13.07.2014 Views

Course 4 May 2001 Solutions

Course 4 May 2001 Solutions

Course 4 May 2001 Solutions

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

COURSE 4<br />

MAY <strong>2001</strong><br />

MULTIPLE-CHOICE ANSWER KEY<br />

1 D 26 A<br />

2 B 27 E<br />

3 C 28 E<br />

4 E 29 D<br />

5 C 30 C<br />

6 C 31 A<br />

7 D 32 A<br />

8 E 33 A<br />

9 D 34 D<br />

10 A 35 E<br />

11 D 36 D<br />

12 E 37 B<br />

13 B 38 B<br />

14 C 39 E<br />

15 A 40 C<br />

16 C<br />

17 E<br />

18 A<br />

19 B<br />

20 E<br />

21 C<br />

22 E<br />

23 B<br />

24 B<br />

25 C<br />

<strong>Course</strong> 4: <strong>May</strong> <strong>2001</strong> - 41 - STOP


<strong>Course</strong> 4 Exam <strong>Solutions</strong><br />

<strong>May</strong> <strong>2001</strong><br />

Item Number: 1<br />

Key: D<br />

Solution<br />

Because the autocorrelation function is zero starting with lag 2, this must be an MA(1) model.<br />

Then,<br />

−θ<br />

− .4 = ρ = , −.4 − .4 θ =−θ ,.4 θ − θ + .4 = 0.<br />

1<br />

2 2<br />

1 2<br />

1 1 1 1<br />

1+<br />

θ1<br />

This quadratic equation has two roots, 0.5 and 2. Because the coefficient’s absolute value must<br />

be less than 1, only 0.5 is acceptable.<br />

C4<strong>2001</strong>A


Item Number: 2<br />

Key: B<br />

Solution<br />

e λ 1<br />

The posterior distribution is π( λ|2)<br />

2! 3<br />

with parameters 3 and 3/4. The variance is 3(3/4) 2 = 27/16.<br />

−λ<br />

2<br />

−λ/3 2 −4 λ/3<br />

∝ e ∝ λ e which is a gamma distribution<br />

C4<strong>2001</strong>A


Item Number: 3<br />

Key: C<br />

Solution<br />

( 1− 3) + ( 2− 3) + ( 3− 3) + ( 4− 3) + ( 5−3)<br />

2 2 2 2 2<br />

2<br />

2<br />

= = =<br />

µ σ<br />

( 1− 3) + ( 2− 3) + ( 3− 3) + ( 4− 3) + ( 5−3)<br />

4 4 4 4 4<br />

µ<br />

4<br />

= = 6.8<br />

5<br />

µ<br />

4<br />

6.8<br />

γ<br />

2<br />

= = =<br />

4 1.7<br />

σ 4<br />

5<br />

2<br />

C4<strong>2001</strong>A


Item Number: 4<br />

Key: E<br />

Solution<br />

The calculations for each possibility are:<br />

Censored at 1 Censored at 2 Censored at 3 Censored at 4 Censored at 5<br />

Time d Y S $ d Y S $ d Y S $ d Y S $ d Y S $<br />

1 0 5 1 1 5 .80 1 5 .80 1 5 .80 1 5 .80<br />

2 1 4 .75 0 4 .80 1 4 .60 1 4 .60 1 4 .60<br />

3 1 3 .50 1 3 .53 0 3 .60 1 3 .40 1 3 .40<br />

4 1 2 .25 1 2 .27 1 2 .30 0 2 .40 1 2 .20<br />

5 1 1 0 1 1 0 1 1 0 1 1 0 0 1 .20<br />

This result may also be obtained by general reasoning. If the lapse occurs late, then the “death”<br />

times come earlier, leading to lower survival probabilities. If the lapse occurs early, then the<br />

“death” times come later, leading to higher survival probabilities.<br />

C4<strong>2001</strong>A


Item Number: 5<br />

Key: C<br />

Solution<br />

This is testing H0: β4 = β5<br />

= 0, which is a joint test on several regression coefficients.<br />

The key formula is 5.21 (p.130 of Pindyck and Rubinfeld).<br />

2<br />

We are given: R UR = 094 .<br />

Also, we know: N = 42, k = 5 (total number of coefficients to be estimated) and q = 2<br />

Using 5.21, we obtain F =<br />

b094 . − 0915 . g / 2<br />

b1 − 094 . g / b42 −5g<br />

= 77 . .<br />

C4<strong>2001</strong>A


Item Number: 6<br />

Key: C<br />

Solution<br />

The number of expected claims (e) is proportional to the number of exposure units (n). Let e =<br />

cn. Using Bühlmann credibility and partial credibility gives:<br />

25 1 25/ 25<br />

= = c =<br />

100 2 25/ c+ k 25+<br />

ck<br />

Therefore ck = 25.<br />

When we have 100 expected claims,<br />

100/ c 100 100<br />

Z = = = = 0.80.<br />

100/ c+ k 100+ ck 100+<br />

25<br />

C4<strong>2001</strong>A


Item Number: 7<br />

Key: D<br />

Solution<br />

Following Example 2.71 in Loss Models (with no denominator because this problem has no<br />

deductible), the contribution to the likelihood function for a loss (x) below 1000 is<br />

1 x / θ<br />

f ( x)<br />

= θ − e<br />

−<br />

−1000/<br />

θ<br />

while for observations censored at 1000 it is 1 − F(1000)<br />

= e . The<br />

likelihood function is:<br />

⎛ ⎞⎛ ⎞<br />

j<br />

L( θ) = ⎜ θ e ⎟⎜ e ⎟=<br />

θ e<br />

62 100<br />

−1 − x / θ −1000/ θ −62 − (28,140+<br />

38,000)/ θ<br />

∏<br />

The logarithm and its derivative are:<br />

∏<br />

⎝ j= 1 ⎠⎝ j=<br />

63 ⎠<br />

l( θ) =−62ln( θ ) −66,140θ<br />

l′ ( θ) =− 62θ + 66,140θ<br />

−1 −2<br />

−1<br />

Setting the derivative equal to zero yields θ ˆ = 66,140/62= 1067 .<br />

C4<strong>2001</strong>A


Item Number: 8<br />

Key: E<br />

Solution<br />

ˆ d<br />

1 1 1<br />

( 14<br />

i<br />

B ) = ∑ = + + = 4.65<br />

Qt ( ) 0.25+ 0.15+ 0.5 0.15+<br />

0.5 0.5<br />

ti≤14<br />

i<br />

C4<strong>2001</strong>A


Item Number: 9<br />

Key: D<br />

Solution<br />

ESSR<br />

− ESSUR<br />

F statistic = bN − kg b g<br />

q ESS<br />

N = 100<br />

k = 3<br />

q = 2<br />

Series I: F = 97<br />

Series II: F = 97<br />

Series III: F = 97<br />

b<br />

b<br />

UR<br />

g<br />

3552. 2−<br />

32338 .<br />

2 32338 .<br />

b<br />

b<br />

g<br />

13005 . − 11318 .<br />

2 11318 .<br />

b<br />

b<br />

g<br />

g<br />

g<br />

237. 0−<br />

2111 .<br />

2 2111 .<br />

b<br />

g<br />

g<br />

= 4. 78,<br />

Fail to reject<br />

= 7. 23,<br />

Reject<br />

= 595 . , Reject<br />

C4<strong>2001</strong>A


Item Number: 10<br />

Key: A<br />

Solution<br />

= E N A E X A = b2 / 3gb990g<br />

= 660<br />

= E N B E X B = b4 /<br />

276g<br />

= 368<br />

c = h = c = h c = h = b gb g = =<br />

c h c h c 1 2 h b gb gb g<br />

PcA500h 12/ 28 3/ 7 and Pc B500h<br />

4 / 7<br />

E L A<br />

E L B<br />

P L 500 A P N 1A P X 500 A 4 / 9 1/ 3 4 / 27 12/<br />

81<br />

P L = 500 B = P N = 2 B P X = X = 250 B = 4 / 9 2 / 3 2 / 3 = 16 / 81<br />

⇒ = = =<br />

( ) ( )<br />

E⎡⎣L2 L1 = 500⎤⎦<br />

= 3/7660+ 4/7368=<br />

493<br />

C4<strong>2001</strong>A


Item Number: 11<br />

Key: D<br />

Solution<br />

2 2<br />

( ) ( ) [ ] 2<br />

VHM = ⎡<br />

⎣<br />

1/2660 + 1/2368 ⎤<br />

⎦<br />

− 514 = 285,512− 264,196=<br />

21,316<br />

Total variance = 296,962<br />

EPV = Total variance – VHM = 275,646<br />

EPV<br />

1<br />

k = = 12.9314⇒ Z = = 0.07178<br />

VHM<br />

1+<br />

k<br />

Bühlmann credibility premium Z ( Z)<br />

= 500 + 514 1− = 513<br />

C4<strong>2001</strong>A


Item Number: 12<br />

Key: E<br />

Solution<br />

The distribution function is ( )<br />

yields the K-S statistic:<br />

F<br />

1<br />

x<br />

−3<br />

∫ 2(1 ) 1 . From it, the following table<br />

0<br />

2<br />

F x = + t dt = −<br />

( 1+<br />

x)<br />

x .1 .2 .5 1.0 1.3<br />

F x<br />

b g .174 .306 .556 .75 .811<br />

x −<br />

0 .2 .4 .6 .8<br />

bx<br />

g .2 .4 .6 .8 1.0<br />

n<br />

n +<br />

The K-S statistic is 0.189.<br />

F<br />

Max diff. .174 .106 .156 .15 .189<br />

C4<strong>2001</strong>A


Item Number: 13<br />

Key: B<br />

Solution<br />

2<br />

2<br />

∑c i h ∑c 2i<br />

2h<br />

Divide the first equation by Y − Y X − X<br />

2<br />

2<br />

∑cYi<br />

− Yh ∑cX3i<br />

− X3h<br />

to get the equations:<br />

and the second equation by<br />

r<br />

YX<br />

2<br />

sX<br />

s<br />

2 X3<br />

= $ 2 + $ 3 rX X = $ *<br />

2 + $ *<br />

β β β β 3r<br />

s s<br />

Y<br />

Y<br />

X X<br />

2 3 2 3<br />

r<br />

YX<br />

3<br />

sX<br />

s<br />

2<br />

X3<br />

= β $ rX X + β $ = β $ r<br />

2 3<br />

X2X<br />

+ β $<br />

3<br />

s<br />

s<br />

* *<br />

2 3 2 3<br />

Y<br />

Y<br />

Solve these equations for $ *<br />

rYX − r . . .<br />

2 YX r<br />

3 X 04 09 06<br />

2X<br />

−<br />

3<br />

β 2 =<br />

=<br />

2 2<br />

1−<br />

r 1−<br />

0.<br />

6<br />

X X<br />

2 3<br />

b gb g<br />

b g<br />

= −0.<br />

22.<br />

C4<strong>2001</strong>A


Item Number: 14<br />

Key: C<br />

Solution<br />

σ<br />

2<br />

H<br />

di<br />

15 20 13<br />

20 = ∑ = + + = 0.0144<br />

2 2 2<br />

Y 100 65 40<br />

( )<br />

ti<br />

≤20<br />

σ H b20g = 0. 0144 = 012 .<br />

i<br />

C4<strong>2001</strong>A


Item Number: 15<br />

Key: A<br />

Solution<br />

=zτ<br />

µ $ S $ btgdt<br />

τ<br />

0<br />

b g b g b g b g<br />

= 10 . × 1 + 085 . × 7 + 05885 . × 9 + 03972 . × 8 = 1542 .<br />

z<br />

D<br />

L V$ $ S$<br />

di<br />

µ = τ N M<br />

2<br />

τ<br />

∑ btgdt<br />

ti<br />

i=<br />

1<br />

QP Yib Yi − dig<br />

O<br />

2 2 2<br />

= 14424 . × 00018 . + 8474 . × 00068 . + 3178 . × 00120 .<br />

= 0.9840<br />

The 95% confidence interval is:<br />

15.42± 1.96×<br />

0.9840<br />

b<br />

135 . , 17.<br />

4<br />

g<br />

C4<strong>2001</strong>A


Item Number: 16<br />

Key: C<br />

Solution<br />

The Weibull density function is<br />

.5<br />

.5 ( x / θ )<br />

θ − −<br />

f ( x) = .5( x ) e . Therefore the likelihood function is<br />

The logarithm and its derivative are:<br />

10<br />

.5<br />

−.5<br />

−( x j/ θ)<br />

L( θ) = ∏.5( xjθ)<br />

e<br />

j=<br />

1<br />

−.5<br />

10<br />

10 −5<br />

∏ xj<br />

θ<br />

j=<br />

1<br />

⎛ ⎞<br />

= (.5)<br />

e<br />

∑<br />

⎜ ⎟<br />

⎝ ⎠<br />

∝ θ<br />

−.5<br />

−5 −488.97θ<br />

e<br />

.<br />

−.5 10 .5<br />

−θ<br />

x<br />

j = 1<br />

j<br />

l( θ) =−5lnθ−488.97θ<br />

l′ =− +<br />

−.5<br />

−1 −1.5<br />

( θ) 5θ 244.485 θ .<br />

Setting the derivative equal to zero yields<br />

2<br />

ˆ (244.485/5) 2391.<br />

θ = =<br />

C4<strong>2001</strong>A


Item Number: 17<br />

Key: E<br />

Solution<br />

The estimated variance of the forecast errors is the sum of the squares of the error terms divided<br />

by T − p − q. In this case, after 100 observations, the sum of the squares of the error terms must<br />

equal 98, because the sum divided by b100 −1−1g, or 98, is 1.0.<br />

The 101 st observation introduces a new error term equal to 188−197, or − 9. The square of that<br />

term is 81. Adding 81 to the previous sum of 98 gives a new total of 179. Dividing 179 by<br />

b101−1−1g, or 99, gives a new estimated variance of 1.8.<br />

C4<strong>2001</strong>A


Item Number: 18<br />

Key: A<br />

Solution<br />

− 5 .2 6 1.2<br />

The posterior distribution is ( |0) e λ −<br />

(.5)5 e λ −<br />

(.5).2e λ −<br />

π λ<br />

2.5 e λ −<br />

∝ ⎡<br />

⎣<br />

+ ⎤<br />

⎦<br />

= + .1 e<br />

λ . The<br />

∞<br />

−6 1.2<br />

normalizing constant can be obtained from 2.5 e λ − λ<br />

∫<br />

⎡ + .1 e ⎤dλ<br />

= .5<br />

0 ⎣<br />

⎦ and therefore the exact<br />

−6λ<br />

−1.2λ<br />

posterior density is π( λ|0) = 5 e + .2e<br />

. The expected number of claims in the next year is<br />

∞<br />

−6λ<br />

−1.2λ<br />

5 5 5<br />

the posterior mean, E( Λ |0) = ∫ λ[5 e + .2 e ] dλ<br />

= + = = .278.<br />

0<br />

36 36 18<br />

C4<strong>2001</strong>A


Item Number: 19<br />

Key: B<br />

Solution<br />

There are 365 observations, so the expected count for k accidents is<br />

produces the following table:<br />

− .6 k<br />

e (.6)<br />

365pk<br />

= 365 which<br />

k!<br />

No. of accidents Observed Expected Chi-square<br />

0 209 200.32 0.38<br />

1 111 120.19 0.70<br />

2 33 36.06 0.26<br />

3 7 7.21 1.51**<br />

4 3 1.08<br />

5 2 0.14*<br />

*This number is 365 minus the sum of the other expected counts.<br />

**The last three cells must be grouped to get the expected count above 5. The calculation for the<br />

test statistic is (12 – 8.43) 2 /8.43 = 1.51. The total of the chi-square numbers is the test statistic of<br />

2.85.<br />

C4<strong>2001</strong>A


Item Number: 20<br />

Key: E<br />

Solution<br />

The likelihood ratio test statistic is ( − 382.4+ 385.9)<br />

⋅ 2= 7.<br />

C4<strong>2001</strong>A


Item Number: 21<br />

Key: C<br />

Solution<br />

8<br />

2<br />

20<br />

2<br />

⎛Yt<br />

−α⎞ ⎛Yt<br />

−α<br />

⎞<br />

∑ ∑ to be a minimum. Setting the derivative equal to<br />

We need for S( α)<br />

= ⎜ ⎟ + ⎜ ⎟<br />

t= 1⎝ 0.4 ⎠ t=<br />

9 ⎝ 0.6 ⎠<br />

8 20<br />

1 1<br />

zero produces the equation S′ ( α) = 2( Yt<br />

− α) + 2( Yt<br />

− α) = 0.<br />

.4 t= 1 .6 t=<br />

9<br />

produces the equation:<br />

∑ ∑ Multiplying by 0.6<br />

0 = 3(8Y<br />

− 8 α) + 2(12Y<br />

−12 α)<br />

1 2<br />

0 = 24Y<br />

+ 24Y<br />

−48α<br />

1 2<br />

αˆ = .5 Y + .5Y<br />

1 2<br />

C4<strong>2001</strong>A


Item Number: 22<br />

Key: E<br />

Solution<br />

Ο=4<br />

E = (.29 − .27) + (.35 − .27) + (.41 − .27) + 7.465 ( − .27)<br />

= 1.605<br />

b<br />

Chi-square statistic = 4 − 1605 . / 1605 . = 357 .<br />

The 0.05 level of significance is 3.84, so the answer is (E).<br />

g<br />

2<br />

C4<strong>2001</strong>A


Item Number: 23<br />

Key: B<br />

Solution<br />

The Bühlmann-Straub credibility factor is<br />

n<br />

w +<br />

n +<br />

a<br />

v<br />

m<br />

which goes to<br />

n<br />

n +<br />

w<br />

a<br />

as m goes to infinity.<br />

C4<strong>2001</strong>A


Item Number: 24<br />

Key: B<br />

Solution<br />

With a lognormal error component, the linear model should be for the logarithm of the<br />

observation. A model that conforms to the description is<br />

lnY = α + α D + β X + ε .<br />

* * * *<br />

1 2 1<br />

Exponentiating both sides yields<br />

* * * *<br />

α1 α2 D β1<br />

X ε<br />

Y = e e e e<br />

and then defining an unstarred quantity as its starred version exponentiated, we have<br />

Y<br />

= αα β ε<br />

D X<br />

1 2 1<br />

.<br />

Note that when D is 1, the value of Y is multiplied by<br />

2<br />

α and so the hypothesis to test is if this<br />

value is equal to 0.8.<br />

C4<strong>2001</strong>A


Item Number: 25<br />

Key: C<br />

Solution<br />

The function of interest is f ( αβ , ) = α+ 10 β.<br />

The partial derivatives are 1 and 10 and so the<br />

variance can be estimated as<br />

⎡αˆ 2<br />

⎤⎡1<br />

⎤<br />

σˆ<br />

[ 110]<br />

Var ˆ<br />

f<br />

= ⎢ ˆ⎥⎢ 10<br />

⎥<br />

⎣β<br />

⎦⎣ ⎦<br />

⎡ 0.00055 −0.00010⎤⎡ 1⎤<br />

= [ 110]<br />

⎢<br />

0.00010 0.00002<br />

⎥⎢<br />

10<br />

⎥<br />

⎣−<br />

⎦⎣ ⎦<br />

= 0.00055− 2× 0.00010× 10+ 0.00002×<br />

100<br />

= 0.00055<br />

and so the standard deviation is the square root, or 0.02345.<br />

C4<strong>2001</strong>A


Item Number: 26<br />

Key: A<br />

Solution<br />

Following Klein and Moeschberger with the time scale shifted by 1997:<br />

T i L i R i d i Y i P[ L< l | L<<br />

3]<br />

i<br />

0 0 2 6<br />

1 0 2 5<br />

2 0 2 4 15 (99/160) ⋅ 0 = 0<br />

0 1 1 3<br />

1 1 1 2 16 (9/10) ⋅ (11/16) = 99/160<br />

0 2 0 1 10 9/10<br />

9 99<br />

P[ L= 1| L< 3] = P[ L< 2| L< 3] − P[ L< 1| L< 3]<br />

= − = 0.28125<br />

10 160<br />

C4<strong>2001</strong>A


Item Number: 27<br />

Key: E<br />

Solution<br />

From formula 15.41:<br />

yt<br />

825 784 710 918<br />

zt<br />

= , z6 = , z18 = , z30 = , z42<br />

=<br />

y%<br />

843 804 740 905<br />

t<br />

From formula 15.42:<br />

~z 6 =<br />

1<br />

4bz6 + z18 + z30 + z42g<br />

~ z<br />

1 . . . . .<br />

6 = 4<br />

09786 + 09751+ 09595+ 10144 = 09819<br />

b<br />

Adjustment factor = 12/11.9607 =1.0033<br />

g<br />

z<br />

y<br />

6<br />

a<br />

42<br />

= .9819*1.0033=<br />

0.9851<br />

918<br />

= = 932<br />

0.9851<br />

C4<strong>2001</strong>A


Item Number: 28<br />

Key: E<br />

Solution<br />

Die/Spinner Prior probability Probability of<br />

getting a 12<br />

Posterior<br />

Probability<br />

AX 1/4 3/4× 1/2= 3/8 1/4<br />

AY 1/4 3/4× 1= 3/4 1/2<br />

BX 1/4 1/4× 1/2= 1/8 1/12<br />

BY 1/4 1/4× 1= 1/4 1/6<br />

Total 1 3/2 1<br />

Die/Spinner Expected Value Posterior Probability Expected Value ×<br />

posterior probability<br />

AX (3/4)(1/2)(12+c) 1/4 1.125+3/32c<br />

AY (3/4)(12) 1/2 4.5<br />

BX (1/4)(1/2)(12+c) 1/12 0.125+1/96c<br />

BY (1/4)(12) 1/6 0.5<br />

Total 1 6.25+10/96c<br />

Because the expected value is 10, 6.25+10/96c = 10, so c = 36.<br />

C4<strong>2001</strong>A


Item Number: 29<br />

Key: D<br />

Solution<br />

Summing the ranks of the A’s (being careful to average for ties) gives<br />

(1+2+6+6+8.5+8.5+10+11+13.5+20) = 86.5 (or 123.5 working with B’s).<br />

*<br />

E R = 105, Var R = 175,so r =± 1.398giving p=<br />

0.162.<br />

( ) ( )<br />

H0 H0<br />

C4<strong>2001</strong>A


Item Number: 30<br />

Key: C<br />

Solution<br />

The maximum likelihood estimate of the mean, θ, is the sample mean, 367.9.<br />

2<br />

Two years of inflation at 5% inflates this scale parameter toθ = 1.05 (367.9) = 405.6.<br />

The expected amount paid per loss is<br />

E( X ∧1000) −EX<br />

( ∧100)<br />

= − − +<br />

−1000/405.6 −100/405.6<br />

405.6(1 e 1 e )<br />

= 283.<br />

C4<strong>2001</strong>A


Item Number: 31<br />

Key: A<br />

Solution<br />

L<br />

( â)<br />

β1 β 2<br />

β<br />

⎛<br />

3<br />

⎛ e ⎞⎛ e ⎞⎛e<br />

⎞⎞<br />

= ⎜⎜ β1 β2 β ⎟⎜<br />

3 β2<br />

β ⎟⎜<br />

3 β ⎟<br />

3<br />

e + e + e e + e e ⎟<br />

⎝⎝ ⎠⎝ ⎠⎝ ⎠⎠<br />

C4<strong>2001</strong>A


Item Number: 32<br />

Key: A<br />

Solution<br />

2 3<br />

∑∑<br />

i=<br />

1<br />

( − )<br />

mij xij xi<br />

i= 1 j=<br />

1<br />

2020<br />

vˆ = = = 505<br />

2<br />

2+<br />

2<br />

2<br />

∑<br />

( 3−1)<br />

2<br />

( − ) −ˆ ( 2−1)<br />

m x x v<br />

2<br />

4800−<br />

505 4295<br />

i i<br />

i=<br />

1<br />

ˆ = = = = 114.5333<br />

2 2 2<br />

1 2<br />

m−<br />

m<br />

100− ( 1/100) ( 25 + 75 ) 37.5<br />

∑ i<br />

m i=<br />

1<br />

a<br />

∑<br />

ˆ vˆ<br />

k = = 4.4092<br />

aˆ<br />

25<br />

Zˆ 1<br />

= = 0.850074<br />

25 + kˆ<br />

75<br />

and Zˆ 2<br />

= = 0.944475<br />

75+<br />

kˆ<br />

ZX ˆ<br />

Zˆ<br />

+ Zˆ<br />

X<br />

+ Zˆ<br />

1 1 2 2<br />

ˆ = = 105.4208<br />

µ<br />

1 2<br />

Bühlmann credibility premium Zˆ ( ) ( Z ˆ<br />

)( µ ˆ )<br />

= 97 + 1− = 98.26<br />

1 1<br />

C4<strong>2001</strong>A


Item Number: 33<br />

Key: A<br />

Solution<br />

According to a statement on page 159 of Pindyck and Rubinfeld, the estimator is unbiased.<br />

C4<strong>2001</strong>A


Item Number: 34<br />

Key: D<br />

Solution<br />

The observations are right and left truncated and the truncation depends upon the report year.<br />

For report year 1997 only claims settled at durations 1 and 2 can be observed, so the denominator<br />

must be the sum of those two probabilities. For 1998, only durations 0 and 1 can be observed<br />

and for 1999 only duration 0 can be observed. Calculation of the denominator probabilities is<br />

summarized below.<br />

Probabilities<br />

Year<br />

Year Settled<br />

Reported 1998 1999<br />

1997 b1− pgp<br />

1− p p<br />

1998 1− p<br />

Sum<br />

(Denominator)<br />

− p p + p<br />

2<br />

b g b1 g b1<br />

g<br />

b g b1− pgp<br />

b1 − p gb1+<br />

pg<br />

b g b1− pg<br />

1999 1− p<br />

The likelihood function is:<br />

( )<br />

( ) ( )<br />

( 1+<br />

p)<br />

11<br />

2<br />

( )<br />

( ) ( )<br />

( )<br />

( ) ( )<br />

( )<br />

( ) ( )<br />

( )<br />

( )<br />

3 1 5 2 4<br />

⎛ 1− p p ⎞⎛ 1− p p ⎞⎛ 1−p ⎞⎛ 1− p p ⎞ ⎛ 1−<br />

p ⎞<br />

L( p)<br />

= ⎜ 1− p p 1+ p ⎟⎜ 1− p p 1+ p ⎟⎜ 1− p 1+ p ⎟⎜ 1− p 1+ p ⎟ ⎜ 1−<br />

p ⎟<br />

⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠<br />

3 1 5 2<br />

⎛ 1 ⎞⎛ p ⎞⎛ 1 ⎞⎛ p ⎞<br />

= ⎜<br />

1 p ⎟⎜<br />

1 p ⎟⎜<br />

1 p ⎟⎜<br />

1 p ⎟<br />

⎝ + ⎠⎝ + ⎠⎝ + ⎠⎝ + ⎠<br />

3<br />

p<br />

=<br />

The loglikelihood is l( p) = 3ln( p) − 11ln( 1+<br />

p)<br />

Take the derivative with respect to p to obtain the equation to solve:<br />

3 11<br />

− = 0<br />

p 1 + p<br />

b<br />

g<br />

The solution is p $ = 3 .<br />

8<br />

C4<strong>2001</strong>A


Item Number: 35<br />

Key: E<br />

Solution<br />

( ) ( )<br />

t d Y ∆ H % 4 −t<br />

H t K t*<br />

i<br />

( t)<br />

∆Vˆ<br />

⎡ ⎣<br />

H%<br />

( t)<br />

⎤ t* = ⎦ b Kbt * g<br />

∆ % ˆ ( ) Kt (*)<br />

∆V ⎡H%<br />

t ⎤<br />

⎛ ⎞<br />

⎜<br />

b<br />

⎣ ⎦ b<br />

⎟ ⎝ ⎠<br />

1 1 9 0.1111 0.01235 1.0000 0.000 0.0000 0.000000<br />

3 2 8 0.2500 0.03125 0.3333 0.741 0.0617 0.001905<br />

5 1 5 0.2000 0.04000 −0.3333 0.741 0.0494 0.002439<br />

8 2 3 0.6667 0.22222 −1.3333 0.000 0.0000 0.000000<br />

10 1 1 1.0000 1.00000 −2.0000 0.000 0.0000 0.000000<br />

h ˆ(4) = 0.1111<br />

2<br />

σ [ hˆ<br />

(4)] = 0.00434<br />

2<br />

Lower confidence limit:<br />

1.96 0.00434/0.1111<br />

0.1111e − = 0.035<br />

Upper confidence limit:<br />

1.96 0.00434/0.1111<br />

0.1111e = 0.355<br />

C4<strong>2001</strong>A


Item Number: 36<br />

Key: D<br />

Solution<br />

See page 555 of Pindyck and Rubinfeld. The variance is 1/T, not T, and the statement is then<br />

only true for large displacements.<br />

C4<strong>2001</strong>A


Item Number: 37<br />

Key: B<br />

Solution<br />

The first step is to get the posterior distribution of P given no claims:<br />

π( p|0) ∝ f(0| p) π( p)<br />

= e<br />

−+ 1 0.01p<br />

(0.01)<br />

0.01p<br />

∝ e < p <<br />

,0 100<br />

The normalizing constant can be found from<br />

∫<br />

100 100<br />

0.01p<br />

0.01p<br />

0<br />

e dp = 100e = 100( e− 1) = 171.83.<br />

0<br />

The posterior density is<br />

Then,<br />

1<br />

π = < <<br />

171.83<br />

0.01p<br />

( p|0) e ,0 p 100.<br />

1 100<br />

171.83 171.83<br />

100<br />

0.01 p<br />

.5<br />

Pr( P > 50|0) = ∫ e dp = ( e− e ) = 0.622.<br />

50<br />

C4<strong>2001</strong>A


Item Number: 38<br />

Key: B<br />

Solution<br />

µ ( p) = 1−0.01p<br />

µ = E[ µ ( p)] = E(1− 0.01 p) = 1− 0.01(50) = 0.5<br />

2<br />

100<br />

a = Var[ µ ( p)] = Var(1− 0.01 p) = 0.0001 Var( p) = 0.0001 = 1/12<br />

12<br />

vp ( ) = 1−0.01p<br />

v= Evp [ ( )] = 0.5<br />

k = v/ a= (1/2)/(1/12) = 6<br />

Z = 4/(4+ 6) = 0.4<br />

P = 0.4(5/4) + 0.6(0.5) = 0.8<br />

c<br />

The number of claims is Poisson, so the mean and variance are the Poisson parameter, 1 – 0.01p.<br />

The mean and variance of p come from the uniform distribution.<br />

C4<strong>2001</strong>A


Item Number: 39<br />

Key: E<br />

Solution<br />

For a mixture, the mean and second raw moments are a mixture of the component means and<br />

second raw moments. Therefore,<br />

E( X) = p(1) + (1 − p)(10) = 10−9p<br />

2<br />

E( X ) = p(2) + (1 − p)(200) = 200−198p<br />

Var X p p p p<br />

2 2<br />

( ) = 200−198 −(10− 9 ) = 100−18 − 81 = 4.<br />

The only positive root of the quadratic equation is p = 0.983.<br />

C4<strong>2001</strong>A


Item Number: 40<br />

Key: C<br />

Solution<br />

s<br />

2<br />

=<br />

∑<br />

2<br />

ε$<br />

i 967<br />

1934<br />

N − 2<br />

= 5<br />

= .<br />

2<br />

β$<br />

s<br />

2<br />

s 1934 .<br />

= = = 0.<br />

0967<br />

2<br />

x 2000<br />

∑<br />

i<br />

s<br />

β$<br />

= 031 .<br />

C4<strong>2001</strong>A

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!