

NOTICE OF INTENT FOR DISCHARGE PURSUANT TO MASSACHUSETTS REMEDIATION GENERAL PERMIT MAG9100000

266 WAVERLY STREET FRAMINGHAM, MASSACHUSETTS

MAY 16, 2018

Prepared For:

U.S. Environmental Protection Agency
Office of Ecosystem Protection
5 Post Office Square – Suite 100
Mail Code OEP06-01
Boston, MA 02109-3912

On Behalf Of:

MCRT Northeast Construction LLC 200 Summit Drive, Suite 450 Burlington, MA 01803

2269 Massachusetts Avenue Cambridge, MA 02140 www.mcphailgeo.com (617) 868-1420

PROJECT NO. 6010.9.03

May 16, 2018

U.S. Environmental Protection Agency Dewatering GP Processing Industrial Permit Unit (OEP 06-4) 5 Post Office Square – Suite 100 Mail Code OEP06-01 Boston, MA 02109-3912

Attention: To Whom It May Concern

Reference: 266 Waverly Street, Framingham, Massachusetts

Notice of Intent for Construction Dewatering Discharge Under Massachusetts Remediation General Permit MAG910000

Ladies and Gentlemen:

On behalf of MCRT Waverly 266 LLC, McPhail Associates, LLC (McPhail) has prepared the attached Notice of Intent (NOI) for coverage under the Remediation General Permit (RGP) MAG910000 for the discharge of construction dewatering effluent into the Beaver Dam Brook which flows into the Fiske Pond via the City of Framingham storm drainage system. The temporary construction dewatering discharge will occur during redevelopment of the of 266 Waverly Street property in Framingham, Massachusetts (subject site). Refer to **Figure 1** entitled: "Project Location Plan" for the general site locus.

These services were performed and this permit application was prepared in accordance with verbal authorization of MCRT Waverly 266 LLC. These services are subject to the limitations contained in **Appendix A**.

The required Notice of Intent Form contained in the RGP permit is included in **Appendix B** and supporting information is included in **Appendix C**. This project is considered Activity Category III-G as defined in the RGP. Category III-G is defined as Contaminated Site Dewatering from Sites with Known Contamination. Based on historical and current soil and groundwater analysis completed at the site and constituents of concern (COCs) detected under subcategory A (Inorganics), thus, Technology Based Effluent Limitations (TBELs) for Type A contamination apply.

Applicant/Operator

The applicant for the Notice of Intent-Dewatering General Permit is:

MCRT Northeast Construction LLC 200 Summit Drive, Suite 450 Burlington, MA 01803

Attention: Britton Bradford

Office: (405) 315-2382

Email: bbradford@mcrtrust.com

Site Location and Existing Conditions

Fronting onto Waverley Street to the north, the subject site is bounded to the west and southwest by Marble Street, to the southeast by Blandin Avenue and to the east by commercial property. The approximately 3-acre project site is occupied by two commercial buildings, one of which is currently vacant. The remainder of the project site is covered by an asphalt paved parking lot and associated driveways as well as by landscaped margins.

Although ground surface which immediately surrounds the subject buildings is generally flat, the surrounding topography of the subject site slopes downward from north to south. The surface of the parking lot that occupies the northern portion of the subject site varies from approximately Elevation +156.5 to +160. At the southern portion of the subject site, ground surface generally ranges from approximately Elevation +156.5.

Approximate limits of subject site and existing conditions are detailed on the attached **Figure 2**.

Proposed Scope of Site Development

The proposed development is understood to include the demolition of the existing buildings followed by the construction of a six-story, podium style structure, the footprint of which will occupy the majority of the project site. We understand that the lowest level of the structure will consist of a partially below-grade ventilated parking garage with a floor slab located at approximately 6 feet below ground surface corresponding to about Elevation +153.8. The remainder of the subject site, located outside of the building footprint, will be occupied by an asphalt paved parking lot and landscaping.

It is anticipated that a 4 to 8-foot deep excavation will be necessary to facilitate construction of the below grade parking floor slab. Additionally, construction of the foundation footings beneath the lowest level floor slab will require the excavation of natural soil to Elevation +149.6, which corresponds to depths ranging from approximately 6.5 to 10.5 feet below existing ground surface.

Site Environmental Setting & Surrounding Historical Places

According to an on-line edition of the Massachusetts Geographic Information Systems DEP which was viewed on April 19, 2018, the subject site is not located within the boundaries of a Sole Source Aquifer, Potentially Productive Aquifer or within a Zone II, Interim Wellhead Protection Area as defined by the Massachusetts Department of Environmental Protection. Further, there are no public drinking water supply wells, no Areas of Critical Environmental Concern, no fish habitats, no habitats of Species of Special Concern or Threatened or Endangered Species within specified distances of the subject site.

The GIS Map indicates that there are protected open space areas within 600 feet of the subject site. The closest water body is Farm Pond, which is located approximately 3,000 feet to the west of the subject site. There are no areas designated as solid waste sites (landfill) noted as being located within 3,000 feet of the subject site. A copy of the

Massachusetts GIS Priority Resources Map is included in **Appendix C**. In addition, a report prepared by Environmental Database Resource, Inc. (EDR) was reviewed for this study. Based on EDR's search of FEMA Flood Plain Maps, the subject site is located within a 100 year and 500-year flood plain.

A review of information provided by the U.S. Fish and Wildlife Service in an Information for Planning and Conservation (IPaC) Trust Resource Report for the subject site did not identify the presence of threatened or endangered species at or in the vicinity of the discharge location and/or discharge outfall. Further, the Trust Resource Report did not identify the presence of a critical habitat in the vicinity of the discharge outfall and/or discharge location. Based upon the above, the site is considered a criterion A pursuant to Appendix IV of the RGP. A copy of the IPaC Trust Resource Report and U.S. Fish and Wildlife Service's Nationwide Standard Conservation Measures are included in **Appendix C**.

A review of the online Massachusetts Cultural Resource Information System and the National Register of Historical Places for Suffolk County in Boston, Massachusetts did not identify records or addresses of historic places that exist in the immediate vicinity of the subject site and/or outfall location.

Site and Release History

Historical information pertaining to the subject site indicates that the currently existing buildings were constructed in 1960. The tenants which occupied the building at the southern portion of the subject site included a dry cleaner, a super market, a liquor store, a restaurant, and a motorcycle dealership. The building at the northeastern portion of the subject site has been occupied by a bank, a coffee shop and most recently a pharmacy. Prior to construction of the currently existing buildings, historical Sanborn Maps and Aerial Photographs from 1915 through 1957 indicate that the northern portion of the subject site had been occupied by a residential complex consisting of several 2 ½-story row-style houses and associated garages. During a majority of this time period, a small portion of a manufacturing complex had occupied the southern end of the subject site.

In anticipation of the proposed redevelopment, a series of subsurface exploration programs was completed at the subject site which involved the sampling and laboratory analysis of soil and groundwater samples. The results of laboratory analyses identified releases of lead and arsenic within three localized areas of fill material which were previously reported to the DEP and to which RTN 3-34896 was assigned. Based on analytical testing, Reportable Concentrations of arsenic and lead have not affected groundwater.

Temporary Construction Dewatering

It is anticipated excavations during site construction will extend below groundwater elevation and based on depths of foundations and observed groundwater at the site, the discharge observed will likely be on order of 25 to 50 gallons per minute (gpm). These estimates do not include surface run-off which will be removed from the excavation during periods of precipitation.

Groundwater was observed at the site at approximately 5.5 to 10.1 feet below ground surface. In consideration of the indicated depth of groundwater below the existing ground surface, it is anticipated that, surface water may become trapped and accumulate in excavations after periods of heavy precipitation and may necessitate localized sumping. Dewatering for the site will be short-term and the effluent will be discharged off-site through municipal storm drains.

Given that the area of excavation will occupy a majority of the subject site, temporary onsite collection and recharge of groundwater may not be feasible during construction. As a result, construction dewatering will discharge collected groundwater into the storm drain system under the requested Remediation General Permit. Additionally, a Notice of Intent for dewatering under a NPDES General Permit for Discharges from Construction Activities (CGP) will be filed since the area that is subject to dewatering is greater the 1 acre. In accordance with the provisions of the CGP, a Stormwater Pollution Prevention Plan (SWPPP) will be prepared to address potential stormwater runoff from the subject site as well as the dewatering of groundwater during construction of the proposed subsurface utilities.

A review of available subgrade sanitary and storm sewer system plans accessed from the City of Framingham, indicates the presence of a dedicated stormwater drain systems on Waverly Street and Blandin Avenue which border the site to the north and south. The discharge flow, indicated by the Framingham plans, travels east-southeast beneath Beaver Street and discharges into the Beaver Dam Brook, shown in detail on the enclosed **Figure 3**.

Summary of Groundwater Analysis

As part of environmental due diligence assessment activities in 2015, groundwater testing was performed across the subject site for the presence of volatile organic compounds (VOCs), volatile petroleum hydrocarbons (VPH) and extractable petroleum hydrocarbons (EPH). With the exception of some VOCs, the results of the laboratory testing did not indicate concentrations of the tested compounds in excess of laboratory reporting limits. Groundwater samples that were obtained from monitoring wells located at the southeastern portion of the subject site detected low levels of tectrachloroethene (TCE), acetone, carbon disulfide, and 2-butanone which were below the applicable MCP RCGW-2 reporting thresholds. The results of the laboratory analysis are summarized on **Table 1**.

More recently, on November 20, 2017, groundwater samples were obtained from B-3 (OW) and B-14 (OW) and submitted for RGP Section A Inorganics. The inorganics tested include total metals, total suspended solids (TSS), chloride, total residual chlorine (TRC), pH. A summary of the analytical data is provided on **Table 2.** A copy of the laboratory report is included in **Appendix D**.

In summary, the results of the laboratory analysis detected concentrations of iron which exceed the EPA chronic freshwater criteria for aquatic life.

Per the EPA, a receiving water body sample was obtained from the Beaver Dam Brook as indicated on **Figure 2** and analyzed for Recoverable Metals, pH, Ammonia, and Hardness. The results of the sample we tabulated and assessed using Appendix V of the 2017 NPDES RGP included in **Appendix C** and summarized in **Table 3** and verified by laboratory data analysis located in **Appendix E.** According to those results, TBELs apply to this specific discharge with the exception of a Water Quality Based Effluent Limitation (WQBEL) applying concentrations of total iron. It is noted that a WQBEL is listed for TRC, however, groundwater at the subject site does not have chlorinated additives. Thus, the WQBEL for TRC does not apply to this specific discharge.

Groundwater Treatment

Based on the results of groundwater testing performed at the subject site, the treatment of dewatered groundwater during construction will be necessary prior to its off-site discharge. The detected concentrations of metals, in particular iron, are considered to be likely attributable to total suspended solids. Therefore, a 10,000-gallon capacity settling tank and bag filter in series will be required to settle and filter out suspended soil particles in the discharge during construction dewatering to meet applicable effluent limits established by the US EPA prior to off-site discharge. If petroleum impacted groundwater is encountered during excavation, a granular activated carbon (GAC) filter will be necessary to facilitate groundwater discharge. A schematic of the treatment system is shown on **Figure 4**.

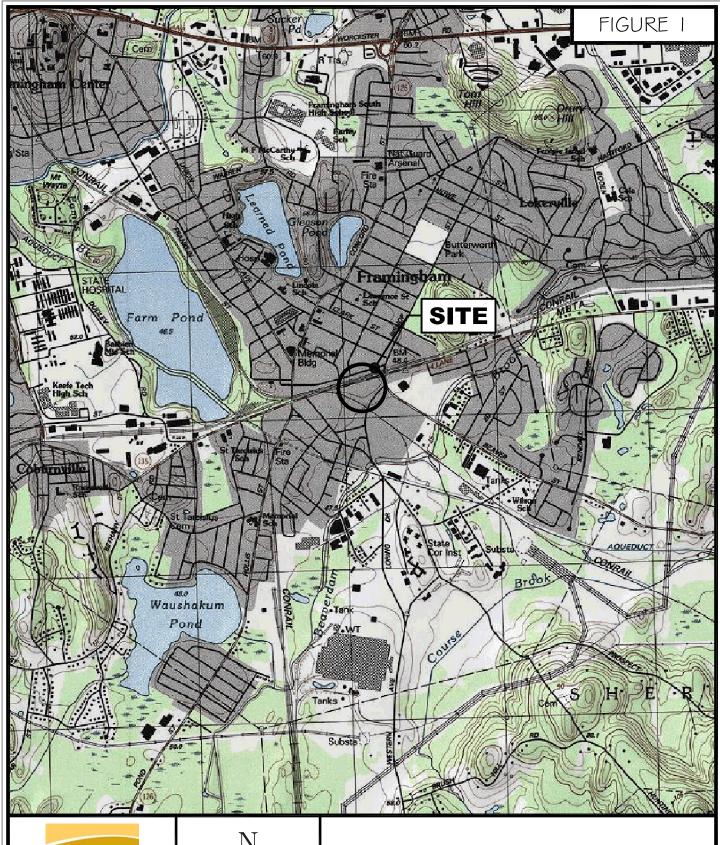
Summary and Conclusions

The purpose of this report is to assess site environmental conditions and groundwater data at 266 Waverly Street located in Framingham, Massachusetts to support the attached Notice of Intent (NOI) for coverage under the Remediation General Permit (RGP) MAG910000 for the discharge of construction dewatering effluent into Fiske Pond by way of the Beaver Dam Brook via the City of Framingham storm drainage system.

The treatment of dewatered groundwater during construction will be necessary prior to its off-site discharge. Specifically, a 10,000-gallon capacity settling tank and bag filter in series will be required to settle and filter out suspended soil particles in the discharge during construction dewatering to meet applicable effluent limits established by the US EPA prior to off-site discharge.

We trust that the above satisfies your present requirements. Should you have any questions or comments concerning the above, please do not hesitate to contact us.

Sincerely,


McPHAIL ASSOCIATES, LLC

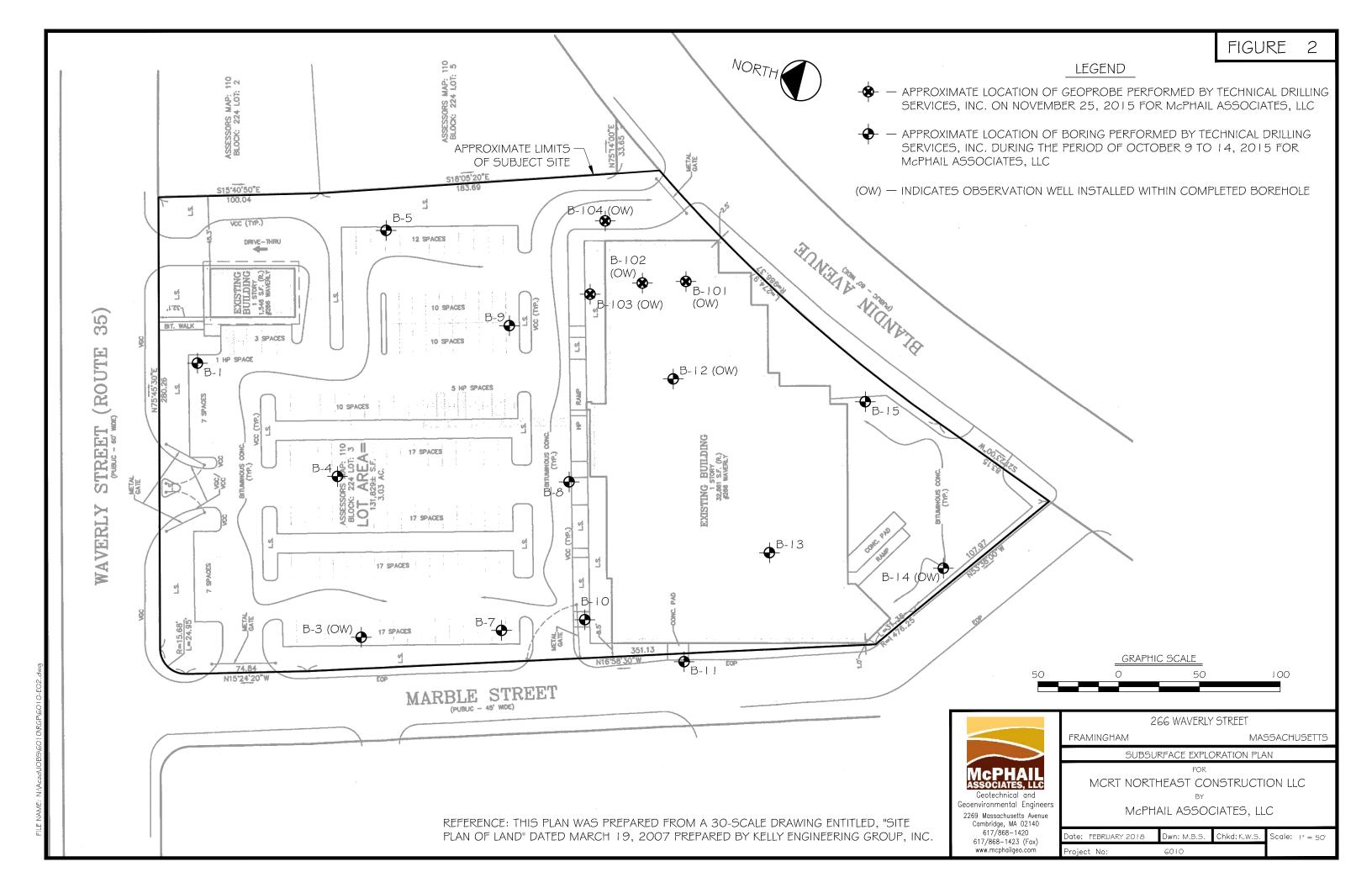
William J. Burns, L.S.P.

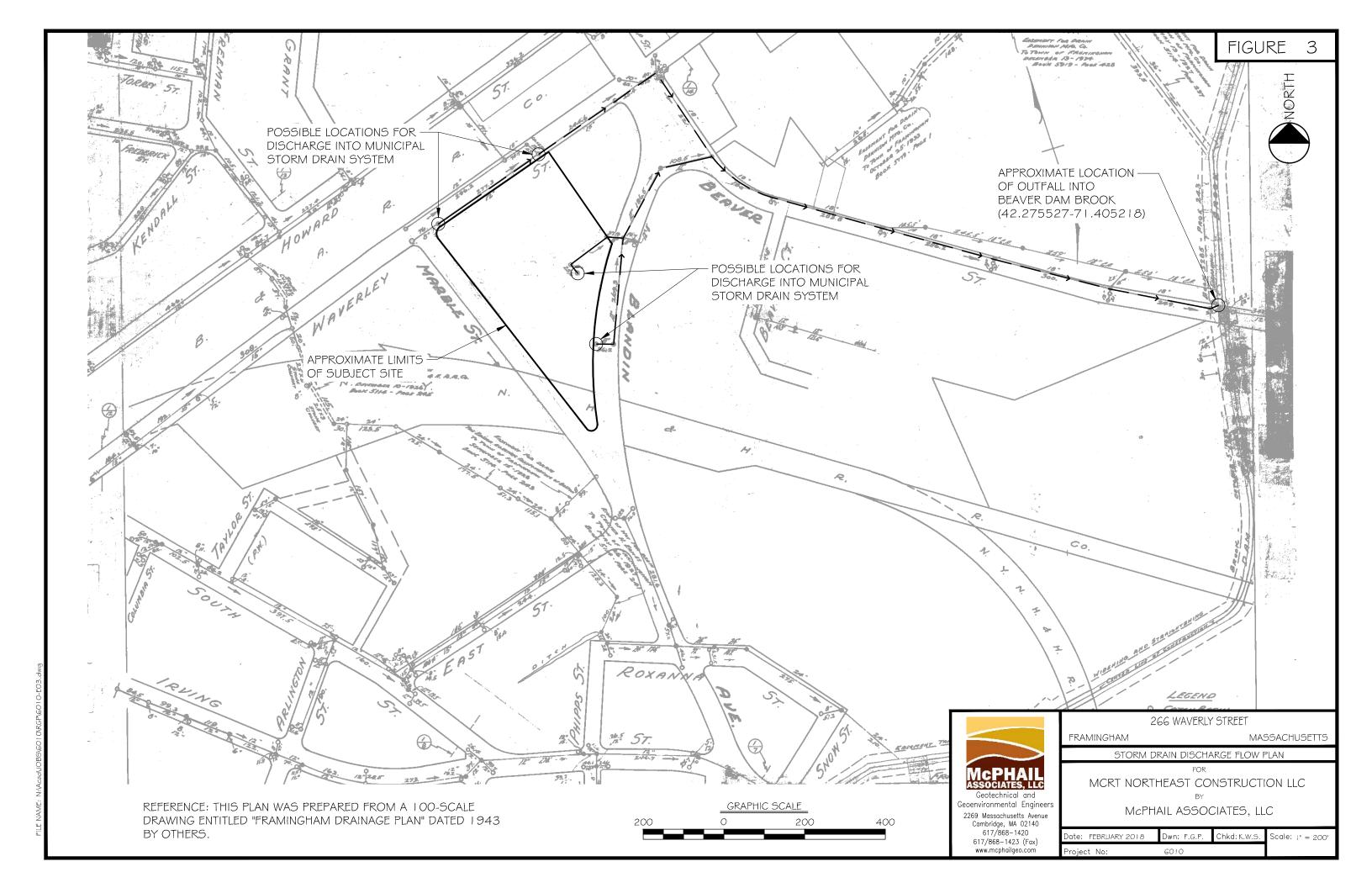
Kirk W. Seaman

N:\Working Documents\Reports\6010_RGP_121917 Rev 1.docx

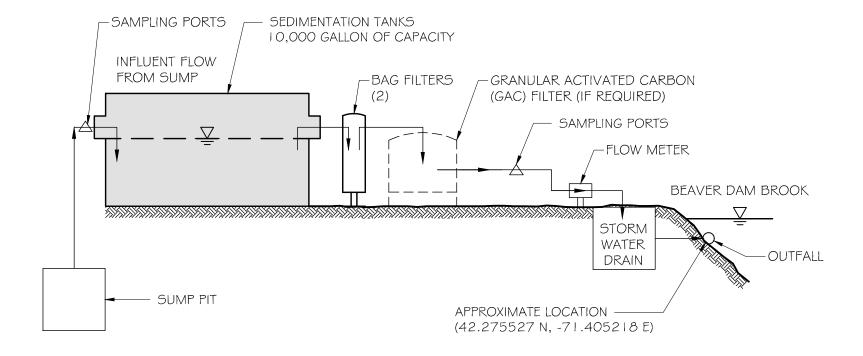
KWS/wjb

Geotechnical and Geoenvironmental Engineers 2269 Massachusetts Avenue Cambridge, MA 02140 617/868-1420 617/868-1423 (Fax) www.mcphailgeo.com




PROJECT LOCATION PLAN

266 WAVERLY STREET


FRAMINGHAM

MASSACHUSETTS

FIGURE

266 WAVERLY STREET

CAMBRIDGE

MASSACHUSETTS

SCHEMATIC OF TREATMENT SYSTEM

FOR

MCRT NORTHEAST CONSTRUCTION LLC

McPHAIL ASSOCIATES, LLC CONSULTING GEOTECHNICAL ENGINEERS

Date: FEBRUARY 2018 Dwn: M.B.S.

Chkd: K.W.S.

Scale: N.T.S.

Project No:

6010

TABLE 1 ANALYTICAL RESULTS - HISTORICAL GROUNDWATER

266 Waverley Street; Framingham, MA Project No. 6010

LOCATION	RCGW-2	B-3 (OW)	B-12 (OW)	B-14 (OW)	B-101 (OW)	B-102 (OW)	B-104 (OW)
SAMPLING DATE	Reporting	10/19/2015	10/19/2015	10/19/2015	11/30/2015	11/30/2015	11/30/2015
LAB SAMPLE ID	Thresholds	L1526732-01	L1526732-02	L1526732-03	L1531325-01	L1531325-02	L1531325-03
Extractable Petroleum Hydroca	rbons (ug/l)						
C9-C18 Aliphatics	5000	ND(100)	-	-	-	-	-
C19-C36 Aliphatics	50000	ND(100)	-	-	-	-	-
C11-C22 Aromatics, Adjusted	5000	ND(100)	-	-	-	-	-
MCP Volatile Organics (ug/l)							
Tetrachloroethene	50	-	1.4	ND(1)	2.3	1	ND(1)
Acetone	50000	-	15	5	ND(5)	ND(5)	ND(5)
Carbon disulfide	10000	-	14	ND(2)	ND(2)	ND(2)	ND(2)
2-Butanone	50000	-	ND(5)	5.5	ND(5)	ND(5)	ND(5)
SUM		-	30.4	10.5	2.3	1	ND
Volatile Petroleum Hydrocarbor	ns (ug/l)						
C9-C10 Aromatics	4000	ND(50)	-	ND(50)	-	-	-
C5-C8 Aliphatics, Adjusted	3000	ND(50)	-	ND(50)	-	-	-
C9-C12 Aliphatics, Adjusted	5000	ND(50)	-	ND(50)	-	-	-
Benzene	1000	ND(2)	-	-	-	-	-
Toluene	40000	ND(2)	-	-	-	-	-
Ethylbenzene	5000	ND(2)	-		-	-	-
p/m-Xylene	3000	ND(2)	-		-	-	-
o-Xylene	3000	ND(2)	-	,	-	-	-
Methyl tert butyl ether	5000	ND(3)	-		-	-	-
Naphthalene	700	ND(4)	-	-	-	-	-

TABLE 2 ANALYTICAL RESULTS - GROUNDWATER

266 Waverly Street; Framingham, MA McPhail Job No. 6010

	T T		
LOCATION		B-3(OW)	B-14(OW)
SAMPLING DATE		11/20/2017	11/20/2017
LAB SAMPLE ID		L1742763-01	L1742763-02
	EPA-ALFCMC		
General Chemistry			
Chromium, Trivalent (ug/l)	74	ND(10)	ND(10)
Cyanide, Total (ug/l)	5.2	ND(5)	ND(5)
Chlorine, Total Residual (ug/l)		ND(20)	ND(20)
pH (SU)		6.6	6.9
Nitrogen, Ammonia (ug/l)		148	ND(75)
Chromium, Hexavalent (ug/l)	11	ND(10)	ND(10)
Chloride (ug/l)	230000	532000	395000
Total Hardness (ug/l)			
Hardness		337000	172000
Total Metals (ug/l)			
Antimony, Total		ND(4)	ND(4)
Arsenic, Total	150	4.4	ND(1)
Cadmium, Total	0.25	ND(0.2)	0.2
Chromium, Total		ND(1)	3.28
Copper, Total		ND(1)	3.98
Iron, Total	1000	22800	1680
Lead, Total	2.5	ND(1)	2.03
Mercury, Total	0.77	ND(0.2)	ND(0.2)
Nickel, Total	52	ND(2)	5.7
Selenium, Total	5	ND(5)	ND(5)
Silver, Total		ND(0.4)	ND(0.4)
Zinc, Total	120	ND(10)	ND(10)

TABLE 3 ANALYTICAL RESULTS - SURFACE WATER

266 Waverly Street; Framingham, MA McPhail Job No. 6010

	RECEIVING
	WATER BODY
	12/1/2017
	L1744182-01
EPA-ALFCMC	
	6.8
	249
	115000
340	ND(1)
2	ND(0.2)
	ND(1)
	1.4
	2230
65	2.23
470	2.01
470	2.01
	340 2 65

APPENDIX A:

LIMITATIONS

LIMITATIONS

The purpose of this report is to present a summary of environmental conditions, including the results of testing of groundwater samples obtained from a groundwater monitoring well on the property located at 266 Waverly in Framingham, Massachusetts in support of an application for approval of temporary construction dewatering discharge of groundwater into surface waters of the Commonwealth of Massachusetts under EPA's Massachusetts Remediation General Permit MAG910000.

The observations were made under the conditions stated in this report. The conclusions presented above were based on these observations. If variations in the nature and extent of subsurface conditions between the spaced subsurface explorations become evident in the future, it will be necessary to re-evaluate the conclusions presented herein after performing on-site observations and noting the characteristics of any variations.

The conclusions submitted in this report are based in part upon analytical data obtained from analysis of groundwater samples, and are contingent upon their validity. The data have been reviewed, and interpretations have been made in the text. It should also be noted that fluctuations in the types and levels of contaminants and variations in their flow paths may occur due to changes in seasonal water table, past practices used in disposal and other factors.

Laboratory analyses have been performed for specific constituents during the course of this assessment, as described in the text. However, it should be noted that additional constituents not searched for during the current study may be present in soil and/or groundwater at the site.

This report and application have been prepared on behalf of and for the exclusive use of Mill Creek Residential. This report and the findings contained herein shall not, in whole or in part, be disseminated or conveyed to any other party, other than the submission to relevant governmental agencies, nor used in whole or in part by any other party without prior written consent of McPhail Associates, LLC.

APPENDIX B:

NOTICE OF INTENT - NPDES REMEDIATION GENERAL PERMIT

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site:	Site address:						
	Street:						
	City:		State:	Zip:			
2. Site owner	Contact Person:						
	Telephone:	Email:					
	Mailing address:						
	Street:						
Owner is (check one): ☐ Federal ☐ State/Tribal ☐ Private ☐ Other; if so, specify:	City:		State:	Zip:			
3. Site operator, if different than owner	Contact Person:						
	Telephone:	Email:					
	Mailing address:						
	Street:						
	City:		State:	Zip:			
4. NPDES permit number assigned by EPA:	5. Other regulatory program(s) that apply to the site (check all that apply):						
NPDES permit is (check all that apply: □ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit □ Other; if so, specify:	 □ MA Chapter 21e; list RTN(s): 3-34896 □ NH Groundwater Management Permit or Groundwater Release Detection Permit: 	 □ CERCLA □ UIC Program □ POTW Pretreatment □ CWA Section 404 					

В.	Receiving	water	info	rmation:
₽.	11000111115	" att	111101	IIII

1. Name of receiving water(s):	Waterbody identification of receiving water	vater(s): Classification of receiving water(s):							
Receiving water is (check any that apply): □ Outstanding Resource Water □ Ocean Sanctuary □ territorial sea □ Wild and Scenic River									
2. Has the operator attached a location map in accord	ance with the instructions in B, above? (check one)	: □ Yes □ No							
Are sensitive receptors present near the site? (check of If yes, specify:	one): □ Yes □ No								
3. Indicate if the receiving water(s) is listed in the State pollutants indicated. Also, indicate if a final TMDL is 4.6 of the RGP. No TMDL for Fisk Pond									
4. Indicate the seven day-ten-year low flow (7Q10) o Appendix V for sites located in Massachusetts and A		n the instructions in							
5. Indicate the requested dilution factor for the calcul accordance with the instructions in Appendix V for s									
6. Has the operator received confirmation from the applicate, indicate date confirmation received:		,							
7. Has the operator attached a summary of receiving (check one): \square Yes \square No	water sampling results as required in Part 4.2 of the	RGP in accordance with the i	nstruction in Appendix VIII?						
C. Source water information:									
1. Source water(s) is (check any that apply):									
☐ Contaminated groundwater	☐ Contaminated surface water	☐ The receiving water	☐ Potable water; if so, indicate municipality or origin:						
Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP	Has the operator attached a summary of influent sampling results as required in Part 4.2 of the	☐ A surface water other							
in accordance with the instruction in Appendix VIII? (check one):	RGP in accordance with the instruction in Appendix VIII? (check one):	than the receiving water; if so, indicate waterbody:	☐ Other; if so, specify:						
□ Yes □ No	□ Yes □ No								

2. Source water contaminants:							
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance						
the RGP? (check one): ☐ Yes ☐ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): □ Yes □ No						
3. Has the source water been previously chlorinated or otherwise contains resid	dual chlorine? (check one): □ Yes □ No						
D. Discharge information							
1.The discharge(s) is a(n) (check any that apply): \Box Existing discharge \Box New	w discharge □ New source						
Outfall(s):	Outfall location(s): (Latitude, Longitude)						
Discharges enter the receiving water(s) via (check any that apply): □ Direct di	scharge to the receiving water \Box Indirect discharge, if so, specify:						
☐ A private storm sewer system ☐ A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sew	ver system:						
Has notification been provided to the owner of this system? (check one): □ You	•						
Has the operator has received permission from the owner to use such system for discharges? (check one): Yes No, if so, explain, with an estimated timeframe for obtaining permission:							
Has the operator attached a summary of any additional requirements the owner of this system has specified? (check one): Yes No							
Provide the expected start and end dates of discharge(s) (month/year):							
Indicate if the discharge is expected to occur over a duration of: □ less than 12 months □ 12 months or more □ is an emergency discharge							
Has the operator attached a site plan in accordance with the instructions in D, a	above? (check one): Yes No						

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)					
	a. If Activity Category I or II: (check all that apply)					
	 □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters 					
 □ I – Petroleum-Related Site Remediation □ II – Non-Petroleum-Related Site Remediation 	b. If Activity Category III, IV, V, VI, VII or VIII: (check either G or H)					
 □ III – Non-Petroleum-Related Site Remediation □ III – Contaminated Site Dewatering □ IV – Dewatering of Pipelines and Tanks □ V – Aquifer Pump Testing □ VI – Well Development/Rehabilitation □ VII – Collection Structure Dewatering/Remediation □ VIII – Dredge-Related Dewatering 	□ G. Sites with Known Contamination c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply) □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters	□ H. Sites with Unknown Contamination d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply				

4. Influent and Effluent Characteristics

	Known	Known	1	_		Infl	uent	Effluent Limitations	
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
A. Inorganics									
Ammonia								Report mg/L	
Chloride								Report µg/l	
Total Residual Chlorine								0.2 mg/L	
Total Suspended Solids								30 mg/L	
Antimony								206 μg/L	
Arsenic								104 μg/L	
Cadmium								10.2 μg/L	
Chromium III								323 μg/L	
Chromium VI								323 µg/L	
Copper								242 μg/L	
Iron								5,000 μg/L	
Lead								160 μg/L	
Mercury								0.739 μg/L	
Nickel								1,450 µg/L	
Selenium								235.8 μg/L	
Silver								35.1 μg/L	
Zinc								420 μg/L	
Cyanide								178 mg/L	
B. Non-Halogenated VOCs	S								
Total BTEX								100 μg/L	
Benzene								5.0 μg/L	
1,4 Dioxane								200 μg/L	
Acetone								7.97 mg/L	
Phenol								1,080 µg/L	

	Known	Known				Influent		Effluent Limitations	
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride								4.4 μg/L	
1,2 Dichlorobenzene								600 μg/L	
1,3 Dichlorobenzene								320 μg/L	
1,4 Dichlorobenzene								5.0 μg/L	
Total dichlorobenzene								763 µg/L in NH	
1,1 Dichloroethane								70 μg/L	
1,2 Dichloroethane								5.0 μg/L	
1,1 Dichloroethylene								3.2 µg/L	
Ethylene Dibromide								0.05 μg/L	
Methylene Chloride								4.6 μg/L	
1,1,1 Trichloroethane								200 μg/L	
1,1,2 Trichloroethane								5.0 μg/L	
Trichloroethylene								5.0 μg/L	
Tetrachloroethylene								5.0 μg/L	
cis-1,2 Dichloroethylene								70 μg/L	
Vinyl Chloride								2.0 μg/L	
D. Non-Halogenated SVO	Cs								
Total Phthalates								190 μg/L	
Diethylhexyl phthalate								101 μg/L	
Total Group I PAHs								1.0 μg/L	
Benzo(a)anthracene								_	
Benzo(a)pyrene								_	
Benzo(b)fluoranthene								_	
Benzo(k)fluoranthene								As Total PAHs	
Chrysene								_	
Dibenzo(a,h)anthracene								_	
Indeno(1,2,3-cd)pyrene									

	Known	Known				Inf	luent	Effluent Lin	nt Limitations	
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL	
Total Group II PAHs								100 μg/L		
Naphthalene								20 μg/L		
E. Halogenated SVOCs										
Total PCBs								0.000064 µg/L		
Pentachlorophenol								1.0 μg/L		
	1			•						
F. Fuels Parameters Total Petroleum		1	1	1		1 1				
Hydrocarbons								5.0 mg/L		
Ethanol								Report mg/L		
Methyl-tert-Butyl Ether								70 μg/L		
tert-Butyl Alcohol								120 μg/L in MA 40 μg/L in NH		
tert-Amyl Methyl Ether								90 μg/L in MA 140 μg/L in NH		
Other (i.e., pH, temperatur	re, hardness,	salinity, LC	50, addition	al pollutar	ats present);	if so, specify:				

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)	
□ Adsorption/Absorption □ Advanced Oxidation Processes □ Air Stripping □ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption □ Ion Exchange □ Precipitation/Coagulation/Flocculation □ Separation/Filtration □ Other; if so, specify:	
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.	
Identify each major treatment component (check any that apply):	
□ Fractionation tanks□ Equalization tank □ Oil/water separator □ Mechanical filter □ Media filter	
☐ Chemical feed tank ☐ Air stripping unit ☐ Bag filter ☐ Other; if so, specify:	
Indicate if either of the following will occur (check any that apply):	
□ Chlorination □ De-chlorination	
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component. Indicate the most limiting component: Is use of a flow meter feasible? (check one): □ Yes □ No, if so, provide justification:	
Provide the proposed maximum effluent flow in gpm.	
Provide the average effluent flow in gpm.	
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): □ Yes □ No	

F. Chemical and additive information

1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □ scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify:
2. Provide the following information for each chemical/additive, using attachments, if necessary:
a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): \square Yes \square No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): ☐ Yes ☐ No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ FWS Criterion A : No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
□ FWS Criterion B : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat (informal consultation). Has the operator completed consultation with FWS? (check one): □ Yes □ No; if no, is consultation underway? (check one): □
Yes \square No
□ FWS Criterion C : Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the
FWS. This determination was made by: (check one) \square the operator \square EPA \square Other; if so, specify:

□ NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of
listed species. Has the operator previously completed consultation with NMFS? (check one): ☐ Yes ☐ No
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): □ Yes □ No
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): Yes No; if yes, attach.
H. National Historic Preservation Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ Criterion A : No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
☐ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
☐ Criterion C : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ☐ Yes ☐ No
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): \Box Yes \Box No
I. Supplemental information
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): Yes No
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ☐ Yes ☐ No

MAG910000 NHG910000 Appendix IV – Part 1 – NOI Page 24 of 24

J. Certification requirement

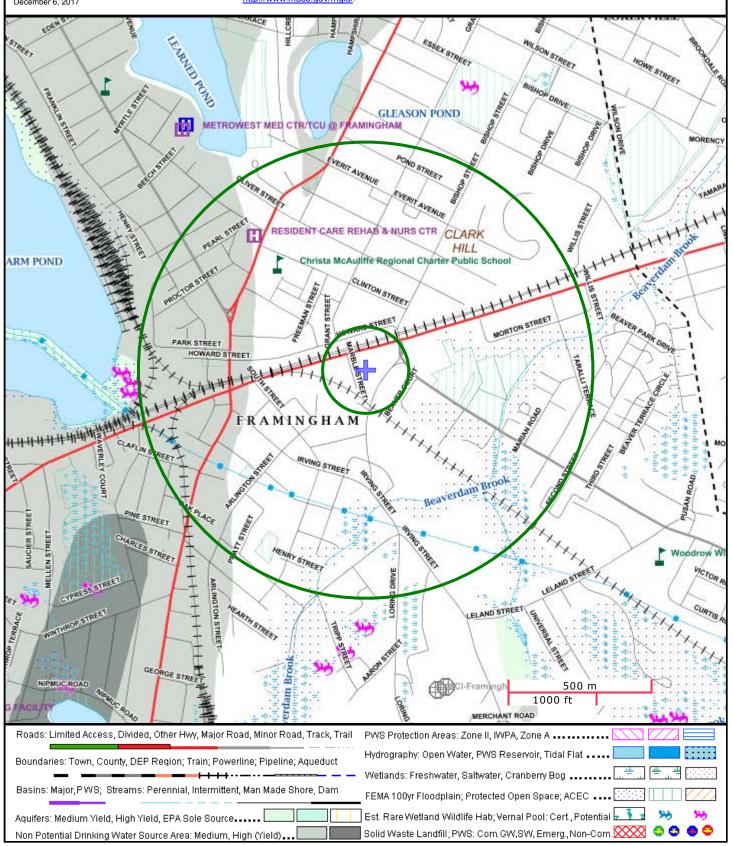
• • • • • • • • • • • • • • • • • • •	
I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in a that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and b no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are information, including the possibility of fine and imprisonment for knowing violations.	persons who manage the system, or those elief, true, accurate, and complete. I have
A BMPP meeting the requirements of this general permit will be deve BMPP certification statement: the initiation of discharge.	eloped and implemented prior to
Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes ■ No □
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes ■ No □
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested. Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes □ No □ NA □ Check one: Yes □ No □ NA ■
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge permit(s). Additional discharge permit is (check one): □ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit □ Other; if so, specify:	Check one: Yes ■ No □ NA □
Signature: Date Discussioned by: Date Date	te: 5/16/2018
0000000 10000710	

Print Name and Title: Britton Bradford

APPENDIX C:

DEP PRIORITY RESOURCES MAP USGS STREAMFLOW STATISTICS REPORT DILUTION FACTOR AND WQBEL CALCULATIONS ADDITIONAL NOI SUPPORT INFORMATION

MassDEP - Bureau of W aste Site Cleanup Phase 1 Site Assessment Map: 500 feet & 0.5 Mile Radii

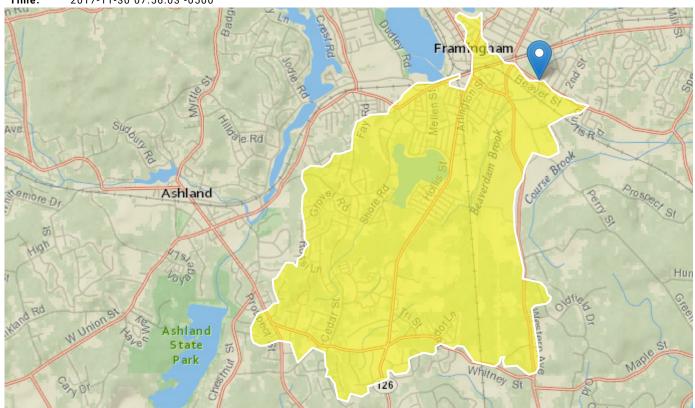

Site Information:

266 WAVERLY STREET FRAMINGHAM, MA

NAD83 UTM Meters: 4683387mN , 301194mE (Zone: 19) December 6, 2017

The information shown is the best available at the date of printing. However, it may be incomplete. The responsible party and LSP are ultimately responsible for ascertaining the true conditions surrounding the site. Metadata for data layers shown on this map can be found at: http://www.mass.gov/mgis/

11/30/2017 StreamStats


Mill Creek Residential StreamStats Report

Region ID: MA

Workspace ID: MA20171130125546294000

Clicked Point (Latitude, Longitude): 42.27551, -71.40527

Time: 2017-11-30 07:56:03 -0500

Basin Characteristics					
Parameter Code	Parameter Description	Value	Unit		
DRNAREA	Area that drains to a point on a stream	5.08	square miles		
BSLDEM250	Mean basin slope computed from 1:250K DEM	1.903	percent		
DRFTPERSTR	Area of stratified drift per unit of stream length	0.35	square mile per mile		
MAREGION	Region of Massachusetts 0 for Eastern 1 for Western	0	dimensionless		

Low-Flow Statistics Parameters [Statewide Low Flow WRIR00 4135]						
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit	
DRNAREA	Drainage Area	5.08	square miles	1.61	149	
BSLDEM250	Mean Basin Slope from 250K DEM	1.903	percent	0.32	24.6	
DRFTPERSTR	Stratified Drift per Stream Length	0.35	square mile per mile	0	1.29	

11/30/2017 StreamStats

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
MAREGION	Massachusetts Region	0	dimensionless	0	1

Low-Flow Statistics Flow Report [Statewide Low Flow WRIR00 4135]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	PII	Plu	SE	SEp
7 Day 2 Year Low Flow	0.652	ft^3/s	0.22	1.86	49.5	49.5
7 Day 10 Year Low Flow	0.291	ft^3/s	0.0774	1.02	70.8	70.8

Low-Flow Statistics Citations

Ries, K.G., III,2000, Methods for estimating low-flow statistics for Massachusetts streams: U.S. Geological Survey Water Resources Investigations Report 00-4135, 81 p. (http://pubs.usgs.gov/wri/wri004135/)

https://streamstats.usgs.gov/ss/

Massachusetts Cultural Resource Information System MACRIS

MACRIS Search Results

Search Criteria: Town(s): Framingham; Street No: 266; Street Name: Waverly St; Resource Type(s): Area, Building, Burial Ground, Object, Structure;

Inv. No. Property Name Street Town Year

Wednesday, December 6, 2017 Page 1 of 1

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

In Reply Refer To: November 30, 2017

Consultation Code: 05E1NE00-2018-SLI-0457

Event Code: 05E1NE00-2018-E-01042 Project Name: Mill Creek Residential

Subject: List of threatened and endangered species that may occur in your proposed project

location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 et seq.).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 et seq.), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the

human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 et seq.), and projects affecting these species may require development of an eagle conservation plan

(http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and

http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Project Summary

Consultation Code: 05E1NE00-2018-SLI-0457

Event Code: 05E1NE00-2018-E-01042

Project Name: Mill Creek Residential

Project Type: DEVELOPMENT

Project Description: >1 Acre

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/42.27716587926126N71.41087579326293W

Counties: Middlesex, MA

Endangered Species Act Species

There is a total of 1 threatened, endangered, or candidate species on this species list. Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species. See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

Mammals

NAME STATUS

Northern Long-eared Bat Myotis septentrionalis

Threatened

No critical habitat has been designated for this species.

Species profile: https://ecos.fws.gov/ecp/species/9045

Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

APPENDIX D: LABORATORY ANALYTIC DATA - GROUNDWATER

ANALYTICAL REPORT

Lab Number: L1526732

Client: McPhail Associates

2269 Massachusetts Avenue

Cambridge, MA 02140

ATTN: Ambrose Donovan Phone: (617) 868-1420

Project Name: 266 WAVERLY ST.

Project Number: 6010.9.00

Report Date: 10/26/15

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 266 WAVERLY ST.

Project Number: 6010.9.00

 Lab Number:
 L1526732

 Report Date:
 10/26/15

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1526732-01	B-3 (OW)	WATER	FRAMINGHAM, MA	10/19/15 13:00	10/20/15
L1526732-02	B-12 (OW)	WATER	FRAMINGHAM, MA	10/19/15 16:15	10/20/15
L1526732-03	B-14 (OW)	WATER	FRAMINGHAM, MA	10/19/15 13:30	10/20/15

Project Name:266 WAVERLY ST.Lab Number:L1526732

Project Number: 6010.9.00 **Report Date:** 10/26/15

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

Α	Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	YES
Εb.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES

A res	sponse to questions G, H and I is required for "Presumptive Certainty" status	
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	YES
Н	Were all QC performance standards specified in the CAM protocol(s) achieved?	NO
I	Were results reported for the complete analyte list specified in the selected CAM protocol(s)?	NO

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name: 266 WAVERLY ST. Lab Number: L1526732

Project Number: 6010.9.00 **Report Date:** 10/26/15

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please	contact	Client	Services	at 8	00-624	4-9220	with	any	questic	ns.

Project Name: 266 WAVERLY ST. Lab Number: L1526732

Project Number: 6010.9.00 **Report Date:** 10/26/15

Case Narrative (continued)

MCP Related Narratives

Volatile Organics

In reference to question H:

The initial calibration, associated with L1526732-02 and -03, did not meet the method required minimum response factor on the lowest calibration standard for 1,4-dioxane (0.00205), as well as the average response factor for 1,4-dioxane.

The continuing calibration standard, associated with L1526732-02 and -03, is outside the acceptance criteria for several compounds; however, it is within overall method allowances. A copy of the continuing calibration standard is included as an addendum to this report.

VPH

In reference to question I:

L1526732-03: The sample was analyzed for a subset of MCP analytes per the Chain of Custody.

EPH

In reference to question I:

All samples were analyzed for a subset of MCP analytes per the Chain of Custody.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Lisa Westerlind

Authorized Signature:

Title: Technical Director/Representative

Date: 10/26/15

ORGANICS

VOLATILES

Project Name: 266 WAVERLY ST.

Project Number: 6010.9.00

SAMPLE RESULTS

Qualifier

Units

RL

Lab Number: L1526732

Report Date: 10/26/15

Result

Lab ID: L1526732-02

Client ID: B-12 (OW)

FRAMINGHAM, MA Sample Location:

Matrix: Water Analytical Method: 97,8260C Analytical Date: 10/26/15 08:11

Analyst: MM

Parameter

Date Collected: 10/19/15 16:15 Date Received: 10/20/15 Field Prep: Not Specified

MDL

Dilution Factor

· aramotor				
MCP Volatile Organics - Westborou	gh Lab			
Methylene chloride	ND	ug/l	2.0	 1
1,1-Dichloroethane	ND	ug/l	1.0	 1
Chloroform	ND	ug/l	1.0	 1
Carbon tetrachloride	ND	ug/l	1.0	 1
1,2-Dichloropropane	ND	ug/l	1.0	 1
Dibromochloromethane	ND	ug/l	1.0	 1
1,1,2-Trichloroethane	ND	ug/l	1.0	 1
Tetrachloroethene	1.4	ug/l	1.0	 1
Chlorobenzene	ND	ug/l	1.0	 1
Trichlorofluoromethane	ND	ug/l	2.0	 1
1,2-Dichloroethane	ND	ug/l	1.0	 1
1,1,1-Trichloroethane	ND	ug/l	1.0	 1
Bromodichloromethane	ND	ug/l	1.0	 1
trans-1,3-Dichloropropene	ND	ug/l	0.50	 1
cis-1,3-Dichloropropene	ND	ug/l	0.50	 1
1,3-Dichloropropene, Total	ND	ug/l	0.50	 1
1,1-Dichloropropene	ND	ug/l	2.0	 1
Bromoform	ND	ug/l	2.0	 1
1,1,2,2-Tetrachloroethane	ND	ug/l	1.0	 1
Benzene	ND	ug/l	0.50	 1
Toluene	ND	ug/l	1.0	 1
Ethylbenzene	ND	ug/l	1.0	 1
Chloromethane	ND	ug/l	2.0	 1
Bromomethane	ND	ug/l	2.0	 1
Vinyl chloride	ND	ug/l	1.0	 1
Chloroethane	ND	ug/l	2.0	 1
1,1-Dichloroethene	ND	ug/l	1.0	 1
trans-1,2-Dichloroethene	ND	ug/l	1.0	 1
Trichloroethene	ND	ug/l	1.0	 1
1,2-Dichlorobenzene	ND	ug/l	1.0	 1
1,2 0 0 110 100 0 110		ug/i	10	

Project Name: 266 WAVERLY ST. **Lab Number:** L1526732

Project Number: 6010.9.00 **Report Date:** 10/26/15

SAMPLE RESULTS

Lab ID: L1526732-02 Date Collected: 10/19/15 16:15

Client ID: B-12 (OW) Date Received: 10/20/15
Sample Location: FRAMINGHAM, MA Field Prep: Not Specified

Campic 200auoin - 110 umitorii um	,			1 1014 1 10	γ.	riot opcomed	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westborough	h Lab						
1,3-Dichlorobenzene	ND		ug/l	1.0		1	
1,4-Dichlorobenzene	ND		ug/l	1.0		1	
Methyl tert butyl ether	ND		ug/l	2.0		1	
p/m-Xylene	ND		ug/l	2.0		1	
o-Xylene	ND		ug/l	1.0		1	
Xylene (Total)	ND		ug/l	1.0		1	
cis-1,2-Dichloroethene	ND		ug/l	1.0		1	
1,2-Dichloroethene (total)	ND		ug/l	1.0		1	
Dibromomethane	ND		ug/l	2.0		1	
1,2,3-Trichloropropane	ND		ug/l	2.0		1	
Styrene	ND		ug/l	1.0		1	
Dichlorodifluoromethane	ND		ug/l	2.0		1	
Acetone	15		ug/l	5.0		1	
Carbon disulfide	14		ug/l	2.0		1	
2-Butanone	ND		ug/l	5.0		1	
4-Methyl-2-pentanone	ND		ug/l	5.0		1	
2-Hexanone	ND		ug/l	5.0		1	
Bromochloromethane	ND		ug/l	2.0		1	
Tetrahydrofuran	ND		ug/l	2.0		1	
2,2-Dichloropropane	ND		ug/l	2.0		1	
1,2-Dibromoethane	ND		ug/l	2.0		1	
1,3-Dichloropropane	ND		ug/l	2.0		1	
1,1,1,2-Tetrachloroethane	ND		ug/l	1.0		1	
Bromobenzene	ND		ug/l	2.0		1	
n-Butylbenzene	ND		ug/l	2.0		1	
sec-Butylbenzene	ND		ug/l	2.0		1	
tert-Butylbenzene	ND		ug/l	2.0		1	
o-Chlorotoluene	ND		ug/l	2.0		1	
p-Chlorotoluene	ND		ug/l	2.0		1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.0		1	
Hexachlorobutadiene	ND		ug/l	0.60		1	
Isopropylbenzene	ND		ug/l	2.0		1	
p-Isopropyltoluene	ND		ug/l	2.0		1	
Naphthalene	ND		ug/l	2.0		1	
n-Propylbenzene	ND		ug/l	2.0		1	
1,2,3-Trichlorobenzene	ND		ug/l	2.0		1	
1,2,4-Trichlorobenzene	ND		ug/l	2.0		1	
1,3,5-Trimethylbenzene	ND		ug/l	2.0		1	
1,2,4-Trimethylbenzene	ND		ug/l	2.0		1	

Project Name: 266 WAVERLY ST. Lab Number: L1526732

Project Number: 6010.9.00 **Report Date:** 10/26/15

SAMPLE RESULTS

Lab ID: Date Collected: 10/19/15 16:15

Client ID: B-12 (OW) Date Received: 10/20/15
Sample Location: FRAMINGHAM, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westborough	Lab						
Ethyl ether	ND		ug/l	2.0		1	
Isopropyl Ether	ND		ug/l	2.0		1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1	
1,4-Dioxane	ND		ug/l	250		1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	99		70-130	
Toluene-d8	100		70-130	
4-Bromofluorobenzene	112		70-130	
Dibromofluoromethane	105		70-130	

Project Name: 266 WAVERLY ST.

Project Number: 6010.9.00

SAMPLE RESULTS

Lab Number: L1526732

Report Date: 10/26/15

57 tilli

Lab ID: L1526732-03 Client ID: B-14 (OW)

Sample Location: FRAMINGHAM, MA

Matrix: Water
Analytical Method: 97,8260C
Analytical Date: 10/26/15 07:39

Analyst: MM

Date Collected: 10/19/15 13:30

Date Received: 10/20/15
Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborough	Lab					
Methylene chloride	ND		ug/l	2.0		1
1,1-Dichloroethane	ND		ug/l	1.0		1
Chloroform	ND		ug/l	1.0		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.0		1
Tetrachloroethene	ND		ug/l	1.0		1
Chlorobenzene	ND		ug/l	1.0		1
Trichlorofluoromethane	ND		ug/l	2.0		1
1,2-Dichloroethane	ND		ug/l	1.0		1
1,1,1-Trichloroethane	ND		ug/l	1.0		1
Bromodichloromethane	ND		ug/l	1.0		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
1,3-Dichloropropene, Total	ND		ug/l	0.50		1
1,1-Dichloropropene	ND		ug/l	2.0		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Chloromethane	ND		ug/l	2.0		1
Bromomethane	ND		ug/l	2.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	2.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
trans-1,2-Dichloroethene	ND		ug/l	1.0		1
Trichloroethene	ND		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	1.0		1

Project Name: 266 WAVERLY ST. Lab Number: L1526732

Project Number: 6010.9.00 **Report Date:** 10/26/15

SAMPLE RESULTS

Lab ID: L1526732-03 Date Collected: 10/19/15 13:30

Client ID: B-14 (OW) Date Received: 10/20/15
Sample Location: FRAMINGHAM, MA Field Prep: Not Specified

campio zocadom — i i a amiro a	,			1 1014 1 10	۲.	rior opcomed	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westborou	gh Lab						
1,3-Dichlorobenzene	ND		ug/l	1.0		1	
1,4-Dichlorobenzene	ND		ug/l	1.0		1	
Methyl tert butyl ether	ND		ug/l	2.0		1	
p/m-Xylene	ND		ug/l	2.0		1	
o-Xylene	ND		ug/l	1.0		1	
Xylene (Total)	ND		ug/l	1.0		1	
cis-1,2-Dichloroethene	ND		ug/l	1.0		1	
1,2-Dichloroethene (total)	ND		ug/l	1.0		1	
Dibromomethane	ND		ug/l	2.0		1	
1,2,3-Trichloropropane	ND		ug/l	2.0		1	
Styrene	ND		ug/l	1.0		1	
Dichlorodifluoromethane	ND		ug/l	2.0		1	
Acetone	5.0		ug/l	5.0		1	
Carbon disulfide	ND		ug/l	2.0		1	
2-Butanone	5.5		ug/l	5.0		1	
4-Methyl-2-pentanone	ND		ug/l	5.0		1	
2-Hexanone	ND		ug/l	5.0		1	
Bromochloromethane	ND		ug/l	2.0		1	
Tetrahydrofuran	ND		ug/l	2.0		1	
2,2-Dichloropropane	ND		ug/l	2.0		1	
1,2-Dibromoethane	ND		ug/l	2.0		1	
1,3-Dichloropropane	ND		ug/l	2.0		1	
1,1,1,2-Tetrachloroethane	ND		ug/l	1.0		1	
Bromobenzene	ND		ug/l	2.0		1	
n-Butylbenzene	ND		ug/l	2.0		1	
sec-Butylbenzene	ND		ug/l	2.0		1	
tert-Butylbenzene	ND		ug/l	2.0		1	
o-Chlorotoluene	ND		ug/l	2.0		1	
p-Chlorotoluene	ND		ug/l	2.0		1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.0		1	
Hexachlorobutadiene	ND		ug/l	0.60		1	
Isopropylbenzene	ND		ug/l	2.0		1	
p-Isopropyltoluene	ND		ug/l	2.0		1	
Naphthalene	ND		ug/l	2.0		1	
n-Propylbenzene	ND		ug/l	2.0		1	
1,2,3-Trichlorobenzene	ND		ug/l	2.0		1	
1,2,4-Trichlorobenzene	ND		ug/l	2.0		1	
1,3,5-Trimethylbenzene	ND		ug/l	2.0		1	
1,2,4-Trimethylbenzene	ND		ug/l	2.0		1	

Project Name: 266 WAVERLY ST. Lab Number: L1526732

Project Number: 6010.9.00 **Report Date:** 10/26/15

SAMPLE RESULTS

Lab ID: L1526732-03 Date Collected: 10/19/15 13:30

Client ID: B-14 (OW) Date Received: 10/20/15
Sample Location: FRAMINGHAM, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westborou	ıgh Lab						
Ethyl other	ND		/1	2.0		1	
Ethyl ether	ND		ug/l	2.0		1	
Isopropyl Ether	ND		ug/l	2.0		1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1	
1,4-Dioxane	ND		ug/l	250		1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	94		70-130	
Toluene-d8	105		70-130	
4-Bromofluorobenzene	117		70-130	
Dibromofluoromethane	101		70-130	

Project Name: 266 WAVERLY ST.

Project Number: 6010.9.00

Lab Number: L1526732

Report Date: 10/26/15

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 97,8260C 10/26/15 07:06

Analyst: MM

MCP Volatile Organics - Westborough Lab for sample(s): 02-03 Batch: WG834118-3 Methylene chloride ND ug/l 1.0 1,1-Dichloroethane ND ug/l 1.0 Chloroform ND ug/l 1.0 1,2-Dichloropropane ND ug/l 1.0 1,1,2-Trichloroethane ND ug/l 1.0 1,1,2-Trichloroethane ND ug/l 1.0 1,1,2-Trichloroethane ND ug/l 1.0 Chlorobenzene ND ug/l 1.0 Trichlorofluoromethane ND ug/l 1.0 1,1-Trichloroethane ND ug/l 1.0 1,1-Trichloroethane ND ug/l 1.0 1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene ND ug/l 0.50 1,1-Dichloropropene, Total ND	Parameter	Result	Qualifier	Units	RI	_ MDL
1,1-Dichloroethane	MCP Volatile Organics -	- Westborough Lab for	sample(s):	02-03	Batch:	WG834118-3
1,1-Dichloroethane	Methylene chloride	ND		ua/l	21	n
Chloroform ND ug/l 1.0 Carbon tetrachloride ND ug/l 1.0 1,2-Dichloropropane ND ug/l 1.0 1,1,2-Trichloroethane ND ug/l 1.0 1,1,2-Trichloroethane ND ug/l 1.0 Tetrachloroethane ND ug/l 1.0 Chlorobenzene ND ug/l 1.0 Chlorobenzene ND ug/l 1.0 Trichlorofluoromethane ND ug/l 1.0 1,2-Dichloroethane ND ug/l 1.0 Bromodichloromethane ND ug/l 1.0 Bromodichloropropene ND ug/l 0.50 cis-1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene ND ug/l 2.0 1,1-Dichloropropene ND ug/l 2.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Carbon tetrachloride ND ug/l 1.0 1,2-Dichloropropane ND ug/l 1.0 Dibromochloromethane ND ug/l 1.0 1,1,2-Trichloroethane ND ug/l 1.0 Tetrachloroethane ND ug/l 1.0 Chlorobenzene ND ug/l 1.0 Trichlorofluoromethane ND ug/l 1.0 1,2-Dichloroethane ND ug/l 1.0 1,1-Trichloroethane ND ug/l 1.0 1,1-Trichloroethane ND ug/l 1.0 Bromodichloromethane ND ug/l 0.50 trans-1,3-Dichloropropene ND ug/l 0.50 d:s-1,3-Dichloropropene ND ug/l 0.50 1,1-Dichloropropene ND ug/l 2.0 1,1-Dichloropropene ND ug/l <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
1,2-Dichloropropane ND						
Dibromochloromethane ND ug/l 1.0 1,1,2-Trichloroethane ND ug/l 1.0 Tetrachloroethene ND ug/l 1.0 Chlorobenzene ND ug/l 1.0 Trichlorofluoromethane ND ug/l 1.0 1,2-Dichloroethane ND ug/l 1.0 1,1,1-Trichloroethane ND ug/l 1.0 Bromodichloromethane ND ug/l 1.0 trans-1,3-Dichloropropene ND ug/l 0.50 cis-1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene, Total ND ug/l 0.50 1,1-Dichloropropene ND ug/l 2.0 Bromoform ND ug/l 1.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Ethylbenzene ND ug/l						
1,1,2-Trichloroethane ND ug/l 1.0 Tetrachloroethene ND ug/l 1.0 Chlorobenzene ND ug/l 1.0 Trichloroftuoromethane ND ug/l 2.0 1,2-Dichloroethane ND ug/l 1.0 1,1-Trichloroethane ND ug/l 1.0 Bromodichloromethane ND ug/l 0.50 trans-1,3-Dichloropropene ND ug/l 0.50 cis-1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene, Total ND ug/l 0.50 1,1-Dichloropropene ND ug/l 2.0 Bromoform ND ug/l 2.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 1.0 Toluene ND ug/l 1.0	· ·					
Tetrachloroethene ND ug/l 1.0 Chlorobenzene ND ug/l 1.0 Trichloroftuoromethane ND ug/l 2.0 1,2-Dichloroethane ND ug/l 1.0 1,1,1-Trichloroethane ND ug/l 1.0 Bromodichloromethane ND ug/l 0.50 trans-1,3-Dichloropropene ND ug/l 0.50 cis-1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene ND ug/l 0.50 1,1-Dichloropropene ND ug/l 2.0 1,1-Dichloropropene ND ug/l 2.0 Bromoform ND ug/l 1.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 1.0 Toluene ND ug/l 1.0						
Chlorobenzene ND ug/l 1.0 Trichloroffuoromethane ND ug/l 2.0 1,2-Dichloroethane ND ug/l 1.0 1,1,1-Trichloroethane ND ug/l 1.0 Bromodichloromethane ND ug/l 0.50 trans-1,3-Dichloropropene ND ug/l 0.50 cis-1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene, Total ND ug/l 2.0 1,1-Dichloropropene ND ug/l 2.0 Bromoform ND ug/l 2.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 1.0 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 2.0 Bromomethane ND ug/l 2.0						
Trichlorofluoromethane ND ug/l 2.0 1,2-Dichloroethane ND ug/l 1.0 1,1,1-Trichloroethane ND ug/l 1.0 Bromodichloromethane ND ug/l 1.0 trans-1,3-Dichloropropene ND ug/l 0.50 cis-1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene, Total ND ug/l 2.0 1,1-Dichloropropene ND ug/l 2.0 Bromoform ND ug/l 2.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 1.0 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Bromomethane ND ug/l 2.0 Vinyl chloride ND ug/l 2.0						
1,2-Dichloroethane ND ug/l 1.0 1,1,1-Trichloroethane ND ug/l 1.0 Bromodichloromethane ND ug/l 1.0 trans-1,3-Dichloropropene ND ug/l 0.50 cis-1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene, Total ND ug/l 2.0 1,1-Dichloropropene ND ug/l 2.0 Bromoform ND ug/l 2.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 1.0 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 2.0 Vinyl chloride ND ug/l 2.0 Vinyl chloride ND ug/l 2.0						
1,1,1-Trichloroethane						
Bromodichloromethane ND ug/l 1.0 trans-1,3-Dichloropropene ND ug/l 0.50 cis-1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene, Total ND ug/l 2.0 1,1-Dichloropropene ND ug/l 2.0 Bromoform ND ug/l 2.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 1.0 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 2.0 Bromomethane ND ug/l 1.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 1.0 1,1-Dichloroethene ND ug/l 1.0	·					
trans-1,3-Dichloropropene ND ug/l 0.50 cis-1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene, Total ND ug/l 0.50 1,1-Dichloropropene ND ug/l 2.0 Bromoform ND ug/l 2.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 1.0 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 2.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 2.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0						
cis-1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene, Total ND ug/l 0.50 1,1-Dichloropropene ND ug/l 2.0 Bromoform ND ug/l 2.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 0.50 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 2.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 2.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0						
1,3-Dichloropropene, Total ND ug/l 0.50 1,1-Dichloropropene ND ug/l 2.0 Bromoform ND ug/l 2.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 1.0 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 2.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 2.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0						
1,1-Dichloropropene ND ug/l 2.0 Bromoform ND ug/l 2.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 0.50 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 2.0 Bromomethane ND ug/l 1.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 1.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0						
Bromoform ND ug/l 2.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 0.50 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 2.0 Bromomethane ND ug/l 1.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 1.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0						
1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 0.50 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 2.0 Bromomethane ND ug/l 1.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 1.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0						
Benzene ND ug/l 0.50 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 2.0 Bromomethane ND ug/l 2.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 2.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0		ND		ug/l	2.0	O
Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 2.0 Bromomethane ND ug/l 2.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 2.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	1,1,2,2-Tetrachloroethane	ND		ug/l	1.0	O
Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 2.0 Bromomethane ND ug/l 2.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 2.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	Benzene	ND		ug/l	0.5	60
Chloromethane ND ug/l 2.0 Bromomethane ND ug/l 2.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 2.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	Toluene	ND		ug/l	1.0	O
Bromomethane ND ug/l 2.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 2.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	Ethylbenzene	ND		ug/l	1.0	O
Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 2.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	Chloromethane	ND		ug/l	2.0	0
Chloroethane ND ug/l 2.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	Bromomethane	ND		ug/l	2.0	0
1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	Vinyl chloride	ND		ug/l	1.0	0
trans-1,2-Dichloroethene ND ug/l 1.0	Chloroethane	ND		ug/l	2.0	0
	1,1-Dichloroethene	ND		ug/l	1.0	0
Trichloroethene ND ug/l 1.0	trans-1,2-Dichloroethene	ND		ug/l	1.0	O
	Trichloroethene	ND		ug/l	1.0)

Project Name: 266 WAVERLY ST.

Project Number: 6010.9.00

Lab Number: L1526732

Report Date: 10/26/15

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 97,8260C 10/26/15 07:06

Analyst: MM

Parameter	Result	Qualifier	Units	RI	_ MDL
MCP Volatile Organics -	Westborough Lab for	sample(s):	02-03	Batch:	WG834118-3
1,2-Dichlorobenzene	ND		ug/l	1.0	1
·					
1,3-Dichlorobenzene	ND		ug/l	1.0	
1,4-Dichlorobenzene	ND		ug/l	1.0	
Methyl tert butyl ether	ND		ug/l	2.0	
p/m-Xylene	ND		ug/l	2.0	
o-Xylene	ND		ug/l	1.0	
Xylene (Total)	ND		ug/l	1.0	
cis-1,2-Dichloroethene	ND		ug/l	1.0)
1,2-Dichloroethene (total)	ND		ug/l	1.0)
Dibromomethane	ND		ug/l	2.0)
1,2,3-Trichloropropane	ND		ug/l	2.0)
Styrene	ND		ug/l	1.0)
Dichlorodifluoromethane	ND		ug/l	2.0)
Acetone	ND		ug/l	5.0)
Carbon disulfide	ND		ug/l	2.0)
2-Butanone	ND		ug/l	5.0)
4-Methyl-2-pentanone	ND		ug/l	5.0)
2-Hexanone	ND		ug/l	5.0)
Bromochloromethane	ND		ug/l	2.0)
Tetrahydrofuran	ND		ug/l	2.0)
2,2-Dichloropropane	ND		ug/l	2.0)
1,2-Dibromoethane	ND		ug/l	2.0)
1,3-Dichloropropane	ND		ug/l	2.0)
1,1,1,2-Tetrachloroethane	ND		ug/l	1.0)
Bromobenzene	ND		ug/l	2.0	
n-Butylbenzene	ND		ug/l	2.0	
sec-Butylbenzene	ND		ug/l	2.0	
tert-Butylbenzene	ND		ug/l	2.0	
o-Chlorotoluene	ND		ug/l	2.0	
2 31.10.313.0010	110		~g/'		

Project Name: 266 WAVERLY ST.

Project Number: 6010.9.00

Lab Number: L1526732

Report Date: 10/26/15

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 97,8260C 10/26/15 07:06

Analyst: MM

Parameter	Result	Qualifier	Units	RL	MDL
MCP Volatile Organics - Westborou	gh Lab for	sample(s):	02-03	Batch:	WG834118-3
p-Chlorotoluene	ND		ug/l	2.0	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.0	
Hexachlorobutadiene	ND		ug/l	0.60)
Isopropylbenzene	ND		ug/l	2.0	
p-Isopropyltoluene	ND		ug/l	2.0	
Naphthalene	ND		ug/l	2.0	
n-Propylbenzene	ND		ug/l	2.0	
1,2,3-Trichlorobenzene	ND		ug/l	2.0	
1,2,4-Trichlorobenzene	ND		ug/l	2.0	
1,3,5-Trimethylbenzene	ND		ug/l	2.0	
1,2,4-Trimethylbenzene	ND		ug/l	2.0	
Ethyl ether	ND		ug/l	2.0	
Isopropyl Ether	ND		ug/l	2.0	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0	
1,4-Dioxane	ND		ug/l	250)

			Acceptance				
Surrogate	%Recovery	Qualifier	Criteria				
1,2-Dichloroethane-d4	93		70-130				
Toluene-d8	104		70-130				
4-Bromofluorobenzene	124		70-130				
Dibromofluoromethane	103		70-130				

Project Name: 266 WAVERLY ST.

Project Number: 6010.9.00

Lab Number: L1526732

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits	
MCP Volatile Organics - Westborough Lab A	ssociated samp	ole(s): 02-03	Batch: WG834	118-1 WG834118-2			
Methylene chloride	87		103	70-130	17	20	
1,1-Dichloroethane	101		98	70-130	3	20	
Chloroform	100		96	70-130	4	20	
Carbon tetrachloride	93		93	70-130	0	20	
1,2-Dichloropropane	105		100	70-130	5	20	
Dibromochloromethane	93		96	70-130	3	20	
1,1,2-Trichloroethane	101		102	70-130	1	20	
Tetrachloroethene	100		99	70-130	1	20	
Chlorobenzene	99		100	70-130	1	20	
Trichlorofluoromethane	90		87	70-130	3	20	
1,2-Dichloroethane	96		93	70-130	3	20	
1,1,1-Trichloroethane	95		93	70-130	2	20	
Bromodichloromethane	97		94	70-130	3	20	
trans-1,3-Dichloropropene	99		100	70-130	1	20	
cis-1,3-Dichloropropene	100		99	70-130	1	20	
1,1-Dichloropropene	98		94	70-130	4	20	
Bromoform	99		94	70-130	5	20	
1,1,2,2-Tetrachloroethane	111		110	70-130	1	20	
Benzene	100		97	70-130	3	20	
Toluene	100		102	70-130	2	20	
Ethylbenzene	100		101	70-130	1	20	

Project Name: 266 WAVERLY ST.

Project Number: 6010.9.00

Lab Number: L1526732

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits	
MCP Volatile Organics - Westborough Lab	Associated sample	e(s): 02-03	Batch: WG834	118-1 WG834118-2			
Chloromethane	99		99	70-130	0	20	
Bromomethane	110		90	70-130	20	20	
Vinyl chloride	101		96	70-130	5	20	
Chloroethane	101		99	70-130	2	20	
1,1-Dichloroethene	84		96	70-130	13	20	
trans-1,2-Dichloroethene	105		102	70-130	3	20	
Trichloroethene	100		95	70-130	5	20	
1,2-Dichlorobenzene	105		102	70-130	3	20	
1,3-Dichlorobenzene	104		97	70-130	7	20	
1,4-Dichlorobenzene	106		101	70-130	5	20	
Methyl tert butyl ether	99		96	70-130	3	20	
p/m-Xylene	104		102	70-130	2	20	
o-Xylene	104		105	70-130	1	20	
cis-1,2-Dichloroethene	100		96	70-130	4	20	
Dibromomethane	105		102	70-130	3	20	
1,2,3-Trichloropropane	109		98	70-130	11	20	
Styrene	105		105	70-130	0	20	
Dichlorodifluoromethane	91		89	70-130	2	20	
Acetone	98		112	70-130	13	20	
Carbon disulfide	78		90	70-130	14	20	
2-Butanone	104		93	70-130	11	20	

Project Name: 266 WAVERLY ST.

Project Number: 6010.9.00

Lab Number: L1526732

		Qual	%Recovery	Qual Limits	RPD	RPD Qual Limits
MCP Volatile Organics - Westborough Lab	Associated samp	ole(s): 02-03	Batch: WG834	1118-1 WG834118-2		
4-Methyl-2-pentanone	109		104	70-130	5	20
2-Hexanone	97		97	70-130	0	20
Bromochloromethane	113		109	70-130	4	20
Tetrahydrofuran	103		93	70-130	10	20
2,2-Dichloropropane	100		98	70-130	2	20
1,2-Dibromoethane	102		107	70-130	5	20
1,3-Dichloropropane	101		96	70-130	5	20
1,1,1,2-Tetrachloroethane	95		97	70-130	2	20
Bromobenzene	108		96	70-130	12	20
n-Butylbenzene	111		107	70-130	4	20
sec-Butylbenzene	106		102	70-130	4	20
tert-Butylbenzene	104		99	70-130	5	20
o-Chlorotoluene	105		99	70-130	6	20
p-Chlorotoluene	103		99	70-130	4	20
1,2-Dibromo-3-chloropropane	88		95	70-130	8	20
Hexachlorobutadiene	118		108	70-130	9	20
Isopropylbenzene	103		98	70-130	5	20
p-Isopropyltoluene	105		98	70-130	7	20
Naphthalene	80		79	70-130	1	20
n-Propylbenzene	105		99	70-130	6	20
1,2,3-Trichlorobenzene	95		94	70-130	1	20

Project Name: 266 WAVERLY ST.

Project Number: 6010.9.00

Lab Number: L1526732

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
ICP Volatile Organics - Westboroug	gh Lab Associated sampl	le(s): 02-03	Batch: WG834	1118-1 W	G834118-2				
1,2,4-Trichlorobenzene	90		86		70-130	5		20	
1,3,5-Trimethylbenzene	104		97		70-130	7		20	
1,2,4-Trimethylbenzene	105		99		70-130	6		20	
Ethyl ether	89		92		70-130	3		20	
Isopropyl Ether	97		94		70-130	3		20	
Ethyl-Tert-Butyl-Ether	94		92		70-130	2		20	
Tertiary-Amyl Methyl Ether	99		96		70-130	3		20	
1,4-Dioxane	62	Q	130		70-130	71	Q	20	

Surrogate	LCS %Recovery			Qual	Acceptance Criteria		
	, , , , , , , , , , , , , , , , , , ,		%Recovery				
1,2-Dichloroethane-d4	93		95		70-130		
Toluene-d8	101		104		70-130		
4-Bromofluorobenzene	103		98		70-130		
Dibromofluoromethane	98		100		70-130		

PETROLEUM HYDROCARBONS

Project Name: 266 WAVERLY ST. Lab Number: L1526732

Project Number: 6010.9.00 **Report Date:** 10/26/15

SAMPLE RESULTS

Lab ID: L1526732-01 Date Collected: 10/19/15 13:00

Client ID: B-3 (OW) Date Received: 10/20/15

Sample Location: FRAMINGHAM, MA Field Prep: Not Specified

Matrix: Water

Analytical Method: 100,VPH-04-1.1 Analytical Date: 10/22/15 18:25

Analyst: KD

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative:

Laboratory Provided Preserved

Sample Temperature upon receipt: Container Received on Ice

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Petroleum Hydrocarbons - Westborough Lab									
C5-C8 Aliphatics	ND		ug/l	50.0		1			
C9-C12 Aliphatics	ND		ug/l	50.0		1			
C9-C10 Aromatics	ND		ug/l	50.0		1			
C5-C8 Aliphatics, Adjusted	ND		ug/l	50.0		1			
C9-C12 Aliphatics, Adjusted	ND		ug/l	50.0		1			
Benzene	ND		ug/l	2.00		1			
Toluene	ND		ug/l	2.00		1			
Ethylbenzene	ND		ug/l	2.00		1			
p/m-Xylene	ND		ug/l	2.00		1			
o-Xylene	ND		ug/l	2.00		1			
Methyl tert butyl ether	ND		ug/l	3.00		1			
Naphthalene	ND		ug/l	4.00		1			

	Acceptance						
Surrogate	% Recovery	Qualifier	Criteria				
2,5-Dibromotoluene-PID	105		70-130				
2,5-Dibromotoluene-FID	109		70-130				

Project Name: 266 WAVERLY ST. Lab Number: L1526732

Project Number: 6010.9.00 **Report Date:** 10/26/15

SAMPLE RESULTS

Lab ID: L1526732-01 Date Collected: 10/19/15 13:00

Client ID: B-3 (OW) Date Received: 10/20/15

Sample Location: FRAMINGHAM, MA Field Prep: Not Specified

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 98,EPH-04-1.1 Extraction Date: 10/21/15 22:40 Analytical Date: 10/23/15 00:46 Cleanup Method1: EPH-04-1

Analyst: SR Cleanup Date1: 10/22/15

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative:

Laboratory Provided Preserved
Container

Sample Temperature upon receipt: Received on Ice

Sample Extraction method: Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Extractable Petroleum Hydrocarbons - Westborough Lab									
C9-C18 Aliphatics	ND		ug/l	100		1			
C19-C36 Aliphatics	ND		ug/l	100		1			
C11-C22 Aromatics	ND		ug/l	100		1			
C11-C22 Aromatics, Adjusted	ND		ug/l	100		1			

	Acceptance					
Surrogate	% Recovery	Qualifier	Criteria			
Chloro-Octadecane	75		40-140			
o-Terphenyl	60		40-140			
2-Fluorobiphenyl	65		40-140			
2-Bromonaphthalene	68		40-140			

Project Name: 266 WAVERLY ST. Lab Number: L1526732

Project Number: 6010.9.00 **Report Date:** 10/26/15

SAMPLE RESULTS

Lab ID: L1526732-03 Date Collected: 10/19/15 13:30

Client ID: B-14 (OW) Date Received: 10/20/15

Sample Location: FRAMINGHAM, MA Field Prep: Not Specified

Matrix: Water

Analytical Method: 100,VPH-04-1.1 Analytical Date: 10/21/15 12:42

Analyst: KD

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Sample Temperature upon receipt: Container Received on Ice

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Petroleum Hydrocarbons	- Westborough Lab					
C5-C8 Aliphatics	ND		ug/l	50.0		1
C9-C12 Aliphatics	ND		ug/l	50.0		1
C9-C10 Aromatics	ND		ug/l	50.0		1
C5-C8 Aliphatics, Adjusted	ND		ug/l	50.0		1
C9-C12 Aliphatics, Adjusted	ND		ug/l	50.0		1

	Acceptance						
Surrogate	% Recovery	Qualifier	Criteria				
2,5-Dibromotoluene-PID	119		70-130				
2,5-Dibromotoluene-FID	117		70-130				

Project Name: 266 WAVERLY ST.

Project Number: 6010.9.00

Lab Number: L1526732

Report Date: 10/26/15

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: 98,EPH-04-1.1

Analyst:

10/22/15 22:39

SR

Extraction Method: EPA 3510C
Extraction Date: 10/21/15 22:40
Cleanup Method: EPH-04-1

Cleanup Method: EPH-04-1 Cleanup Date: 10/22/15

Parameter	Result	Qualifier	Units	RL	MDL
Extractable Petroleum Hydrocar	bons - Westbo	rough Lab	for sample(s):	01	Batch: WG833002-1
C9-C18 Aliphatics	ND		ug/l	100	
C19-C36 Aliphatics	ND		ug/l	100	
C11-C22 Aromatics	ND		ug/l	100	
C11-C22 Aromatics, Adjusted	ND		ug/l	100	

%Recovery	Qualifier	Criteria	
7.4		10.110	
74		40-140	
58		40-140	
59		40-140	
61		40-140	
	74 58 59	%Recovery Qualifier 74 58 59	74 40-140 58 40-140 59 40-140

Project Name: 266 WAVERLY ST. **Lab Number:** L1526732

Project Number: 6010.9.00 **Report Date:** 10/26/15

Method Blank Analysis Batch Quality Control

Analytical Method: 100,VPH-04-1.1 Analytical Date: 10/21/15 10:18

Analyst: KD

Parameter	Result C	Qualifier Units	RL	MDL	
Volatile Petroleum Hydrocarbons -	Westborough L	_ab for sample(s):	03 Batch:	WG833261-3	
C5-C8 Aliphatics	ND	ug/l	50.0		
C9-C12 Aliphatics	ND	ug/l	50.0		
C9-C10 Aromatics	ND	ug/l	50.0		
C5-C8 Aliphatics, Adjusted	ND	ug/l	50.0		
C9-C12 Aliphatics, Adjusted	ND	ug/l	50.0		

			Acceptance		
Surrogate	%Recovery	Qualifier	Criteria		
2,5-Dibromotoluene-PID	117		70-130		
2,5-Dibromotoluene-FID	114		70-130		

10/26/15

Project Name: 266 WAVERLY ST.

Project Number: 6010.9.00

Lab Number: L1526732

Report Date:

Method Blank Analysis Batch Quality Control

Analytical Method: 100,VPH-04-1.1 Analytical Date: 10/22/15 10:08

Analyst: KD

Parameter	Result	Qualifier	Units	F	RL	MDL	
Volatile Petroleum Hydrocarbons - V	Westborough	n Lab for s	ample(s):	01	Batch:	WG833545-3	
C5-C8 Aliphatics	ND		ug/l	50	0.0		
C9-C12 Aliphatics	ND		ug/l	50	0.0		
C9-C10 Aromatics	ND		ug/l	50	0.0		
C5-C8 Aliphatics, Adjusted	ND		ug/l	50	0.0		
C9-C12 Aliphatics, Adjusted	ND		ug/l	50	0.0		
Benzene	ND		ug/l	2.	00		
Toluene	ND		ug/l	2.	00		
Ethylbenzene	ND		ug/l	2.	00		
p/m-Xylene	ND		ug/l	2.	00		
o-Xylene	ND		ug/l	2.	00		
Methyl tert butyl ether	ND		ug/l	3.	00		
Naphthalene	ND		ug/l	4.	00		

		Acceptance		
Surrogate	%Recovery	Qualifier	Criteria	
2,5-Dibromotoluene-PID	106		70-130	
2,5-Dibromotoluene-FID	107		70-130	

Project Name: 266 WAVERLY ST.

Project Number: 6010.9.00

Lab Number: L1526732

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Extractable Petroleum Hydrocarbons - Westb	orough Lab Ass	sociated sample(s): 01 Batc	h: WG833002-2 WG833002	-3	
C9-C18 Aliphatics	70	67	40-140	4	25
C19-C36 Aliphatics	93	84	40-140	10	25
C11-C22 Aromatics	70	66	40-140	6	25
Naphthalene	53	54	40-140	2	25
2-Methylnaphthalene	58	58	40-140	0	25
Acenaphthylene	56	56	40-140	0	25
Acenaphthene	60	58	40-140	3	25
Fluorene	62	60	40-140	3	25
Phenanthrene	67	62	40-140	8	25
Anthracene	80	73	40-140	9	25
Fluoranthene	72	66	40-140	9	25
Pyrene	74	68	40-140	8	25
Benzo(a)anthracene	73	66	40-140	10	25
Chrysene	77	70	40-140	10	25
Benzo(b)fluoranthene	74	67	40-140	10	25
Benzo(k)fluoranthene	72	67	40-140	7	25
Benzo(a)pyrene	80	73	40-140	9	25
Indeno(1,2,3-cd)Pyrene	62	56	40-140	10	25
Dibenzo(a,h)anthracene	70	62	40-140	12	25
Benzo(ghi)perylene	76	68	40-140	11	25
Nonane (C9)	45	46	30-140	2	25

Project Name: 266 WAVERLY ST.

Project Number: 6010.9.00

Lab Number: L1526732

Parameter	LCS %Recovery Qu	LCSD al %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Extractable Petroleum Hydrocarbons - W	estborough Lab Associate	ed sample(s): 01 Batch	n: WG833002-2 WG833002	-3	
Decane (C10)	56	55	40-140	2	25
Dodecane (C12)	63	63	40-140	0	25
Tetradecane (C14)	68	67	40-140	1	25
Hexadecane (C16)	76	72	40-140	5	25
Octadecane (C18)	85	78	40-140	9	25
Nonadecane (C19)	86	79	40-140	8	25
Eicosane (C20)	90	81	40-140	11	25
Docosane (C22)	88	81	40-140	8	25
Tetracosane (C24)	90	81	40-140	11	25
Hexacosane (C26)	89	81	40-140	9	25
Octacosane (C28)	91	82	40-140	10	25
Triacontane (C30)	89	81	40-140	9	25
Hexatriacontane (C36)	90	82	40-140	9	25

	LCS		LCSD		Acceptance
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria
Chloro-Octadecane	88		80		40-140
o-Terphenyl	76		67		40-140
2-Fluorobiphenyl	70		64		40-140
2-Bromonaphthalene	72		64		40-140
% Naphthalene Breakthrough	0		0		
% 2-Methylnaphthalene Breakthrough	0		0		

Project Name: 266 WAVERLY ST.

Project Number: 6010.9.00

Lab Number: L1526732

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Petroleum Hydrocarbons - Westbord	ough Lab Associ	ated sample(s):	03 Batch:	WG833261-1	WG833261-2			
C5-C8 Aliphatics	102		100		70-130	2		25
C9-C12 Aliphatics	96		92		70-130	4		25
C9-C10 Aromatics	113		112		70-130	1		25
Benzene	103		102		70-130	1		25
Toluene	105		105		70-130	0		25
Ethylbenzene	108		107		70-130	1		25
p/m-Xylene	107		106		70-130	1		25
o-Xylene	107		106		70-130	1		25
Methyl tert butyl ether	98		100		70-130	1		25
Naphthalene	112		114		70-130	2		25
1,2,4-Trimethylbenzene	113		112		70-130	1		25
Pentane	104		103		70-130	1		25
2-Methylpentane	102		100		70-130	2		25
2,2,4-Trimethylpentane	99		98		70-130	1		25
n-Nonane	97		93		30-130	4		25
n-Decane	91		89		70-130	3		25
n-Butylcyclohexane	105		101		70-130	4		25

Project Name: 266 WAVERLY ST.

Lab Number:

L1526732

Project Number: 6010.9.00

Report Date:

10/26/15

	LCS		LCSD		%Recovery		RPD		
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	

Volatile Petroleum Hydrocarbons - Westborough Lab Associated sample(s): 03 Batch: WG833261-1 WG833261-2

Surrogate	LCS %Recovery			Qual	Acceptance al Criteria		
2,5-Dibromotoluene-PID	98		97		70-130		
2,5-Dibromotoluene-FID	96		94		70-130		

Project Name: 266 WAVERLY ST.

Project Number: 6010.9.00

Lab Number: L1526732

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Petroleum Hydrocarbons - Westboro	ugh Lab Assoc	ated sample(s)): 01 Batch: W	/G833545-1	WG833545-2			
C5-C8 Aliphatics	102		101		70-130	1		25
C9-C12 Aliphatics	105		105		70-130	0		25
C9-C10 Aromatics	105		106		70-130	1		25
Benzene	102		102		70-130	0		25
Toluene	102		103		70-130	1		25
Ethylbenzene	105		106		70-130	1		25
p/m-Xylene	104		105		70-130	1		25
o-Xylene	104		105		70-130	1		25
Methyl tert butyl ether	106		106		70-130	0		25
Naphthalene	113		111		70-130	2		25
1,2,4-Trimethylbenzene	105		106		70-130	1		25
Pentane	99		99		70-130	0		25
2-Methylpentane	102		102		70-130	0		25
2,2,4-Trimethylpentane	104		103		70-130	1		25
n-Nonane	100		99		30-130	1		25
n-Decane	92		91		70-130	1		25
n-Butylcyclohexane	102		102		70-130	0		25

Project Name: 266 WAVERLY ST.

Lab Number: L1526732

Project Number: 6010.9.00

Report Date: 10/26/15

	LCS		LCSD		%Recovery			RPD
<u>Parameter</u>	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Volatile Petroleum Hydrocarbons - Westborough Lab Associated sample(s): 01 Batch: WG833545-1 WG833545-2

Surremente	LCS	Ougl	LCSD	Ougl	Acceptance Criteria		
Surrogate	%Recovery	Qual	%Recovery	Qual	Ontena		
2,5-Dibromotoluene-PID	118		114		70-130		
2,5-Dibromotoluene-FID	119		116		70-130		

Project Name: 266 WAVERLY ST. Lab Number: L1526732

Project Number: 6010.9.00 Report Date: 10/26/15

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information Custody Seal

Cooler

A Absent

Container Info	rmation		Temp	mp				
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)	
L1526732-01A	Vial HCl preserved	Α	N/A	3.9	Υ	Absent	VPH-DELUX-10(14)	
L1526732-01B	Vial HCl preserved	Α	N/A	3.9	Υ	Absent	VPH-DELUX-10(14)	
L1526732-01C	Amber 1000ml HCl preserved	Α	<2	3.9	Υ	Absent	EPH-10(14)	
L1526732-01D	Amber 1000ml HCl preserved	Α	<2	3.9	Υ	Absent	EPH-10(14)	
L1526732-02A	Vial HCl preserved	Α	N/A	3.9	Υ	Absent	MCP-8260-10(14)	
L1526732-02B	Vial HCl preserved	Α	N/A	3.9	Υ	Absent	MCP-8260-10(14)	
L1526732-03A	Vial HCl preserved	Α	N/A	3.9	Υ	Absent	MCP-8260-10(14)	
L1526732-03B	Vial HCl preserved	Α	N/A	3.9	Υ	Absent	VPH-10(14)	

Container Comments

L1526732-03B

Project Name: 266 WAVERLY ST. Lab Number: L1526732

Project Number: 6010.9.00 **Report Date:** 10/26/15

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

TIC

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

Report Format: Data Usability Report

 Project Name:
 266 WAVERLY ST.
 Lab Number:
 L1526732

 Project Number:
 6010.9.00
 Report Date:
 10/26/15

Data Qualifiers

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name:266 WAVERLY ST.Lab Number:L1526732Project Number:6010.9.00Report Date:10/26/15

REFERENCES

97 EPA Test Methods (SW-846) with QC Requirements & Performance Standards for the Analysis of EPA SW-846 Methods under the Massachusetts Contingency Plan, WSC-CAM-IIA, IIB, IIIA, IIIB, IIIC, IIID, VA, VB, VC, VIA, VIB, VIIIA and VIIIB, July 2010.

- 98 Method for the Determination of Extractable Petroleum Hydrocarbons (EPH), MassDEP, May 2004, Revision 1.1 with QC Requirements & Performance Standards for the Analysis of EPH under the Massachusetts Contingency Plan, WSC-CAM-IVB, July 2010.
- Method for the Determination of Volatile Petroleum Hydrocarbons (VPH), MassDEP, May 2004, Revision 1.1 with QC Requirements & Performance Standards for the Analysis of VPH under the Massachusetts Contingency Plan, WSC-CAM-IVA, July 2010.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

_ ID No.:**17873** Revision 2

Page 1 of 1

Published Date: 9/28/2015 10:34:24 AM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 8260C: 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene, lodomethane (methyl iodide) (soil), Methyl methacrylate (soil),

Azobenzene.

EPA 8270D: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 625: 4-Chloroaniline, 4-Methylphenol.

SM4500: Soil: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

EPA 8270D: Biphenyl. EPA 2540D: TSS

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene,

Benzothiophene, 1-Methylnaphthalene.

The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility:

Drinking Water

EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; **EPA 200.7**: Ba,Be,Ca,Cd,Cr,Cu,Na; **EPA 245.1**: Mercury;

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C,

SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT.

Non-Potable Water

EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn;

EPA 200.7: Al,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,Tl,V,Zn;

EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC,

SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F,

EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4,

SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT,

Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form Pre-Qualtrax Document ID: 08-113

Дірна	CHAIN	OF CU	ISTOI	OY P	PAGEO	p#	Date R	ec'd in La	ab: [0	120,	115		ALPH	IA Job #	#: L152	673.	2
8 Walkup Drive	320 Forbes Blvd		t Informat				Repo	rt Inform	ation -	Data D	elivera	bles	Billin	g Inform	ation		
Westboro, MA 0 Tel: 508-898-92	01581 Mansfield, MA 02048	Project	Name: 604	Dogo	266 WM AM, MA	replay	□ AD	Ex	D-E	MAIL			☐ Sam	e as Clien	t info PO#	;	
Client Information	n	Project I	Location:	Zuminnh	AM MA	1				- Contract of the Contract of			nformat	ion Requ	uirements		
Client:		Project	#: hold	9.00	4. (47.		☐ Yes ☐ No MA MCP Analytical Methods ☐ Yes ☐ Yoo CT RCP Analytical Method ☐ Yes ☐ No Matrix Spike Required on this SDG? (Required for MCP Inorganics)								alytical Method	ls	
Address:		Project I	Project Manager: BILL BURNS				☐ Yes	□«No GW	1 Stanc	ards (Inf				EPH with 7			
		ALPHA	Quote #:					No NP r State /Fe						Criteria_			
Phone:		Turn-	Around Tir	ne				11	1 4	/ 2/	»/ _×	//	11	11	///	/	
Additional Project Information:			dard □		confirmed if pre-appro	ved!)	V8260 12 62.	METALS: CIMCP 12	EPH: DB.	VPH; E Ranges & Targets E Ranges Ort	U PEST Ranges On!	VPH STA			Fill G	AMPLE INFO tration Field Lab to do eservation Lab to do	Ĺ #
ALPHA Lab ID (Lab Use Only)	Sample ID		Colle	ection Time	Sample (Sampler Initials	Noc.	METAL	EPH: C	Meh: G	B. Har	NPI				e Comments	B O T L E S
2673201	B-3 (ow)								X	X							U
	B-12 (ou)					-	X										2
100	D 1216						5			-		K					2
(00)	15-17 (64)						X					N.					_
			4	-													
Container Type	Preservative				Contain	er Type	V		A	J	1	1					
P= Plastic			Preservative		B BBB												
B= Bacteria cup C= Cube O= Other E= Encore	E= NaOH F= MeOH G= NaHSO ₄ H = Na ₂ S ₂ O ₃	Relingu	ished By:		Date/T	Γime ∂∶ν	R	Rece	ived By:	SAL	10	Date/	Time /4:50			d are subject	to
Page 40 of 43	I= Ascorbic Acid J = NH ₄ Cl K= Zn Acetate O= Other	She			100015		Phyl	rad	Se	th	-	1201	1518	See rev	Terms and C verse side 0 01-01 (rev 12-h		

7A Volatile Organics CONTINUING CALIBRATION CHECK

Lab Name: Alpha Analytical Labs

SDG No.: L1526732

Instrument ID: Jack.i Calibration Date: 26-OCT-2015 Time: 05:29

Compound	•	 RRF 	MIN RRF	 %D 	MAX %D
====================================	===== .64845 .97727 .82783 .32615 .41172 .9394 .29204 .56977 1.7088 .58548 100 .06061 .59702 100 .63117 .3058 1.2511 .02869 2.7426 1.3683 .19629 .57072 1.9844 1.4429 .76984 1.4429 .76984 1.5098 1.5098 1.5098 1.1667 1.1667 1.93122 .16797 1.46515 1.0560 .90464 .19059 2.7957 1.4021	===== .58862 .96984 .83698 .3586 .41638 .84419 .2608 .47983 1.3274 .5088 40.944 .06023 .52132 98.270 .66417 .32026 1.2435 .03237 2.6619 1.3838 .1921 .55342 1.8684 1.4050 .76784 .97049 1.5254 .34514 1.1654 .86713 .17379 .44445 1.0016 .8854 .19854 2.7914	===== .1 .1 .1 .1 .05 .	====== -9 -1 10 10 -10 -11 -16 -22 -13 -59 -13 -22 -13 -59 -13 -2 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -4 -5 -2 -2 -3 -4 -4 -1 -2 -2 -2 -2 -2 -2 -2 -3 -4 -3 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4	= = =

FORM VII MCP-8260-10

7A CONTINUING CALIBRATION CHECK

Lab Name: Alpha Analytical Labs

SDG No.: L1526732

Instrument ID: Jack.i Calibration Date: 26-OCT-2015 Time: 05:29

Compound	 RRF =====	 RRF 	MIN RRF =====	%D =====	MAX %D ====
methyl cyclohexane trichloroethene dibromomethane 1,2-dichloropropane bromodichloromethane 1,4-dioxane 2-chloroethylvinyl ether cis-1,3-dichloropropene toluene tetrachloroethene 4-methyl-2-pentanone trans-1,3-dichloropropene 1,1,2-trichloroethane ethyl-methacrylate chlorodibromomethane 1,3-dichloropropane 1,2-dibromoethane 2-hexanone chlorobenzene ethyl benzene 1,1,2-tetrachloroethane p/m xylene o xylene bromoform styrene isopropylbenzene 1,4-dichlorobutane n-propylbenzene 1,1,2,2,-tetrachloroethane 4-ethyltoluene 2-chlorotoluene 1,2,3-trichloropropane 1,3,5-trimethybenzene trans-1,4-dichloro-2-butene 4-chorotoluene tert-butylbenzene 1,2,4-trimethylbenzene	1.2391 .71123 .35257 .73853 .80055 .00297 .27066 .94696 .1705 .1.0234 .15137 .8899 .45228 .72126 .66722 .95209 .51877 .32965 .2.4227 .4.0737 .83842 .72126 .641537 .83842 .72126 .641537 .83842 .72126 .641537 .83842 .72126 .641537 .83842 .72126 .641537 .83842 .72126 .641537 .83842 .72126 .7375	1.2373 .70748 .37019 .77674 .77674 .77674 .00185 .17574 .0182 .16528 .87914 .45769 .7397 .6232 .95837 .53127 .31898 .4079 .4.0929 .79952 .79952 .7141 .5984 .63762 .2.6124 .63762 .2.6124 .63762 .2.6124 .63762 .6232 .79952 .7141 .79952	01 025 01 012 01 01 01 01 01 01 01 01 01 01 01 01 01	== 0 -1553850019113712310544153825125941345	30 20 20 20 20 20 20 20

FORM VII MCP-8260-10

7A CONTINUING CALIBRATION CHECK

Lab Name: Alpha Analytical Labs

SDG No.: L1526732

Instrument ID: Jack.i Calibration Date: 26-OCT-2015 Time: 05:29

 Compound	RRF	 RRF ======	MIN RRF	 %D ======	MAX %D ====
	8.5387 7.6423 3.8379 3.6705 4.2929 5.5099 3.3135 5.6130 .13751 .92433 100 .64557 100 100 ===== .24936 .27078	===== 9.0935 8.0538 4.0114 3.8928 4.6497 6.1328 3.4801 6.2020 .12113 .9992 90.403 .76364 79.545 94.972 ===== .24356 .25253 1.1811	 .01 .05 .05 .05 .05 .05 .05 .05 .05	*D ====== 6 5 6 8 11 5 10 -12 8 -10 18 -20 -5 ==== -2 -7 1 3	

FORM VII MCP-8260-10

ANALYTICAL REPORT

Lab Number: L1531325

Client: McPhail Associates

2269 Massachusetts Avenue

Cambridge, MA 02140

ATTN: Ambrose Donovan Phone: (617) 868-1420

Project Name: 266 WAVERLY ST.

Project Number: 6010.9.01

Report Date: 12/04/15

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 266 WAVERLY ST.

Project Number: 6010.9.01

Lab Number: L1531325 **Report Date:** 12/04/15

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1531325-01	B-101 (OW)	WATER	FRAMINGHAM, MA	11/30/15 14:15	11/30/15
L1531325-02	B-102 (OW)	WATER	FRAMINGHAM, MA	11/30/15 13:35	11/30/15
L1531325-03	B-104 (OW)	WATER	FRAMINGHAM, MA	11/30/15 14:45	11/30/15

Project Name:266 WAVERLY ST.Lab Number:L1531325

Project Number: 6010.9.01 **Report Date:** 12/04/15

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

Α	Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	N/A
Eb.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES

A response to questions G, H and I is required for "Presumptive Certainty" status									
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	YES							
Н	Were all QC performance standards specified in the CAM protocol(s) achieved?	NO							
I	Were results reported for the complete analyte list specified in the selected CAM protocol(s)?	YES							

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name: 266 WAVERLY ST. Lab Number: L1531325

Project Number: 6010.9.01 **Report Date:** 12/04/15

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please	contact	Client	Services:	at 800	-624-9220	with an	y questions.
	COLLEGE	Onone	00111000	at ooo	O_ O	With an	, quodiono.

Project Name: 266 WAVERLY ST. Lab Number: L1531325

Project Number: 6010.9.01 Report Date: 12/04/15

Case Narrative (continued)

MCP Related Narratives

Volatile Organics

In reference to question H:

The initial calibration, associated with L1531325-01 through -03, did not meet the method required minimum response factor on the lowest calibration standard for 1,4-dioxane (0.00308), as well as the average response factor for 1,4-dioxane.

The continuing calibration standard, associated with L1531325-01 through -03, is outside the acceptance criteria for several compounds; however, it is within overall method allowances. A copy of the continuing calibration standard is included as an addendum to this report.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Season Kelly Stenstrom

Authorized Signature:

Title: Technical Director/Representative Date: 12/04/15

ORGANICS

VOLATILES

Project Name: 266 WAVERLY ST.

Project Number: 6010.9.01

SAMPLE RESULTS

Lab Number: L1531325

Report Date: 12/04/15

Lab ID: L1531325-01

B-101 (OW) Client ID:

FRAMINGHAM, MA Sample Location:

Matrix: Water Analytical Method: 97,8260C Analytical Date: 12/03/15 13:42

Analyst: MM Date Collected: 11/30/15 14:15 Date Received: 11/30/15 Field Prep:

Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborough Lab						
Methylene chloride	ND		ug/l	2.0		1
1,1-Dichloroethane	ND		ug/l	1.0		1
Chloroform	ND		ug/l	1.0		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.0		1
Tetrachloroethene	2.3		ug/l	1.0		1
Chlorobenzene	ND		ug/l	1.0		1
Trichlorofluoromethane	ND		ug/l	2.0		1
1,2-Dichloroethane	ND		ug/l	1.0		1
1,1,1-Trichloroethane	ND		ug/l	1.0		1
Bromodichloromethane	ND		ug/l	1.0		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
1,3-Dichloropropene, Total	ND		ug/l	0.50		1
1,1-Dichloropropene	ND		ug/l	2.0		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Chloromethane	ND		ug/l	2.0		1
Bromomethane	ND		ug/l	2.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	2.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
trans-1,2-Dichloroethene	ND		ug/l	1.0		1
Trichloroethene	ND		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	1.0		1

Project Name: 266 WAVERLY ST. **Lab Number:** L1531325

Project Number: 6010.9.01 **Report Date:** 12/04/15

SAMPLE RESULTS

Lab ID: Date Collected: 11/30/15 14:15

Client ID: B-101 (OW) Date Received: 11/30/15
Sample Location: FRAMINGHAM, MA Field Prep: Not Specified

campio zocationi i i a amirio i ii	,			o.aop.		riot opcomed
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborou	ugh Lab					
1,3-Dichlorobenzene	ND		ug/l	1.0		1
1,4-Dichlorobenzene	ND		ug/l	1.0		1
Methyl tert butyl ether	ND		ug/l	2.0		1
p/m-Xylene	ND		ug/l	2.0		1
o-Xylene	ND		ug/l	1.0		1
Xylene (Total)	ND		ug/l	1.0		1
cis-1,2-Dichloroethene	ND		ug/l	1.0		1
1,2-Dichloroethene (total)	ND		ug/l	1.0		1
Dibromomethane	ND		ug/l	2.0		1
1,2,3-Trichloropropane	ND		ug/l	2.0		1
Styrene	ND		ug/l	1.0		1
Dichlorodifluoromethane	ND		ug/l	2.0		1
Acetone	ND		ug/l	5.0		1
Carbon disulfide	ND		ug/l	2.0		1
2-Butanone	ND		ug/l	5.0		1
4-Methyl-2-pentanone	ND		ug/l	5.0		1
2-Hexanone	ND		ug/l	5.0		1
Bromochloromethane	ND		ug/l	2.0		1
Tetrahydrofuran	ND		ug/l	2.0		1
2,2-Dichloropropane	ND		ug/l	2.0		1
1,2-Dibromoethane	ND		ug/l	2.0		1
1,3-Dichloropropane	ND		ug/l	2.0		1
1,1,1,2-Tetrachloroethane	ND		ug/l	1.0		1
Bromobenzene	ND		ug/l	2.0		1
n-Butylbenzene	ND		ug/l	2.0		1
sec-Butylbenzene	ND		ug/l	2.0		1
tert-Butylbenzene	ND		ug/l	2.0		1
o-Chlorotoluene	ND		ug/l	2.0		1
p-Chlorotoluene	ND		ug/l	2.0		1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.0		1
Hexachlorobutadiene	ND		ug/l	0.60		1
Isopropylbenzene	ND		ug/l	2.0		1
p-Isopropyltoluene	ND		ug/l	2.0		1
Naphthalene	ND		ug/l	2.0		1
n-Propylbenzene	ND		ug/l	2.0		1
1,2,3-Trichlorobenzene	ND		ug/l	2.0		1
1,2,4-Trichlorobenzene	ND		ug/l	2.0		1
1,3,5-Trimethylbenzene	ND		ug/l	2.0		1
1,2,4-Trimethylbenzene	ND		ug/l	2.0		1

Project Name: 266 WAVERLY ST. **Lab Number:** L1531325

Project Number: 6010.9.01 **Report Date:** 12/04/15

SAMPLE RESULTS

Lab ID: Date Collected: 11/30/15 14:15

Client ID: B-101 (OW) Date Received: 11/30/15
Sample Location: FRAMINGHAM, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
MCP Volatile Organics - Westborough Lab									
Ethyl ether	ND		ug/l	2.0		1			
Isopropyl Ether	ND		ug/l	2.0		1			
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		1			
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1			
1,4-Dioxane	ND		ug/l	250		1			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	110		70-130	
Toluene-d8	91		70-130	
4-Bromofluorobenzene	98		70-130	
Dibromofluoromethane	110		70-130	

Project Name: 266 WAVERLY ST.

Project Number: 6010.9.01

SAMPLE RESULTS

Lab Number: L1531325

Report Date: 12/04/15

Lab ID: L1531325-02

B-102 (OW) Client ID:

Sample Location: FRAMINGHAM, MA

Matrix: Water Analytical Method: 97,8260C Analytical Date: 12/03/15 14:15

Analyst: MM Date Collected: 11/30/15 13:35 Date Received: 11/30/15

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westborough	ı Lab						
Methylene chloride	ND		ug/l	2.0		1	
1,1-Dichloroethane	ND		ug/l	1.0		1	
Chloroform	ND		ug/l	1.0		1	
Carbon tetrachloride	ND		ug/l	1.0		1	
1,2-Dichloropropane	ND		ug/l	1.0		1	
Dibromochloromethane	ND		ug/l	1.0		1	
1,1,2-Trichloroethane	ND		ug/l	1.0		1	
Tetrachloroethene	1.0		ug/l	1.0		1	
Chlorobenzene	ND		ug/l	1.0		1	
Trichlorofluoromethane	ND		ug/l	2.0		1	
1,2-Dichloroethane	ND		ug/l	1.0		1	
1,1,1-Trichloroethane	ND		ug/l	1.0		1	
Bromodichloromethane	ND		ug/l	1.0		1	
trans-1,3-Dichloropropene	ND		ug/l	0.50		1	
cis-1,3-Dichloropropene	ND		ug/l	0.50		1	
1,3-Dichloropropene, Total	ND		ug/l	0.50		1	
1,1-Dichloropropene	ND		ug/l	2.0		1	
Bromoform	ND		ug/l	2.0		1	
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1	
Benzene	ND		ug/l	0.50		1	
Toluene	ND		ug/l	1.0		1	
Ethylbenzene	ND		ug/l	1.0		1	
Chloromethane	ND		ug/l	2.0		1	
Bromomethane	ND		ug/l	2.0		1	
Vinyl chloride	ND		ug/l	1.0		1	
Chloroethane	ND		ug/l	2.0		1	
1,1-Dichloroethene	ND		ug/l	1.0		1	
trans-1,2-Dichloroethene	ND		ug/l	1.0		1	
Trichloroethene	ND		ug/l	1.0		1	
1,2-Dichlorobenzene	ND		ug/l	1.0		1	

Project Name: 266 WAVERLY ST. **Lab Number:** L1531325

Project Number: 6010.9.01 **Report Date:** 12/04/15

SAMPLE RESULTS

Lab ID: Date Collected: 11/30/15 13:35

Client ID: B-102 (OW) Date Received: 11/30/15
Sample Location: FRAMINGHAM, MA Field Prep: Not Specified

campio zocationi i i a amirio i ii	,	•			1 tota i Top. 1 tot opcomou			
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
MCP Volatile Organics - Westborou	ugh Lab							
1,3-Dichlorobenzene	ND		ug/l	1.0		1		
1,4-Dichlorobenzene	ND		ug/l	1.0		1		
Methyl tert butyl ether	ND		ug/l	2.0		1		
p/m-Xylene	ND		ug/l	2.0		1		
o-Xylene	ND		ug/l	1.0		1		
Xylene (Total)	ND		ug/l	1.0		1		
cis-1,2-Dichloroethene	ND		ug/l	1.0		1		
1,2-Dichloroethene (total)	ND		ug/l	1.0		1		
Dibromomethane	ND		ug/l	2.0		1		
1,2,3-Trichloropropane	ND		ug/l	2.0		1		
Styrene	ND		ug/l	1.0		1		
Dichlorodifluoromethane	ND		ug/l	2.0		1		
Acetone	ND		ug/l	5.0		1		
Carbon disulfide	ND		ug/l	2.0		1		
2-Butanone	ND		ug/l	5.0		1		
4-Methyl-2-pentanone	ND		ug/l	5.0		1		
2-Hexanone	ND		ug/l	5.0		1		
Bromochloromethane	ND		ug/l	2.0		1		
Tetrahydrofuran	ND		ug/l	2.0		1		
2,2-Dichloropropane	ND		ug/l	2.0		1		
1,2-Dibromoethane	ND		ug/l	2.0		1		
1,3-Dichloropropane	ND		ug/l	2.0		1		
1,1,1,2-Tetrachloroethane	ND		ug/l	1.0		1		
Bromobenzene	ND		ug/l	2.0		1		
n-Butylbenzene	ND		ug/l	2.0		1		
sec-Butylbenzene	ND		ug/l	2.0		1		
tert-Butylbenzene	ND		ug/l	2.0		1		
o-Chlorotoluene	ND		ug/l	2.0		1		
p-Chlorotoluene	ND		ug/l	2.0		1		
1,2-Dibromo-3-chloropropane	ND		ug/l	2.0		1		
Hexachlorobutadiene	ND		ug/l	0.60		1		
Isopropylbenzene	ND		ug/l	2.0		1		
p-Isopropyltoluene	ND		ug/l	2.0		1		
Naphthalene	ND		ug/l	2.0		1		
n-Propylbenzene	ND		ug/l	2.0		1		
1,2,3-Trichlorobenzene	ND		ug/l	2.0		1		
1,2,4-Trichlorobenzene	ND		ug/l	2.0		1		
1,3,5-Trimethylbenzene	ND		ug/l	2.0		1		
1,2,4-Trimethylbenzene	ND		ug/l	2.0		1		

Project Name: 266 WAVERLY ST. **Lab Number:** L1531325

Project Number: 6010.9.01 **Report Date:** 12/04/15

SAMPLE RESULTS

Lab ID: Date Collected: 11/30/15 13:35

Client ID: B-102 (OW) Date Received: 11/30/15
Sample Location: FRAMINGHAM, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westborough	Lab						
Ethyl ether	ND		ug/l	2.0		1	
Isopropyl Ether	ND		ug/l	2.0		1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1	
1,4-Dioxane	ND		ug/l	250		1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	111		70-130	
Toluene-d8	97		70-130	
4-Bromofluorobenzene	110		70-130	
Dibromofluoromethane	93		70-130	

Project Name: 266 WAVERLY ST.

Project Number: 6010.9.01

SAMPLE RESULTS

Lab Number: L1531325

Report Date: 12/04/15

Lab ID: L1531325-03

Client ID: B-104 (OW)

FRAMINGHAM, MA Sample Location:

Matrix: Water Analytical Method: 97,8260C Analytical Date: 12/03/15 14:47

Analyst: MM Date Collected: 11/30/15 14:45

Date Received: 11/30/15 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborough	Lab					
Methylene chloride	ND		ug/l	2.0		1
1,1-Dichloroethane	ND		ug/l	1.0		1
Chloroform	ND		ug/l	1.0		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.0		1
Tetrachloroethene	ND		ug/l	1.0		1
Chlorobenzene	ND		ug/l	1.0		1
Trichlorofluoromethane	ND		ug/l	2.0		1
1,2-Dichloroethane	ND		ug/l	1.0		1
1,1,1-Trichloroethane	ND		ug/l	1.0		1
Bromodichloromethane	ND		ug/l	1.0		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
1,3-Dichloropropene, Total	ND		ug/l	0.50		1
1,1-Dichloropropene	ND		ug/l	2.0		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Chloromethane	ND		ug/l	2.0		1
Bromomethane	ND		ug/l	2.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	2.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
trans-1,2-Dichloroethene	ND		ug/l	1.0		1
Trichloroethene	ND		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	1.0		1

Project Name: 266 WAVERLY ST. **Lab Number:** L1531325

Project Number: 6010.9.01 **Report Date:** 12/04/15

SAMPLE RESULTS

Lab ID: Date Collected: 11/30/15 14:45

Client ID: B-104 (OW) Date Received: 11/30/15
Sample Location: FRAMINGHAM, MA Field Prep: Not Specified

Campic 200auoin - 110 umitorii un	,	***			riola riop.		
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westboroug	h Lab						
1,3-Dichlorobenzene	ND		ug/l	1.0		1	
1,4-Dichlorobenzene	ND		ug/l	1.0		1	
Methyl tert butyl ether	ND		ug/l	2.0		1	
p/m-Xylene	ND		ug/l	2.0		1	
o-Xylene	ND		ug/l	1.0		1	
Xylene (Total)	ND		ug/l	1.0		1	
cis-1,2-Dichloroethene	ND		ug/l	1.0		1	
1,2-Dichloroethene (total)	ND		ug/l	1.0		1	
Dibromomethane	ND		ug/l	2.0		1	
1,2,3-Trichloropropane	ND		ug/l	2.0		1	
Styrene	ND		ug/l	1.0		1	
Dichlorodifluoromethane	ND		ug/l	2.0		1	
Acetone	ND		ug/l	5.0		1	
Carbon disulfide	ND		ug/l	2.0		1	
2-Butanone	ND		ug/l	5.0		1	
4-Methyl-2-pentanone	ND		ug/l	5.0		1	
2-Hexanone	ND		ug/l	5.0		1	
Bromochloromethane	ND		ug/l	2.0		1	
Tetrahydrofuran	ND		ug/l	2.0		1	
2,2-Dichloropropane	ND		ug/l	2.0		1	
1,2-Dibromoethane	ND		ug/l	2.0		1	
1,3-Dichloropropane	ND		ug/l	2.0		1	
1,1,1,2-Tetrachloroethane	ND		ug/l	1.0		1	
Bromobenzene	ND		ug/l	2.0		1	
n-Butylbenzene	ND		ug/l	2.0		1	
sec-Butylbenzene	ND		ug/l	2.0		1	
tert-Butylbenzene	ND		ug/l	2.0		1	
o-Chlorotoluene	ND		ug/l	2.0		1	
p-Chlorotoluene	ND		ug/l	2.0		1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.0		1	
Hexachlorobutadiene	ND		ug/l	0.60		1	
Isopropylbenzene	ND		ug/l	2.0		1	
p-Isopropyltoluene	ND		ug/l	2.0		1	
Naphthalene	ND		ug/l	2.0		1	
n-Propylbenzene	ND		ug/l	2.0		1	
1,2,3-Trichlorobenzene	ND		ug/l	2.0		1	
1,2,4-Trichlorobenzene	ND		ug/l	2.0		1	
1,3,5-Trimethylbenzene	ND		ug/l	2.0		1	
1,2,4-Trimethylbenzene	ND		ug/l	2.0		1	

Project Name: 266 WAVERLY ST. **Lab Number:** L1531325

Project Number: 6010.9.01 **Report Date:** 12/04/15

SAMPLE RESULTS

Lab ID: Date Collected: 11/30/15 14:45

Client ID: B-104 (OW) Date Received: 11/30/15
Sample Location: FRAMINGHAM, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westboro	ough Lab						
Ethyl ether	ND		ug/l	2.0		1	
Isopropyl Ether	ND		ug/l	2.0		1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1	
1.4-Dioxane	ND		ua/l	250		1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	105		70-130	
Toluene-d8	97		70-130	
4-Bromofluorobenzene	96		70-130	
Dibromofluoromethane	98		70-130	

L1531325

Project Name: 266 WAVERLY ST. Lab Number:

Project Number: 6010.9.01 **Report Date:** 12/04/15

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 12/03/15 08:51

Analyst: MM

McP Volatile Organics - Westborough Lab for sample(s): 01-03 Batch: WG846351-3 Methylene chloride ND ug/l 2.0 1,1-Dichloroethane ND ug/l 1.0 Chloroform ND ug/l 1.0 Carbon tetrachloride ND ug/l 1.0 1,2-Dichloropropane ND ug/l 1.0 1,1,2-Trichloroethane ND ug/l 1.0 1,1,2-Trichloroethane ND ug/l 1.0 Chlorobenzene ND ug/l 1.0 Chlorofluoromethane ND ug/l 1.0 1,2-Dichlorofluoromethane ND ug/l 1.0 1,1-Trichloroethane ND ug/l 1.0 1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene, Total ND ug/l 0.50 1,1-Dichloropropene ND	Parameter	Result	Qualifier	Units	RI	_ MDL
1,1-Dichloroethane ND ug/l 1.0 Chloroform ND ug/l 1.0 Carbon tetrachloride ND ug/l 1.0 1,2-Dichloropropane ND ug/l 1.0 Dibromochloromethane ND ug/l 1.0 1,1,2-Trichloroethane ND ug/l 1.0 1,1,2-Trichloroethane ND ug/l 1.0 Chlorobenzene ND ug/l 1.0 Trichlorofluoromethane ND ug/l 2.0 1,1-1-Trichloroethane ND ug/l 1.0 Bromodichloromethane ND ug/l 1.0 1,1-1-Trichloropropene ND ug/l 0.50 trans-1,3-Dichloropropene ND ug/l 0.50 trans-1,3-Dichloropropene ND ug/l 0.50 1,1-Dichloropropene ND ug/l </td <td>MCP Volatile Organics -</td> <td>- Westborough Lab for</td> <td>sample(s):</td> <td>01-03</td> <td>Batch:</td> <td>WG846351-3</td>	MCP Volatile Organics -	- Westborough Lab for	sample(s):	01-03	Batch:	WG846351-3
1,1-Dichloroethane ND ug/l 1.0 Chloroform ND ug/l 1.0 Carbon tetrachloride ND ug/l 1.0 1,2-Dichloropropane ND ug/l 1.0 Dibromochloromethane ND ug/l 1.0 1,1,2-Trichloroethane ND ug/l 1.0 1,1,2-Trichloroethane ND ug/l 1.0 Chlorobenzene ND ug/l 1.0 Trichlorofluoromethane ND ug/l 2.0 1,1-1-Trichloroethane ND ug/l 1.0 Bromodichloromethane ND ug/l 1.0 1,1-1-Trichloropropene ND ug/l 0.50 trans-1,3-Dichloropropene ND ug/l 0.50 trans-1,3-Dichloropropene ND ug/l 0.50 1,1-Dichloropropene ND ug/l </td <td>Methylene chloride</td> <td>ND</td> <td></td> <td>ua/l</td> <td>21</td> <td>n</td>	Methylene chloride	ND		ua/l	21	n
Chloroform ND ug/l 1.0 Carbon tetrachloride ND ug/l 1.0 1,2-Dichloropropane ND ug/l 1.0 1,1,2-Trichloroethane ND ug/l 1.0 1,1,2-Trichloroethane ND ug/l 1.0 Tetrachloroethane ND ug/l 1.0 Chlorobenzene ND ug/l 1.0 Trichlorofluoromethane ND ug/l 1.0 Trichlorofluoromethane ND ug/l 1.0 1,1,1-Trichloroethane ND ug/l 1.0 Bromodichloromethane ND ug/l 1.0 trans-1,3-Dichloropropene ND ug/l 0.50 cis-1,3-Dichloropropene ND ug/l 0.50 1,1-Dichloropropene ND ug/l 2.0 1,1-Dichloropropene ND ug/l						
Carbon tetrachloride ND ug/l 1.0 1,2-Dichloropropane ND ug/l 1.0 1,1,2-Trichloroethane ND ug/l 1.0 1,1,2-Trichloroethane ND ug/l 1.0 Tetrachloroethane ND ug/l 1.0 Chlorobenzene ND ug/l 1.0 Trichlorofluoromethane ND ug/l 2.0 1,2-Dichloroethane ND ug/l 1.0 1,1-Trichloroethane ND ug/l 1.0 8Fomodichloromethane ND ug/l 1.0 1,3-Dichloropropene ND ug/l 0.50 cis-1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene ND ug/l 2.0 1,1-Dichloropropene ND ug/l 2.0 1,1-Dichloropropene ND ug/l						
1,2-Dichloropropane ND						
Dibromochloromethane ND ug/l 1.0						
1,1,2-Trichloroethane ND	· ·					
Tetrachloroethene ND ug/l 1.0 Chlorobenzene ND ug/l 1.0 Trichloroftuoromethane ND ug/l 2.0 1,2-Dichloroethane ND ug/l 1.0 1,1,1-Trichloroethane ND ug/l 1.0 Bromodichloromethane ND ug/l 0.50 trans-1,3-Dichloropropene ND ug/l 0.50 cis-1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene ND ug/l 0.50 1,1-Dichloropropene ND ug/l 2.0 1,1-Dichloropropene ND ug/l 2.0 Bromoform ND ug/l 2.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 1.0 Ethylbenzene ND ug/l 2.0						
Chlorobenzene ND ug/l 1.0 Trichlorofluoromethane ND ug/l 2.0 1,2-Dichloroethane ND ug/l 1.0 1,1,1-Trichloroethane ND ug/l 1.0 Bromodichloromethane ND ug/l 0.50 trans-1,3-Dichloropropene ND ug/l 0.50 cis-1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene, Total ND ug/l 2.0 1,1-Dichloropropene ND ug/l 2.0 Bromoform ND ug/l 2.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 1.0 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 2.0 Bromomethane ND ug/l 2.0						
Trichlorofluoromethane ND ug/l 2.0 1,2-Dichloroethane ND ug/l 1.0 1,1,1-Trichloroethane ND ug/l 1.0 Bromodichloromethane ND ug/l 1.0 trans-1,3-Dichloropropene ND ug/l 0.50 cis-1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene, Total ND ug/l 2.0 1,1-Dichloropropene ND ug/l 2.0 Bromoform ND ug/l 2.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 1.0 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Bromomethane ND ug/l 2.0 Vinyl chloride ND ug/l 2.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
1,2-Dichloroethane ND ug/l 1.0 1,1,1-Trichloroethane ND ug/l 1.0 Bromodichloromethane ND ug/l 1.0 trans-1,3-Dichloropropene ND ug/l 0.50 cis-1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene, Total ND ug/l 2.0 1,1-Dichloropropene ND ug/l 2.0 Bromoform ND ug/l 2.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 1.0 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 2.0 Vinyl chloride ND ug/l 2.0 Vinyl chloride ND ug/l 2.0						
1,1,1-Trichloroethane						
Bromodichloromethane ND ug/l 1.0 trans-1,3-Dichloropropene ND ug/l 0.50 cis-1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene, Total ND ug/l 2.0 1,1-Dichloropropene ND ug/l 2.0 Bromoform ND ug/l 2.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 1.0 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 2.0 Bromomethane ND ug/l 1.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 1.0 1,1-Dichloroethene ND ug/l 1.0	·					
trans-1,3-Dichloropropene ND ug/l 0.50 cis-1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene, Total ND ug/l 2.0 1,1-Dichloropropene ND ug/l 2.0 Bromoform ND ug/l 2.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 1.0 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 2.0 Bromomethane ND ug/l 1.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 1.0 1,1-Dichloroethene ND ug/l 1.0						
cis-1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene, Total ND ug/l 0.50 1,1-Dichloropropene ND ug/l 2.0 Bromoform ND ug/l 2.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 0.50 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 2.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 2.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0						
1,3-Dichloropropene, Total ND ug/l 0.50 1,1-Dichloropropene ND ug/l 2.0 Bromoform ND ug/l 2.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 1.0 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 2.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 2.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0						
1,1-Dichloropropene ND ug/l 2.0 Bromoform ND ug/l 2.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 0.50 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 2.0 Bromomethane ND ug/l 1.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 1.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0						
Bromoform ND ug/l 2.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 0.50 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 2.0 Bromomethane ND ug/l 1.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 1.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0						
1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 0.50 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 2.0 Bromomethane ND ug/l 1.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 1.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0						
Benzene ND ug/l 0.50 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 2.0 Bromomethane ND ug/l 2.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 2.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0						
Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 2.0 Bromomethane ND ug/l 2.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 2.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	1,1,2,2-Tetrachloroethane			ug/l	1.0	O
Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 2.0 Bromomethane ND ug/l 2.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 2.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	Benzene	ND		ug/l	0.5	60
Chloromethane ND ug/l 2.0 Bromomethane ND ug/l 2.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 2.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	Toluene	ND		ug/l	1.0	O
Bromomethane ND ug/l 2.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 2.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	Ethylbenzene	ND		ug/l	1.0	O
Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 2.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	Chloromethane	ND		ug/l	2.0	0
Chloroethane ND ug/l 2.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	Bromomethane	ND		ug/l	2.0	0
1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	Vinyl chloride	ND		ug/l	1.0	0
trans-1,2-Dichloroethene ND ug/l 1.0	Chloroethane	ND		ug/l	2.0	0
	1,1-Dichloroethene	ND		ug/l	1.0	O
Trichloroethene ND ug/l 1.0	trans-1,2-Dichloroethene	ND		ug/l	1.0)
	Trichloroethene	ND		ug/l	1.0)

Project Name: 266 WAVERLY ST. **Lab Number:** L1531325

Project Number: 6010.9.01 **Report Date:** 12/04/15

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 12/03/15 08:51

Analyst: MM

arameter	Result	Qualifier	Units	RL	_ MDL
CP Volatile Organics - West	borough Lab for	sample(s):	01-03	Batch:	WG846351-3
1,2-Dichlorobenzene	ND		ug/l	1.0	
1,3-Dichlorobenzene	ND		ug/l	1.0)
1,4-Dichlorobenzene	ND		ug/l	1.0)
Methyl tert butyl ether	ND		ug/l	2.0)
p/m-Xylene	ND		ug/l	2.0)
o-Xylene	ND		ug/l	1.0)
Xylene (Total)	ND		ug/l	1.0)
cis-1,2-Dichloroethene	ND		ug/l	1.0)
1,2-Dichloroethene (total)	ND		ug/l	1.0)
Dibromomethane	ND		ug/l	2.0)
1,2,3-Trichloropropane	ND		ug/l	2.0)
Styrene	ND		ug/l	1.0)
Dichlorodifluoromethane	ND		ug/l	2.0)
Acetone	ND		ug/l	5.0)
Carbon disulfide	ND		ug/l	2.0)
2-Butanone	ND		ug/l	5.0)
4-Methyl-2-pentanone	ND		ug/l	5.0)
2-Hexanone	ND		ug/l	5.0)
Bromochloromethane	ND		ug/l	2.0)
Tetrahydrofuran	ND		ug/l	2.0)
2,2-Dichloropropane	ND		ug/l	2.0	
1,2-Dibromoethane	ND		ug/l	2.0)
1,3-Dichloropropane	ND		ug/l	2.0)
1,1,1,2-Tetrachloroethane	ND		ug/l	1.0)
Bromobenzene	ND		ug/l	2.0)
n-Butylbenzene	ND		ug/l	2.0)
sec-Butylbenzene	ND		ug/l	2.0)
tert-Butylbenzene	ND		ug/l	2.0)
o-Chlorotoluene	ND		ug/l	2.0)

L1531325

Project Name: 266 WAVERLY ST. Lab Number:

Project Number: 6010.9.01 **Report Date:** 12/04/15

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 12/03/15 08:51

Analyst: MM

Parameter	Result	Qualifier	Units	RL	MDL	
MCP Volatile Organics - Westbo	rough Lab for	sample(s):	01-03	Batch:	WG846351-3	
p-Chlorotoluene	ND		ug/l	2.0		
1,2-Dibromo-3-chloropropane	ND		ug/l	2.0		
Hexachlorobutadiene	ND		ug/l	0.60)	
Isopropylbenzene	ND		ug/l	2.0		
p-Isopropyltoluene	ND		ug/l	2.0		
Naphthalene	ND		ug/l	2.0		
n-Propylbenzene	ND		ug/l	2.0		
1,2,3-Trichlorobenzene	ND		ug/l	2.0		
1,2,4-Trichlorobenzene	ND		ug/l	2.0		
1,3,5-Trimethylbenzene	ND		ug/l	2.0		
1,2,4-Trimethylbenzene	ND		ug/l	2.0		
Ethyl ether	ND		ug/l	2.0		
Isopropyl Ether	ND		ug/l	2.0		
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		
1,4-Dioxane	ND		ug/l	250)	

		,		
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	101		70-130	
Toluene-d8	105		70-130	
4-Bromofluorobenzene	111		70-130	
Dibromofluoromethane	107		70-130	

Project Name: 266 WAVERLY ST.

Project Number: 6010.9.01

Lab Number: L1531325

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recove Qual Limits	ry RPD	RPD Qual Limits	
MCP Volatile Organics - Westborough Lab	Associated samp	le(s): 01-03	Batch: WG846	351-1 WG846351-2			
Methylene chloride	107		102	70-130	5	20	
1,1-Dichloroethane	106		96	70-130	10	20	
Chloroform	104		95	70-130	9	20	
Carbon tetrachloride	106		96	70-130	10	20	
1,2-Dichloropropane	100		90	70-130	11	20	
Dibromochloromethane	91		93	70-130	2	20	
1,1,2-Trichloroethane	109		95	70-130	14	20	
Tetrachloroethene	106		102	70-130	4	20	
Chlorobenzene	93		94	70-130	1	20	
Trichlorofluoromethane	112		96	70-130	15	20	
1,2-Dichloroethane	105		96	70-130	9	20	
1,1,1-Trichloroethane	107		97	70-130	10	20	
Bromodichloromethane	103		93	70-130	10	20	
trans-1,3-Dichloropropene	98		92	70-130	6	20	
cis-1,3-Dichloropropene	105		94	70-130	11	20	
1,1-Dichloropropene	105		96	70-130	9	20	
Bromoform	97		96	70-130	1	20	
1,1,2,2-Tetrachloroethane	102		100	70-130	2	20	
Benzene	106		95	70-130	11	20	
Toluene	98		97	70-130	1	20	
Ethylbenzene	98		97	70-130	1	20	

Project Name: 266 WAVERLY ST.

Project Number: 6010.9.01

Lab Number: L1531325

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
MCP Volatile Organics - Westborough Lab A	ssociated samp	ole(s): 01-03	Batch: WG846	351-1 WG84	16351-2				
Chloromethane	106		93		70-130	13		20	
Bromomethane	82		78		70-130	5		20	
Vinyl chloride	109		97		70-130	12		20	
Chloroethane	106		96		70-130	10		20	
1,1-Dichloroethene	103		94		70-130	9		20	
trans-1,2-Dichloroethene	101		90		70-130	12		20	
Trichloroethene	103		96		70-130	7		20	
1,2-Dichlorobenzene	100		102		70-130	2		20	
1,3-Dichlorobenzene	96		104		70-130	8		20	
1,4-Dichlorobenzene	98		98		70-130	0		20	
Methyl tert butyl ether	102		93		70-130	9		20	
p/m-Xylene	96		97		70-130	1		20	
o-Xylene	101		96		70-130	5		20	
cis-1,2-Dichloroethene	104		101		70-130	3		20	
Dibromomethane	102		95		70-130	7		20	
1,2,3-Trichloropropane	98		104		70-130	6		20	
Styrene	100		97		70-130	3		20	
Dichlorodifluoromethane	115		102		70-130	12		20	
Acetone	114		92		70-130	21	Q	20	
Carbon disulfide	99		90		70-130	10		20	
2-Butanone	111		94		70-130	17		20	

Project Name: 266 WAVERLY ST.

Project Number: 6010.9.01

Lab Number: L1531325

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
MCP Volatile Organics - Westborough Lab	Associated samp	ole(s): 01-03	Batch: WG846	351-1 WG846351-2		
4-Methyl-2-pentanone	100		88	70-130	13	20
2-Hexanone	94		94	70-130	0	20
Bromochloromethane	120		102	70-130	16	20
Tetrahydrofuran	103		88	70-130	16	20
2,2-Dichloropropane	105		98	70-130	7	20
1,2-Dibromoethane	104		101	70-130	3	20
1,3-Dichloropropane	96		91	70-130	5	20
1,1,1,2-Tetrachloroethane	99		104	70-130	5	20
Bromobenzene	101		104	70-130	3	20
n-Butylbenzene	95		97	70-130	2	20
sec-Butylbenzene	99		97	70-130	2	20
tert-Butylbenzene	94		94	70-130	0	20
o-Chlorotoluene	94		97	70-130	3	20
p-Chlorotoluene	99		102	70-130	3	20
1,2-Dibromo-3-chloropropane	96		106	70-130	10	20
Hexachlorobutadiene	92		110	70-130	18	20
Isopropylbenzene	98		99	70-130	1	20
p-Isopropyltoluene	98		100	70-130	2	20
Naphthalene	89		86	70-130	3	20
n-Propylbenzene	98		98	70-130	0	20
1,2,3-Trichlorobenzene	104		96	70-130	8	20

Project Name: 266 WAVERLY ST.

Project Number: 6010.9.01

Lab Number: L1531325

arameter	LCS %Recovery G	LCSD Qual %Recover	ry Qual	%Recovery Limits	RPD	RPD Qual Limits	
MCP Volatile Organics - Westborough La	b Associated sample(s): 01-03 Batch: W0	G846351-1 WG	846351-2			
1,2,4-Trichlorobenzene	89	93		70-130	4	20	
1,3,5-Trimethylbenzene	98	98		70-130	0	20	
1,2,4-Trimethylbenzene	98	100		70-130	2	20	
Ethyl ether	105	91		70-130	14	20	
Isopropyl Ether	104	94		70-130	10	20	
Ethyl-Tert-Butyl-Ether	102	94		70-130	8	20	
Tertiary-Amyl Methyl Ether	101	94		70-130	7	20	
1,4-Dioxane	130	113		70-130	14	20	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	117		96		70-130	
Toluene-d8	100		100		70-130	
4-Bromofluorobenzene	97		103		70-130	
Dibromofluoromethane	112		102		70-130	

Project Name: 266 WAVERLY ST. Lab Number: L1531325

Project Number: 6010.9.01 Report Date: 12/04/15

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information Custody Seal

Cooler

A Absent

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1531325-01A	Vial HCI preserved	Α	N/A	4.6	Υ	Absent	MCP-8260-10(14)
L1531325-01B	Vial HCl preserved	Α	N/A	4.6	Υ	Absent	MCP-8260-10(14)
L1531325-02A	Vial HCl preserved	Α	N/A	4.6	Υ	Absent	MCP-8260-10(14)
L1531325-02B	Vial HCl preserved	Α	N/A	4.6	Υ	Absent	MCP-8260-10(14)
L1531325-03A	Vial HCl preserved	Α	N/A	4.6	Υ	Absent	MCP-8260-10(14)
L1531325-03B	Vial HCI preserved	Α	N/A	4.6	Υ	Absent	MCP-8260-10(14)

Project Name: 266 WAVERLY ST. **Lab Number:** L1531325

Project Number: 6010.9.01 **Report Date:** 12/04/15

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

TIC

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

Report Format: Data Usability Report

 Project Name:
 266 WAVERLY ST.
 Lab Number:
 L1531325

 Project Number:
 6010.9.01
 Report Date:
 12/04/15

Data Qualifiers

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Serial_No:12041516:42

Project Name: 266 WAVERLY ST. Lab Number: L1531325

Project Number: 6010 9 01 Report Date: 12/04/15

Project Number: 6010.9.01 Report Date: 12/04/15

REFERENCES

97 EPA Test Methods (SW-846) with QC Requirements & Performance Standards for the Analysis of EPA SW-846 Methods under the Massachusetts Contingency Plan, WSC-CAM-IIA, IIB, IIIA, IIIB, IIIC, IIID, VA, VB, VC, VIA, VIB, VIIIA and VIIIB, July 2010.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:12041516:42

Alpha Analytical, Inc.
Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 4 Published Date: 11/9/2015 8:49:01 AM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 8260C: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene; lodomethane (methyl iodide) (soil); Methyl methacrylate (soil);

Azobenzene.

EPA 8270D: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 625: 4-Chloroaniline, 4-Methylphenol.

SM4500: Soil: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

EPA 8270D: Biphenyl. EPA 2540D: TSS

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene,

Benzothiophene, 1-Methylnaphthalene.

The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility:

Drinking Water

EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; **EPA 200.7**: Ba,Be,Ca,Cd,Cr,Cu,Na; **EPA 245.1**: Mercury;

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C,

SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT.

Non-Potable Water

EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn;

EPA 200.7: Al,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,Tl,V,Zn;

EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC,

SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F,

EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4,

SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT,

Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form Pre-Qualtrax Document ID: 08-113

Serial_No:12041516:42

Дігна	CHAIN	OF CUSTO	DDY ,	PAGEOF	te Rec'd in Lab:	11/30/15	ALPHA Job #: (1531325
TICAL	000 S-4-2- DIVI	Project Inform	nation		eport Information - Dat		Billing Information
8 Walkup Drive Westboro, MA Tel: 508-898-9	01581 Mansfield, MA 02048	Project Name:	2661	January ST.	ADEX EMAIL		☐ Same as Client info PO #:
Client Information	on	Project Location:	E	aha ma	egulatory Requirement	s & Project In	formation Requirements
Client: Mr Pl	nail Assoc	Project #:	10.9.0	Doverly ST.	Yes ☐ No MA MCP Analyti Yes Ấ No Matrix Spike Red	cal Methods quired on this SDG?	☐ Yes ♠No CT RCP Analytical Methods (Required for MCP Inorgan (S))
Address: 2269	Mass Ave	Project Manager			Yes 🗖 No GW1 Standards		
~~~	1 33.7100	ALPHA Quote #			Yes 🗹 No NPDES RGP Other State /Fed Program		Criteria
Phone: 6/7-8	168-1420.	Turn-Around	Time		7 / / 2 / 6	12/2/	
Email:					S DRCP 15	s Only	
Additional Project Information:  Date Due: 12 -7-15				confirmed if pre-approved!)	SVOC: DABN D PAH METALS: DMCP 13 DMCP 14 DRCP 15 EPH: DRanges & Targets VPH: C.	L PcB C PEST  TPH: DQuant Only CFingerprint	SAMPLE INFO Filtration Field Lab to do Preservation Lab to do
ALPHA Lab ID (Lab Use Only)	Sample ID		Collection Sample Sample Date Time Matrix Initials		SVOC: METALS METALS EPH: D.	D PCB	Preservation ☐ Lab to do  Sample Comments
2132501	B-101 (00)	11/3	1215	GW Ret			2
0	B=100 (000)	11/3	101	10 RSt			
00	B-101 (ow) B-102 (ow) B-104 (ov)	L	1 2	- E259			
	5-109 (60)	11/3		4- 000			
-							
Container Type P= Plastic	Preservative A= None			Container Type			
A= Amber glass V= Vial G= Glass	B= HCI C= HNO ₃ D= H ₂ SO ₄			Preservative			
B≃ Bacteria cup C≈ Cube	E= NaOH F= MeOH	Relinquished B		Date/Time	Received By:	Date/T	ime All samples submitted are subject to
O= Other E= Encore D= BOD Bottle Page 29 of 32  G= NaHSO4 H = Na ₂ S ₂ O ₃ I= Ascorbic Acid J = NH ₄ CI K= Zn Acetate O= Other				345 1758	Will MU	1 11/39/13	Alpha's Terms and Conditions. See reverse side. FORM NO. 01-01 (rev. 12-Mar-2012)

### 7A Volatile Organics CONTINUING CALIBRATION CHECK

Lab Name: Alpha Analytical Labs

SDG No.: L1531325

Instrument ID: Jack.i Calibration Date: 03-DEC-2015 Time: 07:14

Lab File ID: 1203A03 Init. Calib. Date(s): 01-DEC-2 01-DEC-2

Compound		  RRF 	MIN   RRF	   %D	MAX     %D
=====================================	=====   .85007  1.1658   .93576   .40472   .54712  1.3724   .38185   .66444  2.1093   .72307   100   .11613   .67616   100   .7762   .42708	=====  .97747  1.2419  1.0186  .3318  .57739  1.5392  .40209  .68517  2.0819  .82984   135  .1197  .72127  114  .7827  .47771	RRF  =====   .1   .1   .1   .1   .1   .05   .1   .05   .05   .1   .1   .1	=====   15   7   9   -18   6   12   5   3   -1   15   35   3   7   14   1	%D
methyl tert butyl ether   tert butyl alcohol   Diisopropyl Ether   1,1-dichloroethane   acrylonitrile   Halothane   Ethyl-Tert-Butyl-Ether   vinyl acetate   cis-1,2-dichloroethene	2.0304  .04096  3.4695  1.6449  .24572  .61386  2.8605	2.0664  .07202  3.6041  1.7395  .25663  .6517  2.9075  2.0884  .88191	.1   .05   .01   .2   .05   .05   .05	2 76 4 6 4 6 2 2 2	20   20   F 20   20   20   20   20   20   20   20
cyclohexane   bromochloromethane   chloroform   carbontetrachloride   tetrahydrofuran   ethyl acetate	1.6792  .38276  1.5739  1.3580  .22298  .64425  1.4939  1.1646  .26445  3.2721	1.6011   1.2243   .29374   3.4563	.01 .05 .2 .1 .05 .05 .05 .1 .05 .1 .05	11 20 4 6 3 10 7 15 11 6	30     20   F   20     20     20     20     20     20

FORM VII MCP-8260-10

### 7A CONTINUING CALIBRATION CHECK

Lab Name: Alpha Analytical Labs

SDG No.: L1531325

Instrument ID: Jack.i Calibration Date: 03-DEC-2015 Time: 07:14

Lab File ID: 1203A03 Init. Calib. Date(s): 01-DEC-2 01-DEC-2

Compound	   RRF	  RRF 	MIN   RRF	   %D	MAX     %D	
methyl cyclohexane   trichloroethene   dibromomethane   1,2-dichloropropane   bromodichloromethane   1,4-dioxane   2-chloroethylvinyl ether   cis-1,3-dichloropropene   toluene   tetrachloroethene   4-methyl-2-pentanone   trans-1,3-dichloropropene   1,1,2-trichloroethane   ethyl-methacrylate   chlorodibromomethane   1,3-dichloropropane   1,2-dibromoethane   2-hexanone   chlorobenzene   ethyl benzene   1,1,1,2-tetrachloroethane   p/m xylene   o xylene   bromoform   styrene   isopropylbenzene   l,4-dichlorobutane   n-propylbenzene   1,1,2,2,-tetrachloroethane   4-ethyltoluene   2-chlorotoluene   1,2,3-trichloropropane   1,3,5-trimethybenzene   trans-1,4-dichloro-2-butene   4-chorotoluene   tetr-butylbenzene   1,2,4-trimethylbenzene   1,2	1.4450 .89042 .44967 .9204 11.00364 .43827 12.6315 12.2062 .24418 1.3576 .54835 .91009 .92172 1.2713 .71299 .47776 .3.1179 .47776 .3.1179 .47776 .3.1179 .47776 .3.1179 .47776 .3.1179 .47776 .3.1179 .47776 .3.1179 .47776 .3.1179 .5.0010 .1.0866 .2.1461 .1.9963 .92096 .3.2122 .7.585 .2.2383 .2.8820 .0.097 .7.5175 .1.1583 .8.1846 .55418 .55418 .6.6049 .7.1418	1.4849 .91609 .45658 .92096 1.1668 .00473 .46209 1.3789 12.5841 1.2800 .24462 1.3285 .59587 .89296 .83552 1.2260 .74538 .44714 12.9101 14.8833 11.0770 12.0673 12.0125 .89496 13.2096 19.5466 12.2714 12.7730 10.605 10.20949	.01 .22 .05 .05 .05 .05 .05 .05 .05 .01 .01 .01 .01 .05 .01 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05	2 0 3 3 5 -2 0 -2 -2 -4 -7 -1 -4 -2 -4 -2 -2 -4 -2 -2 -1 -2 -1 -2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	30   20   20   20   20   20   20   20	F

FORM VII MCP-8260-10

### 7A CONTINUING CALIBRATION CHECK

Lab Name: Alpha Analytical Labs

SDG No.: L1531325

Instrument ID: Jack.i Calibration Date: 03-DEC-2015 Time: 07:14

Lab File ID: 1203A03 Init. Calib. Date(s): 01-DEC-2 01-DEC-2

   Compound 	   RRF  =====		MIN   RRF	%D =====	MAX     %D    ====
sec-butylbenzene    p-isopropyltoluene    1,3-dichlorobenzene    1,4-dichlorobenzene    p-diethylbenzene    p-diethylbenzene      p-dichlorobenzene      1,2-dichlorobenzene    1,2,4,5-tetramethylbenzene    1,2-dibromo-3-chloropropane    1,3,5-trichlorobenzene    1,2,4-trichlorobenzene    1,2,4-trichlorobenzene    1,2,4-trichlorobenzene    1,2,3-trichlorobenzene    1,2,3-trichlor	9.8044   8.5180   4.3138   4.3560   4.5827   6.3467   3.7309   6.2945   .2079   1.3086   1.6086   .71722   100   100	9.7502     8.3744     4.1469     4.2592     4.6982     6.0520     3.7278     6.2153     1.3618     1.4351     1.65897     88.648	.01  .05  .6  .55  .05  .05  .05  .05  .05	-1 -2 -4 -2 3 -5 0 -1 -4 4 -11 -8 -11	
dibromofluoromethane	.25412	.28351   .40954   1.1549	.05		20   20   20

FORM VII MCP-8260-10



### ANALYTICAL REPORT

Lab Number: L1742763

Client: McPhail Associates

2269 Massachusetts Avenue

Cambridge, MA 02140

ATTN: Ambrose Donovan Phone: (617) 868-1420

Project Name: 266 WAVERLY STREET

Project Number: 6010.9.03

Report Date: 11/28/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com



**Project Name:** 266 WAVERLY STREET

**Project Number:** 6010.9.03

**Lab Number:** L1742763 **Report Date:** 11/28/17

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1742763-01	B-3(OW)	WATER	FRAMINGHAM, MA	11/20/17 10:25	11/20/17
L1742763-02	B-14(OW)	WATER	FRAMINGHAM, MA	11/20/17 09:15	11/20/17



L1742763

Project Name: 266 WAVERLY STREET Lab Number:

Project Number: 6010.9.03 Report Date: 11/28/17

### **Case Narrative**

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

#### HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please	contact	Client	Services	at 800	-624-9220	with an	v c	uestions.
10000	Contact	Onone	00111000	at ooo	OL I OLLO	With an	, .	14000.01.01.



Project Name: 266 WAVERLY STREET Lab Number: L1742763

Project Number: 6010.9.03 Report Date: 11/28/17

**Case Narrative (continued)** 

Chlorine, Total Residual

The WG1065019-4 MS recovery, performed on L1742763-02, is outside the acceptance criteria (141%);

however, the associated LCS recovery is within criteria. No further action was taken.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

king l. Without Lisa Westerlind

Authorized Signature:

Title: Technical Director/Representative

Date: 11/28/17



### **METALS**



**Project Name:** 266 WAVERLY STREET

**Project Number:** 6010.9.03 Lab Number: **Report Date:** 

L1742763 11/28/17

**SAMPLE RESULTS** 

Date Collected:

11/20/17 10:25

Lab ID: Client ID:

L1742763-01

Date Received:

11/20/17

Sample Location:

B-3(OW) FRAMINGHAM, MA

Field Prep:

Not Specified

Matrix:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mar	nsfield Lab										
Antimony, Total	ND		mg/l	0.00400		1	11/22/17 15:00	11/28/17 10:26	EPA 3005A	3,200.8	AM
Arsenic, Total	0.00440		mg/l	0.00100		1	11/22/17 15:00	11/28/17 10:26	EPA 3005A	3,200.8	AM
Cadmium, Total	ND		mg/l	0.00020		1	11/22/17 15:00	11/28/17 10:26	EPA 3005A	3,200.8	AM
Chromium, Total	ND		mg/l	0.00100		1	11/22/17 15:00	11/28/17 10:26	EPA 3005A	3,200.8	AM
Copper, Total	ND		mg/l	0.00100		1	11/22/17 15:00	11/28/17 10:26	EPA 3005A	3,200.8	AM
Iron, Total	22.8		mg/l	0.050		1	11/22/17 15:00	11/28/17 00:11	EPA 3005A	19,200.7	PS
Lead, Total	ND		mg/l	0.00100		1	11/22/17 15:00	11/28/17 10:26	EPA 3005A	3,200.8	AM
Mercury, Total	ND		mg/l	0.00020		1	11/22/17 11:40	11/27/17 12:04	EPA 245.1	3,245.1	MG
Nickel, Total	ND		mg/l	0.00200		1	11/22/17 15:00	11/28/17 10:26	EPA 3005A	3,200.8	AM
Selenium, Total	ND		mg/l	0.00500		1	11/22/17 15:00	11/28/17 10:26	EPA 3005A	3,200.8	AM
Silver, Total	ND		mg/l	0.00040		1	11/22/17 15:00	11/28/17 10:26	EPA 3005A	3,200.8	AM
Zinc, Total	ND		mg/l	0.01000		1	11/22/17 15:00	11/28/17 10:26	EPA 3005A	3,200.8	AM
Total Hardness by	SM 2340E	3 - Mansfie	ld Lab								
Hardness	337		mg/l	0.660	NA	1	11/22/17 15:00	11/28/17 00:11	EPA 3005A	19,200.7	PS
General Chemistry	y - Mansfiel	d Lab									

1

0.010

mg/l



107,-

NA

11/28/17 10:26

Chromium, Trivalent

ND

**Project Name:** 266 WAVERLY STREET

**Project Number:** 6010.9.03 Lab Number: **Report Date:** 

L1742763 11/28/17

**SAMPLE RESULTS** 

Lab ID: L1742763-02 Client ID: B-14(OW)

Sample Location:

FRAMINGHAM, MA

Matrix:

Water

Date Collected:

11/20/17 09:15

Date Received:

11/20/17

Not Specified Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Antimony, Total	ND		mg/l	0.00400		1	11/22/17 15:0	0 11/28/17 10:30	EPA 3005A	3,200.8	АМ
Arsenic, Total	ND		mg/l	0.00100		1	11/22/17 15:0	0 11/28/17 10:30	EPA 3005A	3,200.8	AM
Cadmium, Total	0.00020		mg/l	0.00020		1	11/22/17 15:0	0 11/28/17 10:30	EPA 3005A	3,200.8	AM
Chromium, Total	0.00328		mg/l	0.00100		1	11/22/17 15:0	0 11/28/17 10:30	EPA 3005A	3,200.8	AM
Copper, Total	0.00398		mg/l	0.00100		1	11/22/17 15:0	0 11/28/17 10:30	EPA 3005A	3,200.8	AM
Iron, Total	1.68		mg/l	0.050		1	11/22/17 15:0	0 11/28/17 00:16	EPA 3005A	19,200.7	PS
Lead, Total	0.00203		mg/l	0.00100		1	11/22/17 15:0	0 11/28/17 10:30	EPA 3005A	3,200.8	AM
Mercury, Total	ND		mg/l	0.00020		1	11/22/17 11:4	0 11/27/17 12:06	EPA 245.1	3,245.1	MG
Nickel, Total	0.00570		mg/l	0.00200		1	11/22/17 15:0	0 11/28/17 10:30	EPA 3005A	3,200.8	AM
Selenium, Total	ND		mg/l	0.00500		1	11/22/17 15:0	0 11/28/17 10:30	EPA 3005A	3,200.8	AM
Silver, Total	ND		mg/l	0.00040		1	11/22/17 15:0	0 11/28/17 10:30	EPA 3005A	3,200.8	AM
Zinc, Total	ND		mg/l	0.01000		1	11/22/17 15:0	0 11/28/17 10:30	EPA 3005A	3,200.8	AM
Total Hardness by	SM 2340E	s - Mansfiel	d Lab								
Hardness	172		mg/l	0.660	NA	1	11/22/17 15:0	0 11/28/17 00:16	EPA 3005A	19,200.7	PS

General Chemistry	- Mansfield Lab							
Chromium, Trivalent	ND	mg/l	0.010	 1	11/28/17 10:30	NA	107,-	



Project Name: 266 WAVERLY STREET

**Project Number:** 6010.9.03

Lab Number:

L1742763

Report Date:

11/28/17

### Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfield	Lab for sample(s):	01-02 E	Batch: W0	G10656	85-1				
Mercury, Total	ND	mg/l	0.00020		1	11/22/17 11:40	11/27/17 11:27	3,245.1	MG

### **Prep Information**

Digestion Method: EPA 245.1

Parameter	Result Qualifie	r Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfiel	ld Lab for sample(s	): 01-02 E	Batch: W0	G10657	67-1				
Antimony, Total	ND	mg/l	0.00400		1	11/22/17 15:00	11/28/17 09:16	3,200.8	AM
Arsenic, Total	ND	mg/l	0.00100		1	11/22/17 15:00	11/28/17 09:16	3,200.8	AM
Cadmium, Total	ND	mg/l	0.00020		1	11/22/17 15:00	11/28/17 09:16	3,200.8	AM
Chromium, Total	ND	mg/l	0.00100		1	11/22/17 15:00	11/28/17 09:16	3,200.8	AM
Copper, Total	ND	mg/l	0.00100		1	11/22/17 15:00	11/28/17 09:16	3,200.8	AM
Lead, Total	ND	mg/l	0.00050		1	11/22/17 15:00	11/28/17 09:16	3,200.8	AM
Nickel, Total	ND	mg/l	0.00200		1	11/22/17 15:00	11/28/17 09:16	3,200.8	AM
Selenium, Total	ND	mg/l	0.00500		1	11/22/17 15:00	11/28/17 09:16	3,200.8	AM
Silver, Total	ND	mg/l	0.00040		1	11/22/17 15:00	11/28/17 09:16	3,200.8	AM
Zinc, Total	ND	mg/l	0.01000		1	11/22/17 15:00	11/28/17 09:16	3,200.8	AM

### **Prep Information**

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method		
Total Metals - Mansfield Lab for sample(s): 01-02 Batch: WG1065768-1										
Iron, Total	ND	mg/l	0.050		1	11/22/17 15:00	11/27/17 21:51	19,200.7	PS	

**Prep Information** 

Digestion Method: EPA 3005A



**Project Name:** 266 WAVERLY STREET

**Project Number:** 6010.9.03

Lab Number:

L1742763

**Report Date:** 

11/28/17

**Method Blank Analysis Batch Quality Control** 

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Hardness by SM 23	340B - Mansfield Lab	for sam	ole(s):	01-02 I	Batch: WG	1065768-1			
Hardness	ND	mg/l	0.660	NA	1	11/22/17 15:00	11/27/17 21:51	19,200.7	PS

**Prep Information** 

Digestion Method: EPA 3005A



### Lab Control Sample Analysis Batch Quality Control

**Project Name:** 266 WAVERLY STREET

Project Number: 6010.9.03

Lab Number: L1742763

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	(s): 01-02 Bate	ch: WG1065685-2				
Mercury, Total	106	-	85-115	-		
Total Metals - Mansfield Lab Associated sample	(s): 01-02 Bate	ch: WG1065767-2				
Antimony, Total	99	-	85-115	-		
Arsenic, Total	111	-	85-115	-		
Cadmium, Total	106	-	85-115	-		
Chromium, Total	107	-	85-115	-		
Copper, Total	106	-	85-115	-		
Lead, Total	110	-	85-115	-		
Nickel, Total	104	-	85-115	-		
Selenium, Total	114	-	85-115	-		
Silver, Total	102	-	85-115	-		
Zinc, Total	109	-	85-115	-		
otal Metals - Mansfield Lab Associated sample	(s): 01-02 Bate	ch: WG1065768-2				
Iron, Total	100	-	85-115	-		
otal Hardness by SM 2340B - Mansfield Lab A	ssociated sampl	e(s): 01-02 Batch: WG1	065768-2			
Hardness	100	-	85-115	-		



### Matrix Spike Analysis Batch Quality Control

**Project Name:** 266 WAVERLY STREET

6 WAVERLY STREET

**Project Number:** 6010.9.03

Lab Number: L1742763

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery Qu	Recovery al Limits	RPD Qual	RPD Limits
Total Metals - Mansfield	Lab Associated sam	nple(s): 01-02	QC Bat	ch ID: WG106	5685-3	QC Sam	ple: L1742961-01	Client ID: MS	S Sample	
Mercury, Total	ND	0.005	0.00523	105		-	-	70-130	-	20
Total Metals - Mansfield	Lab Associated sam	nple(s): 01-02	QC Bat	ch ID: WG106	5685-5	QC Sam	ple: L1742961-02	Client ID: MS	S Sample	
Mercury, Total	ND	0.005	0.00544	109		-	-	70-130	-	20
Γotal Metals - Mansfield	Lab Associated sam	nple(s): 01-02	QC Bat	ch ID: WG106	5767-3	QC Sam	ple: L1742684-01	Client ID: MS	S Sample	
Antimony, Total	ND	0.5	0.5993	120		-	-	70-130	-	20
Arsenic, Total	0.00582	0.12	0.1474	118		-	-	70-130	-	20
Cadmium, Total	ND	0.051	0.05540	109		-	-	70-130	-	20
Chromium, Total	0.00732	0.2	0.2254	109		-	-	70-130	-	20
Copper, Total	0.00711	0.25	0.2701	105		-	-	70-130	-	20
Lead, Total	0.00469	0.51	0.6130	119		-	-	70-130	-	20
Nickel, Total	0.00859	0.5	0.5328	105		-	-	70-130	-	20
Selenium, Total	ND	0.12	0.1364	114		-	-	70-130	-	20
Silver, Total	ND	0.05	0.05287	106		-	-	70-130	-	20
Zinc, Total	ND	0.5	0.5292	106		-	-	70-130	-	20

### Matrix Spike Analysis Batch Quality Control

**Project Name:** 266 WAVERLY STREET

Project Number:

6010.9.03

**Lab Number:** L1742763

arameter	Native Sample	MS Added	MS Found	MS %Recovery		MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Гotal Metals - Mansfield La	ab Associated sam	nple(s): 01-02	QC Bate	ch ID: WG1065	767-5	QC Sam	ple: L1742701-01	Client ID: MS	Sample	
Antimony, Total	ND	0.5	0.5222	104		-	-	70-130	-	20
Arsenic, Total	0.00134	0.12	0.1369	113		-	-	70-130	-	20
Cadmium, Total	ND	0.051	0.05265	103		-	-	70-130	-	20
Chromium, Total	0.00170	0.2	0.2137	106		-	-	70-130	-	20
Copper, Total	0.00536	0.25	0.2641	103		-	-	70-130	-	20
Lead, Total	0.00174	0.51	0.5679	111		-	-	70-130	-	20
Nickel, Total	ND	0.5	0.5165	103		-	-	70-130	-	20
Selenium, Total	ND	0.12	0.1382	115		-	-	70-130	-	20
Silver, Total	ND	0.05	0.04986	100		-	-	70-130	-	20
Zinc, Total	ND	0.5	0.5553	111		-	-	70-130	-	20
otal Metals - Mansfield La	ab Associated sam	nple(s): 01-02	QC Bate	ch ID: WG1065	768-3	QC Sam	ple: L1742684-01	Client ID: MS	Sample	
Iron, Total	1.22	1	1.73	51	Q	-	-	75-125	-	20
otal Hardness by SM 234	·0B - Mansfield La	b Associated	sample(s)	: 01-02 QC B	atch ID	: WG10657	768-3 QC Sampl	le: L1742684-01	Client ID:	MS Sampl
Hardness	472	66.2	507	53	Q	-	-	75-125	-	20
otal Metals - Mansfield La	ab Associated sam	nple(s): 01-02	QC Bate	ch ID: WG1065	768-7	QC Sam	ple: L1742701-01	Client ID: MS	Sample	
Iron, Total	0.969	1	1.84	87		-	-	75-125	-	20
otal Hardness by SM 234	·0B - Mansfield Lal	b Associated	sample(s)	: 01-02 QC B	atch ID	: WG10657	768-7 QC Sampl	le: L1742701-01	Client ID:	MS Sampl
Hardness	336	66.2	370	51	Q	-	-	75-125	-	20



**Project Name:** 266 WAVERLY STREET Lab Number:

L1742763

Project Number:	6010.9.03	Report Date:	11/28/17
Project Number:	6010.9.03	Report Date:	11/28/17

Parameter	<u> </u>	Native Sample	Duplicate Sample	Units	RPD	Qual I	RPD Limits
otal Metals - Mansfield Lab	Associated sample(s): 01-02	QC Batch ID:	WG1065685-4 QC Sample	: L1742961-01	Client ID:	DUP Sampl	е
Mercury, Total		ND	ND	mg/l	NC		20
otal Metals - Mansfield Lab	Associated sample(s): 01-02	QC Batch ID:	WG1065685-6 QC Sample	: L1742961-02	Client ID:	DUP Sampl	е
Mercury, Total		ND	ND	mg/l	NC		20
otal Metals - Mansfield Lab	Associated sample(s): 01-02	QC Batch ID:	WG1065767-4 QC Sample	: L1742684-01	Client ID:	DUP Sampl	е
Antimony, Total		ND	ND	mg/l	NC		20
Arsenic, Total		0.00582	0.00568	mg/l	3		20
Cadmium, Total		ND	ND	mg/l	NC		20
Chromium, Total		0.00732	0.00556	mg/l	27	Q	20
Copper, Total		0.00711	0.00576	mg/l	21	Q	20
Lead, Total		0.00469	0.00457	mg/l	3		20
Nickel, Total		0.00859	0.00745	mg/l	14		20
Selenium, Total		ND	ND	mg/l	NC		20
Silver, Total		ND	ND	mg/l	NC		20
Zinc, Total		ND	ND	mg/l	NC		20

**Project Name:** 266 WAVERLY STREET

Project Number: 6010.9.03

L1742763 11/28/17 Report Date:

Lab Number:

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
otal Metals - Mansfield Lab Associated sample(s): 01-0	2 QC Batch ID: \	WG1065767-6 QC Sample:	L1742701-01	Client ID:	DUP Sample
Antimony, Total	ND	ND	mg/l	NC	20
Arsenic, Total	0.00134	0.00138	mg/l	3	20
Cadmium, Total	ND	ND	mg/l	NC	20
Chromium, Total	0.00170	0.00160	mg/l	6	20
Copper, Total	0.00536	0.00499	mg/l	7	20
Lead, Total	0.00174	0.00165	mg/l	5	20
Nickel, Total	ND	ND	mg/l	NC	20
Selenium, Total	ND	ND	mg/l	NC	20
Silver, Total	ND	ND	mg/l	NC	20
Zinc, Total	ND	ND	mg/l	NC	20
otal Metals - Mansfield Lab Associated sample(s): 01-0	2 QC Batch ID: \	WG1065768-4 QC Sample:	L1742684-01	Client ID:	DUP Sample
Iron, Total	1.22	0.824	mg/l	39	Q 20
otal Hardness by SM 2340B - Mansfield Lab Associated ample	sample(s): 01-02	QC Batch ID: WG1065768	-4 QC Samp	le: L17426	684-01 Client ID: DUP
Hardness	472	466	mg/l	1	20
otal Metals - Mansfield Lab Associated sample(s): 01-0	2 QC Batch ID: \	WG1065768-8 QC Sample:	L1742701-01	Client ID:	DUP Sample
Iron, Total	0.969	0.986	mg/l	2	20



Batch Quality Control Lab Number: L1742763

**Project Number:** 6010.9.03 **Report Date:** 11/28/17

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
Total Hardness by SM 2340B - Mansfield Lab Sample	Associated sample(s): 01-02	QC Batch ID: WG1065768-8	QC Sample	: L1742701-01	Client ID: DUP
Hardness	336	325	mg/l	3	20



**Project Name:** 

266 WAVERLY STREET

# INORGANICS & MISCELLANEOUS



**Project Name:** 266 WAVERLY STREET

Project Number: 6010.9.03

Lab Number:

L1742763

**Report Date:** 11/28/17

### **SAMPLE RESULTS**

Lab ID: L1742763-01

Client ID: B-3(OW)

Sample Location: FRAMINGHAM, MA

Matrix: Water

Date Collected: 11/20/17 10:25

Date Received: 11/20/17

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lab	)								
Cyanide, Total	ND		mg/l	0.005		1	11/21/17 10:00	11/21/17 13:21	121,4500CN-CE	LH
Chlorine, Total Residual	ND		mg/l	0.02		1	-	11/20/17 22:09	121,4500CL-D	AS
pH (H)	6.6		SU	-	NA	1	-	11/22/17 23:04	121,4500H+-B	UN
Nitrogen, Ammonia	0.148		mg/l	0.075		1	11/21/17 01:30	11/21/17 17:23	121,4500NH3-BH	I AT
Chromium, Hexavalent	ND		mg/l	0.010		1	11/21/17 03:42	11/21/17 04:03	1,7196A	UN
Anions by Ion Chromato	graphy - West	borough	Lab							
Chloride	532.		mg/l	25.0		50	-	11/22/17 19:09	44,300.0	AU



**Project Name:** 266 WAVERLY STREET

Project Number: 6010.9.03

Lab Number:

L1742763

Report Date:

11/28/17

### **SAMPLE RESULTS**

Lab ID: L1742763-02

Client ID: B-14(OW)

Sample Location: FRAMINGHAM, MA

Matrix: Water

Date Collected: 11/20/17 09:15

Date Received: 11/20/17

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough Lab	)								
Cyanide, Total	ND		mg/l	0.005		1	11/22/17 10:55	11/22/17 13:43	121,4500CN-CE	LH
Chlorine, Total Residual	ND		mg/l	0.02		1	-	11/20/17 22:09	121,4500CL-D	AS
pH (H)	6.9		SU	-	NA	1	-	11/22/17 23:04	121,4500H+-B	UN
Nitrogen, Ammonia	ND		mg/l	0.075		1	11/21/17 01:30	11/21/17 17:24	121,4500NH3-BH	AT
Chromium, Hexavalent	ND		mg/l	0.010		1	11/21/17 03:42	11/21/17 04:04	1,7196A	UN
Anions by Ion Chromato	graphy - West	borough l	Lab							
Chloride	395.		mg/l	25.0		50	-	11/22/17 19:21	44,300.0	AU



11/22/17 17:33

44,300.0

ΑU

L1742763

Lab Number:

**Project Name:** 266 WAVERLY STREET

ND

**Project Number:** 6010.9.03 **Report Date:** 11/28/17

Method Blank Analysis Batch Quality Control

Parameter	Result Qua	alifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough Lab 1	for samp	le(s): 0	1-02 Bat	ch: W0	G1065019-1				
Chlorine, Total Residual	ND		mg/l	0.02		1	-	11/20/17 22:09	121,4500CL-D	AS
General Chemistry - We	estborough Lab 1	for samp	le(s): 0	1-02 Bat	ch: W0	G1065071-1				
Nitrogen, Ammonia	ND		mg/l	0.075		1	11/21/17 01:30	11/21/17 17:00	121,4500NH3-BH	H AT
General Chemistry - We	estborough Lab 1	for samp	le(s): 0	1-02 Bat	ch: W0	G1065103-1				
Chromium, Hexavalent	ND		mg/l	0.010		1	11/21/17 03:42	11/21/17 04:01	1,7196A	UN
General Chemistry - We	estborough Lab 1	for samp	le(s): 0	1 Batch:	WG10	65186-1				
Cyanide, Total	ND		mg/l	0.005		1	11/21/17 10:00	11/21/17 13:09	121,4500CN-CE	LH
General Chemistry - We	estborough Lab 1	for samp	le(s): 0	2 Batch:	WG10	65659-1				
Cyanide, Total	ND		mg/l	0.005		1	11/22/17 10:55	11/22/17 13:26	121,4500CN-CE	LH
Anions by Ion Chromato	ography - Westbo	orough La	ab fors	ample(s):	01-02	Batch: W	G1066529-1			

mg/l

0.500



Chloride

### Lab Control Sample Analysis Batch Quality Control

**Project Name:** 266 WAVERLY STREET

**Project Number:** 6010.9.03

**Lab Number:** L1742763 **Report Date:** 11/28/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s)	: 01-02	Batch: WG10650	019-2				
Chlorine, Total Residual	101		-		90-110	-		
General Chemistry - Westborough Lab	Associated sample(s)	: 01-02	Batch: WG10656	071-2				
Nitrogen, Ammonia	92		-		80-120	-		20
General Chemistry - Westborough Lab	Associated sample(s)	: 01-02	Batch: WG1065	103-2				
Chromium, Hexavalent	95		-		85-115	-		20
General Chemistry - Westborough Lab	Associated sample(s)	: 01 B	Satch: WG1065186	-2				
Cyanide, Total	105		-		90-110	-		
General Chemistry - Westborough Lab	Associated sample(s)	: 02 B	Batch: WG1065659	-2				
Cyanide, Total	102		-		90-110	-		
General Chemistry - Westborough Lab	Associated sample(s)	: 01-02	Batch: WG10659	903-1				
рН	100		-		99-101	-		5
Anions by Ion Chromatography - Westbo	orough Lab Associate	ed samp	ole(s): 01-02 Bato	ch: WG106	66529-2			
Chloride	101		<u>-</u>		90-110	-		



### Matrix Spike Analysis Batch Quality Control

**Project Name:** 266 WAVERLY STREET

Lab Number: L1742763

**Project Number:** 6010.9.03

Parameter	Native Sample	MS Added	MS Found	MS %Recovery		MSD Found	MSD %Recovery		overy nits RP	D Qual	RPD Limits
General Chemistry - Westbo	orough Lab Assoc	ciated samp	ole(s): 01-02	QC Batch II	D: WG106	65019-4	QC Sample: I			D: B-14(O	W)
Chlorine, Total Residual	ND	0.248	0.35	141	Q	-	-	80-	120 -		20
General Chemistry - Westbo	orough Lab Assoc	ciated samp	ole(s): 01-02	QC Batch II	D: WG106	65071-4	QC Sample: I	L1742701-0	2 Client IE	): MS Sai	mple
Nitrogen, Ammonia	0.219	4	3.92	92		-	-	80-	120 -		20
General Chemistry - Westbo	orough Lab Assoc	ciated samp	ole(s): 01-02	QC Batch II	D: WG106	65103-4	QC Sample: I	L1742763-0	2 Client IE	D: B-14(O	W)
Chromium, Hexavalent	ND	0.1	0.100	100		-	-	85-	115 -		20
General Chemistry - Westbo	orough Lab Assoc	ciated samp	ole(s): 01 (	QC Batch ID: V	NG10651	86-4 G	QC Sample: L17	42684-02	Client ID: N	์ ∕IS Sampl	е
Cyanide, Total	ND	0.2	0.183	92		-	-	90-	110 -		30
General Chemistry - Westbo	orough Lab Assoc	ciated samp	ole(s): 02 (	QC Batch ID: V	NG10656	59-4 G	QC Sample: L17	43025-02	Client ID: I	MS Sampl	е
Cyanide, Total	0.008	0.2	0.191	91		-	-	90-	110 -		30
Anions by Ion Chromatograp Sample	phy - Westboroug	ıh Lab Asso	ociated sam	ole(s): 01-02	QC Batc	h ID: WG	G1066529-3 C	QC Sample:	L1742701-0	)1 Clien	t ID: MS
Chloride	496	100	603	107		-	-	90-	110 -		18

**Project Name:** 266 WAVERLY STREET

**Project Number:** 6010.9.03

**Lab Number:** L1742763 **Report Date:** 11/28/17

Parameter	Native Sample	Duplicate Sample	e Units	RPD	Qual RPD Limits		
General Chemistry - Westborough Lab Associated sa	ample(s): 01-02 QC Batch	ID: WG1065019-3	QC Sample:	L1742763-01	Client ID: B-3(OW)		
Chlorine, Total Residual	ND	ND	mg/l	NC	20		
General Chemistry - Westborough Lab Associated sa	ample(s): 01-02 QC Batch	ID: WG1065071-3	QC Sample:	L1742701-02	Client ID: DUP Sample		
Nitrogen, Ammonia	0.219	0.214	mg/l	2	20		
General Chemistry - Westborough Lab Associated sa	ample(s): 01-02 QC Batch	ID: WG1065103-3	QC Sample:	L1742763-02	Client ID: B-14(OW)		
Chromium, Hexavalent	ND	ND	mg/l	NC	20		
General Chemistry - Westborough Lab Associated sa	ample(s): 01 QC Batch ID	: WG1065186-3 Q	C Sample: L1	742684-01 CI	ient ID: DUP Sample		
Cyanide, Total	0.006	0.006	mg/l	5	30		
General Chemistry - Westborough Lab Associated sa	ample(s): 02 QC Batch ID	: WG1065659-3 Q	C Sample: L1	743025-01 CI	ient ID: DUP Sample		
Cyanide, Total	0.006	0.006	mg/l	3	30		
General Chemistry - Westborough Lab Associated sa	ample(s): 01-02 QC Batch	ID: WG1065903-2	QC Sample:	L1742905-01	Client ID: DUP Sample		
рН	7.4	7.5	SU	1	5		
Anions by Ion Chromatography - Westborough Lab A	associated sample(s): 01-02	QC Batch ID: WG	G1066529-4	QC Sample: L	1742701-01 Client ID: DUF		
Chloride	496	490	mg/l	1	18		



**Lab Number:** L1742763

**Report Date:** 11/28/17

Project Name: 266 WAVERLY STREET

Project Number: 6010.9.03

### Sample Receipt and Container Information

YES

Were project specific reporting limits specified?

**Cooler Information** 

Cooler Custody Seal

A Absent

Container Information			Initial	Final	Temp			Frozen		
	Container ID	Container Type	Cooler	рН	рН	•	Pres	Seal	Date/Time	Analysis(*)
	L1742763-01A	Plastic 250ml NaOH preserved	Α	>12	>12	2.3	Υ	Absent		TCN-4500(14)
	L1742763-01B	Plastic 250ml H2SO4 preserved	Α	<2	<2	2.3	Υ	Absent		NH3-4500(28)
	L1742763-01C	Plastic 500ml HNO3 preserved	A	<2	<2	2.3	Υ	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),CU-2008T(180),FE- UI(180),HARDU(180),AG-2008T(180),AS- 2008T(180),HG-U(28),SE-2008T(180),CR- 2008T(180),PB-2008T(180),SB-2008T(180)
	L1742763-01D	Plastic 950ml unpreserved	Α	7	7	2.3	Υ	Absent		CL-300(28),HEXCR-7196(1),TRC-4500(1),PH-4500(.01)
	L1742763-01E	Plastic 950ml unpreserved	Α	7	7	2.3	Υ	Absent		CL-300(28),HEXCR-7196(1),TRC-4500(1),PH-4500(.01)
	L1742763-02A	Plastic 250ml NaOH preserved	Α	>12	>12	2.3	Υ	Absent		TCN-4500(14)
	L1742763-02B	Plastic 250ml H2SO4 preserved	Α	<2	<2	2.3	Υ	Absent		NH3-4500(28)
	L1742763-02C	Plastic 500ml HNO3 preserved	A	<2	<2	2.3	Y	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),CU-2008T(180),FE- UI(180),HARDU(180),AG-2008T(180),AS- 2008T(180),HG-U(28),SE-2008T(180),CR- 2008T(180),PB-2008T(180),SB-2008T(180)
	L1742763-02D	Plastic 950ml unpreserved	Α	7	7	2.3	Υ	Absent		CL-300(28),HEXCR-7196(1),TRC-4500(1),PH-4500(.01)
	L1742763-02E	Plastic 950ml unpreserved	Α	7	7	2.3	Υ	Absent		CL-300(28),HEXCR-7196(1),TRC-4500(1),PH-4500(.01)



Project Name: 266 WAVERLY STREET Lab Number: L1742763

**Project Number:** 6010.9.03 **Report Date:** 11/28/17

### **GLOSSARY**

### **Acronyms**

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

#### **Footnotes**

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

#### Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

### Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: Data Usability Report



Project Name:266 WAVERLY STREETLab Number:L1742763Project Number:6010.9.03Report Date:11/28/17

#### **Data Qualifiers**

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report



Project Name:266 WAVERLY STREETLab Number:L1742763Project Number:6010.9.03Report Date:11/28/17

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

### LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.



Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial No:11281719:30

ID No.:17873 Revision 10

Published Date: 1/16/2017 11:00:05 AM

Page 1 of 1

### Certification Information

### The following analytes are not included in our Primary NELAP Scope of Accreditation:

### Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-

Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide EPA 9050A: NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

### **Mansfield Facility**

SM 2540D: TSS **EPA 3005A** NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

#### The following analytes are included in our Massachusetts DEP Scope of Accreditation

### Westborough Facility:

### **Drinking Water**

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

### Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

### Mansfield Facility:

### **Drinking Water**

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form Pre-Qualtrax Document ID: 08-113

MA MCP or CT RCP?  Ton  AL W20/17 16/5  Ton  Ton  Ton  Ton  Ton  Ton  Ton  To		CHAIN OF	CUSTODY PAGE 1 OF 1					Date Rec'd in Lab. 11/2017						ALPHA Job #: 41742763					3	
PAX   BANK   Same as Client info   O /F	ALPHA	Project Infor	Project Information				Report Information Data Deliverables								Billing Information					
Wasterlief, MA TEL: 268-842-3900 FAX: 508-81918	- MAL VITIO	10042-0100-0					1											- 1		
TEL: 598-59220 PER SERVISION SARCE (SERVISION SARCE)  FORCE (SERVISION	Financial Community																			
Client MoPhail Associates LLC Project # 6010,9.00  Client MoPhail Associates LLC Project # 6010,9.00  Address: 2269 Massochusetis Ave Project Manager: WJB/AID  ALPHA Custo # Matrix  ANALYSIS  ANALYS	TEL: 508-898-9220	108-898-9220 TEL: 508-822-9300 Project Name: 266 Waverly Street																		
Client McPhail Associates LLC  Project 8: 8010.3.00  Address: 2699 Massachusetts Avve  Project Manager: WJB/AJD  ALPHA Quote it:  Turn-Around Time  Fax:  Standard Rush (on.y ir Pres-Areproveb)  Three samples have been Previously snalyzed by Apha.  Due Date: Time:  Other Project Specific Requirements/Comments/Detection Limits:  ALPHA Lab ID  (Lab to Only)  Sample ID  Collection: Sample Matrix  Other Project Specific Requirements/Comments/Detection Limits:  ALPHA Lab ID  (Lab to Only)  Sample ID  Collection: Sample Matrix  Matrix  Other Project Specific Requirements/Comments/Detection Limits:  ALPHA Lab ID  (Lab to Only)  Sample ID  Collection: Sample Matrix  Final:  Other Project Specific Requirements/Comments/Detection Limits:  ALPHA Lab ID  (Lab to Only)  Sample ID  Collection: Sample Matrix  Final:  Other Project Specific Requirements/Comments/Detection Limits:  Date Time Matrix  Final:  Other Project Specific Requirements/Comments/Detection Limits:  ALPHA Lab ID  (Lab to Only)  Sample ID  Collection: Sample Matrix  Final:  Other Project Specific Requirements/Comments/Detection Limits:  ALPHA Lab ID  (Lab to Only)  Sample ID  Collection: Sample Matrix  Final:  Other Project Specific Requirements/Comments/Detection Limits:  Date Time Matrix  Final:  Date Time Matrix  Final:  Date Time Matrix  Final:  Date Time Received By  Preservative	Company of the last	Project Location: Framingham MA				1						Crite	ria							
Address: 269 Massachusetts Ave Project Manager WJB/ALD    Yeb   S No   Are MCP Analytical Methods Required?		Committee of the Commit											ASO	NAB	ENCE PROTOCO	OLS				
Cembridge, MA 02140  ALPHA Quote #:  Phone: 617 868 1420  Turn-Around Timo  Fax:  Sannie Rush (only is PRE-APPROVED)  Email: wb@mcphaligeo.com  Unes temple have been Prevoudly enayreed by Apins  Other Project Specific Requirements/Comments/Detection Limits:  ALPHA Lab ID  (Lab Use Only)  Sample ID  Collection  Sample  Date  Time  Matrix  Initials  ALPHA Lab ID  (Lab Use Only)  Sample ID  Collection  Sample  Sample's Initials  ALPHA Lab ID  (Lab Use Only)  Sample ID  Collection  Sample  Sample's Initials  ALPHA Lab ID  (Lab Use Only)  PLEASE ANSWER QUESTIONS ABOVEI  Preservative  Container Type  Preservative  Date Time  Received By:  Date Time  Received By:  Date Time  Received By:  Date Time  ALPHA Lab ID  Received By:  Temple ID  Received By:  Re						The second secon														
Phone: 617 B68 1420  Turn-Around Time    Pax:											_	Are	CTRC	P (Reas	onable Confidence Protocols				s) Required?	1
Fax: Standard Rush (ONLY IF PRE-APPROVED)  Email: wb@mophaligeo.com  These samples have been Previously analyzed by Alpha  Other Project Specific Requirements/Comments/Detection Limits:  ALPHA Lab ID Sample ID Collection Sample Sampler's Indiana							AN	ALYS	15							1			SAMPLE HANDLING	T
Email: wb@mcphaligec.com    Threes sumples have been Previously analyzed by Alpha   Due Date: Time:	Anna least a season	20										111						1 3	0 ORGO (30)	Å.
These samples have been Proviously analyzed by Alpha Due Date: Time:  Other Project Specific Requirements/Comments/Detection Limits:  ALPHA Lab ID Sample ID Collection Sample Metrix Initials  Date Time Initials	A STATE OF THE STA	krieti/ uniter	_ 🛮 Standard	_						1				1 1 1			- Carlotta - Carlotta	· ir		
Other Project Specific Requirements/Comments/Detection Limits:  ALPHA Lab ID   Sample   D   Collection   Sample   Sample			Duri Data																	B
ALPHA Lab ID Sample ID Collection Sample Sample's Initials Initial	The state of the s					4	L										☐ Lab to do			
Date   Time   Matrix   Initials	Other Project Spi	ecine Requirements/Commen	its/Detection Limi	is:				dE de									1			E
Date   Time   Matrix   Initials																				
Date   Time   Matrix   Initials							ië.	dnes		letals	hlorid			Ы,						
Date   Time   Matrix   Initials	ALDIAL - LID		Collection Sample Sampler's				- PE	Man Man	anid	EB N	C/C								20000000	
11/20/17   Q15   GW   TMC   S   S   S   S   S   S   S   S   S		Sample ID			-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A	표	S	2	E	=							Comments.	
11/20/17   GW   TMC   S   S   S   S   S   S   S   S   S	40762-61	B-3 (OW)	11/20/17	1025	GW	TMC	N	Ø	M	Ø	M	П	П	П		П	П	П		5
PLEASE ANSWER QUESTIONS ABOVE!  Container Type Preservative D A E C A Preservative D A E C A A A A A A A A A A A A A A A A A A A			1					-		-		$\bar{\Box}$		n		ī	n			1
PLEASE ANSWER QUESTIONS ABOVE!  Container Type: P P P P P P P P P P P P P P P P P P P		574(011)			OIV	TIMO	_													
PLEASE ANSWER QUESTIONS ABOVE!  Container Type: P P P P P P P P P P P P P P P P P P P							-											-		
PLEASE ANSWER QUESTIONS ABOVE!  Container Type: P P P P P P P P P P P P P P P P P P P																				
PLEASE ANSWER QUESTIONS ABOVE!  Container Type: P P P P P P P P P P P P P P P P P P P				1																
PLEASE ANSWER QUESTIONS ABOVE!  Container Type: P P P P P P P P P P P P P P P P P P P																				
PLEASE ANSWER QUESTIONS ABOVE!  Container Type: P P P P P P P P P P P P P P P P P P P																				
Preservative D A E C A																				
Preservative D A E C A																				
IS YOUR PROJECT  Resinquished By:  Date/Time  Received By:  Date/Time  Received By:  Date/Time  Incompletely: Samples can not be logged in and took will not start until any ambiguilles are resolved. All samples are resolved. All samples	PLEASE ANSWER	QUESTIONS ABOVE!			Co	ntainer Type:	p	9	P	Р	P	0,-	6	>		7		8	Secondario de la compansión de la compan	6
MA MCP or CT RCP?  Resinquished By:  Date/Time  Received By:  Date/Time  AAL UZQK1 16/5  Start until any ambiguities are resolved. All samples						Preservative	D	A	E	С	Α	4	1	4			+ -	+	and completely. Sample	
MA MCP or CT RCP? [10 Carc. VIII 2017   12 Taristance Aft 1/2017 1617 resolved All samples	IS YOUR PROJECT Refinquis						-	Date/Time			Received By:					1	1		turnaround time clock will	
Saucenon AAL 11/20/17 1800 Vibett 11/26/17 1810 Alpha's Payment Terms	MA MICE OF CIRCE!			- 50	nce	10							toma AAL				-		resolved. All samples	
	FORM NO GLOSS	23	Sancieman AAL				11/20/17 1800 Danie 1/100						xtt.		11/20	117	18400			



## APPENDIX E: LABORATORY ANALYTICAL DATA – SURFACE WATER

Serial_No:12071714:27



### ANALYTICAL REPORT

Lab Number: L1744182

Client: McPhail Associates

2269 Massachusetts Avenue

Cambridge, MA 02140

ATTN: Ambrose Donovan Phone: (617) 868-1420

Project Name: MILL CREEK RESIDENTIAL

Project Number: 6010.9.00

Report Date: 12/07/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com



**Project Name:** MILL CREEK RESIDENTIAL

Project Number: 6010.9.00

Lab Number:

L1744182

Report Date:

12/07/17

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1744182-01	RECEIVING WATER BODY	WATER	FRAMINGHAM, MA	12/01/17 07:30	12/01/17



Project Name: MILL CREEK RESIDENTIAL Lab Number: L1744182

Project Number: 6010.9.00 Report Date: 12/07/17

#### **Case Narrative**

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

#### **HOLD POLICY**

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 12/07/17

Custen Walker Cristin Walker

ALPHA

## **METALS**



**Project Name:** MILL CREEK RESIDENTIAL Lab Number: L1744182

**Project Number:** 6010.9.00 **Report Date:** 12/07/17

**SAMPLE RESULTS** 

Lab ID: L1744182-01

Date Collected: 12/01/17 07:30 Client ID: RECEIVING WATER BODY Date Received: 12/01/17

Sample Location: Field Prep: FRAMINGHAM, MA Not Specified

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Ma	nsfield Lab										
Arsenic, Total	ND		mg/l	0.00100		1	12/04/17 09:50	12/06/17 09:31	EPA 3005A	3,200.8	AM
Cadmium, Total	ND		mg/l	0.00020		1	12/04/17 09:50	12/06/17 09:31	EPA 3005A	3,200.8	AM
Chromium, Total	ND		mg/l	0.00100		1	12/04/17 09:50	12/06/17 09:31	EPA 3005A	3,200.8	AM
Copper, Total	0.00140		mg/l	0.00100		1	12/04/17 09:50	12/06/17 09:31	EPA 3005A	3,200.8	AM
Iron, Total	2.23		mg/l	0.050		1	12/04/17 09:50	12/06/17 10:54	EPA 3005A	19,200.7	BV
Lead, Total	0.00223		mg/l	0.00100		1	12/04/17 09:50	12/06/17 09:31	EPA 3005A	3,200.8	AM
Nickel, Total	0.00201		mg/l	0.00200		1	12/04/17 09:50	12/06/17 09:31	EPA 3005A	3,200.8	AM
Total Hardness by	y SM 2340E	3 - Mansfie	ld Lab								
Hardness	115		mg/l	0.660	NA	1	12/04/17 09:50	12/06/17 10:54	EPA 3005A	19,200.7	BV



Project Name: MILL CREEK RESIDENTIAL

Project Number: 6010.9.00

Lab Number:

L1744182

**Report Date:** 12/07/17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	
Total Metals - Mans	field Lab for sample(s):	01 Batch	n: WG10	068680-	·1				
Iron, Total	ND	mg/l	0.050		1	12/04/17 09:50	12/06/17 09:35	5 19,200.7	BV

**Prep Information** 

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Hardness by SM 2	340B - Mansfield La	b for sam	ple(s): 0	1 Bate	ch: WG106	8680-1			
Hardness	ND	mg/l	0.660	NA	1	12/04/17 09:50	12/06/17 09:35	19,200.7	BV

### **Prep Information**

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfiel	ld Lab for sample(s):	01 Batc	h: WG10	68683-	1				
Arsenic, Total	ND	mg/l	0.00100		1	12/04/17 09:50	12/06/17 09:08	3,200.8	AM
Cadmium, Total	ND	mg/l	0.00020		1	12/04/17 09:50	12/06/17 09:08	3,200.8	AM
Chromium, Total	ND	mg/l	0.00100		1	12/04/17 09:50	12/06/17 09:08	3,200.8	AM
Copper, Total	ND	mg/l	0.00100		1	12/04/17 09:50	12/06/17 09:08	3,200.8	AM
Lead, Total	ND	mg/l	0.00100		1	12/04/17 09:50	12/06/17 09:08	3,200.8	AM
Nickel, Total	ND	mg/l	0.00200		1	12/04/17 09:50	12/06/17 09:08	3,200.8	AM

**Prep Information** 

Digestion Method: EPA 3005A



# Lab Control Sample Analysis Batch Quality Control

Project Name: MILL CREEK RESIDENTIAL

Project Number: 6010.9.00

Lab Number: L1744182

**Report Date:** 12/07/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Fotal Metals - Mansfield Lab Associated sample	e(s): 01 Batch: V	NG106868	30-2					
Iron, Total	105		-		85-115	-		
Fotal Hardness by SM 2340B - Mansfield Lab A	Associated sample	e(s): 01 E	Batch: WG106868	0-2				
Hardness	111		-		85-115	-		
otal Metals - Mansfield Lab Associated sample  Arsenic, Total	e(s): 01 Batch: V	WG106868	33-2		85-115			
Cadmium, Total	108		-		85-115	-		
Chromium, Total	106		-		85-115	-		
Copper, Total	107		-		85-115	-		
Lead, Total	112		-		85-115	-		
Nickel, Total	104		-		85-115	-		

### Matrix Spike Analysis Batch Quality Control

Project Name: MILL CREEK RESIDENTIAL

Project Number: 6010.9.00

Lab Number: L1744182

**Report Date:** 12/07/17

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	, RPD Q	RPD ual Limits
Total Metals - Mansfield Lab A	ssociated sam	ple(s): 01	QC Batch II	D: WG1068680	-3	QC Sample:	L1743841-01	Client ID: MS S	Sample	
Iron, Total	0.208	1	1.28	107		-	-	75-125	-	20
Total Hardness by SM 2340B -	- Mansfield Lat	o Associate	ed sample(s):	01 QC Batch	ID: V	VG1068680-	3 QC Samp	le: L1743841-01	Client ID:	: MS Sample
Hardness	61.6	66.2	128	100		-	-	75-125	-	20
Total Metals - Mansfield Lab A	ssociated sam	ple(s): 01	QC Batch II	D: WG1068680-	-7	QC Sample:	L1744182-01	Client ID: REC	EIVING W	ATER BODY
Iron, Total	2.23	1	3.24	101		-	-	75-125	-	20
Total Hardness by SM 2340B - WATER BODY	- Mansfield Lal	o Associate	ed sample(s):	01 QC Batch	ID: V	VG1068680-	7 QC Samp	le: L1744182-01	Client ID:	RECEIVING
Hardness	115	66.2	184	104		-	-	75-125	-	20
Total Metals - Mansfield Lab A	ssociated sam	ple(s): 01	QC Batch II	D: WG1068683	-3	QC Sample:	L1744182-01	Client ID: REC	EIVING W	ATER BODY
Arsenic, Total	ND	0.12	0.1430	119		-	-	70-130	-	20
Cadmium, Total	ND	0.051	0.05455	107		-	-	70-130	-	20
Chromium, Total	ND	0.2	0.2164	108		-	-	70-130	-	20
Copper, Total	0.00140	0.25	0.2814	112		-	-	70-130	-	20
Lead, Total	0.00223	0.51	0.5831	114		-	-	70-130	-	20
Nickel, Total	0.00201	0.5	0.5285	105		-	-	70-130	-	20

# Lab Duplicate Analysis Batch Quality Control

Project Name: MILL CREEK RESIDENTIAL

**Project Number:** 6010.9.00

Lab Number:

L1744182

Report Date:

12/07/17

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG106	88680-8 QC Sample:	L1744182-01 (	Client ID:	RECEIVING	WATER BODY
Iron, Total	2.23	2.24	mg/l	0		20
Total Hardness by SM 2340B - Mansfield Lab Associated WATER BODY	d sample(s): 01 QC I	Batch ID: WG1068680-	8 QC Sample	: L17441	82-01 Client	ID: RECEIVING
Hardness	115	116	mg/l	1		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG106	88683-4 QC Sample:	L1744182-01 (	Client ID:	RECEIVING	WATER BODY
Arsenic, Total	ND	ND	mg/l	NC		20
Cadmium, Total	ND	ND	mg/l	NC		20
Chromium, Total	ND	ND	mg/l	NC		20
Copper, Total	0.00140	0.00147	mg/l	5		20
Lead, Total	0.00223	0.00229	mg/l	3		20
Nickel, Total	0.00201	ND	mg/l	NC		20

# INORGANICS & MISCELLANEOUS



12/01/17 07:30

Date Collected:

Project Name: MILL CREEK RESIDENTIAL Lab Number: L1744182

**Project Number:** 6010.9.00 **Report Date:** 12/07/17

**SAMPLE RESULTS** 

Lab ID: L1744182-01

Client ID: RECEIVING WATER BODY Date Received: 12/01/17
Sample Location: FRAMINGHAM, MA Field Prep: Not Specified

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - West	borough Lab									
pH (H)	6.8		SU	=	NA	1	-	12/02/17 00:21	1,9040C	AS
Nitrogen, Ammonia	0.249		mg/l	0.075		1	12/02/17 15:00	12/05/17 22:36 1	121,4500NH3-BH	I AT



Project Name: MILL CREEK RESIDENTIAL Lab Number: L1744182

Project Number: 6010.9.00 Report Date: 12/07/17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab for sam	ple(s): 01	Batch:	WG10	068417-1				
Nitrogen, Ammonia	ND	mg/l	0.075		1	12/02/17 15:00	12/05/17 22:30	121,4500NH3-B	BH AT



# Lab Control Sample Analysis Batch Quality Control

**Project Name:** MILL CREEK RESIDENTIAL

Lab Number:

L1744182

**Project Number:** 6010.9.00

Report Date: 12/07/17

Parameter	LCS %Recovery Qua	LCSD   %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
General Chemistry - Westborough Lab A	ssociated sample(s): 01	Batch: WG1068321-						
рН	101	-		99-101	-		5	
General Chemistry - Westborough Lab A	ssociated sample(s): 01	Batch: WG1068417-2	2					
Nitrogen, Ammonia	100	-		80-120	-		20	



### Matrix Spike Analysis Batch Quality Control

Project Name: MILL CREEK RESIDENTIAL

Project Number: 6010.9.00

Lab Number:

L1744182

Report Date:

12/07/17

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Qu	Recovery al Limits	RPD Q	RPD Lual Limits
General Chemistry - Westbore	ough Lab Asso	ciated samp	ole(s): 01	QC Batch ID: V	WG1068417-4	QC Sample: L17440	068-01 Client	ID: MS S	ample
Nitrogen, Ammonia	2.03	4	6.13	102	-	-	80-120	-	20



# Lab Duplicate Analysis Batch Quality Control

Project Name: MILL CREEK RESIDENTIAL

**Project Number:** 6010.9.00

Lab Number:

L1744182

Report Date:

12/07/17

Parameter	Native Sample	Duplicate Samp	ole Units	RPD	Qual RPD Limits
General Chemistry - Westborough Lab Associated s	sample(s): 01 QC Batch ID:	WG1068321-2	QC Sample: L1744	178-01 Clier	nt ID: DUP Sample
рН	8.1	8.0	SU	1	5
General Chemistry - Westborough Lab Associated s	sample(s): 01 QC Batch ID:	WG1068417-3	QC Sample: L1744	1068-01 Clier	nt ID: DUP Sample
Nitrogen, Ammonia	2.03	2.13	mg/l	5	20



Lab Number: L1744182

Report Date: 12/07/17

Project Name: MILL CREEK RESIDENTIAL

Project Number: 6010.9.00

### Sample Receipt and Container Information

Were project specific reporting limits specified?

**Cooler Information** 

Cooler Custody Seal

A Absent

Container Information  Container ID Container Type Cooler			Initial	Final	Temp			Frozen	
		Cooler	рН рН		deg C Pres		Seal	Date/Time	Analysis(*)
L1744182-01A	Plastic 250ml HNO3 preserved	A	<2	<2	5.0	Υ	Absent		CD-2008T(180),NI-2008T(180),CU- 2008T(180),FE-UI(180),HARDU(180),AS- 2008T(180),CR-2008T(180),PB-2008T(180)
L1744182-01B	Plastic 250ml HNO3 preserved	Α	<2	<2	5.0	Υ	Absent		CD-2008T(180),NI-2008T(180),CU- 2008T(180),FE-UI(180),HARDU(180),AS- 2008T(180),CR-2008T(180),PB-2008T(180)
L1744182-01C	Plastic 250ml H2SO4 preserved	Α	<2	<2	5.0	Υ	Absent		NH3-4500(28)
L1744182-01D	Plastic 500ml unpreserved	Α	7	7	5.0	Υ	Absent		PH-9040(1)



Project Name: MILL CREEK RESIDENTIAL Lab Number: L1744182

Project Number: 6010.9.00 Report Date: 12/07/17

#### **GLOSSARY**

#### **Acronyms**

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

#### **Footnotes**

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

#### Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

#### Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: Data Usability Report



Project Name:MILL CREEK RESIDENTIALLab Number:L1744182Project Number:6010.9.00Report Date:12/07/17

#### Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
  of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report



Project Name:MILL CREEK RESIDENTIALLab Number:L1744182Project Number:6010.9.00Report Date:12/07/17

#### REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

#### LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.



Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:12071714:27

ID No.:17873 Revision 10

Published Date: 1/16/2017 11:00:05 AM

Page 1 of 1

#### Certification Information

#### The following analytes are not included in our Primary NELAP Scope of Accreditation:

#### Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide EPA 9050A: NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

### Mansfield Facility

**SM 2540D: TSS** EPA 3005A NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

#### The following analytes are included in our Massachusetts DEP Scope of Accreditation

#### Westborough Facility:

#### Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

#### Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

#### Mansfield Facility:

#### Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

ALPHA	CHA	N OF C	JSTO	DY ,	AGE_	OF_	Date	Rec'd i	n Lab:	12	111	7		Al	LPHA	A Job#	#: 41	744182	)	
Phone: 61 Property Additional F	220 Tel: 508-822-9300	Project Project Project Project ALPH Turn Sta on: Date	Location: #: 63 0 Manager: A Quote #:	FRAME FRAME 9.00 UJB	4	۱ >	Reg Yes Yes Yes Ott	DEX Ulatory I No I No I No I No I No I State	MA M Matrix GW1: NPDE	CP Analy Spike R Standard S RGP Program	rits & ritical Me equired is (Info F	Pro ethods on this Require	oject s SDG ed for	Infor ? (Re Metal	illing Same matic	as Client on Requision No d for MCI PH with 1	ation t info uiremen CT RCI P Inorga	PO #: nts P Analytical Meth	hods	
ALPHA Lab ID (Lab Use Only)	Samp Received Wat				Matrix	Sampler Initials YWS	78260	SVOC: DABN METALS: DMCP	SVOC: D 8269 I	METALS: DMCP 13	EPH: URanges & T.	U PCB	TPH: Couant Och	X ROP W	X la Hason	Thinson		Si	☐ Lab to do  Preservation ☐ Lab to do  ample Comment	B 0 T T L E
Container Type P= Plastic A= Amber glass V= Vial G= Glass B= Bacteria cup C= Cube C= Cube E= Encore D= 900 Bottle	Preservative A= None B= HCI C= HNO ₃ D= H ₂ SO ₄ E= NaOH F= MaOH G= NaHSO ₄ H = Na ₂ S ₂ O ₃ I= Ascorbic Acid	Relinc	quished By:	F	Pri	ainer Type eservative e/Time 3:00av		R	eceive M.M.	11	92	F	Date	P D D D T T				omitted are subje	V/ -	



#### **APPENDIX F:**

#### **BEST MANAGEMENT PRACTICE PLAN**

A Notice of Intent for a Remediation General Permit (RGP) under the National Pollutant Discharge Elimination System (NPDES) has been submitted to the US Environmental Protection Agency (EPA) in anticipation of temporary construction dewatering that will occur during redevelopment of 399 Congress Avenue in Boston, Massachusetts. This Best Management Practices Plan (BMPP) has been prepared as an Appendix to the RGP and will be posted at the site during the time period that temporary construction dewatering is occurring at the site.

#### **Water Treatment and Management**

During construction of the proposed building foundation, dewatering effluent is anticipated to be pumped from localized sumps and trenches within the excavation directly into a settling tank. The effluent will then flow through the necessary treatment systems and discharge through hoses or piping connected into the storm water drains located beneath Congress Street, E Service Road, and Seaport Blvd. Based upon a review of the City of Boston stormwater drainage plan, the above referenced stormwater drain system ultimately discharges into the Boston Inner Harbor. Dewatering effluent treatment will consist of a settling tank, bag filters to remove suspended soil particulates. If further treatment is necessary, effluent discharge will be passed through ion resin media vessels prior to off-site discharge to lower concentrations of metals below applicable TBELs. pH adjustment will be conducted, if necessary, through the addition of hydrochloric acid, caustic soda and carbon dioxide.

#### **Discharge Monitoring and Compliance**

Sampling and testing will be conducted at the influent to the system and the treated effluent as required by the RGP. During the first week of discharge, the operator must sample the untreated influent and treated effluent two times: one (1) sample of untreated influent and one (1) sample of treated effluent be collected on the first day of discharge, and one (1) sample of untreated influent and one (1) sample of treated effluent must be collected on one additional non-consecutive day within the first week of discharge. Samples must be analyzed in accordance with 40 CFR §136 unless otherwise specified by the RGP, with a maximum 5-day turnaround time and results must be reviewed no more than 48 hours from receipt of the results of each sampling event. After the first week, samples may be analyzed with up to a ten (10)-day turnaround time and results must be reviewed no more than 72 hours from receipt of the results. If the treatment system is operating as designed and achieving the effluent limitations outlined in the RGP, on-going sampling shall be conducted weekly for three (3) additional weeks beginning no earlier than 24 hours following initial sampling, and monthly as described below. Any adjustments/reductions in monitoring frequency must be approved by EPA in writing.



In accordance with Part 4.1 of the RGP, the operator will perform routine monthly monitoring for both influent and effluent beginning no more than 30 days following the completion of the sampling requirements for new discharges or discharges that have been interrupted. The routine monthly monitoring is to be conducted through the end of the scheduled discharge. The routine monthly monitoring must continue for five (5) consecutive months prior to submission of any request for modification of monitoring frequency.

Dewatering activity for the Site is classified as Category III-G: Sites with Known Contamination. Monitoring shall include analysis of influent and effluent for contaminates specified by the EPA.

Monitoring will include checking the condition of the treatment system, assessing the need for treatment system adjustments based on monitoring data, observing, and recording daily flow rates and discharge quantities, and verifying the flow path of the discharged effluent.

The total monthly flow will be monitored by checking and documenting the flow through the flow meter to be installed on the system. Flow will be maintained below the "system design flow" by regularly monitoring flow and adjusting the amount of construction dewatering as needed. Monthly monitoring reports will be compiled and maintained at the site.

#### **System Maintenance**

Schedule regular maintenance and periodic cleaning of the treatment system will be conducted to verify proper operation and shall be conducted in accordance with Section 1.11 of the project earthwork specifications. Regular maintenance will include checking the condition of the treatment system equipment such as the settling tanks, bag filters, hoses, pumps, and flow meters. Equipment will be monitored daily for potential issues and unscheduled maintenance requirements.

Employees who have direct or indirect responsibility for ensuring compliance with the RGP will be trained by the Contractor.

#### **Miscellaneous Items**

It is anticipated that the erosion control measures and the nature of the site will minimize potential runoff to or from the site. The project specifications also include requirements for erosion control. Site security for the treatment system will be addressed within the overall site security plan.

No adverse effects on designated uses of surrounding surface water bodies is anticipated. The nearest surface water body is the Boston Inner Harbor which is located approximately 700 feet to the north of the subject site. Dewatering effluent will be pumped into a settling tank. Water within the settling tank will pumped through bag filters and, if necessary, ion exchange chambers prior to discharge into the storm drains.



#### **Management of Treatment System Materials**

Dewatering effluent will be pumped directly into the treatment system from the excavation with use of hoses and localized sumps to minimize handling. The Contractor will establish staging areas for equipment or materials storage that may be possible sources of pollution away from any dewatering activities, to the extent practicable.

Sediment from the tank used in the treatment system will be characterized and removed from the site to an appropriate receiving facility, in accordance with applicable laws and regulations. Bag will be replaced/disposed of as necessary.