10.12.2012 Views

HP 8753E Network Analyzer Service Guide - Agilent Technologies

HP 8753E Network Analyzer Service Guide - Agilent Technologies

HP 8753E Network Analyzer Service Guide - Agilent Technologies

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Errata<br />

Title & Document Type: <strong>8753E</strong> <strong>Network</strong> <strong>Analyzer</strong> <strong>Service</strong> <strong>Guide</strong><br />

Manual Part Number: 08753-90374<br />

Revision Date: February 1999<br />

<strong>HP</strong> References in this Manual<br />

This manual may contain references to <strong>HP</strong> or Hewlett-Packard. Please note that Hewlett-<br />

Packard's former test and measurement, semiconductor products and chemical analysis<br />

businesses are now part of <strong>Agilent</strong> <strong>Technologies</strong>. We have made no changes to this<br />

manual copy. The <strong>HP</strong> XXXX referred to in this document is now the <strong>Agilent</strong> XXXX.<br />

For example, model number <strong>HP</strong>8648A is now model number <strong>Agilent</strong> 8648A.<br />

About this Manual<br />

We’ve added this manual to the <strong>Agilent</strong> website in an effort to help you support your<br />

product. This manual provides the best information we could find. It may be incomplete<br />

or contain dated information, and the scan quality may not be ideal. If we find a better<br />

copy in the future, we will add it to the <strong>Agilent</strong> website.<br />

Support for Your Product<br />

<strong>Agilent</strong> no longer sells or supports this product. You will find any other available<br />

product information on the <strong>Agilent</strong> Test & Measurement website:<br />

www.tm.agilent.com<br />

Search for the model number of this product, and the resulting product page will guide<br />

you to any available information. Our service centers may be able to perform calibration<br />

if no repair parts are needed, but no other support from <strong>Agilent</strong> is available.


<strong>Service</strong> <strong>Guide</strong><br />

<strong>HP</strong> <strong>8753E</strong> <strong>Network</strong> <strong>Analyzer</strong><br />

HEWLETT<br />

PACKARD


<strong>HP</strong> part number: 08753-90374 Supersedes October 1998<br />

Printed in USA February 1999<br />

Notice.<br />

The information contained in this document is subject to change without notice.<br />

Hewlett-Packard makes no warranty of any kind with regard to this material,<br />

including but not limited to, the implied warranties of merchantability and<br />

fitness for a particular purpose. Hewlett-Packard shall not be liable for errors<br />

contained herein or for incidental or consequential damages in connection with<br />

the furnishing, performance, or use of this material.<br />

@Copyright 1998-1999 Hewlett-Packard Company


<strong>Network</strong> <strong>Analyzer</strong> Documentation Set<br />

The Installation and Quick Start<br />

<strong>Guide</strong> familiarizes you with the<br />

network analyzer’s front and rear<br />

panels, electrical and environmental<br />

operating requirements, as well as<br />

procedures for installing, conGguring,<br />

and verifying the operation of the<br />

analyzer.<br />

The User’s <strong>Guide</strong> shows how to make<br />

measurements, explains<br />

commonly-used features, and tells you<br />

how to get the most performance from<br />

your analyzer.<br />

The Quick Reference <strong>Guide</strong> provides<br />

a summary of selected user features.<br />

The <strong>HP</strong>-IB Programm iug and<br />

Command Reference <strong>Guide</strong> provides<br />

programming information for<br />

operation of the network analyzer<br />

under <strong>HP</strong>-IB control.<br />

. . .<br />

III


The BP BASIC Programming<br />

Examples <strong>Guide</strong> provides a tutorial<br />

introduction using BASIC programming<br />

examples to demonstrate the remote<br />

operation of the network analyzer.<br />

The System Veracation and Test<br />

<strong>Guide</strong> provides the system verification<br />

and performance tests and the<br />

Performance Test Record for your<br />

analyzer.


Contents<br />

1. <strong>Service</strong> Equipment and <strong>Analyzer</strong> Options<br />

lhble of <strong>Service</strong> Test Equipment . . . . . . . . . . . . . . . .<br />

Principles of Microwave Connector Care . . . . . . . . . . . .<br />

<strong>Analyzer</strong> Options Available . . . . . . . . . . . . . . . . . . .<br />

Option lD5, High Stability Frequency Reference . . . . . . . .<br />

Option 002, Harmonic Mode . . . . . . . . . . . . . . . . .<br />

OptionOO6,6GHzOperation . . . . . . . . . . . . . . . . .<br />

Option 010, Time Domain . . . . . . . . . . . . . . . . . .<br />

Option 011, Receiver Configuration . . . . . . . . . . . . . .<br />

Option 075,750 Impedance. . . . . . . . . . . . . . . . . .<br />

Option lDT, Delete Display . . . . . . . . . . . . . . . . . .<br />

Option lCM, Rack Mount Flange Kit Without Handles . . . . .<br />

Option lCP, Rack Mount Flange Kit With Handies . . . . . . .<br />

<strong>Service</strong> and Support Options . . . . . . . . . . . . . . . . . .<br />

Option W32 . . . . . . . . . . . . . . . . . . . . . . . . .<br />

Option W34 . . . . . . . . . . . . . . . . . . . . . . . . .<br />

2. System VeriIkation and Performance ‘lksts<br />

System Specifications . . . . . . . . . . . . . . . . . . . . .<br />

Instrument SpecBcations . . . . . . . . . . . . . . . . . . . .<br />

System Verification Procedure . . . . . . . . . . . . . . . . .<br />

Performance Tests . . . . . . . . . . . . . . . . . . . . . . .<br />

How to ConfIrm Performance to System Specifications . . . . .<br />

How to ConfIrm Performance to Instrument Specifications . . .<br />

Certificate of Calibration . . . . . . . . . . . . . . . . . . . .<br />

Sections in This Chapter . . . . . . . . . . . . . . . . . . . .<br />

Performance Test Record . . . . . . . . . . . . . . . . . . . .<br />

System Verification Cycle and Kit Re-certification . . . . . . . .<br />

<strong>HP</strong> <strong>8753E</strong> System Verification . . . . . . . . . . . . . . . . .<br />

Initiaiization . . . . . . . . . . . . . . . . . . . . . . . . .<br />

Measurement Calibration . . . . . . . . . . . . . . . . . . .<br />

Device Verification . . . . . . . . . . . . . . . . . . . . . .<br />

l-l<br />

l-5<br />

l-7<br />

l-7<br />

l-7<br />

l-7<br />

l-7<br />

l-7<br />

l-8<br />

l-8<br />

1-8<br />

l-8<br />

l-9<br />

l-9<br />

l-9<br />

2-l<br />

2-2<br />

2-2<br />

2-3<br />

2-3<br />

2-3<br />

2-4<br />

2-5<br />

2-6<br />

2-7<br />

2-8<br />

2-9<br />

2-11<br />

2-14<br />

contmts-1


Contents-2<br />

In Case of DifficuIty . . . . . . . . . . . . . . . . . . . . .<br />

1. Test Port Output Frequency Range and Accuracy . . . . . . .<br />

In Case of Difficuhy . . . . . . . . . . . . . . . . . . . . .<br />

2. External Source Mode Frequency Range . . . . . . . . . . .<br />

InCaseofDifficulty . . . . . . . . . . . . . . . . . . . . .<br />

3. Test Port Output Power Accuracy . . . . . . . . . . . . . .<br />

InCaseofDifficuIty . . . . . . . . . . . . . . . . . . . . .<br />

4. Test Port Output Power Range and Linearity . . . . . . . . .<br />

In Case of Difficulty . . . . . . . . . . . . . . . . . . . . .<br />

5.MinhnumRChannelLevel. . . . . . . . . . . . . . . . . .<br />

In Case of Difficulty . . . . . . . . . . . . . . . . . . . . .<br />

6. Test Port Input Noise Floor Level . . . . . . . . . . . . . .<br />

Port 1 Noise Floor Level from 300 kHz to 3 GHz (IF BW = 3 kHz)<br />

Port 1 Noise Floor Level from 300 kHz to 3 GHz (IF BW = 10 Hz)<br />

Port 2 Noise Floor Level from 300 kHz to 3 GHz (IF BW = 10 Hz)<br />

Port 2 Noise Floor Level from 300 kHz to 3 GHz (IF BW = 3 kHz)<br />

Port 2 Noise Floor Level from 3 GHz to 6 GHz (IF BW = 3 kHz) .<br />

Port 2 Noise Floor Level from 3 GHz to 6 GHz (IF BW = 10 Hz) .<br />

Port 1 Noise Floor Level for 3 GHz to 6 GHz (IF BW = 10 Hz) . .<br />

Port 1 Noise Floor Level from 3 GHz to 6 GHz (IF BW = 3 kHz) .<br />

InCaseofDifficulty . . . . . . . . . . . . . . . . . . . . .<br />

7. Test Port Input Frequency Response . . . . . . . . . . . . .<br />

Power Meter Calibration for Test Port 1 from 300 kHz to 3 GHz .<br />

Test Port 2 Input Frequency Response from 300 kHz to 3 GHz .<br />

Power Meter Calibration on Port 2 from 300 kHz to 3 GHz . . .<br />

Test Port 1 Input Frequency Response from 300 kHz to 3 GHz .<br />

Power Meter Calibration for Test Port 2 from 3 GHz to 6 GHz . .<br />

Test Port 1 Input Frequency Response from 3 GHz to 6 GHz<br />

Power Meter Calibration on Test Port 1 from 3 GHz to 6 GHz : 1<br />

Test Port 2 Input Frequency Response from 3 GHz to 6 GHz . .<br />

In Case of Difficulty . . . . . . . . . . . . . . . . . . . . .<br />

8. Test Port Crosstalk<br />

CrosstaurtoTestPort2from30d1;H;.tb3GI;z’ 1 1 1 1 1 1 1 1<br />

Crosstalk to Test Port 1 from 300 kHz to 3 GHz . . . . . . . .<br />

CrosstaIktoTestPortlfrom3GHzto6GHz . . . . . . . . .<br />

Crosstalk to Test Port 2 from 3 GHz to 6 GHz . . . . . . . . .<br />

InCaseofDifficuIty . . . . . . . . . . . . . . . . . . . . .<br />

9. Calibration Coefficients . . . . . . . . . . . . . . . . . . .<br />

First FulI 2-Port Calibration . . . . . . . . . . . . . . . . .<br />

Directivity (Forward) Calibration Coefficient . . . . . . . . . .<br />

Source Match (Forward) Calibration Coefficient . . . . . . . .<br />

2-17<br />

2-18<br />

2-20<br />

2-21<br />

2-23<br />

2-24<br />

2-26<br />

2-27<br />

2-29<br />

2-31<br />

2-33<br />

2-37<br />

2-38<br />

2-39<br />

2-39<br />

2-40<br />

2-40<br />

2-41<br />

2-41<br />

2-41<br />

2-42<br />

243<br />

2-44<br />

2-47<br />

2-48<br />

249<br />

2-49<br />

2-51<br />

2-52<br />

2-53<br />

2-53<br />

2-54<br />

2-55<br />

2-55<br />

2-55<br />

2-56<br />

2-56<br />

2-58<br />

2-59<br />

2-61<br />

2-61


Transmission Tracking (Forward) Calibration Coefficient . . . . 2-61<br />

Reflection Tracking (Forward) Calibration Coefficient . . . . . . 2-61<br />

Load Match (Reverse) Calibration Coefficient . . . . . . . . . 2-61<br />

Transmission Tracking (Reverse) Calibration Coefficient . . . . 2-62<br />

Second FuiI 2-Port Calibration . . . . . . . . . . . . . . . . 2-62<br />

Load Match (Forward) Calibration Coefficient . . . . . . . . . 2-64<br />

Directivity (Reverse) Calibration Coefficient . . . . . . . . . . 2-64<br />

Source Match (Reverse) Calibration Coefficient . . . . . . . . . 2-64<br />

Reflection Tracking (Reverse) Calibration Coefficient . . . . . . 2-64<br />

10. System Trace Noise (Only for <strong>Analyzer</strong>s without Option 006) . 2-65<br />

System Trace Noise for A/R Magnitude . . . . . . . . . . . . 2-66<br />

System Trace Noise for A/R Phase . . . . . . . . . . . . . . 2-66<br />

System Trace Noise for B/R Magnitude . . . . . . . . . . . . 2-66<br />

System Trace Noise for B/R Phase . . . . . . . . . . . . . . 2-67<br />

In Case of DifficuIty . . . . . . . . . . . . . . . . . . . . . 2-67<br />

11. System Trace Noise (Only for <strong>Analyzer</strong>s with Option 006) . . 2-68<br />

System Trace Noise for A/R Magnitude from 30 kHz to 3 GHz . . 2-69<br />

System Trace Noise for A/R Magnitude from 3 GHz to 6 GHz . . 2-69<br />

System Trace Noise for A/R Phase from 3 GHz to 6 GHz . . . . 2-69<br />

System Trace Noise for A/R Phase from 30 kHz to 3 GHz . . . . 2-70<br />

System Trace Noise for B/R Magnitude from 30 kHz to 3 GHz . . 2-70<br />

System Trace Noise for B/R Magnitude from 3 GHz to 6 GHz . . 2-70<br />

System Trace Noise for B/R Phase from 3 GHz to 6 GHz . . . . 2-70<br />

System Trace Noise for B/R Phase from 30 kHz to 3 GHz . . . . 2-71<br />

InCaseofDifficuIty . . . . . . . . . . . . . . . . . . . . . 2-71<br />

12. Test Port Input Impedance . . . . . . . . . . . . . . . . . 2-72<br />

In Case of Difficulty . . . . . . . . . . . . . . . . . . . . . 2-76<br />

13. Test Port Receiver Magnitude Dynamic Accuracy . . . . . . . 2-77<br />

Initial CalcuIations . . . . . . . . . . . . . . . . . . . . . . 2-79<br />

Power Meter Calibration . . . . . . . . . . . . . . . . . . . 2-80<br />

Adapter Removal Calibration . . . . . . . . . . . . . . . . . 2-83<br />

Measure Test Port 2 Magnitude Dynamic Accuracy . . . . . . . 2-85<br />

Measure Test Port 1 Magnitude Dynamic Accuracy . . . . . . . 2-87<br />

InCaseofDifficuIty . . . . . . . . . . . . . . . . . . . . . 2-87<br />

14. Test Port Receiver Magnitude Compression . . . . . . . . . 2-89<br />

Test Port 2 Magnitude Compression . . . . . . . . . . . . . . 2-90<br />

Test Port 1 Magnitude Compression . . . . . . . . . . . . . . 2-91<br />

In Case of Difficulty . . . . . . . . . . . . . . . . . . . . . 2-91<br />

15. Test Port Receiver Phase Compression . . . . . . . . . . . . 2-92<br />

Test Port 2 Phase Compression . . . . . . . . . . . . . . . . 2-93<br />

Test Port 1 Phase Compression . . . . . . . . . . . . . . . . 2-94<br />

Contents-3


2a.<br />

2b.<br />

3.<br />

Contents4<br />

In Case of Difficulty . . . . . . . . . . . . . . . . . . . . .<br />

16. Test Port Output/Input Harmonics (Option 002 <strong>Analyzer</strong>s<br />

without Option 006 only) . . . . . . . . . . . . . . . . . .<br />

‘l&t Port Output Worst Case 2nd Harmonic . . . . . . . . . .<br />

Test Port Output Worst Case 3rd Harmonic . . . . . . . . . .<br />

Port 1 Input Worst Case 2ndHarmonic . . . . . . . . . . . .<br />

PortlInputWorstCase3rdHarmonic. . . . . . . . . . . . .<br />

Port2InputWorstCase2ndHarmonic . . . . . . . . . . . .<br />

Port 2 Input Worst Case 3rd Harmonic . . . . . . . . . . . . .<br />

17. Test Port Output/Input Harmonics (Option 002 <strong>Analyzer</strong>s with<br />

Option 006 only) . . . . . . . . . . . . . . . . . . . . . .<br />

Test Port Output Worst Case 2nd Harmonic . . . . . . . . . .<br />

Test Port Output Worst Case 3rd Harmonic . . . . . . . . . .<br />

Port 1 Input Worst Case 2ndHarmonic . . . . . . . . . . . .<br />

PortlInputWorstCase3rdHarmonic. . . . . . . . . . . . .<br />

Port2InputWorstCase2ndHarmonic . . . . . . . . . . . .<br />

Port2InputWorstCase3rdHarmonic. . . . . . . . . . . . .<br />

18. Test Port Output Harmonics (<strong>Analyzer</strong>s without Option 002) .<br />

Procedure . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

Performance ‘lkst Record<br />

For <strong>Analyzer</strong>s with a Frequency Range of 30 kHz to 3 GHz . . . .<br />

Performance ‘l&t Record<br />

For <strong>Analyzer</strong>s with a Frequency Range of 30 kHz to 6 GHz . . . .<br />

Adjustments and Cmmction Constants<br />

Post-Repair Procedures for <strong>HP</strong> <strong>8753E</strong> . . . . . . . . . . . . . .<br />

A9 Switch Positions . . . . . . . . . . . . . . . . . . . . . .<br />

Source Default Correction Constants (Test 44) . . . . . . . . . .<br />

Source Pretune Default Correction Constants (Test 45) . . . . . .<br />

Analog Bus Correction Constants (Test 46) . . . . . . . . . . . .<br />

Source Pretune Correction Constants (Test 48) . . . . . . . . . .<br />

RF Output Power Correction Constants (Test 47) . . . . . . . . .<br />

Power Sensor Calibration Factor Entry . . . . . . . . . . . .<br />

IF Arnphfier Correction Constants (Test 51) . . . . . . . . . . .<br />

ADC Offset Correction Constants (Test 52) . . . . . . . . . . . .<br />

Sampler Magnitude and Phase Correction Constants (Test 53) . . .<br />

Power Sensor Calibration Factor Entry . . . . . . . . . . . .<br />

Determine the Insertion Loss of the Cable at 1 GHz . . . . . .<br />

Sampler Correction Constants Routine . . . . . . . . . . . .<br />

2-94<br />

2-95<br />

2-96<br />

2-97<br />

2-97<br />

2-99<br />

2-99<br />

2-100<br />

2-101<br />

2-102<br />

2-103<br />

2-104<br />

2-105<br />

2-105<br />

2-106<br />

2-107<br />

2-108<br />

2a-1<br />

2b-1<br />

3-2<br />

3-5<br />

3-7<br />

3-8<br />

3-9<br />

3-10<br />

3-11<br />

3-12<br />

3-16<br />

3-17<br />

3-18<br />

3-19<br />

3-20<br />

3-21


Cavity Oscillator Frequency Correction Constants (Test 54) . . . . 3-28<br />

Spur Search Procedure with a Filter . . . . . . . . . . . . . 3-30<br />

Spurs Search Procedure without a Filter . . . . . . . . . . . 3-31<br />

Serial Number Correction Constants (Test 55) . . . . . . . . . . 3-34<br />

Option Numbers Correction Constants (Test 56) . . . . . . . . . 3-36<br />

Initialize EEPROMs (Test 58) . . . . . . . . . . . . . . . . . . 3-37<br />

EEPROM Backup Disk Procedure . . . . . . . . . . . . . . . . 3-38<br />

Correction Constants Retrieval Procedure . . . . . . . . . . . . 3-40<br />

LoadingFirmware.. . . . . . . . . . . . . . . . . . . . . . 3-41<br />

LoadingFirmwareintoanExistingCPU. . . . . . . . . . . . 3-41<br />

In Case of Difficulty . . . . . . . . . . . . . . . . . . . . 3-42<br />

LoadingFirmwareintoaNewCPU . . . . . . . . . . . . . . 3-43<br />

In Case of DifficuIty . . . . . . . . . . . . . . . . . . . . 3-43<br />

Fractional-N Frequency Range Adjustment . . . . . . . . . . . 3-45<br />

Frequency Accuracy Adjustment . . . . . . . . . . . . . . . . 3-48<br />

Instruments with Option ID5 only . . . . . . . . . . . . . . 3-51<br />

In Case of Difficulty . . . . . . . . . . . . . . . . . . . . . 3-51<br />

High/Low Band Transition Adjustment . . . . . . . . . . . . . 3-52<br />

Fractional-N Spur Avoidance and FM Sideband Adjustment . . . . 3-54<br />

Source Spur Avoidance Tracking Adjustment . . . . . . . . . . 3-58<br />

Unprotected Hardware Option Numbers Correction Constants . . 3-60<br />

Sequences for Mechanical Adjustments . . . . . . . . . . . . . 3-62<br />

How to Load Sequences from Disk . . . . . . . . . . . . . . . 3-62<br />

How to Set Up the Fractional-N Frequency Range Adjustment . . 3-63<br />

How to Set Up the High/Low Band Transition Adjustments . . . . 3-63<br />

How to Set Up the Fractional-N Spur Avoidance and FM Sideband<br />

Adjustment . . . . . . . . . . . . . . . . . . . . . . . . 3-64<br />

Sequence Contents . . . . . . . . . . . . . . . . . . . . . . . 3-64<br />

Sequence for the High/Low Band Transition Adjustment . . . . 3-64<br />

Sequences for the Fractional-N Frequency Range Adjustment . . 3-65<br />

Sequences for the Fractional-N Avoidance and FM Sideband<br />

Adjustment . . . . . . . . . . . . . . . . . . . . . . . 3-66<br />

4. Staxt Troubleshooting Here<br />

Assembly Replacement Sequence . . . . . . . . . . . . . . . .<br />

Having Your <strong>Analyzer</strong> <strong>Service</strong>d . . . . . . . . . . . . . . . . .<br />

Step 1. Initial Observations . . . . . . . . . . . . . . . . . . .<br />

Initiate the <strong>Analyzer</strong> Self-Test . . . . . . . . . . . . . . . .<br />

Step 2. Operator’s Check . . . . . . . . . . . . . . . . . . . .<br />

Description . . . . . . . . . . . . . . . . . . . . . . . . .<br />

Procedure . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

4-2<br />

4-2<br />

4-3<br />

4-3<br />

4-4<br />

4-4<br />

4-4<br />

Contents-5


Step 3. <strong>HP</strong>-IB Systems Check . . . . . . . . . . . . . . . . . . 4-6<br />

If Using a Plotter or Printer . . . . . . . . . . . . . . . . . 4-7<br />

IfUsinganExternaiDiskDrive. . . . . . . . . . . . . . . . 4-7<br />

Troubleshooting Systems with Multiple Peripherals . . . . . . . 48<br />

Troubleshooting Systems with Controllers . . . . . . . . . . . 4-8<br />

Step 4. Faulty Group Isolation . . . . . . . . . . . . . . . . . 4-9<br />

Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . 4-10<br />

Check the Rear Panel LEDs . . . . . . . . . . . . . . . . . . 4-10<br />

Check the A8 Post Regulator LEDs . . . . . . . . . . . . . . 4-10<br />

Digital Control . . . . . . . . . . . . . . . . . . . . . . . . . 4-11<br />

Observe the Power Up Sequence . . . . . . . . . . . . . . . 4-11<br />

Verify IntemaI Tests Passed . . . . . . . . . . . . . . . . . . 4-12<br />

Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-13<br />

Phase Lock Error Messages . . . . . . . . . . . . . . . . . . 413<br />

Check Source Output Power . . . . . . . . . . . . . . . . . 4-13<br />

No Oscilloscope or Power Meter? Try the ABUS . . . . . . . . 4-15<br />

Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-16<br />

ObservetheAandBInputTraces . . . . . . . . . . . . . . 4-16<br />

Receiver Error Messages . . . . . . . . . . . . . . . . . . . 4-17<br />

Faulty Data . . . . . . . . . . . . . . . . . . . . . . . . . 4-17<br />

Accessories . . . . . . . . . . . . . . . . . . . . . . . . . . 4-18<br />

Accessories Error Messages . . . . . . . . . . . . . . . . . . 4-18<br />

5. Power Supply Troubleshooting<br />

Assembly Replacement Sequence . . . . . . . . . . . . . . . . 5-2<br />

Simplified Block Diagram . . . . . . . . . . . . . . . . . . . . 5-3<br />

StartHere. . . . . . . . . . . . . . . . . . . . . . . . . . . 54<br />

Check the Green LED and Red LED on Al5 . . . . . . . . . . 54<br />

Check the Green LEDs on A8 . . . . . . . . . . . . . . . . . 5-5<br />

Measure the Post Regulator Voltages . . . . . . . . . . . . . 5-5<br />

If the Green LED of the Al5 Is not ON Steadily . . . . . . . . . 5-7<br />

Check the Line Voltage, Selector Switch, and Fuse . . . . . . . 5-7<br />

IftheRedLEDoftheA15IsON . . . . . . . . . . . . . . . . 5-8<br />

Check the A8 Post Regulator . . . . . . . . . . . . . . . . . 5-8<br />

Verify the Al5 Preregulator . . . . . . . . . . . . . . . . . 5-9<br />

Check for a Faulty Assembly . . . . . . . . . . . . . . . . . 5-11<br />

Check the Operating Temperature . . . . . . . . . . . . . . 5-13<br />

Inspect the Motherboard . . . . . . . . . . . . . . . . . . . 5-13<br />

IftheGreenLEDsoftheABarenotalION . . . . . . . . . . . 5-14<br />

Remove AS, Maintain A15Wl Cable Connection . . . . . . . . 5-14<br />

Check the A8 Fuses and Voltages . . . . . . . . . . . . . . . 5-14<br />

Contents-6


Remove the Assemblies . . . . . . . . . . . . . . . . . . . 5-15<br />

Briefly Disable the Shutdown Circuitry . . . . . . . . . . . . 5-16<br />

Inspect the Motherboard . . . . . . . . . . . . . . . . . . . 5-18<br />

Error Messages<br />

5-19<br />

Check the Fuses and Isolate .A8 . 1 : 1 . 1 1 1 : 1 : 1 1 1 : 1 5-20<br />

Pan Troubleshooting . . . . . . . . . . . . . . . . . . . . . .<br />

Fan Speeds . . . . . . . . . . . . . . . . . . . . . . . . .<br />

Check the Pan Voltages . . . . . . . . . . . . . . . . . . . .<br />

5-22<br />

5-22<br />

5-22<br />

Short ABTP3 to Ground . . . . . . . . . . . . . . . . . . . 5-22<br />

Intermittent Problems . . . . . . . . . . . . . . . . . . . . . 5-23<br />

6. Digital Control Troubleshooting<br />

Digital Control Group Block Diagram . . . . . .<br />

Assembly Replacement Sequence . . . . . . . .<br />

CPU Troubleshooting (A9) . . . . . . . . . . .<br />

A9 CC Switch Positions . . . . . . . . . . . .<br />

Checking A9 CPU Red LED Patterns . . . . .<br />

Display Troubleshooting (A2, A18, A19, A27) . .<br />

Evaluating your Display . . . . . . . . . . .<br />

Backlight Intensity Check . . . . . . . . .<br />

Red, Green, or Blue Pixels Specifications . .<br />

Dark Pixels Specifications . . . . . . . . .<br />

Newton’s Riis . . . . . . . . . . . . . .<br />

Troubleshooting a White Display . . . . . . .<br />

Troubleshooting a Black Display . . . . . . .<br />

Troubleshooting a Display with Color Problems<br />

Front Panel Troubleshooting (Al, A2) . . . . . .<br />

Check Front Panel LEDs After Preset . . . . .<br />

Identify the Stuck Key . . . . . . . . . . . .<br />

Inspect Cables . . . . . . . . . . . . . . . .<br />

Test Using a Controller . . . . . . . . . . . .<br />

Run the Internal Diagnostic Tests . . . . . . . .<br />

If the Fault Is Intermittent . . . . . . . . . . .<br />

Repeat Test Function . . . . . . . . . . . . .<br />

<strong>HP</strong>-IB Failures . . . . . . . . . . . . . . . . .<br />

........ 6-2<br />

........ 6-3<br />

........ 64<br />

........ 6-4<br />

........ 6-5<br />

........ 6-7<br />

........ 6-7<br />

........ 6-8<br />

........ 6-9<br />

........ 6-10<br />

........ 6-10<br />

........ 6-12<br />

........ 6-12<br />

........ 6-12<br />

........ 6-13<br />

........ 6-13<br />

........ 6-14<br />

........ 6-16<br />

........ 6-16<br />

........ 6-17<br />

........ 6-19<br />

........ 6-19<br />

........ 6-19


7. Source Troubleshooting<br />

Assembly Replacement Sequence . . . . . . . . . . . . . . . . 7-2<br />

Before You Start Troubleshooting . . . . . . . . . . . . . . . . 7-2<br />

Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-3<br />

1. Source Default Correction Constants (Test 44) . . . . . . . . 7-3<br />

2. RF Output Power Correction Constants (Test 47) . . . . . . 7-3<br />

3. Sampler Magnitude and Phase Correction Constants (Test 53) 7-3<br />

Phase Lock Error . . . . . . . . . . . . . . . . . . . . . . . 7-4<br />

Phase Lock Loop Error Message Check . . . . . . . . . . . . 74<br />

A4 Sampler/Mixer Check . . . . . . . . . . . . . . . . . . . 7-6<br />

A3 Source and All Phase Lock Check . . . . . . . . . . . . 7-8<br />

YO Coil Drive Check with Analog Bus . . . . . . . . . . . . 7-11<br />

YO Coil Drive Check with Oscilloscope . . . . . . . . . . . 7-12<br />

Al2 Reference Check . . . . . . . . . . . . . . . . . . . . 7-13<br />

Analog Bus Method . . . . . . . . . . . . . . . . . . . . 7-13<br />

Oscilloscope Method . . . . . . . . . . . . . . . . . . . . 7-15<br />

1OOkHzPulses . . . . . . . . . . . . . . . . . . . . . . 7-16<br />

PLREF Waveforms . . . . . . . . . . . . . . . . . . . . . 7-17<br />

REFSiiAtAllTP9. . . . . . . . . . . . . . . . . . 7-17<br />

HighBandREFSii . . . . . . . . . . . . . . . . . . 7-17<br />

LowBandREFSiial . . . . . . . . . . . . . . . . . . 7-18<br />

FNLOatA12Check. . . . . . . . . . . . . . . . . . . . 7-19<br />

4 MHz Reference Signal . . . . . . . . . . . . . . . . . . 7-20<br />

2ND LO Waveforms . . . . . . . . . . . . . . . . . . . . 7-21<br />

90 Degree Phase Offset of 2nd LO Signals in High Band . . 7-21<br />

InPhase2ndLOSignalsinLowBand . . . . . . . . . . . 7-21<br />

Al2 Digital Control Siials Check . . . . . . . . . . . . . . 7-23<br />

LENREFLine . . . . . . . . . . . . . . . . . . . . . . 7-23<br />

LHBandLLBLines. . . . . . . . . . . . . . . . . . . 7-24<br />

A13/A14 Fractional-N Check . . . . . . . . . . . . . . . . . 7-24<br />

Fractional-N Check with Analog Bus . . . . . . . . . . . . 7-24<br />

Al4 VCO Range Check with Oscilloscope . . . . . . . . . . 7-25<br />

Al4 VCO Exercise . . . . . . . . . . . . . . . . . . . . . 7-27<br />

Al4 Divide-by-N Circuit Check . . . . . . . . . . . . . . . 7-29<br />

A14-to-Al3 Digital Control Siials Check. . . . . . . . . . . 7-29<br />

HMBLine . . . . . . . . . . . . . . . . . . . . . . . 7-31<br />

A7 Pulse Generator Check . . . . . . . . . . . . . . . . . . 7-32<br />

A7 Pulse Generator Check with Spectrum <strong>Analyzer</strong> . . . . . 7-32<br />

Rechecking the A13/A14 Fractional-N . . . . . . . . . . . . 7-33<br />

A7 Pulse Generator Check with Oscilloscope . . . . . . . . . 7-34<br />

All Phase Lock Check . . . . . . . . . . . . . . . . . . . . 7-35<br />

Contents-8


Phase Lock Check with PLL DIAG . . . . . . . . . . . . . 7-36<br />

Phase Lock Check by Signal Examination . . . . . . . . . . 7-36<br />

Source Group Troubleshooting Appendix . . . . . . . . . . . . 7-38<br />

Troubleshooting Source Problems with the Analog Bus . . . . . 7-38<br />

Phase Lock Diagnostic Tools . . . . . . . . . . . . . . . . . 7-38<br />

Phase Lock Error Messages . . . . . . . . . . . . . . . . . 7-38<br />

Phase Lock Diagnostic Routines . . . . . . . . . . . . . . . 7-39<br />

Broadband Power Problems . . . . . . . . . . . . . . . . . 7-39<br />

8. Receiver Troubleshooting<br />

Assembly Replacement Sequence . . . . . . . . . . . . . . . . 8-2<br />

Receiver Failure Error Messages . . . . . . . . . . . . . . . . 8-3<br />

ChecktheAandBInputs . . . . . . . . . . . . . . . . . . . 8-4<br />

Troubleshooting When AU Inputs Look Bad . . . . . . . . . . . 8-6<br />

RunIntemalTests18and17 . . . . . . . . . . . . . . . . . 8-6<br />

Check 2nd LO . . . . . . . . . . . . . . . . . . . . . . . . 8-6<br />

Checkthe4MHzREFSiiaI . . . . . . . . . . . . . . . . . . 8-7<br />

Check A10 by Substitution or SiiaI Examination . . . . . . . 8-8<br />

Troubleshooting When One or More Inputs Look Good . . . . . . 8-11<br />

Checkthe4kHzSiial. . . . . . . . . . . . . . . . . . . . 8-11<br />

Check the Trace with the Sampler Correction Constants Off . . 8-12<br />

Check 1st I.0 Siial at Sampler/Mixer . . . . . . . . . . . . . 8-14<br />

Check 2nd LO Signal at Sampler/Mixer . . . . . . . . . . . . 8-14<br />

9. Accessories Troubleshooting<br />

Assembly Replacement Sequence . . . . . . . . . . . . . . . .<br />

Inspect the Accessories . . . . . . . . . . . . . . . . . . . . .<br />

Inspect the Test Port Connectors and Calibration Devices . . . .<br />

Inspect the Error Terms . . . . . . . . . . . . . . . . . . . .<br />

Cable Test . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

Verify Shorts and Opens . . . . . . . . . . . . . . . . . . .<br />

10. <strong>Service</strong> Key Menus and Error Messages<br />

<strong>Service</strong> Key Menus. . . . . . . . . . . . . . . . . . . . . . . 10-l<br />

Error Messages . . . . . . . . . . . . . . . . . . . . . . . . 10-l<br />

<strong>Service</strong> Key Menus . Internal Diagnostics . . . . . . . . . . . . lo-2<br />

Tests Menu . . . . . . . . . . . . . . . . . . . . . . . . . 10-3<br />

Test Options Menu . . . . . . . . . . . . . . . . . . . . . . lo-5<br />

Self Diagnose Softkey . . . . . . . . . . . . . . . . . . . . lo.7<br />

Test Descriptions. . . . . . . . . . . . . . . . . . . . . . . lo-7<br />

Internal Tests . . . . . . . . . . . . . . . . . . . . . . . lo-7<br />

9-2<br />

9-3<br />

9-3<br />

9-3<br />

9-5<br />

9-6<br />

Contents-9


External Tests . . . . . . . . . . . . . . . . . . . . . . .<br />

System Verification Tests . . . . . . . . . . . . . . . . . .<br />

Adjustment Tests . . . . . . . . . . . . . . . . . . . . .<br />

Display Tests . . . . . . . . . . . . . . . . . . . . . . .<br />

Test Patterns . . . . . . . . . . . . . . . . . . . . . . .<br />

<strong>Service</strong> Key Menus - <strong>Service</strong> Features . . . . . . . . . . . . . .<br />

<strong>Service</strong> Modes Menu . . . . . . . . . . . . . . . . . . . . .<br />

<strong>Service</strong> Modes More Menu . . . . . . . . . . . . . . . . . .<br />

Analog Bus . . . . . . . . . . . . . . . . . . . . . . . . .<br />

Description of the Analog Bus . . . . . . . . . . . . . . .<br />

TheMainADC. . . . . . . . . . . . . . . . . . . . . . .<br />

The Frequency Counter . . . . . . . . . . . . . . . . . .<br />

Analog In Menu . . . . . . . . . . . . . . . . . . . . . . .<br />

Analog Bus Nodes . . . . . . . . . . . . . . . . . . . . . .<br />

A3 Source . . . . . . . . . . . . . . . . . . . . . . . . .<br />

A10 Digital IF . . . . . . . . . . . . . . . . . . . . . . .<br />

All Phase Lock . . . . . . . . . . . . . . . . . . . . . .<br />

A12 Reference . . . . . . . . . . . . . . . . . . . . . . .<br />

Al4 Fractional-N (Digital) . . . . . . . . . . . . . . . . .<br />

PEEK/POKE Menu . . . . . . . . . . . . . . . . . . . . . .<br />

Firmware Revision Softkey . . . . . . . . . . . . . . . . . . .<br />

<strong>HP</strong>-IB <strong>Service</strong> Mnemonic Deiinitions . . . . . . . . . . . . . .<br />

Invoking Tests Remotely . . . . . . . . . . . . . . . . . . .<br />

Analog Bus Codes . . . . . . . . . . . . . . . . . . . . . .<br />

Error Messages . . . . . . . . . . . . . . . . . . . . . . . .<br />

10-11<br />

10-12<br />

10-13<br />

10-15<br />

lo-16<br />

10-18<br />

lo-18<br />

10-21<br />

10-22<br />

lo-22<br />

lo-23<br />

lo-23<br />

lo-24<br />

lo-26<br />

lo-26<br />

lo-33<br />

lo-34<br />

10-40<br />

1043<br />

1046<br />

lo-47<br />

lo-48<br />

1048<br />

1049<br />

10-50<br />

11. Error lkrms<br />

Error Terms Can Also Serve a Diagnostic Purpose . . . . . . . . 11-l<br />

FuII Two-Port Error-Correction Procedure . . . . . . . . . . . . 11-3<br />

Error l&m Inspection . . . . . . . . . . . . . . . . . . . . .<br />

If Error Terms Seem Worse than Typical Values . . . . . . . .<br />

11-8<br />

11-9<br />

Uncorrected Performance . . . . . . . . . . . . . . . . . .<br />

Error Term Descriptions . . . . . . . . . . . . . . . . . . . .<br />

Directivity (EDF and EDR) . . . . . . . . . . . . . . . . . .<br />

11-9<br />

11-10<br />

11-11<br />

Description . . . . . . . . . . . . . . . . . . . . . . . . 11-11<br />

Significant System Components . . . . . . . . . . . . . . . 11-11<br />

Affected Measurements . . . . . . . . . . . . . . . . . . . 11-11<br />

Source Match (ESF and ESR) . . . . . . . . . . . . . . . . . 11-12<br />

Description . . . . . . . . . . . . . . . . . . . . . . . . 11-12<br />

Significant System Components . . . . . . . . . . . . . . 11-12 .<br />

Affected Measurements . . . . . . . . . . . . . . . . . . 11-12<br />

Contents-l 0


Reflection Tracking (ERF’ and ERR) . . . . . . . . . . . . . . 11-13<br />

Description . . . . . . . . . . . . . . . . . . . . . . . . 11-13<br />

Significant System Components . . . . . . . . . . . . . . . 11-13<br />

Affected Measurements . . . . . . . . . . . . . . . . . . 11-13<br />

Isolation (Crosstalk, EXF and EXR) . . . . . . . . . . . . . . 11-14<br />

Description . . . . . . . . . . . . . . . . . . . . . . . . 11-14<br />

Significant System Components . . . . . . . . . . . . . . . 11-14<br />

Affected Measurements . . . . . . . . . . . . . . . . . . 11-14<br />

LoadMatch(ELF’andELR). . . . . . . . . . . . . . . . . . 11-15<br />

Description . . . . . . . . . . . . . . . . . . . . . . . . 11-15<br />

Significant System Components . . . . . . . . . . . . . . . 11-15<br />

Affected Measurements . . . . . . . . . . . . . . . . . . 11-15<br />

Transmission Tracking (ETF and ETR) . . . . . . . . . . . . . 11-16<br />

Description . . . . . . . . . . . . . . . . . . . . . . . . 11-16<br />

Significant System Components . . . . . . . . . . . . . . . 11-16<br />

Affected Measurements . . . . . . . . . . . . . . . . . . 11-16<br />

12. Theory of Operation<br />

How the <strong>HP</strong> <strong>8753E</strong> Works . . . . . . . . . . . . . . . . . . . 12-1<br />

The Built-In Synthesized Source . . . . . . . . . . . . . . . 12-2<br />

The Source Step Attenuator . . . . . . . . . . . . . . . . 12-2<br />

The Built-In Test Set . . . . . . . . . . . . . . . . . . . . . 12-3<br />

The Receiver Block . . . . . . . . . . . . . . . . . . . . . 12-3<br />

The Microprocessor . . . . . . . . . . . . . . . . . . . . 12-3<br />

Required Peripheral Equipment . . . . . . . . . . . . . . . . 12-3<br />

A Close Look at the <strong>Analyzer</strong>’s Functional Groups . . . . . . . . 12-4<br />

Power Supply Theory . . . . . . . . . . . . . . . . . . . . . 12-5<br />

Al5 PrereguIator . . . . . . . . . . . . . . . . . . . . . . 12-5<br />

Line Power Module . . . . . . . . . . . . . . . . . . . . 12-6<br />

Preregulated Voltages . . . . . . . . . . . . . . . . . . . 12-6<br />

Regulated +5 V Digital Supply . . . . . . . . . . . . . . . 12-6<br />

Shutdown Indications: the Green LED and Red LED . . . . . 12-6<br />

A8 Post Regulator . . . . . . . . . . . . . . . . . . . . . . 12-7<br />

Voltage Indications: the Green LEDs . . . . . . . . . . . . 12-7<br />

Shutdown Circuit . . . . . . . . . . . . . . . . . . . . . 12-7<br />

Variable Pan Circuit and Air Flow Detector . . . . . . . . . 12-7<br />

Display Power . . . . . . . . . . . . . . . . . . . . . . . 12-8<br />

Probe Power . . . . . . . . . . . . . . . . . . . . . . . 12-8<br />

Digital Control Theory . . . . . . . . . . . . . . . . . . . . . 12-8<br />

Al Front Panel . . . . . . . . . . . . . . . . . . . . . . . 12-10<br />

A2 Front Panel Processor . . . . . . . . . . . . . . . . . . . 12-10<br />

Contmte11


Contents-12<br />

A9 CPU/A10 Digital IF . . . . . . . . . . . . . . . . . . . . 12-10<br />

Main CPU . . . . . . . . . . . . . . . . . . . . . . . . . 12-10<br />

MainRAM. . . . . . . . . . . . . . . . . . . . . . . . . 12-11<br />

EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . 12-11<br />

Digital SiiaI Processor . . . . . . . . . . . . . . . . . . 12-11<br />

Al8 Display . . . . . . . . . . . . . . . . . . . . . . . . . 12-11<br />

A19 GSP . . . . . . . . . . . . . . . . . . . . . . . . . . 12-12<br />

A27 Inverter . . . . . . . . . . . . . . . . . . . . . . . . 12-12<br />

Al6 Rear Panel . . . . . . . . . . . . . . . . . . . . . . . 12-12<br />

Source Theory Overview . . . . . . . . . . . . . . . . . . . . 12-14<br />

A14/A13 Fractional-N . . . . . . . . . . . . . . . . . . . . 12-14<br />

Al2 Reference . . . . . . . . . . . . . . . . . . . . . . . . 12-14<br />

A7 Pulse Generator . . . . . . . . . . . . . . . . . . . . . 12-15<br />

All Phase Lock . . . . . . . . . . . . . . . . . . . . . . . 12-15<br />

A3 Source . . . . . . . . . . . . . . . . . . . . . . . . . . 12-15<br />

Source Super Low Band Operation . . . . . . . . . . . . . . . 12-15<br />

Source Low Band Operation . . . . . . . . . . . . . . . . . . 12-16<br />

Source High Band Operation . . . . . . . . . . . . . . . . . . 12-19<br />

Source Operation in other Modes/Features . . . . . . . . . . . . 12-22<br />

Frequency Offset . . . . . . . . . . . . . . . . . . . . . . 12-22<br />

Harmonic Analysis (Option 002) . . . . . . . . . . . . . . . . 12-22<br />

External Source Mode . . . . . . . . . . . . . . . . . . . . 12-23<br />

Tuned Receiver Mode . . . . . . . . . . . . . . . . . . . . 12-25<br />

Signal Separation . . . . . . . . . . . . . . . . . . . . . . . 12-26<br />

TheBuiIt-InTestSet . . . . . . . . . . . . . . . . . . . . . 12-26<br />

A21 andA22’IWPortCouplers . . . . . . . . . . . . . . 12-26<br />

A23LEDFrontPanel . . . . . . . . . . . . . . . . . . . 12-26<br />

A24 Transfer Switch . . . . . . . . . . . . . . . . . . . . 12-26<br />

A25 Test Set Interface . . . . . . . . . . . . . . . . . . . 12-26<br />

Receiver Theory . . . . . . . . . . . . . . . . . . . . . . . . 12-28<br />

A4lA5lA6 Sampler/Mixer . . . . . . . . . . . . . . . . . . . 12-29<br />

TheSamplerCircuitinHighBand. . . . . . . . . . . . . . 12-29<br />

The Sampler Circuit in Low Band or Super Low Band . . . . 12-29<br />

The2ndLOSignaI . . . . . . . . . . . . . . . . . . . . . 12-29<br />

The Mixer Circuit . . . . . . . . . . . . . . . . . . . . . 12-30<br />

AlODi@talIF . . . . . . . . . . . . . . . . . . . . . . . . 12-30


13. Replaceable parts<br />

Replacing an Assembly . . . . . . . . . . . . . . . . . . . . .<br />

Rebuilt-Exchange Assemblies . . . . . . . . . . . . . . . . . .<br />

Ordering Information . . . . . . . . . . . . . . . . . . . . .<br />

Replaceable Part Listings . . . . . . . . . . . . . . . . . . . .<br />

Major Assemblies, ‘Ibp . . . . . . . . . . . . . . . . . . . .<br />

Major Assemblies, Bottom . . . . . . . . . . . . . . . . . .<br />

Cables, Top . . . . . . . . . . . . . . . . . . . . . . . . .<br />

Cables, Bottom . . . . . . . . . . . . . . . . . . . . . . .<br />

Cables, Front . . . . . . . . . . . . . . . . . . . . . . . .<br />

Cables, Rear . . . . . . . . . . . . . . . . . . . . . . . . .<br />

Cables, Source . . . . . . . . . . . . . . . . . . . . . . . .<br />

F’ront Panel Assembly, Outside . . . . . . . . . . . . . . . .<br />

kont Panel Assembly, Inside . . . . . . . . . . . . . . . . .<br />

Rear Panel Assembly . . . . . . . . . . . . . . . . . . . . .<br />

Rear Panel Assembly, Option lD5 . . . . . . . . . . . . . . .<br />

Hardware, Top. . . . . . . . . . . . . . . . . . . . . . . .<br />

Hardware, Bottom . . . . . . . . . . . . . . . . . . . . . .<br />

Hardware, Front . . . . . . . . . . . . . . . . . . . . . . .<br />

Hardware, Test Set Deck . . . . . . . . . . . . . . . . . . .<br />

Hardware, Disk Drive Support . . . . . . . . . . . . . . . .<br />

Hardware, Memory Deck . . . . . . . . . . . . . . . . . . .<br />

Hardware, Preregulator . . . . . . . . . . . . . . . . . . .<br />

Chassis Parts, Outside . . . . . . . . . . . . . . . . . . . .<br />

Chassis Parts, Inside . . . . . . . . . . . . . . . . . . . . .<br />

Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . .<br />

13-2<br />

13-3<br />

13-3<br />

13-5<br />

13-6<br />

13-8<br />

13-10<br />

13-12<br />

13-14<br />

13-16<br />

13-18<br />

13-20<br />

13-22<br />

13-24<br />

13-26<br />

13-28<br />

13-30<br />

13-32<br />

13-34<br />

13-36<br />

13-38<br />

13-40<br />

1342<br />

1344<br />

1346<br />

14. Assembly Replacement and Post-Repair Procedures<br />

Replacing an Assembly . . . . . . . . . . . . . . . . . . . . . 14-2<br />

Procedures described in this chapter . . . . . . . . . . . . . 14-3<br />

LineFuse . . . . . . . . . . . . . . . . . . . . . . . . . . . 144<br />

Tools Required . . . . . . . . . . . . . . . . . . . . . . . . 14-4<br />

Removal . . . . . . . . . . . . . . . . . . . . . . . . . . 144<br />

Replacement . . . . . . . . . . . . . . . . . . . . . . . . 144<br />

Covers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-6<br />

Tools Required . . . . . . . . . . . . . . . . . . . . . . . . 14-6<br />

Removing the top cover . . . . . . . . . . . . . . . . . . . 14-6<br />

Removing the side covers . . . . . . . . . . . . . . . . . . 146<br />

Removing the bottom cover . . . . . . . . . . . . . . . . . 14-6<br />

Front Panel Assembly . . . . . . . . . . . . . . . . . . . . . 14-8<br />

Tools Required . . . . . . . . . . . . . . . . . . . . . . . . 148<br />

Contents-13


Contents-14<br />

Removal . . . . . . . . . . . . . . . . . . . . . . . . . . 14-8<br />

Replacement . . . . . . . . . . . . . . . . . . . . . . . . 14-8<br />

Front Panel Keyboard and Interface Assemblies (Al, A2) . . . . . 14-10<br />

Tools Required . . . . . . . . . . . . . . . . . . . . . . . . 14-10<br />

Removal . . . . . . . . . . . . . . . . . . . . . . . . . . 14-10<br />

Replacement . . . . . . . . . . . . . . . . . . . . . . . . 14-10<br />

Display Lamp and Inverter Assemblies (A18, A27) . . . . . . . . 14-12<br />

‘Ibols Required . . . . . . . . . . . . . . . . . . . . . . . . 14-12<br />

Removal . . . . . . . . . . . . . . . . . . . . . . . . . . 14-12<br />

Replacement . . . . . . . . . . . . . . . . . . . . . . . . 14-13<br />

Rear Panel Assembly . . . . . . . . . . . . . . . . . . . . . . 1416<br />

‘Ibois Required . . . . . . . . . . . . . . . . . . . . . . . . 14-16<br />

Removal . . . . . . . . . . . . . . . . . . . . . . . . . . 14-16<br />

Replacement . . . . . . . . . . . . . . . . . . . . . . . . 14-17<br />

Rear Panel Interface Board Assembly (A16) . . . . . . . . . . . 14-20<br />

‘Ibols Required . . . . . . . . . . . . . . . . . . . . . . . . 14-20<br />

Removal . . . . . . . . . . . . . . . . . . . . . . . . . . 14-20<br />

Replacement . . . . . . . . . . . . . . . . . . . . . . . . 14-20<br />

A3 Source Assembly . . . . . . . . . . . . . . . . . . . . . . 14-22<br />

Tools Required . . . . . . . . . . . . . . . . . . . . . . . . 1422<br />

Removal . . . . . . . . . . . . . . . . . . . . . . . . . . 1422<br />

Replacement . . . . . . . . . . . . . . . . . . . . . . . . 14-24<br />

A4, A5, A6 Samplers and A7 Pulse Generator . . . . . . . . . . 1426<br />

Tools Required . . . . . . . . . . . . . . . . . . . . . . . . 14-26<br />

Removal . . . . . . . . . . . . . . . . . . . . . . . . . . 14-26<br />

Replacement . . . . . . . . . . . . . . . . . . . . . . . . 14-28<br />

AS, AlO, All, A12, A13, Al4 Card Cage Boards . . . . . . . . . 14-30<br />

lbois Required . . . . . . . . . . . . . . . . . . . . . . . . 1430<br />

Removal . . . . . . . . . . . . . . . . . . . . . . . . . . 14-30<br />

Replacement . . . . . . . . . . . . . . . . . . . . . . . . 14-30<br />

A9 CPU Board . . . . . . . . . . . . . . . . . . . . . . . . . 14-32<br />

Tools Required . . . . . . . . . . . . . . . . . . . . . . . . 14-32<br />

Removal . . . . . . . . . . . . . . . . . . . . . . . . . . 14-32<br />

Replacement . . . . . . . . . . . . . . . . . . . . . . . . 14-32<br />

A9BTl Battery . . . . . . . . . . . . . . . . . . . . . . . . 14-36<br />

Tools Required . . . . . . . . . . . . . . . . . . . . . . . . 14-36<br />

Removal . . . . . . . . . . . . . . . . . . . . . . . . . . 14-36<br />

Replacement . . . . . . . . . . . . . . . . . . . . . . . . 14-36<br />

Al5 Preregulator . . . . . . . . . . . . . . . . . . . . . . . 14-38<br />

Tools Required . . . . . . . . . . . . . . . . . . . . . . . . 14-38<br />

Removal . . . . . . . . . . . . . . . . . . . . . . . . . . 1438


Replacement . . . . . . . . . . . . . . . . . . . . . . . . 14-38<br />

Al7 Motherboard Assembly . . . . . . . . . . . . . . . . . . 14-40<br />

Tools Required . . . . . . . . . . . . . . . . . . . . . . . . 14-40<br />

Removal . . . . . . . . . . . . . . . . . . . . . . . . . . 14-40<br />

Replacement . . . . . . . . . . . . . . . . . . . . . . . . 14-43<br />

A19 Graphics Processor . . . . . . . . . . . . . . . . . . . . 1444<br />

Tools Required . . . . . . . . . . . . . . . . . . . . . . . . 1444<br />

Removal . . . . . . . . . . . . . . . . . . . . . . . . . . 1444<br />

Replacement . . . . . . . . . . . . . . . . . . . . . . . . 1444<br />

A20 Disk Drive Assembly . . . . . . . . . . . . . . . . . . . 1446<br />

Tools Required . . . . . . . . . . . . . . . . . . . . . . . . 14-46<br />

Required Diskette . . . . . . . . . . . . . . . . . . . . . . 1446<br />

Prehminary Instructions . . . . . . . . . . . . . . . . . . . 14-46<br />

Install the replacement disk drive. . . . . . . . . . . . . . . 14-48<br />

Test the disk-eject function, and adjust if required. . . . . . . 1448<br />

Reinstall the covers. . . . . . . . . . . . . . . . . . . . . . 1449<br />

A21, A22 Test Port Couplers . . . . . . . . . . . . . . . . . . 14-50<br />

Tools Required . . . . . . . . . . . . . . . . . . . . . . . . 14-50<br />

Removal . . . . . . . . . . . . . . . . . . . . . . . . . . 14-50<br />

Replacement . . . . . . . . . . . . . . . . . . . . . . . . 14-50<br />

A23 LED Board . . . . . . . . . . . . . . . . . . . . . . . . 14-52<br />

Tools Required. . . . . . . . . . . . . . . . . . . . . . . . 14-52<br />

Removal . . . . . . . . . . . . . . . . . . . . . . . . . . 14-52<br />

Replacement . . . . . . . . . . . . . . . . . . . . . . . . 14-52<br />

A24 Transfer Switch . . . . . . . . . . . . . . . . . . . . . . 14-54<br />

Tools Required . . . . . . . . . . . . . . . . . . . . . . . . 14-54<br />

Removal . . . . . . . . . . . . . . . . . . . . . . . . . . 14-54<br />

Replacement . . . . . . . . . . . . . . . . . . . . . . . . 14-54<br />

A25 Test Set Interface . . . . . . . . . . . . . . . . . . . . . 1456<br />

Tools Required . . . . . . . . . . . . . . . . . . . . . . . . 1456<br />

Removal . . . . . . . . . . . . . . . . . . . . . . . . . . 1456<br />

Replacement . . . . . . . . . . . . . . . . . . . . . . . . 1456<br />

A26 High Stability Frequency Reference (Option lD5) Assembly . 14-58<br />

Tools Required . . . . . . . . . . . . . . . . . . . . . . . . 14-58<br />

Removal . . . . . . . . . . . . . . . . . . . . . . . . . . 14-58<br />

Replacement . . . . . . . . . . . . . . . . . . . . . . . . 14-58<br />

Bl Fan Assembly . . . . . . . . . . . . . . . . . . . . . . . 14-60<br />

Tools Required . . . . . . . . . . . . . . . . . . . . . . . . 14-60<br />

Removal . . . . . . . . . . . . . . . . . . . . . . . . . . 14-60<br />

Replacement . . . . . . . . . . . . . . . . . . . . . . . . 1460<br />

Post-Repair Procedures for <strong>HP</strong> <strong>8753E</strong> . . . . . . . . . . . . . . 1462<br />

Contents-l 5


15. Safety and Licensing<br />

Notice . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-1<br />

Certification . . . . . . . . . . . . . . . . . . . . . . . . . . 15-1<br />

warranty . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-2<br />

Assistance . . . . . . . . . . . . . . . . . . . . . . . . . . 15-2<br />

Shipment for <strong>Service</strong> . . . . . . . . . . . . . . . . . . . . . 15-4<br />

Safety Symbols . . . . . . . . . . . . . . . . . . . . . . . . 15-5<br />

Instrument Markings . . . . . . . . . . . . . . . . . . . . . . 15-5<br />

Safety Considerations . . . . . . . . . . . . . . . . . . . . . 15-6<br />

Safety Earth Ground . . . . . . . . . . . . . . . . . . . . . 15-6<br />

Before Applying Power . . . . . . . . . . . . . . . . . . . 15-6<br />

servicing . . . . . . . . . . . . . . . . . . . . . . . . . . 15-7<br />

General . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-8<br />

Compliance with German FTZ Emissions Requirements . . . . . 15-9<br />

Compliance with German Noise Requirements . . . . . . . . . 15-9<br />

Index<br />

Content*16


Figures<br />

2-l. System Verification Test Setup . . . . . . . . . . . . . . . . 2-10<br />

2-2. Connections for Measurement Calibration Standards . . . . . . 2-12<br />

2-3. Transmission Calibration Setup . . . . . . . . . . . . . . . . 2-13<br />

2-4. Connections for the 20 dB Verification Device . . . . . . . . . 2-14<br />

2-5. Connections for the 50 dB Verification Device . . . . . . . . . 2-15<br />

2-6. Mismatch Device Verification Setup 1 . . . . . . . . . . . . . 2-15<br />

2-7. Mismatch Device Verification Setup 2 . . . . . . . . . . . . . 2-16<br />

2-8. Test Port Output Frequency Range and Accuracy Test Setup . . 2-19<br />

2-9. External Source Mode Frequency Range Test Setup . . . . . . 2-22<br />

2-10. Source Output Power Accuracy Test Setup . . . . . . . . . . . 2-25<br />

2-11. Test Port Output Power Range and Accuracy Test Setup . . . . 2-28<br />

2-12. Minimum R Channel Level Test Setup . . . . . . . . . . . . . 2-32<br />

2-13. Flexible RF Cable Location . . . . . . . . . . . . . . . . . . 2-34<br />

2-14. Connections for Substituting the R Sampler (A4) . . . . . . . . 2-35<br />

2-15. Setup for Checking the R Sampler (A4) . . . . . . . . . . . . 2-36<br />

2-16. Source Input Noise Floor Test Setup . . . . . . . . . . . . . . 2-38<br />

2-17. Setup for Power Meter Calibration on Test Port 1 . . . . . . . 2-44<br />

2-18. Test Port 2 Input Frequency Response Test Setup . . . . . . . 2-47<br />

2-19. Setup for Power Meter Calibration on Test Port 2 . . . . . . . 2-48<br />

2-20. Test Port 1 Input Frequency Response Test Setup . . . . . . . 2-49<br />

2-21. Setup for Power Meter Calibration on Test Port 2 . . . . . . . 2-50<br />

2-22. Setup for Test Port 1 Input Frequency Response . . . . . . . . 2-51<br />

2-23. Setup for Power Meter Calibration on Test Port 1 . . . . . . . 2-52<br />

2-24. Test Port 2 Input Frequency Response Test Setup . . . . . . . 2-53<br />

2-25. Test Port Crosstalk Test Setup . . . . . . . . . . . . . . . . . 2-54<br />

2-26. <strong>HP</strong> <strong>8753E</strong> Bottom View . . . . . . . . . . . . . . . . . . . 2-57<br />

2-27. First FulI 2-Port Calibration Test Setup . . . . . . . . . . . . 2-59<br />

2-28. Transmission Calibration Test Setup . . . . . . . . . . . . . . 2-60<br />

2-29. Second FuR 2-Port Calibration Test Setup . . . . . . . . . . . 2-62<br />

2-30. Transmission Calibration Test Setup . . . . . . . . . . . . . . 2-63<br />

2-31. System Trace Noise Test Setup . . . . . . . . . . . . . . . . 2-65<br />

2-32. System Trace Noise Test Setup . . . . . . . . . . . . . . . . 2-68<br />

Conteints-17


2-33. Sll l-Port Cal Test Setup . . . . . . . . . . . . . . . . . . .<br />

2-34. Test Port 2 Input Impedance Test Setup . . . . . . . . . . . .<br />

2-35. S22 l-Port Cal Test Setup . . . . . . . . . . . . . . . . . . .<br />

2-36. Test Port 1 Input Impedance Test Setup . . . . . . . . . . . .<br />

2-37. Power Meter Calibration for Magnitude Dynamic Accuracy . . .<br />

2-38. FulI 2-Port Calibration with Adapter Removal . . . . . . . . .<br />

2-39. Magnitude Dynamic Accuracy Measurement . . . . . . . . . .<br />

240. Test Port Magnitude Compression Test Setup . . . . . . . . . .<br />

2-41. Test Port Phase Compression Test Setup . . . . . . . . . . . .<br />

242. Test Port Output Harmonics Test Setup . . . . . . . . . . . .<br />

2-43. Receiver Harmonics Test Setup . . . . . . . . . . . . . . . .<br />

2-44. Test Port Output Harmonics Test Setup . . . . . . . . . . . .<br />

245. Receiver Harmonics Test Setup . . . . . . . . . . . . . . . .<br />

246. Test Port Output Harmonics Test Setup . . . . . . . . . . . .<br />

3-l. A9 Correction Constants Switch<br />

3-2. RF Output Correction Constants T&t’S&up’fdr ‘the <strong>HP</strong> <strong>8753E</strong> : :<br />

3-3. First Connections for Insertion Loss Measurement . . . . . . .<br />

34. Second Connections for Insertion Loss Measurement . . . . . .<br />

3-5. Connections for Sampler Correction Routine . . . . . . . . . .<br />

3-6. Connections for Sampler Correction at 6 GHz . . . . . . . . .<br />

3-7. Connections for Sampler Correction at Port 2 . . . . . . . . .<br />

3-8. Connections for Sampler Correction at Port 2 for 6 GHz . . . .<br />

3-9. Connections for the Second Through Cable . . . . . . . . . .<br />

3-10. Setup for Cavity Oscihator Frequency Correction Constant<br />

Routine . . . . . . . . . . . . . . . . . . . . . . . . .<br />

3-11. Typical Display of Spurs with a Filter . . . . . . . . . . . . .<br />

3-12. Typical Display of Four Spurs without a Filter . . . . . . . . .<br />

3-13. lhrget Spur Is Fourth in Display of Five Spurs . . . . . . . . .<br />

3-14. Target Spur Is Almost Invisible . . . . . . . . . . . . . . . .<br />

3-15. Location of the FN VCO TUNE Adjustment . . . . . . . . . .<br />

3-16. Fractional-N Frequency Range Adjustment Display . . . . . . .<br />

3-17. Frequency Accuracy Adjustment Setup . . . . . . . . . . . .<br />

3-18. Location of the VCXO ADJ Adjustment . . . . . . . . . . . .<br />

3-19. High Stability Frequency Adjustment Location . . . . . . . . .<br />

3-20. High/Low Band Transition Adjustment Trace . . . . . . . . .<br />

3-21. High/Low Band Adjustment Locations . . . . . . . . . . . . .<br />

3-22. Fractional-N Spur Avoidance and FM Sideband Adjustment Setup<br />

3-23. Location of API and 100 kHz Adjustments . . . . . . . . . . .<br />

3-24. Location of All Test Points and A3 CAV ADJ Adjustments . . .<br />

3-25. Display of Acceptable versus Excessive Spikes . . . . . . . . .<br />

4-l. Preset Sequence . . . . . . . . . . . . . . . . . . . . . . .<br />

Contents-l 8<br />

2-73<br />

2-74<br />

2-75<br />

2-76<br />

2-81<br />

2-83<br />

2-85<br />

2-90<br />

2-93<br />

2-96<br />

2-98<br />

2-102<br />

2-104<br />

2-109<br />

3-6<br />

3-14<br />

3-20<br />

3-21<br />

3-22<br />

3-23<br />

3-24<br />

3-25<br />

3-25<br />

3-29<br />

3-30<br />

3-31<br />

3-32<br />

3-33<br />

3-46<br />

346<br />

3-49<br />

3-50<br />

3-51<br />

3-53<br />

3-53<br />

3-55<br />

3-56<br />

3-58<br />

3-59<br />

4-3


4-2. Troubleshooting Organization . . . . . . . . . . . . . . . . . 4-9<br />

4-3. Al5 Prereguiator LEDs . . . . . . . . . . . . . . . . . . . . 4-10<br />

44. kont Panel Power Up Sequence . . . . . . . . . . . . . . . 4-11<br />

4-5. Equipment Setup for Source Power Check . . . . . . . . . . . 4-14<br />

4-6. ABUSNode 16: 1 V/GHz . . . . . . . . . . . . . . . . . . . 415<br />

4-7. Equipment Setup . . . . . . . . . . . . . . . . . . . . . . 4-16<br />

4-8. Typical Measurement Trace . . . . . . . . . . . . . . . . . 4-17<br />

4-9. <strong>HP</strong> <strong>8753E</strong> Overall Block Diagram . . . . . . . . . . . . . . . 4-19<br />

5-l. Power Supply Group SimpIified Block Diagram . . . . . . . . . 5-3<br />

5-2. Location of Al5 Diagnostic LEDs . . . . . . . . . . . . . . . 5-4<br />

5-3. A8 Post Regulator Test Point Locations . . . . . . . . . . . . 5-5<br />

5-4. Removing the Line Fuse . . . . . . . . . . . . . . . . . . . 5-7<br />

5-5. Power Supply Cable Locations . . . . . . . . . . . . . . . . 5-9<br />

5-6. A15Wl Plug Detail . . . . . . . . . . . . . . . . . . . . . . 5-11<br />

5-7. kont Panel Probe Power Connector Voltages . . . . . . . . . 5-20<br />

5-8. Power Supply Block Diagram . . . . . . . . . . . . . . . . . 5-25<br />

6-l. Digital Control Group Block Diagram . . . . . . . . . . . . . 6-2<br />

6-2. Switch Positions on the A9 CPU . . . . . . . . . . . . . . . 6-5<br />

6-3. CPU LED Window on Rear Panel . . . . . . . . . . . . . . . 6-6<br />

6-4. Backlight Intensity Check Setup . . . . . . . . . . . . . . . 6-9<br />

6-5. Newtons Rings. . . . . . . . . . . . . . . . . . . . . . . . 6-11<br />

6-6. Preset Sequence . . . . . . . . . . . . . . . . . . . . . . . 6-13<br />

7-l. Basic Phase Lock Error Troubleshooting Equipment Setup . . . 74<br />

7-2. Jumper Positions on the A9 CPU . . . . . . . . . . . . . . . 7-5<br />

7-3. Sampler/Mixer to Phase Lock Cable Connection Diagram . . . . 7-7<br />

74. Waveform Integrity in SRC Tune Mode . . . . . . . . . . . . 7-9<br />

7-5. Phase Locked Output Compared to Open Loop Output in SRC<br />

Tune Mode. . . . . . . . . . . . . . . . . . . . . . . . 7-9<br />

7-6. 1 V/GHz at Analog Bus Node 16 with Source PLL Off. . . . . . 7-11<br />

7-7. YO- and YO+ Coil Drive Voltage Differences with SOURCE PLL<br />

OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-12<br />

7-8. Sharp 109 kHz pulses at A13TP5 (any frequency) . . . . . . . 7-16<br />

7-9.HighBandREFSiiaI(~l6MHzCW). . . . . . . . . . . . . 7-17<br />

7-10. REF’SiiaIatAllTP9(5MHzCW) . . . . . . . . . . . . . . 7-18<br />

7-11. Typical F’N LO Waveform at A12Jl . . . . . . . . . . . . . . 7-19<br />

7-12. 4 MHz Reference SiiaI at A12TP9 (Preset) . . . . . . . . . . 7-20<br />

7-13. 90 Degree Phase Offset of High Band 2nd LO Siiais (116 MHz<br />

cw). . . . . . . . . . . . . . . . . . . . . . . . . . . 7-21<br />

7-14. In-Phase Low Band 2nd LO SiiaIs (14 MHz CW) . . . . . . . . 7-22<br />

7-15. L ENREP Line at A12P2-16 (Preset) . . . . . . . . . . . . . . 7-23<br />

7-16. Complementary L HB and L LB Signals (Preset) . . . . . . . . 7-24<br />

Contents-19


7-17. 10 MHz HI OUT Waveform from A14Jl . . . . . . . . . . . . 7-26<br />

7-18. 25 MHz HI OUT Waveform from A14Jl . . . . . . . . . . . . 7-26<br />

7-19. 60 MHz HI OUT Waveform from A14Jl . . . . . . . . . . . . 7-27<br />

7-20. LC OUT Waveform at A14J2 . . . . . . . . . . . . . . . . . 7-28<br />

7-21. Al4 Generated Digital Control Signals . . . . . . . . . . . . . 7-30<br />

7-22. H MB Signal at A14Pl-5 (Preset and 16 MHz to 31 MHz Sweep) . 7-31<br />

7-23. Pulse Generator Output . . . . . . . . . . . . . . . . . . . 7-32<br />

7-24. HighQuaiityComb’Ibothat3GHz . . . . . . . . . . . . . . 7-33<br />

7-25. Stable HI OUT SiiaI in FRACN TUNE Mode . . . . . . . . . . 7-34<br />

7-26. Typical 1st IF Waveform in FRACN TUNE/SRC TUNE Mode . . 7-35<br />

7-27. FM Coil - Plot with 3 Point Sweep . . . . . . . . . . . . . . 7-37<br />

8-l. Equipment Setup . . . . . . . . . . . . . . . . . . . . . . 8-4<br />

8-2. Typical Good Trace . . . . . . . . . . . . . . . . . . . . . 8-5<br />

8-3. 4 MHz REF Waveform . . . . . . . . . . . . . . . . . . . . 8-7<br />

8-4. Digital Data Lines Observed UsingL INTCOP as Trigger . . . . S-10<br />

8-5. Digital Control Lines Observed Using L INTCOP as Trigger . . . S-10<br />

8-6. 2nd IF (4 kHz) Waveform . . . . . . . . . . . . . . . . . . . 8-12<br />

8-7. Typical Trace with Sampler Correction On and Off . . . . . . . 8-13<br />

9-l. Typical Return Loss Traces of Good and Poor Cables . . . . . . 9-5<br />

9-2. Typical Smith Chart Traces of Good Short (a) and Open (b) . . . 9-7<br />

10-l. Internal Diagnostics Menus . . . . . . . . . . . . . . . . . . 10-2<br />

10-2. A9 CPU Switch Positions . . . . . . . . . . . . . . . . . . . 10-S<br />

10-3. <strong>Service</strong> Feature Menus . . . . . . . . . . . . . . . . . . . . lo-18<br />

104. Analog Bus Node 1 . . . . . . . . . . . . . . . . . . . . . lo-27<br />

10-5. AnaiogBusNode2 . . . . . . . . . . . . . . . . . . . . . lo-28<br />

10-6. Analog Bus Node 3 . . . . . . . . . . . . . . . . . . . . . lo-29<br />

10-7. AnalogBusNode4 . . . . . . . . . . . . . . . . . . . . . lo-30<br />

10-B. Analog Bus Node 6 . . . . . . . . . . . . . . . . . . . . . 10-31<br />

10-9. Analog Bus Node 7 . . . . . . . . . . . . . . . . . . . . . lo-32<br />

10-10. Analog Bus Node 14 . . . . . . . . . . . . . . . . . . . . . lo-35<br />

10-11. Analog Bus Node 15 . . . . . . . . . . . . . . . . . . . . . lo-36<br />

10-12. Analog Bus Node 16 . . . . . . . . . . . . . . . . . . . . . lo-37<br />

10-13. Counter Readout Location . . . . . . . . . . . . . . . . . . lo-38<br />

10-14. Analog Bus Node 18 . . . . . . . . . . . . . . . . . . . . . 10-39<br />

10-15. Analog Bus Node 20 . . . . . . . . . . . . . . . . . . . . . lo-40<br />

10-16. Analog Bus Node 23 . . . . . . . . . . . . . . . . . . . . . 1041<br />

10-17. Analog Bus Node 29 . . . . . . . . . . . . . . . . . . . . . 1044<br />

10-18. Analog Bus Node 30 . . . . . . . . . . . . . . . . . . . . . 1045<br />

10-19. Location of Firmware Revision Information on Display . . . . . 1047<br />

11-l. Standard Connections for Fuli Two-Port Error-Correction . . . 11-4<br />

11-2. ‘ljpical EDF/EDR without and with Cables . . . . . . . . . . 11-11<br />

Contents-20


11-3. Typical ESF/ESR without and with Cables . . . . . . . . . . .<br />

114. Typical ERF/ERR without and with Cables . . . . . . . . . .<br />

11-5. Typical EXFLEXR with 10 Hz Bandwidth and with 3 kHz<br />

Bandwidth . . . . . . . . . . . . . . . . . . . . . . . .<br />

11-6. Typical ELFLELR . . . . . . . . . . . . . . . . . . . . . .<br />

11-7. Typical ETFLETR . . . . . . . . . . . . . . . . . . . . . .<br />

12-1. Simplified Block Diagram of the <strong>Network</strong> <strong>Analyzer</strong> System . . .<br />

12-2. Power Supply Functional Group, Simplified Block Diagram . . .<br />

12-3. Digital Control Group, Simplified Block Diagram . . . . . . . .<br />

12-4. Low Band Operation of the Source . . . . . . . . . . . . . .<br />

12-5. High Band Operation of the Source . . . . . . . . . . . . . .<br />

12-6. Harmonic Analysis . . . . . . . . . . . . . . . . . . . . . .<br />

12-7. External Source Mode . . . . . . . . . . . . . . . . . . . .<br />

12-8. Tuned Receiver Mode . . . . . . . . . . . . . . . . . . . .<br />

12-9. Simplified Block Diagram of the Built-in Test Set . . . . . . . .<br />

12-10. Receiver Functional Group, Simplified Block Diagram . . . . .<br />

13-1. Module Exchange Procedure . . . . . . . . . . . . . . . . .<br />

11-12<br />

11-13<br />

11-14<br />

11-15<br />

11-16<br />

12-2<br />

12-5<br />

12-9<br />

12-17<br />

12-20<br />

12-23<br />

12-24<br />

12-25<br />

12-27<br />

12-28<br />

13-4<br />

Contents-21


Tables<br />

l-l. Required Tools . . . . . . . . . . . . . . . . . . . . . . . . l-l<br />

l-2. <strong>Service</strong> Test Equipment . . . . . . . . . . . . . . . . . . . l-2<br />

l-3. Connector Care Quick Reference . . . . . . . . . . . . . . . l-6<br />

2-l. Magnitude Dynamic Accuracy Calculations . . . . . . . . . . 2-79<br />

3-l. Related <strong>Service</strong> Procedures . . . . . . . . . . . . . . . . . . 3-2<br />

3-2. PEEK/POKE Addresses . . . . . . . . . . . . . . . . . . . . 3-60<br />

5-l. A8 Post Regulator Test Point Voltages . . . . . . . . . . . . . 5-6<br />

5-2. Output Voltages . . . . . . . . . . . . . . . . . . . . . . . 5-10<br />

5-3. Recommended Order for RemovaYDiscoMection . . . . . . . . 5-12<br />

5-4. Recommended Order for RemovaVDiscoMection . . . . . . . . 5-18<br />

6-l. Front Panel Key Codes . . . . . . . . . . . . . . . . . . . . 6-14<br />

6-2. Internal Diagnostic Test with Commentary . . . . . . . . . . . 6-18<br />

7-l. Output Frequency in SRC Tune Mode . . . . . . . . . . . . . 7-8<br />

7-2. Analog Bus Check of Reference Frequencies . . . . . . . . . . 7-13<br />

7-3. Al2 Reference Frequencies . . . . . . . . . . . . . . . . . . 7-15<br />

7-4. AlX-Related Digitd Control SiiaIs . . . . . . . . . . . . . . 7-23<br />

7-5. VCO Range Check Frequencies . . . . . . . . . . . . . . . . 7-25<br />

7-6. A14to-A13 Digital Control Siiai Locations . . . . . . . . . . 7-30<br />

7-7. 1st IF Waveform Settings . . . . . . . . . . . . . . . . . . . 7-35<br />

7-8. All Input Signals . . . . . . . . . . . . . . . . . . . . . . 7-36<br />

8-l. SiiaIs Required for A10 Assembly Operation . . . . . . . . . 8-9<br />

8-2. 2nd IF (4 kHz) Siiai Locations . . . . . . . . . . . . . . . . 8-11<br />

8-3. 2nd LO Locations . . . . . . . . . . . . . . . . . . . . . . 8-14<br />

9-l. Components Related to Specific Error Terms . . . . . . . . . . 94<br />

10-l. Test status Terms . . . . . . . . . . . . . . . . . . . . . . 10-4<br />

11-l. Calibration Coefficient Terms and Tests . . . . . . . . . . . . 11-7<br />

1 l-2. Uncorrected System Performance . . . . . . . . . . . . . . . 11-9<br />

12-1. Super Low Band Subsweep Frequencies . . . . . . . . . . . . 12-15<br />

12-2. Low Band Subsweep Frequencies . . . . . . . . . . . . . . . 12-18<br />

12-3. High Band Subsweep Frequencies . . . . . . . . . . . . . . . 12-21<br />

12-4. Mixer Frequencies . . . . . . . . . . . . . . . . . . . . . . 12-30<br />

13-1. Reference Designations, Abbreviations, and Options . . . . . . 1348<br />

14-1. Related <strong>Service</strong> Procedures . . . . . . . . . . . . . . . . . . 1462<br />

Contents-22


<strong>Service</strong> Equipment and <strong>Analyzer</strong> Options<br />

‘lhble of <strong>Service</strong> Test Equipment<br />

‘Ihble l-l. Required ‘Idols<br />

T-8, T-10, T-15, T-20, and T-25 TORX screwdrivers<br />

Flat-blade screwdrivers-small, medium, and large<br />

5/164nch open-end wrench (for SMA nuts)<br />

2-mm extended bit allen wrench<br />

3/16, 5/16, and 9/16-&h hex nut drivers<br />

5/164nch open-end torque wrench (set to 10 in-lb)<br />

2.5~mm hex-key driver<br />

Non-conductive and non-ferrous adjustment tool<br />

Needle-nose pliers<br />

Tweezers<br />

Antistatic work mat with wrist-strap<br />

1<br />

<strong>Service</strong> Equipment and <strong>Analyzer</strong> Options l-1


‘able 1-2. <strong>Service</strong> lkst Equipment<br />

llequired Critical J&commended Use*<br />

Equipment specmcatioM Model<br />

Spectrum <strong>Analyzer</strong> Freq. Accuracy f7 Bz <strong>HP</strong> 86633 A, T<br />

Spectrum <strong>Analyzer</strong> BP 8696E P<br />

Frequency Counter Frequency: 300 kB2 - 3 GBz (0 GBz BP 6364B/SlB/62B P<br />

for Option 006)<br />

Synthesized Sweeper Idaxhnum spuriomr input: < -30 dBc <strong>HP</strong> 8362OA P<br />

Residual FM: 60 dB @ 2.06 Bz and pamband that<br />

includes 803 IdBz<br />

BP P/N Q136-0198 A<br />

No substitute <strong>HP</strong> 8496A Opt. 001, Bl8 P


Eesnired<br />

Equipment<br />

Attenuators (tied):<br />

Attenuators (tied):<br />

Power splitter<br />

MinhnumLossPad<br />

Adapter<br />

AdaPt= (2)<br />

Adapter<br />

Adapter<br />

Adapter<br />

Adapter<br />

Adapter<br />

Adapter<br />

Adapter<br />

RF Cable (2 each)<br />

RF Cable Bet<br />

RF+ Cable<br />

RF Cable<br />

RF Cable<br />

RF Cable Bet<br />

<strong>HP</strong>-El Cable<br />

Coax Cable<br />

coax cable<br />

8 P - Performance lbst9<br />

A - mtauent<br />

T - Troubleshooting<br />

able l-2. <strong>Service</strong> ‘l&t Equipment (2 of 3)<br />

Critld<br />

spedficstions<br />

l&tum loss: >s2 dB APG7 20 dB (2)<br />

Type-N 20 cm (2)<br />

Z-Way, 500<br />

Type-N, 6OU to 76Q<br />

APGI to Type-N (f)<br />

APG7 to Type-N (m)<br />

APG7 to 3.6 nun (m)<br />

APG7 to 3.6 nun (f)<br />

BNC to Alligator Clip<br />

APGS.6 (m) to Type-N (f)<br />

APGS.6 Q to Type-N Q<br />

BNC (m) to Type-N (f)<br />

M-N Q to Type-N Q<br />

24-inch, APG7<br />

APG7, 6ou<br />

24~inch, APG7, 6OQ (2)<br />

24-inch, Type-N, 7W (2)<br />

24-inch, Type-N, 600 (3)<br />

‘be-N, LOU<br />

BNC<br />

BNC (m) to BNC (m), 600<br />

Eecvmmended<br />

Model<br />

l-lP 8402A Opt. 020<br />

<strong>HP</strong> 84QlA Opt. 020<br />

BP 11667A<br />

<strong>HP</strong> 11862B<br />

ElP 11624A<br />

EIP 11626A<br />

ElP P/N 126@1746<br />

<strong>HP</strong> P/N 1260-1747<br />

ElP P/N 8120-1292<br />

la P/N l26@1760<br />

El’F’ P/N 1260-1746<br />

HF’ PIN 1260-1477<br />

<strong>HP</strong> P/N 1260-0777<br />

<strong>HP</strong> P/N 812Ck4770<br />

BF’ 11867D<br />

HF’ P/N 812G4770<br />

<strong>HP</strong> P/N 8120-2408<br />

BP P/N 8120-4781<br />

<strong>HP</strong> 11861B<br />

<strong>HP</strong> 10833A/B/t/D<br />

BP P/N 8l20-1840<br />

<strong>HP</strong> 106OSA<br />

CT<br />

P, T<br />

P, T<br />

P, T A<br />

A, P<br />

A, P<br />

A, P<br />

A, P<br />

A<br />

A, P<br />

A, P<br />

P<br />

P<br />

A, P<br />

A, P<br />

P, A<br />

A, P<br />

A, P<br />

P, A<br />

A<br />

A<br />

A<br />

Use*<br />

<strong>Service</strong> Equipment and <strong>Analyzer</strong> Options l-3


pestid<br />

Equipment<br />

Antistatic wrist Btrap<br />

Antistatic wrist strap cord<br />

Gtatic-control lbble Mat and<br />

Earth Ground Wire<br />

Non-Met&c Adjustment lbol<br />

BNC Alligator Clip Adapter<br />

BNGto-BNC Cable<br />

8 P - Performance lb&s<br />

A - A&ustment<br />

T - Troubleshooting<br />

able 1-2. <strong>Service</strong> ‘l&t Equipment (3 of 3)<br />

14 <strong>Service</strong> Equipment and <strong>Analyzer</strong> Options<br />

critical<br />

speciflcatioM<br />

Recommended Use*<br />

Model<br />

BP P/N 0so&1367 A, T P<br />

<strong>HP</strong> P/N 030&0080 A, T P<br />

<strong>HP</strong> P/N 03oo-o707 A, T P<br />

<strong>HP</strong>P/N8830-0024 A<br />

BF’ P/N 8120-1292 A<br />

<strong>HP</strong> P/N 81213l&IO A


Principles of Microwave Connector Care<br />

Proper connector care and connection techniques are critical for accurate,<br />

repeatable measurements.<br />

Refer to the calibration kit documentation for connector care information.<br />

Prior to making connections to the network analyzer, carefully review the<br />

information about inspecting, cleaning, and gaging connectors.<br />

Having good connector care and connection techniques extends the life of these<br />

devices. In addition, you obtain the most accurate measurements.<br />

This type of information is typically located in Chapter 3 of the calibration kit<br />

manuals<br />

For additional connector care instruction, contact your local Hewlett-Packard<br />

Sales and <strong>Service</strong> Office about course numbers <strong>HP</strong> 8505OA + 24A and<br />

<strong>HP</strong> 8505OA + 24D.<br />

See the following table for quick reference tips about connector care.<br />

<strong>Service</strong> Equipment and <strong>Analyzer</strong> Options l-5


‘Ihble 1-3. Connector Care Quick Reference<br />

HandUng and Storage<br />

Do Do Not<br />

Keep connectors clean Touch mating-plane surfaces<br />

Extend sleeve or connector nut Set connectors contact-end down<br />

Use plastic end-caps during storage<br />

vit3uaI Inspection<br />

Do I Do Not<br />

Inspect all connectors carefully Use a damaged connector-ever<br />

Look for metal particles, scratches, and dents<br />

Do<br />

‘lYy compressed air first<br />

Use isopropyl alcohol<br />

Clean connector threads<br />

connector CI-<br />

Do Not<br />

Use any abrasives<br />

Get liquid into plastic support beads<br />

Gaging Connectors<br />

Do<br />

Do Not<br />

Clean and zero the gage before use Use an out-of-spec connector<br />

Use the correct gage type<br />

Use correct end of calibration block<br />

Gage all connectora before first ufx<br />

Making conueetions<br />

Do<br />

Do Not<br />

Align connectors carefully Apply bending force to connection<br />

Make preliminary connection lightly Over tighten preliminary connection<br />

Turn only the connector nut<br />

Twifrt or screw any connection<br />

Use a torque wrench for final connect Tighten past torque wrench ‘break” point<br />

l-6 <strong>Service</strong> Equipment and <strong>Analyzer</strong> Options<br />

I


<strong>Analyzer</strong> Options Available<br />

Option lD5, High Stability Frequency Reference<br />

This option offers f0.05 ppm temperature stability from 0 to 60° C<br />

(referenced to 25O C).<br />

Option 002, Harmonic Mode<br />

This option provides measurement of second or third harmonics of the test<br />

device’s fundamental output signal. Frequency and power sweep are supported<br />

in this mode. Harmonic frequencies can be measured up to the maxinuun<br />

frequency of the receiver. However, the fundamental frequency may not be<br />

lower than 16 MHz.<br />

Option 006, 6 GHz Operation<br />

This option extends the maximurn source and receiver frequency of the analyzer<br />

to 6 GHz.<br />

Option 010, Time Domain<br />

This option displays the time domain response of a network by computing<br />

the inverse Fourier transform of the frequency domain response. It shows<br />

the response of a test device as a function of time or distance. Displaying the<br />

reflection coefficient of a network versus time determines the magnitude and<br />

location of each discontinuity. Displaying the transmission coefficient of a<br />

network versus time determines the characteristics of individual transmission<br />

paths Time domain operation retains all accuracy inherent with the correction<br />

that is active in of such devices as SAW filters, SAW delay lines, RF cables, and<br />

RF antennas.<br />

Option 011, Receiver Configuration<br />

This option allows front panel access to the R, A, and B samplers and receivers.<br />

The transfer switch, couplers, and bias tees have been removed. Therefore,<br />

external accessories are required to make most measurements<br />

<strong>Service</strong> Equipment and <strong>Analyzer</strong> Options l-7


Option 075, 7563 Impedance<br />

This option offers 75 ohm impedance bridges with type-N test port connectors.<br />

Option lDT, Delete Display<br />

This option removes the built-in flat panel display, allowing measurement results<br />

to be viewed with an external VGA monitor only.<br />

Option EM, Rack Mount Flange Kit Without Handles<br />

This option is a rack mount kit containing a pair of flanges and the necessary<br />

hardware to mount the instrument, with handles detached, in an equipment<br />

rack with 482.6 mm (19 inches) horizontal spacing.<br />

Option lCP, Rack Mount Flange Kit With Handles<br />

This option is a rack mount kit containing a pair of flanges and the necessary<br />

hardware to mount the instrument with handles attached in an equipment rack<br />

with 482.6 mm (19 inches) spacing.<br />

l-8 <strong>Service</strong> Equipment and <strong>Analyzer</strong> Options


<strong>Service</strong> and Support Options<br />

The analyzer automatically includes a three-year warranty for repair at a<br />

Hewlett-Packard facility.<br />

The following service and support options are also available. Contact your local<br />

sales or service office.<br />

Option W32<br />

This option provides three years of return to <strong>HP</strong> calibration service.<br />

Option W34<br />

This option provides three years of return to <strong>HP</strong> Standards Compliant<br />

Calibration.<br />

<strong>Service</strong> Equipment and <strong>Analyzer</strong> Options 1-9


System Verification and<br />

Performance lksts<br />

The performance of the <strong>HP</strong> <strong>8753E</strong> network analyzer is specified in two ways:<br />

Specifies warranted performance of the wu?asurm system when making<br />

error-corrected S-parameter measurements. The measurement system<br />

includes the analyzer, test cables, and calibration kit. The System Verification<br />

Procedure is used to conti performance of the measurement system to the<br />

System Specilications.<br />

Specifies the network analyzer’s output and input behavior and its<br />

uncorrected measurement port characteristics. Performance tests are used to<br />

confirm performance of the analyzer to the Instrument Specifications.<br />

System Specifications<br />

System Specifications, also called Measurement Port Specifications, are<br />

described in Chapter 7 of the <strong>HP</strong> <strong>8753E</strong> User’s cuides. They specify warranted<br />

performance of the entire TTMXISU~ tqpctem when making error-corrected<br />

S-parameter measurements The measurement system includes the analyzer, test<br />

cables, and calibration kit. System Specifications are expressed in two ways:<br />

� graphs of measurement uncertainty versus reflection and transmission<br />

coefficients<br />

� residual errors of the measurement system-the corrected Measurement Port<br />

Characteristics<br />

System Specifications, conhrmed by the System Verification Procedure, are<br />

applicable when the measurement system is used to make error-corrected<br />

S-parameter measurements<br />

2<br />

System Verification and 2-l<br />

Performance Tests


Instrument Specifications<br />

Instrument specifications comprise the following sections and tables in Chapter<br />

7, “Specifications and Measurement Uncertainties, n of the <strong>HP</strong> <strong>8753E</strong> User’s<br />

<strong>Guide</strong>:<br />

w all specifications in the section “Instrument Specifications”<br />

w ‘lhble 7-3 “Measurement Port Characteristics (uncorrected) for <strong>HP</strong> <strong>8753E</strong> (5OQ)<br />

with 7-mm ‘l&t Ports”<br />

w ‘lhble 7-7 “Measurement Port Characteristics (uncorrected) for <strong>HP</strong> <strong>8753E</strong> (75Q)<br />

with 7-mm Test Ports”<br />

These specifications apply when the analyzer is used to make measurements<br />

other than error-corrected S-parameter measurements An example would be<br />

the measurement of amplifier gain compression. In such cases, the analyzer’s<br />

output and input behavior-such as source power, receiver accuracy, and<br />

receiver linearity-are important and are covered by Instrument Specifications.<br />

System Veriffication Procedure<br />

The System Verillcation Procedure tests the network analyzer measurement<br />

system, as dellned above, against the System Specillcations. If conllrmation<br />

is successful, the measurement system is capable of making S-parameter<br />

measurements to the accuracy specified by the graphs of measurement<br />

uncertainty. An outline of the System Verification Procedure follows:<br />

w The measurement system is calibrated with the calibration kit to be used<br />

for future measurements The measurement system’s systematic errors are<br />

determined by this procedure.<br />

� The S-parameters of verification-kit test-devices are measured with error<br />

correction applied.<br />

� These measurements are compared to measurement data stored on a unique,<br />

serial-numbered data disk included with the verification kit.<br />

� The measurement system passes the System Verification Procedure if the<br />

measurements of the test devices differ from the measurement data on<br />

the data disk by less than specified test limits. The test limits account for<br />

the specified accuracy of the measurement system and the measurement<br />

uncertainties attributed to the stored data for the test devices.<br />

2-2 System Verification and<br />

Performance Tests


Note Calibration kits are different from verification kits. Culibrution<br />

kits are used to determine the systematic errors of a network<br />

analyzer measurement system. Vmttin kits are used to<br />

conErm system speciEcations and are not used to generate<br />

error-correction. For example, the <strong>HP</strong> 85031B is a 7-mm<br />

calibration kit, but the <strong>HP</strong> 85029B is a 7-mm verification kit.<br />

Performance Wsts<br />

Performance tests are used to confirm analyzer performance against the<br />

Instrument SpeciEcations. If conErmation is successful, the analyzer meets the<br />

Instrument SpeciEcations as deEned above. If the calibration kit to be used for<br />

measurements is also certiEed, successful completion of the Performance Tests<br />

also ensures that the network analyzer measurement system meets the System<br />

Specifications.<br />

How to Confirm Performance to System Specifications<br />

w Complete the System VeriEcation Procedure in this chapter using a certiEed<br />

verification kit, or<br />

� Complete all of the performance tests and certify (or re-certify) the<br />

calibration kit to be used for future measurements. This alternative verifies<br />

both the System Specifications and the Instrument Specifications for the<br />

analyzer.<br />

How to Confirm Performance to Instrument Specifkations<br />

� Complete the Performance Tests<br />

System Verification and 2-3<br />

Performance Teete


Certificate of Calibration<br />

Hewlett-Packard will issue a Certificate of Calibration for the product upon<br />

successful completion of System VeriEcation or completion of the Performance<br />

Tests. The Certificate of Calibration will include a S@~T?Z Attachment if the<br />

System Verification Procedure is used to confirm the System SpeciEcations.<br />

If the Performance Tests are used to conErm Instrument Specifications, the<br />

CertiEcate of Calibration will not include a System Attachment. The equipment<br />

and measurement standards used for the tests must be certiEed and must be<br />

traceable to recognized standards.<br />

Note If you have a measurement application that does not use all of<br />

the measurement capabilities of the analyzer, you may ask your<br />

local Hewlett-Packard Customer <strong>Service</strong> Center to verify only a<br />

subset of the speciEcations. However, this creates the possibility<br />

of making inaccurate measurements if you then use the analyzer<br />

in an application requiring additional capabilities.<br />

24 System Verification and<br />

Performance Tests


Sections in This Chapter<br />

� System Verification<br />

� Performance lksts<br />

1. Test Port Output F’requency Range and Accuracy<br />

2. External Source Mode kequency Range<br />

3. Test Port Output Power Accuracy<br />

4. Test Port Output Power Range and Linearity<br />

5. Minimum R Channel Level<br />

6. Test Port Input Noise Floor Level<br />

7. Test Port Input Frequency Response<br />

8. Test Port Crosstalk<br />

9. Calibration Coefficients<br />

10. System Trace Noise (only for <strong>Analyzer</strong>s without Option 006)<br />

11. System Trace Noise (only for <strong>Analyzer</strong>s with Option 006)<br />

12. Test Port Input Impedance<br />

13. Test Port Receiver Magnitude Dynamic Accuracy<br />

14. Test Port Receiver Magnitude Compression<br />

15. Test Port Receiver Phase Compression<br />

16. Test Port Output/Input Harmonics (Option 002 <strong>Analyzer</strong>s ������� Option<br />

006 only)<br />

17. Test Port Output/Input Harmonics (Option 002 <strong>Analyzer</strong>s with Option 006<br />

OdY)<br />

18. Test Port Output Harmonics (<strong>Analyzer</strong>s without Option 002)<br />

System Verification and 2-5<br />

Performance Tests


Performance ‘I&t Record<br />

Find and use the appropriate “Performance ‘I&t Record” in the following<br />

subchapters:<br />

� Performance Test Record for 30 kHz to 3 GHz<br />

� Performance Test Record for 30 kHz to 6 GHz<br />

2-6 System Verification and<br />

Performance Tests


System Verification Cycle and Kit Re-certification<br />

Hewlett-Packard recommends that you verify your network analyzer<br />

measurement system every six months. Hewlett-Packard also suggests that<br />

you get your verification kit re-certified annually. Refer to <strong>HP</strong> 85029B r-mm<br />

V’ttin Kit Operating and Seruice Manual for more information.<br />

Note The system veriEcation procedures can also apply to analyzers<br />

with Option 075 (75 ohm analyzers) if minimum loss pads and<br />

type-N (m) to APC-7 adapters are used.<br />

Check to see how the veriEcation kit floppy disk is labeled:<br />

� If your veriEcation disk is labeled <strong>HP</strong> 8753D Verification Data Disk, or<br />

<strong>HP</strong> 8753D& <strong>HP</strong> <strong>8753E</strong>VerificationDataDisk, you may proceed with the<br />

system verification.<br />

� If your veriEcation disk is not labeled as indicated above, you may send<br />

your <strong>HP</strong> 85029B 7-mm veriEcation kit to the nearest service center for<br />

recertiEcation, which includes a data disk that you can use with the<br />

<strong>HP</strong> <strong>8753E</strong>.<br />

System Verification and 2-7<br />

Performance Teete


<strong>HP</strong> <strong>8753E</strong> System Verification<br />

Equipment Required<br />

Calibration Kit, 7-mm ................................................ <strong>HP</strong> 85031B<br />

Verification Kit, 7-mm ............................................... .<strong>HP</strong> 85029B<br />

Test Port Extension Cable Set, 7-mm ................................ <strong>HP</strong> 11857D<br />

Printer ........................................... <strong>HP</strong> ThinkJet/DeskJet/LaserJet<br />

Additional Equipment Required for Option 075 <strong>Analyzer</strong>s<br />

Minimum Loss Pad (2), 50 Q to 75 Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> 11852B<br />

Adapter (2), APC-7 to Type-N (m) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> 11525A<br />

Anulgzer warmup time: 1 hour<br />

This system veriEcation consists of three separate procedures:<br />

1. Initialization<br />

2. Measurement Calibration<br />

3. Device Verification<br />

2-9 System Verification and<br />

Performance Tests


Initialization<br />

1. Clear all internal memory.<br />

Caution This will erase all instrument states that may be stored in<br />

internal memory.<br />

Perform the following steps to save any instrument states that<br />

are stored in internal memory to a floppy disk.<br />

d. If the instrument state file was not saved to disk with the<br />

same name that it had while in internal memory, you may<br />

wish to rename the tie.<br />

Press ~~.~~:~~~~~~~~~~ .~~~~~~~~ enter the de&e-j<br />

./ .:. ..:;... . ..y<br />

name, and press ~##,3@8J.<br />

_........................<br />

e. Repeat steps a through d for each instrument state that you<br />

wish to save.<br />

To<br />

,. _ _ ,. _<br />

clear all iM!rnal memory, press (s) ,~~~~~.~~~~ .._..._.... 3JSlJKJ~j3@<br />

.._ -..-.._- .._ - ._...............<br />

._...__........ :jgj##$: - .._.. -- lJmm@ .._._.... - . .-.......<br />

. . . . . . . _.. LPreset).<br />

System Verification and 2-9<br />

Performance Tests


2.<br />

3.<br />

4.<br />

5.<br />

6.<br />

Connect the equipment as shown in Figure 2-l. Let the analyzer warm up<br />

for one hour<br />

<strong>HP</strong> <strong>8753E</strong><br />

NETWORK ANALYZER<br />

Figure 2-1. System Verification ‘l&t Setup<br />

While the equipment is warming up, review the “Connector Care Quick<br />

Reference” information in Chapter 1. Good connections and clean,<br />

undamaged connectors are criticaI for accurate measurement results.<br />

Insert the verification kit disk into the analyzer disk drive.<br />

Note If you switch on the record function, you CAiWOT switch it off<br />

during the verification procedure.<br />

7. Position the paper in the printer so that priuting starts at the top of the<br />

page.<br />

2-10 System Verification and<br />

Performance Tests


8. If you have difficulty with the printer:<br />

� If the interface on your printer is <strong>HP</strong>-IB, verify that the printer address is<br />

set to 1 (or change the setting in the analyzer to match the printer).<br />

� If the interface on your printer is serial or parallel, be sure that you<br />

selected the printer port and the printer type correctly (refer to the<br />

<strong>HP</strong> <strong>8753E</strong>Netuwrk Anulgzer User’s <strong>Guide</strong> for more information on how to<br />

perform these tasks).<br />

10. The analyzer displays Sys Ver Init DONE; the initialization procedure is<br />

complete.<br />

Caution Do NOT press (Preset or recall another instrument state. You<br />

must use the instrument state that you loaded during the<br />

initialization procedure.<br />

Measurement Calibration<br />

14. Connect the “open” end of the open/short combination (supplied in the<br />

calibration kit) to reference test port 1, as shown in Figure 2-2.<br />

System Verifcationand 2-11<br />

PerformanceTests


REFERENCE TEST<br />

PORT 1<br />

H P <strong>8753E</strong><br />

NETWORK ANALYZER<br />

- REFERENCE TEST<br />

PORT 2<br />

Figure 2-2. Connections for Measurement Calibration Standards<br />

16. When the analyzer finishes measuring the standard, connect the “short” end<br />

of the open/short combination to reference test port 1.<br />

18. When the analyzer hnishes measuring the standard, connect the 50 ohm<br />

termination (supplied in the calibration kit) to reference test port 1.<br />

19. Pres ~~~~~~~~<br />

* .... ...... .<br />

20. When the analyzer 6nishes measuring the standard, connect the “open” end<br />

of the open/short combination to reference test port 2.<br />

21. mess ~~~~~~~~~.<br />

-.._........" ..:.-: ~.~.~.~.~.~.~..-~..~.~..~:.~.~::~<br />

22. When the analyzer hnishes measuring the standard, connect the “short” end<br />

of the open/short combination to reference test port 2.<br />

24. When the analyzer Gnashes measuring the standard, connect the 50 ohm<br />

termination to reference test port 2.<br />

25. press ~~~~~~~~<br />

~.:.:.~.:...~.~:.:.:.~.:.~~.“‘-~ . ::,_ . :.:.~.~:.:.~.~.:.:.:.~~~.~.:.:.:.:.~ -<br />

2-l 2 System Verification and<br />

Performance Tests<br />

sg62e


The analyzer briefly displays COMPUTING CAL COEFFICIENTS.<br />

27. Connect the test port cables as shown Figure 2-3.<br />

H P <strong>8753E</strong><br />

NETWORK ANALYZER<br />

-PORT 1<br />

H P 11857D<br />

EXTENSION CABLE SET<br />

Figure 2-3. Transmission Calibration Setup<br />

28. Press .~~~~~~~~~~ ~~~~~~~~~~~~:.<br />

.,.<br />

..~......................-..........~~~~~ ii -.:: :....... . . . ... . . . ..~.......... ._....A. .. . . ~.c.~.~.~.. . . . . . . il_.^i...ii ..__G_ ..:. . . ..A u . . . . . . . . / . . . . i...........~...~......~ ..___............<br />

29. mess ~,~~~~~~~~~;,.~~.<br />

_i \. ,.,.,..:::,<br />

.,. ; .,. _<br />

.._...............__._.I.~...~.... :::.L..iL.: /:...<br />

3(-J. Press (-, ~~~~~~~~ ,,, g,:qs= ~~~~-,:,~~~~. ~~;...y:c+y < ..;.., ,,, ; ,; . . . ..:....:..:.:.:.<br />

. . ~~~ ~~~~~~~~, to<br />

e i . . . . . . . . s . . . . . . 2 . . . . . . A....... . . . . . . . . . . . . . . . . . .._.__........_.__......~..........~. . . . . . .<br />

i.vLv..... ..~ . .._.. . . ~L......~.........i .A.. . . . L . . ..A . ~........,...........................-......~.........-..~.i.:::.i<br />

. .<br />

save the calibration into the analyzer internal memory.<br />

,,,.,.,~,~,., :...::.:.y ..:.:.: . . . ..y .) ...<br />

3 1. men the a&rzr mhes saving the instrument state, prt?SS -@%@j@; @gBg<br />

~~~~~~~~~.<br />

,.,., ...i . . . . . . . . . . i .:: i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..__.._...... - .._._....._.....<br />

~........... A.<br />

System Verification and 2-13<br />

Performance Tests


Device Verification<br />

33. At the prompt, connect the 20 dI3 attenuator (supplied in the verification<br />

kit) as shown in Figure 2-4.<br />

,..<br />

If you switched OFF the record function, you have to press ~~~~~<br />

.., ,.... ,...................<br />

after each S-parameter measurement.<br />

If you switched ON the record function, the analyzer measures all<br />

S-parameters (magnitude and phase) without pausing. Also, the analyzer<br />

only displays and prints the PASS/FAIL information for the S-parameter<br />

measurements that are valid for system verification.<br />

<strong>HP</strong> R753F<br />

. . . -. ---<br />

NETWORK ANALYZER<br />

Figure 2-4. Connections for the 20 dB Verification Device<br />

35. When the analyzer fmishes all the measurements, connect the 50 dB<br />

attenuator (supplied in the vetication kit), as shown in F’igure 2-5.<br />

2-14 System Verification and<br />

Performance Tests<br />

/


H P <strong>8753E</strong><br />

NETWORK ANALYZER<br />

“ERlFlCATlON DEVICE<br />

Figure 2-5. Connections for the 50 dB Verifkation Device<br />

37. When all measurements are complete, replace the verification device with<br />

the verification mismatch, as shown in Figure 2-6. Be sure that you connect<br />

Port A of the verification mismatch to reference test port 1.<br />

H P <strong>8753E</strong><br />

NETWORK ANALYZER<br />

Figure 2-6. Mismatch Device Verification Setup 1<br />

39. When the analyzer finishes all the measurements, connect the mismatch<br />

verification device, as shown in Figure 2-7. Notice that Port B is now<br />

connected to reference test port 1.<br />

T2<br />

sg65e<br />

sg66e<br />

Syetem Verification and 2-l 5<br />

Performance Tests


H P <strong>8753E</strong><br />

NETWORK ANALYZER<br />

PORT 1<br />

PORT 2<br />

7<br />

(rORT<br />

VERIFICATION MISMATCH<br />

Figure 2-7. Mismatch Device Verification Setup 2<br />

:.:.:.. ;:


In Case of Difiblty<br />

1. Inspect alI connections.<br />

Caution Do NOT disconnect the cables from the analyzer test ports.<br />

Doing so WILL lNkYLU?B the calibration that you have done<br />

earlier.<br />

2.<br />

3.<br />

4.<br />

5.<br />

Press [EJ ‘Save/Recall, +&g@$$g&K. ~~~~~~~~~ f&@g. using the<br />

_. - i: _... >u i - __,..... ..:.:.: .._ .: ..:. :... i.. . . . . . . . . . . . . ..,...,.... . . . . . . . . . . . . . . . . . . . . . ._... .: .._... .:::: ..,...... A......::::::: .:: -.:<br />

front panel knob, highlight the,,title of the full 2-Port calibration that you<br />

... ..,.; ,.,,.,.,.,: ;:<br />

have done earlier, then press ~~~~~~~~.<br />

Repeat the “Device Verification” procedure.<br />

If the analyzer still fails the test, check the measurement calibration as<br />

follows:<br />

a. Press [preset).<br />

d. Connect the short to reference test port 1.<br />

g. Check that the trace response is 0.00 f 0.05 dB.<br />

h. Disconnect the short and connect it to reference test port 2.<br />

j. Check that the trace response is 0.00 f 0.05 dD.<br />

k. If any of the trace responses are out of the specified limits, repeat the<br />

“Measurement Calibration” and “Device Verification” procedures.<br />

Refer to Chapter 4, “Start Troubleshooting Here,” for more troubleshooting<br />

information.<br />

System Verification and 2-17<br />

PerfonnanEe Tests


1. Test Port Output Frequency Range and Accuracy<br />

Specifications<br />

Required Equipment<br />

Frequency Range Frequency Accuracy1<br />

30 kHz to 3 GHz f10 ppm<br />

1 3GHzto6GHz2 1 &lo ppm I<br />

1 At 25O C f5* C.<br />

2 Only for analyzers with Option 006 - 30 kHz to<br />

6GIIzrange.<br />

kequency Counter (30 kHz to 500 MHz) . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> 5350B/51B/52B<br />

F’requency Counter (500 MHz to 6 GHz) . . . . . . . . . . . . . . . . . . . . .<strong>HP</strong> 5350B/51B/52B<br />

Cable, 500 Type-N, 24-inch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<strong>HP</strong> P/N 81204781<br />

Adapter, APC-3.5 (f) to Type-N (f) . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> P/N 1250-1745<br />

Adapter, APC-7 to Type-N (f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> P/N 11524A<br />

Adapter, Type-N (f) to BNC (m) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> P/N 1250-1477<br />

Additional equipment needed for an <strong>HP</strong> <strong>8753E</strong> with Option 075<br />

Minimum Loss Pad, 5OQ to 75Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> 11852B<br />

Aruzlgzer warmup time: 30 minutes<br />

Perform this test to verify the frequency accuracy of the <strong>HP</strong> <strong>8753E</strong> over its<br />

entire operating frequency range.<br />

2-l 8 Syetem Veriiication and<br />

Performance Tests


1. Connect the equipment as shown in Figure 2-8.<br />

* DIRECT (:ONNECTlON<br />

<strong>HP</strong> <strong>8753E</strong><br />

NETWORK ANALYZER<br />

WITH OPTION 075<br />

PORT1 *<br />

PI<br />

5on 17s<br />

MIMIMUM<br />

LOSS PAD<br />

5Ofl TYPE-N CABLE ASSEMBLY<br />

FREQUENCY COUNTER<br />

<strong>HP</strong> <strong>8753E</strong><br />

NETWORK ANALYZER FREQUENCY COUNTER<br />

ADAPTER<br />

w-3.5 (f)<br />

TO NPE-N(f)<br />

ADAPTER<br />

APC-3.5 (f)<br />

TO TYPE-N(f)<br />

Figure 2-8. lkst Port Output Frequency Range and Accuracy ‘I&t Setup<br />

2. Press (IFKGQ [Menu) t%Xmi$.<br />

3. Press 13oJ Ck/m) and write the frequency counter reading on the “Performance<br />

Test Record. n<br />

4. Repeat step 3 for each instrument frequency listed in the “Performance Test<br />

Record. n<br />

ig68e<br />

System Verification and 2-19<br />

Performance Tests


In Case of Difljiculty<br />

1. If any measured frequency is close to the specification limits, check the time<br />

base accuracy of the counter used.<br />

2. If the analyzer fails by a significant margin at all frequencies (especially if<br />

the deviation increases with frequency), the master time base probably needs<br />

adjustment. In this case, refer to the “Frequency Accuracy Adjustment”<br />

procedure, located in Chapter 3, “Adjustments and Correction Constants. ’<br />

The “Fractional-N Frequency Range Adjustment” also affects frequency<br />

accuracy.<br />

3. Refer to Chapter 7, “Source Troubleshooting,” for related troubleshooting<br />

information.<br />

2-20 System Veriication and<br />

Performance Tests


2. External Source Mode Frequency Range<br />

Specifications<br />

Equipment Required<br />

Frequency Range<br />

300 kHz to 3 GHz<br />

300 kHz to 6 GHzl<br />

1 Only for analyzers with<br />

OptionOO6- 3OkHzt.o<br />

6GHzrange.<br />

External Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> 83620A<br />

Cable, APC-7, 24-inch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> P/N 8120-4779<br />

Adapter, APC-3.5 (f) to APC-7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> P/N 1250-1747<br />

Adapter, APC-3.5 (m) to APC-7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> P/N 1250-1746<br />

Aruzlgzer warmup time: 30 minutes<br />

Perform this test to verify that the analyzer’s reference channel, input R, is<br />

capable of phase locking to an external CW signal.<br />

1. On the external source, press [Presets Icw) LloJ (j-J [POWER LEVEL) m<br />

12o)(i~.<br />

2. Connect the equipment as shown in F’igure 2-9.<br />

System Verification and 2.21<br />

Performance Tests


* DRECT CONNECTION<br />

R CHANNEL IN *<br />

r ADAPTER<br />

TO WC-7<br />

P<br />

APC-3.5 (m)<br />

<strong>HP</strong> 83620A<br />

SYNTHESIZER<br />

\ CABLE APCG7 24 INCH J<br />

Figure 2-9. Exterml Source Mode Frequency Range lkst Setup<br />

5. Check to see if the analyzer is phase locking to the external CW signal:<br />

H If the analyzer displays any phase lock error messages, write “unlock” in<br />

the “Performance Test Record” for the set CW signal.<br />

sgE121e<br />

w If the analyzer does not display any phase lock error messages, write “lock”<br />

in the “Performance Test Record” for the set CW signal.<br />

6. On the external source, press m L20) [j].<br />

7. On the analyzer, press I2oJ m.<br />

8. Repeat step 5 through 7 for the other external source CW frequencies listed<br />

in the “Performance Test Record.”<br />

2-22 System Verification and<br />

Periormance Tests


In Case of Difkulty<br />

If the analyzer displayed any phase lock error messages:<br />

1. Be sure the external source power is set within 0 to -25 dBm.<br />

2. Make sure the analyzer’s “Ext Source Auto” feature is selected. In addition,<br />

verify that the analyzer is set to measure its input channel R.<br />

3. Verify that all connections are tight.<br />

System Veriication and 2-23<br />

Performance Tests


1.<br />

2.<br />

Zero and calibrate the power meter. For more information of how to perform<br />

this task, refer to the power meter operating manual.<br />

Connect the equipment as shown in Figure 2-10.<br />

ADAPTER APC-7<br />

<strong>HP</strong> <strong>8753E</strong><br />

NETWORK ANALYZER<br />

<strong>HP</strong> <strong>8753E</strong><br />

NETWORK ANALYZER<br />

WITH OPTION 075<br />

POWER SENSOR<br />

<strong>HP</strong> 43BA<br />

Figure 2-10. Source Output Power Accuracy lkst Setup<br />

System Verification and 2-25<br />

Performance Tests


3. Press-.<br />

Note The factory preset test port power is 0 dBm.<br />

..;; . . . . . .<br />

4. Press m &IE;~.‘@@Z~~j (300_) (i$J. Set the calibration factor on the power<br />

meter for this CW frequency.<br />

5. Write the power meter reading on the “Performance Test Record.”<br />

6. Repeat steps 4 and 5 for each CW frequency listed in the “Performance Test<br />

Record.” For analyzers with Option 006, use the <strong>HP</strong> 8481A power sensor for<br />

all frequencies above 3 GHz.<br />

In Case of Difficulty<br />

. . . . . . ..~.~.~... :.::<br />

1. Be sure the source power is switched on. Press IMenu) ..A :$&@$. .vs.. ii i ..A... ::A%..;; Check<br />

the ~~~~~ softkey; “on” should be highlighted. Otherwise, press<br />

; :..,...,


4. Test Port Output Power Range and Linearity<br />

Specifications<br />

Required Equipment<br />

Power Range 1 Power Level Linearity1 1<br />

1 -15 to +5 dBm I f0.2 dB<br />

1+5to +10dBm21 f0.5 dB I<br />

+5 to +8 dBm3 I f0.5 dB<br />

1 Relative to 0 dBm output level.<br />

2 Applies to instruments not using Option 076.<br />

3 For Option 075 only.<br />

Power Meter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> 437B/438A<br />

Power Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> 8482A<br />

Adapter, APC-7 to Type-N (f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> 11524A<br />

Additional Required Equipment for <strong>Analyzer</strong>s with Option 006<br />

Power Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> 8481A<br />

Additional Required Equipment for <strong>Analyzer</strong>s with Option 075<br />

Power Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> 8483A Option HO3<br />

Analgzm warmup time: 1 hour<br />

Perform this test to verify the analyzer’s test port output power range and<br />

power level linearity at selected CW frequencies.<br />

System Verification and 2-27<br />

Performance Tests


1. Zero and calibrate the power meter. Refer to the power meter operating<br />

manual for more information on how to do this task.<br />

2. On the network analyzer, press (GJ LG_) ~~.~~~~~~ Isdo_) Lk/m. Set the<br />

power meter calibration factor for this CW frequency.<br />

3. Connect the equipment as shown in Figure 2-11.<br />

* DIRECT CONNECTION<br />

ADAPTER APC-7 to N(F)<br />

<strong>HP</strong> 8481A<br />

POWER SENSOR<br />

3 - 6GHz<br />

<strong>HP</strong> 0753E<br />

NETWORK ANALYZER<br />

<strong>HP</strong> <strong>8753E</strong><br />

NETWORK ANALYZER<br />

WITH OPTION 075<br />

PORT 2 P<br />

H P 8482A<br />

POWER SENSOR<br />

30KHz - 3GHz<br />

POWER SENSOR<br />

H P 438A<br />

H P 438A<br />

/<br />

sg61 le<br />

Figure 2-11. ‘l&t Port Output Power Range and Accuracy ‘Ikst Setup<br />

2-28 System Verification and<br />

Performance Tests


4. On the <strong>HP</strong> 438A, press (REL). This sets the current power level for relative<br />

power measurement.<br />

. . . . _ . . . . . .<br />

5. h the network maJyzer, press LMenu_] @@& ~~~~~~~~~~~ 1--15) a).<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . ..~...~ ii .: . . . . .. . . . . . . . . . . . . . . . . . . . . . . .::::: /i............i .. . . . . . . . . .%___.__.......<br />

6. Write the power meter reading in the “Results Measured” column on the<br />

U Performance Test Record. ’<br />

7. Calculate the difference between the analyzer test port power (which<br />

appears on the analyzer’s display) and the power meter reading. Write the<br />

result in the “Power Level Linearity” column on the “Performance Test<br />

Record. n<br />

8. Repeat steps 5 through 7 for the other power levels listed in the<br />

“Performance Test Record. n<br />

9. After all required power levels have been measured, press @ Lxl) to reset<br />

power to 0 dRm.<br />

. . . / .<br />

.;... :.. /;.<br />

10. Press ~~~~~~: .._......_.._.__ - _........ @a.<br />

11. Set the power meter calibration factor for this CW frequency and press m<br />

to set the reference at this new frequency.<br />

12. Press m g&$&&Y L-15] Lxl).<br />

_........ .<br />

13. Write the power meter reading in the “Results Measured” column on the<br />

“Performance Test Record. n<br />

14. Calculate the difference between the analyzer test port power and the<br />

power meter reading. Write the result in the “Power Level Linearity”<br />

column of the “Performance Test Record.”<br />

15. Repeat steps 11 through 13 for the other power levels listed in the<br />

“Performance Test Record. n<br />

16. Repeat steps 9 through 13 for 6 GHz using 8481A sensor.<br />

In Case of Dii3culty<br />

1. Ensure that the power meter and power sensor(s) are operating to<br />

specifications. Be sure you set the power meter calibration factor for the CW<br />

frequency that you are testing.<br />

Syctem Verification and 2-29<br />

Performance Tests


2. Verify that there is power coming out of the analyzer’s test port 1. Be sure<br />

you did not accidentally switch off theCCCCmaIyzer’s internal source. If you did<br />

so, press 1Menu) &j#j@ ~~~~~~~.~~ ‘$Ep :.<br />

_....... - - -_..- .._........_....... ..u; .,........._ - -...<br />

3. Repeat this performance test.<br />

2-30 System Verification and<br />

Performance Tests


5. Minimum R Channel Level<br />

Specifications<br />

1 Frequency Range 1 Minimum B Channel Level 1<br />

1300kHzto3GHz 1 c-35 dBm I<br />

13GHzto6GHzl 1 c-30 dBm I<br />

1OnlyforanalyzerswithOption006-3OkHzto6GHz<br />

range.<br />

Required Equipment for 500 <strong>Analyzer</strong>s<br />

Adapter, APC-3.5 (m) to APC-7 . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . <strong>HP</strong> P/N 1250-1746<br />

Cable, APC-7 24-inch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> P/N 8120-4779<br />

Required Equipment for 75 ohm <strong>Analyzer</strong>s (Option 075)<br />

Minimum Loss Pad, 5OQ to 75Q . . . . . , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> 11852B<br />

Cable, 508 Type-N, 24-inch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<strong>HP</strong> P/N 8120-4781<br />

Adapter, APC-3.5 (m) to Type-N (f) . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> P/N 1250-1750<br />

An&m warmup time: 1 hour<br />

Perform this test to determine the minimum R channel input power level at<br />

which phase lock can be accomplished.<br />

1. Connect the equipment as shown in Figure 2-12.<br />

System Verification and 2-31<br />

Performance Tests


H P <strong>8753E</strong><br />

NETWORK ANALYZER<br />

I Q m , ‘I R CHANNEL<br />

c T<br />

PORT1 PORT2<br />

CABLE APC-7 24 INCH<br />

ADAPTER<br />

5on /7x-l<br />

APC-3.5 (m) MINIMUM<br />

TO APCG7<br />

LOSS PAD<br />

H P <strong>8753E</strong><br />

NETWORK ANALYZER<br />

* DIRECT CONNECTION<br />

Figure 2-12. Minimum I1 Channel Level ‘I&t Setup<br />

4* mess CSca,e Ref, ~~~~“~~~~~~ 1-701 Ixil.<br />

5. Press Ihnenul ~~~~~~ ~ ~.<br />

-.-...-...._......... L~.:..<br />

. . ..A . .,.,.,. ,... . . . . . ;,.; . . . ,.,.,.. ..::..:....:.<br />

6- Press LMenu) !E&&fg @TJ @.<br />

R (<br />

sg612e<br />

The analyzer displays the message CAUTION : NO IF FOUND : CHECK R INPUT<br />

LEVEL.<br />

7. Press @J to increase the test port power by 1 dBm.<br />

8. If the analyzer displays a phase lock error message, continue increasing the<br />

test port power until phase lock is achieved.<br />

9. Write the test port power, that is displayed on the analyzer, on the<br />

“Performance Test Record. n<br />

10. Repeat steps 5 through 9 for the other CW frequencies listed in the<br />

“Performance Test Record. n<br />

2-32 Syetem Verification and<br />

Performance Teete


In Case of DilEculty<br />

1. Check the flexible RF cable (W8, as shown in Figure 2-13) between the R<br />

sampler assembly (A4) and the All phase lock assembly. Make sure it is<br />

connected between AllJl (PL IF IN) and 1st IF Out.<br />

Caution a0 not push cable W8 down next to the All phase lock<br />

assembly.<br />

System Verification and 233<br />

Performance Tests


2-34 System Verification and<br />

Performance Tests<br />

A10 A8 All A12<br />

Figure 2-13. Flexible RF Cable Location


2. Using an ohmmeter, verify that the RF cable is not open. In addition,<br />

examine both the cable connectors-measure the resistance between the<br />

cable center pin and the cable connector and make sure it is not close to<br />

zero.<br />

3. Check the R sampler by substituting it with the B sampler (A6).<br />

a. Move cable W8 to the B sampler (A6), as shown in Figure 2-14.<br />

Figure 2-14. Connections for Substituting the B !kmpler (A4)<br />

4. Connect the equipment as shown in F’igure 2-15.<br />

All<br />

sg6115-z<br />

System Verification and 2-35<br />

Performance Tests


H P <strong>8753E</strong><br />

NETWORK ANALYZER<br />

- 24-INCH CABI<br />

Figure 2-15. Setup for Checking the B Sampler (A4)<br />

5. Repeat the test, but select the B sampler (A6) by pressing m<br />

~:~~~~~~~~: ‘B h step 2. Use the following specific&ions:<br />

..__._ . .._ _ _ _i .,.,,__ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _<br />

300 kHz to 3 GHz c-27 dBm<br />

3 GHz to 6 GHz c-22 dBm<br />

6. If the analyzer fails the test, replace the All assembly.<br />

7. Verify that the high/Iow band adjustments are still within specifications For<br />

more information on how to perform this task, refer to the “High/Low Band<br />

Transition Adjustment” located in Chapter 3, “Adjustments and Correction<br />

Constants n<br />

8. Refer to Chapter 7, “Source Troubleshooting,” for more troubleshooting<br />

information.<br />

2-36 System Verification and<br />

Performance Tests


6. ‘Jkst Port Input Noise Floor Level<br />

Specifkations<br />

Frequency Range ‘l&t Port IF Bandwidth Average<br />

Noise Level<br />

300 kHz to 3.0 GHz Port 1 3kHz -82 dBm<br />

300 kHz to 3.0 GHz Port 1 10 Hz -102 dBm<br />

300 kHz to 3.0 GHz Port 2 3 kHz -82 dBm<br />

300 kHz to 3.0 GHz Port 2 10 Hz -102 dBm<br />

3.0 GHz to 6.0 GHz’ Port 1 3kHz -77 dBm<br />

3.0 GHz to 6.0 GHzl Port 1 10 Hz -97 dBm<br />

3.0 GHz to 6.0 GHzl Port 2 3kHz -77 dBm<br />

3.0 GHz to 6.0 GHz’ Port 2 10 Hz -97 dBm<br />

1 Only for analyzer with Option 006 - 30 kHz to 6 GHz range.<br />

Equipment Required for 508 <strong>Analyzer</strong>s<br />

Calibration Kit, 7-mm . . . . . . . . . . . . . . . . . . . . . . . . . , , . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> 85031B<br />

Equipment Required for 75 ohm <strong>Analyzer</strong>s<br />

Calibration Kit, Type-N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> 85036B<br />

An&zerwarmuptime:1 hour<br />

Perform this test to determine the <strong>HP</strong> <strong>8753E</strong> port 1 and port 2 noise floor levels<br />

at the input test ports<br />

Syctem Verification and 2-37<br />

Performance Tests


Port 1 Noise Floor Level from 300 kHz to 3 GHz<br />

(lFHw = 3kHz)<br />

1. Connect the equipment as shown in F’igure 2-16.<br />

H P <strong>8753E</strong><br />

NETWORK ANALYZER<br />

50R TERM,NAmJNS<br />

Figure 2-16. Source Input Noise Floor ‘l&t Setup<br />

5. When the analyzer finishes the sweep, notice the mean value (which<br />

appears on the analyzer display).<br />

sg614e<br />

6. Convert the measured linear magnitude mean value to log magnitude, using<br />

this equation.<br />

Power (dBm) = 20 * [log&near magnitude mecrn value)]<br />

Note Notice that the mean value that is displayed on the analyzer is<br />

in ~Units So, for example, if the displayed value is 62 /rU, the<br />

value that you would put in the equation is (62 x 106).<br />

7. Write this calculated value on the “Performance Test Record.”<br />

2-36 System Verification and<br />

Performance Tests


Port 1 Noise Floor Level from 300 kHz to 3 GHz<br />

(IF BW = 10 Hz)<br />

10. When the analyzer finishes the sweep, notice the mean value.<br />

11. Convert the measured linear magnitude mean value to log magnitude, using<br />

this equation.<br />

Power (dBm) = 20 * [lOgIO(Zinear magnitude mean value)]<br />

12. Write this calculated value on the “Performance Test Record.”<br />

Port 2 Noise Floor Level from 300 kHz to 3 GHz<br />

(IFBW = 1OHz)<br />

15. When the analyzer finishes the sweep, notice the mean value.<br />

16. Convert the measured linear magnitude mean value to log magnitude, using<br />

this equation.<br />

Power (dBm) = 20 * [log,,(Zinear magnitude mean value)]<br />

17. Write this calculated value on the “Performance Test Record.”<br />

System Verification and 2-39<br />

Performance Tests


Port 2 Noise Floor Level from 300 kHz to 3 GHz<br />

(IFm = 3kHz)<br />

i. .;-... .:‘


Port 2 Noise Floor Level from 3 GHz to 6 GHz (IF BW = 10 Hz)<br />

29. Press &) $@@@ .._ (iiJ [xl] to change the IF bandwidth to 10 Hz.<br />

/ ::::::. . . . . . . . i... .:.: .I.... /<br />

30. Press IMenu) .;.; ~~.~~~ ............__........._........... . .A..... . . Li ... . . . . . . . . . . . . . . . . . . %YXgm.<br />

..--..- . . . . . . . . . . . i ...i i<br />

31. When the analyzer hnishes the sweep, notice the mean value.<br />

32. Convert the measured linear magnitude mean value to log magnitude, using<br />

this equation.<br />

Power (dBm) = 20 * [log,o(Zinear magnitude mean value)]<br />

33. Write this calculated value on the “Performance Test Record.”<br />

Port 1 Noise Floor Level for 3 GHz to 6 GHz (IF BW = 10 Hz)<br />

. . . . . . . ./ . . .,..,.,. ,.................. ;.;,.,,. . . . . . . . . . ..,.............,..........,................<br />

. .<br />

.......................I<br />

35. press (Menu) .., ~~~~~~~ ,; ,_,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,. e i_ i...~.~__._.,._.,._. ~~~~~~.<br />

..~<br />

36. When the analyzer finishes the sweep, notice the mean value.<br />

37. Convert the measured linear magnitude mean value to log magnitude, using<br />

this equation.<br />

Power (dBm) = 20 * [logI,,(Zinear magnitude mean value)]<br />

38. Write this calculated value on the “Performance Test Record.”<br />

Port 1 Noise Floor Level from 3 GHz to 6 GHz (IF BW = 3 kHz)<br />

..,... :.s,,,<br />

39. press &) &j$+~~:><br />

- .._ --.<br />

@ m.<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

40. Press LMenu) ~~.~~~~~~~~ .. . . . aw.;;..; . . . . . . . . . . . . . . . . . . . :::::: . . . . . . . :.L . . . . . . . . . . . . . . m . . . . . . . ...::..: ~~~.<br />

. . . . . . . . . . .2 . . . . . . .._ . . . .:.::<br />

. . . . . . . . . . . . . . . .<br />

41. When the analyzer hnishes the sweep, notice the mean value.<br />

42. Convert the measured linear magnitude mean value to log magnitude, using<br />

this equation.<br />

Power (dBm) = 20 * [lo&-,(Zinear magnitude mean value)]<br />

43. Write this calculated value on the “Performance Test Record.”<br />

System Verification and 241<br />

Performance Tests


ln Case of Difficulty<br />

1. Perform the “ADC Linearity Correction Constants (Test 52),’ located in<br />

Chapter 3, “Adjustments and Correction Constants n<br />

2. Repeat the “Test Port Input Noise Floor Level” procedure.<br />

3. Suspect the A10 Digital IF assembly if the analyzer fails both test port input<br />

noise floor tests.<br />

4. Refer to Chapter 8, “Receiver Troubleshooting,” for more troubleshooting<br />

information.<br />

242 System Verification and<br />

Performance Tests


7. Test Port Input Frequency Response<br />

Specifications<br />

Frequency Range lkst Port Input<br />

Frequency Response<br />

300 kHz to 3 GHz Port 1 fl dH<br />

300 kHz to 3 GHz Port 2 fl dB<br />

3 GHz to 6 GHzl Port 1 52 dE3<br />

1 3GHz to 6 GHzl 1 Port2 1<br />

1 Only for analyzers with Option 006 - 30 kHz to 6 GHz range.<br />

Equipment Required for 5OQ <strong>Analyzer</strong>s<br />

Power Meter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> 436AI437W438A<br />

Power Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> 8482A<br />

Cable, APC-7 24inch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> P/N 81204779<br />

Adapter, APC-7 to Type-N (f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<strong>HP</strong> 11524A<br />

Additional Equipment Required for <strong>Analyzer</strong>s with Option 006<br />

Power Sensor . . . . . . . . . . , . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> 8481A<br />

Equipment Required for 75Q <strong>Analyzer</strong>s<br />

Power Meter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> 436AJ437Bl438A<br />

Power Sensor ..*................................... . . . . . . . <strong>HP</strong>8483AOptionH03<br />

Cable, Type-N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> P/N 8120-2408<br />

Anulgger warmup time: 1 hour<br />

Perform this test to examine the vector sum of all test setup error vectors in<br />

both magnitude and phase change as a function of frequency.<br />

System Verification and 243<br />

Performance Tests


Power Meter Calibration for Test Port 1 from 300 KHz to 3 GHz<br />

1. Zero and calibrate the power meter.<br />

2. Connect the equipment as shown in Figure 2-17.<br />

H P <strong>8753E</strong><br />

NETWORK ANALYZER<br />

H P <strong>8753E</strong><br />

NETWORK ANALYZER<br />

WITH OPTION 075<br />

/’<br />

Figure 2-17. Setup for Power Meter Calibration on ‘I&t Port 1<br />

3. Press m m 1300_) Lk/m.<br />

4. Only for <strong>Analyzer</strong>s with Option 006: Press [Stop_] (T’J &J.<br />

5. Press (-..@ ~.~~~~~~~~~~~.<br />

_ .,.,.,.,.,.,.,.,.,.,.,.,.,.,i __~_.,._ .,_ _ .,.,.,. _.,._.,._._.,._ _ i .,.,.,.,.,. ~.~._.__<br />

6. Press ~~,,,~~~~~~~ . . . . . . . . . _ . . . . . . and ~~~~~~ Mtil the malyzer shows the correct<br />

power meter model.<br />

24 System Verification and<br />

Performance Tests


. . . . . . . “......,,,,,,,,,.,, ;.::...;. ‘...... ,,,.. ;; /....<br />

7. Press ~~~~~~:,~:-g #T&j%!&. The default power meter <strong>HP</strong>-IB address<br />

.,<br />

is 13. Make sure it is the same as your power meter <strong>HP</strong>-IB address.<br />

Otherwise, use the analyzer front panel keypad to enter the correct <strong>HP</strong>-IB<br />

address for your power meter.<br />

8. Press ~ I~~.:~~~~~~~~~.l . . . . . . . . . . . . ,..;.,.,;, . . . . . .: L51) Ixl).<br />

. ../_ii~~..........-//-.......~ ii .: ..:::::.::... :..:............i<br />

“‘:y:: ..~.y”,. .d.d;;, ;x; g .:f ‘.;“. ::::::i<br />

9. Press @@j% ‘~~~~~~,~~~~ to turn the auto power range off.<br />

Note The analyzer displays the PRm annotation, indicating that the<br />

analyzer power range is set to MANUAL.<br />

“. :,... ‘.; ‘.;;;;.;~~, f ,, ,“; E<br />

10. Press ?#$@I@ SW&I4 to uncouple the test port output power.<br />

Note<br />

their corresponding frequencies.<br />

The analyzer’s calibration factor sensor table can hold a<br />

muximum of 12 calibration factor data points<br />

The following softkeys are included in the sensor calibration factor entries<br />

menu:<br />

_.. _ __; _ _.,.,....,.. __; ; _; _ _.:. ;.... .;.<br />

gggi#ggi:<br />

_; _) _ ~.-.:...:.:.:.:...~.:.~~:~~~~;<br />

press to select a point where you can use the front<br />

panel knob or entry keys to enter a value.<br />

..,............................... _ . . . . . . _<br />

#g+Jg<br />

.A, ....i i . . . .w;.>.~..~.~.~.~.~.~ . .<br />

press to edit or change a previously entered value.<br />

press to delete a point from the sensor calibration<br />

factor table.<br />

~~~ select this key to add a point into the sensor<br />

calibration factor table.<br />

. . . . . . .. . . . . . . . . . .. . . . . .. . . . . ... “~.:.:.::;.::::::: ‘:~.;~~~~~~,~ :.:::::::.:.:.:~::::::::,.:;::::~:...:;:~..<br />

~~~~~~~ select this key to erase the entire sensor calibration<br />

factor table.<br />

select this key when done entering points to the sensor<br />

calibration factor table.<br />

System Verification and 245<br />

Performance Tests


Power Meter Calibration on Port 2 from 300 kHz to 3 GHz<br />

22. Connect the equipment as shown Figure 2-19.<br />

H P <strong>8753E</strong><br />

NETWORK ANALYZER<br />

H P <strong>8753E</strong><br />

NETWORK ANALYZER<br />

WITH OPTION 075<br />

H P 8482A<br />

POWER SENSOR<br />

H P 8483A<br />

Figure 2-19. Setup for Power Meter Calibration on Test Port 2<br />

23. Press (seas) ~~~~~~~~ ~~~~~~.~~:~~.~.<br />

. .._..::, . ..~...,...~..~...~...~..,.~~.~ . . . . .a.G :... i~.~..,.....,.............~ : ..A.. ..::::: ._.,... . . . . . . . . . ..~.................. _... .......:::..u~.L<br />

. . . . . . . . . . _ . . . . . . . . . .<br />

. . . . _ _ _,, _.; /,. . . . . . . . _.; /, . . . . . . /_ _ ,.,.,.,.,.,.,.,.,.,...,...,_.,....i _ i _ i ._.,.._i _*<br />

24. fiess (g ~~~ ~~~~~~~ ~~~~~~~ to start the power meter<br />

..-.... -..-.--_. .--_.- _......._._.__........ -... .~~.~.~~..~.~.~.~.~.~.~...----~ -......-..--..-..-._ -<br />

calibration for test port 2.<br />

25. When the analyzer displays the message POWEFl METER CALIBRATION SWEEP<br />

DONE, connect the equipment as shown as in Figure 2-20.<br />

248 Syetem Verification and<br />

Performance Tests


H P <strong>8753E</strong><br />

NETWORK ANALYZER<br />

-PORT 1<br />

Figure Z-20. lkst Port 1 Input Frequency Response lkst Setup<br />

Test Port 1 Input Frequency Response from 300 kHz to 3 GHz<br />

.::.. .::>. ,, .. :::


H P <strong>8753E</strong><br />

NETWORK ANALYZER<br />

<strong>HP</strong> 8753F<br />

NETWORK ANALYZER<br />

WITH OPTION 075<br />

H P 8481A<br />

POWER SENSOR<br />

<strong>HP</strong> 438A<br />

Test Port 2<br />

sg617e<br />

35. Press ~~~~~~~~~~~~~~ ~~~-:~~~~~~~~~~~~~~~: Repeat step 12 to build<br />

a calibration factor sensor table for the <strong>HP</strong> 8481A power sensor.<br />

36. Press ~%~#k .>......;.; .- . ..__.. i. . . . . . . . .;...; -.. . . . . to . exit the sensor calibration factor entries menu.<br />

. . . . . . . . . . . . .._ . . . . ::,:::<br />

37. m s&a the <strong>HP</strong> 8&lA power sensor, press ~~~~~~~~~~~.<br />

_ ._...<br />

38. Press ~~ ~~~ *ym;f<br />

: ..- -_..- ;..;I: .._._ -c<br />

i ,.=i_ . ~~~~~~~~~~~ . . . _ . _ _ to start the power meter calibration.<br />

2-60 System Verification and<br />

Performance Tests


Test Port 1 Input Frequency Response from 3 GHz to 6 GHz<br />

39. When the analyzer Gnashes the calibration sweep, connect the equipment as<br />

shown in Figure 2-22.<br />

H P <strong>8753E</strong><br />

NETWORK ANALYZER<br />

PORT 1<br />

U<br />

I I<br />

PORT 2<br />

CABLE<br />

24 INCH<br />

Figure 2-22. Setup for lkst Port 1 Input Frequency Response<br />

. . . . . . . .<br />

_ . . . . . . . ..: . . . / / . .<br />

Press I-1 ~~~~~~~ c-1 ~~~~ ~~~~~~~~.. to put<br />

/i_.......-......~r~i_i_<br />

~~i..................~~~;;;~;~.i ._ i......./......l .: . . . . . . . . . ..L......... _...._.... . -::<br />

41.<br />

marker 1 at the minimum magnitude location of the trace.<br />

:..... :.. .+:.:~ / . ..>> ~~~~~ . . . . ./ . . . . . . . . . . . . . . . . . . . . . . . 2.2L../:: . . . . . 2 . . . . . . . . . . . ... .. . . . . . . . . .. . . . . . . .:::::. ~~~~~ . . . . . . ~;..................._......~..........._............-~... ::.....i.i.::: to position<br />

marker 2 at the maximum magnitude location of the trace.<br />

43. Write the marker 1 or marker 2 reading, whichever has the largest absolute<br />

magnitude, in the “Performance Test Record. n<br />

System Verification and 241<br />

Performance Tests


Test Port 2 Input Frequency Response from 3 GHz to 6 GHz<br />

47. When the analyzer displays the message POWER METER CALIBRATION SWEEP<br />

DONE, connect the equipment as shown as in Figure 2-24.<br />

H P -.-~~ <strong>8753E</strong><br />

NETWORK ANALYZER<br />

PORT 1UPORT<br />

2<br />

CABLE<br />

24 INCH<br />

Figure 2-24. ‘Ikst Port 2 Input Frequency Response ‘lkst Setup<br />

51. Write the marker 1 or marker 2 reading, whichever has the largest<br />

magnitude, in the “Performance Test Record.”<br />

In Case of Difaculty<br />

1. Be sure you have used the correct power sensor for the frequency range.<br />

2. Verify that the calibration factors that you have entered for the power<br />

sensors are correct.<br />

3. Repeat this test with a “known good” through cable.<br />

System Verification and 2-53<br />

Performance Teete


8. lkst Port Crosstalk<br />

Specifhtions<br />

( Frequency Euuge 1 Crosstalk1 1<br />

1 300 kHz to 3 GHz 1 100 dB 1<br />

) 3GHzto6GHz2 1 9OdB 1<br />

1 At 25O C 3~5“ C.<br />

2 Only for analyzers with Option 006 -<br />

30kHzto6GHzrange.<br />

Required Equipment for 50 ohm <strong>Analyzer</strong>s<br />

Calibration Kit, 7-mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> 85031B<br />

Cable, APC-7 24-inch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> P/N 8120-4779<br />

Required Equipment for 7513 <strong>Analyzer</strong>s<br />

Calibration Kit, 75 ohm, Type-N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<strong>HP</strong> 85036B<br />

<strong>Analyzer</strong> warmup time: 1 hour<br />

Perform this test to verify the signal leakage between the analyzer’s test ports.<br />

1. Connect the equipment as shown in Figure 2-25.<br />

H P <strong>8753E</strong><br />

NETWORK ANALYZER<br />

PORT 11<br />

CABLE APC-7<br />

24 INCH<br />

I<br />

PORT 2<br />

OPEN END<br />

- I I<br />

PORT 1 * * PORT 2<br />

SHORT (m)<br />

(75fl)<br />

-<br />

ADAPTER<br />

TYPE-N(m to<br />

*<br />

TYPE-N(m i<br />

SHORT ( f )<br />

x (75fl)<br />

(75n)<br />

* DIRECT CONNECTION sg620e<br />

2-54 System Verification and<br />

Performance Tests<br />

Figure 2-25. ‘I&t Port Crosstalk l&t Setup


,.,.. . . . . .,. .,. / . . . .<br />

2. Press (jj) [iZG) P#%B ; . . . .._...... . ;;., :. @J (XJ<br />

3. Press m ~~~~ @J (xl).<br />

Crosstalk to Test Port 2 from 300 kHz to 3 GHz<br />

4. Press~(3iZJ(i$J&Tj@LG/n).<br />

.(:.~,~,~,.:.~,~,~. :.::. .:;.. ..: . . . . . ..z.. . .<br />

5. Press m :~~~~~~:~,,~~~,^~~~~~~~~~.,.<br />

. ..


18. Write the marker value (which appears on the analyzer display) in the<br />

“Performance Test Record. n<br />

Crosstalk to Test Port 2 from 3 GHz to 6 GHz<br />

.._ .,......_ i ..,.,.,.,.,.,...,.,.,.,..,, :i ,,, . . .... . . . . . . ..:. : . . . . . . .._. . ..~_ _ ._ ._ _ _ _i<br />

. . . .<br />

l- Press (Meas) _..i. ~~~~~;,~,~~~~~~~~~~~~~~~~~~~<br />

_../..i awA>>..> .i...A..L../......~.i- ...... . . . . .....................___._-<br />

.<br />

2. Press Ihnenu_) ~~~~~~~~ ~~~~~<br />

i.~.~.~.~_..>...~ ii z.sw;..i.ii . . . . . . . . . . . . ..ii^................._ . . . . .<br />

./:....:..:.... ..: . . . . . . . . . . . . . . . ..:::.;x . . . . . . . . A . . . ..:..s.......: -<br />

3.<br />

. . . . . . . . . . . . . . . . . . /,: :.,. ,;.,.;,.,.;........ * :; .: / ,, ,.,.,.,.<br />

Press (-Fan_) ,,~~~~~~~~ ~~~~~’<br />

- . - . AS ._.<br />

4. Write the marker value (which appears on the analyzer display) in the<br />

“Performance Test Record. n<br />

In Case of DifBculty<br />

1. Remove the instrument top cover. Using an 8 lb-inch torque wrench, verify<br />

that all semirigid cables connected to the sampler/mixer assemblies are<br />

tight. In addition, tighten any loose screws on the sampler/mixer assemblies<br />

(A4/5/6) and the pulse generator assembly (A7).<br />

2. Remove the instrument bottom cover. Refer to F’igure 2-26. Verify that<br />

cables Wl, W31 and W32 are tight.<br />

3. Repeat this test.<br />

2-56 System Verification and<br />

Performance Tests


W32,<br />

Figure 2-26. <strong>HP</strong> <strong>8753E</strong> Bottom View<br />

sg6102e<br />

System Verification and 2-57<br />

Performance Tests


9. Calibration Coefficients<br />

Specifications<br />

Uncorrected1 Frequency Range<br />

Error ‘kms<br />

300 kBz to 1.3 GHz 1.3 GElz to 3 GHz 3 GHz to 6 GHz2<br />

Directivity 35 dl3 30 dB 25 dB<br />

Source Match 16 dB 16 dB 14 dB<br />

Load Match 18 dB 16 dB 14 dB<br />

Transmission Tracking f1.5 dB f1.5 dB f2.5 dB<br />

Reflection Tracking f1.5 dB f1.5 dB f2.5 dB<br />

1 At 25’ f5O C, with less than lo C deviation from the measurement calibration temperature.<br />

2 Only for analyzers with Option 006 - 30 kHz to 6 GHz range.<br />

Equipment Required for 5011 <strong>Analyzer</strong>s<br />

Calibration Kit, 7-mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . . . . . . . <strong>HP</strong> 85031B<br />

Cable, APC-7, 24-inch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> P/N 81204779<br />

Equipment Required for 75Q <strong>Analyzer</strong>s<br />

Calibration Kit, Type-N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> 85036B<br />

Cable, Type-N, 24-inch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> P/N 8120-4781<br />

Analger warmup time: 30 minutes<br />

Perform this procedure to verify the analyzer uncorrected test port<br />

characteristics.<br />

Note The crosstalk calibration coefficients are omitted in this<br />

procedure. They are covered in the “Test Port Crosstalk”<br />

performance test.<br />

2-58 Syetem Verification and<br />

Performance Tests


First Full 2-Port Calibration<br />

1. Connect the equipment as shown in Figure 2-27.<br />

TEST PORT 1<br />

<strong>HP</strong> <strong>8753E</strong><br />

NETWORK ANALYZER<br />

Figure 2-27. First Full 2-Port Calibration ‘I&t Setup<br />

2. PressLPreset)Lstart)@&EJ<br />

5. Connect the “open” end of the open/short combination (supplied in the<br />

calibration kit) to analyzer test port 1.<br />

6. ~~~ ~~~~~~~ ~~~~~~~~.<br />

-_...-...L i .._.. ~:~:....:..-- .:..:


,. ..,. ... ,... ..:: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

12. press ~~~~.~~~~.<br />

..__..............._ -_.: ..~........... :..::...<br />

13. Connect the “short” end of the open/short combination to the reference test<br />

port 2.<br />

15. Connect the 50 ohm termination to the reference test port 2.<br />

17. Whentheanalyzer “‘.’ _____.. ... . . . . .. . . . . . . . . . . . . . . displays PRESS 'DONE' IF FINISHED WITH STD(s), press<br />

~~~~,l;~~~~<br />

.._....._...._..._............--..................... 111.... I. ./ ..I..1 . . . ..A. * * i. . . . . . . . . . . ;;;;./;C~ . . . . . . . - i .::::: .::::. - -<br />

Waitforthemessage COMPUTINGCAL COEFFICIENTS to disappearfromthe<br />

analyzer display before proceeding to the next step.<br />

18. Connect the equipment as shown in Figure 2-28.<br />

2-60 Syetem Verification and<br />

Performance Tests<br />

<strong>HP</strong> <strong>8753E</strong><br />

NETWORK ANALYZER<br />

PORT 1 I I PORT 2<br />

Figure 2-28. Transmission Calibration lkst Setup


Directivity (Forward) Calibration Coefficient<br />

..::: ::.::.. ~.:~.~:~:~:~:.. .y::.:.:.:.:.:.:.:.::.:: .I -3, .+ y:~.:.:::: .f+ . . . . . . . . . . . . . . . . ,,....,,... .a., .J..<br />

21- Press [j] ~3~~~~:~~~ ii.... . ......... . . . . . .. . . ._A.A. . . . . z.v,c._ . . .<br />

. . . . . ..::::: . . . . . . . ..L . :XifF!# . . . ..A/ . .A.. ii ..A. T . . . .... . i.: (32) @J .~~.~~~<br />

22. When the analyzer finishes the test, press B.<br />

23. Using the front panel knob, locate the maximum value of the data trace for<br />

the 300 kHz to 1.3 GHz frequency range.<br />

24. Write the maximum value in the “Performance Test Record.”<br />

25. Repeat the previous two steps for the other frequency range(s) listed on the<br />

“Performance Test Record. n<br />

Source Match (Forward) Calibration Coefficient<br />

27. When the analyzer finishes the test, repeat steps 22 through 25.<br />

Transmission Tracking (Forward) Calibration Coefficient<br />

28. Press m ~~~~~~~ ~~~ ~37) (xl) ~~~~.<br />

. . . . _i_ i _ ___ _ _i .,.,.,.,.......,........... ii . . . . . . . _ .:::: _ i . . . . . . . ~;..~~ ..== _<br />

29. When the analyzer finishes the test, repeat steps 22 through 25.<br />

Reflection Tracking (Forward) Calibration Coefficient<br />

31. When the analyzer finishes the test, repeat steps 22 through 25.<br />

Load lMatch (Reverse) Calibration Coemcient<br />

33. When the analyzer finishes the test, repeat steps 22 through 25.<br />

System Verification and 2-61<br />

Performance Tests


44. Replace the open/short combination with the 50 ohm termination (supplied<br />

in the calibration kit).<br />

46. Connect the “open” end of the open/short combination to the analyzer test<br />

port 2.<br />

48. Connect the “short” end of the open/short combination to the analyzer test<br />

port 2.<br />

49. press ~~~~~~~~~.<br />

.,.. . . ~;.......,.......................~.~- . . . . . .<br />

. . . . . . . ..-..........~~~.~~...~...~~. . . . . .<br />

50. Connect the 50 ohm termination to the analyzer test port 2.<br />

52. When the analyzer displays PRESS ‘DONE’ IF FINISHED WITH STD(s) , press<br />

~:~~~~~~~~~:.<br />

*, i_i _ i _ __ .. _1 ,.,.,.,.,.,.,.,.,.,.,. _<br />

Wait for the message COMPUTING CAL COEFFICIENTS to disappear from the<br />

analyzer display before proceeding to the next step.<br />

53. Connect the equipment as shown in F’igure 2-30.<br />

<strong>HP</strong> 0753E<br />

NETWORK ANALYZER<br />

I I CABLE<br />

24 INCH<br />

Figure 2-30. Transmission Calibration ‘I&t Setup<br />

sg618.2<br />

System Verification and 2-63<br />

Performance Tests


10. System Trace Noise (Only for <strong>Analyzer</strong>s without<br />

Option 006)<br />

Frequency Range Ratio System Trace Noise System Trace Noise<br />

(Magnitude1 ) (Ph-3<br />

30kHzto3GHz A/R


. . . . . . . . . . .,.............<br />

j_., ./_<br />

4. Press CMarker F~“, ‘~~~~~~~~: ~~~~~~~~: to activate the<br />

__........~.~............-........~~.~.~.~.~.~.~.~;.~ . . . . . . . I.._ .:::.._....../.: . i~~L~.~.~.~.~zz&..~.~ c//.~.~._.~.~.~~~~~.~.~ . . . . i . . . . . . . . -..-.. i..<br />

instrument’s statistic feature.<br />

System Trace Noise for A/R Magnitude<br />

7. When the analyzer displays the “Hld” annotation, press c-j<br />

~~~‘:~~~~~~:<br />

. . . . . . . . . . . . . . . . . -<br />

8. Write the sdev (standard deviation) value, which appears on the analyzer<br />

display, on the “Performance Test Record. n<br />

System Trace Noise for A/R Phase<br />

9. press (format) ~~~~.<br />

11. When the analyzer finishes the number of sweeps, press @8@<br />

~~~~~~~;.<br />

12. Write the sdev value on the “Performance Test Record.”<br />

System Trace Noise for B/R Magnitude<br />

15. When the analyzer l?nishes the number of sweeps, press c-1<br />

16. Write the sdev value on the “Performance Test Record.”<br />

2.66 System Verification and<br />

Performance Tests


System Trace Noise for B/R Phase<br />

17. Press B &j&j$.<br />

.._................. - -...<br />

18. Press LMenu) ~~~~~~~~ ~~~‘~~~:..<br />

” .,.. :.:.i.:;..<br />

.p&J&<br />

,,.~::.:,:.y ,, :


11. System Trace Noise (Only for <strong>Analyzer</strong>s with<br />

Option 006)<br />

Specifications<br />

Frequency Range Ratio System Trace Noise System Trace Noise<br />

(Bfagnitudel) OPh-3<br />

30 kHz to 3 GHz A/R


. . . .<br />

3. ~~~~ (m)~~~~~~~.~~, ~~~~~~,.;~~. to a&iv& the<br />

instrument’s statistic feature.<br />

. . . . . . . i . ..:.......... _ . . . . . . . ..._/. . . . . _ ,..........<br />

System Trace Noise for A/R Magnitude from 30 kHz to 3 GHz<br />

7. Write the sdev (standard deviation) value shown, which appears on the<br />

analyzer display, on the “Performance Test Record.”<br />

System Trace Noise for A/R Phase from 3 GHz to 6 GHz<br />

l l- Press (Format) $fJB#$%. - ..__..._ --<br />

~,,,‘- ..‘.’ .“::~:~~ . . . .T . . :.. :.:..::. :,, ..:~~.~~~~~N,,:x~..- - ..-...---...... f$gfj@@i - ..-.....-.-.......^ 0 (xl.<br />

13.<br />

.<br />

When<br />

..- _.,,.,.,.,.....,...,.,.,...,._<br />

.,,...;;.;‘....~.~. ~~:~.‘:~.~.~,..~,~,~,~.~.~.,,.,:.:.:<br />

the analyzer<br />

.:... ,.,...,..... _<br />

hnishes the number of sweeps, press (j-1<br />

.:~~~~~.S~~~<br />

;>;:.::


System Trace Noise for A/R Phase from 30 kHz to 3 GHz<br />

16. When the analyzer finishes the number of sweeps, press (Scale)<br />

~~~~~~.<br />

17. Write the s.dev value, which appears on the analyzer display, on the<br />

“Performance Test Record. ’<br />

System Trace Noise for B/R lbgnitude from 30 kHz to 3 GHz<br />

z..;.>:. E.B.’ :>>>>>......<br />

@ @).<br />

~~:.:.~~:.:.:.:.:.~:.~.:.;.:.:.:.~.~:.~.:.:.:.;.:.:.:.:.:.~..~ ..((................................. . . _ . . . . . . .<br />

19. When the analyzer finishes the number of sweeps, press &iii?@<br />

. . . . . . ..A ‘.:.:.:.:.:.:.~;:..:::~.‘.~:.~,.:.::.:.:.:<br />

~~~~~,.<br />

20. Write the s.dev value, which appears on the analyzer display, on the<br />

“Performance Test Record. ’<br />

System Trace Noise for B/R Magnitude from 3 GHz to 6 GHz<br />

22. When the analyzer Gnishes the number of sweeps, press (w)<br />

~~~~~~~~,<br />

23. Write the sdev value, which appears on the analyzer display, on the<br />

“Performance Test Record. n<br />

System Trace Noise for B/R Phase from 3 GHz to 6 GHz<br />

25. When the analyzer Gnashes the number of sweeps, press cm)<br />

~~~~~~~~.<br />

.=,.::.,y>,.u _ __i .~_,,,,,,,,<br />

26. Write the s.dev value, which appears on the analyzer display, on the<br />

“Performance Test Record. n<br />

2.70 System Verification and<br />

Performance Tests


System Trace Noise for B/R Phase from 30 kHz to 3 GHz<br />

28. When the analyzer finishes the number of sweeps, press [-Ref)<br />

~~~~,~~~~~~~.<br />

29. Write the sdev value, which appears on the analyzer display, on the<br />

“Performance Test Record. n<br />

In Case of Diffhilty<br />

1. Perform the “ADC Offset Correction Constants” procedure, located in Chapter<br />

3, “Adjustments and Correction Constants.”<br />

2. Repeat this performance test.<br />

3. Suspect the A10 Digital IF board assembly if the analyzer still fails the test.<br />

System Verification and 2-71<br />

Performance Tests


12. Test Port Input Impedance<br />

Specifications<br />

1 Frequency Range 1 ‘Ilest Port Input 1 Return Loss 1<br />

LkHzto 1.3GHzI Port 1 I IlSdB I<br />

m3Grr Port2 1 116dB 1<br />

r 3 GHz to 6 GHz l Port 2 I 114m I<br />

Required Equipment for 50 ohm <strong>Analyzer</strong>s<br />

Cable, APC-7, 24-inch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> P/N 8120-4779<br />

Calibration Kit, 7-mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> 85031B<br />

Required Equipment for 75 ohm <strong>Analyzer</strong>s<br />

Cable, 750, Type-N, 24-inch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> P/N 8120-2408<br />

Calibration Kit, 753, Type-N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> 85036B<br />

Anulgm- warmup time: 1 hour<br />

Perform this test to measure the return loss of each input test port.<br />

2.72 System Verification and<br />

Performance Tests


1. Connect the equipment as shown in Figure 2-33.<br />

REFERENCE TEST --)<br />

PORT I<br />

H P <strong>8753E</strong><br />

NETWORK ANALYZER<br />

Figure 2-33. Sll l-Port Chl lkst Setup<br />

_ . . . . . _ _ / . ..~ . . . . ,,,,,,............. ., ..:?A<br />

2. Press w LAVG) ~~~~~ L3ooo) Lxl] IMenu) ~~~~~:~~~~~~s,, m (xl].<br />

,.~._i _ _ _ _<br />

3. Press m (3iZJ Lk/ml.<br />

. . . . . . ; _ ,,,; ./, .‘.:,,:,:,:,:,:) . . . . . . . . . .<br />

4. ~~~ Ical] ~~~~~~ ~~~~:,~~~~~~ ad xle& the appropriate calibration<br />

,.,. ii_ ,.,. _ ,.,......... i ..: _.:: _.. . . . . _ ..-.... ~.~....~.~.....i-... .__..._.....................~..<br />

kit:<br />

_<br />

, lf your analyzer is 5oQ, press ~~~~,;~~~~~~~*<br />

/..,/............,. _i _ _i_ _<br />

.,..........., ,,...........; _; _i ,.,.,.,.........................<br />

, lf your mdyzr is 75Q, press ~~~~~~~~~~~.<br />

5. Press ~~ .“~~~,~“i ~~~~~~~~ . . ., _ .,.,.,...,.,.,...i . . . . ~~~~~~~~~~.<br />

. . . . . . . . .. . . . . . . . . . . . .. . . . . . . . . . ..-‘..........<br />

*.---;: ~~~ _i..~........_~.~.~;~~ E . . . . . i_.: . . . .:. / z..> . . .::::::::::.. . . i>..> . . . . .. . . . . .._ -... :: ~~~~:~~~~;;~;;:~:;~.:~;;~;:.:.. -<br />

6. Connect an open to reference test port 1, as shown in Figure 2-33.<br />

.,.,.,.,.,.,.,.,.,.,.,.,.,.......................,......... ..,,.. _<br />

7. press :~~~~~~~~~~~.<br />

,. _<br />

-<br />

8. When the analyzer displays the prompt CONNECT STD THEN PRESS KEY TO<br />

NEASUFE, connect a short to reference test port 1.<br />

g. Press ~~~~~~~~~~~~~ -<br />

.,......; ,.,.,.,..../.................. .._ __ .,.,<br />

10. At the prompt, connect a load to reference test port 1.<br />

sg623e<br />

System Verification and 2-73<br />

Performance Tests


12. When ::.. the analyzer displays 'DONE' IF FINISHED WITH CAL, press<br />

&$& ‘:~~~~~~~~~<br />

L-<br />

13. Press CSa”e,Reca,,, ~~~~~~~,:, *<br />

14. Connect the equipment as shown in Figure 2-34.<br />

PORT 1<br />

U-.<br />

PORT 2<br />

-<br />

Z-INCH CABLE<br />

Fiure 2-34. ‘Jkst Port 2 Input Impedance ‘Jkst Setup<br />

15. Press e to turn the analyzer’s marker 1 on. Use the front panel knob<br />

to locate the maximum value of the data trace for each of the frequency<br />

ranges listed in the “Performance Test Record.”<br />

16. Write these maximum values on the “Performance Test Record.”<br />

17. Connect the equipment as shown in Figure 2-35.<br />

2-74 System Verification and<br />

Performance Tests<br />

g613e


<strong>HP</strong> <strong>8753E</strong><br />

NETWORK ANALYZER<br />

- PORT 1<br />

REFERENCE TEST --c<br />

PORT 2<br />

I<br />

PORT 2<br />

CABLE 24 INCH<br />

I-<br />

Figure 2-35. $22 l-Port Cd ‘l&t Setup<br />

,.; .,.,.,.,.,.,.,.,.,.,.,.,.,. . . . . . ,. ,. .,.<br />

18. -ess ~cal] ..~~~~~~ &#f@ ~~~~~~~~~~~~,.<br />

._... .._.._.............~......... -..-- -2 . . . . . . . . . i....z . ii. .A.. .A.... ii zz. _...<br />

19. At the prompt, connect an open to reference test port 2, as shown in<br />

Figure 2-35.<br />

21. When the analyzer displays the prompt CONNECT STD THEN PRESS KEY TO<br />

MEASURE, connect a short to reference test port 2.<br />

23. At the prompt, connect a load to reference test port 2.<br />

~ .;.. ..,/,.<br />

24. press i~~:~~~~.<br />

25. When the analyzer displays ‘DONE’ IF FINISHED WITH CAL, press<br />

~~~~~~~~~~~~~~~~.<br />

.._......__......_.~.... . . ..a -:.......~:;..::.8:~~..~ i” _...........-....<br />

26. press LB) ~~~~.~~~~~:~ _../.................._. 2: . . . . . . . i.~...............~............~......~i<br />

. . . . . . to save the l-Port calibration.<br />

27. Connect the equipment as shown in Figure 2-36.<br />

sg624e<br />

System Verification and 2-75<br />

Performanoe Tests


PORT 1<br />

LJ<br />

PORT 2<br />

CABLE<br />

24 INCH<br />

Figure 2-36. lkst Port 1 Input Impedance ‘I&t Setup<br />

28. Press m to activate the analyzer’s marker 1. Use the front panel knob<br />

to locate the maximum value of the data trace for each of the frequency<br />

ranges listed in the “Performance Test Record. n<br />

29. Write the maximum values on the “Performance Test Record.”<br />

In Case of Difkulty<br />

1. Suspect the A10 digital IF board assembly if the analyzer fails both test port<br />

tests.<br />

2. Refer to Chapter 8, “Receiver Troubleshooting,” for more troubleshooting<br />

information.<br />

2-76 System Verification and<br />

Petformanca Tests


13. ‘Ikst Port Receiver Magnitude Dynamic Accuracy<br />

Spectications<br />

<strong>HP</strong><strong>8753E</strong> Magnitude Dynamic Accuracy 0.3 to 3000 MHz<br />

10 0 -10 -20 -30 -40 -SO -60 -70 -80 -90 -100<br />

Test Port Power (dBm)<br />

Required Equipment<br />

<strong>HP</strong><strong>8753E</strong> Magnitude Dynamic Accuracy 3-6 GHz<br />

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100<br />

Test Port Power (dBm)<br />

Power Meter ............................................... <strong>HP</strong> 436Af437Bl438A<br />

Power Sensor .......................................................... <strong>HP</strong> 8482A<br />

Step Attenuator, 110 dB ............................ <strong>HP</strong> 8496A Option 001, H18<br />

(See notes on the following page.)<br />

Adapter (2), APC-7 to Type-N (f) ....................................<strong>HP</strong> 11524A<br />

Adapter, Type-N (f) to Type-N (f) ............................<strong>HP</strong> P/N 1250-0777<br />

Cable (3), 509, Type-N, 24-inch ....................................... 8120-4781<br />

Cable, <strong>HP</strong>-IB.......................................................... <strong>HP</strong> 10833A<br />

Diskette, 3.5 inch ............................................................<br />

Calibration Kit, Type-N, 50 Q......................................... <strong>HP</strong> 85Og:<br />

Additional Required Equipment for 75 ohm <strong>Analyzer</strong>s<br />

MinimumLossPad(2), 500 to 75Q ................................... <strong>HP</strong> 11852B<br />

Analgger warmup time: 1 hour<br />

System Verification and 2-77<br />

Performance Tests


Note The <strong>HP</strong> 8496A step attenuator (Option 001, H18) comes with a<br />

special calibration that supports the measurement uncertainties<br />

expressed in the test record for this performance test.<br />

The special calibration consists of two measurements The hrst<br />

is a measurement of the attenuation at each step. The data<br />

reported for this measurement have the following uncertainties:<br />

� f0.006 dB from 0 to 40 dB<br />

w f0.015 dB from >40 to 80 dB<br />

� f0.025 dB from >80 to 90 dB<br />

� f0.05 dB >90 dB<br />

The second calibration measurement characterizes match<br />

stability between attenuator settings for each attenuator port.<br />

The vector difference of S11 or ($2) between the reference<br />

attenuation step and all the other steps is measured. The<br />

magnitude of this difference is certified to be ~0.0316 (>30 dB).<br />

Note The <strong>HP</strong> 8496A used for this test wiU have known attenuator<br />

errors for attenuations up to 100 dB using a test frequency of<br />

30 MHz. The attenuation used as a reference is 0 dB. If the<br />

available calibration data is not expressed as attenuation errors,<br />

it can be converted to such a form by the following equation:<br />

2-76 System Veriiication and<br />

Performance Tests<br />

(actual attenuation) - (expected attenuation) = attenuator error<br />

Actual attenuation values that are greater than the expected<br />

attenuation values wiII result in positive errors Actual<br />

attenuation values that are less than the expected attenuation<br />

values wiII resuh in negative errors.


Initial Calculations<br />

1. Fill in the attenuator error values (referenced to 0 dB attenuation)<br />

in Table 2-l by referring to the calibration data for the <strong>HP</strong> 8496A<br />

step-attenuator. Refer to the note on the previous page.<br />

a. Find the column in the <strong>HP</strong> 8496A attenuation error table that pertains to<br />

the attenuation errors for 30 MHz.<br />

b. Starting with the “10 dB” step in this column, write down the value in<br />

the corresponding space in ‘Ikble 2-l for column “B.” This value should<br />

be placed in the row for the 10 dB <strong>HP</strong> 8496A setting.<br />

c. Continue transferring the remaining values of the <strong>HP</strong> 8496A attenuation<br />

errors to column “B” in lhble 2-l.<br />

2. In ‘lhble 2-1, transfer the 10 dB error value located within the parenthesis in<br />

column “B” to each space in column “C.”<br />

‘Bible 2-l. Magnitude Dynamic Accuracy Calculations<br />

A B c<br />

8496A Attn. Error 10 dB Error Attn. Brror<br />

AttZl. (ref 0 dB) Vixlne (ref 10 dB)<br />

0 OdB<br />

10 ( 1 OdB<br />

20<br />

30<br />

40<br />

50<br />

60<br />

70<br />

so<br />

90<br />

E<br />

10<br />

0<br />

- 10<br />

- 20<br />

-30<br />

-40<br />

- 50<br />

-60<br />

- 70<br />

- 80<br />

Expected<br />

M-ement<br />

(corrected)<br />

@w<br />

3. The values in column “D” result from changing the reference attenuation of<br />

the calibration data of the <strong>HP</strong> 8496A to 10 dl3.<br />

System Verification and 2-79<br />

Performance Tests


Calculate the attenuation error values for this column by subtracting the<br />

values in column “C” from the values in column “B” (B - C = D).<br />

4. The values in column “F” result from correcting the expected measurement<br />

value by the amount of attenuator error.<br />

Calculate the values in this column by subtracting the values in column “D”<br />

from the values in column “E” (E - D = F).<br />

5. Transfer the values from column “F” in ‘Iable 2-l to column “F” in the<br />

“Performance Test Record” for both test ports.<br />

Power Meter Calibration<br />

6. Zero and calibrate the power meter. (Refer to the power meter manual for<br />

details on this procedure.)<br />

7. Connect the equipment as shown in Figure 2-37.<br />

2-60 System Verification and<br />

Performance Tests


110 dB<br />

STEP<br />

ATTENUATOR<br />

<strong>HP</strong> <strong>8753E</strong><br />

NETWORK ANALYZER<br />

WITH OPTION 075<br />

<strong>HP</strong> 5753E<br />

POWER SENSOR<br />

POWER METER<br />

Figure 2-37. Power Meter Calibration for Magnitude Dynamic Accuracy<br />

System Verification and 2-61<br />

Performance Tests


8. Set the <strong>HP</strong> 8496A to 10 dB.<br />

9. Set the following analyzer parameters:<br />

10. Set up the <strong>HP</strong> <strong>8753E</strong> for power meter calibration:<br />

a. Select the <strong>HP</strong> <strong>8753E</strong> as the system controller:<br />

(Local.. _ .__.;;;;;;;;~.;;.; ::::,.;;;;;;:;;;,.;:_ i :z


Adapter Removal Calibration<br />

13. Connect the equipment as shown in the Figure 2-38:<br />

*DIRECT<br />

<strong>HP</strong> <strong>8753E</strong><br />

NETWORK ANALYZER<br />

PORT I I [PORT 2<br />

Cm) TO Cm) ADAPTER<br />

TYPE-N ( f )<br />

TO TYPE-N (f)<br />

24 INCH<br />

<strong>HP</strong> <strong>8753E</strong><br />

NETWORK ANALYZER<br />

Cm) TO (m) ADAPTER<br />

TYPE-N (f)<br />

TO TYPE-N ( f)<br />

t.lNlMm.4 LOSS PAD<br />

TYPE-N<br />

24 INCH<br />

Cm) TO (4<br />

24 INCH<br />

(ml TO Cm)<br />

Figure 2-38. Full 2-Port Calibration with Adapter Removal<br />

sg6118e<br />

System Verification and 2-83<br />

Performance Teete


14. Perform a full 2-port error correction with isolation.<br />

Note When you are performing error-correction for a system that has<br />

type-N test port connectors, the softkey menus label the sex of<br />

the test port connector-not t$ @bration standard connector.<br />

For example, the l&e1 ~tx#~~~~~~~~.~~ refers to the short that d<br />

be connected to the female test port.<br />

15. Save the results to disk. Name the lile “PORTl.”<br />

16. Move the adapter to reference test port 1 and perform another full 2-port<br />

error correction.<br />

17. Save the results to disk. Name the file “PORT2.”<br />

18. fiess Lcal) &$g ~~~~~~~~ ~~~~~~~~~~~~~.<br />

.; ..,..:.,,./...... I .,........ . . . . ..../........~........... . . . . . . . . . M . . . . . . . . . . . . . . . .;-, .,_, /;:..:..: ...... . . . . L..,. . . . . . . . . . . ..~.-...........~...............~.....~~.~~~.~.~.~.~~~..~~~.~.~.~.~~~~... . . . . . . . . . .<br />

i.<br />

19. kom .. _ ...... ::; :::: the ~~,..: disk . . . . :.::. directory, choose the We “PORTl”and press<br />

~~~~~~~~::;~~~~~~.<br />

~:.:.=,:.:.:.:.~,.:.:.:.:.:.:.:~~~~.~~,..~ ..__. ;....;&;. j _,__.,....i in__ _<br />

20. When this is complete, choose the fle “PORT2” and press<br />

,.,.,.,............ _; .,./ ;..; i..,...,............i<br />

~~~~~~~~~~~~~~~~.<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

21. When complete, press J$EJE#W.<br />

..~:::: i .._i..._<br />

22. m enter the adapter delay, press ;~~~~~~~ L.llo] m (default for<br />

i .: ::.. ....__... . . . . . . . As?=:: . . . . . . . . . . . . i_>~>.~..s.x~.. . . . . . :... .A.....


Measure Test Port 2 Magnitude Dynamic Accuracy<br />

25. Remove the type-N (f) to (f) adapter and connect the equipment as shown in<br />

Figure 2-39. Con&m that the step attenuator is set to 10 dB.<br />

<strong>HP</strong> B753E<br />

NETWORK ANALYZER<br />

WITH OPTION 075<br />

PORT 11 1 PORT 2<br />

110 dB<br />

STEP ATTENUATOR<br />

* ADAPTER<br />

<strong>HP</strong> B753E<br />

NETWORK ANALYZER<br />

a-<br />

PORT 11 I PORT 2<br />

* APC-7 TO<br />

TYPE-N (t)<br />

ADAPTER<br />

APC-7 TO<br />

TYPE-N (f) CABLE 500<br />

TYPE-N<br />

CABLE 50R<br />

24 INCH<br />

24<br />

TYPE-N<br />

INCH<br />

110 dB<br />

STEP ATTENUATOR<br />

*DIRECT CONNECTION<br />

Figure Z-39. Magnitude Dynamic Accuracy Measurement<br />

,g661e<br />

System Verification and 2-85<br />

Performance Tests


26. To set up the dynamic accuracy measurement, press the following:<br />

27- Wait for the sweep to finish, then press @i&i@ ~~~~~.~~~.~.~~ .._......_...__................~ - i .._. . . . . ,$k&#K&.<br />

..i. i.. :....... i . . . . . . . . . . . /<br />

28. Set the step attenuator to 0 dB.<br />

30. Write the mean value (which appears on the analyzer’s display) in the “Test<br />

Port Measurement” cohunn of the “Performance Test Record.” This column<br />

is also labeled “G.”<br />

31. Repeat steps 28 through 30 for each setting of the step attenuator.<br />

32. Calculate dynamic accuracy for each step by using the formula IG - FI.<br />

Place these values in the appropriate column of the “Performance Test<br />

Record. n<br />

2-85 System Verification and<br />

Performance Tests


Measure Test Port 1 Magnitude Dynamic Accuracy<br />

33. Set the step attenuator to 10 dB.<br />

34. To set up the dynamic accuracy measurement, press the following:<br />

35. W& for the sweep to finish, then press (m) f&$3 ,;& w,. &&$g&,&&<br />

......... . . .... . . /i... ~.~.ii~~...~.~.~ ..__i..::::..~~: . . . . . . . . . .... . . . . ..../...........<br />

. . . . . . /.~.zu~ i.... LSS.. *<br />

36. Set the step attenuator to 0 dB.<br />

38. Write the mean value (which appears on the analyzer’s display) in the “Test<br />

Port Measurement” colrmm of the “Performance Test Record.” This column<br />

is also labeled “G.”<br />

39. Repeat steps 36 through 38 for each setting of the step attenuator.<br />

40. Calculate dynamic accuracy for each step by using the formula IG - FI.<br />

Place these values in the appropriate column of the “Performance Test<br />

Record. n<br />

In Case of Difkulty<br />

1. If the analyzer fails the test at ALL power levels, be sure you followed the<br />

recommended attenuator settings as listed in the “Performance Test Record.”<br />

Repeat this performance test.<br />

2. If both test port measured values are out of specifications:<br />

a. Recalibrate the power meter.<br />

b. Repeat this performance test.<br />

System Verification and 2-87<br />

Performance Teete


3. If the analyzer fails either test port 2 or test port 1 dynamic accuracy at<br />

lower power levels:<br />

a. Perform the “IF Amplifier Correction Constants” and “ADC Offset<br />

Correction Constants” procedures (located in Chapter 3, “Adjustments and<br />

Correction Constants”).<br />

b. Repeat this performance test.<br />

c. If it stiII fails, replace the A10 Digital IF assembly.<br />

d. Repeat the two adjustment procedures mentioned in this step and then<br />

repeat this performance test.<br />

2-88 System Verification and<br />

Performance Tests


14. T&t Port Receiver Magnitude Compression<br />

Specifications<br />

Frequency Range ‘Jkst Port Magnitude1<br />

300 kHz to 3 GHz Port 1 so.45 dB<br />

3 GHz to 6 GHz* Port 1 10.80 dH<br />

300 kHz to 3 GHz Port 2 LO.45 dB<br />

3 GHz to 6 GHz* Port 2 ~0.80 dB<br />

1 With a 10 Hz IF bandwidth.<br />

2 OnIy for maIyzers with Option 006 - 30 IcHz to<br />

6 GHz range.<br />

Required Equipment for 5On <strong>Analyzer</strong>s<br />

Cable, APC-7, 24-inch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> P/N 8120-4779<br />

Required Equipment for 75 ohm <strong>Analyzer</strong>s<br />

Cable, 750, Type-N, 24-inch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> P/N 8120-2408<br />

Anul~zerwarmuptime:1hour<br />

Perform this test to verify the compression/expansion magnitude levels of the<br />

analyzer’s test port receiver samplers.<br />

System Verification and 2-88<br />

Performance Tests


l4- At the end of the sweep, press [mf) ,~~~~~~~.<br />

,.::::.:: . . . . . . .<br />

. . . . . ..~.....~ . . .. . ..A . ..>.a>: . . . . . . . . . . . . . .A.. . . . . s . . . ..i. . >>>>.<br />

17. Write the absolute value of marker 2 in the “Performance Test Record. n<br />

18. Repeat steps 12 through 17 for the other frequencies listed for Port 2 on the<br />

“Performance Test Record. n<br />

Test Port 1 Magnitude Compression<br />

. . . . . . . . . . . . . . . . . . . . . . ..~~.................,:::::: .:::::: :::.::<br />

19. Press (Meas) ~~~~~~~~~~~ :;~,~~~~.~~~~~~~.<br />

20- Press B i&ii+. 3!J#.iJQ~~ [sol (TiJiJ<br />

.._.._.... - -<br />

25. Write the absolute value of the marker 2 reading in the “Measured Value”<br />

column of the “Performance Test Record. n<br />

26. Repeat steps 20 through 25 for the other CW frequencies listed for Port 1 in<br />

the “Performance Test Record.”<br />

In Case of DifIkulty<br />

1. If the analyzer fails “Test Port 2 Magnitude Compression”:<br />

a. Repeat this test.<br />

b. Replace the A6 B sampler assembly if the analyzer stiII fails the test.<br />

2. If the analyzer fails “Test Port 1 Magnitude Compression”:<br />

a. Repeat this test.<br />

b. Replace the A5 A sampler assembly if the analyzer stiII fails the test.<br />

System Verification and 2-81<br />

Performance Tests


15. Test Port Receiver Phase Compression<br />

Specifications<br />

CW Frequency lkst Port Phase1<br />

300 kHz to 3 GHz Port 1 16”<br />

3 GHz to 6 GHz2 Port 1 57.5”<br />

300 kHz to 3 GHz Port 2 16”<br />

3 GHz to 6 GHz2 Port 2


Test Port 2 Phase Compression<br />

1. Connect the equipment as shown in Figure 2-41.<br />

H P <strong>8753E</strong><br />

NETWORK ANALYZER<br />

Figure 2-41. ‘Ikst Port Phase Compression ‘&St SetUP<br />

11. Write the absolute value of the marker 2 reading in the “Measured Value”<br />

coh,unn of the “Performance Test Record.”<br />

12. Repeat steps 5 to 11 for the other CW frequencies listed for Port 2 in the<br />

“Performance Test Record. *<br />

System Verification and 2-83<br />

Performance Tests


lkst Port 1 Phase Compression<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _ . ...:... :.: .:,, ~” ,.,;...<br />

15. Press LMenu) ~~~~~~ t&gggy.<br />

:~=~.::.i::..-.::~~...::::~:~~ . . :::::;::;;;s:.i .;::..L.i..i . i sm>../<br />

16. At the end of the sweep, press LScaleJ -~~~~~.<br />

17. Press (j-f-&q ;m.<br />

:cl’x< ‘-.;..<br />

.@&$;i,F;,;$~i<br />

. ..=.;.., ” ..a;::<br />

(jj, ~~~~~ ~~~~~~~.<br />

..X....~...~ .. . . . . . . . . . . . . I_.......... . . . . . . 2s . . . . . . . i.......i.. .<br />

. . . . . . . . . . . w~.u_I..: . . . .<br />

A...:..-.:::.. . . . . . . . . . . . . s.,.. . . .<br />

. . . . . X. . . . . ...//_. i...........,.......~.~~~ .._................ ..__.........._,...........<br />

,.....<br />

18. Press ~ ;~~~ CMarker Fct”, ~~~~ ~~,:,,~:,~~~~~.<br />

19. Write the absolute value of the marker 2 reading in the “Measured Value”<br />

column of the “Performance Test Record.”<br />

20. Repeat steps 14 to 19 for the other CW frequencies listed for Port 1 in the<br />

“Performance Test Record. ’<br />

ln Case of DifEculty<br />

1. If the analyzer fails the “Test Port 2 Phase Compression” test:<br />

a. Repeat this test.<br />

b. Replace the A6 B sampler assembly if analyzer still fails the test.<br />

2. If the analyzer fails the “Test Port 1 Phase Compression” test:<br />

a. Repeat this test.<br />

b. Replace the A5 A sampler assembly if analyzer still fails the test.<br />

2.94 System Verification and<br />

Performance Tests


16. Test Port Output/Input Harmonics (Option 002<br />

<strong>Analyzer</strong>s without Option 006 Only)<br />

Specilkations<br />

lkst Port Harmonic Limit<br />

output 2nd c-25 dBc @I + 10 dBm<br />

Output 3rd c-25 dBc @I + 10 dBm<br />

Input Port 1 2nd c-15 dBc @ +8 dBm<br />

InDut Port 1 3rd c-30 dBc @ +8 dBm<br />

1 Inout Port 2 1 2nd 1


Test Port Output Worst Case 2nd Harmonic<br />

1.<br />

2.<br />

3.<br />

4.<br />

5.<br />

6.<br />

7.<br />

8.<br />

9.<br />

Press IstartJ (iZJ (E&J IstopJ 11.51 Cc/n] to set the frequency range.<br />

Press m ~~~~~~ [lol @ to set the IF bandwidth to 10 Hz.<br />

Connect the equipment as shown in Figure 2-42.<br />

20 dE FIXED<br />

ATTENUATORS<br />

H P i3753E<br />

PORT 11 I PORT 2<br />

CABLE APC-7<br />

2V INCH<br />

MINIMUM LOSS PAD<br />

20 dB FIXED<br />

ATTENUATORS<br />

<strong>HP</strong> <strong>8753E</strong><br />

NETWORK ANALYZER<br />

WITH OPTION 075<br />

ip<br />

MINIMUM LOSS F‘AD<br />

CABLE TYPE-N<br />

Figure 2-42. ‘l&t Port Output Harmonics ‘Ikst Setup<br />

._........_..........................; . .. . . . . . . . . . . . ,.,., ;...<br />

~~~~~ one sweep, press [m, ~~~~~~~ to get a better viewing of the<br />

trace.<br />

2-96 System Verification and<br />

Performance Tests


10. Write the marker 1 value (which appears on the analyzer display) on the<br />

“Performance Test Record. n This is the worst case test port output 2nd<br />

harmonic<br />

Test Port Output Worst Case 3rd Harmonic<br />

11. Press @ 0 @JJ to change the stop frequency to 1 GHz.<br />

_ ., _ . . . . . . . . . . . . . . . . . . . . . .,., .,.:<br />

12. Press @iiG) lfi&JfQggQ i#Ei& lQk!B!~~~E lI&!j@~.<br />

,... .,.., ,. i<br />

13. After one sweep, press @j@ ‘~~~~~~~~~. &&&&f@f to nom&e the<br />

.._... ..__.................~...... /i<br />

trace.<br />

.*.....<br />

14. Press Is-= ~~~~~ )i ~~~~~~ @ (xl) to get a better viewing of<br />

the trace.<br />

i . . . . . . . ..I . . . ..;;:. . :.:.<br />

15. Press @ZE) ~~~~~~~~~ ~~~~~~.~~~.<br />

16. After one sweep, press &XT@ ~~~~~~~~.<br />

17. press (m) ~~~~ ‘~~:~~~~.<br />

.._ _~...............................i i . . . . . . . . . . . . . . . . . ..~. . ii . . . . . . . _ ..:..<br />

18. Write the marker 1 value on the “Performance Test Record.”<br />

Port 1 Input Worst Case 2nd Harmonic<br />

19. Connect the equipment as shown in Figure 2-43.<br />

System Verification and 247<br />

Performance Tests


Port 1 Input Worst Case 3rd Harmonic<br />

29. Press m @ m to change the stop frequency for measuring the receiver<br />

3rd harmonic<br />

35.<br />

..; . . . . . . . . . . . .<br />

Press @jij) ~~~,~~~~~ ~~~~~~.<br />

:.:.:: . . . . . . . . .._~.-.............~~~...~ .<br />

.A.. x::.....i.::~~ . . . . . . ..~.~ . . :::. . ..A...? .i i.>ASS ii ~.~.~.~.~.~.~.~.~.~.~~_/.~.~.~.~..~.~..<br />

36. Write the marker 1 value on the “Performance Test Record.”<br />

..;. ,. . ,...........................<br />

. . . . . . . . ..:.:.:.:.....:.....:.:...:.... . . . . . . . . . . ..p (,Z... :.:,: .:.::.: ._ _ . . . . . . . . . . . .,..,.,.,; . . . . . . . _... . . . ../ ;; _ . . . . . ::.....: i ..:.zE:: . . . . . .A.....<br />

. i..........~.............. . . . . .::::.:... . . a.2 ~~~~~~~~~~~~.<br />

. . .._ . . ~....i.i_.......i .._.............<br />

Port 2 Input Worst Case 2nd Harmonic<br />

38. Press Istoe) (XJ @J to set the stop frequency for measuring the 2nd<br />

harmonic<br />

d ,. *;... ..,:~..::::.:.:.::.::.:.::.<br />

.. ,,,.,, __, ,,,,..... .: ::. :: .) 7Li . . . >A. . . . i........~..-. ..._......... --~.r.&-~: . . . . . . . ..A . . . . . . .<br />

::.:::::::.. ‘?. T ..mr ::Gs.m.; :s,.


Port 2 Input Worst Case 3rd Harmonic<br />

45. Press Lstoe) (iJ LG/n to change the stop frequency for measuring the receiver<br />

3rd harmonic<br />

46, mess csystem, ~~~~~~~, . . . . . . . . :... . . . . . . .. . . . . . ._ ~~~~~~~~~~.<br />

..~.,<br />

..,... ..._ _ .. . . . .._....~ . .<br />

~.,.,.,.,.,.,..... _ . . . . . . . .._ ___ . ..=<br />

_ _ . . . . . _ . . . . . . . . . . . . . . . .<br />

47. Mter one sweep, press w ~~~~~~~~~ ~gg$~~mI to nomm the<br />

../ ..:...,-... . . ..u;..: . . . . . . . i.........-~.....~~.~.~.~~.....~...... . . . . . . .<br />

ii.. . ..A............. . i.::...:..<br />

trace.<br />

w:........... ‘yg ~Eg


17. ‘I&t Port Output/Input Harmonics (Option 002<br />

<strong>Analyzer</strong>s with Option 006 Only)<br />

Specifications<br />

Equipment Required<br />

T&t Port Harmonic Limit<br />

&ltDUt 2nd c-25 dBc @I + 10 dBm<br />

I output I 3rd I


Test Port Output Worst Case 2nd Harmonic<br />

l- Press (jjj (jj) .$$w .::.i 2: . . . ..i. . . _..... .:::., Ilo) Ixl) to set the test port power to + 10 dBm.<br />

2. Press m (16) a @ @ Cc/n to set the frequency range.<br />

3. Press &iJ ~&$&& @ Lxl] to set the IF bandwidth to 10 Hz.<br />

4. Connect the equipment as shown in Figure 2-44.<br />

20 CIB FIXED<br />

ATTENUATORS<br />

<strong>HP</strong> <strong>8753E</strong><br />

NETWORK ANALYZER<br />

PORT 1 1 PORT 2<br />

CABLE APC-7<br />

24 INCH<br />

Figure Z-44. ‘l&t Port Output Harmonics ‘lkst Setup<br />

s g629e<br />

6. After one sweep, press ~~~ ~~~~~~~~~~~ ~~~~~~~; to normalize the<br />

i” i:::: ._.. c: _... i.i . .._............. ii SW... - .._....._... - ..__....<br />

trace.<br />

....


Test Port Output Worst Case 3rd Harmonic<br />

11. Press @ 0 m to change the stop frequency to 2 GHz.<br />

s ; ; ;.. .. . . .+. :-. .~. :,:., $<br />

,,.,.,.,.,.,.,.,...,.......... . . . . . _ . . . . ; .A.. ~......~.~.~.~._i ..: L.. . . . . . . . ... . . . . . >..T . . ..::: ..: -.L ./._../ .. . i . . .._ .:: ....: -<br />

16. After one sweep, press CSca,e Rep ~~~~~~~~;.<br />

..., ,.... .,. ,..., / .,,.., /, . . .<br />

17-<br />

_ ‘.i..: .,,, :I,, ... .;;.::. . . . . . ;.:.:.:<br />

Press ljiiZXGFctn_) ~~~~~~ ~~~~~.~~.<br />

18. Write the marker 1 value on the “Performance Test Record.”<br />

System Verification and 2-l 03<br />

Performance Tests


Port 1 Input Worst Case 2nd Harmonic<br />

19. Connect the equipment as shown in Figure 2-45.<br />

H P <strong>8753E</strong><br />

NETWORK ANALYZER<br />

- I I<br />

-<br />

PORT 1 PORT 2<br />

I I CABLE APC-7<br />

Fiiure Z-45. Eeceiver Harmonics lkst Setup<br />

22. Press m (16) m m @ Lc/n to set the frequency range.<br />

. . . . . . . . . . . ., . . ..~...:.:.:.:.~.:.:. ‘:.:.:.:...:.:.:...:,:~:::.:~.,:.:..::~,,:,,<br />

24. After one sweep, press m ~~~~~~~~~~~ ~~~~~~~ to nom&e the<br />

-..... _ .~..................... ____..i . . . . . . .i_ .. . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -SW . . . . . . 2:: . . . . . . 3: . ...=... i....~...............<br />

trace.<br />

26. After one sweep, press Cm. ~~~~~~~~~~ to get a better tiewing of the<br />

trace.<br />

A . . . . . . . . . . . . . . . . . . .. ,..,.. . ..: ,,..A/ . . . . . ...i.l.z:>;><br />

28. Write the marker 1 value (which appears on the analyzer display) on the<br />

‘Performance Test Record.” This is the worst case port 1 input (receiver<br />

channel A) 2nd harmonic<br />

2-l 04 Systam Verification and<br />

Performanw Tests<br />

sg630e


Port 1 Input Worst Case 3rd Harmonic<br />

35.<br />

., ..:....:.:.:.:.:.:.:.:.:. .~.~.~.~.~.~.~.~.~.~_.~~,~~~,~,~_.~~.~.,_., .. . . . . . . . . ,,;..::; ,...:::.., ..:.:.:.:.:.:.:<br />

press [j) ~~~~~ ~~~~~.<br />

36. Write the marker 1 value on the “Performance Test Record.”<br />

: 7:. _ :.:.:.:.~:...:.:.:.:.:.:...~::<br />

37. press (T-1 ~~~~~,~~~~~ -i~~~~~~~~~~~.<br />

Port 2 Input Worst Case 2nd Harmonic<br />

43* Press cm, ;~~~~ ~~~~~.<br />

i /..........//~..... ~.~..~~~.~.~........................~~.~ . . . . . . ~.~.~...~......................~.~ .._ -_..- _... -<br />

44. Write the marker 1 value (which appears on the analyzer display) on the<br />

“Performance Test Record.” This is the worst case port 2 input (receiver<br />

channel B) 2nd harmonic<br />

System Verification and 2-l 05<br />

Performance Tests


Port 2 Input Worst Case 3rd Harmonic<br />

. . . . . . . . . . . . . . . . . . . . . . .<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

. . .<br />

45. Press &TJ (FJ (ZJZJ to change the stop frequency for measuring the receiver<br />

3rd harmonic<br />

. . . J


18. ‘Ikst Port Output Harmonics<br />

(<strong>Analyzer</strong>s without Option 002)<br />

Speciikations<br />

1 For <strong>HP</strong> 87633 Option 075: + 8 dF%m source output;<br />

limits valid for frequencies below 2 GHz<br />

Equipment Required for 50 ohm <strong>Analyzer</strong>s<br />

Spectrum analyzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> 85953<br />

Cable, 509, type-N (m) to type-N (m), 24-inch . . . . . . . . . . . . . . . <strong>HP</strong> P/N 81204781<br />

Adapter, APC-7 to type-N (f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> 11524A<br />

Adapter, type-N (m) to BNC (f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<strong>HP</strong> P/N 1250-1476<br />

Cable, 503, BNC (m) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> P/N 8120-1840<br />

Additional Equipment Required for 75 ohm <strong>Analyzer</strong>s<br />

Minhmmvloss pad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> 11852B<br />

z.$r warmup time: 30 minutes (network analyzer and spectrum<br />

Perform this test to determine the spectral purity of the network analyzer<br />

RF source. Use this procedure with <strong>HP</strong> <strong>8753E</strong> network analyzers without<br />

Option 002 (harmonic measurement capability).<br />

System Verification and 2-l 07<br />

Performance Tests


Procedure<br />

1. Calibrate the spectru?n analg~:<br />

a. Connect the BNC cable between the spectrum analyzer CAL OUT<br />

connector and the 508 input. Use the type-N (m) to BNC (f) adapter at the<br />

5OQ input.<br />

b. FVess m).<br />

f. Remove the BNC cable and adapter.<br />

2. Connect the equipment as shown in F’igure 2-46.<br />

2-l 08 System Verification and<br />

Performance Tests


<strong>HP</strong> <strong>8753E</strong><br />

NETWORK ANALYZER<br />

PORT 1<br />

*DIRECT CONNECTION<br />

ADAPTER<br />

APT: TO TYPF-N if)<br />

<strong>HP</strong> <strong>8753E</strong><br />

NETWORK ANALYZER<br />

WITH OPTIONS 075<br />

SPECTRUM ANALYZER<br />

.<br />

4’<br />

CABLE<br />

50R TYPE-N 24 INCH<br />

Cm) TO Cm)<br />

Figure Z-46. ‘lkst Port Output Harmonics Ttkst Setup<br />

3. Set the netuwrk analgm source power to + 10 deem:<br />

a. Press @iERJ.<br />

b. Press @i’GZ).<br />

f ,..‘) .~: .y<<br />

d. Press Llo] [x. (For 750 analyzers, press (ZJ @‘J)<br />

e. press:~:<br />

- ::. .._....... ::::. - ,, . -<br />

Syotem Verification and 2-l 09<br />

Pwformance Tests


4. Set up the spectrum anulgzer display:<br />

5.<br />

a. Press m.<br />

b. Press L2o)m.<br />

c. Press (E&J<br />

d. Press (3ooJ m.<br />

.““” . . . . ,. . .,... . . . . ~ . . . . . ~::::::, ::::::::. :::..::..:::::<br />

e. press ~~#~~~~~~~~:.<br />

f. Press @ @%Q.<br />

g. Press QiiKiFS].<br />

.,.. ,...; .:::.: : . . . .,.w.,.,.,. . . .. . . . . . . . ;,.a . . . . . . . . . . .: . . .<br />

h. Press .~~~~~~~.<br />

- .._ - .._.. -...<br />

i. Press (iZJ @KY).<br />

Set the network anulgzer and spectrum analyzer to the harmonic frequency.<br />

Use the appropriate test record to choose the proper harmonic frequency.<br />

Refer to the test record in Section 2a for 3 GHz network analyzers, or the<br />

test record in Section 2b for 6 GHz network analyzers.<br />

� <strong>Network</strong> Anulyzer<br />

a.<br />

b.<br />

c.<br />

d.<br />

e.<br />

f.<br />

g.<br />

h.<br />

i.<br />

2-l 10<br />

Press ~~:~~~~<br />

,. . ...::./ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . *<br />

_._- . - ._.._. --.<br />

Enter the harmonic frequency from the test record. For example, press<br />

(iZJ m to set the network analyzer to the second harmonic of the first<br />

ftmdamental frequency in the 3 GHz test record.<br />

� Spectrum Analgger<br />

Press(jm).<br />

Enter the harmonic frequency from the test record. For example, press<br />

(iCJ @ to set the spectnmt analyzer to the second harmonic of the first<br />

fundamental frequency in the 3 GHz or 6 GHz test record.<br />

Pressfjj).<br />

Press ~~~~~~~.<br />

Press @EDiiF).<br />

Press LMKR).<br />

_ ; ,... :.:.,.:.:.:.:.:.;..‘.:::.:.:.<br />

Press ;~~~.<br />

System Verification and<br />

Performance Tests


6. Set up the network unuZ@zr to output the fundamental frequency:<br />

/ .: ...:....;. ... .<br />

.,.<br />

a. Press ~$Bj$gi$.<br />

b. Enter the fundamental frequency. For example, press lso) m to enter<br />

the hrst fundamental frequency in the 3 GHz test record.<br />

7. Measure and record the power in the second or third harmonic by taking a<br />

single sweep with the spectrum aruzlgzer:<br />

a. Press @iTZVKQ.<br />

b. Read the MARKER A measurement, and record it in the appropriate row<br />

of the test record under Measurement Value (dBc).<br />

8. Reset the spectrum un&z@r marker:<br />

9. Repeat steps 5 through 8 for the remaining second and third harmonic<br />

frequencies, and the fundamental frequencies listed in the test record.<br />

System Verification and 2-111<br />

Performance Tests


Performance Xkst Record<br />

For <strong>Analyzer</strong>s with a Frequency Range of<br />

30 liEIz to 3 GHz<br />

2a<br />

Note See the next “Performance Test Record” section if your analyzer<br />

frequency range is from 30 kHz to 6 GHz (Option 006).<br />

Performance Test Record 2a-1


<strong>HP</strong> <strong>8753E</strong> Performance Test Record (1 of 13)<br />

Calibration Lab Address: Report Number<br />

Model <strong>HP</strong> <strong>8753E</strong><br />

Serial No.<br />

F’irmware Revision<br />

Ambient Temperature<br />

‘Ikst Equipment Used:<br />

Description Model Number<br />

Frequency Counter<br />

Power Meter<br />

Power Sensor<br />

Calibration Kit<br />

Verification Kit<br />

Notes/Comments:<br />

2a-2 Performance Test Record<br />

Date<br />

Last Calibration Date<br />

Customer’s Name<br />

Performed by<br />

Option(s)<br />

’ C Relative Humidity %<br />

Trace Number CM Due Date


<strong>HP</strong> <strong>8753E</strong> Performance ‘l&t Record (2 of 13)<br />

For 30 kEIz-3 GHz <strong>Analyzer</strong>s<br />

Hewlett-lbkard Company<br />

vlodel <strong>HP</strong> <strong>8753E</strong> Report Number<br />

3erialNnmber Date<br />

b) 1. Test Port Ontpnt Frequency Range and Accuracy<br />

CW Preqnencies Results Measured<br />

(MW t=i WW El<br />

Mensnrement<br />

Uncertainty<br />

WW<br />

0.03 0.029999 7 0.030 000 3 fO.OOO 000 050<br />

0.3 0.299 997 0.300003 f0.000000520<br />

5.0 4.999 950 5.000 050 f 0.000 009<br />

16.0 15.999 840 16.000 160 l 0.000 028<br />

31.0 30.999 690 31.000310 f 0.000 054<br />

60.999999 60.999 390 61.000 610 f 0.000 106<br />

121.0 120.998 790 121.001210 f 0.000 207<br />

180.0 179.QQ8200 180.001800 f 0.000 307<br />

310.0 309.995 900 310.003106 f 0.000528<br />

700.0 699.930 000 700.007000 f0.001192<br />

1300.0 1299.987 1300.013 f 0.002 212<br />

2 ooo.0 1 999.980 2000.020 f 0.003 403<br />

3 ooo.0 2 999.970 3 000.030 f 0.005 104<br />

)) 2. External Source Mode Preqnency Range<br />

!kst Preqnencies (GHz) lh3Illts<br />

0.010<br />

0.020<br />

0.100<br />

1.000<br />

2.000<br />

3.000<br />

Performance Test Record 2a-3


EIP <strong>8753E</strong> Performance ‘Jkst Record (3 of 13)<br />

For 30 kHz-3 GHz <strong>Analyzer</strong>s<br />

Eewlett-Packard Company<br />

Model <strong>HP</strong> 87683 l&port Number<br />

Serial Number DlLt4?<br />

bb 3. Test Port Output Power Accuracy<br />

!lkst Frequencies n?st Port Speciilcation Measured Measurement<br />

output w9 Value Uncertainty<br />

Power 0-w WV<br />

(aBm)<br />

Center Frequency<br />

3oolcHz 0 fl f0.465<br />

20 MHz 0 fl f0.10<br />

5OMHZ 0 fl f0.10<br />

1OOMHZ 0 fl f0.10<br />

200 MHZ 0 fl f0.10<br />

500 MHz 0 � 1 f0.10<br />

1GHz 0 fl f0.13<br />

2GHz 0 fl f0.13<br />

3GHz 0 fl f0.27<br />

bb 4. ‘Jkst Port Output Power Range and Linearity<br />

T&t settings Eeslllts Power Level Specillcation Measnr ement<br />

Measured Linearity WI Uncertainty<br />

VW WI VW<br />

TW Frequency = 300 kHz<br />

- 15 f0.2 f0.03<br />

- 13 f0.2 f0.03<br />

- 11 f0.2 �0.03<br />

- 9 f0.2 f0.02<br />

-7 f0.2 f0.02<br />

-6 f0.2 f0.02<br />

-3 f0.2 � ����<br />

-1 f0.2 f0.02<br />

+l f0.2 f0.03<br />

+3 f0.2 f0.03<br />

+6 f0.5 f0.03<br />

2a4 Parfonnance Test Record


<strong>HP</strong> <strong>8753E</strong> Performance ‘I&t Record (4 of 13)<br />

For 30 kHz-3 GHZ <strong>Analyzer</strong>s<br />

Hewlett-Packard Company<br />

lode1 <strong>HP</strong> 8763E Report Number<br />

krial Number Date<br />

)) 4. !Cest Port Output Power Ra.nge and Linear5ty (continued)<br />

Test settings EesIllts Power Level Specification Measnrement<br />

Measured Linearity WV Uncertainty<br />

ow (W WI<br />

+7 f0.5 f0.03<br />

+8 f0.5 f0.03<br />

+Q f0.5 f0.03<br />

+ 10<br />

CW Frequency = 3 GHz<br />

f0.5 f0.03<br />

- 15 f0.2 �0.03<br />

- 13 f0.2 f0.03<br />

- 11 f0.2 f0.03<br />

- 9 f0.2 f0.02<br />

- 7 f0.2 f0.02<br />

-6 f0.2 f0.02<br />

- 3 f0.2 f0.02<br />

-1 f0.2 f0.02<br />

+l f0.2 f0.03<br />

+3 f0.2 f0.03<br />

+5 f0.6 f0.03<br />

+7 f0.5 f0.03<br />

+8 f0.5 f0.03<br />

+Q f0.6 f0.03<br />

+ 10 f0.5 f0.03<br />

Performance Test Record 2a-5


<strong>HP</strong> <strong>8753E</strong> Performance ‘l&t Record (5 of 13)<br />

For 30 kHz-3 GEz <strong>Analyzer</strong>s<br />

Hewlett-Ikckard Company<br />

Model <strong>HP</strong> 876QE Beport Number<br />

%xialNnmber Date<br />

bb6. MinimnmBChaunelLevel<br />

CW Prequency Speciilcation lkst Port Power<br />

WV<br />

Measurement<br />

Uncertainty<br />

m<br />

300 kH2 < -35 f 1.0<br />

3.29 MHz < -35 f 1.0<br />

3.31 MHZ < -35 f1.0<br />

15.90 MHz < -35 f1.0<br />

16.10 MHz < -35 f1.0<br />

30.90 MHz < -35 f 1.0<br />

31.10 MHz < -35 f1.0<br />

1.6069 GHz < -35 f1.0<br />

1.6071 GHz < -35 f1.0<br />

3.000 GHz < -35 f1.0<br />

bb 6. Test Port Input Noise Ploor Level<br />

Frequency Bange Test Port IP Specification Calculated Yeast-ement<br />

Bandwidth (-1 Value Uncertainty<br />

3OOkHz-3GHz Port 1 3lcHz - 82 N/A<br />

3OOkHz-3GHz Port 1 10 Hz - 102 N/A<br />

3OOkHz-3GHz Port 2 10 Hz - 102 N/A<br />

3OOkHz-3GHz Port 2 3kHz -82 N/A<br />

2a-6 Performance Test Record


<strong>HP</strong> <strong>8753E</strong> Performance Test Record (6 of 13)<br />

For 30 kEiz-3 GHz <strong>Analyzer</strong>s<br />

Hewlett-Packard Company<br />

Model <strong>HP</strong> 8763E Beport Number<br />

SerialNumber Date<br />

bb 7. Test Port Input Frequency Response<br />

Preqnency Bange Test Port Speci&ation Measured Value<br />

w9 WI<br />

300 kHz-3 GHz<br />

300 kHz-3 GHz<br />

Test settings<br />

CrosstdktoTfestPort2<br />

300 kHz-3 GHz<br />

Cro&aUc t.0 l&t Port 1<br />

300 kHz-3 GHz<br />

Port 2 fl<br />

Port 1 fl<br />

b) 8. Test Port Crosstalk<br />

SpeciHcation<br />

WI<br />

< -100<br />

< -100<br />

MeasuredValue<br />

WV<br />

Measurement<br />

Uncertainty<br />

uJ.9<br />

0.47<br />

0.47<br />

Measnrement<br />

Uncertainty<br />

N/A<br />

N/A<br />

Performance Test Record 2a-7


Hewlett-Packard Compnny<br />

Model <strong>HP</strong> 8768E<br />

<strong>HP</strong> <strong>8753E</strong> Performance TLkst Record (7 of 13)<br />

For 30 kHz-3 GEIz <strong>Analyzer</strong>s<br />

Serial Number D&4.?<br />

Forward Direction<br />

Directivity<br />

Directivity<br />

Forward Direction<br />

Source Match<br />

Source Match<br />

Forward Dim&ion<br />

Trans. Tracking<br />

l-rarls. Trackiug<br />

Forward Direction<br />

Rd. Tracking<br />

Refl. Tracking<br />

F&verse Direction<br />

Load Match<br />

Load Match<br />

Beport Number<br />

bb 9. Calibration CoeiHcients<br />

‘l&t Description Frequency Hange Spee.<br />

VW<br />

2a-8 Performance Test Record<br />

300 kHz -1.3 GHz<br />

1.3GHz-3GHz<br />

2 35 f 0.9<br />

230 f 0.8<br />

300 kHz -1.3 GHz > 16 f 0.2<br />

1.3GHz-3GHz 1 16 f 0.2<br />

300 kHz -1.3 GHz<br />

1.3GHz-3GHz<br />

3OOkHz- 1.3GHz<br />

1.3GHz-3GHz<br />

f1.5<br />

f 1.5<br />

� 1.5<br />

f1.5<br />

Measured Value Yeasnrement<br />

(W<br />

Uncertainty<br />

f 0.006<br />

f 0.009<br />

f 0.001<br />

f 0.005<br />

300 kHz -1.3 GHz 1 18 f 0.1<br />

1.3GHz-3GHz 2 16 f 0.2


<strong>HP</strong> <strong>8753E</strong> Performance ‘Ilest Record (8 of 13)<br />

For 30 kHz-3 GEL <strong>Analyzer</strong>s<br />

Hewlett-Packard Company<br />

Model <strong>HP</strong> 8766E I&port Number<br />

SerialNumber Dllh?<br />

bb 9. Calibration Coefficients (continued)<br />

Test Description Freqnency Bange SW. Measured Value Measurement<br />

(-1 WI Uncertainty<br />

WI<br />

Reverse Direction<br />

Trans. Tracking 300 kHz - 1.3 GHz f 1.5 f 0.006<br />

Trans. Tracking 1.3GHz-3GHz f 1.5 f 0.009<br />

Forward Direction<br />

Load Match 3OOkHz-1.3GHz 1 18 f 0.1<br />

Load Match 1.3GHz-3GHz 1 16 f 0.2<br />

Reverse Direction<br />

Directivity 300 kHz - 1.3 GHz > 35 f 0.9<br />

Dire&vi@ 1.3GHz-3GHz 130 f 0.8<br />

Reverse Direction<br />

Source Match 300 kHz - 1.3 GHz 2 16 f 0.2<br />

Source Match 1.3GHz-3GHz 1 16 f 0.2<br />

Reverse Direction<br />

Ben. Tracking 3OOkHz-1.3GHz f 1.5 f 0.001<br />

Beil. Traclciug 1.3GHz-3GHz f 1.5 f 0.005<br />

Performance Test Record 2a-9


<strong>HP</strong> <strong>8753E</strong> Performance ‘I&t Record (9 of 13)<br />

For 30 kHz-3 GEJz <strong>Analyzer</strong>s<br />

Hewlett-l%ckard Company<br />

Model <strong>HP</strong> 8762E Beport Number<br />

Serial Number Date<br />

CW Frequency<br />

WW<br />

3<br />

3<br />

3<br />

3<br />

bb 10. System Trace Noise<br />

Bati Specj&ation<br />

An3 18 f1.5<br />

1.3 GHz-3 GHz Port 1 1 16 f1.5<br />

2a-10 Performance Test Record


<strong>HP</strong> <strong>8753E</strong> Performance Test Record (10 of 13)<br />

For 30 kHz-3 GHz <strong>Analyzer</strong>s<br />

Iewlett-Packard Company<br />

lode1 JJP 8763E Report Number<br />

lerial Number Date<br />

bb 13. Test Port Receiver Magnitude Dynamic Accuracy<br />

G F IG - FI<br />

Test Port 8496A l&t Port Expected Dynamic SF. Meas.<br />

Input Power Attn. Measurement Meamrement A-==Y PI Uncer.<br />

VW 0-w WI (corrected) (C&alated) 0-w<br />

PI<br />

l&t Port 2<br />

- 10 0 5 0.033 f 0.008<br />

-2o(Ref) 10 0.000


<strong>HP</strong> <strong>8753E</strong> Performance lkst Record (11 of 13)<br />

For 30 kHz-3 GHz <strong>Analyzer</strong>s<br />

EewletMa&ard Company<br />

Model <strong>HP</strong> 8766E Beport Number<br />

h-id Number Date<br />

)b 14. Test Port Receiver Magnitnde Compression<br />

CW Frequency Test Port MeamredVhlue Specification Measur ement<br />

(aB) WV Uncertainty<br />

50 MHZ Port 2 5 0.45 NIA<br />

1GHz Port 2 5 0.45 N/A<br />

2GHz Port 2 5 0.45 N/A<br />

3GHz Port 2 5 0.45 N/A<br />

5OMHZ Port 1 5 0.45 NIA<br />

1GI-h Port 1 5 0.45 NIA<br />

2GHz Port 1 5 0.45 N/A<br />

3GI-h Port 1 5 0.45 NIA<br />

bb 16. lbt Port Receiver Phase Compression<br />

CW Frequency lbst Port MeasnredValne Specification Measurement<br />

okP=) @%-=9 Uncertainty<br />

5OMHZ Port 2 5 6” NIA<br />

1GHz Port 2 5 6O N/A<br />

2GI-h Port 2 5 6O NIA<br />

3GH.z Port 2 5 6“ N/A<br />

50 MHz Port 1 5 6O NIA<br />

1GHz Port 1 5 6O N/A<br />

2GHz Port 1 5 6O N/A<br />

3GHz Port 1 5 6O NIA<br />

2a-12 Performance Test Record


<strong>HP</strong> <strong>8753E</strong> Performance lkst Record (12 of 13)<br />

For 30 kHz-3 GHz <strong>Analyzer</strong>s<br />

Eewlett-Packard Company<br />

Model <strong>HP</strong> <strong>8753E</strong> Beport Number<br />

BerielNumber Date<br />

)) 16. Test Port OutpW/lnput Harmonics (Option 002 without Option 006)<br />

‘l&t Description Speciikntion Meamrement Value Measurement<br />

w-3 (-3 Uncertainty<br />

WV<br />

l&t Port output<br />

HZ3llUOtiCS<br />

2nd


<strong>HP</strong> <strong>8753E</strong> Option 011 Performance lkst Record (13 of 13)<br />

For 30 kHz-3 GHz <strong>Analyzer</strong>s<br />

3ewlettPackard Company<br />

Bode1 <strong>HP</strong> 8762E Beport Number<br />

krial Number Date<br />

W 18. lbst Port Output Jhrmonics (Ansly7,ers without Option 002)<br />

Second Harmonic FbndamenW SpeciIkation Measurement blue Measurement<br />

Frequency Fhqnenc y ww Pw Uncertainty<br />

W)<br />

1OOMHZ<br />

1.0 GHz<br />

2.4 GHz<br />

3.0 GHz<br />

Third Harmonic<br />

Frequency<br />

300 MHz<br />

1.2 GHz<br />

2.7 GHz<br />

3.0 GHz<br />

2a-14 Performance Test Record<br />

50 MHz 525 f1.6<br />

500 MHz 525 f1.6<br />

1.2 GHz 525 f 1.6<br />

1.5 GHz 525 f1.6<br />

100 MHz 5 25 f1.6<br />

4OOMHZ 525 f1.6<br />

900 MHz 5 25 f1.6<br />

1GHz 525 f1.6


Performance Xkst Record<br />

For <strong>Analyzer</strong>s with a Frequency Range of<br />

30 kHz to 6 GHz<br />

Note See the previous “Performance Test Record” section if your<br />

analyzer frequency range is from 30 kHz to 3 GHz.<br />

2b<br />

Performance Test Record 2b-1


<strong>HP</strong> <strong>8753E</strong> Performance ‘I&t Record (1 of 15)<br />

Calibration Lab Address: Report Number<br />

Model <strong>HP</strong> 87533 Option 006<br />

Serial No.<br />

Firmware Revision<br />

Ambient Temperature<br />

‘I&t Equipment Used:<br />

Description Model Number<br />

kequency Counter<br />

Power Meter<br />

Power Sensor<br />

Calibration Kit<br />

Verification Kit<br />

Notes/Comments:<br />

Date<br />

Last Calibration Date<br />

Customer’s Name<br />

Performed by<br />

Option(s)<br />

o C Relative Humidity %<br />

Trace Number Cal Due Date<br />

I I<br />

I I<br />

2b-2 Performance Test Record


<strong>HP</strong> <strong>8753E</strong> Performance Test Record (2 of 15)<br />

For 30 kHz-6 GEz <strong>Analyzer</strong>s<br />

tIewletGPackard Company<br />

Model <strong>HP</strong> 87683 Option 006 Beport Number<br />

3erialNumber Date<br />

lb3t Frequencies<br />

(MW<br />

bb 1. Test Port Output Frequency Range and Accuracy<br />

&z)<br />

Results Measured<br />

(MW El<br />

Measurement<br />

Uncertainty<br />

WJW<br />

0.03 0.029999 7 0.0300003 f0.000000050<br />

0.3 0.299 997 0.300 003 f0.000 000 520<br />

5.0 4.9QQ 950 5.000 050 f 0.000 009<br />

16.0 15.999 840 16.000160 f 0.000 028<br />

31.0 30.999 690 31.000 310 f 0.000 054<br />

80.999 999 6O.QQQ3QO 61.000610 f 0.000 105<br />

121.0 120.998 790 121.001210 f0.000207<br />

180.0 179.QQ8200 180.001800 f 0.000307<br />

310.0 309.995 900 310.003100 f 0.000 528<br />

700.0 699.930 000 700.007000 f 0.001 192<br />

1300.0 1299.987 1300.013 f 0.002 212<br />

2 000.0 1999.980 2000.020 f 0.003 403<br />

3 000.0 2 999.970 3000.030 f 0.005 104<br />

4.0 3.QQQQ60 4.000 040 f 0.008 805<br />

5.0 4.QQQQ50 5.000050 f 0.008 506<br />

6.0 5.QQQ940 6.000 060 f 0.010207<br />

Perfomance Test Record 2b3


<strong>HP</strong> <strong>8753E</strong> Performance ‘l&t I&cord (3 of 15)<br />

For 30 kHz-6 GHz <strong>Analyzer</strong>s<br />

Elewlett-Packard Company<br />

Model <strong>HP</strong> 8763E Option 006 Report N&r<br />

Serial Number Date<br />

bb 2. Extemsl Source Mode F’reqnency Range<br />

Test Frequencies (GHz) Result<br />

0.010<br />

0.020<br />

0.100<br />

1.000<br />

2.000<br />

3.000<br />

4.000<br />

5.000<br />

6.ooo<br />

!lbt Frequency<br />

bb 3. Test Port Output Power Accmaey<br />

Test Port specification Measured Value<br />

ontpnt<br />

Power<br />

(aBm)<br />

PI (~1<br />

Measurement<br />

Uncertainty<br />

PI<br />

300 lcl-lz 0 i l i0.47<br />

20 MHz 0 i l i0.25<br />

50 MHz 0 i l i0.12<br />

100 MHz 0 i l i0.12<br />

200 MHz 0 i l i0.12<br />

500 MHz 0 fl i0.12<br />

1GHz 0 i l i0.12<br />

2GHz 0 i l i0.15<br />

3GHz 0 i l i0.15<br />

4GHz 0 i l i0.17<br />

5GI-h 0 i l i0.17<br />

6GI-h 0 i l i0.17<br />

2b4 Performance Test Record


<strong>HP</strong> <strong>8753E</strong> Performance ‘Ikst Record (4 of 15)<br />

For 30 kHz-6 GHz <strong>Analyzer</strong>s<br />

tIewlett-lkckard Company<br />

Ldodel <strong>HP</strong> 876SaE Option 006 Report Nnmber<br />

3erialNnmber Date<br />

bb 4. ‘lbst Port Output Power Range and Linearity<br />

Test settings lknllts Measured Power Level specmcation Mess.<br />

WV linearity (aB) Uncert.<br />

WI (W<br />

CW Frequency = 300 kHz<br />

- 15 i0.2 i0.03<br />

- 13 i 0.2 i0.03<br />

- 11 i 0.2 i0.03<br />

- 9 i 0.2 i0.02<br />

- 7 i0.2 i0.02<br />

- 5 i0.2 i0.02<br />

- 3 i0.2 i0.02<br />

-1 i 0.2 i0.02<br />

+l i 0.2 i0.03<br />

+3 i0.2 i0.03<br />

+6 i0.5 f0.03<br />

+7 i0.5 i0.03<br />

+8 i0.5 i0.03<br />

+Q i0.5 i0.03<br />

+ 10 i0.5 i0.03<br />

CW F'requency -3 GHz<br />

- 15 i 0.2 i0.03<br />

- 13 i0.2 i0.03<br />

- 11 i0.2 i0.03<br />

- 9 i0.2 i0.02<br />

- 7 i 0.2 i0.02<br />

- 5 i0.2 i0.02<br />

- 3 i0.2 i0.02<br />

-1 i0.2 i0.02<br />

+l f0.2 i0.03<br />

+3 i0.2 i0.03<br />

+5 i0.5 i0.03<br />

Performance Test Record 2b-5


<strong>HP</strong> <strong>8753E</strong> Performance ‘l&t Record (5 of 15)<br />

For 30 kHz-6 GEIz <strong>Analyzer</strong>s<br />

Hewlett-Packard Company<br />

Node1 <strong>HP</strong> 8763E Option 006 Report Number<br />

3erial Nnmber Date<br />

bb 4. Test Port Chzlxmt Power Ra<br />

Results Measured<br />

WV<br />

Test settings<br />

+7<br />

+8<br />

+Q<br />

+ 10<br />

CW Frequency = 6 GHz<br />

- 15<br />

- 13<br />

- 11<br />

- 9<br />

-7<br />

-5<br />

-3<br />

-1<br />

+l<br />

+3<br />

+5<br />

+7<br />

+8<br />

+Q<br />

+ 10<br />

2b-6 Performance Test Record<br />

ge and Linearity (<br />

Power Level<br />

Li=a-Y WI<br />

mtinned)<br />

Speciilclrtioll<br />

em<br />

i0.5<br />

i0.5<br />

i0.5<br />

i0.5<br />

i0.2<br />

i0.2<br />

i0.2<br />

i0.2<br />

i0.2<br />

i0.2<br />

i0.2<br />

i0.2<br />

i0.2<br />

f0.2<br />

i0.5<br />

i0.5<br />

i0.5<br />

i0.5<br />

i0.5<br />

MeIl.8.<br />

Uncert.<br />

(W<br />

i0.03<br />

i0.03<br />

i0.03<br />

i0.03<br />

f0.03<br />

i0.03<br />

i0.03<br />

i0.03<br />

i0.02<br />

i0.02<br />

f0.02<br />

i0.02<br />

i0.02<br />

i0.03<br />

i0.03<br />

i0.03<br />

i0.03<br />

i0.03<br />

i0.03


1Eewlett-Packard<br />

Company<br />

.1 Model <strong>HP</strong> 875QE Option 006 I&port Number<br />

c<br />

RP <strong>8753E</strong> Performance lkst Record (6 of 15)<br />

For 30 kHz-6 GElz <strong>Analyzer</strong>s<br />

SerialNumber Date<br />

lb 6. Minimum It Channel Level<br />

CW Frequency Specification Test Port Power<br />

PI<br />

Meaanrement<br />

Uncertainty<br />

(9<br />

300 kHz < -35 i 1.0<br />

3.29 MHz < -35 i 1.0<br />

3.31 MHz < -35 i 1.0<br />

15.90 MHz < -35 i 1.0<br />

16.10 MHz


I<br />

I<br />

J3P <strong>8753E</strong> Performance ‘Best Record (7 of 15)<br />

For 30 kHz-6 GHZ <strong>Analyzer</strong>s<br />

Hewlett-Packard Company<br />

Model <strong>HP</strong> <strong>8753E</strong> Option 006 Report Number<br />

Serial Number Date<br />

bb 7. Test Port Input Frequency Response<br />

Frequency Range lk?st Port Specilkation Meaared Value Meawrement<br />

(aB) om Uncertainty<br />

WV<br />

300kHz-3GHz Port2<br />

3OOkHz-3GHz Port1<br />

3GHz-6GHz Port1<br />

3GHz--6GHz Port2<br />

Test settings<br />

crosstallrto~stPort2<br />

3OOkHz-3GHz<br />

C~tQ%stPortl<br />

300kHz-3GHz<br />

C~toTestPortl<br />

3GHz-6GHz<br />

C~to'IlestPort2<br />

3GHz-6GHz<br />

2b-6 Performance Test Record<br />

il<br />

il<br />

i2<br />

i2<br />

1) 8. lkst Port crosstalk<br />

< -100<br />

< -100<br />


<strong>HP</strong> <strong>8753E</strong> Performance Test Record (8 of 15)<br />

For 30 kHz-6 GHz <strong>Analyzer</strong>s<br />

EewletWackard Company<br />

Model <strong>HP</strong> 87683 Option 066 Report Number<br />

SerialNumber Date<br />

W 9. Calibration Coeillcients<br />

Test Description Frequency Range Spx. Measured Valne Measuremen<br />

cm WV Uncertainty<br />

ow<br />

Forward Direction<br />

Directivity 300 kHz-1.3 GHz 2 36 i 0.9<br />

Directivity 1.3 GHz-3 GHz 130 i 0.8<br />

Directivity 3 GHz-6 GHz 2 25 i 0.8<br />

Forward Direction<br />

Source Match 300 kHz-1.3 GHz > 16 i 0.2<br />

Source Match 1.3 GHz-3 GHz 1 16 i 0.2<br />

Source Match 3 GHz-6 GHz > 14 i 0.3<br />

Forward Direction<br />

Trans. Tracking 300 kHz-1.3 GJ.-Iz i 1.5 i 0.006<br />

Trans. Tracking 1.3 GHz-3 GHz i 1.5 i 0.009<br />

Trans. Tracking 3 GHz-6 GHz i 2.5 i 0.021<br />

Forward Direction<br />

Refl. Tracking 300 kHz-1.3 GHz i 1.5 i 0.001<br />

Refl. Tradchg 1.3 GHz-3 GHz i 1.5 i 0.005<br />

Refl. Tracking 3 GHz-6 GHz i 2.5 i 0.020<br />

Reverse Direction<br />

bad Match 300 kHz-1.3 GHz 2 18 i 0.1<br />

Load Match 1.3 GHz-3 GHz 2 16 i 0.2<br />

bad Match 3 GHz-6 GHz 1 14 i 0.2<br />

Perfomance Test Record 2b-9


<strong>HP</strong> <strong>8753E</strong> Performance ‘Ikst Record (9 of 15)<br />

For 30 kHz-6 GHz <strong>Analyzer</strong>s<br />

Hewlett-Packard Company<br />

Model <strong>HP</strong> 8766E Option 666 Report Number<br />

Serial Number Date<br />

‘l&t Description<br />

Reverse Direction<br />

Trans. Tracking<br />

Trans. Tracking<br />

Trans. Tracking<br />

Forward Direction<br />

Load Match<br />

LoadMatch<br />

Load Match<br />

F&verse Direction<br />

Directivity<br />

Directivity<br />

Directivity<br />

Reverse Direction<br />

Source Match<br />

Source Match<br />

Source Match<br />

Reverse Direction<br />

Refl. Tracking<br />

Fkfl. Trsckjng<br />

R&l. Tracking<br />

2b-10 Performance Test Record<br />

bb 9. Calibration CoeiEcients (conthned)<br />

Measured Value<br />

(aB)<br />

300 kHz-1.3 GHz<br />

1.3 GHz-3 GHz<br />

3 GHz-6 GHz<br />

300 kHz-1.3 GHz<br />

1.3 GHz-3 GHz<br />

3 GHz-6 GHz<br />

300 kHz-1.3 GHz<br />

1.3 GHz-3 GHz<br />

3 GHz-6 GHz<br />

300 kHz - 1.3 GHz<br />

1.3GHz-3GHz<br />

3GHz-6GI-h<br />

300 kHz - 1.3 GHz<br />

1.3GHz-3GHz<br />

3GHz.-6GI-h<br />

i 1.5<br />

i 1.5<br />

f2.5<br />

2 18<br />

2 16<br />

> 14<br />

1%<br />

>30<br />

225<br />

1 16<br />

>_ 16<br />

2 14<br />

i 1.5<br />

i 1.5<br />

i2.5<br />

Measurement<br />

Uncertainty<br />

IdH)<br />

i 0.006<br />

i 0.009<br />

i 0.021<br />

i 0.1<br />

i 0.2<br />

i 0.2<br />

i 0.9<br />

i 0.8<br />

i 0.8<br />

i 0.2<br />

i 0.2<br />

i 0.3<br />

i 0.001<br />

i 0.005<br />

i 0.020


<strong>HP</strong> <strong>8753E</strong> Performance ‘l&t Record (10 of 15)<br />

For 30 kHz-6 GHz <strong>Analyzer</strong>s<br />

Iewlett-Packard Company<br />

llodel <strong>HP</strong> 8763E Option 006 Report Number<br />

kid Number Date<br />

b) 11. System Trace Noise<br />

Frequency Bati0 Measnred Specification Mtasurement<br />

WW V&he Uncertainty<br />

3 A/R (Magnitude) ~0.006dBlTUS i 0.001 dB<br />

6 A/R (Magnitude) 5 0.010 dB mls i 0.001 m<br />

6 AIR (P-1 5 0.0700 mw i 0.01 0<br />

3 AIR (P-1 5 0.03v mls i 0.01 o<br />

3 B/R (Magnitude) ~0.006dBrmS i 0.001 dB<br />

6 B/R (Magnitude) 5 0.010 dB rms i 0.001 dB<br />

6 B/R (P-1 5 o.070° rms i 0.01 o<br />

3 B/R (P-1 5 o.03s” ml8 i 0.01 o<br />

bb 12. lkst Port Input Impedance<br />

‘lbst Description matPort Return Loss Speciilcation Measurement<br />

(aB) m Uncertainty<br />

(aB)<br />

300 kHz-1.3 GHz Port 2 2 18 i 1.5<br />

1.3 GHz-3 GHz Port 2 1 16 i 1.5<br />

3 GHz-6 GBz Port 2 1 14 i 1.0<br />

300 kHz-1.3 GHz Port 1 > 18 i 1.6<br />

1.3 GHz-3 GHz Port 1 1 16 i 1.5<br />

3 GHz-6 GBz Port 1 >_ 14 i 1.0<br />

PerformanceTest Record 2b-11


<strong>HP</strong> <strong>8753E</strong> Performance lkst Record (11 of 15)<br />

For 30 kHz-6 GHz <strong>Analyzer</strong>s<br />

Eewlett-Packard Company<br />

Model <strong>HP</strong> 8766E Option 696 Report Number<br />

SerialNumber Date<br />

bb 18. ‘l&t Port Receiver Magnitude Dynamic Accuracy<br />

G F IG - 4<br />

lb& Port 8496A lkst Port Expected Dynamic spec. Mea&<br />

Input Power Attn. Measurement Measnrement &c-y (aB) Uncer.<br />

(aBm) WI WV (correctea) (celculated) WI<br />

(aB)<br />

lbtPort2<br />

- 10 0 5 0.033 i0.008<br />

-2o(Refl 10 0.000


<strong>HP</strong> <strong>8753E</strong> Performance ‘l&t Record (12 of 15)<br />

For 30 kHz-6 GEIz <strong>Analyzer</strong>s<br />

Hewlett-Packard Company<br />

lode1 <strong>HP</strong> 8751E Option 006 Report Number<br />

IerialNnmber Date<br />

)) 14. Test Port Receiver Magnitude Compression<br />

CW Frequency lkst Port MeasuredValue Specification Measar ement<br />

WV VW Uncertainty<br />

50 MHz Port 2 50.45 N/A<br />

1GHz Port 2 50.45 N/A<br />

2GHz Port 2 50.45 NIA<br />

3GHz Port 2 5 0.45 NIA<br />

4GHz Port 2 50.80 NIA<br />

SGBZ Port 2 50.80 N/A<br />

6GHz Port 2 50.80 NIA<br />

5OMHZ Port 1 50.45 NIA<br />

1GHz Port 1 50.45 NIA<br />

2GHz Port 1 50.45 N/A<br />

3GHz Port 1 50.45 NIA<br />

4GHz Port 1 50.80 NIA<br />

5GHz Port 1 50.80 NIA<br />

GGHZ Port 1 50.80 NIA<br />

Performance Test Record 2b-13


<strong>HP</strong> <strong>8753E</strong> Performance ‘l&t Record (13 of 15)<br />

For 30 kHz-6 GHz <strong>Analyzer</strong>s<br />

BewletGPackard Company<br />

Model <strong>HP</strong> 8755E Option 006 Report Number<br />

Serial Number Date<br />

bb 15. lbst Port Receiver Phase Compression<br />

cw Frequency Test Port Measured Vshe Specification Measurement<br />

Wi?m=) vw=-) Uncertainty<br />

50 MHz Port 2 5 6O NIA<br />

1GHz Port 2 5 6O NIA<br />

2GI-h Port 2 5 6O N/A<br />

3GHz Port 2 5 6O N/A<br />

4GHz Port 2 5 7.50 N/A<br />

5GHz Port 2 5 7.50 N/A<br />

6GI-h Port 2 5 7.50 N/A<br />

6OMHZ Port 1 5 6O NIA<br />

1GHz Port 1 5 6O NIA<br />

2GHz Port 1 5 6O N/A<br />

3GHz Port 1 5 6’ NIA<br />

4GHz Port 1 5 7.60 NIA<br />

5GHz Port 1 5 7.50 N/A<br />

GGHZ Port 1 5 7.60 NIA<br />

2b-14 Performance Test Record


<strong>HP</strong> <strong>8753E</strong> Performance lkst Record (14 of 15)<br />

For 30 kHz-6 GHz <strong>Analyzer</strong>s<br />

Hewlett-Packard Company<br />

Model <strong>HP</strong> 8755E Option 666 Report Number<br />

SerialNumber Date<br />

)) 17. OntpntIInpnt Test Port Jhrmonics (Option 662 only)<br />

Test Description Specilkation Measurement Value Meawrement<br />

VW ww Uncertainty<br />

(aB)<br />

l&t Port output<br />

IWlllOIliCS<br />

2nd 5 25 i 1.5<br />

3rd 5 25 i 1.5<br />

Port 1 Input Harmonics<br />

2nd 5 15 i 1.5<br />

3rd 5 30 i 1.5<br />

Port 2 Input Harmonics<br />

2nd 5 15 i 1.5<br />

3rd 5 30 i 1.5<br />

Performance Test Record 2b-15


<strong>HP</strong> <strong>8753E</strong> Performance ‘l&t Record (15 of 15)<br />

For 30 kHz-6 GHz <strong>Analyzer</strong>s<br />

Elewlett-lkckard Company<br />

Model J3P 8755E Option 666 Report Number<br />

Serial Number Date<br />

bb 18. ‘l&t Port Output Harmonics (<strong>Analyzer</strong>s without Option 062)<br />

Second Harmonic Fnnd8menta.l Specification Measurement Value Measurement<br />

Frequency Frequency Gw ww UllCerh.illty<br />

ow<br />

100 MHz<br />

1.0 GHz<br />

2.4 GI-lz<br />

3.2 GI-Iz<br />

4.0 GBz<br />

5.0 GI-Iz<br />

6.0 GBz<br />

Third Harmonic<br />

PreqnencY<br />

300 MB2<br />

1.2 GBz<br />

2.7 GHz<br />

3.3 GHz<br />

4.8 GI-lz<br />

6.0 GBz<br />

2b-16 PorfonnanceTest Record<br />

50 MHz 525 i 1.6<br />

500 MHz 5 25 i 1.6<br />

1.2 GHz 525 i 1.6<br />

1.6 GI-lz 525 i 1.6<br />

2.0 GBz 5 25 i 1.6<br />

2.5 G&a 5 25 i 1.6<br />

3.0 GBz 525 i 1.6<br />

100 MHz 525 i 1.6<br />

400 MHz 5 25 i 1.6<br />

900 MHz 5 25 i 1.6<br />

1.1 GHz 525 i 1.6<br />

1.6 GHz 525 i 1.6<br />

2.0 GHz 525 i 1.6


Adjustments and Correction Constants<br />

This chapter has the following adjustment procedures:<br />

� A9 Switch Positions<br />

� Source Default Correction Constants (Test 44)<br />

� Source Prettme Default Correction Constants (Test 45)<br />

� Analog Bus Correction Constants (Test 46)<br />

0 Source Pretune Correction Constants (lest 48)<br />

� RF Output Power Correction Constants (Test 47)<br />

� IF Amplifier Correction Constants (Test 51)<br />

� ADC Offset Correction Constants (Test 52)<br />

Sampler Magnitude and Phase Correction Constants (Test 53)<br />

0 Cavity Oscillator Frequency Correction Constants (Test 54)<br />

� Serial Number Correction Constants (Test 55)<br />

� Option Numbers Correction Constants (Test 56)<br />

� Initialize EEPROMs (Test 58)<br />

� EEPROM Backup Disk Procedure<br />

� Correction Constants Retrieval Procedure<br />

0 Loading Firmware<br />

� Fractional-N Frequency Range Adjustment<br />

� Frequency Accuracy Adjustment<br />

� High/Low Band Transition Adjustment<br />

� Fractional-N Spur Avoidance and FM Sideband Adjustment<br />

� Source Spur Avoidance Tracking Adjustment<br />

� Unprotected Hardware Option Numbers Correction Constants<br />

3<br />

Adjustments and Correstion Constants 3-l


Post-Repair Procedures for <strong>HP</strong> <strong>8753E</strong><br />

lhble 3-l lists the additional service procedures which you must perform to<br />

ensure that the instrument is working correctly, following the replacement of an<br />

assembly. These procedures can be located in either Chapter 2 or Chapter 3.<br />

mform the procedures in the order that they are listed in the table.<br />

Replaced<br />

Assembly<br />

Al Front Panel<br />

Keyboard<br />

A2 Front Panel<br />

[nterface<br />

‘able 3-l. Related <strong>Service</strong> Procedures<br />

A@stments/ VerUlcation<br />

Correction Constants (Ch. 3) (a. 2)<br />

None ServiCl?flestO<br />

<strong>Service</strong> Test 23<br />

None <strong>Service</strong> lbt 0<br />

<strong>Service</strong> l&t 23<br />

service Test 12<br />

‘Rst.s 66 - 80<br />

k3 Source A9 Switch Positions lbt Port Output Frequency Range<br />

Source Def CC (!&St 44) and Accuracy<br />

Pretune Default CC (!&St 45) Test Port Output Power Accuracy<br />

AnalogBusCC(Test46) ‘l&t Port Output Power Range and<br />

Source Pretune CC (Test 48) Linearity<br />

RF Output Power CC (‘l&t 47) Tl?st Port output/Input Hamlonics<br />

Sampler Maguitude and Phase CC (‘l&t 53) (Option 002 only)<br />

Cavity OscUator Frequency CC (T&t 54)<br />

Source Spur Avoidance Tracking<br />

EEPROM Backup Disk<br />

WAS/A6 Samplers A9 Switch Positions MInimmu R Channel Level<br />

Sampler Maguitude and Phase CC (l&t 53) (if R sampler replaced)<br />

IF Amplifier CC (‘l&t 51) %stPortCroWalk<br />

EEPROM Backup Disk Test Port Input Frequency Response<br />

A7 Pulse Generator A9 Switch Positions Test Port Input Frequency Response<br />

Sampler Magnitude and Phase CC (Test 53) Test Port Frequency Range and<br />

EEPROM lb&up Disk A-<br />

A8 Post Regulator A9 Switch Positions <strong>Service</strong> l&t 0<br />

Cavity Oscillabr Frequency CC (l&t 54) Check A8 test point voltages<br />

Source Spur Avoidance Tracking<br />

EEPROM Backup Disk<br />

3-2 Adjustments and Correction Constants


Replaeed<br />

Assembly<br />

A9 CPU<br />

FEPROM Backup<br />

Disk Available)<br />

‘able 3-l. Related <strong>Service</strong> Procedures (2 of 3)<br />

Adjnstmentsl<br />

Correction constallts (ch. 3)<br />

A9 Switch Positions<br />

Load Firmware<br />

CC Retrieval<br />

Serial Number CC (‘I&t 65)<br />

Option Number CC (Test 56)<br />

Operator’s Check<br />

<strong>Service</strong> l&t 21<br />

<strong>Service</strong> l&t 22<br />

Verification<br />

w. 2)<br />

A9 CPU A9 Switch Positions Test Port Output Frequency Range<br />

FEPROM Backup Lead Firmware andAccuracy<br />

Disk Not Available) Serial Number CC (l&t 56) ‘I&t Port Output Power Accuracy<br />

Option Number CC (‘Pzst 66) lkst Port Output Power Range and<br />

Source Def CC (lkst 44) Linearity<br />

Pretune Default CC (‘l&t 45) Test Port Receiver Dynamic Accuracy<br />

Am&gBusCC(%st46) l&t Port Input Frequency Response<br />

Cal Kit Default (‘kst 67)<br />

Source Pretune CC (T&t 48)<br />

RF Output Power CC (‘I& 47)<br />

Sampler Magnitude and Phase CC (lkst 63)<br />

ADC Linearity CC (‘&St 62)<br />

IF Amplitler CC (lbst 51)<br />

Cavity OsciIlator Frequency CC (Test 54)<br />

EEPROM Backup Disk<br />

A10 Digital IF A9 Switch Positions ‘I&t Port Input Noise FIoor Level<br />

Analog Bus CC (‘I&t 46) l&t Port CrossbE<br />

Sampler Magnitude and Phase CC (lbst 53) System Trace Noise<br />

ADC Linearity CC (‘l&t 52)<br />

IF Amplifler CC (lkst 61)<br />

EEPROM Backup Disk<br />

All Phase Lock A9 Switch Positions<br />

AnalogBusCC(‘Ibst46)<br />

Pretune Default CC (lbst 45)<br />

Source Pretune CC @St 4s)<br />

EEPROM Backup Disk<br />

Al2 Reference A9 Switch Positions<br />

II&h/Low Band Transition<br />

Frequency Accuracy<br />

EEPROM Backup Disk<br />

Minimum R Channel Level<br />

l&t Port Output Prequency Range<br />

andAccuracy<br />

l&t Port Output Frequency Range<br />

and Accuracy<br />

Adjustments and Correction Constants 3-3


l&placed<br />

Al9fU?mbly<br />

Al3 Fractional-N<br />

(dog)<br />

Al4 Fractional-N<br />

UWW<br />

Al5 Preregulator<br />

Al6 Rear Panel<br />

Interface<br />

Al7 Motherboard<br />

‘lhble 3-1. Related <strong>Service</strong> Procedures (3 of 3)<br />

Awtments/<br />

Correction chlstants (ch. 3)<br />

A9 switch Positions<br />

Fractional-N Spur and<br />

FM Sideband<br />

EEPROM Hackup Disk<br />

A9 Switch Positions<br />

Fractional-N Frequency Range<br />

Fractional-N Spur Avoidance<br />

and FM sideband<br />

EEPROM Hackup Disk<br />

None<br />

None<br />

None<br />

Verification<br />

(a. 2)<br />

lbst Port Output Frequency Range<br />

and Accuracy<br />

lbst Port Output Frequency Range<br />

and Accuracy<br />

Self-l&t.<br />

Iutemal l&t 13,<br />

Rear Panel<br />

Observation of Display<br />

lksts60-80<br />

Al8 Display None Observation of Display<br />

‘lksta 06 - 80<br />

A19 Graphics System None Observation of Display<br />

Processor R&3 59 - 80<br />

A20 Disk Drive none none<br />

A21 lbst Port Coupler RF Output Power CC (Ibst 47) l&t Port cnxstalk<br />

Sampler Magnitude and Phase CC (Test 53) Test Port Frequency Response<br />

A22 lbst Port Coupler Sampler Magnitude and Phase CC (Test 53) ‘lbst Port Cromtalk<br />

� lbst Port Frequency Response<br />

A23RdAssyLED none Self-Test (Chapter 4)<br />

A24 Transfer Switch none Rst Port cromialk<br />

A26 7ht Set Interface none Self-l&t (Chapter 4)<br />

A26 H&h Stability Frequency Accuracy Adjustment !lbst Port Frequency Range<br />

Frequency Reference (Option lD5) ~AccuTacy<br />

* Hewlett-Packard verSes source output performance on port 1 only. Port 2 source output<br />

performance is typical.<br />

34 Adjustments and Correction Constants


A9 Switch Positions<br />

1. Remove the power line cord from the analyzer.<br />

2. Set the analyzer on its side.<br />

3. Remove the two lower-rear comer bumpers from the bottom of the<br />

instrument with the T-10 TORX screwdriver.<br />

4. Loosen the captive screw on the bottom cover’s back edge, using a T-15<br />

TORX screwdriver.<br />

5. Slide the cover toward the rear of the instrument.<br />

6. Move the switch as shown in Figure 3-l:<br />

w Move the A9 switch to the Alter position before you run any of the<br />

correction constant adjustment routines. This is the position for altering<br />

the analyzer’s correction constants.<br />

w Move the A9 switch to the Normal position, after you have run correction<br />

constant adjustment routines. This is the position for normal operating<br />

conditions.<br />

7. Reins&R the bottom cover, but not the rear bumpers<br />

Adjustments and Correstion Constants 3-5


sga me<br />

A9 CPU Assembly<br />

Normal Mode Alter Mode Rocker Slide<br />

Figure 3-1. A9 Correction Constants Switch<br />

8. Reconnect the power line cord and switch on the instrument.<br />

3-6 Adjustments and Correction Constants


Source Default Correction Constants (‘kst 44)<br />

Analggm- warmup time: 30 minutes.<br />

This internal adjustment routine writes default correction constants for the<br />

source power accuracy.<br />

.;...:............. / ........... z.:................: .y ........................<br />

................... .....................<br />

1. press CpzJ (22) ;$@$$~~:,~j@@ ~~~~: L44) Lxl] j&@$.<br />

2. ................... ..cw................._- _;;- ..........- T ......... ...............................<br />

....<br />

........_ ......... .._..._ ...... _i....... _.... Li.. ..............::::. .._ .....-. ....._ ... :.::.i./..i i........<br />

2. Observe the analyzer for the results of the adjustment routine:<br />

H If the analyzer displays *Source Def DONE, you have completed this<br />

procedure.<br />

w If the analyzer displays *Source Def FAIL, refer to Chapter 7, “Source<br />

Troubleshooting. n<br />

Adjustments and Correction Constants 3-7


Source Pretune Default Correction Constants (X&t 45)<br />

Anulgzm warmup time: 30 minutes.<br />

This adjustment writes default correction constants for rudimentary phase lock<br />

pretuning accuracy.<br />

..................:. ... .:.:.:::: ,,:::::.::.:~~~~~~~~;~~::~~~~~~~~:<br />

1. press (=I L-1<br />

.....................<br />

:../ .........................A.. ......................................_ ...................... .._. .........<br />

.........................<br />

@ Ixl) im. ‘;$J$x. :*i.<br />

; A.s.zu>>>.L.L ..............2.. .....A ......<br />

2. Observe the analyzer for the results of this adjustment routine:<br />

� If the analyzer displays Pretune Def DONE, you have completed this<br />

procedure.<br />

� If the analyzer displays FAIL, refer to Chapter 7, “Source<br />

Troubleshooting. ’<br />

3-8 Adjustments and Correction Constants


Analog Bus Correction Constants (‘I&t 46)<br />

Aruzlgmr warmup time: 30 minutes.<br />

This procedure calibrates the analog bus by using three reference voltages<br />

(ground, + 0.37 and +2.5 volts), then stores the calibration data as correction<br />

constants in EEPROMs.<br />

2. Observe the analyzer for the results of the adjustment routine:<br />

� If the analyzer displays ABUS Cor DONE, you have completed this<br />

procedure.<br />

� If the analyzer displays ABUS Cor FAIL, refer to Chapter 6, “Digital Control<br />

Troubleshooting. n<br />

Adjustments and Correction Constants 3-8


Source Pretune Correction Constants (Tkst 48)<br />

An.u&er warmup time: 30 minutes.<br />

This procedure generates pretune values for correct phase-locked loop<br />

operation.<br />

2. Observe the analyzer for the results of this adjustment routine:<br />

w If the analyzer displays Pretune Cor DONE, you have completed this<br />

procedure.<br />

� If the analyzer displays FAIL, refer to Chapter 7, “Source<br />

Troubleshooting. n<br />

3-l 0 Adjustments and Correction Constants


RF Output Power Correction Constants (T&t 47)<br />

Required Equipment and lbols<br />

Power Meter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<strong>HP</strong> 437B or <strong>HP</strong> 438A<br />

<strong>HP</strong>-IB Cable . . . . . . , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> 10833A<br />

Antistatic Wrist Strap . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> P/N 9300-1367<br />

Antistatic Wrist Strap Cord . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> P/N 9300-0980<br />

Static-control ‘Ihble Mat and Earth Ground Wire . . . . . . . . . . . . <strong>HP</strong> P/N 9300-0797<br />

Additional Required Equipment for 5Oll <strong>Analyzer</strong>s<br />

Power Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> 8482A<br />

Power Sensor (for Option 006 analyzers) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> 8481A<br />

Adapter APC-7 to Type-N (f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> 11524A<br />

Additional Eequired Equipment for 750 <strong>Analyzer</strong>s<br />

Power Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> 8483A Option HO3<br />

Analgger warmup Time: 30 minutes.<br />

This procedure adjusts several correction constants that can improve the output<br />

power level accuracy of the internal source. They are related to the power<br />

level, power slope, power slope offset, and the ALC roll-off factors among<br />

others.<br />

1. If you just completed “Sampler Magnitude and Phase Correction Constants<br />

(Test 53),” continue this procedure with step 8.<br />

............. ::::-::x :::: ::: .::“:.:.:.:.:.:.:.:~~::::::::::::.:.:..~;~,,.~. . . ~.;; . . . . . . . . . . . . . . ...._G..<br />

. .<br />

meter address is 13. Refer to the power meter manual as required to<br />

observe or change its <strong>HP</strong>-B3 address<br />

4. Press ~~~~~~~~~~~~ . . . . . . . . . . . . . to . . . . . toggle between *e 438A/437 and 436A<br />

c ,,,<br />

power meters. Choose the appropriate model number.<br />

Note If you are using the <strong>HP</strong> 438A power meter, connect the<br />

<strong>HP</strong> 8482A power sensor to channel A, and the <strong>HP</strong> 8481A power<br />

sensor to channel B.<br />

Adjustments and Correction Constants 3-11


Power Sensor Calibration Factor Entry<br />

.f ‘_’ .$ ” ,/ .“? .~..~.,, . ..., ; .,...__. . ...<br />

5. Press @--+q ~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~..;~~~~3..<br />

:::: ..::.z ~~.:.:;.:~:.:.:.~.;..:.:::.:~:::.:::.... I ..:.. :::.: .:.:.:..“- i “,.......... ,::.: ::; ,&~. ..,,.. ~......,O y . . . . .. ..~..~~~‘~~~~~~~~~~~~~~~~~.,,~,~~.~~ . . . . . . . . ..L .u;;:,..


. . . . *.<br />

8. For Option 006 Instruments Only: Press ~~~l~,~~~~~~~~~~,~ri,.j ::. .: . . . . . . . . . . s . . . . ..A2 . . . . .::../ . . . ..A .>.I .A.. SW;;.>>: .i .T to create<br />

a power sensor calibration table for power sensor B (<strong>HP</strong> 8481A), using the<br />

softkeys mentioned above.<br />

9. Connect the equipment as shown in Figure 3-2.<br />

Adjustments and Correction Constants 3-13


<strong>HP</strong> 4388<br />

POWER METER<br />

<strong>HP</strong> 438A<br />

POWER METER<br />

<strong>HP</strong> 8481A<br />

POWER<br />

SENSOR<br />

3 - 6GHz<br />

<strong>HP</strong>-B h<br />

<strong>HP</strong> <strong>8753E</strong><br />

NETWORK ANALYZER<br />

WITH OPTION 006<br />

PORT 2<br />

<strong>HP</strong> 8482A<br />

POWER<br />

SENSOR<br />

300KHz - 3GHz<br />

<strong>HP</strong> <strong>8753E</strong><br />

NETWORK ANALYZER<br />

/’<br />

\*<br />

<strong>HP</strong> <strong>8753E</strong><br />

NETWORK ANALYZER<br />

WITH OPTION 075<br />

PORT 2<br />

sg631e<br />

Figure 3-2. RF Output Correction Constants ‘kst Setup for the <strong>HP</strong> <strong>8753E</strong><br />

3-14 Adjustments and Correction Constants


11. Press .~~, ~~~ and ~ at the prompt to alter *e correction<br />

.:..+ L.~..:...:...:..:. L . ;..:. .._.......................<br />

constants.<br />

12. Follow the ~s~&ions at the prompts and press ~~~~~~ *<br />

13. When the analyzer completes the test, observe the display for the results:<br />

� If you see DONE, press m and you have completed this procedure.<br />

� If you see FAIL, re-run this routine in the following order:<br />

a. Press-(Preset).<br />

b. Repeat the “Source Default Correction Constants (Test 44)” procedure.<br />

c. Repeat the “RF’ Output Power Correction Constants (Test 47)”<br />

procedure.<br />

Adjustments and Correction Constants 3-15


IF Amplifier Correction Constants (‘I&t 61)<br />

Required Equipment and ‘lbols<br />

Antistatic Wrist Strap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> P/N 9300-1367<br />

Antistatic Wrist Strap Cord . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> P/N 9300-0980<br />

Static-control Table Mat and Earth Ground Wire . . . . . . . . . . . . <strong>HP</strong> P/N 9300-0797<br />

Additional Required Equipment for 50 ohm <strong>Analyzer</strong>s<br />

RF Cable - (5OQ) 24-inch, APC-7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> P/N 8120-4779<br />

Additional Required Equipment for 75Q <strong>Analyzer</strong>s<br />

RF Cable - (750) 24-inch, Type-N . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> P/N 8120-2408<br />

Anulgz~warrnupTime: 30 minutes.<br />

These correction constants compensate for possible discontinuities of signal<br />

greater than -30 dBm.<br />

1. Connect the RF cable from Port 1 to Port 2 of the analyzer.<br />

3. Observe the analyzer for the results of the adjustment routine:<br />

z If DONE is displayed, you have completed this procedure.<br />

w If FAIL is displayed, check that the RF cable is COMeCted from Port 1 to<br />

Port 2. Then repeat this adjustment routine.<br />

w If the analyzer continues to fail the adjustment routine, refer to the<br />

“Digital Control Troubleshooting” chapter.<br />

3-l 6 Adjustments and Correction Constants


ADC Offset Correction Constants (‘I&t 52)<br />

<strong>Analyzer</strong> warmup tim.e: 30 minutes.<br />

These correction constants improve the dynamic accuracy by shifting small<br />

signals to the most linear part of the ADC quantizing curve.<br />

Note This routine takes about three minutes.<br />

2. Observe the analyzer for the results of the adjustment routine:<br />

w If the analyzer displays ADC Of 8 Cor DONE, you have completed this<br />

procedure.<br />

w If the analyzer displays ADC Of 8 Cor FAIL, refer to the “Digital Control<br />

Troubleshooting” chapter.<br />

Adjustments and Correction Constants 3-17


Sampler Magnitude and Phase Correction Constants<br />

(%?st 53)<br />

Required Equipment and Tools<br />

Power Meter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..<strong>HP</strong> 437B or <strong>HP</strong> 438A<br />

<strong>HP</strong>-IB Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> 10833A<br />

Antistatic Wrist Strap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> P/N 9300-1367<br />

Antistatic Wrist Strap Cord . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> P/N 9300-0980<br />

Static-control Mat and Earth Ground Wire . , . . . . . . . . . . . . . . . . .<strong>HP</strong> P/N 9300-0797<br />

Additional Required Equipment for 500 <strong>Analyzer</strong>s<br />

Power Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> 8482A<br />

Power Sensor (for Option 006 analyzers) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> 8481A<br />

Cable, (509) 24-inch, APC-7 (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<strong>HP</strong> P/N 81204779<br />

Adapter APC-7 to Type-N(f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> 11524A<br />

Additional Required Equipment for 75Q <strong>Analyzer</strong>s<br />

Power Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> 8483A Option HO3<br />

Cable, (75ohm) 24-inch, Type-N (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> 8120-2408<br />

Armlgzer wamup time: 30 minutes.<br />

This adjustment procedure corrects the overall flatness of the microwave<br />

components that make up the analyzer receiver and test separation sections.<br />

This is necessary for the <strong>HP</strong> <strong>8753E</strong> to meet the published test port flatness.<br />

1. If you just completed “Source Correction Constants (Test 47),” continue this<br />

procedure with step 8.<br />

............. ... . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..<br />

3. ~~~~ m ~~~~~~~~~.~ ,~~~~~~~~~~~~~~~~~~. me default power<br />

_ .:._:. _.i . . __j . . :::: i...~ .:..::::: ~.M..... x.> .._/,..... L..& -_- ..__...... -~::::~~:~~ .A.. T .A.. T .A.. ii . . ..~.~.~.~.~..~.~.~.~.~~.~.~.~~ . . . . . . . .<br />

meter address is 13. Refer to the power meter manual as required to<br />

observe or change its <strong>HP</strong>-IB address.<br />

4. Press ~~~~~~~~~~~~., to toggle between the 438A/437 md 436A<br />

..; ._....................,..._...._........_. ..~~~~~~;~~.~~~~~~~~~~~~.._ i:::. . . . . . ..t......... - .._.. ,, .::rF: .-....-.-..........-........ ....<br />

power meters. Choose the appropriate model number.<br />

Note If you are using the <strong>HP</strong> 438A power meter, connect the<br />

<strong>HP</strong> 8482A power sensor to channel A, and the <strong>HP</strong> 8481A power<br />

sensor to channel B.<br />

3-l 8 Adjustments and Correction Constants


Power Sensor Calibration Factor Entry<br />

/..;..- _/i . . . . . :. ....:..<br />

5. press w $j@~. ,@f# ~~~~~~X~~~. ~~~~~~~~~~,~sT~~~~<br />

..... .” ~;~~~~~;~-~ :“-...c:: .._............ . . . ..__..........._.............. ., ,................ .._. .:.: .._ .:<br />

Yi..l........ Li . . . . . . . . . . . .w>:> . . . . . .L_.> .:..:.:: . . . ..A . . . . . . . . ..A .: :....... ;;;>2.. i..z~..i<br />

.: ..;. ..:z::I $ .T:.:::.::. ..,. :::.:;:;U;..::...:~. allows you to complete the points entry of the sensor<br />

cal factor table.<br />

Adjustments and Correction Constants 3-l 9


7. For Option 006 Instruments Only: Zero and calibrate the power meter<br />

ad <strong>HP</strong> 8481A power sensor. ‘J’&n press ~~~.~~~~~~:~~~~~~.~::~~;- to meate<br />

. . . . . . i . . . . . . 2x.. . ii ~....~.~.~.~.~.~.~~ . . . .z . ii .~................................ .._. ~.~.~::; ._............. . . _ _...: i<br />

a power sensor calibration table for power sensor B (<strong>HP</strong> 8481A), using the<br />

softkeys mentioned above.<br />

Determine the Insertion Loss of the Cable at 1 GHz<br />

9. PressLcenter_)(TJ@FJ(3&J(%GJIM_U.<br />

10. Press Ical] ~~~~~<br />

::::;:;::. . . ;..+:>>;;>;.;,;,, .;:<br />

~~~~.~~:~~~ ~~~, ~~~~~~~~ ~~~~~~~.<br />

.._;..;..>;.>A . . . .: . i . . . ..s . .. . . . ..-.......~...........~..........~_~~<br />

. . . .<br />

.A.. . . ..A . . . . . A...>.~~ . ii..... _....... - .._ -...- _.._...._ ~~~~-.:::..w.Le~.2 . . . . . . . . . . . . .>.;..A . . . . . ..i . i . . ..A . .:::..-.:::: i_..~.G.~~~.i . . . . . . . ii . :::. in....... .._......<br />

11. Connect the 24 inch cable from Port 1 to Port 2, as shown in Figure 3-3.<br />

<strong>HP</strong> <strong>8753E</strong><br />

NETWORK ANALYZER<br />

Figure 3-3. First Connections for Insertion Loss Measurement<br />

_ ,. .,. ,. _<br />

12. press i$&$&.. and then :~~~~~~~~~~~~~~ when the analyzer is done<br />

measuring the through.<br />

13. fiess [W) ~~~~~~~~<br />

_ . . . . . . . . . . . . . . . . . . .<br />

to Save *e calibration aat you just<br />

made.<br />

14. Make the connections as shown in Figure 3-4.<br />

3-20 Adjustments and Correction Constants


<strong>HP</strong> 4388<br />

POWER METER<br />

<strong>HP</strong>-B<br />

<strong>HP</strong> 8481A<br />

POWER<br />

SENSOR<br />

3 - CGHz<br />

<strong>HP</strong> <strong>8753E</strong><br />

NETWORK ANALYZER<br />

WITH OPTION 006<br />

PORT 2<br />

<strong>HP</strong> <strong>8753E</strong><br />

NETWORK ANALYZER<br />

<strong>HP</strong> 8482A<br />

POWER<br />

SENSOR<br />

<strong>HP</strong> 8482A<br />

POWER<br />

SENSOR<br />

300KHz - 3GHz <strong>HP</strong> <strong>8753E</strong><br />

NETWORK ANALYZER<br />

WITH OPTION 075<br />

PORT 1 I<br />

Figure 3-5. Connections for Sampler Correction Routine<br />

3-22 Adjustments and Correction Constants<br />

PORT 2


. . _ . . . _ . . _ .., _<br />

13. Press .~&+$&@#‘$ to start the test. This part of the test will take about seven<br />

minutes.<br />

� If the analyzer displays Sampler Cor - FAIL, check the following:<br />

a. The <strong>HP</strong>-IB address of your power meter is set at 13. Then rerun this<br />

routine (“Sampler Correction Constants Routine”).<br />

b. The <strong>HP</strong> 8482A power sensor is connected to Port 1. Rerun this routine<br />

(‘Sampler Correction Constants Routine “).<br />

19. For Option 006 Instruments Only: When the analyzer displays CONNECT<br />

6 GHz SENSOR B TO PORT 1, make the connections as shown in Figure 3-6.<br />

Then press @WJ~. This part of the test will take about 20 seconds.<br />

.._ .._..................-..-..<br />

<strong>HP</strong> <strong>8753E</strong><br />

NETWORK ANALYZER<br />

WITH OPTION 006<br />

POWER SENSOR<br />

Figure 3-6. Connections for Sampler Correction at 6 GHz<br />

20. When the analyzer displays CONNECT


<strong>HP</strong> 4388<br />

POWER METER<br />

<strong>HP</strong> 8481A<br />

POWER<br />

SENSOR<br />

3 - 6GHr<br />

<strong>HP</strong> 8482A<br />

POWER<br />

SENSOR<br />

300KHr 3GHr<br />

<strong>HP</strong> 0403A<br />

POWER<br />

SENSOR<br />

(OPTION H03)<br />

<strong>HP</strong> I3753E<br />

\ J<br />

NETWORK ANALYZER<br />

POWER<br />

SENSOR<br />

k J sg636e<br />

Figure 3-7. Connections for Sampler Correction at Port 2<br />

3-24 Adjustments and Correction Constants


21.<br />

22.<br />

23.<br />

24.<br />

. . ; ::.... :: . . . . . . . . . . . . . .,<br />

press ~~cla~#B$.,- This Pa of the test a t&e about 10 hues.<br />

For Option 606 Instruments Only: When the analyzer displays CONNECT 6<br />

GHz SENSOR TO PORT 2, make the connections as shown in Figure 3-8. Then<br />

press ~~~~~. This part of the test m t*e about $3) seconds.<br />

. .._... .._...............<br />

<strong>HP</strong> <strong>8753E</strong><br />

NETWORK ANALYZER<br />

WITH OPTION 006<br />

POWER SENSOR<br />

sg637e<br />

Figure 3-8. Connections for Sampler Correction at Port 2 for 6 GHz<br />

When the analyzer displays CONNECT PORT 1 TO PORT 2, make the<br />

connections of the second through cable (of which you have determined its<br />

insertion loss) as shown in F’igure 3-9.<br />

<strong>HP</strong> 6753E<br />

NETWORK ANALYZER<br />

PORT 1 PORT 2<br />

UCSECOND THRU CABLE<br />

Figure 3-9. Connections for the Second Through Cable<br />

sg638e<br />

Adjustments and Correction Constants 3-25


25. Enter the insertion loss of the through cable (determined in step 15) and<br />

press ...... :~~~~~~. . . ....i . . ..:::. ~.....~........~...~i...~;;......~.. For example, if the insertion loss of the through cable at<br />

1 GHz is found to be 0.25 dB, then press 1.25) @.<br />

26. When the analyzer completes the test, observe the display for the results:<br />

� If you see Sampler Cor - DONE, you have completed this procedure.<br />

� Ifyousee Sampler Cor - FAIL, it is necessary to adjust the sampler gain<br />

offset values, which are stored in EEPROM.<br />

b. Enter the new value at the accessed address by pressing $jpKK: (46) a).<br />

. . . . . . . . . . . . . .y:. . . . . . . . . . . . . . . _ . .<br />

.,., ‘..~..~.~.~,~,.,. . . . . . . . . ....:::::..<br />

C- Access the second address by pressing ~~~~~~~-:~~~~ c-1<br />

Ixl).<br />

d. Enter the new value at the accessed address by pressing $&%I,@ @<br />

@.<br />

e. Press (FEZ] for the analyzer to use the new values.<br />

f. Repeat the “Sampler Correction Constants Routine” starting at step 16.<br />

� If the analyzer continues to fail this adjustment routine, refer to Chapter<br />

7, “Source Troubleshooting. n<br />

d. Enter the new value at the accessed address by pressing @$&I$: (248_)<br />

jxl.<br />

e. Press B for the analyzer to use the new values<br />

3-26 Adjustments and Correction Constants


f. Repeat the “Sampler Correction Constants Routine” starting at step 16.<br />

� If the analyzer continues to fail this adjustment routine, refer to Chapter<br />

7, “Source Troubleshooting. n<br />

B Channel Sampler<br />

b- Enter the new value at the accessed address by pressing :@I& (66) (xl.<br />

. . . . . . . .<br />

C- Access the second address by pressing ;~~~~~~:~~~~~~:,~ ... . . . . . . . ;a :..; . . .. . i..............................~........~............~.........~....~.........--.~~ -...... .._ s. (jj)<br />

(QiJ<br />

_ ..,:,.,.<br />

de Enter the new value at the accessed address by pressing @$l$R 1128J<br />

(XJ<br />

e. Press w for the analyzer to use the new values.<br />

f. Repeat the “Sampler Correction Constants Routine” starting at step 16.<br />

w If the analyzer continues to fail this adjustment routine, refer to Chapter<br />

7, “Source Troubleshooting. n<br />

Adjustments and Correction Constants 3-27


Cavity Oscillator Frequency Correction Constants<br />

(Ykst 54)<br />

Required Equipment and ‘lbols<br />

Low-pass Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> P/N 91350198<br />

Antistatic Wrist Strap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> P/N 9300-1367<br />

Antistatic Wrist Strap Cord . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> P/N 9300-0980<br />

Static-control Table Mat and Earth Ground Wire . . . . . . . . . . . . <strong>HP</strong> PM 9300-0797<br />

Additional Required Equipment for 50 ohm <strong>Analyzer</strong>s<br />

Adapter APC-7 to 3.5 mm (m) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<strong>HP</strong> P/N 1250-1746<br />

Adapter APC-7 to 3.5 mm (f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<strong>HP</strong> P/N 1250-1747<br />

RF Cable Set APC-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<strong>HP</strong> 118571)<br />

Additional Required Equipment for 758 <strong>Analyzer</strong>s<br />

Adapter APC-3.5 (f) to Type-N (f) . . . . . . . . . . . . . . . . . . . . . . . . . . . .<strong>HP</strong> P/N 1250-1745<br />

Adapter APC-3.5 (m) to Type-N (f) . . . . . . . . . . . . . . . . . . . . . . . . . . .<strong>HP</strong> P/N 1250-1750<br />

RF Cable Set 503, Type-N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> 11851B<br />

Minimum Loss Pad 50ohm 75Q to (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<strong>HP</strong> 11852B<br />

<strong>Analyzer</strong> warmup Time: 30 minutes.<br />

The nominal frequency of the cavity oscillator is 2.982 GHz, but it varies with<br />

temperature. This procedure determines the precise frequency of the cavity<br />

oscillator at a particular temperature by identifying a known spur<br />

Note You should perform this procedure with the recommended<br />

filter, or a filter with at least 50 dB of rejection at 2.9 GHz,<br />

and a passband which includes 800 MHz. The filter makes spur<br />

identification substantially faster and more reliable.<br />

With the filter, you need to distinguish between only two spurs, each of which<br />

should be 10 dB to 20 dB (3 to 4 divisions) above the trace noise.<br />

Without the filter, you need to distinguish the target spur between four or five<br />

spurs, each of which may be 0.002 to 0.010 dB (invisible to 2 divisions) above or<br />

below the trace noise.<br />

3-26 Adjustments and Correction Constants


Perform the first five steps of the procedure at least once for familiarization<br />

before trying to select the target spur (especially if you are not using a filter).<br />

1. Connect the equipment shown in Figure 3-10.<br />

<strong>HP</strong> <strong>8753E</strong><br />

NETWORK ANALYZER<br />

<strong>HP</strong> <strong>8753E</strong><br />

NETWORK ANALYZER<br />

WITH OPTION 075<br />

LOW PASS F ILTER LOW PASS FILTER<br />

ADAPTER ADAPTER ADAPTER ADAPTER<br />

Figure 3-10.<br />

Setup for Cavity Oscillator Frequency Correction Constant Routine<br />

During this adjustment routine, you will see several softkeys:<br />

sweeps the current frequency span; you may<br />

press it repeatedly for additional sweeps of the<br />

current frequency span.<br />

sweeps the next frequency span (2 MHz higher).<br />

enters the value of the marker (which you have<br />

placed on the spur) and exits the routine.<br />

exits the routine.<br />

sg639e<br />

Adjustments and Correction Constants 3-29


3. Press .~~~~~~,: to sweep the first frequenw span three times. Each new<br />

2 /. .:~...=.:..:..:..~.=;~~..... .-:.;.: . . . . . . . > . . . . . . ..


7. Observe the analyzer for the results of this adjustment routine:<br />

H If the analyzer displays Cav Osc Cor DONE, you have completed this<br />

procedure.<br />

H If the analyzer does not display DONE, repeat this procedure.<br />

w If the analyzer continues not to display DONE, refer to Chapter 7, “Source<br />

Troubleshooting. n<br />

Spurs Search Procedure without a Filter<br />


On occasion the largest spur appears as one of a group of five evenly spaced<br />

spurs as shown in F’igure 3-13. The target spur is again the fourth from the left<br />

(not the fifth, right-most spur).<br />

Figure 3-13. ‘Ihrget Spur Is Fourth in Display of Five spurs<br />

Figure 3-14 shows another variation of the basic four spur pattern: some up,<br />

some down, and the target spur itself almost indistinguishable.<br />

3-32 Adjustments and Correction Constants


CENTER 2 983.000 000 MHz SPAN 5.000 000 mr<br />

Figure 3-14. ‘Ihrget Spur Is Almost Invisible<br />

10. Rotate the front panel knob to position the marker on the target spur. Then<br />

.) /,.;; ,.,.,.,.,.,.,.,.,.,.<br />

press &@&&E@ and observe the analyzer for the results of the adjustment<br />

routine:<br />

w If the analyzer displays Cav Osc Cor DONE, you have completed this<br />

procedure.<br />

w If the analyzer displays FAIL, refer to Chapter 7, “Source<br />

Troubleshooting. n<br />

Adjustments and Correction Constants 3.33


Serial Number Correction Constants (Test 55)<br />

<strong>Analyzer</strong> warmup time: 5 minutes.<br />

This procedure stores the analyzer serial number in the A9 CPU assembly<br />

EEPROMs.<br />

Caution Perform this procedure ON= if the A9 CPU assembly has been<br />

replaced.<br />

1.<br />

2.<br />

3.<br />

4.<br />

Record the ten character serial number that is on the <strong>HP</strong> <strong>8753E</strong> rear panel<br />

identification label.<br />

Enter the serial number with an external keyboard or by rotating the front<br />

panel knob to position the arrow below each character of the instrument<br />

.,:,.,,,,,:,<br />

s&d nu&er, ad then pressing ~~~:~~~ to enter ea& letter. Enter<br />

a total of ten characters: four digits, one letter, and five 9nal digits.<br />

press ~~~~~~~ if you<br />

* i .:.....<br />

made a m&&e.<br />

. - .._ - - -<br />

press &id when you have mshed entering the title.<br />

:..---::...<br />

Caution You CMOT correct mistakes after you perform step 5, unless<br />

you contact the factory for a clear serial number keyword.<br />

Then you must perform the “Options Correction Constants”<br />

procedure and repeat this procedure.<br />

334 Adjustments and Correction Constants


6. Observe the analyzer for the results of the routine:<br />

� If the analyzer displays the message Serial Cor DONE, you have<br />

completed this procedure.<br />

� If the analyzer does not display DONE, then either the serial number that<br />

you entered in steps 3 and 4 did not match the required format or a serial<br />

number was already stored. Check the serial number recognized by the<br />

analyzer:<br />

b. Look for the serial number displayed on the analyzer screen.<br />

c. Rerun this adjustment test.<br />

� If the analyzer continues to fail this adjustment routine, contact your<br />

nearest <strong>HP</strong> sales or service office.<br />

Adjustments and Correction Constants 3-35


Option Numbers Correction Constants (Test 56)<br />

This procedure stores instrument option(s) information in A9 CPU assembly<br />

EEPROMs. You can also use this procedure to remove a serial number, with the<br />

unique keyword, as referred to in “Serial Number Correction Constant.”<br />

1. Remove the instrument top cover and record the keyword label(s) that are on<br />

the display assembly. Note that eachkeyword is for each option installed in<br />

the instrument.<br />

w If the instrument does not have a label, then contact your nearest<br />

Hewlett-Packard sales or service office. Be sure to include the full serial<br />

number of the instrument.<br />

2. press Is) (Displad<br />

--.-.-.-.__<br />

&&&,,<br />

..__..<br />

$j$&J$<br />

.:.-.:..;.. -.-<br />

;~~~~~~~.<br />

.._. - .._.... -_- .._ -._<br />

3. Enter the keyword with an external keyboard or by rotating the front panel<br />

knob to position the arrow below each character of the keyword, and then<br />

pressing ‘~~~~~:~:, to enter each letter.<br />

,./,. . . . . . . . . . ._ .,.,...,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,....,... i _.<br />

Press ..,.,., ._._........_...........---.... ~3~~~~~~. i:, .~ ..:.; ,.,. ,,, ./_ .._; - _.,.,.,i .._ -.,.,<br />

if you made a mistake.<br />

4. Press ,,#bs:; when you<br />

/. ./. ii /i<br />

.._.....................<br />

have &-&hed entering the title.<br />

Caution Do not confuse “I” with “1” or “0” with “0” (zero).<br />

6. Observe the analyzer for the results of the adjustment routine:<br />

� If the analyzer displays Option Cor DONE, you have completed this<br />

procedure.<br />

w If the analyzer has more than one option, repeat steps 2 through 5 to<br />

install the remaining options.<br />

� If the analyzer displays Option Cor FAIL, check the keyword used in step<br />

3 and make sure it is correct. Pay special attention to the letters “I” or “O”,<br />

the numbers “1” or “0” (zero). Repeat this entire adjustment test.<br />

� If the analyzer continues to fail the adjustment routine, contact your<br />

nearest <strong>HP</strong> sales or service office.<br />

3-36 Adjustments and Correction Constants


Initialize EEPROMs (T&t 58)<br />

This service internal test performs the following functions:<br />

� Destroys ail correction constants and all unprotected options<br />

� Initializes certain EEPROM address locations to zeroes.<br />

Note This routine till not alter the serial number or Options 002, 006<br />

and 010 correction constants.<br />

1.<br />

2.<br />

3.<br />

Make sure the A9 switch is in the alter position.<br />

Restore the analyzer correction constants in the EEPROMs:<br />

� If you have the correction constants backed up on a disk, perform these<br />

steps:<br />

b. Use the front panel knob to highhght the filename that represents your<br />

serial number.<br />

� If you don’t have the correction constants backed up on a disk, run all the<br />

internal service routines in the following order:<br />

13 Source Default Correction Constants (Test 44)<br />

0 Source Pretune Correction Constants (Test 45)<br />

� Analog Bus Correction Constants (Test 46)<br />

0 Source Pretune Correction Constants (Test 48)<br />

� Calibration Kit Default Correction Constants (Test 57)<br />

II ADC Offset Correction Constants (Test 52)<br />

� RF Output Power Correction Constants (Test 47)<br />

� Sampler Magnitude and Phase Correction Constants (Test 53)<br />

0 IF Amplifier Correction Constants (Test 51)<br />

0 Cavity Oscillator Frequency Correction Constants (Test 54)<br />

Adjustments and Correction Constants 3-37


EEPROM Backup Disk Procedure<br />

Required Equipment and ‘Idols<br />

3.5~inch Floppy Disk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<strong>HP</strong> 92192A (box of 10)<br />

Antistatic Wrist Strap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> P/N 9300-1367<br />

Antistatic Wrist Strap Cord . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> P/N 9300-0980<br />

Static-control Table Mat and Earth Ground Wire . . . . . . . . . . . . <strong>HP</strong> P/N 9300-0797<br />

The correction constants, that are unique to your instrument, are stored in<br />

EEPROM on the A9 controller assembly. By creating an EEPROM backup disk,<br />

you will have a copy of all the correction constant data should you need to<br />

replace or repair the A9 assembly.<br />

1. Insert a 3.5~inch disk into the analyzer disk drive.<br />

2. If the disk is not formatted, follow these steps:<br />

a* fiess I-, ~.~~~~~~~~~ ~~~~~~~~~~~~. _ . . . . .,. ,. .., .;;.... _<br />

.._. /-..A.: . . -.-.-.-~-.-.-.-.-.-.-~-.-.-.-.~~.~.~.~.~~~.~.~.~.~.~.~.~.~.~.~.~..~.~..~..~.~.~;;~~ . .<br />

. .


5. Write the following information on the disk label:<br />

� analyzer serial number<br />

� today’s date<br />

� “EEPROM Backup Disk”<br />

Adjustments and Correction Constants 3-38


Correction Constants Retrieval Procedure<br />

Required Equipment and Tools<br />

EEPROM Backup Disk<br />

Antistatic Wrist Strap . . . . . , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> P/N 9300-1367<br />

Antistatic Wrist Strap Cord . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> P/N 9300-0980<br />

Static-control ‘Ihble Mat and Earth Ground Wire . . . . . . . . . . . . <strong>HP</strong> P/N 9300-0797<br />

By using the current EEPROM backup disk, you can download the correction<br />

constants data into the instrument EEPROMs.<br />

1. Insert the “EEPROM Backup Disk” into the <strong>HP</strong> <strong>8753E</strong> disk drive.<br />

2. Make sure the A9 switch is in the Alter position.<br />

* p f!g;-~ :>+?$?q&:. pL+y .::: .:: ) :.:::y ,,,,,,<br />

3. Press t-1 ‘~~~~~~ ~~~~~~~~~~. Use the front panel knob<br />

to highhght the IiIe “N12345” where N12345 represents the file name of the<br />

EEPROM data for the analyzer. On the factory shipped EEPROM backup<br />

disk, the filename is PILEl.<br />

i........... :..:..v..... . . . . . . . . . . . . . . . . . . . . . . . . . i. . . . .,.. . . .““’ . . . . . . .:.:: :... :;:::;:j :.~,,.,,,,,~~~~~.~: :.::::::.:::.:::.:....:::::::::::::~.::::::::::<br />

4. press Tm ~~~~~~~~~~ to download the come&ion constants data into<br />

the instrument EEPROMs.<br />

5. Perform “Option Numbers Correction Constant (Test 56). n<br />

6. Press preset] and verify that good data was transferred to EEPROM by<br />

performing a simple measurement.<br />

7. Move the A9 switch back to its Normal position when you are done working<br />

with the instrument.<br />

340 Adjustments and Correction Constants


Loading Firmware<br />

Required Equipment and ‘lbols<br />

� Firmware disk for the <strong>HP</strong> <strong>8753E</strong><br />

Anulgzzr warmup l%m: None required.<br />

The following procedures will load firmware for new or existing CPU boards in<br />

an <strong>HP</strong> <strong>8753E</strong> network analyzer.<br />

Loading Firmware into an Existing CPU<br />

Use this procedure for upgrading firmware in an operational instrument whose<br />

CPU board has not been changed.<br />

Caution Loading hrmware will clear all internal memory.<br />

Perform the following steps to save any instrument states that<br />

are stored in internal memory to a floppy disk.<br />

~:: :::: i .~~,a~~~ . . .;yf&+?& 7 FE i


At the end of a successful loading, the LEDs for Channel 1 and Testport 1<br />

will remain on and the display will turn on indicating the version of lirmware<br />

that was loaded.<br />

I.nCa13eofDifticulty<br />

If the firmware did not load successfully, LED patterns on the front panel can<br />

help you isolate the problem.<br />

� If the following LED pattern is present, the firmware disk is not for use with<br />

your instrument model. Check that the firmware disk used was for the<br />

<strong>HP</strong> <strong>8753E</strong>.<br />

� If any of the following LED patterns are present,<br />

defective.<br />

LEDlhttern<br />

CJIlCE2 B L T S<br />

.<br />

.<br />

.<br />

. .<br />

. . .<br />

.<br />

.<br />

.<br />

. .<br />

. . .<br />

. .<br />

. . .<br />

. . .<br />

. .<br />

. . .<br />

the firmware disk may be<br />

� If any other LED pattern is present, the CPU board is defective.<br />

342 Adjustments and Correction Constants


Loading Firmware into a New CPU<br />

Use this procedure to load firmware for an instrument whose CPU board has<br />

been replaced.<br />

1. Turn off the network analyzer.<br />

2. Insert the firmware disk into the instrument’s disk drive.<br />

3. Turn the instrument on. The firmware wilI be loaded automatically during<br />

power-on. The front panel LEDs should step through a sequence as firmware<br />

is loaded. The display will be blank during this time.<br />

At the end of a successful loading, the LEDs for Channel 1 and Testport 1<br />

will remain on and the display will turn on indicating the version of firmware<br />

that was loaded.<br />

Note After the llrmware has been loaded, the correction constants<br />

must be restored. Refer to ‘Ihble 3-l (2 of 3) to identify the<br />

service procedures required to restore (retrieve) or recreate the<br />

correction constants.<br />

In Case of Diflhlty<br />

� If the lirmware did not load successfully, LED patterns on the front panel can<br />

help you isolate the problem.<br />

� If the following LED pattern is present, an acceptable hrmware filename<br />

was not found on the disk. (The desired format for gnuware filenames is<br />

87533-07. -02.) Check that the lirmware disk used was for the <strong>HP</strong> 87533.<br />

Adjustments and Correction Constants 343


� If any of the following LED patterns are present, the firmware disk may be<br />

defective.<br />

LED pattern<br />

CElCE2 B L T 6<br />

.<br />

. .<br />

. .<br />

. . .<br />

.<br />

. .<br />

. .<br />

. . .<br />

. .<br />

. . .<br />

. . .<br />

� �<br />

. . .<br />

� If any other LED pattern is present, the CPU board is defective.<br />

Note If Grmware did not load, a red LED on the CPU board will be<br />

flashing.<br />

� If the following LED pattern is present on the CPU board, suspect the disk<br />

drive or associated cabling:<br />

344 Adjustments and Correction Constants<br />

� � � � � � � �<br />

(front of instrument 4)


sg640e<br />

FN VCO ADJ<br />

ADJUSTMENT HOLE<br />

Figure 3-15. Location of the FN VCO TUNJZ Adjustment<br />

Figure 3-16. Fractioual-N Frequency Range Adjustment Display<br />

345 Adjustments and Correction Constants


10. Observe the analyzer for the results of this adjustment:<br />

� If the marker value is less than 7, you have completed this procedure.<br />

� If the marker value is greater than 7, readjust ‘TN VCO ADJ” to 7.<br />

Then perform steps 2 to 10 to con&m that the channel 1 and channel 2<br />

markers are stilI above and below the reference line respectively.<br />

w If you cannot adjust the analyzer correctly, replace the Al4 board<br />

assembly.<br />

Adjustments and Correction Constants 347


Frequency Accuracy Adjustment<br />

Required Equipment and ‘Idols<br />

Spectrum <strong>Analyzer</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> 8563E<br />

RF Cable, 500 Type-N, 24-inch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<strong>HP</strong> P/N 8120-4781<br />

Non-metallic Adjustment lb01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> P/N 8830-0024<br />

Antistatic Wrist Strap . , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> P/N 9300-1367<br />

Antistatic Wrist Strap Cord . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> P/N 9300-0980<br />

Static-control ‘lhble Mat and Earth Ground Wire . . . . . . . . . . . . <strong>HP</strong> P/N 9300-0797<br />

Additional Required Equipment for 5OQ <strong>Analyzer</strong>s<br />

Adapter APC-7 to Type-N (f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> 11525A<br />

Additional Required Equipment for 750 <strong>Analyzer</strong>s<br />

Minimum Loss Pad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> 11852B<br />

Anul~m warmup time: 30 minutes.<br />

This adjustment sets the VCXO (voltage controlled crystal oscillator) frequency<br />

to maintain the instrument’s frequency accuracy.<br />

1. Remove the upper-rear bumpers and analyzer top cover<br />

2. Connect the equipment as shown in Figure 3-17.<br />

348 Adjustments and Correction Constants


Note<br />

3.<br />

4.<br />

<strong>HP</strong> <strong>8753E</strong><br />

NETWORK ANALYZER<br />

PORTI<br />

I<br />

PORT2<br />

50R MPE-N CABLE ASSEMBLY<br />

<strong>HP</strong> 8563A<br />

<strong>HP</strong> <strong>8753E</strong><br />

NETWORK ANALYZER<br />

WITH OPTION 075 <strong>HP</strong> 8563A<br />

SPECTRUM ANALYZER<br />

PGRTl<br />

I<br />

PORT?:<br />

Figure 3-17. Frequency Accuracy Adjustment Setup<br />

Make sure that the spectrum analyzer and network analyzer<br />

references are not connected.<br />

For Option lD5 Instruments Only: Remove the BNC-to-BNC jumper<br />

that is connected between the “EXT REF” and the “10 MHz Precision<br />

Reference,” as shown in Figure 3-19.<br />

Set the spectrum analyzer measurement parameters as follows:<br />

I<br />

I<br />

sq641e<br />

Adjustments and Correction Constants 34


5- On the <strong>HP</strong> <strong>8753E</strong>, press @GZj @GG) :~~~~~~~,- @ Lc/n (or @ Lc/nl for<br />

Option 006).<br />

6. No adjustment is required if the spectrum analyzer measurement is within<br />

the following specifications:<br />

� &30 kHz for the <strong>HP</strong> <strong>8753E</strong><br />

� f60 kHz for the <strong>HP</strong> 8753e, Option 006<br />

Otherwise, locate the Al2 assembly (red extractors) and adjust the<br />

VCXO ADJ (see Figure 3-18) for a spectrum analyzer center frequency<br />

measurement within specifications.<br />

7. Replace the Al2 assembly if you are unable to adjust the frequency as<br />

specified. Repeat this adjustment test.<br />

A12 Reference Assembly<br />

Figure 3-18. Location of the VCXO ADJ Adjustment<br />

Note To increase the accuracy of this adjustment, the following steps<br />

are recommended.<br />

8. Replace the instrument covers and wait 10 to 15 minutes in order to allow<br />

the analyzer to reach its precise operating temperature.<br />

9. Recheck the CW frequency and adjust if necessary.<br />

3-50 Adjustments and Correction Constants


Instruments with Option lD5 Only<br />

10. Reconnect the BNC-to-BNC jumper between the “EXT REF” and the “10<br />

MHz Precision Reference” as shown in Figure 3-19.<br />

ENC T O ENC HIGH STABILITY<br />

JUMPER FREGUENCY ADJUST<br />

\ /<br />

Figure 3-19. High Stability Frequency Adjustment Location<br />

11. Insert a narrow screwdriver and adjust the high-stability frequency<br />

reference potentiometer for a CW frequency measurement within<br />

specification.<br />

In Case of Difficulty<br />

Replace the A26 assembly if you cannot adjust the CW frequency within<br />

specification.<br />

sgb42e<br />

Adjustments and Correction Constants 3-51


High/Low Band Transition Adjustment<br />

&x&red Equipment and 9bols<br />

Non-metalhc Adjustment lb01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> P/N 8830-0024<br />

Amlgzer warmup time: 30 minutes.<br />

This adjustment centers the VCO (voltage controlled oscillator) of the Al2<br />

reference assembly for high and low band operations.<br />

3. Press m ~~~~~~~~~~~~~~ (--& a (.., Illl @-&<br />

4. Press (Scale L.1] Lxl_] and observe the VCO tuning trace:<br />

� If the left half of trace = 0 flOO0 mV and right half of trace = 100 to<br />

200 mV higher (one to two divisions, see Figure 3-20): no adjustment is<br />

necessary.<br />

� If the adjustment is necessary, follow these steps:<br />

a. Adjust the VCO tune (see Pigure 3-21) to position the left half of the<br />

trace to 0 f125 mV. The variable capacitor, C85, has a half-turn tuning<br />

range if the Al2 Reference Board is part number 08753-60209, and<br />

seven turns if the part number is 08753-60357. Be careful not to<br />

overtighten and damage the seven-turn capacitor.<br />

b. Adjust the HBLB (see Figure 3-21) to position the right half of the trace<br />

125 to 175 mV (about 1 to 1.5 divisions) higher than the left half.<br />

� Refer to Chapter 7, “Source Troubleshooting,” if you cannot perform the<br />

adjustment.<br />

3-52 Adjustments and Correction Constants


I I I I I I I I 11 I<br />

START ii.*00 000 mz STOP 21.OdO 000 MHZ<br />

Figure 3-20. High/Low Band Transition Adjustment Trace<br />

Al2 Reference Assembly<br />

Figure 3-21. High/Low Band Adjustment Locations<br />

Adjustments and Correction Constants 3-53


Fractional-N Spur Avoidance and<br />

FM Sideband Adjustment<br />

Required Equipment and ‘lbols<br />

Spectrum <strong>Analyzer</strong> .................................................... <strong>HP</strong> 8563E<br />

<strong>HP</strong>-IB Cable ................................................... <strong>HP</strong> 10833A/B/G/B<br />

RF Cable 50 ohm, Type-N, 24-inch ............................... <strong>HP</strong> P/N 81204781<br />

Cable, 509 Coax, BNC (m) to BNC (m) .............................. .<strong>HP</strong> 10503A<br />

Non-metallic Adjustment lb01 ................................ <strong>HP</strong> P/N 8830-0024<br />

Antistatic Wrist Strap ........................................ <strong>HP</strong> P/N 9300-1367<br />

Antistatic Wrist Strap Cord .................................. <strong>HP</strong> P/N 9300-0980<br />

Static-control Able Mat and Earth Ground Wire ............ <strong>HP</strong> P/N 9300-0797<br />

Additional Required Equipment for 5013 <strong>Analyzer</strong>s<br />

Adapter APC-7 to Type-N (f) . . . . .., . . . . . . . . . . . . . . . .., . . . . . . . . . . . . . . . <strong>HP</strong> 11525A<br />

Additional Required Equipment for 75 ohm <strong>Analyzer</strong>s<br />

Minimum Loss Pad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> 11852B<br />

Anulgm warmup time: 30 minutes.<br />

This adjustment minimizes the spurs caused by the API (analog phase<br />

interpolator, on the fractional-N assembly) circuits. It also improves the<br />

sideband characteristics.<br />

1. Connect the equipment as shown in Figure 3-22.<br />

2. Make sure the instruments are set to their default <strong>HP</strong>-IB addresses:<br />

<strong>HP</strong> <strong>8753E</strong> = 16, Spectrum <strong>Analyzer</strong> = 18.<br />

344 Adjustments and Correction Constants


<strong>HP</strong> <strong>8753E</strong><br />

NETWORK ANALYZER<br />

WITH OPTION 075 1<br />

PORT1<br />

NETWORK ANALYZER<br />

WITH OPTION 075<br />

I<br />

PORT2<br />

EXT REF<br />

INPUT<br />

5Ofi, COAX, BNI.<br />

Figure 3-22.<br />

Fractional-N Spur Avoidance and FM Sideband Adjustment Setup<br />

3. Set the spectrum analyzer measurement parameters as follows:<br />

Reference Level OdBm<br />

Resolution Bandwidth lOOI%<br />

Center Frequency 676.145105 MHz<br />

Spa<br />

2.5 kHz<br />

I<br />

Adjustments and Correction Constants 3-55


4. On the <strong>HP</strong> <strong>8753E</strong>, press LPreset] (i&) IF- l&J w @ m {&&!“I&Q..<br />

...... . . . s ....T .:..: T ::.................. . . . L...<br />

(pzLmiqm.<br />

5. Adjust the 100 kHz (R77) for a null (minimum amplitude) on the spectrum<br />

analyzer. The minimum signal may, or may not, drop down into the noise<br />

floor.<br />

1OOkHr API1 API2 API3 API4<br />

ORANGE (R77) (R35j (R43j (R45) CR471<br />

Al3 Fractional-N Analog Assembly<br />

Figure 3-23. Location of API and 100 kHz Adjustments<br />

6. On the spectrum analyzer, set the center frequency for 676.051105 MHz.<br />

7. On the <strong>HP</strong> 8753e, press m ~~~~~~~ @ZiZiiZ) m.<br />

- .._....._........__....<br />

8. Adjust the API1 (R35) for a null (minimum amplitude) on the spectrum<br />

analyzer.<br />

9. On the spectrum analyzer, set the center frequency for 676.007515 MHz.<br />

1o. on the <strong>HP</strong> <strong>8753E</strong>, press m ~~,~~ ‘-, ms<br />

11. Adjust the API2 (R43) for a null (minimum amplitude) on the spectrum<br />

analyzer.<br />

12. On the spectrum analyzer, set the center frequency for 676.003450 MHz.<br />

_ _<br />

13. ()n the <strong>HP</strong> 87533, press CMenu) ~~~~~; (676.ooo45) (MIII).<br />

_ _ i .,.........,.,.,.,....i _ .~ . . ..__.. .<br />

14. Adjust the API3 (R45) for a nuII (minimum amplitude) on the spectrum<br />

analyzer.<br />

3-56 Adjustments and Correction Constants


15. On the spectrum analyzer, set the center frequency for 676.003045 MHz.<br />

16. On the <strong>HP</strong> <strong>8753E</strong>, press (Menu) YmFY$$Q. c-1 m.<br />

17. Adjust the API4 (R47) for a null (minimum amplitude) on the spectrum<br />

analyzer.<br />

ln Case of Difliculty<br />

18. If this adjustment cannot be performed satisfactorily, repeat the entire<br />

procedure. Or else replace the Al3 board assembly.<br />

Adjustments and Correction Constants 3-57


Source Spur Avoidance Tracking Adjustment<br />

Required Equipment and ‘Idols<br />

BNC AIIigator Clip Adapter .................................. <strong>HP</strong> P/N 8120-1292<br />

BNC-to-BNC Cable ........................................... .<strong>HP</strong> P/N 8120-1840<br />

Antistatic Wrist Strap ........................................ <strong>HP</strong> P/N 9300-1367<br />

Antistatic Wrist Strap Cord .................................. <strong>HP</strong> P/N 9300-0980<br />

Static-control Table Mat and Earth Ground Wire ............<strong>HP</strong> P/N 9300-0797<br />

Anulgzer warmup time: 30 minutes.<br />

This adjustment optimizes tracking between the YO (YIG oscillator) and the<br />

cavity oscillator when they are frequency offset to avoid spurs. Optimizing<br />

YO-cavity oscillator tracking reduces potential phase-locked loop problems.<br />

1. Mate the adapter to the BNC cable and connect the BNC connector end to<br />

AUX INPUT on the <strong>HP</strong> <strong>8753E</strong> rear panel. Connect the BNC center conductor<br />

alligator-clip to All TPlO (labeled 4 ERR); the shield clip to All TPl (GND)<br />

as shown in Figure 3-24.<br />

BROWN<br />

A l lTP1 A l lip10<br />

GND @ERR UNLK CAV ADJ<br />

A3 Source<br />

Figure 3-24. Location of All Test Points and A3 CAV ADJ Adjustments<br />

3-58 Adjustments and Correction Constants


5. To make sure that you have connected the test points properly, adjust the<br />

CAV ADJ potentiometer while observing the analyzer display. You should<br />

notice a change in voltage.<br />

6. Observe the phase locked loop error voltage:<br />

w If “spikes” are not visible on the analyzer display (see Figure 3-25): no<br />

adjustment is necessary.<br />

� If “spikes” are excessive (see Figure 3-25): adjust the CAV ADJ<br />

potentiometer (see Pigure 3-24) on the A3 source bias assembly to eliminate<br />

the spikes.<br />

� If the “spikes” persist, refer to Chapter 7, “Source Troubleshooting.”<br />

I i i i i i i i i i 1<br />

a) Acceptable b) Excessive<br />

Figure 3-25. Display of Acceptable versus Excessive Spikes<br />

sg637s<br />

Adjustments and Correction Constants 3-59


Unprotected Hardware Option Numbers Correction<br />

Constants<br />

Aruzlyzer warmup Tim.&- None.<br />

This procedure stores the instrument’s unprotected option(s) information in A9<br />

CPU assembly EEPROMs.<br />

1. Make sure the A9 switch is in the Alter position.<br />

2. Record the installed options that are printed on the rear panel of the<br />

analyzer.<br />

4. Refer to ‘Ihble 3-2 for the address of each unprotected hardware option.<br />

Enter the address for the speci& installed hardware option that needs to be<br />

enabled or disabled. Follow the address entry by ~~~~. o Lxl.<br />

. Press f&!$$: L-1] (xl, then w to enable the option;<br />

.;s/ ,, ,:;::..<br />

. or, press :@m -._._-. @ (XJ), then w to disable the option.<br />

‘Ihble 3-2. PEEK/POKE Addressies<br />

Hardware PEEK/POKE<br />

Options Address<br />

5. Repeat steps 3 and 4 for all of the unprotected options that you want to<br />

enable.<br />

3-60 Adjustments and Correction Constants


6. After you have entered all of the instrument’s hardware options, press the<br />

following keys:<br />

7. View the analyzer display for the listed options<br />

8. When you have entered all of the hardware options, return the A9 switch to<br />

the Normal position.<br />

9. Perform the “EEPROM Backup Disk Procedure” located on page 3-42.<br />

In Case of DiiTiculty<br />

If any of the installed options are missing from the list, return to step 2 and<br />

reenter the missing option(s).<br />

Adjustments and Correction Constants 3-61


Sequences for Mechanical Adjustments<br />

The network analyzer has the capability of automating tasks through a<br />

sequencing function. The following adjustment sequences are available via<br />

Access <strong>HP</strong> on the World Wide Web.<br />

� F’ractional-N kequency Range Adjustment (F’NADJ and FNCHK)<br />

� High/Low Band Transition Adjustment (HBLBADJ)<br />

� Fractional-N Spur Avoidance and F’M Sideband Adjustment (APIADJ)<br />

You can download these adjustment sequences from the following URL:<br />

http://vaw.tmo.hp.com/tmo/pia/component-test/PIATop/~glish/<br />

comptest,support.htmI<br />

How to Load Sequences from Disk<br />

1. Place the sequence disk in the analyzer disk drive.<br />

3. Select any or all of the following sequence liles by pressing:<br />

..........ii ., / .:. : :::::::... _ .,..; .;.,.,... .::,..../,.,.,.;..; .a......... .:: . . . ,......... . . .<br />

. Select ~~~~~~~~~~~~~.~~ if you want to load the file for the “kacti0nal-N<br />

~......... .._......... ...............i....... .: .: .:::: . . . ...._;i~..........................~~~.<br />

. .<br />

Spur Avoidance and F’M Sideband Adjustment. n<br />

. ‘&led ~~~~~~~~.~~~~<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

if you wmt to lOad the fle for the “High/Low<br />

Band Transition Adjustment. n<br />

3-62 Adjustments and Correction Constants


How to Set Up the Fractional-N Frequency Range<br />

Adjustment<br />

1. Remove the right-rear bumpers and right side cover. This exposes the<br />

adjustment location in the sheet metal.<br />

2. Press (iGZ-j ~~~~~-.~..E~~~ ..~............................-:::: .:::: .: -.......A ii.. i.v.uA .......... . . ..A.......-.<br />

. . (where X is the sequence number).<br />

3. Adjust the “F’N VCO TUNE” with a non-metallic tool so that the channel 1<br />

marker is as many divisions above the reference line as the channel 2 marker<br />

is below it.<br />

. . . . . . . . . . . .’ :.............<br />

4. Press Ipreset] ?g#?jm@J ~.~@jK$&~ (where X is the sequence number).<br />

� If the marker value is ~7, you have completed this procedure.<br />

� If the marker value is >7, readjust “F’N VCO TUNE” to 7. Then repeat<br />

steps 2,3, and 4 to conlirm that the channel 1 and channel 2 markers are<br />

still above and below the reference line respectively.<br />

How to Set Up the High/Low Band Transition<br />

Adjustments / ,.; _ _ _ ;<br />

l. Press B ~~~~:~~~~~?~~~ (where X is the sequence number).<br />

2. Observe the VCO tuning trace:<br />

� If the left half of trace = of1000 mV and right half of<br />

trace = 100 to 200 mV higher (one to two divisions): no adjustment is<br />

necessary.<br />

w If the adjustment is necessary, follow these steps:<br />

a. Remove the upper-rear bumpers and top cover, using a TORX<br />

screwdriver.<br />

b. Adjust the VCO tune (Al2 C85) to position the left half of the trace<br />

to of125 mV. This is a very sensitive adjustment where the trace could<br />

easily go off of the screen.<br />

c. Adjust the HBLB (Al2 R68) to position the right half of the trace<br />

125 to 175 mV (about 1 to 1.5 divisions) higher than the left half.<br />

Adjustments and Correction Constants 3-63


� Refer to Chapter 7, “Source Troubleshooting,” if you cannot perform the<br />

adjustment.<br />

How to Set Up the Fractional-N Spur Avoidance and<br />

FM Sideband Adjustment<br />

1. Press B ~~~:~~~,~~~~~~’ (where X is the sequence number).<br />

2. Remove the upper-rear comer bumpers and the top cover, using a TORX<br />

screwdriver.<br />

3. Follow the directions on the analyzer display and make alI of the API<br />

adjustments.<br />

Sequence Contents<br />

Sequence for the High/Low Band Transition Adjustment<br />

--Sequence HB~sets the hi-band to low-band switch point.-<br />

PRESET<br />

SYSTEM<br />

SERVICE MENU<br />

ANALOG BUS ON<br />

STARTllIWu<br />

STOP 21 M/u<br />

MEAS<br />

ANALOG IN 22 xl (Al2 GND)<br />

DISPLAY<br />

DATA>MEM<br />

DATA-MEM<br />

MEAS<br />

ANALOG IN 23 xl (VCO TUNE)<br />

MKR11IWl.l<br />

SCALELREF .l xl<br />

3-64 Adjustments and Correction Constants


Sequences for the Fractional-N Frequency Range Adjustment<br />

-Sequence FND sets up Al4 (FRAC N Digital) VCO.-<br />

DISPLAY<br />

DUAL CHAN ON<br />

SYSTEM<br />

SERVICE MENU<br />

ANALOG BUS ON<br />

MENU<br />

NUMBER OF POINTS 11 xl<br />

COUPLED CHAN OFF<br />

START 36 M/u<br />

STOP 60.75 M./u<br />

MENU<br />

SWEEP TIME 12.5 k/m<br />

MEAS<br />

ANALOG IN 29 xl (FN VCO TUN)<br />

SCALE/REF 0.6 xl<br />

REF VALUE -7 xl<br />

CH 2<br />

MENU<br />

CW FREQ 31.0001 M/u<br />

SWEEP TIME 12.375 k/m<br />

MEAS<br />

ANALOG IN 29 xl (FN VCO TUN)<br />

SCALELREF .2 xl<br />

REF VALUE 6.77 xl<br />

MKR6k/m<br />

--Sequence FNCHK check the VCO a@@stmmt.-<br />

MENU<br />

CW FREQ 1 G/n<br />

SYSTEM<br />

SERVICE MENU<br />

ANALOG BUS ON<br />

SERVICE MODES<br />

FRACNTUNEON<br />

ANALOG IN 29 xl<br />

Adjustments and Correction Constants 3-65


SCALELREF<br />

REF VALUE 7 xl<br />

Sequences for the Fractional-N Avoidance and<br />

FM Sideband Adjustment<br />

--Sequence APL4DJsets up thejhctional-N API spur a@shmnts-<br />

TITLE<br />

SP 2.5K<br />

PERIPHERAL <strong>HP</strong>IB ADDR<br />

18 xl<br />

TITLE TO PERIPHERAL<br />

WAIT x<br />

0 xl<br />

TITLE<br />

AT ODB<br />

TITLE TO PERIPHERAL<br />

WAIT x<br />

0 xl<br />

TITLE<br />

RM 1OOHz<br />

TITLE TO PERIPHERAL<br />

WAIT x<br />

0 xl<br />

TITLE<br />

CF 676.145105MZ<br />

TITLE TO PERIPHERAL<br />

WAIT x<br />

0 xl<br />

CW FREQ<br />

676.045105Mh<br />

TITLE<br />

ADJ Al3 1OOKHZ<br />

SEQUENCE<br />

PAUSE<br />

TITLE<br />

CF 676.048105MZ<br />

TITLE TO PERIPHERAL<br />

WAIT x<br />

0 xl<br />

3-66 Adjustments and Correction Constants


TITLE<br />

ADJ Al3 API1<br />

SEQUENCE<br />

PAUSE<br />

TITLE<br />

CF 676.007515MZ<br />

TITLE TO PERIPHERAL<br />

WATT x<br />

0 xl<br />

CW FREQ<br />

676.004515Mh<br />

TITLE<br />

ADJ Al3 API2<br />

SEQUENCE<br />

PAUSE<br />

TITLE<br />

CF 676.00345OMZ<br />

TITLE TO PERIPHERAL<br />

WMT x<br />

0 xl<br />

CW FREQ<br />

676.00045OMh.1<br />

TITLE<br />

ADJ Al3 API3<br />

SEQUENCE<br />

PAUSE<br />

TITLE<br />

CF 676.003045MZ<br />

TITLE TO PERIPHERAL<br />

WMT x<br />

0 xl<br />

CW FREQ<br />

676.000045Mh<br />

TITLE<br />

ADJ Al3 API4<br />

Adjustments and Correction Constants 3-67


Start Troubleshooting Here<br />

The information in this chapter helps you:<br />

� Identify the portion of the analyzer that is at fault.<br />

� Locate the specific troubleshooting procedures to identify the assembly or<br />

peripheral at fault.<br />

To identify the portion of the analyzer at fault, follow these procedures:<br />

Step 1. Initial Observations<br />

Step 2. Operator’s Check<br />

Step 3. <strong>HP</strong>-IB Systems Check<br />

Step 4. Faulty Group Isolation<br />

4<br />

Start Troubleshooting Here 4-l


Assembly Replacement Sequence<br />

The following steps show the sequence to replace an assembly in an <strong>HP</strong> <strong>8753E</strong><br />

network analyzer.<br />

1. Identify the faulty group. Refer to Chapter 4, “Start Troubleshooting Here.”<br />

Follow up with the appropriate troubleshooting chapter that identifies the<br />

faulty assembly.<br />

2. Order a replacement assembly. Refer to Chapter 13, “Replaceable Parts. n<br />

3. Replace the faulty assembly and determine what adjustments are necessary.<br />

Refer to Chapter 14, “Assembly Replacement and Post-Repair Procedures. n<br />

4. Perform the necessary adjustments. Refer to Chapter 3, “Adjustments and<br />

Correction Constants. n<br />

5. Perform the necessary performance tests. Refer to Chapter 2, “System<br />

Verification and Performance Tests. n<br />

Having Your <strong>Analyzer</strong> <strong>Service</strong>d<br />

The <strong>HP</strong> <strong>8753E</strong> has a one year on-site warranty, where available. If the analyzer<br />

should fail any of the following checks, call your local <strong>HP</strong> sales or service office.<br />

A customer engineer will be dispatched to service your analyzer on-site. If a<br />

customer engineer is not available in your area, follow the steps below to send<br />

your analyzer back to <strong>HP</strong> for repair<br />

1. Choose the nearest <strong>HP</strong> service center. (A table listing of Hewlett-Packard<br />

sales or service offices is provided at the end of this guide.)<br />

2. Include a detailed description of any failed test and any error message.<br />

3. Ship the analyzer, using the original or comparable antistatic packaging<br />

materials.<br />

4-2 Start Troubleshooting Here


Step 1. InitiaI Observations<br />

Initiate the <strong>Analyzer</strong> Self-‘I&t<br />

1.<br />

2.<br />

3.<br />

Disconnect all devices and peripherals from the analyzer.<br />

Switch on the analyzer and press WI.<br />

Watch for the indications shown in Figure 4-l to determine if the analyzer is<br />

operating correctly.<br />

w If the self-test failed, refer to “Step 4. Faulty Group Isolation”.<br />

Start Troubleshooting Here 4-3


Step 2. Operator’s Check<br />

Description<br />

The operator’s check consists of two softkey initiated tests: Port 1 Op Chk and<br />

Port 2 Op Chk.<br />

A short is connected to port 1 (port 2) to reflect ah the source energy back into<br />

the analyzer for an SII (SZZ) measurement.<br />

The first part of Port I Op Chk checks the repeatability of the transfer switch.<br />

An SI1 measurement is stored in memory and the switch is toggled to port 2 and<br />

then back to port 1 where another SII measurement is made. The difference<br />

between the memory trace and the second trace is switch repeatability.<br />

The remaining parts of both tests exercise the internal attenuator in 5 dEI steps<br />

over a 55 dB range.<br />

The resulting measurements must fall within a limit testing window to pass the<br />

test. The window size is based on both source and receiver specifications.<br />

The operator’s check determines that:<br />

� The source is phase locked across the entire frequency range.<br />

� All three samplers are functioning properly.<br />

� The transfer switch is operational.<br />

� The attenuator steps 5 dB at a time.<br />

Required Equipment and lbols<br />

Short . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . part of the <strong>HP</strong> 85031B calibration kit<br />

Analgzm warm-up time: 30 minutes.<br />

Procedure<br />

1. Disconnect all devices, peripherals, and accessories (including adapters and<br />

limiters) from the analyzer.<br />

3. The display should show TEST 21 Port 1 Op Chk in the active entry area.<br />

44 Start Troubleshooting Here


4. Press ~E@WTE ‘EST to begin the test.<br />

/. ;.i.::. ..: .<br />

5. At the prompt, connect the short to the port indicated. Make sure the<br />

connection is tight.<br />

7. The test is a sequence of subtests. At the end of the subtests, the test title<br />

and result will be displayed. If all tests pass successfully, the overall test<br />

status will be PASS. If any test fails, the overall test status will be FAIL.<br />

8. ‘lb run the test for port 2, press the step &) key. The display should show<br />

TEST 22 Port2 Op Chkin the active entry area.<br />

9. Repeat steps 4 through 7.<br />

10. If both tests pass, the analyzer is about 80% verified. If either test fails,<br />

refer to “Step 4. Faulty Group Isolation” in this section, or:<br />

a. Make sure that the connection is tight. Repeat the test.<br />

b. Visually inspect the connector interfaces and clean if necessary (refer to<br />

“Principles of Microwave Connector Care” located in Chapter 1).<br />

c. Verify that the short meets published specihcations.<br />

d. Substitute another short, and repeat the test.<br />

e. Finally, refer to the detailed tests located in this section, or fault<br />

isolation procedures located in the troubleshooting sections<br />

Start Troubleshooting Here 4-5


Step 3. <strong>HP</strong>-IB Systems Check<br />

Check the analyzer’s <strong>HP</strong>-IB functions with a known. working passive peripheral<br />

(such as a plotter, printer, or disk drive).<br />

1. Connect the peripheral to the analyzer using a good <strong>HP</strong>-IB cable..<br />

2. Press o “““““““““““““““““““” to enable the analyzer to controI the<br />

peripheral.<br />

3. men press -~~~~~~~~~ and the appropriate softkeys to verify aat the<br />

L:L-.;..;; . . . . . . . . . . . . . . _i . . . . . . . ..-... _ .-.... _ . . . . . . . . . . . . . . . . . .i:::: i.<br />

device addresses will be recognized by the analyzer. The factory default<br />

addresses are:<br />

Device <strong>HP</strong>-IB Address<br />

<strong>HP</strong> 87533 16<br />

Plotter port - BP-IB 5<br />

Printer port - BP-IB 1<br />

Disk (external) 0<br />

Controller 21<br />

Power meter - I-FIB 13<br />

Note You may use other addresses with two provisions:<br />

4-6 Start Troubleshooting Here<br />

� Each device must have its own address.<br />

m The address set on each device must match the one<br />

recognized by the analyzer (and displayed).<br />

Peripheral addresses are often set with a rear panel switch.<br />

Refer to the manual of the peripheral to read or change its<br />

address.


If Using a Plotter or Printer<br />

1. Ensure that the plotter or printer is set up correctly:<br />

� Power is on.<br />

� Pens and paper loaded.<br />

� Pinch wheels are down.<br />

� Some plotters need to have Pl and P2 positions set.<br />

:,<br />

2. Press Lcopy and then ,..................../ 3%~~ or ;.:...-:.:...> ~~~.~.~~~~~~~~~.<br />

. . . . :: . . . . ~........._.......................... .._.... .::./ ..~..-. L .A......<br />

� If the result is a copy of the analyzer display, the printing/plotting features<br />

are functional in the analyzer. Continue with “Troubleshooting Systems<br />

with Multiple Peripherals”, “Troubleshooting Systems with Controllers”, or<br />

the “Step 4. Faulty Group Isolation” section in this chapter.<br />

� If the result is not a copy of the analyzer display, suspect the <strong>HP</strong>-IB<br />

function of the analyzer. Refer to Chapter 6, “Digital Control<br />

Troubleshooting. n<br />

lf Using an External Disk Drive<br />

::::~...~...:......:.:...::::~:~,~:~~..


� If the resultant trace starts at 1 MHz, <strong>HP</strong>-IB is functional in the analyzer.<br />

Continue with “Troubleshooting Systems with Multiple Peripherals”,<br />

“Troubleshooting Systems with Controllers”, or the “Step 4. Faulty Group<br />

Isolation” section in this chapter.<br />

� If the resultant trace does not start at 1 MHz, suspect the <strong>HP</strong>-IB function<br />

of the analyzer: refer to Chapter 6, “Digital Control Troubleshooting.”<br />

Troubleshooting Systems with Multiple Peripherals<br />

Connect any other system peripherals (but not a controller) to the analyzer<br />

one at a time and check their functionality. Any problems observed are in the<br />

peripherals, cables, or are address problems (see above).<br />

Troubleshooting Systems with Controllers<br />

Passing the preceding checks indicates that the analyzer’s peripheral functions<br />

are normal. Therefore, if the analyzer has not been operating properly with an<br />

external controller, check the following:<br />

� The <strong>HP</strong>-ID interface hardware is incorrectly installed or not operational. (See<br />

“<strong>HP</strong>-II3 Requirements” in the <strong>HP</strong> <strong>8753E</strong> <strong>Network</strong> Anulgzer User’s <strong>Guide</strong>.)<br />

� The programming syntax is incorrect. (Refer to the <strong>HP</strong> <strong>8753E</strong> <strong>Network</strong><br />

Aruzlgzer Programmer’s G&&e.)<br />

If the analyzer appears to be operating unexpectedly but has not completely<br />

failed, go to “Step 4. Faulty Group Isolation.”<br />

4-8 Start TroubleshootinN Here


Step 4. Faulty Group Isolation<br />

Use the following procedures only if you have read the previous sections in<br />

this chapter and you think the problem is in the analyzer. These are simple<br />

procedures to verify the four functional groups in sequence, and determine<br />

which group is faulty.<br />

The four functional groups are:<br />

� power supplies<br />

w digital control<br />

� source<br />

� receiver<br />

Descriptions of these groups are provided in Chapter 12, “Theory of Operation.”<br />

The checks in the following pages must be performed in the order presented.<br />

If one of the procedures fails, it is an indication that the problem is in the<br />

functional group checked. Go to the troubleshooting information for the<br />

indicated group, to isolate the problem to the defective assembly.<br />

Figure 4-2 illustrates the troubleshooting organization.<br />

I--------------------------------------------<br />

I ISOLATE FAULTY GROUP<br />

I<br />

I ASSEMBLY<br />

LEVEL TROUBLESHOOTING<br />

Figure 4-2. Troubleshooting Orgunization<br />

sg645d<br />

Start Troubleshooting Here 4-8


Power Supply<br />

Check the Rear Panel LEDs<br />

Switch on the analyzer. Notice the condition of the two LEDs on the Al5<br />

preregulator at rear of the analyzer. (See Figure 4-3.)<br />

� The upper (red) LED should be off.<br />

� The lower (green) LED should be on.<br />

i I<br />

RED LED GREEN LED<br />

NORMALLY OFF NORMALLY ON<br />

Figure 43. Al5 Preregulator LEDs<br />

Check the A8 Post Regulator LEDs<br />

UNE VOLTAGE<br />

SELECTOR SWITCH<br />

/<br />

sg646e<br />

Remove the analyzer’s top cover. Switch on the power. Inspect the green LEDs<br />

along the top edge of the A8 post-regulator assembly.<br />

I Ail green LEDs should be on.<br />

� The fan should be audible.<br />

In case of difficulty, refer to Chapter 5, “Power Supply Troubleshooting.”<br />

4-l 0 Start Troubleshooting Here


Digital Control<br />

Observe the Power Up Sequence<br />

Switch the analyzer power off, then on. The following should take place within<br />

a few seconds:<br />

� On the front panel, observe the following:<br />

1. All six amber LEDs illuminate.<br />

2. The port 2 LED illuminates.<br />

3. The amber LEDs go off after a few seconds, except the CH 1 LED. At the<br />

same moment, the port 2 LED goes off and the port 1 LED ilhnninates.<br />

(See Figure 4-4.)<br />

� The display should come up bright with no irregularity in colors.<br />

� After an initial pattern, five red LEDs on the A9 CPU board should remain<br />

off. They can be observed through a small opening in the rear panel.<br />

If the power up sequence does not occur as described, or if there are<br />

problems using the front panel keyboard, refer to Chapter 6, “Digital Control<br />

Troubleshooting. n<br />

Figure 4-4. Front Panel Power Up Sequence<br />

Start Troubleshooting Here 4-11


Verify Internal Tests Passed<br />

. . . . . . . . . . ,. .,..... . . . . _ . . / / . . . .<br />

l- Press [Preset) (System) .~~~~~~~.~ ..:::: . ii .._ i.::::::.~; . . . . . . . . . . . . .:::..: . .._. .._ ;;.:..;, .*T$i:: ..:.: .._..... :~~~~.:~~~,<br />

. . . . . . . . ..~.........~.~.....~ . . . . . . _... ;.:.::..: . ... ;:z:.:


<strong>HP</strong> <strong>8753E</strong><br />

NETWORK ANALYZER<br />

/ \<br />

ADAPTER WC-7 to N(f)<br />

_-<br />

li<br />

.-,<br />

:<br />

I<br />

<strong>HP</strong> 8481A ’ <strong>HP</strong> 8482A<br />

POWER<br />

SENSOR<br />

POWER<br />

SENSOR<br />

” 5<br />

<strong>HP</strong> 438A<br />

POWER METER<br />

Figure 4-5. Equipment Setup for Source Power Check<br />

2. Zero and calibrate the power meter. Press LPreset] on the analyzer to initialize<br />

the instrument.<br />

3. on the analyzer, press LMenu) ~~~~~ ~ Lk/m) to output a cw 3oo kHz<br />

signal. The power meter should read approximately 0 deem.<br />

4. Press [161 m to change the CW frequency to 16 MHz. The output power<br />

should remain approximately 0 dBm throughout the analyzer frequency<br />

range. Repeat this step at 1 and 3 GHz. (For Option 006 include an additional<br />

check at 6 GHz.)<br />

If any incorrect power levels are measured, refer to Chapter 7, “Source<br />

Troubleshooting. n<br />

4.14 Start Troubleshooting Here<br />

s9648e


Figure 4-6. ABUS Node 16: 1 V/GHz<br />

sg641 d<br />

If any of the above procedures provide unexpected results, or if error messages<br />

are present, refer to Chapter 7, “Source Troubleshooting.”<br />

Start Troubleshooting Here 4-15


Receiver<br />

Observe the A and B Input Traces<br />

1.<br />

2.<br />

3.<br />

4.<br />

5.<br />

Connect the equipment as shown in F’igure 47 below. Be sure that any<br />

special accessories, such as limiters, have been disconnected. (The through<br />

cable is <strong>HP</strong> part number 8120-4779.)<br />

<strong>HP</strong> <strong>8753E</strong><br />

NETWORK ANALYZER<br />

TEST PORT<br />

THRU CABLE<br />

Figure 4-7. Equipment Setup<br />

sg649e<br />

Observe the measurement trace displayed by the A input. The trace should<br />

have about the same flatness as the trace in Figure 4-8.<br />

Observe the measurement trace displayed by the B input. The trace should<br />

have about the same flatness as the trace in Figure 4-8.<br />

4-l 6 Start Troubleshooting Here


Accessories<br />

If the analyzer has passed all of the previous checks but is still making incorrect<br />

measurements, suspect the system accessories Accessories such as RF or<br />

interconnect cables, calibration or verification kit devices, limiters, and adapters<br />

can ail induce system problems<br />

Reconfigure the system as it is normally used and reconllrm the problem.<br />

Continue with Chapter 9, “Accessories Troubleshooting. n<br />

Accessories Error Messages<br />

� POWERPROBESHUTDOWN!<br />

The biasing supplies to a front panel powered device (like a probe<br />

or millimeter module) are shut down due to excessive current draw.<br />

Troubleshoot the device.<br />

4-l 8 Start Troubleshooting Here


Power Supply Troubleshooting<br />

Use this procedure only if you have read Chapter 4, “Start Troubleshooting<br />

Here.” Follow the procedures in the order given, unless:<br />

� an error message appears on the display, refer to “Error Messages” near the<br />

end of this chapter.<br />

� the fan is not working; refer to “Fan Troubleshooting” in this chapter.<br />

The power supply group assemblies consist of the following:<br />

� A8 post regulator<br />

� Al5 preregulator<br />

All assemblies, however, are related to the power supply group because power is<br />

supplied to each assembly.<br />

5<br />

Powor Supply Troubleshooting 5-l


Assembly Replacement Sequence<br />

The following steps show the sequence to replace an assembly in an <strong>HP</strong> <strong>8753E</strong><br />

network analyzer.<br />

1. Identify the faulty group. Refer to Chapter 4, “Start Troubleshooting Here.”<br />

Follow up with the appropriate troubleshooting chapter that identifies the<br />

faulty assembly.<br />

2. Order a replacement assembly. Refer to Chapter 13, “Replaceable Parts.”<br />

3. Replace the faulty assembly and determine what adjustments are necessary.<br />

Refer to Chapter 14, “Assembly Replacement and Post-Repair Procedures. n<br />

4. Perform the necessary adjustments. Refer to Chapter 3, “Adjustments and<br />

Correction Constants. n<br />

5. Perform the necessary performance tests Refer to Chapter 2, “System<br />

Verification and Performance Tests ’<br />

5-2 Power Supply Troubleshooting


Simplified Block Diagram<br />

Figure 5-l shows the power supply group in simplified block diagram form.<br />

Refer to the detailed block diagram of the power supply (Figure 5-8) located at<br />

the end of this chapter to see voltage lines and specific connector pin numbers.<br />

PREREGULATOR<br />

A17 MOTHEREOARG<br />

OFF DURING<br />

NORMAL OPERATION<br />

\ON DURING<br />

NORMAL OPERATION<br />

\ ALL ON DURING<br />

NORMAL OPERAllON<br />

Figure 5-1. Power Supply Group Simplified Block Diagram<br />

sg6105e<br />

Power Supply Troubleshooting 5-3


Start Here<br />

Check the Green LED and Red LED on Al5<br />

Switch on the analyzer and look at the rear panel of the analyzer. Check the<br />

two power supply diagnostic LEDs on the Al5 preregulator casting by looking<br />

through the holes located to the left of the line voltage selector switch. (See<br />

Figure 5-2.)<br />

During normal operation, the bottom (green) LED is on and the top (red) LED is<br />

off. If these LEDs are normal, then Al5 is 95% verified. Continue to “Check the<br />

Green LEDs on A8”.<br />

� If the green LED is not on steadily, refer to “If the Green LED of the Al5 Is<br />

not ON Steadily” in this procedure.<br />

� If the red LED is on or flashing, refer to “If the Red LED of the Al5 Is ON” in<br />

this procedure.<br />

54 Power Supply Troubleshooting<br />

RED LED GREEN LED<br />

NORMALLY OFF NORMALLY ON<br />

/ /<br />

Figure 5-2. Location of Al5 Diagnostic LEDs<br />

LINE VOLTAGE<br />

SELECTOR SWITCH<br />

sg646e


Check the Green LEDs on A8<br />

Remove the top cover of the analyzer and locate the A8 post regulator; use the<br />

location diagram under the top cover if necessary. Check to see if the green<br />

LEDs on the top edge of A8 are all on. There are eight green LEDs (one is not<br />

visible without removing the PC board stabilizer).<br />

� If all of the green LEDs on the top edge of A8 are on, there is a 95%<br />

confidence level that the power supply is verified. lb confirm the last 5%<br />

uncertainty of the power supply, refer to “Measure the Post Regulator<br />

Voltages” (next).<br />

� If any LED on the A8 post regulator is off or Eashing, refer to “If the Green<br />

LEDs of the A8 are not alI ON” in this procedure.<br />

Measure the Post Regulator Voltages<br />

Measure the DC voltages on the test points of A8 with a voltmeter. Refer to<br />

Figure 5-3 for test point locations and Table 5-l for supply voltages and limits.<br />

+f%v AGND +5v!? SIX -1% -12.6VPP +15V -5VU -5.2V +22v t6V<br />

Figure 5-3. A8 Post Regulator ‘l&t Point Locations<br />

Power Supply Troubleshooting 5-5


‘lhble 5-1. A8 Post Regulator Test Point Voltages<br />

TP SUPPlY<br />

1 + 66 V (not used)<br />

2 AGND<br />

3 +6VD<br />

4 SDIS<br />

6 -16V<br />

6 - 12.6 VPP (probe power)<br />

7 +16V<br />

8 +6W<br />

0 -5.2 V<br />

10 +22v<br />

11 +6V<br />

5-5 Power Supply Troubleshooting<br />

Bane<br />

+ 64.6 to + 65.4<br />

n/a<br />

+4.0 to +6.3<br />

n/a<br />

-14.4 to -15.6<br />

-12.1 to -12.8<br />

+ 14.5 to + 15.5<br />

+ 5.05 to + 5.35<br />

-5.0 to -5.4<br />

+21.3 to +22.7<br />

+6.8 to +6.2


If the Green LED of the Al5 Is not ON Steadily<br />

If the green LED is not on steadily, the line voltage is not enough to power the<br />

analyzer.<br />

Check the Line Voltage, Selector Switch, and Fuse<br />

Check the main power line cord, line fuse, line selector switch setting, and<br />

actual line voltage to see that they are all correct. F’igure 5-4 shows how to<br />

remove the line fuse, using a small flat-blade screwdriver to pry out the fuse<br />

holder. Figure 5-2 shows the location of the line voltage selector switch. Use a<br />

small flat-blade screwdriver to select the correct switch position.<br />

If the Al5 green LED is still not on steadily, replace A15.<br />

FUSE IN USE<br />

\ INSERT SCREWDRIVER,<br />

PRY OPEN<br />

Figure 5-4. Removing the Line Fuse<br />

Power Supply Troubleshooting 5-7


If the Red LED of the Al5 Is ON<br />

If the red LED is on or flashing, the power supply is shutting down. Use the<br />

following procedures to determine which assembly is causing the problem.<br />

Check the A8 Post Regulator<br />

1. Switch off the analyzer.<br />

2. Disconnect the cable A15Wl from the A8 post regulator. (See Figure 5-5.)<br />

3. Switch on the analyzer and observe the red LED on A15.<br />

� If the red LED goes out, the problem is probably the A8 post regulator.<br />

Continue to “Verify the Al5 Preregulator” to first verify that the inputs to<br />

A8 are correct.<br />

� If the red LED is still on, the problem is probably the Al5 preregulator, or<br />

one of the assemblies obtaining power from it. Continue with “Check for a<br />

Faulty Assembly”.<br />

5-8 Power Supply Troubleshooting


Al5 Al5Wl (To<br />

Pre Reguloiur A17J2 Motherboardi<br />

Verify the Al6 Preregulator<br />

A15Wl (To<br />

A812 Post Regulator)<br />

Figure 5-5. Power Supply Cable Locations<br />

A8<br />

Post KegulatoI<br />

Verify that the Al5 preregulator is supplying the correct voltages to the A8 post<br />

regulator. Use a voltmeter with a small probe to measure the output voltages of<br />

A15Wl’s plug. Refer to lhble 5-2 and F’igure 5-6.<br />

17 If the voltages are not within tolerance, replace A15.<br />

Pewer Supply Troubleshooting 5-9


� If the voltages are within tolerance, Al5 is verified. Continue to “Check for a<br />

Faulty Assembly”.<br />

Pin<br />

1<br />

2<br />

394<br />

696<br />

7<br />

8<br />

0,lO<br />

11<br />

12<br />

A15WlPl (Dieeonnectea)<br />

vohgw<br />

N/C<br />

+126 to +loo<br />

+22.4to+33.6<br />

-22.4to-33.6<br />

N/C<br />

+9.4to +14<br />

-0.4 to -14<br />

N/C<br />

+32io+48<br />

‘able 5-2. Output Voltages<br />

A&J2 (connectea) Voltagee A15 Preregulatm Label<br />

+68to+72<br />

+68to+72<br />

+17.0 to +18.4<br />

-17.0 to -18.4<br />

+7.4 to +a.0<br />

+7.4io +a.0<br />

-6.7to -7.3<br />

+24.6to +28.6<br />

+24.6to +28.6<br />

N/C<br />

+7ov<br />

+18V<br />

-18V<br />

N/C<br />

+8V<br />

-8V<br />

N/C<br />

+26V<br />

IOTJZ: The + 6 VD supply must be loaded by one or more assemblies at alI times, or the other voltages will<br />

lot be correct. It connects to the motherboard connector A17J3 Pin 4.<br />

5-10 Power Supply Troubleshooting<br />

1


&T<br />

REGULATOR BOARD<br />

SOLDER s, DE ::I:I::: : A1532<br />

NOTE-<br />

I 1<br />

VOLTAGES ALL CABLES<br />

AND ASSEMBLIES<br />

CONNECTED<br />

Check for a Faulty Assembly<br />

Figure 5-6. A15Wl Plug Detail<br />

This procedure checks for a faulty assembly that might be shutting down the<br />

Al5 preregulator via one of the following lines (also refer to F’igure 5-l):<br />

� A15Wl connecting to the A8 post regulator<br />

� the + 5 VCPU line through the motherboard<br />

� the +5 VDIG line through the motherboard<br />

Do the following:<br />

1. Switch off the analyzer.<br />

2. Ensure that A15Wl is reconnected to A8. (Refer to Figure 5-5.)<br />

3. Remove or disconnect the assemblies listed in ‘lhble 5-3 one at a time<br />

and in the order shown. The assemblies are sorted from most to least<br />

accessible. Table 5-3 also lists any associated assemblies that are supplied<br />

sb6130d<br />

Puwer Supply Troubleshooting 5-11


y the assembly that is being removed. After each assembly is removed or<br />

disconnected switch on the analyzer and observe the red LED on A15.<br />

Note � Alwags switch ofl the analgzer before rewwwing or<br />

disconnecting assemblies.<br />

� When extensive disassembly is required, refer to Chapter 14,<br />

“Assembly Replacement and Post-Repair Procedures. n<br />

� Refer to Chapter 13, “Replaceable Parts,” to identify specific<br />

cables and assemblies that are not shown in this chapter.<br />

� If the red LED goes out, the particular assembly (or one receiving power from<br />

it) that allows it to go out is faulty.<br />

� If the red LED is still on after you have checked all of the assemblies listed in<br />

‘lhble 5-3, continue to “Check the Operating Temperature”.<br />

‘able 5-3. Recommended Order for RemovaUDisconnection<br />

Assembly Removal or Other Assemblies that Receive<br />

To Remove Disconne&ion Method Power from the Removed Assembly<br />

1. A19 Graphics Processor Remove from Card Cage None<br />

2. A14PracNDigital Remove from Card Cage None<br />

3. A9 CPU Disconnect W36 A20 Disk Drive<br />

(see “Cables, Rear” in<br />

Chapter 13)<br />

4. Al6 Rear Panel Interface<br />

5. A2 Front Panel Interface<br />

5-l 2 Power Supply Troubleshooting


Check the Operating Temperature<br />

The temperature sensing circuitry inside the Al5 preregulator may be shutting<br />

down the supply. Make sure the temperature of the open air operating<br />

environment does not exceed 55 OC (131 OF’), and that the analyzer fan is<br />

operating.<br />

� If the fan does not seem to be operating correctly, refer to “Pan<br />

Troubleshooting” at the end of this procedure.<br />

� If there does not appear to be a temperature problem, it is likely that Al5 is<br />

faulty.<br />

Inspect the Motherboard<br />

If the red LED is still on after replacement or repair of A15, switch off the<br />

analyzer and inspect the motherboard for solder bridges and other noticeable<br />

defects. Use an ohmmeter to check for shorts The +5 VD, +5 VCPU, or<br />

+5 VDSENSE lines may be bad. Refer to the block diagram (Figure 5-8) at the<br />

end of this chapter and troubleshoot these suspected power supply lines on the<br />

Al7 motherboard.<br />

Power Supply Troubleshooting 5-13


If the Green LEDs of the A8 are not all ON<br />

The green LEDs along the top edge of the A8 post regulator are normally on.<br />

Flashing LEDs on A8 indicate that the shutdown circuitry on the A8 post<br />

regulator is protecting power supplies from overcurrent conditions by<br />

repeatedly shutting them down. This may be caused by supply loading on A8 or<br />

on any other assembly in the analyzer.<br />

Remove A8, Maintain A15Wl Cable Connection<br />

1. Switch off the analyzer.<br />

2. Remove A8 from its motherboard connector, but keep the A15Wl cable<br />

connected to A8.<br />

3. Short A8TP2 (AGND) (see F’igure 5-3) to chassis ground with a clip lead.<br />

4. Switch on the analyzer and observe the green LEDs on A8.<br />

� If any green LEDs other than +5 VD are still off or flashing, continue to<br />

“Check the A8 Fuses and Voltages”.<br />

� If all LEDs are now on steadily except for the +5 VD LED, the Al5<br />

preregulator and A8 post regulator are working properly and the trouble<br />

is excessive loading somewhere after the motherboard connections at A8.<br />

Continue to “Remove the Assemblies”.<br />

Check the A8 Fuses and Voltages<br />

Check the fuses along the top edge of A8. If any A8 fuse has burned out,<br />

replace it. If it burns out again when power is applied to the analyzer, A8 or<br />

Al5 is faulty. Determine which assembly has failed as follows.<br />

1. Remove the A15Wl cable at AS. (See Figure 5-5.)<br />

2. Measure the voltages at A15WlPl (see F’igure 5-6) with a voltmeter having a<br />

small probe.<br />

3. Compare the measured voltages with those in Table 5-2.<br />

0 If the voltages are within tolerance, replace A8.<br />

� If the voltages are not within tolerance, replace A15.<br />

5-14 Power Supply Troubleshooting


If the green LEDs are now on, the Al5 preregulator and A8 post regulator are<br />

working properly and the trouble is excessive loading somewhere after the<br />

motherboard connections at A8. Continue to “Remove the Assemblies”.<br />

Remove the Assemblies<br />

1. Switch off the analyzer.<br />

2. Install A8. Remove the jumper from A8TP2 (AGND) to chassis ground.<br />

3. Remove or disconnect all the assemblies listed below. (See Figure 5-5.)<br />

Alwags suvitch ofl the anulgzer before removing or diswnnectircg an<br />

ass&lg.<br />

Al0 digital IF<br />

All phase lock<br />

Al2 reference<br />

Al3 fractional-N analog<br />

Al4 fractional-N digital<br />

A19 graphics processor<br />

4. Switch on the analyzer and observe the green LEDs on A8.<br />

� If any of the green LEDs are off or flashing, it is not likely that any of<br />

the assemblies listed above is causing the problem. Continue to “Briefly<br />

Disable the Shutdown Circuitry“.<br />

� If alI green LEDs are now on, one or more of the above assemblies may be<br />

faulty. Continue to next step.<br />

5. Switch off the analyzer.<br />

6. Reinstall each assembly one at a time. Switch on the analyzer after each<br />

assembly is instaIled. The assembly that causes the green LEDs to go off or<br />

flash could be faulty.<br />

Note It is possible, however, that this condition is caused by the<br />

A8 post regulator not supplying enough current. ‘Ib check<br />

this, reinstall the assemblies in a different order to change the<br />

loading. If the same assembly appears to be faulty, replace that<br />

assembly. If a different assembly appears faulty, A8 is most<br />

likely faulty (unless both of the other assemblies are faulty).<br />

Power Supply Troubleshooting 5-15


Briefly Disable the Shutdown Circuitry<br />

In this step, you shutdown the protective circuitry for a short time, and the<br />

supplies are forced on (including shorted supplies) with a 100% duty cycle.<br />

Caution Damage to components or to circuit traces may occur if A8TP4<br />

(SDIS) is shorted to chassis ground for more than a few seconds<br />

while supplies are shorted.<br />

1. Connect A8TP4 (SDIS) to chassis ground with a jumper wire.<br />

2. Switch on the analyzer and note the signal mnemonics and test points of any<br />

LEDs that are off. Immediately resow the jumper wire.<br />

3. Refer to the block diagram (Figure 5-8) at the end of this chapter and do the<br />

foIIowing:<br />

� Note the mnemonics of any additional signals that may connect to any A8<br />

test point that showed a fault in the previous step.<br />

� Cross reference alI assemblies that use the power supplies whose A8 LEDs<br />

went out when A8TP4 (SDIS) was connected to chassis ground.<br />

5-16 Power Supply Troubleshooting


� Make a list of these assemblies.<br />

� Delete the following assemblies from your list as they have already been<br />

verified earlier in this section.<br />

A10 digital IF<br />

All phase lock<br />

Al2 reference<br />

Al3 fractional-N analog<br />

Al4 fractional-N digital<br />

A19 graphics processor<br />

4. Switch off the analyzer.<br />

5. of those assemblies that are left on the list, remove or disconnect them<br />

from the analyzer one at a time. lbble 5-4 shows the best order in which to<br />

remove them, sorting them from most to least accessible. lhble 5-4 also lists<br />

any associated assemblies that are supplied by the assembly that is being<br />

removed. After each assembly is removed or disconnected, switch on the<br />

analyzer and observe the LEDs.<br />

Note<br />

w When extensive disassembly is required, refer to Chapter 14,<br />

“Assembly Replacement and Post-Repair Procedures. n<br />

H Refer to Chapter 13, “Replaceable Parts”, to identify specific<br />

cables and assemblies that are not shown in this chapter.<br />

� If all the LEDs light, the assembly (or one receiving power from it) that allows<br />

them to light is faulty.<br />

� If the LEDs are still not on steadily, continue to “Inspect the Motherboard”.<br />

Power Supply Troubleshooting 5-17


1. A3 Source<br />

‘able 5-4. Recommended Order for Removal/Disconnection<br />

Assembly<br />

To Remove<br />

2. A7 Pulse Generator<br />

3. A4 R Sampler<br />

4. A5 A Sampler<br />

6. A6 B Sampler<br />

6. A9 CPU<br />

7. A2 Front Panel Interface<br />

8. Al6 Rear Panel Interface<br />

Inspect the Motherboard<br />

Removal or OtherAssemblieathat Receive<br />

Disconnection Method Power from the Removed Assembly<br />

Remove from Card Cage None<br />

Remove from Card Cage None<br />

Remove from Card Cage None<br />

Remove from Card Cage None<br />

F&move from Card Cage None<br />

Disconnect W36 and W36 A20 Disk Drive<br />

Disconnect W17 Al Front Panel Keyboard<br />

Disconnect W27 A25 Test Set Interface<br />

A24 Transfer Switch<br />

AZ3 LED Front Panel<br />

Inspect the Al7 motherboard for solder bridges and shorted traces. In<br />

particuIar, inspect the traces that cany the supplies whose LEDs faulted when<br />

A8TP4 (SDIS) was grounded earlier.<br />

5-18 Power Supply Troubleshooting


Error Messages<br />

Three error messages are associated with the power supplies functional group.<br />

They are shown here.<br />

� POWER SUPPLY SHUT DOWN!<br />

One or more supplies on the A8 post regulator assembly is shut down due to<br />

one of the following conditions: overcurrent, overvoltage, or undervoltage.<br />

Refer to “If the Red LED of the Al5 Is ON” earlier in this procedure.<br />

� POWER SUPPLY HOT<br />

The temperature sensors on the A8 post regulator assembly detect an<br />

overtemperature condition. The regulated power supplies on A8 have been<br />

shut down.<br />

Check the temperature of the operating environment; it should not be greater<br />

than + 55 OC (131 OF). The fan should be operating and there should be at<br />

least 15 cm (6 in) spacing behind and all around the analyzer to allow for<br />

proper ventilation.<br />

� PROBE POWER SHUT DOWN !<br />

The front panel RF probe biasing supplies are shut down due to excessive<br />

current draw. These supplies are + 15 VPP and -12.6 VPP, both supplied by<br />

the A8 post regulator. + 15 VPP is derived from the + 15 V supply. -12.6 VPP<br />

is derived from the -12.6 V supply.<br />

Refer to Figure 5-7 and carefully measure the power supply voltages at the<br />

front panel RF probe connectors.<br />

Power Supply Troubleshooting 5-1 g


(C&K<br />

GROUND)<br />

SY -126”<br />

+15v<br />

Figure 5-7. Front Rmel Probe Power Connector Voltages<br />

� If the correct voltages are present, troubleshoot the probe.<br />

sg650e<br />

� If the voltages are not present, check the + 15 V and -12.6 V green LEDs on<br />

A8.<br />

� If the LEDs are on, there is an open between the A8 assembly and the<br />

front panel probe power connectors, Put A8 onto an extender board and<br />

measure the voltages at the following pins:<br />

ASP2 pins 6 and 36 -12.6 volts<br />

A8P2 pins 4 and 34 + 15 volts<br />

� If the LEDs are off, continue with “Check the Fuses and Isolate A8”.<br />

Check the Fuses and Isolate A8<br />

Check the fuses associated with each of these supplies near the A8 test points.<br />

If these fuses keep burning out, a short exists. Try isolating A8 by removing<br />

it from the motherboard connector, but keeping the cable A15Wl connected<br />

to A8J2. Connect a jumper wire from A8TP2 to chassis ground. If either the<br />

+ 15 V or -12.6 V fuse blows, or the associated green LEDs do not light, replace<br />

A8.<br />

5-20 Power Supply Troubleshooting


If the + 15 V and -12.6 V green LEDs light, troubleshoot for a short between<br />

the motherboard connector pins XA8P2 pins 6 and 36 (-12.6 V) and the front<br />

panel probe power connectors. Also check between motherboard connector pins<br />

XA8P2 pins 4 and 34 (+ 15 V) and the front panel probe power connectors.<br />

Power Supply Troubleshooting 5-21


Fan Troubleshooting<br />

Fan Speeds<br />

The fan speed varies depending upon temperature. It is normal for the fan to<br />

be at high speed when the analyzer is just switched on, and then change to low<br />

speed when the analyzer is cooled.<br />

Check the Ran Voltages<br />

If the fan is dead, refer to the A8 post regulator block diagram (F’igure 5-8) at<br />

the end of this chapter. The fan is driven by the + 18 V and -18 V supplies<br />

coming from the Al5 preregulator. Neither of these supplies is fused.<br />

The -18 V supply is regulated on A8 in the fan drive block, and remains<br />

constant at approximately -14 volts It connects to the Al7 motherboard via<br />

pin 32 of the A8Pl connector.<br />

The + 18 V supply is regulated on A8 but changes the voltage to the fan,<br />

depending on airflow and temperature information. Its voltage ranges from<br />

approximately - 1.0 volts to + 14.7 volts, and connects to the Al7 motherboard<br />

via pin 31 of the ASP1 connector.<br />

Measure the voltages of these supplies while using an extender board to allow<br />

access to the PC board connector, A8Pl.<br />

Short ASTP3 to Ground<br />

If there is no voltage at A8Pl pins 31 and 32, switch off the analyzer. Remove<br />

A8 from its motherboard connector (or extender board) but keep the cable<br />

A15Wl connected to A8. (See Figure 5-5.) Connect a jumper wire between<br />

A8TP3 and chassis ground. Switch on the analyzer.<br />

� If aII the green LEDs on the top edge of A8 Iight (except +5 VD), replace the<br />

fan.<br />

� If other green LEDs on A8 do not Iight, refer to “If the Green LEDs of the A8<br />

are not all ON” earlier in this procedure.<br />

5-22 Power Supply Troubleshootins


Intermittent Problems<br />

PRESET states that appear spontaneously (without pressing -I) typically<br />

signal a power supply or A9 CPU problem. Since the A9 CPU assembly is<br />

the easiest to substitute, do so. If the problem ceases, replace the A9. If the<br />

problem continues, replace the Al5 preregulator assembly.<br />

Power Supply Troubleshooting 5-23


Digital Control Troubleshooting<br />

Use this procedure only if you have read Chapter 4, “Start Troubleshooting<br />

Here. n<br />

The digital control group assemblies consist of the following:<br />

� CPU<br />

� A9<br />

� Display<br />

� A2, A18, A19, A27<br />

� Front Panel<br />

� Al, A2<br />

� Digital IF<br />

� A10<br />

� Rear Panel Interface<br />

� Al6<br />

Begin with “CPU Troubleshooting,” then proceed to the assembly that you<br />

suspect has a problem. If you suspect an <strong>HP</strong>-IB interface problem, refer to<br />

“<strong>HP</strong>-IB Failures,” at the end of this chapter.<br />

6<br />

Digital Control Troubleshooting 6-1


Digital Control Group Block Diagram<br />

6-2 Digital Control Troubleshooting<br />

Figure 6-1. Digital Control Group Block Diagram


Assembly Replacement Sequence<br />

The following steps show the sequence to replace an assembly in an <strong>HP</strong> <strong>8753E</strong><br />

network analyzer.<br />

1. Identify the faulty group. Refer to Chapter 4, “Start Troubleshooting Here.”<br />

Follow up with the appropriate troubleshooting chapter that identifies the<br />

faulty assembly.<br />

2. Order a replacement assembly. Refer to Chapter 13, “Replaceable Parts.”<br />

3. Replace the faulty assembly and determine what adjustments are necessary.<br />

Refer to Chapter 14, “Assembly Replacement and Post-Repair Procedures.”<br />

4. Perform the necessary adjustments. Refer to Chapter 3, “Adjustments and<br />

Correction Constants n<br />

5. Perform the necessary performance tests. Refer to Chapter 2, “System<br />

Verification and Performance Tests. n<br />

Digital Control Troubleshooting 6-3


CPU Troubleshooting (A9)<br />

A9 CC Switch Positions<br />

The A9 CC switch must be in the NORMAL position for these procedures. This<br />

is the position for normal operating conditions. To move the switch to the<br />

NORMAL position, do the following:<br />

1. Remove the power line cord from the analyzer.<br />

2. Set the analyzer on its side.<br />

3. Remove the two comer bumpers from the bottom of the instrument with a<br />

T-15 TORX screwdriver.<br />

4. Loosen the captive screw on the bottom cover’s back edge.<br />

5. Slide the cover toward the rear of the instrument.<br />

6. Move the switch to the NORMAL position as shown in Figure 6-2.<br />

7. Replace the bottom cover and power cord.<br />

64 Digital Control Troubleshooting


sga c8e<br />

A9 CPU Assembly<br />

Normal Mode Alter Mode Rocker Slide<br />

Figure 6-2. Switch Positions on the A9 CPU<br />

Checking A9 CPU Red LED Patterns<br />

The A9 CPU has five red LEDs that can be viewed through a small opening in<br />

the rear panel of the analyzer. (See Figure 6-3.) Four LEDs are easily viewable.<br />

The fifth LED must be viewed by looking to the left at an angle.<br />

1. Cycle the power while observing five red LEDs<br />

Cycle the power on the analyzer and observe the five red LEDs. After an<br />

initial pattern, the five red LEDs on the A9 CPU board should remain off.<br />

� If the LEDs remained off, then proceed to the assembly that you suspect<br />

has a problem.<br />

� If the LEDs did not remain off, switch off the power and remove the<br />

bottom cover for further troubleshooting.<br />

Digital Control Troubloshooting 6-5


LCPU LED<br />

WlNDOW<br />

Figure 6-3. CPU LED Window on Rear Panel<br />

2. Cycle the power while observing all eight red LEDs<br />

With the analyzer positioned bottom up, cycle the power and observe the<br />

eight red LEDs while looking from the front of the instrument.<br />

Note If Grmware did not load, a red LED on the CPU board will be<br />

flashing. Refer to “Loading Firmware” in Chapter 3.<br />

3. Evaluate results<br />

� If either of the following LED patterns remain, go to “Display<br />

Troubleshooting. n<br />

0 0 0 0 0 0 0 0<br />

� � � � � � � �<br />

(front of instrument 4)<br />

sg651e<br />

� If any other LED patterns remain, replace the A9 CPU after verifying the<br />

power supply.<br />

6-6 Digital Control Troubleshooting


Display Troubleshooting (A2, A18, A19, A27)<br />

This section contains the following information:<br />

� Evaluating your Display<br />

� Troubleshooting a White Display<br />

� Troubleshooting a Black Display<br />

w Troubleshooting a Display with Color Problems<br />

Evaluating your Display<br />

Switch the analyzer off, and then on. The display should be bright with the<br />

annotation legible and intelligible. There are four criteria against which your<br />

display is measured:<br />

� Background Lamp Intensity<br />

� Green, Red or Blue Stuck Pixels<br />

w Dark Stuck Pixels<br />

� Newtons ����<br />

Evaluate the display as follows:<br />

� If either the Al8 LCD, A19 GSP, A9 CPU or AZ7 backlight inverter assemblies<br />

are replaced, perform a visual inspection of the display.<br />

� If it appears that there is a problem with the display, refer to the<br />

troubleshooting information that follows<br />

� If the new display appears dim or doesn’t light, see “Backlight Intensity<br />

Check, n next.<br />

Digital Control Troubleshooting 6-7


Backlight Intensity Check<br />

Required Equipment and Ytbols<br />

Photometer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tektronix J16<br />

Probe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .‘Pektronix J6503<br />

Light Occluder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tektronix 016-0305-00<br />

Antistatic Wrist Strap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> P/N 9300-1367<br />

Antistatic Wrist Strap Cord . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <strong>HP</strong> P/N 9300-0980<br />

Static-control Table Mat and Earth Ground Wire . . . . . . . . . . . . <strong>HP</strong> P/N 9300-0797<br />

Analgm- warmup time: 30 minutes. Photomder warrn-up time: 30 minutes.<br />

Note This procedure should be performed with a photometer and only<br />

by qualified personnel.<br />

1. Press ~~)~~~~.~~~~~'.~~~~~~~~. ~~~~~~~Iloo]Lxl], to set the &play<br />

- . . . . . ~::::::. ..-.-..... -- -......-......-......... -- ..-. ..-- -- --.- -..<br />

intensity at 100%.<br />

,.,,,,,......,._. _ .,.,.,.,., _ __ . . . . . . . . . . . . / ,;.?.., . . . . . . . ..,, . . . _ . ,............,...,.........:....:::<br />

..;. ._ hy:.::*,7


Note<br />

H P <strong>8753E</strong><br />

NETWORK ANALYZER<br />

PHOTOMETER PHOTOMETER<br />

PROBE<br />

Figure 6-4. Backlight Intensity Check Setup<br />

The intensity levels are read with a display bezel installed.<br />

sg632e<br />

5. If the photometer registers less than 50 Nits, the display backlight lamp is<br />

bad. Refer to the “Replacement Procedures” chapter in the service manual<br />

for information on display lamp replacement.<br />

Red, Green, or Blue Pixels SpeciIlcations<br />

Red, green, or blue “stuck on” pixeis may appear against a black background.<br />

m ted for these dots, press w ~~~~~~~~~ .~~ 170) Ixl)<br />

:~~~~~~ ~~~~~,<br />

..,. ..,,.,...... ..,. - _- - ._.. -- -<br />

In a properly working display, the following will not occur:<br />

� complete rows or columns of stuck pixels<br />

� more than 5 stuck pixels (not to exceed a maximimi of 2 red or blue, and 3<br />

green)<br />

� 2 or more consecutive stuck pixels<br />

� stuck pixels less than 6.5 mm apart<br />

Digital Control Troubleshooting 6-g


Dark Pixels Specidications<br />

Dark “stuck on” pixels may appear against a white background. To test for<br />

these dots, press I?) ~~~~~~l~~~ :&‘J$ L66) @) ~~~~~~~<br />

::: ~.~.zsz -....... i_..-...:::::: . . .. . . . . . . . . . ..~...................-............. . . . . . . . .<br />

~~~~~~~~~~..~~~~~~~~~~~~~~~~~~..~.~~~~~~~~.<br />

~~~~~~~..<br />

: . ..A.. . . . . . . . . .<br />

In a properly working display, the following will not occur:<br />

� more than 12 stuck pixels (not to exceed a maximum of 7 red, green, or<br />

blue)<br />

� more than one occurrence of 2 consecutive stuck pixels<br />

� stuck pixels less than 6.5 mm apart<br />

Newton’s Rings<br />

To check for the patterns known as Newton’s Rings, change the display to white<br />

by pressing the following keys:<br />

Figure 6-5 ilhrstrates acceptable and non-acceptable examples of Newtons Rings<br />

6-10 Digital Control Troubleshooting


V<br />

4 Rings<br />

Unacceptable<br />

3 Rings<br />

Acceptable<br />

Figure 6-5. Newtons Rings<br />

sb8123d<br />

Digital Control Troubleshooting 6-11


Troubleshooting a White Display<br />

If the display is white, the A27 back light inverter is functioning properly.<br />

Connect a VGA monitor to the analyzer.<br />

� If the image on the external monitor is normal, then suspect A2, AM, or the<br />

front panel cabling.<br />

H If the image on the external monitor is bad, suspect the A19 GSP or cable<br />

W20 (CPU to motherboard).<br />

Troubleshooting a Black Display<br />

1. Remove the front panel with the exception of leaving cable W17 (A2 to<br />

motherboard) connected.<br />

2. Press 1Preset) while checking to see if there is a flash of light.<br />

� If the light does not flash, suspect the front panel cabling, the display lamp,<br />

or the A27 inverter.<br />

Troubleshooting a Display with Color Problems<br />

2. Run display service test 74 as described in Chapter 10. Confirm that there<br />

are four intensities for each color.<br />

� If the test passes, then continue.<br />

� If the test fails, then suspect the front panel cabling, A2, A19, or Al&<br />

3. Connect a VGA monitor to the analyzer.<br />

� If the image on the external monitor has the same color problems, then<br />

replace the A19 GSl?<br />

w If the image on the external monitor is acceptable, then there must be a<br />

missing color bit. Suspect the front panel cabling, A2, A19, or AM.<br />

6.12 Digital Control Troubleshooting


Front Panel Troubleshooting (Al, A2)<br />

Check Front Panel LEDs After Preset<br />

1. Press B on the analyzer.<br />

2. Observe that all front panel LEDs turn on and, within five seconds after<br />

releasing B, all but the CHl and Port 1 LED turns off. Refer to<br />

Figure 6-6.<br />

� If all the front panel LEDs either stay on or off, there is a control problem<br />

between A9 and Al/A2. See “Inspect Cables, n located later in this chapter.<br />

� If, at the end of the turn on sequence, the channel 1 LED is not on and all<br />

<strong>HP</strong>-IB status LEDs are not off, continue with “Identify the Stuck Key”.<br />

� If you suspect that one or more LEDs have burned out, replace the Al<br />

keypad assembly.<br />

Note Port 1 and port 2 LED problems may be caused by the<br />

malfunction of the A23 LED board or the A24 transfer switch.<br />

Figure 6-6. Preset Sequence<br />

Digital Control Troubleshooting 6-13


Identify the Stuck Key<br />

Match the LED pattern with the patterns in ‘Ihble 6-l. The LED pattern<br />

identifies the stuck key. Free the stuck key or replace the front panel part<br />

causing the problem.<br />

‘lhble 6-l. Front Panel Key Codes<br />

DeChWl LBD fattern % Front Rrnel Block<br />

Nnmber<br />

CEl CE2 R L T 6<br />

0<br />

1 .<br />

E<br />

2 . &<br />

Response<br />

Entry<br />

=m<br />

3 . . -Pm<br />

4 .<br />

EAx! BfXpOnSe<br />

5 . .<br />

0<br />

Entry<br />

6 . .<br />

0<br />

Entry<br />

7 . . . &f.f.;j:T~ Softicey<br />

8 . ;-.;g. MtJ=Y<br />

9 . .<br />

El<br />

Entry<br />

10 . . Lo/n) -try<br />

11 . . . m Active Channel<br />

12 . . Active Channel<br />

13 . . .<br />

14 . . .<br />

15 . . . .<br />

77<br />

b<br />

g&&#&f;<br />

Entry<br />

Entry<br />

softkey<br />

16 . @GJ StllllUlUS<br />

17 . . Instrument State<br />

18 . .<br />

@F Instrument State<br />

19 . . . && StllllUlUS<br />

20 . . Start StiIllUlW<br />

21 . . .<br />

@ii2<br />

Instrument State<br />

22. . . . Lsystem Instrument State<br />

23 . . . . $j?jR&$d softkey<br />

24 . . aesponse<br />

25 . . . Entry<br />

6-14 Digital Control Troubleshooting


Dedmal<br />

Number<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

35<br />

36<br />

37<br />

38<br />

39<br />

4G47<br />

48<br />

49<br />

50<br />

51<br />

62<br />

63<br />

64<br />

66<br />

‘able 6-1. Front Panel Key Codes (continued)<br />

CEl CE2<br />

LED Pattern<br />

R L T S<br />

s .<br />

.<br />

. .<br />

. .<br />

. . .<br />

. . .<br />

.<br />

. . . .<br />

.<br />

. . �<br />

� .<br />

.<br />

.<br />

.<br />

�<br />

.<br />

.<br />

� .<br />

.<br />

.<br />

.<br />

�<br />

.<br />

lot used<br />

� .<br />

. .<br />

. .<br />

.<br />

. .<br />

�<br />

. .<br />

� .<br />

. . .<br />

. . . .<br />

. . .<br />

�<br />

. . .<br />

� .<br />

Digital Control Troubleshooting 6-15


Inspect Cables<br />

Remove the front panel assembly and visually inspect the ribbon cable that<br />

connects the front panel to the motherboard. Also, inspect the interconnecting<br />

ribbon cable between Al and A2. Make sure the cables are properly connected.<br />

Replace any bad cables.<br />

Test Using a Controller<br />

If a controller is available, write a simple command to the analyzer. If the<br />

analyzer successfully executes the command, the problem is either the A2 front<br />

panel interface or W17 (A2 to motherboard ribbon cable) is faulty.<br />

6-16 Digital Control Troubleshooting


Run the Internal Diagnostic ‘lksts<br />

The analyzer incorporates 20 internal diagnostic tests. Most tests can be run as<br />

part of one or both major test sequences: alI internal (test 0) and preset (test 1).<br />

,. ,.z.;;;;,;.;~~ i ..: a.; .?, :: :*~:(;(;$,~, ;f; 51’:::” zgz,, . . . . _ _ .,. _ ,. / _<br />

1. Press @&J .$&&@J&#&#$@ Iaw @ Ixl) ~~~~~~: to perform a<br />

: . . . . . . . . . . ..$ .._._ .:: I .._. .L... .._............. - .._... ..-... -- -.<br />

INT tests.<br />

2. Then press (i-J Lxl) to see the results of the preset test. If either sequence<br />

fails, press the Q) @) keys to Gnd the tist occurrence of a FAIL message for<br />

tests 2 through 20. See ‘lhble 6-2 for further troubleshooting information.<br />

Digital Control Troubleshooting 6-17


0Allrnt<br />

1 Preset<br />

2IwM<br />

lkst<br />

3CMosRAM<br />

QMahlDRAM<br />

5 DSP WrlRd<br />

6DSPRAM<br />

7DSPALU<br />

8 DSP Intrpt<br />

9 DIP Control<br />

10 DIP Counter<br />

11 DSP Control<br />

12 Fr Pan Wr/Rd<br />

13 Rear Panel<br />

14 Post-reg<br />

15 FYac-N Cant<br />

16 Sweep !l’rig<br />

17ADcLin<br />

18ADcofs<br />

19 ABUS lbst<br />

20 PN count<br />

‘ICable 6-2. Internal Diagnostic ‘I&t with Commentary<br />

Seauence’ Probable Fniled AwembliPat --- I<br />

Comments and Troubleshooting Hints<br />

-: Executes tests 3-11,13-16,20.<br />

-: Executes tests 2-11, 14-16. Runs at power-on or preset.<br />

AOz Repeats on fail; refer to “CPU Troubleshooting (As)” in this chapter<br />

to replace ROM or A9.<br />

AOt Beplace A9.<br />

AOz Repeats on fail; replace A9.<br />

AOz Replace A9.<br />

AOI Replace A9.<br />

A& Replace A9.<br />

AO/AlO: Remove AlO, rerun test. If fail, replace A9. If paw, replace AlC<br />

AOiAlO: Most likely A0 assembly.<br />

AlO/AO/AlP: Check analog bus node 17 for 1 MHz. If correct, Al2 is<br />

verified; suspect AlO.<br />

AlO/& Most likely AlO.<br />

A2iAlIAg: Run test 23. lf fail, replace A2. If pass, problem is on bus<br />

between AS and A2 or on A9 assembly.<br />

AlB/AOz Disconnect A16, and check A9J2 pin 48 for 4 IdIiz clock signal.<br />

If OK, replace A16. If not, replace A9.<br />

AlS/A8/Destination assembly: See Chapter 6, ‘Power Supply<br />

Troubleshootiug.”<br />

A14: Replace A14.<br />

A14,AlOz Most likely A14.<br />

Al& Replace AlO.<br />

A10: Replace AlO.<br />

AlO: Replace AlO.<br />

*P- part of PRESET sequence; AI -part of ALL INTERNAL sequence.<br />

t in decreasiug order of probability.<br />

6-16 Digital ControlTroubleshooting<br />

A14lA13/A10: Most likely Al4 or A13, as previous tests check AlO. See<br />

1 Chapter 7, “Source Troubleshooting.”


If the Fault Is Intermittent<br />

Repeat Test Function<br />

If the failure is intermittent, do the following:<br />

.,.,.,.,.,.,.,.,.,.,. . . _ _ ‘....s ;~.,_..;;_ ..~.......,.,.,.,.,. ,....... .~, ., ,/ ,,,,, ,,,,,,, . . . (<br />

1. Press (s)<br />

.._........._...._~~.....~..-..........-..<br />

~~~~~,~~<br />

/-._ii ..--<br />

~~~~~~~~~~~~<br />

i _.._..........__ --:;;;::;A-...;;; _........................<br />

.m!&g.: @g<br />

- -..<br />

to turn on the<br />

repeat function.<br />

3. Select the test desired and press ~~~~~<br />

:..: . . .. ii . . . . . . . I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . .ii .... . . . . . . . . . . . . . ........ . . . . . . . . . . . . . ..x. . .<br />

4. Press any key to stop the function. The test repeat function is explained in<br />

Chapter 10, “<strong>Service</strong> Key Menus and Error Messages n<br />

<strong>HP</strong>-II3 Failures<br />

If you have performed “Step 3. Troubleshooting <strong>HP</strong>-B3 Systems” in Chapter 4,<br />

“Start Troubleshooting Here,” and you suspect there is an <strong>HP</strong>-IB problem in the<br />

analyzer, perform the following test. It checks the internal communication path<br />

between the A9 CPU and the Al6 rear panel. It does not check the <strong>HP</strong>-IB paths<br />

external to the instrument.<br />

., .... .............................. ........ .............. . .. .... ..... .::.:.:,,: .. ............ ::.::.::.::.~::<br />

hem m ~~~~~~~~,-<br />

_,i ,_,, i........................... i ..,.:........__ ....... .._ ....... j..........<br />

:;~~~<br />

........................_<br />

L13) Lxl] :~~~~~~~~.<br />

If the analyzer fails the test, the problem is likely to be the Al6 rear panel.<br />

� If the analyzer passes the test, it indicates that the A9 CPU can communicate<br />

with the Al6 rear panel with a 50% confidence level. There is a good chance<br />

that the Al6 rear panel is working. This is because internal bus lines have<br />

been tested between the A9 CPU and A16, and <strong>HP</strong>-IB signal paths are not<br />

checked external to the analyzer.<br />

Digital Control Troubleshooting 6-l 6


Source Troubleshooting<br />

Use this procedure only if you have read Chapter 4, “Start Troubleshooting<br />

Here.” This chapter is divided into two troubleshooting procedures for the<br />

following problems:<br />

w Incorrect power levels: Perform the “Power” troubleshooting checks.<br />

� Phase lock error: Perform the “Phase Lock Error” troubleshooting checks.<br />

The source group assemblies consist of the following:<br />

� A3 source<br />

� A4 sampler/mixer<br />

� A7 pulse generator<br />

w A11 phase lock<br />

w Al2 reference<br />

w Al3 fractional-N (analog)<br />

� Al4 fractional-N (digital)<br />

7<br />

Source Troubleshooting 7-l


Assembly Replacement Sequence<br />

The following steps show the sequence to replace an assembly in an <strong>HP</strong> <strong>8753E</strong><br />

network analyzer.<br />

1. Identify the faulty group. Refer to Chapter 4, “Start Troubleshooting Here. n<br />

Follow up with the appropriate troubleshooting chapter that identifies the<br />

faulty assembly.<br />

2. Order a replacement assembly. Refer to Chapter 13, “Replaceable Parts. n<br />

3. Replace the faulty assembly and determine what adjustments are necessary.<br />

Refer to Chapter 14, “Assembly Replacement and Post-Repair Procedures.”<br />

4. Perform the necessary adjustments. Refer to Chapter 3, “Adjustments and<br />

Correction Constants. n<br />

5. Perform the necessary performance tests Refer to Chapter 2, “System<br />

Verihcation and Performance Tests. n<br />

Before You Start Troubleshooting<br />

Make sure ail of the assemblies are llrmly seated. Also make sure that input R<br />

has a signal of at least -35 dBm (about 0.01 Vp-p into 50 ohms) at all times to<br />

maintain phase lock.<br />

7-2 Source Troubleshooting


Phase Lock Error<br />

sg652e<br />

GIGITIZING<br />

OX I LLOSCOPE<br />

H P <strong>8753E</strong><br />

NETWORK<br />

ANALYZER<br />

(USE WITH SPECTRUM ANALYZER)<br />

i<br />

EXT<br />

REF<br />

INPUT<br />

10 MHz<br />

OUT , i<br />

SPECTRUM<br />

ANALYZER<br />

I /<br />

I<br />

I I<br />

I<br />

/<br />

,<br />

I<br />

,<br />

I I<br />

I<br />

I I<br />

I<br />

I<br />

,<br />

\ A<br />

.------------ _ ------------~_-__________<br />

J<br />

Figure 7-1. Basic Phase Lock Error Troubleshooting Equipment Setup<br />

Troubleshooting tools include the assembly location diagram and phase lock<br />

diagnostic tools. The assembly location diagram is on the underside of the<br />

instrument top cover. The diagram shows major assembly locations and RF cable<br />

connections. The phase lock diagnostic tools are explained in the “Source Group<br />

Troubleshooting Appendix” and should be used to troubleshoot phase lock<br />

problems The equipment setup shown in Figure 7-l can be used throughout this<br />

chapter.<br />

Phase Lock Loop Error Message Check<br />

Phase lock error messages may appear as a result of incorrect pretune<br />

correction constants. To check this possibility, perform the pretune correction<br />

constants routine.<br />

The four phase lock error messages, listed below, are described in the “Source<br />

Group Troubleshooting Appendix” at the end of this chapter.<br />

� NO IFFOUND: CHECK R INPUT LEVEL<br />

� NO PHASE LOCK: CHECK R INPUT LEVEL<br />

� PHASE LOCK CAL FAILED<br />

74 Source Troubleshooting


H PHASE LOCK LOST<br />

1. Make sure the A9 CC switch is in the AIZER position:<br />

a. Remove the power line cord from the analyzer.<br />

b. Set the analyzer on its side.<br />

c. Remove the two corner bumpers from the bottom of the instrument with<br />

a T-15 TORX screwdriver.<br />

d. Loosen the captive screw on the bottom cover’s back edge.<br />

e. Slide the cover toward the rear of the instrument.<br />

f. Move the jumper to the AI.X position as shown in Figure 7-2.<br />

g. Replace the bottom cover, comer bumpers, and power cord.<br />

sgs1 me<br />

A9 CPU Assembly<br />

Normal Mode Alter Mode Rocker Slide<br />

Figure 7-2. Jumper Positions on the A9 CPU<br />

Source Troubleshooting 7-5


. . . . . . .<br />

2. ‘Jet& on the andyzer md press [s) :~~~~~~~~~; ;*?a$ (46) Ixl]<br />

. . . . . . . . . . . . . . . . . .<br />

.,........... ..,. .,<br />

_.........A.. -~~;~.............-/..........~.......... i............ ..__... u;...:.< I ..:.::: ._.:. . . . . . . . . . . . i,<br />

new analog bus correction constants. Then press<br />

L45) Lxl) ~~~~ to generate default<br />

pretune correction constants<br />

_ i .._... .: ,:..: _ _ _ . . _ _ ::. ...::--:.:.:.:. := . . . . x ; ..z.; . . . _..... . . . T ..../....: ..-.... __; ‘Q&f& -.... /._i&. L48) Lxl) ~~~:...~~. 1-i to<br />

generate new pretune correction constants.<br />

3. Press m and observe the analyzer display:<br />

a. No error message: restore the A9 CC jumper to the NRM position. Then<br />

refer to “Post-Repair Procedures” in Chapter 14 to verify operation.<br />

b. Error message visible: continue with “A4 Sampler/Mixer Check”.<br />

A4 Sampler/Mixer Check<br />

The A4, A5, and A6 (R, A and B) sampler/mixers are similar in operation. Any<br />

sampler can be used to phase lock the source. lb eliminate the possibility of a<br />

faulty R sampler, follow this procedure.<br />

1. Remove the W8 cable (Al 1Jl to A4) from the R-channel sampler (A4) and<br />

connect it to either the A-channel sampler (A5) or the B-channel sampler<br />

(A6). Refer to F’igure 7-3.<br />

7-6 Source Troubleshooting


All A12 Al3 Al4<br />

I I<br />

sg6116e<br />

Figure 7-3. Sampler/Mixer to Phase Lock Cable Connection Diagram<br />

2. If you connected W8 to:<br />

3. Ignore the displayed trace, but check for phase lock error messages. If the<br />

phase lock problem persists, the R-channel sampler is not the problem.<br />

Source Troubleshooting 7-7


A3 Source and A11 Phase Lock Check<br />

This procedure checks the source and part of the phase lock assembly. It opens<br />

the phase-locked loop and exercises the source by varying the source output<br />

frequency with the A11 pretune DAC.<br />

Note If the analyzer failed internal test 48, default pretune correction<br />

constants were stored which may result in a constant offset of<br />

several MHz. Regardless, continue with this procedure.<br />

Note Use a spectrum analyzer for problems above 100 MHz.<br />

1. Connect the oscilloscope or spectrum analyzer as shown in Figure 7-l. (Set<br />

the oscilloscope input impedance to 50 ohms)<br />

I<br />

2.<br />

mess (Preset, Lsyst~, ~~~~~~<br />

.<br />

~~~~~~~~~;<br />

. . . . _ ..,., ,.,. . . ..,..<br />

,,.<br />

~~~~~~~~~,<br />

,, _,,, ,.....,..... ..,,,,,, .,:...:.:.::.. i .._ __.................,.,.,.,.,.,.....i<br />

,.,.,...,.,.,.,,.,.,,j __;__~__~<br />

._.; .,.. .<br />

.-,.<br />

. . .._..<br />

i _<br />

__.<br />

._,,_ i _,__ i _ . . . . . . . . . . _____i _.. _ .,.; i . ..=.... _i . .._....... ./<br />

. . . . . . . . _ . . . . . . _<br />

~~~~~~~ ~~~~~~ to activate *e SoUTce tune (SRC ME)<br />

service mode.<br />

3. Use the front panel knob or front panel keys to set the pretune frequency<br />

to 300 kHz, 30 MHz, and 40 MHz. Verify the signal frequency on the<br />

0sciIioscope.<br />

Note In SRC TUNE mode, the source output frequency changes in<br />

1 to 2 MHz increments and should be 1 to 6 MHz above the<br />

indicated output frequency.<br />

4. Check for the frequencies indicated by Table 7-l.<br />

settins!<br />

‘Ikxble 7-1. Output Frequency in SEC Tune Mode<br />

Observed Frequency<br />

3ookHz 1.3 to 6.3 MHZ<br />

3oMHz<br />

4oMHz<br />

31to36MHz<br />

41to46lmz<br />

5. The signal observed on an osciRoscope should be as solid as the signal in<br />

Figure 7-4.<br />

7-g SourceTroubleshooting


6.<br />

-SO. MO n.oc O.OMOO met so.MO n.sc<br />

I I t<br />

ch. 1 � ���� � ��������� Off-t<br />

11- - 10.0 -miv Dmloy : ik5iizotYs<br />

Figure 7-4. Waveform Integrity in SRC Tune Mode<br />

sg607s<br />

The signal observed on the spectrum analyzer will appear jittery as in<br />

Figure 7-5 (B), not solid as in F’igure 7-5 (A). This is because in SRC TUNE<br />

mode the output is not phase locked.<br />

B<br />

sg609s<br />

Figure 7-5.<br />

Phase Locked Output Compared to Open Loop Output in SRC Tune Mode<br />

Source Troubleshooting 7-9


7- Press IMenu) ~~hkd# to vary the power and check for corresponding level<br />

changes on the test instrument. (A power change of 20 dl3 wilI change the<br />

voltage observed on the oscilIoscope by a factor of ten.)<br />

8. Note the results of the frequency and power changes:<br />

If the frequency and power output changes are correct, skip ahead to “Al2<br />

Reference Check” located in this chapter.<br />

If the frequency changes are not correct, continue with “YO Coil Drive<br />

Check with Analog Bus”.<br />

If the power output changes are not correct, check analog bus node 3.<br />

b. Press (Marker) @ Lc/n). The marker should read approximately 434 mu.<br />

c. Press (K) @ Lc/n). The marker should read approximately 646 mu.<br />

7-10 Sourcs Troubleshooting


YO Coil Drive Check with Oscilloscope<br />

Note Use the large extender board for easy access to the voltage<br />

points. The extender board is included with the <strong>HP</strong> 8753 lb01<br />

Kit. See Chapter 13, “Replaceable ParW, for part numbers and<br />

ordering information.<br />

1. Connect oscilloscope probes to AllPl-1 and AllPl-2. The YO coil drive<br />

signal is actually two signals whose voltage difference drives the coil.<br />

3. Monitor the two YO coil drive lines In source tune mode the voltage<br />

difference should vary from approximately 3.5 to 5.0 volts as shown in<br />

Figure 7-7.<br />

� If the voltages are not correct, replace the faulty All assembly.<br />

� If the output signa.ls from the All assembly are correct, replace the faulty<br />

A3 source assembly.<br />

� If neither the A11, nor the A3 assembly is faulty, continue with the next<br />

check.<br />

-300.000 Ins -150.000 IS 0.00000 s<br />

I<br />

z::: - 1.000<br />

1. GCG volte/div<br />

volts/div<br />

Offmet<br />

Offset<br />

-<br />

7.000<br />

7.000<br />

volts<br />

11-e - 30.0<br />

volts<br />

mddiv Oeloy - 0. OOMO s<br />

Figure 7-7.<br />

YO- and YO + Coil Drive Voltage Differences with SOURCE PIA OFF<br />

7-12 Source Troubleshooting<br />

sg606s


Al2 Reference Check<br />

The signals are evaluated with pass/fail checks. The most efficient way to check<br />

the Al2 frequency reference signals is to use the analog bus while referring to<br />

‘Pable 7-2.<br />

Alternatively, you can use an osciuoscope, while referring to ‘Ihble 7-3 and<br />

Figure 7-8 through F’igure 7-14. If any of the observed signals differs from<br />

the figures, there is a 90% probability that the Al2 assembly is faulty. Either<br />

consider the Al2 assembly defective or perform the “A12 Digital Control Signals<br />

Check”.<br />

Both of these procedures are described ahead.<br />

Analog Bus Method<br />

counter.<br />

2. Press L21) IXJ to count the frequency of the 100 kHz signal.<br />

3. Press 1Menu) ~~~~~~~ ::: :... ii ~........~...i__--.i . . . . 1500) . . m. Verify that the counter reading (displayed<br />

on the analyzer next to cnt :) matches the corresponding 100 kHz value for<br />

the CW frequency. (Refer to Table 7-2.)<br />

4. Verify the remaining CW frequencies, comparing the counter reading with<br />

the value in ‘Ihble 7-2:<br />

CW Fre4pency<br />

5ookIiz<br />

2Bm!&<br />

6OBmz<br />

able 7-2. Analog Bus Check of Reference Frequencies<br />

Analog BM Node 21 Analog BUE Node 24<br />

lOOkILt 2ndLO<br />

0.100 MHZ 0.504 MHZ<br />

0.100 MHZ 2.007 Jmz<br />

0.100 MHZ 0.996 MB2<br />

Analog Bus Node 25<br />

0.500 MHZ<br />

2.000 MHZ<br />

1.000 Bmz<br />

the frequencies listed in this table to within 3~0.1%. Accuracy may vary<br />

Source Troubleshooting 7-13


5. Press L24) Lxl] to count the frequency of the 2nd Lo signal.<br />

. . . . . .<br />

6- Press Ihnenu_) ~$ji!t~:~t~~~~ Lsoo] Ck/m. Verify that the counter reading matches<br />

the corresponding 2nd Lo value for the CW frequency. (Refer to ‘lhble 7-2.)<br />

7. Verify the remaining CW frequencies, comparing the counter reading with<br />

the value in Table 7-2:<br />

� Press ��☺ ������<br />

� Press �␇�☺ �������<br />

8. Press L25_) Lxl] to count the frequency of the PLREF signai.<br />

9. Press @J ~~~~~: L500) m. Verify that the counter reading matches<br />

the corresponding PLREF value for the CW frequency. (Refer to ‘Pable 7-2.)<br />

10. Verify the remaining CW frequencies, comparing the counter reading with<br />

the value in ‘lhble 7-2:<br />

� �������☺����☺<br />

� ������������☺�☺�<br />

11. Check the results.<br />

� If aII the counter readings match the frequencies listed in Table 7-2, skip<br />

ahead to “A13/A14 Fractional-N Check”.<br />

� If the counter readings are incorrect at the 500 kHz and 2 MHz settings<br />

only, go to ‘TN LO at Al2 Check”.<br />

� If aII the counter readings are incorrect at aII three CW frequencies, the<br />

counter may be faulty. Perform the “OsciIIoscope Method” check of the<br />

signals described below. (If the signais are good, either the A10 or Al4<br />

assemblies could be faulty.)<br />

7-14 Source Troubleshooting


Oscilloscope Method<br />

You need not use the oscilloscope method unless the analog bus is<br />

non-functional or any of the signals fail the specifications listed in mble 7-2.<br />

If the analog bus is non-functional or the previous check has revealed<br />

questionable signals, observe the signal(s) with an oscilloscope. ‘Pdble 7-3<br />

identifies a convenient test point and a plot for the five signals listed.<br />

able 7-3. Al2 Reference Frequencies<br />

Mnemonic Signal LOCdi0n<br />

Description<br />

FN1OOkIiZREF 100 kH2 Reference AlSTPb<br />

RF2 Phase Lock AllTP9<br />

Reference<br />

REP Phase Lock AllTP9<br />

Reference<br />

mm* Fractional-N Lo A14J2<br />

4MHzREF 4 MHZ Reference Al2TP9<br />

2ND Lo+/- Second Lo AEPl-2,4<br />

2ND Lo+/- Second M Al2Pl-2,4<br />

Not an Al2 signal, but required for Al2 lowband operation.<br />

see <strong>Analyzer</strong><br />

Fh3=e htting<br />

Figure 7-8 any<br />

Figure 7-9 216MHzCW<br />

Plgure 7-10 6MHzCW<br />

F?gure 7-11 1oMHzcw<br />

F?gure 7-12 any<br />

F?gure 7-1s >lSMHzCW<br />

pisure 7-14 14MHzcw<br />

Source Troubleshooting 7-15


100kHzPulses<br />

The 100 kHz pulses are very narrow and typically 1.5 V in amplitude. You may<br />

have to increase the oscilloscope intensity to see these pulses. (See Figure 7-8.)<br />

-100.000 us 0.00000 L 100.000 “*<br />

sg6i OS<br />

Figure 7-8. Sharp 100 kHz Pulses at A13TP5 (any frequency)<br />

7-16 Source Troubleshooting


PLREF Waveforms<br />

REF Signal At AllTP9. REF is the buffered PLREF+ signal. The 1st IF is<br />

phase locked to this signal. Use an oscilloscope to observe the signal at the<br />

frequencies noted in Figure 7-9 and Figure 7-10.<br />

High Band RJW Signal. In high band the REF signal is a constant 1 MHz square<br />

wave as indicated by Figure 7-9.<br />

-1.00000 us 0.00000 5 1.00000 us<br />

ch.1 - SOD.0 auoltm/div off& - o.wo VOIU<br />

Timsboso - 200 ns/drv DdCby - 0.00000 s<br />

Figure 7-9. High Band REF Signal (216 MHz CW)<br />

sg611 s<br />

Source Troubleshooting 7-17


Low Band REF Signal. In low band this signal follows the frequency of the RF<br />

output signal. Figure 7-10 illustrates a 5 MHz CW signal.<br />

Figure 7-10. REF Signal at AllTP9 (5 MHz CW)<br />

� If REF looks good, skip ahead to “4 MHz Reference Signal”.<br />

� If REF is bad in low band, continue with TN Lo at Al2 Check”.<br />

7-18 Source Troubleshooting<br />

sg612s


FN LO at Al2 Check<br />

1. Use an oscilloscope to observe the FN Lo from.&14 at the cable<br />

end of A14J2. Press (jj) (SystemJ . . ~~~~~,~~~~.. . . . . . . . . . . . . i . . . : . . . . . . . . . .i . . .. . . . . . ~,............../..~..... . .<br />

. . -.::: .:.


4 MHz Reference Signal<br />

This reference signal is used to control the receiver. If faulty, this signal can<br />

cause apparent source problems because the CPU uses receiver data to control<br />

the source. At A12TP9 it should appear similar to Figure 7-12.<br />

-5oo.oon rleec 500.000 l-was<br />

ch. 1 - 1.000 volts/dav Offset - o.ooo volts<br />

11rboro = 100 nsec/div OPlDy - o.oocoo *PC<br />

Figure 7-12. 4 MHz Reference Signal at A12TP!3 (Preset)<br />

7-20 Source Troubleshooting<br />

sg614s


2ND LO Waveforms<br />

The 2nd LO signals appear different in phase and shape at different frequencies.<br />

90 Degree Phase Offset of 2nd LO Signals in High Band. In high band, the<br />

2nd Lo is 996 kHz. As indicated by Figure 7-13, the 2nd Lo actually consists of<br />

two signals 90 degrees out of phase.<br />

-1.00000 “.OO 0.00000 mc<br />

sg615s<br />

Figure 7-13.<br />

90 Degree Phase Offset of High Band 2nd LO Signals (216 MHZ CW)<br />

In-Phase 2nd LO Signals in Low Band. The 2nd Lo signals in low band, as<br />

shown in Figure 7-14, are not phase shifted. In low band these signals track the<br />

RF output with a 4 kHz offset.<br />

SourceTroubleshooting 7-21


-1M.000 - O.MMO .mc lLlo.om “UC<br />

I I I t I I<br />

I I I I I I I<br />

- 200.0 mvoltm/dlv<br />

- ROD0 voltm<br />

Ek=: - $O&O~ve~~;d’v<br />

Tmobamo -<br />

m:<br />

oehy<br />

: gL:h:<br />

Figure 7-14. In-Phase Low Band 2nd LO Signals SSgnals (14 MHZ CW)<br />

sg616s<br />

If any of the signals of Table 7-2 are incorrect, the probability is 90% that the<br />

Al2 assembly is faulty. Either consider the Al2 assembly faulty or perform the<br />

“Al2 Digital Control Signals Check” described ahead.<br />

7-22 Source Troubleshooting


Al2 Digital Control Signals Check<br />

Several digital control signals must be functional for the Al2 assembly<br />

to operate properly. Check the control lines listed in ‘I%ble 7-4 with the<br />

oscilloscope in the high input impedance setting.<br />

Mnemonic<br />

LENREF<br />

LHB<br />

LLB<br />

‘Ihble 7-4. Ala-Related Digital Control Signals<br />

Signtll<br />

Description<br />

L-Reference Enable<br />

L-Hi& Band<br />

L-Low Band<br />

Loc8tion<br />

Al2P2-6<br />

Al2P2-32<br />

Al2Pl-23<br />

see <strong>Analyzer</strong><br />

FIBrve -ttinB<br />

Figure 7-15 Preset<br />

Figlm 7-16 Preset<br />

Finure 7-16 Preset<br />

L ENREF Line. This is a TI’L signal. lb observe it, trigger on the negative edge.<br />

In preset state, the signal should show activity similar to Figure 7-15.<br />

ch.2 - Fg>z;d’v offwt<br />

Tim,bwm - .<br />

sg617s<br />

Figure 7-15. L ENREF Line at A12P2-16 (Preset)<br />

Source Troubleshooting 7-23


L HB and L LB Lines. These complementary signals toggle when the instrument<br />

switches from low band to high band as illustrated by Figure 7-16.<br />

sg618s<br />

Figure 7-16. Complementary L J3.B and L LB Signals (Preset)<br />

If all of the digital signals appeared good, the Al2 assembly is faulty<br />

A13/A14 Fractional-N Check<br />

Use the analog bus or an oscilloscope to check the Al4 VCO’s ability to sweep<br />

from 30 MHz to 60 MHz. The faster analog bus method should suffice unless<br />

problems are detected.<br />

Fractional-N Check with Analog Bus<br />

. . . . . . . . . . .,. .,.,...,.......,.,.. :,. ,. ,. ..-.- /,.,.,._ ;; _. .._............................ - .._ -__ _ _ .,.~.....~.,..... _ _ i . . . . . . . . . . . . . . . . . . . . . ../~_....... . . . . . . . . . . . .<br />

;&&&+z& -~,~,~~~~~~~ _ _ ~~~~<br />

. . . . . . . . . . . . . / . . _ . . .;,..<br />

to sMtch on the andog bus md the<br />

.i<br />

..:... :


‘Jhble 7-5. VC0 Range Check Frequencies<br />

Imtmment Setting Counter Qeadng 1<br />

31Bmz 30f0.030 MHZ<br />

6o.oooooo MHZ 60*0.060 MHZ<br />

4. Check the counter reading at the frequencies indicated.<br />

� If the readings are within the limits specified, the probability is greater<br />

than 90% that the fractional-N assemblies are functional. Either skip<br />

ahead to the “A7 PuIse Generator Check” or perform the more conclusive<br />

“Al4 VCO Range Check with Oscilloscope” described below.<br />

� If the readings fail the specified limits, perform the “Al4 VCO Exercise”.<br />

Al4 VCO Range Check with Oscilloscope<br />

1. Remove the W9 HI OUT cable (A14Jl to A7) from the A7 assembly and<br />

connect it to an oscilloscope set for 50 ohm input impedance. Switch on the<br />

analyzer.<br />

Menus and Error Messages”, for more information-on the F’RACN TUNE<br />

mode.<br />

3. Vary the fractional-N VCO frequency with the front panel knob and check<br />

the signal with the oscilloscope. The waveform should resemble F’igure 7-17,<br />

Figure 7-18, and F’igure 7-19.<br />

If the fractional-N output signals are correct, continue source troubleshooting<br />

by skipping ahead to “A7 Pulse Generator Check”.<br />

Source Troubleshooting 7-25


Ch. 2 - 100.0 mvolta/div Offrt - a000 VO~+E<br />

T~mebase - 10.0 nsec/div Delay - 0.00000 set<br />

Figure 7-17. 10 MHZ HI OUT Wiweform from A14Jl<br />

Ch. 2 - 100.0 mvol+a/div<br />

T~nsba - 10.0 nmec/div<br />

7-26 Source Troubleshooting<br />

Figure 7-18. 25 MHz El OUT Wiweform from A14Jl<br />

sgdi 9s<br />

sg62Os


-50.000 n-w 0.00000 eec SO.000 “.OC<br />

I I I I I I I<br />

ch.2 - lm.0 wolt=/div 0ffwt - aM0 Volta<br />

Tirmbo8a - 10.0 nmos/div -ioy = aoomo .PC<br />

Al4 VCO Exercise<br />

Figure 7-19. 60 MHz HI OUT Waveform from A14Jl<br />

sg621 s<br />

The nominal tuning voltage range of the VCO is + 10 to -5 volts When the<br />

analyzer is in operation, this voltage is supplied by the Al3 assembly. This<br />

procedure substitutes a power supply for the Al3 assembly to check the<br />

frequency range of the Al4 VCO.<br />

1. Switch off the analyzer and remove the Al3 assembly.<br />

2. Put the Al4 assembly on an extender board and switch on the instrument.<br />

3. Prepare to monitor the VCO frequency, either by:<br />

a. Activating the analog bus and setting the internal counter to the FRACN<br />

node, or<br />

b. Connecting an oscilloscope to A14J2 (labeled LO OUT) and looking for<br />

waveforms similar to Figure 7-20.<br />

Source Troubleshooting 7-27


-50.000 - 0.00000 *es 50.000 “se.2<br />

I-* II - ,nn n -..^>~~,.4*., nrr--r - 0. MO vo<br />

Figure 7-20. LO OUT Waveform at A14J2<br />

4. Vary the voltage at A14TP14 from + 10 to -5 volts either by:<br />

a. Connecting an appropriate external power supply to A14TP14, or<br />

sg613s<br />

b. First jumping the + 15 V internal power supply from A8TP8 to A14TP14<br />

and then jumping the -5.2 V supply from ASTPlO to A14TP14.<br />

5. Conhrm that the VCO frequency changes from approximately 30 MHz or less<br />

to 60 MHz or more.<br />

6. If this procedure produces unexpected results, the Al4 assembly is faulty.<br />

7. If this procedure produces the expected results, continue with the “Al4<br />

Divide-by-N Circuit Check”.<br />

7-28 Source Troubleshooting


Al4 Divide-by-N Circuit Check<br />

Note The Al3 assembly should still be out of the instrument and the<br />

Al4 assembly on an extender board.<br />

1. Ground A14TP14 and confirm (as in the Al4 VCO Exercise) that the VCO<br />

oscillates at approximately 50 to 55 MHz.<br />

2. Put the analyzer in CW mode (to avoid relock transitions) and activate the<br />

F’RACN TUNE service mode.<br />

3. Connect an oscilloscope to A14J3 and observe the output.<br />

4. With the F’RACN TUNE service feature, vary the frequency from 30 MHz to<br />

60.8 MHz.<br />

5. The period of the observed signal should vary from 5.5 ps to 11 p.s.<br />

� If this procedure produces unexpected results, the Al4 assembly is faulty.<br />

� If this procedure produces the expected results, perform the “A14-to-Al3<br />

Digital Control Signals Check. n.<br />

6. Remember to replace the Al3 assembly.<br />

A14-to-Al3 Digital Control Signals Check.<br />

The Al4 assembly generates a ‘ITL cycle start (CST) signal every 10<br />

microseconds. If the VCO is oscillating and the CST signal is not detectable at<br />

A14TP3, the Al4 assembly is non-functional.<br />

Use the CST signal as an external trigger for the oscilloscope and monitor the<br />

signals in ‘Ihble 7-6. Since these ‘ITL signals are generated by Al4 to control<br />

A13, check them at Al3 6rst. Place Al3 on the large extender board. The<br />

signals should look similar to Pigure 7-21. If these signals are good, the Al3<br />

assembly is defective.<br />

Source Troubleshooting 7-28


‘lhble 7-6. A14-to-Al3 Digital Control Signal Locations<br />

05T<br />

L FNHOLD<br />

FNBIA6<br />

APU<br />

API2<br />

API3<br />

API4<br />

API6<br />

7-30 Source Troubleshooting<br />

Al3 Location<br />

none<br />

P2-2<br />

P2-6<br />

Al4 Location<br />

TP3<br />

P2-2<br />

P2-6<br />

P2-32 P2-32<br />

P2-3 P2-3<br />

P2-34 P2-34<br />

P2-4 P2-4<br />

P2-36 P2-36<br />

Pl-23 Pl-63<br />

* LFNHOLO<br />

API14<br />

FN LATCH<br />

sg622s<br />

Figure 7-21. Al4 Generated Digital Control Signals


H MB Line. This signal is active during the 16 MHz to 31 MHz sweep. The<br />

upper trace of F’igure 7-22 shows relative inactivity of this signal during preset<br />

condition. The lower trace shows its status during a 16 MHz to 31 MHz sweep<br />

with inactivity during retrace only.<br />

-1.00000 set 0.00000 *PC 1.00000 (105<br />

sg623s<br />

Figure 7-22.<br />

H MB Signal at A14Pl-5 (Preset and 16 MHZ to 31 MHz Sweep)<br />

Source Troubleshooting 731


A7 Pulse Generator Check<br />

The pulse generator affects phase lock in high band only. It can be checked with<br />

either a spectrum analyzer or an oscilloscope.<br />

A7 Pube Generator Check with Spectrum <strong>Analyzer</strong><br />

1. Remove the A7-to-A6 SMB cable (W7) from the A7 pulse generator assembly.<br />

Set the analyzer to generate a 16 MHz CW signal. Connect the spectrum<br />

analyzer to the A7 output connector and observe the signal. The A7 comb<br />

should resemble the spectral display in Figure 7-23.<br />

Figure 7-23. Pulse Generator Output<br />

sg624s<br />

2. If the analyzer malfunction relates to a particular frequency or range, look<br />

more closely at the comb tooth there. Adjust the spectrum analyzer span<br />

and bandwidth as required. Even at 3 GHz, the comb should look as clean<br />

as Figure 7-24. For Option 006 instruments at 6 GHz, the comb tooth level<br />

should be approximately -46 dBm.<br />

732 Source Troubleshooting


I I I I I I I<br />

CENTER 2.989 88 GClL *PAN ?. .ea wiz<br />

mas ml 36 *uz VW 363 *cIx OYP 28.8 un.5<br />

sg625s<br />

Figure 7-24. High Quality Comb lboth at 3 GHz<br />

3. If the signaI at the A7 output is good, check the A7-to-A4 cable.<br />

4. If the signal is not as clean as F’igure 7-24, observe the HI OUT input signal to<br />

the A7 assembly.<br />

. . . . . . . . . :E .;y: ( .,<br />

~~~~~~~~~~.<br />

::: .... . . . z.2 . :.... z :...... 2: . . . ~.;..:....~.i . .,:si . . i.;,.~......_~......i . . .<br />

&he&e do not readjust the instrument. Remove the<br />

A14-to-A7 SMB cable (WQ) from the A7 pulse generator assembly<br />

(CW B 16 MHz).<br />

b. Set the spectrum analyzer to a center frequency of 45 MHz and a span<br />

of 30 MHz. Connect it to the A14-to-A7 cable still attached to the Al4<br />

assembly. Narrow the span and bandwidth to observe the signal closely.<br />

5. If the HI OUT signal is as clean as Figure 7-25, the A7 assembly is faulty.<br />

Otherwise, check the A14-to-A7 cable or recheck the A13/A14 fractional-N as<br />

described ahead.<br />

Rechecking the A13/A14 Fractional-N<br />

Some phase lock problems may result from phase noise problems in the<br />

fractional-N loop. lb troubleshoot this unusual failure mode, do the following:<br />

1. Set the network analyzer at 60 MHz in the FRACN TUNE mode.<br />

Source Troubleshooting 7-33


2. Use a spectrum analyzer, to examin e the HI OUT signal from the Al4<br />

assembly. The signal should appear as clean as Figure 7-25. The comb shape<br />

may vary from pulse generator to pulse generator.<br />

sg626s<br />

Figure 7-25. Stable HI OUT Signal in FRACN TUNE Mode<br />

A7 Pulse Generator Check with Oscilloscope<br />

Perform this check if a spectrum analyzer is not available.<br />

1. Remove the A4to-All SMB cable from the A4 (R) sampler/mixer output.<br />

Connect the oscilloscope to the A4 output (1st IF).<br />

2. Activate the FRACN TUNE .._.................................. service mode ,.,, _ _ ..; . ..,., . . . ..,.,... . _ . . . . and . . _. _ ;... _,. t.~e,,ne.~~~~ion~~,~ _ . . . i_ _ __.....i . . .,. _ t@-,<br />

50 MHz. press Is-] ~~~~~~~~ ~~~~~~~~~~ ~~~:~,~~~~.~~~~ [sol<br />

m-<br />

3. Activate the SRC TUNE service mode of the analyzer and tune the source to<br />

,:: 7 .i .:z: .~~;.;~~~~;.~~~;~;;;~~; ii<br />

50 M&. press ~~~~.~.~~~~~<br />

i . .. . . . _._ . _ . _ . _ . . . . . . __ .<br />

~~~~~~~<br />

_ . __ . ____ . . _ .,.,.,.,. . i _ . _ . ,.,. _.,._.,_.~.._<br />

. . .<br />

L50)<br />

. . .<br />

Irln_llE).<br />

. . . . . . . . . . . . . . . . . . . . . .<br />

4. Set the SRC TUNE frequency to those listed in Table 7-7 and observe the 1st<br />

Il? waveforms. They should appear similar to F’igure 7-26.<br />

� If the signals observed are proper, continue with “All Phase Lock Check”.<br />

~3 If the signals observed are questionable, use a spectrum analyzer to<br />

perform the preceding “A7 Pulse Generator Check with Spectrum<br />

<strong>Analyzer</strong>”.<br />

7-34 Source Troubleshooting


‘Ihble 7-7. 1st IF Waveform Settings<br />

I SRCTUNE I PBACN I HZUIUOlIiC I<br />

1stlF I<br />

6obfHz 6oMHz 1 ltO6MHZ<br />

26oMHz 6oMHz 6 lto6MHz<br />

266OBfHz 6oMHz 51 lto6MHZ<br />

-,.00040 “0 0.04400 E 1.00400 us<br />

I I t I I I I<br />

Ch. 1 - 15 -00 avol+s/div Offset - 0.000 volts<br />

T,nebnsa - 200 ns/drv Delay - 0.04400 c<br />

Ch. I Pormetoro Froq. - 4. 21293 WL<br />

sg627s<br />

Figure 7-26. Typical 1st IF WAveform in FRACN lTJNE/SRC TUNE Mode<br />

All Phase Lock Check<br />

At this point, the All phase lock assembly appears to be faulty (its inputs<br />

should have been verified already). Nevertheless, you may elect to use the<br />

phase lock diagnostic routines or check the relevant signals at the assembly<br />

itself for confirmation.<br />

Note If external source mode is the only operating mode with phase<br />

lock problems, replace the A11 phase lock assembly.<br />

Source Troubleshooting 735


Phase Lock Check with PLL DIAG<br />

Refer to “Phase Lock Diagnostic Tools” in “Source Group Troubleshooting<br />

Appendix” at the end of this chapter for an explanation of the error messages<br />

and the diagnostic routines. Follow the steps there to determine in which state<br />

the phase lock is lost.<br />

� If NO IF FOUND is displayed, con&m that the analog bus is functional and<br />

perform the “Source Pretune Correction Constants (Test 48)” as outlined in<br />

Chapter 3, “Adjustments and Correction Constants.”<br />

� If phase lock is lost in the ACQUIRE state, the A11 assembly is faulty<br />

� If phase lock is lost in the TRACK state, troubleshoot source phase lock loop<br />

components other than the A11 assembly.<br />

Phase Lock Check by Signal Examination<br />

lb con&m that the A11 assembly is receiving the signals required for its proper<br />

operation, perform the following steps.<br />

1. Place the A11 assembly on the large extender board.<br />

2. Switch on the analyzer and press Ipreset).<br />

3. Check for the signals listed in ‘Ihble 7-8.<br />

Mnemonic II0 Accesa<br />

‘Ihble 7-8. All Input Signals<br />

FE=<br />

Notes<br />

FMCOIL- 0 AllPl-S,SS Figure7-27 AidsYOcoILinaettingYIG.PreasLPreset)LMenu)<br />

,._._ i .,., .__<br />

~~~~~~. @ @-J to *serve this s.I.<br />

REP I AllTPD FIgwe 7-0, Observe both low band and high band CW frequencies.<br />

Figure 7-10<br />

YOcoIL+ 0 AllPl-2,S2 pjgure 7-7 uw .~~~~~.<br />

._....... - _.............. I- .._... .._._.<br />

YOCOIL- 0 AllPl-1,Sl F-lgure 7-7<br />

WrIF I AllPLIFIN F’igure 7-26 Check for 1 MHz with tee a All jack (not at cable end) ir<br />

high band.<br />

7-36 Source Troubleshooting


ti<br />

. I . L.<br />

I<br />

I<br />

I I t ’ II<br />

I<br />

0.00000 3<br />

m. I - 2.000 volfa/div Offs*+ - 0.000 volto<br />

Tirobosn - ��� � s/div 0010y - 0.00000 s<br />

Figure 7-27. FM Coil - Plot with 3 Point Sweep<br />

I<br />

sg628s<br />

4. If any of the input signal is not proper, refer to the overall block diagram in<br />

Chapter 4, “Start Troubleshooting Here,” as an aid to trouble shooting the<br />

problem to its source.<br />

5. If any of the output signals is not proper, the A11 assembly is faulty.<br />

Source Troubleshooting 7-37


Source Group Troubleshooting Appendix<br />

Troubleshooting Source Problems with the Analog Bus<br />

The analog bus can perform a variety of fast checks, However, it too is subject<br />

to failure and thus should be tested prior to use. You should have done this in<br />

Chapter 4, “Start Troubleshooting Here. n<br />

lb use the analog bus to check anv one of the nodes. : Dress e . . . . . . I<br />

i<br />

I<br />

~~~~~~~ .~~~~~~~~~~~. men press m ~~~~~~~~~~~;~:~~~.<br />

.,.<br />

..-.....................-.... ::::: ..::::.: - .::::::, - .._....__... . . . . . . . .::::..;: . . -. . . . L;.,:.;.:.;.:.:.;.: .,,. >,:L. .,.,, .L’.._ :. .._ :.: . . . ..__ . . _ . . . . . . . . . . . . . . . . . . . .._....... . . . . . . . . . . . . .<br />

and enter the analog bus node number followed by Lxl]. Refer to “Analog<br />

Bus” in Chapter 10, “<strong>Service</strong> Key Menus and Error Messages”, for additional<br />

information.<br />

Phase Lock Diagnostic Tools<br />

� error messages<br />

� diagnostic routines<br />

Phase Lock Error Messages<br />

All phase lock error messages can result from improper front panel connections.<br />

NO IF FOUND : CHECK R INPUT LEVEL means no IF was detected during pretune:<br />

a source problem. Perform the “A4 Sampler/Mixer Check”.<br />

NO PHASE LOCK : CHECK R INPUT LEVEL means the IF was not acquired after<br />

pretune: a source problem. Perform the “A4 Sampler/Mixer Check”, earlier in<br />

this chapter.<br />

PHASE LOCK CAL FAILED means that a calculation of prettme values was not<br />

successful: a source or receiver failure. Perform the “Source Prettme Correction<br />

Constants” routine as outlined in Chapter 3, “Adjustments and Correction<br />

Constants” If the analyzer fails that routine, perform the “A4 Sampler/Mixer<br />

Check”.<br />

PHASE LOCK LOST means that phase lock was lost or interrupted before the band<br />

sweep ended: a source problem. Refer to “Phase Lock Diagnostic Routines”<br />

next to access the phase lock loop diagnostic service routine. Then troubleshoot<br />

the problem by following the procedures in this chapter.<br />

7-38 Source Troubleshooting


Phase Lock Diagnostic Routines<br />

Perform the following steps to determine at what frequencies and bands the<br />

phase lock problem occurs<br />

_.,,. . . . . . . . ,,,...... : ..::.: .:;: ::. ::: / . ...::::. . . . . . . . . . . . . . . . :,:s’::::,:,:,:,:, ..,.,., .:...


Receiver Troubleshooting<br />

Use this procedure only if you have read Chapter 4, “Start Troubleshooting<br />

Here. n Follow the procedures in the order given, unless instructed otherwise.<br />

The receiver group assemblies consist of the following:<br />

w A4/5/6 sampler/mixer assemblies<br />

� A10 digital IF assembly<br />

8<br />

Receiver Troubleshooting 8-1


Assembly Replacement Sequence<br />

The following steps show the sequence to replace an assembly in an <strong>HP</strong> <strong>8753E</strong><br />

network analyzer.<br />

1. Identify the faulty group. Refer to Chapter 4, “Start Troubleshooting Here.”<br />

Follow up with the appropriate troubleshooting chapter that identifies the<br />

faulty assembly.<br />

2. Order a replacement assembly. Refer to Chapter 13, “Replaceable Parts.”<br />

3. Replace the faulty assembly and determine what adjustments are necessary.<br />

Refer to Chapter 14, “Assembly Replacement and Post-Repair Procedures. n<br />

4. Perform the necessary adjustments. Refer to Chapter 3, “Adjustments and<br />

Correction Constants. n<br />

5. Perform the necessary performance tests. Refer to Chapter 2, “System<br />

Verification and Performance Tests n<br />

8-2 Receiver Troubleshooting


Receiver Failure Error Messages<br />

The error messages which indicate receiver group problems may be caused by<br />

the instrument itself or by external devices or connections. The following three<br />

error messages share the same description.<br />

� CAUTION: OVERLOAD ON INPUT A, POWER REDUCED<br />

w CAUTION: OVERLOAD ON INPUT B, POWER REDUCED<br />

� CAUTION: OVERLOAD ON INPUT R, POWER REDUCED<br />

If any of the above error messages appear, the analyzer has exceeded<br />

approximately + 14 dBm at one of the test ports. The RF output power is<br />

automatically reduced to -85 dBm. The annotation PJ appears in the left<br />

margin of the display to indicate that the power trip function has been<br />

activated. lb reset the analyzer’s power and regain control of the power level,<br />

do the following:<br />

1. Remove any devices under test which may have contributed excess power to<br />

the input.<br />

2. fiess m @&&@ @ Lxl] ~~~~~~~~~~~, to return the power level to<br />

~.....~........................... . . . . . ..-.I . . . . . . . . . . . . ~............~ . . . . . i . . . . . . v~-~.~..~...~.~.~..~ ._.. i<br />

the preset state.<br />

� If the power trip indicator (Pi) does not reappear, reconfigure the test<br />

setup to keep input power levels at 0 dBm or below.<br />

� If Pl reappears, continue with “Check the A and B Inputs”.<br />

Receiver Troubleshooting 8-3


Check the A and B Inputs<br />

Good inputs produce traces similar to Figure 8-2 in terms of flatness. To examine<br />

both input traces, do the following:<br />

1. Connect the equipment as shown in Figure 8-1. (The through cable is <strong>HP</strong> part<br />

number 8120-4779.)<br />

2.<br />

3.<br />

NETWORK ANALYZER<br />

Figure S-l. Equipment Setup<br />

Check the flatness of the input A trace by comparing it with the trace in<br />

Figure 8-2.<br />

Check the flatness of the input B trace by comparing it with the trace in<br />

Figure 8-2.<br />

:.:............................... __ .... ................... ..~.~...~.~ ...... . _ ................................ ...) p .:.:.:.:.:.... / ::..:...:.:.:.: ....<br />

fie3 1Meao)<br />

~~~~~~~~., ;@) ...<br />

..................<br />

............_.............-.<br />

..............................................<br />

_......................._....iiii. .....................2.. ... :.z.x.:.: .- ,. :.:.:.z.:.&...........ii..............................<br />

.._ ........:.:.::.,_L :cz.:.m<br />

� If neither of the input traces resembles Figure 8-2, continue with<br />

“Troubleshooting When All Inputs Look Bad”.<br />

� If at least one input trace resembles Figure 8-2, continue with<br />

“Troubleshooting When One or More Inputs Look Good”.<br />

84 Receiver Troubleshooting


START 030 000 MHZ<br />

Figure 8-2. Typical Good Trace<br />

Receiver Troubleshooting 8-5


Troubleshooting When All Inputs Look Bad<br />

Run Internal Tests 18 and 17<br />

1. Press (Preset) ~ ~~~I~~~~.~~ ~~~~ Llsl Lxl) ~~~~~~ to I-un<br />

- . ..-.................-... .._...._... - .._. -... ;:... .._........<br />

the ADC offset.<br />

__ _ _ ~~.<br />

2. Then, when the analyzer finishes test 18, press L17) Lxl) .~~~~~~~~ to<br />

run the ADC linearity test.<br />

If either of these tests FAIL, the A10 assembly is probably faulty. This can be<br />

conflrmed by checking the 4 MHz signal and substituting the A10 assembly or<br />

checking the signals listed in Table 8-l.<br />

Check 2nd LO<br />

Check the 2nd Lo signal. Refer to the “Al2 Reference Check” section of<br />

Chapter 7, “Source Troubleshooting” for analog bus and oscilloscope checks of<br />

the 2nd Lo and waveform illustrations.<br />

� If the analyzer passes the checks, continue to “Check the 4 MHz REF Signal”.<br />

� If the analyzer fails the checks, perform the high/Iow band transition<br />

adjustment. If the adjustment fails, or brings no improvement, replace A12.<br />

8-6 Receiver Troubleshooting


Check the 4 MHz REF Signal<br />

1. Press w.<br />

2. Use an oscilloscope to observe the 4 MHz reference signal at AlOP2-6.<br />

� If the signal does not resemble Figure 8-3, troubleshoot the signal source<br />

(A12P2-36) and path.<br />

� If the signal is good, the probability is greater than 90% that the A10<br />

assembly is faulty. For confirmation, perform “Check A10 by Substitution<br />

or Signal Examination”.<br />

I<br />

-500.000 nmec 0.00000 ma0 soo.000 Mac<br />

I I<br />

iA<br />

f/ I / I<br />

I<br />

\<br />

/<br />

/ \<br />

A<br />

/t \<br />

/<br />

/ \<br />

I<br />

/<br />

I<br />

Ch. 1 - 1.000 volt.s/d,v Offmet - 0.000 Volts<br />

TImebase - 100 nwc/div OIlOY - o.ooooo se=<br />

Figure 8-3. 4 MHz RJIF Waveform<br />

sg603s<br />

Receiver Troubleshooting 8-7


Check A10 by Substitution or Signal Examination<br />

If the 4 MHz REF signal is good at the A10 digital IF assembly, check the A10<br />

assembly by one of the following methods:<br />

� Substitute another A10 assembly or<br />

� Check the signal/control lines required for its operation. The pins and signal<br />

sources of those lines are identified in ‘Ihble 8-1. It is possible that the A9<br />

assembly may not be providing the necessary signals. These signal checks<br />

allow you to determine which assembly is faulty. Some of the waveforms are<br />

illustrated by Figure 8-4 and Figure 8-5.<br />

If the substitute assembly shows no improvement or if all of the input signals<br />

are valid, continue with “Check the 4 kHz Signal”. Otherwise troubleshoot the<br />

suspect signal(s) or consider the A10 assembly faulty.<br />

8-8 Receiver Troubleshooting


Dlmo<br />

DlFDl<br />

DE-D2<br />

DIFD3<br />

DlFD4<br />

DEDS<br />

DEDB<br />

DlFD7<br />

L DIPEN<br />

L D-1<br />

L DIFEN2<br />

DIFCC<br />

DIRXK<br />

DIF DATA<br />

LFiNDlF<br />

LINTCOP<br />

Mnemonic<br />

‘Check for Tl’L activity.<br />

‘Ihble S-l. Signals Required for A10 Assembly Operation<br />

Description<br />

Digital IF date 0 (MB)<br />

DigitallFdatal<br />

DigitallFdata2<br />

DigitallPdata3<br />

DigitallFdata4<br />

DigitdIFdata6<br />

DigitdIFdlIta6<br />

Digital lF data 7 (MSB)<br />

Digital IF enable 0<br />

Digital IF enable 1<br />

Digital IF enable 2<br />

Digital IF conversion camp.<br />

Digital IF aerial clock<br />

Digital lF aerial data out<br />

L-enable digital IF<br />

L-interrupt, DSP<br />

P2-27<br />

P2-67<br />

P2-28<br />

P2-63<br />

F%20<br />

P2-69<br />

P2-30<br />

P2-60<br />

P2-34<br />

P2-6<br />

P2-36<br />

F%33<br />

P2-4<br />

P2-3<br />

P2-17<br />

P2-2<br />

A10<br />

LOCAiOU<br />

SW<br />

source<br />

Aopz-27<br />

AQP2-67<br />

AQP2-28<br />

AOPZ-63<br />

AQP2-20<br />

AW2-60<br />

ABP2-30<br />

Am&60<br />

AQP2-34<br />

Mm-6<br />

AoP2-36<br />

AlOP2-33<br />

AlOP2-4<br />

AlOP2-3<br />

AoP2-17<br />

AlOP2-2<br />

Receiver Troubleshooting 8-g


* DIF DATA consists of 16 serial bits per input conversion.<br />

the LSB is on the right side and is the most volatile.<br />

DIFCLK<br />

DIFDATA*<br />

Figure 8-4. Digital Data Lines Observed Using L INTCOP as Trigger<br />

Ch. 1 - 4.000 vo1tc/cirv<br />

Ch. 2 - 1.000 voltddrv<br />

T , **boss - 20.0 “dd2V<br />

sg604s<br />

sg602s<br />

Figure 8-5. Digital Control Lines Observed Using L INTCOP as Trigger<br />

g-10 Receiver Troubleshooting


Troubleshooting When One or More Inputs Look Good<br />

Since at least one input is good, all of the common receiver circuitry beyond the<br />

multiplexer is functional. Only the status of the individual sampler/mixers and<br />

their individual signal paths is undetermined.<br />

Check the 4 kHz Signal<br />

l- Press Lpreset) LMenu) ~~~~~.<br />

2. Use an oscilloscope to check the 4 kHz output of the sampler/mixer in<br />

question at the Al0 assembly. The input and output access pins are listed in<br />

lhble 8-2. The signal should resemble the waveform of Figure 8-6.<br />

� If the signal is good, continue with “Check the Trace with the Sampler<br />

Correction Constants Off n.<br />

� If the signal is bad, skip ahead to “Check 1st Lo SiiaI at Sampler/Mixer”.<br />

‘ItLble 8-2. 2nd IF (4 kHz) Signal Locations<br />

I Mnemonic I DeecrlPtlon I A10 Locatlou I slgual solute I<br />

lm<br />

IFA<br />

IFB<br />

4kHz AlOPl-1, 31 A4Pl-6<br />

4kHz AlOPl-4, 34 ASPl-6<br />

4kHz AlOPl-7, 37 A6Pl-6<br />

Receiver Troubleshooting 8-l 1


If the trace shows no improvement when the sampler correction constants are<br />

toggled from off to on, perform the “Sampler Magnitude and Phase Correction<br />

Constants (Test 53)” adjustment described in Chapter 3, “Adjustments and<br />

Correction Constants” If the trace remains bad after this adjustment, the A10<br />

assembly is defective.<br />

(4 04<br />

Figure 8-7. Typical Trace with Sampler Correction On and off<br />

sg643d<br />

Receiver Troubleshooting 8-13


Check 1st LO Signal at Sampler/Mixer<br />

If the 4 kHz signal is bad at the sampler/mixer assembly, check the 1st LO signal<br />

where it enters the sampler/mixer assembly in question.<br />

� If the 1st LO is faulty, check the 1st LO signal at its output connector on the<br />

A7 assembly to determine if the failure is in the cable or the assembly.<br />

� If the 1st LO is good, continue with “Check 2nd LO SiiaI at Sampler/Mixer”.<br />

Check 2nd LO Signal at Sampler/Mixer<br />

Check the 2nd LO signal at the pins identified in ‘0ble 8-3. Refer to the “Al2<br />

Reference Check” in Chapter 7, “Source Troubleshooting”, for analog bus<br />

and oscilloscope checks of the 2nd LO and waveform illustrations ‘Ihble 8-3<br />

identifies the signal location at the samplers and the Al2 assembly.<br />

Mnemonic Description<br />

ZndL01 2nd Lo (0 degrees)<br />

2nd Lo 2 2nd Lo ( - 9O degrees)<br />

‘Ihble 8-3. 2nd LO Locations<br />

Sampler<br />

LOCdl0n<br />

A4/6/6 Pl-11<br />

A4lbl6 Pl-4<br />

SW<br />

soluce<br />

Al2Pl-2, 32<br />

Al2Pl-4, 34<br />

If the 2nd LO is good at the sampler/mixer, the sampler/mixer assembly is faulty.<br />

Otherwise, troubleshoot the Al2 assembly and associated signal path.<br />

8-14 Receiver Troubleshooting


Accessories Troubleshooting<br />

Use this procedure only if you have read Chapter 4, “Start Troubleshooting<br />

Here.” Follow the procedures in the order given, unless instructed otherwise.<br />

Measurement failures can be divided into two categories:<br />

� Failures which don’t affect the normal functioning of the analyzer but render<br />

incorrect measurement data.<br />

� Failures which impede the normal functioning of the analyzer or prohibit the<br />

use of a feature.<br />

This chapter addresses the First category of failures which are usually caused by<br />

the following:<br />

� operator errors<br />

� faulty calibration devices or connectors<br />

� bad cables or adapters<br />

w improper calibration techniques<br />

These failures are checked using the following procedures:<br />

� “Inspect the Accessories”<br />

� “Inspect the Error Terms”<br />

9<br />

AccessoriesTroubleshooting g-1


Assembly Replacement Sequence<br />

The following steps show the sequence to replace an assembly in an <strong>HP</strong> <strong>8753E</strong><br />

network analyzer.<br />

1. Identify the faulty group. Refer to Chapter 4, “Start Troubleshooting Here.”<br />

Follow up with the appropriate troubleshooting chapter that identifies the<br />

faulty assembly.<br />

2. Order a replacement assembly. Refer to Chapter 13, “Replaceable Parts.”<br />

3. Replace the faulty assembly and determine what adjustments are necessary.<br />

Refer to Chapter 14, “Assembly Replacement and Post-Repair Procedures.”<br />

4. Perform the necessary adjustments. Refer to Chapter 3, “Adjustments and<br />

Correction Constants. n<br />

5. Perform the necessary performance tests. Refer to Chapter 2, “System<br />

Verification and Performance Tests n<br />

9-2 Accessories Troubleshooting


Inspect the Accessories<br />

Inspect the Test Port Connectors and Calibration Devices<br />

1. Check for damage to the mating contacts of the test port center conductors<br />

and loose connector bulkheads.<br />

2. Inspect the calibration kit devices for bent or broken center conductors and<br />

other physical damage. Refer to the calibration kit operating and service<br />

manual for information on gaging and inspecting the device connectors.<br />

If any calibration device is obviously damaged or out of mechanical<br />

tolerance, replace the device.<br />

Inspect the Error ‘Ikmns<br />

Error terms are a measure of a “system”: a network analyzer, calibration kit,<br />

and any cables used. As required, refer to Chapter 11, “Error Terms,” for the<br />

following:<br />

� The specific measurement calibration procedure used to generate the error<br />

terms.<br />

� The routines required to extract error terms from the instrument.<br />

� Typical error term data.<br />

Use Table 9-l to cross-reference error term data to system faults<br />

Accessories Troubleshooting g-3


Component<br />

Calibration Kit<br />

load<br />

open/short<br />

<strong>Analyzer</strong><br />

sampler<br />

A10 d&ital IF<br />

tent port connector8<br />

External cablea<br />

‘lhble 9-l. Components Related to Specific Error ‘lkrms<br />

X<br />

X X<br />

X X X<br />

X X X X X X<br />

X<br />

X X<br />

If you detect problems using error term analysis, use the following approach to<br />

isolate the fault:<br />

1. Check the cable by examining the load match and transmission tracking<br />

terms. If those terms are incorrect, go to “Cable Test.”<br />

2. Verify the calibration kit devices:<br />

Loads: If the directivity error term looks good, the load and the test port<br />

are good. If directivity looks bad, connect the same load on the other test<br />

port and measure its directivity. If the second port looks bad, as if the<br />

problem had shifted with the load, replace the load. If the second port<br />

looks good, as if the load had not been the problem, troubleshoot the llrst<br />

port.<br />

Shorts and opens: If the source match and reflection tracking terms look<br />

good, the shorts and the opens are good. If these terms look bad while the<br />

rest of the terms look good, proceed to “Verify Shorts and Opens.”<br />

94 Accessories Troubleshooting


Cable Test<br />

The load match error term is a good indicator of cable problems. You can<br />

further verify a faulty cable by measuring the reflection of the cable. Perform<br />

an Sll l-port calibration directly at port 1 (no cables). Then connect the suspect<br />

cable to port 1 and terminate the open end in 50 ohms.<br />

Figure 9-l shows the return loss trace of a good (left side) and faulty cable.<br />

Note that the important characteristic of a cable trace is its level (the good cable<br />

trace is much lower) not its regularity. Refer to the cable manual for return loss<br />

specifications.<br />

CHl Sll log MAG 5dB/ REF 0 dB I-: -28.426 dB CHl Sll<br />

START 030 000 MHZ STOP 6 000.000 000 MHz<br />

log WAG 5 dB, REF 0 dB I-: -15.524 dE<br />

START 030 000 MHZ STOP 6 000.000 000 MHz<br />

Figure 9-1. Typical Return LOSS Traces of Good and Poor Cables<br />

sg642d<br />

Accessories Troubleshooting g-5


Verify Shorts and Opens<br />

Substitute a known good short and open of the same connector type and sex as<br />

the short and open in question. If the devices are not from one of the standard<br />

calibration kits, refer to the <strong>HP</strong> <strong>8753E</strong> <strong>Network</strong> A~~~lyzer User’s <strong>Guide</strong> for<br />

hfomation on how to use the ~~~~~~~~~~~~ fMction* Set aside the short<br />

and open that are causing the problem.<br />

1. Perform an Sll l-port calibration using the good short and open. Then press<br />

zpQ&g,c,,<br />

. . . . .._. . ;ii.....:L.:!. i I-- ~~~~~~~~<br />

-._- ..__.._... - . . . . .../..<br />

to view the devices h S&h chart format.<br />

2. Come& the good shod to poti 1. Press c-1 ~~~~~~~~~ ad<br />

turn the front panel knob to enter enough electrical delay so that the trace<br />

appears as a dot at the left side of the circle. (See Figure 9-2a, left.)<br />

Replace the good short with the questionable short at port 1. The trace of<br />

the questionable short should appear very similar to the known good short.<br />

3. CoMect *e good open to port 1. mess lscale, ~.~~~~~~~~ and<br />

turn the front panel knob to enter enough electrical delay so that the trace<br />

appears as a dot at the right side of the circle. (See Figure 9-2b, right.)<br />

Replace the good open with the questionable open at port 1. The trace of the<br />

questionable open should appear very similar to the known good open.<br />

g-6 Accessories Troubleshooting


Figure 9-2. Typical Smith Chart Traces of Good Short (a) and Open (b)<br />

Accessories Troubleshooting 9-7


<strong>Service</strong> Key Menus and Error Messages<br />

<strong>Service</strong> Key Menus<br />

These menus allow you to perform the following service functions:<br />

� test<br />

� verify<br />

� adjust<br />

� control<br />

w troubleshoot<br />

The menus are divided into two groups:<br />

1. Internal Diagnostics<br />

2. <strong>Service</strong> Features<br />

When applicable, the <strong>HP</strong>-IB mnemonic is written in parentheses following the<br />

key. See <strong>HP</strong>-IB <strong>Service</strong> Mnemonic Definitions at the end of this section.<br />

Error Messages<br />

The displayed messages that pertain to service functions are also listed in this<br />

chapter to help you:<br />

� Understand the message.<br />

� Solve the problem.<br />

10<br />

Sarvics Kay Menus and Error Messages 1 O-1


<strong>Service</strong> Key Menus - Internal Diagnostics<br />

The internal diagnostics menus are shown in Figure 10-l and described in the<br />

following paragraphs. The following keys access the internal diagnostics menus:<br />

sg6104e<br />

Note<br />

Figure 10-l. Internal Diagnostics Menus<br />

Throughout this service guide, these conventions are observed:<br />

o m are labeled front pane1 keys.<br />

� ����� ���� ������␛ ������ ��␛� ��� ��� �������<br />

����� ������������� � � ��� ��� ��������� �����<br />

� (<strong>HP</strong>-IB COMMANDS) when applicable, follow the keystrokes<br />

in parentheses.<br />

1 O-2 <strong>Service</strong> Key Menus and Error Messages


Tests Menu<br />

To access this menu, press w ~~~~~,~~ :,TlZYK$:.<br />

. i ._... /<br />

accesses a menu that allows you to select or execute<br />

the service tests The default is set to internal<br />

test 1.<br />

Note Descriptions of tests in each of the categories are given under<br />

the heading Z&Z Lkscript&nzs in the following pages.<br />

The tests are divided by function into the following<br />

categories:<br />

0 Internal Tests (O-20)<br />

� External Tests (21-26)<br />

� System Verification Tests (27-43)<br />

13 Adjustment Tests (44-58)<br />

� Display Tests (59-65)<br />

0 Test Patterns (66-80)<br />

‘lb access the tlrst test in each category, press the<br />

category softkey. To access the other tests, use the<br />

numeric keypad, step keys, or front panel knob. The<br />

test number, name, and status abbreviation will be<br />

displayed in the active entry area of the display.<br />

<strong>Service</strong> Key Menus and Error Messages 1 O-3


‘Ihble 10-l shows the test status abbreviation that appears on the display, its<br />

delinition, and the equivalent <strong>HP</strong>-IB code. The <strong>HP</strong>-IB command to output<br />

the test status of the most recently executed test is OUTPTESS. For more<br />

information, refer to “<strong>HP</strong>-IB <strong>Service</strong> Mnemonic Definitions” located at the end<br />

of this chapter.<br />

‘able 10-l. l’kst Status ‘kms<br />

Display Abbreviation Defiuition UF-IB code<br />

;;:>a “‘..‘.F<br />

_ _<br />

PASS PASS 0<br />

FAIL FAIL 1<br />

-lP- lNFFmGlzEss 2<br />

WA) NOT AVAILABLE 3<br />

-ND- NOT DONE 4<br />

DONE DONE 6<br />

&@$@J$., ?&#@j (EmT)<br />

Lz:..... . . ..s.s...i . . .. . .::: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ~~~.22> . . ..A.... ~.W~..> . . . . . . i . ...:::<br />

104 <strong>Service</strong> Key Menus and Error Messages<br />

runs the selected test and may display these<br />

softkeys:<br />

y ,, ‘.:.:..‘~::...:.:~.:.:.:.. ..:.:. . . . . :: :.:.: :.. :.:.I<br />

~~~~~~ (TEBl) continues the selected test.<br />

_....._ - ._..___.. -.__-..-.-<br />

.m (TESRB) alters correction constants during<br />

adjustment tests.<br />

:,.....<br />

:$&J&Y$ (TESR4) displays the next choice.<br />

.__..........__....._ ~~ - .._.. -. (TESR6) chooses the option indicated.<br />

,.,. .,.;<br />

~~~~~ (‘J-Em@ terminates _......_._..... -...-..<br />

the test and returns to<br />

the tests menu.<br />

evaluates the analyzer’s internal operation. These<br />

tests are completely internal and do not require<br />

external connections or user interaction.<br />

evaluate the analyzer’s external operation. These<br />

additional tests require some user interaction (such<br />

as keystrokes).


Test Options Menu<br />

verifies the analyzer system operation by examining<br />

the contents of the measurement calibration arrays.<br />

The procedure is in the “System Verification and<br />

Performance Tests” chapter. Information about the<br />

calibration arrays is provided in the “Error Terms”<br />

chapter.<br />

generates and stores the correction constants.<br />

For more information, refer to the “Adjustments”<br />

chapter.<br />

checks for correct operation of the display and GSP<br />

board.<br />

accesses softkeys that affect the way tests (routines)<br />

run, or supply necessary additional data.<br />

resumes the test from where it was stopped.<br />

toggles the repeat function on and off. When the<br />

function is ON, the selected test will rtm 10,000<br />

times unless you press any key to stop it. The<br />

analyzer shows the current number of passes and<br />

fails.<br />

toggles the record function on and off. When the<br />

function is ON, certain test results are sent to<br />

a printer via <strong>HP</strong>-IB. This is especially useful for<br />

correction constants. The indent must be in<br />

system controller mode or pass control mode to<br />

print (refer to the “Printing, Plotting, and Saving<br />

Measurement Results” chapter in the <strong>HP</strong> 87533<br />

User’s Guidt?.<br />

selects either NORMal or SPeCiaL (tighter) limits for<br />

the Operator’s Check. The SPCL limits are useful for<br />

a guard band.<br />

accesses the following Edit List menu to allow<br />

modihcation of the external power loss data table.<br />

<strong>Service</strong> Key Menus and Error Messages 1 O-5


accesses the power loss/sensor lists menu:<br />

‘~~~~~~~~~~,~‘~~~~:.<br />

. . .._ . . . . . . .,.......,.... s . ..., . . . . . . . . . . ;.. . . . . . . .<br />

se1e&s the A or B power SenSOr<br />

calibration factor list for use in power meter<br />

calibration measurements.<br />

.& ,,~~~~~~~~~~:~~ (CALFSENA) aCCeSSeS<br />

L...AL..:~:.: . . . ..A. .._.... ..........i.........~; .:: ..:... ;:...: . ...&...L :..<br />

the Edit List menu to allow modification of the<br />

calibration data table for power sensor A.<br />

~~~,~.~~~~~~~~~~~~.. (CALFSENB) acceSSeS<br />

the Edit List menu to allow modification of the<br />

calibration data table for power sensor B.<br />

~~~,~~~~~ (pOjVIJJST) acceSSeS the Edit I&t<br />

menu to allow modification of the external power<br />

loss data table that corrects coupled-arm power<br />

loss when a directional coupler samples the RF<br />

output.<br />

generates printed graphs of verification results when<br />

activated during a system verification.<br />

Edit List Menu To access this menu, press &Z&T) ~.~~~~~~~<br />

.. . . . . . . . . . . . .._. L .,.,,,,,,,__ii~;~ _i i _; _ _:<br />

__ . . . . . . . _.I.i ,.... ; “‘,.,.,.<br />

fj$gi&@<br />

__ i ,.,.,.,.,..............<br />

‘#j%$$ (SEDI[D])<br />

‘@$@’ (EDITDONE)<br />

1 O-6 <strong>Service</strong> Kay Menus and Error Messages<br />

selects a segment (frequency point) to be edited,<br />

deleted from, or added to the current data table.<br />

Works with the entry controls<br />

allows modification of frequency, cal factor and loss<br />

values previously entered in the current data table.<br />

deletes frequency, cal factor and loss values<br />

previously entered in the current data table.<br />

adds new frequency, cal factor and loss values to the<br />

current data table up to a maximum of 12 segments<br />

(frequency points, PTS).<br />

/ deletes _ _ the entire ctu~+~~data table (or list) when<br />

:i@; b pressed. &es #&: to avoid deletion.<br />

returns to the previous menu.


Self Diagnose Softkey<br />

. . . . . . . . . :i ..:: ..:... .:.: : . . .<br />

You cm access the self d@mos~ fundon by pressing I%@) ~~~~Jr.~..~~~~<br />

.~~~~~~~~.~~~. This fun&ion examines, in order, the pass/fail status of ail<br />

internal tests and displays NO FAILURE FOUND if no tests have failed.<br />

If a failure is detected, the routine displays the assembly or assemblies most<br />

probably faulty and assigns a failme probability factor to each assembly.<br />

Test Descriptions<br />

The analyzer has up to 80 routines that test, verify, and adjust the instrument.<br />

This section describes those tests.<br />

Internal Tests<br />

This group of tests runs without external connections or operator interaction.<br />

All return a PASS or FAIL condition. All of these tests run on power-up and<br />

PRESET except as noted.<br />

0 ALL INT. Runs only when selected. It consists of internal tests 3-11,<br />

13-16, and 20. Use the front panel knob to scroll through the tests and<br />

see which failed. If aIl pass, the test displays a PASS status. Each test<br />

in the subset retains its own test status.<br />

1 PRESET. Runs the following subset of internal tests: first, the<br />

ROM/RAM tests 2, 3, and 4; then tests 5 through 11, 14, 15, and 16. If<br />

any of these tests fail, this test returns a FAIL status. Use the front<br />

panel knob to scroll through the tests and see which failed. If all pass,<br />

this test displays a PASS status. Each test in the subset retains its own<br />

test status. This same subset is available over <strong>HP</strong>-IB as “TST?“. It is not<br />

performed upon remote preset.<br />

2 ROM. Part of the ROMJRAM tests and cannot be nm separately. Refer<br />

to the “Digital Control Troubleshooting” chapter for more information.<br />

<strong>Service</strong> Kay Menus and Error Messages 1 O-7


3 SRAM RAM. Verifies the A9 CPU SRAM (long-term) memory with a<br />

non-destructive write/read pattern. A destructive version that writes<br />

over stored data at power-on can be enabled by changing the 4th<br />

switch position of the A9 CPU switch as shown in Figure 10-2.<br />

sge117e<br />

s400<br />

A9 CPU Assembly<br />

Normal Mode Destructive SRAM<br />

Test Enabled<br />

Figure 19-2. A9 CPU Switch Positions<br />

I<br />

Rocker Slide<br />

4 Main DRAM. Verifies the A9 CPU main memory (DRAM) with a<br />

non-destructive write/read test pattern. A destructive version of this<br />

test is run during power-on.<br />

For additional information, see Internal Tests (near the front of this<br />

section) and the “Digital Control Troubleshooting” chapter.<br />

1 O-8 <strong>Service</strong> Kay Menus and Error Messages


5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

DSP WdRd. Verifies the ability of the main processor and the<br />

DSP (digital signal processor), both on the A9 CPU assembly, to<br />

communicate with each other through DRAM. This also verifies that<br />

programs can be loaded to the DSP, and that most of the main RAM<br />

access circuits operate correctly.<br />

DSP RAM. Verifies the A9 CPU RAM associated with the digital signal<br />

processor by using a write/read pattern.<br />

DSP ALU. Verifies the A9 CPU high-speed math processing portions of<br />

the digital signal processor.<br />

DSP Intrpt. Tests the ability of the A9 CPU digitai signal processor to<br />

respond to interrupts from the A10 digital IF ADC.<br />

DIF Control. Tests the ability of the A9 CPU main processor to<br />

write/read to the control latches on the A10 digitaI IF<br />

DIF Canter. Tests the ability of the A9 CPU main processor to<br />

write/read to the triple divider on the A10 CPU. It tests the A9<br />

CPU data buffers and A10 digital IF, the 4 MHz clock from the Al2<br />

reference.<br />

DSP Control. Tests the ability of the A9 CPU digital signal processor to<br />

write to the control latches on the A10 digital IF. Feedback is verified<br />

by the main processor. It primarily tests the A10 digital IF, but failures<br />

may be caused by the A9 CPU.<br />

Fr F&n Wr/Rd. Tests the ability of the A9 CPU main processor to<br />

write/read to the front panel processor. It tests the A2 front panel<br />

interface and processor,and A9 CPU data buffering and address<br />

decoding. (See also tests 23 and 24.) This runs only when selected.<br />

Rear mel. Tests the ability of the A9 CPU main processor to<br />

write/read to the rear panel control elements. It tests the Al6 rear<br />

panel, and A9 CPU data buffering and address decoding. (It does not<br />

test the <strong>HP</strong>-IB interface; for that, see the <strong>HP</strong>-IB Programming <strong>Guide</strong>.)<br />

This runs only when selected or with ALL INTERNAL.<br />

Post Reg. Polls the status register of the A8 post-regulator, and<br />

flags these conditions: heat sink too hot, inadequate air flow, or<br />

post-regulated supply shutdown.<br />

<strong>Service</strong> Key Menus and Error Messages 1 O-g


15 Frac N Cont. Tests the ability of the A9 CPU main processor to<br />

write/read to the control element on the Al4 fractional-N (digital)<br />

assembly. The control element must be functioning, and the<br />

fractional-N VCO must be oscillating (although not necessarily<br />

phase-locked) to pass.<br />

16 Sweep Trig. Tests the sweep trigger (L SWP) Iine from the Al4<br />

fractional-N to the A10 digital IF. The receiver with the sweep<br />

synchronizes L SWP.<br />

17 ADC Lin. It tests the linearity of the A10 digital IF ADC using the<br />

built-in ramp generator. The test generates a histogram of the ADC<br />

linearity, where each data point represents the relative “width” of a<br />

particular ADC code. Ideally, ah codes have the same width; different<br />

widths correspond to non-Iinearities<br />

18 ADC Ofs. This runs only when selected. It tests the ability of the<br />

offset DAC, on the A10 digit& IF’, to apply a bias offset to the IF signals<br />

before the ADC input. This runs only when selected.<br />

19 ABUS ‘Wt. Tests analog bus accuracy, by measuring several analog bus<br />

reference voltages (aII nodes from the A10 digitai IF). This runs only<br />

when selected.<br />

20 F’N Count. Uses the internal counter to count the Al4 fractional-N<br />

VCO frequency (120 to 240 MHz) and the divided fractional-N<br />

frequency (100 kHz). It requires the 100 kHz signal from Al2 and the<br />

counter gate signal from A10 to pass<br />

1 O-1 0 <strong>Service</strong> Key Menus and Error Messages


External Tests<br />

These tests require either external equipment and connections or operator<br />

interaction of some kind to run. Tests 30 and 60 are comprehensive front panel<br />

checks, more complete than test 12, that checks the front panel keys and knob<br />

entry.<br />

21 Port 1 Op Chk. Part of the “Operator’s Check” procedure, located<br />

in the “Start Troubleshooting” chapter. The procedure requires the<br />

external connection of a short to PORT 1.<br />

22<br />

Port 2 Op Cbk. Same as 21, but tests PORT 2.<br />

23 Fr Pan Seq. Tests the front panel knob entry and all A1 front panel<br />

keys, as well as the front panel microprocessor on the A2 assembly. It<br />

prompts the user to rotate the front panel knob, then press each key<br />

in an ordered sequence. It continues to the next prompt only if the<br />

current prompt is correctly satisfied.<br />

24 Fr Fan Diag. Similar to 23 above, but the user rotates the front panel<br />

knob or presses the keys in any order. This test displays the command<br />

the instrument received.<br />

25 ADC Hist. Factory use only.<br />

26 Source Ex. Factory use only.<br />

<strong>Service</strong> Key Menus and Error Messages 1 O-1 1


System Verification Tests<br />

These tests apply mainly to system-level, error-corrected verification and<br />

troubleshooting. Tests 27 to 31 are associated with the system verification<br />

procedure, documented in the “System Verification and Performance Tests”<br />

chapter. Tests 32 to 43 facilitate examining the calibration coefficient arrays<br />

(error terms) resuhing from a measurement calibration; refer to Chapter 11,<br />

“Error Terms,” for details.<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32-43<br />

Sys Ver Init. Recalls the initiaiization state for system verification<br />

from an <strong>HP</strong> <strong>8753E</strong> verification disk, in preparation for a measurement<br />

calibration. It must be done before service internal tests 28, 29, 30, or<br />

31 are performed.<br />

Ver Dev 1. Recalls verification Iimits from disk for verification device<br />

#1 in aII applicable S-parameter measurements. It performs pass/fail<br />

Iimit testing of the current measurement.<br />

Ver Dev 2. Same as 28 above for device #2.<br />

Ver Dev 3. Same as 28 above for device #3.<br />

Ver Dev 4. Same as 28 above for device #4.<br />

CaI Coef 1-12. Copies error term data from a measurement calibration<br />

array to display memory. A measurement calibration must be complete<br />

and active. The de9nition of calibration arrays depends on the current<br />

calibration type. After execution, the memory is automatically<br />

displayed. Refer to Chapter 11, “Error Terms,” for details.<br />

lo-12 <strong>Service</strong> Key Menus and Error Messages


Adjustment Tests<br />

The tests without asterisks are used in the procedures located in the<br />

“Adjustments” chapter of this manual, except as noted.<br />

44<br />

45<br />

46<br />

47<br />

48<br />

50<br />

51<br />

52<br />

53<br />

54<br />

*Source Def. Writes default correction constants for rudimentary<br />

source power accuracy. Use this test before running test 47, below.<br />

*Pretune Def. Writes default correction constants for rudimentary<br />

phase lock pretuning accuracy. Use this test before running test 48,<br />

below.<br />

ABUS Cm. Measures three 6xed voltages on the ABUS, and generates<br />

new correction constants for ABUS amplitude accuracy in both high<br />

resolution and low resolution modes. Use this test before nmning test<br />

48, below.<br />

Source Cm. Measures source output power accuracy, flatness, and<br />

linearity against an external power meter via <strong>HP</strong>-IB to generate new<br />

correction constants Run tests 44, 45,46, and 48 first.<br />

Pretune Cm. Generates source pretune values for proper phase-locked<br />

loop operation. Run tests 44, 45, and 46 first.<br />

Disp 2 Ex. Not used in “Adjustments.” Writes the “secondary test<br />

pattern” to the display for adjustments. Press (Preset to exit this<br />

routine.<br />

IF Step Cm. Measures the gain of the IF ampliliers (A and B only)<br />

located on the A10 digital IF, to determine the correction constants for<br />

absolute amplitude accuracy. It provides smooth dynamic accuracy and<br />

absolute amplitude accuracy in the -30 dBm input power region.<br />

ADC Ofs Cm. Measures the A10 Digital IF ADC linearity<br />

characteristics, using an internal ramp generator, and stores values<br />

for the optimal operating region. During measurement, IF signals are<br />

centered in the optimal region to improve low-level dynamic accuracy.<br />

Sampler Cm. Measures the absolute amplitude response of the<br />

R sampler against an external power meter via <strong>HP</strong>-IB, then compares<br />

A and B, (magnitude and phase), against R. It improves the R input<br />

accuracy and AAYR tracking.<br />

Cav Osc Cm. Calculates the frequency of the cavity oscillator and the<br />

instrument temperature for effective spur avoidance.<br />

<strong>Service</strong> Key Menus and Error Messages lo-13


55 Serial Cor. Stores the serial number (input by the user in the Display<br />

Title menu) in EEPROM. This routine will not overwrite an existing<br />

serial number.<br />

56<br />

57<br />

58<br />

Option hr. Stores the option keyword (required for Option 002, 006,<br />

010 or any combination).<br />

Not used.<br />

Init EEPEOM. This test initializes certain EEPROM addresses to zeros<br />

and resets the display intensity correction constants to the default<br />

values. Also, the test will not alter the serial number and correction<br />

constants for Option 002, 006, and 010.<br />

1 O-14 <strong>Service</strong> Key Menus and Error Messages


Display Tests<br />

These tests return a PASS/FAIL condition. All six amber front panel LEDs will<br />

turn off if the test passes. Press m to exit the test. If any of the six LEDs<br />

remain on, the test has failed.<br />

59<br />

60<br />

61<br />

62<br />

63<br />

64<br />

65<br />

Dispkpu corn. Checks to con&n that the CPU can communicate with<br />

the A19 GSP board. The CPU writes all zeros, all ones, and then a<br />

walking one pattern to the GSP and reads them back. If the test fails,<br />

the CPU repeats the walking 1 pattern until I&%?) is pressed.<br />

DRAM cell. Tests the DRAM on A19 by writing a test pattern to the<br />

DRAM and then verifying that it can be read back.<br />

Main VRAM. Tests the VRAM by writing all zeros to one location in<br />

each bank and then writii all ones to one location in each bank.<br />

Finally a walking one pattern is written to one location in each bank.<br />

VRAM bank. Tests all the cells in each of the 4 VRAM banks<br />

VRAMhideo. Verifies that the GSP is able to successfully perform both<br />

write and read shift register transfers. It also checks the video signals<br />

LHSYNC, LVSYNC, and LBLANK to verify that they are active and<br />

toggling.<br />

RGB outputs. Confirms that the analog video signals are correct and it<br />

verifies their functionality.<br />

Inten DAC. Verifies that the intensity DAC can be set both low and<br />

high.<br />

<strong>Service</strong> Key Menus and Error Messages 1 O-1 5


Test Patterns<br />

Test patterns are used in the factory for display adjustments, diagnostics,<br />

and troubleshooting, but they are not used for field service. Test patterns<br />

are executed . . . . . . . . . . . . . . . . . . . . . by . . . . . . . entering . . . . . . . the test number (66 through SO), then pressing<br />

~~~~~~~ ~~~~~~. me te,& pattem fl be displayed md the &aey<br />

~:.:.:..i.:.:.:.:.:.:.:.~.:.:.~.~.~.~.~.~.~.~,~.~,~.~ _ ___ .,.. ,,,,,,.,.,... I .....,. ...<br />

. . . . . . . .:: . . . .::.:<br />

. . . . . . . . . . . . . .<br />

labels blanked. ‘Ib increment to the next pattern, press softkey 1; to go back<br />

to a previous pattern, press softkey 2. To exit the test pattern and return the<br />

softkey labels, press softkey 8 (bottom softkey). The following is a description<br />

of the test patterns.<br />

66 ‘I&t Pat 1. Displays an all white screen for verifying the light output<br />

of the A18 display and checks for color purity.<br />

67-69 ‘l&t Pat 2-4. Displays a red, green, and blue pattern for verifying the<br />

color purity of the display and also the ability to independently control<br />

each color.<br />

70<br />

71<br />

72<br />

73<br />

74<br />

‘I&t Pat 5. Displays an all black screen. This is used to check for<br />

stuck pixels.<br />

‘l&t Fat 6. Displays a 16-step gray scale for verifying that the A19 GSP<br />

board can produce 16 different amplitudes of color (in this case, white).<br />

The output comes from the RAM on the GSP board, it is then split. The<br />

signal goes through a video DAC and then to an external monitor or<br />

through some buffer amplifiers and then to the internal LCD display.<br />

If the external display looks good but the internal display is bad, then<br />

the problem may be with the display or the cable connecting it to the<br />

GSP board. This pattern is also very useful when using an oscilloscope<br />

for troubleshooting. The staircase pattern it produces will quickly show<br />

missing or stuck data bits<br />

Test Pat 7. Displays the following seven colors: Red, Yellow, Green,<br />

Cyan, Blue, Magenta and White.<br />

‘Ibest Fat 8. This pattern is intended for use with an external display.<br />

The pattern displays a color rainbow pattern for showing the ability<br />

of the A19 GSP board to display 15 colors plus white. The numbers<br />

written below each bar indicate the tint number used to produce that<br />

bar (0 & loo-pure red, 33=pure green, 67=pure blue).<br />

‘I&t Fat 9. Displays the three primary colors Red, Green, and Blue at<br />

four different intensity levels. You should see 16 color bands across<br />

the screen. Starting at the left side of the display the pattern is; Black<br />

four bands of Red (each band increasing in intensity) Black four bands<br />

lo-16 <strong>Service</strong> Key Menus and Error Messages


of Green (each band increasing in intensity) Black four bands of Blue<br />

(each band increasing in intensity) Black If any one of the four bits for<br />

each color is missing the display will not look as described.<br />

75 ‘lbst Pat 10. Displays a character set for showing the user ail<br />

the different types and sizes of characters available. Three sets<br />

of characters are drawn in each of the three character sizes. 125<br />

characters of each size are displayed. Characters 0 and 3 cannot be<br />

drawn and several others are really control characters (such as carriage<br />

return and line feed).<br />

76 l&t Pat 11. Displays a bandwidth pattern for verifying the bandwidth<br />

of the EXTERNAL display. It consists of multiple alternating white and<br />

black vertical stripes. Each stripe should be clearly visible. A limited<br />

bandwidth would smear these lines together. This is used to test the<br />

quality of the external monitor.<br />

77 ‘I&t Pat 12. Displays a repeating gray scale for troubleshooting, using<br />

an oscilloscope. It is similar to the 16 step gray scale but is repeated 32<br />

times across the screen. Each of the 3 outputs of the video palette will<br />

then show 32 ramps (instead of one staircase) between each horizontal<br />

sync pulse. This pattern is used to troubleshoot the pixel processing<br />

circuit of the A19 GSP board.<br />

78 ‘lbst PM. 13. Displays a convergence pattern for measuring the<br />

accuracy of the color convergence of the external monitor.<br />

79-80 l&t Pat 14-15. Displays crosshatch and inverse crosshatch patterns<br />

for testing color convergence, linearity,and alignment. This is useful<br />

when aligning the LCD display in the bezel.<br />

<strong>Service</strong> Key Menus and Error Messages 1 O-17


<strong>Service</strong> Key Menus - <strong>Service</strong> Features<br />

The service feature menus are shown in F’igure 10-3 and described in the<br />

following paragraphs. The following keys access the service feature menus:<br />

<strong>Service</strong> Modes Menu<br />

lo-18 <strong>Service</strong> Key Menus and Error Messages<br />

Figure 10-3. <strong>Service</strong> Feature Menus<br />

sg6103e<br />

allows you to control and monitor various circuits<br />

for troubleshooting.<br />

tests the Al3 and Al4 fractional-N circuits. It dOWS<br />

YOU to directly control and monitor the output<br />

frequency of the fractional-N synthesizer (10 MHz to<br />

60 MHZ). Set the instrument to CW sweep mode ami<br />

then set F’RACN TUNE ON.


:.:~l.L:.,z ) i<br />

k&g, ~~~~.‘~~~<br />

., ,..........<br />

.I /._.._..-/__//i AL.< A..><br />

Change frequencies with the front panel keys or<br />

knob. The output of the Al4 assembly can be<br />

checked at A14Jl HI OUT (in high band) or A14J2<br />

LO OUT (in low band) with an oscilloscope, a<br />

frequency counter, or a spectrum analyzer. Siiai<br />

jumps and changes in shape at 20 MHz and 30 MHz<br />

when tuning up in frequency, and at 29.2 MHz and<br />

15 MHz when tuning down, are due to switching<br />

of the digital divider. This mode can be used with<br />

the SRC TUNE mode as described in “Source<br />

Troubleshooting” chapter.<br />

accesses the functions that ailow you to adjust the<br />

source:<br />

._<br />

~~~~~ .~~~~~~~~ tests the p&me fun&ions<br />

of the phase lock and source assemblies Use<br />

the entry controls to set test port output to any<br />

frequency from 300 KHz to 6 GHz. When in this<br />

mode:<br />

� ~,~~ Set analyzer ..= . ..- ~ .(H( to CW frequency before pressing<br />

~~~~~~~.~. .<br />

� Test port output is 1 to 6 MHz above indicated<br />

(entered) frequency.<br />

� Instrument does not attempt to phase lock.<br />

o Residual FM increases.<br />

_ . . . . . . . . . . . . . . . . . . . . . . . . . . . ..~..............i............................... . . . . _. . . . . . . . . . . . . . . . . _ . . ._ . .. . . _ . . :.; . . .,.,...,.,. . . . . . . . . .,.,. . / . . ,.................<br />

. . . . . . ./ .<br />

. . . . . . . . . . . . . . . . . . . . . .<br />

~~~~~~ &ow you to change the somce<br />

tune frequency.<br />

_ ::..::::.: .;,_ . ,_; . . . . . . . . . _.,.,,.......,...,.,..................i .:.x . . . . . . . . . . . . . . . _<br />

~~~~~~~~<br />

,.i_i___ __ _..~ .,......_ _ ,,,.,. :.,.<br />

toggles the automatic leveling<br />

control (ALC) on and off.<br />

~.~~~~~~~~~<br />

:. ..i<br />

::;:::... “.::::“:::::~::::::::~..:::.::::::::..:~:::::::::::::::::::::::::: .; ;..::::.:<br />

~~~~~~~~~~<br />

~~.:.~.~.& . . . . . . . . . ..~... __ . . . . . . A,,.; . .,.,. i .,...<br />

~~~~~~~~~<br />

. . . . ..c.. ii...........i<br />

m _ _ _ _ _; _ _ _ _i_i_ i<br />

.~~~~~~~~~~~~~.<br />

.,,....,,....... .::: ..::..... . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . * . . . . . . . . . . . . . . . . . . . . . . . . . :


..,.,, _ _ _ . . . . . . . _.;.:..; ,........... ., . . . . . . . . . . . .<br />

~~~~~~~~~~~~(SM5)<br />

With this mode switched OFF, the source stays in<br />

the pretune mode and does not attempt to complete<br />

the phase lock sequence. Also, all phase lock error<br />

messages are disabled. The fractional-N circuits<br />

and the receiver operate normally. Therefore, the<br />

instrument sweeps, but the source is being driven by<br />

the pretune DAC in a stair-stepped fashion.<br />

Automatically attempts to determine new pretune<br />

values when the instrument encounters phase lock<br />

problems (for example, “harmonic skip”). With<br />

~~~~~~~~~~~ the frequencies and voltages do<br />

. . . . . . . . . .<br />

not change, like when they are attempting to<br />

determine new prettme values, so troubleshooting<br />

the phase-locked loop circuits is more convenient.<br />

This function may also be turned off to avoid<br />

pretune calibration errors in applications where<br />

there is a limited frequency response in the R<br />

(reference) channel. For example, in a high power<br />

test application, using band limited lllters for R<br />

channel phase locking.<br />

displays a phase lock sequence at the beginning of<br />

each band. This sequence normally occurs very<br />

rapidly, making it difficult to troubleshoot phase lock<br />

problems Switching this mode ON slows the process<br />

down, allowing you to inspect the steps of the phase<br />

lock sequence @retune, acquire, and track) by<br />

pausing at each step. The steps are indicated on the<br />

display, along with the channel (Cl or C2) and band<br />

number (Bl through B13).<br />

This mode can be used with PLL PAUSE to halt the<br />

process at any step. It can also be used with the<br />

analog bus counter.<br />

10-20 <strong>Service</strong> Key MenusandError Messages<br />

,;_; _ ,....<br />

; _ _ .,.,., /<br />

used only with PLL DIAG mode. $J$#&~ indicates<br />

that it will continuously cycle through all steps of<br />

the phase lock sequence. ;@#J$&; holds it at any step<br />

of interest. This mode is useful for troubleshooting<br />

phase-locked loop problems<br />

Accesses the service modes more menu listed below.


<strong>Service</strong> Modes More Menu<br />

‘:&#dw . ;; /.i i IJHmij,,<br />

. . . . . . . . . . . . ii. . .<br />

;~.~.~~~~~~ :##g<br />

- .._^...................-.................... i<br />

Toggles the sampler correction routine ON,<br />

for normal operation, or OFF, for diagnosis or<br />

adjustment purposes<br />

Normal operating condition and works in<br />

conjunction with IF GAIN ON and OFF. The A10<br />

assembly includes a switchable attenuator section<br />

and an amplifier that amplitles low-level 4 kHz<br />

IF signals (for A and B inputs only). This mode<br />

allows the A10 IF section to automatically determine<br />

if the attenuator should be switched in or out.<br />

The switch occurs when the A or B input signal is<br />

approximately -30 dBm.<br />

Locks out the A10 IF attenuator sections for<br />

checking the A10 IF gain amplifier circuits,<br />

regardless of the amplitude of the A or B IF signal.<br />

Switches out both the A and B attenuation circuits;<br />

they cannot be switched independently. Be aware<br />

that input signal levels above -30 dBm at the<br />

sampler input will saturate the ADC and cause<br />

measurement errors.<br />

Switches in both of the A10 IF attenuators for<br />

checking the A10 IF gain amplifier circuits Small<br />

input signals will appear noisy, and raise the<br />

apparent noise floor of the instrument.<br />

,.,:,,<br />

,.( ,.,.;.~.~.~.~..~,,,.......: . . . . . . . j*................ .::: ,,,_; .__.. . . . . . .<br />

~~~~~~~~~~~~~; ($3~7)<br />

_ .,.,. i .-_ _ .-._.. :..T-.:.:.,.:.+L _/_ _ _ ,.,.,.,.,.,.,.,.,.,. _ _i .,... i<br />

For factory use only.<br />

. . . . . . . . .._ . . . . . . .<br />

~~~~~~~~~~~::~ Allows you to store the correction constants that<br />

reside in non-volatile memory (EEPROM) onto a<br />

disk. Correction constants improve instrument<br />

performance by compensating for specific operating<br />

variations due to hardware limitations (refer to the<br />

“Adjustments” chapter). Having this information on<br />

disk is useful as a backup, in case the constants are<br />

lost (due to a CPU board failure). Without a disk<br />

backup the correction constants can be regenerated<br />

<strong>Service</strong> Key Menus and Error Messages 1 O-21


Analog Bus<br />

Description of the Analog Bus<br />

manually, although the procedures are more time<br />

consuming.<br />

offsets the frequency of both the A3 YIG oscillator<br />

and the A3 cavity oscillator to avoid spurs _ _ which<br />

_ ..,. ,. . . . . ....:.:.:<br />

cannot othe&e be filtered out. ~~~~~~~i:~~~.;<br />

allows examination of these spurs for service.<br />

enables and disables the analog bus, described<br />

below. Use it with the analog in menu,<br />

(a description of this menu follows).<br />

The analog bus is a single multiplexed line that networks 31 nodes within the<br />

instrument. It can be controlled from the front panel, or through <strong>HP</strong>-IB, to<br />

make voltage and frequency measurements just like a voltmeter, oscilloscope, or<br />

frequency counter. The next few paragraphs provide general information about<br />

the structure and operation of the analog bus See “Analog Bus Nodes, n for a<br />

description of each individual node. Refer to the “Overall Block Diagram,” in<br />

the “Start Troubleshooting” chapter, to see where the nodes are located in the<br />

instrument.<br />

The analog bus consists of a source section and a receiver section. The source<br />

can be the following:<br />

� any one of the 31 nodes described in “Analog Bus Nodes”<br />

� the Al4 fractional-N VCO<br />

� the Al4 fractional-N VCO divided down to 100 kHz<br />

The receiver portion can be the following:<br />

� the main ADC<br />

� the frequency counter<br />

When analog bus traces are displayed, frequency is the x-axis. For a linear<br />

x-axis in time, switch to CW time mode (or sweep a single band).<br />

1 O-22 <strong>Service</strong> Key Menus and Error Messages


The Main ADC<br />

The main ADC is located on the A1~~~digita.l IF assembly and makes voltage<br />

::: ;:: .;< b :


Analog In Menu<br />

Select this menu to monitor voltage and frequency nodes, using the analog bus<br />

and internal counter, as explained below.<br />

lb switch on the analog bus and access the analog in menu, press:<br />

‘I’he ~~~~~,~~~~~~~~~~~ key toggles between low and high resolution.<br />

.,<br />

R4%3OlIltiOIl -SW MiIlimnm8ignal<br />

LOW +0.5 v -0.5 v<br />

HIGH +lOV -10 v<br />

~~~~~~~~~~~ &lows you to monitor the adog bus nodes (except nodes<br />

1, 2, 3, 4, 9, 10, 12) with external equipment (osciIloscope,<br />

voltmeter, etc). To do this, connect the equipment to the<br />

AUX<br />

_<br />

INPUT<br />

-:..::;).,<br />

BNC . . . . . . connector . . . . . . . . . . . . . . . . . . . . . . on . . . . the rear panel, and press<br />

~~~~;~ stilly is highlighted.<br />

_.._........ - ,<br />

Caution To prevent damage to the analyzer, Ilrst connect the signal to<br />

the rear panel AUX INPUT, and then switch the function ON.<br />

switches the internal counter off and removes the counter<br />

display from the display. The counter can be switched on<br />

with one of the next three keys. (Note: Using the counter<br />

slows the sweep.) The counter bandwidth is 16 MHz unless<br />

otherwise noted for a specific node.<br />

Note OUTPCNTR is the <strong>HP</strong>-IB command to output the counter’s<br />

frequency data.<br />

1 O-24 <strong>Service</strong> Key Menus and Error Messages


switches the counter to monitor the analog bus.<br />

switches the counter to monitor the Al4 fractional-N<br />

VCO frequency at the node shown on the “Overall Block<br />

Diagram, m in the “Start Troubleshooting” chapter.<br />

switches the counter to monitor the Al4 fractional-N VCO<br />

frequency after it has been divided down to 100 kHz for<br />

phase locking the VCO.<br />

ServiseKeyMenusandErrorMessages lo-26


Analog Bus Nodes<br />

The following paragraphs describe the 31 analog bus nodes. The nodes are listed<br />

in numerical order and are grouped by assembly. Refer to the “Overall Block<br />

Diagram” for node locations.<br />

A3 Source<br />

‘Ib observe six of the eight A3 analog bus nodes (not node 5 or 8), perform<br />

step A3 to set up a power sweep on the analog bus. Then follow the node<br />

specific instructions.<br />

1 O-26 <strong>Service</strong> by Menus and Error Messages


Node 1 Bh Fwr DAC (main power DAC)<br />

Perform step A3 to set up a power sweep on the analog bus. Then press m<br />

,..,.,,..;.<br />

dklJ&ti# J$ fg Ixl) (Scale) .~~~~~~.<br />

Node 1 is the output of the main power DAC. It sets the reference voltage to the<br />

ALC loop. At normal operation, this node should read approximately -4 volts at<br />

0 dBm with a slope of about -150 mV/dB. This corresponds to approximately<br />

4 volts from -15 to + 10 dBm.<br />

START -15 B dh cw 3 888.088 am PtHZ STOP IB 0 am<br />

sg6262d<br />

Figure 10-4. Analog Bus Node 1<br />

<strong>Service</strong> Key Menus and Error Messages 1 O-27


Node 2 Src lV/GHz (source 1 volt per GHz)<br />

Press the following to view analog bus node 2:<br />

Node 2 measures the voltage on the internal voltage controlled oscillator. Or, in<br />

normal operation, it should read -lV/GHz.<br />

W-28 <strong>Service</strong> Key Menus and Error Messages<br />

sg6263d<br />

Figure 10-5. Analog Bus Node 2


Node 3 Amp Id (ampltier current)<br />

Press the following keys to view analog node 3:<br />

Node 3 measures the current that goes to the main IF amplifier. At normal<br />

operation this node should read about:<br />

15 mA from 30 kHz to 299 kHz<br />

130 mA from 300 kHz to 3 GHz<br />

500 mA from 3 GHz to 6 GHz<br />

<strong>Service</strong> Key Menus and Error Messages 1 O-29


Node 4 Det (detects RF OUT power level)<br />

Perform step A3, described previously, to set up a power sweep on the analog<br />


Node 5 lkmp (temperature sensor)<br />

This node registers the temperature of the cavity oscillator which must be<br />

known for effective spur avoidance. The sensitivity is 10 mV/” C. The oscillator<br />

changes frequency slightly as its temperature changes. This sensor indicates the<br />

temperature so that the frequency can be predicted.<br />

Node 6 Integ (ALC leveling integrator output)<br />

Perform ..?... ,;.? ,.=; step


Node 7 Log (log ampliiier output detector)<br />

Perform step .:::: A3 to set up a power sweep on the analog bus. Then press LMeas)<br />

.:.. :,::: :::,::::::,::.,..::,~~ ,. ‘;:~~p;$~~: p’<br />

:~~~~.~.~~~~~ :~~.~;;:.:.:.~~~.:.~.:,..~ _i iii .,.,.,.,.,...,...,....,., ._ @ (XJ @izzTq ~~~~~~~~~:.<br />

Node 7 displays the output of a logger circuit in the ALC loop. The trace should<br />

be a linear ramp with a slope of 33 mv/dB with approximately 0 volts at<br />

-3 dBm. Absolute voltage level variations are normal. Flat segments indicate<br />

ALC saturation and should not occur between -15 dBm and + 10 deem.<br />

The proper waveform at node 7 indicates that the circuits in the A3 source ALC<br />

loop are normal and the source is leveled.<br />

Node 8 A3 Gnd (ground)<br />

1 O-32 <strong>Service</strong> Key Menus and Error Messages<br />

t i i i i i i i i i 1<br />

sg6267d<br />

Figure 10-9. Analog Bus Node 7


AlODigitalIF<br />

‘Ib observe the A10 analog bus nodes, perform step AlO, below. Then follow the<br />

node-specific instructions<br />

Step AlO.<br />

Press:<br />

Node9 +0.37 V(+O.37 V reference)<br />

.~,,‘....:..~:...:.:.:....~I.~:~:.:.’ . . . . . ::.::.:.:::.: ;..: i~.~.~.~.~.~.~ ~:::::<br />

Perform<br />

;<br />

step AlO, above, and then press IMeas) ~~~~~~~~~:<br />

Check for a flat line at approximately + 0.37 V. This is used as the voltage<br />

reference in the “Analog Bus Correction Constants” adjustment procedure. The<br />

voltage level should be the same in high and low resolution; the absolute level is<br />

not critical.<br />

Node10 +2.50 V(+2.50 V reference)<br />

<strong>Service</strong> Key Menus and Error Messages lo-33


Node 11 Aux Input (rear panel input)<br />

. . . .<br />

Perform step A10 and then press (Meas) -#JAI,Zi$.@# (iJ (TJ (ZJ.<br />

This selects the rear panel AUX INPUT to drive the analog bus for voltage<br />

and frequency measurements It can be used to look at test points within the<br />

instrument, using the analyzer’s display as an oscilloscope. Connect the test<br />

point of interest to the rear panel AUX INPUT BNC connector.<br />

This feature can be useful if an oscilloscope is not available. Also, it can be used<br />

for testing voltage-controlled devices by connecting the driving voltage of the<br />

device under test to the AUX IN connector. Look at the driving voltage on one<br />

display channel, while displaying the S-parameter response of the test device on<br />

the other display channel.<br />

_ _ . . . . . _ . .<br />

With - .JKK&&%EY ,,.:.:::. * - . . :::: . . . . . . . . . . %.,., . . . . . . . . . . . switched ON, you can examine the analyzer’s analog bus nodes<br />

with eaem& equipment (see ~~~~~‘~~~<br />

-.-._...-._........i. 1..........._..... >..A.: .<br />

&f$~;<br />

. . .


Node 14 Mb Ref (ECL reference voltage level)<br />

. . . . . ..,.:.. .:::: :.:.:.:.::.. . . . .._ : / .s.:..<br />

Perform step Al 1 and then press IMeas) $&$$X&$ rmr” (141 a w @ Ixl]<br />

... ;:c,: . . .


Node 15 Pretune (open-loop source pretune voltage)<br />

This node displays the source pretune signal and should look like a stair-stepped<br />

ramp. Each step corresponds to the start of a band.<br />

1046 <strong>Service</strong> Key Menus and Error Messages<br />

Figure 10-11. Analog Bus Node 15


Node 16 lV/GHz (source oscillator tuning voltage)<br />

. . . . . . . i . . . . . . .::::. . . . .<br />

Perform step A11 and then press m .. ‘$@&$%:Z# . . . . Li . . i::::.:._;;~ ... . . ~.~.C.Z ....... . . . (161 @J (Z&TZ]<br />

. iimo@m.<br />

. . . . . Li i . . . . . . . . . . . ;2<br />

This node displays the tuning voltage ramp used to tune the source oscillator.<br />

You should see a voltage ramp like the one shown in Figure 10-12. If this<br />

waveform is correct, you can be confident that the All phase lock assembly,<br />

the A3 source assembly, the A13/A14 fractional-N assemblies, and the A7 pulse<br />

generator are working correctly and the instrument is phase locked. If you see<br />

anything else, refer to the “Source Troubleshooting” chapter.<br />

sg6270d<br />

Figure 16-12. Analog Bus Node 16<br />

<strong>Service</strong> Key Menus and Error Messages 1037


Node 17 1st IF (IF used for phase lock)<br />

Vary the frequency and compare the results to the table below.<br />

Entered Frequency Counter Reading<br />

I<br />

0.2 to 15.999 MHz same as entered<br />

16MHzto6GHz 1MI-h<br />

This node displays the IF frequency (see node17) as it enters the All phase lock<br />

assembly via the A4 R sampler assembly. This signal comes from the R sampler<br />

output and is used to phase lock the source.<br />

1 O-38 <strong>Service</strong> Key Menus and Error Messages<br />

sg6271 d<br />

Figure 10-13. Counter Readout Location


Node 18 IF Det 2N (IF on All phase lock after 3 MHz filter)<br />

Perform step A11 and then press B ~~~~~:~~~ L18) (xl) m L20) m<br />

(j-Ref_J ~~~~~~~<br />

.._................... i < ::.<br />

This node detects the IF within the low pass IIIter/iimiter. The IiIter is used<br />

during the track and sweep sequences but never in band l(3.3 to 16 MHz). The<br />

low level (about -1.7 V) means IF is in the passband of the 6Iter. This node can<br />

be used with the FRAC N TUNE and SRC TUNE service modes.<br />

sg6272d<br />

Figure 19-14. Analog Bus Node 18<br />

Node 19 IF Det 2W (IF after 16 MHz IUter)<br />

This node detects IF after the 16 MHz fiIter/iimiter. The 6Iter is used during<br />

pretune and acquire, but not in band 1. Normal state is a flat Iine at about<br />

-1.7 v.<br />

<strong>Service</strong> Key Menus and Error Messages 1 O-38


Node 20 IF Det 1 (IF after 30 MHz filter)<br />

. . . . . . . . . . . . .. ...:. i . . . . . _ . _ _ _ ,..<br />

perfvrm step A11 and then press (Meas) - ,~~~~~~~~~~~ .._ - .____..__............... (YZJ @ I&ZTG) @ Ixl)<br />

::~~~~~~~~ m a).<br />

- .._. :..:...: ............. ~.:.:


Node 21 100 kH2 (100 kH2 reference frequency)<br />

Perform step Al2 and then press (EJJ .._.............._.................. ~~~~~~~:~~~.~~ .: .._ L21) Lxl)<br />

- ~~~~~.~~~~~~ .._......_.......................................... I i:.... i.......:... .


Node 24 2nd LO<br />

perform step A12 ad then press m ~~~~~~~~~~ (241@<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. i,,_ . . . . . . _ __....,._ :.~:.:.:.~<br />

This node counts the 2nd LO used by the sampler/mixer assemblies to produce<br />

the 2nd IF of 4 kHz. As you vary the frequency, the counter reading should<br />

change to values very close to those indicated below:<br />

1 F’reqnency Entered 1 CounterReading )<br />

Node 25 PL Ref (phase lock reference)<br />

perform step A12 ad then press m ~~~~~~~~ 125) Lxl]<br />

.._; _<br />

~~~~~,~~~~~~~: LMenu) ~~~~~~~~,.<br />

L .._............ ii... .:::: .:. . . . . :.._ s.<br />

This node counts the reference signal used by the phase comparator circuit on<br />

the All phase lock assembly. As you vary the frequency, the counter reading<br />

should change as indicated below:<br />

1042 <strong>Service</strong> Key Menus and Error Messages


Node 26 Ext l&f (rear panel external reference input)<br />

Perform step Al2 and then press B &@@~ :Ihl 126) Lxl).<br />

The voltage level of this node indicates whether an external reference timebase<br />

is being used:<br />

� No external reference: about -0.9 V<br />

� With external reference: about -0.6 V.<br />

Node 27 VCXO Tune (40 MHz VCXO tuning voltage)<br />

Perform step Al2 and then press IMeas) _.......................................~. :;~~~~~..~~ i i L27) @ cj)<br />

...... ..;. * .% /....................... _., .,__<br />

&&&& ” - “#g&f&? %<br />

:::: . . . . . . . . . . . :.:..>+% ..__ 2 ./ ._._ .;...:. T.... ;.s - i.... -s: I i ./ ..Y.... :..<br />

This node displays the voltage used to fine tune the Al2 reference VCXO to<br />

40 MHz. You should see a flat line at some voltage level (the actual voltage level<br />

varies from instrument to instrument). Anything other than a flat line indicates<br />

that the VCXO is tuning to different frequencies. Refer to the “Frequency<br />

Accuracy” adjustment procedure.<br />

Node 28 Al2 Gnd 2 (Ground reference)<br />

Al4 Fractional-N (Digital)<br />

lb observe the Al4 analog bus nodes perform step A14, below. Then follow the<br />

node-specific instructions.<br />

Step A14.<br />

Press:<br />

<strong>Service</strong> Key Menus and Error Messages 1043


Node 29 FN VU3 Tun (Al4 FN VCO tuning voltage)<br />

_ _ _ / . . . . . . . . . .:..<br />

Perform step Al4 and then press LMeas) ~~~~~~~‘;;~# (29) @J c-1<br />

~~~~~~~<br />

Observe the Al4 F’N VCO tuning voltage. If the Al3 and Al4 assemblies are<br />

functioning correctly and the VCO is phase locked, the trace should look Iike<br />

Figure 10-17. Any other waveform indicates that the FN VCO is not phase<br />

locked. The vertical lines in the trace indicate the band crossings. (The counter<br />

can also be enabled to count the VCO frequency in CW mode.)<br />

1044 <strong>Service</strong> Key Menus and Error Messages<br />

sg6274d<br />

Figure 10-17. Analog Bus Node 29


Node 30 FN VC0 Det (Al4 VC0 detector)<br />

See whether the F’N VCO is oscillating. The trace should resemble Figure 10-18.<br />

sg6275d<br />

Figure 10-18. Analog Bus Node 30<br />

Node 31 Count Gate (analog bus counter gate)<br />

You should see a flat line at + 5 V across the operating frequency range. The<br />

counter gate activity occurs during bandswitches, and therefore is not visible<br />

on the analog bus. To view . . . . the . . . . . . . . . . . . . . . . . bandswitch activity, @ok at..$is node on an<br />

oscilloscope, using ~~~~~~~~. Refer to ~~~~~~~~~.-~~~~~~ mder the Analog<br />

. . . .L......... . .<br />

. . . . . . ..L . .. . ..A .A? . . . ..w................ . .,.,,.. A.A... :.:.:,.;: ,.,. i .,.,.,.,.,.~.,.,.,.,.,.~.,. i ,.,.,.~....... i . . . n . . . . . . _ . . _ _,,.,.,.,.,.,.,.,.,.,,/._i<br />

Bus Menu heading.<br />

<strong>Service</strong> Key Menus and Error Messages 1045


PEEK/POKE Menu<br />

m acceSS tl& menu, press Csystem_l ~~~:~~~~~~r, ~p.&@~~<br />

:........: 2.: .: i::::::: ;;....~.~~~.~~.~;.;;~..:: ,... ‘. z . ../ ?Z


Firmware Revision Softkey<br />

_.., ..,<br />

Ress ~'~~~~~~~,~~~ ~~~~~,~~~~,~~~~to &play the current<br />

.//. I..i./........ ;.............................~..ii..~~..~~~...~ ..A. .:... ._._..........................-...................-..........-..-..............<br />

flrmware revision information. The number and implementation date appear<br />

in the active entry area of the display as shown in Figure lo-19 below. The<br />

analyzer’s serial number and installed options are also displayed. Another way<br />

to display the Grmware revision information is to cycle the line power.<br />

I REFO dB<br />

START .030 000 MHz STOP 6 000.000 000 MHz<br />

dg632e<br />

Figure 10-19. Location of Firmware Revision Information on Display<br />

<strong>Service</strong> Key Menus and Error Messages 1047


<strong>HP</strong>-IB <strong>Service</strong> Mnemonic Definitions<br />

Ah service routine keystrokes can be made through <strong>HP</strong>-IB in one of the<br />

following approaches:<br />

w sending equivalent remote <strong>HP</strong>-IB commands. (Mnemonics have been<br />

documented previously with the corresponding keystroke.)<br />

� invoking the System Menu (MENUSYST) and using the analyzer mnemonic<br />

(SCFTn), where “nn represents the softkey number. (Softkeys are<br />

numbered 1 to 8 from top to bottom.)<br />

An <strong>HP</strong>-IB overview is provided in the “Compatible Peripherals” chapter in<br />

the User’s ouide. <strong>HP</strong>-IB programming information is also provided in the<br />

Programming <strong>Guide</strong>.<br />

Invoking Tests Remotely<br />

Many tests require a response to the displayed prompts. Since bit 1 of the Event<br />

Status Register B is set (bit 1 = service routine waiting) any time a service<br />

routine prompts the user for an expected response, you can send an appropriate<br />

response using one of the following techniques:<br />

� Read event status register B to reset the bit.<br />

� Enable bit 1 to interrupt (ESNB[D]). See “Status Reporting” in the<br />

Programming <strong>Guide</strong>.<br />

w Respond to the prompt with a TESRn command (see Tests Menu, at the<br />

beginning of this chapter).<br />

Symbol Conventions<br />

[I An optional operand<br />

D A numericaI operand<br />

A necessary appendage<br />

I<br />

An either/or choice in appendages<br />

1048 <strong>Service</strong> Key Menus and Error Messages


Analog Bus Codes<br />

OUTPCNTR<br />

OUTPERRO<br />

OUTPTESS<br />

TST?<br />

Measures and displays the analog input. The preset state<br />

input to the analog bus is the rear panel AUX IN. The other<br />

30 nodes may be selected with ip., only if the AEKJS is<br />

enabled (ANABon).<br />

Outputs the counter’s frequency data.<br />

Reads any prompt message sent to the error queue by a<br />

service routine.<br />

Outputs the integer status of the test most recently<br />

executed. Status codes are those listed under “TST?“.<br />

Executes the power-on self test (internal test 1) and<br />

outputs an integer test status. Status codes are as follows:<br />

0 =pass<br />

1 =fail<br />

2 =in progress<br />

3 =not available<br />

4 =not done<br />

5 =done<br />

<strong>Service</strong> Key Menus and Error Messages 1049


Error Messages<br />

This section contains an alphabetical list of the error messages that pertain to<br />

servicing the analyzer. The information in the list includes explanations of the<br />

displayed messages and suggestion to help solve the problem.<br />

Note The error messages that pertain to measurement applications<br />

are included in the <strong>HP</strong> <strong>8753E</strong> <strong>Network</strong> Anulgzer User’s <strong>Guide</strong>.<br />

BATTERY FAILED. STATE MEMORY CLEARED<br />

Error Number The battery protection of the non-volatile SRAM memory has<br />

183 failed. The SRAM memory has been cleared. Refer to the<br />

“Assembly Replacement and Post-Repair Procedures” chapter<br />

for battery replacement instructions See the “Preset State and<br />

Memory Allocation, n chapter in the <strong>HP</strong> 87533 <strong>Network</strong> Anulgm<br />

User’s <strong>Guide</strong> for more information about the SRAM memory.<br />

BATTERY LOW! STORE SAVE REGS TO DISK<br />

Error Number The battery protection of the non-volatile SRAM memory is in<br />

184 danger of failing. If this occurs, all of the instrument state<br />

registers stored in SRAM memory will be lost. Save these states<br />

to a disk and refer to the “Assembly Replacement and<br />

Post-Repair Procedures” chapter for battery replacement<br />

instructions. See the “Preset State and Memory Allocation,”<br />

chapter in the <strong>HP</strong> <strong>8753E</strong> <strong>Network</strong> Anulgzer User’s <strong>Guide</strong> for<br />

more information about the SRAM memory.<br />

CALIBRATION ABORTED<br />

Error Number You have changed the active channel during a calibration so the<br />

74 calibration in progress was terminated. Make sure the<br />

appropriate channel is active and restart the calibration.<br />

1 O-50 <strong>Service</strong> Ksy Menus and Error Messages


CALIBRATION REQUIRED<br />

Error Number A calibration set could not be found that matched the current<br />

63 stimulus state or measurement parameter. You will have to<br />

perform a new calibration.<br />

CORRECTION CONSTANTS NOT STORED<br />

Error Number A store operation to the EEPROM was not successful. You must<br />

3 change the position of the jumper on the A9 CPU assembly.<br />

Refer to the “A9 CC Jumper Position Procedure” in the<br />

“Adjustments and Correction Constants” chapter.<br />

CORRECTION TURNED OFF<br />

Error Number Critical parameters in your current instrument state do not<br />

66 match the parameters for the calibration set, therefore<br />

correction has been turned off. The critical instrument state<br />

parameters are sweep type, start frequency, frequency span,<br />

and number of points<br />

CURRENT PARAMETER NOT IN CAL SET<br />

Error Number Correction is not valid for your selected measurement<br />

64 parameter. Either change the measurement parameters or<br />

perform a new calibration.<br />

DEADLOCK<br />

Error Number A fatal hrmware error occurred before instrument preset<br />

111 completed.<br />

<strong>Service</strong> Key Menus and Error Messages 1 O-51


DEVICE:noton,notconnect, wrong addrs<br />

Error Number The device at the selected address cannot be accessedbythe<br />

119 analyzer. Verify that the device is switched on, and check the<br />

<strong>HP</strong>-IB connection between the analyzer and the device. Ensure<br />

that the device address recognized by the analyzer matches the<br />

<strong>HP</strong>-IB address set on the device itself.<br />

DISK HARDWARE PROBLEM<br />

Error Number The disk drive is not responding correctly. Refer to the disk<br />

39 drive operating manual.<br />

DISK MESSAGE LENGTH ERROR<br />

Error Number The analyzer and the external disk drive aren’t communicating<br />

190 properly. Check the <strong>HP</strong>43 connection and then try substituting<br />

another disk drive to isolate the problem instrument.<br />

DISK:noton,not connected, wrong addrs<br />

Error Number The disk cannot be accessed by the analyzer. Verify power to<br />

38 the disk drive, and check the <strong>HP</strong>-B3 connection between the<br />

analyzer and the disk drive. Ensure that the disk drive address<br />

recognized by the analyzer matches the <strong>HP</strong>-IB address set on<br />

the disk drive itself.<br />

1 O-52 <strong>Service</strong> Key Menus and Error Messages


DISK READ/WRITE ERROR<br />

Error Number There may be a problem with your disk. Try a new floppy disk.<br />

189 If a new floppy disk does not eliminate the error, suspect<br />

hardware problems.<br />

INITIALIZATION FAILED<br />

Error Number The disk initialization failed, probably because the disk is<br />

47 damaged.<br />

INSUFFICIENTMEMORY,PURMTRCAL OFF<br />

Error Number There is not enough memory space for the power meter<br />

154 calibration array. Increase the available memory by clearing one<br />

or more save/recall registers, or by reducing the number of<br />

points<br />

NO CALIBRATION CURRENTLY I N PROGRESS<br />

Error Number The ~~~~~~~~~~~; softkey is not valid unless a<br />

_ _i .,.,.,.,.,.,.,.,...,.,......,.,.,.,.,.,.,.,.,. _ _ _ _ i.,i . . . . . . . . i . . . . . . . _<br />

69 calibration is already in progress. Start a new calibration.<br />

NOTENOUGHSPACEONDISKFORSTORE<br />

Error Number The store operation will overflow the available disk space.<br />

44 Insert a new disk or purge files to create free disk space.<br />

<strong>Service</strong> Key Menus and Error Messages 1 O-53


NO FILE(S) FOUND ONDISK<br />

Error Number No files of the type created by an analyzer store operation were<br />

45 found on the disk. If you requested a specific hle title, that hle<br />

was not found on the disk.<br />

NO IF FOUND: CHECK R INPUT LEVEL<br />

Error Number The first IF signal was not detected during pretune. Check the<br />

5 front panel R channel jumper. If there is no visible problem<br />

with the jumper, refer to the “Source Troubleshooting” chapter.<br />

NO PHASE LOCK: CHECK R INPUT LEVEL<br />

Error Number The tist IF signal was detected at pretune, but phase lock could<br />

7 not be acquired. Refer to the “Source Troubleshooting” chapter.<br />

NO SPACE FOR NEW CAL. CLEAR REGISTERS<br />

Error Number You cannot store a calibration set due to insufficient memory.<br />

70 You can free more memory by clearing a saved instrument state<br />

from an internal register (which may also delete an associated<br />

calibration set, if all the instrument states using the calibration<br />

kit have been deleted.) You can store the saved instrument state<br />

and calibration set to a disk before clearing them. After deleting<br />

the instrument states, press w to run the memory packer.<br />

1 O-54 <strong>Service</strong> Key Menus and Error Messages


NOT ALLOWED DURING POWER METER CAL<br />

Error Number When the analyzer is performing a power meter calibration, the<br />

198 <strong>HP</strong>-IB bus is unavailable for other functions such as printing or<br />

plotting.<br />

OVER LOAD ON INPUT A, POWER REDUCED<br />

Error Number See error number 57.<br />

58<br />

OVER LOAD ON INPUT B, POWER REDUCED<br />

Error Number See error number 57.<br />

59<br />

OVER LOAD ON INPUT R, POWER REDUCED<br />

Error Number You have exceeded approximately + 14 dBm at one of the test<br />

57 ports, The RF output power is automatically reduced to<br />

-85 dBm. The annotation PJL appears in the left margin of the<br />

display to indicate that the power trip function has been<br />

activated. When this occurs, reset the power to a lower level,<br />

aen toggle the ~~~-~~~~~:~~~~~~ softkey to sMtch on Q,e<br />

_ . . ..i . . . . _ . . . . . . _ .,.,. .~ _,_ L,,,>>>B ,.,.: .,.,. _ _ i _ z.:.z.:.:.u.<br />

power again.<br />

PARALLEL PORT NOT AVAILABLE FOR GPIO<br />

Error Number You have dellned the parallel port as COPY for sequencing in<br />

165 the <strong>HP</strong>-IB menu. ‘lb access the parallel port for general purpose<br />

I/O (GPIO), set the selection to [GPIO].<br />

<strong>Service</strong> Key Menus and Error Messages lo-55


PARALLEL PORT NOT AVAILABLE FOR COPY<br />

Error Number You have dellned the parallel port as general purpose I/O (GPIO)<br />

167 for sequencing. The definition was made under the (Local key<br />

menus. To access the pamIle port for copy, set the selection to<br />

~~~~:~~:.~~<br />

. . . . . . . . . i I:: ,.,,, .~~.~~~~,;~;. .” -<br />

PHASE LOCK CAL FAILED<br />

Error Number An internal phase lock calibration routine is automatically<br />

4 executed at power-on, preset, and any time a loss of phase lock<br />

is detected. This message indicates that phase lock calibration<br />

was initiated and the first IF detected, but a problem prevented<br />

the calibration from completing successfully. Refer to Chapter<br />

3, “Adjustments and Correction Constants” and execute pretune<br />

correction (test 48).<br />

This message may appear if you connect a mixer between the<br />

RF’ output and R input before turning on frequency offset mode.<br />

Ignore it: it will go away when you turn on frequency offset.<br />

This message may also appear if you turn on frequency offset<br />

mode before you define the offset.<br />

PHASE LOCK LOST<br />

Error Number Phase lock was acquired but then lost. Refer to the “Source<br />

8 Troubleshooting” chapter.<br />

1 O-56 <strong>Service</strong> Key Menus and Error Messages


POSSIBLE FALSE LOCK<br />

Error Number Phase lock has been achieved, but the source may be phase<br />

6 locked to the wrong harmonic of the synthesizer. Perform the<br />

source pretune correction routine documented in the<br />

“Adjustments and Correction Constants” chapter.<br />

POWER METER INVALID<br />

Error Number The power meter indicates an out-of-range condition. Check the<br />

116 test setup.<br />

POWER METER NOT SETTLED<br />

Error Number Sequential power meter readings are not consistent. Verify that<br />

118 the equipment is set up correctly. If so, preset the instrument<br />

and restart the operation.<br />

POWER SUPPLY HOT!<br />

Error Number The temperature sensors on the A8 post-regulator assembly<br />

21 have detected an over-temperature condition. The power<br />

supplies regulated on the post-regulator have been shut down.<br />

Refer to the “Power Supply Troubleshooting” chapter.<br />

POWER SUPPLY SHUT DOWN!<br />

Error Number One or more supplies on the A8 post-regulator assembly have<br />

22 been shut down due to an over-current, over-voltage, or<br />

under-voltage condition. Refer to the “Power Supply<br />

Troubleshooting” chapter.<br />

<strong>Service</strong> Key Menus and Error Messages 1 O-57


POWER UNLEVELED<br />

Error Number There is either a hardware failure in the source or you have<br />

179 attempted to set the power level too high. Check to see if the<br />

power level you set is within specillcations. If it is, refer to the<br />

“Source Troubleshooting” chapter. You will only receive this<br />

message over the <strong>HP</strong>-IB. On the analyzer, P? is displayed.<br />

PRINTER: error<br />

Error Number The parallel port printer is malfunctioning. The analyzer cannot<br />

175 complete the copy function.<br />

PRINTER: not handshaking<br />

Error Number The printer at the parallel port is not responding.<br />

177<br />

PRINTER: noton, not connected, wrongaddrs<br />

Error Number The printer does not respond to control. Verify power to the<br />

24 printer, and check the <strong>HP</strong>-IB connection between the analyzer<br />

and the printer. Ensure that the printer address recognized by<br />

the analyzer matches the <strong>HP</strong>-B3 address set on the printer itself.<br />

PROBE POWER SHUT DOWN!<br />

Error Number The analyzer biasing supplies to the <strong>HP</strong> 85024A external probe<br />

23 are shut down due to excessive current. Troubleshoot the<br />

probe, and refer to the “Power Supply Troubleshooting” chapter.<br />

1 O-56 <strong>Service</strong> Key Menus and Error Messages


PWR MTR: NOT ON/CONNECTED OR WRONG ADDRS<br />

Error Number The power meter cannot be accessed by the analyzer. Verify<br />

117 that the power meter address and model number set in the<br />

analyzer match the address and model number of the actual<br />

power meter.<br />

SAVE FAILED. INSUFFICIENT MEMORY<br />

Error Number You cannot store an instrument state in an internal register due<br />

151 to insufficient memory. Increase the available memory by<br />

clearing one or more save/recall registers and pressing m, or<br />

by storing files to a disk.<br />

SELFTFST #n FAILED<br />

<strong>Service</strong> Error Internal test #n has failed. Several internal test routines are<br />

Number 112 executed at instrument preset. The analyzer reports the first<br />

failme detected. Refer to the internal tests and the<br />

self-diagnose feature descriptions earlier in this chapter.<br />

SOURCEPOWERTLJRNElDOFF, RESET UNDER POWERMENU<br />

Information You have exceeded the maximum power level at one of the<br />

Message inputs and power has been automatically reduced. The<br />

annotation P+ indicates that power trip has been activated.<br />

When this occurs, reset the power and then press LMenu) &J@<br />

.~~~~~:.~~~~~~~~~~.<br />

. . . . . . ;.;,.,.,.,; . . . . . . . . .:: . . .. . . . . . . . . . . . . . . . .::::. . . . . . . . . . . . . . . . . . .<br />

,,......... . . . . . .;... . . . . . . . . . . . . . . . . . .<br />

t to sdtc., on the power. This message<br />

follows error numbers 57, 58, and 59.<br />

<strong>Service</strong> Key Menus and Error Messages lo-59


SWEEP MODE CHANGED TO CW TIME SWEEP<br />

Error Number If you select external source auto or manuai instrument mode<br />

187 and you do not also select CW mode, the anaIyzer is<br />

automatically switched to CW.<br />

TEST ABORTED<br />

Error Number You have prematurely stopped a service test.<br />

113<br />

TROUBLE! CHECK SETUP AND START OVER<br />

<strong>Service</strong> Error Your equipment setup for the adjustment procedure in progress<br />

Number 115 is not correct. Check the setup diagram and instructions in the<br />

“Adjustments and Correction Constants” chapter. Start the<br />

procedure again.<br />

WRONG DISK FORMAT, INITIALIZE DISK<br />

Error Number You have attempted to store, load, or read hle titles, but your<br />

77 disk format does not conform to the Logical Interchange Format<br />

(LIF). You must initialize the disk before reading or writing to it.<br />

lo-60 <strong>Service</strong> Key Menus and Error Massages


Error lkrms<br />

The analyzer generates and stores factors in internal arrays when a<br />

measurement error-correction (measurement calibration) is performed. These<br />

factors are known by the following terms:<br />

� error terms<br />

� E-terms<br />

� measurement calibration coefficients<br />

11<br />

The analyzer creates error terms by measuring well-deflned calibration devices<br />

over the frequency range of interest and comparing the measured data with the<br />

ideal model for the devices The differences represent systematic (repeatable)<br />

errors of the analyzer system. The resulting calibration coefficients are good<br />

representations of the systematic error sources. For details on the various levels<br />

of error-correction, refer to the “Optimizmg Measurement Results” chapter of<br />

the <strong>HP</strong> <strong>8753E</strong> <strong>Network</strong> Anulger User’s <strong>Guide</strong>. For details on the theory of<br />

error-correction, refer to the “Application and Operation Concepts” chapter of<br />

the <strong>HP</strong> <strong>8753E</strong> <strong>Network</strong> Anulgm User’s <strong>Guide</strong>.<br />

Error YLlxms Can Also Serve a Diagnostic Purpose<br />

Specific parts of the analyzer and its accessories directly contribute to the<br />

magnitude and shape of the error terms Since we know this correlation and we<br />

know what typical error terms look like, we can examine error terms to monitor<br />

system performance (preventive maintenance) or to identify faulty components<br />

in the system (troubleshooting).<br />

� Preventive Maintenance: A stable, repeatable system should generate<br />

repeatable error terms over long time interval% for example, six months<br />

If you make a hardcopy record (print or plot) of the error terms, you can<br />

periodically compare current error terms with the record. A sudden shift in<br />

error terms reflects a sudden shift in systematic errors, and may indicate<br />

the need for further troubleshooting. A long-term trend often reflects drift,<br />

Error Terms 11-l


connector and cable wear, or gradual degradation, indicating the need for<br />

further investigation and preventive maintenance. Yet, the system may still<br />

conform to specifications. The cure is often as simple as cleaning and gaging<br />

connectors or inspecting cables.<br />

� Troubleshooting: If a subtle failme or mild performance problem is<br />

suspected, the magnitude of the error terms should be compared against<br />

values generated previously with the same instrument and calibration kit.<br />

This comparison will produce the most precise view of the problem.<br />

However, if previously generated values are not available, compare the<br />

current values to the typical values listed in Table 11-2, and shown graphically<br />

on the plots in this chapter. If the magnitude exceeds its limit, inspect the<br />

corresponding system component. If the condition causes system verification<br />

to fail, replace the component.<br />

Consider the following while troubleshooting:<br />

� All parts of the system, including cables and calibration devices, can<br />

contribute to systematic errors and impact the error terms.<br />

� Connectors must be clean, gaged, and within specification for error term<br />

analysis to be meaningful.<br />

� Avoid unnecessary bending and flexing of the cables following measurement<br />

calibration, minimizing cable instability errors.<br />

� Use good connection techniques during the measurement calibration.<br />

The connector interface must be repeatable. Refer to the “Principles<br />

of Microwave Connector Care” section in the “<strong>Service</strong> Equipment and<br />

<strong>Analyzer</strong> Options” chapter for information on connection techniques and on<br />

cleaning and gaging connectors.<br />

� Use error term analysis to troubleshoot minor, subtle performance problems.<br />

Refer to the “Start Troubleshooting Here” chapter if a blatant failme or<br />

gross measurement error is evident.<br />

� It is often worthwhile to perform the procedure twice (using two distinct<br />

measurement calibrations) to establish the degree of repeatability. If the<br />

results do not seem repeatable, check all connectors and cables.<br />

1 l-2 Error Terms


FuU Two-Port Error-Correction Procedure<br />

Note This is the most accurate error-correction procedure. Since the<br />

analyzer takes both forward and reverse sweeps, this procedure<br />

takes more time than the other correction procedures.<br />

1. Set any measurement parameters that you want for the device<br />

measurement: power, format, number of points, IF bandwidth.<br />

2. To access the measurement correction menus, press:<br />

3. If your calibration kit is different than the kit specified under the<br />

‘T ..,..,:,. :


FOR I SOLAT ION<br />

<strong>HP</strong> <strong>8753E</strong><br />

NETWORK ANALYZER<br />

ag,<br />

APC-7<br />

* 24 INCH<br />

LOAD LOAD<br />

* DIRECT CONNECTrON<br />

FOR TRANSMISSION<br />

<strong>HP</strong> <strong>8753E</strong><br />

NETWORK ANALYZER<br />

FOR REFLECT I ON<br />

<strong>HP</strong> <strong>8753E</strong><br />

NETWORK ANALYZER<br />

TEST<br />

PORT 2<br />

Figure 11-l. Standard Connections for Full Two-Port Error-Correction<br />

114 Error Terms


6. To measure the standard, when the displayed trace has settled, press:<br />

7.<br />

8.<br />

9.<br />

10.<br />

11.<br />

12.<br />

13.<br />

14.<br />

The analyzer underlines the Bi&$i. softkey after it measures the standard.<br />

.- .._...............<br />

Disconnect the open, and connect a short circuit to PORT 1.<br />

To measure the device, when the displayed trace has settled, press:<br />

: s.. ::::::z.: . . . . . . . ..i .::::...::.r<br />

The analyzer underlines the ~~~~~~ softkey after it measures the standard.<br />

Disconnect the short, and connect an impedance-matched load to PORT 1.<br />

lb measure the standard, when the displayed trace has settled, press:<br />

y ::. . . p .vy<<br />

The analyzer tmderlines the :&&I& softkey after it measures the standard.<br />

Repeat the open-short-load measurement descried above, but connect the<br />

devices h turn to PORT<br />

. . . . . . . . . ..:.. . . . . .::.:... . ::. :: .i i. i ::.:.:... :,. .<br />

2, md use the ~~~~~~~ jj&#&$$ t .) &&!j$<br />

: .-.... :Ai_...<br />

. . . . . . .:. . . . . . ..~.........-......~.....~............~~........... . . . .<br />

9 ;,.,..,,......;;;._,.~.~~~., ___ ?<br />

md ~~~~~ 2. ““““““. :#$s’ ....“‘...’ softkeys<br />

lb compute the reflection correction coefficients, press:<br />

f&n portion of the come&ion, press: ~~~~~~~~~~~~,<br />

‘lb start the transmis<br />

Make a “through” connection between the points where you will connect<br />

your device under test as shown in F’igure 11-l.<br />

Note Include any adapters or cables that you will have in the device<br />

measurement. That is, connect the standard device where you<br />

will connect your device under test.<br />

ErrorTerms 11-5


The analyzer displays the corrected measurement trace. The analyzer<br />

also shows the notation Cor at the left of the screen, indicating that<br />

error-correction is on.<br />

Note You can save or store the measurement correction to use for<br />

later measurements Use the menus under @JEGi$ or refer<br />

to “Printing, Plotting, and Saving Measurement Results” located<br />

in the <strong>HP</strong> 87533 <strong>Network</strong> Anulgger User’s cui&e for procedures.<br />

18. This completes the full two-port correction procedure. You can connect and<br />

measure your device under test.<br />

calibration<br />

Coellleient<br />

WYrEsi<br />

‘lhble 11-l. Calibration CoefKcient ‘lkrms and lksts<br />

calibratioll lhbE<br />

-POand<br />

Isolation*<br />

l-pert<br />

2-pod<br />

xkst<br />

NUDlbC?r<br />

1 &i or% Ex (ED) ED EDF 32<br />

2 ET (Ed ES ESF 33<br />

3 ER ERF 34<br />

4 EXF 36<br />

6 ELF 36<br />

6 ETF 37<br />

7 JbR 33<br />

3 ‘%R 30<br />

0 ERR 40<br />

10 EXR 41<br />

11 ELR 42<br />

12 &l?R 43<br />

Kenning oflirst subscript: D-directivity; S-source match, R-reflection tracking; X-crosstalk;<br />

L-load match; T-transmission tracking.<br />

bleaning of second mhcripk F-forward; R-reverse.<br />

t Response and Isolation cal yields: EX or & if a transmiwion parameter (621, 612) or ED or ER if a<br />

Hlection parameter (%I, 622).<br />

1 One-path, 2-port cal duplicates array8 1 to 6 in 8lT8yB 7 to 12.<br />

Error Terms 1 l-7


Error Term Inspection<br />

Note<br />

i ,,i p”. ..:.,::.. : 1 . . . . . . . .<br />

If the correction is not active, press [call ‘$EJWZ$@# tixU .<br />

The analyzer copies the first calibration measurement trace for the selected<br />

error term into memory and then displays it. Table 11-l lists the test<br />

numbers<br />

2. Press @GiXZj and adjust the scale and reference to study the error term<br />

trace.<br />

3. Press (TFctn) and use the marker functions to determine the error term<br />

magnitude.<br />

4. Compare the displayed measurement trace to the trace shown in the<br />

following “Error Term descriptions” section, and to previously measured<br />

data. If data is not available from previous measurements, refer to the<br />

typical uncorrected performance specifications listed in lhble 11-2.<br />

5. Make a hardcopy of the measurement results:<br />

a. Connect a printing or plotting peripheral to the analyzer.<br />

b. press LLocal) ~~~~~~~~~~~~,; ~~~~~~~~~~~~ and seIect the<br />

i.. *; ..A.... i . . . . . . . . . . 1.... . . . . . . . ./<br />

appropriate peripheral to verify that the <strong>HP</strong>-IR address is set correctly on<br />

the analyzer.<br />

., . . .../<br />

C. Press (-1 a,& aen &00x either !p&$& ..-.-.... ; . . . . . . . ;; . . . . . . ..n...... .<br />

. . . or . . . ~~~~~.<br />

..__.................<br />

- . . _ ~ ,._ . . . . . . . :


If Error Terms Seem Worse than Typical Values<br />

1. Perform a system verification to verify that the system still conforms to<br />

specifications.<br />

2. If system verification fails, refer to “Start Troubleshooting Here. n<br />

Uncorrected Performance<br />

The following table shows typical performance without error-correction. RF<br />

cables are not used except as noted. Related error terms should be within these<br />

values.<br />

DilWtiVi~<br />

Source Match<br />

had Match<br />

Reflection Tracking*<br />

Tranamisaion Tracking*<br />

Croestallr<br />

able 11-2. Uncorrected System Performance<br />

*Deviation from nominal trace wxo8s the frequency range.<br />

Frequency Jlange (GE@<br />

o.ooo3 to 3.0 3.0 to 6.0<br />

SodB 26 dB<br />

16 dB 14 dB<br />

16dB 14 dB<br />

fl.6 dB +0.6 dl3, -2.6 dB<br />

f1.6 dB +0.6 dB, -2.6 dB<br />

OodB SodB<br />

ErrorTerms 114


Error ‘I&m Descriptions<br />

The error term descriptions in this section include the following information:<br />

� significance of each error term<br />

� typical results following a full 2-port error-correction<br />

� guidelines to interpret each error term<br />

The same description applies to both the forward (F’) and reverse (R) terms.<br />

11-10 ErrorTerms


Directivity (EDF and EDR)<br />

Description<br />

Directivity is a measure of any detected power that is reflected when a load<br />

is attached to the test port. These are the uncorrected forward and reverse<br />

directivity error terms of the system. The directivity error of the test port<br />

is determined by measuring the reflection (Sll, S22) of the load during the<br />

error-correction procedure.<br />

S-cant System Components<br />

w load used in the error-correction (calibration)<br />

� test port connectors<br />

� test port cables<br />

Affected Measurements<br />

Low reflection device measurements are most affected by directivity errors.<br />

HI d<br />

i i i i i i i i i I<br />

(4 04 sg632s<br />

Figure 11-2. Typical EDF/EDR without and with Cables<br />

Error Terms 1 l-1 1


Source Match (ESF and ESR)<br />

Description<br />

Source match is a measure of test port connector match, as well as the match<br />

between all components from the source to the test port. These are the forward<br />

and reverse uncorrected source match terms of the driven port.<br />

Signifkant System Components<br />

w load calibration kit device<br />

w open calibration kit device<br />

� short calibration kit device<br />

� bridge<br />

� test port connectors<br />

� bias tees<br />

w step attenuator<br />

� transfer switch<br />

� test port cables<br />

Affected Measurements<br />

Reflection and transmission measurements of highly reflective devices are most<br />

affected by source match errors.<br />

11-12 ErrorTerms<br />

Figure 11-3. Typical ESF/ESB without and with Cables<br />

sg633s


Reflection Tracking (ERF and ERR)<br />

Description<br />

Reflection tracking is the difference between the frequency response of the<br />

reference path (R path) and the frequency response of the reflection test path<br />

(A or B input path).<br />

Significant System Components<br />

� open calibration kit device<br />

� short calibration kit device<br />

� R signal path if large variation in both F,RF’ and ERR<br />

� A or B input paths if only one term is affected<br />

Affected Measurements<br />

All reflection measurements (high or low return loss) are affected by the<br />

reflection tracking errors.<br />

Figure 11-4. Typical EIWERR without and with Cables<br />

Error Terms 11-13


Isolation (Crosstalk, EXF and EXE)<br />

Description<br />

Isolation is a measure of the leakage between the test ports and the signal<br />

paths The isolation error terms are characterized by measuring transmission<br />

(S21, S12) with loads attached to both ports during the error-correction<br />

procedure. Since these terms are low in magnitude, they are usually noisy<br />

(not very repeatable). The error term magnitude changes dramatically with<br />

IF bandwidth: a 10 Hz IF bandwidth must be used in order to lower the noise<br />

floor beyond the crosstalk specification. Using averaging will also reduce the<br />

peak-to-peak noise in this error term.<br />

Significant System Components<br />

w sampler crosstalk<br />

Affected Measurements<br />

Transmission measurements, (primarily where the measured signal level is very<br />

low), are affected by isolation errors. For example, transmission measurements<br />

where the insertion loss of the device under test is large.<br />

Figure 11-5.<br />

Typical EXF/EXR with 10 Hz Bandwidth and with 3 Id& Bandwidth<br />

11.14 Error Terms<br />

sg638s


Load Match (ELF and ELR)<br />

Description<br />

Load match is a measure of the impedance match of the test port that<br />

terminates the output of a 2-port device. Load match error terms are<br />

characterized by measuring the reflection (Sll, S22) responses of a “through”<br />

configuration during the calibration procedure.<br />

SignWant System Components<br />

� “through” cable<br />

� cable connectors<br />

� test port connectors<br />

Affected Measurements<br />

All transmission and reflection measurements of a low insertion loss two-port<br />

devices are most affected by load match errors. Transmission measurements of<br />

lossy devices are also affected.<br />

BTRRT<br />

sg6277d<br />

Figure 11-6. Typical ELF/ELE<br />

Error Terms 11-15


Transmission Tracking (ETF and ETE)<br />

Description<br />

Transmission tracking is the difference between the frequency response of the<br />

reference path (including R input) and the transmission test path (including<br />

A or B input) while measuring transmission. The response of the test port cables<br />

is included. These terms are characterized by measuring the transmission (S21,<br />

S12) of the “through” configuration during the error-correction procedure.<br />

Significant System Components<br />

� R signal path (if both ETF and ETR are bad)<br />

� A or B input paths<br />

� “through” cable<br />

Affected Measurements<br />

All transmission measurements are affected by transmission tracking errors.<br />

11-16 Error Terms<br />

sg6278d<br />

Figure 11-7. Typical ETF/ETR


Theory of Operation<br />

This chapter is divided into two major sections:<br />

� “How the <strong>HP</strong> <strong>8753E</strong> Works” gives a general description of the <strong>HP</strong> <strong>8753E</strong><br />

network analyzer operation.<br />

� “A Close Look at the <strong>Analyzer</strong>’s Functional Groups” provides more detailed<br />

operating theory for each of the analyzer’s functional groups.<br />

How the <strong>HP</strong> <strong>8753E</strong> Works<br />

12<br />

<strong>Network</strong> analyzers measure the reflection and transmission characteristics of<br />

devices and networks. A network analyzer test system consists of the following:<br />

� source<br />

� signal-separation devices<br />

� receiver<br />

� display<br />

The analyzer applies a signal that is either transmitted through the device under<br />

test, or reflected from its input, and then compares it with the incident signal<br />

generated by the swept RF source. The signals are then applied to a receiver for<br />

measurement, signal processing, and display.<br />

The <strong>HP</strong> <strong>8753E</strong> vector network analyzer integrates a high resolution synthesized<br />

RF source, test set, and a dual channel three-input receiver to measure and<br />

display magnitude, phase, and group delay of transmitted and reflected power.<br />

The <strong>HP</strong> <strong>8753E</strong> Option 010 has the additional capability of transforming<br />

measured data from the frequency domain to the time domain. Figure 12-1<br />

is a simplified block diagram of the network analyzer system. A detailed<br />

block diagram of the analyzer is located at the end of Chapter 4, “Start<br />

Troubleshooting Here. n<br />

Theory of Operation 12-l


- c<br />

\<br />

30kHz to 3 or 66HL 30kHr to 3 or MHZ R<br />

I<br />

---a -<br />

SYNTHESIZED TEST RECE I VER DISPLAY<br />

SOURCE AC<br />

SET<br />

piiq<br />

El-<br />

sg623Bd<br />

Figure 12-1. Simplirred Block Diagram of the <strong>Network</strong> <strong>Analyzer</strong> System<br />

The Built-In Synthesized Source<br />

The analyzer’s built-in synthesized source produces a swept RF signal in the<br />

range of 30 kHz to 3.0 GHz. The <strong>HP</strong> <strong>8753E</strong> Option 006 is able to generate<br />

signals up to 6 GHz. The source output power is leveled by an internal ALC<br />

(automatic leveling control) circuit. lb achieve frequency accuracy and phase<br />

measuring capability, the analyzer is phase locked to a highly stable crystal<br />

oscillator.<br />

For this purpose, a portion of the transmitted signal is routed to the R channel<br />

input of the receiver, where it is sampled by the phase detection loop and fed<br />

back to the source.<br />

The Source Step Attenuator<br />

The 70 dB, electro-mechanical, step attenuator contained in the source has very<br />

low loss. It is used to adjust the power level to the device under test without<br />

changing the level of the incident power in the reference path. The user sets<br />

the attenuation levels via the front panel softkeys.<br />

12-2 Theory of Operation


The Built-In lkst Set<br />

The <strong>HP</strong> <strong>8753E</strong> features a built-in test set that provides the signal separation<br />

capability for the device under test, as well as to the signal-separation devices.<br />

The signal separation devices are needed to separate the incident signal from<br />

the transmitted and reflected signals. The incident signal is applied to the R<br />

channel input via an external jumper cable on the front panel. Meanwhile,<br />

the transmitted and reflected signals are internally routed from the test port<br />

couplers to the inputs of the A and B sampler/mixers in the receiver. Port 1 is<br />

connected to the A input and port 2 is connected to the B input.<br />

The test set contains the hardware required to make simultaneous transmission<br />

and reflection measurements in both the forward and reverse directions. A<br />

solid-state transfer switch in the built-in test set allows reverse measurements to<br />

be made without changing the connections to the device under test.<br />

The Receiver Block<br />

The receiver block contains three sampler/mixers for the R, A and B inputs. The<br />

signals are sampled, and down-converted to produce a 4 kHz IF’ (intermediate<br />

frequency). A multiplexer sequentially directs each of the three IF signals to<br />

the ADC (analog to digital converter) where it is converted from an analog to<br />

a digital signal to be measured and processed for viewing on the display. Both<br />

amplitude and phase information are measured simultaneously, regardless of<br />

what is displayed on the analyzer.<br />

The Microprocessor<br />

A microprocessor takes the raw data and performs all the required error<br />

correction, trace math, formatting, scaling, averaging, and marker operations,<br />

according to the instructions from the front panel or over <strong>HP</strong>-IB. The formatted<br />

data is then displayed.<br />

Required Peripheral Equipment<br />

In addition to the analyzer, a system requires calibration standards for vector<br />

accuracy enhancement, and cables for interconnections.<br />

Theory of Operation 123


A Close Look at the <strong>Analyzer</strong>’s Functional Groups<br />

The operation of the analyzer is most logically described in five functional<br />

groups. Each group consists of several major assemblies, and performs a distinct<br />

function in the instrument. Some assemblies are related to more than one<br />

group, and in fact all the groups are to some extent interrelated and affect each<br />

other’s performance.<br />

Power Supply. The power supply functional group consists of the A8 post<br />

regulator and the Al5 preregulator. It supplies power to the other assemblies<br />

in the instrument.<br />

Digital Control. The digital control group consists of the Al front panel and<br />

A2 front panel processor, the A9 CPU, the Al6 rear panel, the Al8 display<br />

and the A19 graphics system processor (GSP). The A10 digital IF assembly is<br />

also related to this group. These assemblies combine to provide digital control<br />

for the analyzer.<br />

Source. The source group consists of the A3 source, A7 pulse generator, All<br />

phase lock, Al2 reference, Al3 fractional-N (analog), and Al4 fractional-N<br />

(digital) assemblies. The A4 sampler is also related since it is part of the<br />

source phase lock loop. The source supplies a phase-locked RF signal to the<br />

device under test.<br />

Signal Separation. The signal separation group performs the function of an<br />

S-parameter test set, dividing the source signal into a reference path and a<br />

test path, and providing connections to the device under test. It consists of<br />

the A24 transfer switch, the A21 test port 1 coupler, and the A22 test port 2<br />

coupler.<br />

Receiver. The receiver group consists of the A4/A5/A6 sampler/mixers and<br />

the A10 digital IF. The Al2 reference assembly and the A9 CPU are also<br />

related. The receiver measures and processes input signals for display.<br />

The following pages describe the operation of each of the functional groups.<br />

124 Theory of Operation


Power Supply Theory<br />

The power supply functional group consists of the Al5 preregulator and the<br />

A8 post regulator. These two assemblies comprise a switching power supply<br />

that provides regulated DC voltages to power all assemblies in the analyzer. The<br />

Al5 preregulator is enclosed in a casting at the rear of the instrument behind<br />

the display. It is connected to the A8 post regulator by a wire bus A15Wl.<br />

Figure 12-2 is a simplified block diagram of the power supply group.<br />

O F F D U R I N G 2’ N O R M A L O P E R A T I O N<br />

\<br />

;ON D U R I N G<br />

N O R M A L O P E R A T I O N<br />

L A L L O N D U R I N G<br />

N O R M A L OPERAlION<br />

sg6105e<br />

Figure 12-2. Power Supply Functional Group, Simplified Block Diagram<br />

Al5 Preregulator<br />

The Al5 preregulator steps down and recti6es the line voltage. It provides a<br />

fully regulated +5 V digital supply, and several preregulated voltages that go to<br />

the A8 post regulator assembly for additional regulation.<br />

The Al5 preregulator assembly includes the line power module, a 60 kHz<br />

switching preregulator, and overvoltage protection for the +5 V digital supply.<br />

It provides LEDs, visible from the rear of the instrument, to indicate either<br />

normal or shutdown status.<br />

Theory of Operation 12-5


Line Power Module<br />

The line power module includes the line power switch, voltage selector switch,<br />

and main fuse. The line power switch is activated from the front panel. The<br />

voltage selector switch, accessible at the rear panel, adapts the analyzer to local<br />

line voltages of approximately 115 V or 230 V (with 350 VA maximum). The<br />

main fuse, which protects the input side of the preregulator against drawing too<br />

much line current, is also accessible at the rear panel. Refer to the<br />

<strong>HP</strong> <strong>8753E</strong> <strong>Network</strong> Anulgzer lhstalhttin and Quick Start <strong>Guide</strong> for line voltage<br />

tolerances and other power considerations.<br />

Preregulated Voltages<br />

The switching preregulator converts the line voltage to several DC voltages. The<br />

regulated +5 V digital supply goes directly to the motherboard. The following<br />

parGaIly regulated voltages are routed through A15Wl to the A8 post regulator<br />

for llnal regulation:<br />

+7OV +25V +18V -18V +8V -8V<br />

Regulated + 6 V Digital Supply<br />

The + 5 VD supply is regulated by the control circuitry in the Al5 preregulator.<br />

It goes directly to the motherboard, and from there to all assemblies requiring<br />

a low noise digital supply. A + 5 V sense line returns from the motherboard to<br />

the Al5 preregulator. The +5 V CPU is derived from the +5 VD in the A8 post<br />

regulator and goes directly to the A19 graphics system processor.<br />

In order for the preregulator to function, the +5 V digital supply must be<br />

loaded by one or more assemblies, and the + 5 V sense line must be working. If<br />

not, the other preregulated voltages will not be correct.<br />

Shutdown Indications: the Green LED and Red LED<br />

The green LED is on in normal operation. It is off when line power is not<br />

connected, not switched on, or set too low, or if the line fuse has blown.<br />

The red LED, which is off in normal operation, lights to indicate a fault in<br />

the +5 V supply. This may be an over/under line voltage, over line current,<br />

or overtemperature condition. Refer to the troubleshooting chapters for more<br />

information.<br />

12-6 Theory of Operation


A8 Post Regulator<br />

The A8 post regulator lllters and regulates the DC voltages received from the<br />

Al5 preregulator. It provides fusing and shutdown circuitry for individual<br />

voltage supplies. It distributes regulated constant voltages to individual<br />

assemblies throughout the instnunent. It includes the overtemperature<br />

shutdown circuit, the variable fan speed circuit, and the air flow detector. Nine<br />

green LEDs provide status indications for the individual voltage supplies<br />

Refer to the Power Supply Block Diagram located at the end of Chapter 5,<br />

“Power Supply Troubleshooting”, to see the voltages provided by the A8 post<br />

regulator.<br />

Voltage Indications: the Green LEDs<br />

The nine green LEDs along the top edge of the A8 assembly are on in normal<br />

operation, to indicate the correct voltage is present in each supply. If they are<br />

off or flashing, a problem is indicated. The troubleshooting procedures later in<br />

this chapter detail the steps to trace the cause of the problem.<br />

Shutdown Circuit<br />

The shutdown circuit is triggered by overcurrent, overvoltage, undervoltage, or<br />

overtemperature. It protects the instrument by causing the regulated voltage<br />

supplies to be shut down. It also sends status messages to the A9 CPU to trigger<br />

warning messages on the analyzer display. The voltages that are not shut down<br />

are the +5 VD and +5 VCPU digital supplies from the preregulator, the fan<br />

supplies, the probe power supplies, and the display supplies. The shutdown<br />

circuit can be disabled momentarily for troubleshooting purposes by using a<br />

jumper to connect the SDIS line (A8TP4) to ground.<br />

Variable Fan Circuit and Air Flow Detector<br />

The fan power is derived directly from the + 18 V and -18 V supplies from<br />

the Al5 preregulator. The fan is not fused, so that it will continue to provide<br />

airflow and cooling when the instrument is otherwise disabled. If overheating<br />

occurs, the main instrument supplies are shut down and the fan runs at full<br />

speed. An overtemperature status message is sent to the A9 CPU to initiate a<br />

warning message on the analyzer display. The fan also nms at full speed if the<br />

air flow detector senses a low output of air from the fan. (Pull speed is normal<br />

at initial power on.)<br />

Theory of Operation 12-7


Display Power<br />

The A8 assembly supplies +5 VCPU to the A19 GSP through the motherboard.<br />

The GSP converts a portion of the +5 VCPU to 3.3 V to drive the display and<br />

LVDS (low voltage differential signaling) logic The A19 GSP also controls and<br />

supplies power to the A27 backlight inverter. The voltages generated by the<br />

inverter are then routed to the display. Display power is not connected to the<br />

protective shutdown circuitry so that the Al8 display assemblies can operate<br />

during troubleshooting when other supplies do not work.<br />

Note If blanking pulses from the A19 GSP are not present, then<br />

+3.3 V will not be sent to the display.<br />

Probe Power<br />

The + 18 V and -18 V supplies are post regulated to + 15 V and -12.6 V<br />

to provide a power source at the front panel for an external RF probe or<br />

millimeter modules.<br />

Digital Control Theory<br />

The digital control functional group consists of the following assemblies:<br />

H Al front panel<br />

� A2 front panel processor<br />

� A9 CPU<br />

� A10 digital IF<br />

� Al6 rear panel<br />

� Al8 display<br />

� A19 GSP<br />

w A27 Inverter<br />

These assemblies combine to provide digital control for the entire analyzer.<br />

They provide math processing functions, as well as communications between<br />

the analyzer and an external controller and/or peripherals Figure 12-3 is a<br />

simplified block diagram of the digital control functional group.<br />

124 Theory of Operation


L-_--I<br />

7 --_<br />

(<br />

IT<br />

Pie 12-3. Digital Control Group, Simplified Block Diagram<br />

-J<br />

sg6107e<br />

Theory of Operation 12-9


Al Front Panel<br />

The A1 front panel assembly provides user interface with the analyzer. It<br />

includes the keyboard for local user inputs, and the front panel LEDs that<br />

indicate instrument status The RPG (rotary pulse generator) is not electrically<br />

connected to the front panel, but provides user inputs directly to the front<br />

panel processor.<br />

A2 Front Panel Processor<br />

The A2 front panel processor detects and decodes user inputs from the front<br />

panel and the RPG, and transmits them to the CPU. It has the capability to<br />

interrupt the CPU to provide information updates. It controls the front panel<br />

LEDs that provide status information to the user.<br />

The A2 also contains the LVDS (low voltage differential signaling) receivers<br />

which connect to the graphics processor. The received video signals are routed<br />

to the Al8 display.<br />

A9 CPU/A10 Digital IF<br />

The A9 CPU assembly contains the main CPU (central processing unit), the<br />

digital signal processor, memory storage, and interconnect port interfaces<br />

The main CPU is the master controller for the analyzer, including the other<br />

dedicated microprocessors The memory includes EEPROM, DRAM, flash ROM,<br />

SRAM and boot ROM.<br />

Data from the receiver is serially clocked into the A9 CPU assembly from<br />

the A10 digital IF’. The data taking sequence is triggered either from the<br />

Al4 fractional-N assembly, externally from the rear panel, or by software on the<br />

A9 assembly.<br />

MdlCPU<br />

The main CPU is a 32-bit microprocessor that maintains digital control over the<br />

entire instrument through the instrument bus The main CPU receives external<br />

control information from the front panel or <strong>HP</strong>-IB, and performs processing<br />

and formatting operations on the raw data in the main RAM. It controls the<br />

digital signaI processor, the front panel processor, the display processor, and<br />

the interconnect port interfaces. In addition, when the analyzer is in the<br />

system controller mode, the main CPU controls peripheral devices through the<br />

peripheral port interfaces<br />

12-10 Thsoryof Operation


The main CPU has a dedicated flash ROM that contains the operating system for<br />

instrument control. Front panel settings are stored in SRAM, with a battery<br />

providing at least 5 years of backup storage when external power is off.<br />

Main RAM<br />

The main RAM (random access memory) is shared memory for the CPU and the<br />

digital signal processor. It stores the raw data received from the digital signal<br />

processor, while additional calculations are performed on it by the CPU. The<br />

CPU reads the resulting formatted data from the main RAM and converts it to<br />

GSP commands. It writes these commands to the GSP for output to the analyzer<br />

display.<br />

EEPROM<br />

EEPROM (electrically-erasable programmable read only memory) contains<br />

factory set correction constants unique to each instrument. These constants<br />

correct for hardware variations to maintain the highest measurement accuracy.<br />

The correction constants can be updated by executing the routines in Chapter 3,<br />

“Adjustments and Correction Constants. n<br />

Digital Signal Processor<br />

The digital signal processor receives the digitized data from the A10 digital<br />

IF. It computes discrete Fourier transforms to extract the complex phase and<br />

magnitude data from the 4 kHz IF signal. The resulting raw data is written into<br />

the main RAM.<br />

Al8 Display<br />

The Al8 display is an 8.4 inch LCD with associated drive circuitry. It receives a<br />

+3.3 V power supply from the A19 GSP, along with the voltage generated from<br />

the A27 backlight inverter. It receives the following signals from the A19 GSP:<br />

� digital TTL horizontal sync<br />

w digital TTL vertical sync<br />

� blanking<br />

w data clock<br />

� digital ‘ITL red video<br />

� digitalTI’Lgreen video<br />

� digital ‘ITL blue video<br />

Theory of Operation 12-11


A19 GSP<br />

The A19 graphics system processor is the main interface between the A9 CPU<br />

and the Al8 display. The CPU (A9) converts the formatted data to GSP<br />

commands and writes it to the GSP. The GSP processes the data to obtain the<br />

necessary video signals, which are then used for the following purposes:<br />

� The video signals are used to produce VGA compatible RGB output signals,<br />

which are routed to the Al6 rear panel.<br />

w The video signals are converted by an LVDS (low voltage differential signaling)<br />

driver which translates the signals to low level differential signals to help<br />

eliminate radiated emissions The converted video signals are then routed to<br />

the A2 assembly, where they are received and sent to the Al8 display.<br />

The A19 assembly receives the +5 VCPU which is used for processing and<br />

supplying power to the A27 backlight inverter (+ 5 VCPU) and the Al8 display<br />

(3.3 v).<br />

A27 Inverter<br />

The AZ7 backlight inverter assembly supplies the ac voltage for the backlight<br />

tube in the Al8 display assembly. This assembly takes the + 5 VCPU and<br />

converts it to approximately 380 Vat with 5 ma of current at 40 kHz. There are<br />

two control lines:<br />

� Digital ON/OFF<br />

� Analog Brightness<br />

0 100% intensity is 0 V<br />

0 50% intensity is 4.5 V<br />

Al6 Bear Panel<br />

The Al6 rear panel includes the following interfaces:<br />

TEST SET I./O INTERCONNECT. This provides control signals and power to<br />

operate duplexer test adapters<br />

EXT RET’. This allows for a frequency reference signal input that can phase<br />

lock the analyzer to an external frequency standard for increased frequency<br />

accuracy.<br />

The analyzer automatically enables the external frequency reference feature<br />

when a signal is connected to this input. When the signal is removed, the<br />

analyzer automatically switches back to its internal frequency reference.<br />

12-12 Theoryof Operation


10 MHZ PRECISION REFERENCE. (Option lD5) This output is connected<br />

to the EXT REF (described above) to improve the frequency accuracy of the<br />

analyzer.<br />

AUX INPUT. This allows for a dc or ac voltage input from an external signal<br />

source, such as a detector or function generator, which you can then measure,<br />

using the S-parameter menu. (You can also use this connector as an analog<br />

output in service routines.)<br />

EXT AM. This allows for an external analog signal input that is applied to the<br />

ALC circuitry of the analyzer’s source. This input analog signal amplitude<br />

modulates the RF output signal.<br />

EXT TRIG. This allows connection of an external negative TI’L-compatible<br />

signal that will trigger a measurement sweep. The trigger can be set to<br />

external through softkey functions.<br />

TEST SEQ. This outputs a TI’L signal that can be programmed in a test<br />

sequence to be high or low, or pulse (10 pseconds) high or low at the end of a<br />

sweep for a robotic part handler interface.<br />

LIMIT TEST. This outputs a TI’L signal of the limit test results as follows:<br />

Pass: TrLhigh<br />

Fail: TrLlow<br />

VGA OUTPUT. This provides a video output of the analyzer display that is<br />

capable of running a PC VGA monitor.<br />

Theory of Operation 12-13


Source Theory Overview<br />

The source produces a highly stable and accurate RF output signal by phase<br />

locking a YIG oscillator to a harmonic of the synthesized VCO (voltage controlled<br />

oscillator). The source output produces a CW or swept signal between 300 kHz<br />

and 3 GHz (or 300 kHz and 6 GHz for Option 006) with a maximum leveled<br />

power of + 10 dBm. The source’s built-in 70 dR step attenuator allows the<br />

power to go as low as -85 deem.<br />

The full frequency range of the source is produced in 14 subsweeps, one in<br />

super low band, two in low band, and eleven in high band. The high band<br />

frequencies (16 MHz to 3 GHz) or (16 MHz to 6 GHz for Option 006) are achieved<br />

by harmonic mixing, with a different harmonic number for each subsweep. The<br />

low band frequencies (300 kHz to 16 MHz) are down-converted by fundamental<br />

mixing. The super low band frequencies (10 kHz to 300 kHz) are sent directly<br />

from the Al2 reference board to the output of the A3 source assembly. This<br />

band is not phased locked nor does it use the ALC. It is the basic amplified<br />

output of the fractional-N synthesizer.<br />

The source functional group consists of the individual assemblies described<br />

below.<br />

A14/A13 Fractional-N<br />

These two assemblies comprise the synthesizer. The 30 to 60 MHz VCO in<br />

the Al4 assembly generates the stable LO frequencies for fundamental and<br />

harmonic mixing.<br />

Al2 Reference<br />

This assembly provides stable reference frequencies to the rest of the<br />

instrument by dividing down the output of a 40 MHz crystal oscillator. In low<br />

band operation, the output of the fractional-N synthesizer is mixed down in the<br />

Al2 reference assembly. (The 2nd LO signal from the Al2 assembly is explained<br />

in Receiver Theory.) The Al2 is also the origin of the super low band portion of<br />

the 87533 source.<br />

12-14 Theory of Operation


A7 Pulse Generator<br />

A step recovery diode in the pulse generator produces a comb of harmonic<br />

multiples of the VCO output. These harmonics provide the high band LO (local<br />

oscillator) input to the samplers. In low band and super low band the operation<br />

the pulse generator is turned off.<br />

All Phase Lock<br />

This assembly compares the f&t IF (derived from the source output in the<br />

A4 sampler) to a stable reference, and generates an error voltage that is<br />

integrated into the drive for the A3 source assembly.<br />

A3 Source<br />

This assembly includes a 3.0 to 6.8 GHz YIG oscillator and a 3.8 GHz cavity<br />

oscillator. The outputs of these oscillators are mixed to produce the RF output<br />

signal. In Option 006 (30 kHz to 6 GHz) the frequencies 3.0 to 6.0 GHz are no<br />

longer a mixed product, but are the direct output of the YIG Oscillator. The<br />

signal tracks the stable output of the synthesizer. The ALC (automatic leveling<br />

control) circuitry is also in the A3 assembly.<br />

Source Super Low Band Operation<br />

The Super Low Band Frequency Range is 10 kHz to 300 kHz. These frequencies<br />

are generated by the Al2 Reference Board. They are the amplified output of<br />

the fractional-N synthesizer. This output is not phase locked and is not subject<br />

to ALC control. Refer to ‘lhble 12-1.<br />

‘able 12-1. Super Low Band Subsweep Frequencies<br />

I 4o.oto43.3 ~0.010to 0.300 ~0.010to 0.300 I<br />

Theory of Operation 12-15


Source Low Band Operation<br />

The low band frequency range is 300 kHz to 16 MHz. These frequencies are<br />

generated by locking the A3 source to a reference signal. The reference signal<br />

is synthesized by mixing down the fundamental output of the fractional-N VCO<br />

with a 40 MHz crystal reference signal. Low band operation differs from high<br />

band in these respects: The reference frequency for the All phase lock is not<br />

a 6xed 1 MHz signal, but varies with the frequency of the fractional-N VCO<br />

signal. The sampler diodes are biased on to pass the signal through to the mixer.<br />

The 1st IF signal from the A4 sampler is not fixed but is identical to the source<br />

output signal and sweeps with it. The following steps outline the low band<br />

sweep sequence, illustrated in Figure 12-4.<br />

1. A signal (FN LO) is generated by the fractional-N VCO. The VCO in the<br />

Al4 Fractional-N assembly generates a CW or swept signal that is 40 MHz<br />

greater than the start frequency. The signal is divided down to 100 kHz and<br />

phase locked in the Al3 assembly, as in high band operation.<br />

2. The fractional-N VCO signal is mixed with 40 MHZ to produce a<br />

reference signal. The signal (F’N LO) from the Fractional-N VCO goes to the<br />

Al2 reference assembly, where it is mixed with the 40 MHz VCXO (voltage<br />

controlled crystal oscillator). The resulting signal is the reference to the<br />

phase comparator in the All assembly.<br />

3. The A3 source is pretuned. The source output is fed to the A4 sampler.<br />

The pretuned DAC in the All phase lock assembly sets the A3 source to a<br />

frequency 1 to 6 MHz above the start frequency. This signal (source output)<br />

goes to the A4 R input sampler/mixer assembly.<br />

4. The signal from the source is fed back (1st IF’) to the phase comparator.<br />

The source output signal passes directly through the sampler in the A4<br />

assembly, because the sampler is biased on. The signal (1st IF+) is fed back<br />

unaltered to the phase comparator in the All phase lock assembly. The other<br />

input to the phase comparator is the heterodyned reference signal from the<br />

Al2 assembly. Any frequency difference between these two signals produces<br />

a proportional error voltage.<br />

5. A tuning signal (YO DRIVE) tunes the source and phase lock is achieved.<br />

The error voltage is used to drive the A3 source YIG oscillator to bring the<br />

YIG closer to the reference frequency. The loop process continues until the<br />

source frequency and the reference frequency are the same, and phase lock<br />

is achieved.<br />

12-16 Theory of Operation


6. A synthesized sub sweep is generated. The source tracks the<br />

synthesizer. When lock is achieved at the start frequency, the synthesizer<br />

starts to sweep. This changes the phase lock reference frequency, and causes<br />

the source to track at a difference frequency 40 MHz below the synthesizer.<br />

1<br />

Pigure 12-4. Low Band Operation of the Source<br />

-<br />

Theory of Operation 12-17


The full low band is produced in two sub sweeps, to allow addition IF sltering<br />

below 3 MHz. At the transition between subsweeps, the source is pretuned<br />

and then relocks. ‘Ihble 12-2 lists the low band subsweep frequencies at the<br />

fractional-N VCO and the RF output.<br />

12-18 TheoryofOperation<br />

‘able 12-Z. Low Band Subsweep Frequencies<br />

t


Source High Band Operation<br />

The high band frequency range is 16 MHz to 3.0 GHz or 16 MHz to 6.0 GHz with<br />

Option 006. These frequencies are generated in subsweeps by phase-locking the<br />

A3 source signal to harmonic multiples of the fractional-N VCO. The high band<br />

subsweep sequence, ilhrstrated in F’igure 12-5, follows these steps:<br />

1. A signal (HI OUT) is generated by the fractional-N VCQ. The VCO in<br />

the Al4 fractional-N assembly generates a CW or swept signal in the range<br />

of 30 to 60 MHz. This signal is synthesized and phase locked to a 100 kHz<br />

reference signal from the Al2 reference assembly. The signal from the<br />

fractional-N VCO is divided by 1 or 2, and goes to the pulse generator.<br />

2. A comb of harmonics (1st LO) is produced iu the A7 pulse generator.<br />

The divided down signal from the fractional-N VCO drives a step recovery<br />

diode (SRD) in the A7 pulse generator assembly. The SRD multiplies<br />

the fundamental signal from the fractional-N into a comb of harmonic<br />

frequencies The harmonics are used as the 1st LO (local oscillator) signal to<br />

the samplers One of the harmonic signals is 1 MHz below the start signal set<br />

from the front panel.<br />

3. The A3 source is pretuued. The source output is fed to the A4 sampler.<br />

The pretune DAC in the All phase lock assembly sets the A3 source to a first<br />

approximation frequency (1 to 6 MHz higher than the start frequency). This<br />

signal (RF OUT) goes to the A4 R input sampler/mixer assembly.<br />

4. The synthesizer sigual and the source signal are combined by the<br />

sampler. A difference frequency is generated. In the A4 sampler, the 1st<br />

LO signal from the pulse generator is combined with the source output signal.<br />

The IF (intermediate frequency) produced is a first approximation of 1 MHz.<br />

This signal (1st IF’) is routed back to the A11 phase lock assembly.<br />

5. The difference frequency (1st IF’) from the A4 sampler is compared to a<br />

reference. The 1st IF feedback signal from the A4 is filtered and applied to<br />

a phase comparator circuit in the A11 phase lock assembly. The other input<br />

to the phase comparator is a crystal controlled 1 MHz signal from the Al2<br />

reference assembly. Any frequency difference between these two signals<br />

produces a proportional error voltage.<br />

6. A tuuiug signal (PO DRIVE) tunes the source and phase lock is achieved.<br />

The error voltage is used to drive the A3 source YIG oscillator, in order to<br />

bring it closer to the required frequency. The loop process continues until<br />

the 1st IF feedback signal to the phase comparator is equal to the 1 MHz<br />

reference signal, and phase lock is achieved.<br />

Theory of Operation 12-18


7. A synthesized subsweep is generated by A13/A14. The A3 source tracks<br />

the synthesizer. When the source is phase locked to the synthesizer at the<br />

start frequency, the synthesizer starts to sweep. The phase locked loop forces<br />

the source to track the synthesizer, maintaining a constant 1 MHz 1st IF<br />

signal.<br />

The full high band sweep is generated in a series of subsweeps, by phase<br />

locking the A3 source signal to harmonic multiples of the fractional-N VCO.<br />

The 16 to 31 MHz subsweep is produced by a one half harmonic, using<br />

the divide-by-2 circuit on the Al4 assembly. At the transitions between<br />

subsweeps, the source is prettmed and then relocks lkble 12-3 lists the high<br />

band subsweep frequencies from the fractional-N VCO and the source output.<br />

A13/14<br />

FRACTIONAL-N<br />

12-20 Theoryof Operation<br />

Figure 12-5. High Band Operation of the Source<br />

- -<br />

T O 3GHz<br />

ag6231d


lhble 12-3. High Band Subsweep Frequencies<br />

F’ractional-N (BlJ3z)<br />

3ot.060<br />

3Oto60<br />

3Oto60<br />

4Oto60<br />

35.4to 59.2<br />

32.8to 59.4<br />

36.7t.o 59.5<br />

33.0 to 60.6<br />

31.5 to 58.8<br />

Jhrmonic source output (bfEz)<br />

l/2 16to31<br />

1 31to 61<br />

2 61to 121<br />

3 121t.o 178<br />

6 178t.0206<br />

0 206to536<br />

15 536to 893<br />

27 803t.o 1607<br />

51 1607to3ooo<br />

option 666<br />

37.Ot.o 59.5 83 3ooot.o4060<br />

4o.oto 59.4 101 4060to6ooo<br />

1<br />

Theoryof Operation 12-21


Source Operation in other Modes/Features<br />

Resides the normal network analyzer mode, the <strong>HP</strong> 87533 has extra modes and<br />

features to make additional types of measurements The following describes<br />

the key differences in how the analyzer operates to achieve these new<br />

measurements<br />

Frequency Offset<br />

The analyzer can measure frequency-translating devices with the frequency<br />

offset feature.<br />

The receiver operates normally. However, the source is pretuned to a different<br />

frequency by an offset entered by the user. The device under test will translate<br />

this frequency back to the frequency the receiver expects. Otherwise, phase<br />

locking and source operation occur as usual.<br />

HarmonicAnalysis(Option002)<br />

The analyzer can measure the 2nd or 3rd harmonic of the fundamental<br />

source frequency, on a swept or CW basis, with the harmonic analysis feature<br />

(optional).<br />

To make this measurement, the reference frequency (normally 1 MHz) from the<br />

Al2 reference assembly to the All phase lock assembly is divided by 1, 2, or 3.<br />

See F’igure 12-6.<br />

The fractional-N assemblies are also tuned so that the correct harmonic (comb<br />

tooth) of the 1st LO is 0.500 or 0.333 MHz below the source frequency instead<br />

of the usual 1.000 MHz. ‘l’he analyzer pretunes the A3 source normally,<br />

then phase locks the 1st IF to the new reference frequency to sweep the<br />

fundamental source frequency in the usual way. The key difference is that the<br />

1st IF (output from the R sampler) due to the fundamental and used for phase<br />

locking is now 0.500 or 0.333 MHz instead of 1.000 MHz.<br />

Since the chosen VCO harmonic and the source differ by 0.500 or 0.333 MHz,<br />

then another VCO harmonic, 2 or 3 times higher in frequency, will be exactly<br />

1.000 MHz away from the 2nd or 3rd harmonic of the source frequency. The<br />

samplers, then, will also down-convert these harmonics to yield the desired<br />

components in the 1st IF at 1.000 MHz. Narrow bandpass flters in the receiver<br />

eliminate all but the 1.000 MHz signals; these pass through to be processed and<br />

displayed.<br />

12-22 Theoryof Operation


A13/14<br />

FRACTIONAL-N<br />

A12<br />

REFERENCE<br />

@vcxo<br />

40MHz<br />

$ REFERENCE<br />

HARMONIC FREQ (MHz)<br />

1 1.000<br />

0.500<br />

:<br />

0.333<br />

1ST LO<br />

Ad<br />

SOURCE<br />

3.0 to<br />

6.8GHz<br />

YIG OSC<br />

Figure 12-6. Harmonic Analysis<br />

1 1ST IF<br />

3GHz TO<br />

-=<br />

sg6232d<br />

External Source Mode<br />

In external source mode, the analyzer phase locks its receiver to an external<br />

signal source. This source must be CW (not swept), but it does not need to be<br />

synthesized. The user must enter the source frequency into the analyzer. (The<br />

analyzer’s internal source output is not used.)<br />

To accomplish this, the phase lock loop is reconnected so that the tuning voltage<br />

from the A11 phase lock assembly controls the VCO of the Al4 fractional-N<br />

assembly and not the A3 source. See Figure 12-7. The VCO’s output still drives<br />

the 1st LO of the samplers and down-converts the RF signal supplied by the<br />

external source. The resulting 1st IF is fed back to the A11 phase lock assembly,<br />

Theory of Operation 12-23


compared to the 1.000 MHz reference, and used to generate a tuning voltage as<br />

usual. However, the tuning voltage controls the VCO to lock on to the external<br />

source, keeping the 1st IF at exactly 1.000 MHz.<br />

The analyzer normally goes through a pretune-acquire-track sequence to achieve<br />

phase lock. In external source mode, the fractional-N VCO prettmes as a<br />

closed-loop synthesizer referenced to the 100 kHz signal from the Al2 reference<br />

assembly. Then, to acquire or track, a switch causes the VCO to be tuned by the<br />

All phase lock assembly instead. (Refer to the Overall Block Diagram at the<br />

end of Chapter 4, “Start Troubleshooting Here.“)<br />

1A13/14<br />

FRACTIONAL-N<br />

30 to 60 MHz<br />

12-24 Theory of Operation<br />

Figure 12-7. External Source Mode<br />

IST IF<br />

- -<br />

sg6235d


Tuned Receiver Mode<br />

In tuned receiver mode, the analyzer is a synthesized, swept, narrow-band<br />

receiver only. The external signal source must be synthesized and<br />

reference-locked to the analyzer.<br />

To achieve this, the analyzer’s source and phase lock circuits are completely<br />

unused. See Figure 12-8. The fractional-N synthesizer is tuned so that one of its<br />

harmonics (1st LO) down-converts the RF input to the samplers (In contrast to<br />

external source mode, the analyzer does not phase lock at all. However, the 1st<br />

Lo is synthesized.)<br />

The analyzer can function as a swept tuned receiver, similar to a spectrum<br />

analyzer, but the samplers create spurious signals at certain frequencies, which<br />

limit the accuracy of such measurements<br />

A13/14<br />

FRACTIONAL-N<br />

Figure 12-8. Tuned Receiver Mode<br />

1ST LO<br />

I<br />

A4 (RI<br />

SAMPLER<br />

MIXER I. I-!<br />

-5<br />

1ST I F<br />

sg6234d<br />

Theory of Operation 12-26


Signal Separation<br />

The Built-In I’kst Set<br />

F’igure 12-9 shows a simplified block diagram of the analyzer’s built-in test set.<br />

A21 and A22 Test Port Cmplers<br />

The analyzer’s test port couplers are used to separate signals incident to,<br />

reflected from, and transmitted from the device under test. Each test port<br />

coupler has a coupling coefficient factor of 16 dD.<br />

A23 LED kont Panel<br />

The LED front panel board indicates whether the source power is incident on<br />

the analyzer’s test port 1 or test port 2. The analyzer’s source power is directed<br />

to test port 1 when making a forward transmission/reflection measurement.<br />

Similarly, source power is incident at test port 2 when making a reverse<br />

transmission/reflection measurement.<br />

A24 Transfer Switch<br />

The A3 source output power is directed to either the analyzer’s test port 1 or<br />

test port 2 via a low loss solid state transfer switch. With this switch, all four<br />

S-parameters can be updated continuously (for example: the data obtained from<br />

a full 2-port calibration). In addition, the transfer switch provides termination<br />

for the inactive test port in order to minimize the crosstalk between the source<br />

and receiver sampler.<br />

A26 ‘l&t Set Interface<br />

The test set interface board provides biasing for active devices under test with<br />

an external dc voltage. This dc voltage is applied directly to the test port center<br />

pm. In addition, the test set interface board provides the drive signal for the<br />

A24 forward/reverse transfer switch.<br />

12-26 Theoryof Operation


FROM A3<br />

A24<br />

TRANSFER<br />

SW I TCH<br />

FRONT PANEL<br />

A21 TEST PORT<br />

rCOUPLER<br />

Figure 12-9. SimplifM Block Diagram of the Built-in ‘Ilest Set<br />

B!As CONNECT<br />

PORT 1<br />

BiAS CONNECT<br />

PORT 2<br />

5962364<br />

Theory of Operation 12-27


Receiver Theory<br />

The receiver functional group consists of the following assemblies:<br />

A4 sampler/mixer<br />

A5 sampler/mixer<br />

A6 sampler/mixer<br />

A10 digital IF<br />

These assemblies combine with the A9 CPU (described in Digital Control Theory)<br />

to measure and process input signals into digital information for display on the<br />

analyzer. Figure 12-10 is a simplijied block diagram of the receiver functional<br />

group. The A12 reference assembly is also included in the illustration to show<br />

how the 2nd LO signal is derived.<br />

Figure 12-10. Receiver Functional Group, Siiplilled Block Diagram<br />

12-28 Theory of Operation


A4/AS/A6 Sampler/Mixer<br />

The A4, A5, and A6 sampler/mixers all down-convert the RF input signals<br />

to fixed 4 kHz 2nd IF signals with amplitude and phase corresponding to the<br />

RF’ input. The A5 and A6 sampler/mixer assemblies both include an 8 dB gain<br />

preamplifier in front of the sampler. This improves the noise figure performance<br />

of the analyzer’s receiver channels A and B.<br />

The Sampler Circuit in High Band<br />

In high band operation, the sampling rate of the samplers is controlled by<br />

the 1st LO from the A7 pulse generator assembly. The 1st LO is a comb of<br />

harmonics produced by a step recovery diode driven by the fractional-N VCO<br />

fundamental signal. One of the harmonic signals is 1 MHz below the start<br />

frequency set at the front panel. The 1st LO is combined in the samplers<br />

with the RF input signal from the source. In the Option 006, samplers are<br />

additionally capable of recognizing RF input signals from 3 to 6 GHz. The mixing<br />

products are flltered, so that the only remaining response is the difference<br />

between the source frequency and the harmonic 1 MHz below it. This fixed<br />

1MHzsignalisthelstIF.RartofthelstIFsignalfromtheRsamplerisfed<br />

back to the All phase lock assembly.<br />

The hnpler Circuit in Low Band or Super Low Band<br />

In low band or super low band the sampler diodes are biased continuously on,<br />

so that the RF input signal passes through them unchanged. Thus the 1st IF<br />

is identical to the RF output signal from the source (300 kHz to 16 MHz for<br />

lowband; 10 to 300 kHz for super lowband), and sweeps with it. Part of the 1st<br />

IF signal from the R sampler is fed back to the All phase lock assembly.<br />

(Refer to “Source Theory Overview” for information on high band and low band<br />

operation of the source.)<br />

The 2nd LO Signal<br />

The 2nd LO is obtained from the Al2 reference assembly. In high band, the 2nd<br />

LO is llxed at 996 kHz. This is produced by feeding the 39.34 MHz output of a<br />

phase-locked oscillator in the Al2 assembly through a divide-by-40 circuit.<br />

In low band, the 2nd Lo is a variable frequency produced by mixing the output<br />

of the fractional-N VCG with a fixed 39.996 MHz signal in the Al2 assembly.<br />

The 2nd Lo covers the range of 0.014 to 16.004 MHz in two subsweeps that<br />

correspond with the source subsweeps These subsweeps are 0.304 to 3.304 MHz<br />

and 3.304 to 16.004 MHz.<br />

Theory of Operation 12-29


The Mixer Circuit<br />

The 1st IF and the 2nd Lo are combined in the mixer circuit. The resulting<br />

difference frequency (the 2nd IF) is a constant 4 kHz in both bands, as<br />

lhble 12-4 shows<br />

Band<br />

Super Low<br />

LOW<br />

High<br />

A10 Digital IF<br />

‘able 12-4. Mixer Frequencies<br />

1st IF 2nd L43<br />

0.010 to 0.300 MHZ 0.014 to 0.304 MHZ<br />

0.300tAJ 16.0 MHZ 0.304 to 16.004 MI-h<br />

1.ooo MHZ 0.996 MHz<br />

2nd IF<br />

4.0 HI!4<br />

4.0 HI2<br />

4.0 kHz<br />

The three 4 kHz 2nd IF signaIs from the sampler/mixer assemblies are input<br />

to the A10 digital IF assembly. These signals are sampled at a 16 kHz rate. A<br />

fourth input is the analog bus, which can monitor either an external input at<br />

the rear panel AUX IN connector, or one of 31 internal nodes. A multiplexer<br />

sequentially directs each of the signals to the ADC (analog-to-digital converter).<br />

Here they are converted to digital form and sent to the A9 CPU assembly for<br />

processing. Refer to “Digital Control Theory” for more information on signal<br />

processing.<br />

12-30 Theoryof Operation


Replaceable Parts<br />

This chapter contains information for ordering replacement parts for the<br />

<strong>HP</strong> <strong>8753E</strong> network analyzer. Replaceable parts include the following:<br />

� major assemblies<br />

fl cables<br />

� chassis hardware<br />

13<br />

In general, parts of major assemblies are not listed. Refer to lhble 13-1 at the<br />

back of this chapter to help interpret part descriptions in the replaceable parts<br />

lists that follow.<br />

Replaceable Parts 13-l


Replacing an Assembly<br />

The following steps show the sequence to replace an assembly in an <strong>HP</strong> <strong>8753E</strong><br />

network analyzer.<br />

1. Identify the faulty group. Refer to Chapter 4, “Start Troubleshooting Here.”<br />

Follow up with the appropriate troubleshooting chapter that identifies the<br />

faulty assembly.<br />

2. Order a replacement assembly. Refer to Chapter 13, “Replaceable Parts”<br />

3. Replace the faulty assembly and determine what adjustments are necessary.<br />

Refer to Chapter 14, “Assembly Replacement and Post-Repair Procedures”<br />

4. Perform the necessary adjustments. Refer to Chapter 3, “Adjustments and<br />

Correction Constants n<br />

5. Perform the necessary performance tests Refer to Chapter 2, “System<br />

VeriGcation and Performance Tests. n<br />

13-2 Replaceable Parts


Rebuilt-Exchange Assemblies<br />

Under the rebuilt-exchange assembly program, certain factory-repaired<br />

and tested modules (assemblies) are available on a trade-in basis These<br />

assemblies are offered for lower cost than a new assembly, but meet all factory<br />

specifications required of a new assembly.<br />

The defective assembly must be returned for credit under the terms of the<br />

rebuilt-exchange assembly program. Any spare assembly stock desired should be<br />

ordered using the new assembly part number. F’igure 13-1 illustrates the module<br />

exchange procedure. “Major Assemblies, Top” and “Major Assemblies, Bottom”<br />

list all major assemblies, including those that can be replaced on an exchange<br />

basis<br />

Ordering Information<br />

To order a part listed in the replaceable parts lists, quote the Hewlett-Packard<br />

part number, indicate the quantity required, and address the order to the<br />

nearest Hewlett-Packard office.<br />

To order a part that is not listed in the replaceable parts lists, include the<br />

instrument model number, complete instrument serial number, the description<br />

and function of the part, and the number of parts required. Address the order<br />

to the nearest Hewlett-Packard office.<br />

Replaceable Parts 133


The module exchange program described here is a<br />

method of keeping your Hewlett-Packard instrument<br />

Locate defective module<br />

using troubleshooting<br />

procedures in this<br />

manual.<br />

1<br />

Is Q replacement<br />

module on hand?<br />

1<br />

NO<br />

Order restored-exchange<br />

module from <strong>HP</strong>. Refer<br />

to the replaceable parts<br />

section for port numbers.<br />

134 Replaceable Parts<br />

Install the replacement<br />

module. Keep the defectfve<br />

module for return<br />

to <strong>HP</strong>.<br />

module from <strong>HP</strong>. Refer<br />

to the replaceable ports<br />

section for part numbers.<br />

fast, efficient, economical<br />

r service.<br />

Figure 13-1. Module Exchange Procedure<br />

B<br />

Restored-exchange modules are<br />

shipped mdividually in boxes like<br />

this. In addition to the circuit<br />

module, the box contains:<br />

Exchange assembly failure repor<br />

Return address label<br />

Open box carefully-it will be<br />

used to return defective module<br />

to <strong>HP</strong>. Complete failure report.<br />

Place it and defective module<br />

in box. Be sure to remove<br />

enclosed return address label.<br />

Seal box with tape. Inside<br />

U.S.A.*, stick preprinted return<br />

address label over label already<br />

on box, and return box to <strong>HP</strong>.<br />

Outside U.S.A., do not use oddress<br />

label; instead address box<br />

to the nearest <strong>HP</strong> office.<br />

sg613d


Replaceable Part Listings<br />

The following pages list the replacement part numbers and descriptions for<br />

the <strong>HP</strong> <strong>8753E</strong> <strong>Network</strong> <strong>Analyzer</strong>. Illustrations with reference designators<br />

are provided to help identify and locate the part needed. The parts lists are<br />

organized into the following categories:<br />

� Major Assemblies, Top<br />

w Major Assemblies, Bottom<br />

� Cables, Top<br />

� Cables, Bottom<br />

� Cables, Front<br />

� Cables, Rear<br />

� Cables, Source<br />

� Front Panel, Outside<br />

� Front Panel, Inside<br />

� Rear Panel<br />

� Rear Panel, Option lD5<br />

� Hardware, Top<br />

� Hardware, Bottom<br />

� Hardware, kont<br />

� Hardware, Test Set Deck<br />

� Hardware, Disk Drive Support<br />

� Hardware, Memory Deck<br />

� Hardware, Preregulator<br />

� Chassis Parts, Outside<br />

� Chassis Parts, Inside<br />

� Miscellaneous<br />

Replawable Parts 13-5


M@or Assemblies, Top<br />

Ref. option <strong>HP</strong>Part Qty Description<br />

-i3.<br />

NUdM?r<br />

Al NOT SHOWN (see -Front Psnel Assembly, Inside”)<br />

A2 NOT SHOWN (see ‘Front Panel Aeanbly, Inside”)<br />

All 0876s-60231 1 ASSY-SCWRCE 3 OH2<br />

A3 087~6Q2sl 1 ASSY-SOURCB 3 ffirz (RRBUIIX-EXCRANGE)<br />

A3 006 08763-60146 1 ASSY-SCURCE 6 GHz<br />

A3 006 087~69146 1 ASSY-SOURCE 6 GIiz (REBUIIT-RXCBANGE)<br />

The following parts apply to instruments with serial numbem gnster than US37S9xxxx or W,<br />

and to instruments having all three samplers replaced.<br />

A4 087~6oalY7 1 ASSY-SAMPLERR (REBUIIZEXCBANGE: 08753-69007)<br />

A6 087~&woS 1 ASSY-SABWLER A (RBBUIIZ-KKCBANGE 0876%3@008)<br />

A6 087~6oBoS 1 ASY-SAMPLER B (RRBUIWEXCRANGIk 0876MOQOS)<br />

The following parta apply to instruments with serial numbers in the form of US37SOxxxx or Jp3802mmr.<br />

If all three samplera are being replaced, we the part numbers listed above.<br />

A4 087~6ooo4 1 ASSY-SAMPLER R (RRBLJILr-ExCIiANffE 0876M3ooo4)<br />

A6 08753-60169 1 ASSY-SAbfPLER A (REBUIUI-EXCHANGFk 08763-60169)<br />

A6 08763-60160 1 ASSY-SAbXPLER B (RRBUJIT-RXCIiANGEz 0876%60160)<br />

A7 08763-60164 1 RD AWY-PLJISE QENERAlOB<br />

A7 0876%69164 1 BDASSY-PUISE GRNERAlOR (RERuR3-EKCHANGE)<br />

A8* 087~6osM 1 BD ASSY-m RBGIJMlOR<br />

A10 087~6ooo6 1 BD ASSY-DIMIXL IF<br />

All 0876%60162 1 BDASSY-PHASEILXK<br />

Al2 08763-00367 1 BDASSY-RBFERKNCE<br />

AlS 0876s-60013 1 BD ASSY-FRAC N ANAILX<br />

Al4 08763-60068 1 BD ASSY-F’RAC N DIWl!A.L<br />

Al6 087~60008 1 ASaY-PRERRQ ULAlVB<br />

Al6 08763-6Qoo8 1 ASSY-PRERBGULATOB (REBUIIZFXCBAN~B)<br />

Al6 NOT SHOWN (me “Bear Panel Awembly”)<br />

Al7 NOT SHOWN (see 7%866i6 parts, Imiide”)<br />

A18 1 NOT SBOWN (see ‘Wont Panel Assembly, Inside”)<br />

AlQ 0876%30271 1 BDASBY-QRAPBI~ PROOBWOR (under lrheet metal cover)<br />

As0 08720-60190 1 ASSY-DISKDRIVB<br />

A27 1 NOT SBOWN (see “Front fine1 Aaembly, Inaide”)<br />

A26 lD6 NCT SHOWN (see ‘Rear Panel Assembly, Option IDS”)<br />

Bl NIX SHOWN (see “Rear Panel Assembly”)<br />

EtPQ NOT SHOWN (ee “Front Panel Assembly, tide”)<br />

� For fuse part numbela on the AS pbst Regulator, refer to ‘Miscellaneous” in ulis chapter.<br />

134 Replaceable Parts


A15\<br />

A20 -<br />

A4'<br />

A10 A8 All A12<br />

Major Assemblies, ‘hp<br />

Al3<br />

/ Al4<br />

/<br />

sg654e<br />

Replaceable Parts 13-7


Major Assemblies, Bottom<br />

Bt?f. OptlOll lwA3I-t. Qw Description<br />

big.<br />

NlUllbOr<br />

A9 087~6os16 1 cmJREPAlBKlT<br />

A0 os76343os16 1 CPU REPAIR KlT (REBUIfX-EXCBANGE)<br />

CPU FAN 606S8776 1 &-+CPUFANl<br />

AoBTl 14204SS8 1 BAmERY-LITBIUM 3V 12AI-I<br />

A21 6087-7007 1 AmY-TE8TFQBTccuPLER<br />

A21 6@8743007 1 ASBY-TEST PCBT COUPLER (BEBrn-EXCBANGE)<br />

A21 076 5087-7008 1 ASBY-TEsTPcBTcouPLER<br />

A21 076 60874008 1 ASSY-TWT PCBT COUPLER (BFiBUIl2=EXCBANffE)<br />

A!22 6087-7007 1 ASSY-TEST FCRT COUFLEE<br />

A22 60874007 1 AMY-TEST Par COUPLER (BEBlJIUr-EXCHANGE)<br />

A22 076 6087-7008 1 AWY-TEwFQKrcaJPLEu<br />

A22 076 60874008 1 ASSY-TEST PCBT COUFLEFl (BEBtllIMXCHANGE)<br />

Ass 087~60146 1 BDASY-LED FRONTPANEL<br />

As4 50867630 1 AWY-TRAN8FEB8wlTcFl<br />

A24 608m36sQ 1 AMY-TRANSFEB SWllXX @EBUII.SEXCBANGE)<br />

A26 0876%60280 1 BD AESY-m m INTEFtFACE<br />

1 Remove the backing from the heat transfer area before re-assembly.<br />

134 Replaceable Parts


CPU<br />

Fan\<br />

A24,<br />

Ai A23 A21<br />

Major Assemblies, Bottom<br />

, A9BTl<br />

sg6126e<br />

Replaceable Parts 13-8


1<br />

Ref.<br />

De&.<br />

Cables, Tlbp<br />

A16Wl 18W<br />

Wl<br />

w2<br />

ws<br />

w4<br />

W6<br />

W6<br />

w7<br />

W8<br />

WO<br />

WlO<br />

Wll<br />

Wl.2<br />

WlS<br />

W24<br />

W26<br />

w21<br />

w20<br />

-r<br />

SR<br />

8R<br />

8R<br />

SB<br />

F<br />

F<br />

F<br />

F<br />

F<br />

F<br />

F<br />

F<br />

F<br />

SR<br />

F<br />

148<br />

348<br />

mart<br />

Number<br />

1400-0249<br />

(part of A16)<br />

08763-20286<br />

08753-20201<br />

08753-20286<br />

08753-20336<br />

087~60027<br />

0876%30027<br />

087~60027<br />

087~6oL320<br />

8l21MO21<br />

087~6oo20<br />

08763-60029<br />

087~6oo2o<br />

0876%60026<br />

087~20291<br />

8l20-6026<br />

SEC6876<br />

8l24MSSO<br />

-<br />

QQ<br />

-<br />

1<br />

CABLE TIE (16Wl to CHAWIS)<br />

* nW Wire Bundle (n is the number of wires in the bundle)<br />

nR Bibon Cable (n is the number of wires in the ribbon)<br />

F Flexible C!eax Cable<br />

SE Semi-Blgld Coax Cable<br />

13-10 ReplaceableParts<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1-<br />

Description<br />

PREI.EQULATOR (A16) to POKl’ RJtGULA’lOiZ (A8J2) and<br />

bfOTHERBOARD (A17JS)<br />

SOUECE A88Y (ASW4) to TBANSFER SWI’RX (A24)<br />

Fp (It CBANNEL IN) to SAMPLEB-B (A4)<br />

TMT FORT 1 COUPLER (A21) to SAI@LEIt-A (AS)<br />

TEST PORT 2 COUPLER (A22) to SAMPLEBB (A6)<br />

MMFLER-R (A4) to PUISE GJZNEMlUB (A7)<br />

SAMPLE%A (A5) to PUME GENERATUE (A7)<br />

SAMPLER-B (A6) to PUISE QENERATOR (A7)<br />

PHASE ILICK (AlLIl) to SAMPLEEM (A4)<br />

FlZAGN D1GlTA.L (A14Jl) to PUUE GENERAlOR (A7)<br />

F&W-N DIQITAL (A14J2) toREFERENCE (Awl)<br />

FZAC-N DIGlTAL (A14JS) to FFtAGN ANAMG (AlSJl)<br />

FBAGN ANAIBG (AlSJ2) toREFERENCE (Al2J2)<br />

RFZEEENCFi(Al2JS)toRP(EXTEEF)<br />

60uRcEAs8Y(As)toFp(RcHANNEL0uT)<br />

6ouRcE ASSY (A3) to BEFERENCE (Al2J4)<br />

MOTHEREOAFtD (A17J12) to EEAB PANEL VGA OUT<br />

MOTHERBOARD (A17Jll) to CPU (AOJS)


w4 ’<br />

w3 ’<br />

w2 ’<br />

w5 ’<br />

W6 ’<br />

w7 ’<br />

Cables, lbp<br />

/<br />

W26<br />

, WI2<br />

/ WI1<br />

. WI0<br />

' w9<br />

' W8<br />

sg656e<br />

Replaceable Parts 13.11


pd.<br />

D-k!.<br />

1<br />

A21Wl<br />

Cables, Bottom<br />

1w<br />

lIPPart<br />

Number<br />

140&0611<br />

8120-6483<br />

G -1<br />

1<br />

CABLE CLAMP<br />

De43cription<br />

QRAYWIUSTESFPCET~CCUP~(A~~)~~TE~TSET<br />

INTERFACE (A26TPl)<br />

A22Wl 1w<br />

8l2@648S 1 GRAYWIRE~FTX~T~C~UF’LER(A~~)~~T~BT~ET<br />

INTEWACE (A26TP2)<br />

A24Wl SW 86047~MOM 1 TBAN8FER mvrmH (A24) to TEST SF2 INTElPAcE (A26JS)<br />

Wl SR 08763-20286 1 SOURCE AWY (ASW4) to TRANSFER 8WI’DX (k&i)<br />

w20 s4Ft 8l20-6890 1 CFVPIG (AOJ7) to MCTHEKBC ARD (A17Jll)<br />

WSl SR 08762-20102 1 TlmFmT1CCupLw(A21)toTRANsFEB~(A24)<br />

ws2 8Il 08766-20101 1 TmT POET 2 CouPm (A22) to TRANSFER SwrIcH (A24)<br />

W33 4w 08766-60221 1 LED (A23Jl) to TmT SFX IIwElzFACE (A26J2)<br />

ws7 26R 812~8670 1 DI8K DRIVE (A20) to CPU/PIG (ASJS)<br />

W38 4oIl 8120-6882 1- TEST SJZT INTEIBACE (A26Jl) to MCTHKIBCARD (A17J2)<br />

� nW Wire Bundle (m b the number of wires in the bundle)<br />

aI Ribbon Cable (n is the number of wires in the ribbon)<br />

SR Semi-Rigid Coax Cable<br />

13-12 Replawabls Partr


w32,<br />

w33'<br />

W38<br />

\ I I<br />

A22kl ill AilWl<br />

Cables, Bottom<br />

,wzo<br />

/ ,<br />

.\A137<br />

Replaceable Parts 13-13


Cables, Front<br />

Bof.<br />

wig.<br />

Type* opt <strong>HP</strong>art<br />

Number<br />

etJr Demription<br />

AlWl SOB 8ECM429 1 FP KEYBOARD (AlJl) to FP INTERFACE (A2~2)<br />

BPGlWl 6B (part. of BPGl) 1 BF’Q to FE’ JNTFXFACE (A2J6)<br />

Wl SE 08762-20286 1 EOUBCE ASSY (ASW4) to !l’BANSF’EB SWllKH (A24)<br />

w2 SE 08753-20201 1 FP (B CHANNEL IN) to SAMPLE&B (A4)<br />

ws SE 08762-20286 1 TEST PORT 1 COUPLEB (A21) to SAMPLBB-A (AS)<br />

w4 SE 08763-20287 1 TEST FORT 2 CXWF’LEB (A22) to SAMPLE&B (A6)<br />

w17 SOB 8l20-84.31 1 FP INTEBFACE (A2Jl) to MUMEBBABD (A17Jl)<br />

Wl8 SW 08711-6ooS7 1 FTINTEBFACFi(A2J4)toFP(PBOBEPOWEB)<br />

WlO SW 08711-6ooS7 1 F’P INTERFACE (A2JS) to FP (PROBE POWFiB)<br />

W22 6B 8120-8408 1 FP INTBBFACB (A2J7) to JNmBTEB (A27)<br />

W2S SlB 8l2M4OO 1 FP INTEBFACX (A2J6) to DISPLAY (A18)<br />

W24 SE 08763-20220 1 SOuBcxASsY(AS)toFP(BcxANNFLOUT)<br />

W26 SE 087zG20008 1 FF(BCHANNELOUT)toFP(BCHANNFLIN)<br />

* nW Wire Bundle (n b the number of wire8 in the bundle)<br />

nB Bibbon Cable (n is the number of wires in the ribbon)<br />

SE Semi-Bigid Cvax Cable<br />

13-14 Replaceable Parts


w22 /<br />

W23<br />

I<br />

AIWI<br />

\<br />

RPGIWI<br />

hbles, Front<br />

sg658e<br />

ReplaceableParts 13-15


Bof.<br />

-&f.<br />

BlWl<br />

WlS<br />

w21<br />

W27<br />

W28<br />

Wm<br />

W3O<br />

WS6<br />

WS6<br />

Cables, Rear<br />

<strong>HP</strong>Fart<br />

Nnmbor<br />

(part of Bl)<br />

0876%60026<br />

8X20-6876<br />

8l2CM407<br />

86047-6ooo5<br />

86047-6ooo6<br />

8l2M468<br />

8l2IMS79<br />

G -1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

Deucription<br />

FAN (Bl) to MOTHERBOARD (A17J6)<br />

BFTEBENCE (Al2JS) to BP @XT BEF’)<br />

MOTBEBBOARD (A17Jl2) to Rp (VGA OUT)<br />

BF’ INTERFACE (AMJ4) to MOTHERBO ARD (A17J6)<br />

RF’ INTERFXCE (AMJlO) to BP (POBT 1 FUSE)<br />

RP JNTERFACE (A16Jll) to RP (POBT 2 FUSB)<br />

EtF INTERFACE (AMJS) to HIQH~lLlTY FBBQ BBF (A26Jl)<br />

CFWFIG (AQJl) to MOTHEF@OABD (A17J7)<br />

* nW<br />

8l2N3S82 1- CFTJ/PIQ (AQJ2) to MOTHEEBO ABD (A17J8)<br />

Wire Bundle (A in the number of wires in the bundle)<br />

nB Ribbon Cable (n is the number of wirea in the ribbon)<br />

F Flexible Coax Cable<br />

13-l 6 Replaceable Parts


i<br />

w30<br />

\ ’<br />

w21<br />

W36<br />

\<br />

w35<br />

Cables, Rear<br />

sg6113e<br />

ReplaceableParts 13-17


Cables, Source<br />

Ref. Type* opt lxPP8l-t QQ Description<br />

-ig. Number<br />

AsA2Wl 1OR os76s-6oos4 1 EYC (ASAS) to AIL (A3AZJ.3)<br />

A3A4Wl 4W os76s-6oos6 1 CAm CSC (ASA4) to AU (ASA2J2)<br />

AsWl SR 08753-20107 1 Fxo (AsA3) to SCURCE ASSY (A3)<br />

Asw2 SR 0876%200% 1 CAm CSC (ASA4) to SCURCE ASSY (A3)<br />

ASWS SR 0876.520106 1 SCURCE ASSY (A3) to AlTENUA’ItIR (ASA6)<br />

A3w4 SR 0876%20111 1 ATIENUAl0R (ASA6) to Wl<br />

ASWS 1OR 6002-0701 1 AIL (ASA2Jl) to AlTBNUA’ltIR (ASA6)<br />

s nW Wire Bundle (n ia the number of wirea in the bundle)<br />

nR Rttbon Cable (n is the number of wirea in the ribbon)<br />

SR Semi-R&id Coax Cable<br />

13-18 Replaceable Parts


A3A4Wl<br />

BACK<br />

I<br />

A3W3<br />

A3W4<br />

\<br />

FRONT<br />

Cables, Source<br />

sg662e<br />

Replaceable Parts 13-l 9


Ref. OptlOll<br />

-ig.<br />

Front Panel Assembly, Outside<br />

1<br />

-k<br />

1 076<br />

2<br />

2 076<br />

EmPart Qw Description<br />

Number<br />

03763-30163 1 ovERlAY, ILnvER PRONT PANEL<br />

03763-30170 1 ovERLAY, LOWE61 PRONT PANEL<br />

03763aon24 1 FPREPAlRKlTsTDl<br />

037~go926 1 F’PREPADZKIT#0761<br />

1610-0033 1 GRouND Porn<br />

206o-ooo6 1 NtJTHExlAa2<br />

2190-0067 1 wA3HERLK.266ID<br />

0376340016 1 LINEBUTION<br />

03763-30211 1 OVERLAY, UPPER FRONT PANEL<br />

1 Comes with gasket, upper and lower overlays.<br />

13-20 Rsplawable Parts


Front Panel Assembly, Outside<br />

sg663e<br />

ReplaceablsParts 13-21


1<br />

2<br />

Ref.<br />

mk!.<br />

A18<br />

3<br />

4<br />

6<br />

7<br />

5<br />

0<br />

LO<br />

11<br />

I2<br />

13<br />

14<br />

14<br />

16<br />

16<br />

hl<br />

!I2<br />

LlWl<br />

427<br />

w17<br />

W22<br />

W2S<br />

Front Panel Assembly, Inside<br />

-<br />

cm-1<br />

2tm<br />

Km<br />

5B<br />

3lB<br />

lDT<br />

<strong>HP</strong>&l-t<br />

NWllblEr<br />

o872lMool2<br />

2oao-0686<br />

08763-60326<br />

lOOO-0006<br />

0872luNxlo4<br />

08768-00136<br />

08763-20300<br />

lo&w1864<br />

JM4oe4ooo3<br />

0872o-4oo10<br />

0616-0430<br />

0515-0306<br />

140&1430<br />

0616-0372<br />

087l2-60036<br />

206OG144<br />

08763-00112<br />

0624-0828<br />

08720-60127<br />

08753-60311<br />

812~8430<br />

onw3068<br />

8-1<br />

8l2&8408<br />

812&8409<br />

1<br />

1<br />

1<br />

4<br />

1<br />

1<br />

DISPLAY HOLD DOWN<br />

DISPLAY LAMP<br />

I4mREPLAcmfENTAssY<br />

DISPLAY GLASS<br />

GROUNDlNG C&IF’S<br />

FILLEBPLATEl<br />

FRCNT PANEL<br />

1 RR3 (INCLUDES CABLE AND HARDWARE)<br />

1 RPG KNOB<br />

1 FLUBBEB KFXPAD<br />

8 SCBBW SM 3.0 6CWPNTX<br />

4 SCREW SMM 3.0 14cWPNTx<br />

2 CABLE CLG<br />

3 SCREW SrdM 3.0 8cwPNTx<br />

2 CABLE ASSY, PBOBE POWEFt<br />

2 NUT, HEX 3/E32<br />

1 PLATE, PBOBE POWEB<br />

2 SCREW, TAFTING<br />

1 BD ASSY-F’RONT PANEL<br />

1 BD ABSY-FXONT PANEL INTEBF’ACE<br />

1 All’OA2<br />

1 ASSY-WVERlER<br />

1 A2TOA17<br />

1 CABLE-m lNTF (AzJ7) to IrwEmER (A27)<br />

1- CABLE-FT lNTF (AZJS) to DISPLAY (Al8)<br />

1 Not shown. F&places A18 and display glass for Option 1DT. Order new grounding clips when replacing<br />

filler plate.<br />

! Order with A2 and LCD hold down.<br />

13-22 Replaceable Parts


(4 Places)<br />

Front Panel Assembly, Inside<br />

(4 Places) (2 Places) WI7 sg6122e<br />

Replaceable Partr 13-23


1<br />

2<br />

Ref.<br />

Ddg.<br />

3 (AM)<br />

4<br />

6<br />

6<br />

7<br />

7<br />

s<br />

0<br />

0<br />

10<br />

11<br />

l2<br />

18<br />

14<br />

16<br />

16<br />

16<br />

17<br />

17<br />

18<br />

LO<br />

Rear Panel Assembly<br />

34R<br />

lD6<br />

13-24 ReplaceableParts<br />

EPFart<br />

Number<br />

8l2&6407<br />

86047~0ooo5<br />

0872CM30138<br />

08763-60026<br />

08416-60036<br />

1261-2942<br />

2loo-oo84<br />

1251-7812<br />

0516-0370<br />

306@1192<br />

0516-0372<br />

08-1<br />

3160-0281<br />

6960-0410<br />

21oo-o102<br />

206o-oo36<br />

o4oo-0271<br />

2110-0047<br />

140&0112<br />

0o@oo27<br />

-<br />

QQ<br />

Ikx3cripison<br />

-<br />

1 BP INTEBFACE (A16J4) TO MB (A17J6) (W27)<br />

2 FUSEIFARNESGASSEMBIX<br />

1 BD ASSY-BEAB PANEL INTEBFACE (A16)<br />

1 AWY-EXTERNAL IimJmENcE CABLE (W13)<br />

1 ASSY-FAN<br />

4 FASIENEBCONNBPLOCK<br />

2 WASHER LK .l&MlDlO<br />

2 NUT STDF .327L 632<br />

4 F~CONNBPLOCK<br />

4 SCREW SbfM35Xl6 CWFWTX<br />

4 FLATWASHER<br />

10 scREwsMM3.ox8 CWFNTX<br />

1 REABPANELSHEETMFXAL<br />

1 FAN GUABD<br />

1 HOLE PLUG<br />

1 EIOLF, PLUG<br />

8 WASHER LK .472ID<br />

8 NUT BEX 15/32-32<br />

1 ERObfMlW SN.6-616ID<br />

2 FUSE<br />

2 FUSE CAP<br />

2 HOLE PLUGS<br />

- [we “Rear Panel Assembly, Option IDS”)


(8 Places)<br />

9 15<br />

13<br />

0<br />

PART OF FAN<br />

es)<br />

Rear Panel Assembly<br />

sg665e<br />

ReplaceableParts 13-25


Rear Panel Assembly, Option lD6<br />

Ref. OptlOll <strong>HP</strong>Rut<br />

Number<br />

wig.<br />

1 lD6 126&1860<br />

2 ID6 0516-0374<br />

3 IDS 3OW1646<br />

4 lD6 2l@O-OO6S<br />

6 lD6 206&0064<br />

6 lD6 0516-0430<br />

7 lD6 08763-00078<br />

8 6otw0027<br />

A26 ID6 08763-60168<br />

W30 lD6 81206468<br />

13.26 ReplaceableParts<br />

1 ADAFTER-CQAX<br />

Description<br />

1 ScBFm-MAcHINEM3.ox1ocW-PN-TX<br />

1 WASHEEF’LAT.606IDNY<br />

1 WA8HERMCK.606ID<br />

1 NUT-SPEc~1/228<br />

1 SCBEW-MACHINEM~.OX~CW-PN-TX<br />

1 BRACKET-OSCBD<br />

2 HOIXPLUGS<br />

1 BDASSY-EIGHtYFABILlTYF’BJCQREiF<br />

1 EPINTEBFACE(AlBJS)to~GE~~FBEQREF(A26Jl)


Rear Panel Assembly, Option lD5<br />

sg666e<br />

Replawable Parts 13-27


Hardware, lbp<br />

1<br />

2<br />

3<br />

Ref.<br />

D&g.<br />

4<br />

5<br />

6<br />

7<br />

8<br />

0<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

OptlOll HFPart<br />

Nnmber<br />

061C27OQ<br />

08753-40014<br />

08763-20062<br />

0516-2035<br />

0516-0468<br />

08753-00107<br />

05X-0374<br />

0616-0377<br />

0516-0374<br />

08753-00129<br />

08753-00113<br />

0515-0374<br />

06X-0374<br />

08763mO40<br />

0516-1400<br />

13-28 Replaceable Parts<br />

cm Descriptiox~<br />

2 SCBEW-~M3.OxlOCW-FLTX<br />

1 STABlLrzER-PCBOARD<br />

1 STABlLlzER CAP<br />

1 SCBEW-bfACHNEM3.Ox16PGF‘LTX<br />

2 SCBEW-MACBJNE?d3.5x8CW-PN-TX<br />

1 AIRFIDWCOVER<br />

2 3CBEW-MACHINEIK3.ox1oCW-PN-TX<br />

2 SCREW-MACHINE M3.6xlOCW-PN-TX<br />

2 SCREW-MACBINEM~.OXI~CW-PN-TX<br />

1 GSF' COVER<br />

1 BBACKFXdOUFtCE(SCUBCESl'BAP)<br />

6 SCREW-- bs3.ox1oCW-m-TX<br />

16 SCIGW-b%MBlNE Bi3.OxlOCW-PN-TX<br />

1 CLlPPlJWER GROUND<br />

3 3CBEWXACHINEM3.5x8pOF‘LTX


(4 Places)<br />

(2 Places)<br />

(6 Places) \ /<br />

(15 Places)<br />

(2 Places)<br />

Hardware, lbp<br />

\ 1<br />

12 Places)<br />

sg6111e<br />

Replaceable Parts 13-29


Hardware, Bottom<br />

1330 Replawable Parts<br />

lIPRut<br />

Number<br />

0516-0468<br />

0616-0430<br />

05150667<br />

0516-0430<br />

0515-1400<br />

0516-0375<br />

05X-0468<br />

etJr Dwcription<br />

4 3CREw-IUCHINEM3.6x8CW-PN-Tx<br />

8 SCRFM-MACHINE M3.0~6 CW-F'N-TX<br />

2 3CRJSW-MACHINEIK~.OXZ~CW-PN-TX<br />

5 SCREW-MACHINEM~.OX~CW-PN-TX<br />

3 SCREW-MACHINE~ M3.6x8PcwLTx<br />

8 3CREW-MACHINEM3.Ox16CW-PN-TX<br />

4 8CREW-MACHINEM3.Oxl6CW-PN-TX


sgbb0e<br />

(L Places) (3 Places)<br />

6<br />

(2 PLacesI x 5<br />

(3 Places)<br />

(3 Places)<br />

Replaceable Parts 13-3 1


Hardware, Front<br />

Ref. option <strong>HP</strong>- Qw Desdptioll<br />

Ddg. Nnmber<br />

1 06180665 1 SMM 3.0x14 CWFNTX<br />

2 03763-00137 1 BRACKEl’-CABLERJPPCRl<br />

3 1260-1251 2 ADAFTERFEMALE-SMA<br />

4 0616-1946 1 SCRJ!X’-MAcEIINEM3.Ox6F’GFLTx<br />

1332 Replaceable Parts


sg669e<br />

Hardware, Front<br />

I2 Places)<br />

Replaceable Parts 1333


Hardware, Test Set Deck<br />

OptlOll <strong>HP</strong>Part<br />

Nnmber<br />

13-34 Replaceable Parts<br />

08753-20206<br />

08753-40013<br />

08763-20293<br />

08763-00127<br />

0516-1046<br />

0516-0376<br />

0616-0430<br />

0616-0667<br />

0616-0430<br />

G<br />

- 8<br />

Description<br />

SHOULDER SCREW<br />

8 GUIDE WASHER<br />

8 FXESURESFRING<br />

1 CHAsslEmsET<br />

1 SCREW-~ M3.Ox 6 FGFTrTX<br />

2 SCREW-MACHlNE I&3.0x 16 CW-F'N-TX<br />

1 SCREW-- M3.0~ 6 CW-FN-TX<br />

2 SCREW-MACHINE &43.0x26 CW-PN-TX<br />

5- SCXEW-MACHINE M3.Ox 6 CW-FN-TX


(5 Places)<br />

Hardware, ‘l&t Set Deck<br />

(2 Places)<br />

I<br />

(8 Places)<br />

A<br />

\<br />

sg670e<br />

Replaceable Partr 13-35


Hardware, Disk Drive Support<br />

Bof. OptiOll EPFart etJr Demription<br />

D&it.<br />

Nnmbor<br />

1 0616-1048 4 SCBEW-M 2.6X4 sCXXJST BEAD, BBX.<br />

2 08720-00021 1 DISXDFtIVEiBRACXFd<br />

2 08763-00162 1 DISKDlUVEBRACICd<br />

3 0616-0274 4 SCREWS -- M 3.0x10 CWPNTX<br />

1 Your analyzer may use either pin 08720-00021 or p/n 08753-00152. <strong>Analyzer</strong>s manufactured<br />

prior to February 1999 use p/n 0872040021. kuxlyzers manufactured after February 1900, or<br />

that have been repaired or upgraded with <strong>Service</strong> Kit p/n 08720-40190, use p/n 08753-40152.<br />

Contact Hewlett-Packard if you need help identifying replacement parts for your analyzer.<br />

13-36 Replaceable Parts


(4 Places) Q<br />

G--,, (4 Places)<br />

Hardware, Disk Drive Support<br />

Replaceable Parts 13-37


Hardware, Memory Deck<br />

llef. OptlOll lIPF8l-t Qm De8criptlom<br />

Dd3.<br />

Number<br />

1 0515-0468 4 3cBEw-MACHINE M2.6xSCW-PIGTX<br />

2 0616-0433 2 GCREW-MACHINE WLOX 6 cw-PN-TX<br />

8 0616-0676 1 Ecmzw-m bB.ox14cw-PN-TX<br />

4 08763-00128 1 DECJGMEtdORY<br />

1338 Replaceable Parts<br />

‘0 Places)


Replaceable Partr 1339


Hardware, Preregulator<br />

Ref. Option lwF&rt QQ Description<br />

D-&f.<br />

Number<br />

1 2110-0730 1 FUSE 3A 260V NON-TIblF, DELAY (CSAAJL)<br />

1 21104666 1 FUSE 3.16A 260V NON-TIME DELAY (IEC)<br />

2 08i’63-00066 1 BRACKFFF-PBEBEGULATOR<br />

3 0515-1400 2 SCREW-MACHINE M&6x8 CW-FLTX<br />

Al6 0876s-6ooo8 1 PBEBEGULAlXIR-ASSY<br />

Al6 037~6ooo3 1 PlumEGuLAToR-AWY (imBLJm-EXCHANQE)<br />

1340 ReplaceableParts


IL-<br />

Hardware, Preregulator<br />

Al5<br />

sg673e<br />

ReplaceableParts 1341


Chassis parts, Outside<br />

Ref.<br />

D-k!.<br />

Option EPmrt<br />

Numbez<br />

etJr Description<br />

1 6041-0176 1 TIUMSTRIP<br />

2 08720-00078 1 COvEI-mP<br />

3 6041-0188 4 BEABsrAmxmF<br />

4 0515-1402 4 SCBEWS?dM3.68PCPNTX<br />

6 6041-0187 2 BBABCAP-SIDESTBAP<br />

6 06181384 4 SCREW SMM 5.0 10 PCFIZ'X<br />

7 0872O-OOOS1 2 SIDEGTRAP<br />

8 0872~OOOSO 2 COVEIMIDE<br />

0 6041-0186 2 FBONTCAP-SIDESTBAP<br />

10 08720-00070 2 COVEE-B(yIToM<br />

11 1460-1345 2 FaoTELEvAmR<br />

12 6041-0167 4 FQOT<br />

13 087~80066 1 LABELzCAUTIONWABNINQ<br />

14 OS76HO174 1 LABELzUXA!lTONDIAGBA?d<br />

16 0876S-40016 1 LINEBUTlDN<br />

16 6180-8600 1 MYLARlJwuLAmR<br />

1342 ReplaceableParts


(4 Places) (4 Places)<br />

(Underside)<br />

0 @<br />

14<br />

P<br />

(4 Places)<br />

Chassis parts, Outside<br />

5<br />

/” (2 Places)<br />

6<br />

2(4 Places)<br />

A (2 Places)<br />

A<br />

--CT<br />

(2 Plac ES)<br />

-@<br />

Places)<br />

sQ57Le<br />

Replaceable Parts 1343


Chassis Parts, Inside<br />

OptiOll <strong>HP</strong>Part.<br />

Number<br />

6022-llQ0<br />

6021-6808<br />

03753-60614<br />

0616-2036<br />

0616-04SO<br />

08720-ooow<br />

1460-1673<br />

0872o-ooo77<br />

-<br />

etJr<br />

0515-1400 1 3MMS.6x8PCFIXX<br />

0876%60270 1- BDM-MOTHERBOARD<br />

1. Part of CABDCAGJVMOTEDZRasaembly (item S).<br />

1344 ReplaceableParts<br />

1<br />

1<br />

1<br />

16<br />

1<br />

1<br />

1<br />

1<br />

FRONTPANELFRAME<br />

REARFRAME<br />

AssY-cARDcAQ~oTHER<br />

scREwaMM4.ox7PcFIxx<br />

BCREWMS.Ox6CWPNTX*<br />

lNslJLAmR smli*<br />

SPRINGEXl'ENSION.13SOD<br />

SWllVHEOD*<br />

Demxiption<br />

1


Chassis Parts, Inside<br />

(16 Places)<br />

sg675e<br />

ReplaceableParts 1345


Miscellaneous<br />

<strong>HP</strong>8753TOOLKrrindudesthefdlow2ng:<br />

RFCARLEINPUTR<br />

Demxiption<br />

ExTENDERBoARDAwEMBLY-BECEIVEB<br />

ExTENDERBoARDAwEMBIx-SOURCE<br />

EXTENDERRQARDASSEMBIX-CARDCAGE<br />

ADAPTER3dALEsMBlDMALEsb5<br />

ADAPTER-bfALETYPENTOFEMALF,SMA<br />

CABLE ASSEMBIX<br />

BAQ-ANTBLUTC 18x16<br />

service ‘Ibols<br />

Documentation<br />

087~6002S<br />

OS76%2002S<br />

aS76S-60010<br />

oS76S-6oo20<br />

087~60166<br />

l26o-0660<br />

l2wl260<br />

6061-1022<br />

8222-1132<br />

<strong>HP</strong>S76SEEKAMPLEPROGRAMDISKtl oS76S-1oL32S<br />

<strong>HP</strong>S76SEEKAMPLEPROGRAMDlSK#2 oS76%loo2o<br />

WS76SESKRVICECXJlDE oS76iwoS74<br />

<strong>HP</strong>S76SEOPTIONO11SERVICEMJIDE oS76S-oo404<br />

<strong>HP</strong>S76SEMANUALSETindvdeeulsfdlosoing: OS76MOS66<br />

EPS76SEIWIBPROGRA?dMINQANDrnMMAND REFERKNCEGUIDE 087~SoSed<br />

<strong>HP</strong>S76SE<strong>HP</strong>RASICPROGRAMMINC3RXAMPLMtXlIDE oS76mo413<br />

HpS763EUsEB'S~~E(~ndudes~~~erena$~~~~ 087~SOS67<br />

<strong>HP</strong>S76SEINSTALhWO N/QUICKSlARTWJIDE oS76HoS6o<br />

<strong>HP</strong>S76SESY6I‘EM VERlFICATIONANDPERFORMANCRTEGIs oS76moSe4<br />

BpS753EO~ONO11~~8ETi~~tkef~~~ oS76S-90370<br />

EPS76SEEF-lBPlW3 RAMMINQANDmMMAND REFERRNCRCXJIDE 0876%eoS66<br />

<strong>HP</strong>S76SEEPRASICPROGRAMMIN~EXAWLE5WIDE 08753-90418<br />

IIpS763EOpTIONO11U~SQuIDE(Cndudas~~~~llBT6s~rs) 087~SOS71<br />

<strong>HP</strong>S76SEOPTIONOlllN~ ON/QUICKS'HRTMJIDE oS76SaS72<br />

BpS753EOpTIONO11~~vEBIFlcATONANDpEBFoBMANcETFsTB OS76WOSO6<br />

upgrwk Kite<br />

HARMONR3MEA8uBEMENTUPGRADEKlT s76SEUoPToo2<br />

6OHzUPGRADEKlTFoR<strong>HP</strong>S76SE 8753RU0PT006<br />

6GHzUPGRADEKlTFVR<strong>HP</strong>S76SEOPTIONOll 876SELJOPT611<br />

TlMEDOMAlNUPGRADEKlT 876SEUOPTOlO<br />

FlRMB?AREUPGRADEKlT s76SEUoPTooo<br />

l3IQH-sTABlLlTY FBEQuENcY REPERENcERETRoFlTKlT 876SRUOFTlD6<br />

1346 Replaceable Parts


FXMALEIiHBCONNFXXUR<br />

PEMALETBTSETI/O<br />

FEbfALEPARALLELPORT<br />

RHS2CONNEC'NIR<br />

7-mmTESTPORlB<br />

Description<br />

Protective Cape for Conneetor~<br />

PEMALETYPBNTESTPORTS(OPTIONS011AND076)<br />

FUSEO.6A l26VNON-TJbfEDELAYO.26xO.27<br />

FUSEO.76A l26VNON-TIMEDELAYO.26xO.27<br />

FUSE lA l26VNON-TIMRDELAYO.26xO.27<br />

FUSE 2A l26VNON-TIME DRLAYO.26xO.27<br />

FUSE4A E?SVNON-TMEDELAYO.26xO.27<br />

HF-lB CABLE, lM (3.3 Fr)<br />

IIp-ISCABLE,2BI(6.6FT)<br />

Hf-IB CABLE,4M(13.2 FlyI<br />

<strong>HP</strong>-E? CABLE, 0.6M(l.6FI9<br />

ADJUSTABLE ANTWSTICWRISFBTRAP<br />

6FTGROUNDlNGCORDfawrktsh-ap<br />

F~esnsedontheA8PbstRegdator<br />

<strong>HP</strong>-IBcablea<br />

ESDsllpplies<br />

2x4Fl'ANTMiWICTABLEMATWlTH16FTGROUNDWlRE<br />

ANTlsTATIc HEEL STRAP for we cm am4iuotivf3jioors<br />

<strong>HP</strong>S76SEKEYBOARDOVERLAYfurtx&rnuZ k4?gmwd<br />

RAcKM0uNTKlTwlTH0uTIiANDLEs<br />

RACKMOUNTKlTWlTHlLUUDLES<br />

FRoNTHANDLE<br />

FUX'PYDISKS,3.6INCHDOUBIJMIDEZD(boxof10)<br />

l262-46W<br />

l262-46OO<br />

1262-4607<br />

1401-0240<br />

211O-OLM6<br />

2110-0424<br />

211@0047<br />

2110-0426<br />

BPlOS33A<br />

<strong>HP</strong>lOS2SB<br />

WlW33C<br />

0300-1367<br />

OSOO-OOSO<br />

o200-0707<br />

Replaceable Parts 1347


able 13-1.<br />

Reference Designations, Abbreviations, and Options<br />

REFEBENCE DESIGNATIONS<br />

A ....................................... ..as#embl y<br />

B ..................................... ..fan;moto r<br />

J....... electrical connector (stationary portion); jack<br />

.......................... rotary puke generator<br />

W..................... cable; transmkion path; wire<br />

ABBREVIATIONS<br />

A ........................................ ..ampe re<br />

......................... automatic level control<br />

ASSY .................................... ..assemb ly<br />

AUX .................................... ..a uxilhuy<br />

BD ........................................... board<br />

COAX ...................................... coaxial<br />

CPU ......................... central processing unit<br />

CW .......................... conical washer (screws)<br />

D ......................................... diameter<br />

.......................... electro6t8tic diecharge<br />

....................................... external<br />

EYO .................................. YIQwcillatm<br />

FL ................................ ilathead (screws)<br />

Fp ..................................... front panel<br />

FBAGN ............................... .fractional N<br />

FREQ ................................... frequency<br />

QHZ ...................................... glgaheriz<br />

.................................... hexagonal<br />

<strong>HP</strong> ................................ HewlettZaclcard<br />

<strong>HP</strong>-IB ................ Hewlett-Packard interface bun<br />

Hx .............................. hexrecess(mcrews)<br />

ID .................................. inside diameter<br />

IF ........................... intermediate frequency<br />

I/o .................................... input/output<br />

............................ llghbemitting diode<br />

1348 ReplaceableParts<br />

M......................................... ..mete m<br />

M ................................. metricha&vare<br />

..................................... megahertz<br />

mm ................................... ..millimete m<br />

MON ..................................... ..monito r<br />

NOM ...................................... nominal<br />

NY ......................................... ..nylon<br />

OD ................................ outside diameter<br />

opt ....................................... ..optao n<br />

...................................... wcillator<br />

PN ...................................... ..panhe ad<br />

PC .............................. patchlock(acrews)<br />

PC .................................. printedciEuit<br />

PIff ...................... peripheral interface group<br />

PN ................................ panhead(Bcrewa)<br />

...................................... reference<br />

REPL .................................. replacement<br />

RP ...................................... rear panel<br />

SH ....................... ..mAce t head cap (mcmws)<br />

............................ lmxn?cear(-#)<br />

ic ...................................... ..quant~ ty<br />

V ............................................. volt<br />

.................................. wire formed<br />

WI0 ...................................... ..withou t<br />

YIQ ............................. yttrium-iron garnet<br />

OPI’IONS<br />

DO!?, ......................... harmonica measurement<br />

006............................ ..6QHzperformanc e<br />

010 .................................... time domain<br />

011 ..................................... w/o test set<br />

076 ................................ ..76ohmteat= t<br />

ID6 ........................... 10 Mfizpreci8ion ref


14<br />

Assembly Replacement and Post-Repair<br />

Procedures<br />

This chapter contains procedures for removing and replacing the major<br />

assemblies of the <strong>HP</strong> <strong>8753E</strong> network analyzer. A table showing the<br />

corresponding post-repair procedures for each replaced assembly is located at<br />

the end of this chapter.<br />

Assembly Replasemeat and Post-Repair Procedures 14-l


Replacing an Assembly<br />

The following steps show the sequence to replace an assembly in an <strong>HP</strong> <strong>8753E</strong><br />

<strong>Network</strong> <strong>Analyzer</strong>.<br />

1. Identify the faulty group. Refer to Chapter 4, “Start Troubleshooting Here.”<br />

Follow up with the appropriate troubleshooting chapter that identifies the<br />

faulty assembly.<br />

2. Order a replacement assembly. Refer to Chapter 13, “Replaceable Parts.”<br />

3. Replace the faulty assembly and determine what adjustments are necessary.<br />

Refer to Chapter 14, “Assembly Replacement and Post-Repair Procedures”<br />

4. Perform the necessary adjustments Refer to Chapter 3, “Adjustments and<br />

Correction Constants n<br />

5. Perform the necessary performance tests. Refer to Chapter 2, “System<br />

Verification and Performance Tests m<br />

Warning These servicing instructions are for use by qualmed<br />

personnel only. lb avoid electrical shock, do not perform<br />

any servicing unless you are qualified to do so.<br />

Warning<br />

The opening of covers or removal of parts is likely to<br />

expose dangerous voltages. D~SCOMCC~ the instrument from<br />

all voltage sources while it is being opened.<br />

Warning The power cord is co~ected to internal capacitors that may<br />

remain live for 10 seconds after disconnecting the plug from<br />

its power supply.<br />

Caution Many of the assemblies in this instrument are very susceptible<br />

to damage from ESD (electrostatic discharge). Perform the<br />

following procedures only at a static-safe workstation and wear<br />

a grounding strap.<br />

14-2 Assembly Replacement and Post-Repair Procedures


Procedures described in this chapter<br />

The following pages describe assembly replacement procedures for the<br />

<strong>HP</strong> <strong>8753E</strong> assemblies listed below:<br />

w LineFuse<br />

� Covers<br />

w Front Panel Assembly<br />

w Front Panel Interface and Keypad Assemblies (Al, A2)<br />

� Display, Display Lamp, and Inverter Assemblies (Al& A27)<br />

� Rear Panel Assembly<br />

w Rear Panel Interface Board Assembly (Al6 )<br />

N A3 Source Assembly<br />

� A4, A5, A6 Samplers and A7 Pulse Generator<br />

� AS, AlO, All, A12, A13, Al4 Card Cage Boards<br />

� A9 CPU/PIG Board<br />

� A9BTl Battery<br />

w Al5 Preregulator<br />

� Al7 Motherboard Assembly<br />

� A19 Graphics Processor<br />

� A20 Disk Drive<br />

w A21, A22 Test Port Couplers<br />

� A23 LED Board<br />

w A24 Transfer Switch<br />

� A25 Test Set Interface<br />

� A26 High Stability Frequency Reference (Option lD5)<br />

� BlFhn<br />

Assembly Replacement and Post-Repair Procedures 14-3


Line Fuse<br />

Tools Required<br />

� small slot screwdriver<br />

Removal<br />

Warning For continued protection against fire hazard, replace fuse<br />

only with same type and rating (3 A 250 VAC). The use of<br />

other fuses or materials is prohibited.<br />

1. Disconnect the power cord.<br />

2. Use a small slot screwdriver to pry open the fuse holder.<br />

3. Replace the failed fuse with a 3 AF 250 V F fuse. See “Hardware,<br />

Preregulator” in Chapter 13 to find the part number.<br />

Replacement<br />

1. Simply replace the fuse holder.<br />

144 Assembly Replaoement and Post-Repair Procedures


FUSE IN USE<br />

‘INSERT SCREWDRIVER,<br />

PRY OPEN<br />

Line Fuse<br />

qg652d<br />

Assembly Replacement and Post-Repair Procedures 14-6


Covers<br />

Tools Required<br />

� T-10 TORX screwdriver<br />

� T-15 TORX screwdriver<br />

� T-20 TORX screwdriver<br />

� T-25 TORX screwdriver<br />

Removing the top cover<br />

1. Remove both upper rear feet (item 1) by loosening the attaching screws<br />

(item 2).<br />

2. Loosen the top cover screw (item 3).<br />

3. Slide cover off.<br />

Removing the side covers<br />

1. Remove the top cover.<br />

2. Remove the lower rear foot (item 4) that corresponds to the side cover you<br />

want to remove by loosening the attaching screw (item 5).<br />

3. Remove the handle assembly (item 6) by loosening the attaching screws<br />

(item 7).<br />

4. Slide cover off.<br />

Removing the bottom cover<br />

1. Remove both lower rear feet (item 4) by loosening the attaching screws<br />

(item 5).<br />

2. Loosen the bottom cover screw (item 8).<br />

3. Slide cover off.<br />

14-6 Assembly Replacement and Post-Repair Procedures


Covers<br />

sg677e<br />

Assambly Replacement and Post-Repair Procedures 14-7


Front Panel Assembly<br />

Tools Required<br />

� T-10 TORX screwdriver<br />

� T-15 TORX screwdriver<br />

� small slot screwdriver<br />

� ESD (electrostatic discharge) grounding wrist strap<br />

� 5/16-inch open-end torque wrench (set to 10 in-lb)<br />

Removal<br />

1. Disconnect the power cord.<br />

2. Remove the front bottom feet (item 1).<br />

3. Remove all of the RF cables that are attached to the front panel (item 2).<br />

4. Remove the line button (item 6).<br />

5. Remove the trim strip (item 3) from the top edge of the front frame by<br />

prying under the strip with a small slot screwdriver.<br />

6. Remove the six screws (item 4) from the top and bottom edges of the frame.<br />

7. Slide the front panel over the test port connectors<br />

8. Disconnect the ribbon cable (item 5). The front panel is now free from the<br />

.<br />

mstrument.<br />

Replacement<br />

1. Reverse the order of the removal procedure.<br />

Note When reconnecting semirigid cables, it is recommended that the<br />

connections be torqued to 10 in-lb.<br />

14-8 Assembly Replacement and Post-Repair Procedures


Front Pctnel Assembly<br />

Asssmbly Replacement and Post-Repair Procedures 14-9


Front Panel Keyboard and Interface Assemblies<br />

(Al, A21<br />

Tools Required<br />

� T-10 TORX screwdriver<br />

� T-15 TORX screwdriver<br />

� small slot screwdriver<br />

� ESD (electrostatic discharge) grounding wrist strap<br />

H 5/16-inch open-end torque wrench (set to 10 in-lb)<br />

Removal<br />

1. Remove the front panel assembly from the analyzer (refer to “Front Panel<br />

Assembly” in this chapter).<br />

2. DiSCOMeCt all cables from the front panel interface board (items 1, 2, 3, 4, 6,<br />

and 7).<br />

� Disconnect item 4 by pulling up on the comers of the connector base.<br />

This will release the cable for easy removal. Damage may occxr to the<br />

w-n-r (f this step is not followed.<br />

H Disconnect item 7 by sliding the ribbon cable away from its cable clamp.<br />

3. Remove the four screws (item 5), attaching the interface board (A2).<br />

4. Remove the nine screws from the Al front panel board to access and remove<br />

the rubber keypad.<br />

Replacement<br />

1. Reverse the order of the removal procedure.<br />

Caution Damage may result if the following step is not followed.<br />

2. To reconnect item 7, ensure that the ribbon cable is placed squarely into both<br />

of its cable clamps<br />

14-l 0 Assembly Replacement and Post-Repair Procedures


Front Panel Keyboard and Interface Assemblies<br />

sg680e<br />

Assambly Replasement and Post-Repair Procedures<br />

14-l 1


Display Lamp and Inverter Assemblies<br />

(AH, A27)<br />

Tools Required<br />

� T-8 TORX screwdriver<br />

� T-10 TORX screwdriver<br />

� T-15 TORX screwdriver<br />

� small slot screwdriver<br />

� ESD (electrostatic discharge) grounding wrist strap<br />

� 5116~inch open-end torque wrench (set to 10 in-lb)<br />

Removal<br />

1. Remove the front panel assembly (refer to “Front Panel Assembly” in this<br />

chapter).<br />

2. Disconnect the cables (items 2, 3 and 4) from the Al assembly.<br />

3. Remove two screws (item 8) from the mounting plate (7) to remove the<br />

inverter (A27).<br />

4. Remove the three screws (item 1) that attach the mounting plate and display<br />

to the front panel.<br />

5. Remove the mounting plate and the display (A18) from the front panel.<br />

Note The bottom half of the following ffgure depicts the rear view of<br />

the Al8 assembly with the mounting plate removed. Use the<br />

location of the display lamp cable (item 4) to aid in orientation.<br />

6. Remove the three screws (item 5) from the outside of the display.<br />

7. Pull the lamp (item 6) out with a curving side motion, as shown.<br />

14-12 Assembly Replacement and Post-Repair Procedures


Replacement<br />

1. Reverse the order of the removal procedure.<br />

2. Be sure to route ribbon cable 2 through the cable clamp on the A2 assembly<br />

and the LCD mounting plate (item 7).<br />

Caution Be sure that cables are plugged in square and correct. Failure to<br />

do so will result in serious component damage.<br />

Caution Do not exceed 3 in-lb when replacing the self-tapping screws<br />

(item 8).<br />

Assembly Replacement and Post-Repair Procedures 14-13


Display Iamp and hverter Assemblies<br />

(3 Places)<br />

14-14 mmbly Replacement and Post-Repair Procedures<br />

shg6113e


Rear Panel Assembly<br />

Tools Required<br />

� T-10 TORX screwdriver<br />

� T-15 TORX screwdriver<br />

� ESD (electrostatic discharge) grounding wrist strap<br />

Removal<br />

1. Disconnect the power cord and remove the top (item 1) and bottom covers<br />

(refer to “Covers” in this chapter).<br />

2. Remove the four rear standoffs (item 2).<br />

3. If the anaiyzer has option lD5, remove the BNC jumper from the high<br />

stability frequency reference (item 3).<br />

4. Remove the four screws (item 5) that attach the interface bracket to the<br />

rear panel.<br />

5. Remove the six screws (item 6) and (item 7), that attach the preregulator to<br />

the rear panel.<br />

6. Remove the six screws (item 8) from the rear frame: two from the top edge<br />

and four from the bottom edge.<br />

7. Remove the screw from the pc (item 9) board stabiiizer and remove the<br />

stabilizer.<br />

8. Lift the reference board (A12) from its motherboard connector and<br />

disconnect the flexible RF cable from its connector on Al2 (item 10)<br />

9. Identify the wiring harness leading to the VGA connector (item 4). Follow<br />

this harness back to its connection on the motherboard. The air flow cover,<br />

attached by two screws, wiII have to be removed to get to this connection.<br />

Disconnect the VGA wire harness at this point.<br />

14-l 6 Assembly Replawment and Post-Repair Procedures


Bear Panel Assembly<br />

10. Pull the rear panel away from the frame. Disconnect the ribbon cable<br />

(item 11) from the motherboard connector, pressing down and out on<br />

the connector locks. Disconnect the wiring harness (item 12) from the<br />

motherboard.<br />

Replacement<br />

1. Reverse the order of the removal procedure.<br />

I<br />

\ @I<br />

12 on Top)<br />

I4 on Bottom)<br />

(2 Places)<br />

(3 Places)<br />

I4 Places)<br />

(4 Places)<br />

sg682e<br />

Assembly Replacement and Post-Repair Procedures 14-17


Rear Panel Assembly<br />

14-18 Assembly Replacement and Post-Repair Procedures


Rear Panel Interface Board Assembly (A16)<br />

Tools Required<br />

� 9/16 hex nut driver<br />

� 3/16 hex nut driver<br />

� T-10 TORX screwdriver<br />

� T-15 TORX screwdriver<br />

� ESD (electrostatic discharge) grounding wrist strap<br />

Removal<br />

1. Disconnect the power cord and remove the top and bottom covers (refer to<br />

“Covers” in this chapter).<br />

2. If the analyzer has option lD5, remove the high-stabiiity frequency reference<br />

jumper (item 1).<br />

3. Remove the hardware that attaches the seven BNC connectors to the rear<br />

panel (item 2).<br />

4. Remove the hardware that attaches the interface connector to the rear panel<br />

(item 3).<br />

5. Remove the rear panel from the analyzer (refer to “Rear Panel Assembly” in<br />

this chapter).<br />

6. If the analyzer has option lD5, disconnect the cable (item 4) from the rear<br />

panel interface board.<br />

7. Disconnect the ribbon cable (item 5) from the rear panel interface board.<br />

Replacement<br />

1. Reverse the order of the removal procedure.<br />

14-20 Assambly Replacement and Post-Repair Procedures


(7<br />

(2<br />

(Opt ID5 only)<br />

Rear Panel Interface Board Assembly<br />

only)<br />

sg604e<br />

Asssmbly Replasement and Post-Repair Procedures 14-21


A3 Source Assembly<br />

‘Ibols Required<br />

� T-15 TORX screwdriver<br />

� 5/16-inch open-end torque wrench (set to 10 in-lb)<br />

� ESD (electrostatic discharge) grounding wrist strap<br />

Removal<br />

1. Disconnect the power cord and remove the top cover (refer to “Covers” in<br />

this chapter).<br />

2. Remove the source bracket (item 1) by removing four screws (It might be<br />

necessary to disconnect a flexible cable from the B sampler.)<br />

3. Disconnect the flexible cable W26.<br />

4. Disconnect the semirigid cable Wl.<br />

5. Lift the two retention clips (item 2) at the front and rear of the source<br />

assembly to an upright position.<br />

6. Move Wl to the side while lifting the source high enough to provide wrench<br />

clearance for W24. ‘lb lift the A3 source assembly, use the source bracket<br />

handle (item 3).<br />

7. Disconnect the semirigid cable W24.<br />

8. Remove the source assembly from the instrument.<br />

14-22 Assembly Replacement and Post-Repair Procedures


W2L<br />

W26<br />

w1 -<br />

,<br />

AwnMy Replacclment sad Post-Repair Procedures<br />

A3 Source Assembly<br />

. A3<br />

14-23


A3 Source Assembly<br />

Replacement<br />

1. Check the connector pins on the motherboard before reinstallation.<br />

2. Slide the edges of the sheet metal partition (item 4) into the guides at the<br />

sides of the source compartment. Press down on the module to ensure that it<br />

is well seated in the motherboard connector.<br />

3. Push down the retention clips Reconnect the two semirigid cables (Wl and<br />

W24) and one flexible cable (W26) to the source assembly.<br />

Note When reconnecting semirigid cables, it is recommended that the<br />

connections be torqued to 10 in-lb.<br />

4. Reinstall the source bracket.<br />

5. Reconnect the flexible cable to the B sampler.<br />

14-24 Assembty Replacement and PostRepair Procedures


A4, AS, A6 Samplers and A7 Pulse Generator<br />

!lbols Required<br />

� Needle-nose pliers<br />

w T-10 TORX screwdriver<br />

� 5/16-inch open-end torque wrench (set to 10 in-lb)<br />

� ESD (electrostatic discharge) grounding wrist strap<br />

Removal<br />

1. Disconnect the power cord and remove the top cover (refer to “Covers” in<br />

this chapter).<br />

2. To remove the B sampler (A6), you must remove the source bracket (item 1).<br />

3. Disconnect all cables from the top of the sampler (A4/A5/A6) or pulse<br />

generator (A7).<br />

4. Remove the screws from the top of each sampler assembly. Extract the<br />

assembly from the slot.<br />

Note ‘lb remove the A (A5) or R (A4) sampler, lhst remove the cable<br />

on the B (A6) sampler.<br />

Note If you are removing the pulse generator (A7), the grounding<br />

clip, which rests on top of the assembly, will become loose once<br />

the four screws are removed. Be sure to replace the grounding<br />

clip when reinsMhng the pulse generator assembly.<br />

14-26 Assembly Replacement and Past-Repair Procedures


w5 ’<br />

(A4 t o A7)<br />

W6 ’<br />

IA5 t o A7)<br />

w7’<br />

(A6 to A7) \<br />

1<br />

\<br />

:I<br />

;1<br />

A4, A5, A6 Samplers and A7 Pulse Generator<br />

\<br />

A7<br />

/<br />

All<br />

/*I4<br />

1 W8<br />

(AIIJI t o AL)<br />

1 w9<br />

(AIIJI t o A7)<br />

Assembly Replacement and Post-Repair Procedures 14-27


A4, A5, A6 Samplers and A7 Pulse Generator<br />

Replacement<br />

1. Check the connector pins on the motherboard before reinstallation.<br />

2. Reverse the order of the removal procedure.<br />

Note � When reconnecting semirigid cables, it is recommended that<br />

the connections be torqued to 10 in-lb.<br />

� Be sure to route W8 and W9 as shown. No excess wire should<br />

be hanging in the All and Al4 board slots. Routing the wires<br />

in this manner will reduce noise and crosstalk.<br />

14-26 Assembly Replacement and Post-Repair Procedures


A8, AlO, A11, A12, A13, Al4 Card Cage Boards<br />

Tools Required<br />

� T-10 TORX screwdriver<br />

� T-15 TORX screwdriver<br />

� ESD (electrostatic discharge) grounding wrist strap<br />

Removal<br />

1. DiscOMect the power cord and remove the top cover (refer to “Covers” in<br />

this chapter).<br />

2. Remove the screw from the pc board stabilizer and remove the stabilizer.<br />

3. Lift the two extractors located at each end of the board. Lift the board from<br />

the card cage slot, just enough to disconnect any flexible cables that may be<br />

connected to it.<br />

4. Remove the board from the card cage slot.<br />

Replacement<br />

1. Check the connector pins on the motherboard before reinstallation.<br />

2. Reverse the order of the removal procedure.<br />

Note De sure to route W8 and W9 as shown. No excess wire should<br />

be hanging in the All and Al4 board slots Routing the wires in<br />

this manner will reduce noise and crosstalk in the instrument.<br />

14-30 Assembly Replawmeat and Past-Repair Procedures


AS, AlO, All, A12, A13, Al4 Caxd Cage Boards<br />

W26 From Al2 A15Wl A10 A8 All A12 Al3<br />

/<br />

WI3<br />

(AlZJ3 T O<br />

REAR PANEL<br />

EXT REFi<br />

Al4<br />

W2b<br />

, (AIZJL T O A31<br />

WI2<br />

, (A13J2 T O A12J-B<br />

WI1<br />

, tA14J3 T O A13Jl)<br />

’ WI0<br />

(A14J2 T O A12Jl)<br />

----..<br />

%4J, T O A71<br />

1 W8<br />

fAllJ1 T O AL)<br />

sg609e<br />

Assembly Replacement and Post-Repair Procedures 14-31


A9 CPU Board<br />

Ibols Required<br />

� T-10 TORX screwdriver<br />

w T-15 TORX screwdriver<br />

w ESD (electrostatic discharge) grounding wrist strap<br />

Removal<br />

1. Disconnect the power cord.<br />

2. Remove the top and bottom covers (refer to “Covers” in this chapter).<br />

3. Remove the rear panel assembly, following steps 4 through 6 of “Rear Panel<br />

Assembly. n<br />

4. Turn the analyzer upside down.<br />

5. Pull the rear panel away from the frame as shown in the following 6gure.<br />

6. Disconnect the four ribbon cables (W20, W35, W36, and W37) from the CPU<br />

board (AS).<br />

7. Remove the three screws (item 2) that secure the CPU board (A9) to<br />

the deck. Slide the board towards the front of the instrument so that it<br />

disconnects from the three standoffs (item 3).<br />

8. Lift the board off of the standoffs<br />

Replacement<br />

1. Reverse the order of the removal procedure.<br />

2. Leave the bottom cover off in order to perform the post repair procedures<br />

located at the end of this chapter.<br />

14-32 Assembly Replacement and Post-Repair Prosedures


w37<br />

w20 \<br />

A9 CPU Board<br />

sg6112e<br />

Assembly Replacement and Post-Repair Procedures 14-33


A9 CPU Board<br />

14-34 Assembly Replasemeat and Post-Repair Procedures<br />

I,” VII - c -<br />

-A9<br />

sg690e


A9BTl Battery<br />

Tools Required<br />

� T-10 TORX screwdriver<br />

� ESD (electrostatic discharge) grounding wrist strap<br />

� soldering iron with associated soldering tools<br />

Removal<br />

1. Remove the A9 CPU/PIG board (refer to “A9 CPU Board” in this chapter).<br />

2. Unsolder and remove AOBTl from the A9 CPU/PIG board.<br />

warning<br />

Replacement<br />

Battery A9BTl contains lithium. Do not incinerate or<br />

puncture this battery. Dispose of the discharged battery in<br />

a safe manner.<br />

DO NOT THROW BAlTERIES AWAY BUT<br />

COLLECT AS SMALL CHEMICAL WASTE.<br />

1. Make sure the new battery is inserted into the A9 board with the correct<br />

polarity.<br />

Warning Danger of explosion if battery is incorrectly replaced.<br />

Replace only with the same or equivalent type<br />

recommended.<br />

2. Solder the battery into place.<br />

3. Replace the A9 CPU/PIG board (refer to “A9 CPU Board” in this chapter).<br />

14-36 Assembly Replacement and Post-Repair Procedures


II II d #I<br />

0<br />

A9BTl Battery<br />

,A9<br />

,A9BTl<br />

sg691e<br />

Asssmbly Replacement and Post-Repair Procedures 14-37


A15 Preregulator<br />

Tools Required<br />

� T-10 TORX screwdriver<br />

� T-15 TORX screwdriver<br />

� ESD (electrostatic discharge) grounding wrist strap<br />

Removal<br />

1. Remove the rear panel (refer to “Rear Panel Assembly” in this chapter).<br />

2. Remove the two remaining screws from the top of the rear frame.<br />

3. Disconnect the wire bundle (A15Wl) from A&J2 and A17J3.<br />

4. Remove the preregulator (A15) from the frame.<br />

Replacement<br />

1. Reverse the order of the removal procedure.<br />

Note � When reinsMing the preregulator (A15), make sure the three<br />

grommets (item 1) on A15Wl are seated in the two slots (item<br />

2) on the back side of the preregulator and the slot (item 3) in<br />

the card cage wall.<br />

� After reinsMing the preregulator (A15), be sure to set the<br />

line voltage selector to the appropriate setting, 115 V or<br />

230 V.<br />

14-36 Asssmbly Replacameat and Past-Repair Procedures


I b2<br />

Al5<br />

(2 Placed<br />

A8J2<br />

(3 Places)<br />

\<br />

A17J3<br />

Al5 Preregulator<br />

sg692e<br />

Assembly Replacement and Post-Repair Procedures 1448


Al7 Motherboard Assembly<br />

Tools Required<br />

� T-10 TORX screwdriver<br />

� T-15 TORX screwdriver<br />

� T-20 TORX screwdriver<br />

� smaII slot screwdriver<br />

� 2.5-mm hex-key driver<br />

� 5/16-inch open-end torque wrench (set to 10 in-lb)<br />

� ESD (electrostatic discharge) grounding wrist strap<br />

Removal<br />

lb remove the Al7 motherboard assembly only, perform the following steps to<br />

remove all assemblies and cables that connect to the motherboard.<br />

1. Disconnect the power cord and remove the top, bottom, and side covers<br />

(refer to “Covers” in this chapter).<br />

2. Remove the front panel assembly (refer to “Front Panel Assembly” in this<br />

chapter).<br />

3. Remove the rear panel assembly (refer to “Rear Panel Assembly” in this<br />

chapter).<br />

4. Remove the preregulator (refer to “A15 Preregulator” in this chapter).<br />

5. Remove the graphics processor (refer to “A19 Graphics Processor” in this<br />

chapter).<br />

6. Remove the test set deck (item 3) by removing the three screws (item 4)<br />

from the bottom and four screws (item 5) from the side frames. For clarity,<br />

the Sgure on the next page does not show the assemblies attached to the<br />

test set deck.<br />

7. Remove the CPU board (refer to “A9 CPU Board” in this chapter).<br />

8. Remove the memory deck (item 1) by removing three screws (item 2) from<br />

the bottom and four screws (item 6) from the side frames<br />

1440 Assembly Replacement and Post-Repair Procedures


Al7 Motherboard Assembly<br />

9. Remove the source assembly (refer to “A3 Source Assembly” in this<br />

chapter).<br />

10. Remove the samplers and pulse generator (refer to “A4, A5, A6 Samplers<br />

and A7 Pulse Generator” in this chapter).<br />

11. Remove the card cage boards (refer to “A& AlO, All, A12, A13, Al4<br />

Card Cage Boards” in this chapter). Continue with step 12 to remove the<br />

motherboard, or step 13 to remove the motherboard/card cage assembly.<br />

12. To disconnect the motherboard (item 7), remove the 34 riv screws (item 8).<br />

Important: Do not misplace ang of these screws.<br />

v<br />

sg693e<br />

Assembly Replawmeat and Post-Repair Procedures 14-41


A 17 Motherboard Assembly<br />

lb remove the Al7 motherboard assembly along with the card cage, continue<br />

with the following step:<br />

13. Referring to the figure on the following page, remove the front frame (item<br />

1) and rear frame (item 6) by removing the attaching screws (item 7). At<br />

this point, only the motherboard/card cage assembly should remain. This<br />

whole assembly is replaceable.<br />

1442 Assembly Replacement and Post-Repair Procedures


Replacement<br />

1. Reverse the order of the removal procedure.<br />

A 17 Motherboard Assembly<br />

Aswmbly Replacement and Past-Repair Procedures 1443


A19 Graphics Processor<br />

Tools Required<br />

� T-10 TORX screwdriver<br />

� T-15 TORX screwdriver<br />

� ESD (electrostatic discharge) grounding wrist strap<br />

Removal<br />

1. Disconnect the power cord.<br />

2. Remove the top cover (refer to “Covers” in this chapter) and front panel<br />

(refer to “Front Panel Assembly” in this chapter.)<br />

3. Remove the six screws (item 1) from the GSP cover (item 2) and lift off.<br />

4. Swing out the handles (item 3) and pull the GSP board (item 4) out of the<br />

analyzer.<br />

Replacement<br />

1. Check the connector pins on the motherboard before reinstaktion.<br />

2. Reverse the order of the removal procedure.<br />

1444 Assembly Replacement and Psi-Repair Procedures


(6 Plocesl<br />

Cc 2<br />

” P<br />

A19 Graphics Processor<br />

sg695e<br />

Awembly Replacement and Post-Repair Procedures 1446


A20 Disk Drive Assembly<br />

Tools Required<br />

w #2 ball-end hexdriver with long shaft<br />

� T-8 TORX screwdriver<br />

� T-10 TORX screwdriver<br />

� T-15 TORX screwdriver<br />

� T-20 TCRX screwdriver<br />

� small slot screwdriver<br />

� ESD (electrostatic discharge) grounding wrist strap<br />

Required Diskette<br />

� 3.5” diskette, 1.44 MEl, formatted (DOS)<br />

Prelimiuary Instructions<br />

Prepare the new disk drive assembly for installation in the analyzer. The<br />

Installation Note included in the service kit provides details for this procedure.<br />

1. Disconnect the power cord and remove the top, bottom, and left side-covers<br />

(refer to “Covers” in this chapter).<br />

2. Turn the analyzer over, so that the bottom faces up.<br />

3. Disconnect the ribbon cable (item 1) that connects to the disk drive from its<br />

connector on the CPU board.<br />

4. Remove the four screws (item 2) that secure the disk-drive bracket to the<br />

side of the analyzer, and remove the complete disk drive assembly.<br />

Note Save the screws removed in this step for use later when<br />

installing the new disk drive bracket.<br />

5. Disconnect the ribbon cable from its connection on the disk drive.<br />

1446 Assembly Replacemeat and Post-Repair Procedures


A20 Disk Drive Assembly<br />

sg696e<br />

Assembly Replacement and Post-Repair Procedures 1447


A20 Disk Drive Assembly<br />

Install the replacement disk drive.<br />

1. Connect the existing ribbon cable to the replacement disk drive.<br />

Note Make sure that the disk drive connector-contacts touch the<br />

ribbon cable contact areas (the ribbon-cable contact areas must<br />

face the contacts in the disk drive connector). Also assure that<br />

the connector is properly locked.<br />

2. Slide the disk drive and bracket assembly into the analyzer.<br />

3. Route the ribbon cable through the side access hole. Avoid twisting the<br />

cable-duplicate the original folds made to the cable.<br />

4. Fasten the disk-drive bracket to the side of the analyzer frame, using the four<br />

screws saved in step 4 (immediately above).<br />

5. Remove the trim strip from the top of the front panel.<br />

6. Remove the screw from the top left comer of the front panel. This will allow<br />

access to one of the #2 hex screws of the disk-drive assembly.<br />

7. Aligu the disk drive with the front panel, and tighten the three screws that<br />

fasten the disk drive to the disk-drive bracket. Do not over-tighten.<br />

8. ReCOMeCt the ribbon cable to the CPU board.<br />

Note Make sure that the CPU connector-contacts touch the ribbon<br />

cable contact areas (the ribbon-cable contact areas must face<br />

the contacts in the CPU connector). Also assure that the<br />

connector is properly locked.<br />

Test the disk-eject function, and adjust if required.<br />

1. Insert a diskette into the drive.<br />

2. Eject the diskette from the drive.<br />

3. If the diskette does not eject properly, loosen and re-tighten the three screws<br />

that hold the disk drive to the disk-drive bracket:<br />

a. Loosen the two screws that are readily accessible.<br />

b. Loosen the upper-most front screw through the access hole in the top-left<br />

area of the front frame.<br />

14-46 Assambly Replacement and Post-Repair Procedures


c. Center the disk drive in the opening.<br />

d. Re-tighten all three screws.<br />

Reinstall the covers.<br />

1. Reinstall the remaining top front-panel screw in the left corner.<br />

2. Reinstall the trim strip.<br />

A20 Disk Drive Assembly<br />

3. Reinstall the covers. If needed, refer to “Covers” in this chapter for help in<br />

performing this task.<br />

Assembly Replacement and Past-Repair Prowdures 1449


A21, A22 Test Port Couplers<br />

Tools Required<br />

� T-10 TORX screwdriver<br />

� T-15 TORX screwdriver<br />

� small slot screwdriver<br />

� ESD (electrostatic discharge) grounding wrist strap<br />

� 5/16-inch open-end torque wrench (set to 10 in-lb)<br />

Removal<br />

1. DiscOMeCt the power cord and remove the bottom cover (refer to “Covers”<br />

in this chapter).<br />

2. Disconnect the small bias wire from the test set interface board (A25).<br />

For coupler A2 1 disconnect the gray wire (A2 1 W 1).<br />

For coupler A22 disconnect the gray wire (A22Wl).<br />

3. Disconnect the two semirigid cables from the coupler assembly.<br />

For coupler A21 disconnect W3 and W31.<br />

For coupler A22 disconnect W4 and W32.<br />

4. Remove the four screws, washers, and pressure springs that secure the<br />

coupler to the test set deck. Remove the coupler.<br />

5. Remove the pressure springs<br />

Replacement<br />

1. Reverse the order of the removal procedure.<br />

Note � If you’re instalhng a new coupler, the gold lead on the<br />

feedthru capacitor (item 1) must be curt@&@ bent at<br />

90 degrees to prevent it from shorting to the bottom cover.<br />

� When reconnecting semirigid cables, it is recommended that<br />

the connections be torqued to 10 in-lb.<br />

14-50 Assembly Replacement and Past-Repair Procedures


A21, A22 ‘I&t Port Couplers<br />

w32 A22Wl w31 w21 AZIWI<br />

I3<br />

\ u:l<br />

w3 1<br />

L-<br />

sg697e<br />

Assembly Replacement and Post-Repair Procedures 14-51


A23 LED Board<br />

Tools Required<br />

� T-10 TORX screwdriver<br />

� T-15 TORX screwdriver<br />

� small slot screwdriver<br />

� ESD (electrostatic discharge) grounding wrist strap<br />

� 5/16-inch open-end torque wrench (set to 10 in-lb)<br />

Removal<br />

1. Disconnect the power cord and remove the bottom cover (refer to “Covers”<br />

in this chapter).<br />

2. Remove the front panel (refer to “Front Panel Assembly” in this chapter).<br />

3. Remove the A22 test port coupler (refer to “A21, A22 Test Port Couplers” in<br />

this chapter).<br />

4. Disconnect W33 from the LED board (A23).<br />

5. Remove the screw (item 1) from the front of the test set deck.<br />

6. Remove the LED board (A23).<br />

Replacement<br />

1. Reverse the order of the removal procedure.<br />

1452 Assembly Replacement and Pest-Repair Procedures


I II II III ’ +~Z I II<br />

0<br />

A>3<br />

A23 LED Board<br />

sg698e<br />

Assambly Replacement and Post-Repair Procedures 14-53


A24 Transfer Switch<br />

Tools Required<br />

� T-10 TORX screwdriver<br />

� T-15 TORX screwdriver<br />

� 5/16-inch open-end torque wrench (set to 10 in-lb)<br />

� ESD (electrostatic discharge) grounding wrist strap<br />

Removal<br />

1. Disconnect the power cord and remove the bottom cover (refer to “Covers”<br />

in this chapter).<br />

2. Disconnect A24Wl from 53 on the test set interface board (A25).<br />

3. Disconnect the three semirigid cables (Wl, W31, and W32) from the transfer<br />

switch (Az4).<br />

4. Remove the two screws (item 1) that secure the transfer switch.<br />

Replacement<br />

1. Reverse the order of the removal procedure.<br />

Note When reconnecting semirigid cables, it is recommended that the<br />

connections be torqued to 10 in-lb.<br />

14-64 Assembly Replacement and Post-Repair Procedures


A24 Transfer Switch<br />

w32 w31 J3 A2LWl<br />

(2 Places)<br />

sg699e<br />

Assembly Replasement and Post-Repair Prosedures 14-55


A25 Test Set Interface<br />

Tools Required<br />

� T-10 TORX screwdriver<br />

m T-15 TORX screwdriver<br />

� 5/164nch open-end torque wrench (set to 10 in-lb)<br />

� ESD (electrostatic discharge) grounding wrist strap<br />

Removal<br />

1. DiscOMeCt the power cord and remove the bottom cover (refer to “Covers”<br />

in this chapter).<br />

2. Disconnect all cables and wires (A21W1, A22W1, W33, and W34) from the<br />

test set interface board (A25).<br />

3. Remove the five screws (item 1) that secure the test set interface board.<br />

Replacement<br />

1. Reverse the order of the removal procedure.<br />

14-56 Assembly Rsplasement and Post-Repair Procadures


(5 Places)<br />

w34 A24Wl<br />

lb A25 0 IIIIIIlI<br />

I - I IIA ,411 I<br />

A22Wl w33 AZIWI<br />

A25 lkst Set Interface<br />

I<br />

sg6100e<br />

Assambly Replacement and Post-Repair Procedures 14-57


A26 High Stability Frequency Reference (Option lD5)<br />

Assembly<br />

!bols Required<br />

� T-10 TORX screwdriver<br />

� T-15 TORX screwdriver<br />

� Q/16-inch hex-nut driver<br />

� ESD (electrostatic discharge) grounding wrist strap<br />

Removal<br />

1. Remove the rear panel (refer to “Rear Panel Assembly” in this chapter).<br />

2. Disconnect W30 from the high stability frequency reference board (A26).<br />

3. Remove the BNC connector nut and washer from the u 10 MI-Ix PRECISION<br />

REFERENCE” connector (item 1) on the rear panel.<br />

4. Remove the screw (item 4) that attaches the lD5 assembly to the rear panel.<br />

5. Remove the screw (item 2) that secures the high stability frequency<br />

reference board (A26) to the bracket.<br />

6. Slide the board out of the bracket. Be careful not to lose the plastic spacer<br />

washer (item 3) that is on the BNC connector as the board is being removed.<br />

Replacement<br />

1. Reverse the order of the removal procedure.<br />

Note Before reinserting the high stability frequency reference board<br />

(A26) into the bracket, be sure the plastic spacer washer<br />

(item 3) is on the BNC connector.<br />

M-58 Assembly Replacement and Post-Repair Procedures


A26 High Stability Frequency Reference (Option lD5) Assembly<br />

INSIDE<br />

0<br />

OUTSIDE<br />

- w30<br />

sg6101e<br />

Assembly Replacement and Post-Repair Procedures 14-59


Bl Fan Assembly<br />

Tools Required<br />

� 2.5-mm hex-key driver<br />

� T-10 TORX screwdriver<br />

� T-15 TORX screwdriver<br />

� ESD (electrostatic discharge) grounding wrist strap<br />

Removal<br />

1. Remove the rear panel (refer to “Rear Panel Assembly” in this chapter).<br />

2. Remove the four screws (item 1) that secure the fan and fan cover to the<br />

rear panel.<br />

Replacement<br />

1. Reverse the order of the removal procedure.<br />

Note The fan should be installed so that the direction of the air Bow<br />

is away from the instrument. There is an arrow on the fan<br />

chassis indicating the air flow direction.<br />

14-60 Assembly Replacement and Post-Repair Procedures


(4 PLACES)<br />

Bl Fhn Assembly<br />

hg628d<br />

Assembly Replacement and Pest-Repair Procedures 14-61


Post-Repair Procedures for <strong>HP</strong> <strong>8753E</strong><br />

The following table lists the additional service procedures which you must<br />

perform to ensure that the instrument is working correctly, following the<br />

replacement of an assembly. These procedures can be located in either<br />

Chapter 2 or Chapter 3.<br />

l3yfbrm the procedures in the order that th,eg are listed in the table<br />

‘Jhble 14 1. Belated <strong>Service</strong> Procedures<br />

Replaced Alyjlwtallentd W?l%C&iOll<br />

-1Y clbrection constants (ch. 3) (a. 2)<br />

Al Front Panel None SWViCK?lbStO<br />

Keyboard service lbt 23<br />

A2 Pront Panel None SeIViWWO<br />

hterf~ service lbt 23<br />

service l&t 12<br />

lbtS66-80<br />

A3 source A9 Switch Positions lbst Port Output Frequency Range<br />

sourceDefcc(%st44) &Accuracy<br />

Pretune Default CC (l&t 46) lkst Port Output Power Accumcy<br />

Anal~BuscC(‘Ibst46) lbst Port Output Power Range aud<br />

Source Pretune CC (l&t 48) b-m<br />

RF Output Power CC (l&t 47) lbst Port Output/Input Hanuonics<br />

Sampler Maguitude and Phase CC (lb& 53) (Option 002 only)<br />

Cavity OBciUstor Frequency CC (J&t 54)<br />

Source Spur Avoidance Tracking<br />

EEPROM Backup Disk<br />

MIAS/A6 Samplers A9 Switch Positions Miuimu~~ R Channel Level<br />

Sampler Magnitude and Phase CC (‘l&t 53) (if R sampler replaced)<br />

IF Amplifier CC (Test 51) lbtPorLcrosetallr<br />

EEPROM Backup Disk 7&t Port Input Prequency Response<br />

A7 Pulse Generator A9 Switch Positions l&t Port Input Frequency Response<br />

Sampler Magnitude and Phase CC (‘l&t 63) l&t Port Frequency Range and<br />

EEPROM Backup Disk<br />

A8 Post Regulator A9 Switch Positions SenriCeMO<br />

Cavity oscibtor Frequency CC (lbt 54) Check A8 test point voltagea<br />

Source 8purAvoidance Tracking<br />

EEPROM Backup Disk


R@M%3d<br />

AS&Xllbl~<br />

49 CPU<br />

FXPROM Backup<br />

)isk Available)<br />

‘able 14-l. Related <strong>Service</strong> Procedures (2 of 3)<br />

A4snstments/<br />

Correction cons~ts (oh. 8)<br />

A9 Switch Positions<br />

Load Pirmware<br />

CC Retrieval<br />

Serial Number CC (Test 55)<br />

Option Number CC (!Ibst 66)<br />

Operator’s Check<br />

service T&t, 21<br />

servi~W22<br />

V&cation<br />

P- 2)<br />

49 CPU A9 Switch Positions l&t Port Output Frequency Range<br />

EEPROM Backup Load Fhmware and Accuracy<br />

)isk Not Available) Serial Number CC (Test 66) l&t Port Output Power Accuracy<br />

Option Number CC (‘Rx& 60) ‘l&t Port Output Power Range and<br />

SourceDefCC(Jbt44) Linearity<br />

Pretune Default CC (lbt 46) !kst Port Receiver Dynamic Accuracy<br />

AnabgBusCC(‘Ibt40) l&t Port Input Frequency Response<br />

Cal Kit Default (Test 57)<br />

Source Pretune CC (!Ibst 48)<br />

RF Output Power Cc (Tbst 47)<br />

Sampler Maguitude and Phase CC (lbt 53)<br />

ADCLinearityCC(Test62)<br />

lF Amplifier Cc (lbt 51)<br />

Cavity O&llator Frequency CC (lb& 54)<br />

EEF’ROM Backup Disk<br />

LlO Digital IF A9 Switch Positions l&t Port Input Noise Ploor Level<br />

AnalogBwccW46)<br />

Test Port CTc&alk<br />

Sampler Magnitude and Phase CC (‘lbt 53) System Trace Noise<br />

AM: Linearity CC (!kst 52)<br />

IF AmpWer CC (Ylbst 51)<br />

EEPROM Backup Disk<br />

Lll Phase Lock A9 Switch Positions<br />

Anal~BusCC(‘Ibst46)<br />

Pretune Default CC (lbst 46)<br />

Source Pretune CC (l&t 48)<br />

EXPROM Backup Disk<br />

L12 Reference A9 Switch Positions<br />

HighLowBand%3nsition<br />

Fresuency Accuracy<br />

EEPROM Backup Disk<br />

Minimum R channel Level<br />

lkst Port Output Prequency Range<br />

ad-<br />

7&t Port Output Prequency Range<br />

ad-<br />

Assembly Replacsment and Post-Repair Procedures 14-63


gepLacea<br />

As!3embly<br />

Al3 Fractional-N<br />

(Analog)<br />

A14 Fractional-N<br />

(Digital)<br />

Al6 Preregulator<br />

Al6 Rear Panel<br />

Interface<br />

A17 Motherboard<br />

‘able 14-1. Related <strong>Service</strong> Procedures (3 of 3)<br />

A@wtments/<br />

correction Constants (ch. 2)<br />

A9 Switch Positions<br />

Fractional-N Spur and<br />

FM Sideband<br />

EEFROM Backup Disk<br />

A9 Switch Positions<br />

Fractional-N Frequency Range<br />

Fractional-N Spur Avoidance<br />

andFMSideband<br />

EEPROM Backup Disk<br />

None<br />

None<br />

None<br />

Verilicatlon<br />

(Q. 2)<br />

l&t Port Output Frequency Range<br />

andAccuracy<br />

!I& Port Output Frequency Range<br />

and-<br />

Self-l&t<br />

Internal l&t 13,<br />

Rear Panel<br />

Observation of Display<br />

lksk306-80<br />

A18 Display None Ob6ervation of Display<br />

lkSW66-SO<br />

A19 Graphics System None Observation of Display<br />

Processor lkStS69-SO<br />

A20 Disk Drive none none<br />

A21 l&t Port Coupler RF Output Power CC (‘lbst 47) lbtPortcn#ratallr<br />

Sampler Maguitude and Phase CC (‘l&t 53) ‘l&t Port Frequency Response<br />

A2!2 ‘Test Port Coupler Sampler Magnitude and Phase CC (Test 53) Bst Port crosstalk<br />

� lkst Port Frequency Response<br />

A23BdAssyLED none Self-lbt (Chapter 4)<br />

A24 Transfer Switch none Test Port croestalk<br />

A26 l&t Set Interface none Self-l&t (Chapter 4)<br />

A26Highstabilit.y Frequency Acauacy ment Tkst Port Frequency Range<br />

Frequency Reference (Option lD5) =dAccuracg<br />

* Hewlett-Packard verifies source output performance on port 1 only. Port 2 source output<br />

performance is typical.<br />

M-64 Assembly Replacement and Post-Repair Procedures


Safety and Licensing<br />

Notice<br />

15<br />

The information contained in this document is subject to change without notice.<br />

Hewlett-Packard makes no warranty of any kind with regard to this material,<br />

including but not limited to, the implied warranties of merchantability and<br />

fitness for a particular purpose. Hewlett-Packard shall not be liable for errors<br />

contained herein or for incidental or consequential damages in connection with<br />

the furnishing, performance, or use of this material.<br />

Certillcation<br />

Hewlett-Packard Company certihes that this product met its published<br />

specifications at the time of shipment from the factory. Hewlett-Packard further<br />

certihes that its calibration measurements are traceable to the United States<br />

National Institute of Standards and ‘Rxhnology, to the extent allowed by<br />

the Institute’s calibration facility, and to the calibration facilities of other<br />

International Standards Organization members<br />

Safety and licensing 16-l


Warranty<br />

This Hewlett-Packard instrument product is warranted against defects in<br />

material and workmanship for a period of three years from date of shipment.<br />

During the warranty period, Hewlett-Packard Company will, at its option, either<br />

repair or replace products which prove to be defective.<br />

For warranty service or repair, this product must be returned to a service<br />

facility designated by Hewlett-Packard. Buyer shall prepay shipping charges to<br />

Hewlett-Packard and Hewlett-Packard shall pay shipping charges to return the<br />

product to Buyer. However, Buyer shall pay all shipping charges, duties, and<br />

taxes for products returned to Hewlett-Packard from another country.<br />

Hewlett-Packard warrants that its software and Rrmware designated by<br />

Hewlett-Packard for use with an instrument will execute its programming<br />

instructions when properly installed on that instrrmtent. Hewlett-Packard does<br />

not warrant that the operation of the instrument, or software, or firmware will<br />

be uninterrupted or error-free.<br />

LIMITATION OF WARRANTY<br />

The foregoing warranty shall not apply to defects resulting from improper or<br />

inadequate maintenance by Buyer, Buyer-supplied software or interfacing,<br />

unauthorized modification or misuse, operation outside of the environmental<br />

specihcations for the product, or improper site preparation or maintenance.<br />

NOOTHER WARRANTY IS EXPRESSED OR IMPLIED. HEWLETT-<br />

PACKARD SPECIFICALLY DISCMIMS THE IMPLIED WARRANTIES OF<br />

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.<br />

EXCLUSIVE REMEDIES<br />

THE REMEDIES PROVIDED HEREIN ARE BUYER’S SOLE AND EXCLUSIVE<br />

REMEDIES. HEWLETT-PACKARD SHALL NOT BE LIABLE FOR ANY DIRECT,<br />

INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES,<br />

WHETHER BASED ON CONTRACT, TORT, OR ANY OTHER LEGAL THEORY<br />

Assistance<br />

Product muiwnce agreements and other customer assistance agremuMs are<br />

available for Hewlett-ltcckard products.<br />

Fbr any assistance, contact gour nearest Hewlett-Rzckurd Sales and semrice<br />

O?<br />

15-2 Safety and Licensing


Instrument Support Center<br />

HewlettPnckard Company<br />

Kw 4o3-0301<br />

Hcodqnsrtere<br />

Hewlettpackard S.A.<br />

160, Route du NanM’Avril<br />

1217 Meyrin 2Meneva<br />

swi~rlnnd<br />

(4122) 7S9.8111<br />

Great Britain<br />

Hewlett-Packard Ltd.<br />

E&dale Rand, Winnersh Triangle<br />

wokinghm, Berkrhlre RQ416D2<br />

Headqnarters<br />

HewlettZackard Company<br />

3496DeerCreekRoad<br />

plrlo Alto, California, USA<br />

94304-1316<br />

(416) 867-6927<br />

JIlppn<br />

HewlettGnckard Japan, Ltd.<br />

91 --alo, Hachioji<br />

lbkyo 192, Japan<br />

(81426) a2111<br />

Ohlna HewlettPackard Company<br />

3SEfeiSanHuanXlRoad<br />

shumg Yu ml<br />

Hai Dian District<br />

Beijing, china<br />

(36 1) 2566333<br />

Hewlett-Packard Sales and <strong>Service</strong> Oifices<br />

UNITEDsrATEs<br />

BUllOmAN HELD OPBE4!l’IONS<br />

Prsnce<br />

Hewlett-Packard France<br />

1 Avenue Du Canada<br />

Zone D’Activite De Courtaboeuf<br />

F-91947 Lea Ulia Cedex<br />

France<br />

(331)t5@826069<br />

INTElEON FIELD OPBBATIONB<br />

Alwtnliilb<br />

Hewlett-Packard Aust&ia Ltd.<br />

31-41 Joseph Street<br />

Blackbum, Victoria 3130<br />

(613) 896-2896<br />

Q--W<br />

Hewlett-Packard GmbH<br />

Hewlett-Packard Straae<br />

61362 F&d Hombug v.d.H<br />

Qe-Y<br />

(49 6172) 16-o<br />

HewlettPackard (Canada) Ltd.<br />

17690 South <strong>Service</strong> Bond<br />

Tram-CanadaHlghway<br />

Kirkland, Quebec H9J 2x8 Dian<br />

KS-4232<br />

singppore<br />

lhdWOJl<br />

Hewlettpackard Singapore (Pte.) Ltd. Hewlett-Packard lkiwan<br />

169 Beach Road 8th Floor, H-P Building<br />

#2soo Gateway west 327Fl1IIsingNorthEoad<br />

slnJ@pore 0718 Tkipei, lkiwan<br />

(ss) 291~9088 (336 2) 7l2-0404<br />

Safety and Licensing 15-3


Shipment for <strong>Service</strong><br />

If you are sending the instrument to Hewlett-Packard for service, ship the<br />

analyzer to the nearest <strong>HP</strong> service center for repair, including a description of<br />

any failed test and any error message. Ship the analyzer using the original or<br />

comparable antistatic packaging materials.<br />

154 Safety and licensing


Safety Symbols<br />

The following safety symbols are used throughout this manual. Familiarize<br />

yourself<br />

.<br />

with each of the symbols and its meaning before operating this<br />

mstrument.<br />

Caution Caution denotes a hazard. It calls attention to a procedure<br />

that, if not correctly performed or adhered to, would result in<br />

damage to or destruction of the instrument. Do not proceed<br />

beyond a caution note until the indicated conditions are fully<br />

understood and met.<br />

Warning<br />

Rbrning denotes a hazard. It calls attention to a procedure<br />

which, if not correctly performed or adhered to, could<br />

result in injury or loss of life. Do not proceed beyond<br />

a warning note until the indicated conditions are fkdly<br />

understood and met.<br />

Instrument Markings<br />

A! The instruction documentation symbol. The product is marked with<br />

this symbol when it is necessary for the user to refer to the instructions in the<br />

documentation.<br />

“CE” The CE mark is a registered trademark of the European Community. (If<br />

accompanied by a year, it is when the design was proven.)<br />

“ISMl-A” This is a symbol of an Industrial Scientific and Medical Group 1 Class<br />

A product.<br />

“CSA” The CSA mark is a registered trademark of the Canadian Standards<br />

Association.<br />

Safety and Licensing 15-5


Safety Considerations<br />

Note This instrument has been designed and tested in accordance<br />

with IEC Publication 1010, Safety Requirements for Electronics<br />

Measuring Apparatus, and has been supplied in a safe condition.<br />

This instruction documentation contains information and<br />

warnings which must be followed by the user to ensure safe<br />

operation and to maintain the instrument in a safe condition.<br />

Safety Earth Ground<br />

Warning This is a Safety Class I product (provided with a protective<br />

txwtbhg ground incorporated in the power cord). The mains<br />

plug shall only be inserted in a socket outlet provided<br />

with a protective earth contact. Any interruption of the<br />

protective conductor, inside or outside the instrument,<br />

is likely to make the instrument dangerous. Intentional<br />

interruption is prohibited.<br />

Warning Always use the three-prong AC power cord supplied with<br />

this product. Failure to ensure adequate earth groundiug by<br />

not using this cord may cause product damage.<br />

Before Applying Power<br />

Caution Before switching on this instrument, make sure that the<br />

analyzer line voltage selector switch is set to the voltage of the<br />

power supply and the correct fuse is installed.<br />

Caution If this product is to be energized via an autotransformer make<br />

sure the common terminal is connected to the neutral (grounded<br />

side of the mains supply).<br />

16-6 Safety and licensing


Servicing<br />

w-tit No operator serviceable parts inside. Refer servicing to<br />

qualified personnel. ‘Ib prevent electrical shock, do not<br />

remove covers.<br />

warning<br />

Warning<br />

These servicing instructions are for use by qualified<br />

personnel only. ‘Ib avoid electrical shock, do not perform<br />

any servicing unless you are qualified to do so.<br />

The opening of covers or removal of parts is likely to<br />

expose dangerous voltages. Disconnect the instrument from<br />

all voltage sources while it is being opened.<br />

w-g Adjustments described in this document may be performed<br />

with power supplied to the product while protective covers<br />

are removed. Energy available at many points may, if<br />

contacted, result in personal injury.<br />

Warning The power cord is connected to internal capacitors that may<br />

remain live for 10 seconds after disco~ecting the plug from<br />

its power supply.<br />

Warning<br />

For continued protection against fire hazard replace line<br />

fuse only with same type and rating (F 3AI25OV). The use of<br />

other fuses or material is prohibited.<br />

Safety and licensing 15-7


General<br />

Warning ‘Ib prevent electrical shock, disconnect the <strong>HP</strong> <strong>8753E</strong> from<br />

mains before cleaning. Use a dry cloth or one slightly<br />

dampened with water to clean the external case parts. Do<br />

not attempt to clean internally.<br />

Warning<br />

If this product is not used as specified, the protection<br />

provided by the equipment could be impaired. This product<br />

must be used in a normal condition (in which all means for<br />

protection are intact) only.<br />

Caution This product is designed for use in InsMlation Category II and<br />

Pollution Degree 2 per IEC 1010 and 664 respectively.<br />

Caution VENTILATION REQUIREMENTS: When inskUng the product in<br />

a cabinet, the convection into and out of the product must not<br />

be restricted. The ambient temperature (outside the cabinet)<br />

must be less than the maximum operating temperature of the<br />

product by 4O C for every 100 watts dissipated in the cabinet.<br />

If the total power dissipated in the cabinet is greater that 800<br />

watts, then forced convection must be used.<br />

warning<br />

16-8 Safety and licensing<br />

Install the instrument according to the enclosure protection<br />

provided. This instrument does not protect against the<br />

ingress of water. This instrument protects agains finger<br />

access to hazardous parts within the enclosure.


Compliance with German FFZ Emissions Requirements<br />

This network analyzer complies with German FIZ 526/527 Radiated Emissions<br />

and Conducted Emission requirements.<br />

Compliance with German Noise Requirements<br />

This is to declare that this instrument is in conformance with the German<br />

Regulation on Noise Declaration for Machines (Laermangabe nach der<br />

Maschinenlaernuerordung -3. GSGV Deutschland).<br />

Acoustic Noise EmissionlGeraeuschemission<br />

Operator Position<br />

Normal Operation<br />

Lpa


Index<br />

1<br />

100 kHz pulses, 7-16<br />

10 MHz HI OUT Waveform from<br />

A14J1, 7-26<br />

10 MHz precision reference<br />

assembly replacement, 14-58<br />

part numbers, 13-26<br />

1st Lo signal at sampler/mixer, 8-14<br />

2<br />

25 MHz HI OUT Waveform from<br />

A14J1, 7-27<br />

2nd IF (4 kHz) signal locations, 8-11<br />

2nd LO locations, 8-14<br />

2ND LO waveforms, 7-21<br />

4<br />

4 kHz signal check, 8-11<br />

4 MHz reference signal, 7-20<br />

4 MHZ REF’ signal check, 8-7<br />

6<br />

+5 v digital supply<br />

theory of operation, 12-6<br />

6<br />

60 MHz HI OUT Waveform from<br />

A14J1, 7-27<br />

8<br />

<strong>8753E</strong><br />

theory of operation, 12-1<br />

A<br />

A10 assembly signals required, 8-8<br />

A10 check by substitution or signal<br />

examination, 8-8<br />

A10 digital IF, 12-30<br />

digital control, 12-10<br />

A10 Digital IF, lo-33<br />

All input signals, 7-36<br />

All Input S&n&, 7-36<br />

All phase lock, 10-34<br />

source, 12-15<br />

All phase lock and A3 source check,<br />

7-8<br />

All phase lock check, 7-35<br />

Al2 digital control signals check,<br />

7-23<br />

Al2 reference, 10-40<br />

source, 12-14<br />

Al2 reference check, 7-13<br />

A13/A14 Fractional-N Check, 7-24<br />

Al3 frac-N analog<br />

source, 12-14<br />

Al4 Divide-by-N Circuit Check, 7-29<br />

Al4 frac-N digital<br />

source, 12-14<br />

Al4 fractional-N (digital), 10-43<br />

Al4 generated digital control signals,<br />

7-31<br />

A14to-A13 digital control signals<br />

check, 7-29<br />

Al4 VCO exercise, 7-27<br />

Al5 preregulator<br />

Index-l


theory of operation, 12-5<br />

Al5 preregulator check, 5-9<br />

A15Wl plug detail, 5-10<br />

Al6 rear panel<br />

digital control, 12-12<br />

Al8 display<br />

digital control, 12-11<br />

power, 12-8<br />

A19 GSP<br />

digital control, 12-12<br />

Al/A2 front panel troubleshooting,<br />

6-13<br />

Al front panel<br />

digital control, 12-10<br />

A21 test port coupler, 12-26<br />

A22 test port coupler, 12-26<br />

A23 LED front panel, 12-26<br />

A24 transfer switch, 12-26<br />

A25 test set interface, 12-26<br />

A27 inverter<br />

digital control, 12-12<br />

A2 front panel processor<br />

digital control, 12-10<br />

A3 source<br />

external source mode, 12-23<br />

frequency offset, 12-22<br />

harmonic analysis, 12-22<br />

high band theory, 12-19<br />

low band theory, 12-16<br />

operation in other modes, 12-22<br />

source, 12-15<br />

super low band theory, 12-15<br />

theory of operation, 12-2, 12-14<br />

tuned receiver mode, 12-25<br />

A3 source and All phase lock check,<br />

7-8<br />

A4 sampler/mixer, 12-29<br />

A4 sampler/mixer check, 7-6<br />

A5 sampler/mixer, 12-29<br />

A6 sampler/mixer, 12-29<br />

A7 pulse generator<br />

source, 12-15<br />

A7 pulse generator check, 7-32<br />

A8 fuses and voltages, 5-14<br />

A8 post regulator<br />

air flow detector, 12-7<br />

display power, 12-8<br />

green LEDs, 12-7<br />

probe power, 12-8<br />

shutdown circuit, 12-7<br />

theory of operation, 12-7<br />

variable fan circuit, 12-7<br />

A8 post regulator test points, 5-5<br />

A9 CPU<br />

dig&ii control, 12-10<br />

A9 CPU operation check, 6-4<br />

A and B inputs check, 8-4<br />

A and B input traces check, 416<br />

ABUS Cot, 10-13<br />

ABUS node 16 for power check, 415<br />

ABUS Test., lo-10<br />

accessories error messages check,<br />

4-18<br />

accessories inspection, 9-3<br />

accessories troubleshooting, 418<br />

accessories troubleshooting chapter,<br />

9-l<br />

accuracy and range of frequency,<br />

2-18<br />

accuracy of frequency adjustment,<br />

3-48<br />

accuracy of power test, 2-24<br />

adapters, l-4<br />

ADC Hist., lo-11<br />

ADC Lin., lo-10<br />

ADC main, lo-23<br />

ADC offset correction constants<br />

adjustment, 3-17<br />

ADC of%, lo-10<br />

ADC Ofs Cot, 10-13<br />

ADD, 10-6<br />

addresses for <strong>HP</strong>-IB systems, 46


adjustment<br />

A9 Switch Positions, 3-5<br />

ADC offset correction constants<br />

(test 52), 3-17<br />

analog bus correction constants<br />

(test 46), 3-9<br />

cavity oscillator frequency<br />

correction constants (test 54),<br />

3-28<br />

fractional-N frequency range, 3-45<br />

fractional-N spur avoidance and<br />

FM sideband, 3-54<br />

frequency accuracy, 3-48<br />

high/low band transition, 3-52<br />

IF amplifier correction constants<br />

(test 51), 3-16<br />

initialize EEPROMs (test 58), 3-37<br />

option numbers correction constants<br />

(test 56), 3-36<br />

RF output power correction<br />

constants (test 47), 3-11<br />

sampler magnitude correction<br />

constants (test 53), 3-18<br />

sequences for mechanical<br />

adjustments, 3-62<br />

serial number correction constants<br />

(test 55), 3-34<br />

source default correction constants<br />

(test 44), 3-7<br />

source pretune correction constants<br />

(test 48), 3-10<br />

source pretune default correction<br />

constants (test 45), 3-8<br />

source spur avoidance tracking,<br />

3-58<br />

ad@&ments analyzer, 3-l<br />

adjustment tests, 10-3<br />

Adjustment Tests, 1913<br />

ADJUSTklENT TESTS, 10-5<br />

air flow detector, 12-7<br />

ALC ON OFF, lo-19<br />

ALL INT, 10-7<br />

Alter and Normal switch position<br />

adjustment, 3-5<br />

amplifier (IF’) adjustment, 3-16<br />

analog bus, lo-22<br />

ANALOG BUS, lo-25<br />

analog bus check of reference<br />

frequencies, 7-13<br />

analog bus checks YO coil drive, 7-11<br />

analog bus codes, 10-49<br />

analog bus correction constants<br />

adjustment, 3-9<br />

analog bus node 1, 10-27<br />

analog bus node 11, 10-34<br />

analog bus node 12, 10-34<br />

analog bus node 13,14, 10-35<br />

analog bus node 15, 10-36<br />

analog bus node 16, 10-37<br />

analog bus node 17, 10-38<br />

analog bus node 18, 10-39<br />

analog bus node 19, 10-39<br />

analog bus node 2, 10-28<br />

analog bus node 20, 10-40<br />

analog bus node 21, lo-41<br />

analog bus node 23, 10-41<br />

analog bus node 24, 10-42<br />

analog bus node 27, 10-43<br />

analog bus node 29, 10-44<br />

analog bus node 3, 10-29<br />

analog bus node 30, 10-45<br />

analog bus node 4, 10-30<br />

analog bus node 5, 10-31<br />

analog bus node 6, 10-31<br />

analog bus node 7, 10-32<br />

analog bus node 8, 10-32<br />

analog bus node 9, 10-33<br />

analog bus nodes, 10-26<br />

A3, lo-26<br />

ANALOG BUS ON OFF, lo-22<br />

analog in menu, 10-24<br />

analog node 10, 10-33<br />

Index-3


analyzer<br />

theory of operations, 12-1<br />

analyzer adjustments, 3-l<br />

analyzer block diagram, 419<br />

analyzer <strong>HP</strong>-H3 address, 46<br />

analyzer options available, l-7<br />

analyzer (spectrum), l-3<br />

analyzer verification, 2- 1<br />

antistatic wrist strap, l-4<br />

antistatic wrist strap and cord, l-4<br />

antistatic wrist strap cord, l-4<br />

appendix for source group<br />

troubleshooting, 7-38<br />

assemblies<br />

bottom view, 13-8<br />

part numbers, 13-6-8<br />

rebuilt-exchange, 13-3<br />

top view, 13-6<br />

assembly replacement, 14-1<br />

A10 digital IF, 1430<br />

All phase lock, 1430<br />

Al2 reference, 14-30<br />

Al3 frac-N analog, 1430<br />

Al4 frac-N digital, 1430<br />

Al5 preregulator, 14-38<br />

Al7 motherboard, 14-40<br />

A19 graphics processor, 1444<br />

A20 disk drive, 1446<br />

A21 test port-l coupler, 1450<br />

A22 test port-2 coupler, 1450<br />

A23 LED board, 1452<br />

A24 transfer switch, 1454<br />

A25 test set interface, 14-56<br />

A26 high stability frequency<br />

reference, 1458<br />

A3 source, 1422<br />

A4 R-sampler, 1426<br />

A5 A-sampler, 14-26<br />

A6 B-sampler, 1426<br />

A7 pulse generator, 1426<br />

A8 post regulator, 1430<br />

Index4<br />

A9BTl battery, 14-36<br />

A9 CPU, 14-32<br />

Bl fan, 14-60<br />

covers, 146<br />

display, 14-12<br />

display lamp, 1412<br />

front panel, 148<br />

front panel interface, 14-10<br />

keypad, 1410<br />

line fuse, 144<br />

rear panel, 1416<br />

rear panel interface, 14-20<br />

attenuator<br />

theory of operation, 12-2<br />

attenuators (fixed), l-4<br />

attenuator (step), l-3<br />

AUX OUT ON OFF, lo-24<br />

available options, l-7<br />

B<br />

background intensity check for<br />

display, 6-7<br />

backup EEPROM disk, 3-38<br />

bad cables, 9-l<br />

B and A inputs check, 8-4<br />

band (high/low) transition adjustment,<br />

3-52<br />

BAlTERY FAILED. STATE MEMORY<br />

CLEARED, lo-50<br />

BATTERY LOW! STORE SAVE REGS<br />

TO DISK, lo-50<br />

block diagram, 419<br />

digital control group, 6-3<br />

power supply, 5-25<br />

power supply functional group,<br />

5-3<br />

broadband power problems, 7-39<br />

built-in test set, 12-26<br />

LED front panel, 12-26<br />

test port couplers, 12-26<br />

test set interface, 12-26


transfer switch, 12-26<br />

bus<br />

analog, lo-22<br />

bus nodes, 19-26<br />

c<br />

cable inspection, 6-16<br />

cables, l-4<br />

bottom view, 13-12<br />

front view, 13-14<br />

part numbers, 13-19-18<br />

rear view, 13-16<br />

source, 13-18<br />

top view, 13-10<br />

cable test, 9-5<br />

Cal Coef l-12., 10-12<br />

CAL FACTOR SENSOR A, 16-6<br />

CAL FACTOR SENSOR B, 19-6<br />

CALJBRATION ABORTED, lo-50<br />

calibration coefficients, 11-l<br />

calibration device inspection, 9-3<br />

calibration kit 7 mm, 569, l-3<br />

calibration kit device verification,<br />

9-4<br />

calibration kit Type-N, 758, l-3<br />

calibration procedure, 1 l-3<br />

CALIBRATION REQUIRED, lo-51<br />

care of connectors, l-5<br />

CAUTION<br />

OVERLOAD ON INPUT A, POWER<br />

REDUCED, 8-3<br />

OVERLOAD ON INPUT B, POWER<br />

REDUCED, 8-3<br />

OVERLOAD ON INPUT R, POWER<br />

REDUCED, 8-3<br />

cavity oscillator frequency<br />

adjustment, 3-28<br />

cavity oscillator frequency correction<br />

constants adjustment, 3-28<br />

Cav osc Cor., 19-13<br />

CC procedures<br />

ADC offset (test 52), 3-17<br />

analog bus (test 46), 3-9<br />

cavity oscillator frequency (test<br />

54), 3-28<br />

IF amplifier (test 51), 3-16<br />

initialize EEPROMs (test 58), 3-37<br />

option numbers (test 56), 3-36<br />

retrieve correction constant data<br />

from EEPROM backup disk,<br />

3-40<br />

RF output power (test 47), 3-11<br />

sampler magnitude (test 53), 3-18<br />

serial number (test 55), 3-34<br />

source default (test 44), 3-7<br />

source pretune default (test 45),<br />

3-8<br />

source prettme (test 48), 3-10<br />

Unprotected Hardware Option<br />

Numbers, 3-60<br />

center conductor damage, 9-3<br />

certification of kit, 2-7<br />

chassis<br />

part numbers, 13-42-44<br />

check<br />

1st LO signal at sampler/mixer,<br />

8-14<br />

4 MHz REF signal, 8-7<br />

A10 by substitution or signal<br />

examination, 8-8<br />

All phase lock, 7-35<br />

Al2 digital control signals, 7-23<br />

Al2 reference, 7-13<br />

A13/A14 Fractional-N, 7-24<br />

Al4 Divide-by-N Circuit Check,<br />

7-29<br />

A14-to-Al3 digital control signals,<br />

7-29<br />

Al5 Preregulator, 5-9<br />

Al/A2 front panel, 6-13<br />

A3 source and All phase lock, 7-8<br />

A4 sampler/mixer, 7-6


A7 pulse generator, 7-32<br />

A8 fuses and voltages, 5-14<br />

A9 CPU control, 6-4<br />

A and B inputs, 8-4<br />

A and B input traces, 4-16<br />

accessories error messages, 4-18<br />

CPU control, 6-4<br />

digital control, 4-11<br />

disk drive, 4-7<br />

fan voltages, 5-22<br />

FN LO at A12, 7-19<br />

for a faulty assembly, 5-11<br />

<strong>HP</strong>-B3 systems, 46<br />

line voltage, selector switch, fuse,<br />

5-7<br />

motherboard, 5-13<br />

operating temperature, 5-13<br />

operation of A9 CPU, 6-4<br />

phase lock error message, 7-4<br />

phase lock error messages, 413<br />

plotter or printer, 4-7<br />

post regulator voltages, 5-5<br />

power supply, 4-10<br />

power up sequence, 411<br />

preregulator LEDs, 410<br />

rear panel LEDs, 410<br />

receiver, 416<br />

receiver error messages, 4-17<br />

source, 413<br />

the 4 kHz signal, 8-11<br />

trace with sampler correction off,<br />

8-12<br />

YO coil drive with analog bus, 7-11<br />

check front panel cables, 6-16<br />

cleaning of connectors, l-5<br />

CLEAR LIST, 10-6<br />

coax cable, 14<br />

codes for analog bus, 19-49<br />

coefficients, 11-l<br />

comb tooth at 3 GHz, 7-33<br />

Index-6<br />

components related to specific error<br />

terms, 9-3<br />

connection techniques, l-5<br />

connector<br />

care of, l-5<br />

CONTINUE TEST, 10-5<br />

controller <strong>HP</strong>-II3 address, 4-6<br />

controller troubleshooting, 4-8<br />

conventions for symbols, 19-48<br />

correction constants<br />

ADC offset (test 52), 3-17<br />

analog bus (test 46), 3-9<br />

cavity oscillator frequency(test 54),<br />

3-28<br />

display intensity (test 45), 6-7<br />

IF amplifier (test 51), 3-16<br />

initiaiize EEPROMs (test 58), 3-37<br />

option numbers (test 56), 3-36<br />

retrieval from EEPROM backup<br />

disk, 340<br />

RF output power (test 47), 3-11<br />

sampler magnitude (test 53), 3-18<br />

serial number (test 55), 3-34<br />

source default (test 44), 3-7<br />

source pretune default (test 45),<br />

3-8<br />

source pretune (test 48), 3-10<br />

Unprotected Hardware Option<br />

Numbers, 3-60<br />

CORRECTION CONSTANT8 NOT<br />

STORED, lo-51<br />

CORRECTION TURNED OFF, lo-51<br />

counter, 19-23<br />

COUNTER<br />

OFF, lo-24<br />

counter (frequency), l-3<br />

counter readout location, 19-38<br />

CPU<br />

digital control, 12-10<br />

CPU operation check, 6-4


CURRENT PARAMETER NOT IN CAL<br />

SET, lo-51<br />

D<br />

damage to center conductors, 9-3<br />

data that is faulty, 417<br />

DEADLOCK, lo-51<br />

default correction constants<br />

adjustment for source, 3-7<br />

default correction constants<br />

adjustment for source prettme,<br />

3-8<br />

DELETE, 10-6<br />

delete display option, l-8<br />

description of tests, 10-7<br />

DEVICE<br />

not on, not connect, wrong addrs,<br />

lo-52<br />

diagnose softkey, 10-7<br />

diagnostic<br />

error terms, 11-l<br />

diagnostic LEDs for A15, 5-4<br />

diagnostic routines for phase lock,<br />

7-39<br />

diL3gIlOStiCS<br />

internal, 10-2<br />

diagnostics of analyzer, 4-3<br />

diagnostic tests, 6-17<br />

diagram<br />

A4 sampler/mixer to phase lock<br />

cable, 7-7<br />

digital control group, 6-3<br />

diagram of <strong>HP</strong> 87533, 419<br />

diagram of power supply, 5-25<br />

DIF Control, 10-9<br />

DIF Counter, 10-9<br />

digital control<br />

A10 dig&ii IF, 12-10<br />

Al6 rear panel, 12-12<br />

Al8 display, 12-11<br />

A19 GSP, 12-12<br />

Al front panel, 12-10<br />

A27 inverter, 12-12<br />

A2 front panel processor, 12-10<br />

A9 CPU, 12-10<br />

digital signal processor, 12-11<br />

EEPROM, 12-11<br />

main CPU, 12-10<br />

main RAM, 12-11<br />

theory of operation, 12-8<br />

digital control block diagram, 6-3<br />

digital control check, 4-11<br />

digital control lines observed using<br />

L INTCOP as trigger, 8-10<br />

digitai control signals A14to-A13<br />

check, 7-29<br />

digital control sign& check, 7-23<br />

digitai control signals generated from<br />

A14, 7-31<br />

digitai control troubleshooting<br />

chapter, 6-l<br />

digital data lines observed using L<br />

INTCOP as trigger, 8-10<br />

digital IF, 10-33, 12-30<br />

digital control, 12-10<br />

digital voltmeter, l-3<br />

directivity (EDF and EDR), 11-11<br />

disable shutdown circuitry, 5-16<br />

DISK<br />

not on, not connected, wrong addrs,<br />

lo-52<br />

disk drive check, 4-7<br />

disk drive (externai) <strong>HP</strong>-ID address,<br />

46<br />

disk drive replacement, 14-46<br />

disk (fIoppy), l-3<br />

DISK HARDWmE PROBLEM, lo-52<br />

DISK MESSAGE LENGTH ERROR,<br />

lo-52<br />

DISK READ/WRITE ERROR, lo-53<br />

Disp 2 Ex., lo-13<br />

Dispkpu corn., 10-15


display<br />

digitai control, 12-11<br />

power, 12-8<br />

displayed spurs with a biter, 3-30<br />

display intensity, 6-7<br />

display tests, 10-3, 10-15<br />

DISPLAY TESTS, 10-5<br />

DIV FRAC N, lo-25<br />

Divide-by-N Circuit Check, 7-29<br />

DONE, 19-6<br />

DRAM cell, lo-15<br />

DSP ALU, 19-9<br />

DSP Control, 10-9<br />

DSP Intrpt, 10-9<br />

DSP RAM, 10-9<br />

DSP WrLRd, 10-9<br />

E<br />

earth ground wire and static-control<br />

table mat, l-4<br />

EDIT, 19-6<br />

edit iist menu, 10-6<br />

equipment<br />

automated system verification, 2-8<br />

cavity osciliator frequency<br />

adjustment, 3-28<br />

display intensity correction<br />

constants adjustment, 6-7<br />

EEPROM backup dish procedure,<br />

3-38<br />

external source mode frequency<br />

range, 2-21<br />

fractional-N frequency range<br />

adjustment, 3-45<br />

fractional-N spur avoidance and<br />

FM sideband adjustment, 3-54<br />

frequency accuracy adjustment,<br />

3-48<br />

high/Iow band transition<br />

ac@stment, 3-52<br />

IF ampiifier correction constants<br />

adjustment, 3-16<br />

minimum R channel level, 2-31<br />

RF output power correction<br />

constants adjustment, 3-11<br />

sampler magnitude adjustment,<br />

3-18<br />

source spur avoidance tracking<br />

adjustment, 3-58<br />

test port frequency range and<br />

accuracy test, 2-18<br />

test port input noise floor level,<br />

2-37<br />

test port output power accuracy,<br />

2-24<br />

test port output power range and<br />

linearity, 2-27<br />

equipment for service, l-l<br />

error<br />

BATTERY FAZLED. STATE MEMORY<br />

CLEARED, lo-50<br />

BATTERY LOW! STORE SAVE REGS<br />

TO DISK, lo-50<br />

CALIBRATION ABORTED, lo-50<br />

CALIBRATION REQUIRED, lo-51<br />

CORRECTION CONSTANTS NOT<br />

STORED, lo-51<br />

CORRECTION TURNED OFF, lo-51<br />

CURRENT PARAMETER NOT IN<br />

CAL SET, lo-51<br />

DEADLOCK, lo-51<br />

DEVICE: not on, not connect,<br />

wrorvj addrs, lo-52<br />

DISK HARDWARE PROBLEM,<br />

lo-52<br />

DISK MESSAGE LENGTH ERROR,<br />

lo-52<br />

DISK: not on, not connected, wrong<br />

addrs, lo-52<br />

DISK READ/WRITE ERROR, 19-53<br />

-ON FAILED, lo-53


INSUFFICIENT MEMORY, PWR<br />

MTR CAL OFF, lo-53<br />

NO CALIBRATION CURRENTLY IN<br />

PROGRESS, lo-53<br />

NO IF FOUND: CHECK R INPUT<br />

LEVEL, lo-54<br />

NO PHASE LOCK: CHECK R INPUT<br />

LEVEL, 19-54<br />

NO SPACE FOR NEW CAL. CLEAR<br />

REGISTERS, 19-54<br />

NOT ALLOWED DURING POWER<br />

METER CAL, lo-55<br />

NOT ENOUGH SPACE ON DISK<br />

FOR STORE, lo-53<br />

OVERLOAD ON INPUT A, POWER<br />

REDUCED, lo-55<br />

OVERLOAD ON INPUT B, POWER<br />

REDUCED, lo-55<br />

OVERLOAD ON INPUT R, POWER<br />

REDUCED, lo-55<br />

PARALLEL PORT NOT AVAILABLE<br />

FOR COPY, lo-56<br />

PARALLEL PORT NOT AVAILABLE<br />

FOR GPIO, lo-55<br />

PHASE LOCK CAL FAILED, lo-56<br />

PHASE LOCK LOST, lo-56<br />

POSSIBLE FALSE LOCK, lo-57<br />

POWER METER INVALID, lo-57<br />

POWER METER NOT SETTLED,<br />

lo-57<br />

POWER SUPPLY HOT!, lo-57<br />

POWER SUPPLY SHUT DOWN!,<br />

lo-57<br />

POWER UNLEVELED, lo-58<br />

PRINTER: error, 10-58<br />

PRINTER: not handshaking, 10-58<br />

PRINTER: not on, not connected,<br />

wrong addrs, lo-58<br />

PROBE POWER SHUT DOWN!,<br />

19-58<br />

PWR MTR: NOT ON/CONNECTED<br />

OR WRONG ADDRS, lo-59<br />

SAVE FAILED. INSUFFICIENT<br />

MEMORY, lo-59<br />

SELF TEST #II FAILED, lo-59<br />

SOURCE POWER TURNED OFF,<br />

RESET UNDER POWER MENU,<br />

lo-59<br />

SWEEP MODE CHANGED TO CW<br />

TIME SWEEP, lo-60<br />

TEST ABORTED, lo-60<br />

TROUBLE! CHECK SETUP AND<br />

START OVER, lo-60<br />

WRONG DISK FORMAT, INITIALIZE<br />

DISK, lo-60<br />

error-correction procedure, 1 l-3<br />

error message for phase lock, 7-4<br />

error messages, 10-1, 10-50<br />

error messages for receiver failure,<br />

8-3<br />

error term inspection, 9-3<br />

error terms, 11-l<br />

directivity (EDF and EDR), 11-11<br />

isolation (crosstaik, EXF and EXR),<br />

11-14<br />

load Match (ELF and ELR), 11-15<br />

reflection Tracking (ERF and ERR),<br />

11-13<br />

source match (ESF and ESR), 11-12<br />

transmission tracking (ETF and<br />

ETR), 11-16<br />

E-terms, 1 l-l<br />

external source, l-3<br />

external source mode frequency<br />

range, 2-21<br />

external tests, 193,10-11<br />

EXTERNAL TESTS, 19-4<br />

F<br />

failure<br />

Index-9


A11 phase lock and A3 source<br />

check, 7-8<br />

Al/A2 front panel, 6-13<br />

key stuck, 6-14<br />

phase lock error, 7-4<br />

receiver, 8-3<br />

RF power from source, 7-3<br />

failures<br />

<strong>HP</strong>-IB, 6-19<br />

fan<br />

air flow detector, 12-7<br />

variable fan circuit, 12-7<br />

fan speeds, 5-22<br />

fan troubleshooting, 5-22<br />

fan voltages, 5-22<br />

faulty analyzer repair, 42<br />

faulty cables, 9-l<br />

faulty calibration devices or<br />

CoMectors, 9-l<br />

faulty data, 417<br />

faulty group isolation, 49<br />

filter (low pass), l-3<br />

iirmware revision softkey, 19-47<br />

floor level test, 2-37<br />

floppy disk, l-3<br />

FM Coil - plot with 3 point sweep,<br />

7-37<br />

FM sideband and spur avoidance<br />

adjustment, 3-54<br />

FN count., lo-10<br />

FN LO at Al2 check, 7-19<br />

F’N LO waveform at A12J1, 7-19<br />

FRAC N, lo-25<br />

frac-N analog<br />

source, 12-14<br />

Frac N Cont., 199<br />

frac-N digitai<br />

source, 12-14<br />

FRACN TUNE mode HI OUT. signal,<br />

7-34<br />

FRACN TUNE ON OFT, lo-18<br />

Index-10<br />

F’ractionai-N Check, 7-24<br />

fractional-N (digital), 10-43<br />

fractional-N frequency range<br />

acijustment, 3-45<br />

F’ractionai-N Frequency Range<br />

Adjustment Sequence, 3-62<br />

fractional-N spur avoidance and F‘M<br />

sideband a@stment, 3-54<br />

kactionai-N Spur Avoidance and F’M<br />

Sideband Adjustment Sequence,<br />

3-62<br />

frequency accuracy adjustment, 3-48<br />

frequency counter, l-3, 10-23<br />

frequency output in SRC tune mode,<br />

7-8<br />

frequency range and accuracy test,<br />

2-18<br />

frequency range for external source<br />

mode, 2-21<br />

frequency range of fractional-N<br />

adjustment, 3-45<br />

front panel<br />

assembly replacement, 148<br />

digital control, 12-10<br />

part numbers, 13-29-22<br />

front panel key codes, 6-14<br />

front panel probe power voltages,<br />

5-19<br />

front panel processor<br />

digitai control, 12-10<br />

front panel troubleshooting, 6-13<br />

Fr Pan Biag., lo-11<br />

F’r Pan Wr/Rd, 19-9<br />

fuIl two-port error-correction<br />

procedure, 1 l-3<br />

functional group fault location, 49<br />

functional groups<br />

theory of operation, 124<br />

fuse check, 5-7


G<br />

good trace display, 8-5<br />

green LED on Al5<br />

power supply shutdown, 12-6<br />

green LEDs on A8, 12-7<br />

GSP<br />

digital control, 12-12<br />

H<br />

hardkeys, 19-2<br />

hardware<br />

bottom view, 13-30<br />

disk drive, 13-36<br />

front view, 13-32<br />

memory deck, 13-38<br />

part numbers, 13-28-49<br />

preregulator, 13-40<br />

test set deck, 13-34<br />

top view, 13-28<br />

HB FITR SW ON OFF, 1919<br />

Hewlett-Packard servicing, 42<br />

high band REF signal, 7-17<br />

high/Iow band transition adjustment,<br />

3-52<br />

High/Low Band Transition Adjustment<br />

Sequence, 3-62<br />

high quality comb tooth at 3 GHz,<br />

7-33<br />

high stabiiity frequency reference<br />

assembly replacement, 1458<br />

part numbers, 13-26<br />

HI OUT signal in FRACN TUNE mode,<br />

7-34<br />

H MB line, 7-31<br />

how to<br />

adjust ADC offset correction<br />

constants, 3-17<br />

adjust analog bus correction<br />

constanti, 3-9<br />

adjust cavity oscillator frequency<br />

correction constants, 3-28<br />

adjust fractional-N frequency range,<br />

3-45<br />

adjust fractional-N spur avoidance<br />

and FM sideband, 3-54<br />

adjust frequency accuracy, 3-48<br />

adjust hig.hAow band transition,<br />

3-52<br />

adjust IF ampiifIer correction<br />

constants, 3-16<br />

adjustment the analyzer, 3-l<br />

adjust option numbers correction<br />

constants, 3-36<br />

adjust RF output power correction<br />

constants, 3-l 1<br />

adjust sampler magnitude correction<br />

constants, 3-18<br />

adjust serial number correction<br />

corl!stants,3-34<br />

adjust source default correction<br />

constants, 3-7<br />

adjust source pretune correction<br />

constants, 3-10<br />

adjust source pretune default<br />

correction constants, 3-8<br />

adjust source spur avoidance<br />

tracking, 3-58<br />

adjust the anaIyzer using sequences,<br />

3-62<br />

backup the EEPROM disk, 3-38<br />

check display intensity, 6-7<br />

clean connectors, l-5<br />

identify the faulty functional group,<br />

4-9<br />

initialize EEPROMs, 3-37<br />

load sequences from disk, 3-62<br />

position the A9 Switch, 3-5<br />

repair the analyzer, 4-l<br />

retrieve correction constant data<br />

from EEPROM backup disk,<br />

3-40<br />

IndlBx-11


set up the fractional-N frequency<br />

range adjustment, 3-63<br />

set up the fractional-N spur<br />

avoidance and FM sideband<br />

adjustment, 3-64<br />

set up the high/Iow band transition<br />

adjustments, 3-63<br />

test external source mode frequency<br />

range, 2-21<br />

test frequency range and accuracy,<br />

2-18<br />

test minimum R channel level,<br />

2-31<br />

test port input noise floor level,<br />

2-37<br />

test port output frequency range<br />

and accuracy, 2-18<br />

test port output power accuracy,<br />

2-24<br />

test port output power range and<br />

linearity, 2-27<br />

troubleshoot, 41<br />

troubleshoot accessories, 9-l<br />

troubleshoot broadband power<br />

problems, 7-39<br />

troubleshoot digital control group,<br />

6-l<br />

troubleshoot receiver, 8-l<br />

troubleshoot source group, 7-l<br />

verify an analyzer system<br />

automatically, 2-8<br />

<strong>HP</strong> <strong>8753E</strong> adhistments, 3-l<br />

<strong>HP</strong> <strong>8753E</strong> block diagram, 4-19<br />

<strong>HP</strong>-IB addresses, 46<br />

<strong>HP</strong>-IB cable, l-4<br />

<strong>HP</strong>-B3 Failures, 6-19<br />

<strong>HP</strong>-IB mnemonic for service, 10-l<br />

<strong>HP</strong>-IB service mnemonic defmitions,<br />

10-48<br />

<strong>HP</strong>-H3 system check, 46<br />

Index-12<br />

I<br />

IF ampiifier correction constants<br />

adjustment, 3-16<br />

IF GAIN AUTO, 10-21<br />

IF GAIN OFF, lo-21<br />

IF GAIN ON, lo-21<br />

IF Step Cor., 19-13<br />

improper calibration technique, 9-l<br />

Init EEPROM, lo-14<br />

INITlALIzATION FAILED, lo-53<br />

initiaiize EEPROMs, 3-37<br />

initial observations, 43<br />

input noise floor level test, 2-37<br />

inputs (A and B) check, 8-4<br />

input traces check, 416<br />

inspect cables, 6-16<br />

inspect error terms, 9-3<br />

inspection of test port connectors<br />

and calibration devices, 9-3<br />

inspect the accessories, 9-3<br />

INSUFFICIENT MEMORY, PWR MTR<br />

CAL OFF, lo-53<br />

Inten DAC., 19-15<br />

internal diagnostics, 10-2<br />

inted diagnostic tests, 6-17<br />

internal tests, W-3,10-7<br />

INTERNAL TESTS, lo-4<br />

inverter<br />

digital control, 12-12<br />

invoking tests remotely, 10-48<br />

isolation (crosstaik, EXF and EXR),<br />

11-14<br />

K<br />

key codes, 6-14<br />

key faihne identification, 6-14<br />

keys in service menu, 10-l<br />

kit re-certiiication, 2-7<br />

kits<br />

calibration kit 7 mm, 50131, l-3<br />

calibration kit Type-N, 75Q, l-3


tool, l-3<br />

verification kit 7 mm, l-3<br />

L<br />

LED front panel, 12-26<br />

L ENREF line, 7-23<br />

L I-II3 and L LB Lines, 7-24<br />

Iight occiuder, l-3<br />

LIMIT3 NORM/SPCL, 10-5<br />

linearity and range of power test,<br />

2-27<br />

line fuse check, 5-7<br />

line power module<br />

theory of operation, 12-6<br />

line voltage check, 5-7<br />

L INTCOP as trigger to observe control<br />

lines, 8-10<br />

L INTCOP as trigger to observe data<br />

lines, 8-10<br />

L LB and L III3 Lines, 7-24<br />

LO (2ND) waveforms, 7-21<br />

load device verification, 9-4<br />

load Match (ELF and ELR), 11-15<br />

location<br />

diagnostic LEDs for A15, 5-4<br />

post regulator test points, 5-5<br />

power supply cable, 5-8<br />

lock error, 7-4<br />

LO OUT waveform at Al4J2, 7-28<br />

Loss/sENsR LISTS, lo-5<br />

low band REF signal, 7-18<br />

low pass fiber, l-3<br />

M<br />

magnitude of sampler adjustment,<br />

3-18<br />

main ADC, lo-23<br />

Main DRAM, lo-8<br />

MAIN PWR DAC, lo-19<br />

Main VRAM, lo-15<br />

major assemblies<br />

bottom view, 13-8<br />

part numbers, 13-6-8<br />

rebuilt-exchange, 13-3<br />

top view, 13-6<br />

measurement calibration coefficients,<br />

11-l<br />

measurement calibration procedure,<br />

11-3<br />

mechanical adjustment sequences,<br />

3-62<br />

memory<br />

INSUFFICIENT MEMORY, PWR<br />

MTR CAL OFF, lo-53<br />

menu<br />

analog in, lo-24<br />

edit Iist, 10-6<br />

peek/poke, lo-46<br />

service keys, 19-18<br />

service modes, 19-21<br />

test options, 10-5<br />

tests, 10-3<br />

menus for service, 19-l<br />

message<br />

BATTERY FAILED. STATE MEMORY<br />

CLEARED, lo-50<br />

BATTERY LOW! STORE SAVE REGS<br />

TO DISK, lo-50<br />

CALIBRATION ABORTED, lo-50<br />

CALIBRATION REQUIRED, lo-51<br />

CORRECTION CONSl!ANTS N(YT<br />

STORED, lo-51<br />

CORRECTION TURNED OFF, lo-51<br />

CURRENT PARAMETER NOT IN<br />

CAL SET, lo-51<br />

DEADLOCK, lo-51<br />

DEVICE: not on, not connect,<br />

wrong addrs, lo-52<br />

DISK HARDWARE PROBLEM,<br />

lo-52<br />

DISK MESSAGE LENGTH ERROR,<br />

lo-52<br />

Index-13


DISK: not on, not connected, wrong<br />

addrs, lo-52<br />

DISK READ/WRITE ERROR, lo-53<br />

error, 10-50<br />

INIWON FAILED, lo-53<br />

NO CALIBRATION CURRENTLY IN<br />

PROGRESS, lo-53<br />

NO IF FOUND: CHECK R INPUT<br />

LEVEL, lo-54<br />

NO PHASE LOCK: CHECK R INPUT<br />

LEVEL, lo-54<br />

NO SPACE FOR NEW CAL. CLEAR<br />

REGISTERS, 10-54<br />

NOT -WED DURING POWER<br />

METER CAL, lo-55<br />

NOT ENOUGH SPACE ON DISK<br />

FOR STORE, lo-53<br />

OVERLOAD ON INPUT A, POWER<br />

REDUCED, lo-55<br />

OVERLOAD ON INPUT B, POWER<br />

REDUCED, lo-55<br />

OVERLOAD ON INPUT R, POWER<br />

REDUCED, lo-55<br />

PARALLEL PORT NOT AVAILABLE<br />

FOR COPY, lo-56<br />

PARALLEL PORT NOT AVAILABLE<br />

FOR GPIO, lo-55<br />

PHASE LOCK CAL FAILED, lo-56<br />

PHASE LQCK LOST, lo-56<br />

POSSIBLE FALSE LOCK, lo-57<br />

POWER METER INVALID, lo-57<br />

POWER METER NOT SETTLED,<br />

lo-57<br />

POWER SUPPLY HOT!, lo-57<br />

POWER SUPPLY SHUT DOWN!,<br />

lo-57<br />

POWER UNLEVELED, lo-58<br />

PRINTER: error, 10-58<br />

PRINTER: not handshaking, 10-58<br />

PRINTER: not on, not connected,<br />

wrong addrs, lo-58<br />

Index-14<br />

PROBE POWER SHUT DOWN!,<br />

lo-58<br />

PWR MTR: NOT ON/CONNECTED<br />

OR WRONG ADDRS, lo-59<br />

SAVE FAILED. INSUFFICIENT<br />

MEMORY, lo-59<br />

SELF TEST #n FAILED, lo-59<br />

SOURCE POWER TURNED OFF,<br />

RESET UNDER POWER MENU,<br />

lo-59<br />

SWEEP MODE CHANGED TO CW<br />

TIME SWEEP, lo-60<br />

TEST ABORTED, lo-60<br />

TROUBLE! CHECK SETUP AND<br />

START OVER, lo-60<br />

WRONG DISK FORMAT, INITIALIZE<br />

DISK, lo-60<br />

message for phase lock error, 7-4<br />

messages<br />

error, 10-l<br />

meter (power), l-3<br />

microprocessor<br />

theory of operation, 12-3<br />

microwave connector care, l-5<br />

minimum loss pad, l-4<br />

minimum R channel level, 2-31<br />

mnemonic definitions, 10-48<br />

mnemonics for service keys, 10-l<br />

monitor ABUS node 16 for power,<br />

4-15<br />

motherboard check, 5-13<br />

N<br />

NO CALIBRATION CURRENTLY IN<br />

PROGRESS, lo-53<br />

nodes for analog bus, 10-26<br />

NO FILE(S) FOUND ON DISK, lo-54<br />

NO IF FOUND<br />

CHECK R INPUT LEVEL, 7-4,7-38,<br />

lo-54<br />

noise floor level test, 2-37


NO PHASE LOCK<br />

CHECK R INPUT LEVEL, 7-4,7-38,<br />

10-54<br />

Normal and Alter switch position<br />

adjustment, 3-5<br />

NO SPACE FOR NEW CAL. CLEAR<br />

REGISTERS, 19-54<br />

NOT ALLOWED DURING POWER<br />

METER CAL, lo-55<br />

NOT ENOUGH SPACE ON DISK FOR<br />

STORE, lo-53<br />

number (option) adjustment, 3-36<br />

number (serial) adjustment, 3-34<br />

0<br />

offset (ADC) acijustment, 3-17<br />

open and short device verification,<br />

9-6<br />

open loop compared to phase locked<br />

output in SRC tune mode, 7-9<br />

operating temperature check, 5-13<br />

operation check of A9 CPU, 6-4<br />

operation veriikxtion, 2-l<br />

post-repair, 3-2, 1462<br />

Operator’s Check, 4-4<br />

option<br />

lDT, delete display, l-8<br />

Option lD5<br />

assembly replacement, 1458<br />

part numbers, 13-26<br />

Option Cor., 1914<br />

option numbers correction constants<br />

adjustment, 3-36<br />

options<br />

002 harmonic mode, l-7<br />

006 6 GHz operation, l-7<br />

010 time domain, l-7<br />

011 receiver configuration, l-7<br />

075 75Q impedance, l-8<br />

1CM rack mount flange kit without<br />

handles, l-8<br />

1CP rack mount flange kit with<br />

handles, l-8<br />

lD5 high stabiity frequency<br />

reference, l-7<br />

descriptions of, 13-48<br />

options available, l-7<br />

osciiioscope, l-3<br />

oscilloscope check of reference<br />

frequencies, 7-15<br />

output frequency in SRC tune mode,<br />

7-8<br />

overah block diagram, 419<br />

OVERLOAD ON INPUT A, POWER<br />

REDUCED, lo-55<br />

OVERLOAD ON INPUT B, POWER<br />

REDUCED, lo-55<br />

OVERLOAD ON INPUT R, POWER<br />

REDUCED, lo-55<br />

P<br />

P?, lo-58<br />

panel key codes, 6-14<br />

PARALLEL PORT NOT AVAILABLE<br />

FOR COPY, lo-56<br />

PARALLEL PORT NOT AVAILABLE<br />

FOR GPIO, lo-55<br />

patterns test, 19-16<br />

PEEK, 10-46<br />

PEEK/POKE, 10-46<br />

PEEK/POKE ADDRESS, 10-46<br />

peek/poke menu, 19-46<br />

performance test record types, 2-6<br />

performance tests<br />

1. Test Port Output Frequency<br />

Range and Accuracy, 2-18<br />

2. External Source Mode Frequency<br />

Range, 2-21<br />

3. Test Port Output Power Accuracy,<br />

2-24<br />

4. l&t Port Output Power Range<br />

and Linearity, 2-27<br />

Index-16


5. Minimum R Channel Level, 2-31<br />

6. Test Port Input Noise Floor<br />

Level, 2-37<br />

chapter, 2-l<br />

description of, 2-l<br />

post-repair, 3-2, 1462<br />

peripheral equipment<br />

theory of operation, 12-3<br />

peripheral <strong>HP</strong>-IB addresses, 4-6<br />

peripheral troubleshooting, 4-8<br />

phase lock, 10-34<br />

source, 12-15<br />

phase lock (All) check, 7-35<br />

phase lock and A3 source check, 7-8<br />

PHASE LOCK CAL FAILED, 7-4,<br />

7-38, lo-56<br />

phase locked output compared to<br />

open loop in SRC tune mode,<br />

7-9<br />

phase lock error, 7-4<br />

phase lock error messages, 7-38<br />

phase lock error messages check,<br />

413<br />

PHASE LOCK LOST., 7-4, 7-38, lo-56<br />

photometer probe, l-3<br />

PLL AUTO ON OFF, lo-20<br />

PLL DIAG ON OFF, lo-20<br />

PLL PAUSE, lo-20<br />

plotter <strong>HP</strong>-II3 address, 46<br />

plotter or printer check, 47<br />

PLREF waveforms, 7-17<br />

POKE, lo-46<br />

Port 1 Op cl&., lo-11<br />

Port 2 Op chk., lo-11<br />

port input noise floor level test, 2-37<br />

port output power accuracy test,<br />

2-24<br />

POSSIBLE FALSE LOCK, lo-57<br />

Post Reg., 10-9<br />

post regulator<br />

air flow detector, 12-7<br />

Index-16<br />

display power, 12-8<br />

green LEDs, 12-7<br />

probe power, 12-8<br />

shutdown circuit, 12-7<br />

theory of operation, 12-7<br />

variable fan circuit, 12-7<br />

post regulator test point locations,<br />

5-5<br />

post-repair procedures, 3-2, 14-62<br />

power accuracy test, 2-24<br />

power from source, 7-3<br />

POWER LOSS, lo-6<br />

power meter (<strong>HP</strong>-IB), l-3<br />

power meter <strong>HP</strong>-IB address, 46<br />

POWER METER INVALID, lo-57<br />

POWER METER NOT SETTLED,<br />

lo-57<br />

power output check, 413<br />

power problems (broadband), 7-39<br />

power range and linearity test, 2-27<br />

power sensor, l-3<br />

power splitter, l-4<br />

power supply<br />

theory of operation, 12-5<br />

power supply block diagram, 5-25<br />

power supply cable location, 5-8<br />

power supply check, 410<br />

power supply functional group block<br />

diagram, 5-3<br />

POWER SUPPLY HOT!, lo-57<br />

power supply shutdown<br />

Al5 green LED, 12-6<br />

Al5 red LED, 12-6<br />

theory of operation, 12-6<br />

POWER SUPPLY SHUT DOWN!, lo-57<br />

power supply troubleshooting chapter,<br />

5-l<br />

POWER UNLEVELED, lo-58<br />

power up sequence check, 411<br />

precision frequency reference<br />

assembly replacement, 1458


part numbers, 13-26<br />

prereguiated voltages<br />

theory of operation, 12-6<br />

preregulator<br />

theory of operation, 12-5<br />

prereguiator LEDs check, 4-10<br />

preregulator voltages, 5-10<br />

PRESET, lo-7<br />

preset sequence, 4-3, 6-14<br />

Pretune Cor., 10-13<br />

Pretune Def., 10-13<br />

preventive maintenance, 1 l-l<br />

principles of microwave connector<br />

care, l-5<br />

printer, l-3<br />

PRINTER<br />

error, 19-58<br />

not handshaking, 19-58<br />

not on, not connected, wrong addrs,<br />

lo-58<br />

printer <strong>HP</strong>-IB address, 46<br />

probe<br />

power, 12-8<br />

probe (photometer), l-3<br />

PROBE POWER SHUT DOWN!, lo-58<br />

probe power voltages, 5-19<br />

procedure<br />

spur search with a Alter, 3-30<br />

spur search without a filter, 3-31<br />

procedures<br />

A9 Switch Positions, 3-5<br />

ADC Offset Correction Constants<br />

(Test 52), 3-17<br />

Analog Bus Correction Constant<br />

(!lkst 46), 3-9<br />

Cavity Osciliator Prequency<br />

Correction Constants (Test<br />

54), 3-28<br />

EEPROM Backup Disk, 3-38<br />

external source mode frequency<br />

range, 2-21<br />

F’ractionai-N Frequency Range<br />

Adjustment, 3-45<br />

Fractional-N Spur Avoidance and<br />

PM Sideband Adjustment, 3-54<br />

Frequency Accuracy Adjustment,<br />

3-48<br />

High/Low Band Transition<br />

Adjustment, 3-52<br />

IF AmpIifier Correction Constants<br />

(Test 51), 3-16<br />

Initialize EEPROMs (Test 58), 3-37<br />

minimum R channel level, 2-31<br />

Option Numbers Correction<br />

Constant (Test 56), 3-36<br />

retrieve correction constant data<br />

from EEPROM backup disk,<br />

3-40<br />

RF Output Power Correction<br />

constants (l&t 47), 3-11<br />

Sampler Magnitude and Phase<br />

Correction Constants (Test 53),<br />

3-18<br />

Sequences for Mechanical<br />

Adjustments, 3-62<br />

Serial Number Correction Constant<br />

(Test 55), 3-34<br />

Source Default Correction Constants<br />

(l&t 44), 3-7<br />

Source Pretune Correction<br />

Constants (Test 48), 3-10<br />

Source Pretune Defauit Correction<br />

Constants (Test 45), 3-8<br />

Source Spur Avoidance Tracking<br />

Adjustment, 3-58<br />

Test Port Input Noise Floor Level,<br />

2-37<br />

test port output frequency range<br />

and accuracy, 2-18<br />

test port output power accuracy,<br />

2-24<br />

Index-17


test port output power range and<br />

linearity, 2-27<br />

Unprotected Hardware Option<br />

Numbers Correction Constants,<br />

3-60<br />

verify an analyzer system<br />

(automated), 2-8<br />

pulse generator<br />

source, 12-15<br />

pulse generator (A7) check, 7-32<br />

pulses (100 kHz), 7-16<br />

PWR LOSS, 10-5<br />

PWRMTR<br />

NOT ON/CONNECTED OR WRONG<br />

ADDRS, lo-59<br />

B<br />

range and accuracy of frequency,<br />

2-18<br />

R channel level, 2-31<br />

rear panel<br />

assembly replacement, 1416<br />

digital control, 12-12<br />

part numbers, 13-24-26<br />

Rear Panel, 10-9<br />

rear panel interface<br />

assembly replacement, 14-20<br />

rear panel LEDs check, 410<br />

rebuilt-exchange assemblies, 13-3<br />

receiver<br />

digital IF, 12-30<br />

sampler/mixer, 12-29<br />

theory of operation, 12-3, 12-28<br />

receiver check, 416<br />

receiver error messages, 417<br />

receiver failure error messages, 8-3<br />

receiver troubleshooting chapter,<br />

8-l<br />

RECORD ON OFF, 10-5<br />

red LED on Al5<br />

power supply shutdown, 12-6<br />

Index-18<br />

REP (4 MHz) signal check, 8-7<br />

reference<br />

source, 12-14<br />

reference, A12, 10-40<br />

reference (A12) check, 7-13<br />

reference frequencies check using<br />

analog bus, 7-13<br />

reference frequencies check using<br />

oscilloscope, 7-15<br />

reference signal (4 MHz), 7-20<br />

reflection Tracking (ERF’ and ERR),<br />

11-13<br />

REP signal At AllTP9, 7-17<br />

removing<br />

A8, 5-14<br />

line fuse, 5-7<br />

repair procedure, 41<br />

REPEAT ON OFF, 10-5<br />

replaceable parts, 13-l<br />

abbreviations, 13-48<br />

battery, 13-8<br />

cables, bottom, 13-12<br />

cables, front, 13-14<br />

cables, rear, 13-16<br />

cables, source, 13-18<br />

cables, top, 13-10<br />

chassis, inside, 13-44<br />

chwis, outside, 13-42<br />

documentation, 13-46<br />

ESD supplies, 1347<br />

front panel, inside, 13-22<br />

front panel, outside, 13-20<br />

fuse, preregulator, 1340<br />

fuses, post regulator, 13-47<br />

fuses, rear panel, 13-24<br />

handles, 13-47<br />

hardware, bottom, 13-30<br />

hardware, disk drive support, 13-36<br />

hardware, front, 13-32<br />

hardware, memory deck, 13-38<br />

hardware, preregulator, 13-40


hardware, test set deck, 13-34<br />

hardware, top, 13-28<br />

major assemblies, bottom, 13-8<br />

major assemblies, top, 13-6<br />

misceihineous, 1346, 13-47<br />

option descriptions, 13-48<br />

ordering, 13-3<br />

rear panel, 13-24<br />

rear panel, Option lD5, 13-26<br />

rebuilt-exchange assemblies, 13-3<br />

reference designations, 13-48<br />

service tools, 13-46<br />

touch-up paint, 1347<br />

upgrade kits, 13-46<br />

required tools, l-l<br />

RESET MEMORY, lo-46<br />

return analyzer for repair, 42<br />

revision (firmware) softkey, lo-47<br />

RF cable set, l-4<br />

RF output power correction constants<br />

adjustment, 3-l 1<br />

RF power from source, 7-3<br />

RGB outputs, lo-15<br />

ROM, lo-7<br />

S<br />

Sampler Cor., 19-13<br />

SAMF’LER COR ON OFF, lo-21<br />

sampler correction off when checking<br />

the trace, 8-12<br />

sampler magnitude correction<br />

constants adjustment, 3-18<br />

sampler/mixer, 12-29<br />

2nd LO signal, 12-29<br />

high band, 12-29<br />

low band, 12-29<br />

mixer circuit, 12-30<br />

super low band, 12-29<br />

SAVE FAILED. INSUFFICIENT<br />

MEMORY, lo-59<br />

search for spurs with a filter, 3-30<br />

search for spurs without a filter, 3-31<br />

SEGMENT, 10-6<br />

selector switch check, 5-7<br />

self diagnose softkey, 10-7<br />

self-test, 4-3<br />

SELF TEST #n FAILED, lo-59<br />

sensor (power), l-3<br />

sequence check for power up, 4-11<br />

sequence contents, 3-64<br />

sequence contents for Fractional-<br />

N Avoidance and FM Sideband<br />

Acijustment, 3-66<br />

sequence contents for Fractional-N<br />

Frequency Range Adjustment,<br />

3-65<br />

sequence contents for High/Low Band<br />

Transition Adjustment, 3-64<br />

sequence contents for VCO<br />

adjustment, 3-65<br />

sequences<br />

Fractional-N Frequency Range<br />

Adjustment, 3-62<br />

Fractional-N Spur Avoidance and<br />

FM Sideband Adjustment, 3-62<br />

High/Low Band Transition<br />

Adjustment, 3-62<br />

Serial Cor., 10-13<br />

serial number correction constants<br />

a4@rstment, 3-34<br />

service and support options, l-9<br />

service center procedure, 42<br />

service features, 10-18<br />

service key menus, 10-l<br />

service features, 10-18<br />

service key mnemonics, 10-l<br />

service mnemonic definitions, 10-48<br />

SERVICE MODES, lo-18<br />

service modes more menu, 10-21<br />

service test equipment, l-l<br />

service tools list, l-l<br />

servicing the anaiyzer, 42<br />

Index-19


setup<br />

cavity oscillator frequency<br />

correction constant routine,<br />

3-29<br />

external source mode frequency<br />

range, 2-22<br />

fractional-N spur avoidance and<br />

F’M sideband adjustment, 3-55<br />

frequency accuracy adhrstment,<br />

3-49<br />

insertion loss measurement, 3-20<br />

intensity check, 6-9<br />

minimum R channel level, 2-32<br />

mismatch device verification, 2-16<br />

phase lock error troubleshooting,<br />

7-4<br />

RF output correction constants,<br />

3-14<br />

sampler correction routine, 3-22<br />

source power check, 414<br />

test port frequency range and<br />

accuracy test, 2-19<br />

test port input noise floor level,<br />

2-38<br />

test port output power accuracy,<br />

2-25<br />

test port output power range and<br />

linearity, 2-28<br />

transmis&on calibration, 2-13<br />

setup check for disk drive, 4-7<br />

setup check for plotter or printer,<br />

47<br />

short and open device verification,<br />

9-6<br />

shutdown circuit<br />

post regulator, 12-7<br />

shutdown circuit on A8, 12-7<br />

shutdown circuitry disable, 5-16<br />

signal examination for phase lock,<br />

7-36<br />

signal separation<br />

Index-20<br />

built-in test set, 12-26<br />

theory of operation, 12-26<br />

signals required for Al0 assembly<br />

operation, 8-8<br />

SLOPE DAC, lo-19<br />

softkeys, 10-2<br />

source<br />

All phase lock, 12-15<br />

Al2 reference, 12-14<br />

Al3 frac-N analog, 12-14<br />

Al4 frac-N digital, 12-14<br />

A3 source, 12-15<br />

A7 pulse generator, 12-15<br />

external source mode, 12-23<br />

frequency offset, 12-22<br />

harmonic analysis, 12-22<br />

high band theory, 12-19<br />

low band theory, 12-16<br />

operation in other modes, 12-22<br />

source, 12-15<br />

super low band theory, 12-15<br />

theory of operation, 12-2, 12-14<br />

tuned receiver mode, 12-25<br />

source and All phase lock check,<br />

7-8<br />

source attenuator<br />

theory of operation, 12-2<br />

source check, 413<br />

Source Cor., 10-13<br />

Source Def., 10-13<br />

source default correction constants<br />

adjustment, 3-7<br />

Source Ex., l@ll<br />

source (external), l-3<br />

source group assemblies, 7-l<br />

source group troubleshooting<br />

appendix, 7-38<br />

source match (ESP and ESR), 11-12<br />

source mode frequency range, 2-21<br />

SOURCE PLL ON OFT, lo-19<br />

source power, 7-3


SOURCE POWER TURNED OFF,<br />

RESET UNDER POWER MENU,<br />

lo-59<br />

source pretune correction constants<br />

adjustment, 3-10<br />

source prettme default correction<br />

constants adjustment, 3-8<br />

source spur avoidance tracking<br />

adjustment, 3-58<br />

source troubleshooting chapter, 7-l<br />

specifications<br />

external source mode frequency<br />

range, 2-21<br />

minimum R channel level, 2-31<br />

test port input noise floor level,<br />

2-37<br />

test port output frequency range<br />

and accuracy, 2-18<br />

test port output power accuracy,<br />

2-24<br />

test port output power range and<br />

linearity, 2-27<br />

spectrum analyzer, 1-3<br />

speed<br />

fan, 5-22<br />

spikes display (acceptable versus<br />

excessive), 3-59<br />

splitter (power), l-4<br />

spur avoidance and PM sideband<br />

adjustment, 3-54<br />

spur avoidance tracking adjustment,<br />

3-58<br />

SPUR AVOID ON OFF, lo-22<br />

spurs displayed with a filter, 3-30<br />

spur search with a filter, 3-30<br />

spur search without a filter, 3-31<br />

SPUR TEST ON OFF, lo-21<br />

SRAM RAM, lo-8<br />

SRC ADJUST DACS, lo-19<br />

SRC ADJUST MENU, lo-19<br />

SRC TUNE FREQ, lo-19<br />

SRC tune mode frequency output,<br />

7-8<br />

SRC tune mode phase locked output<br />

compared to open loop, 7-9<br />

SRC tune mode waveform integrity,<br />

7-9<br />

SRC TUNE ON OFF, lo-19<br />

stable HI OUT signal in PRACN TUNE<br />

mode, 7-34<br />

Start Troubleshooting chapter, 4-l<br />

static-control table mat and earth<br />

ground wire, l-4<br />

status terms for test, 19-4<br />

step attenuator, 1-3<br />

STORE EEPR ON OFF, lo-21<br />

stuck key identification, 6-14<br />

support and service options, 1-9<br />

SWEEP MODE CHANGED TO CW<br />

TIME SWEEP, lo-60<br />

Sweep Trig., 19-10<br />

switch position adjustment, 3-5<br />

symbol conventions, 19-48<br />

system performance uncorrected,<br />

11-9<br />

system verihcation<br />

description of, 2-l<br />

post-repair, 3-2, 14-62<br />

system verification (automated), 2-8<br />

system verification cycle, 2-7<br />

system verification tests, 193,19-12<br />

Sys Ver hut., 19-12<br />

SYS VER TESTS, lo-4<br />

T<br />

table of service tools, l-l<br />

temperature check, 5-13<br />

terms for test status, 19-4<br />

test 44, 3-7, 19-13<br />

test 45, 3-8, 19-13<br />

test 46, 3-9, lo-13<br />

test 47, 3-11, 19-13<br />

Index-21


test 48, 3-10, 10-13<br />

test 50, 10-13<br />

test 51, 3-16, 10-13<br />

test 52, 3-17, 10-13<br />

test 53, 3-18, 10-13<br />

test 54, 3-28, lo-13<br />

test 55, 3-34, 10-13<br />

test 56, 3-36, 10-14<br />

test 57, 10-14<br />

test 58, 3-37, 10-14<br />

test 59, 10-15<br />

test 60, 10-15<br />

test 61, 10-15<br />

test 62, 10-15<br />

test 63, 10-15<br />

test 64,10-15<br />

test 65, lo-15<br />

test 66, 10-16<br />

test 67-69, 10-16<br />

test 70, 10-16<br />

test 71, 10-16<br />

test 72, 10-16<br />

test 73, 10-16<br />

test 74, 10-16<br />

test 75, 10-17<br />

test 76, 10-17<br />

test 77, 10-17<br />

test 78, 10-17<br />

test 79-80, 1@17<br />

TEST ABORTED, lo-60<br />

test cables, 9-5<br />

test descriptions, 10-7<br />

test equipment for service, l-l<br />

TEST OPTIONS, 10-5<br />

test options menu, 10-5<br />

Test Pat l., lo-16<br />

Test Pat lo., lo-17<br />

Test Pat ll., lo-17<br />

Test Pat 12., lo-17<br />

Test Pat 13., lo-17<br />

n?st Pat 14-15., lo-17<br />

Index-22<br />

Test Pat 24., lo-16<br />

Test Pat 5., lo-16<br />

Test Pat 6., lo-16<br />

Test Pat 7., lo-16<br />

Test Pat 8., lo-16<br />

Test Pat 9, lo-16<br />

test patterns, 10-3<br />

test port connector inspection, 9-3<br />

test port couplers, 12-26<br />

test port input noise floor level, 2-37<br />

test port output frequency range and<br />

accuracy test, 2-18<br />

test port output power accuracy,<br />

2-24<br />

test port output power range and<br />

linearity, 2-27<br />

test record types, 2-6<br />

tests<br />

1. Test Port Output kequency<br />

Range and Accuracy, 2-18<br />

2. External Source Mode F’requency<br />

Range, 2-21<br />

adjustments, 10-13<br />

chapter, 2-l<br />

display, 10-15<br />

external, 10-11<br />

internal, 10-7<br />

minimum R channel level, 2-31<br />

patterns, 10-16<br />

system verifkation, 10-12<br />

Test Port Input Noise Floor Level,<br />

2-37<br />

l&t Port Output Power Accuracy,<br />

2-24<br />

Test Port Output Power Range and<br />

Linearity, 2-27<br />

tests (diagnostics), 6-17<br />

test set, 12-26<br />

LED front panel, 12-26<br />

test port couplers, 12-26<br />

test set interface, 12-26


theory of operation, 12-3<br />

transfer switch, 12-26<br />

test set interface, 12-26<br />

tests menu, 10-3<br />

test status terms, 104<br />

theory of operation, 12-1<br />

+5 V digital supply, 12-6<br />

Al5 green LED, 12-6<br />

Al5 preregulator, 12-5<br />

Al5 red LED, 12-6<br />

A3 source, 12-2, 12-14<br />

A8 green LEDs, 12-7<br />

A8 post regulator, 12-7<br />

A8 shutdown circuit, 12-7<br />

air flow detector, 12-7<br />

digitai control, 12-8<br />

display power, 12-8<br />

functional groups, 124<br />

line power module, 12-6<br />

microprocessor, 12-3<br />

peripheral equipment, 12-3<br />

power supply, 12-5<br />

power supply shutdown, 12-6<br />

preregulated voltages, 12-6<br />

probe power, 12-8<br />

receiver, 12-3, 12-28<br />

signal separation, 12-26<br />

source attenuator, 12-2<br />

test set, 12-3<br />

variable fan circuit, 12-7<br />

tool kit, l-3<br />

tools for service, l-l<br />

trace (good) display, 8-5<br />

trace with sampler correction on and<br />

off, 8-13<br />

tracking for source spur avoidance<br />

adjustment, 3-58<br />

transfer switch, 12-26<br />

transmission tracking (ETP and ETR),<br />

11-16<br />

TROUBLE! CHECK SETUP AND<br />

START OVER, lo-60<br />

troubleshooting<br />

1st LO signal at sampler/mixer,<br />

8-14<br />

A10 by substitution or signal<br />

examination, 8-8<br />

All phase lock, 7-35<br />

All phase lock and A3 source<br />

check, 7-8<br />

Al2 reference, 7-13<br />

A13/A14 Fractional-N, 7-24<br />

Al4 Divide-by-N Circuit Check,<br />

7-29<br />

Al5 preregulator, 5-9<br />

Al/A2 front panel, 6-13<br />

A7 pulse generator, 7-32<br />

accessories, 4-18, 9-l<br />

broadband power problems, 7-39<br />

diagnostics, 4-3<br />

digital control, 6-l<br />

disk drive, 47<br />

fan, 5-22<br />

faulty data, 417<br />

faulty group identification, 4-9<br />

tist step, 41<br />

front panel, 6-13<br />

<strong>HP</strong>-R3 systems, 46<br />

one or more inputs look good, 8-l 1<br />

phase lock error, 74<br />

plotters or printers, 47<br />

receiver, 8-l<br />

receiver error messages, 4-17<br />

self-test, 43<br />

source, 7-l<br />

start, 41<br />

systems with controllers, 4-8<br />

systems with multiple peripherals,<br />

48<br />

when all inputs look bad, 8-6<br />

Index-23


YO coil drive check with analog<br />

bus, 7-11<br />

troubleshooting power supply, 5-l<br />

troubleshooting source group<br />

appendix, 7-38<br />

two-port error-correction procedure,<br />

11-3<br />

U<br />

uncorrected performance, 1 l-9<br />

unprotected hardware option numbers<br />

correction constants, 3-60<br />

USE SENSOR A/B, 10-6<br />

V<br />

variable fan circuit, 12-7<br />

VCO (A14) exercise, 7-27<br />

VCO range check frequencies, 7-24<br />

Ver Dev l., 10-12<br />

Ver Dev 2., lCL12<br />

Ver Dev 3., 10-12<br />

Ver Dev 4., 10-12<br />

veriiication cycle, kit re-certification,<br />

2-7<br />

verification kit 7 mm, l-3<br />

verification procedures<br />

post-repair, 3-2, 14-62<br />

verify calibration kit devices, 9-4<br />

voltage indications<br />

Index-24<br />

post regulator, 12-7<br />

voltages<br />

Al5 preregulator check, 5-10<br />

AS, 5-14<br />

fan, 5-22<br />

front panel probe power, 5-19<br />

YO- and YO+ coil drive voltage<br />

differences with& SOURCE<br />

PLL OFT, 7-13<br />

voltages for post regulator, 5-5<br />

voltmeter, l-3<br />

VRAM bank., lo-15<br />

VRAIWvideo, 10-15<br />

W<br />

warranty explanation, 42<br />

waveform integrity in SRC tune mode,<br />

7-9<br />

wrist strap and cord (antistatic), 14<br />

WRONG DISK FORMAT, INITIALTZE<br />

DISK, lo-60<br />

Y<br />

YO coil drive check with analog bus,<br />

7-11<br />

YO- and YO+ coil drive voltage<br />

differences with& SOURCE PLL<br />

OFT, 7-13

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!