

HINTERLAND METALS INC.

A REPORT ON PROSPECTING AND GEOCHEMICAL SURVEYS

DAZZLE PROPERTY: 61° 20' N Latitude, 130° 56' W Longitude GLEAM PROPERTY: 61°24' N Latitude, 130° 53' W Longitude HELEN PROPERTY: 61° 23.5' N Latitude, 130° 58' W Longitude

> DAZZLE 1-85 CLAIMS: YB93982 – YB94066 GLEAM 1 – 42 CLAIMS: YB94107 – YB94148 GLEAM 43 – 47 CLAIMS: YC24194 – YC24198 HELEN 1-4 CLAIMS: YC24190 – YC24193 HELEN 5 – 18 CLAISM: YC24360 – YC24373

> > **NTS SHEET: 105G/07**

094502

REGISTERED OWNER: GLACIER GEMS INC. UNDER OPTION TO HINTERLAND METALS INC.

WATSON LAKE MINING DISTRICT OF YUKON

AUGUST 6 TO 29, 2003 (ALL PROPERTIES) AND JUNE 10/ 2004 (HELEN PROPERTY)

YMIP # 03-048

MARK FEKETE, P.GEO. (HINTERLAND METALS INC.)

MODIFIED BY CARL SCHULZE DECEMBER 8, 2004

1

Costs associated with this report have been approved in the amount of $\frac{2}{500} \cdot \frac{3}{54}$, 200 $\frac{2}{54}$, 25,100 $\cdot \infty$ for assessment credit under Certificate of Work NoQL25692, QL25L934 QL25694

Mining Recorder Watson Lake Mining District

This report has been examined by the Geological Evaluation Unit under Section 53 (4) Yukon Quartz Mining Act and is allowed as representation work in the amount of $3 - \frac{44}{850}$

M.B.L. ScrRegional Manager, Exploration and Geological Services for Commissioner of Yukon Territory.

SUMMARY

The 85-claim (4390-acre) Dazzle, 50-claim (2582-acre) Gleam and 18-claim (930-acre) Helen properties are situated within the Watson Lake Mining Division and located in the Finlayson Lake Area of southeastern Yukon, approximately 225 kilometres east-northeast of the capital city of Whitehorse. Based on the results of exploration program completed in 2003 and a review of relevant reports and maps obtained from various sources, an evaluation of the exploration potential of the properties is presented and an exploration program is proposed.

Hinterland Metals Inc. may earn 100% of the property mineral rights from True North Gems Inc. subject to agreements signed by the parties on December 9, 2002 with respect to the Gleam property and on January 16, 2003 with respect to the Dazzle Property. Both properties are subject to an underlying 3% royalty on all gemstone and metal production in favour of Glacier Gems Inc. The Helen claims were staked in September 2003 within an area of influence and are subject to the terms and conditions of the Gleam agreement.

Access to the Dazzle, Gleam and Helen properties is limited by the lack of roads into the area. The closest road ends at Teck-Cominco's Kudz Ze Kayah camp some 15 km to the northeast. At present, the most practical access is provided by floatplane to one of several lakes suitable for the establishment of a base camp and then by helicopter from the base camp to the properties on a daily or fly-camp basis. All four properties are in steep, rugged terrain where snow conditions and short daylight hours in winter limit exploration; the best period for exploration is from mid-June to mid-September.

The Finlayson Lake Area lies within the northern Canadian Cordillera in a region underlain primarily by several fault- and unconformity-bound meta-sedimentary and meta-volcanic successions and affiliated meta-plutonic rocks of the Yukon-Tanana Terrane. The region is bound to the south by the Tintina Fault and to the north by rocks of the North American Miogeocline. The properties lie in the southwestern part of the region, along the footwall of the Money Creek thrust. Meta-sediments and meta-volcanics of the Grass Lake succession and coeval granitic and monzonitic rocks of the Grass Lakes Plutonic Suite underlie the properties. These Late Devonian to Early Mississippian rocks were deformed and imbricated prior to the emplacement of a mid-Cretaceous suite of peraluminous granitic rocks. The Dazzle, Gleam and Helen properties cover the eastern margin of one such pluton, in contact with sub-horizontal layers of the lowermost section of the Grass Lake succession, variably displaced by normal and thrust faults. The dominant lithology is tan-coloured quartz-mica schist with thin layers of micaceous marble and calcareous schist. This unit is underlain by feldspar-muscovite-quartz schist derived from a felsic volcanic protolith and overlain by Fyre Lake metavolcanic schists.

The Finlayson Lake Area is best known for the Fyre Lake, Wolverine, Kudz Ze Kayah, Ice and GP4F volcanic massive sulphide-type deposits, and more recently for the emerald mineralization found on the Regal Ridge Property. Recent regional-scale geological mapping surveys and several technical studies on a property scale have contributed greatly to the overall understanding of the mineral potential of the area. Similar to Regal Ridge, the Dazzle, Gleam and Helen properties lie adjacent to a mid-Cretaceous granitic intrusion that may have generated quartz veins or pegmatite dykes crosscutting neighbouring schistose meta-sediments and meta-

volcanics. This juxtoposition of beryllium (Be)-rich rocks against chrome (Cr)-rich rocks may, under certain conditions, produce emeralds.

The 2003 Exploration program, conducted from August 6 to 29, 2003, consisted of prospecting, outcrop examination and rock sampling and geochemical surveys. Part of the program consisted of regional reconnaissance work not done directly on the properties. A total of 10 rocks were collected from the Gleam property, 28 from the Dazzle, and 10 from the Helen, including 4 taken in 2004.

The discovery of the Helen Gold Zone represents a significant breakthrough for Hinterland in the Finlayson Lake area. It moves the Company's efforts in the area from the grassroots to the target evaluation stage. The zone is a vertical hydrothermal arsenopyrite-quartz vein. A series of six chip samples across the showing returned a weighted average of 3.86 g/t Au and 48.1 g/t Ag over a width of 5.0 m. A gold-equivalent value of 4.54 g/t Au has been calculated for the interval based on metal prices as of September 15, 2003.

Although Hinterland found no emeralds and in fact no beryl mineralization in 2003, a specific emerald target has been generated in the northern part of the Dazzle Property. The" Two Creeks Be Anomaly" lies directly adjacent to a mid-Cretaceous contact, is noticeably anomalous with respect to beryllium, chrome and arsenic and contains pegmatite dykes, zones of yellow sulphate alteration and tourmaline mineralization.

The positive results of the 2003 Exploration Program clearly warrant continued exploration on the Dazzle, Gleam and Helen properties. It is recommended that the exploration be divided into two parts consisting of separate programs at the Helen Gold Zone, and the Two Creeks Be Anomaly using a central base camp. The Helen Zone Gold Zone must be brought to the diamond drilling stage as soon as possible by the completion of grid-controlled prospecting, geochemical and geophysical surveys. If drilling in the first phase intersects significant gold-silver mineralization, a second phase of drilling is recommended. The Two Creeks Be Anomaly must be prospected in detail with additional geochemical sampling. This report does not contemplate second phases for the Two Creek program.

Recommended budgets consist of Phase 1 surface exploration of the Two Creeks Be Anomaly, and Phase 1 and 2 diamond drilling programs on the Helen property. The combined cost of both Phase 1 programs is estimated at \$367,023; the cost of the second phase is estimated at \$229,045 for a two-phase total of approximately \$596,448.

YUKON ENERGY, MINES & RESOURCES LIBRARY PO. BCX 2703 WHITEHORSE, YUKON Y1A 206

CERTIFICATE OF QUALIFICATIONS, MARK FEKETE

I, Mark Fekete, having my place of residence at 178 Dennison Boulevard in Val d'Or in the Province of Quebec do hereby certify that:

- 1. I obtained a Bachelor of Science Degree in Geology from the University of British Columbia in 1986, I have been engaged as a Geologist continuously since 1986, I am a Member in good standing of the Order of Geologists of Quebec (# 553) and I am a "qualified person" as defined in Section 1.2 in and for the purposes of National Instrument 43-101;
- 2. I have visited the Dazzle, Gleam and Helen properties (the "Properties") most recently in August 2003;
- 3. I am the primary author and am solely responsible for the contents of this technical report entitled "A Report of Prospecting and Geochemical Surveys, Dazzle, Gleam and Helen Properties (DAZZLE: 61°20' N. Lat. 130°56' W. Long., GLEAM: 61°24' N Lat. 130° 53' W Long; HELEN: 61°23.5' N Lat, 130°58' W Long, N.T.S. 105 G/07), Watson Lake Mining District of Yukon, August to September 2003 YMIP # 03-048" based on my professional experience, a review of relevant reports and maps and my own work on the Properties;
- 4. I am not aware of any material fact or material change with respect to the subject matter of the report that is not disclosed in the report which, by its omission, makes the report misleading;
- 5. I am an officer and director and I beneficially hold a number of shares in Hinterland Metals Inc.;
- 6. I hold no direct interest in either of the Properties as a result of any prior involvement in the Properties;
- 7. I have read, and this report has been prepared in compliance with, National Instrument 43-101 and Form 43-101; and
- 8. I hereby give consent to Hinterland Metals Inc. to use or reproduce this report in whole or in part for the purposes of exploring and developing the Properties (including the raising of funds) provided that no portion of the report is used in such a manner that conveys any misrepresentation of the information contained in the report.

Respectfully submitted this 3 day of 20.04, 20.04,

"Mark Fekete"

Mark Fekete, P.Geo.

iv

CERTIFICATE OF QUALIFICATIONS, CARL SCHULZE

I, Carl M. Schulze, PGeo, hereby certify that:

 I am a self-employed Consulting Geologist and sole proprietor of: All-Terrane Mineral Exploration Services 35 Dawson Rd Whitehorse, Yukon Y1A 5T6

2) I graduated with a Bachelor of Science Degree in geology from Lakehead University, Thunder Bay, Ontario, in 1984.

3) I am a member in good standing of the Association of Professional Engineers and Geoscientists of British Columbia (APEGBC).

4) I have worked as a geologist for a total of 21 years since my graduation from Lakehead University.

5) I have read the definition of "qualified person" set out in National Instrument 43-101 ("NI 43-101") and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a "qualified person" for the purposes of NI 43-101.

6) I am responsible for preparation of some sections of the technical report titled "A Report of Prospecting and Geochemical Surveys, Dazzle, Gleam and Helen Properties (DAZZLE: 61°20' N. Lat. 130°56' W. Long., GLEAM: 61°24' N Lat. 130° 53' W Long; HELEN: 61°23.5' N Lat, 130°58' W Long, N.T.S. 105 G/07), Watson Lake Mining District of Yukon, August to September 2003 YMIP # 03-048" on the Helen property area, and for modifications on the original report authored by Mr. Fekete. I was active on-site at the Helen property on June 10, 2004.

7) I have not had prior involvement with the property that is the subject of the Technical Report.

8) I am not aware of any material facts or material changes with respect to the subject matter of the technical report not contained within the report, of which the omission to disclose makes the report misleading.

9) I am independent of the issuer applying all of the tests in section 1.5 of National Instrument 43-101.

10) I have read National Instrument 43-101 and Form 43-101F1, and the Technical Report has been prepared in compliance with that instrument and form.

Dated this 8th Day of December, 2004.

1. "Carl Schulze"

Carl Schulze, BSc, PGeo Address: 35 Dawson Rd Whitehorse, Yukon Y1A 5T6 Telephone: 867-633-4807 Fax: 867-633-4883 E-mail: allterrane@northwestel.net

TABLE OF CONTENTS

Cert Tabi List	mary ificate of Qualifications le of Contents of Tables of Figures	
1.	Introduction and Terms of Reference	1
2.	Disclaimer	1
3.	Location and Property Description	1
4.	Accessibility, Local Resources, Infrastructure, Physiography and Climate	5
5.	Exploration History	6
6.	Regional Geology	7
7.	Local Geology	7
8.	Property Geology	8
9.	Deposit Model	12
10.	Mineralization	15
11.	Exploration 2003	. 17
1	1.1. Introduction	16
	1.2. Prospecting, Outcrop Examination and Rock Sampling	
1	1.3. Geochemical Surveys	. 17
1	1.4. XRD, Petrography, Ore Microscopy and S.E.M. Studies	. 17
1	1.5. Sampling and Analytical Procedures	. 18
1	1.6. Sample Results	. 19
1	1.7. Discussion of Results	. 19
12.	Adjacent Properties	. 22
13.	Mineral Processing and Metallurgical Testing	. 23
14.	Mineral Resource and Mineral Reserve Estimates	. 23
15.	Other Relevant Data and Information	. 23
16.	Conclusions	. 33
17.	Recommendations	. 33
18.	References	. 36

特許

LIST OF FIGURES

Figure 1 - Location Map	
Figure 2 - Dazzle, Gleam and Helen Claims	
Figure 3 - Regional Terrane Map	
Figure 4 - Finlayson Regional Geology Map	
Figure 5 - Dazzle, Gleam and Helen Property Geology	
Figure 6 - Outcrop Helen Gold Zone	
Figure 7 - Hand Specimen Helen Gold Zone	
Figure 8 - Pegmatite Dyke Two Creeks Area	
Figure 9 - Yellow Sulphate Alteration Two Creeks Area	
Figure 10 - Tourmaline Crystals Two Creeks Area	
Figure 11 - As Plot West Grass Lake	
Figure 12 - Ag Plot West Grass Lake	
Figure 13 - Au Plot West Grass Lake	
Figure 14 - Be Plot West Grass Lake	
Figure 15 - Cr Plot West Grass Lake	
Figure 16 - Sr Plot West Grass Lake	
Figure 17 - V Plot West Grass Lake	
Figure 18 - Zn Plot West Grass Lake	
Figure 19 - Year-2004 Rock Sample Results, Helen Property	

LIST OF TABLES

Table 1 - List of Mineral Titles	2
Table 2 - Finlayson Lake Area VMS Deposits	. 13
Table 3 - Adjacent Mineral Occurrences	
Table 4 – Cost Estimate for Proposed Exploration Program	
	••••

APPENDICES

Appendix 1 - Statement of Expenditures			
Appendix 1a - Statement of Expenditures, Dazzle Property			
Appendix 1b - Statement of Expenditures, Gleam Property			
Appendix 1c - Statement of Expenditures, Chris Property			
Appendix 2 : Sample Descriptions			
Appendix 2a - Dazzle Property Sample Descriptions			
Appendix 2b - Gleam Property Sample Descriptions			
Appendix 2c - Helen Property Sample Descriptions			
Appendix 3 : Sample Locations and Compilation of Analytical Results			
Appendix 3a - Dazzle Property Sample Results			
Appendix 3b - Gleam Property Sample Results			
Appendix 3c - Helen Property Sample results			
Appendix 4 : Assay Certificates			

New York

1. State State of

3012 T.

- Anna -

1. Introduction and Terms of Reference

Breakaway Exploration Management Inc. ("Breakaway") was retained by Hinterland Metals Inc. ("Hinterland") to complete a program of prospecting and geochemical surveying on the Gleam and Dazzle properties located in the Finlayson Lake Area of southeastern Yukon. No work had been completed on the properties by Hinterland at the date when Breakaway was engaged. The program also included some regional exploration and subsequently led to the staking of the Helen property. Limited prospecting and rock sampling was done on the Helen property in June 2004 by All-Terrane Mineral Exploration Services; results are included in this report. The purpose of this report is to satisfy assessment filing requirements of the Yukon Quartz Mining Act for the Gleam, Dazzle and Helen properties, to describe the details of the work program, to provide an opinion of the exploration potential of the properties and to provide recommendations for further exploration of the properties.

This report was prepared as part of continuous disclosure on the part of Hinterland. It was also prepared as a requirement of the Yukon Mining Incentive Program in order to complete the application for \$11,500 of funds under YMIP # 03-048. The report is based on the results of the year-2003 exploration program and the limited June 2004 program on the Helen block, as well as information obtained from a review of relevant reports and maps available from various sources cited throughout the report. Mark Fekete, P.Geo. is the primary author of the report, modified somewhat by Carl Schulze of All-Terrane. In his capacity as President of Hinterland, Mr. Fekete also accepts responsibility as the qualified person for the Company.

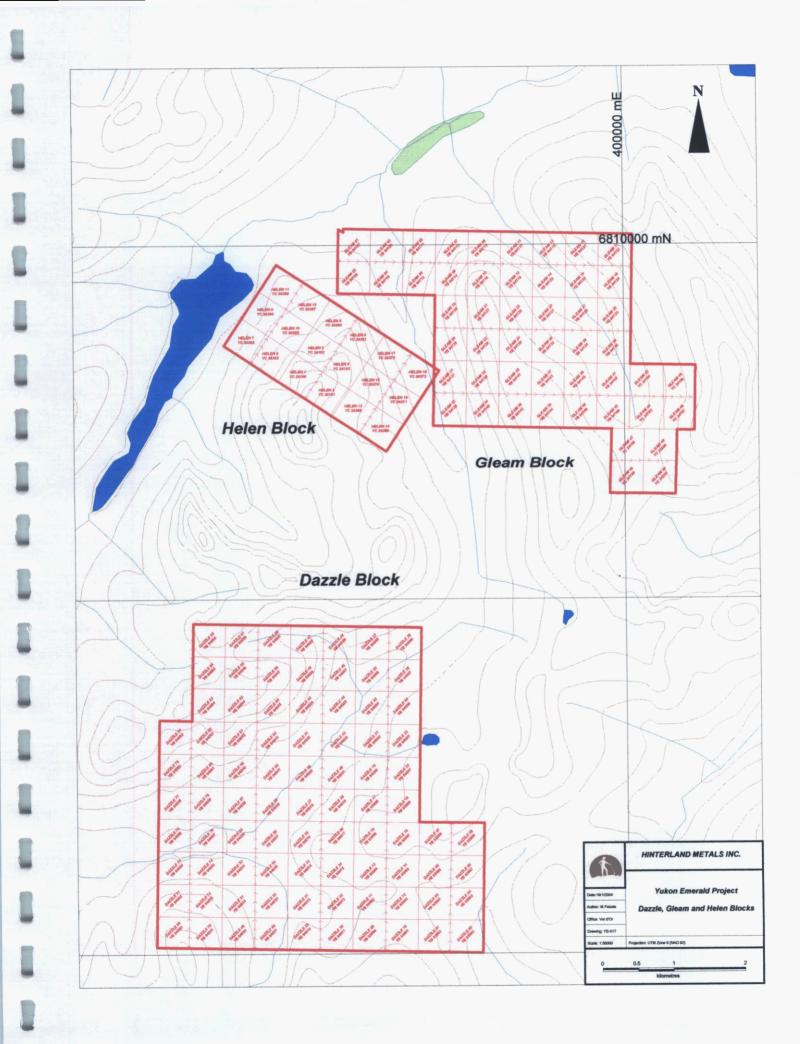
The metric system is used for all units of measure mentioned in this report and all dollar amounts are in Canadian funds unless otherwise stated. All maps presented in this report are plotted in map projection UTM NAD 83, Zone 9 unless otherwise stated.

2. Disclaimer

The authors have relied on the technical data and interpretation found in various sources cited throughout the report. The authors have not verified this information and takes no responsibility for its accuracy or completeness. The authors do not offer any opinion concerning legal, title, environmental, political or other non-technical issues that may be relevant to the technical report.

3. Location and Property Description

The Dazzle, Gleam and Helen properties are located in the Finlayson Lake Area of southeastern Yukon approximately 225 kilometres east-northeast of the capital city of Whitehorse (Figure 1). All properties are situated within the Watson Lake Mining Division. The Dazzle, Gleam and Helen properties lie on N.T.S. map sheet 105 G/07 at an approximate geographic centre of 61°22' North Latitude and 130°56' West Longitude. Specifically, the Dazzle property is centered at 61° 20' N Latitude, 130° 56' W Longitude; the Gleam property is centered at 61°24' N Latitude, 130° 53' W Longitude; and the Helen property is centered at 61°23.5' N Latitude, 130° 58' W Longitude. The most notable topographic feature nearby is West Grass Lake, located 2 kilometres west of the Gleam and Helen properties and 3 kilometres north of the Dazzle Property.


List of Mineral Titles


Claim Name	Grant No.	Expiry Date	
GLEAM 1-9	YB94107 - YB94115	7/26/2007	
GLEAM 10	YB94116	7/26/2008	
GLEAM 11	YB94117	7/26/2007	
GLEAM 12 - 14	YB94118 - YB94120	7/26/2008	
GLEAM 15	YB94121	7/26/2007	
GLEAM 16	YB94122	7/26/2008	
GLEAM 17 - 20	YB94123 - YB94126	7/26/2007	
GLEAM 21	YB94127	7/26/2008	
GLEAM 22	YB94128	7/26/2007	
GLEAM 23	YB94129	7/26/2008	
GLEAM 24	YB94130	7/26/2007	
GLEAM 25	YB94131	7/26/2008	
GLEAM 26	YB94132	7/26/2007	
GLEAM 27 - 31	YB94133 - YB94137	7/26/2008	
GLEAM 32	YB94138	7/26/2007	
GLEAM 33	YB94139	7/26/2008	
GLEAM 34	YB94140	7/26/2007	
GLEAM 35	YB94141	7/26/2008	
GLEAM 36	YB94142	7/26/2007	
GLEAM 37	YB94143	7/26/2008	
GLEAM 38	YB94144	7/26/2007	
GLEAM 39	YB94145	7/26/2008	
GLEAM 40	YB94146	7/26/2007	
GLEAM 41 - 42	YB94147 - YB94148	7/26/2008	
GLEAM 43 - 44	YC24194 - YC24195	8/25/2008	
GLEAM 45 - 46	YC24196 - YC24197	8/25/2007	
GLEAM 47	YC24198	8/25/2008	

Claim Name	Grant No.	Expiry Date
DAZZLE 1 - 2	YB93982 - YB93983	7/26/2005
DAZZLE 3	YB93984	7/26/2007
DAZZLE 4	YB93985	7/26/2005
DAZZLE 5	YB93986	7/26/2007
DAZZLE 6	YB93987	7/26/2006
DAZZLE 7	YB93988	7/26/2007
DAZZLE 8 - 9	YB93989 - YB93990	7/26/2006
DAZZLE 10	YB93991	7/26/2005
DAZZLE 11 - 20	YB93992 - YB94001	7/26/2007
DAZZLE 21 - 24	YB94002 - YB94005	7/26/2008
DAZZLE 25 - 46	YB94006 - YB94027	7/26/2007
DAZZLE 47 - 48	YB94028 - YB94029	7/26/2008
DAZZLE 49 - 64	YB94030 - YB94045	7/26/2007
DAZZLE 65	YB94046	7/26/2008
DAZZLE 66	YB94047	7/26/2007
DAZZLE 67 - 68	YB94048 - YB94049	7/26/2008
DAZZLE 69 - 72	YB94050 - YB94053	7/26/2007
DAZZLE 73	YB94054	7/26/2006
DAZZLE 74	YB94055	7/26/2007
DAZZLE 75	YB94056	7/26/2006
DAZZLE 76	YB94057	7/26/2007
DAZZLE 77	YB94058	7/26/2006
DAZZLE 78 - 83	YB94059 - YB94064	7/26/2007
DAZZLE 84	YB94065	7/26/2008
DAZZLE 85	YB94066	7/26/2007
HELEN 1 - 3	YC24190 - YB24192	8/25/2009
HELEN 4	YC24193	8/25/2010
HELEN 5 - 18	YC24360 - YC24373	9/19/2009

All claims are 100% owned by Glacier Gems Inc, under option to Hinterland Metals Inc.

All work was done by or under supervison of Hinterland Metals Inc.

and the second star in the second star is the

The surface rights for the area of all the properties are held by the Crown. The mineral rights (Figures 2 and 3) are held under the statutes of the "Yukon Quartz Mining Act" and are listed in Table 1.

Hinterland holds the option to acquire a 100% interest in the Gleam Property from True North Gems Inc. ("True North") under the terms and conditions of an option agreement exectued between the two parties on December 11, 2002. Under this agreement Hinterland has paid \$11,000 cash, issued 50,000 shares and must complete \$200,000 of work expenditures by the third anniversary of the agreement. True North may earn back a 50% interest by completing an additional \$200,000 of work on the property. True North may earn an additional 10% by funding all costs through to production. The Helen Property was staked adjacent to the Gleam Property and lies within an area of influence. Consequently it is subject to the terms and conditions of the Gleam agreement and for all intents and purposes may be considered part of the Gleam Property.

Hinterland holds the option to acquire a 100% interest in the Dazzle Property from True North under the terms and conditions of an option agreement exectued between the two companies on January 16, 2003. Under this agreement Hinterland paid \$21,500 cash, issued 100,000 shares and must complete \$400,000 of work expenditures by the third anniversary of the agreement. True North may earn back a 50% interest by completing an additional \$400,000 of work on the property. True North may earn an additional 10% by funding all costs through to production.

All three properties above are subject to an underlying agreement with Glacier Gems Inc. ("Glacier") whereby Glacier is entitled to a 3% royalty on all metal and gemstone production from the properties. Glacier Gems is the current registered owner of all claims comprising the Dazzle, Gleam and Helen properties.

4. Accessibility, Local Resources, Infrastructure, Physiography and Climate

The Dazzle, Gleam and Helen properties are relatively isolated, with no roads or trails providing vehicle access. The Robert Campbell Highway, passes approximately 40 km to the north and a secondary road leads from the highway to the Kudz Ze Kayah camp located some 15 km northeast of the Gleam Property. This is a private road with restricted access operated by Teck-Cominco. However, True North has gained access on two occassions in the past in order to mobilize equipment and supplies onto its Regal Ridge Project. Therefore it may be possible to obtain permission to use the Kudz Ze Kayah road in the future to mobilize equipment and supplies onto the properties. For the time being however, access by air is the most practical method.

The most suitable place to establish a base camp is either on Grass Lake or West Grass Lake, located east and west of the properties respectively. Both lakes provide excellent access for fixed wing aircraft on floats or skis. A helicopter is necessary to move exploration crews onto the properties on a daily or fly-camp basis. All supplies and services for the base camp are available in Whitehorse. Although Ross River and Faro are much closer, these villages offer

only limited services. Whitehorse also offers claim staking, linecutting, geological, geophysical, trenching and diamond drilling services through a number of contracters. Analytical services must be obtained outside Yukon.

The properties lie in rugged mountainous terrain ranging from 1250 m to 2050 m above sea level. The Gleam and Helen properties are drained northward into Big Robert Campbell Creek, a tributary of the Pelly River. The Dazzle Propery is drained southward into Ings River, a tributary of the Liard River in the MacKenzie River Watershed. The vegetation is typical of alpine regions. The higher elevations are either barren or covered with mosses, lichen, grasses and low brush. The lower elevations are covered by stunted fir forest with intermittent grassy meadows and brush along creek bottoms. Rock outcrops are abundant and well exposed although talus slides cover much of the properties.

The Finlayson Lake Area is characterized by a semi-arid, sub-arctic continental climate with mild summers and very cold winters. Precipitation is generally light in the summer although overcast conditions can persist for weeks without any rain. Heavy morning fog can be a problem epecially towards the end of the summer season. Maximum winter snow accumulation is generally less than two metres although avalanches result in areas of much thicker snow pack that may last into July. Due to the northerly latitude of the region, summer days are long and winter days very short. The best season for exploration is during the summer months from mid-June to mid-September.

5. Exploration History

There is no documentation of emerald exploration having taken place on or immediately adjacent to the Dazzle, Gleam or Helen properties. The properties have seen limited exploration for VMS-type or replacement type gold mineralization. In the past, no mineral showings have been located in-place on the properties although there is reference to an occurrence of arsenopyrite float on the Helen Property (MINFILE # 105G 030). A review of the Yukon Geology Program MINFILE database reveals that the immediate area of the properties has undergone three periods of exploration activity.

The first period covers the early-1950s and is poorly documented. Records show that limited staking, prospecting and geophysical surveying took place during this period (Allan 1955). The second period covers the late-1960s when North Lake Mines Ltd. led a syndicate into the area with a regional airborne geophysical survey followed by prospecting, geochemical and ground geophysical surveys (MacDonald 1967, Sevensma 1966, Sevensma 1967, Sevensma and Heard 1967). The third period of exploration in the area was touched off by the discovery of Kudz Ze Kayah deposit in 1994 and continued into the late-1990s. During this period a number of companies completed work in the area of the properties. Expatriate Resources Ltd. has been the most active company in the area. It participated in a regional airborne geophysical survey followed by limited trenching and diamond drilling on a number of adjacent properties (Burgert 1997, Eaton 1997, Wenzynowski 1996, Wenzynowski 1998, Wenzynowski 1999, Woolham 1997). Arcturus Resources Ltd. also completed exploration programs on a number of adjacent

blocks. This work included participation in a regional airborne survey followed by prospecting, geological mapping, geochemical and ground geophysical surveys followed by limited diamond drilling (Davidson 1997, Davidson 1998, MacDonald 1995, Woolham 1997). Based on a regional geophysical survey flown in 1994, Cominco Ltd. staked and subsequently optioned a block of claims to Pacific Bay Minerals Ltd. Work on these claims was limited to cursory prospecting and geological mapping (MacRobbie 1996, Moyle and Wesa 1998).

6. Regional Geology

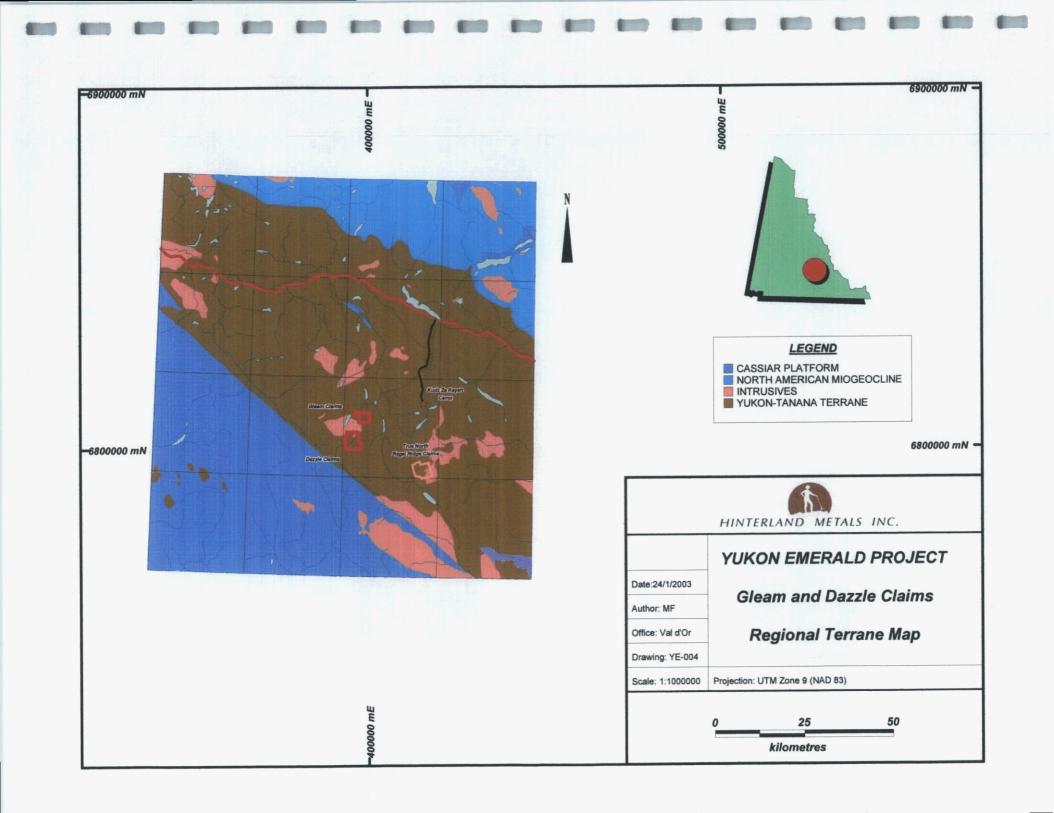
The Chris, Dazzle, Gleam and Helen properties lie within the northern Canadian Cordillera and cover complexely deformed greenschist to lower amphibolite grade metamorphic rocks of the Yukon-Tanana Terrane in contact with mid-Creatceous granitic plutons (Figure 3). Southwest of the property area, the Yukon-Tanana is faulted against sedimentary rocks of the Cassiar Platform by the right lateral Tintina Fault. Northwest of the property area, the Yukon-Tanana is thrusted over clastic and carbonate sediments of the North American Miogeocline by the Inconnu Thrust. The properties lie in an area located north of the Tintina Fault where the Yukon-Tanana is comprised mainly of pre- to Late Devonian quartz-rich meta-clastic rocks and carbonates and Late Devonian and Mississippian meta-volcanic and meta-plutonic rocks. These rocks were deformed and imbricated in the late Paleozoic and again in the Early Cretaceous prior to the emplacement of a suite of ca. 112 Ma peraluminous granitic intrusions (Mortenson 1999).

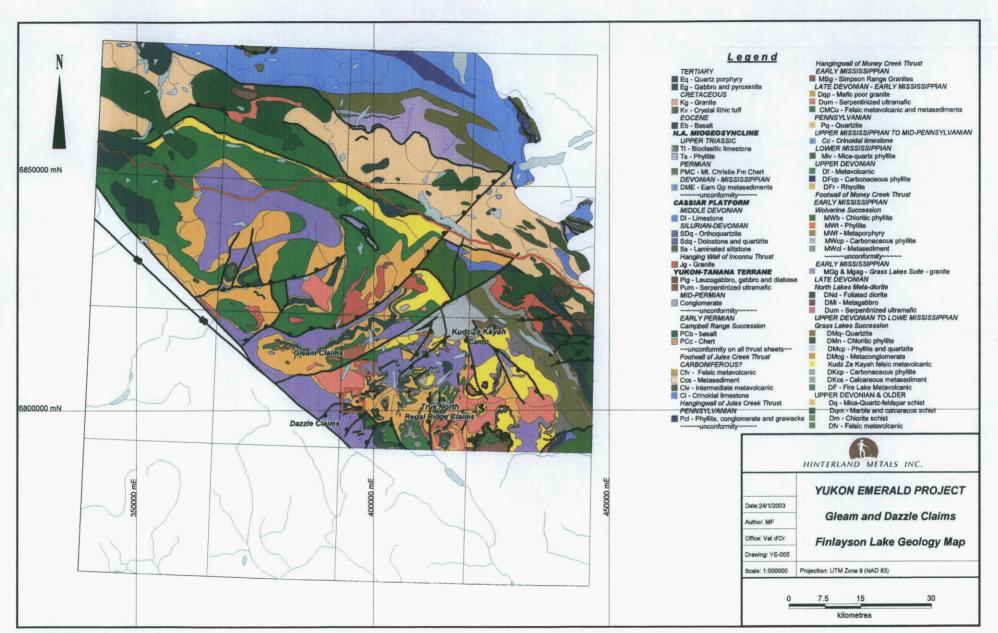
7. Local Geology

The most recent compilation of Finlayson Lake Area by Murphy et al (2001) divides the Yukon-Tanana Terrane locally into several fault- and unconformity-bound, meta-sedimentary and meta-volcanic successions and affiliated meta-plutonic rocks (Figure 4). The southernmost and structurally deepest rocks are found in the footwall of the Money Creek thrust and include the Grass Lakes succession, mid-Paleozoic granitic meta-plutonic rocks and the unconformably overlying Wolverine succession. On the hanging wall of the thrust is the narrow, discontinuous, largely undifferentiated Tuchitua succession of Upper Devonian to Pennsylvanian quartzites, phyllites, limestones, greywackes and cherts, as well as intermediate metavolcanic rocks coeval to those in both the Grass Lakes and Wolverine successions. Dark clastic rocks and cherts of probable Late Pennsylvanian age overlap both the footwall and thrust sheet of the Money Creek thrust. Rocks in the footwall of the Money Creek thrust, the Money Creek thrust sheet, and the Pennsylvanian overlap rocks have been thrust to the northeast along the Jules Creek Fault and thereby emplaced over the Finlayson succession composed of clastic rocks, cherts, limestones and meta-volcanics. Permian basalts and cherts of the Campbell Range succession overlie all the thrust sheets. Foliated mafic and ultramafic intrusives, possibly sub-volcanic feeders to the Campbell Range basalts, are found within much of the older rock units. In the southern part of the map area there are several weakly foliated mid-Cretaceous intrusions. In the west-central part of the map area, three bodies of non-foliated Jurassic granitic rocks intrude Yukon-Tanana rocks.

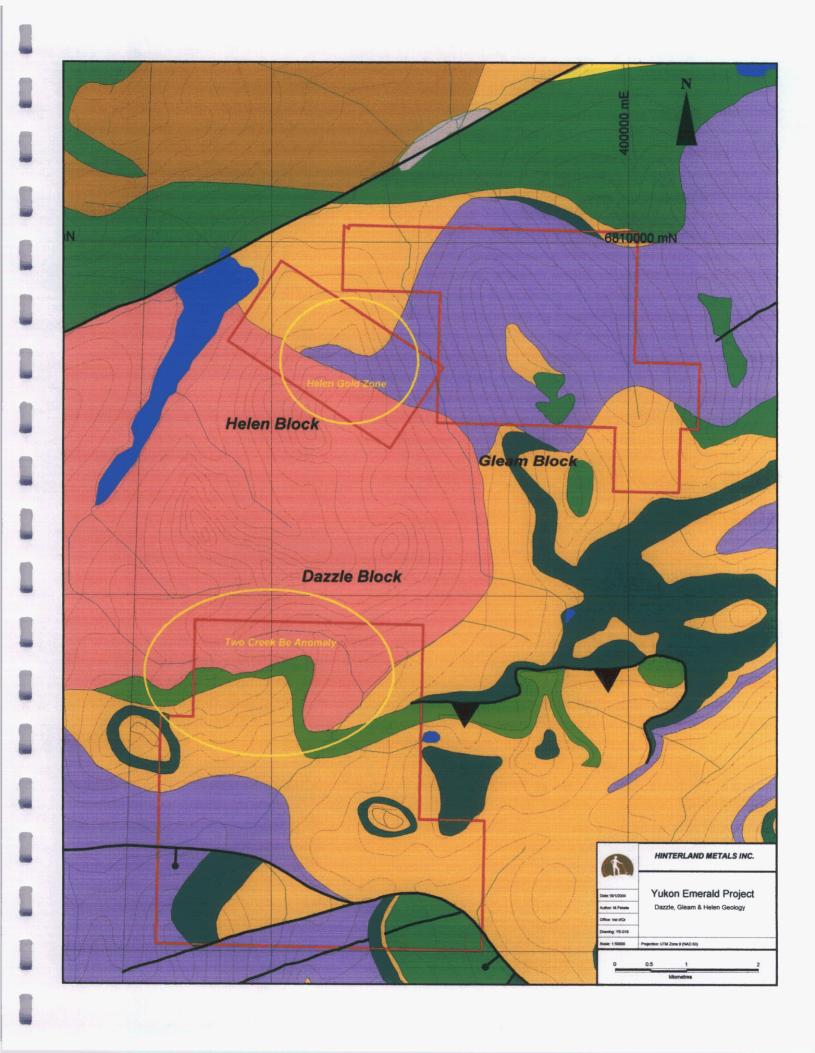
The Dazzle, Gleam and Helen properties lie within the Upper Devonian and Lower Mississippian Grass Lake succession. The lowermost section of the Grass Lakes succession

includes muscovite-quartz phyllite, augen phyllite and minor chloritic phyllite, marble and calcareous schist. The Fyre Lake meta-volcanic unit, composed mainly of chloritic phyllite with lesser carbonaceous phyllite and rare muscovite-quartz phyllite, overlies the lowermost section. Carbonaceous phyllite, lesser quartz-feldspar schists and pebble schists and thick sections of feldspar-muscovite-quartz phyllite and augen phyllite (felsic meta-volcanic rocks) of the Kudz Ze Kayah unit overlie the Fyre Lake unit. The upper part of the Grass Lakes succession is composed of carbonaceous phyllite, chloritic phyllite (mafic meta-volcanic rocks and dykes), quartzite and quartzo-feldspathic meta-conglomerate. These units are sub-horizontal with an easterly strike. They are variably displaced by normal and thrust faults.


The Grass Lakes succession is intruded by the extensive Early Mississippian Grass Lake Plutonic Suite. These well foliated and lineated granites and monzonites are medium- to coarsegrained and generally equigranular, although augen textures are present locally. Smaller bodies of the late Devonian North Lakes meta-diorite, which includes foliated hornblende-biotite metadiorites, meta-gabbros, meta-pyroxenites and serpentinized ultramafic rocks, also intrude the Grass Lakes succession. Several weakly foliated to non-foliated peraluminous granitic mid-Cretaceous plutons intrude both the Grass Lakes succession and Grass Lake Plutonic Suite in the southern part of the region. Crosscutting relationships in this area suggest that this plutonic suite is late-kinematic with respect to deformation in the host rock.


8. Property Geology

The Dazzle, Gleam and Helen properties cover the eastern margin of a mid-Cretaceous granitic pluton measuring 10 km from east to west and 6 km from north to south (Figure 5). A cursory inspection of the intrusion shows it to be medium- to coarse-grained, generally equigranular and zoned; the author observed muscovite granite in places and reddish-weathering biotite-muscovite granite elsewhere. The pluton has been intruded into layered meta-sediments and meta-volcanics of the Grass Lakes succession and meta-plutonic rocks of the Grass Lakes Plutonic Suite. Lithological abbreviations used by Murphy et al (2001) are used in the following discussion for the sake of clarity.


The Gleam Property covers a north trending ridge and is drained by two creeks flowing northwards. Roughly 50% of the property is above treeline with good outcrop exposure. The ridge consists mainly of foliated, lineated and equigranular granitic rocks belonging to the Grass Lakes Plutonic Suite (MGg). The ridge is capped by flat-lying tan-coloured quartz-mica schists (Dq) overlain by Fyre Lake metavolcanic schists (Df). The Helen Property straddles a contact between the mid-Cretaceous granitic pluton (Kg) to the south and MGg granitic rocks to the north. Moving west, Dq schists lie on the north side of the contact. The elevation of the Helen Property is relatively high and shows abundant outcrop.

Adapted from Murphy et al 2001, INAC OF 2001-33

The Dazzle Property covers the headwaters of the Ings River, with a much smaller proportion above treeline than the Gleam property. It is underlain almost entirely by the lowermost section of the Grass Lake succession. The dominant lithology is tan-coloured quartz-mica (Dq) schist which underlies the central third of the property. Thin layers of micaceous marble and calcareous schist (Dqm) are found within and overlying the Dq schist. In the northern part of the property, a relatively thick band of feldspar-muscovite-quartz schist (Dqv) underlies the Dq schist and is in contact for much of its length with the south margin of the Kg Pluton. Murphy et al (2001) interpret Dqv schists to be derived from a felsic volcanic protolith. The position of the Dqv schists against the Kg pluton provides a viable target for immediate exploration. The southern third of the property lies on the downthrown side of an east-trending normal fault. The Fyre Lake meta-volcanic unit, which lies higher in the Grass Lakes succession, is well exposed in this area. Grass Lake Plutonic Suite rocks are found in the southwestern part of the property, especially footwall to the Dq schists. They tend to be augen textured in this area (Mgag).

9. Deposit Model

Exploration of the Dazzle, Gleam and Helen properties initially targeted two deposit models. The first is of emerald mineralization similar to that found on True North Gem's Regal Ridge Project (Groat et al. 2002). Historically the Finlayson Lake Area is best known for the Fyre Lake, Wolverine, Kudz Ze Kayah, Ice and GP4F volcanic massive sulphide-type ("VMS" or "VMS-type") deposits (Murphy et al. 2002).

Emeralds at the Crown Showing (MINFILE: 105G 147) were first found on the Regal Ridge Property in 1998 during the course of geochemical and follow-up prospecting surveys directed at finding VMS-type mineralization. Groat et al. (2002) describe emeralds as located where quartz veins cut mica-rich layers in shallow dipping mica-chlorite schists of the Fyre Lake mafic metavolcanic unit. The quartz veins are generally subparallel to the foliation of the schist but are also known to be vertically cross-cutting. The emeralds do not occur within the quartz but rather in selvage zones of yellow sulphate mineralization and extensive fine-grained tourmaline mineralization adjacent to the veins. The host rock geochemistry appears to determine the presence or absence of emeralds. The quartz veins seem to be genetically related to discordant mid-Cretaceous granitic rocks exposed 700 m east of the emerald showings. The granite is zoned with a marginal muscovite-rich phase grading rapidly into a biotite-muscovite granite .

Walton (1996) divides emerald deposits into two types:

- 1. Emerald associated with bituminous black shales and sedimentary rocks; and
- 2. Emeralds associated with pegmatitic/granitic rocks interacting with ultramafic rocks in either:
 - a) recent suture zones; or
 - b) ancient suture zones.

The emeralds at Regal Ridge do not fit easily into this classification system. Although they are associated with a recent suture zone (i.e. Type 2a) they are somewhat similar to the Kafubu

emerald deposit in the Ndola district of Zambia described by Kazmi and Snee (1989) in that gemstones are found within micaceous schist horizons peripheral to concordant tourmaline veins. However, it differs from Kafubu in that the mica species at Regal Ridge is muscovite rather than biotite or phlogopite; also the Kafubu deposit lies on an ancient suture zone. The author (Fekete) prefers to place the Crown showing under the metamorphic-hydrothermal type classification proposed by Sinkankas (1981) where emeralds occur primarily as disseminated replacements in schistose wall rock adjacent to granitic pegmatites and quartz veins.

An empirical model for the formation of emeralds at Regal Ridge involves the alteration of Cr-rich mafic to ultramafic rocks by hot, volatile-rich fluids transported by quartz veins or pegmatite dykes from a relatively evolved, Be-rich granite.

VMS-type deposits are an important source for base and precious metals in Canada (Franklin 1996). The Finlayson Lake Area has a number of VMS-type deposits that are well described in the Yukon Geology Program MINFILE database and summarized as follows:

MINFILE # Name	NTS Sheet	Host Rock (Murphy et al., 2001)	Resource
105G 034 Fyre Lake	105G/02	Fyre Lake meta-volcanic (DF)	15.4 million tonnes within which 8.2 million tonnes grade 2.1% Cu, 0.11% Co, and 0.73 g/t Au, using a 1.0% copper cut-off
105G 072 Wolverine	105 G/08	Wolverine Succession (MWcp/Mwt)	6.237 million tonnes grading 1.33% Cu, 1.55% Pb, 12.66% Zn, 1.76 g/t Au and 370.9 g/t Ag
105G 117 Kudz Ze Kayah	105G/07	Kudz Ze Kayah felsic meta-volcanic (DK)	11,100,000 tonnes averaging 5.61% Zn, 0.85% Cu, 1.56% Pb, 136.9 g/t Ag and 1.33 g/t Au
105G 118 Ice	105G/14	Campbell Range Succession basalts (PCb)	4,561,863 tonnes grading 1.48% Cu with minor gold, silver and cobalt
105G 143 GP4F	105G/07	Kudz Ze Kayah felsic Meta-volcanic (DK).	1.5 million tonnes grading 6.4% Zn and 3.10% Pb, 0.10% Cu, 90 g/t Ag and 2.0 g/t Au.

Table 1 - Finlayson Lake Area VMS Deposits

Murphy et al (2002) provide an excellent description of the VMS-type potential of the Finlayson Lake Area:

"The recognition of the several different and sequentially developed paleogeographic settings within Yukon-Tanana Terrane has implications for the exploration for new mineral deposits. With the exception of the Fyre Lake deposit, all of the known volcanichosted massive sulphide deposits occur within rocks inferred to have been deposited in back-arc settings (Piercey and Murphy, 2000; Piercey, 2001b). The Kudz Ze Kayah and GP4F deposits formed in the Late Devonian back-arc region, while Wolverine Lake formed in the early Mississippian back-arc region, all of these in the footwall of the Money Creek thrust. The Ice deposit formed during rifting behind a coeval Early Permian arc recently recognized in southern Yukon (Roots et al., in press). As was noted

by Piercey et al. (2000, 2001b), back-arc settings have the structural and thermal characteristics necessary for the generation and maintenance of large-scale hydrothermal circulatory systems that lead to the development of sea floor massive sulphide deposits."

Although the VMS-type deposit model is currently of secondary importance to the emerald model, the potential for VMS-type mineralization on the Dazzle, Gleam and Helen properties must not be understated. The properties are known to be partially underlain by the Fyre Lake meta-volcanic unit which hosts the Fyre Lake VMS deposit. In the northern part of the Dazzle Property there is a relatively thick band of feldspar-muscovite-quartz schist interpreted to be derived from a felsic volcanic protolith. This unit must also be examined for VMS-type mineralization.

The discovery of the Helen Gold Zone on the Helen Property adds a third deposit model. The zone is a weakly deformed hydrothermal vein composed of semi-massive arsenopyrite and quartz. The vein carries significant gold and silver values. Lode gold-silver deposit models are numerous and diverse (Poulsen 1996). At this early stage it is difficult to identify the Helen gold discovery as a specific model. It does not host very high copper or zinc values and therefore does not appear to be related to VMS-type mineralization. Its setting within quartz-mica schists adjacent to a granitic pluton implies that it may be a mesothermal vein replacement associated with a dyke related to the pluton. Its high arsenopyrite content and texture suggests this is a credible model although no dykes were observed during sampling.

10. Mineralization

Previous work does not document any metal or gemstone occurrences on the Dazzle, Gleam or Helen properties. The Yukon Geology MINFILE data base contains eight files describing mineral occurrences in close proximity to these properties, summarized as follows:

MINFILE # Name	NTS Sheet	Deposit Type/Status	Location Description Best Assay Values
105G 016 El	105G/16	VMS/Drilled	5 km SW of Chris SE Corner. Disseminated lenses in metasediment 0.6% Pb, 0.6% Zn & 6.87 g/t Ag across 11.3 m
105G 029 Gee	105G/07	Vein/Showing	3 km west of Gleam NW Corner. Galena in small quartz stringers NA
105G 030 Pit	105 G/07	Unknown/Showing	1.5 km west of Gleam SW corner. Arsenopyrite float 68.6 g/t Ag
105G 031 Rob	105G/07	VMS/Showing	0.3 km south of Gleam S boundary on ridge. Massive arsenopyite in schist NA
105G 067 Lawn	105G/07	Unknown/Anomaly	1.5 km north of Gleam NW corner. EM anomaly NA
105G 119 Shot	105G/07	VMS/Drilled	0.3 km north of Gleam N boundary on ridge. Malachite, chalcopyrite, sphalerite and pyrite in feldspar-micas-quartz schist 0.24% Cu, 2.34% Pb, 4.24% Zn and 41.5 g/t Ag
105G 120 Blue Line	105G/07	VMS/Showing	 1.9 km southeast of Dazzle NE corner. Limonitic semi-massive pyrite and galena bearing marble float 8.2 g/t Ag, 835 ppm Cu, 6350 ppm Pb and 6140 ppm Zn
105G 142 Blake	105G/07	VMS/Drilled	3.7 km east of Dazzle NW corner. Cu-Zn-Pb anomaly coincident with two EM conductors over mafic schists with bands of marble and quartzite NA
105G 145 Winger	105G/07	Unknown/Anomaly	1.0 km southwest of Dazzle NW corner. Float of finely banded sulphides in skarn 2700 ppm Pb, 212 ppm Zn and 1.6 ppm Ag.

Table 2 - Adjacent Mineral Occurrences

1000

The Helen Property covers MINFILE # 105G 030 known as the Pit Showing which is generally described as arsenopyrite float carrying up to 68.6 g/t Ag. There is no evidence that previous workers identified the Helen Gold Zone in place.

11. Exploration

11.1. Introduction

Field exploration work was conducted on the Dazzle and Gleam properties from August 6 to 29, 2003. The work consisted of prospecting, outcrop examination and rock sampling and geochemical surveys. Part of this consisted of regional reconnaissance work not done directly on the properties. This regional work resulted in a new gold discovery immediatly west of the Gleam Property that was subsequently staked as the 18-claim Helen Property. Eight additional claims were also staked at the southeast corner of the Gleam Property. The goal of the exploration work was to complete an initial evaluation of the Dazzle and Gleam properties for both emerald and VMS-type mineralization. Regional reconnaissance was a secondary activity of the program.

The field crew consisted of Mark Fekete, P.Geo. of Val d'Or, Quebec, Fred Kiernicki of Kirkland Lake, Ontario and Tom Morgan, Andrew Robinson, Sylvain Montreuil and Lou Perunovic, all of Dawson City, Yukon. The crew was based at Inconnu Lodge, located on McEvoy Lake some 50 km north of the project area. Daily access from the lodge to the project area was provided by a Bell 206 helicopter piloted by Karl Ziehe of Heli-Dynamics based in Whitehorse, Yukon. All sample sites were recorded with either Garmin 12XL or Garmin E-Trex GPS receivers in the NAD 83, Zone 9 map projection and plotted on appropriate maps included in this report.

The Helen property was visited on June 10, 2004 by Carl Schulze of All-Terrane Mineral Exploration Services, based at Whitehorse, with helicopter access provided by Heli-Dynamics. Exploration consisted of limited prospecting, using the same parameters as the 2003 program.

Petrography, ore microscopy and S.E.M. studies were completed by Al Miller, P.Geo of Ottawa, Ontario in September and October 2003. Two X-Ray Diffraction scans were completed at the University of British Columbia under the courteous supervision of Dr. Lee Groat in September 2003. Data compilation, drafting and report preparation was completed by Mark Fekete in January 2004, with amendments necessary for assessment filing by Carl Schulze, BSc, PGeo in December 2004. All aspects of the exploration program were co-ordinated and supervised by Mark Fekete, a Professional Geologist registered in Quebec, the author of this report and a "qualified person" as defined in Section 1.2 in and for the purposes of National Instrument 43-101.

وحق ها و م و ا

11.2. Prospecting, Outcrop Examination and Rock Sampling

The emeralds at Regal Ridge occur in selvage zones of yellow sulphate mineralization and extensive fine-grained tourmaline mineralization adjacent to quartz veins cutting shallowdipping mica-chlorite schists of probable volcanic origin. The quartz veins appear to be genetically related to discordant mid-Cretaceous granitic rocks; however the host rock geochemistry appears to determine the presence or absence of emeralds. Similar to the Regal Ridge property, the Dazzle and Gleam properties lie adjacent to a mid-Cretaceous grantic intrusion (Be source) and are partially underlain by schistose meta-sediments and meta-volcanics (Cr source).

Based on the empirical model developed for Regal Ridge, prospecting on the Dazzle and Gleam properties focused on locating pegmatite dykes and quartz veins in the layered rocks adjacent to mid-Cretaceous granitic rocks and examining them for yellow sulphate mineralization and extensive fine-grained tourmaline mineralization. Sulphide mineralization was also sampled for base metal values indicative of VMS-type deposits.

The year-2003 prospecting traverses were quite arbitrary due to the very preliminary nature of the program and lack of previous geochemical data that would have enabled more focused work. The prospectors sometimes followed claim lines, ridge tops, creek valleys but often wandered randomly. This work was completed by Mark Fekete, Tom Morgan, Andrew Robinson and Sylvain Montreuil. A total of 10 rocks were collected from the Gleam property, 28 from the Dazzle, and 6 from the Helen. On June 10, 2004, Carl Schulze obtained four more rock samples. Sample locations and results are included in Appendix B. Assay certificates are included in Appendix C. Sample results for various elements are plotted on appropriate maps at a scale of 1:50,000.

11.3. Geochemical Surveys

The goal of the geochemical surveys was to provide targets for future emerald prospecting work by locating favourable geochemical anomalies. A total of 32 silt samples were collected from all the creeks draining the Dazzle and Gleam properties; of these, 14 were taken directly from each of the properties. This work was completed by Fred Kiernicki and Lou Perunovic. A total of 83 soil samples were collected by the prospectors listed in Section 11.2 on claim lines and at random location in conjunction with the prospecting. Of these, 43 were taken from the Dazzle, 24 from the Gleam and 2 from the Helen. Sample locations and results are included in Appendix B. Assay certificates are included in Appendix C. Sample results for various elements are plotted on appropriate maps at a scale of 1:50,000.

11.4. XRD, Petrography, Ore Microscopy and S.E.M. Studies

Two samples were sent for positive identification by X-Ray Diffraction analysis. The results of this work are detailed in a letter to Hinterland from Dr. L. Groat (Groat 2003). Two samples were sent for petrography, ore microscopy and S.E.M. studies. Full results of these studies are described in a report submitted to Hinterland by Dr. A. Miller (Miller 2003).

11.5. Sampling and Analytical Procedures

A description of each rock sample including its location, sample type (i.e. grab, float etc.), rock type and mineralization was recorded. A representative hand specimen marked with the appropriate sample number was also kept for later reference. The remainder of each sample was placed in a plastic sample bag marked with the appropriate sample number and sealed with flagging tape. Batches of rock samples were subsequently sealed in rice bags and delivered by courier to ALS Chemex Labs in North Vancouver B.C. These samples were analyzed for gold by 30g Fire Assay with Atomic Absorption (AA) finish and for 27 other elements (Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sr, Ti, V, W, Zn) by partial acid digestion with Induced Coupled Plasma (ICP) Emission Spectroscopy finish. One sample returned a value above 100 ppm Ag and was subsequently re-analyzed by total acid digestion with Atomic Absorption (AA) finish. Twenty-one samples returned anomalous chrome and nickel values. ALS Chemex analyzed pulps of these samples for platinum, palladium and gold by 30g Fire Assay with Induced Coupled Plasma (ICP) Emission Spectroscopy finish.

Ten rock samples were thought to contain strong potential for gold, based on their high sulphide content. These samples were sent to Bourlmaque Assay Labs in Val d'Or, Quebec where they were analyzed for gold and silver by 30g Fire Assay with Atomic Absorption (AA) finish. Five of these samples returned over 1000 ppb Au and were subsequently re-analyzed for gold by a second 30g Fire Assay with gravimetric finish. The "reject" portion of these ten samples was sent to Chimitec Labs, a division of ALS Chemex in Val d'Or, where check assays were completed for gold and silver by 30g Fire Assay with gravimetric finish. These samples were also analyzed for 27 other elements by partial acid digestion with Induced Coupled Plasma (ICP) Emission Spectroscopy finish.

Soil and silt samples were handled in a similar method as the rock samples. The location of each sample was recorded and the sample was placed in a Kraft envelope marked with the appropriate sample number. The samples were dried and batches of samples were subsequently sealed in rice bags and delivered by courier to ALS Chemex Labs in North Vancouver B.C. These samples were analyzed for 27 elements by partial acid digestion with Induced Coupled Plasma (ICP) Emission Spectroscopy finish.

All rock samples taken in 2004 were placed in thick plastic industry standard sample bags, sealed with thick plastic serrated "Zap Straps" and sent in similarly sealed rice bags to ALS Chemex Labs of North Vancouver, B.C., a certified analytical laboratory. Sealed rice bags were personally handed to the courier, Greyhound Bus Lines, by the qualified person, and were delivered by the courier directly to ALS Chemex. All rock samples were crushed to ensure that a minimum of 70% of the material was less than 2.0 mm in size; this material was thoroughly mixed. From this, a 250g sample was pulverized to 75-micron size; then a 50-gram sample of this underwent fire assay analysis with atomic absorption finish. This technique provides gold analysis ranging from 0.005 to 10.0 g/t gold.

All samples were also analyzed by 34-element ICP to test for abundances of Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, Hg, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Sr, Ti, Tl, U, V, W and Zn.

ALS Chemex, Chimitec and Bourlamaque all have internal quality control programs in place that use a system of duplicates, blanks and standards. It is the authors opinion that the sampling procedure, security measures, sample preparations and analytical methods described above were diligently followed and were adequate to meet industry standards commonly accepted for this level of exploration.

11.6. Sample Results

Sample results were used to generate geochemical potential plots for a number of relevant elements on a topographic base including property boundaries. Simple log scales were used to produce these plots. In the Dazzle, Gleam and Helen property area, plots were prepared for Ag, As, Au, Be, Cr, Sr, V and Zn (Figures 11 to 18).

11.7. Discussion of Results

The most significant result of the 2003 Exploration Program was the discovery of the Helen Gold Zone. This new gold showing was first spotted from the helicopter as a distinct green coloured gossan. It stands out as an outcrop within a talus slide and is hosted within flat-lying tan-coloured quartz-mica schists several hundred metres north of a contact with a mid-Cretaceous granitic pluton (Figure 5).

A series of six chip samples across the showing returned a weighted average of 3.86 g/t Au and 48.1 g/t Ag over a width of 5.0 m. A gold equivalent of 4.54 g/t Au has been calculated for this interval based on metal prices as of September 15, 2003. Check assays have verified the tenor of the initial results. The gold-bearing structure consists of a vertical zone of massive to semi-massive sulphide mineralization approximately 4 metres wide within brecciated wall rock hosting disseminated sulphide mineralization. The average grade cited above includes 0.5 metre samples from both the footwall and hanging wall of the sulphide zone. The gold and silver values are very consistent. Gold values range from a high of 5.03 g/t Au from within the zone to a low of 0.25 g/t Au from the footwall sample. The silver values range from 44.0 to 58.0 g/t Ag and interestingly, the silver grades within the wall rock samples are equivalent to the silver grades within the sulphide zone.

The Helen Gold Zone was still snow-covered during the June 2004 visit; however, abundant proximal float was exposed and three composite grab samples of various material were taken. Results were again consistent, with gold values ranging from 1.515 to 7.49 g/t (ppm) and silver values from 9.4 to 57.6 g/t. A fourth proximal talus float sample of quartz vein returned 0.061 ppm gold and 15.6 g/t silver, indicating strongly anomalous silver values occur outside of the immediate Helen Zone.

Figure 6 - Outcrop Helen Gold Zone

Figure 7 - Hand Specimen Helen Gold Zone

Petrography, ore microscopy and S.E.M. evidence conclude the sulphide zone to be a hydrothermal vein comprised of semi-massive arsenopyrite with quartz. A secondary bluish green crust has formed on the semi-massive arsenopyrite. This secondary mineral is inferred to be scorodite [FeAsO₄.2H₂O], an iron-arsenic hydroxide. This hydroxide coating begins to develop on fresh surfaces within several days. The vein is mineralogically simple and contains approximately 65% arsenopyrite and 35% quartz. The distribution of arsenopyrite and quartz is uneven resulting in domains of either fine-grained aggregates of semi-massive arsenopyrite or of arsenopyrite hosted in anhedral quartz. There is an unusual absence of typical hydrothermal minerals such as carbonate, illite, muscovite, kaolinite, and chlorite. Ultra fine-grained metallic

aggregates comprised of alloys of bismuth and silver; native bismuth and galena are present as inclusions in arsenopyrite and interstitial to arsenopyrite and quartz. The scanning electron microscope investigation did not identify any gold or gold-bearing minerals. No penetrative fabric is evident in the vein material although brittle deformation is recorded by an intense micro-fracturing.

The Helen showing obviously appears on plots of arsenic, silver and gold (Figures 11, 12 and 13). Elevated gold and silver values were found at only two other locations in the West Grass Lake area although numerous areas of anomalous arsenic were identified.

No emeralds and in fact no beryl mineralization were found as a result of the prospecting effort. However the geochemical sampling has identified an anomalous zone in the area of two creeks that drain the northern part of the Dazzle Property. These creeks are roughly parallel to the contact between a mid-Cretaceous granitic intrusion to the north and Devonian Fire Lake Metavolcanics (Figure 5). Typical background beryllium values in the survey area range from 1.5 to 2.0 ppm Be. Values above 5 ppm are considered anomalous. In the Two Creeks area, all of the stream sediments show values ranging from 8.2 to 15.3 ppm Be. Most of the rock and soil samples collected in this area are also anomalous with a maximum soil sample value at 20.5 ppm Be and a maximum rock sample value at 73.5 ppm Be. A plot of the soil, silt and rock samples clearly shows this area to be distinctively anomalous with respect to beryllium (Figure 14).

Figure 8 - Pegmatite Dyke Two Creeks Area

Arsenic and chrome also appear to be anomalous in the Two Creeks area (Figues 11 and 15). Zinc also shows a weak association with beryllium (Figure 28). Strontium and vanadium show a distinct negative correlation with beryllium (Figures 26 and 17). Copper and tungsten, elements

known to be geochemically related to the emerald mineralization at Regal Ridge, generally show very weak values in the study area overall and do not provide useful plots.

Figure 9 - Yellow Sulphate Alteration Two Creeks Area

Figure 10 - Tourmaline Crystals Two Creeks Area

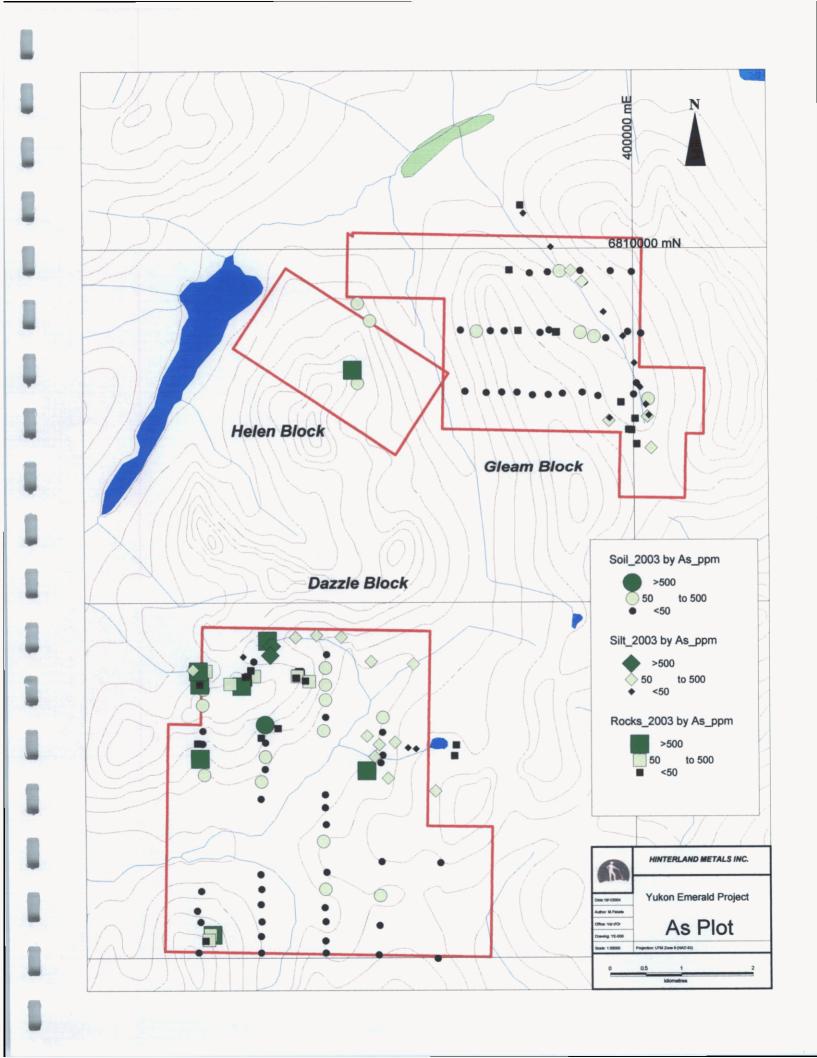
12. Adjacent Properties

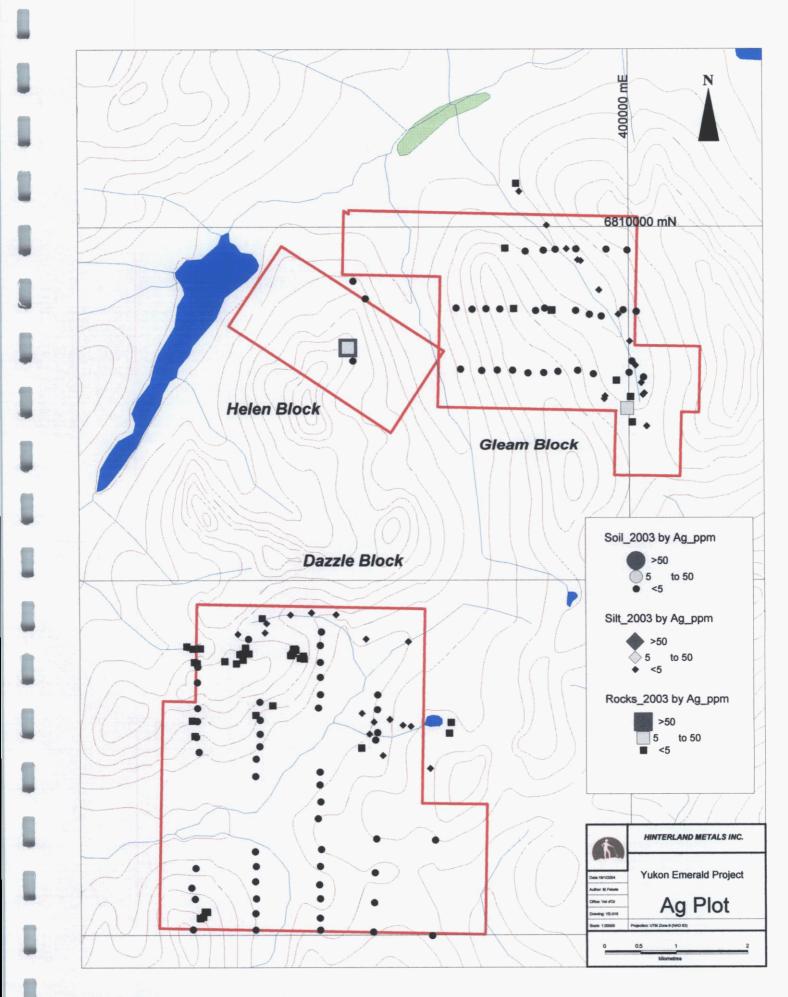
Information concerning adjacent properties is included in Sections 9 and 10 of this report. This information was obtained from the publically available Yukon Geology Program MINFILE database. The author has not attempted to verify any of the information contained in the MINFILE reports and **any such information is not necessarily indicative of similar**

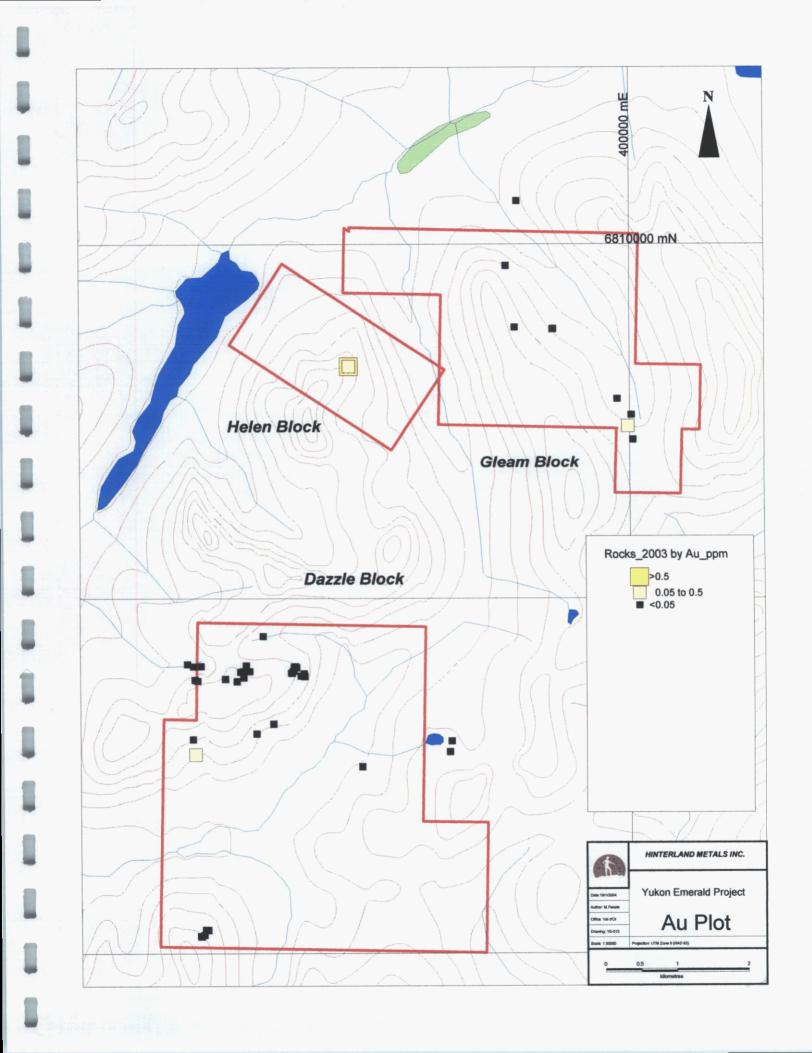
mineralization existing on any of the Dazzle, Gleam or Helen properties. The author cautions the reader to distinguish between the descriptions of mineralization found on adjacent properties provided in this report and the descriptions of mineralization found on the Dazzle, Gleam or Helen properties if and when any are provided.

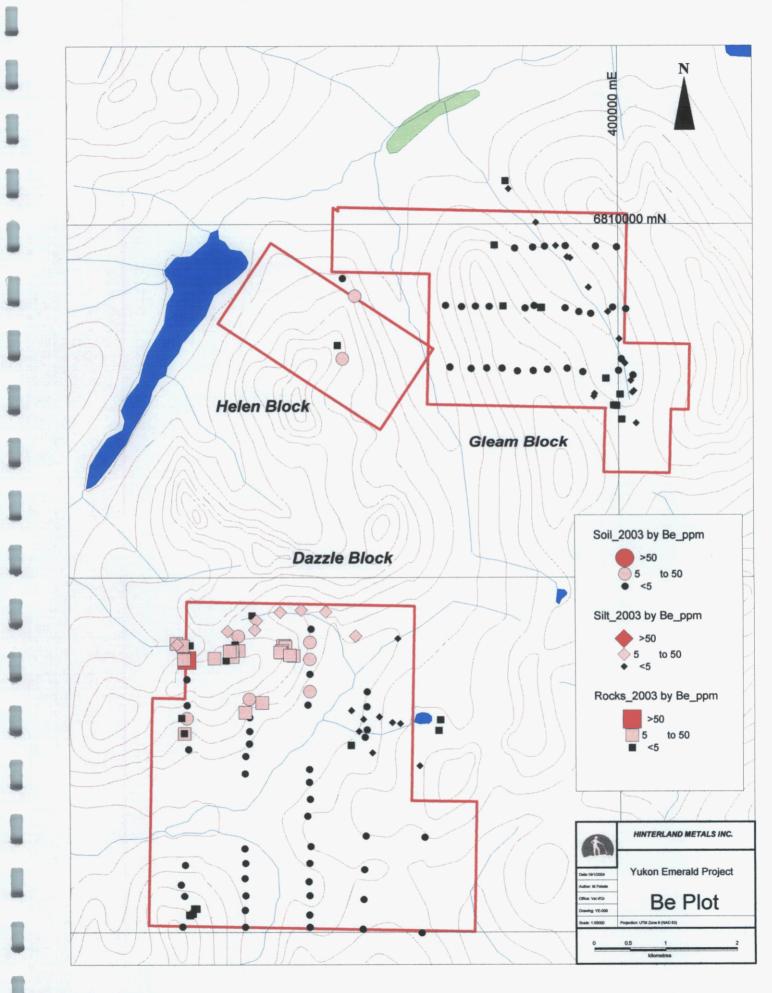
13. Mineral Processing and Metallurgical Testing

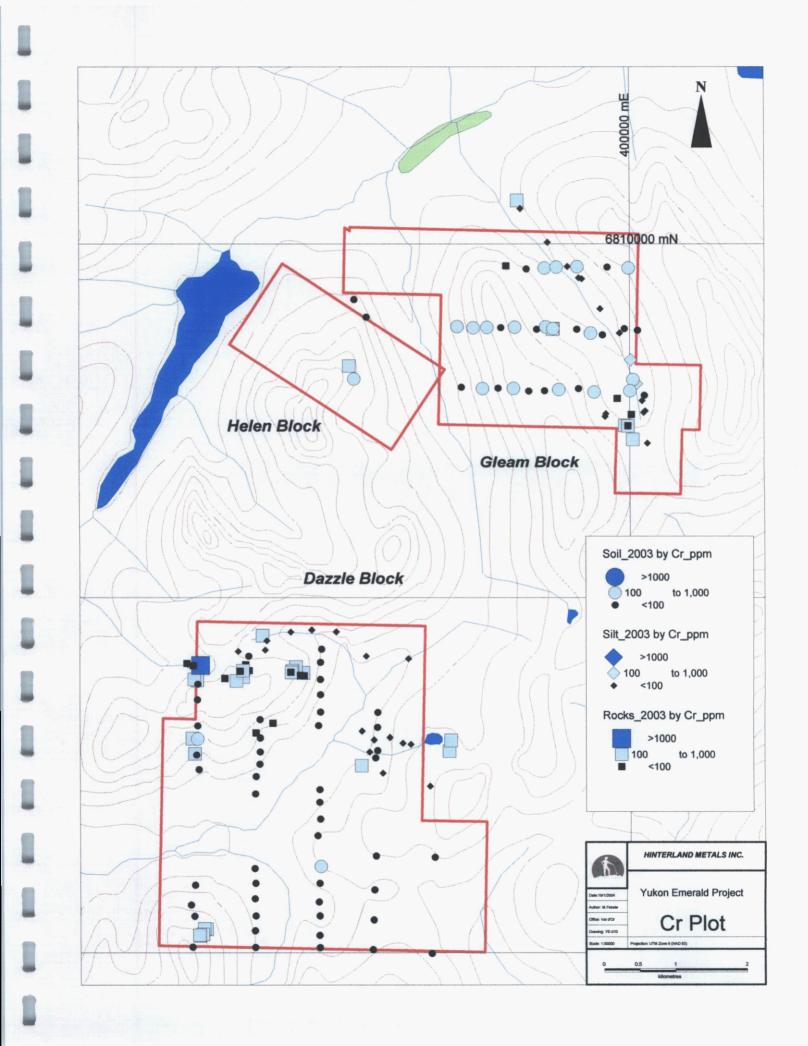
To date, Hinterland has not completed any mineral processing and/or metallurgical testing on either of the Chris, Dazzle, Gleam or Helen properties.

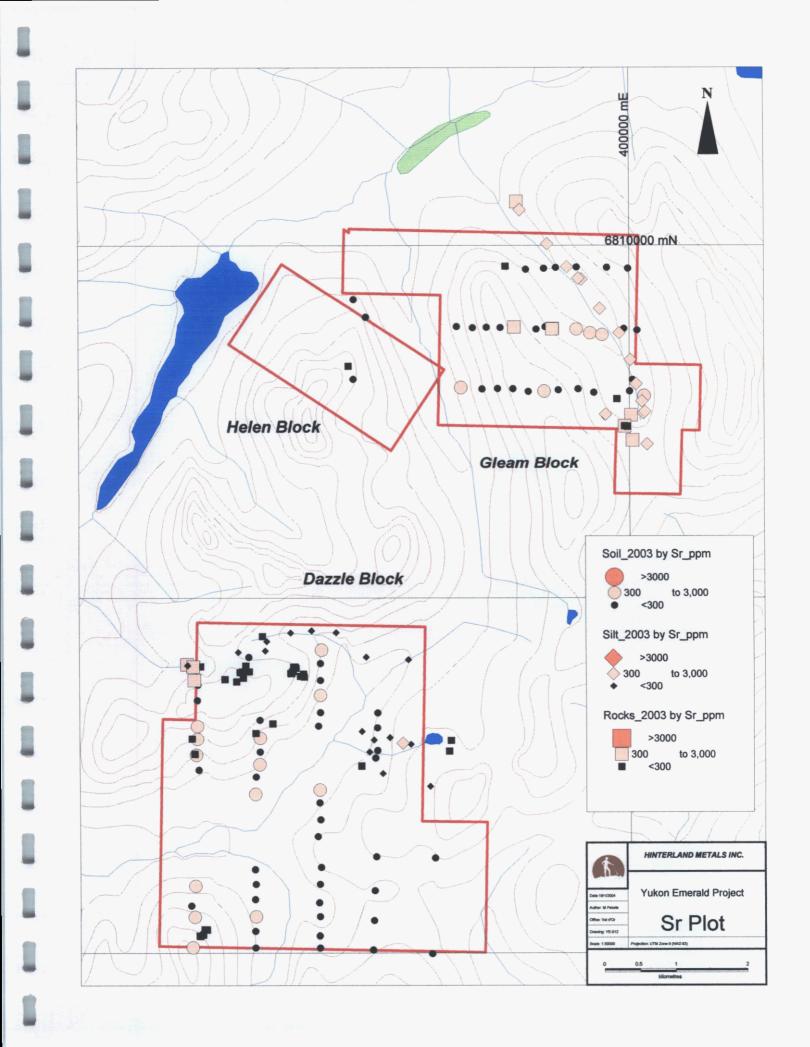

14. Mineral Resource and Mineral Reserve Estimates

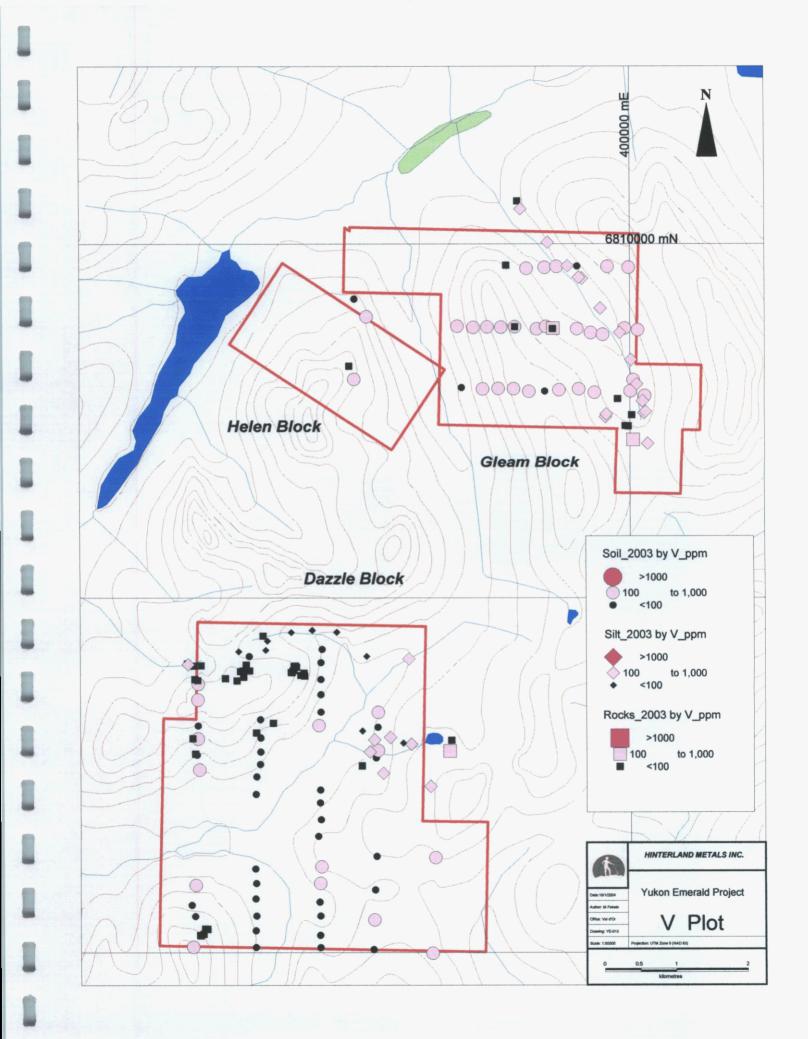

No mineral resource or mineral reserve estimates exist for either of the Chris, Dazzle, Gleam or Helen properties.

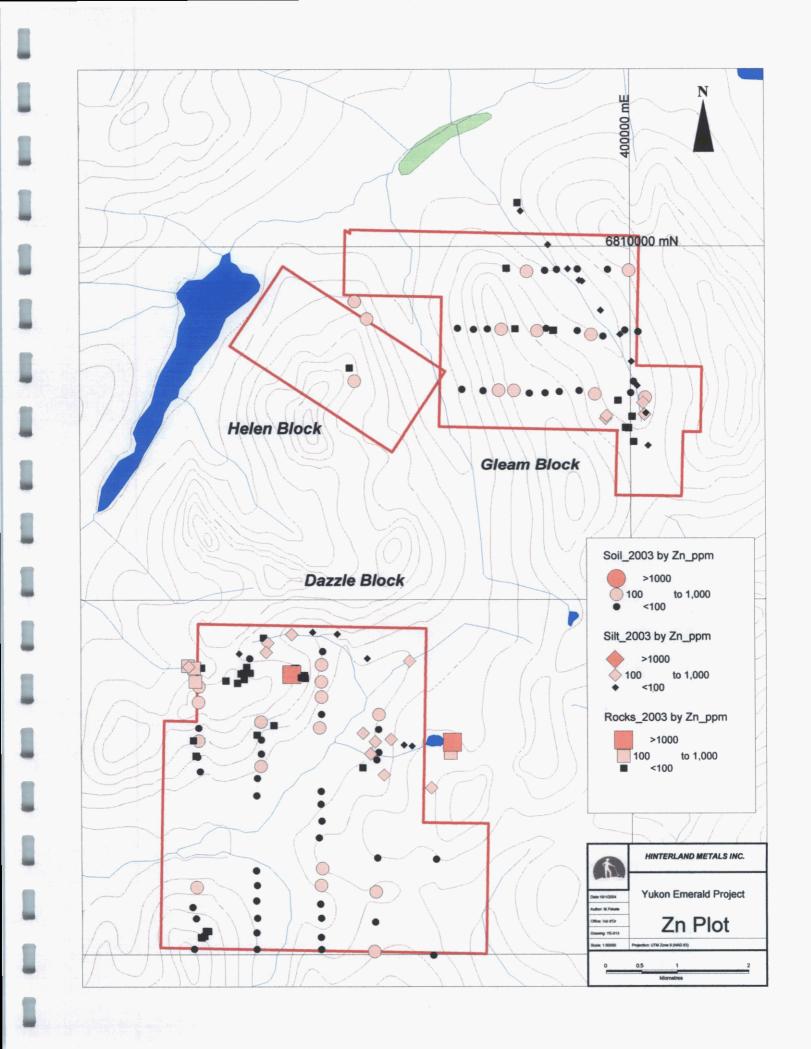

15. Other Relevant Data and Information

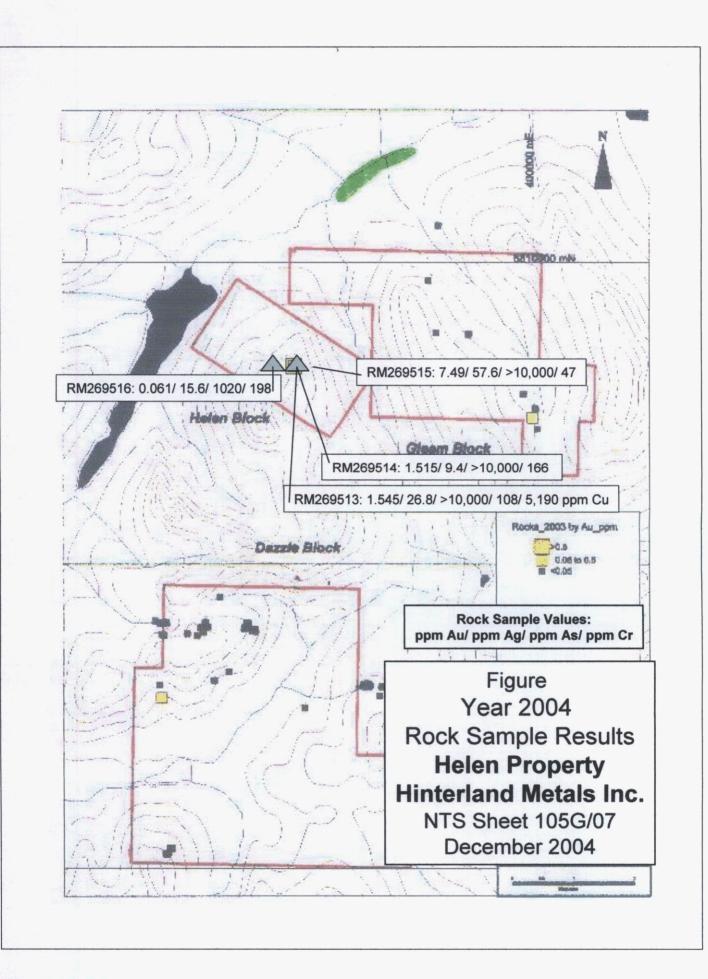

The author is not aware of any other information or explanation necessary to make this technical report more understandable and not misleading.










Second Second Second

16. Conclusions

The Finlayson Lake Area has an impressive record of mineral discoveries over the past decade. These discoveries include both the recently discovered volcanic massive sulphide-type (VMS) base metal deposits and the Regal Ridge emerald prospects. Recent regional-scale geological mapping surveys of the area and several technical studies on a property scale have contributed greatly to the overall understanding of the mineral potential of the area. The ongoing compilation and revision of the mineral occurrence database in terms of these provide new insights for further exploration in the area.

The discovery of the Helen Gold Zone represents a significant breakthrough for Hinterland in the Finlayson Lake area. It moves the Company's efforts in the area from the grassroots stage to the target evaluation stage.

The 2003 work represents the first attempt at exploration for emeralds on the Gleam and Dazzle properties. The emeralds at Regal Ridge occur in selvage zones of yellow sulphate mineralization and extensive fine-grained tournaline mineralization adjacent to quartz veins cutting shallow dipping mica-chlorite schists of probable volcanic origin. The quartz veins seem to be genetically related to discordant mid-Cretaceous granitic rocks; however the host rock geochemistry appears to control emerald formation. This empirical model continues to be useful for emerald exploration in the Findlayson area.

Although Hinterland found no emeralds and in fact no beryl mineralization in 2003, a specific emerald target has been generated in the Twin Creeks area, located in the northern part of the Dazzle Property. This area lies directly adjacent to a mid-Cretaceous contact, is noticeably anomalous with respect to beryllium, chrome and arsenic, and contains pegmatite dykes, zones of yellow sulphate alteration and tourmaline mineralization.

17. Recommendations

The positive results of the 2003 Exploration Program clearly warrant continued exploration on the Dazzle, Gleam and Helen properties. It is the author's opinion that the properties are of sufficient merit for Hinterland proceed with a further aggressive exploration program. Furthermore, it is recommended that Hinterland continue reconnaissance-style exploration in the Finlayson Lake Area to identify and acquire other properties with gemstone and precious metal potential. It is recommended that the exploration be divided into two parts consisting of separate programs at the Helen Gold Zone and the Two Creeks Be Anomaly (Dazzle property) using a central base camp. The Helen Gold Zone must be brought to the diamond drilling stage as soon as possible by the completion of grid-controlled prospecting, geochemical and geophysical surveying. If drilling in the first phase intersects significant gold-silver mineralization, a second phase of drilling is recommended. The Two Creeks Be Anomaly must be prospected in detail with additional geochemical sampling. Recommended budgets exclude potential follow-up exploration phases for the Two Creek programs.

Table 3 - Cost Estimate for Proposed Exploration Program

4a: Phase 1 Cost Estimate

Phase I					
Helen Gold Zone					
Grid surveys and Initial Diam	ond Dri	lling			
Geologist	30	days @	\$500	\$15,000	
Assistant	30	days @	\$250	\$7,500	
Linecutting	10	km @	\$600	\$6,000	
Magnetic Survey	10	km @	\$150	\$1,500	
Electromagnetic Survey	10	km @	\$300	\$3,000	
Analyses	1000	@	\$35	\$35,000	
Drilling	500	m @	\$125	\$62,500	
					\$130,500
Two Creeks Be Anomaly					
Detailed Prospecting					
Geologist	15	days @	\$500	\$7,500	
Assistant	15	days @	\$250	\$3,750	
Analyses	350	@	\$35	\$12,250	
				•••• ,•••	\$23,500
					. ,
Camp, Aviation, Rentals etc.					
Mob/demob	1	fixed @	\$30,000	\$30,000	
Camp	1	fixed @	\$20,000	\$20,000	
Helicopter	70	hours @	\$1,100	\$77,000	
Float Plane	1000	miles \widetilde{a}	\$10	\$10,000	
Truck	1.5	month @	\$1,500	\$2,250	
Radios	4	<i>@</i>	\$600	\$2,400	
Sat Phone	1.5	month @	\$2,500	\$3,750	
	· · · · · · · · ·			''''''''''''''''''''''''''''''''''''''	\$145,400
Reports, Drafting and Misc.					
Report	12	days @	\$500	\$6,000	
Drafting	75	hours @	\$50	\$3,750	
Permitting	1	fixed @	\$10,000	\$10,000	
				Martin	\$19,750
				Phase I Subtotal	\$319,150
				Contingency ~15%	\$47,873
	•				00 (0 000

Phase I Total \$367,023

all all a second

....

_

Table 4b: Phase 2 Cost Estimates

Helen Go						
Follow-up	Diamond Drilling		_			
	Drilling	1000	m @	\$125	\$125,000	
	Mob/demob	1	fixed @	\$15,000	\$15,000	
	Camp	1	fixed @	\$10,000	\$10,000	
	Helicopter	30	hours @	\$1,100	\$33,000	
	Float Plane	500	miles @	\$10	\$5,000	
	Truck	1	month @	\$1,500	\$1,500	
	Sat Phone	1	month @	\$2,500	\$2,500	
	Report	10	days @	\$500 [°]	\$5,000	
	Drafting	50	hours @	\$50	\$2,500	

Phase II Subtotal	\$199,500
Contingency ~15%	\$29,925
Phase II Total	\$229,425

Two Phase Total \$596,448

18. References

Bond J.D., Murphy, D.C., Colpron, M., Gordey, S.P., Plouffe, A., Roots, C.F., Lipovsky P.S., Stronghill, G. and Abbott J.G., 2002. Digital Compilation of Bedrock Geology and Till Geochemicstry, northern Finlayson Lake Map Area, Southeastern Yukon (105G), EGSD Open File 2002-7D, and GSC Open File 4243.

Burgert, A., 1997. Assessment Report #093653 for EXPATRIATE RESOURCES LTD.

Davidson, G.S., 1997. Assessment Report #093647 for ARCTURUS RESOURCES LTD.

Davidson, G.S., 1998. Assessment Report #093844 for ARCTURUS RESOURCES LTD.

Eaton, W.D., 1997. Assessment Report #093587 for EXPATRIATE RESOURCES LTD.

Franklin, J.M., 1996. Volcanic-associated massive sulphide base metals. *In* Geology of Canadian Mineral Deposit Types, (ed.) O.R. Eckstrand, W.D. Sinclair, and R.I. Thorpe; Geological Survey of Canada: Geology of Canada No. 8, p. 158-183 Groat, L., 2003. Personal Communication dated October 1, 2003

Gordey, S.P. and Makepeace, A.J., 1999. Yukon Digital Geology. S.P. Gordey and A.J. Makepeace (comps.), Geological Survey of Canada, Open File D3826, and Exploration and Geological Services Division, Yukon Region, Indian and Northern Affairs Canada, Open File 1999-1(D).

MacDonald, A.J., 1967. Assessment Report #019114 for NORTHLAKE MINES LTD.

MacDonald, G., 1995. Assessment Report #093433 for MACDONALD, B., Aug/95.

MacRobbie, P.A., 1996. Assessment Report #093332 for COMINCO LTD.

Miller, A.L., 2003. Petrography, Ore Microscopy and Scanning Electron Microscope Investigation of Samples from the Helen Au-Ag Prospect and Chris Chrysoprase Prospect, Yukon

Mortensen, J.K. (comp.), 1999. YUKONAGE, An isotopic age database for the Yukon Territory. *In* Yukon Digital Geology, S.P. Gordey and A.J. Makepeace (comps.), Geological Survey of Canada, Open File D3826, and Exploration and Geological Services Division, Yukon Region, Indian and Northern Affairs Canada, Open File 1999-1(D),.

Moyle, F. and Wesa, G.L., 1998. Assessment Report #093855 for PACIFIC BAY MINERALS LTD.

Murphy, D.C., 1997. Preliminary geological map of the Grass Lakes area, Pelly Mountains,

southeastern Yukon. Exploration and Geological Services Division, Yukon, Indian and Northern Affairs Canada, Open File 1997-3.

Murphy, D.C., 1998. Stratigraphic framework for syngenetic mineral occurrences, Yukon-Tanana Terrane south of Finlayson Lake: A Progress Report. *In* Yukon Exploration and Geology 1997, Exploration and Geological Services Division, Indian and Northern Affairs Canada, p.51-58.

Murphy, D.C. and Piercey, S.J., 1999. Geological map of parts of Finlayson Lake (105G/7, 8 and parts of 1, 2, and 9) and Frances Lake (parts of 105H/5 and 12) map areas, southeastern Yukon (1:100 000-scale). Exploration and Geological Services Division, Yukon, Indian and Northern Affairs Canada, Open File 1999-4.

Murphy, D.C. and Piercey, S.J., 2000. Syn-mineralization faults and their re-activation, Finlayson Lake massive sulphide district, Yukon-Tanana Terrane, southeastern Yukon. *In* Yukon Exploration and Geology 1999, D.S. Emond and L.H. Weston (eds.), Exploration and Geological Services Division, Yukon, Indian and Northern Affairs Canada, p. 55-66.

Murphy, D.C., Colpron, M., Gordey, S.P., Roots, C., Abbott, J.G. and Lipovsky, P.S., 2001. Preliminary bedrock geological map of northern Finlayson Lake area (NTS 105G), Yukon Territory. Exploration and Geological Services Division, Yukon Region, Indian and Northern Affairs Canada, Open File 2001-33, 1:100 000 scale.

Murphy, D.C., Colpron, M., Roots, C.F., Gordey, S.P. and Abbott, J.G., 2002. Finlayson Lake Targeted Geoscience Initiative (southeastern Yukon), Part 1: Bedrock geology. *In* Yukon Exploration and Geology 2001, D.S. Emond, L.H. Weston and L.L. Lewis (eds.), Exploration and Geological Services Division, Yukon Region, Indian and Northern Affairs Canada, p. 189-207.

Piercey, S.J., 2001. Petrology and tectonic setting of felsic and mafi c volcanic and intrusive rocks in the Finlayson Lake volcanic-hosted massive sulphide (VHMS) district, Yukon, Canada: A record of mid-Paleozoic arc and back-arc magmatism and metallogeny. Unpublished PhD thesis, University of British Columbia, 304 p.

Piercey, S.J. and Murphy, D.C., 2000. Stratigraphy and regional implications of unstrained Devono-Mississippian volcanic rocks in the Money Creek Thrust Sheet, Yukon-Tanana Terrane, southeastern Yukon. *In* Yukon Exploration and Geology 1999, D.S. Emond and L.H. Weston (eds.), Exploration and Geological Services Division, Yukon Region, Indian and Northern Affairs Canada, p. 67-78.

Piercey, S.J., Murphy, D.C., Mortensen, J.K. and Paradis, S., 2000. Arc-rifting and ensialic backarc basin magmatism in the northern Canadian Cordillera: Evidence from the Yukon-Tanana Terrane, Finlayson Lake region, Yukon. *In* Slave-Northern Cordilleran Lithospheric Experiment (SNORCLE)-Lithoprobe Report 72, Vancouver, British Columbia, Lithoprobe Secretariat, p. 129-138.

Piercey, S.J., Murphy, D.C., Mortensen, J.K. and Paradis, S., 2001a. Boninitic magmatism in a continental margin setting, Yukon-Tanana Terrane, southeastern Yukon, Canada. Geology, vol. 29, p. 731-734.

Piercey, S.J., Paradis, S., Murphy, D.C. and Mortensen, J.K., 2001b. Petrological constraints on the tectonic setting of felsic volcanic-hosted volcanogenic massive sulfide (VMS) mineralization in the Finlayson Lake district, Yukon, Canada. Economic Geology.

Poulsen, K.H., 1996. Disseminated and replacement gold: <u>in</u> Geology of Canadian Mineral Deposit Types, (ed.) O.R. Eckstrand, W.D. Sinclair, and R.I. Thorpe: G.S.C., Geology of Canada No. 8, p.383-392

Roots, C.F., Harms, T.A., Simard, R.L., Orchard, M.J. and Heaman, L., 2002. Constraints on the age of the Klinkit assemblage east of Teslin Lake, northern British Columbia, Geological Survey of Canada, Current Research 2002-A7.

Sevensma, P.H., 1966. Prospectus Report for NORTH LAKE MINES LTD.

Sevensma, P.H., 1967. Assessment Reports # 019115 for NORTH LAKE MINES LTD.

Sevensma, P.H.and Heard, R.T., 1967. Assessment Reports # 060250 for NORTH LAKE MINES LTD.

Simandl, G.J., Paradis, S., and Birkett, T., 2001. Schist Hosted Emeralds: Mineral Deposit Profiles, B.C. Geological Survey, 5 pp.

Sinkankas, J., 1981. Emerald and Other Beryls: Geoscience Press, Prescott, Arizona, 665 pp.

Sliwa, A.S., and Nqualuwe, C.A., 198. Geological Setting of Zambian Emerald Deposits: Precambrian Research, v. 25, p. 213-228.

Walton, L., 1996, Exploration Criteria for Gemstone Deposits and Their Application to Yukon Geology: INAC Open File 1996 2(G), 130 pp.

Wengzynowski, W.A., 1996. Assessment Report #093412 for EXPATRIATE RESOURCES LTD.

Wengzynowski, W.A., 1998. Assessment Report #093818 for EXPATRIATE RESOURCES LTD.

Wengzynowski, W.A., 1999. Assessment Report #093995 for EXPATRIATE RESOURCES LTD.

Woolham, R.W., 1997. Assessment Report #093655 for EXPATRIATE RESOURCES LTD.

APPENDIX 1

STATEMENT OF EXPENDITURES

Appendix 1a: Statement of Expenditures, Dazzle Property Appendix 1b: Statement of Expenditures, Gleam Property Appendix 1c: Statement of Expenditures, Chris Property

Appendix 1a: Statement of Expenditures, Dazzle Property

Wages (actual program):	\$8,776.02
Wages (Research and preparation):	\$ 419.13
Geochem (F + L):	\$2,441.19
Geochemical Analysis:	\$1,959.28
Shipping:	\$ 660.29
Supplies:	\$ 234.39
Lodging (Inconnu Lodge):	\$2,441.19
Fuel (lodging):	\$1,371.82
Radio/ Satellite Telephone Rentals:	\$ 255.79
Report Writing:	\$1,493.27
Drafting:	\$ 193.53
Helicopter Support:	\$5,061.57
	Total: \$25,307.47

Appendix 1b: Statement of Expenditures, Gleam Property

Wages (actual program):	\$6,424.50
Wages (Research and preparation):	\$ 563.07
Geochem $(F + L)$:	\$ 468.97
Geochemical Analysis:	\$1,632.31
Shipping:	\$ 508.31
Supplies:	\$ 175.88
Lodging (Inconnu Lodge):	\$1,832.75
Fuel (lodging):	\$1,029.96
Radio/ Satellite Telephone Rentals:	\$ 192.11
Report Writing:	\$1,120.53
Drafting:	\$ 145.78
Helicopter Support:	\$3,198.88
	Total: \$17,283.06

Appendix 1c: Statement of Expenditures, Helen Property

Wages (actual program):	\$1,016.20
Wages (Research and preparation):	\$ 163.99
Geochem $(F + L)$:	\$ 60.81
Geochemical Analysis:	\$ 302.83
Shipping:	\$ 99.27
Supplies:	\$ 25.82
Lodging (Inconnu Lodge):	\$ 237.68
Fuel (lodging):	\$ 133.56
Radio/ Satellite Telephone Rentals:	\$ 24.91
Report Writing:	\$ 195.31
Drafting:	\$ 38.91
Helicopter Support:	<u>\$ 574.84</u>
	Total: \$2,874.81

APPENDIX 2

SAMPLE DESCRIPTIONS

Appendix 2a : Dazzle Property Sample Descriptions Appendix 2b : Gleam Property Sample Descriptions Appendix 2c : Helen Property Sample Descriptions

1.88

1. AND

Appendix 2a : Dazzle Property Sample Descriptions NAD 83 Zone 9

Rock Samples

Property	SAMPLE	Easting	Northing	Descriptions
Dazzle	K048	395301		Rock gtz tourmaline
Dazzle	K049	395281		o/c Heavey tourmiline
Dazzle	K050	395275		Rock talus
Dazzle	K051	395418		Rock (o/c) qtz,crystal
Dazzle	L040	395313		
Dazzle	L041	395265		
Dazzle	L042	395250		
Dazzle	L043	395240		
Dazzle	L045	395428		
Dazzle	L046	395375		
Dazzle	M027	393928		
Dazzle	M029	393975		
Dazzle	M037	394657	6803967	
Dazzle	M038	394846		
Dazzle	S044	394572		
Dazzle	S047	394479		
Dazzle	S050	394316		
Dazzle	S052	396229	6802631	n/a
Dazzle	S053	398922	6808811	
Dazzle	T003	393896	6802796	Rock - Tourmaline - Quartz
Dazzle	T004	393893		
Dazzle	T009	393960	6800238	Rock - Tourmaline - Quartz - Schist. Talus spread over an area (50m X 150m)
Dazzle	T022	394608		Rock of tourmaline / quartz in intrusive contact with quartzites
Dazzle	T023	394568	6803966	Intrusive chilled margin of guartz / Tourmaline chlorite alteration/some pegmatitic textures
Dazzle	T024	394530	6803957	Same as 023, 50m West along intrusive / quartzite contact
	T025	394052	6800329	Massive Arsenopyrite in blebs and stockwork through quartz vein. Blond to grey micaceous quartz schist veins along bedding,
Dazzle				strike 178°, dip 18° subcrop material 30cm wide vein.
Dazzle	T026	394021	6800333	Massive fine grain tourmaline quartz vein 30cm wide float boulder SE 20m from 025
Dazzle	T027	394001	6800260	Quartz / Tourmaline vein (100m from 025) fine grained massive tourmaline stockwork through quartz
Dazzie	T028	393952		Quartz pyrite tourmaline (150m) vein 25 cm across mineralization in fractures and vugs
Dazzle	Т030	394750		Rock mafic schist with pyrite outcrop
Dazzle	T031	394986	6803230	Rock Quartz - tourmaline felsic material in altered schist whithin subcrop

Appendix 2b : Gleam Property Sample Descriptions NAD 83 Zone 9

100 C

P(S)

119

Property	SAMPLE	Easting	Northing	Descriptions
Gleam	K023	398430	6810610	Float in Creekbed
Gleam	K027	399826	6807828	Float in Creekbed
Gleam	L018	400024	6807600	Rock Sample
Gleam	L020A	399934	6807447	Rock Sample
Gleam	L020B	399934	6807447	Rock Sample
Gleam	L020C	399975	6807442	n/a
Gleam	L020D	399975	6807442	n/a
Gleam	L021	400044	6807249	Rock Sample
Gleam	S001	398392	6808838	n/a
Gleam	S006	398928	6808818	
Gleam	S015	398274	6809698	n/a

Appendix 2c : Helen Property Sample Descriptions NAD 83 Zone 9

Rock Samples

Helen	M019A	396065	6808288	Helen Gold Zone 0.5 m chip
Helen	M019B	396065	6808288	Helen Gold Zone 1.0 m chip
Helen	M019C	396065	6808288	Helen Gold Zone 1.0 m chip
Helen	M019D	396065	6808288	Helen Gold Zone 1.0 m chip
Helen	M019E	396065	6808288	Helen Gold Zone 1.0 m chip
Helen	M019F	396065	6808288	Helen Gold Zone 0.5 m chip

All-Terrane Mineral Exploration Services

2000-1-20

ROCK SAMPLE DESCRIPTION SHEET

Appendix 2c: Helen Property Year-2004 Rock Sample Descriptions

Hinterland Metals Inc.

Sample No.	Easting	Northing	Sample	Width	Sample	Formation	Lithology	Modifier	Colour	Carbonate	Silicification	Alteration 1	Alteration 2	Other	Mineral 1	Amount	Mineral 2	Amount	Other	Amount	Date	Sampler	Comments
	(UTM)	(UTM)	Туре	(111)	Description					Presence	1					(%)		(%)	Mineral	(%)			
RM269513	396245	6808320	CGr		Prox. Ta	MGg	Qz-As Vn	Band	gry-white					Lim2	As	12	Сру	1	Py	tr	6/10/2004	CS	Banded Oz-arseno boulders to 40 cm
RM269514	398245	6806320	CGr			MGg	Qz-As Vn	frac	white					Lim1	As	3	Сру	tr.	Py	tr	6/10/2004	CS	Clotty + fracture-controlled arseno
RM269515	396245	6808320	CGr			MGg	Qz-As Vn	vein	grey					Lim1	As	60	Scor	strong			6/10/2004	CS	Massive arseno band in Qz vein
RM269516	396245	6808320	CGr		Prox. CV	MGg	Qz Vein	VUQQY	tan			A1		Lim2	As	tr	-				6/10/2004	CS	Limonite after Py in fractures, vugs
1																							

1.1.4

1000

APPENDIX 3

SAMPLE LOCATIONS AND COMPILATION OF ANALYTICAL RESULTS

Appendix 3a : Dazzle Property Sample Results

Appendix 3b : Gleam Property Sample Results

Appendix 3c : Helen Property Sample results

観光

an Mer

1994

Appendix 3a: Dazzle Property Rock Sample Results

Property	SAMPLE	Easting	Northing	Au ppm	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Κ%
Dazzle	K048	395301	6804036	0.009	0.50	7.1	45	220	10.7	2	0.04	0.5	1	98	25	0.94	4.51
Dazzle	K049	395281	6804033	0.005	0.50	7.38	5	170	6.2	2	0.07	0.5	2	69	22	0.71	4.1
Dazzle	K050	395275	6803973	0.011	0.50	5.77	178	850	3.6	2	0.02	0.5	3	84	18	2.54	3.65
Dazzie	K051	395418	6803936	0.005	0.50	0.99	48	100	2.2	2	0.01	0.5	4	165	4	0.83	0.41
Dazzle	L040	395313	6804018	0.009	0.50	5.9	26	160	5.4	2	0.16	0.5	1	106	21	1.04	3.55
Dazzle	L041	395265	6803967	0.005	0.50	0.72	155	30	9.4	2	0.03	0.5	2	218	4	0.95	0.25
Dazzle	L042	395250	6803 94 1	0.005	0.50	4.05	29	330	46.5	2	0.12	0.5	1	187	3	0.65	2.95
Dazzle	L043	395240	6803944	0.005	0.50	1.37	35	120	8.7	2	11.15	17.8	9	16	62	2.97	0.79
Dazzle	L.045	395428	6803893	0.005	0.70	6.59	238	70	14.3	2	0.23	0.5	2	89	3	0.71	3.54
Dazzle	L046	395375	6803901	0.005	0.50	7.14	5	60	9.1	8	0.28	0.5	1	81	2	0.5	3.27
Dazzle	M027	393928	6803830	0.005	0.50	3.18	5	110	73.5	2	0.04	0.5	1	186	18	0.97	2.67
Dazzle	M029	393975	6804039	0.005	0.50	2.89	164	90	3.7	2	8.7	0.5	134	1105	294	7.69	2.29
Dazzle	M030	393870	6804036	0.036	1.10	5.53	3470	160	7.1	2	15.65	0.5	7	43	43	3.87	2.62
Dazzle	M037	394657	6803967	0.005	0.50	7.47	68	210	5.6	2	0.3	0.5	2	79	5	0.69	4.01
Dazzle	M038	394846	6804462	0.005	0.50	6.82	1895	320	4.6	2	0.08	0.5	1	110	50	0.64	3.27
Dazzle	S044	394572	6803877	0.005	0.50	5.67	5	220	10.2	2	0.95	0.5	1	124	3	0.89	3.03
Dazzle	S047	394479	6803824	0.010	4.30	1.21	10000	60	1.1	10	1.64	0.5	4	177	8	2.1	0.54
Dazzie	S050	394316	6803857	0.005	0.50	6.38	76	170	13.7	11	0.28	0.5	1	49	3	0.5	3.43
Dazzie	S052	396229	6802631	0.005	0.50	2.95	4460	560	3.7	2	0.12	0.5	4	125	41	1.38	1.32
Dazzle	S053	398922	6808811	0.005	0.60	8.49	30	90	1.6	2	7.07	0.5	11	133	19	3.88	0.44
Dazzle	T003	393896	6802796	0.005	0.50	7.44	39	70	16	2	0.26	0.5	11	82	20	2.14	0.98
Dazzie	T004	393893	6802801	0.14	3.2	1.08	10000	40	1.4	13	0.29	0.8	18	166	2	13.1	0.12
Dazzle	T009	393960	6800238	0.005	0.50	7.56	15	150	4	2	0.2	0.5	7	117	28	4.16	1.16
Dazzle	T022	394608	6804049	0.005	0.50	6.33	14	560	3.7	63	1.08	0.5	2	87	2	0.91	3.53
Dazzle	T023	394568	6803966	0.005	0.50	4.5	5	70	5.9	2	0.71	0.5	2	122	4	0.88	1.02
Dazzle	T024	394530	6803957	0.005	0.50	7.57	6	270	10.2	2	0.81	0.5	2	48	3	0.89	2.65
Dazzle	T025	394052	6800329	0.008	0.50	0.91	10000	10	0.5	3	0.04	0.5	77	228	16	6.34	0.05
Dazzle	T026	394021	6800333	0.005	0.50	6.65	268	130	3.3	2	0.3	0.5	5	121	21	3.45	0.72
Dazzle	T027	394001	6800260	0.005	0.50	8.32	123	650	3.1	2	0.23	0.5	8	122	34	4.75	2.45
Dazzle	T028	393952	6800246	0.005	0.50	3.05	8	190	0.9	2	0.48	0.5	13	157	57	2.1	0.71
Dazzle	T030	394750	6803093	0.005	0.50	7.13	16	490	10.8	2	3.35	0.5	10	97	77	4.6	4.02
Dazzle	T031	394986	6803230	0.005	0.50	6.95	20	40	25.3	5	0.16	0.5	1	98	10	0.8	2.67

Appendix 3a: Dazzle Property Rock Sample Results

-

Hinterland Metals Inc.

SAMPLE	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Pt	Pd	<u>\$%</u>	Sb ppm	Sr ppm	TI %	V ppm	W ppm	Zn ppm
K048	0.23	116	3	1.14	3	260	90			0.03	5	18	0.03	2	10	40
K049	0.18	369	2	1.65	5	270	65			0.01	5	37	0.06	2	10	73
K050	0.29	78	5	0.11	7	150	24			0.02	5	23	0.2	48	10	48
K051	0.08	428	5	0.01	5	60	20			0.01	5	5	0.02	4	10	52
L040	0.22	186	2	0.66	2	680				0.01	5	11	0.05	3	10	37
L041	0.09	259	4	0.01	5	40	19			0.01	5	3	0.01	2	10	52
L042	0.07	114	5	0.08	6	610	49			0.01	5	10	0.01	4	10	15
L043	7.47	4210	1	0.05	10	40				0.35	5	165	0.03	13	380	2090
L045	0.14	617	2	1.72	3	370				0.01	5	9	0.03	6	20	36
L046	0.09	214	1	2.25	2	340				0.01	5	19	0.04	1	10	25
M027	0.07	87	3	0.16	3	320	24			0.05	5	19	0.01	3	10	19
M029	7.48	1520	1	0.05	1200	190				1.74	6	124	0.2	76	10	80
M030	0.56	2610	1	0.03	17	500				1.95	7	1215	0.13	50	10	224
M037	0.14	_379	1	0.10	12	460				0.03	5	12	0.04	2	10	38
M038	0.28	127	1	0.02	5	170				0.1	5	11	0.05	5	10	16
S044	0.35	251	2	1.36	7	240	37			0.01	5	59	0.03	5	10	9
S047	0.19	578	3	0.01	10	60				1.02	8	30	0.05	17	10	61
S050	0.11	115	1	1.82	5	390				0.01	5	13	0.02	2	10	11
S052	0.23	150	1	0.02	20	270				0.16	5	12	0.13	93	10	73
S053	1.88	608	1	4.19	22	660				0.04	5	894	0.45	83	10	61
T003	0.72	341	1	3.26	22	440	12			0.01	5	46	0.14	24	10	48
T004	0.1	74	15	0.32	28	130				6.88	42	69	0.09	13	70	11
T009	1.14	231	1	0.63	27	360				0.01	5	93	0.29	67	10	77
T022	0.22	182	1	1.31	5	480				0.01	5	101	0.06	9	10	16
T023	0.27	158	2	1.51	7	150				0.01	5	56	0.05	8	10	17
T024	0.22	118	1	2.68	5	220	38			0.01	5	97	0.04	8	10	23
T025	0.17	43	1	0.08	16	130				2.71	7	15	0.03	10	10	14
T026	1.05	195	1	0.90	16	640	13			0.02	5	128	0.31	56	10	77
T027	1.08	404	1	0.48	20	340	11			0.02	5	93	0.39	81	10	66
T028	0.3	136	1	0.55	48	100	4			0.24	5	47	0.13	28	10	20
T030	0.84	843	1	1.44	19	1760	21			1.19	5	142	0.82	49	10	46
T031	0.04	2020	1	2.88	8	490	22			0.01	5	7	0.01	1	10	51

Appendix 3a: Dazzle Property Soil Sample Results

10.055

Hinterland Metals Inc.

121

1.44

12

Property	SAMPLE	Easting	Northing	Ag ppm	AI %	As ppm	Ва ррт	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	К%
Dazzie	A002	394806	6803281	0.5	8.40	926	1120	6.4	2	0.59	0.5	11	37	163	5.20	3.08
Dazzle	A005	394809	6803024	0.5	6.55	26	810	2.2	2	1.57	0.5	3	14	23	2.35	1.99
Dazzie	A006	394808	6802828	0.5	6.25	138	700	2.3	3	0.95	0.5	6	29	21	3.50	2.29
Dazzte	A007	394803	6802652	0.5	8.01	5	220	3.1	2	3.67	0.5	26	36	27	4.76	0.86
Dazzle	A009	394751	6802479	0.5	7.55	97	720	2.2	2	1.16	0.5	7	35	28	3.21	1.93
Dazzle	A012	394742	6802234	0.5	6.63	15	610	2.9	2	2.15	0.5	8	15	19	2.25	1.89
Dazzle	A014	394731	6801180	0.5	5.73	30	1060	1.9	2	1.16	0.5	7	30	21	2.74	1.69
Dazzie	A015	394742	6800973	0.5	5.74	18	990	1.4	2	0.76	0.5	5	20	16	2.26	1.66
Dazzie	A016	394732	6800074	0.5	7.13	17	470	3.3	2	1.02	0.5	9	23	24	3.28	2.55
Dazzle	A017	394731	6800309	0.5	7.77	7	550	2.7	2	1.29	0.5	12	42	19	3.50	2.41
Dazzle	A018	394742	6800515	0.5	6.63	5	540	1.4	2	1.41	0.5	6	43	9	3.20	1.92
Dazzle	A019	394731	6800757	0.5	5.82	5	520	1.3	2	0.96	0.5	4	37	9	2.60	1.85
Dazzle	A022	395640	6800072	0.5	7.58	5	530	2.7	2	0.59	0.5	7	20	17	2.60	3.11
Dazzle	A023	395634	6800244	0.5	7.72	5	540	2.6	2	1.12	0.5	12	24	15	3.09	2.65
Dazzle	A024	395639	6800515	0.5	7.14	5	590	2.4	2	1.23	0.5	12	33	16	3.67	2.28
Dazzle	A025	395628	6800712	0.5	6.81	5	540	1.8	2	1.01	0.5	3	20	9	2.15	2.20
Dazzie	A026	395639	6800973	0.5	7.50	57	1570	1.9	2	1.23	0.5	20	46	95	4.67	1.83
Dazzle	A027	395658	6801210	0.5	6.59	12	1260	1.2	2	2.09	0.5	42	126	198	6.89	1.03
Dazzle	A029	395614	6801641	0.5	6.37	61	2220	2.2	2	0.25	0.5	8	25	31	2.52	2.48
Dazzle	A030	395652	6801876	0.5	6.45	48	2110	2.4	2	0.49	0.5	10	31	31	2.66	2.43
Dazzie	A031	395641	6802115	0.5	5.16	15	1340	1.1	2	0.80	0.5	5	20	11	1.51	1.41
Dazzle	A032	395645	6802295	0.5	6.98	39	1520	1.7	2	1.28	0.5	10	29	44	3.01	1.83
Dazzle	A033	395626	6803197	0.5	6.24	53	1740	2.3	2	1.13	0.5	11	52	60	3.19	1.84
Dazzle	A034	395673	6804271	0.5	7.56	18	770	1.9	2	2.14	0.5	7	14	20	2.45	1.96
Dazzle	A035	395658	6804084	0.5	7.65	174	790	5.2	2	1.69	0.5	12	36	40	3.85	2.37
Dazzle	A036	395654	6803843	0.5	8.19	172	650	5.6	2	1.40	0.5	10	31	25	3.42	2.69
Dazzle	A037	395654	6803629	0.5	7.36	170	600	4.4	2	1.54	0.5	10	22	40	3.29	2.03
Dazzle	A038	395654	6803388	0.5	7.34	33	590	5.4	2	1.18	0.5	4	13	9	1.68	2.76
Dazzle	M021	393929	6803557	0.5	6.68	67	700	3.6	2	1.31	0.5	31	83	130	5.17	1.59
Dazzle	M026	393936	6803776	0.7	8.21	181	720	4.2	2	1.06	0.5	22	81	184	6.09	3.31
Dazzle	M036	394652	6804171	0.5	10.85	49	450	20.5	3	0.60	0.5	13	32	13	3.44	4.22
Dazzle	S029	396426	6802744	0.5	5.08	5	1330	0.9	2	0.68	0.5	4	21	12	1.57	1.42
Dazzie	S030	396455	6802848	0.5	4.97	35	1660	1.1	2	0.59	0.5	8	58	21	2.61	1.36
Dazzle	S031	396453	6803172	0.5	5.09	6	1440	1.0	2	0.61	0.5	3	29	5	1.00	1.60
Dazzle	S032	396458	6803384	0.5	7.13	243	1800	2.6	2	1.09	0.5	20	60	71	4.58	1.97
Dazzle	S034	396432	6801358	0.5	6.22	8	1200	1.3	2	1.00	0.5	5	12	12	1.69	1.97
Dazzle	S037	396408	6800882	0.5	6.55	167	1730	1.7	_2	1.28	0.5	10	39	59	3.31	1.82
Dazzle	S039	396396	6800460	0.5	7.85	8	960	2.1	2	1.19	0.5	17	50	22	5.87	3.03

1000

8-10**1**

it arm

1000

Relief

Appendix 3a: Dazzle Property Soil Sample Results

1111

1000 1

SAMPLE	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	S %	Sb ppm	Sr ppm	Ti %	V ppm	W ppm	Zn ppm
A002	1.45	1045	2	0.68	28	840	51	0.08	5	92	0.40	84	10	193
A005	0.62	736	5	1.86	11	750	17	0.05	5	395	0.30	66	10	99
A006	0.86	635	1	1.22	9	1380	24	0.04	5	237	0.47	96	10	84
A007	1.06	1115	1	0.49	46	1700	20	0.13	5	643	0.41	72	10	124
A009	0.85	519	1	1.56	22	1100	19	0.02	5	295	0.62	98	10	
A012	0.81	512	1	1.98	14	840	18	0.06	5	455	0.29	55	10	56 52 62 43
A014	0.81	605	1	1.16	21	460	22	0.02	5	193	0.39	84	10	62
A015	0.53	538	1	1.24	14	650	16	0.01	5	228	0.29	77	10	43
A016	0.70	550	1	1.00	28	910	32	0.05	5	185	0.27	60	20	79
A017	1.04	502	1	1.21	38	870	19	0.04	5	258	0.40	74	10	69
A018	0.71	666	1	1.00	19	550	20	0.01	5	365	0.54	94	10	41
A019	0.49	309	1	1.08	13	490	18	0.02	5	253	0.44	87	10	31
A022	0.60	363	1	1.22	30	770	24	0.01	5	119	0.25	45	10	62
A023	0.84	407	1	1.27	24	780	20	0.04	5	272	0.31	60	10	93
A024	1.12	521	1	1.09	28	760	16	0.07	5	190	0.43	87	10	89
A025	0.59	353	1	1.31	15	810	20	0.04	5	237	0.34	59	10	42
A026	1.15	1805	3	1.01	54	940	37	0.04	5	226	0.32	128	10	134
A027	3.06	1780	1	0.73	92	1110	19	0.04	5	190	0.70	209	10	381
A029	0.58	929	1	0.82	23	530	26	0.02	5	58	0.20	67	10	72
A030	0.85	1100	1	0.72	35	230	24	0.01	5	72	0.23	67	10	70
A031	0.45	758	1	1.22	13	790	12	0.03	5	206	0.24	62	10	36
A032	0.91	1420	1	1.52	28	630	26	0.02	5	316	0.28	80	10	81
A033	1.35	1010	1	1.02	43	640	27	0.05	5	133	0.41	101	10	101
A034	0.89	495	1	2.36	16	620	17	0.05	5	547	0.31	65	10	68
A035	1.28	767	1	1.37	31	1180	33	0.07	5	260	0.45	92	30	160
A036	1.12	511	1	1.58	31	820	40	0.04	5	257	0.47	87	10	101
A037	0.98	638	1	1.44	32	620	34	0.04	5	315	0.29	67	10	170
A038	0.54	312	1	1.70	11	530	26	0.01	5	260	0.35	49	10	48
M021	2.43	940	2	1.01	70	1140	31	0.04	5	170	0.58	141	90	131
M026	2.50	1455	3	0.75	98	1060	49	0.09	5	129	0.69	156	10	287
M036	1.00	1190	1	1.28	40	1200	83	0.02	5	122	0.46	70	20	88
S029	0.34	1215	1	1.50	9	420	15	0.01	5	183	0.29	67	10	26
S030	0.68	822	1	0.73	21	1220	11	0.02	5	90	0.38	122	10	50
S031	0.40	477	1	1.12	11	370	11	0.01	5	142	0.43	68	10	22
S032	1.24	2580	6	0.92	62	1560	34	0.06	5	143	0.33	112	10	282
S034	0.46	605	1	1.72	8	510	14	0.03	5	285	0.21	53	10	38
S037	0.98	1190	1	1.28	40	860	20	0.05	5	209	0.32	96	10	118
S039	0.99	1255	1	1.04	30	1570	22	0.06	5	174	0.63	202	10	57

Appendix 3a: Dazzle Property Silt Sample Results

2125.00

arved a

Hinterland Metals Inc.

Property	SAMPLE	Easting	Northing	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %
Dazzle	K033	394503			15.70	11	360	11.7	2	0.26	0.5	3	5	4	2.65	5.55
Dazzle	K034	394907	6804390	0.5	12.05	581	670	15.3	4	0.73	0.5	13	23	83	4.64	3.92
Dazzle	K036	394885	6804260	0.5	11.75	636	600	12.9	3	0.82	0.7	16	31	68	4.70	3.91
Dazzle	K038	395242	6804511	0.5	8.57	147	600	8.7	4	0.53	0.7	4	5	14	1.99	3.65
Dazzle	K040	395536	6804541	0.5	8.31	109	550	12.8	2	0.71	0.5		6	9	1.84	3.35
Dazzle	K042	395880	6804515	0.5	8.07	71	600	8.2	22	0.59	0.5		5	6	1.57	3.57
Dazzle	K044	396299	6804171	0.5	8.19	61	610	8.2	2	0.57	0.5		4	7	1.61	3.66
Dazzle	L023	396892	6804136	0.5	7.22	128	980	3.1	2	1.92	2.1	16		79	4.25	2.15
Dazzle	L025	396923	6802936	0.5	6.61	43	1550	1.7	2	1.03	0.5	10			3.52	1.67
Dazzle	L026	396811	6802952	0.5	5.98	43	950	1.5	2	2.05	0.5		22	34	2.31	1.19
Dazzle	L028	396628	6803032	0.5	6.15	68	1980	1.6	2	1.47	0.5		59	68	3.70	1.53
Dazzle	L030	396405	6802998	0.5	5.70	78	1770	1.5	2	1.21	0.5			51	3.33	1.37
Dazzle	L031	396237	6803119	0.5	5.20	87	1520	1.7	2	1.41	0.6			51	3.07	1.57
Dazzle	L033	396529	6802527	0.5	8.54	114	1880	2.6	2	1.13	0.5			93	4.43	2.35
Dazzie	L036	396343	6802827	0.5	6.28	63	2540	1.9	2	1.29	0.5	17	55	79	3.97	1.85

2000

587.5

1000

Appendix 3a: Dazzle Property Silt Sample Results

														_
SAMPLE	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	S %	Sb ppm	Sr ppm	TI %	V ppm	W ppm	Zn ppm
K033	0.58	538	1	0.12	2	1520	139	0.02	5	98	0.41	57	10	91
K034	1.33	1240	2	1.23	27	1050	104	0.06	5	146	0.36	81	10	316
K036	1.73	1475	4	0.41	25	1130	65	0.04	5	114	0.49	98	20	297
K038	0.43	742	1	1.74	6	880	101	0.03	5	180	0.2	30	10	and a second
K040	0.48	493	1	1.83	8	870	54	0.02	5	209	0.21	36	10	77
K042	0.38	552	1	1.91	6	850	52	0.01	5	198	0.18	28	10	67
K044	0.37	503	1	1.96	6	740	50	0.01	5	196	0.18	27	10	63
L023	1.72	1640	1	1.43	35	1220	32	0.07	5	154	0.63	110	10	682
L025	1.12	860	1	1.18	45	1150	18	0.02	5	146	0.42	118	10	79
L026	0.59	1730	3	1.22	24	4650	12	0.20	5	316	0.19	61	10	96
L028	1.33	1520	1	0.90	58	1540	21	0.06	5	144	0.4	123	10	164
L030	1.11	1265	10	0.84	46	1460	20	0.07	5	134	0.34	105	10	150
L031	1.14	1315	1	0.81	45	1270	22	0.07	5	118	0.39	89	10	171
L033	1.43	1505	1	0.69	51	1130	36	0.11	5	157	0.31	120	10	132
L036	1.33	2130	1	0.73	52	1550	20	0.04	5	120	0.39	118	10	110

-15 -10	riedini as	and a	1.2018 J		5-141					100	

Appendix 3b: Gleam Property Rock Sample Results

Property	SAMPLE	Easting	Northing	Au ppm	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bl ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	К%
Gleam	K023	398430	6810610	0.005	0.50	9.36	5	1100	1.8	2	7.78	0.5	21	146	94	5.26	1.96
Gleam	K027	399826	6807828	0.005	0.50	1.74	5	140	0.5	2	16.15	0.5	19	48	42	8.27	0.06
Gleam	L018	400024	6807600	0.005	0.50	11.25	5	210	3.7	2	2.07	0.5	16	77	66	4.29	1.51
Gleam	L020A	399934	6807447	0.005	0.50	3.09	5	10	0.5	2	24.1	0.5	4	84	2	2.09	0.01
Gleam	L020B	399934	6807447	0.005	0.50	3.35	5	10	0.5	2	21.6	0.5	11	113	2	2.61	0.01
Gleam	L020C	399975	6807442	0.14	0.6	8.21	41	30	1.6	3	5.77	0.5	44	124	52	4.96	0.12
Gleam	L020D	399975	6807442	0.21	9.5	9.24	26	20	0.8	16	2.83	2.4	9	58	22	2.29	0.09
Gleam	L021	400044	6807249	0.005	0.50	4.28	5	10	3.1	2	9.74	0.5	17	116	6	5.84	0.03
Gleam	S001	398392	6808838	0.005	0.50	2.18	16	40	0.5	2	25	0.5	5	21	4	1.14	0.19
Glearn	S006	398928	6808818	0.005	0.80	6.2	13	20	1.9	2	8.03	0.5	15	210	43	6.72	0.11
Gleam	S015	398274	6809698	0.005	0.50	2.86	5	1240	0.5	2	11.2	0.5	4	83	4	1.36	3.02

Appendix 3b: Gleam Property Rock Sample Results

SAMPLE	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Pt	Pđ	S %	Sb ppm	Sr ppm	TI %	V ppm	W ppm	Zn ppm
K023	2.15	787	1	0.87	38	540	24			0.66	5	1385	0.4	94	10	58
K027	6.66	3350	1	0.17	14	130	10			0.15	5	180	0.17	86	10	83
L018	1.59	606	1	3.87	38	480	34			0.12	6	420	0.46	66	10	56
L020A	0.5	608	1	0.01	18	300	17			0.01	5	447	0.18	31	10	22
L020B	0.77	1010	1	0.01	24	340	11			0.01	6	188	0.26	35	10	28
L020C	1.77	593	9	3.34	79	710	130			0.52	5	848	0.4	64	10	85
L020D	0.76	278	6	5.94	18	590	8470			0.17	5	412	0.14	32	10	30
L021	3.1	985	1	0.13	27	420	34			0.03	9	762	0.3	131	10	88
S001	0.62	2060	1	1.00	17	150	8			0.01	5	452	0.07	25	10	14
S006	2.52	715	1	0.64	40	500	24			0.02	5	1185	0.21	115	10	99
S015	0.32	1320	1	0.12	6	940	10			0.01	5	228	0.17	39	10	14

Appendix 3b: Gleam Property Soil Sample Results

Property	SAMPLE	Easting	Northing	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K%
Gleam	L001	398199	6808832	0.5	7.32	5	690	2.3	2	1.53	0.5	33	85	29	6.88	2.30
Gleam	L002	398005	6808836	0.5	7.69	5	600	2.3	2	2.56	0.5	24	103	30	6.09	2.10
Gleam	L003	397810	6808829	0.5	7.50	59	420	1.8	2	2.82	0.5	35	283	60	6.61	1.28
Gleam	L004	397586	6808846	0.5	7.08	9	510	1.6	2	3.22	0.5	33	144	41	5.91	1.26
Gleam	L005	398809	6807936	0.5	5.12	5	590	1.1	2	1.67	0.5	6	7	34	1.48	1.21
Gleam	L006	398588	6807932	0.5	7.32	5	420	1.5	2	3.23	0.5	26	83	24	7.10	1.26
Gleam	L007	398373	6807970	0.5	8.19	5	500	1.2	2	4.07	0.5	44	184	61	7.67	1.48
Gleam	L008	398158	6807973	0.5	9.24	39	500	3.5	2	1.63	0.5	17	80	46	5.92	2.92
Gleam	L009	397940	6807967	0.5	8.08	5	520	1.9	2	3.75	0.5	21	116	39	5.85	1.71
Gleam	L010	397643	6807987	0.5	7.54	5	740	1.3	2	1.81	0.5	6	7	16	1.90	2.14
Gleam	L011	399009	6807953	0.5	8.66	5	510	1.6	2	4.62	0.5	43	144	138	7.77	1.68
Gleam	L012	399285	6807967	0.5	7.34	5	670	1.8	2	2.45	0.5	28	93	73	6.13	1.89
Gleam	L013	399504	6807918	0.5	8.15	16	580	2.1	2	3.04	0.5	25	190	74	6.68	1.74
Gleam	L014	400045	6808095	0.5	8.16	5	500	1.8	2	2.76	0.5	20	106	27	6.11	1.33
Gleam	L015	400005	6807936	0.5	8.00	5	440	1.8	2	4.33	0.5	27	126	38	6.23	1.51
Gleam	L016	400205	6807871	0.5	8.16	60	490	2.2	2	2.50	0.5	22	58	37	4.88	1.84
Gleam	S001	398392	6808838	0.5	8.17	5	570	1.8	2	1.41	0.5	26	149	22	7.08	1.77
Gleam	S003	398701	6808808	0.5	8.59	7	730	4.3	2	2.18	0.5	19		39	5.53	2.06
Gleam	S005	398828	6808842	0.5	8.86	9	590	3.0	2	3.45	0.5	23	132	42	6.40	1.81
Gleam	S006	398928	6808818	0.5	7.19	40	310	1.3	2	3.94	0.5	44	330	130	6.76	0.93
Gleam	S007	399262	6808808	0.5	7.40	87	500	1.6	2	3.85	0.5	10	61	16	4.06	1.42
Gleam	S008	399453	6808754	0.5	8.27	70	420	1.5	2	4.60	0.5	51	100	85	7.80	1.22
Gleam	S009	399621	6808730	0.5	8.26	5	390	1.9	2	3.53	0.5	35	97	27	5.23	1.17
Gleam	S010	400110	6808794	0.5	7.95	5	590	1.8	2	2.15	0.5	13	50	19	4.11	1.77
Gleam	S011	399926	6808817	0.5	8.90	5	440	1.9	2	2.17	0.5	16	91	14	5.76	1.71
Gleam	S017	398559	6809653	0.5	8.41	5	650	2.3	2	3.53	0.5	28	98	38	7.23	1.65
Gleam	S018	398812	6809666	0.5	7.40	6	430	1.5	2	3.90	0.5	30	212	30	5.70	1.12
Gleam	S019	398978	6809679	0.5	7.54	128	650	2.1	2	2.13	0.5	19	102	34	4.98	1.95
Gleam	S020	399267	6809684	0.5	6.70	7	460	1.2	2	3.22	0.5	47	530	104	5.78	0.99
Gleam	S022	399984	6809666	0.5	8.64	11	1100	2.1	2	3.33	3.9	33	118	71	6.00	2.17
Gleam	S023	399689	6809679	0.5	7.64	19	490	1.8	2	4.37	0.5	22	75	24	6.45	1.90
Gleam	S041	396383	6800044	0.5	10.65	6	1260	2.5	2	2.01	0.5	28	56	58	5.70	2.05
Glearn	T001	393931	6803192	0.5	6.51	40	700	2.5	2	1.56	0.5	11	29	21	2.93	1.74
Gleam	T002	393930	6803009	0.5	9.17	49	580	6.0	2	2.86	0.5	29	156	49	6.81	1.77
Gleam	T005	393916	6802785	0.5	6.19	41	550	2.6	2	1.43	0.5	7	29	17	2.41	1.41
Gleam	T006	393951	6802575	0.5	7.75	89	760	2.5	2	1.22	0.5	10	56	34	4.15	1.82
Gleam	T008	393853	6800079	0.5	7.41	6	740	2.0	2	1.53	0.5	14	56	22	4.17	1.64
Gleam	T010	393884	6800509	0.5	7.25	5	600	1.5	2	2.26	0.5	9	16	31	3.00	1.79
Gleam	T011	393836	6800668	0.5	8.67	17	510	2.6	3	0.61	0.5	4	22	13	2.92	2.64
Gleam	T012	393896	6800947	0.5	9.99	21	660	2.9	2	1.19	0.5	18	50	32	5.41	2.56
Gleam	T017	397256	6801340	0.5	7.84	10	2420	2.0	2	0.53	0.5	6	29	44	3.16	2.19
Gleam	T019	397211	6799991	0.5	7.20	5	530	1.6	2	1.98	0.5	18	81	16	6.17	1.40

Appendix 3b: Gleam Property Soil Sample Results

Contraction

10.1015.2

anig **b**in

Hinterland Metals Inc.

State of the second

SAMPLE	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	S %	Sb ppm	Sr ppm	TI %	V ppm	W ppm	Zn ppm
L001	2.49	1980	1	0.92	47	1060	11	0.06	5	117	0.82	183	10	225
L002	2.41	913	1	1.12	51	890	11	0.03	5	167	0.77	190	10	84
L003	5.01	895	2	1.00	224	830	18	0.03	5	187	0.74	188	10	86
L004	3.49	918	1	1.03	116	1210	11	0.03	5		0.68	190	10	90
L005	0.43	323	1	1.60	11	690	8	0.06	5		0.16	37	10	30
L006	2.70	1340	1	1.06	36	1550	10	0.07	5		0.88	257	10	67
L007	4.21	1190	1	0.88	124	940	13	0.03	5		0.80	216	10	107
L008	2.38	793	1	0.78	55	1200	25	0.03	5		0.68	180	10	113
L009	3.44	783	1	1.18	81	1800	32	0.01	5		0.82	198	10	90
L010	0.64	381	1	2.61	5	340	14	0.01	5		0.25	46	10	51
L011	3.87	1340	1	0.93	97	1110	17	0.06	5		0.85	224	10	94
L012	2.56	1125	1	0.93	64	1410	32	0.06	5		0.87	205	10	82
L013	3.60	975	1	1.15	121	1910	22	0.03	5		0.92	237	10	154
L014	2.54	833	1	1.38	52	1240	16	0.04	5		0.81	189	10	76
L015	3.11	997	1	1.50	64	1290	11	0.01	5		1.04	200	10	86
L016	1.53	782	1	1.38	53	910	40	0.02	5	631	0.55	100	10	159
S001	2.58	720	1	0.96	57	1210	18	0.03	5	132	0.90	251	10	83
S003	1.80	1015	1	1.84	47	1270	18	0.03	5	195	0.78	162	10	101
S005	2.94	985	1	1.71	80	1250	21	0.02	5	224	0.82	218	10	96
S006	5.41	1010	1	1.30	345	1280	14	0.02	5	230	0.94	187	10	88
S007	1.22	619	1	1.21	32	1190	76	0.05	5	572	0.63	131 205	10	90 111
S008	2.43	1440	1	1.34	95 67	1540	134	0.03	5	668 321	0.95	205	10	70
S009	2.40	849 599		1.68		1100 820	82	0.03	5		0.60	116	10	53
S010 S011	3.15	599 577			27 45	1080	02 19	0.08	5	and the second se	0.69	158	10	55
S017	2.65	1400	1	1.45	45 43	1730	13	0.03	5	215	0.09	254	10	113
S017	3.85	968		1.38	43 175	1050	13	0.01	5	213	0.38	176	10	89
S019	2.17	666	1	1.30	76	880	16	0.02	5	210	0.49	139	10	89
S020	6.15	807		1.02	386	680	.0	0.06	5	204	0.43	97	10	69
S020	2.81	1275		1.21	94	870	24	0.06	5	281	0.52	142	10	224
S022	2.28	1035	2	1.48	34	1280	18	0.02	5	203	1.08	281	10	81
S041	2.45	516	1	0.70	90	460	14	0.02	5	270	0.37	90	10	100
T001	0.81	703	1	1.75	21	1260	17	0.06	5	352	0.36	71	10	65
T002	2.82	1185	1	1.29	100	1230	24	0.02	5	311	0.84	148	10	140
T002	0.83	439		1.56	22	1650	16	0.02	5	349	0.30	61	10	62
T006	0.96	676	1	1.48	27	610	18	0.01	5	282	0.45	113	10	86
T008	1.06	644	1	1.15	45	660	20	0.04	5	525	0.37	100	10	81
T010	0.74	775	1	1.85	22	730	20	0.07	5	598	0.23	49	10	67
T011	0.61	308	1	0.87	13	940	42	0.04	5	184	0.31	66	10	61
T012	1.37	718	1	1.02	54	1140	23	0.05	5	357	0.49	110	10	116
T017	0.56	1310	1	1.44	18	1030	17	0.03	5	173	0.37	122	10	60
T019	1.90	862	1	1.26	43	1130	10	0.04	5	197	0.73	177	10	68

Appendix 3b: Gleam Silt Sample Results

Property	SAMPLE	Easting	Northing	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	К%
Gleam	K001	400245	6807195	0.5	9.12	90	600	2.5	2	2.47	0.5	13	47	26	4.50	1.74
Gleam	K003	400195	6807629	0.5	9.22	85	580	2.3	2	3.13	0.5	20	56	36	5.17	1.82
Gleam	K004	400216	6807649	0.5	9.24	18	570	2.6	2	3.30	0.5	20	62	28	5.47	1.83
Gleam	K005	400173	6807795	0.5	9.38	27	500	2.5	2	4.16	0.5	16	48	25	4.84	1.71
Gleam	K007	400095	6808038	0.5	10.40	15	520	2.1	2	<u>6</u> .18	0.5	29	126	39	7.65	1.53
Gleam	K009	400014	6808376	0.5	9.39	11	400	2.1	2	5.29	0.5	25	101	30	6.19	1.33
Gleam	K011	399858	6808755	0.5	9.44	25	470	2.2	2	4.52	0.5	23	93	35	6.21	1.53
Gleam	K013	399588	6809100	0.5	9.48	26	440	2.2	2	4.48	0.5	23	88	33	6.16	1.47
Gleam	K015	399331	6809514	0.5	8.82	21	390	2.1	2	4.55	0.5	19	83	27	5.72	1.26
Gleam	K016	399290	6809528	0.5	8.52	161	380	2.0	2	4.55	0.5	19	90	29	5.36	1.28
Gleam	K017	399131	6809687	0.5	9.28	58	450	2.1	2	4.62	0.5	21	91	34	5.86	1.45
Gleam	K019	398855	6810024	0.5	9.18	44	480	2.2	2	4.33	0.5	23	92	35	5.93	1.58
Gleam	K024	399657	6807573	0.5	9.12	54	630	3.0	2	2.98	0.5	30	95	51	7.01	2.05
Gleam	K025	399667	6807611	0.5	9.84	30	780	2.6	2	4.70	0.5	24	75	44	6.28	1.87

Appendix 3b: Gleam Silt Sample Results

Hinterland Metals Inc.

and the second second

SAMPLE	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	S %	Sb ppm	Sr ppm	Ti %	V ppm	W ppm	Zn ppm
K001	1.34	779	1	1.82	37	1130	33	0.03	5	507	0.61	101	10	98
K003	1.58	800	1	1.69	50	1160	39	0.03	5	663	0.57	103	10	154
K004	1.68	1045	1	1.79	40	1440	29	0.02	5	622	0.75	147	10	92
K005	1.51	925	1	1.81	38	1140	30	0.02	5	800	0.62	101	10	113
K007	3.61	1245	1	1.90	73	1510	13	0.01	5	367	0.63	169	10	96
K009	2.80	1025	1	1.95	57	1540	18	0.02	5	432	0.76	181	10	88
K011	2.71	977	1	1.85	61	1500	16	0.02	5	439	0.79	173	10	95
K013	2.69	970	1	1.92	56	1390	19	0.02	5	477	0.84	173	10	95
K015	2.47	1005	1	1.86	54	1520	15	0.02	5	428	0.82	165	10	85
K016	2.50	914	1	1.75	70	1720	24	0.02	5	353	0.88	177	10	81
K017	2.50	991	1	1.84	56	1740	16	0.03	5	451	0.87	168	10	90
K019	2.60	952	1	1.77	66	1480	21	0.03	5	423	0.84	173	10	95
K024	2.65	1140	1	1.44	65	1270	8	0.02	5	192	0.78	276	10	139
K025	2.57	956	1	1.55	48	1370	12	0.02	5	316	0.78	200	10	106

cill .

 	 	 			 -	 	 			
				- 11 I I				. Q. Will -	4	

Appendix 3c: Helen Property Rock Sample Results

Property	SAMPLE	Easting	Northing	Au ppm	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Κ%
Helen	M019A	396065	6808288	2.230	49.00	0.06	10000	10	0.5	565	19.6	0.5	95	79	46	9.48	0.01
Helen	M019B	396065	6808288	4.270	44.00	0.02	10000	10	0.5	1200	0.66	0.5	156	62	213	24.5	0.01
Helen	M019C	396065	6808288	5.030	58.00	0.02	10000	10	0.5	1145	18.4	0.5	14	112	270	5.5	0.01
Helen	M019D	396065	6808288	4.600	46.00	0.03	10000	10	0.5	1555	0.28	0.5	37	90	116	20	0.02
Helen	M019E	396065	6808288	4.170	46.00	0.02	10000	10	0.5	1170	0.63	0.6	57	122	303	15.65	0.01
Helen	M019F	396065	6808288	0.245	44.00	0.03	10000	10	0.5	185	3.95	0.5	9	179	26	3.74	0.01

Appendix 3c: Helen Property Rock Sample Results

SAMPLE	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Pt	Pd	\$%	Sb ppm	Sr ppm	TI %	V ppm	W ppm	Zn ppm
M019A	0.01	200	8	0.01	6	30	733		Γ	5.52	39	31	0.01	2	10	36
M019B	0.01	5	7	0.01	1	10	761			10	108	4	0.01	1.	10	29
M019C	0.01	7	11	0.01	5	20	258			2.33	17	16	0.01	1	10	7
M019D	0.01	5	8	0.01	9	30	543			8.96	77	1	0.01	1	10	7
M019E	0.01	6	11	0.01	5	20	364			6.31	58	1	0.01	3	10	7
M019F	0.01	44	16	0.01	6	10	898			1.86	12	8	0.01	5	10	6

Appendix 3c: Helen Property Year-2004 Rock Sample Results

Hinterland Metals Inc.

	Au-AA24	ME-ICP41																			
SAMPLE	Av	Ag	Al	As	B	Ba	Be	BI	Ca	Cd	Co	Cr	Cu	Fe	Ga	Hg	K	La	Mg	Mn	Mo
No.	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	*	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	%	ppm	ppm
																					r i
RM269513	1.545	26.8	0.09	>10000	<10	10	<0.5	499	2.85	9,5	3	108	5190	9.7	<10	<1	0.08	<10	0.04	10	5
RM269514	1.515	9.4	0.18	>10000	<10	10	<0.5	636	0.63	2.1	8	106	481	2.33	<10	<1	0.08	<10	0.07	50	6
RM269515	7.49	57.6	0.01	>10000	<10	<10	<0.5	2440	0.71	1.5	98	47	277	24.3	<10	<1	0.01	<10	<0.01	<5	6
RM269516	0.061	15.6	0.1	1020	<10	10	<0.5	1645	0.03	2.8	2	198	140	0.97	<10	<1	0.04	<10	0.02	55	9

entering

and the second

and the st

Appendix 3c: Helen Property Year-2004 Rock Sample Results

Contraction of the second

Hinterland Metals Inc.

	ME-ICP41													
SAMPLE	Na	NI	P	Pb	8	Sb	Sc	Sr	TI	TI	U	V	W	Zn
No.	%	ppm	ppm	ppm	*	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
RM269513	0.01	8	20	159	4.63	42	1	17	<0.01	<10	<10	3	<10	264
RM269514	0.01	10	30	206	0.54	6	1	18	<0.01	<10	<10	5	<10	45
RM269515	0.01	23	10	917	9.85	93	<1	1	<0.01	<10	<10	1	<10	20
RM269516	<0.01	16	30	502	0.04	<2	<1	4	<0.01	<10	<10	2	<10	287

Appendix 3c: Helen Property Soil Sample Results

Property	SAMPLE	Easting	Northing	Ag ppm	AI%	As ppm	Ba ppm	Be ppm	Bippm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Κ%
Helen	M032	396134	6808103	1.0	7.17	217	440	7.3	47	1.32	1.0	85		the second s	9.03	3.13
Helen	M033	396313	6808981	0.5	9.40	57	1360	6.0	2	3.12	0.5	32	52	17	5.70	2.43

Appendix 3c: Helen Property Soil Sample Results

SAMPLE	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	S %	Sb ppm	Sr ppm	TI %	V ppm	W ppm	Zn ppm
M032	4.31	1845	4	0.53	460	620	57	0.02	5	123	0.67	172	30	271
M033	1.96	2500	1	0.77	48	910	23	0.01	5	110	0.50	130	10	164

APPENDIX 4

ASSAY CERTIFICATES

Server 1

1. BOR 14

and the

175

the sources

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: BREAKAWAY EXPLORATION MANAGEMENT INC. 144-D, PERREAULT AVE. VAL-D'OR PQ J9P 2G3

Profit for

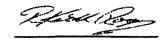
-

27 element four acid ICP-AES

Page # : 1 Date : 3-Oct-2003 Account: BREAK

ICP-AES

tel.el. X.


CERTIFICATE VA03037725		SAMPLE PREPARATIO	N
	ALS CODE	DESCRIPTION	
Project : P.O. No: This report is for 67 ROCK samples submitted to our lab in North Vancouver, BC, Canada on 24-Sep-2003. The following have access to data associated with this certificate: MARK FEKETE	WEI-21 CRU-31 LOG-22 PUL-31 SPL-21	Received Sample Weight Fine crushing - 70% <2mm Sample login - Rcd w/o BarCode Putverize split to 85% <75 um Split sample - riffle splitter	
]	ANALYTICAL PROCEDUR	
	ALS CODE	DESCRIPTION	INSTRUMENT
	Ag-AA62 Au-AA23	Ore grade Ag - four acid / AAS Au 30g FA-AA finish	AAS AAS

ME-ICP61

To: BREAKAWAY EXPLORATION MANAGEMENT INC. ATTN: MARK FEKETE 144-D, PERREAULT AVE. VAL-D'OR PQ J9P 2G3

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

ALS Chemex

orned and

EXCELLENCE IN ANALYTICAL CHEMISTRY ALB Canada Ltd.

212 Brooksbenk Avenue North Vancouver BC V7J 2C1 Canada Phone: 804 984 0221 Fax: 604 964 0218

To: BREAKAWAY EXPLORATION MANAGEMENT INC. 144-D, PERREAULT AVE. VAL-D'OR PQ J9P 2G3 Page #: 2 - A Total # of pages : 3 (A - B) Date : 3-Oct-2003 Account: BREAK

6.48

90.00 M

65 ° 8

CERTIFICATE OF ANALYSIS VA03037725

		1								· · · · · · · · · · · · · · · · · · ·			<u>,</u>				
Sample I		Nethod Analyte Units LOR	WEI-21 Rocyd Wt itg 0.02	A#-AA23 Au ppm 8.005	ME-ICP61 Ag ppm 0.5	ME-ICP61 Al % 0.01	ME-JCP61 As ppm S	ME-ICP51 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME-ICP61 Ce ppn 1	ME-ICP61 Cr ppm 1	ME-ICP61 Gu ppm 1	M5-IGP61 Fe % 0.01	ME-ICP61 K % 0.01
	FLEAM													140		5 00	4.00
K023	PROPERTY	/ I	1.14	<0.005 <0.005	<0.5	9.36	<5 <5	1100	1.8 0.5	<2 <2	7,78 18,15	<0.5 <0.5	21 19	146 46	94 42	5.26 8.27	1.96
K027 K029	INJAKI	<u>`</u>	1.24	<0.005	<u><0.5</u> <0.5	1.74		410	10.8	43	14.70	<0.5	13	80	12	3.10	1.19
K048			2.60	<0.005	<0.5	1.44	<5	700	<0.5	<2	2.85	<0.5	14	337	160	7.19	0.14
K047			2.90	0.021	<0.5	0,57	<5	160	<0.5	<2	1.40	15.8	17	265	124	3.06	0.10
K048	DAZZLE		1.74	0.009	<0.5	7.10	45	220	10.7	<2	0.04	<0.5	1	88	25	0.94	4.51
K049	PROPERT	¥	0,96	<0.005	<0.5	7.38	<5	170	6.2	<2	0.07	<0.5	2	69	22	0.71	4.10
K050	i no i o i o i o i o i o i o i o i o i o	·	0.90	0.011	<0.5	5.77	178	850	3.8	<2	0.02	<0.5	3	84	18	2.54	3.65
K051	J		0.96	<0.005	≪0.5	0.99	48	100	2.2	<2	0.01	0.5	4	165	4	0.83	0.41
L018	T		0.68	<0.005	<0,5	11.25	ব	210	3.7	<2	2.07	<0.5	16	77	66	4.29	1.51
L020A	GLEAM		0.86	<0.005	<0.5	3.09	<5	<10	<0.5	<2	24.1	<0,5	4	84	2	2.09	0.01
L020B	PROPERT	'Y	0.46	<0.005	<0.5	3.35	<5	<10	<0.5	<2	21.6	<0.5	11	113	2	2.61	<0.01
L021	•		0.52	<0.005	<0.5	4.28	<5	10	3.1	<2	9.74	<0.5	17	118	6	5.84	0,03
L040	ŕ		1.28	0.009	<0,5	5,90	28	180	5.4	<2	0.16	<0.5	1	106	21	1.04	3.55
L041			1,08	<0.005	<0.5	0.72	155	30	9.4	<2 .	0.03	<0.5	2	218	4	0.95	0.25
L042	DAZZLE		0.50	<0.005	<0.5	4.05	28	330	46.5	<2	0.12	<0.5	1	187	3	0.85	2.95
L043	PROPERT	TY	0.62	<0.005	<0.5	1.37	35	120	8.7	<2	11.16	17.8	9	16	82	2.97	0.79
L045			0.58	<0.005	0.7	6.59	238	70	14,3	<2	0.23	<0.5	2	89	3	0.71	3.54
L046			1.18	<0.005	0.5	7.14	<5	60	9.1	8	0.28	<0.5	<1	81	2	0.50	3.27 2.87
M027	¥		0,78	<0,005	<0.5	3.18	<5	110	73.5		0.04	<0.5		186	18	0.97	
M028A			1.18	<0.005	<0.5	7.45	8380	370	4.3	<2	11.55	<0,5	15	83	89	3.85	2.37
M028B			1.42	<0.005	<0.5	7.70	21	250	6.2	3	14.35	<0.5	17	128	5	5.36	0.73
M029	DAZZLE		1.28	<0.005	<0.5	2.89	164	90	3.7	2	8,70	<0.5	134	1105	284	7.69	2.29
M030			1.08	0.036	1.1	5.53	3470	160 210	7.1 5.6	<2 <2	15.65 0.30	<0.5 <0.5	7 2	43 79	43 5	3.87 0.69	2.62 4.01
M037	PROPERT	Y	1.24	<0.005	<0.5	7.47	68								-		
M038	¥		1.60	<0.005	<0.5	6.82	1895	320	4.6		0.08	<0.5	<1	110	50	0.64	3.27
M045			1.56	<0.005	<0.5	1.11	105	200	0.5	<2	2.71	<0.5	50	1145	11	4.08	0.41
M046			1.52	0.006	0.8	2.74	188	550	0.7	<2	14.50	<0.5	18	198	25 3	5.31 4.66	1.14 0.01
M047 M048			1.60 1.70	<0.005 <0.005	<0.5 ≪0.5	0.31 0.38	11 27	20 110	<0. 5 <0.5	<2 <2	0.13 0.22	<0.5 <0.5	81 60	1595 1590	3	4.60	0.08
L	·, , · · ·														-		
M049			1.28	<0.005	<0.5	0.07	0	760	0.5	<2	2.55	<0.5	46	786 1325	3	1.96	0.01
M050A			1.54 2.08	0.006 <0.005	≪0.5 ≪0,5	0.17 0.26	76 24	60 90	0.6 <0.5	<2 <2	0.10 0.48	<0.5 <0.5	112 55	1325	11 2	4.00 3.55	0.05 0.05
MO51			2.00	<0.005	<0.5	0.26	24 86	90 50	-0.5	<2	5.50	<0.5	41	499	7	2.80	0.03
M052			1,60	<0.005	<0.5	0.09	98	30	<0.5	~	13.35	<0.5	11	160	6	1.83	0.02
M053			1.76	<0.005	<0.5	0.14	285	20	<0.5	<2	0.14	<0,5	72	1130	5	3.88	0.03
M054			2.16	<0.005	<0.5	0.24	58	120	<0.5	<2	0.27	<0,5	67	1155	2	2.39	0.01
S001	GLEAM		0.68	<0.005	<0.5	2.18	16	40	<0.5	<2	>25	<0.5	5	21	4	1.14	0.19
S008	PROPERT	Y	0.18	<0.005	0.8	8.20	13	20	1.9	<2	8.03	<0.5	15	210	43	6.72	0.11
S015	J. T.	•	0.68	<0.005	<0.5	2.86	<5	1240	0.5	<2	11.20	<0.5	4	83	4	1.36	3.02

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd. 212 Brooksbank Avenue

North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: BREAKAWAY EXPLORATION MANAGEMENT INC. 144-D, PERREAULT AVE. VAL-D'OR PQ J9P 2G3 Page #: 2 - B Total # of pages : 3 (A - B) Date : 3-Oct-2003 Account: BREAK

5-1555

L'HERE H

CERTIFICATE OF ANALYSIS VA03037725

		Nethod Analyte Units	NE-ICP61 Mg %	ME-ICP61 Min ppm	M5-ICP61 Mo ppm	NE-ICP61 Na %	ME-ICP61 Ní ppm	ME-ICP61 P ppm	ME-ICP61 Pb ppm	ME-ICP61 \$ %	ME-ICP61 Sb ppm	ME-ICP81 Br ppm	ME-ICP61 Ti %	ME-ICP81 V ppm	ME-ICP41 W	ME-ICP61 Zn ppm	А д-АА62 Ад ррт
Sample	Description	LOR	0.01	5	1	0.01	1	10	2	0.01	5	1	0.01	1	10	2	1
K023	OLEAM		2.15	787	1	0.87	38	540	24	0.66	<5	1385	0.40	94	<10	58	
K027	PROPERT	ry	6.66	3350	<1	0.17	14	130	10	0.15	<5	180	0.17	86	<10	83	
K029			0.88	1130	<1	1.92	47	430	16	0.08	13	2450	0.37	65	10	310	
K048			0.77	>10000	5	0.05	98	1720	11	1.13	<5	148	0.07	137	<10	165	
K047			0.14	1495	63	<0,01	87	1140	10	1.21	<5	66	0.03	74	<10	2990	
K048		r-	0.23	116	3	1.14	3	260	90	0.03	<5	18	0.03	2	10	40	
K049	JAZZL	E tv	0.18	369	2	1.85	5	270	65	0.01	<5	37	0.06	2	<10	73	
K050	PROPER	ET .	0.29	78	5	0.11	7	150	24	0.02	<5	23	0.20	48	10	48	
K051	¥		0.08	428	5	0.01	<u> </u>	60	20	<0.01	<5	5	0.02	<u>4</u>	10	52	
L018	1		1.59	606	<1	3,87	38	480	34	0.12	6	420	0.46	68	<10	56	
L020A	GLEAM		0.50	508	1	0.01	18	300	17	<0.01	<5	447	0.18	31	10	22	
L0208	PROPERT	ry i	0.77	1010	<1	0.01	24	340	11	<0.01	6	188	0.26	35	<10	28	
1021	<u>¥</u>		3,10	985	1	0.13	27	420	34	0.03		762	0.30	131	<10	88	
1040	Ť		0.22	186	2	0.66	2	680	65	0.01	\$	11	0.05	3	10 <10	37 52	
L041	1		0,09	259	4	<0.01	5	40	19	<0.01	. <	3	<0.01	2			
L042	DAZZLE		0.07	114	5	0.08	6	610	49	<0,01	<5	10	0.01	4	<10	15	
L043	PROPERT	ΓΥ	7.47	4210	1	0.05	10	40	8	0.35	5	165	0.03	13	380	2090	
L045			0.14	617	2	1.72	3	370	60	0.01	<5	9	0.03	6	20	36	
L046			0.09	214 87	<1 3	2.25 0.16	2 3	340	42 24	<0.01	<5 <5	19 19	0.04	1 3	10 10	25 19	
M027	<u></u>		0.07		<u> </u>			320		0.05			0.01				
M028A			0.93	1100	1	0.32	34	400	26	0.81	6	833	0.28	6 0	40 10	192 365	
M028B M029			<u>1.34</u> 7.48	<u>1530</u> 1520	1	<u>1,73</u> 0.05	<u>39</u> 1200	<u>480</u> 190	<u>12</u> 6	<u><0.01</u> 1.74		<u>1530</u> 124	0.34	<u> </u>	10	80	
M030	DAZZLE	-	0.56	2610	<1	0.03	17	500	25	1.95	7	124	0.13	50	<10	224	
M037	PROPER		0.00	379	<1	0.03	12	460	39	0.03	<5	1215	0.04	2	10	38	
		-		-			5	170	51	0.10		11		- 5			
M038 M045	¥		0.28	<u>127</u> 725	<u>ব</u>	0.02	858	10	2	0.10	<u>্</u> ব্য	152	0.05	56	<u><10</u> <10	18	
M045			5.86	1385	<1	0.02	105	900	∠ 8	<0.17 <0.01	<5	833	0.38	50 68	<10	41	
M047			>15	547	<1	<0.01	1840	10	<2	<0.01	<5	13	<0.01	21	<10	27	
M048			>15	518	<1	<0.01	1035	10	<2	<0.01	11	16	0.01	19	<10	22	
M049			>15	455	<1	0.01	955	10	2	0.02	16	134	<0.01	8	<10	14	
MOSOA			>15	909	<1	0.01	1140	10	<2	0.03	32	19	<0.01	17	<10	34	
MOSOB			>15	473	<1	0.01	1006	10	<2	<0.01	19	47	<0.01	13	<10	33	
M051			>15	435	2	0.01	895	10	<2	0.05	34	224	<0.01	14	<10	18	
M052			>15	296	3	0.01	359	20	<2	0.02	26	584	<0.01	12	<10	7	
M053			>15	720	2	<0.01	1070	<10	<2	<0.01	9	7	<0.01	20	<10	24	
M054			>15	611		<0.01	1680	<10		0.01	22	55	<0.01	15	<10	26	
S001	GLEAN		0,62	2060	<1	1.00	17	150	8	0.01	<5	452	0.07	25	<10	14	
S008	PROPERT		2.52	715	<1	0.64	40	500	24	0.02	<5	1186	0.21	115	<10	98	
S015	J.	1	0.32	1320	<1	0.12	6	940	10	<0.01	<5	228	0.17	39	<10	14	

1000 a

120165

and the second sec

trick the in

16. HER

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ud.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: BREAKAWAY EXPLORATION MANAGEMENT INC. 144-D, PERREAULT AVE. VAL-D'OR PQ J9P 2G3 Page #: 3 - A Total # of pages : 3 (A - B) Date : 3-Oct-2003 Account: BREAK

ample	Description	Method Analyte Units LOR	WEI-21 Recvi Wt ing 0.02	Au-AA23 Au ppm 0.005	ME-ICP61 Ay ppun 0.5	ME-ICP61 Ai % 0.01	ME-1CP61 As ppm 5	ME-ICP61 Be ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 84 ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME-ICP61 Co ppm 1	ME-ICP61 Cr ppm 1	ME-ICP61 Cu ppm 1	ME-1CP81 Fe % 0.01	ME-ICP61 K % 0.01
044	1	-	0.78	<0.005	<0.5	5.67	<5	220	10.2	<2	0.95	<0.5	1	124		0.89	3.03
047	DAZZL		0.92	0.010	4.3	1.21	>10000	60	1.1	10	1.64	<0.5	4	177	8	2.10	0.54
050	PROPER	TY	1.06	<0.005	<0.5	6,38	76	170	13.7	11	0,28	<0.5	1	49	3	0.50	3.43
052			0.64	<0.005	<0.5	295	4460	560	3.7	<2	0.12	<0.5	4	125	41	1.38	1.32
053	<u> </u>		1.42	<0.005	0.6	8.49	30		1.6	<2	7.07	<0.5	11	133	19	3.86	0.44
055			0.94	<0.005	<0.5	0.23	20	70	D.8	<2	4.64	<0.5	82	729	4	3.82	0.02
057			1.42	0.012	<0.5	5,39	41	2470	0.6	<2	0.05	<0.5	1	78	3	0.91	3.26
)59			1.18	0.007	3.9	0.05	534	20	<0.5	<2	0.02	13.4	1	112	4	0.42	0.02
060			2.04	0.008	0.6	0.15	605	20	0.6	<2	0.53	⊲0.5	87	1075	3	3.61	0.05
062			1.20	0.141	>100	0.68	1680	90	<0.5	<2	4.71	4.1	3	194	246	3.07	0.26
064			2.30	<0.005	<0.5	7.34	47	60	16.1	<2	0.26	⊲0.5	9	106	18	2.07	0.97
065			1.68	0.202	<0.5	0,10	527	30	<0.5	<2	2.24	<0.5	25	581	4	1.79	0.05
003	1		1.90	<0.005	<0.5	7,44	39	70	16.0	<2	0.26	⊲0.5	11	82	20	2.14	0.98
009			2.22	<0.005	<0.5	7.56	15	150	4.0	<2	0.20	<0.5	7	117	28	4.16	1.16
022			0.92	<0.005	<0.5	5.33	14	560	3.7	63 -	1.08	<0.5	2	87	2	0.91	3,53
023	DAZZL	E	0.86	<0.005	<0.5	4,60	5	70	5.9	<2	0.71	⊲0.5	2	122	4	88.0	1.02
024	PROPER	ŤY	1.10	<0.005	<0,5	7.57	6	270	10.2	<2	0.81	<0,5	2	48	3	0.89	2.65
025		1	1.84	0.006	<0.5	0.91	>10000	10	0.5	з	0.04	<0.5	77	228	16	6.34	0.05
026			1.58	<0.005	<0.5	6.65	268	130	3.3	<2	0.30	<0.5	5	121	21	3.45	0.72
027			2.26	<0.005	<0.5	8.32	123	650	3.1	<2	0.23	<0.5	8	122	34	4,75	2.45
)28	Ý		1.82	<0.005	<0.5	3.05	8	190	0.8	<2	0.48	<0.5	13	157	57	2,10	0.71
029	ć.		1.46	<0.005	<0.5	0.39	27	10	<0.5	<2	0.13	<0.5	24	180	141	1.18	0.06
030	DAZZLE		0.96	<0.005	<0.6	7.13	18	490	10.8	<2	3.35	<0.5	10	97	77	4.80	4.02
031	PROPERT	ΓY	1.10	<0.005	<0.5	6,95	20	40	25.3	5	0.16	<0.5	<1	98	10	0.80	2.67
032			2.28	0.026	<0.5	0,84	509	170	<0.5	<2	9.42	<0.5	39	680	2	2.62	0.27
033			2.52	0.148	<0.5	0.44	138	90	<0.5	<2	2.79	<0.5	70	1525	18	5.18	0.05
034			2.82	0.020	<0.5	0.57	73	100	0.6	<2	1.42	<0.5	73	1450	6	3.80	0.14

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brookebank Avenue North Vancouver BC V7J 2C1 Canade Phone: 604 984 0221 Fax: 604 984 0218 To: BREAKAWAY EXPLORATION MANAGEMENT INC. 144-D, PERREAULT AVE. VAL-D'OR PQ J9P 2G3 Page #: 3 - B Total # of pages : 3 (A - B) Date : 3-Oct-2003 Account: BREAK 108

Sample	Description	Mathod Analyte Units LOR	MB-ICP61 Mg % 0.01	ME-ICP61 Ma ppm 5	ME-ICP81 Me ppm 1	ME-ICP81 Na % 0.01	NE-ICP61 Ni ppm 1	ME-ICP61 P ppm 10	ME-ICP61 Pb ppm 2	MB-ICP61 8 % 0.01	MB-ICF61 Sb ppm 5	ME-ICP61 Sr ppm 1	M5-ICP81 Ti % 9.01	ME-ICP61 V ppm 1	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm Ż	Ад-АА62 Ад ррм 1
6044	T		0.35	251	2	1.36	7	240	37	0.01	<5	59	0.03	5	<10	9	
S047	DAŻZLE	1	0.19	578	3	0.01	10	60	456	1.02	8	30	0.05	17	<10	61	
6050	PROPERT	Y	0.11	115	<1	1.82	5	390	48	0.01	<5	13	0.02	2	<10	11	
3052	1	•	0.23	150	1	0.02	20	270	15	0.18	<5	12	0.13	93	10	73	
6053	*		1.88	608	<1	4.19	22	660	32	0.04	<5	894	0.45	83	<10	61	
055			>15	511	<1	0.01	1300	10	<2	0.04	<5	58	<0.01	17	<10	18	
057			0.11	28	<1	1.52	11	300	6	0.15	<5	66	0.07	14	<10	° 8	
059			0.08	16	3	<0.01	14	20	564	0.07	<5	<1	<0.01	2	<10	841	
060			14.35	418	<1	<0.01	1220	10	2	0.28	28	15	<0.01	11	<10	33	
062			1.78	563	1	0.01	19	90	1330	0.14	93	158	0.05	27	<10	326	191
064			0.65	346	<1	3.27	22	420	15	0.01	<5	45	0.12	22	<10	46	
055			5.95	409	<1	0.01	605	10	3	0.08	<5	309	<0.01	9	<10	55	
003	Ť		0.72	341	<1	3.26	22	440	12	D.01	<5	46	0.14	24	<10	48	
009			1.14	231	<1	0.63	27	360	10	0.01	<5	93	0.29	67	<10	77	
022	ļ		0.22	182	<1	1.31	5	480	56	<0.01	<5	101	0.06	9	<10	16	
023	DAZZLE		0.27	158	2	1.51	7	150	19	0.01	<5	56	0.05	8	<10	17	
024	PROPERT		0.22	118	<1	2.68	5	220	38	<0.01	<5	97	0.04	8	<10	23	
025	1 10 10 10	•	0.17	43	1	0.08	16	130	6	2.71	7	15	0.03	10	<10	14	
026			1.05	195	<1	0.90	16	640	13	0.02	<5	128	0.31	58	<10	77	
027			1.08	404	<1	0.48	20	340	11	0.02	<5	93	0.39	81	<10	66	
028	+		0.30	136	1	0.55	48	100	4	0.24	<5	47	0.13	28	<10	20	
029		, .	0.04	49	2	0.12	87	20	2	0.45	<5	12	0.02	4	<10	6	
030	DAZZLE		0.84	843	<1	1.44	19	1760	21	1.19	<5	142	0.82	49	<10	46	
031	PROPER	<u>[Y</u>	0.04	2020	<1	2.88	8	490	22	0.01	<5	7	0.01	1	<10	51	
032			5.36	1015	3	0.01	843	30	5	0.01	92	386	0.03	28	<10	33	
033			14.05	726	1	0.01	1270	20	4	<0.01	105	192	0.01	27	<10	33	
034			14.65	526	1	0.01	1505	20	2	0.01	51	80	0.01	31	<10	30	

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avanue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

1222.3

Novies, 1

To: BREAKAWAY EXPLORATION MANAGEMENT INC. 144-D, PERREAULT AVE. VAL-D'OR PQ J9P 2G3 Page #: 1 Date : 15-Sep-2003 Account: BREAK

CERTIFICATE VA03035288		SAMPLE PREPARATION	N
	ALS CODE	DESCRIPTION	
Project :	WEI-21	Received Sample Weight	
P.O. No:	LOG-22	Sample login - Rcd w/o BarCode	
This report is for 83 SOIL samples submitted to our lab in North Vancouver, BC, Canada on 10-Sep-2003.	SCR-41	Screen to -180um and save both	
The following have access to data associated with this certificate:		ANALYTICAL PROCEDUR	ES
MARK FEKETE	ALS CODE	DESCRIPTION	INSTRUMENT
	ME-ICP61	27 element four acid ICP-AES	ICP-AES

To: BREAKAWAY EXPLORATION MANAGEMENT INC. ATTN: MARK FEKETE 144-D, PERREAULT AVE. VAL-D'OR PQ J9P 2G3

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Placed By

Billion - Billion

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

Sector 1

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Cenede Phone: 604 984 0221 Fax: 604 984 0218

To: BREAKAWAY EXPLORATION MANAGEMENT INC. 144-D, PERREAULT AVE. VAL-D'OR PQ J9P 2G3

2.018

Page #: 2 - A Total # of pages: 4 (A - B) Date : 15-Sep-2003 Account: BREAK

1.12

CERTIFICATE OF ANALYSIS VA03035288

10110

1.000

State L

Sample	Description	Method Analyte Units LOR	WEI-21 Recvd Wt ky 0.02	ME-ICP61 Ag ppm 0.5	ME-ICP61 Ai % 0.01	ME-ICP61 As ppm 8	ME-1CF61 Ba ppm 10	ME-ICP61 Be ppm 0,5	M2-ICP61 B4 ppm 2	ME-ICP81 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME-ICF61 Co ppm 1	ME-ICP61 Cr ppm 1	ME-ICP61 Cu ppm 1	ME-ICP61 Fo % 0.01	ME-ICP61 K % 0.01	ME-ICP61 Mg % 0.01
A002	`		0.48	<0.5	8.40	926	1120	6.4	<2	0.59	<0.5	11	37	163	5.20	3.08	1.45
A005	\		0.36	<0.5	6.55	26	810	2.2	<2	1.57	<0.5	3	14	23	2.35	1.99	0.62
A006			0.40	<0.5	6.25	138	700	2.3	3	0.95	<0.5	6	29	21	3.50	2.29	0.86
A007 A009	1		0,52 0,36	<0,5 <0,5	8.01 7.55	5 97	220 720	3.1 2.2	<2 <2	3.67 1.16	<0.5 <0.5	26 7	36 35	27 28	4.76 3.21	0.86 1.93	1.06 0.85
A012	 		0.26	0.5	6.63	15	610	2.9	<2	2.15	<0.5	8	15	19	2.25	1.89	0.81
A014			0.52	<0.5	5.73	30	1060	2.8 1.9	<2	1.16	<0.5	7	30	21	2.23	1.69	0.81
A015			0.42	<0.5	5.74	18	990	1.4	<2	0.76	<0.5	5	20	16	2.26	1.68	0.53
A016			0.64	<0.5	7.13	17	470	3.3	<2	1.02	<0.5	9	23	24	3.28	2.55	0.70
A017			0.62	<0.5	7.77	7	550	2.7	<2	1.29	<0.5	12	42	19	3.50	2.41	1.04
A018		······	0.48	<0.5	6.63	<5	540	1.4	<2	1.41	<0.5	6	43	9	3.20	1.92	0.71
A019			0.40	<0.5	5.82	<5	520	1.3	<2	0.95	<0.5	4	37	9	2.60	1.85	0.49
A022	DAZZ	LE	0.56	<0.5	7.58	<5	530	2.7	<2	0.59	<0.5	7	20	17	2.50	3.11	0.60
A023	- ·		0,28	<0.5	7.72	<5	540	2.6	<2	1.12	<0.5	12	24	15	3.09	2.65	0.84
A024	PROPER	<u>TY</u>	0.34	<0.5	7,14	<5	590	2.4	<2	1.23	<0.5	12	33	16	3.67	2,28	1.12
A025			0.42	<0.5	6.81	<5	540	1.8	<2	1.01	<0,5	3	20	9	2.15	2.20	0.59
A026			0.34	<0.5	7.50	57	1570	1.9	<2	1.23	<0.5	20	48	95	4.67	1.83	1.15
A027			0.46	<0.5	6.59	12	1260	1.2	<2	2.09	<0.5	42	126	198	6.89	1.03	3.06
A029			0.54	<0.5	6.37	61	2220	2.2	<2	0.25	<0.5	8	25	31	2.52	2.48	0.58
A030			0,60	<0.5	6.45	48	2110	2.4	<2	0.49	<0.5	10	31	31	2.66	2.43	0.85
A031			0.44	<0.5	5.16	15	1340	1.1	<2	0.80	<0.5	5	20	11	1.51	1.41	0.45
A032			0.46	<0.5	6.98	39	1520	1.7	<2	1.28	<0.5	10	29	44	3.01	1.83	0.91
A033			0.48	<0.5	8.24	53	1740	2.3	~2	1.13	<0.5	11	52	60	3,19	1.84	1,35
A034 A035			0.46 0.54	0.5 0.5	7.58 7.65	18 174	770 790	1.9 5.2	2 2	2.14 1,69	<0.5 <0.5	7 12	14 36	20 40	2.45 3.85	1.96 2.37	0.89 1.28
A036 A037			0.40	<0.5	8.19	172	650	5.6	<2	1.40	<0.5	10	31	25	3.42	2,69	1.12
A037			0.34 0.36	<0.5 <0.5	7.36 7.34	170 33	600 590	4.4 5.4	<2 <2	1,54 1,18	<0.5 <0.5	10 4	22 13	40 9	3.29 1.68	2.03	0.98
1001			0.38	<0.5	7.30	<5	690	2.3		1,53	<0.5	33	65	29	6.88	2.76	0.54
L002			0.36	<0.5	7.69	<5	600	2.3	<2	2.56	<0.5	24	103	30	6,09	2.30	2.41
L003			0.42	<0.5	7.50	59	420	1.8	<2	2.82	<0.5	35	283	60	8.61	1.28	5.01
L004	C C +		0.28	<0.5	7.08	9	510	1.6	<2	3.22	<0.5	33	144	41	5.91	1.25	3,49
L005	GLEA		0,16	<0.5	5.12	<5	590	1.1	<2	1.67	<0.5	6	7	34	1.48	1.21	0.43
L006 /	' PROPER	TY	0.38	<0.5	7.32	<5	420	1.5	<2	3.23	<0.5	26	83	24	7.10	1.26	2.70
L007		-	0.50	<0.5	8.19	<5	500	1.2	<2	4.07	<0,6	44	184	61	7.67	1.48	4.21
L008			0.50	<0.5	9.24	39	500	3.5	<2	1.63	<0.5	17	80	46	5.92	2.92	2.38
L009			0.50	<0.5	8.06	<5	520	1.9	<2	3.75	<0.5	21	115	39	5.85	1.71	3.44
L010			0.22	<0.5	7.54	<5	740	1.3	<2	1.81	<0.5	6	7	16	1.90	2.14	0.64
L011			0.40	<0.5	8.66	<5	510	1,6	<2	4.62	<0.5	43	144	138	7.77	1,68	3.87
L012			0.38	<0.5	7.34	<5	670	1.8	<2	2.45	<0.5	28	93	73	8.13	1.89	2.56

ALS Chemex

transfer is

1000

A STREET

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: BREAKAWAY EXPLORATION MANAGEMENT INC. 144-D, PERREAULT AVE. VAL-D'OR PQ J9P 2G3

an entropy of the

Page #: 2 - B Total # of pages : 4 (A - B) Date : 15-Sep-2003 Account: BREAK

1.28

Sector 1

10.000

CERTIFICATE OF ANALYSIS VA03035288

distant:

2 10 10

	Method Analyte	ME-ICP61 Mn	ME-ICP61 Mo	ME-ICP61 Na	ME-ICP61 NI	ME-ICP61	ME-ICP61 Pb	ME-(CP61 S	ME-ICP61 Sb	ME-ICP61 Sr	ME-ICP61 Ti	ME-ICP61 V	ME-ICP61	ME-ICP61 Zn	
Sample Description	Unita LOR	ppm S	թթու 1	% 6.01	ppm 1	թթ ու 10	фрна 2	% 0.61	mqq Z	ppm 1	% 0.01	ppm 1	р р т 10	թրու 2	
		-					<u></u>			·····					
4002		1045	2	0.68	28	840	51	80.0	<5	92	0.40	84	10	193	
A005		738	5	1.86	11	750	17	0.05	<5	395	0.30	66	<10	99 84	
1006		635	<1	1.22	9	1380	24	0.04	<5	237	0.47	96 70	<10 10	84	
007		1115	<1	0.49	45	1700	20	0.13	<5	643	0.41	72	10 <10	124 56	
900		519	<1	1.56	22	1100	19	0.02	<5	295	0.62	98			
012		512	<1	1.98	14	840	18	0.06	<5	455	0.29	55	10 10	52	
014		605	<1	1.16	21	460	22	0.02	<5	193	0.39	84		62	
.015		538	<1	1.24	14	6 50	16	0.01	<5	228	0.29	77 60	10	43	
A016 A017		550 502	<1	1.00	28 38	910 870	32 19	0.05 0.04	<5 <5	185 258	0.27 0.40	60 74	20 10	79 6 9	
			<1	1.21				·····							
1018		666	<1	1.00	19	550	20	0.01	<5	366	0,54	94	<10	41	
1019		309	<1	1.08	13	490	18	0.02	<5	253	0.44	87	10	31	
DAZZ	LE	363	<1	1.22	30	770	24	0.01	<5	119	0.25	45	10	62	
023		407	<1	1.27	24	780	20	0.04	<5	272	0.31	60	10	83	
024 PROPE	RTY	521	<1	1.09	28	780	16	0.07	<5 •	190	0.43	87	10	89	
.025		353	<1	1.31	15	810	20	0.04	<5	237	0.34	59	10	42	
028		1805	3	1.01	54	940	37	0,04	<6	226	0.32	128	10	134	
027		1780	<1	0.73	92	1110	19	0.04	<5	190	0.70	209	<10	381	
029		929	<1	0.82	23	530	25	0.02	<5	58	0.20	67	10	72	
.030		1100	<1	0.72	35	230	24	0.01	<5	72	0.23	67	10	70	
031		758	<1	1.22	13	790	12	0.03	<	206	0.24	62	<10	36	
032		1420	<1	1.52	28	630	26	0.02	<5	316	0.28	80	10	81	
V033		1010	<1	1.02	43	840	27	0.05	<5	133	0.41	101	10	10 1	
1034		495	<1	2,36	18	620	17	0.05	<5	547	0.31	65	<10	68	
035		767	1	1,37	31	1180	33	0.07	<5	260	0.45	92	30	100	
A036		511	<1	1.58	31	820	40	0.04	<5	257	0.47	87	10	101	
A037		638	<1	1.44	32	620	34	0.04	<5	315	0.29	67	10	170	
038		312	<1	1.70	11	530	26	0.01	<5	260	0.36	49	10	48	
.001		1980	<1	0.92	47	1060	11	0.06	<5	117	0.82	183	10	225	
.002		913	1	1.12	51	890	11	0.03	<5	167	0.77	190	10	84	
003		895	2	1.00	224	830	18	0.03	<5	187	0.74	188	10	86	
.004		918	1	1.03	116	1210	11	0.03	<5	239	0.68	190	<10	90	
.005 GLEA	i m i	323	1	1.60	11	690	8	0.06	<5	369	0.16	37	10	30	
006 /		1340	<1	1.06	36	1550	10	0.07	<5	199	0.88	257	10	67	
DOT (PROPE	RTY	1190	<1	88.0	124	940	13	0.03	<5	248	0.80	216	<10	107	
008		793	<1	0.78	56	1200	25	0.03	<5	139	0.88	180	10	113	
.009		783	<1	1.18	81	1800	32	0.01	<5	268	0.82	198	<10	80	
010		381	<1	2.61	5	340	14	0.01	<5	551	0.25	46	<10	51	
L011		1340	<1	0.93	97	1110	17	0.06	<5	216	0,85	224	<10	94	
L012		1125	1	0.93	64	1410	32	0.06	<5	169	0.87	205	<10	82	

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Cenada Phone: 604 984 0221 Fax: 604 984 0218 To: BREAKAWAY EXPLORATION MANAGEMENT INC. 144-D, PERREAULT AVE. VAL-D'OR PQ J9P 2G3 Page #: 3 - A Total # of pages : 4 (A - B) Date : 15-Sep-2003 Account: BREAK

Sample Description	Method Analyte Ualts 1 LOR	WEI-21 Recvd Wt icg 0.02	ME-ICP61 Ay ppm 0.5	ME-ICP61 Al % 0.01	ME-IGP81 Au ppm S	ME-JCP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd pipm 0.5	ME-ICP61 Co ppm 1	ME-ICP61 Cr ppm 1	ME-ICP61 Cu ppm 1	ME-ICP81 Fe % 0.01	M5-ICP61 K % 0.01	ME-1CP61 My % 0.81
L013)	=	0,44	<0.5	8.15	16	580	2.1	<2	3.04	<0,5	25	190	74	6.68	1.74	3.60
Loit & Glean	n	0.44	<0.5	8.16	<5	500	1.8	<2	2.76	<0.5	20	106	27	6.11	1.33	2.54
	-tu	0.44	<0.5	8.00	<5	440	1.8	<2	4.33	<0.5	27	126	38	6.23	1.51	3.11
	¥	0.36	<0.5	8.18	60	490	2.2	<2	2.50	<0.5	22	58	37	4.88	1.84	1.53
MO21 3 DAZZ	LE	0.30	<0.5	6.68	67	700	3.6	<2	1.31	<0.5	31	83		5.17	1.59	2.43
MO26 J PROPE	the second s	0.34	0.7	8.21	181	720	4.2	<2	1.06	<0.5	22	81	184	6,09	3,31	2.50
MO32 7 HELEN MO33 5 PROPE	ATV	0.38	1.0	7.17	217	440	7.3	47	1.32	1.0	85	458	213	9.03	3.13	4.31
MO33 S PROPE MO34	<u>K11</u>	0.40	<u><0.5</u> 1.1	9.40 7.98	<u> </u>	1360	<u> </u>	<2	<u>3.12</u> 0.15	<0.5 <0.5	<u>32</u> 5	<u>52</u> 11	<u>17</u> 92	5.70 6.24	2,43 4.53	1,96 0,49
		0.34	<0.5	10.85	49	430	20.5	< <u>-</u> 3	0.15	<0.5	13	32	13	3.44	4.22	1.00
UNLA	EL															
\$001 \$003		0.34	<0.5 <0.5	8.17 8.59	<5 7	570 730	1.8	<2 <2	1.41 2.18	<0.5 <0.5	26 19	149 81	22 39	7.08 5.53	1.77 2.06	2.58 1.80
S005		0.20	<0,5 <0,5	0.39 8.86	7 9	730 590	4.3 3.0	<2	3.45	<0.5	23	132	42	8.40	1.81	2.94
\$006		0.42	<0.5	7.19	40	310	1.3	<2	3.94	<0.5	44	330	130	8.78	0.93	5.41
S007		0.36	<0.5	7.40	87	500	1.6	<2	3.85	<0.5	10	61	16	4.06	1.42	1.22
5008		0.40	0.5	8.27	70	420	1.5	<2	4.60	<0.5	51	100	85	7.80	1.22	2.43
SODE GLEI	A M	0.38	<0.5	8.26	<5	390	1.9	<2	3.53	<0.5 <0.5	35	97	27	5.23	1,17	2.40
S010 2		0.30	<0.5	7.95	<5	590	1.8	<2	2.15	<0.5	13	50	19	4.11	1.77	1.22
SO11 PROPI	ERTY	0.38	<0.5	8.90	<5	440	1,9	<2	2.17	<0.5	18	91	14	5.76	1.71	3.15
S017		0.46	<0.5	8.41	<5	650	2.3	<2	3.53	<0.5	28	98	38	7.23	1.65	2.65
5018		0.40	<0.5	7.40	8	430	1.5	<2	3.90	<0.5	30	212	30	5.70	1.12	3.85
\$019		0.36	<0.5	7.54	128	850	2.1	<2	2.13	<0.5	19	102	34	4.98	1.95	2.17
\$020		0.34	<0.5	6.70	7	460	1.2	<2	3.22	<0.5	47	530	104	5.78	0.99	6.15
\$022		0.30	<0.5	8.64	11	1100	2.1	<2	3,33	3.9	33	118	71	6.00	2.17	2.81
5023	······	0,38	<0.5	7.64	19	490	1.8	<2	4,37	<0,5	22	75	24	6.45	1.90	2.28
5029		0.40	<0.5	5.06	4	1330	0.9	<2	0,68	<0,5	4	21	12	1.57	1.42	0.34
\$030		0,34	<0.5	4.97	35	1660	1.1	<2	0.59	<0.5	8	58	21	2.61	1.36	0.68
SO31 (DAZZ	LE	0.36	<0.5	5.09	6	1440	1.0	<2	0.61	<0.5	З	29	5	1.00	1.60	0.40
SO32 (PROPER	OTY	0.32	<0.5	7.13	243	1800	2.6	<2	1.09	<0.5	20	60	71	4.58	1.97	1.24
		0.24	<0.5	6.22	8	1200	1.3	<2	1.00	<0,5	5	12	12	1.69	1.97	0.46
S037		0.36	<0.5	6.55	167	1730	1.7	<2	1.28	<0.5	10	30	59	3.31	1,82	0.98
\$030		0.40	<0.5	7.85	8	960	21	<2	1.19	<0.5	17	50	22	6.87	3.03	0.99
5041		0.40	<0.5	10.85	8	1260	2.5	<2	2.01	<0.5	28	56	58	5.70	2.05	2.45
T001 T002		0.26	<0.5 <0.5	0.51 0.17	40 49	700 580	2.5 8.0	<2 <2	1.56 2.88	<0.5 <0.6	11 29	29 158	21 49	2.93 6.81	1.74 1.77	0.81 2.82
		ļ		9.17												
TOOS GLE		0.26	<0.5	6.19	41	550	2.6	<2	1.43	<0.5	7	29	17	2.41	1.41	0.83
TOOS (PROPI	ERTY	0.42	<0.5	7.75	89	780	2.5	<2	1.22	<0.5	10	56	34	4.15	1.82	0.98
1000		0.52	<0.5 <0.5	7.41	6	740	2.0	<2 <2	1.53 2.26	<0.5 <05	14 9	56	22 31	4.17	1.64 1.79	1.06 0.74
T010 T011		0.64	<0.5 <0.5	7,25 8,67	<5 17	600 510	1.5 2. 0	3	0.61	<0.5 <0.5	¥ 4	1 6 22	31 13	3.00 2.92	1.7¥ 2.84	0.61
		L	~~.~	0.07	14	510	2.0	u		~0,5	۳			L.GL	2.U7	0.03

200-1 -1

initio to

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd. 212 Brooksbank Avenue

North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

1001010101175

To: BREAKAWAY EXPLORATION MANAGEMENT INC. 144-D, PERREAULT AVE. VAL-D'OR PQ J9P 2G3 Page #: 3 - B Total # of pages : 4 (A - B) Date : 15-Sep-2003 Account: BREAK

- diame

1000

- and the

Sample Description	Method Ansiyte Units LOR	ME-ICP61 Min ppm S	ME-ICP61 Bio ppm 1	ME-ICF61 Na % 6.01	ME-ICP81 Ni ppm 1	MB-ICP61 P ppm 10	ME-ICP61 Pb ppm 2	ME-ICF61 8 % 0.01	M2-4CP61 Sb ppm 5	MB-ICP61 Br ppm 1	Mii-10P61 Ti % 0.01	ME-ICP81 V ppm 1	ME-ICP61 W ppm 10	ME-ICP81 Zn ppm 2	
013 GLEAM	1	975	<1	1.15	121	1910	22	0.03	<5	213	0.92	237	10	154	
014		833	<1	1.38	52	1240	16	0. 04	<5	257	0.81	189	<10	76	
015 PROPER	RTY	997	<1	1.50	64	1290	11	0.01	<5	280	1.04	200	<10	86	
016		782	<1	1.38	53	910	40	0.02	<5	631	0.55	100	<10	150	
1021 DAZZL	E .	940	2	1.01	70	1140	31	0.04	<5	170	0.58	141	90	131	
1026 PROPER		1455	3	0.75	98	1060	49	0.09	<5	129	0.69	156	10	287	
1032 HILEN		1845	4	0.53	460	620	57	0.02	<5	123	0.67	172	30	271	
1033 PROPER	TT	2500	<1	0.77	48	910	23	0.01	<5	110	0.50	130	10	164	
034		310	5	0.27	27	940	102	0.76	13	86	0.28	43	10	386	
036 DA22	LE	1190	<1	1.28	40	1200	83	0.02	<5	122	0.46	70	20	88	
001		720	<1	0.96	57	1210	18	0.03	<5	132	0.90	251	10	83	
003		1015	<1	1.84	47	1270	18	0.03	<õ	195	0.78	162	<10	101	
005		985	<1	1.71	80	1250	21	0.02	<5	224	0.82	218	<10	96	
006		1010	<1	1.30	345	1280	14	0.02	<5	230	0.94	187	<10	88	
007		619	<1	1.21	32	1190	76	0.05	<5 .	572	0.63	131	10	90	
008 GLEA	m	1440	<1	1.34	95	1540	134	0.03	<5	668	0.95	205	<10	111	
009		849	<1	1,68	67	1100	22	0.03	<5	321	0.83	151	<10	70	
010 PROPE	KI I I	599	<1	2.01	27	820	82	0,06	<5	283	0.60	118	10	53	
011		577	<1	1.45	45	1080	19	0.03	<5	164	0.69	158	<10	56	
017		1400	<1	1.62	43	1730	13	0.01	<5	215	0.98	254	<10	113	
018		968	<1	1.38	175	1050	18	0.02	<5	252	0.75	176	10	89	
019		666	<1	1.17	76	880	18	0.09	<5	210	0.49	139	<10	89	
020		807	<1	1.02	386	680	9	0.06	<5	204	0.31	97	10	69	
022		1275	1	1.21	94	870	24	0.06	<5	281	0.52	142	10	224	
023		1036	2	1.48	38	1260	18	0.02	<\$	203	1.06	281	10	81	
029	/	1215	1	1.50	9	420	15	0.01	<	183	0.29	67	10	26	
030 DAZ	ZLB	822	1	0.73	21	1220	11	0.02	<	90	0.38	122	10	50	
031 PROPE	RTY	477	<1	1.12	11	370	11	0.01	<5	142	0.43	68	10	22	
032		2580	6	0.92	62	1560	34	0.06	<5	143	0.33	112	10	282	
034		605	<1	1.72	8	510	14	0.03	<5	285	0.21	53	10	38	
037		1190	1	1.28	40	860	20	0.06	<5	209	0.32	96	<10	118	
039		1255	1	1.04	30	1570	22	0.08	4	174	0.63	202	10	57	
041		518	<1	0.70	90	460	14	0.03		270	0.37	90	10	100	
001		703	<1	1.75	21	1260	17	0.06	<5	352	0.36	71	10	65	
002		1185	<1	1.29	100	1230	24	0.02	<5	311	0.84	148	10	140	
005 GLEA		439	<1	1.56	22	1650	16	0.08	<5	349	0.30	61			
		676	1	1.60	22	610	18	0.08	<5 <5	349 282	0.30	113	10 10	62 86	
006 PROPE	KTY	844	<1	1.15	45	660	20	0.04	<5	525	0.45	100	10	81	
010	·)	775	<1	1.85	22	730	20	0.07	<5	525 598	0.23	49	<10	67	
011		308	<1	0.87	13	940	42	0.04	<5	184	0.31	66	10	61	
· · · · · · · · · · · · · · · · · · ·							-74-	0.04		10-1	0.01	~~~		~	

210.20

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Broksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: BREAKAWAY EXPLORATION MANAGEMENT INC. 144-D, PERREAULT AVE. VAL-D'OR PQ J9P 2G3 Page #: 4 - A Total # of pages : 4 (A - B) Date : 15-Sep-2003 Account: BREAK 1.00

Sample Description	Method Analyte Unite LOR	WEI-21 Recvd Wt kg 0.02	ME-ICP61 Ag ppm Q.5	ME-ICP61 Al % 6.01	ME-ICP61 As ppm 5	M5-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-1CP61 Bi ppin 2	ME-ICP61 Ca % 6.01	ME-ICP61 Cd ppm D.5	ME-ICP51 Co ppm 1	ME-ICP61 Cr ppm 1	ME-1CP61 Cu ppm 1	ME-ICP61 Fe % 8.01	ME-ICP61 K % 0.01	NE-ICP61 Ng % 0.01
T012)		0.54	<0.5	9.90	21	660	2.9	<2	1.19	<0.5	18	50	32	5.41	2.56	1.37
TOIT & Glean		0.42	<0.5	7.84	10	2420	2.0	<2	0.53	<0,5	6	29	44	3.16	2.19	0.56
TO19 J Proper	+y	0.50	<0.5	7.20	5	530	1.6	<2	1.98	<0.5	18	81	15	6,17	1,40	1.90

654262-1

122.2

ALS Chemex

Addition of the

ar Arrait Martin

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avanue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: BREAKAWAY EXPLORATION MANAGEMENT INC. 144-D, PERREAULT AVE. VAL-D'OR PQ J9P 2G3

and the second s

Page #: 4 - B Total # of pages : 4 (A - B) Date : 15-Sep-2003 Account: BREAK

CERTIFICATE OF ANALYSIS VA03035288

Control with the second

200400.00

character +

Sample Description	Method Analyte Units LOR	ME-ICP61 Min ppm 5	ME-ICP61 Mo ppm 1	ME-ICP61 Na % 0.61	ME-ICP61 Ni ppm 1	м Е-ICP81 Р µрт 10	NE-IGP81 Pb ppm 2	ME-ICP61 S % 0.01	ME-ICP61 Sb ppm S	ME-ICP81 Sr ppm 1	ME-ICP61 Ti % 0.01	NE-ICP61 V ppm 1	ME-ICP81 W ppm 10	M£-ICP61 Zn ppm 2	
TO12 2 GLEA	1	718	<1	1.02	54	1140	23	0.05	<5	357	0,49	110	10	116	
TO17 CPROPEN	RTY	1310	<1	1.44	18	1030	17	0.03	4	173	0.37	122	10	60	
T019 J		862	<1	1.28	43	1130	10	0.04	<5	197	0.73	177	10	68	

1-18486

ALS LINEMEX

EXCELLENCE IN ANALYTICAL CHEMISTRY VAL-D'C

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 964 0221 Fax: 604 984 0218 10. DREADAWAT EAFLURATION MANAGEMENT ING. 144-D, PERREAULT AVE. VAL-D'OR PQ J9P 2G3 Date : 16-Sep-2003 Account: BREAK

CERTIFICATE VA03035287		SAMPLE PREPARATIO	N
	ALS CODE	DESCRIPTION	
Project :	WEI-21	Received Sample Weight	
P.O. No:	LOG-22	Sample login - Rod w/o BarCode	
This report is for 32 SEDIMENT samples submitted to our lab in North Vancouver, BC, Canada on 10-Sep-2003.	SCR-41	Screen to -180um and save both	
The following have access to data associated with this certificate:		ANALYTICAL PROCEDUR	RES
MARK FEKETE	ALS CODE	DESCRIPTION	INSTRUMENT
	ME-ICP61	27 element four acid ICP-AES	ICP-AES

To: BREAKAWAY EXPLORATION MANAGEMENT INC. ATTN: MARK FEKETE 144-D, PERREAULT AVE. VAL-D'OR PQ J9P 2G3

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Chelles.

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brocksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: BREAKAWAY EXPLORATION MANAGEMENT INC. 144-D, PERREAULT AVE. VAL-D'OR PQ J9P 2G3 Page #: 2 - A Total # of pages : 2 (A - B) Date : 16-Sep-2003 Account: BREAK

Sample	Description	Method Analyte Ualta LOR	WEI-21 Recvit Wi kg 0.02	ME-ICP61 Ag ppm 0.5	ME-1CP61 A1 % 0.81	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm Q.5	MU-ICP61 Bi ppm 2	ME-ICP01 Ca % 0.01	ME-ICP81 Gd ppm 0.5	ME-ICP61 Ge ppm 1	ME-ICP61 Cr ppm 1	ME-ICP61 Gu jipan 1	ME-ICP81 Fe % 0.01	M5-ICP61 K % 0.01	MS-ICP61 Mg % 0.01
K001	↑		0.46	<0,5	9.12	90	600	2,5	<2	2.47	<0.5	13	47	26	4,50	1.74	1.34
K003	1		0.32	<0.5	8.22	85	580	2.3	<2	3.13	<0.5	20	56	36	5.17	1. 82	1.58
K004			0.44	<0.5	9.24	18	570	2.8	<2	3.30	<0.5	20	62	28	5.47	1.83	1.68
K005			0.42	<0.5	9.38	27	500	2.5	<2	4.18	<0.5	16	48	25	4.84	1.71	1.51
K007			0.46	<0.5	10.40	15	520	2.1	<2	6.18	<0.5	29	126	39	7.65	1,53	3.61
K009	GLEA	M	0.44	<0.5	9.39	11	400	2.1	<2	5.29	<0.5	25	101	30	6.19	1.33	2.80
K011	PROPE	RTY	0.48	<0.5	9.44	25	470	2.2	<2	4.52	<0.5	23	93	35	8.21	1.53	2.71
K013			0.46	<0.5	9.48	26	440	2.2	<2	4.48	<0.5	23	88	33	6.16	1.47	2.69
K015			0.44	<0.5	8.82	21	390	2.1	<2	4.55	<0.5	19	83	27	5.72	1.26	2.47
K016	1		0.48	<0.5	8.52	161	380	2.0	<2	4.55	<0.5	19	90	29	5.36	1.28	2.60
K017	1		0.44	<0.5	9.28	58	450	2.1	<2	4.62	<0.5	21	91	34	5.86	1.45	2.50
K019	<u> </u>		0.44	<0.5	9.18	44	480	2.2	<2	4.33	<0,5	23	92	35	5.93	1.58	2.60
K022			0.48	<0.5	8,90	49	480	21	<2	4.17	<0.5	23	86		5.81	1.51	2.54
K024	6 LEA		0.34	<0.5	9.12	54	630	3.0	<2	2.98	<0.5	30	95	51	7.01	2.05	2.65
K025	PROPE	ATY	0.44	<0,5	9.84		780	2,6	<2	4.70	• <0.5	24	75	44	6.28	1.87	2.57
K030			0.48	<0.5	9.48	374	830	9.6	3	1.45	<0.5	23	44	78	5.18	2.89	1.79
K033			0.50	<0.5	15.70	11	360	11.7	<2	0.26	<0.5	3	5	4	2.65	5.55	0.58
K034			0.44	<0.5	12.05	581	670	15.3	4	0.73	<0.5	13	23	83	4.64	3.92	1.33
K036			0.40	<0.5	11. 75	636	600	12.9	3	0.82	0.7	16	31	68	4.70	3.91	1.73
K038	1		0.36	<0.5	8.67	147	600	8.7	4	0.63	0.7	4	5	14	1.99	3.65	0.43
K040	DAZZ	16	0.46	<0.5	8.31	109	550	12.8	<2	0,71	<0.5	4	6	9	1.84	3.35	0.48
K042	PROPE	OTV	0.42	<0.5	8.07	71	800	8.2	22	O.59	<0.5	2	5	6	1.57	3.57	0.38
K044	FRUFE	~~ 1	0.60	<0.5	8.19	61	610	8.2	<2	0.57	<0.5	2	4	7	1.61	3.66	0.37
L023			0.50	<0.5	7.22	128	980	3.1	<2	1.92	2.1	16	43	79	4.25	2.15	1.72
L025			0.42	<0.5	6.61	43	1560	1.7	<2	1.03	<0.5	10	55	37	3.52	1.67	1.12
L028			0.22	0.5	5.95	43	950	1.5	<2	2.05	<0.5	7	22	34	2.31	1.19	0.59
L028	1	-	0.36	<0.5	6.15	68	1980	1.6	<2	1.47	<0.5	16	59	68	3.70	1.53	1.33
L030			0.44	<0.5	5.70	78	1770	1. 5	<2	1.21	<0.5	12	62	51	3.33	1.37	1.11
L031	<u> </u>		0.44	<0.5	5.20	87	1520	1.7	<2	1.41	0.6	13	50	51	3.07	1.57	1.14
L032			0.40	0.5	9.51	126	2180	2.9	<2	1.06	<0.5	21	65	110	5.11	2.73	1.52
L033	DAZZ	16	0.34	<0.5	8.54	114	1880	2.6	<2	1.13	<0.5	20	56	93	4.43	2,35	1.43
L038	PROPE	RTY	0.38	<0.5	8.28	63	2540	1.9	<2	1.29	<0.5	17	55	79	3.97	1.85	1.33

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY AL8 Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: BREAKAWAY EXPLORATION MANAGEMENT INC. 144-D, PERREAULT AVE. VAL-D'OR PQ J9P 2G3 Page #: 2 - B Total # of pages : 2 (A - B) Date : 16-Sep-2003 Account: BREAK

CERTIFICATE	OF A	NALYSIS	VA03035287

	Nethod	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	MILICP61	ME-ICP61	M8-10P81	ME-ICP61	ME-ICP61	
	Analyte	Man	Мо	Na	NI	P	Ph	8	\$ b	Sr	TI	v	W	Zn	
omulo Recordition	Units LOR	bhu		*	to bran	(ppm)	ppm	% 6.01	ppm 5	ppm 1	% 0.01	ppen 1	р р т 10	ppm 2	
ample Description	LUK	5	1	0.01	1	10	2	#-01	8		V.V 1		14		
001 🔶		779	<1	1.82	37	1130	33	0.03	<5	507	0.61	101	<10	98	
003		800	<1	1.69	50	1160	39	0.03	<5	663	0.57	103	<10	154	
004		1045	<1	1.79	40	1440	29	0.02	<5	822	0.75	147	<10	92	
005		925	<1	1.81	38	1140	30	0.02	<5	800	0.82	101	<10	113	
007		1245	<1	1.90	73	1510	13	0.01	<5	367	0.63	169	<10	96	
008 GLEAM		1025	<1	1,95	57	1540	18	0.02	<5	432	0.76	181	<10	88	
IT PROPER	TY	977	<1	1.85	61	1500	18	0.02	<5	439	0.79	173	<10	95	
013 PROJEK	••	970	<1	1.92	56	1390	19	0.02	<5	477	0.84	173	<10	95	
015		1005	<1	1.86	54	1520	15	0.02	<5	428	0.82	165	<10	85	
016		914	<1	1.75	70	1720	24	0.02	<5	353	88.0	177	<10	81	
017		991	<1	1.84	56	1740	16	0.03	<5	461	0.87	168	10	90	
019 🗸		952	<1	1.77	66	1480	21	0.03	<5	423	0.64	173	<10	95	
022		946	<1	1.75	64	1390	17	0.03	<5	412	0.78	160	<10	95	
024 GLEAM		1140	<1	1.44	65	1270	8	0.02	<5	192	0.78	276	<10	139	
025 PROPER	TY	956	<1	1.55	48	1370	12	0.02	<5	316	0.78	200	<10	106	
030		1510	2	0.87	47	1120	71	0.08	<5	192	0.45	108	<10	387	
033		538	<1	0.12	2	1520	139	0.02	<5	98	0.41	57	10	91	
034		1240	2	1.23	27	1050	104	0.06	<5	146	0.38	81	<10	316	
036		1476	4	0,41	25	1130	65	0.04	<5	114	0.49	98	20	297	
038		742	<1	1.74	6	880	101	0.03	<5	180	0.20	30	<10	153	
040 DAZZL	F	493	<1	1.83	8	870	54	0.02	<5	209	0.21	36	10	77	
		552	<1	1.91	6	850	52	0.01	<5	198	0,18	28	10	67	
042 PROPER	1	503	<1	1.96	6	740	50	0.01	<5	196	0,18	27	<10	63	
023		1640	<1	1.43	35	1220	32	0.07	<5	154	0.63	110	<10	682	
025		880	<1	1.18	45	1150	18	0.02	<5	146	0.42	118	<10	79	
026		1730	3	1.22	24	4650	12	0.20	<5	316	0.19	61	<10	96	
028		1520	<1	0,90	58	1540	21	0.06	<5	144	0.40	123	<10	164	
030		1265	10	0.84	46	1460	20	0.07	<5	134	0.34	105	<10	150	
031		1315	1	0.81	45	1270	22	0.07	<5	118	0.39	89	<10	171	
032		1610	2	0.85	59	1200	40	0.05	<u></u>	178	0.38	147	<10	184	
033 DAZZLO		1505	1	0.69	51	1130	38	0.11	<5	157	0.31	120	10	132	
036 PROPER		2130	<1	0.73	52	1550	20	0.04	<5	120	0.39	118	<10	110	

de la composi-

2 1

-100

and the second

- 4*8*5--

LABORATOIRE D'ANALYSE BOURLAMAQUE L BOURLAMAQUE ASSAY LABORATORIES LTE

A State State

Dischaway Exploration Management Inc.	CERTIFICAT D'ANALYSES CERTIFICATE OF ANALYSIS
$\sum - \sum i i$	▶ 79685
ÉCHANTILLONS BOCK	Neptember 9, (VAL D'OR (QUÉBEC)
RECUDE Der Dekete Received FROM	ANALYSES 10 NU PY-SAA. 10 NG ASSAYS

Sample No.	Au ppb	Au ppm	Ag g/t	
NO19A NO198 NO190 NO190 NO195 NO195	1000 1000 1000 1000 1000 245	2:27 5:60 4:17	920664 425464	Helen Property
	13		<u> </u>	GLEAM
<u></u>			<u> </u>	PROPERTY DAZZLE

 Sample No.
 A + prò
 Ag c/h

 T904 dup:
 42
 3

.....

ALS Chemex Chimitec

Rapport Lab Geochimie Geochemical Lab Report

RAPPORT :		82,0 (COMPLET					•••••••••••••••••••••••••••••••••••••••		NCE: P.O.	*******	·····		
ROJET: /	ABORATO) LICUN	IRE D'ANALYSES	BOURLAMAQUE	LTEE			·····	SOUNIS Date recu:	PAR: 05-SEP-03	DATE DE L'IMPRE	SSION: 29-SE	P-03	********
MTE		e élénent	NONBRE	LIMITE INFÉ	RIEURE		HODE	TYPES D'ÉCHANTILLONS	NOMBRE	FRACTION UTILISÉE	NOMBRE	PRÉP. DE L'ÉCHAN.	ł
TRUDYE	COMPAND		D. WWWEIDES	DE DEFECTIO	C EXTRACTION	PER LI	3002	PULPE PREPAREE	10	TEL QUE RECU	10	TEL QUE RECU	
60929 1	ALIGNAV	Au - FA10/11	10	0.07 6/1	PYRO ANALYSE	GRAVIMET	RIE		10		,0		
30929	2 Ag	AG-ICP61	10		HF-HHO3-HCLO4-HCL	INDUC. D	OUP. PLASMA						
130929	-	AL-ICP61	10		HF-HIO3-HCLO4-HCL		ULP. PLASMA	COPIES DU RAPPORT À:	148 Ave Pa	realt	FACTURE	A: 148 Ave Perreeul	+
	As	AS-ICP61	10		HF-HICS-HCLO4-HCL		OUP. PLASMA						•••
		BA-1CP61	10		HF-HNDS-HCLO4-HCL	-	U.P. PLASHA	*******	*****	***	*****	****	
130929		BE-ICP61	10		HF-HNOS-HCLO4-HCL		DUP. PLASMA	Ce camport	ne doit à	tre reproduit que dans	a se totalit	é, Les données noises	wet daar
										exprimées sur base si			
130929 7	7 Ri	BI-ICP61	10	2 PPM	HF-HIDS-HCLO4-HCL		U.P. PLASMA			chentillons recus, id			
	3 Ca	CA-ICP61	10		HF-HIDS-HCLO4-HCL		OUP. PLASMA	d'échantil		citatici (come i aganty i a	onerries por		
030929		CD-1CP61	10		HF-HNDS-HCLO4-HCL		DUP. PLASMA			the state of the second se	******	*****	initianit.
030929 10		CO-1CP61	10		HF-HNOS-HCLO4-HCL		OUP. PLASHA						
030929 11		CR-1CP61	10		HF-HIGS-HCLO4-HCL		OUP. PLASMA						
030929 12		CU-1CP61	10		HF-HIDS-HCLO4-HCL		DUP. PLASMA	•					
	6 1944	00 10/01		1 776	HO THEFT INCOM								
030929 13	5 50	FE-ICP61	10	0.01 PCT	HF-HNO3-HCLO4-HCL	THINKIC CO	U.P. PLASHA						
030929 14		K -1CP61	10		HF-HNO3-HCLO4-HCL		OUP. PLASMA						
030929 1		MG-ICP61	10		HF-HN03-HCL04-HCL		OUP. PLASNA						
050929 16		MN-1CP61	10		HF-HN03-HCLO4-HCL		OUP. PLASMA						
030929 17		ND-ICP61	10		HF-HND3-HCLO4-HCL		OUP. PLASMA						
030929 18		NA-ICP61	10		HF-HN03-HCLO4-HCL		JUP. PLASMA						
0.9076.9 10		NA-JOROT	i v	0.01 PCI	HI- HIGH-HELOH- NGL	11000.0	OUT - FLASHA						
030929 19	5 M4	N1-ICP61	10	1 PPM	HF-HINDS-HCLO4-HCL		DUP, PLASHA						
030929 20		P -ICP61	10		HF-HNOJ-HCLO4-HCL		OUP. PLASHA DUP. PLASHA						
030929 2		P8-10P61			HF-HNOS-HCLO4-HCL		OUP. PLASMA						
030929 2		S ·ICP61	10 10		HF-HNOS-HCLO4-HCL		OUP. PLASMA OUP. PLASMA						
050929 2													
050929 2		SB-ICP61 SR-ICP61	10		HF-HNO3-HCLO4-HCL HF-HNO3-HCLO4-HCL		OUP. PLASMA						
134767 C	4 ar	3K-1070	10	1 PPM	nr-muu-muu-muu	INDOG. D	OUP. PLASMA						
030929 2	5 74	TI-ICP61	40	0.05 807	UE - 10/07 - 1/01 // - 1/01								
030929 2		V - 10961	10		HF-HNO3-HCLO4-HCL HF-HNO3-HCLO4-HCL		OUP. PLASHA						
			10				DUP, PLASMÀ						
030929 2		W - ICP61	10		HF-HNOJ-HCLO4-HOL		DLP. PLASMA						
030929 2		ZN-ICP61	10		NF-HNOS-HOLO4-HOL		OUP. PLASMA						
030929 2	y Ag	Ag - GAO1	10	0.1 PPM	HCL:HN03 (3:1)	AUSCRIPTI	on atomique						

ALS Chemex Chimitec

Rapport Lab Geochimie Geochemical Lab Report

- 94- -

	LABORATOIRE			XIRLAM	Nale l'II	EE																	liet: /			
PPORT:	c03-64182. 0	(COMPI	LET)							•••••	• • • • • • • • • • • • • • • • • • • •	DATE	RECU:	05•SE	P-03	ĐAT	e de	LINN	RESSIC	N: 29-5	EP-0	5 1	PAGE	1 DE	3	•••
Méro de Échant I	e élément : Illon unités		Ag PFM		As PPN P	Ba Be FM PPN	Bi PPN	Ca PCT	Cđ PPM	Co (PPR PF	Cr CLI PM PPM	Fe PCT	PCT	Ng PCT P	nn M Phi ppi	o Na M PCT	Ni PPN	P PPN	Pb PPM	S PCT	SID PPM	2.	TI PPN	W PPM	2n PfM	
120B	GLEAM		0.61			30 1.6		\$.77								9 3.34				0.52						⊲0.1
120 <u>c P</u> 119a	PROPERTY				26 10800 <			2.83								6 5.94 B 0.01			8470	0.17 5.52						9.7 28.7
) 198					10000 <						· · · · · · · · · · · · · · · · · · ·	•				** . 20000				10.00						45.5
) 19C	HELEN				10000 <	202.202	•					•			5. O.		•	20		2.33						31.6
	ROPERTY									่∭	3															
)190) 19 E			•		10000			0.0000		- S. A. 1992	.4.52				2023	B <.01		30 20	543 364	99997 - XXX		ا.> ا> ا.> ال	÷		- 9 6 6 6 7 m h	48.5
19F					10000 <						~				< 539	<u>6 <.01</u>		- CO	898	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						•
344		0.27	58.3	4. 93	210.4	40 1.4	2		500.0	*5 10	01 .27	0.86	1.56	D.21	21 1	0 1.39	4 1	1410 >								55.1
)04	DAZZLE	U, 14	3.2	1.05 >	10000		. 13	0.29	0.8	* כו	× ×	13.10	0212-0	9.10 		5 0.32	26	130	110	6.5 5	42	6 9 0.4		, v		3.0
				- 											- 2000-						:					
		•									and the second sec			11 4					:			: 				·
					24 4 4			^{ta} nanan utan, minu . Turk Kan, minu .						200 200 200 200 200 200 200 200 200 200												

Rapport Lab Geochimie Geochemical Lab Report

IENT : LABORATOIRE PPORT: CO3-64182.0	(COMPLET)	RLAMAQUE LTEE			D,	TE RECU :	05-SEP-03	i DATE	DE L'IMPR	ESSION: 29-SEP-0		T: ALCUN E 2 de 3	
NESURE ÉLÉMENT ANDARD LINITÉS	Augrav Ag	AL AN BA MA PCT PPN PPM PPM	Bi Ca PPN ACT	Cd Co Ci PPN PPN P	- Cu	Fe K PCT PCT	Mg Mn PCT PPN	No Na PPN PET	NI P PPN PPN	PD S SD PPN PCT PPN	SF TI NGM PCT	V V Zh PPN PPN PD	Ag PPP
M16	14.98		- 👯			. #3	• •		- 🌡			A	
abre d'analyses	1	•		- 11 - 11	. 🎆	- 200	• \$.•		- 🏼	_ ####			
leur de moyenne	14.98	- 300 - 4	•	- 200 -	. 8 🎆 -		- 8 -		-	- 200			
art-type	•	- 384 - 54	• 8	- 200 -	· : 🖉 -	• Š	•					<u>, 3</u>	
leur acceptee	15.15 -		-	• • •		-	•	•	•	• • • •			-
NHET LKSD-2		- 🔅 - 🕒		- 🐺 -	•	- 201			•	•	-		0.7
nbre d'analyses	• •	•	- 🞆-		•	•				•		· · · ·	1
leur de moyenne		•	- 📖 -					• .	•	- 200		i - 33 +	0.7
art-type	- (-)	• 888 • 76	•				- 2,82	• 💥 🤅	- 3			·· · · · ·	
leur accept er	•		•			• • •	•	•	-	• • • •	• •	• •	0.8
ANC		- 17-1 - 🗰	- 🗶 -	- 🞆 -		•	- 38	- 2	- 📖		- 18	74 - 80	4 0.1
nbre dianalyses	-		- 🦉 -	- 🗰 -		- •{	- 33	- : 🐇	• ###	•			1
leur de moyenne	- 0. <u>-</u> 0	•	- 22 -	- 34			- 34	- 28			88 88		0.1
art-type	•		- 44	- 34		•		- 21	- 200				-
leur acceptee	Ø.01 Ø.1 <.	01 41 <1 <.1	<1 <0.01	এ. 1 ্ব ব	<1 <0	.01 <.01	·.01 <1	<1 <.01	ત 🕅 🗋	<1 <0.01 <1	<1 <.01	ৰ ব ব	0.1
	4		•					ş X					
			÷.			· .		÷					
												ir XI	
						1							
			0 D 1			3 (23)	. N		- <u>8</u> 4				
			:. :		2 - E			•			:	* 5.	
	·		2 2 2					2			: ;./		
					<u>29</u>	833	• •		- 13 <i>j</i> jj				
			20 19 - 1						8 X		¥1		
						Maria I.	%				£		
			÷ . ~ .										
		¥.					No.				2		
			· ·				ĺ						
		·* 人			•			2		2° 9995			
							à.		·				
	: • »,				- 222 : 282								

ALS Chemex Chimitec

Rapport Lab Geochimie Geochemical Lab Report

CLIENT : LABORATOIRE RAPPORT: CO3-64182.0		DATE RECU : 05-SEP-03						DATE I	DE L'IMP	RESSION: 29-3	EP-03	PROJET: AUCLIN 3 PAGE 3 DE 3							
NUMÉRO DE ÉLÉMENT L'ÉCHANTILLON UNITÉS		Ag Prin	AL PCT	. As Ba PPM . PPM	Be PPN	Bi Ca PPM PCI	Cd Ci PPM PPI	o Cr I PPN	Cu PPM	Fe K PCT PC3	Mg Ma PCT PPM	Mo PPM	Ma N PCT PPI	f p N PPM	Pb S PPM PCT	SD Sr PPM PPM	T Í PCT	V V PPN PPM	Zn Ag PPN PPN
L0208 Duplicata	0.14	8.0		41 30	1.6	3 5.77	0.5 44	124	52	4.% 0.12	1.77 593	93	.34 7	9 710	130 0,52	< 848	0.40	64 <10	85 ⊲0.1 ⊲0.1
GLEA m Pro perty				:			an farster en					1 4 - 1 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4							
			ŝ					4	**** : ::			N 1008040394 - 4							
																· · ·			
			-									. 3000							
												8							
					19 1		99.4 2 -	ș.	<u>.</u>	· · ·						:			
													· · ·			rea de sera. 1865 - Seran Carran 1866 - Seran Seran Seran			
												•							
				•		: 					*	:		÷		:	:		