29.01.2014 Views

TCA 785 Phase Control IC TCA 785 - Infineon

TCA 785 Phase Control IC TCA 785 - Infineon

TCA 785 Phase Control IC TCA 785 - Infineon

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>TCA</strong> <strong>785</strong><br />

<strong>Phase</strong> <strong>Control</strong> <strong>IC</strong> <strong>TCA</strong> <strong>785</strong><br />

Pb-free lead plating; RoHS compliant<br />

Features<br />

● Reliable recognition of zero passage<br />

● Large application scope<br />

● May be used as zero point switch<br />

● LSL compatible<br />

● Three-phase operation possible (3 <strong>IC</strong>s)<br />

● Output current 250 mA<br />

● Large ramp current range<br />

●Wide temperature range<br />

PG-DIP-16-1<br />

Bipolar <strong>IC</strong><br />

Type Ordering Code Package<br />

<strong>TCA</strong> <strong>785</strong> Q67000-A2321 PG-DIP-16-1<br />

This phase control <strong>IC</strong> is intended to control thyristors, triacs, and transistors. The trigger pulses<br />

can be shifted within a phase angle between 0 ˚ and 180 ˚. Typical applications include<br />

converter circuits, AC controllers and three-phase current controllers.<br />

This <strong>IC</strong> replaces the previous types <strong>TCA</strong> 780 and <strong>TCA</strong> 780 D.<br />

Pin Configuration<br />

(top view)<br />

Pin Definitions and Functions<br />

Pin Symbol Function<br />

1 GND Ground<br />

2<br />

3<br />

4<br />

Q2<br />

Q U<br />

Q2<br />

Output 2 inverted<br />

Output U<br />

Output 1 inverted<br />

5 VSYNC Synchronous voltage<br />

6<br />

7<br />

I<br />

Q Z<br />

Inhibit<br />

Output Z<br />

8 V REF Stabilized voltage<br />

9<br />

10<br />

R9<br />

C10<br />

Ramp resistance<br />

Ramp capacitance<br />

11 V11 <strong>Control</strong> voltage<br />

12 C12 Pulse extension<br />

13 L Long pulse<br />

14<br />

15<br />

Q 1<br />

Q 2<br />

Output 1<br />

Output 2<br />

16 VS Supply voltage<br />

Semiconductor Group 1<br />

02.05


<strong>TCA</strong> <strong>785</strong><br />

Functional Description<br />

The synchronization signal is obtained via a high-ohmic resistance from the line voltage<br />

(voltage V5). A zero voltage detector evaluates the zero passages and transfers them to the<br />

synchronization register.<br />

This synchronization register controls a ramp generator, the capacitor C10 of which is charged<br />

by a constant current (determined by R9). If the ramp voltage V10 exceeds the control voltage<br />

V11 (triggering angle ϕ), a signal is processed to the logic. Dependent on the magnitude of the<br />

control voltage V11, the triggering angle ϕ can be shifted within a phase angle of 0˚ to 180˚.<br />

For every half wave, a positive pulse of approx. 30 µs duration appears at the outputs Q 1 and<br />

Q 2. The pulse duration can be prolonged up to 180˚ via a capacitor C12. If pin 12 is connected<br />

to ground, pulses with a duration between ϕ and 180˚ will result.<br />

Outputs Q 1 and Q 2 supply the inverse signals of Q 1 and Q 2.<br />

A signal of ϕ +180˚ which can be used for controlling an external logic,is available at pin 3.<br />

A signal which corresponds to the NOR link of Q 1 and Q 2 is available at output Q Z (pin 7).<br />

The inhibit input can be used to disable outputs Q1, Q2 and Q 1 , Q 2 .<br />

Pin 13 can be used to extend the outputs Q 1 and Q 2 to full pulse length (180˚ – ϕ).<br />

Block Diagram<br />

Semiconductor Group 2


<strong>TCA</strong> <strong>785</strong><br />

Pulse Diagram<br />

Semiconductor Group 3


<strong>TCA</strong> <strong>785</strong><br />

Absolute Maximum Ratings<br />

Parameter<br />

Symbol<br />

Limit Values<br />

min. max.<br />

Supply voltage VS – 0.5 18<br />

Output current at pin 14, 15 IQ – 10 400<br />

Inhibit voltage<br />

<strong>Control</strong> voltage<br />

Voltage short-pulse circuit<br />

Thermal resistance<br />

system - air Rth SA 80<br />

V6<br />

V11<br />

V13<br />

– 0.5<br />

– 0.5<br />

– 0.5<br />

Synchronization input current V5 – 200 ± 200<br />

Output voltage at pin 14, 15 VQ VS<br />

Output current at pin 2, 3, 4, 7 IQ 10<br />

Output voltage at pin 2, 3, 4, 7 VQ VS<br />

Junction temperature<br />

Storage temperature<br />

Tj<br />

Tstg – 55<br />

VS<br />

VS<br />

VS<br />

150<br />

125<br />

Unit<br />

V<br />

mA<br />

V<br />

V<br />

V<br />

µA<br />

V<br />

mA<br />

V<br />

˚C<br />

˚C<br />

K/W<br />

Operating Range<br />

Supply voltage VS 8 18<br />

Operating frequency f 10 500<br />

Ambient temperature TA – 25 85<br />

V<br />

Hz<br />

˚C<br />

Characteristics<br />

8 ≤ VS ≤ 18 V; – 25 ˚C ≤ TA ≤ 85 ˚C; f = 50 Hz<br />

Parameter<br />

Supply current consumption<br />

S1 … S6 open<br />

V11 = 0 V<br />

C 10 = 47 nF; R 9 = 100 kΩ<br />

Synchronization pin 5<br />

Input current<br />

R 2 varied<br />

Offset voltage<br />

<strong>Control</strong> input pin 11<br />

<strong>Control</strong> voltage range<br />

Input resistance<br />

Symbol<br />

min.<br />

Limit Values<br />

typ. max.<br />

Unit<br />

IS 4.5 6.5 10 mA 1<br />

I5 rms<br />

∆V5<br />

V11<br />

R11<br />

30 200 µA 1<br />

30<br />

75<br />

mV<br />

0.2 V10 peak V 1<br />

15<br />

kΩ 5<br />

Test<br />

Circuit<br />

4<br />

Semiconductor Group 4


<strong>TCA</strong> <strong>785</strong><br />

Characteristics (cont’d)<br />

8 ≤ VS ≤ 18 V; – 25 ˚C ≤ TA ≤ 85 ˚C; f = 50 Hz<br />

Parameter<br />

Symbol<br />

min.<br />

Limit Values<br />

typ. max.<br />

Unit<br />

Test<br />

Circuit<br />

Ramp generator<br />

Charge current<br />

Max. ramp voltage<br />

Saturation voltage at capacitor<br />

Ramp resistance<br />

Sawtooth return time<br />

I10<br />

V10<br />

V10<br />

R9<br />

tf<br />

10<br />

100<br />

3<br />

225<br />

80<br />

1000<br />

V2 – 2<br />

350<br />

300<br />

µA<br />

V<br />

mV<br />

kΩ<br />

µs<br />

1<br />

1.6<br />

1<br />

1<br />

Inhibit pin 6<br />

switch-over of pin 7<br />

Outputs disabled<br />

Outputs enabled<br />

Signal transition time<br />

Input current<br />

V6 = 8 V<br />

Input current<br />

V6 = 1.7 V<br />

V6 L<br />

V6 H<br />

tr<br />

I6 H<br />

– I6 L<br />

4<br />

1<br />

80<br />

3.3<br />

3.3<br />

500<br />

150<br />

2.5<br />

5<br />

800<br />

200<br />

V<br />

V<br />

µs<br />

µA<br />

µA<br />

1<br />

1<br />

1<br />

1<br />

1<br />

Deviation of I10<br />

R 9 = const.<br />

VS = 12 V; C10 = 47 nF<br />

Deviation of I10<br />

R 9 = const.<br />

VS = 8 V to 18 V<br />

Deviation of the ramp voltage<br />

between 2 following<br />

half-waves, VS = const.<br />

I10<br />

I10<br />

∆V10 max<br />

– 5<br />

– 20<br />

± 1<br />

5<br />

20<br />

%<br />

%<br />

%<br />

1<br />

1<br />

Long pulse switch-over<br />

pin 13<br />

switch-over of S8<br />

Short pulse at output<br />

Long pulse at output<br />

Input current<br />

V13 = 8 V<br />

Input current<br />

V13 = 1.7 V<br />

V13 H<br />

V13 L<br />

I13 H<br />

– I13 L<br />

3.5<br />

45<br />

2.5<br />

2.5<br />

65<br />

2<br />

10<br />

100<br />

V<br />

V<br />

µA<br />

µA<br />

1<br />

1<br />

1<br />

1<br />

Outputs pin 2, 3, 4, 7<br />

Reverse current<br />

<strong>IC</strong>EO<br />

10<br />

µA<br />

2.6<br />

VQ = VS<br />

Saturation voltage<br />

IQ = 2 mA<br />

Vsat 0.1<br />

0.4<br />

2<br />

V<br />

2.6<br />

Semiconductor Group 5


<strong>TCA</strong> <strong>785</strong><br />

Characteristics (cont’d)<br />

8 ≤ VS ≤ 18 V; – 25 ˚C ≤ TA ≤ 85 ˚C; f = 50 Hz<br />

Parameter<br />

Outputs pin 14, 15<br />

H-output voltage<br />

– I Q = 250 mA<br />

L-output voltage<br />

IQ = 2 mA<br />

Pulse width (short pulse)<br />

S9 open<br />

Pulse width (short pulse)<br />

with C12<br />

Internal voltage control<br />

Reference voltage<br />

Parallel connection of<br />

10 <strong>IC</strong>s possible<br />

TC of reference voltage<br />

Symbol<br />

V14/15 H<br />

V14/15 L<br />

tp<br />

tp<br />

VREF<br />

αREF<br />

min.<br />

VS – 3<br />

0.3<br />

20<br />

530<br />

Limit Values<br />

typ. max.<br />

VS – 2.5<br />

0.8<br />

30<br />

620<br />

VS – 1.0<br />

2<br />

40<br />

760<br />

Unit<br />

V<br />

V<br />

µs<br />

µs/<br />

nF<br />

2.8 3.1 3.4 V 1<br />

2 × 10 – 4 5 × 10 – 4 1/K 1<br />

Test<br />

Circuit<br />

3.6<br />

2.6<br />

1<br />

1<br />

Semiconductor Group 6


<strong>TCA</strong> <strong>785</strong><br />

Application Hints for External Components<br />

Ramp capacitance<br />

Triggering point<br />

Charge current<br />

min<br />

max<br />

C10 500 pF 1 µF 1)<br />

tTr =<br />

I10 =<br />

V11 × R9 × C10 2)<br />

VREF × K<br />

VREF × K 2)<br />

R9<br />

The minimum and maximum values of I10<br />

are to be observed<br />

Ramp voltage<br />

V10 max = VS – 2 V V10 =<br />

VREF × K × t<br />

R9 × C10<br />

2)<br />

Pulse Extension versus Temperature<br />

1) Attention to flyback times<br />

2) K = 1.10 ± 20 %<br />

Semiconductor Group 7


<strong>TCA</strong> <strong>785</strong><br />

Output Voltage measured to + VS<br />

Supply Current versus Supply Voltage<br />

Semiconductor Group 8


<strong>TCA</strong> <strong>785</strong><br />

It is necessary for all measurements to adjust the ramp with<br />

the aid of C10 and R 9 in the way that 3 V ≤ Vramp max ≤ V S – 2 V<br />

e.g. C10 = 47 nF; 18 V: R 9 = 47 kΩ; 8 V: R 9 = 120 kΩ<br />

Test Circuit 1<br />

Semiconductor Group 9


<strong>TCA</strong> <strong>785</strong><br />

The remaining pins are connected as in test circuit 1<br />

Test Circuit 2<br />

The remaining pins are connected as in test circuit 1<br />

Test Circuit 3<br />

Semiconductor Group 10


<strong>TCA</strong> <strong>785</strong><br />

Remaining pins are connected as in test circuit 1<br />

The 10 µF capacitor at pin 5 serves only for test purposes<br />

Test Circuit 4<br />

Test Circuit 5 Test Circuit 6<br />

Semiconductor Group 11


<strong>TCA</strong> <strong>785</strong><br />

Inhibit 6 Long Pulse 13<br />

Pulse Extension 12 Reference Voltage 8<br />

Semiconductor Group 12


<strong>TCA</strong> <strong>785</strong><br />

Application Examples<br />

Triac <strong>Control</strong> for up to 50 mA Gate Trigger Current<br />

A phase control with a directly controlled triac is shown in the figure. The triggering angle of<br />

the triac can be adjusted continuously between 0˚ and 180˚ with the aid of an external<br />

potentiometer. During the positive half-wave of the line voltage, the triac receives a positive<br />

gate pulse from the <strong>IC</strong> output pin 15. During the negative half-wave, it also receives a positive<br />

trigger pulse from pin 14. The trigger pulse width is approx. 100 µs.<br />

Semiconductor Group 13


<strong>TCA</strong> <strong>785</strong><br />

Fully <strong>Control</strong>led AC Power <strong>Control</strong>ler<br />

Circuit for Two High-Power Thyristors<br />

Shown is the possibility to trigger two antiparalleled thyristors with one <strong>IC</strong> <strong>TCA</strong> <strong>785</strong>. The trigger<br />

pulse can be shifted continuously within a phase angle between 0˚ and 180˚ by means of a<br />

potentiometer. During the negative line half-wave the trigger pulse of pin 14 is fed to the<br />

relevant thyristor via a trigger pulse transformer. During the positive line half-wave, the gate of<br />

the second thyristor is triggered by a trigger pulse transformer at pin 15.<br />

Semiconductor Group 14


<strong>TCA</strong> <strong>785</strong><br />

Half-<strong>Control</strong>led Single-<strong>Phase</strong> Bridge Circuit with Trigger Pulse Transformer and Direct<br />

<strong>Control</strong> for Low-Power Thyristors<br />

Semiconductor Group 15


<strong>TCA</strong> <strong>785</strong><br />

Half-<strong>Control</strong>led Single-<strong>Phase</strong> Bridge Circuit with Two Trigger Pulse Transformers for<br />

Low-Power Thyristors<br />

Semiconductor Group 16

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!