Guidance of library program use

(Numerical calculation: NUMPAC VOL. 1)

1. Basic matrix operations 2. System of linear equations 3. Katrix inversion
2. Eigenvalue analysis 5 . Polynomial equation and nọnlinear equation

I. NUMPAC routine

Library programs of NUMPAC are roughly divided into two cathegories, ie., function subprograms and subroutine subprograms. There are some general rules for each of them and the rules are used in this manual for simple description. Please read the following explanations carefully before using NUMPAC.
(I) Function subprogram
(1) Function name and type

The function name of the real type follows the rule of the implicit type specification of FORTRAN.

Example : BJO. ACND
The function name of the double precision real type consists of the function name of the corresponding real type with adding D to the head of it. The function name of the quadruple precision real number type (if exists) consists of the function name of the corresponding real type with adding Q to the head of it. However, there are some exceptions.

Example : SINHP, DSINHP, QSINIP
Example of exception : ALOG1, DLOG1, QLOG1
It is severely observed that the function name for double precision begins with D and that for quadruple precision begins with Q. Note that the function name should be declared with a suitable type in each program unit referring to the function.

Example : DOUBLE PRECISION DCOSHP, DJ1
REAL*8 DCELI 1, DCELI2
REAL*16 QSINHP, QASINH

Because the function name of double precision always begins with D and that of quadruple precision with Q, it is convenient to use the IMPLICIT statement considering other variables.

Example : IMPLICIT REAL*8 (D)
IMPLICIT REAL*8 (A-H, O-Z)
In this way, you need not declare the function name, separately.
(2) Accuracy of function value

Function routines are created aiming at the accuracy of full working precision as a rule. However, this cannot be achieved completely because of fundamental or technical difficulty ${ }^{1)}$.

Especially, it is not achieved for functions of two variables and functions of complex variable.
(3) Limit of argument
(a) The domain is limited.

Example : ALOG1
This function calculates $\log (1+x)$. Therefore, $x>-1$ should be satisfied.
(b) The singular point exists.

Example : TANHP
This function calculates $\tan \pi x / 2$. Therefore, an odd integer x is a sungularity.
(c) The function value overflows.

Example: BIO
This function is for modified Bessel function $I_{0}(x)$, and for big x, e^{x} is calculated referring to standard function EXP. Therefore, overflow limit $252 \log _{\mathrm{e}} 2 \boldsymbol{2} 174.673$ of EXP is the upper bound of the argument of this function.
(d) The function value becomes meaningless.

Example : BJO
This function is for Bessel function $J_{0}(x)$, and standard functions SIN and COS are referred to for big x. Therefore, the argument 1 imit $|x| \leq 2^{18} \pi \leftrightarrows 8.23 \cdot 10^{5}$ of SIN and COS is the limit of the argument of this function.

There are many such examples. Note that the value $2^{18} \pi$ is not a sharp limit and that the number of significant digits for the function decreases gradually as approaching this limit even if within this limit.

When the function value underflows, it is set to 0 without special processing.

(4) Error processing

When the argument exceeds the limit, an message for the error is printed and the calculation is continued with the all function values set as 0 . The message consists of the function name, the argument value, the function value (0) and the reason for the error.

Example : ALDG1 ERROR ARG=-0. 2000000E+01 VAL=0. 0 ARG. LT. -1
The error processing program counts the frequency of the errors and stops the calculation if the frequency exceeds a certain limit, considering the case that the calculation becomes meaningless when the error occurs one after another. Because all users do not want this, you can adopt or reject this processing including the print of the message. Subroutine FNERST is
provided for this purpose and you can use it in the following way.
CALL FNERST (IABORT, MSGPRT, LIMERR)

Argument	Type and kind	Attrib ute	Content
IABORT	Integer type	Input	IABORT=0 The calculation is not stopped. IABORT $\neq 0 \quad$ The calculation is stopped.
MSGPRT	Integer type	Input	MSGPRT=0 The message is not printed. MSGPRT $\neq 0 \quad$ The message is printed.
LIMERR	Integer type	Input	Upper bound of frequency of errors.

If this subroutine is not called, following values are set as a standard value.
IABORT $=1$, KSGPRT $=1$, LI LAERR $=10$
(II) Subroutine subprogram
(1) Subroutine name and type

There is no meaning of the type in the head character of the subroutine name. Subroutines with
the same purpose and the different type are distinguished by the ending character of the name.
The principle is as follows.

Single precision : S	Complex number : C Double precision : D Double precision Quadruple precision $: Q$	Vector computer single precision complex number : B Quadruple precision
	Vector computer double precision complex number : Z	Vector computer complex number : X Vector computer double precision complex number : Y

However, there are some exceptions.

Example	Example of exception
LEQLUS/D/Q/C/B	FFTR/FFTRD
RK4S/D/Q/C/B	MINVSP/MINVDP
GJMNKS/D/Q	

(2) Argument ... The following four kinds are distinguished as an attribute of the argument.

Input	Users should set this data before calling the subroutine. As long as it is not especially noticed, the data is preserved as it is at the subroutine exit. This includes the case when the function name and the subroutine name are used as arguments. Note that those names should be declared with EXTERNAL.

Output	This data is created in the subroutine and is significant for the user.
Input/Ou tput	Data is output in the same place as the input to save area. When input/output argument is a single variable, you should not specify a constant as a real argument. For instance, if LEQLUS is called with constant 1 specified in input/output argument and is ended normally, IND =0 is output, but all constants 1 are changed to 0.
Work area	It is an area necessary for calculation in a subroutine, and the content of the subroutine at exit is meaningless for users.

The type and attribute of the argument are explained for each subroutine group. The explanation is for single precision. For others, please read it with exchanging the type for the suitable one.
then a subroutine is called with an argument, but the argument is not used, the area for the argument need not be prepared, and anything can be written in that place. The same area can be allocated for the different arguments, only if it is pointed as it like SVDS. There is an example (FT235R) that special demand is requested for the argument.

It is requested for users to provide the function routine and the subroutine for the numerical integration routine and the routine for solving differential equations. In this case, the number, the type, and the order of the argument should be as specified. If parameters except a regulated argument are necessary, they are allocated in COMMON area to communicate with the main program. Refer to the explanation of an individual routine for the example.

1) Ichizo Ninomiya; "Current state, issues of mathematical software", information processing, Vol. 23 and pp. 109-117(1982).

【 Opening source program to the public 】

The following source programs are published for users requesting them. Calculation can be requested directly, and the source list can be output or can be copied in the shared file. The copied program cannot be given to the third party without the permission of this center.

If you need to copy the source list in the card or the data set, please execute following procedures.
(1) Input the following command for TSS.

NLIBRARY ELM (library name) "DS (data set name)" "SLAVE (ON)"
When you need only the source list, you can omit DS and SLAVE. When SLAVE (ON) is specified,
all slave routines of the program will be output.
(2) Execute the following job for BATCH.
//EXEC NLIBRARY, ELM=program names[, DS=' data set names'][, SLAVE=ON]
You can have examples of the program usage with the following procedures.
(1) For TSS

EXAMPLE NAME (library name) [DS (data set name)]
(2) For BATCH
//EXEC EXAMPLE, NAME= program names[, DS=' data set names']

Four kinds of manual listed below are prepared concerning library program.

Numb er	Manual title	Content
1	Library program and data list	All library programs and data which can be used in this center are listed. Additionally, "description format of the NUMPAC routine and notes on use", "low to choose the NUMPAC routine", and usage of error processing subroutine "FNERST" are described in this list.
2	Guidance to use library program (General volume : GENERAL VOL. 1)	This volume describes the general use of programs except NUMPAC, which can be used in this center.

3	Guidance to use library program (Numerical calculation : NUMPAC VOL. 1)	This volume describes how to use the following five kinds of programs. 1. Basic matrix operations 2. System of linear equations 3. Matrix inversion 4. Eigenvalue analysis 5. Polynomial equation and nonlinear equation
4	Guidance to use library program (Numerical calculation : NUMPAC VOL. 2)	This volume describes how to use the following five kinds of programs. 6. Interpolation, smoothing, and numerical differentiation and integration 7. Fourier analysis 8. Numerical quadrature 9. Ordinary differential equation 10. Elementary function
5	Guidance to use library program (Numerical calculation : NUMPAC VOL. 3)	This volume describes how to use the following nine kinds of programs. 11. Table functions 12. Orthogonal polynomial 13. Special functions 14. Bessel function and related function 15. Acceleration of convergence of sequences 16. Linear programming 17. Special data processing 18. Figure display application program 19. Others

All these manuals can be output by "MANUAL command". "PICKOUT command" is available if you need part of the usage of individual program.

For NUMPAC users

Please note the following and use NUMPAC effectively.
(1) The user has the responsibility for the result obtained by NUKPAC.
(2) When the trouble is found, please report it to the center program consultation corner (Extension 6530).
(3) Do not use NUMPAC in computer systems other than this center without permission.
(4) To publish the result obtained NUMPAC, the used program names (for instance, *** of NUMPAC) should be referred to.

This manual was translated using Fujitsu's machine translation system ATLAS.
II. Library and program itemized discussion

1. Basic matrix operations

Addition and Subtraction of Matrices-Vector Version

Programm ed by	Ichizo Ninomiya, July 1987
Format	Subroutine Language: FORTRAN; Size: 70 lines

(1) Outline

The ADDMMV (W, X, Y) and SUBMMV (W, X, Y) calculate the sum $C=A+B$ and difference $C=A-B$ of the two matrices A and B. They are for the single precision real numbers (double precision real number, single precision complex number, and double precision complex number).
(2) Directions

CALL ADDMRV/W/X/Y (A, B, C, KA, KB, KC, $M, N, I L L)$
CALL SUBMMV/H/X/Y(A, B, C, KA, KB, KC, N, N, ILL)

Argument	Type and kind (*1)	Attrib ute	Content
A	Real type Two-dimens ional array	Input	$N \times N$ matrix A
B	Real type Two-dimens ional array	Input	$M \times N$ matrix B
C	Real type Two-dimens ional array	Output	$M \times N$ matrix C. $A+B$ or $A-B$
KA	Integer type	Input	Adjustable dimensions of $\mathrm{A} . \quad \mathrm{KA} \geqq \mathrm{M}$
KB	Integer type	Input	Adjustable dimensions of B . $\quad K B \geq M$
KC	Integer type	Input	Adjustable dimensions of C. KC $\geqq M$
H	Integer type	Input	Number of rows of A, B, and C. $M \geq 1$

Argument	Type and Kind (*1)	Attrib ute	Content
N	Integer type	Input	Number of columns of A, B, and C. $N \geqq 1$
ILL	Integer type	Output	ILL=0: normal termination; ILL=30000: argument error

*1 For $\operatorname{ADDMMH}(X, Y)$ and $\operatorname{SUBMMH}(X, Y)$, all real types should be changed to double precision real types (complex type and double precision complex type).
(3) Note

1. This routine is for vector computers. However, it can be used also for scalar computers.
(1987. 09. 18)

MDETS/D/Q/C/B/Z (Calculation of Determinants)

Calculation of Determinants

Programm ed by	Ichizo Ninomiya, April 1977
Format	Subroutine language: FORTRAN; size: 45, 34, 45, 34, and 35 lines respectively

(1) Outline

MDETS/D/Q/C/B/Z calculates the determinant of a given matrix.
(2) Directions

CALL MDETS/D/Q/C/B/L (A, KA, N, EPS, D, ILL)

Argument	Type and kind (*1)	Attribut e	Content
A	Real type Two-dimens ional array	Input	Matrix whose determinants should be calculated. Destroyed
KA	Integer type	Input	Value of the first subscript in the array-A declaration. $K A \geqq N$
N	Integer type	Input	Degree of $A N \geqq 2$
EPS	Real type	Input	Criterion constant for matrix singularity. If the absolute value of pivot elements is smaller than this constant, $D=0$ is assumed. EPS>0
D	Real type	Output	The value of determinant is output.
ILL	Integer type	Output	ILL $=3000$: Limits on KA, N, and EPS are violated. Otherwise, 0 is output.

*1 For $\operatorname{MDETD}(\mathrm{Q}, \mathrm{C}, \mathrm{B}, \mathrm{Z}), \mathrm{A}$ and D are double precision real types (quadruple precision real type, complex type, double precision complex type, and quadruple precision complex type).

For ($\mathrm{Q}, \mathrm{C}, \mathrm{B}, \mathrm{Z}$), EPS is a double precision real type (quadruple precision real type, real type, double precision real type, and quadruple precision real type).
(3) Performance

Precision depends on problems. Because the LU-decomposition method (Doolittle method) is used, and double precision arithmetic operation is performed to calculate the inner products in MDETS, precision is high. The required computation time is almost the same as that for solving a system of linear equations.

(4) Remarks

1. If the typical size of elements in the matrix A is assumed to be a, the standard value of EPS is $a \times 10^{-6}\left(a \times 10^{-16}, a \times 10^{-30}\right)$ for MDETS (MDETD).
2. When a system of linear equations is to be solved, and the determinant is to be calculated at the same time, it is recommended to use LEALUS and LEQLUD.
(1987.06.17) (1987.08.07)

MNORMS/D/Q/C/B/Z (Normalization of a Matrix)

Normalization of a Matrix

Programm ed by	Ichizo Ninomiya, April 1977
Format	Subroutine language: FORTRAN; size: 20, 21, 20, 23, 24, and 24 lines respectively

(1) Outline

MNORMS $/ D / Q / C / B / Z$ divides each row of a given matrix by a number of the form of 2^{n} to limit the maximum absolute value of elements in each row to the order of 1.
(2) Directions

CALL MNORMS/D/Q/C/B/Z (A, KA, N, M, S, ILL)

Argument	Type and kind (*1)	Attribut e	Content
A	Real type Two-dimens ional array	Input/ou tput	Matrix to be normalized
KA	Integer type	Input	Value of the first subscript in the array-A declaration. KA $\geqq N$
N	Integer type	Input	Number of rows in A. N $\geqq 2$
N	Integer type	Input	Number of columns in $A . \quad$ M $\geqq N$
S	Real type One-dimens ional array	Output	S (I) (I=1, \cdots, N) contains a divisor in the form of power of 2 to normalize the row I.
ILL	Integer type	Output	ILL=0: Normal termination ILL=30000: Limits on KA, N, and N are violated. The row number whose elements are all 0

*1 For $K N O R M D(Q, C, B, Z), A$ is assumed to be a double precision real type (quadruple precision real number, complex number, double precision complex number, and quadruple precision complex number), and S is assumed to be a double precision (quadruple precision, single precision, double precision, and quadruple precision) real type.
(3) Remarks

1. When normalization is to be done as preprocessing for solving a system of linear equations, merge the right side column in the right of the coefficient matrix, and apply this routine to the augmented matrix. The solution obtained by solving the normalized equation is the solution of the original equation. That is, postprocessing is not required.
2. The inverse matrix of the original matrix is obtained by dividing each l-th column of the inverse matrix of the normalized matrix by the scale factor S (I).
3. In general, normalization changes a symmetric matrix to an asymmetric matrix.
4. For symmetric positive definite matrices, the special-purpose routine such as MNRSPS should be used.
(1987.06.17) (1987.08.07)

MNRMBS/D/Q/C/B/Z and MNMBSS/D/Q (Normalization of Band Matrices)

Normalization of Band Matrices

Programme ed by	Ichizo Ninomiya, May 1982
Format	Subroutine language; FORTRAN77 Size; 25, 26, 26, 26, 27, 27, 25, 26, and 26 respectively lines

(1) Outline

The general band matrix subroutine MNRMBS/D/Q/C/B normalizes each row of a given band matrix by dividing it by a power of 2 that is close to the maximum absolute value of the row.

The symmetric positive definite band matrix subroutine MNMBSS/D/Q normalizes each row and column of a given band matrix by dividing it by a power of 2 that is close to the square root of the diagonal element.

(2) Directions

CALL MNRMBS/D/Q/C/B/Z (A, KA, N, NB, LB, S, ILL)
CALL MNMBSS/D/Q (A, KA, N, NB, S, ILL)

*1 For MNRMBD ($\mathrm{Q}, \mathrm{C}, \mathrm{B}, \mathrm{Z}$), A is assumed to be a double precision real type (quadruple precision real type, complex type, double precision complex type, and quadruple precision complex type), and S is assumed to be double precision (quadruple precision, single precision, double precision, and quadruple precision) real type.

For MNMBSD (Q), real types are changed to double (quadruple) precision real types.
(3) Example of use

1. Example of MNRMBS

A quindiagonal matrix ($N B=5, L B=3$) equation $(N=1000$) is solved with LEQBDS, after normalizing it with MNRHBS. All diagonal elements are put as $a_{j}=5 j$ and non-diagonal elements as 1 , and constant terms are set so that all elements of the solution are 1.

```
    N=1000
    KA=7
    NB=5
    LB=3
    EPS=1.E-6
    DO 10 J=1,N
    DO 20 I=1,5
20A(I,J)=1.0
A(3,J)=J*5
X(J)=A(3,J)+4.0
IF(J.LE.2) X(J)=X(J)-FLOAT(3-J)
IF(J.GE.N-1) X(J)=X(J)-FLOAT(J+2-N)
10 CONTINUE
CALL MNRMBS(A,KA,N,NB,LB,S,IND)
DO 25 I=1,N
25 X(I)=X(I)/S(I)
    IND=0
    CALL LEQBDS(A,KA,N,NB,LB,MB,X,N,1,MAX,EPS,IND)
    EM=0.0
    DO 30 I=1,N
    EM=AMAX1(ABS (X (I)-1.0),EM)
30 CONTINUE
    WRITE(6,600) EM
600 FORMAT(10X,E11.3)
    STOP
    END
```

2. Example of NNMBSS

An equation having a positive definite symmetric band matrix ($N=1000$, $N B=5$) as a coefficient is solved by CHLBDS after normalizing it by MNMBSS. All diagonal elements are put as $a_{j j}=10 j$ and non-diagonal elements as 1 , and all constant terms are set so that all elements of the solution are 1.

DIMENSION $A(5,1000), S(1000), X(1000)$
$\mathrm{N}=1000$
$K A=5$
$N B=5$
EPSS=1.E-6
DO $10 \mathrm{~J}=1, \mathrm{~N}$
$A(1, J)=1 * 10$
DO $20 \mathrm{I}=2,5$
$20 \mathrm{~A}(\mathrm{I}, \mathrm{J})=1.0$
$X(J)=A(1, J)+8.0$
IF (J.LE.4) X(J)=X(J)-FLOAT(5-J)
IF (J.GE.N-3) $X(J)=X(J)-F L O A T(J+4-N)$
10 CONTINUE
CALL MNMBSS (A,KA,N,NB,S,IND)
DO $25 \mathrm{I}=1$, N
$25 X(I)=X(I) / S(I)$
IND $=0$
DET=0.
CALL CHLBDS (A,KA,N,NB,X,N,1,DET,EPS ,IND)
DO $27 \mathrm{I}=1, \mathrm{~N}$
$27 X(I)=X(I) / S(I)$
$E M=0.0$
DO 30 I=1,N
$E M=A M A X 1(A B S(X(I)-1.0), E M)$

```
30 CONTINUE
    WRITE (6,600) EM
600 FORMAT (10X,E11.3)
    STOP
    END
```

(4) Remarks

1. When this routine is used to solve a system of linear equations that has a band matrix as a coefficient, each element of the right side constant vector must be divided by the corresponding normalization factor before the e simultaneous linear equation routine is called. For general matrices, nothing need not be done after a solution is obtained. For a symmetric positive definite matrix, however, each element of the solution aust be divided by the corresponding normalization factor. (See the example of use.)
(1987.06. 17) (1987.08.07)
(1)

MNRSPS/D/Q (Normalization of a Symmetric Positive Definite Matrix)

Normalization of a Symmetric Positive Definite Matrix

Programm ed by	Ichizo Ninomiya, April 1977
Format	Subroutine language: FORTRAN; size: 20, 21, and 21 lines respectively

(1) Outline

WNRSPS/D/Q limits the maximum absolute value of elements in each row and column to the order of 1 by dividing each row and column of a given symmetric positive definite matrix by a number of the form of 2^{n} preserving symmetric positive definiteness.
(2) Directions

CALL MNRSPS/D (A, KA, N, M, S, ILL)

Argument	Type and kind (*1)	Attribut e	Content
A	Real type Two-dimens ional array	Input/ou tput	Matrix to be normalized. Only the upper right half including the diagonal lines is processed. Other part is preserved.
KA	Integer type	Input	Value of the first subscript in the array-A declaration. $K A \geqq N$
N	Integer type	Input	Number of rows in A. $N \geqq 2$
M	Integer type	Input	Number of columns in A. $M \geqq N$
S	Real type One-dimens ional array	Output	$\mathrm{S}(\mathrm{I})(\mathrm{I}=1,2, \cdots, N$) contains a divisor in the form of power of 2 to normalize the row I and column I.
ILL	Integer type	Output	ILL=0: Normal termination $I L L=30000$: Limits on $K A, N$, and M are violated. The row number of the diagonal element which is not positive

*1 For MNRSPD (Q), all real types are changed to double (quadruple) precision types.
(3) Remarks

1. When normalization is done as a preprocessing for solving a system of linear equations,
every element of solution of normalized equation should be divided by the corresponding scale factor.
2. When normalization is done as a preprocessing for obtaining inverse matrix, every row and column of the inverse of normalized matrix should be divided by the corresponding scale factors.
(1987.06.17) (1987.08.08)

MULMMV/W/X/Y (Multiplication of Hatrices-Vector Version)
Multiplication of Matrices-Vector Version

Programm ed by	Ichizo Ninomiya, July 1987
Format	Subroutine Language: FORTRAN; Size: 80 lines

(1) Outline

MULLMV $/ W / X / Y$ calculates the product $C=A \cdot B$ of two matrices A and B. MULHMV $(W, X, Y$) is for the single precision real numbers (double precision real number, single precision complex number, and double precision complex number).
(2) Directions

CALL MULMMV/W/X/Y (A, B, C, KA, KB, KC, L, M, N, ILL)

Argument	Type and kind (*1)	Attrib ute	Content
A	Real type Two-dimens ional array	Input	$L \times M$ multiplicand matrix A
B	Real type Two-dimens ional array	Input	$M \times N$ multiplier matrix B :
C	Real type Two-dimens ional array	Output	$L \times N$ product matrix C
KA	Integer type	Input	Adjustable dimensions of $A . \quad K A \geqq L$
KB	Integer type	Input	Adjustable dimension of B. $K B \geqq M$
KC	Integer type	Input	Adjustable dimensions of C. $\mathrm{KC} \geqq \mathrm{L}$
L	Integer type	Input	Number of rows of A and $C . \quad L \geqq 1$

Argument	Type and kind (*1)	Attrib ute	Content
H	Integer type	Input	Number of columns of A and rows of B. $\mathrm{M} \geq 1$
N	Integer type	Input	Number of coluans of B and C. $N \geqq 1$
ILL	Integer type	Output	ILL=0: normal termination; ILL=30000: argument error

*1 For $\operatorname{MULAMW}(X, Y)$, all real types should be changed to double precision real types (complex type and double precision complex type).
(3) Calculation method

The product of $l \times m$ matrix A and $m \times n$ matrix B is an $l \times n$ matrix.

It is

$$
C_{i j}=\sum_{k=1}^{m} a_{i k} b_{k j}, i=1, \cdots, l ; j=1, \cdots, n
$$

. If A and C are considered as sets of column vectors $A=\left(a_{1}, u_{2}, \cdots, a_{m}\right)$ and $C=\left(c_{1}, c_{2}, \cdots, c_{n}\right)$ respectively, then C_{j} can be written as

$$
C_{j}=\sum_{k=1}^{m} b_{k j} a_{k}, j=1,2, \cdots, n
$$

The algorithm of this subroutine is based on this idea.
(4) Note

1. The product of a matrix and a vector can be calculated with this routine with B assumed as a single column matrix. However, it is more reasonable to use the special routine MULAVV.
2. This routine is for vector computers. However, it can be used also for scalar computers.
(1987.08.04)

MULMVV/W/X/Y (Multiplication of a Matrix and a Vector-Vector Version)
Multiplication of a Matrix and a Vector-Vector Version

Programm ed by	Ichizo Ninomiya, July 1987
Format	Subroutine Language: FORTRAN; Size: 70 lines

(1) Outline

MULMVV/W/X/Y calculates the product $y=A x$ of a matrix A and a vector x. MULELV (W, X, Y) is for the single precision real numbers (double precision real number, single precision complex number, and double precision complex number).

(2) Directions

CALL MULHVY/H/X/Y(A, X, Y, KA, M, N, ILL)

Argument	Type and kind ($*$ 1)	Attrib ute	Content
A	Real type Two-dimens ional array	Input	NXN matrix A
X	Real type One-dimens ional array	Input	N vector x
Y	Real type One-dimens ional array	Output	M vector y
KA	Integer type	Input	Adjustable dimensions of $A . \quad$ KA $\geqq M$
M	Integer type	Input	Number of rows of A and order of $y . \quad$ N $\geqq 1$
N	Integer type	Input	Number of columns of A and order of $x . \quad$ M $\geqq 1$
ILL	Integer type	Output	ILL=0: Normal termination; ILL=30000: Argument error

*1 For $\operatorname{MUL} M V W(X, Y)$, all real types should be changed to double precision real types (complex type and double precision complex type).
(3) Calculation method

If the matrix A is considered as a set of the column vector $\left(a_{1}, a_{2}, \cdots, a_{m}\right), y=A x$ can be written as

$$
y=\sum_{k=1}^{m} x_{k} a_{k}
$$

The algorithm of this subroutine is based on this idea.
(4) Note

This routine is for vector computers. However, it can be used also for scalär computers.
(1987.08.04)

2. System of 1 inear equations

[Method of choice of linear equation routines]
NUMPAC provides a variety of effective linear equation subroutines that you can select depending on the type, characteristics, and structure of each coefficient matrix. By carefully selecting them based on the guideline shown below, you can enjoy much of their superiority in all aspects of precision, speeds, and storage capacities. To make the following explanation simple, the name of each recommended routine is represented by the one for single precision. The routine marked by * is written in assembly language and recommended specially.
(A) Real coefficient

1. Non-symmetry
(1) Dense matrix
LEQLUS*
(2) Band matrix
LEQBDS
(3) Tridiagonal matrix
TRIDGS
2. Symmetry
(1) Dense matrix
BUNCH
(2) Band matrix
BUNCBS
3. Positive-definite symmetric

(1) Dense matrix	CHOLFS*, MCHLFS*
(2) Band matrix	CHLBDS*, MCHLBS*
(3) Variable width band matrix	CHLVBS
(4) Tridiagonal matrix	TRDSPS, TDSPCS
General system of linear equations	LEQLSS, LSHNS

(B) Complex coefficient

1. Dense matrix	LEQLUC
2. Band matrix	LEQBOC

If there is a great difference between coefficients and between solutions of linear equations, satisfactory precision is not generally expected. It is important to level the coefficients and solutions in advance by means of normalization or variable transformation.

Many users seem to use an inverse matrix routine to solve linear equations because the solution of linear equations $A x=b$ is theoretically written as $X=A^{-1} b$. However, they should' t do this
because it takes three times for calculation that taken by a linear equation routine and the accuracy of the solution is remarkably worse.

To repeat solving equations with the same coefficients by changing the right-hand side column only, it seems reasonable to calculate $x_{i}=A^{-1} b_{i}, i=1,2, \ldots$ by calculating an inverse matrix only once. For this, however, it is far more advantageous to exploit the function of reuse of decomposition component available in all Nagoya University routines.

In short, it is nothing but the abuse of inverse matrixes to use them to solve linear equations.

BUNCBS/D (Solution of linear equations with symmetric band matrix of coefficients by bunch's method)

Solution of Linear Equations with Symmetric Band Matrix of Coefficients by Bunch's Method

Programing ed by	Ichizo Ninomiya; April 1981
Format	Subroutine language; FORTRAN Size; 200 lines each

(1) Outline

BUNCBS and BUNCBD are single or double precision subroutines used to obtain the following solution using the bunch's $L D L^{T}$ decomposition method: The solution obtained by the subroutines is $X=A^{-1} B$ of the linear equations $A X=B$ with right-hand side matrix B, and symmetric band matrix A which is not necessarily positive definite as a coefficient.

These subroutines have the function of the reuse of the $L D L^{T}$ decomposition component.
(2) Directions

CALL BUNCBS/D (A, KA, N, NB, X, XX, M, CHG, ERS, IF, IND)

Argument	Type and Kind (*1)	Attribut e	Content
IW	Integer type One-dimens ional array	Work area	One-dimensional array of size N
IND	Integer type	Input/ou tput	For input, this argument has the following meanings: IND=0: The equation is solved by restarting Bunch's decomposition from the beginning. $I N D \neq 0$: The equation is solved by using the decomposition component calculated immediately before. To do this, the contents of A and CIIG must have been stored. For output, this argument has the following meanings: IND $=0$: Normal end IND $=\mathrm{K}$: Judged as singular at step K of decomposition or band width exceeded KA. IND=30000: The input argument violated the limit.

*1 For double precision subroutines, real types should be changed to double precision real types.

(3) Calculation method

When coefficient matrix A is a symmetric positive definite, modified Cholesky decomposition $A=L D L^{T}$ is possible using unit lower triangular matrix L and diagonal matrix D. However, when A is not positive definite, decomposition is generally impossible even if it is symmetric. However, if D is assumed to be a block diagonal matrix for which the submatrix of 2×2 is permitted as a diagonal block element, decomposition above is possible. Bunch designed an algorithm to perform decomposition $A=L D L^{T}$ in a numerically stable manner by exchanging rows and columns properly. ${ }^{1), 2)}$ This routine is based on Bunch's algorithm D.

By using this decomposition, solution $X=A^{-1} B$ of $A X=B$ can be determined by forward substitution $Y=L^{-1} B$ and backward substitution $X=L^{-T} D^{-1} Y$.
(4) Notes

1. The standard value of EPS for BUNCBS or BUNCBD is $10^{-6}\left(10^{-16}\right)$. If EPS $\leqq 0.0$ is given, default value $2^{-20}\left(2^{-52}\right)$ will be used.
2. Argument IND is used for both input and output. Therefore, do not use a constant as an actual argument.
3. The routine's function of reusing decomposition components is very useful to repeatedly solve the equations with the same coefficient matrix and different right hand side matrices. It is superior to the inverse-matrix method in all aspects of accuracy, speed, and storage capacity.
4. When M, the number of columns of B, is 1 , a one-dimensional array is acceptable for the actual argument corresponding to X. For this, however, it is necessary to meet the condition $K X \geq N$.
1) J. R. Bunch et al.; "Decomposition of a Symmetric Matrix " Numer. Math., Bd. 27, pp.95-109 (1976).
2) J. R. Bunch et al.; "Some Stable Methods for Calculating Inertia and Solving Symmetric Linear Systems", Math. Comp., Vol. 31, No. 137, pp. 163-179 (1977).
(1987.06.16)

BUNCHS/D (Solution of Linear Equations with Symmetric Matrix of Coefficient by Bunch's Nethod)

Solution of Linear Equations with Symmetric Matrix of Coefficients by Bunch's Method

Programm ed by	Ichizo Ninomiya, April 1981
Format	Subroutine language: FORTRAN; size: 200, 200 lines respectively

(1) Outline

BUNCHS (D) is a single (double) precision subroutine for finding $X=A^{-1} B$ or the solution of the simultaneous linear equation $A X=B$ with a symmetric matrix A (not necessarily positive definites) and multiple right side columns B, using the Bunch's $U^{T} D U$ decomposition method. It has the facility for reusing the $U^{\top} D U$ decomposition elements.
(2) Directions

CALL BUNCHS/D (A, KA, N, X, KX, M, CHG, EPS, IND)

Argument	Type and kind (*1)	Attribut.	Content
A	Real type Two-dimens ional array	Input/ou tput	The upper right half including the diagonal of the coefficient matrix is input. The upper right half is processed with this routine, and the Bunch decomposition elements are output. The lower left half is preserved.
KA	Integer type	Input	Adjustable dimension of A (value of the first subscript in array declaration). K \geqq
N	Integer type	Input	Order of equation. $N \geqq 1$

Argument	Type and kind (*1)	Attribut e	Content		
X	Real type Two-dimens ional array	Input/ou tput	The right side columns are input. The solution vectors are output in the corresponding place.		
KX	Integer type	Input	Adjustable dimension of X . $\mathrm{KX} \geqq \mathrm{N}$		
H	Integer type	Input	Number of columns of X . If $\mathrm{N} \leqq 0$, only A is decomposed.		
CHG	Real type One-dimens ional array	Output	One-dimensional array of size N or greater. Pivoting information and 2×2 diagonal block determinants are output.		
EPS	Real type	Input	If the size of pivot elements becomes smaller than $\\|A\\| \cdot E P S$ during decomposition, the coefficient matrix is decided to be singular, and the calculation is interrupted. If EPS $\leqq 0.0$ is assigned, the standard value u is used, where $u=2^{-20}$ (single precision) and $u=2^{-52}$ (double precision).		
IND	Integer type	Input/ou tput	This argument has the following meaning as an input argument. IND $=0$: Solve equation newly starting with Bunch's decomposition. IND $\neq 0$: Solve equations, reusing the decomposition elements previously calculated. In this case, A and CIIG must be kept unchanged in the states of previous call.		

Argument	Type and Kind (*1)	Attribut e	
		This argument has the following meaning as an output argument. IND $=0:$ Normal termination	
IND = K: Singularity is decided at Kth step of the			
decomposition			
IND = 30000: The input argument violates the limit.			

*1 For double precision subroutines, all real types are changed to double precision real types.
(3) Calculation method

If the coefficient matrix A is symmetric positive definites, a modified Cholesky decomposition $A=U^{T} D U$ is possible with an upper unit triangular matrix U and a diagonal matrix D. If the matrix A is not of positive definites even though it is symmetric, the decomposition is generally impossible. However, if D is assumed to be a diagonal block matrix that permits a 2×2 submatrix as a diagonal block element, the similar decomposition is possible. Bunch designed a algorithm for calculating the decomposition $A=U^{T} D U$ with numerical stability by properly interchanging rows and columns. 1).2)

This routine is based on Bunch's algorithm A.
If this decomposition is applied, the solution $X=A^{-1} B$ of $A X=B$ is found by the forward substitution $Y=U^{-T} B$ and backward substitution $X=U^{-1} D^{-1} Y$.

(4) Remarks

1. The standard value of EPS is $10^{-6}\left(10^{-16}\right)$ for BUNCIIS (D). If EPS $\leqq 0.0$ is given, the standard value $2^{-20}\left(2^{-52}\right)$ is used.
2. Because IND is an input/output argument, a constant must not be used as an actual argument.
3. When a solution to the same coefficient matrix is to be repeatedly found changing only the right side columns, the facility for reusing the decomposition components of this routine is extremely useful. As compared with the method by inverse matrices, this calculation method is
excellent in precision, speed, and storage size.
4. If the number of right side columns ($(\mathbb{1})$ is 1 , an actual argument that corresponds to \mathbb{X} can be a one-dimensional array. However, $K X \geqq N$ must be met.

References

1) J. R. Bunch et al. ;"Decomposition of a Symmetric Matrix"Numer. Math. , Bd. 27, pp. 95-109(1976).
2) J. R. Bunch et al. ; ${ }^{\text {Some Stable Methods for Calculating Inertia and Solving Symmetric Linear }}$ Systems" and Math. Comp . Vol. 31, No. 137, and pp. 163-179(1977).
(1987.06. 16)

CGHTCS/D Solution of a Linear System of Equations with Positive Definite Symmetric Coefficients Matrix by Conjugate Gradient Method (Compressed matrix storage Hode)

Solution of a Linear System of Equations with Positive Definite Symmetric Coefficients Matrix by Conjugate

Gradient Method (Compressed matrix storage mode)

Programm ed by	Tsuyako Miyakoda and Tatsuo Torii, February 1982
Format	Subroutine language: FORTRAN; size: 55 and 56 lines respectively

(1) Outline

This is a solution routine with a conjugate gradient method if the upper triangular and diagonal elments of the matrix are stored in a row to set up the storage arrays, where the symmetric positive definite matrix A is a coefficient matrix.
(2) Directions

CALL CGHTCS/D (A, NA, N, B, X, EPS, NMAX, W, IDUMP)

Argument	Type and kind	Attribut e	Content
A	Real type One-dimens ional array	Input	The upper triangular and diagonal elements of the matrix are stored in a one-dimensional array. Element (I, J) (I $\leqq \mathrm{J}$) is assumed to be ($\mathrm{J} *(\mathrm{~J}-1) / 2+\mathrm{l})$ th element of a one-dimensional array. $A(k)=a_{i j}, k=j(j-1) / 2+i$
NA	Integer type	Input	Length of the vector when the coefficient matrix is made into a one-dimensional array.
N	Integer type	Input	Number of unknowns of the system.

Argument	Type and kind	Attribut e	Content		
B	Real type One-dimens ional array	Input	Right-side vector of the system.		
X	Real type One-dimens ional array	Input/ou tput	Input: Approximative solution vector (initial value). Output: Corrected solution vector.		
EPS	Real type	Input	Convergence criterion. It is assumed to be $8 \cdot u \cdot\\|b\\|$ as external page storage if it is too small. u is a unit of the rounding error.		
NMAX	Integer type	Input	Maximum number of iterations. When a too large value is input, it is assumed to be $3 \cdot N / 2$.		
W	Double precision real type One-dimens ional array	Work area	Size $N \times 3$.		
IDUuP	Integer type	Input/ou tput	It has the following meaning as an input argument. IDUMP<0: No printing of the result on the way. IDUMP $=1$: Printing of residual ($P, A P$) of each iteration. IDUMP>2: Printing of residual, A - orthogonal set vectors, and approximative solution of each iteration. It has the following meaning as an output argunent. The same as input: Normal termination. IDUMP $=3 * N$: Not settled even for $3 * N$ iterations, 1DUMP=30000: Input parameter error.		

* All real types are assumed to be a double precision real type for CGHTCD.
(3) Calculation method

CGHTCS/D finds the solution of a linear system of equations with the symmetric positive definite matrix, $A x=b$, so that the error function $\varphi(x)=\left(r, A^{-1} r\right)$ is minimized if the residual $r=b-A x$ is assumed. In the conjugate gradient method, both sides of a correction vector (A-orthogonal system) calculation formula of the original version is divided by $\left|r_{i+1}\right|^{2}$, and normalized as a type of formula (Takahashi version). The calculation formula becomes simple, but the speed of residual reduction and the computation time are not much changed. The calculation expression is as follows:

$$
\begin{aligned}
& \text { Initial value } x_{0}=0, r_{0}=b-A x_{0}, P_{0}=r_{0} /\left|r_{0}\right|^{2} \\
& \qquad \alpha_{i}=1 /\left(P_{i}, A P_{i}\right) \\
& x_{i+1}=x_{i}+\alpha_{i} P_{i} \\
& r_{i+1}=r_{i}-\alpha_{i} A P_{i} \\
& \text { Convergence decision }\left|r_{i+1}\right|^{2}<(E P S)^{2} ? \\
& \qquad P_{i+1}=P_{i}-r_{i+1} /\left|r_{i+1}\right|^{2} \\
& i=0,1, \ldots \ldots \ldots
\end{aligned}
$$

(4) Example

```
C MAIN FOR CGHTCS
    DIMENSION AS(5050),X(100),B(100),A(100),XO(100)
    DOUBLE PRECISION W(300),SU
    NR=5
    NW=6
    EPS=0.1E-4
    XX=0.1E8+1.
    N=100
    XI=12345678.00
    DO 10 I=1,N
    XO(I)=0.0
    X(I)=4.*XI/1.E8-2.
    XI=AMOD(23.*XI,XX)
10 CONTINUE
    NT=O
    DO 40 I=1,N
    SU=O.ODO
    DO 20 J=1,N
    IJ=IABS (I-J)
    A(J)=FLOAT(N-IJ)
    20 SU=A(J)*X(J)+SU
    B(I)=SU
    DO 30 J=1,I
    NT=NT+1
```

```
    30 AS (NT)=A(J)
    4O CONTINUE
    WRITE(NW, 1000)N
1000 FORMAT (1H1,15H EXAMPLE 3-6 N=,I4)
    IDUMP=0
    MAXN=100
    CALL CLOCKM(JTIME1)
    CALL CGHTCS(AS,NT,N,B,XO,EPS,MAXN,W,IDUMP)
    CALL CLOCKM(JTIME2)
    JTIME=JTIME2-JTIME1
    WRITE(6,1010) IDUMP,JTIME
1010 FORMAT(1H,'IDUMP =',I5,3X,'TIME(MSEC)=',I5)
    DO 50 I=1,N
    RES=X(I)-XO(I)
    WRITE(NW,1020) I,X(I),XO(I),RES
1020 FORMAT(I5,2E13.5,E11.3)
    50 CONTINUE
1030 FORMAT((1H ,5(1PE13.5)))
    STOP
    END
    EXAMPLE 3-6 N=100
    IK= 26 ZANSA= 0.53581611D-02
    IDUMP = 0 TIME(MSEC)= 565
        1-0.15062E+01 -0.15031E+01 -0.303E-02
        2 -0.18420E+01 -0.18510E+01 0.899E-02
        3-0.19655E+01 -0.19646E+01 -0.883E-03
        4-0.16055E+01 -0.16043E+01 -0.119E-02
```

(5) Note

The conjugate gradient method is characterized by fast convergence if a coefficient matrix is large in the number of dimensions and sparse. For dense coefficient matrices, it is desirable to use other methods or the conjugate gradient method that includes preprocessing (PRCGFS/D).

References

1) Hayato Togawa: Conjugate Gradient Method, Kyoiku Shuppan, 1977
(1987.06.16) (1987.08.07) (1987.08.10)

CHLBDC/B/Z,MCHLBC/B/Z

(Solution of Hermitian Positive Definite.Linear Equations by Cholesky and Modified Cholesky Method (Band Matrix))

Solution of Hermitian Positive Definite Linear Equations by Cholesky and Modified Cholesky Method (Band Matrix)

| Programm
 ed by | IChizo Ninomiya, December 1983 |
| :--- | :--- | :--- |
| Format | Subroutine language: FORTRAN; size: $63,64,64,70,71$, and 71 lines
 respectively |

(1) Outline

CHLBDC(B, Z) ($M C H L B C(B, Z)$) is a single (double or quadruple) precision subroutine for obtaining the solution $X=A^{-1} B$ of the equation $A X=B$ having a llermitian positive definite band matrix A as coefficient matrix and multiple right side columns B, using modified Cholesky decomposition method. It reuses Cholesky decomposition component.
(2) Directions

CHLBDC/B/Z
CALL (A, KA, N, NB, X, KX, M, DET, EPS, IND)
MCHLBC/B/Z

Argument	Type and kind (*1)	Attribut e	Complex type Two-dimens ional array		
Input/out				\quad	The lower left half band area containing the diagonal of a
:---					
coefficient matrix is transformed into a rectangular form and					
input. That is, the I and J elements of the matrix are input					
in A(I-Jtl, J). These elements are processed with this					
routine, and Modified Cholesky decomposition elements are					
output. See the figure.					

Argument	Type and kind (*1)	Attribut e	Content
N	integer type	Input	Order of equations (number of columns of A). $\quad \mathrm{N} \geqq 1$
NB	Integer type	Input	Band width (number of rows of A). $1 \leqq N B \leqq N$
X	Complex type Two-dimens ional array	Input/ou tput	The right side columns are input. The solution vectors are output to the corresponding pusitions.
KX	Integer type	Input	Adjustable dimensions of $X . \quad K X \geqq N$
H	Integer type	Input	Number of columns of X. If $M \leqq 0$, only modified Cholesky decomposition is executed.
DET	Real type	Input/ou tput	If $D E T \neq 0.0$ is input, coefficient matrix determinants are output. If $D E T=0.0$ is input, 0.0 is output.
EPS	Real type	Input	Coefficient matrix positivity criterion. If the value of a diagonal element becomes smaller than EPS during Cholesky decomposition, it is decided to be not positive definite, and the computation is interrupted. EPS>0

Argument	Type and kind (*1)	Attribut e	Content
IND	Integer type	Input/ou tput	This argument has the following meaning as an input argument. IND=0: Equation is solved newly beginning with Cholesky decomposition. IND $\neq 0$: Equation is solved reusing the Cholesky decomposition component computed before. This argument has the following meaning as an output argument. IND=0: Computation is normally executed. $I N D=K$: Because the value of a diagonal element becomes smaller than EPS at the K-th step of Cholesky decomposition, computation is interrupted. IND=30000: The input argument exceeded the limit.

1* For double (quadruple) precision subroutines, all single precision types are changed to double (quadruple) precision types.
(3) Calculation method

1. Cholesky decomposition method

The coefficient matrix A is decomposed into $A=L L^{*}$ with a lower triangular matrix L and its transposition conjugate matrix L^{*}. The solution $X=A^{-1} B$ is obtained with the forward substitution $Y=L^{-1} B$ and backward substitution $X=\left(L^{*}\right)^{-1} Y$.
2. Hodified Cholesky decomposition method

The coefficient matrix A is decomposed into $A=L D L^{*}$ with a lower unit triangular matrix
L, its transposition conjugate matrix $A=L D L^{*}$, and a diagonal matrix D. The solution
$X=A^{-1} B$ is obtained with the forward substitution $Y=L^{-1} B$ and backward substitution $X=\left(L^{*}\right)^{-1} D^{-1} Y$.
(4) Notes

1. If the typical size of coefficient matrix elcments is a, the value $10^{-6} a\left(10^{-16} a, 10^{-30} a\right)$
is adequate as the standard value of EPS for $\{\operatorname{MCHLBS}(D, Q) \operatorname{CHLBDS}(D, Q)\}$.
2. Because DET and IND are I/O arguments, constants must not be used as an actual argument. Note that DET is a real type.
3. When a solution to the same coefficient matrix is to be repeatedly obtained with only the right side column changed, the function that reuses the Modified Cholesky decomposition elements of this routine is particularly useful. It is more efficient in all of storage size, precision, and speed as compared with the method using the inverse matrix.
4. If the number M of right side columns is 1 , the real argument that corresponds to X can be a one-dimensional array. However, $K X \geqq N$ must be met.
(1987.06.19) (1987.08.07)

CHLBDS/D/Q,MCHLBS/D/Q

(Solution of Symmetric Positive Definite Linear Equations by Cholesky and Modified Cholesky Method) (Band Matrix)

Solution of Symmetric Positive Definite Linear Equations by Cholesky and Modified Cholesky Method (Band Matrix)

Programmed by	Ichizo Ninomiya in April 1981
Format	Subroutine language: Assembler (CILBDQ and MCHLBQ FORTRAN) Size:233, 239, 64, 202, 199, and 71 lines respectively

(1) Outline

CHLBDS (D, Q) (MCHLBS (D, Q) is a single (double or quadruple) precision subroutine that finds the solution $X=A^{-1} B$ of the equation $A X=B$ with a symmetric positive definite band matrix A as a coefficient matrix and multiple right sides B, using modified Cholesky decomposition method. It has the facility for reusing Cholesky decomposition components.
(2) Directions

CALL $\left[\begin{array}{l}\text { CHLBDS/D/Q } \\ M C H L B S / D / Q\end{array}\right]$ (A, KA, N, NB, X, KX, M, DET, EPS, IND)

Argument	Type and kind ($* 1$)	Attribut e	Content
A	Real type two-dimens ional array	Input/ou tput	Transform the lower left half including the diagonal of the coefficient matrix into a rectangular form, that is, the I and J element of the matrix is stored in $\mathrm{A}(\mathrm{I}-\mathrm{J}+1, \mathrm{~J})$. The array is processed by this routine, and modified Cholesky decomposition components are output. See the figure.
KA	Integer type	Input	Adjustable dimension of A (value of the first subscript in the array declaration of A). $K A \geqq N B$
N	Integer type	Input	Order of equations (number of columns of A). $N \geqq 1$
NB	Integer type	Input	Band width (number of rows oí A). $1 \leqq N B \leq N$

X	Real type two-dimens ional array	Input/ou tput	The right side columns are input. The solution vectors are output to the corresponding place.
KX	Integer type	Input	Adjustable dimension of X . $\mathrm{KX} \geqq \mathrm{N}$
N	Integer type	Input	Number of columns in X. If $M \leq 0$, only (modified) Cholesky decomposition is executed.
DET	Real type	Input/ou tput	If $D E T \neq 0.0$ is input, coefficient matrix determinant is output. If $D E T=0.0$ is input, 0.0 is output.
EPS	Real type	Input	Constant for determining the positivity of coefficient matrices. If the value of a diagonal element becomes smaller than that of EPS during Cholesky decomposition, the input matrix is decided to be non positive definite, and the calculation is interrupted. EPS>0
IND	Integer type	Input/ou tput	This argument has the following meaning as an input. IND=0: Solve an equation newly starting from Cholesky decomposition. IND $\neq 0$: Find the solution of an equation, reusing the Cholesky decomposition elements calculated before. This argument has the following meaning as an output. IND=0: The calculation is normally executed. IND=K: Because the value of a diagonal element becomes smaller than that of EPS at the K-th step of Cholesky decomposition, the calculation is interrupted. IND=30000: The input arguments violate the limit.

*1 For a double (quadruple) precision subroutine, all real types are changed to double (quadruple) precision real types.
(3) Calculation method

1. Cholesky decomposition method

Decompose $A=L L^{T}$ with a lower triangular matrix L and its transposition L^{T}. The solution $X=A^{-1} B$ is found by the forward substitution $Y=L^{-1} B$ and backward substitution $X=L^{-T} Y$.

2. Modified Cholesky decomposition method

Decompose $A=L D L^{T}$ with a lower unit triangular matrix L, its transposition L^{T}, and a diagonal matrix D. The solution $X=A^{-1} B$ is found by the forward substitution $Y=L^{-1} B$ and the backward substitution $X=L^{-T} \cdot D^{-1} Y$.
3. Because the partial double precision calculation is used for all inner product calculations in CHLBDS and MCHLBS, the influence of the round-off error is negligible.

47

(4) Remarks

1. If the typical size of elements in a coefficient matrix is assumed to be a, the value EPS $=10^{-0} a\left(10^{-10} a, 10^{-30} a\right)$ is adequate for $\left[\begin{array}{l}\operatorname{MCHLBS}(D, Q) \\ \operatorname{CHLBDS}(D, Q)\end{array}\right]$
2. Because DET and IND are input/output arguments, constants must not be used as actual arguments.
3. If solutions to the same coefficient matrix is to be repeatedly found changing the right side columns, the facility for reusing modified Cholesky decomposition components of this routine is extremely useful. It exceeds in storage size, precision, and speed as compared with the method by inverse matrices.
4. If the number of right side columns M is 1 , the actual argument that corresponds to X can be a one-dimensional array. However, $K X \geqq N$ must be met.
(1987. 06. 16)

CHLBDV/W,MCHLBV/W

(Solution of Symmetric Positive Definite Linear Equations by Cholesky and Modified Cholesky Method (Band Matrix) - Vector Version -)

Solution of Symmetric Positive Definite Linear Equations by Chulesky and Modified Cholesky Method(Band Matrix) -Vector Version-

Programm ed by	Ichizo Ninomiya, May 1986
Format	Subrout ine language: FORTRAN77; size: 106, 107, 114, and 115 lines respectively

(1) Outline

CHLBDV (W^{\prime}) (MCHLBV (W)) is a single (double) precision subroutine for obtaining the solution $X=A^{-1} B$ of the equation $A X=B$ having a symmetric positive definite band matrix A as coefficient matrix and multiple right side columns B, using modified Cholesky decomposition method. It has the facility of reusing Cholesky decomposition component.
(2) Directions

```
        CHLBDV/W
CALL
(A, KA, N, NB, X, KX, K, DET, EPS, H, IND)
MCHLBV/W
```

Argument	Type and kind (*1)	Attribut e	Content
A	Real type Two-dimens ional array	Input/ou tput	The lower left half band area containing the diagonal of a coefficient matrix is transformed into a rectangular form and input. That is, the I and J elements of the matrix are input in $\mathrm{A}(\mathrm{I}-\mathrm{J}+1, \mathrm{~J})$. These elements are processed with this routine, and modified Cholesky decomposition elements are output. See the figure.

Argument	Type and kind (*1)	Attribut e	Content
KA	Integer type	Input	Adjustable dimensions of A (value of the first subscript in the array declaration). $K A \geqq N B$
N	Integer type	Input	Order of equations (number of columns of A). $N \geqq 1$
NB	Integer type	Input	Band width of A (number of rows of A). $1 \leqq N B \leq N$
X	Real type two-dimens ional array	Input/ou tput	The right side columns are input. The solution vectors are output to the corresponding positions.
KX	Integer type	Input	Adjustable dimensions of $X . \quad K X \geq N$
M	Integer type	Input	Number of columns of X. If $\mathrm{K} \leqq 0$, only modified Cholesky decomposition is executed.
DET	Real type	Input/ou tput	If $D E T \neq 0.0$ is input, coefficient matrix determinant is output. If $\mathrm{DET}=0.0$ is input, 0.0 is output.
EPS	Real type	Input	Coefficient matrix positivity criterion. If the value of a diagonal element becomes smaller than EPS during Cholesky decomposition, it is decided to be not positive definite, and the computation is interrupted. EPS>0
H	Real type one-dimens ional array	Work area	One-dimensional array of size NB.

Argument	Type and kind (*1)	Attribut e	Content
IND	Integer type	Input/ou tput	This argument has the following meaning as an input argument. IND=0: An equation is solved newly beginning with Cholesky decomposition. IND $\neq 0$: Equation is solved reusing the Cholesky decomposition component calculated before. This argument has the following meaning as an output argument. IND=0: Computation is normally executed. IND=K: Computation is interrupted because the value of a diagonal element becomes smaller than EPS at the K-th step of Cholesky decomposition. IND $=30000$: The input argument exceeded the limit.

*1 For double precision subroutines, all real types are changed to double precision real types.
(3) Calculation method

1. Cholesky decomposition method

The matrix A is decomposed into $A=L L^{T}$ using a lower triangular matrix L and its transpose L^{T}. The solution $X=A^{-1} B$ is obtained with the forward substitution $Y=L^{-1} B$ and backward substitution $X=L^{-T} Y$.
2. Modified Cholesky decomposition method

The matrix A is decomposed into $A=L D L^{T}$ with a lower unit triangular matrix L, its transposition L^{T}, and a diagonal matrix D. The solution $X=A^{-1} B$ is obtained with the forward substitution $Y=L^{-1} B$ and backward substitution $X=L^{-T} D^{-1} Y$.
3. Because partial double precision calculation is used for all inner sums in CIILBDS and MCHLBS, the influence of rounding errors is small.
(4) Notes

1. If the typical size of coefficient matrix elements is a, the value $10^{-6} \alpha\left(10^{-16} \alpha\right)$ is adequate as the standard value of EPS for \{MCHLBV ($\mathrm{H}^{(1)}$) $\operatorname{CHLBDV}\left(\mathrm{H}^{(}\right)$) .
2. Because DET and IND are $1 / 0$ arguments, constants must not be used as an actual argument.
3. When a solution with the same coefficient matrix is to be repeatedly obtained with only the right side column changed, the function of reusing modified Cholesky decomposition component of this routine is particularly useful. It is more efficient in all of storage size, precision, and speed as compared with the method using the inverse matrix.
4. If the number M of right side columns is 1 , the actual argument corresponding to X can be a one-dimensional array. However, $\mathrm{KX} \geqq \mathrm{N}$ must be met.
(1987.06.19) (1987.08.07)

CHLVBS/D

(Solution of Symmetric Positive Definite Linear Equations by Cholesky Method) (Band Matrices with Variable Bandwidth, Compact Mode)

Solution of Symmetric Positive Definite Linear Equations by Cholesky. Method (Band Matrices with Variable Bandwidth, Compact Mode)

Programm ed by	Ichizo Ninomiya, April 1977
Format	Subroutine language: FORTRAN; size: 94 and 94 lines respectively

(1) Outline

CHLVBS/D finds the solution $X=A^{-1} B$ of the equation $A X=B$ with a symmetric positive definite variable bandwidth matrix A as a coefficient matrix and a multiple right sides B, using Cholesky decomposition method. A is first decomposed as $A=U^{T} U$ with an upper triangular matrix U and its transpose U^{T}, then the solution is given by $X=U^{-1}\left(U^{\top} B\right)$. $C=U^{T} B$ is calculated by the forward substitution method for the lower triangular matrix U^{T}, and $X=U^{-1} C$ is calculated by the backward substitution method for the upper triangular matrix U. This routine posesses facility for reusing Cholesky decomposition components.
(2) Directions

CALL CHLVBS/D (A, NB, X, KX, N, M, EPS, IND)

Argument	Type and kind (*1)	Attribut e	Content
A	Real type One-dimens ional array	Input/ou tput	Rearrange the upper right half including the diagonal excluding zero elemnts of a symmetric positive definite band matrix in a line as shown in the figure. These elements are processed by this routine, and Cholesky decomposition components are output.
NB	Integer type One-dimens ional array	Input	One-dimensional array with N elements. Input the band width of each column in the upper right half of a coefficient matrix. (See the figure.)

Argument	Type and kind (*1)	Attribut e	Content
X	Real type Two-dimens ional array	Input/ou tput	The right side columns are input. The solution vector is output to the corresponding place.
KX	Integer type	Input	Value of the first subscript in the array declaration of X. $K X \geqq N$
N	Integer type	Input	Order of equations, that is, the number of rows of X. N
M	Integer type	Input	Number of columns of $X, M \geqq 0$ If $M=0$, only Cholesky decomposition is executed. If $M=1$, an actual argument to X can be a one-dimensional array.
EPS	Real type	Input	Constant for determining the positivity of coefficient matrix. If the value of a diagonal element becomes smaller than that of EPS during Cholesky decomposition, the input matrix is decided to be non positive definite, and the calculation is interrupted. EPS>0
IND	Integer type	Input/ou tput	This argument has the following weaning as an input. IND=0: Solve an equation newly starting from Cholesky decomposition. IND $\neq 0$: Solve an equation reusing Cholesky decomposition components previously obtained. This argument has the following meaning as an output. IND=0: The calculation is normally executed. IND $=30000$: Limits on input-output arguments are violated. IND $=\mathrm{K}$: Because the value of a diagonal element becomes smaller than that of EPS at the Kth step, the calculation is interrupted. Because this argument is for both input and output, a constant must not be used as an actual argument.

*1 For CHLVBD, all real types are assumed to be a double precision real type.

```
    1247
    3 5 8 11
        6 9 121519 ...
        10131620 ...
            141721 ...
            1822 ...
            23 ...
```

NB $12234445 \ldots$
(3) Remarks

If the facility for reusing the Cholesky decomposition components of this routine is exploited, it becomes almost unnecessary to calculate inverse matrices. This is because inverse matrices of band matrices are not band matrices any more, thus losing their advantage. The reuse of Cholesky decomposition is more excellent in computation speed and precision than processing via inverse matrices.
(1987.06. 16)

CHOLCS/D/Q,MCHLCS/D/Q

(Solution of Symmetric Positive Definite Linear Equations by Cholesky and Modified Cholesky Method) (Full Matrix, Compact Mode)

Solution of Symmetric Positive Definite Linear Equations by Cholesky and Modified Cholesky Method (Full Matrix, Compact Mode)

Programm ed by	Ichizo Ninomiya, April 1981
Format	Subroutine language: Assembler (CHOLCQ and MCHLCQ are FORTRAN.) Size: 203, 217, 60, 180, 179, and 96 lines
respectively	

(1) Outline

CHOLCS (D, Q) and ($\mathrm{MCHLCS}(\mathrm{D}, \mathrm{Q})$) are single (double or quadruple) precision subroutines that find the solution $X=A^{-1} B$ of the equation $A X=B$ with the compressed symmetric positive definite matrix A as a coefficient matrix and multiple right side columns B, using modified Cholesky decomposition method. It has the facility for reusing modified Cholesky decomposition components.

CALL $\left[\begin{array}{c}\text { CHOLCS/D/Q } \\ \text { MCHLCS/D/Q }\end{array}\right]$ (A, N, X, RX, M, DEP, BPS, IND)
(2) Directions

Argument	Type and kind (*1)	Attribut e	Content
A	Real type One-dimens ional array	Input/ou put	Converts the upper right half including the diagonal of a coefficient matrix column wise into a one dimensional vector before it is input. That is, the I and J element in the original matrix is stored in A (J - 1$)) * J / 2+1) . ~ T h e ~$
array is processed by this routine, and modified Cholesky			
decomposition elements are output.			

Argument	Type and kind (*1)	Attribut e	Content
N	Integer type	Input	Order of equations. $N \geqq 1$
X	Real type Two-dimens ional array	Input/ou tput	The right side columns are input. The solution vectors are output to the corresponding place.
KX	Integer type	Input	Adjustable dimension of X . $\mathrm{KX} \geqq \mathrm{N}$
M	Integer type	Input	Number of columns in X. If $M \leqq 0$, only modified Cholesky decomposition is executed.
DET	Real type	Input/ou tput	If $D E T \neq 0.0$ is input, coefficient determinants are output. If $D E T=0.0$ is input, 0.0 is output.
EPS	Real type	Input	Constant for determining the positivity of coefficient matrices. If the value of a diagonal element becomes smaller than that of EPS during Cholesky decomposition, the input matrix is decided to be non positive definite and the calculation is interrupted.
IND	Integer type	Input/ou tput	This argument has the following meaning as an input. IND=0: Solve an equation newly starting from Cholesky decomposition. IND $\neq 0$: Solve an equation, reusing the Cholesky decomposition components calculated previously. This argument has the following meaning as an output. IND=0: Calculation is normally executed. IND=K: Because the value of diagonal elements becomes smaller than that of EPS at the Kth step of Cholesky decomposition, the calculation is interrupted. IND $=30000$: The input arguments violate the limit.

*1 For a double (quadruple) precision subroutine, all real types are changed to double (quadruple) precision real types.
(3) Calculation method

1. Cholesky decomposition method

Decompose $A=U^{T} U$ with an upper triangular matrix U and its transpose U^{T}. The solution $X=A^{-1} B$ is found by the forward substitution $Y=U^{T} B$ and backward substitution $Y=U^{-1} Y$.
2. Modified Cholesky decomposition method

Decompose $A=U^{T} D U$ with a unit upper triangular matrix U, its transpose U^{T}, and a diagonal matrix D. The solution $X=A^{-1} B$ is found by the forward substitution $Y=U^{T} B$ and backward substitution $X=U^{-1} D^{-1} Y$.
3. Because CHOLCS and MCHLCS use partial double precision in all product inner calculations, the effects of rounding errors on the results is negligible.
(4) Remarks

1. If the typical size of elements in a coefficient matrix is assumed to be a as the standard value of external page storage, $10^{-6} a\left(10^{-16} a, 10^{-30} a\right)$ is adequate for:
$\left[\begin{array}{l}\operatorname{CHOLCS}(D ; Q) \\ \operatorname{MCHLCS}(D, Q)\end{array}\right]$
2. Because DET and IND are input-output arguments, a constant must not be used as an actual argument.
3. When a solution to the same coefficient matrix is repeatedly found changing only the right side columns, facility for reusing the modified Cholesky decomposition components of this routine is extremely useful. As compared with the method by inverse matrices, this calculation method is excellent in storage size, precision, and speed.
4. If the number of right side column M is 1 , an actual argument that corresponds to X can be a one-dimensional array. However, $K X \geqq N$ must be met.
(1987.06. 17)

CHOLFC/B/Z,MCHLFC/B/Z

(Solution of Hermitian positive definite linear equations by Cholesky and modified Cholesky methods (full matrix))

Solution of Hermitian Positive Definite Linear Equations by Cholesky and Modified Cholesky Method (Full Matrix)

Programm ed by	Ichizo Ninomiya; December 1983
Format	Subroutine language; FORTRAN Size; 50, 51, 51, 50, 51, and 51 lines respectively

(1) Outline

CHOLFC (B, Z) and YCHLFC (B, Z) are complex single (double, quadruple) precision subroutines, each of which calculates solution $X=A^{-1} B$ of equation $A X=B$ by the Cholesky or modified Cholesky decomposition method, where A is a Hermitian symmetric positive definite matrix and B is a right-hand side matrix. It has the facility of reusing Cholesky decomposition components.
(2) Directions

CHOLPC/B/Z
CALL
MCHLFC/B/Z

Argument	Type and kind (*1)	Attribut e	Content
A	Complex type Two-dimens ional array	Input/ou tput	The upper right half including the diagonal of the coefficient matrix is input. After processing by this routine, Cholesky- or modified Cholesky-decomposed components are output. The lower left half is retained.
KA	Integer type	Input	Adjustable dimension of A (value of the first subscript in array declaration). $K A \geq N$

Argument	Type and kind (*1)	Attribut e	Content
\cdots	Integer type	Input	Number of unknowns of the equation. $N \geqq 1$
X	Complex type Two-dimens ional array	Input/ou tput	A right-hand side vectors are input, as a matrix. Solution vectors are generated in the corresponding locations.
KX	Integer type	Input	Adjustable dimension of X . KX ($\geqq \mathrm{N}$
M	Integer type	Input	Number of columns of X. When $M \leq 0$, only Cholesky or modified Cholesky decomposition is performed.
DET	Real type	Input/ou tput	When a value other than 0.0 is input, the coefficient determinant is output. When 0.0 is input, 0.0 is output as it is.
EPS	Real type	Input	Constant for test of positiveness of coefficient matrix. When the diagonal element becomes smaller than EPS during Cholesky decomposition, it is decided as non positive and calculation is interrupted.

Argument	Type and kind (*1)	Attribut e	Content
IND	integer type	Input/ou tput	This argument has the following meanings for input: IND $=0$: An equation is solved beginning with Cholesky decomposition. $I N D \neq 0$: An equation is solved by reusing the Cholesky-decomposed components obtained immediately before. This argument has the following meanings for output: IND=0: Calculation is performed normally. IND $=K$: Because the diagonal element became smaller than EPS at step K in Cholesky decomposition, calculation was discontinued. IND $=30000$: The input argument violated the limit.

*1 For double (quadruple) precision subroutines, single precision types are all changed to double (quadruple) precision types.
(3) Calculation method

1. Cholesky decomposition method
A is decomposed as a product of an upper triangular matrix U and its conjugate transpose U^{*} as $A=U^{*} U$. Then the solution $X=A^{-1} B$ is determined by forward substitution $Y=\left(U^{*}\right)^{-1} B$ and backward substitution $X=U^{-1} Y$.
2. Modified Cholesky decomposition method
A is decomposed as a product of an upper triangular matrix U and its conjugate transpose U^{*} and diagonal matrix D as $A=U^{*} D U$. Then the solution $X=A^{-1} B$ is determined by forward substitution $Y=\left(U^{*}\right)^{-1} B$ and backward substitution $X=U^{-1} D^{-1} Y$.
(4) Notes
3. Let a be the typical size of elements of the coefficient matrix, then $10^{-6} a\left(10^{-16} a, 10^{-30} a\right)$ is a reasonable EPS value for \{CHOLPS (D, Q) MCHLFS (D, Q)\}.
4. Do not use a constant as the actual argument for DET and IND because these are used for both input and output.
5. When equations sharing the same coefficient matrix are solved iteratively with different
right-hand side columns, this routine's facility of reusing the Cholesky- or modified Cholesky-decomposed components is very useful. This routine is superior to the inverse matrix method in every respect of storage capacity, accuracy, and speed.
6. When the number of right-hand side columns M is 1 , the actual argument corresponding to X can be a one-dimensional array, where $K X \geq N$ must be met.
(1987.06. 19) (1987.08.07) (1987.08.10)

CHOLFS/D/Q,MCHLFS/D/Q

(Solution of symmetric positive definite linear equations by Cholesky and modified Cholesky method (full matrix))

Solution of Symmetric Positive Definite Linear Equations by Cholesky and Modified Cholesky Method (Full Matrix)

Programm ed by	Ichizo Ninomiya; April 1981
Format	Subroutine language; Assembler (CHOLFQ and MCHLPQ are in FORTRAN) Size; 207, 217, 49, 179, 176, and 51 lines respectively

(1) Outline
$\operatorname{CHOLFS}(\mathrm{D}, \mathrm{Q})$ (MCHLFS (D, Q)) is a subroutine for single (double or quadruple) precision to obtain solution $X=A^{-1} B$ of matrix equation $A X=B$ by the Cholesky or modified Cholesky decomposition method when A is positive definite. It has the facility reusing Cholesky or modified Cholesky decomposition components.
(2) Directions

CHOLPS/D/Q
CALL
MCHLFS/D/Q

Argument	Type and kind ($* 1$)	Attrib ute	Content
A	Real type Two-dimens ional array	Input/	The upper right half of a coefficient matrix including the diagonal is input. After processing by this routine, Cholesky or modified Cholesky composition components are generated. The lower left half is saved.
KA	Integer type	Input	Adjustable dimension of A (value of the first subscript in array declaration). KA $\geq N$
N	Integer		
type	Input	Number of unknowns of equation. $N \geq 1$	

Argument	Type and kind ($* 1$)	Attrib ute	Content
X	Real type two-dimens ional array	Input/ output	The matrix of right-hand columns are input. Solution vectors are generated at the corresponding columns.
KX	Integer type	Input	Adjustable dimension of $X . K X \geq N$
\cdots	Integer type	Input	Number of columns of X. If $M \leqq 0$, only Cholesky or modified Cholesky decomposition is done.
DET	Real type	Input/ output	When $D E T \neq 0.0$ is input, coefficient determinant is generated. When $D E T=0.0$ is input, 0.0 is returned.
EPS	Real type	Input	Constant used to check positivity of the coefficient matrix. When the diagonal element becomes smaller than EPS during Cholesky decomposition, it is assumed to be non-positive definite and calculation is interrupted.
IND	Integer type	Input/ output	For input, this argument has the following meanings: IND $=0$: The equation is solved by restarting Cholesky decomposition from the beginning. IND $\neq 0$: The equation is solved by reusing the Cholesky decomposition component calculated immediately before. For output, this argument has the following meanings: IND=0: Calculation has been done normally. IND=K: Calculation was terminated because the diagonal element became smaller than EPS at step K in Cholesky decomposition. IND=30000: The input argument violated the limit.

$* 1$ For double or quadruple precision subroutines, all real types are changed to double or
quadruple precision real types.
(3) Calculation method

1. Cholesky decomposition method
A is decomposed as $A=U^{\top} U$ by an upper triangular matrix U and its conjugate transpose
matrix U^{T}. Solution $X=A^{-1} B$ is obtained by forward substitution $Y=U^{-T} B$ and backward substitution $X=U^{l} Y$.
2. Modified Cholesky decomposition method
A is decomposed as $A=U^{T} D U$ by an unit upper triangular matrix U, its conjugate transpose matrix U^{T}, and a diagonal matrix D. Solution $X=A^{-1} B$ is obtained by forward substitution $Y=U^{-T} B$ and backward substitution $X=U^{-1} D^{-1} Y$.
3. Because the partial double precision calculation is used for all inner product calculations in CHOLFS and KCHLFS, rounding errors have little influence on it.
(4) Notes
4. When a typical size of the element of the coefficient matrix is assumed to be a, $10^{-6} a\left(10^{-16} a, 10^{-30} a\right)$ is suitable as a standard EPS value for (CHOLFS (D, Q) and $\operatorname{MCHLFS}(\mathrm{D}, \mathrm{Q})\}$.
5. Do not specify a constant for an actual argument of DET and IND because these arguments are used for both input and output.
6. For the purpose of obtaining solutions of the same equation by simply changing its right-hand side column, this routine's facility to reuse Cholesky or modified Cholesky decomposition components is extremely useful. The Cholesky method is superior to the inverse matrix method in all aspects of the storage capacity, accuracy, and speed.
7. When M, the number of right hand side columns, is 1 , a one-dimensional array is acceptable for the actual argument corresponding to $X . K X \geqq N$ should hold, however.
(1987.06.19) (1987.08.10)

CHOLFV/W,MCHLFV/W

(Solution of Symmetric Positive Definite Linear Equations by Cholesky and Modified Cholesky Method (Full Matrix) - Vector Version-)

Solution of Symmetric Positive Definite Linear Equations by Cholesky and Modified Cholesky Method (Full Matrix) -Vector Version-

Programm ed by	Ichizo Ninomiya, December 1984 Format .Subroutine language: FORTRAN77; size: 141, 142, 141, and 142 lines respectively

(1) Outline

CHOLFV (HI) and (MCHLFV (H)) are single (double) precision subroutines for obtaining the solution $X=A^{-1} B$ of the equation $A X=B$ having a symmetric positive definite matrix A as coefficient matrix and multiple right sides B, using modified Cholesky decomposition method. It has the facility of reusing modified Cholesky decomposition component. CHOLFV (W) and MCHLFV (w) are for single (double) precision.
(2) Directions

CALL $\begin{gathered}\text { CHOLFV/H. } \\ \text { MCHLFV/H. } \\ \text { (A, KA, N, X, XX, M, JET, BPS, H, IND) }\end{gathered}$

Argument	Type and kind (*1)	Attribut	Content
A	Real type Two-dimens Zonal array	Input/ou put	The upper right half containing the diagonal of a coefficient matrix is input. It is processed with this routine, and modified Cholesky decomposition elements are output. The lower left half is retained.
KA	Integer type	Input	Adjustable dimensions of A (value of the first subscript in the array declaration). KA $\geqq N$

Argument	Type and kind (*1)	Attribut e	Content
N	Integer type	Input	Order of equations. $N \geq 1$
X	Real type two-dimens ional array	Input/ou tput	The right side columns are input. The solution vectors are output to the corresponding positions.
KX	Integer type	Input	Adjustable dimensions of $\mathrm{X} . \mathrm{KX}$ (N
M	Integer type	Input	Number of columns of X . If $\mathrm{M} \leqq 0$, only modified Cholesky decomposition is executed.
DET	Real type	Input/ou tput	If $D E T \neq 0.0$ is input, coefficient matrix determinant is output. If $D E T=0.0$ is input, 0.0 is output.
EPS	Real type	Input	Coefficient matrix positivity criterion. If the value of a diagonal element becomes smaller than EPS during Cholesky decomposition, it is decided to be not positive definite, and the computation is interrupted.
W	Real type one-dimens ional array	Hork area	One-dimensional array of size N.

Argument	Type and kind ($* 1$)	Attribut e	Content
IND	Integer type	Input/ou tput	This argument has the following meaning as an input argument. $\operatorname{IND}=0$: An equation is solved newly beginning with Cholesky decomposition. IND $\neq 0$: An equation is solved reusing the Cholesky decomposition elements calculated before. This argument has the following meaning as an output argument. IND $=0$: Computation is normally executed. IND=K: Computation is interrupted because the value of a diagonal element becomes smaller than EPS at the K-th step of Cholesky decomposition. IND=30000: The input argument exceeded the limit.

*1 For double precision subroutines, all real types are changed to double precision real types.
(3) Calculation method

1. Cholesky decomposition method

The coefficient matrix A is decomposed into $A=U^{T} U$ using an upper triangular matrix U and its transpose U^{T}. The solution $X=A^{-1} B$ is obtained with the forward substitution $Y=U^{\top} B$ and backward substitution $X=U^{-j} Y$.
2. Modified Cholesky decomposition method

The coefficient matrix \dot{A} is decomposed into $A=U^{T} D U$ using an upper unit triangular matrix U, its transpose U^{T}, and a diagonal matrix D. The solution $X=A^{-1} B$ is obtained with the forward substitution $Y=U^{T} B$ and backward substitution $X=U^{-1} D^{-1} Y$.
(4) Notes

1. If the typical size of coefficient matrix elements is a, the value $10^{-6} a\left(10^{-16} a\right)$ is adequate as the standard value of EPS for \{CHOLPV (H) MCHLPV (W)) \}.
2. Because DET and IND are input-output arguments, constants aust not be used as an actual
argument.
3. When a solution with the same matrix is to be repeatedly obtained with only the right side column changed, the function of reusing the modified Cholesky decomposition component of this routine is particularly useful. It is more efficient in all of storage size, precision, and speed as compared with the method using the inverse matrix.
4. If the number M of right side columns is 1 , the actual argument corresponding to X can be a one-dimensional array. However, $K X \geqq N$ must be met.
(1987.06. 19)

CHOLSK/CHOLSD (Solution of Symmetric Positive Definite Linear Equations by Cholesky Method)

Solution of Symmetric Positive Definite Linear Equations by Cholesky Method

Programm ed by	Ichizo Ninomiya, April 1977
Format	Subroutine language: FORTRAN; size: 43 and 43 lines respectively

(1) Outline

CHOLSK/CHOLSD solves multiple simultaneous linear equations that share a symmetric positive definite coefficient matrix, using Cholesky decomposition method. In other words, it finds the solution $X=A^{-1} B$ of the matricial equation $A X=B$.
(2) Directions

CALL CHOLSK (A, KA, N, M, EPS, IND)
CALL CHOLSD (A, KA, N, M, EPS, IND)

Argument	Type and kind (*l)	Attribut e	Content
A	Real type Two-dimens ional array	Input/ou tput	Input an augmented matrix with multiple right side columns added to the right of a symmetric positive coefficient matrix. Only the upper right half including the diagonal of the coefficient matrix need be input. When the matrix is processed with this routine, Cholesky decomposition components are output in the same place. The corresponding solution vectors are output in the corresponding right side columns. The lower left half of the coefficient matrix is preserved. If Cholesky decomposition components are preserved, the computation time required for Cholesky decomposition can be saved when another equation with the same coefficient matrix is to be solved.
KA	Integer type	Input	Value of the first subscript in the array declaration of A. KA $\geq \mathrm{N}$
N	Integer type	Input	Number of rows of A. It is also the order of equation. N $\geqq 2$

Argument	Type and kind (*1)	Attribut e	Content
M	Integer type	Input	Number of columns of A. Sum of the order of equations and the number of right side columns. $N \geqq N_{0}$. If $M=N$, only Cholesky decomposition of the coefficient matrix is executed.
EPS	Real type	Input	Constant for deciding the positivity of A. If the value of a pivot element in A is smaller than that of EPS, the input matrix is decided to be non positive definite, and the the calculation is interrupted. EPS>0
IND	Integer type	$\begin{aligned} & \text { Input/ou } \\ & \text { tput } \end{aligned}$	Determines whether to reuse Cholesky decomposition components or not as an input. If $\operatorname{IND}=0$, normal calculation is executed. If IND $\neq 0$, the component is reused.
			Indicates the calculation status in the routine as an output. If limits on KA. N, M, and EPS are violated, 30000 is assumed. If calculation is interrupted at K -th stage of decomposition, K is assumed. If calculation is normally executed, 0 is assumed.

*1 For CHOLSD, all real types are changed to double precision real types.

(3) Remarks

1. Because the argument IND is used for both input and output, a constant must not be written as an actual argument for it.
2. When a number of equations that has the same coefficient matrix, but differ in the right side only are to be solved, computation time can be saved by using the facility for reusing the Cholesky decomposition components of this routine.
3. If the typical size of matrix elements is $a, a \times 10^{-6}\left(a \times 10^{-16}\right)$ is adequate as the standard value of EPS for CHOLSK (CHOLSD).
4. CHOLFS/D routine that is similar to this routine but has much more facilities, and the CHLBDS/D routine for band matrix are available in NUAPAC.

Solution of Linear Equations by LU-Decomposition

Programm ed by	Ichizo Ninomiya, April 1977
Format	Subrout ine language: FORTRAN (GAUELS/D is assembler); size: 180, 183, 53, 43, and 44 lines respectively

(1) Outline

GAUELS/D/Q/C/B solves multiple simultaneous linear equations that share a coefficient matrix, using a modified Doolittle method a version of Gaussian elimination accompanied by row interchange for pivot selection. In other words, it finds the solution $X=A^{-1} B$ of the matricial equation $A X=B$.
(2) Directions

CALL GAUELS/D/Q/C/B (A, KA, N, M, EPS, ILL)

Argument	Type and kind (*1)	Attribut e.	Content
A	Real type Two-dimens ional array	Input/ou tput	Input an augmented matrix in which right side columns are added to the right of the coefficient matrix. The solution vectors are output in the corresponding right side columns.
KA	Integer type	Input	Value of the first subscript in the array-A declaration. $K A \geqq N$
N	Integer type	Input	Number of rows in A, that is, the order of the equation. $N \geq 2$
H	Integer type	Input	The number of columns in A, that is, the order of the equation plus the number of equations to be solved at the same time. $k>N$
EPS	Real type	Input	Criterion constant for matrix singularity. If the absolute value of a pivot element is smaller than this constant, the input matrix is decided to be singular, and the calculation is interrupted. EPS>0

Argument	Type and kind ($* 1$)	Attribut e	Content
ILL	Integer	Output	ILL=0: Normal termination ILL = 30000: Limits on KA, N, M, and EPS are violated. The number of the pivot element whose absolute value is smaller than EPS.

*1 For GAUELD ($\mathrm{A}, \mathrm{C}, \mathrm{B}$), A is a double precision real type (quadruple precision real type, complex type, and double precision complex type).

For GAUELD ($\mathrm{A}, \mathrm{C}, \mathrm{B}$), EPS is a double precision real type (quadruple precision real type, real type, and double precision real type).
(3) Remarks

1. If the magnitude of coefficient of equations differ significantly, it is desirable to normalize the equations in advance using MNORMS and MNORMD to insure precision in the results.
2. If the typical absolute value of elements in a coefficient matrix is to be a, $a \times 10^{-6}\left(a \times 10^{-16}, a \times 10^{-30}\right)$ is adequate as the standard value of EPS for GAUELS and (GAUELD, gavel).
3. If there is no special reason, it is recommended to use LEQLUS with high precision and various facilities, as a simultaneous linear equation solver.
(1987.06.17) (1987.08.07)

GSORSS/D (Solution of linear equations for sparse matrices by SOR method (compact mode)) Solution of Linear Equations for Sparse Matrices by SOR Method (Coompact Mode)

Programm ed by	Yasuyo Hatano 1977, Revised; Ichizo Ninomiya 1982	
Format	Subroutine language; PORTRAN	Size; 49 and 50 lines respectively

(1) Outline

Bach of these subroutines solves linear equations with coefficient matrices including many 0 elements. To do this, it uses the SOR (successive over-relaxation) method based on the Gauss-Seidel method. This routine is used when only non-zero elements of coefficient matrices are reduced to a one-dimensional system by the compact mode and input.
(2) Directions

CALL GSORSS/D (IJTAB, A, LA, B, N, X, EPS, OMG, IMAX, ILL)

Argument	Type and kind (*1)	Attribut e	Content
IJTAB	Two bytes Integer type Two-dimens ional array	Input	The numbers of rows and columns with non-zero elements are input to IJTAB (1, K) and IJTAB (2, K) respectively. Suppose $A(K)=\alpha_{i j}$, for instance, then input $\operatorname{IJTAB}(1, K)=i,$ $\operatorname{IJTAB}(2, K)=j$. The values are not retained.
A	Real type one-dimens ional array	Input	Only non-zero elements of the coefficient matrix are input in a row. The values of i, j are rearranged in ascending order, divided by the pivot element, and put in this argument. Note that the values are not retained.

Argument	Type and kind ($* 1$)	Attribut e	Content
LA	Integer type	Input	Number of non-zero elements of coefficient matrix
B	Real type one-dimens ional array	Input	One right-hand side column is input. It is then divided by the pivot element and output. The value is not retained.
N	Integer type	Input	Number of unknowns of equation. $2 \geqq N$
X	Real type one-dimens ional ${ }^{*}$ array	Input/ou tput	Input: Initial value of solation vector. Output: Solution vector after iterative calculation. Size N.
EPS	Real type	Input	Tolerance for convergence test in iteration method. When all correction quantities of solution vectors are below EPS, it is assumed that convergence has occurred.
OMG	Real type	Input	Acceleration factor for convergence in iteration method. $1 \leqq 0 \mu G<2$
IMAX	Integer type	Input/ou tput	Input: Upper limit of the number of iterations. O<IMAX. Output: Actual number of iterations until convergence of solution vectors
ILL	Integer type	Output	ILL=0: Normal termination ILL=30000: The restrictions on N or OMG are not observed. ILL=25000: IJTAB error ILL=K: Calculation is not done because the diagonal element on Kth row is 0. ILL=IMAX: Convergence does not occur in IMAX iterations.

*1 For double precision subroutines, real types are all assumed to be double precision real types.

```
00010 C.... TEST OF GSORSS
00020 DIMENSION V(41,31),IV(41,31),A(4500),X(1000),
00021 1 B(1000)
00030 INTEGER*2 IJTAB(2,4500)
00040 EQUIVALENCE (V,IV)
00050 M=41
00060 N=31
00070
00080
00090
0 0 1 0 0
00110
00120
0 0 1 3 0
00140
00150
00160
00170
00180
00190
0 0 2 0 0
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00301
00310
00320
00330
00331
00340
00341
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
```

00530 00540 00550 00560 00570 00580 00590 00600 00610 00620 00630 00640 00650 00660 00670 00680 00690 00700 00710 00720 00730 00740 00750 00760 00770 00780 00790 00800 00810 00820 00830 00840 00850 00860 00870 00880 00890 00900 00910 00920 00930 00940 00950 00960 00970 00980 00990 01000 01010 01020 01030 01040 01050 01060 01070 01080 01090 01100

DO $70 \mathrm{~J}=2$,NC1
LB=1
DO $60 \mathrm{I}=2$,NR1
IF(IV(I,J).NE.1) GO TO 50
$\mathrm{N}=\mathrm{N}+1$
IF(N.GT.NA) GO TO 120
$X(N)=0.0$
$\operatorname{IV}(I, J)=N$
LEFT=IV(I,J-1)
IF (LEFT.GT.O.AND.LEFT.LT.N) GO TO 10
$B(N)=V(I, J-1)$
GO TO 20
$10 \mathrm{~L}=\mathrm{L}+1$
$A(L)=-1.0$
$\operatorname{IJTAB}(1, L)=L E F T$
IJTAB(2,L) $=N$
20 IF(LB.EQ.O) GO TO 30
$B(N)=V(I-1, J)+B(N)$
GO TO 40
$30 \mathrm{~L}=\mathrm{L}+1$
$A(L)=-1.0$
$\operatorname{IJTAB}(1, L)=N-1$
$\operatorname{IJTAB}(2, L)=N$
$40 \mathrm{~L}=\mathrm{L}+1$
IF(L.GT.LA) GO TO 120
$A(L)=4.0$
IJTAB (1,L) =N
IJTAB $(2, L)=N$
$\operatorname{IF}(I V(I+1, J) . N E .1) \quad B(N)=V(I+1, J)+B(N)$
$\operatorname{IF}(I V(I, J+1) . N E .1) \quad B(N)=V(I, J+1)+B(N)$
$L B=0$
GO TO 60
50 LB=1
60 CONTINUE
70 CONTINUE
$N A=N$
$K M=L$
DO $80 \mathrm{~K}=1$, KM
IF (A (K).NE.-1.) GO TO 80
$L=L+1$
IF(L.GT.LA) GO TO 120
$A(L)=-1.0$
$\operatorname{IJTAB}(1, L)=I J T A B(2, K)$
$I J T A B(2, L)=I J T A B(1, K)$
80 CONTINUE
$L A=L$
CALL GSORSS(IJTAB, A $L A, B, N A, X, E P S, O M G, I M A X, I L L)$
IF (ILL.NE.O) GO TO 110
DO $100 \mathrm{~J}=2$, NC1
DO $90 \mathrm{I}=2$-NR1
$L=I V(I, J)$
IF (L.LE.O.OR.L.GT.NA) GO TO 90
$V(I, J)=X(L)$
90 CONTINUE
100 CONTINUE
RETURN
110 ILL=10000
RETURN
120 ILL=20000
RETURN
130 ILL=30000
RETURN
(4) Note

If the coefficient matrices are positive definite symmetric, the Gauss-Seidel method (when $0 M G=1$) converges. Furthermore, if the sum of absolute values of non-diagonal elements on each row is smaller than that of diagonal elements, that is, if

$$
\sum_{j=1}^{N}\left|a_{i j}\right|<\left|a_{i i}\right|
$$

is met, then convergence occurs. However, this is effective only when the right-hand side is sufficiently larger than the left-hand side and OMG is adequate.

Bibliography

1) Hayato Togawa; ${ }^{\text {² }}$ Numerical calculation of matrices, ${ }^{\text { }}$ page 64, Ohm-sha (1971)
(1987.06. 19)

LAPLBS/VS/SS/CS (Solution of 2-dimensional Laplacian equation)

Solution of 2-Dimensional Laplacian Equation

Programm ed by	Ichizo Ninomiya, Yasuyo Hatano, and Tsuyako Miyakoda; September 1982
Format	Subroutine language; FORTRAN77 respectively

(1) Outline

Each of these subroutines solves a Dirichlet boundary value problem of two-dimensional Laplacian equations by five-point difference approximation with uniform orthogonal mesh. When the mesh division of the solution region and the distribution of the boundary values are given, it automatically generates a five-point difference approximation equation, and solves it by the corresponding method as follows:

LAPLBS: Modified Cholesky decomposition method for symmetric band matrix
LAPLVS: Cholesky decomposition method for symmetric band matrix of variable width
LAPLSS: SOR method for sparse matrix
LAPLCS: Conjugate gradient method with preconditioning for sparse matrix
(2) Directions

CALL LAPLBS (V, IV, KV, NR, NC, A, LA, NA, S, IND)
CALL LAPLVS (V, IV, KV, NR, NC, A, LA, NA, NB, S, IND)
CALL LAPLSS (V, IV, KV, NR, NC, IJTAB, A, LA, B, NA, X, EPS, OMG, IMAX, ILL)
CALL LAPLCS (V, IV, KV, NR, NC, IJTAB, A, LA, B, NA, X, EPS, OMG, IMAX, IW, Y', ILL)

Argument	Type and kind (*1)	Attribut e	Content
v	Real type two-dimens ional array	Input/ou tput	Solution region. V and IV are connected by the EQUIVALENCE statement to be assigned to the same region. It is then used appropriately for V or IV depending on purpose. Input: A boundary value is input in V in the boundary point, $I V=1$ in inner points, and $I V=0$ in the other points. Output: A solution is output in the interior point as V. (See the example.)
IV	Integer type two-dimens ional array	Input/ou tput	
KV	Integer type	Input	Adjustable dimension of $V(I V) . \quad K V \geqq N R$
NR	Integer type	Input	Number of rows of $V(I V) . \quad N R \geqq 3$
NC	Integer type	Input	Number of columns of V(IV). NC
IJTAB	Integer. type one-dimens ional array	Output	Numbers of rows and columns of non-zero coefficients of equation. Size LA.
A	Real type one-dimens ional array	Output	Equation coefficients (non-zero coefficients for LAPLSS/D and LAPLCS/D) are generated and processed. Size LA.

Argument	Type and kind ($* 1$)	Attribut e	Content
LA	Integer type	Input/ou tput	Input: Estimation of the total number of equation coefficients. Output: Total number of equation coefficients.
B	Real type one-dimens ional array	Output	Right-hand side vector of equation. Size NA.
NA	Integer type	Input/ou tput	Input: Estimation of the number of unknowns of equations. Output: Number of unknowns of equations.
S	Real type one-dimens ional array	Output	Solution vector. Size NA. The same is output also in V.
X	Real type one-dimens ional array	Input/ou tput	Input: Initial approximation vector of solution. Output: Solution vector. The same is output also in V. Size NA.
EPS	Real type	Input	Criterion for convergence test. EPS>0
OMG	Real type	Input	Acceleration factor. $1 \leq 0 M G<2$
IMAX	Integer type	Input/ou tput	Input: Upper limit of the number of iterations. Output: Number of iterations.
IW	Integer type one-dimens ional array	Work area	Size LA.

The program shown below uses LAPLBS to solve the Laplacian equations for a convex region with a rectangular hole, whose external boundary value is 0 , and whose internal boundary value is 100 . KKK=1 (IND=0) indicates an ordinary usage.

KKK=2 (IND=1) indicates how to reuse the decomposed components of a coefficient matrix.

```
    DIMENSION V(41,31),IV(41,31),A(36900),X(1000)
    EQUIVALENCE (V,IV)
    DO 555 KKK=1,2
    DO 20 J=2,30
    DO 20 I=2,40
    20 IV (I,J)=1
        DO 21 J=1,31
        V (1,J)=0.
    21V(41,J)=0.
        DO 22 I=12,40
        V(I,1)=0.
    22 V(I,31)=0.
    DO 23 I=2,11
    DO 23 J=1,11
    V (I,J)=0.
    23V(I,J+20)=0.
    DO 24 J=11,21
    DO 24 I=21,31
    24V(I,J)=100.
    IF(KKK.EQ.1) WRITE(6,601) ((IV(I,J),J=1,31),I=1,41)
    M=41
    N=31
    IND=KKK-1
    NA=1000
    LA=36900
    CALL CLOCKM(ITO)
    CALL LAPLBS(V,IV,M,M,N,A,LA,NA,X,IND)
    CALL CLOCKM(IT)
    IT=IT-ITO
    WRITE(6,600) IND,NA/LA,IT,((V (I,J),J=1,16),I=1,41)
600 FORMAT(1H1///10X,5HILL =,I6,5X,4HNA =,I7,5X,4HLA =,I7
    *,5X,6HTIME =,I7///(5X,16F8.3))
            DO 40 I=1,41
            DO 40 J=1,31
    40 IV (I,J)=V(I,J)+0.5
555 WRITE(6,601) ((IV (I,J),J=1,31),I=1,41)
601 FORMAT(1H1///(5X,31I4))
    STOP
    END
```

A program that solves the same problem by using LAPLSS and the source program of LAPLSS are
shown in the example of GSORSS.
(4) Notes

1. For the method of solving the difference equation generated, see the direction of each corresponding subroutine as follows:

LAPLBS................MCHLBS
LAPLVS..............CHLVBS
LAPLSS................GSORSS
LAPLCS...............PRCGSS
2. It is recommended to allocate a solution area in $\llbracket \times n$ matrices where \square (columns) is larger than n (rows). This can reduce the band width of the coefficient matrices generated and also save the storage capacity and computation time.
3. When calculation is repeated in the same region with different boundary values by using the LAPLBS or LAPLVS subroutine, the subroutine's facility of reusing the Cholesky-decomposed components is very effective to save computation time. Refer to the explanation of IND and the example.
4. When LAPLSS or LAPLCS is used, it is desirable to put a value as close as possible to the true solution into the initial value (X) of the solution vector. If sufficient information for it is not available, however, a zero vector, for instance, or a vector whose components are all equal to the average boundary value can be used.
(1987. 06. 19)

LEQBDS/D/Q/C/B (Solution of Linear Equations with Band Matrix of Coefficients by Gaussian Elimination)

Solution of Linear Equations with Band Matrix of Coefficients by Gaussian Elimination

Programme ed by	Ichizo Ninomiya, September 1978
Format	Subroutine language: FORTRAN; size: 80. 80, 80. 81, and 80 lines respectively

(1) Outline

LEQBDS/D/Q/C/B finds the solution $X=A^{-1} B$ of the simultaneous linear equation $A X=B$ with a band matrix A as coefficient matrix and multiple right side columns B using the Gaussian elimination accompanied by row interchange for pivot selection. It has facility for reusing the $L U$-decomposition elements of A obtained by the elimination.

(2) Directions

CALL LEQBDS/D/Q/C/B (A, KA, N, NB, LB, MB, X, XX, XX, MAX, BPS, IND)

Argument	Type and kind (*1)	Attribut e	Content
A	Real type Two-dimens ional array	Input/ou tput	Transform the coefficient band matrix into a rectangle form, that is, the I and J elements in an original matrix is stored in $A(J-1+L B, I)$ (See the figure). The LU decomposition elements processed by this routine are output.
KA	Integer type	Input	Value of the first subscript in the array declaration of A. $K A \geqq N B$
N	Integer type	Input	The order of an equation, that is, the number of columns in A. $N \geqq N B$
NB	Integer type	- Input	Total band width (see the figure). It is also the number of rows in A. NB>LB
LB	Integer type	Input	Left band width (see the figure). LB $\geqq 2$
MB	Integer type	Output	Number of rows in A after processing. $\quad \mathrm{HB} \leqq \mathrm{KA}$ must hold.
X	Real type Two-dimens ional array	Input/ou tput	If the right side columns are input, the solution vectors are output in the corresponding place.
KX	Integer type	Input	Value of the first subscript in the array declaration of X. $K X \geq N$
NX	Integer type	Input	Number of columns in X. Only A is processed when $N X \leq 0$.
MAX	Integer type One-dimens ional array	Output	One-dimensional array containing N elements. It stores information on row interchange, and is used when LU elements are reused.
EPS	Real type	Input	Criterion constant for matrix singularity. If the absolute value of pivot elements is smaller than that of EPS, the input matrix is decided to be singular, and calculation is interrupted. EPS>0

*1 For LEQBDD (Q, C, B), A and X are double precision real types (quadruple precision real type, complex type, and double precision complex type).

For $\operatorname{LEQBDD}(\mathrm{Q}, \mathrm{C}, \mathrm{B}$), EPS is a double precision real type (quadruple precision real type, real type, and double precision real type).
(3) Example of use

This example shows a program for solving an equation with order $N=1000$, total band width $N B=7$ and left band width $\mathrm{LB}=3$.

C | TEST FOR LEQBDS |
| :--- |
| DIMENSION $A(10,1000), \operatorname{MAX}(1000), X(1000)$ |
| $N=1000$ |
| $N B=7$ |
| LB =3 |
| $K A=10$ |
| $E P S=1.0 E-6$ |
| $N X=1$ |
| $C=1$. |
| $D O 10 \quad I=1, N$ |
| $A(1, I)=C$ |
| $A(2, I)=-C$ |
| $A(3, I)=0$. |
| $A(4, I)=0$. |
| $A(5, I)=C$ |

88.
```
        A(6,I)=0.
    10 A (7,I) =-C
        DO 20 L=1,2
        IND=L-1
        DO 11 I=1,N
    11 X(I)=0.0
        X(2)=-C*C
        X(N-2)=C*C
        X(N-3)=C*C
        CALL CLOCKM(KO)
        CALL LEQBDS(A,KA,N,NB,LB,MB,X,N,NX,MAX,EPS,IND)
        CALL CLOCKM(K1)
        KO=K1-KO
        AM=0.0
        DO 12 I=1,N
        AA=ABS(X(I)-C)
        IF(AA.LE.AM) GO TO 12
        AM=AA
        MM=I
    12 CONTINUE
        WRITE (6,600) IND,KO,AM,MM,MB
600 FORMAT(//10X,'ILL=',I6,5X,'TIME =',I6,5X'ERR=',1PE10.2,
        *5X,'IMAX ='I I , 5X,'MB=',I6/)
    20 CONTINUE
        STOP
        END
```

(4) Remarks

1. Since this routine posesses facilities of simultaneous solution of multiple right hand sides and reuse of LU decomposition components, it can play the role of both a linear equation solver and an inverse matrix routine. The reuse of LU decomposition components is especially important. This eliminates the needs for inverse matrix calculation
2. Because rows are interchanged, if necessary, for pivot selection, the number of columns of the coefficient matrix normally becomes greater than that in the initial state. Thus, KA must be assigned so that $M B \leqq K A$. Because $M B=N B+L B-1$ even in the worst case, $K A=N B+L B-1$ should be assigned for safety.
3. If equation coefficients differ significantly in size, it is desirable to normalize the coefficient matrix in advance so that the maximum absolute value of each equation coefficient is in the order of 1.
4. If the typical size of elements in a coefficient matrix is $a, a \times 10^{-6}\left(\alpha \times 10^{-16}\right)$ is adequate as the standard value of EPS for LEABDS (LEABDD).
5. If a coefficient matrix consists of symmetric positive definites, it is wise to use the special routine CHLBDS.
6. Because the argument IND is used for both input and output, a constant must not be used as an actual argument for it.
(1987.06. 22) (1987.08.07)

LEQBDV/W/X/Y (Solution of linear equations with band matrix of coefficients by Gaussian elimination - vector version -)

Solution of Linear Equations with Band Matrix of Coefficients by Gaussian Elimination -Vector Version-

Programm ed by	Ichizo Ninomiya; May 1986
Format	Subroutine language; FORTRAN Size; 146, 147, 149, and 150 respectively

(1) Outline

Each of these subroutines determines the solution $X=A^{-1} B$ of the linear equation $A X=B$ having band matrix A as a coefficient matrix and right-hand side matrix B by the Gaussian Elimination involving row interchange for pivoting. It has the facility to reuse LU-decomposition components of A.
(2) Directions

CALL LEQBDV/W/X/Y(A, KA, N, NB, LB, MB, X, KX, NX, MAX, EPS, H, IND)

Argument	Type and kind (*1)	Attribut e	Content
A	Real type Two-dimens ional array	Input/ou tput	A band matrix of coefficients transformed to a rectangular form is input. That is, elements I and J of the original matrix are put in $A(J-I+L B, I)$. (See the figure for LEQBDS.) After processing by this routine, LU-decomposition components are entered.
KA	Integer type	Input	Value of the first subscript in array declaration of A. $K A \geqq N B$
N	Integer type	Input	Number of unknowns of the equation, or number of columns of A. $N \geqq N B$

Argument	Type and kind ($* 1$)	Attribut e	Content
IND	Integer type	Input/ou tput	Input: $I N D=0$ indicates that the equation will be solved starting with elimination from the beginning. IND $\neq 0$ indicates that it will be solved imediately by reuse of the LU-decomposition components obtained previously. For this case, A and MAX aust hold the content of the previous call. Output: 0 indicates normal termination of calculation. 30000 indicates that no calculation has been done because the restrictions on the argument were not observed. K indicates that the equation was decided as singular and elimination terminated at step K.

*1 A, X, and H are assumed to be double precision real types (complex type and double precision complex type) for LEQBDH(X,Y).

EPS is changed to a double precision real type for LEQBDW/Y.
(3) Example

A program for solving an equation with 1000 unknowns ($N=1000$), total band width 7 ($\mathrm{NB}=7$), and left band width 3 ($L B=3$) is shown below:
C. TEST FOR LEQBDV

DIMENSION $A(10,1000), \operatorname{MAX}(1000), X(1000), W(1000)$
$N=1000$
$\mathrm{NB}=7$
$L B=3$
$K A=10$
$E P S=1.0 E-6$
$N X=1$
$C=1$.
DO $10 \mathrm{I}=1, \mathrm{~N}$
$A(1, I)=C$
$A(2, I)=-C$
$A(3, I)=0$
$A(4, I)=0$
$A(5, I)=C$
$A(6, I)=0$.
$10 \mathrm{~A}(7, I)=-C$
DO $20 \mathrm{~L}=1,2$
I ND $=\mathrm{L}-1$
DO $11 \mathrm{I}=1$, N
$11 X(I)=0.0$

```
            X(2) =-C*C
            X(N-2)=C*C
            X(N-3)=C*C
            CALL CLOCKM(KO)
            CALL LEQBDV(A,KA,N,NB,LB,MB,X,N,NX,MAX,EPS,W,IND)
            CALL CLOCKM(K1)
            KO=K1-KO
            AM=0.0
            DO 12 I=1,N
            AA=ABS (X(I)-C)
            IF(AA.LE.AM) GO TO 12
            AM=AA
            MM=I
1 2 ~ C O N T I N U E ~
WRITE(6,600) IND,KO,AM,MM,MB
600 FORMAT(//10X,'ILL =',I6,5X,'TIME =',IG,5X,'ERR =
                    1 ',1PE10.2, 5X,*'IMAX =',I6,5X,'MB =',I6/)
20 CONTINUE
            STOP
            END
```

(4) Notes

1. This routine has the facilities of simultaneous processing of multiple right-hand columns and reuse of LU -decomposition components. Therefore, it can work as both a linear equation routine and an inverse matrix routine. Especially, the reuse of LU-decomposed components is important. It almost eliminates the need for calculation of inverse matrices.
2. Because rows are interchanged for pivoting, if necessary, the original number of columns of the coefficient matrix generally increases. Therefore, KA must be prepared to meet the condition MB SKA.

Because $M B=N B+L B-1$ even in the worst case, it is safe to take $K A=N B+L B-1$.
3. If there is a large difference between the size of the coefficients of the equations, it is desirable to normalize the coefficient matrix beforehand so that the maximum absolute value of the coefficient of each equation becomes the order of 1 .
4. The recommended standard value of EPS is about $a \times 10^{-6}\left(a \times 10^{-16}\right)$ for LEQBDV/X (LEQBDH/Y) when the typical size of an element of the coefficient matrix is supposed to be a.
5. For a positive symmetric coefficient matrix, it is wiser to use special routines such as CHLBDV.
6. Argument IND is used for both input and output. So, do not use a constant as the actual argument for this.

LEQLSS/D/Q/C/B

(least squares solution and minimum norm solution of general system of linear equations by Householder transformation)

Least Square and Minimum Norm Solutions of General Simultaneous Linear Equations by Householder Transformation

Program m ed	Ichizo Ninomiya March, 1979
Format	Subroutine Language; PORTRAN Size; 94, 94, 94, 94 lines

(1) Outline

When matrix A with m rows n columns ($m \geq n \geq 1$) and n as rank and matrix B with m rows l columns are given,

Least squares solution $X=\left(A^{T} A\right)^{-1} A^{\top} B$ (n rows l columns) $\left(X=\left(\bar{A}^{T} A\right)^{-1} A^{-T} B\right.$ for complex number) of overdetermined system of linear equations $A X=B$ is calculated by A triangulation with Householder transformation. When the similar matrix A and matrix B with n rows k columns are given, minimum nora solution $X=A\left(A^{\top} A\right)^{-1} B$ (m rows k columns) ($X=\bar{A}\left(A^{\top} \bar{A}\right)^{-1} B$) for complex number) of underdetermined system of linear equations $A^{\top} X=B$ is calculated with a similar method.
(2) Directions

CALL LEQLSS/D/Q/C/B (A, KA, M, N, X, XX, RX, ES, R, Q, ISM, ILL)

Argument	Type and kind $*$	Attribut e	Content
A	Real type Two-dimens Zonal array	Input	Coefficient matrix. Triangulation is done by Householder transformation.

Argument	Type and kind *	Attribut e	Content		
KA	Integer type	Input	Value of the first subscript in array declaration of A. $K A \geqq M$		
M	Integer type	Input	Number of rows of A. $\mathrm{H} \geq \mathrm{N}$		
N	Integer type	Input	Number of columns of A. $N \geqq 1$		
X	Real type Two-dimens ional array	Input/Du tput	When right side matrix B is input to call this routine, solution matrix X is generated. Two-dimensional array with K rows NX columns.		
KX	Integer type	Input	Value of the first subscript in array declaration of $X . \quad K X \geq M$		
NX	Integer type	Input	Number of columns of X. Only triangulation of A is done if $N X \leq 0$.		
EPS	Real type	Input	The criterion constant ε for the rank degeneration of A. The rank is judged to be degenerated when the absolute value of the diagonal element is smaller than that of $\\|A\\| I \cdot \varepsilon$ in the process of triangulation, and the processing is interrupted. The minimum unit of the round-off error is set as a standard value if EPS $\leqq 0$.		
R	Real type One-dimens ional array	Output	One-dimensional array of size NX. The residual norm or the norm of each solution vector (each column of X) is generated.		
0	Real type one-dimens ional array	Hork area	One-dimensional array of size N .		

* All real types are assumed to be a double precision real type if the subroutine is for double precision.

A, X, and Q are assumed to be a (double precision) complex type if the subroutine is for the (double precision) complex number.

(3) Performance

In the current method to calculate the least squares solution (minimum norm solution), $A^{T} A$ is created from coefficient matrix $A\left(A^{T}\right)$ and system of linear equations with this as a coefficient is solved. Therefore, the condition of the equation deteriorates and it is difficult to obtain the solution with good accuracy.

On the other hand, the condition does not deteriorate in this routine because \boldsymbol{A} is transformed into upper triangular matrix $U=H A$ without creating $A^{T} A$ by Householder's orthogonal
transformation H. Therefore, the accuracy of the solution is excellent though it is a little inferior to the current method in the point of quantity of calculation.

The following table shows the result of the accuracy experiment of the numerical solution when A is the first N column of Hilbert matrix $\left(a_{i j}=1 /(i+j-1)\right)$ of the order M, and B is given so that all elements of the strict solution may become 1.

	Least squares solution		Minimum norm solution		
	$M=10$	$M=20$	$M=10$	$\quad N=20 \quad$	
:---					

LEQLSD	5 digits	8 digits	6 digits	4 Digits
Current method CHOLPD using	IND $=8$ interrupter d	IND =9 interrupter d	IND $=8$ interrupter d	IND =9 interrupt d

(4) Example

The following program is to calculate the least squares solution in the above experiment:

```
1 IMPLICIT REAL*8 (A-H,O-Z)
2
3
5
9 DO 10 J=1,N
10 A(I,J)=1.0D0/DFLOAT(I+J-1)
11 10 X(I)=A(I,J)+X(I)
13 WRITE(6,600) ICON,R,(X(I),I=1,N)
15 STOP
```

```
X(I)=0.ODO
```

X(I)=0.ODO
12 CALL LEQLSD(A,M,M,N,X,M,1,EPS,R,Q,ISW,ICON)
12 CALL LEQLSD(A,M,M,N,X,M,1,EPS,R,Q,ISW,ICON)
14 600 FORMAT(1H1,I10,D25.17/(1H,10X,D25.17))
14 600 FORMAT(1H1,I10,D25.17/(1H,10X,D25.17))

```
DIMENSION A(20,10),X(20),Q(10)
```

DIMENSION A(20,10),X(20),Q(10)
M=20
M=20
N=10
N=10
EPS=1.OD-17
EPS=1.OD-17
ISW=0
ISW=0
DO 10 I=1,M
DO 10 I=1,M
END

```
END
```

4
6
7
8
16
(5) Calculation method

Matrix M with m rows n columns ($m \geqq n \geqq 1$) and vector v of the order a are divided into two parts with $\boldsymbol{m}-\boldsymbol{n}$ rows and \boldsymbol{n} rows and written as follows:

$$
M=\binom{M_{1}}{M_{2}} \quad v=\binom{v_{1}}{v_{2}}
$$

The following explains the case when the right side is vector b.

1. Least squares solution

Norm \|rll 2 of residual $r=A x-b$ is minimized. Householder's orthogonal transformation matrix H is multiplied to the left of A :

$$
H A=\binom{U_{1}}{O_{2}}
$$

, where U_{1} is the right upper triangular matrix, and O_{2} is zero matrix.
It is sufficient to minimize $\|H r\|_{2}$ because $H r=H A x-H b$ and $\|H r\|_{2}=\|r\|_{2}$. Putting $H b=\binom{\tilde{b}_{1}}{\tilde{b}_{2}}$
. we have

$$
H r=\binom{U_{1} x-\tilde{b}_{1}}{-\tilde{b}_{2}}
$$

Therefore, the least squares solution is calculated as $x=U_{1}^{1} \tilde{b}_{1}$ by Back-substitution method of the upper triangular matrix and the folowing relation holds :
$\|r\|_{2}=\|H r\|_{2}=\left\|\dot{b}_{2}\right\|$

2. Minimum norm solution

Out of the infinitely many solutions of $A^{T} x=b$, the one with minimum $\|x\|_{2}$ is calculated. $(H A)^{\boldsymbol{T}} H x=b$ is obtained by the same conversion as that for the least squares solution. Putting $y=H x$, we obtain
$\left(U_{1}{ }^{T} O_{2}{ }^{T}\right) \quad\binom{y_{1}}{y_{2}}=b$
, that is, $U_{1}{ }^{\top} y_{1}=b$.
The minimum norm solution of this \boldsymbol{y} is calculated by forward substitution method of lower triangular matrix $U_{1}{ }^{T}$ and is given by $y=\binom{U_{1}^{T} b}{0_{2}}$
, where O_{2} is assumed to be zero vector of the order $m-n$. When we calculate x by $x=H^{\top} y$ from y, x is the minimum norm solution because of $\|x\|_{2}=\left\|H^{T} y\right\|_{2}=\|y\|_{2}$.
(6) Note

1. To solve system with identical A and different B many times, it is recommended to set $|I S W| \leq 1$ in the first call, and to set $|I S H| \geq 2$ in the subsequent calls with A and Q preserved, since in this way Householder transformation can be omitted.
2. When the rank of A is smaller than n, this subroutine cannot handle it . In such a case, it is better to use subroutine LSMNS/D based on the singular value decomposition.
(1987.06.23) (1987.08.07) (1987.08.11) (1987.08.21)

LEQLUS/D/Q/C/B/Z (Solution of linear equations by LU-decomposition method)

Solution of Linear Equations by LU-Decomposition Method

Programme ed by	Ichizo Ninomiya; April 1977
Format	Subroutine language; FORTRAN (assembler for LEQLUS/D only) Size; 293, 241, 74, 75, and 76 lines respectively

(1) Outline

A number of linear equations that share a coefficient matrix are solved by the LU-decomposition method involving a row exchange for pivoting. That is, a solution $X=A^{-1} B$ of matrix equation $A X=B$ is obtained.
(2) Directions

CALL LEQLUS/D/Q/C/B/Z (A, KA, N, X, XX, H, BET, MAX, ES, IND)

Argument	Type and Kind ($* 1)$	Attribute e	Content
A	Real type Two-dimens ional array	Input/ou tput	Specify a coefficient matrix. An LU-decomposition component of the coefficient matrix is determined and is overwritten, When this component is stored, it can be reused to eliminate the need for repeated LU-decomposition and thereby save computation time if an equation with the same coefficient needs to be solved at a later time (see the description of MAX and IND).
KA	Integer type	Input	Value of the first subscript in array declaration of $A . \quad$ KA $\geqq N$
N	Integer type	Input	Number of unknowns of the equation, that is, the number of rows in A. N $\geqq 2$
X	Real type Two-dimens ional array	Input/ou tput	Specify several right-hand side columns of the equation. After processing of this routine, solution vectors which correspond to individual columns are overwritten.
RX	Integer type	Input	Value of the first subscript in array declaration of $X . \quad K X \geqq N$

Argument	Type and Kind (*1)	Attribut e	Content
M	Integer type	Input	Number of right-hand side columns, that is, the number of columns of matrix $X . M \geq 0$ If $\mathrm{M}=0$, only LU -decomposition of the coefficient matrix is done but the equation is not solved. If $M=1$, a one-dimensional array is acceptable for the real argument of X .
DET	Real type	Input/ou tput	If $D E T \neq 0$, a coefficient determinant is output. If $D E T=0$, the value remains unchanged.
MAX	Integer type One-dimens ional array	Output	Information concerning the row exchange in LU-decomposition is entered using the name of one-dimensional array having the N number of elements . It is useful to store this information because it can be reused if an equation of the same coefficient needs to be solved later.
EPS	Real type	Input	Criterion constant for singularity of coefficient matrix. The calculation is interrupted because of singularity if the absolute value of a pivot element becomes smaller than this constant. EPS>0
IND	Integer type	Input/ou tput	As an input variable, IND=0 indicates that the equation should be solved by LU-decomposition, and IND $\neq 0$ indicates that the equation should be solved immediately by using the result of previous LU-decomposition. For this, A and MAX qust be retained the same as those when this subroutine was called previously. As an output variable, 0 indicates that calculation ends successfully, 30000 indicates that no calculation has been done because the restrictive conditions for the argument was violated, and a value K indicates that LU-decomposition was interrupted at the K-th stage of elimination by the singularity test.

*1 A, X, and DET each are a double precision real type (quadruple precision real type, complex type, double precision complex type, or quadruple precision complex type) for LEQLUD, LEQLUQ, leqluc, lealub, and leqluz.

EPS is a double precision real type (quadruple precision real type, real type, double precision real type, or quadruple precision real type) for LEQLUD, LEQLUQ, LEQLUC, LEQLUB,
and LEQLUZ.
(3) Performance

Because LEQLUS and LEQLUD are written with the assembler, they run fast and efficiently. Moreover, because double precision operation is partially used for LEQLUS, round-off errors are minimized and accuracy is improved accordingly.
(4) Notes

1. This routine has the functions of simultaneous processing of several right-hand-side columns, calculation of determinants, and reuse of LU-decomposition components. Therefore, it can also work as routines to solve linear equations and calculate determinants and inverse matrices. Especially, the function of reuse of LU-decomposition is most important. This function almost eliminates the need for calculation of inverse matrices.

If there is a substantial difference between the absolute values of coefficients in the equations, it is desirable to normalize the coefficient matrix in advance by MNORMS or MNORMD to secure precision.
3. If a typical absolute value of coefficient matrix elements is assumed to be α, $a \times 10^{-6}\left(a \times 10^{-16}, a \times 10^{-30}\right)$ is adequate for the standard value of EPS for LEQLUS, LEQLUD, or LEQLUQ.
4. When the coefficient matrix is a symmetric positive definite, it is wiser to use special routines CHOLFS and CHOLFD, etc.
5. Arguments DET and IND are used for both input and output. Therefore, do not use constants as real arguments for them.
(1987.06.19)(1987.08.07)

LEQLUV/W/X/Y (Solution of linear equations by LU-decomposition method-vector version-)

Solution of Linear Equations by LU-Decomposition Method -Vector Version-

Programm ed by	Ichizo Ninomiya; May 1986, December 1984
Format	Subroutine language; FORTRAN77 respectively

(1) Outline

A number of linear equations that share a coefficient matrix are solved by the LU-decomposition method involving row interchange for pivoting. That is, a solution $X=A^{-1} B$ of matrix equation $A X=B$ is determined. LEQLUV is for single precision, LEQLUW is for double precision, LEQLUX is for single precision complex numbers, and LEQLUY is for double precision complex numbers.
(2) Directions

CALL LEQLUV/W/X/Y (A, KA, N, X, KX, M, DET, LIST, EPS, H, IND)

Argument	Type and kind (*1)	Attribut e	Content
A	Real type Two-dimens ional array	Input/ou tput	A coefficient matrix is input. After processing by this routine, the LU-decomposition components of coefficient matrix are entered. These components are stored so that they can be used when it is later needed to solve equations with the same coefficients. This can eliminate the need for repeating LU -decomposition, thus saving computation time (see the descriptions of LIST and IND).
KA	Integer type	Input	Value of the first subscript in array declaration of A. KA \geqq N
N	Integer type	Input	Number of unknowns of equation, that is, the number of rows in $A . N \geqq 2$

Argument	Type and kind (*1)	Attribut e	Content
X	Real type two-dimens ional array	Input/ou tput	One or more right-hand side columns of equations are input. After processing by this routine, corresponding solution vectors are output.
KX	Integer type	Input	Value of the first subscript in array declaration of X. $K X \geq N$
M	Integer type	Input	Number of right-hand side columns, that is, the number of columns of matrix X . $u \geq 0$ When $M=0$, only LJ -decomposition of the coefficient matrix is performed. When $K=1$, the real argument for X can be a one-dimensional array.
DET	Real type	Input/ou tput	When a value other than 0 is input, the coefficient determinant is output. When 0 is input, it is retained as it is.
LIST	Integer type one-dimens ional array	Output	A one-dimensional array with N elements. Information concerning row interchange in LU-decomposition is kept in it. If this information is preserved, it can be reused when an equation having the same coefficients needs to be solved.
EPS	Real type	Input	Tolerance for test of singularity of coefficient matrix. If the absolute value of a pivot element becomes smaller than this constant, the matrix is decided as singular and calculation is interrupted. EPS>0

the facility of reuse of LU-decomposition is most important, eliminating the need for calculation of inverse matrix.
2. If a typical absolute value of coefficient matrix elements is assumed to be a, $a \times 10^{-6}\left(a \times 10^{-16}\right)$ is reasonable value of EPS for LEQLUV and LEQLUX (LEQLUF and LEQLUY).
3. When the coefficient matrix is symmetric positive definite, it is wiser to use special routines CHOLFV/W and MCHLFV/W etc.
4. Arguments DET and IND are used for both input and output. Therefore, do not use constants as actual arguments for them.
(1987.06.19) (1987.08.07)

LSMNS/D (Least Squares and Minimum Norm Solutions of General Simultaneous Linear Equations by Singular Value Decomposition)

Least Squares and Minimal Norm Solutions of General Simultaneous Linear Equations by Singular Value Decomposition

Programm ed by	Ichizo Ninomiya, March 1979
Format	Subroutine language: FORTRAN; size: 194,194 lines respectively

(1) Outline

LSHNS/D finds an $n \times l$ matrix X that minimizes

$$
\left\|A x_{i}-b_{i}\right\|_{2} \quad i=1,2, \cdots, l
$$

and

$$
\left\|x_{i}\right\|_{2} \quad i=1,2, \cdots, l
$$

if an $m \times n$ matrix A and an $m \times l$ matrix B are given. Where,

$$
B=\left[b_{1}, b_{2}, \cdots, b_{l}\right]
$$

and

$$
X=\left[x_{1}, x_{2}, \cdots, x_{l}\right]
$$

When this type of least square and minimal norm solutions are to be found, A is first
decomposed as

$$
A=U \Sigma V^{\top}
$$

by the singular value decomposition method, where U is an $m \times n$ matrix, and Σ and V are $n \times$ n matrices,

```
\(U^{T} U=V^{T} V=V V^{T}=I_{n}(n \times n\) unit matrix \()\)
\(\Sigma=\operatorname{diag}\left(q_{1}, q_{2}, \cdots, q_{n}\right)\)
```

$q_{1} \geqq q_{2} \geqq \cdots \cdots \geqq q_{n} \geqq 0$ are the singular value of A, that is, the positive square roots of eigenvalues of $A^{T} A$.

The solution X is then given by

$$
X=V \Sigma^{+} U^{\top} B
$$

Where,

```
\(\Sigma^{+}=\operatorname{diag}\left(\mathrm{q}^{+}, \mathrm{q}^{+}, \cdots, \mathrm{q}_{n}{ }^{+}\right)\)
\(q_{i}{ }^{+}=\left\{\begin{array}{ccc}1 / q_{i} & q_{i}>0 & i=1,2, \cdots, n \\ 0 & q_{i}=0 & i=1,2, \cdots, n\end{array}\right.\)
```

(2) Directions

CALL LSHNS/D (A, KA, M, N, B, KB, NB, Q, EPS, H, ILL)

Argument	Type and kind (*1)	Attribut e	Content		
A	Real type Two-dimens ional array	Input/ou tput	If a coefficient matrix is input, the orthogonal matrix V is output to the first N-th row of it. Array of max (M, N) rows and N columns.		
KA	Integer type	Input	Value of the first subscript in the array declaration of A. $K A \geqq \max (M, N)$		
M	Integer type	Input	Number of rows of A. $\quad n \geqq 1$		
N	Integer type	Input	Number of columns of A. $N \geqq 1$		
B	Real type Two-dimens ional array	Input/ou tput	If a right side matrix is input, the solution matrix X is output to the first N-th row of it. Array of max (M, N) rows and NB columns.		
KB	Integer type	Input	Value of the first subscript in the array declaration of B. $K B \geq \max \left({ }_{(1, N}, N\right)$		
NB	Integer type	Input	Number of columns of B. $N B \geqq 1$		
0	Real type One-dimens ional array	Output	The singular value of A is output in descending order. One-dimensional array of size N .		
EPS	Real type	Input	Constant ε used for convergence test and test for singular values. If a double diagonal matrix obtained by bilateral Householder transformation from A is denoted by J, $\\|J\\|_{\infty} \cdot \varepsilon+u$ is used as a threshold value for zero test of the non-diagonal element and singular values of A. If $E P S \leqq 0$, the rounding unit error u is used as ε.		

Argument	Type and kind (*1)	Attribute e	Content
W	Real type One-dimens iona array	Work area.	One-dimensional array of size N.
ILL	Integer type	Output	ILL=0: Normal termination. ILL=2000: Singular value decomposition does not converge in 30N iteration. ILL =30000: Input arguments violate the limits.

*1 For double precision subroutines, all real types are changed to double precision real types.

(3) Performance

The problem described on page 418 in the literature ${ }^{1)}$ are solved by LSHNS. In that problem, A is an 8×5 rank 3 matrix with singular values $\sqrt{1248}, 20, \sqrt{384}, 0,0$ and B is an 8×3 matrix. $E P S=10^{-6}$ is chosen and the transformation matrix V was overwritten on A. The precision of the singular value Q, transformation matrix V, and three least squares and minimal norm solutions was about six digits.
(4) Example of use

The program for the above test is as follows:

```
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
1 8
1 9
```

```
            DIMENSION A(8,5),B(8,3),Q(5),W(5),R(5)
```

 DIMENSION A(8,5),B(8,3),Q(5),W(5),R(5)
 M=8
 M=8
 N=5
 N=5
 KA=8
 KA=8
 KB=8
 KB=8
 NB=3
 NB=3
 EPS=1.E-6
 EPS=1.E-6
 R(1)=SQRT(1248.)
 R(1)=SQRT(1248.)
 R(2)=20.
 R(2)=20.
 R(3)=SQRT(384.)
 R(3)=SQRT(384.)
 R(4)=0.
 R(4)=0.
 R(5)=0.
 R(5)=0.
 READ(5,500) ((A (I,J),J=1,N),I=1,M)
 READ(5,500) ((A (I,J),J=1,N),I=1,M)
 500 FORMAT (5F4.0)
 500 FORMAT (5F4.0)
 READ(5,510) ((B (I,J),J=1,NB),I=1,M)
 READ(5,510) ((B (I,J),J=1,NB),I=1,M)
 510 FORMAT (3F4.0)
510 FORMAT (3F4.0)
WRITE(6,600) M,N,NB,((A (I,J),J=1,N),I=1,M)
WRITE(6,600) M,N,NB,((A (I,J),J=1,N),I=1,M)
*,((B(I,J),J=1,NB),I=1,M)
*,((B(I,J),J=1,NB),I=1,M)
600 FORMAT(1H1///10X,'M =',I2,2X,'N=',I2,2X,
600 FORMAT(1H1///10X,'M =',I2,2X,'N=',I2,2X,
*'NB',I2//8(10X,1P5E13.5/)/(10X,3E13.5))
*'NB',I2//8(10X,1P5E13.5/)/(10X,3E13.5))
CALL LSMNS(A,KA,M,N,B,KB,NB,Q,EPS,W,ICON)

```
    CALL LSMNS(A,KA,M,N,B,KB,NB,Q,EPS,W,ICON)
```

```
            WRITE(6,610) EPS,ICON,(Q(J),R(J),J=1,N),
            * ((A (I,J),J=1,N),I=1,N),((B (I,J),J=1,NB),I=1,N)
        610 FORMAT(//10X,'EPS =',1PE10.2,2X,'ICON =',I6// *5(10X,2E13.5/)/ 5(10X,5E13.5/)/(10X,3E13.5)) STOP END
```

(5) Remarks

1. The constant EPS used for the convergence criterion of singुular value decomposition and zero test of singular values must be selected carefully. If EPS that is too small as compared with the precision of A and B is given, unnecessarily precise computation will be executed, or a singular value that should be discarded as 0 may be assumed to be significant. Conversely, too large EPS may cause a small, but meaningful singular value to be discarded as zero.
2. If least squares and minimal norm solution is found only orce for the same coefficient matrix A, it is not wise from the standpoint of computation time to find a generalized inverse matrix A^{+}using GINVS/D except that A^{+}itself is required. By all means, the routine LSHNS/D should be used in this case.

References

1)G. H. Golub, C. Reinsch; "Singular Value Decomposition and Least Squares Solutions", Numer ische Mathematik, 14, pp. 403-420(1970).

PRCGFS/D and RECGFS/D (Solution of a linear system of equations with positive definite symmetric coefficient matrix by conjugate gradient method with preconditioning) Solution of a Linear System of Equations with Positive Definite Symmetric Coefficient Matrix by Conjugate Gradient Method with Preconditioning

Programm ed	Tsuyako Miyakoda and Tatsuo Torii; February 1982
Format	Subroutine language; FORTRAN Size; 85 and 86 lines respectively

(1) Outline

Each of these subroutines solves a linear system of equations $A x=b$ for x, where A is a positive definite symmetric dense matrix and x and b are vectors. To do this, it performs preprocessing to improve convergence conditions and then uses the conjugate gradient method.

It is useful to correct an approximate solution vector which is already known. RECGFS (RECGFD) is provided as an entry name used to perform calcuiation again by skipping preconditioning after PRCGFS (PRCGFD) is once called.
(2) Conditions

CALL PRCGFS/D (A, NA, N, B, X, OMEGA, EPS, NMAX, W, IDUMP)
CALL RECGFS/D (A, NA, N, B, X, OMEGA, EPS, NMAX, H, IDUMP)

Argument	Type and kind (*1)	Attribut e	Content
A	Real type Two-dimens ional array	Input	Coefficient matrix. This is not retained.
NA	Integer type	Input	Adjustable dimension of $A . N A \geqq N$
N	Integer type	Input	Number of unknowns of a system of equations.

Argument	Type and kind (*1)	Attribut e	Content		
B	Real type one-dimens ional array	Input	Right-side vector of the system. Size N		
X	Real type one-dimens ional array	Input/ou tput	Input: Approximate solution vector Output: Solution vector		
OLEGA	Real type	Input	Acceleration factor for convergence in iteration method. $1 \leqq 0 M E G A<2$. If a value outside the range is input, 1 is used for calculation.		
EPS	Real type	Input	Tolerance for convergence test. Convergence is assumed when the sum of squares of the residuals is smaller than EPS**2. If EPS is too small, however, $8 \cdot u \cdot\\|b\\|$ is used for it. u is the unit of rounding errors.		
NMAX	Integer type	Input	Maximum number of iterations. Theoretically, the value of NMAX is N at cost. If given NMAX is too large, it will be replaced by $3 \mathrm{~N} / 2$.		
W	Real type one-dimens ional array	Hork area	Size $N * 3$		

Argument	Type and kind (*1)	Attribut e	Content
I DUMP	Integer type	Input/ou tput	On entry, this argument has the following meanings: IDUMP $\leqq 0$: During calculation, no printing is done. IDUMP=1: During calculation, the norm of residuals and (p, Ap) in each iteration are printed. IDUMP ≥ 2 : The approximate solution, residuals, and A-orthogonal vectors in each iteration are printed. On return, this argument has the following meanings: IDUMP=0: Normal termination. IDUMP=NMAX: Convergence does not occur in NMAX iterations. IDUAP=30000: Input argument error.

*l For double precision subroutines, real types are all assumed to be double precision real types.
(3) Calculation method

Regular division is done as $A=M-N$, where M have the same characteristics as A with symmetric positive definite and permit easy calculation to determine the inverse matrix. He think the syṣtem preconditioned by using M as follows:

$$
M^{-1} A x=M^{-1} b
$$

Then, we obtain;

$$
\bar{A}=M^{-\frac{1}{2}} A M^{-\frac{1}{2}}, \bar{b}=M^{\frac{1}{2}} b, y=M^{\frac{1}{2}} x
$$

It is rewritten as

$$
\tilde{A} x=\bar{b}
$$

This is a positive definite system equivalent to the original system. We then apply an algorithm of the conjugate gradient method to this system.

Natrix M here is formed by the following method by (Nodera and Takahashi) ${ }^{1)}$:It is decomposed as follows:

$$
A=L_{0}+D+L D
$$

where
Lo: Lower triangular matrix (diagonal elements 0)
D: Diagonal matrix
We then multiply
$D^{-\frac{1}{2}}$
from both sides of A.

$$
A^{\prime}=D^{-\frac{1}{2}} A D^{-\frac{1}{2}}=L \dot{0}+I+K_{0}^{T}
$$

And, we put

$$
c=I+\omega L \dot{0}
$$

to obtain

$$
M^{-1}=\left(c c^{T}\right)^{-1}
$$

where, ω is an acceleration parameter of the SOR method, satisfying $0<\omega<2$.
(4) Example

```
00010 C MAIN FOR PRCGFS
00020 REAL*8 SU,A,X,B,W
00030 DIMENSION AA (100,100), B(100),A(100,100), XY(100),
00031
00040
00050
00060
00070
00080
00090
00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
```

```
    1 X(100)/W(500)
```

 1 X(100)/W(500)
 DIMENSION XO(100)
 DIMENSION XO(100)
 NR=5
 NR=5
 NW=6
 NW=6
 EPS=1.E-5
 EPS=1.E-5
 NA=100
 NA=100
 N=100
 N=100
 XX=1.0E8+1.
 XX=1.0E8+1.
 DO 1800 I=1,N
 DO 1800 I=1,N
 DO 1810 J=1,N
 DO 1810 J=1,N
 IJ=IABS (I-J)
 IJ=IABS (I-J)
 1810 A(I,J)=FLOAT(N-IJ)
1810 A(I,J)=FLOAT(N-IJ)
1800 CONTINUE
1800 CONTINUE
XI=12345678.0
XI=12345678.0
DO 7 I=1,N
DO 7 I=1,N
XO(I) =0.0
XO(I) =0.0
X(I)=4.*XI/1.E8-2.
X(I)=4.*XI/1.E8-2.
XI=AMOD(23.*XI,XX)
XI=AMOD(23.*XI,XX)
7 CONTINUE
7 CONTINUE
1100 FORMAT(F12.0)
1100 FORMAT(F12.0)
DO 2000 IK=1,N
DO 2000 IK=1,N
SU=0.
SU=0.
DO 2100 I=1,N
DO 2100 I=1,N
2100 SU=SU+A(IK,I)*X(I)

```
2100 SU=SU+A(IK,I)*X(I)
```

```
00270 2000 B(IK)=SU
00280
00290
00300
00310
00320
00330
00340
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590
```

```
    WRITE(NW,1205)N
```

 WRITE(NW,1205)N
    ```
1205 FORMAT(1H1,15H EXAMPLE 3-6 N=,I4)
```

1205 FORMAT(1H1,15H EXAMPLE 3-6 N=,I4)
IF(N.GE.10)GO TO 19
IF(N.GE.10)GO TO 19
DO 5 I=1,N
DO 5 I=1,N
5 WRITE(NW,200)(A(I,J),J=1,N)
5 WRITE(NW,200)(A(I,J),J=1,N)
19 CONTINUE
19 CONTINUE
WRITE(NW,203)(B(I),I=1,N)
WRITE(NW,203)(B(I),I=1,N)
203 FORMAT(2H B//(4D23.15))
203 FORMAT(2H B//(4D23.15))
200 FORMAT(2H A//(4D23.15))
200 FORMAT(2H A//(4D23.15))
DO 20 I=1,N
DO 20 I=1,N
XY(I)=B(I)
XY(I)=B(I)
DO 20 J=1,N
DO 20 J=1,N
20 AA (I,J)=A(I,J)
20 AA (I,J)=A(I,J)
IDUMP=1
IDUMP=1
OMEGA=1.00
OMEGA=1.00
CALL CLOCKM(JTIME1)
CALL CLOCKM(JTIME1)
NMAX=100
NMAX=100
CALL PRCGFS(AA,NA,N,XY,XO,OMEGA,EPS,NMAX,W,IDUMP)
CALL PRCGFS(AA,NA,N,XY,XO,OMEGA,EPS,NMAX,W,IDUMP)
CALL CLOCKM(JTIME2)
CALL CLOCKM(JTIME2)
JT=JTIME2-JTIME1
JT=JTIME2-JTIME1
WRITE(NW,300) IDUMP,JT
WRITE(NW,300) IDUMP,JT
DO 2200 I=1,N
DO 2200 I=1,N
RES=X(I)-XO(I)
RES=X(I)-XO(I)
WRITE(NW,303) I,X(I),XO(I),RES
WRITE(NW,303) I,X(I),XO(I),RES
2200 CONTINUE
2200 CONTINUE
303 .FORMAT(I5,2E15.6,E11.3)
303 .FORMAT(I5,2E15.6,E11.3)
300 FORMAT(7H IDUMP=,I5,3X,'TIME =',I5)
300 FORMAT(7H IDUMP=,I5,3X,'TIME =',I5)
302 FORMAT(2H X//(D23.15))
302 FORMAT(2H X//(D23.15))
STOP
STOP
END

```
        END
```

 EXAMPLE 3-6 \(\mathrm{N}=100\)
 IDUMP $=0 \quad 0 \quad$ TIME $=130$
$1-0.150617 \mathrm{E}+01-0.150611 \mathrm{E}+01-0.572 \mathrm{E}-04$
$2 \quad 0.135802 \mathrm{E}+01 \quad 0.135791 \mathrm{E}+01 \quad 0.116 \mathrm{E}-03$
$3-0.765456 E+00-0.765381 E+00-0.755 E-04$
$4-0.160547 E+01-0.160547 E+01-0.572 E-05$
$5-0.925886 E+00-0.925903 E+00 \quad 0.170 E-04$

Bibliography

1) T. Nodera and H. Takahasi; "Preconditioned Conjugate Gradient Algorithm for Solving Biharmonic

Equation ${ }^{\text {s }}$ 4th IMACS and International Symposium (1981)

PRCGSS/D/RECGSS/D

(Solution of a linear system of equations with sparse positive definite symmetric coefficient matrix by conjugate gradient method with preconditioning (compressed matrix storage mode)) Solution of a Linear System of Equations with Sparse Positive Definite Symmetric Coefficient Matrix by Conjugate Gradient Method with Preconditioning (Compressed Matrix Storage Mode)

| Programm
 ed by | Tsuyako Miyakoda; 1982 |
| :--- | :--- |
| Format | Subroutine language; FORTRAN Size; 192 and 193 lines respectively |

(1) Outline

Each of these subroutines solves the linear system of equations $A x=b$ where coefficient matrix A having a relatively small number of nonzero elements is positive definite symmetric. To do this, it performs preconditioning to improve convergence conditions and then uses the conjugate gradient method. This solution routine is used when only non-zero elements of coefficient matrices are stored by rows in a one-dimensional array by the compressed storage mode.

It is useful to correct an approximate solution vector which is already known. RECGSS (RECGSD) is provided as an entry name used to perform calculation again by skipping preconditioning after PRCGSS (PRCGSD) is once called.
(2) Directions

CALL PRCGSS/D (IJTAB, A, LA, B, N, X, EPS, OMG, IMAX, IH, K, ILL)
CALL RECGSS/D (IJTAB, A, LA, B, N, X, EPS, OMG, IMAX, IW, H, ILL)

| Argument | Type and
 kind (*1) | Attribut e | Content |
| :---: | :---: | :---: | :---: |
| IJTAB | Two bytes
 Integer
 type
 Two-dimens
 ional
 array | Input | The rows and columns numbers of non-zero elements are input to $\operatorname{IJTAB}(1, K)$ and $\operatorname{IJTAB}(2, K)$ respectively.
 Suppose $A(K)=a_{i j}$, for instance, we set:
 $\operatorname{IJTAB}(1, K)=i$ and $\operatorname{IJTAB}(2, K)=j$.
 The size is $2 * \mathrm{LA}$.
 Output data in arrays are rearranged in ascending order in the values of $\boldsymbol{i}, \boldsymbol{j}$. |
| A | Real type one-dimens
 ional
 array | Input | The size is 2*LA. Only non-zero elements of the coefficient matrix are stored by row in an array of length LA appearing first. They are rearranged simultaneously with IJTAB. The non-zero elements of the preconditioned matrix are stored in the array of size LA appearing last. |
| LA | Integer
 type | Input | Number of non-zero elements of the coefficient matrix. $L A \geqq N$ |
| B | Real type
 one-dimens
 ional
 array | Input | The right-side vector of a system of equations. Size N |
| N | Integer type | Input | Number of unknowns of a system of equations. N $\mathrm{N} \geq 3$ |
| X | Real type one-dimens ional array | Input/ou
 tput | Input; Approximate solution vector with size N. (Zero vector at first)
 Output; Solution vector. |

| Argument | Type and
 kind (*1) | Attribut
 e | Content | | |
|---|---|---|---|---|---|
| EPS | Real type | Input/ou
 tput | Tolerance for convergence test. When the sum of squares of the residuals is smaller than EPS**2, it is assumed that convergence has occurred.
 If EPS is too small, however, $8 \cdot u \cdot\\|b\\|$ is used instead. u is the unit of rounding errors. |
| ORG | Real type | Input | Acceleration factor for convergence in iteration method. $1 \leqq 0 M G<2$. If a value outside the range is input as $0 M G$, $0 M G=1$ is used for calculation. |
| IMAX | Integer type | Input/ou
 tput | Input: Maximum number of iterations. Theoretically, it is N at most. If the given IMAX is too large, however, it is replaced by $3 \cdot N / 2$.
 Output: Actual number of iterations. |
| IW | Integer
 type
 one-dimens
 ional
 array | Horking
 storage | The size is $2 * N$. |
| H | Real type one-dimens
 ional
 array | Horking
 storage | The size is $\mathrm{N} * 3$. |
| ILL | Integer
 type | Output | ILL=0: Normal termination.
 ILL=IMAX: Convergence does not occur in IMAX iterations. ILL=25000: IJTAB error.
 ILL=30000: Input argument error. |

*1 For double precision subroutines, real types are all assumed to be double precision real types.
(3) Example

```
C ... TEST OF PRCGSS ...
    DIMENSION A(40),B(6),X(6),IW(2,6)
    INTEGER*2 IJTAB(2,20)
    REAL*4 W(18)
    DATA N/ 6/LA/20/
    DATA A(1),IJTAB(1,1),IJTAB(2,1)/10.0,1,1/
    DATA A(2),IJTAB(1,2),IJTAB(2,2)/-2.0,1,4/
    DATA A(3),IJTAB(1,3),IJTAB(2,3)/-1.0,1,5/
    DATA A(4),IJTAB(1,4),IJTAB(2,4)/-1.0,1,6/
    DATA A(5),IJTAB(1,5),IJTAB (2,5)/12.0,2,2/
    DATA A(6),IJTAB(1,6),IJTAB (2,6)/-3.0,2,3/
    DATA A(7),IJTAB(1,7),IJTAB(2,7)/-1.0,2,4/
    DATA A(8),IJTAB (1,8),IJTAB (2,8)/-2.0, 2,6/
    DATA A(9),IJTAB(1,9),IJTAB(2,9)/-3.0,3,2/
    DATA A(10),IJTAB(1,10),IJTAB(2,10)/15.0,3,3/
    DATA A(11),IJTAB(1,11),IJTAB(2,11)/-2.0,4,1/
    DATA A(12),IJTAB(1,12),IJTAB(2,12)/-1.0,4,2/
    DATA A(13),IJTAB(1,13),IJTAB(2,13)/20.0,4,4/
    DATA A(14),IJTAB(1,14),IJTAB(2,14)/-5.0,4,5/
    DATA A(15),IJTAB(1,15),IJTAB(2,15)/-1.0,5,1/
    DATA A(16),IJTAB(1,16),IJTAB(2,16)/-5.0,5,4/
    DATA. A(17),IJTAB(1,17),IJTAB(2,17)/1,0,5,5/
    DATA A(18),IJTAB(1,18),IJTAB(2,18)/-1.0,6,1/
    DATA A(19),IJTAB(1,19),IJTAB(2,19)/-2.0,6,2/
    DATA A(20),IJTAB(1,20),IJTAB(2,20)/6.0,6,6/
    DATA (B (I),I=1,6)/10.,-5.,28.5,37.5,-10.0,10./
    WRITE(6,630) (I,A(I),IJTAB(1,I),IJTAB(2,I),I=1,LA)
630 FORMAT(I5,F10.3,2I3)
    ILL=0
    IMAX=100
    OMG=1.2
    EPS=1.E-4
    DO 100 I=1,N
100 X(I)=1.0
    CALL PRCGSS(IJTAB,A,LA,B,N,X,EPS,OMG,IMAX,IW,W,ILL)
    WRITE(6,610) ILL,IMAX,N,OMG
610 FORMAT(1H,'ILL,IMAX,N,OMG=',3I6,F10.3)
    WRITE(6,620)(X(I),I=1,N)
620 FORMAT(1HO,3E15.6)
    STOP
    END
```

<Output result>

| 1 | 10.000 | 1 | 1 |
| ---: | ---: | ---: | ---: |
| 2 | -2.000 | 1 | 4 |
| 3 | -1.000 | 1 | 5 |
| 4 | -1.000 | 1 | 6 |
| 5 | 12.000 | 2 | 2 |
| 6 | -3.000 | 2 | 3 |
| 7 | -1.000 | 2 | 4 |
| 8 | -2.000 | 2 | 6 |
| 9 | -3.000 | 3 | 2 |
| 10 | 15.000 | 3 | 3 |
| 11 | -2.000 | 4 | 1 |
| 12 | -1.000 | 4 | 2 |
| 13 | 20.000 | 4 | 4 |
| 14 | -5.000 | 4 | 5 |
| 15 | -1.000 | 5 | 1 |
| 16 | -5.000 | 5 | 4 |

| 17 | 1.000 | 55 | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 18 | -1.000 | 61 | | | |
| 19 | -2.000 | 62 | | | |
| 20 | 6.000 | 66 | | | |
| ILL, I | $X, N, O M G=$ | 0 | 7 | 6 | 1.200 |
| 0.9 | $998 \mathrm{E}+00$ | 0.500 | OE+00 | | $0.200000 \mathrm{E}+01$ |
| 0.1 | 000E+01 | -0.400 | OE+01 | | $0.2000 C 0 E+01$ |

(4) Calculation method

See the calculation method for subroutines PRCGFS and PRCGFD which use the conjugate gradient method with the preconditioning.
(5) Notes

If the approximate solution vector is known as argument X, input it. Otherwise, input the zero vector.

Call RECGSS or RECGSD to restart the iterative calculation after PRCGSS or PRCGSD is once called. In this case, do not change the contents of arguments IJTAB, A, L, IW, and W. Also, call RECGSS or RECGSD to determine solutions when only the right-side vector B is changed.

Bibliography

1) Tsuyako Miyakoda; "Consideration on solution of linear equations, and reduction of iterations and quantity of calculation-conjugate gradient method" Osaka University computer center news, Vol. 12. No. 2, pp. 55-69 (1982)
(1987.06. 19) (1987.08.08) (1987.08.21)

Solution of Symmetric Positive Definite Tridiagonal Equations

| Programm
 ed by | Ichizo Ninomiya, April 1977 |
| :--- | :--- |
| Format | Subroutine language: FORTRAN; size: 29, 29, 45, and 46 lines
 respectively |

(1) Outline

TRDSPS/D or TDSPCS/D solves simultaneous linear equations with a symmetric positive definite tridiagonal matrix as a coefficient matrix, using Cholesky decomposition method that does not use square roots.

TRDSPS/D is used if $C(N)=0$, and TDSPCS/D handles cyclic type tridiagonal equations, that is, if $C(N) \neq 0$. Both routines process multiple right side columns simultaneously, calculate determinants, and can reuse Cholesky decomposition components.
(2) Directions

CALL TRDSPS/D (B, C, N, X, KX, M, DET, EPS, IND)
CALL TDSPCS/D (B, C, D, N, X, KX, H, DET, EPS, IND)

| Argument | Type and
 kind (*l) | Attribut
 e | Content |
| :--- | :--- | :--- | :--- |
| B | Real type
 One-dimens
 ional
 array | Input/ou
 tput | If coefficient matrix diagonal elements are input, Cholesky
 decomposition diagonal elements are output. |
| C | Real type
 One-dimens
 ional
 array | Input/ou
 tput | If coefficient matrix sub-diagonal elements are input,
 Cholesky decomposition sub-diagonal elements are output. The
 numbering of sub-diagonal elements is as shown in the figure. |
| D | Real type
 One-dimens
 ional
 array | Output | The Cholesky decomposition elements of a coefficient matrix
 are output. |
| N | Integer
 type | Input | Order of equation. It is also the number of elements in the
 arrays B, C, and $D . \quad$ N $\geqq 3$ |

| Argument | Type and kind (*1) | Attribut
 e | Content |
| :---: | :---: | :---: | :---: |
| X | Real type
 Two-dimens
 ional
 array | Input/ou tput | If M right side columns are input in the form a matrix X, the solution vectors are output in the corresponding places. |
| KX | Integer type | Input | Value of the first subscript in the array declaration of X. $K X \geqq N$ |
| M | Integer
 type | Input | Number of columns in X. If $M=0$, only Cholesky decomposition of a coefficient matrix is executed.. |
| DET | Real type | Input/ou tput | If $D E T \neq 0$ is input, the value of coefficient matrix determinant is output.
 If $D E T=0$ is input, $D E T=0$ is output. |
| EPS | Real type | Input | Constant for determining the non-positivity of coefficient matrix. If the value of a pivot element is smaller than this constant, the input matrix is decided to be non positive definite, and the calculation is interrupted. EPS>0 |
| IND | Integer
 type | Input/ou tput | This argument has the following meaning as an input.
 IND=0: Solve an equation by newly executing Cholesky decomposition.
 $I N D \neq 0$: Solve an equation, reusing the Cholesky decomposition elements previously calculated, and stored in B, C, and D.
 This argument has the following meaning as an output.
 IND=0: Calculation terminated normally.
 IND $=30000$: Limits on input arguments are violated.
 IND=I: Calculation is interrupted at the I-th stage of non positivity. |

1* For double precision subroutines, all real types are changed to double precision real types.
(3) Performance

Generally, computation time is only proportional to the order of equation. If the same problem is solved with a general simultaneous linear equation routine (LEQLUS, CHOLPS, GAUELS, etc.), it takes very long time because computation time becomes proportional to the cubic power of the order of equations.
$\left[\begin{array}{cccccccc}B_{1} & C_{1} & 0 & \vdots & \vdots & \vdots & 0 & C_{n} \\ C_{1} & B_{2} & C_{2} & \vdots & \vdots & \vdots & 0 & 0 \\ 0 & C_{2} & B_{3} & \vdots & \vdots & \vdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & & & \vdots & \vdots \\ \vdots & \vdots & \vdots & & \vdots & & \vdots & \vdots \\ \vdots & \vdots & \vdots & & & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \vdots & \vdots & \vdots & B_{n-1} & C_{n-1} \\ C_{n} & 0 & 0 & \vdots & \vdots & \vdots & C_{n-1} & B_{n}\end{array}\right]$

(4) Remarks

1. TRIDGS/D is prepared for tridiagonal equations where coefficients are not symmetric positive definite.
2. When the same equation is to be repeatedly solved with the right side column changed, the calculation time can be saved by using the facility for reusing the Cholesky decomposition components of this routine.
(1987.06.17)

Solution of Tridiagonal Equations

| Programo
 ed by | Ichizo Ninomiya, April 1977 |
| :--- | :--- |
| Format | Subroutine language: FORTRAN; size: 39 and 40 lines respectively |

(1) Outline

TRIDGS/D solves a tridiagonal equation or a system of linear equations with a tridiagonal matrix as a coefficient matrix, using the Gauss' elimination accompanied by row interchange for pivot selection.

$$
\left[\begin{array}{cccccccc}
B_{1} & C_{1} & 0 & 0 & \cdots & 0 & 0 & 0 \\
A_{1} & B_{2} & C_{2} & 0 & \cdots & 0 & 0 & 0 \\
0 & A_{2} & B_{3} & C_{3} & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & i & \cdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & B_{n-2} & C_{n-2} & 0 \\
0 & 0 & 0 & 0 & \cdots & A_{n-2} & B_{n-1} & C_{n-1} \\
0 & 0 & 0 & 0 & \cdots & 0 & A_{n-1} & B_{n}
\end{array}\right]\left[\begin{array}{c}
X_{1} \\
X_{2} \\
X_{3} \\
\vdots \\
X_{n-2} \\
X_{n-1} \\
X_{n}
\end{array}\right]=\left[\begin{array}{c}
D_{1} \\
D_{2} \\
D_{3} \\
\vdots \\
D_{n-2} \\
D_{n-1} \\
D_{n}
\end{array}\right]
$$

(2) Directions

CALL TRIDGS/D (A, B, C, D, N, EPS, ILL)

| Argument | Type and
 kind ($* 1)$ | Attribut
 e | Content |
| :--- | :--- | :--- | :--- |
| A | Real type
 One-dimens
 ional
 array | Input | Input N-1 lower diagonal elements of a coefficient matrix in
 the order of the upper left to the lower right. Destroyed. |
| B | Real type
 One-dimens
 ional
 array | Input | Input N diagonal elements of a coefficient matrix in the
 order of the upper left to the lower right. Destroyed. |
| C | Real type
 One-dimens
 ional
 array | Input | Input N-1 upper diagonal elements of a coefficient matrix in
 the order of the upper left to the lower right. Destroyed. |

| Argument | Type and
 kind (*1) | Attribut
 e | Content |
| :--- | :--- | :--- | :--- |
| D | Real type
 One-dimens
 ional
 array | Input/ou
 tput | If the right side column of the equation is input, the
 solution vector calculated by this rout ine is output. |
| N | Integer
 type | Input | Order of equation. N $\geqq 3$ |
| EPS | Real type | Input | Criterion constant for singularity. If the absolute value of
 a pivot element is smaller than this constant, the equation
 is decided to be singular and the calculation is interrupted.
 Stored. EPS |
| ILL | Integer
 type | Output | ILL=0: Normal termination.
 ILL=30000: When limits on N and EPS are violated.
 If an equation is decided to be singular, its pivot element
 number is output. |

1* For double precision subroutines, all real types are changed to be double precision real types.
(3) Performance

Because precision depends on problems, nothing can be said generally. Computation time is only proportional to the order of equation. If the same problem is solved using a general simultaneous linear equation subroutine (LEQLUS, CHOLFS, GAUELS, etc.), it takes very long time because the computation time is proportional to the cubic power of the order of equations.
(4) Remarks

1. Tridiagonal equations can be solved even with a general simultaneous equation routine.

However, it is reasonable to use this routine from the standpoint of computation time.
2. If the typical absolute value of elements in a coefficient matrix is α, $a \times 10^{-6}\left(a \times 10^{-16}\right)$ is adequate for the standard value of EPS for TRIDGS (TRIDGD).
3. It is more advantageous for a symmetric positive definite tridiagonal equation to use the special-purpose routines TRDSPS and TRDSPD or TDSPCS and TDSPCD.
(1987.06.17)
12.9
3. Matrix inversion

GINVS/D (Generalized inverse matrix by singular value decomposition)

Generalized Inverses (Pseudo-inverses) by Singular Value Decomposition

| Making | Ichizo Ninomiya; March 1979 |
| :--- | :--- |
| Form | Subroutine language; FORTRAN, \quad Size; 30 lines each |

(1) Outline

Matrix X with n rows m columns which satisfies the following relations is called the generalized inverse to matrix A with m rows n columns.

$$
\begin{aligned}
& A X A=A \\
& X A X=X \\
& (A X)^{T}=A X \\
& (X A)^{T}=X A
\end{aligned}
$$

For a given A, such X is determined uniquely. This X is denoted by A^{+}. Suppose that singular value decomposition

$$
A=U \Sigma V^{T}
$$

of A is given, where U is a matrix with m rows and n columns, Σ and V each are a matrix with n rows and n columns, and the following relation holds:

```
\(U^{T} U=V^{T} V=V V^{T}=I_{n}\) (n-dimensional unit matrix)
\(\Sigma=\operatorname{diag}\left(q_{1}, q_{2}, \cdots, q_{n}\right)\)
\(q_{1} \geqq q_{2} \geqq \cdots \geqq q_{n} \geqq 0\)
```

and $q_{i, i=1,2, \cdots, n}$ are singular values of A ($p o s i t i v e ~ s q u a r e ~ r o o t ~ o f ~ e i g e n v a l u e ~ o f ~(~ A ~ A) . ~$
Then, A^{+}is given by:

$$
A^{+}=\sqrt{ } \Sigma^{+} U^{T}
$$

Where,

$$
\Sigma^{+}=\operatorname{diag}\left(\mathrm{q}_{1}^{+}, \mathrm{q}_{2}^{+}, \cdots,{q_{n}}^{+}\right)
$$

and

$$
q_{i}^{+}=\left\{\begin{array}{cc}
1 / q_{i} & q_{i}>0 \\
0 & q_{i}=0
\end{array}\right.
$$

is assumed to be satisfied.
The purpose of this subroutine is to determine A^{+}by singular value decomposition when A is given.
(2) Directions

CALL GINVS/D (A, KA, M, N, Q, V, KV, EPS, H, ILL)

| Argument | Type and
 kind (*1) | Attribut
 e | Content |
| :---: | :---: | :---: | :---: |
| A | Real type
 Two-dimens
 ional
 array | Input/ou
 tput | When A is input, transposed matrix $\left(A^{+}\right)^{T}$ of the generalized inverse matrix is generated. |
| KA | Integer
 type | Input | Value of the first subscript in array declaration of $A K A \geqq M$ |
| \cdots | Integer
 type | Input | Number of rows in AM $\geqq 1$ |
| N | Integer type | Input | Number of columns in $A N \geq 1$ |
| 0 | Real type
 One-dimens
 ional
 array | Output | Singular values of A are generated in descending order. One-dimensional array of size. |
| V | Real type
 Two-dimens
 ional
 array | Output | Orthogonal transformation matrix V for singular value decomposition is generated. Two-dimensional array with N rows and N columns. |
| KV | Integer type | Input | Value of the first subscript in array declaration of VKV \geqq N |

$* 1$ For double precision subroutines, all real types should be changed to double precision real types.
(3) Performance

The following is described on page 418 of bibliography ${ }^{1)}$: For a problem having matrix B with 8 rows and 3 columns at the right-hand side and using matrix A of rank 3 having 8 rows and 5 columns and singular values $\sqrt{1248}, 20, \sqrt{384}, 0,0$ as a coefficient, A^{+}is first determined by GINVS, and $A^{+} B$ is then used to calculate the least squares minimal norm solution. When $E P S=10^{-6}$, the accuracy for singular value Q, transformation matrix V, general matrix A^{+}, and solution vector $A^{+} B$ was about six decimal digits.
(4) Example

A program to examine the above description is shown below.

```
    DIMENSION A (8,5),B(8,3),V(5,5),Q(5),W(8),R(5)
    M=8
            N=5
            NB=3
            KA=8
            KV=5
            EPS=1.E-6
            R(1)=SQRT(1248.)
            R(2)=20.
            R(3)=SQRT(384.)
            R(4)=0.
            R(5)=0.
            READ (5,500) ((A (I,J),J=1,N),I=1,M)
                500 FORMAT(5F4.0)
            READ (5,510) ( (B (I,J),J=1,NB),I=1,M)
510 FORMAT(3F4.0)
            WRITE(6,600) M,N,NB,((A (I,J),J=1,N),I=1,M)
            *,((B(I,J),J=1,NB),I=1,M)
600 FORMAT(1H1///10X,'M =',I2,2X,'N=',I2,2X,'NB=',
            *I2//8(10X,1P5E13.5/)/(10X,3E13.5))
                CALL GINVS(A,KA,M,N,Q,V,KV,EPS,W,ICON)
            DO 30 J=1/NB
            DO 10 I=1,M
        10W(I)=B(I,J)
            DO 30 I=1,N
            S=0.
            DO 20. K=1,M
        20 S=A(K,I)*W(K)+S
    30 B(I,J)=S
        WRITE(6,610) EPS,ICON,(Q(J),R(J),J=1,N)
            *,((V (I,J),J=1,N),I=1,N),((A(I,J),I=1,M),J=1,N)
            *,((B (I,J),J=1r,NB),I=1,N)
                610 FORMAT(//10X,'EPS =',1PE10.2,2X,'ICON =',I6//
        *5(10X,2E13.5/)/5(10X,5E13.5/)/5(10X,8E13.5/)
        */(10X,3E13.5))
            STOP
            END
```

(5) Notes

1. The constant EPS used for the convergence test of singular value decomposition and the 0 test of singular values must be specified carefully. If the EPS is too small for the accuracy of data A, unnecessarily and wastefully precise calculation may be done and a singular value which should normally be discarded as 0 may be taken for a significant value. On the contrary, if the EPS is too large, a singular value which is small but significant may be discarded as 0 .
2. If the least squares minimal norm solution is calculated only once for a given coefficient. matrix A, it is not wise to use this routine GINVS or GINVD to determine A^{+}except when A^{+} itself is required. This is because the routine requires large quantity of calculation. LSWNS or LSMND should be used for this case.

Bibliography

1) G. H. Golub, C. Reinsch; "Singular Value Decomposition and Least Squares Solutions", Numer ische Mathematik, 14, pp. 403-420 (1970).
(1987. 06. 22)

Inversion of Hatrices

| Programm
 ed by | Ichizo Ninomiya, April 1977 |
| :--- | :--- |
| Format. | Subroutine language: FORTRAN; size: $96,97,96,95,96$, and 96 lines
 respectively |

(1) Outline

MINVS/D/Q/C/B/Z generates an inverse matrix of a given matrix in place of the given matrix, using the LU-decomposition method. The rows are interchanged if necessary for pivot selection.
(2) Directions

CALL MINVS/D/Q/C/B/Z (A, KA, N, EPS, ILL)

| Argument | Type and kind (*1) | Attribut e | Content |
| :---: | :---: | :---: | :---: |
| A | Real type
 Two-dimens
 ional
 array | Input/ou tput | If a matrix is input, its inverse matrix is output. |
| KA | Integer type | Input | Value of the first subscript in the array-A declaration. $K A \geqq N$ |
| N | integer type | Input | Order of A. $2 \leqq N \$ 1000$ |
| EPS | Real type | Input | Criterion constant for matrix singularity. If the absolute value of a pivot element is smaller than this constant, the input matrix is decided to be singular, and the calculation is interrupted. EPS>0 |
| ILL | Integer type | Output | ILL=0: Normal termination.
 ILL=30000: Limits on KA, N, and EPS are violated.
 The number of the pivot element whose absolute value is smaller than EPS. |

*1 For MINVD (MINVQ, MINVC, MINVB, MINVZ), A is a double precision real type (quadruple
precision real type, complex type, double precision complex type, and quadruple precision complex type).

For MINVD (MINVQ, MINVC, MINVB, MINVZ), EPS is a double precision real type (quadruple precision real type, real type, double precision real type, and quadruple precision real type).
(3) Calculation method

1. The permutation matrix P corresponding to row interchanges accompanying to pivoting is applied to A and then $P A$ is decomposed into a lower unit triangular matrix L and an upper triangular matrix. $\quad P A=L J$
2. Generates L^{-1} in place of L.
3. Generates U^{-1} in place of U.
4. Generates $A^{-1}=U^{-1} L^{-1} P$ in place of A.

In case of MINVS, all the necessary inner sum computation are done by partial double precision arithmetic operation.
(4) Remarks

1. If the absolute values of matrix elements differs significantly, it is desirable to normalize the matrix in advance by ANORMS^{2} and MNORMD to insure precision in the result. For the required post-processing, see the explanation of MNORNS.
2. If the typical value of matrix elements is $a, a \times 10^{-6}\left(a \times 10^{-16}, a \times 10^{-30}\right)$ is adequate as the standard value of EPS for KINVS and (MINVD, MINVQ).
3. It is very disadvantageous from the standpoint of computation time and precision to calculate the inverse matrix of A for the calculation of matrix product of the form of $A^{-1} B$. By all means, the simultaneous linear equation routines LEQLUS and LEQLUD should be used.
4. When the inverse matrix of a symmetric positive definite matrix is to be found, it is wise to use the special-purpose routines MINVSP and MINYDP.
(1987.06. 17) (1987. 08. 07)

Inversion of Symmetric Positive Definite Matrices

| Programma
 ed by | Ichizo Ninomiya, April 1977 |
| :--- | :--- |
| Format | Subroutine language: FORTRAN; size: 41, 41, and 41 lines respectively |

(1) Outline

MINVSP/MINVDP/MINVQP generates the inverse matrix of a symmetric positive definite matrix A in place of the input matrix using the Cholesky decomposition method.
(2) Directions

CALL MINVSP/MINVDP/MINVQP (A, KA, N, EPS, ILL)

| Argument | Type and kind (*1) | Attribut
 e | Content |
| :---: | :---: | :---: | :---: |
| A | Real type
 Two-dimens
 ional
 array | Input/ou
 tput | If a symmetric positive definite matrix is input, its inverse matrix is output. This argument processes only the upper right half including the diagonal lines because of symmetry. The lower left half is preserved. |
| KA | Integer
 type | Input | Value of the first subscript in the array-A declaration. $K A \geq N$ |
| N | Integer type | Input | Order of A. $\mathrm{N} \geqq 2$ |
| EPS | Real type | Input | Constant for determining the positivity of matrix A. If the value of a pivot element is smaller than this constant, the input matrix is decided to be non positive definite, and the calculation is interrupted. EPS>0 |
| ILL | Integer type | Output | ILL=0: Normal termination.
 ILL=30000: Limits on KA, N, and EPS are violated. The number of the pivot element whose absolute value is smaller than EPS |

*1 For MINVDP (MINVQP), all real types are changed to double (quadruple) precision real types.
(3) Calculation method

1. Generates the Cholesky decomposition element U of A, that is, the upper triangular matrix U such that $A=U^{T} U$ in the upper right triangular part of A.
2. Generates the inverse matrix U^{\prime} of U, that is, the upper triangular matrix V such that
$U V=I$ in place of U.
3. Generates the upper right half of the inverse matrix $A^{-1}=V V^{\top}$ of A in place of V. In case of MINUSP, execute all necessary inner sum calculations by partial double precision arithmetic operation.

(4) Remarks

1. If the typical absolute value of matrix elements is $a, a \times 10^{-6}\left(a \times 10^{-16}, a \times 10^{-30}\right)$ is adequate as the standard value of EPS for MINVSP, MINVDP, and MINSQP.
2. It is very disadvantageous from the standpoint of computation time and precision to calculate the inverse matrix of A for the calculation of matrix product of the form of $A^{-1} B$. By all means, the simultaneous linear equation routines CHOLFS and CHOLFD should be used.
(1987.06. 16)

MINVV/W/X/Y (Inversion of Matrix - Vector Version -)
Inversion of Matrix -Vector Version-

| Programme
 ed by | Ichizo Ninomiya and Yasuyo Hatano, March 1985
 Format

 Subroutine language: FORTRAN77; size: 112, 113, 111, and 113 lines
 respectively |
| :--- | :--- |

(1) Outline

MINVV/W/X/Y obtains an inverse matrix using the Gauss-Jordan elimination. It is for single precision (double precision, single precision complex type, or double precision complex type).
(2) Directions

CALL MINYV/H/X/Y (A, KA, N, ERS, LIST, H, IND)

| Argument | Type and
 Kind (*1) | Attribute | Content |
| :--- | :--- | :--- | :--- |
| A | Real type
 Two-dimens
 iona
 array | Input/ou
 put | The input matrix is processed with this routine, and its
 inverse is generated. |
| KA | Integer
 type | Input | Value of the first subscript in the array-A declaration.
 Integer
 type |
| Input | Order of A. N $\geqq 2$ | | |

| Argument | Type and kind (*1) | Attribut
 e | Content |
| :---: | :---: | :---: | :---: |
| LIST | Integer
 type
 one-dimens
 ional
 array | Hork
 area | One-dimensional array containing N elements. |
| W | Real type
 one-dimens
 ional
 array | Work
 area | One-dimensional array of size 2 N . |
| IND | Integer
 type | Output | The value 0 is assumed if computation terminates normally, and 30000 is assumed if computation is not executed at all because limits on the argument are exceeded.
 Value of K is assumed if computation is stopped at the K -th step because of singularity. |

$* 1$ For MINVW (X, Y), A and W are changed to double precision real types (complex type or double precision complex type).

For MINVF/Y, EPS is changed to a double precision real type.
(3) Calculation method

The Gauss-Jordan elimination accompanied by row exchange for partial pivoting is used.
(4) Note

1. If the typical absolute value of matrix elements is $a, a \times 10^{-6}\left(a \times 10^{-16}\right)$ is adequate as the standard value of EPS for MINVV ($\left.{ }^{(}\right)$).
(1987.06. 19) (1987.08.07)

4. Eigenvalue analysis

[Method of choice of eigenvalue analysis routines]
NUMPAC provides a variety of effective eigenvalue analysis routines that you can select depending on the type, characteristics, and structure of each target matrix. By carefully selecting them based on the guideline shown below, you can enjoy much of their superiority in all aspects of precision, speeds, and storage capacities. To make the following explanation simple, the name of each recommended routine is represented by the one for single precision. In addition to the routines below, the high-speed eigenvalue analysis package NICER is also available.

1. Non-symmetry:

HEQRVS
2. Symmetry
(1) Dense matrix
(a) To obtain all eigenvalues and eigenvectors:

HOQRVS
(b) To obtain all eigenvalues and all or part of eigenvectors: HQRIIS
(c) To obtain part of eigenvalues and eigenvectors: HOBSVS
(d) To obtain a limited part of eigenvalues and eigenvectors: JENNPS
(2) Band matrix
(a) To obtain all eigenvalues:

RHQRVS
(b) To obtain a limited part of eigenvalues and eigenvectors: JENNBS
3. General problems of symmetric matrices
(1) Dense matrix
(a) To obtain all eigenvalues and eigenvectors:

GIIQRVS
(b) To obtain all eigenvalues and part of eigenvectors: GHQRIS
(c) To obtain part of eigenvalues and eigenvectors:

GHBSUS
(2) Band matrix
(a) To obtain a limited part of eigenvalues and eigenvectors: GJENBS
4. Singular value decomposition: SVDS

CGHBSS/D/Q (Eigenvalue analysis of the type $A x=\lambda B x$ by Hoaseholder-bisection Method (Hermitian matrices))

Eigenvalue Analysis of the Type $A x=\lambda B x$ by Houscholder-Bisection Method (Hermitian Matrices)

| Programm
 ed by | Ichizo Ninomiya; December 1983 |
| :--- | :--- |
| Format | Subroutine language; FORTRAN, Size; 54, 55, and 55 lines respectively |

(1) Outline

When Hermitian symmetric matrix A and Hermitian symmetry positive definite matrix B are given, CGHBSS/D/Q obtains a specified number of eigenvalues and eigenvectors of an eigenvalue problem $A x=\lambda B x$ by Householder bisection method. CGHBSS/D/Q is a single (double, quadruple) precision subroutine.
(2) Directions

CALL CGHBSS/D/Q(A, B, KA, N, E, NE, V, NV, BPS, W, Z, ILL)

| Argument | Type and
 kind (*1) | Attribute
 e | Complex
 type
 Two-dimens
 Zonal
 array |
| :--- | :--- | :--- | :--- |
| Input | Complex
 type
 Two-dimens
 including the diagonal is input. After processing of this
 routine, \tilde{A} is generated (see the calculation method). The
 lower left half is preserved. | | |
| B Input | | The upper right half of the Hermitian symmetric positive
 definite matrix including the diagonal is input. After
 array | processing by this routine, Cholesky decomposition component
 U is generated (see the calculation method). The lower left
 half is preserved. |

| Argument | Type and kind ($* 1$) | Attribut
 e | Content | | |
|---|---|---|---|---|---|
| KA | Integer type | Input | Adjustable dimension of A, B, and V (value of the first subscript in array declaration) $K A \geqq N$ |
| N | Integer
 type | Input . | Order of A and BThis is also the number of rows of V. $N \geq 2$ |
| E | Real type
 Two-dimens
 ional
 array | Output | Eigenvalues are generated and arranged. In descending order if $N E>0$, and in ascending order if $N E<0$ |
| NE | Integer type | Input | The number of the eigenvalue to be obtained is specified by the absolute value. The largest (smallest) $\|N E\|$ eigenvalues are obtained if $N E>0(N E<0)$. $N E \neq 0$ |
| v. | Complex
 type
 Two-dimens
 ional
 array | Output | The eigenvector corresponding to eigenvalue E (I) is normalized in the meaning of $x^{*} B x=1$ and output in the column 1 . |
| NV | Integer type | Input | The number of eigenvectors to be obtained is specified by the absolute value. The eigenvectors corresponding to the first \|NV| eigenvalues in the order determined by NE are obtained. $0 \leqq\|N V\| \leqq\|N E\|$ |
| EPS | Real type | Input | Convergence criterion constant of bisection methodWhen the tridiagonal matrix generated from \tilde{A} is denoted by T, $\\|T\\| \cdot\|E P S\|$ is used for convergence test. Cholesky decomposition for B is omitted when EPS <0. EPS $\neq 0$ |
| H | Real type
 one-dimens
 ional
 array | Work area | One-dimensional array with the size of 3 N or more |

*1 For double or quadruple precision subroutines, all single precision types are changed to double or quadruple precision types.
(3) Calculation method

Positive definite matrix B is Cholesky-decomposed by an upper triangular matrix U as $B=U^{*} U$. When $\tilde{A}=\left(U^{*}\right)^{-1} A U^{1}$ is formed from A using U, the generalized eigenvalue problem $A x=\lambda B x$ becomes a standard eigenvalue problem $\tilde{A} \tilde{x}=\lambda \tilde{x}$. This problem is solved by Householder-bisection method and eigenvector x is determined by $x=U^{-1} \tilde{x}$.
(4) Notes

1. When all eigenvalues are to be determined, it is more advantageous to use subroutine CGHQRS/D/Q or CGHQIS/D/Q which uses Householder-QR method.
2. For repeated calculation with B fixed and with only A changed from time to time, it is better to reuse the Cholesky-decomposed components of B. Refer to the description of EPS in the argument table.

Bibliography

1) Yoshitaka Beppu and Ichizo Ninomiya; "Comparisons of Matrix Solutions for Standard Eigenvalue Problems, "Nagoya University Computer Center News, Vol.11, No. 3, and pp. 265-274 (1980)
(1987.08.07)

CGHQIS/D/Q (Eigenvalue Analysis of the Type $A x=\lambda B x$ by Householder-QR-Inverse Iteration Method (Hermitian Matrices))

Eigenvalue Analysis of the Type $A x=\lambda B x$ by Householder-QR-Inverse Iteration Method (Hermitian Matrices)

| Programme
 ed by | Ichizo Ninomiya, December 1983 |
| :--- | :--- |
| Format | Subroutine language: FORTRAN; size: 52.53, and 53 lines
 respectively. |

(1) Outline

CCHOIS/D/Q obtains all of the eigenvalues and a part of the eigenvectors of the eigenvalue problem $A x=\lambda B x$ using Householder-QR-inverse iteration method if a Hermitian matrix A and a Hermitian positive definite matrix B are given. It is for single (double or quadruple) precision.
(2) Directions

CALL CGHQIS/D/Q (A, B, KA, N, E, V, NV, BPS, M, Z, ILL)

| Argument | Type and
 kind (*1) | Attribut | Content |
| :--- | :--- | :--- | :--- |
| A | Complex
 type
 Two-dimens
 Zonal
 array | Input/ou | The upper right half containing the diagonal lines of a |
| Hermitian matrix is input. It is processed and converted to | | | |
| \tilde{A} in this routine. The lower left half is retained. | | | |

| Argument | Type and
 kind (*1) | Attribut
 e | Content | | |
|---|---|---|---|---|---|
| B | Complex
 type
 Two-dimens
 ional
 array | Input | The upper right half containing the diagonal of a Hermitian positive definite matrix is input. It is processed and converted to the Cholesky decomposition element U (see the calculation method). The lower left half is retained. |
| KA | Integer type | Input | Adjustable dimensions of A, B, and V (value of the first subscript in the array declaration). KA $\geqq N$ |
| N | Integer
 type | Input | Order of A and B. It also represents the number of rows of V. $N \geqq 2$ |
| E | Real type
 One-dimens
 ional
 array | Output | Eigenvalues are output in the order of size. If $N V \geq 0$, eigenvalues are arranged in descending order. If NK<0, eigenvalues are arranged in ascending order. |
| v | Complex
 type
 Two-dimens
 ional
 array | Output | Eigenvectors corresponding to the eigenvalue $\mathrm{E}(\mathrm{I})$ are output to the I-th column. They are normalized in the sense of $x^{*} B x=1$. |
| NV | Integer type | Input | \| NV | represents the number of eigenvectors to be obtained. If NV>O (NO<O), eigenvectors are numbered in algebraically descending (ascending) order from the maximum (minimum). $\|N V\| \leqq N$ |
| EPS | Real type | Input | Convergence criterion of $Q R$ method. If the tridiagonalized matrix is denoted by $T,\\|T\\| \cdot\|E P S\|$ is used for the criterion. If EPS<O, the Cholesky decomposition of B is omitted. EPS $\neq 0$ |

| Argument | Type and
 kind (*1) | Attribut
 e | Content |
| :---: | :---: | :---: | :---: |
| H | Real type one-dimens ional array | Hork area | One-dimensional array of size N. |
| 2 | Complex
 type
 One-dimens
 ional
 array | Work area | One-dimensional array of size 5N. , |
| ILL | $\begin{aligned} & \text { Integer } \\ & \text { type } \end{aligned}$ | Output | ILL=0: Normal termination.
 ILL=1: B is decided to be not positive definite.
 ILL=30000: The input argument exceeded the limit. |

1* For double (quadruple) precision subroutines, all single precision types are cahnged to double (quadruple) precision types.
(3) Calculation method

The Hermitian positive definite matrix B is Cholesky-decomposed to $B=U^{*} U$ with the upper triangular matrix U. If $\tilde{A}=\left(U^{*}\right)^{-1} A U^{-1}$ is generated from A using this U, the generalized eigenvalue problem. $A x=\lambda B x$ becomes the standard eigenvalue problem $\tilde{A} \tilde{x}=\lambda \tilde{x}$. If this problem is solved using Householder-QR-Inverse iteration method, the eigenvector \boldsymbol{x} is obtained with $x=U^{-1} \tilde{x}$.
(4) Notes

1. When up to about one-fourth of the entire eigenvalues is to be obtained, it is more advantageous to use the subroutine CGHBSS based on Householder bisection method.
2. When the calculation is to be repeated with B kept constant and only A changed, it is better to reuse the Cholesky decomposition elements of B. See the explanation for EPS in the list of arguments.

Bibliography

1) Yoshitaka Beppu and Ichizo Ninomiya: "Comparison of Matrix Solutions of Standard Eigenvalue Problems, ${ }^{\circ}$ Nagoya University Computer Center News, Vol. 11, No. ${ }^{\text {. }}$ pp. 265-274 (1980)
(1987.06. 22)

CGHQRS/D/Q (Eigenvalue Analysis of $A x=\lambda B x$ by Householder-QR Method (Hermitian Matrices))

Eigenvalue Analysis $A x=\lambda B x$ by Householder-QR Method (Hermitian Matrices)

| Programm
 ed by | Ichizo Ninomiya, December 1983 |
| :--- | :--- |
| Format | Subroutine language: FORTRAN; size: 53, 54, and 54 lines respectively |

(1) Dutline

CGHORS/D/Q obtains the entire eigenvalues and, if required, the entire eigenvectors of the eigenvalue problem $A x=\lambda B x$ if a Hermitian matrix A and a Hermitian positive definite matrix B are given. It converts A to $\tilde{A}=\left(U^{*}\right)^{-1} A U^{1}$ by executing Cholesky decomposition with $B=U^{*} U$, and solves the standard eigenvalue problem $\tilde{A} y=\lambda y$ using Householder-QR method. If eigenvectors are required, it converts the eigenvector y of \tilde{A} by $x=U^{-1} y$.
(2) Directions

> CALL CGHQRS/D/Q(A, B, KK, N, E, F, EPS, IND)

| Argument | Type and
 kind (*1) | Attribut e | Content |
| :---: | :---: | :---: | :---: |
| A | Complex
 type
 Two-dimens
 ional
 array | Input/ou tput | Only the upper right half of a Hermitian matrix is input. It is processed in this routine, and \tilde{A} is generated in the upper right half. If eigenvectors are obtained, they are entered in each column. The vectors are normalized in the sense of $x^{*} B x=1$. |
| B | Complex
 type
 Two-dimens
 ional
 array | Input/ou tput | Only the upper right half of a Hermitian positive definite matrix is input. It is processed in this routine, and the Cholesky decomposition element V of B is entered in the upper right half. The lower left half is retained. |
| KK | Integer
 type | Input | Value of the first subscript in the declaration of arrays A and $B: K K \geqq N$ |

| Argument | Type and
 kind (*1) | Attribut
 e | Content | |
|---|---|---|---|---|
| N | Integer
 type | Input | Order of arrays A and B. $N \geqq 2$ |
| E | Real type
 One-dimens
 ional
 array | Input | One-dimensional array containing N elements. Eigenvalues are arranged in algebraically descending order. |
| F | Complex
 type
 One-dimens
 ional
 array | Hork
 area | One-dimensional array containing N elements. |
| EPS | Real type | Input | \|EPS | is the convergence criterion of the $Q R$ method. It is also the positivity criterion for Cholesky decomposition of
 B. If this routine is called with EPS<O, the Cholesky decomposition elements of B are reused. EPS $\neq 0$ |
| IND | Integer
 type | Input/ou
 tput | This argument has has the following meaning as an input argument. IND=0: Only eigenvalues are calculated. $\operatorname{IND} \neq 0$: Eigenvectors are also calculated. This argument has the following meaning as an output argument. IND $=0$: Calculation is normally executed. IND $=1$: B is decided to be not positive definite. IND $=30000$: Limits on the input argument were exceeded. Because this argument is both input and output, constants must not be used. |

1* For double (quadruple) precision subroutines, all single precision types are changed to double (quadruple) precision types.
(3) Calculation method

The Hermitian positive definite matrix B is Cholesky-decomposed to $B=U^{*} U$ with the upper triangular matrix U. If $\tilde{A}=\left(U^{*}\right)^{-1} A U^{-1}$ is generated from A using this U, the generalized eigenvalue problem $A x=\lambda B x$ becomes the standard eigenvalue problem $\tilde{A} \tilde{x}=\lambda \tilde{x}$. This problem is solved using Householder $Q R$ method, and the eigenvector x is obtained with $x=U^{-1} \tilde{x}$.
(4) Notes

1. If only selected eigenvectors are to be obtained, it may of ten be advantageous to use Householder-QR-inverse iteration method (CGHQIS).
2. If calculation is iterated with B kept constant and only A changed, it is better to reuse the Cholesky decomposition elements of B. See the explanation for the argument EPS.
(1987. 06. 22) (1987. 08. 07)

CGKLZS/D/Q (Eigenvalue Analysis of the Type $A x=\lambda B x$ by LZ Method (Complex Matrices))

Eigenvalue Analysis of the Type $A x=\lambda B x$ by LZ Method(Complex Matrices)

| Programm
 ed by | Ichizo Ninomiya, July 1984 |
| :--- | :--- |
| Format | Subroutine language: PORTRAN; size: 256 and 256 lines respectively |

(1) Outline

CGKLZS/D/Q obtains all the eignevalues of the eigenvalue problem $A x=\lambda B x$ using the $L Z$ method for given complex matrices A and B, and obtains specified eigenvectors using the inverse iteration. It is for single (double or quadruple) precision.
(2) Directions

CALL CGKLZS/D/Q (A, B, KA, N, E, IE, V, NV, EPS, H, Z, ILL)

| Argument | Type and
 kind (*1) | Attribut e | Content |
| :---: | :---: | :---: | :---: |
| A | Complex
 type
 Two-dimens
 ional
 array | Input | Complex matrix A. It is processed with this routine, and transformed to \bar{A} (see the calculation method). |
| B | Complex
 type
 Two-dimens
 ional
 array | Input | Complex matrix B. It is processed with this routine, and transformed to \tilde{B} (see the calculation method). |
| KA | Integer
 type | Input | Adjustable dimensions of A, B, and V (value of the first subscript in the array declaration). $K A \geq N$ |

| Argument | Type and
 kind (*1) | Attribut
 e | Content | | | | |
|---|---|---|---|---|---|---|---|
| N | Integer type | Input | Order of A and B. It also represents the number of rows of V. $N \geqq 2$ |
| E | Complex
 type
 One-dimens
 ional
 array | Output | Eigenvalues are output in the order of absolute values. If $N V \geqq 0$, eigenvalues are arranged in descending order. If NK<O, eigenvalues are arranged in ascending order. |
| IE | Integer
 type
 one-dimens
 ional
 array | Output | The condition code of the I-th eigenvalue is input in IE(I). $I E=0$: Normal. $I E=1$: Eigenvalues do not exist.
 $I E=2$: Eigenvalues are indeterminate. |
| v | Complex
 type
 Two-dimens
 ional
 array | Output | An eigenvector to the eigenvalue $\mathrm{E}(\mathrm{I})$ is normalized to a length of 1 and placed to the I-th column. |
| NV | Integer type | Input | The number of eigenvectors to be obtained is represented by the absolute value, and how to arrange eigenvalues is represented by the sign. (See the item of E.) $\|0 \leqq\|N V\| \leqq\|N\|$ |
| EPS | Real type | Input | Convergence criterion of bisection method. $\max (\\|A\\|,\\|B\\|) *\|E P S\|$ is used as the criterion. |
| H | Complex
 type
 one-dimens
 ional
 array | Hork
 area | One-dimensional array of size $\mathrm{N} * \mathrm{~N}$. |

| Argument | Type and kind (*1) | Attribut e | Content |
| :---: | :---: | :---: | :---: |
| 2 | Complex
 type
 One-dimens
 ional
 array | Hork
 area | One-dimensional array of size N . |
| ILL | Integer
 type | Output | ILL=0: Normal termination.
 ILL=K: K:Number of abnormal eigenvalues.
 ILL=20000: LZ method does not result in convergence.
 ILL=30000: The input argument exceeded the limit. |

1* For double (quadruple) precision subroutines, all single precision types are changed to double (quadruple) precision types.
(3) Calculation method

1. The matrix A and B are transformed to upper Hessenberg matrix $\tilde{A}=L A M$ and $\tilde{B}=L B M$ respectively using the stabilized elementary row transformation L, and the stabilized elementary column transformation M.
2. All the eigenvalues of the eigenvalue problem $\tilde{A} y=\lambda \tilde{B} y$ are obtained using the $L Z$ method with origin shift, and the specified eigenvectors \boldsymbol{y} are obtained using the inverse iteration.
3. Eigenvectors are obtained by $x=M y$, and normalized to length 1 .
(4) Note
4. If A is Hermitian, and B is Hermitian positive definite, it is more advantageous to use CGHBSS, CGHQIS, and CGHQRS.

Bibliography

1) Kaufman L; ${ }^{\text {T }}$ The LZ Algorithms to Solve the Generalized Eigenvalue Problem", Stanford Computer Science Report PB-222099, p. 103 (1973)
(1987.08.07) (1988.04. 22)

CHEQIS/D/Q (Eigenvalue Analysis for Complex Matrices by $Q R$ and Inverse Iteration Method)

Eigenvalue Analysis for Complex Matrices by QR and Inverse Iteration Method

| Programm
 ed by | Ichizo Ninomiya, October 1983 |
| :--- | :--- |
| Format | Subroutine language: PORTRAN; size: 207 and 208 lines respectively |

(1) Outline

CHEQIS/D/Q transformed a complex matrix to an upper Hessenberg matrix using the stabilized elementary transformation, obtains all the eigenvalues using the $Q R$ method, and calculates the eigenvectors as many as requested using the inverse iteration method. It is a single (double or quadruple) precision subroutine.
(2) Directions

CALL CHEQIS/D/Q(A, KA, N, E, V, NV, EPS, IW, W, Z, ILL)

| Argument | Type and
 Kind (*1) | Attribut | Content |
| :--- | :--- | :--- | :--- |
| A | Complex
 type
 Two-dimens
 ional
 array | Input | Matrix whose eignevalue analysis is to be executed. It is
 processed with this routine, and transformed to an upper
 Hessenberg type. |
| KA | Integer
 type | Input | Adjustable dimensions of A and V (value of the first
 subscript in the array declaration). KA $\geqq N$ |
| N | Integer
 type | Input | Order of $A . \quad$ Number of rows of $V . \quad$ It also represents the
 size of E. N $\geqq 1$ |

| Argument | Type and
 kind (*1) | Attribut
 e | Content | | |
|---|---|---|---|---|---|
| E | Complex
 type
 One-dimens
 ional
 array | Output | Eigenvalues. The I-th eigenvalue is $\mathrm{E}(\mathrm{I})$. |
| v | Complex
 type
 Two-dimens
 ional
 array | Output | The I-th eigenvector is output to the I-th column of V. The length is normalized to 1. |
| NV | Integer
 type | Input | The number of eigenvectors is represented by the absolute value. If $N V \geq 0$, eigenvalues are arranged in the descending order of absolute values. If $N V<0$, eigenvalues are arranged in the ascending order of absolute values. Then, vectors to the first \|NV| eigenvalues are obtained. |
| EPS | Real type | Input | $\\|\mathrm{A}\\| \cdot \mathrm{EPS}$ is used as the convergence criterion of QR. EPS>0 |
| IW | Integer
 type
 one-dimens
 ional
 array | Hork
 area | One-dimensional array of size N . |
| H | Real type one-dimens ional array | Hork
 area | One-dimensional array of size 3 N . |

| Argument | Type and
 kind (*1) | Attribut e | Content |
| :---: | :---: | :---: | :---: |
| 2 | Complex
 type
 One-dimens
 ional
 array | Hork
 area | One-dimensional array of size N^{2}. |
| ILL | Integer
 type | Output | Condition code.
 IND=0: Normal.
 $I N D=1: N=1$ or the elements in A are all 0.
 IND=2: The QR method or the inverse iteration does not result in convergence.
 IND $=30000$: The input argument exceeded the limit. |

*1 For double precision subroutines, all real types are changed to double precision real types, and all complex types to double precision complex types. For quadruple precision subroutines, all real types are changed to quadruple precision real types, and all complex types to quadruple precision complex types.
(3) Calculation method

The complex matrix A is transformed to an upper Hessenberg matrix $H=S^{-1} A S$ using the stabilized elementary transformation S, that is, Gauss's elimination accompanied by row exchange.

All the eigenvalues of H are obtained using the $Q R$ method with origin shift.
A specified number of eigenvectors of H are obtained using the inverse iteration. These eigenvectors are placed in U Eigenvectors of A are calculated as $V=S U$ from U.
(4) Nótes

1. It is reasonable to process the Hermitian matrix with the special-purpose routine.
2. If an eigenvector is not to be obtained ($N V=0$), the area to V and Z is not used, and thus need not be prepared. Anything can be written for these arguments.

! $\because \quad \therefore \quad \vdots \quad \because \quad \vdots$

CHEQRS/D/Q (Eigenvalue Analysis for Complex Matrices by QR Method)

Eigenvalue Analysis for Complex Matrices by QR Method

| Program
 ed by | Ichizo Ninomi ya, October 1983 |
| :--- | :--- |
| Format | Subroutine language: FORTRAN; size: 191 and 192 lines respectively |

(1) Outline

CHEQIS/D/Q transforms a complex matrix to an upper Hessenterg matrix using the stabilized elementary transformation, obtains all the eigenvalues using the $Q R$ method, and, if required, calculates all the corresponding eigenvectors. This subroutine is for single (double or quadruple) precision.
(2) Directions

CALL CHEQRS/D/Q (A, KA, N, E, V, BPS, IN, IND)

| Argument | Type and kind (*1) | Attribut
 e | Content | | |
|---|---|---|---|---|---|
| E | Complex
 type
 One-dimens
 ional
 array | Output | Eigenvalue. The I-th eigenvalue is $\mathrm{E}(\mathrm{I})$. |
| V | Complex
 type
 Two-dimens
 ional
 array | Output | The 1-th eigenvector is output to the I-th column of V. The length is normalized to 1. |
| EPS | Real type | Input | $\\|A\\| \cdot E P S$ is used as the convergence criterion of QR. EPS>0 |
| IW | Integer
 type
 one-dimens
 ional
 array | Work area | One-dimensional array of size N . |
| IND | Integer
 type | Input/ou
 tput | Input: Whether to calculate eigenvectors and how to array eigenvalues are specified.
 $I N D=0$: Eigenvectors are not calculated.
 IND $\neq 0$: Eigenvectors are calculated. |

| Argument | Type and
 kind (*1) | Attribut
 e | Content |
| :---: | :---: | :---: | :---: |
| | | | IND $\geqq 0$: Eigenvalues are arranged in the descending order of absolute values.
 IND<O: Eigenvalues are arranged in the ascending order of absolute values.
 Output: Condition code.
 IND=0: Normal.
 IND=1: $N=1$ or the elements of A is all 0 .
 IND=2: The QR method does not result in convergence.
 IND=30000: The input argument exceeded the limit. |

1* For double (quadruple) precision subroutines, all single precision types are changed to double (quadruple) precision types.

(3) Calculation method

The real matrix A is transformed to an upper Hessenberg matrix $H=S^{-1} A S$ using stabilized elementary transformation S, that is, Gauss' elimination accompanied by row exchange. H is converted into an upper triangular matrix using QR method with origin shift. Eigenvalues are given as the diagonal elements. Eigenvectors are obtained from the eigenvectors of the upper triangular matrix using the inverse transformation of the stabilized elementary and $Q R$ transformations.

(4) Notes

1. It is reasonable to process the Hermitian matrix with the special-purpose routine.
2. If eigenvector are not to be obtained ($I N D=0$), the area for V is not used, and thus need not be prepared. Anything can be written for it.
(1987.06. 19) (1987.08.07)

CHOBSS/D/Q (Eigenvalue Analysis for Hermitian Matrix by Householder-Bisection Method)

Eigenvalue Analysis for Hermitian Matrices by Householder-Bisection Method

| Programa
 ed by | Ichizo Ninomiya, October 1983 |
| :--- | :--- |
| Format | Subroutine language: FORTRAN; size: 188 and 189 lines respectively |

(1) Outline

CHOBSS/D/Q tridiagonalizes a Hermitian matrix using Householder's reflexion transformation, obtains the eigenvalues of the tridiagonalized matrix using the bisection method based on Sturm sequence, and calculates the eigenvectors using the inverse iteration. It is for single (double or quadruple) precision.
(2) Directions

CALL CHOBSS/D/Q(A, KA, N, E, NE, V, NV, EPS, H, Z, ILL)

| Argument | Type and kind ($* 1$) | Attribut
 e | Content |
| :---: | :---: | :---: | :---: |
| A | Complex
 type
 Two-dimens
 ional
 array | Input | The upper right half containing the diagonal of a Hermitian watrix is input. It is processed with this routine. The left lower half is retained. |
| KA | Integer
 type | Input | Adjustable dimensions of A and V (value of the first subscript in the array declaration). $K A \geqq N$ |
| N | Integer
 type | Input | Order of A. It also represents the number of rows of V. N |

| Argument | Type and
 kind (*1) | Attribut
 e | Content | |
|---|---|---|---|---|
| E | Real type
 One-dimens
 ional
 array | Output | Eigenvalues are output in the order of size. If NE>O. eigenvalues are arranged in descending order. If NE<O, eigenvalues are arranged in ascending order. |
| NE | Integer type | Input | The number of eigenvalues to be obtained is represented by the absolute value. If $N E>0$ ($N E<O$), eigenvalues are numbered in algebraically descending (ascending) order from the maximum (minimum). NE $=0$ |
| v | Complex
 type
 Two-dimens
 ional
 array | Output | Eigenvectors to the eigenvalue $\mathrm{E}(\mathrm{I})$ are normalized to length
 1, and placed to the I-th column. |
| NV | Integer
 type | Input | The number of eigenvectors to be obtained is represented by the absolute value. Eigenvalues are numbered from the end in the order defined by NE. $0 \leqq\|N V\| \leqq\|N E\|$ |
| EPS | Real type | Input | Convergence criterion of bisection method. If the tridiagonalized matrix is denoted by T, \\|T\|•EPS is used as the criterion. EPS>0 |
| W | Real type
 One-dimens
 ional
 array | Work
 area | One-dimensional array of size 3 N . |
| 2 | Complex
 type
 One-dimens
 ional
 array | Hork
 area | One-dimensional array of size 5 N . |

| Argument | Type and kind (*1) | Attribut
 e | Content |
| :---: | :---: | :---: | :---: |
| ILL | Integer type | Output | ILL=0: Normal termination.
 ILL=30000: The input argument exceeded the limit. |

1* For double precision subroutines, all real types are changed to double precision real types, and all complex types to double precision complex types. For quadruple precision subroutines, all real types are changed to quadruple precision real types, and all complex types to quadruple precision complex types.
(3) Calculation method

The matrix A is transformed to a tridiagonal matrix $T=H^{*} A H$ using the Householder

 transformation H.The eigenvalues of T are obtained by the bisection method based on Sturm sequence. They are numbered as many as specified from the end in a specified order. The eigenvectors corresponding to the eigenvalues specified as counted from the end are obtained using the inverse iteration. The matrix containing these eigenvectors in columns is denoted by U, then the eigenvector V of A can be obtained by $V=H U$.
(4) Note

When all the eigenvalues of a Hermitian matrix are to be obtained, it is better to use the routine CHOQRS/D based on the $Q R$ method than this routine. When all of the eigenvalues and all or part of the corresponding eigenvectors are to be obtained, it is more reasonable to use the routine CHORIS/D based on the QR-inverse iteration.
(1987.06. 22)

CHOQRS/D/Q (Eigenvalue Analysis for Hermitian Matrices by Householder-QR Method)

Eigenvalue Analysis for Hermitian Matrices by Householder-QR Method

| Programm
 ed by | Ichizo Ninomiya, October 1983
 $:$ |
| :--- | :--- |
| Format | Subroutine language: FORTRAN; size: 133, 134, and 134 lines
 respectively |

(1) Outline

CHOQRS/D/Q obtains all the eigenvalues and, if required, all the corresponding eigenvectors of an Hermitian matrix, using the Householder's tridiagonalization and QR method with origin shift.
(2) Directions

CALL CHOQRS/D/Q(A, KA, N, E, F, EPS, ILL)

| Argument | Type and kind ($* 1$) | Attribut
 e | Content |
| :---: | :---: | :---: | :---: |
| A | Complex
 type
 Two-dimens
 ional
 array | Input/ou
 tput | The upper right half containing the diagonal lines of a Hermitian matrix is input. Anything can be input in the lower left half. If eigenvectors are to be obtained, eigenvectors are output in A. That is, eigenvectors to the eigenvalues $\mathrm{E}(\mathrm{I})$ are normalized to length 1 , and is placed in the 1 -th column of A. |
| KA | Integer
 type | Input | Value of the first subscript in the array-A declaration. $K A \geqq N$ |
| N | Integer type | Input | Order of A . $\mathrm{N} \geqq 2$ |

| Argument | Type and
 kind (*1) | Attribut
 e | Content | | |
|---|---|---|---|---|---|
| E | Real type
 One-dimens
 ional
 array | Output | One-dimensional array containing N elements. Eigenvalues are arranged in algebraically descending order. |
| F | Complex
 type
 One-dimens
 ional
 array | Hork
 area | One-dimensional array containing N elements. |
| EPS | Real type | Input | Convergence criterion for $Q R$ method. If all the non-diagonal elements become smaller than $\\|A\\| \cdot E P S$ in magnitude, convergence is judged to have occurred. EPS>0 |
| ILL | Integer
 type | Input/ou
 tput | If ILL=0 is given, only eigenvalues are calculated. If $I L L \neq 0$ is given, both eigenvalues and eigenvectors are calculated. If calculation terminates normally, 0 is output. If limits on the input argument are exceeded, 3000 is output. Constants must not be used for the actual argument. |

*1 For double precision subroutines, all real types are changed to double precision real types, and all complex types are changed to double precision complex types. For quadruple precision subroutines, all real types are changed to quadruple precision real types, and all complex types are changed to quadruple precision complex types.
(3) Performance

As with real symmetric matrices, this routine is high in speed. It can be used without troubles even for the case of multiple or close eigenvalues.
(4) Notes

1. This routine is optimum when all eigenvalues (and corresponding eigenvectors) are to be obtained with a small storage requirement.
2. If only part of eigenvalues or eigenvectors is to be obtained, Householder-Givens' method (bisection method) is desirable. Subroutines that are currently registered are CHOBSS/D.
(1987.06. 22) (1987.08.07)

CHQRIS/D/Q (Eigenvalue Analysis of Hermitian Matrices by Householder-QR-Inverse Iteration Method)

Eigenvalue Analysis of Hermitian Matrices by Householder-QR-Inverse Iteration Method

| Programm
 ed by | Ichizo Ninomiya, October 1983 |
| :--- | :--- |
| Format | Subroutine language: FORTRAN; size: 188 and 189 lines respectively |

(1) Outline

CHQRIS/D/Q obtains all the eigenvalues of a Hermitian matrix using Householder-QR method, and calculates specified eigenvectors using the inverse iteration.
(2) Directions

CALL CHORIS/D/Q (A, KA, N, E, V, NV, EPS, M, Z, ILL)

| Argument | Type and kind (*1) | Attribut
 e | Content |
| :---: | :---: | :---: | :---: |
| A | Complex
 type
 Two-dimens
 ional
 array | Input | The upper right half containing the diagonal of a Hermitian matrix is input. It is processed with this routine. The lower left half is retained. |
| KA | Integer
 type | Input | Adjustable dimensions of A and V (value of the first subscript in the array declaration). KA $\geqq N$ |
| N | Integer
 type | Input | Order of A. It also represents the number of rows of V. $N \geqq 2$ |
| E | Real type
 One-dimens
 ional
 array | Output | All eigenvalues are output in the order of size. If $N V \geqq 0$, eigenvalues are arranged in descending order. If $N V<0$, eigenvalues are arranged in ascending order. |

| Argument | Type and
 kind (*1) | Attribut
 e | Content | | |
|---|---|---|---|---|---|
| V | Complex
 type
 Two-dimens
 ional
 array | Output | Eigenvectors to the eigenvalue $\mathrm{E}(\mathrm{I})$ are normalized to length 1, and placed to the I-th column. |
| NV | Integer
 type | Input | \|NV| represents the number of eigenvectors to be obtained. If NV>0 (NV<0), eigenvectors are numbered in algebraically descending (ascending) order from the maximum (minimum). $\|N V\| \leqq N$ |
| EPS | Real type | Input | Convergence criterion of $Q R$ method. If the tridiagonalized matrix is denoted by $\mathrm{T},\\|\mathrm{T}\\| \cdot \mathrm{EPS}$ is used as the criterion. EPS>0 |
| W | Real type
 One-dimens
 ional
 array | Hork
 area | One-dimensional array of size N . |
| 2 | Complex
 type
 One-dimens
 ional
 array | Hork area | One-dimensional array of size 5 N . |
| ILL | Integer type | Output | ILL=0: Normal termination.
 ILL=30000: The input argument exceeded the limit. |

*1 For double precision subroutines, all real types are changed to be double precision real types, and all complex types to double precision complex types. For quadruple precision subroutines, all real types are changed to quadruple precision real types, and all complex types to quadruple precision complex types.
(3) Calculation method

The Hermitian matrix A is transformed to a tridiagonal matrix $T=H^{*} A H$ using the Householder transformation H.

All the eigenvalues of \boldsymbol{T} are calculated using the QR method. A specified number of eigenvectors of T are obtained using the inverse iteration. They are gathered in the matrix U. The eigenvectors of A are calculated by $V=H U$.
(4) Notes

1. The routine is adequate when all the eigenvalues are obtained quickly, and all or part of the eigenvectors are obtained.
2. If up to about one-fourth of the eigenvalues is to be obtained, it is more advantageous to use CHOBSS/D based on Householder-bisection method.
(1987. 06. 22)

GHBSVS/D (Eigenvalue analysis of the type $A x=\lambda B x$ by Householder-bisection method)

Eigenvalue Analysis of the Type $A x=\lambda B x$ by Householder-Bisection Method

| Programm
 ed by | Ichizo Ninomiya; April 1981 | |
| :--- | :--- | :--- |
| | | |
| Format | Subroutine language; FORTRAN | Size; 230 lines each |

(1) Outline

When a real symmetric matrix A and a real symmetric positive definite matrix B are given, GHBSVS/D determines the specified number of eigenvalues and eigenvectors of eigenvalue problem $A x=\lambda B x$ by using the Householder-bisection method. GHBSVS(D) is for single (double) precision.
(2) Directions

CALL $\operatorname{cHBSVS} / D(A, B, K K, N, E, V, N V, E P S, W, I L L)$

| Argument | Type and kind ($* 1$) | Attribut e | Content |
| :---: | :---: | :---: | :---: |
| A | Real type
 Two-dimens
 ional
 array | Input | The upper right half of the real symmetric matrix including the diagonal is input. After processing by this routine, \tilde{A} is generated (see the calculation method). The lower left half is preserved. |
| B | Real type
 Two-dimens
 ional
 array | Input | The upper right upper of the real symmetry positive definite matrix including the diagonal is input. The matrix is processed by this routine to become Cholesky decomposition component U (see the calculation method). The lower left half is preserved. |
| KK | Integer
 type | Input | Adjustable dimensions of A, B, and V (value of the first subscript in array declaration) $K K \geqq N$ |

| Argument | Type and
 kind (*1) | Attribut
 e | Content | | |
|---|---|---|---|---|---|
| N | Integer
 type | Input | Order of A and BThis is also the number of rows of V. $N \geq 2$ |
| E | Real type
 Two-dimens
 ional
 array | Output | Eigenvalues are generated and arranged. In descending order if $N E>0$, and in ascending order if $N E<0$ |
| NE | Integer type | Input | The number of eigenvalues to be obtained is specified by the absolute value. The largest (smallest) \|NE| eigenvalues are obtained if $N E>0(N E<0)$. NE $\neq 0$ |
| v | Real type
 Two-dimens
 ional
 array | Output | The eigenvector corresponding to eigenvalue $\mathrm{E}(\mathrm{I})$ is normalized in the meaning of $x^{T} B x=1$ and output in the column I. |
| NV | Integer
 type | Input | The number of eigenvectors to be determined is specified by the absolute values. The eigenvectors corresponding to the first \|NV| eigenvalues in the order determined by NE are obtained. $0 \leqq\|N V\| \leqq\|N E\|$ |
| EPS | Real type | Input | Convergence criterion constant for bisection methodwhen the tridiagonal matrix generated from \tilde{A} is denoted by T, $\\|\mathrm{T}\\| \cdot \mid$ EPS \mid is used for convergence test. Cholesky decomposition for B is omitted if EPS <0. EPS $\neq 0$ |
| W | Real type one-dimens ional array | Work area | One-dimensional array with the size of 6 N or more |
| ILL | Integer type | Output | ILL $=0$: Normal end
 ILL = $1: \quad B$ is decided to be non-positive definite.
 $I L L=30000$: The input arguments violated the limit. |

*1 For double precision subroutines, all real types are changed to double precision real types.
(3) Calculation method

Positive definite matrix B is Cholesky-decomposed by an upper triangular matrix U as $B=U^{T} U$. When $\tilde{A}=U^{T} A U^{-1}$ is from A using U, the generalized eigenvalue problem $A x=\lambda B x$ becomes a standard eigenvalue problem $\tilde{A} \tilde{x}=\lambda \tilde{x}$. This problem is solved by Householder-bisection method and eigenvector x is determined by $x=U^{-1} \tilde{x}$.
(4) Notes

1. When all eigenvalues are to be determined, it is more advantageous to use subroutine CGHQRS/D/Q or CGHOIS/D/Q which uses Householder-QR method.
2. For repeated calculation with B fixed and with only A changed from time to time, it is better to reuse the Cholesky-decomposed components of B. Refer to the description of EPS in the argument table.

Bibliography

1) Yoshitaka Beppu and Ichizo Ninomiya; "Comparisons of Matrix Solutions for Standard Eigenvalue Problems, " Nagoya University Computer Center News, Vol.11, No. 3, and pp. 265-274 (1980)
(1987.08.10) (1988.04.04)

GHBSVV/W (Eigenvalue Analysis of the Type $A x=\lambda B x$ by Householder-Bisection Method: Vector Version)

Eigenvalue Analysis of the Type $A x=\lambda B x$ by Householder-Bisection Method : Vector Version

| Programm
 ed by | Ichizo Ninomiya, March 1988 |
| :--- | :--- |
| Pormat | Subroutine Language: FORTRAN; Size: 156 lines |

(1) Outline

GHBSVV/A obtains the specified number of eigenvalues and corresponding eigenvectors of the eigenvalue problem $A x=\lambda B x$ by the Householder-Bisection method when a real symmetric matrix A and a real symmetric positive definite matrix B are given. $G H B S W V(W)$ is for single (double) precision.
(2) Directions

CALL GHBSWV/W (A, B, KK, N, E, V, NV, EPS, W, ILL)

| Argument | Type and
 kind (*1) | Attribut e | Content |
| :---: | :---: | :---: | :---: |
| A | Real type
 Two-dimens
 ional
 array | Input | The upper right half containing the diagonal of a real symmetric matrix is input. This routine turns it into \tilde{A} (see "Calculation method"). The lower left half should be used as a work area. |
| B | Real type
 Two-dimens
 ional
 array | Input | The upper right half containing the diagonal of a real symmetric positive definite matrix is input. This routine decomposes it into Cholesky component U (see "Calculation method"). The lower left half is retained. |
| KK | Integer
 type | Input | Adjustable dimensions of A, B, and V (value of the first subscript in the array declaration). KK $\geqq N$ |

| Argument | Type and
 kind (*1) | Attribut
 e | Content | | |
|---|---|---|---|---|---|
| N | Integer type | Input | Order of A and B or the number of rows of V. $N \geqq 2$ |
| E | Real type
 Two-dimens
 ional
 array | Output | Eigenvalues are output in the order of size. If NE>O, they are arranged in decreasing order. If $N E<0$, they are arranged in increasing order. |
| NE | Integer type | Input | Represents the number of eigenvalues to be obtained by the absolute value. If $N B>0(N E<O)$, they are numbered from the maximum (minimum) in algebraically decreasing (increasing) order. $N E \neq 0$ |
| v | Real type
 Two-dimens
 ional
 array | Output | Eigenvectors to eigenvalues $\mathrm{E}(\mathrm{I})$ are normalized and placed to the $1-t h$ column in the sense of $x^{T} B x=1$. |
| NV | Integer
 type | Input | Represents the number of eigenvectors to be obtained by the absolute value. Eigenvalues are numbered from the end in the order def ined by NE. $0 \leqq\|N V\| \leqq\|N E\|$ |
| EPS | Real type | Input | Convergence criterion of bisection method. If the tridiagonalized matrix is denoted by $T,\\|T\\| \cdot\|E P S\|$ is used as the criterion. If EPS<O, the Cholesky decomposition of B is omitted. EPS $\neq 0$ |
| W | Real type
 one-dimens
 ional
 array | Work
 area | One-dimensional array of size 6 N . |
| ILL | Integer
 type | Output | ILL=0: Normal termination.
 ILL=1: B is decided to be not a positive definite.
 ILL $=30000$: Input argument exceeded the limit. |

*1 For double precision subroutines, all real types should be changed to double precision real types.
(3) Calculation method

This routine decomposes the symmetric positive definite matrix B into $B=U^{\top} U$ with an upper triangular matrix U by Cholesky decomposition method. If $\tilde{A}=U^{T} A U^{-1}$ is generated from A by using this U, the generalized eigenvalue problem $A x=\lambda B x$ turns into the standard eigenvalue problem $\tilde{A} \tilde{x}=\lambda \tilde{x}$. By solving this problem by the Householder-bisection method, the eigenvector x is obtained by $x=U^{-1} \tilde{x}$.
(4) Note

1. When all eigenvalues are to be obtained, it is more advantageous to use the subroutine GHQRVV/W or GHQRIV/W based on the Householder-QR method.
2. When calculation is to be repeated with only B kept constant and A changed, it is more advantageous to reuse the Cholesky decomposition elements of B. See the explanation for "EPS" in the argument list.

Bibliography

1) Yoshitaka Beppu and Ichizo Ninomiya; "Comparison of Matrix Methods for Standard Eigenvalue Problems", Nagoya University Computer Center News, Vol. 11, No. 3, pp. 265-274(1980).
(1987.08.10) (1988.04.08)

GHQRIS/D (Eigenvalue Analysis of the Type $A x=\lambda B x$ by Householder-QR-Inverse Method)

Eigenvalue Analysis of the Type $A x=\lambda B x$ by Householder-QR-Inverse Iteration Method

| Programm
 ed by | Ichizo Ninomiya, April 1981 |
| :--- | :--- |
| Format | Subroutine language: FORTRAN; size: 250 lines |

(1) Outline

GHORIS/D obtains all of the eigenvalues and a part of the corresponding eigenvectors of the eigenvalue problem $A x=\lambda B x$ using the Householder-QR-Inverse iteration method when a real symmetric matrix A and a real symmetric positive definite matrix B are given. It is for single (double) precision.
(2) Directions

CALL GHORIS/D (A, B, KK, N, E, V, NV, EPS, W, ILL)

| Argument | Type and
 kind (*1) | Attribut e | Content |
| :---: | :---: | :---: | :---: |
| A | Real type
 Two-dimens
 ional
 array | Input/ou tput | Only the upper right half containing the diagonal lines of a real symmetric matrix is input. It is processed with this routine, and converted to A (see "Calculation method"). The lower left half is retained. |
| B | Real type Two-dimens ional array | Input | Only the upper right half containing the diagonal lines of a real symmetric positive definite matrix need be input. It is processed with this routine, and converted to the Cholesky decomposition element U (see "Calculation method"). The left lower half is retained. |
| KK | Integer
 type | Input | Adjustable dimensions of A, B, and V (value of the first subscript in the array declaration). $K K \geqq N$ |

| Argument | Type and
 kind (*1) | Attribut
 e | Content | | |
|---|---|---|---|---|---|
| N | Integer
 type | Input | Order of A and B. It also represents the number of rows of V. $N \geq 2$ |
| E | Real type
 One-dimens
 ional
 array | Output | Eigenvalues are output in the order of size. If NV $\geqq 0$, eigenvalues are arranged in descending order. If $N K<0$, eigenvalues are arranged in ascending order. |
| V | Real type
 Two-dimens
 ional
 array | Output | Eigenvectors corresponding to the eigenvalue $\mathrm{E}(\mathrm{I})$ are output to the l-th column. They have been normalized in the meaning of $x^{\top} B x=1$. |
| NV | Integer ${ }^{\circ}$
 type | Input | \| NV | represents the number of eigenvectors to be obtained. If $N V>0$ ($N K<0$), eigenvectors are counted in algebraically descending (ascending) order from the maximum (minimum). $\|N V\| \leqq N$ |
| EPS | Real type | Input | Convergence criterion of $Q R$ method. If a tridiagonalized matrix is denoted by $T,\\|T\\| \cdot \mid$ EPS \mid is used as the criterion. IF EPS<O, Cholesky decomposition of B is omitted. EPS $\neq 0$ |
| W | Real type one-dimens
 ional
 array | Hork
 area | One-dimensional array of size 6 N . |
| ILL | Integer
 type | Output | ILL=0: Normal termination.
 ILL=1: B is decided to be not definite positive.
 ILL=30000: The input argument exceeded the limit. |

*1 For double precision subroutines, all real types should be changed to double precision real types.
(3) Calculation method

The symmetric positive definite matrix B is Cholesky-decomposed to $B=U^{T} U$ using the upper triangular matrix U. If $\bar{A}=U^{\top} A U^{1}$ is made from A by using this U, the generalized eigenvalue problem $A x=\lambda B x$ becomes the standard eigenvalue problem $\tilde{A} \tilde{x}=\lambda \tilde{x}$. By solving this problem using Householder-QR-inverse iteration method, the eigenvector \boldsymbol{x} is obtained with $x=U^{-1} \bar{x}$.
(4) Note

1. If up to about one-fourth of the entire eigenvalues is to be obtained, it is better to use the subroutine GHBSVS based on Householder bisection method.
2. If calculation is to be iterated with B kept constant and only A changed, it is desirable to reuse the Cholesky decomposition elements of B. See the explanation for EPS in the list of arguments.

Bibliography

1) Yoshitaka Beppu and Ichizo Ninomiya; "Comparison of Matrix Solutions of Standard Eigenvalue Problems, ${ }^{\text {² }}$ Nagoya University Computer Center News, Vol. 11, No. 3, pp. 265-274 (1980)
(1987.08.10) (1988.04.04)

GHQRIV/W (Eigenvalue Analysis of the Type $A x=\lambda B x$ by Householder-QR-Inverse Iteration Method: Vector Version)

Eigenvalue Analysis of the Type $A x=\lambda B x$ by Householder-QR-Inverse Iteration Method : Vector Version

| Programm
 ed by | Ichizo Ninomiya, March 1988 |
| :--- | :--- |
| Format | Subroutine Language: PORTRAN; Size: 153 lines |

(1) Outline

GHQRIV/W obtains all of eigenvalues and part of the corresponaing eigenvectors of the eigenvalue problem $A x=\lambda B x$ when a real symmetric matrix A and a real symmetric positive definite matrix B are given. GHQRIV(W) is for single (double) precision.
(2) Directions

CALL GHQRIV/H(A, B, KK, N, E, V, NV, EPS, W, ILL)

| Argument | Type and
 kind (*1) | Attribut
 e | Content |
| :---: | :---: | :---: | :---: |
| A | Real type
 Two-dimens
 ional
 array | Input/ou tput | The upper right half containing the diagonal of a real symmetric matrix is input. This routine turns it into \tilde{A} (see "Calculation Method"). The lower left half is used as a work area. |
| B | Real type
 Two-dimens
 ional
 array | Input | The upper right half containing the diagonal of a real symmetric positive definite matrix is input. This routine turns it into the Cholesky decomposition component U (see "Calculation method"). The left lower half is retained. |

| Argument | Type and
 kind (*1) | Attribut
 e | Content | | |
|---|---|---|---|---|---|
| KK | Integer type | Input | Adjustable dimensions of A, B, and V (value of the first subscript in declaration of array). $\mathrm{KK} \geqq \mathrm{N}$ |
| N | Integer type | Input | Order of A and B or the number of rows of V. $N \geqq 2$ |
| E | Real type
 One-dimens
 ional
 array | Output | Eigenvalues are output in the order of size. If $N V \geqq 0$, they are arranged in decreasing order. If $N K<0$, they are arranged in increasing order. |
| V | Real type Two-dimens ional array | Output | Eigenvectors to eigenvalues $\mathrm{E}(\mathrm{I})$ are output to the I -th column. They are normalized in the sense of $x^{\top} B x=1$. |
| NV | Integer type | Input | \| NV | represents the number of eigenvectors to be obtained. If $N V>0(N K<0)$, they are numbered in algebraically decreasing (increasing) order from the maximum (minimum). $\|N V\| \leqq N$ |
| EPS | Real type | Input | Convergence criterion of $Q R$ method. If the tridiagonalized matrix is denoted by T. $\\|T\\| \cdot \mid$ EPS \mid is used as the criterion. If EPS<O, Cholesky decomposition of B is omitted. EPS $\neq 0$ |
| W | Real type one-dimens ional array | $\begin{aligned} & \text { Hork } \\ & \text { area } \end{aligned}$ | One-dimensional array of size 6 N . |
| ILL | Integer type | Output | ILL=0: Normal termination.
 ILL=1: B is decided to be not a positive definite.
 ILL=30000: Input argument exceeded the limit. |

*1 For double precision subroutines, all real types should be changed to double precision real types.
(3) Calculation method

This routine decomposes the symmetric positive definite matrix B into $B=U^{T} U$ with an upper triangular matrix U by Cholesky decomposition. If $\bar{A}=U^{T} A U^{-1}$ is generated from A using U, a generalized eigenvalue problem $A x=\lambda B x$ is handled as a standard eigenvalue problem $\tilde{A} \tilde{x}=\lambda \tilde{x}$. By solving this problem with the Householder-QR-iteration method, the eigenvector x is obtained with $x=U^{-1} \tilde{x}$.
(4) Note

1. When up to one-fourth of all eigenvalues are to be obtained, it is more advantageous to use the subroutine GHBSVS/W based on the Householder bisection method.
2. When calculation is to be repeated with only B kept constant and A changed, the Cholesky decomposition elements of B should be reused. See the explanation for "EPS" in the argument list.

Bibliography

1) Yoshitaka Beppu and Ichizo Ninomiya; "Comparison of Matrix Methods for Standard Eigenvalue Problems," Nagoya University Computer Center News, Vol. 11, No. 3, pp. 265-274(1980)
(1987.08.10) (1988.04.08)

GHQRVS/D and GHQRUS/D (Eigenvalue Analysis $A x=\lambda \mathrm{Bx}$ by Householder-QR Method)

Eigenvalue Analysis $A x=\lambda B x$ by Householder-QR Method

| Programm
 ed by | Ichizo Ninomiya, April 1977 |
| :--- | :--- |
| Format | Subroutine language: FORTRAN; size: $60,60,60$, and 60 lines
 respectively |

(1) Outline

GHQRVS/D and GHQRUS/D obtain the entire eigenvalues and, if required, the entire eigenvectors of the eigenvalue problem $A x=\lambda B y$ if a real symmetric matrix A and a real symmetric positive def inite matrix B are given. It converts A to $\tilde{A}=U^{-T} A U^{-1}$ by Cholesky decomposition with $B=U^{T} U$, and solves the standard eigenvalue problem $\tilde{A} y=\lambda y$ using Householder QR method. If eigenvectors are required, the eigenvector y of \tilde{A} is converted as $x=U^{-1} y$.
(2) Directions

CALL GHRRVS/D (A, B, KK, N, E, F, EPS, IND)
CALL GHRRUS/D (A, B, KK, N, E, F, EPS, IND)

| Argument | Type and
 kind ($* 1$) | Attribut
 e | Content |
| :--- | :--- | :--- | :--- |
| A | Real type
 Two-dimens
 ional
 array | Input/ou
 tput | The entire real symmetric matrix (not the upper right half)
 is input. It is processed in this routine, and \tilde{A} is
 generated in the upper right half. If eigenvectors are
 obtained, they are input in each column. The vectors are
 normalized in the sense of $x^{T} B x=1$. |
| B | Real type
 Two-dimens
 ional
 array | Input/ou
 tput | Only the upper right half of a symnetric positive definite
 matrix is input. It is processed in this routine, and the
 upper right half contains the Cholesky decomposition element
 U of B. The lower left half is retained. |

| Argument | Type and
 kind (*1) | Attribut
 e | Content | |
|---|---|---|---|---|
| KK | Integer
 type | Input | Value of the first subscript in the declaration of arrays A and B. $K K \geq N$ |
| N | Integer
 type | Input | Order of arrays A and B. $N \geq 2$ |
| E | Real type
 One-dimens
 ional
 array | Output | One-dimensional array containing N elements. In GHRRVS/D, eigenvalues are arranged in algebraically descending order. In GHORUS/D, they are arranged in descending order of the absolute value. |
| F | Real type
 One-dimens
 ional
 array | Work area | One-dimensional array containing N elements. |
| EPS | Real type | Input | \| EPS | is the convergence criterion of the QR method. It is also the positivity criterion for the Cholesky decomposition of B. If this routine is called with EPS<O, it reuses the Cholesky decomposition elements of B. EPS $\neq 0$ |
| IND | Integer
 type | Input/ou
 tput | This argument has the following meaning as an input argument.
 IND=0: Only eigenvalues are calculated.
 IND $\neq 0$: Eigenvectors are also calculated.
 This argument has the following meaning as an output argument.
 IND=0: Calculation is normally executed.
 $I N D=1$: B is decided to be not a positive definite.
 IND=30000: Limits on the input argument are exceeded.
 Because this argument is both input and output, constants must not be used as an actual argument. |

*1 For double precision subroutines, all real types are changed to double precision real types.
(3) Calculation method

The symmetric positive definite matrix B is Cholesky-decomposed to $B=U^{T} U$ using an upper triangular matrix U. If $\bar{A}=U^{\top} A U^{1}$ is generated from A by using this U, the generalized eigenvalue problem $A x=\lambda B x$ becomes the standard eigenvalue problem $\bar{A} \tilde{x}=\lambda \tilde{x}$. By solving this problem using Householder-QR method, the eigenvector x is obtained with $x=U^{-1} \tilde{x}$
(4) Notes

1. If only selected eigenvectors are obtained, Householder-QR-inverse iteration (GHQRIS/D) may be advantageous.
2. If calculation is iterated with B kept constant and only A changed, it is better to reuse the Cholesky decomposition elements of B. See the explanation for EPS in the list of arguments.
(1987.08.10) (1988.04.04)

GHQRVV/W (Eigenvalue Analysis $A x=\lambda B x$ by Householder-QR Method: Vector Version)

Eigenvalue Analysis $A x=\lambda B x$ by Householder- $Q R$ Method: Vector Version

| Program
 ed by | Ichizo Ninomiya, March 1988 |
| :--- | :--- |
| Format | Subroutine language: FORTRAN; size: 155 lines |

(1) Outline

GHORVV/w obtains all of the eigenvalues and, as required, all of the corresponding eigenvectors of the eigenvalue problem $A x=\lambda B x$ when a real symmetric matrix A and a symmetric positive definite matrix B are given. It executes Cholesky decomposition with $B=U^{\top} U$, and solves the standard eigenvalue problem $\tilde{A} y=\lambda y$ using Householder-QR method by converting A to $\tilde{A}=U^{-T} A U^{-1}$. If eigenvectors are required, the eigenvector y of \tilde{A} is converted using $x=U^{-1} y$.
(2) Directions

CALL GHQRVV/H(A, B, KM, N, E, BPS, W, IND)

*1 For single precision subroutines, all real types should be changed to double precision real types.
(3) Calculation method

The symmetric positive definite matrix B is Cholesky-decomposed to $B=U^{T} U$ using the upper triangular matrix U. If $\tilde{A}=U^{-T} A U^{-1}$ is made from A by using this U, the generalized eigenvalue problem $A x=\lambda B x$ becomes the standard eigenvalue problem $\tilde{A} \tilde{x}=\lambda \tilde{x}$. By solving this problem using Householder $Q R$ method, the eigenvector x is obtained with $x=U^{-1} \tilde{x}$.
(4) Note

1. If only a part of eigenvectors is to be obtained, it may be advantageous to use Householder-QR-inverse iteration method (GHORIV/W).
2. If calculation is to be iterated with B kept constant and only A changed, it is desirable to reuse the Cholesky decomposition elements of B. See the explanation for argument EPS.
(1987.08.10) (1988.04.04)

HEQRVS/D/Q (Eigenvalue analysis for real nonsymmetric matrices by double QR method)

Eigenvalue Analysis for Real Nonsymmetric Matrices by Double QR Method

| Programm
 ed by | Ichizo Ninomiya; Revised in April 1077, April 1981 |
| :--- | :--- |
| Format | Subroutine language; FORTRAN Size; 391 lines each |

(1) Outline

A real non-symmetric matrix is transformed into an upper Hessenberg matrix by stabilized elementary transformation. The double $Q R$ method is then applied to this to determine all eigenvalues, and a specified number of corresponding eigenvectors are determined by the inverse iteration method. The HEQRVS/D/Q subroutine is used for single (double, quadruple) precision.
(2) Directions

CALL HEQRVS/D (A, KA, N, E, F, G, H, NV, EPS, IW, H, IND)

| Argument | Type and kind (*1) | Attribut e | Content |
| :---: | :---: | :---: | :---: |
| A | Real type
 Two-dimens
 ional
 array | Input | Matrix subjected to eigenvalue analysis. This matrix is transformed by this routine into an upper lessenberg type. |
| KA | Integer
 type | Input | Adjustable dimensions of A, G, and H (value of the first subscript in array declaration). $K A \geqq N$ |
| N | Integer
 type | Input | Order of A. Number of rows of G and H. It is also the size of E and F. $N \geqq 3$ |
| E | Real type one-dimens ional array | Output | Real part of eigenvalues. The Ith eigenvalue is given by $E(I)+i F(I)$. |

| Argument | Type and
 kind (*1) | Attribut
 e | Content | | |
|---|---|---|---|---|---|
| F | Real type one-dimens ional array | Output | Imaginary part of eigenvalues. The Ith eigenvalue is given by $E(I)+i F(I)$. |
| G | Real type two-dimens ional array | Output | The real part of the Ith eigenvector is output in the Ith column of G. It must have the area for $N+1$ columns. |
| H | Real type
 two-dimens
 ional
 array | Output | The imaginary part of the Ith eigenvector is output in the Ith column of H. Moreover, it is necessary to prepare the region of the size with N rows and $N+1$ columns for use as a work area. |
| NV | Integer
 type | Input | Number of eigenvectors to be determinedBecause conjugate eigenvectors are generated in pairs, number of actually generated vectors can be $N V+1$. $0 \leqq N V \leqq N$ |
| EPS | Real type | Input | $\\|A\\| \cdot E P S / N$ is used as a convergence criterion constant for QR method. EPS>0 |
| IH | Integer
 type
 one-dimens
 ional
 array | Hork
 area | One-dimensional array with the size of 2 N or more. |
| W | Real type
 one-dimens
 ional
 array | Hork area | One-dimensional array with the size of 2 N or more. |

*1 For double precision subroutines, all real types are changed to double precision real types.
(3) Calculation method

Real matrix A is transformed into an upper Hessenberg matrix $H=S^{-1} A S$ by stabilized elementary transformation S, that is, Gaussian elimination involving row exchange. All eigenvalues of H are determined by the double QR method with origin shift.

The specified number of eigenvectors of H is determined by the inverse iteration method. Let they be grouped into a matrix U. Eigenvectors of A are calculated by $V=S V$ using U.
(4) Note

1. It is reasonable to process symmetric matrices by special routines HOQRVS/D, HQRIIS/D, and HOBSVS/D.
2. If no eigenvectors are to be determined ($N V=0$), the areas for G and H are not used and need not be prepared, and anything can be written for them.
(1987. 07. 20)

HEQRVV/W (Eigenvalue Analysis for Real Nonsymmetric Matrices by Double QR Method - Vector Version -)

Eigenvalue Analysis for Real Nonsymmetric Matrices by Double QR Method -Vector Version-

| Programm
 ed by | Ichizo Ninomiya, December 1984 |
| :--- | :--- |
| Format | Subroutine language: PORTRAN77; size: 485 and 486 lines respectively |

(1) Outline

HEQRVV/W transforms a real nonsymmetric matrix to an upper Hessenberg matrix using the stabilized elementary transformation, obtains all the eigenvalues using the double QR method, and calculates the eigenvectors as many as requested using the inverse iteration. It is a single (double) precision subroutine.
(2) Directions

CALL HEQRVV/W(A, KA, N, E, F, G, H, NV, ERS, LW, W, IND)

| Argument | Type and
 kind ($\neq 1$) | Attribut | Content |
| :--- | :--- | :--- | :--- |
| A. | Real type
 Two-dimens
 iona
 array | Input | Matrix whose eigenvalue analysis is to be executed. The
 matrix is processed with this routine, and transformed to a
 Hessenberg type. |
| KA | Integer
 type | Input | Adjustable dimensions of A, G, and H (value of the first
 subscript in the array declaration). KA $\geqq N$ |
| N | Integer | Input | Order of A. Number of rows in G and $H . \quad$ It also represents
 the size of E and $F . \quad N \geqq 3$ |

| Argument | Type and
 kind ($* 1$) | Attribut
 e | Content |
| :---: | :---: | :---: | :---: |
| W | Real type
 one-dimens
 ional
 array | Hork
 area | One-dimensional array of size 2 N . |
| IND | Integer type | Input/ou
 tput | Input: Arrangement of eigenvalues is specified.
 IND=0: Eigenvalues are kept in the state as calculated.
 IND I_{0} : Eigenvalues are arranged in the descending order of absolute values.
 IND<O: Eigenvalues are put in the ascending order of absolute values.
 Output: Condition code.
 IND=0: Normal.
 IND=1: The elements in A are all zeros.
 $I N D=2$: Convergence may not occur even if the $Q R$ method is iterated 100 N times.
 IND $=30000$: The input argument exceeded the 1 imit. |

*1 For double precision subroutines, all real types are changed to double precision real types.
(3) Calculation method

The real matrix A is transformed to the upper Hessenberg matrix $H=S^{-1} A S$ using the stabilized elementary transformation S, that is, Gauss' elimination accompanied by row exchange. All the eigenvalues of H are obtained using the double QR method with origin shift.

Specified number of eigenvectors of H are obtained using the inverse iteration and are placed in the matrix U. The eigenvectors of A are calculated by $V=S U$ from U.
(4) Notes

1. It is reasonable to process symmetric matrices with the special-purpose routines HOQRVV/W, HRRIIV/H, and HOBSVV/W.
2. If eigenvectors are not to be obtained $(N V=0)$, the area to G and H is not used, and thus need not be prepared. Anything can be written for these arguments.
(1987.06.19)

HOBSVS/D/Q (Eigenvalue Analysis for Real Symmetric Matrices by Householder-Bisection Method)

Eigenvalue Analysis for Real Symmetric Matrices by Householder-Bisection Method

| Programme
 ed by | Ichizo Ninomiya, April 1977, revised in April 1981 |
| :--- | :--- |
| Format | Subroutine language: FORTRAN; size: 173 and 171 lines respectively |

(1) Outline

HOBSUS/D/Q tridiagonalizes a real symmetric matrix using Householder's reflexion transformation, obtains the eigenvalues of the tridiagonalized matrix using the bisection method based on Sturm sequence, and calculates the eigenvectors using the inverse iteration. It is for single (double) precision.
(2) Directions

CALL HOBSVS/D/Q(A, KA, N, E, NE, V, NV, BPS, H, ILL)

1* For double precision subroutines, all real types are changed to double precision real types.
(3) Calculation method

The matrix A is transformed to the tridiagonal matrix $T=H^{T} A H$ using the Householder transformation H.

The eigenvalues of T are obtained by the bisection method based on Sturm sequence. They are numbered as many as specified from the end in a specified order. The eigenvectors corresponding to the eigenvalues are obtained by the inverse iteration. The matrix containing these
eigenvectors in columns is denoted by U. Because U is the eigenvector of T, it is converted to the eigenvector V of A by $V=H U$.
(4) Note

When all the eigenvalues of a symmetric matrix are to be obtained, it is better to use the routine HOQRVS/D based on the QR method. When all of the eigenvalues and all or a part of the eigenvectors are to be obtained, it is more reasonable to use the routine HQRIIS/D based on the QR-inverse iteration method.

Bibliography

1) Yoshitaka Beppu and Schizo Ninomiya: "Comparison of Matrix Solutions of Standard Eigenvalue Problems, " Nagoya University Computer Center News, Vol. 11, No. 3, pp. 265-274 (1980).
(1987.08.10) (1987.08.21)

HOBSVV/W (Eigenvalue Analysis for Real Symmetric Matrices by Householder-Bisection Method Vector Version -)

Eigenvalue Analysis for Real Symmetric Matrices by Householder-Bisection Method -Vector Version-

| Programme
 ed by | Ichizo Ninomiya, December 1984 |
| :--- | :---: |
| Format | Subroutine language: FORTRAN77; size: 345 and 346 lines respectively |

(1) Outline

HOBSVV/W tridiagonalizes a real symmetric matrix using Householder's reflexion transformation, obtains the eigenvalue of the resultant tridiagonal matrix using the bisection method based on Sturm sequence, and calculates the eigenvectors using the inverse iteration. It is for single (double) precision.
(2) Directions

CALL HOBSVV/H(A, KA, N, E, NE, V, NV, BPS, W, ILL)

| Argument | Type and
 kind (*1) | Attribut e | Content | | |
|---|---|---|---|---|---|
| E | Real type
 One-dimens
 ional
 array | Output | One-dimensional array of size N.
 Eigenvalues are output in the order of size. If NE>O, eigenvalues are arranged in descending order. If $N E<0$, eigenvalues are arranged in ascending order. |
| NE | Integer type | Input | The number of eigenvalues to be obtained is represented by the absolute value. If NE>0 (NE<O), eigenvalues are numbered in algebraically descending order (ascending order) from the maximum (minimum). $N E \neq 0$ |
| v | Real type
 two-dimens
 ional
 array | Output | Eigenvectors to the eigenvalue $\mathrm{E}(\mathrm{I})$ are normalized to length 1 and placed to the I-th column. |
| NV | Integer
 type | Input | The number of eigenvectors to be obtained is represented by the absolute value. Eigenvalues are numbered from the end in the order specified by NE. $0 \leqq\|N V\| \leqq\|N E\|$ |
| EPS | Real type | Input | Convergence criterion of bisection method. If a tridiagonalized matrix is denoted by $\mathrm{T},\\|\mathrm{T}\\| \cdot \mathrm{EPS}$ is used as the criterion. EPS>0 |
| H | Real type
 One-dimens
 ional
 array | Hork
 area | One-dimensional array of size 6 N . |
| ILL | Integer
 type | Output | ILL=0: Normal termination.
 ILL=30000: The input argument exceeded the limit. |

*1 For double precision subroutines, all real types are changed to double precision real types.
(3) Calculation method

The matrix A is transformed to a tridiagonal matrix $T=H^{T} A H$ using Householder's
transformation H.
The eigenvalues of T are obtained using the bisection method based on Sturm sequence. They are numbered as many as specified from the end in a specified order. The eigenvectors corresponding to the specified number of eigenvalues numbered from the end are obtained using the inverse iteration. A matrix containing these eigenvectors in its columns is denoted by U, then the eigenvector V of A can be obtained by $V=H U$.

(4) Notes

When all the eigenvalues of a symmetric matrix are to be obtained, it is better to use the routine $H O Q R W / W$ based on the $Q R$ method than this routine. then all of eignevalues and all or part of eigenvectors are to be obtained, it is more reasonable to use the routine HQRIIV/W based on the $Q R$ inverse iteration.

Bibliography

1) Yoshitaka Beppu and Ichizo Ninomiya; "Comparison of Matrix Solutions of Standard Eigenvalue Problems, "Nagoya University Computer Center News, Vol. 11, No. 3, pp. 265-274 (1980)
(1987.06.19) (1988.02. 22)

HOQRVS/D/Q and HOQRUS/D/Q (Eigenvalue analysis for real symmetric matrix by Householder-QR method)

Eigenvalue Analysis for Real Symmetric Matrices by Householder-QR Method

| Programm
 ed | Ichizo Ninomiya April, 1977 |
| :--- | :--- |
| Format | Subroutine Language; FORTRAN Size; 142, 141, 142, 141 lines |

(1) Outline

All eigenvalues of the real symmetric matrix and all eigenvectors, if necessary, are calculated by Householder's tridiagonalization and QR method with origin shift.
(2) Directions

CALL HOQRVS/D/Q(A, KA, N, E, F, ES, ILL)
CALL HOQRUS/D/Q(A, KA, N, E, F, BPS, ILL)

| Argument | Type and
 Kind * | Attribute
 e | Real type
 Two-dimens
 iona
 array | | |
|---|---|---|---|---|---|
| A Input | Only the right upper half which contains the diagonal of the
 real symmetric matrix need. be input. Anything can be input
 in the left lower half. When eigenvectors are calculated, | | |
| they are stored in each column of A. Precisely, the | | | |
| eigenvector normalized to the unit length corresponding to | | | |
| the eigenvalue $\mathrm{E}(\mathrm{I})$ is stored in the It column. | | | |, | Integer |
| :--- |
| type |

* All real types should be changed to double precision real types in the case of the subroutine for double precision.

(3) Performance

Compared with Jacobi method, this subroutine has high speed and can be used for the multiple or close eigenvalues without any trouble.
(4) Note

1. This subroutine is optimal to calculate all eigenvalues (and eigenvectors) using small memory space.
2. Householder and Givens' method (bisection) are better in case of calculating only a part of eigenvalues and eigenvectors. The appropriate subroutine is HOBSVS/D.
3. Subroutine GHQRVS/D is recommended to solve generalized eigenvalue problems $A x=\lambda B x$.

Bibliography

1) Hayato Togawa; ${ }^{\text {N }}$ Numerical calculation of matrix"; Ohm-sha (1971).
(1987.08.10) (1987.08.21)

HOQRVV/W (Eigenvalue Analysis for Real Symmetric Hatrices by Householder-QR Method - Vector Version -)

Eigenvalue Analysis for Real Symmetric Matrices by Householder-QR Method -Vector Version-

| Programm
 ed by | Ichizo Ninomiya, December 1984 |
| :--- | :--- |
| Format | Subroutine language: FORTRAN77; size: 233 and 234 lines respectively |

(1) Outline

HOARNV/W obtains all the eigenvalues and, if required, all the corresponding eigenvector of a real symmetric matrix, using the Householder's tridiagonalization and the QR method with origin shift. It is for single (double) precision.
(2) Directions

CALL HOQRVV/W(A, KA, N, E, EPS, H, ILL)

| Argument | Type and kind (*1) | Attribut e | Content |
| :---: | :---: | :---: | :---: |
| A | Real type
 Two-dimens
 ional
 array | Input | Whole of a real symmetric matrix is input. If eigenvectors are obtained, they are entered to columns of A . That is, eigenvectors corresponding to the eigenvalue $\mathrm{E}(\mathrm{I})$ is normalized to length 1 and placed to the I-th column. |
| KA | Integer type | Input/ou tput | Value of the first subscript in the array-A declaration. $K A \geq N$ |
| N | Integer type | Input | Order of A. $N \geq 2$ |
| E | Real type
 One-dimens
 ional
 array | Output | One-dimensional array containing N elements. Eigenvalues are arranged in algebraically descending order. |

*1 For double precision subroutines, all real types are assumed to be double precision real types.
(3) Calculation method

The symmetric matrix A is transformed to a tridiagonal matrix $T=H^{T} A H$ using the Householder transformation H. The matrix T is diagonalized to $D=Q^{T} T Q$ using the $Q R$ transformation. The eigenvectors of A are calculated as $V=H Q$.
(4) Notes

1. This routine is optimum if all eigenvalues (and corresponding eigenvectors) are to be obtained with a small size of storage.
2. If only part of eigenvalues and eigenvectors is to be obtained, Householder-Givens' method (bisection) is better. HOBSVV/H is a suitable subroutine.
1) Hayato Togawa: Numerical Calculation of Matrices, Ohm-sha, 1971
(1987.06.19)

HQRIIS/D/Q (Eigenvalue Analysis of Symmetric Matrices by Householder-QR-Inverse Iteration Method)

Eigenvalue Analysis of Symmetric Matrices by Householder-QR-Inverse Iteration Method

| Programm
 ed by | Ichizo Ninomiya, April 1981 |
| :--- | :--- |
| Format | Subroutine Language: FORTRAN; Size: 198 and 196 lines respectively |

(1) Outline

HQRIIS/D/Q obtains all eigenvalues of real symmetric matrices by Householder-QR-method, and calculates specified eigenvectors by the inverse iteration method.
(2) Directions

CALL HRRIIS/D/Q(A, KA, N, E, V, NV, ES, H, ILL)

| Argument | Type and
 kind (*1) | Attribut
 e | Content | | |
|---|---|---|---|---|---|
| v | Real type
 Two-dimens
 ional
 array | Output | Eigenvectors to eigenvalues $\mathrm{E}(\mathrm{I})$ are normalized to 1 , and placed to the I-th column. |
| NV | Integer type | Input | \|NV| represents the number of eigenvectors to be obtained. If $N V>0$ ($N V<0$), the eigenvectors are numbered in algebraically decreasing (or increasing) order from the maximum (or minimum). $\|N V\| \leqq N$ |
| EPS | Real type | Input | Convergence criterion of $Q R$ method. If the tridiagonalized matrix is denoted by $T,\\|T\\| \cdot E P S$ is used as the criterion. EPS>0 |
| H | Real type
 One-dimens
 ional
 array | Hork
 area | One-dimensional array of size 6 N . |
| ILL | Integer type | Output | ILL=0: Normal termination.
 ILL=30000: Input argument exceeded the 1 imit . |

*1 For double precision subroutines, all real types should be changed to double precision real types.
(3) Calculation method

Transform the symmetric matrix A to a tridiagonal matrix $T=H^{T} A H$ by llouseholder transformation H.

Obtain all eigenvalues of T by the $Q R$ method without square root. Obtain a specified number of eigenvectors of T by the inverse iteration method. Put these eigenvectors into the matrix U
. The eigenvectors of A are calculated by $V=M U$.
(4) Note

1. It is best to use this routine to obtain all of eigenvalues and all or part of the corresponding eigenvectors quickly.
2. It is better to use HOBSVS/D based on the Householder bisection method to obtain up to one-fourth of all eigenvalues.

Bibliography

1) Parlett and B.N;"The Symmetric Eigenvalue Problem" Prentice-Hall (1980).
(1987.08.10) (1987.08.21) (1988.02. 22)

HQRIIV/W (Eigenvalue Analysis of Symmetric Matrices by Householder-Inverse-QR Iteration Method - Vector Version -

Eigenvalue Analysis of Symmetric Matrices by Householder-QR-Inverse Iteration Method -Vector Version-

| Programs
 ed by | Ichizo Ninoniya, December 1984 |
| :--- | :--- |
| Format | Subroutine language: FORTRAN77; size: 345 and 346 lines respectively |

(1) Outline

HQRIIV/W obtains all the eigenvalues of real symmetric matrices using the Householder-QR method, and calculates the specified eigenvectors based on the inverse iteration. It is for single (double) precision.
(2) Directions

CALL HQRIIV/H(A, KA, N, E, V, NV, BPS, H, ILL)

| Argument | Type and kind (*1) | Attribut
 e | Content | | |
|---|---|---|---|---|---|
| E | Real type
 One-dimens
 ional
 array | Output | All eigenvalues are output in the order of size. If $N V \geqq 0$. eigenvalues are arranged in descending order. If $N K<0$, eigenvalues are arranged in ascending order. |
| v | Real type
 Two-dimens
 ional
 array | Output | Eigenvectors to the eigenvalue $\mathrm{E}(\mathrm{I})$ are normalized to length 1 and placed to the I-th column. |
| NV | Integer
 type | Input | INV\| represents the number of eigenvectors to be obtained. If $N V>0$ ($N(\ll 0$), eigenvectors are numbered in algebraically descending (ascending) order from the maximum (minimum) value. $\quad\|N V\| \leqq N$ |
| EPS | Real type | Input | Convergence criterion constant of $Q R$ method. If a tridiagonalized matrix is denoted by $\mathrm{T},\\|\mathrm{T}\\| \cdot \mathrm{EPS}$ is used as the convergence criterion. EPS>0 |
| W | Real type
 One-dimens
 ional
 array | Hork
 area | One-dimensional array of size 6 N . |
| ILL | Integer type | Output | ILL=0: Normal termination.
 ILL=30000: Input arguments exceeded the limit. |

*1 For double precision subroutines, all real types are changed to double precision real types.
(3) Calculation method

The symmetric matrix A is transformed to a tridiagonal matrix $T=H^{\top} A H$ using the Householder transformation H.

All the eigenvalues of T are calculated using the square-root-less $Q R$ method. A specified number of eigenvectors of T are obtained using the inverse iteration and are placed in a matrix U. The eigenvectors of A are calculated by $V=H U$.
(4) Notes

1. This routine is optimum when all of eigenvalues are obtained quickly, and all or part of corresponding eigenvectors are obtained.
2. When up to about one-fourth of the entire eigenvalues is to be obtained, it is more advantageous to use HOBSVV/H based on Householder-bisection method.

Bibliography

1) Parlett, B. N; "The Symmetric Eigenvalue Problem" Prentice-Hall (1980).
(1987.06. 19) (1987. 08.07) (1988.02. 22)

JACOBS /D (Eigenvalue Analysis for a Real Symmetric Matrix by Threshold Jacobi Method)

Eigenvalue Analysis for a Real Symmetric Matrix by Threshold Jacobi Method

| Programme
 ed by | Ichizo Ninomiya, April 1977 |
| :--- | :--- |
| Format | Subroutine language: FORTRAN; size: 88 and 88 lines respectively |

(1) Outline
$\mathrm{JACOB} / \mathrm{D}$ calculates all the eigenvalues and eigenvectors of a given real symmetric matrix using the threshold Jacobi method.
(2) Directions

CALL JACOBS /D (A, KA, N, BPS, V, ILL)

*1 For double precision subroutines, all real types are changed to double precision real types.
(3) Performance

This routine was believed to be advantageous for multiple or close eigenvalues as a method of finding all the eigenvalues and engenvectors of a symmetric matrix. However, since Householder QR method with the same advantage for the same purpose appeared, this routine became obsolete recently.
(4) Remarks

1. Eigenvalues are arranged in descending order along the diagonal of A.
2. A value of $10^{-6}\left(10^{-16}\right)$ is adequate as the standard value of EPS for JACOBS (JACOBD).
3. Except for small-size problems of about 10 , it is advantageous to use the subroutines HOQR and VS using Householder QR method for the same purpose because computation time is significantly saved.
(1987.06. 17) (1987.08.07)

JENNFS/D, JENNBS/D, and GJENBS/D (Eigenvalue analysis of real symmetric matrices by Jennings' simultaneous iteration method)

Eigenvalue Analysis for Real Symmetric Matrices by Jennings' Simultaneous Iteration Method (Eigenvalue analysis of real symmetric matrices by Jennings' simultaneous iteration method)

| Programm
 ed by | Ichizo Ninomiya; April 1981 |
| :--- | :--- | :--- |
| Format | Subroutine language: FORTRAN, Size; 141, 142, 151, 152, 184, and
 185 lines respectively |

(1) Outline

A part of eigenvalues and corresponding eigenvectors of real symmetric matrices are determined by the Jennings' simultaneous iteration method accompanying the Jennings' vector acceleration method. JENNFS/D is used to solve standard eigenvalue problem ($A-\lambda I$) $x=0$ where A is a dense matrix, and JENNBS/D is used to solve the same problem where A is a band matrix. GJENBS/D is used to solve generalized eigenvalue problem $(A-\lambda B) x=0$ where A is a band matrix and B is a positive definite band matrix. JENNFS, JENNBS, and GJENBS are single precision subroutines and JENNFD, JENNBD, and GJENBD are double precision subroutines.
(2) Directions

CALL JENNFS/D (A, KA, N, L, M, V, E, C, H, ERS, TER, ILL)
CALL JENNBS/D (A, KA, N, NB, L, M, V, KV, E, C, H, BPS, lITER, ILL)
CALL GJENBS/D (A, B, KA, N, NB, L, M, V, KV, E, C, H, BPS, ITER, ILL)

| Argument | Type and
 kind ($* 1$) | Attribut
 e | Content |
| :---: | :---: | :---: | :---: |
| A | Real type
 Two-dimens
 ional
 array | Input | The entire symmetric matrix is input for JENNFS/D. For JENNBS/D and GJENBS/D, the lower left half which contains the diagonal of band matrix is input after it is made to a rectangle as shown in the figure. That is, elements I and J of the matrix are put in $A(I-J+1, J)$. When eigenvalues are determined in ascending order of their absolute values, Cholesky decomposition is done by this routine. |
| B | Real type
 Two-dimens
 ional
 array | Input | A band matrix is input in the same way as for A. When eigenvalues are determined in descending order of their absolute values, Cholesky decomposition is done by this routine. |
| KA | Integer type | Input | Adjustable dimension of A and V in case of JENNFS/DKA $\geqq N$ Adjustable dimension of A in case of JENNBS/D Adjustable dimension of A and B in case of GJENBS/D- |
| N | Integer type | Input | Order of A and B. $N \geqq 2$ |
| NB | Integer type | Input | Half band width of A and B. $N B \geq 2$ |
| L | Integer .
 type | Input | IL\| indicates the number of eigenvalues and eigenvectors to be obtained. $L>0$ ($L<0$) indicates that they should be arranged in the descending (ascending) order of absolute values. $\quad 1 \leqq\|L\| \leqq N$ |
| M | Integer
 type | Input | Number of trial vectors $\|\mathrm{L}\| \leqq \mathrm{N} \leqq \mathrm{N}$ |
| V | Real type
 Two-dimens
 ional
 array | Input/ou
 tput | The M initial eigenvectors are input. Eigenvectors are generated to the first $\|L\|$ columns. |

| Argument | Type and
 kind (*1) | Attribut
 e | Content |
| :---: | :---: | :---: | :---: |
| KV | Integer type | Input | Adjustable dimension of V. KV $\geqq \mathrm{N}$ |
| E | Real type
 One-dimens
 ional
 array | Output | Eigenvalues are generated in the order specified by L . |
| C | Real type
 One-dimens
 ional
 array | Work
 area | One-dimensional array with a size of M^{2} or more |
| W | Real type
 One-dimens
 ional
 array | Work area | One-dimensional array with a size of 3 N or more for JENNFS/D and JENNBS/D and 4N or more fer GJENBS/D. |
| EPS | Real type | Input | Convergence criterion constant. EPS>0 |
| ITER | Integer type | Input/ou
 tput | Input: Upper bound of repetition numberWhen it is less than N, it is put to 1000 .
 Output: Actual repetition number |
| ILL | Integer type | Output | ILL=0: Normal.
 ILL=1: The repetition number exceeded the upper bound.
 ILL=2: Cholesky's decomposition was impossible.
 ILL=30000: The input argument violated the limit. |

*1 For double precision subroutines, all real types are changed to double precision real types.
(3) Calculation method

To simplify description, a standard type problem is abbreviated as T and a general type problem is abbreviated as G. Similarly, L indicates the case of determining an eigenvalue with a large absolute value, and S indicates the case of determining an eigenvalue with a small absolute
value.

1. The initial eigenvectors are grouped into a matrix. V with n rows and m columns, that is, the m vectors are put together into the matrix. Select m such that $l \leqq m \leqq n$ where l is the number of eigenvalues to be obtained (see the notes for selection of initial vectors).
(T, S) A is processed by the modified Cholesky's decomposition to produce $A=R^{T} D R$.
(G, S) A is processed by the Cholesky's decomposition to produce $A=\tilde{A}^{T} \tilde{A} . \quad \tilde{A} V$ is generated and overwritten on V.
(G, L) B is processed by the Cholesky's decomposition to produce $B=\tilde{B}^{T} \tilde{B} . \quad \bar{B} V$ is generated and overwritten on V.
2. (T, S) Compute $U=R^{-1} D^{-1} R^{-T} V\left(=A^{-1} V\right)$.
(T, L) Compute $U=A V$.
(G, S) Compute $U=\tilde{A}^{-T} B \tilde{A}^{-1} V$.
(G, L) Compute $U=\tilde{B}^{-T} A \tilde{B}^{-1} V$.
3. Form $G=V^{T} U$. G is a symmetric matrix with m rows and m columns.
4. G is diagonalized into $P^{T} G P=Q$, where Q is a diagonal matrix with diagonal element $\mu_{1}, \mu_{2} \cdots \cdots \mu_{m}\left(\left|\mu_{1}\right| \geqq\left|\mu_{2}\right| \geqq \cdots \cdots \geqq\left|\mu_{m}\right|\right)$ which is the eigenvalue of G, and P is an orthogonal matrix having eigenvectors as rows:
5. Compute $W=U P$.
6. Compute $W^{T} W$ and process it by the Cholesky's decomposition to obtain $h^{T} W=S^{T} S$. S is an $m \times m$ upper triangular matrix:
7. $V=W S^{-1}$ is formed. V is an orthogonal matrix in the sense of $V^{\top} V=I_{m}$ (unit matrix of the order m).
8. Convergence test is made (see the notes below). If convergence has not been attained, Jennings' vector acceleration is applied. The result is used as new V and processing returns to step 2.
9. If convergence has been completed:
(S) $1 / \mu_{1}, 1 / \mu_{2}, \cdots, 1 / \mu_{l}$ are assumed to be eigenvalues.
(L) $\mu_{1}, \mu_{2}, \cdots, \mu_{l}$ are assumed to be eigenvalues.
(T) The first l columns of V are assumed to be eigenvectors.
(G, S) The first l columns of $\tilde{A}^{-1} V$ are assumed to be eigenvectors.
(G, L) The first l columns of $\tilde{B}^{-1} V$ are assumed to be eigenvectors.
(4) Notes

10. It is desirable that the initial vectors are closed to true eigenvectors. If there is no information available for the initial value, however, a common way is to use a fragment of the unit matrix. For selection of m, it should be as close to l as possible and also satisfy $\left|\lambda_{m}\right| /\left|\lambda_{m+1}\right| \gg 1$ (or $\left|\lambda_{m}\right| /\left|\lambda_{m+1}\right|<1$) when eigenvalues are arranged as $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ in order of their absolute values. The quantity of calculation for each iteration is generally proportional to m.
11. A convergence test is made for the components of eigenvectors. In general, eigenvalues converge in much better precision than eigenvectors. Especially, when separation of eigenvalues is good, precision is about twice as good as that for eigenvectors. From this reason, therefore, it is safer to select a little larger value than usual for criterion constant EPS.
12. A standard value of ITER indicating the upper limit of the repetition number is a few hundreds. Do not write a constant as an actual argument for this variable because this variable is used for both input and output.

Bibliography

1) A. Jennings; "Matrix Computation for Engineers and Scientists", John Wiley, London, (1977)

NGHOUS/D (Analysis of $\mathrm{Av}=\lambda \mathrm{BV}$ type eigenvalue by bi-triangular decomposition, Householder, bisection-QR, and inverse iteration methods)

Nicer for Generalized Eigenvalue-Problem by Householder Method

| Programm
 ed by | Yoshitaka Beppu and Ichizo Ninomiya; December 1981 |
| :--- | :--- |
| Format | Subroutine language; FORTRAN |

(1) Outline

NGHOUS and NGHOUD solve generalized eigenvalue problem concerning real symmetric dense matrix A and real symmetric positive definite dense matrix B by the semi-direct method.
(2) Directions

CALL NGHOUS/D (AB, NHAX, N, NE, NV, EPS, IORD, ICHO, BD, E, V, ILL, W1, H2, H3, W4, W5, H6, W7)

| Argument | Type and kind (*1) | Attribut
 e | Content |
| :---: | :---: | :---: | :---: |
| AB | Real type
 Two-dimens
 ional
 array | Input/ou
 tput | $A_{i j}(i \leqq j)$ is input to the upper right half including diagonal elements. The upper right half changes. If $1 C H O=0$, $B_{i j}(i>j)$ is input to the lower left half. If $1 C H O=1$, non-diagonal element $L_{i j}(i>j)$ of Cholesky decomposition component L of B is input $t o$ the lower left half. $\quad L_{i j}$ is output to the lower left half. |
| NMAX | Integer type | Input | Adjustable dimensions of $A B$ and V. N§NMAX |
| N | Integer
 type | Input | Order of A and B. $2 \leqq N$ |

| Argument | Type and
 kind (*1) | Attribut
 e | Content |
| :---: | :---: | :---: | :---: |
| NE | Integer
 type | Input | Number of eigenvalues to be determined. $0<N E \leq N$ |
| NV | Integer type | Input | Number of eigenvectors to be determined. $0 \leqq N \mathrm{~N} \leq$ NE $\leq N$ |
| EPS | Real type | Input | Tolerance for convergence test. The default value is 10^{-6} (NGHOUS) or 10^{-10} (N-GHOUD). |
| IORD | Integer type | Input | The output order of eigenvalues is specified. If IORD>0, they are output in algebraically descending order. If IORD<O, they are output in algebraically ascending order. |
| ICHO | Integer type | Input | The input mode of real symmetric positive definite matrix B is specified. Refer to the descriptions of $A B$ and $B D$. |
| BD | Real type
 One-dimens
 ional
 array | Input/ou
 tput | If ICHO=0, diagonal element $B_{i i}$ of B is input to $B D(I)$. If $I C H D=1$, the inverse number of L's diagonal element $L_{i i}$ is input to it. $L_{i i}{ }^{-1}$ is output to $B D(I)$. |
| E | Real type
 One-dimens
 ional
 array | Output | The Ith eigenvalue is output to $\mathrm{E}(\mathrm{I})$. If IORD is positive, then $E(1)>E(2)>\cdots \cdots>B(N E)$. If IORD is negative, then $E(1)<E(2)<\cdots \cdots<E(N E)$. |
| v | Real type
 Two-dimens
 ional
 array | Output | The eigenvector which corresponds to $\mathrm{E}(\mathrm{I})$ is normalized as $v^{T} B v=1$ and output to column I. |
| ILL | Integer type | Output | ILL=0: Normal termination
 ILL=100: B is a non-positive definite.
 ILL=300: The argument is abnormal. |

| Argument | Type and
 kind (*1) | Attribut | Content |
| :--- | :--- | :--- | :--- |
| W1~W7 | Real type
 One-dimens
 ional | Hork | The size must be N or more. |
| array | | | |

(3) Calculation method

First of all, generalized eigenvalue problem $(A v=\lambda B v)$ is transformed into standard eigenvalue problem ($\bar{A} u=\lambda u$) by the bi-triangular decomposition method. That is, matrix A is decomposed to the sum of upper right triangular matrix R and lower left triangular matrix $R^{T} \quad\left(A=R+R^{T}\right)$, and matrix B is decomposed to the product of lower left triangular matrix L and upper right triangular matrix $\quad L^{T} \quad\left(B=L L^{T}\right) . \quad \tilde{A}=L^{-1}\left(R+R^{T}\right) L^{-T}$ can thus be calculated efficiently. Because A is a real symmetric matrix, λ and ortho-normal vector u are determined by NSHOUS/D, and generalized orthogonal vector v is determined by $v=L^{-T} u$.
(4) Notes

1. NGHOUS or NGHOUD is 1.05 times as fast as GHQRID and GHBSVD of NUMPAC. If 1 is specified for ICHO when L is known, it becomes about 5% faster.
2. NGHOUS and NGHOUD are useful when approximate solutions are unknown.
3. These routines are also components of NICER.

NGJENS/D (Analysis of $\mathrm{AV}=\lambda \mathrm{Bv}$ type eigenvalues by bi-triangular decomposition and Jennings method)

Nicer for Generalized Eigenvalue-Problem by Jennings Method

| Programm
 ed by | Yoshitaka Beppu and Ichizo Ninomiya; December 1981 |
| :--- | :--- |
| Format | Subroutine language; FORTRAN Size; 89 and 90 lines respectively |

(1) Outline

NGJENS and NGJEND solve generalized eigenvalue problems concerning real symmetric dense matrix A and real symmetric positive definite dense matrix B by the simultaneous iteration method.
(2) Directions

CALL NGJENS/D (AB, NMAX, N, NE, NV, EPS, BD, IUV, ITER, ESHIPT, E, V, U, ILL, H1, H2)

| Argument | Type and
 kind (*1) | Attribut e | Content |
| :---: | :---: | :---: | :---: |
| AB | Real type
 Two-dimens
 ional
 array | Input/ou
 tput | $A_{i j}(i \leq j)$ is input to the upper right half including diagonal elements.
 The upper right half changes.
 Off diagonal element $L_{i j}(i>j)$ of B ' Cholesky-decomposed component L is input to the lower left half. The lower left half does not change. |
| NMAX | Integer type | Input | Adjustable dimensions of $A B, V$, and $U . N \leqq N M A X$ |
| N | Integer type | Input | Order of A and B. $2 \leqq N$ |

| Argument | Type and kind (*1) | Attribut
 e | Content |
| :---: | :---: | :---: | :---: |
| NE | Integer
 type | Input | Number of eigenvalues to be determined. They are counted in absolutely descending order.
 $0<N E<N$ |
| NV | Integer
 type | Input | Number of eigenvectors to be determined. O<NE \leqq NV<N |
| EPS | Real type | Input | Tolerance for convergence test. The default value is 10^{-6} (NSJENS) or 10^{-10} (NSJEND). |
| BD | Real type
 One-dimens
 ional
 array | Input | Reciprocal $L_{i i}{ }^{-1}$ of L's diagonal element $L_{i i}$ is input to BD (I). |
| IUV | Integer type | Input | The initial-vector reference mode is specified. If $I U V=0$, approximate generalized orthogonal vector v_{0} input to array V is used as the initial vector for the simultaneous iteration method. If IUV=1, approximate
 ortho-normal vector u_{0} input to array U is used likewise. The content of array U when $I U V=0$ is not referred, and the content of array V at $I U V=1$ is not referred. |
| ITER | Integer type | Input/ou
 tput | The upper limit for the number of Jennings iterations (standard value ranges from 1 to 10) is input. The number of actual iterations is output. |
| ESHIFT | Real type | Input | Origin shift σ. In these routines, the simultaneous iteration method is applied not to \tilde{A} but to $\tilde{A}^{\prime}=\tilde{A}-\sigma \cdot I$. Therefore, eigenvalues which are close to σ are rapidly diminished and the other eigenvalues are rapidly enhanced. The standard value is an approximate value of $0.5 *(E(N Y+1)+E(N))$. |

| Argument | Type and
 kind (*1) | Attribut e | Content |
| :---: | :---: | :---: | :---: |
| E | Real type
 One-dimens
 ional
 array | Input/ou tput | The approximate value of the eigenvalue whose absolute value is the Ith largest of all in absolute form is input to $\mathrm{E}(\mathrm{I})$. The eigenvalue whose absolute value is the Ith largest of all is output to $\mathrm{E}(\mathrm{I})$. $\|E(1)\|>\|E(2)\|>\cdots \cdots>\|E(N E)\|$ |
| V | Real type
 Two-dimens
 ional
 array | Input/ou tput | If IUV $=0$, approximate generalized orthogonal vectors v_{0} by the number specified by $N V$ is input. If $I U V=1$, an arbitrary quantity is input. The generalized orthogonal vector which corresponds to $\mathrm{E}(\mathrm{I})$ is normalized to $v^{T} B v=1$ and output to the Ith column. |
| U | Real type
 Two-dimens
 ional
 array | Input/ou tput | If $I U V=0$, an arbitrary quantity is input. If $I U V=1$, approximation ortho-normal vectors u_{0} by the number specified by NV is input. The ortho-normal vector which corresponds to $E(I)$ is normalized to $u^{T} u=1$ and output to the Ith column. |
| ILL | Integer
 type | Output | ILL=0: Normal termination
 ILL=100: $\quad L_{i j}$ input error
 ILL=200: Convergence does not occur because of poor
 precision of approximation vectors.
 ILL=300: The argument is abnormal. |
| W1~W2 | Real type
 One-dimens
 ional
 array | Hork area | The size must be N or more. |

(3) Calculation method: Approximate solutions are iteratively improved according to the following procedure:

1. $\tilde{A}=L^{-1}\left(R+R^{T}\right) L^{-T}$ is generated by the bi-triangular decomposition method $\left(A=R+R^{T}, B=L^{T}\right)$, and $A v=\lambda B v$ is transformed into $\tilde{A} u=\lambda u$.
2. Initial ortho-normal vector u_{0} is prepared. If IUV $=0$. approximation wide-sense orthogonal vector v_{0} input to array V is pre-multiplied by L^{T} to deteraine u_{0}. If $I U V=1$, u_{0} input to array U is used without modification.
3. $A u=\lambda u$ is solved by NSJENS or NSJEND by using u_{0} as an initial vector.
4. $\quad v=L^{-T} u$ is calculated.
5. The NE number of λ is output to array E, the NV number of v is output to array V, and the $N V$ number of u is output to array V.
(4) Notes
6. NGJEND is faster than NGHOUD when (ITER $\times N V / N$) <O.4. If IUV $=1$ when initial ortho-normal vector u_{0} is known, it becomes faster about 5%.
7. NGJENS and NGJEND are suitable for use if good approximate solutions are known, that is, to diagonalize a lot of similar real symmetric matrices.
<Example of using NICER> The program which solves generalized eigenvalue problem $A v=\lambda B v, 10$ times, with B fixed and A varied is shown below. This example indicates the calculation procedure of the wave function by the sequential approximation method.
```
C ITERATIVE COMPUTATION OF A*V=B*V*E BY NICER
    IMPLICIT REAL*8(A-H,O-Z)
    DIMENSION AB(10,10),BD(10)
    DIMENSION E(10),V(10,10)
    DIMENSION W1(10),W2(10),W3(10),W4(10),W5(10),W6(10),W7
    *(10)
    DIMENSION U(10,10)
    NMAX=10
    N=8
    EPS=1.E-10
C
    DO 10 I=1,N
    AB(I,I)=7.2
    BD(I) =N+1-I
    DO 10 J=1,N
    IF(J.GT.I) AB (I,J)=3.0 / (FLOAT(I-J))**2
    IF(I.GT.J) AB(I,J)=N+1-MAX(I,J)
        10 CONTINUE
        CALL NGHOUD(AB,NMAX,N,N,N,EPS,1,O,BD,E,V,ILL,W1,W2,W3,
        *W4,W5,W6,W7)
        WRITE(6,100) ILL
    100 FORMAT(1H1 //20X,4HILL=I7)
    WRITE(6,200) ( E(I),I=1,N)
    200 FORMAT(1H / 10(2X,10E12.3 /) )
    WRITE(6,300) ( (V (I,J),J=1,N ),I=1,N )
    300 FORMAT(1H / 10( 8F12.3/ ) )
C
    DO 1000 K=2,10
```

```
            FK=0.5*FLOAT (K-1)
            DO 20 I=1,N
            AB(I-I)=7.2 + FK
            DO 20 J=1,N
                    IF(J.GT.I) AB(I,J)=(3.0+FK) / (FLOAT(I-J))**2
        20 CONTINUE
            NE=N/2
            NV=N/2
            ESHIFT=0.5*(E(NV+1)+E(N) )
            ITER=10
            CALL NGJEND(AB,NMAX,N,NE,NV,EPS,BD,O,ITER,ESHIFT,E/V,U,
            *ILL/W1,W2)
                WRITE(6,400) K, ITER,ILL
    400 FORMAT(1H /10X,3H K=,I2,3X,5HITER=,I5,6H ILL=,I5)
            WRITE(6,200) ( E(I),I=1,NE)
            WRITE(6,500) ( (V (I,J),J=1,NV ),I=1,N )
    500 FORMAT(1H / 10( 4F12.3/ ) )
1000 CONTINUE
    STOP
    END
```

<Part of result of NICER>

| | ILL $=$ | 0 | |
| :---: | :---: | :---: | :---: |
| $0.126 D+02$ | $0.116 D+02$ | $0.109 D+02$ | $0.102 D+02$ |
| 0.057 | 0.355 | -0.040 | -0.595 |
| 0.005 | -0.723 | -0.464 | 0.838 |
| -0.266 | 0.049 | 1.083 | 0.061 |
| 0.169 | 0.941 | -0.398 | -0.209 |
| 0.448 | -0.632 | -0.617 | -0.069 |
| -0.567 | -0.450 | 0.562 | -0.664 |
| -0.511 | 0.652 | -0.420 | 0.837 |
| 1.225 | -0.156 | 0.584 | -0.006 |
| | | | |
| $0.952 D+01$ | $0.729 D+01$ | $0.345 D+01$ | $0.465 D+00$ |
| | | | |
| -0.260 | 0.545 | 0.364 | 0.131 |
| 0.708 | -0.216 | 0.083 | 0.067 |
| -0.816 | -0.277 | 0.017 | 0.076 |
| 0.828 | -0.420 | -0.133 | 0.062 |
| -0.978 | -0.087 | -0.218 | 0.052 |
| 0.786 | 0.197 | -0.247 | 0.039 |
| -0.440 | 0.440 | -0.217 | 0.027 |
| 0.295 | 0.204 | -0.083 | 0.007 |

PACKAGE-NAME : NICER(NAGOYA ITERATIVE COMPUTATION EIGENVALUE ROUTINES) (VERSION-1,LEVEL-3) MODIFIED ON MARCH 1981
REFERENCE : Y.BEPPU AND I.NINOMIYA;QUANTUM CHEMISTRY PROGRAM EXCHANGE,NO.409(1980)

| $K=2$ | ITER= | 4 ILL $=$ | 0 |
| :---: | :---: | :---: | :---: |
| $0.131 D+02$ | $0.117 D+02$ | $0.112 D+02$ | $0.988 D+01$ |
| | | | |
| 0.099 | 0.203 | -0.456 | -0.444 |
| -0.124 | -0.663 | 0.340 | 0.973 |

(1987.06. 16) (1987.08.07)

NSHOUS/D (Eigenvalue analysis of $A v=\lambda v$ type by Householder's bisection QR and inverse iteration method)

Nicer for Standard Eigenvalue-Problem by Householder Method

| Programm
 ed by | Yoshitaka Beppu and Ichizo Ninomiya; December 1981 | |
| :--- | :--- | :--- |
| Format | Subroutine language; FORTRAN | Size; 271 and 272 lines respectively |

(1) Outline

NSHOUS and NSHOUD solve standard eigenvalue problems concerning real symmetric dense matrix A by using the semi-direct method.
(2) Directions

CALL NSHOUS/D (A, NHAX, N, NE, NV, EPS, IORD, E, V, ILL, W1, W2, H3, W4, W5, W6, W7)

| Argument | Type and
 kind (*1) | Attribut
 e | C'ontent |
| :---: | :---: | :---: | :---: |
| A | Real type
 Two-dimens
 ional
 array | Input | $A_{i j}(i \leqq j)$ is input to the upper right half including diagonal elements. The lower left half is preserved although the upper right half changes. |
| NMAX | Integer type. | Input | Adjustable dimensions of A and V. N§NMAX |
| N | Integer
 type | Input | Order of A. $2 \leqq N$ |
| NE | Integer type | Input | Number of eigenvalues to be obtained. $0<N E \leq N$ |
| NV | Integer type | Input | Number of eigenvectors to be obtained. $0 \leq N V \leq N E \leq N$ |

| Argument | Type and
 kind (*1) | Attribut
 e | Content |
| :---: | :---: | :---: | :---: |
| EPS | Real type | Input | Tolerance for convergence test. The default value is 10^{-6} (NSHOUS) or 10^{-10} (NSHOUD). |
| IORD | Integer
 type | Input | The output order of eigenvalues is specified. When IORD>0, they are output in algebraically descending order. When IORD<O, they are output in algebraically ascending order. |
| E | Real type
 One-dimens
 ional
 array | Output | The Ith eigenvalue is output to $\mathrm{E}(\mathrm{I})$. When IORD is positive, $E(1)>E(2)>\cdots \cdot>E(N E)$. When IORD is negative, $E(1)<E(2)<\cdots \cdots<E(N E)$. |
| V | Real type Two-dimens
 ional
 array | Output | The eigenvector corresponding to $E(I)$ is normalized as $v^{\top} v=1$ and output to column 1 . |
| ILL | Integer
 type | Output | ILL=0: Normal termination ILL=300: Argument error. |
| W1~W7 | Real type
 One-dimens
 ional
 array | Hork
 area | The size must be N or more. |

(3) Calculation method

Matrix A is transformed into tridiagonal matrix T by Householder conversion. If (NE/N) < 0.12 , eigenvalues by the number specified by NE are determined by the bisection method. If $(N E / N) \geqq 0.12$, the N number of eigenvalues are determined by the square root-free $Q R$ method. Then, eigenvectors by the number specified by NV are determined by the inverse iteration method.
(4) Notes

1. This routine is useful when an approximate solution is unknown.
2. As shown in the figure below, NSHOUS/D together with NGHOUS/D, NSJENS/D, and NGJENS/D form the fast eigenvalue routine package NICER (Nagoya Iterative Computation Eigenvalue Routines).
3. The user of NICER should quote the documents listed in the bibliography below.
<Configuration of NICER>
The element enclosed by broken lines is used for calling.

Bibliography

1) Y. Beppu and I. Ninomiya; "Manual of NICER", Quantum Chemistry Program Exchange (Indiana University), No. 409 (1980)
2) Y. Beppu and I. Ninomiya; "NICER-Past Eigenvalue Routines", Computer Physics Comaunications, Vol. 23, pp. 123-126 (1981)
3) Y. Beppu and I. Ninomiya; "HQRII-A Fast Diagonalization Subroutine", Computers and Chemistry, Vol. 6, No. 2, pp. 87-91 (1982)
(1987.06.16) (1987.08.08)

NSJENS/D (Analysis of $A v=\lambda v$ type eigenvalue by Jennings method)

Nicer for Standard Eigenvalue-Problem by Jennings Method

| Programme
 ed by | Yoshitaka Beppu and Ichizo Ninomiya; December 1981 |
| :--- | :--- |
| Format | Subroutine language; FORTRAN Size; 334 and 335 lines respectively |

(1) Outline

NSJENS and NSJEND solve standard eigenvalue problems concerning real symmetric dense matrix A by the simultaneous iteration method.
(2) Directions

CALL NSJENS/D (A, MAX, N, NE, NV, ES, TER, SHIFT, E, V, ILL, HL, HZ, U)

| Argument | Type and
 kind (*1) | Attribut
 e | Content |
| :---: | :---: | :---: | :---: |
| EPS | Real type | Input | Tolerance for convergence test. The default value is 10^{-6} (NSJENS) or 10^{-10} (NSJEND). |
| ITER | Integer
 type | Input/ou
 tput | The upper limit of the number of Jennings iterations (standard value ranges from 1 to 10) is input. The number of actual iterations is output. |
| ESHIFT | Real type | Input | Quantity of origin shift σ. In these routines, the simultaneous iteration method is applied not to A but to $A^{\prime}=A-\sigma \cdot I . \quad \text { Therefore }$
 eigenvalues which are close to σ are rapidly diminished and the other eigenvalues are rapidly enhanced. The standard value is an approximate value of $0.5 *(E(N V+1)+E(N))$. |
| E | Real type
 One-dimens
 ional
 array | Input/ou
 tput | The approximate value of the eigenvalue whose absolute value is the 1 th largest of all is input to $\mathrm{E}(\mathrm{I})$. The eigenvalue whose absolute value is the Ith largest of all is output to E(I). $\|E(1)\|>\|E(2)\|>\cdots \cdots \cdot\|E(N E)\|$ |
| V | Real type
 Two-dimens
 ional
 array | Input/ou
 tput | Approximate ortho-normal vectors by the number specified by NV is input. The eigenvector which corresponds to $\mathrm{E}(\mathrm{I})$ is normalized to $v^{T} v=1$ and output. |
| ILL | Integer
 type | Output | ILL=0: Normal termination
 ILL=200: Conversion does not occur because of poor precision of approximate vectors.
 ILL=300: The argument is abnormal. |
| W1~W2 | Real type
 One-dimens
 ional
 array | Hork area | The size must be N or more. |

| Argument | Type and
 Kind (*1) | Attribut
 e | Content |
| :--- | :--- | :--- | :--- |
| U | Real type
 Two-dimens
 ional | Work
 area | The row size must be NHAX or more and the column size must be
 NV or more. |

(3) Calculation method

An approximate solution is iteratively improved according to the following procedure:

1. Approximate eigenvector matrix V_{0} is prepared.
2. V_{0} is pre-multiplied by $A=A-\sigma I$ to generate X. At this time, the absolutely dominant eigenpairs of A^{\prime} are enhanced by the principle of the power method. $X=A \cdot V_{0}=(A-\sigma I) V_{0}$
3. $G=V_{0}{ }^{T} X$ is generated.
4. Eigenvector matrix X and eigenvalue matrix $\quad E_{0}^{\prime}{ }_{0}$ of G are determined. $\quad W^{T} G W=E_{0}^{\prime}$
5. $Y=X W$ is generated.
6. $S=Y^{T} Y$ is generated.
7. S is Cholesky-decomposed. $S=Z^{\top} Z$
8. $V_{0}^{\prime}=Y Z^{-1}$ is generated. V_{0}^{\prime} is nearer V than V_{0}.
9. If permissible accuracy is reached, the calculation is finished with $V=V_{0}^{\prime}, E=E_{0}^{\prime} 0$. Conversely, if convergence does not occur, processing returns to 2 . with $V_{0}=V_{0}^{\prime}$. Here, I is a unit matrix with N rows and N columns, $\quad V_{0}, X, Y, V_{0}^{\prime}$ are matrices each with N rows and $N V$ columns, and $G, W ; S, Z$ are matrices each with $N V$ rows and $N V$ columns.
(4) Notes
10. NSJEND is faster than NSHOUD when (ITER $\times N V / N)<0.5$.
11. Like JENNFS and JENNFD of NUAPAC, these routines are also suitable for use when good approximate solutions are known.
12. These routines are also components of NICER.

Bibliography

1) A. Jennings; "Matrix Computation for Engineers and Scientists", John wiley and Sons, London (1977)
2) B. Parlett; "The Symmetric Eigenvalue Problem", Prentice-Hall, New Jersey (1980)
3) Yoshitaka Beppu and Ichizo Ninomiya; "Fast Eigenvalue Routine Package NICER," Kyoto University Data Processing Center Report, Vol.13, No. 5, pp. 378-386 (1980)
(1987.06: 16) (1987.08.08)

RHBSVS/D (Eigenvalue analysis of symmetric band matrices by Lutishauser-Bisection method)

Eigenvalue Analysis for Symmetric Band Matrices by Lutishauser-Bisection Method

| Programm
 ed by | Ichizo Ninomiya; Revised in April 1977; April 1981 |
| :--- | :--- |
| Format | Subroutine language; FORTRAN Size; 250 lines each |

(1) Outline

RHBSUS or RHBSUD reduces a symmetric band matrix into a tridiagonal from using the
Lutishauser-Schwar2 method, and applies the bisection and inverse iteration methods to it to perform eigenvalue analysis.
(2) Directions

CALL RHBSUS/D (A, KA, N, NB, E, NE, V, KV, NV, VW, EPS, H, ILL)

| Argument | Type and kind (*1) | Attribut
 e | Content |
| :---: | :---: | :---: | :---: |
| A | Real type Two-dimens ional array | Input | The lower left half including the diagonal of the symmetric band matrix is turned to a rectangle as shown in the figure. That is, elements I and J of the matrix are put in A(I-J+1, J). |
| KA | Integer type | Input | Adjustable dimension of A (value of the first subscript in array declaration). $K A \geqq N B$ |
| N | Integer type | Input | Order of A . $\quad \mathrm{N} \geq 3$ |
| NB | Integer type | Input | Half band width of A. $N B \geqq 2$ |
| E | Real type One-dimens ional array | Output | Eigenvalues are output in the order of size. If NE>O, in descending order, and in ascending order otherwise. |
| NE | Integer type | Input | The number of eigenvalues to be determined is indicated by the absolute value. When NE>0 (NE<O), they are counted in algebraically descending (ascending) order from the maximum value (minimum value). NE $\neq 0$ |

*1 For double precision subroutines, real types are all changed to double precision real types.
(3) Calculation method

Symmetric band matrix A is transformed into the tridiagonal matrix $T=R^{T} A R$ by
Lutishauser-Schwarz orthogonal transformation R. The eigenvalue problem $T u=\lambda u$ for T is solved by the bisection and inverse iteration methods. The eigenvector of A is determined as $v=R u$ from the eigenvector u of T.

The Lutishauser-Schwarz method has the advantage that the calculation can be performed within the interior of a band matrix.

On the other hand, however, it has the disadvantage that when band width expands, quantity of calculation will increase. Furthermore, to determine eigenvectors, transformation matrix R must be saved. This requires a square matrix of $N \times N$ where N is the order. From the above viewpoint, the significance of the existence of this routine is to calculate only eigenvalues of
high dimensional matrices with small band width.

(4) Notes

1. If no eigenvectors need to be calculated, any value can be assigned to V and $V W$ as far as the condition $K V \geqq N$ is satisfied.
2. If it is desired to save storage capacity when eigenvectors are calculated, A and V can be connected by an equivalence statement. This is because A and V are not used at the same time.
(1987. 06. 16) (1987. 08.08)

Eigenvalue Analysis for Real Symmetric Band Matrices by Rutishauser-QR Rethod

| Programm
 ed by | Ichizo Ninomiya; April 1977 |
| :--- | :--- |
| Format | Subroutine language; FORTRAN Size; 150 and 152 lires respectively |

(1) Outline

RHQRVS or RHQRVD reduces real symmetric band matrix B to a tridiagonal matrix by using the
Lutishauser-Schwarz method, and applies the $Q R$ method to this to perform eigenvalue analysis.
(2) Directions

CALL RHaRVS/D (B, KB, N, NB, V, KV, E, F, EPS, IND)

| Argument | Type and kind (*1) | Attribut
 e | Content |
| :---: | :---: | :---: | :---: |
| B | Real type
 Two-dimens
 ional
 array | Input | The lower left half including the diagonal of the real symmetric band matrix is reduced to a rectangle shown in the figure. It is not preserved. |
| KB | Integer type | Input | Value of the first subscript in array declaration of B. $K B \geqq N B$ |
| N | Integer type | Input | Order of B (number of columns). This is also the sizes of E and F . $3 \leqq N$ |
| NB | Integer type | Input | Half band width of B (number of rows). $3 \leqq \mathrm{NB} \leqq \mathrm{N}$ |
| v | Real type Two-dimens ional array | Output | The eigenvector which corresponds to the eigenvalue (J) is normalized to length 1 and output to column J. |
| KV | Integer type | Input | Value of the first subscript in array declaration of $A . \quad K V \geq N$ |
| E | Real type
 One-dimens
 ional
 array | Output | Eigenvalues are arranged in algebraically descending order from the maximum one and output sequentially. |

| Argument | Type and
 kind ($* 1)$ | Attribut
 e | | |
|---|---|---|---|---|
| F | Real type
 One-dimens
 ional
 array | Work
 area | One dimensional array with N elements. |
| EPS | Real type | Input | Tolerance for convergence test. When B is turned to
 tridiagonal T, this argument is used in the form of
 IIT $\\| \cdot E P S / N . \quad$ EPS >0 |
| IND | Integer
 type | Input/ou
 tput | When used for input, this argument has the following meanings:
 IND=0: Eigenvectors are not calculated.
 IND $\neq 0:$ All eigenvectors are calculated.
 When used for output, this argument has the following
 meanings:
 IND=0: The calculation ended normally.
 IND=30000: The limits on the input argument are violated.
 Note: Do not use a constant as the actual argument for this
 argument. |

*1 For double precision subroutines, real types are all changed to double precision real types.

(3) Performance

Tridiagonalization by Householder's mirror image transformation is a very excellent method. However, it has one problem: even if a real symmetric band matrix is given, it is expanded to a full matrix during transformation. The Lutishauser-Schwarz method can solve the above problem because it reduces a band matrix to a tridiagonal without expanding it from the original position. However, it requires more quantity of calculation as band width is increased. Furthermore, to determine eigenvectors, it is necessary to calculate an orthogonal matrix which represents transformation from a band matrix to a tridiagonal matrix. This requires an additional square matrix of $N \times N$ where N is the order. From the viewpoint of the above, the significance of the existence of this routine is to calculate eigenvalues of big matrices with relatively small band width.

(4) Note

If no eigenvectors need to be determined, any value can be assigned to V as far as $K V \geqq N$ is satisfied.
(1987.06. 17)

SVDS/D/Q (Singular value decomposition)

Singular Value Decomposition

| Programm
 ed by | Ichizo Ninomiya; March 1979 | |
| :--- | :--- | :--- |
| Format | Subroutine language; FORTRAN | Size; 205 lines each |

(1) Outline

SVDS, SVDD, or SVDQ uses $m \times n$ orthogonal matrix $U, n \times n$ orthogonal matrix V, and $n \times n$ diagonal matrix Σ to decompose $m \times n$ matrix $A(m \geqq n \geqq 1)$ into

$$
A=U \Sigma V^{T}
$$

Where, $\quad U^{T} U=V^{T} V=V V^{T}=I_{n}$ (n-degree unit matrix),
$\Sigma=\operatorname{diag}\left(q_{1}, q_{2}, \cdots, q_{n}\right)$
\boldsymbol{U} consists of \boldsymbol{n} orthogonal eigenvectors corresponding to the firstlargest \boldsymbol{n} eigenvalues of $A A^{T}$, and V is made up of the orthonormal eigenvectors of $A^{T} A$. The diagonal elements of Σ are the positive square root of the eigenvalues of $A^{T} A$ and arranged such that

$$
q_{1} \geqq q_{2} \geqq \cdots \geq q_{n} \geqq 0
$$

The rank of A is given by the number of q_{i} which are not 0 .
(2) Directions

CALL SVDS/D/Q(A, KA, M, N, ISH, Q, U, KU, V, KV, H, ILL)

| Argument | Type and
 kind (*1) | Attribut
 e | Content |
| :--- | :--- | :--- | :--- |
| A | Real type
 Two-dimens
 ional
 array | Input | Matrix subjected to singular value decomposition. The value
 is preserved unless this argument is used as a U or V storage
 area. |
| KA | Integer
 type | Input | Value of the first subscript in array declaration of A. KA $\geqq M$ |
| M | Integer
 type | Input | Number of rows of $A . \quad M \geqq N$ |

| Argument | Type and kind (*1) | Attribut
 e | Content |
| :---: | :---: | :---: | :---: |
| N | Integer type | Input | Number of columns of A. $N \geq 1$ |
| ISW | Integer type | Input | $0 \leq I S H \leq 3$
 ISH=0: Neither U nor V is calculated.
 ISW=1: Only V is calculated.
 $I S W=2:$ Only U is calculated.
 IS $\mathrm{W}=3$: Both V and V are calculated. |
| 0 | Real type One-dimens ional array | Output | Singular values are output in descending order from the largest one. One-dimensional array of size N. |
| U | Real type Two-dimens ional array | Output | Transformation matrix U . This can be written over A . Array with M rows and N columns. |
| KU | Integer type | Input | Value of the first subscript in array declaration of U . KU |
| V | Real type
 Two-dimens
 ional
 array | Output | Transformation matrix V. This can be written over A. Array with N rows and N columns. |
| KV | Integer type | Input | Value of the first subscript in array declaration of V. $\mathrm{KV} \geq \mathrm{N}$ |
| W | Real type One-dimens ional array | Hork
 area | One-dimensional array of size N . |
| ILL | Integer type | Output | ILL=0: Normal termination
 ILL=20000: Singular value decomposition does not converge in 30N or more iterations.
 ILL=30000: The argument exceeded the limit. |

*1 For double precision subroutines, real types are all changed to double precision real types.
(3) Performance

He experimented with an 8×5 matrix of rank 3 with singular values $\sqrt{1248}, 20, \sqrt{384}, 0,0$ given on page 418 in the bibliography ${ }^{1)}$. The precision of the singular value Q and transformation matrix V (the two last columns are two independent solution vectors of homogeneous linear equation $A x=0$) obtained by SVDS was about six decimal digits.
(4) Example

The program to examine the above test is as follows.

| 1 | | DIMENSION $A(8,5), \mathrm{U}(8,5), \mathrm{V}(5,5), Q(5), W(5), R(5)$ |
| :---: | :---: | :---: |
| 2 | | $M=8$ |
| 3 | | $N=5$ |
| 4 | | $K A=8$ |
| 5 | | $K U=8$ |
| 6 | | $K V=5$ |
| 7 | | $I S W=3$ |
| 8 | | $\mathrm{R}(1)=S Q R T(1248$, |
| 9 | | $R(2)=20$, |
| 10 | | $R(3)=S Q R T(384$, |
| 11 | | $R(4)=0$, |
| 12 | | $\mathrm{R}(5)=0$, |
| 13 | | $\operatorname{READ}(5,500)((A)(I, J), J=1, N), I=1, M)$ |
| 14 | 500 | FORMAT (5F4,0) |
| 15 | | CALL SVDS (A,KA,M,N,ISW, Q, U, KU, V, KV,W,ICON) |
| 16 | | $\begin{aligned} & \text { WRITE(G,GOO) M,N,ISW,EPS,ICON,((A(I,J),J=1,N),I=1,M)} \\ & *,(Q(J), R(J), J=1, N),((U(I, J), J=1, N), I=1, M) \\ & * /((V(I, J), J=1, N), I=1, N) \end{aligned}$ |
| 17 | 600 | FORMAT (1H1///10X,'M=',I2,2X,'N=',I2, $2 \mathrm{X}, \mathrm{I}$ ISW $=1, I 2$ *, 2 X, 'EPS $=1,1 \mathrm{PE} 10,2,2 \mathrm{X}, \mathrm{ICON}=1, \mathrm{I} 6 / / 8(10 \mathrm{X}, 5 \mathrm{E} 13,5 /)$ */5(10X,2E13,5/)/8(10X,5E13,5/)/5(10X,5E13,5/)) |
| 18 19 | | STOP END |

(5) Notes

1. Even when $M<N, A=U \Sigma V^{T}$ is also obtained if A^{T} is input instead of A, M is replaced by N, U is replaced by V.
2. Singular value decomposition is a very useful method for matrix A which is of ill condition or suffers a rank deficiency. But its weak point is the need for large quantity of calculation. Therefore, it is desirable to avoid calculating U and V unless they are needed.
3. U or V can be written over A. So, if A need not be retained, it is preferable to write the same data as A as U or V to save the storage capacity.
4. Because the special subroutines are prepared for generalized inverse matrices and least squares minimal norm solutions, select most suitable one for each case.

Bibliography

1) G. H. Golub, C. Reinsch; "Singular Value Decomposition and Least Squares Solutions",

Numer ische Mathematik, 14, pp. 403-420, (1970)
(1987.06. 16) (1987.08. 21)
5. Polynomial equation and nonlinear equation

BROYDS/D (Solution of systems of nonlinear equations by Broyden's method)

Solution of Systems of Nonlinear Equations by Broyden's Method

| Programm
 ed by | Ichizo Ninomiya; April 1977 |
| :--- | :--- |
| Format | Subroutine language; FORTRAN |

(1) Outline

BROYDS and BROYDD are subroutine subprograms to solve non-linear equations
$f_{i}\left(x_{1}, \cdots, x_{n}\right)=0(i=1,2, \cdots, n)$ using the Broyden's iteration method when an initial solution vector is given.
(2) Directions

CALL BROYDS/D (X, N, H, KM, RN, LP, NF, BPS, FM, ILL)

| Argument | Type and
 kind (*1) | Attribut
 e | Content |
| :--- | :--- | :--- | :--- |
| NF | Integer
 type | 0utput | Number of function calls. |
| EPS | Real type | Input | Convergence criterion. EPS>0 |
| FH | Real type | Output | Square root of mean square residuals of equations. |
| ILL | Integer
 type | Output | ILL=0: Normal end.
 ILL=1: No convergence even when NF>LF
 ILL=30000: The input argument does not satisfy the
 requirements. |

*1 For double precision subroutines, all real types are changed to double precision real types.
(3) Calculation method

Refer to bibliography ${ }^{1)}$.
(4) Example

The main part of a program to solve the Freudenstein-Roth's problem is shown below.

```
DIMENSION H(2,2),X(2)
EXTERNAL FREUDE
KH=2
N=2
LF=1000
EPS=1.E-5
X(1)=15.0
X(2)=3.0
CALL BROYDS(X,N,H,KH,FREUDE,LF,NF,EPS,FM,ILL)
    :
END
SUBROUTINE FREUDE(X,F)
DIMENSION X(2),F(2)
F(1)=X(1)-13.+((5.-X(2))*X(2)-2.)*X(2)
F(2)=X(1)-29.+((X(2)+1.)*X(2)-14.)*X(2)
RETURN
END
```

(5) Notes

1. Because non-linear equations generally have a lot of solutions, it must be checked to see if the obtained solution is really the desired one. Good initial values must be selected to ensure
convergence to the target solution.
2. The minimization problem when the minimum value (or the maximum value) is an extremum becomes non-linear equations concerning the gradient vector. On the contrary, non-linear equations $f_{i}=0(i=1, \cdots, n)$ become a minimization problem if $\sum f_{i}^{2}$ is considered. This must be taken into consideration to select a calculation method and program depending on the case.
3. This routine internally calls inverse matrix routine MINVS or MINVD.

Bibliography

1) C. G. Broyden; "A Class of Methods for Solving Nonlinear Simultaneous Equations", Math. Comp. . Vol. 19, pp. 577-593 (1965)
(1987.06. 16) (1987.08.07)

BROYDV/W (Solution of systems of nonlinear equations by Broyden's method - vector version-)

Solution of Systems of Nonlinear Equations by Broyden's Method -Vector Version -

| Programs
 ed by | Ichizo Ninomiya and Yasuyo Hatano; March 1985 |
| :--- | :--- |
| Format | Subroutine language; FORTRAN Size; 153 and 154 lines respectively |

(1) Outline

BROYDV and BROYDA are the subroutine subprograms used to solve non-linear simultaneous equations $f_{i}\left(x_{1}, \cdots, x_{n}\right)=0(i=1,2, \cdots, n)$ by the Broyden's iteration method when an initial value is given. BROYDV is for single precision and BROYOH is for double precision.
(2) Directions

CALL BROYDV/H (X, N, H, RH, RN, LP, NF, ERS, FM, TH, H, ILL)

| Argument | Type and kind (*1) | Attribut
 e | Content |
| :---: | :---: | :---: | :---: |
| FN | Subroutine | Input | Subroutine in the form of $\operatorname{FN}(X, Y)$, which calculates vector Y consisting of N equation values when position vector X is given. The real argument for this argument needs to be declared under EXTERNAL in each program that calls this routine. |
| LF | Integer type | Input | Upper limit of the number of times the function subroutine is called. LF>N+1 |
| NF | Integer type | Output | Number of times the function subroutine is called. |
| EPS | Real type | Input | Tolerance for convergence test. EPS>0 |
| FH | Real type | Output | Square root of mean square residuals of equations. |
| IW | Integer
 type
 one-dimens
 ional
 array | Work area | One-dimensional array with N elements. |
| W | Real type
 One-dimens
 ional
 array | Work area | Size $4 * \mathrm{~N}$ is required. |
| ILL | Integer type | Output | ILL=0: Normal termination.
 ILL=1: Convergence does not occur even when NF>LF.
 ILL=30000: The input arguments violate the limits for them. |

*1 For double precision subroutines, real types are all changed to double precision real types.
(3) Calculation method See the bibliography ${ }^{1)}$.
(4) Example

The major part of a program that solves the Freudenstein-Roth problem (solution: $X(1)=5.0$, $X(2)=4.0)$ is shown below:

```
DIMENSION H(2,2),X(2),IW(2),W(4,2)
EXTERNAL FREUDE
KH=2
N=2
LF=1000
EPS=1.E-5
X(1)=15.0
X(2)=3.0
CALL BROYDV(X,N,H,KH,FREUDE,LF,NF,EPS,FM,IW,W,ILL)
    :
END
SUBROUTINE FREUDE (X,F)
DIMENSION X(2),F(2)
F(1)=X(1)-13.+((5.-X(2))*X(2)-2.)*X(2)
F(2)=X(1)-29.+((X(2)+1.)*X(2)-14.)*X(2)
RETURN
END
```

(5) Notes

1. Because non-linear simultaneous equations usually have a lot of solutions, it is needed to check to see if the obtained solution is the target solution. A proper initial value must be given to make calculation converge to the target solution.
2. A minimization problem for a minimum value that is an extremal value (not a boundary value) amounts to non-linear simultaneous equations for gradient vectors. On the contrary, non-linear simultaneous equations $f_{i}=0(i=1, \cdots, n)$ amount to a minimization problem in terms of $\sum f_{i}^{2}$. This should be considered to select a calculation method and program most appropriate to the case in equation.
3. This routine internally calls inverse matrix routine MINVV or MINVW.

Bibliography

1) C. G. Broyden; "A Class of Methods for Solving Nonlinear Simultaneous Equations, " Math. Comp., Vol.19, pp. 577-593 (1965)
(1987.06.22) (1987.08.07) (1988.06.01)

FLPOWS/D (Minimization of functions by Davidon-Fletcher-Powell method)

Minimization of Functions by Davidon-Fletcher-Powell Method

| Programme
 ed by | Ichizo Ninomiya; July 1977 |
| :--- | :--- |
| Format | Subroutine language; FORTRAN Size; 92 and 105 lines respectively |

(1) Outline

FLPOHS and FLPOHID are subroutine subprograms which determine the minimum point of a multivariable function by the Davidon-Fletcher-Powell method when an initial value is given. In addition to a function value, a gradient vector value needs to de given.
(2) Directions

CALL FLPOWS/D (X, N, B, KB, FUND, GRAD, LP, NF, FLD, ERS, FM, ILL)

| Argument | Type and
 kind ($* 1)$ | Attribut
 e | Content |
| :--- | :--- | :--- | :--- |
| NF | Integer
 type | Output | Number of the function calls (The number of calls for FUNC
 and GRAD are the same.) |
| FLB | Real type | Input | Lower limit of minimum value of function. |
| EPS | Real type | Input | Tolerance for convergence test. EPS>0 |
| FH | Real type | Output | Minimum value of function. |
| ILL | Integer
 type | Output | ILL=0: Normal termination.
 ILL=1: Convergence does not occur even when NF becomes
 greater than LF.
 ILL=30000: The input argument does not satisfy the limits for
 them. |

*1 For double precision subroutines, real types are all changed to double precision real types.
(3) Calculation method

Refer to bibliography ${ }^{1), 2 \text {. } . ~}$
(4) Example

The major part of a program for solving the Rosenbrock problem (minimum point: $X(1)=1.0$. $X(2)=1.0)$ is shown below:

```
DIMENSION X(2),B(2,2)
EXTERNAL ROSEN,GROSEN
N=2
KB=2
LF=1000
FLB=0.
EPS=1.E-5
X(1)=-1.2
X(2)=1.0
CALL FLPOWS(X,N,B,KB,ROSEN,GROSEN,LF,NF,FLB,EPS,FM,ILL)
    :
END
FUNCTION ROSEN(X)
DIMENSION X(2)
ROSEN=100.*(X(1)*X(1)-X(2))**2+(X(1)-1.)**2
RETURN
END
SUBROUTINE GROSEN(X,G)
DIMENSION X(2),G(2)
G(2)=200.*(X(2)-X(1)*X(1))
G(1)=2.*(X(1)-1.-G(2)*X(1))
RETURN
```

END
(5) Notes

1. This routine can generally obtain a local minimum value only. A proper initial value is required to secure a true minimum value.
2. If it is impossible or very hard to calculate gradient vectors, a method which does not require calculation of gradient vectors should be used.

Bibliography

1) R. Fletcher \& M. J. D. Powell; "A Rapidly Convergent Descent Method for Minimization," Computer Journal, Vol. 6, pp. 163-168 (1963)
2) P. J. Reddy, H. J. Zimmermann \& Asghar Hussain; ${ }^{\text {² }}$ Numerical Experiments on DFP-Method, A Powerful Function Minimization Technique, " Journal of Computational \& Applied Mathematics, Vol. 1, pp. 255-265 (1975)
(1987.06. 17)

GJMNKS/D/Q (Solution of polynomial equations with real coefficients by Garside-Jarrat-Mack method)

Solution of Polynomial Equations with Real Coefficients by Garside-Jarrat-Mack Method

| Programm
 ed by | Ichizo Ninomiya; April 1977 | |
| :--- | :--- | :--- |
| Format | Subroutine language; PORTRAN
 respectively | Size; 128, 130, and 130 lines |

(1) Outline

GJMNKS, GJMNKD, and GJMNKA are single, double, and quadruple precision subroutines respectively used to determine all roots of a polynomial equation with real coefficients. The Garside-Jarrat-Mack method ${ }^{1)}$ is widely acknowledged as an effective method for solution of polynomial equations with complex coefficients. These subroutines are created by Ninomiya and Kadowaki ${ }^{2}$) by improving it as a solver of equations with real coefficients. These subroutines combine robustness of the original method and the speeds realized by using real numbers for complex calculation. They also incorporate the Cardano's and Ferrari's methods for solutions of third- and fourth-degree equations. They can thus be recommended as general-purpose polynomial equation routines.
(2) Directions

CALL GJMNKS/D/Q(A, N, X, Y, ILL)

| Argument | Type and
 kind (*1) | Attribut
 e | Content |
| :--- | :--- | :--- | :--- |
| A | Real type
 One-dimens
 ional
 array | Input | Coefficients of a polynomial equation is input in descending
 order of degree. Input values are destroyed.
 $A(1) \neq 0$ |
| N | Integer
 type | Input | Degree of polynomial equation. $N \geqq 1$ |

| Argument | Type and
 kind ($* 1)$ | Attribut
 e | Content |
| :--- | :--- | :--- | :--- |
| X | Real type
 One-dimens
 ional
 array | Output | The real parts of roots of a polynomial equation are output.
 Roots are generally determined in ascending order of their
 absolute values and stored in reverse order like $X(N)$,
 $X(N-1) \ldots$ |
| Y | Real type
 One-dimens
 ional
 array | Output | The imaginary parts of roots of a polynomial equation are
 output. Order of computation and storage method are same as
 With X. |
| ILL | Integer
 type | Output | ILL=0: Normal termination.
 ILL=30000: N<1 or $A(1)=0$.
 ILL=K: Convergence does not occur even after 200 iterations
 during processing of a def lated Kth-degree equation. |

*1 For double (quadruple) precision subroutines, real types are all changed to double (quadruple) precision real types.
(3) Calculation method

These subroutines inherit the advantage of the original method that the convergence rate basically does not change even for multiple roots and adjacent roots. This explains why they practically never fail to solve equations and provide as accurate roots as the condition of equation permits. In this sense, they can be said very robust.
(4) Notes

1. Polynomial equations of ten fall in ill conditions. Therefore, unless they are in very low degrees, it is safe to use the double precision routine GJMNKD.
2. To solve second-, third-, or fourth-degree equations, use of each specific routine is more advantageous than these routines.

Bibliography

\author{

1) G. R. Garside, P. Jarrat and C. Mack; "A New Method for Solving Polynomial Equations, " Computer Journal, Vol. 11 (1968)
}
2) Ichizo Ninomiya and Kohei Kadowaki; "A solution of polynomial equations with real
coefficients, " Preprints of the 16 th meeting of Information Processing Soc. of Japan, p. 445 (1975)
(1987.06.17)

Minimization of Functions by Simplex Method

| Programm
 ed by | Ichizo Ninomiya; July 1977 |
| :--- | :--- |
| Fora | Subroutine language; FORTRAN |

(1) Outline

MINSXS or MINSXD subroutine determines the minimum point of a multivariate function by the
Nedler-Mead's simplex method when an initial value is given. It requires only function values.
The function values just need to be continuous but need not be smooth.
(2) Directions

CALL MINSXS/D (X, N, P, KP, FUNC, LP, NF, EPS, FM, ILL)

| Argument | Type and kind (*1) | Attribut e | Content |
| :---: | :---: | :---: | :---: |
| X | Real type One-dimens ional array | Input/ou tput | When an initial value for a minimum point is given, the minimum point is output. |
| N | Integer type | Input | Number of variables, or number of elements of $\mathrm{X} .00<N \leqq 100$ |
| P | Real type
 Two-dimens
 ional
 array | Hork area | N rows and $N+1$ columns. The coordinates of the $N+1$ points which form a simplex are entered in these individual columns. The initial simplex is made of initial value X and N points in which individual coordinate elements of X are increased by 10% (increased by 0.1 if the element is 0). Instead of this, however, the user can prepare it before calling the routine. The option can be specified by argument NF. |
| KP | Integer type | Input | Value of the first subscript in array declaration of P. KP \geqq N |
| FUNC | Real type Function subprogram | Input | Target function for minimization. The user prepares a function subprogram in the form of FUNC(X) as the actual argument for it. This function name must be declared in an EXTERNAL statement. |
| LF | Integer type | Input | Upper limit of the number of evaluations of function. LF>N |

| Argument | Type and
 kind ($* 1)$ | Attribut
 e | Content |
| :--- | :--- | :--- | :--- |
| NF | Integer
 type | Input/ou
 tput | Input: NF $\geqq 0$ means that formation of the initial simplex is
 left to the routine, and NF<0 means that the initial simplex
 is prepared by the user. Output: The number of evaluations
 of the function is output. Because this argument is used for
 both input and output, do not specify a constant as the
 actual argument. |
| EPS | Real type | Input | Tolerance for convergence test. EPS>0 |
| FH | Real type | Output | Minimum value of function. |
| ILL | Integer
 type | Output | ILL=O: Normal termination
 ILL=1: Convergence does not occur even if NF becomes greater
 than LF.
 ILL=30000: The input argument does not satisfy the
 restrictive conditions. |

*l For double precision subroutines, real types are all changed to double precision real types.
(3) Method of calculation Refer to bibliography ${ }^{1)}$.
(4) Example

The major part of a program for solving the Rosenbrock problem (minimum point: $\mathrm{X}(1)=1.0, \mathrm{X}(2)$
$=1.0$) is shown below:

```
DIMENSION P \((2,3), X(2)\)
    EXTERNAL ROSEN
    \(\mathrm{N}=2\)
    \(K P=2\)
    \(N F=1\)
    \(L F=1000\)
    \(E P S=1 . E-5\)
    \(X(1)=-1.2\)
    \(X(2)=1.0\)
    CALL MINSXS (X, \(N, P, K P, R O S E N, L F, N F, E P S, F M, I L L)\)
        :
    END
    FUNCTION ROSEN(X)
    DIMENSION X(2)
    ROSEN \(=100 . *(X(1) * X(1)-X(2)) * * 2+(1 .-X(1)) * * 2\)
    RETURN
    END
```

(5) Notes

1. This routine can generally obtain local miniaum values only. A proper initial value is required to secure a true minimum value.
2. Because of slow convergence, this routine is not suitable for problems of higher dimension.
3. The function name as the actual argument must be declared in an EXTERNAL statement in each program which calls this routine.
4. For a smooth function, the calculation of whose gradient is easy, it is more advantageous to use subroutine FLPOWS using the DFP method than to use this routine.
5. When this routine is used for solving non-linear simultaneous equations $f_{1}=0, f_{2}=0, \cdots, f_{n}=0$ as a minimization problem, $F=\sum\left|f_{i}\right|$ is preferable rather than $F=\sum f_{i}^{2}$.

Bibliography

1) J. A. Nedler \& R. Mead; "A Simplex Method for Function Minimization", Computer Journal, Vol. 7, pp. 308-312 (1965)

NOLEQS/D/Q (Solution of Nonlinear Equations)
Solution of Nonlinear Equations

| Programmed
 by | Ichizo Ninomiya, March 1983
 Format |
| :--- | :--- |
| Subroutine language: FORTRAN; size: 55, 56, and 56 lines
 respectively | |

(1) Outline

If an interval of existence is given, a root of a given nonlinear equation in the interval is obtained.
(2) Directions

CALL NOLEQS/D/Q (A, B, FUN, EPS, NMAX, X, FX, N, ILL)

| Argument | Type and
 kind (*1) | Attr
 ibut
 e | Content |
| :---: | :---: | :---: | :---: |
| A | Real type | Inpu t | Left end of an interval of existence. |
| B | Real type | Inpu
 t | Right end of an interval of existence. |
| FUN | Real, type
 function
 subprogram | Inpu
 t | A function program for computing $f(x)$ if the equation to be solved is $\mathrm{f}(\mathrm{x})=0$. The user must prepare it as a function subprogram. |
| EPS | Real type | Inpu
 t | Precision criterion for root. |
| NHAX | Integer type | Inpu
 t | Upper limit of number of evaluations of function FUN. NMAX $\geqq 3$ |
| X | Real type | Outp ut | Starting approximation for the root. |

| Argument | Type and kind (*1) | Attr
 ibut e | Content |
| :---: | :---: | :---: | :---: |
| FX | Real type | Outp ut | Value of $\mathrm{f}(\mathrm{x})$ for X . |
| N | Integer type | Outp ut | Number of evaluations of function PUN. |
| ILL | Integer
 type | Outp ut | ILL=0: Normal termination.
 ILL=20000: When convergence is not attained even if the function evaluation count reached NMAX.
 ILL $=30000$: When no root exists in the interval (A, B), or NMAX<3. |

*1 For double (quadruple) precision subroutines, all real types are changed to double (quadruple) precision real types.
(3) Calculation method

Refer to 1) in Bibliography.
(4) Example of use

This program is used to calculate the root in $(0, \pi)$ of the equation $f(x)=\cos x-x=0$.
C TEST FOR NOLEQS
EXTERNAL FUN
EPS=1.E-5
NMAX=100
$A=0.0$
$B=1.5708$
CALL NOLEQS (A, B, FUN,EPS, NMAX,X,FX,N,ILL)
WRITE (6,600) $A, B, E P S, X, F X, N, I L L$
600 FORMAT(1H ,2E13.5,E11.3,E13.5,E11.3,2I6)
STOP
END
C FUNCTION SUBPROGRAM
FUNCTION FUN(X)
FUN=COS (X)-X
RETURN
END
(5) Notes

1. Because the calculation method of this routine is based on the bisection method, convergence
is assured.
2. Because the first or second inverse interpolation is used as required, convergence is fast.
3. The function $f(x)$ must be continuous, but need not be swooth.
4. It is more advantageous for algebraic equations to use the special-purpose subroutine GJMNKS/D.

Bibliography

1) D. B. Popovski; "A Note on King's Method for Finding a Bracketed Root", Computing Vol. 29, pp. 355-359 (1982)
(1987.06. 22) (1987.08.07) (1987.08.08)

NOLLS1 (Subroutine for non-linear least squares by quasi Newton method)

Subroutine for Nonlinear Least Squares by a Quasi-Newton Method

| Programm
 ed by | Kunio Tanabe and Sumie Ueda; March 1981 |
| :--- | :--- |
| Format | Subroutine language; FORTRAN Size; 772 lines |

(1) Outline

NOLLS1 obtains $x_{i}, i=1, \cdots, n$, which minimizes
$\sum_{j=1}^{m} f_{j}^{2}\left(x_{1} \cdots x_{n}\right)$
for the function $f_{j}\left(x_{1} \cdots x_{n}\right), j=1, \cdots, m$, which is nonlinear about the n number of variables $x_{i}, i=1, \cdots, n$, .

It is specially effective for problems involving a high degree of nonlinearlity.
The user is only required to prepare a subroutine (MODELF) to calculate the value of $f_{j}\left(x_{1}, \cdots, x_{n}\right), j=1, \cdots, m$, To obtain more accurate results, however, the user is also requested to prepare another subroutine MODELD which calculates the first order derivative $\partial f_{j} / \partial x_{i}$ for x_{i} of f_{j}.
(2) Directions

CALL NOLLS1 (MAXM, MAXN, M, N, X, ITMAX, NFEMAX, FTOL, XTOL, LDERIV, NPRINT, FF2, F, DF, ITER,
NFE, NDE, INFORM, XO, DX, FO, DFO, H, SL, D, S, Y, R, W1, W2, W3, W4)

| Argument | Type and
 kind (*1) | Attribut
 e | Content |
| :--- | :--- | :--- | :--- |
| MAXM | Integer
 type | Input | Adjustable dimension of DF (value of the first subscript in
 array declaration). MAXH $\geqq N$ |
| MAXN | Integer
 type | Input | Adjustable dimension of $H . \quad$ MAXN $\geqq N$ |

| Argument | Type and kind (*1) | Attribut
 e | Content |
| :---: | :---: | :---: | :---: |
| M | Integer type | Input | Number of nonlinear functions $f_{j}(\boldsymbol{x})$, m |
| N | Integer type | Input | Number of unknown parameters x_{i}, n |
| X | Real type One-dimens ional array | Input/ou tput | When an initial value of unknown parameter x_{i} is put, the final value is generated. $(i=1,2, \cdots, n)$ |
| ITHAX | Integer type | Input | Upper bound of the number of iterations. |
| NFEMAX | Integer type | Input | Upper bound of the number of times function evaluation can be done. |
| FTOL | Real type | Input | Convergence criterion concerning function value. If all values of $f_{j}(x)$ become FTOL or less, iteration ends. $0 \leqq$ FTOL |
| XTOL | Real type | Input | Convergence criterion concerning unknown parameter $\boldsymbol{x}_{\boldsymbol{j}}$. $0 \leqq$ XTOL |
| LDERIV | Integer type | Input | Specify whether to prepare subroutine MODELD which gives the first order derivative for x_{i} of $\boldsymbol{f}_{\boldsymbol{j}}$.
 1 : MODELD is used.
 0 : MODELD is not used.
 Even if LDERIV $=0$, dumay subroutine MODELD must be prepared. |
| NPRINT | Integer type | Input | Specify what is to be printed by each iterative calculation.
 0 : Nothing is printed.
 1: Sum of squares and x_{i} are printed.
 2: Sum of square and x_{i}, f_{j} are printed.
 3: Sum of squares and $x_{i}, f_{j}, \partial f_{j} / x_{i}$ are printed. |
| FF2 | Real type | Output | Value of sum of squares. |
| F | Real type One-dimens ional array | Output | Value of residual f_{j}. |
| DF | Real type Two-dimens ional array | Output | Value of first order derivative $\partial f_{j} / x_{i} . \quad \mathrm{DF}($ (MAXM, N) . |
| ITER | Integer type | Output | Number of actual iterations. |
| NFE | Integer type | Output | Actual number of function evaluations. |
| NDE | Integer type | Output | Number of evaluations of actual first order derivative (calling frequency of MODELD). |

| Argument | Type and kind (*1) | Attribut
 e | Content |
| :---: | :---: | :---: | :---: |
| INFORM | Integer type | Output | Information on the convergence state is generated. When INFORM = 1, the condition in (2) in item (3), "Calculation method ${ }^{\text {D }}$, is satisfied. Otherwise, INFORM $=0$. |
| $\mathrm{x} 0$ DX | Real type
 One-dimens
 ional
 array | Hork area | XO(N), DX (N) |
| FO | Real type One-dimens ional array | Hork area | $\mathrm{FO}(\mathrm{M})$ |
| DFO | Real type
 Two-dimens ional
 array | Hork
 area | DFO (MAXH, N) |
| H, SL | Real type Two-dimens ional array . | Work area | H (MAXN, N), SL (MAXN, N) |
| D, S, Y, R, W1, W2 | Real type One-dimens ional array | Work
 area | $D(N), S(N), Y(N), R(N), H 1(N), W 2(N)$ |
| W3, H4 | Real type
 One-dimens
 ional
 array | Hork
 area | W3 (H) , W4 (${ }_{\text {(}}$) |

(3) Calculation method

A local minimum value is determined based on the Biggs' quasi-Newton iteration method. The convergence test is controlled by the values of arguments XTOL and FTOL. Conversion ends when one of the following conditions are met:
(1) $\left|f_{j}(x)\right|<\max (F T O L, \varepsilon), j=1,2, \cdots, m$
(2) $\left.\mid f\left(x^{+}\right), \partial{ }_{j} f\left(x^{+}\right)\right) \mid \leqq \alpha_{1}\left\|f\left(x^{+}\right)\right\|_{2}\left\|\partial_{j} f\left(x^{+}\right)\right\|_{2}(j=1,2, \cdots, m)$

And, $\left\|x^{+}-x\right\|_{\infty} \leq \alpha_{2} \max \left(\left\|x^{+}\right\|_{\infty}, 1.0\right)$
where

$$
\alpha_{1}= \begin{cases}10^{-3} & \cdots \cdots(1) \tag{2}\\ 10^{-4 / 4} & \cdots \cdots(2)\end{cases}
$$

$\alpha_{2}=\max (X T O L, \beta)$

$$
\begin{aligned}
& \beta= \begin{cases}16 \varepsilon^{\frac{1}{2}} & \cdots \cdots(1) \\
32 \varepsilon & \cdots \cdots(2)\end{cases} \\
& \partial_{i} f_{j}(x)=\left(\partial f_{j} / \partial x_{i}\right)
\end{aligned}
$$

(1) is the treatment when f is given, and (2) is the treatment when f and $f \partial$ are given.
ε is a constant which depends on the machine, and x^{+}and x are the values of two continuing $x s$ in the iterative calculation.
(3) The number of iterations exceeds the upper bound value.
(4) The number of operations of function values exceeds the upper bound value.
(5) The value of x does not show a remarkable change.
(4) Example

```
    DIMENSION X(20),F(100),DF(100,20),X0(20),DX(20),FO(100)
    DIMENSION DFO(100,20),H(20,20),SL(20,20),D(20),S(20)
    DIMENSION Y(20),R(20),W1(20),W2(20),W3(100),W4(100)
    MAXM=100
    MAXN=20
    M=2
    N=2
    X(1)=-1.2
    X(2)=1.0
    ITMAX=100
    FTOL=1.0E-5
    XTOL=1.0E-5
    NFEMAX=5000
    LDERIV=1
    NPRINT=3
    WRITE(6,6000) MAXM,MAXN,M,N,ITMAX,NFEMAX,FTOL,XTOL,
    1
                                    LDERIV,NPRINT
    WRITE(6,6100) (X(J),J=1,N)
    CALL NOLLS1(
    -MAXM,MAXN,M,N,X,ITMAX,NFEMAX,FTOL,XTOL,LDERIV,NPRINT
    -,FF,F,DF,ITER,NFE,NDE,INFORM,XO,DX
    -,FO,DFO,H,SL,D,S,Y,R,W1,W2,W3,W4)
    WRITE(6,6200) ITER,NFE,NDE
6000 FORMAT(1H0,4X,'INITIAL VALUES',/1H /10X,'MAXM=',I4
    -,' MAXN=',I4,' M=',I2,' N=',I2,' ITMAX=',I4
    - ' NFEMAX=',I5/1H ,10X,'FTOL=',1PE16.7,' XTOL='
    -,E16.7/1H ,10X,'LDERIV=',I2,' NPRINT=',I2)
6100 FORMAT(1H ,10X,'X=',1P5E16.7/(1H ,10X,5E16.7))
6200 FORMAT(1HO,10X'ITERATION',I6/1H ,10X,'MODELF-CALL',I4
    -/1H ,10X,'MODELD-CALL',I4)
```

```
STOP
END
SUBROUTINE MODELF(M,N,X,F)
DIMENSION X(N),F(M)
F(1)=10.0*(X(1)*X(1)-X(2))
F(2)=1.0-X(1)
RETURN
END
SUBROUTINE MODELD(MAXM,M,N,X,DF)
DIMENSION X(N),DF(MAXM,N)
DF(1,1)=20.0*X(1)
DF (1,2)=-10.0
DF (2,1)=-1.0
DF(2,2)=0.0
RETURN
END
```

Output result
INITIAL VALUES
MAXM=100 MAXN=20 M=2N=2 ITMAX=100 NFEMAX= 5000 FTOL $=9.9999997 E-06 \quad X T O L=9.9999997 E-06$
LDERIV=1 NPRINT= 3
$X=-1.1999998 E+00 \quad 1.0000000 \mathrm{E}+00$
0
THE SUM OF SQUARES $=2.4199875 E+01$
$X=-1.1999998 E+00 \quad 1.0000000 E+00$
$F=4.3999863 E+00 \quad 2.1999998 E+00$
$D F=-2.3999985 E+01-1.0000000 E+01$
$-1.0000000 E+00 \quad 0.0$
1 THE SUM OF SQUARES = $2.1258163 E+01$
$X=-1.0189848 \mathrm{E}+00 \quad 6.2381876 \mathrm{E}-01$
$F=\quad 4.1451035 E+00 \quad 2.0189848 E+00$
$D F=-2.3999985 E+01-1.0000000 E+01$ $-1.0000000 E+00 \quad 0.0$
2
THE SUM OF SQUARES= $3.9795551 E+00$
$X=-9.9474800 E-01 \quad 9.9184918 \mathrm{E}-01$
$F=-2.3256540 E-02 \quad 1.9947472 E+00$
:
THE SUM OF SQUARES $=1.3669265 \mathrm{E}-08$
$X=9.9991751 E-01 \quad 9.9982673 E-01$
$F=8.2850456 E-05 \quad 8.2492828 \mathrm{E}-05$
$D F=1.9940781 E+01-1.0000000 E+01$
$-1.0000000 E+00 \quad 0.0$
21 THE SUM OF SQUARES = $3.6948222 E-13$
$X=\quad 9.9999988 \mathrm{E}-01 \quad 9.9999970 \mathrm{E}-01$
$F=\quad 5.9604645 \mathrm{E}-07 \quad 1.1920929 \mathrm{E}-07$
$D F=1.9998337 E+01-1.0000000 E+01$
$-1.0000000 E+00 \quad 0.0$
********************************* FINISHED******
ITERATION 21
MODELF-CALL 38
MODELD-CALL 21

Bibliography

1) Bartholomew-Biggs, M. C. ; "The estimation of Hessian matrix in nonlinear least squares problems with non-zero residuals", Mathematical Programming 12, pp. 67-80 (1977)
2) Kunio Tanabe; "Algorithm of nonlinear least squares method," Applied statistics, Vol. 9, No. 3,
pp. 119-140 (1981)
3) Kunio Tanabe and Sumie Ueda; "NOLLS1, A Fortran subroutine for nonlinear least squares by a quasi-Newton method", Computer Science Monographs, The Institute of Statistical Mathematics (1981).
(1987. 06. 17)

POLEQC/B/Z (Solution of a Polynomial Equation with Complex Coefficients)

Solution of a Polynomial Equation with Complex Cotfficients

| Programm
 ed by | Tsuyako Miyakoda and Tatsuo Torii, and revised by Ichizo Ninomiya, June 1984 |
| :--- | :--- |
| Format | Subroutine language: FORTRAN; size: 172 lines |

(1) Outline

POLEAC/B/Z obtains all the roots of an algebraic equation with complex coefficients using the evaluation of the degree-reduced type:
(2) Directions

CALL POLEAC/B/Z (AA, NN, Z, ERR, H, ILL)

| Argument | Type and
 kind (*1) | Attribut | Content |
| :--- | :--- | :--- | :--- |
| AA | Complex
 type
 One-dimens
 ional
 array | Input | The coefficients of algebraic equations are sequentially
 input in descending order of degree.
 AA(1) $\neq 0$ and size NN +1. |
| NN | Integer
 type | Input | Degree of algebraic equations. NN $\geqq 1$ |
| 2 | Complex
 type
 One-dimens
 ional
 array | Output | The roots of algebraic equations are output in the reverse of
 the searching order. |

| Argument | Type and
 kind (*1) | Attribut e | Content |
| :---: | :---: | :---: | :---: |
| ERR | Real type
 One-dimens
 ional
 array | Output | Error evaluation for each obtained solution. |
| W | Complex
 type
 One-dimens
 ional
 array | Hork area | The size is $3 \times(\mathrm{N}+1)$. |
| ILL | Integer
 type | Output | ILL=0: Normal termination.
 $L L=30000: N<1$ or $A A(1)=0$.
 ILL=K: The convergence may not occur even if the calculation is iterated $50(100,200)$ times when a reduced K-degree equation is processed. |

1* For double (quadruple) precision subroutines, all complex types are assumed to be double (quadruple) precision complex types.
(3) Calculation method

Refer to paper (2). The method of obtaining approximate roots is fundamentally the same as in paper (1). And the convergence is improved by distributing the roots of the reduced polynomial evenly inside and outside of a unit circle each time. We obtain the root existing inside of the circle setting the initial value of the iterate as $Z=0$. When the order of coefficients is reversed and the root of a polynomial whose order is reversed from the original one is obtained, a minus sign is added to ERR.
(4) Example of use


```
            COMPLEX*16 A(50),B(50),Z(50),X(50),T,WZ(200)
            DIMENSION ERR(50),TER(50)
            DO 60 N=1,10
            DO 10 I=1,N
            A(I+1)=0.DO
            XR=1.0-RANDOM(0)*2.0
            XI=1.0-RANDOM(0)*2.0
    10 X(I)=CMPLX(XR,XI)
    A(1)=1.DO
    DO 50 I=1,N
            DO 30 J=2,I+1
        30 B(J)=A(J)-A(J-1)*X(I)
    DO 40 J=2,I+1
    40 A(J)=B(J)
    5 0 ~ C O N T I N U E ~
    WRITE(6,1010)(I,X(I),I=1,N)
    CALL POLEQB(A,N,Z,WZ,ERR,ILL)
    DO 66 I=1,N-1
        K=I
        DO }70\textrm{J}=2,
        IF(CDABS(Z(J)-X(I)).LT.CDABS(Z(K)-X(I))) K=J
    70 CONTINUE
        T=Z(K)
        Z(K)=Z(I)
        Z(I)=T
        SS=ERR(K)
        ERR(K)=ERR(I)
        ERR(I)=SS
        66 CONTINUE
            WRITE(6,1030) ILL
            DO 55 I=1,N
            TER(I)=CDABS(Z(I)-X(I))
        55 WRITE(6,1040)I,Z(I),TER(I),ERR(I)
        6 0 ~ C O N T I N U E
1010 FORMAT(//21X,11HEXACT ROOTS//(I5,2D23.15))
1030 FORMAT(/25X,5HROOTS,28X,3HTER,8X,3HEST,5H ILL=,I4/)
1040 FORMAT(1H ,I4,2D23.15,2X,2D11.3)
        END
(5) Note
```

The obtained roots are stored in the reverse order. The error estimation of each root is for the degree-reduced polynominals. Therefore, the evaluation becomes rough gradually. By the by degree reduction, a cubic polynomial is finally obtained. The cubic equation is solved directly, so 0 is input to the error estimation for these 3 roots.

Bibliography

1) Tatsuo Torii and Tsuyako Miyakoda: A Root-finding Method for a Polynomial based upon the Cubic Heraitian Interpolation, Information Processing, Vol. 14, No. 4. pp. 253-259 (1973).
2) Tatsuo Torii and Tsuyako Miyakoda: A Root-finding Algorithm for a Complex Polynomial Based on the Taylor Expansion of Third Order, Information Processing, Vol. 15, No. 8, pp. 644-646 (1974).
(1987.06. 22)

POLESB/C (Solution of Polynomial Equation with Complex Coefficients by the Kodel of Electrostatic Field)

Solution of Polynomial Equation with Complex Coefficients by the Model of Electrostatic field

| Programm
 ed by | Tetsuya Sakurai, Tatsuo Torii, and Hiroshi Sugiura: September 1986 |
| :--- | :--- |
| Format | Subroutine language: FORTRAN; size: 255 lines |

(1) Outline

POLESB/C is a single or double precision subroutine for obtaining all the roots of polynomial equations with complex coefficients. Even if the roots include multiple and adjacent roots, they can be obtained in about the same calculation time as for single roots.
(2) Directions

CALL POLESB (A, N, Z, H, ILL)

| Argument | Type and
 kind (*1) | Attribut
 e | Content |
| :--- | :--- | :--- | :--- |
| A | Complex
 type
 One-dimens
 ional
 array | Input | The coefficients of polynomial equations should be entered
 sequentially starting from the highest order coefficient.
 Not retained. A(1) $\neq 0$ and size N+1. |
| N | Integer
 type | Input | Order of polynomial equations. N ≥ 1. |
| Z | Complex
 type
 One-dimens
 ional
 array | Output | The roots of polynomial equations are output. |
| W | Integer
 type
 one-dimens
 ional
 array | Work
 area | The size is $3 \times(N+1)$. |

| Argument | Type and
 kind (*1) | Attribut
 e | Content |
| :--- | :--- | :--- | :--- |
| ILL | Integer
 type | Output | ILL=0: Normal termination.
 ILL=30000: N<1 or $A(1)=0$.
 ILL=K: If no convergence occurs even if the routine is
 iterated 50 times while an reduced k-th order equation is
 processed. |

*1 All real and complex types should be of a double precision.
(3) Calculation method

This method solves the equation $f(z)=0$ by approximating $f^{\prime}(z) / f(x)$ using the rational expression obtained from the electrostatic field model. It has a quaternary convergence characteristic that is independent of the multiplicity of roots, and solves the quadratic equation for each iteration
(4) Example of use

This is an example of solving $f(z)=z^{5}-i z^{4}-3 z^{3}-3 i z^{2}+4 z-10 i$

```
*TEST FOR POLESB
    IMPLICIT REAL*8 (A-H,O-Z)
    COMPLEX*16 A(6),Z(5)
    REAL*8 W(18)
*
    N=5
    A(1)=(1.D0,0.D0)
    A(2)=(0.D0,-1.D0)
    A(3)=(-3.D0,0.D0)
    A(4)=(0.D0,-3.D0)
    A(5) = (4.DO,O.DO)
    A(6)=(0.D0,-10.D0)
*
    CALL POLESB(A,N,Z,W,ILL)
*
    WRITE (6,1000) (I, Z(I),I=1,N)
1000 FORMAT(' ',I10,2F25.15)
    STOP
    END
```

FORTRAN 77 COMPILER ENTERED
END OF COMPILATION
$\begin{array}{rr}1 & 0.000000000000000 \\ 2 & 2.000000000000000 \\ 3 & -2.000000000000000 \\ 4 & 1.000000000000000 \\ 5 & -1.000000000000000\end{array}$
1.000000000000000
1.000000000000000
1.000000000000000
-1.000000000000000
-1.000000000000000
END OF GO,SEVERITY CODE $=00$
(5) Note

The obtained roots are stored in the reverse order.

Bibliography

1) Tetsuya Sakurai, Tatsuo Torii, and Hiroshi Sugiura; Solution of Polynomial Equations by Electrostatic Field Interpretation, Proceedings of Symposium of 33-rd Information Processing Society of Japan, pp. 1849-1850, 1986
(1987.07. 28)

QUADRC/B/Z, CUBICC/B/Z, and QUARTC/B/Z (Solution of Low Order Polynomial Equations with Complex Coefficients)

Solution of Low Order Polynomial Equations with Complex Coefficients

| Programm
 ed by | Tsuyako Miyakoda and Tatsuo Torii, and revised by Ichizo Ninomiya,
 June 1984 |
| :--- | :--- |
| Format | Subroutine language: FORTRAN; size: 22,63, and 46 lines respectively |

(1) Outline
$\operatorname{QUADRC}(B, Z), \operatorname{CUBICC}(B, Z)$, and $\operatorname{QUARTC}(B, Z)$ are the single (double or quadruple) precision subroutine for calculating all the roots of quadratic, cubic, and quartic polynomial equations with complex coefficients.
(2) Directions

CALL QUADRC/B/Z (C, Z, ILL)
CALL CUBICC/B/Z (C, Z, ILL)
CALL QUARTC/B/Z (C, Z, ILL)

| Argument | Type and
 kind (*1) | Attribut
 e | Content |
| :--- | :--- | :--- | :--- |
| Complex | Input | Coefficient of polynomial equations. Coefficients should be
 input in descending order from the highest.
 One-dimens
 ional
 array | |

| Argument | Type and
 Kind (*1) | Attribut
 e | Complex
 type
 One-dimens
 ional
 array |
| :--- | :--- | :--- | :--- |
| Z | Output | Roots of polynomial equations are output. | |
| Integer | | | |
| type | Output | ILL=0: Normal termination.
 ILL=30000: C(1)=0. | |

*1 For double (quadruple) precision subroutines, all complex types should be double (quadruple) precision complex types.
(3) Calculation method

1. Quadratic equations conform to the root formulas and the relationship between the roots and coefficients.
2. Cubic equations conform to the modified Cardano method by Hirano ${ }^{(1)}$.
3. Quartic equations conform to the Ferrari method.

Bibliography

1) Sugayasu Hirano: Numerical Solution of Polynomial Equations by Floating Point Arithemetic, doctorial thesis, 1980.

QUADRS/D/Q/,CUBICS/D/Q,QUARTS/D/Q (Solution of low-order polynomial equations with real coefficients)

Solution of Low Order Polynomial Equations with Real Coefficients

| Programm
 ed by | Ichizo Ninomiya; April 1977 |
| :--- | :--- |
| Format | Subroutine language; FORTRAN
 Size; 24, 27, 27, 40, 41, 41, 46, 47, and 47 lines respectively |

(1) Outline

QUADRS (D, Q), CUBICS (D, Q), and QUARTS (D, Q) are single (double, quadruple) precision subroutines used to calculate all roots of the quadratic, cubic, and quartic equations (real coefficients) respectively.
(2) Directions

| Argument | Type and
 kind ($* 1)$ | Attribut
 e | Content |
| :--- | :--- | :--- | :--- |
| A | Real type
 One-dimens
 ional
 array | Input | Coefficients for a polynomial equation is input in descending
 order of the degree.
 A(1) $\neq 0$ |
| X | Real type
 One-dimens
 ional
 array | Output | The real parts of roots of the polynomial equation are
 output. |
| Y | Real type
 One-dimens
 ional
 array | Output | The imaginary parts of the roots of the polynomial equation
 is output. |
| ILL | Integer
 type | Output | ILL=0: Normal termination. \quad ILL=30000: $A(1)=0$. |

*1 For double (quadruple) subroutines, real types are all changed to double (quadruple) precision real types.
(3) Calculation method

1. For a quadratic equation, only the root with the larger absolute value is determined by the quadratic formula and the other root is determined by using the relation between the product of the two roots and the coefficients.
2. A cubic equation is solved by the Cardano's method.
3. A quartic equation is solved by the Ferrari's method.
(4) Note

Fifth or higher degree equations can be solved by using GJMNKS/D/Q
(1987.07.24) (1987.08.21)

RTFNDS/D (Solution of a nonlinear equation)

Solution of a Nonlinear Equation

| Programm
 ed by | Ichizo Ninomiya; August 1984 |
| :--- | :--- |
| Format | Subroutine language; PORTRAN Size; 274 lines each |

(1) Outline

RTPNDS and RTPNDD calculates all roots in the given interval of the given nonlinear equation.
(2) Directions

CALL RTFNDS (A, B, FUN, C, BPS, EPSZ, L, NR, RT, NF, BD, ILL)

| Argument | Type and
 kind (*1) | Attribut
 e | Content |
| :---: | :---: | :---: | :---: |
| RT | Real type
 One-dimens
 ional
 array | Output | NR roots are output in ascending order. This argument is also used as a work area during calculation. |
| NF | Integer type | Output | Number of evaluations of function $f(x)$ |
| BD | Real type
 One-dimens
 ional
 array | Hork area | Size $4 * N \mathrm{NR}$ is needed. |
| ILL | Integer
 type | Output ${ }^{\text {- }}$ | Error code.
 ILL=0: Normal termination.
 ILL=20000: L was so small that the capacity of array RT or BD was exceeded. Calculation has discontinued. $\text { ILL=30000: } \mathrm{A} \leqq B \text { or } L<2 .$ |

*1 For double precision subroutines, real types are all changed to be double precision real types.
(3) Calculation method

1. Sufficiently small intervals, each containing one of all rocts in the interval (A, B), are detected by the B. Jones' root isolation method (1). When each interval is (X1, X2), then $|\times 2-\times 1| \leqq \varepsilon \cdot \times m$ holds, where $X_{m}=\max (|\times 1+\times 2| / 2,1)$.
2. The root in each small interval obtained in 1. is calculated by the Poporski's method ${ }^{(2)}$.
(4) Example
```
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION RT(100),BD(100)
EXTERNAL FUN
A=O.ODO
B=15.DO
EPS=1.D-2
```

```
    EPSZ=1.D-8
    C=3.DO
    L=100
    CALL RTFNDD(A,B,FUN,C,EPS,EPSZ,L,NR,RT,NF,BD,ILL)
    WRITE(6,600) NR,(RT(I),I=1,NR)
600 FORMAT(5X,'NR=',I4/(5D16.8))
STOP
END
FUNCTION FUN(X)
IMPLICIT REAL*8 (A-H,O-Z)
DATA PI /3.141592653589794DO/
FUN=DSIN(PI*X/14.D0)+DSIN(PI*X*1.5D0)
RETURN
END
```

(5) Notes

1. Constant C is used in Chebyshev's inequality $m^{2} \geqq C v$ to test that a certain interval contains no root, where m and v are average value and variance of the function values in that interval respectively. If this inequality is satisfied, the statistical hypothesis "a root exists in this interval ${ }^{\text {" }}$ is rejected with the level of significance $1 / C$ or below. $C=3.0$ is of ten a suitable value. If C is too small, there is a danger of misjudging an existent root as "inexistent." Conversely, if \boldsymbol{C} is too large, judgment is done too carefully, increasing the number of function evaluations.
2. Selection of the constant ε for root isolation test is also very important. If ε is too large, roots cannot be isolated completely to one another. If it is too small, the number of function evaluations increases. Once the roots have been isolated, subsequent calculation is done very fast regardless of εz. Therefore, assign ε a large value enough to isolate the roots.
3. If $|\delta z| \leqq \varepsilon z \cdot \max (|z|, 1)$, where 2 is roots and δz is their correction, is established, convergence is regarded to be completed. Note, therefore, that $|f(z)| \leqq \varepsilon z$ is not always established.

Bibliography

1) B. Jones et al.; "Root Isolation For Transcendental Equations," Computer Journal, Vol. 27. pp. 184-187 (1984)
2) D. B. Popovski; "A Note on King's Method F for Finding a Bracketed Roo, "Computing, Vol. 29, pp. 355-359 (1980)
(1987.06.24) (1987.08.08)
