Guidance of library program use

(Numerical calculation: NUMPAC VOL. 1)

1. Basic matrix operations 2. System of linear equations 3. Matrix inversion

4. Eigenvalue analysis 5. Polynomial equation and nonlinear equation

22/9/92

Nagoya University Computer Center (Supervised by: Ichizo Ninomiya)

I. NUMPAC routine

Library programs of NUMPAC are roughly divided into two cathegories, ie., function subprograms and subroutine subprograms. There are some general rules for each of them and the rules are used in this manual for simple description. Please read the following explanations carefully before using NUMPAC.

(I) Function subprogram

(1) Function name and type

The function name of the real type follows the rule of the implicit type specification of FORTRAN.

Example : BJO, ACND

The function name of the double precision real type consists of the function name of the corresponding real type with adding D to the head of it. The function name of the quadruple precision real number type (if exists) consists of the function name of the corresponding real type with adding Q to the head of it. However, there are some exceptions.

Example : SINHP, DSINHP, QSINHP

Example of exception : ALOG1, DLOG1, QLOG1

It is severely observed that the function name for double precision begins with D and that for quadruple precision begins with Q. Note that the function name should be declared with a suitable type in each program unit referring to the function.

Example : DOUBLE PRECISION DCOSHP, DJ1

REAL*8 DCELI1, DCELI2

REAL*16 QSINHP, QASINH

Because the function name of double precision always begins with D and that of quadruple precision with Q, it is convenient to use the IMPLICIT statement considering other variables.

Example : IMPLICIT REAL*8(D)

IMPLICIT REAL*8(A-H, O-Z)

In this way, you need not declare the function name, separately.

(2) Accuracy of function value

Function routines are created aiming at the accuracy of full working precision as a rule. However, this cannot be achieved completely because of fundamental or technical difficulty ¹⁾.

Especially, it is not achieved for functions of two variables and functions of complex variable.

(3) Limit of argument

(a) The domain is limited.

Example : ALOG1

This function calculates log(1+x). Therefore, $x \ge -1$ should be satisfied.

(b) The singular point exists.

Example : TANHP

This function calculates $\tan \pi x/2$. Therefore, an odd integer x is a sungularity. (c) The function value overflows.

Example : BIO

This function is for modified Bessel function $I_0(x)$, and for big x, e^x is calculated referring to standard function EXP. Therefore, overflow limit $252log_e2=174.673$ of EXP is the upper bound of the argument of this function.

(d) The function value becomes meaningless.

Example : BJO

This function is for Bessel function $J_0(x)$, and standard functions SIN and COS are referred to for big x. Therefore, the argument limit $|x| \leq 2^{18}\pi \Rightarrow 8.23 \cdot 10^5$ of SIN and COS is the limit of the argument of this function.

There are many such examples. Note that the value $2^{18}\pi$ is not a sharp limit and that the number of significant digits for the function decreases gradually as approaching this limit even if within this limit.

When the function value underflows, it is set to () without special processing.

(4) Error processing

When the argument exceeds the limit, an message for the error is printed and the calculation is continued with the all function values set as 0. The message consists of the function name, the argument value, the function value (0) and the reason for the error.

Example : ALOG1 ERROR ARG=-0. 2000000E+01 VAL=0. 0 ARG. LT. -1

The error processing program counts the frequency of the errors and stops the calculation if the frequency exceeds a certain limit, considering the case that the calculation becomes meaningless when the error occurs one after another. Because all users do not want this, you can adopt or reject this processing including the print of the message. Subroutine FNERST is

provided for this purpose and you can use it in the following way.

CALL FNERST (IABORT, MSGPRT, LIMERR)

Argument	Type and kind	Attrib ute	Content
IABORT	Integer type	Input	IABORT=0 The calculation is not stopped. IABORT≠0 The calculation is stopped.
MSGPRT	Integer type	Input	MSGPRT=0 The message is not printed. MSGPRT≠0 The message is printed.
LIMERR	Integer type	Input	Upper bound of frequency of errors

2

If this subroutine is not called, following values are set as a standard value.

IABORT=1, MSGPRT=1, LIMERR=10

(II) Subroutine subprogram

(1) Subroutine name and type

There is no meaning of the type in the head character of the subroutine name. Subroutines with the same purpose and the different type are distinguished by the ending character of the name. The principle is as follows.

Single precision : S Double precision : D Quadruple precision : Q	1 -	Vector computer single precision : V Vector computer double precision : W Vector computer complex number : X Vector computer double precision complex number : Y
--	-----	--

However, there are some exceptions.

Example	Example of exception
LEQLUS/D/Q/C/B RK4S/D/Q/C/B GJMNKS/D/Q	FFTR/FFTRD MINVSP/MINVDP

(2) Argument ... The following four kinds are distinguished as an attribute of the argument.

Input	Users should set this data before calling the subroutine. As long as it is not especially noticed, the data is preserved as it is at the subroutine exit. This
	includes the case when the function name and the subroutine name are used as arguments. Note that those names should be declared with EXTERNAL.

Output	This data is created in the subroutine and is significant for the user.					
Input/Ou tput	Data is output in the same place as the input to save area. When input/output argument is a single variable, you should not specify a constant as a real argument. For instance, if LEQLUS is called with constant 1 specified in input/output argument and is ended normally, IND=0 is output, but all constants 1 are changed to 0.					
Work area	It is an area necessary for calculation in a subroutine, and the content of the subroutine at exit is meaningless for users.					

The type and attribute of the argument are explained for each subroutine group. The explanation is for single precision. For others, please read it with exchanging the type for the suitable one.

When a subroutine is called with an argument, but the argument is not used, the area for the argument need not be prepared, and anything can be written in that place. The same area can be allocated for the different arguments, only if it is pointed as it like SVDS. There is an example (FT235R) that special demand is requested for the argument.

It is requested for users to provide the function routine and the subroutine for the numerical integration routine and the routine for solving differential equations. In this case, the number, the type, and the order of the argument should be as specified. If parameters except a regulated argument are necessary, they are allocated in COMMON area to communicate with the main program. Refer to the explanation of an individual routine for the example.

 Ichizo Ninomiya; "Current state, issues of mathematical software", information processing, Vol. 23 and pp. 109-117 (1982).

【 Opening source program to the public 】

The following source programs are published for users requesting them. Calculation can be requested directly, and the source list can be output or can be copied in the shared file. <u>The</u> copied program cannot be given to the third party without the permission of this center.

If you need to copy the source list in the card or the data set, please execute following procedures.

(1) Input the following command for TSS.

NLIBRARY ELM (library name) "DS (data set name)" "SLAVE(ON)"

When you need only the source list, you can omit DS and SLAVE. When SLAVE(ON) is specified,

all slave routines of the program will be output.

(2) Execute the following job for BATCH.

//EXEC NLIBRARY, ELM=program names[, DS='data set names'][, SLAVE=ON]

You can have examples of the program usage with the following procedures.

(1) For TSS

EXAMPLE NAME (library name) [DS (data set name)]

(2) For BATCH

//EXEC EXAMPLE, NAME=program names[, DS='data set names']

Four kinds of manual listed below are prepared concerning library program.

Numb er	Manual title	Content
1	Library program and data list	All library programs and data which can be used in this center are listed. Additionally, "description format of the NUMPAC routine and notes on use", "How to choose the NUMPAC routine", and usage of error processing subroutine "FNERST" are described in this list.
2	Guidance to use library program (General volume : GENERAL VOL.1)	This volume describes the general use of programs except NUMPAC, which can be used in this center.

3	Guidance to use library program (Numerical calculation : NUMPAC VOL.1)	This volume describes how to use the following five kinds of programs. 1. Basic matrix operations 2. System of linear equations 3. Matrix inversion 4. Eigenvalue analysis 5. Polynomial equation and nonlinear equation
4	Guidance to use library program (Numerical calculation : NUMPAC VOL.2)	This volume describes how to use the following five kinds of programs. 6. Interpolation, smoothing, and numerical differentiation and integration 7. Fourier analysis 8. Numerical quadrature 9. Ordinary differential equation 10. Elementary function
5	Guidance to use library program (Numerical calculation : NUMPAC VOL.3)	This volume describes how to use the following nine kinds of programs. 11. Table functions 12. Orthogonal polynomial 13. Special functions 14. Bessel function and related function 15. Acceleration of convergence of sequences 16. Linear programming 17. Special data processing 18. Figure display application program 19. Others

6

All these manuals can be output by "MANUAL command". "PICKOUT command" is available if you need part of the usage of individual program.

.

For NUMPAC users

Please note the following and use NUMPAC effectively.

(1) The user has the responsibility for the result obtained by NUMPAC.(2) When the trouble is found, please report it to the center program consultation corner (Extension 6530).

(3) Do not use NUMPAC in computer systems other than this center without permission.

(4) To publish the result obtained NUMPAC, the used program names (for instance, *** of NUMPAC) should be referred to.

This manual was translated using Fujitsu's machine translation system ATLAS.

II. Library and program itemized discussion

and a second second

n an the second state of the second state of the second state of the

and a second second

and a second second

in the set

n an Arthur air

an an ann an Aonaichtean an A

1. Basic matrix operations of YAXAWAMMERT A AVAILUTE A

- intervente i

en en Rollen Bannal (de Brechter Dame en compléte et L'articles d'articles d'articles d'articles d'articles d' Role a foliet : sidual) (arefera luc, ascrimen eigate significant complete d'articles (articles articles)

ta stref

An eardt mella een watermeern, claurea laas sebrua voor sta peerwares oo toar sebruar

oralisata) (11

a <mark>li 11 menora</mark> de la caracteria de la composición de la compos

ann an Bhannach

and they made a provide the entranciated the address is

/ nistration definition of the second s

Litter
 Litter</litter
 Litter
 Liter
 Liter
 Litter<

ing of heat of the source in findeal and the source in the

9

ADDMMV/W/X/Y and SUBMMV/W/X/Y (Addition and Subtraction of Matrices-Vector Version) Addition and Subtraction of Matrices-Vector Version

Programm	Ichizo Ninomiya, July 1987
ed by	
Format	Subroutine Language: FORTRAN; Size: 70 lines

(1) Outline

The ADDMMV(W, X, Y) and SUBMMV(W, X, Y) calculate the sum C=A+B and difference C=A-B of the two matrices A and B. They are for the single precision real numbers (double precision real number, single precision complex number, and double precision complex number).

(2) Directions

CALL ADDMMV/W/X/Y(A, B, C, KA, KB, KC, M, N, ILL) CALL SUBMMV/W/X/Y(A, B, C, KA, KB, KC, M, N, ILL)

Argument	Type and	Attrib	Content
	kind (*1)	ute	
A	Real type Two-dimens ional array	Input	M×N matrix A
B	Real type Two-dimens ional array	Input	M×N matrix B
С	Real type Two-dimens ional array	Output	M×N matrix C. A+B or A−B
KA	Integer type	Input	Adjustable dimensions of A. KA≧M
КВ	Integer type	Input	Adjustable dimensions of B. KB≧M
KC	Integer type	Input	Adjustable dimensions of C. KC≧M
M	Integer type	Input	Number of rows of A, B, and C. $M \ge 1$

Argument	Type and	Attrib	Content
	kind (*1)	ute	
N	Integer type	Input	Number of columns of A, B, and C. $N \ge 1$
ILL	Integer type	Output	ILL=0: normal termination; ILL=30000: argument error

 ± 1 For ADDMMW(X, Y) and SUBMMW(X, Y), all real types should be changed to double precision real types (complex type and double precision complex type).

(3) Note

.

1. This routine is for vector computers. However, it can be used also for scalar computers.

(1987. 09. 18)

MDETS/D/Q/C/B/Z (Calculation of Determinants)

Calculation of Determinants

Programm ed by	Ichizo Ninomiya, April 1977			
Format	Subroutine language: FORTRAN; size: 45, 34, 45, 34, and 35 lines respectively			

(1) Outline

MDETS/D/Q/C/B/Z calculates the determinant of a given matrix.

(2) Directions

CALL MDETS/D/Q/C/B/Z (A, KA, N, EPS, D, ILL)

Argument	Type and kind (*1)	Attribut e	Content
A	Real type Two-dimens ional array	Input	Matrix whose determinants should be calculated. Destroyed
KA	Integer type	Input	Value of the first subscript in the array-A declaration. KA≧N
N	Integer type	Input	Degree of AN≥2
EPS	Real type	Input	Criterion constant for matrix singularity. If the absolute value of pivot elements is smaller than this constant, D = O is assumed. EPS>O
D	Real type	Output	The value of determinant is output.
ILL	Integer type	Output	ILL = 3000: Limits on KA, N, and EPS are violated. Otherwise, O is output.

*1 For MDETD (Q, C, B, Z), A and D are double precision real types (quadruple precision real type, complex type, double precision complex type, and quadruple precision complex type).

For (Q, C, B, Z), EPS is a double precision real type (quadruple precision real type, real type, double precision real type, and quadruple precision real type).

/2

Precision depends on problems. Because the LU-decomposition method (Doolittle method) is used, and double precision arithmetic operation is performed to calculate the inner products in MDETS, precision is high. The required computation time is almost the same as that for solving a system of linear equations.

(4) Remarks

1. If the typical size of elements in the matrix A is assumed to be a, the standard value of EPS is $\alpha \times 10^{-6} (\alpha \times 10^{-16}, \alpha \times 10^{-30})$ for NDETS (MDETD).

2. When a system of linear equations is to be solved, and the determinant is to be calculated at the same time, it is recommended to use LEQLUS and LEQLUD.

(1987, 06, 17) (1987, 08, 07)

MNORMS/D/Q/C/B/Z (Normalization of a Matrix)

Normalization of a Matrix

Programm ed by					
Format	Subroutine language: FORTRAN; size: 20, 21, 20, 23, 24, and 24 lines respectively				

(1) Outline

MNDRMS/D/Q/C/B/Z divides each row of a given matrix by a number of the form of 2^n to limit the maximum absolute value of elements in each row to the order of 1.

(2) Directions

CALL MNORMS/D/Q/C/B/Z (A, KA, N, M, S, ILL)

Argument	Type and kind (*1)	Attribut e	Content
A	Real type Two-dimens ional array	Input/ou tput	Matrix to be normalized
KA	Integer type	Input	Value of the first subscript in the array-A declaration. KA≧N
N	Integer [.] type	Input	Number of rows in A. N≥2
M	Integer type	Input	Number of columns in A. M≧N
S	Real type One-dimens ional array	Output	S (1) (I=1,, N) contains a divisor in the form of power of 2 to normalize the row 1.
ILL	Integer type	Output	ILL=0: Normal termination ILL=30000: Limits on KA, N, and M are violated. The row number whose elements are all O

*1 For MNORMD (Q, C, B, Z), A is assumed to be a double precision real type (quadruple precision real number, complex number, double precision complex number, and quadruple precision complex number), and S is assumed to be a double precision (quadruple precision, single precision, double precision, and quadruple precision) real type.

(3) Remarks

1. When normalization is to be done as preprocessing for solving a system of linear equations, merge the right side column in the right of the coefficient matrix, and apply this routine to the augmented matrix. The solution obtained by solving the normalized equation is the solution of the original equation. That is, postprocessing is not required.

2. The inverse matrix of the original matrix is obtained by dividing each I-th column of the inverse matrix of the normalized matrix by the scale factor S (I).

3. In general, normalization changes a symmetric matrix to an asymmetric matrix.

 For symmetric positive definite matrices, the special-purpose routine such as MNRSPS should be used.

(1987.06.17) (1987.08.07)

Normalization of Band Matrices

Programm ed by	Ichizo Ninomiya, May 1982
Format	Subroutine language; FORTRAN77
	Size; 25, 26, 26, 26, 27, 27, 25, 26, and 26 lines
	respectively

(1) Outline

The general band matrix subroutine MNRMBS/D/Q/C/B normalizes each row of a given band matrix by dividing it by a power of 2 that is close to the maximum absolute value of the row.

The symmetric positive definite band matrix subroutine MNMBSS/D/Q normalizes each row and column of a given band matrix by dividing it by a power of 2 that is close to the square root of the diagonal element.

図 1

16

図 2

(2) Directions

CALL MNRMBS/D/Q/C/B/Z (A, KA, N, NB, LB, S, ILL)

CALL MNMBSS/D/Q (A, KA, N, NB, S, ILL)

Argument	Type and kind (*1)	Attribut e	Content
A	real tput Gen numbers shu Two-dimens in ional Por array rea		Matrix to be normalized. General matrices are transformed into a rectangular form as shown in Figure 1. That is, the (I, J) elements are stored in A (J - 1 + LB, I). Positive definite symmetric matrices are transformed into a rectangular form as shown in Figure 2. That is, the (I, J) elements are stored in A (I - J + 1, J).
KA	Integer type	Input	Adjustable dimension of A (first subscript in array ∙ declaration). KA≧NB
N	lnteger type	Input	Degree of A (number of columns). N≧NB
NB	Integer type	Input	Entire band width for general matrices. NB≧LB Half band width for symmetric positive definite matrices. NB≧1
LB	lnteger type	Input	Left band width of A. LB≥1
S	Real type One-dimens ional array	Output	Normalization factor. Real number of the form of power of 2 used to divide each row (column). One-dimensional array of size N
ILL	Integer type	Output	ILL=0: Normal termination. ILL=K: Normalization is interrupted at Kth step. General: The Kth line is all zero. Symmetric positive definite matrix: The Kth diagonal element is not positive. ILL=30000: Argument error.

17

*1 For MNRMBD (Q, C, B, Z), A is assumed to be a double precision real type (quadruple precision real type, complex type, double precision complex type, and quadruple precision complex type), and S is assumed to be double precision (quadruple precision, single precision, double precision, and quadruple precision) real type.

For MNMBSD (Q), real types are changed to double (quadruple) precision real types.

(3) Example of use

1. Example of MNRMBS

A quindiagonal matrix (NB = 5, LB = 3) equation (N = 1000) is solved with LEQBDS, after normalizing it with MNRMBS. All diagonal elements are put as $\alpha_{jj}=5j$ and non-diagonal elements as 1, and constant terms are set so that all elements of the solution are 1.

DIMENSION A(7,1000),S(1000),X(1000),MAX(1000)

N = 1000KA=7NB=5LB=3EPS=1.E-6 DO 10 J=1,N DO 20 I=1,5 20 A(I,J)=1.0A(3,J) = J * 5X(J) = A(3, J) + 4.0IF(J.LE.2) X(J)=X(J)-FLOAT(3-J) IF(J.GE.N-1) X(J) = X(J) - FLOAT(J+2-N)**10 CONTINUE** CALL MNRMBS(A,KA,N,NB,LB,S,IND) DO 25 I=1/N 25 X(I)=X(I)/S(I) IND=0CALL LEQBDS(A,KA,N,NB,LB,MB,X,N,1,MAX,EPS,IND) EM=0.0 DO 30 I=1/N EM=AMAX1(ABS(X(I)-1.0),EM) **30 CONTINUE** WRITE(6,600) EM 600 FORMAT(10X, E11.3) STOP END

1 B

2. Example of MNMBSS

An equation having a positive definite symmetric band matrix (N = 1000, NB = 5) as a coefficient is solved by CHLBDS after normalizing it by MNMBSS. All diagonal elements are put as $\alpha_{jj}=10j$ and non-diagonal elements as 1, and all constant terms are set so that all elements of the solution are 1.

```
DIMENSION A(5,1000),S(1000),X(1000)
   N=1000
   KA=5
   NB=5
   EPS=1.E-6
   DO 10 J=1/N
   A(1,J) = 1 * 10
   DO 20 I=2,5
20 A(I,J) = 1.0
   X(J) = A(1, J) + 8.0
   IF(J.LE.4) X(J) = X(J) - FLOAT(5-J)
   IF(J.GE.N-3) X(J) = X(J) - FLOAT(J+4-N)
10 CONTINUE
   CALL MNMBSS(A,KA,N,NB,S,IND)
   DO 25 I=1,N
25 X(I)=X(I)/S(I)
   IND=0
   DET=0.
   CALL CHLBDS(A,KA,N,NB,X,N,1,DET,EPS,IND)
   DO 27 I=1/N
27 X(I)=X(I)/S(I)
   EM=0.0
   DO 30 I=1/N
   EM=AMAX1(ABS(X(I)-1.0),EM)
```

30 CONTINUE WRITE(6,600) EM 600 FORMAT(10X,E11.3) STOP END

(4) Remarks

1. When this routine is used to solve a system of linear equations that has a band matrix as a coefficient, each element of the right side constant vector must be divided by the corresponding normalization factor before the e simultaneous linear equation routine is called. For general matrices, nothing need not be done after a solution is obtained. For a symmetric positive definite matrix, however, each element of the solution must be divided by the corresponding normalization factor. (See the example of use.)

(1987. 06. 17) (1987. 08. 07)

(1) MNRSPS/D/Q (Normalization of a Symmetric Positive Definite Matrix)

Normalization of a Symmetric Positive Definite Matrix

•	Programm ed by	Ichizo Ninomiya, April 1977
	Format	Subroutine language: FORTRAN; size: 20, 21, and 21 lines respectively

(1) Outline

MNRSPS/D/Q limits the maximum absolute value of elements in each row and column to the order of 1 by dividing each row and column of a given symmetric positive definite matrix by a number of the form of 2^n preserving symmetric positive definiteness.

(2) Directions

CALL MNRSPS/D (A, KA, N, M, S, ILL)

Argument	Type and kind (*1)	Attribut e	Content
A	Real type Two-dimens ional array	lnput/ou tput	Matrix to be normalized. Only the upper right half including the diagonal lines is processed. Other part is preserved.
KA	Integer type	Input	Value of the first subscript in the array-A declaration. KA≥N
N	Integer type	Input	Number of rows in A. N≧2
M	Integer type	Input	Number of columns in A. M≧N
S	Real type One-dimens ional array	Output	S (1) (I = 1, 2, \cdots , N) contains a divisor in the form of power of 2 to normalize the row I and column I.
ILL	Integer type	Output	ILL=0: Normal termination ILL=30000: Limits on KA, N, and M are violated The row number of the diagonal element which is not positive

*1 For MNRSPD (Q), all real types are changed to double (quadruple) precision types.

(3) Remarks

1. When normalization is done as a preprocessing for solving a system of linear equations,

every element of solution of normalized equation should be divided by the corresponding scale factor.

ン

2. When normalization is done as a preprocessing for obtaining inverse matrix, every row and column of the inverse of normalized matrix should be divided by the corresponding scale factors. (1987.06.17) (1987.08.08)

MULMMV/W/X/Y (Multiplication of Matrices-Vector Version)

Multiplication of Matrices-Vector Version

Programm	Ichizo Ninomiya, July 1987
ed by	
Format	Subroutine Language: FORTRAN; Size: 80 lines

(1) Outline

MULMMV/W/X/Y calculates the product $C=A\cdot B$ of two matrices A and B. MULMMV(W, X, Y) is for the single precision real numbers (double precision real number, single precision complex number, and double precision complex number).

(2) Directions

CALL MULMMV/W/X/Y (A, B, C, KA, KB, KC, L, M, N, ILL)

Argument	Type and	Attrib	Content
	kind (*1)	ute	
A	Real type Two-dimens ional array	Input	L×M multiplicand matrix A
В	Real type Two-dimens ional array	Input	M×N multiplier matrix B
C	Real type Two-dimens ional array	Output	L×N product matrix C
KA	Integer type	Input	Adjustable dimensions of A. KA≧L
KB	Integer type	Input	Adjustable dimension of B. KB≧M
КС	Integer type	Input	Adjustable dimensions of C. KC≧L
L	Integer type	Input	Number of rows of A and C. $L \ge 1$

.

Argument	Type and	Attrib	Content
	kind (*1)	ute	•
M	Integer type	Input	Number of columns of A and rows of B. $M \ge 1$
N	Integer type	Input	Number of columns of B and C. $N \ge 1$
ILL	Integer type	Output	ILL=0: normal termination; ILL=30000: argument error

*1 For MULNNW(X, Y), all real types should be changed to double precision real types (complex type and double precision complex type).

(3) Calculation method

The product of $l \times m$ matrix A and $m \times n$ matrix B is an $l \times n$ matrix.

It is

$$C_{ij} = \sum_{k=1}^{m} a_{ik} b_{kj}, i = 1, \cdots, l; j = 1, \cdots, n$$

. If A and C are considered as sets of column vectors $A=(\alpha_1, \alpha_2, \cdots, \alpha_m)$ and

 $C=(c_1,c_2,\cdots,c_n)$ respectively, then C_j can be written as

$$C_{j} = \sum_{k=1}^{m} b_{kj} a_{k}, j = 1, 2, \cdots, n$$

The algorithm of this subroutine is based on this idea.

(4) Note

1. The product of a matrix and a vector can be calculated with this routine with B assumed as

a single column matrix. However, it is more reasonable to use the special routine MULMVV.

2. This routine is for vector computers. However, it can be used also for scalar computers.

(1987.08.04)

MULMVV/W/X/Y (Nultiplication of a Matrix and a Vector-Vector Version)

Multiplication of a Matrix and a Vector-Vector Version

Programm	Ichizo Ninon	niya, July 1987		
ed by				
Format	Subroutine	Language: FORTRAN;	Size: 70 lines	

(1) Outline

MULMVV/W/X/Y calculates the product y=Ax of a matrix A and a vector x. MULMVV(W, X, Y) is for the single precision real numbers (double precision real number, single precision complex number, and double precision complex number).

(2) Directions

CALL MULMVV/W/X/Y (A, X, Y, KA, M, N, ILL)

Argument	Type and kind (±1)	Attrib ute	Content
A .	Real type Two-dimens ional array	Input	N×N matrix A
X	Real type One-dimens ional array	Input	N vector x
Y	Real type One-dimens ional array	Output	M vector y
KA	Integer type	Input	Adjustable dimensions of A. KA≧M
M	Integer type	Input	Number of rows of A and order of y . N ≥ 1
N	Integer type	Input	Number of columns of A and order of x . M ≥ 1
ILL	Integer type	Output	ILL=0: Normal termination; ILL=30000: Argument error

*1 For MULMVW(X, Y), all real types should be changed to double precision real types (complex type and double precision complex type).

If the matrix A is considered as a set of the column vector (a_1, a_2, \cdots, a_m) , y=Ax can be written as

$$y = \sum_{k=1}^{m} x_k a_k$$

The algorithm of this subroutine is based on this idea.

(4) Note

This routine is for vector computers. However, it can be used also for scalar computers.

(1987. 08. 04)

2. System of linear equations

[Method of choice of linear equation routines]

NUMPAC provides a variety of effective linear equation subroutines that you can select depending on the type, characteristics, and structure of each coefficient matrix. By carefully selecting them based on the guideline shown below, you can enjoy much of their superiority in all aspects of precision, speeds, and storage capacities. To make the following explanation simple, the name of each recommended routine is represented by the one for single precision. The routine marked by * is written in assembly language and recommended specially.

26

- (A) Real coefficient
 - 1. Non-symmetry

(1) Dense matrix		LEQLUS*
(2) Band matrix		LEQBDS
(3) Tridiagonal matrix		TRIDGS
2. Symmetry		
(1) Dense matrix		BUNCHS
(2) Band matrix		BUNCBS
3. Positive-definite symmetric		
(1) Dense matrix	CHOLFS *,	MCHLFS*
(2) Band matrix	CHLBDS*,	MCHLBS*
(3) Variable width band matrix		CHLVBS
(4) Tridiagonal matrix	TRDSPS,	TDSPCS
4. General system of linear equations	LEQLSS	, LSMNS
(B) Complex coefficient		
1. Dense matrix		LEQLUC
2. Band matrix		LEQBDC

If there is a great difference between coefficients and between solutions of linear equations, satisfactory precision is not generally expected. It is important to level the coefficients and solutions in advance by means of normalization or variable transformation.

Many users seem to use an inverse matrix routine to solve linear equations because the solution of linear equations Ax=b is theoretically written as $X=A^{-1}b$. However, they shouldn't do this

because it takes three times for calculation that taken by a linear equation routine and the accuracy of the solution is remarkably worse.

To repeat solving equations with the same coefficients by changing the right-hand side column only, it seems reasonable to calculate $x_i=A^{-1}b_i$, i=1,2,--- by calculating an inverse matrix only once. For this, however, it is far more advantageous to exploit the function of reuse of decomposition component available in all Nagoya University routines.

In short, it is nothing but the abuse of inverse matrixes to use them to solve linear equations.

ンド

BUNCBS/D (Solution of linear equations with symmetric band matrix of coefficients by bunch's method)

Solution of Linear Equations with Symmetric Band Matrix of Coefficients by Bunch's Method

Programm ed by	Ichizo Ninomiya; April 1981				
Format	Subroutine language; FORTRAN Size; 200 lines each				

(1) Outline

BUNCBS and BUNCBD are single or double precision subroutines used to obtain the following solution using the bunch's LDL^{T} decomposition method: The solution obtained by the subroutines is $X=A^{-1}B$ of the linear equations AX=B with right-hand side matrix B, and symmetric band matrix A which is not necessarily positive definite as a coefficient. These subroutines have the function of the reuse of the LDL^{T} decomposition component.

(2) Directions

CALL BUNCBS/D (A, KA, N, NB, X, KX, M, CHG, EPS, IW, IND)

Argument	Type and	Attribut	Content
	Kind (*1)	e	
A	Real type	Input/ou	The left lower half containing the diagonal of the symmetric
	Two-dimens	tput	band matrix is transformed to a rectangle as shown in the
	ional		figure and input. That is, the I, J elements of the matrix
	array		are put in A(I-J+1,J). After processing by this routine, the
1			Bunch's decomposition component is output.
KA	Integer	Input	Adjustable dimension of A (value of the first subscript in
	type		array declaration of A). The band width of A will generally
			increase by pivoting. It is therefore necessary to make KA
			large enough to meet it. KA≥NB

29	
----	--

Argument	Type and	Attribut	Content
	Kind (*1)	e	
N	Integer	Input	Number of unknowns in the equation (number of columns of A).
	type		N≥1 .
NB	Integer	Input/ou	Half band width of A (number of rows) is input. Half band
	type	tput	width after processing is output.
			NB≥2
X	Integer	Input/ou	The right hand side matrix is input. The solution matrix is
	type	tput	generated to the corresponding place.
	Two-dimens		
	ional		
	аггау		
KX	Integer	Input	Adjustable dimension of X. KX≥N
	type		
M	Integer	Input	Number of columns in X. When $M \leq 0$, only decomposition of A
	type		is done .
CHG	Real type	Output	One-dimensional array of size N or greaterInformation on
	One-dimens		pivoting and the determinant of the 2×2 diagonal block are
	ional		generated
	аггау		
EPS	Real type	Input	When the size of the pivot element becomes smaller than
			∥A∥•EPS during decomposition, the coefficient matrix is
			assumed to be singular and then calculation is interrupted.
			When EPS≦0.0 is given, default
			value u is used, where $u=2^{-20}$
			(single precision) and $u=2^{-52}$ (double precision).

Argument	Type and	Attribut	Content
	Kind (*1)	e	
IW	Integer	Work	One-dimensional array of size N
	type	area	
	One-dimens		
	ional		
	array		
			For input, this argument has the following meanings:
IND	Integer	Input/ou	IND=0: The equation is solved by restarting Bunch's
	type	tput	decomposition from the beginning.
			IND \neq 0: The equation is solved by using the decomposition
			component calculated immediately before. To do this, the
			contents of A and CIIG must have been stored.
			For output, this argument has the following meanings:
			IND=0: Normal end
			IND=K: Judged as singular at step K of decomposition or
			band width exceeded KA.
			IND=30000: The input argument violated the limit.

*1 For double precision subroutines, real types should be changed to double precision real types.

(3) Calculation method

When coefficient matrix A is a symmetric positive definite, modified Cholesky decomposition $A=LDL^{T}$ is possible using unit lower triangular matrix L and diagonal matrix D. However, when A is not positive definite, decomposition is generally impossible even if it is symmetric. However, if D is assumed to be a block diagonal matrix for which the submatrix of 2×2 is permitted as a diagonal block element, decomposition above is possible. Bunch designed an algorithm to perform decomposition $A=LDL^{T}$ in a numerically stable manner by exchanging rows and columns properly. ^{1),2)} This routine is based on Bunch's algorithm D.

By using this decomposition, solution $X=A^{-1}B$ of AX=B can be determined by forward substitution $Y=L^{-1}B$ and backward substitution $X=L^{-T}D^{-1}Y$.

(4) Notes

1. The standard value of EPS for BUNCBS or BUNCBD is $10^{-6}(10^{-16})$. If EPS ≤ 0.0 is given, default value $2^{-20}(2^{-52})$ will be used.

2. Argument IND is used for both input and output. Therefore, do not use a constant as an actual argument.

3. The routine's function of reusing decomposition components is very useful to repeatedly solve the equations with the same coefficient matrix and different right hand side matrices. It is superior to the inverse-matrix method in all aspects of accuracy, speed, and storage capacity.

4. When M, the number of columns of B, is 1, a one-dimensional array is acceptable for the actual argument corresponding to X. For this, however, it is necessary to meet the condition $KX \ge N$.

Bibliography

1) J.R. Bunch et al.; "Decomposition of a Symmetric Matrix" Numer. Math., Bd. 27, pp. 95-109 (1976).

2) J.R. Bunch et al.; "Some Stable Methods for Calculating Inertia and Solving Symmetric Linear Systems", Math. Comp., Vol. 31, No. 137, pp. 163-179 (1977).

(1987.06.16)

BUNCHS/D (Solution of Linear Equations with Symmetric Matrix of Coefficient by Bunch's Method)

Solution of Linear Equations with Symmetric Matrix of Coefficients by Bunch's Method

Programm ed by	Ichizo Ninomiya, April 1981
Format	Subroutine language: FORTRAN; size: 200,200 lines respectively

(1) Outline

BUNCHS (D) is a single (double) precision subroutine for finding $X=A^{-1}B$ or the solution of the simultaneous linear equation AX=B with a symmetric matrix A (not necessarily positive definites) and multiple right side columns B, using the Bunch's U^TDU decomposition method. It has the facility for reusing the U^TDU decomposition elements.

(2) Directions

CALL BUNCHS/D (A, KA, N, X, KX, M, CHG, EPS, IND)

Argument	Type and	Attribut.	Content
	kind (*1)	e	
A	Real type	Input/ou	The upper right half including the diagonal of the
	Two-dimens	tput	coefficient matrix is input. The upper right half is
	ional		processed with this routine, and the Bunch decomposition
	array		elements are output. The lower left half is preserved.
KA	Integer	Input	Adjustable dimension of A (value of the first subscript in
:	type		array declaration). KA≧N
N	Integer	Input	Order of equation. N≥1
	type		

Argument	Type and	Attribut	Content
	kind (*1)	e	
X	Real type	Input/ou	The right side columns are input. The solution vectors are
	Two-dimens	tput	output in the corresponding place.
	ional		
	array		
KX	Integer	Input	Adjustable dimension of X. KX≧N
	type		
M	Integer	Input	Number of columns of X. If M≦O, only A is decomposed.
	type		
CHG	Real type	Output	One-dimensional array of size N or greater. Pivoting
	One-dimens		information and 2 $ imes$ 2 diagonal block determinants are
	ional		output.
	array	•	
EPS	Real type	Input	If the size of pivot elements becomes smaller than A • EPS
			during decomposition, the coefficient matrix is decided to be
			singular, and the calculation is interrupted. If EPS≦0.0 is
			assigned, the standard value u
			is used, where $u=2^{-20}$ (single precision) and $u=2^{-52}$
	•		(double precision)
			This argument has the following meaning as an input argument.
IND	Integer	Input/ou	
	type	tput	IND = 0: Solve equation newly starting with Bunch's
			decomposition.
			IND \neq 0: Solve equations, reusing the decomposition
			elements previously calculated. In this case, A and CHG must
			be kept unchanged in the states of previous call.

Argument	Type and	Attribut	Content
	kind (*1)	e	
			This argument has the following meaning as an output
			argument.
			IND = 0: Normal termination
			IND = K: Singularity is decided at Kth step of the
			decomposition
			IND = 30000: The input argument violates the limit.

*1 For double precision subroutines, all real types are changed to double precision real types.

(3) Calculation method

If the coefficient matrix A is symmetric positive definites, a modified Cholesky decomposition $A=U^TDU$ is possible with an upper unit triangular matrix U and a diagonal matrix D. If the matrix A is not of positive definites even though it is symmetric, the decomposition is generally impossible. However, if D is assumed to be a diagonal block matrix that permits a 2 x 2 submatrix as a diagonal block element, the similar decomposition is possible. Bunch designed a algorithm for calculating the decomposition $A=U^TDU$ with numerical stability by properly interchanging rows and columns.

This routine is based on Bunch's algorithm A.

If this decomposition is applied, the solution $X=A^{-1}B$ of AX=B is found by the forward substitution $Y=U^{-T}B$ and backward substitution $X=U^{-1}D^{-1}Y$.

(4) Remarks

1. The standard value of EPS is $10^{-6}(10^{-16})$ for BUNCHS (D). If EPS ≤ 0.0 is given, the standard value $2^{-20}(2^{-52})$ is used.

Because IND is an input/output argument, a constant must not be used as an actual argument.
 When a solution to the same coefficient matrix is to be repeatedly found changing only the right side columns, the facility for reusing the decomposition components of this routine is extremely useful. As compared with the method by inverse matrices, this calculation method is

excellent in precision, speed, and storage size.

4. If the number of right side columns (M) is 1, an actual argument that corresponds to X can be a one-dimensional array. However, $KX \ge N$ must be met.

References

1) J. R. Bunch et al.; "Decomposition of a Symmetric Matrix" Numer. Math., Bd. 27, pp. 95-109 (1976).

2) J.R. Bunch et al.;"Some Stable Methods for Calculating Inertia and Solving Symmetric Linear Systems" and Math. Comp. Vol.31, No. 137, and pp.163-179(1977).

(1987. 06. 16)

CGHTCS/D Solution of a Linear System of Equations with Positive Definite Symmetric Coefficients Matrix by Conjugate Gradient Method (Compressed matrix storage Node)

Solution of a Linear System of Equations with Positive Definite Symmetric Coefficients Matrix by Conjugate

37 (17)

Gradient Method (Compressed matrix storage mode)

Programm ed by	Tsuyako Miyakoda and Tatsuo Torii, February 1982	
Format	Subroutine language: FORTRAN; size: 55 and 56 lines respectively	

(1) Outline

This is a solution routine with a conjugate gradient method if the upper triangular and diagonal elments of the matrix are stored in a row to set up the storage arrays, where the symmetric positive definite matrix A is a coefficient matrix.

(2) Directions

CALL CGHTCS/D (A, NA, N, B, X, EPS, NMAX, W, IDUMP)

Argument	Type and	Attribut	Content
	kind	е	
A	Real type	Input	The upper triangular and diagonal elements of the matrix are
	One-dimens		stored in a one-dimensional array. Element (I,J) (I≦J) is
	ional		assumed to be $(J*(J-1)/2+1)$ th element of a one-dimensional
	array		array.
			$A(k) = a_{ij}, k = j(j-1)/2 + i$
NA	Integer	Input	Length of the vector when the coefficient matrix is made into
	type		a one-dimensional array.
N	Integer	Input	Number of unknowns of the system.
	type		

Argument	Type and	Attribut	Content
	kind	e	
В	Real type	Input	Right-side vector of the system.
	One-dimens		
	ional		
	array		
X	Real type	Input/ou	Input: Approximative solution vector (initial value).
	One-dimens	tput	Output: Corrected solution vector.
	ional		
	array		
EPS	Real type	Input	Convergence criterion. It is assumed to be 8.u. b as
			external page storage if it is too small. u is a unit of the
		•	rounding error.
NMAX	Integer	Input	Maximum number of iterations. When a too large value is
	type		input, it is assumed to be 3.N/2.
W	Double	Work	Size N×3.
	precision	area	
	real type		
	One-dimens		
	ional		
	аггау .		
IDUMP	Integer	Input/ou	It has the following meaning as an input argument.
	type	tput	IDUMP<0: No printing of the result on the way.
			IDUMP=1: Printing of residual (P,AP) of each iteration.
			IDUMP>2: Printing of residual, A - orthogonal set vectors,
			and approximative solution of each iteration.
			It has the following meaning as an output argument.
			The same as input: Normal termination.
			IDUMP= $3 \times N$: Not settled even for $3 \times N$ iterations,
			IDUMP=30000: Input parameter error.

* All real types are assumed to be a double precision real type for CGHTCD.

(3) Calculation method

CGHTCS/D finds the solution of a linear system of equations with the symmetric positive definite matrix, Ax=b, so that the error function $\varphi(x)=(r,A^{-1}r)$ is minimized if the residual r=b-Ax is assumed. In the conjugate gradient method, both sides of a correction vector (A-orthogonal system) calculation formula of the original version is divided by $|r_{i+1}|^2$, and normalized as a type of formula (Takahashi version). The calculation formula becomes simple, but the speed of residual reduction and the computation time are not much changed. The calculation expression is as follows:

39

Initial value $x_0=0$, $r_0=b-Ax_0$, $P_0=r_0/|r_0|^2$

$$\alpha_i = 1/(P_i, AP_i)$$
$$x_{i+1} = x_i + \alpha_i P_i$$
$$r_{i+1} = r_i - \alpha_i AP_i$$

Convergence decision $|r_{i+1}|^2 < (EPS)^2$?

 $P_{i+1}=P_i-r_{i+1}/|r_{i+1}|^2$

i=0,1,....

(4) Example

С

```
30 AS(NT) = A(J)
  40 CONTINUE
     WRITE(NW, 1000)N
1000 FORMAT(1H1,15H EXAMPLE 3-6 N=,I4)
     IDUMP=0
     MAXN = 100
     CALL CLOCKM(JTIME1)
     CALL CGHTCS(AS,NT,N,B,XO,EPS,MAXN,W,IDUMP)
     CALL CLOCKM(JTIME2)
     JTIME=JTIME2-JTIME1
     WRITE(6,1010) IDUMP,JTIME
1010 FORMAT(1H /' IDUMP =', I5, 3X, 'TIME(MSEC)=', I5)
     DO 50 I=1.N
     RES=X(I)-XO(I)
     WRITE(NW,1020) I,X(I),XO(I),RES
1020 FORMAT(15,2E13.5,E11.3)
  50 CONTINUE
1030 FORMAT((1H ,5(1PE13.5)))
     STOP
     END
     EXAMPLE 3-6 N= 100
    IK= 26 ZANSA=
                       0.53581611D-02
     IDUMP =
                0
                     TIME(MSEC) = 565
       1 -0.15062E+01 -0.15031E+01 -0.303E-02
       2 -0.18420E+01 -0.18510E+01 0.899E-02
       3 -0.19655E+01 -0.19646E+01 -0.883E-03
       4 -0.16055E+01 -0.16043E+01 -0.119E-02
```

(5) Note

The conjugate gradient method is characterized by fast convergence if a coefficient matrix is large in the number of dimensions and sparse. For dense coefficient matrices, it is desirable to use other methods or the conjugate gradient method that includes preprocessing (PRCGFS/D).

References

1) Hayato Togawa: Conjugate Gradient Method, Kyoiku Shuppan, 1977

(1987. 06. 16) (1987. 08. 07) (1987. 08. 10)

41

CHLBDC/B/Z,MCHLBC/B/Z

(Solution of Hermitian Positive Definite Linear Equations by Cholesky and Modified Cholesky Method (Band Matrix))

Solution of Hermitian Positive Definite Linear Equations by Cholesky and Modified Cholesky Method(Band Matrix)

Programm	Ichizo Ninomiya, December 1983
ed by	
Format	Subroutine language: FORTRAN; size: 63, 64, 64, 70, 71, and 71 lines
	respectively

(1) Outline

CHLBDC(B, Z) (MCHLBC(B, Z)) is a single (double or quadruple) precision subroutine for obtaining the solution $X=A^{-1}B$ of the equation AX=B having a Hermitian positive definite band matrix A as coefficient matrix and multiple right side columns B, using modified Cholesky decomposition method. It reuses Cholesky decomposition component.

(2) Directions

CHLBDC/B/Z

CALL (A, KA, N, NB, X, KX, M, DET, EPS, 1ND) MCHLBC/B/Z

Argument	Type and	Attribut	Content	
	kind (*1)	e		
A	Complex	Input/ou	The lower left half band area containing the diagonal of a	
	type	tput	coefficient matrix is transformed into a rectangular form and	
	Two-dimens		input. That is, the I and J elements of the matrix are input	
	ional		in A(I-J+1, J). These elements are processed with this	
	array		routine, and Modified Cholesky decomposition elements are	
			output. See the figure.	
KA	Integer	Input	Adjustable dimensions of A (value of the first subscript in	
	type		the array declaration). KA≧NB	

	4	2

Argument	Type and	Attribut	Content
	kind (*1)	e	
N	Integer	Input	Order of equations (number of columns of A). N \geq 1
	type	i	
NB	Integer	Input	Band width (number of rows of A). 1≦NB≦N
	type		
X	Complex	Input/ou	The right side columns are input. The solution vectors are
	type	tput	output to the corresponding positions.
	Two-dimens		
	ional		
	array		
KX	Integer	Input	Adjustable dimensions of X. KX≥N
	type		
M	Integer	Input	Number of columns of X. If M≦O, only modified Cholesky
	type		decomposition is executed.
DET	Real type	Input/ou	If DET≠0.0 is input, coefficient matrix determinants are
		tput	output.
:			If DET=0.0 is input, 0.0 is output.
EPS	Real type	Input	Coefficient matrix positivity criterion. If the value of a
	•		diagonal element becomes smaller than EPS during Cholesky
			decomposition, it is decided to be not positive definite, and
			the computation is interrupted. EPS>0

Argument	Type and	Attribut	Content
	kind (*1)	е	
IND	Integer	Input/ou	This argument has the following meaning as an input argument.
	type	tput	
			IND=0: Equation is solved newly beginning with Cholesky
			decomposition.
			IND≠O: Equation is solved reusing the Cholesky decomposition
			component computed before.
			This argument has the following meaning as an output
			, argument.
			IND=0: Computation is normally executed.
			IND=K: Because the value of a diagonal element becomes
			smaller than EPS at the K-th step of Cholesky decomposition,
			computation is interrupted.
			IND=30000: The input argument exceeded the limit.

1* For double (quadruple) precision subroutines, all single precision types are changed to double (quadruple) precision types.

(3) Calculation method

1. Cholesky decomposition method

The coefficient matrix A is decomposed into $A=LL^*$ with a lower triangular matrix L and its transposition conjugate matrix L^* . The solution $X=A^{-1}B$ is obtained with the forward substitution $Y=L^{-1}B$ and backward substitution $X=(L^*)^{-1}Y$.

2. Modified Cholesky decomposition method

The coefficient matrix A is decomposed into $A=LDL^*$ with a lower unit triangular matrix L, its transposition conjugate matrix $A=LDL^*$, and a diagonal matrix D. The solution $X=A^{-1}B$ is obtained with the forward substitution $Y=L^{-1}B$ and backward substitution $X=(L^*)^{-1}D^{-1}Y$.

(4) Notes

1. If the typical size of coefficient matrix elements is a, the value $10^{-6}\alpha(10^{-16}\alpha, 10^{-30}\alpha)$

is adequate as the standard value of EPS for {MCHLBS(D, Q) CHLBDS(D, Q)}.

2. Because DET and IND are I/O arguments, constants must not be used as an actual argument. Note that DET is a real type.

3. When a solution to the same coefficient matrix is to be repeatedly obtained with only the right side column changed, the function that reuses the Modified Cholesky decomposition elements of this routine is particularly useful. It is more efficient in all of storage size, precision, and speed as compared with the method using the inverse matrix.

4. If the number M of right side columns is 1, the real argument that corresponds to X can be a one-dimensional array. However, $KX \ge N$ must be met.

(1987.06.19) (1987.08.07)

CHLBDS/D/Q,MCHLBS/D/Q

(Solution of Symmetric Positive Definite Linear Equations by Cholesky and Modified Cholesky

Method) (Band Matrix)

Solution of Symmetric Positive Definite Linear Equations by Cholesky and Modified Cholesky Method (Band Matrix)

Programmed by	Ichizo Ninomiya in April 1981
Format	Subroutine language:Assembler (CHLBDQ and MCHLBQ FORTRAN) Size:233, 239, 64, 202, 199, and 71 lines respectively

(1) Outline

CHLBDS (D, Q) (MCHLBS (D, Q)) is a single (double or quadruple) precision subroutine that finds the solution $X=A^{-1}B$ of the equation AX=B with a symmetric positive definite band matrix A as a coefficient matrix and multiple right sides B, using modified Cholesky decomposition method. It has the facility for reusing Cholesky decomposition components.

(2) Directions

	CHLBDS/D/Q-							
CALL		(A, KA, N,	NB,	X, I	KX, M,	DET,	EPS, I	ND)
	CHLBDS/D/Q MCHLBS/D/Q							

Argument	Type and kind (≭1)	Attribut e	Content
A	Real type two-dimens ional array	Input/ou tput	Transform the lower left half including the diagonal of the coefficient matrix into a rectangular form, that is, the l and J element of the matrix is stored in $A(I-J+1, J)$. The array is processed by this routine, and modified Cholesky decomposition components are output. See the figure.
KA	Integer type	Input	Adjustable dimension of A (value of the first subscript in the array declaration of A). KA≧NB
N	Integer type	Input	Order of equations (number of columns of A). N ≥ 1
NB	Integer type	Input	Band width (number of rows oí A). 1≤NB≤N

46

X	Real type two-dimens ional array	lnput/ou tput	The right side columns are input. The solution vectors are output to the corresponding place.
KX	Integer type	Input	Adjustable dimension of X. KX≧N
M	Integer type	Input	Number of columns in X. If M≤O, only (modified) Cholesky decomposition is executed
DET	Real type	Input/ou tput	If DET≠0.0 is input, coefficient matrix determinant is output. If DET=0.0 is input, 0.0 is output.
EPS	Real type	Input	Constant for determining the positivity of coefficient matrices. If the value of a diagonal element becomes smaller than that of EPS during Cholesky decomposition, the input matrix is decided to be non positive definite, and the calculation is interrupted. EPS>0
IND	Integer type	Input/ou tput	This argument has the following meaning as an input. IND=0: Solve an equation newly starting from Cholesky decomposition. IND≠0: Find the solution of an equation, reusing the Cholesky decomposition elements calculated before. This argument has the following meaning as an output. IND=0: The calculation is normally executed. IND=K: Because the value of a diagonal element becomes smaller than that of EPS at the K-th step of Cholesky decomposition, the calculation is interrupted. IND=300000: The input arguments violate the limit.

*1 For a double (quadruple) precision subroutine, all real types are changed to double (quadruple) precision real types.

(3) Calculation method

1. Cholesky decomposition method

Decompose $A=LL^T$ with a lower triangular matrix L and its transposition L^T . The solution $X=A^{-1}B$ is found by the forward substitution $Y=L^{-1}B$ and backward substitution $X=L^{-T}Y$.

2. Modified Cholesky decomposition method

Becompose $A=LDL^{T}$ with a lower unit triangular matrix L, its transposition L^{T} , and a diagonal matrix D. The solution $X=A^{-1}B$ is found by the forward substitution $Y=L^{-1}B$ and the backward substitution $X=L^{-T}\cdot D^{-1}Y$.

3. Because the partial double precision calculation is used for all inner product calculations in CHLBDS and MCHLBS, the influence of the round-off error is negligible.

(4) Remarks

1. If the typical size of elements in a coefficient matrix is assumed to be α , the value EPS= $10^{-0}\alpha(10^{-10}\alpha, 10^{-30}\alpha)$ is adequate for _MCHLBS(D, Q) _ __CHLBDS(D, Q) _

2. Because DET and IND are input/output arguments, constants must not be used as actual arguments.

3. If solutions to the same coefficient matrix is to be repeatedly found changing the right side columns, the facility for reusing modified Cholesky decomposition components of this routine is extremely useful. It exceeds in storage size, precision, and speed as compared with the method by inverse matrices.

4. If the number of right side columns M is 1, the actual argument that corresponds to X can be a one-dimensional array. However, $KX \ge N$ must be met.

(1987.06.16)

CHLBDV/W>MCHLBV/W

(Solution of Symmetric Positive Definite Linear Equations by Cholesky and Modified Cholesky Method (Band Matrix) - Vector Version -)

Solution of Symmetric Positive Definite Linear Equations by Chulesky and Modified Cholesky Method(Band Matrix) -Vector Version-

Programm	Ichizo Ninomiya, May 1986
ed by	
Format	Subroutine language: FORTRAN77; size: 106, 107, 114, and 115 lines
	respectively

(1) Outline

CHLBDV(W) (MCHLBV(W)) is a single (double) precision subroutine for obtaining the solution $X=A^{-1}B$ of the equation AX=B having a symmetric positive definite band matrix A as coefficient matrix and multiple right side columns B, using modified Cholesky decomposition method. It has the facility of reusing Cholesky decomposition component.

(2) Directions

CHLBDV/W CALL (A, KA, N, NB, X, KX, M, DET, EPS, W, IND) MCHLBV/W

Argument	Type and	Attribut	Content
	kind (*1)	e	
A	Real type	Input/ou	The lower left half band area containing the diagonal of a
	Two-dimens	tput	coefficient matrix is transformed into a rectangular form and
	ional		input. That is, the I and J elements of the matrix are input
	array		in A(I-J+1, J). These elements are processed with this
			routine, and modified Cholesky decomposition elements are
			output. See the figure.

Argument	Type and	Attribut	Content
	kind (*1)	e	
KA	Integer	Input	Adjustable dimensions of A (value of the first subscript in
•	type		the array declaration). KA≥NB
N	Integer	Input	Order of equations (number of columns of A). $N \ge 1$
	type		
NB	Integer	Input	Band width of A (number of rows of A). 1≦NB≦N
	type		
X	Real type	Input/ou	The right side columns are input. The solution vectors are
	two-dimens	tput	output to the corresponding positions.
	ional		
	array		
KX	Integer	Input	Adjustable dimensions of X. KX≧N
	type		
M	Integer	Input	Number of columns of X. If M≦O, only modified Cholesky
	type		decomposition is executed.
DET	Real type	lnput/ou	If DET≠0.0 is input, coefficient matrix determinant is
		tput	output.
			If DET=0.0 is input, 0.0 is output.
EPS	Real type	Input	Coefficient matrix positivity criterion. If the value of a
			diagonal element becomes smaller than EPS during Cholesky
			decomposition, it is decided to be not positive definite, and
			the computation is interrupted. BPS>0
W	Real type	Work	One-dimensional array of sizc NB.
	one-dimens	area	
	ional		
	array		

•

.

-.`

5/

Argument	Type and	Attribut	Content
	kind (*1)	e	
IND	Integer	Input/ou	This argument has the following meaning as an input argument.
	type	tput	
			IND=0: An equation is solved newly beginning with Cholesky
			decomposition.
			IND≠0: Equation is solved reusing the Cholesky decomposition
			component calculated before.
			This argument has the following meaning as an output
			argument
			IND=0: Computation is normally executed.
			IND=K: Computation is interrupted because the value of a
			diagonal element becomes smaller than EPS at the K-th step of
			Cholesky decomposition.
			IND=30000: The input argument exceeded the limit.

*1 For double precision subroutines, all real types are changed to double precision real types.

- (3) Calculation method
 - 1. Cholesky decomposition method

The matrix A is decomposed into $A=LL^{T}$ using a lower triangular matrix L and its transpose L^{T} . The solution $X=A^{-1}B$ is obtained with the forward substitution $Y=L^{-1}B$ and backward substitution $X=L^{-T}Y$.

2. Modified Cholesky decomposition method

The matrix A is decomposed into $A=LDL^T$ with a lower unit triangular matrix L, its

transposition L^T , and a diagonal matrix D. The solution $X=A^{-1}B$ is obtained with the forward substitution $Y=L^{-1}B$ and backward substitution $X=L^{-T}D^{-1}Y$.

3. Because partial double precision calculation is used for all inner sums in CNLBDS and MCHLBS, the influence of rounding errors is small.

(4) Notes

1. If the typical size of coefficient matrix elements is a, the value $10^{-6}\alpha(10^{-16}\alpha)$ is adequate as the standard value of EPS for {MCHLBV(W) CHLBDV(W)}.

2. Because DET and IND are I/O arguments, constants must not be used as an actual argument.
3. When a solution with the same coefficient matrix is to be repeatedly obtained with only the right side column changed, the function of reusing modified Cholesky decomposition component of this routine is particularly useful. It is more efficient in all of storage size, precision, and speed as compared with the method using the inverse matrix.

4. If the number N of right side columns is 1, the actual argument corresponding to X can be a one-dimensional array. However, $KX \ge N$ must be met.

(1987, 06, 19) (1987, 08, 07)

CHLVBS/D

(Solution of Symmetric Positive Definite Linear Equations by Cholesky Method) (Band Matrices with Variable Bandwidth, Compact Mode)

Solution of Symmetric Positive Definite Linear Equations by Cholesky Method (Band Matrices with Variable Bandwidth, Compact Mode)

Programm ed by	Ichizo Ninomiya, April 1977
Format	Subroutine language: FORTRAN; size: 94 and 94 lines respectively

(1) Outline

CHLVBS/D finds the solution $X=A^{-1}B$ of the equation AX=B with a symmetric positive definite variable bandwidth matrix A as a coefficient matrix and a multiple right sides B, using Cholesky decomposition method. A is first decomposed as $A=U^{T}U$ with an upper triangular matrix U and its transpose U^{T} , then the solution is given by $X=U^{-1}(U^{-T}B)$. $C=U^{-T}B$ is calculated by the forward substitution method for the lower triangular matrix U^{T} , and $X=U^{-1}C$ is calculated by the backward substitution method for the upper triangular matrix U. This routine posesses facility for reusing Cholesky decomposition components.

(2) Directions

CALL CHLVBS/D (A, NB, X, KX, N, M, EPS, IND)

Argument	Type and kind (* 1)	Attribut e	Content
A	Real type One-dimens ional array	lnput/ou tput	Rearrange the upper right half including the diagonal excluding zero elemnts of a symmetric positive definite band matrix in a line as shown in the figure. These elements are processed by this routine, and Cholesky decomposition components are output.
NB	lnteger type One-dimens ional array	Input	One-dimensional array with N elements. Input the band width of each column in the upper right half of a coefficient matrix. (See the figure.)

Argument	Type and kind (*1)	Attribút e	Content
X	Real type Two-dimens ional array	Input/ou tput	The right side columns are input. The solution vector is output to the corresponding place.
КХ	lnteger type	Input	Value of the first subscript in the array declaration of X. KX≧N
N	Integer type	Input	Order of equations, that is, the number of rows of X. N \geq 2
M	Integer type	Input	Number of columns of X. M≧O If M=O, only Cholesky decomposition is executed. If M=1, an actual argument to X can be a one-dimensional array.
EPS	Real type	Input	Constant for determining the positivity of coefficient matrix. If the value of a diagonal element becomes smaller than that of EPS during Cholesky decomposition, the input matrix is decided to be non positive definite, and the calculation is interrupted. EPS>0
IND	Integer type .	Input/ou tput	This argument has the following meaning as an input. IND=0: Solve an equation newly starting from Cholesky decomposition. IND≠0: Solve an equation reusing Cholesky decomposition components previously obtained. This argument has the following meaning as an output. IND=0: The calculation is normally executed. IND=30000: Limits on input-output arguments are violated. IND=K: Because the value of a diagonal element becomes smaller than that of EPS at the Kth step, the calculation is interrupted. Because this argument is for both input and output, a constant must not be used as an actual argument.

*1 For CHLVBD, all real types are assumed to be a double precision real type.

NB 1 2 3 4 4 4 5 ····

(3) Remarks

If the facility for reusing the Cholesky decomposition components of this routine is exploited, it becomes almost unnecessary to calculate inverse matrices. This is because inverse matrices of band matrices are not band matrices any more, thus losing their advantage. The reuse of Cholesky decomposition is more excellent in computation speed and precision than processing via inverse matrices.

55

(1987. 06. 16)

CHOLCS/D/Q,MCHLCS/D/Q

(Solution of Symmetric Positive Definite Linear Equations by Cholesky and Modified Cholesky Method) (Full Matrix, Compact Mode)

Solution of Symmetric Positive Definite Linear Equations by Cholesky and Modified Cholesky Method (Full Matrix, Compact Mode)

Ichizo Ninomiya, April 1981			
Subroutine language: Assembler (CHOLCQ and MCHLCQ are FORTRAN.) Size: 203, 217, 60, 180, 179, and 96 lines respectively			

(1) Outline

CHOLCS (D, Q) and (MCHLCS (D, Q)) are single (double or quadruple) precision subroutines that find the solution $X=A^{-1}B$ of the equation AX=B with the compressed symmetric positive definite matrix A as a coefficient matrix and multiple right side columns B, using modified Cholesky decomposition method. It has the facility for reusing modified Cholesky decomposition components.

-CHOLCS/D, (A, N, X, KX, M, DET, EPS, IND) CALL

· · · ·

(2) Directions

Argument	Type and kind (*1)	Attribut e	Content
A	Real type One-dimens ional array		Converts the upper right half including the diagonal of a coefficient matrix column wise into a one dimensional vector before it is input. That is, the I and J element in the original matrix is stored in A $((J - 1))*J/2 + I)$. The array is processed by this routine, and modified Cholesky decomposition elements are output.

Argument	Type and kind (*1)	Attribut e	Content
N	Integer type	Input	Order of equations. N≧1
X	Real type Two-dimens ional array	lnput/ou tput	The right side columns are input. The solution vectors are output to the corresponding place.
KX	Integer type	Input	Adjustable dimension of X. KX≥N
M	Integer type	Input	Number of columns in X. If M≤O, only modified Cholesky decomposition is executed.
DET	Real type	Input/ou tput	If DET≠0.0 is input, coefficient determinants are output. If DET=0.0 is input, 0.0 is output.
EPS	Real type	Input	Constant for determining the positivity of coefficient matrices. If the value of a diagonal element becomes smaller than that of EPS during Cholesky decomposition, the input matrix is decided to be non positive definite and the calculation is interrupted.
IND	Integer type	Input/ou tput	This argument has the following meaning as an input. IND=0: Solve an equation newly starting from Cholesky decomposition. IND≠0: Solve an equation, reusing the Cholesky decomposition components calculated previously. This argument has the following meaning as an output. IND=0: Calculation is normally executed. IND=K: Because the value of diagonal elements becomes smaller than that of EPS at the Kth step of Cholesky decomposition, the calculation is interrupted. IND=30000: The input arguments violate the limit.

*1 For a double (quadruple) precision subroutine, all real types are changed to double (quadruple) precision real types.

(3) Calculation method

1. Cholesky decomposition method

Decompose $A=U^{T}U$ with an upper triangular matrix U and its transpose U^{T} . The solution $X=A^{-1}B$ is found by the forward substitution $Y=U^{-T}B$ and backward substitution $Y=U^{-1}Y$.

2. Modified Cholesky decomposition method

Decompose $A=U^TDU$ with a unit upper triangular matrix U, its transpose U^T , and a diagonal matrix D. The solution $X=A^{-1}B$ is found by the forward substitution $Y=U^TB$ and backward substitution $X=U^{-1}D^{-1}Y$.

3. Because CHOLCS and MCHLCS use partial double precision in all product inner calculations, the effects of rounding errors on the results is negligible.

(4) Remarks

1. If the typical size of elements in a coefficient matrix is assumed to be α as the standard value of external page storage, $10^{-6}\alpha(10^{-16}\alpha, 10^{-30}\alpha)$ is adequate for:

CHOLCS (D. Q)

⊢MCHLCS (D, Q) ┘

2. Because DET and IND are input-output arguments, a constant must not be used as an actual argument.

3. When a solution to the same coefficient matrix is repeatedly found changing only the right side columns, facility for reusing the modified Cholesky decomposition components of this routine is extremely useful. As compared with the method by inverse matrices, this calculation method is excellent in storage size, precision, and speed.

4. If the number of right side columns M is 1, an actual argument that corresponds to X can be a one-dimensional array. However, $KX \ge N$ must be met.

(1987.06.17)

CHOLFC/B/Z,MCHLFC/B/Z

(Solution of Hermitian positive definite linear equations by Cholesky and modified Cholesky methods (full matrix))

Solution of Hermitian Positive Definite Linear Equations by Cholesky and Modified Cholesky Method (Full Matrix)

Programm	Ichizo Ninomiya; December 1983				
ed by					
Format	Subroutine language; FORTRAN Size; 50, 51, 51, 50, 51, and 51 lines				
:	respectively				

(1) Outline

CHOLFC (B, Z) and MCHLFC (B, Z) are complex single (double, quadruple) precision subroutines, each of which calculates solution $X=A^{-1}B$ of equation AX=B by the Cholesky or modified Cholesky decomposition method, where A is a Hermitian symmetric positive definite matrix and B is a right-hand side matrix. It has the facility of reusing Cholesky decomposition components.

(2) Directions

CHOLFC/B/Z CALL (A, KA, N, X, KX, M, DET, EPS, IND) MCHLFC/B/Z

Argument	Type and	Attribut	Content
	kind (*1)	e	
A	Complex]nput/ou	The upper right half including the diagonal of the
	type	tput	coefficient matrix is input. After processing by this
	Two-dimens		routine, Cholesky- or modified Cholesky-decomposed components
	ional		are output. The lower left half is retained.
	array		
KA	Integer	Input	Adjustable dimension of A (value of the first subscript in
	type		array declaration). KA≧N

Argument	Type and	Attribut	Content
	kind (*1)	e	
N	Integer	Input	Number of unknowns of the equation. N ≥ 1
	type		·
X	Complex	Input/ou	A right-hand side vectors are input, as a matrix. Solution
	type	tput	vectors are generated in the corresponding locations.
	Two-dimens		
	ional		
	array		
KX	Integer	Input	Adjustable dimension of X. KX≧N
	type		
M	Integer	Input	Number of columns of X. When M≦O, only Cholesky or modified
	type	-	Cholesky decomposition is performed.
DET	Real type	Input/ou	When a value other than 0.0 is input, the coefficient
		tput	determinant is output.
			When 0.0 is input, 0.0 is output as it is
EPS	Real type	Input	Constant for test of positiveness of coefficient matrix.
			When the diagonal element becomes smaller than EPS during
			Cholesky decomposition, it is decided as non positive and
			calculation is interrupted.

• .

Argument	Type and	Attribut	Content
	kind (*1)	e	
IND	Integer	Input/ou	This argument has the following meanings for input:
	type	tput	IND=0: An equation is solved beginning with Cholesky
			decomposition_
			IND≠O: An equation is solved by reusing the
			Cholesky-decomposed components obtained immediately before.
			This argument has the following meanings for output:
			IND=0: Calculation is performed normally.
			IND=K: Because the diagonal element became smaller than EPS
			at step K in Cholesky decomposition, calculation was
			discontinued
			IND=30000: The input argument violated the limit.

*1 For double (quadruple) precision subroutines, single precision types are all changed to double (quadruple) precision types.

- (3) Calculation method
 - 1. Cholesky decomposition method

A is decomposed as a product of an upper triangular matrix U and its conjugate transpose U^* as $A=U^*U$. Then the solution $X=A^{-1}B$ is determined by forward substitution $Y=(U^*)^{-1}B$ and backward substitution $X=U^{-1}Y$.

2. Modified Cholesky decomposition method

A is decomposed as a product of an upper triangular matrix U and its conjugate transpose U^* and diagonal matrix D as $A=U^*DU$. Then the solution $X=A^{-1}B$ is determined by forward substitution $Y=(U^*)^{-1}B$ and backward substitution $X=U^{-1}D^{-1}Y$.

(4) Notes

1. Let a be the typical size of elements of the coefficient matrix, then

 $10^{-6}\alpha(10^{-16}\alpha, 10^{-30}\alpha)$ is a reasonable EPS value for (CHOLFS (D, Q) MCHLFS (D, Q)).

2. Do not use a constant as the actual argument for DET and IND because these are used for both input and output.

3. When equations sharing the same coefficient matrix are solved iteratively with different

right-hand side columns, this routine's facility of reusing the Cholesky- or modified Cholesky-decomposed components is very useful. This routine is superior to the inverse matrix method in every respect of storage capacity, accuracy, and speed. 4. When the number of right-hand side columns M is 1, the actual argument corresponding to X can be a one-dimensional array, where KX≧N must be met.

(1987. 06. 19) (1987. 08. 07) (1987. 08. 10)

CHOLFS/D/Q,MCHLFS/D/Q

(Solution of symmetric positive definite linear equations by Cholesky and modified Cholesky method (full matrix))

Solution of Symmetric Positive Definite Linear Equations by Cholesky and Modified Cholesky Method (Full Matrix)

Programm	Ichizo Ninomiya; April 1981
ed by	
Format	Subroutine language; Assembler (CHOLFQ and MCHLFQ are in FORTRAN)
	Size; 207, 217, 49, 179, 176, and 51 lines respectively

(1) Outline

CHOLFS(D, Q) (MCHLFS(D, Q)) is a subroutine for single (double or quadruple) precision to obtain solution $X=A^{-1}B$ of matrix equation AX=B by the Cholesky or modified Cholesky decomposition method when A is positive definite. It has the facility reusing Cholesky or modified Cholesky decomposition components.

(2) Directions

CHOLFS/D/Q CALL (A, KA, N, X, KX, M, DET, EPS, IND) MCHLFS/D/Q

Argument	Type and	Attrib	Content
	kind (*1)	ute	
A	Real type	Input/	The upper right half of a coefficient matrix including the
	Two-dimens	output	diagonal is input. After processing by this routine, Cholesky
	ional		or modified Cholesky composition components are generated. The
	array		lower left half is saved.
KA	Integer	Input	Adjustable dimension of A (value of the first subscript in
	type		array declaration). KA≧N
N	Integer	Input	Number of unknowns of equation. N≥1
	type		

Argument	Type and	Attrib	Content
	kind (*1)	ute	
X	Real type	Input/	The matrix of right-hand columns are input. Solution vectors
	two-dimens	output	are generated at the corresponding columns
	ional		
	array		
KX	Integer	Input	Adjustable dimension of X. KX≥N
	type		
M	Integer	Input	Number of columns of X. If M \leq O, only Cholesky or modified
	type		Cholesky decomposition is done
DET	Real type	Input/	When DET≠0.0 is input, coefficient determinant is generated.
		output	When DET=0.0 is input, 0.0 is returned.
EPS	Real type	Input	Constant used to check positivity of the coefficient matrix.
			When the diagonal element becomes smaller than EPS during
			Cholesky decomposition, it is assumed to be non-positive
1			definite and calculation is interrupted.
IND	Integer	Input/	For input, this argument has the following meanings:
	type	output	IND=0: The equation is solved by restarting Cholesky
			decomposition from the beginning.
			IND \neq 0: The equation is solved by reusing the Cholesky
			decomposition component calculated immediately before.
			For output, this argument has the following meanings:
			IND=0: Calculation has been done normally.
	·		IND=K: Calculation was terminated because the diagonal element
			became smaller than EPS at step K in Cholesky decomposition.
			IND=30000: The input argument violated the limit.
L	L	I	

64

*1 For double or quadruple precision subroutines, all real types are changed to double or quadruple precision real types.

(3) Calculation method

1. Cholesky decomposition method

A is decomposed as $A=U^TU$ by an upper triangular matrix U and its conjugate transpose

matrix U^T . Solution $X=A^{-1}B$ is obtained by forward substitution $Y=U^{-T}B$ and backward substitution $X=U^{-1}Y$.

2. Modified Cholesky decomposition method

A is decomposed as $A=U^TDU$ by an unit upper triangular matrix U, its conjugate transpose matrix U^T , and a diagonal matrix D. Solution $X=A^{-1}B$ is obtained by forward substitution $Y=U^{-T}B$ and backward substitution $X=U^{-1}D^{-1}Y$.

3. Because the partial double precision calculation is used for all inner product calculations in CHOLFS and MCHLFS, rounding errors have little influence on it.

(4) Notes

1. When a typical size of the element of the coefficient matrix is assumed to be a, $10^{-6}\alpha(10^{-16}\alpha, 10^{-30}\alpha)$ is suitable as a standard EPS value for (CHOLFS(D, Q) and MCHLFS(D, Q)).

2. Do not specify a constant for an actual argument of DET and IND because these arguments are used for both input and output.

3. For the purpose of obtaining solutions of the same equation by simply changing its right-hand side column, this routine's facility to reuse Cholesky or modified Cholesky decomposition components is extremely useful. The Cholesky method is superior to the inverse matrix method in all aspects of the storage capacity, accuracy, and speed.

4. When M, the number of right hand side columns, is 1, a one-dimensional array is acceptable for the actual argument corresponding to X. $KX \ge N$ should hold, however.

(1987.06.19) (1987.08.10)

CHOLFV/W>MCHLFV/W

(Solution of Symmetric Positive Definite Linear Equations by Cholesky and Modified Cholesky Method (Full Matrix) - Vector Version-)

Solution of Symmetric Positive Definite Linear Equations by Cholesky and Modified Cholesky Nethod(Full Natrix) -Vector Version-

Programm	Ichizo Ninomiya, December 1984
ed by	
Format	Subroutine language: FORTRAN77; size: 141, 142, 141, and 142 lines
	respectively

(1) Outline

CHOLFV(W) and (MCHLFV(W)) are single (double) precision subroutines for obtaining the solution $X=A^{-1}B$ of the equation AX=B having a symmetric positive definite matrix A as coefficient matrix and multiple right sides B, using modified Cholesky decomposition method. It has the facility of reusing modified Cholesky decomposition component.

CHOLFV(W) and MCHLFV(W) are for single (double) precision.

(2) Directions

CHOLFV/W ⁻ CALL (A, KA, N, X, KX, M, DET, EPS, W, IND) MCHLFV/W

Argument	Type and	Attribut	Content
	kind (* 1)	е	
A	Real type	lnput/ou	The upper right half containing the diagonal of a coefficient
	Two-dimens	tput	matrix is input. It is processed with this routine, and
	ional		modified Cholesky decomposition elements are output. The
	array		lower left half is retained.
KA	Integer	Input	Adjustable dimensions of A (value of the first subscript in
	type		the array declaration). KA≧N

Argument	Type and	Attribut	Content
	kind (*1)	e	
N	Integer	Input	Order of equations. N≥1
	type		
X	Real type	Input/ou	The right side columns are input. The solution vectors are
	two-dimens	tput	output to the corresponding positions.
	ional		
	array		
KX	Integer	Input	Adjustable dimensions of X. KX≥N
	type		
M	Integer	Input	Number of columns of X. lf M≦O, only modified Cholesky
	type		decomposition is executed.
DET	Real type	Input/ou	If DET≠0.0 is input, coefficient matrix determinant is
		tput	output.
			If DET=0.0 is input, 0.0 is output.
EPS	Real type	Input	Coefficient matrix positivity criterion. If the value of a
			diagonal element becomes smaller than EPS during Cholesky
			decomposition, it is decided to be not positive definite, and
			the computation is interrupted.
W	Real type	Work	One-dimensional array of size N
	one-dimens	area	
	ional		
	аггау		

Argument	Type and	Attribut	Content •
	kind (*1)	e	
IND .	Integer	Input/ou	This argument has the following meaning as an input argument.
	type	tput	
			IND=0: An equation is solved newly beginning with Cholesky
			decomposition.
			IND≠O: An equation is solved reusing the Cholesky
			decomposition elements calculated before.
			This argument has the following meaning as an output
			argument.
			IND=0: Computation is normally executed.
			IND=K: Computation is interrupted because the value of a
			diagonal element becomes smaller than EPS at the K-th step of
			Cholesky decomposition.
			IND=30000: The input argument exceeded the limit.

*1 For double precision subroutines, all real types are changed to double precision real types.
(3) Calculation method

1. Cholesky decomposition method

The coefficient matrix A is decomposed into $A=U^{T}U$ using an upper triangular matrix Uand its transpose U^{T} . The solution $X=A^{-1}B$ is obtained with the forward substitution $Y=U^{-T}B$ and backward substitution $X=U^{-1}Y$.

2. Modified Cholesky decomposition method

The coefficient matrix A is decomposed into $A=U^{T}DU$ using an upper unit triangular matrix U, its transpose U^{T} , and a diagonal matrix D. The solution $X=A^{-1}B$ is obtained with the forward substitution $Y=U^{-T}B$ and backward substitution $X=U^{-1}D^{-1}Y$.

(4) Notes

1. If the typical size of coefficient matrix elements is a, the value $10^{-6}\alpha(10^{-16}\alpha)$ is adequate as the standard value of EPS for {CHOLFV(W) MCHLFV(W)}.

2. Because DET and IND are input-output arguments, constants must not be used as an actual

argument.

3. When a solution with the same matrix is to be repeatedly obtained with only the right side column changed, the function of reusing the modified Cholesky decomposition component of this routine is particularly useful. It is more efficient in all of storage size, precision, and speed as compared with the method using the inverse matrix.

4. If the number M of right side columns is 1, the actual argument corresponding to X can be a one-dimensional array. However, $KX \ge N$ must be met.

(1987.06.19)

CHOLSK/CHOLSD (Solution of Symmetric Positive Definite Linear Equations by Cholesky Method)

Solution of Symmetric Positive Definite Linear Equations by Cholesky Method

Programm ed by	Ichizo Ninomiya, April 1977
Format	Subroutine language: FORTRAN; size: 43 and 43 lines respectively

(1) Outline

CHOLSK/CHOLSD solves multiple simultaneous linear equations that share a symmetric positive definite coefficient matrix, using Cholesky decomposition method. In other words, it finds the solution $X=A^{-1}B$ of the matricial equation AX=B.

(2) Directions

CALL CHOLSK (A, KA, N, M, EPS, IND)

CALL CHOLSD (A, KA, N, M, EPS, IND)

Argument	•Type and kind (*1)	Attribut e	Content
A	Real type Two-dimens ional array	Input/ou tput	Input an augmented matrix with multiple right side columns added to the right of a symmetric positive coefficient matrix. Only the upper right half including the diagonal of the coefficient matrix need be input. When the matrix is processed with this routine, Cholesky decomposition components are output in the same place. The corresponding solution vectors are output in the corresponding right side columns. The lower left half of the coefficient matrix is preserved. If Cholesky decomposition components are preserved, the computation time required for Cholesky decomposition can be saved when another equation with the same coefficient matrix is to be solved.
KA	Integer type	Input	Value of the first subscript in the array declaration of A. KA≧N
N ·	Integer type	Input	Number of rows of A. It is also the order of equation. N $\geq\!\!2$

Argument	Type and kind (*1)	Attribut e	Content
M	Integer type	Input	Number of columns of A. Sum of the order of equations and the number of right side columns. M≥N。 If M = N, only Cholesky decomposition of the coefficient matrix is executed.
EPS	Real type	Input	Constant for deciding the positivity of A. If the value of a pivot element in A is smaller than that of EPS, the input matrix is decided to be non positive definite, and the the calculation is interrupted. EPS>0
IND	Integer type	Input/ou tput	Determines whether to reuse Cholesky decomposition components or not as an input. If IND = Q, normal calculation is executed. If IND≠Q, the component is reused.
			Indicates the calculation status in the routine as an output. If limits on KA, N, M, and EPS are violated, 30000 is assumed. If calculation is interrupted at K-th stage of decomposition, K is assumed. If calculation is normally executed, O is assumed.

*1 For CHOLSD, all real types are changed to double precision real types.

(3) Remarks

1. Because the argument IND is used for both input and output, a constant must not be written as an actual argument for it.

2. When a number of equations that has the same coefficient matrix, but differ in the right side only are to be solved, computation time can be saved by using the facility for reusing the Cholesky decomposition components of this routine.

3. If the typical size of matrix elements is α , $\alpha \times 10^{-6} (\alpha \times 10^{-16})$ is adequate as the standard value of EPS for CHOLSK (CHOLSD).

4. CHOLFS/D routine that is similar to this routine but has much more facilities, and the CHLBDS/D routine for band matrix are available in NUMPAC.

71

(1987.06.17) (1987.08.07)

GAUELS/D/Q/C/B (Solution of Linear Equations by LU-Decomposition)

Solution of Linear Equations by LU-Decomposition

Programm ed by	Ichizo Ninomiya, April 1977
Format	Subroutine language: FORTRAN (GAUELS/D is assembler); size: 180,183, 53, 43, and 44 lines respectively

(1) Outline

GAUELS/D/Q/C/B solves multiple simultaneous linear equations that share a coefficient matrix, using a modified Doolittle method a version of Gaussian elimination accompanied by row interchange for pivot selection. In other words, it finds the solution $X=A^{-1}B$ of the matricial equation AX=B.

(2) Directions

CALL GAUELS/D/Q/C/B (A, KA, N, M, EPS, ILL)

Argument	Type and kind (*1)	Attribut e	Content
A	Real type Two-dimens ional array]nput/ou tput	Input an augmented matrix in which right side columns are added to the right of the coefficient matrix. The solution vectors are output in the corresponding right side columns.
KA .	Integer type	Input	Value of the first subscript in the array-A declaration. KA≧N
N	Integer type	Input	Number of rows in A, that is, the order of the equation. N ≥ 2
М	Integer type	Input	The number of columns in A, that is, the order of the equation plus the number of equations to be solved at the same time. M>N
EPS	Real type	Input	Criterion constant for matrix singularity. If the absolute value of a pivot element is smaller than this constant, the input matrix is decided to be singular, and the calculation is interrupted. EPS>0

Argument	Type and kind (*1)	Attribut e	Content
ILL	Integer	Output	ILL=0: Normal termination
	type		ILL = 30000: Limits on KA, N, M, and EPS are violated.
			The number of the pivot element whose absolute value is
			smaller than EPS.

*1 For GAUELD (Q, C, B), A is a double precision real type (quadruple precision real type, complex type, and double precision complex type).

For GAUELD (Q, C, B), EPS is a double precision real type (quadruple precision real type, real type, and double precision real type).

(3) Remarks

1. If the magnitude of coefficient of equations differ significantly, it is desirable to normalize the equations in advance using MNORMS and MNORMD to insure precision in the results.

2. If the typical absolute value of elements in a coefficient matrix is to be α , $\alpha \times 10^{-6} (\alpha \times 10^{-16}, \alpha \times 10^{-30})$ is adequate as the standard value of EPS for GAUELS and (GAUELD, GAUELQ).

3. If there is no special reason, it is recommended to use LEQLUS with high precision and various facilities, as a simultaneous linear equation solver.

(1987. 06. 17) (1987. 08. 07)

GSORSS/D (Solution of linear equations for sparse matrices by SOR method (compact mode)) Solution of Linear Equations for Sparse Matrices by SOR Method(Compact Mode)

Programm	Yasuyo Hatano 1977, Revised; Ichizo Ninomiya 1982
ed by	
Format	Subroutine language; FORTRAN Size; 49 and 50 lines respectively

(1) Outline

Each of these subroutines solves linear equations with coefficient matrices including many () elements. To do this, it uses the SOR (successive over-relaxation) method based on the Gauss-Seidel method. This routine is used when only non-zero elements of coefficient matrices are reduced to a one-dimensional system by the compact mode and input.

(2) Directions

CALL GSORSS/D (IJTAB, A, LA, B, N, X, EPS, OMG, IMAX, ILL)

Argument	Type and	Attribut	Content
	kind (*1)	е	
IJTAB	Two bytes	Input	The numbers of rows and columns with non-zero elements are
	Integer		input to IJTAB (1,K) and IJTAB (2,K) respectively. Suppose
	type		$A(K) = a_{ij}$, for instance, then input
	Two-dimens		IJTAB(1, K) = i,
	ional		IJTAB(2, K) = j.
	аггау		The values are not retained.
A	Real type	Input	Only non-zero elements of the coefficient matrix are input
	one-dimens		in a row.
	ional		The values of i,j are rearranged in ascending order,
	аггау		divided by the pivot element, and put in this argument.
			Note that the values are not retained.

Argument	Type and	Attribut	Content
	kind (*1)	e	
LA	Integer	Input	Number of non-zero elements of coefficient matrix
	type		
B	Real type	Input	One right-hand side column is input. It is then divided by
	one-dimens		the pivot element and output. The value is not retained.
	ional		
	аггау		
N	Integer	Input	Number of unknowns of equation. 2≧N
	type		
X	Real type	Input/ou	Input: Initial value of solution vector.
	one-dimens	tput	Output: Solution vector after iterative calculation. Size
	ional		N
	array		
EPS	Real type	Input	Tolerance for convergence test in iteration method
			When all correction quantities of solution vectors are
			below EPS, it is assumed that convergence has occurred.
OMG	Real type	Input	Acceleration factor for convergence in iteration method.
			1≤0MG<2
IMAX	Integer	Input/ou	Input: Upper limit of the number of iterations. Q <imax.< td=""></imax.<>
•	type	tput	Output: Actual number of iterations until convergence of
•			solution vectors
ILL	Integer	Output	ILL=0: Normal termination
	type		ILL=30000: The restrictions on N or OMG are not observed.
			ILL=25000: IJTAB error
			ILL=K: Calculation is not done because the diagonal element
			on Kth row is O.
	· .		ILL=IMAX: Convergence does not occur in IMAX iterations.

75

*1 For double precision subroutines, real types are all assumed to be double precision real types.

76

•

.

•

•

(3) Example

00010	
00010	C TEST OF GSORSS DIMENSION V(41,31),IV(41,31),A(4500),X(1000),
00021	1 B(1000)
00030	INTEGER*2 IJTAB(2,4500)
00040	EQUIVALENCE (V/IV)
. 00050	M=41
00060	N=31
00070	IMAX=1000
00080	EPS=1.E-4
00090	OMG=1.8
00100	DO 20 J=2,30
00110	DO 20 I=2,40
00120	20 $IV(I_{J})=1$
00130	DO 21 J=1,31
00140	V(1,J)=0.
00150	21 V(41/J)=0.
00160	DO 22 I=12,40
00170	V(I,1)=0.
00180	22 V(I,31)=0.
00180	DO 23 I = 2.11
00190	
	DO 23 J=1/11 V(I/J)=0.
00210	
00220	23 V(I,J+20)=0.
00230	DO 24 J=11,21
00240	DO 24 I=21,31
00250	24 V(I,J)=100.
00260	WRITE(6,601) ((IV(I,J),J=1,31),I=1,41)
00270	LA=4500
00280	NA=1000
00290	CALL CLOCKM(ITO)
00300	CALL LAPLSS(V/IV/M/M/N/IJTAB/A/LA/B/NA/X/EPS/OMG/
00301	2 IMAX/ILL)
00310	CALL CLOCKM(IT)
00320	IT=IT-IT0
00330	WRITE(6,600) ILL,NA,LA,IT,IMAX,((V(I,J),J=1,16),
00331	3 I=1,41)
00340	600 FORMAT(1H1///10X,5HILL =,16,5X,4HNA =,17,5X,4HLA
00341	4 =/15
00350	*,5X,6HTIME =,I7,5X,6HITER =,I7///(5X,16F8.3))
00360	DO 40 I=1,41
00370	DO 40 J=1,31
00380	40 IV(I,J)=V(I,J)+0.5
00390	555 WRITE(6,601) ((IV(I,J),J=1,31),I=1,41)
00400	601 FORMAT(1H1///(5X,3114))
00410	STOP
00420	END
00430	SUBROUTINE LAPLSS(V/IV/KV/NR/NC/IJTAB/A/LA/B/NA/X
00440	*/EPS/OMG/IMAX/ILL)
00450	DIMENSION V(KV/NC)/IV(KV/NC)/A(LA)/B(NA)/X(NA)
00450	INTEGER*2 IJTAB(2/LA)
00480	IF(NR.LT.3.OR.NC.LT.3.OR.KV.LT.NR.OR.
00470	* EPS.LE.OOR.OMG.LT.1OR.OMG.GE.2.) GO TO 130
00490	
00500	NC1=NC-1
00510	N=0
00520	L=0

:

DO 70 J=2,NC1 00530 00540 LB=100550 DO 60 I=2,NR1 00560 IF(IV(I,J).NE.1) GO TO 50 00570 N=N+100580 IF(N.GT.NA) GO TO 120 X(N)=0.000590 00600 IV(I,J)=N00610 LEFT=IV(I,J-1) 00620 IF(LEFT.GT.O.AND.LEFT.LT.N) GO TO 10 00630 B(N) = V(I, J-1)GO TO 20 00640 00650 10 L=L+1 00660 A(L) = -1.000670 IJTAB(1,L)=LEFT IJTAB(2,L)=N 00680 00690 20 IF(LB.EQ.0) GO TO 30 00700 B(N) = V(I-1,J) + B(N)00710 GO TO 40 00720 30 L=L+1 A(L) = -1.000730 IJTAB(1,L)=N-100740 00750 IJTAB(2,L)=N 00760 40 L=L+1 00770 IF(L.GT.LA) GO TO 120 00780 A(L) = 4.000790 IJTAB(1,L)=N 00800 IJTAB(2,L)=N00810 IF(IV(I+1,J).NE.1) B(N)=V(I+1,J)+B(N)00820 IF(IV(I_J +1).NE.1) B(N)=V(I_J +1)+B(N) 00830 LB=0 00840 GO TO 60 00850 50 LB=1 **60 CONTINUE** 00860 00870 **70 CONTINUE** 00880 NA = NKM=L 00890 00900 DO 80 K=1,KM 00910 IF(A(K).NE.-1.) GO TO 80 00920 L=L+100930 IF(L.GT.LA) GO TO 120 00940 A(L) = -1.000950 IJTAB(1,L) = IJTAB(2,K)00960 IJTAB(2,L) = IJTAB(1,K)00970 **80 CONTINUE** 00980 LA=L 00990 CALL GSORSS(IJTAB,A,LA,B,NA,X,EPS,OMG,IMAX,ILL) 01000 IF(ILL.NE.O) GO TO 110 01010 DO 100 J=2,NC1 01020 DO 90 I=2,NR1 01030 L=IV(I,J) 01040 IF(L.LE.O.OR.L.GT.NA) GO TO 90 01050 V(I,J) = X(L)01060 **90 CONTINUE** 01070 **100 CONTINUE** 01080 RETURN 01090 110 ILL=10000 01100 RETURN 120 ILL=20000 01110 01120 RETURN 01130 130 ILL=30000 01140 RETURN

ירו

(4) Note

If the coefficient matrices are positive definite symmetric, the Gauss-Seidel method (when OMG=1) converges. Furthermore, if the sum of absolute values of non-diagonal elements on each row is smaller than that of diagonal elements, that is, if

 $\sum_{i=1}^{N} |a_{ij}| < |a_{ii}|$

is met, then convergence occurs. However, this is effective only when the right-hand side is sufficiently larger than the left-hand side and OMG is adequate.

78 /

Bibliography

1) Hayato Togawa; "Numerical calculation of matrices," page 64, Ohm-sha (1971)

(1987.06.19)

LAPLBS/VS/SS/CS (Solution of 2-dimensional Laplacian equation)

Solution of 2-Dimensional Laplacian Equation

Programm	Ichizo Ninomiya, Yasuyo Hatano, and Tsuyako Miyakoda; September 1982
ed by	
Format	Subroutine language; FORTRAN77 Size; 07, 69, 73, and 73 lines
	respectively

(1) Outline

Each of these subroutines solves a Dirichlet boundary value problem of two-dimensional Laplacian equations by five-point difference approximation with uniform orthogonal mesh. When the mesh division of the solution region and the distribution of the boundary values are given, it automatically generates a five-point difference approximation equation, and solves it by the corresponding method as follows:

LAPLBS: Modified Cholesky decomposition method for symmetric band matrix

LAPLVS: Cholesky decomposition method for symmetric band matrix of variable width

LAPLSS: SOR method for sparse matrix

LAPLCS: Conjugate gradient method with preconditioning for sparse matrix

(2) Directions

CALL LAPLBS (V, IV, KV, NR, NC, A, LA, NA, S, IND)

CALL LAPLVS (V, IV, KV, NR, NC, A, LA, NA, NB, S, IND)

CALL LAPLSS (V, IV, KV, NR, NC, IJTAB, A, LA, B, NA, X, EPS, OMG, IMAX, ILL)

CALL LAPLCS (V, IV, KV, NR, NC, IJTAB, A, LA, B, NA, X, EPS, OMG, IMAX, IW, W, ILL)

Argument	Type and	Attribut	Content
	kind (* 1)	e	
V	Real type	Input/ou	Solution region. V and IV are connected by the EQUIVALENCE
•	two-dimens	tput	statement to be assigned to the same region. It is then
	ional		used appropriately for V or IV depending on purpose.
	array		Input: A boundary value is input in V in the boundary
			point, IV=1 in inner points, and IV=0 in the other points.
			Output: A solution is output in the interior point as V.
			(See the example.)
IV	Integer	Input/ou	
	type	tput	· ·
	two-dimens		
	ional	•	
	array		
KV	Integer	Input	Adjustable dimension of V(IV). KV≧NR
	type		
NR	Integer	Input	Number of rows of V(IV). NR≧3
	type		
NC	Integer	Input	Number of columns of V(IV). NC≥3
	type		· · · ·
IJTAB	Integer	Output	Numbers of rows and columns of non-zero coefficients of
	type		equation.
	one-dimens		Size LA.
	ional		
	array		
A	Real type	Output	Equation coefficients (non-zero coefficients for LAPLSS/D
	one-dimens		and LAPLCS/D) are generated and processed. Size LA
•	ional		
	array		

Argument	Type and	Attribut	Content
	kind (*1)	e	
LA	Integer	Input/ou	Input: Estimation of the total number of equation
	type	tput	coefficients.
			Output: Total number of equation coefficients
B	Real type	Output	Right-hand side vector of equation. Size NA.
	one-dimens		
	ional		
•	array		
NA	Integer	Input/ou	Input: Estimation of the number of unknowns of equations.
	type	tput	Output: Number of unknowns of equations.
S	Real type	Output	Solution vector. Size NA.
	one-dimens		The same is output also in V.
	ional		
	array		
X	Real type	Input/ou	Input: Initial approximation vector of solution.
	one-dimens	tput	Output: Solution vector. The same is output also in V.
	ional		Size NA.
	array		
EPS	Real type	Input	Criterion for convergence test. EPS>0
OMG	Real type	Input	Acceleration factor. $1 \leq OMG < 2$
IMAX	Integer	Input/ou	Input: Upper limit of the number of iterations.
	type	tput	Output: Number of iterations.
IW	Integer	Work	Size LA.
	type	area	
	one-dimens		
	ional		
	array		

•

Argument	Type and	Attribut	Content
	kind (*1)	e	
W	Real type	Work	.The size is 6≠NA.
	one-dimens	агеа	
	ional		
	array	ĺ	
IND	Integer	Input/ou	Input: IND=0: A coefficient matrix is generated and
	type	tput	decomposed. A right-hand side vector is generated
			and solved.
			IND \neq 0: Generation and decomposition of a coefficient
			matrix is omitted, and only a right-hand side vector
			is generated and solved by using the result of the
			previous call. It is useful to repeat calculation
			for the same region with different boundary values.
			Output: IND=0: Normal termination.
			IND=10000: Cholesky decomposition was interrupted.
			IND=20000: LA or NA is too small.
			IND=30000: Parameter error.
ILL	Integer	Output	ILL=0: Normal termination.
	type		ILL=10000: The number of iterations exceeded the upper
			limit.
			ILL=20000: LA or NA is too small.
			ILL=30000: Parameter error.

(3) Example

The program shown below uses LAPLBS to solve the Laplacian equations for a convex region with a rectangular hole, whose external boundary value is 0, and whose internal boundary value is 100. KKK=1 (IND=0) indicates an ordinary usage.

/

KKK=2 (IND=1) indicates how to reuse the decomposed components of a coefficient matrix.

	DIMENSION V(41,31),IV(41,31),A(36900),X(1000)
	EQUIVALENCE (V/IV)
	DO 555 KKK=1,2
	DO 20 J=2,30
	DO 20 I=2,40
20	IV(I,J)=1
	DO 21 J=1,31
	V(1,J)=0.
21	V(41,J)=0.
	DO 22 I=12,40
	V(I,1)=0.
22	V(I,31)=0.
	DO 23 I=2,11
	DO 23 J=1/11
	V(I,J)=0
23	V(I, J+20)=0.
	DO 24 J=11,21
	DO 24 I=21/31
24	V(I,J)=100.
	IF(KKK.EQ.1) WRITE(6,601) ((IV(I,J),J=1,31),I=1,41)
	M=41
	N=31
	IND=KKK-1
	NA=1000
	LA=36900
	CALL CLOCKM(ITO)
	CALL LAPLBS(V,IV,M,M,N,A,LA,NA,X,IND)
	CALL CLOCKM(IT)
	WRITE(6,600) IND,NA,LA,IT,((V(I,J),J=1,16),I=1,41)
	FORMAT(1H1///10X,5HILL =,I6,5X,4HNA =,I7,5X,4HLA =,I7
1	*/5X/6HTIME =/I7///(5X/16F8.3))
	DO 40 I=1,41
	DO 40 J=1,31
	IV(I,J) = V(I,J) + 0.5
	WRITE(6,601) ((IV(I,J),J=1,31),I=1,41)
601	FORMAT(1H1///(5X,31I4))
	STOP
	END

8

A program that solves the same problem by using LAPLSS and the source program of LAPLSS are shown in the example of GSORSS.

(4) Notes

1. For the method of solving the difference equation generated, see the direction of each corresponding subroutine as follows:

LAPLBS·····MCHLBS LAPLVS·····CHLVBS LAPLSS·····GSORSS LAPLCS·····PRCGSS

2. It is recommended to allocate a solution area in m x n matrices where m (columns) is larger than n (rows). This can reduce the band width of the coefficient matrices generated and also save the storage capacity and computation time.

3. When calculation is repeated in the same region with different boundary values by using the LAPLBS or LAPLVS subroutine, the subroutine's facility of reusing the Cholesky-decomposed components is very effective to save computation time. Refer to the explanation of IND and the example.

4. When LAPLSS or LAPLCS is used, it is desirable to put a value as close as possible to the true solution into the initial value (X) of the solution vector. If sufficient information for it is not available, however, a zero vector, for instance, or a vector whose components are all equal to the average boundary value can be used.

(1987. 06. 19)

LEQBDS/D/Q/C/B (Solution of Linear Equations with Band Matrix of Coefficients by Gaussian Elimination)

 $\mathcal{P}_{\mathcal{O}}$

Solution of Linear Equations with Band Matrix of Coefficients by Gaussian Elimination

Programm ed by	Ichizo Ninomiya, September 1978
Format	Subroutine language: FORTRAN; size: 80, 80, 80, 81, and 80 lines respectively

(1) Outline

LEQBDS/D/Q/C/B finds the solution $X=A^{-1}B$ of the simultaneous linear equation AX=B with a band matrix A as coefficient matrix and multiple right side columns B using the Gaussian elimination accompanied by row interchange for pivot selection. It has facility for reusing the LU-decomposition elements of A obtained by the elimination.

(2) Directions

CALL LEQBDS/D/Q/C/B (A, KA, N, NB, LB, MB, X, KX, NX, MAX, EPS, IND)

Argument	Type and kind (*1)	Attribut e	Content
A	Real type Two-dimens ional array	Input/ou tput	Transform the coefficient band matrix into a rectangle form, that is, the I and J elements in an original matrix is stored in $A(J-1+LB, I)$ (See the figure). The LU decomposition elements processed by this routine are output.
KA	Integer type	Input	Value of the first subscript in the array declaration of A. KA≥NB
N	Integer type	Input	The order of an equation, that is, the number of columns in $A_{\rm c}$ $N\!\geq\!NB$
NB	Integer type	•]nput	Total band width (see the figure). It is also the number of rows in ANB>LB
LB	Integer type	Input	Left band width (see the figure). LB≥2
MB	Integer type	Output	Number of rows in A after processing. MB≦KA must hold.
X	Real type Two-dimens ional array	Input/ou tput	If the right side columns are input, the solution vectors are output in the corresponding place.
KX	Integer type	Input	Value of the first subscript in the array declaration of X. $KX\!\geq\!N$
NX	Integer type	Input	Number of columns in X. Only A is processed when NX≦O.
MAX	Integer type One-dimens ional array	Qutput	One-dimensional array containing N elements. It stores information on row interchange, and is used when LU elements are reused.
EPS	Real type	Input	Criterion constant for matrix singularity. If the absolute value of pivot elements is smaller than that of EPS, the input matrix is decided to be singular, and calculation is interrupted. EPS>0

Argument	Type and kind (*1)	Attribut e	Content
			This argument has the following meaning as an input. If
IND	Integer	Input/ou	IND=0, it indicates that an equation should be solved from
	type	tput	the beginning starting from the elimination. If IND \neq 0, it
			indicates that a solution should be obtained immediately by
			reusing the LU decomposition elements previously obtained and
			skipping the elimination. A and MAX must be left unchanged
			in the state of the previous call.
			This argument has the following meaning as an output. O:
			When calculation terminates normally. 30000: When no
			calculation is executed because limits on the argument are
			violated. K: When a matrix is decided to be singular, and
			the elimination is interrupted at the Kth step

*1 For LEQBDD (Q, C, B), A and X are double precision real types (quadruple precision real type, complex type, and double precision complex type).

For LEQBDD (Q, C, B), EPS is a double precision real type (quadruple precision real type, real type, and double precision real type).

(3) Example of use

This example shows a program for solving an equation with order N=1000, total band width NB=7 and left band width LB=3.

С TEST FOR LEQBDS DIMENSION A(10,1000), MAX(1000), X(1000) N=1000 NB=7LB=3 KA=10EPS=1.0E-6 NX = 1C=1. DO 10 I=1,N A(1,I)=CA(2 > I) = -CA(3,I)=0. A(4,I)=0. • . A(5,I)=C

87

88.

A(6,I)=0. 10 A(7,I) = -CDO 20 L=1,2 IND=L-1 DO 11 I=1.N 11 X(I) = 0.0X(2) = -C * CX(N-2)=C*CX(N-3)=C*CCALL CLOCKM(KO) CALL LEQBDS(A,KA,N,NB,LB,MB,X,N,NX,MAX,EPS,IND) CALL CLOCKM(K1) KO = K1 - KOAM=0.0 DO 12 I=1,N AA = ABS(X(I) - C)IF(AA.LE.AM) GO TO 12 AM=AA MM = I**12 CONTINUE** WRITE(6,600) IND,KO,AM,MM,MB 600 FORMAT(//10X, 'ILL=', I6, 5X, 'TIME =', I6, 5X'ERR=', 1PE10.2, *5X, 'IMAX = 'I6, 5X, 'MB=', I6/) **20 CONTINUE** STOP END

(4) Remarks

1. Since this routine posesses facilities of simultaneous solution of multiple right hand sides and reuse of LU decomposition components, it can play the role of both a linear equation solver and an inverse matrix routine. The reuse of LU decomposition components is especially important. This eliminates the needs for inverse matrix calculation.

2. Because rows are interchanged, if necessary, for pivot selection, the number of columns of the coefficient matrix normally becomes greater than that in the initial state. Thus, KA must be assigned so that MB≦KA. Because MB=NB+LB-1 even in the worst case, KA=NB+LB-1 should be assigned for safety.

3. If equation coefficients differ significantly in size, it is desirable to normalize the coefficient matrix in advance so that the maximum absolute value of each equation coefficient is in the order of 1.

4. If the typical size of elements in a coefficient matrix is α , $\alpha \times 10^{-6} (\alpha \times 10^{-16})$ is adequate as the standard value of EPS for LEQBDS (LEQBDD).

5. If a coefficient matrix consists of symmetric positive definites, it is wise to use the special routine CHLBDS.

6. Because the argument IND is used for both input and output, a constant must not be used as

pellen et el l'anti anni completante di ¹⁴1, celle es d'alterratione de matemati

المربقة المربقة المربقة المربقة المربقة المربقة والمربقة والمربقة والمربق المربقة والمربقة والمربقة والمربقين

a presentar a constructiva de la construcción de la constructiva da construcción de la seconda de la

89

in the constant and the second states of the second states and

that share is a

alle fortstaar

an actual argument for it.

(1987, 06, 22) (1987, 08, 07)

(really saturated as when

LEQBDV/W/X/Y (Solution of linear equations with band matrix of coefficients by Gaussian elimination - vector version -)

Solution of Linear Equations with Band Matrix of Coefficients by Gaussian Elimination -Vector Version-

Programm	Ichizo Ninomiya; May 1986
ed by	
Format	Subroutine language; FORTRAN Size; 146, 147, 149, and 150
	respectively

(1) Outline

90

Each of these subroutines determines the solution $X=A^{-1}B$ of the linear equation AX=B having band matrix A as a coefficient matrix and right-hand side matrix B by the Gaussian Elimination involving row interchange for pivoting. It has the facility to reuse LU-decomposition components of A.

(2) Directions

CALL LEQBDV/W/X/Y (A, KA, N, NB, LB, MB, X, KX, NX, MAX, EPS, W, IND)

Argument	Type and	Attribut	Content
	kind (*1)	e	
A	Real type	Input/ou	A band matrix of coefficients transformed to a rectangular
	Two-dimens	tput	form is input. That is, elements I and J of the original
	ional		matrix are put in A(J-1+LB,I). (See the figure for LEQBDS.)
	array		After processing by this routine, LU-decomposition components
			are entered.
KA	Integer	Input	Value of the first subscript in array declaration of A.
	type		KA≥NB
N	Integer	Input	Number of unknowns of the equation, or number of columns of
	type		A, N≥NB

Argument	Type and	Attribut	Content
	kind (*1)	е	
NB	Integer	Input	Total band width (See the figure,) Number of rows of A. NB>LB
	type		
LB	Integer	Input	Left band width (See the figure.) LB≥2
	type		
MB	Integer	Output	Number of rows of A after processing. MB≦KA must be met.
	·type		
X	Real type	Input/ou	Right hand side columns are input, and corresponding solution
	two-dimens	tput	vectors are output.
	ional		
	аггау		
KX	Integer	Input	Value of the first subscript in array declaration of X. $KX \ge N$
	type		
NX	Integer	Input	Number of columns of X. Only A is processed when NX≦O.
	type		
MAX	Integer	Output	One-dimensional array with the N elements. Information
	type		concerning row interchange is kept in it. It is needed when
	one-dimens		LU-decomposition components are reused.
	ional		
	array		
EPS	Real type	Input	Criterion constant of singularity of coefficient matrix.
			When the absolute value of an pivot element is smaller than
			EPS, the coefficient matrix is decided as singular and
			calculation is interrupted. EPS>0
W	Real type	Work	One-dimensional array of size LB+NB.
	one-dimens	area	
	ional		
	array		

9,

•

.

92

Argument	Type and	Attribut	Content
	kind (*1)	e	
IND	Integer	Input/ou	Input: IND=0 indicates that the equation will be solved
	type	tput	starting with elimination from the beginning. IND \neq 0
			indicates that it will be solved immediately by reuse of the
			LU-decomposition components obtained previously. For this
			case, A and MAX must hold the content of the previous call.
			Output: O indicates normal termination of calculation.
			30000 indicates that no calculation has been done because the
			restrictions on the argument were not observed. K indicates
			that the equation was decided as singular and elimination
			terminated at step K.

*1 A, X, and W are assumed to be double precision real types (complex type and double precision complex type) for LEQBDW(X, Y).

EPS is changed to a double precision real type for LEQBDW/Y.

(3) Example

A program for solving an equation with 1000 unknowns (N=1000), total band width 7 (NB=7), and left band width 3 (LB=3) is shown below:

C .		TEST FOR LEQBDV
		DIMENSION A(10,1000), MAX(1000), X(1000), W(1000)
		N=1000
		NB=7
		LB=3
		KA=10
		EPS=1.0E-6
		NX=1
		C=1.
		DO 10 I=1/N
		A(1,I)=C
		A(2/I) = -C
		A(3,I)=0
		A(4,I)=0
		A(5,I)=C
		A(6,I)=0.
	10	A(7,I)=-C
		DO 20 L=1,2
		IND=L-1
		DO 11 I=1,N
	11	X(I)=0.0

(4) Notes

- This routine has the facilities of simultaneous processing of multiple right-hand columns and reuse of LU-decomposition components. Therefore, it can work as both a linear equation routine and an inverse matrix routine. Especially, the reuse of LU-decomposed components is important. It almost eliminates the need for calculation of inverse matrices.
- Because rows are interchanged for pivoting, if necessary, the original number of columns of the coefficient matrix generally increases. Therefore, KA must be prepared to meet the condition MB≤KA.

Because MB=NB+LB-1 even in the worst case, it is safe to take KA=NB+LB-1.

3. If there is a large difference between the size of the coefficients of the equations, it is desirable to normalize the coefficient matrix beforehand so that the maximum absolute value of the coefficient of each equation becomes the order of 1.

4. The recommended standard value of EPS is about $\alpha \times 10^{-6} (\alpha \times 10^{-16})$ for LEQBDV/X (LEQBDW/Y) when the typical size of an element of the coefficient matrix is supposed to be a.

5. For a positive symmetric coefficient matrix, it is wiser to use special routines such as CHLBDV.

6. Argument IND is used for both input and output. So, do not use a constant as the actual argument for this.

(1989. 04. 06)

LEQLSS/D/Q/C/B

(least squares solution and minimum norm solution of general system of linear equations by Householder transformation)

Least Square and Minimum Norm Solutions of General Simultaneous Linear Equations by Householder Transformation

Programm	Ichizo Ninomiya March, 1979
ed	
Format	Subroutine Language; FORTRAN Size; 94, 94, 94, 94 lines

(1) Outline

When matrix A with m rows n columns ($m \ge n \ge 1$) and n as rank and matrix B with m rows l columns are given,

Least squares solution $X = (A^T A)^{-1} A^T B$ (*n* rows *l* columns) ($X = (\overline{A}^T A)^{-1} A^{-T} B$ for complex number) of overdetermined system of linear equations AX = B is calculated by A triangulation with Householder transformation. When the similar matrix A and matrix B with *n* rows k columns are given, minimum norm solution $X = A(A^T A)^{-1}B$ (*m* rows k columns) ($X = \overline{A}(A^T \overline{A})^{-1}B$) for complex number) of underdetermined system of linear equations $A^T X = B$ is calculated with a similar method.

(2) Directions

CALL LEQLSS/D/Q/C/B (A, KA, M, N, X, KX, NX, EPS, R, Q, ISW, ILL)

Argument	Type and	Attribut	Content
	kind ≭	e	
A	Real type	Input	Coefficient matrix. Triangulation is done by Householder
	Two-dimens		transformation.
	ional		
	array		

Argument	Type and	Attribut	Content
	kind ≭	e	
KA	Integer	Input	Value of the first subscript in array declaration of A. KA \geq M
	type		
М	Integer	Input	Number of rows of A. W≥N
	type		
N	Integer	Input	Number of columns of A. N≥1
	type		
X	Real type	Input/Ou	When right side matrix B is input to call this routine,
	Two-dimens	tput	solution matrix X is generated. Two-dimensional array with N
	ional	•	rows NX columns
	array		
KX	Integer •	Input	Value of the first subscript in array declaration of X. KX≧M
	type		
NX	Integer	Input	Number of columns of X. Only triangulation of A is done if
	type		NX≦0.
EPS	Real type	Input	The criterion constant ε for the rank degeneration of A. The
			rank is judged to be degenerated when the absolute value of
			the diagonal element is smaller than that of $\ A\ \cdot \epsilon$ in the
			process of triangulation, and the processing is interrupted.
			The minimum unit of the round-off error is set as a standard
			value if EPS≦O.
R	Real type	Output	One-dimensional array of size NX. The residual norm or the
	One-dimens		norm of each solution vector (each column of X) is generated.
	ional		
	аггау		
Q	Real type	Work	One-dimensional array of size N.
	one-dimens	агеа	
	ional		
	аггау		

.

95

, · · · ·

Argument	Type and	Attribut	Content
	kind *	e	
I SW	Integer	Input	The least squares solution is calculated if ISW \geq 0 and the
	type		minimum norm solution is calculated if ISW <o. td="" the<=""></o.>
			triangulation of A is done if $ ISW \leq 1$, and the triangulation
			of A is omitted if ISW >2.
ILL	Integer	Input	ILL=0: Normal termination.
	type		ILL=20000: Rank degeneration.
			ILL=30000: Input variable error

* All real types are assumed to be a double precision real type if the subroutine is for double precision.

A, X, and Q are assumed to be a (double precision) complex type if the subroutine is for the (double precision) complex number.

(3) Performance

In the current method to calculate the least squares solution (minimum norm solution), $A^{T}A$ is created from coefficient matrix $A(A^{T})$ and system of linear equations with this as a coefficient is solved. Therefore, the condition of the equation deteriorates and it is difficult to obtain the solution with good accuracy.

On the other hand, the condition does not deteriorate in this routine because A is transformed into upper triangular matrix U=HA without creating $A^{T}A$ by Householder's orthogonal transformation H. Therefore, the accuracy of the solution is excellent though it is a little inferior to the current method in the point of quantity of calculation.

The following table shows the result of the accuracy experiment of the numerical solution when A is the first N column of Hilbert matrix $(a_{ij}=1/(i+j-1))$ of the order M, and B is given so that all elements of the strict solution may become 1.

Least squares solution	N=10	Minimum norm solution	N=10
M=10	M=20	M=10	M=20

LEQLSD	5 digits	5 digits 8 digits		4 Digits
Current method CHOLFD using	IND=8 interrupte d	IND=9 interrupte d	IND=8 interrupte d	IND=9 interrupte d

(4) Example

The following program is to calculate the least squares solution in the above experiment:

1		IMPLICIT REAL*8 (A-H,O-Z)
2		DIMENSION A(20,10),X(20),Q(10)
3		M=20
4		N=10
5		EPS=1.0D-17
6		ISW=0
7		DO 10 I=1,M
8		X(I)=0.0D0
9		DO 10 J=1.N
10		A(I,J)=1.ODO/DFLOAT(I+J-1)
11	10	X(I) = A(I,J) + X(I)
12		CALL LEQLSD(A,M,M,N,X,M,1,EPS,R,Q,ISW,ICON)
13		WRITE(6,600) ICON,R,(X(I),I=1,N)
14	600	FORMAT(1H1,I10,D25.17/(1H ,10X,D25.17))
15		STOP
16		END

(5) Calculation method

Matrix M with m rows n columns ($m \ge n \ge 1$) and vector v of the order m are divided into two parts with m-n rows and n rows and written as follows :

 $M = \begin{pmatrix} M_1 \\ M_2 \end{pmatrix} \quad \upsilon = \begin{pmatrix} \upsilon_1 \\ \upsilon_2 \end{pmatrix}$

The following explains the case when the right side is vector b.

1. Least squares solution

Norm $||r||_2$ of residual r=Ax-b is minimized. Householder's orthogonal transformation matrix H is multiplied to the left of A:

$$HA = \left(\begin{array}{c} U_1 \\ O_2 \end{array}\right)$$

, where U_1 is the right upper triangular matrix, and O_2 is zero matrix.

It is sufficient to minimize $||Hr||_2$ because Hr = HAx - Hb and $||Hr||_2 = ||r||_2$. Putting $Hb = \begin{pmatrix} \tilde{b}_1 \\ \tilde{b}_2 \end{pmatrix}$

, we have

$$Hr = \begin{pmatrix} U_1 x - \tilde{b}_1 \\ -\tilde{b}_2 \end{pmatrix}$$

Therefore, the least squares solution is calculated as $x=U_1^{-1}\tilde{b}_1$ by Back-substitution method of the upper triangular matrix and the following relation holds :

 $\|r\|_2 = \|Hr\|_2 = \|\tilde{b}_2\|$

2. Minimum norm solution

Out of the infinitely many solutions of $A^T x=b$, the one with minimum $||x||_2$ is calculated. $(HA)^T H x=b$ is obtained by the same conversion as that for the least squares solution. Putting y=Hx, we obtain

$$(U_1 \ ^TO_2 \ ^T) \quad \left(\begin{array}{c} y_1 \\ y_2 \end{array}\right) = b$$

, that is, $U_1 T y_1 = b$.

The minimum norm solution of this y is calculated by forward substitution method of lower triangular matrix U_1^T and is given by $y = \begin{pmatrix} U_1^T b \\ 0_2 \end{pmatrix}$

, where O₂ is assumed to be zero vector of the order m-n. When we calculate x by $x=H^Ty$ from y, x is the minimum norm solution because of $||x||_2 - ||H^Ty||_2 - ||y||_2$. (6) Note

- 1. To solve system with identical A and different B many times, it is recommended to set $|ISW| \le 1$ in the first call, and to set $|ISW| \ge 2$ in the subsequent calls with A and Q preserved, since in this way Householder transformation can be omitted.
- 2. When the rank of A is smaller than n, this subroutine cannot handle it . In such a case, it is better to use subroutine LSMNS/D based on the singular value decomposition.

(1987. 06. 23) (1987. 08. 07) (1987. 08. 11) (1987. 08. 21)

LEQLUS/D/Q/C/B/Z (Solution of linear equations by LU-decomposition method)

99

Solution of Linear Equations by LU-Decomposition Method

Programm ed by	Ichizo Ninomiya; April 1977		
Format	Subroutine language; FORTRAN (assembler for LEQLUS/D only) Size; 293, 241, 74, 75, and 76 lines respectively		

(1) Outline

A number of linear equations that share a coefficient matrix are solved by the LU-decomposition method involving a row exchange for pivoting. That is, a solution $X=A^{-1}B$ of matrix equation AX=B is obtained.

(2) Directions

CALL LEQLUS/D/Q/C/B/Z (A, KA, N, X, KX, M, DET, MAX, EPS, IND)

Argument	Type and Kind (*1)	Attribut e	Content
A	Real type Two-dimens ional array	Input/ou tput	Specify a coefficient matrix. An LU-decomposition component of the coefficient matrix is determined and is overwritten. When this component is stored, it can be reused to eliminate the need for repeated LU-decomposition and thereby save computation time if an equation with the same coefficient needs to be solved at a later time (see the description of MAX and IND).
KA	Integer type	Input	Value of the first subscript in array declaration of A. $KA \ge N$
N .	Integer type	Input	Number of unknowns of the equation, that is, the number of rows in A. $N{\cong}2$
X	Real type Two-dimens ional array	Input/ou tput	Specify several right-hand side columns of the equation. After processing of this routine, solution vectors which correspond to individual columns are overwritten.
KX	Integer type	Input	Value of the first subscript in array declaration of X. $KX \ge N$

Argument	Type and Kind (*1)	Attribut e	Content
М	Integer type	Input	Number of right-hand side columns, that is, the number of columns of matrix X. $M \ge 0$ If M = 0, only LU-decomposition of the coefficient matrix is done but the equation is not solved. If M = 1, a one-dimensional array is acceptable for the real argument of X.
DET	Real type	Input/ou tput	If DET≠O, a coefficient determinant is output. If DET=O, the value remains unchanged.
MAX	Integer type One-dimens ional array	Output	Information concerning the row exchange in LU-decomposition is entered using the name of one-dimensional array having the N number of elements. It is useful to store this information because it can be reused if an equation of the same coefficient needs to be solved later.
EPS	Real type	Input	Criterion constant for singularity of coefficient matrix.
			The calculation is interrupted because of singularity if the
			absolute value of a pivot element becomes smaller than this
			constant. EPS>0
			As an input variable, IND=0 indicates that the equation
IND	Integer	Input/ou	should be solved by LU-decomposition, and IND $ eq$ 0 indicates
	type	tput	that the equation should be solved immediately by using the
			result of previous LU-decomposition. For this, A and MAX
			must be retained the same as those when this subroutine was
			called previously.
•			As an output variable, () indicates that calculation ends
			successfully, 30000 indicates that no calculation has been
			done because the restrictive conditions for the argument was
			violated, and a value K indicates that LU-decomposition was
		•	interrupted at the K-th stage of elimination by the
			singularity test.

*1 A, X, and DET each are a double precision real type (quadruple precision real type, complex type, double precision complex type, or quadruple precision complex type) for LEQLUD, LEQLUQ, LEQLUB, and LEQLUZ.

EPS is a double precision real type (quadruple precision real type, real type, double precision real type, or quadruple precision real type) for LEQLUD, LEQLUD, LEQLUC, LEQLUB,

(3) Performance

Because LEQLUS and LEQLUD are written with the assembler, they run fast and efficiently. Moreover, because double precision operation is partially used for LEQLUS, round-off errors are minimized and accuracy is improved accordingly.

(4) Notes

1. This routine has the functions of simultaneous processing of several right-hand-side columns, calculation of determinants, and reuse of LU-decomposition components. Therefore, it can also work as routines to solve linear equations and calculate determinants and inverse matrices. Especially, the function of reuse of LU-decomposition is most important. This function almost eliminates the need for calculation of inverse matrices.

If there is a substantial difference between the absolute values of coefficients in the equations, it is desirable to normalize the coefficient matrix in advance by MNORMS or MNORMD to secure precision.

3. If a typical absolute value of coefficient matrix elements is assumed to be α , $\alpha \times 10^{-6} (\alpha \times 10^{-16}, \alpha \times 10^{-30})$ is adequate for the standard value of EPS for LEQLUS, LEQLUD, or LEQLUQ.

4. When the coefficient matrix is a symmetric positive definite, it is wiser to use special routines CHOLFS and CHOLFD, etc.

5. Arguments DET and IND are used for both input and output. Therefore, do not use constants as real arguments for them.

(1987. 06. 19) (1987. 08. 07)

/_₽,

LEQLUV/W/X/Y (Solution of linear equations by LU-decomposition method -vector version-)

Solution of Linear Equations by LU-Decomposition Method -Vector Version-

Programm	Ichizo Ninomiya; May 1986, December 1984
ed by	
Format	Subroutine language; FORTRAN77 Size; 201, 202, 205, and 206
	respectively

(1) Outline

A number of linear equations that share a coefficient matrix are solved by the LU-decomposition method involving row interchange for pivoting. That is, a solution $X=A^{-1}B$ of matrix equation AX=B is determined. LEQLUV is for single precision, LEQLUW is for double precision, LEQLUX is for single precision complex numbers, and LEQLUY is for double precision complex numbers.

(2) Directions

CALL LEQLUV/W/X/Y (A, KA, N, X, KX, M, DET, LIST, EPS, W, IND)

Argument	Type and	Attribut	Content
	kind (*1)	e	
A	Real type	Input/ou	A coefficient matrix is input. After processing by this
	Two-dimens	tput	routine, the LU-decomposition components of coefficient
	ional		matrix are entered. These components are stored so that they
	array		can be used when it is later needed to solve equations with
			the same coefficients. This can eliminate the need for
			repeating LU-decomposition, thus saving computation time (see
			the descriptions of LIST and IND).
KA	Integer	Input	Value of the first subscript in array declaration of A. KA \geq N
	type		
N	Integer	Input	Number of unknowns of equation, that is, the number of rows
	type		in A, N≥2

Argument	Type and	Attribut	Content
	kind (*1)	e	
X	Real type	Input/ou	One or more right-hand side columns of equations are input.
	two-dimens	tput	After processing by this routine, corresponding solution
	ional		vectors are output.
	array		
KX	Integer	Input	Value of the first subscript in array declaration of X.
	type		KX≧N
M	Integer	Input	Number of right-hand side columns, that is, the number of
	type		columns of matrix X.
			₩≥0
			When M=O, only LU-decomposition of the coefficient matrix is
			performed.
			When M=1, the real argument for X can be a one-dimensional
			array.
DET	Real type	Input/ou	When a value other than () is input, the coefficient
		tput	determinant is output.
			When () is input, it is retained as it is.
LIST	Integer	Output	A one-dimensional array with N elements. Information
	type		concerning row interchange in LU-decomposition is kept in it.
	one-dimens		If this information is preserved, it can be reused when an
	ional		equation having the same coefficients needs to be solved.
	array		
EPS	Real type	Input	Tolerance for test of singularity of coefficient matrix. If
			the absolute value of a pivot element becomes smaller than
			this constant, the matrix is decided as singular and
			calculation is interrupted.
			EPS>0

the facility of reuse of LU-decomposition is most important, eliminating the need for calculation of inverse matrix.

2. If a typical absolute value of coefficient matrix elements is assumed to be a, $\alpha \times 10^{-6} (\alpha \times 10^{-16})$ is reasonable value of EPS for LEQLUV and LEQLUX (LEQLUW and LEQLUY). 3. When the coefficient matrix is symmetric positive definite, it is wiser to use special routines CHOLFV/W and MCHLFV/W etc.

4. Arguments DET and IND are used for both input and output. Therefore, do not use constants as actual arguments for them.

104

(1987.06.19) (1987.08.07)

LSMNS/D (Least Squares and Minimum Norm Solutions of General Simultaneous Linear Equations by Singular Value Decomposition) 1052

Least Squares and Minimal Norm Solutions of General Simultaneous Linear Equations by Singular Value Decomposition

Programm ed by	Ichizo Ninomiya, March 1979
 Format	Subroutine language: FORTRAN; size: 194,194 lines respectively

(1) Outline

LSMNS/D finds an $n \times l$ matrix X that minimizes

```
||Ax_i-b_i||_2 i=1,2,\cdots,l
```

and

 $||x_i||_2$ $i=1,2,\cdots,l$

if an $m \times n$ matrix A and an $m \times l$ matrix B are given. Where,

$$B = [b_1, b_2, \dots, b_l]$$

and

```
X = [x_1, x_2, \cdots, x_l]
```

When this type of least square and minimal norm solutions are to be found, A is first

decomposed as

 $A=U\Sigma V^T$

by the singular value decomposition method, where U is an $m \times n$ matrix, and Σ and V are $n \times n$ matrices.

 $U^{T}U=V^{T}V=VV^{T}=I_{n}$ ($n \times n$ unit matrix)

 Σ =diag (q_1, q_2, \cdots, q_n)

 $q_1 \ge q_2 \ge \cdots \ge q_n \ge 0$ are the singular value of A, that is, the positive square roots of eigenvalues of $A^T A$.

The solution X is then given by

 $X = V \Sigma^+ U^T B$

Where,

 $\Sigma^{+}=diag(q_{1}^{+},q_{2}^{+},\cdots,q_{n}^{+})$

 $q_i^{+} = \begin{cases} 1/q_i & q_i > 0 \quad i=1,2,\cdots,n \\ 0 & q_i = 0 \quad i=1,2,\cdots,n \end{cases}$

(2) Directions

CALL LSMNS/D (A, KA, M, N, B, KB, NB, Q, EPS, W, ILL)

Argument	Type and kind (* 1)	Attribut e	Content
A	Real type Two-dimens ional array	Input/ou tput	If a coefficient matrix is input, the orthogonal matrix V is output to the first N-th row of it. Array of max (M, N) rows and N columns.
KA	Integer type	Input	Value of the first subscript in the array declaration of A. KA≧max(M,N)
M	Integer type	Input	Number of rows of A. M≧1
N	Integer type	Input	Number of columns of A. N≥1
B	Real type Two-dimens ional array	Input/ou tput	If a right side matrix is input, the solution matrix X is output to the first N-th row of it. Array of max (M, N) rows and NB columns.
КВ	Integer type	Input	Value of the first subscript in the array declaration of B. KB≧max(M,N)
NB	Integer type	Input	Number of columns of B. NB≥1
Q	Real type One-dimens ional array	Output	The singular value of A is output in descending order. One-dimensional array of size N.
EPS	Real type	.]nput	Constant ε used for convergence test and test for singular values. If a double diagonal matrix obtained by bilateral Householder transformation from A is denoted by J, $\ J\ _{\infty} \cdot \varepsilon + u$ is used as a threshold value for zero test of the non-diagonal element and singular values of A. If EPS ≤ 0 , the rounding unit error u is used as ε .

Argument	Type and kind (*1)	Attribut e	Content
W	Real type One-dimens ional array	Work area	One-dimensional array of size N.
ILL	Integer type	Output	ILL=0: Normal termination ILL=2000: Singular value decomposition does not converge in 30N iteration ILL=30000: Input arguments violate the limits

107

*1 For double precision subroutines, all real types are changed to double precision real types.

(3) Performance

The problem described on page 418 in the literature ¹⁾ are solved by LSMNS. In that problem, A is an 8 x 5 rank 3 matrix with singular values $\sqrt{1248}$, 20, $\sqrt{384}$, 0, 0 and B is an 8 x 3 matrix. $EPS=10^{-6}$ is chosen and the transformation matrix V was overwritten on A. The precision of the singular value Q, transformation matrix V, and three least squares and minimal norm solutions was about six digits.

(4) Example of use

The program for the above test is as follows:

1	. DIMENSION A(8,5),B(8,3),Q(5),W(5),R(5)
2	M=8
3	N=5
4	KA=8
5	KB=8
6	NB=3
7	··· = •
	EPS=1.E-6
8	R(1)=SQRT(1248.)
9	R(2)=20.
10	R(3)=SQRT(384.)
11	R(4)=0.
12	R(5)=0.
13	READ(5,500) ((A(I,J),J=1,N),I=1,M)
14	500 FORMAT(5F4.0)
15	READ(5,510) ((B(I,J),J=1,NB),I=1,M)
16	510 FORMAT(3F4.0)
17	$WRITE(6,600) M_NNNB_{\ell}((A(I_{\ell}J)_{\ell}J=1,N)_{\ell}I=1,M)$
τ,	
	*/((B(I,J),J=1,NB),I=1,M)
18	600 FORMAT(1H1///10X/'M ='/I2/2X/'N ='/I2/2X/
	*'NB',I2//8(10X,1P5E13.5/)/(10X,3E13.5))
19	CALL LSMNS(A,KA,M,N,B,KB,NB,Q,EPS,W,ICON)

20 WRITE(6,610) EPS,ICON,(Q(J),R(J),J=1,N), *((A(I,J),J=1,N),I=1,N),((B(I,J),J=1,NB),I=1,N) 21 610 FORMAT(//10X,'EPS =',1PE10.2,2X,'ICON =',I6// *5(10X,2E13.5/)/ 5(10X,5E13.5/)/(10X,3E13.5)) 22 STOP 23 END

(5) Remarks

1. The constant EPS used for the convergence criterion of singular value decomposition and zero test of singular values must be selected carefully. If EPS that is too small as compared with the precision of A and B is given, unnecessarily precise computation will be executed, or a singular value that should be discarded as 0 may be assumed to be significant. Conversely, too large EPS may cause a small, but meaningful singular value to be discarded as zero.

2. If least squares and minimal norm solution is found only once for the same coefficient matrix A, it is not wise from the standpoint of computation time to find a generalized inverse matrix A^+ using GINVS/D except that A^+ itself is required. By all means, the routine LSMNS/D should be used in this case.

References

1) G. H. Golub, C. Reinsch; "Singular Value Decomposition and Least Squares Solutions", Numerische Mathematik, 14, pp. 403-420 (1970).

(1987.06.16)

PRCGFS/D and RECGFS/D (Solution of a linear system of equations with positive definite symmetric coefficient matrix by conjugate gradient method with preconditioning) Solution of a Linear System of Equations with Positive Definite Symmetric Coefficient Matrix by Conjugate Gradient Method with Preconditioning

و 0 /

Programm	Tsuyako Miyakoda and Tatsuo Torii; February 1982
ed	
Format	Subroutine language; FORTRAN Size; 85 and 86 lines respectively

(1) Outline

Each of these subroutines solves a linear system of equations Ax=b for x, where A is a positive definite symmetric dense matrix and x and b are vectors. To do this, it performs preprocessing to improve convergence conditions and then uses the conjugate gradient method.

It is useful to correct an approximate solution vector which is already known. RECGFS (RECGFD) is provided as an entry name used to perform calculation again by skipping preconditioning after PRCGFS (PRCGFD) is once called.

(2) Conditions

CALL PRCGFS/D (A, NA, N, B, X, OMEGA, EPS, NMAX, W, IDUMP) CALL RECGFS/D (A, NA, N, B, X, OMEGA, EPS, NMAX, W, IDUMP)

Argument	Type and	Attribut	Content
	kind (*1)	e	
A	Real type	Input	Coefficient matrix. This is not retained.
	Two-dimens		
	ional		
	array		
NA	Integer	Input	Adjustable dimension of A. NA≥N
	type		
N	Integer	Input	Number of unknowns of a system of equations.
	type		

Argument	Type and	Attribut	Content
	kind (*1)	e	
В	Real type	Input	Right-side vector of the system. Size N
	one-dimens		
	ional		
	arräy		
X	Real type	Input/ou	Input: Approximate solution vector
	one-dimens	tput	Output: Solution vector
	ional		·
	аггау		
OMEGA	Real type	Input	Acceleration factor for convergence in iteration method.
			1≦OMEGA<2. If a value outside the range is input, 1 is
			used for calculation.
EPS	Real type	Input	Tolerance for convergence test. Convergence is assumed
			when the sum of squares of the residuals is smaller than
			EPS * *2. If EPS is too small, however, 8•u•∥b∥ is used
			for it.
			u is the unit of rounding errors.
NMAX	Integer	Input	Maximum number of iterations. Theoretically, the value of
	type		NMAX is N at most. If given NMAX is too large, it will be
			replaced by 3N/2.
W	Real type	Work	Size N*3
	one-dimens	area	
	ional		
	array		

.....

Argument	Type and	Attribut	Content
	kind (*1)	e	
I DUMP	Integer	Input/ou	On entry, this argument has the following meanings:
	type	tput	IDUMP \leq 0: During calculation, no printing is done.
			IDUMP=1: During calculation, the norm of residuals and
			(p, Ap) in each iteration are printed
			IDUMP≧2: The approximate solution, residuals, and
			A-orthogonal vectors in each iteration are printed.
			On return, this argument has the following meanings:
			IDUMP=0: Normal termination.
			IDUMP=NMAX: Convergence does not occur in NMAX
			iterations.
			IDUMP=30000: Input argument error.

111

 ± 1 For double precision subroutines, real types are all assumed to be double precision real types.

(3) Calculation method

Regular division is done as A=M-N, where M have the same characteristics as A with symmetric positive definite and permit easy calculation to determine the inverse matrix. We think the system preconditioned by using M as follows:

$$M^{-1}Ax = M^{-1}b$$

Then, we obtain;

$$\tilde{A} = M^{-\frac{1}{2}}AM^{-\frac{1}{2}}, \tilde{b} = M^{-\frac{1}{2}}b, y = M^{\frac{1}{2}}x$$

It is rewritten as

$$\tilde{A}x=\tilde{b}$$

This is a positive definite system equivalent to the original system. We then apply an algorithm of the conjugate gradient method to this system.

Matrix M here is formed by the following method by (Nodera and Takahashi)¹⁾:It is decomposed as follows:

```
A=L_0+D+L_0^T
```

where

 L_0 : Lower triangular matrix (diagonal elements ())

D: Diagonal matrix

We then multiply

 $D^{-\frac{1}{2}}$

from both sides of A

$$A^{'} = D^{-\frac{1}{2}}AD^{-\frac{1}{2}} = L_0^{'} + I + K_0^{'T}$$

And, we put

$$c=I+\omega Lo$$

to obtain

$$M^{-1} = (cc^T)^{-1}$$

where, ω is an acceleration parameter of the SOR method, satisfying $0 < \omega < 2$.

(4) Example

00010	c	MAIN FOR PRCGFS
00020	U	REAL*8 SU/A/X/B/W
00020	•	DIMENSION AA(100,100),B(100),A(100,100),XY(100),
00031		$X(100) \neq W(500)$
00040	•	DIMENSION XO(100)
00040		NR=5
00050		NW=6
00070		EPS=1.E-5
00080		NA=100
00090		N=100
00100		XX=1.0E8+1.
00110		DO 1800 I=1.N
00120		DO 1810 J=1.N
00130		IJ=IABS(I-J)
00140		A(I,J)=FLOAT(N-IJ)
00150	1800	
00160		XI=12345678.0
00170		DO 7 I=1/N
00180		XO(I)=0.0
00190		X(I)=4.*XI/1.E8-2.
00200		XI=AMOD(23.*XI/XX)
00210	7	CONTINUE
00220	1100	FORMAT(F12.0)
00230		DO 2000 IK=1,N
00240		SU=0.
00250		DO 2100 I=1,N
00260	2100	SU=SU+A(IK,I)*X(I)

00270	2000	B(IK)=SU
00280		WRITE(NW, 1205)N
00290	1205	FORMAT(1H1,15H EXAMPLE 3-6 N=,14)
00300		IF(N.GE.10)G0 TO 19
00310		DO 5 I=1,N
00320	5	WRITE(NW,200)(A(I,J),J=1,N)
00330	19	CONTINUE
00340		WRITE(NW,203)(B(I),I=1,N)
00370	203	FORMAT(2H B//(4D23.15))
00380	200	FORMAT(2H A//(4D23.15))
00390		DO 20 I=1/N
00400		XY(I)=B(I)
00410		DO 20 J=1.N
00420	20	AA(I,J)=A(I,J)
00430		IDUMP=1
00440	•	OMEGA=1.00
00450		CALL CLOCKM(JTIME1)
00460		NMAX=100
00470		CALL PRCGFS(AA,NA,N,XY,XO,OMEGA,EPS,NMAX,W,IDUMP)
00480		CALL CLOCKM(JTIME2)
00490		JT=JTIME2-JTIME1
00500		WRITE(NW,300)IDUMP,JT
00510		DO 2200 I=1/N
00520		RES=X(I)-XO(I)
00530		WRITE(NW,303) I,X(I),XO(I),RES
00540		CONTINUE
00550		FORMAT(15,2E15.6,E11.3)
00560		FORMAT(7H IDUMP=,I5,3X,'TIME =',I5)
00570	302	FORMAT(2H X//(D23.15))
00580		STOP
00590		END

EXAM	PLE 3-	6 N= 100	C		
IDUMP	= 0	TIME	= 130		
1	-0.15	0617E+0:	1 -0.1	50611E+01	-0.572E-04
2	0.13	5802E+0:	1 0.1	35791E+01	0.116E-03
3	-0.76	5456E+00	0 -0.7	65381E+00	-0.755E-04
4	-0.16	0547E+0:	1 -0.1	60547E+01	-0.572E-05
5	-0.92	5886E+00	0 -0.9	25903E+00	0.170E-04

Bibliography

.

.

 T. Nodera and H. Takahasi; "Preconditioned Conjugate Gradient Algorithm for Solving Biharmonic Equation" 4th IMACS and International Symposium (1981)

(1987. 06. 19) (1987. 08. 08)

د. ۱۱

PRCGSS/D,RECGSS/D

(Solution of a linear system of equations with sparse positive definite symmetric coefficient matrix by conjugate gradient method with preconditioning (compressed matrix storage mode)) Solution of a Linear System of Equations with Sparse Positive Definite Symmetric Coefficient Matrix by Conjugate Gradient Method with Preconditioning (Compressed Matrix Storage Mode)

Programm	Tsuyako Niyakoda; 1982
ed by	
Format	Subroutine language; FORTRAN Size; 192 and 193 lines respectively

(1) Outline

Each of these subroutines solves the linear system of equations Ax = b where coefficient matrix A having a relatively small number of nonzero elements is positive definite symmetric. To do this, it performs preconditioning to improve convergence conditions and then uses the conjugate gradient method. This solution routine is used when only non-zero elements of coefficient matrices are stored by rows in a one-dimensional array by the compressed storage mode.

It is useful to correct an approximate solution vector which is already known. RECGSS (RECGSD) is provided as an entry name used to perform calculation again by skipping preconditioning after PRCGSS (PRCGSD) is once called.

(2) Directions

CALL PRCGSS/D (IJTAB, A, LA, B, N, X, EPS, OMG, IMAX, IW, W, ILL) CALL RECGSS/D (IJTAB, A, LA, B, N, X, EPS, OMG, IMAX, IW, W, ILL)

Argument	Type and	Attribut	Content
	kind (*1)	e	
I JTAB	Two bytes	Input	The rows and columns numbers of non-zero elements are input
	Integer		to IJTAB(1,K) and IJTAB(2,K) respectively.
	type '		Suppose $A(K) = a_{ij}$, for instance, we set:
	Two-dimens		IJTAB(1, K)= i and IJTAB(2, K)= j .
	ional		The size is 2*LA.
	array		Output data in arrays are rearranged in ascending order in
			the values of i, j .
A	Real type	Input	The size is 2*LA. Only non-zero elements of the
	one-dimens		coefficient matrix are stored by row in an array of length
	ional		LA appearing first. They are rearranged simultaneously
	аггау		with IJTAB. The non-zero elements of the preconditioned
			matrix are stored in the array of size LA appearing last.
LA	Integer	Input	Number of non-zero elements of the coefficient matrix.
	type		LA≧N
В	Real type	Input	The right-side vector of a system of equations. Size N
	one-dimens		
	ional		
	array		
N	Integer	Input	Number of unknowns of a system of equations. N≥3
	type		
X	Real type	lnput/ou	Input; Approximate solution vector with size N. (Zero
	one-dimens	tput	vector at first)
	ional		Output; Solution vector.
	array		

.

115

.

Argument	Type and	Attribut	Content
	kind (*1)	e	
EPS	Real type	lnput/ou	Tolerance for convergence test. When the sum of squares of
		tput	the residuals is smaller than EPS##2, it is assumed that
			convergence has occurred.
•			If EPS is too small, however, 8·u· b is used instead. u
			is the unit of rounding errors.
OMG	Real type	Input	Acceleration factor for convergence in iteration method.
			$1 \leq 0$ MG<2. If a value outside the range is input as OMG,
			OMG=1 is used for calculation.
IMAX	Integer	Input/ou	Input: Maximum number of iterations. Theoretically, it is
	type	tput	N at most. If the given IMAX is too large, however, it is
			replaced by 3-N/2.
			Output: Actual number of iterations.
IW	Integer	Working	The size is 2*N.
	type	storage	
	one-dimens		
	ional		
1	аггау		
₩	Real type	Working	The size is N*3.
	one-dimens	storage	
	ional		
	аггау		
ILL	Integer	Output	ILL=0: Normal termination.
	type		ILL=IMAX: Convergence does not occur in IMAX iterations.
			ILL=25000: IJTAB error.
1			ILL=30000: Input argument error.

*1 For double precision subroutines, real types are all assumed to be double precision real

types.

(3) Example

TEST OF PRCGSS ... С... DIMENSION A(40), B(6), X(6), IW(2,6) INTEGER*2 IJTAB(2,20) REAL*4 W(18) DATA N/ 6/LA/20/ DATA A(1), IJTAB(1,1), IJTAB(2,1)/10.0,1,1/ DATA A(2), IJTAB(1,2), IJTAB(2,2)/-2.0,1,4/ DATA A(3),IJTAB(1,3),IJTAB(2,3)/-1.0,1,5/ DATA A(4), IJTAB(1,4), IJTAB(2,4)/-1.0,1,6/ DATA A(5), IJTAB(1,5), IJTAB(2,5)/12.0,2,2/ DATA A(6),IJTAB(1,6),IJTAB(2,6)/-3.0,2,3/ DATA A(7), IJTAB(1,7), IJTAB(2,7)/-1.0,2,4/ DATA A(8), IJTAB(1,8), IJTAB(2,8)/-2.0,2,6/ DATA A(9), IJTAB(1,9), IJTAB(2,9)/-3.0,3,2/ DATA A(10),IJTAB(1,10),IJTAB(2,10)/15.0,3,3/ DATA A(11), IJTAB(1,11), IJTAB(2,11)/-2.0,4,1/ DATA A(12), IJTAB(1,12), IJTAB(2,12)/-1.0,4,2/ DATA A(13), IJTAB(1,13), IJTAB(2,13)/20.0,4,4/ DATA A(14), IJTAB(1,14), IJTAB(2,14)/-5.0,4,5/ DATA A(15),IJTAB(1,15),IJTAB(2,15)/-1.0,5,1/ DATA A(16), IJTAB(1,16), IJTAB(2,16)/-5.0,5,4/ DATA A(17), IJTAB(1,17), IJTAB(2,17)/1.0,5,5/ DATA A(18), IJTAB(1,18), IJTAB(2,18)/-1.0,6,1/ DATA A(19), IJTAB(1,19), IJTAB(2,19)/-2.0,6,2/ DATA A(20), IJTAB(1,20), IJTAB(2,20)/6.0,6,6/ DATA (B(I),I=1,6)/10.,-5.,28.5,37.5,-10.0,10./ WRITE(6,630) (I,A(I),IJTAB(1,I),IJTAB(2,I),I=1,LA) 630 FORMAT(15, F10.3, 213) ILL≃0 IMAX = 100OMG=1.2 EPS=1.E-4 DO 100 I=1,N 100 X(I) = 1.0CALL PRCGSS(IJTAB/A/LA/B/N/X/EPS/OMG/IMAX/IW/W/ILL) WRITE(6,610) ILL, IMAX, N, OMG 610 FORMAT(1H /'ILL/IMAX/N/OMG='/316/F10.3) WRITE(6,620)(X(I),I=1,N) FORMAT(1H0,3E15.6) 620 STOP

ハウ

END

<Output result>

1	10.000	1	1
2	-2.000	1	4
3	-1.000	1	5
4	-1.000	1	6
5	12.000	2	2
6	-3.000	2	. 3
7	-1.000	2	4
8	-2.000	2	6
9	-3.000	3	2
10	15.000	3	3
11	-2.000	4	1
12	-1.000	4	2
13	20.000	4	4
14	-5.000	4	5
15	-1.000	5	1
16	-5.000	5	4

1	7	1.000	5	5			
1	8	-1.000	6	1			
1	9	-2.000	6	2			
2	0	6.000	6	6			
ILL, IMAX, N, OMG=				0	7	6	1.200
0.999998E+00			0	.500	000E+00	0.3	200000E+01
0.100000E+01			-0	.400	000E+01	0.3	2000C0E+01

(4) Calculation method

See the calculation method for subroutines PRCGFS and PRCGFD which use the conjugate gradient method with the preconditioning.

(5) Notes

If the approximate solution vector is known as argument X, input it. Otherwise, input the zero vector.

Call RECGSS or RECGSD to restart the iterative calculation after PRCGSS or PRCGSD is once called. In this case, do not change the contents of arguments IJTAB, A, L, IW, and W. Also, call RECGSS or RECGSD to determine solutions when only the right-side vector B is changed.

Bibliography

 Tsuyako Miyakoda; "Consideration on solution of linear equations, and reduction of iterations and quantity of calculation-conjugate gradient method" Osaka University computer center news, Vol. 12, No. 2, pp. 55-69 (1982)

(1987. 06. 19) (1987. 08. 08) (1987. 08. 21)

TRDSPS/D and TDSPCS/D (Solution of Symmetric Positive Definite Tridiagonal Equations)

Solution of Symmetric Positive Definite Tridiagonal Equations

Programm ed by	Ichizo Nincmiya, April 1977
Format	Subroutine language: FORTRAN; size: 29, 29, 45, and 46 lines respectively

(1) Outline

TRDSPS/D or TDSPCS/D solves simultaneous linear equations with a symmetric positive definite tridiagonal matrix as a coefficient matrix, using Cholesky decomposition method that does not use square roots.

TRDSPS/D is used if C(N)=0, and TDSPCS/D handles cyclic type tridiagonal equations, that is, if $C(N) \neq 0$. Both routines process multiple right side columns simultaneously, calculate determinants, and can reuse Cholesky decomposition components.

(2) Directions

CALL TRDSPS/D (B, C, N, X, KX, M, DET, EPS, IND)

CALL TDSPCS/D (B, C, D, N, X, KX, M, DET, EPS, IND)

Argument	Type and kind (* 1)	Attribut e	Content
В	Real type One-dimens ional array	Input/ou tput	If coefficient matrix diagonal elements are input, Cholesky decomposition diagonal elements are output.
С	Real type One-dimens ional array	Input/ou tput	If coefficient matrix sub-diagonal elements are input, Cholesky decomposition sub-diagonal elements are output. The numbering of sub-diagonal elements is as shown in the figure.
D	Real type One-dimens ional array	Output	The Cholesky decomposition elements of a coefficient matrix are output.
N	Integer type	Input	Order of equation. It is also the number of elements in the arrays B, C, and D. $N \ge 3$

Argument	Type and kind (*1)	Attribut e	Content	
X	Real type Two-dimens ional array	Input/ou tput	If M right side columns are input in the form a matrix X, the solution vectors are output in the corresponding places.	
КХ	Integer type	Input	Value of the first subscript in the array declaration of X. $KX\!\geq\!N$	
M	Integer type	Input	Number of columns in X. If M = Q, only Cholesky decomposition of a coefficient matrix is executed	
DET	Real type .	Input/ou tput	If DET≠O is input, the value of coefficient matrix determinant is output. If DET=O is input, DET=O is output.	
EPS	Real type	Input	Constant for determining the non-positivity of coefficient matrix. If the value of a pivot element is smaller than this constant, the input matrix is decided to be non positive definite, and the calculation is interrupted. EPS>0	
IND	Integer type	[nput/ou tput	This argument has the following meaning as an input. IND=0: Solve an equation by newly executing Cholesky decomposition. IND≠0: Solve an equation, reusing the Cholesky decomposition elements previously calculated, and stored in B, C, and D. This argument has the following meaning as an output. IND=0: Calculation terminated normally. IND=30000: Limits on input arguments are violated. IND=1: Calculation is interrupted at the I-th stage of non positivity.	

1* For double precision subroutines, all real types are changed to double precision real types.

(3) Performance

Generally, computation time is only proportional to the order of equation. If the same problem is solved with a general simultaneous linear equation routine (LEQLUS, CHOLFS, GAUELS, etc.), it takes very long time because computation time becomes proportional to the cubic power of the order of equations.

$$\begin{bmatrix} B_{1} & C_{1} & 0 & : & : & : & 0 & C_{n} \\ C_{1} & B_{2} & C_{2} & : & : & : & 0 & 0 \\ 0 & C_{2} & B_{3} & : & : & : & 0 & 0 \\ : & : & : & : & & : & : & i \\ : & : & : & : & & : & : & i \\ 0 & 0 & 0 & : & : & : & B_{n-1} & C_{n-1} \\ C_{n} & 0 & 0 & : & : & : & C_{n-1} & B_{n} \end{bmatrix}$$

(4) Remarks

1. TRIDGS/D is prepared for tridiagonal equations where coefficients are not symmetric positive definite.

2. When the same equation is to be repeatedly solved with the right side column changed, the calculation time can be saved by using the facility for reusing the Cholesky decomposition components of this routine.

(1987.06.17)

TRIDGS/D (Solution of Tridiagonal Equations)

Solution of Tridiagonal Equations

Programm ed by	Ichizo Ninomiya, April 1977	
Format	Subroutine language: FORTRAN; size: 39 and 40 lines respectively	

(1) Outline

TRIDGS/D solves a tridiagonal equation or a system of linear equations with a tridiagonal matrix as a coefficient matrix, using the Gauss' elimination accompanied by row interchange for pivot selection.

$$\begin{bmatrix} B_1 & C_1 & 0 & 0 & \cdots & 0 & 0 & 0 \\ A_1 & B_2 & C_2 & 0 & \cdots & 0 & 0 & 0 \\ 0 & A_2 & B_3 & C_3 & \cdots & 0 & 0 & 0 & 0 \\ \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & B_{n-2} & C_{n-2} & 0 \\ 0 & 0 & 0 & 0 & \cdots & A_{n-2} & B_{n-1} & C_{n-1} \\ 0 & 0 & 0 & 0 & \cdots & 0 & A_{n-1} & B_n \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ \vdots \\ X_{n-2} \\ X_{n-1} \\ X_n \end{bmatrix} = \begin{bmatrix} D_1 \\ D_2 \\ D_3 \\ \vdots \\ D_{n-2} \\ D_{n-1} \\ D_n \end{bmatrix}$$

(2) Directions

CALL TRIDGS/D (A, B, C, D, N, EPS, ILL)

Argument	Type and kind (*1)	Attribut e	Content
A	Real type One-dimens ional array	Input	Input N-1 lower diagonal elements of a coefficient matrix in the order of the upper left to the lower right. Destroyed.
B	Real type One-dimens ional array	Input	Input N diagonal elements of a coefficient matrix in the order of the upper left to the lower right. Destroyed.
C ·	Real type One-dimens ional array	Input	Input N-1 upper diagonal elements of a coefficient matrix in the order of the upper left to the lower right. Destroyed.

Argument	Type and kind (*1)	Attribut e	Content
D .	Real type One-dimens ional array	Input/ou tput	If the right side column of the equation is input, the solution vector calculated by this routine is output.
N	Integer type	Input	Order of equation. N≥3
EPS	Real type	Input .	Criterion constant for singularity. If the absolute value of a pivot element is smaller than this constant, the equation is decided to be singular and the calculation is interrupted. Stored. EPS>0
ILL	Integer type	Output	ILL=0: Normal termination. ILL=30000: When limits on N and EPS are violated. If an equation is decided to be singular, its pivot element number is output.

1* For double precision subroutines, all real types are changed to be double precision real types.

(3) Performance

Because precision depends on problems, nothing can be said generally. Computation time is only proportional to the order of equation. If the same problem is solved using a general simultaneous linear equation subroutine (LEQLUS, CHOLFS, GAUELS, etc.), it takes very long time because the computation time is proportional to the cubic power of the order of equations.

(4) Remarks

1. Tridiagonal equations can be solved even with a general simultaneous equation routine. However, it is reasonable to use this routine from the standpoint of computation time.

2. If the typical absolute value of elements in a coefficient matrix is α ,

 $\alpha \times 10^{-6} (\alpha \times 10^{-16})$ is adequate for the standard value of EPS for TRIDGS (TRIDGD).

3. It is more advantageous for a symmetric positive definite tridiagonal equation to use the special-purpose routines TRDSPS and TRDSPD or TDSPCS and TDSPCD.

(1987.06.17)

3. Matrix inversion

						51. a) (* 1.
:		and the part of the state of the state of th				
			·	• •	and a second	
		and a sub-	te cast (
•	<pre>2</pre>	alang agi wat bi dinami Bi lan ti ngati alima t	< 19910 U	14.1		
	ingelander ingelander Stationen Stationen Stationen Stationen Stationen	in a fast Bart States - States Bart States - States Bart States States	ad Alberton Secondaria			

97494-

i termentari arrecteren an oliter termetatar matrica eta barrectori de control desenti topoliti de ante arreferete e control e control e contrator dato de caso arrectorio de control de control de control de contrato Esperitate de control e control e contrator elas destructoristicas de control de control de control de contrato Esperitate de control e control e contrator estate de contratoristicas de control de control de control de cont Esperitate de control de control de contratoristicas de contratoristicas de control d Esperitate de control de

end Artendise automatica de la compositive estre estre estre autorial de la compositive de la compositive Artendise autoritative de la compositive estre artendistre artendise de la compositive de la compositive autori Artendise de la compositive autoritativ

(a) If the spin of the second transmission is the second transmission of the second transmission of the second transmission of the second s

eti, en la mai cana e en como a sur grideri polacite e de energi, a per deema en esta taba assa assessa a antenno etter e optical esta 1919, este entre en como en como entre como entre entre entre cana

Generalized Inverses (Pseudo-inverses) by Singular Value Decomposition

Making	Ichizo Ninomiya; March 1979	
Form	Subroutine language; FORTRAN,	Size; 30 lines each

(1) Outline

Matrix X with n rows m columns which satisfies the following relations is called the generalized inverse to matrix A with m rows n columns.

AXA=A

XAX=X

 $(AX)^T = AX$

 $(XA)^T = XA$

For a given A, such X is determined uniquely. This X is denoted by A^+ . Suppose that singular value decomposition

 $A=U\Sigma V^T$

of A is given, where U is a matrix with m rows and n columns, Σ and V each are a matrix with n rows and n columns, and the following relation holds:

 $U^{T}U=V^{T}V=VV^{T}=I_{n}(n-\text{dimensional unit matrix})$

 Σ =diag(q₁,q₂,...,q_n)

 $q_1 \ge q_2 \ge \cdots \ge q_n \ge 0$

and $q_{i,i=1,2,...,n}$ are singular values of A (positive square root of eigenvalue of A^TA).

Then, A^+ is given by:

 $A^+=V\Sigma^+U^T$

Where,

$$\Sigma^+ = diag(q_1^+, q_2^+, \cdots, q_n^+)$$

and

 $q_i^+ = \begin{cases} 1/q_i & q_i > 0 \\ 0 & q_i = 0 \end{cases}$

is assumed to be satisfied.

The purpose of this subroutine is to determine A^+ by singular value decomposition when A is given.

۰.

(2) Directions

126

CALL GINVS/D (A, KA, M, N, Q, V, KV, EPS, W, ILL)

Argument	Type and	Attribut	Content
	kind (<u>*1</u>)	e	
A	Real type	Input/ou	When A is input, transposed matrix $(A^+)^T$ of the
	Two-dimens	tput	generalized inverse matrix is generated.
	ional		
	array		
KA	Integer	Input	Value of the first subscript in array declaration of AKA≧M
	type ·		
M	Integer	Input	Number of rows in AM≥1
	type		
N	Integer	Input	Number of columns in AN≥1
	type		
Q	Real type	Output	Singular values of A are generated in descending order.
	One-dimens		One-dimensional array of size
	ional		· · ·
	array		
۷	Real type	Output	Orthogonal transformation matrix V for singular value
	Two-dimens		decomposition is generated. Two-dimensional array with N
	ional		rows and N columns.
	array		
KV	Integer	Input	Value of the first subscript in array declaration of VKV≧N
	type		

Argument	Type and	Attribut	Content
	kind (*1)	e	
EPS	Real type	Input	Constant ε used for convergence and 0 test $ J _{\infty}$ determined when A is once converted into double diagonal matrix J by bilateral Householder transformation is used to make $\varepsilon J _{\infty} + u$ a threshold of convergence test for singular value decomposition and 0 test of singular values. Where, u denotes the unit of round-off errors. u is used as ε when EPS ≤ 0 . 0 is input.
Ψ.	Real type One-dimens ional array	Work area	One-dimensional array of size N.
ILL	Integer type	Output	ILL=0: Normal end. ILL=30000: The argument violates the limit. ILL=20000: Singular value decomposition of A does not converge even after iteration of 30N times.

*1 For double precision subroutines, all real types should be changed to double precision real types.

(3) Performance

The following is described on page 418 of bibliography ¹⁾: For a problem having matrix B with 8 rows and 3 columns at the right-hand side and using matrix A of rank 3 having 8 rows and 5 columns and singular values $\sqrt{1248}$, 20, $\sqrt{384}$, 0, 0 as a coefficient, A^+ is first determined by GINVS, and A^+B is then used to calculate the least squares minimal norm solution. When $EPS=10^{-6}$, the accuracy for singular value Q, transformation matrix V, general matrix A^+ , and solution vector A^+B was about six decimal digits.

(4) Example

A program to examine the above description is shown below.

127

1	DIMENSION A(8,5),B(8,3),V(5,5),Q(5),W(8),R(5)
2	. M=8
3 4	N=5
4	NB=3
5	KA=8
5 6	KV=5
7	EPS=1.E-6
8	R(1)=SQRT(1248.)
9	R(2)=20.
10	R(3)=SQRT(384.)
11	R(4)=0.
12	R(5)=0.
13	READ(5,500) ((A(I,J),J=1,N),I=1,M)
14	500 FORMAT(5F4.0)
15	READ(5,510) ((B(I,J),J=1,NB),I=1,M)
16	510 FORMAT(3F4.0)
17	WRITE(6,600) M/N/NB/((A(I/J)/J=1/N)/I=1/M)
	*/((B(I/J)/J=1/NB)/I=1/M)
18	600 FORMAT(1H1///10X,'M =',I2,2X,'N =',I2,2X,'NB =',
	*I2//8(10X,1P5E13.5/)/(10X,3E13.5))
19	CALL GINVS(A,KA,M,N,Q,V,KV,EPS,W,ICON)
20	DO 30 J=1/NB
21	DO 10 I=1/M
22	10 $W(I) = B(I,J)$
23	DO 30 I=1,N
24	S=0.
25	DO 20 K=1/M
26	20 S=A(K,I)*W(K)+S
27	30 B(I,J)=S
28	WRITE(6,610) EPS,ICON,(Q(J),R(J),J=1,N)
	*/((V(I,J),J=1,N),I=1,N)/((A(I,J),I=1,M),J=1,N)
	*/((B(I/J)/J=1/NB)/I=1/N)
29	610 FORMAT(//10X/'EPS ='/1PE10.2/2X/'ICON ='/16//
	*5(10X,2E13.5/)/5(10X,5E13.5/)/5(10X,8E13.5/)
	*/(10X,3E13.5))
30	STOP
31	END ·
~ -	

(5) Notes

1. The constant EPS used for the convergence test of singular value decomposition and the () test of singular values must be specified carefully. If the EPS is too small for the accuracy of data A, unnecessarily and wastefully precise calculation may be done and a singular value which should normally be discarded as () may be taken for a significant value. On the contrary, if the EPS is too large, a singular value which is small but significant may be discarded as ().

2. If the least squares minimal norm solution is calculated only once for a given coefficient matrix A, it is not wise to use this routine GINVS or GINVD to determine A^+ except when A^+ itself is required. This is because the routine requires large quantity of calculation. LSMNS or LSMND should be used for this case.

Bibliography

1) G. H. Golub, C. Reinsch; "Singular Value Decomposition and Least Squares Solutions", Numerische Mathematik, 14, pp. 403-420 (1970).

and the second second second second second

. . .

te level at y there is the level of the subset of the first t

•

at Hatil

.

3 11

the attraction of the

a grana na na na gara ang ting tao na tao tao tao tao tao

(1987, 06, 22)

er e da la lar seu al la cal da la ^{per}den artar

MINVS/D/Q/C/B/Z (Inversion of Matrices)

Inversion of Matrices

Programm ed by	Ichizo Ninomiya, April 1977		
Format.	Subroutine language: FORTRAN; size: 96, 97, 96, 95, 96, and 96 lines respectively		

(1) Outline

MINVS/D/Q/C/B/Z generates an inverse matrix of a given matrix in place of the given matrix, using the LU-decomposition method. The rows are interchanged if necessary for pivot selection.

(2) Directions

CALL MINVS/D/Q/C/B/Z (A, KA, N, EPS, ILL)

Argument	Type and kind (* 1)	Attribut e	Content
A	Real type Two-dimens ional array	Input/ou tput	lf a matrix is input, its inverse matrix is output.
KA	Integer type	Input	Value of the first subscript in the array-A declaration. KA≥N
N	Integer type	Input	Order of A. 2≦N≤1000
EPS	Real type	Input .	Criterion constant for matrix singularity. If the absolute value of a pivot element is smaller than this constant, the input matrix is decided to be singular, and the calculation is interrupted. EPS>0
ILL	Integer type	Output	ILL=0: Normal termination. ILL=30000: Limits on KA, N, and EPS are violated. The number of the pivot element whose absolute value is smaller than EPS.

*1 For MINVD (MINVQ, MINVC, MINVB, MINVZ), A is a double precision real type (quadruple

precision real type, complex type, double precision complex type, and quadruple precision complex type).

For MINVD (MINVQ, MINVC, MINVB, MINVZ), EPS is a double precision real type (quadruple precision real type, real type, double precision real type, and quadruple precision real type).

(3) Calculation method

1. The permutation matrix P corresponding to row interchanges accompanying to pivoting is applied to A and then PA is decomposed into a lower unit triangular matrix L and an upper triangular matrix PA=LU

2. Generates L^{-1} in place of L_{1}

3. Generates U^{-1} in place of U.

4. Generates $A^{-1}=U^{-1}L^{-1}P$ in place of A.

In case of MINVS, all the necessary inner sum computation are done by partial double precision arithmetic operation.

(4) Remarks

1. If the absolute values of matrix elements differs significantly, it is desirable to normalize the matrix in advance by MNORMS and MNORMD to insure precision in the result. For the required post-processing, see the explanation of MNORMS.

2. If the typical value of matrix elements is α , $\alpha \times 10^{-6} (\alpha \times 10^{-16}, \alpha \times 10^{-30})$ is adequate as the standard value of EPS for MINVS and (MINVD, MINVQ).

3. It is very disadvantageous from the standpoint of computation time and precision to calculate the inverse matrix of A for the calculation of matrix product of the form of $A^{-1}B$. By all means, the simultaneous linear equation routines LEQLUS and LEQLUD should be used.

4. When the inverse matrix of a symmetric positive definite matrix is to be found, it is wise to use the special-purpose routines NINVSP and MINVDP.

(1987.06.17) (1987.08.07)

1.31

MINVSP/MINVDP/MINVQP (Inversion of Symmetric Positive Definite Matrices)

Inversion of Symmetric Positive Definite Matrices

Programm ed by	Ichizo Ninomiya, April 1977
Format	Subroutine language: FORTRAN; size: 41, 41, and 41 lines respectively

(1) Outline

NINVSP/MINVDP/MINVQP generates the inverse matrix of a symmetric positive definite matrix A in place of the input matrix using the Cholesky decomposition method.

(2) Directions

CALL MINVSP/MINVDP/MINVQP (A, KA, N, EPS, ILL)

Argument	Type and kind (*1)	Attribut e	Content
A	Real type Two-dimens ional array	Input/ou tput	If a symmetric positive definite matrix is input, its inverse matrix is output. This argument processes only the upper right half including the diagonal lines because of symmetry. The lower left half is preserved.
KA	Integer type	Input	Value of the first subscript in the array-A declaration. KA≥N
N	Integer type	Input	Order of A. N≥2
EPS	Real type	Input	Constant for determining the positivity of matrix A. If the value of a pivot element is smaller than this constant, the input matrix is decided to be non positive definite, and the calculation is interrupted. BPS>0
ILL	Integer type	Output	ILL=0: Normal termination. ILL=30000: Limits on KA, N, and EPS are violated. The number of the pivot element whose absolute value is smaller than EPS

*1 For MINVDP (MINVQP), all real types are changed to double (quadruple) precision real types.

(3) Calculation method

1. Generates the Cholesky decomposition element U of A, that is, the upper triangular matrix U such that $A=U^{T}U$ in the upper right triangular part of A.

2. Generates the inverse matrix U^{-1} of U, that is, the upper triangular matrix V such that

3. Generates the upper right half of the inverse matrix $A^{-1} = VV^T$ of A in place of V.

In case of WINVSP, execute all necessary inner sum calculations by partial double precision arithmetic operation.

(4) Remarks

1. If the typical absolute value of matrix elements is α , $\alpha \times 10^{-6} (\alpha \times 10^{-16}, \alpha \times 10^{-30})$ is adequate as the standard value of EPS for MINVSP, MINVDP, and MINSQP.

2. It is very disadvantageous from the standpoint of computation time and precision to calculate the inverse matrix of A for the calculation of matrix product of the form of $A^{-1}B$. By all means, the simultaneous linear equation routines CHOLFS and CHOLFD should be used.

(1987. 06. 16)

MINVV/W/X/Y (Inversion of Matrix - Vector Version -)

Inversion of Matrix -Vector Version-

Programm	Ichizo Ninomiya and Yasuyo Hatano, March 1985
ed by	
Format	Subroutine language: FORTRAN77; size: 112, 113, 111, and 113 lines
	respectively .

(1) Outline

WINVV/W/X/Y obtains an inverse matrix using the Gauss-Jordan elimination. It is for single precision (double precision, single precision complex type, or double precision complex type).

(2) Directions

CALL MINVV/W/X/Y (A, KA, N, EPS, LIST, W, IND)

Argument	Type and	Attribut	Content
	kind (*1)	е	
A	Real type	Input/ou	The input matrix is processed with this routine, and its
	Two-dimens	tput	inverse is generated.
	ional		
	array		
KA	Integer	Input	Value of the first subscript in the array-A declaration.
	type		KA≥N
N .	Integer	Input	Order of A. N≥2
	type		
EPS	Real type	Input	Matrix singularity criterion. If the absolute value of pivot
			elements is smaller than this constant, it is determined to
	i		be singular, and the computation is interrupted
			EPS>0

Argument	Type and	Attribut	Content
	kind (*1)	e	
LIST	Integer	Work	One-dimensional array containing N elements.
	type	area	
	one-dimens		
	ional		
	array		
W	Real type	Work	One-dimensional array of size 2N.
	one-dimens	area	
	ional		·
	array		
IND	Integer	Output	The value () is assumed if computation terminates normally,
	type		and 30000 is assumed if computation is not executed at all
			because limits on the argument are exceeded.
			Value of K is assumed if computation is stopped at the K-th
			step because of singularity.

*1 For MINVW(X, Y), A and W are changed to double precision real types (complex type or double precision complex type).

For MINVW/Y, EPS is changed to a double precision real type.

(3) Calculation method

The Gauss-Jordan elimination accompanied by row exchange for partial pivoting is used.

(4) Note

1. If the typical absolute value of matrix elements is α , $\alpha \times 10^{-6} (\alpha \times 10^{-16})$ is adequate as the standard value of EPS for MINVV(W).

5

(1987. 06. 19) (1987. 08. 07)

4. Eigenvalue analysis

[Method of choice of eigenvalue analysis routines]

NUMPAC provides a variety of effective eigenvalue analysis routines that you can select depending on the type, characteristics, and structure of each target matrix. By carefully selecting them based on the guideline shown below, you can enjoy much of their superiority in all aspects of precision, speeds, and storage capacities. To make the following explanation simple, the name of each recommended routine is represented by the one for single precision. In addition to the routines below, the high-speed eigenvalue analysis package NICER is also available.

1. Non-symmetry:

HEQRVS

SVDS

2. Symmetry

(1) Dense matrix

(a) To obtain all eigenvalues and eigenvectors:	HOORVS
(b) To obtain all eigenvalues and all or part of eigenvectors:	HQRIIS
(c) To obtain part of eigenvalues and eigenvectors:	HOBSVS
(d) To obtain a limited part of eigenvalues and eigenvectors:	JENNFS
(2) Band matrix	
(a) To obtain all eigenvalues:	RHQRVS
(b) To obtain a limited part of eigenvalues and eigenvectors:	JENNBS
3. General problems of symmetric matrices	
J. General problems of Symmetric matrices	
(1) Dense matrix	•
	GHQRVS
(1) Dense matrix	GIIQRVS GHQRIS
(1) Dense matrix(a) To obtain all eigenvalues and eigenvectors:	
 (1) Dense matrix (a) To obtain all eigenvalues and eigenvectors: (b) To obtain all eigenvalues and part of eigenvectors: 	GHQRIS

4. Singular value decomposition:

136

CGHBSS/D/Q (Eigenvalue analysis of the type $Ax = \lambda Bx$ by Householder-bisection Method (Hermitian matrices))

13

Eigenvalue Analysis of the Type $Ax = \lambda Bx$ by Householder-Bisection Method (Hermitian Matrices)

Programm	Ichizo Ninomiya; December 1983
ed by	
Format	Subroutine language; FORTRAN, Size; 54, 55, and 55 lines respectively

(1) Outline

When Hermitian symmetric matrix A and Hermitian symmetry positive definite matrix B are given, CGHBSS/D/Q obtains a specified number of eigenvalues and eigenvectors of an eigenvalue problem $Ax = \lambda Bx$ by Householder bisection method. CGHBSS/D/Q is a single (double, quadruple) precision subroutine.

(2) Directions

CALL CGHBSS/D/Q (A, B, KA, N, E, NE, V, NV, EPS, W, Z, ILL)

Argument	Type and	Attribut	Content
	kind (*1)	е	
A	Complex	Input	The upper right half of the Hermitian symmetric matrix .
	type		including the diagonal is input. After processing of this
	Two-dimens		routine, $ ilde{A}$ is generated (see the calculation method). The
	ional		lower left half is preserved.
	array		
В	Complex	Input	The upper right half of the Hermitian symmetric positive
	type		definite matrix including the diagonal is input. After
	Two-dimens		processing by this routine, Cholesky decomposition component
	ional		U is generated (see the calculation method). The lower left
	аггау		half is preserved.

Argument	Type and	Attribut	Content
	kind (* 1)	е	
KA	Integer	Input	Adjustable dimension of A, B, and V (value of the first
	type		subscript in array declaration)KA≥N
N	Integer	Input .	Order of A and BThis is also the number of rows of V. N \geq 2
	type		
B	Real type	Output	Eigenvalues are generated and arranged. In descending order
	Two-dimens		if NE > 0, and in ascending order if NE < 0
	ional		
	array		
NE	Integer	Input	The number of the eigenvalue to be obtained is specified by
	type		the absolute value. The largest (smallest) NE eigenvalues
			are obtained if NE > 0 (NE < 0). NE \neq 0
۷-	Complex	Output	The eigenvector corresponding to eigenvalue E (I) is
	type		normalized in the meaning of $x^*Bx=1$ and output in the
	Two-dimens		column 1.
	ional		
	аггау		
NV	Integer	Input	The number of eigenvectors to be obtained is specified by the
	type		absolute value. The eigenvectors corresponding to the first
			NV eigenvalues in the order determined by NE are obtained.
			0≤ NV ≤ NE
EPS	Real type	Input	Convergence criterion constant of bisection methodWhen the
			tridiagonal matrix generated from $ ilde{A}$ is denoted by T,
			T ・ EPS is used for convergence test. Cholesky
			decomposition for B is omitted when EPS < 0. EPS \neq 0
W	Real type	Work	One-dimensional array with the size of 3N or more
	one-dimens	area	
	ional		
	array		

Argument	Type and	Attribut	Content
	kind (*1)	e	
Z	Complex	Work	One-dimensional array with the size of 5N or more
	type	area	
	One-dimens		·
	ional		• • • •
	array		
ILL	Integer	Output	ILL = 0: Normal end
	type		ILL = 1: B is decided to be non-positive definite.
			ILL = 30000: The input arguments violated the limit.

*1 For double or quadruple precision subroutines, all single precision types are changed to double or quadruple precision types.

(3) Calculation method

Positive definite matrix B is Cholesky-decomposed by an upper triangular matrix U as $B=U^*U$. When $\tilde{A}=(U^*)^{-1}AU^{-1}$ is formed from A using U, the generalized eigenvalue problem $Ax=\lambda Bx$ becomes a standard eigenvalue problem $\tilde{A}\tilde{x}=\lambda\tilde{x}$. This problem is solved by Householder-bisection method and eigenvector x is determined by $x=U^{-1}\tilde{x}$.

(4) Notes

1. When all eigenvalues are to be determined, it is more advantageous to use subroutine CGHQRS/D/Q or CGHQIS/D/Q which uses Householder-QR method.

2. For repeated calculation with B fixed and with only A changed from time to time, it is better to reuse the Cholesky-decomposed components of B. Refer to the description of EPS in the argument table.

Bibliography

1) Yoshitaka Beppu and Ichizo Ninomiya; "Comparisons of Matrix Solutions for Standard Eigenvalue Problems," Nagoya University Computer Center News, Vol.11, No.3, and pp. 265-274 (1980)

(1987.08.07)

CGHQIS/D/Q (Eigenvalue Analysis of the Type $Ax = \lambda Bx$ by Householder-QR-Inverse Iteration Method (Hermitian Matrices))

Eigenvalue Analysis of the Type $Ax = \lambda Bx$ by Householder-QR-Inverse Iteration Method (Hermitian Matrices)

Programm	Ichizo Ninomiya, December 1983
ed by	
Format	Subroutine language: FORTRAN; size: 52, 53, and 53 lines
	respectively.

(1) Outline

140

CGHQIS/D/Q obtains all of the eigenvalues and a part of the eigenvectors of the eigenvalue problem $Ax = \lambda Bx$ using Householder-QR-inverse iteration method if a Hermitian matrix A and a Hermitian positive definite matrix B are given. It is for single (double or quadruple) precision.

(2) Directions

CALL CGHQIS/D/Q (A, B, KA, N, E, V, NV, EPS, W, Z, ILL)

Argument	Type and	Attribut	Content
	kind (*1)	e	
A	Complex	Input/ou	The upper right half containing the diagonal lines of a
	type	tput	Hermitian matrix is input. It is processed and converted to
	Two-dimens		$ ilde{A}$ in this routine. The lower left half is retained.
	ional		
	array		

Argument	Type and	Attribut	Content
	kind (*1)	e	•
В	Complex	Input	The upper right half containing the diagonal of a Hermitian
	type		positive definite matrix is input. It is processed and
	Two-dimens		converted to the Cholesky decomposition element U (see the
•	ional		calculation method). The lower left half is retained.
	array	•	
KA	Integer	Input	Adjustable dimensions of A, B, and V (value of the first
	type		subscript in the array declaration). KA≧N
N	Integer	Input	Order of A and B. It also represents the number of rows of
	type		V. N≥2
B	Real type	Output	Eigenvalues are output in the order of size. If NV \geq O,
1	One-dimens		eigenvalues are arranged in descending order. If NV <o,< td=""></o,<>
•	ional		eigenvalues are arranged in ascending order.
	array		
۷	Complex	Output	Eigenvectors corresponding to the eigenvalue E(I) are output
	type		to the I-th column. They are normalized in the sense of
	Two-dimens		$x^*Bx=1$.
	ional		
	array		
NV	Integer	Input	NV represents the number of eigenvectors to be obtained.
	type		If NV>O (NV <o), algebraically<="" are="" eigenvectors="" in="" numbered="" td=""></o),>
			descending (ascending) order from the maximum (minimum).
			NV ≦N
EPS	Real type	Input	Convergence criterion of QR method. If the tridiagonalized
			matrix is denoted by T, $\ T\ \cdot EPS $ is used for the
			criterion. If EPS <o, b="" cholesky="" decomposition="" is<="" of="" td="" the=""></o,>
			omitted. EPS≠0

141

.

.

142

Argument	Type and	Attribut	Content
	kind (*1)	e	
W	Real type	Work	One-dimensional array of size N.
	one-dimens	агеа	
	ional		
	array		
Z	Complex	Work	One-dimensional array of size 5N.
	type	area	
	One-dimens		
	ional		
	аггау		
ILL	Integer	Output	ILL=0: Normal termination.
	type	•	ILL=1: B is decided to be not positive definite.
			ILL=30000: The input argument exceeded the limit.

1* For double (quadruple) precision subroutines, all single precision types are cannged to double (quadruple) precision types.

(3) Calculation method

The Hermitian positive definite matrix B is Cholesky-decomposed to $B=U^*U$ with the upper triangular matrix U. If $\tilde{A}=(U^*)^{-1}AU^{-1}$ is generated from A using this U, the generalized eigenvalue problem $Ax=\lambda Bx$ becomes the standard eigenvalue problem $\tilde{A}\tilde{x}=\lambda\tilde{x}$. If this problem is solved using Householder-QR-Inverse iteration method, the eigenvector x is obtained with $x=U^{-1}\tilde{x}$.

(4) Notes

1. When up to about one-fourth of the entire eigenvalues is to be obtained, it is more advantageous to use the subroutine CGHBSS based on Householder bisection method.

2. When the calculation is to be repeated with B kept constant and only A changed, it is better to reuse the Cholesky decomposition elements of B. See the explanation for EPS in the list of arguments.

Bibliography

1) Yoshitaka Beppu and Ichizo Ninomiya: "Comparison of Matrix Solutions of Standard Eigenvalue Problems," Nagoya University Computer Center News, Vol. 11, No. 2, pp. 265-274 (1980)

(1987.06.22)

:

CGHQRS/D/Q (Eigenvalue Analysis of $Ax = \lambda Bx$ by Householder-QR Method (Hermitian Matrices))

Eigenvalue Analysis $Ax = \lambda Bx$ by Householder-QR Method (Hermitian Matrices)

Programm	Ichizo Ninomiya, December 1983
ed by	
Format	Subroutine language: FORTRAN; size: 53, 54, and 54 lines respectively

(1) Outline

CGHQRS/D/Q obtains the entire eigenvalues and, if required, the entire eigenvectors of the eigenvalue problem $Ax = \lambda Bx$ if a Hermitian matrix A and a Hermitian positive definite matrix Bare given. It converts A to $\tilde{A} = (U^*)^{-1}AU^{-1}$ by executing Cholesky decomposition with $B=U^*U$, and solves the standard eigenvalue problem $\tilde{A}y = \lambda y$ using Householder-QR method. If eigenvectors are required, it converts the eigenvector y of \tilde{A} by $x=U^{-1}y$.

(2) Directions

CALL CGHQRS/D/Q (A, B, KK, N, E, F, EPS, IND)

Argument	Type and	Attribut	Content
	kind (*1)	e	
A	Complex]nput/ou	Only the upper right half of a Hermitian matrix is input. It
	type	tput	js processed in this routine, and $ ilde{A}$ is generated in the
	Two-dimens		upper right half If eigenvectors are obtained, they are
	ional		entered in each column. The vectors are normalized in the
	array		sense of $x^*Bx=1$.
В	Complex	Input/ou	Only the upper right half of a Hermitian positive definite
	type	tput	matrix is input. It is processed in this routine, and the
	Two-dimens		Cholesky decomposition element U of B is entered in the upper
	ional		right half. The lower left half is retained.
	array		
КК	Integer	Input	Value of the first subscript in the declaration of arrays A
	type		and B: KK≧N

Argument	Type and	Attribut	Content
	kind (*1)	e	
N	Integer	Input	Order of arrays A and B. N≥2
	type		
E	Real type	Input	One-dimensional array containing N elements. Eigenvalues are
	One-dimens		arranged in algebraically descending order.
	ional		
	array		
F	Complex	Work	One-dimensional array containing N elements.
	type	area	
	One-dimens		· · ·
	ional		
	аггау		
EPS	Real type	Input	EPS is the convergence criterion of the QR method. It is
			also the positivity criterion for Cholesky decomposition of
	-		B. If this routine is called with EPS <o, cholesky<="" td="" the=""></o,>
			decomposition elements of B are reused. EPS≠0
IND	Integer	Input/ou	This argument has has the following meaning as an input
	type	tput	argument. IND=0: Only eigenvalues are calculated. IND≠0:
			Eigenvectors are also calculated. This argument has the
			following meaning as an output argument.
			IND=0: Calculation is normally executed. IND=1: B is decided
			to be not positive definite.
			IND=30000: Limits on the input argument were exceeded.
			Because this argument is both input and output, constants
			must not be used.

1* For double (quadruple) precision subroutines, all single precision types are changed to double (quadruple) precision types.

(3) Calculation method

145

(4) Notes

146

1. If only selected eigenvectors are to be obtained, it may often be advantageous to use Householder-QR-inverse iteration method (CGHQIS).

2. If calculation is iterated with B kept constant and only A changed, it is better to reuse the Cholesky decomposition elements of B. See the explanation for the argument EPS. (1987, 06, 22) (1987, 08, 07)

CGKLZS/D/Q (Eigenvalue Analysis of the Type $Ax = \lambda Bx$ by LZ Method (Complex Matrices))

4

Eigenvalue Analysis of the Type $Ax = \lambda Bx$ by LZ Method (Complex Matrices)

Programm	Ichizo Ninomiya, July 1984
ed by	
Format	Subroutine language: FORTRAN; size: 256 and 256 lines respectively

(1) Outline

CGKLZS/D/Q obtains all the eignevalues of the eigenvalue problem $Ax = \lambda Bx$ using the LZ method for given complex matrices A and B, and obtains specified eigenvectors using the inverse iteration. It is for single (double or quadruple) precision.

(2) Directions

CALL CGKLZS/D/Q (A, B, KA, N, E, IE, V, NV, EPS, W, Z, ILL)

Argument	Type and	Attribut	Content		
	kind (*1)	e			
A	Complex	Input	Complex matrix A. It is processed with this routine, and		
	type		transformed to $ ilde{A}$ (see the calculation method).		
	Two-dimens				
	ional				
	аггау				
B.	Complex	Input	Complex matrix B. It is processed with this routine, and		
	type		transformed to $ ilde{B}$ (see the calculation method).		
	Two-dimens				
	ional				
	array				
KA	Integer	Input	Adjustable dimensions of A, B, and V (value of the first		
	type		subscript in the array declaration). KA≥N		

|48

Argument	Type and	Attribut	Content
	kind (*1)	e	
N	Integer	Input	Order of A and B. It also represents the number of rows of
	type		V. N≥2
B	Complex	Output	Eigenvalues are output in the order of absolute values. If
	type		NV \geq 0, eigenvalues are arranged in descending order. If
	One-dimens		NV <q, are="" arranged="" ascending="" eigenvalues="" in="" order.<="" td=""></q,>
	ional		
	array		
IE	Integer	Output	The condition code of the I-th eigenvalue is input in IE(I).
	type		IE=O: Normal. IE=1: Eigenvalues do not exist.
	one-dimens		IE=2: Bigenvalues are indeterminate.
	ional		·
	аггау		
٧	Complex	Output	An eigenvector to the eigenvalue E(I) is normalized to a
	type		length of 1 and placed to the I-th column.
	Two-dimens		
	ional		
	array		
NV	Integer	Input	The number of eigenvectors to be obtained is represented by
	type		the absolute value, and how to arrange eigenvalues is
			represented by the sign. (See the item of E.)
			0≤ NV ≤ N
EPS	Real type	Input	Convergence criterion of bisection method
			max(A , B)* EPS is used as the criterion.
W	Complex	Work	One-dimensional array of size N≭N.
	type	агеа	
	one-dimens		
	ional		
	array		

Argument	Type and	Attribut	Content
	kind (*1)	e	
2	Complex	Work	One-dimensional array of size N.
	type	area	
	One-dimens		
	ional		·
	array		
ILL	Integer	Output	ILL=0: Normal termination.
	type		ILL=K: K:Number of abnormal eigenvalues.
			ILL=20000: LZ method does not result in convergence.
			ILL=30000: The input argument exceeded the limit.

1* For double (quadruple) precision subroutines, all single precision types are changed to double (quadruple) precision types.

(3) Calculation method

1. The matrix A and B are transformed to upper Hessenberg matrix \bar{A} =LAM and \bar{B} =LBM respectively using the stabilized elementary row transformation L, and the stabilized elementary column transformation M.

2. All the eigenvalues of the eigenvalue problem $\tilde{A}y = \lambda \tilde{B}y$ are obtained using the LZ method with origin shift, and the specified eigenvectors y are obtained using the inverse iteration. 3. Eigenvectors are obtained by x=My, and normalized to length 1.

(4) Note

1. If A is Hermitian, and B is Hermitian positive definite, it is more advantageous to use CGHBSS, CGHQIS, and CGHQRS.

Bibliography

1) Kaufman L; "The LZ Algorithms to Solve the Generalized Eigenvalue Problem", Stanford Computer Science Report PB-222099, p. 103 (1973)

(1987. 08. 07) (1988. 04. 22)

Eigenvalue Analysis for Complex Matrices by QR and Inverse Iteration Method

Programm	Ichizo Ninomiya, October 1983
ed by	
Format	Subroutine language: FORTRAN; size: 207 and 208 lines respectively

(1) Outline

CHEQIS/D/Q transformed a complex matrix to an upper Hessenberg matrix using the stabilized elementary transformation, obtains all the eigenvalues using the QR method, and calculates the eigenvectors as many as requested using the inverse iteration method. It is a single (double or quadruple) precision subroutine.

(2) Directions

CALL CHEQIS/D/Q (A, KA, N, E, V, NV, EPS, IW, W, Z, ILL)

Argument	Type and	Attribut	Content
	kind (*1)	e	
A	Complex	Input	Matrix whose eignevalue analysis is to be executed. It is
	type		processed with this routine, and transformed to an upper
	Two-dimens		Hessenberg type.
	ional		
	array		
КА	Integer	Input	Adjustable dimensions of A and V (value of the first
	type		subscript in the array declaration). KA≧N
N	Integer	Input	Order of A. Number of rows of V. It also represents the
	type		size of E. N≥1

Argument	Type and	Attribut	Content
	kind (*1)	e	
E	Complex	Output	Eigenvalues. The I-th eigenvalue is E(I).
	type	•	
	One-dimens		
	ional		· · ·
	array		
٧	Complex	Output	The I-th eigenvector is output to the I-th column of V. The
	type		length is normalized to 1.
	Two-dimens		
	ional		
	аггау		
NV	Integer	Input	The number of eigenvectors is represented by the absolute
	type		value. If NV \geq 0, eigenvalues are arranged in the descending
			order of absolute values. If NV <q, are="" arranged<="" eigenvalues="" td=""></q,>
			in the ascending order of absolute values. Then, vectors to
			the first NV eigenvalues are obtained.
EPS	Real type	Input	∥A∥•EPS is used as the convergence criterion of QR. EPS>O
IW	Integer	Work	One-dimensional array of size N.
	type	area	
	one-dimens		
	ional		
	array		
W	Real type	Work	One-dimensional array of size 3N.
	one-dimens	area	
	ional		
	array		

.

151

.

Ī

.

Argument	Type and	Attribut	Content
	kind (*1)	е	
Z	Complex	Work	One-dimensional array of size N^2 .
	type	area	
	One-dimens		
	ional		
	аггау		
ILL	Integer	Output	Condition code
	type		IND=0: Normal.
			IND=1: N=1 or the elements in A are all O.
			IND=2: The QR method or the inverse iteration does not
			result in convergence.
			IND=30000: The input argument exceeded the limit.

*1 For double precision subroutines, all real types are changed to double precision real types, and all complex types to double precision complex types. For quadruple precision subroutines, all real types are changed to quadruple precision real types, and all complex types to quadruple precision complex types.

(3) Calculation method

The complex matrix A is transformed to an upper Hessenberg matrix $H=S^{-1}AS$ using the stabilized elementary transformation S, that is, Gauss's elimination accompanied by row exchange.

All the eigenvalues of H are obtained using the QR method with origin shift.

A specified number of eigenvectors of H are obtained using the inverse iteration. These eigenvectors are placed in U Eigenvectors of A are calculated as V=SU from U.

(4) Notes

1. It is reasonable to process the Hermitian matrix with the special-purpose routine.

2. If an eigenvector is not to be obtained (NV=0), the area to V and Z is not used, and thus need not be prepared. Anything can be written for these arguments.

Gardier 30 ed values and value for four for store of the store of the

Lotter in a social to local as the subbilinesity

Prov. 264 [Johnso Minomiya, October 1983 Markov Markov, Kabane Minomiya, October 1983 Markov, Kabane inc. Kakarest POLIMAN: aire - 191 and 152 from respectively

(Phalaitic transforms a complex matrix to an appor Boasoberg antrix using the stantized released of anotarantian, obtains all the effervalues using the Os sathod, and, if regained within any 1-1 or architeconding argumeters; this subrouting it for single (double or stantows) protessed.

- 1 - 3 361/53184 (j.

(cs/late)	Sedi 1918	hr.top_f	1999 - 1 19 4 94 - 291 1
	a a		
Matrix abase cignovalue analysis is to be executed. It is	isaul		
procession with this contrar, and transformed to a Receasing			
en de la serie de la serie La serie de la s		adsorts set	
		t loot	
		N. 114	
Adjustable Armonstens of A and F (value of the first	anda]	a iyo biy	
subseription the array declaration). "KAS"			
Prider of A. Lumber of recently is also represented to	Innet		
te Z dinevio			•
	· · · · · · · · · · · · · · · · · · ·	ويعتقد والمعاجر	. •• • <u>•</u> . ••• ••

The second state of the second s

Eigenvalue Analysis for Complex Matrices by QR Method

Programm	Ichizo Ninomiya, October 1983
ed by	
Format	Subroutine language: FORTRAN; size: 191 and 192 lines respectively

(1) Outline

134

CHEQIS/D/Q transforms a complex matrix to an upper Hessenberg matrix using the stabilized elementary transformation, obtains all the eigenvalues using the QR method, and, if required, calculates all the corresponding eigenvectors. This subroutine is for single (double or quadruple) precision.

(2) Directions

CALL CHEQRS/D/Q (A, KA, N, E, V, EPS, IW, IND)

Argument	Type and	Attribut	Content
	kind (*1)	e	
A	Complex	Input	Matrix whose eigenvalue analysis is to be executed. It is
	type		processed with this routine, and transformed to a Hessenberg
	Two-dimens		type.
	ional		
	array		
KA	Integer	Input	Adjustable dimensions of A and V (value of the first
	type		subscript in the array declaration). KA≥N
N	Integer	Input	Order of A. Number of rows of V. It also represents the
	type		size of E. N≥1

Argument	Type and	Attribut	Content
	kind (*1)	e	
E	Complex	Output	Eigenvalue. The 1-th eigenvalue is E(1).
	type		
	One-dimens		
	ional		· ·
	array		
V	Complex	Output	The I-th eigenvector is output to the I-th column of V. The
	type		length is normalized to 1.
	Two-dimens		
	ional		
	array		
EPS	Real type	Input	∥A∥•EPS is used as the convergence criterion of QR. EPS>O
IW	Integer	Work	One-dimensional array of size N.
	type	агеа	
· · .	one-dimens		
	ional		
	аггау		
IND	Integer	Input/ou	Input: Whether to calculate eigenvectors and how to array
	type	tput	eigenvalues are specified.
			IND=0: Eigenvectors are not calculated.
			IND≠0: Eigenvectors are calculated

155

.

.

Argument	Type and	Attribut	Content
	kind (* 1)	e	
			IND≥0: Bigenvalues are arranged in the descending order of
			absolute values.
			IND<0: Eigenvalues are arranged in the ascending order of
			absolute values.
			Output: Condition code
			IND=0: Normal.
			IND=1: N=1 or the elements of A is all O.
			IND=2: The QR method does not result in convergence
			IND=30000: The input argument exceeded the limit.

1* For double (quadruple) precision subroutines, all single precision types are changed to double (quadruple) precision types.

(3) Calculation method

The real matrix A is transformed to an upper Hessenberg matrix $H=S^{-1}AS$ using stabilized elementary transformation S, that is, Gauss' elimination accompanied by row exchange. H is converted into an upper triangular matrix using QR method with origin shift. Eigenvalues are given as the diagonal elements. Eigenvectors are obtained from the eigenvectors of the upper triangular matrix using the inverse transformation of the stabilized elementary and QR transformations.

(4) Notes

1. It is reasonable to process the Hermitian matrix with the special-purpose routine.

2. If eigenvector are not to be obtained (IND=0), the area for V is not used, and thus need not be prepared. Anything can be written for it.

(1987.06.19) (1987.08.07)

CHOBSS/D/Q (Bigenvalue Analysis for Hermitian Matrix by Householder-Bisection Method)

157

Eigenvalue Analysis for Hermitian Matrices by Householder-Bisection Method

Programm	Ichizo Ninomiya, October 1983
ed by	
Format	Subroutine language: FORTRAN; size: 188 and 189 lines respectively

(1) Outline

CHOBSS/D/Q tridiagonalizes a Hermitian matrix using Householder's reflexion transformation, obtains the eigenvalues of the tridiagonalized matrix using the bisection method based on Sturm sequence, and calculates the eigenvectors using the inverse iteration. It is for single (double or quadruple) precision.

(2) Directions

CALL CHOBSS/D/Q (A, KA, N, E, NE, V, NV, EPS, W, Z, ILL)

Argument	Type and	Attribut	Content
	kind (*1)	e	
A	Complex	Input	The upper right half containing the diagonal of a Hermitian
-	type		matrix is input. It is processed with this routine. The
	Two-dimens		left lower half is retained.
	ional		
	аггау		
KA	Integer	Input	Adjustable dimensions of A and V (value of the first
	type		subscript in the array declaration). KA≥N
N	Integer	Input	Order of A. It also represents the number of rows of V. $N \ge 1$
	type		

Argument	Type and	Attribut	Content
	kind (*1)	e	
E	Real type	Output	Eigenvalues are output in the order of size. If NE>O,
	One-dimens		eigenvalues are arranged in descending order. If NE <o,< td=""></o,<>
	ional		eigenvalues are arranged in ascending order.
	array		
NE	Integer	Input	The number of eigenvalues to be obtained is represented by
	type		the absolute value. If NE>O (NE <o), are="" eigenvalues="" numbered<="" td=""></o),>
			in algebraically descending (ascending) order from the
			maximum (minimum). NE≠O
۷	Complex	Output	Eigenvectors to the eigenvalue E(1) are normalized to length
	type		1, and placed to the I-th column.
	Two-dimens		
	ional .		
	array		
NV	Integer	Input	The number of eigenvectors to be obtained is represented by
	type		the absolute value. Eigenvalues are numbered from the end in
			the order defined by NE. $0 \le NV \le NE $
EPS	Real type	Input	Convergence criterion of bisection method. If the
			tridiagonalized matrix is denoted by T, T •EPS is used as
			the criterion. EPS>O
W	Real type	Work	One-dimensional array of size 3N.
	One-dimens	area	
	ional		
1	array		
Z	Complex	Work	One-dimensional array of size 5N.
	type	агеа	
	One-dimens		
	ional		
	array		

Argument	Type and	Attribut	Content
	kind (*1)	e	
ILL	Integer	Output	ILL=0: Normal termination.
	type		ILL=30000: The input argument exceeded the limit.

1* For double precision subroutines, all real types are changed to double precision real types, and all complex types to double precision complex types. For quadruple precision subroutines, all real types are changed to quadruple precision real types, and all complex types to quadruple precision complex types.

(3) Calculation method

The matrix A is transformed to a tridiagonal matrix $T=H^*AH$ using the Householder transformation H.

The eigenvalues of T are obtained by the bisection method based on Sturm sequence. They are numbered as many as specified from the end in a specified order. The eigenvectors corresponding to the eigenvalues specified as counted from the end are obtained using the inverse iteration. The matrix containing these eigenvectors in columns is denoted by U, then the eigenvector V of Acan be obtained by V=HU.

(4) Note

When all the eigenvalues of a Hermitian matrix are to be obtained, it is better to use the routine CHOQRS/D based on the QR method than this routine. When all of the eigenvalues and all or part of the corresponding eigenvectors are to be obtained, it is more reasonable to use the routine CHQRIS/D based on the QR-inverse iteration.

(1987. 06. 22)

CHOQRS/D/Q (Eigenvalue Analysis for Hermitian Matrices by Householder-QR Method)

Eigenvalue Analysis for Hermitian Matrices by Householder-QR Method

Programm	Ichizo Ninomiya, October 1983
ed by	
Format	Subroutine language: FORTRAN; size: 133, 134, and 134 lines
	respectively

(1) Outline

CHOQRS/D/Q obtains all the eigenvalues and, if required, all the corresponding eigenvectors of an Hermitian matrix, using the Householder's tridiagonalization and QR method with origin shift.

(2) Directions

CALL CHOQRS/D/Q (A, KA, N, E, F, EPS, ILL)

Argument	Type and	Attribut	Content
	kind (*1)	e	
A	Complex	Input/ou	The upper right half containing the diagonal lines of a
	type	tput	Hermitian matrix is input. Anything can be input in the
	Two-dimens		lower left half. If eigenvectors are to be obtained,
	ional		eigenvectors are output in A. That is, eigenvectors to the
	array		eigenvalues E(1) are normalized to length 1, and is placed in
			the I-th column of A.
KA	Integer	Input	Value of the first subscript in the array-A declaration.
	type		KA≥N
N .	Integer	Input	Order of A. N≥2
	type		

÷.

Argument	Type and	Attribut	Content
	`kind (* 1)	e	
E	Real type	Output	One-dimensional array containing N elements. Eigenvalues are
	One-dimens		arranged in algebraically descending order.
	ional		
	array		
F	Complex	Work	One-dimensional array containing N elements.
	type	area	•
	One-dimens		
	ional		
	array		
EPS	Real type	Input	Convergence criterion for QR method. If all the non-diagonal
			elements become smaller than A •EPS in magnitude,
			convergence is judged to have occurred. EPS>O
ILL	Integer	Input/ou	If ILL=O is given, only eigenvalues are calculated. If
	type	tput	ILL $\neq 0$ is given, both eigenvalues and eigenvectors are
			calculated. If calculation terminates normally, Q is
			output. If limits on the input argument are exceeded, 3000
			is output. Constants must not be used for the actual
			argument.

*1 For double precision subroutines, all real types are changed to double precision real types, and all complex types are changed to double precision complex types. For quadruple precision subroutines, all real types are changed to quadruple precision real types, and all complex types are changed to quadruple precision complex types.

(3) Performance

As with real symmetric matrices, this routine is high in speed. It can be used without troubles even for the case of multiple or close eigenvalues.

(4) Notes

1. This routine is optimum when all eigenvalues (and corresponding eigenvectors) are to be obtained with a small storage requirement.

2. If only part of eigenvalues or eigenvectors is to be obtained, Householder-Givens' method (bisection method) is desirable. Subroutines that are currently registered are CHOBSS/D.

(1987.06.22) (1987.08.07)

CHQRIS/D/Q (Eigenvalue Analysis of Hermitian Matrices by Householder-QR-Inverse Iteration Method)

163

Eigenvalue Analysis of Hermitian Matrices by Householder-QR-Inverse Iteration Method

Programm	Ichizo Ninomiya, October 1983
ed by	
Format	Subroutine language: FORTRAN; size: 188 and 189 lines respectively

(1) Outline

CHQRIS/D/Q obtains all the eigenvalues of a Hermitian matrix using Householder-QR method, and calculates specified eigenvectors using the inverse iteration.

(2) Directions

CALL CHQRIS/D/Q (A, KA, N, E, V, NV, EPS, W, Z, ILL)

Argument	Type and	Attribut	Content
	kind (*1)	e	• • • • • • • • • • • • • • • • • • •
A	Complex	Input	The upper right half containing the diagonal of a Hermitian
	type		matrix is input. It is processed with this routine. The
	Two-dimens		lower left half is retained.
	ional		
	array		
KA	Integer	Input	Adjustable dimensions of A and V (value of the first
	type		subscript in the array declaration). KA≧N
N	Integer	Input	Order of A. It also represents the number of rows of V. $N \ge 2$
	type		
E	Real type	Output	All eigenvalues are output in the order of size. If NV \geq O,
	One-dimens		eigenvalues are arranged in descending order. If NV <o,< td=""></o,<>
	ional		eigenvalues are arranged in ascending order.
	array		

Type and	Attribut	Content
kind (*1)	e	
Complex	Output	Eigenvectors to the eigenvalue E(1) are normalized to length
type		1, and placed to the I-th column.
Two-dimens		
ional		
array		
Integer	Input	NV represents the number of eigenvectors to be obtained.
type		If NV>O (NV <o), algebraically<="" are="" eigenvectors="" in="" numbered="" td=""></o),>
•		descending (ascending) order from the maximum (minimum).
		NV ≦N
Real type	Input	Convergence criterion of QR method. If the tridiagonalized
i	•	matrix is denoted by T, T ·EPS is used as the criterion.
		EPS>0
Real type	Work	One-dimensional array of size N.
One-dimens	агеа	
ional		
array		
Complex	Work	One-dimensional array of size 5N.
type	агеа	
One-dimens		•
ional		
array		
Integer	Output	ILL=(): Normal termination.
	kind (*1) Complex type Two-dimens ional array Integer type Real type Real type One-dimens ional array Complex type One-dimens ional	kind (*1)eComplexOutputtypeOutputtypeInsutionalInputarrayInputtypeInputkind typeInputkind typeInputionalInput<

164

*1 For double precision subroutines, all real types are changed to be double precision real types, and all complex types to double precision complex types. For quadruple precision subroutines, all real types are changed to quadruple precision real types, and all complex types to quadruple precision complex types.

ILL=30000: The input argument exceeded the limit.

type

(3) Calculation method

The Hermitian matrix A is transformed to a tridiagonal matrix $T=H^*AH$ using the Householder transformation H.

All the eigenvalues of T are calculated using the QR method. A specified number of eigenvectors of T are obtained using the inverse iteration. They are gathered in the matrix U. The eigenvectors of A are calculated by V=HU.

(4) Notes

1. The routine is adequate when all the eigenvalues are obtained quickly, and all or part of the eigenvectors are obtained.

2. If up to about one-fourth of the eigenvalues is to be obtained, it is more advantageous to use CHOBSS/D based on Householder-bisection method.

(1987. 06. 22)

GHBSVS/D (Eigenvalue analysis of the type $Ax = \lambda Bx$ by Householder-bisection method)

Eigenvalue Analysis of the Type $Ax = \lambda Bx$ by Householder-Bisection Method

Programm	Ichizo Ninomiya; April 1981	· · · · ·
ed by		
Format	Subroutine language; FORTRAN	Size; 230 lines each

(1) Outline

When a real symmetric matrix A and a real symmetric positive definite matrix B are given, GHBSVS/D determines the specified number of eigenvalues and eigenvectors of eigenvalue problem $Ax = \lambda Bx$ by using the Householder-bisection method. GHBSVS(D) is for single (double) precision.

(2) Directions

CALL GHBSVS/D (A, B, KK, N, E, V, NV, EPS, W, ILL)

Argument	Type and	Attribut	Content
	kind (*1)	e	
A	Real type	Input	The upper right half of the real symmetric matrix including
	Two-dimens		the diagonal is input. After processing by this routine, $ ilde{A}$
	ional		is generated (see the calculation method). The lower left
	аггау		half is preserved.
В	Real type	Input .	The upper right upper of the real symmetry positive definite
	Two-dimens		matrix including the diagonal is input. The matrix is
	ional		processed by this routine to become Cholesky decomposition
	array		component U (see the calculation method). The lower left
			half is preserved.
КК	Integer	Input	Adjustable dimensions of A, B, and V (value of the first
	type		subscript in array declaration)KK≥N

Argument	Type and	Attribut	Content
	kind (*1)	e	
N	Integer	Input	Order of A and BThis is also the number of rows of V. N \geq 2
	type		
E	Real type	Output	Eigenvalues are generated and arranged. In descending order
	Two-dimens		if NE > 0, and in ascending order if NE < 0
	ional		
	array		
NE	Integer	Input	The number of eigenvalues to be obtained is specified by the
	type		absolute value. The largest (smallest) NE eigenvalues are
			obtained if NE > 0 (NE < 0). NE≠0
V	Real type	Output	The eigenvector corresponding to eigenvalue E(I) is
	Two-dimens		normalized in the meaning of $x^TBx=1$ and output in the
	ional		column I.
	array		
NV	Integer	Input	The number of eigenvectors to be determined is specified by
	type		the absolute values. The eigenvectors corresponding to the
			first NV eigenvalues in the order determined by NE are
			obtained. $0 \leq NV \leq NE $
ĘPS	Real type	Input	Convergence criterion constant for bisection methodWhen the
			tridiagonal matrix generated from $ ilde{A}$ is denoted by T,
			∥T∥• EPS is used for convergence test. Cholesky
			decomposition for B is omitted if EPS < 0. EPS \neq 0
W	Real type	Work	One-dimensional array with the size of 6N or more
	one-dimens	area	
	ional		
	array		
ILL	Integer	Output	lLL = 0: Normal end
	type		ILL = 1: B is decided to be non-positive definite.
			ILL = 30000: The input arguments violated the limit.

167

.

•

*1 For double precision subroutines, all real types are changed to double precision real types.

(3) Calculation method

Positive definite matrix B is Cholesky-decomposed by an upper triangular matrix U as $B=U^{T}U$. When $\tilde{A}=U^{-T}AU^{-1}$ is from A using U, the generalized eigenvalue problem $Ax=\lambda Bx$ becomes a standard eigenvalue problem $\tilde{A}\tilde{x}=\lambda\tilde{x}$. This problem is solved by Householder-bisection method and eigenvector x is determined by $x=U^{-1}\tilde{x}$.

(4) Notes

1. When all eigenvalues are to be determined, it is more advantageous to use subroutine CGHQRS/D/Q or CGHQIS/D/Q which uses Householder-QR method.

2. For repeated calculation with B fixed and with only A changed from time to time, it is better to reuse the Cholesky-decomposed components of B. Refer to the description of EPS in the argument table.

Bibliography

1) Yoshitaka Beppu and Ichizo Ninomiya; "Comparisons of Matrix Solutions for Standard Eigenvalue Problems," Nagoya University Computer Center News, Vol. 11, No. 3, and pp. 265-274 (1980)

(1987.08.10) (1988.04.04)

GHBSVV/W (Eigenvalue Analysis of the Type $Ax = \lambda Bx$ by Householder-Bisection Method: Vector Version)

Eigenvalue Analysis of the Type $Ax = \lambda Bx$ by Householder-Bisection Method : Vector Version

Programm	Ichizo Ninon	niya, March 1988		
ed by				
Format	Subroutine	Language: FORTRAN;	Size: 156 lines	

(1) Outline

GHBSVV/W obtains the specified number of eigenvalues and corresponding eigenvectors of the eigenvalue problem $Ax = \lambda Bx$ by the Householder-Bisection method when a real symmetric matrix A and a real symmetric positive definite matrix B are given. GHBSVV(W) is for single (double) precision.

(2) Directions

CALL GHBSVV/W (A, B, KK, N, E, V, NV, EPS, W, ILL)

Argument	Type and	Attribut	Content
·	kind (*1)	e	
A	Real type	Input	The upper right half containing the diagonal of a real
	Two-dimens		symmetric matrix is input. This routine turns it into $ ilde{A}$
	ional		(see "Calculation method"). The lower left half should be
	аггау		used as a work area.
B	Real type	Input	The upper right half containing the diagonal of a real
	Two-dimens		symmetric positive definite matrix is input. This routine
1	ional		decomposes it into Cholesky component V (see "Calculation
•	array		method"). The lower left half is retained.
KK	Integer	Input	Adjustable dimensions of A, B, and V (value of the first
	type		subscript in the array declaration). KK≧N

Argument	Type and	Attribut	Content
	kind (*1)	e	
N	Integer	Input	Order of A and B or the number of rows of V. $N \ge 2$
	type		
E	Real type	Output	Eigenvalues are output in the order of size. If NE>O, they
	Two-dimens		are arranged in decreasing order. If NE <o, are="" arranged<="" td="" they=""></o,>
	ional		in increasing order.
	array ·		
NE	Integer	Input	Represents the number of eigenvalues to be obtained by the
	type		absolute value. If NE>O(NE <o), are="" from="" numbered="" td="" the<="" they=""></o),>
			maximum (minimum) in algebraically decreasing (increasing)
			order. NE≠O
۷	Real type	Output	Eigenvectors to eigenvalues E(1) are normalized and placed to
	Two-dimens		the 1-th column in the sense of $x^TBx=1$.
	ional		
	array		
NV	Integer	Input	Represents the number of eigenvectors to be obtained by the
	type		absolute value. Eigenvalues are numbered from the end in the
	•		order defined by NE. $0 \le $ NV $ \le $ NE $ $
EPS	Real type	Input	Convergence criterion of bisection method. If the
			tridiagonalized matrix is denoted by T, T • EPS is used
			as the criterion. If EPS <o, b<="" cholesky="" decomposition="" of="" td="" the=""></o,>
			is omitted. EPS≠0
W	Real type	Work	One-dimensional array of size 6N.
	one-dimens	area	
	ional		
	array		
ILL	Integer	Output	ILL=0: Normal termination.
	type		ILL=1: B is decided to be not a positive definite.
			ILL=30000: Input argument exceeded the limit.

*1 For double precision subroutines, all real types should be changed to double precision real types.

(3) Calculation method

This routine decomposes the symmetric positive definite matrix B into $B=U^{T}U$ with an upper triangular matrix U by Cholesky decomposition method. If $\tilde{A}=U^{-T}AU^{-1}$ is generated from A by using this U, the generalized eigenvalue problem $Ax=\lambda Bx$ turns into the standard eigenvalue problem $\tilde{A}\tilde{x}=\lambda\tilde{x}$. By solving this problem by the Householder-bisection method, the eigenvector x is obtained by $x=U^{-1}\tilde{x}$.

(4) Note

1. When all eigenvalues are to be obtained, it is more advantageous to use the subroutine GHQRVV/W or GHQRIV/W based on the Householder-QR method.

2. When calculation is to be repeated with only B kept constant and A changed, it is more advantageous to reuse the Cholesky decomposition elements of B. See the explanation for "EPS" in the argument list.

Bibliography

1) Yoshitaka Beppu and Ichizo Ninomiya; "Comparison of Matrix Methods for Standard Eigenvalue Problems", Nagoya University Computer Center News, Vol. 11, No. 3, pp. 265-274(1980).

(1987.08.10) (1988.04.08)

Ĩ,

GHQRIS/D (Eigenvalue Analysis of the Type $Ax = \lambda Bx$ by Householder-QR-Inverse Method)

Eigenvalue Analysis of the Type $Ax = \lambda Bx$ by Householder-QR-Inverse Iteration Method

Programm	Ichizo Ninomiya, April 1981	
ed by		
Format	Subroutine language: FORTRAN; size: 250 lines	

(1) Outline

GHQRIS/D obtains all of the eigenvalues and a part of the corresponding eigenvectors of the eigenvalue problem $Ax = \lambda Bx$ using the Householder-QR-Inverse iteration method when a real symmetric matrix A and a real symmetric positive definite matrix B are given. It is for single (double) precision.

(2) Directions

CALL GHQRIS/D (A, B, KK, N, E, V, NV, EPS, W, ILL)

Argument	Type and	Attribut	Content
	kind (*1)	e	
A .	Real type	Input/ou	Only the upper right half containing the diagonal lines of a
	Two-dimens	tput	real symmetric matrix is input. It is processed with this
	ional		routine, and converted to A (see "Calculation method"). The
	аггау		lower left half is retained.
В	Real type	Input	Only the upper right half containing the diagonal lines of a
	Two-dimens		real symmetric positive definite matrix need be input. It is
	ional		processed with this routine, and converted to the Cholesky
	array		decomposition element U (see "Calculation method"). The
			left lower half is retained.
КК	Integer	Input	Adjustable dimensions of A, B, and V (value of the first
	type		subscript in the array declaration). KK≥N

172

Argument	Type and	Attribut	Content
	kind (≭ 1)	e	
N	Integer	Input	Order of A and B. It also represents the number of rows of
	type		V. N≥2
E	Real type	Output	Eigenvalues are output in the order of size. If $NV \ge 0$,
	One-dimens		eigenvalues are arranged in descending order. If NV <o,< td=""></o,<>
	ional		eigenvalues are arranged in ascending order.
	array		
V	Real type	Output	Eigenvectors corresponding to the eigenvalue E(I) are output
	Two-dimens		to the I-th column. They have been normalized in the meaning
	ional		of $x^TBx=1$.
	аггау]	
NV	Integer	Input	NV represents the number of eigenvectors to be obtained.
	type		lf NV>O (NV <o), algebraically<="" are="" counted="" eigenvectors="" in="" td=""></o),>
			descending (ascending) order from the maximum (minimum).
			NV ≦N
EPS	Real type	Input	Convergence criterion of QR method. If a tridiagonalized
			matrix is denoted by T, $\ T\ \cdot EPS $ is used as the
			criterion. IF EPS <o, b="" cholesky="" decomposition="" is="" of="" omitted.<="" td=""></o,>
		-	EPS≠0
₩.	Real type	Work	One-dimensional array of size 6N.
·	one-dimens	area	
	ional		
	аггау		
ILL	Integer	Output	ILL=0: Normal termination.
	type		ILL=1: B is decided to be not definite positive.
			ILL=30000: The input argument exceeded the limit.

*1 For double precision subroutines, all real types should be changed to double precision real types.

. 173

(3) Calculation method

74

The symmetric positive definite matrix B is Cholesky-decomposed to $B=U^TU$ using the upper triangular matrix U. If $\tilde{A}=U^{-T}AU^{-1}$ is made from A by using this U, the generalized eigenvalue problem $Ax=\lambda Bx$ becomes the standard eigenvalue problem $\tilde{A}\tilde{x}=\lambda\tilde{x}$. By solving this problem using Householder-QR-inverse iteration method, the eigenvector x is obtained with $x=U^{-1}\tilde{x}$.

(4) Note

1. If up to about one-fourth of the entire eigenvalues is to be obtained, it is better to use the subroutine GHBSVS based on Householder bisection method.

2. If calculation is to be iterated with B kept constant and only A changed, it is desirable to reuse the Cholesky decomposition elements of B. See the explanation for EPS in the list of arguments.

Bibliography

 Yoshitaka Beppu and Ichizo Ninomiya; "Comparison of Matrix Solutions of Standard Eigenvalue Problems," Nagoya University Computer Center News, Vol. 11, No. 3, pp. 265-274 (1980)

(1987.08.10) (1988.04.04)

GHQRIV/W (Eigenvalue Analysis of the Type $Ax = \lambda Bx$ by Householder-QR-Inverse Iteration Method: Vector Version) 175

Eigenvalue Analysis of the Type $Ax = \lambda Bx$ by Householder-QR-Inverse Iteration Method : Vector Version

Programm	Ichizo Ninomiya, March 1988
ed by	
Format	Subroutine Language: FORTRAN; Size: 153 lines

(1) Outline

GHQRIV/W obtains all of eigenvalues and part of the corresponding eigenvectors of the eigenvalue problem $Ax = \lambda Bx$ when a real symmetric matrix A and a real symmetric positive definite matrix B are given. GHQRIV(W) is for single (double) precision.

(2) Directions

CALL GHQRIV/W (A, B, KK, N, E, V, NV, EPS, W, ILL)

Argument	Type and	Attribut	Content
	kind (*1)	e	
A	Real type	[nput/ou	The upper right half containing the diagonal of a real
	'Two-dimens	tput	symmetric matrix is input. This routine turns it into $ ilde{A}$
	ional		(see "Calculation Method"). The lower left half is used as a
	аггау		work area.
В	Real type	Input	The upper right half containing the diagonal of a real
	Two-dimens		symmetric positive definite matrix is input. This routine
	ional		turns it into the Cholesky decomposition component U (see
	array		"Calculation method"). The left lower half is retained.

. 175

Argument	Type and	Attribut	Content
	kind (*1)	e	
КК	Integer	Input	Adjustable dimensions of A, B, and V (value of the first
	type		subscript in declaration of array). KK≧N
N	Integer	Input	Order of A and B or the number of rows of V. $N \ge 2$
	type		
E	Real type	Output	Bigenvalues are output in the order of size. If NV \geq O, they
	One-dimens	1	are arranged in decreasing order. If NV <o, are="" arranged<="" td="" they=""></o,>
	ional		in increasing order.
	аггау		
V	Real type	Output	Eigenvectors to eigenvalues E(I) are output to the I-th
	Two-dimens		column. They are normalized in the sense of $x^TBx=1$.
	ional		
	array		
NV	Integer	Input	NV represents the number of eigenvectors to be obtained.
	type		If NV>O(NV <o), algebraically="" are="" decreasing<="" in="" numbered="" td="" they=""></o),>
			(increasing) order from the maximum (minimum). $ NV \leq N$
EPS	Real type	Input	Convergence criterion of QR method. If the tridiagonalized
			matrix is denoted by T, $ T \cdot EPS $ is used as the
			criterion. If EPS <o, b="" cholesky="" decomposition="" is="" of="" omitted.<="" td=""></o,>
			EPS≠0
W	Real type	Work	One-dimensional array of size 6N.
	one-dimens	агеа	
	ional		
	аггау		
ILL	Integer	Output	ILL=0: Normal termination.
	type		ILL=1: B is decided to be not a positive definite.
			ILL=30000: Input argument exceeded the limit.

*1 For double precision subroutines, all real types should be changed to double precision real types.

(3) Calculation method

This routine decomposes the symmetric positive definite matrix B into $B=U^TU$ with an upper triangular matrix U by Cholesky decomposition. If $\tilde{A}=U^{-T}AU^{-1}$ is generated from A using U, a generalized eigenvalue problem $Ax=\lambda Bx$ is handled as a standard eigenvalue problem $\tilde{A}\tilde{x}=\lambda\tilde{x}$. By solving this problem with the Householder-QR-iteration method, the eigenvector x is obtained with $x=U^{-1}\tilde{x}$.

(4) Note

1. When up to one-fourth of all eigenvalues are to be obtained, it is more advantageous to use the subroutine GHBSVS/W based on the Householder bisection method.

2. When calculation is to be repeated with only B kept constant and A changed, the Cholesky decomposition elements of B should be reused. See the explanation for "EPS" in the argument list.

Bibliography

1) Yoshitaka Beppu and Ichizo Ninomiya; "Comparison of Matrix Methods for Standard Eigenvalue Problems," Nagoya University Computer Center News, Vol. 11, No. 3, pp. 265-274(1980)

177

(1987. 08. 10) (1988. 04. 08)

GHQRVS/D and GHQRUS/D (Eigenvalue Analysis $Ax = \lambda Bx$ by Householder-QR Method)

Eigenvalue Analysis $Ax = \lambda Bx$ by Householder-QR Method

Programm	Ichizo Ninomiya, April 1977			
ed by				
Format	Subroutine language: FORTRAN; size: 60, 60, 60, and 60 lines			
	respectively			

(1) Outline

GHQRVS/D and GHQRUS/D obtain the entire eigenvalues and, if required, the entire eigenvectors of the eigenvalue problem $Ax=\lambda By$ if a real symmetric matrix A and a real symmetric positive definite matrix B are given. It converts A to $\tilde{A}=U^{-T}AU^{-1}$ by Cholesky decomposition with $B=U^{T}U$, and solves the standard eigenvalue problem $\tilde{A}y=\lambda y$ using Householder QR method. If eigenvectors are required, the eigenvector y of \tilde{A} is converted as $x=U^{-1}y$.

(2) Directions

CALL GHQRVS/D (A, B, KK, N, E, F, EPS, IND)

CALL GHQRUS/D (A, B, KK, N, E, F, EPS, IND)

Argument	Type and	Attribut	Content
	kind (*1)	e	
A	Real type	Input/ou	The entire real symmetric matrix (not the upper right half)
,	Two-dimens	tput	is input. It is processed in this routine, and $ ilde{A}$ is
	ional		generated in the upper right half. If eigenvectors are
	аггау		obtained, they are input in each column. The vectors are
			normalized in the sense of $x^TBx=1$.
В	Real type	Input/ou	Only the upper right half of a symmetric positive definite
	Two-dimens	tput	matrix is input. It is processed in this routine, and the
	ional		upper right half contains the Cholesky decomposition element
	array		U of B. The lower left half is retained.

Argument Type and Attribut Content kind (*1) е KK Integer Input Value of the first subscript in the declaration of arrays A type and B. KK≧N N Integer Input Order of arrays A and B. $N \ge 2$ type E Output One-dimensional array containing N elements. In GHQRVS/D, Real type One-dimens eigenvalues are arranged in algebraically descending order. ional In GHQRUS/D, they are arranged in descending order of the absolute value. аггау F Work One-dimensional array containing N elements. Real type One-dimens area ional array EPS Real type Input | EPS | is the convergence criterion of the QR method. It is also the positivity criterion for the Cholesky decomposition of B. If this routine is called with EPS<O, it reuses the Cholesky decomposition elements of B. EPS≠0 IND Integer Input/ou This argument has the following meaning as an input argument. type tput IND=0: Only eigenvalues are calculated. $IND \neq 0$: Eigenvectors are also calculated. This argument has the following meaning as an output argument. IND=0: Calculation is normally executed. IND=1: B is decided to be not a positive definite. IND=30000: Limits on the input argument are exceeded. Because this argument is both input and output, constants must not be used as an actual argument.

179

*1 For double precision subroutines, all real types are changed to double precision real types.

(3) Calculation method

The symmetric positive definite matrix B is Cholesky-decomposed to $B=U^{T}U$ using an upper triangular matrix U. If $\tilde{A}=U^{-T}AU^{-1}$ is generated from A by using this U, the generalized eigenvalue problem $Ax=\lambda Bx$ becomes the standard eigenvalue problem $\tilde{A}\tilde{x}=\lambda\tilde{x}$. By solving this problem using Householder-QR method, the eigenvector x is obtained with $x=U^{-1}\tilde{x}$.

(4) Notes

1. If only selected eigenvectors are obtained, Householder-QR-inverse iteration (GHQRIS/D) may be advantageous.

2. If calculation is iterated with B kept constant and only A changed, it is better to reuse the Cholesky decomposition elements of B. See the explanation for EPS in the list of arguments.

180

(1987.08.10) (1988.04.04)

GHQRVV/W (Eigenvalue Analysis $Ax = \lambda Bx$ by Householder-QR Method: Vector Version)

181

Eigenvalue Analysis $Ax = \lambda Bx$ by Householder-QR Method: Vector Version

Programm	Ichizo Ninomiya, March 1988
ed by	
Format	Subroutine language: FORTRAN; size: 155 lines

(1) Outline

GHQRVV/W obtains all of the eigenvalues and, as required, all of the corresponding eigenvectors of the eigenvalue problem $Ax = \lambda Bx$ when a real symmetric matrix A and a symmetric positive definite matrix B are given. It executes Cholesky decomposition with $B=U^TU$, and solves the standard eigenvalue problem $\tilde{A}y = \lambda y$ using Householder-QR method by converting A to $\tilde{A} = U^{-T}AU^{-1}$.

If eigenvectors are required, the eigenvector y of \tilde{A} is converted using $x=U^{-1}y$.

(2) Directions

CALL	GHQRV	V/W((A, 1	B, KK,	N, E,	EPS,	W, IND)

Argument	Type and	Attribut	Content
	kind (*1)	e	
A	Real type	Input/ou	Only the upper right half of a real symmetric matrix is
	Two-dimens	tput	entered. It is processed in this routine, and $ ilde{A}$ is
	ional		generated in the upper right half. The lower left half is
	array		used as a work area. If eigenvectors are obtained, they are
			entered in each column. The vectors are normalized in the
			meaning of $x^T B x = 1$.
В	Real type	Input/ou	Only the upper right half of a symmetric positive definite
	Two-dimens	tput	matrix is input. It is processed in this routine, and the
	ional		Cholesky decomposition element U of B is entered in the upper
	array		right half. The lower left half is retained.

Argument	Type and	Attribut	Content
	kind (*1)	e	
KK	Integer	Input	Value of the first subscript in the declaration of arrays A
	type		and B. KK≧N
N	Integer	Input	Order of arrays A and B. $N \ge 2$
	type		
B	Real type	Output	One-dimensional array containing N elements. In GHQRVV/W,
	One-dimens		eigenvalues are arranged in algebraically descending order.
	ional		
	array		
EPS	Real type	Input	EPS is the convergence criterion of the QR method. It is
			also the positivity criterion at the Cholesky decomposition
			of B. If this routine is called with EPS <q, cholesky<="" td="" the=""></q,>
			decomposition elements of B are reused.
			EPS≠0
W	Real type	Work	One-dimensional array containing 2N elements.
	One-dimens	area	
	ional		
	array		
IND ·	Integer	Input/ou	This argument has the following meaning as an input argument.
	type	tput	
			IND=0: Only eigenvalues are calculated.
			IND≠0: Eigenvectors are calculated.
			This argument has the following meaning as an output
			argument.
			IND=0: Calculation was normally executed.
			IND=1: B is decided to be not positive definite.
			IND=30000: Limits on the input argument are exceeded.
			Because this argument is used for both input and output,
			constants must not be used as real arguments.

*1 For single precision subroutines, all real types should be changed to double precision real types.

(3) Calculation method

The symmetric positive definite matrix B is Cholesky-decomposed to $B=U^{T}U$ using the upper triangular matrix U. If $\tilde{A}=U^{-T}AU^{-1}$ is made from A by using this U, the generalized eigenvalue problem $Ax=\lambda Bx$ becomes the standard eigenvalue problem $\tilde{A}\tilde{x}=\lambda\tilde{x}$. By solving this problem using Householder QR method, the eigenvector x is obtained with $x=U^{-1}\tilde{x}$. (4) Note

1. If only a part of eigenvectors is to be obtained, it may be advantageous to use Householder-QR-inverse iteration method (GHQRIV/W).

2. If calculation is to be iterated with B kept constant and only A changed, it is desirable to reuse the Cholesky decomposition elements of B. See the explanation for argument EPS.

(1987.08.10) (1988.04.04)

HEQRVS/D/Q (Eigenvalue analysis for real nonsymmetric matrices by double QR method)

Eigenvalue Analysis for Real Nonsymmetric Matrices by Double QR Method

Programm	Ichizo Ninomiya; Revised in April 1977, April 1981	
ed by		ŀ
Format	Subroutine language; FORTRAN Size; 391 lines each	

(1) Outline

A real non-symmetric matrix is transformed into an upper Hessenberg matrix by stabilized elementary transformation. The double QR method is then applied to this to determine all eigenvalues, and a specified number of corresponding eigenvectors are determined by the inverse iteration method. The HEQRVS/D/Q subroutine is used for single (double, quadruple) precision.

(2) Directions

CALL HEQRVS/D (A, KA, N, E, F, G, H, NV, EPS, IW, W, IND)

Argument	Type and	Attribut	Content
	kind (*1)	e	
A	Real type	Input	Matrix subjected to eigenvalue analysis. This matrix is
	Two-dimens		transformed by this routine into an upper Nessenberg type.
	ional .		
	аггау		
KA	Integer	Input	Adjustable dimensions of A, G, and H (value of the first
	type		subscript in array declaration). KA≥N
N	Integer	Input	Order of A. Number of rows of G and H. It is also the size of
	type		E and F. N≥3
E	Real type	Output	Real part of eigenvalues. The 1th eigenvalue is given by
	one-dimens		E(I) + iF(I).
	ional		
	array		

Argument	Type and	Attribut	Content
	kind (*1)	e	
F	Real type	Output	Imaginary part of eigenvalues. The 1th eigenvalue is given by
	one-dimens		B(I) + iF(I).
	ional		
	аггау		
G	Real type	Output	The real part of the 1th eigenvector is output in the 1th
	two-dimens		column of G. It must have the area for NV+1 columns.
	ional		
	аггау		
H	Real type	Output	The imaginary part of the 1th eigenvector is output in the
	two-dimens		Ith column of H. Moreover, it is necessary to prepare the
	ional		region of the size with N rows and N+1 columns for use as a
	array		work area.
NV	Integer	Input	Number of eigenvectors to be determinedBecause conjugate
	type		eigenvectors are generated in pairs, number of actually
			generated vectors can be NV+1. 0≤NV≤N
EPS	Real type	Input	∥A∥·EPS/N is used as a convergence criterion constant for
			QR method. EPS>0
IW	Integer	Work	One-dimensional array with the size of 2N or more.
	type	area	
	one-dimens		
	·ional		
	array		
₩	Real type	Work	One-dimensional array with the size of 2N or more.
	one-dimens	area	
	ional		
	аггау		

.

Argument	Type and	Attribut	Content
	kind (*1)	e	
IND	Integer	Input/ou	Input: A mode for arrangement of eigenvalues is specified.
	type	tput	IND = 0: Eigenvalues are arranged as they are calculated.
			IND > 0: Eigenvalues are arranged in descending order of
			the absolute values.
			IND < 0: Eigenvalues are arranged in ascending order of
			the absolute values.
			Output: Condition code
			IND = 0: Normal
			IND = 1: All elements of A are O.
			IND = 2: Convergence did not occur even if the QR method
			was repeated 100N times.
			IND = 30000: The input argument violated the limit.

*1 For double precision subroutines, all real types are changed to double precision real types.

(3) Calculation method

Real matrix A is transformed into an upper Hessenberg matrix $H=S^{-1}AS$ by stabilized elementary transformation S, that is, Gaussian elimination involving row exchange. All eigenvalues of H are determined by the double QR method with origin shift.

The specified number of eigenvectors of H is determined by the inverse iteration method. Let they be grouped into a matrix U. Eigenvectors of A are calculated by V=SU using U.

(4) Note

1. It is reasonable to process symmetric matrices by special routines HOQRVS/D, HQRIIS/D, and HOBSVS/D.

2. If no eigenvectors are to be determined (NV=0), the areas for G and H are not used and need not be prepared, and anything can be written for them.

(1987.07.20)

HEQRVV/W (Eigenvalue Analysis for Real Nonsymmetric Matrices by Double QR Method - Vector Version -)

187

Eigenvalue Analysis for Real Nonsymmetric Matrices by Double QR Method -Vector Version-

Programm	Ichizo Ninomiya, December 1984
ed by	
Format	Subroutine language: FORTRAN77; size: 485 and 486 lines respectively

(1) Outline

HEQRVV/W transforms a real nonsymmetric matrix to an upper Hessenberg matrix using the stabilized elementary transformation, obtains all the eigenvalues using the double QR method, and calculates the eigenvectors as many as requested using the inverse iteration. It is a single (double) precision subroutine.

(2) Directions

CALL HEQRVV/W (A, KA, N, E, F, G, H, NV, EPS, IW, W, IND)

Argument	Type and	Attribut	Content
	kind (*1)	e	
A.	Real type	Input	Matrix whose eigenvalue analysis is to be executed. The
	Two-dimens		matrix is processed with this routine, and transformed to a
	ional		Hessenberg type.
	аггау		
KA	Integer	Input	Adjustable dimensions of A, G, and H (value of the first
	type		subscript in the array declaration). KA≥N
N	Integer	Input	Order of A. Number of rows in G and H. It also represents
	type	I I	the size of E and F. N≥3

Argument	Type and	Attribut	Content
	kind (*1)	е	
E	Real type	Output	Real part of eigenvalues. The I-th eigenvalue is E(I)+iF(I).
	one-dimens		
	ional		
	array		
F	Real type	Output	Imaginary part of eigenvalues. The I-th eigenvalue is
	one-dimens		E(I)+iF(I).
	ional		
	array		
G	Real type	Output	Real part of the I-th eigenvector is output to the I-th
	two-dimens		column of G. Space for NV+1 columns must be provided.
	ional		
	array .		
H	Real type	Output	The imaginary part of the I-th eigenvector is output to the
	two-dimens		I-th column of H. Because this argument is used as a work
	ional		area, the area of size N $ imes$ (N+1) must be provided.
	аггау		
NV	Integer	Input	Number of eigenvectors to be obtained. Because conjugate
	typę		eigenvectors are output as a pair, the number of vectors that
			are actually output may be NV+1. 0≦NV≦N
EPS	Real type	Input	∥A∥•EPS/N is used as the convergence criterion of QR. EPS>O
IW	Integer	Work	One-dimensional array of size 2N.
	type	area	
	one-dimens		
	ional		
	аггау		

Argument	Type and	Attribut	Content
	kind (*1)	e	
W	Real type	Work	One-dimensional array of size 2N.
	one-dimens	area	
	ional		
	array		
IND	Integer	Input/ou	Input: Arrangement of eigenvalues is specified.
	type	tput	IND=0: Eigenvalues are kept in the state as calculated.
	i		IND>0: Eigenvalues are arranged in the descending order of
			absolute values.
			IND<0: Eigenvalues are put in the ascending order of
			absolute values.
			Output: Condition code
	•		IND=0: Normal.
			IND=1: The elements in A are all zeros.
			IND=2: Convergence may not occur even if the QR method is
			iterated 100N times.
			IND=30000: The input argument exceeded the limit.

/&Y

*1 For double precision subroutines, all real types are changed to double precision real types.

(3) Calculation method

The real matrix A is transformed to the upper Hessenberg matrix $H=S^{-1}AS$ using the stabilized elementary transformation S, that is, Gauss' elimination accompanied by row exchange. All the eigenvalues of H are obtained using the double QR method with origin shift.

Specified number of eigenvectors of H are obtained using the inverse iteration and are placed in the matrix U. The eigenvectors of A are calculated by V=SU from U.

(4) Notes

1. It is reasonable to process symmetric matrices with the special-purpose routines HOQRVV/W, HQRIIV/W, and HOBSVV/W.

•

2. If eigenvectors are not to be obtained (NV=0), the area to G and H is not used, and thus need not be prepared. Anything can be written for these arguments.

(1987. 06. 19)

HOBSVS/D/Q (Eigenvalue Analysis for Real Symmetric Matrices by Householder-Bisection Method)

191

Eigenvalue Analysis for Real Symmetric Matrices by Householder-Bisection Method

Programm	Ichizo Ninomiya, April 1977, revised in April 1981
eđ by	
Format	Subroutine language: FORTRAN; size: 173 and 171 lines respectively

(1) Outline

HOBSVS/D/Q tridiagonalizes a real symmetric matrix using Householder's reflexion transformation, obtains the eigenvalues of the tridiagonalized matrix using the bisection method based on Sturm sequence, and calculates the eigenvectors using the inverse iteration. It is for single (double) precision.

(2) Directions

CALL HOBSVS/D/Q (A, KA, N, E, NE, V, NV, EPS, W, ILL)

Argument	Type and	Attribut	Content
	kind (*1)	e	
A	Real type	Input	Only the upper right half containing the diagonal lines of a
	Two-dimens		real symmetric matrix is input. It is processed with this
	ional		routine. The lower left half is retained.
	array		
KA	Integer	Input	Adjustable dimensions of A and V (value of the first
	type		subscript in the array declaration). KA≥N
N	Integer	Input	Order of A. It also represents the number of rows of V. $N \ge 1$
	type		
E	Real type	Output	Eigenvalues are output in the order of size. If NE>O,
	One-dimens	i	eigenvalues are arranged in descending order. If NE <q,< td=""></q,<>
	ional		eigenvalues are arranged in ascending order.
	аггау		

Argument	Type and	Attribut	Content
	kind (*1)	e	
NE	Integer	Input	The number of eigenvalues to be obtained is represented by
	type		the absolute value. If NE>O (NE <o), are="" eigenvalues="" numbered<="" td=""></o),>
			in algebraically descending (ascending) order from the
			maximum (minimum). NE≠O
۷	Real type	Output	Eigenvectors corresponding to the eigenvalue E(I) are
	two-dimens		normalized to a length of 1 and output to the 1-th column.
	ional		
	аггау		
NV	Integer	Input	The number of eigenvectors to be obtained is represented by
	type		the absolute value. Eigenvalues are numbered from the end in
1			the order defined by NE. O≤ NV ≤ NE
EPS	Real type	Input	Convergence criterion of bisection method. If a
			tridiagonalized matrix is denoted by T, T •EPS is used for
			the criterion. EPS>O
W	Real type	Work	One-dimensional array of size 6N.
	One-dimens	area	
	ional		
	array		
ILL	Integer	Output	ILL=0: Normal termination
	type		ILL=30000: The input argument exceeded the limit.

1* For double precision subroutines, all real types are changed to double precision real types.

(3) Calculation method

•

• The matrix A is transformed to the tridiagonal matrix $T=H^{T}AH$ using the Householder transformation H.

The eigenvalues of T are obtained by the bisection method based on Sturm sequence. They are numbered as many as specified from the end in a specified order. The eigenvectors corresponding to the eigenvalues are obtained by the inverse iteration. The matrix containing these eigenvectors in columns is denoted by U. Because U is the eigenvector of T, it is converted to the eigenvector V of A by V=HU.

(4) Note

When all the eigenvalues of a symmetric matrix are to be obtained, it is better to use the routine HOQRVS/D based on the QR method. When all of the eigenvalues and all or a part of the eigenvectors are to be obtained, it is more reasonable to use the routine HQRIIS/D based on the QR-inverse iteration method.

Bibliography

1) Yoshitaka Beppu and Ichizo Ninomiya: "Comparison of Matrix Solutions of Standard Eigenvalue Problems," Nagoya University Computer Center News, Vol. 11, No. 3, pp. 265-274 (1980).

(1987.08.10) (1987.08.21)

19.7

[94

HOBSVV/W (Eigenvalue Analysis for Real Symmetric Matrices by Householder-Bisection Method -Vector Version -)

Eigenvalue Analysis for Real Symmetric Matrices by Householder-Bisection Method -Vector Version-

Programm	Ichizo Ninomiya, December 1984
ed by	
Format	Subroutine language: FORTRAN77; size: 345 and 346 lines respectively

(1) Outline

HOBSVV/W tridiagonalizes a real symmetric matrix using Householder's reflexion transformation, obtains the eigenvalue of the resultant tridiagonal matrix using the bisection method based on Sturm sequence, and calculates the eigenvectors using the inverse iteration. It is for single (double) precision.

(2) Directions

CALL HOBSVV/W (A, KA, N, E, NE, V, NV, EPS, W, ILL)

Argument	Type and	Attribut	Content
	kind (*1)	e	
A	Real type	Input	Whole of a real symmetric matrix is input. It is processed
	Two-dimens		with this routine.
	ional		
	array		
KA	Integer	Input	Adjustable dimensions of A and V (value of the first
	type		subscript in the array declaration). KA≧N
N •	Integer	Input	Order of A. It also represents the number of rows of V. $N \ge 2$
	type		

Argument	Type and	Attribut	Content
-	kind (*1)	e	
E	Real type	Output	One-dimensional array of size N.
	One-dimens		Eigenvalues are output in the order of size. If NE>O,
	ional		eigenvalues are arranged in descending order. If NE <o,< td=""></o,<>
	аггау		eigenvalues are arranged in ascending order.
NE	Integer	Input	The number of eigenvalues to be obtained is represented by
	type		the absolute value. If NE>O (NE <o), are="" eigenvalues="" numbered<="" td=""></o),>
			in algebraically descending order (ascending order) from the
			maximum (minimum). NE≠O
٧	Real type	Output	Eigenvectors to the eigenvalue E(I) are normalized to length
	two-dimens		1 and placed to the I-th column.
	ional		
	аггау		· · · · · · · · · · · · · · · · · · ·
NV	Integer	Input	The number of eigenvectors to be obtained is represented by
	type		the absolute value. Eigenvalues are numbered from the end in
			the order specified by NE. $0 \leq NV \leq NE $
EPS	Real type	Input	Convergence criterion of bisection method. If a
			tridiagonalized matrix is denoted by T, T +EPS is used as
			the criterionEPS>0
W	Real type	Work	One-dimensional array of size 6N.
	One-dimens	агеа	
	ional		
	array		
ILL	Integer	Output	ILL=0: Normal termination.
	type		ILL=30000: The input argument exceeded the limit.

*1 For double precision subroutines, all real types are changed to double precision real types.

(3) Calculation method

. .

The matrix A is transformed to a tridiagonal matrix $T=H^TAH$ using Householder's

.

transformation H_{\cdot}

The eigenvalues of T are obtained using the bisection method based on Sturm sequence. They are numbered as many as specified from the end in a specified order. The eigenvectors corresponding to the specified number of eigenvalues numbered from the end are obtained using the inverse iteration. A matrix containing these eigenvectors in its columns is denoted by U, then the eigenvector V of A can be obtained by V=HU.

(4) Notes

When all the eigenvalues of a symmetric matrix are to be obtained, it is better to use the routine HOQRVV/W based on the QR method than this routine. When all of eignevalues and all or part of eigenvectors are to be obtained, it is more reasonable to use the routine HQRIIV/W based on the QR inverse iteration.

Bibliography

1) Yoshitaka Beppu and Ichizo Ninomiya; "Comparison of Matrix Solutions of Standard Eigenvalue Problems," Nagoya University Computer Center News, Vol. 11, No.3, pp. 265-274 (1980)

(1987.06.19) (1988.02.22)

HOQRVS/D/Q and HOQRUS/D/Q (Eigenvalue analysis for real symmetric matrix by

Householder-QR method)

Eigenvalue Analysis for Real Symmetric Matrices by Householder-QR Method

Programm	Ichizo Ninomiya April, 1977
ed	
Format	Subroutine Language; FORTRAN Size; 142, 141, 142, 141 lines

(1) Outline

All eigenvalues of the real symmetric matrix and all eigenvectors, if necessary, are calculated by Householder's tridiagonalization and QR method with origin shift.

(2) Directions

CALL HOQRVS/D/Q (A. KA, N. E. F. EPS, ILL)

CALL HOQRUS/D/Q (A, KA, N, E, F, EPS, ILL)

Argument	Type and	Attribut	Content
	Kind ≭	e	
A	Real type	Input	Only the right upper half which contains the diagonal of the
•	Two-dimens		real symmetric matrix need be input. Anything can be input
	ional		in the left lower half. When eigenvectors are calculated,
	аггау		they are stored in each column of A. Precisely, the
			eigenvector normalized to the unit length corresponding to
			the eigenvalue E(I) is stored in the Ith column
KA	Integer	Input/Ou	Value of the first subscript in the array declaration of A.
	type	tput	KA≥N
N	Integer	Input	Order of A. N≥2
	type		

Argument	Type and	Attribut	Content
	Kind ≭	e	
E	Real type	Output	One-dimensional array name with N elements. In HOQRVS/D,
	One-dimens		eigenvalues are arranged in the decreasing algebraic order,
	ional		and in HOQRUS/D, they are arranged in the decreasing order of
	аггау		absolute value.
F	Real type	Work	One-dimensional array name with N elements.
	One-dimens	area	
	ional		
	array		
EPS	Real type	Input	Convergence criterion for QR method. When a nondiagonal
			element becomes smaller than $ A \cdot EPS, it is regarded to$
			have converged to O. EPS>O
ILL	Integer	Input/Ou	If ILL=0 is input, only eigenvalues are calculated. If ILL \neq 0
	type	tput	is input, eigenvalues and eigenvectors are calculated. O is
			output for normal end. 30000 is output if the input argument
			limit is exceeded. Constants should not be used for the
			actual argument corresponding to this argument.

* All real types should be changed to double precision real types in the case of the subroutine for double precision.

(3) Performance

Compared with Jacobi method, this subroutine has high speed and can be used for the multiple or close eigenvalues without any trouble.

(4) Note

1. This subroutine is optimal to calculate all eigenvalues (and eigenvectors) using small memory space.

2. Householder and Givens' method (bisection) are better in case of calculating only a part of eigenvalues and eigenvectors. The appropriate subroutine is HOBSVS/D.

198

3. Subroutine GHQRVS/D is recommended to solve generalized eigenvalue problems $A \chi = \lambda B \chi$.

Bibliography

1) Hayato Togawa; "Numerical calculation of matrix", Ohm-sha (1971).

(1987. 08. 10) (1987. 08. 21)

HOQRVV/W (Eigenvalue Analysis for Real Symmetric Matrices by Householder-QR Method - Vector Version -)

Eigenvalue Analysis for Real Symmetric Matrices by Householder-QR Method -Vector Version-

Programm	Ichizo Ninomiya, December 1984
ed by	
Format	Subroutine language: FORTRAN77; size: 233 and 234 lines respectively

(1) Outline

HOQRVV/W obtains all the eigenvalues and, if required, all the corresponding eigenvector of a real symmetric matrix, using the Householder's tridiagonalization and the QR method with origin shift. It is for single (double) precision.

(2) Directions

CALL HOQRVV/W (A, KA, N, E, EPS, W, ILL)

Argument	Type and	Attribut	Content
	kind (*1)	e	
A	Real type	Input	Whole of a real symmetric matrix is input. If eigenvectors
	Two-dimens		are obtained, they are entered to columns of A. That is,
	ional		eigenvectors corresponding to the eigenvalue E(I) is
	array		normalized to length 1 and placed to the 1-th column.
KA	Integer	Input/ou	Value of the first subscript in the array-A declaration.
	type	tput	KA≥N
N	Integer	Input	Order of A. N≥2
	type		
E	Real type	Output	One-dimensional array containing N elements. Eigenvalues are
	One-dimens		arranged in algebraically descending order.
	ional		
	array		

Argument	Type and	Attribut	Content
	kind (*1)	e	
EPS	Real type	Input	Convergence criterion for QR method. If all the non-diagonal
		•	elements become smaller than A • EPS in magnitude,
			convergence is judged to have occurred. EPS>O
W	Real type	Work	One-dimensional array with 2N elements.
	One-dimens	area	
	ional		
	array		
ILL	Integer	lnput/ou	If ILL=0 is given, only eigenvalues are calculated. If
	type	tput	ILL≠O, eigenvalues and corresponding eigenvectors are
			calculated. If calculation terminates normally, () is
			output. If limits on input arguments are exceeded, 30000 is
			output. Constants must not be used for actual arguments for
			this argument.

Sa

*1 For double precision subroutines, all real types are assumed to be double precision real types.

(3) Calculation method

The symmetric matrix A is transformed to a tridiagonal matrix $T=H^{T}AH$ using the Householder transformation H. The matrix T is diagonalized to $D=Q^{T}TQ$ using the QR transformation. The eigenvectors of A are calculated as V=HQ.

(4) Notes

1. This routine is optimum if all eigenvalues (and corresponding eigenvectors) are to be obtained with a small size of storage.

2. If only part of eigenvalues and eigenvectors is to be obtained, Householder-Givens' method (bisection) is better. HOBSVV/W is a suitable subroutine.

Bibliography

1) Hayato Togawa: Numerical Calculation of Matrices, Ohm-sha, 1971

2.3

.

.

in the second

4. j.

stage i s

(1987. 06. 19)

Eigenvalue Analysis of Symmetric Matrices by Householder-QR-Inverse Iteration Method

Programm	Ichizo Ninom	iya, April 1981		
ed by				
Format	Subroutine	Language: FORTRAN;	Size: 198 and 196	lines respectively

(1) Outline

.

HQRIIS/D/Q obtains all eigenvalues of real symmetric matrices by Householder-QR-method, and calculates specified eigenvectors by the inverse iteration method.

(2) Directions

.

CALL HQRIIS/D/Q (A, KA, N, E, V, NV, EPS, W, ILL)

Argument	Type and	Attribut	Content
	kind (*1)	e	
A	Real type	Input	The right upper half containing the diagonal of a real
	Two-dimens		symmetric matrices is input. It is processed by this
	ional		routine. The lower left half is retained.
	array		
KA	Integer	Input	Adjustable dimensions of A and V (value of the first
	type		subscript in the array declaration). KA≧N
N	Integer	Input	Order of A or the number of rows of V. $N \ge 2$
	type		
E	Real type	Output	All eigenvalues are output in the order of size. If NV \geq O,
-	One-dimens		they are arranged in decreasing order. If NV <o, are<="" td="" they=""></o,>
	ional		arranged in increasing order.
	аггау		

203

Argument	Type and	Attribut	Content
	kind (*1)	е	
٧	Real type	Output	Eigenvectors to eigenvalues E(I) are normalized to 1, and
	Two-dimens		placed to the I-th column.
	ional		
	аггау		
NV	Integer	Input	NV represents the number of eigenvectors to be obtained.
	type		If NV>O (NV <o), are="" eigenvectors="" in<="" numbered="" td="" the=""></o),>
			algebraically decreasing (or increasing) order from the
			maximum (or minimum). NV ≦N
EPS	Real type	Input	Convergence criterion of QR method. If the tridiagonalized
			matrix is denoted by T, T •EPS is used as the criterion.
			EPS>0
W	Real type	Work	One-dimensional array of size 6N.
	One-dimens	area	
	ional		
	array		
ILL	Integer	Output	ILL=O: Normal termination.
	type		ILL=30000: Input argument exceeded the limit.

*1 For double precision subroutines, all real types should be changed to double precision real types.

(3) Calculation method

Transform the symmetric matrix A to a tridiagonal matrix $T=H^TAH$ by Householder

transformation H_{\cdot}

Obtain all eigenvalues of T by the QR method without square root. Obtain a specified number of eigenvectors of T by the inverse iteration method. Put these eigenvectors into the matrix U. The eigenvectors of A are calculated by V=HU.

(4) Note

1. It is best to use this routine to obtain all of eigenvalues and all or part of the corresponding eigenvectors quickly.

2. It is better to use HOBSVS/D based on the Householder bisection method to obtain up to one-fourth of all eigenvalues.

Bibliography

1) Parlett and B.N;"The Symmetric Eigenvalue Problem" Prentice-Hall (1980).

(1987. 08. 10) (1987. 08. 21) (1988. 02. 22)

206

HQRIIV/W (Eigenvalue Analysis of Symmetric Matrices by Householder-Inverse-QR Iteration Method - Vector Version -

Eigenvalue Analysis of Symmetric Matrices by Householder-QR-Inverse Iteration Method -Vector Version-

Programm	Ichizo Ninomiya, December 1984
ed by	
Format	Subroutine language: FORTRAN77; size: 345 and 346 lines respectively

(1) Outline

HQRIIV/W obtains all the eigenvalues of real symmetric matrices using the Householder-QR method, and calculates the specified eigenvectors based on the inverse iteration. It is for single (double) precision.

(2) Directions

CALL HQRIIV/W (A, KA, N, E, V, NV, EPS, W, ILL)

Argument	Type and	Attribut	Content
	kind (*1)	e	
A	Real type	Input	Whole of a real symmetric matrix is input. It is processed
	Two-dimens		with this routine.
	ional		
	array		
KA	Integer	Input	Adjustable dimensions of A and V (value of the first
	type		subscript in the array declaration). KA≧N
N	Integer	Input	Order of A. It also represents the number of rows of V. $N \ge 2$
	type		

Argument	Type and	Attribut	Content
	kind (*1)	e	
E	Real type	Output	All eigenvalues are output in the order of size. If NV \geq 0,
	One-dimens		eigenvalues are arranged in descending order. If NV <o,< td=""></o,<>
	ional		eigenvalues are arranged in ascending order.
	array		
V	Real type	Output	Eigenvectors to the eigenvalue E(I) are normalized to length
	Two-dimens		1 and placed to the I-th column.
	ional		
	array		
NV	Integer	Input	NV represents the number of eigenvectors to be obtained.
	type.		If NV>O (NV <o), algebraically<="" are="" eigenvectors="" in="" numbered="" td=""></o),>
	•		descending (ascending) order from the maximum (minimum)
			value. NV ≦N
EPS	Real type	Input	Convergence criterion constant of QR method. If a
			tridiagonalized matrix is denoted by T, T •EPS is used as
			the convergence criterion_ EPS>0
W	Real type	Work	One-dimensional array of size 6N.
	One-dimens	area	
	ional		
	аггау		
ILL	Integer	Output	ILL=0: Normal termination.
	type		ILL=30000: Input arguments exceeded the limit.

*1 For double precision subroutines, all real types are changed to double precision real types.

(3) Calculation method

The symmetric matrix A is transformed to a tridiagonal matrix $T=H^{T}AH$ using the Householder transformation H.

All the eigenvalues of T are calculated using the square-root-less QR method. A specified number of eigenvectors of T are obtained using the inverse iteration and are placed in a matrix U. The eigenvectors of A are calculated by V=HU.

(4) Notes

1. This routine is optimum when all of eigenvalues are obtained quickly, and all or part of corresponding eigenvectors are obtained.

2. When up to about one-fourth of the entire eigenvalues is to be obtained, it is more advantageous to use HOBSVV/W based on Householder-bisection method.

Bibliography

1) Parlett, B. N; "The Symmetric Eigenvalue Problem" Prentice-Hall (1980).

(1987. 06. 19) (1987. 08. 07) (1988. 02. 22)

JACOBS/D (Eigenvalue Analysis for a Real Symmetric Matrix by Threshold Jacobi Method)

Eigenvalue Analysis for a Real Symmetric Matrix by Threshold Jacobi Method

Programm ed by	Ichizo Ninomiya, April 1977			
Format	Subroutine language: FORTRAN; size: 88 and 88 lines respectively			

(1) Outline

JACOB/D calculates all the eigenvalues and eigenvectors of a given real symmetric matrix using the threshold Jacobi method.

Ţ

(2) Directions

CALL JACOBS/D (A, KA, N, EPS, V, ILL)

Argument	Type and kind (* 1)	Attribut e	Content
A	Real type Two-dimens ional array	Input/ou tput	Real symmetric matrix. Only the upper right half including the diagonal lines need be given. Eigenvalues are output on the diagonal. The lower left half is preserved.
KA	Integer type	Input	Value of the first subscript in the array-A declaration. KA≥N
N	Integer type	Input	Order of A and V. $N \ge 2$
EPS	Real type	Input	Convergence criterion constant. The average absolute value of nondiagonal elements of the input matrix A is assumed as standard. This value multiplied by EPS is used as the standard of convergence decision. EPS>0
V	Real type Two-dimens ional array	Output	Each column stores an eigenvector for the corresponding diagonal element A
ILL	lnteger type	Output	ILL=0: Normal termination. ILL=30000: Limits on K, N, and EPS are violated.

*1 For double precision subroutines, all real types are changed to double precision real types.

(3) Performance

۰.

This routine was believed to be advantageous for multiple or close eigenvalues as a method of finding all the eigenvalues and engenvectors of a symmetric matrix. However, since Householder QR method with the same advantage for the same purpose appeared, this routine became obsolete recently.

(4) Remarks

1. Eigenvalues are arranged in descending order along the diagonal of A.

2. A value of $10^{-6}(10^{-16})$ is adequate as the standard value of EPS for JACOBS (JACOBD).

3. Except for small-size problems of about 10, it is advantageous to use the subroutines HDQR and VS using Householder QR method for the same purpose because computation time is significantly saved.

(1987.06.17) (1987.08.07)

JENNFS/D. JENNBS/D. and GJENBS/D (Eigenvalue analysis of real symmetric matrices by Jennings' simultaneous iteration method)

Eigenvalue Analysis for Real Symmetric Matrices by Jennings' Simultaneous Iteration Method (Eigenvalue analysis of real symmetric matrices by Jennings' simultaneous iteration method)

Programm ed by	Ichizo Ninomiya; April 1981
Format	Subroutine language: FORTRAN, Size; 141, 142, 151, 152, 184, and 185 lines respectively

(1) Outline

A part of eigenvalues and corresponding eigenvectors of real symmetric matrices are determined by the Jennings' simultaneous iteration method accompanying the Jennings' vector acceleration method. JENNFS/D is used to solve standard eigenvalue problem $(A-\lambda I)x=0$ where A is a dense matrix, and JENNBS/D is used to solve the same problem where A is a band matrix. GJENBS/D is used to solve generalized eigenvalue problem $(A-\lambda B)x=0$ where A is a band matrix and B is a positive definite band matrix. JENNFS, JENNBS, and GJENBS are single precision subroutines and JENNFD, JENNBD, and GJENBD are double precision subroutines.

(2) Directions

CALL JENNFS/D (A, KA, N, L, M, V, E, C, W, EPS, ITER, ILL) CALL JENNBS/D (A, KA, N, NB, L, M, V, KV, E, C, W, EPS, ITER, ILL) CALL GJENBS/D (A, B, KA, N, NB, L, M, V, KV, E, C, W, EPS, ITER, ILL)

511

Argument	Type and	Attribut	Content
	kind (* 1)	e	
A	Real type	Input	The entire symmetric matrix is input for JENNFS/D. For
	Two-dimens		JENNBS/D and GJENBS/D, the lower left half which contains the
	ional		diagonal of band matrix is input after it is made to a
	array		rectangle as shown in the figure. That is, elements I and J
			of the matrix are put in A(I-J+1,J). When eigenvalues are
			determined in ascending order of their absolute values,
			Cholesky decomposition is done by this routine.
В	Real type	Input	A band matrix is input in the same way as for A. When
•	Two-dimens		eigenvalues are determined in descending order of their
	ional		absolute values, Cholesky decomposition is done by this
•	array	•	routine.
KA	Integer	Input	Adjustable dimension of A and V in case of JENNFS/DKA≥N
	type		Adjustable dimension of A in case of JENNBS/D
			Adjustable dimension of A and B in case of GJENBS/D
N	Integer	Input	Order of A and B. $N \ge 2$
	type		
NB	Integer	Input	Half band width of A and B. NB≥2
	type		
L	Integer .	Input	L indicates the number of eigenvalues and eigenvectors to
	type		be obtained. L>O (L <o) be<="" indicates="" should="" td="" that="" they=""></o)>
			arranged in the descending (ascending) order of absolute
			values. 1≤ L ≤N
м	Integer	Input	Number of trial vectors L ≤N≤N
	type		
V	Real type	Input/ou	The M initial eigenvectors are input. Eigenvectors are
	Two-dimens	tput	generated to the first L columns.
	ional		
	array		

Argument	Type and	Attribut	Content
	kind (*1)	e	
KV	Integer	Input	Adjustable dimension of V. KV≧N
	type		
Е	Real type	Output	Bigenvalues are generated in the order specified by L.
	One-dimens		
	ional		
	array		
C	Real type	Work	One-dimensional array with a size of M^2 or more
	One-dimens	area	
	ional		
	array		
W	Real type	Work	One-dimensional array with a size of 3N or more for JENNFS/D
	One-dimens	area	and JENNBS/D and 4N or more for GJENBS/D.
	ional		
	аггау		
EPS	Real type	Input	Convergence criterion constant. EPS>0
ITER	Integer	Input/ou	Input: Upper bound of repetition numberWhen it is less than
· ·	type	tput	N, it is put to 1000.
			Output: Actual repetition number
111	Integer	Output	ILL=0: Normal.
	type		ILL=1: The repetition number exceeded the upper bound.
			ILL=2: Cholesky's decomposition was impossible.
			ILL=30000: The input argument violated the limit.

*1 For double precision subroutines, all real types are changed to double precision real types.

(3) Calculation method

To simplify description, a standard type problem is abbreviated as T and a general type problem is abbreviated as G. Similarly, L indicates the case of determining an eigenvalue with a large absolute value, and S indicates the case of determining an eigenvalue with a small absolute

۲/3

value.

1. The initial eigenvectors are grouped into a matrix. V with n rows and m columns, that is, the m vectors are put together into the matrix. Select m such that $l \le m \le n$ where l is the number of eigenvalues to be obtained (see the notes for selection of initial vectors).

(T. S) A is processed by the modified Cholesky's decomposition to produce $A=R^TDR$.

(G, S) A is processed by the Cholesky's decomposition to produce $A = \tilde{A}^T \tilde{A}$. $\tilde{A}V$ is generated and overwritten on V.

(G, L) *B* is processed by the Cholesky's decomposition to produce $B = \tilde{B}^T \tilde{B}$. $\tilde{B}V$ is generated and overwritten on *V*.

2. (T, S) Compute $U=R^{-1}D^{-1}R^{-T}V(=A^{-1}V)$.

(T, L) Compute U=AV .

(G, S) Compute $U = \tilde{A}^{-T} B \tilde{A}^{-1} V$.

(G, L) Compute
$$U = \tilde{B}^{-T} A \tilde{B}^{-1} V$$

3. Form $G=V^TU$. G is a symmetric matrix with m rows and m columns.

4. G is diagonalized into $P^{T}GP=Q$, where Q is a diagonal matrix with diagonal element $\mu_{1}, \mu_{2} \cdots \mu_{P}(|\mu_{1}| \ge |\mu_{2}| \ge \cdots \ge |\mu_{m}|)$ which is the eigenvalue of G, and P is an orthogonal matrix having eigenvectors as rows:

5. Compute W=UP .

6. Compute $W^T W$ and process it by the Cholesky's decomposition to obtain $W^T W = S^T S$. S is an $m \times m$ upper triangular matrix:

7. $V=WS^{-1}$ is formed. V is an orthogonal matrix in the sense of $V^{T}V=I_{m}$ (unit matrix of the order m).

8. Convergence test is made (see the notes below). If convergence has not been attained, Jennings' vector acceleration is applied. The result is used as new V and processing returns to step 2.

9. If convergence has been completed:

(S) $1/\mu_1, 1/\mu_2, \dots, 1/\mu_l$ are assumed to be eigenvalues.

(L) $\mu_1, \mu_2, \dots, \mu_l$ are assumed to be eigenvalues.

(T) The first l columns of V are assumed to be eigenvectors.

(G, S) The first l columns of $\tilde{A}^{-1}V$ are assumed to be eigenvectors. (G, L) The first l columns of $\tilde{B}^{-1}V$ are assumed to be eigenvectors.

(4) Notes

1. It is desirable that the initial vectors are closed to true eigenvectors. If there is no information available for the initial value, however, a common way is to use a fragment of the unit matrix. For selection of m, it should be as close to l as possible and also satisfy

 $|\lambda_m| / |\lambda_{m+1}| \gg 1$ (or $|\lambda_m| / |\lambda_{m+1}| \ll 1$) when eigenvalues are arranged as $\lambda_1, \lambda_2, \dots, \lambda_n$ in order of their absolute values. The quantity of calculation for each iteration is generally proportional to m.

2. A convergence test is made for the components of eigenvectors. In general, eigenvalues converge in much better precision than eigenvectors. Especially, when separation of eigenvalues is good, precision is about twice as good as that for eigenvectors. From this reason, therefore, it is safer to select a little larger value than usual for criterion constant EPS.

3. A standard value of ITER indicating the upper limit of the repetition number is a few hundreds. Do not write a constant as an actual argument for this variable because this variable is used for both input and output.

Bibliography

1) A. Jennings; "Matrix Computation for Engineers and Scientists", John Wiley, London, (1977)

ран, для на дебаль саблост, Саме, соло зачест ^{себа}лен ставала на ставала става с мало себа себа (1989. 01. 20)

, nga tangén pina ang kaming pinawa tangén si kabupatén kabupatén k

e este el terre de segnet de la construcción de la Parke, veren a la superior de la ferencia que de entre el terre de la record de la construcción de la Parke de la construcción de la ferencia de la construcción de la segnet de la construcción de l de la construcción de la grada de la construcción de la de la grada de la construcción de la de la grada de la construcción de la de la grada de la construcción de de la construcción de la constru de la construcción d

ed à ministre e fre an oldre rober na filente plo sinte en tre oupe born an born and en en rober renormale, las militares e esente ant ad close proporte construction. I so than for all enclases and enclose en an april est and enternal orthogon.

Where $A_{
m c}$ and $\beta_{
m c}$ and $A_{
m c}$ is expressed hypertry (at set of) and $A_{
m c}$ without the even $A_{
m c}$ ().

NGHOUS/D (Analysis of Av= λ Bv type eigenvalue by bi-triangular decomposition, Householder, bisection-QR, and inverse iteration methods)

Nicer for Generalized Eigenvalue-Problem by Householder Method

Programm ed by	Yoshitaka Beppu and Ichizo Ninomiya; December 1981
Format	Subroutine language; FORTRAN Size; 194 and 105 respectively

(1) Outline

NGHOUS and NGHOUD solve generalized eigenvalue problem concerning real symmetric dense matrix A and real symmetric positive definite dense matrix B by the semi-direct method.

(2) Directions

CALL NGHOUS/D (AB, NMAX, N, NE, NV, EPS, IORD, ICHO, BD, E, V, ILL, W1, W2, W3, W4, W5, W6, W7)

Argument	Type and	Attribut	Content
	kind (*1)	e	
AB	Real type	Input/ou	$A_{ij} (i \leq j)$ is input to the upper right half including
	Two-dimens	tput	diagonal elements. The upper right half changes. If ICHO=O,
•	ional		$B_{ij}(i \! > \! j)$ is input to the lower left half. If ICHO=1,
	array		non-diagonal element $L_{ij}(i{>}j)$ of Cholesky decomposition
			component L of B is input to
			the lower left half. L_{ij} is output to the lower left
			half.
NMAX	Integer	Input	Adjustable dimensions of AB and V. N≦NMAX
	type		
N	Integer	Input	Order of A and B. $2 \leq N$
	type		

217

Argument	Type and	Attribut	Content
	kind (*1)	e	
NE	Integer	lnput	Number of eigenvalues to be determined. O <ne≦n< td=""></ne≦n<>
	type		
NV	Integer	Input	Number of eigenvectors to be determined. O≦NV≦NE≦N
	type		
EPS	Real type	Input	Tolerance for convergence test. The default value is 10^{-6}
			(NGHOUS) or 10^{-10} (N-GHOUD).
IORD	Integer	Input	The output order of eigenvalues is specified. If IORD>O,
	type		they are output in algebraically descending order. If
			IORD<0, they are output in algebraically ascending order.
I CHO	Integer	Input	The input mode of real symmetric positive definite matrix B
	type		is specified. Refer to the descriptions of AB and BD.
BD	Real type	Input/ou	If ICHO=0, diagonal element B_{ii}
	One-dimens	tput	of B is input to BD(I). If ICHO=1, the inverse number of
	ional		L's diagonal element L_{ii} is input to it.
	аггау		L_{ii}^{-1} is output to BD(I).
Е	Real type	Output	The 1th eigenvalue is output to E(I). If IORD is positive,
	One-dimens		then E(1)>E(2)>>E(NE). If IORD is negative, then
	ional		E (1) <e (2)="" (ne).<="" <······<e="" td=""></e>
	array	•	
V	Real type	Output	The eigenvector which corresponds to E(I) is normalized as
	Two-dimens		$v^T B v = 1$ and output to column I.
	ional		
	array		· · · · ·
ILL	Integer	Output	ILL=O: Normal termination
	type		ILL=100: B is a non-positive definite.
			ILL=300: The argument is abnormal.

• • • • •

.

Argument	Type and	Attribut	Content
	kind (*1)	e	
W1~W7	Real type	Work	The size must be N or more.
	One-dimens	area	
	ional	İ	
	array		

(3) Calculation method

First of all, generalized eigenvalue problem $(A\upsilon = \lambda B\upsilon)$ is transformed into standard eigenvalue problem $(\tilde{A}u = \lambda u)$ by the bi-triangular decomposition method. That is, matrix A is decomposed to the sum of upper right triangular matrix R and lower left triangular matrix R^T $(A=R+R^T)$, and matrix B is decomposed to the product of lower left triangular matrix L and upper right triangular matrix L^T $(B=LL^T)$. $\tilde{A}=L^{-1}(R+R^T)L^{-T}$ can thus be calculated efficiently. Because A is a real symmetric matrix, λ and ortho-normal vector u are determined by NSHOUS/D, and generalized orthogonal vector υ is determined by $\upsilon = L^{-T}u$.

(4) Notes

1. NGHOUS or NGHOUD is 1.05 times as fast as GHQRID and GHBSVD of NUMPAC. If 1 is specified for ICHO when L is known, it becomes about 5% faster.

2. NGHOUS and NGHOUD are useful when approximate solutions are unknown.

3. These routines are also components of NICER.

(1987.06.16)

NGJENS/D (Analysis of Av= λ Bv type eigenvalues by bi-triangular decomposition and Jennings method)

Nicer for Generalized Eigenvalue-Problem by Jennings Method

Programm ed by	Yoshitaka Beppu and Ichizo Ninomiya; December 1981
Format	Subroutine language; FORTRAN Size; 89 and 90 lines respectively

(1) Outline

NGJENS and NGJEND solve generalized eigenvalue problems concerning real symmetric dense matrix A and real symmetric positive definite dense matrix B by the simultaneous iteration method.

(2) Directions

CALL NGJENS/D (AB, NMAX, N, NE, NV, EPS, BD, IUV, ITER, ESHIFT, E, V, U, ILL, W1, W2)

Argument	Type and	Attribut	Content	
	kind (*1)	e		
AB	Real type	Input/ou	$A_{ij} (i \leq j)$ is input to the upper right half including	
	Two-dimens	tput	diagonal elements.	
	ional		The upper right half changes.	
	array		If diagonal element $L_{ij}(i\!>\!j)$ of B's Cholesky-decomposed	
			component L is input to the lower left half. The lower left	
			half does not change.	
NMAX	Integer	Input	Adjustable dimensions of AB, V, and U. N≦NMAX	
	type			
N	Integer	lnput	Order of A and B. 2≦N	
	type			

220

Argument	Type and	Attribut	Content	
	kind (*1)	e		
NE	Integer	Input	Number of eigenvalues to be determined. They are counted in	
i	type		absolutely descending order.	
			O <ne<n< td=""></ne<n<>	
NV	Integer	Input	Number of eigenvectors to be determined. O <ne≦nv<n< td=""></ne≦nv<n<>	
	type			
EPS	Real type	Input	Tolerance for convergence test. The default value is 10^{-6}	
			(NSJENS) or 10^{-10} (NSJEND).	
BD	Real type	Input	Reciprocal L_{ii}^{-1} of L's diagonal element L_{ii} is input to	
	One-dimens		BD(1).	
	ional			
	array			
IUV .	Integer	Input	The initial-vector reference mode is specified. If IUV=0,	
	type		approximate generalized	
			orthogonal vector v_0 input to array V is used as the	
			initial vector for the simultaneous iteration method. If	
			IUV=1, approximate	
			ortho-normal vector u_0 input to array U is used likewise.	
			The content of array U when IUV=0 is not referred, and the	
			content of array V at IUV=1 is not referred.	
ITER	Integer	Input/ou	The upper limit for the number of Jennings iterations	
	type	tput	(standard value ranges from 1 to 10) is input. The number of	
			actual iterations is output.	
ESHIFT	Real type	Input	Origin shift $\sigma_{.}$ In these routines, the simultaneous	
	ŀ		iteration method is applied	
			not to $ ilde{A}$ but to $ ilde{A}'= ilde{A}-\sigma\cdot I$. Therefore, eigenvalues	
			which are close to σ are rapidly diminished and the other	
			eigenvalues are rapidly enhanced. The standard value is an	
			approximate value of 0.5* (E(NV+1)+E(N)).	

551

•

•

Argument	Type and	Attribut	Content
	kind (≭ 1)	e	
E	Real type	Input/ou	The approximate value of the eigenvalue whose absolute value
	One-dimens	tput	is the 1th largest of all in absolute form is input to E(I).
	ional		The eigenvalue whose absolute value is the 1th largest of all
	аггау		is output to E(I).
			E (1) > E (2) >·····> E (NE)
V	Real type	Input/ou	If IUV=0, approximate generalized orthogonal vectors υ_0 by
	Two-dimens	tput	the number specified by NV is input. If IUV=1, an arbitrary
	ional		quantity is input. The generalized orthogonal vector which
	array		corresponds to E(I) is normalized to $v^TBv=1$ and output to
			the Ith column.
U	Real type	Input/ou	If IUV=0, an arbitrary quantity is input. If IUV=1,
	Two-dimens	tput	approximation ortho-normal vectors $oldsymbol{u}_0$ by the number
	ional		specified by NV is input. The ortho-normal vector which
	array		corresponds to E(I) is normalized to $u^T u = 1$ and output to
			the Ith column.
ILL	Integer	Output	ILL=O: Normal termination
	type		ILL=100: L _{ij} input error
			ILL=200: Convergence does not occur because of poor
			precision of approximation vectors.
			ILL=300: The argument is abnormal.
W1~W2	Real type	Work	The size must be N or more.
	One-dimens	area	
	ional		
	array		

(3) Calculation method: Approximate solutions are iteratively improved according to the following procedure:

1. $\tilde{A} = L^{-1}(R+R^T)L^{-T}$ is generated by the bi-triangular decomposition method $(A=R+R^T, B=LL^T)$, and $Av = \lambda Bv$ is transformed into $\tilde{A}u = \lambda u$.

2. Initial ortho-normal vector u_0 is prepared. If IUV=0, approximation wide-sense orthogonal vector v_0 input to array V is pre-multiplied by L^T to determine u_0 . If IUV=1, u_0 input to array U is used without modification.

3. $Au = \lambda u$ is solved by NSJENS or NSJEND by using u_0 as an initial vector.

4. $\upsilon = L^{-T}u$ is calculated.

5. The NE number of λ is output to array E, the NV number of υ is output to array V, and the NV number of u is output to array V.

(4) Notes

1. NGJEND is faster than NGHOUD when (ITER×NV/N)<0.4. If IUV=1 when initial ortho-normal vector u_0 is known, it becomes faster about 5%.

2. NGJENS and NGJEND are suitable for use if good approximate solutions are known, that is, to diagonalize a lot of similar real symmetric matrices.

<Example of using NICER> The program which solves generalized eigenvalue problem $A\upsilon = \lambda B\upsilon$, 10 times, with B fixed and A varied is shown below. This example indicates the calculation procedure of the wave function by the sequential approximation method.

С		ITERATIVE COMPUTATION OF A*V=B*V*E BY NICER
		IMPLICIT REAL*8(A-H,O-Z)
		DIMENSION AB(10,10), BD(10)
		DIMENSION E(10),V(10,10)
	•	DIMENSION W1(10),W2(10),W3(10),W4(10),W5(10),W6(10),W7
	3	⊧(10)
		DIMENSION U(10,10)
		NMAX=10
	•	N=8
		EPS=1.E-10
С		
		DO 10 I=1/N
		AB(I,I)=7.2
		BD(I)=N+1-I
		DO 10 J=1.N
		IF(J.GT.I) AB(I,J)=3.0 / (FLOAT(I-J))**2
		IF(I.GT.J) AB(I,J)=N+1-MAX(I,J)
	10	CONTINUE
		CALL NGHOUD(AB, NMAX, N, N, N, EPS, 1, 0, BD, E, V, ILL, W1, W2, W3,
	3	₩4,₩5,₩6,₩7)
		WRITE(6,100) ILL
	100	FORMAT(1H1 //20X,4HILL=I7)
		WRITE(6,200) (E(I),I=1,N)
	200	FORMAT(1H / 10(2X,10E12.3 /))
		WRITE(6,300) ((V(I,J),J=1,N),I=1,N)
	300	FORMAT(1H / 10(8F12.3/))
С		
		DO 1000 K=2,10

```
22
```

```
FK=0.5*FLOAT(K-1)
      DO 20 I=1/N
      AB(I,I)=7.2 + FK
      DO 20 J=1.N
      IF(J.GT.I) AB(I,J)=(3.0+FK) / (FLOAT(I-J))**2
  20 CONTINUE
      NE=N/2
      NV = N/2
      ESHIFT=0.5*( E(NV+1)+E(N) )
      ITER=10
      CALL NGJEND(AB, NMAX, N, NE, NV, EPS, BD, O, ITER, ESHIFT, E, V, U,
    *ILL,W1,W2)
      WRITE(6,400)
                      K,
                           ITER, ILL
 400 FORMAT(1H /10X,3H K=,12,3X,5HITER=,15,6H
                                                        ILL=, I5)
 WRITE(6,200) ( E(I),I=1,NE )
WRITE(6,500) ( (V(I,J),J=1,NV ),I=1,N
500 FORMAT(1H / 10(4F12.3/) )
                                                        )
1000 CONTINUE
      STOP
      END
```

<Part of result of NICER>

	ILL=	0	
0.126D+02	0.116D+02	0.109D+02	0.102D+02
0.057	0.355	-0.040	-0.595
0.005	-0.723	-0.464	0.838
-0.266	0.049	1.083	0.061
0.169	0.941	-0.398	-0.209
0.448	-0.632	-0.617	-0.069
-0.567	-0.450	0.562	-0.664
-0.511	0.652	-0.420	0.837
1.225	-0.156	0.584	-0.006
0.952D+01	0.729D+01	0.345D+01	0.465D+00
-0.260	0.545	0.364	0.131
0.708	-0.216	0.083	0.067
-0.816	-0.277	0.017	0.076
0.828	-0.420	-0.133	0.062
-0.978	-0.087	-0.218	0.052
0.786	0.197	-0.247	0.039
-0.440	0.440	-0.217	0.027
0.295	0.204	-0.083	0.007

PACKAGE-NAME			VE COMPUTATION E LEVEL-3) MODIFIE	
REFERENCE		AND I.NINOMI EXCHANGE,NO.	YA;QUANTUM CHEM] 409(1980)	STRY
K= 2	ITER=	4 ILL= 0		•
0.131D+02	0.117D+02	0.112D+02	0.988D+01	
0 099	0 203	-0 456	-0 444	

0.099	0.203	-0.430	-0.444
-0.124	-0.663	0.340	0.973

224

-0.202	0.399	0.808	-0.616
0.328	0.718	-0.665	0.094
0.281	-0.856	-0.399	0.183
-0.666	-0.245	0.281	-0.790
-0.323	0.718	-0.104	0.946
1.184	-0.266	0.532	-0.339
K= 3	ITER= 3	ILL= 0	
0.136D+02	0.120D+02	0.115D+02	0.935D+01
0.093	-0.151	-0.511	-0.297
-0.172	-0.235	0.773	0.897
-0.119	0.740	0.311	-0.800
0.383	0.190	-0.922	0.192
0.151	-0.952	0.158	0.173
-0.697	-0.013	0.279	-0.742
-0.199	0.647	-0.371	0.966
1.156	-0.118	0.592	-0.404
K= 4	ITER= 6	ILL= 0	
0.143D+02	0.126D+02	0.117D+02	0.918D+01
0.067	0.322	0.395	0.126
-0.180	-0.077	-0.829	0.498
-0.041	-0.770	0.024	-0.884
0.392	0.137	0.923	0.164
0.046	0.866	-0.425	-0.054
-0.701	-0.128	-0.245	-0.393
-0.108	-0.555	0.471	0.969
1.135	0.074	-0.620	-0.288

(1987. 06. 16) (1987. 08. 07)

NSHOUS/D (Eigenvalue analysis of $Av = \lambda v$ type by Householder's bisection QR and inverse iteration method)

Nicer for Standard Eigenvalue-Problem by Householder Method

Programm ed by	Yoshitaka Beppu and Ichizo Ni	nomiya; December 1981
Format	Subroutine language; FORTRAN	Size; 271 and 272 lines respectively

(1) Outline

NSHOUS and NSHOUD solve standard eigenvalue problems concerning real symmetric dense matrix A by using the semi-direct method.

(2) Directions

CALL NSHOUS/D (A, NMAX, N, NE, NV, EPS, IORD, E, V, ILL, W1, W2, W3, W4, W5, W6, W7)

Argument	Type and	Attribut	L'ontent
	kind (*1)	e	
A	Real type	Input	$A_{ij}(i \leq j)$ is input to the upper right half including
	Two-dimens		diagonal elements. The lower left half is preserved although
	ional		the upper right half changes.
	аггау		
NMAX	Integer	Input	Adjustable dimensions of A and V. N≦NWAX
	type.		
N	Integer	Input	Order of A. 2≦N
	type		
NE	Integer	Input	Number of eigenvalues to be obtained. O <ne≦n< td=""></ne≦n<>
	type		
NV	Integer	Input	Number of eigenvectors to be obtained. O≦NV≤NB≤N
	type		

Argument	Type and	Attribut	Content
	kind (*1)	e	
EPS	Real type	Input	Tolerance for convergence test. The default value is 10^{-6}
			(NSHOUS) or 10 ⁻¹⁰ (NSHOUD).
IORD	Integer	Input	The output order of eigenvalues is specified. When IORD>O,
	type		they are output in algebraically descending order. When
			IORD <q, algebraically="" are="" ascending="" in="" order.<="" output="" td="" they=""></q,>
E	Real type	Output	The Ith eigenvalue is output to E(I). When IORD is positive,
	One-dimens		E(1)>E(2)>>E(NE). When IORD is negative,
•	ional		E (1) <e (2)="" (ne).<="" <<e="" td=""></e>
	array		
V	Real type	Output	The eigenvector corresponding
	Two-dimens		to E(I) is normalized as $y^T y = 1$ and output to column I.
	ional		
	array		
ILL	Integer	Output	ILL=0: Normal termination
	type		ILL=300: Argument error.
W1~W7	Real type	Work	The size must be N or more.
	One-dimens	агеа	
	ional		
	array		

(3) Calculation method

Matrix A is transformed into tridiagonal matrix T by Householder conversion. If (NE/N) < 0.12, eigenvalues by the number specified by NE are determined by the bisection method. If $(NE/N) \ge 0.12$, the N number of eigenvalues are determined by the square root-free QR method. Then, eigenvectors by the number specified by NV are determined by the inverse iteration method.

(4) Notes

1. This routine is useful when an approximate solution is unknown.

2. As shown in the figure below, NSHOUS/D together with NGHOUS/D, NSJENS/D, and NGJENS/D form the fast eigenvalue routine package NICER (Nagoya Iterative Computation Eigenvalue Routines).

3. The user of NICER should quote the documents listed in the bibliography below.

<Configuration of NICER>

The element enclosed by broken lines is used for calling.

Bibliography

1) Y. Beppu and I. Ninomiya; "Manual of NICER", Quantum Chemistry Program Exchange (Indiana University), No. 409 (1980)

2) Y. Beppu and I. Ninomiya; "NICER-Fast Eigenvalue Routines", Computer Physics Communications, Vol. 23, pp. 123-126 (1981)

3) Y. Beppu and I. Ninomiya; "HQRII-A Fast Diagonalization Subroutine", Computers and Chemistry, Vol.6, No.2, pp.87-91 (1982)

(1987. 06. 16) (1987. 08. 08)

•

NSJENS/D (Analysis of $Av = \lambda v$ type eigenvalue by Jennings method)

Nicer for Standard Eigenvalue-Problem by Jennings Method

Programm ed by	Yoshitaka Beppu and Ichizo Ninomiya; December 1981
Format	Subroutine language; FORTRAN Size; 334 and 335 lines respectively

(1) Outline

NSJENS and NSJEND solve standard eigenvalue problems concerning real symmetric dense matrix A by the simultaneous iteration method.

(2) Directions

CALL NSJENS/D (A, NMAX, N, NE, NV, EPS, ITER, ESHIFT, E, V, ILL, W1, W2, U)

Argument	Type and	Attribut	Content
	kind (*1)	e	
A	Real type	Input	$A_{ij} (i \leq j)$ is input to the upper right half including
	Two-dimens		diagonal elements.
	ional		The upper right half is referred to but not changed. The
	аггау		lower left half is neither referred to nor changed.
NMAX	Integer	Input	Adjustable dimensions of A, V, and U. N≦NMAX
	type		
N	Integer	Input	Order of A. 2≦N
	type		
NE	Integer	Input	Number of eigenvalues to be determined. They are counted in
	type		absolutely descending order.
			O <ne<n< td=""></ne<n<>
NV	Integer	Input	Number of eigenvectors to be determined. O <ne≦nv<n< td=""></ne≦nv<n<>
	type		· ·

,230

Argument	Type and	Attribut	Content
	kind (*1)	e	
EPS	Real type	Input	Tolerance for convergence test. The default value is 10^{-6}
			(NSJENS) or 10^{-10} (NSJEND).
ITER	Integer	Input/ou	The upper limit of the number of Jennings iterations
	type	tput	(standard value ranges from 1 to 10) is input. The number of
!			actual iterations is output.
ESHIFT	Real type	Input	Quantity of origin shift $\sigma_{.}$ In these routines, the
			simultaneous iteration method is applied not to A but to
			$\dot{A} = A - \sigma \cdot I$. The refore,
			eigenvalues which are close to σ are rapidly diminished
			and the other eigenvalues are rapidly enhanced. The standard
			value is an approximate value of 0.5* (E(NV+1)+E(N)).
E	Real type	Input/ou	The approximate value of the eigenvalue whose absolute value
	One-dimens	tput	is the 1th largest of all is input to E(I). The eigenvalue
	ional		whose absolute value is the Ith largest of all is output to
	array		E(I).
			E (1) > E (2) >·····> E (NE)
V	Real type	Input/ou	Approximate ortho-normal vectors by the number specified by
• •	Two-dimens	tput	NV is input. The eigenvector which corresponds to E(I) is
	ional		normalized to $y^T y=1$ and output.
	array		
ILL	Integer	Output	ILL=0: Normal termination
	type		ILL=200: Conversion does not occur because of poor precision
			of approximate vectors.
			ILL=300: The argument is abnormal.
W1~W2	Real type	Work	The size must be N or more.
	One-dimens	area	
	ional		
	array		

Argument	Type and	Attribut	Content
	kind (*1)	e	
U	Real type	Work	The row size must be NMAX or more and the column size must be
	Two-dimens	агеа	NV or more.
	ional		
	array		

(3) Calculation method

An approximate solution is iteratively improved according to the following procedure:

1. Approximate eigenvector matrix V_0 is prepared.

2. V_0 is pre-multiplied by $A = A - \sigma I$ to generate X. At this time, the absolutely dominant eigenpairs of A are enhanced by the principle of the power method. $X = A V_0 = (A - \sigma I)V_0$

- 3. $G=V_0^T X$ is generated.
- 4. Eigenvector matrix X and eigenvalue matrix E'_0 of G are determined. $W^T G W = E'_0$
- 5. Y=XW is generated.
- 6. $S=Y^TY$ is generated.
- 7. S is Cholesky-decomposed. $S=Z^TZ$

8. $V'_0 = YZ^{-1}$ is generated. V'_0 is nearer V than V_0 .

9. If permissible accuracy is reached, the calculation is finished with $V=V_0$, $E=E_0$. Conversely, if convergence does not occur, processing returns to 2, with $V_0=V_0$. Here, I is a unit matrix with N rows and N columns, V_0, X, Y, V_0 are matrices each with N rows and NV columns, and G, W, S, Z are matrices each with NV rows and NV columns.

(4) Notes

1. NSJEND is faster than NSHOUD when (ITER×NV/N)<0.5.

2. Like JENNFS and JENNFD of NUMPAC, these routines are also suitable for use when good approximate solutions are known.

231

3. These routines are also components of NICER.

Bibliography

1) A. Jennings; "Matrix Computation for Engineers and Scientists", John Wiley and Sons, London (1977)

2) B. Parlett; "The Symmetric Eigenvalue Problem", Prentice-Hall, New Jersey (1980)

3) Yoshitaka Beppu and Ichizo Ninomiya; "Fast Eigenvalue Routine Package NICER," Kyoto Un<u>i</u>versity Data Processing Center Report, Vol. 13, No. 5, pp. 378-386 (1980)

(1987.06.16) (1987.08.08)

RHBSVS/D (Eigenvalue analysis of symmetric band matrices by Lutishauser-Bisection method)

Eigenvalue Analysis for Symmetric Band Matrices by Lutishauser-Bisection Method

Programm ed by	Ichizo Ninomiya; Revised in April 1977; April 1981
Format	Subroutine language; FORTRAN Size; 250 lines each

(1) Outline

.

.

RHBSVS or RHBSVD reduces a symmetric band matrix into a tridiagonal from using the Lutishauser-Schwarz method, and applies the bisection and inverse iteration methods to it to perform eigenvalue analysis.

(2) Directions

CALL RHBSVS/D (A, KA, N, NB, E, NE, V, KV, NV, VW, EPS, W, ILL)

Argument	Type and kind (*1)	Attribut e	Content
A	Real type Two-dimens ional array	Input	The lower left half including the diagonal of the symmetric band matrix is turned to a rectangle as shown in the figure. That is, elements I and J of the matrix are put in $A(I-J+1, J)$.
KA	Integer type	Input	Adjustable dimension of A (value of the first subscript in array declaration). KA≧NB
N	Integer type	Input	Order of A. N≥3
NB	Integer type	Input	Half band width of A. NB≧2
E	Real type One-dimens ional array	Output	Bigenvalues are output in the order of size. If NE>O, in descending order, and in ascending order otherwise.
NE	Integer type	Input	The number of eigenvalues to be determined is indicated by the absolute value. When NE>O (NE <o), are="" counted="" in<br="" they="">algebraically descending (ascending) order from the maximum value (minimum value). NE≠O</o),>

Argument	Type and kind (±1)	Attribut e	Content
V	Real type Two-dimens ional array	Output	The eigenvector for the eigenvalue E(I) is normalized to length 1 and output to column I.
KV	Integer type	Input	Adjustable dimensions of V and V₩. KV≥N
NV	Integer type	Input	The number of eigenvectors to be determined is indicated by the absolute value. They are counted starting with an eigenvalue from either side in the order determined by NE. $0 \le NV \le NE $
VW	Real type Two-dimens ional array	Work area	Two-dimensional array of size N \times N. This argument is not needed if no eigenvectors are calculated (NV = 0).
EPS	Real type	Input	Tolerance for convergence test by bisection method. T •EPS, where T is a tridiagonal matrix, is used for test. EPS>0
W	Real type One-dimens ional array	Work area	One-dimensional array of size 6N or more.
ILL	Integer type	Output	ILL=0: Normal termination ILL=30000: The input argument violated the limit.

*1 For double precision subroutines, real types are all changed to double precision real types.

(3) Calculation method

Symmetric band matrix A is transformed into the tridiagonal matrix $T=R^{T}AR$ by Lutishauser-Schwarz orthogonal transformation R. The eigenvalue problem $Tu=\lambda u$ for T is solved by the bisection and inverse iteration methods. The eigenvector of A is determined as v=Ru from the eigenvector u of T.

The Lutishauser-Schwarz method has the advantage that the calculation can be performed within the interior of a band matrix.

On the other hand, however, it has the disadvantage that when band width expands, quantity of calculation will increase. Furthermore, to determine eigenvectors, transformation matrix R must be saved. This requires a square matrix of $N \times N$ where N is the order. From the above viewpoint, the significance of the existence of this routine is to calculate only eigenvalues of

234

high dimensional matrices with small band width.

(4) Notes

1. If no eigenvectors need to be calculated, any value can be assigned to V and VW as far as the condition $KV \ge N$ is satisfied.

2. If it is desired to save storage capacity when eigenvectors are calculated, A and V can be connected by an equivalence statement. This is because A and V are not used at the same time.

(1987. 06. 16) (1987. 08. 08)

•

RHQRVS/D (eigenvalue analysis of real symmetric band matrices by Rutishauser-QR method)

Eigenvalue Analysis for Real Symmetric Band Matrices by Rutishauser-QR Method

Programm ed by	Ichizo Ninomiya; April 1977
Format	Subroutine language; FORTRAN Size; 150 and 152 lines respectively

(1) Outline

RHQRVS or RHQRVD reduces real symmetric band matrix B to a tridiagonal matrix by using the Lutishauser-Schwarz method, and applies the QR method to this to perform eigenvalue analysis.

(2) Directions

CALL RHQRVS/D (B, KB, N, NB, V, KV, E, F, EPS, IND)

Argument	Type and kind (*1)	Attribut e	Content
В	Real type Two-dimens ional array	Input	The lower left half including the diagonal of the real symmetric band matrix is reduced to a rectangle shown in the figure. It is not preserved.
КВ	Integer type	Input	Value of the first subscript in array declaration of B. KB≧NB
N	Integer type	Input	Order of B (number of columns). This is also the sizes of E and F. $3 \leq N$
NB	Integer type	Input ·	Half band width of B (number of rows). 3≦NB≦N
V	Real type Two-dimens ional array	Output	The eigenvector which corresponds to the eigenvalue (J) is normalized to length 1 and output to column J.
KV	Integer type	Input	Value of the first subscript in array declaration of A. $KV \ge N$
B	Real type One-dimens ional array	Output	Bigenvalues are arranged in algebraically descending order from the maximum one and output sequentially.

Argument	Type and kind (±1)	Attribut e	Content
F	Real type One-dimens ional array	Work area	One dimensional array with N elements.
EPS	Real type	Input	Tolerance for convergence test. When B is turned to tridiagonal T, this argument is used in the form of T •EPS/N. EPS>0
IND	Integer type	Input/ou tput	When used for input, this argument has the following meanings: IND=0: Eigenvectors are not calculated. IND≠0: All eigenvectors are calculated. When used for output, this argument has the following meanings: IND=0: The calculation ended normally. IND=30000: The limits on the input argument are violated. Note: Do not use a constant as the actual argument for this argument.

*1 For double precision subroutines, real types are all changed to double precision real types.

(3) Performance

Tridiagonalization by Householder's mirror image transformation is a very excellent method. However, it has one problem: even if a real symmetric band matrix is given, it is expanded to a full matrix during transformation. The Lutishauser-Schwarz method can solve the above problem because it reduces a band matrix to a tridiagonal without expanding it from the original position. However, it requires more quantity of calculation as band width is increased. Furthermore, to determine eigenvectors, it is necessary to calculate an orthogonal matrix which represents transformation from a band matrix to a tridiagonal matrix. This requires an additional square matrix of N \times N where N is the order. From the viewpoint of the above, the significance of the existence of this routine is to calculate eigenvalues of big matrices with relatively small band width.

(4) Note

If no eigenvectors need to be determined, any value can be assigned to V as far as $KV \ge N$ is satisfied.

(1987. 06. 17)

SVDS/D/Q (Singular value decomposition)

Singular Value Decomposition

Programm ed by	Ichizo Ninomiya; March 1979	
Format	Subroutine language; FORTRAN	Size; 205 lines each

239

(1) Outline

SVDS, SVDD, or SVDQ uses $m \times n$ orthogonal matrix U, $n \times n$ orthogonal matrix V, and $n \times n$ diagonal matrix Σ to decompose $m \times n$ matrix A ($m \ge n \ge 1$) into

 $A=U\Sigma V^T$

Where, $U^T U = V^T V = V V^T = I_n (n - \text{degree unit matrix}),$

 Σ =diag (q_1, q_2, \cdots, q_n)

U consists of n orthogonal eigenvectors corresponding to the firstlargest n eigenvalues of AA^{T} , and V is made up of the orthonormal eigenvectors of $A^{T}A$. The diagonal elements of Σ are the positive square root of the eigenvalues of $A^{T}A$ and arranged such that

 $q_1 \ge q_2 \ge \cdots \ge q_n \ge 0$

The rank of A is given by the number of q_i which are not 0.

(2) Directions

CALL SVDS/D/Q (A, KA, M, N, ISW, Q, U, KU, V, KV, W, ILL)

Argument	Type and kind (*1)	Attribut e	Content
A	Real type Two-dimens ional array	Input	Matrix subjected to singular value decomposition. The value is preserved unless this argument is used as a U or V storage area.
KA	Integer type	Input	Value of the first subscript in array declaration of A. KA≧M
М	Integer type	Input	Number of rows of A. M≧N

Argument	Type and kind (*1)	Attribut e	Content
N	Integer type	Input	Number of columns of A. N≥1
ISW	Integer type	Input	O≤ISW≤3 ISW=O: Neither U nor V is calculated. ISW=1: Only V is calculated. ISW=2: Only U is calculated. ISW=3: Both U and V are calculated.
Q	Real type One-dimens ional array	Output	Singular values are output in descending order from the largest one. One-dimensional array of size N.
U	Real type Two-dimens ional array	Output	Transformation matrix U. This can be written over A. Array with M rows and N columns.
KU	Integer type	Input	Value of the first subscript in array declaration of U. KU≧M
V	Real type Two-dimens ional array	Output	Transformation matrix V. This can be written over A. Array with N rows and N columns.
KV	Integer type	Input	Value of the first subscript in array declaration of V. $KV \ge N$
W	Real type One-dimens ional array	Work area	One-dimensional array of size N.
ILL	Integer type	Output	ILL=0: Normal termination ILL=20000: Singular value decomposition does not converge in 30N or more iterations. ILL=30000: The argument exceeded the limit.

*1 For double precision subroutines, real types are all changed to double precision real types.

(3) Performance

We experimented with an 8 x 5 matrix of rank 3 with singular values $\sqrt{1248}$, 20, $\sqrt{384}$, 0, 0 given on page 418 in the bibliography ¹⁾. The precision of the singular value Q and transformation matrix V (the two last columns are two independent solution vectors of homogeneous linear equation Ax=0) obtained by SVDS was about six decimal digits.

(4) Example

The program to examine the above test is as follows.

1	DIMENSION A(8,5),U(8,5),V(5,5),Q(5),W(5),R(5)
2	M=8
3	N=5
4	KA=8
5	KU=8
6	KV=5
7	ISW=3
8	$R(1) = SQRT(1248_{\ell})$
9	R(2) = 20
10	R(3) = SQRT(384)
11	R(4)=0
12	R(5)=0
13	READ(5,500) ((A(I_{J}), J=1, N), I=1, M)
14	500 FORMAT(5F4,0)
15	CALL SVDS (A/KA/M/N/ISW/Q/U/KU/V/KV/W/ICON)
16	WRITE(6,600) M,N,ISW,EPS,ICON,((A(I,J),J=1,N),I=1,M)
	*/(Q(J)/R(J)/J=1/N)/((U(I/J)/J=1/N)/I=1/M)
	*/((V(I/J)/J=1/N)/I=1/N)
17	600 FORMAT(1H1///10X,'M=',I2,2X,'N=',I2,2X,'ISW =',I2
	*/2X/'EPS='/1PE10/2/2X/'ICON='/I6//8(10X/5E13/5/)
	*/5(10X,2E13,5/)/8(10X,5E13,5/)/5(10X,5E13,5/))
18	STOP
19	END

(5) Notes

1. Even when M < N, $A = U \Sigma V^T$ is also obtained if A^T is input instead of A, M is replaced by N, U is replaced by V.

2. Singular value decomposition is a very useful method for matrix A which is of ill condition or suffers a rank deficiency. But its weak point is the need for large quantity of calculation. Therefore, it is desirable to avoid calculating U and V unless they are needed.

3. U or V can be written over A. So, if A need not be retained, it is preferable to write the same data as A as U or V to save the storage capacity.

4. Because the special subroutines are prepared for generalized inverse matrices and least squares minimal norm solutions, select most suitable one for each case.

Bibliography

 G. H. Golub, C. Reinsch; "Singular Value Decomposition and Least Squares Solutions", Numerische Mathematik, 14, pp. 403-420, (1970)

(1987. 06. 16) (1987. 08. 21)

 $\sqrt{2}$

n an an Arthread an Arthread and A

en and a state of the
: :

.

· · · · · · · ·

tist.

• • •

化过去分词 化过去分词 化过去分词 化分子 化过去分词 化过去分词

۰.

. • -

5.000

BROYDS/D (Solution of systems of nonlinear equations by Broyden's method)

Solution of Systems of Nonlinear Equations by Broyden's Method

Programm ed by	Ichizo Ninomiya; April 1977
Format	Subroutine language; FORTRAN Size; 59 and 71 lines respectively

(1) Outline

BROYDS and BROYDD are subroutine subprograms to solve non-linear equations

 $f_i(x_1, \dots, x_n) = 0$ $(i=1, 2, \dots, n)$ using the Broyden's iteration method when an initial solution vector is given.

(2) Directions

CALL BROYDS/D (X, N, H, KH, FN, LF, NF, EPS, FM, ILL)

Argument	Type and kind (±1)	Attribut e	Content
X	Real type One-dimens ional array	Input/ou tput	When an initial vector is input, the solution vector is generated.
N	Integer type	Input	Number of unknowns of equation. O <n≦1000< td=""></n≦1000<>
H	Real type Two-dimens ional array	Work area	The size of KH×N is required.
KH	Integer type	Input	Value of the first subscript in array declaration of H. KH≧N
FN	Subroutine	Input	FN (X, Y) type subroutine used to calculate vector Y which consisting of values of N equations when position vector X is given. The actual argument for this argument needs an EXTERNAL declaration in the program unit which calls this routine.
LF	Integer type	Input	Upper bound of the number of function calls. LF>N+1

Argument	Type and kind (±1)	Attribut e	Content
NF	Integer type	Output	Number of function calls.
EPS	Real type	Input	Convergence criterion. EPS>0
FM	Real type	Output	Square root of mean square residuals of equations.
ILL	Integer type	Output	ILL=0: Normal end. ILL=1: No convergence even when NF>LF ILL=30000: The input argument does not satisfy the requirements.

...

*1 For double precision subroutines, all real types are changed to double precision real types.

(3) Calculation method

Refer to bibliography ¹⁾.

(4) Example

The main part of a program to solve the Freudenstein-Roth's problem is shown below.

```
DIMENSION H(2,2),X(2)
EXTERNAL FREUDE
KH=2
N=2
LF=1000
EPS=1.E-5
X(1) = 15.0
X(2) = 3.0
CALL BROYDS(X,N,H,KH,FREUDE,LF,NF,EPS,FM,ILL)
END
SUBROUTINE FREUDE(X,F)
DIMENSION X(2),F(2)
F(1) = X(1) - 13 + ((5 - X(2)) + X(2) - 2 + X(2))
F(2) = X(1) - 29 + ((X(2) + 1) + X(2) - 14) + X(2)
RETURN
END
```

(5) Notes

1. Because non-linear equations generally have a lot of solutions, it must be checked to see if the obtained solution is really the desired one. Good initial values must be selected to ensure convergence to the target solution.

2. The minimization problem when the minimum value (or the maximum value) is an extremum becomes non-linear equations concerning the gradient vector. On the contrary, non-linear equations $f_i=0$ ($i=1,\dots,n$) become a minimization problem if $\sum f_i^2$ is considered. This must be taken into consideration to select a calculation method and program depending on the case.

3. This routine internally calls inverse matrix routine MINVS or MINVD.

Bibliography

 C. G. Broyden; "A Class of Methods for Solving Nonlinear Simultaneous Equations", Math. Comp., Vol. 19, pp. 577-593 (1965)

(1987. 06. 16) (1987. 08. 07)

24(

BROYDV/W (Solution of systems of nonlinear equations by Broyden's method - vector version-)

Solution of Systems of Nonlinear Equations by Broyden's Method -Vector Version -

Programm	Ichizo Ninomiya and Yasuyo Hatano; March 1985
ed by	
Format	Subroutine language; FORTRAN Size; 153 and 154 lines respectively

(1) Outline

BROYDV and BROYDW are the subroutine subprograms used to solve non-linear simultaneous equations $f_i(x_1, \dots, x_n) = O(i=1, 2, \dots, n)$ by the Broyden's iteration method when an initial value is given. BROYDV is for single precision and BROYDW is for double precision.

(2) Directions

CALL BROYDV/W (X, N, H, KH, FN, LF, NF, EPS, FM, IW, W, ILL)

Argument	Type and	Attribut	Content
	kind (*1)	e	
X	Real type	Input/ou	When an initial vector is input, the solution vector is
	One-dimens	tput	output
	ional		
	аггау		
N	Integer	Input	Number of unknowns of equation. O <n≦1000< td=""></n≦1000<>
	type		
H	Real type	Work	Size N×N is required.
• •	Two-dimens	area	
	ional		
	array		
KH	Integer	Input	Value of the first subscript in array declaration of H. KH \geq N
	type		

Argument	Type and	Attribut	Content
	kind (<u>*1</u>)	е	
FN	Subroutine	Input	Subroutine in the form of FN(X,Y), which calculates vector Y
			consisting of N equation values when position vector X is
			given. The real argument for this argument needs to be
			declared under EXTERNAL in each program that calls this
			routine
LF	Integer	Input	Upper limit of the number of times the function subroutine is
	type		called_LF>N+1
NF	Integer	Output	Number of times the function subroutine is called.
	type	-	
EPS	Real type	Input	Tolerance for convergence test. EPS>0
FM	Real type	Output	Square root of mean square residuals of equations.
IW	Integer	Work	One-dimensional array with N elements.
	type	area	
I	one-dimens		
	ional		
	array	ļ	
W	Real type	Work	Size 4*N is required.
	One-dimens	агеа	
	ional		
•	аггау		
ILL	Integer	Output	ILL=0: Normal termination.
	type		ILL=1: Convergence does not occur even when NF>LF.
			ILL=30000: The input arguments violate the limits for them.

*1 For double precision subroutines, real types are all changed to double precision real types.

(3) Calculation method See the bibliography $^{1)}$.

(4) Example

The major part of a program that solves the Freudenstein-Roth problem (solution: X(1) = 5.0,

X(2) = 4.0 is shown below:

```
DIMENSION H(2,2),X(2),IW(2),W(4,2)
EXTERNAL FREUDE
KH=2
N=2
LF = 1000
EPS=1.E-5
X(1) = 15.0
X(2) = 3.0
CALL BROYDV(X/N/H/KH/FREUDE/LF/NF/EPS/FM/IW/W/ILL)
END
SUBROUTINE FREUDE(X,F)
DIMENSION X(2),F(2)
F(1) = X(1) - 13 + ((5 - X(2)) + X(2) - 2) + X(2)
F(2) = X(1) - 29 + ((X(2) + 1) + X(2) - 14) + X(2)
RETURN
END
```

```
(5) Notes
```

1. Because non-linear simultaneous equations usually have a lot of solutions, it is needed to check to see if the obtained solution is the target solution. A proper initial value must be given to make calculation converge to the target solution.

2. A minimization problem for a minimum value that is an extremal value (not a boundary value) amounts to non-linear simultaneous equations for gradient vectors. On the contrary, non-linear simultaneous equations $f_i=0$ ($i=1,\dots,n$) amount to a minimization problem in terms of $\sum f_i^2$. This should be considered to select a calculation method and program most appropriate to the case in equation.

3. This routine internally calls inverse matrix routine MINVV or MINVW.

Bibliography

1) C. G. Broyden; "A Class of Methods for Solving Nonlinear Simultaneous Equations," Math. Comp., Vol. 19, pp. 577-593 (1965)

(1987. 06. 22) (1987. 08. 07) (1988. 06. 01)

Minimization of Functions by Davidon-Fletcher-Powell Method

Programm ed by	Ichizo Ninomiya; July 1977				
Format	Subroutine language; FORTRAN Size; 92 and 105 lines respectively				

(1) Outline

FLPOWS and FLPOWD are subroutine subprograms which determine the minimum point of a multivariable function by the Davidon-Fletcher-Powell method when an initial value is given. In addition to a function value, a gradient vector value needs to be given.

(2) Directions

CALL FLPOWS/D (X, N, B, KB, FUNC, GRAD, LF, NF, FLB, EPS, FM, ILL)

Argument	Type and kind (± 1)	Attribut e	Content
X	Real type One-dimens ional array	Input	When an initial vector is input, the solution vector (minimum point) is output.
N	Integer type	Input	Number of variables, or number of elements of X. O <n≤1000< td=""></n≤1000<>
В	Real type Two-dimens ional array	Work area	The size of $N \times N$ is required. A unit matrix is first set and, through updating by iterations, it converges to the inverse of the Hessian matrix at the minimum point.
KB	lnteger type	Input	Value of the first subscript in array declaration of B. KB \geq N
FUNC	Real type Function subprogram	Input	Target function for minimization. The user prepares this as a function subprogram in the form of FUNC(X). The actual argument name must be declared in an EXTERNAL statement.
GRAD	Subroutine	Input	Subroutine used to calculate gradient vector G of function FUNC. The user prepares this as a subroutine in the form of GRAD(X,G). The actual argument name must be declared in an EXTERNAL statement.
LF	Integer type	Input	Upper limit of the number of the function calls. $LF \ge N$

Argument	Type and kind (*1)	Attribut e	Content
NF	Integer type	Output	Number of the function calls (The number of calls for FUNC and GRAD are the same)
FLB	Real type	Input	Lower limit of minimum value of function.
EPS	Real type	Input	Tolerance for convergence test. EPS>0
FM	Real type	Output	Minimum value of function.
ILL	Integer type	Output	ILL=0: Normal termination. ILL=1: Convergence does not occur even when NP becomes greater than LF. ILL=30000: The input argument does not satisfy the limits for them.

*1 For double precision subroutines, real types are all changed to double precision real types.

(3) Calculation method

Refer to bibliography $^{(1),2)}$.

(4) Example

The major part of a program for solving the Rosenbrock problem (minimum point: X(1)=1.0, X(2)=1.0) is shown below:

```
DIMENSION X(2),B(2,2)
 EXTERNAL ROSEN, GROSEN
 N = 2
 KB=2
 LF=1000
 FLB=0.
 EPS=1.E-5
 X(1) = -1.2
 X(2) = 1.0
 CALL FLPOWS(X/N/B/KB/ROSEN/GROSEN/LF/NF/FLB/EPS/FM/ILL)
   :
- END
 FUNCTION ROSEN(X)
 DIMENSION X(2)
 ROSEN=100.*(X(1)*X(1)-X(2))**2+(X(1)-1.)**2
 RETURN
 END
 SUBROUTINE GROSEN(X,G)
 DIMENSION X(2),G(2)
 G(2) = 200 * (X(2) - X(1) * X(1))
 G(1) = 2 \cdot (X(1) - 1 - G(2) \cdot X(1))
 RETURN
```

ゝうつ

END

(5) Notes

1. This routine can generally obtain a local minimum value only. A proper initial value is required to secure a true minimum value.

2. If it is impossible or very hard to calculate gradient vectors, a method which does not require calculation of gradient vectors should be used.

Bibliography

- R. Fletcher & M. J. D. Powell; "A Rapidly Convergent Descent Method for Minimization," Computer Journal, Vol. 6, pp. 163-168 (1963)
- 2) P. J. Reddy, H. J. Zimmermann & Asghar Hussain; "Numerical Experiments on DFP-Method, A Powerful Function Minimization Technique," Journal of Computational & Applied Mathematics, Vol. 1, pp. 255-265 (1975)

(1987. 06. 17)

GJMNKS/D/Q (Solution of polynomial equations with real coefficients by Garside-Jarrat-Mack method)

Solution of Polynomial Equations with Real Coefficients by Garside-Jarrat-Mack Method

Programm ed by	Ichizo Ninomiya; April 1977			
Format	Subroutine language; FORTRAN Size; 128, 130, and 130 lines respectively			

(1) Outline

GJMNKS, GJMNKD, and GJMNKQ are single, double, and quadruple precision subroutines respectively used to determine all roots of a polynomial equation with real coefficients. The Garside-Jarrat-Mack method¹⁾ is widely acknowledged as an effective method for solution of polynomial equations with complex coefficients. These subroutines are created by Ninomiya and Kadowaki²⁾ by improving it as a solver of equations with real coefficients. These subroutines combine robustness of the original method and the speeds realized by using real numbers for complex calculation. They also incorporate the Cardano's and Ferrari's methods for solutions of third- and fourth-degree equations. They can thus be recommended as general-purpose polynomial equation routines.

(2) Directions

CALL GJMNKS/D/Q(A, N, X, Y, ILL)

Argument	Type and kind (*1)	Attribut e	Content
A	Real type One-dimens ional array	. Input	Coefficients of a polynomial equation is input in descending order of degree. Input values are destroyed. A(1)≠0
N	Integer type	Input	Degree of polynomial equation. N≥1

Argument	Type and kind (* 1)	Attribut e	Content
X	Real type One-dimens ional array	Output	The real parts of roots of a polynomial equation are output. Roots are generally determined in ascending order of their absolute values and stored in reverse order like X(N), X(N-1)
Y	Real type One-dimens ional array	Output	The imaginary parts of roots of a polynomial equation are output. Order of computation and storage method are same as with X.
ILL	Integer type	Output	ILL=0: Normal termination. ILL=30000: N<1 or A(1)=0. ILL=K: Convergence does not occur even after 200 iterations during processing of a deflated Kth-degree equation.

*1 For double (quadruple) precision subroutines, real types are all changed to double (quadruple) precision real types.

(3) Calculation method

These subroutines inherit the advantage of the original method that the convergence rate basically does not change even for multiple roots and adjacent roots. This explains why they practically never fail to solve equations and provide as accurate roots as the condition of equation permits. In this sense, they can be said very robust.

(4) Notes

1. Polynomial equations often fall in ill conditions. Therefore, unless they are in very low degrees, it is safe to use the double precision routine GJMNKD.

2. To solve second-, third-, or fourth-degree equations, use of each specific routine is more advantageous than these routines.

Bibliography

1) G. R. Garside, P. Jarrat and C. Mack; "A New Method for Solving Polynomial Equations," Computer Journal, Vol.11 (1968)

2) Ichizo Ninomiya and Kohei Kadowaki; "A solution of polynomial equations with real

······

254

coefficients," Preprints of the 16th meeting of Information Processing Soc. of Japan, p. 445 (1975)

(1987.06.17)

MINSXS/D (Minimization of Functions by Simplex Method)

Minimization of Functions by Simplex Method

Programm ed by	Ichizo Ninomiya; July 1977
Form	Subroutine language; FORTRAN Size; 98 and 99 lines respectively

(1) Outline

MINSXS or MINSXD subroutine determines the minimum point of a multivariate function by the Nedler-Mead's simplex method when an initial value is given. It requires only function values. The function values just need to be continuous but need not be smooth.

(2) Directions

CALL MINSXS/D(X, N, P, KP, FUNC, LF, NF, EPS, FM, ILL)

Argument	Type and kind (* 1)	Attribut e	Content
X	Real type One-dimens ional array	Input/ou tput	When an initial value for a minimum point is given, the minimum point is output.
N	Integer type	Input	Number of variables, or number of elements of X. O <n≦100< td=""></n≦100<>
Р	Real type Two-dimens ional array	Work area	N rows and N+1 columns. The coordinates of the N + 1 points which form a simplex are entered in these individual columns. The initial simplex is made of initial value X and N points in which individual coordinate elements of X are increased by 10% (increased by 0.1 if the element is 0). Instead of this, however, the user can prepare it before calling the routine. The option can be specified by argument NF.
КР	Integer type	Input	Value of the first subscript in array declaration of P. KP \geq N
FUNC	Real type Function subprogram	Input	Target function for minimization. The user prepares a function subprogram in the form of FUNC(X) as the actual argument for it. This function name must be declared in an EXTERNAL statement.
LF	Integer type	Input	Upper limit of the number of evaluations of function. LF>N

Argument	Type and kind (*1)	Attribut e	Content	
NF	Integer type	Input/ou tput	Input: $NF \ge 0$ means that formation of the initial simplex is left to the routine, and NF<0 means that the initial simplex is prepared by the user. Output: The number of evaluations of the function is output. Because this argument is used for both input and output, do not specify a constant as the actual argument.	
EPS	Real type	Input	Tolerance for convergence test. EPS>0	
FM	Real type	Output	Minimum value of function.	
ILL	Integer type	Output	ILL=0: Normal termination ILL=1: Convergence does not occur even if NF becomes greater than LF. ILL=30000: The input argument does not satisfy the restrictive conditions.	

*1 For double precision subroutines, real types are all changed to double precision real types.

(3) Method of calculation Refer to bibliography $^{1)}$.

(4) Example

The major part of a program for solving the Rosenbrock problem (minimum point: X(1) = 1.0, X(2)

= 1.0) is shown below:

```
DIMENSION P(2,3),X(2)
EXTERNAL ROSEN
N=2
'KP=2
NF=1
LF=1000
EPS=1.E-5
X(1) = -1.2
X(2) = 1.0
CALL MINSXS(X,N,P,KP,ROSEN,LF,NF,EPS,FM,ILL)
END
FUNCTION ROSEN(X)
DIMENSION X(2)
ROSEN=100.*(X(1)*X(1)-X(2))**2+(1.-X(1))**2
RETURN
END
```

(5) Notes

1. This routine can generally obtain local minimum values only. A proper initial value is required to secure a true minimum value.

2. Because of slow convergence, this routine is not suitable for problems of higher dimension.

3. The function name as the actual argument must be declared in an EXTERNAL statement in each program which calls this routine.

4. For a smooth function, the calculation of whose gradient is easy, it is more advantageous to use subroutine FLPOWS using the DFP method than to use this routine.

5. When this routine is used for solving non-linear simultaneous equations

 $f_1=0, f_2=0, \cdots, f_n=0$ as a minimization problem, $F=\sum |f_i|$ is preferable rather than $F=\sum f_i^2$.

Bibliography

1) J. A. Nedler & R. Mead; "A Simplex Method for Function Minimization", Computer Journal, Vol.7, pp. 308-312 (1965)

(1987.06.17)

ユら

NOLEQS/D/Q (Solution of Nonlinear Equations)

Solution of Nonlinear Equations

Programmed	Ichizo Ninomiya, March 1983
by .	
Format	Subroutine language: FORTRAN; size: 55, 56, and 56 lines
	respectively

(1) Outline

If an interval of existence is given, a root of a given nonlinear equation in the interval is obtained.

(2) Directions

CALL NOLEQS/D/Q (A, B, FUN, EPS, NMAX, X, FX, N, ILL)

Argument	Type and	Attr	Content
	kind (*1)	ibut	
		е	
A	Real type	Inpu	Left end of an interval of existence.
		t	
В	Real type	Inpu	Right end of an interval of existence.
	i i	t	
FUN	Real type	Inpu	A function program for computing f(x) if the equation
	function	t	to be solved is f(x)=0. The user must prepare it as a
	subprogram		function subprogram.
EPS	Real type	Inpu	Precision criterion for root.
		t	
NMAX	Integer	Inpu	Upper limit of number of evaluations of function FUN.
	type	t	NMAX≥3
X ·	Real type	Outp	Starting approximation for the root.
		ut	

Argument	Type and	Attr	Content
	kind (*1)	ibut	
		e	
FX	Real type	Outp	Value of f(x) for X.
		ut	
N	Integer	Outp	Number of evaluations of function FUN.
	type	ut	
ILL	Integer	Outp	ILL=0: Normal termination.
	type	ut	ILL=20000: When convergence is not attained even if the
			function evaluation count reached NMAX.
			ILL=30000: When no root exists in the interval (A, B),
			OF NMAX<3.

*1 For double (quadruple) precision subroutines, all real types are changed to double (quadruple) precision real types.

(3) Calculation method

Refer to 1) in Bibliography.

(4) Example of use

This program is used to calculate the root in (0, π) of the equation f(x)=cosx-x=0.

С		TEST FOR NOLEQS
		EXTERNAL FUN
		EPS=1.E-5
		NMAX=100
		A=0.0
		B=1.5708
		CALL NOLEQS(A, B, FUN, EPS, NMAX, X, FX, N, ILL)
		WRITE(6,600) A,B,EPS,X,FX,N,ILL
	600	
		STOP
		END
C.		FUNCTION SUBPROGRAM
Ű		FUNCTION FUN(X)
		FUN=COS(X)-X
		RETURN
		END

(5) Notes

1. Because the calculation method of this routine is based on the bisection method, convergence

is assured.

2. Because the first or second inverse interpolation is used as required, convergence is fast.

3. The function f(x) must be continuous, but need not be smooth.

4. It is more advantageous for algebraic equations to use the special-purpose subroutine GJMNKS/D.

Bibliography

1) D. B. Popovski;"A Note on King's Method for Finding a Bracketed Root", Computing Vol. 29, pp. 355-359 (1982)

(1987. 06. 22) (1987. 08. 07) (1987. 08. 08)

Subroutine for Nonlinear Least Squares by a Quasi-Newton Method

Programm ed by	Kunio Tanabe and Sumie Ueda;	March 1981
Format	Subroutine language; FORTRAN	Size; 772 lines

(1) Outline

NOLLS1 obtains $x_i, i=1, \dots, n$, which minimizes

$$\sum_{j=1}^{m} f_j^2(x_1\cdots x_n)$$

for the function $f_j(x_1 \cdots x_n), j=1, \cdots, m$, which is nonlinear about the n number of variables $x_i, i=1, \cdots, n$.

It is specially effective for problems involving a high degree of nonlinearlity.

The user is only required to prepare a subroutine (MODELF) to calculate the value of $f_j(x_1, \cdots, x_n), j=1, \cdots, m$. To obtain more accurate results, however, the user is also requested to prepare another subroutine MODELD which calculates the first order derivative $\partial f_j/\partial x_i$ for x_i of f_j .

(2) Directions

CALL NOLLS1 (MAXM, MAXN, M, N, X, ITMAX, NFEMAX, FTOL, XTOL, LDERIV, NPRINT, FF2, F, DF, ITER,

NFE, NDE, INFORM, XO, DX, FO, DFO, H, SL, D, S, Y, R, W1, W2, W3, W4)

Argument	Type and kind (*1)	Attribut e	Content
MAXM	Integer type	Input	Adjustable dimension of DF (value of the first subscript in array declaration). MAXN≧N
MAXN	Integer type	Input .	Adjustable dimension of H. MAXN≧N

Argument	Type and kind (* 1)	Attribut e	Content
М	Integer type	Input	Number of nonlinear functions $f_j(x)$, m
N ·	Integer type	Input	Number of unknown parameters x_i , n
X	Real type One-dimens ional array	Input/ou tput	When an initial value of unknown parameter x_i is put, the final value is generated. (<i>i</i> =1,2,, <i>n</i>)
ITMAX	Integer type	Input	Upper bound of the number of iterations.
NFEMAX	Integer type	Input	Upper bound of the number of times function evaluation can be done.
FTOL	Real type	Input	Convergence criterion concerning function value. If all values of $f_j(x)$ become FTOL or less, iteration ends. $0 \leq FTOL$
XTOL	Real type	Input	Convergence criterion concerning unknown parameter x _j . O≦XTOL
LDERIV	Integer type	Input	Specify whether to prepare subroutine MODELD which gives the first order derivative for x_i of f_j . 1: MODELD is used. 0: MODELD is not used. Even if LDERIV = 0, dummy subroutine MODELD must be prepared.
NPRINT	Integer type	Input	Specify what is to be printed by each iterative calculation. 0: Nothing is printed. 1: Sum of squares and x_i are printed. 2: Sum of square and x_i , f_j are printed. 3: Sum of squares and x_i , f_j , $\partial f_j/x_i$ are printed.
FF2	Real type	Output	Value of sum of squares.
F	Real type One-dimens ional array	Output	Value of residual <i>f</i> j.
DF	Real type Two-dimens ional array	Output	Value of first order derivative $\partial f_j/x_i$. DF(MAXM, N).
ITER	Integer type	Output	Number of actual iterations.
NFE	Integer type	Output	Actual number of function evaluations.
NDE	Integer type	Output	Number of evaluations of actual first order derivative (calling frequency of MODELD).

Argument	Type and kind (* 1)	Attribut e	Content
INFORM	Integer type	Output	Information on the convergence state is generated. When INFORM = 1, the condition in (2) in item (3), "Calculation method", is satisfied. Otherwise, INFORM = 0.
XO. DX	Real type One-dimens ional array	Work area	XQ (N), DX (N)
FO	Real type One-dimens ional array	Work area	FO (M)
DFO	Real type Two-dimens ional array	Work area	DFO (MAXH, N)
h, sl	Real type Two-dimens ional array	Work area	H (MAXN, N), SL (MAXN, N)
D, S, Y, R, W1. W2	Real type One-dimens ional array	Work area	D (N), S (N), Y (N), R (N), W1 (N), W2 (N)
W3, W4	Real type One-dimens ional array	Work area	W3 (M) , W4 (M)

(3) Calculation method

A local minimum value is determined based on the Biggs' quasi-Newton iteration method. The convergence test is controlled by the values of arguments XTOL and FTOL. Conversion ends when one of the following conditions are met:

(1) $|f_j(x)| < max(FTOL,\varepsilon), j=1,2,\cdots,m$

(2)
$$|f(x^{+}), \partial_{j}f(x^{+})\rangle| \leq \alpha_{1} ||f(x^{+})||_{2} ||\partial_{j}f(x^{+})||_{2}(j=1,2,\cdots,m)$$

And, $||x^{+}-x||_{\infty} \leq \alpha_{2}max(||x^{+}||_{\infty}, 1.0)$

where

$$\alpha_{1} = \begin{cases} 10^{-3} & \dots & (1) \\ 10^{-4/4} & \dots & (2) \end{cases}$$

263

263

 $\beta = \begin{cases} 16\varepsilon^{\frac{1}{2}} & \cdots & (1) \\ 32\varepsilon & \cdots & (2) \end{cases}$

 $\partial_i f_j(x) = (\partial f_j / \partial x_i)$

(1) is the treatment when f is given, and (2) is the treatment when f and $f \partial$ are given.

 ε is a constant which depends on the machine, and x^+ and x are the values of two continuing

264

xs in the iterative calculation.

(3) The number of iterations exceeds the upper bound value.

(4) The number of operations of function values exceeds the upper bound value.

(5) The value of x does not show a remarkable change.

(4) Example

```
DIMENSION X(20),F(100),DF(100,20),X0(20),DX(20),F0(100)
     DIMENSION DF0(100,20),H(20,20),SL(20,20),D(20),S(20)
     DIMENSION Y(20), R(20), W1(20), W2(20), W3(100), W4(100)
     MAXM = 100
     MAXN=20
     M=2
     N=2
     X(1) = -1.2
     X(2)=1.0
     ITMAX=100
     FTOL=1.0E-5
     XTOL=1.0E-5
     NFEMAX=5000
     LDERIV=1
     NPRINT=3
     WRITE(6,6000) MAXM, MAXN, M, N, ITMAX, NFEMAX, FTOL, XTOL,
    1
                    LDERIV, NPRINT
     WRITE(6,6100) (X(J),J=1,N)
     CALL NOLLS1(
    -MAXM,MAXN,M,N,X,ITMAX,NFEMAX,FTOL,XTOL,LDERIV,NPRINT
    --FF-F-DF-ITER-NFE-NDE-INFORM-XO-DX
    -,F0,DF0,H,SL,D,S,Y,R,W1,W2,W3,W4)
     WRITE(6,6200) ITER,NFE,NDE
6000 FORMAT(1H0,4X,'INITIAL VALUES',/1H ,10X,'MAXM=',I4
    -,"
          MAXN=*/I4/*
                        M=',12,' N=',12,' ITMAX=',14
    _ *
          NFEMAX=', I5/1H , 10X, 'FTOL=', 1PE16.7, '
                                                    XTOL="
    -,E16.7/1H ,10X,'LDERIV=',I2,'
                                    NPRINT=',I2)
6100 FORMAT(1H ,10X,'X=',1P5E16.7/(1H ,10X,5E16.7))
6200 FORMAT(1H0,10X'ITERATION',16/1H ,10X, MODELF-CALL',14
    -/1H /10X/'MODELD-CALL'/I4)
```

```
STOP
END
SUBROUTINE MODELF(M,N,X,F)
DIMENSION X(N),F(M)
F(1)=10.0*(X(1)*X(1)-X(2))
F(2) = 1.0 - X(1)
RETURN
END
SUBROUTINE MODELD(MAXM,M,N,X,DF)
DIMENSION X(N), DF(MAXM,N)
DF(1,1)=20.0*X(1)
DF(1,2) = -10.0
DF(2,1) = -1.0
DF(2,2)=0.0
RETURN
END
```

Output result

TN	ITIAL VALUES
	MAXM= 100 MAXN= 20 M= 2 N= 2 ITMAX= 100 NFEMAX= 5000
	FTOL = 9.9999997E-06 $XTOL = 9.9999997E-06$
	LDERIV = 1 NPRINT = 3
	X = -1.1999998E+00 1.0000000E+00
0	THE SUM OF SQUARES= 2.4199875E+01
•	X= -1.1999998E+00 1.000000E+00
	F = 4.3999863E + 00 2.1999998E + 00
	DF= -2.3999985E+01 -1.0000000E+01
	-1.000000E+00 0.0
1	THE SUM OF SQUARES= 2.1258163E+01
-	X= -1.0189848E+00 6.2381876E-01
	F= 4.1451035E+00 2.0189848E+00
	DF= -2.3999985E+01 -1.0000000E+01
	-1.000000E+00 0.0
2	THE SUM OF SQUARES= 3.9795551E+00
	X= -9.9474800E-01 9.9184918E-01
	F= -2.3256540E-02 1.9947472E+00
	:
	. :
	THE SUM OF SQUARES= 1.3669265E-08
	X= 9.9991751E-01 9.9982673E-01
	F= 8.2850456E-05 8.2492828E-05
	DF= 1.9940781E+01 -1.0000000E+01
	-1.000000E+00 0.0
21	THE SUM OF SQUARES= 3.6948222E-13
	X= 9.9999988E-01 9.9999970E-01
	F= 5.9604645E-07 1.1920929E-07
	DF= 1.9998337E+01 -1.0000000E+01
	-1.000000E+00 0.0

	ITERATION 21
	MODELF-CALL 38
	MODELD-CALL 21

Bibliography

1) Bartholomew-Biggs, M.C.; "The estimation of Hessian matrix in nonlinear least squares problems with non-zero residuals", Mathematical Programming 12, pp.67-80 (1977)

2) Kunio Tanabe; "Algorithm of nonlinear least squares method," Applied statistics, Vol. 9, No. 3,

pp. 119-140 (1981)

3) Kunio Tanabe and Sumie Ueda; "NOLLS1, A Fortran subroutine for nonlinear least squares by a quasi-Newton method", Computer Science Monographs, The Institute of Statistical Mathematics (1981).

(1987. 06. 17)

POLEQC/B/Z (Solution of a Polynomial Equation with Complex Coefficients)

Solution of a Polynomial Equation with Complex Coefficients

Programm	Tsuyako Miyakoda and Tatsuo Torii, and revised by Ichizo Ninomiya, June 1984
ed by	
Format	Subroutine language: FORTRAN; size: 172 lines

>67

(1) Outline

POLEQC/B/Z obtains all the roots of an algebraic equation with complex coefficients using the evaluation of the degree-reduced type.

(2) Directions

CALL POLEQC/B/Z (AA, NN, Z, ERR, W, ILL)

Argument	Type and	Attribut	Content
	kind (*1)	e	
AA	Complex	Input	The coefficients of algebraic equations are sequentially
	type		input in descending order of degree.
	One-dimens		AA(1) \neq 0 and size NN+1.
	ional		
	array		
NN	Integer	Input	Degree of algebraic equations. NN≧1
	type		
2	Complex	Output	The roots of algebraic equations are output in the reverse of
	type		the searching order.
	One-dimens		
	ional		
	array		

Argument	Type and	Attribut	Content
[kind (*1)	e	
ERR	Real type	Output	Error evaluation for each obtained solution
	One-dimens		
	ional		· ·
	array		
W	Complex	Work	The size is $3 \times (NN+1)$.
	type	area	
	One-dimens		· · · · ·
	ional		
	array		
ILL	Integer	Output	ILL=0: Normal termination.
	type	•	LL=30000: N<1 or AA(1)=0.
	1		ILL=K: The convergence may not occur even if the calculation
			is iterated 50 (100, 200) times when a reduced K-degree
			equation is processed.

1* For double (quadruple) precision subroutines, all complex types are assumed to be double (quadruple) precision complex types.

(3) Calculation method

Refer to paper (2). The method of obtaining approximate roots is fundamentally the same as in paper (1). And the convergence is improved by distributing the roots of the reduced polynomial evenly inside and outside of a unit circle each time. We obtain the root existing inside of the circle setting the initial value of the iterate as Z=O. When the order of coefficients is reversed and the root of a polynomial whose order is reversed from the original one is obtained, a minus sign is added to ERR.

(4) Example of use

С

TEST FOR POLEQB IMPLICIT REAL*8 (A-H,O-Z) REAL*4 XR,XI

268

COMPLEX*16 A(50),B(50),Z(50),X(50),T,WZ(200) DIMENSION ERR(50), TER(50) DO 60 N=1,10 DO 10 I=1,N A(I+1) = 0.D0XR=1.0-RANDOM(0) * 2.0XI=1.0-RANDOM(0)*2.010 X(I)=CMPLX(XR,XI) A(1)=1.D0 DO 50 I=1.N DO 30 J=2,I+1 30 B(J)=A(J)-A(J-1)*X(I) DO 40 J=2,I+1 40 A(J) = B(J)**50 CONTINUE** WRITE(6,1010)(I,X(I),I=1,N) CALL POLEQB(A,N,Z,WZ,ERR,ILL) DO 66 I=1/N-1 K = IDO 70 J=2,N IF(CDABS(Z(J)-X(I)).LT.CDABS(Z(K)-X(I))) K=J **70 CONTINUE** T=Z(K) Z(K) = Z(I)Z(I)=TSS=ERR(K) ERR(K) = ERR(I)ERR(I) = SS**66 CONTINUE** WRITE(6,1030) ILL DO 55 I=1,N TER(I) = CDABS(Z(I) - X(I))55 WRITE(6,1040)I,Z(I),TER(I),ERR(I) **60 CONTINUE** 1010 FORMAT(//21X,11HEXACT ROOTS//(15,2D23.15)) 1030 FORMAT(/25X,5HR0OTS,28X,3HTER,8X,3HEST,5H ILL=,I4/) 1040 FORMAT(1H ,14,2D23.15,2X,2D11.3) END

(5) Note

The obtained roots are stored in the reverse order. The error estimation of each root is for the degree-reduced polynominals. Therefore, the evaluation becomes rough gradually. By the by degree reduction, a cubic polynomial is finally obtained. The cubic equation is solved directly, so () is input to the error estimation for these 3 roots.

Bibliography

1) Tatsuo Torii and Tsuyako Miyakoda: A Root-finding Method for a Polynomial based upon the Cubic Hermitian Interpolation, Information Processing, Vol. 14, No. 4, pp. 253-259 (1973).

2) Tatsuo Torii and Tsuyako Miyakoda: A Root-finding Algorithm for a Complex Polynomial Based on the Taylor Expansion of Third Order, Information Processing, Vol. 15, No. 8, pp. 644-646 (1974).

(1987.06.22)

269

270

POLESB/C (Solution of Polynomial Equation with Complex Coefficients by the Model of Electrostatic Field)

Solution of Polynomial Equation with Complex Coefficients by the Model of Electrostatic field

Programm ed by	Tetsuya Sakurai, Tatsuo Torii, and Hiroshi Sugiura: September 1986	
Format	Subroutine language: FORTRAN; size: 255 lines	

(1) Outline

POLESB/C is a single or double precision subroutine for obtaining all the roots of polynomial equations with complex coefficients. Even if the roots include multiple and adjacent roots, they can be obtained in about the same calculation time as for single roots.

(2) Directions

CALL POLESB (A, N, Z, W, ILL)

Argument	Type and kind (*1)	Attribut e	Content
A	Complex type One-dimens ional array	Input	The coefficients of polynomial equations should be entered sequentially starting from the highest order coefficient. Not retained. A(1)≠0 and size N+1.
N	Integer type	Input	Order of polynomial equations. N≥1.
2	Complex type One-dimens ional array	Output	The roots of polynomial equations are output.
W	Integer type one-dimens ional array	Work area	The size is 3×(N+1).

Argument	Type and kind (*1)	Attribut e	Content
ILL	Integer type	Output	ILL=0: Normal termination. ILL=30000: N<1 or A(1)=0. ILL=K: If no convergence occurs even if the routine is iterated 50 times while an reduced k-th order equation is processed.

*1 All real and complex types should be of a double precision.

(3) Calculation method

This method solves the equation f(z)=0 by approximating f'(z)/f(x) using the rational expression obtained from the electrostatic field model. It has a quaternary convergence characteristic that is independent of the multiplicity of roots, and solves the quadratic equation for each iteration.

(4) Example of use

This is an example of solving $f(z)=z^5-iz^4-3z^3-3iz^2+4z-10i$.

```
*TEST FOR POLESB
      IMPLICIT REAL*8 (A-H,O-Z)
      COMPLEX*16 A(6),Z(5)
      REAL*8 W(18)
×
      N=5
      A(1) = (1.D0, 0.D0)
      A(2) = (0.D0, -1.D0)
      A(3) = (-3.D0, 0.D0)
      A(4) = (0.D0 - 3.D0)
      A(5)=(4.D0,0.D0)
      A(6) = (0.D0 - 10.D0)
±
      CALL POLESB(A,N,Z,W,ILL)
      WRITE (6,1000) (I,Z(I),I=1,N)
 1000 FORMAT(' ', I10, 2F25.15)
      STOP
      END
FORTRAN 77 COMPILER ENTERED
END OF COMPILATION
                   1.0000000000000000
         1
                   2.0000000000000000
                                             1.0000000000000000
         2
         3
                  -2.0000000000000000
                                             1.0000000000000000
                                            -1.0000000000000000
         4
                   1.00000000000000000
                  -1.00000000000000000
         5
                                            -1.0000000000000000
END OF GO>SEVERITY CODE=00
```

271

(5) Note

The obtained roots are stored in the reverse order.

Bibliography

1) Tetsuya Sakurai, Tatsuo Torii, and Hiroshi Sugiura; Solution of Polynomial Equations by Electrostatic Field Interpretation, Proceedings of Symposium of 33-rd Information Processing Society of Japan, pp. 1849-1850, 1986

(1987. 07. 28)

QUADRC/B/Z, CUBICC/B/Z, and QUARTC/B/Z (Solution of Low Order Polynomial Equations with Complex Coefficients)

Solution of Low Order Polynomial Equations with Complex Coefficients

Programm	Tsuyako Miyakoda and Tatsuo Torii, and revised by Ichizo Ninomiya,
ed by	June 1984
Format	Subroutine language: FORTRAN; size: 22, 63, and 46 lines respectively

(1) Outline

QUADRC(B, Z), CUBICC(B, Z), and QUARTC(B, Z) are the single (double or quadruple) precision subroutine for calculating all the roots of quadratic, cubic, and quartic polynomial equations with complex coefficients.

(2) Directions

CALL QUADRC/B/2 (C, Z, ILL)

CALL CUBICC/B/2 (C, Z, ILL)

CALL QUARTC/B/Z (C, Z, ILL)

Argument	Type and	Attribut	Content
	kind (*1)	e	
C	Complex	Input	Coefficient of polynomial equations. Coefficients should be
	type		input in descending order from the highest
	One-dimens		
	ional		
	array		

Argument	Type and	Attribut	Content
	kind (*1)	e	
Z	Complex	Output	Roots of polynomial equations are output.
	type		•
	One-dimens		
	ional		
	array		
ILL	Integer	Output	ILL=0: Normal termination
	type		ILL=30000: C(1)=0.

*1 For double (quadruple) precision subroutines, all complex types should be double (quadruple) precision complex types.

(3) Calculation method

1. Quadratic equations conform to the root formulas and the relationship between the roots and coefficients.

2. Cubic equations conform to the modified Cardano method by Hirano $^{(1)}$.

3. Quartic equations conform to the Ferrari method.

Bibliography

1) Sugayasu Hirano: Numerical Solution of Polynomial Equations by Floating Point Arithemetic, doctorial thesis, 1980.

(1987.07.21)

QUADRS/D/Q/,CUBICS/D/Q,QUARTS/D/Q (Solution of low-order polynomial

equations with real coefficients)

Solution of Low Order Polynomial Equations with Real Coefficients

Programm ed by	Ichizo Ninomiya; April 1977		
Format	Subroutine language; FORTRAN Size; 24. 27. 27. 40. 41. 41. 46. 47. and 47 lines respectively		

(1) Outline

QUADRS (D, Q), CUBICS (D, Q), and QUARTS (D, Q) are single (double, quadruple) precision subroutines used to calculate all roots of the quadratic, cubic, and quartic equations (real coefficients) respectively.

(2) Directions

	$ALL \begin{bmatrix} QUADRS/D/Q\\ CUBICS/D/Q\\ QUARTS/D/Q \end{bmatrix} (A, X, Y, ILL$				
CALL	CUBICS/D/Q	(A, X, Y, ILL)			
	LQUARTS/D/Q-J				

Argument	Type and kind (≭1)	Attribut e	Content
A	Real type One-dimens ional array	Input	Coefficients for a polynomial equation is input in descending order of the degree. A(1)≠O
X	Real type One-dimens ional array	Output	The real parts of roots of the polynomial equation are output.
Y	Real type One-dimens ional array	Output	The imaginary parts of the roots of the polynomial equation is output.
ILL	Integer type	Output	ILL=0: Normal termination. ILL=30000: A(1) = 0.

*1 For double (quadruple) subroutines, real types are all changed to double (quadruple) precision real types.

(3) Calculation method

276

1. For a quadratic equation, only the root with the larger absolute value is determined by the quadratic formula and the other root is determined by using the relation between the product of the two roots and the coefficients.

2. A cubic equation is solved by the Cardano's method.

3. A quartic equation is solved by the Ferrari's method.

(4) Note

Fifth or higher degree equations can be solved by using GJMNKS/D/Q.

(1987.07.24) (1987.08.21)

RTFNDS/D (Solution of a nonlinear equation)

Solution of a Nonlinear Equation

Programm	Ichizo Ninomiya; August 1984
ed by	
Format	Subroutine language; FORTRAN Size; 274 lines each

(1) Outline

RTFNDS and RTFNDD calculates all roots in the given interval of the given nonlinear equation.

(2) Directions

CALL RTFNDS (A, B, FUN, C, EPS, EPSZ, L, NR, RT, NF, BD, ILL)

Argument	Type and	Attribut	Content
	kind (*1)	e	
A	Real type	Input	Left end of an interval. A <b< td=""></b<>
В	Real type	Input	Right end of an interval. A <b< td=""></b<>
FUN	Real type	Input	Function subprogram prepared by the user for f(x) when the
	Function		equation to be solved is f(x)=0.
	subprogram		
C.	Real type	Input	Constant for Chebyshev test. Default value 3 is given when
			C≦0.
EPS	Real type	Input	Constant ε for root isolation test. The standard range is
		· .	10 ⁻¹ ~10 ⁻⁴ .
EPSZ	Real type	Input	Constant ez for root precision test.
L	Integer	Input	Size for arrays RT and BD. About 100 is enough in most
-	type		cases.
NR	Integer	Output	Total number of roots
	type		

Argument	Type and	Attribut	Content
	kind (*1)	e	
RT	Real type	Output	NR roots are output in ascending order. This argument is
	One-dimens	•	also used as a work area during calculation
	ional		
	аггау		
NF	Integer	Output	Number of evaluations of function f(x)
	type		
BD	Real type	Work	Size 4×NR is needed.
	One-dimens	агеа	
	ional		
	array		
ILL	Integer	Output *	Error code.
	type		ILL=0: Normal termination.
			ILL=20000: L was so small that the capacity of array RT or BD
			was exceeded. Calculation has discontinued.
			ILL=30000: A≦B or L<2.

*1 For double precision subroutines, real types are all changed to be double precision real types.

(3) Calculation method

1. Sufficiently small intervals, each containing one of all roots in the interval (A, B), are detected by the B. Jones' root isolation method ⁽¹⁾. When each interval is (X1, X2), then $|X2-X1| \leq \varepsilon \cdot Xm$ holds, where Xm=max(|X1+X2|/2, 1).

2. The root in each small interval obtained in 1. is calculated by the Popovski's method $^{(2)}$.

(4) Example

IMPLICIT REAL*8 (A-H,O-Z) DIMENSION RT(100),BD(100) EXTERNAL FUN A=0.0D0 B=15.D0 EPS=1.D-2

```
EPSZ=1.D-8
C=3.D0
L=100
CALL RTFNDD(A,B,FUN,C,EPS,EPSZ,L,NR,RT,NF,BD,ILL)
WRITE(6,600) NR,(RT(I),I=1,NR)
600 FORMAT(5X,'NR=',I4/(5D16.8))
STOP
END
FUNCTION FUN(X)
IMPLICIT REAL*8 (A-H,O-Z)
DATA PI /3.141592653589794D0/
FUN=DSIN(PI*X/14.D0)+DSIN(PI*X*1.5D0)
RETURN
END
```

```
(5) Notes
```

1. Constant C is used in Chebyshev's inequality $m^2 \ge Cv$ to test that a certain interval contains no root, where m and v are average value and variance of the function values in that interval respectively. If this inequality is satisfied, the statistical hypothesis "a root exists in this interval" is rejected with the level of significance 1/C or below. C=3.0 is often a suitable value. If C is too small, there is a danger of misjudging an existent root as "inexistent." Conversely, if C is too large, judgment is done too carefully, increasing the number of function evaluations.

2. Selection of the constant ε for root isolation test is also very important. If ε is too large, roots cannot be isolated completely to one another. If it is too small, the number of function evaluations increases. Once the roots have been isolated, subsequent calculation is done very fast regardless of εz . Therefore, assign ε a large value enough to isolate the roots.

3. If $|\delta z| \leq \varepsilon z \cdot \max(|z|, 1)$, where z is roots and δz is their correction, is established, convergence is regarded to be completed. Note, therefore, that $|f(z)| \leq \varepsilon z$ is not always established.

Bibliography

1) B. Jones et al.; "Root Isolation For Transcendental Equations," Computer Journal, Vol.27, pp. 184-187 (1984)

2) D. B. Popovski; "A Note on King's Method F for Finding a Bracketed Roo," Computing, Vol.29, pp.355-359 (1980)

(1987. 06. 24) (1987. 08. 08)