27.12.2012 Views

Eclipse Engineering Guide

Eclipse Engineering Guide

Eclipse Engineering Guide

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Engineering</strong><br />

<strong>Guide</strong>


ECLIPSE<br />

COMBUSTION<br />

ENGINEERING<br />

GUIDE<br />

Published by<br />

<strong>Eclipse</strong>, Inc.


Copyright 1986<br />

by<br />

<strong>Eclipse</strong>, Inc.<br />

1665 Elmwood Road<br />

Rockford, Illlinois 61103<br />

All Rights Reserved.<br />

Eighth Edition<br />

EFE-825, 8/04<br />

Printed in the United States of America


CONTENTS<br />

1. Orifices & Flows<br />

Coefficients of Discharge for Various Types of Orifices . . . . . . . . . . . . . . . . . . . . 4<br />

Orifice Flow Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4<br />

Orifice Capacity Tables, Low Pressure Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5<br />

Orifice Capacity Tables, High Pressure Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9<br />

Piping Pressures Losses, Air . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12<br />

Piping Pressure Losses, Natural Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13<br />

High Pressure (Compressible) Flow of Natural Gas in Pipes . . . . . . . . . . . . . . . . . 14<br />

Equivalent Lengths of Standard Pipe Fittings & Valves . . . . . . . . . . . . . . . . . . . . 14<br />

Simplified Selection of Air, Gas and Mixture Piping Size . . . . . . . . . . . . . . . . . . . 15<br />

Quick Method for Sizing Air Piping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15<br />

Sizing Branch Piping by the Equal Area Method . . . . . . . . . . . . . . . . . . . . . . . . . 16<br />

C v Flow Factor Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16<br />

Duct Velocity & Flow Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17<br />

2. Fan Laws & Blower Application <strong>Engineering</strong><br />

Theoretical Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18<br />

Fan Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19<br />

Blower Horsepower Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20<br />

Blowers Used as Suction Fans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20<br />

The Effect of Pressure on Air . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20<br />

The Effect of Altitude on Air . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20<br />

The Effect of Temperature on Air . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21<br />

3. Gas<br />

Physical Properties of Commercial Fuel Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . 22<br />

Combustion Properties of Commercial Fuel Gases<br />

Air/Gas Ratio, Flammability Limits, Ignition Temperature & Flame Velocity . . . 22<br />

Heating Value, Heat Release & Flame Temperature . . . . . . . . . . . . . . . . . . . . . 23<br />

Combustion Products & CO 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23<br />

Equivalent Propane/Air & Butane/Air Btu Tables . . . . . . . . . . . . . . . . . . . . . . . . . 24<br />

Propane/Air & Butane/Air Mixture Specifications . . . . . . . . . . . . . . . . . . . . . . . . 24<br />

4. Oil<br />

Fuel Oil Specifications Per ANSI/ASTM D 396-79 . . . . . . . . . . . . . . . . . . . . . . . 25<br />

Typical Properities of Commercial Fuel Oils in the U.S. . . . . . . . . . . . . . . . . . . . . 26<br />

Fuel Oil Viscosity Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26<br />

°API Vs. Oil Specific Gravity & Gross Heating Value . . . . . . . . . . . . . . . . . . . . . 27<br />

Oil Piping Pressure Losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27<br />

Oil Temperature Drop in °F Per 100 Foot of Pipe . . . . . . . . . . . . . . . . . . . . . . . . . 29<br />

5. Steam & Water<br />

Boiler Terminology & Conversion Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30<br />

Properties of Saturated Steam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30<br />

Btu/Hr. Required to Generate One Boiler H.P. . . . . . . . . . . . . . . . . . . . . . . . . . . . 31<br />

Sizing Water Piping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31<br />

Sizing Steam Piping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31<br />

2


6. Electrical Data<br />

Electrical Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33<br />

Electrical Wire – Dimensions & Ratings . . . . . . . . . . . . . . . . . . . . . . . . . 33<br />

NEMA Size Starters for Motors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33<br />

NEMA Enclosures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34<br />

Electric Motors – Full Load Current, Amperes . . . . . . . . . . . . . . . . . . . . . . 34<br />

7. Process Heating<br />

Heat Balances – Determining the Heat Needs of Furnaces and Ovens . . . . 35<br />

Thermal Properties of Various Materials . . . . . . . . . . . . . . . . . . . . . . . . . . .37<br />

Thermal Capacities of Metals & Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40<br />

Industrial Heating Operations – Temperature & Heat Requirements . . . . . . 41<br />

Crucibles for Metal Melting – Dimensions & Capacities . . . . . . . . . . . . . . 43<br />

Radiant Tubes – Sizing & Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43<br />

Heat Losses, Heat Storage & Cold Face Temperatures – Refractory Walls . 44<br />

Air Heating & Fume Incineration Heat Requirements<br />

Using “Raw Gas” Burners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45<br />

Using Burners with Separate Combustion Air Sources . . . . . . . . . . . . . . . 45<br />

Fume Incineration – Selection & Sizing <strong>Guide</strong>lines . . . . . . . . . . . . . . . . . . 46<br />

Liquid Heating – Burner Sizing <strong>Guide</strong>lines . . . . . . . . . . . . . . . . . . . . . . . . . 47<br />

Black Body Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49<br />

Thermocouple Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49<br />

Orton Standard Pyrometric Cone Temperature Equivalents . . . . . . . . . . . . . 50<br />

8. Combustion Data<br />

Available Heat for Birmingham Natural Gas . . . . . . . . . . . . . . . . . . . . . . . . 51<br />

Available Heat for Various Fuel Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51<br />

Flue Gas Analysis Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52<br />

Theoretical Flame Tip Temperature vs. Excess Air . . . . . . . . . . . . . . . . . . . 52<br />

Heat Transfer Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52<br />

Thermal Head & Cold Air Infiltration into Furnaces . . . . . . . . . . . . . . . . . . 53<br />

Furnace Flue Sizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53<br />

9. Mechanical Data<br />

Dimensional and Capacity Data – Schedule 40 Pipe . . . . . . . . . . . . . . . . . . 54<br />

Dimensions of Malleable Iron Threaded Fittings . . . . . . . . . . . . . . . . . . . . . 55<br />

Sheet Metal Gauges & Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56<br />

Steel Wire Gauges & Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56<br />

Circumferences & Areas of Circles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57<br />

Drill Size Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59<br />

Tap Drill Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60<br />

Drilling Templates – Pipe Flanges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60<br />

10. Abbreviations & Symbols<br />

Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61<br />

Electrical Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62<br />

11. Conversion Factors<br />

General Conversion Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64<br />

Temperature Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68<br />

Pressure Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69<br />

Index . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72<br />

Tech Notes<br />

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73<br />

3


Sharp Edge<br />

C d = 0.60<br />

The flow of air or gas through an orifice can be determined<br />

by the formula<br />

h<br />

Q = 1658.5 x Ax C g d<br />

where Q =flow, cfh<br />

A =area of the orifice, sq. in. (see Pages 57 & 58)<br />

Cd =discharge coefficient of the orifice<br />

(see above)<br />

h =pressure drop across the orifice,″ w.c.<br />

g =specific gravity of the gas, based on standard<br />

air at 1.0 (see Pages 19, 20, & 22 thru 24.)<br />

1. Sizing Orifice Plates<br />

To calculate the size of an orifice plate, this equation can<br />

be rearranged as follows:<br />

A= Q x<br />

g<br />

1658.5 x C h<br />

d<br />

2. Effect of Changes in Operating Conditions on<br />

Flow through an Orifice – General Relationship<br />

Q2 A2 Cd2 h2 g1 = x x x<br />

Q1 A1 Cd1 h g 1 2<br />

If any of the factors in this relationship remain constant<br />

from Condition 1 to Condition 2, they can be dropped out of<br />

the equation, yielding these simplified relationships. Each of<br />

them assumes only one factor has been changed.<br />

2a.Flow Change vs. Orifice Area Change<br />

Q2 A2 =<br />

Q1 A1 2b.Flow Change vs. Pressure Drop Change<br />

Q2 h2 =<br />

Q 1<br />

Reentrant<br />

0.72<br />

h 1<br />

This is the so-called “square root law.”<br />

2c.Flow Change vs. Specific Gravity Change<br />

Q2 g1 =<br />

Q g 1 2<br />

CHAPTER 1 – ORIFICES & FLOWS<br />

COEFFICIENTS OF DISCHARGE FOR VARIOUS TYPES OF ORIFICES<br />

Round Edge<br />

0.97<br />

Short Pipe<br />

0.82<br />

Converging<br />

depends on angle. See<br />

curve at right.<br />

Coefficient of Discharge (Cd )<br />

0.95<br />

4<br />

0.93<br />

0.91<br />

0.89<br />

0.87<br />

0.85<br />

ORIFICE FLOW FORMULAS<br />

3.Effect of Changes in Operating Conditions on Pressure<br />

Drop Across an Orifice–General Relationship:<br />

2 h2 Q2 = x A1 2<br />

x Cd1 2<br />

x g2 ( h1 Q ) ( ) ( )<br />

1 A2 Cd2 g1 Again, if any of the factors in this equation are unchanged<br />

from Condition 1 to Condtion 2, they can be dropped out to<br />

form simplified relationships:<br />

3a.Pressure Drop Change vs. Flow Change<br />

2 h2 Q2 =<br />

h 1<br />

Q 1<br />

This is the square root law, stated another way.<br />

3b.Pressure Drop Change vs. Orifice Area Change<br />

2 h2 A1 =<br />

h 1<br />

A 2<br />

3c.Pressure Drop Change vs. Specific Gravity Change<br />

h2 g2 =<br />

h 1<br />

Orifices and Nozzles Discharging from Plenum<br />

0.83<br />

0 2 4 6 8 10 12 14 16 18 20 22 24<br />

Angle of Convergence in Degrees<br />

(<br />

(<br />

g 1<br />

)<br />

)<br />

This relationship may not apply where specific gravity has<br />

been changed by a change in gas temperature. See Page 25.<br />

4. Effect of Changes in Gas Temperature on Flow and<br />

Pressure Drop through an Orifice<br />

Raising a gas’s temperature has two effects – it increases<br />

the volume and decreases the specific gravity, both in proportion<br />

to the ratio of the absolute temperatures. If we are concerned<br />

with changes in mass flows (scfh), these relationships<br />

must be used:<br />

4a.Flow Change vs. Temperature Change<br />

Q2 Q1 =<br />

TADS1 TABB2 4b.Pressure Drop Change vs. Temperature Change<br />

h2 TABS2 h<br />

=<br />

1 TABS1 to maintain constant scfh<br />

NOTE: The loss is least at 13˚


Flows in these tables are based on an orifice pressure drop<br />

of 1″ w.c. and a coefficient of discharge (C d ) of 1.0.<br />

To determine flow through an orifice of a known diameter:<br />

1. Locate the orifice diameter in the left-hand column of the<br />

table.<br />

2. Read across to the column corresponding to the gas being<br />

measured. This is the uncorrected flow.<br />

3. Multiply this flow by the coefficient of discharge of the<br />

orifice. (see page 4)<br />

4. Correct this flow to the pressure drop actually measured,<br />

using the square root law (equation 2b, page 4).<br />

Example: What is the flow of natural gas through a 7/32"<br />

diameter sharp edge orifice at 6″ w.c. pressure drop?<br />

From the table, uncorrected natural gas flow through a<br />

7/32" orifice is 80.7 cfh at 1″ w.c.<br />

C d for a sharp edge orifice is 0.60 (page 1.1), so corrected<br />

flow is 80.7 x 0.60 = 48.4 cfh at 1" w.c. pressure drop.<br />

Per equation 2b, page 4,<br />

Q 2 = h 2 or Q2 = Q 1 x h 2<br />

Q 1 h 1 h 1<br />

Substituting the numbers for this case:<br />

Q 2 = 48.4 x<br />

6″ w.c. = 119 cfh<br />

1″ w.c.<br />

ORIFICE CAPACITY TABLES<br />

LOW PRESSURE GAS<br />

CAPACITY, CFH @ 1″ W.C. PRESSURE DROP<br />

AND COEFFICIENT OF DISCHARGE OF 1.0<br />

5<br />

To determine the orifice size to handle a known flow at a<br />

specified pressure drop, reverse the process:<br />

1. Correct the known flow to a pressure drop of 1″ w.c.,<br />

using the square root law.<br />

2. Divide the flow by the orifice coefficient.<br />

3. In the orifice table, locate the column for the gas under<br />

consideration. In this column, locate the flow closest to<br />

the corrected value found in step 2.<br />

4. Read to the left to find the corrected orifice size.<br />

Example: Size a gas jet for a mixer. Entrance to the jet orifice<br />

converges at a 15° included angle. Gas is propane. Required<br />

flow is 120 cfh at 30″ w.c. pressure drop.<br />

Per equation 2b, page 4,<br />

Q 2 = h 2 , or Q2 = Q1 x h 2<br />

Q 1 h 1 h 1<br />

Substituting the numbers for this case:<br />

Q2 = 120 x 1 = 22 cfh<br />

30<br />

From page 1.1, Cd for a 15° convergent nozzle is 0.94, so<br />

corrected flow is<br />

22 ÷ 0.94 = 23.4 cfh.<br />

Locate 23.4 cfh in the propane column of the orifice<br />

table and then read to the left to find a #26 drill size orifice.<br />

Natural Propane/<br />

Drill Dia. Gas Air Air Propane Butane<br />

Size In. Area 0.60 Sp. Gr. 1.0 Sp. Gr. 1.29 Sp. Gr. 1.5 Sp. Gr. 2.0 Sp. Gr.<br />

80 .0135 .000143 .308 .239 .210 .195 .169<br />

79 .0145 .000165 .355 .275 .242 .225 .195<br />

1/64 .0156 .00019 .409 .317 .279 .259 .224<br />

78 .016 .00020 .431 .334 .294 .272 .236<br />

77 .018 .00025 .538 .417 .367 .340 .295<br />

76 .020 .00031 .668 .517 .455 .422 .366<br />

75 .021 .00035 .754 .584 .514 .477 .413<br />

74 .0225 .00040 .861 .668 .587 .545 .472<br />

73 .024 .00045 .969 .751 .661 .613 .531<br />

72 .025 .00049 1.06 .817 .720 .667 .578<br />

71 .026 .00053 1.14 .884 .778 .722 .625<br />

70 .028 .00062 1.33 1.03 .910 .844 .731<br />

69 .0292 .00067 1.44 1.12 .984 .912 .790<br />

68 .030 .00075 1.61 1.25 1.10 1.02 .885<br />

1/32 .0312 .00076 1.64 1.27 1.12 1.04 .896<br />

67 .032 .00080 1.72 1.33 1.17 1.09 .944<br />

66 .033 .00086 1.85 1.43 1.26 1.17 1.01<br />

65 .035 .00092 2.07 1.60 1.41 1.31 1.13<br />

64 .036 .00102 2.20 1.70 1.50 1.39 1.20<br />

63 .037 .00108 2.33 1.80 1.59 1.47 1.27<br />

62 .038 .00113 2.43 1.88 1.66 1.54 1.33<br />

61 .039 .00119 2.56 1.98 1.75 1.62 1.40<br />

60 .040 .00126 2.71 2.10 1.85 1.72 1.49<br />

59 .041 .00132 2.84 2.20 1.94 1.8 1.56<br />

58 .042 .00138 2.97 2.30 2.03 1.88 1.63


CAPACITY, CFH @ 1″ W.C. PRESSURE DROP<br />

AND COEFFICIENT OF DISCHARGE OF 1.0<br />

Natural Propane/<br />

Drill Dia. Gas Air Air Propane Butane<br />

Size In. Area 0.60 Sp. Gr. 1.0 Sp. Gr. 1.29 Sp. Gr. 1.5 Sp. Gr. 2.0 Sp. Gr.<br />

57 .043 .00145 3.12 2.42 2.13 1.97 1.71<br />

56 .0465 .00170 3.66 2.84 2.5 2.32 2.01<br />

3/64 .0469 .00173 3.73 2.89 2.54 2.36 2.04<br />

55 .0520 .00210 4.52 3.50 3.08 2.86 2.48<br />

54 .0550 .0023 4.95 3.84 3.38 3.13 2.71<br />

53 .0595 .0028 6.03 4.67 4.11 3.81 3.30<br />

1/16 .0625 .0031 6.68 5.17 4.55 4.22 3.66<br />

52 .0635 .0032 6.89 5.34 4.7 4.36 3.77<br />

51 .0670 .0035 7.54 5.84 5.14 4.77 4.13<br />

50 .070 .0038 8.18 6.34 5.58 5.18 4.48<br />

49 .073 .0042 9.04 7.01 6.17 5.72 4.95<br />

48 .076 .0043 9.26 7.17 6.31 5.86 5.07<br />

5/64 .0781 .0048 10.3 8.01 7.05 6.54 5.66<br />

47 .0785 .0049 10.5 8.17 7.2 6.67 5.78<br />

46 .081 .0051 11. 8.51 7.49 6.95 6.02<br />

45 .082 .0053 11.4 8.84 7.78 7.22 6.25<br />

44 .086 .0058 12.5 9.67 8.52 7.9 6.84<br />

43 .089 .0062 13.4 10.3 9.11 8.44 7.31<br />

42 .0935 .00687 14.8 11.4 10. 9.36 8.1<br />

3/32 .0937 .0069 14.9 11.5 10.1 9.40 8.14<br />

41 .096 .0072 15.5 12. 10.6 9.81 8.49<br />

40 .098 .0075 16.2 12.5 11. 10.2 8.85<br />

39 .0995 .0078 16.8 13. 11.5 10.6 9.2<br />

38 .1015 .0081 17.4 13.5 11.9 11.0 9.55<br />

37 .104 .0085 18.3 14.2 12.5 11.6 10.<br />

36 .1065 .0090 19.4 15. 13.2 12.3 10.6<br />

7/64 .1093 .0094 20.2 15.7 13.8 12.8 11.1<br />

35 .110 .0095 20.5 15.8 14. 12.9 11.2<br />

34 .111 .0097 20.9 16.2 14.2 13.2 11.4<br />

33 .113 .0100 21.5 16.7 14.7 13.6 11.8<br />

32 .116 .0106 22.8 17.7 15.6 14.4 12.5<br />

31 .120 .0113 24.3 18.8 16.6 15.4 13.3<br />

1/8 .125 .0123 26.4 20.4 18. 16.7 14.5<br />

30 .1285 .0130 27.9 21.6 19. 17.6 15.3<br />

29 .136 .0145 31.1 24.1 21.2 19.7 17.<br />

28 .1405 .0155 33.3 25.8 22.7 21. 18.2<br />

9/64 .1406 .0156 33.5 25.9 22.8 21.2 18.3<br />

27 .144 .0163 35. 27.1 23.9 22.1 19.2<br />

26 .147 .0174 37.3 28.9 25.5 23.6 20.4<br />

25 .1495 .0175 37.5 29.1 25.6 23.7 20.6<br />

24 .152 .0181 38.8 30.1 26.5 24.6 21.3<br />

23 .154 .0186 39.9 30.9 27.2 25.2 21.9<br />

5/32 .1562 .0192 41.2 31.9 28.1 26.1 22.6<br />

22 .157 .0193 41.4 32.1 28.2 26.2 22.7<br />

21 .159 .0198 42.5 32.9 29. 26.9 23.3<br />

20 .161 .0203 43.6 33.7 29.7 27.5 23.9<br />

19 .166 .0216 46.3 35.9 31.6 29.3 25.4<br />

18 .1695 .0226 48.5 37.6 33.1 30.7 26.6<br />

11/64 .1719 .0232 49.8 38.6 33.9 31.5 27.3<br />

17 .175 .0235 50.4 39.1 34.4 31.9 27.6<br />

16 .177 .0246 52.8 40.9 36. 33.4 28.9<br />

15 .180 .0254 54.5 42.2 37.2 34.5 29.9<br />

14 .182 .0260 55.8 43.2 38. 35.3 30.6<br />

13 .185 .0269 57.7 44.7 39.4 36.5 31.6<br />

3/16 .1875 .0276 59.2 45.9 40.4 37.5 32.4<br />

6


CAPACITY, CFH @ 1″ W.C. PRESSURE DROP<br />

AND COEFFICIENT OF DISCHARGE OF 1.0<br />

Natural Propane/<br />

Drill Dia. Gas Air Air Propane Butane<br />

Size In. Area 0.60 Sp. Gr. 1.0 Sp. Gr. 1.29 Sp. Gr. 1.5 Sp. Gr. 2.0 Sp. Gr.<br />

12 .189 .02805 60.2 46.6 41. 38.1 33.<br />

11 .191 .02865 61.5 47.6 41.9 38.9 33.7<br />

10 .1935 .0294 63.1 48.9 43. 39.9 34.6<br />

9 .196 .0302 64.8 50.2 44.2 41. 35.5<br />

8 .199 .0311 66.7 51.7 45.5 42.2 36.5<br />

7 .201 .0316 67.8 52.5 46.2 42.9 37.1<br />

13/64 .2031 .0324 69.5 53.8 47.4 44. 38.1<br />

6 .204 .0327 70.2 54.3 47.8 44.4 38.4<br />

5 .2055 .0332 71.2 55.2 48.6 45.1 39.<br />

4 .209 .0343 73.6 57.0 50.2 46.5 40.3<br />

3 .213 .0356 76.4 59.2 52.1 48.3 41.8<br />

7/32 .2187 .0376 80.7 62.5 55. 51. 44.2<br />

2 .221 .0384 82.4 63.8 56.2 52.1 45.1<br />

1 .228 .0409 87.8 68. 59.8 55.5 48.1<br />

A .234 .0430 92.3 71.5 62.9 58.4 50.5<br />

15/64 .2343 .0431 92.5 71.6 63.1 58.5 50.7<br />

B .238 .0444 95.3 73.8 65. 60.3 52.2<br />

C .242 .0460 98.7 76.5 67.3 62.4 54.1<br />

D .246 .0475 102. 78.9 69.5 64.5 55.8<br />

1/4 .250 .0491 105. 81.6 71.8 66.6 57.7<br />

F .257 .0519 111. 86.3 75.9 70.4 61.<br />

G .261 .0535 115. 88.9 78.3 72.6 62.9<br />

17/64 .2656 .0554 119. 92.1 81.1 75.2 65.1<br />

H .266 .0556 119.3 92.4 81.4 75.4 65.3<br />

I .272 .0580 124. 96.4 84.9 78.7 68.2<br />

J .277 .0601 129. 99.9 87.9 81.6 70.6<br />

K .281 .0620 133. 103. 90.7 84.1 72.9<br />

9/32 .2812 .0621 133.2 103.2 90.9 84.3 73.<br />

L .290 .0660 142. 110. 96.6 89.6 77.6<br />

M .295 .0683 147. 113. 99.9 92.7 80.3<br />

19/64 .2968 .0692 148. 115. 101. 93.9 81.3<br />

N .302 .0716 154. 119. 105. 97.2 84.1<br />

5/16 .3125 .0767 165. 127. 112. 104. 90.1<br />

O .316 .0784 168. 130. 115. 106. 92.1<br />

P .323 .0820 176. 136. 120. 111. 96.4<br />

21/64 .3281 .0846 182. 141. 124. 115. 99.4<br />

Q .332 .0866 186. 144. 127. 118. 102.<br />

R .339 .0901 193. 150. 132. 122. 106.<br />

11/32 .3437 .0928 199. 154. 136. 126. 109.<br />

S .348 .0950 204. 158. 139. 129. 112.<br />

T .358 .1005 216. 167. 147. 136. 118.<br />

23/64 .3593 .1014 218. 169. 148. 138. 119.<br />

U .368 .1063 228. 177. 156. 144. 125.<br />

3/8 .375 .1104 237. 184. 162. 150. 130.<br />

V .377 .1116 239. 185. 163. 151. 131.<br />

W .386 .1170 251. 194. 171. 159. 137.<br />

25/64 .3906 .1198 257. 199. 175. 163. 141.<br />

X .397 .1236 265. 205. 181. 168. 145.<br />

Y .404 .1278 274. 212. 187. 173. 150.<br />

13/32 .4062 .1296 278. 215. 190. 176. 152.<br />

Z .413 .1340 288. 223. 196. 182. 157.<br />

27/64 .4219 .1398 300. 232. 205. 190. 164.<br />

7/16 .4375 .1503 322. 250. 220. 204. 177.<br />

29/64 .4531 .1613 346. 268. 236. 219. 190.<br />

15/32 .4687 .1726 370. 287. 253. 234. 203.<br />

7


CAPACITY, CFH @ 1″ W.C. PRESSURE DROP<br />

AND COEFFICIENT OF DISCHARGE OF 1.0<br />

Natural Propane/<br />

Drill Dia. Gas Air Air Propane Butane<br />

Size In. Area 0.60 Sp. Gr. 1.0 Sp. Gr. 1.29 Sp. Gr. 1.5 Sp. Gr. 2.0 Sp. Gr.<br />

31/64 .4843 .1843 395. 306. 270. 250. 217.<br />

1/2 .50 .1963 421. 326. 287. 266. 231.<br />

33/64 .5156 .2088 448. 347. 306. 283. 245.<br />

17/32 .5312 .2217 476. 368. 324. 301. 261.<br />

35/64 .5468 .2349 504. 390. 344. 319. 276.<br />

9/16 .5625 .2485 533. 413. 364. 337. 292.<br />

37/64 .5781 .2625 563. 436. 384. 356. 308.<br />

19/32 .5937 .2769 594. 460. 405. 376. 325.<br />

39/64 .6093 .2916 626. 485. 427. 396. 343.<br />

5/8 .625 .3068 658. 510. 449. 416. 361.<br />

41/64 .6406 .3223 691. 536. 472. 437. 379.<br />

21/32 .6562 .3382 725. 562. 495. 459. 397.<br />

43/64 .6718 .3545 760. 589. 519. 481. 417.<br />

11/16 .6875 .3712 796. 617. 543. 504. 436.<br />

45/64 .7031 .3883 833. 645. 568. 527. 456.<br />

23/32 .7187 .4057 870. 674. 594. 551. 477.<br />

47/64 .7343 .4236 909. 704. 620. 575. 498.<br />

3/4 .750 .44179 948. 734. 646. 599. 519.<br />

49/64 .7656 .46040 988. 765. 674. 625. 541.<br />

25/32 .7813 .47937 1029. 796. 701. 651. 563.<br />

51/64 .7969 .49873 1070. 829. 730. 677. 586.<br />

13/16 .8125 .51849 1112. 862. 759. 704. 609.<br />

53/64 .8281 .53862 1156. 895. 788. 731. 633.<br />

27/32 .8438 .55914 1200. 929. 818. 759. 657.<br />

55/64 .8594 .5800 1244. 964. 849. 787. 682.<br />

7/8 .8750 .60132 1290. 999. 880. 816. 707.<br />

29/32 .9062 .64504 1384. 1072. 944. 875. 758.<br />

15/16 .9375 .69029 1481. 1147. 1010. 937. 811.<br />

31/32 .9688 .73708 1581. 1225. 1079. 1000. 866.<br />

1 1.0 .7854 1685. 1305. 1149. 1066. 923.<br />

1-1/16 1.063 .88664 1902. 1474. 1297. 1203. 1042.<br />

1-1/8 1.125 .99402 2133. 1652. 1455. 1349. 1168.<br />

1-3/16 1.188 1.1075 2376. 1841. 1621. 1503. 1302.<br />

1-1/4 1.250 1.2272 2633. 2040. 1796. 1665. 1442.<br />

1-5/16 1.313 1.3530 2903. 2249. 1980. 1836. 1590.<br />

1-3/8 1.375 1.4849 3186. 2468. 2173. 2015. 1745.<br />

1-1/2 1.5 1.7671 3791. 2937. 2586. 2398. 2077.<br />

1-9/16 1.563 1.9174 4114. 3187. 2806. 2602. 2253.<br />

1-5/8 1.625 2.0739 4450. 3447. 3035. 2814. 2437.<br />

1-11/16 1.688 2.2365 4799. 3717. 3273. 3035. 2628.<br />

1-3/4 1.75 2.4053 5161. 3998. 3520. 3264. 2827.<br />

1-13/16 1.813 2.5802 5536. 4288. 3776. 3501. 3032.<br />

1-7/8 1.875 2.7612 5924. 4589. 4040. 3747. 3245.<br />

1-15/16 1.938 2.9498 6329. 4903. 4316. 4003. 3467.<br />

2 2.0 3.1416 6741. 5221. 4597. 4263. 3692.<br />

2-1/8 2.125 3.5466 7610. 5894. 5190. 4813. 4168.<br />

2-1/4 2.250 3.9761 8531. 6608. 5818. 5396. 4673.<br />

2-3/8 2.375 4.4301 9505. 7363. 6483. 6012. 5206.<br />

2-1/2 2.50 4.9087 10532. 8158. 7183. 6661. 5769.<br />

2-5/8 2.625 5.4119 11612. 8995. 7919. 7344. 6360.<br />

2-3/4 2.75 5.9396 12744. 9872. 8691. 8060. 6980.<br />

2-7/8 2.875 6.4918 13929. 10789. 9499. 8809. 7629.<br />

8


These tables list compressible flows of high pressure gases<br />

through orifices and spuds. They are based on an orifice pressure<br />

drop of 10 psi and a coefficient of discharge (C d) of 1.0.<br />

They also assume the gas is discharging to a region of atmospheric<br />

pressure.<br />

To determine flow through an orifice of a known diameter:<br />

1. Locate the orifice diameter in the left-hand column of the<br />

table.<br />

2. Read across to the column corresponding to the gas being<br />

measured. This is the uncorrected flow.<br />

3. Multiply this flow by the coefficient of discharge of the<br />

orifice. (see page 4)<br />

4. Correct this flow to the pressure actually measured ahead<br />

of the orifice (P) using the following relationship:<br />

Q p = Q 10<br />

ORIFICE CAPACITY TABLES FOR HIGH PRESSURE GASES<br />

P + 14.7<br />

24.7<br />

Where Q p is the unknown flow<br />

Q 10 is the flow at 10 psig from the table<br />

Example: What is the flow of propane – air mixture through a<br />

3/64" diameter jet with a 15° angle of convergence at 35 psig?<br />

From the table, uncorrected propane – air flow through a<br />

3/64" orifice is 41 scfh at 10 psig.<br />

C d for 15° convergent jet is 0.94 (page 4), so corrected flow<br />

is 41 x 0.94 = 38.5 scfh at 10 psig.<br />

Corrected flow for 35 psig pressure, per the equation above, is<br />

Q p = 38.5 35 + 14.7 = 77.5 scfh<br />

24.7<br />

9<br />

To determine the orifice size to handle a known flow at a<br />

specified pressure drop, reverse the process:<br />

1. Correct the known flow to a pressure drop of 10 psig, using<br />

the equation above.<br />

2. Divide the flow by the orifice coefficient.<br />

3. In the orifice table, locate the column for the gas under<br />

consideration. In this column, locate the flow closest to the<br />

corrected value found in step 2.<br />

4. Read to the left to find the corrected orifice size.<br />

Example: Size an airjet with a convergent inlet of 15°.<br />

Required flow is 450 scfh at 20 psig inlet pressure.<br />

Per the equation above,<br />

Qp = Q P + 14.7,<br />

10 or Q10 = Q 24.7<br />

p<br />

24.7 P + 14.7<br />

Substituting the numbers for this case:<br />

Q 10 = 450 24.7 = 320 scfh<br />

20 + 14.7<br />

From page 4, C d for a 15° convergent nozzle is 0.94, so corrected<br />

flow is<br />

320 ÷ 0.94 = 340 scfh.<br />

Locate 340 scfh in the air column of the orifice table. Closest<br />

value is 341 scfh, which requires a 1/8" diameter jet.<br />

CAPACITY, SCFH @ 10 PSI PRESSURE DROP, DISCHARGING TO ATMOSPHERE,<br />

WITH COEFFICIENT OF DISCHARGE OF 1.0<br />

Drill Area Natural Gas Air Propane/Air Propane Butane<br />

Size Sq. In. 0.60 Sp. Gr. 1.0 Sp. Gr. 1.29 Sp. Gr. 1.5 Sp. Gr. 2.0 Sp. Gr.<br />

80 .000143 4.9 3.8 3.3 3.1 2.7<br />

79 .000165 5.6 4.3 3.8 3.5 3.0<br />

1/64 — .00019 6.6 5.1 4.5 4.2 3.6<br />

78 .00020 7.0 5.4 4.8 4.4 3.8<br />

77 .00025 9.2 7.1 6.3 5.8 5.0<br />

76 .00031 10.8 8.4 7.4 6.9 5.9<br />

75 .00035 11.9 9.2 8.1 7.5 6.53<br />

74 .00040 13.6 10.5 9.2 8.6 7.4<br />

73 .00045 15.6 12.1 10.7 9.9 8.6<br />

72 .00049 17.0 13.2 11.6 10.8 9.3<br />

71 .00053 18.5 14.3 12.6 11.7 10.1<br />

70 .00062 21 16.4 14.4 13.4 11.6<br />

69 .00067 23 18.1 15.9 14.8 12.8<br />

68 .00075 26 20 17.6 16.3 14.1<br />

1/32 — .00076 27 21 18.5 17.1 14.8<br />

67 .00080 28 22 19.4 18.0 15.6<br />

66 .00086 30 23 20 18.8 16.3<br />

65 .00096 34 26 23 21 18.4<br />

64 .00102 35 27 24 22 19.1<br />

63 .00108 37 29 26 24 20<br />

62 .00113 40 31 27 25 22<br />

61 .00119 41 32 28 26 23<br />

60 .00126 44 34 30 28 24


CAPACITY, SCFH @ 10 PSI PRESSURE DROP, DISCHARGING TO<br />

ATMOSPHERE, WITH COEFFICIENT OF DISCHARGE OF 1.0 (Cont’d)<br />

Drill Area Natural Gas Air Propane/Air Propane Butane<br />

Size Sq. In. 0.60 Sp. Gr. 1.0 Sp. Gr. 1.29 Sp. Gr. 1.5 Sp. Gr. 2.0 Sp. Gr.<br />

59 .00132 45 35 31 29 25<br />

58 .00138 48 37 33 30 26<br />

57 .00145 52 40 35 33 28<br />

56 .00170 59 46 41 38 33<br />

3/64 — .00173 61 47 41 38 33<br />

55 .00210 75 58 51 47 41<br />

54 .00230 84 65 57 53 46<br />

53 .00280 98 76 67 62 54<br />

1/16 — .00310 108 84 74 69 59<br />

52 .00320 112 87 77 71 62<br />

51 .00350 124 96 85 78 68<br />

50 .00380 136 105 92 86 74<br />

49 .00420 147 114 100 93 81<br />

48 .00430 160 124 109 101 88<br />

5/64 — .00480 169 131 115 107 93<br />

47 .00490 172 133 117 109 94<br />

46 .00510 182 141 124 115 100<br />

45 .00530 187 145 128 118 103<br />

44 .00580 205 159 140 130 112<br />

43 .00620 219 170 150 139 120<br />

3/32 (42) .00690 243 188 166 154 133<br />

41 .00720 244 189 166 154 134<br />

40 .00750 266 206 181 168 146<br />

39 .00780 275 213 188 174 151<br />

38 .00810 285 221 195 180 156<br />

37 .00850 300 232 204 189 164<br />

36 .00900 315 244 215 199 173<br />

7/64 — .00940 332 257 226 210 182<br />

35 .00950 336 260 229 212 184<br />

34 .00970 342 265 233 216 187<br />

33 .01000 354 274 241 224 194<br />

32 .01060 374 290 255 237 205<br />

31 .01130 400 310 273 253 219<br />

1/8 — .01230 440 341 300 278 241<br />

30 .01300 458 355 313 290 251<br />

29 .01450 514 398 350 325 281<br />

28 .01550 550 426 375 348 301<br />

9/64 — .01560 553 428 377 349 303<br />

27 .01630 572 443 390 362 313<br />

26 .01740 599 464 409 379 328<br />

25 .01750 621 481 423 393 340<br />

24 .01810 642 497 437 406 351<br />

23 .01860 660 511 450 417 361<br />

5/32 — .01920 678 525 462 429 371<br />

22 .01930 684 530 467 433 375<br />

21 .01980 702 544 479 444 385<br />

20 .02030 728 564 497 461 399<br />

19 .02160 766 593 522 484 419<br />

18 .02260 800 620 546 506 438<br />

11/64 — .02320 822 637 561 520 450<br />

17 .02350 830 643 566 525 455<br />

16 .02460 871 675 594 551 477<br />

15 .02540 904 700 616 572 495<br />

14 .02600 920 713 628 582 503<br />

13 .02690 951 737 649 602 521<br />

3/16 — .02760 976 756 666 617 534<br />

12 .02805 993 769 677 628 544<br />

10


CAPACITY, SCFH @ 10 PSI PRESSURE DROP, DISCHARGING TO<br />

ATMOSPHERE, WITH COEFFICIENT OF DISCHARGE OF 1.0 (Cont’d)<br />

Drill Area Natural Gas Air Propane/Air Propane Butane<br />

Size Sq. In. 0.60 Sp. Gr. 1.0 Sp. Gr. 1.29 Sp. Gr. 1.5 Sp. Gr. 2.0 Sp. Gr.<br />

11 .02865 1015 786 692 642 556<br />

10 .02940 1041 806 710 658 570<br />

9 .03020 1066 826 727 674 584<br />

8 .03110 1100 852 750 696 602<br />

7 .03160 1122 869 765 710 614<br />

13/64 — .03240 1148 889 783 726 629<br />

6 .03270 1155 895 788 731 633<br />

5 .03320 1172 908 799 741 642<br />

4 .03430 1216 942 829 769 666<br />

3 .03560 1263 978 861 799 692<br />

7/32 — .03760 1327 1028 905 839 727<br />

2 .03840 1361 1054 928 861 745<br />

1 .04090 1447 1121 987 915 793<br />

A .04300 1523 1180 1039 963 834<br />

15/64 — .04310 1529 1184 1042 967 837<br />

B .04440 1571 1217 1072 994 861<br />

C .04600 1627 1260 1109 1029 891<br />

D .04750 1686 1306 1150 1066 923<br />

1/4 E .04910 1738 1346 1185 1099 952<br />

F .05190 1836 1422 1252 1161 1006<br />

G .05350 1891 1465 1290 1196 1036<br />

17/64 — .05540 1960 1518 1336 1239 1073<br />

H .05560 1969 1525 1343 1245 1078<br />

I .05800 2054 1591 1401 1299 1125<br />

J .06010 2128 1648 1451 1346 1165<br />

K .06200 2192 1698 1495 1386 1201<br />

9/32 — .06210 2200 1704 1500 1391 1205<br />

L .06600 2337 1810 1594 1478 1280<br />

M .06830 2418 1873 1649 1529 1324<br />

19/64 — .06920 2448 1896 1669 1548 1341<br />

N .07160 2534 1963 1728 1603 1388<br />

5/16 — .07670 2714 2102 1851 1716 1486<br />

O .07840 2782 2155 1897 1760 1524<br />

P .08200 2893 2241 1973 1830 1585<br />

21/64 — .08460 2996 2321 2044 1895 1641<br />

Q .08660 3065 2374 2090 1938 1679<br />

R .09010 3193 2473 2177 2019 1749<br />

11/32 — .09280 3283 2543 2239 2076 1798<br />

S .09500 3373 2613 2301 2134 1848<br />

T .10050 3553 2752 2423 2247 1946<br />

23/64 — .10140 3595 2785 2452 2274 1969<br />

U .10630 3775 2924 2574 2387 2068<br />

3/8 — .11040 3912 3030 2668 2474 2143<br />

V .11160 3959 3067 2700 2504 2169<br />

W .11700 4135 3203 2820 2615 2265<br />

25/64 — .11980 4237 3282 2890 2680 2321<br />

X .12360 4374 3388 2983 2766 2396<br />

Y .12780 4537 3514 3094 2869 2485<br />

13/32 — .12960 4580 3548 3124 2897 2509<br />

Z .13400 4751 3680 3240 3005 2602<br />

27/64 — .13980 4943 3829 3371 3126 2708<br />

7/16 — .15030 5307 4111 3620 3357 2907<br />

29/64 — .16130 5714 4426 3897 3614 3130<br />

15/32 — .17260 6121 4741 4452 3871 3352<br />

31/64 — .18430 6527 5056 4448 4128 3575<br />

1/2 — .19630 6977 5204 4758 4412 3821<br />

11


PIPING PRESSURE LOSSES FOR LOW PRESSURE AIR<br />

Inches w.c. per 100 ft. of Schedule 40 pipe<br />

Scfh<br />

Air 1/2" 3/4" 1" 1-1/4" 1-1/2 2" 2-1/2" 3<br />

40 0.3 — — — — — — —<br />

50 0.5 — — — — — — —<br />

100 2.1 0.5 — — — — — —<br />

200 8.4 1.9 0.5 — — — — —<br />

300 18.9 4.2 1.2 0.3 — — — —<br />

400 — 7.5 2.1 0.5 — — — —<br />

500 — 11.8 3.3 0.8 0.4 — — —<br />

600 — 16.9 4.7 1.1 0.5 — — —<br />

700 — — 6.4 1.5 0.7 — — —<br />

800 — — 8.3 2.0 0.9 — — —<br />

900 — — 10.5 2.5 1.1 0.3 — —<br />

1,000 — — 13.0 3.1 1.4 0.4 — —<br />

1,500 — — — 7.0 3.2 0.8 0.3 —<br />

2,000 — — — 12.4 5.6 1.4 0.6 —<br />

3,000 — — — — 12.6 3.2 1.3 0.4<br />

4,000 — — — — — 5.8 2.2 0.8<br />

5,000 — — — — — 9.0 3.5 1.2<br />

6,000 — — — — — 13.0 5.0 1.7<br />

7,000 — — — — — 17.6 6.9 2.3<br />

8,000 — — — — — — 9.0 3.0<br />

9,000 — — — — — — 11.3 3.8<br />

10,000 — — — — — — 14.0 4.7<br />

12,000 — — — — — — 20.2 6.8<br />

14,000 — — — — — — — 9.2<br />

16,000 — — — — — — — 12.0<br />

18,000 — — — — — — — 15.2<br />

20,000 — — — — — — — 18.8<br />

Scfh<br />

Air 4" 6" 8" 10" 12 14" 16" 18<br />

4,000 — — — — — — — —<br />

6,000 0.4 — — — — — — —<br />

8,000 0.7 — — — — — — —<br />

10,000 1.1 — — — — — — —<br />

12,000 1.6 — — — — — — —<br />

14,000 2.2 0.3 — — — — — —<br />

16,000 2.8 0.3 — — — — — —<br />

18,000 3.6 0.4 — — — — — —<br />

20,000 4.4 0.5 — — — — — —<br />

25,000 6.9 0.8 — — — — — —<br />

30,000 9.9 1.2 0.3 — — — — —<br />

35,000 13.5 1.6 0.4 — — — — —<br />

40,000 17.6 2.1 0.5 — — — — —<br />

50,000 — 3.3 0.7 — — — — —<br />

60,000 — 4.7 1.0 0.3 — — — —<br />

70,000 — 6.4 1.4 0.5 — — — —<br />

80,000 — 8.3 1.9 0.6 — — — —<br />

90,000 — 10.5 2.4 0.8 0.3 — — —<br />

100,000 — 13.0 2.9 0.9 0.4 — — —<br />

120,000 — 18.7 4.2 1.3 0.5 0.3 — —<br />

140,000 — — 5.7 1.8 0.7 0.4 — —<br />

160,000 — — 7.4 2.4 0.9 0.5 0.3 —<br />

180,000 — — 9.4 3.0 1.2 0.7 0.3 —<br />

200,000 — — 11.6 3.7 1.4 0.8 0.4 —<br />

250,000 — — 18.2 5.8 2.2 1.3 0.6 0.3<br />

300,000 — — — 8.4 3.2 1.9 0.9 0.5<br />

350,000 — — — 11.4 4.4 2.5 1.3 0.6<br />

400,000 — — — 14.9 5.7 3.3 1.6 0.8<br />

450,000 — — — 18.8 7.2 4.2 2.1 1.1<br />

500,000 — — — — 9.0 5.2 2.6 1.3<br />

550,000 — — — — 10.8 6.2 3.1 1.6<br />

600,000 — — — — 12.9 7.4 3.7 1.9<br />

650,000 — — — — 15.1 8.7 4.4 2.2<br />

700,000 — — — — 17.5 10.1 5.0 2.5<br />

800,000 — — — — — 13.2 6.6 3.3<br />

900,000 — — — — — 16.7 8.3 4.2<br />

1,000,000 — — — — — 20.6 10.3 5.2<br />

1,100,000 — — — — — — 12.5 6.3<br />

1,200,000 — — — — — — 14.8 7.5<br />

1,300,000 — — — — — — 17.4 8.8<br />

1,400,000 — — — — — — 20.2 10.2<br />

1,600,000 — — — — — — — 13.3<br />

1,800,000 — — — — — — — 16.8<br />

2,000,000 — — — — — — — 20.8<br />

12


PIPING PRESSURE LOSSES FOR LOW PRESSURE NATURAL GAS<br />

Inches w.c. per 100 ft. of Schedule 40 pipe<br />

Scfh<br />

Nat. Gas 3/8" 1/2" 3/4" 1" 1-1/4" 1-1/2" 2"<br />

25 0.3 — — — — — —<br />

50 1.1 0.3 — — — — —<br />

75 2.5 0.7 — — — — —<br />

100 4.4 1.2 0.3 — — — —<br />

125 6.9 1.9 0.4 — — — —<br />

150 9.9 2.8 0.6 — — — —<br />

175 13.5 3.8 0.9 — — — —<br />

200 17.6 5.0 1.1 0.3 — — —<br />

300 — 11.2 2.5 0.7 — — —<br />

400 — 19.8 4.5 1.2 0.3 — —<br />

500 — — 7.0 1.9 0.5 — —<br />

600 — — 10.1 2.8 0.7 0.3 —<br />

700 — — 13.8 3.8 0.9 0.4 —<br />

800 — — 18.0 4.9 1.2 0.5 —<br />

900 — — — 6.3 1.5 0.7 —<br />

1,000 — — — 7.7 1.9 0.8 —<br />

1,500 — — — 17.4 4.2 1.9 0.5<br />

2,000 — — — — 7.5 3.3 0.9<br />

2,500 — — — — 11.8 5.2 1.3<br />

3,000 — — — — 16.9 7.5 1.9<br />

4,000 — — — — — 13.2 3.4<br />

5,000 — — — — — 20.7 5.4<br />

6,000 — — — — — — 7.7<br />

7,000 — — — — — — 10.5<br />

8,000 — — — — — — 13.8<br />

9,000 — — — — — — 17.4<br />

PIPING PRESSURE LOSSES FOR LOW PRESSURE NATURAL GAS<br />

Inches w.c. per 100 ft. of Schedule 40 pipe<br />

Scfh<br />

Nat. Gas 2-1/2" 3" 4" 6" 8"<br />

2,000 0.3 — — — —<br />

2,500 0.5 — — — —<br />

3,000 0.8 0.3 — — —<br />

4,000 1.3 0.4 — — —<br />

5,000 2.1 0.7 — — —<br />

6,000 3.0 1.0 — — —<br />

7,000 4.1 1.4 0.3 — —<br />

8,000 5.4 1.8 0.4 — —<br />

9,000 6.8 2.3 0.6 — —<br />

10,000 8.4 2.8 0.7 — —<br />

12,000 12.1 4.0 1.0 — —<br />

14,000 16.4 5.5 1.4 — —<br />

16,000 — 7.2 1.8 — —<br />

18,000 — 9.1 2.2 0.3 —<br />

20,000 — 11.2 2.8 0.3 —<br />

22,000 — 13.6 3.3 0.4 —<br />

24,000 — 16.1 4.0 0.4 —<br />

26,000 — 18.9 4.7 0.5 —<br />

28,000 — — 5.4 0.6 —<br />

30,000 — — 6.2 0.7 —<br />

35,000 — — 8.5 1.0 —<br />

40,000 — — 11.0 1.2 0.3<br />

45,000 — — 14.0 1.6 0.3<br />

50,000 — — 17.3 2.0 0.4<br />

55,000 — — 20.9 2.4 0.5<br />

60,000 — — — 2.8 0.6<br />

70,000 — — — 3.8 0.8<br />

13<br />

Inches w.c.<br />

per 100 ft<br />

Scfh of Schedule 40 pipe<br />

Nat. Gas 6" 8"<br />

80,000 5.0 1.1<br />

90,000 6.3 1.4<br />

100,000 7.8 1.7<br />

110,000 9.4 2.1<br />

120,000 11.2 2.4<br />

130,000 13.2 2.9<br />

140,000 15.3 3.3<br />

150,000 17.6 3.8<br />

200,000 — 6.8<br />

250,000 — 10.6<br />

300,000 — 15.3


HIGH PRESSURE (COMPRESSIBLE) FLOW OF<br />

NATURAL GAS IN PIPES<br />

Flows in table are scfh of 0.6 sp. gr. natural gas<br />

Pipe Inlet Pressure Drop Per 100 Equivalent Feet of<br />

Size, Pressure, Pipe as a Percentage of Inlet Pressure<br />

Inches PSIG 2% 4% 6% 8% 10%<br />

2 340 480 590 680 760<br />

5 590 840 1030 1180 1320<br />

1 10 930 1320 1610 1850 2070<br />

20 1570 2210 2700 3110 3470<br />

50 3380 4770 5820 6690 7450<br />

2 710 1010 1230 1420 1590<br />

5 1230 1740 2130 2450 2740<br />

1-1/4 10 1950 2760 3370 3880 4330<br />

20 3260 4600 5620 6470 7210<br />

50 7040 9910 12,090 13,910 15,490<br />

2 1080 1530 1870 2160 2410<br />

5 1860 2630 3220 3710 4140<br />

1-1/2 10 2940 4160 5080 5850 6530<br />

20 4930 6960 8490 9780 10,900<br />

50 10,640 15,000 18,290 21,040 23,430<br />

2 2100 2980 3640 4200 4700<br />

5 3630 5120 6270 7230 8070<br />

2 10 5740 8090 9890 11,400 12,720<br />

20 9610 13,550 16,540 19,050 21,230<br />

50 20,720 29,190 35,610 40,960 45,610<br />

2 3390 4810 5880 6780 7580<br />

5 5850 8260 10,100 11,650 13,010<br />

2-1/2 10 9240 13,040 15,940 18,370 20,500<br />

20 15,480 21,840 26,660 30,700 34,220<br />

50 33,400 47,050 57,400 66,010 73,510<br />

2 6060 8590 10,500 12,120 13,540<br />

5 10,450 14,760 18,050 20,820 23,240<br />

3 10 16,510 23,290 28,480 32,810 36,610<br />

20 27,650 38,990 47,620 54,820 61,110<br />

50 59,640 84,010 102,500 117,880 131,270<br />

2 12,480 17,690 21,620 24,960 27,890<br />

5 21,520 30,400 37,180 42,890 47,880<br />

4 10 34,000 47,980 58,650 67,580 75,410<br />

20 56,960 80,320 98,090 112,930 125,880<br />

50 122,850 173,070 211,140 242,840 270,420<br />

2 37,250 52,800 64,560 74,510 83,270<br />

5 64,240 90,760 111,010 128,040 142,950<br />

6 10 101,520 143,260 175,120 201,780 225,150<br />

20 170,060 239,810 292,840 337,150 375,820<br />

50 366,770 516,680 630,360 724,970 807,320<br />

EQUIVALENT LENGTHS OF STANDARD PIPE FITTINGS & VALVES<br />

VALVES FULLY OPEN<br />

Pipe I.D. Swing 90° 45° 90° Tee, Flow 90° Tee, Flow<br />

Size Inches Gate Globe Angle Check Elbow Elbow Through Run Through Branch<br />

1/2" 0.622 0.35 18.6 9.3 4.3 1.6 0.78 1.0 3.1<br />

3/4" 0.824 0.44 23.1 11.5 5.3 2.1 0.97 1.4 4.1<br />

1" 1.049 0.56 29.4 14.7 6.8 2.6 1.23 1.8 5.3<br />

1-1/4" 1.380 0.74 38.6 19.3 8.9 3.5 1.6 2.3 6.9<br />

1-1/2" 1.610 0.86 45.2 22.6 10.4 4.0 1.9 2.7 8.0<br />

2" 2.067 1.10 58 29 13.4 5.2 2.4 3.5 10.4<br />

2-1/2" 2.469 1.32 69 35 15.9 6.2 2.9 4.1 12.4<br />

3" 3.068 1.60 86 43 19.8 7.7 3.6 5.1 15.3<br />

4" 4.026 2.1 112 56 26.8 10.1 5.4 6.7 20.1<br />

6" 6.065 2.6 140 70 40.4 15.2 8.1 10.1 30.3<br />

Equivalent lengths are for standard screwed fittings and for screwed, flanged, or welded valves relative to<br />

schedule 40 steel pipe.<br />

14


SIMPLIFIED SELECTION OF AIR, GAS AND MIXTURE PIPING SIZE<br />

Air, gas and mixture piping systems should be sized to<br />

deliver flow at a uniform pressure distribution and without<br />

excessive pressure losses in transit.<br />

Two factors cause air pressure loss and consequent pressure<br />

variations:<br />

1) Friction in piping and bends, and<br />

2) Velocity pressure losses due to changes in direction.<br />

In combustion work, piping runs are usually short (under<br />

50 ft.), but often have many bends. By assuming that all<br />

velocity pressure is lost or dissipated at each change of direction<br />

and by using a pipe size to give a very low velocity pressure,<br />

other losses can be disregarded. In general, a velocity<br />

pressure of 0.3 to 0.5″ w.c. satisfies this need. This is equivalent<br />

to air velocities of about 2200 to 2800 ft/minute. For<br />

other gases, this velocity is inversely proportional to their<br />

gravities; consequently, higher velocities can be tolerated<br />

with natural gas, but propane and butane piping should be<br />

sized for lower velocities than air.<br />

The accuracy of orifice meters is also sensitive to pipe<br />

velocity, so every effort should be made to keep velocity pressure<br />

below 0.3″ w.c. in metering runs.<br />

Pv, "wc<br />

Nat. Pro-<br />

Velocity<br />

Bu- Ft/Min<br />

Pipe Size<br />

2-1/2"<br />

1-1/2"<br />

Gas Air panetane x1000<br />

10<br />

1/4" 3/8" 1/2" 3/4" 1" 1-1/4" 2" 3"<br />

3.0 5.0<br />

4.0<br />

9<br />

8<br />

2.0<br />

1.5<br />

1.0<br />

3.0<br />

2.0<br />

1.5<br />

5.0<br />

4.0<br />

3.0<br />

2.0<br />

5.0<br />

4.0<br />

3.0<br />

7<br />

6<br />

5<br />

1.0 1.5<br />

2.0 4<br />

1.0<br />

1.5<br />

1.0<br />

3<br />

2.5<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.15<br />

0.1<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.15<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.5<br />

0.4<br />

0.3<br />

0.1 0.15 0.2<br />

0.05<br />

0.1 0.15<br />

1<br />

Shaded Areas<br />

100<br />

Indicate Recommended<br />

Velocity Pressure<br />

Range<br />

2<br />

1.5<br />

2 3 4 6 8 1000<br />

If pipe sizing charts or tables aren’t available, you can<br />

quickly estimate the maximum air flow capacity of a pipe<br />

with these simple equations:<br />

Maximum cfh air = (Nominal pipe size) 2 x 1000<br />

The result will correspond to a velocity pressure of about 0.5″<br />

w.c., the maximum recommended for low pressure air systems.<br />

Optimum cfh air = (Nominal pipe size) 2 x 750<br />

QUICK METHOD FOR SIZING AIR PIPING<br />

15<br />

The graph below shows the relationship between velocity,<br />

velocity pressure and flow for various pipe sizes handling air,<br />

natural gas, propane, and butane. Because the specific gravity<br />

of most air-gas mixtures is close to that of air, mixture piping<br />

can be sized the same as air piping. The error will be<br />

insignificant.<br />

Example: A burner requires 10,000 cfh air at a static pressure<br />

of 13″ w.c. The blower supplying this burner develops 15″<br />

w.c. static pressure. Piping between the two will run 15 feet,<br />

including four 90° bends. What size piping is required?<br />

Solution: Total pressure available for piping losses is<br />

15″ w.c. - 13 ″ w.c. = 2″ w.c.<br />

This allows a velocity pressure loss of:<br />

2 ÷ 4 = 0.5″ w.c. for each of the four elbows.<br />

Under the “Air” column on the left-hand side of the Pv<br />

graph, locate 0.5″ w.c. velocity pressure. This is equivalent to<br />

about 2800 ft/minute air velocity. Locate the intersection of<br />

the 2800 ft/minute line and the 10,000 cfh line, then drop<br />

down to the first curve below this point, in this case, 4″ pipe.<br />

This is the pipe size that should be used.<br />

12" 14" 16"<br />

2 3 4 6 8 10,000 2 3 4 6 8 100,000 2 3 4 6 8<br />

Flow, cfh<br />

4"<br />

This will produce a flow rate equivalent to about 0.3″ w.c.<br />

velocity pressure.<br />

Example: What is the maximum air flow rate for 21 ⁄ 2" pipe?<br />

(21 ⁄ 2) 2 = 6.25<br />

6.25 x 1000 = 6,250 cfh air.<br />

6"<br />

8"<br />

10"<br />

18"<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2.5<br />

2<br />

1.5<br />

1


SIZING BRANCH PIPING BY THE EQUAL AREA METHOD<br />

The equal area method of sizing pipe manifolds is based on<br />

maintaining constant total cross-sectional area in all portions of<br />

a piping train, regardless of the number of branches in each portion.<br />

In the sketch below, the equal area method requires that:<br />

Area of X = 2 times area of Y = 6 times area of Z.<br />

X<br />

Y Y<br />

Z Z Z Z Z Z<br />

The advantage of this method is that once the size of the<br />

smallest branch has been determined, via velocity pressures or<br />

any other valid method, the remainder of the piping system<br />

can be correctly sized without any additional calculations.<br />

Remember, however, that if the calculation of the smallest<br />

branches is in error, the entire system will be incorrectly sized.<br />

Cv, flow factor, is defined as the full flow capacity of a<br />

valve expressed in gpm of 60°F water at 1 psi pressure drop.<br />

This rating is determined by actual flow test. To convert Cv to<br />

actual flow capacity for gases, use the graph below.<br />

Locate Cv at the left, read across to the appropriate curve and<br />

then down to obtain flow capacity at 1″ w.c. pressure drop.<br />

For drops other than 1″ w.c., multiply the flow by the square<br />

root of the pressure drop.<br />

C v Flow Factor<br />

1000<br />

8<br />

6<br />

4<br />

3<br />

2<br />

100<br />

8<br />

6<br />

4<br />

3<br />

2<br />

10<br />

8<br />

6<br />

4<br />

3<br />

2<br />

C v FLOW FACTOR CONVERSIONS<br />

16<br />

To use the table below, read across from the pipe size of the<br />

smallest branch in the manifold (Z in the sketch at left) and<br />

down from the number of these branches. At the intersection,<br />

find the recommended size pipe to feed these branches. For<br />

example, if Z is 3/4", Y should be 1 1 ⁄4" and X should be 2" pipe.<br />

Size of<br />

Branch<br />

Connection<br />

PROPANE 1.5 SP GR<br />

Flow, SCH @ 1" W.C. ∆P @ 14.7 PSIA & 60˚ F<br />

Number of Branch Connections<br />

1 2 3 4 5 6 7 8<br />

1/4 1/4 3/8 1/2 3/4 3/4 1 1 1<br />

3/8 3/8 3/4 3/4 1 1-1/4 1-1/4 1-1/4 1-1/4<br />

1/2 1/2 3/4 1 1 1 1-1/4 1-1/2 2<br />

3/4 3/4 1-1/4 1-1/4 1-1/2 2 2 2 2-1/2<br />

1 1 1-1/4 2 2 2-1/2 2-1/2 3 3<br />

1-1/4 1-1/4 2 2-1/2 3 3 4 4 4<br />

1-1/2 1-1/2 2-1/2 3 3 4 4 4 6<br />

2 2 3 4 4 6 6 6 6<br />

2-1/2 2-1/2 4 4 6 6 6 6 6<br />

3 3 4 6 6 8 8 8 8<br />

4 4 6 8 8 10 10 10 12<br />

6 6 8 10 12 14 16 18 18<br />

8 8 12 14 16 18 20 20 or 24 24<br />

10 10 14 18 20 24 24 30 30<br />

For conditions other than 14.7 psia and 60°F, use this formula:<br />

Q = 1360Cv (P 1-P 2) P 2,<br />

GT<br />

where<br />

Q = SCFH<br />

P 1 = Inlet pressure, psia<br />

P 2 = Outlet pressure, psia<br />

T = Absolute flowing temperature (°F + 460)<br />

G = Specific gravity of gas<br />

BUTANE 2.0 SP GR<br />

AIR 1.0 SP GR<br />

NATURAL GAS 0.6 SP GR<br />

PROPANE - AIR<br />

1.29 SP GR<br />

1<br />

10 20 30 40 60 80 100 2 3 4 6 8 1000 2 3 4 6 8 10,000 2 3 4 6


The total pressure of an air stream flowing in a duct is the<br />

sum of the static or bursting pressure exerted upon the sidewalls<br />

of the duct and the impact or velocity pressure of the<br />

moving air. Through the use of a pitot tube connected differentially<br />

to a manometer, the velocity pressure alone is indicated<br />

and the corresponding air velocity determined.<br />

For accuracy of plus or minus 2%, as in laboratory applications,<br />

extreme care is required and the following precautions<br />

should be observed:<br />

1. Duct diameter 4" or greater.<br />

2. Make an accurate traverse per sketch below and average the<br />

readings.<br />

3. Provided smooth, straight duct sections 10 diameters in<br />

length both upstream and downstream from the pitot tube.<br />

4. Provide an egg crate type straightener upstream from the<br />

pitot tube.<br />

Air Velocity in Feet Per Minute<br />

13000<br />

12000<br />

11000<br />

10000<br />

9000<br />

8000<br />

7000<br />

6000<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

0 0<br />

DUCT VELOCITY & FLOW MEASUREMENTS<br />

D<br />

.35D<br />

.60D<br />

.80D<br />

.92D<br />

17<br />

In making an air velocity check select a location as suggested<br />

above, connect tubing leads from both pitot tube connections to<br />

the manometer and insert in the duct with the tip directed into the<br />

air stream. If the manometer shows a minus indication reverse the<br />

tubes. With a direct reading manometer, air velocities will now be<br />

shown in feet per minute. In other types, the manometer will read<br />

velocity pressure in inches of water and the corresponding velocity<br />

will be found from the curves below. If circumstances do not<br />

permit an accurate traverse, center the pitot tube in the duct,<br />

determine the center velocity and multiply by a factor of .9 for the<br />

approximate average velocity. Field tests run in this manner<br />

should be accurate within plus or minus 5%.<br />

The velocity indicated is for dry air at 70°F., 29.9" Barometric<br />

Pressure and a resulting density of .075#/ cu. ft. For air at a temperature<br />

other than 70°F. refer to the curves below. For other<br />

variations from these conditions, corrections may be based<br />

upon the following data:<br />

Air Velocity = 1096.2 Pv<br />

D<br />

where Pv = velocity pressure in inches of water<br />

D = Air density in #/cu. ft.<br />

Air Density = 1.325 x PB<br />

T<br />

where PB= Barometric Pressure in inches of mercury<br />

T = Absolute Temperature (indicated temperature<br />

plus 460)<br />

Flow in cu. ft. per min. = Duct area in square feet x air<br />

velocity in ft. per min.<br />

1400°<br />

.2 .4 .6 .8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0<br />

1200°<br />

1000°<br />

Gage Reading with Pilot Tube (Velocity Pressure) in Inches of Water<br />

REPRINTED WITH PERMISSION OF F.W. DWYER MANUFACTURING CO., MICHIGAN CITY, INDIANA<br />

600°<br />

300°<br />

100°<br />

70°<br />

800°<br />

400°<br />

200°<br />

40°


CHAPTER 2 – FAN LAWS & BLOWER<br />

Combustion air blowers are normally rated in terms of standard<br />

cubic feet (scf) of air; that is, 70°F air at Sea Level<br />

(29.92" Hg) barometric pressure. Density of this air is 0.075<br />

lb/cu ft, and its specific gravity is 1.0.<br />

Although fuel/air ratios are usually stated in cubic feet of air<br />

per cubic foot or gallon of fuel, it’s the weight of air per<br />

weight of fuel that’s important. As long as air temperature and<br />

pressure are close to standard conditions, blower and burner<br />

sizing charts can be used without correction. However, if air<br />

temperature, gauge pressure or altitude change the density of<br />

air by any significant amount, blower ratings have to be corrected<br />

from actual cubic feet (acf) to standard cubic feet to<br />

insure the proper weight flow of air reaches the burner.<br />

Centrifugal fans are basically constant volume devices; at a<br />

given rotational speed, they will deliver the same volume of<br />

air regardless of its density.<br />

APPLICATION ENGINEERING<br />

18<br />

RPM<br />

"R"<br />

Volume<br />

"V"<br />

For blower wheel with eight segments, Theoretical Flow = 8 x V x R<br />

If, for example, a blower has a wheel made up of eight segments,<br />

each with a volume V, and the wheel is rotating at R<br />

rpm, the theoretical flow rating of the blower will be 8 x V x<br />

R, because each fan wheel segment fills with air and empties<br />

itself once each revolution.<br />

The actual volume delivered is strictly a function of the carrying<br />

capacity of the wheel and its speed. Cfm, whether it is<br />

standard (scfm) or actual (acfm) is the same. Consequently, if<br />

the density of air is reduced by temperature, pressure, or both,<br />

the blower will deliver a lower weight flow of air, even<br />

though the measured volume hasn’t changed.<br />

Air density also affects the pressure developed by the blower<br />

and its power consumption. Because air density is related to<br />

temperature, pressure, and altitude (barometric pressure) – see<br />

pages 20 and 21 – it is possible to relate blower performance to<br />

these factors with a set of realtionships known as fan laws.


1.Effect of Blower Speed on Flow, Pressure and Power<br />

Consumption<br />

a. Flow vs. Speed: The flow rate (V) changes in direct<br />

ratio to the speed (S)<br />

V2 = S2<br />

V1 S1<br />

Example:Ablower operating at 1750 rpm (S1) delivers<br />

1000 cfm (V1). How many cfm (V2) will it deliver<br />

if speed is increased to 3500 rpm (S2)?<br />

V2 =V1 x S2 = 1000 x 3500 = 2000 cfm<br />

S 1750<br />

1<br />

b. Pressure vs. Speed:The pressure (P) changes as the<br />

square of the speed ratio (S)<br />

( )<br />

P2 = S2<br />

P1 S1<br />

2<br />

Example:Ablower operating at 1750 rpm (S1) develops<br />

1 psig (P1) pressure. If speed is doubled to 3500<br />

rpm (S2), what is the new pressure (P2)?<br />

P2 =P1 x S2 2<br />

= 1 x<br />

3500 2<br />

( ) ( 1750 )<br />

S 1<br />

= 1 x (2) 2 =1 x 4 = 4 psig<br />

c. Horsepower vs. Speed:The horsepower (HP) consumedchanges<br />

as the cube of the speed ratio (S)<br />

HP2 S2<br />

= 3<br />

( )<br />

HP1 S1<br />

Example:Ablower operating at 1750 rpm (S1) requires<br />

a 5 hp (HP1) motor. How many horsepower (HP2) will<br />

be required to handle a speed increase to 3500 rpm (S2)?<br />

S 3<br />

2<br />

HP2 =HP1 = 5 x 3500 3<br />

( ) ( 1750 )<br />

S 1<br />

=5 x (2) 3 =5 x 8 = 40 hp<br />

Laws 1a, 1b and 1c are known as the 1-2-3 ruleof centrifugal<br />

blowers. Volume increases in direct ratio, pressure as the<br />

square, and horsepower as the cube, of the speed ratio.<br />

Re-rating blowers for nonstandard conditions<br />

As fan laws 2b, 2c, and 2d show, blower weight flow,<br />

pressure, and horsepower all change in direct proportion to<br />

air density or gravity. While these relationships are important<br />

to know, it’s usually more important to know how to<br />

select a blower to compensate for nonstandard conditions.<br />

The following example shows how it is done.<br />

Example:Aburner is rated a 1 million Btu/hr. at an air pressure<br />

of 20"w.c., including piping and control valve drops. If<br />

the burner is to be installed at 6000 feet altitude, select a<br />

blower that will permit the burner’s input rating to be maintained.<br />

Solution: Use the rule-of-thumb of 100 Btu per standard<br />

cubic foot of air to estimate blower flow requirements:<br />

1,000,000 Btu/hr ÷ 100 Btu/scf air = 10,000 scfh air.<br />

This is the blower’s standard (sea level) rating.<br />

At 6,000 feet, the specific gravity of air is 0.80 (see page 20).<br />

To maintain a weight flow of air through the burner<br />

equivalent to 10,000 scfh, the volume flow through the<br />

burner has to be increased to offset the air’s lower density.<br />

FAN LAWS<br />

19<br />

2.Effect of Air Density on Flow, Pressure, and Power<br />

Consumption.<br />

a. Volume Flow vs. Density<br />

Volume flow (cfm) remains constant regardless of density.<br />

b. Weight Flow vs. Density:Weight flow (W) changes<br />

in direct ratio to the density (D) or specific gravity (G)<br />

W2 D2 G2<br />

= =<br />

W1 D1 G1<br />

Example:Ablower delivers 1500 lb/hr (20,000 cu ft/hr)<br />

(W1) of air at standard conditions (density D1 =0.075<br />

lb/cu ft). What will be the weight flow delivered if the air<br />

temperature is 250°F?<br />

From page 21, air density (D 2) at 250°F is .056 lb/cu ft.<br />

W2 =W1 x D2 =1500 x .056 =1120 lb/hr.<br />

D1 .075<br />

c. Pressure vs. Density:Pressure (P) changes in direct<br />

proportion to density (D) or specific gravity (G).<br />

P2 = D2 = G2<br />

P1 D1 G1<br />

Example: At sea level conditions (G1 =1.0), a blower<br />

develops 28" w.c. pressure (P1). What pressure (P2) will it<br />

develop at 4000 ft. altitude?<br />

From page 20, air gravity (G 2) at 4000 ft is 0.86.<br />

P2 =P1 x G2 =28 x .86 =24.1" w.c.<br />

G1 1.0<br />

d. Horsepower vs. Density:Horsepower (HP) consumed<br />

changes in direct proportion to density (D) or specific<br />

gravity (G).<br />

HP2 = D2 = G2<br />

HP1 D1 G1<br />

Example: Astandard air (G1) blower requires a 10 hp<br />

(HP1) motor. What horsepower (HP2) is required if this<br />

blower is to handle a gas of 0.5 specific gravity (G2)?<br />

The gravity of standard air is 1.0, so<br />

HP2 =HP1 x G2 =10 x 0.5 =5 hp<br />

G1 1.0<br />

V2 = V1 x G1 = 10,000 cfh x 1.00 = 12,500 cfh<br />

G2<br />

0.80<br />

In other words, 12,500 cfh air at 6000 feet has the same<br />

weight as 10,000 cfh at sea level.<br />

The pressure required now will be adjusted for the new air<br />

flow, taking into account the lower density of the air.<br />

P2 = P1 x V2<br />

2 2<br />

V2<br />

( ) ( )<br />

= G1<br />

V1 V1 G2 P2 = P1 x G1 = 20"w.c. x 1.00 = 25"w.c.<br />

G2<br />

0.80<br />

Because the pressure generated by the blower decreases<br />

with air density, the sea level pressure rating has to be higher<br />

to compensate for the loss of outlet pressure at higher altitudes.<br />

P1 = P2 x G1 = 25"w.c. x 1.00 = 31.25"w.c.<br />

G2<br />

0.80<br />

Therefore, the blower must be capable of delivery at least<br />

12,500 cfh at 31.25"w.c. at sea level to satisfy the needs of<br />

the burner at 6000 feet altitude.


Blower horsepower requirements<br />

Blower horsepower increases with the air flow delivered<br />

and the pressure developed. The four equations below can be<br />

used to predict blower horsepower consumption. They differ<br />

only in the flow and pressure units used. The term “efficiency”<br />

is the overall blower efficiency – a composite of fan,<br />

motor and drive train efficiencies – expressed as a decimal.<br />

hp =<br />

scfm x "w.c.<br />

hp =<br />

scfm x osi<br />

6356 x efficiency 3670 x efficiency<br />

hp =<br />

scfh x "w.c.<br />

hp =<br />

scfh x osi<br />

381,360 x efficiency 220,200 x efficiency<br />

THE EFFECT OF PRESSURE ON AIR<br />

Basis: 70°F dry air at sea level<br />

(29.92" Hg) barometric pressure<br />

Gauge Absolute Specific<br />

Pressure, Pressure, Density Specific Volume<br />

PSIG PSIA Lb./Cu. Ft. Gravity Cu. Ft./Lb.<br />

0 14.7 0.07500 1.000 13.33<br />

1 15.7 0.08010 1.068 12.48<br />

2 16.7 0.08520 1.136 11.74<br />

3 17.7 0.09031 1.204 11.07<br />

4 18.7 0.09541 1.272 10.48<br />

5 19.7 0.10051 1.340 9.95<br />

10 24.7 0.12602 1.680 7.94<br />

15 29.7 0.15153 2.020 6.60<br />

20 34.7 0.17704 2.361 5.65<br />

25 39.7 0.20255 2.701 4.94<br />

30 44.7 0.22806 3.041 4.38<br />

35 49.7 0.25357 3.381 3.94<br />

40 54.7 0.27908 3.721 3.58<br />

45 59.7 0.30459 4.061 3.28<br />

50 64.7 0.33010 4.401 3.03<br />

60 74.7 0.38112 5.082 2.62<br />

70 84.7 0.43214 5.762 2.31<br />

80 94.7 0.48316 6.442 2.07<br />

90 104.7 0.53418 7.122 1.87<br />

100 114.7 0.58520 7.802 1.71<br />

125 139.7 0.71276 9.503 1.40<br />

150 164.7 0.84031 11.204 1.19<br />

175 189.7 0.96786 12.905 1.03<br />

200 214.7 1.09541 14.605 0.91<br />

250 264.7 1.35051 18.007 0.74<br />

300 314.7 1.60561 21.408 0.62<br />

400 414.7 2.11582 28.211 0.47<br />

500 514.7 2.62602 35.014 0.38<br />

20<br />

Blowers used as suction fans<br />

When a blower is used as a suction device discharging to<br />

atmosphere, the amount of suction or vacuum developed can<br />

be calculated from this relationship:<br />

( )<br />

V = P – P2 x 27.7, where<br />

B + P<br />

V = suction or vacuum, " w.c.<br />

P = Absolute atmospheric pressure, psia, at the location where<br />

the blower is operated<br />

B = Rated blower discharge pressure, psig (psig = " w.c. ÷ 27.7)<br />

Example: A blower with a catalog pressure rating of 21" w.c.<br />

is used as a suction fan on an installation at 1500 ft altitude.<br />

How much suction will it develop?<br />

P at 1500 ft = 13.9 psia (from table below)<br />

B = 21 ÷ 27.7 = .76 psig<br />

V = 13.9 - (13.9)2<br />

( ) x 27.7 = 20 "w.c.<br />

.76 + 13.9<br />

THE EFFECT OF ALTITUDE ON AIR<br />

Basis: 70°F dry air at sea level<br />

(29.92" Hg) barometric pressure<br />

Specific<br />

Altitude Barometric Pressure, Density Specific Volume<br />

Ft. "Hg PSIA Lb./Cu. Ft. Gravity Cu. Ft./Lb.<br />

0 29.92 14.7 .07500 1.00 13.33<br />

500 29.38 14.4 .07365 .98 13.58<br />

1000 28.86 14.2 .07234 .96 13.82<br />

1500 28.33 13.9 .07101 .95 14.08<br />

2000 27.82 13.7 .06974 .93 14.34<br />

2500 27.31 13.4 .06846` .91 14.61<br />

3000 26.81 13.2 .06720 .90 14.88<br />

3500 26.32 12.9 .06598 .88 15.16<br />

4000 25.84 12.7 .06477 .86 15.44<br />

4500 25.36 12.5 .06357 .85 15.73<br />

5000 24.89 12.2 .06239 .83 16.03<br />

5500 24.43 12.0 .06124 .82 16.33<br />

6000 23.98 11.8 .06011 .80 16.64<br />

6500 23.53 11.6 .05898 .79 16.95<br />

7000 23.09 11.3 .05788 .77 17.28<br />

7500 22.65 11.1 .05678 .76 17.61<br />

8000 22.22 10.9 .05570 .74 17.95<br />

8500 21.80 10.7 .05465 .73 18.30<br />

9000 21.38 10.5 .05359 .71 18.66<br />

9500 20.98 10.3 .05259 .70 19.01<br />

10000 20.58 10.1 .05159 .69 19.38<br />

15000 16.88 8.29 .04231 .56 23.63<br />

20000 13.75 6.76 .03447 .46 29.01<br />

Helpful conversions:<br />

Altitude in meters x 3.28 = Altitutde in feet<br />

Barometric pressure in "Hg ÷ 2.036 = Barometric pressure<br />

in psia.


Absolute Specific<br />

Temp. Temp. Density Specific Volume<br />

°F Ratio Lb./Cu. Ft. Gravity Cu. Ft./Lb.<br />

-60 .7547 .09938 1.325 10.06<br />

-40 .7925 .09464 1.262 10.57<br />

-30 .8113 .09244 1.233 10.82<br />

-20 .8302 .09034 1.205 11.07<br />

-10 .8491 .08833 1.178 11.32<br />

0 .8679 .08641 1.152 11.57<br />

20 .9057 .08281 1.104 12.08<br />

40 1.019 .07361 .981 13.58<br />

60 .9811 .07644 1.019 13.08<br />

70 1.000 .07500 1.000 13.33<br />

80 .9434 .07361 1.060 12.58<br />

90 1.038 .07227 .964 13.84<br />

100 1.057 .07098 .946 14.09<br />

110 1.075 .06974 .930 14.34<br />

120 1.094 .06853 .914 14.59<br />

130 1.113 .06737 .898 14.84<br />

140 1.132 .06624 .883 15.09<br />

150 1.151 .06516 .869 15.35<br />

160 1.170 .06411 .855 15.60<br />

170 1.189 .06310 .841 15.85<br />

180 1.208 .06211 .828 16.10<br />

190 1.226 .06115 .815 16.35<br />

200 1.245 .06023 .803 16.60<br />

210 1.264 .05933 .791 16.86<br />

220 1.283 .05846 .779 17.11<br />

230 1.302 .05761 .768 17.36<br />

240 1.321 .05679 .757 17.61<br />

250 1.340 .05599 .747 17.86<br />

260 1.358 .05521 .736 18.11<br />

270 1.377 .05445 .726 18.36<br />

280 1.396 .05372 .716 18.62<br />

290 1.415 .05300 .707 18.87<br />

300 1.434 .05230 .697 19.12<br />

310 1.453 .05162 .688 19.37<br />

320 1.472 .05096 .679 19.62<br />

330 1.491 .05032 .671 19.87<br />

340 1.509 .04969 .663 20.13<br />

350 1.528 .04907 .654 20.38<br />

360 1.547 .04848 .646 20.63<br />

370 1.566 .04789 .639 20.88<br />

380 1.585 .04732 .631 21.13<br />

390 1.604 .04676 .623 21.38<br />

400 1.623 .04622 .616 21.64<br />

410 1.642 .04569 .609 21.89<br />

420 1.660 .04517 .602 22.14<br />

430 1.679 .04466 .595 22.39<br />

440 1.698 .04417 .589 22.64<br />

450 1.717 .04368 .582 22.89<br />

460 1.736 .04321 .576 23.14<br />

470 1.755 .04274 .570 23.40<br />

480 1.774 .04229 .564 23.65<br />

490 1.792 .04184 .558 23.90<br />

500 1.811 .04141 .552 24.15<br />

510 1.830 .04098 .546 24.40<br />

THE EFFECT OF TEMPERATURE ON AIR<br />

Basis: 70°F dry air at sea level (29.92" Hg) barometric pressure<br />

Explanation of terms:<br />

Absolute Temperature Ratio: Temperature, °F + 460<br />

530<br />

Specific Gravity: Density at stated temperature<br />

.07500<br />

Specific Volume: 1<br />

Density, lb/cu. ft.<br />

21<br />

Absolute Specific<br />

Temp. Temp. Density Specific Volume<br />

°F Ratio Lb./Cu. Ft. Gravity Cu. Ft./Lb.<br />

520 1.849 .04056 .541 24.65<br />

530 1.868 .04015 .535 24.91<br />

540 1.887 .03975 .530 25.16<br />

550 1.906 .03936 .525 25.41<br />

560 1.925 .03897 .520 25.66<br />

570 1.943 .03859 .515 25.91<br />

580 1.962 .03822 .510 26.16<br />

590 1.981 .03786 .505 26.42<br />

600 2.000 .03750 .500 26.67<br />

610 2.019 .03715 .495 26.92<br />

620 2.038 .03681 .491 27.17<br />

630 2.057 .03647 .486 27.42<br />

640 2.075 .03614 .482 27.67<br />

650 2.094 .03581 .477 27.92<br />

660 2.113 .03549 .473 28.18<br />

670 2.132 .03518 .469 28.43<br />

680 2.151 .03487 .465 28.68<br />

690 2.170 .03457 .461 28.93<br />

700 2.189 .03427 .457 29.18<br />

710 2.208 .03397 .453 29.43<br />

720 2.226 .03369 .449 29.69<br />

730 2.245 .03340 .445 29.94<br />

740 2.264 .03313 .442 30.19<br />

750 2.283 .03285 .438 30.44<br />

760 2.302 .03258 .434 30.69<br />

770 2.321 .03232 .431 30.94<br />

780 2.340 .03206 .427 31.19<br />

790 2.358 .03180 .424 31.45<br />

800 2.377 .03155 .421 31.70<br />

825 2.425 .03093 .412 32.33<br />

850 2.472 .03034 .405 32.96<br />

875 2.519 .02978 .397 33.58<br />

900 2.566 .02923 .390 34.21<br />

925 2.613 .02870 .383 34.84<br />

950 2.660 .02819 .376 35.47<br />

975 2.708 .02770 .369 36.10<br />

1000 2.755 .02723 .363 36.73<br />

1025 2.802 .02677 .357 37.36<br />

1050 2.849 .02623 .350 37.99<br />

1100 2.943 .02548 .340 39.25<br />

1150 3.033 .02469 .329 40.50<br />

1200 3.132 .02395 .319 41.76<br />

1250 3.226 .02325 .310 43.02<br />

1300 3.321 .02259 .301 44.28<br />

1350 3.415 .02196 .293 45.53<br />

1400 3.509 .02137 .285 46.79<br />

1500 3.698 .02028 .270 49.31<br />

1600 3.887 .01930 .257 51.81<br />

1700 4.075 .01840 .245 54.35<br />

1800 4.264 .01759 .235 56.85<br />

1900 4.453 .01684 .225 59.38<br />

2000 4.642 .01616 .215 61.88<br />

2100 4.830 .01553 .207 64.39<br />

2200 5.019 .01494 .199 66.93


CHAPTER 3 – GAS<br />

PHYSICAL PROPERTIES OF COMMERCIAL FUEL GASES<br />

Constituents – % by Volume Density, Specific<br />

Specific Lb per Volume<br />

No. Gas CH4 C2H6 C3H8 C4H10 CO H2 CO2 O2 N2 Gravity Cu Ft Cu Ft/Lb<br />

1<br />

2<br />

Acetylene<br />

Blast Furnace Gas<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

(100% C2H2 )<br />

– 27.5 1<br />

–<br />

11.5<br />

–<br />

–<br />

–<br />

60<br />

0.91<br />

1.02<br />

.07<br />

.078<br />

14.4<br />

12.8<br />

3 Butane (natural gas) – – 7 93 – – – – – 1.95 .149 6.71<br />

4 Butylene (Butene) – – – (100% C4H8 ) – – – 1.94 .148 6.74<br />

5 Carbon Monoxide – – – – 100 – – – – 0.97 .074 13.5<br />

6<br />

7<br />

8<br />

Carburetted Water Gas<br />

Coke Oven Gas<br />

Digester (Sewage) Gas<br />

10.2<br />

32.1<br />

67<br />

(6.1% C2H4 , 2.8% C6H6 )<br />

(3.5% C2H4 , 0.5% C6H6 )<br />

– – (8% H2O) 34<br />

6.3<br />

40.5<br />

46.5<br />

–<br />

3<br />

2.2<br />

25<br />

0.5<br />

0.8<br />

–<br />

2.9<br />

8.1<br />

–<br />

0.63<br />

0.44<br />

0.80<br />

.048<br />

.034<br />

.062<br />

20.8<br />

29.7<br />

16.3<br />

9 Ethane – 100 – – – – – – – 1.05 .080 12.5<br />

10 Hydrogen – – – – – 100 – – – 0.07 .0054 186.9<br />

11 Methane 100 – – – – – – – – 0.55 .042 23.8<br />

12 Natural (Birmingham, AL) 90 5 – – – – – – 5 0.60 .046 21.8<br />

13 Natural (Pittsburgh, PA) 83.4 15.8 – – – – – – 0.8 0.61 .047 21.4<br />

14 Natural (Los Angeles, CA) 77.5 16.0 – – – – 6.5 – – 0.70 .054 18.7<br />

15 Natural (Kansas City, MO) 84.1 6.7 – – – – 0.8 – 8.4 0.63 .048 20.8<br />

16 Natural (Groningen,<br />

Netherlands)<br />

81.3 2.9 0.4 0.1 – – 0.9 – 14.4 0.64 .048 20.7<br />

17 Natural (Midlands Grid, U.K.) 91.8 3.5 0.8 0.3 – – 0.4 – 2.8 0.61 .046 21.8<br />

18 Producer (Wellman-Galusha) 2.3 – – – 25 14.5 4.7 – 52.7 0.84 .065 15.4<br />

19 Propane (natural gas) – – 100 – – – – – – 1.52 .116 8.61<br />

20<br />

21<br />

Propylene (Propene)<br />

Sasol (South Africa)<br />

–<br />

26<br />

–<br />

–<br />

– (100% C3H6 )<br />

– – 22 48<br />

–<br />

–<br />

–<br />

0.5<br />

–<br />

1<br />

1.45<br />

0.42<br />

.111<br />

.032<br />

9.02<br />

31.3<br />

22 Water Gas (bituminous) 4.6 (0.4% C2H4 , 0.3% C6H6 ) 28.2 32.5 5.5 0.9 27.6 0.71 .054 18.7<br />

COMBUSTION PROPERTIES OF COMMERCIAL FUEL GASES<br />

Air/Gas Ratio, Flammability Limits, Ignition Temperature & Flame Velocity<br />

Stoichiometric<br />

Limits of<br />

Flammability Minimum Maximum<br />

Air/Gas Ratio % Gas in Ignition Flame Velocity<br />

Cu Ft Air/ Lb Air/ Air/Gas Mixture Temperature in Air,<br />

No. Gas Cu Ft Gas Lb Gas Lean Rich in Air, °F Ft/Sec*<br />

1 Acetylene 11.91 13.26 2.5 80 581 9.4<br />

2 Blast Furnace Gas 0.68 0.67 45 72 – –<br />

3 Butane (natural gas) 30.47 15.63 1.86 8.41 826 2.8<br />

4 Butylene (Butene) 28.59 14.77 1.7 9 829 3.2<br />

5 Carbon Monoxide 2.38 2.46 12 74 1128 2.0<br />

6 Carburetted Water Gas 4.60 7.36 4.2 42.9 – –<br />

7 Coke Oven Gas 4.99 11.27 4.5 31.5 – –<br />

8 Digester (Sewage) Gas 6.41 7.97 8 17 – –<br />

9 Ethane 16.68 15.98 3.15 12.8 882 2.8<br />

10 Hydrogen 2.38 33.79 4 74.2 1065 16.0<br />

11 Methane 9.53 17.23 5 15 1170 2.2<br />

12 Natural (Birmingham, AL) 9.41 15.68 7.03 15.77 – –<br />

13 Natural (Pittsburgh, PA) 10.58 17.31 4.6 14.7 – –<br />

14 Natural (Los Angeles, CA) 10.05 14.26 4.9 15.6 – –<br />

15 Natural (Kansas City, MO) 9.13 14.59 5.4 16.3 – –<br />

16 Natural (Groningen,<br />

Netherlands)<br />

8.41 13.45 6.1 15 1238 1.18<br />

17 Natural (Midlands Grid, U.K.) 9.8 16.13 5 15 1300 0.98<br />

18 Producer (Wellman-Galusha) 1.30 1.56 16.4 69.4 – –<br />

19 Propane (natural gas) 23.82 15.73 2.37 9.50 898 2.7<br />

20 Propylene (Propene) 21.44 14.77 2 11.1 856 3.3<br />

21 Sasol (South Africa) 4.13 9.84 5.3 37.4 – –<br />

22 Water Gas (bituminous) 2.01 2.86 8.9 61 – –<br />

*Uniform flame speed in a 1" diameter tube. Flame speeds increase in larger diameter tubes.<br />

22


COMBUSTION PROPERTIES OF COMMERCIAL FUEL GASES<br />

Heating Value, Heat Release & Flame Temperature<br />

Heating Value Theoretical<br />

Heat release, Btu Flame<br />

Btu/cu ft Btu/lb Temperature<br />

No. Gas Gross Net Gross Net Per Cu Ft Air Per Lb Air °F<br />

1 Acetylene 1498 1447 21,569 20,837 125.8 1677 4250<br />

2 Blast Furnace Gas 92 92 1178 1178 135.3 1804 2650<br />

3 Butane (natural gas) 3225 2977 21,640 19,976 105.8 1411 3640<br />

4 Butylene (Butene) 3077 2876 20,780 19,420 107.6 1435 3810<br />

5 Carbon Monoxide 323 323 4368 4368 135.7 1809 3960<br />

6 Carburetted Water Gas 550 508 11,440 10,566 119.6 1595 3725<br />

7 Coke Oven Gas 574 514 17,048 15,266 115.0 1533 3610<br />

8 Digester (Sewage) Gas 690 621 11,316 10,184 107.6 1407 3550<br />

9 Ethane 1783 1630 22,198 20,295 106.9 1425 3710<br />

10 Hydrogen 325 275 61,084 51,628 136.6 1821 3960<br />

11 Methane 1011 910 23,811 21,433 106.1 1415 3640<br />

12 Natural (Birmingham, AL) 1002 904 21,844 19,707 106.5 1420 3565<br />

13 Natural (Pittsburgh, PA) 1129 1021 24,161 21,849 106.7 1423 3562<br />

14 Natural (Los Angeles, CA) 1073 971 20,065 18,158 106.8 1424 3550<br />

15 Natural (Kansas City, MO) 974 879 20,259 18,283 106.7 1423 3535<br />

16 Natural (Groningen,<br />

Netherlands)<br />

941 849 19,599 17,678 111.9 1492 3380<br />

17 Natural (Midlands Grid, U.K.) 1035 902 22,500 19,609 105.6 1408 3450<br />

18 Producer (Wellman-Galusha) 167 156 2650 2476 128.5 1713 3200<br />

19 Propane (natural gas) 2572 2365 21,500 19,770 108 1440 3660<br />

20 Propylene (Propene) 2322 2181 20,990 19,630 108.8 1451 3830<br />

21 Sasol (South Africa) 500 443 14,550 13,016 116.3 1551 3452<br />

22 Water Gas (bituminous) 261 239 4881 4469 129.9 1732 3510<br />

COMBUSTION PROPERTIES OF COMMERCIAL FUEL GASES<br />

Combustion Products & %CO 2<br />

Combustion Products, Cu Ft/Cu Ft Gas Combustion Products, Lb/Lb Gas Ultimate<br />

CO2 No. Gas CO2 H2O N2 Total CO2 H2O N2 Total %*<br />

1 Acetylene 2.00 1.00 9.41 12.41 3.38 0.69 10.19 14.26 17.5<br />

2 Blast Furnace Gas 0.39 0.02 1.14 1.54 .59 — 1.08 1.67 25.5<br />

3 Butane (natural gas) 3.93 4.93 24.07 32.93 3.09 1.59 11.95 16.63 14.0<br />

4 Butylene (Butene) 4.00 4.00 22.59 30.59 3.14 1.29 11.34 15.77 15.0<br />

5 Carbon Monoxide 1.00 — 1.88 2.88 1.57 — 1.89 3.46 34.7<br />

6 Carburetted Water Gas 0.76 0.87 3.66 5.29 1.85 0.87 5.64 8.36 17.2<br />

7 Coke Oven Gas 0.51 1.25 4.02 5.78 1.76 1.76 8.75 12.27 11.2<br />

8 Digester (Sewage) Gas 0.92 1.42 5.44 7.78 1.74 1.10 6.53 9.37 14.5<br />

9 Ethane 2.00 3.00 13.18 18.18 2.93 1.8 12.25 16.98 13.2|<br />

10 Hydrogen — 1.00 1.88 2.88 — 8.89 25.90 34.79 0<br />

11 Methane 1.00 2.00 7.53 10.53 2.75 2.25 13.23 18.23 11.7<br />

12 Natural (Birmingham, AL) 1.00 2.02 7.48 10.50 2.54 2.11 12.03 16.68 11.8<br />

13 Natural (Pittsburgh, PA) 1.15 2.22 8.37 11.73 2.86 2.27 13.18 18.31 12.1<br />

14 Natural (Los Angeles, CA) 1.16 2.10 7.94 11.20 2.51 1.87 10.88 15.26 12.7<br />

15 Natural (Kansas City, MO) 0.98 1.95 7.30 10.23 2.39 1.95 11.25 15.59 11.9<br />

16 Natural (Groningen,<br />

Netherlands)<br />

0.89 1.73 6.74 9.36 2.17 1.73 10.45 14.35 11.7<br />

17 Natural (Midlands Grid, U.K.) 1.05 2.19 7.94 11.78 2.67 2.29 12.84 17.80 11.7<br />

18 Producer (Wellman-Galusha) 0.34 0.17 1.59 2.11 0.61 0.13 1.82 2.56 17.6<br />

19 Propane (natural gas) 3.00 4.17 18.82 25.99 3.00 1.70 12.03 16.73 13.7<br />

20 Propylene (Propene) 3.00 3.00 16.94 22.94 3.14 1.29 11.34 15.77 15.0<br />

21 Sasol (South Africa) 0.48 1.00 3.28 4.76 1.76 1.50 7.63 10.89 12.8<br />

22 Water Gas (bituminous) 0.41 0.47 1.86 2.74 0.89 0.42 2.55 3.86 18.0<br />

*In dry flue gas sample<br />

23


PROPANE/AIR & BUTANE/AIR MIXTURES<br />

EQUIVALENT BTU TABLES<br />

PROPANE/AIR MIXTURE BUTANE/AIR MIXTURE<br />

B.t.u. Specific<br />

Equivalent<br />

Propane-<br />

Air<br />

Mixture Specific<br />

Kind of Gas Content Gravity B.t.u. Gravity<br />

Carbureted Water Gas . . . . . . . . . .517 .65 690 1.14<br />

Mixed Water and Coke Oven . . . . . .530 .46 855 1.17<br />

Coke Oven . . . . . . . . . . . . . . . . . . .590 .42 1000 1.20<br />

Natural . . . . . . . . . . . . . . . . . . . . . .900 .56 1100 1.23<br />

Natural . . . . . . . . . . . . . . . . . . . . .1050 .60 1400 1.28<br />

Natural . . . . . . . . . . . . . . . . . . . . .1140 .65 1560 1.32<br />

B.t.u. Specific<br />

Equivalent<br />

Butane-<br />

Air<br />

Mixture Specific<br />

Kind of Gas Content Gravity B.t.u. Gravity<br />

Carbureted Water Gas . . . . . . . . . .517 .65 708 1.20<br />

Mixed Water and Coke Oven . . . . . .530 .46 870 1.25<br />

Coke Oven . . . . . . . . . . . . . . . . . . .590 .42 1058 1.31<br />

Natural . . . . . . . . . . . . . . . . . . . . . .900 .56 1380 1.41<br />

Natural . . . . . . . . . . . . . . . . . . . . .1050 .60 1550 1.46<br />

Natural . . . . . . . . . . . . . . . . . . . . .1140 .65 1680 1.50<br />

NOTE: The B.t.u. content and specific gravity figures are representative figures and will vary according to area. Therefore, these tables should be used as a guide only.<br />

MIXTURE SPECIFICATIONS<br />

PROPANE/AIR MIXTURES BUTANE/AIR MIXTURES<br />

B.t.u. per Percentage Percentage Percentage Specific Percentage Percentage Percentage Specific<br />

Cubic Foot of Propane of Air by of Oxygen by Gravity of of Butane of Air by of Oxygen by Gravity of<br />

of MIxture by Volume Volume Volume (Orsat) the MIxture by Volume Volume Volume (Orsat) the Mixture<br />

3200 — — — — 100.00 0.00 0.000 1.950<br />

3150 — — — — 98.44 1.56 0.328 1.935<br />

3100 — — — — 96.88 3.12 0.656 1.920<br />

3050 — — — — 95.32 4.68 0.984 1.905<br />

3000 — — — — 93.75 6.25 1.312 1.891<br />

2950 — — — — 92.20 7.80 1.643 1.875<br />

2900 — — — — 90.62 9.38 1.967 1.861<br />

2850 — — — — 89.08 10.92 2.297 1.846<br />

2800 — — — — 87.51 12.49 2.625 1.831<br />

2750 — — — — 85.95 14.05 2.953 1.817<br />

2700 — — — — 84.38 15.62 3.280 1.802<br />

2650 — — — — 82.82 17.18 3.612 1.786<br />

2600 — — — — 81.25 18.75 3.935 1.771<br />

2550 100.00 0.00 0.000 1.523 79.70 20.30 4.268 1.755<br />

2500 98.04 1.96 0.409 1.513 78.18 21.82 4.590 1.744<br />

2450 96.08 3.92 0.819 1.502 76.58 23.42 4.921 1.728<br />

2400 94.12 5.88 1.288 1.492 75.00 25.00 5.249 1.712<br />

2350 92.16 7.84 1.639 1.482 73.44 26.56 5.576 1.698<br />

2300 90.19 9.81 2.050 1.472 71.86 28.14 5.899 1.683<br />

2250 88.24 11.76 2.458 1.461 70.30 29.70 6.238 1.668<br />

2200 86.27 13.73 2.869 1.451 68.79 31.21 6.561 1.653<br />

2150 84.31 15.69 3.279 1.441 67.20 32.80 6.889 1.638<br />

2100 82.35 17.65 3.688 1.431 65.63 34.37 7.219 1.623<br />

2050 80.39 19.61 4.098 1.420 64.09 35.91 7.548 1.608<br />

2000 78.43 21.56 4.506 1.410 62.52 37.48 7.869 1.593<br />

1950 76.47 23.53 4.918 1.400 60.96 39.04 8.200 1.579<br />

1900 74.51 25.49 5.317 1.390 59.38 40.62 8.542 1.564<br />

1850 72.55 27.45 5.737 1.379 57.87 42.13 8.868 1.550<br />

1800 70.58 29.42 6.149 1.369 56.25 43.75 9.162 1.535<br />

1750 68.62 31.38 6.558 1.359 54.69 45.31 9.500 1.520<br />

1700 66.67 33.33 6.964 1349 53.17 46.83 9.850 1.505<br />

1650 64.70 35.30 7.378 1.338 51.60 48.40 10.180 1.490<br />

1600 62.74 37.26 7.787 1.328 50.00 50.00 10.488 1.475<br />

1550 60.78 39.22 8.197 1.318 48.50 51.50 10.817 1.461<br />

1500 58.82 41.18 8.606 1.308 46.92 53.08 11.130 1.446<br />

1450 56.86 43.14 9.016 1.297 45.35 54.65 11.490 1.431<br />

1400 54.90 45.10 9.246 1.287 43.75 56.25 11.810 1.416<br />

1350 52.94 47.06 9.835 1.277 42.22 57.78 12.130 1.401<br />

1300 50.98 49.02 10.245 1.267 40.60 59.40 12.481 1.386<br />

1250 49.02 50.98 10.654 1.256 39.09 60.91 12.795 1.371<br />

1200 47.06 52.94 11.064 1246 37.50 62.50 13.137 1.356<br />

1150 45.09 54.91 11.476 1.236 35.92 64.08 13.462 1.340<br />

1100 43.13 56.87 11.886 1.226 34.38 65.62 13.787 1.326<br />

1050 41.17 58.83 12.295 1.215 32.80 67.21 14.100 1.312<br />

1000 39.21 60.79 12.705 1.205 31.25 68.75 14.412 1.296<br />

950 37.25 62.75 13.115 1.195 29.75 70.25 14.775 1.282<br />

900 35.29 64.71 13.524 1.185 28.20 71.80 15.100 1.266<br />

850 33.33 66.67 13.934 1.174 26.55 73.45 15.425 1.252<br />

800 31.37 68.63 14.344 1.164 25.00 75.00 15.712 1.237<br />

750 29.41 70.59 14.753 1.154 23.50 76.50 16.081 1.223<br />

700 27.45 72.55 15.163 1.114 21.88 78.12 16.400 1.206<br />

650 25.49 74.51 15.573 1.133 20.38 79.62 16.750 1.194<br />

600 23.53 76.47 15.982 1.123 18.75 81.25 17.081 1.178<br />

550 21.56 78.44 16.394 1.113 17.25 82.75 17.412 1.163<br />

500 19.61 80.39 16.892 1.103 15.63 84.37 17.712 1.148<br />

450 17.65 82.35 17.211 1.092 14.13 85.87 18.081 1.135<br />

400 15.69 84.31 17.621 1.082 12.50 87.50 18.375 1.120<br />

350 13.73 86.27 18.031 1.072 11.00 89.00 18.687 1.105<br />

300 11.76 88.24 18.442 1.062 9.38 90.62 19.031 1.089<br />

250 9.80 90.20 18.852 1.051 7.75 92.25 19.313 1.074<br />

200 7.84 92.16 19.261 1.041 6.25 93.75 19.687 1.059<br />

150 5.88 94.12 19.670 1.031 4.75 95.25 20.000 1.045<br />

100 3.92 96.08 20.081 1.021 3.13 96.87 20.342 1.029<br />

24


CHAPTER 4 – OIL<br />

FUEL OIL SPECIFICATIONS PER ANSI/ASTM D 396-79 A<br />

Water<br />

CarbonResidue<br />

on Distillation Specific Cop-<br />

Flash Pour and 10% Temperatures, Saybolt Viscosity, sD Kinematic Viscosity, cStD Gravity per<br />

Point, Point, Sedi- Bot- Ash, °C(°F) 60/60°F Strip Sul-<br />

°C °C ment, toms, weight 10% Universal at Furol at 50°C At 38°C At 40°C At 50°C (deg Corro- fur,<br />

Grade of (°F) (°F) vol % % % Point 90% Point 38°C(100°F) 122°F) (100°F) (104°F) (122°F) API) sion %<br />

Fuel Oil Min Max Max Max Max Max Min Max Min Max Min Max Min Max Min Max Min Max Max Max Max<br />

No. 1 38 -18C 0.05 0.15 – 215 — 288 — — — — 1.4 2.2 1.3 2.1 — — 0.8499 No. 3 0.5<br />

A distillate oil (100)<br />

intended for<br />

vaporizing pottype<br />

burners and<br />

other burners<br />

requiring this<br />

grade of fuel<br />

(0) (420) (550) (35 min)<br />

No. 2 38 -6C 0.05 0.35 — — 282C 338 (32.6) (37.9) — — 2.0C 3.6 1.9C 3.4 — — 0.8762 No. 3 0.5B A distillate oil for(100) (20)<br />

general purpose<br />

heating for use in<br />

burners not<br />

requiring No. 1<br />

fuel oil<br />

(540) (640) (30 min)<br />

No. 4 55 -6C 0.50 — 0.10 — — — (45) (125) — — 5.8 26.4F 5.5 24.0F — — — — —<br />

Preheating not(130)<br />

usually required<br />

for handling<br />

or burning<br />

(20)<br />

No. 5 (Light) 55 — 1.00 — 0.10 — — — (>125) (300) — — >26.4 65F >24.0 58F — — — — —<br />

Preheating may(130)<br />

be required<br />

depending on<br />

climate and<br />

equipment<br />

No. 5 (Heavy) 55 — 1.00 — 0.10 — — — (>300) (900) (23) (40) >65 194F >58 168F (42) (81) — — —<br />

Preheating may(130)<br />

be required<br />

for burning and,<br />

in cold climates,<br />

may be required<br />

for handling<br />

No. 6 60 G 2.00 E — — — — — (>900) (9000) (>45) (300) — — — — >92 638 F — — —<br />

Preheating (140)<br />

required for<br />

burning and<br />

handling<br />

A It is the intent of these classifications that failure to meet any requirement of a given grade does not automatically place an oil in the next lower<br />

grade unless in fact it meets all requirements of the lower grade.<br />

B In countries outside the United States other sulfur limits may apply.<br />

C Lower or higher pour points may be specified whenever required by conditions of storage or use. When pour point less than -18°C (0°F) is<br />

specified, the minimum viscosity for grade No. 2 shall be 1.7 cSt (31.5 SUS) and the minimum 90% point shall be waived.<br />

D Viscosity values in parentheses are for information only and not necessarily limiting.<br />

E The amount of water by distillation plus the sediment by extraction shall not exceed 2.00%. The amount of sediment by extraction shall not<br />

exceed 0.50%. A deduction in quanity shall be made for all water and sediment in excess of 1.0%.<br />

F Where low sulfur fuel oil is required, fuel oil failing in the viscosity range of a lower numbered grade down to and including No. 4 may be supplied<br />

by agreement between purchaser and supplier. The viscosity range of the initial shipment shall be identified and advance notice shall be<br />

required when changing from one viscosity range to another. This notice shall be in sufficient time to permit the user to make the necessary<br />

adjustments.<br />

G Where low sulfur fuel oil is required. Grade 6 fuel oil will be classified as low pour + 15°C (60°F) max or high pour (no max). Low pour fuel oil<br />

should be used unless all tanks and lines are heated.<br />

© COPYRIGHT ASTM • REPRINTED WITH PERMISSION<br />

25


TYPICAL PROPERTIES OF COMMERCIAL FUEL OILS IN THE U.S.<br />

Grade of Carbon Residue,<br />

Fuel Oil Flash Point, °F Pour Point, °F Water, Vol. % Wt. % Ash, Wt. %<br />

1 106 to 174 -85 to -10 0.050 max. 0.200 max. –<br />

2 120 to 250 -60 to +35 0.060 max. 0.820 max. –<br />

4* 150 to 276 -40 to +80 0.3 max. 0.19 to 7.6 0.07 max.<br />

5 (Light)* 154 to 250 -15 to +55 0.08 to 0.6 2.10 to 13.6 0.001 to 0.08<br />

5 (Heavy)* 136 to 300+ -17 to +90 0.4 max. 1.55 to 9.6 0.001 to 0.16<br />

6 140 to 250 0 to +110 0.300 max. 1.02 to 15.80 0.001 to 0.630<br />

Grade of Viscosity, Specific Gravity Gross Heating<br />

Fuel Oil SSU @ 100°F 60/60°F Gravity, °API Sulfur, Wt % Value, Btu/gallon<br />

1 37 max. 0.79 to 0.85 47.9 to 34.8 0 to 0.47 131,100 to 138,700<br />

2 42 max. 0.80 to 0.92 45.3 to 21.9 0.04 to 0.5 132,600 to 147,400<br />

4* 35 to 160 0.85 to 0.99 34.6 to 12.1 0.18 to 1.81 140,400 to 151,700<br />

5 (Light)* 80 to 700 0.89 to 1.01 28.2 to 8.5 0.58 to 3.48 142,700 to 156,400<br />

5 (Heavy)* 240 to 1300 0.91 to 1.02 23.4 to 7.5 0.6 to 2.54 144,800 to 153,600<br />

6 240 to 6100 0.92 to 1.09 22.0 to -1.5 0.17 to 3.52 146,700 to 162,000<br />

The above data are summarized from Heating Oils, 1984, published by the American Petroleum Institute and U.S.<br />

Dept. of Energy. The ranges in the tables represent the extreme maximums and minimums for the oil samples<br />

included in the survey.<br />

*1975-1976 data. No data available for these grades in 1983-1984.<br />

Kinematic Viscosity, SSU @ 100°F, SSF @ 122°F, SR1 @ 140°F, or °E<br />

FUEL OIL VISCOSITY CONVERSIONS<br />

This chart converts four commonly-used fuel oil viscosity<br />

scales to a common base of centistokes<br />

ABBREVIATIONS: SSU = Saybolt Seconds Universal<br />

SSF = Saybolt Seconds Furol<br />

SRI = Seconds Redwood #1<br />

°E = Degrees Engler<br />

10,000<br />

8<br />

6<br />

4<br />

3<br />

2<br />

1000<br />

8<br />

6<br />

4<br />

3<br />

2<br />

100<br />

8<br />

6<br />

4<br />

3<br />

2<br />

10<br />

8<br />

6<br />

4<br />

3<br />

2<br />

1<br />

1 2 3 4 6 8 10 2 3 4 6 8 100 2 3 4 6 8 1000 2 3<br />

Kinematic Viscosity, Centistokes (CS)<br />

26<br />

SSU @ 100°F<br />

SR1 @ 140°F<br />

SSF @ 122°F<br />

°E


Specific Gravity @ 60°F<br />

1.1<br />

1.0<br />

0.9<br />

0.8<br />

To determine specific gravity of an oil, find °API at the bottom<br />

of the graph, read up to the curve, and left to the specific<br />

gravity.<br />

To find gross heating value of an oil, find °API at the bottom<br />

of the graph, read up to the curve, and right to the heating<br />

value.<br />

These charts show oil pressure drop per 100 equivalent<br />

feet of horizontal schedule 40 steel pipe. To determine total<br />

equivalent length, add equivalent lengths of fittings and<br />

valves (Page 16) to the actual linear feet of pipe.<br />

The charts for 1000 SSU and 10,000 SSU oils are<br />

accompanied by correction factors for oils of other viscosities.<br />

To find the pressure drop for an oil not on either of<br />

these charts, simply multiply the drop from the chart by the<br />

appropriate correction factor.<br />

If the entrance and exit ends of the oil line are at different<br />

elevations, the static head of the oil must be added to or<br />

subtracted from the calculated piping drop.<br />

Static head, psi = 0.433 x specific gravity of oil x elevation<br />

difference, ft.<br />

° API VS. OIL SPECIFIC GRAVITY<br />

& GROSS HEATING VALUE<br />

0.7<br />

0 10 20 30 40 50 60<br />

OIL PIPING PRESSURE LOSSES<br />

27<br />

° API<br />

For greater accuracy or for gravities not on this chart, use<br />

these equations:<br />

Specific gravity @ 60/60°F = 141.5<br />

°API + 131.5<br />

Gross Heating Value, Btu/lb<br />

= 17,887 + (57.5 x °API) - (102.2 x %S)<br />

where %S is weight % sulfur in the oil.<br />

Gross Heating Value, Btu/gal<br />

= g.h.v., Btu/lb x 8.335 x specific gravity<br />

Pressure Drop, psi per<br />

100 feet of equivalent<br />

pipe length<br />

10<br />

5<br />

1/2" 3/4"<br />

35 SSU Distillate Oil<br />

-160<br />

-155<br />

-150<br />

-145<br />

-140<br />

-135<br />

- 130<br />

1-1/4"<br />

Gr0ss Heating Value, Btu/Gallon x 1000<br />

0<br />

0 5 10<br />

Oil Flow, gpm<br />

15 20<br />

1"


Pressure Drop, psi per 100 feet<br />

of equivalent pipe length<br />

Pressure Drop, psi per 100 feet<br />

of equivalent pipe length<br />

20<br />

15<br />

10<br />

5<br />

OIL PIPING PRESSURE LOSSES (Cont’d)<br />

Pressure Drop, psi per<br />

100 feet of equivalent<br />

pipe length<br />

10<br />

5<br />

100 SSU Intermediate Oil<br />

1/2" 3/4" 1"<br />

0<br />

0 5 10<br />

Oil Flow, gpm<br />

15 20<br />

0<br />

0 5 10<br />

Oil Flow, gpm<br />

15 20<br />

20<br />

15<br />

10<br />

5<br />

1000 SSU Heavy Oil<br />

1" 1-1/4"<br />

10,000 SSU Heavy Oil<br />

2" 2-1/2"<br />

1-1/2"<br />

2"<br />

2-1/2"<br />

0<br />

0 5 10<br />

Oil Flow, gpm<br />

15 20<br />

28<br />

3"<br />

4"<br />

1-1/4"<br />

1-1/2"<br />

Pressure Drop<br />

Correction Factors<br />

for Other Viscosities<br />

Viscosity, Correction<br />

SSU Factor<br />

200 0.2<br />

300 0.3<br />

400 0.4<br />

500 0.5<br />

600 0.6<br />

700 0.7<br />

800 0.8<br />

900 0.9<br />

1200 1.2<br />

1500 1.5<br />

2000 2.0<br />

2500 2.5<br />

Pressure Drop<br />

Correction Factors<br />

for Other Viscosities<br />

Viscosity, Correction<br />

SSU Factor<br />

2000 0.2<br />

3000 0.3<br />

4000 0.4<br />

5000 0.5<br />

6000 0.6<br />

7000 0.7<br />

8000 0.8<br />

9000 0.9<br />

12000 1.2<br />

15000 1.5


OIL PIPING TEMPERATURE LOSSES<br />

This table lists the temperature drop of 220°F oil flowing through steel pipe insulated with 1" thick 85% magnesia pipe<br />

insulation. Ambient temperature is assumed to be 60°F. For oil temperatures other than 220°F, multiply the temperature loss by<br />

the appropriate correction factor.<br />

OIL TEMPERATURE DROP IN °F PER FOOT OF PIPE<br />

Oil Flow Nominal Pipe Size<br />

GPH 1/4 3/8 1/2 3/4 1 1-1/4 1-1/2 2 2-1/2 3<br />

.5 10.92 12.18 13.68 15.48 17.64 20.6 22.50 26.30 30.00 34.8<br />

1 5.46 6.09 6.84 7.74 8.82 10.3 11.25 13.15 15.00 17.4<br />

2 2.73 3.04 3.42 3.87 4.41 5.15 5.63 6.57 7.50 8.70<br />

3 1.82 2.03 2.28 2.58 2.94 3.43 3.75 4.38 5.00 5.75<br />

4 1.365 1.52 1.71 1.933 2.205 2.58 2.82 3.28 3.75 4.35<br />

5 1.09 1.218 1.368 1.548 1.764 2.06 2.25 2.63 3.00 3.48<br />

10 .546 .609 .684 .774 .882 1.03 1.125 1.315 1.50 1.74<br />

15 .364 .405 .455 .515 .588 .686 .750 .876 1.00 1.16<br />

20 .273 .304 .342 .387 .441 .515 .563 .657 .750 .870<br />

30 .182 .203 .228 .258 .294 .343 .375 .438 .500 .575<br />

40 .136 .152 .171 .193 .220 .258 .282 .328 .375 .435<br />

60 .091 .101 .114 .129 .147 .172 .187 .219 .250 .290<br />

80 .068 .076 .086 .097 .110 .129 .141 .164 .188 .218<br />

100 .055 .061 .068 .077 .088 .103 .113 .132 .150 .174<br />

200 .027 .030 .034 .039 .044 .052 .056 .066 .075 .087<br />

300 .018 .020 .023 .026 .029 .034 .038 .044 .050 .058<br />

OIL TEMPERATURE<br />

CORRECTION FACTORS<br />

Oil Oil<br />

Temperature, °F Factor Temperature, °F Factor<br />

130 0.44 190 0.81<br />

140 0.5 200 0.88<br />

150 0.56 210 0.94<br />

160 0.63 230 1.06<br />

170 0.69 240 1.13<br />

180 0.75 250 1.19<br />

Temperature losses from uninsulated pipe will vary with the<br />

pipe size. For 1/4" pipe, the losses are about 8 times the figures in<br />

the table. For 3" pipe, they are about 6 times the table values.<br />

29


CHAPTER 5 – STEAM & WATER<br />

BOILER TERMINOLOGY AND CONVERSION FACTORS<br />

Boiler horsepower – One boiler horsepower<br />

= 33,479 Btu/hr heat to steam<br />

= 34.5 lb/hr of water evaporated<br />

from and at 212°F<br />

= 9.8 Kilowatts<br />

Dry Steam – Steam which contains no liquid water.<br />

Enthalpy – Heat content, Btu/lb, of a liquid or vapor.<br />

Latent heat of vaporization – The heat required to convert a<br />

material from its liquid to its vapor phase without raising its<br />

temperature. The latent heat of vaporization of water at 1<br />

atmosphere pressure and 212°F is 970.3 Btu/lb.<br />

30<br />

Quality – In a mixture of steam and water, the weight percentage<br />

which is present as steam; in other words, the percent<br />

of complete vaporization which has taken place. The quality of<br />

saturated steam is 100%.<br />

Saturated Steam – Steam which is at the same temperature as<br />

the water from which it was evaporated.<br />

Wet Steam – Steam which contains liquid water. Its quality is<br />

less than 100%.<br />

PROPERTIES OF SATURATED STEAM<br />

V g,<br />

Specific h f, h fg, h g,<br />

Volume of Heat Content Latent Heat, Heat Content<br />

Temperature, Pressure, psi Vapor of Liquid, of Vaporization, of Vapor<br />

°F Absolute Gauge cu ft/lb Btu/lb Btu/lb Btu/lb<br />

32 .089 – 3304.7 -0.018 1075.5 1075.5<br />

40 .121 – 2445.8 8.03 1071.0 1079.0<br />

50 .178 – 1704.8 18.05 1065.3 1083.4<br />

60 .256 – 1207.6 28.06 1059.7 1087.7<br />

70 .363 – 868.4 38.05 1054.0 1092.1<br />

80 .507 – 633.3 48.04 1048.4 1096.4<br />

90 .698 – 468.1 58.02 1042.7 1100.8<br />

100 .949 – 350.4 68.00 1037.1 1105.1<br />

110 1.28 – 265.4 77.98 1031.4 1109.3<br />

120 1.69 – 203.3 87.97 1025.6 1113.6<br />

130 2.22 – 157.3 97.96 1019.8 1117.8<br />

140 2.89 _ 123.0 107.95 1014.0 1122.0<br />

150 3.72 – 97.07 117.95 1008.2 1126.1<br />

160 4.74 – 77.29 127.96 1002.2 1130.2<br />

170 5.99 – 62.06 137.97 996.2 1134.2<br />

180 7.51 – 50.22 148.00 990.2 1138.2<br />

190 9.34 – 40.96 158.04 984.1 1142.1<br />

200 11.53 – 33.64 168.09 977.9 1146.0<br />

212 14.696 0 26.80 180.17 970.3 1150.5<br />

220 17.19 2.49 23.15 188.23 965.2 1153.4<br />

240 24.97 10.27 16.32 208.45 952.1 1160.6<br />

260 35.43 20.73 11.76 228.76 938.6 1167.4<br />

280 49.20 34.50 8.64 294.17 924.6 1173.8<br />

300 67.01 52.31 6.47 269.7 910.0 1179.7<br />

320 89.64 74.94 4.91 290.4 894.8 1185.2<br />

340 117.99 103.29 3.79 311.3 878.8 1190.1<br />

360 153.01 138.31 2.96 332.3 862.1 1194.4<br />

380 195.73 181.03 2.34 353.6 844.5 1198.0<br />

400 247.26 232.56 1.86 375.1 825.9 1201.0<br />

500 680.86 666.16 0.67 487.9 714.3 1202.2<br />

600 1543.2 1528.5 0.27 617.1 550.6 1167.7<br />

700 3094.3 3079.6 0.075 822.4 172.7 995.2<br />

705.47* 3208.2 3193.5 0.051 906.0 0 906.0<br />

*Critical Temperature


1000's of Btu/hr Burner<br />

Input Required to Generate<br />

One Boiler Horsepower<br />

BTU/HR REQUIRED TO GENERATE ONE BOILER H.P.<br />

50<br />

45<br />

40<br />

35<br />

70 75 80<br />

% Boiler Efficiency<br />

85 90<br />

Pressuer Drop, psi per 100 ft of pipe<br />

10<br />

8<br />

6<br />

4<br />

3<br />

2<br />

1<br />

.8<br />

.6<br />

.4<br />

.3<br />

.2<br />

.1<br />

.08<br />

.06<br />

.04<br />

.03<br />

.02<br />

SIZING WATER PIPING<br />

1/2" 3/4" 1" 1-1/4"1-1/2" 2" 2-1/2" 3" 4"<br />

.01<br />

1 2 3 4 6 8 10 20 30 40 60 80 100 200 300 500 1000<br />

Water Flow, Gallons Per Minute<br />

Pressure drops are for 60°F water flowing in horizontal Schedule 40 steel pipe.<br />

31<br />

6"<br />

8"


SIZING STEAM PIPING<br />

Pipe Size, Lb/hr steam for piping pressure drop of 1 psi/100ft Lb/hr steam for piping drop of 5 psi/100 ft<br />

Inches Steam Pressure, psig Steam Pressure, psig<br />

(Schedule 40) 5 10 25 50 100 150 10 25 50 100 150<br />

3/4 31 34 43 53 70 84 73 93 120 155 185<br />

1 61 68 86 110 140 170 145 185 235 315 375<br />

1-1/4 135 150 190 235 310 370 320 410 520 690 820<br />

1-1/2 210 230 290 370 485 570 500 640 810 1,050 1,300<br />

2 425 470 590 750 980 1,150 1,000 1,300 1,650 2,150 2,600<br />

2-1/2 700 780 980 1,250 1,600 1,900 1,650 2,150 2,700 3,600 4,250<br />

3 1,280 1,450 1,800 2,250 2,950 3,500 3,050 3,900 4,300 6,600 7,800<br />

4 2,700 3,000 3,800 4,750 6,200 7,400 6,500 8,200 10,500 14,000 16,500<br />

6 8,200 9,200 11,500 14,500 19,000 22,500 19,500 25,000 31,500 42,000 50,000<br />

8 17,000 19,000 24,000 30,000 39,500 47,000 41,000 52,000 66,000 88,000 105,000<br />

These flows were calculated from Babcock’s Equation,<br />

Pd D5 where W = steam flow, lb/minute<br />

P = pressure drop, psi<br />

W = 87 (1 + 3.6 ) L D = inside diameter of pipe, inches<br />

D d = density of steam, lb/cu ft<br />

L = length of pipe run, feet<br />

32


CHAPTER 6 – ELECRICAL DATA<br />

ELECTRICAL FORMULAS<br />

Ohm’s Law Motor Formulas D.C. Circuit Power Formulas<br />

Amperes = Volts/Ohms Torque (lb-ft) = 5250 x Horsepower Watts = Volts x Amperes<br />

Ohms = Volts/Amperes rpm Amperes = Watts/Volts<br />

Volts = Amperes x Ohms Synchronous rpm = Hertz x 120 Volts = Watts/Amperes<br />

Poles Horsepower = Volts x Amperes x Efficiency*<br />

746<br />

A.C. Circuit Power Formulas<br />

Single-Phase Three-Phase<br />

Watts = Volts x Amps x Power Factor* = 1.73 x Volts x Amps x Power Factor*<br />

Amperes = WattsVolts x Power Factor* = Watts/1.73 x Volts x Power Factor*<br />

= kVA x 1000/Volts = kVA x 1000/1.73 x Volts<br />

= Horsepower x 746 = Horsepower x 746<br />

Volts x Efficiency* x Power Factor* 1.73 x Volts x Effic.* x Power Factor*<br />

Kilowatts = Amps x Volts x Power Factor* = 1.73 x Amps x Volts x Power Factor*<br />

1000 1000<br />

kVA = Amps x Volts = 1.73 x Amps x Volts<br />

1000 1000<br />

Horsepower = Volts x Amps x Effic.* x Pwr. Factor* = 1.73 x Volts x Amps x Effic.* x Pwr. Fact.*<br />

746 746<br />

*Expressed as a decimal<br />

ELECTRICAL WIRE –<br />

DIMENSIONS & RATINGS<br />

All data for solid copper wire<br />

A.W.G. Resistance, Maximum Allowable<br />

Wire Diameter, Ohms per 1000 Ft Current Capacity per<br />

Gauge Inches @ 77˚F NFPA 70-1984*, Amps<br />

0 .3249 .100 125-170<br />

1 .2893 .126 110-150<br />

2 .2576 .159 95-130<br />

3 .2294 .201 85-110<br />

4 .2043 .253 70-95<br />

6 .1620 .403 55-75<br />

8 .1285 .641 40-55<br />

10 .1019 1.02 30-40<br />

12 .0808 1.62 20-30<br />

14 .0641 2.58 15-25<br />

16 .0508 4.09 18<br />

18 .0403 6.51 14<br />

*Maximum current capacity permitted by National Electrical Code,<br />

NFPA 70-1984, varies with type of insulation, ambient temperature,<br />

voltage carried, and other factors. Consult NFPA 70-1984 for<br />

specific information.<br />

33<br />

NEMA SIZE STARTERS FOR MOTORS<br />

Starter size for<br />

460/3/60<br />

Horsepower 115/1/60 230/1/60 230/3/60 380/3/60 575/3/60<br />

Up to 1/3 00 00 00 00 00<br />

1/2 to 1 0 00 00 00 00<br />

1-1/2 1 1 00 00 00<br />

2 1 1 0 0 00<br />

3 2 2 0 0 0<br />

5 3 2 1 0 0<br />

7-1/2 3 2 1 1 1<br />

10 – 3 2 1 1<br />

15 – – 2 2 2<br />

20-25 – – 3 2 2<br />

30 – – 3 3 3<br />

40-50 – – 4 3 3<br />

60-75 – – 5 4 4<br />

100 – – 5 5 4<br />

125-150 – – 6 5 5<br />

200 – – 6 6 5<br />

All sizes listed apply only to magnetic starters with fusible<br />

alloy overload relays.


NEMA ENCLOSURES<br />

NEMA 1. General Purpose – Indoor<br />

Sheet metal enclosures intended for indoor use. Primary purpose<br />

is to prevent accidental personnel contact with enclosed<br />

equipment, although they will also provide some protection<br />

against falling dirt.<br />

NEMA 2. Drip Proof – Indoor<br />

Indoor enclosure that protects contents against falling noncorrosive<br />

liquids and dirt. Must be equipped with a drain.<br />

NEMA 3. Dust Tight, Raintight & Sleet-Resistant (Ice-<br />

Resistant),<br />

NEMA 3R. Rainproof & Sleet-Resistant (Ice-Resistant).<br />

NEMA 3S. Dust Tight, Raintight & Sleet-Proof (Ice-Proof)<br />

Outdoor enclosures for protection against windblown dust, rain<br />

and sleet. All have provision for locking.<br />

NEMA 4. Water Tight & Dust Tight – Indoor & Outdoor<br />

Protect contents against splashing, seeping, falling, or hosedirected<br />

water and severe external condensation. Commonly used<br />

in food-processing plants where equipment hosedown is required.<br />

NEMA 6. Submersible, Watertight, Dust Tight and Sleet (Ice)-<br />

Resistant–Indoor & Outdoor<br />

Capable of being submerged up to 30 minutes in up to 6 feet of<br />

water without harm to the contents.<br />

NEMA 7. Hazardous Locations – Indoor – Air Break<br />

Equipment<br />

Enclosures for use in atmospheres containing explosive gases<br />

and vapors as defined in Class 1, Division I, Groups A, B, C or D<br />

of the National Electrical Code. Enclosure must contain an internal<br />

explosion without causing an external hazard. Construction<br />

details vary with the nature of the explosive gas or vapor.<br />

NEMA 8. Hazardous Locations – Indoor – Oil-Immersed<br />

Equipment<br />

Enclosures for oil-immersed circuit breakers in Class I,<br />

Division I, Group A, B, C or D hazardous atmospheres.<br />

NEMA 9. Hazardous Locations – Indoor – Air-Break<br />

Equipment<br />

Used in Class II, Division I, Group E, F, or G hazardous locations<br />

as defined by the National Electrical Code. Enclosures are<br />

designed to exclude combustible or explosive dusts.<br />

NEMA 10. Mine Atmospheres<br />

For use in mines containing methane or natural gas.<br />

NEMA 11. Corrosion-Resistant and Drip Proof – Indoor<br />

Indoor enclosures that protect contents from dripping, seepage<br />

and external condensation of corrosive liquids, as well as corrosive<br />

fumes.<br />

NEMA 12. Industrial Use – Dust Tight & Drip Tight – Indoor<br />

Protect enclosed equipment from lint, fibers, flyings, dust, dirt<br />

and light splashing, seepage, dripping and external condensation<br />

of noncorrosive liquids.<br />

NEMA 13. Oil Tight & Dust Tight – Indoor<br />

Protect enclosed equipment from lint, dust and seepage, external<br />

condensation and spraying of water, oil, or coolant. They have<br />

oil-resistant gaskets and must have provision for oiltight conduit<br />

entry.<br />

For more complete details on application and construction specifications<br />

for NEMA Enclosures, refer to NEMA Standards<br />

Publication No. ICS 6.<br />

34<br />

ELECTRIC MOTORS–<br />

FULL LOAD CURRENT, AMPERES<br />

Single<br />

Three-Phase AC Motors<br />

Induction Type –<br />

Phase Squirrel Cage &<br />

Horse AC Motors Wound-Rotor<br />

Power 115V 230V 115V 230V 460V 575V<br />

1/6 4.4 2.2 — — — —<br />

1/4 5.8 2.9 — — — —<br />

1/3 7.2 3.6 — — — —<br />

1/2 9.8 4.9 4 2 1 .8<br />

3/4 13.8 6.9 5.6 2.8 1.4 1.1<br />

1 16 8 7.2 3.6 1.8 1.4<br />

1-1/2 20 10 10.4 5.2 2.6 2.1<br />

2 24 12 13.6 6.8 3.4 2.7<br />

3 34 17 — 9.6 4.8 3.9<br />

5 56 28 — 15.2 7.6 6.1<br />

7-1/2 80 40 — 22 11 9<br />

10 100 50 — 28 14 11<br />

15 — — — 42 21 17<br />

20 — — — 54 27 22<br />

25 — — — 68 34 27<br />

30 — — — 80 40 32<br />

40 — — — 104 52 41<br />

50 — — — 130 65 52<br />

60 — — — 154 77 62<br />

75 — — — 192 96 77<br />

100 — — — 248 124 99<br />

125 — — — 312 156 125<br />

150 — — — 360 180 144<br />

200 — — — 480 240 192


CHAPTER 7 – PROCESS HEATING<br />

HEAT BALANCES–DETERMINIING THE HEAT NEEDS OF<br />

FURNACES AND OVENS<br />

Although rules of thumb are frequently used to size furnace<br />

and oven burners, they have to be used with care. All<br />

rules of thumb are based on certain assumptions about production<br />

rates, furnace dimensions, and insulation. If the system<br />

under consideration differs from these assumed conditions,<br />

using a rule of thumb can result in a significant error.<br />

Gross<br />

Input<br />

(Purchased<br />

Fuel)<br />

Available<br />

Heat<br />

Flue Gas Loss<br />

Stored<br />

Heat<br />

The terms used in heat balance calculations, and their definitions,<br />

are:<br />

Gross heat input – the total amount of heat used by the furnace.<br />

It equals the amount of fuel burned multiplied by its<br />

heating value.<br />

Available heat – heat that is available to the furnace and its<br />

workload. It equals gross input minus flue gas losses.<br />

Flue gas losses – heat contained in flue gases as they are<br />

exhausted from the furnace.<br />

Stored heat – heat absorbed by the insulation and structural<br />

components of the furnace or oven to raise them to operating<br />

temperature. This stored heat becomes a loss each time the furnace<br />

is cooled down, because it has to be replaced on the next<br />

startup. Heat storage can usually be ignored on continuous furnaces,<br />

because cooldowns and restarts don't occur often.<br />

Wall losses – heat conducted out through the walls, roof and<br />

floor of the furnace due to the temperature difference between<br />

35<br />

For out-of-the ordinary conditions, or where more accurate<br />

results are required, heat balance calculations are preferred. A<br />

heat balance consists of calculating load heat requirements<br />

and adding losses to them to determine the heat input.<br />

Below is a schematic representation of the heat balance in<br />

a fuel-fired heat processing device.<br />

Wall<br />

Loss<br />

General heat balance in a fuel-fired heat processing device.<br />

Radiation<br />

Loss<br />

Conveyor<br />

Loss<br />

Net Output<br />

(Heat To Load)<br />

the inside and outside. At a constant temperature, wall losses<br />

will remain constant regardless of production rate.<br />

Radiation losses – heat lost from the furnace as radiant energy<br />

escaping through openings in walls, doors, etc.<br />

Conveyor losses – heat which is stored in conveying devices<br />

such as furnace cars and conveyor belts and which is lost<br />

when the heated conveyor is removed from the furnace.<br />

Net output – this is the heat that ultimately reaches the product<br />

in the oven or furnace.<br />

On page 36 is a simplified worksheet for carrying out a<br />

heat balance. By following this format, you can determine the<br />

gross heat input required at maximum load and minimum<br />

load conditions, along with the furnace turndown and theoretical<br />

thermal efficiency.


HEAT BALANCE TABLE<br />

Maximum Load Minimum Load<br />

Heat Balance Conditions Conditions<br />

Component (Full Production Rate) (Empty and Idling)<br />

Heat to load __________Btu/hr ____0____Btu/hr<br />

+ Wall losses + __________Btu/hr + _________Btu/hr<br />

+ Radiation losses + __________Btu/hr + _________Btu/hr<br />

+ Conveyor losses + __________Btu/hr + ____0____Btu/hr<br />

= Available heat = __________Btu/hr = _________Btu/hr<br />

required<br />

÷ Available heat, ÷ __________ ÷ _________<br />

expessed as a<br />

decimal<br />

= Gross heat input = __________Btu/hr = _________Btu/hr<br />

Furnace turndown = Gross heat input, maximum load conditions = _________<br />

Gross heat input, minimum load conditions<br />

Theoretical Thermal efficiency, % =<br />

Supporting Calculations:<br />

Heat to Load<br />

Heat to load = lb per hour x specific heat x temperature rise.<br />

Specific heats for many materials are listed on pages 37-39.<br />

For most common metals and alloys, use the graphs on page 40.<br />

Simply multiply lb/hr production rate by the heat content<br />

picked from the graph.<br />

Enter the heat to load under Maximum Load Conditions.<br />

Heat to load is usually zero under Minimum Load Conditions<br />

because no material is being processed through the oven or<br />

furnace.<br />

Wall Losses:<br />

Wall loss = Wall Area (inside) x heat loss, Btu/sq ft/hr.<br />

Typical heat loss data are tabulated on page 44 .<br />

If the roof and floor of the furnace are insulated with different<br />

materials than the walls, calculate their losses separately.<br />

Add all the losses together and enter them in both the<br />

Maximum Load and Minimum Load columns above.<br />

Caution: If the furnace is to be idled at a temperature lower<br />

than its normal operating temperature, wall losses will be correspondingly<br />

lower. Calculate them on the basis of the actual<br />

idling temperature.<br />

Radiation Losses:<br />

Radiation Losses = Opening Area x Black Body Radiation<br />

Rate x Shape Factor. See page 49 for radiation rates. Assume<br />

a Shape Factor of 1.<br />

Conveyor Losses:<br />

Treat the conveyor as you would a furnace load.<br />

Conveyor Loss = Lb/hr of conveyor heated x specific heat x<br />

(Temperature leaving furnace – temperature entering furnace)<br />

At minimum load, conveyor losses are usually zero because<br />

no material is being processed through the furnace.<br />

Available Heat:<br />

Available heat = Heat to load + wall losses + radiation losses<br />

+ conveyor losses.<br />

Calculate available heat for both maximum and minimum<br />

load conditions.<br />

Heat to load, maximum load conditions<br />

x 100 = _________<br />

Gross heat input, maximum load conditions<br />

36<br />

Next, consult the available heat charts (page 51) to determine<br />

the percent available heat for the fuel, operating temperature,<br />

and fuel/air ratio conditions of this application.<br />

Enter this figure as a decimal on both sides above.<br />

Gross Input:<br />

Gross Input = Available heat (Btu/hr) ÷ Available heat<br />

(decimal).<br />

Figure this for both maximum and minimum load conditions.<br />

Gross input, maximum conditions, is the maximum heating<br />

input required of the combustion system you select.<br />

Furnace Turndown:<br />

Divide maximum load gross input by minimum load gross<br />

input. The result is the furnace or oven turndown. Your<br />

combustion system must provide at least this much turndown<br />

or the furnace will overshoot setpoint on idle.<br />

Theoretical Thermal Efficiency:<br />

% Efficiency = Heat to load, maximum load conditions x 100<br />

Gross heat input, maximum load conditions<br />

This is the maximum theoretical efficiency of the furnace,<br />

assuming it operates at 100% of rating with no production interruptions<br />

and with a properly adjusted combustion system.<br />

Heat Storage<br />

Heat Storage was left out of this analysis. Althought it is a<br />

factor in furnace efficiency, burner systems are rarely sized<br />

on the heat storage needs of the furnace.<br />

On continuous furnaces where cold startups occur infrequently,<br />

heat storage can usually be ignored without any<br />

major effect on efficiency calculations. On batch-type furnaces<br />

that cycle from hot to cold frequently, storage should be<br />

factored into efficiency calculations.<br />

Heat Storage = Inside refractory surface area, ft 2 x Heat<br />

Storage Capacity, Btu/ft 2<br />

Heat storage capacities for typical types of refractory construction<br />

are tabulated on Page 44.


THERMAL PROPERTIES OF VARIOUS MATERIALS<br />

Solid Latent Liquid Latent<br />

Density Specific Melting Heat of Specific Boiling Heat of<br />

Lb/Cu Ft Heat Point, Fusion, Heat, Point, Vaporization,<br />

Material @60°F Btu/Lb-°F °F Btu/Lb Btu/Lb-°F °F Btu/Lb<br />

Acetone – – -138 33.5 0.530 128-134 225.5<br />

Acetic Acid 65.8 0.540 62.6 44 0.462 244.4 152.8<br />

Air .0765 – – – 0.237 -311.0 91.7<br />

Alcohol-Ethyl 49.26 0.232 -173.2 44.8 0.648 172.4 369.0<br />

-Methyl 49.6 – -142.6 29.5 0.601 150.8 480.6<br />

Alumina 243.5 0.197 3722 – – – –<br />

Aluminum 166.7 0.248 1214 169.1 0.252 3272 –<br />

Ammonia 32° 45.6 0.502 -83.0 195 1.099 -37.3 543.2<br />

Andalusite 199.8 0.168 3290 – – – –<br />

Aniline 2.25 0.741 17.6 37.8 0.514 363 198<br />

Antimony 422 0.054 1166 70.0 0.054 2624 –<br />

Asbestos 124-174 0.195 – – – – –<br />

Asphalt-Trinidad 97 0.55 190 – 0.55 – –<br />

-Gilsonite 67.5 0.55 300 – 0.55 – –<br />

Arsenic 357.6 0.082 Sublimes – – – –<br />

Babbit 75 Pb 15 Sb 10 Sn – 0.039 462 26.2 0.038 – –<br />

84 Sn 8 Sb 8 Cu – 0.071 464 34.1 0.063 – –<br />

Bakelite – 0.30 – – – – –<br />

Beef Tallow 57-61 0.50 80-100 – – – –<br />

Beeswax 60 0.82 144 76.2 – – –<br />

Benzene-Benzol 55 0.299 41.8 55.6 0.423 176.3 169.4<br />

Beryllium 113.8 0.50 2345 621.9 0.425 5036 –<br />

Bismuth 615 0.033 518 18.5 0.035 2606 –<br />

Borax 105.5 0.238 1366 – – – –<br />

Brass 67 Cu 33 Zn 528 0.105 1688 71.0 0.123 – –<br />

85 Cu 15 Zn – 0.104 1877 84.4 0.116 – –<br />

90 Cu 10 Zn – 0.104 1952 86.6 0.115 – –<br />

Brick-Fireclay 137-150 0.240 – – – – –<br />

-Red 118 0.230 – – – – –<br />

-Silica 144-162 0.260 – – – – –<br />

Bronze 90 Cu 10 Al – 0.126 1922 98.6 0.125 – –<br />

90 Cu 10 Sn – 0.107 1850 84.2 0.106 – –<br />

80 Cu 10 Zn 10 Sn 534 0.095 1832 79.9 0.109 – –<br />

Cadmium 540 0.038 610 19.5 0.074 1412 409<br />

Calcium 96.6 0.170 1564 – – 2709 –<br />

Calcium Carbonate 175 0.210 Dec. 1517 – – – –<br />

Calcium Chloride 157 0.16 1422 97.7 – >2912 –<br />

Camphor 62.4 0.440 353 19.4 0.61 408 –<br />

Carbon, Amorphous 129 0.241 6300 – – 8721 –<br />

Carbon, Disulfide 79.2 – -166 – 0.24 115 150.8<br />

Carbon, Graphite 138.3 0.184 6300 – – 8721 –<br />

Castor Oil 59.6 – – – – – –<br />

Celotex – 0.40 – – – – –<br />

Celluloid – 0.36 – – – – –<br />

Cellulose 95 0.320 – – – – –<br />

Cement – 0.20 – – – – –<br />

Charcoal 18-38 0.165 – – – – –<br />

Chlorine 0.190 0.19 -151 41.3 – -30.3 121<br />

Chloroform 95.5 – -85 – 0.149 142.1 105.3<br />

Chromite 281 0.22 3956 – – – –<br />

Chromium 437 0.12 2822 57.1 – 4500 –<br />

Clay, Dry 112-162 0.224 3160 – – – –<br />

Coal (Anthracite) – 0.31 – – – – –<br />

Coal (Bituminous) – 0.30 – – – – –<br />

Coal Tar 76.7 0.413 196 – – 325 –<br />

Coal Tar Oil – – – – 0.34 390-910 136<br />

Cobalt 555 0.145 2723 – – 5252 –<br />

Coke – 0.2-0.38 – – – – –<br />

Concrete – 0.27 – – – – –<br />

Copper 558 0.104 1982 90.8 0.111 4703 –<br />

Cork – 0.48 – – – – –<br />

Corundum 250 0.304 3722 – – 6332 –<br />

Cotton – 0.32 – – – – –<br />

Cottonseed Oil 58 – 32 – 0.474 – –<br />

Cream – – – – 0.78 – –<br />

Cuprice Oxide 374-406 0.227 1944 – – – –<br />

T = Transformation Point Subl. = Sublimes Dec = Decomposes<br />

37


THERMAL PROPERTIES OF VARIOUS MATERIALS (Cont’d)<br />

Solid Latent Liquid Latent<br />

Density Specific Melting Heat of Specific Boiling Heat of<br />

Lb/Cu Ft Heat Point, Fusion, Heat, Point, Vaporization,<br />

Material @60°F Btu/Lb-°F °F Btu/Lb Btu/Lb-°F °F Btu/Lb<br />

Cyanite 225 0.227 3290 – – – –<br />

Diasporite 215 0.260 3722 – – – –<br />

Die Cast Metal: – – – – – – –<br />

87.3 Zn 8.1 Sn 4.1 Cu 0.5Al – 0.103 780 48.3 0.138 – –<br />

90 Sn 4.5 Cu 5.5 Sb – 0.070 450 30.3 0.062 – –<br />

80 Pb 10 Sn 10 Sb – 0.038 600 17.4 0.037 – –<br />

92 Al 8 Cu – 0.236 1150 163.1 0.241 – –<br />

Diphenyl 103 0.385 159 47 0.481 492 136.5<br />

Dolomite 181 0.222 – – – – –<br />

Dowtherm 58.8 0.53 180 – – 500 123<br />

Earth – 0.44 – – – – –<br />

Ebonite – 0.35 – – – – –<br />

Ether 45.9 – -180.4 – 0.529 94.3 159.1<br />

Fats – 0.46 – – – – –<br />

Fosterite 200 0.22 3470 – – – –<br />

Fuel Oil – – – – 0.45 – –<br />

Gasoline 42 – – – 0.514 176 128-146<br />

German Silver – 0.109 1850 86.2 0.123 – –<br />

Glass, Crown – 0.16 – – – – –<br />

Glass, Flint – 0.13 – – – – –<br />

Glass, Pyrex – 0.20 – – – – –<br />

Glass, Window (Soda Lime)160 0.19 2192 – – – –<br />

Glass Wool 1.5 0.16 – – – – –<br />

Glycerine 78.7 0.047 68 85.5 0.576 554 –<br />

Gold 1205 0.032 1945 28.5 0.034 5371 29<br />

Granite – – – – – – –<br />

Graphite 0.30-0.38 – Subl. 6606 – – – –<br />

Gypsum 145 0.259 2480 – – – –<br />

Hydrochloric Acid 75 – -12 – – – –<br />

Hydrogen .0053 – -434 27 – -423 194<br />

Hydrogen Sulfide – – -117 – – -79 –<br />

Iron 491 0.1162 2795 117 – 5430 –<br />

Iron, Gray Cast 443 0.119 2330 41.7 – – –<br />

Iron, White Cast 480 0.119 2000 59.5 – – –<br />

Kerosene – – – – 0.470 – 108<br />

Lead 711 0.032 621 9.9 0.032 3171 –<br />

Lead Oxide 575-593 0.049 1749 – – – –<br />

Leather – 0.36 – – – – –<br />

Lucite – 0.35 – – – – –<br />

Light Oil – – – – 0.5 600 145-150<br />

Linseed Oil 58 – -5 – 0.441 – –<br />

Lipowitz Metal – 0.041 140 17.2 0.041 – –<br />

Magnesite 187 0.200 Dec. 662 – – – –<br />

Magnesium 108.6 0.272 1204 83.7 0.266 – –<br />

Magnesium Oxide 223 0.23-0.30 5072 – – – –<br />

Manganese 500 0.171 2246 65.9 0.192 – –<br />

– – T = 1958 T = 43.5 – – –<br />

Marble – 0.21 – – – – –<br />

Mercury 885 0.033 -38 5.1 0.033 675 117<br />

Mica – 0.21 – – – – –<br />

Milk 63.4 – – – 0.847 – –<br />

Molasses 87.4 – – – 0.60 – –<br />

Molybdenum 636 0.065 4748 – – 8672 –<br />

Monel 550 0.129 2415 117.4 0.139 – –<br />

Mallite 188.8 – 3290 – 0.175 – –<br />

Naptha 41.2 – – – 0.493 306 184<br />

Napthalene 71.8 0.325 176 64.1 0.427 424.4 135.7<br />

Neats Foot Oil – – 32 – 0.457 – –<br />

Nickel 556 0.134 2646 131.4 0.124 – –<br />

Nichrome 517 – – – 0.111 – –<br />

Nitric Acid 96.1 – -43.6 – 0.445 186.8 207.2<br />

Nitrogen .0741 – -346 11.1 – -320 85.6<br />

Nylon – 0.55 – – – – _<br />

T = Transformation Point Subl. = Sublimes Dec = Decomposes<br />

38


THERMAL PROPERTIES OF VARIOUS MATERIALS (Cont’d)<br />

Solid Latent Liquid Latent<br />

Density Specific Melting Heat of Specific Boiling Heat of<br />

Lb/Cu Ft Heat Point, Fusion, Heat, Point, Vaporization,<br />

Material @60°F Btu/Lb-°F °F Btu/Lb Btu/Lb-°F °F Btu/Lb<br />

Olive Oil 57.4 – 40 – 0.471 572 –<br />

Oxygen .0847 0.336 -361 5.98 0.394 -297 91.6<br />

Paraffin 54-57 0.622 126 63 0.712 750<br />

Petroleum 48-55 – – – 0.511 – –<br />

Phosphorus 114 0.189 111 9.05 – 536 234<br />

Pitch, Coal Tar 62-81 0.45 86-300 – – – –<br />

Plaster of Paris 0.265 1.14 – – – – –<br />

Platinum 1335 0.036 3224 49 0.032 7933 –<br />

Porcelain 150 0.26 – – – – –<br />

Potassium Nitrate 129.2 0.19 646 88 – Dec. 752 –<br />

Quartz 165.5 0.23 – – – – –<br />

Resin-Phenolic 80-100 0.3-0.4 – – – – –<br />

-Copals 68.6 0.39 300-680 – – – –<br />

Rhodium 773 0.058 3571 – – – –<br />

Rockwool 6 0.198 – – – – –<br />

Rose’s Metal – 0.043 230 18.3 0.041 – –<br />

Rosin 68 0.5 170-212 – – – –<br />

Rubber 62-125 0.48 248 – – – –<br />

Salt-Rock 135 0.22 1495 – – 2575 –<br />

Sand 162 0.20 – – – – –<br />

Sandstone – 0.22 – – – –<br />

Sawdust – 0.5 – – – – –<br />

Shellac 75 0.40 170-180 – – – –<br />

Silica 180 – 3182 – 0.1910 4046 –<br />

Silicon 155 0.176 2600 – – 4149<br />

Silicon Carbide 199 0.23 4082 – – Subl. 3032 –<br />

Sillimanite 202 0.175 3290 – – – –<br />

Silk 84 0.33 – – – – –<br />

Silver 656 0.063 1761 46.8 0.070 3634 –<br />

Snow – 0.5 32 – – – –<br />

Sodium Carbonate 151.5 0.306 1566 – – Dec. –<br />

Sodium Nitrate 140.5 0.231 597 116.8 – 1716 –<br />

Sodium Oxide 142 0.231 Subl. 2327 – – – –<br />

Sodium Sulfate 168 0.21 – – – – –<br />

Solder - 50 Pb 50 Sn 580 0.051 450 23 0.046 – –<br />

- 63 Pb 37 Sn – 0.044 468 14.8 0.041<br />

Steel - 0.3% C 491 0.129 (70-1330°)* *Phase change between 1330 & 1500° requires<br />

0.166 (1500-2500°) additional 80 Btu/lb.<br />

Stone 168 0.20 – – – – –<br />

Sugar - Cane 102 0.30 320 _ – – –<br />

Sulfur 119-130 0.19 235 16.9 0.234 840 652<br />

Sulfuric Acid 115.9 0.239 50.0 – 0.370 – –<br />

Talc – 0.21 – – – –<br />

Tar-Coal 71-81 0.35 – – – – –<br />

Tin 460 0.069 450 25.9 0.0545 4118 –<br />

Titanium 281 0.14 3272 – – – –<br />

Toluene 53.7 – – – 0.40 230.5 150.3<br />

Tungsten 1204 0.034 6098 – – 10652 –<br />

Turpentine 53.7 – – – 0.411 318.8 133.3<br />

Type Metal-Linotype – 0.036 486 21.5 0.036 – –<br />

Type Metal-Stereotype 670 0.036 500 26.2 0.036 – –<br />

Uranium 370 0.028 2071 – – – –<br />

Vanadium 372 0.115 3110 – – 5432 –<br />

Varnish – – – – – 600 –<br />

Water 62.37 0.480 32 144 1.00 212 970.4<br />

Wood 19-56 0.33 – – – – –<br />

Wood’s Metal – 0.041 158 17.2 0.042 – –<br />

Wool 81 0.325 – – – –<br />

Xylene 54.3 – -18 – 0.411 288 147<br />

Zinc 443 0.107 786 47.9 0.146 1706 –<br />

Zinc Oxide 341 0.125 >3272 – – – –<br />

Zircon 293 0.132 4622 – – – –<br />

Zirconia 349 0.103 4919 – – – –<br />

Zirconium 399 0.067 3100 – – 9122 –<br />

T = Transformation Point Subl. = Sublimes Dec. = Decomposes<br />

39


Heat Content, Btu/lb<br />

Heat Content, Btu/lb<br />

150<br />

100<br />

50<br />

0<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

THERMAL CAPACITIES OF METALS & ALLOYS<br />

Solder<br />

50 Pb/50Sn<br />

40<br />

Babbit<br />

75 Pb/15Sb/10Sn<br />

Alloy 903 Die Cast Zinc<br />

Pure Zinc<br />

0 100 200 300 400 500 600 700 800 900<br />

Temperature, °F<br />

Pure Aluminum<br />

Aluminum Die Cast Alloy 380.0<br />

Pure Magnesium<br />

Magnesium Casting Alloy AZ91A<br />

Titanium Alloy<br />

Ti-6AI-4V<br />

85-15 Red Brass<br />

Lead<br />

0.3% Carbon<br />

Steel<br />

Pure<br />

Copper<br />

65-35 Yellow Brass<br />

0<br />

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800<br />

Temperature, °F


INDUSTRIAL HEATING OPERATIONS–TEMPERATURE & HEAT REQUIREMENTS<br />

Approximate Heat Content of<br />

Material Operation Temperature, °F Material, Btu/lb*<br />

Aluminum Age 190-470 30-100<br />

Anneal 645-775 130-190<br />

Homogenize 850-1150 175-300<br />

Hot Work (Extrude,<br />

Roll, Forge) 500-950 100-240<br />

Melt 1175-1500 370-550<br />

Solution Heat Treat 820-1025 170-280<br />

Stabilize 435-655 80-160<br />

Stress Relieve 650-775 130-190<br />

Asphalt Melt 350-450 160-220<br />

Babbit Melt 600-1000 60-75<br />

Brass Anneal 800-1450 70-150<br />

Hot Work (Extrude,<br />

Roll, Forge) 1150-1650 100-150<br />

Melt 1930-2370 230-290<br />

Recrystallize 550-700 40-70<br />

Stress Relieve 475 30-40<br />

Bread Bake 300-500 –<br />

Bronze Anneal 800-1650 70-170<br />

Hot Work (Extrude,<br />

Roll, Forge) 1200-1750 100-160<br />

Melt 1600-2350 220-320<br />

Stress Relieve 375-550 30-50<br />

Brick, common Burn 1900-2000 800-950<br />

fireclay Burn 2100-2200 900-1050<br />

Cake Bake 300-350 –<br />

Candy Cook 225-300 –<br />

Cast Iron (Gray) Anneal 1300-1750 290-420<br />

Austenitize (Harden) 1450-1700 330-410<br />

Melt 2800-2900 720-750<br />

Normalize 1600-1700 380-410<br />

Stress Relieve 700-1250 110-280<br />

Temper (Draw) 300-1020 35-175<br />

Cast Iron, Ductile Anneal 1300-1650 290-390<br />

(Nodular Iron) Austenitize (Harden) 1550-1700 360-410<br />

Normalize 1600-1725 380-415<br />

Stress Relieve 950-1250 160-275<br />

Temper (Draw) 800-1300 120-290<br />

Cast Iron (Malleable) Anneal (Malleablize) 1650-1750 290-420<br />

Austenitize (Harden) 1550-1600 360-380<br />

Temper (Draw) 1100-1300 190-290<br />

Cement Calcine 2800-3000 –<br />

China Fire 1900-2650 450-600<br />

Glaze 1500-1900 350-450<br />

Coffee Roast 600-800 –<br />

Cookies Bake 375-450 –<br />

Copper Anneal 500-1200 50-120<br />

Hot Work (Extrude,<br />

Roll, Forge) 1300-1750 130-180<br />

Melt 1970-2100 290-310<br />

Enamel<br />

(Paint) Bake 250-450 –<br />

(Porcelain) Fire 1700-1800 –<br />

*Heat contained in material only. Does not include furnace or oven losses or available<br />

heat correction.<br />

41


INDUSTRIAL HEATING OPERATIONS–TEMPERATURE & HEAT REQUIREMENTS<br />

(Cont’d)<br />

Approximate Heat Content of<br />

Material Operation Temperature, °F Material, Btu/lb*<br />

Frit Smelt 2000-2400 400-550<br />

Glass Melt 2200-2900 400-650<br />

Anneal 1000-1200 –<br />

Gold Melt 2000-2370 125-145<br />

Lacquer Dry 150-200 –<br />

Lead Melt 620-700 18-32<br />

Lime Calcine 2000-2200 –<br />

Magnesium Age 265-625 70-140<br />

Homogenize 200-800 30-190<br />

Hot Work (Extrude,<br />

Roll, Forge) 550-850 110-200<br />

Melt 1150-1550 375-490<br />

Solution Heat Treat 665-1050 150-350<br />

Stress Relieve 300-800 50-200<br />

Meat Smoke 100-150 –<br />

Pie Bake 500 –<br />

Potato Chips Fry 350-400 –<br />

Sand Dry 350-500 60-90<br />

Sand Cores Bake 400-450 70-80<br />

Silver Melt 1800-1900 155-165<br />

Solder Melt 400-500 40-45<br />

Steel Anneal 1150-1650 150-270<br />

(Carbon & Alloy) Austenitize 1320-1650 180-270<br />

Carbonitride 1300-1650 180-270<br />

Carburize 1600-1800 260-300<br />

Cyanide 1400-1600 210-260<br />

Hot Work (Forge,<br />

Roll) 2200-2400 360-400<br />

Nitride 925-1050 110-140<br />

Normalize 1500-1700 240-280<br />

Stress Relieve 450-1350 50-210<br />

Steel (Stainless) Anneal 1150-2050 150-340<br />

Austenitize (Harden) 1700-1950 280-320<br />

Hot Work (Forge,<br />

Roll) 1600-2350 260-390<br />

Stress Relieve 400-2050 30-340<br />

Temper (Draw) 300-1200 25-160<br />

Tin Melt 500-650 70-80<br />

Titanium Age 900-1000 120-140<br />

Anneal 1100-1600 150-250<br />

Hot Work (Roll,<br />

Forge) 1300-1900 180-310<br />

Solution Heat Treat 1550-1750 240-280<br />

Stress Relieve 1000-1200 140-170<br />

Varnish Cook 500-750 –<br />

Zinc Galvanize 850-900 130-140<br />

Melt 800-900 130-150<br />

Hot Work (Extrusion,<br />

Rolling) 200-575 10-55<br />

*Heat contained in material only. Does not include furnace or oven losses or available<br />

heat correction.<br />

42


B<br />

A<br />

CRUCIBLES FOR METAL MELTING – DIMENSIONS & CAPACITIES<br />

C<br />

D<br />

Dimensions, inches Approximate Capacity, lb<br />

A, B, C,<br />

Size Top Bilge Bottom D, Red<br />

Number OD OD OD Height Aluminum Brass Copper Magnesium<br />

20 7 11 ⁄16 8 3 ⁄8 6 1 ⁄8 10 15 ⁄16 20 65 67 13<br />

25 8 3 ⁄16 8 7 ⁄8 6 1 ⁄2 10 15 ⁄16 25 81 84 16<br />

30 8 5 ⁄8 9 5 ⁄16 6 13 ⁄16 11 1 ⁄2 30 97 100 20<br />

35 9 9 3 ⁄4 7 1 ⁄8 12 35 113 117 23<br />

40 9 3 ⁄8 10 1 ⁄8 7 7 ⁄16 12 1 ⁄2 40 129 134 26<br />

45 9 7 ⁄8 10 11 ⁄16 7 13 ⁄16 13 3 ⁄16 45 146 151 29<br />

50 10 1 ⁄4 11 1 ⁄8 8 1 ⁄8 13 3 ⁄4 50 162 167 33<br />

60 10 13 ⁄16 11 11 ⁄16 8 9 ⁄16 14 7 ⁄16 60 194 201 39<br />

70 11 1 ⁄4 12 3 ⁄16 8 15 ⁄16 15 1 ⁄16 70 226 234 46<br />

80 11 11 ⁄16 12 11 ⁄16 9 1 ⁄4 15 5 ⁄8 80 259 268 52<br />

90 12 1 ⁄8 13 1 ⁄8 9 9 ⁄16 16 3 ⁄16 90 291 301 59<br />

100 12 1 ⁄2 13 1 ⁄2 9 7 ⁄8 16 11 ⁄16 100 323 335 65<br />

125 13 14 1 ⁄16 10 5 ⁄16 17 3 ⁄8 125 404 418 81<br />

150 13 3 ⁄4 14 7 ⁄8 10 7 ⁄8 18 3 ⁄8 150 485 502 98<br />

175 14 3 ⁄8 15 9 ⁄16 11 3 ⁄8 19 1 ⁄4 175 566 586 114<br />

200 15 16 1 ⁄4 11 7 ⁄8 20 200 657 669 130<br />

225 15 1 ⁄2 16 13 ⁄16 12 5 ⁄16 20 3 ⁄4 225 728 753 147<br />

250 16 17 5 ⁄16 12 11 ⁄16 21 3 ⁄8 250 808 837 163<br />

275 16 7 ⁄16 17 13 ⁄16 13 22 275 889 921 179<br />

300 16 7 ⁄8 18 1 ⁄4 13 3 ⁄8 22 1 ⁄2 300 970 1004 195<br />

400 18 3 ⁄16 19 11 ⁄16 14 7 ⁄16 24 5 ⁄16 400 1293 1339 261<br />

RADIANT TUBES – SIZING & INPUT DATA<br />

TUBE EXTERNAL SURFACE AREA DATA<br />

Straight Tube<br />

Tube Sq. In. 180° Short Radius Elbow 180° Long Radius Elbow<br />

OD, Per Foot<br />

Inches of Length CL to CL, in. sq. in. CL to CL, in. sq. in.<br />

3 113 6 89 9 133<br />

31 ⁄4 123 6 96 9 144<br />

31 ⁄2 132 6 104 9 155<br />

33 ⁄4 141 6 111 9 167<br />

4 151 8 158 12 237<br />

41 ⁄4 160 8 168 12 252<br />

41 ⁄2 170 8 178 12 267<br />

43 ⁄4 179 8 188 12 281<br />

5 188 10 247 15 370<br />

51 ⁄4 198 10 259 15 389<br />

51 ⁄2 207 10 271 15 407<br />

53 ⁄4 217 10 284 15 426<br />

6 226 12 355 18 533<br />

61 ⁄4 236 12 370 18 555<br />

61 ⁄2 245 12 385 18 577<br />

63 ⁄4 254 12 400 18 600<br />

8 302 16 632 24 947<br />

81 ⁄4 311 16 651 24 977<br />

81 ⁄2 320 16 671 24 1007<br />

Maximum Heat Transfer<br />

Rate, Btu/hr per sq. in. of<br />

External Tube Surface<br />

43<br />

70<br />

60<br />

50<br />

40<br />

30<br />

Maximum Heat Transfer Rates<br />

For Good Service Life of Alloy Tubes<br />

Tube enclosed<br />

on 3 sides<br />

Tube free to radiate on 3 sides<br />

1500 1600 1700 1800 1900<br />

Furnace Temperature, °F


HEAT LOSSES, HEAT STORAGE & COLD FACE<br />

TEMPERATURES – REFRACTORY WALLS<br />

HL Hot Face Temperature, °F<br />

Wall HS<br />

Construction TC 1000 1200 1400 1600 1800 2000 2200 2400<br />

HL 550 705 862 1030 1200 1375 1570 1768<br />

9" Hard Firebrick HS 12,500 15,400 18,400 21,500 24,700 27,950 31,200 34,500<br />

TC 282 320 355 387 418 447 477 505<br />

9" Hard Firebrick + HL 130 168 228 251 296 341 390 447<br />

4 1 ⁄2" 2300° Insulating F.B. HS 22,380 27,700 33,060 38,450 43,930 49,350 55,800 61,920<br />

TC 147 162 188 195 211 227 242 260<br />

9" Hard Firebrick + HL 111 128 155 185 209 244 282 325<br />

4 1 ⁄2" 2000° Insulating F.B. + HS 23,750 29,650 35,640 41,940 48,420 54,890 61,410 68,120<br />

2" Block Insulation TC 138 144 156 169 179 193 205 218<br />

HL 185 237 300 365 440 521 – –<br />

4 1 ⁄2" 2000° Insulating F.B. HS 1180 1450 1750 2075 2400 2720 – –<br />

TC 170 190 211 230 253 274 – –<br />

HL 95 124 159 189 225 266 – –<br />

9" 2000° Insulating F.B. HS 2260 2840 3420 4000 4620 5240 – –<br />

TC 132 146 160 172 187 200 – –<br />

HL 142 178 218 264 312 362 416 474<br />

9" 2800° Insulating F.B. HS 3170 3970 4790 5630 6480 7360 8230 9160<br />

TC 151 166 183 200 217 234 250 267<br />

9" 2800° Insulating F.B. + HL 115 140 167 197 232 272 307 347<br />

4 1 ⁄2" 2000° Insulating F.B. + HS 14,860 17,340 19,910 22,508 24,908 28,360 31,531 34,664<br />

TC 142 149 161 164 183 202 215 228<br />

9" 2800° Insulating F.B. + HL 71 91 112 134 154 184 204 230<br />

4 1 ⁄2" 2000° Insulating F.B. + HS 10,670 14,836 19,220 23,771 27,491 31,654 35,078 38,252<br />

2" Block Insulation TC 119 127 136 147 156 168 177 187<br />

9" 2800° Insulating F.B. + HL 114 142 172 201 232 264 298 333<br />

3" Block Insulation HS 7730 9765 11,760 13,810 15,880 17,973 20,084 22,209<br />

TC 139 150 163 175 188 200 212 224<br />

HL 575 730 897 1075 1300 1525 1775 2030<br />

4 1 ⁄2" Dense Castable HS 5270 9520 11,310 13,060 14,820 16,120 18,300 20,030<br />

TC 282 319 356 393 430 467 504 541<br />

HL 315 410 500 627 694 844 947 1134<br />

9" Dense Castable HS 13,120 16,240 19,960 23,673 26,355 29,212 32,019 35,861<br />

TC 218 248 280 305 321 352 377 406<br />

HL 390 490 610 730 860 1000 1155 1332<br />

9" Plastic HS 17,825 21,735 25,640 29,610 33,345 37,125 41,040 44,415<br />

TC 232 261 290 319 348 378 407 436<br />

8" Ceramic Fiber – HL 27 45 64 86 114 146 178 216<br />

Stacked Strips, 8 #/cu ft HS 850 1018 1190 1358 1528 1692 1823 2039<br />

Density TC 95 105 115 126 138 152 165 180<br />

10" Ceramic Fiber – HL 16 35 54 76 94 120 142 172<br />

Stacked Strips, 8 #/cu ft HS 1054 1262 1473 1683 1895 2098 2262 2528<br />

Density TC 92 101 110 119 129 140 151 163<br />

12" Ceramic Fiber – HL 13 27 43 60 79 98 118 143<br />

Stacked Strips, 8 #/cu ft HS 1265 1517 1775 2033 2276 2518 2714 3034<br />

Density TC 91 97 104 112 121 130 140 151<br />

9" Hard Firebrick + 3" HL 177 240 309 383 463 642 721 800<br />

Ceramic Fiber Veneer, HS 1920 3680 5430 7178 9219 11,200 12,503 14,891<br />

8 #/cu ft Density TC 170 191 214 235 259 305 320 341<br />

9" 2800° Insulating F.B. + HL 102 125 151 183 227 274 325 408<br />

3" Ceramic Fiber Veneer, HS 1150 2012 2910 3795 4576 5402 6272 7450<br />

8 #/cu ft Density TC 134 143 153 167 183 200 217 242<br />

9" Dense Castable + HL 170 221 273 329 381 487 559 635<br />

3" Ceramic Fiber Veneer, HS 1910 3603 5340 7083 8899 10,576 12,136 14,149<br />

8 #/cu ft Density TC 164 183 202 222 240 270 289 307<br />

HL = Heat Loss, Btu/hr – sq ft HS = Heat Storage, Btu/sq ft TC = Cold Face Temperature, °F<br />

Note:These values are typical for the materials listed and are sufficiently accurate for estimating<br />

purposes. Values for specific brands of refractories may differ.<br />

44


Btu/Hr Required Per SCFM of Process Stream<br />

Btu/Hr Required Per SCFM of Process Stream<br />

2000<br />

1500<br />

1000<br />

500<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

AIR HEATING & FUME INCINERATION<br />

HEAT REQUIREMENTS USING “RAW GAS” BURNERS<br />

T2 = 1500°F Stream Outlet Temperature<br />

1300°F<br />

1200°F<br />

1100°F<br />

1000°F<br />

900°F<br />

700°F<br />

600°F<br />

800°F<br />

1400°F<br />

0<br />

0 200 400 600 800 1000<br />

500<br />

T1<br />

T 1 , Process Stream Inlet Temperature, °F<br />

700°F<br />

600°F<br />

0<br />

0 200 400 600 800 1000<br />

T1<br />

T2 = 1500°F Stream Outlet Temperature<br />

900°F<br />

800°F<br />

1100°F<br />

1000°F<br />

1300°F<br />

1200°F<br />

1400°F<br />

T 1 , Process Stream Inlet Temperature, °F<br />

T2<br />

T2<br />

45<br />

These curves show the heat input required per<br />

scfm of process air stream where the burner derives<br />

its combustion air from the stream. They can also be<br />

used to calculate heat requirements for direct-fired<br />

fume incinerators, provided:<br />

1. Oxygen content of the fume stream is at least 20%,<br />

and<br />

2. Combustible solvents in the fume stream make a<br />

negligible contribution to the heat input.<br />

The curves are calculated from the relationship.<br />

Btu/hr = scfm x 1.1 x (T 2-T 1)<br />

available heat, expressed as a decimal<br />

For high stream inlet and outlet temperatures, they<br />

produce more accurate results than the traditional relationship<br />

Btu/hr = scfm x 1.1 x (T 2-T 1),<br />

which does not take variations of available heat into<br />

account.<br />

If the application requires a burner with a separate<br />

combustion air source, use the curves below.<br />

AIR HEATING & FUME INCINERATION<br />

HEAT REQUIREMENTS USING BURNERS WITH SEPARATE<br />

COMBUSTION AIR SOURCES<br />

These curves show the heat input required per scfm<br />

of process air stream using a burner with a separate<br />

combustion air source. They are calculated from the<br />

relationship:<br />

Btu/hr = scfm x 1.1 x (T 2-T 1)<br />

available heat, expressed as a decimal<br />

See above for heat requirements of systems using a<br />

“raw gas” burner.


FUME INCERATION – SELECTION & SIZING GUIDELINES<br />

I. Process Information Required<br />

A. Fume stream flow rate, scfm or acfm. (If acfm,<br />

specify temperature at which flow is measured.)<br />

Maximum and minimum flow rates are required.<br />

B. Fume stream temperature at inlet to burner at<br />

maximum and minimum flow rates.<br />

C. Oxygen content of fume stream.<br />

D. Amount of particulates or other non-volatile<br />

matter in fume stream.<br />

E. Incineration temperature required, typically:<br />

600-900°F for catalytic incinerators<br />

1200-1500°F for thermal incinerators.<br />

F. Residence time required in combustion chamber,<br />

typically, 0.3 to 0.7 seconds.<br />

II. Burner Type Selection<br />

Two basic types of burners are used to fire fume incinerators:<br />

raw gas burners, which obtain their combustion<br />

air from the incoming fume stream, and fresh air burners,<br />

which obtain theirs from an external source.<br />

Raw gas burners permit higher fuel efficiency, but they<br />

can’t be used under as wide a variety of operating conditions.<br />

The table below provides some general guidelines<br />

for burner selection.<br />

Fresh Air<br />

Selection Factor Raw Gas Burner Burner<br />

Oxygen content of 18-21% ok ok<br />

fume stream 13-18% maybe–check mfr. ok<br />

below 13% no ok<br />

Fume stream Up to 1100°F Depends on burner– ok<br />

temperature check mfr.<br />

entering burner Over 1100°F no ok<br />

Particulates or None<br />

other non-vola- Low<br />

tiles in stream Heavy<br />

ok<br />

probably ok<br />

Depends on burner–<br />

ok<br />

ok<br />

ok<br />

check mfr.<br />

III. Calculating Burner Input<br />

A. For raw gas burners, use the chart on the top of page<br />

45.<br />

B. For fresh air burners use the chart on the bottom of<br />

page 45.<br />

These charts give Btu/hr required per scfm of<br />

fume stream. Multiply this figure by the fume<br />

stream flow rate, in scfm, to determine total burner<br />

heat input.<br />

C. If the burner will take part of its combustion air<br />

from the fume stream and the rest from an outside<br />

source, heat input can be closely estimated with<br />

this method:<br />

From page 45, deteremine Btu/hr required with<br />

a raw gas burner. Call this Br.<br />

From page 45, deteremine Btu/hr required with<br />

a 100% fresh air burner. Call this Bf.<br />

Btu/hr (partial fresh air) =<br />

Br + % fresh combustion air IV. Sizing Profile Plates<br />

If the burner is the type that is placed inside the<br />

fume duct, it has to be surrounded with a profile plate.<br />

Fumes are forced to pass through the gap between the<br />

profile plate and burner, ensuring that they mix completely<br />

with the burner flame.<br />

To size the profile gap, you need to know:<br />

1.Temperature of the fume stream passing over the<br />

burner,<br />

2.Fume stream pressure drop required across the profile<br />

gap (see burner manufacturer’s catalog data).<br />

Refer to the chart on page 17. Locate the required<br />

pressure drop at the bottom of the chart, then read up<br />

to the appropriate temperature curve and left to the<br />

stream velocity. Divide this velocity into the fume<br />

stream flow expressed in acfm:<br />

Profile gap, sq ft = Fume stream flow, acfm<br />

Fume stream velocity, ft/min<br />

For best results, the profile gap must be uniform<br />

width around the perimeter of the burner. Check manufacturer’s<br />

literature for specific recommendations on<br />

design and location of profile plates.<br />

{<br />

{<br />

V.<br />

NOTE: The air diffuser openings in some types of<br />

burners are considered part of the profile area. If so,<br />

deduct the area of these openings from the total profile<br />

area. The result will be the area of the gap around<br />

the burner.<br />

Sizing Downstream Combustion Chamber<br />

A. Chamber Cross-sectional area (A), Good practice<br />

requires no great than 30 ft/sec velocity in the com-<br />

{<br />

bustion chamber, so<br />

A, sq ft = acfm of heated fume stream<br />

1800<br />

B. Combustion chamber length (L) is dictated by<br />

(Bf–Br)<br />

100<br />

the required residence time.<br />

L, feet = Stream velocity x residence time.<br />

If, for example, velocity is 30 ft/sec, and residence<br />

time is 0.5 seconds, L is 15 feet.<br />

WARNING! Incineration of fume streams containing<br />

compounds of chlorine, fluorine, or sulfur will produce<br />

combustion products which may be toxic or corrosive, or<br />

both. Consult with environmental authorities before considering<br />

fume incineration.<br />

46


LIQUID HEATING – BURNER SIZING GUIDELINES<br />

I. Tank Heating<br />

To determine the immersion burner size for heating a<br />

liquid tank, conduct two heat balances–one for heatup<br />

requirements, the other for steady-state operating<br />

requirements. Use the larger of the two Btu inputs<br />

obtained from these calculations.<br />

A. Heat Balance – Heatup Requirements<br />

1.Heat to water<br />

Btu/hr = Lb water x temperature rise, °F<br />

heatup time required, hr<br />

or<br />

Btu/hr = 8.3 x gallons water x temperature rise, °F<br />

heatup time required, hr<br />

or<br />

Btu/hr = 62.4 x cu ft water x temperature rise, °F<br />

heatup time required, hr<br />

Common practice allows the following heatup<br />

times for various size tanks:<br />

Tank Capacity Heatup<br />

Gallons Cu Ft Time, hr<br />

0-375 0-50 2<br />

375-750 50-100 4<br />

750-1500 100-200 6<br />

Over 1500 Over 200 8<br />

2.Surface losses – evaporation & radiation<br />

Btu/hr = Exposed bath surface x heat loss<br />

from Table 1.<br />

3.Tank wall losses<br />

Btu/hr = Total sq ft of tank walls & bottom x wall<br />

loss from Table 1.<br />

4.Tank heat storage<br />

Btu/hr =<br />

Total sq ft, tank walls & bottom x storage, Table 1.<br />

heatup time required, hr<br />

5.Total heatup requirements<br />

Heat to water<br />

+ Surface losses<br />

+ Tank wall losses<br />

+ Tank heat storage<br />

= Total heatup requirement<br />

47<br />

B. Heat Balance – Steady State Heat Requirements<br />

1.Heat to workload<br />

Btu/hr =<br />

Lb of work processed x<br />

hr<br />

specific heat x temperature rise, °F<br />

(Work weight must include all baskets & fixtures)<br />

Specific heat of steel is 0.14 Btu/lb - °F.<br />

See pages 37 to 39 for other materials.<br />

2.Surface losses – evaporation & radiation<br />

Same as Step A.2.<br />

3.Tank wall losses<br />

Same as Step A.3.<br />

4.Heat to makeup water<br />

Btu/hr =<br />

makeup rate, gal/hr x 8.3 x temperature rise, °F<br />

5.Total steady state heat requirement<br />

Heat to workload<br />

+ Surface losses<br />

+ Tank wall losses<br />

+ Heat to makeup water<br />

= Total steady state requirement<br />

C. Compare the heat requirements calculated in<br />

Steps A.5 and B.5. Select the larger of the two .<br />

(This is the net hourly input to the tank.)<br />

D. Gross Heat Input (Burner Firing Rate)<br />

Gross Input, Btu/hr = Net Input from A.5 or B.5 x 100<br />

% Efficiency required<br />

Efficiency is a function of immersion tube<br />

length and burner firing rate. 70% is a commonly<br />

used efficiency rating.<br />

E. Immersion Tube Sizing<br />

See burner manufacturer’s product literature<br />

for tube sizing recommendations.<br />

Table 1. Tank losses & storage<br />

Surface Losses, Wall Losses, Btu/sq ft-hr Heat Storage,<br />

Liquid Btu/sq ft-hr Btu/sq ft<br />

Temperature, Evapor- Radia- Insulation Thickness Steel Thickness<br />

°F ation* tion Total* None 1" 2" 3" 1/8" 1/4"<br />

90 80 50 130 50 12 6 4 21 42<br />

100 160 70 230 70 15 8 6 28 56<br />

110 240 90 330 90 19 10 7 35 70<br />

120 360 110 470 110 23 12 9 42 84<br />

130 480 135 615 135 27 14 10 49 98<br />

140 660 160 820 160 31 16 12 56 112<br />

150 860 180 1040 180 34 18 13 63 126<br />

160 1100 210 1310 210 38 21 15 70 140<br />

170 1380 235 1615 235 42 23 16 77 154<br />

180 1740 260 2000 260 46 25 17 84 168<br />

190 2160 290 2450 290 50 27 19 91 182<br />

200 2680 320 3000 320 53 29 20 98 196<br />

210 3240 360 3590 360 57 31 22 105 210<br />

220 4000 420 4420 380 62 33 23 112 224<br />

250 — 510 — 510 70 40 25 133 266<br />

275 — 600 — 600 81 45 29 151 301<br />

300 — 705 — 705 92 51 33 168 336<br />

325 — 850 — 850 103 57 36 186 371<br />

350 — 990 — 990 114 63 40 203 406<br />

400 — 1335 — 1335 138 75 49 238 476<br />

*Water or water-based solutions only.


II. Spray Washers<br />

Three methods are presented for calculating spray<br />

washer heat requirements. The first is the most accurate,<br />

making use of detailed heat loss factors. The<br />

other two are rule-of-thumb methods. While not as<br />

accurate as method A, they are useful for quickly<br />

estimating burner inputs.<br />

A. Heat Loss Method<br />

1.Data required:<br />

Gpm capacity of spray nozzles<br />

Height & width of washer housing (hood)<br />

Height & width of opening through which<br />

work passes<br />

Liquid pressure head<br />

Liquid temperature<br />

Location of stage in washer<br />

2.Heat Loss factors<br />

From Table 2, find the heat loss factors for<br />

housing height opening width<br />

housing width liquid pressure<br />

opening height liquid temperature<br />

Add all these factors together to get the combined<br />

factor, f.<br />

3.Stage location multiplier, M<br />

Location Multiplier<br />

Entrance Stage 1.75<br />

Intermediate Stage 1.00<br />

After a Cold Rinse 1.25<br />

Exist Stage 1.50<br />

4.Calculation of Gross Burner Input<br />

Btu/hr = Gpm x 500 x f x M<br />

This method yields gross burner input because<br />

an immersion tube efficiency of 70% has<br />

already been assumed in the heat loss factors.<br />

Table 2. Spray Washer Heat Loss Factors<br />

Housing Opening Liquid<br />

Wide High Wide High Press. Temp.<br />

Ft. f Ft. f Ft. f Ft. f PSIG f °F f<br />

2 .7 1 .8 140 .4<br />

3 .8 1 .3 2 .9 1 .5 5 .4 145 .5<br />

4 .9 2 .4 3 1.0 2 .6 7.5 .5 150 .6<br />

5 1.0 3 .5 4 1.1 3 .7 10 .6 155 .7<br />

6 1.1 4 .6 5 1.2 4 .8 12.5 .7 160 .8<br />

7 1.2 5 .7 6 1.3 5 .9 15 .8 165 .9<br />

8 1.3 6 .8 7 1.4 6 1.0 17.5 .9 170 1.0<br />

9 1.4 7 .9 8 1.5 7 1.1 20 1.0 175 1.3<br />

10 1.5 8 1.0 9 1.6 8 1.3 22.5 1.2 180 1.6<br />

11 1.6 9 1.1 10 1.7 9 1.5 30 1.4 185 1.9<br />

12 1.7 10 1.2 11 1.8 10 1.7 32.5 1.6 190 2.2<br />

13 1.8 11 1.3 12 1.9 11 1.9 35 1.8<br />

14 1.9 12 1.4 13 2.0 12 2.1 37.5 2.0<br />

15 2.0 13 1.5 14 2.1 13 2.3 40 2.2<br />

16 2.1 14 1.6 15 2.2 14 2.5 50 2.6<br />

17 2.2 100 3.5<br />

48<br />

B. Temperature Drop Rule of Thumb<br />

1.Data required:<br />

Gpm capacity of spray nozzles<br />

Temperature of liquid<br />

Tube efficiency (usually 70%)<br />

2.Approximate temperature drop of water. Table<br />

3 lists the approximate loss in water temperature<br />

as it is sprayed onto the workload.<br />

Table 3. Water Temperature Drop<br />

Water Temperature<br />

Temperature, °F Drop, °F<br />

150 5<br />

160 6<br />

170 7<br />

180 8<br />

190 9<br />

200 10<br />

3.Calculation of gross burner input.<br />

Btu/hr = Gpm x 500 x Temp Drop x 100<br />

% Efficiency<br />

4.Tank sizing<br />

Tank capacity = 3 x Gpm spray capacity<br />

C. Quick Method Rule of Thumb<br />

Btu/hr gross burner input =<br />

4000 x Gpm sprayed @ 30 psi x 100<br />

% Efficiency<br />

Capacities of spray nozzles are listed in Table 4.<br />

Table 4. Capacities of Spray Nozzles<br />

PSI Ft. Hd.<br />

Gallons per minute of water through<br />

a nozzle diameter of:<br />

Press (Approx.) 1/4" 5/16" 3/8" 7/16" 1/2" 5/8" 3/4"<br />

5 11.5 3.3 5.2 7.4 10.2 13.3 20.8 30.0<br />

10 23.0 4.7 7.3 10.4 14.3 18.7 29.3 42.3<br />

15 35.0 5.8 9.1 12.9 17.7 23.2 36.2 52.3<br />

20 46.5 6.7 10.5 14.8 20.7 26.7 41.8 60.5<br />

25 57.5 7.4 11.7 16.6 22.7 29.7 46.8 67.0<br />

30 68.5 8.1 12.9 18.2 24.8 32.4 50.7 73.0<br />

35 81.0 8.8 13.8 19.7 27.0 35.2 55.1 79.5<br />

40 92.5 9.4 14.8 21.3 28.8 37.7 58.9 85.0<br />

45 104.0 10.0 15.7 22.4 30.6 39.9 65.1 90.0<br />

50 115.0 10.5 16.5 23.5 32.1 42.0 65.7 94.6<br />

55 126.5 11.0 17.3 24.7 33.7 44.1 68.9 99.5<br />

60 138.0 11.0 18.1 25.8 35.2 46.1 72.1 104.0<br />

65 150.0 12.0 18.8 26.9 36.7 48.0 75.0 108.2<br />

70 162.0 12.4 19.6 27.9 38.1 49.7 77.9 112.0<br />

75 172.0 12.9 20.2 28.9 39.4 51.5 80.6 116.0<br />

80 184.5 13.3 20.9 29.9 40.7 53.3 83.1 119.9<br />

85 195.0 13.7 21.5 30.7 41.8 54.7 85.5 123.5<br />

90 205.0 14.0 22.0 31.4 42.9 56.2 87.7 126.7<br />

95 214.5 14.4 22.6 32.1 43.9 57.5 89.8 129.5<br />

100 224.0 14.6 23.1 32.8 44.8 58.7 91.7 132.0<br />

Above values are based on an orifice discharge coefficient of .80<br />

ORIFICE FLOW EQUATION:<br />

Q = 19.65 C D 2 H<br />

WHERE:<br />

Q = Gallons per minute<br />

D = Diameter of orifice in inches<br />

H = Pressure drop across orifice in feet head<br />

C = Orifice discharge coefficient


Heat Transfer Rate, Btu/Sq Ft x 1000<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

BLACK BODY RADIATION<br />

1000°F 60°F<br />

1500°F<br />

0<br />

500 1000 1500 2000 2500 3000 3500<br />

Source (Hotter) Temperature, °F<br />

49<br />

Receiver (Colder) Temperature<br />

1800°F<br />

2000°F<br />

2200°F<br />

These curves are plotted from the relationship<br />

Q = AK (T1 4-T 4) 2 (page 8.2)<br />

1<br />

+<br />

1 - 1<br />

P 1<br />

P 2<br />

where P 1 & P 2 equal 1, that is, the heat source and receiver both<br />

have emissivities of 1.0, and they are arranged so there is no barrier<br />

to heat transfer between them.<br />

2400°F<br />

2600°F<br />

THERMOCOUPLE DATA<br />

ANSI Calibration Code B E J K R S T<br />

Useful Temp. Range, °F 1600-3100 32-1600 400-1400 700-2300 1800-2700 1800-2700 -300 + 700<br />

Positive Element Pt-30%Rh* Chromel** Iron Chromel** Pt-13%Rh* Pt-10%Rh* Copper<br />

Negative Element<br />

Color Coding<br />

Pt-6%Rh* Constantan Constantan Alumel** Pt* Pt* Constantan<br />

Positive Element Gray Purple White Yellow Black Black Blue<br />

Negative Element Red Red Red Red Red Red Red<br />

Outer Insulation on Purple or Black or Yellow or Blue or<br />

Duplex Wire Gray Brown/Purple Brown/Black Brown/Yellow Green Green Brown/Blue<br />

Plugs & Jacks<br />

*Pt = Platinum, Rh = Rhodium<br />

**Trademarks - Hoskins Mfg. Co.<br />

Gray Purple Black Yellow Green Green Blue<br />

How to Deteremine Thermocouple Polarity if Wire Identification is Missing:<br />

Types B, R, and S: Gently flex the ends of both wires. The stiffer wire is the positive element.<br />

Type K: Negative element is slightly magnetic.<br />

Type J: Positive element is magnetic.<br />

Type T: Positive element has characteristic pinkish-orange color of copper.<br />

2800°F<br />

3000°F<br />

3200°F


ORTON STANDARD PYROMETRIC CONES<br />

TEMPERATURE EQUIVALENTS<br />

Cone Type Self- Self- Cone Type<br />

Heating Rate Large Regular Large Iron Free Supporting Regular Supporting Iron Free Small Regular Small PCE Heating Rate<br />

Cone number 108°F/hr 270°F/hr 108°F/hr 270°F/hr 108°F/hr 270°F/hr 108°F/hr 270°F/hr 540°F/hr 270°F/hr Cone number<br />

022 1074 1092 1087 1094 1157 022<br />

021 1105 1132 1112 1143 1195 021<br />

020 1148 1173 1159 1180 1227 020<br />

019 1240 1265 1243 1267 1314 019<br />

018 1306 1337 1314 1341 1391 018<br />

017 1348 1386 1353 1391 1445 017<br />

016 1407 1443 1411 1445 1517* 016<br />

015 1449 1485 1452 1488 1549* 015<br />

014 1485 1528 1488 1531 1616 014<br />

013 1539 1578 1542 1582 1638 013<br />

012 1571 1587 1575 1591 1652 012<br />

011 1603 1623 1607 1627 1684 011<br />

010 1629* 1641* 1623 1656 1632 1645 1627 1659 1686* 010<br />

09 1679* 1693* 1683 1720 1683 1697 1686 1724 1751* 09<br />

08 1733* 1751* 1733 1773 1737 1755 1735 1774 1801* 08<br />

07 1783* 1803* 1778 1816 1787 1807 1780 1818 1846* 07<br />

06 1816* 1830* 1816 1843 1819 1834 1816 1845 1873* 06<br />

05 1/2 1852 1873 1852 1886 1855 1877 1854 1888 1908 05 1/2<br />

05 1888* 1915* 1890 1929 1891 1918 1899 1931 1944* 05<br />

04 1922* 1940* 1940 1967 1926 1944 1942 1969 2008* 04<br />

03 1987* 2014* 1989 2007 1990 2017 1990 2010 2068* 03<br />

02 2014* 2048* 2016 2050 2017 2052 2021 2052 2098* 02<br />

01 2043* 2079* 2052 2088 2046 2082 2053 2089 2152* 01<br />

1 2077* 2109* 2079 2111 2080 2113 2082 2115 2154* 1<br />

2 2088* 2124* Not Manufactured 2091 2127 Not Manufactured 2154* 2<br />

3 2106* 2134* 2104 2136 2109 2138 2109 2140 2185* 3<br />

4 2134* 2167* 2142 2169 2208* 4<br />

5 2151* 2185* 2165 2199 2230* 5<br />

6 2194* 2232* 2199 2232 2291* 6<br />

7 2219* 2264* 2228 2273 2307* 7<br />

8 2257* 2305* 2273 2314 2372* 8<br />

9 2300* 2336* 2300 2336 2403* 9<br />

10 2345* 2381* 2345 2381 2426* 10<br />

11 2361* 2399* 2361 2399 2437* 11<br />

12 2383* 2419* 2383 2419 2471* 2439* 12<br />

13 2410* 2455* 2428 2458 2460 2460* 13<br />

13 1/2 Not Manufactured 2466 2493 Not Manufactured 13 1/2<br />

14 2530* 2491* 2489 2523 2548 2548* 14<br />

14 1/2 Not Manufactured 2527 2568 Not Manufactured 14 1/2<br />

15 2595* 2608* 2583 2602 2606 2606* 15<br />

15 1/2 Not Manufactured 2617 2633 Not Manufactured 15 1/2<br />

16 2651* 2683* 2655 2687 2716 2716* 16<br />

17 2691* 2705* 2694 2709 2754 2754* 17<br />

18 2732* 2743* 2736 2746 2772 2772* 18<br />

19 2768* 2782* 2772 2786 2806 2806* 19<br />

20 2808* 2820* 2811 2824 2847 2847* 20<br />

21 2847* 2856* 2851 2860 2883* 21<br />

23 2887* 2894* 2890 2898 2921* 23<br />

26 2892* 2921* 2950* 26<br />

27 2937* 2961* 2984* 27<br />

28 2937* 2971* 2995* 28<br />

29 2955* 2993* 3018* 29<br />

30 2977* 3009* 3029* 30<br />

31 3022* 3054* 3061* 31<br />

31 1/2 ND ND 3090* 31 1/2<br />

32 3103* 3123* 3123* 32<br />

32 1/2 3124* 3146* 3135* 32 1/2<br />

33 3150* 3166* 3169* 33<br />

34 3195* 3198* 3205* 34<br />

35 3243* 3243* 3245* 35<br />

36 3268* 3265* 3279* 36<br />

37 ND ND 3308 37<br />

38 ND ND 3362 38<br />

39 ND ND 3389 39<br />

40 ND ND 3425 40<br />

41 ND ND 3578 41<br />

42 ND ND 3659 42<br />

The temperature equivalent tables are designed to be a guide for the selection of cones to use during firing. The temperature listed may only have a relative value to<br />

the user. However, the values do provide a good starting point and once the proper cones are determined for a particular firing condition, excellent firing control can<br />

be maintained. NOTES: ND = Not determined *Temperature equivalents as determined by the National Bureau of Standards by H.P. Beerman (See Journal of the<br />

American Ceramic Society Volume 39, 1956) Large cones at 2 inch mounting height, Small & PCE cones at 15/16 inch.<br />

1. The temperature equivalents in this table apply only to Orton Standard Pyrometric Cones, heated at the rate indicated in air atmosphere.<br />

2. The rates of heating shown at the head of each column of temperature equivalents were maintained during the last several hundred degrees of temperature rise.<br />

3. The temperature equivalents are not necessarily those at which cones will deform under firing conditions different from those under which the calibration determination<br />

were made.<br />

4. For reproducible results, care should be taken to insure that the cones are set in a plaque with the bending face at the correct angle of 8° from the vertical with the<br />

cone tips at a uniform height above the plaque.<br />

©1986 The Edward Orton Jr. Ceramic Foundation. Reprinted with permission.<br />

50


CHAPTER 8 – COMBUSTION DATA<br />

AVAILABLE HEAT CHARTS<br />

Available heat for Birmingham Natural Gas (1002 Btu/cu ft, 0.60 sp gr) vs. % Excess Air and Combustion Air Temperature<br />

(at 10% excess air).<br />

% Available Heat (Higher Heating Value)<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

250% XS AIR<br />

300% XS AIR<br />

350% XS AIR<br />

60°F<br />

10% Excess Air (preheated)<br />

200% XS AIR<br />

150% XS AIR<br />

0<br />

1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500<br />

Flue Gas Exit Temperature °F<br />

AVAILABLE HEAT FOR VARIOUS FUEL GASES<br />

These curves assume 0% excess air. The excess air curves above for Birmingham Natural Gas can be used for butane,<br />

propane, natural, mixed, coke oven, & carbureted water gas without more than 5% error in the available heat.<br />

BUTANE 3200 BTU<br />

PROPANE 2500 BTU<br />

NATURAL GAS 1232 BTU<br />

NATURAL GAS 1050 BTU<br />

NATURAL GAS 967 BTU<br />

MIXED GAS 800 BTU<br />

COKE OVEN GAS 600 BTU<br />

CARBURETED WATER GAS 534 BTU<br />

COKE OVEN GAS 490 BTU<br />

BLUE WATER GAS 310 BTU<br />

PRODUCER GAS 157 BTU<br />

PRODUCER GAS 116 BTU<br />

Copyright 1983, GTE Products Corp., Towanda, PA 18848 USA<br />

Used by Permission<br />

100% XS AIR<br />

51<br />

50% XS AIR<br />

1400°F<br />

1200°F<br />

1000°F<br />

800°F<br />

400°F<br />

0% XS AIR<br />

25% XS AIR<br />

200 600 1000 1400 1800 2200 2600 3000 3400 3800 0<br />

Flue Gas Temperature °F<br />

10% XS AIR<br />

2400<br />

2200<br />

2000<br />

1800<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

Available Heat Btu/Cu. Ft.


% Flue Gas Constituent<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

% CO 2 - #6 OIL<br />

FLUE GAS ANALYSIS CHART<br />

% CO 2 - #2 OIL<br />

% CO 2 - PROPANE<br />

% O 2 - DRY SAMPLE<br />

52<br />

% O 2 - SATURATED SAMPLE<br />

% CO 2 - NATURAL GAS<br />

0<br />

0 20 40 60 80 100 120 140 160 180 200<br />

Oxygen curves are plotted for 1002 Btu/cu ft Birmingham<br />

natural gas. These curves can be used for all common fuel<br />

gases and fuel oils with no more than 0.2% error in oxygen<br />

content.<br />

Use the “O 2 – dry sample” curve with flue gas analyzers<br />

that use dryers or condensers to remove water from the flue<br />

THEORETICAL FLAME TIP<br />

TEMPERATURE VS. EXCESS AIR<br />

The maximum theoretical temperature of combustion gases<br />

at the tip of a flame decreases with increasing amounts of<br />

excess air. The curve bleow shows this relationship for natural<br />

gas completely burned in 60°F combustion air, but is reaonsably<br />

accurate for most other common hydrocarbon fuels.<br />

Maximum Theoretical Temperature<br />

of Products of Combustion (°F)<br />

3200<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

% Excess Air<br />

0<br />

0 200 400 600 800 1000 1200 1400 1600 1800<br />

% Excess Air in Flue Gas<br />

gas sample. For analyzers which add water to produce a saturated<br />

sample, use the “O 2 – saturated sample” curve.<br />

% CO 2 curves are based on typical propane and fuel oil<br />

anlyses. If the fuel composition differs, actual CO 2 curves<br />

may vary slightly from those shown.<br />

HEAT TRANSFER RELATIONSHIPS<br />

Conduction<br />

Q = kA (t1-t2) L<br />

Convection<br />

Q = fA (t1-t2) Radiation<br />

Q = AK (T1 4-T 4) 2<br />

1 + 1 - 1<br />

P1 P2 Q =heat transferred, Btu/hr<br />

A =surface area across which heat is<br />

being transferred, sq. ft.<br />

t 1 =temperature of heat source, °F<br />

t 2 =temperature of heat receiver, °F<br />

L =thickness of object through which heat<br />

is conducted<br />

k =conductivity of material, Btu-ft<br />

hr-sq ft-°F<br />

f =convection film coefficient, Btu-ft<br />

hr-sq ft-°F<br />

K =Stefan-Boltzmann constant,<br />

=.1724 x 10 -8 Btu/sq ft-hr-(°R) 4<br />

P 1 =emissivity of heat source<br />

P 2 =emissivity of heat receiver<br />

T 1 =temperature of heat source, °R<br />

T 2 =temperature of heat receiver, °R<br />

(°R = °F + 460)


Furnacr Thermal Head or Draft, "wc<br />

Due to Gas Buoyancy<br />

.20<br />

.15<br />

.10<br />

.05<br />

THERMAL HEAD & COLD AIR INFILTRATION INTO FURNACES<br />

Furnace<br />

Height Above<br />

Hearth<br />

16'<br />

14'<br />

12'<br />

10'<br />

8'<br />

6'<br />

4'<br />

0<br />

0 500 1000 1500 2000 100 200 300 400 500<br />

Furnace<br />

Temperature °F<br />

Flue Cross-Sectional Area, Sq. In.<br />

Per 1000 SCFH of Flue Gases<br />

30<br />

20<br />

10<br />

8<br />

6<br />

5<br />

4<br />

3<br />

2<br />

Air Infiltration<br />

SCFH/ Sq. In.<br />

1<br />

1 2 3 4 5 6 8 10 20 30 40 50<br />

These curves predict the flue area required per 1000 scfh of<br />

flue gases, based on the average temperature of those gases<br />

and the height of the furnace stack. Flue openings are assumed<br />

to be simple orifices with a discharge coefficient of 0.6, and<br />

all pressure drop across those orifices is provided by the thermal<br />

head of the flue gases.<br />

This method is conservative – it will produce generously<br />

sized flues.<br />

FURNACE FLUE SIZING<br />

Stack Height, Ft, Above Furnace Hearth<br />

53<br />

The natural buoyancy of heated gases causes them to rise<br />

and collect under the roof of a furnace or oven. This creates<br />

a natural pressure differential, called thermal head or draft,<br />

which tends to pull cold air in through furnace leaks on topflued<br />

furnaces. These leaks are most pronounced at low fire,<br />

when burner combustion gas flow is insufficient to replace<br />

furnace gases drawn out by thermal head.<br />

This graph can be used to predict thermal head and cold<br />

air infiltration.<br />

Example: Determine thermal head and cold air infiltration<br />

in a 10' tall furnace operating at 1600°F.<br />

Solution: Read up from 1600°F furnace temperature to the<br />

intersection of the 10' curve. Read to the left to find thermal<br />

head, 0.08" w.c. To determine air infiltration, read right to<br />

the infiltration curve and then down to the infiltration rate,<br />

280 scfh per square inch.<br />

2500°F<br />

1500°F<br />

500°F<br />

Average<br />

Flue Gas<br />

Temp.<br />

Refer to Page 23 for volumes of combustion products for<br />

various fuels. Remember that if the combustion system is to<br />

be operated with excess air, the volume of combustion products<br />

has to be adjusted accordingly.<br />

Average flue gas temperature will have to be estimated,<br />

taking into account the effect of stack heat losses and dilution<br />

air.


CHAPTER 9 – MECHANICAL DATA<br />

DIMENSIONAL AND CAPACITY DATA – SCHEDULE 40 PIPE<br />

Diameter, Inches Cross-Sectional Area Weight Per Foot, lb.<br />

Wall Sq. in. of of of<br />

Actual Actual Thickness, Pipe Water Pipe and<br />

Nominal Inside Outside Inches Outside Inside Metal Alone In Pipe Water<br />

1/8 0.269 0.405 0.068 0.129 0.057 0.072 0.25 0.028 0.278<br />

1/4 0.364 0.540 0.088 0.229 0.104 0.125 0.43 0.045 0.475<br />

3/8 0.493 0.675 0.091 0.358 0.191 0.167 0.57 0.083 0.653<br />

1/2 0.622 0.840 0.109 0.554 0.304 0.250 0.86 0.132 0.992<br />

3/4 0.824 1.050 0.113 0.866 0.533 0.333 1.14 0.232 1.372<br />

1 1.049 1.315 0.133 1.358 0.864 0.494 1.68 0.375 2.055<br />

1-1/4 1.380 1.660 0.140 2.164 1.495 0.669 2.28 0.649 2.929<br />

1-1/2 1.610 1.900 0.145 2.835 2.036 0.799 2.72 0.882 3.602<br />

2 2.067 2.375 0.154 4.431 3.356 1.075 3.66 1.454 5.114<br />

2-1/2 2.469 2.875 0.203 6.492 4.788 1.704 5.80 2.073 7.873<br />

3 3.068 3.500 0.216 9.621 7.393 2.228 7.58 3.201 10.781<br />

3-1/2 3.548 4.000 0.226 12.568 9.888 2.680 9.11 4.287 13.397<br />

4 4.026 4.500 0.237 15.903 12.730 3.173 10.80 5.516 16.316<br />

5 5.047 5.563 0.258 24.308 20.004 4.304 14.70 8.674 23.374<br />

6 6.065 6.625 0.280 34.474 28.890 5.584 19.00 12.52 31.52<br />

8 7.981 8.625 0.322 58.426 50.030 8.396 28.60 21.68 50.28<br />

10 10.020 10.750 0.365 90.79 78.85 11.90 40.50 34.16 74.66<br />

12 11.938 12.750 0.406 127.67 113.09 15.77 53.60 48.50 102.10<br />

14 13.126 14.000 0.437 153.94 135.33 18.61 63.30 58.64 121.94<br />

16 15.000 16.000 0.500 201.06 176.71 24.35 82.80 76.58 159.38<br />

18 16.876 18.000 0.562 254.47 223.68 30.79 105.00 96.93 201.93<br />

20 18.814 20.000 0.593 314.16 278.01 36.15 123.00 120.46 243.46<br />

Circumference, Sq. Ft. of Surface Contents of Pipe Lineal Feet To Contain<br />

Inches Per Lineal Foot Per Lineal Foot<br />

Nominal 1 LB.<br />

Dia. In. Outside Inside Outside Inside Cu. Ft. Gal. 1 Cu. Ft. 1 Gal. of Water<br />

1/8 1.27 0.84 0.106 0.070 0.0004 0.003 2533.775 338.74 35.714<br />

1/4 1.69 1.14 0.141 0.095 0.0007 0.005 1383.789 185.00 22.222<br />

3/8 2.12 1.55 0.177 0.129 0.0013 0.010 754.360 100.85 12.048<br />

1/2 2.65 1.95 0.221 0.167 0.0021 0.016 473.906 63.36 7.576<br />

3/4 3.29 2.58 0.275 0.215 0.0037 0.028 270.034 36.10 4.310<br />

1 4.13 3.29 0.344 0.274 0.0062 0.045 166.618 22.28 2.667<br />

1-1/4 5.21 4.33 0.435 0.361 0.0104 0.077 96.275 12.87 1.541<br />

1-1/2 5.96 5.06 0.497 0.422 0.0141 0.106 70.733 9.46 1.134<br />

2 7.46 6.49 0.622 0.540 0.0233 0.174 42.913 5.74 0.688<br />

2-1/2 9.03 7.75 0.753 0.654 0.0332 0.248 30.077 4.02 0.482<br />

3 10.96 9.63 0.916 0.803 0.0514 0.383 19.479 2.60 0.312<br />

3-1/2 12.56 11.14 1.047 0.928 0.0682 0.513 14.565 1.95 0.233<br />

4 14.13 12.64 1.178 1.052 0.0884 0.660 11.312 1.51 0.181<br />

5 17.47 15.84 1.456 1.319 0.1390 1.040 7.198 0.96 0.115<br />

6 20.81 19.05 1.734 1.585 0.2010 1.500 4.984 0.67 0.080<br />

8 27.09 26.07 2.258 2.090 0.3480 2.600 2.878 0.38 0.046<br />

10 33.77 31.47 2.814 2.622 0.5470 4.100 1.826 0.24 0.029<br />

12 40.05 37.70 3.370 3.140 0.7850 5.870 1.273 0.17 0.021<br />

14 47.12 44.76 3.930 3.722 1.0690 7.030 1.067 0.14 0.017<br />

16 53.41 51.52 4.440 4.310 1.3920 9.180 0.814 0.11 0.013<br />

18 56.55 53.00 4.712 4.420 1.5530 11.120 0.644 0.09 0.010<br />

20 62.83 59.09 5.236 4.920 1.9250 14.400 0.517 0.07 0.008<br />

54


B<br />

A<br />

A<br />

90° Elbow<br />

B<br />

DIMENSIONS OF MALLEABLE IRON THREADED FITTINGS<br />

per ANSI B 16.3-1977<br />

D<br />

E<br />

A<br />

C<br />

A C<br />

90° Street Elbow Street Tee<br />

(150 lb only)<br />

F G<br />

45° Elbow 45° Street Elbow 45° Y-Bend<br />

(150 lb only)<br />

A<br />

G<br />

CLASS 150 FITTINGS<br />

Thread<br />

Engage-<br />

M1 Close<br />

M2 Med.<br />

M3 Open<br />

Size ment A B C D E F G H J K Pattern Pattern Pattern<br />

1/8 0.25 0.69 – 1.00 – – – – 0.53 0.96 – – – –<br />

1/4 0.32 0.81 0.73 1.19 0.73 0.94 – – 0.63 1.06 1.00 – – –<br />

3/8 0.36 0.95 0.80 1.44 0.80 1.03 1.93 1.43 0.74 1.16 1.13 – – –<br />

1/2 0.43 1.12 0.88 1.63 0.88 1.15 2.32 1.71 0.87 1.34 1.25 1.00 1.25 1.50<br />

3/4 0.50 1.31 0.98 1.89 0.98 1.29 2.77 2.05 0.97 1.52 1.44 1.25 1.50 2.00<br />

1 0.58 1.50 1.12 2.14 1.12 1.47 3.28 2.43 1.16 1.67 1.69 1.50 1.87 2.50<br />

1-1/4 0.67 1.75 1.29 2.45 1.29 1.71 3.94 2.92 1.28 1.93 2.06 1.75 2.25 3.00<br />

1-1/2 0.70 1.94 1.43 2.69 1.43 1.88 4.38 3.28 1.33 2.15 2.31 2.19 2.50 3.50<br />

2 0.75 2.25 1.68 3.26 1.68 2.22 5.17 3.93 1.45 2.53 2.81 2.62 3.00 4.00<br />

2-1/2 0.92 2.70 1.95 3.86 1.95 2.57 6.25 4.73 1.70 2.88 3.25 – – 4.50<br />

3 0.98 3.08 2.17 4.51 2.17 3.00 7.26 5.55 1.80 3.18 3.69 – – 5.00<br />

3-1/2 1.03 3.42 2.39 – – – – – 1.90 – – – – –<br />

4 1.08 3.79 2.61 5.69 2.61 3.70 8.98 6.97 2.08 3.69 4.38 – – 6.00<br />

5 1.18 4.50 3.05 6.86 – – – – 2.32 – – – – –<br />

6 1.28 5.13 3.46 8.03 – – – – 2.55 – – – – –<br />

CLASS 300 FITTINGS<br />

Size<br />

Thread<br />

Engagement<br />

A B C D E H J K M1 M2 M3 1/4 0.43 0.94 0.81 1.44 – – 0.78 1.37 – – – –<br />

3/8 0.47 1.06 0.88 1.63 – – 0.83 1.62 1.44 – – –<br />

1/2 0.57 1.25 1.00 2.00 1.00 1.38 0.98 1.87 1.69 – – –<br />

3/4 0.64 1.44 1.13 2.19 1.13 1.56 1.08 2.12 1.75 – – –<br />

1 0.75 1.63 1.31 2.56 1.31 1.81 1.26 2.37 2.00 1.75 2.50 3.00<br />

1-1/4 0.84 1.94 1.50 2.88 1.50 2.13 1.38 2.87 2.38 2.25 2.50 3.00<br />

1-1/2 0.87 2.13 1.69 3.13 1.69 2.31 1.43 2.87 2.69 3.00 3.50 6.00<br />

2 1.00 2.50 2.00 3.69 2.00 2.69 1.68 3.62 3.19 4.00 6.00 8.00<br />

2-1/2 1.17 2.94 2.25 4.50 – – 2.06 4.12 3.69 – – –<br />

3 1.23 3.38 2.50 5.13 – – 2.17 4.12 4.06 – – –<br />

H<br />

55<br />

A<br />

A A<br />

Tee<br />

J K<br />

A<br />

A<br />

A A<br />

Cross<br />

M1<br />

M2<br />

M3<br />

Cap Coupling Reducer Return Bend


SHEET METAL GAUGES & WEIGHTS<br />

Carbon Steel Galvanized Steel Stainless (Cr-Ni) Steel<br />

Gauge Thickness, Thickness, Thickness,<br />

No. in. lb. per sq. ft. in. lb per sq. ft in. lb. per sq. ft.<br />

7 .1793 7.500 – – – –<br />

8 .1644 6.875 .1681 7.031 .165 6.930<br />

9 .1495 6.250 .1532 6.406 .1563 6.563<br />

10 .1345 5.625 .1382 5.781 .135 5.670<br />

11 .1196 5.000 .1233 5.156 .120 5.040<br />

12 .1096 4.375 .1084 4.531 .1054 4.427<br />

13 .0897 3.750 .0934 3.906 .090 3.780<br />

14 .0747 3.125 .0785 3.281 .0751 3.154<br />

15 .0673 2.812 .0710 2.969 .0703 2.953<br />

16 .0598 2.500 .0635 2.656 .0595 2.499<br />

17 .0538 2.250 .0575 2.406 .0563 2.363<br />

18 .0478 2.000 .0516 2.156 .048 2.016<br />

19 .0418 1.750 .0456 1.906 .042 1.764<br />

20 .0359 1.500 .0396 1.656 .0355 1.491<br />

21 .0329 1.375 .0366 1.531 .0344 1.444<br />

22 .0299 1.250 .0336 1.406 .0293 1.231<br />

23 .0269 1.125 .0306 1.281 .0281 1.181<br />

24 .0239 1.000 .0276 1.156 .0235 .987<br />

25 .0209 .875 .0247 1.031 .0219 .919<br />

26 .0179 .750 .0217 .906 .0178 .748<br />

27 .0164 .688 .0202 .844 .0172 .722<br />

28 .0149 .625 .0187 .781 .0151 .634<br />

29 .0135 .563 .0172 .719 – –<br />

30 .0120 .500 .0157 .656 – –<br />

SHEET WIRE GAUGES & WEIGHTS<br />

Diameter, inches Diameter, inches<br />

Steel Steel<br />

Gauge Wire Gauge Wire<br />

No. AWG 1 Gauge 2 BWG 3 No. AWG 1 Gauge 2 BWG 3<br />

0 .3249 .3065 .340 15 .0571 .0720 .072<br />

1 .2893 .2830 .300 16 .0508 .0625 .065<br />

2 .2576 .2625 .284 17 .0453 .0540 .058<br />

3 .2294 .2437 .259 18 .0403 .0475 .049<br />

4 .2043 .2253 .238 19 .0359 .0410 .042<br />

5 .1819 .2070 .220 20 .0320 .0348 .035<br />

6 .1620 .1920 .203 21 .0285 .0317 .032<br />

7 .1443 .1770 .180 22 .0253 .0286 .028<br />

8 .1285 .1620 .165 23 .0226 .0258 .025<br />

9 .1144 .1483 .148 24 .0201 .0230 .022<br />

10 .1019 .1350 .134 25 .0179 .0204 .020<br />

11 .0907 .1205 .120 26 .0159 .0181 .018<br />

12 .0808 .1055 .109 27 .0142 .0173 .016<br />

13 .0720 .0915 .095 28 .0126 .0162 .014<br />

14 .0641 .0800 .083 29 .0113 .0150 .013<br />

30 .0100 .0140 .012<br />

1 American Wire Gauge or Brown & Sharpe Gauge for<br />

non-ferrous wire, including electrical wire.<br />

2 Or Washburn & Moen Gauge.<br />

3 Birmingham Wire Gauge or Stubs Gauge.<br />

56


CIRCUMFERENCES AND AREAS OF CIRCLES<br />

In Inches<br />

Dia. Circum. Area Dia. Circum. Area Dia. Circum. Area<br />

1/64 .04909 .00019 3 9.4248 7.0686 8 25.133 50.265<br />

1/32 .09818 .00077 1/16 9.6211 7.3662 1/8 25.525 51.849<br />

3/64 .14726 .00173 1/8 9.8175 7.6699 1/4 25.918 53.456<br />

1/16 .19635 .00307 3/16 10.014 7.9798 3/8 26.311 55.088<br />

3/32 .29452 .00690 1/4 10.210 8.2958 1/2 26.704 56.745<br />

1/8 .39270 .01227 5/16 10.407 8.6179 5/8 27.096 58.426<br />

5/32 .49087 .01917 3/8 10.603 8.9462 3/4 27.489 60.132<br />

3/16 .58905 .02761 7/16 10.799 9.2806 7/8 27.882 61.862<br />

7/32 .68722 .03758 1/2 10.996 9.6211 9 28.274 63.617<br />

1/4 .78540 .04909 9/16 11.192 9.9678 1/8 28.667 65.397<br />

9/32 .88357 .06213 5/8 11.388 10.321 1/4 29.060 67.201<br />

5/16 .98175 .07670 11/16 11.585 10.680 3/8 29.452 69.029<br />

11/32 1.0799 .09281 3/4 11.781 11.045 1/2 29.845 70.882<br />

3/8 1.1781 .11045 13/16 11.977 11.416 5/8 30.238 72.760<br />

13/32 1.2763 .12962 7/8 12.174 11.793 3/4 30.631 74.662<br />

7/16 1.3744 .15033 15/16 12.370 12.177 7/8 31.023 76.589<br />

15/32 1.4726 .17257 4 12.566 12.566 10 31.416 78.540<br />

1/2 1.5708 .19635 1/16 12.763 12.962 1/8 31.809 80.516<br />

17/32 1.6690 .22166 1/8 12.959 13.364 1/4 32.201 82.516<br />

9/16 1.7671 .24850 3/16 13.155 13.772 3/8 32.594 84.541<br />

19/32 1.8653 .27688 1/4 13.352 14.186 1/2 32.987 86.590<br />

5/8 1.9635 .30680 5/16 13.548 14.607 5/8 33.379 88.664<br />

21/32 2.0617 .33824 3/8 13.744 15.033 3/4 33.772 90.763<br />

11/16 2.1598 .37122 7/16 13.941 15.466 7/8 34.165 92.886<br />

23/32 2.2580 .40574 1/2 14.137 15.904 11 34.558 95.033<br />

3/4 2.3562 .44179 9/16 14.334 16.349 1/8 34.950 97.205<br />

25/32 2.4544 .47937 5/8 14.530 16.800 1/4 35.343 99.402<br />

13/16 2.5525 .51849 11/16 14.726 17.257 3/8 35.736 101.62<br />

27/32 2.6507 .55914 3/4 14.923 17.721 1/2 36.128 103.87<br />

7/8 2.7489 .60132 13/16 15.119 18.190 5/8 36.521 106.14<br />

29/32 2.8471 .64504 7/8 15.315 18.665 3/4 36.914 108.43<br />

15/16 2.9452 .69029 15/16 15.512 19.147 7/8 37.306 110.75<br />

31/32 3.0434 .73708 5 15.708 19.635 12 37.699 113.10<br />

1 3.1416 .7854 1/16 15.904 20.129 1/8 38.092 115.47<br />

1/16 3.3379 .8866 1/8 16.101 20.629 1/4 38.485 117.86<br />

1/8 3.5343 .9940 3/16 16.297 21.135 3/8 38.877 120.28<br />

3/16 3.7306 1.1075 1/4 16.493 21.648 1/2 39.270 122.72<br />

1/4 3.9270 1.2272 5/16 16.690 22.166 5/8 39.663 125.19<br />

5/16 4.1233 1.3530 3/8 16.886 22.691 3/4 40.055 127.68<br />

3/8 4.3197 1.4849 7/16 17.082 23.221 7/8 40.448 130.19<br />

7/16 4.5160 1.6230 1/2 17.279 23.758 13 40.841 132.73<br />

1/2 4.7124 1.7671 9/16 17.475 24.301 1/8 41.233 135.30<br />

9/16 4.9087 1.9175 5/8 17.671 24.850 1/4 41.626 137.89<br />

5/8 5.1051 2.0739 11/16 17.868 25.406 3/8 42.019 140.50<br />

11/16 5.3014 2.2365 3/4 18.064 25.967 1/2 42.412 143.14<br />

3/4 5.4978 2.4053 13/16 18.261 26.535 5/8 42.804 145.80<br />

13/16 5.6941 2.5802 7/8 18.457 27.109 3/4 43.197 148.49<br />

7/8 5.8905 2.7612 15/16 18.653 27.688 7/8 43.590 151.20<br />

15/16 6.0868 2.9483 6 18.850 28.274 14 43.982 153.94<br />

2 6.2832 3.1416 1/8 19.242 29.465 1/8 44.374 156.70<br />

1/16 6.4795 3.3410 1/4 19.635 30.680 1/4 44.768 159.48<br />

1/8 6.6759 3.5466 3/8 20.028 31.919 3/8 45.160 162.30<br />

3/16 6.8722 3.7583 1/2 20.420 33.183 1/2 45.553 165.13<br />

1/4 7.0686 3.9761 5/8 20.813 34.472 5/8 45.946 167.99<br />

5/16 7.2649 4.2000 3/4 21.206 35.785 3/4 46.338 170.87<br />

3/8 7.4613 4.4301 7/8 21.598 37.122 7/8 46.731 173.78<br />

7/16 7.6576 4.6664 7 21.991 38.485 15 47.124 176.71<br />

1/2 7.8540 4.9087 1/8 22.384 39.871 1/8 47.517 179.67<br />

9/16 8.0503 5.1572 1/4 22.776 41.282 1/4 47.909 182.65<br />

5/8 8.2467 5.4119 3/8 23.169 42.718 3/8 48.302 185.66<br />

11/16 8.4430 5.6727 1/2 23.562 44.179 1/2 48.695 188.69<br />

3/4 8.6394 5.9396 5/8 23.955 45.664 5/8 49.087 191.75<br />

13/16 8.8357 6.2126 3/4 24.347 47.173 3/4 49.480 194.83<br />

7/8 9.0321 6.4918 7/8 24.740 48.707 7/8 49.873 197.93<br />

15/16 9.2284 6.7771<br />

57


CIRCUMFERENCES AND AREAS OF CIRCLES (Cont’d)<br />

In Inches<br />

Dia. Circum. Area Dia. Circum. Area Dia. Circum. Area<br />

16 50.265 201.06 24 75.398 452.39 39 122.522 1194.6<br />

1/8 50.658 204.22 1/8 75.791 457.11 40 125.664 1256.6<br />

1/4 51.051 207.39 1/4 76.184 461.86 41 128.805 1320.3<br />

3/8 51.444 210.60 3/8 76.576 466.64 42 131.947 1385.4<br />

1/2 51.836 213.82 1/2 76.969 471.44 43 135.088 1452.2<br />

5/8 52.229 217.08 5/8 77.362 476.26 44 138.230 1520.5<br />

3/4 52.622 220.35 3/4 77.754 481.11 45 141.372 1590.4<br />

7/8 53.014 223.65 7/8 78.147 485.98 46 144.513 1661.9<br />

17 53.407 226.98 25 78.540 490.87 47 147.655 1734.9<br />

1/8 53.800 230.33 1/8 78.933 495.79 48 150.796 1809.6<br />

1/4 54.192 233.71 1/4 79.325 500.74 49 153.939 1885.7<br />

3/8 54.585 237.10 3/8 79.718 505.71 50 157.080 1963.5<br />

1/2 54.978 240.53 1/2 80.111 510.71 51 160.221 2042.8<br />

5/8 55.371 243.98 5/8 80.503 515.72 52 163.363 2123.7<br />

3/4 55.763 247.45 3/4 80.896 520.77 53 166.504 2206.2<br />

7/8 56.156 250.95 7/8 81.289 525.84 54 169.646 2290.2<br />

18 56.549 254.47 26 81.681 530.93 55 172.788 2375.8<br />

1/8 56.941 258.02 1/8 82.074 536.05 56 175.929 2463.0<br />

1/4 57.334 261.59 1/4 82.467 541.19 57 179.071 2551.8<br />

3/8 57.727 265.18 3/8 82.860 546.35 58 182.212 2642.1<br />

1/2 58.119 268.80 1/2 83.252 551.55 59 185.354 2734.0<br />

5/8 58.512 272.45 5/8 83.645 556.76 60 188.496 2827.4<br />

3/4 58.905 276.12 3/4 84.038 562.00 61 191.637 2922.5<br />

7/8 59.298 279.81 7/8 84.430 567.27 62 194.779 3019.1<br />

19 59.690 283.53 27 84.823 572.56 63 197.920 3117.2<br />

1/8 60.083 287.27 1/8 85.216 577.87 64 201.062 3217.0<br />

1/4 60.476 291.04 1/4 85.608 583.21 65 204.204 3318.3<br />

3/8 60.868 294.83 3/8 86.001 588.57 66 207.345 3421.2<br />

1/2 61.261 298.65 1/2 86.394 593.96 67 210.487 3525.7<br />

5/8 61.654 302.49 5/8 86.786 599.37 68 213.628 3631.7<br />

3/4 62.046 306.35 3/4 87.179 604.81 69 216.770 3739.3<br />

7/8 62.439 310.24 7/8 85.572 610.27 70 219.911 3848.5<br />

20 62.832 314.16 28 87.965 615.75 71 223.053 3959.2<br />

1/8 63.225 318.10 1/8 88.357 621.26 72 226.195 4071.5<br />

1/4 63.617 322.06 1/4 88.750 626.80 73 229.336 4185.4<br />

3/8 64.010 326.05 3/8 89.143 632.36 74 232.478 4300.8<br />

1/2 64.403 330.06 1/2 89.535 637.94 75 235.619 4417.9<br />

5/8 64.795 334.10 5/8 89.928 643.55 76 238.761 4536.6<br />

3/4 65.188 338.16 3/4 90.321 649.18 77 241.903 4656.6<br />

7/8 65.581 342.25 7/8 90.713 654.84 78 245.044 4778.4<br />

21 65.973 346.36 29 91.106 660.52 79 248.186 4901.7<br />

1/8 66.366 350.50 1/8 91.499 666.23 80 251.327 5026.5<br />

1/4 66.759 354.66 1/4 91.892 671.96 81 254.469 5153.0<br />

3/8 67.152 358.84 3/8 92.284 677.71 82 257.611 5281.0<br />

1/2 67.544 363.05 1/2 92.677 683.49 83 260.752 5410.6<br />

5/8 67.937 367.28 5/8 93.070 689.30 84 263.894 5541.8<br />

3/4 68.330 371.54 3/4 93.462 695.13 85 267.035 5674.5<br />

7/8 68.722 375.83 7/8 93.855 700.98 86 270.177 5808.8<br />

22 69.115 380.13 30 94.248 706.86 87 273.319 5944.7<br />

1/8 69.508 384.46 1/8 94.640 712.76 88 276.460 6082.1<br />

1/4 69.900 388.82 1/4 95.033 718.69 89 279.602 6221.1<br />

3/8 70.293 393.20 3/8 95.426 724.64 90 282.743 6361.7<br />

1/2 70.686 397.61 1/2 95.819 730.62 91 285.885 6503.9<br />

5/8 71.079 402.04 5/8 96.211 736.62 92 289.027 6647.6<br />

3/4 71.471 406.49 3/4 96.604 742.64 93 292.168 6792.9<br />

7/8 71.864 410.97 7/8 96.997 748.69 94 295.310 6939.8<br />

23 72.257 415.48 31 97.389 754.77 95 298.451 7088.2<br />

1/8 72.649 420.00 32 100.531 804.25 96 301.593 7238.2<br />

1/4 73.042 424.56 33 103.673 855.30 97 304.734 7389.8<br />

3/8 73.435 429.13 34 106.814 907.92 98 307.876 7543.0<br />

1/2 73.827 433.74 35 109.956 962.11 99 311.018 7697.7<br />

5/8 74.220 438.36 36 113.097 1017.9 100 314.159 7854.0<br />

3/4 74.613 443.01 37 116.239 1075.2<br />

7/8 75.006 447.69 38 119.381 1134.1<br />

58


DRILL SIZE DATA<br />

Twist Dia. Area Twist Dia. Area Twist Dia. Area<br />

Drill Size In. Sq. In. Drill Size In. Sq. In. Drill Size In. Sq. In.<br />

– 80 .0135 .000143 – 32 .116 .0106 19/64 – .2968 .0692<br />

– 79 .0145 .000165 – 31 .120 .0113 – N .302 .0716<br />

1/64 – .0156 .00019 1/8 – .125 .0123 5/16 – .3125 .0767<br />

– 78 .016 .00020 – 30 .1285 .0130 – O .316 .0784<br />

– 77 .018 .00025 – 29 .136 .0145 – P .323 .0820<br />

– 76 .020 .00031 – 28 .1405 .0155 21/64 – .3281 .0846<br />

– 75 .021 .00035 9/64 – .1406 .0156 – Q .332 .0866<br />

– 74 .0225 .00040 – 27 .144 .0163 – R .339 .0901<br />

– 73 .024 .00045 – 26 .147 .0174 11/32 – .3437 .0928<br />

– 72 .025 .00049 – 25 .1495 .0175 – S .348 .0950<br />

– 71 .026 .00053 – 24 .152 .0181 – T .358 .1005<br />

– 70 .028 .00062 – 23 .154 .0186 23/64 – .3593 .1014<br />

– 69 .0292 .00067 5/32 – .1562 .0192 – U .368 .1063<br />

– 68 .030 .00075 – 22 .157 .0193 3/8 – .375 .1104<br />

1/32 – .0312 .00076 – 21 .159 .0198 – V .377 .1116<br />

– 67 .032 .00080 – 20 .161 .0203 – W .386 .1170<br />

– 66 .033 .00086 – 19 .166 .0216 25/64 – .3906 .1198<br />

– 65 .035 .00096 – 18 .1695 .0226 – X .397 .1236<br />

– 64 .036 .00102 11/64 – .1719 .0232 – Y .404 .1278<br />

– 63 .037 .00108 – 17 .175 .0235 13/32 – .4062 .1296<br />

– 62 .038 .00113 – 16 .177 .0246 – Z .413 .1340<br />

– 61 .039 .00119 – 15 .180 .0254 7/16 – .4375 .1503<br />

– 60 .040 .00126 – 14 .182 .0260 29/64 – .4531 .1613<br />

– 59 .041 .00132 – 13 .185 .0269 15/32 – .4687 .1726<br />

– 58 .042 .00138 3/16 – .1875 .0276 31/64 – .4843 .1843<br />

– 57 .043 .00145 – 12 .189 .02805 1/2 – .5000 .1963<br />

– 56 .0465 .00170 – 11 .191 .02865 33/64 – .5156 .2088<br />

3/64 – .0469 .00173 – 10 .1935 .0294 17/32 – .5312 .2217<br />

– 55 .0520 .00210 – 9 .196 .0302 35/64 – .5468 .2349<br />

– 54 .0550 .0023 – 8 .199 .0311 9/16 – .5625 .2485<br />

– 53 .0595 .0028 – 7 .201 .0316 37/64 – .5781 .2625<br />

1/16 – .0625 .0031 13/64 – .2031 .0324 19/32 – .5937 .2769<br />

– 52 .0635 .0032 – 6 .204 .0327 39/64 – .6093 .2916<br />

– 51 .0670 .0035 – 5 .2055 .0332 5/8 – .625 .3068<br />

– 50 .070 .0038 – 4 .209 .0343 41/64 – .6406 .3223<br />

– 49 .073 .0042 – 3 .213 .0356 21/32 – .6562 .3382<br />

– 48 .076 .0043 7/32 – .2187 .0376 43/64 – .6718 .3545<br />

5/64 – .0781 .0048 – 2 .221 .0384 11/16 – .6875 .3712<br />

– 47 .0785 .0049 – 1 .228 .0409 45/64 – .7031 .3883<br />

– 46 .081 .0051 – A .234 .0430 23/32 – .7187 .4057<br />

– 45 .082 .0053 15/64 – .2343 .0431 47/64 – .7343 .4236<br />

– 44 .086 .0058 – B .238 .0444 3/4 – .750 .4418<br />

– 43 .089 .0062 – C .242 .0460 49/64 – .7656 .4604<br />

– 42 .0935 .0069 – D .246 .0475 25/32 – .7812 .4794<br />

3/32 – .0937 .0069 1/4 E .250 .0491 51/64 – .7968 .4987<br />

– 41 .096 .0072 – F .257 .0519 13/16 – .8125 .5185<br />

– 40 .098 .0075 – G .261 .0535 53/64 – .8281 .5386<br />

– 39 .0995 .0078 17/64 – .2656 .0554 27/32 – .8337 .5591<br />

– 38 .1015 .0081 – H .266 .0556 55/64 – .8593 .5800<br />

– 37 .104 .0085 – I .272 .0580 7/8 – .875 .6013<br />

– 36 .1065 .0090 – J .277 .0601<br />

7/64 – .1093 .0094 – K .281 .0620<br />

– 35 .110 .0095 9/32 – .2812 .0621<br />

– 34 .111 .0097 – L .290 .0660<br />

– 33 .113 .0100 – M .295 .0683<br />

59


Taps for Machine Threads – Drill sizes for 75% of full<br />

thread<br />

Thread Tap Drill Thread Tap Drill<br />

Size Size Size Size<br />

6-32 NC 36 3/8-16 NC 5/16<br />

6-40 NF 34 3/8-24 NF Q<br />

8-32 NC 30 7/16-14 NC U<br />

8-36 NF 29 7/16-20 NF W<br />

10-24 NC 25 1/2-13 NC .425<br />

10-32 NF 21 1/2-20 NF 29/64<br />

12-24 NC 17 9/16-12 NC 31/64<br />

12-28 NF 15 9/16-18 NF .508<br />

1/4-20 NC 7 5/8-11 NC 17/32<br />

1/4-28 NF 3 5/8-18 NF .571<br />

5/16-18 NC F 3/4-10 NC 21/32<br />

5/16-24 NF I 3/4-16 NF 11/16<br />

7/8-9 NC 49/64<br />

7/8-14 NF .805<br />

1-8 NC 7/8<br />

See page 59 for diameters of numbered and lettered<br />

tap drills.<br />

TAP DRILL SIZES<br />

60<br />

Pipe Taps – American Standard and Dryseal Pipe<br />

Threads<br />

Pipe Threads Tap Pipe Threads Tap<br />

Size, Per Drill Size Per Drill<br />

Inches Inch Size Inches Inch Size<br />

1/8 27 11/32 2 11-1/2 2-7/32<br />

1/4 18 7/16 2-1/2 8 2-5/8<br />

3/8 18 9/16 3 8 3-1/4<br />

1/2 14 45/64 4 8 4-1/4<br />

3/4 14 29/32 5 8 5-5/16<br />

1 11-1/2 1-9/64 6 8 6-3/8<br />

1-1/4 11-1/2 1-31/64 8 8 8-3/8<br />

1-1/2 11-1/2 1-47/64<br />

DRILLING TEMPLATES – PIPE FLANGES<br />

Drilling template dimensions of Class 150 pipe flanges per<br />

ANSI B 16.5 – 1981.<br />

A - O.D.<br />

B - Bolt Circle<br />

Diameter<br />

C - Bolt Hole Diameter<br />

N - Number of Bolt Holes<br />

Nominal All dimensions in inches<br />

Pipe Bolt<br />

Size A B C N Diameter<br />

1/2 3.50 2.38 .62 4 1/2<br />

3/4 3.88 2.75 .62 4 1/2<br />

1 4.25 3.12 .62 4 1/2<br />

1-1/4 4.62 3.50 .62 4 1/2<br />

1-1/2 5.00 3.88 .62 4 1/2<br />

2 6.00 4.75 .75 4 5/8<br />

2-1/2 7.00 5.50 .75 4 5/8<br />

3 7.50 6.00 .75 4 5/8<br />

4 9.00 7.50 .75 8 5/8<br />

6 11.00 9.50 .88 8 3/4<br />

8 13.50 11.75 .88 8 3/4<br />

10 16.00 14.25 1.00 12 7/8<br />

12 19.00 17.00 1.00 12 7/8<br />

14 21.00 18.75 1.12 12 1<br />

16 23.50 21.25 1.12 16 1<br />

18 25.00 22.75 1.25 16 1-1/8<br />

20 27.50 25.00 1.25 20 1-1/8<br />

24 32.00 29.50 1.38 20 1-1/4


CHAPTER 10 – ABBREVIATIONS & SYMBOLS<br />

A – ampere(s), area<br />

A, C, or a-c – alternating current<br />

acfh – actual cubic feet per hour<br />

acfm – actual cubic feet per minute<br />

ANSI – American National Standards Institute<br />

API – American Petroleum Institute<br />

°API – degrees API (a measurement of fuel oil specific gravity)<br />

ASTM – American Society for Testing and Materials<br />

AWG – American Wire Gauge<br />

Btu – British thermal unit<br />

BWG – Birmginham Wire Gauge<br />

C or °C – degrees Celsius or Centigrade<br />

Cal – kilogram-calorie or kilo-calorie (equals 1000 calories)<br />

cal – calorie<br />

Cd – coefficient of discharge<br />

cfh – cubic feet per hour<br />

cfm – cubic feet per minute<br />

CL – centerline<br />

cm – centimeter(s)<br />

cs or cSt – centistoke(s)<br />

cu ft – cubic feet<br />

cu in – cubic inches<br />

cu m – cubic meters<br />

C v - flow coefficient or flow factor (for valve capacities)<br />

D or d – density, diameter<br />

D.C. or d-c – direct current<br />

deg – degree(s)<br />

dia – diameter<br />

e - emissivity<br />

°E – degrees Engler (a measurement of fuel oil viscosity)<br />

F or °F – degrees Fahrenheit<br />

f – convection film coefficient<br />

F.B. – firebrick<br />

fpm – feet per minute<br />

fps – feet per second<br />

ft – foot or feet<br />

G or g – gravity or specific gravity<br />

gal – gallon(s)<br />

gph – gallons per hour<br />

gpm – gallons per minute<br />

h - pressure drop<br />

h f – heat content of liquid (water & steam)<br />

h fg – latent heat of vaporization, water to steam<br />

h g – heat content of vapor (steam)<br />

"Hg – inches of mercury column<br />

HL – heat loss<br />

HP or hp – horsepower<br />

hr – hour(s)<br />

HS – heat storage<br />

Hz – Hertz (cycles per second in alternating current)<br />

ID or id – inside diameter<br />

I.F.B. – insulating firebrick<br />

in – inch(es)<br />

in 2 – square inch(es)<br />

ABBREVIATIONS<br />

61<br />

in 3 – cubic inch(es)<br />

JIC – Joint Industrial Council<br />

K – Stefan – Boltzmann constant<br />

k – thermal conductivity<br />

°K – degrees Kelvin<br />

kcal – kilogram-calorie or kilo-calorie (same as Cal)<br />

kPa – kiloPascal<br />

kVA – kilo volt – amperes<br />

L – length or thickness<br />

lb – pound(s)<br />

LPG – liquified petroleum gas<br />

mbar – millibar(s)<br />

mmHg – millimeters of mercury column<br />

mmw.c. – millimeters of water column<br />

N.C. – normally closed<br />

NEMA – National Electrical Manufacturers Association<br />

NFPA – National Fire Protection Association<br />

N.O. – normally open<br />

OD or od – outside diameter<br />

osi – ounces per square inch<br />

oz – ounce(s)<br />

P – pressure or pressure drop<br />

psi – pounds per square inch<br />

psia – pounds per square inch, absolute<br />

psig – pounds per square inch, gauge<br />

Pv – velocity pressure<br />

Q – flow (of gases, liquids, or heat)<br />

°R – degrees Rankine<br />

rpm – revolutions per minute<br />

scfh – standard cubic feet per hour<br />

scfm – standard cubic feet per minute<br />

sec – second<br />

S.G. or sg – specific gravity<br />

sp ht – specific heat<br />

sp gr – specific gravity<br />

sq ft – square feet<br />

sq in – square inch(es)<br />

SR1 – seconds Redwood #1 (a measurement of fuel oil viscosity)<br />

SSF – seconds Saybolt Furol (a measurement of fuel oil viscosity)<br />

SSU – seconds Saybolt Universal (a measurement of fuel oil<br />

viscosity)<br />

T or t – temperature<br />

T abs – absolute temperature<br />

TC – cold face temperature or thermocouple<br />

V – vacuum, volts, or volume<br />

V g – specific volume of water vapor<br />

W – flow rate<br />

"w.c. – inches of water column<br />

"w.g. – inches of water gauge (same as "w.c.)<br />

wt – weight


CR<br />

M<br />

CH<br />

ELECTRICAL SYMBOLS<br />

Shown below are graphic symbols commonly used in JICtype<br />

ladder diagrams for combustion control systems. For<br />

a complete list of symbols, refer to JIC Electrical Standard<br />

EMP-1.<br />

Description Symbol Description Symbol Description Symbol<br />

Coils<br />

–Relays (CR)<br />

–Timers (TR)<br />

– Motor Starters (M)<br />

– Contactors (CON)<br />

Coils<br />

–Solenoids<br />

Conductors<br />

–Not Connected<br />

–Connected<br />

Connections<br />

–Ground<br />

–Chassis or<br />

Frame (not<br />

necessarily<br />

grounded)<br />

–Plug and<br />

Receptacle<br />

Contacts<br />

–Time Delay<br />

After Coil<br />

Energized<br />

–N.O.<br />

–N.C.<br />

–Time Delay<br />

After Coil<br />

De-energized<br />

–N.O.<br />

–N.C.<br />

SOL<br />

GRD<br />

PL<br />

RECP<br />

TR<br />

TR<br />

TR<br />

TR<br />

TR<br />

CON<br />

Contacts<br />

– Relays (CR)<br />

– Motor Starters (M)<br />

– Contactors (CON)<br />

– N.O.<br />

– N.C.<br />

Contacts<br />

–Thermal Overload<br />

–Overload Relay<br />

(OL)<br />

–Instataneous<br />

Overload (IOL)<br />

Control Circuit<br />

Transformer<br />

Fuses – All<br />

Types<br />

Horn or Siren<br />

(Alarm)<br />

Meters<br />

–Volt<br />

–Amp<br />

Motors<br />

–3 Phase<br />

–D.C .<br />

Potentiometer<br />

62<br />

H1 H3 H2 H4<br />

X1 X2<br />

MTR<br />

CR M<br />

CON<br />

CR M<br />

CON<br />

OL<br />

IOL<br />

FU<br />

AH<br />

VM<br />

AM<br />

MTR<br />

A<br />

POT<br />

T<br />

Pilot Light<br />

(Letter denotes<br />

color)<br />

Pilot Light–<br />

Push to Test<br />

(Letter denotes<br />

color)<br />

Pushbutton<br />

–Single<br />

Circuit, N.O.<br />

–Single<br />

Circuit, N.C.<br />

–Double<br />

Circuit<br />

–Double<br />

Circuit,<br />

Mushroom<br />

Head<br />

–Maintained<br />

Contact<br />

Switches<br />

– Disconnect<br />

– Circuit<br />

Interruptor<br />

– Circuit<br />

Breaker<br />

LT<br />

CB<br />

PB<br />

LT<br />

R<br />

PB<br />

PB<br />

PB<br />

R<br />

PB<br />

DISC<br />

CI<br />

PB


ELECTRICAL SYMBOLS (Cont’d)<br />

Description Symbol Description Symbol Description Symbol<br />

Switch, Limit<br />

— N.O.<br />

— Held Closed<br />

— N.C.<br />

— Held Open<br />

— Neutral<br />

Position,<br />

— Neutral<br />

Position,<br />

Actuated<br />

Switch, Liquid<br />

Level<br />

— N.O.<br />

— N.C.<br />

NP<br />

NP<br />

LS<br />

LS<br />

LS<br />

LS<br />

LS<br />

LS<br />

FS<br />

FS<br />

Switch, Selector<br />

— 2 Position<br />

— 3 Position<br />

Switch,<br />

Temperature<br />

— N.O.<br />

— N.C.<br />

Switch,<br />

Toggle<br />

63<br />

SS<br />

1 2<br />

1<br />

SS<br />

2<br />

TAS<br />

TAS<br />

TGS<br />

3<br />

Switch, Vacuum<br />

or Pressure<br />

— N.O.<br />

— N.C.<br />

Thermal Overload<br />

Element<br />

— Overload (OL)<br />

— Instantaneous<br />

Overload (IOL)<br />

Thermocouple<br />

PS<br />

PS<br />

OL<br />

IOL<br />

T/C


CHAPTER 11 – CONVERSION FACTORS<br />

MULTIPLY BY TO OBTAIN<br />

atmospheres . . . . . . . . .33.90 . . . . . . . . . . . . . . .Feet of H2O 29.92 . . . . . . . . . . . . . .Inches of Hg<br />

14.70 . . . . . . . . . . . . . . . . . . . . . .Psi<br />

1013.2 . . . . . . . . . . . . . . . . . .Millibars<br />

760.0 . . . . . . . . . . . . . . . .mm. of Hg<br />

1.058 . . . . . . . . . . . . . . . .Tons/sq..ft<br />

1.033 . . . . . . . . . . . . . . .Kg./sq. cm.<br />

barrels (oil) . . . . . . . . . . . .42 . . . . . . . . . . . . . . .Gallons (oil)<br />

bars . . . . . . . . . . . . . . ..9869 . . . . . . . . . . . . . .Atmospheres<br />

1020 . . . . . . . . . . . . . .kg./sq. meter<br />

btu . . . . . . . . . . . . . . . .778.2 . . . . . . . . . . . . . . .foot-pounds<br />

252 . . . . . . . . . . . . .gram-calories<br />

.000393 . . . . . . . . . .horsepower-hours<br />

1055 . . . . . . . . . . . . . . . . . . .joules<br />

.252 . . . . . . . . . . .kilogram-calories<br />

.000293 . . . . . . . . . . . . .kilowatt-hours<br />

btu/cu. ft. . . . . . . . . . . . . . .8.9 . . . . . . . . . .kilogram-calories/<br />

cu. meter<br />

btu/hr . . . . . . . . . . . . . . ..216 . . . . . . . . . . . . .ft.-pounds/sec.<br />

.007 . . . . . . . . . . . . .gram-cal./sec.<br />

.000393 . . . . . . . . . . . . . . .horsepower<br />

.293 . . . . . . . . . . . . . . . . . . . .watts<br />

btu ft./hr. sq. ft. °F . . . . .14.88 . . . . . . . .Cal-cm/hr. sq. cm °C<br />

8890.0 . . . . . . . . . .Cal. gm/cu. meter<br />

btu/lb . . . . . . . . . . . . . .0.556 . . . . . . . . . . . . . . .calories/gm.<br />

btu/lb. °F . . . . . . . . . . . . . .1.0 . . . . . . . . . . . . .calories/gm °C<br />

btu/sec. . . . . . . . . . . . . .1.055 . . . . . . . . . . . . . . . . . . . . .kW<br />

btu/sq. ft.-min . . . . . . . . . .122 . . . . . . . . . . . . . . .watts/sq. in.<br />

calories-gram . . . . . . ..00397 . . . . . . . . . . . . . . . . . . . . .Btu<br />

calorie-Kg . . . . . . . . . . . .3.97 . . . . . . . . . . . . . . . . . . . . .Btu<br />

calorie-Kg/cu. meter 0.1124 . . . . . . . . . . . . . . .Btu/cu. ft. @<br />

. . . . . . . . . . . . . .32°F 30" Hg<br />

calorie/hr. sq. cm. . . . . .3.687 . . . . . . . . . . . . .Btu/hr. sq. foot<br />

centiliters . . . . . . . . . . . ..001 . . . . . . . . . . . . . . . . . . . .liters<br />

centimeters . . . . . . . . . ..0328 . . . . . . . . . . . . . . . . . . . . .feet<br />

.0394 . . . . . . . . . . . . . . . . . . .inches<br />

.00001 . . . . . . . . . . . . . . . .kilometers<br />

.01 . . . . . . . . . . . . . . . . . . .meters<br />

.0000062 . . . . . . . . . . . . . . . . . . . .miles<br />

10 . . . . . . . . . . . . . . . .millimeters<br />

393.7 . . . . . . . . . . . . . . . . . . . . .mils<br />

.0109 . . . . . . . . . . . . . . . . . . . .yards<br />

1000 . . . . . . . . . . . . . . . . . .microns<br />

centimeters of mercury ..0132 . . . . . . . . . . . . . .atmospheres<br />

.446 . . . . . . . . . . . . . . . .ft. of water<br />

136 . . . . . . . . . . . . . .kg./sq. meter<br />

27.85 . . . . . . . . . . . . . .pounds/sq. ft.<br />

.193 . . . . . . . . . . . . .pounds/sq. in.<br />

centimeters/sec. . . . . . .1.969 . . . . . . . . . . . . . . . . .feet/min.<br />

.0328 . . . . . . . . . . . . . . . . .feet/sec.<br />

.036 . . . . . . . . . . . . . .kilometers/hr.<br />

6 . . . . . . . . . . . . . . .meters/min.<br />

.0224 . . . . . . . . . . . . . . . . . .miles/hr.<br />

.00373 . . . . . . . . . . . . . . . .miles/min.<br />

centimeters/sec./sec. . ..0328 . . . . . . . . . . . . . . .ft./sec./sec.<br />

.036 . . . . . . . . . . . . . . .kms./hr.sec.<br />

.01 . . . . . . . . . . . .meters/sec.sec.<br />

.0224 . . . . . . . . . . . . . .miles/hr.sec.<br />

centipoise . . . . . . . . . . . . ..01 . . . . . . . . . . . . . . .gr.cm.-sec.<br />

.00067 . . . . . . . . . . . . .pound/ft.-sec.<br />

2.4 . . . . . . . . . . . . . . .pound/ft.-hr.<br />

GENERAL CONVERSION FACTORS<br />

64<br />

MULTIPLY BY TO OBTAIN<br />

circular mils . . . . . ..00000507 . . . . . . . . . . . . . . . . . . .sq.cm.<br />

.785 . . . . . . . . . . . . . . . . . . .sq.mils<br />

.000000785 . . . . . . . . . . . . . . . .sq. inches<br />

cubic centimeters . ..0000353 . . . . . . . . . . . . . . . . . .cubic ft.<br />

.061 . . . . . . . . . . . . . . . . . .cubic in.<br />

.000001 . . . . . . . . . . . . . .cubic meters<br />

.00000131 . . . . . . . . . . . . . . .cubic yards<br />

.000264 . . . . . . . . .gallons (U.S. liquid)<br />

.001 . . . . . . . . . . . . . . . . . . . .liters<br />

.00211 . . . . . . . . . . .pints (U.S. liquid)<br />

00106 . . . . . . . . . .quarts (U.S. liquid)<br />

cubic feet . . . . . . . . . . .28320 . . . . . . . . . . . . . . . . . .cu. cms.<br />

1728 . . . . . . . . . . . . . . . .cu. inches<br />

.028 . . . . . . . . . . . . . . . .cu. meters<br />

.037 . . . . . . . . . . . . . . . . .cu. yards<br />

7.48 . . . . . . . . .gallons (U.S. liquid)<br />

28.32 . . . . . . . . . . . . . . . . . . . .liters<br />

59.84 . . . . . . . . . . .pints (U.S. liquid)<br />

29.92 . . . . . . . . . .quarts (U.S. liquid)<br />

cubic feet/min. . . . . . . . . .472 . . . . . . . . . . . . . .cu. cms./sec.<br />

.125 . . . . . . . . . . . . . . .gallons/sec.<br />

.472 . . . . . . . . . . . . . . . . .liters/sec.<br />

62.43 . . . . . . . . . .pounds water/min.<br />

cubic inches . . . . . . . . .16.39 . . . . . . . . . . . . . . . . . .cu. cms.<br />

.000579 . . . . . . . . . . . . . . . . . . . .cu. ft.<br />

.0000164 . . . . . . . . . . . . . . . .cu. meters<br />

.0000214 . . . . . . . . . . . . . . . . .cu. yards<br />

.00433 . . . . . . . . . . . . . . . . . .gallons<br />

.0164 . . . . . . . . . . . . . . . . . . . .liters<br />

.0346 . . . . . . . . . . .pints (U.S. liquid)<br />

.0173 . . . . . . . . . .quarts (U.S. liquid)<br />

cubic meters . . . . .1,000,000 . . . . . . . . . . . . . . . . . .cu. cms.<br />

35.31 . . . . . . . . . . . . . . . . . . . .cu. ft.<br />

6102 . . . . . . . . . . . . . . . .cu. inches<br />

1.308 . . . . . . . . . . . . . . . . .cu. yards<br />

264.2 . . . . . . . . .gallons (U.S. liquid)<br />

1000 . . . . . . . . . . . . . . . . . . . .liters<br />

2113 . . . . . . . . . . .pints (U.S. liuqid)<br />

1057 . . . . . . . . . .quarts (U.S. liquid)<br />

cubic yards . . . . . . . .764,600 . . . . . . . . . . . . . . . . . .cu. cms.<br />

27 . . . . . . . . . . . . . . . . . . . .cu. ft.<br />

46656 . . . . . . . . . . . . . . . .cu. inches<br />

.765 . . . . . . . . . . . . . . . .cu. meters<br />

decigrams . . . . . . . . . . . . . ..1 . . . . . . . . . . . . . . . . . . .grams<br />

deciliters . . . . . . . . . . . . . . ..1 . . . . . . . . . . . . . . . . . . . .liters<br />

decimeters . . . . . . . . . . . . ..1 . . . . . . . . . . . . . . . . . . .meters<br />

degrees (angle) . . . . . . ..011 . . . . . . . . . . . . . . . .quadrants<br />

.0175 . . . . . . . . . . . . . . . . . .radians<br />

3600 . . . . . . . . . . . . . . . . .seconds<br />

degrees/sec. . . . . . . . . ..0175 . . . . . . . . . . . . . . .radians/sec.<br />

.0167 . . . . . . . . . . . . .rvolutions/min.<br />

.00278 . . . . . . . . . . . .revolutions/sec.<br />

dekagrams . . . . . . . . . . . .10 . . . . . . . . . . . . . . . . . . .grams<br />

dekaliters . . . . . . . . . . . . . .10 . . . . . . . . . . . . . . . . . . . .liters<br />

dekameters . . . . . . . . . . . .10 . . . . . . . . . . . . . . . . . . .meters<br />

dynes/sq. cm. . . ..000000987 . . . . . . . . . . . . . .atmospheres<br />

.0000295 . . . . . .in. of mercury (at 0°C.)<br />

.000402 . . . . . . . . .in. of water (at 4°C)<br />

.00001 . . . . . . . . . . . . . . . . . . . . .bars<br />

feet . . . . . . . . . . . . . . . .30.48 . . . . . . . . . . . . . . .centimeters<br />

.000305 . . . . . . . . . . . . . . . .kilometers<br />

.305 . . . . . . . . . . . . . . . . . . .meters<br />

.000189 . . . . . . . . . . . . . . .miles (stat.)<br />

304.8 . . . . . . . . . . . . . . . .millimeters


GENERAL CONVERSION FACTORS (Cont’d)<br />

MULTIPLY BY TO OBTAIN<br />

feet of water . . . . . . . . ..0295 . . . . . . . . . . . . . .atmospheres<br />

.883 . . . . . . . . . . . . .in. of mercury<br />

.0305 . . . . . . . . . . . . . . .kgs./sq. cm.<br />

304.8 . . . . . . . . . . . . .kgs./sq. meter<br />

62.43 . . . . . . . . . . . . . .pounds/sq. ft.<br />

.434 . . . . . . . . . . . . .pounds/sq. in.<br />

feet/min. . . . . . . . . . . . . ..508 . . . . . . . . . . . . . . . . .cms./sec.<br />

.0167 . . . . . . . . . . . . . . . . .feet/sec.<br />

.0183 . . . . . . . . . . . . . . . . . .kms./hr.<br />

.305 . . . . . . . . . . . . . . .meters/min.<br />

.0114 . . . . . . . . . . . . . . . . . .miles/hr.<br />

30.48 . . . . . . . . . . . . . . . . .cms./sec.<br />

feet/sec. . . . . . . . . . . . .1.097 . . . . . . . . . . . . . . . . . .kms./hr.<br />

18.29 . . . . . . . . . . . . . . .meters/min.<br />

.682 . . . . . . . . . . . . . . . . . .miles/hr.<br />

.0114 . . . . . . . . . . . . . . . .miles/min.<br />

feet/sec./sec. . . . . . . . .30.48 . . . . . . . . . . . . .cms./sec./sec.<br />

1.097 . . . . . . . . . . . . . .kms./hr./sec.<br />

.305 . . . . . . . . . . .meters/sec./sec.<br />

foot-pounds . . . . . . . . ..00129 . . . . . . . . . . . . . . . . . . . . . .btu<br />

.324 . . . . . . . . . . . . .gram-calories<br />

.000000505 . . . . . . . . . . .horsepower-hrs.<br />

1.356 . . . . . . . . . . . . . . . . . . .joules<br />

.000324 . . . . . . . . . . . . . . .kg.-calories<br />

.138 . . . . . . . . . . . . . . . .kg.-meters<br />

.000000377 . . . . . . . . . . . . . . .kilowatt-hrs.<br />

foot-pounds/sec. . . . . . . .4.63 . . . . . . . . . . . . . . . . . . .btu/hr.<br />

.0772 . . . . . . . . . . . . . . . . . .btu/min.<br />

.00182 . . . . . . . . . . . . . . .horsepower<br />

.00195 . . . . . . . . . . .kg.-calories/min.<br />

.00136 . . . . . . . . . . . . . . . . .kilowatts<br />

.00001 . . . . . . . . . . . . . . . .kilometers<br />

gallons . . . . . . . . . . . . . .3785 . . . . . . . . . . . . . . . . . .cu. cms.<br />

.134 . . . . . . . . . . . . . . . . . .cu. feet<br />

231 . . . . . . . . . . . . . . . .cu. inches<br />

.00379 . . . . . . . . . . . . . . . .cu. meters<br />

.00495 . . . . . . . . . . . . . . . . .cu. yards<br />

3.785 . . . . . . . . . . . . . . . . . . . .liters<br />

gallons (liq. Br. imp.) . . .1.201 . . . . . . . . .gallons (U.S. liuqid)<br />

gallons (U.S.) . . . . . . . . ..833 . . . . . . . . . . . . . .gallons (imp.)<br />

gallons of water . . . . . . .8.34 . . . . . . . . . . . . . .gallons (imp.)<br />

gallons/min. . . . . . . . ..00223 . . . . . . . . . . . . . . .cu. feet/sec.<br />

.0631 . . . . . . . . . . . . . . . . .liters/sec.<br />

8.021 . . . . . . . . . . . . . . . .cu. feet/hr.<br />

grains (troy) . . . . . . . . . . . . .1 . . . . . . . . . . . . .grains (avdp.)<br />

.0648 . . . . . . . . . . . . . . . . . . .grams<br />

.00208 . . . . . . . . . . . . .ounces (avdp.)<br />

grams . . . . . . . . . . . . . .15.43 . . . . . . . . . . . . . . .grains (troy)<br />

.0000981 . . . . . . . . . . . . . . . .joules/cm.<br />

.00981 . . . . . .joules/meter (newtons)<br />

.001 . . . . . . . . . . . . . . . . .kilograms<br />

1000 . . . . . . . . . . . . . . . .milligrams<br />

.0353 . . . . . . . . . . . . . .ounces (troy)<br />

.00221 . . . . . . . . . . . . . . . . . .pounds<br />

grams/cu. cm. . . . . . . . .62.43 . . . . . . . . . . . . . .pounds/cu. ft.<br />

.0361 . . . . . . . . . . . . .pounds/cu. in.<br />

grams/liter . . . . . . . . . . .58.42 . . . . . . . . . . . . . . . .grains/gal.<br />

8.345 . . . . . . . . . .pounds/1,000 gal.<br />

.0624 . . . . . . . . . . . . . .pounds/cu. ft.<br />

65<br />

MULTIPLY BY TO OBTAIN<br />

grams/sq. cm. . . . . . . . .2.048 . . . . . . . . . . . . . .pounds/sq. ft.<br />

gram-calories . . . . . . ..00397 . . . . . . . . . . . . . . . . . . . . . .btu<br />

3.086 . . . . . . . . . . . . . . .foot-pounds<br />

.00000156 . . . . . . . . . . .horsepower-hrs.<br />

.00000116 . . . . . . . . . . . . . . .kilowatt-hrs.<br />

.00116 . . . . . . . . . . . . . . . . .watt-hrs.<br />

gram-calories/sec. . . . .14.29 . . . . . . . . . . . . . . . . . . .btu/hr.<br />

hectares . . . . . . . . . . . .2.471 . . . . . . . . . . . . . . . . . . . .acres<br />

10760 . . . . . . . . . . . . . . . . . .sq. feet<br />

hectograms . . . . . . . . . . .100 . . . . . . . . . . . . . . . . . . .grams<br />

hectoliters . . . . . . . . . . . .100 . . . . . . . . . . . . . . . . . . . .liters<br />

hectometers . . . . . . . . . . .100 . . . . . . . . . . . . . . . . . . .meters<br />

hectowatts . . . . . . . . . . . .100 . . . . . . . . . . . . . . . . . . . .watts<br />

horsepower . . . . . . . . . .42.44 . . . . . . . . . . . . . . . . . .btu/min.<br />

33000 . . . . . . . . . . . . . .foot-lbs./min.<br />

550 . . . . . . . . . . . . . .foot-lbs./sec.<br />

horsepower (metric) . . . ..986 . . . . . . . . . . . . . . .horsepower<br />

horsepower . . . . . . . . ..1.014 . . . . . . . .horsepower (metric)<br />

10.68 . . . . . . . . . . .kg.-calories/min.<br />

.746 . . . . . . . . . . . . . . . . .kilowatts<br />

745.7 . . . . . . . . . . . . . . . . . . . .watts<br />

horsepower-hours . . . . ..2547 . . . . . . . . . . . . . . . . . . . . . .btu<br />

1,980,000 . . . . . . . . . . . . . . . . . .foot-lbs.<br />

641,190 . . . . . . . . . . . . . .gram-caloies<br />

2,684,000 . . . . . . . . . . . . . . . . . . .joules<br />

641.7 . . . . . . . . . . . . . . .kg.-calories<br />

273,700 . . . . . . . . . . . . . . . .kg.-meters<br />

.746 . . . . . . . . . . . . . . .kilowatt-hrs.<br />

hours . . . . . . . . . . . . . ..0417 . . . . . . . . . . . . . . . . . . . .days<br />

.00595 . . . . . . . . . . . . . . . . . . .weeks<br />

25.4 . . . . . . . . . . . . . . . .millimeters<br />

1000 . . . . . . . . . . . . . . . . . . . . .mils<br />

.0278 . . . . . . . . . . . . . . . . . . . .yards<br />

in. of mercury . . . . . . . ..0334 . . . . . . . . . . . . . .atmospheres<br />

1.133 . . . . . . . . . . . . . .feet of water<br />

.0345 . . . . . . . . . . . . . . .kgs./sq. cm.<br />

345.3 . . . . . . . . . . . . .kgs./sq. meter<br />

70.73 . . . . . . . . . . . . . .pounds/sq. ft<br />

.491 . . . . . . . . . . . . .pounds/sq. in.<br />

in. of water (at 4°C) . . ..00246 . . . . . . . . . . . . . .atmospheres<br />

.0736 . . . . . . . . . .inches of mercury<br />

.00254 . . . . . . . . . . . . . . .kgs./sq. cm.<br />

.578 . . . . . . . . . . . . .ounces/sq. in.<br />

5.204 . . . . . . . . . . . . . .pounds/sq. ft.<br />

.0361 . . . . . . . . . . . . .pounds/sq. in.<br />

joules . . . . . . . . . . . ..000949 . . . . . . . . . . . . . . . . . . . . . .btu<br />

.774 . . . . . . . . . . . . . . .foot-pounds<br />

.000239 . . . . . . . . . . . . . . .kg.-calories<br />

.102 . . . . . . . . . . . . . . . .kg.-meters<br />

.000278 . . . . . . . . . . . . . . . . .watt-hrs.<br />

kilograms . . . . . . . . . . . .1000 . . . . . . . . . . . . . . . . . . .grams<br />

.0981 . . . . . . . . . . . . . . . .joules/cm.<br />

9.807 . . . . . .joules/meter (newtons)<br />

2.205 . . . . . . . . . . . . . . . . . .pounds<br />

.000984 . . . . . . . . . . . . . . . .tons (long)<br />

.00110 . . . . . . . . . . . . . . .tons (short)<br />

35.27 . . . . . . . . . . . . .ounces (avdp.)


GENERAL CONVERSION FACTORS (Cont’d)<br />

MULTIPLY BY TO OBTAIN MULTIPLY BY TO OBTAIN<br />

kilograms/cu. meter . . . . ..001 . . . . . . . . . . . . .grams/cu. cm. meters . . . . . . . . . . . . . . .100 . . . . . . . . . . . . . . .centimeters<br />

.0624 . . . . . . . . . . . . . .pounds/cu. ft<br />

3.281 . . . . . . . . . . . . . . . . . . . . .feet<br />

.0000361 . . . . . . . . . . . . .pounds/cu. in.<br />

39.37 . . . . . . . . . . . . . . . . . . .inches<br />

kilograms/sq. cm. . . . .980665 . . . . . . . . . . . . .dynes/sq. cm.<br />

.968 . . . . . . . . . . . . . .atmospheres<br />

32.81 . . . . . . . . . . . . . .feet of water<br />

28.96 . . . . . . . . . .inches of mercury<br />

2048 . . . . . . . . . . . . . .pounds/sq. ft.<br />

14.22 . . . . . . . . . . . . .pounds/sq. in.<br />

kilograms/sq. meter ..0000968 . . . . . . . . . . . . . .atmospheres<br />

.0000981 . . . . . . . . . . . . . . . . . . . . .bars<br />

.00328 . . . . . . . . . . . . . .feet of water<br />

.0029 . . . . . . . . . .inches of mercury<br />

.205 . . . . . . . . . . . . . .pounds/sq. ft.<br />

.00142 . . . . . . . . . . . . .pounds/sq. in.<br />

98.07 . . . . . . . . . . . . .dynes/sq. cm.<br />

kilograms/sq. mm . .1,000,000 . . . . . . . . . . . . .kgs./sq. meter<br />

kilogram-calories . . . . . .3.968 . . . . . . . . . . . . . . . . . . . . . .btu<br />

3086 . . . . . . . . . . . . . . .foot-pounds<br />

.00156 . . . . . . . . . . .horsepower-hrs.<br />

4183 . . . . . . . . . . . . . . . . . . .joules<br />

1163 . . . . . . . . . . . . . . .kilowatt-hrs.<br />

kilogram-meters . . . . . .7.233 . . . . . . . . . . . . . . .foot-pounds<br />

.001 . . . . . . . . . . . . . . . .kilometers<br />

.00054 . . . . . . . . . . . .miles (nautical)<br />

.000621 . . . . . . . . . . . . .miles (statute)<br />

1000 . . . . . . . . . . . . . . . .millimeters<br />

1.094 . . . . . . . . . . . . . . . . . . . .yards<br />

meters/min. . . . . . . . . . .1.667 . . . . . . . . . . . . . . . . .cms./sec.<br />

3.281 . . . . . . . . . . . . . . . . .feet/min.<br />

.0547 . . . . . . . . . . . . . . . . .feet/sec.<br />

.06 . . . . . . . . . . . . . . . . . .kms./hr.<br />

.0373 . . . . . . . . . . . . . . . . . .miles/hr.<br />

meters/sec. . . . . . . . . . .196.8 . . . . . . . . . . . . . . . . .feet/min.<br />

3.281 . . . . . . . . . . . . . . . . .feet/sec.<br />

3.6 . . . . . . . . . . . . . .kilometers/hr.<br />

.06 . . . . . . . . . . . .kilometers/min.<br />

2.237 . . . . . . . . . . . . . . . . . .miles/hr.<br />

.0373 . . . . . . . . . . . . . . . .miles/min.<br />

meters/sec./sec. . . . . . . .100 . . . . . . . . . . . . .cms./sec./sec.<br />

3.281 . . . . . . . . . . . . . . .ft./sec./sec.<br />

3.6 . . . . . . . . . . . . . . .kms./hr.sec.<br />

9.807 . . . . . . . . . . . . . . . . . . .joules<br />

2.237 . . . . . . . . . . . . . .miles/hr./sec.<br />

.00234 . . . . . . . . . . . . . . .kg.-calories micrograms . . . . . . . ..000001 . . . . . . . . . . . . . . . . . . .grams<br />

.00000272 . . . . . . . . . . . . . . .kilowatt-hrs. micrograms/cu. ft. . . ..000001 . . . . . . . . . . . . . . .grams/cu. ft<br />

kiloliters . . . . . . . . . . . . .1000 . . . . . . . . . . . . . . . . . . . .liters<br />

.0000353 . . . . . . . . . . .grams/cu. meter<br />

kilometers . . . . . . . . .100,000 . . . . . . . . . . . . . . .centimeters<br />

.00000022 . . . . . . . . . . . .lbs./1000 cu. ft.<br />

3281 . . . . . . . . . . . . . . . . . . . . .feet<br />

35.314 . . . . . . .micrograms/cu. meter<br />

39,370 . . . . . . . . . . . . . . . . . . .inches micrograms/cu. m. . . . .0.001 . . . . . . . . . . .milligrams/cu. m.<br />

1000 . . . . . . . . . . . . . . . . . . .meters<br />

0.02832 . . . . . . . . . . .micrograms/cu. ft<br />

.621 . . . . . . . . . . . . .miles (statute)<br />

.54 . . . . . . . . . . . .miles (nautical)<br />

1,000,000 . . . . . . . . . . . . . . . .millimeters<br />

1093.6 . . . . . . . . . . . . . . . . . . . .yards<br />

kilometers/hr. . . . . . . . .27.78 . . . . . . . . . . . . . . . . .cms./sec.<br />

54.68 . . . . . . . . . . . . . . . . .feet/min.<br />

.911 . . . . . . . . . . . . . . . . .feet/sec.<br />

kilowatts . . . . . . . . . . . . .3413 . . . . . . . . . . . . . . . . . . . .btu/hr<br />

44,260 . . . . . . . . . . . . . .foot-lbs./min.<br />

737.6 . . . . . . . . . . . . . . .foot-lbs.sec.<br />

1.341 . . . . . . . . . . . . . . .horsepower<br />

14.34 . . . . . . . . . . .kg.-calories/min.<br />

1000 . . . . . . . . . . . . . . . . . . . .watts<br />

kilowatt-hrs. . . . . . . . . . .3413 . . . . . . . . . . . . . . . . . . . . . .btu<br />

2,655,000 . . . . . . . . . . . . . . . . . .foot-lbs.<br />

859,850 . . . . . . . . . . . . . .gram calories<br />

1.341 . . . . . . . . . .horsepower-hours<br />

3,600,000 . . . . . . . . . . . . . . . . . . .joules<br />

860.5 . . . . . . . . . . . . . . .kg.-calories<br />

367,100 . . . . . . . . . . . . . . . .kg.-meters<br />

microhms . . . . . . . . ..000001 . . . . . . . . . . . . . . . . . . . .ohms<br />

microliters . . . . . . . . ..000001 . . . . . . . . . . . . . . . . . . . .liters<br />

micromicrons ..000000000001 . . . . . . . . . . . . . . . . . . .meters<br />

microns . . . . . . . . . . ..000001 . . . . . . . . . . . . . . . . . . .meters<br />

miles (statute) . . . . . .160,900 . . . . . . . . . . . . . . .centimeters<br />

5280 . . . . . . . . . . . . . . . . . . . . .feet<br />

63360 . . . . . . . . . . . . . . . . . . .inches<br />

1.609 . . . . . . . . . . . . . . . .kilometers<br />

1609 . . . . . . . . . . . . . . . . . . .meters<br />

.868 . . . . . . . . . . . .miles (nautical)<br />

1760 . . . . . . . . . . . . . . . . . . . .yards<br />

miles/hr. . . . . . . . . . . . .44.70 . . . . . . . . . . . . . . . . .cms./sec.<br />

88 . . . . . . . . . . . . . . . . . . .ft./min.<br />

1.467 . . . . . . . . . . . . . . . . . . .ft./sec.<br />

1.609 . . . . . . . . . . . . . . . . . .kms./hr.<br />

.0268 . . . . . . . . . . . . . . . . .kms./min.<br />

26.82 . . . . . . . . . . . . . . .meters/min.<br />

.0167 . . . . . . . . . . . . . . . .miles/min.<br />

milligrams . . . . . . . . . . . ..001 . . . . . . . . . . . . . . . . . . .grams<br />

3.53 . .pounds of water evaporated milligrams/liter . . . . . . . . . .1.0 . . . . . . . . . . . . . . .parts/million<br />

from and at 212°F milliters . . . . . . . . . . . . . ..001 . . . . . . . . . . . . . . . . . . . .liters<br />

22.75 . . . . . .pounds of water raised millimeters . . . . . . . . . . . . ..1 . . . . . . . . . . . . . . .centimeters<br />

from 62° to 212°F.<br />

.00328 . . . . . . . . . . . . . . . . . . . . .feet<br />

liters . . . . . . . . . . . . . . .1000 . . . . . . . . . . . . . . . . . .cu. cm.<br />

.0394 . . . . . . . . . . . . . . . . . . .inches<br />

.0353 . . . . . . . . . . . . . . . . . . . .cu. ft.<br />

.000001 . . . . . . . . . . . . . . . .kilometers<br />

61.02 . . . . . . . . . . . . . . . .cu. inches<br />

.001 . . . . . . . . . . . . . . . . . . .meters<br />

.001 . . . . . . . . . . . . . . . .cu. meters<br />

.000000621 . . . . . . . . . . . . . . . . . . . .miles<br />

.00131 . . . . . . . . . . . . . . . . .cu. yards<br />

.264 . . . . . . . . .gallons (U.S. liquid)<br />

2.113 . . . . . . . . . . .pints (U.S. liquid)<br />

1.057 . . . . . . . . . .quarts (U.S. liquid)<br />

liters/min. . . . . . . . . . ..00589 . . . . . . . . . . . . . . . .cu. ft./sec.<br />

.0044 . . . . . . . . . . . . . . . . .gals./sec.<br />

39.37 . . . . . . . . . . . . . . . . . . . . .mils<br />

.00109 . . . . . . . . . . . . . . . . . . . .yards<br />

mils . . . . . . . . . . . . . . ..00254 . . . . . . . . . . . . . . .centimeters<br />

.0000833 . . . . . . . . . . . . . . . . . . . . .feet<br />

.001 . . . . . . . . . . . . . . . . . . .inches<br />

66


GENERAL CONVERSION FACTORS (Cont’d)<br />

MULTIPLY BY TO OBTAIN<br />

minutes (angles) . . . . . ..0167 . . . . . . . . . . . . . . . . . .degrees<br />

.000185 . . . . . . . . . . . . . . . .quadrants<br />

.000291 . . . . . . . . . . . . . . . . . .radians<br />

60 . . . . . . . . . . . . . . . . .seconds<br />

minutes (time) . . . . ..0000992 . . . . . . . . . . . . . . . . . . .weeks<br />

.000694 . . . . . . . . . . . . . . . . . . . .days<br />

.0167 . . . . . . . . . . . . . . . . . . . .hours<br />

60 . . . . . . . . . . . . . . . . .seconds<br />

ounces . . . . . . . . . . . . .437.5 . . . . . . . . . . . . . . . . . . .grains<br />

28.35 . . . . . . . . . . . . . . . . . . .grains<br />

.0625 . . . . . . . . . . . . . . . . . .pounds<br />

.912 . . . . . . . . . . . . . .ounces (troy)<br />

ounces (fluid) . . . . . . . .1.805 . . . . . . . . . . . . . . . .cu. inches<br />

.0296 . . . . . . . . . . . . . . . . . . . .liters<br />

ounces (troy) . . . . . . . . . .480 . . . . . . . . . . . . . . . . . . .grains<br />

31.1 . . . . . . . . . . . . . . . . . . .grams<br />

1.097 . . . . . . . . . . . . .ounces (avdp.)<br />

ounce/sq. in. . . . . . . . . .4309 . . . . . . . . . . . . .dynes/sq. cm.<br />

.0625 . . . . . . . . . . . . .pounds/sq. in.<br />

1.732 . . . . . . . . . . . . . . .inches w.c.<br />

parts/million . . . . . . . . ..0584 . . . . . . . . . . . .grains/U.S. gal.<br />

.0702 . . . . . . . . . . . .grains/imp. gal.<br />

8.345 . . . . . . . . . .pounds/million gal.<br />

ppm (volume) . . .385,100,000 . . . . . . . . . . . . . . . . . . . . .lb/ft 3<br />

0.02404 . . . . . . . . . .micrograms/cu. m.<br />

ppm (weight) . . . . . . . . .0012 . . . . . . . . . .micrograms/cu. m.<br />

pints (liquid) . . . . . . . . .473.2 . . . . . . . . . . . . . . . .cubic cms.<br />

.0167 . . . . . . . . . . . . . . . . . .cubic ft.<br />

28.87 . . . . . . . . . . . . . .cubic inches<br />

.000473 . . . . . . . . . . . . . .cubic meters<br />

.000619 . . . . . . . . . . . . . . .cubic yards<br />

.125 . . . . . . . . . . . . . . . . . .gallons<br />

.473 . . . . . . . . . . . . . . . . . . . .liters<br />

.5 . . . . . . . . . . . . .quarts (liquid)<br />

poise 1.0 . . . . . . . . . . . . .gram/cm.-sec.<br />

pounds 7000 . . . . . . . . . . . . . . . . . . .grains<br />

453.6 . . . . . . . . . . . . . . . . . . .grams<br />

4.448 . . . . . .joules/meter (newtons)<br />

.454 . . . . . . . . . . . . . . . . .kilograms<br />

16 . . . . . . . . . . . . . . . . . .ounces<br />

14.58 . . . . . . . . . . . . . .ounces (troy)<br />

.0005 . . . . . . . . . . . . . . .tons (short)<br />

pounds of water . . . . . . ..016 . . . . . . . . . . . . . . . . . . . .cu. ft.<br />

27.68 . . . . . . . . . . . . . . . .cu. inches<br />

.12 . . . . . . . . . . . . . . . . . .gallons<br />

pounds of water/min. .000267 . . . . . . . . . . . . . . . . .cu. ft/sec.<br />

pounds/cu. ft. . . . . . . . . ..016 . . . . . . . . . . . . .grams/cu. cm.<br />

16.02 . . . . . . . . . . . . .kgs./cu. meter<br />

133,700 . . . . . . . . . . . . . .ppm (weight)<br />

.000579 . . . . . . . . . . . . .pounds/cu. in.<br />

pounds/cu. in. . . . . . . . .27.68 . . . . . . . . . . . . .grams/cu. cm.<br />

27680 . . . . . . . . . . . . .kgs./cu. meter<br />

1728 . . . . . . . . . . . . . .pounds/cu. ft<br />

pounds/ft. . . . . . . . . . . .1.488 . . . . . . . . . . . . . . . .kgs./meter<br />

pounds/in. . . . . . . . . . . .178.6 . . . . . . . . . . . . . . . .grams/cm.<br />

67<br />

MULTIPLY BY TO OBTAIN<br />

pounds/sq. ft. . . . . . ..000473 . . . . . . . . . . . . . .atmospheres<br />

.016 . . . . . . . . . . . . . .feet of water<br />

.0141 . . . . . . . . . .inches of mercury<br />

.192 . . . . . . . . . . . .inches of water<br />

4.882 . . . . . . . . . . . . .kgs./sq. meter<br />

.111 . . . . . . . . . . . .ounces/sq. inch<br />

.00694 . . . . . . . . . . . .pounds/sq. inch<br />

pounds/sq. inc. . . . . . . . ..068 . . . . . . . . . . . . . .atmospheres<br />

2.307 . . . . . . . . . . . . . .feet of water<br />

2.036 . . . . . . . . . .inches of mercury<br />

27.71 . . . . . . . . . . . .inches of water<br />

703.1 . . . . . . . . . . . . .kgs./sq. meter<br />

16 . . . . . . . . . . . .ounces/sq. inch<br />

144 . . . . . . . . . . . .pounds/sq. foot<br />

quadrants (angle) . . . . . . .90 . . . . . . . . . . . . . . . . . .degrees<br />

5400 . . . . . . . . . . . . . . . . . .minutes<br />

1.571 . . . . . . . . . . . . . . . . . .radians<br />

324,000 . . . . . . . . . . . . . . . . .seconds<br />

quarts (liquid) . . . . . . . .946.4 . . . . . . . . . . . . . . . . . .cu. cms.<br />

.0334 . . . . . . . . . . . . . . . . . . . .cu. ft.<br />

57.75 . . . . . . . . . . . . . . . .cu. inches<br />

.000946 . . . . . . . . . . . . . . . .cu. meters<br />

.00124 . . . . . . . . . . . . . . . . .cu. yards<br />

.25 . . . . . . . . . . . . . . . . . .gallons<br />

.946 . . . . . . . . . . . . . . . . . . . .liters<br />

radians . . . . . . . . . . . . . .57.3 . . . . . . . . . . . . . . . . . .degrees<br />

3438 . . . . . . . . . . . . . . . . . .minutes<br />

.637 . . . . . . . . . . . . . . . .quadrants<br />

206,300 . . . . . . . . . . . . . . . . .seconds<br />

radian/sec. . . . . . . . . . . .9.55 . . . . . . . . . . . . . . . . . . . . .rpm<br />

rpm . . . . . . . . . . . . . . .0.1047 . . . . . . . . . . . . . . . . .rad./sec.<br />

seconds (angle) . . . ..000278 . . . . . . . . . . . . . . . . . .degrees<br />

.0167 . . . . . . . . . . . . . . . . . .minutes<br />

square centimeters . .197,300 . . . . . . . . . . . . . . .circular mils<br />

.00108 . . . . . . . . . . . . . . . . . .sq. feet<br />

.155 . . . . . . . . . . . . . . . .sq. inches<br />

.0001 . . . . . . . . . . . . . . . .sq. meters<br />

100 . . . . . . . . . . . . .sq. millimeters<br />

.00012 . . . . . . . . . . . . . . . . .sq. yards<br />

square feet . . . . . . . . . . .929 . . . . . . . . . . . . . . . . . .sq. cms.<br />

144 . . . . . . . . . . . . . . . .sq. inches<br />

.093 . . . . . . . . . . . . . . . .sq. meters<br />

.0000000359 . . . . . . . . . . . . . . . . .sq. miles<br />

92900 . . . . . . . . . . . . .sq. millimeters<br />

.111 . . . . . . . . . . . . . . . . .sq. yards<br />

square inches . . . . . . . .6.452 . . . . . . . . . . . . . . . . . .sq. cms.<br />

.00694 . . . . . . . . . . . . . . . . . . . .sq. ft.<br />

645.2 . . . . . . . . . . . . .sq. millimeters<br />

1,000,000 . . . . . . . . . . . . . . . . . .sq. mils<br />

.000772 . . . . . . . . . . . . . . . . .sq. yards<br />

square kilometers .10,760,000 . . . . . . . . . . . . . . . . . . . .sq. ft.<br />

1,000,000 . . . . . . . . . . . . . . . .sq. meters<br />

.386 . . . . . . . . . . . . . . . . .sq. miles


GENERAL CONVERSION FACTORS (Cont’d)<br />

MULTIPLY BY TO OBTAIN<br />

square meters . . . . . . .10000 . . . . . . . . . . . . . . . . . .sq. cms.<br />

10.76 . . . . . . . . . . . . . . . . . . . .sq. ft.<br />

1550 . . . . . . . . . . . . . . . .sq. inches<br />

1,000,000 . . . . . . . . . . . . .sq. millimeters<br />

1,196 . . . . . . . . . . . . . . . . .sq. yards<br />

square miles . . . .27,880,000 . . . . . . . . . . . . . . . . . . . .sq. ft.<br />

2.590 . . . . . . . . . . . . . . . . . .sq. kms.<br />

2,590,000 . . . . . . . . . . . . . . . .sq. meters<br />

3,098,000 . . . . . . . . . . . . . . . . .sq. yards<br />

square millimeters . . . . .1973 . . . . . . . . . . . . . . .circular mils<br />

.01 . . . . . . . . . . . . . . . . . .sq. cms.<br />

.0000108 . . . . . . . . . . . . . . . . . . . .sq. ft.<br />

.00155 . . . . . . . . . . . . . . . .sq. inches<br />

therms . . . . . . . . . . .100,000 . . . . . . . . . . . . . . . . . . . . . .btu<br />

tons (long) . . . . . . . . . . .1016 . . . . . . . . . . . . . . . . .kilograms<br />

2240 . . . . . . . . . . . . . . . . . .pounds<br />

1.12 . . . . . . . . . . . . . . .tons (short)<br />

tons (metric) . . . . . . . . .1000 . . . . . . . . . . . . . . . . .kilograms<br />

2205 . . . . . . . . . . . . . . . . . .pounds<br />

tons (short) . . . . . . . . . .907.2 . . . . . . . . . . . . . . . . .kilograms<br />

32000 . . . . . . . . . . . . . . . . . .ounces<br />

2917 . . . . . . . . . . . . . .ounces (troy)<br />

2000 . . . . . . . . . . . . . . . . . .pounds<br />

2430 . . . . . . . . . . . . . .pounds (troy)<br />

.893 . . . . . . . . . . . . . . . .tons (long)<br />

.908 . . . . . . . . . . . . . .tons (metric)<br />

68<br />

MULTIPLY BY TO OBTAIN<br />

ton refrigeration (U.S.) .12,000 . . . . . . . . . . . . . . . . . . . .btu/hr<br />

83.33 . . . . . . . . . . . . . .lb. ice melted<br />

per hr. from and at 32°F<br />

watts . . . . . . . . . . . . . . .3.413 . . . . . . . . . . . . . . . . . . .btu/hr.<br />

.0569 . . . . . . . . . . . . . . . . . .btu/min.<br />

44.27 . . . . . . . . . . . . . . . .ft.-lbs./min.<br />

.738 . . . . . . . . . . . . . . . .ft.-lbs./sec.<br />

.00134 . . . . . . . . . . . . . . .horsepower<br />

.00136 . . . . . . . .horsepower (metric)<br />

.0143 . . . . . . . . . . .kg.-calories/min.<br />

.001 . . . . . . . . . . . . . . . . .kilowatts<br />

watt-hours . . . . . . . . . . .3.413 . . . . . . . . . . . . . . . . . . . . . .btu<br />

2656 . . . . . . . . . . . . . . . . . .foot-lbs.<br />

860.5 . . . . . . . . . . . . .gram-calories<br />

.00134 . . . . . . . . . .horsepower-hours<br />

.861 . . . . . . . . . . .kilogram-calories<br />

367.2 . . . . . . . . . . .kologram-meters<br />

.001 . . . . . . . . . . . . .kilowatt-hours<br />

watt/sq.cm. . . . . . . . . .3170.0 . . . . . . . . . . . . .btu/hr./sq. foot<br />

watt cm btu-ft<br />

sq. cm. °F . . . . . . . . . . .57.79 . . . . . . . . . . . . . . . hr. sq. ft. °F<br />

TEMPERATURE CONVERSIONS<br />

°Fahrenheit = 9/5°C + 32<br />

°Celsius = 5/9 (°F–32)<br />

°Rankine = °F absolute = °F + 459.69<br />

°Kelvin = °C absolute = °C + 273.16<br />

Fahrenheit to Celsius Celsius to Fahrenheit<br />

°F °C °F °C °C °F °C °F<br />

0 -17.78 950 510.0 0 32 850 1562<br />

20 -6.67 1000 537.8 10 50 900 1652<br />

40 4.44 1100 593.3 20 68 950 1742<br />

60 15.56 1200 648.9 30 86 1000 1832<br />

80 26.67 1300 704.4 40 104 1050 1922<br />

100 37.78 1400 760.0 50 122 1100 2012<br />

120 48.89 1500 815.6 60 140 1150 2102<br />

140 60.00 1600 871.1 70 158 1200 2192<br />

160 71.11 1700 926.7 80 176 1250 2282<br />

180 82.22 1800 982.2 90 194 1300 2372<br />

200 93.33 1900 1038 100 212 1350 2462<br />

250 121.1 2000 1093 150 302 1400 2552<br />

300 148.9 2100 1149 200 392 1450 2642<br />

350 176.7 2200 1204 250 482 1500 2732<br />

400 204.4 2300 1260 300 572 1550 2822<br />

450 232.2 2400 1316 350 662 1600 2912<br />

500 260.0 2500 1371 400 752 1650 3002<br />

550 287.8 2600 1427 450 842 1700 3092<br />

600 315.6 2700 1482 500 932 1750 3182<br />

650 343.3 2800 1538 550 1022 1800 3272<br />

700 371.1 2900 1593 600 1112 1850 3362<br />

750 398.9 3000 1649 650 1202 1900 3452<br />

800 426.7 3200 1760 700 1292 1950 3542<br />

850 454.4 3400 1871 750 1382 2000 3632<br />

900 482.2 3600 1982 800 1472 2050 3722


PRESSURE CONVERSIONS<br />

inches ounces/ inches kilograms/ millimeters kilowater<br />

sq in lb/sq in mercury millibars sq cm water pascals<br />

("w.c.) (osi) (psi) ("Hg) (mbar) (kg/cm 2 ) (mm H 2O) (kPa)<br />

.04 .023 .001 .003 .1 .0001 1 .01<br />

.1 .058 .004 .007 .25 .0003 2.54 .02<br />

.17 .1 .006 .013 .42 .0004 4.4 .04<br />

.2 .115 .007 .015 .5 .0005 5.08 .05<br />

.35 .2 .013 .026 .87 .0009 8.8 .09<br />

.39 .227 .014 .029 .97 .001 10 .1<br />

.40 .23 .015 .029 1 .0010 10.2 .1<br />

.5 .29 .018 .037 1.24 .0013 12.7 .12<br />

.787 .45 .028 .058 1.96 .002 20 .2<br />

.80 .46 .029 .059 2 .0020 20.4 .2<br />

.87 .5 .031 .064 2.16 .0022 22 .22<br />

1 .58 .036 .074 2.49 .0025 25.4 .25<br />

1.73 1 .063 .127 4.30 .0044 44 .43<br />

2 1.15 .072 .147 4.98 .0051 50.8 .5<br />

2.01 1.16 .073 .148 5 .0051 51 .5<br />

2.77 1.6 .1 .204 6.89 .0070 70.3 .69<br />

3 1.73 .108 .221 7.46 .0076 76.2 .75<br />

3.46 2 .125 .254 8.61 .0088 87.9 .86<br />

4 2.31 .144 .294 9.95 .010 101.6 1<br />

4.02 2.32 .145 .296 10 .010 102 1<br />

5 2.89 .181 .368 12.5 .013 127 1.25<br />

5.2 3 .188 .382 12.9 .013 131.9 1.29<br />

5.54 3.2 .2 .407 13.8 .014 140.7 1.38<br />

6 3.46 .216 .441 14.9 .015 152.4 1.49<br />

6.93 4 .25 .51 17.2 .018 175.8 1.72<br />

7 4.04 .253 .515 17.4 .018 177.8 1.74<br />

8 4.62 .289 .588 19.9 .020 203.2 1.99<br />

8.03 4.64 .29 .591 20 .020 204 2<br />

8.66 5 .313 .637 21.5 .022 219.8 2.15<br />

9 5.2 .325 .662 22.4 .023 228.6 2.24<br />

10 5.77 .361 .735 24.9 .025 254 2.49<br />

10.39 6 .375 .764 25.9 .026 263.8 2.59<br />

11 6.35 .397 .809 27.4 .028 279.4 2.74<br />

12 6.93 .433 .882 29.9 .030 304.8 2.99<br />

12.05 6.96 .435 .887 30 .031 306 3<br />

12.12 7 .438 .891 30.2 .031 307.7 3.02<br />

13 7.51 .469 .956 32.4 .033 330.2 3.24<br />

13.6 7.85 .491 1 33.8 .035 345.4 3.38<br />

13.86 8 .5 1.02 34.5 .035 351.6 3.45<br />

14 8.08 .505 1.03 34.9 .036 355.5 3.49<br />

15 8.66 .541 1.10 37.4 .038 381 3.74<br />

15.59 9 .563 1.15 38.8 .04 395.6 3.88<br />

16 9.24 .578 1.18 39.8 .041 406.4 3.98<br />

16.06 9.28 .58 1.18 40 .041 408 4<br />

17 9.82 .614 1.25 42.3 .043 431.8 4.23<br />

17.32 10 .625 1.27 43.1 .044 439.6 4.31<br />

18 10.39 .649 1.32 44.8 .046 457.2 4.48<br />

19 10.97 .686 1.4 47.3 .048 482.6 4.73<br />

19.05 11 .688 1.40 47.4 .048 483.6 4.74<br />

20 11.55 .722 1.47 49.8 .051 508 4.98<br />

69


PRESSURE CONVERSIONS (Cont’d)<br />

inches ounces/ inches kilograms/ millimeters kilowater<br />

sq in lb/sq in mercury millibars sq cm water pascals<br />

("w.c.) (osi) (psi) ("Hg) (mbar) (kg/cm 2 ) (mm H 2O) (kPa)<br />

20.1 11.6 .725 1.48 50 .051 510 5<br />

20.78 12 .75 1.53 51.7 .053 528 5.17<br />

21 12.12 .758 1.54 52.3 .053 533 5.23<br />

22 12.7 .794 1.62 54.8 .056 559 5.48<br />

22.52 13 .813 1.66 56.0 .057 572 5.60<br />

23 13.28 .83 1.69 57.3 .058 584 5.73<br />

24 13.86 .866 1.76 59.7 .061 610 5.98<br />

24.1 13.92 .87 1.77 60 .061 612 6<br />

24.25 14 .875 1.78 60.3 .062 615 6.03<br />

25 14.43 .902 1.84 62.3 .064 635 6.23<br />

25.98 15 .938 1.91 64.6 .066 659 6.46<br />

26 15.01 .938 1.91 64.7 .066 660 6.47<br />

27 15.59 .974 1.99 67.2 .069 686 6.72<br />

27.2 15.7 .982 2 67.7 .069 711 6.77<br />

27.71 16 1 2.04 68.9 .070 703 6.89<br />

28 16.17 1.01 2.06 69.7 .071 711 6.97<br />

28.11 16.24 1.02 2.07 70 .071 714 7<br />

29 16.74 1.05 2.13 72.2 .074 737 7.22<br />

29.44 17 1.06 2.16 73.3 .075 747 7.33<br />

30 17.32 1.08 2.21 74.7 .076 762 7.47<br />

31 17.9 1.12 2.28 77.2 .079 787 7.72<br />

31.18 18 1.13 2.29 77.6 .079 791 7.76<br />

32 18.48 1.16 2.35 79.7 .081 813 7.97<br />

32.13 18.56 1.16 2.36 80 .082 816 8<br />

32.91 19 1.19 2.42 81.9 .084 835 8.19<br />

33 19.05 1.19 2.43 82.2 .084 838 8.22<br />

34 19.63 1.23 2.5 84.7 .086 864 8.47<br />

34-64 20 1.25 2.55 86.2 .088 879 8.62<br />

35 20.21 1.26 2.57 87.2 .089 889 8.72<br />

36 20.79 1.3 2.65 89.6 .091 914 8.96<br />

36.14 20.88 1.31 2.66 90 .092 918 9<br />

36.37 21 1.31 2.67 90.5 .092 923 9.05<br />

37 21.36 1.34 2.72 92.1 .094 940 9.21<br />

38 21.94 1.37 2.79 94.6 .097 965 9.46<br />

38.1 22 1.38 2.80 94.8 .097 967 9.48<br />

39 22.52 1.41 2.87 97.1 .099 991 9.71<br />

39.37 22.73 1.42 2.89 98.0 .1 1000 9.80<br />

39.84 23 1.44 2.93 99.1 .101 1011 9.91<br />

40 23.09 1.44 2.94 99.6 .102 1016 9.96<br />

40.16 23.20 1.45 2.96 100 .102 1020 10<br />

40.8 23.56 1.47 3 101.5 .104 1036 10.2<br />

41 23.67 1.48 3.01 102.0 .104 1041 10.2<br />

41.57 24 1.5 3.06 103.4 .106 1055 10.3<br />

42 24.25 1.52 3.09 104.5 .107 1067 10.5<br />

43 24.83 1.55 3.16 107 .109 1092 10.7<br />

43.3 25 1.56 3.18 107.7 .11 1099 10.8<br />

44 25.4 1.59 3.24 109.5 .112 1118 11<br />

45 26 1.63 3.31 112 .114 1144 11.2<br />

46 26.56 1.66 3.38 114.5 .117 1168 11.5<br />

46.76 27 1.69 3.44 116.3 .118 1184 11.6<br />

70


PRESSURE CONVERSIONS<br />

inches ounces/ inches kilograms/ millimeters kilowater<br />

sq in lb/sq in mercury millibars sq cm water pascals<br />

("w.c.) (osi) (psi) ("Hg) (mbar) (kg/cm 2 ) (mm H 2O) (kPa)<br />

47 27.14 1.7 3.46 116.9 .119 1194 11.7<br />

48 27.71 1.73 3.53 119.4 .122 1219 12<br />

48.5 28 1.75 3.57 120.7 .123 1232 12.1<br />

49 28.29 1.77 3.60 121.9 .124 1245 12.2<br />

50 28.87 1.80 3.68 124.4 .127 1270 12.5<br />

50.23 29 1.81 3.69 125 .128 1276 12.5<br />

51 29.45 1.84 3.75 126.9 .13 1295 12.7<br />

51.96 30 1.88 3.82 129.3 .132 1320 12.9<br />

52 30.02 1.88 3.82 129.4 .132 1321 12.9<br />

53 30.6 1.91 3.9 131.9 .135 1346 13.2<br />

53.69 31 1.94 3.95 133.6 .136 1364 13.4<br />

54 31.18 1.95 3.97 134.4 .137 1372 13.4<br />

54.4 31.41 1.96 4 135.4 .138 1382 13.5<br />

55.4 32 2 4.07 137.8 .141 1408 13.8<br />

68 39.26 2.45 5 169.2 .173 1727 16.9<br />

78.7 45.46 2.84 5.79 195.8 .2 2000 19.6<br />

80.32 46.4 2.9 5.91 200 .204 2040 20<br />

81.6 47.11 2.94 6 203 .207 2072 20.3<br />

83.14 48 3 6.11 207 .211 2112 20.7<br />

95.2 55 3.44 7 237 .242 2418 23.7<br />

108.8 62.8 3.93 8 271 .276 2763 27.1<br />

110.8 64 4 8.15 276 .282 2816 27.6<br />

120.5 69.6 4.35 8.87 300 .306 3060 30<br />

138.6 80 5 10.2 345 .352 3517 34.5<br />

160.6 92.8 5.8 11.8 400 .408 4080 40<br />

166.3 96 6 12.2 414 .422 4223 41.4<br />

194 112 7 14.3 483 .493 4927 48.3<br />

196.9 113.7 7.1 14.5 490 .5 5000 49.0<br />

200.8 116 7.25 14.8 500 .510 5100 50<br />

221.7 128 8 16.3 552 .563 5631 55.2<br />

241 139 8.7 17.7 600 .612 6120 60<br />

249.4 144 9 18.3 621 .634 6335 62.1<br />

277.1 160 10 20.4 689 .703 7033 68.9<br />

281.1 162 10.15 20.7 700 .714 7140 70<br />

321.3 186 11.6 23.6 800 .816 8160 80<br />

361.4 209 13.05 26.6 900 .918 9180 90<br />

393.7 227 14.21 28.9 980 1 10,000 98.0<br />

401.6 232 14.5 29.6 1000 1.02 10,200 100<br />

415.7 240 15 30.6 1034 1.06 10,559 103.4<br />

554 320 20 40.7 1378 1.41 14,072 137.8<br />

693 400 25 51 1724 1.76 17,602 172.4<br />

831 480 30 61.1 2068 2.11 21,107 206.8<br />

970 560 35 71.3 2414 2.46 24,638 241.3<br />

1108 640 40 81.5 2757 2.81 28,143 275.8<br />

1386 800 50 101.9 3449 3.52 35,204 344.7<br />

1663 960 60 122.3 4138 4.22 42,240 413.7<br />

1940 1120 70 142.6 4827 4.93 49,276 482.6<br />

2217 1280 80 163.0 5516 5.63 56,312 551.6<br />

2494 1440 90 183.4 6206 6.33 63,348 620.5<br />

2771 1600 100 203.8 6895 7.04 70,383 689.5<br />

71


Abbreviations<br />

Air<br />

61<br />

effect of altitude 20<br />

effect of pressure 20<br />

effect of temp. 21<br />

infiltration<br />

pipe<br />

53<br />

sizing 16<br />

pressure losses<br />

Air Heating<br />

12<br />

heat requirements<br />

Alloys<br />

45<br />

thermal capacities<br />

Area<br />

40<br />

of circles<br />

Available Heat<br />

57, 58<br />

definition 35-36<br />

charts 51<br />

Black Body Radiation<br />

Blowers<br />

49<br />

as suction device 20<br />

fan laws 19<br />

horsepower 20<br />

ratings<br />

Boilers<br />

18, 19<br />

Btu/hr. & H.P. 31<br />

conversion factors 30<br />

sizing steam pipe<br />

Butane<br />

32<br />

butane/air mixtures 24<br />

properties 22, 23<br />

Cv Circles<br />

16<br />

areas 57, 58<br />

circumferences<br />

Circumference<br />

57, 58<br />

of circles 57, 58<br />

Coefficients of Discharge 4<br />

Cones, Pyrometric<br />

Conversions<br />

50<br />

boilers 30<br />

h.p. & Btu/hr. 31<br />

general 64 thru 68<br />

oil viscosity 26<br />

pressure 69<br />

temperature, °F & °C<br />

Crucibles<br />

69<br />

capacities & dimensions<br />

Drills<br />

43<br />

sizes 59<br />

tap drill sizes 60<br />

Duct Velocity 17<br />

Efficiency, Thermal<br />

Electrical<br />

36<br />

formulas 33<br />

motor current 34<br />

motor starters 33<br />

NEMA enclosures 34<br />

ohm’s law 33<br />

symbols 62, 63<br />

wire specs<br />

Equivalent Length<br />

33<br />

pipe 14<br />

valves 14<br />

Fan Laws<br />

Fans<br />

see blowers<br />

19<br />

INDEX<br />

Flame Tip Temp.<br />

Flow<br />

52<br />

and Cv 16<br />

and duct velocity 17<br />

orifices 4<br />

Flue Gas Analysis 52<br />

Flue Sizing<br />

Fume Incineration<br />

53<br />

heat requirements 45<br />

sizing<br />

Furnaces<br />

46<br />

cold air infiltration 53<br />

flue sizing 53<br />

thermal head 53<br />

turndown 36<br />

Gas/Air Mixtures<br />

Gases<br />

24<br />

available heat 51<br />

combustion products 23<br />

constituents 22<br />

density 22<br />

flame temp. 23<br />

flame velocity 22<br />

flammability limits 22<br />

heat release 23<br />

heating value 23<br />

ignition temp. 22<br />

mixtures 24<br />

pipe, sizing 16<br />

properties 22-24,37<br />

specific gravity 22<br />

specific volume 22<br />

stoichiometric ratio<br />

Heat<br />

22<br />

available 35-36<br />

balance<br />

losses<br />

35-36<br />

general 35-36<br />

refractory 44<br />

spray washers 48<br />

tank 47<br />

net output 35-36<br />

required for processes 41<br />

storage, refractory 44<br />

storage, tank 47<br />

transfer, equations<br />

Heating Operations<br />

52<br />

temp. & heat req’d.<br />

Liquid Heating<br />

41-42<br />

sizing, burner<br />

Metals<br />

47<br />

thermal capacities<br />

Motors<br />

40<br />

current 34<br />

formulas 33<br />

NEMA size starters 33<br />

Natural Gas, Properties 22-23<br />

Net Heat Output<br />

Nozzles<br />

35-36<br />

spray capacities 48<br />

Ohm’s Law<br />

Oil<br />

33<br />

ANSI specs 25<br />

heating value & °API 27<br />

piping pressure losses 27, 28<br />

piping temp. losses 29<br />

s.g. & °API 27<br />

typical properties 26<br />

viscosity conversions 26<br />

72<br />

Orifices<br />

capacities<br />

high pressure 9-11<br />

low pressure 5-8<br />

coefficients of discharge 4<br />

flow formulas 4<br />

Pipe<br />

capacities 54<br />

dimensions<br />

fittings<br />

54<br />

dimensions 55<br />

equivalent length 14<br />

flange templates<br />

pressure losses<br />

60<br />

air 12<br />

natural gas 13, 14<br />

oil<br />

sizing<br />

27, 28<br />

air, gas & mixture 15<br />

air, quick method 15<br />

branch 16<br />

steam 32<br />

water 31<br />

Pressure, Conversions<br />

Propane<br />

69-71<br />

propane/air mixtures 24<br />

properties<br />

see also Gases<br />

22, 23<br />

Pyrometric Cones 50<br />

Radiant Tubes 43<br />

Radiation, Black Body 49<br />

Refractory<br />

Sheet Metal<br />

44<br />

gauges 56<br />

weights<br />

Spray Washers<br />

56<br />

heat loss factors 48<br />

heat requirements 48<br />

nozzle capacities<br />

Steam<br />

48<br />

pipe sizing 32<br />

properties 30<br />

terminology<br />

Symbols<br />

30<br />

electrical<br />

Temperature<br />

62, 63<br />

°F & °C 68<br />

flame tip 52<br />

refractory face 44<br />

required, various processes<br />

Thermal<br />

41<br />

capacities, metals & alloys 40<br />

efficiency 36<br />

head, furnaces 53<br />

properties, materials<br />

Turndown<br />

37<br />

furnace<br />

Valves<br />

36<br />

Cv and flow 16<br />

equivalent pipe length 14<br />

Velocity, Duct<br />

Washers, spray<br />

17<br />

heat requirements<br />

Wire<br />

48<br />

gauges 56<br />

specifications 33<br />

weights 56


Tech Notes<br />

Section 1-<strong>Eclipse</strong> Equipment (numbers correspond to Bulletin numbers)<br />

656 Selecting TVT Mixing Tees (Page 74)<br />

810/812 Sizing Pilots, Blasts Tips & Pilot Mixers with Flow Charts (Page 76)<br />

Section 2-<strong>Engineering</strong> Data<br />

Part A- Combustion Data<br />

A-1 Flue Gas Analysis vs. Excess Air (Page 80)<br />

A-2 Flame Temperatures vs. Air Preheat & % Oxygen (Page 81)<br />

A-3 Available Heat vs. Oxygen Enrichment (Page 82)<br />

A-4 Available Heat-Extended Chart (Page 83)<br />

Part C- Control systems<br />

C-1 Summary of Fuel-Air Ratio Control Systems for Nozzle Mixing Burners (Page 84)<br />

C-2 Ratio Control Using Proportioning Fixed Port Valves for Nozzle Mixing Burners (Page 85)<br />

C-3 Ratio Control Using Proportioning (Adjustable Characteristic) Valves for Nozzle Mixing Burners (Page 87)<br />

C-4 Ratio Control Using Cross-Connected Proportionators for Nozzle Mixing Burners (Page 89)<br />

C-5 Ratio Control Using Cross-Connected Proportionator with Bleed Fitting for Nozzle Mixing Burners (Page 91)<br />

C-6 Ratio Control Using Electronic Controllers for Nozzle Mixing Burners (Page 92)<br />

C-7 Excess Air Operation by Controlling Fuel Only for Nozzle Mixing Burners (Page 94)<br />

C-8 Excess Air Operation with Biased Proportionator for Nozzle Mixing Burners (Page 95)<br />

C-9 Excess Air Operation with Throttled Impulse (Adjustable Bleed) to Proportionator for Nozzle Mixing<br />

Burners (Page 96)<br />

C-10 Backpressure Compensation System for Cross-Connected Nozzle Mix Burner Systems (Page 97)<br />

Part E- Emissions<br />

E-2 Conversion Factors for Emissions Calculations (Page 98)<br />

E-3 Correcting Emissions Readings to 3% O 2 or 11% O 2 Basis (Page 100)<br />

Part H- Heat Recovery<br />

H-1 Recuperator Efficiency: Fuel Savings & Effectiveness (Page 101)<br />

Part R- Regulations & Codes<br />

R-1 NFPA Requirements for Gas Burner Systems (Page 103)<br />

R-2 IRI Requirements for Gas Burner Systems (Page 105)<br />

Section 3-Application Data<br />

Part I- Incineration<br />

I-1 Heating Values of Flammable Liquids (Page 108)<br />

Part L- Liquid Heating<br />

L-1 Immersion Tube Sizing (Page 110)<br />

L-2 Submerged Combustion (Page 112)<br />

L-3 Immersion Tubes-What Will The Stack Temperature Be? (Page 116)<br />

Part O- Ovens<br />

O-1 Determining % O 2 in a Recirculating System (Page 117)<br />

73<br />

Table Of Contents


Tech Notes<br />

Selecting TVT Mixing Tees—Bulletin 656<br />

General Remarks:<br />

Selection Data Required:<br />

Selection Procedure:<br />

Series TVT two-valve mixing tees lack a tapered discharge sleeve, so they are not as<br />

efficient as LP Proportional Mixers. Their performance will also be strongly affected<br />

by downstream piping, so use them only where gas pressure available at the mixer<br />

connection exceeds mixture pressure by:<br />

3" w.c. for natural or LP gas (except 166-24-TVT, which requires 7" w.c.)<br />

6" w.c. for coke oven gas<br />

8" w.c. for digester gas<br />

For coke oven or digester gas, do not use the 84-16, 124-24 or 166-24; their gas inlets<br />

are too small. Also, do not use any of these mixers with producer gas. Producer gas<br />

flows far exceed the capacity of the gas orifices and inlet connections.<br />

1. CFH air flow through the mixer (if customer specifies Btu/hr, divide by 100 to<br />

get cfh air).<br />

2. Air pressure available at mixer inlet, "w.c.<br />

3. Mixture pressure desired, "w.c.<br />

Section I<br />

Sheet 656<br />

1. Refer to Table I, page 75. Select a mixer whose maximum air capacity is higher<br />

than the required air flow.<br />

2. To size the air jet, subtract the mixture pressure from the air pressure. This<br />

gives you the air pressure drop available across the mixer. Then refer to the<br />

graph. Locate the desired air flow on the horizontal axis and the air pressure<br />

drop on the vertical axis. Locate the point where they intersect and then move<br />

right to the next diagonal line. That line represents the optimum jet size.<br />

3. Cross-check the air jet size against Table I to be sure it is within the range of<br />

sizes available for the mixer. If it isn’t, select the next larger size of mixer to<br />

avoid taking a higher pressure drop.<br />

74


Air ∆P Through Mixer, "w.c.<br />

Table I - TVT Mixer Data<br />

Range of<br />

Mixer Maximum Jet Sizes<br />

Catalog Air Flow, Air Jet 1/32nds of Use Mixer With<br />

No. scfh Part No. an inch These Gases<br />

44-17-TVT 900 0217- 10 - 16 Natural, LP, Coke Oven, Digester<br />

64-16-TVT 2000 0255- 12 - 25 Natural, LP, Coke Oven, Digester<br />

66-24-TVT 2000 0255- 12 - 25 Natural, LP, Coke Oven, Digester<br />

84-16-TVT 3500 0225- 18 - 36 Natural, LP<br />

86-24-TVT 3500 0225- 18 - 36 Natural, LP, Coke Oven, Digester<br />

124-24-TVT 8000 0695- 32 - 56 Natural, LP<br />

126-24-TVT 8000 0695- 32 - 56 Natural, LP, Coke Oven, Digester<br />

166-24-TVT 15,000 0994- 36 - 80 Natural, LP<br />

168-30-TVT 15,000 0994- 36 - 80 Natural, LP, Coke Oven, Digester<br />

Figure I - Air Jet Sizing Chart<br />

Air Jet Size<br />

21 23 25 27 29 31 33 35 37 39 42 46 50 54<br />

10 11 12 13 14 15 16 17 18 19 20 22 24 26 28 30 32 34 36 38 40 44 48 52 56<br />

30<br />

25<br />

58<br />

60<br />

20<br />

62<br />

64<br />

15<br />

66<br />

68<br />

70<br />

72<br />

10<br />

74<br />

9<br />

76<br />

8<br />

78<br />

7<br />

6<br />

80<br />

200 300 400 500 600 800 1000 1500 2000 3000 4000 5000 6000 8000 10,000 15,000<br />

Maximum<br />

For 44-17 TVT<br />

Maximum<br />

For 64-16<br />

& 66-24 TVT<br />

Max. For<br />

84-16 &<br />

86-24 TVT<br />

Air Flow Through Mixer, scfh<br />

75<br />

Maximum For<br />

124-24 &<br />

126-24 TVT<br />

Max. For<br />

166-24 &<br />

168-30 TVT


Tech Notes<br />

Sizing Pilots, Blast Tips & Pilot Mixers With Flow Charts<br />

Selection Factors<br />

Using The Charts Properly<br />

Air<br />

To select the right equipment, you need to know:<br />

1. Type and number of pilot or blast tips;<br />

2. Btu/hr. at which each tip will fire;<br />

3. Air pressure (P ) available at the mixer inlet.<br />

A<br />

1. From the tip capacity chart on page 77, find the required<br />

mixture pressure. Do not exceed 8" w.c. mixture pressure,<br />

unless you’ve chosen a Cumapart (CP) tip or blast tip.<br />

P A<br />

P M<br />

P P<br />

A- M = Mixture P<br />

Section I<br />

Sheet 810/812<br />

Desired Btu/hr.<br />

2. Subtract the mixture pressure (P M ) found in Step 1 from the air pressure<br />

(P A ) which is available at the mixer. The difference is the mixer<br />

pressure drop.<br />

3. Figure the total air flow through the mixer by the following equation:<br />

Btu/hr. per tip x number of tips<br />

cfh air = 100<br />

4. Next, refer to the mixer air capacity charts (page 78 for Series 121 mixers<br />

and page 79 for Series 131). To use the charts properly, follow the<br />

directions below:<br />

1 Locate the mixer<br />

pressure drop figure<br />

in Step 2, and read<br />

to the right.<br />

5. Do not use the Series 121 mixers above 300 scfh air or the Series 131<br />

mixers above 600 scfh air—otherwise pipe velocities are too high.<br />

76<br />

Pressure Drop<br />

Mixture Pressure<br />

ABC (1234)<br />

Air Flow<br />

2 Locate the air flow figured in Step 3<br />

and read up.<br />

3<br />

XXX<br />

Desired Tip<br />

YYY<br />

ZZZ<br />

From the point where<br />

these lines cross, move<br />

right to the nearest mixer<br />

flow curve. This curve is<br />

the proper size mixer to use.<br />

The air jet part number<br />

is in parentheses.


Mixture Pressure, "w.c.<br />

8<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

1 2 3 4 5 6<br />

1-K<br />

Capacities Of <strong>Eclipse</strong> Pilot & Blast Tips<br />

2-K<br />

1CP<br />

77<br />

1F<br />

3-K<br />

4-K<br />

2CP<br />

20-ST<br />

10 20 30 40 50 60 100<br />

Btu/hr. x 1000 @ 10:1 Air/Gas Ratio<br />

5-K<br />

3RAFI<br />

2-N<br />

2F<br />

3RAF<br />

6-K<br />

3CP<br />

3EP<br />

4RAFI<br />

3F<br />

4RAF<br />

4EP<br />

4F<br />

5RAFI<br />

5RAF


ΔP P Across Mixer, "w.c.<br />

50<br />

40<br />

30<br />

20<br />

10<br />

6<br />

5<br />

4<br />

3<br />

2<br />

Series 121 Pilot Mixers<br />

Air Flow Capacity<br />

Mixer Catalog No. &<br />

(Air Jet Part No.)<br />

121-46 (14520-1)<br />

1<br />

10 15 20 30 40 50 60 80 100 150 200 300<br />

Combustion Air Flow Through Mixer, SCFH<br />

(Btu/hr. = SCFH Air x 100)<br />

78<br />

121-42 (14520-2)<br />

121-40 (14520-17)<br />

121-36 (14520-3)<br />

121-30 (14520-16)<br />

121-25 (14520-5)<br />

121-22 (14520-6)<br />

121-18 (14520-7)<br />

121-17 (14520-15)<br />

121-12 (14520-8)<br />

121-10 (14520-14)<br />

121-8 (14520-13)<br />

121-6 (14520-12)<br />

121-4 (14520-11)<br />

121-7/32 (14520-9)<br />

121-1 (14520-10)


ΔP P Across Mixer, "w.c.<br />

50<br />

40<br />

30<br />

20<br />

10<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

20 30 40 50 60<br />

Series 131 Pilot Mixers<br />

Air Flow Capacity<br />

Mixer Catalog No. &<br />

(Air Jet Part No.)<br />

131-4 (10254-1)<br />

80 100 150 200 300<br />

Combustion Air Flow Through Mixer, SCFH<br />

(Btu/hr. = SCFH Air x 100)<br />

79<br />

131-5 (10254-2)<br />

131-6 (10254-3)<br />

131-11/64 (10254-14)<br />

131-13/64 (10254-8)<br />

400 500 600<br />

131-7 (10254-4)<br />

131-15/64 (10254-9)<br />

131-8 (10254-5)<br />

131-17/64 (10254-10)<br />

131-9 (10254-6)<br />

131-19/64 (10254-11)<br />

131-10 (10254-7)<br />

131-21/64 (10254-15)


Tech Notes<br />

Flue Gas Analysis vs. Excess Air<br />

Reference:<br />

Figure 1:<br />

Flue Gas Constituents<br />

vs. % Excess Air<br />

<strong>Eclipse</strong> Combustion <strong>Engineering</strong> <strong>Guide</strong>, p. 52<br />

Section 2<br />

Sheet A-1<br />

The graph below supplements the flue gas analysis chart on page 52 of the<br />

Combustion <strong>Engineering</strong> <strong>Guide</strong>, which extends to only 200% excess air.<br />

These curves are calculated for Birmingham Natural Gas, same as the<br />

<strong>Engineering</strong> <strong>Guide</strong>.<br />

% Flue Gas Constituent By Volume<br />

20<br />

15<br />

10<br />

5<br />

% Oxygen—Dry Sample<br />

% Oxygen—Saturated Sample<br />

% Carbon Dioxide—Natural Gas<br />

0<br />

200 400 600 800 1000 1200 1400 1600 1800 2000<br />

80<br />

% Excess Air


Tech Notes<br />

Flame Temperatures vs. Air Preheat & % Oxygen<br />

General Remarks:<br />

Figure 1:<br />

Theoretical Flame<br />

Temperature vs. Preheat<br />

Figure 2:<br />

Theoretical Flame<br />

Temperature vs. O 2 in Air<br />

Section 2<br />

Sheet A-2<br />

Both preheated air and oxygen enrichment increase the theoretical temperature<br />

of burner flames. The following graphs show their effect on the<br />

theoretical flame temperature of natural gas, which, with 60°F combustion<br />

air and 21% oxygen, would be about 3500 - 3550° F.<br />

Theoretical Flame Temp., °F<br />

Flame Temperature, °F<br />

4500<br />

4000<br />

3500<br />

0<br />

5200<br />

4800<br />

4400<br />

4000<br />

3600<br />

200 400 600 800 1000 1200 1400 1600<br />

Combustion Air Temperature, °F<br />

20 40 60 80 100<br />

81<br />

% Oxygen In Air


Tech Notes<br />

Available Heat vs. Oxygen Enrichment<br />

Section 2<br />

Sheet A-3<br />

General Remarks: The graph below shows available heat as a function of flue gas temperature<br />

and percent oxygen in the combustion air stream. These curves were calculated<br />

for natural gas with combustion air at 60°F.<br />

Figure 1:<br />

Available Heat vs.<br />

Oxygen Enrichment<br />

% Available Heat<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

2000<br />

2200<br />

82<br />

2400<br />

2600<br />

Flue Gas Temperature, °F<br />

2800<br />

3000<br />

100% O 2<br />

35% O 2<br />

25% O 2<br />

20.9% O 2


Tech Notes<br />

Available Heat—Extended Chart<br />

Reference:<br />

Figure 1:<br />

Available Heat vs. Flue<br />

Gas Exit Temperature, °F<br />

<strong>Eclipse</strong> Combustion <strong>Engineering</strong> <strong>Guide</strong>, p. 51<br />

Section 2<br />

Sheet A-4<br />

Page 51 of the <strong>Eclipse</strong> Combustion <strong>Engineering</strong> <strong>Guide</strong> carries two available<br />

heat charts, but unfortunately, the more useful one of the two doesn’t cover<br />

flue gas temperatures below 1000°F. The chart below, calculated from the<br />

same conditions as the <strong>Engineering</strong> guide chart, extends these curves down<br />

to 300°F flue gas temperature.<br />

% Available Heat<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

350%<br />

400%<br />

500%<br />

600%<br />

800%<br />

1000%<br />

1200%<br />

Based On Birmingham Natural Gas (1002 Btu/Cu. ft., 0.6 Sp. Gr.)<br />

0%<br />

10%<br />

0<br />

0 200 600 1000 1400 1800 2200 2600 3000<br />

83<br />

250%<br />

300%<br />

200%<br />

150%<br />

% Excess Air<br />

100%<br />

Flue Gas Exit Temperature, °F<br />

50%<br />

25%


Tech Notes<br />

Summary of Fuel-Air Ratio Control Systems<br />

for Nozzle Mixing Burners<br />

Control System<br />

System<br />

Cost*<br />

Required<br />

Gas<br />

Pressure**<br />

Control Mode<br />

Hi-Low Modulating Firing Rate?<br />

* I=Inexpensive, M= Moderate, E=Expensive<br />

** L= Low, M=Moderate, H= High<br />

*** Depends on air and gas pressures at burner. See sheets for individual systems.<br />

† If bleeder vent is connected to combustion chamber.<br />

If backpressure<br />

fluctuates, does system<br />

maintain constant:<br />

Fuel-Air<br />

Ratio?<br />

On multiple burner<br />

zones, if one is<br />

shut off, do the<br />

others hold their<br />

ratio?<br />

On-ratio, linked valve<br />

On-ratio,<br />

I L • No *** No<br />

characterized valve<br />

On-ratio, cross connected<br />

M L to M • • No *** No<br />

proportionator<br />

On-ratio, cross connected<br />

M H • • No Yes Yes<br />

proportionator & bleeder M L to M • • No Yes Yes<br />

On-ratio, electronic<br />

Excess air,<br />

E M • • Yes Yes No<br />

fuel-only control<br />

Excess air,<br />

I M • • No *** No<br />

biased proportionator<br />

Excess air,<br />

M H • • No No Yes<br />

throttled impulse M H • • No Yes† Yes<br />

84<br />

Section 2<br />

Sheet C-1


Tech Notes<br />

Nozzle Mixing Burners<br />

Ratio Control Using Proportioning (Linked) Fixed Port Valves<br />

FUEL<br />

(continued on page 86)<br />

2<br />

1<br />

Section 2<br />

Sheet C-2<br />

Operating Principle Air and gas passages in the burner are the fixed resistances in the system.<br />

Control valves in the air and gas lines are the variable resistance. The two<br />

valves are connected by linkages to a common drive motor so that, in theory,<br />

they open and close in proportion, maintaining a fixed air-gas ratio over<br />

the system’s turndown range.<br />

Advantages<br />

• Valve operation can be readily understood—confidence builder for persons<br />

unfamiliar with control systems.<br />

• Working parts are visible—little chance that a hidden defect is present.<br />

• Can be used with low gas supply pressures. If a large enough gas valve is<br />

selected, the pressure required is only a little higher than the burner gas<br />

nozzle pressure (2 in above figure).<br />

• Inexpensive.<br />

85


Disadvantages<br />

• Differences in valve characteristic curves make it difficult or impossible<br />

to hold a fixed gas-air ratio across the entire turndown range. The system<br />

is best limited to high-low control.<br />

• Unless air and gas pressures at the burner (1 and 2 in the figure on page<br />

85) are equal, unforeseen changes in combustion chamber pressure will<br />

cause the burner to shift off-ratio according to the table below:<br />

If Air Pressure Is<br />

Goes More<br />

Positive (+), Then:<br />

And Chamber Pressure<br />

Stays The<br />

Same (o), Then:<br />

Goes More<br />

Negative (-), Then:<br />

Higher than gas pressure Burner goes leaner No change Burner goes richer<br />

Same as gas pressure No change No change No change<br />

Lower than gas pressure Burner goes richer No change Burner goes leaner<br />

If air pressure at the burner is higher than the gas pressure (this is usually<br />

the case), they can be made equal by installing a limiting orifice valve<br />

between the gas control valve and burner and adjusting it until pressure<br />

(2) equals pressure (1). However, this negates one of the advantages of<br />

linked valve systems—the low gas pressure requirement.<br />

• If the air supply becomes starved due to a dirty blower wheel or a plugged<br />

filter, the system will go rich. The gas valve responds only to the mechanical<br />

linkage, not to air flow changes.<br />

• If multiple burners are controlled by a single set of linked valves, and the<br />

fuel flow to one burner is throttled back manually or shut off entirely,<br />

that fuel will go to the other burners, forcing them to run rich. In addition<br />

to the safety hazard this presents, it makes multiple burners tedious to<br />

set up. Any gas adjustment made to one burner upsets the settings of the<br />

other burners in the zone.<br />

86


Tech Notes<br />

Nozzle Mixing Burners<br />

Ratio Control Using Proportioning (Adjustable Characteristic) Valves<br />

Section 2<br />

Sheet C-3<br />

Operating Principle Air and gas passages in the burner are the fixed resistances in the system.<br />

Control valves are the variable resistances and are connected in tandem to<br />

a common drive motor. Because it is practically impossible to get two fixed<br />

port valves to track together over their turndown range, at least one of the<br />

valves is fitted with an adjustable screw rack which makes the valve open<br />

faster or slower than the linkage calls for. This permits the valve’s flow<br />

curve to be adjusted to more closely match that of the fixed port valve.<br />

Advantages<br />

Disadvantages<br />

• Valve operation can be readily understood—confidence builder for persons<br />

unfamiliar with control systems.<br />

• Working parts are visible—little chance that a hidden defect is present.<br />

• Can be used with low gas supply pressures.<br />

• Can be used with proportioning or high-low control systems.<br />

• Adjustable characteristic valves are usually expensive.<br />

• Time consuming to set up. Most screw racks contain 8 to 12 adjustment<br />

points, which must be individually set when the burner is commissioned.<br />

• Unless air and gas pressures at the burner (1 and 2 in the figure below)<br />

are equal, unforeseen changes in combustion chamber pressure will cause<br />

the burner to shift off-ratio according to the table on page 88.<br />

FUEL<br />

87<br />

2<br />

1


Disadvantages (continued)<br />

If Air Pressure Is<br />

Goes More<br />

Positive (+), Then:<br />

And Chamber Pressure<br />

Stays The<br />

Same (o), Then:<br />

Goes More<br />

Negative (-), Then:<br />

Higher than gas pressure Burner goes leaner No change Burner goes richer<br />

Same as gas pressure No change No change No change<br />

Lower than gas pressure Burner goes richer No change Burner goes leaner<br />

If air pressure at the burner is higher than the gas pressure (this is usually<br />

the case), they can be made equal by installing a limiting orifice valve<br />

between the gas control valve and burner and adjusting it until pressure<br />

(2) equals pressure (1). However, this negates one of the advantages of<br />

linked valve systems—the low gas pressure requirement.<br />

• If the air supply becomes starved due to a dirty blower wheel or a plugged<br />

filter, the system will go rich. The gas valve responds only to the mechanical<br />

linkage, not to air flow changes.<br />

• If multiple burners are controlled by a single set of linked valves, and the<br />

fuel flow to one burner is throttled back manually or shut off entirely,<br />

that fuel will go to the other burners, forcing them to run rich. In addition<br />

to the safety hazard this presents, it makes multiple burners tedious to<br />

set up. Any gas adjustment made to one burner upsets the settings of the<br />

other burners in the zone.<br />

88


Tech Notes<br />

Nozzle Mixing Burners<br />

Ratio Control Using Cross-Connected Proportionators<br />

Section 2<br />

Sheet C-4<br />

Operating Principle Burner air passage is fixed resistance for air flow. Gas passages in the<br />

burner are usually too large to serve as the fixed resistance, so a limiting<br />

orifice valve is installed at the gas inlet . At setup, this valve is adjusted to<br />

provide the correct gas flow when gas pressure (2) is equal to air pressure<br />

(1). Low fire gas-air ratio is set with spring in Proportionator.<br />

Advantages<br />

FUEL<br />

• Easy to set up. Once high and low fire ratios are set, everything in between<br />

is taken care of.<br />

• Can be used with proportioning or high-low control systems.<br />

• No problem with mismatched valve flow curves. Proportionator is slave to<br />

air valve and automatically matches its characteristic curve.<br />

• Fuel-air ratio is unaffected by unforeseen changes in combustion chamber<br />

pressure.<br />

• Although air starvation due to a plugged filter or dirty blower wheel will<br />

cause a loss in firing capacity, it will not cause the system to go rich. The<br />

proportionator automatically reduces fuel flow as the air flow drops off.<br />

• On multiple burner systems fed from a single air control valve and<br />

proportionator, changing or shutting off the fuel flow to one burner will<br />

not upset the fuel flow to the others. This makes initial setup easier and<br />

eliminates the hazard of burners in a zone going rich because one of<br />

them has been misadjusted or shut off.<br />

• If proportionator permits, this system can be converted to an excess air<br />

system (see page 95) with a simple proportionator spring adjustment.<br />

89<br />

3<br />

Cross<br />

Connection<br />

Proportionator Limiting<br />

Orifice<br />

2<br />

1


Disadvantages<br />

• Requires higher gas pressures. Gas pressure at (3) in the figure on page<br />

89 must equal air pressure at (1) plus gas pressure drop through<br />

proportionator valve.<br />

• Operating principles of proportionator are poorly understood, especially<br />

in oven and air heating industry; operators don’t know how to set up<br />

systems.<br />

• Internal working of proportionator can’t be seen. Operators don’t know if<br />

it’s working correctly and, as a result, are afraid of it.<br />

90


Tech Notes<br />

Section 2<br />

Sheet C-5<br />

Nozzle Mixing Burners<br />

Ratio Control Using Cross-Connected Proportionator With Bleed Fitting<br />

Operating Principle Used where proportionator system is desired, but where gas pressure at (3)<br />

is insufficient to make a conventional proportionator system work (see page<br />

89). This set-up is also used where the loading pressure on the proportionator<br />

is equal to or higher than the maximum inlet gas pressure the proportionator<br />

can tolerate. An adjustable bleed fitting—basically a needle valve in a tee—<br />

reduces the loading pressure (4) on the proportionator to a pressure at<br />

least 2" w.c. lower than the inlet gas pressure (3). This permits the<br />

proportionator to respond to changes in air loading pressure (1) over the<br />

entire turndown range.<br />

Advantages<br />

Disadvantages<br />

FUEL<br />

Bleed Fitting<br />

3<br />

Cross<br />

Connection<br />

Proportionator Limiting<br />

Orifice<br />

4<br />

If, for example, high fire air pressure (1) is 20" w.c., but gas supply (3) is<br />

only 13" w.c., the bleeder could be set to bleed off 50% of the air loading<br />

pressure, producing a pressure of 10" w.c. at (4) and (2).<br />

Same as the conventional proportionator system (see page 89), except that<br />

combustion chamber pressure fluctuations will cause the system to go offratio.<br />

Can be compensated by connecting the vent of the bleed fitting to the<br />

combustion chamber.<br />

• Same as the conventional proportionator system (see page 89), except<br />

that high inlet gas pressure is no longer required.<br />

• Bleed fittings contain small orifices which are susceptible to plugging by<br />

dirt. Filtered combustion air will alleviate the problem, but bleeders will<br />

always require frequent maintenance attention and they are subject to<br />

unauthorized tampering.<br />

91<br />

2<br />

1


Tech Notes<br />

Nozzle Mixing Burners<br />

Ratio Control Using Electronic Controllers<br />

Section 2<br />

Sheet C-6<br />

Operating Principle For all of its sophistication, a variation of the linked valve system. In this<br />

case, the linkage is electronic instead of mechanical. This system is also<br />

known as a “mass flow” control system, although this a misnomer—the<br />

flow signals fed to the controller are related either to pressure differential<br />

or to flow velocity.<br />

Advantages<br />

FUEL<br />

Air Flow<br />

Meter<br />

Fuel Flow<br />

Meter<br />

Cross<br />

Connection<br />

Primary<br />

Valve<br />

Electronic<br />

Controller<br />

Slave Valve<br />

The air and fuel lines each contain a motor-driven control valve and a flow<br />

metering device (orifice plate & ΔP transmitter, turbine meter, vortex-shedding<br />

flowmeter, etc.) One of the control valves is the primary valve, driven<br />

by the temperature controller. The second valve is slaved to the first through<br />

the electronic ratio controller.<br />

Flow meters in the air and fuel lines feed signals proportional to flow to the<br />

controller. The controller compares the signals and, if they are out of ratio,<br />

sends a correcting signal to the slave valve, which then alters its flow to<br />

restore the desired air-fuel ratio.<br />

• Extremely high accuracy inherent to electronic systems.<br />

• Can be integrated with master computer to control burner, as well as<br />

provide fuel consumption data.<br />

• If controller can be reprogrammed, can be reconfigured as an excess air<br />

system.<br />

• Will not allow the burner to go rich if air starvation occurs.<br />

• Provided that air and fuel supply pressures are adequate, will maintain a<br />

predetermined firing rate regardless of combustion chamber backpressure<br />

fluctuations. This is the only system that will do so.<br />

92<br />

TC


Disadvantages<br />

• Most expensive of all the ratio control systems.<br />

• No matter how sophisticated the electronics, the accuracy of the system<br />

is no better than the flow-sensing elements. If orifice plates are used to<br />

measure flows, accuracy degrades rapidly at turndown ratios greater than<br />

4:1 unless systems are individually calibrated in the field.<br />

• On a multiple burner system, turning the fuel of one burner down or off<br />

will cause the others to run rich—this system will try to maintain a gas<br />

flow proportional to airflow, regardless of where the gas has to go.<br />

93


Tech Notes<br />

Nozzle Mixing Burners<br />

Excess Air Operation By Controlling Fuel Only<br />

FUEL<br />

Optional Manual<br />

Trimming Valve<br />

Section 2<br />

Sheet C-7<br />

Operating Principle This system is known as the “fuel only control”, “fixed air” or “wild air”<br />

system; it is the simplest of all excess air systems. A motor-driven valve is<br />

placed in the fuel line, while the air has no flow controller—a manual<br />

trimming valve might be installed for servicing or limiting the high fire<br />

flow.<br />

Advantages<br />

Disadvantage<br />

• Low cost.<br />

• Permits attainment of the maximum excess air capability of the burner.<br />

• Suitable for high-low or proportioning control.<br />

• If multiple burners are controlled from a single fuel valve, reducing or<br />

shutting off the fuel flow to one of them causes the others to go richer.<br />

94


Tech Notes<br />

Nozzle Mixing Burners<br />

Excess Air Operation With Biased Proportionator<br />

Section 2<br />

Sheet C-8<br />

Operating Principle System installation is identical to conventional proportionator system<br />

(see page 89), but requires a proportionator whose spring can be adjusted<br />

to produce a significant negative bias. System is customarily set<br />

up to operate near stoichiometric ratio at high fire. As air valve closes,<br />

the proportionator—with its negative spring bias—causes fuel flow to<br />

decrease even more rapidly, producing increasing amounts of excess<br />

air.<br />

Advantages<br />

Disadvantages<br />

FUEL<br />

3<br />

Cross<br />

Connection<br />

Proportionator Limiting<br />

Orifice<br />

• Better fuel economy than fuel-only control excess air system (see page<br />

94).<br />

• Suitable for high-low or proportioning control.<br />

• Unlike fuel-only control system, turning down or shutting off the gas<br />

flow to one burner in a multi-burner system will not cause the others<br />

to go rich.<br />

• Not capable of excess air rates as high as the fuel-only control system.<br />

• More expensive than fuel-only control system.<br />

95<br />

2<br />

1


Tech Notes<br />

Nozzle Mixing Burners<br />

Excess Air Operation With Throttled Impulse (Adjustable Bleed) To<br />

Proportionator<br />

Section 2<br />

Sheet C-9<br />

Operating Principle A variation on the cross-connected proportionator system (see page 89).<br />

There is no control valve in the combustion air line. Instead, the firing rate<br />

control valve is placed in the bleed leg of a tee in the impulse line to the<br />

proportionator, and the linkage is adjusted to make the bleed valve reverse-acting;<br />

i.e., the valve closes when the temperature controller calls<br />

for heat. The limiting orifice or needle valve in the loading line is closed<br />

partway to restrict air flow through the impulse line—this insures that the<br />

motor-driven bleed valve is able to control over its entire range.<br />

Advantage<br />

Disadvantages<br />

FUEL<br />

Cross<br />

Connection<br />

Small Limiting Orifice<br />

Or Needle Valve<br />

Tee<br />

Optional Manual<br />

Trimming Valve<br />

Proportionator Limiting<br />

Orifice<br />

Motor-Driven<br />

Bleed Valve<br />

• Of all the excess air control systems, this one probably has the best<br />

combination of sensitivity and a wide operating range.<br />

• Like fixed bleed orifice sytems, this control system can be upset by accumulations<br />

of airborne dirtand unauthorized tampering.<br />

• The only valve proven suitable as a motor-driven bleed valve is the North<br />

American 3/8" Adjustable Port Valve. Even 3/8" motorized oil valves—<br />

whether <strong>Eclipse</strong>’s, Hauck’s or North American’s—lack the sensitivity for<br />

this application.<br />

96


Tech Notes<br />

Backpressure Compensation System<br />

For Cross-Connected Nozzle Mix Burner Systems<br />

Purpose:<br />

Method:<br />

Example:<br />

To maintain a constant burner firing rate and fuel-air ratio regardless of<br />

random fluctuations in combustion chamber backpressure.<br />

Hold a constant differential pressure between point “B” (upstream of main<br />

air control valve) and point “D” (combustion chamber), even if pressure at<br />

point “D” varies. This is done by putting two air control valves in series, one<br />

responding to the temperature controller, the other to the differential pressure<br />

between points “B” and “D”.<br />

Blower<br />

Power<br />

Supply<br />

Pressure<br />

Controller<br />

A<br />

ΔP Transducer<br />

PC<br />

Assume backpressure will vary uncontrollably between 0 & 10" w.c.<br />

Assume burner ΔP is 10" w.c. @ high fire, 1" w.c. @ low fire.<br />

Main air control valve ΔP is 5" w.c. @ high fire.<br />

Blower develops 30" w.c. static pressure.<br />

B<br />

Section 2<br />

Sheet C-10<br />

Static Pressures, Differential Pressures, Must Be<br />

Firing Back "W.C. "W.C. Constant<br />

Rate Press A B C D A-B B-C C-D A-C A-D B-D<br />

0" w.c. 30 15 10 0 15 5 10 20 30 15<br />

High 5" w.c. 30 20 15 5 10 5 10 15 25 15<br />

10" w.c. 30 25 20 10 5 5 10 10 20 15<br />

0" w.c. 30 15 1 0 15 14 1 29 30 15<br />

Low 5" w.c. 30 20 6 5 10 14 1 24 25 15<br />

10" w.c. 30 25 11 10 5 14 1 19 20 15<br />

97<br />

Motorized<br />

Trim Valve<br />

TC<br />

Main Air<br />

Control Valve<br />

Chamber Pressure Impulse Line<br />

Temperature<br />

Controller<br />

C<br />

ABP ALO<br />

D


Tech Notes<br />

Conversion Factors For Emissions Calculations<br />

Preparing emissions estimates for environmental authorities can be difficult<br />

because they often ask for emissions expressed in units not available<br />

through existing data. Here are the conversion procedures for some<br />

of the more commonly-used measurement systems:<br />

1) ppm at 3% O (15% excess air) in dry flue gases to lb./million Btu<br />

2<br />

(ppm)(F3) = lb./million Btu<br />

Values of multiplier F3 for various fuels and emissions<br />

NOX Aldehydes, Unburned Hydrocarbons,<br />

Measured Measured As Measured As:<br />

Various Fuels As NO2 CO Formaldehyde Methane Propane CO2 SO2<br />

Birmingham Nat. Gas* .001187 .000722 .000781 .000416 .001147 .001147 .001672<br />

Propane .001185 .000721 .000780 .000415 .001146 .001146 .001669<br />

Butane .001212 .000735 .000798 .000424 .001172 .001172 .001707<br />

#2 Oil** .001317 .000801 .000867 .000461 .001273 .001273 .001854<br />

2) lb./million Btu to ppm at 3% O (15% excess air) in dry flue<br />

2<br />

gases<br />

(lb./million Btu)(f3) = ppm @ 3% O2, dry<br />

Values of multiplier f3 for various fuels and emissions<br />

NOX Aldehydes, Unburned Hydrocarbons,<br />

Measured Measured As Measured As:<br />

Various Fuels As NO2 CO Formaldehyde Methane Propane CO2 SO2<br />

Birmingham Nat. Gas* 842 1385 1280 2404 872 872 598<br />

Propane 844 1387 1282 2410 873 873 599<br />

Butane 825 1361 1253 2358 853 853 586<br />

#2 Oil** 759 1248 1153 2169 786 786 539<br />

3) ppm at 0% O in dry flue gases to lb./million Btu<br />

2<br />

(ppm)(F0) = lb./million Btu<br />

Values of multiplier F0 for various fuels and emissions<br />

NOX Aldehydes, Unburned Hydrocarbons,<br />

Measured Measured As Measured As:<br />

Various Fuels As NO2 CO Formaldehyde Methane Propane CO2 SO2<br />

Birmingham Nat. Gas* .001017 .000617 .00067 .000356 .000983 .000983 .001432<br />

Propane .001018 .000619 .00067 .000356 .000984 .000984 .001434<br />

Butane .001042 .000634 .000686 .000365 .001007 .001007 .001468<br />

#2 Oil** .001133 .00069 .000746 .000397 .001096 .001096 .001596<br />

* 1002 Gross Btu/cubic foot, 8.48 Cubic feet dry flue products at stoichiometric ratio.<br />

** Calculated as heptadecane, C 17 H 36 , 19,270 Gross Btu/lb.<br />

98<br />

(continued on page 99)<br />

Section 2<br />

Sheet E-2


4) lb./million Btu to ppm at 0% O2 in dry flue gases<br />

(lb./million Btu)(f0) = ppm @ 0% O2, dry<br />

Values of multiplier f0 for various fuels and emissions<br />

NOX Aldehydes, Unburned Hydrocarbons,<br />

Measured Measured As Measured As:<br />

Various Fuels As NO2 CO Formaldehyde Methane Propane CO2 SO2<br />

Birmingham Nat. Gas* 983 1621 1493 2809 1017 1017 698<br />

Propane 982 1616 1493 2809 1016 1016 697<br />

Butane 960 1577 1458 2740 983 983 681<br />

#2 Oil** 883 1449 1340 2519 912 912 627<br />

5) ppm at 3% O or 0% O in dry flue gases to lb./year<br />

2 2<br />

First, calculate lb./million Btu with Step 1 or 3 on the first page.<br />

Then convert to lbs./year with the following relationship:<br />

(lb./million Btu) (Maximum Burner Input, million Btu/hr.) (operating<br />

hrs./year) = lb./year<br />

6) lb/year to ppm at 3% O or 0% O in dry flue gases<br />

2 2<br />

lb./year ÷ operating hrs./year ÷ Maximum Burner Input, million<br />

Btu/hr. = lb./million Btu<br />

Convert lb./million Btu to ppm with Step 2 or 4.<br />

7) ppm at 3% O 2 or 0% O 2 in dry flue gases to gm/Nm 3<br />

(ppm)(G) = gm/Nm 3<br />

Values of multiplier G for various emissions<br />

NOX Aldehydes, Unburned Hydrocarbons,<br />

Measured Measured As Measured As:<br />

Emission As NO 2 CO Formaldehyde Methane Propane CO2 SO2<br />

G .002031 .001235 .001341 .000716 .001969 .001965 .002861<br />

8) gm/Nm3 to ppm at 3% O or 0% O in dry flue gases<br />

2 2<br />

(gm/Nm3 )(g) = ppm<br />

Values of multiplier g for various emissions<br />

NOX Aldehydes, Unburned Hydrocarbons,<br />

Measured Measured As Measured As:<br />

Emission As NO2 CO Formaldehyde Methane Propane CO2 SO2<br />

g 492.4 809.7 745.7 1396.6 507.9 508.9 349.5<br />

* 1002 Gross Btu/cubic foot, 8.48 Cubic feet dry flue products at stoichiometric ratio.<br />

** Calculated as heptadecane, C 17 H 36 , 19,270 Gross Btu/lb.<br />

99


Tech Notes<br />

Section 2<br />

Sheet E-3<br />

Correcting Emissions Readings to 3% O 2 or 11% O 2 Basis<br />

Many environmental authorities, including<br />

the U.S. EPA and several European agencies,<br />

require that gaseous pollutants, like<br />

NO and CO, be reported in ppm (parts per<br />

x<br />

million by volume) corrected to a based of<br />

3% excess O —or 15% excess air—in the flue<br />

2<br />

gases. Japan, on the other hand, customarily<br />

uses a base of 11% O . 2<br />

Emission readings taken at different oxygen<br />

levels can be easily converted to a standard<br />

base using a multiplier:<br />

ppm = ppm x multiplier<br />

corrected test<br />

The multiplier is calculated from the oxygen<br />

reading taken during the test and the<br />

base oxygen reading required by the regulation:<br />

21 - % O base<br />

2<br />

multiplier =<br />

21 - % O test 2<br />

For your convenience, a table of multipliers<br />

is presented to the right.<br />

100<br />

Multiplier For:<br />

%O2 3%O2 11%O2 0 .86 .48<br />

1 .9 .5<br />

2 .95 .53<br />

3 1 .56<br />

4 1.06 .59<br />

5 1.13 .63<br />

6 1.2 .67<br />

7 1.29 .71<br />

8 1.38 .77<br />

9 1.5 .83<br />

10 1.64 .91<br />

11 1.8 1<br />

12 2.0 1.11<br />

13 2.25 1.25<br />

14 2.57 1.43<br />

15 3.0 1.67<br />

16 3.6 2<br />

17 4.5 2.5<br />

18 6 3.33<br />

18.5 7.2 4<br />

19 9 5<br />

19.5 12 6.67<br />

20 18 10<br />

20.2 22.5 12.5<br />

20.4 30 16.67<br />

20.6 45 25<br />

20.8 90 50


Tech Notes<br />

Recuperator Efficiency: Fuel Savings & Effectiveness<br />

Percent Fuel Savings<br />

Percent Effectiveness<br />

Section 2<br />

Sheet H-1<br />

There are two commonly-used methods for figuring recuperator efficiency:<br />

percent fuel savings and percent effectiveness.<br />

Percent savings is calculated by this relationship:<br />

( )<br />

% Available Heat Less Recuperator<br />

% Savings= x100<br />

% Available Heat With Recuperator<br />

Because available heat figures vary with the composition of the fuel and<br />

the amount of excess air, one supplier’s fuel savings data may be different<br />

from another’s by one or two percentage points. More often than not, the<br />

tables will be based on natural gas at 10% excess air.<br />

Percent effectiveness measures the inherent heat transfer capabilities of<br />

the recuperator without regard to fuel composition or fuel/air ratio:<br />

(<br />

Combustion Air Temp Combustion Air Temp<br />

)<br />

Flue Gas Temp<br />

Entering Exchanger Entering Exchanger<br />

Leaving Exchanger - Entering Exchanger<br />

% Effectiveness= x100<br />

Combustion Air Temp<br />

-<br />

Basically, it compares the actual rise in combustion air temperature to the<br />

maximum that could possibly be achieved (combustion air preheated to<br />

the same temperature as the incoming flue gases). Since the maximum is<br />

unattainable, effectiveness is always less than 100%.<br />

The graph on page 102 relates combustion air temperature to flue gas temperature<br />

and recuperator effectiveness.<br />

To predict air preheat, read up from the flue gas temperature to the line<br />

representing the effectiveness of the exchanger, then left to air preheat.<br />

101


Figure 1:<br />

Heat Exchanger<br />

Effectiveness Curves<br />

Based on Combustion Air<br />

Entering at 60° F.<br />

Combustion Air Preheat, °F<br />

1500<br />

1000<br />

500<br />

0<br />

0<br />

500<br />

1000<br />

% Effectiveness<br />

90% 80% 70% 60% 50%<br />

1500 2000<br />

Flue Gas Temp. Entering Exchanger, °F<br />

102<br />

2500<br />

3000<br />

40%<br />

30%<br />

20%<br />

10%


TechNotes<br />

NFPA Requirements for Gas Burner Systems<br />

Reference: NFPA 86 – Ovens and Furnaces, 2003 Edition<br />

General Remarks:<br />

Section 2<br />

Sheet R-1<br />

The schematic and notes on the following page condense the gas burner system requirements of National Fire<br />

Protection Association (NFPA) 86 into an easy-to-use format. They should provide most of the engineering<br />

information required to lay out burner air and gas trains. Numbers in parentheses refer to the applicable<br />

paragraphs of the standard.<br />

In addition to the requirements shown on the schematic, NFPA 86 also requires that the combustion control<br />

system have the following features:<br />

1) All safety divices must be listed for their intended service (7.2.1), including purge and ignition timers<br />

(7.2.3).<br />

2) Safety control circuits must be single phase, one side grounded, with all breaking contacts in the<br />

“hot”, ungrounded, circuit protected line not exceeding 120V. (7.2.11)<br />

3) Prior to energizing spark or lighting pilot, a timed pre-purge of at least four standard cubic feet of air<br />

per cubic foot of heating chamber volume is required (7.4.1).<br />

a) Airflow must be proven & maintained during the purge.<br />

b) Safety shutoff valve must be closed and when the chamber input exceeds 400,000 Btu/hr<br />

(117 kW) it must be proved closed and interlocked. Proof of closure can be achieved by either a<br />

proof of closure switch on at least one valve or a valve proving system.<br />

4) Exceptions to a re-purge are allowed for momentary shutdowns if (any one): (7.4.1.5)<br />

a) Each burner is supervised, each has safety shutoff valves, and the fuel accumulation in the<br />

heating chamber can not exceed 25% of lower explosive limit.<br />

b) Each burner is supervised, each has safety shutoff valves, and at least one burner remains on in<br />

same chamber.<br />

c) The chamber temperature is more than 1400°F (760°C).<br />

5) Exception to the pre-purge is allowed for explosion resistant radiant tube systems. (7.4.1.4)<br />

6) All safety interlocks must be connected in series ahead of the safety shutoff valves. Interposing<br />

relays are allowed when the required load exceeds the rating of available safety contacts or where<br />

safety logic requires separate inputs, AND the contact goes to a safe state on loss of power, AND<br />

each relay serves only one interlock. (7.2.7)<br />

7) Any motor starters required for combustion must be interlocked into the safety circuit. (7.6.3)<br />

8) A listed manual reset excess temperature limit control is required except where the system design<br />

can not exceed the maximum safe temperature. (7.16)<br />

9) The user has the responsibility for establishing a program of inspection, testing, and maintenance<br />

with documentation performed at least annually. (7.2.5.2)<br />

The scope of NFPA 86 extends to all the factors involved in the safe operation of ovens and furnaces, and<br />

anyone designing or building them should be familiar with the entire standard. Copies can be purchased from:<br />

The National Fire Protection Association<br />

1 Batterymarch Park<br />

Quincy, MA 02269-9101<br />

800-344-3555 (508-895-8300 if outside U.S.)<br />

www.nfpa.org<br />

103


Gas<br />

1<br />

2<br />

3<br />

4<br />

Piping Schematic<br />

Item Description<br />

5<br />

6<br />

12<br />

7<br />

16<br />

10<br />

8<br />

9 9<br />

Air Flow<br />

Controls<br />

Gas Flow<br />

Controls<br />

Reference<br />

Paragraph<br />

6.2.5.3<br />

6.2.5.1<br />

6.2.5.3.3<br />

6.2.5.4<br />

6.2.5.4<br />

6.2.5.4.8<br />

7.7.1.8<br />

7.7.2.1<br />

7.7.1.9<br />

7.7.2.2<br />

7.7.2.3<br />

7.8.1<br />

7.8.2<br />

7.9.2<br />

7.9.2.1<br />

*Underwriters Laboratory (UL) listing is accepted throughout the United States. Listed products can be found in the UL Gas and Oil<br />

Equipment Directory, available from Underwriters Laboratory, Inc. Publications Stock, 333 Pfingsten Road, Northbrook, IL 60062-2096.<br />

Factory Mutual (FM) listed equipment is also acceptable in most jurisdictions and can be found in the FM Approval <strong>Guide</strong> available from<br />

Factory Mutual Research Corporation, 115 Boston-Providence Turnpike, Norwood, MA 02062.<br />

8<br />

11 11<br />

1 Facility to install drip leg or sediment trap for each fuel supply line. Must be a minimum of 3” long.<br />

2 Individual manual shutoff valve to each piece of equipment. 1/4 turn valves recommended.<br />

3 Filter or strainer to protect downstream safety shutoff valves.<br />

4 Pressure regulator required wherever plant supply pressure exceeds level required for proper burner function<br />

or is subject to excessive fluctuations.<br />

5 Regulator vent to safe location outside the building with water protection & bug screen.<br />

Vent piping not required for listed regulator/vent limiter combination. Vent piping not required for ratio<br />

regulator/zero governor.<br />

6 Gas pressure switches may be vented to regulator vent lines if backloading won’t occur.<br />

7 Over pressure protection required if gas pressure at regulator inlet exceeds rating of any downstream part.<br />

8 Two listed* safety shutoff valves required for each main and pilot gas burner system. A single valve can be<br />

used for explosion resistant radiant tube systems.<br />

9 Visual position indication required on safety shutoff valves to burners or pilots in excess of 150,000 Btu/hr<br />

(44 kW).<br />

10 Proof of closure switch or valve proving system required for capacities over 400,000 Btu/hr (117 kW).<br />

11 Permanent and ready means for checking leak tightness of safety shutoff valves.<br />

12 Listed* low gas pressure switch (normally open, makes on pressure rise).<br />

13 Listed* high gas pressure switch (normally closed, breaks on pressure rise).<br />

14 Flame Supervision:<br />

Piloted burners<br />

- Continuous pilot: Two flame sensors must be used, one for the pilot flame and one for the main burner flame.<br />

- Intermittent pilot: Can use a single flame sensor for self-piloted burners (from same port as main, or<br />

has a common flame base and has a common flame envelope with the main flame).<br />

- Interrupted pilot: A single flame sensor is allowed.<br />

Line, Pipe, Radiant burners<br />

- If the burners are adjacent and light safely and reliably from burner to burner, then a single sensor is<br />

allowed if it is located at the farthest end from the source of ignition.<br />

15 Spark Ignition:<br />

Except for explosion resistant radiant tube systems, direct spark igniters must be shut off after main burner<br />

trial-for-ignition.<br />

If a burner must be ignited at reduced input (forced low fire start), an ignition interlock must be provided to<br />

prove control valve position.<br />

Trial-for-ignition of the pilot or main must not exceed 15 seconds. An exception is allowed where fuel<br />

accumulation in the heating chamber can not exceed 25% of the lower explosive limit and the authority<br />

having jurisdiction approves a written request for extended time.<br />

16 Listed* combustion air flow or pressure proving switch (normally open, makes on pressure rise).<br />

10<br />

104<br />

11<br />

13<br />

15<br />

14<br />

7.9.2.2<br />

7.4.2.4<br />

7.15<br />

7.4.2<br />

7.6.2


Tech Notes<br />

IRI Requirements For Gas Burner Systems<br />

Reference: IM.4.2.0 & IM.4.2.1, June 1, 2000<br />

General Remarks:<br />

105<br />

Section 2<br />

Sheet R-2<br />

These schematic and notes condense the gas burner system requirements of GE Global Asset Protection<br />

Services - Industrial Risk Insurers (IRI) publications “IM.4.2.0 OVENS AND FURNACES - NFPA 86-1999” and<br />

“IM.4.2.1 HEAT TREAT FURNACES WITH INTERNAL QUENCH TANKS”. They should provide most of the<br />

engineering information required to lay out burner air and gas trains. IRI follows the requirements of NFPA 86 but<br />

makes additional clarifications and changes for increased safety.<br />

In addition to the requirements shown on the following schematic, IRI also requires that the combustion control<br />

system have the following features. Numbers in parenthesis reference the paragraphs in IM.4.2.0, IM.4.2.1, and<br />

NFPA 86.<br />

1) NFPA: Safety control circuits must be single phase, one side grounded, with all breaking contacts in the<br />

“hot”, ungrounded, circuit protected line and not exceed 120V. IRI: Any time delay used to avoid nuisance<br />

shutdowns from momentary power fluctuations cannot exceed 5 seconds and any timer must not be<br />

adjustable above this maximum. (5-2)<br />

2) NFPA: Prior to energizing spark or lighting pilot, a timed pre-purge of at least four standard cubic feet of<br />

air per cubic foot of heating chamber volume is required. IRI: Any adjustable purge timer must clearly<br />

show its setting, have limited access, and be periodically inspected. Any employee with access must be<br />

trained on its setting and consequences if not set properly. (5-4.1.2)<br />

a. NFPA: Airflow must be proven and maintained during the purge. IRI: The location of pressure<br />

switch sensing points must be analyzed against all other conditions (such as dirt accumulation<br />

and damper positions in the system) to assure it will truly prove the required airflow. (5-4.1.2.1)<br />

b. NFPA: Where the capacity exceeds 400,000 Btu/hr (117kW) at least one of the safety shutoff<br />

valves must be proved closed and interlocked to the purge. IRI: Both safety shutoff valves shall<br />

be proved closed and interlocked. (5-7.2.2)<br />

3) IRI: The trial for ignition for pilots or main burners must not exceed 10 seconds. (5-4.2.1, 5-4.2.2)<br />

Directly control the spark from a listed flame safeguard. (5-2.3)<br />

4) NFPA: All safety interlocks must be connected in series ahead of the safety shutoff valves. Interposing<br />

relays are allowed when the required load exceeds the rating of available safety contacts, or where the<br />

safety logic requires separate inputs, AND the contact goes to safe state on loss of power, AND each<br />

relay serves only one interlock. IRI: An interposing relay can be powered by more than one safety limit if<br />

the safety shutoff valves derive power in series through the limits. When one limit opens then the fuel is<br />

shutoff to all burners that use the interposing relay as a permissive. (5-2.7)<br />

5) NFPA: Any motor starters, circulation, and exhaust fans required for safe combustion or purge must be<br />

proven. (5-6.3) IRI: Use a rotation switch if pressure switches or sail switches are not suitable. (5-5.1)<br />

6) NFPA-IRI: A listed manual reset excess temperature limit control is required except where the system<br />

design cannot exceed the maximum safe temperature. (5-16)<br />

7) NFPA-IRI: Piping and electrical schematics of the proposed system must be submitted to the local IRI<br />

office in whose jurisdiction the system will be located. Drawings must include the various device settings,<br />

switch positions, configurations and notes on options. Stamped approval is required before construction<br />

begins. (1-4)<br />

8) NFPA-IRI: The user has the responsibility to establish a program of inspection, testing, and maintenance<br />

with documentation performed at least annually. (5-2.5.2)


1<br />

Gas<br />

2<br />

3<br />

Item Description<br />

4<br />

5<br />

6<br />

12<br />

Piping Schematic<br />

1 Facility to install drip leg or sediment trap for each fuel supply line. Must be a minimum of 3” long.<br />

7<br />

16<br />

2 Individual manual shutoff valve to each piece of equipment. 1/4 turn valves recommended. Must be in an<br />

accessible location near the floor.<br />

3 Filter or strainer to protect downstream safety shutoff valves.<br />

4 Pressure regulator required wherever plant supply pressure exceeds level required for proper burner function<br />

or is subject to excessive fluctuations.<br />

5 Regulator vent to safe location outside the building with water protection & bug screen.<br />

Vent piping can terminate inside the building when gas is lighter than air, vent contains restricted orifice,<br />

and there is sufficient building ventilation, where there are high clearances between the equipment and<br />

roof and there are no ignition sources.<br />

Vent piping not required for lighter than air gases at less than 1 psi, vent contains restricted orifice, and<br />

there is sufficient ventilation. Vent piping not required for ratio regulator.<br />

6 Gas pressure switches may be vented to regulator vent lines if backloading won’t occur. No vent line<br />

required if switch has no diaphragm.<br />

7 Relief valve required if gas pressure at regulator inlet exceeds rating of safety shutoff valve. Physical<br />

location can be upstream to meet application requirements.<br />

8 Two listed* safety shutoff valves required for each main and pilot gas burner system. Both safety shutoff<br />

valves must close after interruption of interlocks, combustion safeguard, or operating controls; no exceptions<br />

allowed for multiple burner systems. A single valve can be used for explosion resistant radiant tube systems.<br />

9 Position indication (not proof-of-closure) required on safety shutoff valves to burners or pilots in excess of<br />

150,000 Btu/hr (44 kW). Electrical indicators must not replace mechanical indicators.<br />

10 For capacities over 400,000 Btu/hr (117 kW) both safety shutoff valves must have a closed position switch to<br />

interlock with the pre-purge.<br />

11 Permanent and ready means for checking leak tightness of safety shutoff valves. Test in progressive<br />

intervals starting weekly, monthly, quarterly, then annually.<br />

12 Listed* low gas pressure switch (normally open, makes on pressure rise).<br />

13 Listed* high gas pressure switch (normally closed, breaks on pressure rise).<br />

14 Flame Supervision:<br />

Piloted burners<br />

- Continuous pilot: Two flame sensors must be used, one for the pilot flame and one for the main burner flame.<br />

- Intermittant pilot: Can use a single flame sensor for self-piloted burners (from same port as main, or<br />

has a common flame base and has a common flame envelope with the main flame).<br />

- Interrupted pilot: A single flame sensor is allowed.<br />

Line, Pipe, Radiant burners<br />

- If the burners are adjacent and light safely and reliably from burner to burner, then a single sensor is<br />

allowed if it is located at the farthest end from the source of ignition.<br />

Continuous (>24 hr) operation with UV scanners must use self checking style scanners (or use flame rods<br />

instead).<br />

10<br />

8<br />

9<br />

106<br />

17<br />

8<br />

10<br />

9<br />

Air Flow<br />

Controls<br />

11<br />

13<br />

Gas Flow<br />

Controls<br />

15<br />

14<br />

Reference<br />

Paragraph<br />

4-2.4.4<br />

4-2.4.1<br />

4-2.4.3<br />

4-2.4.5.1<br />

4-2.4.5.2<br />

4-2.4.5.5<br />

5-7.1.7<br />

5-7.2.1<br />

5-7.1.2<br />

5-7.1.8<br />

5-7.2.2<br />

5-7.2.3<br />

5-8.1<br />

5-8.2<br />

5-9<br />

5-9.2.1<br />

5-9.2.2<br />

5-9.2<br />

Continued on next page


Continued from previous page<br />

Item Description<br />

15 Spark Ignition:<br />

Except for explosion resistant radiant tube systems, direct spark igniters must be shut off after main<br />

burner trial-for-ignition.<br />

If a burner must be ignited at reduced input (forced low fire start), an ignition interlock must be provided to<br />

prove control valve position.<br />

Trial-for-ignition of the pilot or main must not exceed 10 seconds. An exception is allowed where fuel<br />

accumulation in the heating chamber can not exceed 25% of the lower explosive limit and the authority<br />

having jurisdiction approves a written request for extended time.<br />

Manual (pushbutton) ignition systems must be designed to prevent further spark after the trial-for-ignition<br />

until a full purge is first completed.<br />

16 Listed* combustion air flow or pressure proving switch (normally open, makes on pressure rise).<br />

17 A Listed* normally open (N.O.) vent valve with vent pipe run to a safe outside location is required when the line<br />

capacity exceeds 400,000Btu/hr (117kW). Do not manifold to other vent lines. Size the vent line according to the<br />

following table.<br />

Fuel Line Size Vent Line Size<br />

1½”<br />

2”<br />

2½”<br />

3½”<br />

4”<br />

5½”<br />

6½”<br />

8”<br />

*Underwriters Laboratory (UL) listing is accepted throughout the United States. Listed products can be found in the UL Gas and Oil<br />

Equipment Directory, available from Underwriters Laboratory, Inc. Publications Stock, 333 Pfingsten Road, Northbrook, IL 60062-2096.<br />

Factory Mutual (FM) listed equipment is also acceptable in most jurisdictions and can be found in the FM Approval <strong>Guide</strong> available from<br />

Factory Mutual Research Corporation, 115 Boston-Providence Turnpike, Norwood, MA 02062.<br />

107<br />

¾”<br />

1”<br />

1¼”<br />

1½”<br />

2”<br />

2½”<br />

3”<br />

3½”<br />

As an alternate to using a vent valve, use a valve tightness proving system that is automatically activated<br />

upon startup and shutdown<br />

More information can be obtained by contacting:<br />

Industrial Risk Insurers<br />

85 Woodland Street<br />

Hartford, CT 06102-5010<br />

860-520-7329<br />

860-520-7559 fax<br />

http://www.industrialrisk.com<br />

National Fire Protection Association<br />

1 Batterymarch Park<br />

Quincy, MA 02269-9101<br />

800-344-3555<br />

508-895-8300<br />

http://www.nfpa.org<br />

Reference<br />

Paragraph<br />

5-15.2<br />

5-15.1<br />

5-4.2.2<br />

5-15<br />

5-6.4<br />

5-7.2.1


Tech Notes<br />

Heating Values of Flammable Liquids<br />

General Remarks:<br />

Section 3<br />

Sheet I-1<br />

Designers of fume incinerators are sometimes concerned about the heating<br />

value of the solvents being incinerated. The table below lists approximate<br />

heating values of various commercial solvents and flammable liquids,<br />

calculated from the references at the bottom of page 109.<br />

Gross Heating Value<br />

Liquid Btu/U.S. Gallon Btu/lb.<br />

Acetone 87,360 13,040<br />

n-Amyl Acetate 105,670 14,410<br />

sec-Amyl Acetate 105,670 14,410<br />

Amyl Alcohol 110,290 16,220<br />

Benzene (Benzol) 132,150 18,100<br />

n-Butyl Acetate 97,480 13,250<br />

n-Butyl Alcohol 104,760 15,640<br />

sec-Butyl Alcohol 104,760 15,640<br />

Butyl Cellosolve (Glycol Monobutyl Ether) 105,630 14,040<br />

Butyl Propionate 106,060 14,130<br />

Camphor 143,010 17,150<br />

Carbon Disulfide 61,210 5,650<br />

Cellosolve (Ethylene Glycol Monoethyl) 91,960 11,790<br />

Cellosolve Acetate (Ethylene Glycol Monoethyl Ether Acetate)<br />

87,140 10,720<br />

Chlorobenzene-mono 105,420 11,490<br />

m- or p-Cresol 122,870 14,730<br />

Cyclohexane 130,300 20,050<br />

Cyclohexanone 117,900 15,710<br />

p-Cymene 146,000 19,450<br />

Denatured Alcohol 68,670 * 9,930 *<br />

Dibutyl Phthalate 109,630 13,150<br />

o-Dichlorobenzene 86,330 7,960<br />

N-Dimethyl Formamide 85,340 11,370<br />

p-Dioxane (Diethylene Dioxide) 89,380 10,720<br />

Ethyl Acetate 82,420 10,990<br />

Ethyl Alcohol 84,250 12,770<br />

Ethyl Ether 93,730 16,060<br />

(continued on page 109)<br />

* Approximate; liquid is a mixture whose composition may vary.<br />

108


References<br />

Gross Heating Value<br />

Liquid Btu/U.S. Gallon Btu/lb.<br />

Ethyl Lactate 78,990 9,470<br />

Ethyl Methyl Ether 86,700 14,850<br />

Ethyl Propionate 90,970 12,290<br />

Gasoline 129,000 * 21,050 *<br />

Hexane 113,850 20,700<br />

Kerosene (Fuel Oil #1) 131,000–137,000 * 19,700–19,900 *<br />

Methyl Acetate 71,610 9,300<br />

Methyl Alcohol 63,490 9,620<br />

Methyl Carbitol (Diethylene Glycol Methyl Ether) 89,650 10,340<br />

Methyl Cellosolve 81,190 10,080<br />

Methyl Cellosolve Acetate 79,530 9,470<br />

Methyl Ethyl Kerosene (2-Butanone) 97,710 14,580<br />

Methyl Lactate 80,160 8,810<br />

Nitrobenzene 90,170 9,010<br />

Nitroethane 50,190 5,470<br />

Nitromethane 17,010 1,850<br />

1-Nitropropane 66,290 7,950<br />

2-Nitropropane 65,760 7,950<br />

Propyl Acetate 85,770 11,430<br />

Propyl Alcohol 96,560 14,410<br />

iso-Propyl Alcohol 93,160 14,120<br />

n-Propyl Ether 109,280 17,470<br />

Pyridine 122,210 14,920<br />

Toluene 131,970 18,330<br />

Turpentine 163,500 * 20,000 *<br />

Vinyl Acetate 71,610 9,540<br />

o-Xylene 135,870 18,610<br />

* Approximate; liquid is a mixture whose composition may vary.<br />

NFPA 325M-1984, Fire Hazard Properties of Flammable Liquids, Gases, and<br />

Volatile Solids.<br />

Handbook of Chemistry and Physics, 40th Edition, 1959.<br />

109


Tech Notes<br />

Immersion Tube Sizing<br />

General Remarks<br />

Section 3<br />

Sheet L-1<br />

In 1944, AGA Testing Laboratories published Research Bulletin No. 24, “Research<br />

in Fundamentals of Immersion Tube Heating With Gas”. This landmark<br />

paper established beyond a doubt that the thermal efficiency of immersion<br />

tubes was strictly a function of their length—tube diameter had<br />

no effect. From their tests, AGA also developed an empirical relationship<br />

between thermal efficiency, effective tube length and burner firing rate for<br />

immersion tubes in boiling water:<br />

E =20log L2<br />

R +71<br />

where E = thermal efficiency, %<br />

L = effective tube length, ft.<br />

R = burner input rate, 1000’s of Btu/hr<br />

Effective tube length is the total centerline length of the tube immersed in<br />

water, including elbows, plus 1.1 feet for each elbow or return bend.<br />

This equation is the basis of the tube sizing charts in <strong>Eclipse</strong> literature.<br />

The fact that tube diameter had no effect on efficiency came as a shock to<br />

many people, but it makes sense when you think about it. Increasing the<br />

tube diameter increases the heat transfer surface, but it also produces<br />

lower gas velocity inside the tube, thus promoting a thicker gas boundary<br />

layer along the inside walls of the tube. This leads to poorer heat transfer.<br />

AGA’s studies determined that the loss in convection heat transfer almost<br />

exactly offset the gain in transfer surface.<br />

Over 40 years have passed since this paper was published. Far more sophisticated<br />

heat transfer equations have been developed, and we now have<br />

computers to perform the calculations, yet no one has been able to make a<br />

significant improvement to the speed and accuracy of AGA’s equation.<br />

The curves in the graph on page 111 were calculated from the AGA equation.<br />

110


Figure 1:<br />

Immersion Tube<br />

Efficiency vs. Length<br />

Burner Design<br />

Figure 2:<br />

Burner Design vs.<br />

Firing Rate<br />

Effective Tube Length, In Feet<br />

150<br />

100<br />

50<br />

%<br />

Efficiency<br />

60<br />

65<br />

70<br />

75<br />

80<br />

Heat Transfered To Tank, Btu/hr. (In Million’s)<br />

If heat transfer requirements don’t determine immersion tube diameters,<br />

what does?<br />

Burner design does—more specifically, the burner’s ability to fire against<br />

the back pressure of the immersion tube.<br />

Atmospheric burners operate at very low mixture pressures and depend on<br />

natural draft to pull secondary air into the tube. Consequently, the firing<br />

rate has to be kept low to avoid hot gases backing out of the tube around<br />

the burner head.<br />

Sealed, forced draft burners operate at higher pressures, so they can be<br />

used to push tubes to higher firing rates. The operating pressures of the<br />

combustion system determine just how hard the tube can be fired. That’s<br />

why Immerso-Jet small bore burner systems, with their high operating<br />

pressures, can operate satisfactorily at higher inputs per sq. in. of tube<br />

cross-section than packaged IP burners. Figure 2 lists approximate maximum<br />

firing rates in Btu/sq. in. of tube cross-section for various types of<br />

burner systems.<br />

60%<br />

0 0 1 2 3 4 5<br />

70%<br />

65%<br />

75%<br />

Max. Firing rate,<br />

Btu/Sq. In. of<br />

Burner System Type Tube Cross-Section<br />

Atmospheric, natural draft, 7' high stack 7000 - 8000<br />

Atmospheric with eductor, 0.2" w.c. draft 15,000 - 18,000<br />

Atmospheric with eductor, 0.4" w.c. draft 21,000 - 25,000<br />

Packaged forced draft, low pressure fan 15,000 - 35,000<br />

Sealed nozzle-mix, high pressure blower 30,000 - 85,000<br />

Small bore nozzle-mix 80,000 - 180,000<br />

111<br />

Effective<br />

Length, ft.<br />

.47r<br />

.771r<br />

1.273r<br />

2.113r<br />

3.523r<br />

where r =<br />

heat<br />

transferred<br />

to the tank,<br />

Btu/hr X 1000<br />

80%<br />

Efficiency


Tech Notes<br />

Submerged Combustion<br />

Section 3<br />

Sheet L-2<br />

Process Description: Submerged combustion is the practice of heating liquids by bubbling a<br />

burner’s hot combustion products through them. The process, which originated<br />

over 100 years ago, was first used to generate low pressure steam,<br />

but later became popular as a way to concentrate chemical solutions by<br />

evaporation. It is also viewed as an efficient way to heat water solutions to<br />

moderate temperatures, although its success has been somewhat spotty in<br />

this application. It agitates the bath and causes the water to become more<br />

acidic as CO 2 in the combustion products dissolves in the bath. Depending<br />

on the process, these features can be either advantages or drawbacks.<br />

Combustor Description:<br />

System Efficiency:<br />

Over the years a variety of designs have evolved, but most modern units<br />

are some version of either the single-tube or manifold design.<br />

Single Tube<br />

Combustor Manifold Type Combustor<br />

Single-tube units have a relatively small coverage area, so their use is restricted<br />

to tanks with fairly confined dimensions. On the other hand, manifold-type<br />

combustors can be custom-designed to fit tanks of any reasonable<br />

dimensions without the need to locate the combustor near the center<br />

of the tank. This permits submerged combustors to be used on dip tanks<br />

and other jobs where the tank volume must be free of obstructions.<br />

Submerged combustion gets its reputation for high efficiency from the fact<br />

that the combustion gases come into direct contact with the liquid, creating<br />

excellent heat transfer. Below about 140° F, all the water vapor in the<br />

combustion products condenses into the bath, releasing its latent heat of<br />

vaporization and producing thermal efficiencies of 90-95%, based on the<br />

higher heating value of the fuel.<br />

112


Figure 1:<br />

Thermal Efficiency<br />

of a Submerged<br />

Combustion System<br />

Burning Natural Gas at Sea Level<br />

System Design:<br />

Tank Depth:<br />

Combustor Tube:<br />

Above 140° F water begins to vaporize, and the efficiency drops quickly.<br />

One unusual effect of bubbling combustion products through water is that<br />

it lowers the water’s boiling point. For natural gas burned at sea level, the<br />

boiling point is about 190° F; for propane, it is about 180° F. Higher altitudes<br />

will depress the boiling point even further. If the purpose of the system<br />

is to boil water away, this is an asset, but if its purpose is only heating<br />

water, process thermal efficiency is zero at the boiling point.<br />

From the efficiency curve below, you can see that at 165° F liquid temper–<br />

ature, a submerged combustion system has a thermal efficiency of 70%,<br />

equivalent to a conventional immersion tube system. At higher temperatures,<br />

it is less efficient. To compete with an 80% efficient immersion tube<br />

such as the IJ Small Bore system, a submerged combustion system would<br />

have to operate at 155° F or less.<br />

% Thermal Efficiency<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

60 80 100 120 140 160 180 200<br />

Water Temperature, °F<br />

Custom-built submerged combustion units are available, although many<br />

successful jobs have been done with standard burner equipment.<br />

The tank must be deep enough to provide at least 16-20" of bubble path<br />

through the liquid. Shallower tanks will not allow time for optimum heat<br />

transfer. Beyond 20", the improvement in heat transfer is negligible, but<br />

the tank may have to be deeper simply to accommodate the length of the<br />

combustion tube, which has to be large enough to allow completion of the<br />

flame.<br />

All portions of the tube immersed in the tank can be bare metal. Customary<br />

practice is to locate the burner mounting flange within a few inches of the<br />

liquid level so the entire tube can be left bare. Be sure to choose an alloy<br />

that won’t corrode in the solution.<br />

113


Distribution Tubes:<br />

Supply Pressures:<br />

Burner:<br />

Moisture Protection:<br />

Operating Sequence:<br />

Safety:<br />

Single-tube combustors are often provided with a perforated conical skirt<br />

on the bottom to aid in breaking up and distributing the flue gases. Manifold<br />

systems are subject to a lot of design variations, but a few general<br />

rules apply:<br />

• Large tanks will require distribution pipes to carry the combustion products<br />

throughout the tank. Don’t depend on a single combustor isolated<br />

in one corner to provide uniform tank heating.<br />

• Gas distribution openings in the pipe manifolds are most commonly<br />

single rows of drilled holes, although slot openings have also been used.<br />

There aren’t any universally accepted rules on hole sizing, but anything<br />

smaller than 1/4" diameter is probably a waste of effort.<br />

• The effect of hole location (facing up, down or sideways) on heat transfer<br />

is probably negligible. However, facing the holes downward aids draining<br />

the water out of the manifold when the system is started up. Be<br />

sure to provide a couple of inches clearance between the manifolds and<br />

the tank floor (more, if you expect sludge or debris to accumulate).<br />

• Total area of the distribution holes is, again, a matter of individual<br />

preference, but one square inch of opening for every 50-60,000 Btu/hr<br />

firing rate gives a good compromise between even distribution and low<br />

pressure drops.<br />

• Design the manifold so it is free to expand without constraint. Otherwise,<br />

broken welds and leaks are sure to result.<br />

• When filled with combustion gases, the distribution tube will become<br />

buoyant and try to float. Long, cantilevered tubes will vibrate and thrash<br />

around the tank. Be sure they’re properly anchored to the tank bottom.<br />

Remember that the head pressure of the liquid in the tank has to be added<br />

to all the normal air and gas supply pressures.<br />

Nozzle mix burners are strongly preferred; the flashback tendencies of premix<br />

burners can be aggravated by fluctuations in system back pressure.<br />

Flame length should be no more than 1/2 to 2/3 the length of the combustor<br />

tube, or the flame is apt to be quenched, forming CO and aldehydes.<br />

High levels of humidity are normal around tanks heated with submerged<br />

combustors. Condensation will tend to collect on spark igniters, flame rods<br />

and scanner cells. Provide them with air purging if this is expected to be a<br />

problem. Use weather-resistant boots on electrode connectors, and all electrical<br />

wiring and control boxes should be selected or situated to exclude<br />

moisture. Combustion air blowers should be located where they won’t draw<br />

in excessively humid air.<br />

This will be dictated in part by safety requirements, but all systems should<br />

have a prepurge to remove the water from the combustor tube and distribution<br />

manifold. Regardless of burner capacity, low fire lightoff is strongly<br />

recommended.<br />

Depending on the tank volume and the area over which the combustion<br />

gases are bubbled, the liquid surface will be agitated anywhere from a gentle<br />

rolling motion to a violent boil. Splashing and spilling over the sides of the<br />

tank can occur, and precaution should be taken to avoid exposing workers<br />

and equipment to hot and/or corrosive liquid.<br />

114


References:<br />

Thermal Manual of Submerged Combustion, Thermal Research & <strong>Engineering</strong><br />

Corp., Conshohocken, PA 1961.<br />

“Tank & Solution Heaters for the Chemical Industry” AGA Information letter<br />

No. 115, N.E. Keith, A.G.A., New York, 1960.<br />

115


Tech Notes<br />

Immersion Tubes–What Will The Stack Temperature Be?<br />

Reference:<br />

Figure 1:<br />

Available Heat vs. Flue<br />

Gas Exit Temperature, °F<br />

<strong>Eclipse</strong> Combustion <strong>Engineering</strong> <strong>Guide</strong>, p. 51<br />

Section 3<br />

Sheet L-3<br />

Customers laying out immersion tube systems frequently ask what stack<br />

temperatures they should expect. You can make a good approximation from<br />

the available heat chart below. The heat transferred through an immersion<br />

tube is the available heat in that system; everything else is flue gas loss, so<br />

it’s easy to calculate flue gas temperature by working backward on the<br />

available heat chart. All you need to know is the tube efficiency and the<br />

amount of excess air at high fire.<br />

For example, let’s say you had an immersion system operating at 70%<br />

thermal efficiency and 25% excess air at high fire. Starting at 70% available<br />

heat (with available heat equal to efficiency), read across until you hit<br />

the 25% excess air curve and then drop straight down to get the flue gas<br />

exit temperature, which, in this case, is 950°F.<br />

% Available Heat<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

350%<br />

400%<br />

500%<br />

600%<br />

800%<br />

1000%<br />

1200%<br />

Based On Birmingham Natural Gas (1002 Btu/Cu. ft., 0.6 Sp. Gr.)<br />

0%<br />

10%<br />

0<br />

0 200 600 1000 1400 1800 2200 2600 3000<br />

116<br />

250%<br />

300%<br />

200%<br />

150%<br />

% Excess Air<br />

100%<br />

Flue Gas Exit Temperature, °F<br />

50%<br />

25%


Tech Notes<br />

Determining % O 2 in a Recirculating System<br />

Data Needed:<br />

Fresh<br />

Makeup<br />

Air<br />

Q M<br />

Combustion<br />

Air<br />

Q A<br />

Burner<br />

Section 3<br />

Sheet O-1<br />

To determine O 2 content in a recirculating system, you need to know:<br />

Q X =oven exhaust volume, acfm<br />

T X =oven exhaust temperature<br />

Fuel<br />

Q F<br />

Oven<br />

Q F =maximum fuel flow to burner, scfm<br />

Exhaust, Q at Temperature,<br />

X<br />

TX R =stoichiometric air-fuel ratio (e.g., 10:1 for natural gas, 25:1 for propane,<br />

or whatever)<br />

117<br />

(continued on page 118)


Procedure: 1. Determine scfm of exhaust.<br />

Example<br />

Q E in scfm = Q X in acfm x<br />

520<br />

T X + 460<br />

The temperature correction factor,<br />

520<br />

TX + 460<br />

, equals the specific gravity<br />

of the exhaust at temperature T . X<br />

For simplicity’s sake, assume the exhaust has properties nearly equal<br />

to air. Then you can use the specific gravity figures on page 21 of the<br />

<strong>Eclipse</strong> Combustion <strong>Engineering</strong> <strong>Guide</strong>.<br />

2. For the oven to be balanced, the sum of fuel to the burner (Q F ), air to<br />

the burner (Q A ), and fresh makeup air (Q M ) must equal the exhaust<br />

volume:<br />

Q E =Q F+Q A +Q M<br />

3. Determine the portion of makeup and combustion air which is consumed<br />

in burning the fuel. This equals:<br />

RxQ F<br />

The remaining unconsumed fresh air determines the oxygen level in<br />

the oven. It equals:<br />

Q E –Q F– Rx Q F<br />

4. Calculate oxygen content in oven, assuming 20.8% oxygen in the fresh<br />

air stream.<br />

%O 2 = 20.8 x Q E –Q F– Rx Q F<br />

Q E<br />

or in its simplest form:<br />

%O 2 = 20.8 x Q E – 1+R Q F<br />

Q E<br />

For example, we have an oven exhausting 2000 acfm at 600° F. The<br />

burner is rated at 1.8 million Btu/hr on 1000 Btu/cu.ft. natural gas<br />

(10:1 stoichiometric ratio).<br />

At 600° F, the specific gravity of air is .500, so Q E = (2000) (.500) = 1000<br />

scfm<br />

Q F , the maximum fuel input, is 1,800,000 Btu/hr divided by 1000 Btu/<br />

cu.ft. = 1800 scfh. 1800 cfh divided by 60 minutes = 30 scfm<br />

R, the stoichiometric air-gas ratio, is given as 10:1, so:<br />

%O 2 = 20.8 x<br />

118<br />

1000 – 1 +10 30<br />

1000<br />

= 20.8 x<br />

670<br />

1000 = 13.94%O 2


Litho in U.S.A.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!