28.10.2014 Views

Eclipse Combustion Engineering Guide - Burnerparts

Eclipse Combustion Engineering Guide - Burnerparts

Eclipse Combustion Engineering Guide - Burnerparts

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ECLIPSE COMBUSTION<br />

<br />

ENGINEERING GUIDE<br />

<br />

Click here for Tech Notes<br />

Copyright 1986 by <strong>Eclipse</strong>, Inc.<br />

1665 Elmwood Road<br />

Rockford, Illinois 61103<br />

<br />

EFE-825, 8/98<br />

Electronic Edition<br />

Published by<br />

<strong>Eclipse</strong>, Inc.<br />

All Rights Reserved<br />

<strong>Eclipse</strong> <strong>Combustion</strong><br />

ISO 9001 Registered<br />

Click to open <strong>Guide</strong>


CONTENTS<br />

1. Orifices & Flows<br />

Coefficients of Discharge for Various Types of Orifices . . . . . . . . . . . . . . . . . . . . 4<br />

Orifice Flow Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4<br />

Orifice Capacity Tables, Low Pressure Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5<br />

Orifice Capacity Tables, High Pressure Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9<br />

Piping Pressures Losses, Air . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12<br />

Piping Pressure Losses, Natural Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13<br />

High Pressure (Compressible) Flow of Natural Gas in Pipes . . . . . . . . . . . . . . . . . 14<br />

Equivalent Lengths of Standard Pipe Fittings & Valves . . . . . . . . . . . . . . . . . . . . 14<br />

Simplified Selection of Air, Gas and Mixture Piping Size . . . . . . . . . . . . . . . . . . . 15<br />

Quick Method for Sizing Air Piping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15<br />

Sizing Branch Piping by the Equal Area Method . . . . . . . . . . . . . . . . . . . . . . . . . 16<br />

C v Flow Factor Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16<br />

Duct Velocity & Flow Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17<br />

2. Fan Laws & Blower Application <strong>Engineering</strong><br />

Theoretical Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18<br />

Fan Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19<br />

Blower Horsepower Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20<br />

Blowers Used as Suction Fans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20<br />

The Effect of Pressure on Air . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20<br />

The Effect of Altitude on Air . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20<br />

The Effect of Temperature on Air . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21<br />

3. Gas<br />

Physical Properties of Commercial Fuel Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . 22<br />

<strong>Combustion</strong> Properties of Commercial Fuel Gases<br />

Air/Gas Ratio, Flammability Limits, Ignition Temperature & Flame Velocity . . . 22<br />

Heating Value, Heat Release & Flame Temperature . . . . . . . . . . . . . . . . . . . . . 23<br />

<strong>Combustion</strong> Products & CO 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23<br />

Equivalent Propane/Air & Butane/Air Btu Tables . . . . . . . . . . . . . . . . . . . . . . . . . 24<br />

Propane/Air & Butane/Air Mixture Specifications . . . . . . . . . . . . . . . . . . . . . . . . 24<br />

4. Oil<br />

Fuel Oil Specifications Per ANSI/ASTM D 396-79 . . . . . . . . . . . . . . . . . . . . . . . 25<br />

Typical Properities of Commercial Fuel Oils in the U.S. . . . . . . . . . . . . . . . . . . . . 26<br />

Fuel Oil Viscosity Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26<br />

°API Vs. Oil Specific Gravity & Gross Heating Value . . . . . . . . . . . . . . . . . . . . . 27<br />

Oil Piping Pressure Losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27<br />

Oil Temperature Drop in °F Per 100 Foot of Pipe . . . . . . . . . . . . . . . . . . . . . . . . . 29<br />

5. Steam & Water<br />

Boiler Terminology & Conversion Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30<br />

Properties of Saturated Steam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30<br />

Btu/Hr. Required to Generate One Boiler H.P. . . . . . . . . . . . . . . . . . . . . . . . . . . . 31<br />

Sizing Water Piping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31<br />

Sizing Steam Piping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31<br />

2


6. Electrical Data<br />

Electrical Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33<br />

Electrical Wire – Dimensions & Ratings . . . . . . . . . . . . . . . . . . . . . . . . . 33<br />

NEMA Size Starters for Motors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33<br />

NEMA Enclosures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34<br />

Electric Motors – Full Load Current, Amperes . . . . . . . . . . . . . . . . . . . . . . 34<br />

7. Process Heating<br />

Heat Balances – Determining the Heat Needs of Furnaces and Ovens . . . . 35<br />

Thermal Properties of Various Materials . . . . . . . . . . . . . . . . . . . . . . . . . . .37<br />

Thermal Capacities of Metals & Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40<br />

Industrial Heating Operations – Temperature & Heat Requirements . . . . . . 41<br />

Crucibles for Metal Melting – Dimensions & Capacities . . . . . . . . . . . . . . 43<br />

Radiant Tubes – Sizing & Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43<br />

Heat Losses, Heat Storage & Cold Face Temperatures – Refractory Walls . 44<br />

Air Heating & Fume Incineration Heat Requirements<br />

Using “Raw Gas” Burners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45<br />

Using Burners with Separate <strong>Combustion</strong> Air Sources . . . . . . . . . . . . . . . 45<br />

Fume Incineration – Selection & Sizing <strong>Guide</strong>lines . . . . . . . . . . . . . . . . . . 46<br />

Liquid Heating – Burner Sizing <strong>Guide</strong>lines . . . . . . . . . . . . . . . . . . . . . . . . . 47<br />

Black Body Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49<br />

Thermocouple Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49<br />

Orton Standard Pyrometric Cone Temperature Equivalents . . . . . . . . . . . . . 50<br />

8. <strong>Combustion</strong> Data<br />

Available Heat for Birmingham Natural Gas . . . . . . . . . . . . . . . . . . . . . . . . 51<br />

Available Heat for Various Fuel Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51<br />

Flue Gas Analysis Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52<br />

Theoretical Flame Tip Temperature vs. Excess Air . . . . . . . . . . . . . . . . . . . 52<br />

Heat Transfer Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52<br />

Thermal Head & Cold Air Infiltration into Furnaces . . . . . . . . . . . . . . . . . . 53<br />

Furnace Flue Sizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53<br />

9. Mechanical Data<br />

Dimensional and Capacity Data – Schedule 40 Pipe . . . . . . . . . . . . . . . . . . 54<br />

Dimensions of Malleable Iron Threaded Fittings . . . . . . . . . . . . . . . . . . . . . 55<br />

Sheet Metal Gauges & Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56<br />

Steel Wire Gauges & Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56<br />

Circumferences & Areas of Circles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57<br />

Drill Size Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59<br />

Tap Drill Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60<br />

Drilling Templates – Pipe Flanges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60<br />

10. Abbreviations & Symbols<br />

Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61<br />

Electrical Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62<br />

11. Conversion Factors<br />

General Conversion Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64<br />

Temperature Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68<br />

Pressure Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69<br />

Index . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72<br />

Tech Notes<br />

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73<br />

3


CHAPTER 1 – ORIFICES & FLOWS<br />

COEFFICIENTS OF DISCHARGE FOR VARIOUS TYPES OF ORIFICES<br />

Sharp Edge<br />

C d = 0.60<br />

Reentrant<br />

0.72<br />

Round Edge<br />

0.97<br />

Short Pipe<br />

0.82<br />

Converging<br />

depends on angle. See<br />

curve at right.<br />

Coefficient of Discharge (C d )<br />

0.95<br />

Orifices and Nozzles Discharging from Plenum<br />

0.93<br />

0.91<br />

0.89<br />

0.87<br />

NOTE: The loss is least at 13˚<br />

0.85<br />

0.83<br />

0 2 4 6 8 10 12 14 16 18 20 22 24<br />

Angle of Convergence in Degrees<br />

ORIFICE FLOW FORMULAS<br />

The flow of air or gas through an orifice can be determined 3.Effect of Changes in Operating Conditions on Pressure<br />

Drop Across an Orifice–General Relationship:<br />

by the formula<br />

h<br />

Q = 1658.5 x Ax C d g<br />

h 2<br />

= Q 2 2 x A 1 2 x C d1 2 x g 2<br />

h 1<br />

(<br />

Q 1<br />

) (<br />

A 2<br />

) (<br />

C d2<br />

)<br />

g 1<br />

where Q =flow, cfh<br />

Again, if any of the factors in this equation are unchanged<br />

A =area of the orifice, sq. in. (see Pages 57 & 58) from Condition 1 to Condtion 2, they can be dropped out to<br />

C d =discharge coefficient of the orifice<br />

form simplified relationships:<br />

(see above)<br />

3a.Pressure Drop Change vs. Flow Change<br />

h =pressure drop across the orifice,″ w.c.<br />

h<br />

g =specific gravity of the gas, based on standard<br />

2<br />

= Q 2 2<br />

h<br />

air at 1.0 (see Pages 19, 20, & 22 thru 24.)<br />

1<br />

(<br />

Q 1<br />

)<br />

This is the square root law, stated another way.<br />

1. Sizing Orifice Plates<br />

To calculate the size of an orifice plate, this equation can 3b.Pressure Drop Change vs. Orifice Area Change<br />

be rearranged as follows:<br />

h 2<br />

= A 1 2<br />

h<br />

A= Q x<br />

g<br />

1<br />

(<br />

A 2<br />

)<br />

1658.5 x C d<br />

h<br />

3c.Pressure Drop Change vs. Specific Gravity Change<br />

h 2<br />

= g 2<br />

2. Effect of Changes in Operating Conditions on h 1<br />

g 1<br />

Flow through an Orifice – General Relationship This relationship may not apply where specific gravity has<br />

Q 2<br />

= A2 x Cd2 x h2 x g 1<br />

been changed by a change in gas temperature. See Page 25.<br />

Q 1 A 1 C d1 h 1<br />

g 2<br />

4. Effect of Changes in Gas Temperature on Flow and<br />

If any of the factors in this relationship remain constant Pressure Drop through an Orifice<br />

from Condition 1 to Condition 2, they can be dropped out of Raising a gas’s temperature has two effects – it increases<br />

the equation, yielding these simplified relationships. Each of the volume and decreases the specific gravity, both in proportion<br />

to the ratio of the absolute temperatures. If we are con-<br />

them assumes only one factor has been changed.<br />

2a.Flow Change vs. Orifice Area Change<br />

cerned with changes in mass flows (scfh), these relationships<br />

Q 2<br />

= A must be used:<br />

2<br />

Q 1 A 1<br />

4a.Flow Change vs. Temperature Change<br />

2b.Flow Change vs. Pressure Drop Change<br />

Q 2<br />

= T ADS1<br />

Q 2<br />

= h Q 1 T ABB2<br />

2<br />

Q 1 h 1<br />

4b.Pressure Drop Change vs. Temperature Change<br />

This is the so-called “square root law.”<br />

h 2<br />

= T ABS2<br />

h 1 T to maintain constant scfh<br />

ABS1<br />

2c.Flow Change vs. Specific Gravity Change<br />

Q 2<br />

= g 1<br />

Q 1<br />

g 2<br />

4


ORIFICE CAPACITY TABLES<br />

LOW PRESSURE GAS<br />

Flows in these tables are based on an orifice pressure drop<br />

of 1″ w.c. and a coefficient of discharge (C d ) of 1.0.<br />

To determine flow through an orifice of a known diameter:<br />

1. Locate the orifice diameter in the left-hand column of the<br />

table.<br />

2. Read across to the column corresponding to the gas being<br />

measured. This is the uncorrected flow.<br />

3. Multiply this flow by the coefficient of discharge of the<br />

orifice. (see page 4)<br />

4. Correct this flow to the pressure drop actually measured,<br />

using the square root law (equation 2b, page 4).<br />

Example: What is the flow of natural gas through a 7/32"<br />

diameter sharp edge orifice at 6″ w.c. pressure drop?<br />

From the table, uncorrected natural gas flow through a<br />

7/32" orifice is 80.7 cfh at 1″ w.c.<br />

C d for a sharp edge orifice is 0.60 (page 1.1), so corrected<br />

flow is 80.7 x 0.60 = 48.4 cfh at 1" w.c. pressure drop.<br />

Per equation 2b, page 4,<br />

Q 2<br />

=<br />

h2 h<br />

or Q 2<br />

= Q 1<br />

x 2<br />

Q 1 h 1 h 1<br />

Substituting the numbers for this case:<br />

Q 2 = 48.4 x<br />

6″ w.c. = 119 cfh<br />

1″ w.c.<br />

CAPACITY, CFH @ 1″ W.C. PRESSURE DROP<br />

AND COEFFICIENT OF DISCHARGE OF 1.0<br />

To determine the orifice size to handle a known flow at a<br />

specified pressure drop, reverse the process:<br />

1. Correct the known flow to a pressure drop of 1″ w.c.,<br />

using the square root law.<br />

2. Divide the flow by the orifice coefficient.<br />

3. In the orifice table, locate the column for the gas under<br />

consideration. In this column, locate the flow closest to<br />

the corrected value found in step 2.<br />

4. Read to the left to find the corrected orifice size.<br />

Example: Size a gas jet for a mixer. Entrance to the jet orifice<br />

converges at a 15° included angle. Gas is propane. Required<br />

flow is 120 cfh at 30″ w.c. pressure drop.<br />

Per equation 2b, page 4,<br />

Q 2<br />

= h 2<br />

, or Q 2 = Q 1 x h 2<br />

Q 1 h 1 h 1<br />

Substituting the numbers for this case:<br />

Q 2 = 120 x 1 = 22 cfh<br />

30<br />

From page 1.1, Cd for a 15° convergent nozzle is 0.94, so<br />

corrected flow is<br />

22 ÷ 0.94 = 23.4 cfh.<br />

Locate 23.4 cfh in the propane column of the orifice<br />

table and then read to the left to find a #26 drill size orifice.<br />

Natural<br />

Propane/<br />

Drill Dia. Gas Air Air Propane Butane<br />

Size In. Area 0.60 Sp. Gr. 1.0 Sp. Gr. 1.29 Sp. Gr. 1.5 Sp. Gr. 2.0 Sp. Gr.<br />

80 .0135 .000143 .308 .239 .210 .195 .169<br />

79 .0145 .000165 .355 .275 .242 .225 .195<br />

1/64 .0156 .00019 .409 .317 .279 .259 .224<br />

78 .016 .00020 .431 .334 .294 .272 .236<br />

77 .018 .00025 .538 .417 .367 .340 .295<br />

76 .020 .00031 .668 .517 .455 .422 .366<br />

75 .021 .00035 .754 .584 .514 .477 .413<br />

74 .0225 .00040 .861 .668 .587 .545 .472<br />

73 .024 .00045 .969 .751 .661 .613 .531<br />

72 .025 .00049 1.06 .817 .720 .667 .578<br />

71 .026 .00053 1.14 .884 .778 .722 .625<br />

70 .028 .00062 1.33 1.03 .910 .844 .731<br />

69 .0292 .00067 1.44 1.12 .984 .912 .790<br />

68 .030 .00075 1.61 1.25 1.10 1.02 .885<br />

1/32 .0312 .00076 1.64 1.27 1.12 1.04 .896<br />

67 .032 .00080 1.72 1.33 1.17 1.09 .944<br />

66 .033 .00086 1.85 1.43 1.26 1.17 1.01<br />

65 .035 .00092 2.07 1.60 1.41 1.31 1.13<br />

64 .036 .00102 2.20 1.70 1.50 1.39 1.20<br />

63 .037 .00108 2.33 1.80 1.59 1.47 1.27<br />

62 .038 .00113 2.43 1.88 1.66 1.54 1.33<br />

61 .039 .00119 2.56 1.98 1.75 1.62 1.40<br />

60 .040 .00126 2.71 2.10 1.85 1.72 1.49<br />

59 .041 .00132 2.84 2.20 1.94 1.8 1.56<br />

58 .042 .00138 2.97 2.30 2.03 1.88 1.63<br />

5


CAPACITY, CFH @ 1″ W.C. PRESSURE DROP<br />

AND COEFFICIENT OF DISCHARGE OF 1.0<br />

Natural<br />

Propane/<br />

Drill Dia. Gas Air Air Propane Butane<br />

Size In. Area 0.60 Sp. Gr. 1.0 Sp. Gr. 1.29 Sp. Gr. 1.5 Sp. Gr. 2.0 Sp. Gr.<br />

57 .043 .00145 3.12 2.42 2.13 1.97 1.71<br />

56 .0465 .00170 3.66 2.84 2.5 2.32 2.01<br />

3/64 .0469 .00173 3.73 2.89 2.54 2.36 2.04<br />

55 .0520 .00210 4.52 3.50 3.08 2.86 2.48<br />

54 .0550 .0023 4.95 3.84 3.38 3.13 2.71<br />

53 .0595 .0028 6.03 4.67 4.11 3.81 3.30<br />

1/16 .0625 .0031 6.68 5.17 4.55 4.22 3.66<br />

52 .0635 .0032 6.89 5.34 4.7 4.36 3.77<br />

51 .0670 .0035 7.54 5.84 5.14 4.77 4.13<br />

50 .070 .0038 8.18 6.34 5.58 5.18 4.48<br />

49 .073 .0042 9.04 7.01 6.17 5.72 4.95<br />

48 .076 .0043 9.26 7.17 6.31 5.86 5.07<br />

5/64 .0781 .0048 10.3 8.01 7.05 6.54 5.66<br />

47 .0785 .0049 10.5 8.17 7.2 6.67 5.78<br />

46 .081 .0051 11. 8.51 7.49 6.95 6.02<br />

45 .082 .0053 11.4 8.84 7.78 7.22 6.25<br />

44 .086 .0058 12.5 9.67 8.52 7.9 6.84<br />

43 .089 .0062 13.4 10.3 9.11 8.44 7.31<br />

42 .0935 .00687 14.8 11.4 10. 9.36 8.1<br />

3/32 .0937 .0069 14.9 11.5 10.1 9.40 8.14<br />

41 .096 .0072 15.5 12. 10.6 9.81 8.49<br />

40 .098 .0075 16.2 12.5 11. 10.2 8.85<br />

39 .0995 .0078 16.8 13. 11.5 10.6 9.2<br />

38 .1015 .0081 17.4 13.5 11.9 11.0 9.55<br />

37 .104 .0085 18.3 14.2 12.5 11.6 10.<br />

36 .1065 .0090 19.4 15. 13.2 12.3 10.6<br />

7/64 .1093 .0094 20.2 15.7 13.8 12.8 11.1<br />

35 .110 .0095 20.5 15.8 14. 12.9 11.2<br />

34 .111 .0097 20.9 16.2 14.2 13.2 11.4<br />

33 .113 .0100 21.5 16.7 14.7 13.6 11.8<br />

32 .116 .0106 22.8 17.7 15.6 14.4 12.5<br />

31 .120 .0113 24.3 18.8 16.6 15.4 13.3<br />

1/8 .125 .0123 26.4 20.4 18. 16.7 14.5<br />

30 .1285 .0130 27.9 21.6 19. 17.6 15.3<br />

29 .136 .0145 31.1 24.1 21.2 19.7 17.<br />

28 .1405 .0155 33.3 25.8 22.7 21. 18.2<br />

9/64 .1406 .0156 33.5 25.9 22.8 21.2 18.3<br />

27 .144 .0163 35. 27.1 23.9 22.1 19.2<br />

26 .147 .0174 37.3 28.9 25.5 23.6 20.4<br />

25 .1495 .0175 37.5 29.1 25.6 23.7 20.6<br />

24 .152 .0181 38.8 30.1 26.5 24.6 21.3<br />

23 .154 .0186 39.9 30.9 27.2 25.2 21.9<br />

5/32 .1562 .0192 41.2 31.9 28.1 26.1 22.6<br />

22 .157 .0193 41.4 32.1 28.2 26.2 22.7<br />

21 .159 .0198 42.5 32.9 29. 26.9 23.3<br />

20 .161 .0203 43.6 33.7 29.7 27.5 23.9<br />

19 .166 .0216 46.3 35.9 31.6 29.3 25.4<br />

18 .1695 .0226 48.5 37.6 33.1 30.7 26.6<br />

11/64 .1719 .0232 49.8 38.6 33.9 31.5 27.3<br />

17 .175 .0235 50.4 39.1 34.4 31.9 27.6<br />

16 .177 .0246 52.8 40.9 36. 33.4 28.9<br />

15 .180 .0254 54.5 42.2 37.2 34.5 29.9<br />

14 .182 .0260 55.8 43.2 38. 35.3 30.6<br />

13 .185 .0269 57.7 44.7 39.4 36.5 31.6<br />

3/16 .1875 .0276 59.2 45.9 40.4 37.5 32.4<br />

6


CAPACITY, CFH @ 1″ W.C. PRESSURE DROP<br />

AND COEFFICIENT OF DISCHARGE OF 1.0<br />

Natural<br />

Propane/<br />

Drill Dia. Gas Air Air Propane Butane<br />

Size In. Area 0.60 Sp. Gr. 1.0 Sp. Gr. 1.29 Sp. Gr. 1.5 Sp. Gr. 2.0 Sp. Gr.<br />

12 .189 .02805 60.2 46.6 41. 38.1 33.<br />

11 .191 .02865 61.5 47.6 41.9 38.9 33.7<br />

10 .1935 .0294 63.1 48.9 43. 39.9 34.6<br />

9 .196 .0302 64.8 50.2 44.2 41. 35.5<br />

8 .199 .0311 66.7 51.7 45.5 42.2 36.5<br />

7 .201 .0316 67.8 52.5 46.2 42.9 37.1<br />

13/64 .2031 .0324 69.5 53.8 47.4 44. 38.1<br />

6 .204 .0327 70.2 54.3 47.8 44.4 38.4<br />

5 .2055 .0332 71.2 55.2 48.6 45.1 39.<br />

4 .209 .0343 73.6 57.0 50.2 46.5 40.3<br />

3 .213 .0356 76.4 59.2 52.1 48.3 41.8<br />

7/32 .2187 .0376 80.7 62.5 55. 51. 44.2<br />

2 .221 .0384 82.4 63.8 56.2 52.1 45.1<br />

1 .228 .0409 87.8 68. 59.8 55.5 48.1<br />

A .234 .0430 92.3 71.5 62.9 58.4 50.5<br />

15/64 .2343 .0431 92.5 71.6 63.1 58.5 50.7<br />

B .238 .0444 95.3 73.8 65. 60.3 52.2<br />

C .242 .0460 98.7 76.5 67.3 62.4 54.1<br />

D .246 .0475 102. 78.9 69.5 64.5 55.8<br />

1/4 .250 .0491 105. 81.6 71.8 66.6 57.7<br />

F .257 .0519 111. 86.3 75.9 70.4 61.<br />

G .261 .0535 115. 88.9 78.3 72.6 62.9<br />

17/64 .2656 .0554 119. 92.1 81.1 75.2 65.1<br />

H .266 .0556 119.3 92.4 81.4 75.4 65.3<br />

I .272 .0580 124. 96.4 84.9 78.7 68.2<br />

J .277 .0601 129. 99.9 87.9 81.6 70.6<br />

K .281 .0620 133. 103. 90.7 84.1 72.9<br />

9/32 .2812 .0621 133.2 103.2 90.9 84.3 73.<br />

L .290 .0660 142. 110. 96.6 89.6 77.6<br />

M .295 .0683 147. 113. 99.9 92.7 80.3<br />

19/64 .2968 .0692 148. 115. 101. 93.9 81.3<br />

N .302 .0716 154. 119. 105. 97.2 84.1<br />

5/16 .3125 .0767 165. 127. 112. 104. 90.1<br />

O .316 .0784 168. 130. 115. 106. 92.1<br />

P .323 .0820 176. 136. 120. 111. 96.4<br />

21/64 .3281 .0846 182. 141. 124. 115. 99.4<br />

Q .332 .0866 186. 144. 127. 118. 102.<br />

R .339 .0901 193. 150. 132. 122. 106.<br />

11/32 .3437 .0928 199. 154. 136. 126. 109.<br />

S .348 .0950 204. 158. 139. 129. 112.<br />

T .358 .1005 216. 167. 147. 136. 118.<br />

23/64 .3593 .1014 218. 169. 148. 138. 119.<br />

U .368 .1063 228. 177. 156. 144. 125.<br />

3/8 .375 .1104 237. 184. 162. 150. 130.<br />

V .377 .1116 239. 185. 163. 151. 131.<br />

W .386 .1170 251. 194. 171. 159. 137.<br />

25/64 .3906 .1198 257. 199. 175. 163. 141.<br />

X .397 .1236 265. 205. 181. 168. 145.<br />

Y .404 .1278 274. 212. 187. 173. 150.<br />

13/32 .4062 .1296 278. 215. 190. 176. 152.<br />

Z .413 .1340 288. 223. 196. 182. 157.<br />

27/64 .4219 .1398 300. 232. 205. 190. 164.<br />

7/16 .4375 .1503 322. 250. 220. 204. 177.<br />

29/64 .4531 .1613 346. 268. 236. 219. 190.<br />

15/32 .4687 .1726 370. 287. 253. 234. 203.<br />

7


CAPACITY, CFH @ 1″ W.C. PRESSURE DROP<br />

AND COEFFICIENT OF DISCHARGE OF 1.0<br />

Natural<br />

Propane/<br />

Drill Dia. Gas Air Air Propane Butane<br />

Size In. Area 0.60 Sp. Gr. 1.0 Sp. Gr. 1.29 Sp. Gr. 1.5 Sp. Gr. 2.0 Sp. Gr.<br />

31/64 .4843 .1843 395. 306. 270. 250. 217.<br />

1/2 .50 .1963 421. 326. 287. 266. 231.<br />

33/64 .5156 .2088 448. 347. 306. 283. 245.<br />

17/32 .5312 .2217 476. 368. 324. 301. 261.<br />

35/64 .5468 .2349 504. 390. 344. 319. 276.<br />

9/16 .5625 .2485 533. 413. 364. 337. 292.<br />

37/64 .5781 .2625 563. 436. 384. 356. 308.<br />

19/32 .5937 .2769 594. 460. 405. 376. 325.<br />

39/64 .6093 .2916 626. 485. 427. 396. 343.<br />

5/8 .625 .3068 658. 510. 449. 416. 361.<br />

41/64 .6406 .3223 691. 536. 472. 437. 379.<br />

21/32 .6562 .3382 725. 562. 495. 459. 397.<br />

43/64 .6718 .3545 760. 589. 519. 481. 417.<br />

11/16 .6875 .3712 796. 617. 543. 504. 436.<br />

45/64 .7031 .3883 833. 645. 568. 527. 456.<br />

23/32 .7187 .4057 870. 674. 594. 551. 477.<br />

47/64 .7343 .4236 909. 704. 620. 575. 498.<br />

3/4 .750 .44179 948. 734. 646. 599. 519.<br />

49/64 .7656 .46040 988. 765. 674. 625. 541.<br />

25/32 .7813 .47937 1029. 796. 701. 651. 563.<br />

51/64 .7969 .49873 1070. 829. 730. 677. 586.<br />

13/16 .8125 .51849 1112. 862. 759. 704. 609.<br />

53/64 .8281 .53862 1156. 895. 788. 731. 633.<br />

27/32 .8438 .55914 1200. 929. 818. 759. 657.<br />

55/64 .8594 .5800 1244. 964. 849. 787. 682.<br />

7/8 .8750 .60132 1290. 999. 880. 816. 707.<br />

29/32 .9062 .64504 1384. 1072. 944. 875. 758.<br />

15/16 .9375 .69029 1481. 1147. 1010. 937. 811.<br />

31/32 .9688 .73708 1581. 1225. 1079. 1000. 866.<br />

1 1.0 .7854 1685. 1305. 1149. 1066. 923.<br />

1-1/16 1.063 .88664 1902. 1474. 1297. 1203. 1042.<br />

1-1/8 1.125 .99402 2133. 1652. 1455. 1349. 1168.<br />

1-3/16 1.188 1.1075 2376. 1841. 1621. 1503. 1302.<br />

1-1/4 1.250 1.2272 2633. 2040. 1796. 1665. 1442.<br />

1-5/16 1.313 1.3530 2903. 2249. 1980. 1836. 1590.<br />

1-3/8 1.375 1.4849 3186. 2468. 2173. 2015. 1745.<br />

1-1/2 1.5 1.7671 3791. 2937. 2586. 2398. 2077.<br />

1-9/16 1.563 1.9174 4114. 3187. 2806. 2602. 2253.<br />

1-5/8 1.625 2.0739 4450. 3447. 3035. 2814. 2437.<br />

1-11/16 1.688 2.2365 4799. 3717. 3273. 3035. 2628.<br />

1-3/4 1.75 2.4053 5161. 3998. 3520. 3264. 2827.<br />

1-13/16 1.813 2.5802 5536. 4288. 3776. 3501. 3032.<br />

1-7/8 1.875 2.7612 5924. 4589. 4040. 3747. 3245.<br />

1-15/16 1.938 2.9498 6329. 4903. 4316. 4003. 3467.<br />

2 2.0 3.1416 6741. 5221. 4597. 4263. 3692.<br />

2-1/8 2.125 3.5466 7610. 5894. 5190. 4813. 4168.<br />

2-1/4 2.250 3.9761 8531. 6608. 5818. 5396. 4673.<br />

2-3/8 2.375 4.4301 9505. 7363. 6483. 6012. 5206.<br />

2-1/2 2.50 4.9087 10532. 8158. 7183. 6661. 5769.<br />

2-5/8 2.625 5.4119 11612. 8995. 7919. 7344. 6360.<br />

2-3/4 2.75 5.9396 12744. 9872. 8691. 8060. 6980.<br />

2-7/8 2.875 6.4918 13929. 10789. 9499. 8809. 7629.<br />

8


ORIFICE CAPACITY TABLES FOR HIGH PRESSURE GASES<br />

These tables list compressible flows of high pressure gases<br />

through orifices and spuds. They are based on an orifice pressure<br />

drop of 10 psi and a coefficient of discharge (C d ) of 1.0.<br />

They also assume the gas is discharging to a region of atmospheric<br />

pressure.<br />

To determine flow through an orifice of a known diameter:<br />

1. Locate the orifice diameter in the left-hand column of the<br />

table.<br />

2. Read across to the column corresponding to the gas being<br />

measured. This is the uncorrected flow.<br />

3. Multiply this flow by the coefficient of discharge of the<br />

orifice. (see page 4)<br />

4. Correct this flow to the pressure actually measured ahead<br />

of the orifice (P) using the following relationship:<br />

Q p = Q 10<br />

P + 14.7<br />

24.7<br />

Where Q p is the unknown flow<br />

Q 10 is the flow at 10 psig from the table<br />

Example: What is the flow of propane – air mixture through a<br />

3/64" diameter jet with a 15° angle of convergence at 35 psig?<br />

From the table, uncorrected propane – air flow through a<br />

3/64" orifice is 41 scfh at 10 psig.<br />

C d for 15° convergent jet is 0.94 (page 4), so corrected flow<br />

is 41 x 0.94 = 38.5 scfh at 10 psig.<br />

Corrected flow for 35 psig pressure, per the equation above, is<br />

Q p = 38.5<br />

35 + 14.7 = 77.5 scfh<br />

24.7<br />

To determine the orifice size to handle a known flow at a<br />

specified pressure drop, reverse the process:<br />

1. Correct the known flow to a pressure drop of 10 psig, using<br />

the equation above.<br />

2. Divide the flow by the orifice coefficient.<br />

3. In the orifice table, locate the column for the gas under<br />

consideration. In this column, locate the flow closest to the<br />

corrected value found in step 2.<br />

4. Read to the left to find the corrected orifice size.<br />

Example: Size an airjet with a convergent inlet of 15°.<br />

Required flow is 450 scfh at 20 psig inlet pressure.<br />

Per the equation above,<br />

Q p = Q 10<br />

P + 14.7, or Q10 = Q p<br />

24.7<br />

24.7 P + 14.7<br />

Substituting the numbers for this case:<br />

Q 10 = 450 24.7 = 320 scfh<br />

20 + 14.7<br />

From page 4, C d for a 15° convergent nozzle is 0.94, so corrected<br />

flow is<br />

320 ÷ 0.94 = 340 scfh.<br />

Locate 340 scfh in the air column of the orifice table. Closest<br />

value is 341 scfh, which requires a 1/8" diameter jet.<br />

CAPACITY, SCFH @ 10 PSI PRESSURE DROP, DISCHARGING TO ATMOSPHERE,<br />

WITH COEFFICIENT OF DISCHARGE OF 1.0<br />

Drill Area Natural Gas Air Propane/Air Propane Butane<br />

Size Sq. In. 0.60 Sp. Gr. 1.0 Sp. Gr. 1.29 Sp. Gr. 1.5 Sp. Gr. 2.0 Sp. Gr.<br />

80 .000143 4.9 3.8 3.3 3.1 2.7<br />

79 .000165 5.6 4.3 3.8 3.5 3.0<br />

1/64 — .00019 6.6 5.1 4.5 4.2 3.6<br />

78 .00020 7.0 5.4 4.8 4.4 3.8<br />

77 .00025 9.2 7.1 6.3 5.8 5.0<br />

76 .00031 10.8 8.4 7.4 6.9 5.9<br />

75 .00035 11.9 9.2 8.1 7.5 6.53<br />

74 .00040 13.6 10.5 9.2 8.6 7.4<br />

73 .00045 15.6 12.1 10.7 9.9 8.6<br />

72 .00049 17.0 13.2 11.6 10.8 9.3<br />

71 .00053 18.5 14.3 12.6 11.7 10.1<br />

70 .00062 21 16.4 14.4 13.4 11.6<br />

69 .00067 23 18.1 15.9 14.8 12.8<br />

68 .00075 26 20 17.6 16.3 14.1<br />

1/32 — .00076 27 21 18.5 17.1 14.8<br />

67 .00080 28 22 19.4 18.0 15.6<br />

66 .00086 30 23 20 18.8 16.3<br />

65 .00096 34 26 23 21 18.4<br />

64 .00102 35 27 24 22 19.1<br />

63 .00108 37 29 26 24 20<br />

62 .00113 40 31 27 25 22<br />

61 .00119 41 32 28 26 23<br />

60 .00126 44 34 30 28 24<br />

9


CAPACITY, SCFH @ 10 PSI PRESSURE DROP, DISCHARGING TO<br />

ATMOSPHERE, WITH COEFFICIENT OF DISCHARGE OF 1.0 (Cont’d)<br />

Drill Area Natural Gas Air Propane/Air Propane Butane<br />

Size Sq. In. 0.60 Sp. Gr. 1.0 Sp. Gr. 1.29 Sp. Gr. 1.5 Sp. Gr. 2.0 Sp. Gr.<br />

59 .00132 45 35 31 29 25<br />

58 .00138 48 37 33 30 26<br />

57 .00145 52 40 35 33 28<br />

56 .00170 59 46 41 38 33<br />

3/64 — .00173 61 47 41 38 33<br />

55 .00210 75 58 51 47 41<br />

54 .00230 84 65 57 53 46<br />

53 .00280 98 76 67 62 54<br />

1/16 — .00310 108 84 74 69 59<br />

52 .00320 112 87 77 71 62<br />

51 .00350 124 96 85 78 68<br />

50 .00380 136 105 92 86 74<br />

49 .00420 147 114 100 93 81<br />

48 .00430 160 124 109 101 88<br />

5/64 — .00480 169 131 115 107 93<br />

47 .00490 172 133 117 109 94<br />

46 .00510 182 141 124 115 100<br />

45 .00530 187 145 128 118 103<br />

44 .00580 205 159 140 130 112<br />

43 .00620 219 170 150 139 120<br />

3/32 (42) .00690 243 188 166 154 133<br />

41 .00720 244 189 166 154 134<br />

40 .00750 266 206 181 168 146<br />

39 .00780 275 213 188 174 151<br />

38 .00810 285 221 195 180 156<br />

37 .00850 300 232 204 189 164<br />

36 .00900 315 244 215 199 173<br />

7/64 — .00940 332 257 226 210 182<br />

35 .00950 336 260 229 212 184<br />

34 .00970 342 265 233 216 187<br />

33 .01000 354 274 241 224 194<br />

32 .01060 374 290 255 237 205<br />

31 .01130 400 310 273 253 219<br />

1/8 — .01230 440 341 300 278 241<br />

30 .01300 458 355 313 290 251<br />

29 .01450 514 398 350 325 281<br />

28 .01550 550 426 375 348 301<br />

9/64 — .01560 553 428 377 349 303<br />

27 .01630 572 443 390 362 313<br />

26 .01740 599 464 409 379 328<br />

25 .01750 621 481 423 393 340<br />

24 .01810 642 497 437 406 351<br />

23 .01860 660 511 450 417 361<br />

5/32 — .01920 678 525 462 429 371<br />

22 .01930 684 530 467 433 375<br />

21 .01980 702 544 479 444 385<br />

20 .02030 728 564 497 461 399<br />

19 .02160 766 593 522 484 419<br />

18 .02260 800 620 546 506 438<br />

11/64 — .02320 822 637 561 520 450<br />

17 .02350 830 643 566 525 455<br />

16 .02460 871 675 594 551 477<br />

15 .02540 904 700 616 572 495<br />

14 .02600 920 713 628 582 503<br />

13 .02690 951 737 649 602 521<br />

3/16 — .02760 976 756 666 617 534<br />

12 .02805 993 769 677 628 544<br />

10


CAPACITY, SCFH @ 10 PSI PRESSURE DROP, DISCHARGING TO<br />

ATMOSPHERE, WITH COEFFICIENT OF DISCHARGE OF 1.0 (Cont’d)<br />

Drill Area Natural Gas Air Propane/Air Propane Butane<br />

Size Sq. In. 0.60 Sp. Gr. 1.0 Sp. Gr. 1.29 Sp. Gr. 1.5 Sp. Gr. 2.0 Sp. Gr.<br />

11 .02865 1015 786 692 642 556<br />

10 .02940 1041 806 710 658 570<br />

9 .03020 1066 826 727 674 584<br />

8 .03110 1100 852 750 696 602<br />

7 .03160 1122 869 765 710 614<br />

13/64 — .03240 1148 889 783 726 629<br />

6 .03270 1155 895 788 731 633<br />

5 .03320 1172 908 799 741 642<br />

4 .03430 1216 942 829 769 666<br />

3 .03560 1263 978 861 799 692<br />

7/32 — .03760 1327 1028 905 839 727<br />

2 .03840 1361 1054 928 861 745<br />

1 .04090 1447 1121 987 915 793<br />

A .04300 1523 1180 1039 963 834<br />

15/64 — .04310 1529 1184 1042 967 837<br />

B .04440 1571 1217 1072 994 861<br />

C .04600 1627 1260 1109 1029 891<br />

D .04750 1686 1306 1150 1066 923<br />

1/4 E .04910 1738 1346 1185 1099 952<br />

F .05190 1836 1422 1252 1161 1006<br />

G .05350 1891 1465 1290 1196 1036<br />

17/64 — .05540 1960 1518 1336 1239 1073<br />

H .05560 1969 1525 1343 1245 1078<br />

I .05800 2054 1591 1401 1299 1125<br />

J .06010 2128 1648 1451 1346 1165<br />

K .06200 2192 1698 1495 1386 1201<br />

9/32 — .06210 2200 1704 1500 1391 1205<br />

L .06600 2337 1810 1594 1478 1280<br />

M .06830 2418 1873 1649 1529 1324<br />

19/64 — .06920 2448 1896 1669 1548 1341<br />

N .07160 2534 1963 1728 1603 1388<br />

5/16 — .07670 2714 2102 1851 1716 1486<br />

O .07840 2782 2155 1897 1760 1524<br />

P .08200 2893 2241 1973 1830 1585<br />

21/64 — .08460 2996 2321 2044 1895 1641<br />

Q .08660 3065 2374 2090 1938 1679<br />

R .09010 3193 2473 2177 2019 1749<br />

11/32 — .09280 3283 2543 2239 2076 1798<br />

S .09500 3373 2613 2301 2134 1848<br />

T .10050 3553 2752 2423 2247 1946<br />

23/64 — .10140 3595 2785 2452 2274 1969<br />

U .10630 3775 2924 2574 2387 2068<br />

3/8 — .11040 3912 3030 2668 2474 2143<br />

V .11160 3959 3067 2700 2504 2169<br />

W .11700 4135 3203 2820 2615 2265<br />

25/64 — .11980 4237 3282 2890 2680 2321<br />

X .12360 4374 3388 2983 2766 2396<br />

Y .12780 4537 3514 3094 2869 2485<br />

13/32 — .12960 4580 3548 3124 2897 2509<br />

Z .13400 4751 3680 3240 3005 2602<br />

27/64 — .13980 4943 3829 3371 3126 2708<br />

7/16 — .15030 5307 4111 3620 3357 2907<br />

29/64 — .16130 5714 4426 3897 3614 3130<br />

15/32 — .17260 6121 4741 4452 3871 3352<br />

31/64 — .18430 6527 5056 4448 4128 3575<br />

1/2 — .19630 6977 5204 4758 4412 3821<br />

11


PIPING PRESSURE LOSSES FOR LOW PRESSURE AIR<br />

Inches w.c. per 100 ft. of Schedule 40 pipe<br />

Scfh<br />

Air 1/2" 3/4" 1" 1-1/4" 1-1/2 2" 2-1/2" 3<br />

40 0.3 — — — — — — —<br />

50 0.5 — — — — — — —<br />

100 2.1 0.5 — — — — — —<br />

200 8.4 1.9 0.5 — — — — —<br />

300 18.9 4.2 1.2 0.3 — — — —<br />

400 — 7.5 2.1 0.5 — — — —<br />

500 — 11.8 3.3 0.8 0.4 — — —<br />

600 — 16.9 4.7 1.1 0.5 — — —<br />

700 — — 6.4 1.5 0.7 — — —<br />

800 — — 8.3 2.0 0.9 — — —<br />

900 — — 10.5 2.5 1.1 0.3 — —<br />

1,000 — — 13.0 3.1 1.4 0.4 — —<br />

1,500 — — — 7.0 3.2 0.8 0.3 —<br />

2,000 — — — 12.4 5.6 1.4 0.6 —<br />

3,000 — — — — 12.6 3.2 1.3 0.4<br />

4,000 — — — — — 5.8 2.2 0.8<br />

5,000 — — — — — 9.0 3.5 1.2<br />

6,000 — — — — — 13.0 5.0 1.7<br />

7,000 — — — — — 17.6 6.9 2.3<br />

8,000 — — — — — — 9.0 3.0<br />

9,000 — — — — — — 11.3 3.8<br />

10,000 — — — — — — 14.0 4.7<br />

12,000 — — — — — — 20.2 6.8<br />

14,000 — — — — — — — 9.2<br />

16,000 — — — — — — — 12.0<br />

18,000 — — — — — — — 15.2<br />

20,000 — — — — — — — 18.8<br />

Scfh<br />

Air 4" 6" 8" 10" 12 14" 16" 18<br />

4,000 — — — — — — — —<br />

6,000 0.4 — — — — — — —<br />

8,000 0.7 — — — — — — —<br />

10,000 1.1 — — — — — — —<br />

12,000 1.6 — — — — — — —<br />

14,000 2.2 0.3 — — — — — —<br />

16,000 2.8 0.3 — — — — — —<br />

18,000 3.6 0.4 — — — — — —<br />

20,000 4.4 0.5 — — — — — —<br />

25,000 6.9 0.8 — — — — — —<br />

30,000 9.9 1.2 0.3 — — — — —<br />

35,000 13.5 1.6 0.4 — — — — —<br />

40,000 17.6 2.1 0.5 — — — — —<br />

50,000 — 3.3 0.7 — — — — —<br />

60,000 — 4.7 1.0 0.3 — — — —<br />

70,000 — 6.4 1.4 0.5 — — — —<br />

80,000 — 8.3 1.9 0.6 — — — —<br />

90,000 — 10.5 2.4 0.8 0.3 — — —<br />

100,000 — 13.0 2.9 0.9 0.4 — — —<br />

120,000 — 18.7 4.2 1.3 0.5 0.3 — —<br />

140,000 — — 5.7 1.8 0.7 0.4 — —<br />

160,000 — — 7.4 2.4 0.9 0.5 0.3 —<br />

180,000 — — 9.4 3.0 1.2 0.7 0.3 —<br />

200,000 — — 11.6 3.7 1.4 0.8 0.4 —<br />

250,000 — — 18.2 5.8 2.2 1.3 0.6 0.3<br />

300,000 — — — 8.4 3.2 1.9 0.9 0.5<br />

350,000 — — — 11.4 4.4 2.5 1.3 0.6<br />

400,000 — — — 14.9 5.7 3.3 1.6 0.8<br />

450,000 — — — 18.8 7.2 4.2 2.1 1.1<br />

500,000 — — — — 9.0 5.2 2.6 1.3<br />

550,000 — — — — 10.8 6.2 3.1 1.6<br />

600,000 — — — — 12.9 7.4 3.7 1.9<br />

650,000 — — — — 15.1 8.7 4.4 2.2<br />

700,000 — — — — 17.5 10.1 5.0 2.5<br />

800,000 — — — — — 13.2 6.6 3.3<br />

900,000 — — — — — 16.7 8.3 4.2<br />

1,000,000 — — — — — 20.6 10.3 5.2<br />

1,100,000 — — — — — — 12.5 6.3<br />

1,200,000 — — — — — — 14.8 7.5<br />

1,300,000 — — — — — — 17.4 8.8<br />

1,400,000 — — — — — — 20.2 10.2<br />

1,600,000 — — — — — — — 13.3<br />

1,800,000 — — — — — — — 16.8<br />

2,000,000 — — — — — — — 20.8<br />

12


PIPING PRESSURE LOSSES FOR LOW PRESSURE NATURAL GAS<br />

Inches w.c. per 100 ft. of Schedule 40 pipe<br />

Scfh<br />

Nat. Gas 3/8" 1/2" 3/4" 1" 1-1/4" 1-1/2" 2"<br />

25 0.3 — — — — — —<br />

50 1.1 0.3 — — — — —<br />

75 2.5 0.7 — — — — —<br />

100 4.4 1.2 0.3 — — — —<br />

125 6.9 1.9 0.4 — — — —<br />

150 9.9 2.8 0.6 — — — —<br />

175 13.5 3.8 0.9 — — — —<br />

200 17.6 5.0 1.1 0.3 — — —<br />

300 — 11.2 2.5 0.7 — — —<br />

400 — 19.8 4.5 1.2 0.3 — —<br />

500 — — 7.0 1.9 0.5 — —<br />

600 — — 10.1 2.8 0.7 0.3 —<br />

700 — — 13.8 3.8 0.9 0.4 —<br />

800 — — 18.0 4.9 1.2 0.5 —<br />

900 — — — 6.3 1.5 0.7 —<br />

1,000 — — — 7.7 1.9 0.8 —<br />

1,500 — — — 17.4 4.2 1.9 0.5<br />

2,000 — — — — 7.5 3.3 0.9<br />

2,500 — — — — 11.8 5.2 1.3<br />

3,000 — — — — 16.9 7.5 1.9<br />

4,000 — — — — — 13.2 3.4<br />

5,000 — — — — — 20.7 5.4<br />

6,000 — — — — — — 7.7<br />

7,000 — — — — — — 10.5<br />

8,000 — — — — — — 13.8<br />

9,000 — — — — — — 17.4<br />

PIPING PRESSURE LOSSES FOR LOW PRESSURE NATURAL GAS<br />

Inches w.c. per 100 ft. of Schedule 40 pipe<br />

Scfh<br />

Nat. Gas 2-1/2" 3" 4" 6" 8"<br />

2,000 0.3 — — — —<br />

2,500 0.5 — — — —<br />

3,000 0.8 0.3 — — —<br />

4,000 1.3 0.4 — — —<br />

5,000 2.1 0.7 — — —<br />

6,000 3.0 1.0 — — —<br />

7,000 4.1 1.4 0.3 — —<br />

8,000 5.4 1.8 0.4 — —<br />

9,000 6.8 2.3 0.6 — —<br />

10,000 8.4 2.8 0.7 — —<br />

12,000 12.1 4.0 1.0 — —<br />

14,000 16.4 5.5 1.4 — —<br />

16,000 — 7.2 1.8 — —<br />

18,000 — 9.1 2.2 0.3 —<br />

20,000 — 11.2 2.8 0.3 —<br />

22,000 — 13.6 3.3 0.4 —<br />

24,000 — 16.1 4.0 0.4 —<br />

26,000 — 18.9 4.7 0.5 —<br />

28,000 — — 5.4 0.6 —<br />

30,000 — — 6.2 0.7 —<br />

35,000 — — 8.5 1.0 —<br />

40,000 — — 11.0 1.2 0.3<br />

45,000 — — 14.0 1.6 0.3<br />

50,000 — — 17.3 2.0 0.4<br />

55,000 — — 20.9 2.4 0.5<br />

60,000 — — — 2.8 0.6<br />

70,000 — — — 3.8 0.8<br />

13<br />

Inches w.c.<br />

per 100 ft<br />

Scfh of Schedule 40 pipe<br />

Nat. Gas 6" 8"<br />

80,000 5.0 1.1<br />

90,000 6.3 1.4<br />

100,000 7.8 1.7<br />

110,000 9.4 2.1<br />

120,000 11.2 2.4<br />

130,000 13.2 2.9<br />

140,000 15.3 3.3<br />

150,000 17.6 3.8<br />

200,000 — 6.8<br />

250,000 — 10.6<br />

300,000 — 15.3


HIGH PRESSURE (COMPRESSIBLE) FLOW OF<br />

NATURAL GAS IN PIPES<br />

Flows in table are scfh of 0.6 sp. gr. natural gas<br />

Pipe Inlet Pressure Drop Per 100 Equivalent Feet of<br />

Size, Pressure, Pipe as a Percentage of Inlet Pressure<br />

Inches PSIG 2% 4% 6% 8% 10%<br />

2 340 480 590 680 760<br />

5 590 840 1030 1180 1320<br />

1 10 930 1320 1610 1850 2070<br />

20 1570 2210 2700 3110 3470<br />

50 3380 4770 5820 6690 7450<br />

2 710 1010 1230 1420 1590<br />

5 1230 1740 2130 2450 2740<br />

1-1/4 10 1950 2760 3370 3880 4330<br />

20 3260 4600 5620 6470 7210<br />

50 7040 9910 12,090 13,910 15,490<br />

2 1080 1530 1870 2160 2410<br />

5 1860 2630 3220 3710 4140<br />

1-1/2 10 2940 4160 5080 5850 6530<br />

20 4930 6960 8490 9780 10,900<br />

50 10,640 15,000 18,290 21,040 23,430<br />

2 2100 2980 3640 4200 4700<br />

5 3630 5120 6270 7230 8070<br />

2 10 5740 8090 9890 11,400 12,720<br />

20 9610 13,550 16,540 19,050 21,230<br />

50 20,720 29,190 35,610 40,960 45,610<br />

2 3390 4810 5880 6780 7580<br />

5 5850 8260 10,100 11,650 13,010<br />

2-1/2 10 9240 13,040 15,940 18,370 20,500<br />

20 15,480 21,840 26,660 30,700 34,220<br />

50 33,400 47,050 57,400 66,010 73,510<br />

2 6060 8590 10,500 12,120 13,540<br />

5 10,450 14,760 18,050 20,820 23,240<br />

3 10 16,510 23,290 28,480 32,810 36,610<br />

20 27,650 38,990 47,620 54,820 61,110<br />

50 59,640 84,010 102,500 117,880 131,270<br />

2 12,480 17,690 21,620 24,960 27,890<br />

5 21,520 30,400 37,180 42,890 47,880<br />

4 10 34,000 47,980 58,650 67,580 75,410<br />

20 56,960 80,320 98,090 112,930 125,880<br />

50 122,850 173,070 211,140 242,840 270,420<br />

2 37,250 52,800 64,560 74,510 83,270<br />

5 64,240 90,760 111,010 128,040 142,950<br />

6 10 101,520 143,260 175,120 201,780 225,150<br />

20 170,060 239,810 292,840 337,150 375,820<br />

50 366,770 516,680 630,360 724,970 807,320<br />

EQUIVALENT LENGTHS OF STANDARD PIPE FITTINGS & VALVES<br />

VALVES FULLY OPEN<br />

Pipe I.D. Swing 90° 45° 90° Tee, Flow 90° Tee, Flow<br />

Size Inches Gate Globe Angle Check Elbow Elbow Through Run Through Branch<br />

1/2" 0.622 0.35 18.6 9.3 4.3 1.6 0.78 1.0 3.1<br />

3/4" 0.824 0.44 23.1 11.5 5.3 2.1 0.97 1.4 4.1<br />

1" 1.049 0.56 29.4 14.7 6.8 2.6 1.23 1.8 5.3<br />

1-1/4" 1.380 0.74 38.6 19.3 8.9 3.5 1.6 2.3 6.9<br />

1-1/2" 1.610 0.86 45.2 22.6 10.4 4.0 1.9 2.7 8.0<br />

2" 2.067 1.10 58 29 13.4 5.2 2.4 3.5 10.4<br />

2-1/2" 2.469 1.32 69 35 15.9 6.2 2.9 4.1 12.4<br />

3" 3.068 1.60 86 43 19.8 7.7 3.6 5.1 15.3<br />

4" 4.026 2.1 112 56 26.8 10.1 5.4 6.7 20.1<br />

6" 6.065 2.6 140 70 40.4 15.2 8.1 10.1 30.3<br />

Equivalent lengths are for standard screwed fittings and for screwed, flanged, or welded valves relative to<br />

schedule 40 steel pipe.<br />

14


SIMPLIFIED SELECTION OF AIR, GAS AND MIXTURE PIPING SIZE<br />

Air, gas and mixture piping systems should be sized to<br />

deliver flow at a uniform pressure distribution and without<br />

excessive pressure losses in transit.<br />

Two factors cause air pressure loss and consequent pressure<br />

variations:<br />

1) Friction in piping and bends, and<br />

2) Velocity pressure losses due to changes in direction.<br />

In combustion work, piping runs are usually short (under<br />

50 ft.), but often have many bends. By assuming that all<br />

velocity pressure is lost or dissipated at each change of direction<br />

and by using a pipe size to give a very low velocity pressure,<br />

other losses can be disregarded. In general, a velocity<br />

pressure of 0.3 to 0.5″ w.c. satisfies this need. This is equivalent<br />

to air velocities of about 2200 to 2800 ft/minute. For<br />

other gases, this velocity is inversely proportional to their<br />

gravities; consequently, higher velocities can be tolerated<br />

with natural gas, but propane and butane piping should be<br />

sized for lower velocities than air.<br />

The accuracy of orifice meters is also sensitive to pipe<br />

velocity, so every effort should be made to keep velocity pressure<br />

below 0.3″ w.c. in metering runs.<br />

The graph below shows the relationship between velocity,<br />

velocity pressure and flow for various pipe sizes handling air,<br />

natural gas, propane, and butane. Because the specific gravity<br />

of most air-gas mixtures is close to that of air, mixture piping<br />

can be sized the same as air piping. The error will be<br />

insignificant.<br />

Example: A burner requires 10,000 cfh air at a static pressure<br />

of 13″ w.c. The blower supplying this burner develops 15″<br />

w.c. static pressure. Piping between the two will run 15 feet,<br />

including four 90° bends. What size piping is required?<br />

Solution: Total pressure available for piping losses is<br />

15″ w.c. - 13 ″ w.c. = 2″ w.c.<br />

This allows a velocity pressure loss of:<br />

2 ÷ 4 = 0.5″ w.c. for each of the four elbows.<br />

Under the “Air” column on the left-hand side of the Pv<br />

graph, locate 0.5″ w.c. velocity pressure. This is equivalent to<br />

about 2800 ft/minute air velocity. Locate the intersection of<br />

the 2800 ft/minute line and the 10,000 cfh line, then drop<br />

down to the first curve below this point, in this case, 4″ pipe.<br />

This is the pipe size that should be used.<br />

Nat.<br />

Gas<br />

3.0<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.15<br />

0.1<br />

Pv, "wc<br />

Propane<br />

Butane<br />

Air<br />

5.0<br />

4.0<br />

3.0<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.15<br />

5.0<br />

4.0<br />

3.0<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

5.0<br />

4.0<br />

3.0<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.4<br />

0.3<br />

Velocity<br />

Ft/Min<br />

x1000<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

0.1 0.15 0.2<br />

0.05<br />

0.1 0.15<br />

1<br />

Shaded Areas<br />

100<br />

Indicate Recommended<br />

Velocity Pressure<br />

Range<br />

4<br />

3<br />

2.5<br />

2<br />

1.5<br />

Pipe Size<br />

1-1/2"<br />

2-1/2"<br />

1/4" 3/8" 1/2" 3/4" 1" 1-1/4" 2" 3" 4" 6" 8" 10" 12"14"16"<br />

2 3 4 6 8<br />

1000<br />

2 3 4 6 8 2<br />

10,000<br />

3 4 6 8 2<br />

100,000<br />

3 4 6 8<br />

Flow, cfh<br />

QUICK METHOD FOR SIZING AIR PIPING<br />

18"<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

If pipe sizing charts or tables aren’t available, you can<br />

quickly estimate the maximum air flow capacity of a pipe<br />

with these simple equations:<br />

Maximum cfh air = (Nominal pipe size) 2 x 1000<br />

The result will correspond to a velocity pressure of about 0.5″<br />

w.c., the maximum recommended for low pressure air systems.<br />

Optimum cfh air = (Nominal pipe size) 2 x 750<br />

This will produce a flow rate equivalent to about 0.3″ w.c.<br />

velocity pressure.<br />

Example: What is the maximum air flow rate for 2 1 ⁄2" pipe?<br />

(2 1 ⁄2) 2 = 6.25<br />

6.25 x 1000 = 6,250 cfh air.<br />

15


SIZING BRANCH PIPING BY THE EQUAL AREA METHOD<br />

The equal area method of sizing pipe manifolds is based on<br />

maintaining constant total cross-sectional area in all portions of<br />

a piping train, regardless of the number of branches in each portion.<br />

In the sketch below, the equal area method requires that:<br />

Area of X = 2 times area of Y = 6 times area of Z.<br />

To use the table below, read across from the pipe size of the<br />

smallest branch in the manifold (Z in the sketch at left) and<br />

down from the number of these branches. At the intersection,<br />

find the recommended size pipe to feed these branches. For<br />

example, if Z is 3/4", Y should be 1 1 ⁄4" and X should be 2" pipe.<br />

Y<br />

X<br />

Z Z Z Z Z Z<br />

The advantage of this method is that once the size of the<br />

smallest branch has been determined, via velocity pressures or<br />

any other valid method, the remainder of the piping system<br />

can be correctly sized without any additional calculations.<br />

Remember, however, that if the calculation of the smallest<br />

branches is in error, the entire system will be incorrectly sized.<br />

Y<br />

Size of<br />

Branch<br />

Connection<br />

C v FLOW FACTOR CONVERSIONS<br />

Number of Branch Connections<br />

1 2 3 4 5 6 7 8<br />

1/4 1/4 3/8 1/2 3/4 3/4 1 1 1<br />

3/8 3/8 3/4 3/4 1 1-1/4 1-1/4 1-1/4 1-1/4<br />

1/2 1/2 3/4 1 1 1 1-1/4 1-1/2 2<br />

3/4 3/4 1-1/4 1-1/4 1-1/2 2 2 2 2-1/2<br />

1 1 1-1/4 2 2 2-1/2 2-1/2 3 3<br />

1-1/4 1-1/4 2 2-1/2 3 3 4 4 4<br />

1-1/2 1-1/2 2-1/2 3 3 4 4 4 6<br />

2 2 3 4 4 6 6 6 6<br />

2-1/2 2-1/2 4 4 6 6 6 6 6<br />

3 3 4 6 6 8 8 8 8<br />

4 4 6 8 8 10 10 10 12<br />

6 6 8 10 12 14 16 18 18<br />

8 8 12 14 16 18 20 20 or 24 24<br />

10 10 14 18 20 24 24 30 30<br />

Cv, flow factor, is defined as the full flow capacity of a<br />

valve expressed in gpm of 60°F water at 1 psi pressure drop.<br />

This rating is determined by actual flow test. To convert Cv to<br />

actual flow capacity for gases, use the graph below.<br />

Locate Cv at the left, read across to the appropriate curve and<br />

then down to obtain flow capacity at 1″ w.c. pressure drop.<br />

For drops other than 1″ w.c., multiply the flow by the square<br />

root of the pressure drop.<br />

For conditions other than 14.7 psia and 60°F, use this formula:<br />

Q = 1360Cv (P 1 -P 2 ) P 2 ,<br />

GT<br />

where<br />

Q = SCFH<br />

P 1 = Inlet pressure, psia<br />

P 2 = Outlet pressure, psia<br />

T = Absolute flowing temperature (°F + 460)<br />

G = Specific gravity of gas<br />

1000<br />

8<br />

6<br />

4<br />

3<br />

BUTANE 2.0 SP GR<br />

C v Flow Factor<br />

2<br />

100<br />

8<br />

6<br />

4<br />

3<br />

2<br />

10<br />

8<br />

6<br />

PROPANE 1.5 SP GR<br />

PROPANE - AIR<br />

1.29 SP GR<br />

AIR 1.0 SP GR<br />

4<br />

3<br />

2<br />

NATURAL GAS 0.6 SP GR<br />

1<br />

10 20 30 40 60 80 100 2 3 4 6 8 1000 2 3 4 6 8 10,000 2 3 4 6<br />

Flow, SCH @ 1" W.C. ∆P @ 14.7 PSIA & 60˚ F<br />

16


DUCT VELOCITY & FLOW MEASUREMENTS<br />

The total pressure of an air stream flowing in a duct is the<br />

sum of the static or bursting pressure exerted upon the sidewalls<br />

of the duct and the impact or velocity pressure of the<br />

moving air. Through the use of a pitot tube connected differentially<br />

to a manometer, the velocity pressure alone is indicated<br />

and the corresponding air velocity determined.<br />

For accuracy of plus or minus 2%, as in laboratory applications,<br />

extreme care is required and the following precautions<br />

should be observed:<br />

1. Duct diameter 4" or greater.<br />

2. Make an accurate traverse per sketch below and average the<br />

readings.<br />

3. Provided smooth, straight duct sections 10 diameters in<br />

length both upstream and downstream from the pitot tube.<br />

4. Provide an egg crate type straightener upstream from the<br />

pitot tube.<br />

D<br />

In making an air velocity check select a location as suggested<br />

above, connect tubing leads from both pitot tube connections to<br />

the manometer and insert in the duct with the tip directed into the<br />

air stream. If the manometer shows a minus indication reverse the<br />

tubes. With a direct reading manometer, air velocities will now be<br />

shown in feet per minute. In other types, the manometer will read<br />

velocity pressure in inches of water and the corresponding velocity<br />

will be found from the curves below. If circumstances do not<br />

permit an accurate traverse, center the pitot tube in the duct,<br />

determine the center velocity and multiply by a factor of .9 for the<br />

approximate average velocity. Field tests run in this manner<br />

should be accurate within plus or minus 5%.<br />

The velocity indicated is for dry air at 70°F., 29.9" Barometric<br />

Pressure and a resulting density of .075#/ cu. ft. For air at a temperature<br />

other than 70°F. refer to the curves below. For other<br />

variations from these conditions, corrections may be based<br />

upon the following data:<br />

Air Velocity = 1096.2 Pv<br />

D<br />

.35D<br />

.60D<br />

.80D<br />

.92D<br />

where Pv = velocity pressure in inches of water<br />

D = Air density in #/cu. ft.<br />

Air Density = 1.325 x PB T<br />

where PB= Barometric Pressure in inches of mercury<br />

T = Absolute Temperature (indicated temperature<br />

plus 460)<br />

Flow in cu. ft. per min. = Duct area in square feet x air<br />

velocity in ft. per min.<br />

13000<br />

12000<br />

11000<br />

1400°<br />

1200°<br />

1000°<br />

800°<br />

Air Velocity in Feet Per Minute<br />

10000<br />

9000<br />

8000<br />

7000<br />

6000<br />

5000<br />

4000<br />

600°<br />

300°<br />

100°<br />

70°<br />

400°<br />

200°<br />

40°<br />

3000<br />

2000<br />

1000<br />

0<br />

0<br />

.2 .4 .6 .8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0<br />

Gage Reading with Pilot Tube (Velocity Pressure) in Inches of Water<br />

REPRINTED WITH PERMISSION OF F.W. DWYER MANUFACTURING CO., MICHIGAN CITY, INDIANA<br />

17


CHAPTER 2 – FAN LAWS & BLOWER<br />

APPLICATION ENGINEERING<br />

RPM<br />

"R"<br />

Volume<br />

"V"<br />

For blower wheel with eight segments, Theoretical Flow = 8 x V x R<br />

<strong>Combustion</strong> air blowers are normally rated in terms of standard<br />

cubic feet (scf) of air; that is, 70°F air at Sea Level<br />

(29.92" Hg) barometric pressure. Density of this air is 0.075<br />

lb/cu ft, and its specific gravity is 1.0.<br />

Although fuel/air ratios are usually stated in cubic feet of air<br />

per cubic foot or gallon of fuel, it’s the weight of air per<br />

weight of fuel that’s important. As long as air temperature and<br />

pressure are close to standard conditions, blower and burner<br />

sizing charts can be used without correction. However, if air<br />

temperature, gauge pressure or altitude change the density of<br />

air by any significant amount, blower ratings have to be corrected<br />

from actual cubic feet (acf) to standard cubic feet to<br />

insure the proper weight flow of air reaches the burner.<br />

Centrifugal fans are basically constant volume devices; at a<br />

given rotational speed, they will deliver the same volume of<br />

air regardless of its density.<br />

If, for example, a blower has a wheel made up of eight segments,<br />

each with a volume V, and the wheel is rotating at R<br />

rpm, the theoretical flow rating of the blower will be 8 x V x<br />

R, because each fan wheel segment fills with air and empties<br />

itself once each revolution.<br />

The actual volume delivered is strictly a function of the carrying<br />

capacity of the wheel and its speed. Cfm, whether it is<br />

standard (scfm) or actual (acfm) is the same. Consequently, if<br />

the density of air is reduced by temperature, pressure, or both,<br />

the blower will deliver a lower weight flow of air, even<br />

though the measured volume hasn’t changed.<br />

Air density also affects the pressure developed by the blower<br />

and its power consumption. Because air density is related to<br />

temperature, pressure, and altitude (barometric pressure) – see<br />

pages 20 and 21 – it is possible to relate blower performance to<br />

these factors with a set of realtionships known as fan laws.<br />

18


FAN LAWS<br />

1.Effect of Blower Speed on Flow, Pressure and Power<br />

Consumption<br />

a. Flow vs. Speed: The flow rate (V) changes in direct<br />

ratio to the speed (S)<br />

V 2 = S 2<br />

V 1 S 1<br />

Example:Ablower operating at 1750 rpm (S 1 ) delivers<br />

1000 cfm (V 1 ). How many cfm (V 2 ) will it deliver<br />

if speed is increased to 3500 rpm (S 2 )?<br />

V 2 =V 1 x S 2 = 1000 x 3500 = 2000 cfm<br />

S 1<br />

1750<br />

b. Pressure vs. Speed:The pressure (P) changes as the<br />

square of the speed ratio (S)<br />

P 2 = S 2<br />

2<br />

P 1<br />

( S 1<br />

)<br />

Example:Ablower operating at 1750 rpm (S 1 ) develops<br />

1 psig (P 1 ) pressure. If speed is doubled to 3500<br />

rpm (S 2 ), what is the new pressure (P 2 )?<br />

P2 =P1 x S 2<br />

( 2 = 1 x 3500 2<br />

S 1<br />

) ( 1750 )<br />

= 1 x (2) 2 =1 x 4 = 4 psig<br />

c. Horsepower vs. Speed:The horsepower (HP) consumedchanges<br />

as the cube of the speed ratio (S)<br />

HP 2<br />

= S 2 3<br />

HP 1<br />

(<br />

S 1<br />

)<br />

Example:Ablower operating at 1750 rpm (S 1 ) requires<br />

a 5 hp (HP 1 ) motor. How many horsepower (HP 2 ) will<br />

be required to handle a speed increase to 3500 rpm (S 2 )?<br />

S 3 2 3500 3<br />

HP2 =HP1 ( = 5 x<br />

S 1<br />

) ( 1750 )<br />

=5 x (2) 3 =5 x 8 = 40 hp<br />

Laws 1a, 1b and 1c are known as the 1-2-3 ruleof centrifugal<br />

blowers. Volume increases in direct ratio, pressure as the<br />

square, and horsepower as the cube, of the speed ratio.<br />

2.Effect of Air Density on Flow, Pressure, and Power<br />

Consumption.<br />

a. Volume Flow vs. Density<br />

Volume flow (cfm) remains constant regardless of density.<br />

b. Weight Flow vs. Density:Weight flow (W) changes<br />

in direct ratio to the density (D) or specific gravity (G)<br />

W 2<br />

= D2 = G 2<br />

W 1 D 1 G 1<br />

Example:Ablower delivers 1500 lb/hr (20,000 cu ft/hr)<br />

(W 1 ) of air at standard conditions (density D 1 =0.075<br />

lb/cu ft). What will be the weight flow delivered if the air<br />

temperature is 250°F?<br />

From page 21, air density (D 2 ) at 250°F is .056 lb/cu ft.<br />

W 2 =W 1 x D2 =1500 x .056 =1120 lb/hr.<br />

D1 .075<br />

c. Pressure vs. Density:Pressure (P) changes in direct<br />

proportion to density (D) or specific gravity (G).<br />

P 2 = D 2 = G 2<br />

P 1 D 1 G 1<br />

Example: At sea level conditions (G 1 =1.0), a blower<br />

develops 28" w.c. pressure (P 1 ). What pressure (P 2 ) will it<br />

develop at 4000 ft. altitude?<br />

From page 20, air gravity (G 2 ) at 4000 ft is 0.86.<br />

P2 =P1 x G 2 =28 x .86 =24.1" w.c.<br />

G 1 1.0<br />

d. Horsepower vs. Density:Horsepower (HP) consumed<br />

changes in direct proportion to density (D) or specific<br />

gravity (G).<br />

HP 2 = D 2 = G 2<br />

HP 1 D 1 G 1<br />

Example: Astandard air (G 1 ) blower requires a 10 hp<br />

(HP 1 ) motor. What horsepower (HP 2 ) is required if this<br />

blower is to handle a gas of 0.5 specific gravity (G 2 )?<br />

The gravity of standard air is 1.0, so<br />

HP2 =HP1 x G 2 =10 x 0.5 =5 hp<br />

G 1 1.0<br />

Re-rating blowers for nonstandard conditions<br />

As fan laws 2b, 2c, and 2d show, blower weight flow,<br />

pressure, and horsepower all change in direct proportion to<br />

air density or gravity. While these relationships are important<br />

to know, it’s usually more important to know how to<br />

select a blower to compensate for nonstandard conditions.<br />

The following example shows how it is done.<br />

Example:Aburner is rated a 1 million Btu/hr. at an air pressure<br />

of 20"w.c., including piping and control valve drops. If<br />

the burner is to be installed at 6000 feet altitude, select a<br />

blower that will permit the burner’s input rating to be maintained.<br />

Solution: Use the rule-of-thumb of 100 Btu per standard<br />

cubic foot of air to estimate blower flow requirements:<br />

1,000,000 Btu/hr ÷ 100 Btu/scf air = 10,000 scfh air.<br />

This is the blower’s standard (sea level) rating.<br />

At 6,000 feet, the specific gravity of air is 0.80 (see page 20).<br />

To maintain a weight flow of air through the burner<br />

equivalent to 10,000 scfh, the volume flow through the<br />

burner has to be increased to offset the air’s lower density.<br />

V2 = V1 x G 1 = 10,000 cfh x 1.00 = 12,500 cfh<br />

G 2 0.80<br />

In other words, 12,500 cfh air at 6000 feet has the same<br />

weight as 10,000 cfh at sea level.<br />

The pressure required now will be adjusted for the new air<br />

flow, taking into account the lower density of the air.<br />

2 2<br />

P 2 = P 1 x V 2 V 2 = G 1<br />

( V 1<br />

) ( V 1<br />

) G 2<br />

P 2 = P 1 x G 1 = 20"w.c. x 1.00 = 25"w.c.<br />

G 2 0.80<br />

Because the pressure generated by the blower decreases<br />

with air density, the sea level pressure rating has to be higher<br />

to compensate for the loss of outlet pressure at higher altitudes.<br />

P 1 = P 2 x G 1 = 25"w.c. x 1.00 = 31.25"w.c.<br />

G 2 0.80<br />

Therefore, the blower must be capable of delivery at least<br />

12,500 cfh at 31.25"w.c. at sea level to satisfy the needs of<br />

the burner at 6000 feet altitude.<br />

19


Blower horsepower requirements<br />

Blower horsepower increases with the air flow delivered<br />

and the pressure developed. The four equations below can be<br />

used to predict blower horsepower consumption. They differ<br />

only in the flow and pressure units used. The term “efficiency”<br />

is the overall blower efficiency – a composite of fan,<br />

motor and drive train efficiencies – expressed as a decimal.<br />

hp =<br />

scfm x "w.c.<br />

hp =<br />

scfm x osi<br />

6356 x efficiency 3670 x efficiency<br />

hp =<br />

scfh x "w.c.<br />

hp =<br />

scfh x osi<br />

381,360 x efficiency 220,200 x efficiency<br />

Blowers used as suction fans<br />

When a blower is used as a suction device discharging to<br />

atmosphere, the amount of suction or vacuum developed can<br />

be calculated from this relationship:<br />

( )<br />

V = P – P 2 x 27.7, where<br />

B + P<br />

V = suction or vacuum, " w.c.<br />

P = Absolute atmospheric pressure, psia, at the location where<br />

the blower is operated<br />

B = Rated blower discharge pressure, psig (psig = " w.c. ÷ 27.7)<br />

Example: A blower with a catalog pressure rating of 21" w.c.<br />

is used as a suction fan on an installation at 1500 ft altitude.<br />

How much suction will it develop?<br />

P at 1500 ft = 13.9 psia (from table below)<br />

B = 21 ÷ 27.7 = .76 psig<br />

V = ( 13.9 - )<br />

(13.9)2 x 27.7 = 20 "w.c.<br />

.76 + 13.9<br />

THE EFFECT OF PRESSURE ON AIR<br />

Basis: 70°F dry air at sea level<br />

(29.92" Hg) barometric pressure<br />

THE EFFECT OF ALTITUDE ON AIR<br />

Basis: 70°F dry air at sea level<br />

(29.92" Hg) barometric pressure<br />

Gauge Absolute Specific<br />

Pressure, Pressure, Density Specific Volume<br />

PSIG PSIA Lb./Cu. Ft. Gravity Cu. Ft./Lb.<br />

0 14.7 0.07500 1.000 13.33<br />

1 15.7 0.08010 1.068 12.48<br />

2 16.7 0.08520 1.136 11.74<br />

3 17.7 0.09031 1.204 11.07<br />

4 18.7 0.09541 1.272 10.48<br />

5 19.7 0.10051 1.340 9.95<br />

10 24.7 0.12602 1.680 7.94<br />

15 29.7 0.15153 2.020 6.60<br />

20 34.7 0.17704 2.361 5.65<br />

25 39.7 0.20255 2.701 4.94<br />

30 44.7 0.22806 3.041 4.38<br />

35 49.7 0.25357 3.381 3.94<br />

40 54.7 0.27908 3.721 3.58<br />

45 59.7 0.30459 4.061 3.28<br />

50 64.7 0.33010 4.401 3.03<br />

60 74.7 0.38112 5.082 2.62<br />

70 84.7 0.43214 5.762 2.31<br />

80 94.7 0.48316 6.442 2.07<br />

90 104.7 0.53418 7.122 1.87<br />

100 114.7 0.58520 7.802 1.71<br />

125 139.7 0.71276 9.503 1.40<br />

150 164.7 0.84031 11.204 1.19<br />

175 189.7 0.96786 12.905 1.03<br />

200 214.7 1.09541 14.605 0.91<br />

250 264.7 1.35051 18.007 0.74<br />

300 314.7 1.60561 21.408 0.62<br />

400 414.7 2.11582 28.211 0.47<br />

500 514.7 2.62602 35.014 0.38<br />

Specific<br />

Altitude Barometric Pressure, Density Specific Volume<br />

Ft. "Hg PSIA Lb./Cu. Ft. Gravity Cu. Ft./Lb.<br />

0 29.92 14.7 .07500 1.00 13.33<br />

500 29.38 14.4 .07365 .98 13.58<br />

1000 28.86 14.2 .07234 .96 13.82<br />

1500 28.33 13.9 .07101 .95 14.08<br />

2000 27.82 13.7 .06974 .93 14.34<br />

2500 27.31 13.4 .06846` .91 14.61<br />

3000 26.81 13.2 .06720 .90 14.88<br />

3500 26.32 12.9 .06598 .88 15.16<br />

4000 25.84 12.7 .06477 .86 15.44<br />

4500 25.36 12.5 .06357 .85 15.73<br />

5000 24.89 12.2 .06239 .83 16.03<br />

5500 24.43 12.0 .06124 .82 16.33<br />

6000 23.98 11.8 .06011 .80 16.64<br />

6500 23.53 11.6 .05898 .79 16.95<br />

7000 23.09 11.3 .05788 .77 17.28<br />

7500 22.65 11.1 .05678 .76 17.61<br />

8000 22.22 10.9 .05570 .74 17.95<br />

8500 21.80 10.7 .05465 .73 18.30<br />

9000 21.38 10.5 .05359 .71 18.66<br />

9500 20.98 10.3 .05259 .70 19.01<br />

10000 20.58 10.1 .05159 .69 19.38<br />

15000 16.88 8.29 .04231 .56 23.63<br />

20000 13.75 6.76 .03447 .46 29.01<br />

Helpful conversions:<br />

Altitude in meters x 3.28 = Altitutde in feet<br />

Barometric pressure in "Hg ÷ 2.036 = Barometric pressure<br />

in psia.<br />

20


THE EFFECT OF TEMPERATURE ON AIR<br />

Basis: 70°F dry air at sea level (29.92" Hg) barometric pressure<br />

Explanation of terms:<br />

Absolute Temperature Ratio: Temperature, °F + 460<br />

530<br />

Specific Gravity: Density at stated temperature<br />

.07500<br />

Specific Volume: 1<br />

Density, lb/cu. ft.<br />

Absolute<br />

Specific<br />

Temp. Temp. Density Specific Volume<br />

°F Ratio Lb./Cu. Ft. Gravity Cu. Ft./Lb.<br />

-60 .7547 .09938 1.325 10.06<br />

-40 .7925 .09464 1.262 10.57<br />

-30 .8113 .09244 1.233 10.82<br />

-20 .8302 .09034 1.205 11.07<br />

-10 .8491 .08833 1.178 11.32<br />

0 .8679 .08641 1.152 11.57<br />

20 .9057 .08281 1.104 12.08<br />

40 1.019 .07361 .981 13.58<br />

60 .9811 .07644 1.019 13.08<br />

70 1.000 .07500 1.000 13.33<br />

80 .9434 .07361 1.060 12.58<br />

90 1.038 .07227 .964 13.84<br />

100 1.057 .07098 .946 14.09<br />

110 1.075 .06974 .930 14.34<br />

120 1.094 .06853 .914 14.59<br />

130 1.113 .06737 .898 14.84<br />

140 1.132 .06624 .883 15.09<br />

150 1.151 .06516 .869 15.35<br />

160 1.170 .06411 .855 15.60<br />

170 1.189 .06310 .841 15.85<br />

180 1.208 .06211 .828 16.10<br />

190 1.226 .06115 .815 16.35<br />

200 1.245 .06023 .803 16.60<br />

210 1.264 .05933 .791 16.86<br />

220 1.283 .05846 .779 17.11<br />

230 1.302 .05761 .768 17.36<br />

240 1.321 .05679 .757 17.61<br />

250 1.340 .05599 .747 17.86<br />

260 1.358 .05521 .736 18.11<br />

270 1.377 .05445 .726 18.36<br />

280 1.396 .05372 .716 18.62<br />

290 1.415 .05300 .707 18.87<br />

300 1.434 .05230 .697 19.12<br />

310 1.453 .05162 .688 19.37<br />

320 1.472 .05096 .679 19.62<br />

330 1.491 .05032 .671 19.87<br />

340 1.509 .04969 .663 20.13<br />

350 1.528 .04907 .654 20.38<br />

360 1.547 .04848 .646 20.63<br />

370 1.566 .04789 .639 20.88<br />

380 1.585 .04732 .631 21.13<br />

390 1.604 .04676 .623 21.38<br />

400 1.623 .04622 .616 21.64<br />

410 1.642 .04569 .609 21.89<br />

420 1.660 .04517 .602 22.14<br />

430 1.679 .04466 .595 22.39<br />

440 1.698 .04417 .589 22.64<br />

450 1.717 .04368 .582 22.89<br />

460 1.736 .04321 .576 23.14<br />

470 1.755 .04274 .570 23.40<br />

480 1.774 .04229 .564 23.65<br />

490 1.792 .04184 .558 23.90<br />

500 1.811 .04141 .552 24.15<br />

510 1.830 .04098 .546 24.40<br />

Absolute<br />

Specific<br />

Temp. Temp. Density Specific Volume<br />

°F Ratio Lb./Cu. Ft. Gravity Cu. Ft./Lb.<br />

520 1.849 .04056 .541 24.65<br />

530 1.868 .04015 .535 24.91<br />

540 1.887 .03975 .530 25.16<br />

550 1.906 .03936 .525 25.41<br />

560 1.925 .03897 .520 25.66<br />

570 1.943 .03859 .515 25.91<br />

580 1.962 .03822 .510 26.16<br />

590 1.981 .03786 .505 26.42<br />

600 2.000 .03750 .500 26.67<br />

610 2.019 .03715 .495 26.92<br />

620 2.038 .03681 .491 27.17<br />

630 2.057 .03647 .486 27.42<br />

640 2.075 .03614 .482 27.67<br />

650 2.094 .03581 .477 27.92<br />

660 2.113 .03549 .473 28.18<br />

670 2.132 .03518 .469 28.43<br />

680 2.151 .03487 .465 28.68<br />

690 2.170 .03457 .461 28.93<br />

700 2.189 .03427 .457 29.18<br />

710 2.208 .03397 .453 29.43<br />

720 2.226 .03369 .449 29.69<br />

730 2.245 .03340 .445 29.94<br />

740 2.264 .03313 .442 30.19<br />

750 2.283 .03285 .438 30.44<br />

760 2.302 .03258 .434 30.69<br />

770 2.321 .03232 .431 30.94<br />

780 2.340 .03206 .427 31.19<br />

790 2.358 .03180 .424 31.45<br />

800 2.377 .03155 .421 31.70<br />

825 2.425 .03093 .412 32.33<br />

850 2.472 .03034 .405 32.96<br />

875 2.519 .02978 .397 33.58<br />

900 2.566 .02923 .390 34.21<br />

925 2.613 .02870 .383 34.84<br />

950 2.660 .02819 .376 35.47<br />

975 2.708 .02770 .369 36.10<br />

1000 2.755 .02723 .363 36.73<br />

1025 2.802 .02677 .357 37.36<br />

1050 2.849 .02623 .350 37.99<br />

1100 2.943 .02548 .340 39.25<br />

1150 3.033 .02469 .329 40.50<br />

1200 3.132 .02395 .319 41.76<br />

1250 3.226 .02325 .310 43.02<br />

1300 3.321 .02259 .301 44.28<br />

1350 3.415 .02196 .293 45.53<br />

1400 3.509 .02137 .285 46.79<br />

1500 3.698 .02028 .270 49.31<br />

1600 3.887 .01930 .257 51.81<br />

1700 4.075 .01840 .245 54.35<br />

1800 4.264 .01759 .235 56.85<br />

1900 4.453 .01684 .225 59.38<br />

2000 4.642 .01616 .215 61.88<br />

2100 4.830 .01553 .207 64.39<br />

2200 5.019 .01494 .199 66.93<br />

21


CHAPTER 3 – GAS<br />

PHYSICAL PROPERTIES OF COMMERCIAL FUEL GASES<br />

Constituents – % by Volume Density, Specific<br />

Specific Lb per Volume<br />

No. Gas CH 4 C 2 H 6 C 3 H 8 C 4 H 10 CO H 2 CO 2 O 2 N 2 Gravity Cu Ft Cu Ft/Lb<br />

1 Acetylene – – – (100% C 2 H 2 ) – – – 0.91 .07 14.4<br />

2 Blast Furnace Gas – – – – 27.5 1 11.5 – 60 1.02 .078 12.8<br />

3 Butane (natural gas) – – 7 93 – – – – – 1.95 .149 6.71<br />

4 Butylene (Butene) – – – (100% C 4 H 8 ) – – – 1.94 .148 6.74<br />

5 Carbon Monoxide – – – – 100 – – – – 0.97 .074 13.5<br />

6 Carburetted Water Gas 10.2 (6.1% C 2 H 4 , 2.8% C 6 H 6 ) 34 40.5 3 0.5 2.9 0.63 .048 20.8<br />

7 Coke Oven Gas 32.1 (3.5% C 2 H 4 , 0.5% C 6 H 6 ) 6.3 46.5 2.2 0.8 8.1 0.44 .034 29.7<br />

8 Digester (Sewage) Gas 67 – – (8% H 2 O) – 25 – – 0.80 .062 16.3<br />

9 Ethane – 100 – – – – – – – 1.05 .080 12.5<br />

10 Hydrogen – – – – – 100 – – – 0.07 .0054 186.9<br />

11 Methane 100 – – – – – – – – 0.55 .042 23.8<br />

12 Natural (Birmingham, AL) 90 5 – – – – – – 5 0.60 .046 21.8<br />

13 Natural (Pittsburgh, PA) 83.4 15.8 – – – – – – 0.8 0.61 .047 21.4<br />

14 Natural (Los Angeles, CA) 77.5 16.0 – – – – 6.5 – – 0.70 .054 18.7<br />

15 Natural (Kansas City, MO) 84.1 6.7 – – – – 0.8 – 8.4 0.63 .048 20.8<br />

16 Natural (Groningen, 81.3 2.9 0.4 0.1 – – 0.9 – 14.4 0.64 .048 20.7<br />

Netherlands)<br />

17 Natural (Midlands Grid, U.K.) 91.8 3.5 0.8 0.3 – – 0.4 – 2.8 0.61 .046 21.8<br />

18 Producer (Wellman-Galusha) 2.3 – – – 25 14.5 4.7 – 52.7 0.84 .065 15.4<br />

19 Propane (natural gas) – – 100 – – – – – – 1.52 .116 8.61<br />

20 Propylene (Propene) – – – (100% C 3 H 6 ) – – – 1.45 .111 9.02<br />

21 Sasol (South Africa) 26 – – – 22 48 – 0.5 1 0.42 .032 31.3<br />

22 Water Gas (bituminous) 4.6 (0.4% C 2 H 4 , 0.3% C 6 H 6 ) 28.2 32.5 5.5 0.9 27.6 0.71 .054 18.7<br />

COMBUSTION PROPERTIES OF COMMERCIAL FUEL GASES<br />

Air/Gas Ratio, Flammability Limits, Ignition Temperature & Flame Velocity<br />

Limits of<br />

Stoichiometric Flammability Minimum Maximum<br />

Air/Gas Ratio % Gas in Ignition Flame Velocity<br />

Cu Ft Air/ Lb Air/ Air/Gas Mixture Temperature in Air,<br />

No. Gas Cu Ft Gas Lb Gas Lean Rich in Air, °F Ft/Sec*<br />

1 Acetylene 11.91 13.26 2.5 80 581 9.4<br />

2 Blast Furnace Gas 0.68 0.67 45 72 – –<br />

3 Butane (natural gas) 30.47 15.63 1.86 8.41 826 2.8<br />

4 Butylene (Butene) 28.59 14.77 1.7 9 829 3.2<br />

5 Carbon Monoxide 2.38 2.46 12 74 1128 2.0<br />

6 Carburetted Water Gas 4.60 7.36 4.2 42.9 – –<br />

7 Coke Oven Gas 4.99 11.27 4.5 31.5 – –<br />

8 Digester (Sewage) Gas 6.41 7.97 8 17 – –<br />

9 Ethane 16.68 15.98 3.15 12.8 882 2.8<br />

10 Hydrogen 2.38 33.79 4 74.2 1065 16.0<br />

11 Methane 9.53 17.23 5 15 1170 2.2<br />

12 Natural (Birmingham, AL) 9.41 15.68 7.03 15.77 – –<br />

13 Natural (Pittsburgh, PA) 10.58 17.31 4.6 14.7 – –<br />

14 Natural (Los Angeles, CA) 10.05 14.26 4.9 15.6 – –<br />

15 Natural (Kansas City, MO) 9.13 14.59 5.4 16.3 – –<br />

16 Natural (Groningen, 8.41 13.45 6.1 15 1238 1.18<br />

Netherlands)<br />

17 Natural (Midlands Grid, U.K.) 9.8 16.13 5 15 1300 0.98<br />

18 Producer (Wellman-Galusha) 1.30 1.56 16.4 69.4 – –<br />

19 Propane (natural gas) 23.82 15.73 2.37 9.50 898 2.7<br />

20 Propylene (Propene) 21.44 14.77 2 11.1 856 3.3<br />

21 Sasol (South Africa) 4.13 9.84 5.3 37.4 – –<br />

22 Water Gas (bituminous) 2.01 2.86 8.9 61 – –<br />

*Uniform flame speed in a 1" diameter tube. Flame speeds increase in larger diameter tubes.<br />

22


COMBUSTION PROPERTIES OF COMMERCIAL FUEL GASES<br />

Heating Value, Heat Release & Flame Temperature<br />

Heating Value<br />

Theoretical<br />

Heat release, Btu Flame<br />

Btu/cu ft Btu/lb Temperature<br />

No. Gas Gross Net Gross Net Per Cu Ft Air Per Lb Air °F<br />

1 Acetylene 1498 1447 21,569 20,837 125.8 1677 4250<br />

2 Blast Furnace Gas 92 92 1178 1178 135.3 1804 2650<br />

3 Butane (natural gas) 3225 2977 21,640 19,976 105.8 1411 3640<br />

4 Butylene (Butene) 3077 2876 20,780 19,420 107.6 1435 3810<br />

5 Carbon Monoxide 323 323 4368 4368 135.7 1809 3960<br />

6 Carburetted Water Gas 550 508 11,440 10,566 119.6 1595 3725<br />

7 Coke Oven Gas 574 514 17,048 15,266 115.0 1533 3610<br />

8 Digester (Sewage) Gas 690 621 11,316 10,184 107.6 1407 3550<br />

9 Ethane 1783 1630 22,198 20,295 106.9 1425 3710<br />

10 Hydrogen 325 275 61,084 51,628 136.6 1821 3960<br />

11 Methane 1011 910 23,811 21,433 106.1 1415 3640<br />

12 Natural (Birmingham, AL) 1002 904 21,844 19,707 106.5 1420 3565<br />

13 Natural (Pittsburgh, PA) 1129 1021 24,161 21,849 106.7 1423 3562<br />

14 Natural (Los Angeles, CA) 1073 971 20,065 18,158 106.8 1424 3550<br />

15 Natural (Kansas City, MO) 974 879 20,259 18,283 106.7 1423 3535<br />

16 Natural (Groningen, 941 849 19,599 17,678 111.9 1492 3380<br />

Netherlands)<br />

17 Natural (Midlands Grid, U.K.) 1035 902 22,500 19,609 105.6 1408 3450<br />

18 Producer (Wellman-Galusha) 167 156 2650 2476 128.5 1713 3200<br />

19 Propane (natural gas) 2572 2365 21,500 19,770 108 1440 3660<br />

20 Propylene (Propene) 2322 2181 20,990 19,630 108.8 1451 3830<br />

21 Sasol (South Africa) 500 443 14,550 13,016 116.3 1551 3452<br />

22 Water Gas (bituminous) 261 239 4881 4469 129.9 1732 3510<br />

COMBUSTION PROPERTIES OF COMMERCIAL FUEL GASES<br />

<strong>Combustion</strong> Products & %CO 2<br />

<strong>Combustion</strong> Products, Cu Ft/Cu Ft Gas <strong>Combustion</strong> Products, Lb/Lb Gas Ultimate<br />

CO 2<br />

No. Gas CO 2 H 2 O N 2 Total CO 2 H 2 O N 2 Total %*<br />

1 Acetylene 2.00 1.00 9.41 12.41 3.38 0.69 10.19 14.26 17.5<br />

2 Blast Furnace Gas 0.39 0.02 1.14 1.54 .59 — 1.08 1.67 25.5<br />

3 Butane (natural gas) 3.93 4.93 24.07 32.93 3.09 1.59 11.95 16.63 14.0<br />

4 Butylene (Butene) 4.00 4.00 22.59 30.59 3.14 1.29 11.34 15.77 15.0<br />

5 Carbon Monoxide 1.00 — 1.88 2.88 1.57 — 1.89 3.46 34.7<br />

6 Carburetted Water Gas 0.76 0.87 3.66 5.29 1.85 0.87 5.64 8.36 17.2<br />

7 Coke Oven Gas 0.51 1.25 4.02 5.78 1.76 1.76 8.75 12.27 11.2<br />

8 Digester (Sewage) Gas 0.92 1.42 5.44 7.78 1.74 1.10 6.53 9.37 14.5<br />

9 Ethane 2.00 3.00 13.18 18.18 2.93 1.8 12.25 16.98 13.2|<br />

10 Hydrogen — 1.00 1.88 2.88 — 8.89 25.90 34.79 0<br />

11 Methane 1.00 2.00 7.53 10.53 2.75 2.25 13.23 18.23 11.7<br />

12 Natural (Birmingham, AL) 1.00 2.02 7.48 10.50 2.54 2.11 12.03 16.68 11.8<br />

13 Natural (Pittsburgh, PA) 1.15 2.22 8.37 11.73 2.86 2.27 13.18 18.31 12.1<br />

14 Natural (Los Angeles, CA) 1.16 2.10 7.94 11.20 2.51 1.87 10.88 15.26 12.7<br />

15 Natural (Kansas City, MO) 0.98 1.95 7.30 10.23 2.39 1.95 11.25 15.59 11.9<br />

16 Natural (Groningen, 0.89 1.73 6.74 9.36 2.17 1.73 10.45 14.35 11.7<br />

Netherlands)<br />

17 Natural (Midlands Grid, U.K.) 1.05 2.19 7.94 11.78 2.67 2.29 12.84 17.80 11.7<br />

18 Producer (Wellman-Galusha) 0.34 0.17 1.59 2.11 0.61 0.13 1.82 2.56 17.6<br />

19 Propane (natural gas) 3.00 4.17 18.82 25.99 3.00 1.70 12.03 16.73 13.7<br />

20 Propylene (Propene) 3.00 3.00 16.94 22.94 3.14 1.29 11.34 15.77 15.0<br />

21 Sasol (South Africa) 0.48 1.00 3.28 4.76 1.76 1.50 7.63 10.89 12.8<br />

22 Water Gas (bituminous) 0.41 0.47 1.86 2.74 0.89 0.42 2.55 3.86 18.0<br />

*In dry flue gas sample<br />

23


PROPANE/AIR & BUTANE/AIR MIXTURES<br />

EQUIVALENT BTU TABLES<br />

PROPANE/AIR MIXTURE<br />

Equivalent<br />

Propane-<br />

Air<br />

B.t.u. Specific Mixture Specific<br />

Kind of Gas Content Gravity B.t.u. Gravity<br />

Carbureted Water Gas . . . . . . . . . .517 .65 690 1.14<br />

Mixed Water and Coke Oven . . . . . .530 .46 855 1.17<br />

Coke Oven . . . . . . . . . . . . . . . . . . .590 .42 1000 1.20<br />

Natural . . . . . . . . . . . . . . . . . . . . . .900 .56 1100 1.23<br />

Natural . . . . . . . . . . . . . . . . . . . . .1050 .60 1400 1.28<br />

Natural . . . . . . . . . . . . . . . . . . . . .1140 .65 1560 1.32<br />

BUTANE/AIR MIXTURE<br />

Equivalent<br />

Butane-<br />

Air<br />

B.t.u. Specific Mixture Specific<br />

Kind of Gas Content Gravity B.t.u. Gravity<br />

Carbureted Water Gas . . . . . . . . . .517 .65 708 1.20<br />

Mixed Water and Coke Oven . . . . . .530 .46 870 1.25<br />

Coke Oven . . . . . . . . . . . . . . . . . . .590 .42 1058 1.31<br />

Natural . . . . . . . . . . . . . . . . . . . . . .900 .56 1380 1.41<br />

Natural . . . . . . . . . . . . . . . . . . . . .1050 .60 1550 1.46<br />

Natural . . . . . . . . . . . . . . . . . . . . .1140 .65 1680 1.50<br />

NOTE: The B.t.u. content and specific gravity figures are representative figures and will vary according to area. Therefore, these tables should be used as a guide only.<br />

MIXTURE SPECIFICATIONS<br />

PROPANE/AIR MIXTURES<br />

BUTANE/AIR MIXTURES<br />

B.t.u. per Percentage Percentage Percentage Specific Percentage Percentage Percentage Specific<br />

Cubic Foot of Propane of Air by of Oxygen by Gravity of of Butane of Air by of Oxygen by Gravity of<br />

of MIxture by Volume Volume Volume (Orsat) the MIxture by Volume Volume Volume (Orsat) the Mixture<br />

3200 — — — — 100.00 0.00 0.000 1.950<br />

3150 — — — — 98.44 1.56 0.328 1.935<br />

3100 — — — — 96.88 3.12 0.656 1.920<br />

3050 — — — — 95.32 4.68 0.984 1.905<br />

3000 — — — — 93.75 6.25 1.312 1.891<br />

2950 — — — — 92.20 7.80 1.643 1.875<br />

2900 — — — — 90.62 9.38 1.967 1.861<br />

2850 — — — — 89.08 10.92 2.297 1.846<br />

2800 — — — — 87.51 12.49 2.625 1.831<br />

2750 — — — — 85.95 14.05 2.953 1.817<br />

2700 — — — — 84.38 15.62 3.280 1.802<br />

2650 — — — — 82.82 17.18 3.612 1.786<br />

2600 — — — — 81.25 18.75 3.935 1.771<br />

2550 100.00 0.00 0.000 1.523 79.70 20.30 4.268 1.755<br />

2500 98.04 1.96 0.409 1.513 78.18 21.82 4.590 1.744<br />

2450 96.08 3.92 0.819 1.502 76.58 23.42 4.921 1.728<br />

2400 94.12 5.88 1.288 1.492 75.00 25.00 5.249 1.712<br />

2350 92.16 7.84 1.639 1.482 73.44 26.56 5.576 1.698<br />

2300 90.19 9.81 2.050 1.472 71.86 28.14 5.899 1.683<br />

2250 88.24 11.76 2.458 1.461 70.30 29.70 6.238 1.668<br />

2200 86.27 13.73 2.869 1.451 68.79 31.21 6.561 1.653<br />

2150 84.31 15.69 3.279 1.441 67.20 32.80 6.889 1.638<br />

2100 82.35 17.65 3.688 1.431 65.63 34.37 7.219 1.623<br />

2050 80.39 19.61 4.098 1.420 64.09 35.91 7.548 1.608<br />

2000 78.43 21.56 4.506 1.410 62.52 37.48 7.869 1.593<br />

1950 76.47 23.53 4.918 1.400 60.96 39.04 8.200 1.579<br />

1900 74.51 25.49 5.317 1.390 59.38 40.62 8.542 1.564<br />

1850 72.55 27.45 5.737 1.379 57.87 42.13 8.868 1.550<br />

1800 70.58 29.42 6.149 1.369 56.25 43.75 9.162 1.535<br />

1750 68.62 31.38 6.558 1.359 54.69 45.31 9.500 1.520<br />

1700 66.67 33.33 6.964 1349 53.17 46.83 9.850 1.505<br />

1650 64.70 35.30 7.378 1.338 51.60 48.40 10.180 1.490<br />

1600 62.74 37.26 7.787 1.328 50.00 50.00 10.488 1.475<br />

1550 60.78 39.22 8.197 1.318 48.50 51.50 10.817 1.461<br />

1500 58.82 41.18 8.606 1.308 46.92 53.08 11.130 1.446<br />

1450 56.86 43.14 9.016 1.297 45.35 54.65 11.490 1.431<br />

1400 54.90 45.10 9.246 1.287 43.75 56.25 11.810 1.416<br />

1350 52.94 47.06 9.835 1.277 42.22 57.78 12.130 1.401<br />

1300 50.98 49.02 10.245 1.267 40.60 59.40 12.481 1.386<br />

1250 49.02 50.98 10.654 1.256 39.09 60.91 12.795 1.371<br />

1200 47.06 52.94 11.064 1246 37.50 62.50 13.137 1.356<br />

1150 45.09 54.91 11.476 1.236 35.92 64.08 13.462 1.340<br />

1100 43.13 56.87 11.886 1.226 34.38 65.62 13.787 1.326<br />

1050 41.17 58.83 12.295 1.215 32.80 67.21 14.100 1.312<br />

1000 39.21 60.79 12.705 1.205 31.25 68.75 14.412 1.296<br />

950 37.25 62.75 13.115 1.195 29.75 70.25 14.775 1.282<br />

900 35.29 64.71 13.524 1.185 28.20 71.80 15.100 1.266<br />

850 33.33 66.67 13.934 1.174 26.55 73.45 15.425 1.252<br />

800 31.37 68.63 14.344 1.164 25.00 75.00 15.712 1.237<br />

750 29.41 70.59 14.753 1.154 23.50 76.50 16.081 1.223<br />

700 27.45 72.55 15.163 1.114 21.88 78.12 16.400 1.206<br />

650 25.49 74.51 15.573 1.133 20.38 79.62 16.750 1.194<br />

600 23.53 76.47 15.982 1.123 18.75 81.25 17.081 1.178<br />

550 21.56 78.44 16.394 1.113 17.25 82.75 17.412 1.163<br />

500 19.61 80.39 16.892 1.103 15.63 84.37 17.712 1.148<br />

450 17.65 82.35 17.211 1.092 14.13 85.87 18.081 1.135<br />

400 15.69 84.31 17.621 1.082 12.50 87.50 18.375 1.120<br />

350 13.73 86.27 18.031 1.072 11.00 89.00 18.687 1.105<br />

300 11.76 88.24 18.442 1.062 9.38 90.62 19.031 1.089<br />

250 9.80 90.20 18.852 1.051 7.75 92.25 19.313 1.074<br />

200 7.84 92.16 19.261 1.041 6.25 93.75 19.687 1.059<br />

150 5.88 94.12 19.670 1.031 4.75 95.25 20.000 1.045<br />

100 3.92 96.08 20.081 1.021 3.13 96.87 20.342 1.029<br />

24


CHAPTER 4 – OIL<br />

FUEL OIL SPECIFICATIONS PER ANSI/ASTM D 396-79 A<br />

Carbon<br />

Residue<br />

Water on Distillation Specific Cop-<br />

Flash Pour and 10% Temperatures, Saybolt Viscosity, s D Kinematic Viscosity, cSt D Gravity per<br />

Point, Point, Sedi- Bot- Ash, °C(°F) 60/60°F Strip Sul-<br />

°C °C ment, toms, weight 10% Universal at Furol at 50°C At 38°C At 40°C At 50°C (deg Corro- fur,<br />

Grade of (°F) (°F) vol % % % Point 90% Point 38°C(100°F) 122°F) (100°F) (104°F) (122°F) API) sion %<br />

Fuel Oil Min Max Max Max Max Max Min Max Min Max Min Max Min Max Min Max Min Max Max Max Max<br />

No. 1 38 -18 C 0.05 0.15 – 215 — 288 — — — — 1.4 2.2 1.3 2.1 — — 0.8499 No. 3 0.5<br />

A distillate oil (100) (0) (420) (550) (35 min)<br />

intended for<br />

vaporizing pottype<br />

burners and<br />

other burners<br />

requiring this<br />

grade of fuel<br />

No. 2 38 -6 C 0.05 0.35 — — 282 C 338 (32.6) (37.9) — — 2.0 C 3.6 1.9 C 3.4 — — 0.8762 No. 3 0.5 B<br />

A distillate oil for(100) (20) (540) (640) (30 min)<br />

general purpose<br />

heating for use in<br />

burners not<br />

requiring No. 1<br />

fuel oil<br />

No. 4 55 -6 C 0.50 — 0.10 — — — (45) (125) — — 5.8 26.4 F 5.5 24.0 F — — — — —<br />

Preheating not(130) (20)<br />

usually required<br />

for handling<br />

or burning<br />

No. 5 (Light) 55 — 1.00 — 0.10 — — — (>125) (300) — — >26.4 65 F >24.0 58 F — — — — —<br />

Preheating may(130)<br />

be required<br />

depending on<br />

climate and<br />

equipment<br />

No. 5 (Heavy) 55 — 1.00 — 0.10 — — — (>300) (900) (23) (40) >65 194 F >58 168 F (42) (81) — — —<br />

Preheating may(130)<br />

be required<br />

for burning and,<br />

in cold climates,<br />

may be required<br />

for handling<br />

No. 6 60 G 2.00 E — — — — — (>900) (9000) (>45) (300) — — — — >92 638 F — — —<br />

Preheating (140)<br />

required for<br />

burning and<br />

handling<br />

A<br />

It is the intent of these classifications that failure to meet any requirement of a given grade does not automatically place an oil in the next lower<br />

grade unless in fact it meets all requirements of the lower grade.<br />

B<br />

In countries outside the United States other sulfur limits may apply.<br />

C<br />

Lower or higher pour points may be specified whenever required by conditions of storage or use. When pour point less than -18°C (0°F) is<br />

specified, the minimum viscosity for grade No. 2 shall be 1.7 cSt (31.5 SUS) and the minimum 90% point shall be waived.<br />

D<br />

Viscosity values in parentheses are for information only and not necessarily limiting.<br />

E<br />

The amount of water by distillation plus the sediment by extraction shall not exceed 2.00%. The amount of sediment by extraction shall not<br />

exceed 0.50%. A deduction in quanity shall be made for all water and sediment in excess of 1.0%.<br />

F<br />

Where low sulfur fuel oil is required, fuel oil failing in the viscosity range of a lower numbered grade down to and including No. 4 may be supplied<br />

by agreement between purchaser and supplier. The viscosity range of the initial shipment shall be identified and advance notice shall be<br />

required when changing from one viscosity range to another. This notice shall be in sufficient time to permit the user to make the necessary<br />

adjustments.<br />

G<br />

Where low sulfur fuel oil is required. Grade 6 fuel oil will be classified as low pour + 15°C (60°F) max or high pour (no max). Low pour fuel oil<br />

should be used unless all tanks and lines are heated.<br />

© COPYRIGHT ASTM • REPRINTED WITH PERMISSION<br />

25


TYPICAL PROPERTIES OF COMMERCIAL FUEL OILS IN THE U.S.<br />

Grade of<br />

Carbon Residue,<br />

Fuel Oil Flash Point, °F Pour Point, °F Water, Vol. % Wt. % Ash, Wt. %<br />

1 106 to 174 -85 to -10 0.050 max. 0.200 max. –<br />

2 120 to 250 -60 to +35 0.060 max. 0.820 max. –<br />

4* 150 to 276 -40 to +80 0.3 max. 0.19 to 7.6 0.07 max.<br />

5 (Light)* 154 to 250 -15 to +55 0.08 to 0.6 2.10 to 13.6 0.001 to 0.08<br />

5 (Heavy)* 136 to 300+ -17 to +90 0.4 max. 1.55 to 9.6 0.001 to 0.16<br />

6 140 to 250 0 to +110 0.300 max. 1.02 to 15.80 0.001 to 0.630<br />

Grade of Viscosity, Specific Gravity Gross Heating<br />

Fuel Oil SSU @ 100°F 60/60°F Gravity, °API Sulfur, Wt % Value, Btu/gallon<br />

1 37 max. 0.79 to 0.85 47.9 to 34.8 0 to 0.47 131,100 to 138,700<br />

2 42 max. 0.80 to 0.92 45.3 to 21.9 0.04 to 0.5 132,600 to 147,400<br />

4* 35 to 160 0.85 to 0.99 34.6 to 12.1 0.18 to 1.81 140,400 to 151,700<br />

5 (Light)* 80 to 700 0.89 to 1.01 28.2 to 8.5 0.58 to 3.48 142,700 to 156,400<br />

5 (Heavy)* 240 to 1300 0.91 to 1.02 23.4 to 7.5 0.6 to 2.54 144,800 to 153,600<br />

6 240 to 6100 0.92 to 1.09 22.0 to -1.5 0.17 to 3.52 146,700 to 162,000<br />

The above data are summarized from Heating Oils, 1984, published by the American Petroleum Institute and U.S.<br />

Dept. of Energy. The ranges in the tables represent the extreme maximums and minimums for the oil samples<br />

included in the survey.<br />

*1975-1976 data. No data available for these grades in 1983-1984.<br />

FUEL OIL VISCOSITY CONVERSIONS<br />

This chart converts four commonly-used fuel oil viscosity<br />

scales to a common base of centistokes<br />

ABBREVIATIONS: SSU = Saybolt Seconds Universal<br />

SSF = Saybolt Seconds Furol<br />

SRI = Seconds Redwood #1<br />

°E = Degrees Engler<br />

Kinematic Viscosity, SSU @ 100°F, SSF @ 122°F, SR1 @ 140°F, or °E<br />

10,000<br />

8<br />

6<br />

4<br />

3<br />

2<br />

1000<br />

8<br />

6<br />

4<br />

3<br />

2<br />

100<br />

8<br />

6<br />

4<br />

3<br />

2<br />

10<br />

8<br />

6<br />

4<br />

3<br />

2<br />

SSU @ 100°F<br />

SR1 @ 140°F<br />

SSF @ 122°F<br />

1<br />

1 2 3 4 6 8 10 2 3 4 6 8 100 2 3 4 6 8 1000 2 3<br />

Kinematic Viscosity, Centistokes (CS)<br />

°E<br />

26


1.1<br />

° API VS. OIL SPECIFIC GRAVITY<br />

& GROSS HEATING VALUE<br />

-160<br />

Specific Gravity @ 60°F<br />

1.0<br />

0.9<br />

0.8<br />

-155<br />

-150<br />

-145<br />

-140<br />

-135<br />

- 130<br />

Gr0ss Heating Value, Btu/Gallon x 1000<br />

0.7<br />

0 10 20 30 40 50 60<br />

° API<br />

To determine specific gravity of an oil, find °API at the bottom<br />

of the graph, read up to the curve, and left to the specific<br />

gravity.<br />

To find gross heating value of an oil, find °API at the bottom<br />

of the graph, read up to the curve, and right to the heating<br />

value.<br />

For greater accuracy or for gravities not on this chart, use<br />

these equations:<br />

Specific gravity @ 60/60°F = 141.5<br />

°API + 131.5<br />

Gross Heating Value, Btu/lb<br />

= 17,887 + (57.5 x °API) - (102.2 x %S)<br />

where %S is weight % sulfur in the oil.<br />

Gross Heating Value, Btu/gal<br />

= g.h.v., Btu/lb x 8.335 x specific gravity<br />

OIL PIPING PRESSURE LOSSES<br />

These charts show oil pressure drop per 100 equivalent<br />

feet of horizontal schedule 40 steel pipe. To determine total<br />

equivalent length, add equivalent lengths of fittings and<br />

valves (Page 16) to the actual linear feet of pipe.<br />

The charts for 1000 SSU and 10,000 SSU oils are<br />

accompanied by correction factors for oils of other viscosities.<br />

To find the pressure drop for an oil not on either of<br />

these charts, simply multiply the drop from the chart by the<br />

appropriate correction factor.<br />

If the entrance and exit ends of the oil line are at different<br />

elevations, the static head of the oil must be added to or<br />

subtracted from the calculated piping drop.<br />

Static head, psi = 0.433 x specific gravity of oil x elevation<br />

difference, ft.<br />

Pressure Drop, psi per<br />

100 feet of equivalent<br />

pipe length<br />

10<br />

5<br />

1/2" 3/4"<br />

35 SSU Distillate Oil<br />

1-1/4"<br />

0<br />

0 5 10 15 20<br />

Oil Flow, gpm<br />

1"<br />

27


OIL PIPING PRESSURE LOSSES (Cont’d)<br />

Pressure Drop, psi per<br />

100 feet of equivalent<br />

pipe length<br />

10<br />

5<br />

100 SSU Intermediate Oil<br />

1/2" 3/4" 1"<br />

1-1/4"<br />

1-1/2"<br />

0<br />

0 5 10 15 20<br />

Oil Flow, gpm<br />

20<br />

1000 SSU Heavy Oil<br />

1" 1-1/4"<br />

1-1/2"<br />

Pressure Drop<br />

Correction Factors<br />

for Other Viscosities<br />

Pressure Drop, psi per 100 feet<br />

of equivalent pipe length<br />

15<br />

10<br />

5<br />

2"<br />

2-1/2"<br />

Viscosity, Correction<br />

SSU Factor<br />

200 0.2<br />

300 0.3<br />

400 0.4<br />

500 0.5<br />

600 0.6<br />

700 0.7<br />

800 0.8<br />

900 0.9<br />

1200 1.2<br />

1500 1.5<br />

2000 2.0<br />

2500 2.5<br />

0<br />

0 5 10 15 20<br />

Oil Flow, gpm<br />

20<br />

10,000 SSU Heavy Oil<br />

2" 2-1/2"<br />

Pressure Drop<br />

Correction Factors<br />

for Other Viscosities<br />

Pressure Drop, psi per 100 feet<br />

of equivalent pipe length<br />

15<br />

10<br />

5<br />

3"<br />

4"<br />

Viscosity, Correction<br />

SSU Factor<br />

2000 0.2<br />

3000 0.3<br />

4000 0.4<br />

5000 0.5<br />

6000 0.6<br />

7000 0.7<br />

8000 0.8<br />

9000 0.9<br />

12000 1.2<br />

15000 1.5<br />

0<br />

0 5 10 15 20<br />

Oil Flow, gpm<br />

28


OIL PIPING TEMPERATURE LOSSES<br />

This table lists the temperature drop of 220°F oil flowing through steel pipe insulated with 1" thick 85% magnesia pipe<br />

insulation. Ambient temperature is assumed to be 60°F. For oil temperatures other than 220°F, multiply the temperature loss by<br />

the appropriate correction factor.<br />

OIL TEMPERATURE DROP IN °F PER FOOT OF PIPE<br />

Oil Flow<br />

Nominal Pipe Size<br />

GPH 1/4 3/8 1/2 3/4 1 1-1/4 1-1/2 2 2-1/2 3<br />

.5 10.92 12.18 13.68 15.48 17.64 20.6 22.50 26.30 30.00 34.8<br />

1 5.46 6.09 6.84 7.74 8.82 10.3 11.25 13.15 15.00 17.4<br />

2 2.73 3.04 3.42 3.87 4.41 5.15 5.63 6.57 7.50 8.70<br />

3 1.82 2.03 2.28 2.58 2.94 3.43 3.75 4.38 5.00 5.75<br />

4 1.365 1.52 1.71 1.933 2.205 2.58 2.82 3.28 3.75 4.35<br />

5 1.09 1.218 1.368 1.548 1.764 2.06 2.25 2.63 3.00 3.48<br />

10 .546 .609 .684 .774 .882 1.03 1.125 1.315 1.50 1.74<br />

15 .364 .405 .455 .515 .588 .686 .750 .876 1.00 1.16<br />

20 .273 .304 .342 .387 .441 .515 .563 .657 .750 .870<br />

30 .182 .203 .228 .258 .294 .343 .375 .438 .500 .575<br />

40 .136 .152 .171 .193 .220 .258 .282 .328 .375 .435<br />

60 .091 .101 .114 .129 .147 .172 .187 .219 .250 .290<br />

80 .068 .076 .086 .097 .110 .129 .141 .164 .188 .218<br />

100 .055 .061 .068 .077 .088 .103 .113 .132 .150 .174<br />

200 .027 .030 .034 .039 .044 .052 .056 .066 .075 .087<br />

300 .018 .020 .023 .026 .029 .034 .038 .044 .050 .058<br />

OIL TEMPERATURE<br />

CORRECTION FACTORS<br />

Oil<br />

Oil<br />

Temperature, °F Factor Temperature, °F Factor<br />

130 0.44 190 0.81<br />

140 0.5 200 0.88<br />

150 0.56 210 0.94<br />

160 0.63 230 1.06<br />

170 0.69 240 1.13<br />

180 0.75 250 1.19<br />

Temperature losses from uninsulated pipe will vary with the<br />

pipe size. For 1/4" pipe, the losses are about 8 times the figures in<br />

the table. For 3" pipe, they are about 6 times the table values.<br />

29


CHAPTER 5 – STEAM & WATER<br />

BOILER TERMINOLOGY AND CONVERSION FACTORS<br />

Boiler horsepower – One boiler horsepower<br />

= 33,479 Btu/hr heat to steam<br />

= 34.5 lb/hr of water evaporated<br />

from and at 212°F<br />

= 9.8 Kilowatts<br />

Dry Steam – Steam which contains no liquid water.<br />

Enthalpy – Heat content, Btu/lb, of a liquid or vapor.<br />

Latent heat of vaporization – The heat required to convert a<br />

material from its liquid to its vapor phase without raising its<br />

temperature. The latent heat of vaporization of water at 1<br />

atmosphere pressure and 212°F is 970.3 Btu/lb.<br />

Quality – In a mixture of steam and water, the weight percentage<br />

which is present as steam; in other words, the percent<br />

of complete vaporization which has taken place. The quality of<br />

saturated steam is 100%.<br />

Saturated Steam – Steam which is at the same temperature as<br />

the water from which it was evaporated.<br />

Wet Steam – Steam which contains liquid water. Its quality is<br />

less than 100%.<br />

PROPERTIES OF SATURATED STEAM<br />

V g ,<br />

Specific h f , h fg , h g ,<br />

Volume of Heat Content Latent Heat, Heat Content<br />

Temperature, Pressure, psi Vapor of Liquid, of Vaporization, of Vapor<br />

°F Absolute Gauge cu ft/lb Btu/lb Btu/lb Btu/lb<br />

32 .089 – 3304.7 -0.018 1075.5 1075.5<br />

40 .121 – 2445.8 8.03 1071.0 1079.0<br />

50 .178 – 1704.8 18.05 1065.3 1083.4<br />

60 .256 – 1207.6 28.06 1059.7 1087.7<br />

70 .363 – 868.4 38.05 1054.0 1092.1<br />

80 .507 – 633.3 48.04 1048.4 1096.4<br />

90 .698 – 468.1 58.02 1042.7 1100.8<br />

100 .949 – 350.4 68.00 1037.1 1105.1<br />

110 1.28 – 265.4 77.98 1031.4 1109.3<br />

120 1.69 – 203.3 87.97 1025.6 1113.6<br />

130 2.22 – 157.3 97.96 1019.8 1117.8<br />

140 2.89 _ 123.0 107.95 1014.0 1122.0<br />

150 3.72 – 97.07 117.95 1008.2 1126.1<br />

160 4.74 – 77.29 127.96 1002.2 1130.2<br />

170 5.99 – 62.06 137.97 996.2 1134.2<br />

180 7.51 – 50.22 148.00 990.2 1138.2<br />

190 9.34 – 40.96 158.04 984.1 1142.1<br />

200 11.53 – 33.64 168.09 977.9 1146.0<br />

212 14.696 0 26.80 180.17 970.3 1150.5<br />

220 17.19 2.49 23.15 188.23 965.2 1153.4<br />

240 24.97 10.27 16.32 208.45 952.1 1160.6<br />

260 35.43 20.73 11.76 228.76 938.6 1167.4<br />

280 49.20 34.50 8.64 294.17 924.6 1173.8<br />

300 67.01 52.31 6.47 269.7 910.0 1179.7<br />

320 89.64 74.94 4.91 290.4 894.8 1185.2<br />

340 117.99 103.29 3.79 311.3 878.8 1190.1<br />

360 153.01 138.31 2.96 332.3 862.1 1194.4<br />

380 195.73 181.03 2.34 353.6 844.5 1198.0<br />

400 247.26 232.56 1.86 375.1 825.9 1201.0<br />

500 680.86 666.16 0.67 487.9 714.3 1202.2<br />

600 1543.2 1528.5 0.27 617.1 550.6 1167.7<br />

700 3094.3 3079.6 0.075 822.4 172.7 995.2<br />

705.47* 3208.2 3193.5 0.051 906.0 0 906.0<br />

*Critical Temperature<br />

30


BTU/HR REQUIRED TO GENERATE ONE BOILER H.P.<br />

50<br />

1000's of Btu/hr Burner<br />

Input Required to Generate<br />

One Boiler Horsepower<br />

45<br />

40<br />

35<br />

70 75 80 85 90<br />

% Boiler Efficiency<br />

10<br />

8<br />

6<br />

SIZING WATER PIPING<br />

1/2" 3/4" 1" 1-1/4"1-1/2" 2" 2-1/2" 3" 4"<br />

Pressuer Drop, psi per 100 ft of pipe<br />

4<br />

3<br />

2<br />

1<br />

.8<br />

.6<br />

.4<br />

.3<br />

.2<br />

.1<br />

.08<br />

.06<br />

.04<br />

.03<br />

.02<br />

6"<br />

8"<br />

.01<br />

1 2 3 4 6 8 10 20 30 40 60 80 100 200 300 500 1000<br />

Water Flow, Gallons Per Minute<br />

Pressure drops are for 60°F water flowing in horizontal Schedule 40 steel pipe.<br />

31


SIZING STEAM PIPING<br />

Pipe Size, Lb/hr steam for piping pressure drop of 1 psi/100ft Lb/hr steam for piping drop of 5 psi/100 ft<br />

Inches Steam Pressure, psig Steam Pressure, psig<br />

(Schedule 40) 5 10 25 50 100 150 10 25 50 100 150<br />

3/4 31 34 43 53 70 84 73 93 120 155 185<br />

1 61 68 86 110 140 170 145 185 235 315 375<br />

1-1/4 135 150 190 235 310 370 320 410 520 690 820<br />

1-1/2 210 230 290 370 485 570 500 640 810 1,050 1,300<br />

2 425 470 590 750 980 1,150 1,000 1,300 1,650 2,150 2,600<br />

2-1/2 700 780 980 1,250 1,600 1,900 1,650 2,150 2,700 3,600 4,250<br />

3 1,280 1,450 1,800 2,250 2,950 3,500 3,050 3,900 4,300 6,600 7,800<br />

4 2,700 3,000 3,800 4,750 6,200 7,400 6,500 8,200 10,500 14,000 16,500<br />

6 8,200 9,200 11,500 14,500 19,000 22,500 19,500 25,000 31,500 42,000 50,000<br />

8 17,000 19,000 24,000 30,000 39,500 47,000 41,000 52,000 66,000 88,000 105,000<br />

These flows were calculated from Babcock’s Equation,<br />

Pd D5<br />

where W = steam flow, lb/minute<br />

P = pressure drop, psi<br />

W = 87 (1 + 3.6 ) L D = inside diameter of pipe, inches<br />

D<br />

d = density of steam, lb/cu ft<br />

L = length of pipe run, feet<br />

32


CHAPTER 6 – ELECRICAL DATA<br />

ELECTRICAL FORMULAS<br />

Ohm’s Law Motor Formulas D.C. Circuit Power Formulas<br />

Amperes = Volts/Ohms Torque (lb-ft) = 5250 x Horsepower Watts = Volts x Amperes<br />

Ohms = Volts/Amperes rpm Amperes = Watts/Volts<br />

Volts = Amperes x Ohms Synchronous rpm = Hertz x 120 Volts = Watts/Amperes<br />

Poles Horsepower = Volts x Amperes x Efficiency*<br />

746<br />

A.C. Circuit Power Formulas<br />

Single-Phase<br />

Three-Phase<br />

Watts = Volts x Amps x Power Factor* = 1.73 x Volts x Amps x Power Factor*<br />

Amperes = WattsVolts x Power Factor* = Watts/1.73 x Volts x Power Factor*<br />

= kVA x 1000/Volts = kVA x 1000/1.73 x Volts<br />

= Horsepower x 746 = Horsepower x 746<br />

Volts x Efficiency* x Power Factor* 1.73 x Volts x Effic.* x Power Factor*<br />

Kilowatts = Amps x Volts x Power Factor* = 1.73 x Amps x Volts x Power Factor*<br />

1000 1000<br />

kVA = Amps x Volts = 1.73 x Amps x Volts<br />

1000 1000<br />

Horsepower = Volts x Amps x Effic.* x Pwr. Factor* = 1.73 x Volts x Amps x Effic.* x Pwr. Fact.*<br />

746 746<br />

*Expressed as a decimal<br />

ELECTRICAL WIRE –<br />

DIMENSIONS & RATINGS<br />

All data for solid copper wire<br />

A.W.G. Resistance, Maximum Allowable<br />

Wire Diameter, Ohms per 1000 Ft Current Capacity per<br />

Gauge Inches @ 77˚F NFPA 70-1984*, Amps<br />

0 .3249 .100 125-170<br />

1 .2893 .126 110-150<br />

2 .2576 .159 95-130<br />

3 .2294 .201 85-110<br />

4 .2043 .253 70-95<br />

6 .1620 .403 55-75<br />

8 .1285 .641 40-55<br />

10 .1019 1.02 30-40<br />

12 .0808 1.62 20-30<br />

14 .0641 2.58 15-25<br />

16 .0508 4.09 18<br />

18 .0403 6.51 14<br />

*Maximum current capacity permitted by National Electrical Code,<br />

NFPA 70-1984, varies with type of insulation, ambient temperature,<br />

voltage carried, and other factors. Consult NFPA 70-1984 for<br />

specific information.<br />

NEMA SIZE STARTERS FOR MOTORS<br />

Starter size for<br />

460/3/60<br />

Horsepower 115/1/60 230/1/60 230/3/60 380/3/60 575/3/60<br />

Up to 1/3 00 00 00 00 00<br />

1/2 to 1 0 00 00 00 00<br />

1-1/2 1 1 00 00 00<br />

2 1 1 0 0 00<br />

3 2 2 0 0 0<br />

5 3 2 1 0 0<br />

7-1/2 3 2 1 1 1<br />

10 – 3 2 1 1<br />

15 – – 2 2 2<br />

20-25 – – 3 2 2<br />

30 – – 3 3 3<br />

40-50 – – 4 3 3<br />

60-75 – – 5 4 4<br />

100 – – 5 5 4<br />

125-150 – – 6 5 5<br />

200 – – 6 6 5<br />

All sizes listed apply only to magnetic starters with fusible<br />

alloy overload relays.<br />

33


NEMA ENCLOSURES<br />

NEMA 1. General Purpose – Indoor<br />

Sheet metal enclosures intended for indoor use. Primary purpose<br />

is to prevent accidental personnel contact with enclosed<br />

equipment, although they will also provide some protection<br />

against falling dirt.<br />

NEMA 2. Drip Proof – Indoor<br />

Indoor enclosure that protects contents against falling noncorrosive<br />

liquids and dirt. Must be equipped with a drain.<br />

NEMA 3. Dust Tight, Raintight & Sleet-Resistant (Ice-<br />

Resistant),<br />

NEMA 3R. Rainproof & Sleet-Resistant (Ice-Resistant).<br />

NEMA 3S. Dust Tight, Raintight & Sleet-Proof (Ice-Proof)<br />

Outdoor enclosures for protection against windblown dust, rain<br />

and sleet. All have provision for locking.<br />

NEMA 4. Water Tight & Dust Tight – Indoor & Outdoor<br />

Protect contents against splashing, seeping, falling, or hosedirected<br />

water and severe external condensation. Commonly used<br />

in food-processing plants where equipment hosedown is required.<br />

NEMA 6. Submersible, Watertight, Dust Tight and Sleet (Ice)-<br />

Resistant–Indoor & Outdoor<br />

Capable of being submerged up to 30 minutes in up to 6 feet of<br />

water without harm to the contents.<br />

NEMA 7. Hazardous Locations – Indoor – Air Break<br />

Equipment<br />

Enclosures for use in atmospheres containing explosive gases<br />

and vapors as defined in Class 1, Division I, Groups A, B, C or D<br />

of the National Electrical Code. Enclosure must contain an internal<br />

explosion without causing an external hazard. Construction<br />

details vary with the nature of the explosive gas or vapor.<br />

NEMA 8. Hazardous Locations – Indoor – Oil-Immersed<br />

Equipment<br />

Enclosures for oil-immersed circuit breakers in Class I,<br />

Division I, Group A, B, C or D hazardous atmospheres.<br />

NEMA 9. Hazardous Locations – Indoor – Air-Break<br />

Equipment<br />

Used in Class II, Division I, Group E, F, or G hazardous locations<br />

as defined by the National Electrical Code. Enclosures are<br />

designed to exclude combustible or explosive dusts.<br />

NEMA 10. Mine Atmospheres<br />

For use in mines containing methane or natural gas.<br />

NEMA 11. Corrosion-Resistant and Drip Proof – Indoor<br />

Indoor enclosures that protect contents from dripping, seepage<br />

and external condensation of corrosive liquids, as well as corrosive<br />

fumes.<br />

NEMA 12. Industrial Use – Dust Tight & Drip Tight – Indoor<br />

Protect enclosed equipment from lint, fibers, flyings, dust, dirt<br />

and light splashing, seepage, dripping and external condensation<br />

of noncorrosive liquids.<br />

NEMA 13. Oil Tight & Dust Tight – Indoor<br />

Protect enclosed equipment from lint, dust and seepage, external<br />

condensation and spraying of water, oil, or coolant. They have<br />

oil-resistant gaskets and must have provision for oiltight conduit<br />

entry.<br />

ELECTRIC MOTORS–<br />

FULL LOAD CURRENT, AMPERES<br />

Three-Phase AC Motors<br />

Single Induction Type –<br />

Phase Squirrel Cage &<br />

Horse AC Motors Wound-Rotor<br />

Power 115V 230V 115V 230V 460V 575V<br />

1/6 4.4 2.2 — — — —<br />

1/4 5.8 2.9 — — — —<br />

1/3 7.2 3.6 — — — —<br />

1/2 9.8 4.9 4 2 1 .8<br />

3/4 13.8 6.9 5.6 2.8 1.4 1.1<br />

1 16 8 7.2 3.6 1.8 1.4<br />

1-1/2 20 10 10.4 5.2 2.6 2.1<br />

2 24 12 13.6 6.8 3.4 2.7<br />

3 34 17 — 9.6 4.8 3.9<br />

5 56 28 — 15.2 7.6 6.1<br />

7-1/2 80 40 — 22 11 9<br />

10 100 50 — 28 14 11<br />

15 — — — 42 21 17<br />

20 — — — 54 27 22<br />

25 — — — 68 34 27<br />

30 — — — 80 40 32<br />

40 — — — 104 52 41<br />

50 — — — 130 65 52<br />

60 — — — 154 77 62<br />

75 — — — 192 96 77<br />

100 — — — 248 124 99<br />

125 — — — 312 156 125<br />

150 — — — 360 180 144<br />

200 — — — 480 240 192<br />

For more complete details on application and construction specifications<br />

for NEMA Enclosures, refer to NEMA Standards<br />

Publication No. ICS 6.<br />

34


CHAPTER 7 – PROCESS HEATING<br />

HEAT BALANCES–DETERMINIING THE HEAT NEEDS OF<br />

FURNACES AND OVENS<br />

Although rules of thumb are frequently used to size furnace<br />

and oven burners, they have to be used with care. All<br />

rules of thumb are based on certain assumptions about production<br />

rates, furnace dimensions, and insulation. If the system<br />

under consideration differs from these assumed conditions,<br />

using a rule of thumb can result in a significant error.<br />

For out-of-the ordinary conditions, or where more accurate<br />

results are required, heat balance calculations are preferred. A<br />

heat balance consists of calculating load heat requirements<br />

and adding losses to them to determine the heat input.<br />

Below is a schematic representation of the heat balance in<br />

a fuel-fired heat processing device.<br />

Flue Gas Loss<br />

Wall<br />

Loss<br />

Gross<br />

Input<br />

(Purchased<br />

Fuel)<br />

Available<br />

Heat<br />

Radiation<br />

Loss<br />

Net Output<br />

(Heat To Load)<br />

Stored<br />

Heat<br />

Conveyor<br />

Loss<br />

General heat balance in a fuel-fired heat processing device.<br />

The terms used in heat balance calculations, and their definitions,<br />

are:<br />

Gross heat input – the total amount of heat used by the furnace.<br />

It equals the amount of fuel burned multiplied by its<br />

heating value.<br />

Available heat – heat that is available to the furnace and its<br />

workload. It equals gross input minus flue gas losses.<br />

Flue gas losses – heat contained in flue gases as they are<br />

exhausted from the furnace.<br />

Stored heat – heat absorbed by the insulation and structural<br />

components of the furnace or oven to raise them to operating<br />

temperature. This stored heat becomes a loss each time the furnace<br />

is cooled down, because it has to be replaced on the next<br />

startup. Heat storage can usually be ignored on continuous furnaces,<br />

because cooldowns and restarts don't occur often.<br />

Wall losses – heat conducted out through the walls, roof and<br />

floor of the furnace due to the temperature difference between<br />

the inside and outside. At a constant temperature, wall losses<br />

will remain constant regardless of production rate.<br />

Radiation losses – heat lost from the furnace as radiant energy<br />

escaping through openings in walls, doors, etc.<br />

Conveyor losses – heat which is stored in conveying devices<br />

such as furnace cars and conveyor belts and which is lost<br />

when the heated conveyor is removed from the furnace.<br />

Net output – this is the heat that ultimately reaches the product<br />

in the oven or furnace.<br />

On page 36 is a simplified worksheet for carrying out a<br />

heat balance. By following this format, you can determine the<br />

gross heat input required at maximum load and minimum<br />

load conditions, along with the furnace turndown and theoretical<br />

thermal efficiency.<br />

35


HEAT BALANCE TABLE<br />

Maximum Load Minimum Load<br />

Heat Balance Conditions Conditions<br />

Component (Full Production Rate) (Empty and Idling)<br />

Heat to load __________Btu/hr ____0____Btu/hr<br />

+ Wall losses + __________Btu/hr + _________Btu/hr<br />

+ Radiation losses + __________Btu/hr + _________Btu/hr<br />

+ Conveyor losses + __________Btu/hr + ____0____Btu/hr<br />

= Available heat = __________Btu/hr = _________Btu/hr<br />

required<br />

÷ Available heat, ÷ __________ ÷ _________<br />

expessed as a<br />

decimal<br />

= Gross heat input = __________Btu/hr = _________Btu/hr<br />

Furnace turndown = Gross heat input, maximum load conditions = _________<br />

Gross heat input, minimum load conditions<br />

Theoretical Thermal efficiency, % =<br />

Heat to load, maximum load conditions<br />

x 100 = _________<br />

Gross heat input, maximum load conditions<br />

Supporting Calculations:<br />

Heat to Load<br />

Heat to load = lb per hour x specific heat x temperature rise.<br />

Specific heats for many materials are listed on pages 37-39.<br />

For most common metals and alloys, use the graphs on page 40.<br />

Simply multiply lb/hr production rate by the heat content<br />

picked from the graph.<br />

Enter the heat to load under Maximum Load Conditions.<br />

Heat to load is usually zero under Minimum Load Conditions<br />

because no material is being processed through the oven or<br />

furnace.<br />

Wall Losses:<br />

Wall loss = Wall Area (inside) x heat loss, Btu/sq ft/hr.<br />

Typical heat loss data are tabulated on page 44 .<br />

If the roof and floor of the furnace are insulated with different<br />

materials than the walls, calculate their losses separately.<br />

Add all the losses together and enter them in both the<br />

Maximum Load and Minimum Load columns above.<br />

Caution: If the furnace is to be idled at a temperature lower<br />

than its normal operating temperature, wall losses will be correspondingly<br />

lower. Calculate them on the basis of the actual<br />

idling temperature.<br />

Radiation Losses:<br />

Radiation Losses = Opening Area x Black Body Radiation<br />

Rate x Shape Factor. See page 49 for radiation rates. Assume<br />

a Shape Factor of 1.<br />

Conveyor Losses:<br />

Treat the conveyor as you would a furnace load.<br />

Conveyor Loss = Lb/hr of conveyor heated x specific heat x<br />

(Temperature leaving furnace – temperature entering furnace)<br />

At minimum load, conveyor losses are usually zero because<br />

no material is being processed through the furnace.<br />

Available Heat:<br />

Available heat = Heat to load + wall losses + radiation losses<br />

+ conveyor losses.<br />

Calculate available heat for both maximum and minimum<br />

load conditions.<br />

Next, consult the available heat charts (page 51) to determine<br />

the percent available heat for the fuel, operating temperature,<br />

and fuel/air ratio conditions of this application.<br />

Enter this figure as a decimal on both sides above.<br />

Gross Input:<br />

Gross Input = Available heat (Btu/hr) ÷ Available heat<br />

(decimal).<br />

Figure this for both maximum and minimum load conditions.<br />

Gross input, maximum conditions, is the maximum heating<br />

input required of the combustion system you select.<br />

Furnace Turndown:<br />

Divide maximum load gross input by minimum load gross<br />

input. The result is the furnace or oven turndown. Your<br />

combustion system must provide at least this much turndown<br />

or the furnace will overshoot setpoint on idle.<br />

Theoretical Thermal Efficiency:<br />

% Efficiency = Heat to load, maximum load conditions x 100<br />

Gross heat input, maximum load conditions<br />

This is the maximum theoretical efficiency of the furnace,<br />

assuming it operates at 100% of rating with no production interruptions<br />

and with a properly adjusted combustion system.<br />

Heat Storage<br />

Heat Storage was left out of this analysis. Althought it is a<br />

factor in furnace efficiency, burner systems are rarely sized<br />

on the heat storage needs of the furnace.<br />

On continuous furnaces where cold startups occur infrequently,<br />

heat storage can usually be ignored without any<br />

major effect on efficiency calculations. On batch-type furnaces<br />

that cycle from hot to cold frequently, storage should be<br />

factored into efficiency calculations.<br />

Heat Storage = Inside refractory surface area, ft 2 x Heat<br />

Storage Capacity, Btu/ft 2<br />

Heat storage capacities for typical types of refractory construction<br />

are tabulated on Page 44.<br />

36


THERMAL PROPERTIES OF VARIOUS MATERIALS<br />

Solid Latent Liquid Latent<br />

Density Specific Melting Heat of Specific Boiling Heat of<br />

Lb/Cu Ft Heat Point, Fusion, Heat, Point, Vaporization,<br />

Material @60°F Btu/Lb-°F °F Btu/Lb Btu/Lb-°F °F Btu/Lb<br />

Acetone – – -138 33.5 0.530 128-134 225.5<br />

Acetic Acid 65.8 0.540 62.6 44 0.462 244.4 152.8<br />

Air .0765 – – – 0.237 -311.0 91.7<br />

Alcohol-Ethyl 49.26 0.232 -173.2 44.8 0.648 172.4 369.0<br />

-Methyl 49.6 – -142.6 29.5 0.601 150.8 480.6<br />

Alumina 243.5 0.197 3722 – – – –<br />

Aluminum 166.7 0.248 1214 169.1 0.252 3272 –<br />

Ammonia 32° 45.6 0.502 -83.0 195 1.099 -37.3 543.2<br />

Andalusite 199.8 0.168 3290 – – – –<br />

Aniline 2.25 0.741 17.6 37.8 0.514 363 198<br />

Antimony 422 0.054 1166 70.0 0.054 2624 –<br />

Asbestos 124-174 0.195 – – – – –<br />

Asphalt-Trinidad 97 0.55 190 – 0.55 – –<br />

-Gilsonite 67.5 0.55 300 – 0.55 – –<br />

Arsenic 357.6 0.082 Sublimes – – – –<br />

Babbit 75 Pb 15 Sb 10 Sn – 0.039 462 26.2 0.038 – –<br />

84 Sn 8 Sb 8 Cu – 0.071 464 34.1 0.063 – –<br />

Bakelite – 0.30 – – – – –<br />

Beef Tallow 57-61 0.50 80-100 – – – –<br />

Beeswax 60 0.82 144 76.2 – – –<br />

Benzene-Benzol 55 0.299 41.8 55.6 0.423 176.3 169.4<br />

Beryllium 113.8 0.50 2345 621.9 0.425 5036 –<br />

Bismuth 615 0.033 518 18.5 0.035 2606 –<br />

Borax 105.5 0.238 1366 – – – –<br />

Brass 67 Cu 33 Zn 528 0.105 1688 71.0 0.123 – –<br />

85 Cu 15 Zn – 0.104 1877 84.4 0.116 – –<br />

90 Cu 10 Zn – 0.104 1952 86.6 0.115 – –<br />

Brick-Fireclay 137-150 0.240 – – – – –<br />

-Red 118 0.230 – – – – –<br />

-Silica 144-162 0.260 – – – – –<br />

Bronze 90 Cu 10 Al – 0.126 1922 98.6 0.125 – –<br />

90 Cu 10 Sn – 0.107 1850 84.2 0.106 – –<br />

80 Cu 10 Zn 10 Sn 534 0.095 1832 79.9 0.109 – –<br />

Cadmium 540 0.038 610 19.5 0.074 1412 409<br />

Calcium 96.6 0.170 1564 – – 2709 –<br />

Calcium Carbonate 175 0.210 Dec. 1517 – – – –<br />

Calcium Chloride 157 0.16 1422 97.7 – >2912 –<br />

Camphor 62.4 0.440 353 19.4 0.61 408 –<br />

Carbon, Amorphous 129 0.241 6300 – – 8721 –<br />

Carbon, Disulfide 79.2 – -166 – 0.24 115 150.8<br />

Carbon, Graphite 138.3 0.184 6300 – – 8721 –<br />

Castor Oil 59.6 – – – – – –<br />

Celotex – 0.40 – – – – –<br />

Celluloid – 0.36 – – – – –<br />

Cellulose 95 0.320 – – – – –<br />

Cement – 0.20 – – – – –<br />

Charcoal 18-38 0.165 – – – – –<br />

Chlorine 0.190 0.19 -151 41.3 – -30.3 121<br />

Chloroform 95.5 – -85 – 0.149 142.1 105.3<br />

Chromite 281 0.22 3956 – – – –<br />

Chromium 437 0.12 2822 57.1 – 4500 –<br />

Clay, Dry 112-162 0.224 3160 – – – –<br />

Coal (Anthracite) – 0.31 – – – – –<br />

Coal (Bituminous) – 0.30 – – – – –<br />

Coal Tar 76.7 0.413 196 – – 325 –<br />

Coal Tar Oil – – – – 0.34 390-910 136<br />

Cobalt 555 0.145 2723 – – 5252 –<br />

Coke – 0.2-0.38 – – – – –<br />

Concrete – 0.27 – – – – –<br />

Copper 558 0.104 1982 90.8 0.111 4703 –<br />

Cork – 0.48 – – – – –<br />

Corundum 250 0.304 3722 – – 6332 –<br />

Cotton – 0.32 – – – – –<br />

Cottonseed Oil 58 – 32 – 0.474 – –<br />

Cream – – – – 0.78 – –<br />

Cuprice Oxide 374-406 0.227 1944 – – – –<br />

T = Transformation Point Subl. = Sublimes Dec = Decomposes<br />

37


THERMAL PROPERTIES OF VARIOUS MATERIALS (Cont’d)<br />

Solid Latent Liquid Latent<br />

Density Specific Melting Heat of Specific Boiling Heat of<br />

Lb/Cu Ft Heat Point, Fusion, Heat, Point, Vaporization,<br />

Material @60°F Btu/Lb-°F °F Btu/Lb Btu/Lb-°F °F Btu/Lb<br />

Cyanite 225 0.227 3290 – – – –<br />

Diasporite 215 0.260 3722 – – – –<br />

Die Cast Metal: – – – – – – –<br />

87.3 Zn 8.1 Sn 4.1 Cu 0.5Al – 0.103 780 48.3 0.138 – –<br />

90 Sn 4.5 Cu 5.5 Sb – 0.070 450 30.3 0.062 – –<br />

80 Pb 10 Sn 10 Sb – 0.038 600 17.4 0.037 – –<br />

92 Al 8 Cu – 0.236 1150 163.1 0.241 – –<br />

Diphenyl 103 0.385 159 47 0.481 492 136.5<br />

Dolomite 181 0.222 – – – – –<br />

Dowtherm 58.8 0.53 180 – – 500 123<br />

Earth – 0.44 – – – – –<br />

Ebonite – 0.35 – – – – –<br />

Ether 45.9 – -180.4 – 0.529 94.3 159.1<br />

Fats – 0.46 – – – – –<br />

Fosterite 200 0.22 3470 – – – –<br />

Fuel Oil – – – – 0.45 – –<br />

Gasoline 42 – – – 0.514 176 128-146<br />

German Silver – 0.109 1850 86.2 0.123 – –<br />

Glass, Crown – 0.16 – – – – –<br />

Glass, Flint – 0.13 – – – – –<br />

Glass, Pyrex – 0.20 – – – – –<br />

Glass, Window (Soda Lime)160 0.19 2192 – – – –<br />

Glass Wool 1.5 0.16 – – – – –<br />

Glycerine 78.7 0.047 68 85.5 0.576 554 –<br />

Gold 1205 0.032 1945 28.5 0.034 5371 29<br />

Granite – – – – – – –<br />

Graphite 0.30-0.38 – Subl. 6606 – – – –<br />

Gypsum 145 0.259 2480 – – – –<br />

Hydrochloric Acid 75 – -12 – – – –<br />

Hydrogen .0053 – -434 27 – -423 194<br />

Hydrogen Sulfide – – -117 – – -79 –<br />

Iron 491 0.1162 2795 117 – 5430 –<br />

Iron, Gray Cast 443 0.119 2330 41.7 – – –<br />

Iron, White Cast 480 0.119 2000 59.5 – – –<br />

Kerosene – – – – 0.470 – 108<br />

Lead 711 0.032 621 9.9 0.032 3171 –<br />

Lead Oxide 575-593 0.049 1749 – – – –<br />

Leather – 0.36 – – – – –<br />

Lucite – 0.35 – – – – –<br />

Light Oil – – – – 0.5 600 145-150<br />

Linseed Oil 58 – -5 – 0.441 – –<br />

Lipowitz Metal – 0.041 140 17.2 0.041 – –<br />

Magnesite 187 0.200 Dec. 662 – – – –<br />

Magnesium 108.6 0.272 1204 83.7 0.266 – –<br />

Magnesium Oxide 223 0.23-0.30 5072 – – – –<br />

Manganese 500 0.171 2246 65.9 0.192 – –<br />

– – T = 1958 T = 43.5 – – –<br />

Marble – 0.21 – – – – –<br />

Mercury 885 0.033 -38 5.1 0.033 675 117<br />

Mica – 0.21 – – – – –<br />

Milk 63.4 – – – 0.847 – –<br />

Molasses 87.4 – – – 0.60 – –<br />

Molybdenum 636 0.065 4748 – – 8672 –<br />

Monel 550 0.129 2415 117.4 0.139 – –<br />

Mallite 188.8 – 3290 – 0.175 – –<br />

Naptha 41.2 – – – 0.493 306 184<br />

Napthalene 71.8 0.325 176 64.1 0.427 424.4 135.7<br />

Neats Foot Oil – – 32 – 0.457 – –<br />

Nickel 556 0.134 2646 131.4 0.124 – –<br />

Nichrome 517 – – – 0.111 – –<br />

Nitric Acid 96.1 – -43.6 – 0.445 186.8 207.2<br />

Nitrogen .0741 – -346 11.1 – -320 85.6<br />

Nylon – 0.55 – – – – _<br />

T = Transformation Point Subl. = Sublimes Dec = Decomposes<br />

38


THERMAL PROPERTIES OF VARIOUS MATERIALS (Cont’d)<br />

Solid Latent Liquid Latent<br />

Density Specific Melting Heat of Specific Boiling Heat of<br />

Lb/Cu Ft Heat Point, Fusion, Heat, Point, Vaporization,<br />

Material @60°F Btu/Lb-°F °F Btu/Lb Btu/Lb-°F °F Btu/Lb<br />

Olive Oil 57.4 – 40 – 0.471 572 –<br />

Oxygen .0847 0.336 -361 5.98 0.394 -297 91.6<br />

Paraffin 54-57 0.622 126 63 0.712 750<br />

Petroleum 48-55 – – – 0.511 – –<br />

Phosphorus 114 0.189 111 9.05 – 536 234<br />

Pitch, Coal Tar 62-81 0.45 86-300 – – – –<br />

Plaster of Paris 0.265 1.14 – – – – –<br />

Platinum 1335 0.036 3224 49 0.032 7933 –<br />

Porcelain 150 0.26 – – – – –<br />

Potassium Nitrate 129.2 0.19 646 88 – Dec. 752 –<br />

Quartz 165.5 0.23 – – – – –<br />

Resin-Phenolic 80-100 0.3-0.4 – – – – –<br />

-Copals 68.6 0.39 300-680 – – – –<br />

Rhodium 773 0.058 3571 – – – –<br />

Rockwool 6 0.198 – – – – –<br />

Rose’s Metal – 0.043 230 18.3 0.041 – –<br />

Rosin 68 0.5 170-212 – – – –<br />

Rubber 62-125 0.48 248 – – – –<br />

Salt-Rock 135 0.22 1495 – – 2575 –<br />

Sand 162 0.20 – – – – –<br />

Sandstone – 0.22 – – – –<br />

Sawdust – 0.5 – – – – –<br />

Shellac 75 0.40 170-180 – – – –<br />

Silica 180 – 3182 – 0.1910 4046 –<br />

Silicon 155 0.176 2600 – – 4149<br />

Silicon Carbide 199 0.23 4082 – – Subl. 3032 –<br />

Sillimanite 202 0.175 3290 – – – –<br />

Silk 84 0.33 – – – – –<br />

Silver 656 0.063 1761 46.8 0.070 3634 –<br />

Snow – 0.5 32 – – – –<br />

Sodium Carbonate 151.5 0.306 1566 – – Dec. –<br />

Sodium Nitrate 140.5 0.231 597 116.8 – 1716 –<br />

Sodium Oxide 142 0.231 Subl. 2327 – – – –<br />

Sodium Sulfate 168 0.21 – – – – –<br />

Solder - 50 Pb 50 Sn 580 0.051 450 23 0.046 – –<br />

- 63 Pb 37 Sn – 0.044 468 14.8 0.041<br />

Steel - 0.3% C 491 0.166 (70-1330°)* *Phase change between 1330 & 1500° requires<br />

0.129 (1500-2500°) additional 80 Btu/lb.<br />

Stone 168 0.20 – – – – –<br />

Sugar - Cane 102 0.30 320 _ – – –<br />

Sulfur 119-130 0.19 235 16.9 0.234 840 652<br />

Sulfuric Acid 115.9 0.239 50.0 – 0.370 – –<br />

Talc – 0.21 – – – –<br />

Tar-Coal 71-81 0.35 – – – – –<br />

Tin 460 0.069 450 25.9 0.0545 4118 –<br />

Titanium 281 0.14 3272 – – – –<br />

Toluene 53.7 – – – 0.40 230.5 150.3<br />

Tungsten 1204 0.034 6098 – – 10652 –<br />

Turpentine 53.7 – – – 0.411 318.8 133.3<br />

Type Metal-Linotype – 0.036 486 21.5 0.036 – –<br />

Type Metal-Stereotype 670 0.036 500 26.2 0.036 – –<br />

Uranium 370 0.028 2071 – – – –<br />

Vanadium 372 0.115 3110 – – 5432 –<br />

Varnish – – – – – 600 –<br />

Water 62.37 0.480 32 144 1.00 212 970.4<br />

Wood 19-56 0.33 – – – – –<br />

Wood’s Metal – 0.041 158 17.2 0.042 – –<br />

Wool 81 0.325 – – – –<br />

Xylene 54.3 – -18 – 0.411 288 147<br />

Zinc 443 0.107 786 47.9 0.146 1706 –<br />

Zinc Oxide 341 0.125 >3272 – – – –<br />

Zircon 293 0.132 4622 – – – –<br />

Zirconia 349 0.103 4919 – – – –<br />

Zirconium 399 0.067 3100 – – 9122 –<br />

T = Transformation Point Subl. = Sublimes Dec. = Decomposes<br />

39


THERMAL CAPACITIES OF METALS & ALLOYS<br />

150<br />

Alloy 903 Die Cast Zinc<br />

Heat Content, Btu/lb<br />

100<br />

50<br />

Solder<br />

50 Pb/50Sn<br />

Babbit<br />

75 Pb/15Sb/10Sn<br />

Pure Zinc<br />

Lead<br />

0<br />

0 100 200 300 400 500 600 700 800 900<br />

Temperature, °F<br />

600<br />

Pure Aluminum<br />

500<br />

Aluminum Die Cast Alloy 380.0<br />

Pure Magnesium<br />

Magnesium Casting Alloy AZ91A<br />

400<br />

0.3% Carbon<br />

Steel<br />

Heat Content, Btu/lb<br />

300<br />

Titanium Alloy<br />

Ti-6AI-4V<br />

Pure<br />

Copper<br />

65-35 Yellow Brass<br />

200<br />

85-15 Red Brass<br />

100<br />

0<br />

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800<br />

Temperature, °F<br />

40


INDUSTRIAL HEATING OPERATIONS–TEMPERATURE & HEAT REQUIREMENTS<br />

Approximate Heat Content of<br />

Material Operation Temperature, °F Material, Btu/lb*<br />

Aluminum Age 190-470 30-100<br />

Anneal 645-775 130-190<br />

Homogenize 850-1150 175-300<br />

Hot Work (Extrude,<br />

Roll, Forge) 500-950 100-240<br />

Melt 1175-1500 370-550<br />

Solution Heat Treat 820-1025 170-280<br />

Stabilize 435-655 80-160<br />

Stress Relieve 650-775 130-190<br />

Asphalt Melt 350-450 160-220<br />

Babbit Melt 600-1000 60-75<br />

Brass Anneal 800-1450 70-150<br />

Hot Work (Extrude,<br />

Roll, Forge) 1150-1650 100-150<br />

Melt 1930-2370 230-290<br />

Recrystallize 550-700 40-70<br />

Stress Relieve 475 30-40<br />

Bread Bake 300-500 –<br />

Bronze Anneal 800-1650 70-170<br />

Hot Work (Extrude,<br />

Roll, Forge) 1200-1750 100-160<br />

Melt 1600-2350 220-320<br />

Stress Relieve 375-550 30-50<br />

Brick, common Burn 1900-2000 800-950<br />

fireclay Burn 2100-2200 900-1050<br />

Cake Bake 300-350 –<br />

Candy Cook 225-300 –<br />

Cast Iron (Gray) Anneal 1300-1750 290-420<br />

Austenitize (Harden) 1450-1700 330-410<br />

Melt 2800-2900 720-750<br />

Normalize 1600-1700 380-410<br />

Stress Relieve 700-1250 110-280<br />

Temper (Draw) 300-1020 35-175<br />

Cast Iron, Ductile Anneal 1300-1650 290-390<br />

(Nodular Iron) Austenitize (Harden) 1550-1700 360-410<br />

Normalize 1600-1725 380-415<br />

Stress Relieve 950-1250 160-275<br />

Temper (Draw) 800-1300 120-290<br />

Cast Iron (Malleable) Anneal (Malleablize) 1650-1750 290-420<br />

Austenitize (Harden) 1550-1600 360-380<br />

Temper (Draw) 1100-1300 190-290<br />

Cement Calcine 2800-3000 –<br />

China Fire 1900-2650 450-600<br />

Glaze 1500-1900 350-450<br />

Coffee Roast 600-800 –<br />

Cookies Bake 375-450 –<br />

Copper Anneal 500-1200 50-120<br />

Hot Work (Extrude,<br />

Roll, Forge) 1300-1750 130-180<br />

Melt 1970-2100 290-310<br />

Enamel<br />

(Paint) Bake 250-450 –<br />

(Porcelain) Fire 1700-1800 –<br />

*Heat contained in material only. Does not include furnace or oven losses or available<br />

heat correction.<br />

41


INDUSTRIAL HEATING OPERATIONS–TEMPERATURE & HEAT REQUIREMENTS<br />

(Cont’d)<br />

Approximate Heat Content of<br />

Material Operation Temperature, °F Material, Btu/lb*<br />

Frit Smelt 2000-2400 400-550<br />

Glass Melt 2200-2900 400-650<br />

Anneal 1000-1200 –<br />

Gold Melt 2000-2370 125-145<br />

Lacquer Dry 150-200 –<br />

Lead Melt 620-700 18-32<br />

Lime Calcine 2000-2200 –<br />

Magnesium Age 265-625 70-140<br />

Homogenize 200-800 30-190<br />

Hot Work (Extrude,<br />

Roll, Forge) 550-850 110-200<br />

Melt 1150-1550 375-490<br />

Solution Heat Treat 665-1050 150-350<br />

Stress Relieve 300-800 50-200<br />

Meat Smoke 100-150 –<br />

Pie Bake 500 –<br />

Potato Chips Fry 350-400 –<br />

Sand Dry 350-500 60-90<br />

Sand Cores Bake 400-450 70-80<br />

Silver Melt 1800-1900 155-165<br />

Solder Melt 400-500 40-45<br />

Steel Anneal 1150-1650 150-270<br />

(Carbon & Alloy) Austenitize 1320-1650 180-270<br />

Carbonitride 1300-1650 180-270<br />

Carburize 1600-1800 260-300<br />

Cyanide 1400-1600 210-260<br />

Hot Work (Forge,<br />

Roll) 2200-2400 360-400<br />

Nitride 925-1050 110-140<br />

Normalize 1500-1700 240-280<br />

Stress Relieve 450-1350 50-210<br />

Steel (Stainless) Anneal 1150-2050 150-340<br />

Austenitize (Harden) 1700-1950 280-320<br />

Hot Work (Forge,<br />

Roll) 1600-2350 260-390<br />

Stress Relieve 400-2050 30-340<br />

Temper (Draw) 300-1200 25-160<br />

Tin Melt 500-650 70-80<br />

Titanium Age 900-1000 120-140<br />

Anneal 1100-1600 150-250<br />

Hot Work (Roll,<br />

Forge) 1300-1900 180-310<br />

Solution Heat Treat 1550-1750 240-280<br />

Stress Relieve 1000-1200 140-170<br />

Varnish Cook 500-750 –<br />

Zinc Galvanize 850-900 130-140<br />

Melt 800-900 130-150<br />

Hot Work (Extrusion,<br />

Rolling) 200-575 10-55<br />

*Heat contained in material only. Does not include furnace or oven losses or available<br />

heat correction.<br />

42


CRUCIBLES FOR METAL MELTING – DIMENSIONS & CAPACITIES<br />

B<br />

A<br />

C<br />

D<br />

Dimensions, inches Approximate Capacity, lb<br />

A, B, C,<br />

Size Top Bilge Bottom D, Red<br />

Number OD OD OD Height Aluminum Brass Copper Magnesium<br />

20 7 11 ⁄16 8 3 ⁄8 6 1 ⁄8 10 15 ⁄16 20 65 67 13<br />

25 8 3 ⁄16 8 7 ⁄8 6 1 ⁄2 10 15 ⁄16 25 81 84 16<br />

30 8 5 ⁄8 9 5 ⁄16 6 13 ⁄16 11 1 ⁄2 30 97 100 20<br />

35 9 9 3 ⁄4 7 1 ⁄8 12 35 113 117 23<br />

40 9 3 ⁄8 10 1 ⁄8 7 7 ⁄16 12 1 ⁄2 40 129 134 26<br />

45 9 7 ⁄8 10 11 ⁄16 7 13 ⁄16 13 3 ⁄16 45 146 151 29<br />

50 10 1 ⁄4 11 1 ⁄8 8 1 ⁄8 13 3 ⁄4 50 162 167 33<br />

60 10 13 ⁄16 11 11 ⁄16 8 9 ⁄16 14 7 ⁄16 60 194 201 39<br />

70 11 1 ⁄4 12 3 ⁄16 8 15 ⁄16 15 1 ⁄16 70 226 234 46<br />

80 11 11 ⁄16 12 11 ⁄16 9 1 ⁄4 15 5 ⁄8 80 259 268 52<br />

90 12 1 ⁄8 13 1 ⁄8 9 9 ⁄16 16 3 ⁄16 90 291 301 59<br />

100 12 1 ⁄2 13 1 ⁄2 9 7 ⁄8 16 11 ⁄16 100 323 335 65<br />

125 13 14 1 ⁄16 10 5 ⁄16 17 3 ⁄8 125 404 418 81<br />

150 13 3 ⁄4 14 7 ⁄8 10 7 ⁄8 18 3 ⁄8 150 485 502 98<br />

175 14 3 ⁄8 15 9 ⁄16 11 3 ⁄8 19 1 ⁄4 175 566 586 114<br />

200 15 16 1 ⁄4 11 7 ⁄8 20 200 657 669 130<br />

225 15 1 ⁄2 16 13 ⁄16 12 5 ⁄16 20 3 ⁄4 225 728 753 147<br />

250 16 17 5 ⁄16 12 11 ⁄16 21 3 ⁄8 250 808 837 163<br />

275 16 7 ⁄16 17 13 ⁄16 13 22 275 889 921 179<br />

300 16 7 ⁄8 18 1 ⁄4 13 3 ⁄8 22 1 ⁄2 300 970 1004 195<br />

400 18 3 ⁄16 19 11 ⁄16 14 7 ⁄16 24 5 ⁄16 400 1293 1339 261<br />

RADIANT TUBES – SIZING & INPUT DATA<br />

TUBE EXTERNAL SURFACE AREA DATA<br />

Straight Tube<br />

Tube Sq. In. 180° Short Radius Elbow 180° Long Radius Elbow<br />

OD, Per Foot<br />

Inches of Length CL to CL, in. sq. in. CL to CL, in. sq. in.<br />

3 113 6 89 9 133<br />

3 1 ⁄4 123 6 96 9 144<br />

3 1 ⁄2 132 6 104 9 155<br />

3 3 ⁄4 141 6 111 9 167<br />

4 151 8 158 12 237<br />

4 1 ⁄4 160 8 168 12 252<br />

4 1 ⁄2 170 8 178 12 267<br />

4 3 ⁄4 179 8 188 12 281<br />

5 188 10 247 15 370<br />

5 1 ⁄4 198 10 259 15 389<br />

5 1 ⁄2 207 10 271 15 407<br />

5 3 ⁄4 217 10 284 15 426<br />

6 226 12 355 18 533<br />

6 1 ⁄4 236 12 370 18 555<br />

6 1 ⁄2 245 12 385 18 577<br />

6 3 ⁄4 254 12 400 18 600<br />

8 302 16 632 24 947<br />

8 1 ⁄4 311 16 651 24 977<br />

8 1 ⁄2 320 16 671 24 1007<br />

Maximum Heat Transfer<br />

Rate, Btu/hr per sq. in. of<br />

External Tube Surface<br />

70<br />

60<br />

50<br />

40<br />

30<br />

Maximum Heat Transfer Rates<br />

For Good Service Life of Alloy Tubes<br />

Tube enclosed<br />

on 3 sides<br />

Tube free to radiate on 3 sides<br />

1500 1600 1700 1800 1900<br />

Furnace Temperature, °F<br />

43


HEAT LOSSES, HEAT STORAGE & COLD FACE<br />

TEMPERATURES – REFRACTORY WALLS<br />

HL Hot Face Temperature, °F<br />

Wall<br />

HS<br />

Construction TC 1000 1200 1400 1600 1800 2000 2200 2400<br />

HL 550 705 862 1030 1200 1375 1570 1768<br />

9" Hard Firebrick HS 12,500 15,400 18,400 21,500 24,700 27,950 31,200 34,500<br />

TC 282 320 355 387 418 447 477 505<br />

9" Hard Firebrick + HL 130 168 228 251 296 341 390 447<br />

4 1 ⁄2" 2300° Insulating F.B. HS 22,380 27,700 33,060 38,450 43,930 49,350 55,800 61,920<br />

TC 147 162 188 195 211 227 242 260<br />

9" Hard Firebrick + HL 111 128 155 185 209 244 282 325<br />

4 1 ⁄2" 2000° Insulating F.B. + HS 23,750 29,650 35,640 41,940 48,420 54,890 61,410 68,120<br />

2" Block Insulation TC 138 144 156 169 179 193 205 218<br />

HL 185 237 300 365 440 521 – –<br />

4 1 ⁄2" 2000° Insulating F.B. HS 1180 1450 1750 2075 2400 2720 – –<br />

TC 170 190 211 230 253 274 – –<br />

HL 95 124 159 189 225 266 – –<br />

9" 2000° Insulating F.B. HS 2260 2840 3420 4000 4620 5240 – –<br />

TC 132 146 160 172 187 200 – –<br />

HL 142 178 218 264 312 362 416 474<br />

9" 2800° Insulating F.B. HS 3170 3970 4790 5630 6480 7360 8230 9160<br />

TC 151 166 183 200 217 234 250 267<br />

9" 2800° Insulating F.B. + HL 115 140 167 197 232 272 307 347<br />

4 1 ⁄2" 2000° Insulating F.B. + HS 14,860 17,340 19,910 22,508 24,908 28,360 31,531 34,664<br />

TC 142 149 161 164 183 202 215 228<br />

9" 2800° Insulating F.B. + HL 71 91 112 134 154 184 204 230<br />

4 1 ⁄2" 2000° Insulating F.B. + HS 10,670 14,836 19,220 23,771 27,491 31,654 35,078 38,252<br />

2" Block Insulation TC 119 127 136 147 156 168 177 187<br />

9" 2800° Insulating F.B. + HL 114 142 172 201 232 264 298 333<br />

3" Block Insulation HS 7730 9765 11,760 13,810 15,880 17,973 20,084 22,209<br />

TC 139 150 163 175 188 200 212 224<br />

HL 575 730 897 1075 1300 1525 1775 2030<br />

4 1 ⁄2" Dense Castable HS 5270 9520 11,310 13,060 14,820 16,120 18,300 20,030<br />

TC 282 319 356 393 430 467 504 541<br />

HL 315 410 500 627 694 844 947 1134<br />

9" Dense Castable HS 13,120 16,240 19,960 23,673 26,355 29,212 32,019 35,861<br />

TC 218 248 280 305 321 352 377 406<br />

HL 390 490 610 730 860 1000 1155 1332<br />

9" Plastic HS 17,825 21,735 25,640 29,610 33,345 37,125 41,040 44,415<br />

TC 232 261 290 319 348 378 407 436<br />

8" Ceramic Fiber – HL 27 45 64 86 114 146 178 216<br />

Stacked Strips, 8 #/cu ft HS 850 1018 1190 1358 1528 1692 1823 2039<br />

Density TC 95 105 115 126 138 152 165 180<br />

10" Ceramic Fiber – HL 16 35 54 76 94 120 142 172<br />

Stacked Strips, 8 #/cu ft HS 1054 1262 1473 1683 1895 2098 2262 2528<br />

Density TC 92 101 110 119 129 140 151 163<br />

12" Ceramic Fiber – HL 13 27 43 60 79 98 118 143<br />

Stacked Strips, 8 #/cu ft HS 1265 1517 1775 2033 2276 2518 2714 3034<br />

Density TC 91 97 104 112 121 130 140 151<br />

9" Hard Firebrick + 3" HL 177 240 309 383 463 642 721 800<br />

Ceramic Fiber Veneer, HS 1920 3680 5430 7178 9219 11,200 12,503 14,891<br />

8 #/cu ft Density TC 170 191 214 235 259 305 320 341<br />

9" 2800° Insulating F.B. + HL 102 125 151 183 227 274 325 408<br />

3" Ceramic Fiber Veneer, HS 1150 2012 2910 3795 4576 5402 6272 7450<br />

8 #/cu ft Density TC 134 143 153 167 183 200 217 242<br />

9" Dense Castable + HL 170 221 273 329 381 487 559 635<br />

3" Ceramic Fiber Veneer, HS 1910 3603 5340 7083 8899 10,576 12,136 14,149<br />

8 #/cu ft Density TC 164 183 202 222 240 270 289 307<br />

HL = Heat Loss, Btu/hr – sq ft HS = Heat Storage, Btu/sq ft TC = Cold Face Temperature, °F<br />

Note:These values are typical for the materials listed and are sufficiently accurate for estimating<br />

purposes. Values for specific brands of refractories may differ.<br />

44


AIR HEATING & FUME INCINERATION<br />

HEAT REQUIREMENTS USING “RAW GAS” BURNERS<br />

Btu/Hr Required Per SCFM of Process Stream<br />

2000<br />

1500<br />

1000<br />

500<br />

700°F<br />

600°F<br />

1300°F<br />

1200°F<br />

1100°F<br />

1000°F<br />

900°F<br />

800°F<br />

T 2 = 1500°F Stream Outlet Temperature<br />

1400°F<br />

T 1 T 2<br />

0<br />

0 200 400 600 800 1000<br />

T 1 , Process Stream Inlet Temperature, °F<br />

These curves show the heat input required per<br />

scfm of process air stream where the burner derives<br />

its combustion air from the stream. They can also be<br />

used to calculate heat requirements for direct-fired<br />

fume incinerators, provided:<br />

1. Oxygen content of the fume stream is at least 20%,<br />

and<br />

2. Combustible solvents in the fume stream make a<br />

negligible contribution to the heat input.<br />

The curves are calculated from the relationship.<br />

Btu/hr = scfm x 1.1 x (T 2-T 1 )<br />

available heat, expressed as a decimal<br />

For high stream inlet and outlet temperatures, they<br />

produce more accurate results than the traditional relationship<br />

Btu/hr = scfm x 1.1 x (T 2 -T 1 ),<br />

which does not take variations of available heat into<br />

account.<br />

If the application requires a burner with a separate<br />

combustion air source, use the curves below.<br />

Btu/Hr Required Per SCFM of Process Stream<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

AIR HEATING & FUME INCINERATION<br />

HEAT REQUIREMENTS USING BURNERS WITH SEPARATE<br />

COMBUSTION AIR SOURCES<br />

700°F<br />

600°F<br />

900°F<br />

800°F<br />

T 1 T 2<br />

T2 = 1500°F Stream Outlet Temperature<br />

1100°F<br />

1000°F<br />

1300°F<br />

1200°F<br />

1400°F<br />

These curves show the heat input required per scfm<br />

of process air stream using a burner with a separate<br />

combustion air source. They are calculated from the<br />

relationship:<br />

Btu/hr = scfm x 1.1 x (T 2-T 1 )<br />

available heat, expressed as a decimal<br />

See above for heat requirements of systems using a<br />

“raw gas” burner.<br />

0<br />

0 200 400 600 800 1000<br />

T 1 , Process Stream Inlet Temperature, °F<br />

45


FUME INCERATION – SELECTION & SIZING GUIDELINES<br />

I. Process Information Required<br />

A. Fume stream flow rate, scfm or acfm. (If acfm,<br />

specify temperature at which flow is measured.)<br />

Maximum and minimum flow rates are required.<br />

B. Fume stream temperature at inlet to burner at<br />

maximum and minimum flow rates.<br />

C. Oxygen content of fume stream.<br />

D. Amount of particulates or other non-volatile<br />

matter in fume stream.<br />

E. Incineration temperature required, typically:<br />

600-900°F for catalytic incinerators<br />

1200-1500°F for thermal incinerators.<br />

F. Residence time required in combustion chamber,<br />

typically, 0.3 to 0.7 seconds.<br />

II. Burner Type Selection<br />

Two basic types of burners are used to fire fume incinerators:<br />

raw gas burners, which obtain their combustion<br />

air from the incoming fume stream, and fresh air burners,<br />

which obtain theirs from an external source.<br />

Raw gas burners permit higher fuel efficiency, but they<br />

can’t be used under as wide a variety of operating conditions.<br />

The table below provides some general guidelines<br />

for burner selection.<br />

Fresh Air<br />

Selection Factor Raw Gas Burner Burner<br />

Oxygen content of 18-21% ok ok<br />

fume stream 13-18% maybe–check mfr. ok<br />

below 13% no ok<br />

Fume stream Up to 1100°F Depends on burner– ok<br />

{<br />

{<br />

{<br />

temperature<br />

check mfr.<br />

entering burner Over 1100°F no ok<br />

Particulates or None ok ok<br />

other non-vola- Low probably ok ok<br />

tiles in stream Heavy Depends on burner– ok<br />

check mfr.<br />

III. Calculating Burner Input<br />

A. For raw gas burners, use the chart on the top of page<br />

45.<br />

B. For fresh air burners use the chart on the bottom of<br />

page 45.<br />

These charts give Btu/hr required per scfm of<br />

fume stream. Multiply this figure by the fume<br />

stream flow rate, in scfm, to determine total burner<br />

heat input.<br />

C. If the burner will take part of its combustion air<br />

from the fume stream and the rest from an outside<br />

source, heat input can be closely estimated with<br />

this method:<br />

From page 45, deteremine Btu/hr required with<br />

a raw gas burner. Call this B r .<br />

From page 45, deteremine Btu/hr required with<br />

a 100% fresh air burner. Call this B f .<br />

Btu/hr (partial fresh air) =<br />

Br + % fresh combustion air (Bf–Br)<br />

100<br />

IV. Sizing Profile Plates<br />

If the burner is the type that is placed inside the<br />

fume duct, it has to be surrounded with a profile plate.<br />

Fumes are forced to pass through the gap between the<br />

profile plate and burner, ensuring that they mix completely<br />

with the burner flame.<br />

To size the profile gap, you need to know:<br />

1.Temperature of the fume stream passing over the<br />

burner,<br />

2.Fume stream pressure drop required across the profile<br />

gap (see burner manufacturer’s catalog data).<br />

Refer to the chart on page 17. Locate the required<br />

pressure drop at the bottom of the chart, then read up<br />

to the appropriate temperature curve and left to the<br />

stream velocity. Divide this velocity into the fume<br />

stream flow expressed in acfm:<br />

Profile gap, sq ft = Fume stream flow, acfm<br />

Fume stream velocity, ft/min<br />

For best results, the profile gap must be uniform<br />

width around the perimeter of the burner. Check manufacturer’s<br />

literature for specific recommendations on<br />

design and location of profile plates.<br />

NOTE: The air diffuser openings in some types of<br />

burners are considered part of the profile area. If so,<br />

deduct the area of these openings from the total profile<br />

area. The result will be the area of the gap around<br />

the burner.<br />

V. Sizing Downstream <strong>Combustion</strong> Chamber<br />

A. Chamber Cross-sectional area (A), Good practice<br />

requires no great than 30 ft/sec velocity in the combustion<br />

chamber, so<br />

A, sq ft =<br />

acfm of heated fume stream<br />

1800<br />

B. <strong>Combustion</strong> chamber length (L) is dictated by<br />

the required residence time.<br />

L, feet = Stream velocity x residence time.<br />

If, for example, velocity is 30 ft/sec, and residence<br />

time is 0.5 seconds, L is 15 feet.<br />

WARNING! Incineration of fume streams containing<br />

compounds of chlorine, fluorine, or sulfur will produce<br />

combustion products which may be toxic or corrosive, or<br />

both. Consult with environmental authorities before considering<br />

fume incineration.<br />

46


LIQUID HEATING – BURNER SIZING GUIDELINES<br />

I. Tank Heating<br />

To determine the immersion burner size for heating a<br />

liquid tank, conduct two heat balances–one for heatup<br />

requirements, the other for steady-state operating<br />

requirements. Use the larger of the two Btu inputs<br />

obtained from these calculations.<br />

A. Heat Balance – Heatup Requirements<br />

1.Heat to water<br />

Btu/hr = Lb water x temperature rise, °F<br />

heatup time required, hr<br />

or<br />

Btu/hr = 8.3 x gallons water x temperature rise, °F<br />

heatup time required, hr<br />

or<br />

Btu/hr = 62.4 x cu ft water x temperature rise, °F<br />

heatup time required, hr<br />

Common practice allows the following heatup<br />

times for various size tanks:<br />

Tank Capacity Heatup<br />

Gallons Cu Ft Time, hr<br />

0-375 0-50 2<br />

375-750 50-100 4<br />

750-1500 100-200 6<br />

Over 1500 Over 200 8<br />

2.Surface losses – evaporation & radiation<br />

Btu/hr = Exposed bath surface x heat loss<br />

from Table 1.<br />

3.Tank wall losses<br />

Btu/hr = Total sq ft of tank walls & bottom x wall<br />

loss from Table 1.<br />

4.Tank heat storage<br />

Btu/hr =<br />

Total sq ft, tank walls & bottom x storage, Table 1.<br />

heatup time required, hr<br />

5.Total heatup requirements<br />

Heat to water<br />

+ Surface losses<br />

+ Tank wall losses<br />

+ Tank heat storage<br />

= Total heatup requirement<br />

47<br />

B. Heat Balance – Steady State Heat Requirements<br />

1.Heat to workload<br />

Btu/hr =<br />

Lb of work processed x<br />

hr<br />

specific heat x temperature rise, °F<br />

(Work weight must include all baskets & fixtures)<br />

Specific heat of steel is 0.14 Btu/lb - °F.<br />

See pages 37 to 39 for other materials.<br />

2.Surface losses – evaporation & radiation<br />

Same as Step A.2.<br />

3.Tank wall losses<br />

Same as Step A.3.<br />

4.Heat to makeup water<br />

Btu/hr =<br />

makeup rate, gal/hr x 8.3 x temperature rise, °F<br />

5.Total steady state heat requirement<br />

Heat to workload<br />

+ Surface losses<br />

+ Tank wall losses<br />

+ Heat to makeup water<br />

= Total steady state requirement<br />

C. Compare the heat requirements calculated in<br />

Steps A.5 and B.5. Select the larger of the two .<br />

(This is the net hourly input to the tank.)<br />

D. Gross Heat Input (Burner Firing Rate)<br />

Gross Input, Btu/hr = Net Input from A.5 or B.5 x 100<br />

% Efficiency required<br />

Efficiency is a function of immersion tube<br />

length and burner firing rate. 70% is a commonly<br />

used efficiency rating.<br />

E. Immersion Tube Sizing<br />

See burner manufacturer’s product literature<br />

for tube sizing recommendations.<br />

Table 1. Tank losses & storage<br />

Surface Losses, Wall Losses, Btu/sq ft-hr Heat Storage,<br />

Liquid Btu/sq ft-hr Btu/sq ft<br />

Temperature, Evapor- Radia- Insulation Thickness Steel Thickness<br />

°F ation* tion Total* None 1" 2" 3" 1/8" 1/4"<br />

90 80 50 130 50 12 6 4 21 42<br />

100 160 70 230 70 15 8 6 28 56<br />

110 240 90 330 90 19 10 7 35 70<br />

120 360 110 470 110 23 12 9 42 84<br />

130 480 135 615 135 27 14 10 49 98<br />

140 660 160 820 160 31 16 12 56 112<br />

150 860 180 1040 180 34 18 13 63 126<br />

160 1100 210 1310 210 38 21 15 70 140<br />

170 1380 235 1615 235 42 23 16 77 154<br />

180 1740 260 2000 260 46 25 17 84 168<br />

190 2160 290 2450 290 50 27 19 91 182<br />

200 2680 320 3000 320 53 29 20 98 196<br />

210 3240 360 3590 360 57 31 22 105 210<br />

220 4000 420 4420 380 62 33 23 112 224<br />

250 — 510 — 510 70 40 25 133 266<br />

275 — 600 — 600 81 45 29 151 301<br />

300 — 705 — 705 92 51 33 168 336<br />

325 — 850 — 850 103 57 36 186 371<br />

350 — 990 — 990 114 63 40 203 406<br />

400 — 1335 — 1335 138 75 49 238 476<br />

*Water or water-based solutions only.


II. Spray Washers<br />

Three methods are presented for calculating spray<br />

washer heat requirements. The first is the most accurate,<br />

making use of detailed heat loss factors. The<br />

other two are rule-of-thumb methods. While not as<br />

accurate as method A, they are useful for quickly<br />

estimating burner inputs.<br />

A. Heat Loss Method<br />

1.Data required:<br />

Gpm capacity of spray nozzles<br />

Height & width of washer housing (hood)<br />

Height & width of opening through which<br />

work passes<br />

Liquid pressure head<br />

Liquid temperature<br />

Location of stage in washer<br />

2.Heat Loss factors<br />

From Table 2, find the heat loss factors for<br />

housing height opening width<br />

housing width liquid pressure<br />

opening height liquid temperature<br />

Add all these factors together to get the combined<br />

factor, f.<br />

3.Stage location multiplier, M<br />

Location Multiplier<br />

Entrance Stage 1.75<br />

Intermediate Stage 1.00<br />

After a Cold Rinse 1.25<br />

Exist Stage 1.50<br />

4.Calculation of Gross Burner Input<br />

Btu/hr = Gpm x 500 x f x M<br />

This method yields gross burner input because<br />

an immersion tube efficiency of 70% has<br />

already been assumed in the heat loss factors.<br />

Table 2. Spray Washer Heat Loss Factors<br />

Housing Opening Liquid<br />

Wide High Wide High Press. Temp.<br />

Ft. f Ft. f Ft. f Ft. f PSIG f °F f<br />

2 .7 1 .8 140 .4<br />

3 .8 1 .3 2 .9 1 .5 5 .4 145 .5<br />

4 .9 2 .4 3 1.0 2 .6 7.5 .5 150 .6<br />

5 1.0 3 .5 4 1.1 3 .7 10 .6 155 .7<br />

6 1.1 4 .6 5 1.2 4 .8 12.5 .7 160 .8<br />

7 1.2 5 .7 6 1.3 5 .9 15 .8 165 .9<br />

8 1.3 6 .8 7 1.4 6 1.0 17.5 .9 170 1.0<br />

9 1.4 7 .9 8 1.5 7 1.1 20 1.0 175 1.3<br />

10 1.5 8 1.0 9 1.6 8 1.3 22.5 1.2 180 1.6<br />

11 1.6 9 1.1 10 1.7 9 1.5 30 1.4 185 1.9<br />

12 1.7 10 1.2 11 1.8 10 1.7 32.5 1.6 190 2.2<br />

13 1.8 11 1.3 12 1.9 11 1.9 35 1.8<br />

14 1.9 12 1.4 13 2.0 12 2.1 37.5 2.0<br />

15 2.0 13 1.5 14 2.1 13 2.3 40 2.2<br />

16 2.1 14 1.6 15 2.2 14 2.5 50 2.6<br />

17 2.2 100 3.5<br />

B. Temperature Drop Rule of Thumb<br />

1.Data required:<br />

Gpm capacity of spray nozzles<br />

Temperature of liquid<br />

Tube efficiency (usually 70%)<br />

2.Approximate temperature drop of water. Table<br />

3 lists the approximate loss in water temperature<br />

as it is sprayed onto the workload.<br />

Table 3. Water Temperature Drop<br />

Water<br />

Temperature<br />

Temperature, °F Drop, °F<br />

150 5<br />

160 6<br />

170 7<br />

180 8<br />

190 9<br />

200 10<br />

3.Calculation of gross burner input.<br />

Btu/hr = Gpm x 500 x Temp Drop x 100<br />

% Efficiency<br />

4.Tank sizing<br />

Tank capacity = 3 x Gpm spray capacity<br />

C. Quick Method Rule of Thumb<br />

Btu/hr gross burner input =<br />

4000 x Gpm sprayed @ 30 psi x 100<br />

% Efficiency<br />

Capacities of spray nozzles are listed in Table 4.<br />

Table 4. Capacities of Spray Nozzles<br />

Gallons per minute of water through<br />

PSI Ft. Hd. a nozzle diameter of:<br />

Press (Approx.) 1/4" 5/16" 3/8" 7/16" 1/2" 5/8" 3/4"<br />

5 11.5 3.3 5.2 7.4 10.2 13.3 20.8 30.0<br />

10 23.0 4.7 7.3 10.4 14.3 18.7 29.3 42.3<br />

15 35.0 5.8 9.1 12.9 17.7 23.2 36.2 52.3<br />

20 46.5 6.7 10.5 14.8 20.7 26.7 41.8 60.5<br />

25 57.5 7.4 11.7 16.6 22.7 29.7 46.8 67.0<br />

30 68.5 8.1 12.9 18.2 24.8 32.4 50.7 73.0<br />

35 81.0 8.8 13.8 19.7 27.0 35.2 55.1 79.5<br />

40 92.5 9.4 14.8 21.3 28.8 37.7 58.9 85.0<br />

45 104.0 10.0 15.7 22.4 30.6 39.9 65.1 90.0<br />

50 115.0 10.5 16.5 23.5 32.1 42.0 65.7 94.6<br />

55 126.5 11.0 17.3 24.7 33.7 44.1 68.9 99.5<br />

60 138.0 11.0 18.1 25.8 35.2 46.1 72.1 104.0<br />

65 150.0 12.0 18.8 26.9 36.7 48.0 75.0 108.2<br />

70 162.0 12.4 19.6 27.9 38.1 49.7 77.9 112.0<br />

75 172.0 12.9 20.2 28.9 39.4 51.5 80.6 116.0<br />

80 184.5 13.3 20.9 29.9 40.7 53.3 83.1 119.9<br />

85 195.0 13.7 21.5 30.7 41.8 54.7 85.5 123.5<br />

90 205.0 14.0 22.0 31.4 42.9 56.2 87.7 126.7<br />

95 214.5 14.4 22.6 32.1 43.9 57.5 89.8 129.5<br />

100 224.0 14.6 23.1 32.8 44.8 58.7 91.7 132.0<br />

Above values are based on an orifice discharge coefficient of .80<br />

ORIFICE FLOW EQUATION:<br />

Q = 19.65 C D 2 H<br />

WHERE:<br />

Q = Gallons per minute<br />

D = Diameter of orifice in inches<br />

H = Pressure drop across orifice in feet head<br />

C = Orifice discharge coefficient<br />

48


BLACK BODY RADIATION<br />

350<br />

300<br />

Heat Transfer Rate, Btu/Sq Ft x 1000<br />

250<br />

200<br />

150<br />

100<br />

Receiver (Colder) Temperature<br />

50<br />

1000°F<br />

60°F<br />

1500°F<br />

1800°F<br />

2000°F<br />

2200°F<br />

2400°F<br />

2600°F<br />

2800°F<br />

3000°F<br />

3200°F<br />

0<br />

500 1000 1500 2000 2500 3000 3500<br />

Source (Hotter) Temperature, °F<br />

These curves are plotted from the relationship<br />

Q = AK (T 1 4 -T 2<br />

4) (page 8.2)<br />

1 +<br />

1 - 1<br />

P 1 P 2<br />

where P 1 & P 2 equal 1, that is, the heat source and receiver both<br />

have emissivities of 1.0, and they are arranged so there is no barrier<br />

to heat transfer between them.<br />

THERMOCOUPLE DATA<br />

ANSI Calibration Code B E J K R S T<br />

Useful Temp. Range, °F 1600-3100 32-1600 400-1400 700-2300 1800-2700 1800-2700 -300 + 700<br />

Positive Element Pt-30%Rh* Chromel** Iron Chromel** Pt-13%Rh* Pt-10%Rh* Copper<br />

Negative Element Pt-6%Rh* Constantan Constantan Alumel** Pt* Pt* Constantan<br />

Color Coding<br />

Positive Element Gray Purple White Yellow Black Black Blue<br />

Negative Element Red Red Red Red Red Red Red<br />

Outer Insulation on Purple or Black or Yellow or Blue or<br />

Duplex Wire Gray Brown/Purple Brown/Black Brown/Yellow Green Green Brown/Blue<br />

Plugs & Jacks Gray Purple Black Yellow Green Green Blue<br />

*Pt = Platinum, Rh = Rhodium<br />

**Trademarks - Hoskins Mfg. Co.<br />

How to Deteremine Thermocouple Polarity if Wire Identification is Missing:<br />

Types B, R, and S: Gently flex the ends of both wires. The stiffer wire is the positive element.<br />

Type K: Negative element is slightly magnetic.<br />

Type J: Positive element is magnetic.<br />

Type T: Positive element has characteristic pinkish-orange color of copper.<br />

59


ORTON STANDARD PYROMETRIC CONES<br />

TEMPERATURE EQUIVALENTS<br />

Cone Type Self- Self- Cone Type<br />

Heating Rate Large Regular Large Iron Free Supporting Regular Supporting Iron Free Small Regular Small PCE Heating Rate<br />

Cone number 108°F/hr 270°F/hr 108°F/hr 270°F/hr 108°F/hr 270°F/hr 108°F/hr 270°F/hr 540°F/hr 270°F/hr Cone number<br />

022 1074 1092 1087 1094 1157 022<br />

021 1105 1132 1112 1143 1195 021<br />

020 1148 1173 1159 1180 1227 020<br />

019 1240 1265 1243 1267 1314 019<br />

018 1306 1337 1314 1341 1391 018<br />

017 1348 1386 1353 1391 1445 017<br />

016 1407 1443 1411 1445 1517* 016<br />

015 1449 1485 1452 1488 1549* 015<br />

014 1485 1528 1488 1531 1616 014<br />

013 1539 1578 1542 1582 1638 013<br />

012 1571 1587 1575 1591 1652 012<br />

011 1603 1623 1607 1627 1684 011<br />

010 1629* 1641* 1623 1656 1632 1645 1627 1659 1686* 010<br />

09 1679* 1693* 1683 1720 1683 1697 1686 1724 1751* 09<br />

08 1733* 1751* 1733 1773 1737 1755 1735 1774 1801* 08<br />

07 1783* 1803* 1778 1816 1787 1807 1780 1818 1846* 07<br />

06 1816* 1830* 1816 1843 1819 1834 1816 1845 1873* 06<br />

05 1/2 1852 1873 1852 1886 1855 1877 1854 1888 1908 05 1/2<br />

05 1888* 1915* 1890 1929 1891 1918 1899 1931 1944* 05<br />

04 1922* 1940* 1940 1967 1926 1944 1942 1969 2008* 04<br />

03 1987* 2014* 1989 2007 1990 2017 1990 2010 2068* 03<br />

02 2014* 2048* 2016 2050 2017 2052 2021 2052 2098* 02<br />

01 2043* 2079* 2052 2088 2046 2082 2053 2089 2152* 01<br />

1 2077* 2109* 2079 2111 2080 2113 2082 2115 2154* 1<br />

2 2088* 2124* Not Manufactured 2091 2127 Not Manufactured 2154* 2<br />

3 2106* 2134* 2104 2136 2109 2138 2109 2140 2185* 3<br />

4 2134* 2167* 2142 2169 2208* 4<br />

5 2151* 2185* 2165 2199 2230* 5<br />

6 2194* 2232* 2199 2232 2291* 6<br />

7 2219* 2264* 2228 2273 2307* 7<br />

8 2257* 2305* 2273 2314 2372* 8<br />

9 2300* 2336* 2300 2336 2403* 9<br />

10 2345* 2381* 2345 2381 2426* 10<br />

11 2361* 2399* 2361 2399 2437* 11<br />

12 2383* 2419* 2383 2419 2471* 2439* 12<br />

13 2410* 2455* 2428 2458 2460 2460* 13<br />

13 1/2 Not Manufactured 2466 2493 Not Manufactured 13 1/2<br />

14 2530* 2491* 2489 2523 2548 2548* 14<br />

14 1/2 Not Manufactured 2527 2568 Not Manufactured 14 1/2<br />

15 2595* 2608* 2583 2602 2606 2606* 15<br />

15 1/2 Not Manufactured 2617 2633 Not Manufactured 15 1/2<br />

16 2651* 2683* 2655 2687 2716 2716* 16<br />

17 2691* 2705* 2694 2709 2754 2754* 17<br />

18 2732* 2743* 2736 2746 2772 2772* 18<br />

19 2768* 2782* 2772 2786 2806 2806* 19<br />

20 2808* 2820* 2811 2824 2847 2847* 20<br />

21 2847* 2856* 2851 2860 2883* 21<br />

23 2887* 2894* 2890 2898 2921* 23<br />

26 2892* 2921* 2950* 26<br />

27 2937* 2961* 2984* 27<br />

28 2937* 2971* 2995* 28<br />

29 2955* 2993* 3018* 29<br />

30 2977* 3009* 3029* 30<br />

31 3022* 3054* 3061* 31<br />

31 1/2 ND ND 3090* 31 1/2<br />

32 3103* 3123* 3123* 32<br />

32 1/2 3124* 3146* 3135* 32 1/2<br />

33 3150* 3166* 3169* 33<br />

34 3195* 3198* 3205* 34<br />

35 3243* 3243* 3245* 35<br />

36 3268* 3265* 3279* 36<br />

37 ND ND 3308 37<br />

38 ND ND 3362 38<br />

39 ND ND 3389 39<br />

40 ND ND 3425 40<br />

41 ND ND 3578 41<br />

42 ND ND 3659 42<br />

The temperature equivalent tables are designed to be a guide for the selection of cones to use during firing. The temperature listed may only have a relative value to<br />

the user. However, the values do provide a good starting point and once the proper cones are determined for a particular firing condition, excellent firing control can<br />

be maintained. NOTES: ND = Not determined *Temperature equivalents as determined by the National Bureau of Standards by H.P. Beerman (See Journal of the<br />

American Ceramic Society Volume 39, 1956) Large cones at 2 inch mounting height, Small & PCE cones at 15/16 inch.<br />

1. The temperature equivalents in this table apply only to Orton Standard Pyrometric Cones, heated at the rate indicated in air atmosphere.<br />

2. The rates of heating shown at the head of each column of temperature equivalents were maintained during the last several hundred degrees of temperature rise.<br />

3. The temperature equivalents are not necessarily those at which cones will deform under firing conditions different from those under which the calibration determination<br />

were made.<br />

4. For reproducible results, care should be taken to insure that the cones are set in a plaque with the bending face at the correct angle of 8° from the vertical with the<br />

cone tips at a uniform height above the plaque.<br />

©1986 The Edward Orton Jr. Ceramic Foundation. Reprinted with permission.<br />

50


CHAPTER 8 – COMBUSTION DATA<br />

AVAILABLE HEAT CHARTS<br />

Available heat for Birmingham Natural Gas (1002 Btu/cu ft, 0.60 sp gr) vs. % Excess Air and <strong>Combustion</strong> Air Temperature<br />

(at 10% excess air).<br />

90<br />

60°F<br />

10% Excess Air (preheated)<br />

Copyright 1983, GTE Products Corp., Towanda, PA 18848 USA<br />

Used by Permission<br />

% Available Heat (Higher Heating Value)<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

250% XS AIR<br />

300% XS AIR<br />

350% XS AIR<br />

200% XS AIR<br />

150% XS AIR<br />

100% XS AIR<br />

50% XS AIR<br />

1400°F<br />

1200°F<br />

1000°F<br />

800°F<br />

400°F<br />

0% XS AIR<br />

25% XS AIR<br />

10% XS AIR<br />

0<br />

1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500<br />

Flue Gas Exit Temperature °F<br />

AVAILABLE HEAT FOR VARIOUS FUEL GASES<br />

These curves assume 0% excess air. The excess air curves above for Birmingham Natural Gas can be used for butane,<br />

propane, natural, mixed, coke oven, & carbureted water gas without more than 5% error in the available heat.<br />

BUTANE 3200 BTU<br />

PROPANE 2500 BTU<br />

2400<br />

2200<br />

NATURAL GAS 1232 BTU<br />

NATURAL GAS 1050 BTU<br />

NATURAL GAS 967 BTU<br />

MIXED GAS 800 BTU<br />

COKE OVEN GAS 600 BTU<br />

CARBURETED WATER GAS 534 BTU<br />

COKE OVEN GAS 490 BTU<br />

BLUE WATER GAS 310 BTU<br />

PRODUCER GAS 157 BTU<br />

PRODUCER GAS 116 BTU<br />

200 600 1000 1400 1800 2200 2600 3000 3400 3800 0 200<br />

Flue Gas Temperature °F<br />

51<br />

2000<br />

1800<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

Available Heat Btu/Cu. Ft.


FLUE GAS ANALYSIS CHART<br />

16<br />

14<br />

% CO 2 - #6 OIL<br />

% CO 2 - #2 OIL<br />

% O 2 - DRY SAMPLE<br />

12<br />

% Flue Gas Constituent<br />

10<br />

8<br />

6<br />

% CO 2 - PROPANE<br />

% O 2 - SATURATED SAMPLE<br />

4<br />

2<br />

% CO 2 - NATURAL GAS<br />

0<br />

0 20 40 60 80 100 120 140 160 180 200<br />

Oxygen curves are plotted for 1002 Btu/cu ft Birmingham<br />

natural gas. These curves can be used for all common fuel<br />

gases and fuel oils with no more than 0.2% error in oxygen<br />

content.<br />

Use the “O 2 – dry sample” curve with flue gas analyzers<br />

that use dryers or condensers to remove water from the flue<br />

THEORETICAL FLAME TIP<br />

TEMPERATURE VS. EXCESS AIR<br />

The maximum theoretical temperature of combustion gases<br />

at the tip of a flame decreases with increasing amounts of<br />

excess air. The curve bleow shows this relationship for natural<br />

gas completely burned in 60°F combustion air, but is reaonsably<br />

accurate for most other common hydrocarbon fuels.<br />

Maximum Theoretical Temperature<br />

of Products of <strong>Combustion</strong> (°F)<br />

3200<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

% Excess Air<br />

0<br />

0 200 400 600 800 1000 1200 1400 1600 1800<br />

% Excess Air in Flue Gas<br />

gas sample. For analyzers which add water to produce a saturated<br />

sample, use the “O 2 – saturated sample” curve.<br />

% CO 2 curves are based on typical propane and fuel oil<br />

anlyses. If the fuel composition differs, actual CO 2 curves<br />

may vary slightly from those shown.<br />

HEAT TRANSFER RELATIONSHIPS<br />

Conduction Q =heat transferred, Btu/hr<br />

Q = kA (t 1 -t 2 )<br />

L<br />

Convection<br />

Q = fA (t 1 -t 2 )<br />

Radiation<br />

Q = AK (T 1 4 -T 2<br />

4)<br />

1 + 1 - 1<br />

P 1 P 2<br />

A =surface area across which heat is<br />

being transferred, sq. ft.<br />

t 1 =temperature of heat source, °F<br />

t 2 =temperature of heat receiver, °F<br />

L =thickness of object through which heat<br />

is conducted<br />

k =conductivity of material, Btu-ft<br />

f<br />

hr-sq ft-°F<br />

=convection film coefficient, Btu-ft<br />

hr-sq ft-°F<br />

K =Stefan-Boltzmann constant,<br />

=.1724 x 10 -8 Btu/sq ft-hr-(°R) 4<br />

P 1 =emissivity of heat source<br />

P 2 =emissivity of heat receiver<br />

T 1 =temperature of heat source, °R<br />

T 2 =temperature of heat receiver, °R<br />

(°R = °F + 460)<br />

52


THERMAL HEAD & COLD AIR INFILTRATION INTO FURNACES<br />

Furnacr Thermal Head or Draft, "wc<br />

Due to Gas Buoyancy<br />

.20<br />

.15<br />

.10<br />

.05<br />

Furnace<br />

Height Above<br />

Hearth<br />

16'<br />

14'<br />

12'<br />

10'<br />

8'<br />

6'<br />

4'<br />

The natural buoyancy of heated gases causes them to rise<br />

and collect under the roof of a furnace or oven. This creates<br />

a natural pressure differential, called thermal head or draft,<br />

which tends to pull cold air in through furnace leaks on topflued<br />

furnaces. These leaks are most pronounced at low fire,<br />

when burner combustion gas flow is insufficient to replace<br />

furnace gases drawn out by thermal head.<br />

This graph can be used to predict thermal head and cold<br />

air infiltration.<br />

Example: Determine thermal head and cold air infiltration<br />

in a 10' tall furnace operating at 1600°F.<br />

Solution: Read up from 1600°F furnace temperature to the<br />

intersection of the 10' curve. Read to the left to find thermal<br />

head, 0.08" w.c. To determine air infiltration, read right to<br />

the infiltration curve and then down to the infiltration rate,<br />

280 scfh per square inch.<br />

0<br />

0 500 1000 1500 2000 100 200 300 400 500<br />

Furnace<br />

Temperature °F<br />

Air Infiltration<br />

SCFH/ Sq. In.<br />

30<br />

FURNACE FLUE SIZING<br />

20<br />

Flue Cross-Sectional Area, Sq. In.<br />

Per 1000 SCFH of Flue Gases<br />

10<br />

8<br />

6<br />

5<br />

4<br />

3<br />

2<br />

2500°F<br />

1500°F<br />

500°F<br />

Average<br />

Flue Gas<br />

Temp.<br />

1<br />

1 2 3 4 5 6 8 10 20 30 40 50<br />

Stack Height, Ft, Above Furnace Hearth<br />

These curves predict the flue area required per 1000 scfh of<br />

flue gases, based on the average temperature of those gases<br />

and the height of the furnace stack. Flue openings are assumed<br />

to be simple orifices with a discharge coefficient of 0.6, and<br />

all pressure drop across those orifices is provided by the thermal<br />

head of the flue gases.<br />

This method is conservative – it will produce generously<br />

sized flues.<br />

Refer to Page 23 for volumes of combustion products for<br />

various fuels. Remember that if the combustion system is to<br />

be operated with excess air, the volume of combustion products<br />

has to be adjusted accordingly.<br />

Average flue gas temperature will have to be estimated,<br />

taking into account the effect of stack heat losses and dilution<br />

air.<br />

53


CHAPTER 9 – MECHANICAL DATA<br />

DIMENSIONAL AND CAPACITY DATA – SCHEDULE 40 PIPE<br />

Diameter, Inches Cross-Sectional Area Weight Per Foot, lb.<br />

Wall Sq. in. of of of<br />

Actual Actual Thickness, Pipe Water Pipe and<br />

Nominal Inside Outside Inches Outside Inside Metal Alone In Pipe Water<br />

1/8 0.269 0.405 0.068 0.129 0.057 0.072 0.25 0.028 0.278<br />

1/4 0.364 0.540 0.088 0.229 0.104 0.125 0.43 0.045 0.475<br />

3/8 0.493 0.675 0.091 0.358 0.191 0.167 0.57 0.083 0.653<br />

1/2 0.622 0.840 0.109 0.554 0.304 0.250 0.86 0.132 0.992<br />

3/4 0.824 1.050 0.113 0.866 0.533 0.333 1.14 0.232 1.372<br />

1 1.049 1.315 0.133 1.358 0.864 0.494 1.68 0.375 2.055<br />

1-1/4 1.380 1.660 0.140 2.164 1.495 0.669 2.28 0.649 2.929<br />

1-1/2 1.610 1.900 0.145 2.835 2.036 0.799 2.72 0.882 3.602<br />

2 2.067 2.375 0.154 4.431 3.356 1.075 3.66 1.454 5.114<br />

2-1/2 2.469 2.875 0.203 6.492 4.788 1.704 5.80 2.073 7.873<br />

3 3.068 3.500 0.216 9.621 7.393 2.228 7.58 3.201 10.781<br />

3-1/2 3.548 4.000 0.226 12.568 9.888 2.680 9.11 4.287 13.397<br />

4 4.026 4.500 0.237 15.903 12.730 3.173 10.80 5.516 16.316<br />

5 5.047 5.563 0.258 24.308 20.004 4.304 14.70 8.674 23.374<br />

6 6.065 6.625 0.280 34.474 28.890 5.584 19.00 12.52 31.52<br />

8 7.981 8.625 0.322 58.426 50.030 8.396 28.60 21.68 50.28<br />

10 10.020 10.750 0.365 90.79 78.85 11.90 40.50 34.16 74.66<br />

12 11.938 12.750 0.406 127.67 113.09 15.77 53.60 48.50 102.10<br />

14 13.126 14.000 0.437 153.94 135.33 18.61 63.30 58.64 121.94<br />

16 15.000 16.000 0.500 201.06 176.71 24.35 82.80 76.58 159.38<br />

18 16.876 18.000 0.562 254.47 223.68 30.79 105.00 96.93 201.93<br />

20 18.814 20.000 0.593 314.16 278.01 36.15 123.00 120.46 243.46<br />

Circumference, Sq. Ft. of Surface Contents of Pipe Lineal Feet To Contain<br />

Inches Per Lineal Foot Per Lineal Foot<br />

Nominal<br />

1 LB.<br />

Dia. In. Outside Inside Outside Inside Cu. Ft. Gal. 1 Cu. Ft. 1 Gal. of Water<br />

1/8 1.27 0.84 0.106 0.070 0.0004 0.003 2533.775 338.74 35.714<br />

1/4 1.69 1.14 0.141 0.095 0.0007 0.005 1383.789 185.00 22.222<br />

3/8 2.12 1.55 0.177 0.129 0.0013 0.010 754.360 100.85 12.048<br />

1/2 2.65 1.95 0.221 0.167 0.0021 0.016 473.906 63.36 7.576<br />

3/4 3.29 2.58 0.275 0.215 0.0037 0.028 270.034 36.10 4.310<br />

1 4.13 3.29 0.344 0.274 0.0062 0.045 166.618 22.28 2.667<br />

1-1/4 5.21 4.33 0.435 0.361 0.0104 0.077 96.275 12.87 1.541<br />

1-1/2 5.96 5.06 0.497 0.422 0.0141 0.106 70.733 9.46 1.134<br />

2 7.46 6.49 0.622 0.540 0.0233 0.174 42.913 5.74 0.688<br />

2-1/2 9.03 7.75 0.753 0.654 0.0332 0.248 30.077 4.02 0.482<br />

3 10.96 9.63 0.916 0.803 0.0514 0.383 19.479 2.60 0.312<br />

3-1/2 12.56 11.14 1.047 0.928 0.0682 0.513 14.565 1.95 0.233<br />

4 14.13 12.64 1.178 1.052 0.0884 0.660 11.312 1.51 0.181<br />

5 17.47 15.84 1.456 1.319 0.1390 1.040 7.198 0.96 0.115<br />

6 20.81 19.05 1.734 1.585 0.2010 1.500 4.984 0.67 0.080<br />

8 27.09 26.07 2.258 2.090 0.3480 2.600 2.878 0.38 0.046<br />

10 33.77 31.47 2.814 2.622 0.5470 4.100 1.826 0.24 0.029<br />

12 40.05 37.70 3.370 3.140 0.7850 5.870 1.273 0.17 0.021<br />

14 47.12 44.76 3.930 3.722 1.0690 7.030 1.067 0.14 0.017<br />

16 53.41 51.52 4.440 4.310 1.3920 9.180 0.814 0.11 0.013<br />

18 56.55 53.00 4.712 4.420 1.5530 11.120 0.644 0.09 0.010<br />

20 62.83 59.09 5.236 4.920 1.9250 14.400 0.517 0.07 0.008<br />

54


DIMENSIONS OF MALLEABLE IRON THREADED FITTINGS<br />

per ANSI B 16.3-1977<br />

A<br />

A<br />

A<br />

C<br />

A<br />

A<br />

C<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

90° Elbow<br />

90° Street Elbow Street Tee<br />

(150 lb only)<br />

Tee<br />

Cross<br />

M1<br />

B<br />

E<br />

J<br />

K<br />

M2<br />

M3<br />

B<br />

D<br />

F G G H<br />

45° Elbow 45° Street Elbow 45° Y-Bend<br />

(150 lb only)<br />

Cap Coupling Reducer Return Bend<br />

CLASS 150 FITTINGS<br />

Thread M 1 M 2 M 3<br />

Engage- Close Med. Open<br />

Size ment A B C D E F G H J K Pattern Pattern Pattern<br />

1/8 0.25 0.69 – 1.00 – – – – 0.53 0.96 – – – –<br />

1/4 0.32 0.81 0.73 1.19 0.73 0.94 – – 0.63 1.06 1.00 – – –<br />

3/8 0.36 0.95 0.80 1.44 0.80 1.03 1.93 1.43 0.74 1.16 1.13 – – –<br />

1/2 0.43 1.12 0.88 1.63 0.88 1.15 2.32 1.71 0.87 1.34 1.25 1.00 1.25 1.50<br />

3/4 0.50 1.31 0.98 1.89 0.98 1.29 2.77 2.05 0.97 1.52 1.44 1.25 1.50 2.00<br />

1 0.58 1.50 1.12 2.14 1.12 1.47 3.28 2.43 1.16 1.67 1.69 1.50 1.87 2.50<br />

1-1/4 0.67 1.75 1.29 2.45 1.29 1.71 3.94 2.92 1.28 1.93 2.06 1.75 2.25 3.00<br />

1-1/2 0.70 1.94 1.43 2.69 1.43 1.88 4.38 3.28 1.33 2.15 2.31 2.19 2.50 3.50<br />

2 0.75 2.25 1.68 3.26 1.68 2.22 5.17 3.93 1.45 2.53 2.81 2.62 3.00 4.00<br />

2-1/2 0.92 2.70 1.95 3.86 1.95 2.57 6.25 4.73 1.70 2.88 3.25 – – 4.50<br />

3 0.98 3.08 2.17 4.51 2.17 3.00 7.26 5.55 1.80 3.18 3.69 – – 5.00<br />

3-1/2 1.03 3.42 2.39 – – – – – 1.90 – – – – –<br />

4 1.08 3.79 2.61 5.69 2.61 3.70 8.98 6.97 2.08 3.69 4.38 – – 6.00<br />

5 1.18 4.50 3.05 6.86 – – – – 2.32 – – – – –<br />

6 1.28 5.13 3.46 8.03 – – – – 2.55 – – – – –<br />

CLASS 300 FITTINGS<br />

Thread<br />

Engage-<br />

Size ment A B C D E H J K M 1 M 2 M 3<br />

1/4 0.43 0.94 0.81 1.44 – – 0.78 1.37 – – – –<br />

3/8 0.47 1.06 0.88 1.63 – – 0.83 1.62 1.44 – – –<br />

1/2 0.57 1.25 1.00 2.00 1.00 1.38 0.98 1.87 1.69 – – –<br />

3/4 0.64 1.44 1.13 2.19 1.13 1.56 1.08 2.12 1.75 – – –<br />

1 0.75 1.63 1.31 2.56 1.31 1.81 1.26 2.37 2.00 1.75 2.50 3.00<br />

1-1/4 0.84 1.94 1.50 2.88 1.50 2.13 1.38 2.87 2.38 2.25 2.50 3.00<br />

1-1/2 0.87 2.13 1.69 3.13 1.69 2.31 1.43 2.87 2.69 3.00 3.50 6.00<br />

2 1.00 2.50 2.00 3.69 2.00 2.69 1.68 3.62 3.19 4.00 6.00 8.00<br />

2-1/2 1.17 2.94 2.25 4.50 – – 2.06 4.12 3.69 – – –<br />

3 1.23 3.38 2.50 5.13 – – 2.17 4.12 4.06 – – –<br />

55


SHEET METAL GAUGES & WEIGHTS<br />

Carbon Steel Galvanized Steel Stainless (Cr-Ni) Steel<br />

Gauge Thickness, Thickness, Thickness,<br />

No. in. lb. per sq. ft. in. lb per sq. ft in. lb. per sq. ft.<br />

7 .1793 7.500 – – – –<br />

8 .1644 6.875 .1681 7.031 .165 6.930<br />

9 .1495 6.250 .1532 6.406 .1563 6.563<br />

10 .1345 5.625 .1382 5.781 .135 5.670<br />

11 .1196 5.000 .1233 5.156 .120 5.040<br />

12 .1096 4.375 .1084 4.531 .1054 4.427<br />

13 .0897 3.750 .0934 3.906 .090 3.780<br />

14 .0747 3.125 .0785 3.281 .0751 3.154<br />

15 .0673 2.812 .0710 2.969 .0703 2.953<br />

16 .0598 2.500 .0635 2.656 .0595 2.499<br />

17 .0538 2.250 .0575 2.406 .0563 2.363<br />

18 .0478 2.000 .0516 2.156 .048 2.016<br />

19 .0418 1.750 .0456 1.906 .042 1.764<br />

20 .0359 1.500 .0396 1.656 .0355 1.491<br />

21 .0329 1.375 .0366 1.531 .0344 1.444<br />

22 .0299 1.250 .0336 1.406 .0293 1.231<br />

23 .0269 1.125 .0306 1.281 .0281 1.181<br />

24 .0239 1.000 .0276 1.156 .0235 .987<br />

25 .0209 .875 .0247 1.031 .0219 .919<br />

26 .0179 .750 .0217 .906 .0178 .748<br />

27 .0164 .688 .0202 .844 .0172 .722<br />

28 .0149 .625 .0187 .781 .0151 .634<br />

29 .0135 .563 .0172 .719 – –<br />

30 .0120 .500 .0157 .656 – –<br />

SHEET WIRE GAUGES & WEIGHTS<br />

Diameter, inches<br />

Diameter, inches<br />

Steel<br />

Steel<br />

Gauge Wire Gauge Wire<br />

No. AWG 1 Gauge 2 BWG 3 No. AWG 1 Gauge 2 BWG 3<br />

0 .3249 .3065 .340 15 .0571 .0720 .072<br />

1 .2893 .2830 .300 16 .0508 .0625 .065<br />

2 .2576 .2625 .284 17 .0453 .0540 .058<br />

3 .2294 .2437 .259 18 .0403 .0475 .049<br />

4 .2043 .2253 .238 19 .0359 .0410 .042<br />

5 .1819 .2070 .220 20 .0320 .0348 .035<br />

6 .1620 .1920 .203 21 .0285 .0317 .032<br />

7 .1443 .1770 .180 22 .0253 .0286 .028<br />

8 .1285 .1620 .165 23 .0226 .0258 .025<br />

9 .1144 .1483 .148 24 .0201 .0230 .022<br />

10 .1019 .1350 .134 25 .0179 .0204 .020<br />

11 .0907 .1205 .120 26 .0159 .0181 .018<br />

12 .0808 .1055 .109 27 .0142 .0173 .016<br />

13 .0720 .0915 .095 28 .0126 .0162 .014<br />

14 .0641 .0800 .083 29 .0113 .0150 .013<br />

30 .0100 .0140 .012<br />

1<br />

American Wire Gauge or Brown & Sharpe Gauge for<br />

non-ferrous wire, including electrical wire.<br />

2<br />

Or Washburn & Moen Gauge.<br />

3<br />

Birmingham Wire Gauge or Stubs Gauge.<br />

56


CIRCUMFERENCES AND AREAS OF CIRCLES<br />

In Inches<br />

Dia. Circum. Area Dia. Circum. Area Dia. Circum. Area<br />

1/64 .04909 .00019 3 9.4248 7.0686 8 25.133 50.265<br />

1/32 .09818 .00077 1/16 9.6211 7.3662 1/8 25.525 51.849<br />

3/64 .14726 .00173 1/8 9.8175 7.6699 1/4 25.918 53.456<br />

1/16 .19635 .00307 3/16 10.014 7.9798 3/8 26.311 55.088<br />

3/32 .29452 .00690 1/4 10.210 8.2958 1/2 26.704 56.745<br />

1/8 .39270 .01227 5/16 10.407 8.6179 5/8 27.096 58.426<br />

5/32 .49087 .01917 3/8 10.603 8.9462 3/4 27.489 60.132<br />

3/16 .58905 .02761 7/16 10.799 9.2806 7/8 27.882 61.862<br />

7/32 .68722 .03758 1/2 10.996 9.6211 9 28.274 63.617<br />

1/4 .78540 .04909 9/16 11.192 9.9678 1/8 28.667 65.397<br />

9/32 .88357 .06213 5/8 11.388 10.321 1/4 29.060 67.201<br />

5/16 .98175 .07670 11/16 11.585 10.680 3/8 29.452 69.029<br />

11/32 1.0799 .09281 3/4 11.781 11.045 1/2 29.845 70.882<br />

3/8 1.1781 .11045 13/16 11.977 11.416 5/8 30.238 72.760<br />

13/32 1.2763 .12962 7/8 12.174 11.793 3/4 30.631 74.662<br />

7/16 1.3744 .15033 15/16 12.370 12.177 7/8 31.023 76.589<br />

15/32 1.4726 .17257 4 12.566 12.566 10 31.416 78.540<br />

1/2 1.5708 .19635 1/16 12.763 12.962 1/8 31.809 80.516<br />

17/32 1.6690 .22166 1/8 12.959 13.364 1/4 32.201 82.516<br />

9/16 1.7671 .24850 3/16 13.155 13.772 3/8 32.594 84.541<br />

19/32 1.8653 .27688 1/4 13.352 14.186 1/2 32.987 86.590<br />

5/8 1.9635 .30680 5/16 13.548 14.607 5/8 33.379 88.664<br />

21/32 2.0617 .33824 3/8 13.744 15.033 3/4 33.772 90.763<br />

11/16 2.1598 .37122 7/16 13.941 15.466 7/8 34.165 92.886<br />

23/32 2.2580 .40574 1/2 14.137 15.904 11 34.558 95.033<br />

3/4 2.3562 .44179 9/16 14.334 16.349 1/8 34.950 97.205<br />

25/32 2.4544 .47937 5/8 14.530 16.800 1/4 35.343 99.402<br />

13/16 2.5525 .51849 11/16 14.726 17.257 3/8 35.736 101.62<br />

27/32 2.6507 .55914 3/4 14.923 17.721 1/2 36.128 103.87<br />

7/8 2.7489 .60132 13/16 15.119 18.190 5/8 36.521 106.14<br />

29/32 2.8471 .64504 7/8 15.315 18.665 3/4 36.914 108.43<br />

15/16 2.9452 .69029 15/16 15.512 19.147 7/8 37.306 110.75<br />

31/32 3.0434 .73708 5 15.708 19.635 12 37.699 113.10<br />

1 3.1416 .7854 1/16 15.904 20.129 1/8 38.092 115.47<br />

1/16 3.3379 .8866 1/8 16.101 20.629 1/4 38.485 117.86<br />

1/8 3.5343 .9940 3/16 16.297 21.135 3/8 38.877 120.28<br />

3/16 3.7306 1.1075 1/4 16.493 21.648 1/2 39.270 122.72<br />

1/4 3.9270 1.2272 5/16 16.690 22.166 5/8 39.663 125.19<br />

5/16 4.1233 1.3530 3/8 16.886 22.691 3/4 40.055 127.68<br />

3/8 4.3197 1.4849 7/16 17.082 23.221 7/8 40.448 130.19<br />

7/16 4.5160 1.6230 1/2 17.279 23.758 13 40.841 132.73<br />

1/2 4.7124 1.7671 9/16 17.475 24.301 1/8 41.233 135.30<br />

9/16 4.9087 1.9175 5/8 17.671 24.850 1/4 41.626 137.89<br />

5/8 5.1051 2.0739 11/16 17.868 25.406 3/8 42.019 140.50<br />

11/16 5.3014 2.2365 3/4 18.064 25.967 1/2 42.412 143.14<br />

3/4 5.4978 2.4053 13/16 18.261 26.535 5/8 42.804 145.80<br />

13/16 5.6941 2.5802 7/8 18.457 27.109 3/4 43.197 148.49<br />

7/8 5.8905 2.7612 15/16 18.653 27.688 7/8 43.590 151.20<br />

15/16 6.0868 2.9483 6 18.850 28.274 14 43.982 153.94<br />

2 6.2832 3.1416 1/8 19.242 29.465 1/8 44.374 156.70<br />

1/16 6.4795 3.3410 1/4 19.635 30.680 1/4 44.768 159.48<br />

1/8 6.6759 3.5466 3/8 20.028 31.919 3/8 45.160 162.30<br />

3/16 6.8722 3.7583 1/2 20.420 33.183 1/2 45.553 165.13<br />

1/4 7.0686 3.9761 5/8 20.813 34.472 5/8 45.946 167.99<br />

5/16 7.2649 4.2000 3/4 21.206 35.785 3/4 46.338 170.87<br />

3/8 7.4613 4.4301 7/8 21.598 37.122 7/8 46.731 173.78<br />

7/16 7.6576 4.6664 7 21.991 38.485 15 47.124 176.71<br />

1/2 7.8540 4.9087 1/8 22.384 39.871 1/8 47.517 179.67<br />

9/16 8.0503 5.1572 1/4 22.776 41.282 1/4 47.909 182.65<br />

5/8 8.2467 5.4119 3/8 23.169 42.718 3/8 48.302 185.66<br />

11/16 8.4430 5.6727 1/2 23.562 44.179 1/2 48.695 188.69<br />

3/4 8.6394 5.9396 5/8 23.955 45.664 5/8 49.087 191.75<br />

13/16 8.8357 6.2126 3/4 24.347 47.173 3/4 49.480 194.83<br />

7/8 9.0321 6.4918 7/8 24.740 48.707 7/8 49.873 197.93<br />

15/16 9.2284 6.7771<br />

57


CIRCUMFERENCES AND AREAS OF CIRCLES (Cont’d)<br />

In Inches<br />

Dia. Circum. Area Dia. Circum. Area Dia. Circum. Area<br />

16 50.265 201.06 24 75.398 452.39 39 122.522 1194.6<br />

1/8 50.658 204.22 1/8 75.791 457.11 40 125.664 1256.6<br />

1/4 51.051 207.39 1/4 76.184 461.86 41 128.805 1320.3<br />

3/8 51.444 210.60 3/8 76.576 466.64 42 131.947 1385.4<br />

1/2 51.836 213.82 1/2 76.969 471.44 43 135.088 1452.2<br />

5/8 52.229 217.08 5/8 77.362 476.26 44 138.230 1520.5<br />

3/4 52.622 220.35 3/4 77.754 481.11 45 141.372 1590.4<br />

7/8 53.014 223.65 7/8 78.147 485.98 46 144.513 1661.9<br />

17 53.407 226.98 25 78.540 490.87 47 147.655 1734.9<br />

1/8 53.800 230.33 1/8 78.933 495.79 48 150.796 1809.6<br />

1/4 54.192 233.71 1/4 79.325 500.74 49 153.939 1885.7<br />

3/8 54.585 237.10 3/8 79.718 505.71 50 157.080 1963.5<br />

1/2 54.978 240.53 1/2 80.111 510.71 51 160.221 2042.8<br />

5/8 55.371 243.98 5/8 80.503 515.72 52 163.363 2123.7<br />

3/4 55.763 247.45 3/4 80.896 520.77 53 166.504 2206.2<br />

7/8 56.156 250.95 7/8 81.289 525.84 54 169.646 2290.2<br />

18 56.549 254.47 26 81.681 530.93 55 172.788 2375.8<br />

1/8 56.941 258.02 1/8 82.074 536.05 56 175.929 2463.0<br />

1/4 57.334 261.59 1/4 82.467 541.19 57 179.071 2551.8<br />

3/8 57.727 265.18 3/8 82.860 546.35 58 182.212 2642.1<br />

1/2 58.119 268.80 1/2 83.252 551.55 59 185.354 2734.0<br />

5/8 58.512 272.45 5/8 83.645 556.76 60 188.496 2827.4<br />

3/4 58.905 276.12 3/4 84.038 562.00 61 191.637 2922.5<br />

7/8 59.298 279.81 7/8 84.430 567.27 62 194.779 3019.1<br />

19 59.690 283.53 27 84.823 572.56 63 197.920 3117.2<br />

1/8 60.083 287.27 1/8 85.216 577.87 64 201.062 3217.0<br />

1/4 60.476 291.04 1/4 85.608 583.21 65 204.204 3318.3<br />

3/8 60.868 294.83 3/8 86.001 588.57 66 207.345 3421.2<br />

1/2 61.261 298.65 1/2 86.394 593.96 67 210.487 3525.7<br />

5/8 61.654 302.49 5/8 86.786 599.37 68 213.628 3631.7<br />

3/4 62.046 306.35 3/4 87.179 604.81 69 216.770 3739.3<br />

7/8 62.439 310.24 7/8 85.572 610.27 70 219.911 3848.5<br />

20 62.832 314.16 28 87.965 615.75 71 223.053 3959.2<br />

1/8 63.225 318.10 1/8 88.357 621.26 72 226.195 4071.5<br />

1/4 63.617 322.06 1/4 88.750 626.80 73 229.336 4185.4<br />

3/8 64.010 326.05 3/8 89.143 632.36 74 232.478 4300.8<br />

1/2 64.403 330.06 1/2 89.535 637.94 75 235.619 4417.9<br />

5/8 64.795 334.10 5/8 89.928 643.55 76 238.761 4536.6<br />

3/4 65.188 338.16 3/4 90.321 649.18 77 241.903 4656.6<br />

7/8 65.581 342.25 7/8 90.713 654.84 78 245.044 4778.4<br />

21 65.973 346.36 29 91.106 660.52 79 248.186 4901.7<br />

1/8 66.366 350.50 1/8 91.499 666.23 80 251.327 5026.5<br />

1/4 66.759 354.66 1/4 91.892 671.96 81 254.469 5153.0<br />

3/8 67.152 358.84 3/8 92.284 677.71 82 257.611 5281.0<br />

1/2 67.544 363.05 1/2 92.677 683.49 83 260.752 5410.6<br />

5/8 67.937 367.28 5/8 93.070 689.30 84 263.894 5541.8<br />

3/4 68.330 371.54 3/4 93.462 695.13 85 267.035 5674.5<br />

7/8 68.722 375.83 7/8 93.855 700.98 86 270.177 5808.8<br />

22 69.115 380.13 30 94.248 706.86 87 273.319 5944.7<br />

1/8 69.508 384.46 1/8 94.640 712.76 88 276.460 6082.1<br />

1/4 69.900 388.82 1/4 95.033 718.69 89 279.602 6221.1<br />

3/8 70.293 393.20 3/8 95.426 724.64 90 282.743 6361.7<br />

1/2 70.686 397.61 1/2 95.819 730.62 91 285.885 6503.9<br />

5/8 71.079 402.04 5/8 96.211 736.62 92 289.027 6647.6<br />

3/4 71.471 406.49 3/4 96.604 742.64 93 292.168 6792.9<br />

7/8 71.864 410.97 7/8 96.997 748.69 94 295.310 6939.8<br />

23 72.257 415.48 31 97.389 754.77 95 298.451 7088.2<br />

1/8 72.649 420.00 32 100.531 804.25 96 301.593 7238.2<br />

1/4 73.042 424.56 33 103.673 855.30 97 304.734 7389.8<br />

3/8 73.435 429.13 34 106.814 907.92 98 307.876 7543.0<br />

1/2 73.827 433.74 35 109.956 962.11 99 311.018 7697.7<br />

5/8 74.220 438.36 36 113.097 1017.9 100 314.159 7854.0<br />

3/4 74.613 443.01 37 116.239 1075.2<br />

7/8 75.006 447.69 38 119.381 1134.1<br />

58


DRILL SIZE DATA<br />

Twist Dia. Area Twist Dia. Area Twist Dia. Area<br />

Drill Size In. Sq. In. Drill Size In. Sq. In. Drill Size In. Sq. In.<br />

– 80 .0135 .000143 – 32 .116 .0106 19/64 – .2968 .0692<br />

– 79 .0145 .000165 – 31 .120 .0113 – N .302 .0716<br />

1/64 – .0156 .00019 1/8 – .125 .0123 5/16 – .3125 .0767<br />

– 78 .016 .00020 – 30 .1285 .0130 – O .316 .0784<br />

– 77 .018 .00025 – 29 .136 .0145 – P .323 .0820<br />

– 76 .020 .00031 – 28 .1405 .0155 21/64 – .3281 .0846<br />

– 75 .021 .00035 9/64 – .1406 .0156 – Q .332 .0866<br />

– 74 .0225 .00040 – 27 .144 .0163 – R .339 .0901<br />

– 73 .024 .00045 – 26 .147 .0174 11/32 – .3437 .0928<br />

– 72 .025 .00049 – 25 .1495 .0175 – S .348 .0950<br />

– 71 .026 .00053 – 24 .152 .0181 – T .358 .1005<br />

– 70 .028 .00062 – 23 .154 .0186 23/64 – .3593 .1014<br />

– 69 .0292 .00067 5/32 – .1562 .0192 – U .368 .1063<br />

– 68 .030 .00075 – 22 .157 .0193 3/8 – .375 .1104<br />

1/32 – .0312 .00076 – 21 .159 .0198 – V .377 .1116<br />

– 67 .032 .00080 – 20 .161 .0203 – W .386 .1170<br />

– 66 .033 .00086 – 19 .166 .0216 25/64 – .3906 .1198<br />

– 65 .035 .00096 – 18 .1695 .0226 – X .397 .1236<br />

– 64 .036 .00102 11/64 – .1719 .0232 – Y .404 .1278<br />

– 63 .037 .00108 – 17 .175 .0235 13/32 – .4062 .1296<br />

– 62 .038 .00113 – 16 .177 .0246 – Z .413 .1340<br />

– 61 .039 .00119 – 15 .180 .0254 7/16 – .4375 .1503<br />

– 60 .040 .00126 – 14 .182 .0260 29/64 – .4531 .1613<br />

– 59 .041 .00132 – 13 .185 .0269 15/32 – .4687 .1726<br />

– 58 .042 .00138 3/16 – .1875 .0276 31/64 – .4843 .1843<br />

– 57 .043 .00145 – 12 .189 .02805 1/2 – .5000 .1963<br />

– 56 .0465 .00170 – 11 .191 .02865 33/64 – .5156 .2088<br />

3/64 – .0469 .00173 – 10 .1935 .0294 17/32 – .5312 .2217<br />

– 55 .0520 .00210 – 9 .196 .0302 35/64 – .5468 .2349<br />

– 54 .0550 .0023 – 8 .199 .0311 9/16 – .5625 .2485<br />

– 53 .0595 .0028 – 7 .201 .0316 37/64 – .5781 .2625<br />

1/16 – .0625 .0031 13/64 – .2031 .0324 19/32 – .5937 .2769<br />

– 52 .0635 .0032 – 6 .204 .0327 39/64 – .6093 .2916<br />

– 51 .0670 .0035 – 5 .2055 .0332 5/8 – .625 .3068<br />

– 50 .070 .0038 – 4 .209 .0343 41/64 – .6406 .3223<br />

– 49 .073 .0042 – 3 .213 .0356 21/32 – .6562 .3382<br />

– 48 .076 .0043 7/32 – .2187 .0376 43/64 – .6718 .3545<br />

5/64 – .0781 .0048 – 2 .221 .0384 11/16 – .6875 .3712<br />

– 47 .0785 .0049 – 1 .228 .0409 45/64 – .7031 .3883<br />

– 46 .081 .0051 – A .234 .0430 23/32 – .7187 .4057<br />

– 45 .082 .0053 15/64 – .2343 .0431 47/64 – .7343 .4236<br />

– 44 .086 .0058 – B .238 .0444 3/4 – .750 .4418<br />

– 43 .089 .0062 – C .242 .0460 49/64 – .7656 .4604<br />

– 42 .0935 .0069 – D .246 .0475 25/32 – .7812 .4794<br />

3/32 – .0937 .0069 1/4 E .250 .0491 51/64 – .7968 .4987<br />

– 41 .096 .0072 – F .257 .0519 13/16 – .8125 .5185<br />

– 40 .098 .0075 – G .261 .0535 53/64 – .8281 .5386<br />

– 39 .0995 .0078 17/64 – .2656 .0554 27/32 – .8337 .5591<br />

– 38 .1015 .0081 – H .266 .0556 55/64 – .8593 .5800<br />

– 37 .104 .0085 – I .272 .0580 7/8 – .875 .6013<br />

– 36 .1065 .0090 – J .277 .0601<br />

7/64 – .1093 .0094 – K .281 .0620<br />

– 35 .110 .0095 9/32 – .2812 .0621<br />

– 34 .111 .0097 – L .290 .0660<br />

– 33 .113 .0100 – M .295 .0683<br />

59


TAP DRILL SIZES<br />

Taps for Machine Threads – Drill sizes for 75% of full<br />

thread<br />

Thread Tap Drill Thread Tap Drill<br />

Size Size Size Size<br />

6-32 NC 36 3/8-16 NC 5/16<br />

6-40 NF 34 3/8-24 NF Q<br />

8-32 NC 30 7/16-14 NC U<br />

8-36 NF 29 7/16-20 NF W<br />

10-24 NC 25 1/2-13 NC .425<br />

10-32 NF 21 1/2-20 NF 29/64<br />

12-24 NC 17 9/16-12 NC 31/64<br />

12-28 NF 15 9/16-18 NF .508<br />

1/4-20 NC 7 5/8-11 NC 17/32<br />

1/4-28 NF 3 5/8-18 NF .571<br />

5/16-18 NC F 3/4-10 NC 21/32<br />

5/16-24 NF I 3/4-16 NF 11/16<br />

7/8-9 NC 49/64<br />

7/8-14 NF .805<br />

1-8 NC 7/8<br />

See page 59 for diameters of numbered and lettered<br />

tap drills.<br />

Pipe Taps – American Standard and Dryseal Pipe<br />

Threads<br />

Pipe Threads Tap Pipe Threads Tap<br />

Size, Per Drill Size Per Drill<br />

Inches Inch Size Inches Inch Size<br />

1/8 27 11/32 2 11-1/2 2-7/32<br />

1/4 18 7/16 2-1/2 8 2-5/8<br />

3/8 18 9/16 3 8 3-1/4<br />

1/2 14 45/64 4 8 4-1/4<br />

3/4 14 29/32 5 8 5-5/16<br />

1 11-1/2 1-9/64 6 8 6-3/8<br />

1-1/4 11-1/2 1-31/64 8 8 8-3/8<br />

1-1/2 11-1/2 1-47/64<br />

DRILLING TEMPLATES – PIPE FLANGES<br />

Drilling template dimensions of Class 150 pipe flanges per<br />

ANSI B 16.5 – 1981.<br />

A - O.D.<br />

B - Bolt Circle<br />

Diameter<br />

C - Bolt Hole Diameter<br />

N - Number of Bolt Holes<br />

Nominal All dimensions in inches<br />

Pipe<br />

Bolt<br />

Size A B C N Diameter<br />

1/2 3.50 2.38 .62 4 1/2<br />

3/4 3.88 2.75 .62 4 1/2<br />

1 4.25 3.12 .62 4 1/2<br />

1-1/4 4.62 3.50 .62 4 1/2<br />

1-1/2 5.00 3.88 .62 4 1/2<br />

2 6.00 4.75 .75 4 5/8<br />

2-1/2 7.00 5.50 .75 4 5/8<br />

3 7.50 6.00 .75 4 5/8<br />

4 9.00 7.50 .75 8 5/8<br />

6 11.00 9.50 .88 8 3/4<br />

8 13.50 11.75 .88 8 3/4<br />

10 16.00 14.25 1.00 12 7/8<br />

12 19.00 17.00 1.00 12 7/8<br />

14 21.00 18.75 1.12 12 1<br />

16 23.50 21.25 1.12 16 1<br />

18 25.00 22.75 1.25 16 1-1/8<br />

20 27.50 25.00 1.25 20 1-1/8<br />

24 32.00 29.50 1.38 20 1-1/4<br />

60


CHAPTER 10 – ABBREVIATIONS & SYMBOLS<br />

ABBREVIATIONS<br />

A – ampere(s), area<br />

A, C, or a-c – alternating current<br />

acfh – actual cubic feet per hour<br />

acfm – actual cubic feet per minute<br />

ANSI – American National Standards Institute<br />

API – American Petroleum Institute<br />

°API – degrees API (a measurement of fuel oil specific gravity)<br />

ASTM – American Society for Testing and Materials<br />

AWG – American Wire Gauge<br />

Btu – British thermal unit<br />

BWG – Birmginham Wire Gauge<br />

C or °C – degrees Celsius or Centigrade<br />

Cal – kilogram-calorie or kilo-calorie (equals 1000 calories)<br />

cal – calorie<br />

Cd – coefficient of discharge<br />

cfh – cubic feet per hour<br />

cfm – cubic feet per minute<br />

CL – centerline<br />

cm – centimeter(s)<br />

cs or cSt – centistoke(s)<br />

cu ft – cubic feet<br />

cu in – cubic inches<br />

cu m – cubic meters<br />

C v - flow coefficient or flow factor (for valve capacities)<br />

D or d – density, diameter<br />

D.C. or d-c – direct current<br />

deg – degree(s)<br />

dia – diameter<br />

e - emissivity<br />

°E – degrees Engler (a measurement of fuel oil viscosity)<br />

F or °F – degrees Fahrenheit<br />

f – convection film coefficient<br />

F.B. – firebrick<br />

fpm – feet per minute<br />

fps – feet per second<br />

ft – foot or feet<br />

G or g – gravity or specific gravity<br />

gal – gallon(s)<br />

gph – gallons per hour<br />

gpm – gallons per minute<br />

h - pressure drop<br />

h f – heat content of liquid (water & steam)<br />

h fg – latent heat of vaporization, water to steam<br />

h g – heat content of vapor (steam)<br />

"Hg – inches of mercury column<br />

HL – heat loss<br />

HP or hp – horsepower<br />

hr – hour(s)<br />

HS – heat storage<br />

Hz – Hertz (cycles per second in alternating current)<br />

ID or id – inside diameter<br />

I.F.B. – insulating firebrick<br />

in – inch(es)<br />

in 2 – square inch(es)<br />

in 3 – cubic inch(es)<br />

JIC – Joint Industrial Council<br />

K – Stefan – Boltzmann constant<br />

k – thermal conductivity<br />

°K – degrees Kelvin<br />

kcal – kilogram-calorie or kilo-calorie (same as Cal)<br />

kPa – kiloPascal<br />

kVA – kilo volt – amperes<br />

L – length or thickness<br />

lb – pound(s)<br />

LPG – liquified petroleum gas<br />

mbar – millibar(s)<br />

mmHg – millimeters of mercury column<br />

mmw.c. – millimeters of water column<br />

N.C. – normally closed<br />

NEMA – National Electrical Manufacturers Association<br />

NFPA – National Fire Protection Association<br />

N.O. – normally open<br />

OD or od – outside diameter<br />

osi – ounces per square inch<br />

oz – ounce(s)<br />

P – pressure or pressure drop<br />

psi – pounds per square inch<br />

psia – pounds per square inch, absolute<br />

psig – pounds per square inch, gauge<br />

Pv – velocity pressure<br />

Q – flow (of gases, liquids, or heat)<br />

°R – degrees Rankine<br />

rpm – revolutions per minute<br />

scfh – standard cubic feet per hour<br />

scfm – standard cubic feet per minute<br />

sec – second<br />

S.G. or sg – specific gravity<br />

sp ht – specific heat<br />

sp gr – specific gravity<br />

sq ft – square feet<br />

sq in – square inch(es)<br />

SR1 – seconds Redwood #1 (a measurement of fuel oil viscosity)<br />

SSF – seconds Saybolt Furol (a measurement of fuel oil viscosity)<br />

SSU – seconds Saybolt Universal (a measurement of fuel oil<br />

viscosity)<br />

T or t – temperature<br />

T abs – absolute temperature<br />

TC – cold face temperature or thermocouple<br />

V – vacuum, volts, or volume<br />

V g – specific volume of water vapor<br />

W – flow rate<br />

"w.c. – inches of water column<br />

"w.g. – inches of water gauge (same as "w.c.)<br />

wt – weight<br />

61


ELECTRICAL SYMBOLS<br />

Shown below are graphic symbols commonly used in JICtype<br />

ladder diagrams for combustion control systems. For<br />

a complete list of symbols, refer to JIC Electrical Standard<br />

EMP-1.<br />

Description Symbol Description Symbol Description Symbol<br />

Coils<br />

–Relays (CR)<br />

–Timers (TR)<br />

– Motor Starters (M)<br />

– Contactors (CON)<br />

Coils<br />

–Solenoids<br />

Conductors<br />

–Not Connected<br />

–Connected<br />

Connections<br />

–Ground<br />

–Chassis or<br />

Frame (not<br />

necessarily<br />

grounded)<br />

–Plug and<br />

Receptacle<br />

CR<br />

M<br />

CH<br />

SOL<br />

GRD<br />

PL<br />

RECP<br />

TR<br />

CON<br />

Contacts<br />

– Relays (CR)<br />

– Motor Starters (M)<br />

– Contactors (CON)<br />

– N.O.<br />

– N.C.<br />

Contacts<br />

–Thermal Overload<br />

–Overload Relay<br />

(OL)<br />

–Instataneous<br />

Overload (IOL)<br />

Control Circuit<br />

Transformer<br />

Fuses – All<br />

Types<br />

Horn or Siren<br />

(Alarm)<br />

H1 H3 H2 H4<br />

X1<br />

CR M<br />

CON<br />

CR M<br />

CON<br />

OL<br />

IOL<br />

FU<br />

AH<br />

T<br />

X2<br />

Pilot Light<br />

(Letter denotes<br />

color)<br />

Pilot Light–<br />

Push to Test<br />

(Letter denotes<br />

color)<br />

Pushbutton<br />

–Single<br />

Circuit, N.O.<br />

–Single<br />

Circuit, N.C.<br />

–Double<br />

Circuit<br />

–Double<br />

Circuit,<br />

Mushroom<br />

Head<br />

–Maintained<br />

Contact<br />

LT<br />

PB<br />

LT<br />

R<br />

PB<br />

PB<br />

PB<br />

R<br />

PB<br />

PB<br />

Contacts<br />

–Time Delay<br />

After Coil<br />

Energized<br />

–N.O.<br />

–N.C.<br />

TR<br />

TR<br />

Meters<br />

–Volt<br />

–Amp<br />

Motors<br />

–3 Phase<br />

MTR<br />

VM<br />

AM<br />

Switches<br />

– Disconnect<br />

– Circuit<br />

Interruptor<br />

DISC<br />

CI<br />

–Time Delay<br />

After Coil<br />

De-energized<br />

–N.O.<br />

–N.C.<br />

TR<br />

TR<br />

–D.C .<br />

Potentiometer<br />

MTR<br />

A<br />

POT<br />

– Circuit<br />

Breaker<br />

CB<br />

62


ELECTRICAL SYMBOLS (Cont’d)<br />

Description Symbol Description Symbol Description Symbol<br />

Switch, Limit<br />

— N.O.<br />

— Held Closed<br />

LS<br />

LS<br />

Switch, Selector<br />

— 2 Position<br />

SS<br />

1 2<br />

Switch, Vacuum<br />

or Pressure<br />

— N.O.<br />

PS<br />

— N.C.<br />

LS<br />

— N.C.<br />

PS<br />

— Held Open<br />

LS<br />

— 3 Position<br />

1<br />

SS<br />

2<br />

3<br />

— Neutral<br />

Position,<br />

LS<br />

NP<br />

Thermal Overload<br />

Element<br />

— Overload (OL)<br />

— Instantaneous<br />

Overload (IOL)<br />

OL<br />

IOL<br />

— Neutral<br />

Position,<br />

Actuated<br />

LS<br />

NP<br />

Switch,<br />

Temperature<br />

— N.O.<br />

TAS<br />

Thermocouple<br />

T/C<br />

Switch, Liquid<br />

Level<br />

— N.O.<br />

FS<br />

— N.C.<br />

TAS<br />

— N.C.<br />

FS<br />

Switch,<br />

Toggle<br />

TGS<br />

63


CHAPTER 11 – CONVERSION FACTORS<br />

GENERAL CONVERSION FACTORS<br />

MULTIPLY BY TO OBTAIN<br />

atmospheres . . . . . . . . .33.90 . . . . . . . . . . . . . . .Feet of H 2 O<br />

29.92 . . . . . . . . . . . . . .Inches of Hg<br />

14.70 . . . . . . . . . . . . . . . . . . . . . .Psi<br />

1013.2 . . . . . . . . . . . . . . . . . .Millibars<br />

760.0 . . . . . . . . . . . . . . . .mm. of Hg<br />

1.058 . . . . . . . . . . . . . . . .Tons/sq..ft<br />

1.033 . . . . . . . . . . . . . . .Kg./sq. cm.<br />

barrels (oil) . . . . . . . . . . . .42 . . . . . . . . . . . . . . .Gallons (oil)<br />

bars . . . . . . . . . . . . . . ..9869 . . . . . . . . . . . . . .Atmospheres<br />

1020 . . . . . . . . . . . . . .kg./sq. meter<br />

btu . . . . . . . . . . . . . . . .778.2 . . . . . . . . . . . . . . .foot-pounds<br />

252 . . . . . . . . . . . . .gram-calories<br />

.000393 . . . . . . . . . .horsepower-hours<br />

1055 . . . . . . . . . . . . . . . . . . .joules<br />

.252 . . . . . . . . . . .kilogram-calories<br />

.000293 . . . . . . . . . . . . .kilowatt-hours<br />

btu/cu. ft. . . . . . . . . . . . . . .8.9 . . . . . . . . . .kilogram-calories/<br />

cu. meter<br />

btu/hr . . . . . . . . . . . . . . ..216 . . . . . . . . . . . . .ft.-pounds/sec.<br />

.007 . . . . . . . . . . . . .gram-cal./sec.<br />

.000393 . . . . . . . . . . . . . . .horsepower<br />

.293 . . . . . . . . . . . . . . . . . . . .watts<br />

btu ft./hr. sq. ft. °F . . . . .14.88 . . . . . . . .Cal-cm/hr. sq. cm °C<br />

8890.0 . . . . . . . . . .Cal. gm/cu. meter<br />

btu/lb . . . . . . . . . . . . . .0.556 . . . . . . . . . . . . . . .calories/gm.<br />

btu/lb. °F . . . . . . . . . . . . . .1.0 . . . . . . . . . . . . .calories/gm °C<br />

btu/sec. . . . . . . . . . . . . .1.055 . . . . . . . . . . . . . . . . . . . . .kW<br />

btu/sq. ft.-min . . . . . . . . . .122 . . . . . . . . . . . . . . .watts/sq. in.<br />

calories-gram . . . . . . ..00397 . . . . . . . . . . . . . . . . . . . . .Btu<br />

calorie-Kg . . . . . . . . . . . .3.97 . . . . . . . . . . . . . . . . . . . . .Btu<br />

calorie-Kg/cu. meter 0.1124 . . . . . . . . . . . . . . .Btu/cu. ft. @<br />

. . . . . . . . . . . . . .32°F 30" Hg<br />

calorie/hr. sq. cm. . . . . .3.687 . . . . . . . . . . . . .Btu/hr. sq. foot<br />

centiliters . . . . . . . . . . . ..001 . . . . . . . . . . . . . . . . . . . .liters<br />

centimeters . . . . . . . . . ..0328 . . . . . . . . . . . . . . . . . . . . .feet<br />

.0394 . . . . . . . . . . . . . . . . . . .inches<br />

.00001 . . . . . . . . . . . . . . . .kilometers<br />

.01 . . . . . . . . . . . . . . . . . . .meters<br />

.0000062 . . . . . . . . . . . . . . . . . . . .miles<br />

10 . . . . . . . . . . . . . . . .millimeters<br />

393.7 . . . . . . . . . . . . . . . . . . . . .mils<br />

.0109 . . . . . . . . . . . . . . . . . . . .yards<br />

1000 . . . . . . . . . . . . . . . . . .microns<br />

centimeters of mercury ..0132 . . . . . . . . . . . . . .atmospheres<br />

.446 . . . . . . . . . . . . . . . .ft. of water<br />

136 . . . . . . . . . . . . . .kg./sq. meter<br />

27.85 . . . . . . . . . . . . . .pounds/sq. ft.<br />

.193 . . . . . . . . . . . . .pounds/sq. in.<br />

centimeters/sec. . . . . . .1.969 . . . . . . . . . . . . . . . . .feet/min.<br />

.0328 . . . . . . . . . . . . . . . . .feet/sec.<br />

.036 . . . . . . . . . . . . . .kilometers/hr.<br />

6 . . . . . . . . . . . . . . .meters/min.<br />

.0224 . . . . . . . . . . . . . . . . . .miles/hr.<br />

.00373 . . . . . . . . . . . . . . . .miles/min.<br />

centimeters/sec./sec. . ..0328 . . . . . . . . . . . . . . .ft./sec./sec.<br />

.036 . . . . . . . . . . . . . . .kms./hr.sec.<br />

.01 . . . . . . . . . . . .meters/sec.sec.<br />

.0224 . . . . . . . . . . . . . .miles/hr.sec.<br />

centipoise . . . . . . . . . . . . ..01 . . . . . . . . . . . . . . .gr.cm.-sec.<br />

.00067 . . . . . . . . . . . . .pound/ft.-sec.<br />

2.4 . . . . . . . . . . . . . . .pound/ft.-hr.<br />

MULTIPLY BY TO OBTAIN<br />

circular mils . . . . . ..00000507 . . . . . . . . . . . . . . . . . . .sq.cm.<br />

.785 . . . . . . . . . . . . . . . . . . .sq.mils<br />

.000000785 . . . . . . . . . . . . . . . .sq. inches<br />

cubic centimeters . ..0000353 . . . . . . . . . . . . . . . . . .cubic ft.<br />

.061 . . . . . . . . . . . . . . . . . .cubic in.<br />

.000001 . . . . . . . . . . . . . .cubic meters<br />

.00000131 . . . . . . . . . . . . . . .cubic yards<br />

.000264 . . . . . . . . .gallons (U.S. liquid)<br />

.001 . . . . . . . . . . . . . . . . . . . .liters<br />

.00211 . . . . . . . . . . .pints (U.S. liquid)<br />

00106 . . . . . . . . . .quarts (U.S. liquid)<br />

cubic feet . . . . . . . . . . .28320 . . . . . . . . . . . . . . . . . .cu. cms.<br />

1728 . . . . . . . . . . . . . . . .cu. inches<br />

.028 . . . . . . . . . . . . . . . .cu. meters<br />

.037 . . . . . . . . . . . . . . . . .cu. yards<br />

7.48 . . . . . . . . .gallons (U.S. liquid)<br />

28.32 . . . . . . . . . . . . . . . . . . . .liters<br />

59.84 . . . . . . . . . . .pints (U.S. liquid)<br />

29.92 . . . . . . . . . .quarts (U.S. liquid)<br />

cubic feet/min. . . . . . . . . .472 . . . . . . . . . . . . . .cu. cms./sec.<br />

.125 . . . . . . . . . . . . . . .gallons/sec.<br />

.472 . . . . . . . . . . . . . . . . .liters/sec.<br />

62.43 . . . . . . . . . .pounds water/min.<br />

cubic inches . . . . . . . . .16.39 . . . . . . . . . . . . . . . . . .cu. cms.<br />

.000579 . . . . . . . . . . . . . . . . . . . .cu. ft.<br />

.0000164 . . . . . . . . . . . . . . . .cu. meters<br />

.0000214 . . . . . . . . . . . . . . . . .cu. yards<br />

.00433 . . . . . . . . . . . . . . . . . .gallons<br />

.0164 . . . . . . . . . . . . . . . . . . . .liters<br />

.0346 . . . . . . . . . . .pints (U.S. liquid)<br />

.0173 . . . . . . . . . .quarts (U.S. liquid)<br />

cubic meters . . . . .1,000,000 . . . . . . . . . . . . . . . . . .cu. cms.<br />

35.31 . . . . . . . . . . . . . . . . . . . .cu. ft.<br />

6102 . . . . . . . . . . . . . . . .cu. inches<br />

1.308 . . . . . . . . . . . . . . . . .cu. yards<br />

264.2 . . . . . . . . .gallons (U.S. liquid)<br />

1000 . . . . . . . . . . . . . . . . . . . .liters<br />

2113 . . . . . . . . . . .pints (U.S. liuqid)<br />

1057 . . . . . . . . . .quarts (U.S. liquid)<br />

cubic yards . . . . . . . .764,600 . . . . . . . . . . . . . . . . . .cu. cms.<br />

27 . . . . . . . . . . . . . . . . . . . .cu. ft.<br />

46656 . . . . . . . . . . . . . . . .cu. inches<br />

.765 . . . . . . . . . . . . . . . .cu. meters<br />

decigrams . . . . . . . . . . . . . ..1 . . . . . . . . . . . . . . . . . . .grams<br />

deciliters . . . . . . . . . . . . . . ..1 . . . . . . . . . . . . . . . . . . . .liters<br />

decimeters . . . . . . . . . . . . ..1 . . . . . . . . . . . . . . . . . . .meters<br />

degrees (angle) . . . . . . ..011 . . . . . . . . . . . . . . . .quadrants<br />

.0175 . . . . . . . . . . . . . . . . . .radians<br />

3600 . . . . . . . . . . . . . . . . .seconds<br />

degrees/sec. . . . . . . . . ..0175 . . . . . . . . . . . . . . .radians/sec.<br />

.0167 . . . . . . . . . . . . .rvolutions/min.<br />

.00278 . . . . . . . . . . . .revolutions/sec.<br />

dekagrams . . . . . . . . . . . .10 . . . . . . . . . . . . . . . . . . .grams<br />

dekaliters . . . . . . . . . . . . . .10 . . . . . . . . . . . . . . . . . . . .liters<br />

dekameters . . . . . . . . . . . .10 . . . . . . . . . . . . . . . . . . .meters<br />

dynes/sq. cm. . . ..000000987 . . . . . . . . . . . . . .atmospheres<br />

.0000295 . . . . . .in. of mercury (at 0°C.)<br />

.000402 . . . . . . . . .in. of water (at 4°C)<br />

.00001 . . . . . . . . . . . . . . . . . . . . .bars<br />

feet . . . . . . . . . . . . . . . .30.48 . . . . . . . . . . . . . . .centimeters<br />

.000305 . . . . . . . . . . . . . . . .kilometers<br />

.305 . . . . . . . . . . . . . . . . . . .meters<br />

.000189 . . . . . . . . . . . . . . .miles (stat.)<br />

304.8 . . . . . . . . . . . . . . . .millimeters<br />

64


GENERAL CONVERSION FACTORS (Cont’d)<br />

MULTIPLY BY TO OBTAIN<br />

feet of water . . . . . . . . ..0295 . . . . . . . . . . . . . .atmospheres<br />

.883 . . . . . . . . . . . . .in. of mercury<br />

.0305 . . . . . . . . . . . . . . .kgs./sq. cm.<br />

304.8 . . . . . . . . . . . . .kgs./sq. meter<br />

62.43 . . . . . . . . . . . . . .pounds/sq. ft.<br />

.434 . . . . . . . . . . . . .pounds/sq. in.<br />

feet/min. . . . . . . . . . . . . ..508 . . . . . . . . . . . . . . . . .cms./sec.<br />

.0167 . . . . . . . . . . . . . . . . .feet/sec.<br />

.0183 . . . . . . . . . . . . . . . . . .kms./hr.<br />

.305 . . . . . . . . . . . . . . .meters/min.<br />

.0114 . . . . . . . . . . . . . . . . . .miles/hr.<br />

30.48 . . . . . . . . . . . . . . . . .cms./sec.<br />

feet/sec. . . . . . . . . . . . .1.097 . . . . . . . . . . . . . . . . . .kms./hr.<br />

18.29 . . . . . . . . . . . . . . .meters/min.<br />

.682 . . . . . . . . . . . . . . . . . .miles/hr.<br />

.0114 . . . . . . . . . . . . . . . .miles/min.<br />

feet/sec./sec. . . . . . . . .30.48 . . . . . . . . . . . . .cms./sec./sec.<br />

1.097 . . . . . . . . . . . . . .kms./hr./sec.<br />

.305 . . . . . . . . . . .meters/sec./sec.<br />

foot-pounds . . . . . . . . ..00129 . . . . . . . . . . . . . . . . . . . . . .btu<br />

.324 . . . . . . . . . . . . .gram-calories<br />

.000000505 . . . . . . . . . . .horsepower-hrs.<br />

1.356 . . . . . . . . . . . . . . . . . . .joules<br />

.000324 . . . . . . . . . . . . . . .kg.-calories<br />

.138 . . . . . . . . . . . . . . . .kg.-meters<br />

.000000377 . . . . . . . . . . . . . . .kilowatt-hrs.<br />

foot-pounds/sec. . . . . . . .4.63 . . . . . . . . . . . . . . . . . . .btu/hr.<br />

.0772 . . . . . . . . . . . . . . . . . .btu/min.<br />

.00182 . . . . . . . . . . . . . . .horsepower<br />

.00195 . . . . . . . . . . .kg.-calories/min.<br />

.00136 . . . . . . . . . . . . . . . . .kilowatts<br />

.00001 . . . . . . . . . . . . . . . .kilometers<br />

gallons . . . . . . . . . . . . . .3785 . . . . . . . . . . . . . . . . . .cu. cms.<br />

.134 . . . . . . . . . . . . . . . . . .cu. feet<br />

231 . . . . . . . . . . . . . . . .cu. inches<br />

.00379 . . . . . . . . . . . . . . . .cu. meters<br />

.00495 . . . . . . . . . . . . . . . . .cu. yards<br />

3.785 . . . . . . . . . . . . . . . . . . . .liters<br />

gallons (liq. Br. imp.) . . .1.201 . . . . . . . . .gallons (U.S. liuqid)<br />

gallons (U.S.) . . . . . . . . ..833 . . . . . . . . . . . . . .gallons (imp.)<br />

gallons of water . . . . . . .8.34 . . . . . . . . . . . . . .gallons (imp.)<br />

gallons/min. . . . . . . . ..00223 . . . . . . . . . . . . . . .cu. feet/sec.<br />

.0631 . . . . . . . . . . . . . . . . .liters/sec.<br />

8.021 . . . . . . . . . . . . . . . .cu. feet/hr.<br />

grains (troy) . . . . . . . . . . . . .1 . . . . . . . . . . . . .grains (avdp.)<br />

.0648 . . . . . . . . . . . . . . . . . . .grams<br />

.00208 . . . . . . . . . . . . .ounces (avdp.)<br />

grams . . . . . . . . . . . . . .15.43 . . . . . . . . . . . . . . .grains (troy)<br />

.0000981 . . . . . . . . . . . . . . . .joules/cm.<br />

.00981 . . . . . .joules/meter (newtons)<br />

.001 . . . . . . . . . . . . . . . . .kilograms<br />

1000 . . . . . . . . . . . . . . . .milligrams<br />

.0353 . . . . . . . . . . . . . .ounces (troy)<br />

.00221 . . . . . . . . . . . . . . . . . .pounds<br />

grams/cu. cm. . . . . . . . .62.43 . . . . . . . . . . . . . .pounds/cu. ft.<br />

.0361 . . . . . . . . . . . . .pounds/cu. in.<br />

grams/liter . . . . . . . . . . .58.42 . . . . . . . . . . . . . . . .grains/gal.<br />

8.345 . . . . . . . . . .pounds/1,000 gal.<br />

.0624 . . . . . . . . . . . . . .pounds/cu. ft.<br />

MULTIPLY BY TO OBTAIN<br />

grams/sq. cm. . . . . . . . .2.048 . . . . . . . . . . . . . .pounds/sq. ft.<br />

gram-calories . . . . . . ..00397 . . . . . . . . . . . . . . . . . . . . . .btu<br />

3.086 . . . . . . . . . . . . . . .foot-pounds<br />

.00000156 . . . . . . . . . . .horsepower-hrs.<br />

.00000116 . . . . . . . . . . . . . . .kilowatt-hrs.<br />

.00116 . . . . . . . . . . . . . . . . .watt-hrs.<br />

gram-calories/sec. . . . .14.29 . . . . . . . . . . . . . . . . . . .btu/hr.<br />

hectares . . . . . . . . . . . .2.471 . . . . . . . . . . . . . . . . . . . .acres<br />

10760 . . . . . . . . . . . . . . . . . .sq. feet<br />

hectograms . . . . . . . . . . .100 . . . . . . . . . . . . . . . . . . .grams<br />

hectoliters . . . . . . . . . . . .100 . . . . . . . . . . . . . . . . . . . .liters<br />

hectometers . . . . . . . . . . .100 . . . . . . . . . . . . . . . . . . .meters<br />

hectowatts . . . . . . . . . . . .100 . . . . . . . . . . . . . . . . . . . .watts<br />

horsepower . . . . . . . . . .42.44 . . . . . . . . . . . . . . . . . .btu/min.<br />

33000 . . . . . . . . . . . . . .foot-lbs./min.<br />

550 . . . . . . . . . . . . . .foot-lbs./sec.<br />

horsepower (metric) . . . ..986 . . . . . . . . . . . . . . .horsepower<br />

horsepower . . . . . . . . ..1.014 . . . . . . . .horsepower (metric)<br />

10.68 . . . . . . . . . . .kg.-calories/min.<br />

.746 . . . . . . . . . . . . . . . . .kilowatts<br />

745.7 . . . . . . . . . . . . . . . . . . . .watts<br />

horsepower-hours . . . . ..2547 . . . . . . . . . . . . . . . . . . . . . .btu<br />

1,980,000 . . . . . . . . . . . . . . . . . .foot-lbs.<br />

641,190 . . . . . . . . . . . . . .gram-caloies<br />

2,684,000 . . . . . . . . . . . . . . . . . . .joules<br />

641.7 . . . . . . . . . . . . . . .kg.-calories<br />

273,700 . . . . . . . . . . . . . . . .kg.-meters<br />

.746 . . . . . . . . . . . . . . .kilowatt-hrs.<br />

hours . . . . . . . . . . . . . ..0417 . . . . . . . . . . . . . . . . . . . .days<br />

.00595 . . . . . . . . . . . . . . . . . . .weeks<br />

25.4 . . . . . . . . . . . . . . . .millimeters<br />

1000 . . . . . . . . . . . . . . . . . . . . .mils<br />

.0278 . . . . . . . . . . . . . . . . . . . .yards<br />

in. of mercury . . . . . . . ..0334 . . . . . . . . . . . . . .atmospheres<br />

1.133 . . . . . . . . . . . . . .feet of water<br />

.0345 . . . . . . . . . . . . . . .kgs./sq. cm.<br />

345.3 . . . . . . . . . . . . .kgs./sq. meter<br />

70.73 . . . . . . . . . . . . . .pounds/sq. ft<br />

.491 . . . . . . . . . . . . .pounds/sq. in.<br />

in. of water (at 4°C) . . ..00246 . . . . . . . . . . . . . .atmospheres<br />

.0736 . . . . . . . . . .inches of mercury<br />

.00254 . . . . . . . . . . . . . . .kgs./sq. cm.<br />

.578 . . . . . . . . . . . . .ounces/sq. in.<br />

5.204 . . . . . . . . . . . . . .pounds/sq. ft.<br />

.0361 . . . . . . . . . . . . .pounds/sq. in.<br />

joules . . . . . . . . . . . ..000949 . . . . . . . . . . . . . . . . . . . . . .btu<br />

.774 . . . . . . . . . . . . . . .foot-pounds<br />

.000239 . . . . . . . . . . . . . . .kg.-calories<br />

.102 . . . . . . . . . . . . . . . .kg.-meters<br />

.000278 . . . . . . . . . . . . . . . . .watt-hrs.<br />

kilograms . . . . . . . . . . . .1000 . . . . . . . . . . . . . . . . . . .grams<br />

.0981 . . . . . . . . . . . . . . . .joules/cm.<br />

9.807 . . . . . .joules/meter (newtons)<br />

2.205 . . . . . . . . . . . . . . . . . .pounds<br />

.000984 . . . . . . . . . . . . . . . .tons (long)<br />

.00110 . . . . . . . . . . . . . . .tons (short)<br />

35.27 . . . . . . . . . . . . .ounces (avdp.)<br />

65


GENERAL CONVERSION FACTORS (Cont’d)<br />

MULTIPLY BY TO OBTAIN MULTIPLY BY TO OBTAIN<br />

kilograms/cu. meter . . . . ..001 . . . . . . . . . . . . .grams/cu. cm.<br />

.0624 . . . . . . . . . . . . . .pounds/cu. ft<br />

.0000361 . . . . . . . . . . . . .pounds/cu. in.<br />

kilograms/sq. cm. . . . .980665 . . . . . . . . . . . . .dynes/sq. cm.<br />

meters . . . . . . . . . . . . . . .100 . . . . . . . . . . . . . . .centimeters<br />

3.281 . . . . . . . . . . . . . . . . . . . . .feet<br />

39.37 . . . . . . . . . . . . . . . . . . .inches<br />

.001 . . . . . . . . . . . . . . . .kilometers<br />

.968 . . . . . . . . . . . . . .atmospheres<br />

.00054 . . . . . . . . . . . .miles (nautical)<br />

32.81 . . . . . . . . . . . . . .feet of water<br />

.000621 . . . . . . . . . . . . .miles (statute)<br />

28.96 . . . . . . . . . .inches of mercury<br />

1000 . . . . . . . . . . . . . . . .millimeters<br />

2048 . . . . . . . . . . . . . .pounds/sq. ft.<br />

1.094 . . . . . . . . . . . . . . . . . . . .yards<br />

14.22 . . . . . . . . . . . . .pounds/sq. in.<br />

meters/min. . . . . . . . . . .1.667 . . . . . . . . . . . . . . . . .cms./sec.<br />

kilograms/sq. meter ..0000968 . . . . . . . . . . . . . .atmospheres<br />

3.281 . . . . . . . . . . . . . . . . .feet/min.<br />

.0000981 . . . . . . . . . . . . . . . . . . . . .bars<br />

.0547 . . . . . . . . . . . . . . . . .feet/sec.<br />

.00328 . . . . . . . . . . . . . .feet of water<br />

.06 . . . . . . . . . . . . . . . . . .kms./hr.<br />

.0029 . . . . . . . . . .inches of mercury<br />

.0373 . . . . . . . . . . . . . . . . . .miles/hr.<br />

.205 . . . . . . . . . . . . . .pounds/sq. ft.<br />

meters/sec. . . . . . . . . . .196.8 . . . . . . . . . . . . . . . . .feet/min.<br />

.00142 . . . . . . . . . . . . .pounds/sq. in.<br />

3.281 . . . . . . . . . . . . . . . . .feet/sec.<br />

98.07 . . . . . . . . . . . . .dynes/sq. cm.<br />

kilograms/sq. mm . .1,000,000 . . . . . . . . . . . . .kgs./sq. meter<br />

3.6 . . . . . . . . . . . . . .kilometers/hr.<br />

kilogram-calories . . . . . .3.968 . . . . . . . . . . . . . . . . . . . . . .btu<br />

.06 . . . . . . . . . . . .kilometers/min.<br />

3086 . . . . . . . . . . . . . . .foot-pounds<br />

2.237 . . . . . . . . . . . . . . . . . .miles/hr.<br />

.00156 . . . . . . . . . . .horsepower-hrs.<br />

.0373 . . . . . . . . . . . . . . . .miles/min.<br />

4183 . . . . . . . . . . . . . . . . . . .joules meters/sec./sec. . . . . . . .100 . . . . . . . . . . . . .cms./sec./sec.<br />

1163 . . . . . . . . . . . . . . .kilowatt-hrs.<br />

3.281 . . . . . . . . . . . . . . .ft./sec./sec.<br />

kilogram-meters . . . . . .7.233 . . . . . . . . . . . . . . .foot-pounds<br />

9.807 . . . . . . . . . . . . . . . . . . .joules<br />

.00234 . . . . . . . . . . . . . . .kg.-calories<br />

.00000272 . . . . . . . . . . . . . . .kilowatt-hrs.<br />

kiloliters . . . . . . . . . . . . .1000 . . . . . . . . . . . . . . . . . . . .liters<br />

kilometers . . . . . . . . .100,000 . . . . . . . . . . . . . . .centimeters<br />

3281 . . . . . . . . . . . . . . . . . . . . .feet<br />

39,370 . . . . . . . . . . . . . . . . . . .inches<br />

1000 . . . . . . . . . . . . . . . . . . .meters<br />

3.6 . . . . . . . . . . . . . . .kms./hr.sec.<br />

2.237 . . . . . . . . . . . . . .miles/hr./sec.<br />

micrograms . . . . . . . ..000001 . . . . . . . . . . . . . . . . . . .grams<br />

micrograms/cu. ft. . . ..000001 . . . . . . . . . . . . . . .grams/cu. ft<br />

.0000353 . . . . . . . . . . .grams/cu. meter<br />

.00000022 . . . . . . . . . . . .lbs./1000 cu. ft.<br />

35.314 . . . . . . .micrograms/cu. meter<br />

micrograms/cu. m. . . . .0.001 . . . . . . . . . . .milligrams/cu. m.<br />

0.02832 . . . . . . . . . . .micrograms/cu. ft<br />

.621 . . . . . . . . . . . . .miles (statute) microhms . . . . . . . . ..000001 . . . . . . . . . . . . . . . . . . . .ohms<br />

.54 . . . . . . . . . . . .miles (nautical) microliters . . . . . . . . ..000001 . . . . . . . . . . . . . . . . . . . .liters<br />

1,000,000 . . . . . . . . . . . . . . . .millimeters micromicrons ..000000000001 . . . . . . . . . . . . . . . . . . .meters<br />

1093.6 . . . . . . . . . . . . . . . . . . . .yards microns . . . . . . . . . . ..000001 . . . . . . . . . . . . . . . . . . .meters<br />

kilometers/hr. . . . . . . . .27.78 . . . . . . . . . . . . . . . . .cms./sec. miles (statute) . . . . . .160,900 . . . . . . . . . . . . . . .centimeters<br />

54.68 . . . . . . . . . . . . . . . . .feet/min.<br />

5280 . . . . . . . . . . . . . . . . . . . . .feet<br />

.911 . . . . . . . . . . . . . . . . .feet/sec.<br />

63360 . . . . . . . . . . . . . . . . . . .inches<br />

kilowatts . . . . . . . . . . . . .3413 . . . . . . . . . . . . . . . . . . . .btu/hr<br />

1.609 . . . . . . . . . . . . . . . .kilometers<br />

44,260 . . . . . . . . . . . . . .foot-lbs./min.<br />

1609 . . . . . . . . . . . . . . . . . . .meters<br />

737.6 . . . . . . . . . . . . . . .foot-lbs.sec.<br />

.868 . . . . . . . . . . . .miles (nautical)<br />

1.341 . . . . . . . . . . . . . . .horsepower<br />

1760 . . . . . . . . . . . . . . . . . . . .yards<br />

14.34 . . . . . . . . . . .kg.-calories/min.<br />

1000 . . . . . . . . . . . . . . . . . . . .watts<br />

miles/hr. . . . . . . . . . . . .44.70 . . . . . . . . . . . . . . . . .cms./sec.<br />

kilowatt-hrs. . . . . . . . . . .3413 . . . . . . . . . . . . . . . . . . . . . .btu<br />

88 . . . . . . . . . . . . . . . . . . .ft./min.<br />

2,655,000 . . . . . . . . . . . . . . . . . .foot-lbs.<br />

1.467 . . . . . . . . . . . . . . . . . . .ft./sec.<br />

859,850 . . . . . . . . . . . . . .gram calories<br />

1.609 . . . . . . . . . . . . . . . . . .kms./hr.<br />

1.341 . . . . . . . . . .horsepower-hours<br />

.0268 . . . . . . . . . . . . . . . . .kms./min.<br />

3,600,000 . . . . . . . . . . . . . . . . . . .joules<br />

26.82 . . . . . . . . . . . . . . .meters/min.<br />

860.5 . . . . . . . . . . . . . . .kg.-calories<br />

.0167 . . . . . . . . . . . . . . . .miles/min.<br />

367,100 . . . . . . . . . . . . . . . .kg.-meters<br />

3.53 . .pounds of water evaporated<br />

from and at 212°F<br />

22.75 . . . . . .pounds of water raised<br />

from 62° to 212°F.<br />

liters . . . . . . . . . . . . . . .1000 . . . . . . . . . . . . . . . . . .cu. cm.<br />

.0353 . . . . . . . . . . . . . . . . . . . .cu. ft.<br />

61.02 . . . . . . . . . . . . . . . .cu. inches<br />

.001 . . . . . . . . . . . . . . . .cu. meters<br />

milligrams . . . . . . . . . . . ..001 . . . . . . . . . . . . . . . . . . .grams<br />

milligrams/liter . . . . . . . . . .1.0 . . . . . . . . . . . . . . .parts/million<br />

milliters . . . . . . . . . . . . . ..001 . . . . . . . . . . . . . . . . . . . .liters<br />

millimeters . . . . . . . . . . . . ..1 . . . . . . . . . . . . . . .centimeters<br />

.00328 . . . . . . . . . . . . . . . . . . . . .feet<br />

.0394 . . . . . . . . . . . . . . . . . . .inches<br />

.000001 . . . . . . . . . . . . . . . .kilometers<br />

.001 . . . . . . . . . . . . . . . . . . .meters<br />

.000000621 . . . . . . . . . . . . . . . . . . . .miles<br />

.00131 . . . . . . . . . . . . . . . . .cu. yards<br />

39.37 . . . . . . . . . . . . . . . . . . . . .mils<br />

.264 . . . . . . . . .gallons (U.S. liquid)<br />

.00109 . . . . . . . . . . . . . . . . . . . .yards<br />

2.113 . . . . . . . . . . .pints (U.S. liquid) mils . . . . . . . . . . . . . . ..00254 . . . . . . . . . . . . . . .centimeters<br />

1.057 . . . . . . . . . .quarts (U.S. liquid)<br />

.0000833 . . . . . . . . . . . . . . . . . . . . .feet<br />

liters/min. . . . . . . . . . ..00589 . . . . . . . . . . . . . . . .cu. ft./sec.<br />

.001 . . . . . . . . . . . . . . . . . . .inches<br />

.0044 . . . . . . . . . . . . . . . . .gals./sec.<br />

66


GENERAL CONVERSION FACTORS (Cont’d)<br />

MULTIPLY BY TO OBTAIN<br />

minutes (angles) . . . . . ..0167 . . . . . . . . . . . . . . . . . .degrees<br />

.000185 . . . . . . . . . . . . . . . .quadrants<br />

.000291 . . . . . . . . . . . . . . . . . .radians<br />

60 . . . . . . . . . . . . . . . . .seconds<br />

minutes (time) . . . . ..0000992 . . . . . . . . . . . . . . . . . . .weeks<br />

.000694 . . . . . . . . . . . . . . . . . . . .days<br />

.0167 . . . . . . . . . . . . . . . . . . . .hours<br />

60 . . . . . . . . . . . . . . . . .seconds<br />

ounces . . . . . . . . . . . . .437.5 . . . . . . . . . . . . . . . . . . .grains<br />

28.35 . . . . . . . . . . . . . . . . . . .grains<br />

.0625 . . . . . . . . . . . . . . . . . .pounds<br />

.912 . . . . . . . . . . . . . .ounces (troy)<br />

ounces (fluid) . . . . . . . .1.805 . . . . . . . . . . . . . . . .cu. inches<br />

.0296 . . . . . . . . . . . . . . . . . . . .liters<br />

ounces (troy) . . . . . . . . . .480 . . . . . . . . . . . . . . . . . . .grains<br />

31.1 . . . . . . . . . . . . . . . . . . .grams<br />

1.097 . . . . . . . . . . . . .ounces (avdp.)<br />

ounce/sq. in. . . . . . . . . .4309 . . . . . . . . . . . . .dynes/sq. cm.<br />

.0625 . . . . . . . . . . . . .pounds/sq. in.<br />

1.732 . . . . . . . . . . . . . . .inches w.c.<br />

parts/million . . . . . . . . ..0584 . . . . . . . . . . . .grains/U.S. gal.<br />

.0702 . . . . . . . . . . . .grains/imp. gal.<br />

8.345 . . . . . . . . . .pounds/million gal.<br />

ppm (volume) . . .385,100,000 . . . . . . . . . . . . . . . . . . . . .lb/ft 3<br />

0.02404 . . . . . . . . . .micrograms/cu. m.<br />

ppm (weight) . . . . . . . . .0012 . . . . . . . . . .micrograms/cu. m.<br />

pints (liquid) . . . . . . . . .473.2 . . . . . . . . . . . . . . . .cubic cms.<br />

.0167 . . . . . . . . . . . . . . . . . .cubic ft.<br />

28.87 . . . . . . . . . . . . . .cubic inches<br />

.000473 . . . . . . . . . . . . . .cubic meters<br />

.000619 . . . . . . . . . . . . . . .cubic yards<br />

.125 . . . . . . . . . . . . . . . . . .gallons<br />

.473 . . . . . . . . . . . . . . . . . . . .liters<br />

.5 . . . . . . . . . . . . .quarts (liquid)<br />

poise<br />

pounds<br />

1.0 . . . . . . . . . . . . .gram/cm.-sec.<br />

7000 . . . . . . . . . . . . . . . . . . .grains<br />

453.6 . . . . . . . . . . . . . . . . . . .grams<br />

4.448 . . . . . .joules/meter (newtons)<br />

.454 . . . . . . . . . . . . . . . . .kilograms<br />

16 . . . . . . . . . . . . . . . . . .ounces<br />

14.58 . . . . . . . . . . . . . .ounces (troy)<br />

.0005 . . . . . . . . . . . . . . .tons (short)<br />

pounds of water . . . . . . ..016 . . . . . . . . . . . . . . . . . . . .cu. ft.<br />

27.68 . . . . . . . . . . . . . . . .cu. inches<br />

.12 . . . . . . . . . . . . . . . . . .gallons<br />

pounds of water/min. .000267 . . . . . . . . . . . . . . . . .cu. ft/sec.<br />

pounds/cu. ft. . . . . . . . . ..016 . . . . . . . . . . . . .grams/cu. cm.<br />

16.02 . . . . . . . . . . . . .kgs./cu. meter<br />

133,700 . . . . . . . . . . . . . .ppm (weight)<br />

.000579 . . . . . . . . . . . . .pounds/cu. in.<br />

pounds/cu. in. . . . . . . . .27.68 . . . . . . . . . . . . .grams/cu. cm.<br />

27680 . . . . . . . . . . . . .kgs./cu. meter<br />

1728 . . . . . . . . . . . . . .pounds/cu. ft<br />

pounds/ft. . . . . . . . . . . .1.488 . . . . . . . . . . . . . . . .kgs./meter<br />

pounds/in. . . . . . . . . . . .178.6 . . . . . . . . . . . . . . . .grams/cm.<br />

MULTIPLY BY TO OBTAIN<br />

pounds/sq. ft. . . . . . ..000473 . . . . . . . . . . . . . .atmospheres<br />

.016 . . . . . . . . . . . . . .feet of water<br />

.0141 . . . . . . . . . .inches of mercury<br />

.192 . . . . . . . . . . . .inches of water<br />

4.882 . . . . . . . . . . . . .kgs./sq. meter<br />

.111 . . . . . . . . . . . .ounces/sq. inch<br />

.00694 . . . . . . . . . . . .pounds/sq. inch<br />

pounds/sq. inc. . . . . . . . ..068 . . . . . . . . . . . . . .atmospheres<br />

2.307 . . . . . . . . . . . . . .feet of water<br />

2.036 . . . . . . . . . .inches of mercury<br />

27.71 . . . . . . . . . . . .inches of water<br />

703.1 . . . . . . . . . . . . .kgs./sq. meter<br />

16 . . . . . . . . . . . .ounces/sq. inch<br />

144 . . . . . . . . . . . .pounds/sq. foot<br />

quadrants (angle) . . . . . . .90 . . . . . . . . . . . . . . . . . .degrees<br />

5400 . . . . . . . . . . . . . . . . . .minutes<br />

1.571 . . . . . . . . . . . . . . . . . .radians<br />

324,000 . . . . . . . . . . . . . . . . .seconds<br />

quarts (liquid) . . . . . . . .946.4 . . . . . . . . . . . . . . . . . .cu. cms.<br />

.0334 . . . . . . . . . . . . . . . . . . . .cu. ft.<br />

57.75 . . . . . . . . . . . . . . . .cu. inches<br />

.000946 . . . . . . . . . . . . . . . .cu. meters<br />

.00124 . . . . . . . . . . . . . . . . .cu. yards<br />

.25 . . . . . . . . . . . . . . . . . .gallons<br />

.946 . . . . . . . . . . . . . . . . . . . .liters<br />

radians . . . . . . . . . . . . . .57.3 . . . . . . . . . . . . . . . . . .degrees<br />

3438 . . . . . . . . . . . . . . . . . .minutes<br />

.637 . . . . . . . . . . . . . . . .quadrants<br />

206,300 . . . . . . . . . . . . . . . . .seconds<br />

radian/sec. . . . . . . . . . . .9.55 . . . . . . . . . . . . . . . . . . . . .rpm<br />

rpm . . . . . . . . . . . . . . .0.1047 . . . . . . . . . . . . . . . . .rad./sec.<br />

seconds (angle) . . . ..000278 . . . . . . . . . . . . . . . . . .degrees<br />

.0167 . . . . . . . . . . . . . . . . . .minutes<br />

square centimeters . .197,300 . . . . . . . . . . . . . . .circular mils<br />

.00108 . . . . . . . . . . . . . . . . . .sq. feet<br />

.155 . . . . . . . . . . . . . . . .sq. inches<br />

.0001 . . . . . . . . . . . . . . . .sq. meters<br />

100 . . . . . . . . . . . . .sq. millimeters<br />

.00012 . . . . . . . . . . . . . . . . .sq. yards<br />

square feet . . . . . . . . . . .929 . . . . . . . . . . . . . . . . . .sq. cms.<br />

144 . . . . . . . . . . . . . . . .sq. inches<br />

.093 . . . . . . . . . . . . . . . .sq. meters<br />

.0000000359 . . . . . . . . . . . . . . . . .sq. miles<br />

92900 . . . . . . . . . . . . .sq. millimeters<br />

.111 . . . . . . . . . . . . . . . . .sq. yards<br />

square inches . . . . . . . .6.452 . . . . . . . . . . . . . . . . . .sq. cms.<br />

.00694 . . . . . . . . . . . . . . . . . . . .sq. ft.<br />

645.2 . . . . . . . . . . . . .sq. millimeters<br />

1,000,000 . . . . . . . . . . . . . . . . . .sq. mils<br />

.000772 . . . . . . . . . . . . . . . . .sq. yards<br />

square kilometers .10,760,000 . . . . . . . . . . . . . . . . . . . .sq. ft.<br />

1,000,000 . . . . . . . . . . . . . . . .sq. meters<br />

.386 . . . . . . . . . . . . . . . . .sq. miles<br />

67


GENERAL CONVERSION FACTORS (Cont’d)<br />

MULTIPLY BY TO OBTAIN<br />

square meters . . . . . . .10000 . . . . . . . . . . . . . . . . . .sq. cms.<br />

10.76 . . . . . . . . . . . . . . . . . . . .sq. ft.<br />

1550 . . . . . . . . . . . . . . . .sq. inches<br />

1,000,000 . . . . . . . . . . . . .sq. millimeters<br />

1,196 . . . . . . . . . . . . . . . . .sq. yards<br />

square miles . . . .27,880,000 . . . . . . . . . . . . . . . . . . . .sq. ft.<br />

2.590 . . . . . . . . . . . . . . . . . .sq. kms.<br />

2,590,000 . . . . . . . . . . . . . . . .sq. meters<br />

3,098,000 . . . . . . . . . . . . . . . . .sq. yards<br />

square millimeters . . . . .1973 . . . . . . . . . . . . . . .circular mils<br />

.01 . . . . . . . . . . . . . . . . . .sq. cms.<br />

.0000108 . . . . . . . . . . . . . . . . . . . .sq. ft.<br />

.00155 . . . . . . . . . . . . . . . .sq. inches<br />

therms . . . . . . . . . . .100,000 . . . . . . . . . . . . . . . . . . . . . .btu<br />

tons (long) . . . . . . . . . . .1016 . . . . . . . . . . . . . . . . .kilograms<br />

2240 . . . . . . . . . . . . . . . . . .pounds<br />

1.12 . . . . . . . . . . . . . . .tons (short)<br />

tons (metric) . . . . . . . . .1000 . . . . . . . . . . . . . . . . .kilograms<br />

2205 . . . . . . . . . . . . . . . . . .pounds<br />

tons (short) . . . . . . . . . .907.2 . . . . . . . . . . . . . . . . .kilograms<br />

32000 . . . . . . . . . . . . . . . . . .ounces<br />

2917 . . . . . . . . . . . . . .ounces (troy)<br />

2000 . . . . . . . . . . . . . . . . . .pounds<br />

2430 . . . . . . . . . . . . . .pounds (troy)<br />

.893 . . . . . . . . . . . . . . . .tons (long)<br />

.908 . . . . . . . . . . . . . .tons (metric)<br />

MULTIPLY BY TO OBTAIN<br />

ton refrigeration (U.S.) .12,000 . . . . . . . . . . . . . . . . . . . .btu/hr<br />

83.33 . . . . . . . . . . . . . .lb. ice melted<br />

per hr. from and at 32°F<br />

watts . . . . . . . . . . . . . . .3.413 . . . . . . . . . . . . . . . . . . .btu/hr.<br />

.0569 . . . . . . . . . . . . . . . . . .btu/min.<br />

44.27 . . . . . . . . . . . . . . . .ft.-lbs./min.<br />

.738 . . . . . . . . . . . . . . . .ft.-lbs./sec.<br />

.00134 . . . . . . . . . . . . . . .horsepower<br />

.00136 . . . . . . . .horsepower (metric)<br />

.0143 . . . . . . . . . . .kg.-calories/min.<br />

.001 . . . . . . . . . . . . . . . . .kilowatts<br />

watt-hours . . . . . . . . . . .3.413 . . . . . . . . . . . . . . . . . . . . . .btu<br />

2656 . . . . . . . . . . . . . . . . . .foot-lbs.<br />

860.5 . . . . . . . . . . . . .gram-calories<br />

.00134 . . . . . . . . . .horsepower-hours<br />

.861 . . . . . . . . . . .kilogram-calories<br />

367.2 . . . . . . . . . . .kologram-meters<br />

.001 . . . . . . . . . . . . .kilowatt-hours<br />

watt/sq.cm. . . . . . . . . .3170.0 . . . . . . . . . . . . .btu/hr./sq. foot<br />

watt cm<br />

btu-ft<br />

sq. cm. °F . . . . . . . . . . .57.79 . . . . . . . . . . . . . . . hr. sq. ft. °F<br />

TEMPERATURE CONVERSIONS<br />

°Fahrenheit = 9/5°C + 32<br />

°Celsius = 5/9 (°F–32)<br />

°Rankine = °F absolute = °F + 459.69<br />

°Kelvin = °C absolute = °C + 273.16<br />

Fahrenheit to Celsius Celsius to Fahrenheit<br />

°F °C °F °C °C °F °C °F<br />

0 -17.78 950 510.0 0 32 850 1562<br />

20 -6.67 1000 537.8 10 50 900 1652<br />

40 4.44 1100 593.3 20 68 950 1742<br />

60 15.56 1200 648.9 30 86 1000 1832<br />

80 26.67 1300 704.4 40 104 1050 1922<br />

100 37.78 1400 760.0 50 122 1100 2012<br />

120 48.89 1500 815.6 60 140 1150 2102<br />

140 60.00 1600 871.1 70 158 1200 2192<br />

160 71.11 1700 926.7 80 176 1250 2282<br />

180 82.22 1800 982.2 90 194 1300 2372<br />

200 93.33 1900 1038 100 212 1350 2462<br />

250 121.1 2000 1093 150 302 1400 2552<br />

300 148.9 2100 1149 200 392 1450 2642<br />

350 176.7 2200 1204 250 482 1500 2732<br />

400 204.4 2300 1260 300 572 1550 2822<br />

450 232.2 2400 1316 350 662 1600 2912<br />

500 260.0 2500 1371 400 752 1650 3002<br />

550 287.8 2600 1427 450 842 1700 3092<br />

600 315.6 2700 1482 500 932 1750 3182<br />

650 343.3 2800 1538 550 1022 1800 3272<br />

700 371.1 2900 1593 600 1112 1850 3362<br />

750 398.9 3000 1649 650 1202 1900 3452<br />

800 426.7 3200 1760 700 1292 1950 3542<br />

850 454.4 3400 1871 750 1382 2000 3632<br />

900 482.2 3600 1982 800 1472 2050 3722<br />

68


PRESSURE CONVERSIONS<br />

inches ounces/ inches kilograms/ millimeters kilowater<br />

sq in lb/sq in mercury millibars sq cm water pascals<br />

("w.c.) (osi) (psi) ("Hg) (mbar) (kg/cm 2 ) (mm H 2 O) (kPa)<br />

.04 .023 .001 .003 .1 .0001 1 .01<br />

.1 .058 .004 .007 .25 .0003 2.54 .02<br />

.17 .1 .006 .013 .42 .0004 4.4 .04<br />

.2 .115 .007 .015 .5 .0005 5.08 .05<br />

.35 .2 .013 .026 .87 .0009 8.8 .09<br />

.39 .227 .014 .029 .97 .001 10 .1<br />

.40 .23 .015 .029 1 .0010 10.2 .1<br />

.5 .29 .018 .037 1.24 .0013 12.7 .12<br />

.787 .45 .028 .058 1.96 .002 20 .2<br />

.80 .46 .029 .059 2 .0020 20.4 .2<br />

.87 .5 .031 .064 2.16 .0022 22 .22<br />

1 .58 .036 .074 2.49 .0025 25.4 .25<br />

1.73 1 .063 .127 4.30 .0044 44 .43<br />

2 1.15 .072 .147 4.98 .0051 50.8 .5<br />

2.01 1.16 .073 .148 5 .0051 51 .5<br />

2.77 1.6 .1 .204 6.89 .0070 70.3 .69<br />

3 1.73 .108 .221 7.46 .0076 76.2 .75<br />

3.46 2 .125 .254 8.61 .0088 87.9 .86<br />

4 2.31 .144 .294 9.95 .010 101.6 1<br />

4.02 2.32 .145 .296 10 .010 102 1<br />

5 2.89 .181 .368 12.5 .013 127 1.25<br />

5.2 3 .188 .382 12.9 .013 131.9 1.29<br />

5.54 3.2 .2 .407 13.8 .014 140.7 1.38<br />

6 3.46 .216 .441 14.9 .015 152.4 1.49<br />

6.93 4 .25 .51 17.2 .018 175.8 1.72<br />

7 4.04 .253 .515 17.4 .018 177.8 1.74<br />

8 4.62 .289 .588 19.9 .020 203.2 1.99<br />

8.03 4.64 .29 .591 20 .020 204 2<br />

8.66 5 .313 .637 21.5 .022 219.8 2.15<br />

9 5.2 .325 .662 22.4 .023 228.6 2.24<br />

10 5.77 .361 .735 24.9 .025 254 2.49<br />

10.39 6 .375 .764 25.9 .026 263.8 2.59<br />

11 6.35 .397 .809 27.4 .028 279.4 2.74<br />

12 6.93 .433 .882 29.9 .030 304.8 2.99<br />

12.05 6.96 .435 .887 30 .031 306 3<br />

12.12 7 .438 .891 30.2 .031 307.7 3.02<br />

13 7.51 .469 .956 32.4 .033 330.2 3.24<br />

13.6 7.85 .491 1 33.8 .035 345.4 3.38<br />

13.86 8 .5 1.02 34.5 .035 351.6 3.45<br />

14 8.08 .505 1.03 34.9 .036 355.5 3.49<br />

15 8.66 .541 1.10 37.4 .038 381 3.74<br />

15.59 9 .563 1.15 38.8 .04 395.6 3.88<br />

16 9.24 .578 1.18 39.8 .041 406.4 3.98<br />

16.06 9.28 .58 1.18 40 .041 408 4<br />

17 9.82 .614 1.25 42.3 .043 431.8 4.23<br />

17.32 10 .625 1.27 43.1 .044 439.6 4.31<br />

18 10.39 .649 1.32 44.8 .046 457.2 4.48<br />

19 10.97 .686 1.4 47.3 .048 482.6 4.73<br />

19.05 11 .688 1.40 47.4 .048 483.6 4.74<br />

20 11.55 .722 1.47 49.8 .051 508 4.98<br />

69


PRESSURE CONVERSIONS (Cont’d)<br />

inches ounces/ inches kilograms/ millimeters kilowater<br />

sq in lb/sq in mercury millibars sq cm water pascals<br />

("w.c.) (osi) (psi) ("Hg) (mbar) (kg/cm 2 ) (mm H 2 O) (kPa)<br />

20.1 11.6 .725 1.48 50 .051 510 5<br />

20.78 12 .75 1.53 51.7 .053 528 5.17<br />

21 12.12 .758 1.54 52.3 .053 533 5.23<br />

22 12.7 .794 1.62 54.8 .056 559 5.48<br />

22.52 13 .813 1.66 56.0 .057 572 5.60<br />

23 13.28 .83 1.69 57.3 .058 584 5.73<br />

24 13.86 .866 1.76 59.7 .061 610 5.98<br />

24.1 13.92 .87 1.77 60 .061 612 6<br />

24.25 14 .875 1.78 60.3 .062 615 6.03<br />

25 14.43 .902 1.84 62.3 .064 635 6.23<br />

25.98 15 .938 1.91 64.6 .066 659 6.46<br />

26 15.01 .938 1.91 64.7 .066 660 6.47<br />

27 15.59 .974 1.99 67.2 .069 686 6.72<br />

27.2 15.7 .982 2 67.7 .069 711 6.77<br />

27.71 16 1 2.04 68.9 .070 703 6.89<br />

28 16.17 1.01 2.06 69.7 .071 711 6.97<br />

28.11 16.24 1.02 2.07 70 .071 714 7<br />

29 16.74 1.05 2.13 72.2 .074 737 7.22<br />

29.44 17 1.06 2.16 73.3 .075 747 7.33<br />

30 17.32 1.08 2.21 74.7 .076 762 7.47<br />

31 17.9 1.12 2.28 77.2 .079 787 7.72<br />

31.18 18 1.13 2.29 77.6 .079 791 7.76<br />

32 18.48 1.16 2.35 79.7 .081 813 7.97<br />

32.13 18.56 1.16 2.36 80 .082 816 8<br />

32.91 19 1.19 2.42 81.9 .084 835 8.19<br />

33 19.05 1.19 2.43 82.2 .084 838 8.22<br />

34 19.63 1.23 2.5 84.7 .086 864 8.47<br />

34-64 20 1.25 2.55 86.2 .088 879 8.62<br />

35 20.21 1.26 2.57 87.2 .089 889 8.72<br />

36 20.79 1.3 2.65 89.6 .091 914 8.96<br />

36.14 20.88 1.31 2.66 90 .092 918 9<br />

36.37 21 1.31 2.67 90.5 .092 923 9.05<br />

37 21.36 1.34 2.72 92.1 .094 940 9.21<br />

38 21.94 1.37 2.79 94.6 .097 965 9.46<br />

38.1 22 1.38 2.80 94.8 .097 967 9.48<br />

39 22.52 1.41 2.87 97.1 .099 991 9.71<br />

39.37 22.73 1.42 2.89 98.0 .1 1000 9.80<br />

39.84 23 1.44 2.93 99.1 .101 1011 9.91<br />

40 23.09 1.44 2.94 99.6 .102 1016 9.96<br />

40.16 23.20 1.45 2.96 100 .102 1020 10<br />

40.8 23.56 1.47 3 101.5 .104 1036 10.2<br />

41 23.67 1.48 3.01 102.0 .104 1041 10.2<br />

41.57 24 1.5 3.06 103.4 .106 1055 10.3<br />

42 24.25 1.52 3.09 104.5 .107 1067 10.5<br />

43 24.83 1.55 3.16 107 .109 1092 10.7<br />

43.3 25 1.56 3.18 107.7 .11 1099 10.8<br />

44 25.4 1.59 3.24 109.5 .112 1118 11<br />

45 26 1.63 3.31 112 .114 1144 11.2<br />

46 26.56 1.66 3.38 114.5 .117 1168 11.5<br />

46.76 27 1.69 3.44 116.3 .118 1184 11.6<br />

70


PRESSURE CONVERSIONS<br />

inches ounces/ inches kilograms/ millimeters kilowater<br />

sq in lb/sq in mercury millibars sq cm water pascals<br />

("w.c.) (osi) (psi) ("Hg) (mbar) (kg/cm 2 ) (mm H 2 O) (kPa)<br />

47 27.14 1.7 3.46 116.9 .119 1194 11.7<br />

48 27.71 1.73 3.53 119.4 .122 1219 12<br />

48.5 28 1.75 3.57 120.7 .123 1232 12.1<br />

49 28.29 1.77 3.60 121.9 .124 1245 12.2<br />

50 28.87 1.80 3.68 124.4 .127 1270 12.5<br />

50.23 29 1.81 3.69 125 .128 1276 12.5<br />

51 29.45 1.84 3.75 126.9 .13 1295 12.7<br />

51.96 30 1.88 3.82 129.3 .132 1320 12.9<br />

52 30.02 1.88 3.82 129.4 .132 1321 12.9<br />

53 30.6 1.91 3.9 131.9 .135 1346 13.2<br />

53.69 31 1.94 3.95 133.6 .136 1364 13.4<br />

54 31.18 1.95 3.97 134.4 .137 1372 13.4<br />

54.4 31.41 1.96 4 135.4 .138 1382 13.5<br />

55.4 32 2 4.07 137.8 .141 1408 13.8<br />

68 39.26 2.45 5 169.2 .173 1727 16.9<br />

78.7 45.46 2.84 5.79 195.8 .2 2000 19.6<br />

80.32 46.4 2.9 5.91 200 .204 2040 20<br />

81.6 47.11 2.94 6 203 .207 2072 20.3<br />

83.14 48 3 6.11 207 .211 2112 20.7<br />

95.2 55 3.44 7 237 .242 2418 23.7<br />

108.8 62.8 3.93 8 271 .276 2763 27.1<br />

110.8 64 4 8.15 276 .282 2816 27.6<br />

120.5 69.6 4.35 8.87 300 .306 3060 30<br />

138.6 80 5 10.2 345 .352 3517 34.5<br />

160.6 92.8 5.8 11.8 400 .408 4080 40<br />

166.3 96 6 12.2 414 .422 4223 41.4<br />

194 112 7 14.3 483 .493 4927 48.3<br />

196.9 113.7 7.1 14.5 490 .5 5000 49.0<br />

200.8 116 7.25 14.8 500 .510 5100 50<br />

221.7 128 8 16.3 552 .563 5631 55.2<br />

241 139 8.7 17.7 600 .612 6120 60<br />

249.4 144 9 18.3 621 .634 6335 62.1<br />

277.1 160 10 20.4 689 .703 7033 68.9<br />

281.1 162 10.15 20.7 700 .714 7140 70<br />

321.3 186 11.6 23.6 800 .816 8160 80<br />

361.4 209 13.05 26.6 900 .918 9180 90<br />

393.7 227 14.21 28.9 980 1 10,000 98.0<br />

401.6 232 14.5 29.6 1000 1.02 10,200 100<br />

415.7 240 15 30.6 1034 1.06 10,559 103.4<br />

554 320 20 40.7 1378 1.41 14,072 137.8<br />

693 400 25 51 1724 1.76 17,602 172.4<br />

831 480 30 61.1 2068 2.11 21,107 206.8<br />

970 560 35 71.3 2414 2.46 24,638 241.3<br />

1108 640 40 81.5 2757 2.81 28,143 275.8<br />

1386 800 50 101.9 3449 3.52 35,204 344.7<br />

1663 960 60 122.3 4138 4.22 42,240 413.7<br />

1940 1120 70 142.6 4827 4.93 49,276 482.6<br />

2217 1280 80 163.0 5516 5.63 56,312 551.6<br />

2494 1440 90 183.4 6206 6.33 63,348 620.5<br />

2771 1600 100 203.8 6895 7.04 70,383 689.5<br />

71


Abbreviations 61<br />

Air<br />

effect of altitude 20<br />

effect of pressure 20<br />

effect of temp. 21<br />

infiltration 53<br />

pipe<br />

sizing 16<br />

pressure losses 12<br />

Air Heating<br />

heat requirements 45<br />

Alloys<br />

thermal capacities 40<br />

Area<br />

of circles 57, 58<br />

Available Heat<br />

definition 35-36<br />

charts 51<br />

Black Body Radiation 49<br />

Blowers<br />

as suction device 20<br />

fan laws 19<br />

horsepower 20<br />

ratings 18, 19<br />

Boilers<br />

Btu/hr. & H.P. 31<br />

conversion factors 30<br />

sizing steam pipe 32<br />

Butane<br />

butane/air mixtures 24<br />

properties 22, 23<br />

C v 16<br />

Circles<br />

areas 57, 58<br />

circumferences 57, 58<br />

Circumference<br />

of circles 57, 58<br />

Coefficients of Discharge 4<br />

Cones, Pyrometric 50<br />

Conversions<br />

boilers 30<br />

h.p. & Btu/hr. 31<br />

general 64 thru 68<br />

oil viscosity 26<br />

pressure 69<br />

temperature, °F & °C 69<br />

Crucibles<br />

capacities & dimensions 43<br />

Drills<br />

sizes 59<br />

tap drill sizes 60<br />

Duct Velocity 17<br />

Efficiency, Thermal 36<br />

Electrical<br />

formulas 33<br />

motor current 34<br />

motor starters 33<br />

NEMA enclosures 34<br />

ohm’s law 33<br />

symbols 62, 63<br />

wire specs 33<br />

Equivalent Length<br />

pipe 14<br />

valves 14<br />

Fan Laws 19<br />

Fans<br />

see blowers<br />

INDEX<br />

Flame Tip Temp. 52<br />

Flow<br />

and C v 16<br />

and duct velocity 17<br />

orifices 4<br />

Flue Gas Analysis 52<br />

Flue Sizing 53<br />

Fume Incineration<br />

heat requirements 45<br />

sizing 46<br />

Furnaces<br />

cold air infiltration 53<br />

flue sizing 53<br />

thermal head 53<br />

turndown 36<br />

Gas/Air Mixtures 24<br />

Gases<br />

available heat 51<br />

combustion products 23<br />

constituents 22<br />

density 22<br />

flame temp. 23<br />

flame velocity 22<br />

flammability limits 22<br />

heat release 23<br />

heating value 23<br />

ignition temp. 22<br />

mixtures 24<br />

pipe, sizing 16<br />

properties 22-24,37<br />

specific gravity 22<br />

specific volume 22<br />

stoichiometric ratio 22<br />

Heat<br />

available 35-36<br />

balance 35-36<br />

losses<br />

general 35-36<br />

refractory 44<br />

spray washers 48<br />

tank 47<br />

net output 35-36<br />

required for processes 41<br />

storage, refractory 44<br />

storage, tank 47<br />

transfer, equations 52<br />

Heating Operations<br />

temp. & heat req’d. 41-42<br />

Liquid Heating<br />

sizing, burner 47<br />

Metals<br />

thermal capacities 40<br />

Motors<br />

current 34<br />

formulas 33<br />

NEMA size starters 33<br />

Natural Gas, Properties 22-23<br />

Net Heat Output 35-36<br />

Nozzles<br />

spray capacities 48<br />

Ohm’s Law 33<br />

Oil<br />

ANSI specs 25<br />

heating value & °API 27<br />

piping pressure losses 27, 28<br />

piping temp. losses 29<br />

s.g. & °API 27<br />

typical properties 26<br />

viscosity conversions 26<br />

72<br />

Orifices<br />

capacities<br />

high pressure 9-11<br />

low pressure 5-8<br />

coefficients of discharge 4<br />

flow formulas 4<br />

Pipe<br />

capacities 54<br />

dimensions 54<br />

fittings<br />

dimensions 55<br />

equivalent length 14<br />

flange templates 60<br />

pressure losses<br />

air 12<br />

natural gas 13, 14<br />

oil 27, 28<br />

sizing<br />

air, gas & mixture 15<br />

air, quick method 15<br />

branch 16<br />

steam 32<br />

water 31<br />

Pressure, Conversions 69-71<br />

Propane<br />

propane/air mixtures 24<br />

properties 22, 23<br />

see also Gases<br />

Pyrometric Cones 50<br />

Radiant Tubes 43<br />

Radiation, Black Body 49<br />

Refractory 44<br />

Sheet Metal<br />

gauges 56<br />

weights 56<br />

Spray Washers<br />

heat loss factors 48<br />

heat requirements 48<br />

nozzle capacities 48<br />

Steam<br />

pipe sizing 32<br />

properties 30<br />

terminology 30<br />

Symbols<br />

electrical 62, 63<br />

Temperature<br />

°F & °C 68<br />

flame tip 52<br />

refractory face 44<br />

required, various processes 41<br />

Thermal<br />

capacities, metals & alloys 40<br />

efficiency 36<br />

head, furnaces 53<br />

properties, materials 37<br />

Turndown<br />

furnace 36<br />

Valves<br />

C v and flow 16<br />

equivalent pipe length 14<br />

Velocity, Duct 17<br />

Washers, spray<br />

heat requirements 48<br />

Wire<br />

gauges 56<br />

specifications 33<br />

weights 56


Tech Notes<br />

Table Of Contents<br />

Section 1–<strong>Eclipse</strong> Equipment (numbers correspond to Bulletin numbers)<br />

656 Selecting TVT Mixing Tees<br />

810/812 Sizing Pilots, Blasts Tips & Pilot Mixers with Flow Charts<br />

Section 2–<strong>Engineering</strong> Data<br />

Part A– <strong>Combustion</strong> Data<br />

A-1 Flue Gas Analysis vs. Excess Air<br />

A-2 Flame Temperatures vs. Air Preheat & % Oxygen<br />

A-3 Available Heat vs. Oxygen Enrichment<br />

A-4 Available Heat-Extended Chart<br />

Part C– Control systems<br />

C-1 Summary of Fuel-Air Ratio Control Systems for Nozzle Mixing Burners<br />

C-2 Ratio Control Using Proportioning Fixed Port Valves for Nozzle Mixing Burners<br />

C-3 Ratio Control Using Proportioning (Adjustable Characteristic) Valves for Nozzle Mixing Burners<br />

C-4 Ratio Control Using Cross-Connected Proportionators for Nozzle Mixing Burners<br />

C-5 Ratio Control Using Cross-Connected Proportionator with Bleed Fitting for Nozzle Mixing Burners<br />

C-6 Ratio Control Using Electronic Controllers for Nozzle Mixing Burners<br />

C-7 Excess Air Operation by Controlling Fuel Only for Nozzle Mixing Burners<br />

C-8 Excess Air Operation with Biased Proportionator for Nozzle Mixing Burners<br />

C-9 Excess Air Operation with Throttled Impulse (Adjustable Bleed) to Proportionator for Nozzle Mixing<br />

Burners<br />

C-10 Backpressure Compensation System for Cross-Connected Nozzle Mix Burner Systems<br />

Part E– Emissions<br />

E-2 Conversion Factors for Emissions Calculations<br />

E-3 Correcting Emissions Readings to 3% O 2<br />

or 11% O 2<br />

Basis<br />

Part H– Heat Recovery<br />

H-1 Recuperator Efficiency: Fuel Savings & Effectiveness<br />

Part R– Regulations & Codes<br />

R-1 NFPA Requirements for Gas Burner Systems<br />

R-2 IRI Requirements for Gas Burner Systems<br />

Section 3-Application Data<br />

Part I– Incineration<br />

I-1 Heating Values of Flammable Liquids<br />

Part L– Liquid Heating<br />

L-1 Immersion Tube Sizing<br />

L-2 Submerged <strong>Combustion</strong><br />

L-3 Immersion Tubes-What Will The Stack Temperature Be?<br />

Part O– Ovens<br />

O-1 Determining % O 2<br />

in a Recirculating System<br />

73


Tech Notes<br />

Section I<br />

Sheet 656<br />

Selecting TVT Mixing Tees—Bulletin 656<br />

General Remarks:<br />

Series TVT two-valve mixing tees lack a tapered discharge sleeve, so they are not as<br />

efficient as LP Proportional Mixers. Their performance will also be strongly affected<br />

by downstream piping, so use them only where gas pressure available at the mixer<br />

connection exceeds mixture pressure by:<br />

3" w.c. for natural or LP gas (except 166-24-TVT, which requires 7" w.c.)<br />

6" w.c. for coke oven gas<br />

8" w.c. for digester gas<br />

For coke oven or digester gas, do not use the 84-16, 124-24 or 166-24; their gas inlets<br />

are too small. Also, do not use any of these mixers with producer gas. Producer gas<br />

flows far exceed the capacity of the gas orifices and inlet connections.<br />

Selection Data Required:<br />

1. CFH air flow through the mixer (if customer specifies Btu/hr, divide by 100 to<br />

get cfh air).<br />

2. Air pressure available at mixer inlet, "w.c.<br />

3. Mixture pressure desired, "w.c.<br />

Selection Procedure:<br />

1. Refer to Table I, page 75. Select a mixer whose maximum air capacity is higher<br />

than the required air flow.<br />

2. To size the air jet, subtract the mixture pressure from the air pressure. This<br />

gives you the air pressure drop available across the mixer. Then refer to the<br />

graph. Locate the desired air flow on the horizontal axis and the air pressure<br />

drop on the vertical axis. Locate the point where they intersect and then move<br />

right to the next diagonal line. That line represents the optimum jet size.<br />

3. Cross-check the air jet size against Table I to be sure it is within the range of<br />

sizes available for the mixer. If it isn’t, select the next larger size of mixer to<br />

avoid taking a higher pressure drop.<br />

74


Table I - TVT Mixer Data<br />

Range of<br />

Mixer Maximum Jet Sizes<br />

Catalog Air Flow, Air Jet 1/32nds of Use Mixer With<br />

No. scfh Part No. an inch These Gases<br />

44-17-TVT 900 0217- 10 - 16 Natural, LP, Coke Oven, Digester<br />

64-16-TVT 2000 0255- 12 - 25 Natural, LP, Coke Oven, Digester<br />

66-24-TVT 2000 0255- 12 - 25 Natural, LP, Coke Oven, Digester<br />

84-16-TVT 3500 0225- 18 - 36 Natural, LP<br />

86-24-TVT 3500 0225- 18 - 36 Natural, LP, Coke Oven, Digester<br />

124-24-TVT 8000 0695- 32 - 56 Natural, LP<br />

126-24-TVT 8000 0695- 32 - 56 Natural, LP, Coke Oven, Digester<br />

166-24-TVT 15,000 0994- 36 - 80 Natural, LP<br />

168-30-TVT 15,000 0994- 36 - 80 Natural, LP, Coke Oven, Digester<br />

Air ∆P Through Mixer, "w.c.<br />

30<br />

25<br />

20<br />

15<br />

10<br />

9<br />

8<br />

7<br />

Figure I - Air Jet Sizing Chart<br />

Air Jet Size<br />

10 11 12 13 14 15 16 17 18 19 20<br />

21 23 25 27<br />

22 24 26<br />

29 31 33 35 37 39 42 46<br />

28 30 32 34 36 38 40 44<br />

50 54<br />

48 52 56<br />

6<br />

200 300 400 500 600 800 1000 1500 2000 3000 4000 5000 6000 8000 10,000 15,000<br />

58<br />

60<br />

62<br />

64<br />

66<br />

68<br />

70<br />

72<br />

74<br />

76<br />

78<br />

80<br />

Maximum<br />

For 44-17 TVT<br />

Maximum<br />

For 64-16<br />

& 66-24 TVT<br />

Max. For<br />

84-16 &<br />

86-24 TVT<br />

Maximum For<br />

124-24 &<br />

126-24 TVT<br />

Max. For<br />

166-24 &<br />

168-30 TVT<br />

Air Flow Through Mixer, scfh<br />

75


Tech Notes<br />

Section I<br />

Sheet 810/812<br />

Sizing Pilots, Blast Tips & Pilot Mixers With Flow Charts<br />

Selection Factors<br />

Using The Charts Properly<br />

To select the right equipment, you need to know:<br />

1. Type and number of pilot or blast tips;<br />

2. Btu/hr. at which each tip will fire;<br />

3. Air pressure (P ) available at the mixer inlet.<br />

A<br />

1. From the tip capacity chart on page 77, find the required<br />

mixture pressure. Do not exceed 8" w.c. mixture pressure,<br />

unless you’ve chosen a Cumapart (CP) tip or blast tip.<br />

XXX<br />

Desired Tip<br />

YYY<br />

Air<br />

P A<br />

P M<br />

Mixture Pressure<br />

ZZZ<br />

P P A - M = Mixture P<br />

Desired Btu/hr.<br />

2. Subtract the mixture pressure (P M<br />

) found in Step 1 from the air pressure<br />

(P A<br />

) which is available at the mixer. The difference is the mixer<br />

pressure drop.<br />

3. Figure the total air flow through the mixer by the following equation:<br />

Btu/hr. per tip x number of tips<br />

cfh air =<br />

100<br />

4. Next, refer to the mixer air capacity charts (page 78 for Series 121 mixers<br />

and page 79 for Series 131). To use the charts properly, follow the<br />

directions below:<br />

1 Locate the mixer<br />

pressure drop figure<br />

in Step 2, and read<br />

to the right.<br />

Pressure Drop<br />

3<br />

ABC (1234)<br />

From the point where<br />

these lines cross, move<br />

right to the nearest mixer<br />

flow curve. This curve is<br />

the proper size mixer to use.<br />

The air jet part number<br />

is in parentheses.<br />

Air Flow<br />

2 Locate the air flow figured in Step 3<br />

and read up.<br />

5. Do not use the Series 121 mixers above 300 scfh air or the Series 131<br />

mixers above 600 scfh air—otherwise pipe velocities are too high.<br />

76


8<br />

1-K<br />

Capacities Of <strong>Eclipse</strong> Pilot & Blast Tips<br />

2-K<br />

1CP<br />

1F<br />

3-K<br />

4-K<br />

2CP<br />

20-ST<br />

5-K<br />

3RAFI<br />

2-N<br />

6-K<br />

3CP<br />

2F 3RAF<br />

4RAFI<br />

3F<br />

4F<br />

5RAFI<br />

3EP<br />

4RAF<br />

4EP<br />

5RAF<br />

6<br />

5<br />

Mixture Pressure, "w.c.<br />

4<br />

3<br />

2<br />

1<br />

1 2 3 4 5 6<br />

10 20 30 40 50 60 100<br />

Btu/hr. x 1000 @ 10:1 Air/Gas Ratio<br />

77


50<br />

Series 121 Pilot Mixers<br />

Air Flow Capacity<br />

Mixer Catalog No. &<br />

(Air Jet Part No.)<br />

121-46 (14520-1)<br />

121-42 (14520-2)<br />

121-40 (14520-17)<br />

121-36 (14520-3)<br />

121-30 (14520-16)<br />

121-25 (14520-5)<br />

40<br />

121-22 (14520-6)<br />

30<br />

121-18 (14520-7)<br />

121-17 (14520-15)<br />

20<br />

121-12 (14520-8)<br />

121-10 (14520-14)<br />

121-8 (14520-13)<br />

121-6 (14520-12)<br />

121-4 (14520-11)<br />

121-7/32 (14520-9)<br />

∆P P Across Mixer, "w.c.<br />

10<br />

6<br />

5<br />

4<br />

121-1 (14520-10)<br />

3<br />

2<br />

1<br />

10 15 20 30 40 50 60 80 100 150 200 300<br />

<strong>Combustion</strong> Air Flow Through Mixer, SCFH<br />

(Btu/hr. = SCFH Air x 100)<br />

78


50<br />

Series 131 Pilot Mixers<br />

Air Flow Capacity<br />

Mixer Catalog No. &<br />

(Air Jet Part No.)<br />

131-4 (10254-1)<br />

131-5 (10254-2)<br />

131-11/64 (10254-14)<br />

131-6 (10254-3)<br />

131-13/64 (10254-8)<br />

131-7 (10254-4)<br />

40<br />

131-15/64 (10254-9)<br />

30<br />

131-8 (10254-5)<br />

131-17/64 (10254-10)<br />

20<br />

131-9 (10254-6)<br />

131-19/64 (10254-11)<br />

131-10 (10254-7)<br />

∆P P Across Mixer, "w.c.<br />

10<br />

6<br />

5<br />

4<br />

131-21/64 (10254-15)<br />

3<br />

2<br />

1<br />

20 30 40 50 60<br />

80 100 150 200 300<br />

<strong>Combustion</strong> Air Flow Through Mixer, SCFH<br />

(Btu/hr. = SCFH Air x 100)<br />

400 500 600<br />

79


Tech Notes<br />

Section 2<br />

Sheet A-1<br />

Flue Gas Analysis vs. Excess Air<br />

Reference:<br />

<strong>Eclipse</strong> <strong>Combustion</strong> <strong>Engineering</strong> <strong>Guide</strong>, p. 52<br />

The graph below supplements the flue gas analysis chart on page 52 of the<br />

<strong>Combustion</strong> <strong>Engineering</strong> <strong>Guide</strong>, which extends to only 200% excess air.<br />

These curves are calculated for Birmingham Natural Gas, same as the<br />

<strong>Engineering</strong> <strong>Guide</strong>.<br />

Figure 1:<br />

Flue Gas Constituents<br />

vs. % Excess Air<br />

% Flue Gas Constituent By Volume<br />

20<br />

15<br />

10<br />

5<br />

% Oxygen—Dry Sample<br />

% Oxygen—Saturated Sample<br />

% Carbon Dioxide—Natural Gas<br />

0<br />

200 400 600 800 1000 1200 1400 1600 1800 2000<br />

% Excess Air<br />

80


Tech Notes<br />

Section 2<br />

Sheet A-2<br />

Flame Temperatures vs. Air Preheat & % Oxygen<br />

General Remarks:<br />

Both preheated air and oxygen enrichment increase the theoretical temperature<br />

of burner flames. The following graphs show their effect on the<br />

theoretical flame temperature of natural gas, which, with 60°F combustion<br />

air and 21% oxygen, would be about 3500 - 3550° F.<br />

Figure 1:<br />

Theoretical Flame<br />

Temperature vs. Preheat<br />

Theoretical Flame Temp., °F<br />

4500<br />

4000<br />

3500<br />

0<br />

200 400 600 800 1000 1200 1400 1600<br />

<strong>Combustion</strong> Air Temperature, °F<br />

Figure 2:<br />

Theoretical Flame<br />

Temperature vs. O 2<br />

in Air<br />

5200<br />

4800<br />

Flame Temperature, °F<br />

4400<br />

4000<br />

3600<br />

20 40 60 80 100<br />

% Oxygen In Air<br />

81


Tech Notes<br />

Section 2<br />

Sheet A-3<br />

Available Heat vs. Oxygen Enrichment<br />

General Remarks:<br />

The graph below shows available heat as a function of flue gas temperature<br />

and percent oxygen in the combustion air stream. These curves were calculated<br />

for natural gas with combustion air at 60°F.<br />

Figure 1:<br />

Available Heat vs.<br />

Oxygen Enrichment<br />

100<br />

80<br />

% Available Heat<br />

60<br />

40<br />

100% O 2<br />

35% O 2<br />

20<br />

25% O 2<br />

20.9% O 2<br />

0<br />

2000<br />

2200<br />

2400<br />

2600<br />

2800<br />

3000<br />

Flue Gas Temperature, °F<br />

82


Tech Notes<br />

Section 2<br />

Sheet A-4<br />

Available Heat—Extended Chart<br />

Reference:<br />

<strong>Eclipse</strong> <strong>Combustion</strong> <strong>Engineering</strong> <strong>Guide</strong>, p. 51<br />

Page 51 of the <strong>Eclipse</strong> <strong>Combustion</strong> <strong>Engineering</strong> <strong>Guide</strong> carries two available<br />

heat charts, but unfortunately, the more useful one of the two doesn’t cover<br />

flue gas temperatures below 1000°F. The chart below, calculated from the<br />

same conditions as the <strong>Engineering</strong> guide chart, extends these curves down<br />

to 300°F flue gas temperature.<br />

Figure 1:<br />

Available Heat vs. Flue<br />

Gas Exit Temperature, °F<br />

100<br />

90<br />

80<br />

Based On Birmingham Natural Gas (1002 Btu/Cu. ft., 0.6 Sp. Gr.)<br />

% Available Heat<br />

70<br />

60<br />

50<br />

40<br />

350%<br />

400%<br />

500%<br />

600%<br />

800%<br />

% Excess Air<br />

30<br />

20<br />

10<br />

1000%<br />

1200%<br />

250%<br />

300%<br />

200%<br />

150%<br />

100%<br />

50%<br />

0%<br />

10%<br />

25%<br />

0 0 200 600 1000 1400 1800 2200 2600 3000<br />

Flue Gas Exit Temperature, °F<br />

83


Tech Notes<br />

Section 2<br />

Sheet C-1<br />

Summary of Fuel-Air Ratio Control Systems<br />

for Nozzle Mixing Burners<br />

Control System<br />

System<br />

Cost*<br />

Required<br />

Gas<br />

Pressure**<br />

Control Mode<br />

Hi-Low Modulating Firing Rate?<br />

If backpressure<br />

fluctuates, does system<br />

maintain constant:<br />

Fuel-Air<br />

Ratio?<br />

On multiple burner<br />

zones, if one is<br />

shut off, do the<br />

others hold their<br />

ratio?<br />

On-ratio, linked valve I L • No *** No<br />

On-ratio,<br />

characterized valve M L to M • • No *** No<br />

On-ratio, cross connected<br />

proportionator M H • • No Yes Yes<br />

On-ratio, cross connected<br />

proportionator & bleeder M L to M • • No Yes Yes<br />

On-ratio, electronic E M • • Yes Yes No<br />

Excess air,<br />

fuel-only control I M • • No *** No<br />

Excess air,<br />

biased proportionator M H • • No No Yes<br />

Excess air,<br />

throttled impulse M H • • No Yes† Yes<br />

* I=Inexpensive, M= Moderate, E=Expensive<br />

** L= Low, M=Moderate, H= High<br />

*** Depends on air and gas pressures at burner. See sheets for individual systems.<br />

† If bleeder vent is connected to combustion chamber.<br />

84


Tech Notes<br />

Section<br />

2<br />

Sheet C-2<br />

Nozzle Mixing Burners<br />

Ratio Control Using Proportioning (Linked) Fixed Port Valves<br />

Operating Principle<br />

Air and gas passages in the burner are the fixed resistances in the system.<br />

Control valves in the air and gas lines are the variable resistance. The two<br />

valves are connected by linkages to a common drive motor so that, in theory,<br />

they open and close in proportion, maintaining a fixed air-gas ratio over<br />

the system’s turndown range.<br />

1<br />

2<br />

FUEL<br />

Advantages<br />

• Valve operation can be readily understood—confidence builder for persons<br />

unfamiliar with control systems.<br />

• Working parts are visible—little chance that a hidden defect is present.<br />

• Can be used with low gas supply pressures. If a large enough gas valve is<br />

selected, the pressure required is only a little higher than the burner gas<br />

nozzle pressure (2 in above figure).<br />

• Inexpensive.<br />

(continued on page 86)<br />

85


Disadvantages<br />

• Differences in valve characteristic curves make it difficult or impossible<br />

to hold a fixed gas-air ratio across the entire turndown range. The system<br />

is best limited to high-low control.<br />

• Unless air and gas pressures at the burner (1 and 2 in the figure on page<br />

85) are equal, unforeseen changes in combustion chamber pressure will<br />

cause the burner to shift off-ratio according to the table below:<br />

And Chamber Pressure<br />

If Air Pressure Is<br />

Goes More<br />

Positive (+), Then:<br />

Stays The<br />

Same (o), Then:<br />

Goes More<br />

Negative (-), Then:<br />

Higher than gas pressure Burner goes leaner No change Burner goes richer<br />

Same as gas pressure No change No change No change<br />

Lower than gas pressure Burner goes richer No change Burner goes leaner<br />

If air pressure at the burner is higher than the gas pressure (this is usually<br />

the case), they can be made equal by installing a limiting orifice valve<br />

between the gas control valve and burner and adjusting it until pressure<br />

(2) equals pressure (1). However, this negates one of the advantages of<br />

linked valve systems—the low gas pressure requirement.<br />

• If the air supply becomes starved due to a dirty blower wheel or a plugged<br />

filter, the system will go rich. The gas valve responds only to the mechanical<br />

linkage, not to air flow changes.<br />

• If multiple burners are controlled by a single set of linked valves, and the<br />

fuel flow to one burner is throttled back manually or shut off entirely,<br />

that fuel will go to the other burners, forcing them to run rich. In addition<br />

to the safety hazard this presents, it makes multiple burners tedious to<br />

set up. Any gas adjustment made to one burner upsets the settings of the<br />

other burners in the zone.<br />

86


Tech Notes<br />

Section<br />

2<br />

Sheet C-3<br />

Nozzle Mixing Burners<br />

Ratio Control Using Proportioning (Adjustable Characteristic) Valves<br />

Operating Principle<br />

Air and gas passages in the burner are the fixed resistances in the system.<br />

Control valves are the variable resistances and are connected in tandem to<br />

a common drive motor. Because it is practically impossible to get two fixed<br />

port valves to track together over their turndown range, at least one of the<br />

valves is fitted with an adjustable screw rack which makes the valve open<br />

faster or slower than the linkage calls for. This permits the valve’s flow<br />

curve to be adjusted to more closely match that of the fixed port valve.<br />

Advantages<br />

• Valve operation can be readily understood—confidence builder for persons<br />

unfamiliar with control systems.<br />

• Working parts are visible—little chance that a hidden defect is present.<br />

• Can be used with low gas supply pressures.<br />

• Can be used with proportioning or high-low control systems.<br />

Disadvantages<br />

• Adjustable characteristic valves are usually expensive.<br />

• Time consuming to set up. Most screw racks contain 8 to 12 adjustment<br />

points, which must be individually set when the burner is commissioned.<br />

• Unless air and gas pressures at the burner (1 and 2 in the figure below)<br />

are equal, unforeseen changes in combustion chamber pressure will cause<br />

the burner to shift off-ratio according to the table on page 88.<br />

1<br />

2<br />

FUEL<br />

87


Disadvantages (continued)<br />

And Chamber Pressure<br />

If Air Pressure Is<br />

Goes More<br />

Positive (+), Then:<br />

Stays The<br />

Same (o), Then:<br />

Goes More<br />

Negative (-), Then:<br />

Higher than gas pressure Burner goes leaner No change Burner goes richer<br />

Same as gas pressure No change No change No change<br />

Lower than gas pressure Burner goes richer No change Burner goes leaner<br />

If air pressure at the burner is higher than the gas pressure (this is usually<br />

the case), they can be made equal by installing a limiting orifice valve<br />

between the gas control valve and burner and adjusting it until pressure<br />

(2) equals pressure (1). However, this negates one of the advantages of<br />

linked valve systems—the low gas pressure requirement.<br />

• If the air supply becomes starved due to a dirty blower wheel or a plugged<br />

filter, the system will go rich. The gas valve responds only to the mechanical<br />

linkage, not to air flow changes.<br />

• If multiple burners are controlled by a single set of linked valves, and the<br />

fuel flow to one burner is throttled back manually or shut off entirely,<br />

that fuel will go to the other burners, forcing them to run rich. In addition<br />

to the safety hazard this presents, it makes multiple burners tedious to<br />

set up. Any gas adjustment made to one burner upsets the settings of the<br />

other burners in the zone.<br />

88


Tech Notes<br />

Section<br />

2<br />

Sheet C-4<br />

Nozzle Mixing Burners<br />

Ratio Control Using Cross-Connected Proportionators<br />

Operating Principle<br />

Burner air passage is fixed resistance for air flow. Gas passages in the<br />

burner are usually too large to serve as the fixed resistance, so a limiting<br />

orifice valve is installed at the gas inlet . At setup, this valve is adjusted to<br />

provide the correct gas flow when gas pressure (2) is equal to air pressure<br />

(1). Low fire gas-air ratio is set with spring in Proportionator.<br />

1<br />

Advantages<br />

FUEL<br />

3<br />

Cross<br />

Connection<br />

Proportionator<br />

• Easy to set up. Once high and low fire ratios are set, everything in between<br />

is taken care of.<br />

• Can be used with proportioning or high-low control systems.<br />

• No problem with mismatched valve flow curves. Proportionator is slave to<br />

air valve and automatically matches its characteristic curve.<br />

• Fuel-air ratio is unaffected by unforeseen changes in combustion chamber<br />

pressure.<br />

2<br />

Limiting<br />

Orifice<br />

• Although air starvation due to a plugged filter or dirty blower wheel will<br />

cause a loss in firing capacity, it will not cause the system to go rich. The<br />

proportionator automatically reduces fuel flow as the air flow drops off.<br />

• On multiple burner systems fed from a single air control valve and<br />

proportionator, changing or shutting off the fuel flow to one burner will<br />

not upset the fuel flow to the others. This makes initial setup easier and<br />

eliminates the hazard of burners in a zone going rich because one of<br />

them has been misadjusted or shut off.<br />

• If proportionator permits, this system can be converted to an excess air<br />

system (see page 95) with a simple proportionator spring adjustment.<br />

89


Disadvantages<br />

• Requires higher gas pressures. Gas pressure at (3) in the figure on page<br />

89 must equal air pressure at (1) plus gas pressure drop through<br />

proportionator valve.<br />

• Operating principles of proportionator are poorly understood, especially<br />

in oven and air heating industry; operators don’t know how to set up<br />

systems.<br />

• Internal working of proportionator can’t be seen. Operators don’t know if<br />

it’s working correctly and, as a result, are afraid of it.<br />

90


Tech Notes<br />

Section<br />

2<br />

Sheet C-5<br />

Nozzle Mixing Burners<br />

Ratio Control Using Cross-Connected Proportionator With Bleed Fitting<br />

Cross<br />

Connection<br />

1<br />

FUEL<br />

Bleed Fitting<br />

3<br />

Proportionator<br />

4<br />

2<br />

Limiting<br />

Orifice<br />

Operating Principle Used where proportionator system is desired, but where gas pressure at (3)<br />

is insufficient to make a conventional proportionator system work (see page<br />

89). This set-up is also used where the loading pressure on the proportionator<br />

is equal to or higher than the maximum inlet gas pressure the proportionator<br />

can tolerate. An adjustable bleed fitting—basically a needle valve in a tee—<br />

reduces the loading pressure (4) on the proportionator to a pressure at<br />

least 2" w.c. lower than the inlet gas pressure (3). This permits the<br />

proportionator to respond to changes in air loading pressure (1) over the<br />

entire turndown range.<br />

If, for example, high fire air pressure (1) is 20" w.c., but gas supply (3) is<br />

only 13" w.c., the bleeder could be set to bleed off 50% of the air loading<br />

pressure, producing a pressure of 10" w.c. at (4) and (2).<br />

Advantages<br />

Same as the conventional proportionator system (see page 89), except that<br />

combustion chamber pressure fluctuations will cause the system to go offratio.<br />

Can be compensated by connecting the vent of the bleed fitting to the<br />

combustion chamber.<br />

Disadvantages<br />

• Same as the conventional proportionator system (see page 89), except<br />

that high inlet gas pressure is no longer required.<br />

• Bleed fittings contain small orifices which are susceptible to plugging by<br />

dirt. Filtered combustion air will alleviate the problem, but bleeders will<br />

always require frequent maintenance attention and they are subject to<br />

unauthorized tampering.<br />

91


Tech Notes<br />

Section<br />

2<br />

Sheet C-6<br />

Nozzle Mixing Burners<br />

Ratio Control Using Electronic Controllers<br />

Cross<br />

Connection<br />

Air Flow<br />

Meter<br />

Primary<br />

Valve<br />

TC<br />

FUEL<br />

Fuel Flow<br />

Meter<br />

Electronic<br />

Controller<br />

Slave Valve<br />

Operating Principle<br />

For all of its sophistication, a variation of the linked valve system. In this<br />

case, the linkage is electronic instead of mechanical. This system is also<br />

known as a “mass flow” control system, although this a misnomer—the<br />

flow signals fed to the controller are related either to pressure differential<br />

or to flow velocity.<br />

The air and fuel lines each contain a motor-driven control valve and a flow<br />

metering device (orifice plate & ∆P transmitter, turbine meter, vortex-shedding<br />

flowmeter, etc.) One of the control valves is the primary valve, driven<br />

by the temperature controller. The second valve is slaved to the first through<br />

the electronic ratio controller.<br />

Flow meters in the air and fuel lines feed signals proportional to flow to the<br />

controller. The controller compares the signals and, if they are out of ratio,<br />

sends a correcting signal to the slave valve, which then alters its flow to<br />

restore the desired air-fuel ratio.<br />

Advantages<br />

• Extremely high accuracy inherent to electronic systems.<br />

• Can be integrated with master computer to control burner, as well as<br />

provide fuel consumption data.<br />

• If controller can be reprogrammed, can be reconfigured as an excess air<br />

system.<br />

• Will not allow the burner to go rich if air starvation occurs.<br />

• Provided that air and fuel supply pressures are adequate, will maintain a<br />

predetermined firing rate regardless of combustion chamber backpressure<br />

fluctuations. This is the only system that will do so.<br />

92


Disadvantages<br />

• Most expensive of all the ratio control systems.<br />

• No matter how sophisticated the electronics, the accuracy of the system<br />

is no better than the flow-sensing elements. If orifice plates are used to<br />

measure flows, accuracy degrades rapidly at turndown ratios greater than<br />

4:1 unless systems are individually calibrated in the field.<br />

• On a multiple burner system, turning the fuel of one burner down or off<br />

will cause the others to run rich—this system will try to maintain a gas<br />

flow proportional to airflow, regardless of where the gas has to go.<br />

93


Tech Notes<br />

Section<br />

2<br />

Sheet C-7<br />

Nozzle Mixing Burners<br />

Excess Air Operation By Controlling Fuel Only<br />

Optional Manual<br />

Trimming Valve<br />

FUEL<br />

Operating Principle<br />

Advantages<br />

Disadvantage<br />

This system is known as the “fuel only control”, “fixed air” or “wild air”<br />

system; it is the simplest of all excess air systems. A motor-driven valve is<br />

placed in the fuel line, while the air has no flow controller—a manual<br />

trimming valve might be installed for servicing or limiting the high fire<br />

flow.<br />

• Low cost.<br />

• Permits attainment of the maximum excess air capability of the burner.<br />

• Suitable for high-low or proportioning control.<br />

• If multiple burners are controlled from a single fuel valve, reducing or<br />

shutting off the fuel flow to one of them causes the others to go richer.<br />

94


Tech Notes<br />

Section<br />

2<br />

Sheet C-8<br />

Nozzle Mixing Burners<br />

Excess Air Operation With Biased Proportionator<br />

1<br />

FUEL<br />

3<br />

Cross<br />

Connection<br />

Proportionator<br />

2<br />

Limiting<br />

Orifice<br />

Operating Principle<br />

Advantages<br />

Disadvantages<br />

System installation is identical to conventional proportionator system<br />

(see page 89), but requires a proportionator whose spring can be adjusted<br />

to produce a significant negative bias. System is customarily set<br />

up to operate near stoichiometric ratio at high fire. As air valve closes,<br />

the proportionator—with its negative spring bias—causes fuel flow to<br />

decrease even more rapidly, producing increasing amounts of excess<br />

air.<br />

• Better fuel economy than fuel-only control excess air system (see page<br />

94).<br />

• Suitable for high-low or proportioning control.<br />

• Unlike fuel-only control system, turning down or shutting off the gas<br />

flow to one burner in a multi-burner system will not cause the others<br />

to go rich.<br />

• Not capable of excess air rates as high as the fuel-only control system.<br />

• More expensive than fuel-only control system.<br />

95


Tech Notes<br />

Section<br />

2<br />

Sheet C-9<br />

Nozzle Mixing Burners<br />

Excess Air Operation With Throttled Impulse (Adjustable Bleed) To<br />

Proportionator<br />

Cross<br />

Connection<br />

Optional Manual<br />

Trimming Valve<br />

Small Limiting Orifice<br />

Or Needle Valve<br />

Motor-Driven<br />

Bleed Valve<br />

Tee<br />

FUEL<br />

Proportionator<br />

Limiting<br />

Orifice<br />

Operating Principle A variation on the cross-connected proportionator system (see page 89).<br />

There is no control valve in the combustion air line. Instead, the firing rate<br />

control valve is placed in the bleed leg of a tee in the impulse line to the<br />

proportionator, and the linkage is adjusted to make the bleed valve reverse-acting;<br />

i.e., the valve closes when the temperature controller calls<br />

for heat. The limiting orifice or needle valve in the loading line is closed<br />

partway to restrict air flow through the impulse line—this insures that the<br />

motor-driven bleed valve is able to control over its entire range.<br />

Advantage<br />

• Of all the excess air control systems, this one probably has the best<br />

combination of sensitivity and a wide operating range.<br />

Disadvantages<br />

• Like fixed bleed orifice sytems, this control system can be upset by accumulations<br />

of airborne dirtand unauthorized tampering.<br />

• The only valve proven suitable as a motor-driven bleed valve is the North<br />

American 3/8" Adjustable Port Valve. Even 3/8" motorized oil valves—<br />

whether <strong>Eclipse</strong>’s, Hauck’s or North American’s—lack the sensitivity for<br />

this application.<br />

96


Tech Notes<br />

Section 2<br />

Sheet C-10<br />

Backpressure Compensation System<br />

For Cross-Connected Nozzle Mix Burner Systems<br />

Purpose:<br />

Method:<br />

To maintain a constant burner firing rate and fuel-air ratio regardless of<br />

random fluctuations in combustion chamber backpressure.<br />

Hold a constant differential pressure between point “B” (upstream of main<br />

air control valve) and point “D” (combustion chamber), even if pressure at<br />

point “D” varies. This is done by putting two air control valves in series, one<br />

responding to the temperature controller, the other to the differential pressure<br />

between points “B” and “D”.<br />

Power<br />

Supply<br />

∆P Transducer<br />

Chamber Pressure Impulse Line<br />

Pressure<br />

Controller<br />

PC<br />

TC<br />

Temperature<br />

Controller<br />

A<br />

B<br />

C<br />

D<br />

Blower<br />

Motorized<br />

Trim Valve<br />

Main Air<br />

Control Valve<br />

Example:<br />

ABP<br />

ALO<br />

Assume backpressure will vary uncontrollably between 0 & 10" w.c.<br />

Assume burner ∆P is 10" w.c. @ high fire, 1" w.c. @ low fire.<br />

Main air control valve ∆P is 5" w.c. @ high fire.<br />

Blower develops 30" w.c. static pressure.<br />

Static Pressures, Differential Pressures, Must Be<br />

Firing Back "W.C. "W.C. Constant<br />

Rate Press A B C D A-B B-C C-D A-C A-D B-D<br />

0" w.c. 30 15 10 0 15 5 10 20 30 15<br />

High 5" w.c. 30 20 15 5 10 5 10 15 25 15<br />

10" w.c. 30 25 20 10 5 5 10 10 20 15<br />

0" w.c. 30 15 1 0 15 14 1 29 30 15<br />

Low 5" w.c. 30 20 6 5 10 14 1 24 25 15<br />

10" w.c. 30 25 11 10 5 14 1 19 20 15<br />

97


Tech Notes<br />

Section 2<br />

Sheet E-2<br />

Conversion Factors For Emissions Calculations<br />

Preparing emissions estimates for environmental authorities can be difficult<br />

because they often ask for emissions expressed in units not available<br />

through existing data. Here are the conversion procedures for some<br />

of the more commonly-used measurement systems:<br />

1) ppm at 3% O 2<br />

(15% excess air) in dry flue gases to lb./million Btu<br />

(ppm)(F3) = lb./million Btu<br />

Values of multiplier F3 for various fuels and emissions<br />

NOX Aldehydes, Unburned Hydrocarbons,<br />

Measured Measured As Measured As:<br />

Various Fuels As NO 2<br />

CO Formaldehyde Methane Propane CO2 SO2<br />

Birmingham Nat. Gas* .001187 .000722 .000781 .000416 .001147 .001147 .001672<br />

Propane .001185 .000721 .000780 .000415 .001146 .001146 .001669<br />

Butane .001212 .000735 .000798 .000424 .001172 .001172 .001707<br />

#2 Oil** .001317 .000801 .000867 .000461 .001273 .001273 .001854<br />

2) lb./million Btu to ppm at 3% O 2<br />

(15% excess air) in dry flue<br />

gases<br />

(lb./million Btu)(f3) = ppm @ 3% O2, dry<br />

Values of multiplier f3 for various fuels and emissions<br />

NOX Aldehydes, Unburned Hydrocarbons,<br />

Measured Measured As Measured As:<br />

Various Fuels As NO 2<br />

CO Formaldehyde Methane Propane CO2 SO2<br />

Birmingham Nat. Gas* 842 1385 1280 2404 872 872 598<br />

Propane 844 1387 1282 2410 873 873 599<br />

Butane 825 1361 1253 2358 853 853 586<br />

#2 Oil** 759 1248 1153 2169 786 786 539<br />

3) ppm at 0% O 2<br />

in dry flue gases to lb./million Btu<br />

(ppm)(F0) = lb./million Btu<br />

Values of multiplier F0 for various fuels and emissions<br />

NOX Aldehydes, Unburned Hydrocarbons,<br />

Measured Measured As Measured As:<br />

Various Fuels As NO 2<br />

CO Formaldehyde Methane Propane CO2 SO2<br />

Birmingham Nat. Gas* .001017 .000617 .00067 .000356 .000983 .000983 .001432<br />

Propane .001018 .000619 .00067 .000356 .000984 .000984 .001434<br />

Butane .001042 .000634 .000686 .000365 .001007 .001007 .001468<br />

#2 Oil** .001133 .00069 .000746 .000397 .001096 .001096 .001596<br />

* 1002 Gross Btu/cubic foot, 8.48 Cubic feet dry flue products at stoichiometric ratio.<br />

** Calculated as heptadecane, C 17<br />

H 36<br />

, 19,270 Gross Btu/lb.<br />

(continued on page 99)<br />

98


4) lb./million Btu to ppm at 0% O2 in dry flue gases<br />

(lb./million Btu)(f0) = ppm @ 0% O2, dry<br />

Values of multiplier f0 for various fuels and emissions<br />

NOX Aldehydes, Unburned Hydrocarbons,<br />

Measured Measured As Measured As:<br />

Various Fuels As NO 2<br />

CO Formaldehyde Methane Propane CO2 SO2<br />

Birmingham Nat. Gas* 983 1621 1493 2809 1017 1017 698<br />

Propane 982 1616 1493 2809 1016 1016 697<br />

Butane 960 1577 1458 2740 983 983 681<br />

#2 Oil** 883 1449 1340 2519 912 912 627<br />

5) ppm at 3% O 2<br />

or 0% O 2<br />

in dry flue gases to lb./year<br />

First, calculate lb./million Btu with Step 1 or 3 on the first page.<br />

Then convert to lbs./year with the following relationship:<br />

(lb./million Btu) (Maximum Burner Input, million Btu/hr.) (operating<br />

hrs./year) = lb./year<br />

6) lb/year to ppm at 3% O 2<br />

or 0% O 2<br />

in dry flue gases<br />

lb./year ÷ operating hrs./year ÷ Maximum Burner Input, million<br />

Btu/hr. = lb./million Btu<br />

Convert lb./million Btu to ppm with Step 2 or 4.<br />

7) ppm at 3% O 2<br />

or 0% O 2<br />

in dry flue gases to gm/Nm 3<br />

(ppm)(G) = gm/Nm 3<br />

Values of multiplier G for various emissions<br />

NOX Aldehydes, Unburned Hydrocarbons,<br />

Measured Measured As Measured As:<br />

Emission As NO 2<br />

CO Formaldehyde Methane Propane CO2 SO2<br />

G .002031 .001235 .001341 .000716 .001969 .001965 .002861<br />

8) gm/Nm 3 to ppm at 3% O 2<br />

or 0% O 2<br />

in dry flue gases<br />

(gm/Nm 3 )(g) = ppm<br />

Values of multiplier g for various emissions<br />

NOX Aldehydes, Unburned Hydrocarbons,<br />

Measured Measured As Measured As:<br />

Emission As NO 2<br />

CO Formaldehyde Methane Propane CO2 SO2<br />

g 492.4 809.7 745.7 1396.6 507.9 508.9 349.5<br />

* 1002 Gross Btu/cubic foot, 8.48 Cubic feet dry flue products at stoichiometric ratio.<br />

** Calculated as heptadecane, C 17<br />

H 36<br />

, 19,270 Gross Btu/lb.<br />

99


Tech Notes<br />

Section 2<br />

Sheet E-3<br />

Correcting Emissions Readings to 3% O 2<br />

or 11% O 2<br />

Basis<br />

Many environmental authorities, including<br />

the U.S. EPA and several European agencies,<br />

require that gaseous pollutants, like<br />

NO x<br />

and CO, be reported in ppm (parts per<br />

million by volume) corrected to a based of<br />

3% excess O 2<br />

—or 15% excess air—in the flue<br />

gases. Japan, on the other hand, customarily<br />

uses a base of 11% O 2<br />

.<br />

Emission readings taken at different oxygen<br />

levels can be easily converted to a standard<br />

base using a multiplier:<br />

ppm corrected<br />

= ppm test<br />

x multiplier<br />

The multiplier is calculated from the oxygen<br />

reading taken during the test and the<br />

base oxygen reading required by the regulation:<br />

21 - % O<br />

multiplier =<br />

2<br />

base<br />

21 - % O 2<br />

test<br />

For your convenience, a table of multipliers<br />

is presented to the right.<br />

Multiplier For:<br />

%O 2<br />

3%O 2<br />

11%O 2<br />

0 .86 .48<br />

1 .9 .5<br />

2 .95 .53<br />

3 1 .56<br />

4 1.06 .59<br />

5 1.13 .63<br />

6 1.2 .67<br />

7 1.29 .71<br />

8 1.38 .77<br />

9 1.5 .83<br />

10 1.64 .91<br />

11 1.8 1<br />

12 2.0 1.11<br />

13 2.25 1.25<br />

14 2.57 1.43<br />

15 3.0 1.67<br />

16 3.6 2<br />

17 4.5 2.5<br />

18 6 3.33<br />

18.5 7.2 4<br />

19 9 5<br />

19.5 12 6.67<br />

20 18 10<br />

20.2 22.5 12.5<br />

20.4 30 16.67<br />

20.6 45 25<br />

20.8 90 50<br />

100


Tech Notes<br />

Section 2<br />

Sheet H-1<br />

Recuperator Efficiency: Fuel Savings & Effectiveness<br />

Percent Fuel Savings<br />

There are two commonly-used methods for figuring recuperator efficiency:<br />

percent fuel savings and percent effectiveness.<br />

Percent savings is calculated by this relationship:<br />

( )<br />

% Available Heat Less Recuperator<br />

% Savings= x100<br />

% Available Heat With Recuperator<br />

Because available heat figures vary with the composition of the fuel and<br />

the amount of excess air, one supplier’s fuel savings data may be different<br />

from another’s by one or two percentage points. More often than not, the<br />

tables will be based on natural gas at 10% excess air.<br />

Percent Effectiveness<br />

Percent effectiveness measures the inherent heat transfer capabilities of<br />

the recuperator without regard to fuel composition or fuel/air ratio:<br />

(<br />

<strong>Combustion</strong> Air Temp <strong>Combustion</strong> Air Temp<br />

)<br />

Flue Gas Temp<br />

Entering Exchanger Entering Exchanger<br />

% Effectiveness= Leaving Exchanger - Entering Exchanger<br />

x100<br />

<strong>Combustion</strong> Air Temp<br />

-<br />

Basically, it compares the actual rise in combustion air temperature to the<br />

maximum that could possibly be achieved (combustion air preheated to<br />

the same temperature as the incoming flue gases). Since the maximum is<br />

unattainable, effectiveness is always less than 100%.<br />

The graph on page 102 relates combustion air temperature to flue gas temperature<br />

and recuperator effectiveness.<br />

To predict air preheat, read up from the flue gas temperature to the line<br />

representing the effectiveness of the exchanger, then left to air preheat.<br />

101


Figure 1:<br />

Heat Exchanger<br />

Effectiveness Curves<br />

Based on <strong>Combustion</strong> Air<br />

Entering at 60° F.<br />

<strong>Combustion</strong> Air Preheat, °F<br />

1500<br />

1000<br />

500<br />

% Effectiveness<br />

90% 80% 70% 60% 50%<br />

40%<br />

30%<br />

20%<br />

10%<br />

0<br />

0<br />

500 1000 1500 2000 2500<br />

Flue Gas Temp. Entering Exchanger, °F<br />

3000<br />

102


TechNotes<br />

Section<br />

NFPA Requirements for Gas Burner Systems<br />

Reference: NFPA 86 – Ovens and Furnaces, 1999 Edition<br />

2<br />

Sheet R-1<br />

10/99<br />

General Remarks:<br />

The schematic and notes on the following page condense the gas burner system requirements of National Fire<br />

Protection Association (NFPA) 86 into an easy-to-use format. They should provide most of the engineering<br />

information required to lay out burner air and gas trains. Numbers in parentheses refer to the applicable<br />

paragraphs of the standard.<br />

In addition to the requirements shown on the schematic, NFPA 86 also requires that the combustion control<br />

system have the following features:<br />

1) Safety control circuits must be single phase, one side grounded, with all breaking contacts in the<br />

“hot”, ungrounded, circuit protected line not exceeding 120V. (5-2.11)<br />

2) Prior to energizing spark or lighting pilot, a timed pre-purge of at least four standard cubic feet of air<br />

per cubic foot of heating chamber volume is required (5-4.1).<br />

a) Airflow must be proven & maintained during the purge.<br />

b) Safety shutoff valve must be closed and when the chamber input exceeds 400,000 Btu/hr<br />

(117 kW) it must be proved and interlocked.<br />

3) Exceptions to a re-purge are allowed for momentary shutdowns if (any one): (5-4.1.5)<br />

a) Each burner is supervised, each has safety shutoff valves, and the fuel accumulation in the<br />

heating chamber can not exceed 25% of lower explosive limit.<br />

b) Each burner is supervised, each has safety shutoff valves, and at least one burner remains on in<br />

same chamber.<br />

c) The chamber temperature is more than 1400°F (760°C).<br />

4) Exception to the pre-purge is allowed for explosion resistant radiant tube systems. (5-4.1.4)<br />

5) All safety interlocks must be connected in series ahead of the safety shutoff valves. Interposing<br />

relays are allowed when the required load exceeds the rating of available safety contacts or where<br />

safety logic requires separate inputs, AND the contact goes to a safe state on loss of power, AND<br />

each relay serves only one interlock. (5-2.7)<br />

6) Any motor starters required for combustion must be interlocked into the safety circuit. (5-6.3)<br />

7) A listed manual reset excess temperature limit control is required except where the system design<br />

can not exceed the maximum safe temperature. (5-16)<br />

8) The user has the responsibility for establishing a program of inspection, testing, and maintenance<br />

with documentation performed at least annually. (5-2.5.2)<br />

The scope of NFPA 86 extends to all the factors involved in the safe operation of ovens and furnaces, and<br />

anyone designing or building them should be familiar with the entire standard. Copies can be purchased from:<br />

The National Fire Protection Association<br />

1 Batterymarch Park<br />

Quincy, MA 02269-9101<br />

800-344-3555<br />

508-895-8300 if outside U.S.<br />

www.nfpa.org


5<br />

Piping Schematic<br />

Tech Note<br />

Section 2<br />

Sheet R-1<br />

Pg. 2<br />

10/99<br />

6<br />

1<br />

Gas<br />

2<br />

3<br />

4<br />

12<br />

7<br />

10<br />

8<br />

8<br />

9 9<br />

13<br />

Gas Flow<br />

Controls<br />

15<br />

16<br />

11<br />

Air Flow<br />

Controls<br />

14<br />

Item<br />

Description<br />

1 Facility to install drip leg or sediment trap for each fuel supply line. Must be a minimum of 3” long.<br />

2 Individual manual shutoff valve to each piece of equipment. 1/4 turn valves recommended.<br />

3 Filter or strainer to protect downstream safety shutoff valves.<br />

4 Pressure regulator required wherever plant supply pressure exceeds level required for proper burner function<br />

or is subject to excessive fluctuations.<br />

5 Regulator vent to safe location outside the building with water protection & bug screen.<br />

• Vent piping can terminate inside the building when gas is lighter than air, vent contains restricted orifice, and<br />

there is sufficient building ventilation.<br />

• Vent piping not required for lighter than air gases at less than 1 psi, vent contains restricted orifice, and<br />

there is sufficient ventilation. Vent piping not required for ratio regulator.<br />

6 Gas pressure switches may be vented to regulator vent lines if backloading won’t occur.<br />

7 Relief valve required if gas pressure at regulator inlet exceeds rating of safety shutoff valve.<br />

8 Two listed* safety shutoff valves required for each main and pilot gas burner system. A single valve can be<br />

used for explosion resistant radiant tube systems.<br />

9 Position indication (not proof-of-closure) required on safety shutoff valves to burners or pilots in excess of<br />

150,000 Btu/hr (44 kW).<br />

10 For capacities over 400,000 Btu/hr (117 kW) at least one safety shutoff valve must have a closed position<br />

switch to interlock with the pre-purge.<br />

11 Permanent and ready means for checking leak tightness of safety shutoff valves.<br />

12 Listed* low gas pressure switch (normally open, makes on pressure rise).<br />

13 Listed* high gas pressure switch (normally closed, breaks on pressure rise).<br />

14 Flame Supervision:<br />

• Piloted burners<br />

- Continuous pilot: Two flame sensors must be used, one for the pilot flame and one for the main burner flame.<br />

- Intermittant pilot: Can use a single flame sensor for self-piloted burners (from same port as main, or<br />

has a common flame base and has a common flame envelope with the main flame).<br />

- Interrupted pilot: A single flame sensor is allowed.<br />

• Line, Pipe, Radiant burners<br />

- If the burners are adjacent and light safely and reliably from burner to burner, then a single sensor is<br />

allowed if it is located at the farthest end from the source of ignition.<br />

15 Spark Ignition:<br />

• Except for explosion resistant radiant tube systems, direct spark igniters must be shut off after main burner<br />

trial-for-ignition.<br />

• If a burner must be ignited at reduced input (forced low fire start), an ignition interlock must be provided to<br />

prove control valve position.<br />

• Trial-for-ignition of the pilot or main must not exceed 15 seconds. An exception is allowed where fuel<br />

accumulation in the heating chamber can not exceed 25% of the lower explosive limit and the authority<br />

having jurisdiction approves a written request for extended time.<br />

16 Listed* combustion air flow or pressure proving switch (normally open, makes on pressure rise).<br />

Reference<br />

Paragraph<br />

4-2.4.4<br />

4-2.4.1<br />

4-2.4.3<br />

4-2.4.5.1<br />

4-2.4.5.2<br />

4-2.4.5.5<br />

5-7.1.7<br />

5-7.2.1<br />

5-7.1.8<br />

5-7.2.2<br />

5-7.2.3<br />

5-8.1<br />

5-8.2<br />

5-9<br />

5-9.2.1<br />

5-9.2.2<br />

5-15.2<br />

5-15.1<br />

5-4.2.2<br />

5-6.4<br />

*Underwriters Laboratory (UL) listing is accepted throughout the United States. Listed products can be found in the UL Gas and Oil<br />

Equipment Directory, available from Underwriters Laboratory, Inc. Publications Stock, 333 Pfingsten Road, Northbrook, IL 60062-2096.<br />

Factory Mutual (FM) listed equipment is also acceptable in most jurisdictions and can be found in the FM Approval <strong>Guide</strong> available from<br />

Factory Mutual Research Corporation, 115 Boston-Providence Turnpike, Norwood, MA 02062.


Tech Notes<br />

Section 2<br />

Sheet R-2<br />

IRI Requirements For Gas Burner Systems<br />

General Remarks:<br />

The schematic and notes on the following pages condense the gas<br />

burner system requirements of Industrial Risk Insurers (IRI) into an<br />

easy-to-use format. They should provide most of the engineering<br />

information required to lay out burner air and gas trains. In general,<br />

IRI follows the requirements of National Fire Protection Association<br />

(NFPA) 86, but adds a vent valve.<br />

In addition to the requirements shown on the schematic, IRI also<br />

requires that the combustion control system have the following<br />

features:<br />

1) Forced low fire lightoff of burners that cannot be safely ignited at<br />

all firing rates.<br />

2) Prior to energizing spark or lighting pilot, a timed prepurge of at<br />

least four standard cubic feet of air per cubic foot of furnace or<br />

oven volume. Purging of radiant tubes, however, is not required.<br />

3) Except for burners with inputs not exceeding 150,000 Btu/hr<br />

(44kW) and radiant tube burners, direct spark igniters must be<br />

shut off after main burner trial-for-ignition.<br />

4) Trial-for-ignition of pilots or main burners must not exceed 15<br />

seconds.<br />

5) Automatic relight (recycling) after unintentional flame failure is<br />

prohibited.<br />

6) Safety control circuits must be single phase, one side grounded,<br />

with all breaking contacts in the “hot”, ungrounded fuse (or circuit<br />

breaker) protected line. Maximum line voltage is 120V.<br />

Piping and electrical schematics of the proposed system must be<br />

submitted to the local IRI office in whose jurisdiction the system will be<br />

located. Schematics must be approved and stamped before<br />

construction begins.<br />

105


Piping Schematic<br />

3<br />

3 3 3<br />

4<br />

Gas<br />

1<br />

2<br />

9<br />

5<br />

7 15 7<br />

6<br />

10<br />

Gas Flow<br />

Controls<br />

12<br />

8<br />

13<br />

14<br />

Air Flow<br />

Controls<br />

11<br />

106


Item<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

Description<br />

Individual manual shutoff valve to each piece of equipment. 1/4 turn valves<br />

recommended.<br />

Pressure regulator required wherever plant supply pressure fluctuates or<br />

exceeds level required for proper burner function.<br />

Regulator vent with water protection & bug screen (not required for lighterthan-air<br />

gases at 1 psig [6.9 kPa] or less).<br />

Gas pressure switches may be vented to regulator vent lines if backloading<br />

won’t occur.<br />

Relief valve required if gas pressure at regulator inlet exceeds rating of safety<br />

shutoff valve.<br />

Position indication (not proof-of-closure) required on safety valves to main<br />

burners larger than 150,000 Btu/hr (44 kW).<br />

Listed* safety shutoff valve(s). Two required over 400,000 Btu/hr (117 kW).<br />

Also applies to pilot gas system. Secondary shutoff valve can be a solenoid<br />

valve if it has position indication and a closing spring with at least 5 lb. closing<br />

force.<br />

Test cock(s) and downstream shutoff valve for checking leak tightness of<br />

safety shutoff valves.<br />

9 Listed* low gas pressure switch (normally open, makes on pressure rise).<br />

10 Listed* high gas pressure switch (normally closed, breaks on pressure rise).<br />

11<br />

12<br />

Listed* combustion safeguard. Heat-actuated (thermocouple) safeguards or<br />

safety pilots permitted up to 150,000 Btu/hr (44 kW). Above 150,000 Btu/hr,<br />

must be flame rod or scanner system with a nominal flame response of four<br />

seconds or less.<br />

Ignition by manual torch, direct spark or constant, intermittent or interrupted<br />

pilot.<br />

13 Where required to screen out solid matter, blower inlet filter is required.<br />

14<br />

15<br />

Listed* combustion air flow or pressure proving switch (normally open, makes<br />

on pressure rise).<br />

Listed* electrically operated, normally open vent valve with vent pipe run to a<br />

safe outside location. Valve port area must be equal to the vent line cross<br />

section. Vent valve and vent line pipe size are related to main fuel line size as<br />

follows:<br />

Fuel line size,<br />

inches (mm)<br />

Up to 3/4 (20)<br />

3/4 (20) to 1-1/2 (38)<br />

2 (50)<br />

2-1/2 (65) to 3 (75)<br />

4 (100)<br />

6 (150)<br />

8 (200)<br />

Greater than 8 (200)<br />

Minimum vent line size,<br />

inches (mm)<br />

Same as fuel line<br />

3/4 (20)<br />

1 (25)<br />

1-1/4 (32)<br />

2 (50)<br />

2-1/2 (65)<br />

3-1/2 (90)<br />

At least 15% of the cross sectional<br />

area of the main fuel line.<br />

If vent line exceeds 50 feet (15.24 meters) or has an unusual number of<br />

fittings, vent line size may have to be increased. Vent lines should not be<br />

manifolded together.<br />

* Underwriters Laboratory (UL) listing is accepted throughout the United States. Listed products<br />

can be found in the UL Gas and Oil Equipment Directory, available from Underwriters<br />

Laboratory, Inc., Publications Stock, 333 Pfingsten Road, Northbrook, IL 60062-2096.<br />

107


Tech Notes<br />

Section 3<br />

Sheet I-1<br />

Heating Values of Flammable Liquids<br />

General Remarks:<br />

Designers of fume incinerators are sometimes concerned about the heating<br />

value of the solvents being incinerated. The table below lists approximate<br />

heating values of various commercial solvents and flammable liquids,<br />

calculated from the references at the bottom of page 109.<br />

Gross Heating Value<br />

Liquid Btu/U.S. Gallon Btu/lb.<br />

Acetone 87,360 13,040<br />

n-Amyl Acetate 105,670 14,410<br />

sec-Amyl Acetate 105,670 14,410<br />

Amyl Alcohol 110,290 16,220<br />

Benzene (Benzol) 132,150 18,100<br />

n-Butyl Acetate 97,480 13,250<br />

n-Butyl Alcohol 104,760 15,640<br />

sec-Butyl Alcohol 104,760 15,640<br />

Butyl Cellosolve (Glycol Monobutyl Ether) 105,630 14,040<br />

Butyl Propionate 106,060 14,130<br />

Camphor 143,010 17,150<br />

Carbon Disulfide 61,210 5,650<br />

Cellosolve (Ethylene Glycol Monoethyl) 91,960 11,790<br />

Cellosolve Acetate (Ethylene Glycol Monoethyl Ether Acetate)<br />

87,140 10,720<br />

Chlorobenzene-mono 105,420 11,490<br />

m- or p-Cresol 122,870 14,730<br />

Cyclohexane 130,300 20,050<br />

Cyclohexanone 117,900 15,710<br />

p-Cymene 146,000 19,450<br />

Denatured Alcohol 68,670 * 9,930 *<br />

Dibutyl Phthalate 109,630 13,150<br />

o-Dichlorobenzene 86,330 7,960<br />

N-Dimethyl Formamide 85,340 11,370<br />

p-Dioxane (Diethylene Dioxide) 89,380 10,720<br />

Ethyl Acetate 82,420 10,990<br />

Ethyl Alcohol 84,250 12,770<br />

Ethyl Ether 93,730 16,060<br />

(continued on page 109)<br />

* Approximate; liquid is a mixture whose composition may vary.<br />

108


Gross Heating Value<br />

Liquid Btu/U.S. Gallon Btu/lb.<br />

Ethyl Lactate 78,990 9,470<br />

Ethyl Methyl Ether 86,700 14,850<br />

Ethyl Propionate 90,970 12,290<br />

Gasoline 129,000 * 21,050 *<br />

Hexane 113,850 20,700<br />

Kerosene (Fuel Oil #1) 131,000–137,000 * 19,700–19,900 *<br />

Methyl Acetate 71,610 9,300<br />

Methyl Alcohol 63,490 9,620<br />

Methyl Carbitol (Diethylene Glycol Methyl Ether) 89,650 10,340<br />

Methyl Cellosolve 81,190 10,080<br />

Methyl Cellosolve Acetate 79,530 9,470<br />

Methyl Ethyl Kerosene (2-Butanone) 97,710 14,580<br />

Methyl Lactate 80,160 8,810<br />

Nitrobenzene 90,170 9,010<br />

Nitroethane 50,190 5,470<br />

Nitromethane 17,010 1,850<br />

1-Nitropropane 66,290 7,950<br />

2-Nitropropane 65,760 7,950<br />

Propyl Acetate 85,770 11,430<br />

Propyl Alcohol 96,560 14,410<br />

iso-Propyl Alcohol 93,160 14,120<br />

n-Propyl Ether 109,280 17,470<br />

Pyridine 122,210 14,920<br />

Toluene 131,970 18,330<br />

Turpentine 163,500 * 20,000 *<br />

Vinyl Acetate 71,610 9,540<br />

o-Xylene 135,870 18,610<br />

* Approximate; liquid is a mixture whose composition may vary.<br />

References<br />

NFPA 325M-1984, Fire Hazard Properties of Flammable Liquids, Gases, and<br />

Volatile Solids.<br />

Handbook of Chemistry and Physics, 40th Edition, 1959.<br />

109


Tech Notes<br />

Section 3<br />

Sheet L-1<br />

Immersion Tube Sizing<br />

General Remarks<br />

In 1944, AGA Testing Laboratories published Research Bulletin No. 24, “Research<br />

in Fundamentals of Immersion Tube Heating With Gas”. This landmark<br />

paper established beyond a doubt that the thermal efficiency of immersion<br />

tubes was strictly a function of their length—tube diameter had<br />

no effect. From their tests, AGA also developed an empirical relationship<br />

between thermal efficiency, effective tube length and burner firing rate for<br />

immersion tubes in boiling water:<br />

E =20log L2<br />

R +71<br />

where E = thermal efficiency, %<br />

L = effective tube length, ft.<br />

R = burner input rate, 1000’s of Btu/hr<br />

Effective tube length is the total centerline length of the tube immersed in<br />

water, including elbows, plus 1.1 feet for each elbow or return bend.<br />

This equation is the basis of the tube sizing charts in <strong>Eclipse</strong> literature.<br />

The fact that tube diameter had no effect on efficiency came as a shock to<br />

many people, but it makes sense when you think about it. Increasing the<br />

tube diameter increases the heat transfer surface, but it also produces<br />

lower gas velocity inside the tube, thus promoting a thicker gas boundary<br />

layer along the inside walls of the tube. This leads to poorer heat transfer.<br />

AGA’s studies determined that the loss in convection heat transfer almost<br />

exactly offset the gain in transfer surface.<br />

Over 40 years have passed since this paper was published. Far more sophisticated<br />

heat transfer equations have been developed, and we now have<br />

computers to perform the calculations, yet no one has been able to make a<br />

significant improvement to the speed and accuracy of AGA’s equation.<br />

The curves in the graph on page 111 were calculated from the AGA equation.<br />

110


Figure 1:<br />

Immersion Tube<br />

Efficiency vs. Length<br />

Effective Tube Length, In Feet<br />

150<br />

100<br />

50<br />

%<br />

Efficiency<br />

60<br />

65<br />

70<br />

75<br />

80<br />

Effective<br />

Length, ft.<br />

.47r<br />

.771r<br />

1.273r<br />

2.113r<br />

3.523r<br />

where r =<br />

heat<br />

transferred<br />

to the tank,<br />

Btu/hr X 1000<br />

60%<br />

75%<br />

70%<br />

65%<br />

80%<br />

Efficiency<br />

0<br />

0 1 2 3 4 5<br />

Heat Transfered To Tank, Btu/hr. (In Million’s)<br />

Burner Design<br />

If heat transfer requirements don’t determine immersion tube diameters,<br />

what does?<br />

Burner design does—more specifically, the burner’s ability to fire against<br />

the back pressure of the immersion tube.<br />

Atmospheric burners operate at very low mixture pressures and depend on<br />

natural draft to pull secondary air into the tube. Consequently, the firing<br />

rate has to be kept low to avoid hot gases backing out of the tube around<br />

the burner head.<br />

Sealed, forced draft burners operate at higher pressures, so they can be<br />

used to push tubes to higher firing rates. The operating pressures of the<br />

combustion system determine just how hard the tube can be fired. That’s<br />

why Immerso-Jet small bore burner systems, with their high operating<br />

pressures, can operate satisfactorily at higher inputs per sq. in. of tube<br />

cross-section than packaged IP burners. Figure 2 lists approximate maximum<br />

firing rates in Btu/sq. in. of tube cross-section for various types of<br />

burner systems.<br />

Figure 2:<br />

Burner Design vs.<br />

Firing Rate<br />

Burner System Type<br />

Max. Firing rate,<br />

Btu/Sq. In. of<br />

Tube Cross-Section<br />

Atmospheric, natural draft, 7' high stack 7000 - 8000<br />

Atmospheric with eductor, 0.2" w.c. draft 15,000 - 18,000<br />

Atmospheric with eductor, 0.4" w.c. draft 21,000 - 25,000<br />

Packaged forced draft, low pressure fan 15,000 - 35,000<br />

Sealed nozzle-mix, high pressure blower 30,000 - 85,000<br />

Small bore nozzle-mix 80,000 - 180,000<br />

111


Tech Notes<br />

Section 3<br />

Sheet L-2<br />

Submerged <strong>Combustion</strong><br />

Process Description:<br />

Combustor Description:<br />

Submerged combustion is the practice of heating liquids by bubbling a<br />

burner’s hot combustion products through them. The process, which originated<br />

over 100 years ago, was first used to generate low pressure steam,<br />

but later became popular as a way to concentrate chemical solutions by<br />

evaporation. It is also viewed as an efficient way to heat water solutions to<br />

moderate temperatures, although its success has been somewhat spotty in<br />

this application. It agitates the bath and causes the water to become more<br />

acidic as CO 2<br />

in the combustion products dissolves in the bath. Depending<br />

on the process, these features can be either advantages or drawbacks.<br />

Over the years a variety of designs have evolved, but most modern units<br />

are some version of either the single-tube or manifold design.<br />

Single Tube<br />

Combustor<br />

Manifold Type Combustor<br />

Single-tube units have a relatively small coverage area, so their use is restricted<br />

to tanks with fairly confined dimensions. On the other hand, manifold-type<br />

combustors can be custom-designed to fit tanks of any reasonable<br />

dimensions without the need to locate the combustor near the center<br />

of the tank. This permits submerged combustors to be used on dip tanks<br />

and other jobs where the tank volume must be free of obstructions.<br />

System Efficiency:<br />

Submerged combustion gets its reputation for high efficiency from the fact<br />

that the combustion gases come into direct contact with the liquid, creating<br />

excellent heat transfer. Below about 140° F, all the water vapor in the<br />

combustion products condenses into the bath, releasing its latent heat of<br />

vaporization and producing thermal efficiencies of 90-95%, based on the<br />

higher heating value of the fuel.<br />

112


Above 140° F water begins to vaporize, and the efficiency drops quickly.<br />

One unusual effect of bubbling combustion products through water is that<br />

it lowers the water’s boiling point. For natural gas burned at sea level, the<br />

boiling point is about 190° F; for propane, it is about 180° F. Higher altitudes<br />

will depress the boiling point even further. If the purpose of the system<br />

is to boil water away, this is an asset, but if its purpose is only heating<br />

water, process thermal efficiency is zero at the boiling point.<br />

From the efficiency curve below, you can see that at 165° F liquid temper–<br />

ature, a submerged combustion system has a thermal efficiency of 70%,<br />

equivalent to a conventional immersion tube system. At higher temperatures,<br />

it is less efficient. To compete with an 80% efficient immersion tube<br />

such as the IJ Small Bore system, a submerged combustion system would<br />

have to operate at 155° F or less.<br />

Figure 1:<br />

Thermal Efficiency<br />

of a Submerged<br />

<strong>Combustion</strong> System<br />

Burning Natural Gas at Sea Level<br />

% Thermal Efficiency<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

60 80 100 120 140 160 180 200<br />

Water Temperature, °F<br />

System Design:<br />

Tank Depth:<br />

Combustor Tube:<br />

Custom-built submerged combustion units are available, although many<br />

successful jobs have been done with standard burner equipment.<br />

The tank must be deep enough to provide at least 16-20" of bubble path<br />

through the liquid. Shallower tanks will not allow time for optimum heat<br />

transfer. Beyond 20", the improvement in heat transfer is negligible, but<br />

the tank may have to be deeper simply to accommodate the length of the<br />

combustion tube, which has to be large enough to allow completion of the<br />

flame.<br />

All portions of the tube immersed in the tank can be bare metal. Customary<br />

practice is to locate the burner mounting flange within a few inches of the<br />

liquid level so the entire tube can be left bare. Be sure to choose an alloy<br />

that won’t corrode in the solution.<br />

113


Distribution Tubes:<br />

Single-tube combustors are often provided with a perforated conical skirt<br />

on the bottom to aid in breaking up and distributing the flue gases. Manifold<br />

systems are subject to a lot of design variations, but a few general<br />

rules apply:<br />

• Large tanks will require distribution pipes to carry the combustion products<br />

throughout the tank. Don’t depend on a single combustor isolated<br />

in one corner to provide uniform tank heating.<br />

• Gas distribution openings in the pipe manifolds are most commonly<br />

single rows of drilled holes, although slot openings have also been used.<br />

There aren’t any universally accepted rules on hole sizing, but anything<br />

smaller than 1/4" diameter is probably a waste of effort.<br />

• The effect of hole location (facing up, down or sideways) on heat transfer<br />

is probably negligible. However, facing the holes downward aids draining<br />

the water out of the manifold when the system is started up. Be<br />

sure to provide a couple of inches clearance between the manifolds and<br />

the tank floor (more, if you expect sludge or debris to accumulate).<br />

• Total area of the distribution holes is, again, a matter of individual<br />

preference, but one square inch of opening for every 50-60,000 Btu/hr<br />

firing rate gives a good compromise between even distribution and low<br />

pressure drops.<br />

• Design the manifold so it is free to expand without constraint. Otherwise,<br />

broken welds and leaks are sure to result.<br />

• When filled with combustion gases, the distribution tube will become<br />

buoyant and try to float. Long, cantilevered tubes will vibrate and thrash<br />

around the tank. Be sure they’re properly anchored to the tank bottom.<br />

Supply Pressures:<br />

Burner:<br />

Moisture Protection:<br />

Operating Sequence:<br />

Safety:<br />

Remember that the head pressure of the liquid in the tank has to be added<br />

to all the normal air and gas supply pressures.<br />

Nozzle mix burners are strongly preferred; the flashback tendencies of premix<br />

burners can be aggravated by fluctuations in system back pressure.<br />

Flame length should be no more than 1/2 to 2/3 the length of the combustor<br />

tube, or the flame is apt to be quenched, forming CO and aldehydes.<br />

High levels of humidity are normal around tanks heated with submerged<br />

combustors. Condensation will tend to collect on spark igniters, flame rods<br />

and scanner cells. Provide them with air purging if this is expected to be a<br />

problem. Use weather-resistant boots on electrode connectors, and all electrical<br />

wiring and control boxes should be selected or situated to exclude<br />

moisture. <strong>Combustion</strong> air blowers should be located where they won’t draw<br />

in excessively humid air.<br />

This will be dictated in part by safety requirements, but all systems should<br />

have a prepurge to remove the water from the combustor tube and distribution<br />

manifold. Regardless of burner capacity, low fire lightoff is strongly<br />

recommended.<br />

Depending on the tank volume and the area over which the combustion<br />

gases are bubbled, the liquid surface will be agitated anywhere from a gentle<br />

rolling motion to a violent boil. Splashing and spilling over the sides of the<br />

tank can occur, and precaution should be taken to avoid exposing workers<br />

and equipment to hot and/or corrosive liquid.<br />

114


References:<br />

Thermal Manual of Submerged <strong>Combustion</strong>, Thermal Research & <strong>Engineering</strong><br />

Corp., Conshohocken, PA 1961.<br />

“Tank & Solution Heaters for the Chemical Industry” AGA Information letter<br />

No. 115, N.E. Keith, A.G.A., New York, 1960.<br />

115


Tech Notes<br />

Section 3<br />

Sheet L-3<br />

Immersion Tubes–What Will The Stack Temperature Be?<br />

Reference:<br />

<strong>Eclipse</strong> <strong>Combustion</strong> <strong>Engineering</strong> <strong>Guide</strong>, p. 51<br />

Customers laying out immersion tube systems frequently ask what stack<br />

temperatures they should expect. You can make a good approximation from<br />

the available heat chart below. The heat transferred through an immersion<br />

tube is the available heat in that system; everything else is flue gas loss, so<br />

it’s easy to calculate flue gas temperature by working backward on the<br />

available heat chart. All you need to know is the tube efficiency and the<br />

amount of excess air at high fire.<br />

For example, let’s say you had an immersion system operating at 70%<br />

thermal efficiency and 25% excess air at high fire. Starting at 70% available<br />

heat (with available heat equal to efficiency), read across until you hit<br />

the 25% excess air curve and then drop straight down to get the flue gas<br />

exit temperature, which, in this case, is 950°F.<br />

Figure 1:<br />

Available Heat vs. Flue<br />

Gas Exit Temperature, °F<br />

100<br />

90<br />

80<br />

Based On Birmingham Natural Gas (1002 Btu/Cu. ft., 0.6 Sp. Gr.)<br />

% Available Heat<br />

70<br />

60<br />

50<br />

40<br />

350%<br />

400%<br />

500%<br />

600%<br />

800%<br />

% Excess Air<br />

30<br />

20<br />

10<br />

1000%<br />

1200%<br />

250%<br />

300%<br />

200%<br />

150%<br />

100%<br />

50%<br />

0%<br />

10%<br />

25%<br />

0 0 200 600 1000 1400 1800 2200 2600 3000<br />

Flue Gas Exit Temperature, °F<br />

116


Tech Notes<br />

Section 3<br />

Sheet O-1<br />

Determining % O 2<br />

in a Recirculating System<br />

<strong>Combustion</strong><br />

Air<br />

Q A<br />

Fuel<br />

Q F<br />

Exhaust, Q X<br />

at Temperature,<br />

T X<br />

Fresh<br />

Makeup<br />

Air<br />

Burner<br />

Q M<br />

Oven<br />

Data Needed:<br />

To determine O 2<br />

content in a recirculating system, you need to know:<br />

Q X<br />

T X<br />

Q F<br />

R<br />

=oven exhaust volume, acfm<br />

=oven exhaust temperature<br />

=maximum fuel flow to burner, scfm<br />

=stoichiometric air-fuel ratio (e.g., 10:1 for natural gas, 25:1 for propane,<br />

or whatever)<br />

(continued on page 118)<br />

117


Procedure: 1. Determine scfm of exhaust.<br />

Q E in scfm = Q X in acfm x<br />

520<br />

T X + 460<br />

520<br />

The temperature correction factor,<br />

T X + 460<br />

, equals the specific gravity<br />

of the exhaust at temperature T X<br />

.<br />

For simplicity’s sake, assume the exhaust has properties nearly equal<br />

to air. Then you can use the specific gravity figures on page 21 of the<br />

<strong>Eclipse</strong> <strong>Combustion</strong> <strong>Engineering</strong> <strong>Guide</strong>.<br />

2. For the oven to be balanced, the sum of fuel to the burner (Q F<br />

), air to<br />

the burner (Q A<br />

), and fresh makeup air (Q M<br />

) must equal the exhaust<br />

volume:<br />

Q E =Q F +Q A +Q M<br />

3. Determine the portion of makeup and combustion air which is consumed<br />

in burning the fuel. This equals:<br />

RxQ F<br />

The remaining unconsumed fresh air determines the oxygen level in<br />

the oven. It equals:<br />

Q E –Q F – Rx Q F<br />

4. Calculate oxygen content in oven, assuming 20.8% oxygen in the fresh<br />

air stream.<br />

%O 2 = 20.8 x Q E –Q F – Rx Q F<br />

Q E<br />

or in its simplest form:<br />

%O 2 = 20.8 x Q E – 1+R Q F<br />

Q E<br />

Example<br />

For example, we have an oven exhausting 2000 acfm at 600° F. The<br />

burner is rated at 1.8 million Btu/hr on 1000 Btu/cu.ft. natural gas<br />

(10:1 stoichiometric ratio).<br />

At 600° F, the specific gravity of air is .500, so Q E<br />

= (2000) (.500) = 1000<br />

scfm<br />

Q F<br />

, the maximum fuel input, is 1,800,000 Btu/hr divided by 1000 Btu/<br />

cu.ft. = 1800 scfh. 1800 cfh divided by 60 minutes = 30 scfm<br />

R, the stoichiometric air-gas ratio, is given as 10:1, so:<br />

%O 2 = 20.8 x<br />

1000 – 1 +10 30<br />

1000<br />

= 20.8 x<br />

670<br />

1000 = 13.94%O 2<br />

118


Offered By:<br />

Power Equipment Company<br />

2011 Williamsburg Road<br />

Richmond, VA 23231<br />

Phone: 804-236-3800 Fax: 804-236-3882<br />

www.peconet.com

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!