

position in this prefix.

2. With a loopback in M: ½½f

k≜
Qk

l¼0ðTðsl; skÞ^l½½f

0kÞ), where for every

l :½
½
ik, i is the current position in the path p, k is the length of the prefix

of this path, and l is the position where the loop starts.

556 CHAPTER 9 Functional verification
For example, given a formula f ¼ Fp, M� kf is used to check whether any

reachable state in which a property p holds in M within k steps exists. Bounded
model checking will first derive M;f½
½
k ¼ I s0ð Þ ^

Qk�1
i¼0 T si; siþ1ð Þ ^Qk

j¼0 p sj
� �

,

where p(sj) ¼ 1 if the property p holds on sj, otherwise p(sj) ¼ 0. This satisfia-

bility problem can be solved with an SAT solver. It will return 1 if such a path is

found. To check whether any reachable state that satisfies p, provided that q

holds infinitely (i.e., f ¼ GFq ^ Fp) exists, modeling the loopback behavior in

M is required. That is,

M;f½
½
k ¼ I s0ð Þ ^
Yk�1

i¼0 T si; siþ1ð Þ ^
Yk

j¼0 p sj
� � ^Yk

l¼0 T sl ; skð Þ^l q½
½
0k
� �

Although bounded model checking with the propositional decision (SAT) pro-
cedure can handle larger circuits, it is an incomplete technique. If the checking

formulas are unsatisfiable (i.e., the property holds true over a bounded length k

of checking, there is no guarantee that the property will hold or not over a

length greater than k.
9.5.3 Theorem proving
We have introduced how propositional and temporal logic can be automated to

compare two representations in equivalence checking and to validate proper-

ties from the specifications against a given model in model checking. The effec-

tiveness of both equivalence checking and model-checking techniques is often

limited by the capacity and performance of the underlying engines used such

as OBDD and SAT. Sometimes, the complexity of a verification task for an arith-
metic circuit, such as a data path or a signal processing unit, can be reduced if a

more general mathematical formulation of the circuit, with a better abstraction

of the word-level information, is provided. Theorem proving techniques are

applied for such purposes.

Theorem proving is the process for determining whether a given implemen-

tation satisfies the target specification by means of mathematical reasoning, as

shown in Figure 9.32. Both the implementation and specification need to be

transformed into formulas in a formal logic system. The relationships between
implementation and specification are regarded as theorems in logic. The confor-

mance is then established by proving the theorems either from implementation
design
implementation

design
specification

implication

equivalence

FIGURE 9.32

Verification by theorem proving.

9.5 Formal approaches 557
to specification, denoted by the implication arrow in the figure, or from speci-

fication to implementation, denoted by the equivalence arrow.
A proof system (or calculus) S consists of:
1. Expressions of S: a finite sequence of symbols

2. Well-formed formulas of S: a subset of the expressions of S
3. Axioms of S: a finite set of the well-formed formulas of S
4. Inference rules of S: a finite set of derivation rules from a given finite set

of well-formed formulas to a new well-formed formula
The general form of an inference rule is a1; a2 ;... ak
b , where the well-formed formu-

las a1; a2; . . . ; ak are called the premises of the rule, whereas the well-formed

formula b is called the conclusion.

In such a proof system S, a proof is a finite sequence of formulas, f1, f2, . . . ,
fn in which fi can be either an axiom or else derived from applying an infer-

ence rule of S over {f1, f2, . . . , fi-1}, which is denoted as {f1, f2,. . ., fi-1} ‘ fi.

The last formula fn is the goal of the proof, which is known as a theorem of S.
Sometimes, proofs may require supplementary assumptions, such as G ¼ c1;f
c2; . . . ;ci�1g from the domain specific axioms. The term G ‘ f asserts that
the formula f is valid if all assumptions in G are true. If G is empty, we write this

as ‘ f.
Many modern theorem proving systems are publicly available. These include

Coq [Coq 2003], Z/Eves [Saaltink 1999], High-Order Logic (HOL) [Nipkow

2002], PVS [Owre 1992], and ACL2 [Kaufmann 2002]. To illustrate the deduc-

tion process involved in theorem proving, we use HOL, developed at the Uni-

versity of Cambridge [Gordon 1993], for the remainder of the discussion. HOL

supports the use of standard predicate operators, five axioms, and eight primi-
tive inference rules, which are listed in Table 9.3, for expressing most ordinary

mathematical theories.

The first step of the proof method in HOL is to formalize both the specifica-

tion and the implementation into the formal logic used in the proof system.

Then, the formulation of a proof goal can be achieved by either proof of impli-

cation (forward) or proof of equivalence (backward) with the inference rules. In

the forward manner, a theorem prover starts with simple lemmas that can be

proven directly to develop new rules. Rules are successively combined into
more difficult lemmas until the target theorem is proven. Figure 9.33 shows

an example for such an HOL theorem proving. The functional specification of

the underlying black-box, shown in Figure 9.33a, is an NOR function denoted

by f ¼ �x � �y. Its formal specification can be expressed as SPEC x; y; zð Þ≜
z ¼ :x ^ :yð Þ. And the implementation, which is shown in Figure 9.33b, may

use only primitive AND, OR, and NOT gates. The corresponding descriptions

of these gates in formal logic are:
n AND i1; i2; outð Þ≜ out ¼ i1 ^ i2ð Þ, where i1 and i2 are input ports and out

is an output port.

x

y

z x

y

zw

(a) (b)

f = x � y

FIGURE 9.33

Example of theorem proving by HOL.

Table 9.3 Base Rules of Higher Order Logics Used in HOL

Name Explanation Rule Remark

ASSUME Assumption
introduction

-

t ‘ t

REFL Reflexivity
-

‘ t ¼ t

ABS Abstraction G ‘ t1 ¼ t2
G ‘ ðlx:t1Þ ¼ ðlx:t2Þ

If x is not free in G,
where (lx.ti)
denotes the function
defined by f(x) ¼ ti

BETA_CONV Beta-
conversion

-

‘ ðlx:t1Þt2 ¼ t1½t2=x

t1[t2/x] substitutes t2
for x in t1 with the
restriction that no free
variables in t2 become
bound after
substitution into t1

SUBST Substitution G1 ‘ t1 ¼ t2jG2 ‘ t½t1

G1 [G2 ‘ t½t2

t[ti] denotes a term t
containing a subterm ti

INST_TYPE Type
instantiation

G ‘ t

G ‘ t½s1; . . .; sn=v1; . . .; vn

t½s1; . . . ; sn=v1; . . . ; vn

substitutes in parallel
the types s1; . . . ; sn for
the variables v1; . . . ; vn
in t

DISCH Assumption
discharging

G ‘ t2
G- t1f g ‘ t1) t2

G–{t1} denotes the set
subtracting {t1} from G

MP Modus
ponens

G1 ‘ t1) t2jG2 ‘ t1
G1 [G2j-t2

558 CHAPTER 9 Functional verification

Tab

Pro

IMP

‘ 9
‘ O

‘ wð
‘ wð
‘ zð
‘ zð
‘ S

‘ IM

Q.E

9.5 Formal approaches 559
n OR i1; i2; outð Þ≜ out ¼ i1 _ i2ð Þ, where i1 and i2 are input ports and out is

an output port.

n NOT i; outð Þ≜ out ¼ :ið Þ, where i is an input port and out is an output

port.
Therefore, the formal definition for the implementation in Figure 9.33b is

IMPL x; y; zð Þ≜9w:OR x; y;wð Þ ^ NOT z;wð Þ. The goal of this proof is to derive

SPEC(x, y, z) from IMPL(x, y, z) by applying the inference rules specified in

Table 9.3. The proof — given step-by-step — is as follows in Table 9.4. Please

note that the actual process executed with HOL software may not look exactly

the same though. However, it should be similar to what it is shown below.
le 9.4 Step-by-step Proof for an NOR Function

of

L(x, y, z) { from the circuit diagram }

w:OR x; y;wð Þ ^ NOT z;wð Þ { by definition of the implementation }

R x; y;wð Þ ^ NOT z;wð Þ { strip off 9w }

¼ x _ yÞ ^ NOT z;wð Þ { by formal definition of OR gate }

¼ x _ yÞ ^ z ¼ :wð Þ { by formal definition of NOT gate }

¼ : x _ yð ÞÞ { substitute w with x _ y }

¼ :x ^ :yÞ { distribute : over x _ y }

PEC x; y; zð Þ { by definition of the specification }

PL x; y; zð Þ) SPEC x; y; zð Þ
.D.
Theorem proving can be applied to verify implementations described at

different levels of abstraction. The formal specification of the behavior of a

transistor-level CMOS inverter, for example, can be expressed by SPEC x; yð Þ≜
y ¼ :xð Þ [Gordon 1992]. Consider the network structure shown in Figure 9.34.

The implementation is built on basic modules and includes a power cell, a

ground cell, a P-type transistor, and an N-type transistor which are denoted as

VDD(p), GND(q), PTran(x, p, y), and NTran(x, y, q), respectively. The beha-

viors of these basic modules can be formally defined as:
n VDD pð Þ≜ p ¼ > trueð Þð Þ
n GND qð Þ≜ q ¼ ? flaseð Þð Þ
n PTran x; p; yð Þ≜ :x) p ¼ yð Þð Þ
n NTran x; y; qð Þ≜ x) y ¼ qð Þð Þ

VDD

GND

p

q

yx

FIGURE 9.34

CMOS inverter.

560 CHAPTER 9 Functional verification
Then, the entire network structure can be formulated as:

IMPL x; yð Þ≜9p; q:VDD pð Þ ^ PTran x; p; yð Þ ^ Ntran x; y; qð Þ ^ GND qð Þ
Again, the proof goal is to derive SPEC(x, y) from IMPL(x, y) by applying infer-

ence rules. The step-by-step proof process is as follows.

Proof

IMPL x; yð Þ from the network structuref g

‘ 9p; q:VDD pð Þ ^ PTran x; p; yð Þ ^ NTran x; y; qð Þ ^ GND qð Þ

fby definition of the implementation g

‘ VDD pð Þ ^ PTran x; p; yð Þ ^ NTran x; y; qð Þ ^ GND qð Þ

strip off 9p; qf g

‘ p ¼ >ð Þ ^ PTran x; p; yð Þ ^ NTran x; y; qð Þ ^ q ¼ ?ð Þ

fby definition of VDD and GND cells g

‘ p ¼ >ð Þ ^ PTran x;>; yð Þ ^ NTran x; y;?ð Þ ^ q ¼ ?ð Þ

substitute p in PTran; q in NTranf g

‘ 9p:p ¼ >ð Þ ^ PTran x;>; yð Þ ^ NTran x; y;?ð Þ ^ 9q:q ¼ ?ð Þ

fuse 9a:t1 ^ t2 ¼ 9a:t1ð Þ ^ t2 if a is free in t2 g

‘ >ð Þ ^ PTran x;>; yð Þ ^ NTran x; y;?ð Þ ^ >ð Þ

fuse 9a:a ¼ >ð Þ ¼ > and 9a:a ¼ ?ð Þ ¼ > g

‘ PTran x;>; yð Þ ^ NTran x; y;?ð Þ

use x ^ >ð Þ ¼ xf g

‘ :x) > ¼ yð Þð Þ ^ x) y ¼ ?ð Þð Þ

by definition of PTran and NTran cellsf g

‘ x _ > ¼ yð Þð Þ ^ :x _ y ¼ ?ð Þð Þ

by a) bð Þ ¼ :a _ bð Þf g

9.6 Advanced research 561
‘ x ^ :xð Þ _ x ^ y ¼ ?ð Þð Þ _ > ¼ yð Þ ^ :xð Þ _ > ¼ yð Þ ^ y ¼ ?ð Þð Þ

‘ ?ð Þ _ x ^ y ¼ ?ð Þð Þ _ > ¼ yð Þ ^ :xð Þ ?ð Þ

‘ x ^ y ¼ ?ð Þð Þ _ > ¼ yð Þ ^ :xð Þ

apply Boolean simplificationf g

‘ y ¼ :xð Þ

if x ¼ >) y ¼ ?ð Þ and if x ¼ ?) y ¼ >ð Þf g

‘ IMPL x; yð Þ) SPEC x; yð Þ
Q.E.D.

Theorem proving has been successfully applied to the verification of hardware
designs, such as the TAMARACK microprocessor [Joyce 1986] and the Viper

microprocessor [Cohn 1988]. Its strength is its ability to support the expressive-

ness of higher order logics, to relate circuit behaviors at different levels of

abstraction [Melham 1988], and to provide many effective reasoning utilities.

Moreover, the design hierarchy and regularity can be exploited by theorem pro-

vers, which enable users to be in full control of the verification process. Higher

order logics can specify and verify generic and parameterized hardware designs.

One such example would be a channel encoder with words in n-bit width. Also,
tactics of inference rules can continuously evolve during the deduction process.

Particularly frequent and useful theories/theorems can be customized and

retained for future proofs.

Verification by theorem proving requires users to familiarize themselves with

the proof system and to spend a considerable amount of effort toward develop-

ing the formal models for both the specification and the implementation. This is

one of the major disadvantages of the approach. Moreover, because of the lack

of sound proof systems for higher order logic, the derivation of inference rules
may require a great deal of human intervention, especially for complex and

large theorems. For these reasons, the application of theorem proving has been

limited and not widely used for industrial design projects.
9.6 ADVANCED RESEARCH

Simulation remains the mainstream verification approach in the industry. Its
scalability, along with its easy applicability to designs at almost any abstraction

level, makes it attractive for complex verification tasks. When used as a stand-

alone technique, simulation can detect simple and easy-to-find bugs. Its effec-

tiveness in finding corner-case, hard-to-detect bugs can be limited because of

the availability of high-quality stimuli that can cover a wide range of the corner

cases and can activate and reveal the subtle bugs. Although traditional formal

techniques—broadly speaking, model checking and theorem proving—can, in

principle, analyze and find subtle bugs, their applicability can be limited by their
runtime inefficiency and/or difficulty in use.

562 CHAPTER 9 Functional verification
For simulation-based approaches, measuring the coverage and preparing the

test vectors are the two most important things in the verification plan. The cov-
erage-driven verification (CDV) flow, shown in Figure 9.6, links these two

together and can be automated if the test generation constraints can be modi-

fied automatically [Bai 2003; Chen 2003; Wen 2006, 2007]. Such improvements

can substantially save the amount of manual efforts needed for coverage analysis

and test preparation. The improvements in coverage-driven verification can be

divided into two categories: feedback-based coverage-driven verification and

coverage-driven verification by construction.

Feedback-based coverage-driven verification modifies the biases and
seeds to direct the automatic test generation. A generic algorithm [Bose 2001]

can be applied to resynthesize test cases for optimizing the coverage. The

authors in [Tasiran 2001] represent the DUV as a Markov chain model and ana-

lyze the feedback data to modify the model’s parameters. The authors in [Fine

2003] cast the coverage-driven test generation in a statistical inference frame-

work by modeling the relationship between coverage information and the direc-

tives to the test generation as Bayesian networks. A machine-learning–based

technique in [Fine 2006] was later proposed to provide enhanced coverage
through automatically learning the relationship between the initial state and vec-

tor generation success.

Coverage-driven verification by construction derives an abstract model

that can capture the logical constraints in the DUV and assemble the new direc-

tives to correctly hit the uncovered events. [Ur 1999] abstract the processor

control as a set of FSMs and use them to automate the verification tasks. A phys-

ical test case is derived from a sequential trace of the state traversal in the FSM.

The works in [Chen 2003] and [Bai 2003] generate tests to target stuck-at and
crosstalk faults in processors and use a virtual constraint circuit (VCC)

for assisting the module-level test generation process. The application is for

software-based self-test (SBST) [Lai 2000]. A data-mining approach based

on simulation data was proposed in [Wen 2006, 2007] to approximate the

functionality of the DUV as BDDs that can then be used to better guide the test

generation process.

Although the capacity and performance of formal methods has improved sig-

nificantly over the past decade, such improvements barely kept pace with the
growth in design complexity. The search for new solutions resulted in some

powerful hybrid techniques that combined formal and informal approaches.

These hybrid techniques attempt to address verification bottlenecks by enhanc-

ing coverage of the state space traversed.

Researchers who investigated formal methods have widely recognized the

importance of providing a way to combine disparate tools. Joyce and Seger

experimented with combining trajectory evaluation with theorem proving.

They used trajectory evaluation as a decision procedure for the higher-order

9.7 Concluding remarks 563
logic (HOL) system [Joyce 1993]. A proposal called interface logics [Guttman

1991] discusses the idea of combining different theorem provers by defining a
single logic such that the logic of each individual tool can be viewed as its sub-

logics. [Jang 1997] used CTL model checking to verify a set of properties of

embedded microcontrollers, and the proof of the top-level specification was

achieved through a compositional argument by use of the properties instead

of through a theorem prover. A hybrid of two model-checking techniques,

called MIST [Hazelhurst 2002], enables a handshake between symbolic trajec-

tory evaluation and symbolic model checking.

Generally speaking, hybrid methods combining formal and informal tech-
niques aim to increase the design space coverage and, thus, the probability of

finding design errors. These types of methods include control space explora-

tion, directed functional test generation, combining ATPG with formal tech-

niques, and heuristic-based traversal. Control space exploration addresses

the problem of finding bugs and increases space coverage by exploring control

logic [Iwashita 1994; Ho 1995; Geist 1996; Moondanos 1998]. Directed func-

tional test generation leverages the strengths of both formal verification and sim-

ulation techniques to generate functional tests [Sumners 2000; Ganai 2001;
Mishra 2005]. Because ATPG can avoid state space explosion by use of dual jus-

tification and propagation techniques to localize the search, adding formal tech-

niques can compensate for the inherent incompleteness of ATPG, making the

combination a more complete and effective verification approach [Boppana

1999; Huang 2001; Vedula 2004]. Heuristic-based traversal tackles the need to

efficiently traverse state space by an extensive use of heuristics [Yang 1998;

Wagner 2005; Shyam 2006]. Note that because of the inherent incompleteness

of informal techniques, any method that combines an informal technique with
another is also an incomplete verification method.
9.7 CONCLUDING REMARKS

This chapter reviews thebasicconcepts of functional verification and the challenges

associated with it. Different levels of the verification hierarchy, including the

designer level, unit level, core level, chip level, and system/board level,

are explained. Various coverage metrics used for measuring the explored extent

of verification are provided. The simulation-based approach is currently the most

pervasive form of verification. Key components such as testbench and simulation
environment development are reviewed. The emerging assertion-based verification

method is explained in detail. To compensate for the incompleteness of simulation-

based verification, formal methods built onmathematical theorieswere developed.

Basic concepts in equivalence checking, model checking, and theorem proving are

reviewed. Current research efforts toward advancing functional verification are

summarized to conclude this chapter.

564 CHAPTER 9 Functional verification
9.8 EXERCISES
1

1

1

1

1

1

9.1. (Line Coverage) Suppose that the module in Box 9.11 was specified in

your Verilog HDL design:
BOX 9.11

1. module test;

2. reg X, Y, Z;

3. initial

4. begin

5. X ¼ 10b0;
6. Y ¼ 10b1;
7. if (X)

8. Z ¼ Y;

9. else
0.

1.

2.

0.

1.

2.
Z ¼ �Y;
end

endmodule
Calculate the line coverage after simulation and identify the line or lines
that has/have not been covered.
9.2. (Toggle Coverage) Suppose that the following module in Box 9.12

was specified in your Verilog HDL design:
BOX 9.12

1. module test;

2. reg [2:0] X;

3. initial

4. begin

5. X ¼ 30b000;
6. #100;

7. X ¼ 30b110;
8. #100;

9. X ¼ 30b010;

#100;

end

endmodule
After simulation, the register would have achieved a total toggle per-

centage of 50%. Please identify which toggles are missing.

1

1

1

1

1

1

1

1

1

1

1

1

9.8 Exercises 565
9.3. (Expression Coverage) Suppose that the following module was speci-
fied in your Verilog HDL design:
BOX 9.13

1. module test;

2. reg X, Y;

3. wire Z;

4. assign Z ¼ X|Y;

5. initial

6. begin

7. X ¼ 1’b0;

8. Y ¼ 1’b0;

9. #50;
0.

1.

2.

3.

4.

5.
X ¼ 1’b1;

#50;

Y ¼ 1’b1;

#50;

end

endmodule
This module consists of only one expression: X|Y. Calculate the expres-

sion coverage after simulation and identify those cases that are not

covered.
9.4. (FSM Coverage) Suppose that the module in Box 9.14 was specified in
your Verilog HDL design:
BOX 9.14
1. module test;

2. reg [1:0] D;

3. wire W, X, Y, Z;

4.

5. assign Y ¼ D[1] ^ D[0];

6. assign Z ¼ X ^ Y;

7. assign W ¼ �Z;
8. always @(posedge clk) begin

9. D[1] ¼ W;

0. D[0] ¼ Z;

1. end

2.

3. always #50 clk ¼ �clk;
4. initial

5. begin

16.

17.

18.

19.

20.

21.

22.

23.

FIGU

Gate-

X

FIGU

Gate-

566 CHAPTER 9 Functional verification
clk ¼ 0;

D ¼ 2’b00;

#100 X ¼ 1’b1;

#100 X ¼ 1’b0;

#100 X ¼ 1’b1;

#100 X ¼ 1’b0;

end

endmodule
Please first draw the corresponding finite state machine and then cal-

culate both the state and the arc coverage from the simulation.
9.5. (Equivalence Checking) Determine whether the following two com-
binational circuits are functionally equivalent. If not, produce a

counterexample.
F

X

Y

Z

X

Y

Z

F

Circuit A Circuit B

(b)(a)

RE 9.35

level schematics for the two circuits in Exercise 9.5.
9.6. (Equivalence Checking) Determine whether the following two

sequential circuits are functionally equivalent. If not, produce a coun-
terexample. Note that the initial states of all flip-flops are zero.
Y X Y

Circuit A Circuit B
(a) (b)

RE 9.36

level schematics for the two circuits in Exercise 9.6.

FIG

Gat

FIG

Gat

9.8 Exercises 567
9.7. (Kripke Structure) Derive the Kripke structure for the following
circuit.
QCLR

QSETD

QCLR

QSETD

QCLR

QSETDX

clk

URE 9.37

e-level schematic used for Exercise 9.7.
9.8. (Kripke Structure) Derive the Kripke structure for the following

circuit.
Y1

Y0

X

clk

QCLR

Q
SET

D

QCLR

Q
SET

D

URE 9.38

e-level schematic used for Exercise 9.8.
9.9. (Model Checking) Assume that f, c, and g are atomic propositions.

Please use LTL to describe the following design properties:
(a) If c occurs, g never occurs in the future.

(b) Always if f occurs, then eventually c occurs immediately fol-

lowed by g.
(c) Any occurrence of f is followed eventually by an occurrence of

c. Furthermore, g never occurs between f and c.
9.10. (Model Checking) Prove or disprove the following equivalences of

all LTL formulas:
(a) fWc � fUc _ Gf

FIGURE 9.39

Finite state m

FIGURE 9.40

Specification

568 CHAPTER 9 Functional verification
(b) fRc � fW f _ cð Þ
(c) fUc � cR f _ cð Þ
9.11. (Model Checking) Prove the following equivalences of all CTL

formulas:
(a) AGf � f ^ AXAGf
(b) EFc � c _ EXEFc
(c) E fUc½
 � c _ f ^ EXE½fUc
ð Þ
9.12. (Model Checking) Consider the model M in Figure 9.39. Please
check whether s0 � f and s3 � f hold the following CTL formulas

f’s in M:
(a) AG(AFa)
(b) EX(EXc)
(c) AG(EF(c_d))
9.13. (Model Checking) Assume that f is an atomic proposition. Please

prove or disprove that the formula EGFf in CTL* is equivalent to

the formula EGEFf in CTL.

9.14. (Theorem Proving) The exclusive-or function XOR can be defined

as f ¼ x � y ¼ �xyþ x�y in Figure 9.40a, and its implementation is

shown in Figure 9.40b. Please derive SPEC(x, y, z) from IMPL(x, y, z)

by applying the inference rules specified in Table 9.3.
a,d a,c

cb,ds0 s1

s3 s2

achine for the model M used for Exercise 9.12.

f = xƒy

x

y
z

(a) (b)

x

y

z

and implementation views in Exercise 9.14. (a) SPEC(x,y,z). (b) IMPL(x,y,z).

VDD

GND

out

qp

(a)

VDD

GND qp

out

(b)

FIGURE 9.41

Transistor schematics for NAND and NOR gates in Exercise 9.16. (a) a NAND gate. (b) a NOR

gate.

9.8 Exercises 569
9.15. (Theorem Proving) Given i1, i2 as input ports and out as an output

port, the formal specifications for NAND and XOR gates can be repre-

sented as:
n NAND(i1,i2,out) ≜ out ¼ :(i1 ^ i2)

n XOR(i1,i2,out) ≜ out ¼ (i1 ^ :i2) _ (:i1 ^ i2)

(a) Derive the formal descriptions for the two circuits in Exercise

9.5.

(b) Prove that the two circuits are equivalent by applying inference

rules specified in Table 9.3.
9.16. (Theorem Proving) Given i1 and i2 as input ports and out as an out-
put port, the formal specifications for NAND and NOR gates are:
n NAND(i1, i2, out) ≜ out ¼ :(i1 ^ i2)

n NOR(i1, i2, out) ≜ out ¼ :(i1 _ i2)

(a) Derive the formal specifications for a NAND gate from the CMOS

implementation in Figure 9.41a.

(b) Derive the formal specifications for a NOR gate from the CMOS

implementation in Figure 9.41b.

570 CHAPTER 9 Functional verification
ACKNOWLEDGMENTS

We thank Professor Michael S. Hsiao of Virginia Tech, Professor Jing-Yang Jou of National Chiao Tung

University, and Professor Jie-Hong (Roland) Jiang of National Taiwan University for reviewing the

text and providing helpful comments.
REFERENCES

R9.0 Books

[Bailey 2007] G. Bailey, G. Martin, and A. Piziali, ESL Design and Verification: A Prescription for

Electronic System Level Methodology, Morgan Kaufmann, San Francisco, February 2007.

[Bergeron 2000] J. Bergeron, Writing Testbenches, Function Verification of HDL Models, Second

edition, Kluwer Academic Publishers, New York, February 2003.

[Dempster 2002] D. Dempster and M. Stuart, Verification Methodology Manual: Techniques for

Verifying HDL Designs, Third Edition, Teamwork International, Hampshire, UK, June 2002.

[Foster 2004] H. Foster, A. Krolnik, and D. Lacey, Assertion-Based Design, Second Edition, Kluwer

Academic Publishers, New York, May 2004.

[Gorden 1993] M. J. C. Gorden and T. F. Melham, Introduction to HOL: A Theorem Proving Envi-

ronment for Higher Order Logic, Cambridge University Press, London, June 1993.

[Granas 2003] A. Granas and J. Dugundji, Fixed Point Theory, Springer, New York, June 2003.

[Huth 2004] M. Huth and M. Ryan, Logic in Computer Science: Modelling and Reasoning about

Systems, Second Edition, Cambridge University Press, New York, June 2004.

[James 2003] P. James, Verification Plans: The Five-Day Verification Strategy for Modern Hard-

ware Verification Languages, Kluwer Academic Publishers, New York, October 2003.

[Nipkow 2002] T. Nipkow, L. C. Paulson, and M. Wenzel, Isabelle/HOL: A Proof Assistant for

Higher-Order Logic, Springer-Verlag, Berlin Heidelberg, May 2002.

[Palnitkar 2003a] S. Palnitkar, VerilogW HDL: A Guide to Digital Design and Synthesis, Second Edi-

tion, Prentice Hall PTR, New Jersey, March 2003.

[Palnitkar 2003b] S. Palnitkar, Design Verification with e, Prentice Hall PTR, New Jersey, October

2003.

[Piziali 2004] A. Piziali, Functional Verification Coverage Measurement and Analysis, Springer,

New York, October 2004.

[Prior 1957] A. N. Prior, Time and Modality, Clarendon Press, Oxford, 1957.
R9.1 Introduction

[ANSI/ASQC 1978] ANSI/ASQC A3, Quality systems terminology. American Society for Quality Con-

trol, Milwaukee, WI, 1978.

[Bailey 2002] B. Bailey, The wake of the sleeping giant-verification, Scalable Verification Technical

Publications, http://www.mentor.com, April 2002.

[Piziali 2006] A. Piziali, Verification planning to functional closure of processor-based SoCs, in Proc.

DesignCon, 3-TP2, February 2006.
R9.2 Verification Hierarchy

[Scafidi 2004] C. Scafidi, J. D. Gibson, and R. Bhatia, Validating the Itanium 2 exception control unit:

A unit-level approach, IEEE Design & Test of Computers, 21(2), pp. 94–101, March 2004.

References 571
R9.3 Measuring Verification Quality

[Benjamin 1999] M. Benjamin, D. Geist, A. Hartman, Y. Wolfsthal, G. Mas, and R. Smeets, A study in

coverage-driven test generation, in Proc. ACM/IEEE Design Automation Conf., pp. 970–975,

June 1999.

[Drucker 2002] L. Drucker, Functional coverage metrics—the next frontier, EETimes, http://www

.eetimes.com, August 2002.

[Gluska 2003] A. Gluska, Coverage-oriented verification of Banias, in Proc. ACM/IEEE Design

Automation Conf., pp. 280–284, June 2003.

[Verisity 2001] Verisity Design Inc., Coverage-Driven Functional Verification, White Paper, http://

www.verisity.com, 2001.
R9.4 Simulation-Based Approach

[Accellera 2002a] Accellera, http://www.systemverilog.org, 2002

[Accellera 2002b] Accellera, http://www.accellera.org, 2002

[Synopsys 2001] Synopsys, http://www.open-vera.com, 2001
R9.5 Formal Approaches

[Abdulla 2000] P. A. Abdulla, P. Bjesse, and N. Eén, Symbolic reachability analysis based on SAT sol-

vers, in Proc. 6th Int. Conf. on Tools and Algorithms for the Construction and Analysis of Sys-

tems, pp. 411–425, March 2000.

[Biere 1999] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, Symbolic model checking without BDDs, in

Proc. Workshop on Tools and Algorithms for the Construction and Analysis of Systems,

pp. 193–207, March 1999.

[Brand 1993] D. Brand, Verification of large synthesized designs, in Proc. IEEE/ACM Int. Conf. on

Computer-Aided Designs, pp. 534–537, November 1993.

[Burch 1990] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L.-J. Hwang, Symbolic model

checking: 1020 states and beyond, in Proc. IEEE Symp. on Logic in Computer Science,

pp. 1–33, June 1990.

[Calypto 2008] Calypto Design Systems, SLEC System, http://www.calypto.com, 2008.

[Clarke 1986] E. M. Clarke, E. A. Emersion, and A. P. Sistla, Automatic verification of finite state con-

current system using temporal logic specifications, ACM Trans. on Programming Languages

and System, 8(2), pp. 144–163, April 1986.

[Cohn 1988] A. Cohn, Correctness properties of the VIPER block model: The second level, Techni-

cal Report No. 134, University of Cambridge, Computer Laboratory, May 1988.

[Coq 2003] The Coq Development Team, The Coq Proof Assistant Reference Manual, version 7.4,

INRIA, http://coq.inria.fr/doc/main.html, February 2003 .

[Emerson 1990] E. A. Emerson, Temporal and modal logic, in Handbook of Theoretical Computer

Science, Vol. B, Elsevier, pp. 996–1072, 1990.

[Goldberg 2000] E. Goldberg, M. Prasad, and R. Brayton, Using SAT for combinational equivalence

checking, in Proc. Int. Workshop on Logic Synthesis, pp. 185–191, May 2000.

[Huang 2000] S.-Y. Huang, K.-T. Cheng, K.-C. Chen, C.-Y. Huang, and F. Brewer, AQUILA: An Equiva-

lence Checking System for Large Sequential Designs, IEEE Trans. on Computers, 49(5),

pp. 443–464, May 2000.

[Joyce 1986] J. J. Joyce, G. Birtwistle, and M. Gordon, Proving a computer correct in higher order

logic, Technical Report No. 134, University of Cambridge, Computer Laboratory, 1986.

[Kaufmann 2002] M. Kaufmann and J. Moore, A computational logic for applicative common lisp, in

A Companion to Philosophical Logic, pp. 724–741, Blackwell Publishers, 2002.

572 CHAPTER 9 Functional verification
[Kripke 1963] S. A. Kripke, Semantic consideration on modal logic, in Proc. A Colloquium: Model

and Many Valued Logic, Acta Philosophica Fennica, 16, pp. 83–94, August 1963.

[Kunz 1993] W. Kunz, HANNIBAL: An efficient tool for logic verification based on recursive learning,

in Proc. IEEE/ACM Int. Conf. on Computer-Aided Design, pp. 538–543, November 1993.

[Lu 2003] F. Lu, L.-C. Wang, K.-T. Cheng, and R. C.-Y. Huang. A circuit SAT solver with signal corre-

lation guided learning, in Proc. IEEE/ACM Design, Automation and Test in Europe Conf.,

pp. 892–897, March 2003.

[Martin 2004] A. Martin, Adequate sets of temporal connectives in CTL, Elsevier Electronic Notes in

Theoretical Computer Science, 52(1), pp. 1–11, January 2004.

[McMillan 1992] K. L. McMillan, Symbolic Model Checking—An Approach to the State Explosion

Problem, PhD thesis, SCS, Carnegie Mellon University, 1992.

[Melham 1988] T. F. Melham, Abstraction mechanisms for hardware verification, in VLSI Specifica-

tion, Verification, and Synthesis, pp. 129–157, Kluwer Academic Publishers, Boston, 1988.

[Owicki 1982] S. Owicki and L. Lamport, Proving liveness properties of concurrent programs, ACM

Trans. on Programming Languages and Systems, 4(3), pp. 455–495, July 1982.

[Owre 1992] S. Owre, J. M. Rushby, and N. Shankar, PVS: A prototype verification system, in Proc.

11th Int. Conf. on Automated Deduction (CADE), pp. 748–752, June 1992.

[Saaltink 1999] M. Saaltink, The Z/EVES Users Guide, Technical Report TR-97-5493-06, ORA,

Canada, 1999.
R9.6 Advanced Research

[Bai 2003] X. Bai, L. Chen, and S. Dey, Software-based self-test for crosstalk in processors, in Proc.

Int. Workshop on High Level Design Validation and Test, pp. 11–16, November 2003.

[Bose 2001] M. Bose, J. Shin, E. M. Rudnick, T. Dukes, and M. Abadir, A genetic approach to auto-

matic bias generation for biased random instruction generation, in Proc. 2001 Congress on Evo-

lutionary Computation, pp. 442–448, May 2001.

[Chen 2003] L. Chen, S. Ravi, A. Raghunathan, and S. Dey, A scalable software-based self-test meth-

odology for programmable processors, in Proc. ACM/IEEE Design Automation Conf.,

pp. 548–553, June 2003.

[Fine 2003] S. Fine and A. Ziv, Coverage directed test generation for functional verification using

Bayesian networks, in Proc. ACM/IEEE Design Automation Conf., pp. 286–291, June 2003.

[Fine 2006] S. Fine, A. Freund, I. Jaeger, Y. Mansour, Y. Naveh, and A. Ziv, Harnessing machine

learning to improve the success rate of stimuli generation, IEEE Trans. on Computers, 55(11),

pp. 1344–1355, November 2006.

[Ganai 2001] M. Ganai, P. Yalagandula, A. Aziz, A. Kuehlmann, and V. Singhal, SIVA: A system for cov-

erage-directed state space search, J. of Electronic Testing: Theory and Applications, 17(1),

pp. 11–27, February 2001.

[Geist 1996] D. Geist, M. Farkas, A. Landver, Y. Lichtenstein, S. Ur, and Y. Wolfsthal, Coverage-

directed test generation using symbolic techniques, in Proc. Int. Conf. on Formal Methods in

Computer-Aided Design, pp. 143–158, November 1996.

[Guttman 1991] J. D. Guttman, A proposed interface logic for verification environments, Technical

Report M91-19, the MITRE Corporation, March 1991.

[Hazelhurst 2002] S. Hazelhurst, G. Kamhi, O. Weissberg, and L. Fix, A hybrid verification approach:

Getting deep into the design, in Proc. ACM/IEEE Design Automation Conf., pp. 111–116, June

2002.

[Ho 1995] R. C. Ho, C. H. Yang, M. A. Horowitz, and D. L. Dill, Architecture validation for proces-

sors, in Proc. Int. Symp. on Computer Architecture, pp. 404–413, May 1995.

[Huang 2001] C.-Y. Huang and K.-T. Cheng, Using word-level ATPG and modular arithmetic con-

straint-solving techniques, IEEE Trans. on Computer-Aided Design, 20(3), pp. 381–391, March

2001.

References 573
[Iwashita 1994] H. Iwashita, S. Kowatari, T. Nakata, and F. Hirose, Automatic test program genera-

tion for pipelined processors, in Proc. IEEE/ACM Int. Conf. on Computer-Aided Design,

pp. 580–583, November 1994.

[Jang 1997] J.-Y. Jang, S. Qadeer, M. Kaufmann, and C. Pixley, Formal verification of FIRE: A case

study, in Proc. ACM/IEEE Design Automation Conf., pp. 173–177, June 1997.

[Joyce 1993] J. J. Joyce and C. H. Seger, Linking BDD-based symbolic evaluation to interactive theo-

rem-proving, in Proc. ACM/IEEE Design Automation Conf., pp. 469–474, June 1993.

[Lai 2000] W.-C. Lai, A. Krstic, and K.-T. Cheng, Functionally testable path delay faults on a micropro-

cessor, IEEE Design & Test of Computers, 17(4), pp. 6–14, October 2000.

[Mishra 2005] P. Mishra and N. Dutt, Functional coverage driven test generation for validation of

pipelined processors, in Proc. IEEE/ACM Design, Automation and Test in Europe Conf.,

pp. 678–683, March 2005.

[Moondanos 1998] D. Moondanos, J. A. Abraham, and Y. V. Hoskote, Abstraction techniques for

validation coverage analysis and test generation, IEEE Trans. on Computers, 47(1), pp. 2–14,

January 1998.

[Shyam 2006] S. Shyam and V. Bertacco, Distance-guided hybrid verification with GUIDO, in Proc.

IEEE/ACM Design, Automation and Test in Europe Conf., pp. 1211–1216, March 2006.

[Tasiran 2001] S. Tasiran, F. Fallah, D. G. Chinnery, S. J. Weber, and K. Keutzer, A functional valida-

tion technique: Biased-random simulation guided by observability-based coverage, in Proc.

IEEE/ACM Int. Conf. on Computer-Aided Design, pp. 82–88, September 2001.

[Ur 1999] S. Ur and Y. Yadin, Micro architecture coverage directed generation of test programs, in

Proc. ACM/IEEE Design Automation Conf., pp. 175–180, June 1999.

[Vedula 2004] V. M. Vedula, W. J. Townhead, and J. A. Abraham, Program slicing for ATPG-based

property checking, in Proc. Int. Conf. on VLSI Design, pp. 591–596, January 2004.

[Wagner 2005] I. Wagner, V. Bertacco, and T. Austin, StressTest: An automatic approach to test

generation via activity monitors, in Proc. ACM/IEEE Design Automation Conf., pp. 783–788,

June 2005.

[Wen 2006] H.-P. Wen, L.-C. Wang, and K.-T. Cheng, Simulation-based functional test generation for

embedded processors, IEEE Trans. on Computers, 55(11), pp. 1–9, November 2006.

[Wen 2007] H.-P. Wen, L.-C. Wang, and J. Bhadra, An incremental learning framework for estimating

signal controllability in unit-level verification, in Proc. IEEE/ACM Int. Conf. on Computer-Aided

Design, pp. 250–257, November 2007.

[Yang 1998] C. H. Yang and D. Dill, Validation with guided search of the state space, in Proc. ACM/

IEEE Design Automation Conf., pp. 599–604, June 1998.

This page intentionally left blank

CHAPTER
10
Floorplanning
Tung-Chieh Chen
National Taiwan University, Taipei, Taiwan

Yao-Wen Chang
National Taiwan University, Taipei, Taiwan
IS CHAPTER
ABOUT TH

Floorplanning is an essential design step for hierarchical, building-module

design methodology. Floorplanning provides early feedback that evaluates archi-
tectural decisions, estimates chip areas, and estimates delay and congestion

caused by wiring. As technology advances, design complexity is increasing

and the circuit size is getting larger. To cope with the increasing design

complexity, hierarchical design and intellectual property (IP) modules are

widely used. This trend makes floorplanning much more critical to the quality

of a very large-scale integration (VLSI) design than ever.

This chapter starts with the formulation of the floorplanning problem. After

the problem formulation, the two most popular approaches to floorplanning,
simulated annealing and analytical formulations, are discussed. On the basis

of simulated annealing, three popular floorplan representations, normalized

Polished expression, B*-tree, and sequence pair, are further covered and com-

pared. Some modern floorplanning issues such as soft modules, fixed-outline

constraints, and large-scale designs are also addressed.
10.1 INTRODUCTION

In Chapter 1, we introduced the electronic design automation flow. Floorplan-

ning is the first major step in physical design; it is particularly important

because the resulting floorplan affects all the subsequent steps in physical

design, such as placement and routing that are discussed in Chapters 11 and 12,

respectively.
10.1.1 Floorplanning basics
575

Twopopular approaches to floorplanning, simulated annealing and analytical
formulation, are typically used to solve the floorplanning problem [Sait 1999;

576 CHAPTER 10 Floorplanning
Sherwani 1999]. Basically, simulated annealing-based floorplanning relies on the

representation of the geometric relationship among modules, whereas an analyti-
cal approach usually captures the absolute relationship directly. The topological

representation profoundly affects the operations of modules and the complexity

of a simulated annealing-based floorplan design process. In this chapter, three

popular floorplan representations, normalized Polish expression [Wong

1986], B*-tree [Chang 2000], and Sequence Pair [Murata 1995], are introduced.

In general, these representations are efficient, flexible, and effective in modeling

geometric relationships (e.g., left, right, above, and below relationships)

among modules for floorplan designs. The simulated annealing-based floorplan-
ning is concluded with the comparisons of popular floorplan representations in

the recent literature.

The analytical approach applies mathematical programming that is com-

posed of an objective function and a set of constraints. The objective function

models the cost metric (e.g., area and wirelength) for floorplan optimization,

whereas the constraints capture the geometric and dimensional restrictions

among modules (e.g., the nonoverlapping and aspect ratio constraints). Specifi-

cally, this chapter introduces mixed integer linear programming (ILP) for
the floorplanning problem [Sutanthavibul 1990]. For the mixed ILP formulation,

an approximated area is modeled by a linear cost function, whereas the non-

overlapping and aspect ratio constraints are modeled by a set of linear equa-

tions. To handle the expensive time complexity of mixed ILPs, a successive
augmentation method that solves a partial problem at each step to reduce

the floorplanning complexity is also introduced.

In addition to chip areaminimization, modern VLSI floorplanning also needs to

handle some important issues such as soft modules and fixed-outline con-
straints. Unlike a hard module that has a fixed dimension (width and height),

the shape of a soft module is to be decided during floorplanning, although its area

is fixed. Therefore, a floorplanner needs to find a desired aspect ratio for each soft

module to optimize the floorplan cost. As pointed out by [Kahng 2000], modern

VLSI design is based on a fixed-die (fixed-outline) floorplan, rather than a variable-

die one. An area-optimized floorplan without considering the fixed-outline con-

straint may be useless, because it might not fit into the given outline. Therefore,

modern floorplanning should address the fixed-outline consideration.
As the transistor feature size scales down, design complexity is increasing

drastically. To cope with the increasing design complexity, intellectual prop-
erty (IP) modules are widely reused for large-scale designs. Consequently, a

modern VLSI design often consists of large-scale functional modules, and

designs with billions of transistors are already in production. Therefore, efficient

and effective design methods and tools capable of placing and optimizing large-

scale modules are essential for modern chip designs. In addition to the enhance-

ment in floorplanning tools, the floorplanning frameworks are evolving to
tackle the challenges in design complexity. This chapter also addresses the

multilevel frameworks for large-scale building module designs.

10.1 Introduction 577
10.1.2 Problem statement
The floorplanning problem can be stated as follows: Let B¼ {b1, b2, . . . , bm} be a
set of m rectangular modules whose respective width, height, and area are

denoted by wi, hi, and ai, 1 � i � m. Each module is free to rotate. Let (xi, yi)

denote the coordinate of the bottom-left corner ofmodule bi, 1� i�m, on a chip.

A floorplan F is an assignment of (xi, yi) for each bi, 1 � i �m, such that no two

modules overlapwith each other. The goal of floorplanning is to optimize a prede-

fined cost metric such as a combination of the area (i.e., the minimum bounding

rectangle of F) and wirelength (i.e., the sum of all interconnection lengths)

induced by a floorplan. Formodern floorplan designs, other costs such as routabil-
ity, power, and thermal might also need to be considered.
10.1.3 Floorplanning model
We can classify floorplans into two categories for discussions: (1) slicing floor-
plans and (2) non-slicing floorplans. A slicing floorplan can be obtained by

repetitively cutting the floorplan horizontally or vertically, whereas a non-slicing

floorplan cannot. The given dimension of each hard module must be kept. All mod-
ules are free of rotation; if a module is rotated, its width and height are exchanged.
Example 10.1 Tw
o example floorplans are shown in Figure 10.1. Consider the non-slicing floorplan with

five modules shown in Figure 10.1a first. The five modules can be rearranged to form

a slicing floorplan given in Figure 10.1b, in which each module can be extracted by

repetitively cutting the floorplan horizontally or vertically.

10.1.3.1 Slicing floorplans

On the basis of the slicing property of a slicing floorplan, we can use a binary

tree to represent a slicing floorplan [Otten 1982]. A slicing tree is a binary tree
with modules at the leaves and cut types at the internal nodes. There are two

cut types, H and V. The H cut divides the floorplan horizontally, and the left

(right) child represents the bottom (top) sub-floorplan. Similarly, the V cut

divides the floorplan vertically, and the left (right) child represents the left

(right) sub-floorplan.
3
4

5

2
1

4

5

3

2

1

(b)(a)

FIGURE 10.1

Examples of (a) a non-slicing floorplan. (b) a slicing floorplan.

578 CHAPTER 10 Floorplanning
Note that a slicing floorplan may correspond to more than one slicing tree,

because the order of the cut-line selections may be different. This representa-
tion duplication might incur a larger solution space and complicate the optimi-

zation process. Therefore, it is desirable to prune such redundancies to facilitate

floorplan design. As such, we refer to a slicing tree as a skewed slicing tree if

it does not contain a node of the same cut type as its right child.
Example 10.2 Fi
gure 10.2 shows the slicing floorplan from Figure 10.1b and its corresponding slicing

tree. The tree root, V, represents the vertical cut-line that divides the floorplan into the left

sub-floorplan (modules 1 and 2) and the right sub-floorplan (modules 3, 4, and 5). The

left child of the root is a node H, which horizontally divides the left sub-floorplan into

the bottom sub-floorplan (module 1) and the top sub-floorplan (module 2). Similarly,

the right child of the root horizontally cuts the sub-floorplan into the bottom (module 3)

and the top (modules 4 and 5) sub-floorplans, and the top sub-floorplan is further divided

into the bottom (module 4) and the top (module 5) sub-floorplans.

There are two slicing trees corresponding to the floorplan in Figure 10.2a. Figure 10.3a

and Figure 10.3b show the two slicing trees. The slicing tree in Figure 10.3a is a non-

skewed slicing tree, because there is a node H as the right child of anther node H (see

the dashed box). The slicing tree in Figure 10.3b gives a skewed one.

10.1.3.2 Non-slicing floorplans

The non-slicing floorplan is more general than the slicing floorplan. However,

because of its non-slicing structure, we cannot use a slicing tree to model it.

Instead, we can use a horizontal constraint graph (HCG) and a vertical
constraint graph (VCG) to model a non-slicing floorplan. The horizontal

constraint graph defines the horizontal relations of modules, and the vertical

constraint graph defines the vertical ones. In a constraint graph, a node repre-
sents a module. If there is an edge from node A to node B in the HCG (VCG),

then module A is at the left (bottom) of module B.
V

H H

H3

2 5

3

4
1

(b)(a)

54

21

FIGURE 10.2

An example of (a) a slicing floorplan. (b) a slicing tree modeling.

V

H H

H1 2

4 5

3

V

H H

H1 2

4

5

skewed non-skewed

(a) (b)

3

FIGURE 10.3

An example of (a) a non-skewed slicing tree. (b) a skewed slicing tree. Both slicing trees

represent the same floorplan shown in Figure 10.2a.

6 7
5

32

4
1

6

1
2 3

4
5

7
6

1 2 3

4
5

7

(a) (b) (c)

FIGURE 10.4

An example of (a) a non-slicing floorplan. (b) The horizontal constraint graph. (c) the vertical

constraint graph.

10.1 Introduction 579
Example 10.3 C
onsider the example non-slicing floorplan given in Figure 10.4a. Figure 10.4b and

Figure 10.4c show the corresponding horizontal and vertical constraint graphs of the

floorplan, respectively. Because module 1 is at the left of module 4, we add a directed

edge from node 1 to node 4 in the horizontal constraint graph. Similarly, module 2 is

below module 4, and thus we add a directed edge from node 2 to node 4 in the vertical

constraint graph. On the basis of the left/right and above/below relationships, we can

construct a horizontal and a vertical constraint graph corresponding to a floorplan.
10.1.4 Floorplanning cost
The goal of floorplanning is to optimize a predefined cost function, such as the

area of a resulting floorplan given by the minimum bounding rectangle of the

floorplan region. The floorplan area directly correlates to the chip silicon cost.

The larger the area, the higher the silicon cost. The space in the floorplan bound-

ing rectangle uncovered by any module is called white space or dead space.

580 CHAPTER 10 Floorplanning
Other floorplanning cost, such as wirelength, will also be considered.

Shorter wirelength not only can reduce signal delay but also can facilitate wire
interconnection at the routing stage. The floorplanning objective can also be a

combined cost, such as area plus wirelength.
Example 10.4 C
onsider the two different floorplans for the same seven modules given in Figure 10.5.

The left figure (see Figure 10.5a) is an optimal floorplan in terms of area, because there

is no wasted area among modules. The right figure (see Figure 10.5b) illustrates a

non-optimal floorplan. It is clear that the area of the right floorplan is larger than that of

the left one, because there are white spaces in the floorplan shown in Figure 10.5b.

There are two popular approaches to find a desired floorplan: simulated

annealing and the analytical approach. The two approaches are discussed in

the following two sections.
10.2 SIMULATED ANNEALING APPROACH

Simulated annealing (SA) is probably the most popular method for floorplan

optimization [Kirpatrick 1983]. It has the significant advantage of easily incor-

porating an optimizing goal into the objective function. To apply simulated

annealing for floorplan design, it needs to first encode a floorplan as a solution,

called a floorplan representation, which models the geometric relation of
modules in a floorplan. A floorplan representation not only induces a solution

space that contains all feasible solutions defined by the representation but also

induces a unique solution structure that guides the search of simulated anneal-

ing to find a desired floorplan in the solution space. In this section, we detail

three popular floorplan representations, Normalized Polish Expression
[Wong 1986], B*-tree [Chang 2000], and Sequence Pair [Murata 1995], and

summarize the properties of some popular recent representations in the

literature.
6 7
5

32

(a) (b)

4
1

6

7

5
3

2
4

1
white space

FIGURE 10.5

An example of (a) an optimal floorplan in terms of area. (b) a non-optimal floorplan.

Cost (Objective function)

State
(Solution space)

local optima
global optimum

S

L
G

FIGURE 10.6

Illustration of simulated annealing.

10.2 Simulated annealing approach 581
10.2.1 Simulated annealing basics
Figure 10.6 illustrates the simulated annealing process. In Figure 10.6, the cost
of a floorplan (represented by the vertical axis) is plotted as a function of the

state of a floorplan configuration (represented by the horizontal axis). Given

an initial solution S, it tries to search for a globally optimal floorplan solution

with the lowest cost. For a greedy approach, it might iteratively search for a

neighboring solution with a lower cost than that of the current solution until

such a neighboring solution cannot be found. For this greedy mechanism, it is

very likely that we get stuck in a locally optimal solution, such as L in Figure 10.6.
Once it gets stuck at L, it is impossible to escape from this locally optimal solu-

tion, because all neighboring solutions have higher costs than L. Unlike the

greedy approach, simulated annealing adopts a hill-climbing technique to

escape from the locally optimal solution L. Given a solution, simulated annealing

provides a non-zero probability to move from the current solution to a neighbor-

ing one even with a higher cost. With this uphill move capability, it is possible

to reach the globally optimal solutionG nomatter where the initial solution starts.

The probability of accepting a neighboring solution depends on two factors: (1)
the magnitude of the uphill move and (2) the search time. To implement this idea,

the probability of accepting a new solution S0 is defined by:

ProbðS ! S0Þ ¼ 1 if DC � 0 ðdown-hill moveÞ
eDC=T if DC > 0 ðup-hill moveÞ

�

where DC ¼ cost(S0) � cost(S), and T is the current temperature. Every down-

hill move is accepted, and the probability of accepting an uphill move depends on

themagnitude of themove (cost difference) and the search time (annealing temper-

ature). Initially, we are assigned a high temperature. As the annealing process goes
by, the temperature is typically decreased by a fixed ratio, say 0.9. For example, a

simple annealing schedule is given by T ¼ T0, T1, T2, . . . , and Ti ¼ riTi-1, r < 1.

At each temperature, we perturb the current solutions to search for a number of

neighboring solutions fork times,where k is a user-defined value, and keep the best

solution found so far. This process continues until the temperature is reduced to

a “frozen” state or a predefined termination condition is reached. Then, the

582 CHAPTER 10 Floorplanning
best-found solution is reported. It is clear that the probability of accepting an “infe-

rior” solution is higher if the cost increase is smaller and/or the current temperature

T is higher. In practice, simulated annealing is often quite effective in searching for a

desired solution. The whole simulated annealing process is an analogy of annealing

an iron toproduce a craftwork, and it iswhere the name simulated annealing comes

from. At a high temperature, the atoms of iron get more energy and thus have more
freedom tomove around. As the temperature reduces gradually, the atoms reach an

equilibrium state step by step. As a result, the iron forms a desired shape. Algorithm

10.1 summarizes the generic algorithm of simulated annealing.

In addition to simulated annealing, we could also apply the iterative
method (or greedy search) for floorplan designs. For this method, all uphill

moves are rejected. The implementation is easier, and it typically can converge

to a solution faster. However, it is very likely that this method gets stuck at some

local optimum (see Figure 10.6 for an illustration). Consequently, its solution
quality highly depends on the selected initial solution, and thus this approach

is not as popular as simulated annealing for floorplan designs.

Algorithm 10.1 Simulated Annealing Algorithm for Floorplanning

1. Get an initial floorplan S; SBest ¼ S;
2. Get an initial temperature T > 0;
3. while not “frozen” do
4. for i ¼ 1 to k do
5. Perturb the floorplan to get a neighboring S0 from S;
6. DC ¼ cost(S0) – cost(S);
7. if DC < 0 then // down-hill move

8 S ¼ S0;
9. else // uphill move
10. S ¼ S0 with the probability e–DC/T;
11. end if
12. if cost(SBest) > cost(S) then
13. (SBest) ¼ S;
14. end if
15. end for
16. T ¼ rT; // reduce temperature
17. end while
18. return SBest;

There are four basic ingredients for simulated annealing: (1) solution space,
(2) neighborhood structure, (3) cost function (objective function),
and (4) annealing schedule. A floorplan representation defines the solution

space and the neighborhood structure, the cost function is defined by the

10.2 Simulated annealing approach 583
optimization goal, and the annealing schedule captures the temperature change

during the annealing process.
10.2.2 Normalized Polish expression for slicing
floorplans
In Section 10.1.3, a binary tree is used to model a slicing floorplan. We can
record the binary tree by use of a Polish expression E ¼ e1 e2 . . . e2n�1 where

ei 2 {1, 2, . . . , n, H, V}. Here, each number denotes a module and H (V) repre-

sents a horizontal (vertical) cut in the slicing floorplan. The Polish expression is

the postfix ordering of a binary tree, which can be obtained from the post-

order traversal on a binary tree given in Algorithm 10.2. The length of E is

2n�1, where n is the number of modules.

Because the Polish expression is the postfix order of a slicing tree, it has the

balloting property: for every sub-expression Ei ¼ e1 . . . ei, 1 � i � 2n�1, the
number of operands is always larger than the number of operators.

As shown in Section 10.1.3, a slicing floorplan might induce multiple slicing

trees, resulting in significant redundancies. Such redundancies will enlarge the

solution space and complicate the search for a desired solution. Therefore, it is

desired to prune such redundant solutions. As such, the normalized Polish
expression E corresponding to the skewed slicing tree T is defined [Wong

1986]; a skewed slicing tree does not contain any node of the same cut type as

its right child, and so does a normalized Polished expression, which does not con-
tain consecutive operators of the same type, which is “HH” or “VV,” in E. This

results in a 1-1 correspondence between a set of skewed slicing trees with nmod-

ules and the corresponding set of normalized Polish expressions of length 2n�1.

Algorithm 10.2 PostOrderTraversal(T)

1. /* Post-order traversal of a binary tree */
2. if root(T) ! ¼ NULL then
3. PostOrderTraversal(LeftSubtree(T));
4. PostOrderTraversal(RightSubtree(T));
5. Visit(root(T));
6. end if
7. return;

To transform a normalized Polish expression E to its corresponding floorplan F, we

can use a bottom-up method to recursively combine the slicing sub-floorplans on

the basis of E. There are two binary operators, H and V. If a and b are twomodules

or sub-floorplans, the expression abH implies to place a below b, and abV implies

to place a to the left of b, as illustrated in Figure 10.7.The packing is performed by

a post-order procedure. Each time, we combine two slicing sub-floorplans accord-
ing to the operator type. For example, E ¼ 12H implies that module 1 is placed

a

b

a b

a b

a b

H

V

=

=

FIGURE 10.7

Binary operators, H and V, for slicing floorplans.

584 CHAPTER 10 Floorplanning
belowmodule 2, and E¼ 34V implies that module 3 is to the left of module 4. For

E ¼ 123H . . . , because E is in the postfix expression, the operator H takes the

operands 2 and 3, and module 2 is to the left of module 3.
BecauseE is in the postfix form,we can use a stack to facilitate the packing pro-

cedure (see Algorithm 10.3). Each time, we check an operand or an operator from

E. If it is an operand,we push it into the stack; if it is an operator, we pop two oper-

ands from the stack and derive the new sub-floorplan based on the two operands

and the operator. Then, the resulting sub-floorplan is treated as an operand and is

pushed into the stack. This procedure continues until all operands/operators in E

are processed, and the final floorplan is popped out from the stack.

Algorithm 10.3 Polish Expression Evaluation (E)

1. stack s;
2. for i ¼ 1 to 2n-1 do
3. if ei is an operand then s.push(ei);
4. if ei is an operator then
5. a ¼ s.pop(); b ¼ s.pop(); c ¼ a ei b;
6. s.push(c);
7. end if
8. end for
9. return s.pop();
Example 10.5 G
iven a binary tree shown in Figure 10.8, we can construct a Polish expression E ¼
12H34H5HV based on the post-order traversal.

The balloting property is verified in the following table. For each column, the number of

operands is always larger than that of operators. Further, E¼ 12H34H5HV is a normalized

Polish expression because there are no consecutive operators of the same type.

1 2 H 3 4 H 5 H V

No. of operands 1 2 2 3 4 4 5 5 5
No. of operators 0 0 1 1 1 2 2 3 4

2

3

4
1

 H1 2 H

5

3

4

5

3

4

2

1

(c) (d)

 5 12H 34H H 34H5H V

(a)

3 4

(b)

FIGURE 10.9

The packing process of the normalized Polish expression E ¼ 12H34H5HV.

V

H H

H1 2

3 4

5

E = 12H34H5HV

FIGURE 10.8

A binary tree and its Polish expression.

10.2 Simulated annealing approach 585
After obtaining the normalized Polish expression, E ¼ 12H34H5HV from the given

slicing tree, Figure 10.9 gives steps to construct the corresponding floorplan from E.

In step (a), we place module 1 below module 2 to obtain a slicing floorplan 12H. In step

(b), we place module 3 below module 4 to obtain a slicing floorplan 34H. In step (c), we

place the slicing floorplan 34H below module 5 to obtain the slicing floorplan 34H5H. In

the final step, we place the sub-floorplan 12H to the left of the sub-floorplan 34H5H to

obtain the final floorplan 12H34H5HV in Figure 10.9d.

10.2.2.1 Solution space

The set of all normalized Polish expressions forms the solution space. Given a

normalized Polish expression with n operands (modules) and n–1 operators,

the total number of combinations can be computed by the number of unlabeled

binary trees with 2n–1 nodes and the permutation of n labels. The permutation

586 CHAPTER 10 Floorplanning
of n labels is n! From [Hilton 1991], the counting of an unlabeled p-ary tree with

n node is given by

1

p� 1ð Þnþ 1 n

pn
� �

Applying Stirling’s approximation

n! ¼ Y
ffiffiffiffiffiffiffiffiffi
2pn
p n

e

� �n� �
and setting p to 2, we have the following asymptotic form

O
1

2� 1ð Þnþ 1 n

2n
� �0

@
1
A

¼ O
2nð Þ!

nþ 1ð Þn! 2n� nð Þ!

0
@

1
A

¼ O

ffiffiffiffiffiffiffiffiffi
4pn
p

2n=eð Þ2n
nþ 1ð Þ2pn n=eð Þ2n

0
@

1
A

¼ O
22n

n1:5

0
@

1
A

With the H/V label on internal nodes (2n�1) and the permutation on external

nodes (n!), the total number of possible skewed slicing floorplans (normalized
Polish expressions) with n modules is

O n!2n�1
22n

n1:5

0
@

1
A

¼ O n!
23n

n1:5

0
@

1
A

Note that the upper bound is not tight. The reader can refer to [Shen 2003] for

the derivation of the tighter bound of Y(n! 22.543n/n1.5) for the total number of

skewed slicing floorplans.

10.2.2.2 Neighborhood structure

Given a solution, we can perturb it to obtain a “neighboring” solution. The

perturbation plays an important role in the search for a desired solution. For a
normalized Polish expression, two operands are said to be adjacent if there is

no operand between them. Two operators are said to be adjacent if there is

no operand or operator between them. An operand and an operator are said

to be adjacent if they are next to each other in E. A chain is a sequence of adja-

cent operators. For a normalized Polish expression, no consecutive operators of

the same type are allowed, and thus there are only two types of chains,

HVHVH . . . or VHVHV In other words, no chain can be HH . . . or VV

1 2 3 4 5H H H V

chain

FIGURE 10.10

An example of the chains in a normalized Polish expression.

10.2 Simulated annealing approach 587
Example 10.6 In
 Figure 10.10, the operands 1 and 2 are adjacent, and so are the operands 3 and 4;

the operand 3 and the operator H are also adjacent. There are three chains H, H, and

HV in Figure 10.10.

We define three types of operations to perturb one normalized Polish expres-

sion to another.

Op1: Swap two adjacent operands.

Op2: Invert a chain by changing V to H and H to V.

Op3: Swap two adjacent operands and operators.

Performing Op1 and Op2 on a normalized Polish expression always produces a

legal normalized Polish expression. However, Op3 could make the number of

operands not greater than that of operators, which violates the balloting prop-

erty, or it could generate two identical consecutive operators, which violates
the property of a normalized Polish expression. As a result, we will only accept

those Op3 operations that result in legal normalized Polish expressions. It turns

out not to be difficult to check the legality of Op3. Assume that Op3 swaps the

operand ei and the operator eiþ1, 1 � i � k�1. Then, the swap will not violate

the balloting property if and only if 2Niþ1 < i, where Nk is the number of opera-

tors in the expression E ¼ e1 e2 . . . ek, 1 � k � 2n�1.
Two normalized Polish expressions are said to be neighboring if one can be

perturbed to another by use of one of the three operations. Furthermore, these
three operations are sufficient to generate any normalized Polish expression from

a given normalized Polish expression by a sequence of the preceding operations.
Example 10.7 Fi
gure 10.11 gives an example of applying the three types of operations on the normal-

ized Polish expression E to obtain its corresponding slicing floorplans. Given E ¼
12H4H35VH and the modules’ dimensions, the initial floorplan is shown in Figure

10.11a. Applying Op1 to swap the two adjacent operands 4 and 3, we obtain E0 ¼
12H3H45VH and the resulting floorplan as shown in Figure 10.11b. We then apply

Op2 to invert the last chain VH to obtain E0 0 ¼ 12H3H45HV and its resulting floorplan

2 5

3

4
1

2
5

3

41
Op1 Op2 Op3

2

5

3

4

1

12H34H5HV

2

53

4

1

12H 4 3 5VH

(a) (b) (c) (d)

H 12H3H45 12H3 H45HVVH

FIGURE 10.11

Illustrations of the perturbations in Example 10.7.

588 CHAPTER 10 Floorplanning
as shown in Figure 10.11c. We further apply Op3 to swap the adjacent operand and

operator H4 to obtain E0 0 0 ¼ 12H34H5HV. Consequently, we obtain the final floorplan

as shown in Figure 10.11d, which has zero dead space.

10.2.2.3 Cost function

Area and wirelength are perhaps the two most commonly used costs for floor-

plan design. We can adopt the following cost function for simulated annealing:

Cost ¼ a
A

Anorm

þ 1� að Þ W

Wnorm

where A is the floorplan area, Anorm is the average area,W is the total wirelength,

Wnorm is the average wirelength, and a controls the weight between area and wir-
elength. To compute Anorm andWnorm, we can perturb the initial normalized Pol-

ish expression by use of the three operations for m times to obtain m floorplans

and compute the average area Anorm and the average wirelength Wnorm of these

floorplans. The value m is proportional to the problem size.

To illustrate the area evaluation for a normalized Polish expression, we first

construct the corresponding skewed slicing tree. All feasible floorplan implemen-

tations with the minimum areas are recorded in the corresponding nodes.

Because module rotation is allowed, we might have two possible floorplan imple-
mentations, (w, h) and (h,w), for a module of the dimension (w, h). Of course, we

have only one possible implementation for a square module. The floorplan size

can be obtained in a bottom-upmanner. Consider a non-leaf nodewith its left child

of the dimension (w1, h1) and its right child of the dimension (w2, h2). If the cut

type is H, the resulting implementation is (max(w1, w2), h1 þ h2); if the cut type

is V, the resulting implementation is (w1 þ w2, max(h1, h2)). For a node with

two possible implementations in its left child and its right child each, it may gen-

erate four resulting implementations. For any two implementations mi ¼ (wi,
hi) and mj ¼ (wj, hj), mi dominates mj if wi � wj and hi � hj. In other words,

the implementation mj is redundant, because the implementation mi gives a

Table 10.1 The Dimensions of Modules in Example 10.8.

Module No. Width Height

1 4 6

2 4 4

3 3 4

4 4 4

5 3 4

V

1

H

2

H

H 5

3 4
(4, 6)
(6, 4)

(4, 4)

(3, 4)
(4, 3)

(4, 4)

(3, 4)
(4, 3)

(4, 8) (4, 7)

(4, 11) (4, 10)(4, 10) (6, 8)

(8, 10) (10, 10)

1

3

3 4
5

5

1

1

4

2

3

2

1
2

3
4

3
4

5 5

1
2

4

3
4 4

3

3

5
4
3

5

1
2

1

2

FIGURE 10.12

Dimension computation based on the slicing tree.

10.2 Simulated annealing approach 589
floorplan solution of smaller area. By doing so, we can prune redundant imple-

mentations. Stockmeyer shows that the number of resulting irredundant slicing
floorplan implementations after combining two nodes grows only linearly [Stock-

meyer 1983]. (See Exercise 10.5.) Consequently, the area cost for a normalized

Polish expression can be computed efficiently in polynomial time.

To compute the wirelength, we can only resort to approximation, because

actual wiring is not performed yet at the floorplan stage. A popular wirelength

approximation for a net is to measure its half-perimeter wirelength (HPWL).

The HPWL is the half-perimeter length of the smallest bounding box that

encloses all pins. If pin positions are not given, we can compute HPWL by
use of the centers of modules.
Example 10.8 Fi
nd a floorplan implementation with the minimum area for the normalized Polish expres-

sion E ¼ 12H34H5HV. The module dimensions are listed in Table 10.1.

First, we construct the corresponding skewed slicing tree and record the dimension

candidates for each module with its corresponding leaf node. Because modules 2 and

4 are square, they have only one dimension candidate. The dimension candidates

Table 10.2 Area Evaluation for Example 10.8.

Step Operator Left child Right child Results

1 H (4, 6) (6, 4) (4, 4) (4, 10) (6, 8)

2 H (3, 4) (4, 3) (4, 4) (4, 8) (4, 7)

3 H (4, 7) (3, 4) (4, 3) (4, 11) (4, 10)

4 V (4, 10) (6, 8) (4, 10) (8, 10) (10, 10)

1

3

1

3

5 (6, 8.5)

4 (6, 5)

(4, 0)(0, 0) (8, 0)

(0, 6)

(0, 10)

(8, 3)

(8, 7)

(8, 10)

2 (2, 8)

FIGURE 10.13

An example of the HPWL computation.

590 CHAPTER 10 Floorplanning
(irredundant implementations) for each internal node are updated in a post-order tra-

versal order. See the steps in Table 10.2 and Figure 10.12. The resulting implementa-

tions that are dominated by others are crossed out.

Finally, the only irredundant implementation for the root is (8, 10), implying that the

resulting floorplan has width ¼ 8, height ¼ 10, and area ¼ 8 * 10 ¼ 80. This floorplan

has the minimum area for the normalized Polish expression E ¼ 12H34H5HV with

the given module dimensions. In case that we have more than one irredundant imple-

mentation for the root, we would pick the one with the minimum area.
Example 10.9 G
iven the floorplan in Figure 10.13, compute the HPWL of a net connecting modules 2,

4, and 5. The center coordinates of modules 2, 4, and 5 are (2, 8), (6, 5), and (6, 8.5),

respectively. The height of the minimum bounding box is 3.5 and the width is 4. So

the HPWL of this net is 3.5 þ 4 ¼ 7.5.

10.2.2.4 Annealing schedule

We can apply the classical simulated annealing algorithm for floorplanning

described in Algorithm 10.4. The annealing schedule is T ¼ T0, T1, T2, . . . , and
Ti ¼ riTi-1, r < 1. The initial temperature is set to a high value so that the proba-

bility of accepting all perturbation is close to 1.0. We can compute the initial

10.2 Simulated annealing approach 591
temperature as follows. Before the simulated annealing process starts, we per-

turb the initial normalized Polish expression for a certain time to compute the
average of all positive (uphill) cost change Davg. Then, T0 is initialized as

T0 ¼ -Davg/ln P, where P is the initial probability of accepting an uphill solution.

We can set P very close to 1.0 (but certainly not 1.0). The temperature is

reduced by a fixed ratio r at each iteration of annealing. The value 0.85 is recom-

mended by most previous works. The larger the r, the longer the annealing

time; however, a larger r often results in a better floorplan solution.

Algorithm 10.4 Wong-Liu Floorplanning (P, e, r, k)

1. E ¼ 12V3V4V . . . nV; // initial solution
2. EBest ¼ E; T ¼ -Davg / lnP;
3. do
4. reject ¼ 0;
5. for ite ¼ 0 to k do
6. SelectOperation(Op);
7. Case Op
8. Op1: Select two adjacent operands ei and ej; E

0 ¼ Swap(E, ei, ej);
9. Op2: Select a nonzero length chain C; E 0 ¼ Complement(E, C);
10. Op3: done ¼ FALSE
11. while not (done) do
12. Choice 1: Select two adjacent operand ei and operator eiþ1;
13. if (ei-1 6¼ eiþ1) and (2Niþ1 < i) then done ¼ TRUE;
14. Choice 2: Select two adjacent operator ei and operand eiþ1;
15. if (ei 6¼ eiþ2) then done ¼ TRUE;
16. end while
17. E 0 ¼ Swap(E, ei, eiþ1);
18. end case
19. DCost ¼ cost(E 0) – cost(E);
20. if (DCost � 0) or (Random < e–DCost/T) then
21. E ¼ E 0;
22. if cost(E) < cost(EBest) then EBest ¼ E;
23. else
24. reject ¼ reject þ 1;
25. end if
26. end for
27. T ¼ rT; // reduce temperature
28. until (reject/k > 0.95) or (T < ") or (OutOfTime)

The excessive running time, however, is a significant drawback of the classical

SA algorithm. To improve the efficiency of SA for searching for desired solu-

tions, several annealing schemes of controlling the temperature changes during

the annealing process have been proposed in the literature. The annealing

592 CHAPTER 10 Floorplanning
schedule used in TimberWolf [Sechen 1986, 1988] is one of the most popular

schemes. It increases r gradually from its lowest value (0.8) to its highest value
(approximately 0.95) and then gradually decreases r back to its lowest value.

Recently, a fast-simulated annealing (Fast-SA) scheme was proposed in

[Chen 2005b]. The motivation is to reduce the number of uphill moves in the

beginning, because most of the uphill moves at this stage lead to inferior solu-

tions. Because it is not efficient and effective to accept too many uphill moves

in the beginning, a greedy search can be applied to find a local optimum faster.

Starting with the local optimum, we then switch to normal SA. By doing so,

it can save time for searching for desired solutions. To implement the preceding
scheme, Fast-SA consists of three stages: (1) the high-temperature random

search stage, (2) the pseudo-greedy local search stage, and (3) the hill-climbing

search stage. At the first stage, the temperature is set to a very large value, and

thus the probability of accepting an inferior solution approaches 1. This can

avoid getting trapped in a local optimum in the very beginning. At the second

stage, the temperature is set approaching zero to accept only a small number

of inferior solutions. At the third stage, the temperature is raised to facilitate hill

climbing to search for better solutions. The temperature reduces gradually, and
very likely it finally converges to a desired solution. See Figure 10.14a and

Figure 10.14b for the respective temperature changes over the search time with

classical SA and Fast-SA.

Because the Fast-SA scheme saves significant iterations to explore the solu-

tion space, it could devote more time to finding better solutions in the hill-

climbing stage. This makes the annealing much more efficient and effective.

To implement this annealing scheme, we derive the temperature updating

function T of Fast-SA by the following equations:

Tr ¼

�Davg

1n P
r ¼ 1

T1hDcosti
rc

2 � r � k

T1hDcosti
r

r > k

8>>>>>>>>><
>>>>>>>>>:
Time
(a) (b)

T
em

pe
ra

tu
re

Time

I II III

FIGURE 10.14

Temperature versus search time for (a) classical SA. (b) Fast-SA.

10.2 Simulated annealing approach 593
Here, r is the number of iterations, Davg is the average uphill cost, P is the initial

probability for accepting uphill solutions, <Dcost> is the average cost change

(new cost � old cost) for the current temperature, and c and k are user-speci-

fied parameters. At the first iteration, the temperature is set according to the

given initial probability P and the average uphill cost Davg. Because P is usually

set close to 1, it performs a random search to find a good solution. Then, it
enters the pseudo-greedy local search stage until the kth iteration. Here, c is a

user-defined parameter to control how low the temperature is in the second

stage. We usually choose a large c to make T! 0 such that it only accepts good

solutions to perform pseudo-greedy searches. After k iterations, the temperature

jumps up to further improve the solution quality. The value of <Dcost> affects

the reduction rate of the temperature. If the cost of a neighboring solution

changes significantly, <Dcost> is larger and thus the temperature reduces

slower. In contrast, if <Dcost> is smaller, it implies that the cost of the neighbor-
ing solution only changes a little; in this case, we reduce the temperature more

to reduce the number of iterations. Because the cost function is normalized to

1, this implies that <Dcost> is less than 1, and it ensures that the temperature

is decreased. The number of iterations in the second stage can be determined

by the problem size. The smaller the problem size, the smaller the k value.

We can set c ¼ 100 and k ¼ 7 for typical floorplanning problems. Note that

the initial temperature for Fast-SA is the same as that for the classical SA (i.e.,

T1 ¼ �Davg/ln P). The initial temperature T1 needs to be kept high to avoid get-
ting trapped into a local optimum in the very beginning.
10.2.3 B*-tree for compacted floorplans
B*-trees are based on ordered binary trees to model compacted floorplans.
In a compacted floorplan, no modules can be moved toward left or bottom in

the floorplan [Chang 2000]. Consequently, an area-optimal floorplan always cor-

responds to some B*-tree. Inheriting from the nice properties of ordered binary
trees, B*-trees are very easy for implementation and can perform the three prim-

itive tree operations search, insertion, and deletion in constant, constant,

and linear time, respectively.

Unlike the slicing floorplan and its corresponding slicing tree(s), there exists

a unique correspondence between a compacted floorplan and its induced B*-

tree. In other words, given a compacted floorplan F, we can construct a unique

B*-tree corresponding to F, and the packing corresponding to the B*-tree is the

same as F. The nice property of the unique correspondence between a com-
pacted floorplan and its induced B*-tree prevents the search space from being

enlarged with redundant solutions and guarantees that an area-optimal place-

ment can be found by searching on B*-trees. In the following, we describe the

procedures for the transformation between a floorplan and a B*-tree.

594 CHAPTER 10 Floorplanning
10.2.3.1 From a floorplan to its B*-tree

First, we compact all modules to the left and bottom to obtain a compacted

floorplan, because the B*-tree can only model compacted floorplans. A B*-tree

is an ordered binary tree whose root corresponds to the module on the bot-

tom-left corner. Similar to the depth-first-search (DFS) procedure, we con-

struct a B*-tree T for a compacted floorplan in a recursive fashion: starting
from the root, we first recursively construct the left sub-tree and then the right

sub-tree. Let Ri be the set of modules located on the right-hand side and adja-

cent to module i. The left child of the node ni corresponds to the lowest, unvis-

ited module in Ri. The right child of ni represents the lowest module located

above and with the same x-coordinate as that of module i.
Example 10.10
 Figure 10.15 shows an example of constructing a B*-tree from the floorplan given in

Figure 10.15a. First, we compact all modules to the left and bottom to obtain a compacted

floorplan as shown in Figure 10.15b. Module 1 is the root of the B*-tree, because it locates

at the bottom-left corner. Module 2 is the lowest unvisited adjacent module on the right of

module 1, so wemake node n2 the left child of node n1. Module 3 has the same x-coordi-

nate as that of module 1, and it is the lowest unvisited module above module 1, so we

make node n3 the right child of node n1. Similarly, node n4 is the left child of node n3, node

n6 is the right child of node n3, and node n5 is the left child of node n4.

10.2.3.2 From a B*-tree to its floorplan

Given a B*-tree T, its root represents the module on the bottom-left corner, and

thus the coordinate of the module is (xroot, yroot) ¼ (0, 0). If node nj is the left
child of node ni, module j is placed on the right-hand side and adjacent to mod-

ule i, i.e., xj ¼ xi þ wi. Otherwise, if node nj is the right child of ni, module j

is placed above module i, with the same x-coordinate as that of module j, i.e.,

xj ¼ xi. Therefore, given a B*-tree, the x-coordinates of all modules can be deter-

mined by traversing the tree once in linear time.

To efficiently compute the y-coordinates from a B*-tree, a contour data
structure [Guo 2001] is used to facilitate the operations on modules. The
1
2

3 4
5

6

1
2

3 4

(a) (b) (c)

5

6
n1

n2 n3

n4

n5

n6

FIGURE 10.15

An example of (a) a given floorplan. (b) A compacted floorplan. (c) the corresponding B*-tree.

10.2 Simulated annealing approach 595
contour structure is a double-linked list storing the coordinates of the contour

curve in the current compaction direction. A horizontal contour can reduce
the running time for computing the y-coordinate of a newly inserted module.

Without the contour, the running time for determining the y-coordinate of a

newly inserted module would be linear to the number of modules. By maintain-

ing the contour structure, however, the y-coordinate of a module can be com-

puted in amortized O(1) time.
Example 10.11
 Find the floorplan corresponding to the B*-tree given in Figure 10.15c. The module

dimensions are given in Table 10.3.

At first, there is no module. Therefore, we initialize the contour data structure C ¼
<(0,0) (1,0)>. On the basis of the depth-first order, we pack modules one by

one in six steps. The detailed processing is explained below, summarized in

Table 10.4, and illustrated in Figure 10.16.

Step (a): Because n1 is the root, the coordinate of module 1 is (0, 0). Inserting module 1
in

ge

be

¼

Tab

Mo

1

2

3

4

5

6

troduces three more contour points Cnew ¼ <(0, 6), (9, 6), (9, 0)>. To

nerate the new contour list, we need to find two sub-contour lists that are

fore and after the x-span [0, 9] of module 1: Cbefore ¼ <(0, 0)> and Cafter

<(1, 0)>. The resulting contour C ¼ <Cbefore, Cnew, Cafter> ¼ <(0, 0), (0,

, (9, 6), (9, 0), (1, 0)>.
6)

Step (b): n2 is the left child of n1. Therefore, the x-coordinate of module 2 is x2 ¼ x1 þ
w1 ¼ 9. To determine the y-coordinate of module 2, we search the contour to find

themaximum y-coordinate between the x-span [x2, x2þw2]¼ [9, 15]. Themaximum

y-coordinate is 0, so we have y2 ¼ 0. Inserting module 2 introduces three more

contour points Cnew ¼ <(9, 8), (15, 8), (15, 0)>. Again, we need to find two sub-

contour lists that are before and after the x-span of module 1, [9, 15], to generate

the new contour list: Cbefore ¼ <(0, 0), (0, 6), (9, 6)> and Cafter ¼ <(1, 0)>. The

resulting contour C ¼ <Cbefore, Cnew, Cafter> ¼ <(0, 0), (0, 6), (9, 6), (9, 8), (15, 8),

(15, 0), (1, 0)>.

Step (c): n3 is the right child of n1. Therefore, module 3 has the same x-coordinate as

module 1. To determine the y-coordinate of module 3, we search the contour to
le 10.3 The Dimensions of Modules in Example 10.11

dule No. Width Height

9 6

6 8

3 6

3 7

6 5

12 2

F

T

f

596 CHAPTER 10 Floorplanning
find the maximum y-coordinate in the x-span [x3, x3 þ w3] ¼ [0, 3]. Because the

maximum y-coordinate is 6, we have y3 ¼ 6. Inserting module 3 introduces three

more contour points Cnew ¼ <(0, 12), (3, 12), (3, 6)>. We have the two sub-

contour lists that are before and after the x-span of module 3, [0, 3]: Cbefore ¼
<(0, 0)> and Cafter ¼ <(9, 6), (9, 8), (15, 8), (15, 0), (1, 0)>. So the resulting

contour C ¼ <Cbefore, Cnew, Cafter> ¼ <(0, 0), (0, 12), (3, 12), (3, 6), (9, 6), (9,

8), (15, 8), (15, 0), (1, 0)>.
1 1
2

1
2

3

1
2

3 4

1
2

3 4
5

1
2

3 4
5

6

(0, 0)

(a) (b)

(c) (d)

(e) (f)

(0, 0) (0, 0)

(0, 6) (0, 6)

(0, 0) (9, 0)

(9, 0) (9, 0)

(3, 6)

(0, 0) (9, 0)

(0, 6)

(0, 13)

(0, 6)
(3, 6)

(6, 8)

(0, 0) (9, 0)

(3, 6)

(6, 8)

C = <(0,0), (0,6), (9,6),
(9,0), (∞ ,0)>

C = <(0,0), (0,6), (9,6), (9,8),
(15,8), (15,0), (∞ ,0)>

C = <(0,0), (0,12), (3,12), (3,6),
(9,6), (9,8), (15,8), (15,0),
(∞ ,0)>

C = <(0,0), (0,12), (3,12),
(3,13), (6,13), (6,6), (9,6),
(9,8), (15,8), (15,0), (∞ ,0)>

C = <(0,0), (0,12), (3,12),
(3,13), (6,13), (12,13), (12,8),
(15,8), (15,0), (∞ ,0)>

C = <(0,0), (0,15), (12,15),
(12,13), (12,8), (15,8), (15,0),
(∞ ,0)>

IGURE 10.16

he B*-tree packing process. The double linked list C of the contour is shown below each

igure. The horizontal contour lines are in bold.

Table 10.4 B*-Tree Packing for Example 10.11.

Step Mod.
x-
Coordinate

y-
Coordinate Contour C

Contour initialization <(0, 0), (1, 0)>

(a) 1 x1 ¼ 0 y1 ¼ 0 <(0, 0), (0, 6), (9, 6),(9, 0), (1, 0)>

(b) 2 x2 ¼ x1 þ
w1 ¼ 9

y2 ¼ 0 <(0, 0), (0, 6), (9, 6), (9, 8), (15, 8),
(15, 0), (1, 0)>

(c) 3 x3 ¼ x1 ¼ 0 y3 ¼
max(y1 þ h1)
¼ 6

<(0, 0), (0, 12), (3, 12), (3, 6),
(9, 6), (9, 8), (15, 8),
(15, 0), (1, 0)>

(d) 4 x4 ¼ x3 þ
w3 ¼ 3

y4 ¼
max(y1 þ h1)
¼ 6

<(0, 0), (0, 12), (3, 12), (3, 13),
(6, 13), (6, 6), (9, 6), (9, 8),
(15, 8), (15, 0), (1, 0)>

(e) 5 x5 ¼ x4 þ
w4 ¼ 6

y5 ¼
max(y1 þ h1,
y2 þ h2) ¼ 8

<(0, 0), (0, 12), (3, 12), (3, 13),
(6, 13), (12, 13), (12, 8),
(15, 8), (15, 0), (1, 0)>

(f) 6 x6 ¼ x3 ¼ 0 y6¼max(y3þ
h3, y4 þ h4,
y5 þ h5) ¼ 13

<(0, 0), (0, 15), (12, 15),
(12, 13), (12, 8), (15, 8),
(15, 0), (1, 0)>

10.2 Simulated annealing approach 597
Step (d): n4 is the left child of n3. Therefore, x4 ¼ x3 þ w3 ¼ 3. To determine

the y-coordinate of module 4, we search the contour to find the maximum

y-coordinate between the x-span [x4, x4 þ w4] ¼ [3, 6]. Because the maximum

y-coordinate is 6, we have y4 ¼ 6. Inserting module 4 introduces three more

contour points Cnew ¼ <(3, 13), (6, 13), (6, 6)> and two sub-contour lists

that are before and after the x-span of module 4, [3, 6]: Cbefore ¼ <(0, 0), (0, 12),

(3, 12)> and Cafter ¼ <(9, 6), (9, 8), (15, 8), (15, 0), (1, 0)>. Consequently, the

resulting contour C ¼ <Cbefore, Cnew, Cafter> ¼ <(0, 0), (0, 12), (3, 12), (3, 13),

(6, 13), (6, 6), (9, 6), (9, 8), (15, 8), (15, 0), (1, 0)>.

Step (e): n5 is the left child of n4. Therefore, x5 ¼ x4 þ w4 ¼ 6. The maximum

y-coordinate in the x-span [x5, x5 þ w5] ¼ [6, 12] is 8, and so is y5 ¼ 8.

Inserting module 5 introduces the three contour points Cnew ¼ <(6, 13), (12,

13), (12, 8)> and the two sub-contour lists before and after the x-

span of module 5, [6, 12]: Cbefore ¼ <(0, 0), (0, 12), (3, 12), (3, 13)> and Cafter

¼ <(15, 8), (15, 0), (1, 0)>. The resulting contour C ¼ <Cbefore, Cnew,

Cafter> ¼ <(0, 0), (0, 12), (3, 12), (3, 13), (6, 13), (12, 13), (12, 8), (15, 8), (15,

0), (1, 0)>.

598 CHAPTER 10 Floorplanning
Step (f): n6 is the right child of n3. Therefore, x6 ¼ x3 ¼ 0. The maximum y-coordinate in

the x-span [x6, x6þw6]¼ [0, 12] is 13, and so is y6¼ 13. Insertingmodule 6 introduces

the three contour points Cnew¼<(0, 15), (12, 15), (12, 13)> and the two sub-contour

lists before and after the x-span of module 6, [0, 12]: Cbefore ¼ <(0, 0)> and Cafter ¼
<(12, 8), (15, 8), (15, 0), (1, 0)>. The resulting contour C ¼ <Cbefore, Cnew, Cafter> ¼
<(0, 0), (0, 15), (12, 15), (12, 13), (12, 8), (15, 8), (15, 0), (1, 0)>.

10.2.3.3 Solution space

The total number of B*-trees can be computed by the number of unlabeled

binary trees and the permutation of n labels. The permutation of n labels is

n!. From [Hilton 1991], the counting of an unlabeled p-ary tree with n node is

1

p� 1ð Þnþ 1 n

pn
� �

Applying Stirling’s approximation, we have

n! ¼ Y
ffiffiffiffiffiffiffiffiffi
2pn
p n

e

� �n� �
Setting p to 2, we have the following asymptotic form:

O
22n

n1:5

� �

Thus, the total number of possible floorplans for a B*-tree with n nodes is

O n!
22n

n1:5

� �
10.2.3.4 Neighborhood structure

Each B*-tree corresponds to a floorplan. Therefore, the solution space consists

of all B*-trees with the given nodes (modules). To find a neighboring solution,

we can perturb a B*-tree to get another B*-tree by the following operations:

Op1: Rotate a module.

Op2: Move a node to another place.

Op3: Swap two nodes.

For Op1, we rotate a module for a B*-tree node, which does not affect the B*-

tree structure. For Op2, we move a node to another place in the B*-tree. Op2

consists of two steps, deletion and insertion, which will be explained later.

For Op3, we swap two nodes in the B*-tree. After packing for a B*-tree, we

obtain a resulting floorplan.

There are three cases for the deletion operation. Note that in Cases 2 and 3,

the relative positions of themodulesmight be changed after the operation, and thus
we might need to reconstruct a corresponding floorplan for further processing.

FIG

Illus

10.2 Simulated annealing approach 599
n Case 1: A leaf node. We can simply delete the target leaf node.

n Case 2: A node with one child. We remove the target node and then place

its only child at the position of the removed node. The tree update can be

performed in O(1) time.

n Case 3: A node with two children. We replace the target node nt by either

its right child or its left child nc. Then we move a child of nc, if any, to the

original position of nc. This process proceeds until the corresponding leaf

node is handled. It is obvious that such a deletion operation requires O(h)
time, where h is the height of the B*-tree.
We can insert a new node into either an internal or an external position as

follows.
n Internal position: A position between two nodes in a B*-tree.

n External position: A position pointed by a NULL pointer. Each node has

two pointers, the left child and the right child. When the node has no left

or right child, it points NULL.
Example 10.12
 Figure 10.17 gives an example of the three types of operations on the B*-tree and its

corresponding floorplans. (a) Rotate module 3 (Op1). It does not affect the B*-tree

structure. (b) Move n4 to the left child of n6 (Op2). First, we delete n4. Because n4
has the only left child n5, we attach n5 to the left child of n3. Then, we insert n4 to

the left child of n6. (c) Swap n1 and n2 (Op3). Finally, we obtain the B*-tree and the

corresponding floorplan in (d).
1
2

4
5

6

1

(a) (b)

(c) (d)

2

3 4
5

6

3

n1

n2 n3

n4

n5

n1

n2

n1 n3

n5 n6

n4

n2 n3

n6n4

n5

n1

n2 n3

n5 n6

n4

n6

Op1

Op2

1
2

4
5

6

1
2

4
5

6

3
3

Op3

URE 10.17

tration of the B*-tree perturbations.

600 CHAPTER 10 Floorplanning
10.2.3.5 Cost function

Similar to the normalized Polish expression, we can use the floorplan area and

the total wirelength as the cost function of the simulated annealing:

Cost ¼ a
A

Anorm

þ 1� að Þ W

Wnorm

where A is the floorplan area, Anorm is the average area, W is the total wire-

length, Wnorm is the average wirelength, and a controls the weight between

area and wirelength. (See Section 10.2.2 for the computation of Anorm and

Wnorm.) The area for a B*-tree can be computed by its width/height of the result-

ing floorplan, and HPWL can be used to evaluate the wirelength.

10.2.3.6 Annealing schedule

We can apply either classical SA or Fast-SA to B*-trees to find a desired floorplan.

See Section 10.2.2 for more information on classical SA and Fast-SA.
10.2.4 Sequence pair for general floorplans
Sequence pair (SP) is a flexible representation to model a general floorplan

[Murata 1995]. A sequence pair consists of an ordered pair of module name

sequences. For example, (124536, 326145) can represent a floorplan of the

six modules 1, 2, . . . , 6. In the following, we describe the procedures for the

transformation between a floorplan and a sequence pair.

10.2.4.1 From a floorplan to its sequence pair

Given six modules shown in Figure 10.18a, we first stretch modules one by one
to obtain rooms, each room containing only one module. Figure 10.18b shows

the floorplan F with rooms derived from Figure 10.18a.

The following procedure encodes F by a pair of the module name

sequences. For each module i, we draw two rectilinear curves, right-up locus
and left-down locus. The right-up locus of module i is initially located at the

center of module i and starts to move rightward. It turns its direction up and

right alternately when it hits (1) the sides of rooms, (2) previously drawn lines,

or (3) the boundary of the chip. The locus goes until it reaches the upper-right
corner. The union of the two loci of module i forms the positive locus of mod-

ule i. Figure 10.19a shows an example of positive loci. With the construction of

positive loci, no two positive loci cross each other. Therefore, these positive loci

can be linearly ordered, as well as the corresponding modules. Here we order

the positive loci from left to right. Let Gþ be the module name sequence in this

order. In Figure 10.19a, the first sequence Gþ ¼ 124536 is obtained.

Negative loci can be obtained similar to the positive loci. The difference is

that a negative locus is the union of the up-left locus and down-right locus.
Let G– be the module name sequence in the order of the negative loci from left

(a) (b)

3
6

5
1

4

2

1
4 5

2

3
6

FIGURE 10.19

(a) Positive loci. (b) Negative loci.

3
6

4

(a) (b)

5

2

1

3
6

4 5

2

1

FIGURE 10.18

(a) Given modules. (b) A floorplan of the “rooms.”

10.2 Simulated annealing approach 601
to right. An example of negative loci is shown in Figure 10.19b. As a result, we
have the negative loci from left to right and obtain G– ¼ 326145. Finally, the

sequence pair (Gþ, G–) ¼ (124536, 326145) is obtained.

10.2.4.2 From a sequence pair to its floorplan

Given a sequence pair (Gþ, G–), the geometric relation of modules can be

derived from the sequence pair as follows:

Rule 1 (horizontal constraint): module i is left to module j if i appears before j in
both Gþ and G– (. . . i . . . j . . . , . . . i . . . j . . .).

Rule 2 (vertical constraint): module i is below module j if i appears after j in Gþ
and i appears before j in G– (. . . i . . . j . . . , . . . i . . . j . . .).

The following steps describe a procedure to transform a sequence pair to its

floorplan. Consider an n � n grid, where n is the number of modules. Label

the horizontal grid lines and the vertical grid lines with module names along

Gþ and G– from top and from left, respectively. A cross point of the horizontal

grid line of label i and the vertical grid line of label j is referred to by (i, j). Then,

rotate the resulting grid counterclockwise by 45 degrees to get an oblique grid.

(See Figure 10.20.) Place each module i with its center being on (i, i). See
Figure 10.20 for an example.

1
4 5

6

3

2
1

2
4

5
3

6 3
2

6
1

4
5

FIGURE 10.20

An oblique grid for (�þ, �–) ¼ (124536, 326145).

602 CHAPTER 10 Floorplanning
On the basis of the preceding constraints, we can create a horizontal-
constraint graphwith a source and a sink, and a node-weighted directed acyclic

graph GH (V, E), where V is the set of nodes, and E is the set of edges as follows:
n V : source s, sink t, and n nodes labeled with module names.

n E : (s, i) and (i, t) for each module i, and (i, j) if and only if module i is on

the left of module j (horizontal constraint).

n Nodes weight: zero for s and t, width of module i for node i.
Similarly, a vertical-constraint graph GV (V, E) can be constructed on the

basis of the vertical constraints and the height of each module. Note that both

the horizontal and the vertical constraint graphs are acyclic. If two modules i

and j are in horizontal relation, then there is an edge between nodes i and j

in GH, and thus they do not overlap horizontally in the resulting floorplan. Simi-

larly, if modules i and j are in vertical relation, they do not overlap vertically.
Because any pair of modules is either in horizontal or vertical relation, no mod-

ules overlap with each other in the resulting floorplan.

The module locations can be obtained from the constraint graphs. The x-

coordinate of module i is given by the longest path length from the source

s to node i in GH. Similarly, the y-coordinate of module i can be computed on

GV. Consequently, the width and the height of the resulting floorplan can be

computed by the longest path length between the source and the sink in GH

and GV, respectively. The longest path length computation on each node-
weighted directed acyclic graph, GH or GV, can be performed in O(n2) time

by applying the well-known longest path algorithm [Lawler 1976], where n

is the number of modules. In other words, given a sequence pair (Gþ, G–),

the area-optimal packing can be obtained in quadratic time.

For the example sequence pair (Gþ, G–) ¼ (124536, 326145), we can con-

struct the corresponding GH and GV shown in Figure 10.21. Table 10.5 lists

the module dimensions. The weight and the width (height) of each module

are indicated in each node of GH (GV). As mentioned earlier, the x-coordinates

Table 10.5 The Dimensions of the Modules in Figure 10.21

Module No. Width Height

1 5 3

2 5 7

3 9 4

4 7 8

5 4 10

6 8 7

s t

t

s

7

8

5

4

9

5

8

7

7

10

4

31
4

(a)

(b)

5

6
3

2

1
4 5

6
3

2

FIGURE 10.21

The constraint graphs with the source s and sink t induced from the sequence pair (124536,

326145): (a) The horizontal constraint graph GH. (b) The vertical constraint graph GV. (Note

that the existence of the edges (a, b) and (b, c) implies that the transitive edge (a, c) is also

in the constraint graph. Transitive edges are not shown in both graphs for simplicity.)

10.2 Simulated annealing approach 603
can be computed by the longest path length from the source in GH, and thus

we have

Module 1: x1 ¼ 0

Module 2: x2 ¼ 0

Module 3: x3 ¼ 0

Module 4: x4 ¼ max (x1 þ w1, x2 þ w2) ¼ max (0 þ 5, 0 þ 5) ¼ 5

Module 5: x5 ¼ x4 þ w4 ¼ 5 þ 7 ¼ 12

Module 6: x6 ¼ max (x2 þ w2, x3 þ w3) ¼ max (0 þ 5, 0 þ 9) ¼ 9

Floorplan width ¼ max (x5 þ w5, x6 þ x6) ¼ max (12 þ 4, 9 þ 8) ¼ 17.

The y-coordinates can be computed from GV similarly as follows:

Module 1: y1 ¼ max (y2 þ h2, y6 þ h6) ¼ max (4 þ 7, 0 þ 7) ¼ 11

604 CHAPTER 10 Floorplanning
Module 2: y2 ¼ y3 þ h3 ¼ 4
Module 3: y3 ¼ 0

Module 4: y4 ¼ max (y3 þ h3, y6 þ h6) ¼ max (0 þ 4, 0 þ 7) ¼ 7

Module 5: y5 ¼ max (y3 þ h3, y6 þ h6) ¼ max (0 þ 4, 0 þ 7) ¼ 7

Module 6: y6 ¼ 0

Floorplan height ¼ max(y1 þ h1, y4 þ h4, y5 þ h5) ¼ max(11 þ 3, 7 þ 8,

7 þ 10) ¼ 17.

The resulting floorplan is shown in Figure 10.22, and the coordinate of each

module and the resulting floorplan dimension are as follows:

Module 1 ¼ (0, 11)

Module 2 ¼ (0, 4)

Module 3 ¼ (0, 0)

Module 4 ¼ (5, 7)

Module 5 ¼ (12, 7)

Module 6 ¼ (9, 17)

Floorplan dimension ¼ (17, 17)

10.2.4.3 Solution space

Each permutation of Gþ and G– gives a floorplan solution. For n modules, the
lengths of Gþ and G– are both n, and thus each of Gþ and G– have n! permuta-

tions. Consequently, there are (n!)2 total permutations for a sequence pair with

n modules.

10.2.4.4 Neighborhood structure

To search for a desired floorplan solution, we can use the following three types

of operations to perturb a sequence pair to another:

Op1: Rotate a module.

Op2: Swap two module names in only one sequence.

Op3: Swap two module names in both sequences.

Each of the three operations results in a legal sequence pair and floorplan solu-
tion. Furthermore, these three operations are sufficient to generate any

sequence pair from a given sequence pair by a sequence of operations.
3
6

4 5

2

1

FIGURE 10.22

The minimal area packing result of (�þ, �–) ¼ (124536, 326145).

(12 4 5 4 536, 3261) (125436, 326 1 5 4)

3
6

4 5

3
6

45

3
6

2

1 4
5

(124536, 321564)

Op3

3
6

4
5

(124536, 32156 4)

2

1

2

1

2

1
Op2 Op1

Op2

3
6

4
5

(124536, 32 6 5 1 4)

2

1

FIGURE 10.23

Effects of the perturbations in sequence pairs.

10.2 Simulated annealing approach 605
Figure 10.23 gives an example of these types of operations on the sequence pair

and its resulting floorplans.

10.2.4.5 Cost function

Again, we can use the floorplan area and the total wirelength as the cost func-

tion of the simulated annealing:

Cost ¼ a
A

Anorm

þ 1� að Þ W

Wnorm

where A is the floorplan area, Anorm is the average area, W is the total wire-

length, Wnorm is the average wirelength, and a controls the weight between
area and wirelength. (See Section 10.2.2 for the computation of Anorm and

Wnorm.) The area for a sequence pair can be computed by its width/height (lon-

gest path length in GH/GV) of the corresponding floorplan, and HPWL can be

used to evaluate the wirelength.

10.2.4.6 Annealing schedule

Again, we can apply either classical SA or Fast-SA based on sequence pair to find

a desired floorplan solution. See Section 10.2.2 for classical SA or Fast-SA.
10.2.5 Floorplan representation comparison
In addition to normalized Polish expression, B*-tree, and sequence pair, there

are quite a few popular floorplan representations, such as BSG [Nakata 1996],

O-tree [Guo 1999], Corner Block List (CBL) [Hong 2000], Transitive Clo-
sure Graph (TCG) [Lin 2001], TCG-S [Lin 2002], Corner Sequence (CS)

[Lin 2003], Twin Binary Sequences (TBS) [Young 2003], Adjacent Con-
straint Graph (ACG) [Zhou 2004], etc. Some representations are closely
related. For example, B*-tree is equivalent to O-tree, yet with faster operations,

Table 10.6 Comparison among Floorplan Representations

Representation Solution Space Packing Time Flexibility

Normalized Polish Expression O(n!23n/n1.5) O(n) Slicing

Corner Block List O(n!23n) O(n) Mosaic

Twin Binary Sequence O(n!23n/n1.5) O(n) Mosaic

O-tree O(n!22n/n1.5) O(n) Compacted

B*-tree O(n!22n/n1.5) O(n) Compacted

Corner Sequence � (n!)2 O(n) Compacted

Sequence Pair (n!)2 O(n2) General

BSG O(n!C(n2, n)) O(n2) General

Transitive Closure Graph (n!)2 O(n2) General

TCG-S (n!)2 O(n lg n) General

Adjacent Constraint Graph O((n!)2) O(n2) General

606 CHAPTER 10 Floorplanning
simpler data structures, and higher flexibility in handling various placement

constraints. TCG and sequence pair are also equivalent but their induced
operations are significantly different.

Table 10.6 summarizes the sizes of the solution spaces, packing times, and

flexibility of the popular floorplan representations. Among the representations,

sequence pair, TCG, TCG-S, and ACG can represent general floorplans; O-tree,

B*-tree, and corner sequence can model only compacted floorplans; CBL and

TBS model the floorplan with each room containing exactly one module, called

the mosaic floorplan; and normalized Polish is restricted to slicing floorplans.

The general floorplan has the highest flexibility, followed by the compacted
floorplan, then followed by the mosaic floorplan, and the slicing floorplan has

the least flexibility. (For tighter bounds of slicing, mosaic, and general floor-

plans, please see [Shen 2003].)

For the packing time, sequence pair, TCG, and ACG require O(n2) time to

generate a floorplan, where n is the number of modules. Note that sequence

pair can reduce its packing time to O(n lg lg n) time based on the longest com-

mon subsequence technique [Tang 2001]. TCG-S needs O(n lg n) time for pack-

ing. For O-tree, B*-tree, corner sequence, and the normalized Polish expression,
the packing time is only linear time mainly because they keep relatively simpler

information in their data structures.

As a remark for floorplan representations, the evaluation of a floorplan rep-

resentation should be made based on at least the following three criteria: (1) the

definition/properties of the representation, (2) its induced solution structure

(not merely the size of its solution space), and (3) its induced operations. We

shall avoid the pitfall that judges a floorplan representation by only one of the

aforementioned three criteria alone; for example, claiming a floorplan

10.3 Analytical approach 607
representation A is superior to another floorplan representation B simply

because A has a smaller solution space and a faster packing time. Here is an anal-
ogy: the representation itself is like the body of an automobile, the induced

operations are like the wheels of the automobile, and the solution structure is

like the highway network. An automobile with its body alone can go nowhere.

For a comprehensive study of floorplan representations, similarly, we shall eval-

uate them from at least all the aforementioned three criteria.
10.3 ANALYTICAL APPROACH

In addition to simulated annealing, we can resort to the analytical approach
to floorplan designs [Sutanthavibul 1991]. The analytical approach is a mathe-

matical programming formulation that includes an objective function and a set
of constraints. For the floorplanning problem, we need to consider two sets

of basic constraints: (1) the module nonoverlapping constraint and (2)

the dimension constraint.
Two modules, i and j are said to be nonoverlapping, if at least one of the

following cases (linear constraints) is satisfied:
pij
 qij
Case 1: i to the left of j
 xi þ wi � xj
 0
 0
Case 2: i below j
 yi þ hi � yj
 0
 1
Case 3: i to the right of j
 xi – wj � xj
 1
 0
Case 4: i above j
 yi – hj � yj
 1
 1
where two binary variables, pij and qij, are introduced to denote that one of the

above inequalities is enforced. For example, when pij ¼ 0 and qij ¼ 1, the

inequality equation yi þ hi � yj is enforced.

Let W and H be upper bounds of the width and height of the floorplan,
respectively. We have the following linear constraints for module nonoverlap:

xi þwi � xj þW pij þ qij

� 	
yi þ hi � yj þ H 1þ pij � qij

� 	
xi �wj � xj �W 1� pij þ qij

� 	
yi � hj � yj � H 2� pij � qij

� 	
where

1 � i � j � n

608 CHAPTER 10 Floorplanning
For the dimension constraint, each module must be enclosed within a rectangle

of the width W and the height H of the floorplan. Specifically, we have

xi þ wi � W
yi þ hi � H

where

1 � i � j � n

Our objective is to minimize the floorplan area, xy, where x and y are the width

and height of the resulting floorplan, respectively. Notice that the area xy is non-

linear, and it is much harder to solve a non-linear system than a linear one.

To transform the original non-linear objective into a linear one, we can approxi-
mate the problem by fixing the floorplan width W and minimizing the height y.

As a result, we need to modify the dimension constraints to xi þ wi � W and

yi þ hi � y, where 1 � i � n and y is the height of the current floorplan.

In summary, we have the following four types of constraints:
1. There is no overlap between any two modules (8i; j : 1 � i < j � n).

2. Each module is enclosed within a rectangle of width W and height H

(xi þwi � W ; yi þ hi � y; 1 � i � n). Here, wi and hi are known.

3. xi � 0; yi � 0; 1 � i � n

4. pij; qij 2 f0; 1g

On the basis of the above discussions, we can formulate the floorplan designs as

the following mixed integer linear program (MILP). Note that both the

objective function and all constraints are linear. Our floorplan design problem

is to minimize the height y for a given bound of the floorplan width W, subject

to the following system of inequality constraints:
Minimize
 y
subject to
 xi þ wi � W
 1 � i � n
yi þ hi � y
 1 � i � n
xi þ wi � xj þ W(pij þ qij)
 1 � i < j �n

yi þ hi � yj þ H(1 þ pij – qij)
 1 � i < j �n

xi – wj � xj – W(1 – pij þ qij)
 1 � i < j �n

yi – hj � yj – H(2 – pij – qij)
 1 � i < j �n

xi, yi � 0
 1 � i � n
pij;qij 2 {0, 1}
 1 � i < j �n
For the size of the mixed ILP for n modules, the number of continuous vari-

ables is O(n), the number of integer variables is O(n2), and the number of linear

constraints is O(n2). There are a few popular mixed ILP solvers, such as GLPK
[GLPK 2008], CPLEX [ILOG 2008], LINDO [LINDO 2008], lp_solve [lp_solve

10.3 Analytical approach 609
2008], etc. ILP has the exponential time complexity in the worst case, and thus

it is time-consuming for problems of large sizes. To cope with problems of large
sizes, methods such as the divide-and-conquer and the progressive approaches

are often used. We will elaborate on this issue later.

The preceding formulation does not consider the rotation of modules. We

can extend the aforementioned MILP formulation by introducing a new binary

variable ri to consider the rotation of the module i. When ri ¼ 0, module i is

not rotated (i.e., rotated by 0 degree); when ri ¼ 1, module i is rotated by 90

degrees. The system of inequality constraints now becomes
xi þ rihi þ (1 � ri)wi � W
Table 10.7 The Dimensions of Modules in Example 10.13

Module No. Width (wi) Height (hi)

1 8 6

2 8 5

3 11 2
1 � i � n
yi þ riwi þ (1 – ri)hi � y
 1 � i � n
xi þ rihi þ (1 – ri)wi � xj þ M(pij þ qij)
 1 � i < j �n

yi þ riwi þ (1 – ri)hi � yj þ M(1 þ pij – qij)
 1 � i < j �n

xi – rjhj – (1 – rj)wj � xj – M(1 – pij þ qij)
 1 � i < j �n

yi – rjwj – (1 – rj)hj � yj – M(2 – pij – qij)
 1 � i < j �n

xi, yi � 0
 1 � i � n
ri, pij;qij 2 {0, 1}
 1 � i < j �n
where M ¼ max{W, H}. The following gives an example of the MILP formulation

for floorplan design. (The preceding formulation considers only the area optimi-
zation. If wirelength also needs to be considered, we need to modify the objec-

tive function to minimize the total wirelength.)
Example 10.13
 Given the dimensions of modules listed in Table 10.7. The total module area is 8 * 6 þ
8 * 5 þ 11 * 2 ¼ 110. Because a square floorplan is often desired, the square root of

110 is approximately 10. Therefore, we set W ¼ 10 and M ¼ max{8, 6} þ max{8, 5} þ
max{11, 2} ¼ 27 to find a floorplan with width less than 10. We can use the publicly

available lp_solve program to solve this problem. The Figure 10.24 shows the input file

in the lp-format. The objective is to minimize the floorplan height (y). The constraints c1
to c6 define the bounding box of the floorplan, and the constraints c7 to c10, c11 to c14,

and c15 to c18 define the nonoverlapping relationship between modules 1 and 2,

FIGURE 10.24

The input file for lp_solve to minimize y in Example 10.13.

610 CHAPTER 10 Floorplanning
modules 1 and 3, and modules 2 and 3, respectively. The remaining constraints define

the 0-1 integer variables.

Applying lp_solve to solve the preceding MILP program, we can obtain the outputs

shown in Figure 10.25, which gives the co-ordinates of modules: Module 1 (x1, y1) ¼
(0, 5); module 2 (x2, y2) ¼ (0, 0); module 3 (x3, y3) ¼ (8, 0). Only module 3 is rotated (r3 ¼ 1).

The resulting floorplan height is 11 (y¼ 11), and the final floorplan in shown in Figure 10.26.

As mentioned earlier, the time complexity of MILP is exponential, and thus it is

prohibitively expensive for problems of large sizes. To cope with problems of
large sizes, methods such as the progressive and the divide-and-conquer

approaches are often used to reduce the problem sizes. We will examine a pro-
gressive augmentation method that solves a partial problem at each step to

reduce the floorplanning complexity. Each time, we select a set of modules and

place them into the current partial floorplan, as illustrated in Figure 10.27.

To reduce the problem size, we limit the number of the modules to be placed

Value of objective function: 11

Actual values of the variables:
y 11
x1 0
r1 0
x2 0
r2 0
x3 8
r3 1
y1 5
y2 0
y3 0
p12 1
q12 1
p13 0
q13 0
p23 0
q23 0

FIGURE 10.25

The outputs from lp_solve in Example 10.13.

2

1

3

FIGURE 10.26

The resulting floorplan in Example 10.13.

5

21
4

3

6

12
7

8 10
9 11

w

Modules to be placed

A partial floorplan

FIGURE 10.27

Floorplanning with an existing partial floorplan.

10.3 Analytical approach 611

5

21
4

3

(a) (b) (c)

6

R1

R2
R3

R4

FIGURE 10.28

Reducing the problem size by a set of covering rectangles: (a) The original partial floorplan.

(b) The outline of the partial floorplan. (c) A set of rectangles covering the partial floorplan.

612 CHAPTER 10 Floorplanning
at each step and also minimize the problem size of the current partial floorplan.

We can replace the already placed modules by a set of covering rectangles.

Figure 10.28 illustrates the procedure for obtaining these rectangles. First, we find

the outline of the six placed modules, as shown in Figure 10.28b. The dead

spaces among the placed modules are also enclosed in the outline, because it is

impossible for the newly added modules to use them. Then, we horizontally dis-

sect the outline into rectangles, R1, R2, R3, and R4. By doing so, the number of

rectangles is usually much smaller than that of placed modules, and so are the
number of variables and constraint in the MILP formulation.

Besides the preceding MILP-based floorplanning, a sophisticated analytical

floorplanning method was proposed [Zhan 2006]. It first roughly determines

the module positions by uniformly distributing modules. Then, the overlaps

are gradually removed in the second stage to obtain the final floorplan. This

approach has much better scalability to handle large-scale designs. However,

this approach cannot guarantee a nonoverlap floorplan solution.
10.4 MODERN FLOORPLANNING CONSIDERATIONS

Increasing design complexity and new circuit properties and requirements have

reshaped the modern floorplanning problem. The new considerations and chal-

lenges make the problem much more difficult. In this section, we will discuss
such crucial considerations. Specifically, we will focus on (1) soft modules,

(2) fixed-outline constraints, and (3) large-scale floorplanning, and then high-

light other important issues for modern floorplanning.
10.4.1 Soft modules
Unlike hardmoduleswith fixed heights andwidths, softmodules can change their
heights andwidthswhile keeping the samemodule area. Theaspect ratiobounds are
given as inputs for each module. There are many techniques for the adjustment of

soft-module dimensions. In the following, we introduce an effective and efficient

10.4 Modern floorplanning considerations 613
heuristic that adjusts soft-moduledimensions tooptimize the chip area. Theunderly-

ing concept of this sizing method is to align themodule width/height to its adjacent
module to reduce the dead space [Chang 2000; Chi 2003; Chen 2005a, 2006].

Given a set B of modules, we assume that module i’s bottom-left coordinate is

(xi, yi) and its top-right coordinate is (xi þ wi, yi þ hi). Each soft module has four

candidates for the dimensions (i.e., shapes). The candidates are defined as follows:
n Ri ¼ xa þ wa – xi, where xa þ wa ¼ min {xk þ wk | xk þ wk > xi þ wi,

k 2 B}

n Li ¼ xb þ wb – xi, where xb þ wb ¼ max {xk þ wk | xk þ wk < xi þ wi,

k 2 B}

n Ti ¼ xc þ hc – yi, where xc þ hc ¼ min {xk þ hk | xk þ hk > xi þ hi, k 2 B}

n Bi ¼ xd þ hd – yi, where xd þ hd ¼ max {xk þ hk | xk þ hk < xi þ hi,

k 2 B}
Define the aspect ratio of a module as the ratio of the height over width of the

module. After determining the candidates of the module shapes, we may change

the shape of a soft module i by choosing one of the following five choices dur-

ing simulated annealing:
1. Change the width of module i to Ri.

2. Change the width of module i to Li.

3. Change the height of module i to Ti.
4. Change the height of module i to Bi.

5. Change the aspect ratio of module i to a random value in the range of the

given soft aspect ratio constraint.
We can add the module resizing as one floorplan perturbation operation during
simulated annealing so that the module shapes could be changed to obtain a

more desired floorplan.
Example 10.14 C
onsider the example of soft-module resizing given in Figure 10.29. Module 4 has four

shape candidates, R4, L4, T4, and B4, with four candidate lines being shown in

Figure 10.29a. If we stretch the right boundary of module 4 to R4 (the height is also

changed correspondingly to maintain a fixed area), it can generate a more compacted

floorplan as shown in Figure 10.29b.

The preceding soft-module sizing technique can be applied to any floorplan

representations based on simulated annealing or iterative improvement. For

the normalized Polish expression (slicing tree), we can use a more sophisti-

cated method, shape curve, to handle soft modules. Because the area of a
soft module is fixed, the shape function of a module is a hyperbola: wh ¼ A,

or h ¼ A/w, where w is the width, h is the height, and A is the area of the mod-

ule. See Figure 10.30a for an example of the shape curve. Because module

w

h

h = A/w

w

h

h = A/w

wmin

hmin

w

h

(a) (b) (c)

FIGURE 10.30

The shape curve of a module: (a) The shape curve in a hyperbola function. (b) The shape

curve with the minimum width/height constraint. (c) The piecewise linear shape curve.

323
1

5

4

6

L4 R4

T4

B4

1
2

(a) (b)

5

4

6

xx

yy

FIGURE 10.29

A soft-module resizing example: (a) the original floorplan with four shape candidates for

resizing module 4. (b) a compacted floorplan by stretching the right boundary of module

4 to R4.

614 CHAPTER 10 Floorplanning
width and height are usually constrained to avoid very thin modules, h � hmin

and w � wmin; see Figure 10.30b for the resulting shape curve. In practice,

we can use piecewise linear functions to record the shape curve for easier
implementation. We only need to record the corner points of the shape curve,

as shown in Figure 10.30c.

The shape curves can record not only the shapes of a basic soft module, but

also that of a composite module formed by a set of basic modules (i.e., a sub-floor-

plan). In a slicing tree, we first generate a shape curve for eachmodule and record

this shape curve with the corresponding leaf node, as shown in Figure 10.31.

Then, the shape curve of a composite module can be derived from its children

nodes and recorded in the corresponding internal node. By use of the bottom-
up procedure, we can find the shape curve of the root node, which gives all pos-

sible shapes of the resulting floorplans.

w

h

w

h
h3(w) = h1(w) + h2(w)

1 + 2 = 3
1 + 4 = 5
3 + 4 = 7

w3(h) = w1(h) + w2(h)

3 + 4 = 7
1 + 4 = 5
1 + 2 = 3

1: (1, 3) (3, 1)
2: (2, 4) (4, 2)
12H: (2, 7) (3, 5) (4, 3)

(a) (b)

1: (1, 3) (3, 1)
2: (2, 4) (4, 2)
12V: (3, 5) (5, 3) (7, 2)

h3h2h1

w1w2w3

FIGURE 10.32

Examples of updating the shape curve: (a) The H operator. (b) The V operator.

V

H

V

H

H

H

1 6

2 4

3 5

7

FIGURE 10.31

Shape curves in a slicing tree.

10.4 Modern floorplanning considerations 615
Example 10.15 G
iven two piecewise linear shape curves for modules 1 and 2, derive the shape curves

of the composite modules 12H and 12V. Figure 10.32a illustrates the derivation of the

shape curve for the composite module 12H. For the H operator, two modules are

merged vertically; we have h3(w) ¼ h1(w) þ h2(w), and the minimum width of the result-

ing floorplan cannot be smaller than max(min w1, min w2). See the bold lines in

Figure 10.32a for the shape curve of 12H. Similarly, for the V operator, we have w3(h) ¼
w1(h) þ w2(h) and the height of the resulting floorplan cannot be smaller than max(min

h1, min h2). The shape curve of 12V is represented by the bold lines in Figure 10.32b.
10.4.2 Fixed-outline constraint
Modern VLSI design is typically based on a fixed-die (fixed-outline) floor-
plan [Kahng 2000], rather than a variable-die floorplan. A floorplan with

pure area minimization without any fixed-outline constraints may be useless,
because it cannot fit into the given outline. Unlike classical floorplanning that

usually handles only module packing to minimize silicon area, modern floor-

planning should be formulated as fixed-outline floorplanning.

616 CHAPTER 10 Floorplanning
The fixed-outline constraint is given as follows. We first construct a fixed

outline with the aspect ratio R* (i.e., height/width). For a collection of modules
with the given total area A and the maximum percentage of dead space G,
we have the chip area ¼ H*W* ¼ (1 þ G)A and the chip aspect ratio ¼ H*/

W* ¼ R*. Therefore, the new height H* and width W* of the outline are defined

by the following equations [Adya 2001]:

H� ¼
ffi
1þ Gð ÞAR�

p

W � ¼
ffi
1þ Gð ÞA=R�

p

Example 10.16
 Figure 10.33 gives three floorplan examples with different R*’s and ’s. The three floor-

plans contain the same modules. Figure 10.33a and Figure 10.33b have the same

maximum percentage of dead spaces, 15%, yet with different outline ratios, 2.0 and

1.0, respectively. Figure 10.33b and Figure 10.33c have the same outline ratio, 1.0,

yet with different maximum percentages of dead spaces, 15% and 50%, respectively.

To handle the fixed-outline constraint, we will modify the cost function for
simulated annealing. In addition to the wirelength/area objective, we may add

an aspect ratio penalty to the cost function [Chen 2005a, 2006]. The rationale

is that if the aspect ratio of the floorplan is similar to that of the outline, and

the dead space of the floorplan is smaller than the maximum percentage of

the dead space G, then the floorplan can fit into the outline. Suppose that the

current aspect ratio of the floorplan is R. We define the cost function F for a

floorplan solution F by the following equation:

F Fð Þ ¼ aAþ bW þ 1� a� bð Þ R� � Rð Þ2
H*

W*

H*

W*

R* = 2
Γ = 0.15

R* = 1
Γ = 0.15

R* = 1
Γ = 0.50

H*

W*

(a) (b) (c)

FIGURE 10.33

Three floorplans with different outline ratios (R*) and the maximum percentages of dead

spaces (�) based on the same modules.

1
2 3

4
1

2

(a) (b)

3

4
2

3
1

4
2

3
1

4

FIGURE 10.34

Examples of: (a) a floorplan with the aspect ratio the same as the one of the outline. (b) the

optimal floorplan with a different aspect ratio from the aspect ratio of the outline.

10.4 Modern floorplanning considerations 617
where A is the floorplan area, W is the wirelength, R is the floorplan aspect

ratio, R* is the desired floorplan aspect ratio, and a and b are user-defined

parameters.

The best aspect ratio of the floorplan in the fixed outline may not be the

same as that of the outline, as shown in Figure 10.34. In this case, we will

decrease the weight of the aspect ratio penalty to concentrate more on the wir-

elength/area optimization. We can use an adaptive method to control the

weights in the cost function according to the most recent floorplans found in
[Chen 2005a]. If there are more feasible floorplans in most recent floorplans

found during simulated annealing, it implies that this instance is easier to be

fit into the floorplan outline, and thus we will reduce the weight of the aspect

ratio penalty to focus more on the wirelength/area optimization. Figure 10.35

shows the resulting floorplans for the MCNC circuit ami49 with various aspect

ratios. There are 49 modules in this circuit [Chen 2005a].

In addition to the objective function adjustment, new perturbations can also

be applied to better guide a local search for fixed-outline floorplanning on the
basis of sequence pair or normalized Polish expression [Adya 2003;

Lin 2004a]. However, unlike the objective function adjustment that can be

applied to all floorplan representations, the new perturbations are specific to

the target floorplan representation. On the basis of the generalized slicing tree,

DeFer is proposed to handle fixed-outline floorplanning efficiently and effec-

tively [Yan 2008]. DeFer generates a collection of possible floorplan solutions

and chooses the best one that can fit into the fixed outline with the smallest

wirelength at the last stage.
10.4.3 Floorplanning for large-scale circuits
As technology advances, the number of modules in a chip becomes larger.

Simulated annealing alone cannot handle large-scale floorplanning instances

effectively and efficiently. To cope with the scalability problem, hierarchical
floorplanning is proposed. The hierarchical approach recursively divides a floor-

plan region into a set of sub-regions and solves those sub-problems independently.
Patoma is a fast hierarchical floorplanner based on recursive bipartitioning [Cong

2005]. It partitions a floorplan and uses row-oriented block (ROB) packing and

33

35
48

4

21
20
28 49 9

29

18 14

19

33

46

36

38 22
21

9

7
32

39

8 23 45 14
42

26

17

6

27
12

18 31 40 47

29 43

37

2
30

20
41

16

1

3

25 49

13

10

24

34

44

15

11 48

5
28

35
4

12
39

15 16

11

36

49

30

34

3 29

48

36 30

20
38 22 29 18

17

6526

23 15 9
13
10
25

19
42

46
27

37

12 32

2

47
24

16
49

8

28

34

45 44

14
401

33
39

7

35

11

4131

34

21

43

4

18

23 31

42

5 8

37 6

10 46

47 14
24 21

38
7

22
26 43

33

41
20

40
1

19
25

45
44

2
48

32

28

17 35

2713 9
30

45

40
25

42

2
343

38
37

19

22

36

46

17

5

41 47

7 11

6

34

23
27

39
15

16
1226

10
134483231

1

24

FIGURE 10.35

The floorplans of the MCNC circuit ami49 with fixed-outline ratios 1, 2, 3, and 4.

618 CHAPTER 10 Floorplanning
zero-dead space (ZDS) floorplanning to find legal sub-floorplans. The top-

down, hierarchical technique is efficient in handling large-scale problems. Never-

theless, a significant drawback of the hierarchical approach is that it might lack the

global information for the floorplanning interactions among different sub-regions,
because each sub-region is processed independently. As a result, the hierarchical

approach might not find desired solutions.

To remedy the deficiency, multilevel floorplanning is proposed to find a

better trade-off between the scalability and solution quality. The multilevel

framework applies a two-stage technique, bottom-up coarsening and top-
down uncoarsening. We take the MB*-tree [Lee 2003] as an example to

explain the concept of multilevel floorplanning. Figure 10.36 shows the

MB*-tree multilevel framework based on a two-stage technique of bottom-up
clustering (coarsening) followed by top-down declustering (uncoarsening).

It should be noted that although we use the MB*-tree as an example to explain

the multilevel floorplanning framework, this framework itself is general to all

floorplan representations.

single clustered
module

clustering

clustering declustering

declustering

clustered moduleclustered module
chip boundary

FIGURE 10.36

Multilevel floorplanning that uses recursive clustering and declustering.

10.4 Modern floorplanning considerations 619
The clustering stage iteratively groups a set of (primitive or composite)

modules (say, two modules) on the basis of a cost metric defined by area utiliza-

tion, wirelength, and connectivity among modules, and at the same time estab-

lishes the geometric relations among the newly clustered modules by

constructing a corresponding B*-subtree. The clustering procedure repeats

until a single cluster containing all modules is formed (or the number of mod-
ules is smaller than a predefined threshold that can be handled by a classical

floorplanner), denoted by a one-node B*-tree that records the entire clustering

scheme. During clustering, we will record how two modules i and j are clus-

tered into a new composite module k. The relation for each pair of modules

in a cluster is established and recorded in the corresponding B*-subtree during

clustering. It will be used for determining how to expand a node into a

corresponding B*-subtree during declustering.

The declustering stage iteratively ungroups a set of previously clustered
modules (i.e., expanding a node into a subtree according to the B*-tree topology

constructed at the clustering stage) and then refines the floorplan solution on

the basis of a simulated annealing scheme. The refinement should lead to a “bet-

ter” B*-tree structure that guides the declustering at the next level. It is impor-

tant to note that we always keep only one B*-tree for processing at each

iteration, and the multilevel B*-tree–based floorplanner preserves the geometric

relations among modules during declustering (i.e., the tree expansion), which

makes the B*-tree an ideal data structure for the multilevel floorplanning
framework.

The MB*-tree algorithm is summarized in Algorithm 10.5. We first perform

clustering to reduce the problem size level by level and then enter the declus-

tering stage. In the declustering stage, we perform floorplanning for the mod-

ules at each level with simulated annealing.

620 CHAPTER 10 Floorplanning
Algorithm 10.5 MB*-tree Floorplanning

Input: A set of modules and a set of nets.
Output: A final area-optimized floorplan.
Stage I: Clustering
1. while the number of modules/clusters is still large
2. Cluster modules according to their dimensions and connectivity;
3. end while;
Stage II: Declustering
4. while still having clusters
5. Decluster a set of clusters;
6. Perform simulated annealing to refine the floorplan;
7. end while;
8. return the final floorplan;

Figure 10.37 illustrates the MB*-tree algorithm. For easier explanation, we clus-

ter three modules each time in Figure 10.37. Figure 10.37a lists seven modules

to be packed, i’s, 1 � i � 7. Figure 10.37b to Figure 10.37d illustrate the cluster-

ing process. Figure 10.37b shows the resulting configuration after clustering

modules 5, 6, and 7 into a new cluster module 8 (i.e., the clustering scheme
of 8 is {{5, 6}, 7}); note that the B*-tree for the packing of modules 5, 6, and 7

is recorded with module 8. Similarly, we cluster modules 1, 2, and 4 into module

9 with the clustering scheme {{2, 4}, 1} and record the B*-tree with module 9 for

packing modules 1, 2, and 4. Finally, we cluster modules 3, 8, and 9 into module

10 by use of the clustering scheme {{3, 8}, 9} and record a one node B*-tree for

module 10. The clustering stage is thus done, and the declustering stage begins,

in which simulated annealing is applied to the floorplanning. In Figure 10.37e,

we first decluster module 10 into modules 3, 8, and 9 (i.e., expand the node n10

into the B*-subtree illustrated in Figure 10.37e). We then refine the solution by

moving module 8 to the top of module 9 (perform Op2 on n8) during simulated

annealing (see Figure 10.37f). As shown in Figure 10.37g, we further decluster

module 9 into modules 1, 2, and 4, and then rotate module 2 and move module 3

on top of module 2 (perform Op1 on n2 and Op2 on n3), resulting in the configu-

ration shown in Figure 10.37h. Finally, we decluster module 8 shown in

Figure 10.37i to modules 5, 6, and 7, and move module 4 to the right of module 3

(perform Op2 on n4), which results in the area optimal floorplan shown in
Figure 10.37j.

Figure 10.38 shows the layout for the circuit ami49_200 with 9800 modules

and 81,600 nets (not shown in the layout) [Lee 2003] obtained by MB*-tree.

It has a dead space of only 3.44%. Without the use of the multilevel approach,

7
6

1
22 44

33 5

(a)

(b) (c) (d)

33

88
101010999

33

1
22 44

888

33

8

99

33

8
99

n8

n9 n9

n3 n8

n3

n1

(e) (f)

3

2
1

44

8

1
2 44

3

88

(g)

(i) (j)

(h)

3

2

465

1

7

3

2
1

4
65

7

65

7

n2 n8

n1

n8

n3

n2

n4

n4

n3

n1

n5

n7

n1

n2

n3 n6 n7

n4

n5

n6n3n4

n2

FIGURE 10.37

Clustering and declustering: (a) given seven is, 1 � i � 7. (b) Cluster modules 5, 6, and 7

into 8. (c) Cluster modules 1, 2, and 4 into 9. (d) Cluster modules 3, 8, and 9 into 10. (e)

Decluster module 10 into modules 3, 8, and 9. (f) Perform Op2 on module 8. (g) Decluster

module 9 into modules 1, 2, and 4. (h) Perform Op1 and Op2 on modules 2 and 3,

respectively. (i) Decluster module 8 into module 5, 6, and 7. (j) Perform Op2 on module 4

to obtain the final floorplan.

10.4 Modern floorplanning considerations 621
the flat floorplanning method could not handle large circuits of this magnitude
effectively.

The MB*-tree approach is referred to the ∧-shaped multilevel framework,
because it starts with bottom-up coarsening (clustering) followed by top-down

FIGURE 10.38

The resulting floorplan for the circuit ami49_200 with 9800 modules and 81,600 nets; the

resulting dead space (the dark regions) is only 3.44%.

622 CHAPTER 10 Floorplanning
uncoarsening (declustering). In contrast, the V-shaped multilevel frame-
work works from top-down uncoarsening (partitioning) followed by bottom-

up coarsening (merging) [Chen 2005b]. The V-shaped multilevel framework

often outperforms the ∧-shaped one in the optimization of global circuit effects,
such as interconnection optimization, because the V-shaped framework consid-

ers the global configuration first and then processes down to local ones level by

level and thus the global effects can be handled at earlier stages.
10.4.4 Other considerations and topics
In addition to the aforementioned modern floorplanning considerations, there

are many other issues that might need to be considered. In the following, we
briefly describe these issues.

Modern circuit designs often need to integrate analog and digital circuits on

a single chip and thus may suffer from substrate noise coupling. A pioneering

work along this direction was proposed in [Cho 2006]. With the continued

increase in system frequency and design complexity, existing techniques for

reducing substrate noise may need to be enhanced substantially. Considering

substrate noise in early floorplanning is now desirable.

For nanometer VLSI designs, interconnect dominates overall circuit perfor-
mance. However, the conventional design flow often deals with interconnect

10.4 Modern floorplanning considerations 623
optimization at the routing or post-routing stages. When the interconnect com-

plexity grows drastically, it is often too late to perform aggressive interconnect
optimization during or after routing, because most silicon and routing resources

are occupied. Therefore, it is desirable to optimize interconnect as early as pos-

sible. Many techniques have been proposed for interconnect optimization.

Some examples are wiring topology construction, buffer/repeater insertion

and sizing, and wire sizing and spacing [Cong 1997]. Among these interconnect

optimization techniques, buffer insertion is generally considered the most

effective and popular technique to interconnect delay reduction, especially for

global signals [Alpert 1997]. With so many buffers being added, the buffer posi-
tions should be planned as early as possible to ensure timing closure and design

convergence; in particular, current VLSI designs often do not allow buffers to be

inserted inside a circuit module, because they consume silicon resources and

require connections to the power/ground network. Consequently, buffers are

placed in channels and dead spaces of the current floorplan and are often clus-

tered to form buffer blocks between existing circuit modules of the floorplan,

which inevitably increases the chip area [Cong 1999]. It is thus desirable to

carefully plan for the buffers during/after floorplanning to minimize the area
overhead and facilitate routing, which is referred to as the buffer block
planning. Furthermore, long interconnects affect microarchitecture designs

very much, because multiple cycles are necessary to communicate global sig-

nals across the chip. As a result, it is desirable to handle microarchitecture
aware floorplanning considering interconnect pipelining to improve the per-

formance of microarchitecture designs [Jagannathan 2005; Ma 2007].

Because interconnection on the chip becomes more congested as technol-

ogy advances, bus routing becomes a challenging task. Because buses have dif-
ferent widths and go through multiple modules, the positions of the modules

greatly affect the bus routing. To make the bus routing easier, bus planning

should be considered at the floorplanning stage, which is called bus-driven
floorplanning. The feasibility conditions of bus-driven floorplanning for

sequence pair [Xiang 2003] and B*-tree [Chen 2005a] are studied to reduce their

solution spaces and find the desired floorplans efficiently. When the number of

modules through which a bus goes is large, multi-bend bus structure can be

used to find better solutions [Law 2005].
As technology advances, the metal width decreases, whereas the global wir-

elength increases. This trend makes the resistance of the power wire increase

substantially. Therefore, floorplanning considering voltage (IR) drop in the

power/ground (P/G) network becomes important. Because of IR-drop, sup-

ply voltage in logic may not be an ideal reference. An important problem of

P/G network synthesis is to use the minimum amount of wiring area for a P/G

network under the power integrity constraints such as IR drop and electromi-

gration. As the design complexity increases dramatically, it is necessary to han-
dle the IR-drop problem earlier in the design cycle for better design

convergence. Most existing commercial tools deal with the IR-drop problem at

FIGURE 10.39

(a) A running prog

624 CHAPTER 10 Floorplanning
the post-layout stage, when entire chip design is completed and detailed layout

and current information are known. It is, however, often very difficult and com-
putationally expensive to fix the P/G network synthesis at the post-layout stage.

Therefore, researchers started to consider the P/G network analysis at an earlier

design stage [Yim 1999; Wu 2004; Lin 2007].

Recently, 3-D floorplanning was developed to handle dynamically reconfi-

gurable field programmable gate arrays (FPGAs) to improve logic capacity

by time-sharing. We may use the 3-D space (x, y, t) to model a dynamically

reconfigurable system. The x and y coordinates represent the 2-D plane of FPGA

resources (spatial dimension), whereas the t coordinate represents the time
axis (temporal dimension). Each “task” [Reconfigurable Functional Unit
Operation (RFUOP), the execution unit in a reconfigurable FPGA] is modeled

by a rectangular box (module). We may denote each module as a 3-D box with

the spatial dimensions x and y and the temporal dimension t. Figure 10.39a

shows a program with four parts of codes to be mapped into RFUOPs. Because

of the capacity constraint, we may not load all modules into the device at the

same time. Therefore, it is desirable to consider the 3-D floorplanning problem

of placing these modules into the Reconfigurable Functional Unit (RFU) (see
Figure 10.39b). The objective is to allocate modules to optimize the area and

execution time and to satisfy specified constraints. To deal with the 3-D floor-

planning problem, a few 3-D floorplan representations extending the 2-D floor-

plan ones are proposed. For example, Sequence Triple [Yamazaki 2003] and

Sequence Quintuple [Yamazaki 2003] are extensions of sequence pair for

2-D packing. K-tree [Kawai 2005], T-tree [Yuh 2004a], and 3D-subTCG
RFUOP 3

RFUOP 2

RFUOP 1

RFUOP 4

Height

RFUOP 3

RFUOP 4

RFUOP 1

RFUOP 2

4

3.5

3

2.5

2

1.5

1

0.5

0
6

5
4

3
2

1
0 0

1
2

3
4

5

Width

(a) (b)

D
ur

at
io

n

ram. (b) A 3-D floorplan of the running program.

10.6 Exercises 625
[Yuh 2004b] are extensions of O-tree [Guo 1999], B*-tree [Chang 2000], and

Transitive Closure Graph (TCG) [Lin 2001] for 2-D packing, respectively.
Furthermore, heat dissipation is the most critical challenge of system-in-package

design, sometimes called 2.5-D IC’s (discrete layers are added into the traditional

x and y spatial dimensions). Layer partitioning followed by 2-D floorplanning

is often adopted to handle the thermal constraints for the 2.5-D IC designs

[Cong 2004].

In addition to the floorplanning for VLSI modules, the floorplanning tech-

niques can also be applied to other problems, such as system-on-chip test sched-

uling [Wu 2005] and digital microfluidic biochip placement [Yuh 2006].
10.5 CONCLUDING REMARKS

Floorplanning is an essential design step for hierarchical, building-module

design methodology. It provides valuable insights into the hardware decisions

and estimation of various costs. The most popular floorplanning method resorts

to the modeling of the floorplan structure and then optimizes the floorplan

solutions with simulated annealing. There exist many floorplan representations

in the literature. Yet, normalized Polish expression, B*-tree, and sequence pair

have been recognized as the most valuable representations because of their

superior simplicity, effectiveness, efficiency, and flexibility.
In additional to simulated annealing, analytical floorplanning approaches

have shown their advantage in the effective wirelength optimization

[Zhan 2006]; however, it is harder to handle the module overlaps and the

fixed-outline constraint for such an approach. Floorplanning considering both

hard and soft modules is also more challenging for the analytical approach.

After floorplanning, all hard modules are fixed. For each soft module, we

might need to further place standard cells inside themodule. The placement prob-

lem will be introduced in Chapter 11. Once the positions of all hard modules and
standard cells are decided, we need to route all signal and power/ground nets,

which will be introduced in Chapters 12 and 13, respectively.
10.6 EXERCISES
10.1. (Polish Expression and B*-tree) Given the following Polish expres-

sion, E ¼ 12V34HVH5,
(a) Does the above expression have the balloting property? Justify

your answer.

(b) Is E a normalized Polish expression? If not, exchange an operator

and an operand to transform E into a normalized Polish expres-

sion E0.

626 CHAPTER 10 Floorplanning
(c) Give the slicing tree that corresponds to the Polish expression E.
Also, give the slicing tree corresponding to the “resulting” normal-

ized Polish expression E0, if E is not a normalized Polish expression.

(d) Assume that modules 1, 2, 3, 4 and 5 have the sizes and shapes

listed in Table 10.8. If all modules are rigid (hard) and rotation is

allowed, what will be the size of the smallest bounding rectangle

corresponding to the “resulting” normalized Polish expression

E0? Show all steps that lead to your answer.

(e) Give a B*-tree for the floorplan derived in (d).
(f) Show all steps for computing the coordinates of the modules

from the resulting B*-tree of (e).
10.2. (Polish Expression and B*-tree) Given the following Polish expres-

sion, E ¼ 12V3H4V,
(a) Give a slicing tree corresponding to the expression E.

(b) Assume modules 1, 2, 3, and 4 have the sizes and shapes indi-

cated in Table 10.9. If all modules are rigid and rotation is
allowed, what will be the size of the smallest bounding rectangle

corresponding to the Polish expression E? Show all steps that

lead to your answer.

(c) Give a B*-tree for the floorplan derived in (b).

(d) Show all steps for computing the coordinates of the modules

from the resulting B*-tree of (c).
Table 10.8. The Dimensions of Modules in Exercise 10.1

Module No. Width Height

1 2 3

2 2 2

3 5 3

4 3 3

5 1 3
Table 10.9. The Dimensions of Modules in Exercise 10.2

Module No. Width Height

1 2 2

2 3 2

3 2 4

4 5 3

10.6 Exercises 627
10.3. (Sequence Pair and B*-tree) Consider the floorplan of five modules
1, 2, 3, 4, and 5 and their dimensions shown in Table 10.10 and

Figure 10.40.
(a) Derive the sequence pair S ¼ (Gþ, G–) for the floorplan. Show

your procedure.
(b) Show all steps on the sequence pair to evaluate the area cost for

the S ¼ (Gþ, G–)-packing. What is the area cost?

(c) Derive the B*-tree for the floorplan shown in the figure.

(d) Show all steps on the B*-tree for evaluating the cost efficiently.

What is the area cost?
10.4. (Rectilinear Modules) In this chapter, we assume all modules are

rectangular. However, in real-world application, some modules may

be of a rectilinear shape. Show how to extend B*-tree and sequence

pair to handle rectilinear modules. (Hint: Dissect a rectilinear module

into rectangular submodules.)

10.5. (Shape Curve Candidates) Consider two lists, A ¼ {(p1, q1), . . . ,
(pm, qm)} and B ¼ {(x1, y1), . . . , (xn, yn)}, with pi � piþ1, qi � qiþ1, xi �
xiþ1, and yi � yiþ1. Combine A and B by considering each

element (pi, qi) ofA and each element (xj, yj) ofB to produce an element

of a list C: (piþ xj , max{qi, yj}). Thus C hasm� n elements. If there are

two elements (ci, di) and (cj, dj) in Cwith ci � cj and di � dj, then delete
1

3

2

4

5

1

3

2

4

5

FIGURE 10.40

The floorplan for Exercise 10.3.

Table 10.10 The Dimensions of Modules in Exercise 10.3

Module No. Width Height

1 2 2

2 2 3

3 3 3

4 3 3

5 4 2

628 CHAPTER 10 Floorplanning
(cj,dj) fromC. Prove that the resulting listChas atmost a linear function of
m and n elements. Find the linear function.

10.6. (Multilevel Framework) Give the strengths and weaknesses of the

∧- and V-shaped multilevel frameworks. Here, the ∧-shaped multilevel

framework consists of two stages of bottom-up processing followed

by top-down processing, whereas the V-shaped one uses top-down

processing followed by bottom-up processing.

10.7. (Boundary Constraints on B*-tree) It is often useful to identify the

modules being placed along a chip boundary because those modules
are closet to the I/O pads in a traditional chip package with peripheral

I/Os. Given a B*-tree, you are asked to derive the feasibility of the

B*-tree for the boundary conditions.
(a) For the nodes corresponding to the modules along the bottom

boundary of a floorplan, what are their positions in the B*-tree?

(b) For the nodes corresponding to the modules along the left

boundary of a floorplan, what are their positions in the B*-tree?

(c) For the nodes corresponding to the modules along the right
boundary of a floorplan, what are their positions in the B*-tree?

(d) For the nodes corresponding to the modules along the top

boundary of a floorplan, what are their positions in the B*-tree?
10.8. (Programming) This programming assignment asks you to write a
chip floorplanner that can handle hard macros and provide graphic

user interface (GUI) to show the floorplanning result with interconnec-

tions (center-to-center connection for each net). The evaluation is

based on the resulting floorplan area, wirelength, and running time.
(1) Input/Output specification

Input format

Each test case has two input files, problem_no.mac and problem_no.

net. The first file defines chip and macro information includes chip

width and chip height. The later includes name, area, and aspect ratio

constraints of a macro and lists all nets. For example, there are two

input files, problem1.mac and problem1.net. The first file format is

as follows:
.chip_bbox (width, height)

//the lower-left corner of this bounding box is (0, 0)

.module name width height

.module name width height

. . .More modules

10.6 Exercises 629
The format of the second file (netlist) is:
.net net_name module_name1 module_name2 . . .

.net net_name module_name1 module_name2 . . .

. . . More nets

// one line defines a net

// for example, if net N1 connects macro A, B, and C, the definition is

// .net N1 A B C
Output format

The output file consists of three parts: (1) bounding box for each

macro (specified by the coordinates of the lower-left and upper-right

corners), (2) total wirelength estimated by the half-perimeter wire-
length (HPWL) of all nets, and (3) area (it may be smaller than the

chip bounding box). The area can be obtained by X * Y, where X

(Y) is the difference between rightmost (topmost) edge and

leftmost (bottommost) edge among all modules. The report file format

is as follows:
.module module_name (x1, y1) (x2, y2)

.module module_name (x1, y1) (x2, y2)

// (x1, y1): lower-left corner, (x2, y2): upper-right corner

. . . More modules

.wire total_wire_length

.area chip_area

// area ¼ (max_x2 – min_x1) * (max_y2 – min_y1)
(2) Problem statement

Given (1) a set of rectangular modules and (2) a set of nets intercon-

necting these modules, the floorplanner places all modules within a
specified fixed-outline (i.e., a rectangular bounding box). We assume

that the lower-left corner of this bounding box is the origin (0, 0)

and no space (channel) is needed between two modules. The main

objective is to minimize the total wirelength. The net terminals are

assumed to be at the center of their corresponding module. The sec-

ond objective is to minimize the chip area. Figure 10.41 illustrates

an example of all input/output files.

DD

(0, 0) (60, 0) (100, 0)

(0, 50)

(0, 100)
(40, 100)

BA

C

FIGURE 10.41

A floorplan problem and its solution, the bold line representing net N1.

630 CHAPTER 10 Floorplanning
Input files
[PROBLEM1.MAC]

.chip_bbox (100, 100)

.module A 50 40

.module B 60 50

.module C 60 50

.module D 50 40
[PROBLEM1.NET]

.net N1 A B C
Output file
[PROBLEM1.RPT]

.module A (0, 50) (40, 100)

.module B (40, 50) (100, 100)

.module C (0, 0) (60, 50)

.module D (60, 0) (100, 50)

.wire 100

.area 10000

References 631
ACKNOWLEDGMENTS

We thankDr. Laung-TerngWang of SynTest Technologies Inc., Professor Chris Chu of Iowa State Univer-

sity, Professor Cheng-Kok Koh of Purdue University, Professor Evangeline F.-Y. Young of the Chinese

University of HongKong, ProfessorMartin D. F.Wong of the University of Illinois at Urbana-Champaign,

and the National Taiwan University students in the physical design class for their very careful review of

this chapter. We also thank SpringSoft Inc. for providing the programming assignment.
REFERENCES

R10.0 Books

[Lawler 1976] E. L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart,

and Winston, New York, 1976.

[Sait 1999] S. M Sait and H. Youssef, VLSI Physical Design Automation: Theory and Practice, World

Scientific, Singapore, 1999.

[Sherwani 1999] N. Sherwani, Algorithms for VLSI Physical Design Automation, Third Edition,

Kluwer Academic, Boston, 1999.

[Wong 1988] D. F. Wong, H. W. Leong, and C. L. Liu, Simulated Annealing for VLSI Design, Kluwer

Academic, Boston, 1988.
R10.1 Introduction

[Kahng 2000] A. B. Kahng, Classical floorplanning harmful?, in Proc. ACM Int. Symp. on Physical

Design, pp. 207–213, April 2000.

[Otten 1982] R. H. J. M. Otten, Automatic floorplan design, in Proc. ACM/IEEE Design Automation

Conf., pp. 261–267, June 1982.
R10.2 Simulated Annealing Approach

[Chang 2000] Y.-C. Chang, Y.-W. Chang, G.-M. Wu, and S.-W. Wu, B*-trees: a new representation for

non-slicing floorplans, in Proc. ACM/IEEE Design Automation Conf., pp. 458–463, June 2000.

[Guo 1999] P.-N. Guo, C.-K. Cheng, and T. Yoshimura, An O-tree representation of non-slicing floor-

plan and its applications, in Proc. ACM/IEEE Design Automation Conf., pp. 268–273, June 1999.

[Hilton 1991] P. Hilton and J. Pederson, Catalan numbers, their generalization, and their uses, Math.

Intelligencer, 13(2), pp. 64–75, February 1991.

[Hong 2000] X. Hong, G. Huang, Y. Cai, J. Gu, S. Dong, C.-K. Cheng, and J. Gu, Corner block list: An

effective and efficient topological representation of non-slicing floorplan, in Proc. IEEE/ACM Int.

Conf. on Computer-Aided Design, pp. 8–13, November 2000.

[Kirpatrick 1983] S. Kirpatrick, C. D. Gelatt, and M. P. Vecchi, Optimization by simulated annealing,

Science, 220(4598), pp. 671–680, May 13, 1983.

[Lin 2001] J.-M. Lin and Y.-W. Chang, TCG: A transitive closure graph based representation for general

floorplans, in Proc. ACM/IEEE Design Automation Conf., pp. 764–769, June 2001.

[Lin 2002] J.-M. Lin and Y.-W. Chang, TCG-S: Orthogonal coupling of P*-admissible representations

for general floorplans, in Proc. ACM/IEEE Design Automation Conf., pp. 842–847, June 2002.

[Lin 2003] J.-M. Lin, Y.-W. Chang, and S.-P. Lin, Corner sequence: A P-admissible floorplan represen-

tation with a worst case linear-time packing scheme, IEEE Trans. on Very Large Scale Integra-

tion Systems, 11(4), pp. 679–686, August 2003.

632 CHAPTER 10 Floorplanning
[Murata 1995] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajatani, Rectangle packing based

module placement, in Proc. IEEE/ACM Int. Conf. on Computer-Aided Design, pp. 472–479,

November 1995.

[Otten 1982] R. H. J. M. Otten, Automatic floorplan design, in Proc. ACM/IEEE Design Automation

Conf., pp. 261–267, June 1982.

[Otten 1983] R. H. J. M. Otten, Efficient floorplan optimization, in Proc. IEEE Int. Conf. on

Computer Design, pp. 499–502, November 1983.

[Sechen 1986] C. Sechen and A. Sangiovanni-Vincentelli, TimberWolf3.2: A new standard cell place-

ment and global routing package, in Proc. IEEE/ACM Design Automation Conf., pp. 432–439,

June 1986.

[Sechen 1988] C. Sechen, Chip-planning, placement, and global routing of macro/custom cell

integrated circuits using simulated annealing, in Proc. IEEE/ACM Design Automation Conf.,

pp. 73–80, June 1988.

[Shen 2003] C. Shen and C. Chu, Bounds on the number of slicing, mosaic and general floorplans,

IEEE Trans. on Computer-Aided Design, 22(10), pp. 1354–1361, October 2003.

[Stockmeyer 1983] L. Stockmeyer, Optimal orientations of cells in slicing floorplan designs, Infor-

mation and Control, 57(2-3), pp. 91–101, May/June 1983.

[Tang 2001] X. Tang and D. F. Wong, FAST-SP: A fast algorithm for block placement based on

sequence pair, in Proc. IEEE/ACM Asia South Pacific Design Automation Conf., pp. 521–526,

January 2001.

[Wong 1986] D. F. Wong and C. L. Liu, A new algorithm for floorplan design, in Proc. ACM/IEEE

Design Automation Conf., pp. 101–107, June 1986.

[Young 2003] E. F.-Y. Young, C. C.-N. Chu, and Z. C. Shen, Twin binary sequences: A non-redundant

representation for general non-slicing floorplan, IEEE Trans. on Computer-Aided Design, 22(4),

pp. 457–469, April 2003.

[Zhou 2004] H. Zhou and J. Wang, ACG-adjacent constraint graph for general floorplans in Proc.

IEEE Int. Conf. on Computer Design, pp. 572–575, October 2004.
R10.3 Analytical Approach

[GLPK 2008] GLPK (GNU Linear Programming Kit), http://www.gnu.org/software/glpk/, 2008.

[ILOG 2008] ILOG CPLEX, http://www.ilog.com/products/cplex/, 2008.

[LINDO 2008] LINDO System Inc., http://www.lindo.com/, 2008.

[lp_solve] lp_solve, http://tech.groups.yahoo.com/group/lp_solve/, 2008.

[Sutanthavibul 1991] S. Sutanthavibul, E. Shragowitz, and J. B. Rosen, An analytical approach

to floorplan design and optimization, IEEE Trans. on Computer-Aided Design of Integrated

Circuits an Systems, 10(6), pp. 761–769, June 1991.

[Zhan 2006] Y. Zhan, Y. Feng, and S. S. Sapatnekar, A fixed-die floorplanning algorithm using an ana-

lytical approach, in Proc. IEEE/ACM Asia South Pacific Design Automation Conf., pp. 771–776,

January 2006.
R10.4 Modern Floorplanning Considerations

[Adya 2003] S. N. Adya and I. Markov, Fixed-outline floorplanning: enabling hierarchical design,

IEEE Trans. on Very Large Scale Integration Systems, 11(6), pp. 1120–1135, December 2003.

[Alpert 1997] C. J. Alpert and A. Devgan, Wire segmenting for improved buffer insertion, in Proc.

ACM/IEEE Design Automation Conf., pp. 588–593, June 1997.

[Chang 2000] Y.-C. Chang, Y.-W. Chang, G.-M. Wu, and S.-W. Wu, B*-trees: A new representation for

non-slicing floorplans, in Proc. ACM/IEEE Design Automation Conf., pp. 458–463, June 2000.

[Chen 2005a] T.-C. Chen and Y.-W. Chang, Modern floorplanning based on fast simulated annealing,

in Proc. ACM Int. Symp. on Physical Design, pp. 104–112, April 2005.

References 633
[Chen 2005b] T.-C. Chen, Y.-W. Chang, and S.-C. Lin, IMF: interconnect-driven multilevel floorplan-

ning for large-scale building-module designs, in Proc. IEEE/ACM Int. Conf. on Computer-Aided

Design, pp. 159–164, November 2005.

[Chen 2006] T.-C. Chen and Y.-W. Chang, Modern floorplanning based on B*-tree and fast simulated

annealing, IEEE Trans. on Computer-Aided Design, 25(4), pp. 637–650, April 2006.

[Chi 2003] J.-C. Chi and M. C. Chi, A block placement algorithm for VLSI circuits, Chung Yuan Jour-

nal, 31(1), pp. 69–75, March 2003.

[Cho 2006] M. Cho, H. Shin, and D. Z. Pan, Fast substrate noise-aware floorplanning with preference

directed graph for mixed-signal SOCs, in Proc. IEEE/ACM Asia South Pacific Design Automation

Conf., pp. 765–770, January 2006.

[Cong 1997] J. Cong, L. He, K.-Y. Khoo, C.-K. Koh, and Z. Pan, Interconnect design for deep submi-

cron ICs, in Proc. IEEE/ACM Int. Conf. on Computer-Aided Design, pp. 478–485, November

1997.

[Cong 1999] J. Cong, T. Kong, and D. Z. Pan, Buffer block planning for interconnect-driven floor-

planning, in Proc. IEEE/ACM Int. Conf. on Computer-Aided Design, pp. 358–363, November

1999.

[Cong 2004] J. Cong, J. Wei, and Y. Zhang, A thermal-driven floorplanning algorithm for 3D ICs,

in Proc. Int. Conf. on Computer-Aided Design, pp. 306–313, November 2004.

[Cong 2005] J. Cong, M. Romesis, and J. R. Shinnerl, Fast floorplanning by look-ahead enabled recur-

sive bipartitioning, in Proc. IEEE/ACM Asia South Pacific Design Automation Conf.,

pp. 1119–1122, January 2005.

[Jagannathan 2005] A. Jagannathan, H. H. Yang, K. Konigsfeld, D. Milliron, M. Mohan, Mi. Romesis,

G. Reinman, and J. Cong, Microarchitecture evaluation with floorplanning and interconnect pipe-

lining, in Proc. ACM/IEEE Asia South Pacific Design Automation Conf, pp. 8–15, January 2005.

[Kawai 2005] H. Kawai and K. Fujiyoshi, 3D-block packing using a tree representation, in Proc.

Workshop on Circuits and Systems in Karuizawa, pp. 199–204, April 2005.

[Law 2005] J. H. Y. Law and E. F. Y. Young, Multi-bend bus driven floorplanning, in Proc. ACM Int.

Symp. Physical Design, pp. 113–120, April 2005.

[Lee 2003] H.-C. Lee, Y.-W. Chang, J.-M. Hsu, and H. H. Yang, Multilevel floorplanning/placement for

large-scale modules using B*-trees, in Proc. ACM/IEEE Design Automation Conf., pp. 812–817,

June 2003.

[Lin 2001] S. Lin and N. Chang, Challenges in power-ground integrity, in Proc. IEEE/ACM Int. Conf.

on Computer-Aided Design, pp. 651–654, November 2001.

[Lin 2004] C.-T. Lin, D.-S. Chen, and Y.-W. Wang, Robust fixed-outline floorplanning through evolu-

tionary search, in Proc. IEEE/ACM Asia and South Pacific Design Automation Conf.,

pp. 42–44, January 2004.

[Liu 2007] C.-W. Liu and Y.-W. Chang, Power/ground network and floorplan co-synthesis for fast

design convergence, IEEE Trans. on Computer-Aided Design, 26(4), pp. 693–704, April 2007.

[Ma 2007] Y. Ma, Z. Li, J. Cong, X. Hong, G. Reinman, S. Dong, and Q. Zhou, Micro-architecture

pipelining optimization with throughput-aware floorplanning, in Proc. ACM/IEEE Asia South

Pacific Design Automation Conf., pp. 920–925, January 2007.

[Nakatake 1996] S. Nakatake, K. Fujiyoshi, H. Murata, and Y. Kajatani, Module placement on

BSG-structure and IC layout applications, in Proc. IEEE/ACM Int. Conf. on Computer-Aided

Design, pp. 261–267, November 1996.

[Wu 2004] S.-W. Wu and Y.-W. Chang, Efficient power/ground network analysis for power integrity-

driven design methodology, in Proc. ACM/IEEE Design Automation Conf., pp. 177–180, June

2004.

[Wu 2005] J.-Y. Wu, T.-C. Chen, and Y.-W. Chang, SoC test scheduling using the B*-tree based floor-

planning technique, in Proc. ACM/IEEE Asia South Pacific Design Automation Conf.,

pp. 1188–1191, January 2005.

[Xiang 2003] H. Xiang, X. Tang, and M. D. F. Wong, Bus-driven floorplanning, in Proc. IEEE/ACM

Int. Conf. Computer-Aided Design, pp. 66–73, November 2003.

634 CHAPTER 10 Floorplanning
[Yan 2008] J. Z. Yan and C. Chu, DeFer: Deferred decision making enabled fixed-outline

floorplanner, in Proc. IEEE/ACM Design Automation Conf., June 2008.

[Yamazaki 2003] H. Yamazaki, K. Sakanushi, S. Nakatake, and Y. Kajitani, The 3D-packing by meta

data structure and packing heuristics, IEICE Trans. on Fundamentals of Electronics, Communi-

cations and Computer, E82-A(4), pp. 639–645, April 2003.

[Yuh 2004a] P.-H. Yuh, C.-L. Yang, and Y.-W. Chang, Temporal floorplanning using the T-tree repre-

sentation, in Proc. IEEE/ACM Int. Conf. on Computer-Aided Design, pp. 300–305, November

2004.

[Yuh 2004b] P.-H. Yuh, C.-L. Yang, Y.-W. Chang, and H.-L. Chen, Temporal floorplanning using

3D-subTCG, in Proc. IEEE Asia and South Pacific Conf. on Circuits and Systems,

pp. 725–730, January 2004.

[Yuh 2006] P-H. Yuh, C.-L. Yang, and Y.-W. Chang, Placement of digital microfluidic biochips using

the T-tree formulation, in Proc of ACM/IEEE Design Automation Conf. pp. 931–934, July 2006.

[Yim 1999] J.-S. Yim, S.-O. Bae, and C.-M. Kyung, A floorplan-based planning methodology for power

and clock distribution in ASICs, in Proc. ACM/IEEE Design Automation Conf., pp. 766–771,

June 1999.

[Zhou 2004] H. Zhou and J. Wang, ACG–adjacent constraint graph for general floorplans, in Proc.

IEEE Int. Conf. on Computer Design, pp. 572–575, October 2004.
R10.5 Concluding Remarks

[Zhan 2006] Y. Zhan, Feng, and S. S. Sapatnekar, A fixed-die floorplanning algorithm using an

analytical approach, in Proc. IEEE/ACM Asia South Pacific Design Automation Conf.,

pp. 771–776, January 2006.

CHAPTER
11
Placement
Chris Chu
Iowa State University, Ames, Iowa
IS CHAPTER
ABOUT TH

Placement is the process of determining the locations of circuit devices on a die
surface. It is an important stage in the VLSI design flow, because it affects routabil-

ity, performance, heat distribution, and to a less extent, power consumption of a

design. Traditionally, it is applied after the logic synthesis stage and before the

routing stage. Since the advent of deep submicron process technology around

the mid-1990s, interconnect delay, which is largely determined by placement,

has become the dominating component of circuit delay. As a result, placement

information is essential, even in early design stages, to achieve better circuit per-

formance. In recent years, placement techniques have been integrated into the
logic synthesis stage to perform physical synthesis and into the architecture

design stage to perform physical-aware architecture design.

This chapter begins with an introduction to the placement stage. Next, vari-

ous placement problem formulations are discussed. Then, partitioning-based

approach, simulated annealing approach, and analytical approach for global place-

ment are presented. After that, legalization and detail placement algorithms are

described. The chapter concludes with a discussion of other placement

approaches and useful resources to placement research.
11.1 INTRODUCTION
635
Traditionally, placement is the design stage after logic synthesis and before rout-

ing in the VLSI design flow. In logic synthesis, a netlist is generated. Then in

placement, the locations of the circuit modules in the netlist are determined.

After placement, routing is performed to lay out the nets in the netlist.
Placement is a critical step in the VLSI design flow mainly for the following

four reasons. First, placement is a key factor in determining the performance of

a circuit. Placement largely determines the length and, hence, the delay of inter-

connect wires. As feature size in advanced VLSI technology continues to reduce,

interconnect delay has become the determining factor of circuit performance.

636 CHAPTER 11 Placement
Interconnect delay can consume as much as 75% of clock cycle in advanced

design. Therefore, a good placement solution can substantially improve the
performance of a circuit. Second, placement determines the routability of a

design. A well-constructed placement solution will have less routing demand

(i.e., shorter total wirelength) and will distribute the routing demand more

evenly to avoid routing hot spots. Third, placement decides the distribution of

heat on a die surface. An uneven temperature profile can lead to reliability

and timing problems. Fourth, power consumption is also affected by placement.

A good placement solution can reduce the capacitive load because of the wires

(by having shorter wires and larger separation between adjacent wires). Hence
the switching power consumption can be reduced.

In recent years, it has become essential for the logic synthesis stage to incor-

porate placement techniques to perform physical design aware logic synthesis

(i.e., physical synthesis). The reason is that without some placement informa-

tion, it is impossible to estimate the delay of interconnect wires. Hence, given

the significance of interconnect delay, logic synthesis will not have any mean-

ingful timing information to guide the synthesis process. As a result, the synthe-

sized netlists will have poor performance after placement. For the same reason,
consideration of placement information during architecture design is also

increasingly common.

Placement is a computationally difficult problem. Even the simple case of

placing a circuit with only unit-size modules and 2-pin nets along a straight line

to minimize total wirelength is NP-complete [Garey 1974]. The VLSI placement

problem is much more complicated. The circuit may contain modules of differ-

ent sizes and may have multi-pin nets. The placement region is two-dimensional.

Other cost functions may be used rather than total wirelength. There may also
be different constraints for different design styles. (Details of problem formula-

tions can be found in Section 11.2.) As designs with millions of modules are

now common, it is a major challenge to design efficient placement algorithms

to produce high-quality placement solutions.

One way to overcome the complexity issue is to perform placement in

several manageable steps. One common flow is as follows.
1. Global placement. Global placement aims at generating a rough place-

ment solution that may violate some placement constraints (e.g., there

may be overlaps among modules) while maintaining a global view of

the whole netlist.

2. Legalization. Legalization makes the rough solution from global place-
ment legal (i.e., no placement constraint violation) by moving modules

around locally.

3. Detailed placement. Detailed placement further improves the legalized

placement solution in an iterative manner by rearranging a small group of

modules in a local region while keeping all other modules fixed.
The global placement step is the most important one of the three. It has the

most impact on placement solution quality and runtime, and has been the focus

11.2 Problem formulations 637
of most prior research works. After global placement, the placement solution

is almost completely determined. In legalization and detailed placement, only
local changes in module locations will be made. Therefore, the main emphasis

of this chapter is the global placement step. The most commonly used global

placement approaches are partitioning-based approach, simulated anneal-
ing approach, and analytical approach. The analytical approach will be

presented with the most details, because it is currently the best approach in

both quality and runtime.
11.2 PROBLEM FORMULATIONS

The input to the placement problem is a placement region, a set of modules,

and a set of nets. The widths and heights of the placement region and all mod-
ules are given. The locations of I/O pins on the placement region and on all

modules are fixed. Sometimes, some input modules (e.g., buffer bays, I/O mod-

ules, IP blocks) are preplaced by designers, and, hence, their locations are also

fixed before placement. Each net specifies a collection of pins in the placement

region and/or in some modules that are connected. Basically, placement is to

find a position for each module within the placement region so that there is

no overlap among the modules and some objective is optimized. Many varia-

tions in the placement problem formulation exist, because different designs
may require different objectives and different design styles may introduce differ-

ent constraints. The placement problems for common design styles and objec-

tives are presented in the following.
11.2.1 Placement for different design styles
11.2.1.1 Standard-cell placement

In a standard-cell design, all modules have the same height. The placement of

standard cells has to be aligned with some prespecified standard-cell rows in

the placement region. Because of the popularity of standard-cell design, most
placement algorithms assume a standard-cell design style.

11.2.1.2 Gate array/FPGA placement

In gate array or FPGA design, the modules can only be placed at some prede-
fined sites that are arranged in a regular array.

11.2.1.3 Macro block placement

In macro block placement, each module is a macro block of fixed shape and ori-

entation. The macro blocks have to be placed within the placement region

without overlap among them. The macro block placement problem is similar

to the fixed-outline floorplanning problem. However, in floorplanning, the

shape and the orientation of the macro blocks are usually assumed to be

638 CHAPTER 11 Placement
changeable. Macro block placement can be considered to be a special case of

fixed-outline floorplanning. If the number of modules is small, it can be solved
by floorplanning techniques (please refer to Chapter 10).

11.2.1.4 Mixed-size placement

Mixed-size placement places both macro blocks and standard cells in a circuit.

Modern designs often contain a large number of macro blocks together with a

huge number of standard cells. As a result, mixed-size placement is a common

formulation in recent years. Because macro blocks are typically orders of magni-

tude larger than standard cells, the handling of the nonoverlapping constraints

among the modules presents a unique challenge.
11.2.2 Placement objectives
11.2.2.1 Total wirelength

Total wirelength is the most commonly used objective in placement formula-

tions. Minimization of total wirelength indirectly optimizes several other objec-

tives. First, routability can be improved by less routing demand. Second, timing

can be better because shorter wires have less delay. Third, power consumption
can be reduced because shorter wires also introduce less capacitive load. Notice

that total wirelength minimization is only a heuristic in optimizing these other

objectives. Even if the total wirelength is reduced, nets in the most congested

region, along the timing critical paths, or with the highest switching activities

may not be shorter. To specify the importance of different nets in optimizing

another objective, a weight can be assigned to each net. Then the total

weighted wirelength will have a much better correlation to the other objective.

It is difficult to predict during placement the wirelength of a net after routing,
because it is router-dependent. Several approaches estimate the routed wire-

length for a given placement. The most widely used approach is half-perimeter
wirelength (HPWL). The HPWL of a net is equal to half of the perimeter of the

smallest bounding rectangle that encloses all the pins of the net. For example, for

the 5-pin net in Figure 11.1a, the HPWL is W þ H as shown in Figure 11.1b.

HPWL is popular because it can be computed in linear time and it can be written

as a simple closed-form function of the coordinates of the pins (see Section

11.5.1). It also provides exact wirelength for optimally routed nets with two
and three pins. However, HPWL can significantly underestimate the wirelength

for nets with four or more pins.

Another approach of wirelength estimation is based on rectilinear mini-
mum spanning tree (RMST). A RMST is a tree with minimum total wirelength

in Manhattan distance to connect a given set of nodes. For example, the RMST

of the net in Figure 11.1a is given in Figure 11.1c. The best time complexity for

RMST construction is O(n log n) [Guibas 1983]. RMST wirelength is exact for

nets with two pins, but it can overestimate the wirelength of optimally routed
nets with three or more pins by up to 50% [Hwang 1976]. In practice, RMST

W

H

Steiner nodes

A net HPWL

RMST RSMT

(a) (b)

(c) (d)

FIGURE 11.1

Wirelength estimation techniques.

11.2 Problem formulations 639
can produce more accurate wirelength estimation than HPWL (especially for

nets with high pin count) in a runtime several times more than that of HPWL.
A highly accurate approach is based on rectilinear Steiner minimal tree

(RSMT). A RSMT is a tree with minimum total edge length in Manhattan distance

to connect a given set of nodes possibly through some extra (i.e., Steiner)

nodes. For example, the RSMT of the net in Figure 11.1a is given in

Figure 11.1d. If there is no routing congestion, RSMT is the preferred way to

route a net, because it gives the minimum wirelength. Thus, RSMT wirelength

has a very high correlation with routed wirelength unless the design is heavily

congested and requires a lot of detour in routing. RSMT construction is NP-
complete [Garey 1979]. In the past, all exact and heuristic RSMT algorithms

were very time-consuming. Hence, traditionally, RSMT was rarely used for

wirelength estimation during placement. Recently, a lookup–table based RSMT

heuristic algorithm called FLUTE [Chu 2008] was introduced. It is more accu-

rate than all previous RSMT heuristics, yet it is as fast as RMST algorithms. With

FLUTE, it is feasible for placers to use the highly accurate RSMT wirelength in

guiding the placement process.

11.2.2.2 Routability

Routability is the most basic requirement of a placement solution. Any placement

solution is useless if the routing cannot be completed. However, the routability of
a placement solution is very hard to evaluate. Routability is router-dependent.

There is no objective measure of routability. Even for a specific router, the rout-

ability is still very hard to estimate because of the complicated behavior of a

640 CHAPTER 11 Placement
router. One way of routability estimation is to call the router to perform a rough

routing (e.g., global routing), but this way is computationally very expensive. A
more popular way is to assume the routing of each net follows some probability

distribution and then estimate the routing congestion of each edge in the routing

grid by the expected number of crossing nets. However, this way is not accurate

and is still quite expensive computationally.

Because of the high computational cost, routability estimation is rarely

incorporated into the placement objective function in guiding the placement

process in practice. Instead, routability is often indirectly optimized during

placement by a white space allocation approach. Regions that are predicted
to be congested are given more white space (i.e., placed with a lower module

density) to provide more routing tracks.

11.2.2.3 Performance

Placement has significant impact on the delay of interconnects, and hence the

performance of circuits. Because interconnect delay becomes a more dominat-

ing component of circuit delay as feature size continues to decrease, perfor-

mance-driven placement is increasingly important. However, the delay of a net

heavily depends on other factors like routing, buffering, driver size, wire width,

and wire spacing. It is computationally too expensive to perform those tasks

during the placement process. In other words, it is basically impossible to
obtain accurate timing information during placement. In practice, the delay of

a net is heuristically controlled during placement by controlling the length of

the net. The net delay can be either reduced by assigning a larger net weight

or bounded by constraining the net length.

11.2.2.4 Power

For most circuits, the major component of power consumption is switching
power, which is consumed whenever a gate switches (i.e., the capacitive load

driven by the gate is charged/discharged). The capacitance of a net is propor-

tional to its wirelength. So the power minimization problem can be formulated

as a wirelength minimization problem. As power consumption is also propor-

tional to the amount of switching, the nets should be weighted by their switch-

ing activity factors. Note that the clock distribution network is a global net

driving a huge load and switches every clock cycle. It consumes a significant

portion of switching power. Therefore, special attention should be paid to the
placement of clocked elements (including latches, flip-flops, memories, and

dynamic gates) so that the capacitance of clock wires can be minimized without

increasing clock skew or degrading timing.

11.2.2.5 Heat distribution

An uneven temperature profile on a chip may adversely affect the characteris-

tics of temperature-sensitive circuits. It may also lead to reliability problems.

Therefore, it is desirable to properly distribute the heat-generating elements of

a circuit to achieve an even temperature profile.

11.3 Global placement: partitioning-based approach 641
Thermal-driven placement is difficult for several reasons. First, the heat gener-

ation of each element changes over time, because it depends on the operations
performed by the circuit. Second, heat is generated by both transistors and wires,

and the heat generation by wires is hard to predict during placement. Third, the

temperature profile is determined by both generation and transfer of heat and is

difficult to approximate without the use of time-consuming simulation.

A practical solution to the thermal-driven placement problem is to distribute

the average heat generation of modules evenly in the placement region

(by assuming the dynamic nature of heat generation, wire heat generation,

and heat transfer are secondary effects). This module heat distribution problem
is similar to the module area distribution problem in placement and can be

solved by similar techniques.
11.2.3 A common placement formulation
Although there are many variations in placement problem formulations for dif-

ferent design styles and with different objectives, the underlying issues for the

various formulations are the same. For placement of different design styles

and for thermal-driven placement, the modules have to be properly distributed.

For optimization of different objectives, the lengths of wires have to be reduced.
In this chapter, the focus is on the very popular problem of minimum-

wirelength placement for standard-cell design. In particular, total HPWL is con-

sidered to be the objective function, because RSMT wirelength is traditionally

expensive to compute and difficult to optimize. An algorithm for this formula-

tion can usually be extended to handle other design styles and objectives. For

other design styles (even with preplaced modules), as long as the module den-

sity can be properly controlled during global placement, minor placement con-

straint violations can be easily resolved during legalization. The thermal-driven
and routability-driven placement problems can also be handled by controlling

heat density and white space density, respectively, in addition to area density

during global placement. The performance and power optimization problems

can be formulated as a weighted wirelength minimization problem.
11.3 GLOBAL PLACEMENT: PARTITIONING-
BASED APPROACH
Roughly speaking, the partitioning problem is to divide a circuit into several

subcircuits of similar sizes such that the number of connections among subcir-

cuits is minimized. A circuit placement can be generated by recursively applying

a partitioning procedure. Such an approach is called partitioning-based
placement or min-cut placement. In the following sections, the basics for

partitioning will first be introduced. The application of partitioning to place-

ment will then be presented.

642 CHAPTER 11 Placement
11.3.1 Basics for partitioning
Most partitioning algorithms solve the bipartitioning (or 2-way partitioning)
problem, which is to divide a circuit into two subcircuits. The bipartitioning

problem will be discussed in the following.

11.3.1.1 Problem formulation

The circuit bipartitioning problem can be formulated as a hypergraph bipartition-

ing problem by modeling a circuit as a hypergraph. A circuit module is repre-

sented by a vertex, and the area of the module is modeled as the vertex size. A

net is represented by a hyperedge, and the criticality of the net is modeled as

the hyperedge weight. For example, the circuit in Figure 11.2a can be modeled

by the hypergraph in Figure 11.2b in which the set of vertices is {A, B, C, D, E}

and the set of hyperedges is {{A, B}, {A, C}, {A, D}, {B, D}, {D, E}, {B, C, E}}.
Given a hypergraph G(V, E), where each vertex v 2 V has a size s(v) and

each hyperedge e 2 E has a weight w(e), the hypergraph bipartitioning problem

is to divide the set V into two subsets V1 and V2 such that the total weight of

hyperedges being cut (i.e., spanning both subsets) is minimized and the total

sizes of vertices in V1 and in V2 are close to some user-defined values. Formally,

the cost function can be written as:

CutCost V1;V2ð Þ ¼
X

e2E s:t: e\V1 6¼�∧e\V2 6¼�
o eð Þ

The size constraint on V1 can be specified by use of a ratio parameter g and a
tolerance parameter e as follows:

g� E �
X
u2V1

s uð Þ=
X
u2V

s uð Þ � g þ E

The size constraint on V2 is indirectly specified asX
u2V2

s uð Þ ¼
X

u2V s uð Þ �
X

u2V1
s uð Þ

Hypergraph bipartitioning is NP-complete [Garey 1979].
(a) (b)

A

B C

D E

A

D E

CB

FIGURE 11.2

The hypergraph model of a circuit.

11.3 Global placement: partitioning-based approach 643
11.3.1.2 The Fiduccia-Mattheyses algorithm

A classical approach to solve the hypergraph bipartitioning problem is an

iterative heuristic by Fiduccia and Mattheyses [Fiduccia 1982]. This heuristic

is commonly called the FM algorithm. To explain the FM algorithm, the concept

of the gain of a vertex has to be first introduced. Given a bipartitioning solu-

tion, the gain g(v) of a vertex v is the reduction in the cut cost if vertex v is
moved from its current partition to the other partition. For example, for the

hypergraph in Figure 11.2b, assume all hyperedges have a weight of 1. In the

initial bipartition as shown in Figure 11.3a, three hyperedges {A, C}, {B, C, E},

and {D, E} are cut. Hence the cut cost is 3. If vertex E is moved to the other

partition as shown in Figure 11.3b, the cut cost becomes 2. Therefore, g(E) ¼
3 � 2 ¼ 1. If vertex A is moved to the other partition as shown in Figure 11.3c,

the cut cost becomes 4. Therefore, g(A) ¼ 3 � 4 ¼ �1.
The FM algorithm is described in Algorithm 11.1. The basic idea of the FM

algorithm is to iteratively refine the current bipartition by greedily moving a

vertex with maximum gain to the other side (step 6). Steps 3 to 12 are called

a pass. In a pass, each vertex is tentatively moved to the other side one time

(step 8). Once a vertex is moved, it will be locked (step 9) and will not be con-

sidered again until next pass. At the end of a pass, the sequence of first k

moves that provides the best total gain G is made permanent (step 12). Note

that gj for some j 2 {1, . . . , k} may be negative. That means moving vj to

the other side will make the cut worse. For a simple greedy algorithm that looks
at the gain value of one vertex to decide amove, it will not proceed further. In other

words, it gets trapped at a localminimum. For the FM algorithm, however, themove

may still be taken, because moves subsequent to that may eventually improve the

cut. Therefore, it can get out of the local minimum and generate bipartitions with

better cut cost. The algorithm is repeated until there is no improvement in a pass

(i.e., G¼ 0).
A

D E

CB

(a) (b) (c)

A

D

CB

D E

C

E

A

B

FIGURE 11.3

Illustration of the gain of a vertex.

644 CHAPTER 11 Placement
Algorithm 11.1 The Fiduccia and Mattheyses (FM) Algorithm

1. Get an initial bipartition;
2. Repeat
3. Unlock all vertices;
4. For i ¼ 1 to n where n ¼ |V|
5. Begin
6. Select a vertex vi with maximum gain among all unlocked vertices that will

not violate the size constraints if moved to the other side;
7. Set gi ¼ g(vi);
8. Tentatively move vertex vi to the other side;
9. Lock vertex vi;

10. End
11. Find k such that G ¼Pk

i¼1gi
is maximized;

12. Make the moves for v1, . . . , vk permanent
and discard the moves for vkþ1, . . . , vn;

13. Until G ¼ 0;

Let n be the number of vertices of the hypergraph and p be the total number

of pins in all hyperedges. For a given bipartition, the gain of all vertices can be

computed in a straightforward manner described in the following. Let ge(v) be
the contribution of hyperedge e to g(v) for any v 2 V and e 2 E. In other words,

g(u) ¼Pe2Ege uð Þ: If v =2 e, then obviously ge(v) ¼ 0, because moving vertex v

to the other partition does not affect whether or not hyperedge e is cut. Con-

sider v 2 e. Suppose the vertices in e are divided into two subsets e1 and e2
according to the bipartition. Assume without loss of generality that v 2 e1. If

e1 ¼ {v}, then ge(v) ¼ w(e), as e is cut in the given bipartition but will not be

cut if v is moved to the other partition. If e2 ¼ �, then ge(v) ¼ �w(e) as e is

not cut in the given bipartition but will be cut if v is moved to the other partition.
Otherwise, ge(v) ¼ 0 as e remains cut regardless of the partition v is in. For any

e 2 E, ge(v) for all v 2 e can be computed in O(jej)time. Therefore, g(v) for all

v 2 V can be computed in O(p) time. In other words, step 6 takes O(p) time.

Hence, each pass takes O(np) time.

A technique based on incremental gain computation is presented in [Fiduccia

1982]. This technique reduces the runtime of each pass to O(p) if all hyperedges

have unit weight.1 Instead of computing the gains from scratch in each pass, a

gain bucket data structure is used to store the gain values. The gain bucket data
structure is illustrated in Figure 11.4. It consists of a pointer array with index
1The technique can be easily extended for hyperedges with bounded integer weight.

11.3 Global placement: partitioning-based approach 645
ranging from �pmax to pmax, where pmax is the maximum number of hyperedges

connecting to a vertex. Indices of the array correspond to possible gain values.
The entry with index g in the array points to a list of vertices with gain g. A MAX-

GAIN index is maintained to keep track of the bucket for the vertices with maxi-

mum gain. Besides, a VERTEX array is kept to allow direct access to all vertices in

the vertex lists.

In the FM algorithm, one gain bucket data structure is used to record the

gains of the unlocked vertices for each partition. At the beginning of each pass,

the gains for the current bipartition are computed, and the gain bucket data

structures are constructed in O(p) time. Then the vertices with the maximum
gain can be obtained immediately. After a vertex is moved, the gains of the ver-

tices connecting to it may be changed. With the help of the VERTEX array, the

update of the gain bucket data structure for each vertex with changed gain

takes only constant time. The number of vertices connecting to each vertex is

equal to the number of pins in it. Therefore, the total update time for one pass

is proportional to the total number of pins, i.e., O(p).

11.3.1.3 A multilevel scheme

The FM algorithm works well in practice for hypergraphs with up to hundreds

of vertices. For larger hypergraphs, a bottom-up hierarchical scheme on the

basis of recursive clustering, which is often called a multilevel scheme, can
produce higher-quality bipartitions in a relatively small amount of runtime.

The multilevel scheme consists of three phases, namely, coarsening phase,
initial partitioning phase, and uncoarsening and refinement phase.
The three phases are illustrated in Figure 11.5. During the coarsening phase,

a sequence of successively smaller (coarser) hypergraphs is constructed by

clustering heavily connected vertices together. During the initial partitioning

phase, a bipartition of the coarsest hypergraph is computed by any bipartition-

ing algorithm. During the uncoarsening and refinement phase, the bipartition is
pmax

MAXGAIN

−pmax

g

v n21

v2

VERTEX

FIGURE 11.4

Gain bucket data structure of the FM algorithm.

G3

G2

G1 G1

G2

G3

G4

G0G0

Initial Partitioning Phase

C
oarsening Phase

U
nc

oa
rs

en
in

g
an

d
R

ef
in

em
en

t P
ha

se

Projected partition
Refined partition

FIGURE 11.5

The three phases of multilevel bipartitioning [Karypis 1997].

646 CHAPTER 11 Placement
successively projected to the next level finer hypergraph, and at each level

an iterative refinement algorithm such as FM is used to further improve the

bipartition.
hMetis [Karypis 1997] is one of the earliest and best multilevel hypergraph

partitioning algorithms. In hMetis, three different coarsening techniques are

applied. The initial bipartition is simply a random bipartition. The refinement

of the uncoarsening hypergraphs is done by FM. Interested readers may refer

to [Karypis 1997] for more details of hMetis and [Alpert 1997] for another exam-

ple of high-quality multilevel partitioning algorithm. Note that the multilevel

scheme can also be applied to placement as pointed out in Section 11.4.2 and

discussed in Section 11.5.4.
11.3.2 Placement by partitioning
11.3.2.1 The basic idea

Partitioning algorithms can be used to perform placement. The partitioning-

based placement approach is illustrated in Figure 11.6. Given a circuit and a

placement region, the placement problem is to assign each circuit module to

some specific location in the placement region. The approach starts by parti-

tioning the circuit into two subcircuits A and B, and correspondingly, dividing

the placement region by a cutline into two subregions A and B (see

Figure 11.6b). The areas of subregions A and B should be bigger than the total
module areas of subcircuits A and B, respectively. Then subcircuits A and B are

assigned to subregions A and B, respectively. In other words, the placement of

(c)(b)(a)

A1

A B

A B

A1

A2

B1

B2

A2 B2

B1

Circuit

Placement
region

FIGURE 11.6

Partitioning-based placement approach.

11.3 Global placement: partitioning-based approach 647
each module is restricted to a smaller region. The locations of modules can be

further restricted by recursively partitioning the subcircuits and dividing the

subregions (as shown in Figure 11.6c). The process continues until each subcir-

cuit contains a few modules that are assigned to a small subregion. After that,

legalization is performed to pack all modules in each subcircuit into the

corresponding subregion, and detailed placement is applied to further reduce

the wirelength.

Note that cutlines of different directions (i.e., horizontal or vertical) and loca-
tions may be used for each subregion. For example, in the division of subregion

A in Figure 11.6c, the cutline could be vertical instead of horizontal. It could

also be near the top instead of close to the middle. Different schemes of cutline

selection are discussed in [Breuer 1977a, 1977b].

In partitioning-based placement, the minimization of the cut cost during

partitioning can be considered to be an indirect way to minimize wirelength. The

intuition is that to minimize wirelength, heavily connected modules should be

placed close to one another. This can be achieved by minimizing the cut cost,
because it will force heavily connected modules to be on the same side of a cut.

Then, they will be placed in the same subregion. Alternately, cut cost minimization

can be viewed as a way to minimize the routing congestion across the cutline.

11.3.2.2 Terminal propagation technique

One issue with recursive partitioning is that each subcircuit has not only nets

internal to it but also nets connected to external modules. The effect of external

nets should also be considered during the partitioning of a subcircuit. Dunlop

and Kernighan [Dunlop 1985] developed a technique called terminal propa-
gation to handle external nets. The technique is illustrated in Figure 11.7 and

explained in the following.
Consider an example in Figure 11.7a in which subcircuit A has a net con-

necting module p to an external module q. To take into account the effect of

p

A

p

AB B

A
p

(a) (b)

p

A

q q
d

(c)

q

B

(d)

d

B1

B2

q

FIGURE 11.7

Terminal propagation.

648 CHAPTER 11 Placement
this external net, assume module q is placed at the center of subregion B. The

terminal in q is “propagated” to the closest point on the boundary of subregion

A and is replaced by a dummy terminal d (as shown in Figure 11.7b). During

the partitioning of A, the net between p and d is treated as an internal net and d

is treated as a fixed terminal of subcircuit A. For this example, if subregion A is

divided by a horizontal cutline, module p will be biased toward the lower parti-

tion because of the net between p and d. However, if subregion A is divided by a

vertical cutline, d will be very near to the cutline. In this case, it is not clear
whether the external net should bias p to the left or to the right partition. It

is suggested in [Dunlop 1985] that dummy terminals that are within the middle

third of the side should be ignored.

Another example is shown in Figure 11.7c. Assume both subregions A and B

are divided by horizontal cutlines. Suppose subcircuit B is partitioned first. Dur-

ing the partitioning of B, the dummy terminal caused by p is too close to the

cutline and hence is ignored. Suppose module q is assigned to the top subregion

B1. Then during the partitioning of A, a dummy terminal d is introduced near to
the top of subregion A (as shown in Figure 11.7d). Thus, it will bias p to the top.
11.3.3 Practical implementations
In the past, partitioning-based placement was generally perceived to be simple

and efficient but not as good as simulated annealing or analytical approaches

in terms of solution quality. In late-1990s, partitioning algorithms dramatically

improved because of the multilevel scheme. Partitioning-based placement should
also improve as a result. Capo [Caldwell 2000] and Fengshui [Yildiz 2001a,

2001b; Agnihotri 2003] are two placement algorithms that leverage this break-

through in partitioning. They demonstrated that a careful implementation of

the partitioning-based approach could produce very competitive wirelength with

a relatively short runtime.

11.3.3.1 The Capo algorithm

In Capo, different bipartitioning techniques are applied to subcircuits of differ-

ent sizes during recursive bipartitioning. For instances with more than 200

11.4 Global placement: simulated annealing approach 649
modules, a multilevel FM algorithm is used. For instances with 35 to 200 mod-

ules, the flat FM algorithm is used. Smaller instances are solved optimally with
branch-and-bound.

In addition, much attention has been paid in Capo to the handling of parti-

tioning tolerance. First, an “uncorking” technique is proposed to prevent large

modules from being the first modules in a bucket of the FM algorithm. In an

ordinary FM implementation, a large module at the head of a bucket may fail

to move to the other partition without violating constraints on partition sizes.

Smaller modules further in the same bucket will not be considered for moves,

because the bucket is temporarily invalidated. This “corking” effect may
degrade solution quality of FM. Second, repartitioning, which refers to a chained

FM calls on the same partitioning instance, is presented. The first call is per-

formed with a much larger tolerance than requested to ensure mobility of all

modules. In subsequent calls, the tolerance gradually decreases to the original

value. Third, a high tolerance of e ¼ 20% is used for vertical cutlines, because

the cutline locations can be adjusted after partitioning according to sizes of par-

titions. However, this technique cannot be applied to horizontal cutlines,

because their locations are more discrete (i.e., aligned to standard-cell rows)
and cannot be easily adjusted. Fourth, a formula is derived to determine the tol-

erance on the basis of the amount of white space in an instance. An instance

with more white space will have a larger partitioning tolerance.

11.3.3.2 The Fengshui algorithm

The overall scheme of Fengshui is very similar to that of Capo. Several major differ-

ences are outlined in the following. In [Yildiz 2001a], instead of locally optimizing

each subcircuit by bipartitioning, all subcircuits are partitioned simultaneously.

The problem is formulated asmultiway partitioning.Moreover, the partitioning cost

function is HPWL rather than min-cut. In [Yildiz 2001b], a dynamic programming

approach is presented to select a good sequence of cutlines. The sequence is opti-
mal under certain assumptions. In [Agnihotri 2003], a fractional cut approach is

introduced. In this approach, horizontal cutlines are not required to be alignedwith

standard-cell row boundaries. To handle the assignment of cells to rows thatmay be

partially covered by a region, a dynamic programming–based legalization algorithm

is developed. As fewer constraints are imposed on partitioning for horizontal

cutlines, the wirelength can be reduced.
11.4 GLOBAL PLACEMENT: SIMULATED
ANNEALING APPROACH
Simulated annealing is introduced in Section 4.4.4. It is an iterative heuristic for

solving combinatorial optimization problems. The basic idea of simulated

annealing is to search for a configuration with low cost by iteratively moving

from the current configuration to a neighbor configuration. If the cost of the

650 CHAPTER 11 Placement
neighbor configuration is lower than that of the current configuration, the

move will be taken. Otherwise (i.e., the move causes an increase in the cost),
the move may still be taken with a probability that is decreasing over time

according to a cooling schedule. This probabilistic move helps the search pro-

cedure to get out of a local minimum.

Simulated annealing is very popular, because it is a very robust technique that

can be easily applied to virtually any optimization problem. To design a simulated

annealing based algorithm for a given problem, one simply needs to define the con-

figuration space, several types of moves, the cooling schedule, and the cost func-

tion. However, simulated annealing based algorithms are usually comparatively
slow, especially for large problem instances. The main challenge of designing a

simulated annealing based algorithm is to make it efficient without compromising

the solution quality. Two simulated annealing based placement algorithms will be

described in the following. Readers may also find the discussions on simulated

annealing based floorplanning algorithms in Chapter 10 useful.
11.4.1 The placement algorithm in TimberWolf
Simulated annealing based placement algorithm was popularized in the mid-

1980s by the TimberWolf place-and-route package [Sechen 1986]. The Timber-

Wolf standard-cell placement algorithm consists of two stages. Stage 1 allows

overlaps among cells and movement of cells between rows. Stage 2 eliminates

all overlaps and only performs interchange of adjacent cells. The details are

described in the following.

11.4.1.1 Stage 1

In stage 1, a configuration is an arrangement of the cells into the standard-cell

rows possibly with cell overlaps. Three moves are defined:

M1: Move a cell to a new location, which can be in a different row.

M2: Swap two cells, which can be in different rows.

M3: Mirror a cell’s x-coordinates.

The three moves are selected randomly with unequal probability. In each step, a
selection between M1 and M2 is first made, with M1 four times more likely

than M2. If M1 is selected but the new configuration is rejected, then M3 will be

attempted for the same cell with a probability of 1/10. The applicable range for

M1 and M2 is specified by a rectangular window called range limiter. For M1, the

window is centered at the center of the randomly selected cell. A random location

within the windowwill be chosen as the destination of the cell. For M2, a swapwill

be attempted only if the window can be positioned such that it contains both cen-

ters of the two randomly selected cells. At the beginning of stage 1, the horizontal
span and vertical span of thewindoware equal to twice the horizontal span and ver-

tical span of the chip, respectively. (Therefore, if the center of the window is

11.4 Global placement: simulated annealing approach 651
positioned at a corner of the chip, the windowwill still cover the entire chip.) Dur-

ing the annealing process, the horizontal span and vertical span of the window
decrease slowly in proportion to the logarithm of the temperature.

The cost function has three components:

C ¼ C1 þ C2 þ C3

The first component, C1, is an estimation of the total interconnect cost. For a

net e, let we and he be the width and height of its bounding box, and be and ge be
user-specified horizontal and vertical weights. Then,

C1 ¼
X
e

beoe þ geheð Þ

The second component, C2, is an overlap penalty function. Let LinearOverlap(i, j)

be the amount of overlap of cells i and j in the x-direction. Then,

C2 ¼
X
i 6¼ j

LinearOverlap i; jð Þ2

The third component, C3, is a penalty function that serves to control the row

lengths. For each row r, let d(r) be the desired row length and l(r) be the
sum of the widths of the cells in row r. Then,

C3 ¼ y�
X
r

l rð Þ � d rð Þj j

where y is a user-specified parameter.

11.4.1.2 Stage 2

When the vertical span of the range limiter window has been reduced to less than

the center-to-center spacing between the rows, TimberWolf enters stage 2.

At the beginning of stage 2, feed-through cells are inserted as required, and

cell overlaps are eliminated by the following procedure. First, the cells in each
row are sorted according to the x-coordinate of their centers. Then, they are

re-placed side-by-side starting from the left edge of the row. After that, the

simulated annealing continues.

In stage 2, the moves are more restrictive. M1 is not allowed. M2 considers

swapping two adjacent cells only if they are in the same row. M3 is attempted

only when M2 is attempted and rejected. In addition, the cost function is effec-

tively just C1. As there is no cell overlap, C2 ¼ 0. Because cells are not allowed

to change rows, C3 remains constant.

11.4.1.3 Annealing schedule

In the annealing schedule of TimberWolf, the initial temperature is 4,000,000.
Then the temperature is decreased according to the following function:

Tnew ¼ a Toldð Þ � Told

652 CHAPTER 11 Placement
where a at different temperature is set according to a very specific table pre-

sented in [Sechen 1986]. Roughly, a starts at 0.8 when the temperature is high.

Then it gradually increases as temperature decreases. It peaks at 0.94 when tem-

perature is between 200 and 5000. After that, it steadily decreases to 0.7 as tem-

perature drops. Finally, a is set to 0.1 when the temperature is below 1.5. The

annealing process terminates when the temperature is less than 0.1. There are
117 temperature levels in this annealing schedule. At each temperature, a fixed

number of moves are attempted. The number of moves per temperature is a

function of the circuit size. For a 200-cell circuit, 100 moves per cell are recom-

mended. Thus, 2.3 � 106 configurations have to be evaluated in total. For a

3000-cell circuit, 700 moves per cell are recommended. The number of config-

urations to be evaluated will increase dramatically to 245.7 � 106.
11.4.2 The Dragon placement algorithm
Simulated annealing based algorithms like TimberWolf can produce placement

solutions of excellent quality for small circuits (with up to a few thousand cells).

However, they tend to be increasingly inefficient for larger circuits. One way to
improve their scalability is to perform placement in a hierarchical manner. A

multilevel scheme (i.e., bottom-up hierarchical scheme based on recursive clus-

tering) is used in an improved version of TimberWolf [Sun 1995]. A top-down

hierarchical scheme based on recursive partitioning is applied in the Dragon

placement algorithm [Wang 2000]. The Dragon algorithm will be discussed in

the following.

In fact, Dragon takes a hybrid approach that combines simulated annealing

and partitioning. A hierarchy as shown in Figure 11.8 is formed by recursive
quadrisectioning (i.e., 4-way partitioning) by use of hMetis. At level h, the origi-

nal circuit is partitioned into 4h subcircuits. Correspondingly, the placement

region is divided into a regular array of 4h bins. Each subcircuit is assigned

to one bin. Then low-temperature simulated annealing is applied to minimize

the wirelength by swapping subcircuits among the bins. The recursive quadri-

sectioning terminates when a bin contains less than approximately 7 cells.

Then low-temperature simulated annealing is again used to further reduce
Level 3Level 2Level 1Original Circuit

FIGURE 11.8

The top-down hierarchy used in Dragon.

11.5 Global placement: analytical approach 653
wirelength by relocating a single cell to a different bin in each move. Finally,

detailed placement is done by a greedy algorithm.
Compared with a flat annealing–based placement approach, annealing at

high levels is swapping subcircuits among the bins. In other words, it is moving

a large number of cells by a long distance in each move. It can be more efficient

than swapping individual cells locally. Besides, quadrisectioning together with

refinement at higher levels provides a good starting solution to simulated

annealing and hence can shorten the annealing process significantly. Compared

with a pure partitioning-based placement approach, the annealing-based swap-

ping can correct wrong decisions made by quadrisectioning at higher levels.
In addition, the swapping is based directly on wirelength rather than cut cost.

Hence, it can generate higher-quality solutions than the partitioning-based

approach alone.
11.5 GLOBAL PLACEMENT: ANALYTICAL APPROACH

The basic idea of the analytical approach is to express the cost function and the

constraints as analytical functions of the coordinates of the modules. Then the

placement problem is transformed into a mathematical program. To illustrate

this approach, an exact, but impractical, formulation is first presented in Section
11.5.1. Practical analytical placement techniques can be classified as quadratic
and nonquadratic, which are presented in Sections 11.5.2 and 11.5.3, respec-

tively. Note that analytical placement techniques generally treat both standard

cells and macros in the same manner. (Sometimes, special techniques are used

to handle large macros to improve wirelength or to make legalization easier,

but in theory, they are not essential.) Thus, the techniques presented in this sec-

tion can be considered to be for mixed-size designs.

Some notations used in this section are introduced in the following. Con-
sider a circuit with a set of modules V and a set of nets E is to be placed in a

region of width W and height H. Assume the modules in V are indexed from

1 to n. For module i 2 V, let wi and hi be its width and height, and let xi and yi
be the x- and y-coordinates of its center. For each net e 2 E, let ce be its

weight. Note that if a module i is a fixed module, then xi and yi are constants.

Otherwise, they are variables. Assume for simplicity that all pins are located at

the center of a module.
11.5.1 An exact formulation
It is instructive to first look at an exact formulation to the wirelength-minimized

placement problem for mixed-size design. Then the rationales, pros, and cons of

practical analytical placement techniques presented in Sections 11.5.2 and

11.5.3 can be better understood.

654 CHAPTER 11 Placement
The HPWL of net e 2 E can be written as:

HPWLe x1; . . . ; xn; y1; . . . ; ynð Þ ¼ max
i2e

xif g �min
i2e

xif g
� �

þ max
i2e

yif g �min
i2e

yif g
� �

To express the nonoverlapping constraints among modules, it is necessary to

introduce the following function:

Y L1;R1½ �; L2;R2½ �ð Þ ¼ min R1;R2ð Þ �max L1; L2ð Þ� þ½
where

z½ �þ ¼ z if z > 0

0 if z � 0

�

Y([L1, R1], [L2, R2]) gives the length of the overlapping region of the intervals

[L1, R1] and [L2, R2] as illustrated in Figure 11.9. Then the overlapping area

between module i and module j is given by:

Overlapij xi; yi; xj; yj
� � ¼ Y xi � oi

2
; xi þ oi

2

2
4

3
5; xj � oj

2
; xj þ oj

2

2
4

3
5

0
@

1
A

Y yi � hi

2
; yi þ hi

2

2
4

3
5; yj � hj

2
; yj þ hj

2

2
4

3
5

0
@

1
A

The placement problem can be written as the following mathematical program:

Minimize
P

e2Ece � HPWLe x1; . . . ; xn; y1; . . . ; ynð Þ
Subject to Overlapij xi; yi; xj; yj

� � ¼ 0 for all i; j 2 V s:t: i 6¼ j

0 � xi � oi

2
; xi þ oi

2
� W for all i 2 V

0 � yi � hi

2
; yi þ hi

2
� H for all i 2 V

This mathematical program is extremely difficult to handle. The functions

Overlapij(xi, yi, xj, yj) for i, j 2 V are highly nonconvex and not differentiable.

The functions HPWLe (x1, . . . , xn, y1, . . . , yn) for e 2 E, although convex, are
L2 R2
L1 R1overlap

min(R1,R2)max(L1,L2)

FIGURE 11.9

The overlapping region of the intervals [L1, R1] and [L2, R2].

11.5 Global placement: analytical approach 655
not differentiable. Moreover, there are O(n2) constraints with the number of

modules n being up to millions in modern designs. Therefore, this is not a

practical formulation. In practice, the wirelength is approximated by some

differentiable and convex functions. The nonoverlapping constraints are usually

replaced by some simpler constraints to make the module distribution roughly

even. Then legalization is performed to eliminate the module overlaps, and
detailed placement is applied to refine the solution with a more accurate wire-

length metric. Various techniques are presented in the remainder of this

section.
11.5.2 Quadratic techniques
In quadratic placement techniques, the placement problem is transformed into

a sequence of convex quadratic programs. Convex quadratic program is a

mathematical program with a convex and quadratic objective function and lin-

ear constraints.

11.5.2.1 Quadratic wirelength

First, the way to express the placement cost function as a quadratic function is

presented. Suppose for the time being that all nets in the circuit are 2-pin nets.

(Multi-pin nets will be discussed later.) Consider a net {i, j } (i.e., connecting

module i and module j). Its wirelength is given by the Manhattan distance

between the modules:

L i; jf g ¼ xi � xj
�� ��þ yi � yj

�� ��
This is usually referred to as linear wirelength. However, this function is not dif-

ferentiable. So a common idea is to consider the squared Euclidean distance

between the modules instead:

~L i; jf g ¼ xi � xjÞ2 þ yi � yjÞ2
��

This is usually called quadratic wirelength. To help visualize the functions,

the x-components of L i; jf g and ~L i; jf g with a fixed value of xj ¼ 2 are plotted
as functions of xi in Figure 11.10.

In quadratic placement techniques, it is more convenient to set the cost

function ~L to be half 2 of the total weighted quadratic wirelength:

~L ¼ 1

2

X
1� i< j�n

c i; jf g � xi � xj
� �2 þ yi � yj

� �2� 	
2Half of the total weighted quadratic wirelength is used so that the derivatives will have simpler

forms.

1 2 3 40

1

2

Wirelength

x j = 2

x i

(x i− x j)2

x i− x j

FIGURE 11.10

Comparison of quadratic wirelength and linear wirelength.

656 CHAPTER 11 Placement
~L can be written succinctly in matrix form in terms of the coordinates of

movable modules. In the following, assume modules 1 to r are movable and

modules r þ 1 to n are fixed. Therefore, x1, . . . , xr and y1, . . . , yr are variables,

and xrþ1, . . . , xn and yrþ1, . . . , yn are constants. Let x ¼ (x1x2 � � � xr)T and
y ¼ (y1y2 � � � yr)T be the vectors of x-coordinate and y-coordinate of movable

modules, respectively. Let D ¼ (dij)r�r be a diagonal matrix such that dii ¼P
j2V c{i, j} for all i 2 {1, . . . , r}. Let C ¼ (cij)r�r be the connectivity matrix

among movable modules, i.e., cij ¼ cji ¼ c{i,j} for all i, j 2 {1, . . . , r}.
LetQ ¼ D� C: Let dx ¼ dx1 � � � dxrð ÞT such that dxi ¼ �

P
j 2 r þ 1; . . . ;nf gcijxj

and dy ¼ dy1 � � � dyr

� �T
such that dy1 ¼ �

P
j 2 r þ 1; . . . ;nf gcijyj: Then
~L ¼ 1

2
xTQx þ d T

x x þ 1

2
yTQy þ d T

y y þ constant terms

 �
For example, for the circuit with 3 movable modules and 3 fixed modules as
represented by the graph in Figure 11.11,

~L ¼ 1

2
ðc12ððx1 � x2Þ2 þ ð y1 � y2Þ2Þ

þðc13ððx1 � x3Þ2 þ ð y1 � y3Þ2Þ
þðc14ððx1 � x4Þ2 þ ð y1 � y4Þ2Þ
þðc24ððx2 � x4Þ2 þ ð y2 � y4Þ2Þ
þðc25ððx2 � x5Þ2 þ ð y2 � y5Þ2Þ
þðc36ððx3 � x6Þ2 þ ð y3 � y6Þ2Þ

¼ 1

2
xTQxþ dTxxþ

1

2
yTQyþ dTy y

þ 1

2
ððc14 þ c24Þx24 þ c25x

2
5 þ c36x

2
6 þ ðc14 þ c24Þy24 þ c25y

2
5 þ c36y

2
6Þ

1

2 3
6

5

4

Fixed module

Movable module

FIGURE 11.11

Connections of a circuit.

11.5 Global placement: analytical approach 657
where

x ¼
x1
x2
x3

0
@

1
A; y ¼

y1
y2
y3

0
@

1
A;
Q ¼
c12 þ c13 þ c14 0 0

0 c21 þ c24 þ c25 0

0 0 c31 þ c36

0
@

1
A� 0 c12 c13

c21 0 c23
c31 c32 0

0
@

1
A

dx ¼
�c14x4

�c24x4 � c25x5
�c36x6

0
@

1
Aand dy ¼

�c14y4
�c24y4 � c25y5
�c36y6

0
@

1
A

It is clear that ~L i; jf g for all {i, j} 2 E are convex and continuously differentiable

functions. Hence, ~L, which is a weighted sum of ~L i; jf g ’s, is also convex and dif-

ferentiable. So ~L should be easy to minimize. In particular,

@~L

@x
¼ Qxþ dx and

@~L

@y
¼ Qyþ dy

Therefore, the placement with minimum wirelength is given by

Qxþ dx ¼ 0 andQyþ dy ¼ 0 ð11:1Þ
In other words, if nonoverlapping constraints are ignored, the quadratic place-

ment problem is equivalent to solving a system of linear equations. If all movable

modules are connected to fixed modules either directly or indirectly, Q is positive

definite and thus invertible. This implies the existence of a unique global optimal

solution. The simplicity of quadratic formulation is the main reason for its

popularity. Note that x and y can be solved independently. For brevity’s sake,

sometimes only the x-component will be discussed from now on.

658 CHAPTER 11 Placement
11.5.2.2 Force interpretation of quadratic wirelength

The problem of quadratic wirelength minimization can also be interpreted as a

classical mechanics problem of finding the equilibrium configuration for a system

of objects attached to zero-length springs. Consider each circuit module as an

object and each 2-pin net {i, j} as a stretched spring with spring constant c{i, j}
connecting object i and object j. For the circuit represented by Figure 11.11, the
corresponding spring system is shown in Figure 11.12.

The potential energy stored in spring {i, j} is:

e i; jf g ¼ 1

2
� c i; jf g � Length of spring i; jf gð Þ2

¼ 1

2
� c i; jf g � xi � xj

� �2 þ yi � jj
� �2� 	

Hence, the total potential energy of the spring system is equal to ~L. In other

words, finding the minimum energy configuration for the spring system is
equivalent to minimizing the quadratic wirelength in the quadratic placement

formulation.

For a spring system, the minimum energy configuration is also the same as the

force-equilibrium configuration. Note that the gradient of the total potential

energy to the coordinates of an object gives the total force acting on the object.

Therefore, the entries in the vectors Qxþ dx and Qyþ dy are the x-components

and y-components of the total forces acting on the objects. In other words,

another interpretation of the optimal placement conditions in Equation (11.1)
is that all objects are in force equilibrium. For a nonequilibrium system (i.e., a

circuit placement with suboptimal quadratic wirelength), the total force on an

object provides the best way of movement for the object to minimize the total

energy (i.e., the total weighted quadratic wirelength). Extra forces can also be

added to influence the placement in a desirable manner (e.g., to spread out the

objects). Many quadratic placement algorithms use the guidance provided by

springs/extra forces to optimize a placement solution (e.g., [Quinn 1975]). Those

algorithms are often called force-directed placement algorithms.
1

2 3
6

5

4

Fixed object

Movable object

FIGURE 11.12

The spring system corresponding to the example in Figure 11.11.

11.5 Global placement: analytical approach 659
The forces exerted by the springs are given by Hooke’s law. The force exerted

on object i by a spring connecting objects i and j (as illustrated in Figure 11.13) is:

F ij ¼ c i; jf g �Displacement from object i to object j

Its magnitude is:

F ij

�� �� ¼ c i; jf g �
ffi
xi � xj
� �2 þ yi � yj

� �2q
To find the total force exerted by several springs on an object, it is often more

convenient to decompose the force by each spring into x- and y-components:

Fx
ij

��� ��� ¼ c i; jf g � xj � xi
�� �� and

F
y
ij

��� ��� ¼ c i; jf g � yj � yi
�� ��

Then the x-component and y-component of the total force are the sum of the

x-component and y-component of the forces by all springs, respectively.

11.5.2.3 Net models for multi-pin nets

Circuits typically contain both 2-pin nets and multi-pin nets. To place circuits

with multi-pin nets by quadratic techniques, various models have been

proposed to replace each net by a group of 2-pin nets.

The traditional model is to replace each net by a clique (i.e., complete graph).

For example, for the 5-pin net in Figure 11.14a, the clique model is shown in

Figure 11.14b. The net weights of the 2-pin nets in the clique model should be

set properly to balance the minimization of 2-pin nets and multi-pin nets. For a
k-pin net with net weight c, the weight of each 2-pin net in the clique is usually

set to either c/(k�1) [Vygen 1997] or 2c/k [Kleinhans 1991; Eisenmann 1998].

Another model is the star model [Vygen 1997; Mo 2000] as illustrated in

Figure 11.14c. In the star model, one extra dimensionless module called the star

module is introduced for each net. The star module is placed together with other

movable modules during placement. Therefore, two extra variables corresponding

to the x- and y-coordinates of the star module are added to the placement problem.

It is proved in [Viswanathan 2004] that the clique model and the star model
are equivalent in quadratic placement if the net weights are set properly.
Fij
y

F

F

F

x
ij

ij

ji

i

j

FIGURE 11.13

The forces by a stretched spring connecting objects i and j.

(a) (b) (c)

Clique modelMulti−pin net Star model

Star module

FIGURE 11.14

Clique and star models for multi-pin nets.

660 CHAPTER 11 Placement
Specifically, consider a k-pin net connecting modules 1, . . . , k. In the clique

model, if the weight of each 2-pin net is set to c, then the total force on module
i by the 2-pin nets in the clique is given by:

F
clique
i ¼ c �

Xk
j¼1

xj � xi
� �

In the star model, let xs be the x-coordinate of the star module. If the weight of

each 2-pin net is set to k � c, then the total force on the star node is given by:

Fs ¼
Xk
j¼1

k� c � xj � xs
� �

By setting Fs ¼ 0, the force-equilibrium position for the star node is:

xs ¼ 1

k

Xk
j¼1

xj

The force on module i by the 2-pin net connecting to the star is given by:

Fstar
i ¼ k� c � xs � xið Þ

¼ k� c � 1

k

Xk
j¼1

xj � xi

0
@

1
A

¼ c �
Xk
j¼1

xj � k� xi

 !

¼ c �
Xk
j¼1

xj � xi
� �

¼ F
clique
i

Because the forces exerted are the same, the clique and the star models are

equivalent, and they can be used interchangeably in quadratic placement.

11.5 Global placement: analytical approach 661
On the basis of the equivalence of clique and star models, the hybrid net
model [Viswanathan 2004] is a natural choice. In the hybrid net model, the
clique model is used for nets with 2 to 3 pins, and the star model is used for nets

with 4 or more pins. It has been shown empirically that the hybrid net model

reduces the number of 2-pin nets by more than 10� over the clique model

for industrial circuits [Viswanathan 2007a]. It can also significantly reduce both

the number of 2-pin nets and number of variables over the star model, because

approximately 70% of nets in a typical circuit have 2 or 3 pins. Because the run-

time to solve a quadratic placement problem is roughly proportional to the

number of 2-pin nets and it increases slightly with the number of variables,
the hybrid net model can speed up quadratic placement significantly.

11.5.2.4 Linearization methods

As shown in Figure 11.10, quadratic wirelength is a very rough approximation

to linear wirelength. For small circuits, despite the inaccuracy of quadratic wire-

length, quadratic placement techniques can still generate very competitive solu-
tions. For larger circuits, however, this inaccuracy is a major bottleneck to the

quality of quadratic placement solutions.

The authors in [Sigl 1991] presented a method to approximate the linear

wirelength in a quadratic placement framework by iteratively adjusting the

spring constant. Assume the star model is used to replace multi-pin nets. For

a net e in the original circuit, let xe be the coordinate of the associated star mod-

ule. Then the total linear wirelength (for the circuit after applying the star

model) can be written as:

Lstar ¼
X
e2E

X
i2e

xi � xej j

Consider the function:

~L
star ¼

X
e2E

X
i2e

xi � xeð Þ2
gie

If gie ¼ xi � xej j then ~L
star ¼ Lstar. However, gie’s are set to constants so that ~L

star

would become a quadratic function. To approximate L
star with ~L

star
, the function

~L
star

is optimized iteratively such that gie in current iteration is set according to

the coordinates of previous iteration. Intuitively, 1/gie can be viewed as a variable

spring constant that decreases with increasing spring length. The iterative pro-

cess terminates when the gie factors no longer change significantly.

Notice that even L
star is just a rough approximation to the total HPWL objec-

tive function. Thus instead of setting gie to |xi � xe|, an experimentally-verified

net specific factor is used:

gie ¼
X
i2e

xi � xej j for all i 2 e

662 CHAPTER 11 Placement
This choice has two advantages. First, the summation reduces the influence of

nets with many connected modules and emphasizes most nets connecting only
two or three modules. Second, the summation also prevents increasing the

force on modules close to the star node by too much. According to HPWL, as

long as a module is inside the net bounding box, it is not helpful to increase

the force to pull it farther inside.

Nets becoming very short (i.e., gie becoming very small) may cause numeri-

cal problems during the minimization of ~L
star

. Therefore, gie is lower bounded

(by the average module width for example) to ensure that gie will never be zero.

Spindler and Johannes [Spindler 2006] introduced a BoundingBox net
model, which, when combined with the preceding wirelength linearization

idea, can accurately model HPWL in a quadratic placement framework. In the

BoundingBox net model, a multi-pin net is transformed into only a few character-

istic 2-pin nets as illustrated in Figure 11.15a. It is different from the clique model

in which all possible 2-pin nets are included as shown in Figure 11.15b. Consider

a k-pin net. For a given placement, suppose the modules are indexed in ascending

order of their x-coordinates. Therefore, module 1 is at the left boundary and mod-

ule k is at the right boundary of the net’s bounding box. All connections are
joined to the two boundary modules. One 2-pin net is connecting modules

1 and k. Two 2-pin nets are connecting each of the remaining k � 2 inner mod-

ules to module 1 and module k, respectively. The total number of 2-pin nets is

1 þ 2(k � 2). Let N ¼ {{1, k}, {1, 2}, {2, k}, {1, 3}, {3, k}, . . . , {1, k � 1}, {k � 1, k}}

be the set of 2-pin nets.

According to the BoundingBox net model, the wirelength ~L
BB

of the k-pin

net is defined as:

~L
BB ¼ 1

2

X
i; jf g2N

o i; jf g � xi � xj
� �2

where

o i; jf g ¼ 2

k� 1
� 1

l i; jf g
1 5
2

3
4

x x

1 5
2

3
4

BoundingBox
(a) (b)

Clique

FIGURE 11.15

The BoundingBox and the clique net models for a 5-pin net.

11.5 Global placement: analytical approach 663
If l{i, j} is set to |xi � xj| for all {i, j} 2 N, then:

~L
BB ¼ 1

2

X
fi; jg2N

2

k� 1
� 1

jxi � xjj � ðxi � xjÞ2
0
@

1
A

¼ 1

k� 1

X
fi; jg2N

jxi � xjj
0
@

1
A

¼ 1

k� 1
jx1 � xkj þ

X
2�i�k�1

ðjx1 � xij þ jxi � xkjÞ
 !

¼ 1

k� 1
ðjx1 � xkj þ ðk� 2Þ � jx1 � xkjÞ

¼ jx1 � xkj
Thus, the BoundingBox net model gives the exact HPWL if the net weights

are set appropriately.

Like the linearization method in [Sigl 1991], the correct net weights w{i, j}

are searched by iteratively optimizing ~L
BB

such that l{i,j} in current iteration is

set to |xi � xj| of previous iteration. In each iteration, the l{i, j} factors are

constants and hence ~L
BB

becomes a quadratic function of module coordinates.

For simplicity, only the x-component of the model is described previously. The

y-component can be constructed similarly. However, because the boundary mod-

ules and module distances may be different in x- and y-directions, the set of 2-pin

nets introduced and the l{i, j} factors are most likely different. Moreover, even for a

given direction, the boundary modules may change from iteration to iteration.

Hence, the set of 2-pin nets and the net weights have to be updated continually.
The overhead associated with maintaining two copies of connectivity matrices

and the need to search for the net weights by an iterative process are the main

disadvantages of the BoundingBox model over the clique, star, and hybrid models.

The BoundingBox net model has several advantages. First, it allows quadratic

techniques to perform placement with the HPWL metric. Second, unlike the

clique or star models, no connection is introduced among the inner modules

to pull them together.3 The inner modules are able to move more freely as in

the HPWL model. Third, this model introduces much fewer 2-pin nets than
the clique model. It does introduce more 2-pin nets than the star/hybrid model

for nets with 4 or more pins, but the difference is not very significant.

Another way to mitigate the inaccuracy of quadratic wirelength is to correct

the mistakes by refining the placement solution with some linear metrics.

Detailed placement can be viewed as one example of this approach. In detailed

placement, as a simple problem of locally rearranging a few modules is consid-

ered, an accurate wirelength model (e.g., HPWL or even RSMT wirelength) can

usually be applied. However, because corrections are restricted by the local
3In the star model, the inner modules are pulled together indirectly through the star module.

664 CHAPTER 11 Placement
nature and the legality requirement of module movements, the effectiveness of

detailed placement in optimizing the linear cost function is limited.
A better technique called iterative local refinement (ILR) is proposed in

FastPlace [Viswanathan 2004]. ILR can be applied to any global placement solu-

tion before legalization. It works in iterations. In each iteration, the placement

region is divided into bins by a regular grid structure. The bin size is large at

the beginning iterations and is gradually reduced to consider progressively finer

module movements. After binning, the modules are examined one by one. For

each module, it is tentatively moved from its original bin to its eight adjacent

bins as shown in Figure 11.16. For each tentative move, one score is computed.
The score is a weighted sum of a wirelength component and a density compo-

nent. The wirelength component is the total change in HPWL of all nets

connected to the module. The density component is a function of the module

densities of the original bin and the target bin. It rewards movements from a

dense bin to a sparse bin. If all eight scores are negative, the module will remain

unmoved. Otherwise, the move with the highest score will be taken. This itera-

tive process is repeated until there is no significant improvement in wirelength.

Because ILR is not constrained by the nonoverlapping requirement and can
move modules by a relatively long distance, it is much more effective than

detailed placement in correcting major problems in the placement solution.

It also helps the spreading of modules. Besides, it is an extremely fast technique

because of its simplicity.

11.5.2.5 Handling nonoverlapping constraints

In placement, the two primary goals are to minimize the wirelength and to avoid

module overlaps. These two goals are in conflict with each other. Wirelength

minimization brings modules together. Overlap avoidance requires modules to

spread out. Note that if the nonoverlapping constraints are ignored, for a circuit
FIGURE 11.16

Eight tentative moves of iterative local refinement.

FIGURE 11.17

The placement solution for a circuit with fixed I/O pins at boundary when quadratic wirelength

is minimized and nonoverlapping constraints are ignored.

11.5 Global placement: analytical approach 665
without fixed modules, the optimal solution is to place all modules at the same

location. This solution has zero wirelength but is meaningless because of the seri-

ous overlap issue. Even for a circuit with fixed modules (e.g., I/O pins at bound-

ary), which help pulling the movable modules away from each other, the

wirelength-minimized placement without considering overlaps typically has a

lot of overlaps at the center of the placement region as illustrated in Figure 11.17.

As pointed out in Section 11.5.1, instead of completely eliminating module
overlaps in an analytical framework, an even distribution of modules is targeted

in practice. In quadratic placement, there are basically two ways to make the

module distribution more even. The first way is to add center-of-mass con-

straints to prevent modules from clustering together. The second way is to

add forces to pull modules from dense regions to sparse regions. For both ways,

the constraints/forces are added in an iterative manner to gradually spread

out the modules. Note that even with the additional constraints/forces, the

quadratic wirelength minimization problem can still be formulated as a convex
quadratic program. Therefore, the circuit placement problem is transformed

into a sequence of convex quadratic programs.

The technique of adding center-of-mass constraints is first introduced by

GORDIAN [Kleinhans 1991]. Similar techniques are also used in BonnPlace

[Brenner 2005] and hATP [Nam 2006]. The algorithm of GORDIAN is presented

in the following. In GORDIAN, given an uneven quadratic placement solution,

the module distribution can be improved by the following procedure. Assume

the modules have to be spread horizontally. First, a vertical cutline is used to

Center of mass

(a) (b) (c)

FIGURE 11.18

Module spreading by center-of-mass constraints in GORDIAN.

666 CHAPTER 11 Placement
partition all modules into two subcircuits and the placement region into two

subregions (see Figure 11.18a). Then, for each subcircuit, a constraint in the

x-direction is added to force the center of mass of all its modules to be at

the center of the corresponding region. Next, the placement problem with

the two additional constraints is solved again. The center-of-mass constraints

should pull the two subcircuits horizontally away from each other as shown

in Figure 11.18b. This procedure is applied hierarchically to improve the distri-
bution in each subregion (see Figure 11.18c) until each subcircuit contains

less than a predefined number of modules. Note that at each hierarchical

level, the placement of all subcircuits is considered together as a single global

optimization problem.

The coordinates of the center of mass are the area weighted mean values

(i.e., linear functions) of the module coordinates. In other words, the center-

of-mass constraints are linear equality constraints. Therefore, the global optimi-

zation problem at each hierarchical level is a convex quadratic program, which
is equivalent to solving a system of linear equations.

Although the center-of-mass constraints help spreading, they hurt wirelength.

For any two subcircuits belonging to the same parent in the hierarchy, the center-

of-mass constraints draw them apart by a long distance. Hence the connections

between them will become much longer. The wirelength impact can be mini-

mized if the cut cost between the two subcircuits can be reduced. To avoid a

large cut cost, both direction and position of the cutline are chosen carefully.

To determine the cut cost of every possible partition by a vertical cutline, the cut-
line is scanning from left to right and the cut cost is updated whenever the cut-

line passes over a module. Only the partitions in which both subcircuits are at

least 35% of the area of their parent are considered. The cut costs for horizontal

cutline can be found similarly. The cutline with the smallest cut cost among all

directions and positions is chosen. After that, the FM bipartitioning algorithm is

optionally applied to refine the partition by moving modules that are close to

the cutline. Moreover, after global optimization, if there are a lot of overlaps

between two subcircuits, it indicates a bad bipartition, because many modules
tend to migrate to the other region. In that case, they are repartitioned.

11.5 Global placement: analytical approach 667
The technique of adding forces to spread modules in a quadratic placement

framework was first introduced in Kraftwerk [Eisenmann 1998]. In Kraftwerk,
density-based forces are derived to pull modules from high-density regions to

low-density regions. However, constant forces are used, and the magnitude of

the forces is set heuristically. As a result, the convergence is hard to control

and the algorithm is not as fast as it should be. In the following, the improved

technique in the new version of Kraftwerk [Spindler 2006] is presented. Note

that the x-coordinates will be focused in the discussion following.

For a given placement, let x 0 be the vector of current module positions and x
be the vector of variables representing module positions in a new placement to
be determined. The additional force for each module is separated into two com-

ponents: hold force and move force. The hold force vector Fhold
x is defined as:

Fhold
x ¼ � Qx0 þ dxð Þ

It is used to counterbalance the total forces by the nets of the circuit in the cur-

rent placement x0. It makes sure that if the placement problem is solved again,

all modules will be held in their current positions. Hold forces do not depend

on x and hence are constant forces.
The move force is used to move a module toward less dense regions. Let

D(x, y) be the module density at location (x, y). It is defined as the number of

modules that cover (x, y) minus the average density (
P

iwi � hi)/(W � H).

The distribution D(x, y) can be viewed as a charge distribution, which creates

an electrostatic potential f based on the Poisson equation:

Df ¼ �Dðx; yÞ
The Poisson equation can be solved efficiently by geometric multigrid solvers

(e.g., [Kowarschik 2001]).

In the electrostatic formulation, the potential f is high in regions where the

distribution D(x, y) is high, and vice versa. Hence the gradient of the potential

(@f/@x, @f/@y)T can be used to move the modules away from high-density

regions toward low-density regions and thereby reduce the overlaps among

the modules. For each module i, its target position x̂i is:

x̂i ¼ x0i � @F
@x

����
���� x

0
i ; y

0
ið Þ

Move forces are added to guide modules toward their target positions. They

are generated by use of the fixed-point idea proposed in FAR [Hu 2002].

Each module i is connected to its target position (i.e., a fixed point) by a spring
with spring constant ĉi. So the move force vector Fmove

x is given by:

Fmove
x ¼ Q̂ x� x̂ð Þ

where Q̂ ¼ diag ĉið Þ: Note that spring forces rather than constant forces are used
for move forces so that module movements are limited. Each module can be

668 CHAPTER 11 Placement
moved at most up to its target position. This helps the convergence of Kraft-

werk significantly. The spring constants ĉi control the tradeoff between rate of

convergence and wirelength. If large ĉi values are used, modules will be moved

close to their target positions. Hence the placer will converge faster to an even

density distribution. On the other hand, small ĉi values allow module positions

to be determined mostly by wirelength minimization.
In the new placement solution, the sum of net force, hold force, and move

force on each module should be zero:

Qxþ dxð Þ � Qx0 þ dxð Þ þ Q̂ x� x̂ð Þ ¼ 0

Therefore, the new module positions x can be found by solving the following

system of linear equations:

Qþ Q̂ð Þ x� x0ð Þ ¼ �Q̂ x0 � x̂ð Þ
This spreading procedure is repeated until the placement density distribution

is even enough. It can be proved that this procedure always converges to an

overlap-free placement.

Note that besides this potential-based method, the target positions can also

be computed by simpler heuristics like cell shifting [Viswanathan 2004] or

grid warping [Xiu 2004]. All these methods try to equalize the placement
density of nearby regions by locally moving modules. There is no proof of

convergence for these methods, but they work well in practice.

To mitigate the negative effect of the additional forces on wirelength in force-

directed spreading algorithms, a force-vector modulation technique is proposed

in RQL [Viswanathan 2007b]. The technique is based on the observation that the

spreading force is small formostmodules but very huge for a fewpercent of allmod-

ules. A huge force implies that the corresponding module is pulled away from its

natural position (i.e., the force-equilibrium position if spreading force is removed)
by a long distance. Thus, the nets connecting to the module become very long.

The force-vector modulation technique nullifies the huge forces before the next

quadratic optimization iteration. As a result, moduleswith nullified spreading forces

can return to the minimum-wirelength positions. Hence, the total wirelength can

be significantly improved. Because the spreading forces of only a few percent of

modules are nullified, module spreading is not seriously affected.
11.5.3 Nonquadratic techniques
Another category of analytical approach is to formulate the placement problem

as a single nonlinear program as in Section 11.5.1. However, instead of exact

wirelength metric and exact nonoverlapping constraints, approximations are

used. In particular, the placement region is divided into bins, and the nonover-

lapping constraints are replaced by bin density constraints. Let x and y be the

vectors of x- and y-coordinates of the modules, respectively. Then the problem

can be formulated as follows:

11.5 Global placement: analytical approach 669
Minimize
X
e2E

ce �WLe x; yð Þ

Subject to Db(x, y) ¼ Tb for all bin b

WLe() is a continuously differentiable function that may be more complicated

than quadratic functions but may also be more accurate in approximating

HPWL. Tb is the target density of bin b. Db() gives the density of bin b with

respect to placement solution x and y. The exact bin density function is a

piece-wise linear function and hence is not differentiable. Db() is a smooth ver-

sion of the exact one.

Examples of placers in this category are APlace [Kahng 2004], mPL [Chan

2005], and NTUPlace [Chen 2006]. To approximate the wirelength, APlace,
mPL, and NTUPlace all use the log-sum-exponential wirelength function
described in a patent by [Naylor 2001]. To smooth the density function, APlace

and NTUPlace use a bell-shaped function proposed also by [Naylor 2001],

and mPL uses inverse Laplace transformation [Evans 2002]. The wirelength

approximation and density smoothing methods are described in the following.

11.5.3.1 Log-sum-exponential wirelength function

The log-sum-exponential function is defined as:

LSEa z1; . . . ; znð Þ ¼ a� log
Xn
i¼1

ezi=a

 ! !

It is an approximation of the maximum function:

LSEa z1; . . . ; znð Þ � max z1; . . . ; znð Þ
a is a parameter controlling the accuracy of the approximation. As a converges

to 0, the log-sum-exponential function converges to the maximum function.

This is demonstrated in Figure 11.19, which shows for a ¼ 0.1 and for a ¼ 2,

the log-sum-exponential function of two arguments.
The HPWL of a net e can be expressed in terms of the maximum function:

HPWLe x1; . . . ; xn; y1; . . . ; ynð Þ
¼ max

i2e xif g �min
i2e xif g

� 	
þ max

i2e yif g �min
i2e yif g

� 	
¼ max

i2e xif g þmax
i2e �xif g

� 	
þ max

i2e yif g þmax
i2e �yif g

� 	
So HPWL can be approximated by the log-sum-exponential based function as

follows:

LSEWLe;a x1; :::; xn; y1; :::; ynð Þ
¼ a� log
X
i2e

exi=a

 !
þ log

X
i2e

e�xi=a
 !

þ log
X
i2e

eyi=a

 !
þ log

X
i2e

e�yi=a
 ! !

a = 0.1 :

a = 2 :

15

10

0

5

–5

–10

–10
–5

0
5 –1010

–5

0

5

10

15

10

0

5

–5

–10

–10
–5

0
5 –1010

–5

0

5

10

FIGURE 11.19

The log-sum-exponential function of two arguments for two different values of a.

670 CHAPTER 11 Placement
LSEWLe,a() is strictly convex, continuously differentiable, and converges to

HPWLe() as a converges to 0 [Naylor 2001].

11.5.3.2 Density constraint smoothing by bell-shaped function

To illustrate the idea, assume for now that each module is much smaller than

the bins and hence is considered to be a dot. Besides, assume each module

has a unit area. For a bin b, let xb be the x-coordinate of the center and wb be

the width of bin b. Then the overlap function Yx(b, i) in the x-direction

xbxb xi

1

Smooth bell−shaped function

(b)(a)

Θx(b,i)

xb+wb/2 xb+wbxi

1

Exact rectangle−shaped function

Θx(b,i)~

FIGURE 11.20

Overlap function between bin b and module i.

11.5 Global placement: analytical approach 671
between bin b and module i is shown in Figure 11.20a. This function can be

approximated by a smooth bell-shaped function ~Yx b; ið Þ as shown in

Figure 11.20b. Let dx ¼ |xi � xb|. Then:

~Yx b; ið Þ ¼
(

1� 2� d2
x=o

2
b if 0 � dx � ob=2

2� dx � obð Þ2=o2
b if ob=2 � dx � ob

0 if ob � dx

ð11:2Þ

The overlap function ~Yy b; ið Þ in the y-direction is defined similarly.
The density function of bin b can be written as follows:

Db x; yð Þ ¼
X

i2VCi � ~Yx b; ið Þ � ~Yy b; ið Þ

where Ci is a normalization factor so that
P

bCi � ~Yx b; ið Þ � ~Yy b; ið Þ ¼ oi � hi

(i.e., area of module i).

This idea can be extended to handle large modules [Kahng 2005]. For a

module i with width wi, the scope of the module in the x-direction is set

towb þ wi/2 (i.e., every bin within horizontal distance wb þ wi/2 from the mod-

ule’s center is considered to be overlapping with the module). Then:

~Yxðb; iÞ ¼
1� a� d2

x if 0 � dx � wb=2þwi=2

b� ðdx �wb �wi=2Þ2 if wb=2þwi=2 � dx � wb þwi=2
0 if wb þwi=2 � dx

8<
: ð11:3Þ

where

a ¼ 4= wb þwið Þ 2wb þwið Þð Þ

b ¼ 4= wb 2wb þwið Þð Þ
so that the function is continuous when dx ¼ wb/2 þ wi/2. Note that Equation
(11.3) is the same as Equation (11.2) if wi ¼ 0.

672 CHAPTER 11 Placement
11.5.3.3 Density constraint smoothing by inverse
Laplace transformation

Inverse Laplace transformation is a commonly used method to smooth functions.

For a given placement solution x and y and for any location (x, y) in bin b, let

d(x, y) be the density at (x, y), i.e., d(x, y) ¼ Db(x, y). The smoothing operator

D�12 d x; yð Þ is defined by solving the Helmholtz equation:

DCðx; yÞ � ECðx; yÞ ¼ dðx; yÞ ðx; yÞ 2 R
@C
@n
¼ 0 ðx; yÞ 2 @R

8><
>: ð11:4Þ

where c(x, y) is a smoothed version of d(x, y), 2 > 0 is a parameter controlling

the smoothness, R is the placement region, @R is the boundary of R, n is the

outer unit normal vector pointing outside the boundary, and D ¼ @2/@x2 þ
@2/@y2 is a differential operator.

The inverse operator D�1E d x; yð Þ is well defined as equation (11.4) has a

unique solution for any E > 0. Because the solution of Equation (11.4) gains

two more derivatives than d(x, y), c is at least twice differentiable.

11.5.3.4 Algorithms for nonlinear programs

For nonquadratic techniques, as the objective function and all constraints are

continuously differentiable, the resulting nonlinear program can be solved by
any nonlinear programming algorithms. In APlace and NTUPlace, the nonlinear

program is converted by the quadratic penalty method into a sequence of

unconstrained minimization problems. Each unconstrained minimization prob-

lem has the following form:

Minimize
X
e2E

ce �WLe x; yð Þ þ b�
X
b

Db x; yð Þ � Tbð Þ2

The intuition of the quadratic penalty method is that any placement solution vio-
lating the density constraint for bin b will be charged a penalty of (Db(x, y) �
Tb)

2. b is a parameter to specify the importance of density constraints. Its value

keeps increasing in the sequence of unconstrained problems to discourage

uneven placement solutions. Each unconstrained problem is solved by the

conjugate gradient method [Luenberger 1984].

In mPL, the nonlinear program is solved by the Uzawa algorithm [Arrow

1958] shown in Algorithm 11.2. In the Uzawa algorithm, xk and yk are the

module locations at the k-th iteration, lkb is the Lagrange multiplier at the
k-th iteration, and a is a parameter to control the rate of convergence.

11.5 Global placement: analytical approach 673
Algorithm 11.2 The Uzawa Algorithm

1. Initialize x0, y0, and l0b for all b
2. For k ¼ 0, 1, . . .
3. Find x kþ1 and y kþ1 by solving the following equality:X

e2Ece �rWLe x kþ1; y kþ1� �þX
b
lkb �rDb x k; y k

� � ¼ 0

4. Set lkþ1b ¼ lkb þ a� Db x kþ1; y kþ1� �� Tb
� �

for all b

The nonquadratic techniques are elegant and comparable to the quadratic tech-

niques in terms of wirelength. However, they are more complicated to implement

and are usually more expensive computationally.
11.5.4 Extension to multilevel
To handle large-sized problems, a multilevel scheme is commonly used in analyt-

ical placement. The application of a multilevel scheme to placement is similar to

its application to partitioning presented in Section 11.3.1. It consists of three

phases. First, a hierarchy of coarser netlists is constructed by clustering heavily

connected modules together. Second, an initial placement of the coarsest netlist
is generated. Finally, the netlist is successively unclustered, and the placement at

each level is refined. The multilevel scheme can improve both the runtime and

the solution quality of analytical placement algorithms. Two popular clustering

techniques for netlist coarsening are introduced in the following.

11.5.4.1 First choice

The First Choice clustering technique [Karypis 1997] first represents the net-

list as a weighted graph by replacing the multi-pin nets with the clique model.

The weight or affinity rij between any modules i and j in the graph is given by:

rij ¼
X

e2E^i; j2e

ce

ej j � 1

Then the modules are traversed in an arbitrary order. Each module i is clustered

with an unclustered neighbor jwith the largest rij. After all modules are traversed,
the affinity graph is updated, and the clustering process is repeated until the num-

ber of modules has reached the target. The intuition behind First Choice is that

moduleswith high affinity should stay close together in a goodplacement solution.

First Choice is originally proposed for multilevel partitioning. Several modifica-

tions of First Choice targeting placement are presented in [Chan 2005]. To reduce

variation in cluster size, the affinity between modules i and j is redefined as:

rij ¼
X

e2E∧i; j2e

ce

ð ej j � 1Þ � area eð Þ

674 CHAPTER 11 Placement
where area(e) is the total area of all modules in e. In addition, modules are vis-

ited in ascending order of module area (with preference to smaller module
degree to break ties). This ordering is observed to balance the area of clusters

better. If a good initial placement is provided, the proximity information

between modules can be incorporated into the affinity as follows:

rij ¼
X

e2E^i; j2e

ce

ej j � 1ð Þ �area eð Þ �dist i; jð Þ

where dist(i, j) is the Euclidean distance between i and j.

11.5.4.2 Best choice

In the Best Choice clustering technique [Alpert 2005], the affinity is defined as:

rij ¼
X

e2E^i; j2e

ce

ej j � area ið Þ � area jð Þð Þ

where area(i) and area(j) are the areas of modules i and j, respectively. In addi-

tion to the indirect control of the cluster size by the affinity, Best Choice imposes

a hard upper limit for cluster size. Moreover, the pair of modules with the largest
affinity among all pairs is clustered and, in principle, the netlist is immediately

updated. In other words, Best Choice always selects the globally best pair for clus-

tering. In practice, as the immediate update is time-consuming, a lazy updating
technique is proposed to reduce the runtime. The idea is that instead of explicitly

recomputing the affinities of module pairs affected by a given cluster, they are

marked as invalid and are updated only after they have been selected for clustering.

Because thepair selection isbasedon invalid affinities, lazyupdatingmay incur some

errors. However, the dramatic reduction in runtime outweighs the small errors.
As with the modified First Choice affinity, the proximity information of a

good initial placement can be incorporated into the Best Choice affinity in the

same way.
11.6 LEGALIZATION

Given an illegal placement, legalization is a process to eliminate all overlaps by

perturbing the modules as little as possible. In the partitioning-based approach,

the modules in each subcircuit at the lowest level have to be arranged in the

corresponding subregion. In the simulated annealing approach, it is possible

that overlaps are allowed (but penalized) in intermediate steps. In analytical
placement, the nonoverlapping constraints are always replaced by density

constraints. Therefore, legalization is required for all three approaches.

For standard-cell placement, the Tetris legalization algorithm [Hill 2002] is

very commonly used. In this algorithm, modules are first sorted in ascending

x-coordinate. Then the modules are packed to the left one at a time into the

row that minimizes the total displacement for that module. This simple greedy

algorithm is extremely fast. However, it sometimes may result in very uneven

11.7 Detailed placement 675
row lengths and hence may fail to pack all modules inside the placement region.

This issue motivated a slight modification proposed in [Khatkhate 2004]. If the
algorithm fails to pack all modules inside the placement region, the penalty for

displacing a module in the vertical direction is gradually reduced. This modifica-

tion encourages more even row lengths and so improves the chance of success.

It is clear that the Tetris algorithm can also legalize mixed-size designs. It was sug-

gested in [Khatkhate 2004] that the algorithm handles mixed-size designs well.

Because the Tetris algorithm is greedy in nature and attempts to packmodules to

the left, itmayperturb theoriginal placementquite significantly. Amore robust legal-

ization method is proposed in [Ren 2005]. This method is based on a discrete
approximation to a closed-form solution of the continuous diffusion equation.

It generates a roughly legal placement. Then any legalizer canbe applied toputmod-

ules onto rows without overlap. This diffusion-based method spreads the modules

smoothly. Thus it helps preserve neighborhood characteristics of the original place-

ment. As a result, the wirelength and timing of the resulting placement is better.
11.7 DETAILED PLACEMENT

Given a legalized placement solution, detailed placement further improves the

wirelength (or other objectives) by locally rearranging the standard cells while

maintaining legality. There may be significant room for wirelength improvement

in a legalized global placement solution for several reasons. First, global place-

ment typically uses inaccurate wirelength models (e.g., cut cost, quadratic wire-

length with clique net model, log-sum-exponential function). Second, global

placement algorithms often place each cell into a subregion without paying
much attention to the location of the cell within the subregion. Third, during

legalization, the wirelength is likely to be worsened by the perturbations.

Simulated annealing can be easily adopted to perform detailed placement,

but this technique is usually slow. Another technique is to iteratively consider

different windows and use branch-and-bound to optimally rearrange the cells

within each window [Caldwell 2000; Agnihotri 2003]. Because of the high

computational complexity of branch-and-bound, a window can only contain

up to 7 to 8 cells. Hence this technique is effective only in making very local
modifications to the placement solution. Two detailed placement algorithms

that work well in practice are presented in the following.
11.7.1 The Domino algorithm
A very high-quality yet efficient detailed placer is the Domino algorithm [Doll

1994]. Domino also uses a sliding window approach to iteratively refine a

small region. For each region, the problem of assigning the cells to new locations

is formulated as a transportation problem. To account for the different cell

widths, each cell i with width wi is divided into wi unit-width subcells. Then

676 CHAPTER 11 Placement
the problem is to simultaneously transport the subcells to unit-width locations in

an overlap-free manner that minimizes a cost function approximating wirelength.
This problem can be transformed into aminimum cost maximum flow prob-
lem on a network as shown in Figure 11.21. This network consists of a source

node S, a set of cell nodes i, a set of location nodes k, and a destination node

D. The capacity of the arc between node S and cell node i is wi. Because each

location can hold at most one subcell, all capacities of arcs leading from location

nodes to node D are set to one. The cost of assigning a subcell of cell i to location

k is cik, which is determined by a net model described later.

By solving the network flow problem, the subcells are assigned to locations.
For all subcells of each cell, as they are associated with the same transportation

cost and they are pulled towards the cheapest location by the transportation algo-

rithm, they tend to lie side by side. Each cell is placed in the row holding most of

its subcells. The x-coordinate of the cell is determined by the center of gravity of

the subcells. Finally, the cells in each row of the region are packed according to

their x-coordinates to prevent overlap and unused space.

The cost cik of assigning a subcell of cell i to location k is the total HPWL of all

nets connected to cell i. During the evaluation of the cost cik, cell i is assumed to be
at location k. However, the locations of other cells in the region are still unknown.

Hence the HPWL of nets are estimated according to the following net model. To

estimate the HPWL of a net e connected to cell i, let eI be the subset of cells

connected to net e inside the region. Consider the following three cases:
FIG

Tra
� Case 1: |eI| ¼ 1.
In this case, the only cell inside the region that net e connects to is cell i.

Therefore, the HPWL of net e can be calculated exactly.

� Case 2: 1<|eI|<|e|.
In this case, net reconnects to some cell(s) other than cell i both inside

and outside the region. The unknown locations of cells in eI � {i} are

estimated by their coordinates in the current placement. Then the
HPWL of net e can be calculated.
� Case 3: |eI| ¼ |e|.
In this case, net e connects only to cells inside the region. Again, the

locations of cells in eI � {i} are estimated by their coordinates in the
8 ,0

S i k D
wi,0

1,0

1,0

1,0

8 ,cik

URE 11.21

nsportation network in Domino. Arcs are labeled with “capacity, cost.”

11.7 Detailed placement 677
current placement. Besides, a virtual cell is introduced at the center of
gravity of the cells in eI with respect to the current placement. The

HPWL of all cells in e together with the virtual cell is used as an esti-

mate of the HPWL of net e.

An advantage of Domino over branch-and-bound based algorithms is that the
network flow problem has a much lower computational complexity and hence

much larger windows can be used. A larger window allows more cells to be

placed simultaneously and potentially improves the wirelength. However, it also

increases the runtime and results in a less accurate estimation of the HPWL in

the cost function. In practice, a window size of approximately 20 to 30 cells

per region yields a good tradeoff between wirelength and runtime.

The preceding description is a brief outline of the main ideas of the Domino

algorithm. Another net model and theoretical analysis of the relations between
the two net models and HPWL are presented in [Doll 1994]. Interested readers

may refer to the original paper.
11.7.2 The FastDP algorithm
The FastDP algorithm [Pan 2005] is a greedy heuristic that can generate slightly

better solutions than Domino and is an order of magnitude faster. The FastDP

algorithm consists of four key techniques: global swap, vertical swap, local
reordering, and single-segment clustering. The flow of FastDP is given in

Algorithm 11.3.

Algorithm 11.3 The FastDP Detailed Placement Algorithm

1. Perform single-segment clustering
2. Repeat
3. Perform global swap
4. Perform vertical swap
5. Perform local reordering
6. Until no significant improvement in wirelength
7. Repeat
8. Perform single-segment clustering
9. Until no significant improvement in wirelength

Global swap is the technique that gives the most wirelength reduction. It

examines all cells one by one. For each cell i, the goal is to move it to its opti-
mal region. For a given placement, the optimal region of cell i is defined as the

region such that if cell i is placed in it, the wirelength will be optimal. It can be

determined on the basis of the median idea of [Goto 1981]. Let Ei be the set of
nets connected to cell i. For each net e 2 Ei, the bounding box excluding cell i

678 CHAPTER 11 Placement
is computed. Let xeL and xeU be the x-coordinates of left and right boundaries,

and yeL and yeU be the y-coordinates of lower and upper boundaries, respectively.
Then the optimal x-coordinate for cell i is given by the median of the set of

boundary coordinates xeL : e 2 Ei

 � [xeU : e 2 Ei

 �
. In general, the optimal coor-

dinate for cell i is a region rather than a single point as the number of elements

in the set xeL : e 2 Ei

 � [xeU : e 2 Ei

 �
is even. Similarly, the optimal y-coordi-

nate for cell i is given by the median of the set of boundary coordinates

yeL : e 2 Ei

 � [yeU : e 2 Ei

 �
. For example, the optimal region of a cell i

connected to three nets A ¼ {i, 1, 2, 3}, B ¼ {i, 4, 5}, and C ¼ {i, 6, 7} is given

in Figure 11.22.
Although it is desirable in terms of wirelength to move cell i to its optimal

region, the optimal region may not have enough space to accommodate the cell.

So in global swap, cell i attempts to swap with another cell or a space in the

optimal region. A benefit function is computed for each cell and each space

in the optimal region. If there exists a cell or a space with positive benefit,

the one with the highest benefit will be swapped with cell i. The benefit func-

tion consists of two components. The first component is the improvement in

total wirelength if the swap is performed. The second component is a penalty.
Swapping cells of different sizes or swapping a big cell with a small space

may create overlap. The overlap is resolved by shifting nearby cells away.

The penalty is a function of the least amount of shifting required to resolve

the overlap.

Vertical swap is similar to global swap. The difference is that a cell attempts

to swap with a few nearby cells one row above/below its current position.

Sometimes a cell fails to be moved by global swap, because there is no cell or

space in the optimal region with a positive benefit. Vertical swap allows the cell
to move toward its optimal region to reduce the vertical wirelength. In addition,
L

U

L

U

L

U

L U L UL U

Optimal
region

x x x x

y

y

y

y

xA x

y

y

B A B C C

B

C

B

A

A

C

median

median

Net A

Net B

Net C

1

2

3
7

6

i

4

5

FIGURE 11.22

The optimal region of cell i.

11.8 Concluding remarks 679
vertical swap is much faster than global swap, because the number of candi-

dates to be considered for swapping is much less.
Local reordering considers each possible group of n consecutive cells in a

row. For each group, all possible left-right orderings of the cells are tried, and

the one with the best wirelength is selected. Local reordering is a very inexpensive

technique to locallyminimizehorizontalwirelength. Inpractice,n is set to3. It is not

necessary touse a largern,because it ismoreefficient to fixnonlocal errors by global

swap.

Single-segment clustering is a technique to minimize the horizontal wire-

length by shifting the cells in a segment without changing the cell order. In
FastDP, a segment is a maximal unbroken section of a standard cell row.

Single-segment clustering examines each segment one by one. When a segment

is considered, the locations of all cells in other segments are fixed. A very effi-

cient algorithm based on a clustering idea is presented in [Pan 2005] to find

the optimal nonoverlapping placement of the cells in a segment. Interested

readers may refer to [Pan 2005] for the details.
11.8 CONCLUDING REMARKS

Placement is such a fundamental problem in VLSI design that there are so many dif-

ferent formulations and algorithms in the literature. This chapter is by no means a
comprehensive survey on placement. In this chapter, total wirelengthminimization

for standard-cell design is focused. Algorithms for other design styles and other

objectives are more or less extensions of the algorithms for this basic formulation.

Three popular approaches for global placement are presented. Other

approaches that are not considered in this chapter are based on the eigenvalue

method [Hall 1970], resistive network optimization [Cheng 1984], genetic algo-

rithm [Cohoon 1987; Shahookar 1990], and artificial neural network [Yu 1989].

Those approaches are not successful in practice, but their insights may be intel-
lectually interesting to readers.

A lot of useful and up-to-date information is collected in the book “Modern

Circuit Placement” [Nam 2007]. That book contains descriptions of the underly-

ing algorithms, implementation details, and latest experimental results for

nine state-of-the-art academic placers. Another useful resource is a tutorial on

large-scale circuit placement that summarizes results from recent optimality

and scalability studies of placement tools and highlights recent techniques for

optimization of wirelength, routability, and performance [Cong 2005]. A compre-
hensive survey of older placement techniques can be found in [Shahookar 1991].

Several placement benchmark suites are available in the public domain. The

ISPD 2005 benchmarks [Nam 2005, 2007] and the ISPD 2006 benchmarks [Nam

2006, 2007] are derived from modern ASIC designs in IBM. They are mixed-size

designs with both fixed and movable modules. The number of movable modules

in the largest circuit is 2.2 million in the ISPD 2005 suite and 2.5 million in the ISPD

680 CHAPTER 11 Placement
2006 suite. A major feature of the ISPD 2006 suite is that placement density targets

are specified to address the routability concern; this feature is absent from the ISPD
2005 suite. The IBM-PLACE 2.0 [Yang 2002] and IBM-MSwPins [Adya 2004] bench-

mark suites are derived from smaller circuits released by IBM during ISPD 1998

[Alpert 1998]. The IBM-PLACE 2.0 benchmarks have standard cells only and have

no connection to I/O pads, because all macros and the associated nets are removed

from the netlists. They have exact pin locations. The IBM-MSwPins benchmarks

contain large movable macros and many fixed pads distributed through the periph-

ery. The Faraday Mixed-size benchmarks [Adya 2004] have sufficient routing infor-

mation to run an industrial router on them after placement. Also, there are several
variations of the PEKO benchmark suites [Chang 2003; Nam 2007], which are

synthetic placement benchmarks with known optimal wirelength. They can be

used to evaluate the optimality of placement algorithms.

These and many other benchmarks, as well as source codes/executables of

many academic placers, can be downloaded from the “Wirelength-driven Stan-

dard-Cell Placement” slot of GSRC Bookshelf [Caldwell 2002].
11.9 EXERCISES
11.1. (Introduction)Consider a special placement problem that determines
whether a standard-cell circuit without any net can be placed inside a

given placement region. Prove that this problem is NP-complete.

11.2. (Problem Formulations) Prove that HPWL is a lower bound of

RSMT wirelength. Prove that HPWL is the same as RSMT wirelength

for 2- or 3-pin nets.

11.3. (Problem Formulations) Prove that RMST wirelength is an upper

bound of RSMT wirelength. Give an example such that RMST

wirelength overestimates RSMT wirelength by 50%.
11.4. (Global Placement: Partitioning-Based Approach) For the

hypergraph in Figure 11.2b, assume all hyperedges have a weight

of 1. What is the optimal bipartitioning if one partition should

contain two vertices and the other should contain three?

11.5. (Global Placement: Partitioning-Based Approach) Draw the

gain bucket data structures for the bipartition in Figure 11.3a.

11.6. (Global Placement: Partitioning-Based Approach) In the hMetis

algorithm, a random bipartitioning is done in the initial partitioning
phase. Would it be much better to replace the random bipartitioning

by the FM algorithm?

11.7. (Global Placement: Partitioning-Based Approach) In Section

11.3, a placement approach based on bipartitioning is presented.

In this question, a bipartitioning approach based on wirelength-mini-

mized placement is considered. For a circuit with n modules, each

module is first placed in one of the n integer coordinates 1, 2, . . . , n

11.9 Exercises 681
on the x-axis. Then the modules in coordinates 1, . . . , k form one sub-
circuit and those in coordinates k þ 1, . . . , n form another subcircuit,

where k is chosen according to the size constraints. Show by con-

structing an example that even if optimal placement can be found,

the cut cost of the bipartitioning solution by this approach can be

O(n2) times that of the optimal solution.

11.8. (Global Placement: Simulated Annealing Approach) Prove that

the penalty function C3 of TimberWolf in Section 11.4.1 is equivalent

to the following function:
C
0
3 ¼ 2y�

X
r

l rð Þ � d rð Þ½ �þ

where z½ �þ ¼ z if z > 0

0 if z � 0

�

11.9. (Global Placement: Analytical Approach) Prove that the matrix

Q defined in Section 11.5.2 is positive definite if all movable modules
are connected to fixed modules either directly or indirectly.

11.10. (Global Placement: Analytical Approach) Consider the example

in Figure 11.11. Assume all nets have a weight of 1. Assume module

4 is at (1, 0), module 5 is at (0, 3), and module 6 is at (4, 2).
1. Determine the locations of the movable modules such that the

total weighted quadratic wirelength is minimized.

2. If module 1 is at (2, 2), module 2 is at (1, 3), and module 3 is at

(3, 2), find the force vectors exerting on the movable modules.
11.11. (Global Placement: Analytical Approach) For each of the follow-

ing net models, write the number of 2-pin nets and the number of

extra variables introduced for a k-pin net as functions of k.
1. Clique

2. Star

3. Hybrid

4. BoundingBox

Plot the number of 2-pin nets for all 4 models in a graph for the

range 2 � k � 15.
11.12. (Global Placement: Analytical Approach) Prove that the function
~Yx b; ið Þ in Equation (11.3) is continuous when dx ¼ wb þ wi/2. Is it

differential when dx ¼ wb þ wi/2?

11.13. (Global Placement: Analytical Approach) This question analyzes
the error of the log-sum-exponential function defined in Section

11.5.3 as an approximation of the maximum function. The error

function is defined as:

682 CHAPTER 11 Placement
erra(z1, . . ., zn) ¼ LSEa(z1, . . ., zn) � max(z1, . . ., zn)
Derive an upper bound and a lower bound of erra(z1, . . ., zn) over all
possible values of z1,. . ., zn as functions of n and a.
11.14. (Detailed Placement) Consider the FastDP algorithm in Section

11.7. Prove that the optimal region is given by the medians of the

sets of boundary coordinates.
ACKNOWLEDGMENTS

I thank Natarajan Viswanathan of Iowa State University, Professor Cheng-Kok Koh of Purdue

University, Dr. Laung-Terng Wang of SynTest Technologies, Inc., and Professor Yao-Wen Chang of

National Taiwan University for carefully reviewing the chapter.
REFERENCES

R11.0 Books

[Arrow 1958] K. Arrow, L. Huriwicz, and H. Uzawa, Studies in Nonlinear Programming, Stanford

University Press, Stanford, CA, 1958.

[Evans 2002] L. C. Evans, Partial Differential Equations, American Mathematical Society,

Providence, RI, 2002.

[Garey 1979] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory

of NP-Completeness, Freeman, New York, 1979.

[Luenberger 1984] D. G. Luenberger, Linear and Nonlinear Programming, second edition,

Addison Wesley, Reading, MA, 1984.

[Nam 2007] G.-J. Nam and J. Cong, editors, Modern Circuit Placement—Best Practices and Results,

Springer, Boston, 2007.
R11.1 Introduction

[Garey 1974] M. R. Garey, D. S. Johnson, and L. Stockmeyer, Some simplified NP-complete pro-

blems, in Proc. ACM Symp. on Theory of Computing, pp. 47–63, April–May 1974.
R11.2 Problem Formulations

[Chu 2008] C. Chu and Y.-C. Wong, FLUTE: Fast lookup table based rectilinear Steiner minimal tree

algorithm for VLSI design, IEEE Trans. on Computer-Aided Design, 27(1), pp. 70–83, January

2008.

[Guibas 1983] L. J. Guibas and J. Stolfi, On computing all northeast nearest neighbors in the L1 met-

ric, in Information Processing Letters, 17(4), pp. 219–223, April 1983.

[Hwang 1976] F. K. Hwang, On Steiner minimal trees with rectilinear distance, SIAM J. of Applied

Mathematics, 30(1), pp. 104–114, January 1976.

References 683
R11.3 Global Placement: Partitioning-Based Approach

[Agnihotri 2003] A. Agnihotri, M. C. Yildiz, A. Khatkhate, A. Mathur, S. Ono, and P. H. Madden, Frac-

tional cut: Improved recursive bisection placement, in Proc. IEEE/ACM Int. Conf. on Computer-

Aided Design, pp. 307–310, November 2003.

[Alpert 1997] C. J. Alpert, J.-H. Huang, and A. B. Kahng, Multilevel circuit partitioning, in Proc.

ACM/IEEE Design Automation Conf., pp. 530–533, June 1997.

[Breuer 1977a] M. A. Breuer, A class of min-cut placement algorithms, in Proc. ACM/IEEE Design

Automation Conf., pp. 284–290, June 1977.

[Breuer 1977b] M. A. Breuer, Min-cut placement, J. of Design Automation and Fault Tolerant Com-

puting, 1(4), pp. 343–382, October 1977.

[Caldwell 2000] A. E. Caldwell, A. B. Kahng, and I. L. Markov, Can recursive bisection produce rou-

table placements, in Proc. ACM/IEEE Design Automation Conf., pp. 477–482, June 2000.

[Dunlop 1985] A. E. Dunlop and B. W. Kernighan, A procedure for placement of standard-cell VLSI

circuits, IEEE Trans. on Computer-Aided Design, 4(1), pp. 92–98, January 1985.

[Fiduccia 1982] C. M. Fiduccia and R. M. Mattheyses, A linear-time heuristic for improving network

partitions, in Proc. ACM/IEEE Design Automation Conf., pp. 175–181, June 1982.

[Karypis 1997] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, Multilevel hypergraph partition-

ing: Application in VLSI domain, in Proc. ACM/IEEE Design Automation Conf., pp. 526–529,

June 1997.

[Yildiz 2001a] M. C. Yildiz and P. H. Madden, Global objectives for standard cell placement, in Proc.

11th ACM Great Lakes Symp. on VLSI, pp. 68–72, March 2001.

[Yildiz 2001b] M. C. Yildiz and P. H. Madden, Improved cut sequences for partitioning based place-

ment, in Proc. ACM/IEEE Design Automation Conf., pp. 776–779, June 2001.
R11.4 Global Placement: Simulated Annealing Approach

[Sechen 1986] C. Sechen and A. L. Sangiovanni-Vincentelli, TimberWolf 3.2: A new standard cell

placement and global routing package, in Proc. ACM/IEEE Design Automation Conf.,

pp. 432–439, June 1986.

[Sun 1995] W.-J. Sun and C. Sechen, Efficient and effective placement for very large circuits, IEEE

Trans. on Computer-Aided Design, 14(3), pp. 349–359, March 1995.

[Wang 2000] M. Wang, X. Yang, and M. Sarrafzadeh, Dragon2000: Standard-cell placement tool for

large industry circuits, in Proc. IEEE/ACM Int. Conf. on Computer-Aided Design, pp. 260–263,

November 2000.

R11.5 Global Placement: Analytical Approach

[Alpert 2005] C. Alpert, A. Kahng, G.-J. Nam, S. Reda, and P. Villarrubia, A semi-persistent clustering

technique for VLSI circuit placement, in Proc. ACM Int. Symp. on Physical Design, pp. 200–207,

April 2005.

[Brenner 2005] U. Brenner and M. Struzyna, Faster and better global placement by a new transpor-

tation algorithm, in Proc. ACM/IEEE Design Automation Conf., pp. 591–596, June 2005.

[Chan 2005] T. Chan, J. Cong, and K. Sze, Multilevel generalized force-directed method for circuit

placement, in Proc. ACM Int. Symp. on Physical Design, pp. 185–192, April 2005.

[Chen 2006] T.-C. Chen, Z.-W. Jiang, T.-C. Hsu, H.-C. Chen, and Y.-W. Chang, A high quality analytical

placer considering preplaced blocks and density constraint, in Proc. IEEE/ACM Int. Conf. on

Computer-Aided Design, pp. 187–192, November 2006.

[Eisenmann 1998] H. Eisenmann and F. Johannes, Generic global placement and floorplanning, in

Proc. ACM/IEEE Design Automation Conf., pp. 269–274, June 1998.

684 CHAPTER 11 Placement
[Hu 2002] B. Hu and M. Marek-Sadowska, FAR: Fixed-points addition and relaxation based place-

ment, in Proc. ACM Int. Symp. on Physical Design, pp. 161–166, April 2002.

[Kahng 2004] A. B. Kahng and Q. Wang, Implementation and extensibility of an analytical placer, in

Proc. ACM Int. Symp. on Physical Design, pp. 18–25, April 2004.

[Kahng 2005] A. B. Kahng and Q. Wang, Implementation and extensibility of an analytic placer,

IEEE Trans. on Computer-Aided Design, 24(5), pp. 734–747, May 2005.

[Karypis 1997] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, Multilevel hypergraph partition-

ing: Application in VLSI domain, in Proc. ACM/IEEE Design Automation Conf., pp. 526–529,

June 1997.

[Kleinhans 1991] J. Kleinhans, G. Sigl, F. Johannes, and K. Antreich, GORDIAN: VLSI placement by

quadratic programming and slicing optimization, IEEE Trans. on Computer-Aided Design, 10(3),

pp. 356–365, March 1991.

[Kowarschik 2001] M. Kowarschik and C. Weib, DiMEPACK—a cache-optimized multigrid library, in

Proc. Int. Conf. on Parallel and Distributed Processing Techniques and Applications,

pp. 425–430, June 2001.

[Mo 2000] F. Mo, A. Tabbara, and R. Brayton, A force-directed macro-cell placer, in Proc. IEEE/ACM

Int. Conf. on Computer-Aided Design, pp. 177–180, November 2000.

[Nam 2006] G.-J. Nam, S. Reda, C. J. Alpert, P. G. Villarrubia, and A. B. Kahng, A fast hierarchical qua-

dratic placement algorithm, IEEE Trans. on Computer-Aided Design, 25(4), pp. 678–691, April

2006.

[Naylor 2001] W. Naylor, Non-linear Optimization System and Method for Wire Length and Delay

Optimization for an Automatic Electric Circuit Placer, U.S. Patent No. 6,301,693. Oct. 9, 2001.

[Quinn 1975] N. R. Quinn, The placement problem as viewed from the physics of classical mechan-

ics, in Proc. ACM/IEEE Design Automation Conf., pp. 173–178, June 1975.

[Sigl 1991] G. Sigl, K. Doll, and F. M. Johannes, Analytical placement: A linear or a quadratic objec-

tive function, in Proc. ACM/IEEE Design Automation Conf., pp. 427–431, June 1991.

[Spindler 2006] P. Spindler and F. Johannes, Fast and robust quadratic placement combined with an

exact linear net model, in Proc. IEEE/ACM Int. Conf. on Computer-Aided Design, pp. 179–186,

November 2006.

[Viswanathan 2004] N. Viswanathan and C. Chu, FastPlace: Efficient analytical placement by use of

cell shifting, iterative local refinement and a hybrid net model, in Proc. ACM Int. Symp. on Phys-

ical Design, pp. 26–33, April 2004.

[Viswanathan 2007a] N. Viswanathan, M. Pan, and C. Chu, FastPlace: An efficient multilevel force-

directed placement algorithm, in Gi-Joon Nam and Jason Cong, editors, Modern Circuit Place-

ment—Best Practices and Results, pp. 193–228, Springer, Boston, 2007.

[Viswanathan 2007b] N. Viswanathan, G.-J. Nam, C. Alpert, P. Villarrubia, H. Ren, and C. Chu, RQL:

Global placement via relaxed quadratic spreading and linearization, in Proc. ACM/IEEE Design

Automation Conf., pp. 453–458, June 2007.

[Vygen 1997] J. Vygen, Algorithms for large-scale flat placement, in Proc. ACM/IEEE Design Auto-

mation Conf., pp. 746–751, June 1997.

[Xiu 2004] Z. Xiu, J. D. Ma, S. M. Fowler, and R. A. Rutenbar, Large-scale placement by grid-warping,

in Proc. ACM/IEEE Design Automation Conf., pp. 351–356, June 2004.

R11.6 Legalization

[Hill 2002] D. Hill, Method and System for High Speed Detailed Placement of Cells Within an

Integrated Circuit Design, U.S. Patent No. 6,370,673. April 9, 2002.

[Khatkhate 2004] A. Khatkhate, C. Li, A. R. Agnihotri, M. C. Yildiz, S. Ono, C. K. Koh, and P. H. Mad-

den, Recursive bisection based mixed block placement, in Proc. ACM Int. Symp. on Physical

Design, pp. 84–89, April 2004.

[Ren 2005] H. Ren, D. Z. Pan, C. Alpert, and P. Villarrubia, Diffusion-based placement migration, in

Proc. ACM/IEEE Design Automation Conf., pp. 515–520, June 2005.

References 685
R11.7 Detailed Placement

[Agnihotri 2003] A. Agnihotri, M. C. Yildiz, A. Khatkhate, A. Mathur, S. Ono, and P. H. Madden,

Fractional cut: Improved recursive bisection placement, in Proc. IEEE/ACM Int. Conf. on

Computer-Aided Design, pp. 307–310, November 2003.

[Caldwell 2000] A. E. Caldwell, A. B. Kahng, and I. L. Markov, Optimal partitioners and end-case pla-

cers for standard-cell layout, IEEE Trans. on Computer-Aided Design, 19(11), pp. 1304–1314,

November 2000.

[Doll 1994] K. Doll, F. M. Johannes, and K. J. Antreich, Iterative placement improvement by network

flow methods, IEEE Trans. on Computer-Aided Design, 13(10), pp. 1189–1200, October 1994.

[Goto 1981] S. Goto, An efficient algorithm for the two-dimensional placement problem in electrical

circuit layout, IEEE Trans. on Circuits and Systems, 28(1), pp. 12–18, January 1981.

[Pan 2005] M. Pan, N. Viswanathan, and C. Chu, An efficient and effective detailed placement algorithm,

in Proc. IEEE/ACM Int. Conf. on Computer-Aided Design, pp. 48–55, November 2005.

R11.8 Concluding Remarks

[Adya 2004] S. N. Adya, S. Chaturvedi, J. A. Roy, D. A. Papa, and I. L. Markov, Unification of partition-

ing, floorplanning and placement, in Proc. IEEE/ACM Int. Conf. on Computer-Aided Design,

pp. 550–557, November 2004.

[Alpert 1998] C. J. Alpert, The ISPD98 Circuit Benchmark Suite, in Proc. ACM Int. Symp. on Physi-

cal Design, pp. 80–85, April 1998. http://vlsicad.ucsd.edu/UCLAWeb/cheese/ispd98.html.

[Caldwell 2002] A. E. Caldwell, A. B. Kahng, and I. L. Markov, Toward CAD-IP reuse: The MARCO

GSRC bookshelf of fundamental CAD algorithms, in IEEE Design and Test, pp. 72–81, 2002.

http://www.gigascale.org/bookshelf/.

[Chang 2003] C.-C. Chang, J. Cong, and M. Xie, Optimality and scalability study of existing place-

ment algorithms, in Proc. IEEE/ACM Asia and South Pacific Design Automation Conf.,

pp. 621–627, January 2003.

[Cheng 1984] C. Cheng and E. Kuh, Module placement based on resistive network optimization,

IEEE Trans. on Computer-Aided Design, 3(3), pp. 218–225, July 1984.

[Cohoon 1987] J. P. Cohoon and W. D. Paris, Genetic placement, IEEE Trans. on Computer-Aided

Design, 6(6), pp. 956–964, November 1987.

[Cong 2005] J. Cong, J. R. Shinnerl, M. Xie, T. Kong, and X. Yuan, Large-scale circuit placement, in

ACM Trans. on Design Automation of Electronics Systems, 10(2), pp. 389–430, April 2005.

[Hall 1970] K. M. Hall, An r-dimensional quadratic placement algorithm, Management Science, 17

(3), pp. 219–229, November 1970.

[Nam 2005] G.-J. Nam, C. J. Alpert, P. Villarubbia, B. Winter, and M. Yildiz, The ISPD2005 placement

contest and benchmark suite, in Proc. ACM Int. Symp. on Physical Design, pp. 216–220, April

2005. http://www.sigda.org/ispd2005/contest.htm.

[Nam 2006] G.-J. Nam, The ISPD 2006 placement contest: Benchmark suite and results, in Proc.

ACM Int. Symp. on Physical Design, p. 167, April 2006. http://www.sigda.org/ispd2006/con-

test.html.

[Shahookar 1990] K. Shahookar and P. Mazumder, A genetic approach to standard cell placement

using metagenetic parameter optimization, IEEE Trans. on Computer-Aided Design, 9(5),

pp. 500–511, May 1990.

[Shahookar 1991] K. Shahookar and P. Mazumder, VLSI cell placement techniques, ACM Computing

Surveys, 23(2), pp. 143–220, June 1991.

[Yang 2002] X. Yang, B.-K. Choi, and M. Sarrafzadeh, Routability-driven white space allocation for

fixed-die standard-cell placement, in Proc. ACM Int. Symp. on Physical Design, pp. 42–49, April

2002.

[Yu 1989] M. L. Yu, A study of the applicability of Hopfield decision neural nets to VLSI CAD, in

Proc. ACM/IEEE Design Automation Conf., pp. 412–417, June 1989.

This page intentionally left blank

CHAPTER
12
Global and detailed
routing
Huang-Yu Chen
National Taiwan University, Taipei, Taiwan

Yao-Wen Chang
National Taiwan University, Taipei, Taiwan
IS CHAPTER
ABOUT TH

After placement, the routing process determines the precise paths for nets on

the chip layout to interconnect the pins on the circuit blocks or pads at the chip
boundary. These precise paths of nets must satisfy the design rules provided by

chip foundries to ensure that the designs can be correctly manufactured. The

most important objective of routing is to complete all the required connections

(i.e., to achieve 100% routability); otherwise, the chip would not function well

and may even fail. Other objectives, such as (1) reducing the routing wirelength

and (2) ensuring each net to satisfy its required timing budget, have become

essential for modern chip design. For modern large-scale circuit design, a chip

may contain billions of transistors and millions of nets. To handle the high com-
plexity, a routing algorithm often adopts the two-stage approach of global rout-

ing followed by detailed routing. Global routing first partitions the routing

region into tiles and decides tile-to-tile paths for all nets, whereas detailed

routing determines the exact tracks and vias for nets.

This chapter starts with a discussion of the routing problem. After introdu-

cing the problem definition, the techniques of general-purpose routing are

described. This is followed by the introduction of popular global-routing algo-

rithms that cover sequential and concurrent approaches. The second half of this
chapter discusses detailed routing, for which channel and full-chip routing tech-

niques are discussed, followed by modern routing techniques considering signal

integrity and chip manufacture and yield. This chapter concludes with routing

trends and future directions of routing. After reading through this chapter, the

reader should have a clear picture about popular global and detailed routing

algorithms. This background will be valuable in implementing/developing rout-

ing algorithms to meet the design needs.
687

688 CHAPTER 12 Global and detailed routing
12.1 INTRODUCTION

Routing is an important step in the design of integratedcircuits (ICs). It generates
wiring to interconnect pins of the same signal, while obeying the manufacturing

design rules. As IC process advances to nanometer technology, foundries may fab-

ricate billions of transistors in a single chip, and the number of transistors per die

will still growdrastically in the near future. This increasing complexity imposes sub-
stantial challenges for physical design, especially for routing.

Research in VLSI routing has received much attention in the literature. Rout-

ing is typically a very complex combinatorial problem. To make it manageable,

the routing problem is usually solved by use of a two-stage approach of global
routing followed by detailed routing. Global routing first partitions the rout-

ing region into tiles and decides tile-to-tile paths for all nets while attempting to

optimize some given objective function (e.g., total wirelength and circuit

timing). Then, guided by the paths obtained in global routing, detailed routing
assigns actual tracks and vias for nets.

Figure 12.1 illustrates the process of global routing and detailed routing. After

placement, we have a placed layout shown in Figure 12.1a, which contains the

information about the exact locations of blocks, pins of blocks, and I/O pads at

chip boundaries. We are also provided with a netlist that describes a list of con-

nections by indicating which pins or pads should be electrically connected to

form a set of nets. Figure 12.1b illustrates some global-routing paths. It first

divides the routing region into tiles and then generates a “loose” route for each
connection by finding the tile-to-tile paths to connect pins and/or pads.

Figure 12.1c shows a result of detailed routing, which determines the exact route

for each net by searching within the tile-to-tile path. Here, the exact route means

a path specified by the actual geometric layout such as metal wires and vias.

In the following we formally give the problem definition of the routing

problem and describe the routing model and constraints.
(a) (b) (c)(a) (b) (c)

FIGURE 12.1

Routing problem: (a) A given placement result with fixed locations of blocks and pins.

(b) Global routing. (c) Detailed routing.

12.2 Problem definition 689
12.2 PROBLEM DEFINITION

The problem definition for the general routing problem is as follows:

Inputs:
FIG

The

tiles

bou
1. A placed layout with fixed locations of chip blocks, pins, and pads

2. A netlist

3. A timing budget for each critical net

4. A set of design rules for manufacturing process, such as resistance, capac-

itance, and the wire/via width and spacing of each layer
Output:

Wire connection for each net presented by actual geometric layout objects

that meet the design rules and optimize the given objective, if specified.
12.2.1 Routing model
Routing in a modern chip is typically a very complex process, and it is thus usu-

ally hard to obtain solutions directly. Most routing algorithms are based on a

graph-search technique guided by the congestion and timing information asso-

ciated with routing regions and topologies [Saxena 2007]. A router assigns

higher costs to route nets through congested areas to balance the net distribu-
tion among routing regions.

Applying the graph-search technique for routing requires modeling the routing

resource as a graph where the graph topology can represent the chip structure.

Figure 12.2 illustrates the graphmodeling. For themodeling, a chip (routing region)

is first partitioned into an array of rectangular tiles (or called global-routing tiles),
each of which may accommodate tens of routing tracks in each dimension, as ill-

ustrated in Figure 12.2a. A node in the routing graph represents a tile in the chip,

whereas an edge denotes the boundary between two adjacent tiles (see
Figures 12.2b–c). Each edge is assigned a capacity according to the physical routing

area or the number of tracks in a tile. This graph is called a global-routing graph.
Resource Modeling Global-Routing GraphPartitioned Layout
(a) (b) (c)

URE 12.2

global-routing graph: (a) The chip (routing region) is partitioned into an array of rectangular

. (b) A node in the routing graph represents a tile in the chip, whereas an edge denotes the

ndary between two adjacent tiles. (c) The final global-routing graph.

690 CHAPTER 12 Global and detailed routing
A global router finds tile-to-tile paths for all nets on the global-routing graph to

guide the detailed router. The goal of global routing is to route as many nets as
possible while meeting the capacity constraint of each edge and any other con-

straint, if specified. For example, for timing-driven routing, additional costs can

be added to the routing topologies with longer critical path delays. For detailed

routing, the router decides the actual physical interconnections of nets by

allocating wires on each metal layer and vias for switching between metal layers.

Generally, there are two different layer models, the reserved and unreserved
layermodels. In the reserved layer model, each layer is allowed only one specific

routing direction (i.e., preferred direction). For example, the technology file
may specify that thewires in the first metal layer are allowed to run only in the hor-

izontal direction, the second metal layer contains only vertical wires, etc. A layer

model is unreserved if it allows the placement of wires with any directions (i.e.,

non-preferred direction). Most of the existing routers and design methodolo-

gies apply the reserved layermodel, because it has lowercomplexity than the unre-

served layer model and is much easier for implementation.

There are two kinds of detailed-routing models: the grid-based and gridless
models. For grid-based routing, a routing grid is superimposed on the routing
region, and then the detailed router finds routing paths in the grid, as shown

in Figure 12.3a. The space between adjacent grid lines is called wire pitch,
which is defined in the technology file and is larger than or equal to the sum

of the minimum width and spacing of wires. Note that the router has to control

the searching space such that the path in the horizontal/vertical layers can only
(a) (b)

via

metal 1

metal 2

pin

FIGURE 12.3

Two kinds of detailed-routing models: (a) Grid-based detailed routing. (b) Gridless

detailed routing.

12.2 Problem definition 691
run horizontally/vertically for the reserved layer model, and switching from

layer to layer is allowed only at the intersection of vertical and horizontal grid
lines. In this way, the wires with the minimum width following the path in

the grid would automatically satisfy the design rules. Therefore, grid-based

detailed routing is much more efficient and easier for implementation.

The gridless detailed routing model (also called shaped-based) refers to any

model that does not follow the grid-based model. A gridless detailed router does

not follow the routing grid and thus can use different wire widths and spacing,

as shown in the example in Figure 12.3b. Various gridless models have been

proposed, such as the connection graph [Zheng 1996], the implicit connec-
tion graph [Cong 1999], the implicit triple-line graph [Chen 2007a], and

corner stitching [Qusterhout 1984]. The main advantage of gridless routing

lies in its greater flexibility; it can handle variable widths and spacing for wires

and is, thus, more suitable for interconnect tuning optimization, such as wire

sizing and perturbation. However, gridless detailed routing is generally much

slower than the grid-based one because of its higher complexity.

Figure 12.4 illustrates an example of grid-based detailed routing for a two-pin

net. After the global routing, we have a tile-to-tile global-routing path as shown
in Figure 12.4a, and the detailed-routing graph is constructed only within the

tiles of the global-routing path, as shown in Figure 12.4b. Then the final

detailed-routing solution is found in the graph, as shown in Figure 12.4c.

Constructing and searching the detailed-routing graph within the tiles of the

global-routing path, the detailed router can substantially prune the searching

space and thus reduce the routing time.
12.2.2 Routing constraints
The routing constraints can be classified into two major categories: (1) design-

rule constraints and (2) performance constraints. The design-rule constraint is
(a) (b) (c)

metal 1
metal 2

pin

via

FIGURE 12.4

Detailed routing: (a) A tile-to-tile global-routing path connecting two pins on metal 1. (b) The

detailed-routing graph is constructed within the tiles of the global-routing path. (c) A

detailed-routing solution on the detailed-routing graph.

wire width wire spacing

wire pitch

via width

via spacing

FIGURE 12.5

An example of design rules. Typical rules define wire width, wire spacing, wire pitch, via width,

and via spacing on each layer.

692 CHAPTER 12 Global and detailed routing
often related with the manufacturing details during fabrication. To improve the

manufacturing yield, connections of nets have to follow the rules provided by
foundries. For example, in the 65-nm technology, the physical limitations of

an optical lithography system would impose a constraint on a wire such that

its width cannot be smaller than 65 nm.

Figure 12.5 illustrates a typical set of design rules. It defines the minimum

widths of wires and vias, the minimum wire-to-wire spacing, and the minimum

via-to-via spacing of a layer. The distance between two wires or routing tracks of

the grid-based model is often called wire pitch. Other design rules of the

manufacturing process, such as resistance and capacitance of each layer, are
also included.

The objective of the performance constraint is to make the connections

meet the performance specifications provided by chip designers. For example,

the timing constraint is often the most important performance constraint for

high-speed designs. The speed of a chip is limited by its critical nets, which

have smaller timing budgets (or timing slacks) than others. To meet the perfor-

mance constraint, it is desirable to carefully route these critical nets by proper

routing topologies.
12.3 GENERAL-PURPOSE ROUTING

In Section 12.2.1, we modeled the routing resources by the global- and detailed-

routing graphs. For global and detailed routing, we can perform a graph-search

technique on these routing models. In the following, we introduce three popu-

lar graph-searching techniques, the maze, line-search, and A*-search routing

12.3 General-purpose routing 693
algorithms. Note that these algorithms are general-purpose routing algo-
rithms, because they can be applied to both global and detailed routing
problems on the general routing structure.
12.3.1 Maze routing
Perhaps the most widely used algorithm for finding a path between two points

is the maze-routing algorithm (also called Lee’s algorithm) [Lee 1961],

which is based on the breadth-first-search (BFS) technique.

Maze routing adopts a two-phase approach of filling followed by retracing.
The filling phaseworks in the “wave propagation”manner. Starting from the source

node S, the adjacent grid cells are progressively labeled one by one according to the

distance of the “wavefront” from S until the target node T is reached. Figures 12.6a

and b illustrates the “wave propagation” when the labels of “wavefronts” reach

2 and 3, respectively. Once the target node T is reached, a shortest path is then

retraced from T to S with decreasing labels during the retracing phase. Note that

any such a pathwith decreasing labels gives a shortest path. However, we often pre-

fer the onewith the least detours for other practical concerns such as the number of
bends (vias). Figure 12.7 illustrates the two phases of Lee’s algorithm.

A nice property of Lee’s algorithm is that it guarantees to find a path

between two points if such a path does exist, and the path is the shortest

one, even with obstacles. In practice, however, Lee’s algorithm is slow and

memory consuming. It has the time and space complexity of O(mn), where
(a) (b)

S
2 1

2

12

2 1

T

1

2

2

2

2

S
2 13

3

3 2 3

3

123

2 13

T

1

2

2

2

2 3

3

3
3

3

obstacleS source pin TT target pin

FIGURE 12.6

An example of the filling process: (a) The filling (wave propagation) when labels of the

“wavefront” reach 2. (b) The next filling step of (a) when labels of the “wavefront” reach 3.

(a) (b)

S

7

8

8

8 7 8

6 5 67

7 6 7 88

8

678

5678

2 1345

4

5

56

345

8753 2 3 445678 6

84 3 4 55678 7

5 4 567

123456

6

2 1345678

7

78

T

1

2

2

2

2 3

3

3
3 4

4

4

4

4

4

3

5
5

6
6 7

5

5

5

5

5

6

6

6

6

6

6

7

7

7

7

7

7

7

8

8

8

8

8

8

68
S

7

8

8

8 7 8

6 5 67

7 6 7 88

8

678

5678

2 1345

4

5

56

345

8753 2 3 445678 6

84 3 4 55678 7

5 4 567

123456

6

2 1345678

7

78

T

1

2

2

2

2 3

3

3
3 4

4

4

4

4

4

3

5
5

6
6 7

5

5

5

5

5

6

6

6

6

6

6

7

7

7

7

7

7

7

8

8

8

8

8

8

68

obstacleS source pin TT target pin

FIGURE 12.7

Lee’s maze-routing algorithm: (a) The wave propagation phase. (b) The retracing phase.

694 CHAPTER 12 Global and detailed routing
m and n are the respective numbers of horizontal and vertical grid cells. Conse-

quently, it is difficult to apply for large-scale dense designs directly.

Because of the pervasive use of Lee’s maze-routing algorithm and its high

time and space complexity, many methods have been proposed to reduce its

running time and memory requirements. These popular optimization methods

can be classified into three major categories: (1) coding scheme, (2) search
algorithm, and (3) search space.

12.3.1.1 Coding scheme

Akers observed that adjacent labels for k are either k � 1 or k þ 1 [Akers 1967].

To retrace the path, it suffices to have a labeling scheme such that each label has

its preceding label different from its succeeding label. With the observations,

Akers developed a 2-bit coding scheme to reduce memory requirement. The

coding scheme uses 1 bit for filling by labeling the grid cells with the sequence

0, 0, 1, 1, 0, 0, 1, 1, . . . In this way, for each label, its preceding label is different

from its succeeding one, and thus retracing can work correctly. This coding

scheme requires another bit to indicate whether a node is blocked or not. There-
fore, this coding scheme needs only two bits for each grid cell to perform the

maze routing. Another economical coding scheme is from [Hadlock 1977]; it uses

the detour numbers for the labeling to reduce the search space and runtime.

12.3.1.2 Search algorithm

Soukup combined BFS and the depth-first-search (DFS) approaches to prop-

agate wavefronts [Soukup 1978]. Depth-first (line) search is first directed from

12.3 General-purpose routing 695
the source S toward the target T until an obstacle or T is reached. BFS (as in

Lee’s algorithm) is then used to “bubble” around an obstacle if an obstacle is
encountered. This algorithm has the same time and space complexity as that

of Lee’s algorithm, but is typically 10 to 50 times faster than Lee’s algorithm.

It can still find a path between S and T if such a path does exist, but it cannot

guarantee a shortest path because of the DFS processing. Pure DFS (line-search)

algorithms can further speed up the routing, at the cost of solution quality. See

Section 12.3.2 for two line-search algorithms.

12.3.1.3 Search space

To reduce the running time for maze routing, techniques such as starting
point selection, double fanout, and framing are in pervasive use [Sait

1999]. All the three techniques can substantially reduce the number of cells
required to be labeled. The starting point selection is to choose the point clos-

est to the chip boundary as the starting point for filling. In this way, we can dis-

card more out-of-bound cells for labeling. Double fanout propagates waves from

both the source and the target cells to reduce the area required for labeling.

Framing searches only inside a rectangular region, say 10% larger than the

bounding box formed by the source and the target. It needs to enlarge the rect-

angle and redo maze routing if the search fails. It is obvious that Lee’s algorithm

can no longer guarantee finding the shortest path with the framing heuristic.
12.3.2 Line-search routing
As mentioned earlier in Section 12.3.1, the major drawbacks of the maze-routing

algorithm are the high memory use and long running time. The line-search
algorithm alleviates these drawbacks by use of line segments to represent

the routing space and paths at the cost of solution quality.

Mikami and Tabuchi proposed the first line-search algorithm (also called line

probe routing) [Mikami 1968]. In contrast to the maze-routing algorithm, which

mainly proceeds in a breadth-first manner, the line-search algorithm performs a
depth-first search. The line-search algorithm initially sets the source S and the tar-

get T as base points and then generates four (two horizontal and two vertical)

level-0 line segments passing through these base points. These line segments

are extended until they hit the design boundary or obstacles. Then, each grid

point of these line segments at level i are iteratively set as new base points, and

a perpendicular line segment of level i þ 1 is generated crossing each new base

point. This process repeats until a segment generated from S intersects a segment

generated from T, and a connection can then be found by tracing from this inter-
section point to both S and T. Figure 12.8 illustrates the Mikami-Tabuchi’s line-

search algorithm. The crossing points denote the base points, and the numbers

denote the sequence of the search process. Like Lee’s maze-routing algorithm,

Mikami-Tabuchi’s line-search algorithm also guarantees finding a path if one exists,

but it may not always be the shortest. The line-search technique significantly

reduces both memory requirements and execution times.

intersection point
1
1
1
1
0
1

1
1
1
1
1

1

1 1 1 0 1

1

1 1 1 0 1

2 2 2 2

1
1
1
1

1
0
1

obstacleSS source pin T target pin

SS
T

FIGURE 12.8

Mikami-Tabuchi’s line-search algorithm.

1

0

0

intersection
point

2

1

0

0
S

T

obstacleS source pin T target pin

FIGURE 12.9

Hightower’s line-search algorithm.

696 CHAPTER 12 Global and detailed routing
[Hightower 1969] proposed another line-search algorithm, which is similar

to Mikami-Tabuchi’s algorithm. The difference is that Hightower’s algorithm

only considers those line segments that are extendable beyond obstacles,
and each line segment has at most two base points. Figure 12.9 illustrates

Hightower’s line-search algorithm. Because fewer line segments are considered,

Hightower’s algorithm has significantly more memory saving than Mikami-

Tabuchi’s algorithm. However, Hightower’s algorithm might fail to find a path

even if one exists. To remedy the deficiencies, it needs backtracing procedures

to choose the right base points, and, therefore, the running time may not

improve very much over Lee’s maze-routing algorithm in practice.

12.4 Global routing 697
12.3.3 A*-search routing
As discussed in Section 12.3.1, the maze routing that adopts the BFS searching is
generally slow, although it guarantees finding a shortest path. In the searching

field, the maze search is also called blind search, because it searches the rout-

ing region in a blind way without any prioritized choices. Intuitively, if a router

does not need to consider points that are not likely to be on the routing path,

the running time would be improved.

In [Hart 1968], a general graph search algorithm called A*-search was pro-

posed, which uses the function f(x) ¼ g(x) þ h(x) to evaluate the cost of a path

x, where g(x) is the cost from the source node to the current node of x, and
h(x) is the estimated (or predicted) cost from the current node of x to the target

node. Every time the algorithm selects a node with the lowest path cost to prop-

agate (i.e., the lower f(x)), the higher the priority for propagation. As a result,

the A*-search is also called the best-first search, because at each decision

making it first searches the routes that are most likely to lead toward the target.

Note that generally speaking, the BFS is a special case of A*-search algorithm,

where h(x) ¼ 0 for all x.

The A*-search has a good property that if h(x) is admissible, meaning that it
never overestimates the actual minimal cost from the current node to the target

node, then A*-search is optimal. Therefore, for the Manhattan routing (i.e., only

allow horizontal and vertical connections), h(x) might be set as the Manhattan

distance from the current node to the target, because it is the smallest possible

distance between any two points in the Manhattan space.

The A*-search algorithm has many applications, such as in the field of artificial
intelligence (AI). The A*-search routing introduced by [Clow 1984] for VLSI

routing and [McMurchie 1995] for FPGA routing are pervasive in modern routers
[Chao 2007; Pan 2007; Roy 2007; Chang 2008; Hsu 2008].
12.4 GLOBAL ROUTING

Traditional routing algorithms adopt the flat framework that finds paths for nets

in the whole routing region directly. These algorithms can be classified into

sequential and concurrent approaches, which are based on the general-purpose

routing for 2-pin nets mentioned in Section 12.3 or a Steiner-tree algorithm for
the multi-pin nets to be introduced in Section 12.4.3.
12.4.1 Sequential global routing
Perhaps the most straightforward strategy for routing is to select a specific net

order and then to route nets sequentially in that order. However, this sequential

approach often leads to a poor routing result, because an earlier routed net

might block the routing for its subsequent nets. Therefore, the quality of the

routing solution greatly depends on the net ordering.

698 CHAPTER 12 Global and detailed routing
Figure 12.10a illustrates a simple one-layer routing instance with two two-

pin nets A and B. If we arbitrarily choose the net ordering as routing A first fol-
lowed by B, net B might be blocked by net A and thus requires more longer

wirelength to complete the routing (see Figure 12.10b). In contrast, if we route

B first and then A, we can get a better routing result with shorter total wire-

length (see Figure 12.10c). Therefore, it is desired to find a good net-ordering

scheme for general routing instances. Unfortunately, such a universally good

scheme is hard to find. In an earlier study, Abel concluded that there is no single

net-ordering scheme that performs better than any other ordering scheme in all

routing problems [Abel 1972], and finding the optimal net ordering has proven
to be NP-hard, meaning that most likely no polynomial-time algorithm exists to

solve this problem.

To remedy the deficiencies, today’s sequential routing often applies a heuris-

tic net ordering and conducts a rip-up and reroute process to further refine

the solution. Here we give some popular net-ordering schemes: (1) Order the

nets in the ascending order of the number of pins within their bounding boxes.

If there are more pins inside the bounding box of a net, this net would tend to

block the nets inside this bounding box. (2) Order the nets in the ascending
(descending) order of their lengths if routability (timing) is the most critical met-

ric. Research shows that routing shorter nets first often leads to better routabil-

ity, because they usually have less routing flexibility than the longer ones. In this

way, the shorter and straight nets would be routed without excessive detours,

and the routing resource would be used more efficiently. In contrast, longer

nets should be routed earlier for high-performance designs because they typi-

cally determine the overall timing. (3) Order the nets on the basis of their timing

criticality. In addition to the net-ordering schemes, we can first analyze the net
distribution over the routing region, identify the congested regions, and then

route nets in the most congested regions first.
A

(a) (b)

A

A

B

B

A

A

B

B

B

B

(c)

A

FIGURE 12.10

Routing based on different net orderings: (a) A one-layer routing instance with two two-pin

nets A and B. (b) An inferior solution obtained by the net ordering of A followed by B.

(c) A better solution resulted by the net ordering of B followed by A.

12.4 Global routing 699
The rip-up and reroute process consists of two steps: (1) identify the bottle-

neck regions and rip up some already routed nets and (2) route the blocked con-
nections and reroute the ripped-up connections. The process often performs

iteratively until all nets are routed or a time limit is exceeded. Generally, it can

lead to more desirable routing solutions. As the example of Figure 12.10b, if

the router has observed that net B is blocked or its length is substantially

increased because of net A, it can rip up net A, and reroute B and then A to

improve the solution. McMurchie and Ebeling developed a negotiation-based
rip-up and reroute algorithm called PathFinder for field-programmable gate
array (FPGA) [McMurchie 1995], which reveals its superiority in recent leading
academic global routers, such as BoxRouter [Cho 2007], FastRoute [Pan 2007],

FGR [Roy 2007], NTHU-Route [Chang 2008], and NTUgr [Hsu 2008].

Chen et al. and Kastner et al. developed pattern-routing schemes

[Ho 1990; Chen 1999; Kastner 2002] that use patterns such as L-shaped
(1-bend) or Z-shaped (2-bend) routes to make connections (see Figure 12.11).

The pattern routing gives the shortest path length between two points and

enjoys very high speed and less memory use, because the search space followed

by patterns is much smaller than the maze-routing algorithm. As a result, pattern
routing is pervasively used for global-routing applications.
12.4.2 Concurrent global routing
The major drawback of the sequential approach is that it suffers from the net-

ordering problem. Under any net ordering, it is more difficult to route the nets

that are considered later, because they are subject to more blockages. In addi-

tion, if the sequential routing fails to find a feasible solution, it is not clear
whether this is because of no existing feasible solution or because of a poor

selection of net order. Moreover, when the sequential routing does find a feasi-

ble solution, we do not know whether or not this solution is optimal or how far

it is from the optimal solution. These questions may be answered if we solve the

routing problem with the concurrent approach.
(a) (b)

FIGURE 12.11

Pattern routing: (a) L-shaped (1-bend) routes. (b) Z-shaped (2-bend) routes.

700 CHAPTER 12 Global and detailed routing
One popular concurrent approach is to formulate global routing as a 0-1
integer linear programming (0-1 ILP) problem. The layout is first modeled
as a routing graph G(V, E), where each node represents a tile and each edge

denotes the boundary between two adjacent tiles. Each edge e 2 E is assigned

a capacity, denoted by ce, which represents the number of tracks crossing that

boundary. Given a net, all of its possible routing patterns can be enumerated.

Let the variable xi, j 2 {0,1} indicate whether the routing pattern ri, j is selected

from the set Ri of routing patterns of net ni. Consequently, for a routing graph

G(V, E) with the netlist N, the congestion-driven global routing can be formu-

lated as a 0-1 ILP problem as follows:

Minimize l
Subject to

P
ri; j 2 Ri

xi; j ¼ 1; 8ni 2 N

xi; j E f0; 1g; 8ni 2 N; 8ri; j 2 RiP
i; j:e 2 ri; j

xi; j � lce; 8e 2 E

ð12:1Þ

The first and the second constraints require that only one routing pattern can

be chosen for each net, and the third constraint with the objective together

ensure to minimize the maximum congestion. If a solution of l � 1 exists, a
global-routing solution with the maximum congestion being minimized can be

achieved.

Because the 0-1 ILP is NP-complete, the high time complexity greatly limits the

feasible problem size. An alternate approach to this problem is to first solve the

continuous linear programming (LP) relaxation, obtained by replacing the sec-

ond constraintwith the real variablexi, j E [0,1], because LPproblems canbe solved

in polynomial time. Then, the resulting fractional solution can be transformed to

integer solutions through rounding such as randomized rounding [Raghavan
1987]. However, this approximation could inevitably lose the optimality.

In practice, the 0-1 ILP concurrent routing technique is often embedded into

a larger overall global routing framework with a hierarchical, divide-and-conquer

manner, such as solving a subproblem, in which the complexity of computing

the optimal solution is manageable. Another approach to divide a routing region

into subregions such that the routing problem can be handled subregion by sub-

region to reduce the problem size is BoxRouter [Cho 2006], which is based on

box expansion to push the congestion outward progressively.
12.4.3 Steiner trees
The algorithms we have described so far are mainly for two-pin nets. If all nets are

two-pin ones, we can apply a general-purpose routing algorithm to handle the prob-

lem, such as maze, line-search, and A*-search routing described in Section 12.3.

For three or more multi-pin nets, one naive approach is to decompose each

net into a set of two-pin connections, and then route the connections one-by-
one. One popular decomposition method is to find a minimum spanning tree

12.4 Global routing 701
(MST) for pins of each net, which is a minimum-length tree of edges connecting

all the pins. The MST can efficiently be computed in polynomial time by the
Kruskal [Kruskal 1956] or Prim-Dijkstra [Prim 1957] algorithms. However,

the routing result of this approach would depend on the decomposition and

often leads to only suboptimal solutions. Figure 12.12 depicts an example 4-

pin net decomposed by a rectilinear MST, where each segment runs horizontally

or vertically.

A better and more natural method to route multi-pin nets is to adopt the

Steiner-tree–based approach. Specifically, a minimum rectilinear Steiner
tree (MRST) is used for routing a multi-pin net with the minimum wirelength.
Given m points in the plane, an MRST connects all points by rectilinear lines,

possibly via some extra points (called Steiner points), to achieve a minimum-

wirelength tree of rectilinear edges. Let P and S denote the sets of original

points and Steiner points, respectively. Then, we have the following relationship

between MRST and MST.

MRSTðPÞ ¼ MSTðP [SÞ ð12:2Þ
Figure 12.13b shows an example of the MRST with two Steiner points s1 and s2
for the four pins p1, p2, p3, and p4 in Figure 12.13a.

There could be an infinite number of Steiner points that need to be consid-

ered for the MRST construction. Fortunately, Hanan proved that for a set P of
pins, there exists an MRST of P with all Steiner points chosen from the grid

points of the Hanan grid, which is obtained by constructing vertical and hori-

zontal lines through every pin in P. This is known as Hanan’s theorem [Hanan

1966]. Figure 12.13c shows the Hanan grid for the four pins in Figure 12.13a.

Both the Steiner points s1 and s2 of MRST in Figure 12.13b are on the grid points

of the Hanan grid.
(a) (b)

p1

p2

p3

p4

p2

p3

p4

p1

pin

FIGURE 12.12

A 4-pin net decomposed by a minimum rectilinear spanning tree: (a) A net consisting of four

pins: p1, p2, p3, and p4. (b) An MST of (a), which decomposes the net into three two-pin

connections.

p4

(a) (b)

p2

p3

p4

p2

p3

p4

p1 s2

s1

p1

(c)

p2

p3

s2

s1

p1

pin Steiner point

FIGURE 12.13

A minimum rectilinear Steiner tree (MRST) and its Hanan grid: (a) A net consisting of a set P of

four pins: p1, p2, p3, and p4. (b) An MRST of (a) with the two Steiner points s1 and s2. (c) The

Hanan grid of P. Note that all Steiner points s1 and s2 of MRST in (b) are chosen from the grid

points on the Hanan grid.

702 CHAPTER 12 Global and detailed routing
The Hanan theorem greatly reduces the search space for the MRST con-

struction from an infinite number of choices to only m
2-m candidates for

the Steiner points, where m=|P|. However, the MRST construction is still an

NP-hard problem [Garey 1977]. Therefore, many heuristics have been

developed.

The relationship between MST and MRST can be stated by Hwang’s
theorem [Hwang 1976] as follows:

WirelengthðMST ðPÞÞ
WirelengthðMRSTðPÞÞ �

3

2
ð12:3Þ

Equation (12.3) gives a strong motivation for constructing an MRST by an

MST-based approximation algorithm. Ho et al. constructed an MRST from an

MST by maximizing monotonic (nondetour) edge (e.g., L-shaped, Z-shaped)

overlaps by dynamic programming [Ho 1990]. Kahng and Robins developed

the iterated 1-Steiner heuristic [Kahng 1990] (see Algorithm 12.1). Starting
with an MST, they iteratively select one Steiner point that can reduce the wire-

length most and then add the Steiner point to the tree. The iterations continue

until the wirelength cannot be further improved. Figures 12.14b–d illustrates the

first, second, and third iterations after inserting Steiner points s1, s2, and s3 into

the initial MST in Figure 12.14a, respectively. Note that the iterated 1-Steiner

heuristic may generate a “degenerate” Steiner point with the number of

branches (degrees) ≦ 2, such as s1 in Figure 12.14d. Therefore, we have to

remove a degenerate Steiner point whenever it is created (see Figure 12.14e).
Figure 12.14e shows the final MRST of Figure 12.14a.

On the basis of the spanning graph that contains an MRST in a sparse

graph, [Zhou 2004] developed an efficient MRST algorithm with the worst-case

time complexity of only O(m lg m) and solution quality close to that of the

(a) (b) (c)

pin

Steiner point

s1

s2

s1

s3 s1

s2

s3

s2

(d) (e)

FIGURE 12.14

A step-by-step example of the iterated 1-Steiner heuristic for a 4-pin net: (a) The initial MST.

(b) The MRST after the first iteration by inserting the Steiner point s1. (c) The MRST after the

second iteration by inserting the Steiner point s2. (d) The MRST after the third iteration by

inserting the Steiner point s3. (e) The final MRST after removing the degenerate Steiner

point s1.

12.4 Global routing 703
iterated 1-Steiner heuristic. [Chu 2004] developed the FLUTE package by use of

precomputed lookup tables to efficiently and accurately estimate thewirelength for

multi-pinnets. Lin et al. constructed a single-layer and amulti-layer obstacle-avoiding

MRST to consider routing obstacles incurred frompower networks, prerouted nets,

IP blocks, and/or feature patterns for manufacturability/reliability improvements

[Lin 2007, 2008]. Shi et al. constructed an obstacle-avoiding MRST based on a cur-

rent-driven circuit model [Shi 2006].

Algorithm 12.1 Iterated 1-Steiner Algorithm

Input: P – a set of m pins.
Output: a Steiner tree on P.
1. S f;

/*H(P [S): set of Hanan points */
/* DMST(A, B) ¼Wirelength(MST(A))� Wirelength(MST(A [B)) */

2. while (Cand {x 2 H(P [S) | DMST(P [S, {x}) > 0} 6¼ f) do
3. Find x 2 C and which maximizes DMST(P [S, {x});
4. S S [{x};
5. Remove points in S which have degree � 2 in MST(P [S);
6. end while
7. Output MST(P [S);

704 CHAPTER 12 Global and detailed routing
12.5 DETAILED ROUTING

Given global-routing paths, detailed routing determines the exact tracks and vias

for nets. Here, we discuss the two most popular types of detailed routing: chan-
nel routing and full-chip routing.

In earlier process technologies when the maximum number of available

metal layers was only two or three, channel routing was pervasively used,
because most wires were routed in the free space (i.e., routing channel)
between a pair of logic blocks (cell rows); see Figure 12.15. In modern technol-

ogies, a chip typically contains six to ten metal layers, and the number of avail-

able metal layers is expected to increase steadily in the near future. With more

metal layers, routing over the logic block (cell rows) is common (i.e., over-the-
cell routing). As a result, routing regions become more like channel-less

regions. This trend drives the need of a full-chip routing method.
12.5.1 Channel routing
Channel routing is a special case of the routing problem in which wires are

connected within the routing channels. To apply channel routing, a routing

region is usually decomposed into routing channels. Note that there are often

various ways to decompose a routing region. For example, Figure 12.16 shows

two ways of decomposition for the T-shaped routing region. The routing region
shown in Figure 12.16a is decomposed into one horizontal channel (channel 1)

and one vertical channel (channel 2), whereas that in Figure 12.16b is decom-

posed into two horizontal channels (channels 1 and 2) and one vertical channel

(channel 3).
Channel routing

FIGURE 12.15

Channel routing between IC blocks.

(b)(a)

channel 1

channel 2

channel 1 channel 2

channel 3

FIGURE 12.16

Two ways of routing region decomposition: (a) The routing region is decomposed into two

channels. (b) The routing region is decomposed into three channels.

12.5 Detailed routing 705
The order of routing regions significantly affects the channel-routing pro-

cess. In Figure 12.16a, no conflicts occur in case of routing in the order of chan-

nel 2 and then channel 1. Instead, if channel 1 is routed first and all related

wirings are fixed in the channel, channel 2 cannot be expanded if this channel
cannot accommodate all the nets. In contrast, if channel 2 is routed first, we can

still expand channel 1 for routing if needed. Note that it is not always possible

to find a feasible channel ordering to avoid conflicts, for which we could resort

to L-shaped channel routing to resolve the conflicts.

For modern chip routing, each routing layer typically has a preferred routing

direction, either a horizontal or a vertical routing layer (a.k.a. reserved
routing model). For example, the three-layer HVH routing model means

that the preferred directions of the first, second, and third layers are horizontal,
vertical, and horizontal, respectively. For the channel routing problem discussed

in this section, we assume a two-layer HV routing model, unless stated otherwise.

We define some terminology of channel routing (see Figure 12.17 for an illus-

tration). The inputs to a channel routing problem are two channel boundaries,

the upper boundary and the lower boundary, with pin (terminal) numbers

on columns of the channel boundaries. The pin number represents its unique

net ID; pins of the same number belong to the same net and thus must be

interconnected. The horizontal wire segments on the tracks are trunks, and
the vertical wire segments connecting trunks to pins are branches. If the rout-

ing path of a net contains more than one trunk, this routing path is called a dog-
leg. The area of a routing channel is represented by the number of routing

tracks, called channel height, inside the channel. Each column of a routing

channel is associated with a local density to represent the total number of nets

crossing the column. Channel density, the density of a routing channel, is then

defined as the maximum local density inside the channel. It is obvious that

channel density is a lower bound for the number of tracks required to complete
the routing. The main objective of channel routing is to minimize the channel

(a)

(b)

1

2

1 2 2 2 2 2 2 1

1 2 3 4 5 6 7 8

2

3 3

1

column:

density:

metal 1
metal 2

pin

via

metal 1
metal 2

pin

track

3 3

Channel height

Trunk Branch

Dogleg

1

12 2

FIGURE 12.17

Channel routing illustration: (a) A channel routing configuration with two routing tracks.

(b) A simplified illustration for (a).

706 CHAPTER 12 Global and detailed routing
height, which is directly related to the die size and thus the manufacturing cost.

The general two-layer channel routing problem is NP-complete [Szymanski

1985], whereas some special cases of the problem can be solved optimally in

polynomial time [Hashimoto 1971].

Figure 12.17a illustrates an example of two-layer channel routing that con-
nects three nets with the pin numbers 1, 2, and 3, respectively. The channel

height is two, and the connection of net 1 is a dogleg. For brevity, we would

instead use the simplified illustration of Figure 12.17b throughout this chapter.

As illustrated in Figure 12.17b, the routing channel contains eight columns with

its local densities of 1, 2, 2, 2, 2, 2, 2, 1 for these columns (from left to right) and

the channel density of 2.

To minimize the channel height, doglegs are commonly used to connect wire

segments. For the same routing instance, the channel routingwith doglegs shown
in Figure 12.18b requires a channel height of only two tracks, whereas that with-

out dogleg shown in Figure 12.18a needs four tracks to complete the routing.

12.5 Detailed routing 707
In the following we introduce the dogleg channel routing algorithm
[Deutsch 1976], which is an extension from the constrained left-edge chan-
nel routing algorithm [Hashimoto 1971]. The dogleg channel routing algo-

rithm first decomposes multi-pin nets into two-pin connections and then

assigns the trunk of each connection into a feasible track.

The dogleg channel routing algorithm contains three steps: (1) decompose

each multi-pin net into 2-pin connections, (2) construct two constraint graphs

to model the routing constraints, the horizontal constraint graph (HCG)

and the vertical constraint graph (VCG), according to the locations of these

connections, and (3) route each net without violating any constraints modeled
in both HCG and VCG. As an example of the net decomposition, the 3-pin net 1

(represented by the interval [2, 7] because it spans from Column 2 to Column 7)

is broken into two 2-pin connections, 1a (interval [2, 5]) and 1b (interval [5, 7]),

as shown in Figure 12.19b.

The second step is to construct the HCG and VCG for the given routing

instance. The HCG (V, E) is an undirected graph, where each node vi 2 V repre-

sents a connection ni, and an edge (vi, vj) 2 E exists if and only if a horizontal

constraint exists between connections ni and nj (i.e., the spans [intervals]) of
ni and nj are overlapped) and thus ni and nj cannot share the same track or a

circuit short would occur. In the example of Figure 12.19b, the spans of connec-

tions 2 and 4 ([1, 4] and [2, 4], respectively) are overlapped in the interval

[2, 4], so there is a horizontal constraint in HCG between the nodes 2 and 4.

Figure 12.19c depicts the HCG for the channel routing instance of

Figure 12.19b. Note that there is no horizontal constraint between 1a and 1b,

because they belong to the same net (net 1).
(b)(a)

1 2

4431 2 3 4431 2 3

32

1 2 32

metal 1 metal 2pin

FIGURE 12.18

The effect of dogleg channel routing: (a) A channel routing solution without dogleg

requires four tracks for routing completion. (b) A channel routing solution with dogleg

only requires two tracks.

2 3

51a

1b 4

1a 34 {1a,1b} 5

2
3

4
5

1a
1b

2 3

4

51a

1b

(b)

1

1 34 51

12 4 2 3 5

71 2 4 53 6 8 71 2 4 53 6 8

1b2 4 2 3 5
(a)

(d)(c)

column: column:

FIGURE 12.19

Constraint graph construction for dogleg channel routing: (a) A channel routing instance.

(b) Multi-pin net decomposition. (c) The undirected horizontal constraint graph (HCG).

(d) The directed vertical constraint graph (VCG).

708 CHAPTER 12 Global and detailed routing
The VCG (V, E) is a directed graph in which each node vi 2 V represents a

connection ni, and a directed edge (vi, vj) 2 E exists if a vertical constraint exists

between ni and nj (i.e., the truck of ni must be above that of nj). The VCG can

directly be constructed according to the pin locations in the upper and lower

boundaries. For the example of Figure 12.19b, the pins in Column 4 of the upper

and lower boundaries are 4 and 2, respectively; therefore, there is a directed edge
(4, 2) in VCG. Figure 12.19d gives the VCG for the instance of Figure 12.19b.

The third step is to route each net under the constraints specified in both

HCG and VCG. Suppose it routes nets to the routing tracks from top to bottom.

In this step, the constrained left-edge algorithm [Hashimoto 1971] is applied.

First, the algorithm treats each connection as an interval, and intervals are

sorted according to their left-end x-coordinates. Then, the connections without

any vertical constraint (e.g., the nodes with zero in-degrees in the VCG) are

routed one-by-one according to the order. For a connection, tracks in the channel
are scanned from top to bottom, and the first track that can accommodate this

connection is assigned to the connection. After all trunks (horizontal connec-

tions) are assigned to tracks, channel routing is completed by connecting the left

ends and right ends of the trunks to the corresponding pins on the channel

boundaries via branches. Note that the routing for a channel with no vertical

1a

1b

2

4

3

5

[2,4]4

[5,7]1b

[6,8]3

[7,8]5

[2,5]1a

[1,4]2

RangeNet

2

1b

2

1st track: 1a [2,5], 3 [6,8]

2nd track: 4 [2,4], 5 [7,8]

3rd track: 2 [1,4], 1b[5,7]

1 35

1st track

2nd track

3rd track

1a 3

4 5

2 1b

(d)

(a) (b) (c)

2

4

5

1b

1st track: 1a [2,5], 3 [6,8]

1

2nd track: 4 [2,4], 5 [7,8]

1st track: 1a [2,5], 3 [6,8]

(e)

column: 71 2 4

4

5

1

3 6 8

12 4 2 3 5

FIGURE 12.20

Dogleg channel routing for the instance of Figure 12.19a (unconstrained connections in the

VCG are circled): (a) Connections are sorted by the left-end coordinates. (b) Connections 1a
and 3 are assigned one-by-one to the first track. (c) Connections 4 and 5 are assigned

one-by-one to the second track. (d) Connections 2 and 1b are assigned one-by-one to the

third track. (e) The final routing solution with three tracks.

12.5 Detailed routing 709
constraints (see the instance shown in Figure 12.17 for an example) can be solved

optimally in polynomial time by the left-edge algorithm [Hashimoto 1971].

Figure 12.20 illustrates dogleg channel routing for the instance of Figure 12.19a,

which has the channel density of three. Connections are first sorted as<2, 1a, 4, 1b,

3, 5> according to their left-end coordinates (see Figure 12.20a). As shown in
Figure 12.20b, there are two unconstrained connections 1a and 3 in the VCG, and

according to the order, 1a and 3 are routed one-by-one. Both 1a and 3 are assigned

to the first track. Then the VCG is updated by deleting nodes 1a and 3 and related

edges (see Figure 12.20c). The resulting unconstrained connections in the VCG

are 4 and 5. Similarly, 4 and 5 are routed one-by-one, and both trunks of 4 and 5

are routed on the second track. The VCG is then updated by deleting the nodes 4

and 5 and related edges (see Figure 12.20d). The resulting unconstrained connec-

tions in theVCG are 1b and2. Finally, 2 and1b are routedone-by-one, andboth trunks

710 CHAPTER 12 Global and detailed routing
of 2 and 1b are assigned to the third track. The final routing solution is then obtained

(see Figure 12.20e) after connecting the left ends and right ends of each trunk to the
pins on the corresponding channel boundaries via branches.

Note also that the dogleg channel routing algorithm introduced in [Deutsch

1976] applied two parameters to control the routing:
n Range: Determines the number of consecutive 2-pin connections of the

same net that can be placed on the same track. This parameter would

affect the number of doglegs and thus the number of vias.

n Routing sequence: Specifies the starting position and the direction of rout-

ing along the channel. The dogleg channel router assigns connections to

the routing tracks from top to bottom, from bottom to top, or alternately

with the two directions. Different routing sequences might result in differ-

ent routing solutions. Note that the connections without any vertical con-
straint correspond to the nodes with zero out-degrees in the VCG if the

routing sequence is from bottom to top.
12.5.2 Full-chip routing
Full-chip routing is typically a very complex combinatorial problem. To make it

manageable, many routing algorithms adopt a two-stage technique of global

routing followed by detailed routing. However, the continuously increasing

design complexity imposes severe challenges for modern routers. The tradi-

tional flat framework does not scale well as the design size increases. A mod-

ern chip may contain billions of transistors and millions of nets. To cope with

the scalability problem, routing frameworks are evolving, and the hierarchical
and multilevel frameworks have become more and more popular for large-

scale designs.

The hierarchical routing framework uses the divide-and-conquer approach

by transforming a large and complicated routing problem into a series of smaller

and simpler subproblems and then proceeds in a top-down, bottom-up, or

hybrid manner, which can be applied to both global and detailed routing.

A top-down hierarchical global-routing framework has been proposed in

[Burstein 1983]. The algorithm recursively divides the routing regions into suc-
cessively smaller subregions, named super cells, and nets at each hierarchical

level are routed sequentially or concurrently and are refined in the subsequent

levels. Figure 12.21 illustrates an example of global routing for a 3-pin net by the

top-down hierarchical approach, in which the routing region is recursively

bisected into smaller super cells, and at each level, the net is routed in terms

of these super cells at that level. This process is performed in a top-down man-

ner until the sizes of super cells reduce to that of global-routing tiles.

A bottom-up hierarchical routing method is developed in [Marek-Sadowska
1984]. Initially, the routing region is partitioned into an array of super cells.

At each hierarchical level, the routing is restrained within each super cell

level 0

level 3 level 2

level 1

pin

FIGURE 12.21

A level-by-level top-down hierarchical routing approach for a 3-pin net.

level 0

level 1level 2

merging point

pin

FIGURE 12.22

A level-by-level bottom-up hierarchical routing approach for a 7-pin net.

12.5 Detailed routing 711
individually. When the routing at the current level is finished, every four super

cells are merged to form a new larger super cell at the next higher level. This

process continues until the top level containing the whole chip is reached.
Figure 12.22 shows the process of bottom-up hierarchical routing for a 7-pin

net, in which each solid rectangle represents a super cell, and the 2*2 dotted

subregions of the previous level are merged together.

A major limitation in the top-down and the bottom-up hierarchical approaches

is that the routing decision made at one hierarchical level may be suboptimal for

712 CHAPTER 12 Global and detailed routing
subsequent levels. To alleviate this problem, Lin, Hsu, and Tsai proposed a hybrid

hierarchical approach that combines the bounded maze-routing algorithm with
both the top-down and bottom-up hierarchical methods into a unified routing

framework [Lin 1990]. Their algorithm consists of three phases: (1) neighboring

propagation, (2) preference partitioning, and (3) bounded routing.

Phase 1 performs bounded maze routing by propagating W circles of waves

out of each pin, where W is a user-defined parameter. If the connection is not

found, Phase 2 recursively maps the pins and blockages onto the adjacent upper

level (see Figure 12.23a) and calls the bounded maze-routing algorithm until a

path is found. Then, the connected path is mapped back to the lower level to
preferred regions (see Figure 12.23b). Phase 3 finds a routing path in the pre-

ferred regions (see Figure 12.23c). Compared with pure top-down or bottom-

up hierarchical routing, the hybrid hierarchical approach has more global

information to generate better routing solutions.

Although the hierarchical routing approach can scale to larger designs, it has

the significant drawbacks that the interactions among different routing subre-

gions are lacking and the routing decision at a level is irreversible (i.e., cannot

be refined at later stages), thus limiting the solution quality. To remedy the defi-
ciencies, researchers have proposed the multilevel framework to handle

large-scale routing problems. The multilevel frameworks were first developed

in [Cong 2001, 2002] for global routing and in [Lin 2002] and [Chang 2004]

for both global and detailed routing. In the following, we introduce the routabil-

ity-driven L-shaped multilevel routing framework [Chang 2004].
preferred regions

obstacle

pin
routing path

(a)

Map to the upper
level and find a
routing path

(b)

Map back to
the lower level to

form preferred regions

(c)

Find a routing path
in the preferred
regions

FIGURE 12.23

An example of global routing by use of the hybrid hierarchical approach: (a) Mapping pins and

blockages up one level and then finding a routing path at the upper level. (b) Mapping the

connection at the upper level to the lower level to form the preferred regions. (c) Finding a

routing path in the preferred regions.

12.5 Detailed routing 713
The multilevel routing framework models the routing resource as amultilevel-
routing graph. At the beginning, the routing region is partitioned into an array of
rectangular subregions, each of which may accommodate tens of routing tracks in

each dimension (see Figure 12.24). These subregions are called global cells (GCs).
A node in the routing graph represents a GC in the chip, whereas an edge

denotes the boundary between two adjacent GCs. Each edge is assigned a capacity

according to the physical area or the size of a GC. This routing graph is called the

multilevel-routing graph of level 0, denoted by G0, in which the subscript repre-

sents the level.

The L-shaped multilevel routing framework consists of bottom-up coarsen-
ing followed by top-down uncoarsening. The coarsening stage is a bottom-up

approach that iteratively groups a set of GCs in the multilevel-routing graph.

This process starts from the finest level (level 0) to the coarsest level; at each

level k, four adjacent GCk of Gk are merged into a larger GCkþ1 of Gkþ1, and
at the same time it performs resource estimation for use at the k þ 1 level.

Coarsening continues until the number of GCs at a level is below a threshold.

In contrast, the uncoarsening stage iteratively ungroups a set of previously clus-

tered GCs in a top-down manner. It proceeds from the coarsest level to the
finest level; at each level k, a GCk is decomposed into four smaller GCkþ1.
Uncoarsening continues until the finest level is reached. Figure 12.25 illustrates

the L-shaped multilevel framework.

Given a netlist, the multilevel routing first applies a minimum spanning tree

(MST) algorithm to decompose each net into 2-pin connections. At each level k

of the coarsening stage, global routing is first performed for the local 2-pin con-

nections (those connections that entirely sit inside a GCk), and then the detailed

router is used to determine the exact wiring. Let the multilevel-routing graph of
level 0 be G0 ¼ (V0, E0), and the global-routing result for a local connection be

Re ¼ {e 2 E0|e is the edge chosen for routing}. For the congestion control, the

cost function a : E0 ! ℜ is applied to guide the routing:

aðReÞ ¼
X
e2Re

ce ð12:4Þ
Resource modeling Multilevel routing graphPartitioned layout

FIGURE 12.24

The multilevel-routing graph.

G0

G1

G2G2

G1

G0

Perform global and detailed
routing for local nets and then
estimate routing congestion for
the next level.

Use maze routing to reroute
failed nets and iteratively
refine the solution.

To-be-routed net Already-routed net

coarsening

coarsening uncoarsening

uncoarsening

FIGURE 12.25

The L-shaped multilevel routing framework.

714 CHAPTER 12 Global and detailed routing
where ce is the congestion of edge e and is defined by

ce ¼ 1=2ðpe�deÞ ð12:5Þ
where pe and de are the capacity and density associated with e, respectively.

Note that we always search the shortest global-routing path between two pins

in the coarsening stage therefore (i.e., monotonic routes or no detours); there-
fore, the wirelength is the minimum, and thus the wirelength is not included

in the cost function at the global routing stage. This cost function can guide

the global router to select a path with smaller congestion.

After the global routing is completed, the detailed routing applies a simulta-
neous pathlength and via minimization (SPVM) algorithm to perform

modified maze routing that simultaneously considers the pathlength and via

minimization. For better circuit performance, it is desirable to minimize the

number of vias used in a routing path, because vias typically have significantly
larger RC delay than metal wires. The SPVM algorithm can find a shortest path

with the minimum number of bends/vias, if such a path exists. It associates each

basic detailed routing region u (could be a grid cell in grid-based routing or a

basic routing region defined by the wire pitch in gridless routing) with two

labels d(u) and b(u), where d(u) is the distance of the shortest path from the

source s to u, and b(u) is the minimum number of bends/vias along the shortest

path from s to u.

Initially, d(s), b(s) ¼ 0, and d(u), b(u) ¼1, 8 u 6¼ s. In the filling phase
of maze routing, the computation of label d is the same as the original maze-

routing algorithm. Let u be a basic routing region on the wavefront of wave

propagation and v a neighboring basic-routing region of u. The predecessor

12.6 Modern routing considerations 715
routing region of u is the region from which the wavefront was propagated for

obtaining the minimum b(u). The propagation direction of u is the direction
from the predecessor routing region of u to u. The computation of b(v) is

shown in Algorithm 12.2.

Algorithm 12.2 Computation of b(v) in the SPVM Algorithm

1. if (d(v) � d(u) þ 1) do
2. if ((b(v) > b(u)) and

(v is along the propagation direction of u)) do
3. b(v) b(u);
4. Record u as the predecessor routing region of v;
5. end if
6. if ((b(v) > b(u) þ 1) and

(v is not along the propagation direction of u)) do
7. b(v) b(u) þ 1;
8. Record u as the predecessor routing region of v;
9. end if

10. end if

The basic idea is to compare the distance label d first and then compare the

bend/via number label b. The value b(v) of a neighboring routing region v with
d(v) < d(u) remains unchanged, because the path from s through u to v is not

the shortest path between s and v. The retracing phase is the same as that of the

original maze-routing algorithm. Note that there may be several shortest paths

with different numbers of bends/vias. The wave-propagation phase always

keeps track of the shortest path with the minimum bend/via number to allow

the retracing phase to find such a path.

When the global and detailed routing is performed at level k, four adjacent

GCk are merged into a larger GCkþ1 and at the same time resource estimation
is performed for use at the next level k þ 1. Because the global routing, detailed

routing, and resource estimation are integrated together at each level, the rout-

ing resource estimation is more accurate, thus facilitating the solution refine-

ment (e.g., the rip-up and reroute processes) at the uncoarsening stage.

Algorithm 12.3 gives the algorithm of the L-shaped multilevel routing frame-

work [Chang 2004].
12.6 MODERN ROUTING CONSIDERATIONS

As the process geometries scale down to the nanometer territory, the IC indus-

try faces severe challenges in signal integrity, manufacturability, and

reliability. In this section, we address the routing problems considering

these issues. Specifically, we discuss crosstalk for signal integrity-aware routing,

716 CHAPTER 12 Global and detailed routing
Algorithm 12.3 L-Shaped Multilevel Routing Algorithm

Input: G – partitioned layout;
N – netlist of multi-terminal nets.

Output: routing solutions for N on G
1. partition the layout and build MST’s for N;

//coarsening stage
2. for (each level at the coarsening stage) do
3. Choose a local net n;
4. if (n belongs to this level) do
5. Global_Pattern_Routing(n);
6. Detailed_Routing(n);
7. end if
8. end for

// uncoarsening stage
9. for (each level at the uncoarsening stage) do
10. Choose a local net n;
11. Global_Maze_Routing(n);
12. Detailed_Routing(n);
13. end for
14. Output_Result();

optical proximity correction (OPC) and chemical-mechanical polishing
(CMP) for manufacturability-aware routing, and antenna effect avoidance and

double-via insertion for reliability-aware routing.
12.6.1 Routing for signal integrity
As the fabrication technology advances, on-chip minimum feature sizes con-
tinue to decrease, clock rates keep increasing, and devices and interconnection

wires are placed in closer proximity to reduce interconnection delay and rout-

ing area. Consequently, increasing the aspect ratios of wires and decreasing

interconnect spacing make the coupling capacitance larger than self-capaci-

tance. In fact, the ratio of coupling capacitance is reported to be even as high

as 70% to 80% of the total wiring capacitance, even in the 0.25-mm technology.

As a result, crosstalk becomes a key issue for signal integrity.

12.6.1.1 Crosstalk modeling

Noise is an unwanted variation that makes the behavior of a manufactured

circuit deviate from the expected response. The deleterious influences of
noise can be classified into two categories. One is malfunctioning, which

makes the logic values of gates differ from what we desire; the other is timing

Wire 1
Wire 1 active

passive

Wire 2

Wire 2Cc

FIGURE 12.26

The crosstalk effect.

i

j

lij

dij

FIGURE 12.27

The capacitive crosstalk computation between two wires i and j.

12.6 Modern routing considerations 717
change, which is caused by switching behavior. The main noise comes from

the crosstalk effect, which is mostly caused by the coupling capacitance

between interconnection wires. As an example shown in Figure 12.26, because

of the coupling capacitance Cc between wires 1 and 2, wire 2 would induce

an undesirable pulse when wire 1 is activated by a positive signal. If the unex-

pected pulse is larger than a threshold, the functionality of the circuit may fail.
More precisely, the crosstalk between two wires switching in different direc-

tions would increase signal delays and decrease signal integrity; on the contrary,

the crosstalk would decrease signal delays and increase signal integrity if the

two wires switch in the same direction.

In general, the crosstalk between two wires is proportional to their coupling

capacitance, which is determined by the relative positions of these wires.

The coupling capacitance between orthogonal wires is negligible compared

with that between adjacent parallel wires in current technology. Consequently,
the crosstalk can be approximated by considering only adjacent parallel

wires.

Figure 12.27 illustrates an instance with two wires i and j belonging to differ-

ent nets. The coupling capacitance cij between i and j can be approximated as

follows [Sakurai 1983]:

cij ¼ a
lij

ðdijÞk
ð12:6Þ

where a is a technology-dependent constant, k is a constant between 1 and 2

(and close to 2), lij is the overlapping length of wires i and j, and dij is the

distance between wires i and j. On the basis of Equation (12.6), we can see that

718 CHAPTER 12 Global and detailed routing
the coupling capacitance between two parallel wires is proportional to their cou-

pling length and is inversely proportional to the distance between them. More

accurate crosstalk modeling can be found in [Vittal 1999; Jiang 2000; Cong 2001].

12.6.1.2 Crosstalk-aware routing

Routing with minimum crosstalk has been extensively studied in the literature

[Gao 1996; Zhou 1998; Ho 2005, 2007]. Gao and Liu applied a mixed ILP (inte-

ger linear programming) formulation to permute the routing tracks in a given

channel routing solution to minimize crosstalk [Gao 1996]. Zhou and Wong
minimized crosstalk during global routing on the basis of a Steiner tree formula-

tion and Lagrangian relaxation [Zhou 1998]. Chaudhary, Onozawa, and Kuh

proposed a wire-spacing adjusting algorithm after detailed routing to reduce

crosstalk [Chaudhary 1993]. However, it might not be easy to handle crosstalk

during global routing or detailed routing. It might be too early to handle cross-

talk during global routing, because the relative positions and ordering of nets

are not determined at this stage; consequently, the best that one can possibly

do is to use rough statistical estimators that discourage nets from entering
unwanted proximity regions. Conversely, it might be too late for detailed rout-

ing to handle crosstalk, because detailed routers may encounter unsolvable

rip-up/re-route problems when trying to embed a late-routing net into a dense

region with conflicting aggressor or victim nets.

To address these problems, Ho et al. incorporated a layer/track assign-
ment heuristic for crosstalk optimization in the intermediate stage of the L-
shaped multilevel routing framework [Ho 2005], as shown in Figure 12.28.
FIGURE 12.28

The L-shaped multilevel routing framework with an intermediate stage for

crosstalk minimization.

12.6 Modern routing considerations 719
The layer/track assigner works on a full row or column of the global cell

array at a time, where a row (column) is called a panel. In the layer/track
assignment, the segments spanning more than one complete global cell in a

row or a column are processed, and short segments are routed during detailed

routing.

First, a horizontal constraint graph HCG(V, E) is built for all segments in the

panel. Each vertex v 2 V corresponds to a segment in the panel. Two vertices vi
and vj are connected by an edge e 2 E if and only if these segments belong to

two different nets and their spans overlap. The edge cost of e ¼ (vi, vj) 2 E

represents the coupling length if vi and vj are assigned to adjacent tracks. The
crosstalk-driven layer assignment can be formulated as the max-cut, k-coloring

(MC) problem. However, the general MC problem is NP-complete [Garey

1979]. Thus, a simple yet efficient heuristic is applied by constructing a maxi-

mum spanning tree of HCG followed by the k-coloring method to spread all seg-

ment into k layers. After k-coloring, the nodes are assigned to layers one-by-one

in a decreasing order of their costs (coupling lengths).

After the crosstalk-driven layer assignment, the crosstalk-driven track assignment

is applied. Let T be the set of tracks inside a panel. Each track t 2 T can be repre-
sented by the set of its constituent contiguous intervals. Denote these intervals

by xi. A segment r 2 S (set of segments) is said to be assignable to t 2 T, t � [xi,
if xi is either a free interval or is an interval occupied by a segment of the same net.

After layer assignment, most of the edges with larger costs in an HCG

are eliminated, and the HCG is decomposed into k subgraphs subHCG1,

subHCG2, . . . , subHCGk if there are k layers. Figure 12.29 shows an example

of the track assignment problem for a subHCG, where S ¼ {a, b, c, d, e, f },

T ¼ {1, 2, 3, 4}, and obstacles on tracks are shaded in grey (e.g., the two obsta-
cles on tracks 3 and 4). A bipartite assignment graph is used to indicate the

assignability of segments to tracks. For example, as shown in Figure 12.29b,

edges between node a and nodes 1, 2, and 3 are introduced, because segment

a can be assigned to track 1, 2, or 3, but not track 4. For easier implementation,

the subHCG and the bipartite assignment graph are merged into a combination

graph, as shown in Figure 12.29c.

Because each vertex v 2 V corresponds to a segment and each edge e 2 E

corresponds to the coupling cost in HCG(V, E), the crosstalk-driven track assign-
ment can be formulated as the Hamiltonian path problem which is NP-complete

[Garey 1979]. Here is a heuristic for this problem. The heuristic starts by finding

the maximal sets of conflicting segments. This is equivalent to finding the larg-

est clique Vc in the subgraph subHCGi. The algorithm first assigns one maximal

subset of conflicting segments at a time by starting from the largest clique. Then

the longest segment in the clique is chosen as the source s and assigned to the

uppermost available track. Then, the minimum-cost edge (s, i) (and thus the

minimal coupling) is chosen, and the segment associated with i is assigned to
the first available track. If all tracks are occupied, the net associated with i is

marked as a failed net that will be reconsidered at the uncoarsening stage.

a

1

2

3

3

2

2
2

1

1

4

3

4

f

a a

b

c

d

e

1

4

3

2

1

4

3

2

f

a

b

c

d

e

f

b

c

de
(a) (b) (c)

b

c
e

f

d

FIGURE 12.29

Constraint graph modeling for track assignment: (a) SubHCG for a given instance. (b) The

corresponding bipartite assignment graph. (c) The combination graph.

720 CHAPTER 12 Global and detailed routing
The procedure is repeated by finding the minimum-cost edge (i, j) for further

processing, where j is an unvisited node.
Figure 12.30 illustrates the track assignment process for the instance of

Figure 12.29. The maximum clique in the subHCG is {b, d, e, f }, and the longest

segment in the clique is b. Thus, the segment b is assigned to the uppermost

available track, which is track 1. See Figure 12.30b for the updated combination

graph after assigning b to track 1. Then, the heuristic makes b the source for

constructing the Hamiltonian path for the clique. The minimum-cost edge

e ¼ (b, f) incident on b is chosen, and f is assigned to the first available track.

See Figure 12.30c for the updated combination graph after assigning f to track 2.
The process is repeated until all nodes in the clique are visited. The final track

assignment solution is shown in Figure 12.30a.
12.6.2 Routing for manufacturability
For manufacturability, OPC and CMP are two most important concerns for mod-

ern chip designs. The former adds or subtracts feature patterns to a mask to

enhance the layout resolution and thus the printability of the mask patterns
on the wafer, whereas the latter improves layout uniformity and chip planariza-

tion to achieve higher manufacturing yield.

1
a b

c f

e

d

2

3

4

(a)

(c)

1

2

3

4

a

c

d

e

(b)

a

1

2

3

4

c

d

e

f

FIGURE 12.30

Process of track assignment: (a) Final track assignment for the instance of Figure 12.29.

(b) The resulting combination graph after assigning b to track 1. (c) The resulting

combination graph after assigning f to track 2.

12.6 Modern routing considerations 721
12.6.2.1 OPC-aware routing

We will first introduce the manufacturing process. The process uses an optical
lithography system and goes through many cycles of processing, each of

which consists of two major steps: exposure followed by etching.
Figure 12.31 illustrates a basic optical lithography system. In the exposure

step, it transfers the patterns on a mask to the light-sensitive positive or neg-
ative photoresist coated on the top of the wafer, which is performed by an

intense ultraviolet light emitted from the light source through the apertures of

the mask. Exposed by the light, the positive photoresist becomes soluble to

the photoresist developer, whereas the negative photoresist becomes insoluble.
This chemical change allows some of the photoresist to be removed by a special

solution. In the etching step, a chemical agent removes the uppermost layer of

the wafer in the areas that are not protected by photoresist to form the designed

patterns on the wafer.

With the continuous shrinking of the minimum feature size, IC foundries

have to use an optical lithography system with a larger wavelength of light to

print a feature pattern with a much smaller size on a wafer, which is called

the sub-wavelength lithography gap (see Figure 12.32). For the modern pro-
cess technology, for example, we might need to print a 45-nm feature pattern by

use of the light of 193-nm wavelength. The sub-wavelength lithography gap

might lead to unwanted large shape distortions for the printed patterns on

Light source

Projection lens

Projection lens

Photoresist
Wafer

Mask

FIGURE 12.31

A typical optical lithography system.

1400
Above Wavelength Sub Wavelength

1200 1200

1000

800 800

600
500

436
365

248

Feature Size (nm)

Wavelength (nm)

nm

400 350
250

193
180 130 90 65 45 22

201020052000
Year

199519901985

200

0

FIGURE 12.32

The sub-wavelength lithography gap: the printed feature size is smaller than the wavelength of

the light shining through the mask.

722 CHAPTER 12 Global and detailed routing
the wafer. Physically, when a light with the wavelength l passes through an

aperture of the size d, the wavefronts of the light behave differently according
to the relation between l and d. When l is much smaller than the aperture size

d on the mask, the wavefronts of the light remain straight, as illustrated in

Figure 12.33a. However, when l is close to or larger than d, the light behaves

Mask

Photoresist
Wafer

Mask

(a) (b)

d

λ < d λ > d

d

Photoresist
Wafer

FIGURE 12.33

When a light with the wavelength l passes through an aperture of the size d, the wavefronts

of the light behave differently according to the relation between l and d: (a) When l is much

smaller than d, the wavefronts remain straight. (b) When l is much larger than d, diffracted

wavefronts might occur.

12.6 Modern routing considerations 723
like waves (instead of particles) and diffraction occurs (see Figure 12.33b),

making the pattern on the wafer not exactly the same as that on the mask.

As a result, intensive use of costly resolution enhancement techniques
(RETs) to improve the layout accuracy becomes inevitable.

Many RETs are adopted at the post-layout stage to enhance the printability

and thus the yield. The increasing design complexity, however, leaves very lim-

ited space for post-layout optimization. Therefore, it is desirable to consider the

manufacturability earlier in the design flow, such as RET-aware routing.

Among the RETs, optical proximity correction (OPC) is the most popular

in industry. OPC is the process of modifying the layout patterns on the mask

(drawn by the designers) to compensate for the non-ideal properties of the
lithography process and thus to enhance the layout printability. Figure 12.34

illustrates an example of OPC enhancement. Without OPC, the printed patterns

on the wafer would be distorted from the designed pattern on the mask because

of the sub-wavelength lithography. In contrast, if the patterns on the mask are

enhanced by OPC, the printed patterns on the wafer could well match the

original designed patterns.

However, OPC might incur a large number of extra pattern features, imply-

ing larger memory requirements to record these features and thus higher
mask-making costs, such as mask synthesis, writing, and inspection verification.

If a router can consider the optical effects, the number of pattern features on

the final mask can greatly be reduced.

Chen and Chang proposed a rule-based OPC-aware multilevel router to

reduce the requirements for OPC-pattern feature [Chen 2007a]. They classify

the pattern distortions into three major types: corner rounding, line-end
shortening, and line-width shrinking, as illustrated in Figures 12.35a–c.

Patterns
on the mask

Printed patterns
on the wafer

OPC-enhanced patterns
on the mask

(a)

(b)

Printed patterns
on the wafer

FIGURE 12.34

The effects of OPC: (a) Without OPC, the printed patterns on the wafer incur large distortions

from the patterns on the mask. (b) With OPC enhancement, the printed patterns could well

match the original patterns.

(a) (b) (c)

FIGURE 12.35

Three major types of pattern distortions (the dashed lines represent the ideal pattern shapes):

(a) Corner rounding. (b) Line-end shortening. (c) Line-width shrinking.

724 CHAPTER 12 Global and detailed routing
For each type of distortion, the pattern features required for compensation are

identified on the basis of some geometry rules, for example, the serifs added at

corners to make the angles sharper, the hammerheads added at line ends to

compensate for line-end shortenings, and the line biasing added along line

sides to compensate for line-width shrinking (see Figure 12.36).

The number of pattern features required for OPC is then modeled as a cost for

routing the connection. For example, as shown in Figure 12.36a, four serifs are

required at the four corners to increase the fidelity of images for a line. Also,
when the length of a line increases, the ends of the line become shortened, as

illustrated in Figure 12.36b; therefore, two hammerheads are required at the line

ends for a long line. Besides, a wider line is easier to be affected by neighboring

lines than a narrower one, making the sides of a line shrink more seriously.

(a) (b) (c)

FIGURE 12.36

Three major OPC compensation pattern features: (a) Serif. (b) Hammerhead. (c) Line biasing.

(a) (b) (c)

FIGURE 12.37

Damascene process: (a) Open trenches. (b) Electroplating (ECP) deposits Cu on the trenches.

(c) Chemical-mechanical polishing (CMP) removes Cu that overfills the trenches.

12.6 Modern routing considerations 725
Therefore, as shown in Figure 12.36c, some line biasing in the line sides is

required for a wide line. Therefore, the total number of additional features for a

line can be modeled as a function of the length and width of the line. With this

function, we can incorporate the OPC cost into the original routability and wire-

length costs for a router to obtain a rule-based OPC-aware routing method.

Chen, Liao, and Chang considered the OPC effects during routing to alleviate

the cost of post-layout OPC operations [Chen 2008b]. They developed an analyt-

ical formula for the intensity computation from model-based OPC (which
involves complicated simulations of various process effects) and a post-layout

OPC modeling on the basis of an inverse lithography technique, and then

incorporated the OPC costs into an OPC-friendly router. Huang et al. and Wu

et al. also addressed OPC-friendly maze routing [Huang 2004b; Wu 2005b].

12.6.2.2 CMP-aware routing

In the modern metallization process, copper (Cu) has replaced the traditional alu-

minum (Al) because of its better properties, such as higher current-carrying capa-

bility, lower resistance, and lower cost. However, the process of copper is

significantly different from that for traditional aluminum. The modern copper

metallization process applies the dual-Damascene process [Luo 2005], which
consists of electroplating (ECP) followed by the chemical-mechanical

726 CHAPTER 12 Global and detailed routing
polishing (CMP). The ECP deposits the copper on the trenches, whereas the

CMP removes the copper that overfills the trenches, as shown in Figures 12.37a–c.
Figure 12.38 shows a schematic diagram of the CMP process. Abrasive and

corrosive chemical slurry that can dissolve the wafer layer is deposited on

the surface of a polishing pad. Then, the polishing pad and wafer are pressed

together by a dynamic, rotating polishing head. Combined with both the chemi-

cal reaction and the mechanical force, the CMP process can remove materials

on the surface of the wafer and tends to make the wafer planar.

However, because of the difference in the hardness between copper and

dielectric materials, the CMP planarizing process might generate topography
irregularities, which might incur significant yield loss of copper interconnects.

The studies of the CMP process have indicated that the post-CMP dielectric

thickness is highly correlated to the layout pattern density, because during the

polishing step, the dielectric removal rates are varied with the pattern density.

A non-uniform feature density distribution on each layer might cause CMP to

over polish or under polish, as illustrated in Figure 12.39.

These post-CMP thickness variations need to be carefully controlled, because

the variation in one metal layer could be progressively transferred to subsequent
layers during manufacturing, and finally the accumulative variation could be
Slurry

Polishing pad

Polishing head

Wafer

FIGURE 12.38

Schematic diagram of the CMP polisher.

polishing pad slurry

oxide
metal

(b)(a)

oxide

FIGURE 12.39

Layout-dependent thickness variations: (a) Pre-CMP layout. (b) Post-CMP thickness variation.

12.6 Modern routing considerations 727
significant on the upper metal layer, which is often called the multilayer
accumulative effect [Tian 2000].

To improve the CMP quality, modern foundries often impose recommended

layout density rules (or even density gradient rules) on each layer and fill

dummy features into layouts to reduce the variations on each layer. However,

these filled dummy features might incur unwanted effects at 65nm and succes-

sive technology nodes [White 2005]. For example, they may induce high cou-

pling capacitances to nearby interconnects and thus incur crosstalk problems.

Moreover, dummy fills also significantly increase the data volume of mask,

lengthening the time of the mask-making processes and thus the mask cost.
Especially, these filled features would significantly increase the input data in

the following time-consuming RETs, such as the OPC process.

Wire density greatly affects dummy feature filling. The layout pattern

(consisting of wires and dummy features) density strongly depends on the wire

density distribution, as reported in [Cho 2006]. Therefore, controlling wire den-

sity at the routing stage can alleviate the problems induced by aggressive

dummy feature filling. In addition, good wire distribution can reduce the ran-

dom particle short defects and also benefit the post-layout redundant-via
insertion (see Section 12.6.3.2), which can translate into yield gain.

The density uniformity in different routing stages for CMP variation control

has been addressed in the literature [Cho 2006; Chen 2007b; Li 2007]. Cho

et al. considered CMP variation during global routing [Cho 2006]. They empiri-

cally showed that the number of inserted dummy features can be predicted by

the wire density and observed that a path with higher pin density may not get

much benefit from the wire density optimization, because there is little room

for improvement (it is destined to have high wire density from the beginning).
Therefore, they proposed a minimum pin-density global-routing algorithm

to reduce the maximum wire density.

Figure 12.40 illustrates the minimum pin-density global-routing algorithm.

A net from the source S to the target T to be routed is shown in
(a) (b)

S

a aTT

b bS

T

FIGURE 12.40

Minimum pin-density global routing [Cho 2006]: (a) There are two possible 1-bend paths

a and b from the source S to the target T. (b) The path a with smaller pin density is better

than the path b.

728 CHAPTER 12 Global and detailed routing
Figure 12.40a with a pin distribution. If only the L-shaped (1-bend) routing

paths are allowed, there are two possible paths, a and b, with the same wire-
length, but different pin densities. Because the existence of a pin implies at least

one connection to other pins, a path with higher pin density like b would tend

to have higher wire density eventually as shown in Figure 12.40b, resulting in

higher final wire densities. Therefore, a path with the minimum pin density

(like path a) leads to better wire density distribution.

Figure 12.41 shows the two-pass, top-down planarization-driven routing

framework presented in [Chen 2007b], which consists of four major stages:

(1) Prerouting: identify the potential density hot spots on the basis of the pin
distribution and wire connection to guide the following global routing;

(2) Global routing: apply prerouting-guided planarization-aware global pattern

routing for nets and iteratively refine the solution; (3) Layer/track assignment:

perform density-driven layer/track assignment for long segments panel by panel;

and (4) Detailed routing: use segment-to-segment detailed maze routing to route

short segments and reroute failed nets level by level. By handling longer nets

first, the routing density for CMP can be better optimized, because the longer

nets have higher density impact than the shorter ones.
In the prerouting stage, a density critical area analysis algorithm (on the basis

of Voronoi diagrams [Preparata 1985]) is performed to identify the potential den-

sity hot spots. The identified density information of pins and wire connection is

then used to guide the subsequent routing.
To-be-routed net

high

low
Critical Area Analysis

Identify the potential density
hot spots based on the pin
distribution and wire
connection to guide the
following global routing.

Apply prerouting-guided
planarization-aware global
pattern routing for local nets
and iteratively refine the
solution.

Perform density-driven
layer/track assignment
for long segments panel
by panel.

Use segment-to-segment
detailed maze routing to
route short segments and
reroute failed nets level by
level.

Layer/Track Assignment

G0

G1

G2

G0

Prerouting Stage First Pass Stage Intermediate Stage Second Pass Stage

G1

G2
uncoarsening

uncoarsening

uncoarsening

uncoarsening

Already-routed net

FIGURE 12.41

The two-pass, top-down planarization-driven routing framework.

12.6 Modern routing considerations 729
In the first top-down (global-routing) stage, a planarization-aware global router

is used to consider the density lower and upper bounds while minimizing the
density gradient among global tiles. The planarization-aware cost Ft for each

global tile t is defined as follows:

Ft ¼ ~dt þ
kp;
bð2dt � 1Þ þ ð1� bÞðdt � dtÞ2;
kn;

if dt � Bu

if Bl � dt < Bu

if dt < Bl

8<
: ð12:7Þ

where dt is the wire density of t, ~dt is the predicted hot spot cost calculated in
the prerouting stage, dt is the average wire density of tiles adjacent to t, Bl and

Bu are respective density lower and upper bounds specified in foundry’s density

rules, and b, 0 � b � 1, is a user-defined parameter. kp and kn are constants,

where kp is a positive penalty that discourages routing through dense global

tiles, and kn is a negative reward that encourages routing through sparse tiles.

The second equation simultaneously considers the local tile density and mini-

mizes the density gradient among adjacent regions.

The intermediate stage tries to preserve more flexibility for wire density
arrangement. It consists of two phases: (1) a density-driven layer assigner evenly

distributes the segments in a panel (row of global tiles) into layers, and (2) a

density-driven track assigner balances the segment density of each track on

the basis of incremental Delaunay triangulation (DT) [Preparata 1985]. First,

the flexibility of a segment si is defined as follows:

xðsiÞ ¼ ti þ 1

‘i
ð12:8Þ

where ti is the number of assignable tracks of si, and li is the length of si. If the flexi-

bility of si is smaller, si might have a longer length or less space to insert and thus

should be assigned first. Therefore, segments are inserted into tracks in the nonde-
creasing order of their flexibilities. Then, each segment or obstacle is represented

by three points: its left-end, center, and right-end points, and then the resulting DT

is analyzed. The segment is assigned to a track such that the resulting area difference

among all triangles is minimized. Figure 12.42 shows a density-driven track-assign-

ment example by inserting three segments s1, s2, and s3 into tracks with obstacles

O1 (see Figure 12.42). Note that the artificial segments lying on the boundary are

used to model the distribution of segments and obstacles in the neighborhood.

After the track assignment, the actual track position of a segment is known.
Thus, classical segment-to-segment maze detailed routing is performed in the

second top-down (detailed-routing) stage to connect shorter nets, and the

whole routing process is finished.
12.6.3 Routing for reliability
Manufacturing reliability and yield in VLSI designs are becoming a crucial chal-

lenge as the feature sizes shrink into the nanometer scale. Both the antenna

s1

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

sb

su

sb

su

sb

sb

su

s2

s1

s2

s2

s3

(a)

(b)

(c)

(d)

s3

s3

s3

o1

o1

o1

o1

Segment

Artificial segment

Layer 1 obstacle

ξ (s1) = 4.5

ξ (s2) = 5

ξ (s1) = 4.5

ξ (s1) = 4.5

ξ (s2) = 4

ξ (s3) = 3.125

su

FIGURE 12.42

A density-driven track assignment example: (a) The initial Delaunay triangulation. (b) Track

assignment for segment s3. (c) Track assignment for segment s2. (d) Track assignment for

segment s1.

730 CHAPTER 12 Global and detailed routing

12.6 Modern routing considerations 731
effect arising in the plasma process and the via-open defect are important issues

for achieving a higher reliability and yield.

12.6.3.1 Antenna-avoidance routing

The antenna effect is caused by the charges collected on the floating intercon-
nects, which are connected to only a gate oxide. During the metallization, long

floating interconnects act as temporary capacitors and store charges gained

from the energy provided by fabrication steps such as plasma etching and

CMP. If the collected charges exceed a threshold, the Fowler-Nordheim
(F-N) tunneling current will discharge through the thin oxide and cause gate

damage. On the other hand, if the collected charges can be released before

exceeding the threshold through a low impedance path, such as diffusion, the

gate damage can be avoided.
For example, considering the routing in Figure 12.43a, the interconnects are

manufactured in the order of poly, metal 1, and metal 2. After manufacturing

metal 1 (see Figure 12.43b), the collected charges on the right metal 1 pattern
(a)

(b) (c)

Diffusion

Gate

Discharge
through the

diffusion

++++

++ ++++

+++++++++++++

++ +++++

++ +++++

+++

++ ++++++++

++ +

+++++++ ++++++++++++++

Diffusion

Collected
Charges

Gate

Damage
the gate

++++++++++++ +++ ++++

Diffusion

Gate
Metal 2
Metal 1
Poly Layer

FIGURE 12.43

Illustration of the antenna effect: (a) A routing example. (b) Late stage of metal-1 pattern

etching of (a), where the collected charges on the right side of the metal-1 pattern may

cause damage to the connected gate oxide. (c) Late stage of metal-2 pattern etching of (a),

where all the collected charges can be released through the connected diffusion on the left

side.

732 CHAPTER 12 Global and detailed routing
may cause damage to the connected gate oxide. The discharging path is con-

structed after manufacturing metal 2 (see Figure 12.43c), and thus the charges
can be released through the connected diffusion on the left side.

There are three kinds of solutions to reduce the antenna effect [Chen 2000]:
FIG

(a) A
1. Jumper insertion: Break only signal wires with antenna violation and
route to the highest level by jumper insertion. This reduces the charge

amount for violated nets during manufacturing.

2. Embedded protection diode: Add protection diodes on every input

port for every standard cell. Because these diodes are embedded and

fixed, they consume unnecessary area when there is no violation at the

connecting wire.

3. Diode inserting after placement and routing: Fix those wires with

antenna violations that have enough room for “under-the-wire” diode
insertion. During wafer manufacturing, all the inserted diodes are floating

(or ground). One diode can be used to protect all input ports that are

connected to the same output ports. However, this approach works only

if there is enough room for diode insertion.
Jumper insertion is a popular way to solve the antenna problem. To avoid/fix

the antenna violation, it is required that the total effective conductor connecting

to a gate be less than or equal to a threshold, Lmax. The threshold could be the

wirelength limit, the wire area limit, the wire perimeter limit, the ratio of antenna

strength (length, area, perimeter, etc.) to the gate size, or any model of the

strength of antenna effect caused by conductors. As the example shown in

Figure 12.44, we have a two-terminal net in which a is the source node and b is
a b

Metal 1

Metal 2

Metal 3

a

b

1 5

2 4

3 Metal 3

Metal 2

Metal 1

Poly6

(a)

(b)

URE 12.44

two-pin net. (b) The cross-sectional view.

(a)

(b)

Metal 1

Metal 1

Poly

b

ba

a

10

91

Metal 2

Metal 2

Metal 3

Metal 3

2

3

4

5

6

7

8

FIGURE 12.45

(a) A two-pin net with jumper insertion. (b) The cross-sectional view.

12.6 Modern routing considerations 733
the terminal node. In this case, the antenna charge weight of b is the sum of the

antenna charge weight of segments 4, 5, and 6, which may violate Lmax. Note that

once segment 3 is manufactured, a discharging path is established through seg-

ment 1 and the diffusion of the transistor a (see Figure 12.44b). If we add a jumper

at the long segment 5 (see Figure 12.45), the antenna charge weight of b is just the
sum of the length of segments 8, 9, and 10, whichwill not violate Lmax. Thus, if we

add jumpers appropriately, the antenna problem can be easily solved.

Antenna avoidance by jumper insertion has been extensively studied in the lit-

erature (e.g., [Ho 2004, 2007; Wu 2005a; Su 2007]). Ho, Chang, and Chen pro-

posed multilevel routing considering antenna effects by bottom-up jumper

insertion [Ho 2004]. The work inserts jumpers only beside gate terminals, and

its optimality of the use of the least jumpers to satisfy the antenna rule holds only

for this special condition of inserting jumpers right beside gate terminals. Wu, Hu,
and Mahapatra extended the work [Ho 2004] to handle the problem [Wu 2005a].

To fix the antenna violation of a gate terminal, the work first removes all subtrees

around the node that violate the antenna rules. After all such subtrees are

removed, if the sink still violates the antenna rule, the work will continually

remove the heaviest branch from the sink until the antenna rules are satisfied.

This approach still cannot guarantee optimal solutions under some special cases.

Su and Chang formulated the general jumper insertion for antenna avoidance

(applicable at the routing stage) and/or fixing (applicable at the post-layout stage)
as a tree-cutting problem on a routing tree and presented the first optimal algo-

rithm for the general tree-cutting problem [Su 2007]. As usual, a net is modeled as

a routing tree, where a node in the tree denotes a circuit terminal/junction

(a gate, diffusion, or a junction of interconnects), and an edge denotes the inter-

connection between two circuit terminals or junctions. Because the

734 CHAPTER 12 Global and detailed routing
interconnection connecting to a diffusion terminal will not cause any antenna vio-

lation, the algorithm focuses on those connecting to gate terminals.
Let L(u) denote the sum of edge weight (could be wirelengths, wire area, wire

perimeter limit, the ratio of antenna strength, etc.) between the node u and all its

neighbors. The problem of jumper insertion on a routing tree for antenna avoid-

ance/fixing can be formulated as a tree-cutting problem as follows:

Jumper Insertion on a Routing Tree for Antenna Avoidance Problem:
Given a routing tree T ¼ (V, E) and an upper bound Lmax, find the minimum set

C of cutting nodes, e 6¼ u for any c 2 C and u 2 V, so that L(u) � Lmax, 8u 2 V.

As the routing-tree example shows in Figure 12.46a, u1 and u2 are two sink
nodes, the number beside each edge denotes the antenna charge weight, and

Lmax is assumed to be 10. For this case, three jumpers suffice to solve the

antenna violations; see the jumpers c1, c2, and c3 shown in Figure 12.46b.

The algorithm performs in a bottom-up manner by dealing with leaf nodes first

followed by sub-leaf nodes of the tree. Here, a leaf node is a node with no children,

whereas a sub-leaf node is a node for which all its children are leaf nodes, and if any

of its children is a gate terminal, the edges between it and its children all have

weights � Lmax. Let p(u) denote the parent node of node u, and l (e) (or l (u, v))
be the antenna charge weight of the edge e ¼ (u, v) in the routing tree.

For a leaf node u, if l(u, p(u)) � Lmax or u is not a gate terminal, then u satis-

fies the antenna rule and thus it does not need to insert any cutting nodes. How-

ever, if l(u, p(u)) > Lmax and u is a gate, then l(u, c) ¼ Lmax gives the best

position for inserting the cutting node c, as illustrated in Figure 12.47. After

adding jumper c, the edge e(u, c) is cut from the tree.
5

5

5

6

6

5

5

10

(a)

(b)

u1

u1c1 c3

c2

u2

u2

v1

v1

v2

v3

v3

v4

v4v2

6

6

5

FIGURE 12.46

(a) A routing tree with two sink nodes u1 and u2. (b) Three jumpers c1, c2, c3 are inserted to

satisfy the antenna rule.

Cut cu p (u)

Lmax

FIGURE 12.47

Optimal jumper insertion for a leaf node. The cutting node c is the optimal one among the

nodes on edge e(u, p(u)).

(b)(a)

u1

u2 u2 us us+1 ukus+2,...,

cs+1, cs+2,...,ck

u1

up

u3 ...

up

Cut c

p(up)

FIGURE 12.48

(a) Optimal jumper insertion for a sub-leaf node. (b) Illustration for the case of total_len > Lmax.

12.6 Modern routing considerations 735
For a sub-leaf node up and its children ui, 8 1 � i � k, let total_len ¼Pk
i¼1lðui;upÞ.
There are two cases:

Case 1: total_len � Lmax

If (total_len þ l(up, p(up)) > Lmax, the cutting node c with l(c, up) þ total_

len ¼ Lmax gives the best position, as shown in Figure 12.48a. After adding c, all

up’s children from the original tree are cut from the tree.

Case 2: total_len > Lmax

First sort l(up, ui) 8 1 � i � k in non-decreasing order and find the maximum

s such that
Ps

i¼1lðup;uiÞ � Lmax: Then add the cutting nodes csþ1, . . . , ck as

shown in Figure 12.48b.

For the embedded protection diode, Huang et al. solved the diode insertion

and routing problem by a minimum-cost network-flow based algorithm, called
Diode Insertion and Routing by Min-Cost Flow (DIRMCF) [Huang

2004a]. As shown in Figure 12.49, the antenna-violating wires, the routing grids,

and the feasible diode positions are transformed into a flow network, and then

the problem is solved by the minimum-cost network-flow algorithm. Both the

positions of inserted diodes and the required routing can be determined

through the resulting flow.

Violating Wire

Violating Wire Node
Diode Node

Free Node

Flow Source Node
Flow Sink Node

Resulting Flow

Grid
Nodes

S

Vs2 Vs1

D

s

t

t

Extension Wire
Diode

Diode Blockage

(a) (b) (c)

D

D

D

D D

D

D

FIGURE 12.49

An example of the DIRMCF algorithm: (a) The violating wires and the routing grids. (b) The

transformed flow network and the resulting flow after applying the minimum cost network-

flow algorithm. (c) The inserted diodes and their corresponding routing.

736 CHAPTER 12 Global and detailed routing
Besides, because the vias of jumper insertion and the routing wires for diode

insertion will both increase the driving load of the antenna violating wires (and

thus the incurred RC delay will reduce the circuit performance), it is desirable to

perform diode and jumper insertion simultaneously and consider the interaction

between them to find a smaller performance degradation for the antenna fixing.
Jiang and Chang [Jiang 2008] proposed a minimum-cost network-flow–based algo-

rithm to solve the simultaneous diode/jumper insertion problem. The proposed

algorithm first computes the jumper cost to fix each violating wire. Then it con-

structs the flow network in a similar way as the DIRMCF algorithm but integrates

the jumper cost into the network. Finally, the antenna-fixed layout with the opti-

mal fixing cost is found by applying the minimum-cost network-flow algorithm.

12.6.3.2 Redundant-via aware routing

In the nanometer technology, via-open defects are one of the important failures.

A via may fail because of various reasons such as random defects, electromi-
gration, cut misalignment, and/or thermal stress–induced voiding effects.

The failure significantly reduces the manufacturing yield and chip performance.
To improve via reliability and yield, redundant-via insertion is a highly recom-

mended technique proposed by foundries. If a via fails, a redundant via can serve as

a fault-tolerant substitute for the failing one. As shown in Figure 12.50, a redundant

metal 1

metal 2

via

redundant via

FIGURE 12.50

Double-via insertion. Each via is paired with a redundant via to form a double-via pair.

critical via

dead viaalive vias

metal 1

metal 2

via

redundant-via candidate

v1

v2

v3

FIGURE 12.51

Illustration of redundant-via candidates, dead vias, alive vias, and critical vias. Vias v1, v2, and

v3 have one, zero, and three redundant-via candidates, respectively. Both v1 and v3 are alive

vias, v2 is a dead via, and v1 is also called a critical via.

12.6 Modern routing considerations 737
via can be inserted adjacent to each via to form a double-via pair. Double vias

typically lead to 10 to 100 smaller failure rates than single vias.

The following gives some terminologies about vias. For a via, a redundant-via
candidate is its adjacent position where a redundant via can be inserted. For the

example shown in Figure 12.51, via v1 has one redundant-via candidate on its left

side, and via v3 has three candidates around it. According to the number of redun-

dant-via candidates, vias can be classified as dead, alive, or critical vias. If a via
has at least one redundant-via candidate, it is an alive via; otherwise, it is called a
dead via. Note that if an alive via has exactly one redundant-via candidate, it is also

called a critical via. As shown in Figure 12.51, both vias v1 and v3 are alive vias, v2
is a dead via, and v1 is also a critical via.

Traditionally, redundant-via insertion is performed at the post-layout stage,

which can be formulated as a maximum independent set (MIS) problem

[Lee 2006], 0-1 integer linear programming (ILP) [Lee 2008], or maximum bipar-

tite matching [Yao 2005; Chen 2008a]. However, it has been reported that if the

router can minimize the number of dead and critical vias, the post-layout dou-
ble-via insertion rate can be significantly improved. The reason is that the dead

vias cannot be paired with redundant vias, and critical vias may not be paired

because of the competition with other vias. For a routing instance from the

source S to the target T shown in Figure 12.52a, an inferior routing path as

(c)(b)(a)

S

TT

S

TT

S

T

dead via alive via

v

FIGURE 12.52

Redundant-via aware routing benefits the post-layout double-via insertion: (a) A detailed-

routing instance for a 2-pin connection from the source S to the target T. (b) If an inferior

routing path is selected, via v would become a dead via and cannot be paired. (c) For a

better routing path, via v would remain alive for double-via insertion.

738 CHAPTER 12 Global and detailed routing
shown in Figure 12.52b would make via v a dead via and cannot be paired with
any redundant vias. In contrast, for the better routing result as shown in

Figure 12.52c, via v still remains alive for double-via insertion. Therefore, it is

desirable to consider the redundant-via insertion at the routing stage to facilitate

and preserve more flexibility for the post-layout double via insertion, as pointed

out by [Xu 2005].

Chen et al. developed a redundant-via aware detailed-routing algorithm

[Chen 2008a]. For each redundant-via candidate ri of a via v, the redundant-

via cost of ri, cost(ri), is set as

costðriÞ ¼ 1

DoFv
ð12:9Þ

where DoFv stands for the degree of freedom of v and equals the number of
redundant-via candidates of v. The redundant-via penalty for a connection

path p is calculated as the summation of the redundant-via costs of these

redundant-via candidates on p.

Figure 12.53 illustrates the routing algorithm. Figure 12.53a shows a detailed-

routing instance connected from the source S to the target T. The redundant-via

costs of redundant-via candidates are shown in Figure 12.53b. The router can find

a better routing path by choosing one with smaller redundant-via penalty, as

shown in Figure 12.53c. Finally, the routing solution would be more redundant-
via friendly as shown in Figure 12.53d, which contains more alive vias and pre-

serves more redundant-via candidates to benefit the post-layout redundant-via

insertion.
12.7 CONCLUDING REMARKS

Routing is one of the most fundamental steps in the physical design flow and is
typically a very complex optimization problem. Effective and efficient routing

(b)(a)

metal 1 metal 2 via redundant-via candidate

S

T

S

TTT

1/3

1/3

1/3

1/4

1/4

1/4

1/4

1/2

1/2

S

T

1/3

1/3

1/3

1/4

1/4

1/4

1/4

1/2

1/2

S

T

penalty = 5/6

penalty = 1/4

(d)(c)

FIGURE 12.53

Redundant-via aware detailed routing: (a) A detailed-routing instance connected from the

source S to the target T. (b) The redundant-via costs of redundant-via candidates. (c) The

router can find a better routing path with smaller redundant-via penalty. (d) The routing

solution would be more redundant-via friendly by preserving more redundant-via candidates.

12.7 Concluding remarks 739
algorithms are essential to handle the challenges arising from the fast growing

scaling of IC integration. Traditionally, the routing problem is usually solved

by a two-stage approach of global routing followed by detailed routing to tackle

its high complexity.
In this chapter, we have first formulated the global and detailed routing as

graph-search problems and examined the general-purpose routing algorithm,

which includes the maze, line-search, and A*-search routing and can be applied

to both global and detailed routing. Then we have discussed the global-routing

algorithms, including sequential, concurrent, and tree-based approaches. For the

detailed routing, we have covered channel routing and full-chip routing and

740 CHAPTER 12 Global and detailed routing
discussed the flat, hierarchical, and multilevel routing frameworks. Last, we have

addressed routing for some important nanometer effects, including signal integ-
rity, manufacturability, and reliability. As the technology nodes keep shrinking,

all these effects should be considered in the earlier design stages. Considering

the tradeoff between optimization flexibility and layout-information availability,

routing seems to be the best stage to handle these effects.

“Old routers never die; they just fade away.” With emerging design chal-

lenges (such as manufacturability, reliability, complexity, new chip architec-

tures, and technologies), routers will keep evolving, with key techniques still

remaining. It would be necessary to develop new data structures, algorithms,
frameworks, and/or methods for the next-generation routers to handle the

severe challenges yet to come.
12.8 EXERCISES
FIG

The
12.1. (General-Purpose Routing) Consider the chessboard shown in

Figure 12.54. Some squares are shaded, denoting blockages. We

intend to find a shortest path, if one exists, that starts at the square

designated by s, after visiting the minimum number of squares, and

ends at the square designated by t. The path must not pass through
any shaded square. Formulate this problem as a graph-search routing

problem and give an efficient algorithm to solve this problem. What

is the time and space complexity of your algorithm?

12.2. (Concurrent Global Routing) You are asked to derive a routing

algorithm for large-scale circuit designs on the basis of integer lin-
ear programming (ILP). ILP is typically very time-consuming for

such large-scale designs. Instead of processing the whole routing

region at one time, give at least two systematic approaches to divide
S

t

URE 12.54

graph-search problem of Exercise 12.1.

FIG

The

FIG

The

12.8 Exercises 741
the routing region into subregions such that your algorithm can
handle the routing problem subregion by subregion to reduce the

problem size.

12.3. (Routing Tree)Given a netnwith the four pins p1 ¼ (6, 3), p2 ¼ (3, 6),

p3 ¼ (1, 5), and p4 ¼ (4, 2), let the estimated wirelengths by use of the

minimum rectilinear spanning tree (MST) and theminimum recti-
linear Steiner tree (MRST) be p and q, respectively. Find p and q.

12.4. (Routing Tree) Give an O(E lg V)-time algorithm to find a minimum

spanning tree T of an undirected graph G ¼ (V, E) so that the maxi-
mum edge weight of T is minimum over all spanning trees of G.

Analyze the time complexity of your algorithm.

12.5. (Line-Search Routing) For the Hightower line-search router, there

is no guarantee that we can find a path if such a path exists. Give

an example routing configuration for this situation.

12.6. (Channel Routing) Given the channel-routing instance shown in

Figure 12.55,
URE 12.5

channel r

URE 12.5

routing in
(a) Draw the horizontal constraint graph (HCG) and the vertical
constraint graph (VCG) for the given instance.

(b) Determine a tight lower bound on the channel height from

the HCG.

(c) Route the instance by the dogleg channel routing algorithm.

What is the final channel height?

(d) Route the instance by the constrained left-edge channel routing

algorithm. What is the final channel height?
12.7. (Channel Routing) Design an efficient algorithm to produce optimal

routing solutions for 3-layer channel routing with the VHV model. (In

the VHVmodel, the top and the bottom layers are reserved for vertical

wires, and the middle layer is reserved for horizontal wires.)
A F B G J G E H D J H

C K K C F A B G D E H

5

outing instance of Exercise 12.6.

1 2 k n

6

stance of Exercise 12.8.

742 CHAPTER 12 Global and detailed routing
12.8. (Channel Routing) Label the terminals of the channel boundary
1, 2, . . . , n in Figure 12.56, starting from the left and to the right.

Let N(i, j) denote the maximum number of nonintersecting connec-

tions between terminals i and j that can be routed on a single layer.

Assume that there is a connection between terminals 1 and k. Give

the recurrence N(i, j) for the maximum number of nonintersecting

connections in the layer in terms of the indices k and n. Apply

dynamic programming to compute N(1, n).

12.9. (Multilevel Routing) Given a netlist N ¼ {[(1, 1), (2, 2)], [(2, 10),
(2, 14)], [(6, 2), (10, 10)], [(6, 10), (10, 14)], [(10, 2), (14, 2)]}, where

[(p, q), (r, s)] denotes a route from the coordinate (p, q) to (r, s), you

are asked to apply a 3-level routing (L-shaped multilevel routingwith

three levels) to route the instance N on a 16 � 16 chip plane. Suppose

only straight and L-shaped routes are allowed during the coarsening

stage, whereas maze routing is applied during uncoarsening. Also, all

wire spacing (including point-to-wire spacing) must be at least 4 units.

Show step by step how you obtain the routing solution.
12.10. (Maze Routing) Explain how you will extend the maze router for

the X-architecture on which vertical, horizontal, 45�, and 135� routes
are allowed for routing.

12.11. (Programming) This programming problem is modified from the

2007 ACM ISPD (Int. Symp. on Physical Design) Global Routing

Contest [Nam 2007]. This programming assignment asks you to

write a global router that can route 2-pin nets. To simplify the prob-

lem, we have some simplifications as follows:
1. Consider only two layers (layer 1 is for horizontal routes, and

layer 2 is for vertical ones).

2. Consider only 2-pin nets.

3. Consider only tile-based coordinates. All lower left corners of the
global routing regions are (0, 0). The tile width and height are

ignored, because all X and Y are tile-based.

4. Consider only fixed wire width and spacing. All wire widths,

wire, and via spacing are equal to 1.
(1) Input/output specification
Input format

The file format for the global routing contest is shown, with comments in

italics (actual input files do not contain these comments). The example

below gives an instance with two routing layers. The first line gives the

problem size in terms of the number of horizontal and vertical tiles and

the number of routing layers. Each global-routing tile (tile in short) has a
capacity on each of its four boundaries to measure the available space.

12.8 Exercises 743
The default capacity value of each layer is given in the second and third

lines, which represents the maximum number of routing paths allowed to
pass through a tile boundary. For example, the tile boundary with capacity

10 can accommodate up to 10 routing paths. The file format is as follows:
grid # # # //number of horizontal tiles, vertical tiles, and layers

vertical capacity # # //vertical capacity by default on each layer

horizontal capacity # # //horizontal capacity by default on each layer

num net # //number of nets

net_name net_id number_of_pins

x y layer

x y layer

. . .

[repeat for the appropriate number of nets]
Output format

All the routes in the output could only be horizontal lines, vertical lines, or

via connections. For example (18, 61, 1)-(19, 62, 1) is not acceptable,

because it is diagonal. All the nets are written in the output file in the same

order as the input file. The output file format is shown as follows:
Net net_name net_id

([x11], [y11], [z11])-([x12], [y12], [z12])

([x21], [y21], [z21])-([x22], [y22], [z22])

. . .

!

[repeat for the appropriate number of nets]
(2) Problem statement

Given the problem size (the number of horizontal and vertical tiles and layers),

horizontal and vertical capacities on each layers, and a netlist, the global router

routes all nets in the routing region. Themain objective is tominimize the total

number of overflows, and the second objective is to minimize the total wire-

length. Here the overflow on a tile boundary is calculated as the amount of

demand that exceeds the given capacity (i.e., overflow ¼ max(0, demand-

capacity)).

Following is an example of Input/Output files for Figure 12.57 with two

routing layers.

(0, 1) (1, 1)

(0, 0) (1, 0)

A

C

D

B

FIGURE 12.57

A routing problem and its solution.

744 CHAPTER 12 Global and detailed routing
Input file:
grid 2 2 2

vertical capacity 0 2

horizontal capacity 2 0

num net 4

A 0 2

0 1 1

1 1 1

B 1 2

0 1 1

1 0 1

C 2 2

0 0 1

1 1 1

D 3 2

0 0 1

1 0 1

References 745
Output file:
A 0

(0, 1, 1)-(1, 1, 1)

!

B 1

(0, 1, 1)-(1, 1, 1)

(1, 1, 1)-(1, 1, 2)

(1, 1, 2)-(1, 0, 2)

(1, 0, 2)-(1, 0, 1)

!

C 2

(0, 0, 1)-(1, 0, 1)

(1, 0, 1)-(1, 0, 2)

(1, 0, 2)-(1, 1, 2)

(1, 1, 2)-(1, 1, 1)

!

D 3

(0, 0, 1)-(1, 0, 1)

!

The total overflow is 0, and the total wirelength is 10.
ACKNOWLEDGMENTS

We thank Dr. Laung-Terng Wang of SynTest Technologies, Professor Cheng-Kok Koh of Purdue Uni-

versity, Professor Chris Chu of Iowa State University, Professor Ting-Chi Wang of National Tsing

Hua University, Professor Hung-Ming Chen of National Chiao Tung University, the National Taiwan

University students in the 2008 Physical Design class, and the EDA Laboratory for their very careful

review of this chapter. We also thank the authors of [Nam 2007] for their help with the formulation

of the programming assignment in Exercise 12.11, and Mr. Zhe-Wei Jiang of National Taiwan Univer-

sity for his help with Section 12.6.3.1.
REFERENCES

R12.0 Books

[Garey 1979] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory

of NP-Completeness, W. H. Freeman & Co., New York, 1979.

[Ho 2007] T.-Y. Ho, Y.-W. Chang, and S.-J. Chen, Full-Chip Nanometer Routing Techniques, Springer,

Dordrecht, The Netherlands, 2007.

746 CHAPTER 12 Global and detailed routing
[Preparata 1985] F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction,

Springer-Verlag, New York, 1985.

[Sait 1999] S. M. Sait and H. Youssef, VLSI Physical Design Automation: Theory and Practice, World

Scientific, Singapore, 1999.

[Saxena 2007] P. Saxena, R. S. Shelar, and S. S. Sapatnekar, Routing Congestion in VLSI Circuits:

Estimation and Optimization, Springer, New York, 2007.

R12.2 Problem Definition

[Chen 2007a] T.-C. Chen and Y.-W. Chang, Multilevel full-chip gridless routing with applications to

optical proximity correction, IEEE Trans. on Computer-Aided Design, 26(6), pp. 1041–1053,

June 2007.

[Cong 1999] J. Cong, J. Fang, and K.-Y. Khoo, An implicit connection graph maze routing algorithm

for eco routing, in Proc. IEEE/ACM Int. Conf. on Computer-Aided Design, pp. 163–167,

November 2005.

[Qusterhout 1984] J. K. Qusterhout, Corner stitching: A data structuring technique for VLSI layout

tools, IEEE Trans. on Computer-Aided Design, 3(1), pp. 87–100, January 1984.

[Zheng 1996] S. Q. Zheng, J. S. Lim, and S. S. Iyengar, Finding obstacle avoiding shortest paths using

implicit connection graphs, IEEE Trans. on Computer-Aided Design, 15(1), pp. 103–110,

January 1996.

R12.3 General-Purpose Routing

[Akers 1967] S. B. Akers, A modification of Lee’s path connection algorithm, IEEE Trans. on Elec-

tronic Computers, 16(1), pp. 97–98, February 1967.

[Clow 1984] G. W. Clow, A global routing algorithm for general cells, in Proc. ACM/IEEE Design

Automation Conf., pp. 45–51, June 1984.

[Hadlock 1977] F. O. Hadlock, A shortest path algorithm for grid graphs, Networks, 7(4),

pp. 323–334, Winter, 1977.

[Hart 1968]P. E.Hart,N. J.Nilsson, andB.Raphael, A formal basis for the heuristic determination ofmini-

mum cost paths, IEEE Trans. on Systems Science and Cybernetics, 4(2), pp. 100–107, July 1968.

[Hightower 1969] D. Hightower, A solution to line routing problems on the continuous plane, in

Proc. ACM/IEEE Design Automation Conf., pp. 1–24, June 1969.

[Lee 1961] C. Y. Lee, An algorithm for path connection and its application, in IRE Trans. on Elec-

tronic Computer, 10, pp. 346–365, 1961.

[McMurchie 1995] L. McMurchie and C. Ebeling, PathFinder: A negotiation-based performance-driven

router for FPGAs, in Proc. Int. ACM Symp. on Field-Programmable Gate Arrays, pp. 111–117,

February 1995.

[Mikami 1968] K. Mikami and K. Tabuchi, A computer program for optimal routing of printed

circuit connectors, in Proc. Int. Federation for Information Processing, pp. 1475–1478,

November 1968.

[Soukup 1978] J. Soukup, Fast maze router, in Proc. ACM/IEEE Design Automation Conf.,

pp. 100–102, June 1978.

R12.4 Global Routing

[Abel 1972] L. C. Abel, On the ordering of connections for automatic wire routing, IEEE Trans. on

Computers, 21(11), pp. 1227–1233, November 1972.

[Chang 2008] Y.-J. Chang, Y.-T. Lee, and T.-C. Wang, NTHU-Route 2.0: A Fast and Stable Global

Router, in Proc. IEEE/ACM Int. Conf. on Computer-Aided Design, pp. 338–343, November 2008.

References 747
[Chen 1999] H.-M. Chen, H. Zhou, F. Y. Young, D. F. Wong, H. H. Yang, and N. Sherwani, Integrated

floorplanning and interconnect planning, in Proc. IEEE/ACM Int. Conf. on computer-Aided

Design, pp. 354–357, November 1999.

[Cho 2007] M. Cho, K. Lu, K. Yuan, and D. Z. Pan, BoxRouter 2.0: Architecture and implementation of a

hybrid and robust global router, in Proc. ACM/IEEE Design Automation Conf., pp. 503–508, June

2007.

[Cho 2006] M. Cho, D. Z. Pan, H. Xiang, and R. Puri, Wire density driven global routing for CMP vari-

ation and timing, in Proc. IEEE/ACM Int. Conf. on Computer-Aided Design, pp. 487–492,

November 2006.

[Chu 2004] C. Chu, FLUTE: fast lookup table based wirelength estimation technique, in Proc. IEEE/

ACM Int. Conf. on Computer-Aided Design, pp. 696–701, November 2004.

[Garey 1977] M. R. Garey and D. S. Johnson, The rectilinear Steiner tree problem is NP-complete,

SIAM Journal Applied Mathematics, 32(4), pp. 826–834, June 1977.

[Hanan 1966] M. Hanan, On Steiner’s problem with rectilinear distance, SIAM Journal on Applied

Mathematics, 14(2), pp. 255–265, March 1966.

[Ho 1990] J.-M. Ho, C. K. Vijayan, and C. K. Wong, New algorithms for the rectilinear Steiner tree

problem, IEEE Trans. on Computer-Aided Design, 9(2), pp. 185–193, February 1990.

[Hsu 2008] C.-H. Hsu, H.-Y. Chen, and Y.-W. Chang, Multi-layer global routing considering via

and wire capacities, in Proc. IEEE/ACM Int. Conf. on Computer-Aided Design, pp. 350–355,

November 2008.

[Hwang 1976] F. K. Hwang, On Steiner minimal tree with rectilinear distance, SIAM Journal on

Applied Mathematics, 30(1), pp. 104–114, January 1976.

[Kahng 1990] A. B. Kahng and G. Robins, A new class of Steiner tree heuristics with good perfor-

mance: the iterated 1-Steiner approach, in Proc. IEEE/ACM Int. Conf. on Computer-Aided

Design, pp. 428–431, November 1990.

[Kastner 2002] R. Kastner, E. Bozorgzadeh, and M. Sarrafzadeh, Pattern routing: use and theory for

increasing predictability and avoiding coupling, IEEE Trans. on Computer-Aided Design, 21(7),

pp. 777–790, November 2002.

[Kruskal 1956] J. B. Kruskal, On the shortest spanning subtree of a graph and the traveling salesman

problem, in Proc. the American Mathematical Society, 7(1), pp. 48–50, February 1956.

[Lin 2008] C.-W. Lin, S.-Y. Chen, C.-F. Li, Y.-W. Chang, and C.-L. Yang, Obstacle-avoiding rectilinear

Steiner tree construction based on spanning graphs, IEEE Trans. Computer-Aided Design, 27(4),

pp. 643–653, April 2008.

[Lin 2007] C.-W. Lin, S.-L. Huang, K.-C. Hsu, M.-X. Lee, and Y.-W. Chang, Efficient multi-layer obsta-

cle-avoiding rectilinear Steiner tree construction, in Proc. IEEE/ACM Int. Conf. on Computer-

Aided Design, pp. 380–385, November 2007.

[McMurchie 1995] L. McMurchie and C. Ebeling, PathFinder: A negotiation-based performance-

driven router for FPGAs, in Proc. Int. ACM Symp. on Field-Programmable Gate Arrays,

pp. 111–117, February 1995.

[Pan 2007] M. Pan and C. N. Chu, FastRoute 2.0: A high-quality and efficient global router, in Proc.

IEEE/ACM Asian and South Pacific Design Automation Conf., pp. 250–255, January 2007.

[Prim 1957] R. C. Prim, Shortest connection networks and some generalizations, Bell System Tech-

nical Journal, 36, pp. 1389–1401, 1957.

[Raghavan 1987] P. Raghavan and C. D. Thompson, Randomized rounding: A technique for provably

good algorithms and algorithmic proofs, in Proc. Combinatorica, pp. 365–374, December 1987.

[Roy 2007] J. A. Roy and I. L. Markov, High-performance routing at the nanometer scale, in Proc.

IEEE/ACM Int. Conf. on Computer-Aided Design, pp. 496–502, November 2007.

[Shi 2006] Y. Shi, T. Jing, L. He, Z. Feng, and X. Hong, CDCTree: novel obstacle-avoiding routing tree

construction based on current driven circuit model, in Proc. IEEE/ACM Asia and South Pacific

Design Automation Conf., pp. 630–635, January 2006.

[Zhou 2004] H. Zhou, Efficient Steiner tree construction based on spanning graphs, IEEE Trans. on

Computer-Aided Design, 23(5), pp. 704–710, May 2004.

748 CHAPTER 12 Global and detailed routing
R12.5 Detailed Routing

[Burstein 1983] M. Burstein and R. Pelavin, Hierarchical wire routing, IEEE Trans. on Computer-

Aided Design, 2(4), pp. 223–234, October 1983.

[Chang 2004] Y.-W. Chang and S.-P. Lin, MR: A new framework for multilevel full-chip routing, IEEE

Trans. on Computer-Aided Design, 23(5), pp. 793–800, May 2004.

[Cong 2001] J. Cong, J. Fang, and Y. Zhang, Multilevel approach to full-chip gridless routing, in Proc.

IEEE/ACM Int. Conf. on Computer-Aided Design, pp. 396–403, November 2001.

[Cong 2002] J. Cong, M. Xie, and Y. Zhang, An enhanced multilevel routing system, in Proc. IEEE/

ACM Int. Conf. on Computer-Aided Design, pp. 51–58, November 2002.

[Deutsch 1976] D. N. Deutsch, A “dogleg” channel router, in Proc. ACM/IEEE Design Automation

Conf., pp. 425–433, June 1976.

[Hashimoto 1971] A. Hashimoto and J. Stevens, Wire routing by optimizing channel assignment

within large apertures, in Proc. ACM/IEEE Design Automation Conf., pp. 155–169, June 1971.

[Lin 2002] S.-P. Lin and Y.-W. Chang, A novel framework for multilevel routing considering routability

and performance, in Proc. IEEE/ACM Int. Conf. on Computer-Aided Design, pp. 44–50, Novem-

ber 2002.

[Lin 1990] Y.-L. Lin, Y.-C. Hsu, and F.-S. Tsai, Hybrid routing, IEEE Trans. on Computer-Aided

Design, 9(2), pp. 151–157, February 1990.

[Marek-Sadowska 1984] M. Marek-Sadowska, Global router for gate array, in Proc. IEEE Int. Conf. on

Computer Design, pp. 332–337, October 1984.

[Szymanski 1985] T. G. Szymanski, Dogleg channel routing is NP-complete, IEEE Trans. on Com-

puter-Aided Design, 4(1), pp. 31–41, January 1985.
R12.6 Modern Routing Considerations

[Chaudhary 1993] K. Chaudhary, A. Onozawa, and E. S. Kuh, A spacing algorithm for performance

and crosstalk reduction, in Proc. IEEE Int. Conf. on Computer-Aided Design, pp. 697–702,

November 1993.

[Chen 2008a] H.-Y. Chen, M.-F. Chiang, Y.-W. Chang, L. Chen, and B. Han, Full-chip routing consid-

ering double-via insertion, IEEE Trans. on Computer-Aided Design, 27(5), pp. 844–857, May

2008.

[Chen 2007a] T.-C. Chen and Y.-W. Chang, Multilevel full-chip gridless routing with applications to

optical proximity correction, IEEE Trans. on Computer-Aided Design, 26(6), pp. 1041–1053,

June 2007.

[Chen 2007b] H.-Y. Chen, S.-J. Chou, S.-L. Wang, and Y.-W. Chang, Novel wire density driven full-chip

routing for CMP variation control, in Proc. IEEE/ACM Int. Conf. on Computer-Aided Design,

pp. 831–838, November 2007.

[Chen 2008b] T.-C. Chen, G.-W. Liao, and Y.-W. Chang, Predictive formulae for OPC with applications

to lithography-friendly routing, in Proc. ACM/IEEE Design Automation Conf., pp. 510–515, June

2008.

[Chen 2000] P. H. Chen, S. Malkani, C.-M. Peng, and J. Lin, Fixing antenna problem by dynamic diode

dropping and jumper insertion, in Proc. IEEE Int. Symp. on Quality Electronic Design, pp.

275–282, March 2000.

[Cho 2006] M. Cho, D. Z. Pan, H. Xiang, and R. Puri, Wire density driven global routing for CMP var-

iation and timing, in Proc. IEEE/ACM Int. Conf. on Computer-Aided Design, pp. 487–492,

November 2006.

[Cong 2001] J. Cong, D. Z. Pan, and P. V. Srinivas, Improved crosstalk modeling for noise constrained

interconnect optimization, in Proc. IEEE/ACM Asia and South Pacific Design Automation Conf.,

pp. 373–378, January 2001.

[Gao 1996] T. Gao and C.-L. Liu, Minimum crosstalk channel routing, IEEE Trans. on Computer-

Aided Design, 15(5), pp. 465–474, May 1996.

References 749
[Ho 2004] T.-Y. Ho, Y.-W. Chang, and S.-J. Chen, Multilevel routing with antenna avoidance, in Proc.

ACM Int. Symp. on Physical Design, pp. 34–40, April 2004.

[Ho 2005] T.-Y. Ho, Y.-W. Chang, S.-J. Chen, and D.-T. Lee, Crosstalk- and performance-driven multi-

level full-chip routing, IEEE Trans. on Computer-Aided Design, 24(6), pp. 869–878, June 2005.

[Huang 2004a] L.-D. Huang, X. Tang, H. Xiang, D. F. Wong, and I.-M. Liu, A polynomial time-optimal

diode insertion/routing algorithm for fixing antenna problem, IEEE Trans. on Computer-Aided

Design, 23(1), pp. 141–147, January 2004.

[Huang 2004b] L.-D. Huang and D. F. Wong, Optical proximity correction (OPC)-friendly maze rout-

ing, in Proc. ACM/IEEE Design Automation Conf., pp. 186–191, June 2004.

[Jiang 2008] Z.-W. Jiang and Y.-W. Chang, An optimal network-flow-based simultaneous diode and

jumper insertion algorithm for antenna fixing, IEEE Trans. on Computer-Aided Design, 27(6),

pp. 1055–1065, June 2008.

[Jiang 2000] I. H.-R. Jiang, Y.-W. Chang, and J.-Y. Jou, Crosstalk-driven interconnect optimization by

simultaneous gate and wire sizing, IEEE Trans. on Computer-Aided Design, 19(9), pp. 999–1010,

September 2000.

[Lee 2008] K.-Y. Lee, C.-K. Koh, T.-C. Wang, and K.-Y. Chao, Optimal post-routing redundant via

insertion, in Proc. ACM Int. Symp. on Physical Design, pp. 111–117, April 2008.

[Lee 2006] K.-Y. Lee and T.-C. Wang, Post-routing redundant via insertion for yield/reliability

improvement, in Proc. ACM/IEEE Asia and South Pacific Design Automation Conf.,

pp. 303–308, January 2006.

[Li 2007] K. S.-M. Li, C.-L. Lee, Y.-W. Chang, C.-C. Su, and J. E. Chen, Multilevel full-chip routing with

testability and yield enhancement, IEEE Trans. on Computer-Aided Design, 26(9),

pp. 1625–1636, September 2007.

[Luo 2005] J. Luo, Q. Su, C. Chiang, and J. Kawa, A layout dependent full-chip copper electroplating

topography model, in Proc. IEEE/ACM Int. Conf. on Computer-Aided Design, pp. 133–140,

November 2005.

[Sakurai 1983] T. Sakurai and K. Tamaru, Simple formulas for two and three dimensional capaci-

tance, IEEE Trans. on Electronic Devices, 30(2), pp. 183–185, February 1983.

[Su 2007] B.-Y. Su, Y.-W. Chang, and J. Hu, An optimal jumper insertion algorithm for antenna avoid-

ance/fixing, IEEE Trans. on Computer-Aided Design, 26(10), pp. 1818–1929, October 2007.

[Tian 2000] R. Tian, D. F. Wong, and R. Boone, Model-based dummy feature placement for oxide

chemical-mechanical polishing manufacturability, in Proc. ACM/IEEE Design Automation Conf.,

pp. 667–670, June 2000.

[Vittal 1999] A. Vittal, L. H. Chen, M. Marek-Sadowska, K.-P. Wang, and S. Yang, Crosstalk in VLSI inter-

connections, IEEE Trans. on Computer-Aided Design, 18(12), pp. 1817–1824, December 1999.

[White 2005] D. White and B. Moore, An ‘intelligent’ approach to dummy fill, in EE Times, January

3, 2005.

[Wu 2005a] D. Wu, J. Hu, and R. Mahapatra, Coupling aware timing optimization and antenna avoid-

ance in layer assignment, in Proc. ACM. Int. Symp. on Physical Design, pp. 20–27, April 2005.

[Wu 2005b] Y.-R. Wu, M.-C. Tsai, and T.-C. Wang, Maze routing with OPC consideration, in Proc.

ACM/IEEE Asia and South Pacific Design Automation Conf., pp. 198–203, January 2005.

[Xu 2005] G. Xu, L.-D. Huang, D. Z. Pan, and F. D. Wong, Redundant-via enhanced maze routing for

yield improvement, in Proc. ACM/IEEE Asia and South Pacific Design Automation Conf.,

pp. 1148–1151, January 2005.

[Yao 2005] H. Yao, Y. Cai, X. Hong, and Q. Zhou, Improved multilevel routing with redundant via

placement for yield and reliability, in Proc. ACM Great Lakes Symp. on VLSI, pp. 143-146, April

2005.

[Zhou 1998] H. Zhou and D. F. Wong, Global routing with crosstalk constraints, in Proc. ACM/IEEE

Design Automation Conf., pp. 374–377, June 1998.
R12.8 Exercises

[Nam 2007] G.-J. Nam, M. Yildiz, D. Z. Pan, and P. H. Madden, ISPD placement contest updates and

ISPD 2007 global routing contest, in Proc. ACM Int. Symp. on Physical Design, p. 167, April 2007.

This page intentionally left blank

/

CHAPTER
13

Synthesis of clock and

power/ground
networks
Cheng-Kok Koh
Purdue University, West Lafayette, Indiana

Jitesh Jain
Purdue University, West Lafayette, Indiana

Stephen F. Cauley
Purdue University, West Lafayette, Indiana
IS CHAPTER
ABOUT TH

Clock distribution networks and power delivery systems are the two largest

types of on-chip interconnect networks. They both play a crucial role in the cor-

rect operation of a circuit. A clock network delivers a synchronizing signal

across the chip to coordinate the flow of data. A power/ground (P/G) supply

network provides a reference voltage for determining the status of a transistor

(on or off) and also the current for switching a transistor.

This chapter addresses many issues that affect the integrity of clock net-

works or P/G networks. We begin with a discussion of the timing, power, and
robustness issues that one must consider when designing a clock network or

P/G network. The chapter then examines the automated analysis, synthesis,

and optimization of such large-scale interconnection networks in two sections,

one for clock networks and the other one for power supply networks. For each

section, we first cover the typical topologies encountered. After presenting the

modeling and analysis techniques for such networks, the chapter describes

algorithms to synthesize and optimize these networks.
13.1 INTRODUCTION
751
For a sequential circuit to operate correctly, the processing of data must

occur in an orderly fashion. In a synchronous system, the order in which data

are processed is coordinated by a clock signal. (To be more general, the

752 CHAPTER 13 Synthesis of clock and power/ground networks
synchronization could be performed by a collection of globally distributed clock

signals.) The clock signal, in the form of a periodic square wave that is globally
distributed to control all sequential elements (flip-flops or latches), achieves

synchronization of the circuit operation when all data are allowed to pass

through the sequential elements simultaneously. A clock network is required

to deliver the clock signal to all sequential elements. As the distributive nature

of long interconnects becomes more pronounced because of technology scal-

ing, the control of arrival times of the same clock edge at different sequential

elements, which are scattered over the entire chip, becomes more difficult. If

not properly controlled, the clock skew, defined as the difference in the clock
signal delays to sequential elements, can adversely affect the performance of

the systems and even cause erratic operations of the systems (e.g., latching of

an incorrect signal within a sequential element).

The power delivery system is in the form of two networks, one for providing

the power supply voltage (VDD) and one for providing the ground (GND or VSS).

We refer to them as the power/ground (P/G) network. A well-designed P/G

network provides clean voltage references and adequate current for reliable

and fast computation. Variations in VDD and GND, commonly known as power
supply noise, may result in logic failures or severe speed loss in the circuit. One

reason for the fluctuations in VDD and GND is that the P/G network spans the

entire chip, because essentially all functional blocks (gates, memory cells, regis-

ters, etc.) on the chip have to be connected to the P/G pads. The presence of

resistive (R) and inductive (L) parasitics in P/G pins and the P/G network leads

to current-induced IR and L � di/dt voltage variations, respectively, when cur-

rent (I or i) flows to facilitate the switching activities of transistors. Because

low supply voltages are typically used in modern-day integrated circuits, the
margin available to tolerate voltage variations is usually very stringent.

When considered independently, the design of a clock or P/G network

already poses a formidable challenge because of stringent requirements. A

well-designed clock or P/G network must also account for variations in device

and interconnect parameters. What complicates matters even further is the

interplay between the clock network and the P/G network. For example, in a

zero-skew clock network, all sequential elements are triggered almost simulta-

neously. Because these elements draw current from the power network or sink
current to the ground network almost simultaneously when the clock switches,

the zero-skew design often leads to severe power supply noise, resulting in

unacceptable degradation in performance and reliability. On the other hand,

power supply noise affects the clock jitter (this refers to the time shift in the

clock pulse, as well as the variations in the pulse width that arise from the

time-varying operating conditions such as supply voltage), which, in turn,

affects the arrival times of clock signal at different sequential elements.

We will describe in the next section many of the design considerations that
one has to consider when implementing a clock network or a P/G network.

These design considerations are captured either in the objective function for

13.2 Design considerations 753
which a synthesis algorithm for such networks has to optimize or as constraints

that the synthesis algorithm has to satisfy. Synthesis algorithms for clock net-
works and P/G networks are topics that we cover in Sections 13.3 and 13.4,

respectively.
13.2 DESIGN CONSIDERATIONS

Consider a simple synchronous circuit that uses positive edge-triggered

flip-flops (FF’s) as the sequential elements controlled by a clock signal that

has even duty cycle (i.e., a single-phase clocking scheme). We use

S ¼ fs1; s2; . . . ; sng to denote the set of clock pins of flip-flops in the circuit,
with si being the clock pin of flip-flop FFi.

A pair of flip-flops is sequentially adjacent when only combinational logic

exists between the two flip-flops. Let FFi and FFj be two sequentially adjacent

flip-flops, with the output of FFi being fed to the data input of FFj through a

combinational logic (see Figure 13.1). We say that FFi is the launching flip-flop

and FF j is the capturing flip-flop.
13.2.1 Timing constraints
Suppose the clock signal arrives at all the flip-flops simultaneously. In

Figure 13.2, the clock signal arrives at the 12 o’clock position.1 Here, we assume

an even duty clock signal. Hence, in the first half of the clock cycle the clock
signal is high (“CLK ¼ 1”). At the 6 o’clock position, the clock switches from

high to low (“CLK ¼ 0”). After a clock period of CP, the clock signal is again

at the 12 o’clock position.

The minimum allowable clock period CP for the synchronous system must be

long enough to accommodate the time it takes to propagate the signal through the
FIGURE 13.1

A simple sequential circuit.

1This representation was credited to Professor Mark Horowitz of Stanford University in the

accompanying lecture materials of the book by [Rabaey 2003].

(a)

Setup time constraint satisfied

CLK = 1 CLK = 0

tj + C P tj

tsetup tpFF

tlogic

ti + C P ti

(b)

Setup time constraint violated

CLK = 1 CLK = 0

tj

tsetup tpFF

tlogic

ti

tj + C P
ti + C P

FIGURE 13.2

Setup time constraint.

754 CHAPTER 13 Synthesis of clock and power/ground networks
launching flip-flop, denoted as tpFF , and the time it takes for the signal to make its
way through the combinational logic, denoted as tlogic. Moreover, the clock period

must also account for the setup time, denoted as tsetup, which is the amount of

time that the input to the capturing flip-flop has to stay valid before the next

triggering clock edge arrives (see Figure 13.2a). This can be summarized by the

following inequality, which is also known as the setup time constraint:

Cp � tpFF þ tlogic þ tsetup

Of course, one should use the worst-case (or maximum) propagation delays for

flip-flops and combinational logic and the maximum setup time requirement to

determine the lowest operable clock period. Violation of the setup time con-

straint is also commonly referred to as a zero-clocking hazard, because the signal
is not latched in properly by the capturing flip-flop (see Figure 13.2b).

The setup time constraint presents only one side of the story for the proper

operation of a synchronous system. To ensure proper propagation of input sig-

nal through a flip-flop, the input must remain valid or hold steady for a short

duration after the clock edge. That short duration is referred to as the hold time,

denoted as thold . The hold time of a capturing flip-flop imposes an additional

constraint on the total propagation delay of a signal through the launching

flip-flop and the combinational logic as follows:

tpFF þ tlogic � thold

To accommodate the most extreme design corner, the preceding inequality,
which is known as the hold time constraint, should be formed with the

(a)

Hold time constraint satisfied

CLK = 1 CLK = 0

ti

tj

tpFF

tlogic

thold

Hold time constraint violated

(b)

CLK = 1 CLK = 0

ti

tj

tpFF tlogic

thold

FIGURE 13.3

Hold time constraint.

13.2 Design considerations 755
maximum hold time of the capturing flip-flop and the minimum propagation

delay of the launching flip-flop and the smallest propagation delay of the combi-

national logic (see Figure 13.3a). The violation of hold time constraint is com-

monly referred to as a double-clocking hazard, because two signals would
have gone through the capturing flip-flop in a single clock cycle (see

Figure 13.3b).

Remark: Clocking for Combinational Logic: The focus of this chapter is on

clocking for sequential circuits (finite state machines or pipelined systems).

Clocking is also an integral component of combinational logic: Dynamic

circuits, such as Domino logic and NP CMOS logic (Zipper logic), require clock

signals to synchronize the precharge phase and the evaluation phase of the

circuits. It is important to realize that techniques presented in this chapter
can be adapted to handle the synchronization of precharge-and-evaluate

circuitry.
13.2.2 Skew and jitter
Because of the unbalanced delays in the clock distribution network, clock edges

may arrive at clock pins si and sj in Figure 13.1 at different times. Such spatial

variation in the arrival times of a clock transition at two different locations on a

chip is commonly known as the clock skew. Let ti and tj be the signal delays

756 CHAPTER 13 Synthesis of clock and power/ground networks
from the clock source to si and sj, respectively. Define the clock skew between

si and sj, denoted by skewi, j, to be

skewi; j ¼ ti � tj

By definition, skewi; j stays constant from cycle to cycle [Rabaey 2003].
Figure 13.4 shows two different scenarios: (a) skewi; j > 0 and (b) skewi; j < 0.

They, respectively, correspond to the clock signal arriving at sj earlier than and

later than at si.

At time ti, the clock edge arrives at flip-flop FFi. The input of FFi takes

tmax
pFF þ tmax

logic, in the worst case, to propagate through the flip-flop and the com-

binational logic. The signal must have settled down for a duration of tmax
setup before

the next clock edge arrives at time tj þ CP at FFj, the capturing flip-flop, so that

it can be properly latched in. That translates into the following more general
setup time constraint:

ti þ tmax
pFF þ tmax

logic þ tmax
setup � tj þ Cp

Rewriting Equation (13.1), it is clear that a positive clock skew, as shown in

Figure 13.4a, places a lower bound on the allowable clock period (or an upper

bound on the operating frequency of the circuit 1=CP) as follows:

Cp � skewi; j þ tmax
pFF þ tmax

logic þ tmax
setup
(a)

skewi,j > 0

tlogic

tsetup tpFF

titj

skewi,j
tj + C P

skewi,j < 0

(b)

tlogic

tsetup tpFF

ti tj

tj + CP

FIGURE 13.4

Setup time constraint in the presence of clock skew.

13.2 Design considerations 757
The terms in Equation (13.2) can also be rearranged into

skewi; j � Cp � tmax
pFF � tmax

logic � tmax
setup

which shows that for a given frequency, we must bound the skew from above.

Although a positive skewi; j always decreases the maximum attainable clock

frequency, a negative clock skew (i.e., skewi; j < 0) actually increases the effec-

tive clock period, as shown in Figure 13.4b. In other words, we may have a
combinational logic block between two sequentially adjacent flip-flops that

has a propagation delay longer than the given clock period.
Example 13.1 C
ycle Stealing or Useful Clock Skew. Consider a 3-stage pipeline as shown in

Figure 13.5a. Let tlogic;CLi denote the delay of combinational logic block CLi. In this exam-

ple, we assume that tlogic;CL2 ¼ 10 ns, tlogic;CL1 ¼ tlogic;CL3 ¼ 8:5 ns. If the clock signal

arrives at all clock pins at the same time (Figure 13.5a), it is obvious that the fastest fre-

quency at which the circuit can operate is 100 MHz. However, that would mean that for
8.5 ns 8.5 ns10 ns

8.5 ns

(a) Zero skew

(b) Useful skew

8.5 ns10 ns

FF1 FF2 FF3FF0

CL1 CL2 CL3

8.5 ns 8.5 ns10 ns

0.5 ns
1 ns

0.5 ns

0.5 + 8.5
= 9 ns

10 − 1 =
9 ns

−0.5+1+
8.5 = 9 ns

FF1 FF2 FF3FF0

CL1 CL2 CL3

skew0,1
= 0.5 ns

skew2,3
= 0.5 ns

skew1,2
= −1 ns

FIGURE 13.5

Cycle stealing.

758 CHAPTER 13 Synthesis of clock and power/ground networks
the last 1:5 ns of the clock period, combinational logic blocks CL1 and CL3 are sitting

idle. Although they maintain the correct values at FF1 and FF3 before the arrival of the

next clock edge, they are not doing meaningful computation.

In the following, we will show how we can design the clock distribution network such

that the system can run at 111 MHz (i.e., a clock period of 9 ns). In this clock network,

the clock signal arrives at FF0, FF1, FF2, and FF3 with the following skews:

skew0;1 ¼ 0:5 ns, skew1;2 ¼ �1 ns, and skew2;3 ¼ 0:5 ns. The effects of the skews

are that CL1 and CL3 have exactly 8:5 ns for the computation, and CL2 has exactly

10 ns for the computation. In other words, CL2 steals 0:5 ns each from the clock periods

for CL1 and CL3 so that the system can operate at a clock period that is smaller than the

longest path delay in CL2.

However, when the skew is excessively negative, the signal may arrive so early

that it races through the capturing flip-flop, resulting in double-clocking or a

hold-time violation. Consider the example in Figure 13.1 again. At time ti, the

clock edge triggers flip-flop FFi, and the input to FFi propagates through the

flip-flop and the combinational logic. Because we are considering the possibility

of data racing with the clock signal, we use the shortest propagation delay
through the flip-flop and the combinational logic, which is tmin

pFF þ tmin
logic. In the

worst case, the input signal at FFj has to remain stable for tmax
hold after the clock

edge of the same clock cycle arrives at tj. Therefore, only after tj þ tmax
hold may

the signal from FFi erase the input at FFj (see Figure 13.6). This constraint is

expressed as follows:
(a)

skewi,j > 0

tj
ti

tpFF

tlogicthold

(b)

skewi,j < 0

tlogic
thold

tpFF

ti tj

FIGURE 13.6

Hold time constraint in the presence of clock skew.

13.2 Design considerations 759
ti þ tmin
pFF þ tmin

logic � tj þ tmax
hold

which can be rewritten as a lower bound constraint on the skew:

skewi; j � tmax
hold � tmin

pFF � tmin
logic

As mentioned earlier, clock skew is typically caused by unbalanced delays in

the clock distribution network. Such unbalanced delays can be attributed to

uneven wire lengths along the clock paths, mismatches in the numbers of buf-

fers along the clock paths, and differences in the clock load driven by clock buf-

fers. Although it is possible to manipulate these differences and mismatches to

create useful skew for performance enhancement, skew caused by variations in
the manufacturing process cannot be eliminated or exploited easily. Oxide var-

iations, dopant variations, and width and length variations of devices affect such

device parameters as the threshold voltage and parasitic capacitance of clock

drivers and buffers. Variations in the interconnect thickness, widths, and

spacing, and variations in interlayer dielectric thickness affect the interconnect

resistance and capacitance. Because of these variations in process parameters,

the clock skew between two clock pins may be different in two different dies,

although the skew remains constant in a die. The challenge is to design a clock
distribution network that works equally well across different dies.

Although skew caused by static variations stays constant cycle to cycle,

time-varying variations in the operating condition of a circuit cause temporal

variation of the clock period at a given point on the chip [Rabaey 2003]. The

clock edge at a flip-flop may sometimes arrive earlier and sometimes later with

respect to an ideal reference clock, depending on the operating condition of the

circuit, as shown in Figure 13.7. Such temporal clock-period variation is referred

to as clock jitter. In particular, we call the worst-case deviation (absolute value)
of the arrival time of a clock edge at a given location with respect to an ideal

reference clock edge as absolute jitter. Let tiðnÞ and tiðnþ 1Þ, respectively,
refer to the arrival times of the nth and nþ 1st clock edges at

clock pin si. The cycle-to-cycle jitter (absolute value) for si is defined to be

t
jitter
i ðnÞ ¼ jtiðnþ 1Þ � tiðnÞ � CPj. Hence, the worst-case cycle-to-cycle jitter is
Cycle 1 Cycle 2 Cycle 3

t jitter
i

t jitter
i

t jitter
i (3)=|ti(4)-ti(3)-CP|

(2)=|ti(3)-ti(2)-CP|

(1)=|ti(2)-ti(1)-CP|
Cycle-to-cycle

jitter

(a)

ti(1) ti(2) ti(3) ti(4)

Ideal
clock
edge

Absolute
jitter

(b)

FIGURE 13.7

(a) Cycle-to-cycle jitter. (b) Absolute jitter.

760 CHAPTER 13 Synthesis of clock and power/ground networks
twice the absolute jitter (i.e., maxnt
jitter
i ðnÞ ¼ 2T

jitter
i), where T

jitter
i is the abso-

lute jitter of si. The setup-time constraint and hold-time constraint should be
updated accordingly:

skewi; j � Cp � tmax
pFF � tmax

logic � tmax
setup � ðT jitter

i þ T
jitter
j Þ
skewi; j � tmax
hold � tmin

pFF � tmin
logic þ ðT jitter

i þ T
jitter
j Þ

In other words, the clock period may be shortened or lengthened by

T
jitter
i þ T

jitter
j .

A few main sources of environmental variations cause clock jitter: power

supply noise, temperature gradients, substrate noise, and coupling of the clock

network with adjacent signals. All these variations are caused by switching activ-
ities. The first three variations, in particular, affect the generation and propaga-

tion of clock signal, because device parameters are strong functions of these.

The analog component of the clock generation circuitry and the clock buffers

in the distribution network are both significant contributors to clock jitter.

Switching activities, which vary from cycle to cycle, cause variations in inter-

connect couplings, gate capacitances, and the voltages of internal nodes of

latches and flip-flops. As a consequence, the load presented to clock buffers var-

ies from cycle to cycle, which causes jitter.
In the next section, we further elaborate on an important source of time

varying variations, namely, the power supply noise.
13.2.3 IR drop and L �di=dt noise
Because of the non-zero resistance of wires connecting a transistor to a P/G pad,

the transistor does not see a full VDD when current flows from the P/G pad to

the transistor. The voltage fluctuations, called IR drop, cause a degradation in
drive strength. Until recently, IR drop has been defined mainly by considering

the average current flowing through a power supply network [Lin 2001]. In a

static IR drop analysis, we calculate the IR drop defined as such by performing a

DC analysis of the power supply network that takes the average current as the

input. Of late, designers are concerned that the voltage of a power supply network

may not have sufficient time to recover because of the shrinking clock period as

the clock frequency increases. There has been an increasing need for dynamic

IR drop analysis, in which we have to consider the current waveform across mul-
tiple clock cycles [Lin 2001]. Therefore, the analysis of dynamic IR drop requires a

transient analysis of the power supply network.

The P/G pins also have associated inductive parasitics. Moreover, wires in a

P/G network typically have larger dimensions. Combined with the high operating

frequencies of modern designs, the impedances of such wires are increasingly

dominated by their inductive parasitics. Because of the time-varying nature of

the current drawn from the power supply noise, inductance causes AC voltage

fluctuations, called L �di=dt noise, in the supply lines. Large current spikes caused

13.2 Design considerations 761
by a large number of simultaneous switchings can cause considerable L �di=dt
noise.

In addition to causing signal integrity problems, power supply noise results in

variations in performance, which may also cause hold time or setup time viola-

tions. It is important to note that this effect varies from cycle to cycle, because

power supply noise is strongly related to switching activities. Moreover, the sup-

ply voltage continues to scale with device scaling. The reduction in power supply

voltage is accompanied by a decrease in noise margins as well. Consequently,

modern designs are more prone to failures caused by power supply noise.

Increasing wire widths is a typical approach to counter IR drop. Besides wire
sizing, decoupling capacitors are usually inserted to reduce IR drop and to sup-

press L �di=dt noise. Although on-chip decoupling capacitors are indispensable

for robust power supply, it is important to note that they are usually realized as

MOS capacitors. Hence, they are as leaky as transistors. For energy conservation,

it is crucial to restrict the use of on-chip decoupling capacitors.
13.2.4 Power dissipation
As the clock network switches in every cycle, its total power dissipation can be

significant. The IBM Power4 processor, for example, consumes 70% power in

clock networks and latches [Anderson 2001]. Because of the high switching

activity, dynamic power is the most significant component of clock power:

Pclk ¼ CV 2
DD fclk ¼ CV 2

DD=Cp

The capacitive load C includes the gate capacitance of the sequential elements
controlled by the clock signal, the interconnect capacitance of the clock network,

and the capacitances associated with the buffers used in the clock network.

One very effective technique in reducing the switching capacitance of a clock

network is through clock gating [Rabaey 2003]. One of many implementations of

clock gating is to “AND” the clock signal with an enable signal, as shown in

Figure 13.8. When the enable signal “EN” is low, all sequential elements in the
Clock

EN

EN = 1:

EN = 0:

0
1

0

FIGURE 13.8

Clock gating for power reduction.

762 CHAPTER 13 Synthesis of clock and power/ground networks
downstream of the AND gate will stay inactive. As the output terminals of these

sequential elements remain quiet, the combinational logic between these sequen-
tial elements also stay inactive. In other words, the corresponding functional units

have been disabled or clock gated. Because these sequential elements (and the

ensuing combinational logic) do not participate in the switching activity, the

switching capacitance of the clock network is reduced, effectively cutting down

on the dynamic power dissipated by the clock network.

For clock gating to be effective, the sequential elements should be clustered

such that a group of sequential elements can be gated by a single enable signal.

It is not economical otherwise to have one AND gate for each sequential ele-
ment. Moreover, there is an overhead of a control logic for the generation and

distribution of enable signals for different clusters of clock-gated sequential

elements. Propagating the clock signal through a mixture of buffers and AND

gates further complicates the control of clock skew. Even for flip-flops that

are not clock-gated, it may be necessary to insert an identical number of AND

gates along the clock path to promote symmetry in the clock network.

Clock gating is also an active power management technique that further

heightens the imbalance of switching activity at different locations of a chip.
Time-varying variations such as temperature gradients may become more

severe. The switching of a module between active and inactive modes also

results in larger variations in the current flowing through the power supply net-

work. All these variations are the main contributors to clock jitter.
13.2.5 Electromigration
Both the power supply network and the clock distribution network carry high

currents because of the high capacitive load that they have to charge or dis-

charge. Wires that carry high currents typically suffer from the effects of electro-

migration, where metal atoms migrate as a result of electrical current flowing
through the metal material. Void appears in the area from where metal mole-

cules migrate, leading to narrower line widths and eventually an open circuit.

On the other hand, electromigration can also cause metal buildup in the form

of hillocks in a wire, which may lead to a short with an adjacent wire. Metal

lines that have existing cracks or other imperfections are particularly prone to

electromigration. Circuit failure can also occur in the form of timing violation,

because the resistance and capacitance of a metal wire change because of

electromigration.
A good metric to characterize the reliability of a chip is the mean time to

failure (MTTF). A mathematical model for the MTTF of a chip caused by elec-

tromigration is given by Black’s equation [Black 1969]:

MTTF ¼ ðAJ�2ÞeEa=kT

where A is an empirically determined scaling factor, J is the current density,

Ea is the activation energy that is determined by the material and its diffusion

mechanism, k is Boltzmann’s constant, and T is the temperature.

13.3 Clock network design 763
The typical current density at which electromigration occurs in modern on-

chip interconnects is 106 to 107 A/cm2. Because the current in a wire varies
with time, the current density J in Black’s equation should be replaced by the

effective current density Jeff. For wires in a power supply network, the current

flow is usually unidirectional (from a VDD pad to a transistor). Thus, the effec-

tive current density is the average direct current density. For clock intercon-

nects, the effective current in a wire is essentially zero, because the current

flow is bidirectional. Treating the current as alternating, the root-mean-square

current density should be used instead.

It is clear from Black’s equation that the occurrence of electromigration in a
design is mainly determined by the current density J and the temperature T . It is,

therefore, desirable to reduce the switching activity of the circuit. We can also

address the issue of electromigration by the following techniques that target the

reduction of current density J. Increasing thewirewidth is themost straightforward

way to decrease current density and increase MTTF. Multiple vias can be, and are

often, used to improve reliability. The geometry of a via array should facilitate an

even distribution of the current flow through all the vias. Turning corner with an

oblique bend instead of a right-angled-bend also eliminates current crowding.
13.3 CLOCK NETWORK DESIGN

The two main subsystems in a clock network are: clock generation and clock

delivery. Clock generation is an important topic that has been covered quite
extensively in many textbooks on circuit design. This book, being an electronic

design automation text, will focus on the synthesis of clock delivery networks.

First, we cover some of the common clock topologies used in VLSI circuits. Sec-

ond, we present the Elmore delay model, which is extensively used in the EDA

community for the analysis and synthesis of clock networks. Third, we describe

several basic clock synthesis algorithms, dealing with both skew scheduling and

clock routing. Finally, we focus on a few fundamental clock optimization techni-

ques, namely, buffer insertion, clock gating, wire sizing, and link insertion. For
ease of presentation, the descriptions of many algorithms in this chapter may

deviate from the original ones in the literature.
13.3.1 Typical clock topologies
The most economical way of distributing a clock signal is that of a tree topology.

Assuming a binary tree structure, a clock tree with h levels of internal nodes can

reach 2h flip-flops at the leaf nodes.
An ideal clock tree is the H-tree topology [Fisher 1982; Kung 1982] as shown

in Figure 13.9, where the basic building block at each level of the distribution

network is a regular H-structure. Another scheme that yields equal-length inter-

connections is the X-tree (see also Figure 13.9), where the basic building

H - Tree X - Tree

FIGURE 13.9

Symmetric H-tree and X-tree.

764 CHAPTER 13 Synthesis of clock and power/ground networks
block is an X-structure [Bakoglu 1990]. All four corners of the H-structure and

X-structure are equidistant from the center of the structure. Both the H-tree

and X-tree achieve equal path length from the clock source to the leaf nodes

by, respectively, repeating the H-structure and X-structure recursively top-down

as shown in Figure 13.9. Such regular topologies also facilitate the addition of

clock buffers in a symmetrical fashion.
H-trees (or X-trees), although effective in equalizing path lengths from a

driver to a set of sinks, have serious limitations. These trees are best suited for

regular layouts where the clock load is uniformly distributed over the entire

chip. It is not particularly suitable for irregular placements with varying sink

capacitances, which are common for cell-based designs. Moreover, a tree topol-

ogy is more susceptible to the effects of variations in process parameters and

operating condition because of its lack of redundancy; there exists only one

unique path from the clock source to a flip-flop.
A very effective way of introducing redundant clock paths to a balanced

clock tree is to add a trunk to connect all the leaf nodes of the clock tree,

and branch off from the trunk to drive clock pins. In Figure 13.10, a balanced

binary tree drives the center trunk at 4 positions uniformly distributed along

the trunk. The binary tree is balanced, because the clock paths from the clock

source to the 4 connecting points along the trunk are of equal length. The clock

paths from the center trunk to the 5 clock pins are also designed to be of the

same path length. The center trunk is of wider width, so that the associated
resistivity is minimized. Consequently, the delays of the clock signal at various

locations of the clock trunk can be minimized or considered to be uniformly

equal. Hence, the clock trunk can provide a uniform clock reference for a

region of the circuit.

The clock spines used in the first Intel Pentium 4 microprocessor [Kurd

2001] are variants of the clock trunk topologies. Figure 13.11 shows three clock

spines that are driven at various points along the spines. The network of

distributed clock buffers is almost a balanced binary tree, with the non-tree
structure driven by each of the third level clock buffers being the exception.

As in the case of a clock trunk topology, the spines provide a uniform clock

A

B

C

(a)

D

Ebranching
point

A

B

C

(b)

D

E
driving
point

FIGURE 13.10

(a) A center trunk connecting 5 sinks. (b) A balanced binary tree driving the center trunk

at 4 positions.

PLL

spines

non-tree
structures

1st level
buffer

2nd level
buffer

3rd level
buffers

FIGURE 13.11

Clock spines in the first Intel Pentium 4 processor [Kurd 2001].

13.3 Clock network design 765

766 CHAPTER 13 Synthesis of clock and power/ground networks
reference for all the clock trees radiating out of the spines. It is interesting

to note that the clock signal goes through the same number of clock buffers before
reaching the spines. Hence, the effects of device variations are minimized. How-

ever, clock skew or jitter at the clock buffers directly above the spines may result

in short-circuit current between these buffers. In Figures 13.10 and 13.11, we

show a trunk and a spine as a straight wire. This is an abstraction; in reality, the

trunk or the spine could be a wire with multiple bends.

Compared with clock trunk topologies, a clock mesh provides significantly

more alternative paths from the clock source to the flip-flops. A clock mesh is

typically driven by distributed clock buffers. As shown in Figure 13.12, the
clock buffers could either be located at the perimeter of the clock mesh, as in

the case of the Alpha 21264 processor [Bailey 1998], or be uniformly distributed

across the grid points of the clock mesh, as in the case of the IBM Power4 pro-

cessor [Anderson 2001]. The distributed buffers for the mesh are typically

driven by another clock network. For a mesh whose clock buffers are on the

perimeter of the clock mesh, it is convenient to think of a boundary edge of

the mesh as a clock trunk that connects these buffers. For a mesh whose clock

buffers are uniformly distributed, it is typical to use an H-tree to distribute the
clock buffers.

If a clock mesh that spans the entire chip has both high grid density and high

clock buffer density, the clock signal can be considered to be available almost

everywhere on the chip with minimal skew. Because of its high grid density,
(a)
(b)

FIGURE 13.12

Two general clock mesh structures: (a) The clock drivers are at the perimeter. (b) The clock

drivers are on the grid points.

13.3 Clock network design 767
most clock pins can be connected directly to the grid edges with short links.

However, such a clock network incurs high power consumption. Furthermore,
it is not amenable to clock gating, because most clock pins are connected to the

clock mesh directly. A good compromise between power, skew, and wiring cost

is to use a clock mesh with a moderate grid density and a moderate clock buffer

density.

For such a clock mesh, the clock signal is no longer that freely available to

flop-flops distributed across the chip. Additional clock subnetworks have to

be constructed to connect them to the mesh. Figure 13.13 shows such a two-

level clock distribution network: global (level) clock distribution and local
(level) clock distribution. The global clock network distributes the clock signal

from the clock source to various regions across the chip with a balanced H-tree

driving a clock mesh. The local clock distribution subnetworks further distrib-

ute the clock signal to the flip-flops. Such a two-level design facilitates clock gat-

ing, especially when flip-flops that should be gated by the same control signal

reside in close proximity.

Although this example shows a two-level clock network, it is not uncommon

for a high-performance processor design to use a clock network with three or
more levels of hierarchy. Different topologies can be deployed at each level.

Instead of the use of a clock mesh as a global clock network, clock trunks

and clock spines could also be used. Similarly, the local clock distribution sub-

networks could either be a tree topology, clock trunk, clock spine, or even a

clock mesh. Among these, trees are the topology of choice for the connection

of the local flip-flops because of their low wiring cost. Because of the uneven
FIGURE 13.13

A hierarchical clock network with an H-tree driving a clock grid for global clock distribution,

which in turn drives flip-flops through many local clock distribution networks.

768 CHAPTER 13 Synthesis of clock and power/ground networks
distribution of flip-flops or clock load in a local region, it is common to use an

asymmetric tree structure as the clock network. Figure 13.14 shows some asym-
metric tree topologies constructed for the same set of clock pins under different

skew requirements. As we can observe from the topologies, they become more

complex and more costly as the skew constraints become more stringent (from

(a) to (c)). The topologies shown here are an “abstraction” of the physical clock

trees embedded in a Manhattan routing plane. Although they show the physical

locations of internal nodes in the clock trees, the connections are not
Cost = 780

(a)

Cost = 1113

(b)

FIGURE 13.14

Topologies for the same set of clock pins under various kinds of skew constraints: (a) Very

relaxed skew constraints. (b) Moderate skew constraints. (c) Very tight skew constraints.

Cost = 1230

(c)

FIGURE 13.14

(Continued)

13.3 Clock network design 769
embedded with horizontal and vertical wire segments. In other words, the con-

nections are not shown with rectilinear routing.

Most studies on clock layout are concerned with the construction of a tree

topology that satisfies the skew constraints. In fact, the synthesis of such a tree
will be the main focus of Section 13.3.3. Non-tree structures, such as meshes or

a hybrid of meshes and trees, typically can tolerate higher degrees of parameter

variations in devices and wires, as well as uncertainties in system operating

conditions because of its highly interconnected nature. In other words,

the behavior of non-tree structures is more predictable. However, the robust-

ness of a non-tree structure is achieved at the expense of higher routing

cost compared with a tree topology. Consequently, tree structures are preferred

over non-tree structures when routing area is a premium, but non-tree struc-
tures are the preferred solutions when the predictability of clock networks is

critical.

Because deep-submicron designs are more susceptible to parameter varia-

tions, more and more designs have turned to non-tree structures for clock distri-

bution. A good tradeoff between area and process variation is the insertion of

cross-links in a tree topology, as shown in Figure 13.15. Here, wires are inserted

into a tree to provide alternative paths between selected pairs of nodes whose

skews are deemed to be highly susceptible to process variations. We will further
elaborate on the synthesis of such a non-tree structure in Section 13.3.4.

......
Cross links

(a)

(b)

FIGURE 13.15

(a) An abstract clock tree with links inserted. (b) A clock layout for a benchmark circuit with

cross-links inserted with the algorithm from [Lam 2005].

0

VDD

+−

R

C

Vout

FIGURE 13.16

A simple RC circuit driven by a step input.

770 CHAPTER 13 Synthesis of clock and power/ground networks
13.3.2 Clock network modeling and analysis
A key component to the synthesis of a reliable clock network is the modeling and

analysis of clock signal delays. In this section, we describe a commonly used delay

model for clock network synthesis, namely, the Elmore delay model [Elmore
1948]. In particular, we focus on the computation of Elmore delay for a tree.

Figure 13.16 shows a lumped RC circuit driven by a step input. The response

at the capacitor is governed by the following expression:

voutðtÞ ¼ VDDð1� e�t=RCÞ
The time at which voutðtÞ reaches some specified critical voltage Vcrit is given by

tcrit ¼ RC � In VDD

VDD � Vcrit

In particular, the time at which the output voltage reaches 50% of VDD is

approximately 0:69� RC. The rise time, which is typically defined to be the

elapsed time between 10% and 90% of VDD, is approximately 2:2� RC.

13.3 Clock network design 771
It is, however, more difficult to calculate the 50% delay of a distributed line,

or for that matter, an RC tree made up of lumped or distributed RC lines. Fortu-
nately, a number of useful delay models have been developed to help approxi-

mate the delay of RC trees. Among these, the Elmore delay model is most

commonly used.

First, we consider trees of lumped RC elements only. In [Elmore 1948],

Elmore defined the delay of node i in an RC tree as

tElmore; i ¼
ð1
0

t � hiðtÞdt

where hiðtÞ is the impulse response to the unit impulse (applied at time 0) at

time t, or equivalently, the derivative of the unit step response at time t. The

50% delay, denoted t50, is the time for the monotonic step response to reach
50% of VDD, and it is the median of the impulse response. In essence, the

Elmore delay model uses the mean of the impulse response hðtÞ to approximate

the 50% delay of the step response.

Rubinstein, Penfield, and Horowitz [1983] derived an algorithmic approach

to compute the Elmore delay of all nodes in an RC tree; the computation time

is proportional to the number of lumped RC elements. Before giving the details

of the approach, we first provide some definitions. Given an RC tree, there is a

corresponding abstract topology. Figure 13.17 shows one such example. The
tree is driven at its root (u) by a driver (or buffer), which is modeled as voltage

source, labeled src, connected in series with an output resistance, Ru. Every

internal node of the tree is connected to one or more child nodes. Because each

of these connections (or tree edges) can be uniquely identified by the child

node, we label the resistors between them according to the labels of the child

nodes. Node u, for example, is connected to child nodes v and x by resistors

Rv and Rx, respectively, in the RC tree. Each node i in the RC tree has an asso-

ciated capacitor Ci.
u

v x

y z

(a)
(b)

u

v x

y z

+
−

Rv

Ru

Rx

Ry
Rz

Cu

Cx

CzCy

Cv

src

FIGURE 13.17

(a) An abstract topology. (b) The corresponding RC tree.

772 CHAPTER 13 Synthesis of clock and power/ground networks
Let Pathðsrc; jÞ denote the path in the RC tree T from voltage source, src, to

node j. Moreover, let RPathðsrc; iÞ\Pathðsrc; jÞ denote the total resistance along the
path common to Pathðsrc; iÞ and Pathðsrc; jÞ. Furthermore, let Ti denote

the subtree whose root node is i. The Elmore delay from src to i is given by

the following two equivalent expressions:

tElmore;i ¼
P

j2T Cj � Rpathðsrc; iÞ\pathðsrc; jÞ
¼P

Rk2pathðsrc; iÞ Rk

P
j2Tk Cj

The second expression, i.e., Equation (13.7), gives a linear time computation of

the Elmore delay. Consider the example in Figure 13.17, the Elmore delays of

nodes v and z can be written as:

tElmore;v ¼ RuðCu þ Cv þ Cx þ Cy þ CzÞ þ RvðCv þ Cy þ CzÞ
tElmore;z ¼ RuðCu þ Cv þ Cx þ Cy þ CzÞ þ RvðCv þ Cy þ CzÞ þ RzCz

First, we observe that the capacitive terms in the parentheses are cumulative
from right to left in the two preceding expressions or from bottom to top topo-

logically if we traverse the RC tree. This suggests that in a bottom-up manner

(or in a post-order traversal), we can compute at each node k the total

downstream capacitance CTk ¼ Sj2TkCj. The procedure for the computation

of downstream capacitance of node k in a bottom-up fashion is given in

Algorithm 13.1.

Algorithm 13.1 Compute-CT

Input: Node k

Output: Total downstream capacitance CTk at node k
1.

2.

3.

4.

5.
CTk Ck;

for each node j 2 Children(k) do

CTk CTk þ Compute-CT (j);

end for

return CTk ;
Second, tElmore,z ¼ tElmore,v þ RzCz. In other words, the Elmore delay of a node

is an accumulation of RC product terms from the voltage source to the node of

interest. The RC product term at node k is that of the branch resistance Rk and

the total downstream capacitance CTk . Therefore, in a top-down manner from

the voltage source to node i, we can sum up the RC delay of each resistor
along the path. In fact, in a top-down traversal of the tree T, we can compute the

Elmore delays for all nodes. A description of the recursive computation of Elmore

delays of nodes in Tk in a top-down fashion is given in Algorithm 13.2.

13.3 Clock network design 773
Algorithm 13.2 Compute-Elmore-Delay

Input: Node k

Output: Elmore delay of node k
1.

2.

3.

4.

5.

6.

7.

FIG

Mod

p-ty
if node k is the root node

tElmore; k 0;

else

tElmore;k tElmore;ParentðkÞ þ Rk � CTk ;

for each j 2 ChildrenðkÞ do
Compute-Elmore-Delay(j);

end for
On-chip interconnects are not lumped RC elements; they are distributed RC

lines. Given an RC line whose resistance R and capacitance C are uniformly

distributed over the line, we can divide the line evenly into n segments and

model each segment as a lumped RC element, with resistance R/n and capaci-

tance C/n. Assuming a step input at one end of the wire, the Elmore delay at

the downstream endpoint is

tElmore ¼ R=n � C þ R=n � Cðn� 1Þ=nþ � � � þ R=n � C=n
¼ RCðnþ 1Þ=2n

As n approaches 1, tElmore approaches RC/2. We can replace a uniformly

distributed RC line as a p-type lumped RC circuit as shown in Figure 13.18,

where one-half of the wire capacitance is at the downstream end. Because the
uniformly distributed RC line has to present a total capacitive load of C to all

upstream resistors in the tree topology, the remaining half of the wire capaci-

tance is at the upstream end of the wire.

If one end of the wire is connected to the clock pin of a flip-flop, the capac-

itance associated with that end should include both the gate capacitance of the

clock pin and one-half of the wire capacitance.
R

C

2

u v

C

2

URE 13.18

eling a uniformly distributed RC line of resistance R and capacitance C with a

pe circuit.

774 CHAPTER 13 Synthesis of clock and power/ground networks
Remark: Is Elmore Delay Accurate Enough? The Elmore delay model has

been used extensively to approximate the 50% delay point. It can easily be
shown that the Elmore delay gives the 63% (¼ 1� 1=e) delay of a simple RC cir-

cuit (with a single resistor and a single capacitor), which is an upper bound of

the 50% delay. In general, the Elmore delay of a sink in an RC tree gives an upper

bound on the actual 50% delay of the sink under not only the step input but also

any monotonically increasing, piecewise-smooth input uðtÞ, with its derivative
d
dt
uðtÞ being unimodal and symmetric [Gupta 1997]. The approximation of

the 50% signal delay by the Elmore delay is exact only for a symmetric impulse

response, where the mean is equal to the median [Gupta 1997]. Although the
Elmore delay model may not be accurate, it has a high degree of fidelity. An opti-

mal or near-optimal solution according to the estimator is also nearly optimal

according to actual (SPICE-computed [Nagel 1975]) delay for routing construc-

tions [Boese 1995] and wire sizing optimization [Cong 1996]. Studies in [Cong

1995b, 1998] also showed that the clock skew under the Elmore delay model

has a high correlation with the actual (SPICE) skew. Figure 13.19 demonstrates

the accuracy and fidelity of Elmore delay skew to actual skew for routing trees

constructed under the Elmore delay [Cong 1998].
Of course, the Elmore delay model has a few disadvantages. First, the Elmore

delay may not be very accurate. So, it is not suitable to be used directly for accu-

rate circuit timing analysis. Also, it cannot handle the inductive effect, because

the Elmore delay is defined for a monotonic response. More accurate delay

estimation can be obtained with higher order moments.
13.3.3 Clock tree synthesis
Two problems relate to the synthesis of a clock net: (1) the determination of a

feasible clock schedule that defines the arrival times of the clock signals at the
0

100

200

300

400

500

600

0 100 200 300 400 500

Skew
from

SPICE
(ps)

Skew under Elmore Delay (ps)

FIGURE 13.19

Elmore delay skew versus actual (SPICE simulation) delay skew for clock trees obtained by

Greedy-BST/DME algorithm [Cong 1995b].

13.3 Clock network design 775
clock pins, and (2) the physical layout of the clock network that realizes the

clock schedule. In the context of clock synthesis, a clock schedule is feasible
if it meets the performance requirement without causing race hazards in the sys-

tem operation. A physical clock network realizes the clock schedule if the clock

signal arrives at the registers at the respective arrival times specified by the

clock schedule. We refer to the first problem as that of clock skew scheduling

and the second as that of clock routing.

13.3.3.1 Clock skew scheduling

Designers may impose additional constraints to make circuits more robust to

process variations or have less power consumption. For example, we can make

a circuit more robust to process variations by subtracting a safety margin from

the upper bound constraint in Equation (13.5), or adding a safety margin to the
lower bound constraint in Equation (13.6):

skewi; j � Cp � tmax
pFF � tmax

logic � tmax
setup � ðT jitter

i þ T
jitter
j Þ � du
skewi; j � tmax
hold � tmin

pFF � tmin
logic þ ðT jitter

i þ T
jitter
j Þ þ dl

where du � 0 and dl � 0 are the safety margins. In general, safety margins may

vary for different pairs of flip-flops.

For convenience, we use li;j � skewi;j ¼ ti � tj � ui; j to represent lower- and

upper-bound skew constraints between si and sj and C ¼ fli; j � skewi; j � ui; jg
to denote the set of skew constraints for all sequentially adjacent clock pins si
and sj 2 S, the set of all clock pins of flip-flops. A skew schedule X is an assign-

ment of delay values ti to each clock pin si. We say that X is feasible if skewi; j

satisfies the skew constraints in C.
The skew bounds, each constraining the difference of a pair of variables, can

be represented by a constraint graph GC ¼ ðV ;EÞ as follows [Cormen 2001]:

Each clock pin in S corresponds to a vertex in the constraint graph. For the

two skew constraints associated with si and sj, we generate two directed edges

in GC, ei; j and ej; i. The former edge captures the lower-bound constraint and the
latter edge the upper-bound constraint. The weight of ei; j, denoted by wi; j, is

�li; j, and the weight of ej; i, denoted by wj; i, is ui; j. We will now give the moti-

vation for such a graph formulation.

Consider a circuit with four flip-flops with clock pins fs1; s2; s3; s4g for exam-

ple. In this circuit, FF1 feeds its output (through some combinational logic) to

FF2 and FF3, both of which send data to FF4. We illustrate in Figure 13.20 the

corresponding constraint graph.

First, we consider the four upper-bound skew constraints among the four
clock pins: skew1; 2 � u1; 2, skew2; 4 � u2; 4, skew1; 3 � u1; 3, and skew3; 4 � u3; 4.

Now, the constraint ti � tj � ui; j can be written as ti � tj þ ui; j. With this

expression, we can interpret ti as a distance label of node si, and say that si is

of a distance at most ui; j away from sj. That is equivalent to the existence of a

s1

s2

s3

s4

-l1,2

u1,2

-l1,3
-l3,4

-l2,4

u2,4

u3,4
u1,3

FIGURE 13.20

A constraint graph constructed from a circuit with four flip-flops represented by clock pins

fs1; s2; s3; s4g. FF1 is sequentially adjacent to FF2 and FF3, both of which are sequentially

adjacent to FF4.

776 CHAPTER 13 Synthesis of clock and power/ground networks
directed edge ej;i 2 E of weight wj; i ¼ ui; j from sj to si for each constraint

ti � tj � ui; j, as shown in Figure 13.20.
Although FF1 and FF4 are not sequentially adjacent, the two data paths

FF1 ! FF2 ! FF4 and FF1 ! FF3 ! FF4 induce two transitive constraints

between s1 and s4:

skew1; 2 þ skew2; 4 ¼ ðt1 � t2Þ þ ðt2 � t4Þ ¼ t1 � t4 � u1; 2 þ u2; 4

skew1; 3 þ skew3; 4 ¼ ðt1 � t3Þ þ ðt3 � t4Þ ¼ t1 � t4 � u1; 3 þ u3; 4

The tighter of the two constraints imposes an upper-bound constraint on the
skew between s1 and s4:

skew1;4 ¼ t1 � t4 � minfu1;2 þ u2;4;u1;3 þ u3;4g
Consequently, the upper bound on skew1; 4 ¼ t1 � t4 is essentially the shortest

path distance from s4 to s1 in the constraint graph.

Next, we consider the lower bound constraints l1;2 � skew1;2, l2;4 � skew2;4,
l1; 3 � skew1; 3, and l3; 4 � skew3; 4. Because li; j � ti � tj ¼ skewi; j is equivalent

to tj � ti � �li; j, we add a directed edge ei; j 2 E of wi; j ¼ �li; j from si to sj,

as shown in Figure 13.20. It is obvious that skew1;4 is bounded from below by

the negative of the shortest distance from s1 to s4.

It can be shown that there exists a feasible skew schedule subject to C if, and
only if, GC has no negative-weight cycles [Cormen 2001]. To perform a feasibil-

ity check and to compute a feasible skew schedule, we first augment the con-

straint graph GC ¼ ðV ;EÞ with a source vertex S0 and connect S0 to each
si 2 V with an outgoing edge of zero weight. Then, we apply the Bellman-Ford

algorithm [Cormen 2001] to the augmented graph to compute the shortest dis-

tances from S0 to all vertices. If the constraint graph has no negative-weight

cycles, the Bellman-Ford algorithm terminates with appropriate shortest dis-

tances (or ti’s) assigned to clock pins; it returns a flag indicating that the sched-

ule is infeasible otherwise. A careful implementation of the Bellman-Ford

algorithm for the feasibility check has OðjV jjEjÞ time complexity.

13.3 Clock network design 777
The preceding formulation checks for the feasibility of a given clock fre-

quency (or clock period CP). We can perform clock frequency optimization
(or minimization of clock period) by building on the preceding formulation

with an iterative binary search procedure. Suppose we are to determine the

smallest feasible CP within the range CP;min � CP � CP;max. First, we consider

CP ¼ ðCP;min þ CP;maxÞ=2 and formulate the set of skew constraints C accord-

ingly. If the Bellman-Ford algorithm returns a feasible schedule, we update CP;max

to ðCP;min þ CP;maxÞ=2; otherwise, we update CP;min to ðCP;min þ CP;maxÞ=2. We

repeat the binary search procedure until CP;min and CP;max are sufficiently close.

Another important concept related to skew scheduling in the context of
clock tree synthesis is that of a feasible skew range. Consider a circuit with

three clock pins fs1; s2; s3g of three flip-flops FF1, FF2, and FF3 forming a cyclic

data path FF1 ! FF2 ! FF3 ! FF1. The skew constraints among the three flip-

flops�10 � skew1; 2 � 3,�5 � skew1; 3 � �2, and 1 � skew2; 3 � 4 are captured

in the constraint graph as shown in Figure 13.21a. We refer to the range ½li; j;ui; j�
defined by the lower and upper bounds of skewi; j as the skew range of skewi; j.

Interestingly, even though zero-skew is within the skew ranges of skew1; 2 and

skew2; 3, a feasible skew schedule does not exist if we choose skew1; 2 ¼ 0. This is
because of the transitive skew constraints �9 � t1 � t2 � �3 between s1 and s2
induced by the skew constraints of skew1; 3 and skew2; 3. Such stricter constraints

are, in fact, captured by the shortest paths between s1 and s2 in the constraint

graph: the upper bound of skew1;2 is essentially the shortest path distance

from s2 to s1 in the constraint graph, and skew1;2 is bounded from below by

the negative of the shortest distance from s1 to s2.

Consider a constraint graph with no negative-weight cycles. Let di; j denote

the shortest distance to sj from si. The inequalities �di; j � skewi; j � dj; i define
the feasible skew range of skewi; j, denoted as FSRi; j. Given a constraint graph

GC with no negative cycles, we can build an all-pairs shortest distance matrix

D ¼ fdi; j : si; sj 2 Sg from GC in OðjV j3Þ by the Floyd-Warshall algorithm

[Cormen 2001] to represent the feasible skew ranges of all skew pairs.

Figure 13.21b shows the all-pairs shortest distance matrix of the original con-

straint graph in Figure 13.21a.

We say that a skew commitment is made when we narrow a nontrivial FSR

to a single skew value. In fact, we can commit skewi; j, the skew between si and
sj, to any x 2 ½�di; j;dj; i� ¼ FSRi; j, because a feasible skew schedule that contains

such a skew commitment always exists. However, we may not make two or

more such skew commitments independently without affecting the existence

of a feasible skew schedule. Algorithm 13.3 gives an OðjV j2Þ approach for updat-

ing matrix D after we commit skewi;j to a skew value of x by shrinking the fea-

sible skew range to a single value. In general, the algorithm can be applied

whenever we refine the skew range of a pair of clock pins. Figure 13.21c shows

the resultant matrix D after a skew commitment of skew1; 2 ¼ �3.

10

3

5

Constraint graph GC

(a)

-2
4

-1

s1 s2

s3

0

0

0 9

-3

5

-2

-1

4

s2s1 s3

s1

s2

s3

All-pairs shortest distance matrix D

(b)

0

0

0 3

-3

2

-2

-1

1

s2s1 s3

s1

s2

s3

Updated matrix D after committing skew1,2 = -3

(c)

FIGURE 13.21

An example showing the incremental skew scheduling based on an all-pairs shortest-distance

matrix: (a) The constraint graph GC. (b) The all-pairs shortest distance matrix D. (c) The all-

pairs shortest distance matrix after committing the skew of s1 and s2 to skew1,2 ¼ �3.

778 CHAPTER 13 Synthesis of clock and power/ground networks
We now construct an OðjV j3Þ algorithm for incremental scheduling. First, the
Floyd-Warshall algorithm is used to generate matrixD inOðjV j3Þ time complexity.

As long as there exist uncommitted skews (or nontrivial feasible skew ranges), we

select one of them and commit the skew to an arbitrary value in the feasible skew

range. Then, we apply the incremental update procedure in

13.3 Clock network design 779
Algorithm 13.3 Update All-Pairs Shortest Distance Matrix

Input: A skew commitment skewi; j ¼ x; an all-pairs shortest distance matrix D ¼ fdi; lg
Output: An updated matrix D
1.
 Set di; j ¼ �x and dj; i ¼ x;
2. for each dk; l; 1 � k 6¼ l � n in D do

3. Set dk;1 ¼ minfdk; l;dk; i � x þ dj; l;dk; j þ x þ di; lg;
4. end for

Algorithm 13.3. In the worst case, we have to perform jV j � 1 skew commit-

ments, hence the OðjV j3Þ time complexity.

In a sense, the incremental skew scheduler finds a spanning tree of the complete

graph represented by thematrixD. Here, a skew commitment is essentially an edge

of the spanning tree. (In reality, there are two edges for each skew commitment,

with the edgeweight being the committed skew value or the negation of it, depend-

ing on the direction of the edge.) Consequently, after at most n� 1 skew commit-

ments, the spanning tree connects all sinks in the graph. Moreover, the
skew between any pair of clock sinks is defined by the sum of the edge

weights along the path between the two corresponding vertices in the span-

ning tree.

Remark: Clock Scheduling and Power Supply Noise: Very recent works on

clock schedule optimization also considered current-induced noise control

and minimization. If not minimized, current induced noise, which includes IR

drop and L � di=dt noise, has an adverse effect on circuit performance, espe-

cially for low-power systems with reduced supply voltage, because low noise
margins are a primary concern. An effective method to reduce the current-

induced noise is to design the circuit such that the current drawn is fairly stable

without large peaks. In many designs with a huge clock distribution network,

current peaks are usually caused by the simultaneous switching of highly loaded

clock lines, as well as by the switching activities in the sequential elements

when they are triggered and in the ensuing combinational logic. There are sev-

eral skew scheduling algorithms for spreading out these switching activities

over time [Vuillod 1996; Vittal 1996; Lam 2002, 2003; Yu 2007]. The reader
may refer to the relevant papers for more details.

13.3.3.2 Clock tree routing

We now deal with the problem of clock tree routing (i.e., the construction of

a tree topology that realizes the specified skew schedule). Recall that S contains

the set of clock pins of flip-flops fs1; . . . ; sng. For convenience, we also include

the clock source, denoted as s0 in S. In general, the clock routing problem can

be formulated as follows: Given fls1 ; . . . ; lsng, a set of locations of the clock pins

fs1; . . . ; sng of flip-flops and skew constraints on various pairs of flip-flops,

780 CHAPTER 13 Synthesis of clock and power/ground networks
construct with minimum wiring cost, a clock tree that satisfies the setup time

and hold-time skew constraints in Equations (13.8) and (13.9). The location of
the clock source, denoted as ls0 , may also be given. If ls0 is not given, the clock

router will also determine a convenient location for s0. There are possibly other

constraints and/or objectives to the problem:
1. We want to impose a constraint on the rise/fall times of the clock signal

at the sinks, because it is critical to keep the clock signal waveform clean

and sharp.

2. We want the clock network to be tolerant of process variations, which

cause the wire widths and device sizes on the fabricated chip to differ

from the specified wire widths and device sizes, respectively, resulting

in so-called process skew (i.e., clock skew caused by process variations).
Several simplifications to the clock routing problem were made in the past to

make the task easier. It is the enabling concept of (absolute) global skew that

makes these simplifications possible. Indeed, these simplifications cultivate a

prolific area of studies on clock tree routing.

The global skew is defined to be the maximum among all the absolute skew
values between clock pins: gskew ¼ maxi; jjti � tjj. Several simpler versions of

the clock-routing problem centered around the concept of global skew are

given in the following:
1. Given a set of sink locations, construct with minimum routing cost a

clock routing that minimizes the global skew gskew.

2. Given a set of sink locations, construct with minimum routing cost a

clock routing that achieves zero skew (i.e., gskew ¼ 0). In other words,

all clock pins are required to have an identical clock delay. This is known

as the zero-skew routing problem.

3. Given a set of sink locations and a skew bound B � 0, construct with

minimum routing cost a clock routing that satisfies gskew � B. This is
called the bounded-skew routing problem.
It is through these simplifications that we can obtain a better understanding of the

general clock-routing problem, which is also known as the useful skew–routing

problem, defined at the beginning of this section. We will now describe various
algorithms on clock routing on the basis of the following classification: (1) zero-

skew routing, (2) bounded skew routing, and (3) useful-skew routing.

In the descriptions of these algorithms, we distinguish a physical intercon-

nect tree T from its abstract topology G, which is a binary tree such that all

sinks are the leaf nodes of the binary tree. Every non-leaf node of G has two

child nodes, with a possible exception that the root node may have only one

child node. We first introduced the concept of an abstract topology in Section

13.3.2. We will now provide a more formal definition. The source driver,
denoted s0, is the root node of the tree. When ls0 , the location of s0, is given,

s0 has a singleton internal node, denoted as s 00, as its only child; otherwise, s0

13.3 Clock network design 781
has two child nodes. Each non-root node v is connected to its parent, denoted

as pðvÞ, by edge ev. Consider any two nodes, say u and v, with a common parent
node w ¼ pðuÞ ¼ pðvÞ in the abstract topology. The signal from the source has

to pass through w before reaching u and v (and their descendants).

The embedding of an abstract topology G to form an interconnect tree T

involves the mapping of each internal node v 2 G to a location lv ¼ ðxv; yvÞ in
the Manhattan plane, where ðxv; yvÞ are the x- and y-coordinates, and replacing

each edge e 2 G by a rectilinear edge or path. It is important to note that most

clock-routing algorithms are concerned with only the mapping of internal nodes

to physical locations and not the actual routing of wires, a task that could be accom-
plished by a maze router. Figure 13.22 shows an abstract topology and three of its

many possible ways of embedding. Note that s 00 is the singleton child node of s0
because the location of s0 is given. The subtree rooted at node v in T is denoted

as Tv. InT , the cost of edge ev is itswire length, denoted by jevj. The cost of a routing
tree T is the sum of its edge costs. Among the threeways of embedding the abstract

topology in Figure 13.22, the embedding in (d) has the highest cost.

The objective of a clock routing algorithm is therefore twofold: to generate

an abstract topology and to embed the abstract topology. For each of the
clock-routing problems, namely zero-skew routing, bounded-skew routing, and

useful-skew routing, we will first describe how we can embed a given abstract

topology to satisfy the respective skew constraint(s). Then, we will present

approaches to generate an abstract topology together with embedding.

13.3.3.3 Zero-skew routing

The problem of zero-skew routing was first successfully solved in [Tsay 1991]

with a bottom-up approach. The Deferred-Merge Embedding (DME) algorithm,

proposed independently in [Edahiro 1991; Chao 1992; Boese 1992], generalized

the approach in [Tsay 1991] with the enabling concept of a merging segment

to achieve zero-skew routing for a given abstract topology.
In general, given two zero-skew trees, there exists a set of locations at which

two zero-skew trees can be joined with the minimum wire length such that the

new tree is also of zero skew. In Figure 13.23b, for example, any point la on the

line segment msa is equidistant from sinks s1 and s2 (i.e., we obtain a zero-skew

subtree rooted at la with sinks s1 and s2). For ease of illustration, the zero-skew

tree in Figure 13.23 is constructed under the path length delay model. The

model uses the wire length of the unique path between an ancestor node and

a descendant node in the physical routing tree to estimate the delay between
the two nodes. Many illustrations of different clock-routing algorithms in this

section are based on the path length delay model.

Given S and an abstract topology G, the DME algorithm exploits this flexibil-

ity and embeds internal nodes of G by means of a two-phase approach: (1) a

bottom-up phase that constructs for each internal node of G a set of possible

placement locations of the node in a zero-skew tree T ; and (2) a top-down

s0

s1

s2
s3

u = s0
'

v

(a)

s3

s0

s1

s2v

(b)

u = s0
'

s3

s0

s1

s2v

(c)

u = s0
'

FIGURE 13.22

(a) An abstract topology. (b)–(d) Three different ways of embedding the topology.

782 CHAPTER 13 Synthesis of clock and power/ground networks

s3

s0

s1

s2v

(d)

u = s0
'

FIGURE 13.22

Continued

s1 s2 s3 s4

a b

Topology

(a)

s0

v = s�0

msa

msv

s1

s4

s0

msb

s2

s3

(b)
Bottom-up Merging phase

FIGURE 13.23

An illustration of the bottom-up phase of the DME algorithm: (a) Topology of a clock source s0
and 4 sinks s1��4. (b) Merging segments of internal nodes a, b and v ¼ s0.

13.3 Clock network design 783

784 CHAPTER 13 Synthesis of clock and power/ground networks
embedding phase that determines for each internal node its exact location in T .

Note that we do not perform actual Manhattan routing of the connections
between nodes in the clock tree.

We refer to the set of possible placement locations of v 2 G in a minimum-

cost zero-skew tree as the merging segment of v, denoted as msv. The segment

msv is always a line segment (with possibly zero length when it degenerates

into a point) with slope þ1 or �1, as shown in Figure 13.23. This stems

from the fact that a circle in the Manhattan routing plane is a square rotated

by 45 degrees.

For each leaf node si 2 G, themerging segment of si is simply lsi, the location of
sink si. Suppose v is the parent node of si and sj, which are at a distance of dðlsi ; lsjÞ
apart. Under the path length delay model, any point inmsv should be of distance

dðlsi ; lsjÞ=2 from lsi and lsj . The segmentmsv can be computed by taking the inter-

section of two Manhattan circles, both of radius dðlsi ; lsjÞ=2, that are centered at

lsi and lsj . Because a Manhattan circle is a square that is rotated 45 degrees, the

intersection must be a line segment of slope þ1 or �1. Because it lies on the cir-

cumference of a Manhattan circle, we refer to such a line segment as aManhattan

arc.
Now, we consider a more general case. Let a and b be the child nodes of

v 2 G. The construction of msv depends on msa and msb, hence the bottom-

up processing order. In particular, any point on msv should allow a and b to

be merged with minimum wiring cost jeaj þ jebj, while maintaining zero skew

among all sinks in Tv.

Let L denote the shortest Manhattan distance between msa and msb (i.e.,

dðmsa;msbÞ ¼ L). Here, the distance between two sets of points P and Q is

defined as dðP;QÞ ¼ minfdðp; qÞjp 2 P; q 2 Qg. Let msv be at a distance of
x � L from msa where x is between 0 and 1. Given ta, the Elmore delay from a

to its sinks in Ta, the delay from v to sinks in Ta is

ta þ r � x � L � CTa þ
c � x � L

2

� �

where CTa is the total capacitance of the subtree Ta, and r and c are, respectively,

the unit-length resistance and capacitance of a wire of some prespecified width.

When Ta happens to be just a clock pin si, CTa is the gate capacitance associated

with clock pin and ta ¼ 0. Similarly, the Elmore delay from v to sinks in Tb is

tb þ r � ð1� xÞ � L � CTb þ
c � ð1� xÞ � L

2

� �

where tb is the Elmore delay from b to its sinks in Tb, and CTb is the total capac-

itance of the subtree Tb. We can now solve for x as follows [Tsay 1991]:

x ¼ tb � ta þ r � L � ðCTb þ c � L=2Þ
r � L � ðc � Lþ CTa þ CTbÞ

13.3 Clock network design 785
If 0 � x � 1, we have found jeaj ¼ x � L and jebj ¼ L� jeaj. Clearly, the wiring

cost to merge msa and msb is L, which is the minimum possible. Consequently,
CTv ¼ CTa þ CTb þ c � ðjeaj þ jebjÞ. Note that the preceding computation assumes

both edges ea and eb have the same width. A simple extension can be made to

achieve zero-skew merging even when ea and eb have different widths.

If x < 0 or x > 1, it implies that the wire delay in a wire of length L is insuf-

ficient to balance the delay difference in ta and tb. It is, therefore, necessary to

use a wiring cost jeaj þ jebj > L to achieve zero-skew. Without loss of generality,

let ta > tb. Then, jeaj ¼ 0, and jebj is obtained by solving the following equation

[Tsay 1991]:

ta ¼ tb þ r � jebj � CTb þ
c � jebj

2

� �

Given jeaj and msa, the union of all Manhattan circles of radius jeaj that are cen-

tered at points on msa gives us a tilted rectangular region (a rectangle rotated by
45 degrees). All points in the tilted rectangular region, referred to as trra, are at

a distance of at most jeaj from msa. Given jebj and msb, trrb can be similarly

obtained. The intersection of trra and trrb is the merging segment for v, which

is again a Manhattan arc, as shown in Figure 13.24. Figure 13.24a shows an

example for the case when jeaj þ jebj ¼ dðmsa;msbÞ, whereas Figure 13.24b

shows an example for the case when jeaj ¼ 0 and jebj > dðmsa;msbÞ. In the

latter example, msv is a subset of msa, and it resides completely within trrb.
No detour

(a)

|eb|

msb

trrb

msa

|ea|

msv

trra

With detour

(b)

|eb|

msb

trrb msa = trra

|ea| = 0

msv

FIGURE 13.24

Intersection of trra and trrb to obtain msv.

FIGURE 13.25

Snaking to lengthen the connection between two points.

786 CHAPTER 13 Synthesis of clock and power/ground networks
Depending on the embedded locations of v and b, jebjmay be longer than dðlv; lbÞ.
In that case, wire snaking or detour wiring, as shown in Figure 13.25, is necessary
to implement the desirable wire length of jebj in the final clock layout.

The bottom-up merging process computes a tree of merging segments. The

process stops when we have computed mss0 , the merging segment of s0 if ls0 is

not given; otherwise, the process terminates when we have computed the

merging segment of s 00, the singleton child node of s0. We refer to such a tree

as a merging tree. Every node v 6¼ s0 or s 00 in the merging tree also has an asso-

ciated wiring cost jevj for its connection to its parent node.

Given the merging tree, the root node s0 is first embedded if the clock source
location is not given. In such a case, any point on mss0 can be selected to be ls0 ;

otherwise, we pick any point on mss 00 that is closest to ls0 to embed s 00. Now, we

proceed in a top-down fashion to embed other internal nodes of G. An internal

node v is embedded at any point onmsv that is of distance no farther than jevj from
lpðvÞ, the embedded location of its parent node pðvÞ. Hence, v could be embedded

at any point that lies on the intersection of themerging segmentmsv and the tilted

rectangular region bounded by a Manhattan circle whose center is lpðvÞ and radius

is jevj. The DME algorithm is summarized in Algorithm 13.4.

Algorithm 13.4 Deferred-Merge Embedding (DME)

Input: A set of clock pins (possibly including clock source s0Þ S, an abstract topology G

Output: A zero-skew clock tree routing T
1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.
Initialize mssi ¼ lsi for all si 2 S;

for each merging of two subtrees Ta and Tb to form Tv based on bottom-up
topological sort of abstract topology G do

Compute jeaj and jebj;
Construct trra from msa and jeaj and trrb from msb and jebj;
msv trra \ trrb;

end for

if location of clock source s0 is given

Choose ls 0
0
2 mss 0

0
such that dðls 0

0
; ls0Þ ¼ dðmss 0

0
; ls0Þ;

else

Choose any ls0 2 mss0 ;

for each remaining internal node v 2 G in top-down order do

Let pðvÞ be the parent node of v;

Choose lv 2 msv such that dðlv; lpðvÞÞ � jevj;
end for

13.3 Clock network design 787
Figure 13.23 gives an example of a clock net with four sinks s1–s4. For the topol-

ogy given in Figure 13.23a, the DME algorithm constructs merging segments
msa, msb, and msv of the internal nodes a, b, and v, respectively, under the path

length delay model as shown in Figure 13.23b. In this example, v is also s 00, the
singleton child node of s0, whose location is given. Each of the non-root internal

nodes is embedded at a point on its merging segment that is closest to its parent

node as shown in Figure 13.26.
Example 13.2 Ze
ro-Skew Routing under Elmore Delay Model. Consider an example with 4 clock sinks

[Tsay 1991], as shown in Figure 13.27b. Sink s1 is at ð8; 0Þ with sink capacitance

cgs1 ¼ 16 F; sink s2 is at ð22; 6Þ with cgs2 ¼ 10 F; sink s3 is at ð0; 10Þ with cgs3 ¼ 1 F; sink
a

b

v = s�0

Cost = 22, Skew = 0

s1

s2

s4

s0

s3

FIGURE 13.26

An illustration of the top-down phase of the DME algorithm: Zero-skew clock tree with a total

wire length of 22 units for the example in Figure 13.23.

Topology

(a)

s1 s2 s3 s4

a b

s0 = v

(0, 10)

(5, 15)

(22, 6)

(8, 0)

(10, 6)

(16, 0)

(5, 11)

(1, 15)

msa

msv

(14.14, 1.86)

msb

s1

s2

cs
g

4
 = 2F

cs
g

3
 = 1F

cs
g

1
 = 16F

cs
g

2
 = 10F

s3

s4
r = 0.1W/unit
c = 0.2 F/unit

Merging tree

(b)

FIGURE 13.27

Application of DME on a 4-sink example under the Elmore delay model: (a) Abstract topology

of 4 sinks. (b) Merging segments of internal nodes a, b, and s0 ¼ v.

788 CHAPTER 13 Synthesis of clock and power/ground networks
s4 is at ð5; 15Þ with cgs4 ¼ 2 F. In this example, we assume unit-length wire resistance r

and unit-length wire capacitance c to be, respectively, 0:1O and 0:2 F.

The abstract topology G under which a zero-skew routing tree for the 4 sinks is to be

constructed is given in Figure 13.27a. Because the location of the clock source is not

given, the topology is a strictly binary tree; the root s0 ¼ v has two child nodes a and b,

which, respectively, connect sink pair s1 and s2 and sink pair s3 and s4.

We now consider the merging of s1 and s2 (i.e., the computation of msa). The dis-

tance between s1 and s2 is L ¼ dðls1 ; ls2 Þ ¼ 20 units. Let x � L be the distance of msa
from s1. Because the child nodes of a are sinks, the delays of the sink nodes are

t1 ¼ t2 ¼ 0 s, and the total capacitances in Ts1 and Ts2 are, respectively, CTs1
¼ cgs1 ¼

16 F and CTs2
¼ cgs2 ¼ 10 F. We can solve for x as follows:

x ¼ t2 � t1 þ r � L � ðCTs2
þ c � L=2Þ

r � L � ðc � Lþ CTs1
þ CTs2

Þ

¼ 10þ 2

4þ 16þ 10

¼ 0:4

Therefore, jes1 j ¼ 0:4 � 20 ¼ 8 units and jes2 j ¼ ð1� 0:4Þ � 20 ¼ 12 units. We com-

pute the merging segment msa by computing the intersection of the tilted rectangular

regions trrs1 and trrs2 . The tilted rectangular region trrs1 is defined by the coordinates

ð0; 0Þ, ð8; 8Þ, ð16; 0Þ, and ð8;�8Þ. Essentially, it is a Manhattan circle with its center at

ls1 ¼ ð8; 0Þ and a radius of 8 units. The tilted rectangular region trrs2 is a Manhattan circle

with its center at ls2 ¼ ð22; 6Þ and a radius of 12 units. The intersection of trrs1 and trrs2
gives us msa, which is a Manhattan arc defined by the coordinates ð10; 6Þ and ð16; 0Þ,
as shown in Figure 13.28.
(22, 6)

(8, 0)

(10, 6)

(16, 0)
msa

trrs2

trrs1

(8, -8)

(0,0)

(8, 8)

(22, -6)

(22, 18)

(34, 6)

s1

s2

cs
g

2
 = 10F

cs
g

1
 = 16F

FIGURE 13.28

Computation of msa.

13.3 Clock network design 789
If we embed the internal node a at any point on msa and connect it to s1 and s2 with

the shortest connections possible, the sink delays t1 and t2 from a under the Elmore

delay model are both 13:44 ns, which can be computed as follows:

t1 ¼ r � x � L � CTs1
þ c � x � L

2

0
@

1
A

¼ 0:1 � 8 � ð16þ 8 � 0:2=2Þ
¼ 13:44 ns;

t2 ¼ r � ð1� xÞ � L � CTs2
þ c � ð1� xÞ � L

2

0
@

1
A

¼ 0:1 � 12 � ð10þ 12 � 0:2=2Þ
¼ 13:44 ns

Similarly, we can compute the merging segment msb for the merging of s3 and s4.

The merging segment msb, whose endpoints are ð1; 15Þ and ð5; 11Þ, is shown in

Figure 13.27b. With shortest connections to s3 and s4 from any point on msb, the sink

delays t3 and t4 from b are both 0:96 ns.

Now, let us consider the merging of Ta and Tb. Besides r and c, the following

parameters are required to determine the location of the merging segment msv:

ta¼ t1¼ t2 ¼13:44 ns, tb¼ t3¼ t4¼ 0:96 ns, L¼dðmsa;msbÞ¼10 units, CTa¼cgs1þcgs2þ
0:2�20¼16þ10þ4¼ 30 F, and CTb¼ cgs3þcgs4þ0:2�10¼ 1þ2þ2¼ 5 F. Defining x �L
to be the distance of msv from msa and solving for x, we obtain

x ¼ tb � ta þ r � L � ðCTb þ c � L=2Þ
r � L � ðc � Lþ CTa þ CTbÞ

¼ 0:96� 13:44þ 0:1 � 10 � ð5þ 1Þ
0:1 � 10 � ð2þ 30þ 5Þ

¼ �0:175 < 0

As x < 0, it is necessary to use a wire length longer than L ¼ 10 units to balance the

delays ta and tb. We assign jeaj ¼ 0 and solve for jebj as follows:

ta ¼ tb þ r � jebj � CTb þ
c � jebj

2

0
@

1
A

) 13:44 ¼ 0:96þ 0:1 � jebj � 5þ 0:2 � jebj
2

0
@

1
A

) jebj ¼ 18:28 units

At this point, we have the total wire length of the zero-skew routing tree, which is

jes1 j þ jes2 j þ jes3 j þ jes4 j þ jeaj þ jebj ¼ 8þ 12þ 6þ 4þ 0þ 18:28 ¼ 48:28 units.

The merging segment msv is obtained by taking the intersection of trra and trrb, as

shown in Figure 13.29. As jeaj ¼ 0, trra is simply msa. The tilted rectangular region

trrb, whose vertices are ð�17:28; 15Þ, ð1; 33:28Þ, ð23:28; 11Þ and ð5;�7:28Þ, overlaps

(10, 6)

(16, 0)

(5, 11)

(1, 15)

(14.14, 1.86)

msb

msa

msv

trrb
(23.28, 11)

(5, -7.28)

18.28

18.28

(1, 33.28)

(-17.28, 15)

FIGURE 13.29

Computation of msv.

790 CHAPTER 13 Synthesis of clock and power/ground networks
with msa ¼ trra. Consequently, the two endpoints of msv are ð10; 6Þ and ð14:14; 1:86Þ,
as shown in Figure 13.29.

Now, let us turn our attention to the top-down embedding of the internal nodes of the

topology G. Because the location of clock source s0 ¼ v is not given, we have the flexi-

bility of embedding s0 ¼ v at any point on msv. Let us consider the two endpoints of msv
for embedding:
1. We embed s0 ¼ v at location ð10; 6Þ. As jeaj ¼ 0, we also have to embed a

at the same location. As jebj ¼ 18:18 > dðlv;msbÞ ¼ 10, the snaking of wire

may be required to balance the delay. To determine lb, we use the

intersection of msb and the tilted rectangular region bounded by a

Manhattan circle whose center is lv ¼ ð10; 6Þ and radius is jebj ¼ 18:18

units. As shown in Figure 13.30, we can embed b at any point on msb,

(10, 6)

(5, 11)

(1, 15)

(14.14, 1.86)

msb

msv

lv
18.28

18.28

(28.28,6)

(10, -12.28)

(10, 24.28)

(-8.28, 6)

18.28

18.28

FIGURE 13.30

Embedding of internal node b.

13.3 Clock network design 791
because msb is completely contained within the tilted rectangular region

whose vertices are ð�8:28; 6Þ, ð10; 24:28Þ, ð28:28; 6Þ, and ð10;�12:28Þ.
In Figure 13.31a, we embed b at location ð5; 11Þ, which is of distance 10

units from lv. Consequently, we require a detour of length 8.28 units in the

connection from lv to lb. In Figure 13.31b, we embed b at location ð1; 15Þ,
which is of distance 18 units from lv. As a result, the connection between lv
and lb requires a snaking of length 0:28 units.

2. We embed s0 ¼ v at location ð14:14; 1:86Þ; that leaves the endpoint ð5; 11Þ
of msb as the only possible location for the embedding of b. Again, we have

to embed a at the same location as v. The corresponding routing tree is

shown in Figure 13.31c.
It is straightforward to verify that all three zero-skew routing trees in Figure 13.31

have the same wiring cost of 48:28 units.

Because DME requires an input topology, the generation of a good abstract

topology is crucial. In fact, many of the more successful approaches interleave
topology construction with merging segment computation. The Greedy-DME

(a)

(0, 10)

(5, 15)

(22, 6)

(8, 0)

(10, 6)

(5, 11)

(14.14, 1.86)

msb

s3

s1

s2

msv

msa

s4

lb
lv = la

4.14

snaking

(b)

(0, 10)

(5, 15)

(22,6)

(8, 0)

(10, 6)

(1, 15)

(14.14, 1.86)

s3

s2

s1

msa

msv

s4
lb

msb

0.14

snaking

lv = la

(c)

(0, 10)

(5, 15)

(22,6)

(8, 0)

(5, 11)

msa

msb

msv

s3

s4

s1

s2

(14.14, 1.86)
lv = la

lb

FIGURE 13.31

Three different ways of embedding the merging tree in Figure 13.27 with the same wiring cost.

The embedded routing trees in (a) and (b) require detour wirings, whereas the embedding in

(c) does not.

792 CHAPTER 13 Synthesis of clock and power/ground networks

13.3 Clock network design 793
method proposed in [Edahiro 1992] is the most successful among them. Let F

denote a forest of singletonmerging trees, each consisting of only a single sink loca-
tion. Greedy-DME iteratively finds the “nearest” pair of neighbors in F , saymsa and

msb, and constructs for the newly added parent node, say v, a merging segment

msv based on a zero-skew merge of msa and msb. To account for detour wiring,

the proximity of two merging segments is usually defined by the cost of merging

them instead of their physical distance. The merging trees rooted at msa andmsb
in F are then replaced by a new merging tree rooted at msv. After n� 1 merging

operations, F contains a single merging tree, which also corresponds to the

abstract topology of the zero-skew routing tree. The outline of Greedy-DME is simi-
lar to that of DME except for step 2, which is amended as below:
2. for each merging of two subtrees Ta and Tb that are nearest neighbors in F to
form Tv do
In the Greedy-DME algorithm, it takes OðnÞ iterations to construct a zero-

skew clock tree, with each iteration involving an Oðn2Þ procedure to identify
the nearest-neighbor pair for merging. We can reduce the number of iterations

to OðlognÞ by merging several nearest-neighbor pairs simultaneously [Edahiro

1993a]. In each iteration, we construct a “nearest-neighbor graph” that main-

tains the nearest neighbor of each merging tree in F . In nondecreasing order

of distance, jF j=k (2 � k � 4) independent nearest-neighbor pairs of merging

trees are chosen from the graph for zero-skew merging. The number of merging

trees in F is reduced by a factor of 1=k after each iteration. Consequently, it

takes only Oðlogk=ðk�1ÞnÞ iterations to construct a zero-skew routing tree.
The construction of a nearest-neighbor graph in each iteration has a quadratic

time complexity. An approximate nearest-neighbor graph can be constructed in

linear time by use of the bucket decomposition method in [Edahiro 1994]. In

each iteration, the smallest square routing plane that covers all merging seg-

ments of the root nodes of the merging trees in F is uniformly partitioned

into YðjF jÞ square buckets. The routing plane and buckets are all tilted by

45 degrees, as shown in Figure 13.32. Each bucket has at most eight neighbor-

ing buckets. Assuming a uniform distribution of merging segments, the number
of merging segments in each bucket is Oð1Þ. We restrict the nearest neighbor of

a merging segment, say msv, to reside within the same bucket(s) as msv or in

the adjacent buckets as shown in Figure 13.32. Consequently, an approximate

nearest-neighbor graph can be constructed in linear time.
13.3.3.4 Bounded-skew routing

The two-phase approach taken by the DME algorithm to compute a zero-skew

tree for a prescribed topology can be extended quite naturally to handle more

general skew constraints. The BST/DME solutions developed in [Cong 1995a;

Huang 1995; Cong 1995b] for the problem of constructing a bounded-skew

msv

FIGURE 13.32

Bucket decomposition of a routing plane.

794 CHAPTER 13 Synthesis of clock and power/ground networks
routing tree generalize the concept of a merging segment for zero-skew routing

to that of a merging region. In a BST/DME algorithm, a merging region contains

all candidate locations of the corresponding internal node in the bounded-skew

tree. The bottom-up process constructs a tree of merging regions (in contrast to

merging segments for zero-skew tree), and the top-down process then deter-
mines the exact locations of all internal nodes. Figure 13.33 shows the merging

regions and routing tree constructed by BST/DME for the example in

Figure 13.23 (and Figure 13.26).

The construction of the merging region for the parent node, say v, of two

sinks, say si and sj, is quite straightforward. First, we construct a bounded-skew

merging segment msþv such that tþi ¼ tþj þ B, where tþi and tþj are, respectively,

the delays from the merging segment msþv to si and sj, and B is the skew bound.

The computation of this bounded-skew merging segment is similar to that of a
zero-skew merging segment. Let L ¼ dðlsi ; lsjÞ denote the shortest Manhattan dis-

tance between lsi and lsj , and xþ � L the distance between msþv and lsi , where xþ

is between 0 and 1 if detour wiring is not necessary. Then, we solve for xþ from

the following expression:

r � xþ � L � cgs1 þ
c � xþ � L

2

� �
|ffl{zffl}

tþj

¼ r � 1� xþð Þ � L � cgsj þ
c � 1� xþð Þ � L

2

� �
|ffl{zffl}

tþj

þ B

where cgsi and cgsj are, respectively, the gate capacitances of the clock sinks si and

sj. For simplicity, we first consider the case that xþ obtained from the preceding
expression is, indeed, between 0 and 1. It is obvious that a tree that uses

mra
s2

Merging regions

(a)

s1

s0

s4

s3

mrv

mrb

Cost = 21, Skew = 2

a

b

v

s0

s1

s4

s3

mra

s2

mrv

mrb

Bounded-skew routing by
BST/DME

(b)

FIGURE 13.33

(a) Merging regions constructed by BST/DME for the example in Figure 13.23. (b) Embedding

of internal nodes. The bounded-skew routing has a lower routing cost than the zero-skew

routing in Figure 13.26.

13.3 Clock network design 795
shortest wire lengths to connect any point on msþv to si and sj would have a

maximum sink delay of tþi and a minimum sink delay of tþj , satisfying the skew

bound constraint B.

Similarly, we construct a bounded-skew merging segment ms�v such that
t�i ¼ t�j � B, where t�i and t�j are, respectively, the delays from the merging seg-

ment ms�v to si and sj. The bounded-skew merging segment ms�v should be at a

distance of x� � L from lsi . Again, assume that x� is between 0 and 1. A tree that

uses shortest wire lengths to connect any point on ms�v to si and sj would have

a minimum sink delay of t�i and a maximum sink delay of t�j . The region

bounded by msþv and ms�v within the smallest bounding box containing si and

sj is the merging region mrv.

In Figure 13.33, two merging regions mra and mrb are obtained by merging
clock sinks under the path length delay model. One can easily verify that the

bounded-skew merging segments are simply the corresponding zero-skew merg-

ing segments shifted toward or away from the corresponding clock sink.

A few important properties are associated with a merging region, say mrv,

whose two child nodes are clock sinks. By construction, x� � xþ. Now, con-
sider a Manhattan arc in mrv that is of distance between x� and xþ from si, pick

any point residing on this Manhattan arc, and construct a routing tree that connects

this point to si and sj, with the shortest wire lengths. It is fairly straightforward
to verify that such a routing tree would satisfy the skew-bound constraint B.

Moreover, all routing trees constructed in a similar mannerwith root nodes residing

on this Manhattan arc would have the same maximum sink delay and the same

796 CHAPTER 13 Synthesis of clock and power/ground networks
minimum sink delay. Furthermore, jesi j þ jesj j ¼ dðlsi ; lsjÞ regardless of where v is

embedded withinmrv. Consequently, CTv ¼ cgsi þ cgsj þ c � dðlsi ; lsjÞ.
Now, let us consider the more complicated cases when xþ or x� may not be

between 0 and 1:

0 � x� � 1 < xþ: We force msþv to be at a distance L ¼ dðlsi � lsjÞ from si. In
other words, msþv coincides with lsj .

x� < 0 and 1 < xþ: We force ms�v and msþv to be, respectively, at distances of 0

and L from si. In other words,ms�v coincideswith lsi andmsþv coincideswith

lsj .

x� < 0 � xþ � 1: We force ms�v to be at a distance of 0 from si. In other words,

ms�v coincides with lsi .

In other words, we always force x� and xþ to be between 0 and 1. Note that as

we are merging two clock sinks, it is not possible for x� and xþ to be both less

than 0 or greater than 1. Such is not the case when we construct merging

regions for internal nodes higher up in the abstract topology.

Let two non-leaf nodes a and b be the child nodes of v. Given merging

regions mra and mrb, we follow the approach of boundary merging and embed-
ding in [Cong 1995a; Huang 1995], where mrv is constructed from the nearest

boundary segments of mra and mrb. A point p on the nearest boundary seg-

ment of mra, called a joining segment and denoted JSa, can merge with a point

q on joining segment JSb if dðp; qÞ ¼ dðmra;mrbÞ.
Suppose mra and mrb are also octilinear convex polygons as shown in

Figure 13.33. Therefore, the joining segments frommra andmrb are either paral-

lel Manhattan arcs or parallel rectilinear line segments. We will now present the

merging of two joining segments that are Manhattan arcs. As pointed out earlier,
all bounded-skew routing trees that have their root nodes embedded on JSa have

the same maximum sink delay and the same minimum delay. Let tmax
a and tmin

a

denote such delays, respectively. Similarly, tmax
b and tmin

b are defined for JSb.

Let L ¼ dð JSa; JSbÞ ¼ dðmra;mrbÞ denote the distance between JSa and JSb.

We compute a merging segment msþv such that in a routing tree obtained by

making the shortest connections from a point on msþv to JSa and JSb, the maxi-

mum and minimum sink delays in the tree are, respectively, caused by sinks in

Ta and Tb, and the skew is no greater than B. The distance of msþv from JSa can
be obtained by solving for xþ in the following equation:

tmax
a þ r � xþ � L � CTa þ

c � xþ � L
2

0
@

1
A

¼ tmin
b þ r � ð1� xþÞ � L � CTb þ

c � ð1� xþÞ � L
2

0
@

1
Aþ B

If xþ is between 0 and 1,msþv is at a distance of xþ � L from JSa. Similarly, we com-

pute the location of a merging segment ms�v by solving for x� in the following

equation:

13.3 Clock network design 797
tmin
a þ r � x� � L � CTa þ

c � x� � L
2

0
@

1
A

¼ tmax
b þ r � ð1� x�Þ � L � CTb þ

c � ð1� x�Þ � L
2

0
@

1
A� B

If x� is between 0 and 1, ms�v is at a distance of x� � L from JSa.
Suppose x� and xþ are both between 0 and 1, the region bounded bymsþv and

ms�v within the smallest bounding box containing JSa and JSb is the merging region

mrv, as shown in Figure 13.34. The merging region mrv is constructed under

the path length delay model. Each Manhattan arc is associated with a pair of

numbers, the maximum and minimum sink delays from a point on that arc.

Themaximum (minimum) sink delay ofmsþv is due to some sink in Ta (Tb), whereas

the maximum (minimum) sink delay ofms�v is due to some sink in Tb (Ta).

Similar to the merging of two clock sinks, so long as x� and xþ are not both
less than 0 or greater than 1, we would always force x� and xþ to be between

0 and 1. When x� and xþ are both less than 0 or when they are both greater

than 1, detour wiring is necessary. In the former, we set jeaj ¼ 0, make mrv
coincide with JSa, and solve for jebj in the following equation:

tmax
a ¼ tmin

b þ r � jebj � CTb þ
c � jebj

2

� �
þ B

In the latter, we set jebj ¼ 0, make mrv coincide with JSb, and solve for jeaj in
the following equation:

tmin
a þ r � jeaj � CTa þ

c � jeaj
2

� �
¼ tmax

b � B

However, detour wiring may not be necessary after all. Take the case in which

x� and xþ are both less than 0, the tilted rectangular region defined by JSb and
(17,11)

(16,10)

JSa
(10,8)

(13,9)

JSb

mrv

msv

msv

-

+

FIGURE 13.34

Merging of two Manhattan joining segments JSa and JSb for a skew bound of 6. The numbers

associated with each Manhattan arc are the maximum and minimum sink delays from a point

on that arc.

798 CHAPTER 13 Synthesis of clock and power/ground networks
jebj actually covers more than JSa; it actually overlaps with mra. That implies

that it may actually be more economical to use interior points of mra, instead
of boundary segments, for merging. Another reason for the use of interior

points is when mra and mrb overlap. However, merging of interior points pre-

sents tremendous challenges, because every point in a merging region may cor-

respond to the merging of many different pairs of interior points from its child

merging regions.

To overcome the difficulty in the use of interior points for merging, we intro-

duce the notion of sampling segments as in [Cong 1995b]. A merging region is

represented by a set of s sampling segments, each of which is a Manhattan arc
that is parallel to the 45 degrees boundary segments of the merging region.

Such a sampling segment has the property that it has a constant maximum sink

delay and a constant minimum sink delay on any point along the segment. Fig-

ure 13.35 illustrates the concept of sampling segments under the path length

delay model. The maximum and minimum sink delays associated with each

sampling segment are also shown in parentheses.

Merging of two nodes now involves two sets of sampling segments. Clearly,

we can apply the approach for merging two joining segments outlined earlier to
accomplish the merging of two sampling segments from two merging regions.

The challenge here is that the approach would generate a set of up to s2 merg-

ing regions for the parent node. If each of these merging regions is, in turn, sam-

pled by s segments, the time and space complexity of this approach would

grow exponentially. For an efficient and practical implementation of such an
mrv

s2

s1

s3

s4

ssv
1 (5,5)

ssv
 (6,4)

ssv
3 (7,3)

Sample mrn by 3 segments
(a)

Merge s3 with sampling segments of n
(b)

s4

s1

s2

s3

R3

R2

R1

2

FIGURE 13.35

(a) Sampling of mrv (obtained from the merging of s1 and s2) with fss1v ; ss2v ; ss3vg. (b) Merging

these sampling segments with sink s3 with a skew bound of 2 units produces three merging

regions where Ri is produced by merging s3 with ssiv.

13.3 Clock network design 799
approach, the number of merging regions associated with a node is typically

limited to a constant, say k. Each region is, in turn, sampled by s sampling seg-
ments. Therefore, the merging of two nodes will generate k2s2 merging regions.

One typical approach to pruning these k2s2 merging regions is to keep only the

best k merging regions, defined in terms of merging cost, for the parent node.

Merging with sampling segments facilitates merging of interior points.

Because 45 degrees joining segments are on the boundary of a merging region,

the skew associated with each joining segment is in general higher than the

skew associated with other sampling segments from the same merging region.

Consequently, merging of interior sampling segments may result in a larger
merging region at a parent node. In Figure 13.35, R3 is also the merging region

produced by merging mrv with s3 by use of a boundary joining segment. In this

example, R3 is smaller than R1 and R2, both of which are constructedwith interior

sampling segments. The larger R1 and R2 may lead to a reduced wiring cost at the

next merging step.

The generation of the k2s2 merging region for each node in an abstract topol-

ogy may not sound efficient. However, another benefit of the use of sampling seg-

ments in the merging process is that the merging of joining segments that are
horizontal or vertical is obviated. Under the Elmore delay model, the merging of

two parallel horizontal (or vertical) joining segments results in a merging region

that is no longer octilinear. Consequently, subsequent merging operations may

involve joining segments that are neither rectilinear line segments nor Manhattan

arcs. Moreover, the computation of such a merging region requires OðnÞ runtime

and space complexity for a subtree that contains n sinks [Cong 1995b].
Example 13.3 B
ounded-SkewRouting under Elmore DelayModel: We again consider the 4-sink example

in Figure 13.27. Instead of zero-skew routing, we allow a skewbound of 2:5 ns (i.e., B ¼ 2:5

ns). First, we compute xþ and x� for the merging of s1 and s2, where xþ � dðls1 ; ls2Þ and
x� � dðls1 ; ls2Þ, respectively, denote the distances of msþa and ms�a from ls1 :

xþ ¼ Bþ r � L � ðCTs2
þ c � L=2Þ

r � L � ðc � Lþ CTs1
þ CTs2

Þ

¼ 2:5þ 2 � ð10þ 2Þ
2 � ð4þ 16þ 10Þ

¼ 0:44

x� ¼ �Bþ r � L � ðCTs2
þ c � L=2Þ

r � L � ðc � Lþ CTs1
þ CTs2

Þ

¼ �2:5þ 2 � ð10þ 2Þ
2 � ð4þ 16þ 10Þ

¼ 0:36

(0, 10)

(5, 15)

(22, 6)

(8, 0)

(9.17, 6)

(16.83, 0)

(5, 10)

(0, 15)

msb
-

msa

msb
+

msa
+

mra

s3

s2

s4

s1

r = 0.1 W/unit
c = 0.2 F/unit

(15.17, 0)

(10.83, 6)

mrb(0, 1)

(1, 10)

cs
g

4
 = 2F

cs
g

3
 = 1F

cs
g

1
 = 16F

cs
g

2
 = 10F-

FIGURE 13.36

Merging regions of internal nodes a and b.

800 CHAPTER 13 Synthesis of clock and power/ground networks
where L ¼ dðls1 ; ls2Þ ¼ 20 units. We show the merging segments msþa and ms�a in

Figure 13.36. The shaded region bounded by msþa and ms�a is the merging region

msa, whose vertices are ð9:17; 6Þ, ð10:83; 6Þ, ð16:83; 0Þ; and ð15:17; 0Þ.
To compute the merging region of b, we define xþ � dðls3 ; ls4Þ and x� � dðls3 ; ls4Þ to be

the distances of msþb and ms�b from ls3 , respectively. We obtain xþ ¼ 1:1 and x� ¼ 0:1.

Because xþ > 1, we force xþ ¼ 1. In other words, msþb coincides with ls4 . We also show

the merging segments and merging region of b in Figure 13.36.

Now, we consider two different ways to merge a and b. First, we consider the case of

merging a and b with joining segments from mra and mrb that are closest (i.e.,

dðJSa; JSbÞ ¼ dðmra; mrbÞ ¼ 8:17 units). In this case, JSa is simply the point ð9:17; 6Þ
and JSb is ð5; 10Þ. For JSa, we have the following parameters: tmax

a ¼ t2 ¼ 14:48 ns,

tmin
a ¼ t1 ¼ 11:98 ns, and CTa ¼ 30 F. For JSb, we have tmax

b ¼ t4 ¼ 1:25 ns,

tmin
b ¼ t3 ¼ 0:75 ns, and CTb ¼ 5 F. Letting L ¼ dðJSa; JSbÞ and defining xþ � L and

x� � L to be the distances of msþv and ms�v from JSa, respectively, we obtain xþ and

x� as follows:

xþ ¼ tmin
b � tmax

a þ Bþ r � L � ðCTb þ c � L=2Þ
r � L � ðc � Lþ CTa þ CTbÞ

¼ 0:75� 14:48þ 2:5þ 0:817 � ð5þ 0:817Þ
0:817 � ð1:63þ 30þ 5Þ

¼ �0:22;

x� ¼ tmax
b � tmin

a � Bþ r � L � ðCTb þ c � L=2Þ
r � L � ðc � Lþ CTa þ CTbÞ

¼ 1:25� 11:98þ 2:5þ 0:817 � ð5þ 0:817Þ
0:817 � ð1:63þ 30þ 5Þ

¼ �0:28
Because both xþ and x� are negative, we force jeaj ¼ 0 (i.e., msv is JSa). Then, we

compute jebj with the following equation:

13.3 Clock network design 801
tmax
a ¼ tmin

b þ r � jebj � CTb þ
c � jebj

2

0
@

1
Aþ B

) 14:48 ¼ 0:75þ 0:1 � jebj � 5þ 0:2 � jebj
2

0
@

1
Aþ 2:5

) jebj ¼ 16:81 units

Because dðJSa; JSbÞ ¼ 8:17 units, a detour wiring of length 8:64 units is required.

Figure 13.37 shows the bounded-skew routing tree constructed accordingly. The total

wire length of the routing tree is 46:81 units.

Now, we consider the case of merging a and b with sampling segments from mra and

mrb. For any merging region mr, we always include as sampling segments the merging

segments msþ and ms�, which are Manhattan arcs that define the boundary segments

of mr. In Figure 13.38, which shows the sampling of mra and mrb, it is clear that msþa ,
(0, 10)

(5, 15)

(22, 6)

(8, 0)

(9.17, 6)

(5, 10)

s4

s3

s1

s2

mra

mrb

JSa=mrv = la= lv

JSb= lb

4.32

snaking

FIGURE 13.37

A bounded skew routing tree constructed based on the merging of the nearest boundary

segments.

(0, 10)

(5, 15)

(22, 6)

(8, 0)

(9.17, 6)

(5, 10)

(0, 15)

s2

s1

s4

s3

mrb

(15.17, 0) (16.83, 0)

(10.83, 6)

(0, 1)

(1, 10)

ssb
2

ssb
1

ssa
2

ssa
3

ssa
1 mra

ssb
3 ssb

4

FIGURE 13.38

Sampling of the merging regions mra and mrb.

802 CHAPTER 13 Synthesis of clock and power/ground networks
ms�a , msþb , and ms�b have been included as sampling segments ss1a, ss
3
a, ss

1
b, and ss4b,

respectively. Each merging region has a subregion whose clock skew among its sinks

is the smallest. Sampling of such a subregion is desirable, because it usually leads to

a larger merging region at the parent node. In this example, both mra and mrb contain

the zero-skew merging segments, which are included as sampling segments ss2a and

ss3b. We also include sampling segments that contain the joining segments. Conse-

quently, ss2b is a sampling segment of mrb. It is important to note that all sampling seg-

ments from a single merging region have the same wiring cost.

Now, we perform the pairwise merging of ssia and ss j
b, for i 2 f1; 2; 3g and

j 2 f1; 2; 3; 4g. It turns out that in every pairwise merging, jeaj ¼ 0 and detour wiring in

eb is required. Table 13.1 shows the different combinations of jebj, tmax
v , and tmin

v

obtained by these pairwise merging operations. It should be evident from Table 13.1 that

the tmax
v and tmin

v values satisfy the skew-bound constraint of 2:5 ns in all cases.

Because eb requires detour wiring, the merging regions obtained in these pairwise

mergings overlap with the sampling segments ssia. Each of these merging regions (or

regions that degenerate into segments) is obtained by taking the intersection of trrb (con-

structed from the respective ssjb and jeaj) and ssia (see Section 13.3.3.3). The coordi-

nates of the merging regions of v are given in Table 13.2. It is important to note that
Table 13.1 WiringCosts andSinkDelaysObtained byPairwiseMerging of Sampling

Segments frommra andmrb.

ss1a ss2a ss3a

|eb| tmax
v

(ns)
tmin
v

(ns)
|eb| tmax

v

(ns)
tmin
v

(ns)
|eb| tmax

v

(ns)
tmin
v

(ns)

ss1b 17.57 14.48 11.98 16.33 13.44 10.94 18.07 14.91 12.41

ss2b 16.81 14.48 11.98 15.55 13.44 10.94 17.32 14.91 12.41

ss3b 16.56 14.48 11.98 15.29 13.44 10.94 17.08 14.91 12.41

ss4b 17.70 14.48 11.98 16.46 13.44 10.94 18.20 14.91 12.41

Table 13.2 Merging Regions Obtained by Pairwise Merging of Sampling Segments

frommra andmrb.

ss1a ss2b ss3b

ss1b (9.17,6)–(11.87,3.30) (10,6)–(11.66,4.34) (10.83,6)–(12.95,3.88)

ss2b (9.17,6)–(13.49,1.68) (10,6)–(13.27,2.73) (10.83,6)–(14.58,2.25)

ss3b (9.17,6)–(12.86,2.30) (10,6)–(12.64,3.36) (10.83,6)–(13.95,2.88)

ss4b (9.17,6)–(11.43,3.73) (10,6)–(11.23,4.77) (10.83,6)–(12.52,4.32)

13.3 Clock network design 803
only when detour wiring occurs does the computation of a degenerate merging region

from sampling segments resemble the computation of a zero-skew merging segment.

Recall that detour wiring is required for bounded-skew merging only when xþ and x�

are both greater than 1 or both less than 0. Figure 13.39 shows the construction of 4

merging regions of v by merging ss2a with all 4 sampling segments of mrb. For ease of

reference, we refer to the respective tilted rectangular region of sampling segment ssjb
as trrjb and the resultant merging region as mrjv in the illustration.

Among these, the merging of ss2a and ss3b results in the lowest jebj and, hence, a min-

imum-cost bounded-skew tree. Figure 13.40 shows the results of embedding v at two

different locations in the merging region mr3v obtained from the merging of ss2a and ss3b.

In Figure 13.40a, v is embedded at ð12:64; 3:36Þ, an endpoint of the merging region

mr3v . Consequently, that leaves ð5; 11Þ as the only possible location for the embedding of

b. When we embed v at ð10; 6Þ, the possible locations for the embedding of b lie on the

Manhattan arc defined by ð2:36; 13:64Þ and ð5; 11Þ. Figures 13.40b,c show the results of

embedding b at these two endpoints. As the embedding location of b moves from

ð2:36; 13:64Þ to ð5; 11Þ, the amount of snaking increases. All three embedded routing

trees have the same total wiring cost of 45:29 units, which is lower than those of the

bounded-skew routing tree in Figure 13.37 and the zero-skew routing trees in

Figure 13.31.
(5, 15)

(10, 6)

(16, 0)

(5, 10)

(0, 15)

(0, 1)

(1, 10)

(1, 15)

(5, 11)

trrb
4

trrb
3

trrb
1

trrb
2

mrv
4

mrv
3

mrv
1 mrv

2

ssa
2

ssb
4

ssb
2

ssb
3

ssb
116.33

15.55 15.29

16.46

FIGURE 13.39

Construction of merging regions of v by merging ss2a with all 4 sampling segments of mrb.

(a)

(0, 10)

(5, 15)

(22, 6)

(8, 0)

(12.64, 3.36)

(5, 11)s3

s4

ssb
3

mr3
v

mra

ssa
2

s1

s2

lbmrb

lv = la

(b)

(0, 10)

(22, 6)

(8, 0)

(10, 6)

(2.36, 13.64)

s3

s1

s2

s4 (5, 15)

mra

mrb

ssb
3

ssa
2

mrv3

lv = la

lb

(c)

(0, 10)

(5, 15)

(22, 6)

(8, 0)

(10, 6)

(5, 11)

mra

2.64

snaking

ssb
3

ssa
2

mrv
3

s4

s3

s1

s2

mrb
lb

lv = la

FIGURE 13.40

Bounded-skew routing trees constructed based on the merging of sampling segments.

804 CHAPTER 13 Synthesis of clock and power/ground networks

13.3 Clock network design 805
Suppose v is not the clock source. It may be necessary to keep only a subset of the

12 merging regions for the construction of merging regions of the parent node of v. If we

allow each node to be associated with only 3 merging regions, mr1v , mr2v , and mr3v would

be chosen on the basis of their lower merging costs. Although these merging regions

overlap, it is important to note that they would now have different CTv ’s, which could play

an important role in determining the merging regions (and their associated merging

costs) of the parent node.

For the generation of an abstract topology, we can take an approach similar

to that of the Greedy-DME algorithm, with various acceleration methods
incorporated. Indeed, the Greedy-BST/DME algorithm in [Huang 1995] is very

similar to the Greedy-DME algorithm. However, the Greedy-BST/DME algorithm

has the added flexibility that it allows merging of two subtrees at non-root

nodes, whereas Greedy-DME always merges two subtrees at their root nodes.

Merging with non-root nodes is an effective topology optimization method. In

fact, it very closely matches the performance of the best-known heuristics for

both the zero-skew and infinite-skew limiting cases (i.e., Steiner routing).

Consider, for example, a clock network with eight sinks that are equally
spaced on a horizontal line, as shown in Figure 13.41. Although the embedding

is not shown here, it can be easily verified that the abstract topology to the left,

which is obtained by the merging of T1 and T2 at their root nodes, can be embed-

ded to produce a minimum-cost zero-skew tree. Although T1 and T2 are them-

selves ideal topologies for low-cost embedding for large skew bound B, the

merging of them at their root nodes is quite costly (see the embedding following

the abstract topology). The reason is that the root nodes (embedded at locations

labeled “3” and “6,” which correspond to the locations of sinks s3 and s6) are
quite far apart. If we adjust the subtree topology such that the roots of subtrees

become closer (see the abstract topology and embedding to the right), the over-

all tree cost would be reduced. Here, the root nodes of the adjusted topologies T1
and T2 are embedded at locations labeled “4” and “5” (or ls4 and ls5).
r

T1 T2

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

r

T�1 T�2

FIGURE 13.41

An example showing that given skew bound B� 0, changing the subtree topology before

merging will reduce the merging cost.

1 2

3

4

r

u

v

1 2

3

4
r �

u

v

FIGURE 13.42

Repositioning the root in changing the topology.

806 CHAPTER 13 Synthesis of clock and power/ground networks
Figure 13.42 illustrates in more detail how the tree topology is adjusted. To

move the root node r to some tree edge, say eu ¼ uv, we traverse along the path

from r to v. For each edge encountered along the top-down path traversal, we

delete the edge and merge the two appropriate subtrees off the deleted edge.

To remove the left edge of r, for example, we merge subtrees labeled “3” and
“4.” This newly merged tree of “3” and “4” is then combined with the subtree

labeled “2” for the deletion of the parent edge of v. This tree is then merged

with the subtree labeled “1” such that the new root node r0 breaks the edge

uv. Effectively, we have relocated the root node to be closer to the subtree

labeled “1.”

The re-rooting approach relocates r to uv by remerging appropriate subtrees

along the path from r to v. Hence, we also know the merging region

corresponding to the bounded-skew tree rooted at the parent edge of v. Indeed,
a careful examination of the approach would reveal that a simple OðnÞ top-
down traversal of the abstract topology rooted at r would compute all merging

regions corresponding to the relocation of the root node to all tree edges in the

topology.

To incorporate such a feature in the Greedy-BST/DME algorithm, each node

v in an abstract topology G (in the forest F) is associated with two merging

regions, denoted as mrv and mrev . The former merging region mrv is the merg-

ing region constructed for v on the basis of the sub-topology rooted at v in G.
The latter merging region mrev is the merging region if the root node of G is

relocated to the parent edge of v in G (i.e., ev).

To identify in F the nearest neighbor of G, whose root node is r, we consider

mrr for the root node, as well as mrev for all other nodes v in G. In other words,

some other topologies in F , possibly rerooted as well, may be closer to G after G

is rerooted. In the example given in Figure 13.41, the nearest neighbors of the

sub-topologies T1 and T2 are mres4 and mres5:
Consequently, the construction of the nearest neighbor graph in Greedy-

BST/DME always involves n nodes, because all nodes in all the sub-topologies

in F participate in the identification of the nearest neighbors. We will examine

the complexity of the Greedy-BST/DME algorithm in one of the exercises.

13.3 Clock network design 807
13.3.3.5 Useful-skew routing

The useful-skew routing problem refers to the problem of synthesizing a clock

routing that satisfies all specified general clock skew constraints (i.e., setup and

hold-time constraints). There is a variant of the useful-skew routing problem

that deals with a prescribed clock schedule (i.e., all skew constraints are equal-

ity constraints instead of being bounded from above and below). Such a variant
can be solved by a simple modification of the zero-skew routing algorithm. In

the sequel, we deal with the more general problem where we maintain the flex-

ibility of skew scheduling throughout the process of constructing a useful-skew

clock routing tree [Xi 1996; Taso 2002].

In Section 13.3.3.1, we have already introduced some concepts that would

be of crucial importance to useful-skew routing, namely, the feasible-skew range

for a pair of clock sinks, the commitment of the skew of a pair of clock sinks,

and the incremental updates of the remaining feasible skew ranges after a skew
commitment. Now we will show how these concepts interact with a clock tree-

embedding algorithm, called UST/DME [Tsao 2002].

Because the clock skews are also constrained to lie within a range specified

by some upper and lower bounds, as in the case of bounded-skew constraint in

bounded-skew routing, the underlying concept of the merging region in the

UST/DME algorithm is the same as that in the BST/DME algorithm. However,

the interaction of merging regions and incremental scheduling introduces a

problem not encountered before. In BST/DME, when a merging region of a par-
ent node is computed from two sampling segments of the child nodes, it implies

that we have committed to some maximum and minimum sink delays associated

with the sampling segments. However, the commitment does not affect the

skew-bound constraint, because they are being applied to all pairs of clock

sinks. That is not the case in useful-skew clock routing; a skew commitment

in one subtree affects the feasible skew ranges of clock pins in another.

Therefore, the first step of the UST/DME algorithm is the construction of a

constraint graph GC from the given skew constraints C, and the second step is
the computation of an all-pairs shortest distance matrix D ¼ fdi; j : si; sj 2 Sg
from GC to represent all feasible skew ranges FSRi;j ¼ ½�di; j;dj; i�. As before,

now we consider the merging of two nodes a and b, whose parent node is v

in the given abstract topology G. In other words, we construct the merging

regions mrv on the basis of mra and mrb. Here, we assume that a and b are

not leaf nodes. Otherwise, the merging of them is similar to the merging of

two leaf nodes in BST/DME. Let the two subtrees of a be Ta;l and Ta;r and the

two subtrees of b be Tb; l and Tb; r.
To overcome the difficulty highlighted in the preceding paragraph (as well as

the difficulties in the use of boundary segments for merging), we use a set of

sampling segments to represent a merging region as in the case of BST/DME.

The advantage of such a restriction is that skewi;j for any pair of clock pins si
and sj in the subtree (rooted by the sampling segment) is a constant value,

say x 2 FSRi; j. We also associate each sampling segment with the leftmost clock

808 CHAPTER 13 Synthesis of clock and power/ground networks
sink in its subtree. In other words, each sampling segment is associated with the

delay to its leftmost clock sink.
Let ssa be a sampling segment in mra and si and sj be the representative

clock pins of Ta; l and Ta; r, respectively. Because a skew commitment of

skewi;j ¼ x changes FSRk;h for the representative clock pins sk and sh in Tb; l
and Tb; r, respectively, we update matrix D and recompute the merging region

mrb on the basis of the updated FSRk;h. The updated merging region mrb is

then sampled by s sampling segments, each of which is merged with ssa to com-

pute a merging region mrv for v such that the skew between si, the representa-

tive clock pin of Ta and sk, the representative clock pin of Tb is feasible (i.e.,
skewi; k 2 FSRi; k). The computation of the merging region mrv is facilitated by

the associated sink delays of the two sampling segments involved.

The preceding procedure will no doubt prompt the following questions:
1. Do we have to associate a sampling segment from mra with the delays to

all sinks in its subtree instead of just the delay to the representative clock

pin?

2. Does mrv, which satisfies the constraint skewi;k 2 FSRi;k, ensure that

skewi0; k0 2 FSRi0; k0 for all si0 2 Ta and sk0 2 Tb in the new tree Tv?
The answers to these questions are related. As mentioned in Section 13.3.3.1, it

takes at most n� 1 skew commitments to the incremental skew scheduler to

determine a feasible skew schedule. First, we observe that for each subtree T

whose root node has a nondegenerated merging region (i.e., not a Manhattan

arc) there have been jSðTÞj � 2 skew commitments made, where SðTÞ is the

set of sinks in T . When we merge two sinks, for example, we have not made

a skew commitment; otherwise, we would have obtained a degenerated merging
region (i.e., a Manhattan arc). In other words, the subtree containing the two

sinks has not made any skew commitment. The selection of a sampling segment

from mra (for the purpose of merging) is equivalent to committing the skew

between the representative clock pins of Ta;l and Ta; r. Consequently, we have

now made jSðTaÞ � 1j skew commitments in Ta. In other words, all skews of

sink pairs in Ta have been determined. Therefore, knowing the delay from ssa
to the representative clock sink in Ta would allow us to construct all the delays

to other clock sinks in Ta. Note that the merging of Ta with Tb would mean that
we obtain a tree Tv with jSðTaÞj þ jSðTbÞj � 2 ¼ jSðTvÞj � 2 skew commitments.

To answer the second question, recall that we made an analogy between

skew commitments and spanning tree construction for the complete graph

representing D. Under the spanning tree analogy, one should realize that

the spanning tree is built in a distributive fashion similar to that in Kruskal’s

algorithm [Cormen 2001]. Initially, all vertices are considered as singleton com-

ponents (from the perspective of the eventual spanning tree). As skew commit-

ments are made, connected components (which are also trees) are being joined.
In each connected component, the skew between any pair of clock sinks has

an equality constraint. Now, consider the merging of ssa with ssb (i.e., the

13.3 Clock network design 809
construction of a merging region that satisfies �di; k � skewi; k � dk; i). Because

skewi; i0 is now committed for any si0 2 Ta,

�di; k � skewi; k ¼ skewi; i0 þ skewi0; k � dk; i

or

�di;k � skewi; i0 � skewi0;k � dk; i � skewi; i0

The differences between the upper and lower bound constraints of skewi;k and

skewi0; k are exactly the same: dk; i þ di; k.

The construction of the merging region requires the computation of two

Manhattan arcs as the boundary segments of the merging region. Let

L ¼ dðssa; ssbÞ, tai be the sink delay of si in Ta, and tbk be the sink delay of sk
in Tb. Note that for any sink si0 2 Ta, t

a
i0 ¼ tai � skewi; i0 . Then, assuming that

0 � x � 1, the construction of mrv on the basis of the delays of si0 and sk, as
well as the skew constraints of skewi0;k, is equivalent to finding a suitable range

of x such that 0 1

�di;k � skewi; i0 � tai � skewi; i0 þ r � x � L � CTa þ

c � x � L
2

@ A�
tbk þ r � ð1� xÞ � L � CTb þ

c � ð1� xÞ � L
2

0
@

1
A

0
@

1
A

� dk; i � skewi; i 0 :

Eliminating skewi; i0 from the preceding expression, we obtain

�di;k � tai þ r � x � L � CTa þ
c � x � L

2

0
@

1
A�

tbk þ r � ð1� xÞ � L � CTb þ
c � ð1� xÞ � L

2

0
@

1
A

0
@

1
A � dk; i

the inequalities necessary for the construction of merging region mrv from si
and sk, the respective representative clock sinks of Ta and Tb. Consequently,

merging regions constructed on the basis of different pairs of clock sinks from

Ta and Tb coincide exactly.

Figure 13.43c shows the tree of merging regions and the useful skew tree

that corresponds to the skew commitment skew1; 2 ¼ �3 in Figure 13.21c. First,
mra (shaded) is constructed on the basis of themerging of s1 and s2. The skew from

any points inmra to s1 and s2 falls in the range ½�7;�3� 	 FSR1;2 ¼ ½�9;�3� and is,
therefore, feasible. Next,mrb is constructed from the merging of ssa 2 mra and s3.

Note that b is also the singleton child node s00 of s0. The skew schedule realized by

the UST/DME tree under the path length delay model is ft1 ¼ 6; t2 ¼ 9; t3 ¼ 8g,
which is feasible subject to the constraints given in Figure 13.21. In contrast,we also

show a bounded-skew tree with B ¼ 1 in Figure 13.43b.

s1 s2 s3

a

s0

b

Topology
(a)

mrb

s1

s3

s0

mra

b

a

BST/DME tree B = 1
(b)

ssa s2

mra ssa

s1

s2

UST/DME tree
(c)

s3

s0

b

a mrb

FIGURE 13.43

(a) An abstract topology G. (b) The merging tree and bounded-skew tree with B ¼ 1 by BST/

DME for G. (c) The merging tree and useful-skew tree by UST/DME for topology G subject to

the skew constraints given in Figure 13.21.

810 CHAPTER 13 Synthesis of clock and power/ground networks
For topology generation, we can follow the approach of Greedy-DME. One
might be tempted to incorporate the flexibility that Greedy-BST/DME has in

allowing merging of subtrees with non-root nodes. However, such a feature will

significantly increase the computational complexity. Construction of mrev , as

defined in the Greedy-BST/DME algorithm, would require the incremental

scheduler to uncommit skew commitments made in the previous merging

steps. However, that would entail rebuilding the matrix D, which has an

Oðn3Þ complexity.

13.3 Clock network design 811
13.3.4 Clock tree optimization
In the preceding section, we focus mainly on the problems of skew scheduling
and clock routing, which take into account the timing and wiring aspects of

clock network synthesis. As pointed out in Section 13.2, there are other impor-

tant design aspects of a clock network. This section examines other clock

network optimization techniques that address some of these design considera-

tions. Buffer insertion, for example, helps to further improve the timing charac-

teristics of clock signals. Instead of repeating gates (i.e., buffers), clocking

control gates can be inserted to turn off flip-flops and their ensuing combina-

tional logic modules when these modules are not required. Besides helping to
improve the delay of a clock signal, sizing of buffers and wires can also be very

effective in countering skews unintentionally introduced because of variations

in manufacturing parameters. Moreover, to further enhance the tolerance of a

clock tree to process variations, cross-links can be inserted to provide alternative

paths for the clock signal to arrive at selected clock sinks.

13.3.4.1 Buffer insertion in clock routing

To drive a large load such as a clock tree, a possible solution is to use cascaded

drivers that are of exponentially increasing sizes [Lin 1975]. However, the area

requirement and power consumption of such drivers can be prohibitively high.

A common solution to this is to break a large clock tree into multiple smaller

trees, each driven by a buffer.

As shown in Figure 13.44a, a clock driver/buffer b is modeled as a switch-

level RC circuit with a gate capacitance Cb, an output resistance Rb, and an

intrinsic delay Tb caused by parasitics capacitance (¼ Tb=Rb) associated with
the transistors. A buffer inserted in a long interconnect shields the downstream

capacitance Cdown after the output of the buffer from the upstream resistance

Rup before the gate input of the buffer as shown in Figure 13.44b. However, it

presents a load of Cb, in addition to the capacitance of the upstream intercon-

nect, denoted Cup, to the upstream resistance. The new Elmore delay is

RupðCup þ CbÞ þ Tb þ ðRb þ RdownÞCdown

If RupCb þ Tb þ RbCdown < RupCdown, the insertion of the buffer reduces the

overall delay of the long interconnect.

Clearly, buffer insertion can play an important role in minimizing the clock

phase delay, which is defined as the maximum among the sink delays. Even

when delay minimization is not the main goal of clock tree synthesis, buffer

insertion may help in reducing the overall wiring cost. In zero-skew routing,

for example, it is always desirable to merge two subtrees with similar sink
delays; when the sink delays differ greatly, wire snaking (see Figure 13.25) is

commonly used to balance them by making a faster clock signal path slower.

With buffer insertion, the slower clock signal path can be made faster, thereby

eliminating the need for wire snaking. Moreover, compared with a clock tree

buffer

Buffer model
(a)

Cb

Rb

Tb /Rb

Cup + Cdown

Rup + Rdown buffer insertion

Buffer insertion
(b)

Rup

Cup

Rdown

Cdown

FIGURE 13.44

(a) A switch-level model for a clock buffer/driver. (b) The insertion of a buffer to break up a long

interconnect.

812 CHAPTER 13 Synthesis of clock and power/ground networks
with drivers only at the root node, it is easier to satisfy the rise/fall time con-

straints with a buffered clock tree.

With buffer insertion, clock power can also be reduced because of the

reduced load presented to the clock driver and intermediate clock buffers. It
is no longer necessary to have huge clock drivers, which add to the power con-

sumption. The reduction of capacitive load also reduces the current flowing

through the clock driver, improving the reliability of the interconnects near

the driver output. Moreover, the current demand is now more evenly

distributed across the entire chip, potentially reducing the current-induced

noise in the power supply network.

The buffered clock tree construction algorithm in [Vittal 1995] is an exten-

sion of the Greedy-DME algorithm to consider the insertion of intermediate
clock buffers during the construction of a zero-skew routing tree. In each merg-

ing step, three sets of possible locations for embedding an internal node of the

abstract topology are computed. One of the three sets is the merging segment

as in the case of DME. The other two sets correspond to the possible locations

of the internal node when a buffer is inserted to drive one of the child subtrees.

Consider two subtrees Ta and Tb rooted at a and b, respectively, as shown in

Figure 13.45. The merging segment msv of v, the parent node of a and b, can be

computed as in the DME algorithm, and it corresponds to the feasible locations
of v when no buffer is inserted.

a b

v

(a)

ea

a b

v

(b)

ea

b

a

(c)

Va

mr
Va

mr
Vb

msv
aV �

FIGURE 13.45

Insertion of a buffer at different locations along the edge ea to drive Ta alone.

13.3 Clock network design 813
A buffer may be inserted at v to drive only Ta, but not Tb, through ea, as shown
in Figure 13.45a. The Manhattan arc Va, as shown in Figure 13.45c contains the

set of feasible locations of v when zero-skew is achieved for such a buffer loca-

tion. Alternatively, the buffer may be inserted at a as shown in Figure 13.45b,

and the Manhattan arc V 0a, as shown in Figure 13.45c, corresponds to the set of

candidate locations of v for this alternate buffer location. In this example, the

insertion of a buffer at v results in a longer sink delay than inserting the buffer

at a. Consequently, a is closer to Va than to V 0a.
Because Va and V 0a represent the locations of v when a buffer is inserted at the

extreme possible locations (at the start and end of edge ea, respectively), the “merg-

ing” region mrva bounded by Va and V 0a corresponds to all possible locations of v

when the buffer is inserted at any point along ea. It is important to note that the

region defined by a and Va in Figure 13.45c contains the possible locations for

buffer insertion along ea. Also note that jeaj depends on the buffer position.

Similarly, a buffer may be inserted to drive Tb alone. The merging region

mrvb in Figure 13.45c captures the set of feasible locations to embed v when

814 CHAPTER 13 Synthesis of clock and power/ground networks
a buffer is inserted to drive Tb. Although not shown here, it is possible that

mrva , mrvb , and msv may overlap and that their relative positions may vary.
Moreover, we can construct merging segments/regions on the basis of other

buffering combinations; we may, for example, insert buffers into a and b

simultaneously.

In all of these merging operations, it is important to distinguish between the

total capacitance of a subtree and the capacitance of a DC-connected subtree.

Consider the buffered interconnect in Figure 13.44b. There are two DC-

connected subtrees, with one being the upstream of the buffer and the other

being the downstream of the buffer. The total capacitance of the buffered inter-
connect is Cup þ Cdown þ Cb,

2 whereas the capacitance of the DC-connected

subtree corresponding to the upstream of the buffer is simply Cup þ Cb. In many

of the equations for computing merging segments/regions in Section 13.3.3, CTa

and CTb are, in fact, the capacitances of the DC-connected subtrees rooted at a

and b, respectively. For quantifying the wiring cost of the entire clock tree, we,

of course, use the total capacitance of the tree. For clarity, we will use Ctot
Ta

to

denote the total capacitance of the tree rooted at a.

The buffered clock tree construction algorithm follows the flow of the
Greedy-DME algorithm with the following modifications. Instead of the use of

only wire length to define merging cost, the cost of merging is a weighted com-

bination of multiple factors such as total wire length, total buffer size, and rise

time. As each internal node has multiple sets of feasible locations for its embed-

ding (as in the case of BST/DME and UST/DME), the sink delays are not deter-

mined when these feasible locations are computed. The sink delays are

determined at the next level of the merging step when the respective merging

segments or merging regions (or sampling segments for ease of implementa-
tion) of the two sibling nodes that yields locally minimum zero skew merging

cost are selected. Besides considering buffering in a merging operation, a buffer

can also be inserted to drive the merged subtree if the sinks of the subtree do

not have sharp clock edges (i.e., long rise/fall time).

Most buffered clock tree construction algorithms place an upper-bound con-

straint on the difference in the numbers of buffers in any two source-to-sink

paths in a clock tree. This is a preventive measure to minimize the effects of var-

iations in the electrical parameters of clock buffers on the clock delays and,
hence, the clock skew of the two paths. In the most restrictive case, all

source-to-sink paths go through the same number of buffers. Moreover, buffers

inserted at the same level are of the same size. Although these restrictions may

affect the optimality in terms of signal delay and total wire length, they greatly

reduce the sensitivity to process variations of clock skew.

One example of such algorithms is that in [Chen 1996], where instead of

considering buffer insertion at each merging step as in [Vittal 1995], buffers
2For simplicity, we have ignored the parasitic capacitance intrinsic to the buffer.

13.3 Clock network design 815
are inserted at the roots of all subtrees simultaneously. Recall that in DME, we

maintain F , a forest of subtrees. Starting with a forest of singleton subtrees, sev-
eral iterations of DME-based zero-skew merging are performed until jF j has been
reduced by 2k for some k, which is determined on the basis of the clock buffer

strength. The stopping criterion could also be based on the rise/fall time con-

straint or the maximum capacitance of the subtrees in F . At this point, buffers

are inserted at the roots of all subtrees in F . This is akin to clustering of nodes,

followed by buffer insertion to drive each cluster.

An inserted buffer may not be connected to the root node directly. Instead, a

wire may be used to connect from the buffer output to the root of the subtree
such that all subtrees in S have equal sink delay. In other words, the root node

of a subtree may have a tilted rectangular region to represent the set of possible

locations for the inserted buffer. A future merging step that involves such a sub-

tree will then be based on a tilted rectangular region instead of a merging

segment.

Remark: Post-Silicon Tunable Buffers: Skews induced by process variations can

result in significant yield loss. To address this problem, circuit designers have

deployed so-called post-silicon tunable (PST) circuitry in modern commercial
processor chips such as Intel P4 and Itanium [Geannopoulos 1998; Tam 2000].

The concept of post-silicon tuning is illustrated in Figure 13.46, where some of

the clock buffers are delay-tunable. The delay of any of these buffers can be adjusted

by activating an appropriate number of capacitors between the two inverters that

form the buffer (see the schematic of a delay-tunable buffer in Figure 13.46). The

post-silicon adjustment can be performed dynamically with on-chip de-skew
delay-tunable buffer
(PST buffer)

Control

D Q D Q D Q D Q

FIGURE 13.46

A clock tree with post-silicon tuning circuitry.

816 CHAPTER 13 Synthesis of clock and power/ground networks
circuitry, whereas a fuse-based solution allows only one-time adjustment. Other

post-silicon tunable techniques involve voltage biasing of the buffers.

13.3.4.2 Clock gating

So far, we have considered designs in which all clocked modules always receive

a clock signal. However, for modules that are idle, it is not necessary to send

them a clock signal. Suppose we isolate the modules from the clock source

when they are in the idle mode, then the power consumption caused by the

capacitance of the clock pins in these modules can be reduced. Moreover,

because the flip-flops in these modules are not triggered, the output nodes of

these flip-flops retain their values throughout the idle period. Consequently,
the combinational logic following these flip-flops does not have any switching

activity during the idle period. In other words, there is no active power con-

sumed by idle modules. This is the clock-gating technique presented in Section

13.2.4.

In clock gating, clocking control gates (or clock gates) are inserted along

with buffers in a clock tree. Consider for example a clock tree as shown in

Figure 13.47, where internal node v is a candidate buffer/gate location. The

activity pattern associated with each node over 6 time units is also shown, with
a dark square indicating that the node should be active in this time unit and an

empty square indicating an idle time unit. Note that a time unit could be multi-

ple clock cycles. The activity pattern of an internal node is derived from the

activity patterns associated with its child nodes. With a “1” to indicate an

active time unit and a “0” to indicate an idle time unit, the bitwise-OR of

the activity patterns of two child nodes generates the activity pattern of the par-

ent node. Node v, for example, is active when at least one of its child nodes

(i.e., a and b) is active, as shown by the respective activity patterns in
Figure 13.47.
source
active

idle

activities of
clocked

elements

candidate gate/buffer
locations

v

a
b

x

FIGURE 13.47

A clock tree topology with activity patterns for modules and candidate buffer/gate locations.

source

clocked
elements

v

a
b

control
logic x

FIGURE 13.48

A gated clock tree, with two inserted clocking control gates.

13.3 Clock network design 817
The gated clock tree as shown in Figure 13.48 is the result of inserting two

clock gates in the clock tree given in Figure 13.47. The clock gate at v must be

active and allow the clock signal to propagate through when at least one of its

sinks (i.e., a or b) is active. Therefore, a gating-signal control logic module that

generates control signals to turn on or off the clock gates is required.

Although clock gating reduces dynamic power, it has an overhead of the gat-

ing-signal control logic. Moreover, as long as the clock signal arrives at a clock gate,
the clock gate contributes to power consumption because of its gate capacitance

or the switching of its internal nodes. The other downside of clock gating is the

clock skew caused by a clock gate. These are the main issues handled by gated-

clock synthesis algorithms in [Téllez 1995; Oh 2001; Chen 2002; Chao 2008].

To construct a zero-skew gated-clock tree, let us again assume that we are

given an abstract topology. The tasks here are to embed the internal nodes

and to determine where buffers and clock gates should be inserted. We will

now describe an adaptation and simplification of the approaches described in
[Téllez 1995; Oh 2001; Chen 2002; Chao 2008]. The approach also closely

resembles that for the construction of a buffered clock tree. Again, let v be

the parent node of nodes a and b. When we merge subtrees rooted at a and

b, we allow the following three choices at the root of ea:
1. No buffer or clock gate is inserted at the root of ea.

2. A buffer is inserted at the root of ea.

3. A clock gate is inserted at the root of ea. Here, we assume that similar to a

buffer, a clock gate is also modeled with a switch-level RC model with

gate capacitance Ccg, output resistance Rcg, and intrinsic delay Tcg.
We similarly afford the three choices at the root of eb. There are, therefore, alto-

gether 9 different ways of merging a and b, resulting in 9 zero-skew merging

segments. As in all other methods that generate multiple merging segments/

sampling segments when merging two subtrees, it is prudent to keep only a

818 CHAPTER 13 Synthesis of clock and power/ground networks
fixed number of sampling segments at each internal node. It is typical that the

subset of sampling segments retained at each internal node is selected on the
basis of the merging cost, which has to be modified significantly to account

for dynamic power reduction.

Without clock gating, the power consumption of a clock tree can be

obtained directly from the wiring cost (and buffering cost if buffer insertion is

considered). With the insertion of a clock gate, the switching activity of the sub-

tree after the clock gate is greatly reduced. Consider node v in Figure 13.48, the

capacitance C tot
Tv

after the clock gate switches only a third of the time. In a non-

gated-clock tree, the power consumption of the subtree rooted at v has a
dynamic power of C tot

Tv
V 2
DD fclk, whereas the gated subtree in Figure 13.48 has

a dynamic power of only C tot
Tv

V 2
DD fclk=3. We call C tot

Tv
=3 the effective switching

capacitance of the subtree rooted at v, with the coefficient of a third being

the activity factor, denoted av.
In the synthesis of a gated-clock tree, the minimization of the effective

switching capacitance of the entire clock tree is the main objective. To compute

the effective switching capacitance of a subtree, we decompose the total capaci-

tance of the subtree into two parts, gated capacitance and ungated capacitance.
Take node x in Figure 13.48 for example—its gated capacitance, denoted GCTx , is

C tot
Tv

. The ungated capacitance of x, denoted UGCTx , is C
tot
Tx
� GCTx ¼ C tot

Tx
� C tot

Tv
.

Let the effective switching capacitance of the gated capacitance be GC
eff
Tx

,

which in this example is C tot
Tv

=3. Then, the effective switching capacitance at x,
denoted C

eff
Tx

, is UGCTx þ GC
eff
Tx

.

If we insert a buffer at x, the ungated capacitance, as well as the effective

switching capacitance, at x are increased by the gate capacitance of the buffer

Cb. If instead of a buffer, we insert a clock gate at x, the gated capacitance would

be increased by UGCTx, whereas the ungated capacitance at x reduces to simply

Ccg, the gate capacitance of the clock gate. Moreover, the effective switching

capacitance at x is reduced by ð1� axÞUGCTx � Ccg. The following ordered opera-

tions update these capacitances correctly when a clock gate is inserted at x:
1. C tot
Tx
 C tot

Tx
þ Ccg;

2. GCTx GCTx þ UGCTx ;

3. GC
eff
Tx
 GC

eff
Tx
þ axUGCTx ;

4. UGCTx Ccg;

5. C
eff
Tx
 UGCTx þ GC

eff
Tx

.

Note that the insertion of a clock gate or a buffer creates a new DC-connected

subtree, with Ccg or Cb, respectively, being the new CTx, which would be
required for the computation of merging segments at the parent node.

The merging cost is typically defined to be some combination of the wire

length jeaj þ jebj, effective switching capacitance, and possibly other metrics.

An important metric that we have left out in the preceding discussion is the

switching activity (and effective switching capacitance) of various clock gate

control signals. Consequently, it is unwise to insert a clock gate right before a reg-

ister that is enabled most of the time. To incorporate the power consumption of

13.3 Clock network design 819
gating signals, we may assume a centralized gating-signal control logic and use its

distance from a clock gate to estimate the wire capacitance of a gating signal.
As in the case of Greedy-DME, we may interleave the generation of abstract

topology with the computation of merging segments/sampling segments.

However, the efficacy of such an approach relies on the existence of neighboring

subtrees that are of similar switching activity. Therefore, it is important that the

high-level synthesis, logic-level synthesis, and physical-level synthesis steps all

work hand-in-hand with gated-clock tree construction. All in all, the fundamental

difficulty lies in the prediction of the activity pattern of variousmodules. Although

the data activity can be quite well characterized for DSP circuits and microproces-
sors, it is more difficult to generate activity patterns for a general circuit/system.

13.3.4.3 Wire sizing for clock nets

In this section, we deal with the problem of assigning appropriate widths to

wires in a clock tree to minimize the clock skew, the clock delay, and the sensitiv-

ity of the clock tree to process variations. The constraint on the maximum width

of a wire is typically imposed by the available routing resources, whereas the con-

straint on the minimum wire width depends on the fabrication technology. More-

over, the maximum allowable current density through a wire also provides a

lower bound for the wire width, so that the wire can withstand the wear-out phe-

nomenon caused by electromigration. Note that a long wire may be divided into
several segments, and each segment may have different upper and lower bounds.

Remark: Mitigating Electromigration: Wire sizing to counter electromigra-

tion can be easily handled by DME-based clock routing algorithms. When nodes

a and b are merged at the parent node v, the total capacitances of subtrees Ta
and Tb, which provide respective estimates of the amounts of current flow in ea
and eb, can be used to determine for ea and eb appropriate wire widths that are

tolerable to electromigration. Zero-skew, bounded-skew, or useful-skew merging

can then be carried out with appropriate wire widths for ea and eb.

13.3.4.3.1 Delay sensitivity and delay minimization

From Section 13.3.2, the Elmore delay from the clock driver at the source s0 to

sink si in an RC tree is

ti ¼ Rd � CTs0
þ

X
ev2Pathðs0 ; siÞ

jevj � r

wev

� jevj �wev � ca
2

þ CTv

� �

where Rd is the output resistance of the clock driver. For simplicity, this formu-

lation ignores the fringing capacitance of wires, which can be added easily.

Taking the partial differential @ti
@wev

for any edge ev along the s0–si path,

@ti
@wev

¼ Rd � ca � jevj � jevj � r � CTv

w2
ev

þ
X

eu2AnsðevÞ

jeuj � r � ca � jevj
weu

where AnsðevÞ contains the path from s0 to the parent node of v. If ev is not

along Pathðs0; siÞ,

Wire 1

Wire 2

Wire 3

1
2

3

4

1
2

3

4

Rd
rl1/w1

rl3/w3

rl2/w2

cl2w2/2

cl3w3/2 cl3w3/2

cl1w1/2 cl1w1/2

cl2w2/2 C3

C4

FIGURE 13.49

A clock tree with two sinks.

820 CHAPTER 13 Synthesis of clock and power/ground networks
@ti
@wev

¼ Rd � ca � jevj þ
X

eu2AnsðevÞ\pathðs0 ; siÞ

jeuj � r � ca � jevj
weu

Let us illustrate the computation of partial derivatives with a simple example as

shown in Figure 13.49. The RC tree has three segments with wire widths of w1,
w2, and w3, respectively. Every wire segment of length li is modeled as p-type
RC circuit with a resistance of rli=wi and a total capacitance of cliwi, where r

is the resistance per square and c is the capacitance per unit area. The partial

derivatives of t3 and t4 with respect to w2 are:

@t3
@w2

¼ Rd � c � l2 � l2 � r � C3

w2
2

þ l1 � r � c � l2
w1

@t l � r � c � l
4

@w2
¼ Rd � c � l2 þ 1 2

w1

The partial differential @ti
@wev

evaluated at W , the currently assigned wire widths,

captures the delay sensitivity of ti with respect to a change in wev . A positive

sensitivity indicates that the delay increases if we widen ev, whereas a nega-

tive sensitivity indicates that the delay decreases. When all sinks have zero delay

sensitivity, the clock net is extremely tolerable to process variations, because

the sink delays are not sensitive to these changes.

13.3 Clock network design 821
Having zero delay sensitivity means that we minimize all the sink delays.

A sink delay can be locally minimized by setting @ti
@wev
¼ 0 and solving for wev

while keeping the widths of other wires intact. Consequently, wires closer to

the root should have wider wire width, because they see a larger downstream

capacitance. The term Rd � ca � jevj in the partial derivative keeps the wire width

from getting too large. It is also a common practice to impose an upper-bound

constraint on the wire width.

It should also be obvious that the larger the downstream capacitance seen by a

wire, the larger the delay sensitivity. Consequently, buffer insertion, which decou-

ples downstream capacitance from the upstream resistance, can also greatly desen-
sitize a clock net. Similarly, we can also define the partial derivatives of a sink delay

with respect to buffer sizes and perform appropriate sizing of buffer/driver to

reduce sink delay. Although the focus here is wire sizing, similar techniques can

be used to perform buffer sizing. In fact, many techniques that are based on delay

sensitivity perform buffer and wire sizing together [Wang 2005; Guthaus 2006].

Similar to wire sizing for mitigating electromigration, wire sizing for delay

minimization can be easily incorporated in a DME-based clock routing algo-

rithm, as in [Edahiro 1993b]. Instead of operating on an abstract topology, the
heuristic approach in [Edahiro 1993b] operates on a zero-skew routing tree,

and the reason for that will soon be apparent.

Consider the merging of two zero-skew subtrees Ta and Tb at the parent

node v, with wea and web being the wire widths of ea and eb, respectively. Let

L ¼ dðmsa;msbÞ be the distance between the merging segments of a and b

and x � L be the distance of the merging segment of v from a, where

0 � x � 1, assuming no detour wiring. Then, x can be computed with the

following expression:

x ¼ tb � ta þ r � L � ðCTb=web þ c � L=2Þ
r � L � ðc � Lþ CTa=wea þ CTb=web Þ

Taking the derivative of x with respect to wea yields

@x

@wea

¼ CTa=wea

c � Lþ CTa=wea þ CTb=web

x

wea

� �

Recall that an optimal width assignment actually depends on both upstream resis-

tance and downstream capacitance. Although downstream capacitances are

known in the bottom-up process, we have to approximate the resistance in the

upstream. We use the given zero-skew routing tree to approximate the upstream

resistance from the clock source s0 to v in the final routing tree by assuming, for

example, nominal wire widths for the upstream edges. Let Rup denote the approxi-

mate upstream resistance. Then, the estimated delay from s0 to a sink in Ta is

Rup � c � L � ðwea � x þweb � ð1� xÞÞ þ r � x � L � CTa

wea

þ c � x � L
2

� �
þ K

822 CHAPTER 13 Synthesis of clock and power/ground networks
where K is a constant independent of x and wea . Taking the derivative of the

delay with respect to wea and setting the derivative to zero, we obtain

Rup � c �w2
ea

web

wea

CTa 2�web

wea

0
@

1
Aþ CTb þweb � c � L

0
@

1
A

¼ r � CTa � CTb þ r � c �web � ð1� xÞ � L � CTa

Assuming that wire capacitances web � c � L and web � c � ð1� xÞ � L are much

smaller than CTb , we discard them and obtain the following expression:

Rup � c �w2
ea

web

wea

CTa 2�web

wea

� �
þ CTb

� �
¼ r � CTa � CTb

A similar expression can be obtained by examining how the delay of a sink in Tb
is affected by eb:

Rup � c �w2
eb

wea

web

CTb 2�wea

web

� �
þ CTa

� �
¼ r � CTa � CTb

Equating the two preceding equations yields the following analytical formula for

the wire width of ea and eb:

wea ¼ web ¼ min max wmin;

ffi
r � CTa � CTb

Rup � c � ðCTa þ CTbÞ

s()
;wmax

()

wherewmin is the minimumwire width allowed by the technology or specified by
electromigration constraints, and wmax is typically determined by the available

wiring resources.

Because the newly computed wire lengths and widths may differ greatly

from the original clock routing tree, it is recommended that the process be

repeated for a few iterations. Because the wire widths are determined on the

basis of delay sensitivity, the sensitivity of the clock tree to process variations

is reduced indirectly after the iterative procedure. However, be aware that the

iterations may not converge. In other words, wire lengths and widths may keep
changing in successive applications of the modified DME algorithm. Restricting

the procedure to just a few iterations provides a good compromise between

solution quality and runtime efficiency.

Although the bottom-up wire sizing approach described in the preceding

paragraphs assumes continuous wire width, it can also be modified to consider

discrete wire widths. Because it is not possible to achieve arbitrary precision

during fabrication, it is better to have the algorithm explicitly synthesize a clock

tree with discrete wire widths to eliminate undesirable skew caused by the
post-synthesis mapping of continuous widths to discrete widths.

Remark: Skew Sensitivity: What is truly of interest is skew sensitivity, which

measures how a change in wire width can affect the clock skew. In particular,

skew sensitivity caused by process variations can be used to measure how

13.3 Clock network design 823
reliable a clock tree is. Skew sensitivity is simply the difference of delay sensitiv-

ity. Take the RC tree in Figure 13.49 for example, the skew sensitivity of
skew3; 4 ¼ t3 � t4 is

@

@x2
ðt3 � t4Þ ¼ �l2 � r � C3=w

2
2

It should be obvious for any two sinks, only the subtree rooted at the youngest
common ancestor of the two sinks contributes to the skew sensitivity. Because

the two sinks share the same path from the clock source to the youngest com-

mon ancestor, any changes along the path result in the same changes in the two

sink delays, which negate each other in the computation of skew.

However, because of the definition of global clock skew as gskew ¼
maxi; jjti � tjj, it is very costly to compute global skew sensitivity exactly. The

exact approach would entail the computation of the changes in the worst-case

global clock skew for each wire under consideration. Typically, an approxima-
tion method such as that in [Xi 1995] would be used.

13.3.4.3.2 Wire sizing with dynamic programming

No treatment of wire sizing is complete without the inclusion of a very popular

technique to solve difficult programs in EDA, namely, dynamic programming. This

solution method was applied to buffer insertion in 1990 by van Ginneken [van
Ginneken 1990] for delay minimization of signal nets and has since been

generalized to perform wire sizing (and buffer sizing) as well [Lillis 1995].

Although the solution we will see here is not in the same mold as those in

[van Ginneken 1990; Lillis 1995], it is still based on the fundamental principle of

building and enumerating solutions of larger problems from solutions of smaller

problems.

Here, we assume that we are sizing an unbuffered zero-skew clock tree T .

Let g ¼ ðC; tÞ denote a solution at a node v in T , where C is the total capacitance
rooted at v and t is the delay from v to a sink in Tv. Consider a clock sink si.

There is only one solution gsi ¼ ðC ¼ c g
si
; t ¼ 0Þ associated with it, where c g

si
is

the gate capacitance of si.

Now, consider the edge esi connecting si to its parent node a. We refer to the

tree with esi as the root edge as Tesi . Assume that a wire width of w is assigned

to it. Then, gesi ðwÞ ¼ ðCþ; tþÞ, the solution that corresponds to such a wire

width assignment has the following capacitance and sink delay:

Cþ ¼ C þ jesi j �w � c and tþ ¼ t þ r � c � jesi j2
2

þ r � jesi j
w
� C

where ðC; tÞ ¼ gsi . Because we can pick any width in the range wmin �
w � wmax to form such a solution, the solution space associated with Tesi can

be captured by treating the capacitance and sink delay in gesi ðwÞ as the coordi-

nates of a point on a 2-D plane, of which the x-axis is capacitance and the y-axis

824 CHAPTER 13 Synthesis of clock and power/ground networks
is sink delay. The solution spaces associated with Tesi and Tesj , which are con-

nected at a, are similar to the leftmost plot in Figure 13.50.

Let Gesi
and Gesj

denote the solution spaces associated with Tesi and Tesj ,

respectively. The merging at a is feasible if, and only if, there exist gesi ðwÞ ¼ðCi; tiÞ 2 Gesi
and gesi ðw0Þ ¼ ðCj; tjÞ 2 Gesi

with ti ¼ tj. The solution associated

with a obtained from the merging of gesi ðwÞ and gesi ðw0Þ is gaðw;w0Þ ¼
ðCi þ Cj; ti ¼ tjÞ. The solution space associated with a, denoted Ga, is again sim-

ilar to that shown in the leftmost plot of Figure 13.50. Note that gesi ðwminÞ has
the largest sink delay and gesi ðwmaxÞ the smallest. Let tðgÞ denote the sink delay

in solution g. Then, the sink delay in Ga must lie in the range ½tðgesi ðwmaxÞÞ;
tðgesi ðwminÞÞ� \ ½tðgesj ðwmaxÞÞ; tðgesj ðwminÞÞ�.

Now, if we pick any g ¼ ðC; tÞ 2 Ga, we can construct a new (partial) solution

space associated with Tea based on g by assigning wire width wmin � w � wmax

to ea. The construction of such a solution, denoted as GeaðgÞ, is similar to that
for Tesi from gsi . Consequently, we would again obtain a solution space that is

similar to the leftmost plot in Figure 13.50. However, to obtain the overall solu-

tion space associated with Tea , we would have to consider all solutions in Ga.

In other words, Gea ¼ [g2Ga
GeaðgÞ, which is typically a 2-D region, as shown

in the middle plot of Figure 13.50. It is important that we keep track of which

solutions from the two edges contribute to a solution in the parent node. The

arrows from the leftmost plot to the middle plot in Figure 13.50 depict this

relationship.
Clearly, the computation of the wire-sizing solution spaces of internal nodes

of the zero-skew routing tree quickly becomes quite unwieldy. To overcome this

problem, a sampling approach [Tsai 2003] can be used. Instead of computing a

continuous 2-D solution space, a sample solution that is represented by a set

of horizontal line segments is calculated. Each horizontal line segment corre-

sponds to a range of capacitances Cmin � C � Cmax that achieve a particular

sink delay t. There may be a few sampling segments for a particular sink delay

t, because there are a few ranges of capacitances that could result in the same
delay. We show two sampling segments in the middle plot of Figure 13.50.
Downstream capacitance Downstream capacitance Downstream capacitance

DelayDelayDelay

FIGURE 13.50

Wire sizing solution spaces for various nodes in a zero-skew routing tree.

13.3 Clock network design 825
The sampling of Ga is quite straightforward. We will now illustrate how the

sampled Gea can be computed. It is best that we compute the sampled Gea

together with sampled Geb , where a and b are siblings in the zero-skew routing

tree. Doing so allows the sink delays to be sampled within the same range and

facilitates the merging of the two sampled solution spaces to achieve zero-skew.

In other words, the first step is to determine the minimum and maximum sink

delays in Gea and Geb given the sampled solution spaces Ga and Gb. This is

trivial, because for each g ¼ ðC; tÞ 2 Ga, the minimum (maximum) sink delay

of Tea can be determined by assigning the maximum (minimum) wire width

to ea. The minimum (maximum) sink delay in sampled Gea is, therefore, the
smallest (largest) among the minimum (maximum) sink delays obtained in this

fashion.

Let tmax
ea

and tmax
eb

(tmin
ea

and tmin
eb

) denote the maximum (minimum) sink delays

in Gea and Geb , respectively. The sampled delays in Gea and Geb would, therefore,

lie in the range ½tmin
ea

; tmax
ea
� \ ½tmin

eb
; tmax

eb
�. Considering a sampled delay tþ that is in

this range, we now have to compute the range of capacitances that can achieve

this delay. For each ðC; tÞ from the sampled Ga, we can solve for w, the wire

width of ea, that achieves the sampled delay tþ as follows:

w ¼ r � jeaj � C
tþ � t � r�c�jeaj2

2

If wmin � w � wmax, C
þ ¼ C þ jeaj �w � c is in the capacitance range. The capac-

itance range(s) for the sampled delay tþ is obtained by clustering the Cþ’s
obtained in this fashion into appropriate group(s). The solution space Gea is

similar to that shown in the rightmost plot of Figure 13.50.

The sampled Geb can be obtained in a similar fashion, and together, Gea and

Geb can be merged to obtain Gv, where v is the parent node of a and b. It is

again important for each solution in Gv to keep track of the contributing

solutions from Gea and Geb . The process continues until Gs0 is obtained.

Among the sampled delays in Gs0 , the one that meets the target delay and has

the lowest capacitance is chosen. Because we have kept track of the solutions
from the child nodes that contribute to a solution of the parent node, we can

easily perform a top-down traversal to determine the wire width of each edge

in the zero-skew routing tree.

Remark: Dynamic Programming for Delay Minimization: The biggest differ-

ence between wire sizing for delay minimization and zero-skew is that for delay

minimization, the dynamic programming approach can apply pruning rules to

weed out suboptimal solutions, greatly reducing the search space. Consider

two solutions ðC; tÞ and ðC0; t0Þ of a tree, where the delays t and t0 correspond
to the maximum sink delays in these two solutions. If C < C0 and t < t0), there
is no reason to consider ðC0; t0Þ any further in the bottom-up process, because

solutions that are built on top of it are always inferior to corresponding solutions

constructed upon ðC; tÞ.

826 CHAPTER 13 Synthesis of clock and power/ground networks
13.3.4.4 Cross-link insertion

Clock trees provide only one unique path from a clock source to any clock sink.

Because there is a lack of redundancy in a tree structure, it is difficult to com-

pensate for the effects of variations. The cross-link insertion technique is

a promising approach that introduces redundancy while retaining the low

wiring cost of a clock tree. The insertion of cross-links or interconnect wires
between some nodes of a clock tree reduces the skew variability. We show

examples of such clock trees in Figures 13.15 and 13.51.

Given an RC network G ¼ ðV ;EÞ, we can decompose the network into

a spanning tree T ¼ ðV ;ET Þ and a set of link edges (chords) EL ¼ EnET . In

Figure 13.51 for example, the only edge in EL is the cross-link l inserted

between nodes u and w. Let Rl and Cl be the resistance and capacitance of l,

it can be represented by a p-type RC element (see Figure 13.18) with two

capacitors Cl=2 at the two ends of a resistor Rl.
Let ti denote the Elmore delay at any node i of T ¼ ðV ;ET Þ. With the link l

inserted between u and w, the delay at node i changes. We examine the

changes caused by the additions of the capacitors and resistor separately. The

addition of only the capacitors is fairly straightforward, because the topology

remains a tree. The Elmore delay at node i after the addition of capacitors at

u and w, denoted as ~ti, is

~ti ¼ ti þ Cl

2
ðRi;u þ Ri;wÞ;

where Ri;u ¼ RPathðs0; iÞ\Pathðs0;uÞ ðRi;w ¼ RPathðs0; iÞ\Pathðs0;wÞÞ is the common resis-

tance between the paths Pathðs0; iÞ and Pathðs0;uÞ ðPathðs0; iÞ and Pathðs0;wÞÞ.
When the resistor Rl is inserted, the delay at node i is changed to t̂i from ~ti as

follows [Chan 1990]:
u

w

p

Level 1

cross-link l

Level 2

Level 0

v

x

y

FIGURE 13.51

A clock tree with a cross-link inserted.

13.3 Clock network design 827
t̂i ¼ ~ti �
~tu � ~tw

Rl þ ru � rw
ri;

where resistance ri is the Elmore delay at node i when the capacitances at

nodes u and w are Cu ¼ 1 and Cw ¼ �1, respectively, and all other node capa-

citances are zero.
Example 13.4 Ad
ding a Cross-Link: Consider the addition of a cross-link between nodes v and x in

Figure 13.17, as shown in Figure 13.52. Let the link capacitance and resistance be Cl

and Rl, respectively. First, we add the link capacitance and update the Elmore delays

of various nodes:

~ty ¼ ty þ Cl

2
ðRy; v þ Ry; xÞ; ~tz ¼ tz þ Cl

2
ðRz; v þ Rz; xÞ;
~tv ¼ tv þ Cl

2
ðRv; v þ Rv; xÞ; ~tx ¼ tx þ Cl

2
ðRx; v þ Rx; xÞ;

where Ry; v ¼ Ru þ Rv, Ry; x ¼ Ru, Rz;v ¼ Ru þ Rv, Rz; x ¼ Ru, Rv; v ¼ Ru þ Rv, Rv; x ¼ Ru,

and Rx; x ¼ Ru þ Rx.

Now, we compute the r0s, the Elmore delays when Cv ¼ 1, Cx ¼ �1, and all other

node capacitances are zero.

rv ¼ Ru 1þ �1ð Þð Þ þ Rv � 1 ¼ Rv; rx ¼ Ru 1þ �1ð Þð Þ þ Rv � �1ð Þ ¼ �Rx;
ry ¼ Ru 1þ �1ð Þð Þ þ Rv � 1þ Ry � 0 ¼ Rv; rz ¼ Ru 1þ �1ð Þð Þ þ Rv � 1þ Rz � 0 ¼ Rv:

The computation of the new Elmore delays after link insertion is now trivial:

t̂y ¼ ~ty �
~tv � ~tx

Rl þ rv � rx
ry ; t̂z ¼ ~tz �

~tv � ~tx
Rl þ rv � rx

rz
t̂x ¼ ~tx �
~tv � ~tx

Rl þ rv � rx
rx; t̂v ¼ ~tv �

~tv � ~tx
Rl þ rv � rx

rv
FIGURE 13.52

Insertion of a cross-link to the RC tree in Figure 13.17.

828 CHAPTER 13 Synthesis of clock and power/ground networks
Now, we examine the effects of the additions of capacitors and resistor on the

skew between u and w. The new skew between u and w, denoted asdskewu;w, is

dskewu;w ¼ Rl

Rl þ ru � rw
skewu;w þ Cl

2
Ru;u � Rw;w

� �� �

It is clear that the addition of Cl almost always results in a new skew between u

and w as Ru;u is almost certainly different from Rw;w. If we neglect Cl from the

preceding equation, we may make the following observations:
1. The addition of Rl reduces the magnitude of the skew between u and w

(i.e., jdskewu;wj < jskewu;wj). In other words, the skew variability of u and
w is reduced. This stems from the fact that ru ¼ Ru;u � Ru;w and

rw ¼ Ru;w � Rw;w are the Elmore delays obtained by setting Cu ¼ 1 and

Cw ¼ �1 and zeroing all other node capacitances.

2. For the special case in which skewu;w ¼ 0, the skew remains zero after

the addition of Rl.

3. The farther u and w are from their youngest (nearest) common ancestor,

the smaller the skew variability.
These observations motivate the following procedure for link insertion

[Rajaram 2004] in which links are inserted only between nodes that have zero

skews (Observation 2). Moreover, only sink pairs are considered (Observation

3). To overcome the effects caused by the link capacitance, the clock tree is
tuned after we divide the link capacitance and add them to the two nodes.

The purpose of the tuning is to restore the original skews of all sink pairs in

the tree. This can be accomplished easily by applying the DME algorithm. Con-

sequently, the addition of link resistance will either maintain the zero skew

between the two nodes or reduce the skew variability of the two nodes.

Because the tuning process can be expensive, all link capacitances are inserted

simultaneously, and the tuning is performed only once.

The remaining problem is that of selecting the set of sink pairs for link inser-
tion. In the approach adopted in [Rajaram 2004], only sink pairs that satisfy the

following three selection rules simultaneously are selected:
1. Observation 1 suggests that the smaller the link resistance to loop resis-

tance ratio, Rl

Rl þ ru� rw
, the lower the skew variability. Thus, sinks u and

w may be selected only when the ratio is no greater than a user-specified

threshold amax.

2. The effect of the link capacitance on skew is small when

b ¼ j Cl

2
ðRu;u � Rw;wÞj is small. Hence, a link may be inserted between

sinks u and w only when b is no greater than a user-specified threshold

bmax. This rule has the effect of selecting two sinks that are in close prox-

imity and have similar path lengths from the source.

3. Observation 3 suggests that the level of the youngest common ancestor
(YCA) for a sink pair should not be too high. Here, the level of a node

13.4 Power/ground network design 829
refers to the number of edges between the source and the node. Conse-
quently, a sink pair may be selected only when the level of its YCA is

no greater than a user-specified threshold gmax.
Other link insertion algorithms can be found in [Rajaram 2004, 2005,

2006].
Example 13.5 Ap
plying Cross-Link Selection Rules: In Figure 13.51, the level of p and the YCA of u and

w is 2. Assuming that gmax ¼ 3 and that the first two selection rules are also satisfied, the

cross-link connecting u and w is inserted as shown.

Although the level of the YCA of u and v is 1 � gmax, the cross-link between v and v is

not inserted, because u and v are too far apart and the link resistance to loop resistance

ratio is too high.

We also should not insert a cross-link between x and y, because the level of their YCA

is greater than gmax.
13.4 POWER/GROUND NETWORK DESIGN

Now, we shall turn our attention to the analysis and synthesis of power/
ground (P/G) networks. In particular, we focus on the main design challenge

highlighted in Section 13.2, namely, IR and L � di=dt power supply noise. Some

techniques to suppress power supply noise, such as wire sizing, also mitigate

the electromigration effects. We follow a similar organization as in the preced-

ing section on clock network design. First, we describe some typical P/G topol-

ogies used in designs. Next, we present a random-walk method for the efficient

analysis of P/G networks. Last, we focus on the automated synthesis of P/G

networks.
13.4.1 Typical power/ground topologies
The design of P/G distribution networks begins with the construction of an

appropriate routing topology. First, we consider a simple power distribution

scheme that consists of two large concentric rings (one power and one ground)

from which comblike structures can be attached (see Figure 13.53). In particu-

lar, each comblike structure is commonly used for standard-cell designs. To
counter power supply noise and electromigration, the concentric rings, which

are connected to VDD and GND (or VSS) pads, are typically of a larger width. Sim-

ilarly, the trunk of a comb is wider than the fingers. Sometimes, the presence of

larger modules such as memory blocks or bus lines would destroy the regularity

shown in Figure 13.53.

Tree and mesh structures are the most common topologies for power and

ground routing. Although the design of a power tree structure (see Figure 13.54)

VDD VSS

FIGURE 13.53

Interleaved power and ground routing for standard cell designs.

FIGURE 13.54

Local tree–based power distribution technique.

830 CHAPTER 13 Synthesis of clock and power/ground networks

13.4 Power/ground network design 831
offers efficiency for resource consumption, mesh structures perform better in

minimizing voltage and current variations in the supply networks. A mesh struc-
ture consists of a rectangular grid of orthogonal wires spanning the whole

circuit; see Figure 13.55 for an example of a generic mesh structure. In mod-

ern-day microprocessors, the wires of the grid extend across several layers

[Singh 2005]. Wires in different layers are connected through vias, solid black

blocks joining two metal layers differentiated by shade, as seen in Figure 13.55.

As in the case of clock network design, it is common to see a combination of

these various topologies in a single P/G network. Because of its robustness, a

mesh structure typically sits at the topmost level in the hierarchy of a P/G net-
work. Comblike structures and tree topologies, with wire width tapering, are

usually used for the local distribution of power supply, because they are more

frugal on routing resources.

Packaging technologies also play a significant role in enhancing the robust-

ness of power supply. One of the most common interfaces for external power

being supplied to an IC is along the periphery of the die (see Figure 13.56).
FIGURE 13.55

Typical power mesh structure.

Substrate

Die

Film

Metal lead frame

FIGURE 13.56

Use of polymer film wires to connect power to periphery of chip area.

Substrate

Metal layers

Solder bumpDie

FIGURE 13.57

Flip-chip design to distribute power to any location on chip area.

832 CHAPTER 13 Synthesis of clock and power/ground networks
Such packaging technology is typically used with comblike and tree topologies.

In the comblike topology for example, the VDD and GND pads on the periphery

of the die can be easily connected to any point on the concentric rings.

Flip-chip packaging makes it possible to supply external power into the inte-

rior of the die area directly (see Figure 13.57). For flip-chip mounting, VDD and

GND pads are distributed across the topmost layer. The die is flipped upside
down and connected to the substrate of the package with solder bumps. Flip-

chip packaging provides two benefits: the power supply is available at any posi-

tion on the chip and the parasitic inductances and capacitances of such

packages are lower. Used in conjunction with a power mesh, the VDD (or

GND) pads usually reside on the grid points of the mesh. The pad density of a

region of the chip is a function of the current demand in that region. Note that

flip-chip packaging can also help address the clock distribution problems.

For power minimization, dual- or multiple-VDD designs have become quite
popular in recent years. For such a design, high VDD is used for high-performance

components, and low VDD powers low-performance components to conserve

energy. For a dual-VDD design, for example, three P/G networks are required:

VH
DD (the high supply voltage), VL

DD (the low supply voltage), and GND. Both

VH
DD and VL

DD could be supplied externally. Alternately, an on-chip voltage regula-

tor can be used to take a single externally supplied voltage VH
DD ¼ VDD and drop

it to supply VL
DD.

13.4 Power/ground network design 833
13.4.2 Power/ground network analysis
P/G network analysis can involve either the DC or the transient analysis of the
network. DC analysis is required for finding the static IR drop or finding steady

state values corresponding to the IR drop caused by the average current flowing

through a power supply network. Transient analysis is concerned with deter-

mining the effects of switching activity, which is essentially finding voltage fluc-

tuations on a P/G network. This is required for determining the dynamic IR

drop and L � di=dt noise.
IR drop analysis of a power supply network can be done efficiently, because

the resistance and capacitance matrices are both positive definite. Iterative meth-
ods, such as conjugate gradient, can be used for efficiently simulating large power

distribution networks [Lin 2001]. The analysis of L � di=dt noise is more difficult,

because including the inductance matrix in the modified nodal analysis formula-

tion results in matrices that are not positive definite. Specifically, the use of fast

iterative methods directly becomes difficult [Lin 2001]. However, by reverting to

the nodal formulation, matrices that are symmetric positive definite [Chen 2001]

can be formulated, and the inherent structure/conditioning can be exploited. As

in the case of clock network analysis, we will focus on the modeling and analysis
of P/G networks that are composed of only resistive and capacitive elements.

Traditionally, P/G networks have been modeled with large linear time-

invariant models. The supply lines are modeled as distributed RC segments.

For a present-day supply network, such a model can consist of millions of nodes

and segments. The sources that supply power are modeled as voltage sources,

whereas the drain elements that draw currents can be modeled as time-varying

current sources. Figure 13.58 shows the models for power sources and drains.

The Modified Nodal Analysis (MNA) of such models yields equations of the form

Gx þ C _x ¼ b

where x is the vector of node voltages, b is the vector of current sources, G is the

conductance matrix, and C is the admittance matrix, which consists of capacitive

elements.Weassume that voltage sources havebeen transformed intoNortonequiv-

alent circuits. Hence, we consider only current sources in b. For an RLC network,

x and C would also contain inductor currents and inductive elements, respectively.
Supply

+
− Vs

Drain

FIGURE 13.58

Models for supply and drain in a P/G network.

834 CHAPTER 13 Synthesis of clock and power/ground networks
Applying the standard trapezoidal integration scheme in Equation (13.13)

with step size h results in the following linear system of equations:

G þ 2C

h

� �
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

A

xkþ1 ¼ bkþ1 þ bk � G � 2C

h

� �
x k

|ffl{zffl}
b

where x
k is the vector of node voltages at time k �h and (i.e., the kth time step).

The solution of Equation (13.14) involves an inversion of the coefficient

matrix A. As more devices are packed on a single chip, the size of the power

distribution network will increase, and consequently the matrix A tends to be

of very large size. A direct solve of Equation (13.14) hence becomes impractical

because of the large amount of memory and computation required. However,

networks such as mesh and tree will correspond to a matrix A that is sparse

and structured. In addition, A is diagonally dominant and symmetric [Kozhaya

2001]. A number of methods have been developed, that exploit these properties
of A for analysis and optimization of P/G networks.

We will begin by discussing the specific sparsity structure of the matrix A

that arises in the analysis of RC mesh structures. Consider a simple example

of a 3� 3 power mesh, as shown in Figure 13.59. The sparsity structure of

matrix A for this example is as follows:

� � �
� � � �
� � �

� � � �
� � � � �
� � � �
� � �
� � � �
� � �

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

A multigrid-like technique was proposed in [Kozhaya 2001, 2002]. In this

approach, the original large system is first mapped to a coarse grid of reduced

size. The reduced system is solved, and the solution is then mapped back to

the original system through interpolation. A method for hierarchical analysis
FIGURE 13.59

A 3� 3 RC mesh structure.

13.4 Power/ground network design 835
of power distribution networks was provided in [Zhao 2002]. The power grid is

first divided into a global grid and several local grids. Macromodels for the local
grids are then generated by use of efficient numerical methods. These macromo-

dels can then be used for simulating the global grid. In addition, several techni-

ques based on iterative methods that use sparse linear system techniques have

been proposed as well. Techniques based on preconditioned Krylov subspace

methods and successive overrelaxation techniques were proposed in [Chen

2001] and [Zhong 2005], respectively.

Finally, we will examine in more detail a stochastic technique based on the

random walk method [Qian 2003]. Here the problem of simulating an RC power
mesh is translated into a stochastic game that will proceed iteratively until some

measure of convergence is achieved. To motivate the procedure, we begin by

examining a simple situation where we have a cross-shaped structure created

by four resistors with a current source at the central node, as shown in Fig-

ure 13.60. The current at the central node x is described through KCL:X4
i¼ 1

giðVi � VxÞ ¼ Ix

where gi and Vi are the conductance and voltage for each bordering node,

respectively. Thus, we can solve for the voltage at the central node:

Vx ¼
X4
i¼ 1

giP4
j¼ 1 gj

Vi � IxP4
j¼ 1 gj

If we construct Equation (13.15) for each node in a resistive network and solve

the linear equations simultaneously, we arrive at the exact voltage values across

the network. Instead, let us form a basic stochastic game that mimics the prob-

lem of solving for these voltages.

Imagine a traveler who is currently at a position x (see Figure 13.61). With

some probability px;i, the traveler will decide to walk down one of the available

roads i. The sum of the probabilities for all of the roads that intersect at x is 1,
but the individual probabilities have yet to be determined. Each node that is not

labeled “HOME” is considered a hotel that must be visited (with a cost incurred,

denoted as mx), and the traveler must continue along until a final home location
g1

g2
g3

g4
Ix

2

1

4

3

FIGURE 13.60

Portion of a resistive network.

 px ,2

px,1

 px,3

HOME

mx

 px,4

HOME

FIGURE 13.61

Random walk game.

836 CHAPTER 13 Synthesis of clock and power/ground networks
is reached (and fixed prize amount is awarded, denoted as m0). Thus, we can

define a gain function f for the amount of money earned on the walk given that

we began at a non-home node x that has n bordering locations labeled
1; 2; . . . ;n:

f ðxÞ ¼
Xn
i¼ 1

px; i f ðiÞ �mx

Given that a traveler will remain at the home location once it is reached, we

conclude that f ð yÞ ¼ m0 for all home nodes y. An analogy can now be drawn

between the resistive VDD network and this stochastic game:

px;i ¼ giPn
j¼ 1gj

; mx ¼ IxPn
j¼ 1gj

; m0 ¼ VDD

Repeated iterations of the random walk game will give the values of the voltages

for each node f ðxÞ ¼ Vx in the resistive network. To apply this technique to RC

power network analysis, we have to replace each capacitor in the RC network

by a resistor and a voltage-controlled current source. This simple extension is

further developed in the section exercises.
13.4.3 Power/ground network synthesis
The synthesis of a P/G network involves the determination of its topology, the
placement of power pads, the appropriate sizing of power lines, and the inser-

tion of decoupling capacitances. When designing a power distribution network,

it is important that both the maximum allowable current density for each wire

and the maximum voltage drop at each node are within specifications. The max-

imum current density constraints must be satisfied to avoid the wearing out of

13.4 Power/ground network design 837
metal wires, whereas the voltage drop criteria are required for maintaining cor-

rect functioning of the IC. Meanwhile, it is important that the wiring resource
consumption of a P/G network is minimized.

13.4.3.1 Topology optimization

A variety of techniques have been proposed for topology optimization of P/G

supply networks [Rothermel 1981; Syed 1982; Xiong 1986; Mitsuhashi 1992;
Singh 2004, 2005]. For modern dense circuit designs, power grids can involve

millions of wires, and it becomes necessary to formulate fast techniques for

the design of such networks.

The synthesis technique in [Singh 2005] is based on the recursive partitioning

of the chip area. The procedure starts with assigning a very coarse grid for the

whole design, assuming very wide wires and large pitch. The grid is then recur-

sively bipartitioned. The coarse grid in each of the two partitions is refined such

that each wide wire is replaced by several narrower wires with smaller pitch.
The amount of computation needed to perform the analysis after each refine-

ment step does not grow substantially as a result of the use of locality (i.e., inde-

pendently solving only a small local grid in each iteration). The procedure halts

when the grid topology is able to satisfy the two specifications described

previously.

13.4.3.2 Power pad assignment

We will now examine the problem of determining the optimal number of power

pads and their locations when dealing with a grid topology. The objective is to

minimize the number of power pads necessary to meet the two design consid-

erations discussed earlier. A mixed integer linear program (MILP) formula-

tion is given in [Zhao 2004]. The MILP formulation involves a set of potential
power pad locations, PC, and a set of observation points, OP, on the power

grid. By specifying a subset of the total number of nodes as observation points,

a macromodel can be formed for the power grid system, as shown in

Figure 13.62. The governing dynamics of this system can be described by the

following equation:

I ¼ A � V þ S
S

I V

A

FIGURE 13.62

Macromodel schematic.

838 CHAPTER 13 Synthesis of clock and power/ground networks
where I is a vector of currents flowing into the model through the ports, A is

the conductance matrix, and V is the port voltage vector. By introducing 0-1

integer variables, we can construct constraints for the current seen at any of

the potential pad locations:

Vi � VDD � zi � 0

Vi � VDD

Vi � Vt

It � zi � Ii � 0
Ii � 0

Here, It is themaximum current allowed through a pad,Vt is theminimum voltage

for any node in the power grid, and zi is a 0-1 variable designating if location i is

occupied by a pad. Thus, we can formulate the following optimization problem:

min
P
i2PC

zi i 2 f0; 1g
subject to Vj � Vt j 2 OP

Ii and Vj satisfy Equation ð13:16Þ for j 2 OP [PC and i 2 PC

Ii and Vj satisfy Equation ð13:17Þ for i 2 PC

A solution based on a branch-and-bound algorithm can be used for solving such an

optimizationproblem. Since theMILP solutionprocedure canbecomehighly expen-

sive for a large number of variables, which in this case are the power pad locations,

a heuristic can be used to aid in reducing this run time complexity. In [Zhao 2004],

for example, a divide-and-conquer approach is used to divide the whole power grid
into several partitions and then assign pads for each partition independently.

The heuristic presented in [Oh 1998] simultaneously performs pad assign-

ment and P/G routing. In this approach, an attempt is made to evenly distribute

the inductively induced voltage fluctuation across the pads, while minimizing

routing of single-pad trees.

13.4.3.3 Wire width optimization

We now discuss for a given topology how the wire widths can be optimized to

meet both maximum allowable voltage drop and physical breakdown constraints

[Chowdhury 1985]. By varying the wire width wewill be able to control the resis-

tance of the wire and, therefore, the amount of current flowing through that path
or route. This, in turn, will allow us to meet any desired maximum allowable volt-

age drop required by the design specifications. In this case voltage drop will be

measured from the actual power pad to a power supply pin of a gate or module.

In addition, for the optimization problem a minimum allowable width for each

branch in the network will be imposed. This minimumwidth is enforced to avoid

metal migration effects that will affect the physical reliability of the design. Specif-

ically, if the cross-sectional area increases or the current density decreases, we can

assume that the average lifetime of the wire will be longer. Finally, our overall goal
(objective function) will be to minimize the total area required for the routing of

the power network. This is equivalent to minimizing a weighted sum of the wire

width needed to meet the specifications for the network.

13.4 Power/ground network design 839
This or similar optimization problems can be formulated as mathematical pro-

grams, which are then solved numerically. If we consider the formulation shown
in [Mitsuhashi 1992] the result is a nonlinear programming approach for solving

the problem. Here the possible wire widths are some discrete values based on a

realistic fabrication situation. The objective function can be described as follows:

A ¼
Xn
i¼ 1

wili ¼
Xn
i¼ 1

jrIil2i j
xi

where wi and li are the width and length, respectively, for the n branches of the

power network. The term Ii is the maximum current flow across a branch with

resistivity r, and the voltage drop is denoted by xi. A maximum allowable voltage

drop vj across any path pj can be assured through the following constraints:X
i2pj

xi � Dvj

The minimum width W allowed by the fabrication process can be incorporated

through these n conditions:

wi ¼ rIili
xi
� W

Finally, by putting constraints on the maximum current-wire width ratio, we can

avoid the problems caused by metal migration:

Ii

wi

¼ xi

rli
� si

where si is the maximum allowable current density across branch i.

With an alternate mathematical model, a linear formulation of the optimi-

zation problem given in [Tan 2003] facilitates the use of more efficient methods

of solution. Furthermore, interested readers can examine [Luenberger 2003],
which provides detailed explanations of numerical schemes used to solve the

optimization problems described previously.
13.4.3.4 Decoupling capacitance

One of the most powerful techniques for reducing power supply noise caused by

IR drop and L � di=dt noise is to use decoupling capacitors across the power grid

[Rao 2001]. It is commonly understood that charge is required to energize a load
capacitor, where the charge in this case is supplied by the current flowing through

the power supply network. However, such amechanism introduces power supply

noise caused by the intrinsic wire resistance and inductance in the network.

Alternately, charge can also be supplied by another capacitor, which can be

placed in close proximity to the load capacitance. Because this additional capaci-

tance is located near the load, it will reduce the overall size of the current loop and

act to supply charge to the load. This situation is illustrated in Figure 13.63.

POWER SUPPLY
OUTPUT

ZOUT

FIGURE 13.63

Decoupling network.

840 CHAPTER 13 Synthesis of clock and power/ground networks
Consequently, current does not need to flow across most of the parasitics for the

power supply network, and the current-induced noise is reduced. The needed

action for a decoupling capacitor can be efficiently implemented with the gate

capacitance of a transistor. With increasing noise values, it is often necessary to

allocate asmuch as 10% of the total chip area to decoupling capacitors. Therefore,
it is crucial to estimate the size and area needed for decoupling capacitor

assignment.

There have been many studies into decoupling capacitor placement and

optimization. First, we address the problem of estimating the amount of decou-

pling capacitor that each circuit module will require. The amount of decoupling

capacitor required by each circuit module at the floorplanning level can be cal-

culated as follows: suppose the maximum voltage noise that a module can toler-

ate is V lim
noise. Let Q ¼ R t

0
IðtÞdt denote the maximum total charge that this

module will draw from the power supply over t, the duration that the current

waveform IðtÞ lasts. A greedy scheme for decoupling capacitor estimation is

to allocate C ¼ Q=V lim
noise to this module.

However, this scheme might result in overallocation of decoupling capaci-

tors, because each decoupling capacitor in practice can be shared by several

modules [Zhao 2001]. An iterative approach was proposed instead. An

initial estimate of decoupling capacitor required for each module is expressed as

y ¼ max 1;
Vnoise

V lim
noise

� �
; C ¼ 1� 1

y

� �
Q

V lim
noise

whereVnoise denotes the power supply noise that themodule experiences. AfterC

is added to the module, the power noise, Vnoise, can be recalculated for all the

other modules, and the remaining C are allocated accordingly. Because the decou-

pling capacitor at a module also helps in reducing the power supply noise at a

neighboring module, the amount of decoupling capacitor allocated with this pro-

cedure can be significantly smaller than that of the greedy scheme.

13.4 Power/ground network design 841
Several techniques have been proposed for decoupling capacitor budgeting

at the floorplanning level [Su 2003]. An iterative procedure involving circuit
simulation and floorplanning was proposed in [Chen 1997]. Here, a circuit sim-

ulator is used to first analyze the switching noise and determine any hot spots

(locations of excessive voltage drop). Then, the sizes of the decoupling capaci-

tors needed to meet voltage drop specifications are determined. On-chip decou-

pling capacitors are usually implemented as MOS capacitors, which has a unit

area capacitance of Cox ¼ eox=tox, where tox is the oxide thickness and eox is

the permittivity of SiO2. Given a decoupling capacitance C, the silicon area

required for the fabrication of the decoupling capacitor is S ¼ C=Cox.
After this initial circuit simulation stage, the floorplanner calculates the area

required to implement these decoupling capacitors, as well as possible locations

for their placement. This information can then be sent back to the circuit simu-

lator, which simulates the activity on the new floorplan with the additional

added decoupling capacitors. The iterative procedure continues until the power

noise is suppressed to within the required limits.

A linear programming–based technique to allocate white space for decou-

pling capacitors has been proposed in [Zhao 2001]. White space for decoupling
capacitor placement is allocated in two stages. The first stage involves allocation

of existing white space with a linear program. The objective here is to maximize

the utilization of the existing white space. Suppose the white space in the exist-

ing floorplan has been partitioned into H rectilinear blocks, called white-space

modules. For each white-space module wk, we use Ak to denote its area and Nwk

to denote the set of circuit modules that are adjacent to it. Assume that there

are M circuit modules. Let Sð jÞ denote the silicon area required for the decou-

pling capacitor allocated to circuit module mj for power supply noise
suppression. We use Nmj

to denote the set of white-space modules that are adja-

cent to circuit module mj. We show a floorplan of 7 rectangular circuit

modules and 3 rectilinear white-space modules in Figure 13.64. In this example,

Nw1
¼ fm3;m4;m5;m6g and Nm1

¼ fw3g.
Let x

ð jÞ
k be the amount of white space allocated to circuit module mj from an

adjacent white-space module wk. The white space utilization problem can be

formulated as follows:

max
XH
k¼ 1

X
j2Nwk

x
ð jÞ
k ;

subject to
P
j2Nwk

x
ð jÞ
k � Ak; k ¼ 1; 2; . . . ;HP

k2Nmj

x
ð jÞ
k � Sð j Þ; j ¼ 1; 2; . . . ;M

x
ð jÞ
k � 0; 8k; 8j 2 Nwk

In the second step, the floorplan is stretched, if necessary, such that extra white

space can be created to meet all the decoupling capacitor requirements of the

circuit.

m7

m1

m2

m3

m5
m6

m4

w1

w2

w3

FIGURE 13.64

A floorplan of 7 circuit modules and 3 white-space modules.

842 CHAPTER 13 Synthesis of clock and power/ground networks
All the decoupling capacitor allocation methods require the estimation of

the current waveforms that result in hot spots. It is often difficult to accurately

estimate the current waveforms in general situations. Hence, the allocation of

decoupling capacitor is usually based on the worst-case voltage drops, resulting

in an overallocation of resources for decoupling capacitors. To alleviate this
problem, several sensitivity-based techniques for decoupling capacitor optimiza-

tion have been proposed [Bai 2000; Su 2000; Fu 2004].

We now show how the sensitivity of a node voltagewith respect to decoupling

capacitances can be calculated. In [Su 2003], the authors used the adjoint network

method [Director 1969] to calculate critical nodes that can benefit the most from

introducing decoupling capacitance. First, an estimate of the current-induced

noise at each node in the grid is constructed on the basis of both the possible tun-

able circuit parameters for the decoupling capacitor and the voltage drop
observed at the node.3 Then, an adjoint circuit is obtained by shorting all voltage

sources and opening all current sources in the original power network. Finally, for

each node with a non-zero noise measurement, appropriate current sources are

applied. This allows for a measurement of the sensitivity to be computed:

@Z

@C
¼

ZT
0

ccðT � tÞ _vcðtÞdt
3As the circuits considered in [Su 2003] are standard cell designs, the height of the decoupling

capacitors are constrained to be the same as the height of standard cells. Hence, the only

tunable circuit parameters are the widths of the decoupling capacitors.

13.6 Exercises 843
where Z is the sum of the current-induced noise estimates, ccðtÞ is the wave-

form across the capacitor C in the adjoint circuit, and vcðtÞ is the voltage wave-

form from the original power-grid analysis. This information can then be used to

formulate a quadratic program for determining the optimal decoupling capacitor

allocation area.
13.5 CONCLUDING REMARKS

There is a rich body of work in the general areas of automated modeling and

synthesis of clock distribution networks and P/G delivery systems. This chapter

focuses mainly on the modeling and synthesis of clock and power/ground

networks composed of RC elements. There are many existing studies that

address the problem of synthesizing such networks based on more complete
models that also consider inductive parasitics. These studies typically adapt

many existing analysis and synthesis techniques covered in this chapter, with

varying degrees of success, to address the challenge of incorporating inductive

elements in the networks. Parametric variations add further challenges along a

different dimension. A bigger challenge is the comodeling and cosynthesis of

clock and P/G networks. As the design margin gets smaller, it is getting harder

to ignore the interplay of these two large networks.
13.6 EXERCISES
13.1. (Delay Modeling) Let Rij denote the resistance of the common path
Pathðsrc; iÞ \ Pathðsrc; jÞ from the source src to nodes i and j in an RC

tree T . Besides the Elmore delay, Rubinstein, Penfield, and Horowitz

[Rubinstein 1983] also defined the following two delay models:
tp ¼ P
k2 T

RkkCk

ti ¼ P
k2T

R2
kiCk

� �
=Rii
Although there is only one tp for a given RC tree T , each node i

in T has an associated ti. It can be shown that ti � tElmore; i � tp.

(a) Write down the pseudo-code to compute tp in linear time.

(b) Write down the pseudo-code to compute all ti’s in linear time.
13.2. (Skew Scheduling) Consider a constraint graph GCðV ;EÞ obtained
from a set of skew constraints C. Suppose GC has no negative cycles.

Let ti be the clock delay assigned to clock pin si. Suppose the given

schedule is not feasible, which implies that for some edge ej; i 2 E,
ti > tj þwj; i

844 CHAPTER 13 Synthesis of clock and power/ground networks
When this occurs, we apply the following relaxation to change

the clock delay assigned to clock pin si:
ti tj þwj; i
(a) Show that the process of changing the clock delays assigned to

clock pins with iterations of the relaxation step will converge
to a feasible clock schedule.

(b) What is the worst-case time complexity for the algorithm to

converge to a feasible clock schedule?
13.3. (Zero-Skew Routing) Given two Manhattan arcs, write down the

pseudo-code to compute the distance between them.

13.4. (Zero-Skew Routing) Consider two merging segments msa and

msb that are of distance L apart. Suppose they are merged at parent

node v, with non-negative wire lengths jeaj and jebj, as computed in

Section 13.3.3.3. Write down the pseudo-code to compute msv, the

merging segment at v.

13.5. (Bounded-Skew Routing) Consider two merging regions that are
polygons formed by rectilinear line segments and Manhattan arcs,

as shown in Figure 13.33, for bounded-skew routing. Write down

the pseudo-code to compute the distance L between them.

13.6. (Bounded-Skew Routing) In Section 13.3.3.4, we stated that for

bounded-skew routing, the global skew on a boundary segment of

a merging region that is a Manhattan arc is a constant.
(a) For the path length delay model, how would the global skew

change along a rectilinear boundary segment?
(b) For the Elmore delay model, how would the global skew

change along a rectilinear boundary segment?
13.7. (Bounded-Skew Routing) You are given a routine called Compute_

merging_region, which takes in two merging regions mra and mrb as
input, and outputs a merging region mrv as a result of performing a

bounded-skew merge operation on mra and mrb. Suppose the time

complexity of this routine is Oð1Þ. Write down the pseudo-code to

compute mre for all edges e 2 G for a given abstract topology G.

Recall that mre refers to the merging region if the root node of

G is relocated to e (see Section 13.3.3.4). Assume that you already

have the merging regions for all nodes in G. The time complexity

of your algorithm should be linear.
13.8. (Bounded-Skew Routing) Use the bucket decomposition in Sec-

tion 13.3.3.3 in the Greedy-BST/DME algorithm. If you also incorpo-

rate the re-rooting algorithm in Exercise 13.7, what is the time

complexity of your Greedy-BST/DME algorithm?

13.9. (Useful-Skew Routing) Suppose you have been given a skew sche-

dule. In other words, all skew constraints are equality constraints.

13.6 Exercises 845
Modify the zero-skew routing tree algorithm in Algorithm 13.4 to
perform prescribed useful-skew routing.

13.10. (Buffer Insertion) In Section 13.3.4.1, the merging region mrva is

computed by computing the merging segments Va and V 0a, assuming

that a buffer is inserted at v and a, respectively. Let CTa and CTb

denote the capacitances of the DC-connected subtrees rooted at a

and b, respectively. Also, let ta and tb denote the sink delays in the

two subtrees. Let L denote the distance between a and b.
(a) Write down the respective equations for the distances of Va

and V 0a from a.

(b) Consider a sampling segment s in mrva . Let ds denote the dis-

tance of s from a. Determine jeaj and the location of the buffer

along the interconnect from v to a.
13.11. (Clock Gating) In Section 13.3.4.2, we demonstrated how C tot
Tx
,

GCTx , GC
eff
Tx

, UGCTx and C
eff
Tx

can be updated. However, we ignore

the parasitic capacitance Tcg=Rcg in the process.
(a) Write down the steps to update these capacitances, taking into

account Tcg=Rcg.

(b) Suppose instead of a clock gate, we insert a buffer. How do you

update these capacitances?
13.12. (Wire Sizing) In Section 13.3.4.3, we use wire sizing to reduce the

delay caused by a wire. We will investigate the possibility of the use

of wire sizing to slow down a wire in this problem. Consider a wire

with 4 segments, with each segment modeled as a lumped RC ele-
ment. For simplicity, we assume an L-type circuit for the lumped

RC element (i.e., the capacitance is at the downstream endpoint of

the resistance). Let the width choices form the set f1; 2; 3; 4; 5g.
A width choice of i has a wire resistance of value 1=i and a wire

capacitance of value i. Determine a wire width assignment that

would result in the longest wire delay. You may want to write a pro-

gram to enumerate all possible assignments.

13.13. (Cross-Link Insertion) Assuming that every node in a tree has a
field to record its distance (i.e., number of edges) from the root node

(see the definition of the level of a node in Section 13.3.4.4). Write

down an algorithm to determine the youngest common ancestor

(YCA) of two nodes without visiting any edges not on the paths from

YCA to the two nodes.

13.14. (Random Walk) Starting from the MNA equations
Gx þ C _x ¼ b
if a backward Euler approximation (step size h) is assumed we arrive

at an equation of the form:

846 CHAPTER 13 Synthesis of clock and power/ground networks
G þ C

h

� �
x k ¼ bk þ C

h
x k�1
(a) With the information provided in section 13.4.2 for RC net-

works, rewrite this equation for a node x only in terms of con-

ductances gi, current load Ix, and voltage values Vi.

(b) With the preceding equation, formulate the corresponding sto-

chastic game and describe its meaning. (Hint: first reformulate

to solve for Vx on the LHS and then describe what each term
on the RHS would represent.)
13.15. (Decoupling Capacitor) Consider the floorplan shown in Fig-

ure 13.64. Suppose after solving the linear program, you realize that

the decoupling capacitance requirement of m1 cannot be fulfilled.
However, there are some slacks in w1 and w2. How would you meet

the decoupling capacitance requirement of m1 without increasing

the chip area? Suggest an iterative approach on the basis of the linear

program in Section 13.4.3.4 to enhance the utilization factor of

white space for decoupling capacitor deployment.

13.16. (Decoupling Capacitor) For a decoupling capacitor to be effective

in countering the power supply noise induced by the switching

activity of a circuit module, the decoupling capacitor must be placed
within some distance of the circuit module. Modify the linear pro-

gram in Section 13.4.3.4 to enforce the constraint on the distance

between a decoupling capacitor and the circuit module that it is

safeguarding.
ACKNOWLEDGMENTS

We acknowledge Ruilin Wang of Purdue University for his contributions to the sections on “Design

Considerations” and “Clock Network Design.” We also thank Dr. Aiqun Cao of Synopsys, Professor

Jiang Hu of Texas A&M University, Professor Sheldon X.-D. Tan of the University of California at

Riverside, and Dr. Chung-Wen Albert Tsao of Cadence Design Systems for reviewing the chapter.
REFERENCES

R13.0 Books

[Bakoglu 1990] H. B. Bakoglu, Circuits, Interconnections, and Packaging for VLSI, Addison-Wesley,

Reading, MA, 1990.

[Cormen 2001] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms,

Second Edition, MIT Press, Cambridge, MA, 2001.

[Luenberger 2003] D. Luenberger, LinearandNonlinear Programming,Kluwer Academic Publishers,

Boston, 2003.

References 847
[Rabaey 2003] J. M. Rabaey, A. Chandrakasan, and B. Nikoli�c, Digital Integrated Circuits: A Design

Perspective, Second Edition, Prentice-Hall, Upper Saddle River, NJ, 2003.

[Rao 2001] T. Rao, Fundamentals of Microsystems Packaging, McGraw-Hill, New York, 2001.
R13.2 Design Considerations

[Anderson 2001] C. J. Anderson, J. Petrovick, J. M. Keaty, J. Warnock, G. Nussbaum, J. M. Tendier,

C. Carter, S. Chu, J. Clabes, J. DiLullo, P. Dudley, P. Harvey, B. Krauter, J. LeBlanc, P.-F. Lu, B.

McCredie, G. Plum, P. J. Restle, S. Runyon, M. Scheuermann, S. Schmidt, J. Wagoner, R. Weiss,

S. Weitzel, and B. Zoric, Physical design of a fourth-generation POWER GHz microprocessor, in

Proc. IEEE Int. Solid-State Circuits Conf., pp. 232–233, February 2001.

[Black 1969] J. R. Black, Electromigration—A brief survey and some recent results, IEEE Trans. on

Electron Devices, 16(4), pp. 338–347, April 1969.

[Lin 2001] S. Lin and N. Chang, Challenges in power-ground integrity, in Proc. IEEE/ACM Int. Conf.

on Computer Aided Design, pp. 651–654, November 2001.
R13.3 Clock Network Design

[Anderson 2001] C. J. Anderson, J. Petrovick, J. M. Keaty, J. Warnock, G. Nussbaum, J. M. Tendier,

C. Carter, S. Chu, J. Clabes, J. DiLullo, P. Dudley, P. Harvey, B. Krauter, J. LeBlanc, P.-F. Lu, B.

McCredie, G. Plum, P. J. Restle, S. Runyon, M. Scheuermann, S. Schmidt, J. Wagoner, R. Weiss,

S. Weitzel, and B. Zoric, Physical design of a fourth-generation POWER GHz microprocessor,

in Proc. IEEE Int. Solid-State Circuits Conf., pp. 232–233, February 2001.

[Bailey 1998] D. Bailey and B. Benschneider, Clocking design and analysis for a 600-MHz Alpha

microprocessor, IEEE J. on Solid-State Circuits, 33(11), pp. 1627–1633, November 1998.

[Boese 1992] K. D. Boese and A. B. Kahng, Zero-skew clock routing trees with minimum wire-

length, in Proc. IEEE Int. ASIC Conf., pp. 1.1.1–1.1.5, September 1992.

[Boese 1995] K. D. Boese, A. B. Kahng, B. A. McCoy, and G. Robins, Near optimal critical sink

routing tree constructions, IEEE Trans. on Computer- Aided Design, 14(12), pp. 1417–1436,

December 1995.

[Chan 1990] P. K. Chan and K. Karplus, Computing signal delay in general RC networks by tree/link

partitioning, IEEE Trans. on Computer-Aided Design, 9(8), pp. 898–902, August 1990.

[Chao 1992] T.-H. Chao, Y.-C. H. Hsu, and J.-M. Ho, Zero skew clock net routing, in Proc. ACM/IEEE

Design Automation Conf., pp. 518–523, June 1992.

[Chao 2008] W.-C. Chao and W.-K. Mak, Low-power gated and buffered clock network construction,

ACM Trans. on Design Automation of Electronic Systems, 13(1), Article No. 20, pp. 1–20, Janu-

ary 2008.

[Chen 1996] Y. P. Chen and D. F. Wong, An algorithm for zero-skew clock tree routing with buffer

insertion, in Proc. European Design and Test Conf., pp. 230–236, March 1996.

[Chen 2002] C. Chen, C. Kang, and M. Sarrafzadeh, Activity-sensitive clock tree construction for low

power, in Proc. Int. Symp. on Low Power Electronics and Design, pp. 279–282, August 2002.

[Cong 1995a] J. Cong and C.-K. Koh, Minimum-cost bounded-skew clock routing, in Proc. IEEE Int.

Symp. on Circuits and Systems, pp. 1.215–1.218, April 1995.

[Cong 1995b] J. Cong, A. B. Kahng, C.-K. Koh, and C.-W. A. Tsao, Bounded skew clock and Steiner

routing under Elmore delay, in Proc. IEEE/ACM Int. Conf. on Computer Aided Design,

pp. 66–71, November 1995.

[Cong 1996] J. Cong and L. He, Optimal wiresizing for interconnects with multiple sources, ACM

Trans. on Design Automation of Electronic Systems, 1(4), pp. 478–511, October 1996.

[Cong 1998] J. Cong, A. B. Kahng, C.-K. Koh, and C.-W. A. Tsao, Bounded-skew clock and Steiner rout-

ing, ACM Trans. on Design Automation of Electronic System, 3(3), pp. 341–388, July 1998.

848 CHAPTER 13 Synthesis of clock and power/ground networks
[Edahiro 1991] M. Edahiro, Minimum skew and minimum path length routing in VLSI layout design,

NEC Research and Development, 32(4), pp. 569–575, October 1991.

[Edahiro 1992] M. Edahiro and T. Yoshimura, Minimum path-length equi-distant routing, in Proc.

IEEE Asia-Pacific Conf. on Circuits and Systems, pp. 41–46, December 1992.

[Edahiro 1993a] M. Edahiro, A clustering-based optimization algorithm in zero skew routing, in

Proc. ACM/IEEE Design Automation Conf., pp. 612–616, June 1993.

[Edahiro 1993b] M. Edahiro, Delay minimization for zero-skew routing, in Proc. IEEE/ACM Int.

Conf. on Computer Aided Design, pp. 563–566, November 1993.

[Edahiro 1994] M. Edahiro, An efficient zero-skew routing algorithm, in Proc. ACM/IEEE Design

Automation Conf., pp. 375–380, June 1994.

[Elmore 1948] W. C. Elmore, The transient response of damped linear networks with particular

regard to wide-band amplifiers, J. of Applied Physics, 19(1), pp. 55–63, January 1948.

[Fisher 1982] A. L. Fisher and H. T. Kung, Synchronizing large systolic arrays, in Proc. SPIE, 341

pp. 44–52, May 1982.

[Geannopoulos 1998] G. Geannopoulos and X. Dai, An adaptive digital deskewing circuit for clock

distribution networks, in Proc. IEEE Int. Solid-State Circuits Conf., pp. 400–401, February 1998.

[Gupta 1997] R. Gupta, B. Tutuianu, and L. T. Pileggi, The Elmore delay as a bound for RC trees with

generalized input signals, IEEE Trans. on Computer- Aided Design, 16(1), pp. 95–104, January

1997.

[Guthaus 2006] M. R. Guthaus, D. Sylvester, and R. B. Brown, Clock buffer and wire sizing using

sequential programming, in Proc. ACM/IEEE Design Automation Conf., pp. 1041–1046, July

2006.

[Huang 1995] J. H. Huang, A. B. Kahng, and C.-W. A. Tsao, On the bounded skew routing tree prob-

lem, in Proc. ACM/IEEE Design Automation Conf., pp. 508–513, June 1995.

[Kung 1982] S. Y. Kung and R. J. Gal-Ezer, Synchronous versus asynchronous computation in very

large scale integrated VLSI array processors, in Proc. SPIE, 341 pp. 53–65, May 1982.

[Kurd 2001] N. A. Kurd, J. S. Barkarullah, R. O. Dizon, T. D. Fletcher, and P. D. Madland, A multi-

gigahertz clocking scheme for the Pentium(R) 4 microprocessor, IEEE J. of Solid-State Circuits,

36(11), pp. 1647–1653, November 2001.

[Lam 2002] W.-C. D. Lam, C.-K. Koh, and C.-W. A. Tsao, Power supply noise suppression via clock

skew scheduling, in Proc. IEEE Int. Symp. on Quality of Electronic Design, pp. 355–360, March

2002.

[Lam 2003] W.-C. D. Lam, C.-K. Koh, and C.-W. A. Tsao, Clock scheduling for power supply noise

suppression using genetic algorithm with selective gene therapy, in Proc. IEEE Int. Symp. on

Quality of Electronic Design, pp. 327–332, March 2003.

[Lam 2005] W.-C. D. Lam, J. Jain, C.-K. Koh, V. Balakrishnan, and Y. Chen, Statistical based link inser-

tion for robust clock network design, in Proc. IEEE/ACM Int. Conf. on Computer Aided Design,

pp. 587–590, November 2005.

[Lillis 1995] J. Lillis, C. K. Cheng, and T. T. Y. Lin, Optimal wire sizing and buffer insertion for low

power and a generalized delay model, in Proc. IEEE/ACM Int. Conf. on Computer Aided Design,

pp. 138–143, November 1995.

[Lin 1975] H. C. Lin and L. W. Linholm, An optimized output stage for MOS integrated circuits, IEEE

J. of Solid-State Circuits, SC-10(2), pp. 106–109, April 1975.

[Nagel 1975] L. W. Nagel, SPICE2: A computer program to simulate semiconductor circuits, Techni-

cal Report ERL-M520, University of California, Berkeley, CA, May 1975.

[Oh 2001] J. Oh and M. Pedram, Gated clock routing for low-power microprocessor design, IEEE

Trans. on Computer-Aided Design, 20(6), pp. 715–722, June 2001.

[Rajaram 2004] A. Rajaram, J. Hu, and R. Mahapatra, Reducing clock skew variability via cross links,

in Proc. ACM/IEEE Design Automation Conf., pp. 18–23, June 2004.

[Rajaram 2005] A. Rajaram, D. Z. Pan, and J. Hu, Improved algorithms for link based non-tree clock

networks for skew variability reduction, in Proc. ACM Int. Symp. on Physical design, pp. 55–62,

April 2005.

References 849
[Rajaram 2006] A. Rajaram and D. Z. Pan, Variation tolerant buffered clock network synthesis with

cross links, in Proc. ACM Int. Symp. on Physical design, pp. 157–164, April 2006.

[Rubinstein 1983] J. Rubinstein, P. Penfield Jr, and M. A. Horowitz, Signal delay in RC tree networks,

IEEE Trans. on Computer-Aided Design, CAD-2(3), pp. 202–211, July 1983.

[Tam 2000] S. Tam, S. Rusu, U. N. Desai, R. Kim, J. Zhang, and I. Young, Clock generation and dis-

tribution for the first IA-64 microprocessor, IEEE J. of Solid-State Circuits, 35(11),

pp. 1545–1552, November 2000.

[Téllez 1995] G. E. Téllez, A. Farrahi, and M. Sarrafzadeh, Activity-driven clock design for low power

circuits, in Proc. IEEE/ACM Int. Conf. on Computer Aided Design, pp. 62–65, November 1995.

[Tsai 2003] J.-L. Tsai, T.-H. Chen, and C. C.-P. Chen, e-Optimal minimum delay/area zero-skew clock

tree wire-sizing in pseudo-polynomial time, Proc. ACM Int. Symp. on Physical Design,

pp. 166–173, April 2003.

[Tsao 2002] C.-W. A. Tsao and C.-K. Koh, UST/DME: A clock tree router for general skew constraints,

ACM Trans. on Design Automation of Electronic Systems, 7(3), pp. 359–379, July 2002.

[Tsay 1991] R.-S. Tsay, Exact zero skew, in Proc. IEEE/ACM Int. Conf. on Computer Aided Design,

pp. 336–339, November 1991.

[van Ginneken 1990] L. P. P. P. van Ginneken, Buffer placement in distributed RC-tree networks for

minimal Elmore delay, in Proc. IEEE Int. Symp. On Circuits and Systems, pp. 865–868, May

1990.

[Vittal 1995] A. Vittal and M. Marek-Sadowska, Power optimal buffered clock tree design, in Proc.

ACM/IEEE Design Automation Conf., pp. 497–502, June 1995.

[Vittal 1996] A. Vittal, H. Ha, F. Brewer, and M. Marek-Sadowska, Clock skew optimization for

ground bounce control, in Proc. IEEE/ACM Int. Conf. on Computer Aided Design,

pp. 395–399, November 1996.

[Vuillod 1996] P. Vuillod, L. Benini, A. Bogliolo, and G. DeMicheli, Clock-skew optimization for peak

current reduction, in Proc. Int. Symp. on Low Power Electronics and Design, pp. 265–270,

August 1996.

[Wang 2005] K. Wang, Y. Ran, H. Jiang, and M. Marek-Sadowska, General skew constrained clock

network sizing based on sequential linear programming, IEEE Trans. on Computer-Aided

Design, 24(5), pp. 773–782, May 2005.

[Xi 1995] J. G. Xi andW. W.-M. Dai, Buffer insertion and sizing under process variations for low power

clock distribution, in Proc. ACM/IEEE Design Automation Conf., pp. 491–496, June 1995.

[Xi 1996] J. G. Xi and W. W.-M. Dai, Useful-skew clock routing with gate sizing for low power design,

in Proc. ACM/IEEE Design Automation Conf., pp. 383–388, June 1996.

[Yu 2007] Z. Yu, M. C. Papaefthymiou, and X. Liu, Skew spreading for peak current reduction, in

Proc. Great Lakes Symp. on VLSI, pp. 461–464, March 2007.
R13.4 Power/Ground Network Design

[Bai 2000] G. Bai, S. Bobba, and I. N. Hajj, Simulation and optimization of the power distribution net-

work in VLSI circuits, in Proc. IEEE/ACM Int. Conf. on Computer Aided Design, pp. 481–486,

November 2000.

[Chen 1997] H. H. Chen and D. D. Ling, Power supply noise analysis methodology for deep-submi-

cron VLSI chip design, in Proc. ACM/IEEE Design Automation Conf, pp. 638–643, June 1997.

[Chen 2001] T.-H. Chen and C. C.-P. Chen, Efficient large-scale power grid analysis based on precon-

ditioned Krylov-subspace iterative methods, in Proc. ACM/IEEE Design Automation Conf.,

pp. 559–562, June 2001.

[Chowdhury 1985] S. Chowdhury and M. Breuer, The construction of minimal area power and

ground nets for VLSI circuits, in Proc. ACM/IEEE Design Automation Conf., pp. 794–797, June

1985.

850 CHAPTER 13 Synthesis of clock and power/ground networks
[Director 1969] S. W. Director and R. A. Rohrer, The generalized adjoint network and network sen-

sitivities, IEEE Trans. on Circuit Theory, 16(3), pp. 318–323, August 1969.

[Fu 2004] J. Fu, Z. Luo, X. Hong, Y. Cai, S. X.-D. Tan, and Z. Pan, A fast decoupling capacitor budget-

ing algorithm for robust on-chip power delivery, in IEICE Trans. on Fundamentals of Electron-

ics, Communications and Computer Science, E87-A(12), pp. 3273–3280, December 2004.

[Kozhaya 2001] J. N. Kozhaya, S. R. Nassif, and F. N. Najm, Multigrid-like technique for power grid

analysis, in Proc. IEEE/ACM Int. Conf. on Computer Aided Design, pp. 480–487, November

2001.

[Kozhaya 2002] J. Kozhaya, S. Nassif, and F. Najm, A multigrid-like technique for power grid analysis,

IEEE Trans. on Computer-Aided Design, 21(10), pp. 1148–1160, October 2002.

[Lin 2001] S. Lin and N. Chang, Challenges in power-ground integrity, in Proc. IEEE/ACM Int. Conf.

on Computer Aided Design, pp. 651–654, November 2001.

[Mitsuhashi 1992] T. Mitsuhashi and E. Kuh, Power and ground network topology optimization for

cell based VLSIs, in Proc. ACM/IEEE Design Automation Conf., pp. 524–529, June 1992.

[Oh 1998] J. Oh and M. Pedram, Multi-pad power/ground network design for uniform distribution of

ground bounce, in Proc. ACM/IEEE Design Automation Conf., pp. 287–290, June 1998.

[Qian 2003] H. Qian, S. Nassif, and S. Sapatnekar, Random walks in a supply network, in Proc. ACM/

IEEE Design Automation Conf., pp. 93–98, June 2003.

[Rothermel 1981] H.-J. Rothermel and D. A. Mlynski, Computation of power supply nets in VLSI

layout, in Proc. ACM/IEEE Design Automation Conf., pp. 37–42, June 1981.

[Singh 2004] J. Singh and S. S. Sapatnekar, Topology optimization of structured power/ground

networks, in Proc. ACM Int. Symp. on Physical design, pp. 116–123, April 2004.

[Singh 2005] J. Singh and S. S. Sapatnekar, A fast algorithm for power grid design, in Proc. ACM Int.

Symp. on Physical design, pp. 70–77, April 2005.

[Su 2000] H. Su, K. Gala, and S. Sapatnekar, Fast analysis and optimization of power/ground net-

works, in Proc. IEEE/ACM Int. Conf. on Computer Aided Design, pp. 447–480, November 2000.

[Su 2003] H. Su, S. Sapatnekar, and S. Nassif, Optimal decoupling capacitor sizing and placement for

standard-cell layout designs, IEEE Trans. On Computer-Aided Design, 22(4), pp. 428–436, April

2003.

[Syed 1982] Z. A. Syed and A. E. Carnal, Single layer routing of power and ground networks in

integrated circuits, J. of Digital Systems, VI(1), pp. 53–63, Spring 1982.

[Tan 2003] X.-D. Tan, C.-J. Shi, and F. J.-C. Lee, Reliability-constrained area optimization of VLSI

power/ground networks via sequence of linear programmings, IEEE Trans. on Computer-Aided

Design, 22(12), pp. 1678–1684, December 2003.

[Xiong 1986] X.-M. Xiong and E. S. Kuh, The scan line approach to power and ground routing, in

Proc. IEEE/ACM Int. Conf. on Computer Aided Design, pp. 6–9, November 1986.

[Zhao 2001] S. Zhao, K. Roy, and C.-K. Koh, Decoupling capacitance allocation for power supply

noise suppression, in Proc. ACM Int. Symp. on Physical design, pp. 66–71, April 2001.

[Zhao 2002] M. Zhao, R. Panda, S. Sapatnekar, and D. Blaauw, Hierarchical analysis of power distri-

bution networks, IEEE Trans. on Computer-Aided Design, 21(2), pp. 159–168, February 2002.

[Zhao 2004] M. Zhao, Y. Fu, V. Zolotov, S. Sundareswaran, and R. Panda, Optimal placement of

power supply pads and pins, in Proc. ACM/IEEE Design Automation Conf., pp. 165–170, June

2004.

[Zhong 2005] Y. Zhong and M. D. F. Wong, Fast algorithms for IR drop analysis in large power grid,

in Proc. IEEE/ACM Int. Conf. on Computer Aided Design, pp. 351–357, November 2005.

CHAPTER
14
Fault simulation and
test generation
James C.-M. Li
National Taiwan University, Taipei, Taiwan

Michael S. Hsiao
Virginia Tech, Blacksburg, Virginia
IS CHAPTER
ABOUT TH

Very large-scale integration (VLSI) circuits can be defective because of the

imperfect manufacturing process. One of the most important tasks in VLSI testing
is to minimize the number of defective chips shipped to customers. The quality of

test patterns is critical in determining the thoroughness of testing. This requires

the assessment of the quality of test patterns either developed manually or gener-

ated automatically so that a desired product quality can be achieved.

This chapter consists of two major VLSI testing topics: fault simulation and test

generation. In fault simulation, we start with a discussion on fault collapsing. After

an introduction of equivalent faults and dominant faults, the serial, parallel, concur-

rent, and differential fault simulation techniques are described, followed by qualita-
tive comparisons between their advantages and drawbacks. These techniques trade

accuracy for reduced execution time, which is crucial for managing the complexity

of large designs. After fault simulation, basic automatic test pattern generation
(ATPG) techniques, including Boolean difference, PODEM, and FAN, are described

in detail. Advanced test generation techniques are also introduced to meet the

demand for quality testing, including sequential ATPG, delay fault ATPG, and bridg-

ing fault ATPG. Throughout this chapter, the reader will learn about the major fault

simulation and test generation techniques. This background will be valuable
in selecting the test method that best meets the design needs and understands the

relationship between test patterns and product quality.
14.1 INTRODUCTION
851
Simulation techniques have been widely used in VLSI designs for digital circuit
verification, test development, design debug, and fault diagnosis. During the

design stage, logic simulation, which has been extensively discussed in

852 CHAPTER 14 Fault simulation and test generation
Chapter 8, is performed to help verify whether the design meets its specifica-

tions and contains any design errors. It also helps locate design errors that
may have escaped from detection during design debug.

Once the design meets its specifications and is ready for physical implementa-

tion, one must ensure that the manufactured devices will function as intended

and no defective parts are shipped to customers. To achieve high product quality,

typically with a defect level less than 500 defective parts per million (DPM),

quality test patterns must be developed. At present, as we move to the nanometer

design era, this has required applying fault simulation and automatic test pat-
tern generation (ATPG) to the design that has been embedded with design for
testability (DFT) features during test development.

In contrast to logic simulation, fault simulation is used to measure the

effectiveness of test patterns in detecting defects that might have been intro-

duced during the manufacturing process. This requires simulating the faulty

behavior of the circuit in detecting the modeled faults of interest. (For this rea-

son, logic simulation is generally referred to as fault-free simulation.) Further-
more, fault simulation is an integral component of any ATPG program.

The major difference between logic simulation and fault simulation lies in
the nature of the non-idealities they deal with. Logic simulation is intended

for checking whether the circuit’s responses to a given set of input vectors con-

form to the given specifications or a known good design as the reference.

Design errors may be introduced by human designers or electronic design
automation (EDA) tools, and they should be caught before physical implemen-

tation. Fault simulation, on the other hand, is concerned with checking the

behavior of fabricated circuits as a consequence of inevitable fabrication pro-

cess imperfections. The manufacturing defects (e.g., wire shorts and opens), if
present, may cause the circuits to behave differently from the expected behav-

ior. Fault simulation generally assumes that the design is functionally correct

(i.e., free of design errors), and it is targeted at capturing manufacturing defects.

However, we note that fault simulation methods may be applied during the

design verification stage as well.

The capability of fault simulation to predict the faulty circuit behavior is of

great importance for test and diagnosis. First, fault simulation evaluates the

effectiveness of a set of test patterns in detecting manufacturing defects. The
quality of a test set is expressed in terms of fault coverage, which is the ratio

of detected faults to the total number of faults in the circuit. In practice, the

designer uses a fault simulator to evaluate the fault coverage of a set of input

stimuli (test vectors or test patterns) with respect to the modeled faults of inter-

est. Because fault simulation concerns the fault coverage of a test set rather than

the detection of design bugs, it is also termed fault grading. Low fault coverage

test patterns will jeopardize the manufacturing test quality and eventually lead

to unacceptable field returns from customers. Second, fault simulation helps
to identify undetected faults, which is especially important when the achieved

fault coverage is below an acceptable level. In this case, either the designer or

14.1 Introduction 853
the ATPG has to generate additional test vectors to improve the fault coverage

(i.e., to detect those remaining undetected faults). Third, as part of the test
compaction process, fault simulation identifies redundant test patterns, which

may be discarded with no negative impact on the fault coverage. With the pre-

ceding capabilities and applications, fault simulation is one of the crucial com-

ponents of ATPG. In fact, the implementation of an ATPG program usually

starts with the fault simulator. Finally, fault simulation assists fault diagnosis,
which determines the type and location of faults that best explain the faulty cir-

cuit behavior of the device under diagnosis. The fault simulation results are

compared with the observed circuit responses to identify the most likely faults.
The fault type and location information can then be used as a starting point for

locating the defects that cause the circuit malfunction.

Although logic and fault simulators can provide important information about

the behavior of the circuit, they require a set of test vectors with which the cir-

cuit is simulated. The objective of test generation, then, is the task of producing

a set of test vectors that will uncover any defect in a chip. Figure 14.1 illustrates

a high-level concept of test generation. In this figure, the circuit at the top is

defect free, and for any defective chip that is functionally different from the
defect-free one there must exist some input that can differentiate the two. Gen-

erating effective test patterns efficiently for a digital circuit is thus the goal of an

ATPG system.

Because this problem is extremely difficult, DFT methods have been fre-

quently used to relieve the burden on the ATPG. In this sense, a powerful ATPG

can be regarded as the “Holy Grail” in testing, with which all DFT methods

could potentially be eliminated. In other words, if the ATPG engine is capable

of efficiently delivering high-quality test patterns that achieve high fault cov-
erages and small test sets on large, complex chips, DFT would no longer be

necessary.

Because fault simulation can help to determine those faults that could

be detected by the same generated test, it becomes an essential component of

ATPG. By removing those incidentally detected faults, ATPG is able to significantly
Defect-free
Inputs

Outputs

: Defect

Generate a vector that
can produce a logic 1

Defective

FIGURE 14.1

Conceptual view of test generation.

854 CHAPTER 14 Fault simulation and test generation
reduce the number of faults that it needs to consider after the generation of each

new test vector, thereby improving the efficiency of the ATPG process.
For some fault models, the circuit layout information is needed. For example,

wire delay values are needed to compute the longest paths, and the actual posi-

tions of gates and wires are needed to identify those likely bridges. However,

because ATPG is a time-consuming process, we would like to start the ATPG

process before the layout is available. In this regard, an ATPG may be performed

to obtain an initial test set without the layout information. Then, after place
and route, any faults that require circuit layout information that are undetected

by the test set would be identified, and the ATPG can be invoked again to target
these specific undetected faults to ensure test quality.
14.2 FAULT COLLAPSING

Fault collapsing reduces the number of faults to be considered in fault simula-

tion and ATPG so the overall run time can be reduced. Two requirements must

be met for fault collapsing to become effective. First, fault collapsing must run

much faster than fault simulation or ATPG; otherwise, fault collapsing may not

be worth doing. Second, the collapsed faults must be representative of all original

faults modeled in the circuit. In this section, we introduce two fault-collapsing
techniques: equivalence fault collapsing and dominance fault collapsing.
Linear time algorithms are given to meet the first requirement. We illustrate that

dominance fault collapsing produces a fewer number of faults than equivalence

fault collapsing. However, from a fault coverage accuracy viewpoint, equivalence

fault collapsing is more often quoted than dominance fault collapsing, because

the former results in a better indication of the test quality.
14.2.1 Equivalence fault collapsing
Let two faults f and g be said to be functionally equivalent (or simply

equivalent) if the faulty outputs of these two faults are identical for any input

[McCluskey 1971; Abramovici 1994; Bushnell 2000]. Equivalent faults are indis-
tinguishable, because there is no test pattern that can tell them apart. Con-

sider the example of a two-input AND gate shown in Figure 14.2. The good

outputs and faulty outputs of the AND gate for all four possible input combina-

tions are listed in Table 14.1. From this table, we can see that A stuck-at zero
fault (denoted as A/0) and C stuck-at zero fault (denoted as C/0) are equivalent.
A

B

C

FIGURE 14.2

An example two-input AND gate.

Table 14.1 Good and faulty outputs for Figure 14.2

Input Output

A B C A/0 C/0 B/0 A/1 C/1 B/1

0 0 0 0 0 0 0 1 0

0 1 0 0 0 0 1 1 0

1 0 0 0 0 0 0 1 1

1 1 1 0 0 0 1 1 1

A/1

B/1

C/1
C/0

A/0

B/0

C/1

C/0

A/0

B/0

C/1

C/0

A/1

B/1
C/0
C/1

FIGURE 14.3

Equivalence collapsed fault list for four elementary gates.

14.2 Fault collapsing 855
This is because the faulty outputs of these two faults are always the same for all

the four input combinations. On the other hand, the A stuck-at one fault (A/1)

and the C stuck-at one fault (C/1) are not equivalent, because the input pattern

A ¼ B ¼ 0 can distinguish these two faults. Another input pattern is A ¼ 1 and
B ¼ 0. For clear illustration, the faulty outputs that are different from good

outputs are underlined and highlighted in bold.

The equivalence relationship is symmetric. This means, if fault f is equiva-

lent to fault g, then fault g is equivalent to fault f. The equivalence relationship

is also transitive. That is, if fault f is equivalent to fault g and fault g is equiva-

lent to fault h, then fault f is equivalent to fault h. For the example given in

Figure 14.2, A/0 fault is equivalent to B/0 fault, and B/0 fault is equivalent to

C/0 fault. These three faults {A/0, B/0, C/0} belong to the same equivalence
class.

Equivalence fault collapsing reduces the set of faults that needs to be con-

sidered with the fault equivalence relation. Only one representative fault is

selected from every equivalent class. Figure 14.3 shows the equivalence col-
lapsed fault list for four types of elementary gates. Originally, there are six

faults associated with a two-input AND gate: A/1, A/0, B/0, B/1, C/0, and C/1.

After equivalence fault collapsing, the number of faults is reduced to four:

A/1, B/1, C/1, and C/0. The other types of gates can be examined in the same
way. Generally speaking, an n-input elementary gate has 2n and n þ 2 stuck-

at faults before and after equivalence fault collapsing, respectively. Note that

the equivalence fault collapsed fault list is not unique, and there are other ways

to collapse the faults than are shown in Figure 14.3. For example, {A/0, A/1, B/1,

C/1} is another possible way to perform equivalence fault collapsing.

856 CHAPTER 14 Fault simulation and test generation
Equivalence fault collapsing can be performed by either functional analysis

or structural analysis. Exhaustive functional analysis is time-consuming, because
enumeration of 2n patterns may be needed for an n-input circuit (like Table 14.1

for the AND gate shown in Figure 14.2). Therefore, in the following text, we

only demonstrate a linear-time structural analysis to perform equivalence fault

collapsing. The resulting equivalence collapsed fault list may not be minimal,

but structural analysis is good enough for most applications.

For a fanout-free circuit consisting of elementary gates (such as buffers,

inverters AND, OR, NAND, and NOR gates), equivalence fault collapsing can

be performed by keeping two kinds of faults: (1) both stuck-at one and stuck-
at zero faults on every primary output, and (2) one collapsed fault on each gate

input whose stuck value is shown in Figure 14.3. Inverters and buffers should

be treated as wires. For the example in Figure 14.4, we keep both H/0 and H/1

faults on primary output H. We also keep one fault on each gate input, such

as A/0 and B/0 for OR gate G1, etc. Note that faults on the gate outputs are

removed, because they are equivalent to some other faults in the figure. For

example, gate G1 output stuck-at zero fault is equivalent to C/0 fault, which is

again equivalent to E/1 fault, which is in turn equivalent to H/0 fault.
For circuits with fanouts, fault collapsing becomes complicated, because

faults on the fanout stem are now always equivalent to the faults on the fanout

branches. Figure 14.5 shows a circuit with a fanout stem E and two fanout

branches L and F. According to Table 14.2, E/0 fault is equivalent to F/0 fault

but not equivalent to L/0 fault. Also, none of the stuck-at one faults are equiva-

lent. Stem analysis is required to determine equivalent faults on a fanout stem

and its branches. However, stem analysis is generally not cost-effective in terms

of CPU time, so the details are skipped in this chapter.
G1
G2

G3

A/0

B/0

D/1
F/0

H/0
H/1

C/1
E/0

FIGURE 14.4

Equivalence fault collapsing on a fanout-free circuit.

A
G2

G4

G3G1

B

C E F

L

J

H
K

FIGURE 14.5

Equivalence fault collapsing for faults on fanouts.

Table 14.2 Good and faulty outputs for Figure 14.5

Input Output

A B C E E/0 F/0 L/0 E/1 F/1 L/1

0 0 0 0 0 0 0 1 1 0

0 0 1 1 0 0 1 1 1 1

0 1 0 1 0 0 1 1 1 1

0 1 1 1 0 0 1 1 1 1

1 0 0 0 0 0 0 0 1 0

1 0 1 0 0 0 1 0 0 0

1 1 0 0 0 0 1 0 0 0

1 1 1 0 0 0 1 0 0 0

G1

G2

G3

G4

B/0

FC/0

A/1

L/1

E/0
E/1

J/0

H/0 K/0
K/1

FIGURE 14.6

Equivalence collapsed fault list for Figure 14.5.

14.2 Fault collapsing 857
To avoid stem analysis, an approximation solution is used to partition the cir-

cuit into independent fanout-free regions (FFRs). Every fanout stem is treated

as a primary output, so both stuck-at one and stuck-at zero faults are included in

the collapsed fault list. Algorithm 14.1 introduces a simple equivalence fault-

collapsing (simple_EFC) algorithm without stem analysis. Figure 14.6 shows

the resulting equivalence collapsed fault list with the simple_EFC algorithm.

The circuit is partitioned into two independent fanout-free regions: four faults

in one region and six faults in the other. The simple_EFC algorithm reduces
the number of faults from 18 to 10. Please note that inverter G3 is ignored in

this algorithm, because its input stuck-at one fault is always equivalent to its out-

put stuck-at zero fault and vice versa. Also note that simple_EFC is not the

only way to perform fault collapsing; other implementations of fault collapsing

are possible.

858 CHAPTER 14 Fault simulation and test generation
Algorithm 14.1 A simple equivalence fault-collapsing algorithm

simple_EFC (N) /*N is a netlist*/
1.
2.
3.
4.
5.
6.
7.
8.
fault_list ¼ {};
foreach gate or PO or PI g in N
if ((g is PO) || (g is PI and fanout stem)) then
fault_list ¼ fault_list [g stuck-at 0 and 1;

else if (output of gate g is fanout stem) then
fault_list ¼ fault_list [g output stuck-at 0 and 1;

end if
if (gate g is AND) || (gate g is NAND) then
fault_list ¼ fault_list [g input stuck-at 1;
9.

10. else if (gate g is OR) || (gate g is NOR) then
11. fault_list ¼ fault_list [g input stuck-at 0;
12. end if
13. end foreach
14. return (fault_list);

The simple_EFC algorithm can complete in linear time because it checks every

gate exactly once. However, this algorithm has two drawbacks. First, the result
is not optimal, because it lacks stem analysis. For example, Table 14.2 shows that

E/0 fault is actually equivalent to K/0 fault, but they both appear in Figure 14.6.

This small error, however, is often acceptable in most cases. Second, the relation-

ship between the original (uncollapsed) faults and the corresponding collapsed

faults is lost. For example, the link is lost between the four faults {F/0, J/1, H/1,

K/0} in the same equivalence class and their collapsed fault K/0. The relation

between uncollapsed faults and collapsed faults is needed when calculating

the fault coverage of the circuit. Fault coverage can be calculated on the basis
of either the uncollapsed faults or the collapsed faults. The uncollapsed fault
coverage is the number of detected uncollapsed faults over the total number

of uncollapsed faults, whereas the collapsed fault coverage is the number of

detected collapsed faults over the total number of collapsed faults. Oftentimes,

these two numbers are not identical but close to each other. Missing the link

between the collapsed faults and the uncollapsed fault makes it difficult to con-

vert the collapsed fault coverage to the uncollapsed fault coverage. However,

modern fault simulators and ATPG programs have found an easy way to rebuild
the link by performing another pass of linear-time analysis on equivalent faults.
14.2.2 Dominance fault collapsing
The equivalence collapsed fault list can be further compressed with the fault
dominance relationship. Let the detecting set of fault f (denoted as Tf) be

the set of all test patterns that detect fault f. Fault f dominates fault g if the

14.2 Fault collapsing 859
detecting set of fault f contains that of fault g. That means, Tf � Tg. For the

example in Figure 14.2, fault C/1 dominates fault A/1 because the detecting
set of C/1 {00, 01, 10} contains the detecting set of A/1 {01}. The dominance

relation is not symmetric but is transitive.

If a test pattern detects the dominated fault, then it must detect the

corresponding dominating fault. To reduce the run time, the dominating faults

can be removed from the fault list. The reduction of fault list with the fault domi-

nance relation is called dominance fault collapsing. If two faults are equivalent,

then they dominate each other. Therefore, the number of dominance-collapsed

faults must be smaller or equal to that of equivalence-collapsed faults.
Figure 14.7 shows the dominance collapsed fault list of four elementary

gates. Originally, there are four equivalence-collapsed faults for a two-input AND

gate: A/1, B/1, C/0, and C/1. After dominance fault collapsing, the number of

faults is reduced to three: A/1, B/1, and C/0. The other types of gates can be

examined in the same way. Generally speaking, for an n-input elementary gate,

there are n þ 1 stuck-at faults after dominance fault collapsing.

For a fanout-free circuit consisting of elementary gates (such as buffers,

inverters AND, OR, NAND, and NOR gates), dominance fault collapsing can
be performed according to the following two rules: (1) one collapsed fault on

every primary input whose value is shown in Figure 14.7, and (2) one collapsed

fault on each gate output whose gate inputs are all primary inputs. Those gates

whose inputs are all primary inputs are called input gates. Inverters and buf-

fers should be treated as wires. Figure 14.8 shows the dominance collapsed fault

list of the example fanout-free circuit. Note that no fault is needed on G2 gate

output, because G2 is not an input gate. E/0 fault dominates C/1 fault, so the for-

mer can be removed. E/1 fault is equivalent to C/0 fault, which dominates A/0
fault, so both C/0 and E/1 faults are removed. The explanation of the other

faults is similar so it is left as an exercise for the readers. This circuit has 14

uncollapsed faults, which are reduced to 8 equivalent faults and then to 5 domi-

nant faults after equivalence and dominance fault collapsing, respectively.
A/1

B/1

A/1

B/1

A/0

B/0

A/0

B/0

C/0 C/1 C/1 C/0

FIGURE 14.7

Dominance collapsed fault list for four elementary gates.

G1
G2

G3

A/0

B/0

D/1
F/0

C/1
E

H

FIGURE 14.8

Dominance fault collapsing on a fanout-free circuit.

860 CHAPTER 14 Fault simulation and test generation
Faults on the fanout branches do not always dominate faults on the fanout

stem. Consider again the example in Figure 14.5. According to Table 14.2, F/1 fault
dominates E/1 fault. However, L/1 fault does not dominate E/1 fault. (Actually, L/1

fault has an empty detecting set so L/1 is a redundant fault. More details on

redundant faults are given in the test generation section.) Again, stem analysis is

needed to determine whether fanout branch faults dominate fanout stem faults.

An approximation method to avoid stem analysis is to partition the circuit

into fanout-free regions and perform fault collapsing on each fanout-free region

independently. A simple_DFC algorithm is shown in Algorithm 14.2. The domi-

nance fault collapsed result is shown in Figure 14.9. The number of faults is reduced
to seven. Without stem analysis, the result is not optimal because J/0 is equivalent

to F/1, which dominates E/1.

Algorithm 14.2 A simple dominance fault-collapsing algorithm

simple_DFC (N) /*N is a netlist*/
1.
2.
3.
4.
5.
6.
fault_list ¼ {};
foreach gate or PI or PO g in N
if ((g is PI and fanout stem) || (g is PO and fanout branch)) then
fault_list ¼ fault_list [g output stuck-at 0 and 1;

else if (g is gate) then
foreach gate input i of gate g

h ¼ backtrace inverters starting from i;
7.
8. if (h is PI or fanout branch) then /* rule #1 */
9. if (gate g is AND) jj (gate g is NAND) then

10. fault_list ¼ fault_list [i stuck-at 1;
11. else if (gate g is OR) jj (gate g is NOR)
12. fault_list ¼ fault_list [i stuck-at 0;
13. end if
14. end if
15. end foreach
16. if (every input of g has a fault) then /* rule #2 */
17. if (gate g is AND) jj (gate g is NOR) then
18. fault_list ¼ fault_list [g output stuck-at 0;
19. else if (gate g is OR) jj (gate g is NAND) then
20. fault_list ¼ fault_list [g output stuck-at 1;
21. end if
22. end if
23. end if
24. end foreach
25. return (fault_list);

Although the dominance collapsed fault list is smaller than the equivalence

collapsed fault list, fault coverage of the former is not as representative as that of

the latter. The reason is that a test pattern may detect a dominating fault without

G1 G3

G2
G4

B/0

C/0

A/1

L/1

E/1

J/0

H/0

F

K

FIGURE 14.9

Dominance collapsed fault list for Figure 14.5.

14.3 Fault simulation 861
detecting thedominated fault. For theexamplegiven inFigure14.5, testpatternABC

¼ 100 does not detect the dominated fault E/1 but it detects the dominating fault F/

1. If thedominance collapsed fault list is usedduring fault simulation, thedominance

collapsed fault coverage may underestimate the test quality. As a result, modern

fault simulators and ATPG programs favor the use of equivalence fault collapsing

only.
14.3 FAULT SIMULATION

Fault simulation is a more challenging task than logic simulation because of the

added dimension of complexity (i.e., the behavior of the circuit containing

all the modeled faults must be simulated). When simulating one fault at a time,

the amount of computation is approximately proportional to the circuit size,
the number of test patterns, and the number of modeled faults. Because the

number of modeled faults are roughly proportional to the circuit size, the over-

all time complexity of fault simulation is O(pn2), for p test patterns and n logic

gates, which becomes infeasible for large circuits. To improve fault simulation

performance, various fault simulation techniques have been developed. In this

section, we restrict our discussion to the single stuck-at fault model and illus-

trate the key fault simulation techniques along with qualitative comparisons

between their advantages and drawbacks.
14.3.1 Serial fault simulation
Serial fault simulation is the simplest fault simulation technique. It consists of

fault-free and faulty circuit simulations. Initially, fault-free logic simulation is per-

formed on the original circuit to obtain the fault-free output responses. The
fault-free responses are stored and later used to determine whether a test pat-

tern can detect a fault or not. After fault-free simulation, a serial fault simulator

simulates faults one at a time. For each fault, fault injection is first performed,

862 CHAPTER 14 Fault simulation and test generation
which modifies the original circuit to mimic the circuit behavior in the presence

of the fault. Then, the faulty circuit is simulated to derive the faulty responses of
the current fault with respect to the given test patterns. This process repeats

until all faults in the fault list have been simulated.

The serial fault simulation process is demonstrated with the example circuit N.

In this example, the fault list comprises two faults, A stuck-at one (denoted

by f) and J stuck-at zero (denoted by g), which are depicted in Figure 14.10.

Note that, although both faults are drawn in the figure, only one fault is present

at a time under the single stuck-at fault model. The test set consists of three test

patterns (denoted by P1, P2, P3, respectively, and shown in the “Input” columns
of Table 14.3).

The serial fault simulator starts from fault-free simulation. The fault-free

responses are K ¼ {1, 1, 0} for input patterns P1, P2, and P3, respectively. After the

fault-free responses are available, fault f is processed—fault injection is achieved

by forcing A to a constant one, and the obtained faulty circuit is simulated. The cir-

cuit responses for fault f are Kf ¼ {0, 0, 0} with respect to the three input

patterns. Compared with the fault-free responses (the “Output” column in

Table 14.3), it is observed that patterns P1 and P2 detect fault f, but pattern P3 does
not. After fault f has been simulated, circuit N is restored by removing fault f.

The next fault g is then injected by forcing J to zero. Simulation of the resulting

faulty circuit is then performed to obtain the faulty outputsKg¼ {1, 1, 1} (also listed

in Table 14.3). Fault g is detected by pattern P3 but not P1 and P2.
A
f: A stuck-at 1

g: J stuck-at 0

K
L

E
G1 G3

G2

G4

H

JF

B

C

FIGURE 14.10

An example circuit with two faults.

Table 14.3 Serial Fault Simulation Results for Figure 14.10

Pat. # Input Internal Output

A B C E F L J H Kgood Kf Kg

P1 0 1 0 1 1 1 0 0 1 0 1

P2 0 0 1 1 1 1 0 0 1 0 1

P3 1 0 0 0 0 0 1 0 0 0 1

14.3 Fault simulation 863
In this example, nine simulation runs are performed: three fault-free and six

faulty circuit simulations. These nine simulation runs can be divided into three sim-
ulation passes. In each simulation pass, either the fault-free or the faulty circuit is

simulated for the whole test pattern set. Thus, the first simulation pass consists of

fault-free simulations for P1, P2, and P3, and the second and third passes correspond

to the faulty circuit simulations of faults f and g, respectively, for P1, P2, and P3.

By careful inspection of the simulation results in Table 14.3, one can observe

that if we are only concerned with the set of faults that are detected by the test

set {P1, P2, P3}, simulations of the faulty circuit with fault f for patterns P2 and

P3 are redundant, because f is already detected by P1. (It is assumed that the test
patterns are simulated in the order P1, P2, and then P3.) Halting simulation of

detected faults is called fault dropping. For the purpose of fault grading, fault

dropping dramatically improves fault simulation performance, because most

faults are detected after relatively few test patterns have been applied. Fault

dropping, however, should be avoided in fault diagnosis applications in which

the entire fault simulation results are usually required to facilitate the identifica-

tion of the fault type and location.

The simplified serial fault simulation flow is depicted in Figure 14.11. Before
fault simulation, fault collapsing is executed to reduce the size of the fault list,

denoted by F. Fault-free simulation is then performed for all test patterns to

obtain the correct responses Og. The algorithm then proceeds to fault simula-

tion. For each fault f in F, if there exists a test pattern whose output response

Of differs from that of the corresponding good circuit Og, f is removed from F,

indicating that it is detected. When all patterns have been simulated, the

remaining faults in F are the undetected faults.

The major advantage of serial fault simulation is its ease of implementa-
tion—a regular logic simulator plus fault injection and output comparison pro-

cedures will suffice. In addition, serial fault simulation can handle a wide

range of fault models, as long as the fault effects can be properly injected into

the circuit. The major disadvantage of serial fault simulation is its low perfor-

mance. As will be discussed in the following subsections, practical fault simula-

tion techniques exploit parallelism and/or similarities among the faulty circuits

to speed up the fault simulation process.
14.3.2 Parallel fault simulation
Similar to parallel logic simulation, fault simulation can take advantage of the bitwise
parallelism inherent in the host computer to reduce fault simulation time. For

instance, in a32-bitwideCPU, logicoperations (AND,OR,orXOR)canbeperformed

on all 32 bits at once. There are twoways to realize bitwise parallelism in fault simu-

lation: parallelism in faults and parallelism in patterns. These two approaches are

referred to as parallel fault simulation and parallel pattern fault simulation.

start

F ¨ collapsed fault list

fault-free simulation for all
patterns

end next fault?

1. get next fault f from F
1. reset pattern counter

next pattern?

mismatch?

1. get next pattern p
2. fault simulation for pattern p

delete f from F

no

yes

yes

yes

no

no

FIGURE 14.11

The serial fault simulation algorithm flow.

864 CHAPTER 14 Fault simulation and test generation
14.3.2.1 Parallel fault simulation

Parallel fault simulation was proposed in the early 1960s [Seshu 1965]. Assum-

ing that binary logic is used, one bit is sufficient to store the logic value of a sig-
nal. Thus, in a host computer that uses w-bit wide data words, each signal is

associated with a data word of which w-1 bits are allocated for w-1 faulty cir-

cuits, and the remaining bit is reserved for the fault-free circuit. This way, w-1

faulty circuits and one fault-free circuit can be processed in parallel by use of bit-

wise logic operations, which corresponds to a speedup factor of approximately

14.3 Fault simulation 865
w-1 compared with serial fault simulation. A fault is detected if its bit value dif-

fers from that of the fault-free circuit at any of the outputs.
We will reuse the example from serial fault simulation to illustrate the parallel

fault simulation process. Assuming that the width of a computer word is three

bits, the first bit stores the fault-free (FF) circuit response, and the second and

third bits store the faulty responses in the presence of faults f and g, respectively.

The simulation results are shown in Table 14.4. Because the fault f, A stuck-at 1,

uses the second bit, it is injected by forcing the second bit of the data word of sig-

nal A to 1 during fault simulation (shown in the “Af” column with the forced value

underlined—the “A” column corresponds to the fault-free case). Similarly, the “Jg”
column depicts how fault g is injected by forcing the third bit to 0.

As we have mentioned, parallel fault simulation is performed by use of bit-

wise logic operations. For example, the logic value of signal H is obtained by

a bitwise AND operation on the data words of signals A and L. (A, J, and L are

circled in Table 14.4.) The faulty response of the first pattern is {1, 0, 1}. This
means that fault f is detected (the second bit), but fault g (the third bit) is

not. Similarly, the outputs of P2 and P3 are {1 0 1} and {0 0 1}, respectively. In
this example, three simulations (in one simulation pass) are performed. Com-
pared with serial fault simulation, which requires nine simulations, parallel fault

simulation saves two thirds of the simulation time.

To perform parallel fault simulation with regular parallel logic simulators,

one may inject the faults by adding extra logic gates. Figure 14.12 shows how

this is done for faults f and g in N. To inject f, a stuck-at one fault, an OR gate

(Gf) is inserted, and to force the second bit of Af to be one without affecting

the other two bits, the side input of Gf is set to be 010. Note that the injection

of fault f does not affect the fault-free circuit and the faulty circuit with fault g.
Table 14.4 Parallel fault simulation for Figure 14.10

Pat # Input Internal Output

A Af B C E F L J Jg H K

P1 FF 0 0 1 0 1 1 1 0 0 0 1

f 0 1 1 0 1 1 1 0 0 1 0

g 0 0 1 0 1 1 1 0 0 0 1

P2 FF 0 0 0 1 1 1 1 0 0 0 1

f 0 1 0 1 1 1 1 0 0 1 0

g 0 0 0 1 1 1 1 0 0 0 1

P3 FF 1 1 0 0 0 0 0 1 1 0 0

f 1 1 0 0 0 0 0 1 1 0 0

g 1 1 0 0 0 0 0 1 0 0 1

A Af

B

C

010

110

Gf
G2

G1
G3 Gg

Jg

G4 K

J

H

L

E F

FIGURE 14.12

Fault injection for parallel fault simulation.

866 CHAPTER 14 Fault simulation and test generation
Similarly, injecting fault g, a stuck-at 0 fault, is achieved by adding the AND gate

Gg and setting its side input to be 110.

Note that the parallel fault simulation technique is applicable to the unit or

zero delay models only. More complicated delay models cannot be modeled,

because several faults are evaluated at the same time. Furthermore, a simulation

pass cannot terminate unless all the faults in this pass are detected. For instance,

we cannot drop fault f alone after simulating pattern P1, because fault g is not

detected yet. Parallel fault simulation is best used for simulating the beginning
of the test pattern sequence, when a large number of faults are detected by each

pattern.

14.3.2.2 Parallel pattern fault simulation

Bitwise parallelism can be used to simulate test patterns in parallel. For a host

computer with a w-bit data width, the signal values for a sequence of w test pat-

terns are packed into a data word. For the fault-free or faulty circuit, w test pat-

terns can be simulated in parallel by use of bitwise logic operations. This

approach was first reported in [Waicukauski 1985], in which it is called paral-
lel pattern single fault propagation (PPSFP), because one fault at a time is

simulated. This approach is especially useful for combinational circuits or full-
scan sequential circuits.

In PPSFP, logic simulations on the fault-free circuit are first performed on the

first w test patterns, and the circuit outputs are recorded. Then, the faults are

simulated one at a time on these w test patterns. For each fault, the simulation

results are compared with the correct responses to determine whether the fault

is detected. Simulation continues until the fault is detected and dropped, or all

the test patterns are simulated. The faulty circuit is restored to its original state,

and the next fault is processed. The same procedure repeats until all faults in
the fault list are simulated.

The PPSFP results of the fault simulation example are shown in Table 14.5.

The “Fault-Free” row lists the fault-free simulation results. Note that the three

patterns are packed into one single word and thus are evaluated simultaneously

Table 14.5 PPSFP for Figure 14.10

Input Internal Output

A B C E F L J H K

Fault Free P1 0 1 0 1 1 1 0 0 1

P2 0 0 1 1 1 1 0 0 1

P3 1 0 0 0 0 0 1 0 0

f P1 1 1 0 1 1 1 0 1 0

P2 1 0 1 1 1 1 0 1 0

P3 1 0 0 0 0 0 1 0 0

g P1 0 1 0 1 1 1 0 0 1

P2 0 0 1 1 1 1 0 0 1

P3 1 0 0 0 0 0 0 0 1

14.3 Fault simulation 867
by use of bitwise logic operations. The “f” row represents the simulation results

with fault f injected. In PPSFP, faults are injected by activating rising or falling

events, depending on the stuck-at value, at the faulty signal. Thus, fault f, A

stuck-at one, is injected by activating two rising events on input A. The faulty

responses are {0, 0, 0}, which indicates that fault f is detected by the first and

second patterns but not the third one. After fault f is simulated, fault f is
removed by activating two falling events on input A at pattern P1 and P2. Then,

fault g is injected by activating one falling event on signal J at pattern P3. A total

of three simulation runs are carried out.

Figure 14.13 illustrates the simplified PPSFP flow. Again, fault collapsing is

first executed to obtain the collapsed fault list F. Then, the first w patterns are

simulated on the fault-free circuit in parallel, and the good outputs (Og) are

stored. Then, each fault f in the fault list F is simulated one by one with the

same w test patterns. A fault is dropped and not simulated against the remaining
test patterns if its output response Of is different from Og. To fault simulate the

next fault, the fault effect of the current fault is removed, and the next fault is

injected. This process continues until all faults are either detected or simulated

against all test patterns. If the number of test patterns is not an even multiple of

the machine word width, only part of the machine word is used when simulat-

ing this last batch of patterns.

PPSFP is best suited for simulation of test patterns that come later in the test

sequence, where the fault drop rate per pattern is lower. Parallel fault simula-
tion does not work well in this situation, because it cannot terminate a simula-

tion pass until all w-1 faults being processed are detected. PPSFP is not suitable

for sequential circuits, because the circuit state for test pattern i in the w-bit

start

next w
patterns?

no

yes

1. apply next w patterns

no
no

no

yes yes

F empty?

delete f from F

get next fault f from F

next fault?

1. remove last fault
2. inject fault f

of w patterns

yes

2. Og ← good circuit outputs

Of ← faulty circuit outputs

Of == Og?

end

end

F ← collapsed fault list

FIGURE 14.13

The PPSFP flowchart.

868 CHAPTER 14 Fault simulation and test generation
word depends on the previous i-1 patterns in the word, and this state is not

available when the patterns are processed in parallel.
14.3.3 Concurrent fault simulation
Because a fault only affects the logic in the fanout cone from the fault site, the good

circuit and faulty circuits typically only differ in a small region. Concurrent fault
simulation exploits this fact and simulates only the differential parts of thewhole

circuit [Ulrich 1974]. Concurrent fault simulation is essentially an event-driven

simulation with the fault-free circuit and faulty circuits simulated altogether.

In concurrent fault simulation, every gate has a concurrent fault list,
which consists of a set of bad gates. A bad gate of gate x represents an

14.3 Fault simulation 869
imaginary copy of gate x in the presence of a fault. Every bad gate contains a

fault index and the associated gate I/O values in the presence of the
corresponding fault. Initially, the concurrent fault list of gate x contains local
faults of gate x. The local faults of gate x are faults on the inputs or outputs

of gate x. As the simulation proceeds, the concurrent fault list contains not only

local faults but also faults propagated from previous stages (called fault
effects). Local faults of gate x remain in the concurrent fault list of gate x until

they are detected.

Figure 14.14 illustrates the concurrent simulation of the example circuit for

test pattern P1. For clear illustration, we demonstrate three faults in this example:
A stuck-at one, C stuck-at zero, and J stuck-at zero faults. The concurrent fault lists

with bad gates in grey are drawn beside the good gates. The fault indices are

labeled in the middle of bad gates and their associated bad gate I/O values are

labeled beside their I/O pins. The fault list of G1, G2, and G3 initially contains their

local faults: C/0, A/1, and J/0. When we apply the first pattern, three events occur

in the primary inputs: u! 0 on A, u! 1 on B, and u! 0 on C. They are good
events, because they happen in the good circuit. The output of good gate G1

changes from unknown to one. In the presence of fault C/0, the output of faulty
G1 is the same as that of good G1. A bad gate is invisible if its faulty output is the

same as the good output. The bad gates C/0 and J/0 are both invisible so they are

not propagated to the subsequent stages.

The output of G2 changes from unknown to zero. In the presence of fault

A/1, the faulty output changes from unknown to one. Because the faulty output

differs from the good output, bad gate A/1 becomes visible. A bad gate is visi-
ble if its faulty output is different from the good output. The visible bad gate
A
u → 0

u → 1
u → 1 u → 0

u → 0

u → 1

u → 0
B

L

H

K

JE F

1

1

1
1

0
J/0

A/1
1

0
0A/1

1

0
1C/0

A/1: u → 1

G3

G2

G4

G1
C

FIGURE 14.14

Concurrent fault simulation (P1).

870 CHAPTER 14 Fault simulation and test generation
A/1 creates a bad event u! 1 on net H (in gray). A bad event does not occur in
the good circuit; it only occurs in the faulty circuit of the corresponding fault.
A new copy of bad gate A/1 is added to the concurrent fault list of G4, because

it has one input different from the good gate. It is said that bad gate A/1

diverges from its good gate. Finally, fault A/1 is detected because the faulty

output K is different from the good output. At this time, we could drop detected

fault A/1, but we keep it for illustration purposes.

Figure 14.15 illustrates the concurrent fault simulation for test pattern P2.

Two good events occur in this figure: 0! 1 on C and 1! 0 on B. The bad gate

C/0, which was invisible in pattern P1, now becomes newly visible. The newly
visible bad gate creates a bad event, net E falls to zero, which in turn creates

two divergences in G2 and G3. The former is invisible, but the latter creates a

bad event, net J rises to one. Finally, the concurrent fault list of G4 contains

two bad gates; both faults A/1 and C/0 are detected.

For the last test pattern P3 (Figure 14.16), two good events occur at primary

inputs A and C. The bad gate C/0 now becomes invisible. The bad gate C/0 is

deleted from the concurrent fault list ofG3. A bad gate converges to its good gate

if it is not a local fault and its I/O values are identical to those of the good gate. Simi-
larly, the other bad gates C/0 also converge to G2 and G4. Note that bad gate C/0

does not converge to G1, because it is a local fault for G1. The bad gate A/1 can

be examined in the same way. For gate G3, although the faulty output of bad gate

J/0 does not change, the good event 0! 1 on Jmakes bad gate J/0 newly visible.
A

B

E

C/0: 1 → 0 C/0: 0 → 1
C/0

J/0
1 0

0 1

C/0

0

0

0

1
0

A/1
1

1
1

C/0
0

0
0 C/0

0

1
0

A/1
1

0
0

1

J

H

F

L

G1 G3

G2

G4 K

C

1 → 0

0

1
0 → 1

FIGURE 14.15

Concurrent fault simulation (P2).

B

L

H

E
G1

G2

G3

G4 K

JF

A
0 → 1

1 → 0
1 → 0

1 → 0

0 → 1

0 0

0 1

0

0
0

0

1

0

A/1

J/0
J/0J/0: 0 → 0

0

0
1

C/0
0

0
0 C/0

0

1
0

C/0

1
0

0
A/1

C/0
1

0

C

FIGURE 14.16

Concurrent fault simulation (P3).

14.3 Fault simulation 871
The newly visible event (in gray) is propagated toG4, and a new bad gate J/0 diver-

ges from G4. Eventually, the fault J/0 is detected by pattern P3.

Figure 14.17 shows a simplified concurrent fault simulation flowchart. The

fault simulator applies one pattern at a time. The concurrent fault simulation

is an event-driven simulation with both good events and bad events simulated

at the same time. The events on the gate inputs are first analyzed. A good event

affects both good and bad gates but a bad event only affects bad gates of the
corresponding fault. After the analysis, events are then executed. The diverged

bad gates and converged bad gates are added to or deleted from the fault list,

respectively. Determining whether a bad gate diverges or converges depends

on three factors: the visibility, the bad event, and the concurrent fault list (see

[Abramovici 1994] for more details). After the event execution, new events

are computed at the gate outputs. If an event reaches the primary outputs,

detected faults can be removed from concurrent fault lists of all gates. This pro-

cess repeats until there are no more test patterns, or no undetected faults.
14.3.4 Differential fault simulation
Concurrent fault simulation constructs the state of the faulty circuit from that of

the same faulty circuit of the previous test pattern. Concurrent fault simulation

has a potential memory problem, because the size of the concurrent fault list

changes at runtime. In contrast, the single fault propagation technique

start

F ¨ collapsed fault list

end next pattern?

apply next pattern

1. analyze events at gate inputs
2. execute events
3. compute events at gate outputs

more events?

delete detected faults
from F

yes

end

F empty?

yes

no

no

yes

no

FIGURE 14.17

Concurrent fault simulation flowchart.

872 CHAPTER 14 Fault simulation and test generation
constructs the state of the faulty circuit from that of the good circuit. For

sequential circuits, the single fault propagation technique would require a large

overhead to store the states of the good circuit. Neither of the preceding two

techniques are good for sequential fault simulation. Differential fault simulation

combines the merits of concurrent fault simulation and single fault propagation
techniques [Cheng 1989]. The idea is to simulate, in turn, every faulty circuit by

tracking only the difference between a faulty circuit and the last simulated one.

An event-driven simulator can easily implement differential fault simulation with

the differences injected as events. This differential fault simulation technique

P2

G2

F1,2

F2,2

Fk,2

Fk+1,2

Good

f1
f2
. . .

.

fk
fk+1

fm

P1

G1

F1,1

F2,1

Fk,1

Fk+1,1

Fm,1 Fm,2

…

…

…

…

…

…

…

…

…

Pi

Gi

F1,i

F2,i

Fk,i

Fk+1,i

.

Fm,i

Pi+1

Gi+1

F1,i+1

F2,i+1

Fk,i+1

Fk+1,i+1

. .

Fm,i+1

…

…

…

…

…

…

…

…

…

Pn

Gn

F1,n

F2,n

Fk,n

Fk+1,n

Fm,n

FIGURE 14.18

Differential fault simulation.

14.3 Fault simulation 873
has been further combined with the parallel fault simulation technique, as

implemented in PROOFS [Niermann 1992].

Figure 14.18 illustrates how differential fault simulation works. First, the first

pattern P1 is simulated on the good circuit G1, and the good primary outputs are
stored. Then the faulty circuit (F1,1) is simulated with fault f1 injected as an

event. The first subscript indicates the fault and the second subscript indicates

the pattern. The difference of states between G1 and F1,1 is stored. Note that

only the states of storage elements, such as flip-flops, are stored, so the memory

needed is small compared with concurrent fault simulation. If the primary out-

puts of F1,1 and G1 are not the same, then fault f1 is detected. Following F1 the

second faulty circuit (F2,1) is simulated with f1 removed and f2 injected. Simi-

larly, the difference of states between F1 and F2 is stored. The preceding process
continues until pattern P1 has been simulated for all faults (f1 to fm).

Following the first pattern, the state of the good circuit G2 is restored and the

second pattern P2 is applied. After the fault-free simulation, the primary outputs

ofG2 are stored. The state of faulty circuit F1,2 is restored by injecting the difference

of G1 and F1,1. The fault f1 is again injected as an event. The differential fault simu-

lation for P2 is the same as that of pattern P1. Differential fault simulation goes in the

direction of the arrows in Figure 14.18—Gi, F1,i, F2,i, . . . , Fm,i, Giþ1, F1,iþ1,
Figure 14.19 shows a simplified flowchart for differential fault simulation.

For every test pattern, a fault-free simulation is performed first. Then the faulty

circuits are simulated one after another. The states of every circuit are restored

from the last simulation. If the faulty circuit outputs are different from the good

outputs, the fault is detected and dropped. The state difference of every circuit

is stored. With fault dropping, the state difference of the dropped fault must be

accumulated into the state differences of its next undetected fault. This process

repeats until there are no test patterns or no undetected faults.

The problem with differential fault simulation is that the order of events
caused by fault sites is not the same as the order of the timing of their occur-

rence. If the circuit behavior depends on the gate delay of the circuit, the timing

start

F ← collapsed fault list

next pattern?

restore good circuit state

1. apply next pattern
2. Og ← good circuit outputs

1. restore faulty circuit state
2. remove last fault
3. inject fault f
4. Of ← faulty circuit outputs
5. store state difference

delete f from F

F empty?next fault?
no

no

yes

endget next fault f

yes

no

Of == Og?

Yes

end
no

yes

FIGURE 14.19

Differential fault simulation flowchart.

874 CHAPTER 14 Fault simulation and test generation
information of every event must be included. This solution, however, may

potentially require high memory consumption.
14.3.5 Comparison of fault simulation techniques
In terms of simulation speed, it is apparent that serial fault simulation is the slowest

among all the techniques. Differential fault simulation is shown to be up to twelve

times faster than concurrent fault simulation and PPSFP [Cheng 1989], when the

14.3 Fault simulation 875
sequential circuit under test does not contain memories, such as static random-

access memories (SRAMs) and dynamic random-access memories (DRAMs).
Memory use is, in general, not a problem for serial fault simulation, because

it deals with one fault at a time. Similarly, parallel fault simulation and PPSFP

do not require much more memory than the fault-free simulation. Concurrent

fault simulation has severe memory problems, because the size of the concur-

rent fault list is unpredictable. Furthermore, the I/O values of every bad gate

in the concurrent fault simulation must be recorded. Differential fault simula-

tion relieves the memory management problem of concurrent fault simulation,

because only the difference in storage elements is stored.
When the unknown (X) and/or high-impedance (Z) values are present in

the circuit, a multiple-valued fault simulation becomes necessary. Serial fault

simulation has no problem in handling multiple-valued fault simulation, because

it can be realized with a regular logic simulator. In contrast, to exploit bitwise

word parallelism, it is more difficult for parallel fault simulation or PPSFP to han-

dle X or Z. In concurrent fault simulation, dealing with multiple-valued simula-

tions is straightforward, because every bad gate is evaluated in the same way as

in the fault-free simulation. Finally, differential fault simulation can simulate X or
Z without a problem, because it is based on event-driven simulation.

From the aspect of delay and functional modeling capability, serial fault sim-

ulation does not encounter any difficulty. Parallel fault simulation and PPSFP

cannot take delay or functional models into account, because they pack the

information of multiple faults or test patterns into the same word and rely on

bitwise logic operations. Being event-driven, both concurrent and differential

fault simulation techniques are capable of handling functional models; however,

only the former is able to process circuit delays.
When sequential circuits are of concern, serial and parallel fault simulation

techniques do not have a problem. The PPSFP technique, however, is not suited

for sequential circuit simulation, because a large memory space is required to

store the states of the fault-free circuit. Concurrent and differential fault simula-

tions are able to perform sequential fault simulation without difficulty.

On the basis of the previous discussions, PPSFP and parallel fault simulation

techniques are currently the most popular fault simulation techniques for com-

binational (full-scan) circuits. On the other hand, concurrent fault simulation
techniques have been widely adopted for sequential circuits embedded with

memories, whereas differential fault simulation techniques are mostly suitable

for sequential circuits without memories. Algorithm switching has also been

used to improve performance. Parallel fault simulation can be used when the

fault drop rate per test pattern is high, and then PPSFP is used when more

patterns are required to drop each fault.

Even for fault simulation techniques that are efficient in time and memory, the

problems of memory explosion and long simulation time still exist as integrated
circuit (IC) complexity continues growing. To overcome the memory problem,

the multiple-pass fault simulation approach is often adopted. The idea of

876 CHAPTER 14 Fault simulation and test generation
multiple-pass fault simulation is to partition the faults into smaller groups, each of

which is simulated independently. If the faults are well partitioned, multiple-pass
fault simulation prevents the memory explosion problem. To further reduce the

fault simulation time, distributed fault simulation approaches may be used.

Distributed fault simulation divides the whole fault simulation into smaller tasks,

each of which is performed independently on a separate processor.

There are several alternatives to fault simulation. The fault-sampling technique

was proposed to simulate only a sampled group of faults [Butler 1974]. Critical

path tracing is another alternative to fault simulation [Abramovici 1984]. Instead

of performing actual fault simulation, the statistical fault analysis (STAFAN)
approach proposes to use probability theory to estimate the expected value of

fault coverage [Jain 1985]. These alternatives to fault simulation have also been

extensively discussed in [Abramovici 1994], [Bushnell 2000], and [Wang 2006].
14.4 TEST GENERATION

First, consider the single stuck-at fault model. Figure 14.20 shows a circuit with a

single stuck-at fault in which signal d is tied to logic 1 (d/1). A logic 0 must be

applied to node d from the primary inputs of the circuit to produce a difference

between the fault-free (or good) circuit and the circuit with the stuck-at fault pres-

ent. Next, to observe the effect of the fault, a logic 1 must be applied to signal c.

So, if the fault d/1 is present, it can be detected at the output ewith the derived vec-

tor. Test generation attempts to generate test vectors for every possible fault in the
circuit. In this example, in addition to the d/1 fault, faults such as a/1, b/1, and e/1

are also targeted by the test generator. Because some of the faults in the circuit can

be logically equivalent, no test can be obtained to distinguish between them. Thus,

equivalence fault collapsing as described in Section 14.2 is often used to identify

equivalent faults a priori to reduce the number of faults that must be targeted

[Abramovici 1994; Bushnell 2000; Jha 2003]. Subsequently, the ATPG is only

concerned with generating test vectors for each fault in the collapsed fault list.
14.4.1 Random test generation
Random test generation (RTG) is one of the simplest methods for generating

vectors. Vectors are randomly generated and fault-simulated (or fault-graded)

on the circuit under test (CUT). Because no specific fault is targeted, the
a

b

c

d
e

stuck-at 1

FIGURE 14.20

Example of a single stuck-at fault.

14.4 Test generation 877
complexity of RTG is low. However, RTG often results in generating a

large number of tests that achieves sub-par fault coverage because of the diffi-
cult-to-test faults.

In RTG, logic values are randomly generated at the primary inputs, with

equal probability of assigning a logic 1 or logic 0 to each primary input. Thus,

the random vectors are uniformly distributed in the test set. Note that the ran-

dom test set is not truly random, because a pseudo-random number generator

is generally used. In other words, the random test set can be repeated with

the same pseudo-random number generator. Nevertheless, the vectors gener-

ated hold the necessary statistical properties of a random vector set.
The level of confidence one can have on a random test set T can be

measured as the probability that T can detect all the stuck-at faults in the circuit.

For N random vectors, the test quality tN indicates the probability that all

detectable stuck-at faults are detected by these N random vectors. Thus, the test

quality of a random test set highly depends on the circuit under test. Consider a

circuit with an eight-input AND gate (or equivalently a cone of seven two-input

AND gates) illustrated in Figure 14.21. Although achieving a logic 0 at the out-

put of the AND gate is easy, getting a logic 1 is difficult. A logic 1 would require
all the inputs to be at logic 1. If the RTG assigns each primary input with an

equal probability of logic 0 or logic 1, the chance of getting eight logic 1’s simul-

taneously would only be 0.58 ¼ 0.0039. In other words, the AND gate output

stuck-at-0 fault would be difficult to test by the RTG. Such faults are called

random-pattern resistant faults.
As discussed earlier, the quality of a random test set depends on the underly-

ing circuit. More random-pattern resistant faults will more likely reduce the

quality of the random test set. To tackle the problem of targeting random-
pattern resistant faults, biasing is required so the input vectors are no longer

viewed as uniformly distributed. Consider the same eight-input AND gate exam-

ple again. If each input of the AND gate has a much higher probability of
FIGURE 14.21

Two equivalent circuits.

878 CHAPTER 14 Fault simulation and test generation
receiving a logic 1, the probability of getting a logic 1 at the output of the AND

gate significantly increases. For example, if each input has a 75% probability of
receiving a logic 1, then getting a logic 1 at the output of the AND gate now

becomes 0.758 ¼ 0.1001, rather than the previous 0.0039.

Determining the optimal bias values for each primary input that can achieve

the highest coverage is not an easy task. Thus, rather than trying to obtain the

best set of values, the objective is frequently to increase the probabilities for

those difficult-to-control and difficult-to-observe nodes in the circuit. For

instance, suppose a circuit has an eight-input AND gate; any fault that requires

the AND gate output equal to logic 1 for detection will be considered difficult to
test. It would then be beneficial to attempt to increase the probability of obtain-

ing a logic 1 at the output of this AND gate.

Another issue regarding random test generation is the number of random

vectors needed. Given a combinational circuit with n primary inputs, there

are clearly 2n possible input vectors. One can express the probability of detect-

ing fault f by any random vector to be:

df ¼ Tf =2
n

where Tf is the set of vectors that can detect fault f. Consequently, the probabil-

ity that a random vector will not detect f (i.e., f escapes a random vector) is: ef ¼
1 � df .

Therefore, given N random vectors, the probability that none of the N

vectors detect fault f is:

eNf ¼ 1� df

� �N
In other words, the probability that at least one of N vectors will detect fault f is:

1� 1� df

� �N
If the detection probability, df, for the hardest fault is known, N can be readily

computed by solving the following inequality:

1� 1� df
� �

N � p

where p is the probability that N vectors should detect fault f.

If the detection probability is not known, it can be computed directly from

the circuit. The detection probability of a fault is directly related to: (1) the con-

trollability of the line that the fault is on and (2) the observability of the fault-

effect to a primary output. The controllability and observability computations

have been introduced previously in the chapter on design for testability. It is
worth noting that the minimum detection probability of a detectable fault f

can be determined by the output cone in which f resides. In fact, if f is detect-

able, it must be excited and propagated to at least one primary output, as illu-

strated in Figure 14.22. It is clear that all the primary inputs necessary to

excite f and propagate the fault-effect must reside in the cone of the output

Excitation cone

f

Propogation of fault effect

Inputs outside of PO cone are not needed for detection of fault f

Pls
Primary output cone
for PO #4

POs

FIGURE 14.22

Detection of a fault.

14.4 Test generation 879
to which f is detected. Thus, the detection probability for f is at least (0.5)m,

where m is the number of primary inputs in the cone of the corresponding pri-

mary output. Taking this concept a step further, the detection probability of

the most difficult fault can be obtained with the following lemma [David

1976; Shedletsky 1977].

Lemma 1: In a combinational circuit with multiple outputs, let nmax be the

number of primary inputs that can lead to a primary output. Then, the detec-

tion probability for the most difficult detectable fault, dmin, is:

dmin � 0:5ð Þnmax

Proof

The proof follows from the preceding discussion.

14.4.1.1 Exhaustive testing

If the combinational circuit has few primary inputs, exhaustive testing may

be a viable option, where every possible input vector is enumerated. This
may be superior to random test generation, because RTG can produce dupli-

cated vectors and may miss certain ones.

In circuits in which the number of primary inputs is large, exhaustive testing

becomes prohibitive. However, on the basis of the results of Lemma1, itmay bepos-

sible to partition the circuit and only exhaust the input vectorswithin each cone for

each primary output. This is called pseudo-exhaustive testing. In doing so, the

number of input vectors can be drastically reduced. When enumerating the input

vectors for a given primary output cone, the values for the primary inputs that are
outside the cone are simply assigned random values. Therefore, if a circuit has three

primary outputs, each has a corresponding primary output cone. Note that these

three primary output cones may overlap. Let n1, n2, and n3 be the number of pri-

mary inputs corresponding to these three cones. Then the number of pseudo-

exhaustive vectors is simply at most 2n1 þ 2n2 þ 2n3.

880 CHAPTER 14 Fault simulation and test generation
14.4.2 Theoretical Background: Boolean difference
Consider the circuit shown in Figure 14.23. Let the target fault be the stuck-at-0
fault on primary input y. Recall the high-level concept of test generation

illustrated in Figure 14.1, where the objective is to distinguish the fault-free

circuit from the faulty circuit. In the example circuit shown in Figure 14.23,

the faulty circuit is the circuit with y stuck at 0. Note that the circuit output

can be expressed as a Boolean formula:

f ¼ xyþ y0z

Let f2 be the faulty circuit with the fault y/0 present. In other words,

f 2 ¼ f y ¼ 0ð Þ
To distinguish the faulty circuit f2 from the fault-free counterpart f, any input
vector that can make f � f2 ¼ 1 would suffice. Furthermore, because the aim

is test generation, the target fault must be excited. In this example, the logic

value on primary input y must be logic 1 to excite the fault y/0. Putting these

two conditions together, the following equation is obtained:

y � f y ¼ 1ð Þ � f y ¼ 0ð Þ ¼ 1 ð14:1Þ
Note that f (y ¼ 1) � f (y ¼ 0) indicates the exclusive-or operation on the two

functions f (y ¼ 1) and f (y ¼ 0); it evaluates to logic 1 if and only if the two

functions evaluate to opposing values. In terms of ATPG, this is synonymous

to propagating the fault effect at node y to the primary output f. Therefore,

any input vector on primary inputs x, y, and z that can satisfy Equation (14.1)

is a valid test vector for fault y/0:

y � f y ¼ 1ð Þ � f y ¼ 0ð Þ ¼ y x � zð Þ ¼ y xz0 þ x0zð Þ ¼ xyz0 þ x0yz

In this running example, the two vectors xyz ¼ {110, 011} are candidate test

vectors for fault y/0. Formally, f (y ¼ 1) � f (y ¼ 0) is called the Boolean dif-
ference of f with respect to y and is often written as:

d f =d y ¼ f y ¼ 1ð Þ � f y ¼ 0ð Þ
x

y

z w

f

FIGURE 14.23

Example circuit to illustrate the concept of Boolean difference.

14.4 Test generation 881
In general, if f is a function of x1, x2, . . . , xn, then:

d f =dxi ¼ f x1; x2; . . . ; xi ¼ 1; . . . ; xnð Þ � f x1; x2; . . . ; xi ¼ 0; . . . ; xnð Þ
In terms of test generation, for any target fault on some fault a/v, the set of all

vectors that can propagate the fault-effect to the primary output f is then those
vectors that can satisfy:

df =da ¼ 1

(Note that this is independent of the polarity of the fault, whether it is stuck-at-0

or stuck-at-1.) Next, the constraint that the fault must be excited, a set to value

v0, must be added. Subsequently, the set of test vectors that can detect the fault

becomes all those input values that can satisfy the following equation:

a ¼ v0ð Þ � df =da ¼ 1 ð14:2Þ
Consider the same circuit shown in Figure 14.23 again. Suppose the target fault

is w/0. The same analysis can be performed for this new fault. The set of test
vectors that can detect w/0 is simply:

w � df =dw ¼ 1

)w � f ðw ¼ 1Þ � f ðw ¼ 0Þ ¼ 1

)w � ð1 � xyÞ ¼ 1

)w � ðxyÞ0 ¼ 1

)w � ðx0 þ y0Þ ¼ 1

)wx0 þwy0 ¼ 1

Now, w can be expanded from the circuit shown in the figure to be w ¼ y0 � z.
Plugging this into the equation above gives us:

w � x0 þw � y0 ¼ 1
) y0 � zx0 þ y0 � z � y ¼ 1

) x0 � y0zþ y0 � z ¼ 1

) y0 � z ¼ 1

Therefore, the set of vectors that can detect w/0 is {001, 101}.

14.4.2.1 Untestable faults

If the target fault is untestable, it would be impossible to satisfy Equation (14.2).

Consider the circuit shown in Figure 14.24. Suppose the target fault is z/0. Then

the set of vectors that can detect z/0 are those that can satisfy:

z � df =dz ¼ 1

) z � f z ¼ 1ð Þ � f z ¼ 0ð Þ ¼ 1

) z � xy � xyð Þ ¼ 1
) z � 0 ¼ 1

) UNSATISFIABLE

In other words, there exists no input vectors that can satisfy z � df/dz ¼ 1, indi-

cating that the fault z/0 is untestable.

x

y

f

z

FIGURE 14.24

Example circuit for an untestable fault.

882 CHAPTER 14 Fault simulation and test generation
14.4.3 Designing a stuck-at ATPG for
combinational circuits
In deterministic ATPG algorithms, there are two main tasks. The first is to excite
the target fault, and the second is to propagate the fault-effect to a primary out-

put. Because the logic values in both the fault-free and faulty circuits are

needed, composite logic values are used. For each signal in the circuit, the

values v/vf are needed, where v denotes the value for the signal in the fault-free

circuit, and vf represents the value in the corresponding faulty circuit. When-

ever v ¼ vf, v is sufficient to denote the signal value. To facilitate the manipula-

tion of such composite values, a 5-valued algebra was proposed [Roth 1966], in

which the five values are 0, 1, X, D, and �D; 0, 1, and X are the conventional
values found in logic design for true, false, and “don’t care.” D represents the

composite logic value 1/0 and �D represents 0/1. Boolean operators such as

AND, OR, NOT, and XOR can work on the 5-valued algebra as well. The simplest

way to perform Boolean operations is to represent each composite value into

the v/vf form and operate on the fault-free value first, followed by the faulty

value. For example, 1 AND D is 1/1 AND 1/0. AND-ing the fault-free values

yields 1 AND 1 ¼ 1, and AND-ing the faulty values yields 1 AND 0 ¼ 0. So the

result of the AND operation is 1/0 ¼ D. As another example,

D OR D� ¼ 1=0 OR 0=1
¼ 1=1
¼ 1

Tables 14.6, 14.7, and 14.8 show the AND, OR, and NOT operations for the

5-valued algebra, respectively. Operations on other Boolean conjunctives can

be constructed in a similar manner.

14.4.3.1 A naive ATPG algorithm

A very simple and naive ATPG algorithm is shown in Algorithm 14.3, in which

combinational circuits with fanout structures can be handled.

Table 14.6 AND Operation

AND 0 1 D D X

0 0 0 0 0 0

1 0 1 D D X

D 0 D D 0 X

D D 1 1 D X

X X 1 X X X

Table 14.7 OR Operation

OR 0 1 D D X

0 0 1 D D X

1 1 1 1 1 1

D D 1 D 1 X

D D 1 1 D X

X X 1 X X X

Table 14.8 NOT Operation

NOT

0 1

1 0

D D

D D

X X

14.4 Test generation 883
Algorithm 14.3 Naive ATPG (C, f)
1. while a fault-effect of f has not propagated to a PO and all possible vec-
tor combinations have not been tried do

2. pick a vector, v, that has not been tried;
3. fault simulate v on the circuit C with fault f;
4. end while

884 CHAPTER 14 Fault simulation and test generation
Note that in an ATPG, the worst-case computational complexity is exponen-

tial, because all possible input patterns may have to be tried before a vector is
found or that the fault is determined to be undetectable. One may go about line

#2 of the algorithm in an intelligent fashion, so a vector is not simply selected

indiscriminately. Whether or not intelligence is incorporated, some mechanism

is needed to account for those attempted input vectors so no vector would be

repeated. If it is possible to deduce some knowledge during the search for the

input vector, the ATPG may be able to mark a set of solutions as tried and thus

reduce the remaining search space. For instance, after attempting a number of

input vectors, this naive ATPG realizes that any input vector with the first primary
input set to logic 0 cannot possibly detect the target fault, and it can safely mark

all vectors with the first primary input equal to 0 as a tried input vector. Subse-

quently, only those vectors with the first primary input set to 1 will be selected.

In certain cases, it may not be possible for the ATPG to deduce that all vec-

tors with a given primary input set to some logic value would definitely not

qualify to be solution vectors. However, it may be able to make an intelligent

guess that input vectors with primary input #i set to some specific logic value

are more likely to lead to a solution. In such a case, the ATPG would make a
decision on primary input #i. Because the decision may actually be wrong,

the ATPG may eventually have to alter its decision, trying the vectors that have

the opposite Boolean value on primary input #i.

The process of making decisions and reversing decisions will result in a

decision tree. Each node in the decision tree represents a decision variable.

If only two choices are possible for each decision variable, then the decision

tree is a binary tree. However, there may be cases in which multiple choices

are possible in a general search tree.
Figure 14.25 shows an example decision tree. Although this figure only

allows decisions to be made at the primary inputs, in general, this may not be
solution
space with
a = 0, c = 0

solution
space with

a = 0, c = 1, d = 0

a

c

d

0

0

0 1

1

1

solution
space with

a = 0, c = 1, d = 1

solution
space with

a = 1

FIGURE 14.25

An example decision tree.

14.4 Test generation 885
the case. This is used simply to allow the reader to have a clearer picture of the

concept behind decision trees. At each decision, the search space is halved. For
example, if the circuit has n primary inputs, then there are a total of 2n possible

vectors in the solution space. After a decision is made, the solution spaces

under the two branches of a decision node are disjoint. For instance, the space

under the decision a ¼ 1 does not contain any vectors with a ¼ 0. Note that the

decision tree for a solution vector may not require the ATPG to exhaustively

enumerate every possible vector; rather, it implicitly enumerates the vectors.

If a solution vector exists, there must be a path along the decision tree that leads

to the solution. On the other hand, if the fault is undetectable, every path in the
decision tree would lead to no solution. It is important to note that a fault may

be detected without having made all decisions. For example, the circuit nodes

that do not play a role in exciting or propagating the fault would not have to

be included in the decision process. Likewise, it may not require all decision

variables before the ATPG can determine that it is on the wrong path. For exam-

ple, if a certain path already sets a value on the fault site such that the fault is

not excited, then no value combination on the remaining decision variables

can help to excite and propagate the fault. With Figure 14.25 as an example again,
suppose the path a ¼ 0, c ¼ 1, d ¼ 1 cannot excite the target fault a. Then,
the rest of the decision variables, b, e, f, . . . , cannot undo the effect rendered by

a¼ 0, c¼ 1, d¼ 1.

14.4.3.1.1 Backtracking

Whenever a conflict is encountered (i.e., a path segment in the decision tree

leading to no solution), the search must not continue searching beneath that

path but must go back to some earlier point and re-decide on a previous deci-
sion. If only two choices are possible for a decision variable, then some previous

decision needs to be reversed if the other branch has not been explored before.

This reversal of decision is called a backtrack. To keep track of where the

search spaces have been explored and avoid repeating the search in the same
Conflict

backtrack

0

0

1

1

d

a

c

FIGURE 14.26

Backtrack on a decision.

886 CHAPTER 14 Fault simulation and test generation
spaces, the easiest mechanism is to reverse the most recent decision made.

When reversing any decision, the signal values implied by the assignment of
the previous decision variable must be undone.

Consider the decision tree illustrated in Figure 14.26 as an example. Suppose

the current decisions made so far are a ¼ 0, c ¼ 1, d ¼ 0, and this causes a con-

flict in detecting the target fault. Then, the search must reverse the most

recently made decision, which is d ¼ 0. When reversing d ¼ 0 to d ¼ 1, all

values that resulted from d ¼ 0 must be first undone. Then, the search con-

tinues with the path a ¼ 0, c ¼ 1, d ¼ 1. If the reversal of a decision also caused

a conflict (in this case, reversing d ¼ 0 also caused a conflict), then it means
a ¼ 0, c ¼ 1 actually cannot lead to any solution vector that can detect the tar-

get fault. The backtracking mechanism would then take the search to the previ-

ous decision and attempt to reverse that decision. In the running example, it

would undo the decision on d, assigning d to “don’t care,” followed by reversing

of the decision c ¼ 1 and searching the portion of the search space under a ¼ 0,

c ¼ 0. Finally, if there is no previous decision that can be reversed, the ATPG

concludes that the target fault is undetectable.

Technically, whenever a decision is reversed, say d ¼ 0 is reversed to d ¼ 1
as shown in Figure 14.26, d ¼ 1 is no longer a decision; rather, it becomes an

implied value by a subset of the previous decisions made. The exact subset

of decisions that implied d ¼ 1 can be computed by a conflict analysis
[Marques-Silva 1999b]. However, the details of conflict analysis are beyond the

scope of this chapter and are thus omitted. The reader can refer to [Marques-

Silva 1999b] for details of this mechanism. In addition, intelligent conflict analy-

sis can also allow for nonchronological backtracking.

14.4.3.2 A basic ATPG algorithm

Given a target fault g/v in a fanout-free combinational circuit C, a simple proce-

dure to generate a vector for the fault is shown in Algorithm 14.4, where Justi-
fyFanoutFree() and PropagateFanoutFree() are both recursive functions.

Algorithm 14.4 Basic Fanout Free ATPG (C, g/v)
1. initialize circuit by setting all values to X;
2. JustifyFanoutFree(C, g, v0); /* excite the fault by justifying line g to v0 */
3. PropagateFanoutFree(C, g); /* propagate fault-effect from g to a PO */
The JustifyFanoutFree(g, v) function recursively justifies the predecessor signals

of g until all signals that need to be justified are, indeed, justified from the pri-

mary inputs. The simple outline of the JustifyFanoutFree routine is listed in

Algorithm 14.5. In line #10 of the algorithm, controllability measures can be

used to select the best input to justify. Selecting a good gate input may help
to reach a primary input sooner.

a

c f

g

h
z

d

b

FIGURE 14.27

Example fanout-free circuit.

14.4 Test generation 887
Consider the circuit C shown in Figure 14.27. Suppose the objective is to jus-

tify g ¼ 1. According to the preceding algorithm, the following sequence of

recursive calls to JustifyFanoutFree would have been made:

call #1: JustifyFanoutFree(C, g, 1)

call #2: JustifyFanoutFree(C, a, 1)

call #3: JustifyFanoutFree(C, f, 1)

call #5: JustifyFanoutFree(C, c, 0)
Algorithm 14.5 JustifyFanoutFree(C, g, v)
1. g ¼ v;
2. if gate type of g ¼¼ primary input then
3. return;
4. else if gate type of g ¼¼ AND gate then
5. if v ¼¼ 1 then
6. for all inputs h of g do
7. JustifyFanoutFree(C, h, 1);
8. end for
9. else {v ¼¼ 0}

10. h ¼ pick one input of g whose value ¼¼ X;
11. JustifyFanoutFree(C, h, 0);
12. end if
13. else if gate type of g ¼¼ OR gate then
14. . . .
15. end if
After these calls to JustifyFanoutFree(), abcd ¼ 1X0X is an input vector that can

justify g ¼ 1.

Consider another circuit C shown in Figure 14.28. Note that the circuit is not

fanout-free, but the preceding algorithm will still work for the objective of

a

c

d f
g

h
z

e

b

FIGURE 14.28

Example circuit with a fanout structure.

a

b

c
d

FIGURE 14.29

Circuit with a constant circuit node.

888 CHAPTER 14 Fault simulation and test generation
trying to justify the signal g ¼ 1. According to the algorithm, the following

sequence of calls to the JustifyFanoutFree function would have been made:

call #1: JustifyFanoutFree(C, g, 1)

call #2: JustifyFanoutFree(C, a, 1)

call #3: JustifyFanoutFree(C, f, 1)

call #4: JustifyFanoutFree(C, d, 0)
call #5: JustifyFanoutFree(C, c, 0)

After these five calls to JustifyFanoutFree(), abc ¼ 1X0 is an input vector that

can justify g ¼ 1. Note that in a fanout-free circuit, the JustifyFanoutFree() rou-
tine will always be able to set g to the desired value v, and no conflict will ever

be encountered. However, this is not always true for circuits with fanout struc-

tures, such as the circuit shown in Figure 14.29. This is because in circuits with

fanout branches, two or more signals that can be traced back to the same fanout

stem are correlated, and setting arbitrary values on these correlated signals

may not always be possible. For example, in the simple circuit shown in

Figure 14.29, justifying d ¼ 1 is impossible, because it requires both b ¼ 1

and c ¼ 1, thereby causing a conflict on a.
Consider again the circuit shown in Figure 14.28. Suppose the objective is to

set z ¼ 0. On the basis of the JustifyFanoutFree() algorithm, it would first justify

both g ¼ 0 and h ¼ 0. Now, for justifying g ¼ 0, suppose it picks the signal f for

justifying the objective g ¼ 0; it would eventually assign c ¼ 1 through the

recursive JustifyFanoutFree() function. Next, for justifying h ¼ 0, it no longer

can choose e ¼ 0 as a viable option, because choosing e ¼ 0 will eventually

cause a conflict on signal c. In other words, a different decision has to be

made for justifying h ¼ 0. In this case, b ¼ 0 should be chosen. Although this
example is very simple, it illustrates the possibility of making poor decisions,

causing potential backtracks in the search. In the rest of this chapter, more dis-

cussion on avoiding conflicts will be covered.

14.4 Test generation 889
In the preceding running example, suppose the target fault is g/0, and Justi-

fyFanoutFree(C, g, 1) would have successfully excited the fault. With the fault
g/0 excited, the next step is to propagate the fault-effect to a primary output.

Similar to the JustifyFanoutFree() function, PropagateFanoutFree() is a recursive

function as well, where the fault-effect is propagated one gate at a time until it

reaches a primary output. Algorithm 14.6 illustrates the pseudo-code for one

possible implementation of the propagate function.

Again, although the PropagateFanoutFree() routine is meant for fanout-free cir-

cuits, it is sufficient for the running example. With the PropagateFanoutFree() func-

tion on the fault-effect D at signal g, listed in Algorithm 14.5, the following calls to
the JustifyFanoutFree and PropagateFanoutFree functions would have been made:

call #1: PropagateFanoutFree(C, g)

call #2: JustifyFanoutFree(C, h, 0)
call #3: JustifyFanoutFree(C, b, 0)

call #4: PropagateFanoutFree(C, z)

Algorithm 14.6 PropagateFanoutFree(C, g)
1. if g has exactly one fanout then
2. h ¼ fanout gate of g;
3. if none of the inputs of h has the value of X then
4. backtrack;
5. end if
6. else { g has more than one fanout}
7. h ¼ pick one fanout gate of g that is unjustified;
8. end if
9. if gate type of h ¼¼ AND gate then

10. for all inputs, j, of h, such that j 6¼ g do
11. if the value on j ¼¼ X then
12. JustifyFanoutFree(C, j, 1);
13. end if
14. end for
15. else if gate type of h ¼¼ OR gate then
16. for all inputs, j, of h, such that j 6¼ g do
17. if the value on j ¼¼ X then
18. JustifyFanoutFree(C, j, 0);
19. end if
20. end for
21. else if gate type of h ¼¼ . . . gate then
22. . . .
23. end if
24. PropagateFanoutFree(C, h);

890 CHAPTER 14 Fault simulation and test generation
Because the fault-effect has successfully propagated to the primary output z, the

fault g/0 is detected, with the vector abc ¼ 100. The reader may notice that
once g/0 has been excited, it is also propagated to z as well, because c ¼ 0 also

has made h ¼ 0. In other words, the JustifyFanoutFree(C, h, 0) step is unneces-

sary. However, this is only possible if logic simulation or implication capability is

embedded in the BasicFanoutFreeATPG() algorithm. For this discussion, it is not

assumed that logic simulation is included.

With the same circuit shown in Figure 14.28, consider the fault g/1. The Basic-

FanoutFreeATPG() algorithm will again be used to generate a test vector for this

fault. In this case, the ATPG first attempts to justify g ¼ 0, followed by propagat-
ing the fault-effect to z. During the justification of g¼ 0, the ATPG can pick either

a or f as the next signal to justify. At this point, the ATPG must make a decision.
Testability measures discussed in an earlier chapter can be used as a guide to

make more intelligent decisions. In this example, choosing a is considered to

be better than f, because choosing a requires no additional decisions to be made.

Note that testability measures only serve as a guide to decision selection; they do

not guarantee that the guidance will always lead to better decision selection.

It is important to note that in circuits with fanout structures, because
the simple JustifyFanoutFree() and PropagateFanoutFree() functions described

previously are meant for fanout-free circuits, will not always be applicable as illu-

strated in some of the earlier examples because of potential conflicts. To generate

test vectors for general combinational circuits, theremust bemechanisms thatwill

allow the ATPG to avoid conflicts, as well as get out of a conflict when a conflict is

encountered. To do so, the corresponding decision tree must be constructed dur-

ing the search for a solution vector, and backtracks must be enforced for any con-

flict encountered. The following sections describe a few ATPG algorithms.
14.4.3.3 D algorithm

TheD algorithmwas proposed to tackle the generation of vectors in general com-

binational circuits [Roth 1966, 1967]. As indicated by the name of the algorithm,

the D algorithm tries to propagate a D or D of the target fault to a primary output.
Initially, every signal in the circuit has the unknown value, X. At the end of the D

algorithm, some signals will be assigned 0, 1, D, or D, while the rest of the signals

may remain as unknown. Note that because each detectable fault can be excited,

a fault-effect can always be created. In the following discussion, propagation of

the fault-effect will take precedence over the justification of the signals. This

allows for enhanced efficiency of the algorithm and for simpler discussion.

Before proceeding to discussing the details of the D algorithm, two important

terms should be defined: the D-frontier and the J-frontier. The D-frontier con-
sists of all the gates in the circuit whose output value is unspecified and a fault-

effect (D orD) is at one or more of its inputs. For this to occur, one or more inputs

of the gate must currently have an unknown value, X. For example, at the start of

theD algorithm, for a target fault f there is exactly oneD (or D) placed in the circuit

x

x

x

x

x

x

x

x

x

D

D

x

D-frontier

D-frontier

D-frontier contains one gate(a)

(b) D-frontier contains two gates

x

a

D

FIGURE 14.30

Illustrations of D-frontier.

14.4 Test generation 891
corresponding to the stuck-at fault. All other signals currently have a “don’t care”

value. Thus, the D-frontier consists of the successor gate(s) from the line with the

fault f. Two scenarios of a D-frontier are illustrated in Figure 14.30. Clearly, at any

time if the D-frontier is empty, the fault no longer can be detected. For example,
consider Figure 14.30a. If the bottom input of gate a is assigned a value of 0, the

output of gate a will become 0, and the D-frontier now becomes empty. At this

time, the search must backtrack and try a different search path.

The J-frontier consists of all the gates in the circuit whose output values are

known (can be any value in the 5-valued logic except X) but is not justified by

its inputs. Figure 14.31 illustrates an example of a J-frontier. Thus, to detect the

target fault, all gates in the J-frontier must be justified; otherwise, some gates in

the J-frontier must have caused a conflict, where these gates cannot be justified
to the desired values.

Having discussed the two fundamental concepts of the D-frontier and the

J-frontier, the explanation for the D algorithm can begin. The D algorithm

begins by trying to propagate the initial D (or D) at the fault site to a primary out-

put. For example, in Figure 14.32, the propagation routine will set all the side

inputs of the path necessary (gates a!b!c) to propagate the fault-effect to the

respective noncontrolling values. These side input gates, namely x, y, and z, thus

form the J-frontier, because they are not currently justified. Because the D is pro-
pagated to the primary output, theD-frontier eventually becomes the output gate.

x

x

x

x
x

0

J-frontier

D

FIGURE 14.31

Illustration of J-frontier.

D
a

0 b

J-frontier

D propagates to PO

c

y

z

x
1

1

FIGURE 14.32

Propagation of D- and J-frontier.

892 CHAPTER 14 Fault simulation and test generation
Whenever there are paths to choose from in advancing the D-frontier,

observability values can be used to select the corresponding gates. However,
this does not guarantee that the more observable path will definitely lead to a

solution. When a D or a D has reached a primary output, all the gates in the

J-frontier must now be justified. This is done by advancing the J-frontier back-

ward by placing predecessor gates in the J-frontier such that they justify the pre-

vious unjustified gates. Similar to propagation of the fault-effect, whenever

a conflict occurs, a backtrack must be invoked. In addition, at each step, the

D-frontier must be checked so the D (or D) that has reached a primary output

is still there. Otherwise, the search returns to the propagation phase and
attempts to propagate the fault-effect to a primary output again. The overall pro-

cedure for the D algorithm is shown in Algorithms 14.7 and 14.8.

Note that the previous procedure has not incorporated any intelligence in

the decision-making process. In other words, sometimes it may be possible to

determine that some value assignments are not justifiable, given the current

1

0

a

b

FIGURE 14.33

Conflict in the justification process.

14.4 Test generation 893
circuit state. For instance, consider the circuit fragment shown in Figure 14.33.

Justifying gate a ¼ 1 and gate b ¼ 0 is not possible, because a ¼ 1 requires both
of its inputs set to logic 1, whereas b ¼ 0 requires both of its inputs set to logic

0. Noting such conflicting scenarios early can help to avoid future backtracks.

Such knowledge can be incorporated into line #1 of the D-Alg-Recursion()

shown in Algorithm 14.8. In particular, implications can be used to identify such

potential conflicts, and they are used extensively to enhance the performance

of the D algorithm (as well as other ATPG algorithms).

Algorithm 14.7 D-Algorithm(C, f)
1. initialize all gates to don’t-cares;
2. set a fault-effect (D or D) on line with fault f and insert it to the D-frontier;
3. J-frontier ¼ f;
4. result ¼ D-Alg-Recursion(C);
5. if result ¼¼ success then
6. print out values at the primary inputs;
7. else
8. print fault f is untestable;
9. end if
Consider the multiplexer circuit shown in Figure 14.28. If the target fault is f

stuck-at-0, then, after initializing all gate values to X, the D algorithm places a

D on line f. The algorithm then tries to propagate the fault-effect to z. First, it

will place a ¼ 1 in the J-frontier, followed by h ¼ 0 in the J-frontier. At this time,

the fault-effect has reached the primary output. Now, the ATPG tries to justify all

unjustified values in the J-frontier. Because a is a primary input, it is already jus-

tified. The other signals in the J-frontier are f ¼ D and h ¼ 0. For f ¼ D, d ¼ 0,

thereby making c ¼ 0. For h ¼ 0, either e ¼ 0 or b ¼ 0 is sufficient. Whichever

one it picks, the search process will terminate, as a solution has been found.
Consider the same multiplexer circuit (see Figure 14.28) again. Suppose the

target fault now is f stuck-at-1. Following the similar discussion as the previous

target fault f/0, the algorithm initializes the circuit and places a D on f. Next, to

propagate the fault-effect to a primary output, it likewise inserts a ¼ 1 and h ¼
0 into the J-frontier. Now, the ATPG needs to justify all the gates in the J-frontier,

894 CHAPTER 14 Fault simulation and test generation
Algorithm 14.8 D-Alg-Recursion(C)
1. if there is a conflict in any assignment or D-frontier is f then
2. return failure
3. end if
4. /* first propagate the fault-effect to a PO */
5. if no fault-effect has reached a PO then
6. while not all gates in D-frontier has been tried do
7. g ¼ a gate in D-frontier that has not been tried;
8. set all unassigned inputs of g to non-controlling value and add them

to the J-frontier;
9. result ¼ D-Alg-Recursion(C);

10. if result ¼¼ success then
11. return (success);
12. end if
13. end while
14. return (failure);
15. end if {fault-effect has reached at least one PO}
16. if J-frontier is f then
17. return (success);
18. end if
19. g ¼ a gate in J-frontier;
20. while g has not been justified do
21. j ¼ an unassigned input of g;
22. set j ¼ 1 and insert j ¼ 1 to J-frontier;
23. result ¼ D-Alg-Recursion(C);
24. if result ¼¼ success then
25. return (success);
26. else try the other assignment
27. set j ¼ 0;
28. end if
29. end while
30. return(failure);
which includes a ¼ 1, f ¼ D, and h ¼ 0. Because a is a primary output, it is

already justified. For f ¼ D, d ¼ 1. For h ¼ 0, suppose it selects e ¼ 0. At this
time, the J-frontier consists of two gate values: d ¼ 1 and e ¼ 0. No value assign-

ment on c can satisfy both d ¼ 1 and e ¼ 0; therefore, a conflict has occurred,

and backtrack on the previous decision is needed. The only decision that has

been made is e ¼ 0 for h ¼ 0, because there were two choices possible for

a d

c

s-a-1g
h

i

f
eb

FIGURE 14.34

Example circuit.

14.4 Test generation 895
justifying h ¼ 0. At this time, the value on e is reversed, and b ¼ 0 is added to
the J-frontier. The process continues and all gate values in the J-frontier can be

successfully justified, ending the process with the vector abc ¼ 101.

Note that, in the preceding example, if some learning procedure (such as

implications) is present, the decision for h ¼ 0 would not result in e ¼ 0,

because the ATPG would have detected that e ¼ 0 would conflict with d ¼ 1.

This knowledge could potentially improve the performance of the ATPG, which

will be discussed later in this chapter.

Consider another example circuit shown in Figure 14.34. Suppose the target
fault is g/1. After circuit initialization, the D algorithm places a D on g. Now, the

J-frontier consists of g ¼ D and the D-frontier consists of h. To advance the

D-frontier, f is set to logic 1; f ¼ 1 is added to the J-frontier, and the D-frontier

is now i. Next, to propagate the fault-effect to the output, c ¼ 1 is added to

the J-frontier. At this time, the fault-effect has been propagated to the output,

and the task is to justify the signal values in the J-frontier: {g ¼ D, f ¼ 1, c ¼ 1}. To

justify g ¼ D, two choices are possible: a ¼ 0 or b ¼ 0. If a ¼ 0 is selected,

it is necessary to justify f ¼ 1, b ¼ 1. Finally, c ¼ 1 remains in the J-frontier
which is still unjustified. At this time, a contradiction has occurred (a ¼ 0 and

c¼ 1), and the search reverses its last decision, changing a¼ 0 to a¼ 1. The search

discovers that this reversal also causes a conflict. Thus, a backtrack occurs where

line b is chosen instead of a for the previous decision, so a is reset to “don’t care.”

By assigning b ¼ 0, a conflict is observed. Reversing b also cannot justify all

the J-frontier. At this time, backtracking on b leads to no prior decisions.

Thus, target fault g/1 is declared to be untestable.
14.4.4 PODEM
In the D algorithm, the decision space encompasses the entire circuit. In other

words, every internal gate could be a decision point. However, noting that the

end result of anyATPGalgorithm is to derive a solution vector at the primary inputs

and that the number of primary inputs generally is much fewer than the total num-

ber of gates, it may be possible to arrive at a very different ATPG algorithm that

makes decisions only at primary inputs rather than at internal nodes of the circuit.
The path-oriented decision-making (PODEM) algorithm [Goel 1981] is

based on this notion and makes decisions only at the primary inputs. Similar

0

1

D

FIGURE 14.35

No X path.

896 CHAPTER 14 Fault simulation and test generation
to the D algorithm, a D-frontier is kept. However, because decisions are made at

the primary inputs, the J-frontier is unnecessary. At each step of the ATPG search

process, it checks whether the target fault is excited. If the fault is excited, it then

checkswhether there is anX-path from at least one fault- effect in theD-frontier to

a primary output, where an X-path is a path of unspecified values from the fault-
effect to a primary output. If no X-path exists, it means that all the fault-effects

in the D-frontier are blocked, as illustrated in Figure 14.35, where both possible

propagation paths of the D have been blocked. Otherwise, PODEM will pick the

best X-path to propagate the fault-effect. Note that if the target fault has not been

excited, the first steps of PODEM will be to excite the fault.

The basic flow of PODEM is illustrated in Algorithms 14.9 and 14.10.

Although it is still a deterministic search algorithm, the decisions are limited

to the primary inputs. All internal signals obtain their logic values by means of
logic simulation (or implications) from the decision points. As a result, no con-

flict will ever occur at the internal signals of the circuit. The only possible con-

flicts in PODEM are either (1) the target fault is not excited or (2) the D-frontier

becomes empty. In either of these cases, the search must backtrack.

Algorithm 14.9 PODEM(C, f)
1. initialize all gates to don’t-cares;
2. D-frontier ¼ f;
3. result ¼ PODEM-Recursion(C);
4. if result ¼¼ success then
5. print out values at the primary inputs;
6. else
7. print fault f is untestable;
8. end if

14.4 Test generation 897
Algorithm 14.10 PODEM-Recursion(C)
1. if fault-effect is observed at a PO then
2. return (success);
3. end if
4. (g, v) ¼ getObjective(C);
5. (pi, u) ¼ backtrace (g, v);
6. logicSimulate_and_imply (pi, u);
7. result ¼ PODEM-Recursion(C);
8. if result ¼¼ success then
9. return(success);

10. end if
11. /* backtrack */
12. logicSimulate_and_imply (pi, u);
13. result ¼ PODEM-Recursion(C);
14. if result ¼¼ success then
15. return(success);
16. end if
17. /* bad decision made at an earlier step, reset pi */
18. logicSimulate_and_imply (pi, X);
19. return(failure);
According to the algorithm in PODEM, the search starts by picking an objective,

and it backtraces from the objective to a primary input by means of the best path.

Controllability measures can be used here to determine which path is regarded as

the best. Gradually more primary inputs will be assigned logic values. At any time

the target fault becomes unexcited or the D-frontier becomes empty, a bad deci-

sion must have been made, and reversal of some previous decisions is needed.
The backtracking mechanism proceeds by reversing the most recent decision.

If reversing the most recent decision also causes a conflict, the recursive algo-

rithm will continue to backtrack to earlier decisions, until no more reversals are

possible, at which time the fault is determined to be undetectable.

Three important functions in PODEM-Recursion() are getObjective(), back-

trace(), and logicSimulate_and_imply(). The getObjective() function returns

the next objective the ATPG should try to justify. Before the target fault has been

excited, the objective is simply to set the line on which the target fault resides
to the value opposite to the stuck value. Once the fault is excited, the getObjec-

tive() function selects the best fault-effect from the D-frontier to propagate. The

pseudo-code for getObjective() is shown in Algorithm 14.11.

898 CHAPTER 14 Fault simulation and test generation
Algorithm 14.11 getObjective(C)
Tab

ge

f ¼
a

1. if fault is not excited then
2. return (g, v);
3. end if
4. d ¼ a gate in D-frontier;
5. g ¼ an input of d whose value is X;
6. v ¼ noncontrolling value of d;
7. return (g, v);
The backtrace() function returns a primary input assignment from which there is

a path of unjustified gates to the current objective. Thus, backtrace() will never
traverse through a path consisting of one or more justified gates. From the objec-

tive’s point of view, the getObjective() function returns an objective, say g ¼ v,

which means the current value of g is unspecified and should be set to value v.

If g was already specified to v, g ¼ v would have never been selected as an objec-

tive, because it is already justified. Now, if g ¼ x currently, and the objective is to

set g ¼ v, there must exist a path of unjustified gates from at least one primary

input to g. This backtrace() function can simply be implemented as a loop from

the objective to some primary inputs through a path of unspecified values. Algo-
rithm 14.12 shows the pseudo-code for the backtrace() routine.

Finally, the logicSimulate_and_imply() function can simply be a regular logic

simulation routine. The added imply is used to derive additional implications, if

any, that can enhance the getObjective() routine later on.

Consider the multiplexer circuit shown in Figure 14.28 again. Consider the

target fault f stuck-at-0. First, PODEM initializes all gate values to X. Then,

the first objective would be to set f ¼ 1. The backtrace routine selects c ¼ 0 as the

decision. After logic simulation, the fault is excited, together with e ¼ h ¼ 0.
The D-frontier at this time is g. The next objective is to advance the D-frontier,

thus getObjective() returns a ¼ 1. Because a is already a primary input, back-

trace() will simply return a ¼ 1. After simulating a ¼ 1, the fault-effect is suc-

cessfully propagated to the primary output z, and PODEM is finished with this

target fault with the computed vector abc ¼ 1X0. Table 14.9 shows the series

of objectives and backtraces for this example.
le 14.9 PODEM Objectives and Decisions for f Stuck-At-0

tObjective() backtrace() logicSim() D-frontier

1 c ¼ 0 d ¼ 0, f ¼ D, e ¼ 0, h ¼ 0 g

¼ 1 a ¼ 1 g ¼ D, z ¼ D f/0 detected

14.4 Test generation 899
Algorithm 14.12 backtrace(C)
Tab

ge

b

a

FIG

Dec
1. i ¼ g;
2. num_inversion ¼ 0;
3. while i 6¼ primary input do
4. i ¼ an input of i whose value is X;
5. if i is an inverted gate type then
6. num_inversion þþ;
7. end if
8. end while
9. if num_inversion ¼¼ odd then

10. v ¼ v;
11. end if
12. return (i, v);
Consider the circuit shown in Figure 14.29. Suppose the target fault is b stuck-

at-0. After circuit initialization, the first objective is b ¼ 1 to excite the fault. The

backtrace() returns a ¼ 0. After logic simulation, although the target fault is

excited, there is no D-frontier, because c ¼ d ¼ 0. At this time, PODEM reverses

its last decision a ¼ 0 to a ¼ 1. After logic simulating a ¼ 1, the target fault is
not excited and the D-frontier is still empty. PODEM backtracks but there is

no prior decision point. Thus, it concludes that fault b/0 is undetectable.

Table 14.10 shows the steps made for this example, and Figure 14.36 shows

the corresponding decision tree.

Consider again the circuit shown in Figure 14.34 with the target fault g/1.

After circuit initialization, the first objective is to excite the fault; in other

words, the objective is g ¼ 0. The backtrace() function backtraces from the

objective backward to a primary input via a path of “don’t cares.” Suppose the
le 14.10 PODEM Objectives and Decisions for b Stuck-At-0

tObjective() backtrace() logicSim() D-frontier

¼ 1 a ¼ 0 b ¼ 1, c ¼ 0, d ¼ 0 {}

¼ 1 (reversal) – b ¼ 0, c ¼ 1, d ¼ 0 {}

Conflict Conflict

0 1
a

URE 14.36

ision tree for fault b/0.

900 CHAPTER 14 Fault simulation and test generation
backtrace reaches a ¼ 0. After logic simulation, g ¼ 0, c ¼ d ¼ 0, and i ¼ 0. The

D-frontier is h. However, note that there is no path of “don’t cares” from any
fault-effect in the D-frontier to a primary output! If the PODEM algorithm is

modified to check that any objective has at least a path of “don’t cares” to

one or more primary outputs, some needless searches can be avoided. For

instance, in this example, if the next objective was f ¼ 1, even after the decision

of b ¼ 1 is made, the target fault still would not have been detected, because

there was no path to propagate the fault-effect to a primary output even before

the decision b ¼ 1 was made. In other words, the search could immediately

backtrack on the first decision a ¼ 0. In this case, a ¼ 1, and the objective is
still g ¼ 0. Backtrace() will now return b ¼ 0. After logic simulation, g ¼ 0,

c ¼ 1, f ¼ 0, h ¼ 0, i ¼ 0. Again, there is no propagation path possible. As there

is no earlier decision to backtrack to, the ATPG concludes that fault g/1 is

untestable. Table 14.11 shows the steps for this example.
14.4.5 FAN
Although PODEM reduces the number of decision points from the number of

gates in the circuit to the number of primary inputs, it still can make an exces-

sive number of decisions. Furthermore, because PODEM targets one objective at

a time, the decision process may sometimes be too localized and miss the global

picture. The fanout-oriented test generation (FAN) algorithm [Fujiwara
1983] extends the PODEM-based algorithm to remedy these shortcomings.

To reduce the number of decision points, FAN first identifies the headlines
in the circuit, which are the output signals of fanout-free regions. Because of the

fanout-free nature of each cone, all signals outside the cone that do not conflict

with the headline assignment would never require a conflicting value assign-

ment on the primary inputs of the corresponding fanin cone. In other words,

any value assignment on the headline can always be justified by its fanin cone.

This allows the backtrace() function to backtrace to either headlines or primary
inputs. Because each headline has a corresponding fanin cone with several

primary inputs, this allows the number of decision points to be reduced.

Consider the circuit shown in Figure 14.37. If the current objective is to set

z ¼ 1, the corresponding decision tree based on the PODEM algorithm will

involve many decisions at the primary inputs, such as a ¼ 1, c ¼ 1, d ¼ 1,

e ¼ 1, f ¼ 1. On the other hand, the decision based on the FAN algorithm is
Table 14.11 PODEM Objectives and Decisions for g Stuck-At-1

getObjective() backtrace() logicSim() D-frontier

g ¼ 1 a ¼ 0 g ¼ D, c ¼ 0,
d ¼ 0, i ¼ 0

{h} (but no
X-path to PO)

a ¼ 1 (reversal) – c ¼ 1, d ¼ 1 {}

a

b

c

k = 0

m = 1

FIGURE 14.38

Multiple backtrace to avoid potential conflicts.

a

b

c

d

x

headlines

y

z

e

f

g

h

FIGURE 14.37

Circuit with identified headlines.

14.4 Test generation 901
significantly smaller, involving only two decisions: x ¼ 1 and y ¼ 1. If z ¼ 1 was

not the first objective, there would have been other decisions made earlier. In

other words, if there were a poor decision made in an earlier step, PODEM

would need to reverse and backtrack many more decisions compared with FAN.

The next improvement that FAN makes over PODEM is the simultaneous sat-

isfaction of multiple objectives, as opposed to only one target objective at each
step. Consider the circuit fragment shown in Figure 14.38. Without taking into

account multiple objectives, the backtrace() routine may choose the easier path

in trying to justify k ¼ 0. The easier path may be through the fanout stem b.

However, this would cause a conflict later on with the other objective m ¼ 1.

In FAN, multiple objectives are taken into account, and the backtrace routine

scores the nodes visited from each objective in the current set of objectives.

The nodes along the path with the best scores are chosen. In this example,

a ¼ 0 will be chosen rather than b ¼ 0, even if a ¼ 0 is less controllable.
A powerful implication engine can have a significant impact on the perfor-

mance of ATPG algorithms. Thus, much effort has been invested over the years

in the efficient computation of implications. The quality of implications was

902 CHAPTER 14 Fault simulation and test generation
improved with the computation of indirect implications in SOCRATES [Schulz

1988]. Static learning was extended to dynamic learning in [Schulz 1989
and Kunz 1993], where some nodes in the circuit already had value assignments

during the learning process. A 16-valued logic was introduced in [Rajski 1990

and Cox 1994]. Reduction lists were used to dynamically determine the gate

values. In [Chakradhar 1993], the authors proposed a transitive closure proce-

dure based on the implication graph. Recursive learning was later proposed

in [Kunz 1994] in which a complete set of pairwise implications could be com-

puted. To keep the computational costs low, a small recursion depth can be

enforced in the recursive learning procedure. Finally, implications to capture
time frame information in sequential circuits in a graphical representation were

proposed in [Zhao 2001] to compactly store the implications in sequential

circuits.

The implications can be used to quickly identify untestable faults [Iyer

1996a,b; Zhao 2001; Hsiao, 2002; Syal 2003]. This will allow the ATPG not to

specifically target these faults that can often consume much of the ATPG

computational resources. For more information on implication and untestable

fault identification, refer to [Bushnell 2000, Jha 2003, and Wang 2006].
14.5 ADVANCED TEST GENERATION

Thus far, the discussions have focused primarily on the basic ATPG algorithms.

As circuits have become increasingly larger and more complex, more powerful

ATPG algorithms are needed. In particular, the handling of sequential circuits is

a must, because not all circuits may have the luxury of having a full-scan

inserted. Next, deterministic ATPGs may face tremendous hurdles when dealing

with the need to generate a sequence of many vectors. In this regard, simula-

tion-based ATPGs may be better suited. Finally, the stuck-at fault model may
be insufficient in capturing defects that occur at the deep-submicron or nano-

scale designs. Such defects include delay faults and bridging faults. This section

addresses how the basic ATPG can be extended to deal with these issues.
14.5.1 Sequential ATPG: Time frame expansion
Test generation for sequential circuits bears much similarity with that for combi-

national circuits. However, one vector may be insufficient to detect the target
fault, because the excitation and propagation conditions may necessitate some

of the flip-flop values to be specified at certain values. The general model for

a sequential circuit is shown in Figure 14.39, where flip-flops constitute the

memory/state elements of the design. All the flip-flops receive the same clock

signal, so no multiple clocks are assumed in the circuit model.

Figure 14.40 illustrates an example of a sequential circuit that is unrolled

into several time frames, also called an iterative logic array (ILA) of the

FF’s
PRIMARY INPUTS

PRIMARY OUTPUTS

Time frame k Time frame jTime frame 0 Time frame 1

s-a-0

1/0 FE

FE FE

FE

1

1
0

FIGURE 14.40

An iterative logic array (ILA) model.

Combinational Logic

Clock

Memory
Elements

Primary
Inputs

Primary
Outputs

FIGURE 14.39

Model of a sequential circuit.

14.5 Advanced test generation 903
circuit. For each time frame, the flip-flop inputs from the previous time frame

are often referred to as pseudo primary inputs with respect to that time

frame, and the output signals to feed the flip-flops to the next time frame

are referred to as pseudo primary outputs. Note that in any unrolled circuit,

a target fault is present in every time frame.

When the test generation begins, the first time frame is referred to as time
frame 0. An ATPG search similar to a combinational circuit is carried out. At

the end of the search, a combinational vector is derived, where the input vector

consists of primary inputs and pseudo primary inputs. The fault-effect for the

target fault may be sensitized to either a primary output of the time frame or

a pseudo primary output. If at least one pseudo primary input has been

904 CHAPTER 14 Fault simulation and test generation
specified, then the search must attempt to justify the needed flip-flop values in

time frame �1. Similarly, if fault-effects only propagate to pseudo primary out-
puts, the ATPG must try to propagate the fault-effects across time frame þ 1.

Note that this results in a test sequence of vectors. As opposed to combina-

tional circuits, in which a single vector is sufficient to detect a detectable fault,

in sequential circuits a test sequence is often needed.

One question naturally arises: Should the ATPG first attempt the fault excita-

tion via several time frames �1, �2, etc., or should the ATPG attempt to propa-

gate the fault-effect through time frames 1, 2, etc.? It can be observed that in

propagating the fault-effect in time frame 1, the search may place additional
values on the flip-flops between the boundary of time frames 0 and 1. These

added constraints propagate backward and may add additional values needed

at the pseudo primary inputs at time frame 0. In other words, if the ATPG first

justifies the pseudo primary inputs at time frame 0, it would have missed the

additional constraints placed by the propagation. Therefore, the ATPG first tries

to propagate the fault-effect to a primary output via several time frames, with all

the intermediate flip-flop values propagated back to time frame 0. Then, the

ATPG proceeds to justify all the pseudo primary input values at time frame 0.
Although easy to understand, the process can be very complex, for example,

if the fault-effect has propagated forward for three time frames: time frames 1, 2,

and 3. Now in time frame 4, suppose the ATPG successfully propagates the fault-

effect to a primary output (i.e., it has derived a vector at time frame 4), it must go

back to time frame 3 to make sure the values assigned to the flip-flops at the

boundary between time frames 3 and 4 are, indeed, possible. It must perform this

check for time frames 2, 1, and 0. If at any time frame a conflict occurs, the vector

derived at time frame 4 is actually invalid, because it is not justifiable from the pre-
vious vectors. At this time, a backtrack occurs in time frame 4, and the ATPG

must try to find a different solution vector #4. This process is repeated.

One way to reduce the complexity discussed is to try to propagate the fault-

effect in an unrolled circuit instead of propagating the fault-effect time frame by

time frame. In doing so, a k-frame combinational circuit is obtained, say k ¼ 256,

and theATPGviews the entire 256-frame circuit as one large combinational circuit.

However, the ATPGmust keep inmind that the target fault is present in all 256 time

frames. This eliminates the need to check for state boundary justifiability and
allows the ATPG to propagate the fault-effect acrossmultiple time frames at a time.

When the fault-effect has been propagated to at least one primary output,

the pseudo primary inputs at time frame 0 must be justified. Again, the justifica-

tion can be performed in a similar process of viewing an unrolled 256-frame cir-

cuit. As before, the ATPG must ensure that the fault is present in every time

frame of the unrolled circuit.

HITEC [Niermann 1991] is a popular sequential test generator that per-

forms the search similar to the discussed methods with a 9-valued algebra. In
addition, it uses the concept of dominators to help reduce the search com-

plexity. A dominator for a target fault is a gate in the circuit through which

14.5 Advanced test generation 905
the fault-effect must traverse [Kirkland 1987]. Therefore, for a given target

fault, all inputs of any dominator gate that are not in the fanout cone of the
fault must be assigned to noncontrolling values to detect the fault.

The concept of controllability and observability metrics can be extended to

sequential circuits such that the backtrace routine would prefer to backtrace

toward primary inputs and those easy-to-justify flip-flops. The use of sequential

testability metrics allows the ATPG to narrow the search space by favoring the

easy-to-reach states and avoiding getting into difficult-to-justify states.

The computational complexity of a sequential ATPG is intuitively higher than

that of the combinational ATPG. Therefore, aggressive learning can help to reduce
the computational cost. For instance, if a known subset of unreachable states is

available, this information can be used to allow the ATPG to backtrack much

sooner when an intermediate state is unreachable. This can avoid successive justi-

fication of an unreachable state. Likewise, if a justification sequence has been suc-

cessfully computed for state S before, and a different target fault requires the same

state S, the previous justification sequence can be used to guide the search. Note

that, because the target faults are different, the justification sequencemay not sim-

ply be copied from the solution for one fault to another.
For large circuits, deterministic ATPGs may suffer from a potentially large

number of backtracks. Thus, in the past two decades, effort on simulation-
based ATPGS has yielded much success, presenting themselves as a viable alter-

native to deterministic ATPGs. One class of nondeterministic ATPGs is the

genetic algorithm–based (GA-based) ATPG. There have been numerous GA-

based ATPGs proposed over the years. For example, CONTEST [Agrawal

1989] targets test generation in three phases, each having its own distinct fit-

ness measure. GATEST [Rudnick 1994] distinguishes fault detection from those
that only propagate to flip-flop boundaries. DIGATE [Hsiao 1996] targets indi-

vidual faults and uses distinguishing sequences to help propagate the faults from

flip-flops to a primary output.

STRATEGATE [Hsiao 1997; 2000] addresses fault excitation by justifying the

needed state as well. Although GA-based ATPGs have achieved success, the

underlying fault simulation engine may incur excessive computational cost. In

recent years, approaches that use logic simulation rather than fault simulation

have been proposed [Pomeranz 1995; Guo 1999; Giani 2001; Sheng 2002; Wu
2004]. Logic-simulation–based test generators usually target some inherent

“property” in the fault-free circuit and try to derive test vectors that exercise

these properties. In general, the property used often relates to the states

reached by the test sequence.
14.5.2 Delay fault ATPG
Today’s integrated circuits are seeing an escalating clock rate, shrinking dimen-
sions, increasing chip density, etc. Consequently, there arises a class of defects that

would affect the functionality of the design if the chip were run at a high speed.

906 CHAPTER 14 Fault simulation and test generation
In other words, the design is functionally correct when it is operated at a slow

clock. This type of defect is referred to as a delay defect. Although the conven-
tional stuck-at testing can catch some delay defects, the stuck-at fault model is

insufficient to model delay defects satisfactorily. This has prompted engineers

and researchers to propose a variety of methods and fault models for detecting

speed failures. Among the fault models are the transition fault [Levendel 1986;

Waicukauski 1987; Cheng 1993], the path-delay fault [Smith 1985], and the seg-

ment delay fault [Heragu 1996]. The path-delay fault model considers the cumu-

lative effect of the delays along a specific combinational path in the circuit. If the

cumulative delay in a faulty circuit exceeds the clock period for the path, then the
test pattern that can exercise this path will fail the chip. The segment delay fault

model targets path segments instead of complete paths.

Because a transition has to be launched to propagate across a given path,

two vectors are needed. The first vector initializes the circuit nodes, and the

second vector launches a transition at the start of a path and ensures that the

transition is propagated along the given path. Given a path P, a signal is an

on-input of P if it is on P. Conversely, a signal is an off-input of P if it is an input

to a gate in P but is not an on-input of P. A path-delay fault can be a rising fault,
where a rising transition is at the start of the path, or a falling fault, where a falling

transition is at the start of the path. The rising and falling path-delay faults are

denoted with the up-arrow " and the down-arrow # before path P, respectively.

For example, "g1g4g7 is a rising path that traverses through gates g1, g4, and g7.

Delay tests can be applied three different ways: launch-on-capture (also

called broad-side [Savir 1994] or double-capture [Wang 2006]), launch-on-
shift (also called skewed-load [Savir 1993]), and enhanced-scan [Dervisoglu

1991]. In launch-on–capture-based testing, the first n-bit vector is scanned into
the circuit with n scan flip-flops at a slow speed, followed by another clock that

creates the transition. Finally, an at-speed functional clock is applied that captures

the response. Thus, only one vector has to be stored per test, and the second vec-

tor is directly derived from the initial vector by pulsing the clock. In launch-on–

shift-based testing, the first n � 1 bits of an n-bit vector are shifted in at a slow

speed. The final nth shift is performed, and it is also used to launch the transition.

This is followed by an at-speed quick capture. Similar to launch-on-capture, only

one vector has to be stored per test, because the second vector is simply the
shifted version of the first vector. Finally, in enhanced-scan testing, both vectors

in the vector pair (V1, V2) have to be stored in the tester memory. The first vector

V1 is loaded into the scan chain, followed by its immediate application to initialize

the circuit under test. Next, the second vector is scanned in, followed by an imme-

diate application and capture of the response. Note that the node values in the

circuit are preserved during the shifting-in of the second vector V2. To achieve

this, a hold-scan design [Dervisoglu 1991] is required.

Because both launch-on-capture and launch-on-shift place constraints on
what the second vector can be, they will achieve lower fault coverage com-

pared with enhanced-scan. However, enhanced-scan comes at a price of

14.5 Advanced test generation 907
hold-scan cells (enhanced-scan cells [Wang 2006]), which consume more chip

area. This may not be viewed as a huge negative in microprocessors and some
custom-designed circuits, because hold-scan cells are used to prevent the com-

binational logic from seeing the values being shifted. This is done because the

intermediate state of the scan cells may cause contention in some of the signals

in the logic, as well as reducing the power consumption in the combinational

logic during the shifting of the data in scan cells. In addition, hold-scan cells

also help increase the diagnostic capability on failing chips in which the data

captured in the scan chain can be retrieved.

In terms of test data volume, enhanced-scan tests may actually require less
storage to achieve the same delay fault coverage. In other words, for launch-

on-capture or launch-on-shift to achieve the same level of fault coverage, many

more patterns may have to be applied.

Unlike stuck-at faults, where a fault is either detected or not detected by a

given test vector, a path-delay fault may be detected by different test patterns

(consisting of two vectors) with differing levels of quality. In other words, some

test patterns can detect a path-delay fault only with certain restrictions in place.

Higher quality test patterns place more restrictions on sensitization of the path.
On the other hand, similar to stuck-at faults, some paths may be untestable if the

sensitization requirement for a given path is not satisfiable.

For designs with two interactive clock domains, modifications can be made

to allow for tests. For example, the following at-speed delay test approaches can

be used for both launch-on-capture and launch-on-shift architectures: one-hot
double-capture, aligned double-capture, and staggered double-capture
[Bhawmik 1997; Wang 2006, 2007b].

If tests were possible for all the paths in a circuit, we would not need any
additional test vectors for capturing the delay defects. However, because very

few paths are robustly testable, and the number of path-delay faults is exponen-

tial to the number of circuit lines, other delay fault models have been proposed.

For example, transition tests have been generated to improve the detection of

speed failures in microprocessors [Tendulkar 2002], as well as application-
specific integrated circuits (ASICs) [Hsu 2001]. These reasons make transi-

tion faults popular in industry.

Similar to the stuck-at fault model, two transition faults are possible at each
node of the circuit: slow-to-rise and slow-to-fall. A test pattern for a transition

fault consists of a pair of vectors (V1, V2), where V1 (called the initial vector) is

required to set the target node to an initial value and V2 (called the test vector)

is required to launch the corresponding transition at the target node and also

propagate the fault effect to a primary output [Waicukauski 1987; Savir 1993].

Transition tests can also be applied in three different ways as for the other

delay fault models discussed earlier: launch-on-capture, launch-on-shift, and

enhanced scan. As with path-delay tests, because both launch-on-capture and
launch-on-shift place constraints on what the second vector can be, they will

achieve lower transition fault coverage compared with enhanced-scan.

908 CHAPTER 14 Fault simulation and test generation
14.5.3 Bridging fault ATPG
Recall that bridging faults are those faults that involve a short between two
signals in the circuit. Given a circuit with n signals, there are potentially n �
(n � 1) possible bridging faults. However, practically, only those signals that

are locally close on the die are more likely to be bridged. Therefore, the total

number of bridging faults can be reduced to be linear in the number of signals

in the circuit.

Consider two signals x and y in the circuit that are bridged. This bridging

fault will not be excited unless different values are placed on x and y. Note that

the actual voltage at x and y may be different because of the resistance value of
the bridge. Subsequently, the logic that takes x as its input may interpret the

logic value differently from the logic that takes y as its input. To reduce the com-

plexity, five common bridging fault models are often used:
1. AND bridge—The faulty value of the bridge for x0 and y0 is taken to be the

logical AND of x and y in the original fault-free circuit.

2. OR bridge—The faulty value of the bridge for x0 and y0 is taken to be the

logical OR of x and y in the original fault-free circuit.

3. x DOM y bridge—x dominates y; in other words, the faulty value of the

bridge for both x0 and y0 is taken to be the logic value of x in the fault-free

circuit.

4. x DOM1 y bridge—x dominates y if x ¼ 1; in other words, the faulty value
of x0 is unaffected, but the faulty value for y0 is taken to be the logical OR

of x and y in the fault-free circuit.

5. x DOM0 y bridge—x dominates y if x ¼ 0; in other words, the faulty value

of x0 is unaffected, but the faulty value for y0 is taken to be the logical

AND of x and y in the fault-free circuit.
Figure 14.41 illustrates the faulty circuit models corresponding to each of these

five bridge types. If a path exists between x and y, then the bridging fault is said

to be a feedback-bridging fault. Otherwise, it is a non-feedback-bridging
fault. Figure 14.42 illustrates a feedback-bridging fault. In this figure, if abc ¼
110, then in the fault-free circuit z ¼ 0. If the bridge is an AND-bridge, then a

cycle would result. In other words, a becomes 0 and in turn makes z ¼ 1.

Because a ¼ 1 initially, it will again try to drive z ¼ 0, resulting in an infinite
loop around the bridge. For the following discussion, only non-feedback bridg-

ing faults will be considered.

Testing for bridging faults is similar to a constrained stuck-at ATPG. In other

words, when testing for the AND-bridge(x, y), either (1) x/0 has to be detected

with y ¼ 0 or (2) y/0 has to be detected with x ¼ 0 [Williams 1973]. A conven-

tional stuck-at ATPG can be modified to handle the added constraint. Likewise,

the ATPG can be modified for other bridging fault types.

a

b z

Feedback bridge

c

FIGURE 14.42

A feedback bridging fault.

Fault-free circuit

AND-bridge

OR-bridge

x DOM y

x xx9 x9

y yy9 y9

x DOM1 y

x DOM0 y

Faulty-circuit model

x x9

y

x

yy9

x9

y9

x x9

y

x

yy9

x9

y9

x x9

y

x

yy9

x9

y9

x x9

y

x

yy9

x9

y9

FIGURE 14.41

Bridging fault models.

14.6 Concluding remarks 909
14.6 CONCLUDING REMARKS

For fault simulation, both event-driven simulation and compiled-code simulation

techniques can be found in commercially available electronic design automa-
tion (EDA) applications. The fault simulators can be stand-alone tools or used as
an integrated feature in the ATPG programs. As a stand-alone tool, concurrent

fault simulation with the event-driven simulation technique is used in Veri-

fault-XL (from Cadence Design Systems [Cadence 2008]) and TurboFault (from

SynTest Technologies [SynTest 2008]). As an integrated feature in ATPG, bitwise

parallel simulation with the compiled-code simulation technique is widely used

910 CHAPTER 14 Fault simulation and test generation
in modern commercial ATPG programs, including Encounter Test (from

Cadence Design Systems), FastScan (from Mentor Graphics [Mentor 2008]), Tet-
raMAX (from Synopsys [Synopsys 2008]), and TurboScan (from SynTest

Technologies).

As we move to the nanometer age, we have started to see nanometer designs

that contain hundreds of millions of transistors. We anticipate the semiconduc-

tor industry will completely adopt the scan method for quality considerations.

As a result, it is becoming imperative that advanced techniques for both logic

simulation and fault simulation be developed to address the high-performance

and high-capacity issues, in particular, for addressing new fault models, such
as transition faults [Waicukauski 1986], path-delay faults [Schulz 1989], bridging

faults [Li 2003], and small delay defects [Sato 2005; Hamada 2006]. At the same

time, more innovations are needed in developing advanced concurrent fault

simulation techniques, because at present designs based on the scan method

are still not 100% scan testable. Fault simulation with functional patterns is

important for at-speed test applications to detect small delay faults and achieve

the parts-per-million (PPM) defect level goals.

The theory and implementation of an ATPG engine have also been described
in detail in the second half of this chapter. Several algorithms were laid out with

specific examples given. Advanced ATPG algorithms were discussed where

sequential ATPG and ATPG for non-stuck-at faults were covered. Test generation

remains to be an important research area as circuit sizes and complexities con-

tinue to increase. New and powerful algorithms are needed to cope with the

increased complexity. In addition, with nanoscale feature sizes, new defect

types and hence new fault models will be needed in future ATPGs.

Should there be defective chips that were uncovered by the test set, fault
diagnosis and failure analysis are often subsequently performed to identify the

causes and further reduce the defect level in the future. To ease the burden of

fault diagnosis and failure analysis, adding design-for-debug-and-diagnosis
(DFD), design-for-reliability (DFR), design-for-manufacturability (DFM),

and design-for-yield (DFY) features can be implemented in the design. These

features and techniques are extensively discussed in [Wang 2006, 2007a].

Finally, successful ATPG algorithms not only can help in the area of

manufacturing tests, but they also provide much insight to other EDA problems,
such as synthesis and verification.
14.7 EXERCISES
14.1. (Equivalence Fault Collapsing) How many uncollapsed single

stuck-at faults are there in circuit M shown in Figure 14.43 Please per-

form equivalence fault collapsing with the simple_EFC algorithm.

How many equivalence collapsed faults do you have?

a
1 0 1

0 1 1
α sa0

β sa1

b

c

FIGURE 14.44

An example circuit K.

A D

E H

J

L

F

B

C

FIGURE 14.43

Circuit M.

14.7 Exercises 911
14.2. (Dominance Fault Collapsing) Continued from Exercise 14.1.

Please perform dominance fault collapsing with the simple_DFC algo-
rithm. How many dominance collapsed faults do you have?

14.3. (Dominance Fault Collapsing) For the circuit in Figure 14.9, please

explain why K/0 and K/1 faults can be removed from the dominance

collapsed fault list. Also explain why F/1 and F/0 can be removed.

14.4. (Parallel-Pattern Single-Fault Propagation) For circuit K shown in

Figure 14.44 and two given stuck-at faults shown in Figure 14.44, use

the parallel-pattern single-fault propagation fault simulation technique

to identify which faults can be detected by the given test patterns.
14.5. (Parallel Fault Simulation) Repeat Exercise 14.4 by use of parallel

fault simulation.

14.6. (Concurrent Fault Simulation) Repeat Exercise 14.5 with concur-

rent fault simulation.

14.7. (RandomTest Generation)Given a circuit with three primary outputs,

x,y, andz, the faninconeofx is {a,b, c}, the faninconeof y is {c,d, e, f }, and

the fanin cone of z is {e, f, g}. Devise a pseudo-exhaustive test set for this

circuit. Is this test set the minimal pseudo-exhaustive test set?

14

FIG

Exa

912 CHAPTER 14 Fault simulation and test generation
.8. (Random Test Generation) With the circuit shown in Figure 14.28,
compute the detection probabilities for each of the following faults:
URE

mple s
a. e/0

b. e/1

c. c/0
.9. (Boolean Difference) With the circuit shown in Figure 14.28, compute
14
the set of all vectors that can detect each of the following faults using

Boolean difference:
a. e/0

b. e/1

c. c/0
14.10. (Boolean Difference) Assume a single-output combinational circuit,

where the output is denoted as f. If two faults, a and b, are indistinguish-

able, it means that there does not exist a vector that can detect only one
and not the other. Show that fa � fb ¼ 0 if they are indistinguishable.

14.11. (D Algorithm) Construct the table for the XNOR operation for the

5-valued logic similar to Tables 14.6, 14.7, and 14.8.

14.12. (D Algorithm) Consider a three-input AND gate g. Suppose g is a

D-frontier. What are all the possible value combinations the three inputs

of g can take such that g is a valid D-frontier?

14.13. (PODEM) With the circuit shown in Figure 14.28, compute a test vec-

tor that can detect each of the following faults by use of PODEM:
a. e/0

b. e/1

c. c/0
14.14. (FAN) Consider the circuit shown in Figure 14.37. Suppose the con-

straint that y ¼ 1 ! x ¼ 0 is given. How could one use this knowledge

to reduce the search space when trying to generate vectors in the

circuit? For example, suppose the target fault is y/0.

14.15. (Sequential ATPG) Consider the circuit shown in Figure 14.45. The tar-

get fault is a/0.
a
D Q z

14.45

equential circuit.

References 913
a. Generate a test sequence for the target fault by use of only
5-valued logic.

b. Generate a test sequence for the target fault by use of 9-valued logic.
14.16. (Sequential ATPG) Given a sequential circuit, is it possible that two

stuck-at faults, a/0 and a/1, are both detected by the same vector vi in
a test sequence v0, v1, . . . , vk?

14.17. (Sequential ATPG) Consider an iterative logic array (ILA) expansion

of a sequential circuit, where the initial pseudo primary inputs are fully

controllable. Show that the states reachable in successive time frames of

the ILA shrink monotonically.

14.18. (Bridging Faults) Consider a bridging fault between the outputs of an

AND gate x ¼ ab and an OR gate y ¼ c þ d. What values to abcd would

induce the largest current in the bridge?
ACKNOWLEDGMENTS

We thank Professor Hank Walker of the University of A&M for contributing a portion of the

Fault Simulation section; and Professor Xiaoqing Wen of Kyushu Institute of Technology and

Professor Charles E. Stroud of Auburn University for reviewing the text and providing helpful

comments.
REFERENCES

R14.0 Books

[Abramovici 1994] M. Abramovici, M. A. Breuer, and A. D. Friedman, Digital Systems Testing and

Testable Design, Revised Printing, IEEE Press, Piscataway, NJ, 1994.

[Bushnell 2000] M. L. Bushnell and V. D. Agrawal, Essentials of Electronic Testing for Digital, Mem-

ory, and Mixed-Signal VLSI circuits, Springer Science, New York, 2000.

[Holland 1975] J. H. Holland, Adaptation in Natural and Artificial Systems, University of Michigan

Press, Ann Arbor, MI, 1975.

[Jha 2003] N. Jha and S. Gupta, Testing of Digital Systems, Cambridge University Press, London,

2003.

[Wang 2006] L.-T. Wang, C.-W. Wu, and X. Wen, editors, VLSI Test Principles and Architectures:

Design for Testability, Morgan Kaufmann, San Francisco, 2006.

[Wang 2007a] L.-T. Wang, C. E. Stroud, and N. A. Touba, editors, System-on-Chip Test Architectures:

Nanometer Design for Testability, Morgan Kaufmann, San Francisco, November 2007.
R14.1 Fault Collapsing

[McCluskey 1971] E. J. McCluskey and F. W. Clegg, Fault equivalence in combinational logic

networks, IEEE Trans. on Computers, C-20(11), pp. 1286–1293, November 1971.

914 CHAPTER 14 Fault simulation and test generation
R14.2 Fault Simulation

[Abramovici 1984] M. Abramovici, P. R. Menon, and D. T. Miller, Critical path tracing: An alternative

to fault simulation, IEEE Design & Test of Computers, 1(1), pp. 83–93, February 1984.

[Butler 1974] T. T. Butler, T. G. Hallin, J. J. Kulzer, and K. W. Johnson, LAMP: Application to switch-

ing system development, Bell System Technical J., 53, pp. 1535–1555, October 1974.

[Cheng 1989] W. T. Cheng and M. L. Yu, Differential fault simulation: A fast method using minimal

memory, in Proc. ACM/IEEE Design Automation Conf., pp. 424–428, June 1989.

[Goel 1980] P. Goel, Test generation cost analysis and projections, in Proc. ACM/IEEE Design

Automation Conf., pp. 77–84, June 1980.

[Jain 1985] S. K. Jain and V. D. Agrawal, Statistical fault analysis, IEEE Design & Test of Computers,

2(1), pp. 38–44, February 1985.

[Niermann 1992] T. M. Niermann, W.-T. Cheng, and J. H. Patel, PROOFS: A fast, memory-efficient

sequential circuit fault simulator, IEEE Trans. on Computer-Aided Design, 11(2), pp. 198–207,

February 1992.

[Schulz 1989] M. Schulz, F. Fink, and K. Fuchs, Parallel pattern fault simulation of path delay faults,

in Proc. ACM/IEEE Design Automation Conf., pp. 357–363, June 1989.

[Seshu 1965] S. Sesuh and D. N. Freeman, On improved diagnosis program, IEEE Trans. on

Electronic Computers, Vol. EC-14(1), pp. 76–79, February 1965.

[Ulrich 1974] E. G. Ulrich and T. Baker, Concurrent simulation of nearly identical digital networks,

IEEE Trans. on Computers, 7(4), pp. 39–44, April 1974.

[Waicukauski 1985] J. A. Waicukauski, E. B. Eichelberger, D. O. Forlenza, E. Lindbloom, and

T. McCarthy, Fault Simulation for Structured VLSI, in Proc. VLSI System Design, 6(12),

pp. 20–32, December 1985.

[Waicukauski 1986] J. A. Waicukauski, E. Lindbloom, B. K. Rosen, and V. S. Iyengar, Transition fault

simulation by parallel pattern single fault propagation, in Proc. IEEE Int. Test Conf., pp. 542–549,

September 1986.
R14.3 Test Generation

[Breuer 1971] M. A. Breuer, A random and an algorithmic technique for fault detection test genera-

tion for sequential circuits, IEEE Trans. on Computers, 20(11), pp. 1364–1370, November 1971.

[Chakradhar 1993] S. T. Chakradhar, V. D. Agrawal, and S. G. Rothweiler, A transitive closure

algorithm for test generation, IEEE Trans. on Computer-Aided Design, 12(7), pp. 1015–1028,

July 1993.

[Cox 1994] H. Cox and J. Rajski, On necessary and non-conflicting assignments in algorithmic test

pattern generation, IEEE Trans. on Computer-Aided Design, 13(4), pp. 515–530, April 1994.

[David 1976] R. David and G. Blanchet, About random fault detection of combinational networks,

IEEE Trans. on Computers, C-25(6), pp. 659–664, June 1976.

[Fujiwara 1983] H. Fujiwara and T. Shimono, On the acceleration of test generation algorithms, IEEE

Trans. on Computers, C-32(12), pp. 1137–1144, December 1983.

[Goel 1981] P. Goel, An implicit enumeration algorithm to generate tests for combinational logic

circuits, IEEE Trans. on Computers, C-30(3), pp. 215–222, March 1981.

[Hsiao 2002] M. S. Hsiao, Maximizing impossibilities for untestable fault identification, in Proc.

Design, Automation, and Test in Europe Conf., pp. 949–953, March 2002.

[Iyer 1996a] M. A. Iyer and M. Abramovici, FIRE: A fault independent combinational redundancy

algorithm, IEEE Trans. VLSI Syst, 4(2), pp. 295–301, June 1996.

[Iyer 1996b] M. A. Iyer, D. E. Long, and M. Abramovici, Identifying sequential redundancies without

search, in Proc. ACM/IEEE Design Automation Conf., pp. 457–462, June 1996.

[Kunz 1993] W. Kunz and D. K. Pradhan, Accelerated dynamic learning for test pattern generation in

combinational circuits, IEEE Trans. on Computer-Aided Design, 12(5), pp. 684–694, May 1993.

References 915
[Kunz 1994] W. Kunz and D. K. Pradhan, Recursive learning: A new implication technique for

efficient solutions to CAD problems—test, verification, and optimization, IEEE Trans. on

Computer-Aided Design, 13(9), pp. 1149–1158, September 1994.

[Lisanke 1987] R. Lisanke, F. Brglez, A. J. Degeus, and D. Gregory, Testability-driven random test-pat-

tern generation, IEEE Trans. on Computer-Aided Design, 6(6), pp. 1082–1087, November 1987.

[Marques-Silva 1999] J. P. Marques-Silva and K. A. Sakallah, GRASP: A search algorithm for proposi-

tional satisfiability, IEEE Trans. on Computers, 48(5), pp. 506–521, May 1999.

[Muth 1976] P. Muth, A nine-valued circuit model for test generation, IEEE Trans. on Computers,

C-25(6), pp. 630–636, June 1976.

[Rajski 1990] J. Rajski and H. Cox, A method to calculate necessary assignments in ATPG, in Proc.

IEEE Int. Test Conf., pp. 25–34, October 1990.

[Roth 1966] J. P. Roth, Diagnosis of automata failures: A calculus and a method, in IBM J. Research

and Development, 10(4), pp. 278–291, July 1966.

[Roth 1967] J. P. Roth, W. G. Bouricius, and P. R. Schneider, Programmed algorithms to compute

tests to detect and distinguish between failures in logic circuits, IEEE Trans. on Electron.

Comput., EC-16(10), pp. 567–579, October 1967.

[Schnurmann 1975] H. D. Schnurmann, E. Lindbloom, and R. G. Carpenter, The weighted random

test-pattern generator, IEEE Trans. on Computers, 24(7), pp. 695–700, July 1975.

[Schulz 1988] M. H. Schulz, E. Trischler, and T. M. Sarfert, SOCRATES: A highly efficient automatic

test pattern generation system, IEEE Trans. on Computer-Aided Design, 7(1), pp. 126–137,

January 1988.

[Schulz 1989] M. H. Schulz and E. Auth, Improved deterministic test pattern generation with appli-

cations to redundancy identification, IEEE Trans. on Computer-Aided Design, 8(7), pp. 811–816,

July 1989.

[Seshu 1965] S. Seshu and D. N. Freeman, The diagnosis of synchronous sequential switching

systems, IEEE Trans. on Electron. Comput., 11, pp. 459–465, August 1962.

[Shedletsky 1977] J. J. Shedletsky, Random testing: Practicality vs. verified effectiveness, in Proc.

IEEE Int. Symp. on Fault-Tolerant Computing, pp. 175–179, June 1977.

[Syal 2003] M. Syal and M. S. Hsiao, A novel, low-cost algorithm for sequentially untestable

fault identification, in Proc. ACM/IEEE Design, Automation, and Test in Europe Conf.,

pp. 316–321, March 2003.

[Zhao 2001] J. Zhao, J. A. Newquist, and J. H. Patel, A graph traversal based framework for sequen-

tial logic implication with an application to C-cycle redundancy identification, in Proc. IEEE Int.

Conf. on VLSI Design, pp. 163–169, January 2001.
R14.4 Advanced Test Generation

[Agrawal 1989] V. D. Agrawal, K.-T. Cheng, and P. Agrawal, A directed search method for test gener-

ation using a concurrent simulator, IEEE Trans. on Computer-Aided Design, 8(2), pp. 131–138,

February 1989.

[Bhawmik 1997] S. Bhawmik, Method and Apparatus for Built-In Self-Test with Multiple Clock Cir-

cuits, U.S. Patent No. 5,680,543, October 21, 1997.

[Cheng 1993] K.-T. Cheng, S. Devadas, and K. Keutzer, Delay-fault test generation and synthesis for

testability under a standard scan design methodology, IEEE Trans. on Computer-Aided Design,

12(8), pp. 1217–1231, August 1993.

[Dervisoglu 1991] B. Dervisoglu and G. Stong, Design for testability: Using scanpath techniques for

path-delay test and measurement, in Proc. IEEE Int. Test Conf., pp. 365–374, October 1991.

[Giani 2001] A. Giani, S. Sheng, M. S. Hsiao, and V. Agrawal, Efficient spectral techniques for sequen-

tial ATPG, in Proc. IEEE Design, Automation, and Test in Europe Conf., pp. 204–208, March

2001.

916 CHAPTER 14 Fault simulation and test generation
[Guo 1999] R. Guo, S. M. Reddy, and I. Pomeranz, Proptest: A property based test pattern generator

for sequential circuits using test compaction, in Proc. ACM/IEEE Design Automation Conf.,

pp. 653–659, June 1999.

[Heragu 1996] K. Heragu, J. H. Patel, and V. D. Agrawal, Segment delay faults: A new fault model, in

Proc. IEEE VLSI Test Symp., pp. 32–39, April 1996.

[Hsiao 1996] M. S. Hsiao, E. M. Rudnick, and J. H. Patel, Automatic test generation using genetically

engineered distinguishing sequences, in Proc. IEEE VLSI Test Symp., pp. 216–223, April 1996.

[Hsiao 1997] M. S. Hsiao, E. M. Rudnick, and J. H. Patel, Sequential circuit test generation using

dynamic state traversal, in Proc. European Design and Test Conf., pp. 22–28, February 1997.

[Hsiao 2000] M. S. Hsiao, E. M. Rudnick, and J. H. Patel, Dynamic state traversal for sequential circuit

test generation, ACM Trans. on Design Automation of Electronic Systems, 5(3), pp. 548–565,

July 2000.

[Hsu 2001] F. F. Hsu, K. M. Butler, and J. H. Patel, A case study of the Illinois scan architecture, in

Proc. IEEE Int. Test Conf., pp. 538–547, October 2001.

[Kirkland 1987] T. Kirkland and M. R. Mercer, A topological search algorithm for ATPG, in Proc.

ACM/IEEE Design Automation Conf., pp. 502–508, June 1987.

[Levendel 1986] Y. Levendel and P. Menon, Transition faults in combinational circuits: Input transi-

tion test generation and fault simulation, in Proc. Fault-Tolerant Computing Symp., pp. 278–283,

July 1986.

[Niermann 1991] T. M. Niermann and J. H. Patel, HITEC: A test generation package for sequential

circuits, in Proc. European Design Automation Conf., pp. 214–218, February 1991.

[Pomeranz 1995] 1Pomeranz and S. M. Reddy, LOCSTEP: A logic simulation based test generation

procedure, in Proc. Fault-Tolerant Computing Symp., pp. 110–119, June 1995.

[Rudnick 1994] E. M. Rudnick, J. H. Patel, G. S. Greenstein, and T. M. Niermann, Sequential circuit

test generation in a genetic algorithm framework, in Proc. ACM/IEEE Design Automation Conf.,

pp. 698–704, June 1994.

[Savir 1993] J. Savir and S. Patil, Scan-based transition test, IEEE Trans. on Computer-Aided Design,

12(8), pp. 1232–1241, August 1993.

[Savir 1994] J. Savir and S. Patil, On broad-side delay test, in Proc. IEEE VLSI Test Symp.,

pp. 284–290, April 1994.

[Sheng 2002] S. Sheng, K. Takayama, and M. S. Hsiao, Effective safety property checking based on

simulation-based ATPG, in Proc. ACM/IEEE Design Automation Conf., pp. 813–818, June 2002.

[Smith 1985] G. L. Smith, Model for delay faults based upon paths, in Proc. IEEE Int. Test Conf.,

pp. 342–349, October 1985.

[Tendulkar 2002] N. Tendulkar, R. Raina, R. Woltenburg, X. Lin, B. Swanson, and G. Aldrich, Novel

techniques for achieving high at-speed transition fault coverage for Motorola’s microprocessors

based on PowerPC instruction set architecture, in Proc. IEEE VLSI Test Symp., pp. 3–8, April

2002.

[Waicukauski 1987] J. A. Waicukauski, E. Lindbloom, B. K. Rosen, and V. S. Iyengar, Transition fault

simulation, IEEE Design & Test of Computers, 4(2), pp. 32–38, April 1987.

[Wang 2007b] L.-T. Wang, P.-C. Hsu, and X. Wen, Multiple-Capture DFT System for Detecting or

Locating Crossing Clock-Domain Faults During Scan-Test, U.S. Patent No. 7,260,756, August 21,

2007.

[Williams 1973] M. J. Y. Williams and J. B. Angel, Enhancing testability of large-scale integrated

circuits via test points and additional logic, IEEE Trans. on Computers, C-22(1), pp. 46–60,

January 1973.

[Wu 2004] Q. Wu and M. S. Hsiao, Efficient ATPG for design validation based on partitioned state

exploration histories, in Proc. IEEE VLSI Test Symp., pp. 389–394, April 2004.

References 917
R14.5 Concluding Remarks

[Cadence 2008] Cadence Design Systems, http://www.cadence.com, April 2004.

[Hamada 2006] S. Hamada, T. Maeda, A. Takatori, Y. Noduyama, and Y. Sato, Recognition of sensi-

tized longest paths in transition-delay test, in Proc. IEEE Int. Test Conf., Paper 11.1, October

2006.

[Li 2003] Z. Li, X. Lu, W. Qiu, W. Shi, and D. M. H. Walker, A circuit level fault model for resistive

bridges, ACM Trans. on Design Automation of Electronic Systems, 8(4), pp. 546–559,

October 2003.

[Mentor 2008] Mentor Graphics, http://www.mentor.com, 2008.

[Sato 2005] Y. Sato, S. Hamada, T. Maeda, A. Takatori, Y. Nozuyama, and S. Kajihara, Invisible delay

quality-SDQM model lights up what could not be seen, in Proc. IEEE Int. Test Conf. Paper 47.1,

November 2005.

[Synopsys 2008] Synopsys, http://www.synopsys.com, October 2003.

[SynTest 2008] SynTest Technologies, http://www.syntest.com, 2008.

[Waicukauski 1986] J. A. Waicukauski, E. Lindbloom, B. K. Rosen, and V. S. Iyengar, Transition fault

simulation by parallel pattern single fault propagation, in Proc. IEEE Int. Test Conf., pp. 542–549,

September 1986.

This page intentionally left blank

Index
A

analog-to-digital converters

(ADCs), 427

analytical approach, floorplanning

mixed integer linear program

(MILP), 608–612

module nonoverlapping

constraint, 607–610

progressive augmentation

method, 610

analysis of power/ground

networks

IR drop, 833

L�di/dt noise, 833
linear time-invariant

models, 833–834

macromodels, 835

multigrid-like

technique, 834–835

random walk game, 836

random walk method, 835

transient, 833

trapezoidal integration

scheme, 834

and-inverter graph (AIG)

memory footprint and

representation, 322

structure hashing, 321

application-specific integrated

circuits (ASICs), 281, 302,

363, 466, 907

architecture description language

(ADL), 242

A*-search routing algorithm, 697

as-late-as-possible (ALAP)

scheduling, 266

assertion-based verification

assertion writing, 540

coverage and

classification, 538–539

even-parity assertion, 537
hardware verification languages

(HVLs), 538

white-box method, 537

as-soon-as-possible (ASAP)

scheduling, 267

list scheduling, 270–271

mobility range, 271

priority functions, 273

at-speed testing, 116

at-speed scan architectures, 120

automatic test equipment

(ATE), 407–408, 436

automatic test pattern generation

(ATPG) techniques, 322

See also test generation, 851
combination ATPG

sequential ATPG

delay fault ATPG

bridging fault ATPG, 851
B

Backus-Naur Form (BNF), 250

banked cache design, 89

Bellman-Ford algorithm, 198–199,

776–777

best choice clustering

technique, 674

best-first search. See A*-search

routing algorithm

BIST-specific design rules, 425

BIST design rules, 426

BIST-ready core, 426

BIST-specific design rules, 407

billion transistor system-on-chips

(BTSOCs), 236

binary decision diagrams (BDDs)

isomorphism, 313

OBDD, 313

ROBDD, 313

ROBDD canonicity, 314

SAT and TAUTOLOGY
checkings, 319

variable orderings, 316–317

Boolean equivalence checking

(BEC), 547

Boolean functions

Boolean difference

formulas

conjunctive normal form (CNF)

disjunctive normal form (DNF)
prenex normal form, 307

quantifier elimination, 306

manipulation, 308–309

representation

and-inverter graph

(AIG), 321–323

Boolean network, 323–324
binary decision diagram

(BDD), 312–321

product-of-sums (POS), 311

sum-of-products (SOP), 310

truth table, 309

sets and characteristic functions,

isomorphism

(explicit) enumerative and

(implicit) symbolic

algorithms, 331

tseitin’s procedure, 329–330

Boolean satisfiability (SAT) problem

bounded model checking

(BMC), 555–556

bounded-skew routing

boundary segments, 796, 798,

801

BST/DME solutions, 793

greedy-BST/DME algorithm, 805

joining segment, 796–800, 802

Manhattan arc, 795–799, 801,

803

merging region, 794

non-root nodes, 805

re-rooting, 806

919

920 Index
bounded-skew routing (cont.)

sampling segments, 798, 804

tree topology, 806

wiring costs and sink delays,

802

zero-skew merging segment, 803

branching time temporal logic

(BTTL), 547

breadth-first search (BFS)

connected and disconnected

components, 189

pseudocode and tree, 190

undirected graph, 189–190

broadsideload testbench, 424

broadside-load test, 424

B*-trees

compacted floorplans, 593

cost function and annealing

schedule 600

floorplans, 593–595

solution space and

neighborhood

structure, 598–599

buffer block planning, 623

buffer insertion, 623

built-in self-test (BIST), 425

condensed LFSR, 130

cellular automata, 125

built-in logic block observer

(BILBO), 138–140

bus conflict, 454

bus-driven floorplanning, 623
C

capo algorithm, 648–649

channel routing

constrained left-edge

algorithm, 707

charge sharing, 66

dogleg algorithm
constraint graph

construction, 708

horizontal constraint

graph, 707

HVH routing model, 705

routing region

decomposition, 705

circuit simulation
Cholesky factorization, 494

dense matrix, 495

diode

circuit symbol, 496–497

equivalent circuit model, 496

I–V characteristics, 496–497

junction and diffusion

capacitance, 496–497

ideal voltage and current

sources, 476

inductance matrix, 478, 492–493

inductor-to-resistor

connection, 494

integrated circuits (ICs), 452

Kirchhoff’s voltage and current

laws, 477

lumped and distributed

models, 491

modified nodal analysis

adjacency matrix, 478–479

branch voltage and branch

current, 476–478

matrix differential

equation, 478–480

Norton equivalent

circuits, 478

Newton’s method, 503

NMOS transistor

capacitance, 501–502

circuit symbol, 496–498

long-channel

transistor, 498–500

piecewise-linear

approximation, 501

short-channel

devices, 499–501

nodal analysis (NA)

equation, 491–495

nonlinear current–voltage

relationship, 502

resistors, capacitors, and

inductors, 476–477

shielding effect, 494–495

three-dimensional interconnect

topology, 485, 495

transient analysis, numerical

methods

approximation methods and

numerical

integration, 481–483
initial value

problems, 483–485

ordinary differential equations

(ODEs), 480

trapezoidal method, 491–493

voltage-dependent system, 504

wire capacitance, 487–489

wire inductance, 489–491

wire resistance

current density, 486–487

rectangular wire, 486–487

skin effect, 487

circuit under test (CUT), 406–408,

426, 430

classical simulated annealing

algorithm, 590–591

clock and power/ground networks

analysis
L�di/dt noise, 833
linear time-invariant

models, 833–834

macromodels, 835

multigrid-like

technique, 834–835

random walk game, 836

IR drop, 833

random walk method, 835

transient, 833

trapezoidal integration

scheme, 834

design considerations

electromigration, 762–763

flip-chip design, 832

IR drop and L�di/dt
noise, 760–761

modeling and

analysis, 770–774

polymer film wires, 831–832

power dissipation, 761–762

power distribution, 830–831

power mesh structure, 831

skew and jitter, 755–760

standard-cell, 829–830

timing constraints, 753–755

topologies, 763–770

tree optimization, 811–829

tree synthesis, 774–810

synthesis

algorithms, 751–753

clock networks, 30, 763–829

Index 921
clock skew and useful clock

skew, 30, 755–760,

775–779, 807–810

decoupling

capacitance, 839–843

power pad

assignment, 837–838

specifications, 29

synchronous and

asynchronous systems, 30

topology optimization, 837

wire width

optimization, 838–839
clock grouping, 416–417, 440

clock network design

modeling and analysis
abstract topology, 771–772

algorithmic approach, 771

elmore delay model, 772

p-type circuit, 773

RC circuit, 770–771

internal node, 771

topologies

internal node, 763

abstract clock tree, 770

deep-submicron designs, 769

distribution network, 767

flip-flops, 766

general clock mesh

structures, 766–767

H-tree and X-tree, 763–764

Intel Pentium 4
processor, 764–765

skew constraint, 768–769

tree optimization

wire sizing, 819–825

buffer insertion, 811–815

clock gating, 816–819

link insertion, 826–829

wire sizing nets, 819–825

tree synthesis

abstract topology, 780–783,

786–788, 793, 796, 799,

805–807, 810

bounded-skew

routing, 793–806

clock schedule, 774

greedy-BST/DME

algorithm, 774–775

skew scheduling, 775–779
tree routing, 779–781

useful-skew routing, 807–810

zero-skew routing, 781–793
clock skew scheduling

Bellman–Ford

algorithm, 776–777

feasible skewrange, 777–778

Floyd-Warshall

algorithm, 777–778

incremental scheduling, 778

skew commitment, 777, 779

shortest-distance matrix, 778

spanning tree, 779

transitive constraints, 775–776

upper-bound constraint, 776

clock tree optimization

buffer insertion
buffer locations, 813

cascaded drivers, 811

greedy-DME algorithm, 812

merging operation, 814

post-silicon tunable (PST), 815

switch level model, 811–812

clock-gating technique

buffer/gate locations, 816

buffer insertion, 818

clocking control gates, 817

merging/sampling

segments, 819

link insertion

RC trees, 827

rules, 828–829

tree structure, 826

wire sizing nets

delay sensitivity and

minimization, 819–823

dynamic

programming, 823–825

clock tree synthesis (CTS)

process, 423–424

CMOS design fundamentals

IC design techniques
differential CMOS logic, 61–62

domino logic, 63–67

dynamic pre-charge

logic, 62–63

no-race logic, 67–70

single-phase logic, 70–71

transmission-gate/pass-

transistor logic, 59–61
IC technology

MOS transistor, 41–44

noise margin, 48–49

transistor equivalency, 44–46

wire and interconnect,

46–47

logics

inverter and analysis, 49–52

latches and flip-flops

design, 55–56

logic gates and circuit

blocks, 52–54

optimization

techniques, 57–58

low-power circuit design

techniques

cache memory design, 89–92

clock-gating, 85

dynamic voltage and

frequency scaling, 88

power-gating, 85–87

substrate biasing, 87–88

physical design

circuit simulation, 71

layout design, 72–75, 79–84

stick diagrams, 75, 77, 79–80

CMOS inverter, 49, 80–81

CMOS logics

inverter and analysis
direct-path current

occurrences, 52

static, dynamic and short-

circuit power

dissipation, 51

timing characteristics, 49

tr, tf, and tp measurements, 50

latches and flip-flops

design, 55–56

logic gates and circuit blocks,

NOR gate, 53

carry bit, 54

elementary type and NAND

gate, 52–53

optimization techniques, 57–58

CMOS physical design

circuit simulation, 71

layout design
artwork, 79

CMOS inverter symbolic

layout, 80–81

922 Index
CMOS physical design (cont.)
CMOS NAND gate symbolic

layout, 82

design rule check

(DRC), 81

4-input AND gate symbolic

layout, 83–84

3-input OR symbolic

layout, 82–83

symbolic layout, 79

layout design rules

color-layer representation, 72

l- and m-rule sets, 72, 74

rules, 73–79

stick diagrams, 75, 77, 79–80

combinational equivalence

checking (CEC)

functional equivalence, 543

miter circuit, 542–543

structural scarch approach, 543

compacted floorplans, 593

compactor, 406

compiled-code logic simulation

application, 462

code generation, 461

preprocessing, 460–461

computational complexity

asymptotic notations
lower bounds, 179

O-notation, 178–179

order of growth and rate of

growth, 177

upper bounds, 178–179

O�notation and

Y�notation, 179
average-case and worst-case

complexity, 175–177

classes

decision problems vs.

optimization

problems, 180–181

NP-complete (NPC), 182–184

NP-hard, 184

vs. NP, 181–182

linear and binary search

pseudocode, 176

time complexity and space

complexity, 175

computation tree logic

(CTL), 550–552
computer-aided design

(CAD), 243, 261

concurrent built-in logic block

observer (CBILBO), 138

concurrent fault simulation, 868

bad event, 870

bad gate, 868

invisible and visible, 869

concurrent global routing

0–1 ILP problem, 700

linear programming (LP)

relaxation, 700

condensed LFSR, 128–129

conflict analysis, 886

conjunctive normal form

(CNF), 310, 324–325

conjunctive normal form

(CNF), 311, 324–325

CONTEST, 905

contour data structure, 594–595

coverage-driven verification

(CDV), 522–523

coupling effects, 47

crosstalk, 47

cycle-based simulation, 462

D

daisy-chain clock-

triggering, 435–436

dataflow graph. See

Dependency test

Davis–Putnam–

Logemann–Loveland

(DPLL) search

scheme, 217

dead space module, 579

De Morgan’s law, 311, 324–325

D-algorithm, 893

decision tree, 884

D-frontier, 890

J-frontier, 890

decompressor, 406

defective parts per million,

98, 408

DIGATE, 905

dependency test

chain of operations, 265

definite and potential data

dependency, 263–264
pointer and alias analysis, 264

precedence graph, 264–266

of basic block B4, 266

opcodes annotated, 269

depth-first-search (DFS)

directed graph, 190–191

pre-order, in-order, and post-

order processes, 190

prototype, 190

pseudocode, 190

design considerations

electromigration, 762–763

IR drop and L�di/dt
noise, 760–761

power dissipation, 761–762

skew and jitter
clock distribution

network, 755

cycle stealing, 757–758

double-clocking, 758

hold-time constraint, 760

spatial variation, 755

setup time constraint, 756

spatialvariation, 755

temporal variation, 759

timing constraints

hold time, 754

sequential circuit, 753

setup time, 754

synchronous system, 753–754

design-for-debug-and-diagnosis

(DFD), 405

design-for-manufacturability

(DFM), 910

design-for-reliability (DFR), 405

design-for-testability

(DFT), 405, 443

fault simulation and fault-grading

tool, 98

logic built-in self-test (BIST)
architectures, 135–138

industry practices, 138–139

output response

analysis, 129–135

test pattern

generation, 119–129

scan design

architectures, 109–114

at-speed testing, 114–118

testability analysis

Index 923
probability-based

type, 105–107

SCOAP, 101–105

simulation-based type, 108

test compression

industry practices, 159–161

test response compaction

circuits, 149–159

test stimulus compression

circuits, 141–149

design under verification

(DUV), 532–533

detecting set, 858

3-D floorplanning, 624–625

differential fault simulation, 871

dominator, 904

delay-defect, 906

launch-on-capture, 906

launch-on-shift, 906

enhanced-scan, 906

diode, nonlinear devices

circuit symbol, 496–497

equivalent circuit model, 496

I–V characteristics, 496–497

junction and diffusion

capacitance, 496–497

directed acyclic graphs (DAG),

187, 191, 196

domino detailed placement

algorithm, 675–677

dominance fault collapsing, 858

dragon placement

algorithm, 652–653

dynamic programming (DP)

bottom-up approach, 212

matrix-chain multiplication

problem, 212

memoization, 214–215

optimal substructure, 214

overlapping subproblems, 213

dynamic random-access memories

(DRAMs), 427, 875

dynamic latch, 58, 67

dynamic memory partitioning, 90

dynamic power dissipation, 51

E

Edmonds–Karp algorithm, 204–206

electronic design automation
(EDA), 236, 299–301, 392

history
analog and mixed signal

(AMS), 3

circuit simulation and layout

verification, 2

computer-aided design

(CAD), 3

deep submicron IC

fabrication, 3–4

logic design and physical

design, 2

optical proximity correction

(OPC), 4

logic design automation

design verification, 14–17

logic synthesis, 17–18

modeling, 13–14

physical design automation

clock and power/ground

networks synthesis, 29–31

definition, 25

floorplanning, 27

layout, 26

placement, 27–28

routing, 28–29

problems and challenges, 12

programmable logic arrays

(PLAs) implementation

CONES synthesis tools, 11

FPGA, 10

logic synthesis tools, 11–12

NOR–NOR, 10–11

programmable logic devices

(PLDs), 10

SOP, 10

VLSI circuits, 9

test automation

design for testability, 21–23

fault models, 19–21

fault simulation and test

generation, 23–24

manufacturing test, 24–25

test development process, 19

VLSI design flow

basic domains, 6

hardware description

languages (HDLs), 5

IC design and verification

flow, 6
modeling and design

verification, 8

netlist, 6

physical design and RTL

design, 7
electronic system level (ESL)

functional unit binding, 281–289

high-level synthesis
algorithm, 261–263

fundamentals, 246–261

methodology

architecture-based, 241–243

design, 236–239

function architecture

codesign, 243–244

function-based, 239–241

high-level synthesis, 244–246

register binding

coloring, 277–281

liveness analysis, 273–277

scheduling

dependency test, 263–265

resource-

constrained, 268–273

unconstrained, 266–268

emitter-coupled logic (ECL), 363

equivalence fault collapsing,

854–858

exhaustive testing, 119–125

pseudo-exhausting testing, 119

event-driven simulation

nominal-delay event-driven

simulation, 463–465

zero-delay event-driven

simulation, 462–463

event scheduler, 463

external don’t cares

(XDC), 358

F

fanout-oriented test generation

(FAN) algorithm

dynamic and recursive

learning, 902

headlines, 900–901

FastDP detailed placement

algorithm, 677–679

fast-simulated annealing (Fast-SA)

scheme, 592–593

924 Index
fault simulation

serial, 861

concurrent, 868

differential, 871

distributed, 876

multiple-pass, 875

parallel, 863

parallel pattern, 866

fault grading, 100, 852

fault diagnosis

fault coverage

collapsed, 858

uncollapsed, 858

fault dropping, 863

fault collapsing
dominance, 858–861

equivalence, 854–858
Fengshui algorithm, 649

Fiduccia–Mattheyses

algorithm, 643–645

field programmable gate arrays

(FPGAs)

designs, 302

technology mapping for, 371

field programmable interconnect

device (FPID), 473

finite state machine (FSM), 542

finite automata and, 300

logic implementations, 301

finite state machine with

datapath (FSMD)

diagram and verilog code, 255

dot product, datapath, 256

hardware description,

structured, 254

first choice clustering

technique, 673–674

flush tests 423

fixed-outline

floorplanning, 615–617

floorplanning

analytical approach
mixed integer linear program

(MILP), 608–612

module nonoverlapping

constraint, 607–610

progressive augmentation

method, 610

basics, 575–576
buffer insertion and buffer block

planning, 623

bus-driven type, 623

costs, 579–580

3-D floorplanning, 624–625

models

non-slicing

floorplans, 578–579

slicing floorplans, 577–578

modern considerations

fixed-outline

floorplanning, 615–617

large-scale circuits, 617–622

soft modules, 612–615

problem statement, 577

simulated annealing (SA)

approach

basics, 581–582

B*-trees, 593–600

normalized polish

expression, 583–593

represeutation

comparison 605–606

sequence pair

(SP), 600–607

substrate noise coupling, 622

FLUTE, 639

force-directed placement

algorithm, 658

ford–fulkerson method, 204–205

full-chip routing

global cells, 713

hierarchical and multilevel

frameworks, 710

L�shaped multilevel routing

framework, 712–714

multilevel routing graph, 713

SPVM algorithm, 714

top-down and bottom-up

hierarchical routing

method, 710

full-swing transistor, 57

functional coverage

metrics, 530–532

functional unit binding

clique partitioning, 283
operand sets and iterative,285

weighted, 285

interference and compatibility

graph, 283
multiplexers

functional unit binding

impacts, 283

register sharing

impacts, 282

random unit binding, 289

sources, 288–289

synthesized datapaths, 290

fundamentals of algorithm

computational complexity
asymptotic

notations, 177–179

complexity classes, 180–184

graph algorithms

breadth-first search and depth-

first search, 188–191

data structures, 187–188

maximum flow and minimum

cut, 202–207

minimum spanning

tree, 200–202

shortest and longest path

algorithms, 195–200

strongly connected

component, 193–194

terminology, 185–187

topological sort, 192–193

heuristic algorithms, 176

branch-and-bound, 215–217

dynamic programming

(DP), 211–215

genetic algorithms, 219–221

greedy algorithm, 209–211

simulated annealing

(SA), 217–219

linear search, 176

mathematical programming

convex optimization

problem, 226–229

integer linear programming

(ILP) problem, 223–226

linear programming (LP)

problem, 222–223

problem categories, 221–222

G

genetic algorithm (GA)

crossover phase, 220

evaluation phase, 219–220

Index 925
mutation, 220

one-generation

simulation, 220–221

selection phase, 220

simple genetic algorithm

(SGA), 219–220

vs. other global search

algorithms, 219

global scan enable (GSE), 434–436

graph algorithms

adjacency and linked list, 187

adjacency matrix, 187

breadth-first search (BFS)
connected components, 189

pseudocode and tree, 190

undirected graph, 189–190

combinational circuit,

185–186

data structures, 187–188

dense graph, 187

depth-first search (DFS)

directed graph, 190–191

postordertimes, 191

pre-order, in-order, and post-

order processes, 190

pseudocode, 190

directed acyclic graphs, 187

exemplar graph, 185

maximum flow andminimum cut

augmenting paths and residual

networks, 203–204

cuts and max-flow min-cut

theorem, 205–207

Edmonds-Karp algorithm, 205

flow networks and maximum-

flow problem, 202–203

Ford-Fulkerson

method, 204–205

maximum bipartite

matching, 207

multiple sources and

sinks, 207

minimum spanning

tree, 200–202

shortest and longest path

algorithms

Bellman-Ford

algorithm, 198–199

Dijkstra’s algorithm, 196–198

directed acyclic graphs, 196
initialization and

relaxation, 195–196

longest-path problem, 200

simple and multigraph, 186

strongly connected

component, 193–194

terminology, 185–187

topological sort, 192–193

weighted graph, 187

greedy algorithm

greedy-choice property, 210–211

local and global optima, 209

optimal substructure, 210

greedy search. See Iterative method

H

half-perimeter wirelength (HPWL)

approximation, 589–590,

638

Hanan’s theorem, 701

hard module, 576

hardware description languages

(HDLs), 239, 301, 440, 445,

515

hardware verification languages

(HVLs), 538

heuristic algorithms, 176

branch-and-bound
bounding and pruning, 215

Davis–Putnam–

Logemann–Loveland

(DPLL) search scheme, 217

minimum spanning tree, 216

traveling salesman problem

(TSP) and solution tree, 216

dynamic programming (DP)

bottom-up approach, 211

matrix-chain multiplication

problem, 212

memoization, 214–215

optimal substructure, 214

overlapping

subproblems, 213–214

genetic algorithms

crossover phase, 220

evaluation phase, 219–220

mutation, 220

one-generation

simulation, 220–221
selection phase, 220

simple genetic algorithm

(SGA), 219–220

vs. other global search

algorithms, 219

greedy algorithm

greedy-choice

property, 210–211

local and global optima, 210

optimal substructure, 210

simulated annealing (SA)

advantages, 219

cost function, perturbations

and temperature, 217

pseudocode, 218

thermal equilibrium, 218–219

high-level synthesis (HLS)

algorithm, 261–263

behavioral description,

TinyC, 250–251

and ESL design methodology
application processor

synthesis, 245–246

functional component and

co-processor synthesis,

245

finite state machine with

datapath (FSMD), 246–247

hardware description,

structured, 254–256

input and output, 246–247

intermediate

representation (IR)

allocation and

scheduling, 248–249

optimizer component

in, 247–248

TinyIR, 251–253, 265

quality metrics

dot product cycle

time, 260–261

FO4 delay, 258–260

input/output bandwidth, 257

RTL performance

calculation, 257–261

register-transfer level (RTL)

binding step, 249

code generator, 249–250

representation,

TinyRTL, 253–254

926 Index
high-order logic (HOL), 557–559

hightower’s line-search

algorithm, 696

hill-climbing technique, 581

Hooke’s law, 659

horizontal constraint graph, 602

Hwang’s theorem, 702

I

imperative programming

language, 250

integrated circuit (IC) design

techniques, 299–302, 333,

363, 383

differential CMOS logic, 61–62

digital and analog

components, 302

domino logic
4-bit comparator

implementation, 66
charge sharing, 66–67
circuit block, 65

keeper, 66

partial discharge, 63–64

dynamic pre-charge logic, 62–63

no-race logic (NORA)

circuit structure, 69

dynamic latch, 67

n-channel and p-channel

pre-charge blocks, 68

pre-charge-evaluation

stage, 69–70

single-phase logic, 70–71

transmission-gate/pass-transistor

logic, 59–61

in-circuit simulation (ICE), 467

integrated circuit (IC) technology

MOS transistor
capacitance, 44
n-channel transistor, 41
nonlinear ID vs. VDS

relationship, 43

switching characteristics, 41

symbols, 42

noise margin, 48–49

transistor equivalency

application, 45–46

parallel-connection

equivalence, 44–45
pseudo-nMOS technology, 45

scaling, 44–45

serial-connection

equivalence, 44–45

wire and interconnect, 46–47

intellectual property (IP)

modules, 576

interconnection architectures

direct scheme, 470–471

indirect scheme, 471

time-multiplexed scheme
field programmable

interconnect device

(FPID), 473

virtual wire scheme, 472
international technology roadmap

for semiconductors

(ITRS), 237

iterated 1-steiner algorithm, 703

iterative method, 582

intrascan-chain reordering, 421

intrascan-chain reordering, 421

K

keeper transistor, 66

Kirchhoff’s current law (KCL), 477

Kirchhoff’s voltage law (KVL), 477

L

large-scale circuits

floorplans, 617

clustering stage, 619–620

declustering stage, 619–620

multilevel

floorplanning, 618–619

large signal equations, 42

Lee’s algorithm. See maze-routing

algorithm

legalization, 674–675

level-sensitive scan design (LSSD)

scan cells, 406, 426

linear feedback shift register

(LFSR) 121–122

linear programming (LP)

problem, 222–223

linear temporal logic

(LTL), 547–550

line-search routing algorithm
backtracing procedures, 696

Hightower’s algorithm, 696

Mikami-Tabuchi’s algorithm,

696

liveness properties, 552

locality effect. See shielding effect

logic built-in self-test (BIST)

analog and mixed-signal

(AMS), 439

architectures
built-in logic block observer

(BILBO), 136–138

concurrent built-in logic block

observer (CBILBO), 138

self-testing with MISR and

parallel SRSG

(STUMPS), 135–136

design rules

re-timing, 430

unknown source

blocking, 426–430

X-bounding methods, 426

industry practices, 138–139

modes, 406

output response analysis

compaction and

compression, 129

ones count testing, 130

signature analysis, 131–135

transition count testing, 131

output response analyzer

(ORA), 118

RTL and, 437–438

rule checking and violation

repair, 431

system design

architecture, 431–437

clock domains, 430–431

clock gating block, 435–436

fault coverage, 437

re-timing logic, 436–437

slow-speed timing

control, 434

test controller, 434–435

TPG and ORA, 432–433

test compression circuitry, 407

test pattern generation (TPG)

exhaustive testing, 121

four-stage type, 120

LFSR properties, 120–121

Index 927
linear feedback shift registers

(LFSRs), 119

modular LFSR, 119

primitive and reciprocal

polynomials, 121

pseudo-exhaustive

testing, 125–129

pseudo-random

testing, 121–125

standard LFSR, 119

two core testing system, 432

verification and fault coverage

enhancement, 438

logic design automation

design verification
approaches, 14

emulation-based, 16

formal techniques, 14,

16–17

functional, 15–16

simulation-based

techniques, 14–15

logic synthesis, 17–18

modeling, 13–14

logic minimization

combinational complete

flexibility
local don’t cares, 358–360

permissible functions, 357

multilevel type

algebraic division, 344–350

Boolean division and

resubstitution, 356–357

cokernel-cube matrix, 355

common-cube

extraction, 352–353

common divisors, 350–356

division and common

divisors, 344

extraction and

resubstitution, 348–349

factoring, 348

kernel intersection, 353–356

kernel procedure, 346

primary divisors, 345

rectangle covering, 356

substitution and

elimination, 343

sequential, 362

SOP
heuristic minimization

methods, 336

Quine-McCluskey

method, 336–340

two-level

circuit performance, 333

gates, 332

implementations, 332–333

multiple-output

cover, 334

prime implicant, 335

programmable logic array

(PLA), 333

logic simulation

compiled-code simulation
application, 462

code generation, 461

preprocessing, 460–461

event-driven simulation

nominal-delay event-driven

simulation, 463–465

zero-delay event-driven

simulation, 462–463

hardware acceleration

direct interconnection

scheme, 470

FPGA-based hardware

emulator, 465

hardware/software (HW/SW)

co-simulation, 452, 465

indirect interconnection

scheme, 471

reconfigurable computing

unit, 468–470

time-multiplexed

interconnection

scheme, 472–474

timing issues, 474–475

types, 467–468

logic symbols and operations

basic logic

operations, 454–455

high-impedance state,

453–454

two-valued Boolean

algebra, 453

unknown value, 453

register-transfer level (RTL)

design, 451

timing models
functional element delay

model, 457

inertial delay, 456–457

transport delay, 455–456

wire delay, 457–458
logic synthesis

Boolean representation and

reasoning
conversion, 324–328

engines, 331–332

function, 309–324

isomorphism, sets and

characteristic

functions, 328–331

manipulation, 308–309

quantifier-free and

quantified, 303–308

datapath designs, 302

design challenges, 301

future and trends, 392–393

mathematical foundation, 300

minimization

AIG-based, 361–362

combinational complete

flexibility, 357–361

multilevel, 340–357

SOP, 336–340

two-level, 332–336

technology mapping

atomic pattern choices,

366–367

graph covering, 365

inverter-pair insertion, 370

libraries, 363–365

non-tree patterns, 370–371

tree covering, 367–370

timing analysis

functional, 376–383

topological, 374–376

timing optimization

technology-

independent, 384–386

technology mapping, 386–391

tools, 301–302, 392–393

log-sum-exponential wirelength

function, 669–670

longest-path algorithm, 200–201,

602–603

low-power circuit design

techniques

928 Index
low-power circuit design

techniques (cont.)

cache memory design, 89–92

clock-gating, 85

dynamic voltage and frequency

scaling, 88

power-gating, 85–87

substrate biasing, 87–88
M

mathematical programming

convex optimization problem
convexity property, 226–227

interior-point

method, 227–229

simplex vs. interior-point

methods, 227

integer linear programming (ILP)

problem, 223–224

cutting plane

algorithm, 225–226

relaxation and branch-and-

bound procedure, 224

linear programming (LP)

problem, 222–223

problem categories, 221–222

matrix-chain multiplication

problem, 212

matrix differential

equation, 479–481

maze-routing algorithm

optimization methods
coding scheme, 694

search algorithm, 694–695

search space, 695

two-phase approach, 693

microarchitecture aware

floorplanning, 623

Mikami-Tabuchi’s line-search

algorithm, 696

millions of instructions per second

(MIPS), 257

min–max delay, 456

minimum rectilinear steiner tree

(MRST), 701

miter circuit, 542–543

mixed integer linear program

(MILP), 608–612
modern floorplanning

fixed-outline

floorplanning, 615–617

large-scale circuits, 617–622

soft modules, 612–615

modified nodal analysis

adjacency matrix, 478

branch voltage and branch

current, 476–478

matrix differential

equation, 479–481

Norton equivalent circuits, 479

module nonoverlapping

constraint, 607–610

model checking

bounded model checking

(BMC), 555–556

branching time temporal logic

(BTTL), 547

computation tree logic

(CTL), 550–552

fix-point computation, 553–555

labeling algorithm, 553

linear temporal logic

(LTL), 547–550

symbolic model checking, 553

Moore’s law, 236, 299, 393

multilevel extension

best choice clustering

technique, 674

first choice clustering

technique, 673–674

multilevel floorplanning,

618–619

multiple-VT technology, 86

muxed-D scan cells, See level-

sensitive scan design (LSSD),

scan cells

N

Newton’s method, 503

NMOS transistor

capacitance, 501–502

circuit symbol, 496–498

long-channel transistor, 498–500

piecewise-linear

approximation, 501

short-channel devices, 499–501

nominal delay 455
nonlinear devices

diode
circuit symbol, 496–497

equivalent circuit model, 496

I-V characteristics, 496–497

junction and diffusion

capacitance, 496–497

NMOS transistor

capacitance, 501–502

circuit symbol, 496–498

long-channel

transistor, 498–500

piecewise-linear

approximation, 502

short-channel

devices, 499–501

simulation procedure

Newton’s method, 503

nonlinear current-voltage

relationship, 502

voltage-dependent

system, 504

nonquadratic placement

techniques

density constraint smoothing
by bell-shaped

function, 670–671

by inverse laplace

transformation, 672

log-sum-exponential wirelength

function, 669–670

nonlinear program

algorithms, 672–673

non-slicing floorplan

models, 578–579

normalized polish expression

annealing schedule, 590–593

cost function, 588–590

neighborhood

structure, 586–588

floorplans, 583–585

solution space, 585–586

norton equivalent circuits, 479
O

observability Don’t cares

(ODC), 358–359

one-hot decoder, 428

Index 929
ordered binary decision diagram

(OBDD), 543

output response analysis,

logic BIST

compaction and

compression, 129

error masking, 130

ones count testing, 130

signature analysis, 131–134
parallel type, 134–135

serial type, 132–134

transition count testing, 131

output response analyzer

(ORA), 406–407, 426,

429–430, 432–433

P

parallel pattern single fault

propagation (PPSFP), 866

parallel fault simulation, 866

parasitic capacitors, 42

pseudo-testing

parallel signature analysis

four-stage, 135

multiple-input signature register

(MISR), 134

partial crossbar architecture, 473

partitioning-based placement

approach, 646–647

parts-per-million (PPM), 910

partial discharge, 63

path-oriented decision-making

(PODEM)

decision tree, 899–900

D frontier, 895–896

X-path, 896

phase-locked loop (PLL), 412, 432

piecewise-linear

approximation, 501, 504

pipelining register, 430

placement process

analytical approach
exact formulation, 653–655

multilevel extension,

673–674

nonquadratic

techniques, 668–673

quadratic

techniques, 655–668
common placement

formulation, 641

complexity issue, overcome, 636

conjugate gradient method, 672

design styles

gate array/FPGA, 637

macro block, 637–638

mixed-size, 638

standard-cell, 637

Domino algorithm

advantages, 677

minimum cost maximum flow

problem, 676

sliding window approach, 675

transportation network

problem, 675–676

FastDP algorithm

detailed placement

algorithm, 677

global swap, 677–678

local reordering, 679

single-segment clustering, 679

techniques, 677

vertical swap, 678

lazy updating technique, 674

legalization, 674–675

partitioning based approach, 642

basic idea, 646–647

Fiduccia-Mattheyses

algorithm, 643–645

multilevel scheme, 645–646

problem formulation, 642

terminal propagation

technique, 647–648

practical implementations

Capo algorithm, 648–649

Fengshui algorithm, 649

problem formulations

design style placement

problems, 637–638

objectives, 638–641

quadratic penalty method, 672

simulated annealing approach

dragon placement

algorithm, 652–653

TimberWolf placement

algorithm, 650–652

VLSI design flow, 635

white space allocation

approach, 640
wirelength minimizing,

goals, 664

post-silicon tunable (PST), 815

power/ground (P/G) network, 623

analysis
IR drop, 833

L.di/dt noise, 833

linear time-invariant

models, 833–834

macromodels, 835

multigrid-like

technique, 834–835

random walk game, 836

random walk method, 835

transient, 833

trapezoidal integration

scheme, 834

synthesis

decoupling

capacitance, 839–843

power pad

assignment, 837–838

topology optimization, 837

wire width

optimization, 838–839

typical design

distribution networks, 829

flip-chip design, 832

mesh structure, 831

polymer film wires, 831–832

power distribution

technique, 830–831

standard-cell

designs, 829–830

probability-based testability analysis

deterministic testability, 105

random testability, 105

problem formulation objectives

performance, 640

routability, 639–640

total wirelength
estimation techniques, 639

FLUTE, 639

half-perimeter

wirelength, 638

rectilinear minimum spanning

tree, 638

rectilinear steiner minimal

tree, 639
product-of-sums (POS)

930 Index
product-of-sums (POS) (cont.)

conversion, 330

SAT and TAUTOLOGY checkings

of, 312

programmable logic arrays

(PLAs), 300, 333–334

progressive augmentation

method, 610

propagation delay 457

PRPG-MISR pair, Logic BIST

system, 431–434

pseudo RTL scan synthesis, 441

Q

quadratic placement techniques

boundingbox net model,

advantages, 662–663

force interpretation, 658–659

force-vector modulation

technique, 668

GORDIAN algorithm, 666

hybrid net model, 661

iterative local refinement

technique, 664

Kraftwerk, 667

linearization methods, 661–664

module distribution, 665

multi-pin net models
clique and star

models, 659–660

hybrid net model, 661

nonoverlapping

constraints, 664–668

poisson equation, 667

quadratic wirelength

circuit connections, 657

vs. linear wirelength, 656

quality of result (QoR), 261

quantified Boolean formulas (QBFs)

for Boolean reasoning, 303

bound and free variables, 305

quantified satisfiability

(QSAT), 308

Quine-McCluskey method

R

random resistant fault analysis

(RRFA) method, 108
random pattern resistance faults

random pattern resistant, 125

random test generation

circuit under test (CUT), 876

confidence level, 877

detection, 879

equivalent circuits, 877–878

exhaustive testing, 879

pattern resistant faults, 877

RCC (reconfigurable computing)

element, 469

re-timing logic, 430

reconfigurable functional unit

(RFU), 624

rectilinear minimum spanning tree

(RMST), 638

rectilinear steiner minimal tree

(RSMT), 639

reduced ordered binary decision

diagrams (ROBDDs)

BDDAPPLY operation, 318

complemented edges in, 320

reduction rules, 313–315

tree representation, 313–314

redundant fault, 860

register binding

by coloring
interval graph, 277–280

vertex elimination, 280–281

vertex elimination order,

s, 278–279
liveness analysis

basic block, 274

control flow graph

(CFG), 275–276

definition, 273–274

interference graph, 276–277

liveOut value, 275

results of, 275

register pressure, 271

register-transfer level (RTL),

300, 451

BIST synthesis, 437–438

data dependencies, 263–264

high-level synthesis, 244–245

performance calculation

of, 257–261

representation in TinyRTL
microarchitectural resources

types, 253
register transfer, 253–254

scan design rule checking and

repair, 415–417, 440

automatic repair, 441

scan extraction and

verification, 442

scan synthesis, 441–442

testability design, 438

gate-level, repair, 439

reprogrammable switching

networks, 473

resistance-capacitance effect, 46

rise/fall delay, 456

routing process

considerations
manufacturability, 720–729

reliability, 729

signal integrity, 716–720

constraints

design rules, 692

objectives, 692

detailed routing

channel routing, 704–710

full-chip routing, 710–715

grid-based, 690–691

grid-less, 690–691

general-purpose routing

algorithm

A*-search routing, 696

line-search routing, 695–696

maze-routing, 693–695

global routing

concurrent, 699–700

graph and tiles, 689

sequential, 697–699

steiner trees, 700–703

hightower’s line-search

algorithm, 696

model

global-routing tiles and

graph, 689

graph-search technique, 689

layer models, 690

wire pitch, 690

netlist, 688

problems

inputs and outputs, 689

routing constraints,

691–692

routing model, 689–691

Index 931
S

safety properties, 552

sandia controllability/observability

analysis program (SCOAP)

combinational controllability

and observability

calculation
full-adder, 103

sequential controllability and

observability

calculation, 103–105

sequential testability

measures, 101

satisfiability don’t cares

(SDC), 358

scan design

architectures
clocked type, 111–113

LSSD, 113–114

muxed-D scan

design, 109–111

configuration, 417

clock domain, 418

high-speed I/O pads, 418

lock-up latch, 419–420

flow

extraction, 422

rule checking and

repair, 415–417

scan capture problems, 423

shift and capture

operation, 414

staggered and one-hot

clocking scheme, 416

synthesis, 417

testable design,

conversion, 415

verification, 422–425

negative and positive-edge

scan cells, 419

rules

asynchronous set/reset

signals, 413–414

bidirectional I/O

ports, 409–411

bus contention, fixation, 410

combinational feedback

loops, 412–413

derived clocks, 412
gated clocks, 411–412

tristate buses, 408–409

scan cells and chains, 99

scan-ready design, 421

scan reordering, 421–422

scan stitching, 422

seqhential AIPG

time frame expansion

iterative logic array

pseudo-primary input

pseudo-primary output

speed testing

ATPG programs, 116–118

capture-clocking

schemes, 115

intra-and inter-clock-domain

faults, 115–116

simultaneous and aligned

clocking schemes, 116–117

skewed-load and double-

capture schemes, 116

staggered and one-hot

clocking schemes, 116–117

synchronous and

asynchronous

domains, 115

scan input, 408

scan design rules, 408

scan output, 408

self-testing with MISR and parallel

SRSG (STUMPS), 136–137

sequence pair (SP)

cost function and annealing

schedule, 605

floorplans, 600–604

solution space and

neighborhood

structure, 604–605

sequential equivalence checking

(SEC), 544

sequential global routing

drawbacks, 699

net ordering schemes,

697–698

pattern-routing schemes, 699

rip-up and reroute

process, 698–699

serial signature analysis

fault detection/aliasing

problem, 133
four-stage, 132

polynomial remainder, 132

single-input signature register

(SISR), 132

L�shaped multilevel

framework, 621–622

shielding effect, 494–495

shift register latch (SRL), 426

shortest and longest path

algorithms

Bellman-Ford

algorithm, 198–199

Dijkstra’s algorithm, 196–198

directed acyclic graphs

(DAG), 196

initialization and

relaxation, 195–196

longest-path problem, 200

short-circuit power dissipation,

51–52

small signal equations, 42

simple genetic algorithm

(SGA), 219–220

simulated annealing (SA) approach

advantages, 219

basics
hill-climbing technique, 581

iterative method/greedy

search, 582

B*-trees

compacted floorplans, 593

cost function and annealing

schedule, 600

floorplans, 593–595

solution space and

neighborhood

structure, 598–599

cost function, perturbations and

temperature, 217

normalized polish expression

annealing schedule, 590–593

cost function, 588–590

neighborhood

structure, 586–588

floorplans, 583–585

solution space, 585–586

pseudocode, 218

sequence pair (SP)

cost function and annealing

schedule, 605

932 Index
simulated annealing (SA) approach

(cont.)
floorplans, 600–604

solution space and

neighborhood

structure, 604–605

thermal equilibrium, 218–219

simulation-based approach

assertion-based

verification, 537–540

“black-box” method,

535–538, 540

grey-box approach, 537

re-convergence model, 532

white-box method, 536

simulation-based testability

analysis, 108

simulation-based verification, 514

simultaneous pathlength and via

minimization (SPVM)

algorithm, 714–715

slicing floorplan models, 577–578

small signal equation, 42

soft modules

shape curve, 613–615

sizing method, 613

soft errors, 406

software-based self-test (SBST), 562

staggered clocking, 416

standard delay format (SDF),

422–423

static random-access memories

(SRAMs), 427, 875

static timing analysis (STA), 424

statistical fault analysis (STAFAN)

algorithm, 108

static power dissipation, 51–52

steiner tree algorithm

Hanan’s theorem, 701

Hwang’s theorem, 702

iterated 1-steiner heuristic, 702

minimum spanning tree, 700

MRST and MST relationship, 701

spanning graph, 702

Steiner points, 701

stem analysis

serial fault simulation

Stirling’s approximation, 586, 598

structural coverage metrics

branch/path coverage, 525–526
coverage-driven verification

(CDV), 522–523

expression coverage, 526–528

finite state machine (FSM)

coverage, 529–530

line coverage, 524

toggle coverage, 524–525

trigger coverage, 528–529

sub bit lines, 90

substrate noise coupling, 622

sum-of-products (SOP)

Boolean functions, cover of, 310

two-level circuit

representation, 310–311

symbolic model checking, 553

syndrome driver counters

(SDCs), 127

system-on-chip (SOC), 452

T

technology mapping

atomic pattern set
choice of, 366–367

subject and pattern

graphs, 366

graph covering, 365–366

libraries

gate arrays and standard

cells, 363

latches and flip-flops, 364

non-tree patterns

tree covering

dynamic programming

for, 370

temporal logic

tense logic. See temporal logic

terminal propagation

technique, 647–648

testable design, 406, 415–417, 421,

439–440

testability, 101–102

test access port (TAP)

controller, 434

test automation, EDA

design for testability (DFT)
BIST architecture, 22

categories, 21

scan chain, 21–22

scan design, 21
test compression, 22–23

fault models

bridging fault models, 20

criteria, 19

delay fault models, 21

gate-level stuck-at fault

model, 19

transistor-level stuck fault

model, 19–20

fault simulation and test

generation, 23–24

manufacturing test, 24–25

test development process, 19

test generation

combinational ATPG

sequential ATPG

delay fault ATPG

bridging fault ATPG

test pattern generator 406

test pattern generation (TPG)

exhaustive and pseudo-random

testing, 119

exhaustive testing, 121

four-stage type, 120

linear feedback shift registers

(LFSRs)
properties, 120–121

standard and modular

LFSR, 119

ORA and, 432

PRPG-MISR choices, 434

SIs and SOs, 433

primitive and reciprocal

polynomials, 121

pseudo-exhaustive testing

condensed LFSR, 128–129

syndrome driver counters

(SDCs), 127

verification and segmentation

test approaches, 125

pseudo-random testing

cellular automata, 123–125

maximum-length

LFSRs, 122–123

pseudo-random pattern

generator (PRPG), 121

syndrome driver counters

(SDCs), 127

weighted LFSR, 123

test-ready core, 406

Index 933
test response compaction circuits

combinational compaction
X-compact, 152–155

X-impact, 155–156

mixed space and time

compactor, 149

response compactor, 151

sequential compaction

q-compact, 158–159

signature analysis, 157

X-masking, 157–158

space and time compactors, 149

X-blocking and

X-bounding, 151–152

test stimulus compression circuits

broadcast-scan-based schemes
concept, 146

illinois scan, 146

multiple-input type, 147

reconfigurable type, 147

virtual scan, 147–149

linear-decompression-based

schemes

characteristic matrix, 141

combinational type, 143–144

linear equations, 142

sequential type, 144

symbolic simulation, 142

test synthesis

ATPG compression

mode, 407–408

logic built-in self-test (BIST)

design, 425

scan design
flow, 414–425

rules, 406, 409–414

scan-ready design, 421

testability rules, 406

testability measures, 99

probability-based testability

measures, 105–108

tetris legalization

algorithm, 674–675

texas Instrument’s OMAP

platform, 237

theorem proving

high-order logic (HOL), 557–559

threshold voltage, 41

Timber-Wolf standard-cell

placement algorithm
annealing schedule, 651–652

stage 1, 650–651

stage 2, 651

timing analysis

delay calculation, 371–372

functional
delay calculation models and

operation modes, 377–380

floating mode operation

fundamental, 381

monotone speedup, transition

mode, 378

true critical delay, 383

true floating mode

delay, 380–383

gate delay model, 372

inertial and propagation

delays, 371

topological

longest path, 375–376

required, slack and arrival

signal, 375

worst-case design methodology

for, 379

timing optimization

fanout, 391

technology-independent
collapsing and

redecomposition, 384–385

decomposition, 385

technology mapping, timinig

driven

area minimization, 390–391

load-dependent, tree

covering, 388

load values, 389–390

timing wheel, 464

TinyC

behavioral description
imperative program, 250

code fragment, 265

constructs in, 252–253

language definition, 250–251

syntax of, 251

transaction level modeling, 242

transitive closure graph (TCG), 624

transmission-gate, 55, 59

traveling salesman problem (TSP)

complexity class

NP-hard, 184–185
greedy-choice property,

210–211

non-optima land optimal

solutions, 180–181

problem, 208

and solution tree, 216

two-valued Boolean algebra, 453

typical clock and power/ground

topologies

abstract clock tree, 770

deep-submicron designs, 769

distribution network, 767

distribution networks, 829

flip-chip design, 832

flip-flops, 766

general clock mesh

structures, 766–767

H-tree and X-tree, 763–764

Intel Pentium 4

processor, 764–765

mesh structure, 831

polymer film wires, 831–832

power distribution

technique, 830–831

skew constraint, 768–769

standard-cell designs, 829–830

U

unstable fault

user defined primitive

(UDP), 455

useful-skew routing

feasible skew range, 807

incremental scheduer, 808, 810

incremental scheduling, 807

merging region, 807–808

sampling segments, 807–808

skew commitment, 807–810

uzawa algorithm, 672–673

V

vertical-constraint graph, 602

verification hierarchy

chip-level, 519

core-level, 518–519

designer-level, 517

system-/board-level, 520

unit-level, 518

934 Index
verification hierarchy (cont.)

V diagram, 515–516

very large scale integrated (VLSI)

systems, 340

virtual constraint circuit

(VCC), 562

virtual wire interconnection

scheme, 472

VLSI interconnects

lumped and distributed

models, 491

simulation procedure
advantage of NA

equation, 491

Cholesky factorization, 494

dense matrix, 495

inductance

matrix, 478, 492–493

inductor-to-resistor

connection, 494

nodal analysis (NA)

equation, 491–495
shielding effect, 494–495

three-dimensional

interconnect

topology, 485, 495

trapezoidal method,

491–493

wire capacitance, 487–489

wire inductance, 489–491

wire resistance

current density, 486–487

rectangular wire, 486–487

skin effect, 487

V-shaped multilevel

framework, 622

W

white space module, 579

wrapper, 425

X

X-bounding / X-blocking, 426
Z

zero-skew routing

abstract topology, 781–783,

786–788, 793

bottom-up phase, 783

bucket decomposition, 793–794

deferred-merge embedding

(DME) algorithm, 781, 786

elmore delay model, 787

embedding process, 790–791

greedy-DME algorithm, 793

internal node, 789, 781,

783–784, 786–787,

789–791

intersection, 785

Manhattan arc and circle,

784–786, 788

merging process, 786

merging segment 781, 783–789,

791, 793

trees, 792

	Front Cover
	Electronic Design Automation: Synthesis, Verification, and Test
	Copyright Page
	Contents
	Preface
	In the Classroom
	Acknowledgments
	Contributors
	About the Editors
	Chapter 1: Introduction
	1.1 Overview of Electronic Design Automation
	1.1.1 Historical perspective
	1.1.2 VLSI design flow and typical EDA flow
	1.1.3 Typical EDA implementation examples
	1.1.4 Problems and challenges

	1.2 Logic Design Automation
	1.2.1 Modeling
	1.2.2 Design verification
	1.2.3 Logic synthesis

	1.3 Test Automation
	1.3.1 Fault models
	1.3.2 Design for testability
	1.3.3 Fault simulation and test generation
	1.3.4 Manufacturing test

	1.4 Physical Design Automation
	1.4.1 Floorplanning
	1.4.2 Placement
	1.4.3 Routing
	1.4.4 Synthesis of clock and power/ground networks

	1.5 Concluding Remarks
	1.6 Exercises
	Acknowledgments
	References
	R1.0 Books
	R1.1 Overview of Electronic Design Automation
	R1.2 Logic Design Automation
	R1.4 Physical Design Automation
	R1.5 Concluding Remarks

	Chapter 2: Fundamentals of CMOS Design
	2.1 Introduction
	2.2 Integrated Circuit Technology
	2.2.1 MOS transistor
	2.2.2 Transistor equivalency
	2.2.3 Wire and interconnect
	2.2.4 Noise margin

	2.3 CMOS Logic
	2.3.1 CMOS inverter and analysis
	2.3.2 Design of CMOS logic gates and circuit blocks
	2.3.3 Design of latches and flip-flops
	2.3.4 Optimization techniques for high performance

	2.4 Integrated Circuit Design Techniques
	2.4.1 Transmission-gate/pass-transistor logic
	2.4.2 Differential CMOS logic
	2.4.3 Dynamic pre-charge logic
	2.4.4 Domino logic
	2.4.5 No-race logic
	2.4.6 Single-phase logic

	2.5 CMOS Physical Design
	2.5.1 Layout design rules
	2.5.2 Stick diagram
	2.5.3 Layout design

	2.6 Low-Power Circuit Design Techniques
	2.6.1 Clock-gating
	2.6.2 Power-gating
	2.6.3 Substrate biasing
	2.6.4 Dynamic voltage and frequency scaling
	2.6.5 Low-power cache memory design

	2.7 Concluding Remarks
	2.8 Exercises
	Acknowledgments
	References
	R2.0 Books
	R2.6 Low-Power Design

	Chapter 3: Design for testability
	3.1 Introduction
	3.2 Testability Analysis
	3.2.1 SCOAP testability analysis
	3.2.1.1 Combinational controllability and observability calculation
	3.2.1.2 Sequential controllability and observability calculation

	3.2.2 Probability-based testability analysis
	3.2.3 Simulation-based testability analysis

	3.3 Scan Design
	3.3.1 Scan architectures
	3.3.1.1 Muxed-D scan design
	3.3.1.2 Clocked-scan design
	3.3.1.3 LSSD scan design

	3.3.2 At-speed testing

	3.4 Logic Built-in Self-Test
	3.4.1 Test pattern generation
	3.4.1.1 Exhaustive testing
	3.4.1.2 Pseudo-random testing
	3.4.1.3 Pseudo-exhaustive testing

	3.4.2 Output response analysis
	3.4.2.1 Ones count testing
	3.4.2.2 Transition count testing
	3.4.2.3 Signature analysis

	3.4.3 Logic BIST architectures
	3.4.3.1 Self-testing with MISR and parallel SRSG (STUMPS)
	3.4.3.2 Built-in logic block observer (BILBO)
	3.4.3.3 Concurrent built-in logic block observer (CBILBO)

	3.4.4 Industry practices

	3.5 Test Compression
	3.5.1 Circuits for test stimulus compression
	3.5.1.1 Linear-decompression-based schemes
	3.5.1.2 Broadcast-scan-based schemes

	3.5.2 Circuits for test response compaction
	3.5.2.1 Combinational compaction
	3.5.2.2 Sequential compaction

	3.5.3 Industry practices

	3.6 Concluding Remarks
	3.7 Exercises
	Acknowledgments
	References
	R3.0 Books
	R3.1 Introduction
	R3.2 Testability Analysis
	R3.3 Scan Design
	R3.4 Logic Built-In Self-Test
	R3.5 Test Compression
	R3.6 Concluding Remarks

	Chapter 4: Fundamentals of algorithms
	4.1 Introduction
	4.2 Computational Complexity
	4.2.1 Asymptotic notations
	4.2.1.1 O-notation
	4.2.1.2 Omega-notation and Theta-notation

	4.2.2 Complexity classes
	4.2.2.1 Decision problems versus optimization problems
	4.2.2.2 The complexity classes P versus NP
	4.2.2.3 The complexity class NP-complete
	4.2.2.4 The complexity class NP-hard

	4.3 Graph Algorithms
	4.3.1 Terminology
	4.3.2 Data structures for representations of graphs
	4.3.3 Breadth-first search and depth-first search
	4.3.3.1 Breadth-first search
	4.3.3.2 Depth-first search

	4.3.4 Topological sort
	4.3.5 Strongly connected component
	4.3.6 Shortest and longest path algorithms
	4.3.6.1 Initialization and relaxation
	4.3.6.2 Shortest path algorithms on directed acyclic graphs
	4.3.6.3 Dijkstra's algorithm
	4.3.6.4 The Bellman-Ford algorithm
	4.3.6.5 The longest-path problem

	4.3.7 Minimum spanning tree
	4.3.8 Maximum flow and minimum cut
	4.3.8.1 Flow networks and the maximum-flow problem
	4.3.8.2 Augmenting paths and residual networks
	4.3.8.3 The Ford-Fulkerson method and the Edmonds-Karp algorithm
	4.3.8.4 Cuts and the max-flow min-cut theorem
	4.3.8.5 Multiple sources and sinks and maximum bipartite matching

	4.4 Heuristic Algorithms
	4.4.1 Greedy algorithm
	4.4.1.1 Greedy-choice property
	4.4.1.2 Optimal substructure

	4.4.2 Dynamic programming
	4.4.2.1 Overlapping subproblems
	4.4.2.2 Optimal substructure
	4.4.2.3 Memoization

	4.4.3 Branch-and-bound
	4.4.4 Simulated annealing
	4.4.5 Genetic algorithms

	4.5 Mathematical Programming
	4.5.1 Categories of mathematical programming problems
	4.5.2 Linear programming (LP) problem
	4.5.3 Integer linear programming (ILP) problem
	4.5.3.1 Linear programming relaxation and branch-and-bound procedure
	4.5.3.2 Cutting plane algorithm

	4.5.4 Convex optimization problem
	4.5.4.1 Interior-point method

	4.6 Concluding Remarks
	4.7 Exercises
	Acknowledgments
	References
	R4.1 Books
	R4.2 Computational Complexity
	R4.3 Graph Algorithms
	R4.4 Heuristic Algorithms
	R4.5 Mathematical Programming

	Chapter 5: Electronic system-level design and high-level synthesis
	5.1 Introduction
	5.1.1 ESL design methodology
	5.1.2 Function-based ESL methodology
	5.1.3 Architecture-based ESL methodology
	5.1.4 Function architecture codesign methodology
	5.1.5 High-level synthesis within an ESL design methodology

	5.2 Fundamentals of High-Level Synthesis
	5.2.1 TinyC as an example for behavioral descriptions
	5.2.2 Intermediate representation in TinyIR
	5.2.3 RTL representation in TinyRTL
	5.2.4 Structured hardware description in FSMD
	5.2.5 Quality metrics

	5.3 High-Level Synthesis Algorithm Overview
	5.4 Scheduling
	5.4.1 Dependency test
	5.4.2 Unconstrained scheduling
	5.4.3 Resource-constrained scheduling

	5.5 Register Binding
	5.5.1 Liveness analysis
	5.5.2 Register binding by coloring

	5.6 Functional Unit Binding
	5.7 Concluding Remarks
	5.8 Exercises
	Acknowledgments
	References

	Chapter 6: Logic synthesis in a nutshell
	6.1 Introduction
	6.2 Data Structures for Boolean Representation and Reasoning
	6.2.1 Quantifier-free and quantified Boolean formulas
	6.2.2 Boolean function manipulation
	6.2.3 Boolean function representation
	6.2.3.1 Truth table
	6.2.3.2 SOP
	6.2.3.3 POS
	6.2.3.4 BDD
	6.2.3.5 AIG
	6.2.3.6 Boolean network

	6.2.4 Boolean representation conversion
	6.2.4.1 CNF vs. DNF
	6.2.4.2 Boolean formula vs. circuit
	6.2.4.3 BDD vs. Boolean network

	6.2.5 Isomorphism between sets and characteristic functions
	6.2.6 Boolean reasoning engines

	6.3 Combinational Logic Minimization
	6.3.1 Two-level logic minimization
	6.3.1.1 PLA implementation vs. SOP minimization
	6.3.1.2 Terminology

	6.3.2 SOP minimization
	6.3.2.1 The Quine-McCluskey method
	6.3.2.2 Other methods

	6.3.3 Multilevel logic minimization
	6.3.3.1 Logic transformations
	6.3.3.2 Division and common divisors
	6.3.3.3 Algebraic division
	6.3.3.4 Common divisors
	6.3.3.5 Boolean division

	6.3.4 Combinational complete flexibility
	6.3.5 Advanced subjects

	6.4 Technology apping
	6.4.1 Technology libraries
	6.4.2 Graph covering
	6.4.3 Choice of atomic pattern set
	6.4.4 Tree covering approximation
	6.4.5 Optimal tree covering
	6.4.6 Improvement by inverter-pair insertion
	6.4.7 Extension to non-tree patterns
	6.4.8 Advanced subjects

	6.5 Timing Analysis
	6.5.1 Topological timing analysis
	6.5.2 Functional timing analysis
	6.5.2.1 Delay models and modes of operation
	6.5.2.2 True floating mode delay

	6.5.3 Advanced subjects

	6.6 Timing Optimization
	6.6.1 Technology-independent timing optimization
	6.6.2 Timing-driven technology mapping
	6.6.2.1 Delay optimization using tree covering
	6.6.2.2 Area minimization under delay constraints

	6.6.3 Advanced subjects

	6.7 Concluding Remarks
	6.8 Exercises
	Acknowledgments
	References
	R6.0 Books
	R6.1 Introduction
	R6.2 Data Structures for Boolean Representationand Reasoning
	R6.3 Combinational Logic Minimization
	R6.4 Technology Mapping
	R6.5 Timing Analysis
	R6.6 Timing Optimization
	R6.7 Trends in Logic Synthesis

	Chapter 7: Test synthesis
	7.1 Introduction
	7.2 Scan Design
	7.2.1 Scan design rules
	7.2.1.1 Tristate buses
	7.2.1.2 Bidirectional I/O ports
	7.2.1.3 Gated clocks
	7.2.1.4 Derived clocks
	7.2.1.5 Combinational feedback loops
	7.2.1.6 Asynchronous set/reset signals

	7.2.2 Scan design flow
	7.2.2.1 Scan design rule checking and repair
	7.2.2.2 Scan synthesis
	7.2.2.3 Scan extraction
	7.2.2.4 Scan verification

	7.3 Logic Built-in Self-Test (BIST) Design
	7.3.1 BIST design rules
	7.3.1.1 Unknown source blocking
	7.3.1.2 Re-timing

	7.3.2 BIST design example
	7.3.2.1 BIST rule checking and violation repair
	7.3.2.2 Logic BIST system design
	7.3.2.3 RTL BIST synthesis
	7.3.2.4 Design verification and fault coverage enhancement

	7.4 RTL Design for Testability
	7.4.1 RTL scan design rule checking and repair
	7.4.2 RTL scan synthesis
	7.4.3 RTL scan extraction and scan verification

	7.5 Concluding Remarks
	7.6 Exercises
	Acknowledgments
	References
	R7.0 Books
	R7.1 Introduction
	R7.2 Scan Design
	R7.3 Logic Built-In Self-Test (BIST) Design
	R7.4 RTL Design for Testability
	R7.5 Concluding Remarks

	Chapter 8: Logic and circuit simulation
	8.1 Introduction
	8.1.1 Logic simulation
	8.1.2 Hardware-accelerated logic simulation
	8.1.3 Circuit simulation

	8.2 Logic Simulation Models
	8.2.1 Logic symbols and operations
	8.2.1.1 "1" and "0"
	8.2.1.2 The unknown value u
	8.2.1.3 The high-impedance state Z
	8.2.1.4 Basic logic operations

	8.2.2 Timing models
	8.2.2.1 Transport delay
	8.2.2.2 Inertial delay
	8.2.2.3 Functional element delay model
	8.2.2.4 Wire delay

	8.3 Logic Simulation Techniques
	8.3.1 Compiled-code simulation
	8.3.1.1 Preprocessing
	8.3.1.2 Code generation
	8.3.1.3 Applications

	8.3.2 Event-driven simulation
	8.3.2.1 Zero-delay event-driven simulation
	8.3.2.2 Nominal-delay event-driven simulation

	8.4 Hardware-Accelerated Logic Simulation
	8.4.1 Types of hardware acceleration
	8.4.2 Reconfigurable computing units
	8.4.3 Interconnection architectures
	8.4.3.1 Direct interconnection
	8.4.3.2 Indirect interconnect
	8.4.3.3 Time-multiplexed interconnect

	8.4.4 Timing issues

	8.5 Circuit Simulation Models
	8.5.1 Ideal voltage and current sources
	8.5.2 Resistors, capacitors, and inductors
	8.5.3 Kirchhoff's voltage and current laws
	8.5.4 Modified nodal analysis

	8.6 Numerical Methods for Transient Analysis
	8.6.1 Approximation methods and numerical integration
	8.6.2 Initial value problems

	8.7 Simulation of LSI Interconnects
	8.7.1 Wire resistance
	8.7.2 Wire capacitance
	8.7.3 Wire inductance
	8.7.4 Lumped and distributed models
	8.7.5 Simulation procedure for interconnects

	8.8 Simulation of Nonlinear Devices
	8.8.1 The diode
	8.8.2 The field-effect transistor
	8.8.3 Simulation procedure for nonlinear devices

	8.9 Concluding Remarks
	8.10 Exercises
	Acknowledgments
	References
	R8.1 Introduction
	R8.2 Logic Simulation Models
	R8.3 Logic Simulation Techniques
	R8.4 Hardware-Accelerated Logic Simulation
	R8.5 Circuit Simulation Models
	R8.7 Simulation of VLSI Interconnects
	R8.8 Simulation of Nonlinear Devices
	R8.9 Concluding Remarks

	Chapter 9: Functional verification
	9.1 Introduction
	9.2 Verification Hierarchy
	9.2.1 Designer-level verification
	9.2.2 Unit-level verification
	9.2.3 Core-level verification
	9.2.4 Chip-level verification
	9.2.5 System-/board-level verification

	9.3 Measuring Verification Quality
	9.3.1 Random testing
	9.3.2 Coverage-driven verification
	9.3.3 Structural coverage metrics
	9.3.3.1 Line coverage (a.k.a. statement coverage)
	9.3.3.2 Toggle coverage
	9.3.3.3 Branch/path coverage
	9.3.3.4 Expression coverage
	9.3.3.5 Trigger coverage (a.k.a. event coverage)
	9.3.3.6 Finite state machine (FSM) coverage
	9.3.3.7 More on structural coverage

	9.3.4 Functional coverage metrics

	9.4. Simulation-Based Approach
	9.4.1 Testbench and simulation environment development
	9.4.2 Methods of observation points
	9.4.3 Assertion-based verification
	9.4.3.1 Assertion coverage and classification
	9.4.3.2 Use of assertions
	9.4.3.3 Writing assertions

	9.5 Formal Approaches
	9.5.1 Equivalence checking
	9.5.1.1 Checking based on functional equivalence
	9.5.1.2 Checking based on structural search

	9.5.2 Model checking (property checking)
	9.5.2.1 Model checking with temporal logic

	9.5.3 Theorem proving

	9.6 Advanced Research
	9.7 Concluding Remarks
	9.8 Exercises
	Acknowledgments
	References
	R9.1 Introduction
	R9.2 Verification Hierarchy
	R9.3 Measuring Verification Quality
	R9.4 Simulation-Based Approach
	R9.5 Formal Approaches
	R9.6 Advanced Research

	Chapter 10: Floorplanning
	10.1 Introduction
	10.1.1 Floorplanning basics
	10.1.2 Problem statement
	10.1.3 Floorplanning model
	10.1.3.1 Slicing floorplans
	10.1.3.2 Non-slicing floorplans

	10.1.4 Floorplanning cost

	10.2 Simulated Annealing Approach
	10.2.1 Simulated annealing basics
	10.2.2 Normalized Polish expression for slicing floorplans
	10.2.2.1 Solution space
	10.2.2.2 Neighborhood structure
	10.2.2.3 Cost function
	10.2.2.4 Annealing schedule

	10.2.3 B*-tree for compacted floorplans
	10.2.3.1 From a floorplan to its B*-tree
	10.2.3.2 From a B*-tree to its floorplan
	10.2.3.3 Solution space
	10.2.3.4 Neighborhood structure
	10.2.3.5 Cost function
	10.2.3.6 Annealing schedule

	10.2.4 Sequence pair for general floorplans
	10.2.4.1 From a floorplan to its sequence pair
	10.2.4.2 From a sequence pair to its floorplan
	10.2.4.3 Solution space
	10.2.4.4 Neighborhood structure
	10.2.4.5 Cost function
	10.2.4.6 Annealing schedule

	10.2.5 Floorplan representation comparison

	10.3 Analytical Approach
	10.4 Modern Floorplanning Considerations
	10.4.1 Soft modules
	10.4.2 Fixed-outline constraint
	10.4.3 Floorplanning for large-scale circuits
	10.4.4 Other considerations and topics

	10.5 Concluding Remarks
	10.6 Exercises
	Acknowledgments
	References
	R10.0 Books
	R10.1 Introduction
	R10.2 Simulated Annealing Approach
	R10.3 Analytical Approach
	R10.4 Modern Floorplanning Considerations
	R10.5 Concluding Remarks

	Chapter 11: Placement
	11.1 Introduction
	11.2 Problem Formulations
	11.2.1 Placement for different design styles
	11.2.1.1 Standard-cell placement
	11.2.1.2 Gate array/FPGA placement
	11.2.1.3 Macro block placement
	11.2.1.4 Mixed-size placement

	11.2.2 Placement objectives
	11.2.2.1 Total wirelength
	11.2.2.2 Routability
	11.2.2.3 Performance
	11.2.2.4 Power
	11.2.2.5 Heat distribution

	11.2.3 A common placement formulation

	11.3 Global Placement: Partitioning-Based Approach
	11.3.1 Basics for partitioning
	11.3.1.1 Problem formulation
	11.3.1.2 The Fiduccia-Mattheyses algorithm
	11.3.1.3 A multilevel scheme

	11.3.2 Placement by partitioning
	11.3.2.1 The basic idea
	11.3.2.2 Terminal propagation technique

	11.3.3 Practical implementations
	11.3.3.1 The Capo algorithm
	11.3.3.2 The Fengshui algorithm

	11.4 Global Placement: Simulated Annealing Approach
	11.4.1 The placement algorithm in TimberWolf
	11.4.1.1 Stage 1
	11.4.1.2 Stage 2
	11.4.1.3 Annealing schedule

	11.4.2 The Dragon placement algorithm

	11.5 Global Placement: Analytical Approach
	11.5.1 An exact formulation
	11.5.2 Quadratic techniques
	11.5.2.1 Quadratic wirelength
	11.5.2.2 Force interpretation of quadratic wirelength
	11.5.2.3 Net models for multi-pin nets
	11.5.2.4 Linearization methods
	11.5.2.5 Handling nonoverlapping constraints

	11.5.3 Nonquadratic techniques
	11.5.3.1 Log-sum-exponential wirelength function
	11.5.3.2 Density constraint smoothing by bell-shaped function
	11.5.3.3 Density constraint smoothing by inverse Laplace transformation
	11.5.3.4 Algorithms for nonlinear programs

	11.5.4 Extension to multilevel
	11.5.4.1 First choice
	11.5.4.2 Best choice

	11.6 Legalization
	11.7 Detailed Placement
	11.7.1 The Domino algorithm
	11.7.2 The FastDP algorithm

	11.8 Concluding Remarks
	11.9 Exercises
	Acknowledgments
	References
	R11.0 Books
	R11.1 Introduction
	R11.2 Problem Formulations
	R11.3 Global Placement: Partitioning-Based Approach
	R11.4 Global Placement: Simulated Annealing Approach
	R11.5 Global Placement: Analytical Approach
	R11.6 Legalization
	R11.7 Detailed Placement
	R11.8 Concluding Remarks

	Chapter 12: Global and detailed routing
	12.1 Introduction
	12.2 Problem Definition
	12.2.1 Routing model
	12.2.2 Routing constraints

	12.3 General-Purpose Routing
	12.3.1 Maze routing
	12.3.1.1 Coding scheme
	12.3.1.2 Search algorithm
	12.3.1.3 Search space

	12.3.2 Line-search routing
	12.3.3 A*-search routing

	12.4 Global Routing
	12.4.1 Sequential global routing
	12.4.2 Concurrent global routing
	12.4.3 Steiner trees

	12.5 Detailed Routing
	12.5.1 Channel routing
	12.5.2 Full-chip routing

	12.6 Modern Routing Considerations
	12.6.1 Routing for signal integrity
	12.6.1.1 Crosstalk modeling
	12.6.1.2 Crosstalk-aware routing

	12.6.2 Routing for manufacturability
	12.6.2.1 OPC-aware routing
	12.6.2.2 CMP-aware routing

	12.6.3 Routing for reliability
	12.6.3.1 Antenna-avoidance routing
	12.6.3.2 Redundant-via aware routing

	12.7 Concluding Remarks
	12.8 Exercises
	Acknowledgments
	References
	R12.0 Books
	R12.2 Problem Definition
	R12.3 General-Purpose Routing
	R12.4 Global Routing

	Chapter 13: Synthesis of clock and power/ground networks
	13.1 Introduction
	13.2 Design Considerations
	13.2.1 Timing constraints
	13.2.2 Skew and jitter
	13.2.3 IR drop and L middotdi/dt noise
	13.2.4 Power dissipation
	13.2.5 Electromigration

	13.3 Clock Network Design
	13.3.1 Typical clock topologies
	13.3.2 Clock network modeling and analysis
	13.3.3 Clock tree synthesis
	13.3.3.1 Clock skew scheduling
	13.3.3.2 Clock tree routing
	13.3.3.3 Zero-skew routing
	13.3.3.4 Bounded-skew routing
	13.3.3.5 Useful-skew routing

	13.3.4 Clock tree optimization
	13.3.4.1 Buffer insertion in clock routing
	13.3.4.2 Clock gating
	13.3.4.3 Wire sizing for clock nets
	13.3.4.4 Cross-link insertion

	13.4 Power/Ground Network Design
	13.4.1 Typical power/ground topologies
	13.4.2 Power/ground network analysis
	13.4.3 Power/ground network synthesis
	13.4.3.1 Topology optimization
	13.4.3.2 Power pad assignment
	13.4.3.3 Wire width optimization
	13.4.3.4 Decoupling capacitance

	13.5 Concluding Remarks
	13.6 Exercises
	Acknowledgments
	References
	R13.0 Books
	R13.2 Design Considerations
	R13.3 Clock Network Design

	Chapter 14: Fault simulation and test generation
	14.1 Introduction
	14.2 Fault Collapsing
	14.2.1 Equivalence fault collapsing
	14.2.2 Dominance fault collapsing

	14.3 Fault Simulation
	14.3.1 Serial fault simulation
	14.3.2 Parallel fault simulation
	14.3.2.1 Parallel fault simulation
	14.3.2.2 Parallel pattern fault simulation

	14.3.3 Concurrent fault simulation
	14.3.4 Differential fault simulation
	14.3.5 Comparison of fault simulation techniques

	14.4 Test Generation
	14.4.1 Random test generation
	14.4.1.1 Exhaustive testing

	14.4.2 Theoretical Background: Boolean difference
	14.4.2.1 Untestable faults

	14.4.3 Designing a stuck-at ATPG for combinational circuits
	14.4.3.1 A naive ATPG algorithm
	14.4.3.2 A basic ATPG algorithm
	14.4.3.3 D algorithm

	14.4.4 PODEM
	14.4.5 FAN

	14.5 Advanced Test Generation
	14.5.1 Sequential ATPG: Time frame expansion
	14.5.2 Delay fault ATPG
	14.5.3 Bridging fault ATPG

	14.6 Concluding Remarks
	14.7 Exercises
	Acknowledgments
	References

	Index

