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Nomenclature

Here the most important notations are gathered in alphabetical order, although each
notation is described in the text when first used.

Greek symbols

oy linear thermal expansion coefficient of the i-th layer

I6] angle of the curved composite beam

Yay Vozs Vyz shearing strains in Cartesian coordinate-system Oxyz
Yror Yoz Vrz shearing strains in cylindrical coordinate-system Oryz
€z, Eyy Ez normal strains in Oxyz

Ery Ep normal strains in Orpz

0 uniform temperature

Yo reference temperature

e angle of the radial distributed line load on curved beams
Ki shear correction factor of the i-th layer

IT total potential energy

Di mass density of the i-th layer

oy, O, normal stresses in Oxyz

o normal stress in Orpz

Tyz shearing stress in Oxyz

Tre shearing stress in Orpz

Oi cross-sectional rotation of the i-layer

® tangential coordinate in Oryz

wj j-th eigenfrequency of the composite beam

Latin symbols

A cross-section of the whole composite beam

A; cross-section of the i-th layer

0A1s common boundary of A; and A,

b; width of the i-th layer

B spatial domain occupied by the whole composite beam

B; spatial domain occupied by the ¢-th layer

0B common boundary surface of B; and By

c distance between C and Cy

¢ distance between C' and C;

C origin of the coordinate-system Oxyz, E-weighted centre of the
whole beam cross-section

C; centre of the i-th layer
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unit vectors of Oxyz

unit vectors of Oryz

elastic modulus of the ¢-th layer

distributed line load in Ozyz

distributed line load in Orpz

concentrated force as loading

7-th buckling load

shear modulus of the i-th layer

height of the i-th layer

Heaviside function

number of the layer

second moment of area of the i-th layer

slip modulus

length of the beam

distributed bending moment

total bending moment

bending moment as loading

internal bending moment in the i-th layer

total axial force

internal axial force in the i-th layer

interlayer shear force

radial coordinate in Orpz

radial coordinate of the outer boundary of the curved composite
beam

radial coordinate of the inner boundary of the curved composite
beam

radial coordinate of the common boundary of the layers of the
curved beam

interlayer slip

cross-sectional shear force of the curved composite beam

time

uniform temperature change

displacement field

horizontal displacement of the cross-section in Oxyz, radial dis-
placement in Orpz

strain energy

vertical displacement of the cross-section in Oxyz, tangential dis-
placement in Oryz

cross-sectional shear force

displacement in z direction

displacement of centreline of the i-th layer in z direction

work of the loading

horizontal coordinate of the cross-section

vertical coordinate of the cross-section

coordinate along the beam in Oxyz, coordinate perpendicular to
the plane of symmetry of the curved beam in Orpz



Chapter 1

Introduction

Layered composite structures, especially layered beams are widely applied in building and
bridge engineering since the advantages of the layers made of different elastic materials
can be well married, while their disadvantages can be reduced or eliminated. Therefore it
is very important to understand the mechanical behaviour of the layered composite beams
and the influence of the connection between the layers for the mechanical properties. In
some cases it is assumed that the connection is perfect both in normal and tangential
direction and this assumption provides satisfying results for these problems. The theory
of this kind of composite beams is well developed. However, in a lot of other cases it is
necessary to deviate from this assumption. Namely the beam components are generally
joined to each other by different shear connectors such as nails, studs, screws or rivets.
Because of the elastic deformation of these connectors two phenomena can occur among
the layers. In normal direction the beam components may be divorce and in tangential
direction an interlayer slip can happen. The experiments and measurements have proven
that the effects of these phenomena cannot be neglected in a number of cases. This thesis
is restricted to that problems when the connection is perfect in normal direction (the
divorce of the layers is not allowed) but there is interlayer slip in tangential direction.

One of the most commonly used configuration is shown in Fig. This type of
composite beam is widely applied in the bridge industry. Its cross-section consists of a
concrete slab with steel reinforcement and a steel joist. A large amount of studies and
researches, which we are going to outlined in Section [I.1, deal with this configuration
and its mechanical behaviour. Composite structures are also utilized as floor and wall
elements, e.g. timber-concrete elements composed of thin concrete plates attached to wood
studs by means of shear connectors. The common property of these structural elements is
the interlayer slip. Our analyses are not restricted to the above mentioned configurations.
The considered composite beam and the assumptions are going to appear at the start of
each corresponding chapter.

1.1 Literature review

The first analytical works analysing the behaviour of composite beams with weak shear
connection appeared in the 40’s and 50’s [IH3]. The pioneering and most cited work is
definitely paper by Newmark et al. [I]. Their model, which is called the Newmark’s model
in the literature, used the following assumptions (i) the layers have linear elastic mate-
rials, (ii) the layers separately follow the Euler-Bernoulli beam theory, (iii) the vertical
separation of the layers is not allowed. The problem was governed by a linear differen-
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Figure 1.1. Frequently used composite cross-section with interlayer slip.

tial equation of second order in the longitudinal force resisted by the top element, and
the other unknowns were the longitudinal force and the expression for moment along the
beam.

In the late 60’s, Goodman and Popov [4] further developed the Newmark’s model and
extended it for three-layered wood beams with interlayer slip. They deduced a differential
equation of fourth order in the deflection and also contained the expression of the moment
along the beam (the latter one is only unknown in the case of indeterminate beam). They
consider the problem with one concentrated force applied at mid span and two concen-
trated force at third points. Adekola [5] proposed a model which took into account the
vertical separation (it is also called uplift) of the layers and frictional effects. For the com-
putations Adekola applied the finite difference method to solve the problem numerically.
Other researchers further investigated the influence of the uplift [6H8]. They computed
the error caused by neglecting the uplift in the Newmark’s model and determined that
the effect of the uplift can be ignored since the order of this error is a few percent.

Girhammar and Gopu [9] proposed a formulation for the exact first- and second-order
analyses of composite beam-columns with partial shear interaction subjected to transverse
and axial loading. In this study the authors extended the Newmark’s model with taking
into account axial loading. The governing differential equation was of the sixth order in
vertical displacement. Ecsedi and Baksa [10] also deduced the governing equation of the
problem in terms of the slip and the vertical displacement. Previous researches including
the work of Newmark et al. [I] always assumed no axial force on the composite beam.
Girhammar and Pan [I1] developed a model for the exact and approximate analysis for
composite beams with interlayer slip subjected to general dynamic load.

Some study dealt with the behaviour of continuous composite beams with interlayer
slip in the linear-elastic range [12-14]. Plum and Horne [I2] investigated a two-span
continuous beam subjected to two equal point loads at the centres of the two span. They
proposed closed-form solutions for the deflection, for the longitudinal force in the top
element, for the slip, for the slip strain and for the redundant moment at the internal
support. A two-span and a three-span continuous beam were analysed by Jasim [13].
The two-span continuous beam was subjected to both distributed line load and point
loads at mid-spans, whilst the three-span continuous beam had a point load at the centre
of the internal span. Jasim and Atalla [14] provided a simplified solution to determine
the deflection of a continuous composite beam. However, the formulation can be derived
for the continuous beams based on the Newmark’s model, the computations can easily
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become lengthy and difficult.

Interesting fact that the significant applications of the finite element method (FEM)
for the problem of composite beams with partial shear interaction were carried out around
the millennium, although the behaviour of this type of beams had been investigated for
50 years. The finite element satisfying the least regularity to describe the partial shear
interaction problem is the 8 degrees of freedom (dof) finite element, for which the length-
wise interpolation functions are cubic for the transverse deformation and linear for the
axial deformations defined at the centroids of the top and bottom elements. Application
of this element leads to a curvature locking problem, which causes numerical instabili-
ties for high values of the stiffness of the shear connection [15] [16]. The consequences of
this phenomenon have been described by Prathap and Naganarayanan [I7]. The spuri-
ous oscillatory trends that occur in related multi-field problems in engineering numerical
methods have been quantified by Dall’Asta and Zona [18]. Some researchers examined
the possibilities to avoid the locking phenomenon. Dall’Asta and Zona [16], 18] proposed
to introduce further nodes at midspan of the element. A 10dof element was provided by
Daniels and Crisinel [19]. Previously Arizumi, Hamada and Kajita considered a 12dof
finite element in [20]. Dall’Asta, Leoni and Zona further increased the degrees of freedom
to 16 [21), 22]. Salary, Spacone et al. [23] 24] proposed a finite element formulation based
on the force method. Ayoub and Filippou [25] 26] derived displacement-stress mixed el-
ements. Dall’Asta and Zona [27] also considered the possibility of utilizing a three-field
mixed formulation.

Faella et al. |28, 29] developed a stiffness element with 6 dof which are the vertical
displacement, the rotation and the slip at both ends. To obtain the stiffness matrix the
flexibility matrix was inverted for the case of a simply supported beam. The flexibility
coefficients had already been derived by Consenza and Pecce [30]. The determination of
the stiffness matrix based on the Newmark’s model, thus this method is able to provide
the same results as the solution of the governing equation of the partial shear interaction
problem. All the above mentioned study dealt with the problem of composite beams
with interlayer slip in linear-elastic range. In this thesis the problem of the considered
composite beams is also analysed in the linear-elastic range.

Therefore we note that a number of studies investigated the problem of composite
beams with weak shear connection by means of non-linear modelling but in the following
only the significant publications are mentioned. Many researchers further extended the
Newmark’s model taking into account material non-linearities. Several tests have been
carried out on simply supported and continuous beams in order to compare the real
behaviour of the beams with the modelling. Test results have been published in [31-
34]. Some investigators analysed the behaviour of composite beams at ultimate loads
only [35 B6]. Yam and Chapman [37] proposed a modelling method taking into account
material non-linearities based on the Newmark’s model. For the solution of the problem
a step-by-step method of numerical integration was used. They utilized the results in
[38, B9]. The ductility of composite beams was investigated by Rotter and Ansourian
[40, [41]. Ansourian 3] introduced a finite element technique including realistic material
properties for steel and concrete but the solution did not provide a general and robust
technique. Finite difference method was applied in [42, [43]. In these studies the material
non-linearities were assumed only for the shear connectors, the material of the layers
behaved in linear-elastic way. A mixed formulation was derived by Oehlers and Sved [44].
They assumed that the beam layers behaved elastic, whilst the connection was plastic.
Fabbrocino et al. [45] derived a formulation to analyse the behaviour of a simply supported
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composite beam (shown in Fig. in the sagging moment region. During the solution
they used the finite difference method. These authors further developed the considered
formulation to extend it to the hogging moment region [46]. They also assumed interlayer
slip between the concrete and the steel reinforcement in the top layer. In [47] the authors
had analysed a continuous beam with the previously developed method, and one year later
they also published a study on the ductility of composite beams in the hogging moment
regions [48].

The composite beams made of a concrete slab combined with a steel joist are the most
frequently used in the bridge and building industry. Amongst these type of composite
beams perhaps the most significant one is shown in Fig. It follows that many works
deal with steel-concrete composite beams including the effect of the time-dependent be-
haviour of concrete taking into account the interlayer slip. The thesis is not restricted to
this pair of materials and does not consider the time-dependent behaviour of concrete,
therefore only the most important publications are mentioned in the following. Brad-
ford and Gilbert [49] applied a relaxation solution for the steel joist and the so-called
age-adjusted effective modulus method for the concrete assuming full shear interaction
between the layers. The same authors further developed their model with the influence of
the partial shear interaction in [50, [5I]. Tarantino and Dezi [52] proposed a new formu-
lation based on two discretization, one in the time domain and one in the spatial domain
along the beam axis. They used the step-by-step procedure to model the time-dependent
behaviour of concrete. The same authors further developed the previous study for con-
tinuous beams applying the flexibility method [53], [54]. This method was used in [55]
including simplified creep models, such as the age-adjusted effective modulus method, the
effective modulus method and the mean stress method. Few years later Dezi, Leoni and
Tarantino [56] carried out a comparison between their previously published models. They
found that the age-adjusted effective modulus method provided good results under static
actions, while shrinkage effects should be modelled by dint of the mean stress method.
A lot of investigators utilized FEM solutions to describe the time-dependent behaviour
of concrete, e.g. [57H60]. The only closed form solution for the problem of steel-concrete
composite beams was proposed by Mola et al. [6I]. They used the flexibility approach
for a simply supported beam with various loading conditions and the behaviour of con-
crete was modelled by the age-adjusted effective modulus method. Numerical models
[62] and stiffness element [29] were also investigated for the problem of time analysis of
steel-concrete composite beams with partial shear interaction.

An excellent thesis was carried out by Ranzi [63] on composite beams with partial
shear interaction. The author utilized and further developed several models mentioned
above. Namely general solution was derived for two- and for m-layered composite beams
with interlayer slip in linear elastic range. Some stiffness elements were also described to
analyse the problem of steel-concrete composite beams. The author summarized several
theories of material non-linearity which were also applied. Finally time analyses were
introduced including the time-dependent behaviour of concrete assuming both full and
partial shear interaction between the layers. The steel-concrete composite beam analysed
by Ranzi had the cross-section shown in Fig. [[.Il The author also provided a detailed
and useful literature review.

Other beam theories were adopted for investigation of composite beams with interlayer
slip as well. The Timoshenko beam theory was used in [64]. Murakami [64] formulated
boundary value problems by means of the principle of virtual work. Combining the
development of finite elements with the Timoshenko beam theory was also analysed in
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[65H70]. Recently several works have also revealed utilizing higher order beam theories
for the problem of composite beams with partial shear interaction [7TH74].

There exist several works in connection with the dynamic analysis of composite beams
with interlayer slip [II, [75H78]. An exact and an approximate analysis of composite
members with partial interaction and subjected to general dynamic loading were presented
by Girhammar and Pan [11]. Adam et al. [75] analysed the flexural vibration of composite
beams with interlayer slip using the Euler-Bernoulli beam theory. The governing sixth-
order initial-boundary value problem was solved by separating the dynamic response in a
quasi-static and in a complementary dynamic response. Heuer and Adam extended the
previous model for composite beams made of piezoelectric materials in [76]. The partial
differential equations and general solutions for the deflection and internal actions and the
pertaining consistent boundary conditions were presented for composite Euler—Bernoulli
members with interlayer slip subjected to general dynamic loading in [77]. Wu et al. [78]
derived the governing differential equations of motion for the partial-interaction composite
members with axial force. All these works neglected the influence of the axial and rotary
inertia.

The elastic stability problems of composite beams with weak shear connection were
also investigated [79-83]. Challamel and Girhammar [79] analysed the lateral-torsional
stability of vertically layered composite beams with interlayer slip based on a variational
approach. An analytical method was presented for the delamination buckling using the
Timoshenko beam theory by Chen and Qiao [80]. Grognec et al. [8I] utilized the Tim-
oshenko beam theory as well. Schnabl and Planinc [82] presented a detailed analysis of
the influence of boundary conditions and axial deformation on the critical buckling loads
and the same authors took into account the effect of the transverse shear deformation on
the buckling [83].

Although a lot of papers were published in connection with layered curved beams with
perfect shear connection, only a few works counted the influence of the interlayer slip [84}-
86]. For out-of plane deformation and loads the time dependent creep and shrinkage
behaviour of horizontally curved steel-concrete composite beams with partial shear inter-
action were analysed by Liu et al. [84]. Erkmen et al. [85] developed a total Lagrangian
finite element formulation for elastic analysis of steel-concrete curved composite beams.
A three-dimensional finite element model is used to simulate composite steel-concrete
curved beams subjected to combined flexure and torsion [86]. Tan and Uy gave a detailed
description of the torsion induced vertical slip [86].

1.2 Objectives

According to the literature review one can see that a number of investigators dealt with
the static analysis of composite beams with interlayer slip to determine the governing
equation of the problem. In many cases the analysis led to a higher order differential
equation the solution of which is often difficult and cumbersome. Thus it is my

Objective 1 to provide an analytical method for the solution of the governing equation
the application of which is handy and needs less computations. In connection with this
objective I draw up the following items:

e to write the governing equation of the problem in terms of the slip and shear force
function,

10
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e to deduce the so-called fundamental solutions for the problem by means of both the
Euler-Bernoulli and the Timoshenko beam theory,

e to apply the developed solutions for various beams and boundary conditions and
compare with results derived from other studies and from FEM solution.

The overview of the literature shows the lack of researches in accordance with com-
posite beams with interlayer slip under the action of thermal loading. My

Objective 2 is to take into account the effect of thermal loading with the help of the
following items:

e to derive the governing equation of the problem in terms of the slip and shear force
function using the Euler-Bernoulli beam theory and the Duhamel-Neumann’s law,

e to determine the solution of the governing equation with various boundary condi-
tions,

e to provide formulae for the computation of the stresses.

A very important question is the stability analysis of composite beams with weak shear
connection.
Objective 3 is to analyse the buckling of the composite beams, namely

e [ aim to determine the buckling load based on the principle of minimum potential
energy,

e [ also intend to deduce the buckling load by dint of exact analysis to compare with
the variational method,

e My further purpose is to give the function of the buckling load in terms of the slip
modulus.

However, there are many studies on vibration analysis of composite beams in relation
to the free flexural vibration, these works neglect the effect of the rotary and axial inertia.
My

Objective 4 consists of the following items:

e to deduce the equations of motion including the d’Alembert forces taking into ac-
count the rotary and axial inertia

e to provide a closed form solution for the eigenfrequencies of the composite beam.

The literature contains a number of researches analysing layered curved composite
beams with perfect shear connection, but there exist only a few works on the effect of the
partial shear interaction. The

Objective 5 of the thesis includes

e developing an analytical method based on the principle of minimum potential energy
to describe the behaviour of curved composite beams with interlayer slip,

e writing a Rayleigh-Betti type reciprocity relation for the considered curved compos-
ite beams.

11



Chapter 2

Analytical solutions for two-layered
composite beams with interlayer slip

In this chapter we are going to introduce a novel analytical method for two-layered com-
posite beams with interlayer slip to provide the deflection, the rotation, the slip, the
bending moment, the shear force and the normal force function of the considered beam.
In the first case it is assumed that the beam components separately follow the require-
ments of the Euler-Bernoulli hypothesis, while in the second case the beam components
satisfy the requirements of the Timoshenko beam theory. Each method is based on the
fundamental solutions.

2.1 Fundamental solutions for an Euler-Bernoulli com-
posite beam

This section deals with two-layered beam with interlayer slip giving an analytical solu-
tion for the deflection, the cross-sectional rotation, the slip and the internal forces. The
presented solution is based on the fundamental solutions. The fundamental solutions sat-
isfy all the field equations and their initial values are zero except only one of them. A
linear combination of the fundamental solutions which are fitted to the given loading and
boundary conditions gives the solution of the considered static equilibrium problem.

2.1.1 Governing equations

The considered two-layered composite beam made of linear elastic materials is shown
in Fig. 2.0 The plane yz is the plane of symmetry for the geometrical and material
properties and the loading conditions. The cross-section of the beam component B; is
A; (1 = 1,2) and the common boundary surface of By and By is 0By = dA;2 x (0, L)
as illustrated in Fig. 2.1l Here, L is the length of the two-layered beam and 0A;s is the
common boundary of A; and A,. It is assumed that the connection in normal direction
between B; and Bs is perfect, but in the displacement it may have jump in axial direction
which is called interlayer slip. The origin O of the rectangular coordinate system Ozyz
coincide the E-weighted centre of the cross-section at z = 0 [I0]. The centre of A; is C;
(1 =1,2) and Ej; is the Young modulus of the layer B;. It is known, that

AlEl
(AE)"

01:)5’—671)‘:14 2c 02:‘5_67;‘: (2.1)

N5
(AE)

12



2. CHAPTER. ANALYTICAL SOLUTIONS FOR TWO-LAYERED COMPOSITE BEAMS
WITH INTERLAYER SLIP
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Figure 2.1. Two-layered beam with imperfect shear connection.

<AE> = AlEl + AQEQ, Cc =1+ Co. (22>

According to the Euler-Bernoulli beam theory for the displacement field we have

u($7 y? Z) = u($7 y? Z)ex + v(x7 y? Z)ey + w(x7 y? Z)ez, (2'3)

d
u =0, v =v(2), w(z,y, z) = wi(z) — yd_Z’ (x,y,2) € B;, (i=1,2), (2.4)

and the cross-sectional rotation can be computed as
=——. 2.5
p (2.5)
Utilising the constitutive equations of elasticity and the Hooke’s law we obtain

dw; d%v

dz y@

0,=Fe,=E; ( ) , (x,y,2) € B;, (i=1,2). (2.6)
The analysis is restricted to the case of absent axial forces [II, 9], 0] 64, 87], i.e. N =0 so
we get

N:N1+N2:/

o, dA + / 0. dA = 0. (2.7)
Ay As

The interlayer slip s is defined as the difference of the axial displacements of the layers
along the boundary surface 0B, [10]

s(z,y, z) = wi(z) — wa(z), (x,y,2) € 0Bya. (2.8)
The interlayer shear force can be written in the next form

Q = ks, (2.9)

where k is the slip modulus which represents the stiffness of the connection [1}, 9l 10, 64]
87, 88| The value of the slip modulus can alter from 0 to co. If the & is equal to 0 () = 0)
then there is no connection between the layers in axial direction, and when k = oo (s = 0)
the connection is perfect. The units of () and £ are

@]

_ force M= force 5 (2.10)
length (]ength)

13



2. CHAPTER. ANALYTICAL SOLUTIONS FOR TWO-LAYERED COMPOSITE BEAMS
WITH INTERLAYER SLIP

By means of Eq. (2.6) the internal forces and moments in the layers are defined as

dwy d%v
N1 / O'ZdA = ElAl (E - Cl@) s (211>

dw,y d%v
/ 0'sz E2A2 (E + CQ@) s (212)

dw d?v
/ O'ZdA = ClElAld_l - IlEld 5 (213)
dw d?v
/ yO'ZdA = _CQEQAQd_ZQ — [2E2d 5 (214)
where
/ ydA = ClAl, / ydA = —CQAQ, / y2dA = [i, (’l = 1, 2) (215>
Ay Ao Ai

Egs. (2.11H2.14]) show that the normal stresses acting on cross-section A; (i = 1,2) are
equivalent a force-couple system (N;, M;) (i = 1,2) at C' [10]. The total normal force and
bending moment are as follows

d d

N =N +N,= B A 4 ByA, 2, (2.16)

dz dz’

d d d2v
M=M + M= clElAl% - cZEQAZ% - {IE}—. (2.17)
z
Here,

(IEY = LE, + LE,. (2.18)

Following the method applied in [10] it can be proven that if N = 0 then we have
dw1 . A2E2 ds . C1 ds

s — == 2.19
dz  (AE)dz cdZ’ (2.19)
dws A E, ds e ds
- _ - — 2.2
dz (AFE) dz cdz (220)
Using of Eqgs. (2.16)), (2.19) and (2.20)) we obtain
ds  d*
N1 = —NQ = <AE>_1 (& — C@) s (221)
where A AR
(AE)_, = 1<2—E§2. (2.22)
Substitution of Egs. (2.19), (2.20)) into Eq. (2.17) gives
ds 2
M =c(AB)_, o - {IE} (2.23)

Application of the condition of equilibrium for forces in axial direction of beam component
AB, gives [10] (Fig. [2.2)

ﬂ ~Q=0. (2.24)
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Figure 2.2. Horizontal equilibrium of a small beam element AB;.

-

AB
- M + %Az

vl
g ‘%—’
VAB2 V—I—%—‘Z/Az
z z+ Az

Figure 2.3. Shear force, bending moment and applied vertical load on a small beam element
AB.

Combination of Eq. (2.24) with Eqs. (2.9) and (2.21)) yields

d?s  dd

Analysing the vertical and rotational equilibrium condition of a small beam element AB
we can write two another equilibrium equations [10] (Fig. which are as follows

dVv

—_— =0 2.26
o+ fy=0, (2.26)
dM

— =V =0. 2.27
5 (2.27)

By means of Egs. (2.25) and (2.27) we can formulate the governing equation in terms of
the slip and the shear force function

d?s c
—0? V= 2.2
e s+ <]E>V 0, (2.28)

where

E{IE}
(IE)(AE)_,
In order to formulate the possible boundary conditions we consider the virtual work of
the section forces and section moments on a kinematically admissible displacement field

(IE) = {IE} — *(AE)_,, Q= (2.29)

u,=10(z)e, + (ﬁ;, (z) +yo (z)) e, (r,y,2)€B;, (i=12). (2.30)
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A detailed computation gives
W = o, (2) dA +/ 0,9 (2) dA + / Yo, ¢ (z)dA + / Ty:0 (2) dA =
A As A A (2.31)
= Nyt + Notig + Mo+ Vi = N5+ Mo+ Vo,
where

From equation ([2.31)) we obtain the possible combinations of the boundary conditions at
the end cross-section

V or v may be prescribed, (2.33)
N; or s may be prescribed, (2.34)
M or ¢ may be prescribed. (2.35)

In this thesis we are going to introduce the boundary conditions according to the above
mentioned formulation.

2.1.2 Fundamental solutions

Following we are going to define the fundamental solutions. The indexes E'B refers to the
fundamental solutions belonging to the Euler-Bernoulli beam theory. All fundamental
solutions v? = vFP(z), oFP = ¢FP(2), sz sj B(z), MFB = MFB(z), VEB = VEB(z),
NEE = NEB(2), (j = 1...7) satisfy Eqs. (2 R5), @-21), (]2 23), (2.24), (. 26D ([2.27) and
(2.28]) with the next initial conditions

v (0) =1, 17(0) = s77(0) = M™% (0) = V{"7(0) = Ni1%(0) = 0, (2.36)
20 (0) =1, 2 (0) = 557(0) = MyP(0) = V5°7(0) = Ni” (0) = 0, (2.37)
sy (0) =1, va(O) = 53(0) = My (0) = V575(0) = Ny5°(0) = 0, (2.38)

MEP0) =1, v?(0) = 677(0) = s77(0) = V% (0) = Ni3°(0) =0, (2.39)

VEP0) =1, 07%(0) = ¢57(0) = 557(0) = M57%(0) = Ni5°(0) =0, (2.40)

Nig(0) =1, v57(0) = 657 (0) = 557(0) = M™(0) = V"#(0) =0, (2.41)

From the definitions of the fundamental solution we obtain
vfP(z) =1, ¢7P(2) = s77(2) = MPP(2) = Vi"P(2) = Nf{P(2) =0, 0<z, (242)
v P(z) ==z, ¢FP(2) =1, s3P(z) = MyP(2) = VPP(2) = Nj3P(2) =0, 0<z,

(2.43)
c(A sinh Q2
0B (2) = <{I§>}_1 ( };29 - z) : 0<z, (2.44a)
A

EB(2) = <{I—§’>} (coshQz —1), 0<z, (2.44b)
EB(2) = cosh Qz, 0<z, (2.44c)
MfB( )=0, 0<z, (2.44d)
VPP (2) = 0<z, (2.44e)
NEB(2) = —smh Qz, 0<z, (2.44f)
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62 <AE> z2
EB -1
= —————— (1 —coshQz) — < 24
Uy (Z) QQ{IE}<IE> ( cos Z) Q{IE}’ >z ( 5&)
2
EB (AE) ;. z
= —————sinhQz 4+ —— < 2.45b
77(2) Q{[E}([E>Sm Z+{[E}’ 0<z, (2.45b)
siB(2) = g (§E> sinh Qz, 0<z, (2.45¢)
MPP(2) =1, 0<z, (2.45d)
VEB(2) =0, 0<z, (2.45¢)
AE
NEB(2) = C<{[l;;1 (1 — coshQz), 0<z, (2.45f)
2 : 3
EB ¢ (AE) |, [sinhQz z
_ _ L < 2.4
s = e ET IR 9 teuEy VSF (2.46a)
02 <AE> z2
EB -1
= hQz—1) — ——— < 2.46b
s & = —maEyae) Y TggEy 054 (2.46b)
sEB(z) = ﬁ (coshQz —1), 0<z, (2.46¢)
MEB(2) = —2, 0<z, (2.46d)
VIPP(z) = -1, 0<>2, (2.46¢)
AE
NEB(2) = % (Qz —sinh Qz) , 0<z, (2.46f)
EB ¢
v (2) OZ(I1E) (coshQz —1), 0<z, (2.47a)
eB(2) = ) <§E> sinh Qz, 0 <z, (2.47Db)
Q
sgB(z2) = ¥ sinh Qz, 0 <z, (2.47¢)
MEB(z)=0, 0<z, (2.47d)
VEB(2)=0, 0<z, (2.47¢)
N[B(2) = cosh Qz, 0<z, (2.47f)

Figure illustrates the applied loads for the fundamental solution MfZ(0) = 1 and
VFB(2) = —1. For uniformly distributed force shown in Fig. the definition of the
fundamental solution is as follows

v (0) = ¢77(0) = s77(0) = M7 (0) = V777(0) = Ny7°(0) = 0. (2.48)

Under the initial conditions ([2.48)) the solutions of Eqgs. (2.5)), (2.21)), (2.23), (2.24)), (2.26),
E.27) and (225) are
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T?/ T@/ MEB(z) = —2
i AW A h\ (I
P | LEE
MFP(0) = MEP(z)  VEB(0)=—-1 VFB(z)=—1

Figure 2.4. Illustration of applied load for the fundamental solutions.

Ay
YL

Y

Figure 2.5. Uniformly distributed load.

2 2.2 4
EB ¢ (AE)_, 0%z z
_ _E s < .
v77(2) A {IE} (1E) cosh 2z 5 1 +24{[E}’ 0<z, (2.49a)
2 3
EB c(AE)_, . z
=——————— (sinhQz — Qz) - ——— < 2.49h
c sinh Q2
sEB(2) = (1) ( o z) , 0 <z, (2.49¢)
2
MEB(2) = —%, 0<z, (2.49d)
VEB(2) =2z, 0<z, (2.49¢)
B c(AE)_, 0222
= _—= — — < z. .
N2 (2) OP{TE} cosh 2z 5 1), 0<z (2.49f)

For intermediate loads such as in the case shown in Fig. the fundamental solutions
can be expressed by the application of Heaviside functions

X(z) = FlH(z —a))XFB(z —ap) + MQH(Z —a0) X PP (2 — ag)+
+f3[H(z —a3) — H(z — ay)] XEP(z — a3), 0<z<1L,

where X (z) may be vP'P(2), PP (2), sFP(2), MJP(2), VPP (2) and N3P (2), (j = 4,5,7)

and
0, f0<z<
Hiz—a)={ — =75 (2.51)
1, ifa<z<o.

— = — - >
z=a; Z=0a zZ=as z all% -
7
) Z
z=1L

Figure 2.6. Intermediate applied loads.
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2.2 Fundamental solutions for a Timoshenko composite
beam

In this section we provide the fundamental solutions for composite beams with weak shear
connection based on the Timoshenko beam theory.

2.2.1 Governing equations

The considered beam is shown in Fig. The basic assumptions are the same as in
section 2.1 viz. the cross-section of the beam component B; is A; (i = 1,2) and the
common boundary surface of By and By is 0B12 = 0A;5 X (0, L) as illustrated in Fig.
Here, L is the length of the two-layered beam and dA;5 is the common boundary of A;
and As. The axis z is located in the E-weighted centre line of the whole composite beam
[10]. The plane yz is the plane of symmetry for the geometrical and material properties
and loading conditions. The centre of A; is C; (i = 1,2) and C denotes the E-weighted
centre of the whole cross-section A = 4; U A, (Fig.[2.1). In this case Eqs. and
are valid as well. It is assumed that both beam components follow the requirements of the
Timoshenko beam theory with a common cross-sectional rotation ¢ = ¢(z). According to
this assumption the deformed configuration of the two-layered shear deformable composite
beam with imperfect shear connection can be described by the next displacement field

u = ue, + ve, + we,, (x,y,2) € B, (2.52)

u=0, v=uv(z2), w = w;i(2) + yo(2), (r,y,2) € By, (1=1,2). (2.53)

In Eq. e:, e, and e, are the unit vectors of the coordinate system Ozyz. The
interlayer slip is defined by Eq. and Eq. represents the interlayer shear force in
this case, too. Application of the strain-displacement relationship of the linearised theory
of elasticity gives [89] Q0]

€3 =€y = Yoy = Yauz = 0, (x,y,2) € B, (2.54)

dw; do dv .
z = ) z = T_ ) » Yo GB“ :172 ) 2.55
where €,, €y, €, are the normal strains, vy, V22, 7y- are the shearing strains. From the
Hooke’s law for the normal stress o, we get

3

dw; do .
o, Ez<dz +ydz>, (x,y,2) € B;,  (1=1,2) (2.56)

The following internal forces and moments are defined

dw d
Ny = /A1 0.dA = FE1A, (d_zl + Cld_f> ; (2.57)
dw d
NQ = /A2 O'ZdA = E2A2 (d—; — ng—q:) s (258)
M, = / yo.dA = 01E1A1% + ]171-71d—¢7 (2.59)
Ay dz dz

19



2. CHAPTER. ANALYTICAL SOLUTIONS FOR TWO-LAYERED COMPOSITE BEAMS
WITH INTERLAYER SLIP

d d
M,y = / yo.dA = —CzEzAzﬂ + E212—¢, (2.60)
Ay dz dz

Here,

/ ydA = ClAl, / ydA == _02A27 / y2dA = Ii, (Z == ]., 2) (261)
A1 A2 Az

The cross-sectional shear force V; is obtained as
dv ,
‘/i = HiGiAi’sz = KszzAz <d— + Qb) s (Z = 1, 2), (262)
z

where (; is the shear modulus of beam component B; and k; is the shear factor of cross-
section A; (i = 1,2). Egs. show that the normal stresses acting on cross-section
A; (i = 1,2) are equivalent a force-couple system (V;, M;) (i = 1,2) at C' [10]. The total
normal force and bending moment are as follows

N = Ny + Ny = ByA, 2y gy, 902 (2.63)
dz dz
o . dw1 dw2 dgb
M = M1 + M2 == CIEIAIE — CQEQAQE + {[E}& (264)

The meaning of {IE} is defined by Eq. (2.18). The analysis of the shear deformable
composite beam with interlayer slip is restricted to the case of absent axial force, i.e. N =
0. Following the method applied in [I0] it can be proven that if N = 0 then we have

dw1 . A2E2 ds . C1 ds

1 = =" 2.65
dz  (AE)dz cdZ’ (2.65)
dU)Q A1E1 ds Co ds
S e R 2.66
dz (AE) dz c dz’ (2.66)
Utilizing of Egs. (2.57)), (2.58)) and (2.64}{2.66|) we obtain
ds do

The definition of (AE)_, is represented in Eq. (2.22)). Substitution of Egs. (2.65]), (2.66)

into Eq. (2.64)) gives
ds

-1 &
Application of the condition of equilibrium for forces in axial direction of beam component

By provides [10] (Fig.

dNV, dNV, d?s d?¢
AN oM e amy (0 L2 s —o. 2.
dz @ dz s =(AE) (dz2 * ‘a2 s=0 (2.69)

M=cap) B4 {]E}%. (2.68)

According to the vertical and rotational equilibrium condition of a small beam element
AB we can write two another equilibrium equations [I0] (Fig. [2.3]) which are the same as

in Egs. (2.26) and ([2.27)). The total cross-sectional shear force can be described as
dv
V =Vi+V, = (kGA) (@ + ¢) ) (2.70)
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where
</£GA> = /ﬁ?lGlAl + KQGQAQ. (271)
From Egs. (2.26)), (2.27) and (2.68) it follows that
d?s d2¢
V(z) =c(AE)_, p — + {IE} (2.72)

Application of Egs. (2.29), (2.69) and (2.72)) the governing equation can be written in the
next form L4 v

— —Q? = 0. 2.73

= T (2.73)

2.2.2 Fundamental solutions

Here, we provide the fundamental solutions for the case of using Timoshenko beam theory
which is denoted by the indexes T'. All fundamental solutions v] = v} (z), ¢ = T( )
ST = sT(2), MT = MT(2), VI = VT (z) and NI, = NE(2) (j =1...7) Dtisty B, 2.29),
(2.27), (|2 67), (|2 68), (2.70) and (2.73)) with the next initial conditions

v (0)=1,  ¢1(0) =s57(0) = M{(0) = Vi (0) = N}y (0) = 0, (2.74)

2(0)=1,  v;(0) = 53(0) = My (0) = 1, (0) = Njp(0) = 0, (2.75)
s3(0)=1,  v3(0) = ¢5(0) = M5 (0) = V5 (0) = Ny3(0) =0, (2.76)
Mi(0)=1,  vi(0) =07(0) = 51 (0) = V,(0) = Ny, (0) =0, (2.77)
VE(0) =1,  v5(0) =05(0) = 55(0) = M5 (0) = Ny5(0) =0, (2.78)
Nig(0) =1, v5(0) = ¢ (0) = 55 (0) = Mg (0) = V" (0) =0, (2.79)

From the derivation of fundamental solutions we can determine that the majority of
the fundamental solutions obtained by using the Euler-Bernoulli and Timoshenko beam
theory are identical except few functions. The fundamental solutions are as follows

() =vfP(2), oT(z) = ¢FP(2), () = sTP(2),

MI(z) = MPP(2), VI(2) =VFP(), Ni()=NEPG), 0<z (280)
() =vf(2), 5(z) = ¢57(2), sf(2) = s5P (),

MI(:) = MP(2), V() =VIP(2), Np(:) = NEP(), 0<z  (28D)
(@) =vf(2), () =¢57(2), (=) =557 (),

MI(:) = M{P(2), V() =VFP(), NG()=NEPG), 0<z  (282)
(@) =uf(2), () =), s[()=si"()

MI(:) = MPP(), Vi) = V() NG =NEPG), 0<z (283)

B =) - g HE) =66, ) =s7),

MI(:) = MPP(2), V() =VPP(2), NE() =NEP(), 0<z  (284)
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T?J T?J MI(z) = —=z
i N, A N,
Az | LAE
M{(0)=1 M (z) VI0)=-1  VI(z)=-1

Figure 2.7. Illustration of applied load for the fundamental solutions.

<

6 (2) =v5"(2), 05(2) =" (2), s5(2) =s6"(2),

Mg (2) = Mg®(2), Vi (2) =V5"%(2), Nig(z) = Nyg°(2), 0<z. (2.85)

Figure illustrate the applied loads for the fundamental solution M7 (z) = 1 and
V2 (z) = —1 which are assigned as in the case using the Euler-Bernoulli beam theory.

For uniformly distributed force shown in Fig. the definition of the fundamental solu-
tion is as follows

v7 (0) = ¢7(0) = 57(0) = M7 (0) = V7 (0) = Ny7(0) = 0. (2.86)

Under the initial conditions (2.86]) the fundamental solutions are

2’2

vr (2) :U%EB(Z)_W’ 07(2) = d7"(2), s7(2) =577 (2),

M7 (2) = M7P(2), Vi'(2) =V7iP(2), Npp(2) = Ni?°(2), 0<z (2.87)

For intermediate loads such as in the case shown in Fig. 2.6/ the fundamental solutions can
be expressed by the application of Heaviside functions similarly to the case of employing
the Euler-Bernoulli beam theory

X(z) = FlH(z — al)Xg(z —ay) + MQH(Z —a0) X} (2 — ag)+
+ f3[H(z — a3) — H(z — a4)] X7 (2 — a3), 0<z2<1L, (2.88)

where X7 (z) may be v/ (2), ¢1(2), s, (2), M](2), V]"(2) and N{;(z), (j = 4,5,7) and
Eq. represents the Heaviside function.

Here we note that we have investigated a Timoshenko composite beam (5) of which
layers have different cross-sectional rotations (¢ # ¢2).

2.3 Numerical examples

2.3.1 Simply supported composite beam

This example is taken from the paper by Schnabl et al. [69]. The simply supported two-
layered beam with imperfect shear connection and its cross-section are shown in Fig.
The following data are used: h; = 0.2m, hoy = 0.3m, b = 0.3m, L = 2.5m, F; =
1.2 x 10'°Pa, Ey = 1.2 x 10!°Pa, G; = 8 x 108Pa, Gy = 1.2 x 10° Pa, k = 2.43 x 10° Pa,

k1 = ke = 2, fy(z) = —f = —50000N/m. In this case the boundary conditions are as
follows
v(0) = M(0) = Ny (0) =0, (2.89)
v(L) = M(L) = Ny(L) =0, (2.90)
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Figure 2.8. Simply supported composite beam.

It is evident that

L
2 7

and ¢(0), s(0) are obtained from Eq. (2.90). Using the Euler-Bernoulli beam theory the

following equations can be derived from the boundary conditions

V(0) = (2.91)

v(L) = ¢pp(0)vEB(L) + spp(0)viB(L) + fTLU5EB(L) + fuEB(L) =0, (2.92)
Ni(L) = spp(0)NEP(L) + %N@B(L) + fNEB(L) = 0. (2.93)

By means of the Timoshenko beam theory we obtain similar equations

o(L) = 6r (O3 (D) + sr(Of (D) + LT (L) 4 pF (D) =0, (299
Nu(L) = se(O)NE(D) + LENE(L) + FNE(L) = 0. (2.95)

Substituting the data into Egs. (2.93)) and ([2.95)) yields a linear equation with one unknown
parameter which is sgp(0) and s7(0). A simple computation gives

spp(0) = s7(0) = s(0) = —0.00076544 m (2.96)

since the N{3” (j = 2,3,5,7) functions are the same as N (j = 2,3,5,7). From the
Egs. (2.92)) and (2.94) the value of ¢gp(0) and ¢7(0) can be received by means of s(0).
However, the functions v/’" and v] (j = 2,3,5,7) differ from each other we get

¢e8(0) = ¢r(0) = ¢(0) = 0.00307252. (2.97)

The solution of the considered boundary value problem can be represented in terms of
fundamental solutions as

L
X(2) = 6(0)a(2) + (0)X3(2) — LEX(2) + 1402,
(X =", 6"0, 558, MP2 VEE NEP or o, ¢, 5T, MT, VT, NY).

Figures 2.9 2.10] 2.11] 2.12] 2.13] and illustrate the graphs of deflection, cross-

sectional rotation, slip, bending moment, shear force and axial force in the layer B,
respectively. We also investigated the considered simply supported beam by means of
FEM to validate our results. For this analysis we used the FEM software Abaqus. The

(2.98)
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Figure 2.9. The deflection functions.
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Figure 2.10. The rotation function.
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Figure 2.11. The slip functions.
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M(z) [Nm] -20000
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Figure 2.12. The bending moment function.

Table 2.1. Comparison of deflection and slip.

Paper [69] (FEM) Euler-Bernoulli beam Timoshenko beam FEM (Abaqus)

v(L)  —0.00271026 —0.00240005 —0.00270053 —0.00263727
s(0) —0.00077293 —0.00076544 —0.00076544  —0.0007321886

beam was modelled as a plane stress problem with 50000 elements which were 4-node
bilinear plane stress quadrilateral elements (their code is CPS4R in Abaqus). The solu-
tion was convergent, more elements did not provide more accurate results. The deflection
function and the slip function from this FEM analysis are also shown in Fig. and
[2.11], respectively. Because of the equivalence of the coefficients ¢pp(0) = ¢r(0) and
sgp(0) = s7(0) only the deflection functions are different for the Euler-Bernoulli and for
the Timoshenko beam, the other functions are the same in both cases. Comparison of
deflection v(%) and slip s(0) obtained by Schnabl et al. from FEM solution [69], derived
from the fundamental solutions and gained from our FEM analysis is given in Table 2.1

2.3.2 Propped cantilever with concentrated force

The considered two-layered beam with the applied load is shown in Fig. 2.15 The nu-
merical data are as follows: £ = 2 x 10" Pa, Fy = 6.9 x 10'° Pa, G| = 7.6923 x 10'° Pa,
Gy = 2.5862 x 10 Pa, f = 0, F = 5 x 10° N. The other data are the same as in Example
In this case the boundary conditions are as follows

v(0) = ¢(0) = s(0) = 0, (2.99)
(L) = M(L) = Ny(L) = 0. (2.100)

The unknown initial values Mggp(0), Vgg(0), N1gp(0) for an Euler-Bernoulli beam and
M~(0), Vr(0), N17(0) for a Timoshenko beam can be computed from boundary conditions
(2.100). By dint of the Euler-Bernoulli beam theory we can formulate the next system of
equation

M(L) = Mgg(0)MFP(L) 4+ Vgg(0)MEP (L) + Nipp(0)MEE(L) + 0.5FMEFP(L/2) = 0,
(2.101)
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Figure 2.13. The shear force function.
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Figure 2.14. The axial force function in layer Bj.
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Figure 2.15. Propped cantilever with concentrated force.
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v(L) = MEB(O) B(L)+ VEB(U) P (L)+
Ni(L) = MEB(O)NﬁB(L) + VEB(O)NEB(LH
+Nipp(0)NEB(L) + FNEP(L/2) = 0.

(2.102)

(2.103)

According to the Timoshenko beam theory the next system of equation is provided

M(L) = Mr(0)M[ (L) 4+ Vp(0)My (L) + Nz (0) Mg (L) +0.5F Mg (L/2) =0, (2.104)

(L) = Mr(0)vy (L) + Vr(O)v T(L)+ (2.105)
+Nir(0)vg (L) + Fug (L/2) =

Ni(L) = ((TJ)Nﬂ( )+IYT( )Nﬁ( )+ (2.106)
—|—N1T( )Nlﬁ( )+FN15(L/2)

Inserting the data into Egs. (2.101H2.103) and Eqs. (2.104H2.106) we get the following

results
Mpgg(0) = 23427.883463 Nm,

(2.107)

Vep(0) = 34371.115339 N, ( )

Nigp(0) = 0.475863 N, (2.109)

Mr(0) = 23260.088641 Nm, ( )

Vr(0) = 34304.035457 N, ( )

Ni7(0) = —23.91063 N, ( )
With the help of these results the sought functions can be determined

X(2) = Mpp(0)X4(2) + Ven(0)Xs(2) + Nign(0)Xo(2) + FH ( - 5) Xy ( - 5) |

2
(X — UEB,¢EB,SEB,MEB,VEB,NlEB),

(2.113)
X(Z) = MT(O)X4(Z) + VT(O)X5<Z) + NlT(O)XG(Z) + FH <Z — g) X5 (Z — g) ,
(X =T, 9", T, MT, VT ND).
(2.114)

Figures [2.16], 2.17, 2.18] 2.19], [2.20] and [2.21] represent the deflection, cross-sectional rota-

tion, slip, bending moment, shear force and axial force function in layer By, respectively.
We investigated this example by means of FEM software Abaqus as well. The parameters
of the analysis were the same as in Example [2.3.1| except the boundary conditions and the
loading. We used the same elements for this case. The deflection and slip functions are
gained from the FEM analysis which are also illustrated in Fig.[2.16]and 2.18 In this case
the functions obtained from the Euler-Bernoulli beam theory are different as the func-
tions won from Timoshenko beam theory. The deflection function from the FEM solution
is in good agreement with the one from the Euler-Bernoulli beam theory. Between the
slip function from FEM and from the fundamental solutions a difference can be observed
which is caused by the elastic deformation of the layers.
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Chapter 3

The influence of thermal load on the
behaviour of composite beams with
weak shear connection

In this chapter we introduce a novel analytical method for two-layered composite beams
with interlayer slip in order to investigate the behaviour of the considered composite beam
subjected to thermal load. Our aim is to determine the deflection, the rotation, the slip,
the bending moment, the axial force and the shear force function of the beam. Knowing
these functions the normal and shear stresses can be computed as well. The present
analytical method is based on the Euler-Bernoulli beam theory and on the one-dimensional
version of the constitutive equation of linear thermoelasticity (Duhamel-Neumann’s law).
At the end of the chapter two numerical examples illustrate the application of the method.
Some equations which have already appeared in the previous chapter are also written in
the following for the ease of reference.

3.1 Governing equations

The considered two-layered beam configuration is shown in Fig. [3.1] The beam component
B; has the rectangular cross-section A; whose dimensions are h; and b (i = 1,2). The
modulus of elasticity for beam component B; is E; and the coefficients of linear thermal
expansion is a; (i = 1,2). The length of the composite beam is L. The origin O of the
rectangular Cartesian coordinate system Oxyz is the E-weighted centre of the left end
cross-section, so that axis z is the E-weighted centreline of the considered beam. The
mechanical load is represented by f (distributed line load), F (concentrated force) and
M (concentrated moment). A point P in B = By U B, is indicated by the position vector
OP =r = R + ze, = ze, + ye, + ze,, where e,, e, and e, are the unit vectors of
the coordinate system Oxyz. It is known that the position of E-weighted centre of the
cross-section A = A; U A, is obtained from next equation [10]

E | RIA+E, | RdA=0. (3.1)
A1 A2

For cross-section shown in Fig. [3.1] we have
—

AQEQ _ o AlEl
(AEY" @7 )CCQ‘_

(AE) ¢, (3.2)

o=[ec] -
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Figure 3.1. The considered two-layered beam.
e 1
C = ‘0201 = C1 — Cy = 5 (hl + h2) s (33)
<AE> - AlEl + AQEQ, (34)
1 1 1
yi=c+ 5}117 Y2 = C2 — §h2, Y12 = €1 — 5}11- (3.5)
In Egs. (3.2)), (3.4) A; denotes the cross-sectional area of beam component B; (i = 1,2)

and the position of the common boundary of A; and A, is indicated by yi» (Fig. [3.1).
According to the Euler-Bernoulli hypothesis (kinematic assumption) which is valid for
each homogeneous beam components the deformed configuration is described by the dis-
placement field [10]

u=u(zry,z) =v(z)e,+ (wl(z) - y%) e., (3.6)
where (z,y,2) € B;, (i = 1,2). Eq. shows that the axial displacement of beam
component B; (i = 1,2) is separated into two parts: w;(z) (i = 1,2) describes the
rigid translation of the cross-section A; (i = 1,2) at z and the second part of the axial
displacement of A; (i = 1,2) derived from the deflection of cross-section [10]. On the
common boundary of B; and B the axial displacement has jump which is called the
interlayer slip. According to Eq. the interlayer slip s = s(z) can be computed as

s(z) = wi(z) —wa(2). (3.7)

Application of the strain-displacement relationships of the linearised theory of elasticity
gives

Ex =&y = Yoy = Yoz = Vyz = Oa ($7y7 Z) € B U B2a (38)
dw; d%v .
€, = P y@, (x,y,2) € B; (i =1,2). (3.9)

In Egs. (3.8), (3.9) €., €y, €. are the normal strains and 7y, 7.z, V. are the shearing
strains. The normal stress o, is computed from the one-dimensional version of Duhamel-
Neumann’s law [91H93]

dw; d?
o, =FE; (i — y—v — a,-T) , (x,y,2) € By U Bs. (3.10)
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Figure 3.2. Normal forces and bending moments.

In Eq. T denotes the temperature change. The temperature of the two-layered
composite beam initially is the reference temperature vy. Its temperature is slowly raised
to a constant uniform temperature ¢ = 9y + T, so that the temperature change is 7'
According to the linear thermo-elasticity it is assumed that |T'| < 200 K so the material
properties can be considered constant. Following we define the next section forces and
moments [10]

dw d?v
Ny :/Al 0.dA = A F; <d—;—01@—0ﬂT> ) (3-11)
dw d?v
Ny = /A2 0.dA = Ay Fy <d_2 - 02@ - 062T) ) (3-12)
dw d?v
M, = /A1 yo.dA = A Eic; (d_zl - ho) El]ld 27 (3-13>
dws d%v
M, = JdA = A E — —anT Esl , 3.14
2 /A2y0 2202(dz 042) 21212 ( )
where
I :/ y?dA, (i=1,2). (3.15)
A;

Egs. (3.11H3.14)) show that the normal stresses acting on cross-section A; (i = 1,2) are
equivalent to a force-couple system (N;, M;) (i = 1,2) at C. This force-couple system
(N;, M;) (i = 1,2) is illustrated in Fig. 3.2} The interlayer slip s is assumed to be a linear
function of shear force () transmitted between the two beam components, that is we have

9]

Q = ks, (3.16)
where k is the slip modulus. In present problem there is no axial force N = N; 4+ Ns, that
is d 4

N =N, +N, = AlEl% AQEQ% —(AEa)T = 0. (3.17)
Here,
<AEO(> = OélElAl + O[QEQAQ. (318)

From Egs. (3.7) and (3.17) it follows that

d’lUl . AQEQ% i <AEO(>T
dz  (AE)dz = (AE) ™’

(3.19)
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Figure 3.3. Equilibrium condition in z direction for a small beam element AB;.

d’LU2 AlEl ds <AEOJ>
= — — T. 2
&=~ (ABE)dz © (AE) (3:20)

A simple computation based on Egs. (3.11)), (3.12)) and Egs. (3.19), (3.20) gives

ds d?v
N1 = <AE>_1 [& - C@ + (042 - Oél) T:| 3 (321)
ds d%v
N2 = <AE>_1 [—& + C@ + (Ozl — O./Q) T:| s (322)
where A EAE
Ap) = iR 2
(AB) A1E + Ao By (3.23)

Application of the condition of equilibrium for forces in axial direction to beam component
AB; gives (Fig.|3.3)

dv, dv,
M 51 o 3.24
dz @ dz ° (3:24)
Substitution of Eq. (3.21)) into Eq. (3.24) yields
d’s  dd k

s =0. (3.25)

It is evident that the bending moment acting on the whole cross-section A = A; U Ay is
as follows

M= M4 My = c(AB) | L (ar—an) T —{[E}dQ—” (3.26)
Here,
{IE} = ,E, + LE,. (3.27)
According to Eq. (3.26) we can obtain
dM d?s d3v
Further manipulation of Eq. (3.28]) provides
d*v  c(AE) | d%s
el S et S ) 3.29
dz3 {IE} dz? (2) (3:29)
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Substitution of Eq. (3.29) into Eq. (3.25)) we gain
d?s

Vs <I—(;J>V(z) —0, (3.30)
where (1E}
0 = km, (IE) = {IE} — ¢* (AE)_, . (3.31)

Taking into account the boundary conditions one can solve the governing differential
equations (3.30) and the slip function can be determined. Substituting the slip function
into the function of bending moment (3.26]) the deflection function can be computed as
well.

3.2 Computations of thermal stresses

We assume that the state of stresses of the two-layered composite beam under the action of

thermal load can be characterized by the following stresses o, = 0, (y, 2), 7y = Ty- (v, 2),
oy = 0y (y, 2). The normal stress o, is obtained from Egs. (3.10), (3.19) and (3.20) as

c1 ds d®v ¢

o, =FE, l%a—y@+%(a2—a1)T] . (x,y,2) € By, (3.32)
cpds  d*v o ¢

.= F, {f& ~Yia + ?2 (g — al)T] , (z,y,2) € Bs. (3.33)

The shearing stress 7,, = 7, (y, z) is computed by the use of equation of equilibrium

On: | 90-

=0 € B1UBs. 3.34
A detailed computation yields the next result
cpd®s 1,, o d
Tyz = — I [(y — Ya) cd2 2 (?J - yz) 23| (,y,2) € By, (3.35)
cod?®s 1 dv
Ty. = —E» (Y12 — ¥2) —2—2 -3 (y%z - y%) Ecl
c dz 2 dz
cgd?s 1 d3v (3-36)
2 2
—E {(Z/ — Y12) “d2 2 (Z/ - 3/12) @1 , (2,9,2) € By.
Here, the stress boundary condition
Ty (Y2,2) =0 (3.37)
and the continuity condition of 7, at y = y2
lim [7,. (Y12 — €,2) = 7= (12 + €, 2)] = 0 (3.38)

are used. To obtain the normal stress o, = o0, (y, 2) we consider the next equation of
mechanical equilibrium
Oo, 0Ty,

et e =0 (3.39)
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Integration of Eq. (3.39)) gives

2., .2 3 3 3 4
+ cpd’s 1 +2 d*v
o, = By {(y 2 _ yyg) 2 (u —y%y) —} , (z,y,2) € By, (3.40)

2 cdz? 2 3 dz4
2 2 3 3 3 4
Y12 T Y3 e d’s 1 Yy + 2y5 2 d*v
— B |22 Rl YiaT 4y av
Oy 2 [( 9 yw?h) 13 9 ( 3 Y2 | 13 +
2 2 3 3 3 4
Y©+ Yt cad’s 1 [y’ + 2y, 2 d*v
F N _— — | = — | - .
+ 1 |:( 2 yy12) c d 3 2 3 y12y dZ4 (3 41)

Here, we use the stress boundary condition
oy (y2,2) =0, (3.42)
and stress continuity condition of o, at y = yi2

lim [0, (y12 — €, 2) — 0y (Y12 + €, 2)] = 0. (3.43)

e—0

Integration of Eq. (3.34]) leads to next equation

Y1
Tyz (y17 ) Tyz y27 / Uzdy = O (344>

that is LN
Ty (Y1, 2) = v s 0. (3.45)

By the same method from Eq. (3.39) we obtain

Ty (yh Z) y27 a / 7-yzdy - O (346)
that is LoV
oy (41,2) = Ty (3.47)

Egs. (3.45) and (3.47) show that the stress boundary conditions for 7,, and o, at y = y;
are satisfied. In the following we prove that

Tyz <y127 Z) = b = b ' (348)
Starting from Eq. (3.35) we can write
cpd?s 1 d3v
Ty (Y12, 2) = — B l(yu ) ;2@ - 5 (y12 2) @] -
_ CQhQ d2 EQAQ CQ d S _ dSU o
- 2170 Q22 ¢ ld2 “as|
E2A2 Cy k ElAlEQAQ Q(Z) Q(Z)
_ “2 - = 4
v e aB Y T an e b v (3.49)

Here, Eqs. (3.2143.5) and Eqgs. (3.25]), (3.35) have been used to prove the validity of
Eq. (3.49).
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Figure 3.4. Simply supported two-layered beam with thermal load and distributed line
load.

3.3 Numerical examples

3.3.1 Simply supported two-layered beam

In this example we consider a simply supported two-layered beam (Fig. on which
only a thermal load and a distributed line load act. The following data are used for the
computations: b = 0.03m, h; = 0.01m, hy = 0.03m, F; = 1.22x10" Pa, Ey = 8x10' Pa,
L =15m, a =28 x 1075k, ay = 1.43 x 107°1/x, T = 200K, k = 60 x 10° Pa,
f = 1000N/m. First of all we are going to determine the slip and the deflection function
of the beam. For the simply supported two-layered beam shown in Fig. the following
boundary conditions are valid

v(0) =0, w(L)=0, (3.50)
N1 (0) =0, Ny(L)=0, (3.51)
M(0)=0, M(L)=0 (3.52)
By the application of the equation of statics we gain
L
V(z)=fz— “% (3.53)
2
L
M(z) = fTZ - % (3.54)

The function of the bending moment satisfies the boundary conditions (3.52)). By means
of Eq. (3.53)) the general solution of the differential equation (3.30]) can be represented as

L
s(z) = Kj cosh Qz + Ky sinh Qz — m (% — fZ> , (3.55)
where K7 and K, are constants of integration. Using Eqgs. (3.26) and (3.54)) we can write
d*>v  c(AE)_ _ c
e % KQsinh Qz 4+ K5 cosh Qz + <IE{QQ + (2 — o) T] +
/ 2
Lz — ) )
by (Lo 2) (3.50)
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Figure 3.5. The deflection function.
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Figure 3.6. The cross-sectional rotation function.

Integration of Eq. with respect to z we get the rotation function according to the
Euler-Bernoulli hypothesis, i.e. 1

v

oz) =~

Integration of the rotation function with respect to z provides the deflection function. So

we have two further integration constants. By means of the boundary conditions (3.50),

and the axial force function the integration constants can be obtained. In

this case we get the following functions

(3.57)

c(AE) c OL
v(z) =— {§E}>S;2 {(IEJ;QZ + (ag — o) T} [costh — 1 —tanh > sinh Qz+
+%2 (Lz — 22)] + A1IET {J;E} (2L23 — LBz) , (3.58)

AF
o(z) = C{<[E}>(_21 {([ECJ;QQ + (g — o) T] {sinh Qz — Oz — tanh % cosh Qz+
QL
+7} - ﬁ (6L2* —42° — L7), (3.59)
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Figure 3.7. The slip function.
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Figure 3.8. The bending moment function.

QL 1
+ (ag — o) T} (tanh - cosh Qz — sinh Qz) — (Ig—{m (EL — z) ,
(3.60)

k c QL .
Ni(z) = 0 {(IE{QQ + (g — al)T] {costh -1 —tanh7s1nth] +

c(AE)_, f

—IE} 2 (2 = L2) . (3.61)

The deflection function is shown in Fig. [3.5] the rotation function is illustrated in Fig. [3.0]
and in Fig. [3.7] the slip function can be seen. Furthermore Figs. 3.8} 3.9 and represent
de bending moment, the cross-sectional shear force and the axial force in the first layer,
respectively. We computed the stresses as well according to Egs. (3.32)), (3.33)), (3.35),
m, MI) and m at three cross-sections (z = %; z = %; z = %) The results are
shown in Figs. [3.11] [3.12] and [3.13] If the thermal load is equal to zero (T = 0), this
method provides the exact solution of the problem when only the distributed line load
acts on the beam. We computed the functions for this case by means of the fundamental
solutions mentioned in the previous chapter, and we gain exactly the same functions from
each method. The deflection functions and the slip functions are illustrated in Figs. [3.14
and in this case.
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Figure 3.9. The shear force function.
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Figure 3.10. The axial force function.
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Figure 3.11. The function of o,.
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Figure 3.16. Two-layered propped cantilever with thermal load and distributed line load.

3.3.2 Two-layered propped cantilever

In this example we consider a two-layered propped cantilever (Fig. on which only
a thermal load and a distributed line load act. The following data are used for the
computations: b = 0.01m, h; = 0.03m, hy = 0.06m, F; = 1.22x 10 Pa, Fy = 8x10'° Pa,
L=15m, ap =28 x 1075k, ay = 1.43 x 107°1/x, T = 250K, k = 60 x 10° Pa,
f = 1000N/m. The solution method are the same as in the example 3.3.1] For the
propped cantilever we have the following boundary conditions

v(0) =0, wv(L)=0, (3.62)
6(0) =0, s(0)=0, (3.63)
Ni(L)=0, M(L)=0, (3.64)

From the equation of statics the shear force function and the bending moment function

can be determined
V(z)=F+ f(z— L), (3.65)

M(z)=F(z— L)+ =(z — L)%, (3.66)
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Figure 3.17. The function of the deflection.
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Figure 3.18. The function of the cross-sectional rotation.

where I’ is the unknown reaction force at the roller. The bending moment function
satisfies the boundary condition (3.64));. Knowing the shear force function we can solve
the governing equation (3.30)) to create the slip function

C

s(z) = K;sinh Qz 4+ Ky cosh Qz + 15 2

(F+ fz— fL). (3.67)

Here, K7 and K3 are constants of integration. Writing Eq. (3.67)) into Eq. (3.26]) and
using Eq. (3.54) we win

2 AE
% = % [Klﬁcosth—i— K5 sinh Qz + (]EC'J;QQ + (a2 — CY1)T} -
F

Integration of Eq. (3.68]) with respect to z leads to the rotation function according to

Eq.

é(2) = —% [Kl sinh Q2 + K cosh Qz + ((Ig—{m + (g — o) T) z] +
+ % (%2 - Lz) +3 {{E} (%3 — L2+ L22> + K. (3.69)
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Figure 3.19. The function of the slip.
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Figure 3.20. The function of the bending moment.

Further integration provides the deflection function

_c(AE)_, [K, Ky cf 2
v(z) = W [ﬁ costh—l-ﬁsthz—l— m—i—(&z—al)T o5~
F 25 L2? f 2 Lz L2
- [ _ — — — 4+ — | - K K. .
(1E} (6 2 ) 2 {IE} (12 3 T2 ) T (370)

By the application of Eq. (3.21)) the axial force function can be computed

Ni(z) = <?ﬁ;; {(IE) [Klﬂcosth + K,Qsinh Qz + <”;J;QQ + (0 — o) T} _
—cF(z— L) —% (22—2L2—L2)}. (3.71)

During the computations of these functions we obtain four unknown constants of inte-
gration (Ki; Ko; K3; Ky) and the unknown reaction (F) at the roller. Application of the
boundary conditions (3.62)), (3.63) and (3.64)); these unknown can be formulated.

(3.72)

where
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Figure 3.21. The function of the shear force.
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Figure 3.22. The function of the axial force in the first layer.

LAB(IE) QL 1 1
Ky = — Ltanh QL + — — ————
=/ (802 (AE) + 2 tan * Q QcoshQL) *
Q(IFE 1 0212
+ (g —ay) T <c ) <1 Il 3 ) , (3.73)
1303 (1E)
K¢ = ————- + QL — tanh QL. 3.74
S 32 (AE), T an (8.74)

Substituting the given data into Eqgs. (3.73)), (3.74) and (3.72)) the reaction force at the

roller is

F = —1370.772652 N (3.75)

By dint of the reaction force the further constants of integration can be formulated as

K, = —COS;QL (IEC> o5 (FL = F)sinh QL+ <1EC{Q3 + (g — al)g . (3.76)
Ky = UE—iQQ(fL—F), (3.77)
F%(ﬂ—m, (3.78)

K = _%%. (3.79)
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Figure 3.24. The function of 7.

According to these results the functions belonging to the propped cantilever are shown in
Figs. [3.17] B.18] B.19] [3.20] 3.21] and [3.22] Knowing the deflection function and the slip
function the stress functions can be computed. Figures [3.23] [3.24] and [3.25] illustrate the
normal stress o, the shear stress 7,, and the normal stress o, respectively, at three cross-
sections (z = %; z= %; z= %) We consider the case of T' = 0 similarly to Example m
The results were derived from the present method and from the fundamental solutions
for Euler-Bernoulli beam according to chapter [2. The results are exactly the same both

cases which are shown in Figs. and
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Figure 3.25. The function of o,,.
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Figure 3.26. The function of the deflection in case of T' = 0.
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Figure 3.27. The function of the slip in case of T' = 0.
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Chapter 4

Elastic stability of composite beams
and columns with weak shear
connection

In this chapter we are going to introduce two new analytical methods for the stability
analysis of composite beams and columns with weak shear connection. Each method
is based on the Euler-Bernoulli beam theory. At the end of the chapter two examples
illustrate the application of the methods. Some equations which were mentioned the
previous chapters are repeated in this chapter for the ease of reference.

4.1 Stability analysis by a variational method

An elastic two-layered beam with partial shear interaction is considered. It is assumed
that each layer separately follows the Euler-Bernoulli hypothesis and the load-slip relation
for the flexible shear connection is a linear relationship. In the reference configuration,
the composite beam occupies the 3D region B = A x [0, L] generated by translating its
symmetrical cross-section A along a rectilinear axis, orthogonal to the cross-section. The
cross-section A is divided into two parts A; and A,, that is A = A; U Ay and the common
boundary A; and A, is denoted by 0Ajs. The components B; and B, are defined as
B; = A; x [0,L], 0B; = 0A; x [0, L], 0A; = 0Ap U 0A1, (i = 1,2) (Fig. . Here
L is the length of the beam and 0Ay; is the ’outer’ boundary curve of the cross-section
A; (i =1,2) . Apoint Pin B = BUIB (0B = (0Ay UdAp) x [0, L]) is determined
by the position vector r = ze, + ye, + ze., where z, y, z and e,, e,, e, are referred
to the rectangular coordinate system Ozyz shown in Fig. The axis z is located in
the E-weighted centreline of the whole composite beam and the plane yz is the plane of
symmetry for the geometrical and support conditions. The centre of A; is C; (i = 1,2) and
C'is the E-weighted centre of the whole cross-section A = A; U A, (Fig. [1.1). According
to the Euler-Bernoulli beam theory the displacement field u = ue, + ve, + we, has the
form [10]

dv
- y&,
By the application of the strain-displacement relationship of elasticity and the Hooke’s
law we get

(x,y,2) € B;, (i=1,2). (4.1)

u=0, v=0(2), w=wz)

dw; d?
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Figure 4.1. Two-layered beam with weak shear connection.

The other stress components are equal to zero. The interlayer slip in axial direction is
defined on the common boundary of beam components By and B, as the difference of the
axial displacement components [10, [11]

s(z) =wi(z) —wa(z), (z,y,2) € 0A19 x [0, L]. (4.3)
The interlayer shear force @) is a linear function of the slip s:
Q = ks. (4.4)

Here £k is the slip modulus [10, [II]. Our analysis of the composite beam is restricted to
the case of absent axial forces from deflection and slip which means

A

A detailed computation for N; gives the next result [10]

ds  d*v
N, = (AF — —c— 4.6
1= {4B) (dz Cdz2) ’ (4.6)
where A B AE
AB) | = 122 o= Fig. [1.1)). 4.7
(AB) = 8B (Fig D) (@7)
The expression of the bending moment is as follows [10]
d%v ds
M = dA=—{IE}— AE)_| —, 4.8
Jvodd=—my G vetan), & (1)
where
{IE} = IlEl + IQEQ, [z = / y2dA, (’L = 1, 2) (49)
A;
The cross-sectional shear force V' = V(z) is obtained as [10, [11]
dM d3v d?s
V()= —=—-{IE}— AE) | — 4.1
()= = ~{UB}Y 5 +c(AB) , (1.10)
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Denote U the strain energy of the whole composite beam. Starting from the next formulas

[194]
1 [t k"
U= _/ (/ gzgsz) dz + —/ s*dz, (4.11)
2Jo \Ja 2 Jo
and Eq. (4.2]) we obtain
1 (L
v=1 /
2 Jo
and the potential energy of the applied axial force is

F [ /do\?
W=_—— — dz. 413
2/0 (dz) & ( )

The total potential energy of the composite beam can be written as the sum of the strain
energy and the potential energy of the applied axial force

d2v 2 d2v ds ds\?
IEY | — 2¢{AE) ., —— + (AE . ks?
uey () +2ean), T+ an, (£) +h

z

dz,  (4.12)

I=0U+W. (4.14)

The first variation of the total potential energy must be equal to zero according to the
principal of minimum total potential energy

811 = 0, (4.15)

so we gain the next form for the considered composite beam

L d?v _d*v ds _d%v d%v _ds
oIl = IE}—0— AEY  —0— AE)  —6—
/0 [{ }dz2 d22+c< - dz d22+c< ) dz2 dz+
ds _ds Ldv _dv
—0— — —o0—dz = 0. 4.1
+ (AE)_, dzédz —i—ksés] dz F/O dzédzdz 0 (4.16)

From this equation the dynamic boundary conditions and the system of the equilibrium
equations can be determined. This latter system of equations is the next

d*v d3s d?v
IF}\— AE) ., — +F— =0 4.17
{ }dZ4+c< >_1d23+ d22 ) ( )
d3v d?s
— C <AE>71 @ — <AE>71 @ -+ ks = 0, (418>

because the variation of the deflection and slip are arbitrary in (0, L).

4.2 Equilibrium method

According to the Euler-Bernoulli beam theory the displacement field can be written in
the next form

s )~y
(Ap)~ T TV

(LC,y, Z) € Bi7 (Z = 172)7
(4.19)
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Figure 4.2. Free body diagram for axial forces.

where (AE) = A1E; + AyFE>. Application of the strain-displacement relationship of
elasticity and the Hooke’s law gives

dIDZ F dwl d2U
w=FHeg=FE—=FE | - —y— |, = 1,2). 4.20
“ c dz < (AE) * dz yd22) ( ) (4.20)

The definition of section axial forces provides

- A E; dw; d?v
N; = wdA=—-F—— 4+ AE— — A E—, (1=1,2). 4.21
/Ai 7 (AFE) PR dz? (i ) (421)

The mechanical meaning of the first term in the expression of N; is as follows (Fig. }
AiE;

F, = F =1,2 F=F + F. 4.22
% <AE> ) (Z ) )7 1 + 2 ( )
According to this we have
dw; d?v dws d?v
N1 + N2 = AlEl (E — Cld 2) + A2E2 (E + CQdZQ =0. (423)

The moment of normal stress o, about axis x is expressed as

2

dw dw
M E1A101 —|— EQAQCQ — {IE}d 59

= d (4.24)

where {IE} is defined by Eq. (4.9). Condition of equilibrium for forces acting in axial
direction on column components By and B; leads to equations (Fig. 4.2))

dN
d—Zl — k(wy —wy) =0, (4.25)
dN.
d—; — k(wy — wy) = 0, (4.26)

where £ is the slip modulus. Eqgs. (4.25) and (4.26) can be reformulated by the use of
Eq. @21)

d2w d3v
a2 — ClAlElﬁ — k(w1 ) = O, (427)

A1 Ey
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' buckling shape

Figure 4.3. Simply supported composite column with axial load.

2 3

AQEQ% + CQAQEQ% - k(wg - U)l) = 0. (428)
In the following we are going to investigate two cases using the variational and the equilib-
rium method. The same composite beam is considered with different boundary conditions
in both cases. At the end of each case numerical examples illustrate the application of

both methods.

4.3 Simply supported beam

4.3.1 Buckling load

In the first case a simply supported column was analysed (Fig. . First we use the
variational method. Hence we have the next kinematically admissible deflection and slip
function

vi(z) =V Sinj%z, si(z) = 5] cosj%z, (4.29)

which satisfy the boundary conditions [v(0) = 0, v(L) = 0]. The constant j denotes the
number of the buckling load and L is the length of the beam. Substituting these functions

into the Eqgs. (4.17)) and (4.18]) we obtain the following system of equations
2

C(AF) L (75)° (AB), (7)) +# FIt (430

The non trivial solution gives the buckling load, that means the determinant of the coef-
ficients must be equal to zero. Thus we have a closed form for the critical load

UE}(iF)° - F  ¢{AB), (jF)

cr __
Fj =

., (1=12,..)), (4.31)
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where (IE) = {IE} — ¢ (AE) _,.
Let us consider the equilibrium method for the simply supported beam. We have the
same boundary conditions [v(0) = 0, v(L) = 0]. For simply supported column we have

M(z) = Fu(z). (4.32)
Combination of Eq. (4.8)) with Eq. (4.32)) provides

d d d?v
ElAlcl% + EQAQCQ% - {IE}— ~ Fu(z) = 0. (4.33)
We look for the solution of the system of equations (4.27)), (4.28)), (4.33)) which satisfy the

boundary conditions in the form

= LT = LT = LT
z) = Z Wi, CO8 j 7%, wy(z) = Z W, Co8 j 72, v(z) = Z V; sinj 7 z. (4.34)
j=1 j=1 j=1

Substitution of Eq. (4.34)) into Eqs. (4.27)), (4.28]) and (4.33)) yields the eigenvalue problem

G115 Q125 a13j le 0
Aij = aglj CLQQj (123j ng = 0 y (435)
agij Azg; as33; Vi 0
where ) .
T ¥
a1 = (]z) ArEy + K, ay = —k,  azj = —aAEy <]Z) ’ (4.36)
) T
A215 = ]zAlEla Q295 = JZA2E2, A23; = 0, (4-37)
N T ST 2
asij = ]ZA1E101, asg; = ]EAQEQCQ, ass; = F —{IE} (]Z> , (4.38)

The critical loads depend on the value of j, the buckling load belongs to j = 1 in this
case as well. The following closed formula can be derived from

det Aj(F) =0 (4.39)
for the critical loads

L UB)AE), (j3)' + MIE) (i7)
’ (AE) <]E> +k

. (i=1,2,..). (4.40)

We obtain the same closed formula from the equilibrium method as from the variational
method.

4.3.2 Numerical example

We consider the simply supported beam shown in Fig. [£.3] The cross-section of the beam
is illustrated in Fig. f.4] and the following data are used for the computations. L = 4m;
E,=12x10°Pa; B, =8 x 10° Pa; k =5 x 10" Pa; hy = 0.05m; hy = 0.15m; b; = 0.3 m;
b, = 0.05m. Substituting these data into the formula or the buckling load
is

F¢ = 271.018kN. (4.41)
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Figure 4.4. The cross-section of the simply supported column.
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Figure 4.5. The buckling load in terms of the slip modulus (0 < k < 108).
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Figure 4.6. The buckling load in terms of the slip modulus (10" < k& < 101).
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buckling shape

z=20 77—>/ Y

Figure 4.7. Column with fixed ends.

In an early study Girhammar and Gopu [9] proposed an approximate solution for the
determination of buckling load. They investigated a column with the same cross-section,
data and boundary conditions. Their analysis led to the next result for the first buckling

load
Fe = 270.3kN. (4.42)

It can be determined that the results are in good agreement. The buckling load in terms
of the slip modulus is shown in Figs. and [£.6] If the slip modulus is equal to zero
(there is no connection between the layers), then the buckling load F{" = 92527.54 N.
The functions illustrate as well that while the slip modulus converges to infinity (perfect
connection between the layers) the buckling load approaches the value of the composite
beam having perfect connection.

4.4 Column with fixed ends

4.4.1 Buckling load

In this case a column is analysed which has fixed ends (Fig. [4.7). First we used the
variational method as section [4.3] We must write new kinematically admissible deflection
and slip functions to content the new kinematical boundary conditions. The functions
are as follows

2 2
vi(z) =V, (1 - COSj%Z) . si(2)=05; sinj%z. (4.43)
Taking these functions into the Eqs. (4.17)), (4.18) a newer system of equation is won

—{IE}(GEY + F  —c(AE)_ j& B/j ] — {8} , (4.44)

c(AE)_, (jZ)'  (AE)_, (j&)* +k
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From this system we can gain another closed form for the buckling load
o\ 4 o\ 2
(IE)(AE)_, G%F) +HIE}Y GF)
om\ 2
(AE) ., () +k

Let us consider the equilibrium method. It is evident that the bending moment M = M (z)
in terms of the reactions Y, M can be expressed as (Fig. [4.7))

Fer = , (j=1,2,..). (4.45)

M(z) =My, —YL(L —2) + Fo(z). (4.46)
From this equation we get
d2M d?v
— =F—. 4.47
dz? dz? (4.47)
Combination of Eq. (4.24)) with Eq. (4.47)) provides
d3w1 d3UJ2 4 d2
ElAlCl d 3 + EQAQCQ a3 — {[ }@ — F@ = 0. (448)

Egs. (4.27), (4.28) and (4.48) generate a system of linear differential equations for w; =
w(z), wy = ws(2), v = v(z). The associated boundary conditions to Eqs. (4.27)), (4.28)
and (4.48) are as follows:
d
0(0) = v(L) = w(0) = ws(0) = 0, d—” —0forz=0and z = L. (4.49)
2
We search the solution of boundary value problem formulated by Eqs. (4.27)), (4.28), (4.48)

and (4.49) as
2) = ; Wy sin %z, wy(z) = ; Wy; sin %z, v(z) = ; V; (1 — cos %z) .

(4.50)
The functions given by Eq. (4.50)) satisfy the boundary conditions (4.49). Substitution

of Eq. (4.50) into Egs. (4.27)), (4.28) and (4.48) we get a linear eigenvalue problem from

which the critical loads can be determined. The eigenvalue problem has the form

115 G125 A135 le 0
A]‘Xj = G215 Q225 A23j5 ng = 0 s (451)
agij azg; a33; Vi 0
where
29T 2 29 3
115 = (T) A Ey +k, Q125 = —k, 135 = —ci A By (T) ) (4-52)
29T 29
215 = jL AlEla Q225 = jL AQEQ, a23; = O (453)
291 29m 297
aglj = ]TAIEICI’ a32j = ]TAQEQCQ, a33] = F {IE} < 2 ) . (454)
The following closed formula can be derived from
det A;(F) =0 (4.55)
for the critical loads
IE)(AE)_, (jZ)" + K{IE} (j2)°
por = TE 2 UF) AMIBYGE) (o, ) (4.56)

(AE)_, Qg)+k

Formula (4.56)) is exactly the same as Eq. (4.45) which we obtain from the variational
method.
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Figure 4.8. The buckling load in terms of the slip modulus (0 < k < 108).
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Figure 4.9. The buckling load in terms of the slip modulus (10t < £ < 10').

4.4.2 Numerical example

In this example we use the same column as in the case of the simply supported beam.
[.e. we use the data from Example and the cross-section shown in Fig. [4.4] Inserting
the data into the formula (4.45]) or (4.56|) the buckling load

Fe = 714.863kN (4.57)

for the column with fixed ends. The buckling load in terms of the slip modulus is il-
lustrated in Figs. [£.8] and 4.9 If there is no connection between the layers the value of
the buckling load is F{" = 370110.165 N. We can determine the same conclusions as the
Example 4.3.2]
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Chapter 5

Vibration analysis of composite beams
with weak shear connection

In this chapter we deal with an analytical solution for free flexural vibration of a simply
supported two-layered composite beam with interlayer slip if the rotary inertia and the
inertia of longitudinal motion are taken into account. A numerical example illustrates the
application of the method. Some equations which have already appeared in the previous
chapters are repeated as well in the following for the ease of reference.

5.1 Equation of motion and boundary conditions

The considered simply supported two-layered composite beam with interlayer slip is shown
in Fig. The beam components occupy the spatial domain B; = A; x [0, L] (i = 1,2)
where A; (i = 1,2) means the cross-section of the i-th layer and L is the length of the
beam. The plane yz is the plane of symmetry of the beam, furthermore the plane y = 0,
0 < z < L denotes the common surfaces of the beam components B; and Bsy. The elastic
moduli of the beam components B; and By are indicated by E; and Ej. It is assumed
in this case as well that the beam components separately content the requirements of the
Euler-Bernoulli beam theory. Accordingly the displacement components are as follows

u(z,y,z,t) =0, v=uv(zt), (z,y,2)€ ByU By, (5.1)

w(‘raywzut) = wi(zvt) - y% (%,y,Z) € Bi; (Z = 172) (52>

0z’
In Egs. (5.1)), (5.2) u, v, w are the coordinates of the displacement vector (Fig. and

t denotes the time. Application of the kinematic equation of linear elasticity and using

Egs. (5.1), (5.2) provides [95], 96]

€3 =€y = Yoy = Yoz = Yyz = 0, (5.3)
ﬁwi 821) .
€, = 5 Vo (x,y,2) € B;, (i=1,2). (5.4)
The inner axial force N; of beam component B; is
ow; 0%v .

Here, we applied the Hooke’s law and the next notation
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Figure 5.1. The considered simply supported two-layered composite beam.
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Figure 5.2. Shear force, bending moment, the applied distributed line load and distributed
moment on a small beam element.

1
= —/ ydA, (i=1,2), (5.6)
Ai Ja,

and o, represents the normal stress. The bending moment of the whole cross-section can
be formulated as

2
M= | yo.dA+ / o dA = e By 2 1 ey, 202 {[E} - (5.7)
A1 Ao a a a
where
{IF} = El/ y?dA + EQ/ y?’dA = B\, + By ls. (5.8)
Al A2

A AB; U AB; beam element is illustrated in Fig. without the axial forces. The
cross-sectional shear force, the applied distributed line load in y direction and the applied
distributed bending moment in z direction are denoted by V' = V(z,t), f = f(z,t) and
m = m(z,t), respectively. According to this beam element the following equilibrium
equations can be deduced

ov oM
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CONNECTION
Ay

o N |[AB e [N + 8N1Az
b 3 - >
Q= k(w; — wy) :
O _Q N ‘
ya

N2 N9 NQ + %AZ

— >
ADB,
z 2+ Az

Figure 5.3. Axial forces on a small beam element.

From the Eq. (5.9) the shear force can be eliminated. In this way we obtain only one
equilibrium equation instead of the two ones in Eq. (5.9)
M Om

— =0. 5.10
52 v, T = (5.10)
The beam elements AB; and AB, assigned by z and z + Az coordinates are shown in
Fig. Only the axial forces act on these beam elements. The interlayer shear force @
has the form

Q = k(w; —w2), (5.11)

where k is the slip modulus. The axial forces n; and ny acting on By and Bs, respectively,
derive from the outer loading. The equilibrium equations in axial direction for beam
component AB; and ABs can be written in the next form

E +ng — k;(wl - w2) = 07 (512)
ON.
Oe 4 + Ky — uz) = 0. (5.13)

In regard to the fact that we analyse the free vibration of the considered composite beam
the function of f = f(z,t), ny = ni(2,t), ng = na(z,t), m = m(z,t) can be deduced from
the d’Alembert inertial forces so we have

0%

f(z,) = =(prAr + p2Aa) o5, (5.14)

0w, v
nl(z,t) = —,01141 a +c 1p1A1m, (515)

0?ws dv
ng(z, t) = —,OQAQ a + CgpgAga 8t27 (516)

0w 0w v

m(z,t) = —c1p1 Al —— 3752 — CopaAs——- 5 2+ {pI }(9 ETeR (5.17)
Here, p; and ps mean the mass density of beam component By and Bs, respectively, and
{pI} = p1I1 + paols = pl/ yrdA + ,02/ y2dA. (5.18)

A1 A2
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Combination of Egs. (5.10), (5.12), (5.13) with Eqgs. (5.14H5.17) yields the system of
motion equations for the two-layered composite beam with interlayer slip

0%w v 0%w v
E1A1 8221 ClElAla 3 k(w1 ) p1A1 a —|— ClplAl@ atQ = 0, (519)

0w v 0w, v
Ey Ay 8z22 0252142a 3 + k(wy —wy) — ppAg——- o2 —l—Cng 25 982 =0, (5.20)

Aw, 3wy v Aw,

ClElAl 8 + 02E2A2 02 3 {]E}@ — ClplAlm—
Pws 0t 0%

- 02,021428 atQ + { I} 28t2 (p1A1 + /)2142) atQ = 0. (521)

For the simply supported beam the following boundary conditions can be written (Fig.[5.1])

Ni(0,t) = Ny(L,t) =0, t>0, (5.22)
N5(0,t) = No(L,t) =0, t>0, (5.23)
M(0,t) = M(L,t) =0, t>0, (5.24)

v(0,t) =v(L,t) =0, t>0. (5.25)

We look for the solution of the boundary value problem ((5.19{{5.25)) in the next form

wi(z,t) = Wy, cos ]%z cos wjt, (5.26)
g
wa(z,t) = Wh, cos 7% cos wjt, (5.27)
v(z,t) = V;sin choswjt (1=1,2,...). (5.28)

These functions satisfy the boundary conditions ((5.221{5.25|) for all values of Wy, W;, V;.
Substituting the functions into Egs. (5.19H5.21)) the following linear system of equation
can be deduced

Cij = W?Mij, (529)
where
Xj = [W1j7W2ja‘/}]Ta (530)
ErA; (35) 4 & ko —alA (%%3
C; = —k BxAs () +k  caBady () ], (5.31)
i\ 3 i3 i\ 4
—aBA () aBA (F) {1} ()
/)1141 0 _CIPIAI%
M, = 0 p2Aa —C2p2 Ao : (5.32)

ks j T i) 4
—c1pr AvE —capa Ad {pl} (Jf) + p1 A1 + paAs

The non trivial solution of Eqs. (5.29) is sought that means

det (C; —wiM;) =0, (j=1,2,...). (5.33)
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Table 5.1. The eigenfrequencies of the two-layered beam with axial and rotary inertia.

g ] wats | wpls | wsls |
1 135.42 2566.01 8403.41
2 539.36 5009.04 16796.21
3 1211.79 7478.84 25191.61
4 2151.61 9955.53 33587.91
5 3357.29 12434.99 41984.87
6 4826.83 14915.86 50382.46
7 6557.84 17397.51 58780.73
8 8547.52 19879.66 67179.78
9 10792.69 22362.14 75579.67
10 13289.8 24844.86 83980.52
15 29407.05 37260.3 126002.35
20 49677.13 51117.82 | 168062.56
25 62094.53 77704.45 | 210173.28
30 74512.21 | 108398.66 | 252346.16
35 86930.04 | 142445.76 | 294592.21
40 99347.98 | 179150.11 | 336921.62
45 | 111765.98 | 217901.19 | 379343.58
50 | 124184.03 | 258183.26 | 421866.11
100 | 248365.55 | 685328.22 | 853330.3

From Eq. (5.33) a cubic equation can be formulated for w? (j = 1,2,...) which means
that we have three eigenfrequencies for each value of j. If the axial inertia is neglected

the mass matrix M, has the form

0 0 0
M, = 0 0 0
T j T i\ 4
—cipr A lE —capp AoE {pl} (JT) + prA;1 + p2As

(5.34)

In this case we can obtain a first degree equation of w} from Eq. (5.33) i.e. one eigenfre-
quency is provided for each value of j. In addition when the rotary inertia is also neglected

the mass matrix is simplified further

0 0 0
0 0 0
0 0 piA;+ p2As

M, = (5.35)

From Eq. (5.33)) a first degree equation is also given in terms of w}, in other words there

is one eigenfrequency for each value of ;.
Here we note that we have made a further dynamic analysis for composite beams

with interlayer slip in (5). In that case the considered beam satisfies the requirements of
Timoshenko beam theory and the layers of the beam have different cross-sectional rotation

(61 # ¢2).
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AY
hl 01 X
1 >~
ho Coyx
b

Figure 5.4. The cross-section of the composite beam.

Table 5.2. The eigenfrequencies of the two-layered beam neglecting the axial inertia (3)

and neglecting the axial and the rotary inertia (¢).

Ié] o

il owl wj Vs

1 135.42 135.44

2 539.35 539.66

3 1211.78 1213.3

4 2151.61 2156.4

5 3357.32 3368.94
6 4826.93 4850.95

7 6558.07 6602.4

8 8547.95 8623.31
9 10793.43 | 10913.68
10 | 13290.98 13473.5
15 | 29413.74 | 30314.42
20 | 51139.84 | 53891.71
25 77759.4 | 84205.37
30 | 108513.95 | 121255.39
35 | 142660.09 | 165041.78
40 | 179514.4 | 165041.78
45 | 218478.65 | 215564.55
50 | 259048.83 | 272823.67
100 | 694606.2 | 1347274.4
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5.2 Numerical example

The cross-section of the considered beam is shown in Fig. [5.4] and the following data
were applied for the computations of the eigenfrequencies: h; = 0.02m; hy = 0.04m;
b=003m; L =2m; E; = 10°°Pa; Ey = 2 x 101 Pa; & = 10°Pa; p; = 4000 k&/m?;
p2 = 7000 ke/ms. First we computed the eigenfrequencies in that case when the rotary
inertia and the axial inertia was taken into account as well. In this case the mass matrix
(5.32) were used in Eq. . Table contains the eigenfrequencies for several values
of j. Neglecting the axial inertia the mass matrix changes for (5.34) in Eq. (5.33]). The
eigenfrequencies belonging to this case are collected in the column S in Table 5.2 The
column § of Table [5.2] shows the eigenfrequencies when the axial and the rotary inertia
are equally neglected, viz. the mass matrix ([5.35)) were used in Eq. .
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Chapter 6

Analysis of curved composite beams
with interlayer slip

In this chapter a Rayleigh-Betti type reciprocity relation is derived for two-layered curved
composite beam with imperfect shear connection. The principle of minimum potential
energy is also formulated and its applications are illustrated by numerical examples.

6.1 Governing equations

The curved two-layered composite beam and its cross-section are shown in Fig. [6.1] In
the cylindrical coordinate system Orgz the curved layer i (i = 1,2) occupies the space
domain B; (i = 1,2)

Bi ={(r,¢,2)|(r,z) € A, 0<p<p<2n}, (i=12), (6.1)

where A; is the cross-section of beam component B; (i = 1,2) (Fig. [6.1). The common
boundary surface of By and B, is denoted by 0B

0By = {(r,gp,z)|r =7, 0<p<B, 2| < b(;“c)} . (6.2)

Here b = b(r) is the thickness of the cross-section (Fig. [6.1). The plane z = 0 is the
plane of symmetry for the whole two-layered curved beam. The connection between the
beam components B; and B, on their common boundary surface 0B;5 in radial direction
is perfect, whilst in circumferential direction may be jump in the displacement field. The
possible jump is called the interlayer slip. Denote the unit vectors of the coordinate system
Orez e,, e, and e,. The in-plane deformation of two-layered curved beam is described
by the next displacement field [97]

u = ue, + ve, + we;, (6.3)
u=u(p), w=0, (repz2) € B=DBUDBy, (6.4)
d )
o(r, @, 2) = réi() + @ (rp.2) € By, (i=1,2). (6.5)

Application of the strain-displacement relationship of the linearised theory of elasticity
gives [90]
Er = &2 = Tre = Vrz = Yoz = 07 (T7 2 Z) S Bv (66)
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OP =r
bQ<b]

Figure 6.1. Two-layered curved beam.

Figure 6.2. Illustration of internal forces and couples.

1 /d%u dg;
= - (— B;, (i=1,2). .
€y T(d¢2+u>+d¢, (r,p,2) € B;, (i=1,2) (6.7)

The strains provided by Eqgs. and (/6.7)) satisfy the requirements of the Euler-Bernoulli

beam theory, only the one normal strain component ¢, is different from zero and all the
shearing strains vanish. From the definition of the interlayer slip s = s(y) it follows that

(Fig.
() = re(P1(0) — d2(0)). (6.8)

Denote Q) = Q(gp) the interlayer shear force acting on unit area of the common boundary
surface of By and By which is r.bedgp, since by > by (Fig. . Here, we assume that

~

Qp) = ks(p) = kre(o1(e) — d2(9)), (6.9)

where k is the slip modulus and its unit is force/(length)3. The value of the interlayer
shear force on this surface element is

Q(p)de = Q(¢)rebadep = krlby (¢1() — 2()) de, (6.10)
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that is
Q(p) = krlbsy (¢1(p) — da(p)) - (6.11)

According to paper [97] we define the stress resultants, i.e. the normal force, the shearing
force and the stress couple resultant as (Fig. [6.2)

Ni:/ o,dA, SZ-:/ T pod A, Mi:/ ro,dA, (i=1,2). (6.12)

In Egs. (6.12) o, is the normal stress and 7,, denotes the shearing stress. The virtual
work W of the section forces and moment on a kinematically admissible displacement

field R
da

o =1a(p), w=0, @:r$i+d— (i=1,2) (6.13)
@

can be computed as

~ ~ da
W = U’LA)dA—f—/’TT udA = Moy + Moy + N— + S4,
/A %) N %) 1¢1 2¢2 d(p (614>

N=N+ Ny, S=5 +09..

From Eq. (6.14]) we obtain the possible combinations of the boundary conditions at the
end cross sections

S = 51+ 53 or u may be prescribed, (6.15)
d
N = N; + N, or d_u may be prescribed, (6.16)
¥
M; or ¢; may be prescribed, (6.17)
M or ¢ may be prescribed. (6.18)

The virtual work of the distributed forces f,, fi, and fo, on a small beam element
(Fig. can be computed as

_ B du - -
dW = {fru + fcpﬁ +mipr + mags | de, (6.19)
where
SO ~ du )
u = ue, + (rqbi + @) e,, (r,¢,2)€B;, (i=1,2) (6.20)

is the virtual displacement field and (Fig. [6.3)

fcp - f1<,0 + f2<pa my = Taflgm mo = rbecp- (621)

Equations of equilibrium can be formulated as [97]

AN

Y — 22

d¢+S+f@ 0, (6.22)
ds

—N+—+f =0, 2
+d<p+f 0 (6.23)

dM

dspl +my —q=0, (6.24)
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\f: Y 7 v~ fie

©+Ap ®

O

Figure 6.3. Virtual work of applied forces acting on a small beam element.

dM.
d; +my4q=0. (6.25)
In Egs. (6:241[6.25) (Fig.
q= K(gbl — ¢2), K = k?’f‘gbg, (bg < b1>, (626)
and we have
N =N;+ Ny, S=51+8S;. (6.27)

6.2 Rayleigh-Betti type reciprocity relation

Let us consider two equilibrium states of a two-layered curved beam with imperfect shear
connection. These equilibrium states are denoted by upper one comma and upper two

comma, respectively. Starting from Eqs. (6.22), (6.23]) we can write
dN’ du” ds’
S’ ! —N'+ — "W =0. 6.28
(d<P+ +f“") dw+( +dw+fT)u (6:28)
Integration of Eq. (6.28) gives

du” B B du” B d2u”
VY [ (8 Yo [ (5 o e
{vi [ ()= [ (G p=0, (629)

where the next designation

{F()ly =F (B - F(0) (6.30)
is introduced. From Eqs. (6.24)), (6.25) it follows that

M| dM;
(ot ot = ot + T+ migh + 64) g =
0

de de
B8
maq+Mw&ﬂﬁ/omq+m59wF (6.31)
0
B d 1/ d "
- [ S g o - o) ap =
0
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Let

"

B "
d
v o+ wioth o+ [ (s 8 il + o) ap
0
(6.32)
be. The mechanical meaning of Wiy is obvious, the work done by the applied forces
and reactions of the first equilibrium state on the displacement field caused by the forces

applied in second equilibrium state. We define the mixed strain energy Ujs for the states
1 and 2 as

d2 " d // d

du
Wiy =< N’
’ { -

The combination of Eq. (6.29) with Eq. (6.31]) gives
W12 = U12. (634)

Application of the Hooke’s law and Eq. (6.7)) yields the formula of normal stress o,

1 (d?u do; .

o, =FE; {; (d_g02 + u) + @] . (re,2)€e By, (1=1,2), (6.35)
where E; is the modulus of elasticity for curved layer B; (i = 1,2). Combination of
Eqgs. (6.12); 23 with Eq. (6.35]) gives

d2u do; .
Here,
1 1 dA
—=— [ — =1,2 6.38
mox) o (=12, (639
1 _—
i J A,
The connection between the normal force N and shear force S is as follows [97]
dN
S=—-—— 6.40
- (6.40)
Combination of Egs. (6.27))1, (6.36]), (6.37) and (6.40) we obtain
AEy [ d*u doy dos
N=—-1|-— A E Ay E A1
R(dap+u>+11dap+22d@ (6.41)
d? d
M = Ml + M2 = AEO _U +u |+ rlAlEl (bl + ’I"QAQEQ ¢2 (642)
de? de dp’
where (Fig. [6.1)
EO - w, A:A1+A2, (643)
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6. CHAPTER. ANALYSIS OF CURVED COMPOSITE BEAMS WITH INTERLAYER SLIP

AEO dA
=F — 4+ F —_— 6.44
R 1 . + 2 o ( )

By the use of Eq. (6.26) and Eqs. (6.37 , - we can reformulate the expression of Uy

as
B8 AE() dzu’ d2 u" d2u” ¢/
Uy = " / " AE
. /0 { R <d902+u> <d902 +u)+ 1 1(d<p2 +u> dso

d2/ d// d2 " d/ d2/ d//
+AF; (—u —|—u’) o + Ay Fy < i u”) ¢ + Ay By (_“ 4+ u’) dgb? (6.45)

de? de de? de dep? ®
/d /! d /d //
+r A By d¢ d¢ roAsFy d¢ d¢ + K (97 — ¢3) (o] — /2,)} dep.
It is evident
U12 = U21 and Ugl = ng, (646)

where

//d 1 / I/ /N ﬁ /i

Wa = Ndcp + ST + Mgy + Mygy ¢ + fru —|—f—+m1 1+ mydh | de.
0 0

(6.47)
Comparison of Eq. (6.34) with Eq. (6.46)) yields the next Rayleigh-Betti type reciprocity
relation

W12 == WQl. (648)
If the two equilibrium states are the same, that is
u=d =u", p=d = da=dh=d}..., (6.49)
then we have according to Clapeyron’s theorem
U=W, (6.50)

where U is the strain energy of the two-layered composite beam with imperfect shear
connection

1 B
U—§A

AE, [ d2 2 d2 d d2uy d
—0<—u+u> + 24, F, (—ZJF ) ¢1+2A2E2( + ) dos |

R \dy? de de de? de
d d
+T1A1El (di;l) + ’I“QAQEQ ( dfj) + K (qbl — ¢2)2] ng (651)

and W is the work of the applied forces which can be written in the next form

B

B
+/0 (fru+fwj_z+ml¢l+m2¢2> dQO
(6.52)

2 dep

1 d
W == [{N—U+SU+M1¢1+M2¢2}
0
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6.3 Principle of minimum potential energy

Let u = u(yp), b = (p) and bo = o () such functions which satisfy the geometric
boundary conditions. The geometric boundary conditions refer to deflection and cross-
sectional rotation. For this field we define the potential energy as [94, [OF]

I1;, (ﬂ, b1, 52) =U (ﬁ, 51,$2> — {virtual

work of the prescribed forces on u, 51 and 52} .

(6.53)

It can be proven that according to the minimum property of potential energy [94), [OF]

Iy (u, ¢1, ¢2) <11y (ﬂa ;51,52) ; (6.54)

where u = u (¢), ¢1 = ¢1 () and P2 = ¢5 () are the solution of the considered equilib-
rium problem of layered composite beam with weak shear connection. Next, it will be
proven that the equations of equilibrium and force boundary conditions are obtained from
the principle of minimum of potential energy. Let u = u (¢), ¢1 = 1 (), P2 = P2 () be
the solution of the considered equilibrium problem. The kinematically admissible radial
displacement and cross-sectional rotations can be represented as

U=u+du, ¢r=d1+001, do=dy+Ips (6.55)

Here, du, d¢; and d¢, satisfy homogeneous kinematic boundary conditions where u, ¢,
or ¢ are prescribed as a boundary condition. Assuming that all the boundary conditions
are force boundary conditions, this means that N (0), N (8), S (0), S(8), M; (0), M; (B)
and M, (0), Ms () are prescribed. In this case

P 1 (PlAE, (% \° e\ déy
H<Ua¢17¢2>—§/0 T(d_@?—}_u) +2A,E, <d_802+u> @4—

~ ~ 2 ~ 2
d*u ~ d¢2 d¢1 dqbg ~ ~\2
+2A2E2 (d_('02 + U) E + T1A1E1 (w + T’QAQEQ @ + K (le — ¢2> ng—

S P ~ di o —~ 7
fru+fgo_ +mipr +maede | dp — S N— + Su+ M1y + Mags o (6.56)
0 de dep 0
where the quantities with over-bar are given. By a lengthy, but elementary computation
which includes the application of the integration of parts for

Ay, =TI, (u + 0u, ¢1 + 01, o + dda) — 111 (u, d1, P2) (6.57)
the next result can be derived
AHL =0ll+U (5u, 5@51, 5¢2) s (658)
where
B d’N df, dM,
oIl = /o [(N‘i“ 4 — fr+ w) ou — (_dSO +my —q (P — ¢2)) 01—
dM. — d
- ( d; +mg +q (61 — cbz)) 5@] de + {(N - N) g0 (6.59)
dN _ _ _ g
— (@ —|—ﬁp—|—5) 5U+ (Ml —Ml) 5§b1 + (M2 —MQ) 5¢2} .
0
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For admissible variation of u, ¢, ¢, which are du, d¢; and d¢, are arbitrary except
where the kinematic boundary conditions are specified. Since with arbitrary admissible
variation of u, ¢1, ¢

All;, >0 (6.60)

according to the principle of minimum of potential energy. From Eq. (6.58]) and inequality

relation and

we obtian

ST = 0. (6.62)

A detailed form of Eq. (6.62)), which can be derived by means of the fundamental lemma
of calculus of variation [99] gives the equations of equilibrium

& d,

N — f. =0, 0<p<p, 6.63
iz PNy p<p (6.63)
dM
d—;+m1—q(¢1—¢2)=o, 0<¢<pb (6.64)
dM.
d@2+m2+q(¢1—¢2)=0, 0<p<p (6.65)
and boundary conditions
N —N =0 for ¢ =0 and ¢ = 3, (6.66)
dN —
d—+f@+S:Ofor<p:Oand<p:B, (6.67)
¥
M, —M; =0for p=0and ¢ = f3, (6.68)
My — My =0 for o =0 and ¢ = f3, (6.69)

We note, Eq. (6.63)) is obtained from Eqs. (6.22)), (6.23]) with the elimination of S = S ()
and the validity of boundary condition (6.67)) follows from Eq. (6.22)). In Egs. (6.63H6.65))
N, My, M,, q are given by Eqs. (6.26)), (6.37)), (6.41) in terms of u, ¢; and ¢s.

We have also investigated curved composite beams with interlayer slip in (3). In that
paper the curved composite beam at one of the end cross-sections is fixed and the other
end cross-section is subjected by a concentrated radial load. The study gives solutions for
radial displacements, slips and stresses.

6.4 Numerical examples

6.4.1 A curved composite beam with uniformly distributed radial
load

Both ends of curved two-layered composite beam with flexible shear connection are radi-
ally guided and loaded by uniformly distributed radial forces as shown in Fig. [6.4] The
applied radial load is expressed as

==t (e-5+5)-u(o-5-F)]. (6.10)
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w=p/2
0/2| ©/2
o=y
*f p=0
@)

Figure 6.4. Uniformly loaded curved composite beam.
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Figure 6.5. The graph of the radial displacement.

where

0<e<g (6.71)

and H = H(yp) is the Heaviside function. In this problem the boundary conditions are as
follows

¢1 (0) =1 (5) = ¢ (0) = o (5) =0, (6-72>
S(0)=S5(8)=0. (6.73)

The minimum of the potential energy is obtained by the application of Ritz method.
Assumed form of the solution is

u(p) =up +Zup oS %gp, (6.74)
p=1
61(p) = > drpsin %so, 62 (9) = D opsin %so. (6.75)
p=1 p=1
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Figure 6.6. The graph of ¢; = ¢; ().
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Figure 6.7. The graph of ¢ = ¢s ().

With arbitrary ¢y, (i =1,2; p=1,2,...) the cross-sectional rotations given by Eq. (6.75)
satisfy the geometric boundary conditions formulated in Eq. (6.72)). Substitution of
Egs. (6.74)), (6.75) into the expression of potential energy we obtain that

o\ 2
I (uo, Up, G1p, Popsp =1...) = 1AE05 uy + BZ AEo < (%) ) ul+

2
+z%a(y—cm>)Ehmm+2%@<y—cm>>whmw+
br)e b)) e (6.76)

2 2
‘H"lAlEl <%) Qﬁp + TQAQEQ (%) 92537, -+ K (qblp — 9252},)2} -+ fU0@+

+ fu,— sm— b+ 06 —sm—ﬁ ©
The necessary condition of minimum of 11 as a function of ug, uy,, ¢1,, ¢2p (p =1,2,...)
can be formulated as
6HL 8HL 8HL aHL

—0, —0, —0, —0, (p=12..). 6.77
Oug du, b, Doy (p ) ( )
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Figure 6.8. The plot of the normal force function.
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Figure 6.9. The plot of the shear force function.

From Eq. (6.77) it follows that

7 R ©
Uy = — —
" AR B
and u,, ¢1p, P2, are the solution of the following system of linear equations
M,x, = by, M, = [my;], %, = [uy, by, ¢2p]T )
bp = [bp7 07 O]T )

where

2\ 2 2
Mp11 = Ago (1 - (%) ) y o Mp12 = A1E1% (1 - (%) ) :
2
Mmp13 = AZEQ% <1 - (%) ) )

2
P
Mp21 = Mp12, My = 11 A1 E, (?) + K, mps=—-K,

2
- - — o AoBy (1) 4 K
Mp31 = Mp13, Mp32 = Myp23, Mp3z = ToAxln | — | + K,

B

2
b, = —p—;’; {sing—g(ﬁ—i—@)—sing—g(ﬂ—@)} .
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Figure 6.10. The graph of M = M ().

The next data are used in Example : B = %’T, rq = 0.04m, r, = 0.02m, r, = 0.03m,
by = by =b=0.03m, E; = 10! Pa, Fy = 8 x 101°Pa, k = 80 x 108 Pa/m3, f = 5000 N,
© = 1. Figs. 6.5, and show the graphs of deflection and cross-sectional rotation
functions. The normal force as a function of ¢ is shown in Fig. The graphs of shear
force function S = S (¢) and bending moment function M = M (¢) are illustrated in

Figs. [6.9) and [6.10]

6.4.2 A curved composite beam subjected to uniformly distributed
radial load on its total length

In this example we consider the case = © which is shown in Fig. [6.11] Here, the same

data are used as in Example except © (@ = %’r) In this case we have from Eq. 1'
b,=0, (p=1,2,...). (6.85)

The solution of this problem is as follows

R

U= _fA_EO’ b1(0) =0, ¢2(p) =0, (6.86)

N=—f S§=0, M=—Rf. (6.87)

6.4.3 Checking the previous examples

In this example we check the exactness of solution of Examples [6.4.1] and [6.4.2] by the
application of Rayleigh-Betti reciprocity relation. The first equilibrium state of the curved
composite beam with deformable shear connection is shown in Fig. and the second
equilibrium state is illustrated in Fig. [6.11] In this example

g R
Wis = — | fo () f——dop, 6.88
2= [ 1) g (6:55)
where f,. = f, () is given by Eq. (6.70)), and

B8
War = / (—f)u(p) de, (6.89)
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O

Figure 6.11. The case of © = j3.

where u = u () is given by Eq. (6.74]). A simple computation gives

Wis = 0.00204454608 N1,

(6.90)
Wa1 = 0.00204454606 Nm.

6.4.4 A curved composite beam with concentrated radial load

This example deals with the case of concentrated radial load applied at ¢ = g as shown
in Fig.[6.12] The Ritz type solution is based on the assumed forms of radial displacement
and cross-sectional rotations given by Eqs. (6.74) and (6.75). The virtual work of the

concentrated radial force on the radial displacement (6.74) can be computed as

Wp = (=F)

Uy + Z Uy COS ]g] : (6.91)
p=1

From the principle of minimum potential energy by the use of expression Wr we obtain

that R oF
pT
- b, =—— — =1,2,...). .92
g s =12 (6.92)

Let FF = 5000N be. The same geometrical and material properties are used to solve
Eq. with the new value of b, (p = 1,2,...). The results of the computations
are shown in Figs. The radial displacement and cross-sectional rotations as
functions of ¢ are shown in Figs. [6.13][6.14] and [6.15. The graphs of normal force, shear
force and bending moment are illustrated in Figs. [6.16] [6.17] and [6.18] Here we note,
that the shear force function has a jump at ¢ = g (Fig. |6_17‘) The small oscillation of

S=5(p)at p = § follows from its representation by ,truncated” Fourier series.

Ug =

6.4.5 Checking the results of the curved beam with concentrated
radial load

By the use of Rayleigh-Betti type reciprocity relation we check the accuracy of the solution
obtained for concentrated radial load. The first equilibrium state of the curved composite
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O

Figure 6.12. The case of concentrated radial load.
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Figure 6.13. The plot of the radial displacement.
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Figure 6.14. The plot of ¢; = ¢1 (p).
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Figure 6.15. The plot of ¢o = ¢ (¥).
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Figure 6.16. The graph of normal force function.
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Figure 6.17. The graph of the shear force function.
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Figure 6.18. The graph of M = M ().

beam is shown in Fig. and the second equilibrium state is illustrated in Fig.
For these equilibrium states we have

R
Wis = (—=F) (— 6.93
2= (=F) (=f) 75 (6.93)
B
War=(=f) [ ule)de (6:99)
0
where u = u () is obtained in Example 6.4.4] A simple computation gives

Wis = 0.002603196319 Nm,

(6.95)

Wy = 0.002603196318 Nm

according to the proven Rayleigh-Betti type reciprocity relation.

6.4.6 A curved composite beam uniformly loaded by tangential
forces

Figure shows a two-layered composite beam with deformable shear connection loaded
by uniform tangential load on its outer cylindrical boundary. The geometrical and material
properties of the considered curved beam is the same as in Example [6.4.1] In paper
(3) the solution of two-layered composite beam with weak shear connection for radial
concentrated load applied at its one of the end cross-section was derived (Fig. . The
first equilibrium state of the composite curved beam is shown in Fig. and the second
equilibrium state of the same curved composite beam is given in Fig. [6.20f Our aim
is to obtain the deflection of the end cross-section of curved beam loaded by uniformly
distributed tangential forces (Fig. . According to the Rayleigh-Betti theorem we can
write that

3
Wig = V" (ra, p) dp =
5 (6.96)
= f [ra i o7 (@) dp +u” (5)} 7
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Figure 6.19. Two-layered curved composite beam uniformly loaded by tangential forces.
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Figure 6.20. Two-layered curved composite beam with concentrated radial load.
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From Eqgs. and ((6.97) it follows that

B
() =1 [ rup)de =

- _é [Ta /f ¢} (o) dp + u” (5)} . (6.98)

Let
f=1500N, F =1000N (6.99)

be in Eq. (6.98)). Other data are given in Example m By these data using the solution
presented for ¢] = @7 (¢) and v’ = u” (¢) in (3) we get

u' (B) = —0.0000188033149 m. (6.100)
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Summary of the novel results

In this thesis I have dealt with static and dynamic problems of layered composite beams
having not perfect connection. The overview of the literature represents that a lot of
investigators published their works in connection with this topic in the last 60-70 years.
The importance of the topic is well illustrated by the fact that the scientists research
the behaviour of the composite beams with weak shear connection nowadays as well.
According to the publications available in the open literature I have been able to draw
up my objectives and in the following I am going to summarize the novel results of this
thesis.

Statement 1.

I have derived a novel analytical solution to describe the static behaviour of composite
beams with interlayer slip. The governing equation of the problem is written in terms
of the slip and the cross-sectional shear force function. The fundamental solutions for
seven different initial conditions have been deduced by means of both Euler-Bernoulli and
Timoshenko beam theory. With these functions the solution of the governing equation
have become the solution of a linear system of equation. I have presented the methods
in numerical examples with different boundary conditions in order to compare the results
with ones from other publications and from my FEM analysis. The results were in good
agreement.

Statement 2.

I have deduced a new analytical solution for static problem of composite beams with
interlayer slip loaded by mechanical and thermal load as uniform temperature change.
I have provided the governing equation of the problem and have solved it for different
boundary conditions. The thermal stresses have been derived as well. In this case numer-
ical examples also represented the developed method with and without thermal loading.
The same results have been obtained from this method without thermal load as from the
fundamental solutions.

Statement 3.

Two new analytical method have been formulated for the determination of the buckling
load of composite beams with weak shear connection. In the first case closed form so-
lution were derived from a variational method for two composite columns with different
boundary conditions. In the second case I have obtained the same closed forms from
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the equilibrium method for the same two composite columns. Two numerical examples
showed the application of the forms which were in good agreement with the results come
from the literature. I have also provided the function of the buckling load in terms of the
slip modulus for both columns.

Statement 4.

A new analytical solution has been described in connection with the free flexural vibra-
tion of composite beams with weak shear connection. For the analysis I have introduced
the d’Alembert forces. According to the obtained equations of motion three closed form
solutions were provided for the eigenfrequencies of the considered composite beam. The
first solution counts with the effect of the rotary and axial inertia resulting three var-
ious eigenfrequencies, whilst the second one neglected the rotary inertia, the third one
eliminated all the rotary and the axial inertia. The latter two resulted one eigenfrequency.

Statement 5.

A new analytical method has been elaborated for static analysis of uniformly curved com-
posite beams with interlayer slip. Based on the Rayleigh-Betti type reciprocity relation I
have deduced the potential energy of the considered uniformly curved beam. By means of
the principle of minimum potential energy I have also determined the equilibrium equa-
tions and the dynamic boundary conditions. Several numerical examples represented the
applications of the potential energy combining with the Ritz method and for the checking
of this method the Rayleigh-Betti type reciprocity relation were used. These results were
in good agreement.
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Osszefoglalas

A disszertacioban réteges szerkezeti, részlegesen kapcsolt kompozit rudak statikai és di-
namikai problémaival foglalkoztam. Az irodalmi attekintés is mutatja, hogy az elmult
60-70 évben rengeteg kutatoé publikalta eredményeit részlegesen kapcsolt kompozit rudak-
kal kapcsolatban, és a téma fontossagat jol illusztralja, hogy napjainkban is sziiletnek
publikaciok a téméaban. Az irodalmi attekintés és célkitiizéseim alapjan a kovetkezSkben
osszefoglalom az 1j tudoményos eredményeket.

1. tézis

Uj analitikus megoldast vezettem le részlegesen kapcsolt kompozit rudak statikai visel-
kedésének leirasara. A probléma alapegyenletét a csiszas- és a nyirderdfiiggvény segit-
ségével irtam fel. Mind az Euler-Bernoulli, mind a Timoshenko riddmodell segitségével
szarmaztattam az un. alapmegoldasokat hét kiilonb6zs kezdeti feltételre. Az alapmegol-
dasok segitségével az alapegyenlet megoldasa egy lineéris egyenletrendszer megoldasavé
valik. Néhany numerikus példan keresztiil bemutattam a modszer alkalmazésat, az ered-
ményeket pedig 0sszevetettem mas publikaciokbol, illetve az altalam elvégzett végeselemes
szimulaciobol szarmazé eredményekkel, melyek jo egyezést mutattak.

2. tézis

Egy 1j analitikus modszert irtam fel részlegesen kapcsolt kompozit rudak statikai visel-
kedésének meghatarozasara, amennyiben a rudra egyarant hat mechanikai és héterhelés
amely egyenletes hdmérsékletvaltozast jelent. Megadtam a probléma alapegyenletét és an-
nak megoldéasat is kiilonbo6z6 peremfeltételi elGirasokra. A hé okozta fesziiltségek szamita-
sara szolgélo Osszefliggéseket is szarmaztattam. Ebben az esetben is numerikus példakban
mutattam be a modszer alkalmazasat héterheléssel és anélkiil. A héterhelés nélkiili eset
ugyanazokat a megoldésokat szolgaltatta, amelyeket az alapmegoldésok modszere is.

3. tézis

Két 1j analitikus modszert vezettem le részlegesen kapcsolt kompozit rudak stabilitasi
vizsgélataval kapcsolatban. Az elsé esetben két kiilonbozé peremfeltételekkel rendelkezd
radra is zart formulat allitottam el6 a kritikus teher szamitasara, melyeket variacios mod-
szer segitségével vezettem le. A masodik esetben ugyanezen rudakra ugyanazokat a zart
formulakat kaptam egyenstlyi modszer segitségével. Két szampélda illusztrélja a formu-
lak alkalmazasat, az igy kapott eredmények pedig jo egyezést mutatnak az irodalomban
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talalhatd eredményekkel. Mindkét rid esetében megadtam a kritikus terhelés csiszési
modulustol valo fiiggését is.

4. tézis

Egy 1j analitikus modszert irtam fel részlegesen kapcsolt kompozit rudak szabad rezgé-
seinek vizsgalatara. Bevezettem a d’Alembert féle inerciaeréket. A nyert mozgésegyenle-
tekbdl harom esetre is zart formula vezethets le a tekintett kompozit rudak sajatfrek-
vencidinak meghatarozasara. Az els6é esetben figyelembe vettem a forgési és az axiélis
inercia hatasét is, mely 3 kiilonb6z6 sajatfrekvenciat eredményezett. A mésodik esetben
a forgasi inerciat, mig a harmadik esetben mind a forgasi, mind pedig az axialis inerciat
elhanyagoltam. Ez utobbi két eset egy-egy sajatfrekvenciat eredményezett.

5. tézis

Egy 4j analitikus modszert vezettem le koriv kézépvonalu kompozit rudak statikai visel-
kedésének leirasara. A Rayleigh-Betti féle felcserélhetségi tételt felhasznalva felirtam a
koriv kézépvonala kompozit radra érvényes potenciélis energiat. A potencialis energia mi-
nimuma elvének segitségével levezettem az egyensiilyi egyenleteket és a dinamikai perem-
feltételeket. Néhany példan keresztiil bemutattam a potenciélis energia minimuma elvén
alapuld megoldast kombinalva a Ritz-moddszerrel és az eredményeket a Rayleigh-Betti-féle
felcserélhetGségi tétel segitségével ellendriztem. Az eredmények jo egyezést mutattak.

85



List of Figures

(1.1  Frequently used composite cross-section with interlayer slip.| . . . . . . .. 7
2.1 'Two-layered beam with impertect shear connection.| . . . . . . . .. .. .. 13
[2.2  Horizontal equilibrium of a small beam element A5G, . . . . ... .. ... 15
[2.3  Shear force, bending moment and applied vertical load on a small beam |
element AB.l. . . . . . e e e 15

[2.4  Ilustration of applied load for the fundamental solutions.| . . . . . . . . .. 18
(2.5  Uniformly distributed load.| . . . . . . . ... ... ... ... ....... 18
[2.6 Intermediate applied loads.|. . . . . . . . . . ... oL 18
[2.7 Illustration of applied load for the tundamental solutions.| . . . . . . . . .. 22
[2.8  Simply supported composite beam.| . . . . .. ..o 000000 23
2.9 The deflection functions) . . . . . . . .. . ..o 24
2.10 The rotation functionl . . . . . . . . . ... Lo 24
[2.11 The slip functions.| . . . . . . . . . . .. 24
[2.12 The bending moment function.| . . . . . . . ... .. ... ... ... ... 25
2.13 The shear force function) . . . . . . . . .. ... oo 26
[2.14 The axial force tunction in layer By.|. . . . . . . .. . .. ... ... ... 26
[2.15 Propped cantilever with concentrated torce.| . . . . . . .. ... ... ... 26
2.16 The deflection functions) . . . . . . . . . . ..o o 0oL 28
2.17 The rotation functions) . . . . . . . ..o oo 28
[2.18 The slip functions.| . . . . . . . . . . .. 28
[2.19 The bending moment functions.| . . . . . . . . .. ... ..o 29
[2.20 The shear force functions.| . . . . . . . . . . ... ... 29
[2.21 'T'he axial force functions in layer 57 . . . . .. .. ... ... 29
[3.1 'The considered two-layered beam.| . . . . . . . .. .. ... ... 31
[3.2  Normal forces and bending moments.| . . . . . . . . ... ... ... .. 32
[3.3  Equilibrium condition in z direction for a small beam element A5, . . . . 33
[3.4  Simply supported two-layered beam with thermal load and distributed line |
CToadl . . . o o 36
3.0 The deflection function) . . . . . . . .. . ... oo 37
3.6 The cross-sectional rotation function . . . . . . ... ... ... ... ... 37
[3.7 T'he slip function.| . . . . . . . . ... 38
[3.8 'T'he bending moment function.| . . . . . . ... ... ... ... .. 38
3.9 The shear force tunction) . . . . . . . . ... ... oo o0 39
[3.10 The axial force function) . . . . . . . . .. ... oo 39
(3.11 The functionof o..| . . . . . . . . . . 39
18.12 The function of 7,..[ . . . . . . ... .o 40
B.13 The functionof o, | . . . . . . . ... 40

86



LIST OF FIGURES

[3.14 The deflection functions incaseof T'=0J. . . . . . .. ... .. ... ... 40
[3.15 The slip functionsincaseof T'=0.| . . . . . . .. .. ... ... ... ... 41
[3.16 Two-layered propped cantilever with thermal load and distributed line load.| 41
[3.17 T'he function of the deflectionl . . . . . . . ... ... ... 42
13.18 The function of the cross-sectional rotation) . . . . . ... ... ... ... 42
[3.19 The function of theslip.| . . . . . . ... . ... ... 0L 43
[3.20 The function of the bending moment.| . . . . . . . .. ... ... ... ... 43
[3.21 The function of the shear forcel . . . . . . . . ... ... ... ... ... 44
[3.22 The function of the axial torce in the first layer.| . . . . . . . . ... .. .. 44
[3.23 The functionofo,.| . . . . . . . . . . 45
1B.24 The function of 7,,.[ . . . . . . ... 45
.25 The function of o, | . . . . . .. ... 46
[3.26_The function of the deflection in case of T=0J. . . . . . .. .. ... ... 46
[3.27 "T'he function of the slip in caseof 7'=0.) . . . . . . ... ... ... ... . 46
4.1 Two-layered beam with weak shear connection.. . . . . . . ... ... ... 48
4.2 Free body diagram for axial forces.| . . . . . . ... ... 50
4.3 Simply supported composite column with axial load.| . . . . .. ... ... 51
4.4 The cross-section of the simply supported column.|. . . . . .. . . .. ... 53
4.5 The buckling load in terms of the slip modulus (0 < k£ < 10°%)) . . ... .. 53
4.6 The buckling load in terms of the slip modulus (10" <k < 10™).| . . . . . 53
4.7 Column with fixedends) . . . . .. ... ... o0 54
4.8 The buckling load in terms of the slip modulus (0 <k <10%). . ... . .. 56
4.9 The buckling load in terms of the slip modulus (10" < k£ < 10™)| . . . .. 56
[>.1 'The considered simply supported two-layered composite beam. . . . . . . . 58
[>.2  Shear force, bending moment, the applied distributed line load and dis- |

tributed moment on a small beam element) . . . . . . . .. ... ... ... 58
b.3 Axial forces on a small beam element.). . . . . .. ... ... ... 59
[5.4 The cross-section of the composite beam.| . . . . . . . . .. ... ... ... 62
6.1 'Two-layered curved beam. . . . . . . . . ... L 65
[6.2 Illustration of internal forces and couples.|. . . . . . . ... ... ... ... 65
6.3 Virtual work of applied forces acting on a small beam element.|. . . . . . . 67
[6.4 Uniformly loaded curved composite beam. . . . ... ... ... ... ... 72
[6.5 'T'he graph of the radial displacement.|. . . . . . . .. ... ... ... ... 72
6.6 The graphof o1 =1 ()| . . . . . oo o 73
6.7 The graph of oo = ()| . . . . . o 73
[6.8 'The plot of the normal force function.|. . . . . . . ... ... ... ... .. 74
[6.9 'The plot of the shear force function|. . . . . . . ... ... ... ... ... 74
6.10 The graph of M =M (p).| . . . . . .. oo 75
[6.11 Thecaseoft © = 5. . . . . . . . . . . . 76
6.12 The case of concentrated radial load. . . . . . .. ... ... .. ... ... 7
[6.13 The plot of the radial displacement.|. . . . . . . ... ... ... ... ... 7
6.14 The plot of o1 = 1 (). . . .« . o o 7
6.15 The plot of oo = ()| . . . . . . o oo o 78
[6.16 'T'he graph of normal force function.| . . . . . . . . .. . ... ... ... .. 78
[6.17 The graph ot the shear force function.|. . . . . . ... ... ... ... ... 78
6.18 The graph of M =M (p).| . . . . . .o 79




LIST OF FIGURES

[6.19 Two-layered curved composite beam unitormly loaded by tangential forces.| 80
[6.20 Two-layered curved composite beam with concentrated radial load.| . . . . 80

88



List of Tables

[2.1 Comparison of deflection and ship.| . . . . . . . . .. ... .. ... .. ... 25

[>.1 T'he eigenfrequencies of the two-layered beam with axial and rotary inertia.| 61
[>.2  T'he eigentrequencies of the two-layered beam neglecting the axial inertia |
(8) and neglecting the axial and the rotary inertia (0). . . .. ... .. .. 62

89



Publications

The following publications were made in the topic of the thesis.

Articles in journals

(1) A. J. Lengyel and I. Ecsedi. An analytical solution for two-layered composite beams
with imperfect shear interaction, International Review of Mechanical Engineering,
10(7):508-517, 2016.

(2) A.J. Lengyel and I. Ecsedi. Analysis of bimetallic beam with weak shear connection.
Acta Technica Corviniensis — Bulletin of Engineering, 9(3):85-90, 2016.

(3) A. J. Lengyel and I. Ecsedi. Curved composite beam with interlayer slip loaded by
radial load. Curved and Layered Structures, 2(1):50-58, 2015.

(4) A.J. Lengyel and I. Ecsedi. Energy methods for curved composite beams with partial
shear interaction. Curved and Layered Structures, 2(1):351-361, 2015.

(5) A. J. Lengyel and I. Ecsedi. Static and dynamic analyses of composite beams with
interlayer slip. Journal of Computational and Applied Mechanics, 10(1):25-40, 2015.

(6) A.J. Lengyel and I. Ecsedi. An equilibrium problem of curved composite beam with
interlayer slip. Acta Technica Corviniensis — Bulletin of Engineering, 8(2):57-60,
2015.

(7) A. J. Lengyel and I. Ecsedi. Kétrétegti nem tokéletesen kapcsolt kompozit rudak
rezgéseinek vizsgalata (Vibration analysis of two-layered composite beams with par-
tial shear interaction, in Hungarian). GEP LXV(1):34-38, 2014.

(8) A. J. Lengyel and I. Ecsedi. Egy moédszer a részlegesen kapcsolt kompozit rudak
lehajlasanak és igénybevételeinek szamitasara (A method for computation of deflec-
tion and inner forces of composite beams with partial shear interaction, in Hungar-
ian), Multidiszciplindris Tudomdnyok: A Miskolci Egyetem Kozleménye 3(1):83-96,
2013.

(9) A.J. Lengyel and I. Ecsedi. Normal és cstisztato fesziiltségek szamitasa részlegesen
kapesolt rétegezett kompozit rudakban (Computations of normal and shear stresses
in composite beams with partial shear interaction, in Hungarian) GEP LXIV(5):22—
27, 2013.

(10) A. J. Lengyel and I. Ecsedi. Analitikus modszer részlegesen kapcsolt, rétegezett
kompozit rudak szilardsdgtani feladatainak megoldéaséara (An analytical method

90



PUBLICATIONS

for static problems of composite beams with partial shear interaction, in Hungar-
ian), Multidiszciplindris Tudomdnyok: A Miskolci Egyetem Kozleménye 2(1):89—
102. 2012.

Conference papers

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

A. J. Lengyel and I. Ecsedi. Complementary energy method for curved composite
beams. MultiScience — XXX. microCAD International Multidisciplinary Scientific
Conference, Section: D5 - Technical Mechanics, University of Miskolc, 21.04.2016—
22.04.2016

A.J. Lengyel and I. Ecsedi. Kompozit rudak vizsgalata energia modszer segitségével
(Analysis of composite beams by means of energy method, in Hungarian), XII. Ma-
gyar Mechanikai Konferencia (XII. Hungarian Conference of Mechanics), Section:
12. Tartoszerkezetek I1., University of Miskolc, 25.08.2015-27.08.2015, paper 279.

A. J. Lengyel and I. Ecsedi. Composite beam with weak shear connection sub-
jected to thermal load, MultiScience — XXIX. microCAD International Multidisci-
plinary Scientific Conference, Section: D2 — Mechanical engineering design and tech-

nologies, numerical modelling and laboratory measurements, University of Miskolc,
09.04.2015-10.04.2015, paper D2-3

A. J. Lengyel and I. Ecsedi. Elastic Stability of Columns with Weak Shear Connec-
tion, MultiScience — XXVIII. microCAD International Multidisciplinary Scientific

Conference, Section: D4 — Mechanical modelling and finite element simulation, Uni-
versity of Miskole, 10.04.2014-11.04.2014, paper D-37

A. J. Lengyel and I. Ecsedi. Stability analysis of composite beams with weak shear
connection by a variational method, Tavaszi Szél Konferencia 2014. (Spring Wind
Conference 2014), Miszaki szekcidé — Analizis, modellezés és szimuléacié (Technical
section — Analysis, modelling and simulation), University of Debrecen, 21.03.2014—
23.03.2014, p.: 423-431

A. J. Lengyel and 1. Ecsedi. Statics of the Composite Beams having not Perfect
Connection on Its Total Length, XX VII. microCAD International Scientific Confer-
ence, Section: O — Applied Mechanics, University of Miskolc, 21.03.2013-22.03.2013,
paper O-8

A. J. Lengyel and I. Ecsedi. Vibrations of Composite Beams with Interlayer Slip,
8th International Conference of PhD Students, Section: D — Engineering Science,
University of Miskolc, 05.08.2012—-11.08.2012, paper D-10

A. J. Lengyel and I. Ecsedi. Kompozit rudak linearis analizise Ritz-modszer
segitségével (Linear analysis of composite beams with weak shear connection by
means of Ritz method), OGET 2012: XX. Nemzetkozi Gépészeti Taldlkozo. Cluj-
Napoca, Romania, 19.04.2012-22.04.2012 p.: 266-269

A. J. Lengyel and I. Ecsedi. Application of the Ritz method for the linear analysis
of composite beams with interlayer slip, XXVI. microCAD International Scientific
Conference, Section: O — Applied Mechanics, University of Miskolc 29.03.2012—
30.03.2012, paper O-10

91



Bibliography

1]

2]

3]
4]

[5]

(6]

7]

8]

19]

[10]

[11]

N. M. Newmark, C. P. Siess, and I. M. Viest. Test and analyis of composite beams
with incomplete interaction. Proceedings of the Society of Experimental Stress Anal-
ysis, 9(1):75-92, 1951.

H. Granholm. On composite beams and columns with particular regard to nailed
timber structures. Transaction No. 88, Chalmers Technical University, Goteborg,
Sweden, 1949. (in Swedish).

F. Stiissi. Zusammengesetzte Vollwandtrager. IABSE Publications, 8:249-269, 1947.

J. R. Goodman and E. P. Popov. Layered beam systems with interlayer slip. Journal
of the Structural Division, Proceedings of the American Society of Civil Engineers,
94(11):2535-2548, 1968.

A. O. Adekola. Partial interaction between elastically connected elements of a com-
posite beam. International Journal of Solids and Structures, 4:1125-1135, 1968. doi:
10.1016,/0020-7683(68)90027-9.

H. Robinson and K. S. Naraine. Slip and uplift effects in composite beams. In
Proceedings of the Engineering Foundation Conference on Composite Construction

(ASCE), pages 487497, 1988.

R. P. Johnson and I. N. Molenstra. Partial shear connection in composite beams for
buildings. In Proceedings of the Institution of Civil Engineers, Part 2, volume 91,
pages 679-704, 1991. doi: 10.1680/iicep.1991.17485.

E. Cosenza and S. Mazzolani. Linear-elastic analysis of composite beams with par-
tial shear interaction. In Proceedings of the First Italian Workshop on Composite
Structures, University of Trento, 1993. (in Italian).

U. A. Girhammar and V. K. A. Gopu. Composite beam-columns with interlayer slip
— exact analysis. Journal of Structural Engineering, 119(4):1265-1282, 1993. doi:
10.1061/(ASCE)0733-9445(1993)119:4(1265).

I. Ecsedi and A. Baksa. Static analysis of composite beams with weak shear connec-
tion. Applied Mathematical Modelling, 35(4):1739-1750, 2011. doi: 10.1016/j.apm.
2010.10.006.

U. A. Girhammar and D. Pan. Dynamic analysis of composite members with inter-
layer slip. International Journal of Solids and Structures, 30(6):797-823, 1993. doi:
10.1016,/0020-7683(93)90041-5.

92



BIBLIOGRAPHY

12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

23]

[24]

D. R. Plum and M. R. Horne. Analysis of continuous composite beams with partial
interaction. In Proceedings of the Institution of Civil Engineers, Part 2, volume 59,
pages 625-643, 1975. doi: 10.1680/iicep.1975.3631.

N. A. Jasim. Computation of deflections for continuous composite beams with partial
shear interaction. In Proceedings of the Institution of Civil Engineers: Structures and
Buildings, Part 2, volume 122, pages 347-354, 1997.

N. A. Jasim and A. Atalla. Deflections of partially composite continuous beams: a
simple approach. Journal of Constructional Steel Research, 49:291-301, 1999. doi:
10.1016/S0143-974X(98)00001-7.

A. Dall’Asta and A. Zona. Non-linear analysis of composite beams by a displacement
approach. In Proceedings of the Fifth International Conference on Computational
Structures Technology, Lueven (Belgium), pages 337-348, 2000.

A. Zona. Finite element modelling of composite beams. PhD thesis, University of
Ancona, Italy, 2003.

G. Prathap and B. P. Naganarayanan. Stress oscillations and spurious load mecha-
nisms in variationally inconsistent assumed strain formulations. International Journal
for Numerical Methods in Engineering, 33(10):2181-2197, 1992. doi: 10.1002/nme.
1620331011.

A. Dall’Asta and A. Zona. Finite elements for the analysis of composite members
with interlayer slip. In Proceedings of the XVIII Italian Workshop on Steel (CTA),
Venice (Italy), 2001.

B. J. Daniels and M. Crisinel. Composite slab behavior and strength analysis. Part
I: calculation procedure. Journal of Structural Engineering, ASCE, 119(1).

Y. Arizumi, S. Hamada, and T. Kajita. Elastic-plastic analysis of composite beams
with incomplete interaction by finite element method. Computers and Structures, 14
(5-6):453-462, 1981. doi: 10.1016/0045-7949(81)90065-1.

A. Dall’Asta and A. Zona. Non-linear analysis of composite beams by a displacement
approach. Computers and Structures, 80(27-30):2217-2228, 2002. doi: 10.1016/
S0045-7949(02)00268-7.

A. Dall’Asta, G. Leoni, and A. Zona. Some problems on the nonlinear analysis of
composite beams by the finite element method. In Proceedings of the XVII Italian
Workshop on Steel (CTA), Naples (Italy), 1999.

M. R. Salari, E. Spacone, P. B. Shing, and D. M Frangopol. Non-linear analysis
of composite beams with deformable shear connectors. Journal of Structural Engi-
neering, ASCE, 124(10):1148-1158, 1998. doi: 10.1061/(ASCE)0733-9445(1998)124:
10(1148).

M. R. Salari and E. Spacone. Finite element formulations of one-dimensional ele-
ments with bond-slip. Engineering Structures, 23(7):815-826, 2001. doi: 10.1016/
S0141-0296(00)00094-8.

93



BIBLIOGRAPHY

[25]

26]

27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

136]

137]

A. Ayoub and F. C. Filippou. Mixed formulation of nonlinear steel-concrete composite
beam element. Journal of Structural Engineering, ASCE, 126(3):371-381, 2000. doi:
10.1061/(ASCE)0733-9445(2000)126:3(371).

A. Ayoub. A two-field mixed variational principle for partially connected composite
beams. Finite Elements in Analysis and Design, 37(11):929-959, 2001. doi: 10.1016/
S0168-874X(01)00076-2.

A. Dall’Asta and A. Zona. Three-field mixed formulation for the non-linear analysis
of composite beams with deformable shear connection. Finite Elements in Analysis
and Design, 40(4):425-448, 2004. doi: 10.1016,/S0168-874X(03)00071-4.

C. Faella, V. Consalvo, and E. Nigro. An "exact" finite element model for the linear
analysis of continuous composite beams with flexible shear connection. In Proceedings
of the XVIII Italian Workshop on Steel (CTA), Ancona (Italy), 1997. (In Italian).

C. Faella, E. Martinelli, and E. Nigro. Steel and concrete composite beams with
flexible shear connection: "exact" analytical expression of the stiffness matrix and
applications. Computers and Structures, 80(11):1001-1009, 2002. doi: 10.1016/
S0045-7949(02)00038-X.

E. Cosenza and M. Pecce. Structural analysis of linear-elastic continuous composite
beams with partial interaction. In Proceedings of the X VI Italian Workshop on Steel
(CTA), Ancona (Italy), 1997. (In Italian).

P. Ansourian. Experiments on continuous composite beams. In Proceedings of the
Institution of Cwil Engineers, Part 2, volume 71, pages 25-51, 1982.

J. C. Chapman and S. Balakrishnan. Experiments on composite beams. The Struc-
tural Engineer, 42(11):369-383, 1964.

G. Fabbrocino, G. Manfredi, M. Pecce, and E. Cosenza. Nonlinear behaviour of
composite beams in the hogging moment region: numerical study. In Proceedings
of the III Italian Workshop on Composite Construction, Ancona (Italy), 1998. (In
[talian).

G. Fabbrocino, G. Manfredi, E. Cosenza, and M. Pecce. Nonlinear behaviour of
composite beams under negative moment: an experimental-theoretical comparison.
In Proceedings of the 2nd FEuropean Conference on Steel Structures FUROSTEEL
99, Prague (Czech Republic), 1999.

R. P. Johnson and M. C. Hope-Gill. Applicability of simple plastic theory to contin-
uous composite beams. In Proceedings of the Institution of Civil Engineers, Part 2,
volume 91, pages 679-704, 1976.

P. R. Barnard and R. P. Johnson. Plastic behaviour of continuous composite beams.
In Proceedings of the Institution of Civil Engineers, volume 32, pages 180-197, 1965.

L. C. P. Yam and J. C. Chapman. The inelastic behaviour of simply supported
composite beams of steel and concrete. In Proceedings of the Institution of Clivil
Engineers, volume 41, pages 651-683, 1968.

94



BIBLIOGRAPHY

38

[39]

[40]

|41]

42]

[43]

[44]

[45]

[46]

[47]

48]

[49]

[50]

L. C. P. Yam and J. C. Chapman. The inelastic behaviour of continuous composite
beams of steel and concrete. In Proceedings of the Institution of Civil Engineers,
volume 53, pages 487-501, 1972.

L. C. P. Yam. Design of Composite Steel-Concrete Structures. Surrey University
Press, 1981.

J. M. Rotter and P. Ansourian. Cross-section behaviour and ductility in composite
beams. In Proceedings of the Institution of Civil Engineers, Part 2, volume 67, pages
453-474, 1979.

J. M. Rotter and P. Ansourian. Design of ductile steel/concrete composite beams.
In Civil Engineering Transactions of The Institution of Engineers (Australia), vol-
ume 22, pages 202-208, 1980.

E. Cosenza and S. Mazzolani. Short-term deflection of steel-concrete composite
beams: the effects of the nonlinear behaviour of the shear connection. In Proceedings
of the First Italian Workshop on Composite Structures, University of Trento (Italy),
1993. (In Italian).

R. I. M. Al-Amery and T. M. Roberts. Nonlinear finite difference analysis of com-
posite beams with partial interaction. Computers and Structures, 35(1):81-87, 1990.
doi: 10.1016/0045-7949(90)90258-4.

D. J. Oehlers and G. Sved. Composite beams with limited-slip-capacity con-
nectors. Journal of Structural Engineering, ASCE, 121(6):932-938, 1995. doi:
10.1061/(ASCE)0733-9445(1995)121:6(932).

G. Fabbrocino, G. Manfredi, and E. Cosenza. Non-linear analysis of composite beams
under positive bending. Computers and Structures, 70(1):77-89, 1999. doi: 10.1016/
S0045-7949(98)00173-4.

G. Manfredi, G. Fabbrocino, and E. Cosenza. Modelling of steel-concrete composite
beams under negative bending. Journal of Engineering Mechanics, ASCE, 125(6):
654-662, 1999. doi: 10.1061/(ASCE)0733-9399(1999)125:6(654).

G. Fabbrocino, G. Manfredi, and E. Cosenza. Analysis of continuous composite

beams including partial interaction and bond. Journal of Structural Engineering,
ASCE, 126(11):1288-1294, 2000. doi: 10.1061/(ASCE)0733-9445(2000)126:11(1288).

G. Fabbrocino, G. Manfredi, and E. Cosenza. Ductility of composite beams under
negative bending: an equivalence index for reinforcing steel classification. Journal
of Constructional Steel Research, 57(2):185-202, 2001. doi: 10.1016/S0143-974X(00)
00008-0.

M. A. Bradford and R. I. Gilbert. Nonlinear behaviour of composite beams at service
loads. The Structural Engineer, 67(14):263-268, 1989.

M. A. Bradford and R. I. Gilbert. Composite beams with partial interaction under
sustained loads. Journal of Structural Engineering, ASCE, 118(7):1871-1883, 1992.
doi: 10.1061/(ASCE)0733-9445(1992)118:7(1871).

95



BIBLIOGRAPHY

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

62]

[63]

[64]

M. A. Bradford and R. I. Gilbert. Time-dependent stresses and deformations in
propped composite beams. In Proceedings of the Institution of Civil Engineers: Struc-
tures and Buildings, volume 94, pages 315-322, 1992. doi: 10.1680/istbu.1992.20291.

A. M. Tarantino and L. Dezi. Creep effects in composite beams with flexible shear
connectors. Journal of Structural Engineering, ASCE, 118(8):2063-2081, 1992. doi:
10.1061/(ASCE)0733-9445(1992)118:8(2063).

L. Dezi and A. M. Tarantino. Creep in composite continuous beam — I: theoretical
treatment. Journal of Structural Engineering, ASCE, 119(7):2095-2111, 1993. doi:
10.1061/(ASCE)0733-9445(1993)119:7(2095).

L. Dezi and A. M. Tarantino. Creep in composite continuous beam — II: parametric
study. Journal of Structural Engineering, ASCE, 119(7):2112-2133, 1993. doi: 10.
1061/(ASCE)0733-9445(1993)119:7(2112).

L. Dezi, C. Ianni, and A. M. Tarantino. Simplified creep analysis of composite beams
with flexible connectors. Journal of Structural Engineering, ASCE, 119(5):1484-1497,
1993. doi: 10.1061/(ASCE)0733-9445(1993)119:5(1484).

L. Dezi, G. Leoni, and A. M. Tarantino. Algebraic methods for creep analysis of
continuous composite beams. Journal of Structural Engineering, ASCE, 122(4):423—
430, 1996. doi: 10.1061/(ASCE)0733-9445(1996)122:4(423).

C. Amadio and M. Fragiacomo. A finite element model for the study of creep
and shrinkage effects in composite beams with deformable shear connections. Con-
struzioni Metalliche, (4):213-228, 1993.

C. Amadio and M. Fragiacomo. A finite element model for short and long term
analysis of steel-concrete composite beams in cracked phase. In Proceedings of the
XVII Italian Workshop on Steel (CTA), Naples (Italy), 1999. (In Italian).

M. Fragiacomo, C. Amadio, and L. Macorini. Influence of viscous phenomena on
steel-concrete composite beams with normal or high performance slab. Steel and
Composite Structures, 2(2):85-98, 2002.

L. Dezi, F. Gara, and G. Leoni. Long term behaviour of composite continuous two-
beam decks with HCP slab. In Proceedings of the XVII Italian Workshop on Steel
(CTA), Naples (Italy), 1999. (In Italian).

F. Mola, M. Mapelli, and R. Sicilia. Analysis of continuous composite beams with
partial interaction by means of the algebraic simplified creep models. In Proceedings
of the IV Italian Workshop on Composite Construction, Palermo (Italy), 2000.

H. G. Kwak and Y. J. Seo. Time-dependent behaviour of composite beams with
flexible connectors. Computer Methods in Applied Mechanics and Engineering, 191
(34):3751-3772, 2002. doi: 10.1016/S0045-7825(02)00293-1.

G. Ranzi. Partial interaction analysis of composite beams: A direct stiffness approach.
VDM Verlag, 2009.

H. Murakami. A laminated beam theory with interlayer slip. Journal of Applied
Mechanics, Transactions ASME, 51(3):551-559, 1984. doi: 10.1115/1.3167673.

96



BIBLIOGRAPHY

|65]

[66]

67]

[68]

[69]

[70]

[71]

[72]

73]

[74]

[75]

[76]

7]

X. Lin and Y. X. Zhang. A novel one-dimensional two-node shear-flexible layered
composite beam element. Finite Elements in Analysis and Design, 47(7):676-682,
2011. doi: 10.1016/j.finel.2011.01.010.

S. Jiang, X. Zeng, and D. Zhou. Novel two-node linear composite beam element
with both interface slip and shear deformation into consideration: Formulation and
validation. International Journal of Mechanical Sciences, 85:110-119, 2014. doi:
10.1016/j.ijmecsci.2014.05.006.

Q. Nguyen, M. Hjiaj, and S. Guezouli. Exact finite element model for shear-
deformable two-layer beams with discrete shear connection. Finite Elements in Anal-
ysis and Design, 47(7):718-727, 2011. doi: 10.1016/j.finel.2011.02.003.

Q. Nguyen, E. Martinelli, and M. Hjiaj. Derivation of the exact stiffness matrix for
two-layer Timoshenko beam element with partial interaction. Engineering Structures,
33(2):298-307, 2011. doi: 10.1016/j.engstruct.2010.10.006.

S. Schnabl, M. Saje, G. Turk, and I. Planinc. Locking-free two-layer Timoshenko
beam element with interlayer slip. Finite Elements in Analysis and Design, 43(9):
705-714, 2007. doi: 10.1016/j.finel.2007.03.002.

Y. C. Wang. Deflection of steel-concrete composite beams with partial shear
interaction.  Journal of Structural Engineering, 124(10):1159-1165, 1998. doi:
10.1061/(ASCE)0733-9445(1998)124:10(1159).

G. He, D. Wang, and X. Yang. Analytical solutions for free vibration and buckling of
composite beams using a higher order beam theory. Acta Mechanica Solida Sinica,
29(3):300-315, 2016. doi: 10.1016/S0894-9166(16)30163-X.

A. Chakrabarti, A. H. Sheikh, M. Griffith, and D. J. Oehlers. Analysis of composite
beams with partial shear interactions using a higher order beam theory. Engineering
Structures, 36:283-291, 2012.

A. Chakrabarti, A. H. Sheikh, M. Griffith, and D. J. Oehlers. Analysis of composite
beams with longitudinal and transverse partial interactions using higher order beam
theory. International Journal of Mechanical Sciences, 59(1):115-125, 2012. doi:
10.1016/j.ijmecsci.2012.03.012.

G. He and X .Yang. Finite element analysis for buckling of two-layer composite
beams using Reddy’s higher order beam theory. Finite Elements in Analysis and
Design, 83:49-57, 2014. doi: 10.1016/j.finel.2014.01.004.

C. Adam, R. Heuer, and A. Jeschko. Flexural vibrations of elastic composite beams
with interlayer slip. Acta Mechanica, 125(1):17-30, 1997. doi: 10.1007/BF01177296.

R. Heuer and C. Adam. Piezoelectric vibrations of composite beams with interlayer
slip. Acta Mechanica, 140(3):247-263, 2000. doi: 10.1007/BF01182514.

U. A. Girhammar, D. H. Pan, and A. Gustafsson. Exact dynamic analysis of com-
posite beams with partial interaction. International Journal of Mechanical Sciences,
51(8):565-582, 2009. doi: 10.1016/j.ijmecsci.2009.06.004.

97



BIBLIOGRAPHY

78]

[79]

[80]

[81]

82]

[83]

[84]

[85]

[36]

[87]

33

[89)]

[90]

[91]

Y. F. Wu, R. Xu, and W. Chen. Free vibrations of the partial-interaction composite
members with axial force. Journal of Sound and Vibration, 299(4-5):1074-1093,
2007. doi: 10.1016/j.jsv.2006.08.008.

N. Challamel and U. A. Girhammar. Lateral-torsional buckling of vertically layered
composite beams with interlayer slip under uniform moment. Engineering Structures,
34(8):505-513, 2012. doi: 10.1016/j.engstruct.2011.10.004.

F. Chen and P. Qiao. Buckling of delaminated bi-layer beam-columns. International
Journal of Solids and Structures, 48(18):2485-2495, 2011. doi: 10.1016/j.ijsolstr.
2011.04.020.

P. L. Grognec, Q. H. Nguyen, and M Hjiaj. Exact buckling solution for two-layer
timoshenko beams with interlayer slip. International Journal of Solids and Structures,
49(1):143-150, 2012. doi: 10.1016/j.ijsolstr.2011.09.020.

S. Schnabl and I. Planinc. The influence of boundary conditions and axial deforma-
bility on buckling behavior of two-layer composite columns with interlayer slip. En-
gineering Structures, 32(10):3103-3111, 2010. doi: 10.1016/j.engstruct.2010.05.029.

S. Schnabl and I. Planinc. The effect of transverse shear deformation on the buckling
of two-layer composite columns with interlayer slip. International Journal of Non-
Linear Mechanics, 46(3):543-553, 2011. doi: 10.1016/j.ijnonlinmec.2011.01.001.

X. Liu, R. E. Erkmen, and M. A. Bradford. Creep and shrinkage analysis of curved
composite beams including the effects of partial interaction. In Proceedings of the

Eleventh International Conference on Computational Structures Technology, Scot-
land, 2012.

R. E. Erkmen and M. A. Bradford. Nonlinear elastic analysis of composite beams
curved in-plan. FEngineering Structures, 31(7):1613-1624, 2009. doi: 10.1016/j.
engstruct.2009.02.016.

E. L. Tan. and B. Uy. Nonlinear analysis of composite beams subjected to combined
flexure and torsion. Journal of Constructional Steel Research, 67(5):790-799, 2011.
doi: 10.1016/j.jesr.2010.12.015.

U. A. Girhammar and D. Pan. Exact static analysis of partially composite beams and
beam-columns. International Journal of Mechanical Sciences, 49(2):239-255, 2007.
doi: 10.1016/j.ijmecsci.2006.07.005.

E. G. Thomson, J. R. Goodman, and M. D. Vanderbilt. Finite element analysis of
layered wood systems. Journal of the Structural Division, 101(12):2659-2672, 1975.

S. P. Timoshenko and J. N. Goodier. Theory of Elasticity. McGraw-Hill, New York,
1970. 3rd edition.

I. S. Sokolnikoff. Mathematical Theory of Elasticity. McGraw-Hill, New York, 1970.
2nd edition.

W. C. Young and R. G. Budymas. Roark’s Formulas for Stress and Strain. McGraw-
Hill, New York, 2002. 7th edition.

98



BIBLIOGRAPHY

[92] B. A. Boley and J. H. Weiner. Theory of Thermal Stresses. Dover Publications, New
York, 1997.

[93] R. B. Hetnarski and M. R. Eslami. Thermal Stresses — Advanced Theory and Appli-
cations. Springer, Berlin, 2010.

[94] K. Washizu. Variational Methods in Elasticity and Plasticity. Pergamon, New York,
1968.

[95] J. M. Gere and S. P. Timoshenko. Mechanics of Materials. PWS Engineering, Boston,
MA, 1984. 2nd edition.

[96] R. Solecki and R. J. Conant. Advanced Mechanics of Materials. Oxford University
Press, Oxford, 2003.

[97] 1. Ecsedi and K. Dluhi. A linear model for static and dynamic analysis of nonho-
mogeneous curved beams. Applied Mathematical Modelling, 29(12):1211-1231, 2005.
doi: 10.1016/j.apm.2005.03.006.

[98] T. H. Richard. Energy Methods in Stress Analysis: With an Introduction to Finite
Element Techniques. Ellis Horwood, Chichester, 1977.

[99] L. Elsgolts. Differential Equation and the Calculus of Variations. Mir Publishers,
Moscow, 1977.

99



	Declaration
	Nomenclature
	Introduction
	Literature review
	Objectives

	Analytical solutions for two-layered composite beams with interlayer slip 
	Fundamental solutions for an Euler-Bernoulli composite beam 
	Governing equations
	Fundamental solutions

	Fundamental solutions for a Timoshenko composite beam 
	Governing equations
	Fundamental solutions

	Numerical examples
	Simply supported composite beam
	Propped cantilever with concentrated force


	The influence of thermal load on the behaviour of composite beams with weak shear connection 
	Governing equations
	Computations of thermal stresses
	Numerical examples
	Simply supported two-layered beam
	Two-layered propped cantilever


	Elastic stability of composite beams and columns with weak shear connection
	Stability analysis by a variational method
	Equilibrium method 
	Simply supported beam 
	Buckling load 
	Numerical example 

	Column with fixed ends 
	Buckling load 
	Numerical example 


	Vibration analysis of composite beams with weak shear connection
	Equation of motion and boundary conditions
	Numerical example

	Analysis of curved composite beams with interlayer slip
	Governing equations
	Rayleigh-Betti type reciprocity relation
	Principle of minimum potential energy
	Numerical examples
	A curved composite beam with uniformly distributed radial load
	A curved composite beam subjected to uniformly distributed radial load on its total length
	Checking the previous examples
	A curved composite beam with concentrated radial load
	Checking the results of the curved beam with concentrated radial load
	A curved composite beam uniformly loaded by tangential forces


	Summary of the novel results
	Összefoglalás
	List of Figures
	List of Tables
	Publications
	Bibliography



