YASKAWA

Machine Controller MP3000 Series

Ladder Program
PROGRAMMING MANUAL

Features and Overview
of Ladder Programs

Ladder Program Development Flow

Registers

Ladder Language
Instructions

Features of the MPE720
Engineering Tool

System Service
Registers

Sample Programs

Format for EXPRESSION
Instructions

Precautions on Motion
Parameters

Machine Controller Specifications

Error Codes

MANUAL NO. SIEP C880725 13H

=N k-3 k=3 k=]
=N k- k=N k=
OmROME TN >

Copyright © 2012 YASKAWA ELECTRIC CORPORATION

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form, or by any means, mechanical, elec-
tronic, photocopying, recording, or otherwise, without the prior written permission
of Yaskawa. No patent liability is assumed with respect to the use of the informa-
tion contained herein. Moreover, because Yaskawa is constantly striving to
improve its high-quality products, the information contained in this manual is sub-
ject to change without notice. Every precaution has been taken in the preparation
of this manual. Nevertheless, Yaskawa assumes no responsibility for errors or
omissions. Neither is any liability assumed for damages resulting from the use of
the information contained in this publication.

About this Manual

This manual provides information on ladder programming for MP3000-series Machine Controllers.

Read this manual carefully to ensure the correct usage of the Machine Controller and apply the
Machine Controller to control your manufacturing system.

Keep this manual in a safe place so that it can be referred to whenever necessary.

Using this Manual

@ Basic Terms
Unless otherwise specified, the following definitions are used:

Basic Terms Meaning
Machine Controller | MP3000-series Machine Controller
MPE720 The Engineering Tool or a personal computer running the Engineering Tool
PLC A Programmable Logic Controller
MP3200 Gr?iteneric name for the Power Supply Unit, CPU Unit, Base Unit, and Rack Expansion Interface
MP3300 A generic name for the CPU Module and Base Unit.
MP3100 CPU Module

€ MPE720 Engineering Tool Version Number

In this manual, the operation of MPE720 is described using screen captures of MPE720 version 7.

€ Indication of Reverse Signals

In this manual, the names of reverse signals (ones that are valid when low) are written with a for-
ward slash (/) before the signal name, as shown in the following example:

Notation Examples

« S-ON = /S-ON

« P-CON = /P-CON

€ The Meaning of “Torque” in This Manual

Although the term “torque” is commonly used when describing rotary Servomotors and “force” is
used when describing linear Servomotors, this manual uses “torque” when describing either one
(excluding parameter names).

€ Copyrights
+ MECHATROLINK is a trademark of the MECHATROLINK Members Association.
 Ethernet is a registered trademark of the Xerox Corporation.

« Other product names and company names are the trademarks or registered trademarks of the
respective company. “TM” and the ® mark do not appear with product or company names in this
manual.

& Visual Aids

The following aids are used to indicate certain types of information for easier reference.

“@ Indicates precautions or restrictions that must be observed.

S Indicates alarm displays and other precautions that will not result in machine damage.
mportan

Example Indicates operating or setting examples.

Information Indicates supplemental information to deepen understanding or useful information.

@ Indicates definitions of difficult terms or terms that have not been previously explained

in this manual.
Term

Related Manuals

The following table lists the manuals that are related to the MP3000-series Machine Controllers.
Refer to these manuals as required.

Be aware of all product specifications and restrictions to product application before you attempt to

use any product.

Category Manual Name Manual Number Contents
Describes the functions of the MP3000-
, . series Machine Controllers and the pro-
Machine Controller MP3000 Series ;
. cedures that are required to use the
g/l:tihm'\ja(?ﬁr;}roller System SIEP C880725 00 Machine Controller, from installation and
P connections to settings, programming,
trial operation, and debugging.
Machine Controller MP3000 Series . .
Machine Controller System SIEP C880725 01 Degcrlkﬁ/rles tr:QubICeSh?oltllng an MP3000-
Troubleshooting Manual series Machine Lontrofler.
Basic Describes the specifications and sys-

functionality

Machine Controller MP3000 Series
MP3100 Product Manual

SIEP C880725 24

tem configuration of an MP3000-series
MP3100 Machine Controller and the
functions of the CPU.

Machine Controller MP3000 Series
MP3200 Product Manual

SIEP C880725 10

Describes the specifications and sys-
tem configuration of an MP3000-series
MP3200 Machine Controller and the
functions of the CPU Unit.

Machine Controller MP3000 Series
MP3300 Product Manual

SIEP C880725 21

Describes the specifications and sys-
tem configuration of an MP3000-series
MP3300 Machine Controller and the
functions of the CPU Module.

Communications
functionality

Machine Controller MP3000 Series
Communications User’s Manual

SIEP C880725 12

Describes the specifications, system
configuration, and communications
connection methods for the Ethernet
communications that are used with an
MP3000-series Machine Controller.

Motion control
functionality

Machine Controller MP3000 Series
Motion Control User’s Manuall

SIEP C880725 11

Describes the specifications, system
configuration, and operating methods
for the SVC/SVR or SVC32/SVR32
Motion Function Modules that are used
in an MP3000-series Machine Control-
ler.

Programming

Machine Controller MP3000 Series
Motion Program
Programming Manual

SIEP C880725 14

Describes the motion programming and
sequence programming specifications
and instructions of MP3000-series
Machine Controller.

Engineering Tool

Machine Controller MP2000/
MP3000 Series Engineering Tool
MPE720 Version 7

User’s Manual

SIEP C880761 03

Describes how to operate MPE720 ver-
sion 7.

Vi

Safety Precautions

€ Safety Information

To prevent personal injury and equipment damage in advance, the following signal words are used
to indicate safety precautions in this document. The signal words are used to classify the hazards
and the degree of damage or injury that may occur if a product is used incorrectly. Information
marked as shown below is important for safety. Always read this information and heed the precau-

tions that are provided.

A DANGER

® Indicates precautions that, if not heeded, are likely to result in loss of life, serious injury, or fire.

® Indicates precautions that, if not heeded, could result in loss of life, serious injury, or fire.

/N\ CAUTION

® Indicates precautions that, if not heeded, could result in relatively serious or minor injury, or in
fire.

® Indicates precautions that, if not heeded, could result in property damage.

& General Precautions

/\ WARNING

® The installation must be suitable and it must be performed only by an experienced technician.
There is a risk of electrical shock or injury.

® Before connecting the machine and starting operation, make sure that an emergency stop pro-
cedure has been provided and is working correctly.
There is a risk of injury.

® Do not approach the machine after a momentary interruption to the power supply. When power
is restored, the product and the device connected to it may start operation suddenly. Provide
safety measures in advance to ensure human safety when operation restarts.
There is a risk of injury.

® Do not touch anything inside the product.
There is a risk of electrical shock.

® Do not remove the front cover, cables, connector, or options while power is being supplied.
There is a risk of electrical shock, malfunction, or damage.

® Do not damage, pull on, apply excessive force to, place heavy objects on, or pinch the cables.
There is a risk of electrical shock, operational failure of the product, or burning.

® Do not attempt to modify the product in any way.
There is a risk of injury or device damage.

€ Storage and Transportation Precautions

/\ CAUTION

® Hold onto the main body of the product when transporting it.
Holding the cables or connectors may damage them or result in injury.

® Do not overload the product during transportation. (Follow all instructions.)
There is a risk of injury or an accident.

® Never subject the product to an atmosphere containing halogen (fluorine, chlorine, bromine, or
iodine) during transportation.
There is a risk of malfunction or damage.

® If disinfectants or insecticides must be used to treat packing materials such as wooden frames,
pallets, or plywood, the packing materials must be treated before the product is packaged, and
methods other than fumigation must be used.
Example: Heat treatment, where materials are kiln-dried to a core temperature of 56°C for 30 min-
utes or more.
If the electronic products, which include stand-alone products and products installed in machines,
are packed with fumigated wooden materials, the electrical components may be greatly damaged
by the gases or fumes resulting from the fumigation process. In particular, disinfectants containing
halogen, which includes chlorine, fluorine, bromine, or iodine can contribute to the erosion of the
capacitors.

NOTICE

® Do not install the product in any of the following locations.

+ Locations that are subject to direct sunlight

» Locations that are subject to ambient temperatures that exceed product specifications

« Locations that are subject to relative humidities that exceed product specifications

» Locations that are subject to condensation as the result of extreme changes in temperature
» Locations that are subject to corrosive or flammable gases

Locations that are near flammable materials
Locations that are subject to dust, salts, or iron powder
Locations that are subject to water, oil, or chemicals
Locations that are subject to vibration or shock that exceeds product specifications
If you store the product in any of the above locations, the product may fail or be damaged.

Vii

@ Installation Precautions

/\ CAUTION

® Never install the product in an atmosphere containing halogen (fluorine, chlorine, bromine, or
iodine).
There is a risk of malfunction or damage.

® Do not step on the product or place heavy objects on the product.
There is a risk of injury or an accident.

® Do not block the air exhaust ports on the product. Do not allow foreign objects to enter the
product.
There is a risk of internal element deterioration, malfunction, or fire.

® Always mount the product in the specified orientation.
There is a risk of malfunction.

® [eave the specified amount of space between the product, and the interior surface of the con-
trol panel and other devices.
There is a risk of fire or malfunction.

® Do not subject the product to strong shock.
There is a risk of malfunction.

® Suitable battery installation must be performed and it must be performed only by an experi-
enced technician.
There is a risk of electrical shock, injury, or device damage.

® Do not touch the electrodes when installing the Battery.
Static electricity may damage the electrodes.

NOTICE

® Do not install the product in any of the following locations.

Locations that are subject to direct sunlight

Locations that are subject to ambient temperatures that exceed product specifications
Locations that are subject to relative humidities that exceed product specifications
Locations that are subject to condensation as the result of extreme changes in temperature
Locations that are subject to corrosive or flammable gases

Locations that are near flammable materials

Locations that are subject to dust, salts, or iron powder

Locations that are subject to water, oil, or chemicals

Locations that are subject to vibration or shock that exceeds product specifications
Locations near devices that generate strong magnetic fields

Locations that are subject to radiation

If you install the product in any of the above locations, the product may fail or be damaged.

viii

€ Wiring Precautions

/\ CAUTION

® Do not change any wiring while power is being supplied.
There is a risk of electrical shock, injury, or device damage.

® Check the wiring to be sure it has been performed correctly.
There is a risk of motor run-away, injury, or accidents.

® Always use a power supply of the specified voltage.
There is a risk of fire or accident.

® In places with poor power supply conditions, ensure that the input power is supplied within the
specified voltage range.
There is a risk of device damage.

® Install breakers and other safety measures to provide protection against shorts in external wir-
ing.
There is a risk of fire.
® Provide sufficient shielding when using the product in the following locations.
» Locations that are subject to noise, such as from static electricity
» Locations that are subject to strong electromagnetic or magnetic fields
» Locations that are subject to radiation
» Locations that are near power lines
There is a risk of device damage.

® Configure the circuits to turn ON the power supply to the CPU Unit/CPU Module before the 24-
V 1/0 power supply.
If the power supply to the CPU Unit/CPU Module is turned ON after the external power supply, e.g.,
the 24-V 1/0O power supply, the outputs from the CPU Unit/CPU Module may momentarily turn ON
when the power supply to the CPU Unit/CPU Module turns ON. This can result in unexpected oper-
ation that may cause injury or device damage.

® Provide emergency stop circuits, interlock circuits, limit circuits, and any other required safety
measures in control circuits outside of the product.
There is a risk of injury or device damage.

® If you use MECHATROLINK I/O Modules, use the establishment of MECHATROLINK communi-
cations as an interlock output condition.
There is a risk of device damage.

® Connect the Battery with the correct polarity.
There is a risk of battery damage or explosion.

® Select the I/0 signal wires for external wiring to connect the product to external devices based
on the following criteria:
* Mechanical strength
» Noise interference
» Wiring distance
 Signal voltage

® Separate the I/0 signal cables for control circuits from the power cables both inside and outside
the control panel to reduce the influence of noise from the power cables.
If the 1/0 signal lines and power lines are not separated properly, malfunction may occur.

Example of Separated Cables

Steel separator

/O signal
Power cable Cab|egs in

control circuits
[e]e]ele) [elelele)

€ Operation Precautions

/\ CAUTION

® Follow the procedures and instructions in the user’s manuals for the relevant product to perform
normal operation and trial operation.
Operating mistakes while the Servomotor and machine are connected may damage the machine or
even cause accidents resulting in injury or death.

® Implement interlock signals and other safety circuits external to the product to ensure safety in

the overall system even if the following conditions occur.

» Product failure or errors caused by external factors

» Shutdown of operation due to product detection of an error in self-diagnosis and the subsequent
turning OFF or holding of output signals

» Holding of the ON or OFF status of outputs from the product due to fusing or burning of output relays
or damage to output transistors

 Voltage drops from overloads or short-circuits in the 24-V output from the product and the subse-
quent inability to output signals

» Unexpected outputs due to errors in the power supply, /0, or memory that cannot be detected by
the product through self-diagnosis.

There is a risk of injury, device damage, or burning.

® Observe the setting methods that are given in the manual of the Motion Control Function Mod-
ules to be used for the following parameters.
» Parameters for absolute position detection when the axis type is set to a finite-length axis
« Parameters for simple absolute infinite-length position control when the axis type is set to an infinite
length axis
If any other methods are used, offset in the current position when the power supply is turned OFF
and ON again may result in device damage.

® OLOO0O48 (Zero Point Position Offset in Machine Coordinate System) is always valid when the
axis type is set to a finite-length axis. Do not change the setting of OLOOO48 while the
Machine Controller is operating.
There is a risk of machine damage or an accident.

€ Maintenance and Inspection Precautions

/\ CAUTION

® Do not attempt to disassemble or repair the product.
There is a risk of electrical shock, injury, or device damage.

® Do not change any wiring while power is being supplied.
There is a risk of electrical shock, injury, or device damage.

® Suitable battery installation must be performed and it must be performed only by an experi-
enced technician.
There is a risk of electrical shock, injury, or device damage.

® Replace the Battery only while power is supplied to the product.
Replacing the Battery while the power supply to the product is turned OFF may result in loss of the
data stored in memory in the product.

® Do not touch the electrodes when installing the Battery.
Static electricity may damage the electrodes.

® Do not forget to perform the following tasks when you replace the CPU Unit/CPU Module:
» Back up all programs and parameters from the CPU Unit/CPU Module that is being replaced.
» Transfer all saved programs and parameters to the new CPU Unit/CPU Module.
If you operate the CPU Unit/CPU Module without transferring this data, unexpected operation may
occur. There is a risk of injury or device damage.

® Do not touch the heat sink on the CPU Unit/CPU Module while the power supply is turned ON or
for a sufficient period of time after the power supply is turned OFF.
The heat sink may be very hot, and there is a risk of burn injury.

Disposal Precautions

/\ CAUTION

municipal laws and regulations. Be sure to include these contents in all labelling and

® Correctly discard the product and used batteries as stipulated by regional, local, and
warning notifications on the final product as necessary. ﬁ

€ General Precautions

Observe the following general precautions to ensure safe application.

® Figures provided in this document are typical examples or conceptual representations. There
may be differences between them and actual wiring, circuits, and products.

® The products shown in illustrations in this document are sometimes shown without covers or
protective guards. Always replace all covers and protective guards before you use the product.

® |f you need a new copy of this document because it has been lost or damaged, contact your
nearest Yaskawa representative or one of the offices listed on the back of this document.

® This document is subject to change without notice for product improvements, specifications
changes, and improvements to the manual itself.
We will update the document number of the document and issue revisions when changes are
made.

® Any and all quality guarantees provided by Yaskawa are null and void if the customer modifies
the product in any way. Yaskawa disavows any responsibility for damages or losses that are
caused by modified products.

Xi

@ Details of Warranty

B Warranty Period

The warranty period for a product that was purchased (hereinafter called “delivered product”) is
one year from the time of delivery to the location specified by the customer or 18 months from the
time of shipment from the Yaskawa factory, whichever is sooner.

B Warranty Scope

Yaskawa shall replace or repair a defective product free of charge if a defect attributable to
Yaskawa occurs during the warranty period above. This warranty does not cover defects caused
by the delivered product reaching the end of its service life and replacement of parts that require
replacement or that have a limited service life.

This warranty does not cover failures that result from any of the following causes.

» Improper handling, abuse, or use in unsuitable conditions or in environments not described in
product catalogs or manuals, or in any separately agreed-upon specifications

« Causes not attributable to the delivered product itself
» Modifications or repairs not performed by Yaskawa
» Abuse of the delivered product in a manner in which it was not originally intended

» Causes that were not foreseeable with the scientific and technological understanding at the time
of shipment from Yaskawa

» Events for which Yaskawa is not responsible, such as natural or human-made disasters

€ Limitations of Liability

» Yaskawa shall in no event be responsible for any damage or loss of opportunity to the customer
that arises due to failure of the delivered product.

 Yaskawa shall not be responsible for any programs (including parameter settings) or the results of
program execution of the programs provided by the user or by a third party for use with program-
mable Yaskawa products.

» The information described in product catalogs or manuals is provided for the purpose of the cus-
tomer purchasing the appropriate product for the intended application. The use thereof does not
guarantee that there are no infringements of intellectual property rights or other proprietary rights
of Yaskawa or third parties, nor does it construe a license.

» Yaskawa shall not be responsible for any damage arising from infringements of intellectual prop-
erty rights or other proprietary rights of third parties as a result of using the information described
in catalogs or manuals.

Xii

€ Suitability for Use

« Itis the customer’s responsibility to confirm conformity with any standards, codes, or regulations
that apply if the Yaskawa product is used in combination with any other products.

» The customer must confirm that the Yaskawa product is suitable for the systems, machines, and
equipment used by the customer.

« Consult with Yaskawa to determine whether use in the following applications is acceptable. If use
in the application is acceptable, use the product with extra allowance in ratings and specifica-
tions, and provide safety measures to minimize hazards in the event of failure.

« Outdoor use, use involving potential chemical contamination or electrical interference, or use in conditions
or environments not described in product catalogs or manuals

» Nuclear energy control systems, combustion systems, railroad systems, aviation systems, vehicle systems,

medical equipment, amusement machines, and installations subject to separate industry or government
regulations
Systems, machines, and equipment that may present a risk to life or property
Systems that require a high degree of reliability, such as systems that supply gas, water, or electricity, or
systems that operate continuously 24 hours a day
+ Other systems that require a similar high degree of safety
Never use the product for an application involving serious risk to life or property without first
ensuring that the system is designed to secure the required level of safety with risk warnings and
redundancy, and that the Yaskawa product is properly rated and installed.
The circuit examples and other application examples described in product catalogs and manuals
are for reference. Check the functionality and safety of the actual devices and equipment to be
used before using the product.
* Read and understand all use prohibitions and precautions, and operate the Yaskawa product
correctly to prevent accidental harm to third parties.

® Specifications Change

The names, specifications, appearance, and accessories of products in product catalogs and
manuals may be changed at any time based on improvements and other reasons. The next edi-
tions of the revised catalogs or manuals will be published with updated code numbers. Consult
with your Yaskawa representative to confirm the actual specifications before purchasing a product.

xiii

(_Contents)

About this Manual iii
Using this Manual iii
Related Manuals e v
Safety Precautions e Vi
Warranty e Xii

n Features and Overview of Ladder Programs

m What Is a Ladder Program?t . 1-2
m Features i e 1-3
1.2.1 The Various Execution Timing of Ladder Drawings. 1-3
1.2.2 Program Modules. 1-4
1.2.3 Programming Complicated Numeric Operations. 1-4
1.2.4 Communications Control with External Devices 1-5
1.2.5 Complete Synchronization with Motion Control 1-5
Introduction e e 1-6
1.3.1 Ladder Program Editor. e e 1-6
1.3.2 Ladder Drawingsot e e 1-7
1.3.83 UserFunctions. e 1-13
1.3.4 TableData 1-18
9 Ladder Program Development Flow
Introduction e 2-2
m Preparation for Devices to be Connected 2-3
2.2.1 Connectingthe Hardware. i 2-3
2.2.2 Installing MPE720 Version 7 oot e e 2-3
Creatinga Project. it it i e 2-4
Self Configuration. 2-5
GoingOnline.t e e 2-6
Creating Ladder Programst iiinnnens 2-7
Writing the Ladder Programs oot 2-11
m Checking the Operation of the Ladder Programs 2-13
2.8.1 Preparations for Checking Operation 2-13
2.8.2 Confirming the Operation of the 0000th Line (AND Circuit). 2-14
2.8.3 Confirming the Operation of the 0001st Line (Timer Circuit) 2-15
Save the Ladder Program to Flash Memory 2-16

Xiv

6 Registers

Global Registers.t e e 3-2
Local Registers.o i it e 3-4
3.2.1 Precautions When Using Local Registers within a User Function 3-5
3.2.2 Setting the D Register Clear When Start Option 3-6
3.2.3 SettingforDRegisters e 3-7
Structure of Register Addressesciiinnn 3-8
3.3.1 Register Types. . . . o e 3-8
3.3.2 Data Types . .ottt e 3-8
Index Registers (i, j) - - -« v oo i i e 3-12
Array Registers ([1). - -« - o v oo i e e e 3-14
ﬂ Ladder Language Instructions
m Introduction e 4-6
4.1.1 Ladder Language Instructions. 4-6
4.1.2 How to Read the Ladder Language Instructions 4-10
Relay Circuit Instructions. 4-11
421 NOContact (NOC).t e e 4-11
4.2.2 Rising-edge NO Contact (ONP-NOC) 4-12
4.2.3 Falling-edge NO Contact (OFFP-NOC) 4-13
424 NCContact (NCC). i e e 4-14
4.2.5 Rising-edge NC Contact (ONP-NCC). 4-14
4.2.6 Falling-edge NC Contact (OFFP-NCC), 4-15
4.2.7 1-ms ON-Delay Timer (TON(TMS))o ottt e e e e 4-16
4.2.8 1-ms OFF-Delay Timer (TOFF(1mSs))o 4-18
4.2.9 10-ms ON-Delay Timer (TON(10MS))o ittt 4-19
4.2.10 10-ms OFF-Delay Timer (TOFF(10ms)). oot 4-21
4.2.11 1-s ON-Delay Timer (TON(1S)) . .« ot e e e e 4-22
4.2.12 1-s OFF-Delay Timer (TOFF(1S)) oot 4-24
4.2.13 Rising-edge Pulses (ON-PLS) e 4-25
4.2.14 Falling-edge Pulses (OFF-PLS) 4-27
4215 Coil (COIL). . ..o e e e 4-29
4.2.16 Reverse Coil (REV-COIL) e 4-30
4.2.17 Rising-edge Detection Coil (ONP-COIL) 4-31
4.2.18 Falling-edge Detection Coil (OFFP-COIL) 4-31
4.2.19 Set Coil (S-COIL). . ..ottt e 4-32
4.2.20 Reset Coil (R-COIL). e 4-33
m Numeric Operation Instructions 4-34
4.3.1 Store (STORE) 4-34
4.3.2 Add (ADD (4)). « « vttt 4-35
4.3.3 Extended Add (ADDX (+4)) + « vttt 4-36
4.3.4 Subtract (SUB (-)) . .« vt 4-38
4.3.5 Extended Subtract (SUBX (——)). . .« oot 4-39
4.3.6 Multiply (MUL (X)) -+« o vttt e e e e 4-41
4.3.7 Divide (DIV (4)) .« « v ot 4-42
4.3.8 Integer Remainder (MOD) i e 4-43
4.3.9 RealRemainder (REM). i e e e 4-45

XV

XVi

4.3.10 Increment (INC) e e 4-46
4.3.11 Decrement (DEC)ottt e 4-47
4.3.12 Add Time (TMADD). e e e e e e 4-48
4.3.13 Subtract Time (TMSUB) i e e 4-50
4.3.14 Spend Time (SPEND) i e e e 4-52
4.3.15 Invert Sign (INV) . ..o e 4-54
4.3.16 One’s Complement (COM) e eeeen 4-55
4.3.17 Absolute Value (ABS) e 4-56
4.3.18 Binary Conversion (BIN) i e 4-57
4.3.19 BCD Conversion (BCD).ottt 4-58
4.3.20 Parity Conversion (PARITY) 4-59
4.3.21 ASCIl Conversion 1 (ASCII). e 4-60
4.3.22 ASCII Conversion 2 (BINASC).ot e 4-61
4.3.23 ASCII Conversion 3 (ASCBIN). 4-62
Logic Operations and Comparison Instructions 4-64
4.4.1 Inclusive AND (AND).ottt e e 4-64
442 Inclusive OR(OR)t e e e 4-65
443 Exclusive OR (XOR)ottt e e 4-66
4.4.4 LessThan (<) . ..o vttt e e e 4-67
445 LessThanorEqual () i e e 4-68
4.4.6 EQUal (Z). . ..ot 4-69
447 NOtEQUal (B). -« oot 4-70
448 GreaterThanorEqual (2) i 4-71
4.49 Greater Than (>) . . . oo it 4-72
4.410 Range Check (RCHK). e 4-73
Program Control Instructions. 4-75
45,1 Call Sequence Program (SEE) i i 4-75
4.5.2 Call Motion Program (MSEE) i 4-76
4583 CallUser Function (FUNC) e 4-78
45.4 DirectIlnput String (INS) 4-79
4.5.5 Direct Output String (OUTS)ot e e 4-81
4.5.6 Call Extended Program (XCALL). 4-83
4.5.7 WHILE Construct (WHILE, END_WHILE). 4-84
458 FOR Construct (FOR, END_FOR) 4-86
4.5.9 IF Construct (IFF END_IF) 4-88
4.5.10 IF-ELSE Construct (IF, ELSE, END_IF) 4-90
4.5.11 Expression (EXPRESSION) i e 4-91
Basic Function Instructions 4-93
4.6.1 Square Root (SQRT)o 4-93
4.6.2 Sine (SIN) . ..o 4-94
4.6.3 C0SiNe (COS) ..ottt it e e 4-95
4.6.4 Tangent (TAN.) . .ot e e e e 4-97
4.6.5 Arc Sine (ASIN). 4-98
46.6 ArcCosine (ACOS)ottt 4-99
4.6.7 ArcTangent (ATAN) oottt e 4-100
4.6.8 Exponential (EXP). 4-101
4.6.9 Natural Logarithm (LN) i e 4-102
4.6.10 Common Logarithm (LOG) e 4-103
Data Shift Instructions, 4-104
4.7.1 BitRotate Left (ROTL)t 4-104
4.7.2 BitRotate Right (ROTR) s 4-105
473 MoveBit (MOVB) e e e 4-106
4.7.4 Move Word (MOVW) e 4-108
4.7.5 Exchange XCHG). e e 4-110
4.7.6 Table Initialization (SETW). o 4-111
4.7.7 Byte-to-word Expansion (BEXTD). 4-113
4.7.8 Word-to-byte Compression (BPRESS) 4-114

4.7.9 BinarySearch(BSRCH). 4-116

4710 Sort (SORT) . ..ot 4-117
4.7.11 Bit Shift Left (SHFTL). e 4-118
4.7.12 Bit Shift Right (SHFTR) e 4-120
4.7.13 Copy Word (COPYW) . . ottt e e e e e e 4-121
4.7.14 Byte Swap (BSWAP) e 4-122
m DDClInstructionst 4-123
4.8.1 Dead Zone A (DZA) i 4-123
482 DeadZone B (DZB)ttt 4-124
4.8.3 Upper/Lower Limit (LIMIT). e 4-126
4.8.4 PlControl (Pl)ot 4-128
4.8.5 PDControl (PD). 4-133
4.8.6 PIDControl (PID)ot 4-137
4.8.7 First-order Lag (LAG). oot 4-142
4.8.8 Phaselead Lag (LLAG).ttt e e 4-144
4.8.9 Function Generator (FGN) i i e 4-147
4.8.10 Inverse Function Generator (IFGN) 4-151
4.8.11 Linear Accelerator/Decelerator 1 (LAU) 4-155
4.8.12 Linear Accelerator/Decelerator 2 (SLAU), 4-161
4.8.13 Pulse Width Modulation (PWM) 4-170
m Table Manipulation Instructions. 4-173
4.9.1 Read Table Block (TBLBR/TBLBRE), 4-173
4.9.2 Write Table Block (TBLBW/TBLBWE). i 4-177
4.9.3 Search for Table Row (TBLSRL/TBLSRLE). 4-181
4.9.4 Search for Table Column (TBLSRC/TBLSRCE) 4-184
4.9.5 Clear Table Block (TBLCL/TBLCLE). 4-187
4.9.6 Move Table Block (TBLMV/TBLMVE) 4-190
4.9.7 Read Queue Table (QTBLR/QTBLRE and QTBLRI/QTBLRIE). 4-194
4.9.8 Write Queue Table (QTBLW/QTBLWE and QTBLWI/QTBLWIE) 4-198
4.9.9 Clear Queue Table Pointer (QTBLCL/QTBLCLE) 4-202
m System Function Instructions 4-204
4.10.1 Counter (COUNTER)ttt et 4-204
4.10.2 First-in First-out (FINFOUT) e 4-207
4.10.83 Trace (TRACE)t e et 4-210
4.10.4 Read Data Trace (DTRC-RD/DTRC-RDE).o 4-212
4.10.5 Send Message (MSG-SND) e 4-216
4.10.6 Send Message Extended (MSG-SNDE) 4-218
4.10.7 Receive Message (MSG-RCV) i 4-220
4.10.8 Receive Message Extended MSG-RCVE) 4-221
4.10.9 Write SERVOPACK Parameter (MLNK-SVW) 4-223
4.10.10 Read SERVOPACK Parameter (MLNK-SVR) 4-228
4.10.11 Flash Operation (FLASH-OP).o e 4-233
4.10.12 Write Motion Register MOTREG-W) i 4-236
4.10.13 Read Motion Register (MOTREG-R). 4-238
4.10.14 Import (IMPORT/IMPORTL/IMPORTLE) oo oo 4-240
4.10.15 Export (EXPORT/EXPORTL/EXPORTLE) n 4-248
m Storage Operation Instructions 4-254
4.11.1 OpenFile (FOPEN) e e e 4-254
4.11.2 Close File (FCLOSE) e e 4-257
4.11.3 Read Data from File (FREAD). it e e 4-258
4.11.4 Write Datato File (FWRITE)t e 4-260
4.11.5 Set File Position Indicator (FSEEK) 4-262
4.11.6 Read Line from File to String (FGETS) 4-264
4.11.7 Write String to File (FPUTS). 4-266
4.11.8 Copy File (FCOPY). . . .ot e e e e e e e 4-268
4.11.9 Delete File FREMOVE)t 4-270
4.11.10 Rename File (FRENAME) i e 4-271

XVii

4.11.11 Create Directory (DCREATE).o e 4-274

4.11.12 Delete Directory (DREMOVE) e 4-276
4.11.13 Send File to FTP Server (FTPPUT) i 4-277
m String Operation Instructions. 4-280
4.12.1 Convert Integer to String (INT2STR) i 4-280
4.12.2 Convert Real Number to String (REAL2STR). 4-282
4.12.3 Convert String to Integer (STR2INT) i i 4-283
4.12.4 Convert String to Real Number (STR2REAL). 4-284
4.12.5 Store String (STRSET)ttt e 4-286
4.12.6 Partially Delete String (STRDEL). 4-287
4.12.7 Copy String (STRCPY)o 4-288
4.12.8 Get String Length (STRLEN) e 4-290
4.12.9 Concatenate Strings (STRCAT). oot 4-291
4.12.10 Compare Strings (STRCMP) e 4-293
41211 Insert String (STRINS). i e e e 4-294
4.12.12 Find String (STRFIND) e 4-296
4.12.13 Extract String (STREXTR) oo i e e e e e 4-297
4.12.14 Extract String from End (STREXTRE) 4-299
4.12.15 Delete Spaces at String Ends (STRTRIM) ot 4-300

6 Features of the MPE720 Engineering Tool

m Ladder Program Runtime Monitoring. 5-4
m Search/Replace it e s 5-5
5.2.1 Searching and Replacingin Programs 5-5
5.2.2 Searching and Replacing in ProjectFiles 5-7
CrossReferences. ittt 5-10
Checking for MUItiple COilSo.vueieneenananan.n. 5-13
Forcing CoilsONand OFF 5-14
5.5.1 Forcing Coils ON or OFF from a Ladder Program. 5-14
5.5.2 Changing the Forced ON/OFF Status from the Force Coil List Pane. 5-14
m Viewing Called Programs i, 5-17
RegisterLists i i e 5-18
5.7.1 Displayingthe RegisterMap. 5-18
5.7.2 Switching the Register Map Display 5-19
573 EditingData 5-20
Tuning Panel. e 5-21
Enabling and Disabling Ladder Programs 5-22
I Watching ... e e e e 5-23
5.10.1 DisplayingWatchData.......... 5-23
5.10.2 EditingtheValue Column i i 5-23
m SeCUNtY ... i e e 5-24
m TraCing . .o oo e e e 5-25

XViii

Advanced Programming. otiiiinin i 5-26
5.13.1 Motion Programs. e 5-26

System Service Registers
AppendixA

Overview of System Registers A-2
Commonto AllDrawings it ittt ien s A-3

Exclusive to DWG.H (High-speed Scan Process Drawings) ... A-4

Exclusive to DWG.L (Low-speed Scan Process Drawings) A-5

\\e8| Scan Execution Statusand Calendar. A-6

System Program Software Numbers and Remaining Program Memory Capacity . . A-7

Sample Programs
AppendixB

m Jogging from the Control Panel B-2
Motion Program Control. B-3

Simple Synchronized Operation of Two Axes with a Virtual Axis . . B-4

Format for EXPRESSION Instructions
AppendixC

Elements That You Can Use in Numeric Expressions C-2
C.1.1 0perators e C-2
C.1.2 0perandsottt e C-3
C.1.8 Instructions That You Can Use with EXPRESSION Instructions. C-4
Notational Limitations C-5
C.2.1 Arithmetic and Logic Operators. i C-5
C.2.2 Comparison Operatorst e C-5
C.2.3 Logic Operators. . ..o vt e e e C-5
C.2.4 Substitution Operator i e C-6
C.2.5 FUNCHiONS i e C-6
C.2.6 Parentheses i e e e e e e e C-6

Precautions on Motion Parameters
AppendixD

Machine Controller Specifications
AppendixE

XiX

XX

Error Codes
AppendixF

Index

Revision History

Features and
Overview of
Ladder Programs

This section describes the features and gives an overview
of ladder programs.

EEN Whatls a Ladder Program?12
_

The Various Execution Timing of Ladder

Drawings 1-3
1.2.2 ProgramModules 1-4
1.2.3 Programming Complicated Numeric

Operations 1-4
1.2.4 Communications Control with External

Devices 1-5
1.2.5 Complete Synchronization with Motion

Control 1-5

_

1.3.1 Ladder Program Editor

1.3.2 LadderDrawingsc. ... 1-7
1.3.3 UserFunctions 1-13
1834 TableData 1-18

1.1 What Is a Ladder Program?

What Is a Ladder Program?

A ladder program uses ladder language instructions and registers to symbolically represent
electrical circuits consisting of switches, timers, lamps, and other devices.

<Conceptual Circuit>

Timer
Switch Lamp

(0
@)

<Ladder Programming>

N [Count
1600000 me | 00005 DY00000 OB 00 000 |
= itch - . 0 lanp |

Ladder programming allows you to easily program large, complex circuits.

Each of the ladder programs that you create is executed in a single scan and then executed
repeatedly at fixed intervals.

<Ladder Programming Example>

WBOOOO0D]]
I 1|
1T 1T
SY-0N Mot ion cont Servo OW
ral ler oper
ation ready
IB&0NONZ
1|
10
A System busy
WBOODOO01 OBs0OOF
||
10
Execution is alarm clear Alarm clear
IBg00M DEO0ONOD
repeated at ||
fixed intervals Rurnning in 3¥-0N
' WLFODTSrc TTWLFOD]Dest
nooon owanos
STORE I 0 p—
Mot ion com
mand
«[[WLFOD]Sre [TWLFOD]Dest
WBOOOODZ Eiii] nooo? owanos
{ | { STORE - i e
J0G in 3Y-0N Mot ion com
mand

1.2 Features

Features

This section describes the features of ladder programs.

1.2.1 The Various Execution Timing of Ladder Drawings

1.2.1

The Various Execution Timing of Ladder Drawings

Ladder programs are managed in units of drawings (DWG). These are called ladder drawings.
In the Machine Controller, ladder drawings are executed at various times, as illustrated in the

following figure.

Processing can be executed at the appropriate time by programming it in the appropriate lad-

der drawing.

DWG.A
— Executed only when
power is turned ON.

Low-speed scan cycle

High-speed scan

cycle

High-speed scan
cycle

High-speed scan
cycle

DWG.I
— Executed only when an

DWG.H
— Executed in the

interrupt signal is detected.

high-speed scan cycle,

1

DWG.L
— Executed in the
low-speed scan cycle.

=

Power ON Processed during idle time Interrupt
of the high-speed scan.

Interrupt
signal

- On standby while drawings of

higher priority are processed.

signal

The following table gives the execution timing for each drawing.

Ladder Drawing Priority* Execution Timing (Processing Example)
. This drawing is executed only once when the power supply is
DWG.A 1 (High) turned ON (e.g., for data initialization).
This drawing is executed when an interrupt signal is detected
DWG.I 2(T) . . .
(e.g., for interrupt processing for external signals).
DWG.H 3(M) This drgwmg is executed every high-speed scan cycle (e.g.,
for motion control).
DWG.L 4 (Low) This drawing is executed every low-speed scan cycle (e.g.,

for touch panel display processing).

* The drawings with lower numbers have higher execution priority.

Features and Overview of Ladder Programs

1-3

1.2 Features

1.2.2 Program Modules

122 Program Modules

The main program can be separated into modular units to suit different processing require-
ments, such as child drawings, grandchild drawings, and functions, to make the program eas-
ier to read. The following example illustrates a modular program.

) i Child and Grandchild i
H: Main program Parent Drawing Blawinge Functions

H: Main program

Automatic operation processing

...... SEE instruction

Manual operation processing @ | Modularization Manual operation

rocessing (1) drawin
...... SEE instruction 2 9 (i) <
...... FUNC instruction -~

Numeric processing

Manual operation processing @ Manual operation

...... processing (2) drawing
...... FUNC instruction |-+

Automatic operation
processing drawing.

h 4

v

Numeric
processing

v

123 Programming Complicated Numeric Operations

Complicated calculations written over several lines can be written easily by using a single
EXPRESSION instruction.

Variables, structures, and basic functions, such as those for sine and cosine calculations, can
be programmed using familiar C-like expressions.

You can display the current value inside expressions in the same way as you can for other lad-
der language instructions.

TWLFED] Sre [[WLFOD]Dest
WEODTOD HFODODN
STORE 4 5 ‘oooE+000 | 3.000E+000

I

TWCFOD]Srch T TWLFAD] Srch | [MCFOD] Dest
400 KFOoOO0 HFOO002Z HFODOD4 | |
3.000E+000 1. 200E+000 | 4. 200E+000

= = E#PRESSION 4. |
R MFO0008=s1 n(MFO0000+HFO0002 Jx 2
LIS BT HIE 1. 464764E-001=2 1 n(3.000000E+000+1 . 200000E+000 %2

] [VLFTDISrcA ([WLFUD]SroB [[WLFOD]Dest
WL WFaoa0g a2 L ITE S
T.328E-002 2 1.464E-001

I

1.2 Features

1.2.4 Communications Control with External Devices

124

Communications Control with External Devices

The MSG-SND and MSG-RCV ladder language instructions support various protocols and can
be used to control communications with many external devices, such as a touch panels or host

PLCs. This allows external devices to access registers in the Machine Controller.

Machine

Controller

Ladder Program

Registers

—
—

- MSG-SND instruction

(Send Message)

- MSG-RCV instruction

(Receive Message)

Information

External

Device

—

Touch Panel

PLC

_

Refer to the following manual for detalils.

(70 MP3000 Series Communications User’s Manual (Manual No.: SIEP C880725 12)

Instead of using a ladder program, the Machine Controller can also communicate with exter-
nal devices by using I/0O message communications or automatic reception.

125

Complete Synchronization with Motion Control

Ladder programs that are started in the high-speed scan are processed in complete synchroni-
zation with motion control operations. This allows you to call and process a motion program

that performs complicated motion control synchronously with a ladder program.

Sequence Control

Ladder Program (High-speed Scan)

[E00000 CEQO0T 00
L Ny

DBOOAO10
DBO00OT

DBOD0012

0B Z:ZI 0015

. 00001 DA00000

ar

MSEE wotion proc
ram rogist

Start of a Motion
Program

Motion control is processed
in complete synchronization
with the high-speed scan.

Motion Program

Setting

motion

param-
eters

Motion Control
(Motion Module)

—

Motion parameters

Synchronized
phase control

Position
control

Speed
control

Torque
control

Features and Overview of Ladder Programs

1-5

1.3 Introduction

1.3.1 Ladder Program Editor

Introduction

This section provides an overview of ladder programming.

131 Ladder Program Editor

In MPE720 version 7, ladder programs are created and edited in the panes that are shown

below.

Ladder AL Start” H : High-speed Main Program s W,]

= : - T EEELT
[. [T [= (=

Pragram - 0/10] common settings for axe 2 ||=1E8 Register
B[] CPU201_SMPL_E [CPU-201] = WE L Comment List
=1 [Ladder program g Tl & E
=l [High-speed = System Yariable

speed Main Program mamHupEUg,m tor manual | - [[Anis Viariatle
operation) [E] IO Variable
£ [E]|HOZ : main program For manual operation - Global Yariable

e [E) HOZ.0L ¢ axis 1| manual operation (JOGESTER) Canstant Variable

|.I/ 1
“o [E] H0Z.02 ¢ axis 2 manual aperation{ IOGESTER) % SEE maianpfngram [i — User structure
S.I/ £

ommon settings For axes

@ HO4 : main program For positioning

oning
== |§| HO& : phase controlmainprograrn [[G I O D
[EJ Hog.01 : phase contral 1 {glectronic shaft) - Hame
e @9306‘02 : phase control 2 {electronic cam) — SEE S mhmEe
ram
Elret Hi = v
- [Evsz % | s a1 S,
D Low-speed - -
@ [EIL : low speed main program 52 | & | | 4 |
=l Ladder er o l[lIlSystern J Cla [Fg] Disp £ Dis[l Dis

@ Ladder Pane
Ladder programs are displayed by drawing.
Refer to the following section for details on drawings.
I 1.3.2 Ladder Drawings on page 1-7
@ Tab Page to Edit Ladder Program
This tab page is used to edit ladder programs.

® Variable Pane

This pane displays variables. Refer to the following section for details on registers.
I Chapter 3 Registers

In addition to the panes and tab pages that were just described, various other panes, tab
pages, and tool bars also exist.

1.3 Introduction

1.3.2 Ladder Drawings

1.3.2

Ladder Drawings

Ladder programs are managed as drawings (ladder diagrams) that are identified by their draw-
ing numbers (DWG numbers). The ladder drawings form the basis of the ladder programs.

Drawing Types and Hierarchical Configuration
This section describes the types of ladder drawings and their hierarchical configuration.

€ Types

Ladder drawings are divided into four different types based on their purpose.

+ DWG.A (Startup Drawings)
This type of ladder drawing is used to set register data. These ladder drawings are executed
before high-speed scan process drawings and low-speed scan process drawings.

* DWG.I (Interrupt Drawings)
This type of ladder drawing is used to perform processing with priority given to signals input
from an Optional Module. These ladder drawings are executed with higher priority than high-
speed scan process drawings regardless of the scan cycle.

« DWG.H (High-speed Scan Process Drawings)
This type of ladder drawing is used to perform motion control or high-speed 1/0O control.

* DWG.L (Low-speed Scan Process Drawings)
This type of ladder drawing is used for communications with HMIs and external devices as
well as for standard I/O control.

The following table lists the priority, execution conditions, and maximum number of drawings
for each type of ladder drawing.

Maximum
Drawing Type Priority* Execution Condition Number of
Drawings

Power ON (These drawings are executed once when the 64

DWG.A (Startup Drawings) 1 power supply is turned ON.)

External interrupt (These drawings are executed when a
DWG.I (Interrupt Drawings) 2 Dl interrupt or counter match interrupt is received from | 64
an Option Module.)

DWG.H (High-speed Scan
Process Drawings)

Started at fixed intervals. (These drawings are executed

8 once every high-speed scan.)

1000

DWG.L (Low-speed Scan
Process Drawings)

Started at fixed intervals. (These drawings are executed

4
once every low-speed scan.)

2000

* Drawings with lower numbers have higher priority.

€ Hierarchical Configuration

There are four types of ladder drawings: parent drawings, child drawings, grandchild drawings,
and operation error drawings.

« Parent Drawings
These drawings are automatically executed by the system program when the execution con-
ditions are met.

+ Child Drawings
These drawings are executed when they are called from a parent drawing with a SEE instruc-
tion.

+ Grandchild Drawings
These drawings are executed when they are called from a child drawing with a SEE instruc-
tion.

 Operation Error Drawings
These drawings are automatically executed by the system program when an operation error
OCCurs.

Features and Overview of Ladder Programs

1-7

1-8

1.3 Introduction

1.3.2 Ladder Drawings

A parent drawing cannot call a child drawing from a different type of drawing. Similarly, a child
drawing cannot call a grandchild drawing from a different type of drawing. A parent drawing
cannot call a grandchild drawing directly. The parent drawing first must call the child drawing,
and then the child drawing must call the grandchild drawing. This is called the hierarchical con-
figuration of drawings.

The following figure shows the parent-child-grandchild structure in which a program is created.

Parent Child Grandchild User Functions
Drawing Drawings Drawings

pweO || bweooi f—pPwe.Ooiol|

—‘DWG.DOLOQ FUNC-001

i

FUNC-006

D |

- Dwe.Om —{PWG.001.03 FUNG-032

FUNC-064

i

Note: O =A, |, H,orL
DWG notation: DwWG.O O . O

T— Grandchild drawing number

Child drawing number

Parent drawing type (A, I, H, or L)

Note: The following notation is used
for operation error drawings.

DWG.O 00
Fixed value (00)

Parent drawing type (A, I, H, or L) of
the drawing where the error occurs

The breakdown of the number of ladder drawings in each category is given in the following

table.
. Number of Drawings
Drawings
DWG.A DWG.I DWG.H DWG.L

Parent Drawings 1 1 1 1
Operation Error Drawings 1 1 1 1
Child Drawings

- - Total of 62 max. Total of 62 max. Total of 998 max. Total of 1,998 max.
Grandchild Drawings

There are separate functions that can be called from the drawings as required. Functions are
executed when they are called from a parent, child, or grandchild drawing with the FUNC
instruction. You can create up to 2,000 functions.

Information

1.3 Introduction

Controlling the Execution of Drawings
Drawings are executed based on their priorities, as shown in the following figure.

Power ON

|

DWG.A
(Startup Drawings)

!

Every high-speed scan

Every low-speed scan

‘ Batch output

Batch output

Interrupt signal

i

!

‘ Batch input

Batch input

DWG.I

*2

i

'

DWG.H (high-speed
scan process drawing)

DWG.L (low-speed
scan process drawing)

‘ (interrupt drawing)

!

!

Execution is continued
from the point before
the interrupt.

*1. DWG.A drawings are executed immediately after the power supply is turned ON.

*2. When an interrupt signal is input, execution of the DWG.| drawing is given priority even if execution of a DWG.H
or DWG.L drawing is currently in progress.

Note: The parent drawing of each drawing is automatically called and executed by the system.

€ Execution Processing of Drawings

The drawings are executed by calling them from the top to the bottom, following the hierarchy
of the drawings. The following figure illustrates the execution processing of a high-speed scan
drawing (DWG.H).

Execution is started by the

system program when the
execution condition is met.

v

Parent Drawing

Child Drawings

DWG.H

DWG.HO1

HoctioH <

HCEND O

Grandchild Drawings

DWG.HO01.01

B H=

HCEND

HO2

N

1 P

An operation
error occurs.

Execution is
automatically

Y

started by the

system.

Vi

HCEND -«

1 N

| .
|

1.3.2 Ladder Drawings

Functions
EONG FUNC 01
HC He=
END
END
HOO

Note: 1. The parent drawing is automatically called and executed by the system. Child drawings and grandchild
drawings are executed by calling them from a parent or a child drawing using the SEE instruction.

2. You can call functions from any drawing. You can also call functions from other functions.

3. If an operation error occurs, the operation error drawing for the drawing type will be started automatically.
4. Always specify 00 as the drawing number for operation error drawings.

Features and Overview of Ladder Programs

1-9

1-10

1.3 Introduction

1.3.2 Ladder Drawings

€ Scheduling the Execution of High-speed and Low-speed Scan Process

Drawings

High-speed scan process drawings (DWG.H) and low-speed scan process drawings (DWG.L)
cannot be executed at the same time. DWG.L drawings are executed during the idle time of
DWG.H drawings.
The period during which DWG.H drawings are executed is called the high-speed scan time.
The period during which DWG.L drawings are executed is called the low-speed scan time.

Low-speed scan time

High-speed
scan time

High-speed
scan time

High-speed
scan time

High-speed
scan time

DWG.H

(high-speed
scan process ‘ ‘ ‘ ‘ ‘

drawing)

DWG.L

(low-speed
scan process

drawing)

Background
processing*

|:| : Actual processing time during the scan

* This time is used to execute internal system processing, such as communications processing.

€ Setting the High-speed and Low-speed Scan Times

Use MPE720 version 7 and perform the procedure given below to set the high-speed and low-

speed scan times.

1. Select File — Environment Settings from the menu bar. Alternatively, click the System
Setting Icon on the My Tool View of the Start Tab Page. The Environment Setting Dialog

Box is displayed.
2. Select Setup — Scan Time Setting. The following dialog box will be displayed.

x
[System
[secury High-speed Scan
5 Setup ¥ Use an MP2000 option module
Systemn Setting
B8 "= Time Setting Setting Yalue 4.,0000 ms {0, 1250ms-32. 0000ms)

*Setting unit; 0.125ms,0,25ms,0.5ms{0.Sms or more}

7 Ladder

71 Mation Current Yalue IEI.IJIJEIIJ ms IEI us
3 ariable Maimurn Yalue |U.DUUD ms |U us
g :2:::; Low-speed Scan

773 Print Setting Yalus | 200.0000 ms (2,0000ms-300,0000ms)
71 Message *Setting unit: 0.5ms

Current Yalue | 0.0000 ms
Maxdmurn Yalue | 0.0000 ms

1, The operation of the application which depends at the scan time changes
"j when change the setting value,
L] 2. Please donot set setting walue smaller than current value. The watchdog
EIFOF OCCUrS,
3. When high-speed scan setting value is changed on the CPU with built-in
SMC, MECHATROLIMK communication is reset and position data will be
reset as a resulk, Executing ZRET/ZSET command after changing setting is
recommended to recover the position data.

. When the high-speed scan time of an MP3000 machine contraller is set to
less than 0.5 ms, the attached MP2000 option maodule will scan ak 0.5 ms

.

o1

Setting Value:Enter the scan time settings.

Cance| | Apply I

Current Value:A value of 0.0 ms is displayed when the MPE720 is offline. Otherwise, the actual pro-

cessing times for the scans are displayed.

Maximum Value: The maximum processing time for the scan is displayed. You can set the maximum

value. The setting is retained until it is exceeded.

1.3 Introduction

1.3.2 Ladder Drawings

3. Enter the high-speed scan time in the Setting Value Box under High-speed Scan. Enter
the low-speed scan time in the Setting Value Box under Low-speed Scan.
The following table shows the possible set values and default values for each scan time.

ltem Possible Set Values Default
High-speed Scan Time 0.125 to 32 ms (in 0.125-ms increments) 4.0 ms
Low-speed Scan Time 2.0 t0 300.0 ms (in 0.5-ms increments) 200.0 ms

Note: The possible set values and default values depend on the model. Refer to the user’s manual for the Mod-
ule you are using for details.

Observe the following precautions when setting the high-speed scan time and low-speed

@ scan time.

1. Set the scan set value so that it is 1.25 times greater than the maximum value.

Important If the scan set value is too close to the maximum value, the refresh rate of the MPE720 window
will noticeably drop and can cause communications timeout errors to occur. If the maximum
value exceeds the scan set value, a watchdog error may occur and cause the Machine Con-
troller system to shut down.

2. If you are using MECHATROLINK-II or MECHATROLINK-III, set values that are an integral mul-
tiple of the communications cycle. If you change the communications cycle, check the scan
time set values.

3. Do not change the scan set value while the Servo is ON. Never change the scan set value
while an axis is in motion (i.e., while the motor is rotating). Doing so may cause the motor to
rotate out of control.

4. After changing or setting a scan time, always save the data to flash memory.

€ High-speed Drawing Operation Mode Settings
The high-speed drawing operation mode is the mode that is set for DWG.H drawings.

If no DWG.I drawings are used, select the high-speed mode. This optimizes the processing of
DWG.H drawings.

If DWG.I drawings are used, select the normal mode. If the high-speed mode is selected,
DWG.I drawings will not be executed.

High-speed scan cycle High-speed scan cycle
(SW00014) (SW00014)

Current high-speed
scan time (SW00008)

High-speed scan
processing DWG.H DWG.H ‘ DWG.H

When the high-speed operation mode is set:

High-speed scan cycle High-speed scan cycle
(SWO00014) (SWO00014)

. Current high-speed
High-speed scan scan time (SW00008)

processing
DWG.H CA: DWG.H <)A: DWG.H <)A:

\ \

The current high-speed The current high-speed The current high-speed
scan time decreases. scan time decreases. scan time decreases.
(The scan overhead is (The scan overhead is (The scan overhead is
reduced.) reduced.) reduced.)

Features and Overview of Ladder Programs

1.3 Introduction

1.3.2 Ladder Drawings

+ DWG.A, DWG.I, and DWG.L drawings do not have operation mode settings.
» The more often the following instructions are used, the greater the effect that the optimiza-
tion will have on DWG.H processing.

Information

Type Function
HtRising-edge NO Contact
4l Falling-edge NO Contact
#tRising-edge NC Contact
4-Falling-edge NC Contact
£ Rising-edge Pulse

= Falling-edge Pulse

0| Coll

@ Reverse Coll

®| Rising-edge Detection Coil

Relay Circuit Instructions

-®| Falling-edge Detection Coil

&) Set Coil

B Reset Coll
Numeric Operation +1Increment
Instructions ~1Decrement

Perform the following procedure with MPE720 version 7 to set the high-speed drawing opera-
tion mode.

1. Select File — Environment Settings from the menu bar. Alternatively, click the System
Setting Icon on the My Tool View of the Start Tab Page. The Environment Setting Dialog
Box is displayed.

2. Select Setup — System Setting. The following dialog box will be displayed.
g ———— |

Envircnment Setting

[System

71 Security System Setting

5 Setup Virite Protect Writable -

b B Systemn Setting
Scan Time Setting PCI Reset Signal Disable

7 Ladder D Register Clear when Start

71 Motion
| D Variable Battery Connection Connect

1 Monitor High-speed drawing operation mode

71 Transfer

£ Print Start measuring high-speed scan processing time | From 1st scan (default)

71 Message Keep Latest Value(Mumber of scan of keep latest value

when abnormal input)
| High-speed Input 2 = scan (1 to 255)
Low-speed Input 2 $ scan (1 to 255)

Calender Setting

Date and Time 06/02/2014 14:40 -

[OK][Cancel] Apply

L

3. Select High-speed or Normal for the High-speed Drawing Operation Mode.

1-12

1.3 Introduction

1.3.3 User Functions

1.33

User Functions

What Is a User Function?

A user function contains a function definition (program number and I/O definitions) and pro-
cessing instructions that are defined by the user.

The following figure shows an example of a function definition.

&l FUNCOT ——=_ Program Number
[BIE-IN [BIB-VAL
DE00D000 | DBOODOOZ2 Function Input
EU?'C%'OH Input — CWIW-TH [WW-0uT Definition
SIion__ DHo000T DWOD02 1 = Number of puts
: B:\g?%:; neuts [LIL-IN [LIL-0UT + Data types
« Comments DLOOODZ | DLOD022 « Comments

[FIF-IN [FIF-0UT

Function Address DFO0004 OFO00Z4

Definition [A]ADDR
* Presence of definition DADOOTO
* Comment

Overview of User Functions
The processing to be performed by a user function is created using a ladder program.

User functions are executed when they are called from a parent, child, or grandchild drawing
with the FUNC instruction.

The following user function calls are also allowed.

» User functions can be freely called from any drawing.

» User functions can be called simultaneously from drawings of different types and different
hierarchy levels.

 User functions can call other user functions.

» User functions can be called any number of times from different programs.
The use of functions provides the following advantages.

 Easy user program modularization

» Easy user programming and program maintenance

R When you call a user function, consider what values could be in the registers in each function,
@ and perform initialization as needed.
Refer to the following section for details.

Important ” Chapter 3 Registers —3.2.1 Precautions When Using Local Registers within a User Function on page 3-5

Features and Overview of Ladder Programs

1.3 Introduction

1.3.3 User Functions

The following diagram shows the relation between /O data for a user function and the registers
within that user function.

Registers within a User Function

X Registers Y Registers
(Function Input Registers) (Function Output Registers)

Bit data inputs Bit data outputs
(16 bite mox) XBO0O0OO to XBOOOOOF YBOOOOOO to YBOOOOOF (16 bits mavx).
XWO00001 YWO00001
XW00002 YW00002
XW00003 YW00003
Data inputs ' Data outputs
* Word data) * Word data
* Long data . . » Long data
« Float data * Float data
(16 words max.) XW00015 YW00015 (16 words max.)
XW00016 YW00016
Address Inputs _ ARegisters
(Function External Registers)
MAO0100 MWO00100 - AWO00000
MWO00101 AWO00001
MWO00102 AW00002
MWO00103 AWO00003
Z Registers # Registers D Registers

Information 1. The X, Y, Z, and D registers are initialized to different values when a user function is called.
Refer to the following section for details.

Iz Chapter 3 Registers —3.2.1 Precautions When Using Local Registers within a User Function on
page 3-5

2. The S, M, |, O, and C registers can also be accessed from within a function.

1-14

1.3 Introduction

Creating User Functions
This section describes how to create a user function that has, as an example, the following

1.3.3 User Functions

specifications.
Function Definition Item Name Remarks
Program Number FUNCO1 -
Function Input Value IN Integer data
Function Output Value 1 OUT1 Integer data
Function Output Value 2 ouT2 Integer data

Processing Details

Multiply the function input value (IN) by 2 and output it to function output value 1 (OUT1).
Multiply the function input value (IN) by 3 and output it to function output value 2 (OUT2).

& Procedure

1. Select Programming — Ladder program from the Launcher.
The Ladder Pane will be displayed.

2. Right-click Function under Ladder program, and select New.

Ladder -
=

Prograrm

1[I CPU201_SMPL_E [CPU-201]
=] [Ladder program

[[E] High-speed

[Low-speed

[start

- [Interrupt

S Function

e
Mew CP Ladder

Cut Cirlex

&

BY copy Ctrl+C

% Paste Ctrl+y
Compile

Enable Main Program

Disable Main Program

Imnport

Export

Frint...

Corwersion of CP ladder

The Create New Program Dialog Box will be displayed.

Enter “FUNCO01” in the Program No. Box.

I} Greate New Proeram x|
Prograrn Mo, I
- Program Name I
Canfiguration
1 10 definition — FITHC o—
Function input definition
Function address definition BIT B-WAL BIT B-iAL
Function output definition
Detail definition
0 I
Cancel <« Detail

v

Features and Overview of Ladder Programs

1-16

1.3 Introduction

1.3.3 User Functions

4. Select Function input definition under I/0 definition and enter the following informa-
tion.

Function input na, |1 _I:

Type | Carnment |
[o1furorD =]

Close

5. Select Function output definition under I/0 definition and enter the following informa-
tion.

Function aukpuk na, IZ _I:

Tvpe |Cnmment |
ol [worp = ouTt
oz |worRD =

Close

6. Click the OK Button. This concludes setting the function definition.
x|

I@‘ Prograrm Mo,

Program Mame

Configuration
9 10 defirition — FUNC =1
Funct?on inpuk deFinit?o!ﬂ. WORD i WORD ouTl
Function address definition WORD auT2

Function output definition
] Dekail definition

I —
QK I Cancel | << Detail |

A

7. Create the following ladder program in the drawing of the FUNCO01 sample user function
that was created in step 5.

00001) of function
{00001}
A [WLFOD]Srch [WLFOD]SrcB [WLFOGD]Dest | |
HH00001 ooooz YHoooo1
01) of function
(Y1oonoz)
WL A [WLFOD]Srch [WLFOD]SrcB [WLFOD]Dest | |
173 o001 oooos YHooooz2
2 /4 s I /

1.3 Introduction

1.3.3 User Functions

8. While displaying the ladder program, select Compile — Compile from the menu bar to
compile the program.
When the compilation is finished, the ladder program will be saved automatically.

\@ If an error is displayed in the Output Pane during compilation, the ladder program will not be
saved.
Important

This concludes the creation of the user function.

Calling the User Function
The user function is ready to be called by using a FUNC instruction in the ladder drawing.

This section describes how to call the sample user function from the high-speed drawing
(DWG.H).

® Example for Calling the FUNCO1 User Function from DWG.H
Program a FUNC instruction in DWG.H as shown below.
f=l

uzer's function |
Input defined in (W] TH [%100T1

the user function r=Dono10 owooooni I .
0 0= Output defined in

- - the user function
[w]ouT2

Dwonon2
0

Program number of the
user function to call

This diagram shows a conceptual image of what the programming shown above accomplishes.
Registers within the FUNCO1 User Function

X Registers Y Registers
(Function Input Registers) (Function Output Registers)
IN XB000000 to XBOOOOOF 'YB0O0O000O0 to YBOOOOOF OUTH
x2
DWO00000 XW00001 YW00001 7| DwO00001
XW00002 YW00002 DWO00002
x3
YWO00003 ouT2
XWO00016 YWO00016

|:|Values that are set |:| Undefined value

When DWO00000 in DWG.H is set to 10, DW00001 becomes 20 and DW00002 becomes 30,
demonstrating that the sample user function was called correctly.

= L |
wmer's function |1
[HIIN [wloum
Owooooo OwWoooo1
10 20

[#louT2
Dwoouoz
3l

Features and Overview of Ladder Programs

1.3 Introduction
1.3.4 Table Data

134 Table Data

What Is Table Data?

Table data is data that is managed in tabular form. The data is stored separately from the regis-
ters. Data can be copied from a table to registers or from registers to a table by executing table
instructions in the ladder program. Tables can also be used to hold data when there is not a
sufficient range of registers.

Queue Table Read Instruction

e QTELR o —
Mame [WICout]
TBLT OWoo0Zz0
Data| . T [AlData [B0sts]
0A00000 OBOO0Z 10 I
‘ C&Prm :
Table data DA0O0] !
= Registers
— OTELW —
hame [WICOut]
TBL1 DWO00Z0
= [Alata |(BISts]
\ 0400000 DBoOO0Z10
TBL1 =
[&TPrm
0A00010

Queue Table Write Instruction

Creating Table Data

To create table data, set the table definition information and column attributes as listed below.

Table Definition
Information

Table Name This is the name of the table.

Description

Select an array-type or record-type table.
Table Type Array type: Specifies a table where all columns have the same attributes.
» Record type: Specifies a table where each column has a different attribute.

Number of Columns | This is the number of columns in the table. (32,767 columns max.)
Number of Rows This is the number of rows in the table. (65,535 rows max.)
Table Comment This is a comment for the table.

Select normal or battery backup.
» Normal: The maximum size per table is 5 MB.
 Battery backup: The maximum size per table is 3 MB.
The details on the maximum size of tables and which models have battery backup
storage are given below.
+ MP3100
16 axes: Total size: 15 MB, size for battery backup: 1 MB
32 axes: Total size: 31 MB, size for battery backup: 3 MB
+ MP3200
16 and 32 axes: Total size: 32 MB, size for battery backup: 3 MB
« MP3300
16 axes: Total size: 15 MB, size for battery backup: 1 MB
32 axes: Total size: 31 MB, size for battery backup: 3 MB

Table Data Storage
Location

1-18

1.3 Introduction

1.3.4 Table Data

Column Attributes

Description

Column Name

This is the name of the column.

The data type can be integer, double-length integer, quadruple-length integer, real

Data Type number, double-precision real number, or text string.
Size This is the length of the data type.
Display Type The display type can be binary, decimal, hexadecimal, real number, or text string.

Column Comment

This is a comment for the column.

B Procedure

1. Select Utility — Engineering Builder from the Launcher.
The Engineering Builder will start.

2. Select File — Open — Define Data Table — Data Table Map from the menu bar in the
Engineering Builder.
The Table Data Store Target Dialog Box will be displayed.

Ml Table Data Store Target

PT#: —— CPU#:—— |

CPU201_SMPL_E GPU-201 Ottline Local] 3]

Galumn Attribute I

Table Data |

Mo, | Table Mame | Table Tupe [Lines | Golumn | Table data stor.. | Comment

| \ | \ | \ 4

3. With the Table Data Store Target Dialog Box displayed, select File — Create New from
the menu bar in the Engineering Builder.
The Table Definition Dialog Box will be displayed.

4. Set the table definition information and click the OK Button.

Table Definition x|

Table Mame
Table Twpe
Column
Lines

Table Comment

Table data store tareet INu:urmaI vl

TEL

IRecord Tvpe vl

——
-

|}{ Y position data

0]4 I Cancel

The Data Table Column Attribute Dialog Box will be displayed.

Features and Overview of Ladder Programs

1-20

1.3 Introduction

1.3.4 Table Data

5. Set the table data column attributes.
Note: If the table is set to an array-type table in the table definition, set only one column attribute.

Il Data table column attribute GPU201_SMFPL_E GPU-201 Of - |EI|1|
FTd:— - CRU#: -~ I
Table Mame BL Table Type [Record Type Column pUUUS Lines p
Table data store target Hormal Table Comment IX ¥ position data
Mo Calumn_| Data Size | Display Type GColumn Comment
1 POS WO Jinteger _x|ooz DEGC 7 |data number

2 H_DATA LONG ~ (004 DEC T |¥ position data
3 W DATA LONG 004 DEGC ¥ | position data

A

6. Select File — Save Project from the menu bar.
The Table Data Store Target Dialog Box displayed in step 2 will show the table created with this pro-

cedure.
Il Table Data Store Tareet GPU201_SMPLE CPU-201 Offline Local _18] x|
PT#: == CPU#:-— !
Column Attribute I Table Data |
MNa. | Table Mame | Table Type | Lines | Column | Table data star... | Comment
oot TBL Record Type oo1o0 00003 Mormal K Y pogition data

[[[£
This concludes the creation of the data table.

1. When a table is created, the contents are initialized to O.

2. Select the table that was created in the Table Data Store Target Dialog Box, and click the
Table Data Button to read or write table data.

3. Use the table instructions to perform operations on the table data from a ladder program.

Information

Ladder Program
Development Flow

This chapter describes the development flow for ladder
programs.

B Introduction ... 22
B Proparaon for Dovces tobo Comected .23

2.2.1 Connectingthe Hardware
2.2.2 Installing MPE720 Version7 2-3

BEN Creating a Project24
BN sef Configuration -..................25
Bl GoingOnline ... 26
B Greating Ladder Programs27
B Writing the Ladder Programs ... 211
BN hecking e Opratonof he Lo Progans 213

2.8.1 Preparations for Checking Operation
2.8.2 Confirming the Operation of the 0000th Line

(AND Circuit) i 2-14
2.8.3 Confirming the Operation of the 0001st Line
(Timer Circuit) 2-15

B Save the Ladder Program to Flash Memory 216

2.1 Introduction

Introduction

This section describes the flow for developing ladder programs as outlined below.

@ Preparation for Devices to be Connected

Assemble and wire all devices to be con-
nected.

Install MPE720 version 7 on a PC.
Refer to the following sections for details.

IZ 2.2 Preparation for Devices to be Connected —
2.2.1 Connecting the Hardware on page 2-3

IZ 2.2 Preparation for Devices to be Connected —
2.2.2 Installing MPE720 Version 7 on page 2-3

A

® Creating Ladder Programs

Enter the ladder program in the Ladder Editor.
Refer to the following section for details.
s 2.6 Creating Ladder Programs on page 2-7

N4

® Write the Ladder Programs

@ Create a Project

Create a project before starting ladder program
development.

Refer to the following section for details.
I 2.3 Creating a Project on page 2-4

Transfer the programs that you created to the
Machine Controller.

Refer to the following section for details.
I3 2.7 Writing the Ladder Programs on page 2-11

A

A

@ Check the Operation of the Ladder Programs

® Self Configuration

Perform self configuration and start the system.
Refer to the following section for details.
IZ 2.4 Self Configuration on page 2-5

Check the operation of the ladder programs.
Refer to the following section for details.

IZ 2.8 Checking the Operation of the Ladder
Programs on page 2-13

A

A

Save the Ladder Program to Flash Memory

@ Going Online

Set the communications parameters for com-
municating with the Machine Controller.

Refer to the following section for details.

I 2.5 Going Online on page 2-6

Save the debugged ladder program to flash
memory.

Refer to the following section for details.

I 2.9 Save the Ladder Program to Flash Memory
on page 2-16

A

Note: The above flowchart is an example of the ladder program development process. Settings to interface the

external devices must be completed to use programs on the actual system.

2.2 Preparation for Devices to be Connected

2.2.1 Connecting the Hardware

Preparation for Devices to be Connected

This section describes the hardware connections and the installation of MPE720 version 7.

2.2.1

Connecting the Hardware

Assemble and wire all devices to be connected.
The hardware connections are described using the system configuration shown below.

24-VDC
power supply

Machine Controller

Virtual I/0O device*
Inputs activated in MPE720.

Ethernet cable MB00000 MB00001 MB00002

MB00010 MBO00011

* |n this example, M registers in the Machine Controller are used to simulate a virtual I/0O device.
In practice, the input and output signals would be connected to I/O Modules on the Machine Controller, and the
ladder program would be created using | and O registers.

PC running MPE720

2.2.2

Installing MPE720 Version 7

Install MPE720 version 7 on a PC.

Refer to the following manual for the installation procedure.
(70 MP3000 Series Machine Controller System Setup Manual (Manual No.: SIEP C880725 00)

Ladder Program Development Flow

2-3

2.3 Creating a Project

Creating a Project

Use the following procedure to create a project.

1. Double-click the icon shown below on the PC desktop to start MPE720 version 7.

e
m

MPET20 Wer?

2. Select New on the Start Tab Page.

=TS
iT7 Be Gt wow Onino Comple Qebug Wndow Hol =%
DSl AHB M o MRl S Bk o w0 Ehas an]

(OB RBYE § 8 eooe R nFFo S8 <s=¢2>LLEOlx]
A TR Y |

Controlker

Communications Setting

Connection [ETHERNET[1] IP152.168.1.1]
Digconnection

it istory

GPLEZO_SMPL_E YNWI

test 200, YMWT

gy, mpE000F. YWY

[ELacder |E]Mation | [5vstem |

Rz CAP NUM SCRL

3. Specify the file name, file storage location, Machine Controller series, and model.

@
Save_i@E}MPmu o & mE
Flepame: (|MP3o00 =) [oeae]
Saveastype |Froject File [£YMWw7) A=l Cancel |
Help |
Typeselect
Series (" [mpao0o)
Contraller (" cpu-20 =)
A
® ® ©)

® Specify the destination folder in the Save in Box.
@ Enter the file name in the File name Box.

3 Select the applicable series in the Series Box.

@ Select the applicable model in the Controller Box.

4. Click the Create Button.

2.4 Self Configuration

Self Configuration

Set up the system by performing self configuration. Self configuration automatically recognizes
the Modules that are installed in the Machine Controller and the devices that are connected
through the MECHATROLINK connector. This allows you to quickly and easily set up the sys-
tem. You can perform self configuration by using the DIP switch on the Machine Controller or
by using the MPE720.

Refer to the following manual for details on self configuration.
(770 MP3000 Series MP3200 Product Manual (Manual No.: SIEP C880725 10)
(70 MP3000 Series MP3300 Product Manual (Manual No.: SIEP C880725 21)
(70 MP3000 Series MP3100 Product Manual (Manual No.: SIEP C880725 24)

Ladder Program Development Flow

2-5

2-6

2.5 Going Online

Going Online

Set the communications parameters to perform communications between the Machine Con-
troller and PC.

Refer to the following manual for the procedure to set up communications.

(71 MP3000 Series Machine Controller System Setup Manual (Manual No.: SIEP C880725 00)

2.6 Creating Ladder Programs

Creating Ladder Programs

Use the following procedure to create a ladder program.

1. Select Programming — Ladder program from the Launcher.

2.

Information

The Ladder Pane will be displayed.

The following example shows how to create a high-speed program, but low-speed and
startup programs can be created in essentially the same way.

Right-click High-speed under Ladder program, and select New.

B =

Program

E1[1[] tP3000 [CPU-201]

-2 Ladder program

I@Ladder lMDtiDn

The Create New Program Dialog Box will be displayed.

@@ o 8<

Merw:
Merw CP Ladder

Cut Crl+x
Copy Ctrl+C
Paste Ctrl+
Cornpile

Enable Main Program

Disable Main Prograrm

Corwersion of CP ladder

Import
Export

Print...

Click the OK Button.
5I
Prograrm Mo, IH .
Program Mame IMa\n Program
Configuration =l File privileee 01
Detail definitian Read 1]
Whikite: 1
= Use register number 3200
D register a2
Wiork register number 1]
register 1]
iZancel =< Detail

The Ladder Editor will start.

Enter the ladder program.
Ladder programs are entered by inserting rungs, then instructions, and finally parameters for the
instructions. Refer to the following section for details.
¥ Ladder Program Creation Example on page 2-8

4

H Ladder Program Development Flow

2-7

2-8

2.6 Creating Ladder Programs

5. While displaying the ladder program, select Compile — Compile from the menu bar to

compile the program.
When the compilation is finished, the ladder program will be saved automatically.

\@ If an error is displayed in the Output Pane during compilation, the ladder program will not be
saved.
Important

Ladder Program Creation Example
The following example shows how to insert an NOC instruction.

1. Right-click the tab with the row number, and select Insert Rung.

Star;/VH : Main Program

H:Main Program

—onl . Right-click
| a6 ot Ctrlex END)
==t opy ctrkC
B paste Ctri+y
Delete Delete
In=ert Rung Insert
Add Rungs
Insert Rung Comment Shift+Alt+Insert
Delete Rung Comment Shift+alt+Delete

A rung will .be inserted.

@ * H : Main Program

H:Ma in Pr

oy

EMD

S

2. Create the NOC instruction with one of the following methods.
» Drag NO Contact under RELAY in the Task Pane to the inserted rung.

X | Ladder Instruction - & X
E RELAY S

- =
E -l I- NO Contact

<

E - NG Cortact
T

TON
Tus

H:Main Program

On-Delay Timer[l..

)

B0) Drag o

ToFF Oft-Delay Timer[1..
Tlog On-Delay Timer[l

» Double-click at the location at which to insert the NOC instruction, and select A: NO Contact from
the list.

* H : Main Program

H:Main Frozram
BHDT l =
==: Equal (A==E) -
| |>: Greater Than [=H] —
> er Than or Equal (A>=E) F

LA R ntact

ABS : Abzolute Walue
ACOS : Arc Gosine

ADD : Addition

ADDK : Extended Addition
AND : NO Contact

AMND< : Less Than (A<E} hd

2.6 Creating Ladder Programs

» Select the location at which to insert the NOC instruction, and click the NOC Instruction Button A4F.

H‘ File Edit Wiew Online Program Compile Debug Window Help

JREES 458 oc hiGAFE O @EEiw < ke nhup a bl
BTUE BEUS ¥ % eoo LR LEFO D28 <s==+2>80EaLiXS]E
IEE MK ek WD

[Liij-0 CPU-201 C:¥Documents and Settings¥daiz¥My Documents¥manual¥MP30003&pic¥ >4 — 7055 L¥MP3000¥MP3000.YMW7

Setup Programming Monitor Transfer
Engineering buider Print builder car
Ladder - nx

By = H:Ma in

Program

=I[]]] MP3000 [CPU-201]

-1 Ladder program
1] B High-speed

[H : Mai
[Low-speed
B Start
B Interrupt
e [Function

3. Double-click the box with a question mark.

i

The Edit Parameter Dialog Box will be displayed.
4. Enter “MB000000” in the Variable/Register Box and click the OK Button.

1% Edit Parameter x|
Yariable/Reqistet Im

Comment ﬂ

=
(] 4 I Cancel |

“MB000000” will be displayed for the NOC instruction.

MEODOOO0

Note: The types of registers and data you can use depend on the actual instruction. Refer to the following
chapter for details on the different types of instructions.
IS Chapter 4 Ladder Language Instructions

To insert a comment, right-click the tab with the row number, and select Insert Rung Com-

Information ment.

5. Repeat steps 1 to 4 until you have entered the entire ladder program. The following
example shows a ladder program and its timing chart.

<Ladder Programming Example>

AHND circuit

. MBU}UU}UUU MBUIUUIUW MBUP.Q'U 10
U/ S 2 lanp]

timer circuit

-!. MEODOO0Z2 DWO0000 MBUIQ_QIW 1
i) v 0 a2
.

o

EHD

g

b

Note: The ladder programming example that is shown above uses M registers for switches and lamps.
When you enter a ladder program for an actual system, use the appropriate | and O registers.

Ladder Program Development Flow

2-10

2.6 Creating Ladder Programs

<Timing Chart Example>

AND Circuit Operation
ON
SW1 (MB0O0000)
OFF — |
ON
SW2 (MB00001)
OFF
ON
Lamp 1 (MB00010)
OFF
Timer Circuit Operation
ON
SW3 (MB00002)
OFF — |
5
Timer (DW00000)
0 5s
ON
Lamp 2 (MB0O0O11)
OFF

2.7 Writing the Ladder Programs

Writing the Ladder Programs

Use the following procedure to transfer the ladder program to the Machine Controller. This pro-
cedure is not necessary if you created the ladder program online.

1. Click Communications Setting on the Start Tab Page.
SL=IES

i Ele Edit View Onlne Compile Debug Window Help 8%
JRSEB AHEHM oo MDBEFE S HEih o ke ohwD a6l

U E EUE ¥ £ eoo DhiH0nLFo > <s=+2>ELEEL XS]

: EC TR LY

CPU-201 C:¥Documents and Settings¥daiz¥My Documents¥manual¥MP3000Epic¥ 54 — 005 A¥MP3000¥MP3000.YMW7

Programming Monitor Transfer

wilder Print builder Electro

Ladder e
B = £y History % My tool & RELAY
Program MATH
=I(T1] MP3000 [CPU-201] LOGIC
“21 [Ladder program E CONTROL
B tigh-speed FUNCTION
Communications Setting [MOVE
[E] Low-speed
H[E Start Connection DDC
- [E] Interrupt 4 B TABLE
@B Function i i i & SYSTEM
MOTION

C PROGRAM
CPUZO01_SMPL_E YMWT
tastZ01. YMWT
copy_mp3000F. YMWT

[Elad...|[Emot. . Msys...|

Readly CAP NUM SCRL

2. Select the desired communications port in the Communication Port Box on the Com-
munications Setting Dialog Box. Click the Connection Button.
=
Set the communication settin m)
Cemmummnonportqn_HEiNEr[ﬂ (IP:192.168.1.123) L -]) Seting
1P Setting Cancel
[peete |

-
Communications Setting

S

Delete
i Manual settings
Target IP address 192 . 18 . 1 . 1
L Initialize Port
B Search and set
L Search Controller

N Controller Communication Info. Madule name

B CPU-201 192.168.1.1 /9999 CONTROLLE...

| [F] Use the router

L= - - =

3. Select Transfer — Write into controller from the Launcher.

WL MPET20 Ver.7 - Sample - MP300D [CPU-201] - [Start] 1=
(7Y B G yew Ordeo Comple (obug Wdow b - &
DEERY s B oo dnaRer 96 @Eid o re hmaeD o600
OB RBYE ¥ E soo Aliunfxo 28 <s=+z>-sRol:xe]
iEE R wh?f

ETHERNETI1] 1P192.168.1.1 cPu-ruy. ——+ [

El BYSTEM
B MOTION

' 'EI IIE ||§

A Monitor [Alarm Moreke Create Hew Lsckder e e
r Lacider Program “ﬁ‘wu Mation Program Frogram Bl C PROGRAM
T N I = |-
: ; a N
Scopal Scopad T Par] Systam Setting Transter
-
= —

[Ellad...[EMot...|[Ders...| | lb

Ladder Program Development Flow

2.7 Writing the Ladder Programs

4. Click the Individual Button, then select only the Program Check Box. Click the Start
Button.

Transfer Proeram - Write into Gontroller

<3| Source Project File : CPU-201 (MP3000.¥MWT)

D §
~ Start _I | 0%
% Batch | |qi'-_l|h1d|wdua\

Transfer file type

Ladder program
Motion program
Sequence program

[[1 System Configuration

 — & Takle deta

[T Redister [Variable
Tt LUser Structure

[Comment - [Watch

Transfer option -
Write the parameter, into the SERVOPACK, J e

Options | Close I

A

[[] 5ave to flash after transferring to the controller,

Note: 1. When an individual transfer is selected, the same file in the Machine Controller will be overwritten with the
selected project file data.

2. When a batch transfer is selected, the Machine Controller's RAM will be cleared before the transfer, and all
project file data will be written in the RAM.

5. Click the CPU STOP Button.
x|

. Controller is running.
y There iz a possibility to cause the following problems when transfer during RUM.

1. There is a poszibility that the application miscalculation.

2. It will take more time while to complete transfer.

3. When high-speed scan setting value iz changed on the GPU with built-in SWC, MEGHATROLINK communication is reset and position
data will be reset as a result. Executing ZRET/ZSET command after chaneing setting is recommended to recover the position data.

Do you want to continue transfer?

Yes Cancel

The transfer will start.

6. Click the Yes Button in the following dialog box.
B

y RUM the controller?

The Machine Controller will switch to RUN Mode.

2-12

2.8 Checking the Operation of the Ladder Programs

2.8.1 Preparations for Checking Operation

Checking the Operation of the Ladder Programs

Use the following procedure to confirm the operation of your ladder program.

Confirm that your program operates correctly by manipulating registers with the Register List,
and by checking the runtime monitor in the Register List and Ladder Editor.

2.8.1

Preparations for Checking Operation

Use the following procedure to prepare to check the operation of your program.

Double-click the target ladder program in the Ladder Pane.

n Fle Edit View Online Comple Debug Window Help
DEEEB B Mo @Rz E S Bt o ke hwD 66l
LTE BUZ § E oo AL H#£%0 dalcs=—d2>alimplno]

iEE AN ma T EE

Program
B[] MPz000 [CPU-201]
=] [Ladder program

£ [High-speed

[B H : Main Proaram

[Low-speed

[E Start

[T Inkerrupt

[E] Function

Double-click

=10ix]

-3 X

ETHERNET[1] IP192.168.1.1 CPU-RUN

&y Histary

“i My tool

Communications Setting
Connection [ETHERNET[11 IP192.168.1.11
Disconnection
History
3000 YMW7
U201 _SMPL_E YMW?

test201 YMW/
copy_mp3000F. YMW7F

Tasks Pane
RELAY
MATH
LOGIC
CONTROL
FUNCTION
MOYE

DDC

TABLE
SYSTEM
MOTION

C PROGRAM

CAP WUM SCRL

Click the Register List 1 Tab.
The Register List 1 Dialog Box will be displayed.

Information

ing one of these steps.
» Select View — Register List — Register List 1 from the menu bar.
» Select Monitor — Register List from the Launcher.

Reqister List 1 x

Registar |

If the Register List 1 Tab is not visible, display the Register List 1 Dialog Box by perform-

Ladder Program Development Flow

2.8 Checking the Operation of the Ladder Programs

2.8.2 Confirming the Operation of the 0000th Line (AND Circuit)

3. Enter “MB000000” in the Register Box.
The register list will expand as shown below.

Register List 1 b4
Register [MBOOOOOD -|| - |18 = BEaod &
0o [1 [z [3 |4« [5 |6 |7 [8 [a |a B [c b [E |F

MBO000OD OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF
MEBO00010 [OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF
MBOO0ODZ0 |OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF
MBOOO030 |OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF
MBOOOD40 |OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF
MBOOODSO0 |OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF
MBOOOOGO0 |OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF
MBOOO0O70 |OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF -

282 Confirming the Operation of the 0000th Line (AND Cir-

cuit)

Use the following procedure to check the operation of the 0000th line.
1. Set MB00000O to ON in the Register List. Confirm that the NO contact for MB0O000OO in
the Ladder Editor changes to blue.

Note: When a coil or contact is highlighted in blue, it means that it is ON.

H:Mal F rog mm -

AND elren

algeles, (207

time relren it il

Confirm that the contact changes [[l
EErTE 0.]
— N
Register |MBOOOO0D - |[1s B Eol
o (1 (2 [3 [4 |5 |6 [z [8 |9 |a [B [c b [|F
MBODD00D OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF
MBODDD10 OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF
MBOD0OO20 | OFF | OFF OFF OFF OFF OFF OFF OFF OFF OFF
MBODOO30 |OFF OFF OFF Input ON. OFF OFF OFF OFF OFF OFF OFF OFF
MBROMNNA N neErF nNEF nEF nNEF nNEF neErF nNEF nEF nNEF nNEF neErF

2. Set MB000001 to ON in the Register List. Confirm the following points.
« In the Ladder Editor, the NO contact for MBO0O00O1 and coil for MBO0O0O0O10 must be blue.
* In the Register List, MB0O00010 must be ON.

Confirm that the contact
changes to blue.

H:Mali P g ram

AND clrcilt

2-14

timer ez it

el Confirm that the coil
Register List 1 changes to blue.
Register | MBOO0OO - |_‘ -|[1e

0 1 [z Input ON. o [a B [c o [[F
MBODOD0D OFF F OFF OFF OFF OFF OFF OFF OFF
MEBODOD10 [OFF | OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF
MEODODZ0 OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF
MEDDOD3I0 OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF
RASHHRENAEE e ncc (noc 15 nce Inee loee (ncc lnce Tnoe Tnec lnoc Tocc Tnce oo

Confirm that the
register is ON.

2.8 Checking the Operation of the Ladder Programs
2.8.3 Confirming the Operation of the 0001st Line (Timer Circuit)

28.3 Con)firming the Operation of the 0001st Line (Timer Cir-
cuit

Use the following procedure to check the operation of the 0001st line.

Set MB000002 to ON in the Register List. Confirm the following points.
» The DWO0O0O0OQO timer must increment every second.

et cont
W BOCOOOZ MBOO00 1
n [u]ulnln}a) DDQO0
-] T & Lanpz
% Confirm that the value

LDP LDFI Tincrements every second.

Register [MBOO0O0O -1 <|[1s Bhi= HaoLw

[+ |5 |6 |7 8 |9 (oA B [c o [[F
ﬁﬁ* OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF
QFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF
OFF OFF OFF 0O = < - = OFF OFF OFF OFF OFF OFF OFF OFF
nNEF [pl= nNEE | |r]put ON . nNEF [pl= nNEE [pl=4 [pl= nNEF [pl= nNEE

MBO0DOODDD
MBODOO10

MEODODZ0
MEANANTN

» After five seconds, the coil for MBO0O0O011 must turn blue in the Ladder Editor.
* In the Register List, MBO00011 must be ON.

;
o

MBOOOOOZ tys=t Pycont MBO00011 =l =

. X o o00os B0 L g

36 f z

=na & = Lamp2 / E

_ g

— =

LDP Lorr (Confirm that the coil changes to blue.

Register | MBOO0OD0 -1][16 e EoL T

3 4 [5 [[z [8 (9 [a [B c b [E |F
OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF

FF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF
OFF OFF OF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF

‘ Confirm that the register is ON.

MEBO00D00D
MEDDOD1D
MEBO000Z0

H Ladder Program Development Flow

2.9 Save the Ladder Program to Flash Memory

2A*8 Save the Ladder Program to Flash Memory

Use the following procedure to save the Machine Controller RAM data to the flash memory in
the Machine Controller.

1. Select Transfer — Save to Flash from the Launcher.

[MPE720 Ver 7 — Sample — MP3000 [GPU-201] — [Start] —[of x|
:FY Fle Edit View Online Comple Debug Window Help -&x

D2SEY s5B Moo HpaEFe S& BEit <o ke hmuD o 5]

BuE EUE S E sooc dlii#fFo o <s=£2>LEE1NS]
IEE NN ek P EE

ETHERNET[1] IP192.168.1.1 CPU-RUN =51

0 Transfer
Laddler Tasks Pane Tax

B =

Program

=I[[]MP3000 [cPU-201]

- E1 [Ladder program
= [y High-speed

[ED Low-speed

[l H : Main Program

Communications Setting

RELAY
MATH
LOGIC
CONTROL
FUNCTION
MOVE

[E] Start Connection [ETHERNET[1] 1P182.168.1.1] bbc
- [E] Internupt TABLE
[Function SYSTEM
MOTION
C PROGRAM

Disconnection

GPU201_SMPL_E YMW?
test201_ YMWY
copy_mp3000F. YMW7

{@‘Ladm“al\ﬂnt..l[l]jsvsm J

CAP NUM SCRL »

2. Click the Start Button.

wi'riting karget controller : CPU-201 (Ethernet[1] IP192.168.1.1)

This may take some time, depending on the data ko be saved,

Close I

v

Options |

3. Click the No Button.
x

i] The controller is runnine, =0 it may take more time to save to flagh.

Should the contraller continue to run during save to flash?

H Cancel |

The MPE270 begins saving the data to flash memory.

4. Click the Yes Button.
|

.
\J J RUM the controller?

The Machine Controller will switch to RUN Mode.

S Make sure to save the data to flash memory after writing it to the Machine Controller’s RAM.
@ Failure to save the data to flash memory will result in loosing data when the power is turned OFF
and ON again, causing the Machine Controller to run on the data that was last saved in the flash
Important - memory.

2-16

Registers

Registers are areas that store data within the Machine Con-
troller. Variables are registers with labels (variable names).
This chapter describes registers.

R Global Registers32
B Local Regstrs ..o Bt

3.2.2

3.2.3

_

3.3.1
3.3.2

X Index Registers () ... 312
Bl Arvay Registers () -................. 314

Precautions When Using Local Registers within

aUserFunction.......................... 3-5
Setting the D Register Clear When Start

Option ... 3-6
Setting for D Registers 3-7

Register Types
DataTypes 3-8

3.1 Global Registers

Global Registers

Global registers are shared by ladder programs, user functions, motion programs, and
sequence programs. Memory space for global registers is reserved by the system for each reg-

ister type.
Ladder — User e Motion programs/ —
programs - functions — sequence —
l_ | programs l_
| | |
| ‘ | ‘ | ‘
Global Registers
S registers M registers G registers | registers O registers C registers
65'536 65,536 words
65,535 words| | 1,048,576 2,097,152 words Output data + |16,384 words
words words Input data + Setting
Monitor parameters +
parameters + | |opy interface
CPU interface outputs
inputs
The following table gives details about global registers.
Designation L
Type Name Method Usable Range Description
SBnnnnnh, ,
These registers are prepared by the system.
SWnnnnn, .
They report the status of the Machine Controller
s . SLnnnnn, . .
s ystem registers sQnnnnn SW00000 to | and other information.
(S registers) ’ SW65534 The system clears the registers from SW00000
SFnnnnn,
to SW00049 to O at startup.
SDnnnnn, They have a battery backup
SAnnnnn '
MBnnnnnnnh,
MWnnnnnnn,
) MLnnnnnnn, MWO0O000000 | These registers are used as interfaces between
M Data registers MQ t
(M registers) nnnnnnn, o programs.
MFnnnnnnn, MW1048575 | They have a battery backup.
MDnnnnnnn,
MANNNNnnn
GBnnnnnnnh,
GWnnnnnnn,
GLnnnnnnn, GWO0000000 | These registers are used as interfaces between
G | Gregisters GQnnnnnnn, to programs.
GFnnnnnnn, GW2097151 | They do not have a battery backup.
GDnnnnnnn,
GANnnnnnn,

3-2

Continued on next page.

3.1 Global Registers

Continued from previous page.

Designation o
Type Name Method Usable Range Description
IWO00000 to
IBhhhhhh, :w%ggg to These registers are used for input data.
IWhhhhh, IW17FFF
: ILhhhhh,
I Inputl registers IQhhhhh, IW08000 to These registers store the motion monitor
(I registers) IWOFFFF,
IFhhhhh, IW18000 to parameters.
IDhhhhh, W1 FFFF These registers are used for Motion Modules.
IAhhhhh,
IW20000 to These registers are used for CPU interface
IW23FFF input data.
OWO0O0000 to
OBhhhhhh SVWV%SEE to These registers are used for output data.
OWnhhhhh, OW17FFF
. OFhhhhh,
@) Output registers OQhhhhh, OWO08000 to These registers store the motion setting param-
(O reqisters) OWOFFFF,
OFhhhhh, OW18000 to eters.
ODhhhhh, OW1FFFF These registers are used for Motion Modules.
OAhhhhh,
OW20000 to | These registers are used for CPU interface out-
OW23FFF put data.
CBnnnnnh,
CWnnnnn,
, CLnnnnn, These registers can be read in programs but
C (%opes tﬁsr;’é:se)glsters CQnnnnn, gw?gggg to they cannot be written.
9 CFnnnnn, The values are set from the MPE720.
CDnnnnn,
CAnnnnn

Note: n: decimal digit, h: hexadecimal digit

H Registers

3-3

3-4

3.2 Local Registers

Local Registers

Local registers can be used within a specific drawing. They cannot be used in other drawings.
<Ladder Program Conceptual Diagram>

Parent drawing Child drawing User function User function
H HO1 FUNCO1 FUNGCO2
registers # registers X registers X registers
D registers D registers Y registers Y registers
A A Z registers Z registers
/ \ / \ # registers # registers
These registers cannot be shared between D registers D registers

different drawings.

\ J

These registers cannot be shared between
different drawings.

The following table gives details about local registers.

Designation

Usable

Type Name Method Range Description Features
#Bnnnnnh,
#Wnnnnn,
. #L.nnnnn, #W00000 to These registe.rs can be read in programs but they
| # registers | #Qnnnnn, #W16383 cannot be written.
#Fnnnnn, The values are set from the MPE720.
#Dnnnnn,
#Annnnn Pro
These registers can be used for general purposes gram-
DBnnnnnh, within a program. specific
DWnnnnn, By default, 32 words are reserved for each pro-
DLnnnnnN, gram.
D | Dregisters | DQnnnnn, Bw?gggg to The default value after startup depends on the
DFnnnnn, setting of the D Register Clear when Start
DDnnnnn, Option.
DANnnnnn Refer to the following section for details.
I 3.3.2 Data Types on page 3-8
These registers are used for inputs to functions.
« Bit inputs: XBOO0O0O0O to XBOOOOOF
é\?v”n”n”n”n”nh' - Integer inputs: XW00001 to XW00016
Function XLnnnnn ’ XW000001t0 | * Double-length intelgers: XLO0001 to XLOO015
X |input Xannnn’ XW00016 » Quadruple-length integers: XQ00001 to
registers XFnnNnN ’ XQ00013
XDnnnnny » Real numbers: XFO0O001 to XFOO015
» Double-precision real numbers: XD0O0O001 to
XD00013 Func-
These registers are used for outputs from func- tion-
tions. specific
YBnnnnnh, « Bit outputs: YBO0O000O to YBOOOOOF
Function YWnnnnn, * Integer outputs: YW00001 to YW00016
Y | output YLnnnnn, YW00000to | « Double-length integers: YLOO0O1 to YLOOO15
registers YQnnnnn, YWO000016 | « Quadruple-length integers: YQ00001 to
YFnnnnn, YQO0013
YDnnnnn » Real numbers: YFOO001 to YFOO015

» Double-precision real numbers: YDOOOO1 to
YDO0O0013

Continued on next page.

3.2 Local Registers

3.2.1 Precautions When Using Local Registers within a User Function

Continued from previous page.

Designation Usable L
Type Name Method Range Description Features
These are internal registers that are unique within
each function. You can use them for internal pro-
cessing in functions.
Zonnnnnn, - Bits: ZBO0D00O to ZBOOOB3F
Function ZLnnnnn ’ ZW000001t0 | ° Integers: ZW00000 to ZW00063
Z |internal 7Q ’ » Double-length integers: ZLOO0O0O to ZL00062
. nnnnn, ZW00016 : .
registers » Quadruple-length integers: ZQ0O0000 to
ZFnnnnn, ZQ00060
ZDnnnnn - Real numbers: ZFO0000 to ZFO0062 Func-
« Double-precision real numbers: ZDO000O to tion-
ZD00060 specific
ABnnnnnh These are external registers that use the address
AWnNNNN ’ input value as the base address.
Function ALnnnnn ’ 0to When the address input value of an M or D regis-
A | external AQ ’ ter is provided by the source of the function call,
) nnnnn, 2097152) .
registers AFNANNN then the registers of the source of the function call
ADnnnnn, can be accessed from inside the function by using
that address as the base.

Note: n: decimal digit, h: hexadecimal digit

Important

@ User functions can be called from any programs, any number of times.

3.2.1

Precautions When Using Local Registers within a User

Function

When you call a user function, consider what values could be in the local registers, and perform
initialization as needed.

Name Precautions
éurr?gtliscfﬁr; ut If input values are not set, the values will be uncertain.
registers) P Do not use X registers that are outside of the range that is specified in the input definitions.
gurr?gtli%[r?rcfut ut If output values are not set, the values will be uncertain.
registers) P Always set the values of the range of Y registers that is specified in the output definitions.
7 registers When the function is called, the previously set values will be lost and the values will be
o uncertain.
%Jr}ggg)mtemal These registers are not appropriate for instructions if the previous value must be retained.
9 Use them only after initializing them within the function.
registers These are constant registers. Their values cannot be changed.
When the function is called, the previously set values are preserved.
If a previous value is not necessary, initialize the value, or use a Z register instead.
D registers D registers retain the data until the power is turned OFF.

The default value after startup depends on the setting of the D Register Clear when Start
Option. Refer to the following section for details.
I 3.3.2 Data Types on page 3-8

H Registers

3-5

3.2 Local Registers

3.2.2 Setting the D Register Clear When Start Option

322 Setting the D Register Clear When Start Option

1. Select File — Environment Setting from the MPE720 Version 7 Window.
2. Select Setup — System Setting.
3. Select Enable or Disable for the D Register Clear when Start Option.

Disable: The initial values will be uncertain.
Enable: The initial values will be 0.

- e —S—S—___—R—
Envircnment Setting

[System

71 Security System Setting

5 Setup Virite Protect Writable -

b B Systemn Setting
Scan Time Setting PCI Reset Signal Disable

7 Ladder D Register Clear when Start

71 Motion
| D Variable Battery Connection Connect

1 Monitor High-speed drawing operation mode

71 Transfer

£ Print Start measuring high-speed scan processing time | From 1st scan (default)

71 Message Keep Latest Value(Mumber of scan of keep latest value

when abnormal input)
| High-speed Input 2 = scan (1 to 255)
Low-speed Input 2 $ scan (1 to 255)

Calender Setting

Date and Time 06/02/2014 14:40 -

(o]

-

] [Cancel Apply

3.2 Local Registers

3.2.3 Setting for D Registers

3.2.3

Setting for D Registers

Specify the range of registers that will be used on each drawing in the Program Property Dialog
Box.

The default setting for D registers is 32 words for one drawing, but this can be extended to a
maximum of 16,384 words.

Use the following procedure to extend the range of D registers.

1. Right-click the drawing in the Ladder Pane and select Property.

5 MPE720 Ver.7 - MP330 TR

! Fle Edt View Online Mew CP Ladder
JB8E% 4E

BT E BUS Open[other] v
PEE NN hiA{,Cut Cirl+x
CcPu-301(1{ES RV ci+c

Programming B paste cul+v

Delete Delete

Setup
System Scantime setting

Ladder A

Rename
By =
._jl = Compile
Program
E[[D MP3300 [CPU-301(16axe Set the Password
-] [Ladder program

Cancel the Password

- [High-speed
Enable/ Disable

-E[E start Conversion of CP ladder

- [E] Interrupt

- [E] Function Import r
Export 3
Property
Print...

The Program Prolej-er'ty DiaI(;g Box will be displayed.

2. Change the range of D registers to 100 and click the OK Button.
@ Program Property @

Program No. H

Program Name Main Program

Configuration = File privileee 1
Detail definition Read
Modified history Write
= Use register number 100, 0,0, 0
100

Woark register numb... | 0

register 1]

First Address for A.. |0

D register
Set the use number of D register. (0~ 16384)

This concludes extending the range of D registers.

H Registers

3-7

3.3 Structure of Register Addresses

3.3.1 Register Types

Structure of Register Addresses

Register address = S W 00000
Range (The number of digits depends on the register type and data type.)
Data type

Register type

You can also use index registers or array registers as variables to address specific registers.
Refer to the following section for details.

I 3.4 Index Registers (i, j) on page 3-12

I 3.5 Array Registers ([]) on page 3-14

Information

331 Register Types

Refer to the following section for the types of registers.
I 3.1 Global Registers on page 3-2

I 3.2 Local Registers on page 3-4

332 Data Types

There are various data types that you can use depending on the purpose of the application: bit,
integer, double-length integer, quadruple-length integer, real number, double-precision real
number, and address.

3-8

Symbol Data Type Range of Values Data Size Description
, Used in relay circuits and to
B Bit 1(ON) or 0 (OFF) B determine ON/OFF status.
Used for numeric operations.
-32,768 to 32,767 The values in parenthesis on
w Integer (8000 to 7FFF hex) 1 word the left are for logical opera-
tions.
Used for numeric operations.
L Double-length -2,147,483,648 to 2,147,483,647 2 words The values in parenthesis on
integer (80000000 to 7FFFFFFF hex) the left are for logical opera-
tions.
-9223372036854775808 to Used for numeric operations.
Q Quadruple-length | 9223372036854775807 4 words The values in parenthesis on
integer™! (8000000000000000 to the left are for logical opera-
7FFFFFFFFFFFFFFF hex) tions.
Foo|Red +(1.175E-38 10 3.402E+38) or 0 | 2words | 200 for advanced numeric
number operations.
p |Double-precision |, o5 308 10 1.798E4308) or 0| 4 words | Dood for advanced numeric
real number operations.
A | Address 010 2,097,152 - Used only as pointers for
addressing.

*1. These data types cannot be used for indirect designation of motion programs.
*2. Conforms to IEEE754 standards.

@

Important

The MP3000-series Machine Controller does not have separate registers for each data type. As
shown in the following figure, the same address will access the same register even if the data

type is different.

For example, MBO0001003, a bit address, and the MW0000100, an integer address, have differ-
ent data types, but they both access the same register, MW0000100.

3.3 Structure of Register Addresses

3.3.2 Data Types

— Data Types and Register Designations

Integer data type

One word is allocated for each register address.

An extra digit that specifies the bit (3) is appended
to the end of the register address (0000100).

[MB00001003] «———— Bit data type

Address data l FEDCBAO9E 765418210
type [MW0000100] |
[ML0000100]
[MFO000100]
[MAO00O101] —pW0000101]
[MW0000102]
[ML0000102]
[MFO000102]
[MW0000103)] |

[MB0000103B]

If MAOO0O0101 is specified as a pointer, it addresses a
continuous data area with the specified register
address (0000101) as the starting address. This data
area can be used with all data types in internal
processing for functions.

Bit data type Double-length integer or -
real number data type -

The addressed register (0000102) and
the following register (0000103) are
combined as a 2-word area. Therefore
the register addresses are specified at
intervals of 2.

Pointer Designation
@ When an address is passed to a function as a parameter, this is referred to as pointer designa-

tion.

Term When pointer designation is used, the continuous data area starting from the address of the
specified register address can be used in internal processing for functions with all data types.

H Registers

3-9

3-10

3.3 Structure of Register Addresses
3.3.2 Data Types

Precautions for Operations Using Different Data Types

If you perform an operation using different data types, be aware that the results will be different
depending on the data type of the storage register, as described below.

 Storing Real Number Data in an Integer Register

<When Numbers Are Truncated After the Decimal Point>
MWO0O000100 = MFO000200: The real number data is converted to integer data and stored in
M (1.5678) the destination register.

<When Numbers Are Rounded Off>
MWO00100 = MF0O00200
©) (1.5678)
MW100 = MFO00200
(-2) (-1.5678)
Note: There may be rounding error due to storing a real number in an integer register.
Whether numbers are rounded or truncated when converting a real number to an integer can be set
in the properties of the drawing.
I Setting for Real Number Casting on page 3-11
MWO0O000100 = MFO000200 + MFO000202: The result of the operation may be different
(0124) (123.48) (0.02) depending on the value of the variable.
(0123) (123.49) (0.01)

» Storing Real Number Data in a Double-length Integer Register
MLOO0O0100 = MFO000200: The real number data is converted to integer data and stored in
(65432) (65432.1) the destination register.

 Storing Double-length Integer Data in an Integer Register
MWO0000100 = MLO000200: The lower 16 bits of the double-length integer data are stored
(-00001) (65535) without change.

« Storing Integer Data in a Double-length Integer Register
MLOO00100 = MWO0000200: The integer data is converted to double-length integer data and
(0001234) (1234) stored in the destination register.

3.3 Structure of Register Addresses

3.3.2 Data Types

Setting for Real Number Casting

The casting method (truncating or rounding) can be set in the detailed definitions in the Pro-

gram Property Dialog Box.
The method to use for real number casting is set for each drawing.

Use the following procedure to display the Program Property Dialog Box.

1. In the Ladder Pane, select the ladder program for which to view the properties.

2. Right-click the selected program and select Property from the pop-up menu.
The Program Property Dialog Box will be displayed.

[Q Program Property S

Program Mo. H

Program MName Main Program

Configuration Setting the operation whe... JILEQlEEITE] =]
= Detail definition
Detail information
Real number -=> integral cz
Subscript register limit che
Modified history

Setting the operation when real number

Setting the operation when real number = integral
number cast.

Truncatior: MP2000 series standard

Found: MP300 series compatible{lncreases the compile

4 [b | timed
o][oo |
; The data is little endian, as shown in the following example.
Inf t
niormation . MBo0001006
MBO00001006
Bit F E D C B A 9 8 7 6 5 4 3 2 1 0

MW0000100

+ MWO0OO000100 = 1234 hex

MWO0000100 1234 hex

+ MLOO0O0O100 = 12345678 hex

MWO0000100 5678 hex
MLO000100

MWO0000101 1234 hex

MQO000100 = 123456789ABCDEFO hex

~
MWO0000100 DEFO hex
MWO0000101 9ABC hex

> MQO000100
MWO0000102 5678 hex
MWO0000103 1234 hex

H Registers

3-12

3.4 Index Registers (i, j)

Index Registers (i, j)

There are two special registers, i and j, that are used to modify relay and register addresses.
The functions of i and j are identical. They are used to handle register addresses like variables.

There are index registers for each program type, as shown in the following figure.

DWG.A DWG.H DWG.L DWG.I Motion Sequence
program* program*
iand | iandj iandj iand | iandj iand |
registers registers registers registers registers registers

* Motion programs and sequence programs have separate i and j registers for each task.

Note: Functions reference the i and j registers that belong to the calling drawing.
For example, a function called by DWG.H will reference the i and j registers for DWG.H.

We will now describe how an index register behaves using examples for each register data
type.
+ Attaching an Index to a Bit Register

Using an index is the same as adding the value of i or j to the register address.

For example, if i = 2, MBOO0O00OOQi is the same as MB0O0O000002.

1=2; Equivalent
DB000000 = MBO0O000000i; <= DB0O00000 = MB0O0O000002;

 Attaching an Index to an Integer Register
Using an index is the same as adding the value of i or j to the register address.
For example, if j = 30, MWO0O0000O01j is the same as MW0000031.

j=30; Equivalent
DWO00000 = MW0000001j; <@g DWO0000 = MWO000031;

« Attaching an Index to a Double-length Integer or a Real Number Register
Using an index is the same as adding the value of i or j to the register address.
For example, if j = 1, MLOO000O0O;j is the same as MLO0O00001. Similarly, if j = 1, MFOO0O000Q;j
is the same as MFO0O00001.

Double-length Integer Upper 1 word Lower 1 word

MWO0000001 MW0000000
Ifj = 0, MLOO0000O)] is MLOO00OO. | | |

MWO0000002 MW0000001
Ifj = 1, MLOOO0OOO] is MLOOO0OO!1. | \ l

Real Number Upper 1 word Lower 1 word

MW0000001 MWO000000
It = 0, MFO000000] is MFO000000. | \ |

MW0000002 MWO00000!
It = 1, MFO000000j is MFO000001. | \ |

Information Double-length integers and real numbers use a region that is 2 words in size. For example,
when using MLO000000j with both j = 0 and j = 1, the one-word area of MW0000001 will
overlap. Be careful of overlapping areas when indexing double-length integer or real number
register addresses.

3.4 Index Registers (i, j)

« Attaching an Index to a Quadruple-length Integer or a Double-precision Real Number Regis-
ter

Using an index is the same as adding the value of i or to the register address.

For example, if j = 2, MQO0O000OQj is the same as MQO000002. Similarly, if j = 2, MDO0000OQj
is the same as MD0000002.

Quadruple-length Integer Upper 2 words Lower 2 words
A

r N A
MWO0000003 MW0000002 MWO000001 MWO000000

It = 0, MQOOO0000] is MQO00000O. | | | | |

Upper 2 words Lower 2 words
r N\ . 3

MWO0000005 MWO0000004 MWO000003 MWO0000002

If j = 2, MQOO00000; is MQOO00002. ‘

Double-precision Real Number Upper 2 words Lower 2 words
A

r N A
MWO0000003 MWO0000002 MWO0000001 MWO000000

If] = 0, MDOO00OOO] is MDOOOOOOO. | | | | |

Upper 2 words Lower 2 words

I N N
MWO0000005 MWO0000004 MWO000003 MWO00000

If j = 2, MDO000000;j is MD0O000002. ‘

Quadruple-length integers and double-precision real numbers use a region that is 4 words in
size. For example, when using MQO0O00000j with both j = 0 and j = 2, the two-word area of
MWO0000002 and MWO0000003 will overlap. Be careful of overlapping areas when indexing
quadruple-length integer or double-precision real number register addresses.

Information

H Registers

3.5 Array Registers ([])

Array Registers ([])

Array registers are used to modify register addresses, and are denoted by square brackets [].
They are used to handle register addresses as variables.
Similarly to index registers, an offset is added to the register address.

« Attaching an Array Register to a Bit Register

Using an array register is the same as adding the value of the array register to the register
address.

For example, if DW00000 = 2, MBOOO00O0O0O[DWO00000] is the same as MBOO0O00002.

DWO00000 = 2; Equivalent
DB000020 = MBOO0O0000O[DWO000(]; g DB000020 = MBO0O000002;
« Attaching an Array Register to a Register Other Than a Bit Register
Using an array register is the same as adding the word size of the data type of the array reg-
ister times the value of the array register to the register address.

For example, if DW00000 = 30, MLOO0O0002[DW00000] is the same as MLO0O00062.
DL0O0002 = MLO0000 (30 x 2 + 2) = MLO000062

DWO00000 = 30; .
Equivalent
DLO0002 = MLOO00002[DWO00000]; «@m=—==pp D[00002 = MLOO00062;

3-14

Ladder Language
Instructions

This chapter describes the ladder language instructions in
detail.

4.1.1 Ladder Language Instructions
4.1.2 How to Read the Ladder Language

Instructions 4-10
Relay Circuit Instructions4-11

421 NOContact(NOC) 4-11
4.2.2 Rising-edge NO Contact (ONP-NOC) 4-12
4.2.3 Falling-edge NO Contact (OFFP-NOC) 4-13
424 NCContact(NCC)....... 4-14
4.2.5 Rising-edge NC Contact (ONP-NCC) 4-14
4.2.6 Falling-edge NC Contact (OFFP-NCC) 4-15
4.2.7 1-ms ON-Delay Timer (TON(1ms)) 4-16
4.2.8 1-ms OFF-Delay Timer (TOFF(1ms)) 4-18
4.2.9 10-ms ON-Delay Timer (TON(10ms)) 4-19
4.2.10 10-ms OFF-Delay Timer (TOFF(10ms)) 4-21
4.2.11 1-s ON-Delay Timer (TON(1S)) 4-22
4.2.12 1-s OFF-Delay Timer (TOFF(1s)) 4-24
4.2.13 Rising-edge Pulses (ON-PLS) 4-25
4.2.14 Falling-edge Pulses (OFF-PLS) 4-27
4215 Coil (COIL) .. 4-29
4.2.16 Reverse Coil REV-COIL) 4-30
4.2.17 Rising-edge Detection Coil (ONP-COIL) 4-31
4.2.18 Falling-edge Detection Coil (OFFP-COIL) 4-31
4219 SetCoil (S-COIL) oviiiii i 4-32

4220 ResetCoil (R-COIL) ovviiiii .. 4-33

431 Store(STORE) 4-34

432 Add(ADD (+)) « vt v 4-35
4.3.3 Extended Add (ADDX (++)) -+« v oo vvv et 4-36
434 Subtract(SUB(-)) it 4-38
4.3.5 Extended Subtract (SUBX (--)) 4-39
4.3.6 Multiply MUL(X))ot 4-41
437 DivideDIV(+)) ..o 4-42
4.3.8 Integer Remainder (MOD) 4-43
4.3.9 RealRemainder(REM) 4-45
4.3.10 Increment(INC) 4-46
4.3.11 Decrement(DEC) 4-47
4.3.12 Add Time (TMADD) 4-48
4.3.13 Subtract Time (TMSUB) 4-50
4.3.14 Spend Time(SPEND) 4-52
4.3.15 InvertSign(INV) i 4-54
4.3.16 One’s Complement (COM) 4-55
4.3.17 AbsoluteValue (ABS) 4-56
4.3.18 Binary Conversion (BIN) 4-57
4.3.19 BCD Conversion(BCD) 4-58
4.3.20 Parity Conversion (PARITY) 4-59
4.3.21 ASCII Conversion 1 (ASCIl) 4-60
4.3.22 ASCII Conversion 2 (BINASC) 4-61
4.3.23 ASCII Conversion 3 (ASCBIN) 4-62
441 Inclusive AND(AND) 4-64
442 Inclusive OROR) 4-65
443 Exclusive OR(XOR) 4-66
444 LessThan (<)vviii i 4-67
445 LessThanorEqual () 4-68
446 Equal(s) 4-69
447 NotEqual(#), 4-70
448 GreaterThanorEqual (®) 4-71
449 GreaterThan(>), 4-72
4410 Range Check (RCHK) 4-73
4.5.1 Call Sequence Program (SEE) 4-75
4.5.2 Call Motion Program (MSEE) 4-76
4.5.3 Call User Function (FUNC) 4-78
454 Directlnput String (INS) 4-79
4.5.5 Direct Output String (OUTS) 4-81
456 Call Extended Program (XCALL) 4-83
4.5.7 WHILE Construct (WHILE, END_WHILE) 4-84
458 FOR Construct (FOR, END_FOR) 4-86
459 IFConstruct (IFEND_IF) 4-88
4.5.10 IF-ELSE Construct (IF, ELSE, END_IF) 4-90

4.5.11 Expression (EXPRESSION) 4-91

4.6.1 Square Root (SQRT) 4-93
46.2 Sine(SIN) ... 4-94
46.3 Cosine(COS) 4-95
46.4 Tangent(TAN.) 4-97
46.5 ArcSine(ASIN) 4-98
4.6.6 ArcCosine(ACOS) ..., 4-99
4.6.7 ArcTangent (ATAN) 4-100
4.6.8 Exponential (EXP) 4-101
4.6.9 Natural Logarithm (LN) 4-102
4.6.10 Common Logarithm (LOG) 4-103
4.7.1 BitRotate Left (ROTL) 4-104
4.7.2 Bit Rotate Right (ROTR) 4-105
4.7.3 MoveBit(MOVB) 4-106
4.7.4 MoveWord (MOVW) 4-108
4.75 Exchange XCHG) 4-110
4.7.6 Table Initialization (SETW) 4-111
4.7.7 Byte-to-word Expansion (BEXTD) 4-113
4.7.8 Word-to-byte Compression (BPRESS) 4-114
4.7.9 Binary Search(BSRCH) 4-116
4710 Sort(SORT)t 4-117
4.7.11 Bit Shift Left (SHFTL) 4-118
4.7.12 Bit Shift Right (SHFTR) 4-120
4.7.13 Copy Word (COPYW), 4-121
4.7.14 Byte Swap (BSWAP) 4-122
481 DeadZone A(DZA) 4-123
482 DeadZoneB((DZB) 4-124
4.8.3 Upper/Lower Limit (LIMIT) 4-126
484 PlControl(Pl) 4-128
485 PDControl(PD)........c.cinnn.. 4-133
486 PIDControl(PID), 4-137
4.8.7 First-order Lag (LAG) 4-142
4.8.8 PhaseleadlLag (LLAG).................. 4-144
4.8.9 Function Generator (FGN) 4-147
4.8.10 Inverse Function Generator (IFGN) 4-151
4.8.11 Linear Accelerator/Decelerator 1 (LAU) 4-155
4.8.12 Linear Accelerator/Decelerator 2 (SLAU) 4-161

4.8.13 Pulse Width Modulation (PWM) 4-170

EXN Table Manipulation Instructions4-173

4.9.1 Read Table Block (TBLBR/TBLBRE) 4-173
4.9.2 Write Table Block (TBLBW/TBLBWE) 4-177
4.9.3 Search for Table Row (TBLSRL/TBLSRLE)4-181
4.9.4 Search for Table Column (TBLSRC/

TBLSRCE) i 4-184
4.9.5 Clear Table Block (TBLCL/TBLCLE) 4-187
4.9.6 Move Table Block (TBLMV/TBLMVE) 4-190
4.9.7 Read Queue Table (QTBLR/QTBLRE and

QTBLRI/QTBLRIE) oo 4-194
4.9.8 Write Queue Table (QTBLW/QTBLWE and

QTBLWI/QTBLWIE) 4-198
4.9.9 Clear Queue Table Pointer (QTBLCL/

QTBLCLE) ..o 4-202

[J System Function Instructions4-204

4.10.1 Counter (COUNTER) 4-204
4.10.2 First-in First-out (FINFOUT) 4-207
4103 Trace (TRACE) 4-210
4.10.4 Read Data Trace (DOTRC-RD/DTRC-RDE) 4-212
4.10.5 Send Message (MSG-SND) 4-216
4.10.6 Send Message Extended (MSG-SNDE) 4-218
4.10.7 Receive Message (MSG-RCV) 4-220

4.10.8 Receive Message Extended (MSG-RCVE)4-221
4.10.9 Write SERVOPACK Parameter (MLNK-SVW) . .4-223
4.10.10 Read SERVOPACK Parameter (MLNK-SVR) . . .4-228

4.10.11 Flash Operation (FLASH-OP) 4-233
4.10.12 Write Motion Register (MOTREG-W) 4-236
4.10.13 Read Motion Register MOTREG-R) 4-238
4.10.14 Import (IMPORT/IMPORTL/IMPORTLE) 4-240
4.10.15 Export (EXPORT/EXPORTL/EXPORTLE) 4-248
Storage Operation Instructions4-254.
4111 OpenFile (FOPEN) 4-254
4.11.2 CloseFile (FCLOSE) 4-257
4.11.3 Read Data from File (FREAD) 4-258
4.11.4 Write Data to File (FWRITE) 4-260
4.11.5 Set File Position Indicator (FSEEK) 4-262
4.11.6 Read Line from File to String (FGETS) 4-264
4.11.7 Write String to File (FPUTS) 4-266
4.11.8 Copy File (FCOPY) 4-268
4.11.9 Delete File (FREMOVE) 4-270
4.11.10 Rename File (FRENAME) 4-271
4.11.11 Create Directory (DCREATE) 4-274
4.11.12 Delete Directory (DREMOVE) 4-276

4.11.13 Send File to FTP Server (FTPPUT) 4-277

EEH sting Operation Instructions ... 4-280

4.12.1 Convert Integer to String (INT2STR) 4-280
4.12.2 Convert Real Number to String (REAL2STR) . . 4-282
4.12.3 Convert String to Integer (STR2INT) 4-283
4.12.4 Convert String to Real Number (STR2REAL) . . 4-284
4.12.5 Store String (STRSET) 4-286
4.12.6 Partially Delete String (STRDEL) 4-287
4.12.7 Copy String (STRCPY) 4-288
4.12.8 Get String Length (STRLEN) 4-290
4.12.9 Concatenate Strings (STRCAT) 4-291
4.12.10 Compare Strings (STRCMP) 4-293
4.12.11 Insert String (STRINS) 4-294
4.12.12 Find String (STRFIND) 4-296
4.12.13 Extract String (STREXTR) 4-297
4.12.14 Extract String from End (STREXTRE) 4-299

4.12.15 Delete Spaces at String Ends (STRTRIM) 4-300

4-6

4.1 Introduction

4.1.1 Ladder Language Instructions

m Introduction

This section describes the types of ladder language instructions and their functionality. It also
shows how to interpret the rest of this chapter.

411 Ladder Language Instructions
The following table lists the ladder language instructions.
Type Instruction Meaning GUI Name

NOC NO Contact NO Contact
ONP-NOC Rising-edge NO Contact Rising-edge NO Contact
OFFP-NOC Falling-edge NO Contact Falling-edge NO Contact
NCC NC Contact NC Contact
ONP-NCC Rising-edge NC Contact Rising-edge NC Contact
OFFP-NCC Falling-edge NC Contact Falling-edge NC Contact
TON (1 ms) 1-ms ON-Delay Timer On-Delay Timer (1ms)
TOFF (1 ms) 1-ms OFF-Delay Timer Off-Delay Timer (1ms)
TON (10 ms) 10-ms ON-Delay Timer On-Delay Timer (10ms)

Relay Circuit | TOFF (10 ms) 10-ms OFF-Delay Timer Off-Delay Timer (10ms)

Instructions | TON (1 s) 1-s ON-Delay Timer On-Delay Timer (1s)
TOFF (1 9) 1-s OFF-Delay Timer Off-Delay Timer (1s)
ON-PLS Rising-edge Pulses Rising Edge Pulses
OFF-PLS Falling-edge Pulses Falling Edge Pulses
COIL Coll Coil
REV-COIL Reverse Coil Reverse Coll
ONP-COIL Rising-edge Detection Coil Rising-edge Detection Coil
OFFP-COIL Falling-edge Detection Coil Falling-edge Detection Coil
S-COIL Set Coil Set Cail
R-COIL Reset Coll Reset Coll

Continued on next page.

4.1 Introduction

4.1.1 Ladder Language Instructions

Continued from previous page.

Type Instruction Meaning GUI Name
STORE Store Store
ADD(+) Add Addition
ADDX(+ +) Extended Add Extended Addition
SUB(-) Subtract Subtraction
SUBX(- -) Extended Subtract Extended Subtraction
MUL(x) Multiply Multiplication
DIV(+) Divide Division
MOD Integer Remainder Integer Remainder
REM Real Remainder Real Remainder
INC Increment Increment
Numeric DEC Decrement Decrement
Operation TMADD Add Time Add Time
Instructions | TMSUB Subtract Time Subtract Time
SPEND Spend Time Spend Time
INV Invert Sign Sign Inversion
COM One’s Complement 1's Complement
ABS Absolute Value Absolute Value
BIN Binary Conversion Binary Conversion
BCD BCD Conversion BCD Conversion
PARITY Parity Conversion Parity Conversion
ASCI ASCII Conversion 1 ASCII Conversion 1
BINASC ASCII Conversion 2 ASCII Conversion 2
ASCBIN ASCII Conversion 3 ASCII Conversion 3
AND Inclusive AND Inclusive AND
OR Inclusive OR Inclusive OR
XOR Exclusive OR Exclusive OR
< Less Than Less Than (A<B)
Logic) < Less Than or Equal Less Than or Equal (A<=B)
Operation
Instructions | = Equal Equal (A==B)
Not Equal Not Equal (Al=B)
> Greater Than or Equal Greater Than or Equal (A>=B)
> Greater Than Greater Than (A>B)
RCHK Range Check Range Check
SEE Call Sequence Subprogram Call Program
MSEE Call Motion Program Call Motion Program
FUNC Call User Function User Function
INS Direct Input String Direct Input String
OouTS Direct Output String Direct Output String
XCALL Call Extended Program Call Extended Program
E?n%:?,:n \évlll_'Egl:l\E/VHlLE WHILE construct Whie B
Instructions ECI\DJB_FOR FOR construct Eg: End
:EFND_IF |F construct :I/Eggn
IF If/Then
ELSE IF-ELSE construct Else
END_IF If End
EXPRESSION Expression Expression

Continued on next page.

Ladder Language Instructions

4-7

4.1 Introduction

4.1.1 Ladder Language Instructions

Continued from previous page.

Type Instruction Meaning GUI Name
SQRT Square Root Square Root
SIN Sine Sine
COS Cosine Cosine
TAN Tangent Tangent
Basic. ASIN Arc Sine Arc Sine
Function - -
Instructions ACOS Arc Cosine Arc Cosine
ATAN Arc Tangent Arc Tangent
EXP Exponential Exponential
LN Natural Logarithm Natural Logarithm
LOG Common Logarithm Common Logarithm
ROTL Bit Rotate Left Bit Rotate Left
ROTR Bit Rotate Right Bit Rotate Right
MOVB Move Bit Move Bit
MOVW Move Word Move Word
XCHG Exchange Exchange
SETW Table Initialization Set Word
II\D/I{:(:ipulation BEXTD Byte-to-word Expansion Byte to Word Expansion
Instructions BPRESS Word-to-byte Compression Word to Byte Compression
BSRCH Binary Search Binary Search
SORT Sort Sort
SHFTL Bit Shift Left Bit Shift Left
SHFTR Bit Shift Right Bit Shift Right
COPYW Copy Word Copy Word
BSWAP Byte Swap Byte Swap
DzA Dead Zone A Dead Zone A
DzB Dead Zone B Dead Zone B
LIMIT Upper/Lower Limit Upper/Lower Limit
PI PI Control PI Control
PD PD Control PD Control
PID PID Control PID Control
:?gt?uctions LAG First-order Lag First Order Lag
LLAG Phase Lead Lag Phase Lead Lag
FGN Function Generator Function Generator
IFGN Inverse Function Generator Inverse Function Generator
LAU Linear Accelerator/Decelerator 1 | Linear Accelerator/Decelerator
SLAU Linear Accelerator/Decelerator 2 | Linear Accelerator/Decelerator2
PWM Pulse Width Modulation Pulse Width Modulation
TBLBR/TBLBRE Read Table Block Table Block Read
TBLBW/TBLBWE Write Table Block Table Block Write
TBLSRL/TBLSRLE Search for Table Row Table Row Search
TBLSRC/TBLSRCE Search for Table Column Table Column Search
TBLCL/TBLCLE Clear Table Block Table Block Clear
Table TBLMV/TBLMVE Move Table Block Table Block Move
Manipulation Q1| R/QTBLRE Read Queue Table Queue Table Read
Instructions QTBLRI/QTBLRIE Ei?sm%ﬁue Table with Pointer I(r%g?;r?];—r?tble Read with Pointer
QTBLW/QTBLWE Write Queue Table Queue Table Write
QTBLWI/QTBLWIE }/r:/(rjirt:erurﬁue Table with Pointer ?\g?;ri;?tble Write with Pointer
QTBLCL/QTBLCLE Clear Queue Table Pointer Queue Table Pointer Clear

Continued on next page.

4.1 Introduction

4.1.1 Ladder Language Instructions

Continued from previous page.

Type Instruction Meaning GUI Name
COUNTER Counter Counter
FINFOUT First-in First-out First-in First-out
TRACE Trace Trace
DTRC-RD/DTRC-RDE | Read Data Trace Data-Trace Read Extend
MSG-SND Send Message Send Message
MSG-SNDE Send Message Extended Send Message Extend
MSG-RCV Receive Message Receive Message
MSG-RCVE Receive Message Extended Receive Message Extend
2;1;‘:;” MLNK-SVW Write SERVOPACK Parameter | |y Serve Pack Parameter with
;"S?fjg?ons MLNK-SVR Read SERVOPACK Parameter | a0 SEIvo Pack Parameter with
FLASH-OP Flash Operation Operate Flash Memory
MOTREG-W Write Motion Register XXQEE“SQQE?S? Parameter to
MOTREG-R Read Motion Register ,f‘/l%"’t‘%;hse'\ggt'gr” Parameter from
IMPORT/IMPORTL/ Import Import
IMPORTLE
EXPORT/EXPORTL/ Export Export
EXPORTLE
FOPEN Open File Open File
FCLOSE Close File Close File
FREAD Read Data from File Read Data from File
FWRITE Write Data to File Write Data to File
FSEEK Set File Position Indicator Set File Position Indicator
Storage FGETS Read Line from File to String Read Line from File to String
Operation FPUTS Write String to File Write String to File
Instructions | FCOPY Copy File Copy File
FREMOVE Delete File Delete File
FRENAME Rename File Rename File
DCREATE Create Directory Create Directory
DREMOVE Delete Directory Delete Directory
FTPPUT Send File to FTP Server Send File to FTP Server
INT2STR Convert Integer to String Convert Integer to String
REAL2STR Convert Real Number to String Convert Real Number to String
STR2INT Convert String to Integer Convert String to Integer
STR2REAL Convert String to Real Number Convert String to Real Number
STRSET Store String Store String
STRDEL Partially Delete String Partially Delete String
String STRCPY Copy String Copy String
Operation STRLEN Get String Length Get String Length
Instructions | STRCAT Concatenate Strings Concatenate Strings
STRCMP Compare Strings Compare Strings
STRINS Insert String Insert String
STRFIND Find String Find String
STREXTR Extract String Extract String
STREXTRE Extract String from End Extract String from End
STRTRIM Delete Spaces at String Ends Delete Spaces at String Ends

Ladder Language Instructions

4-9

4.1 Introduction

4.1.2 How to Read the Ladder Language Instructions

41.2

How to Read the Ladder Language Instructions

4-10

This chapter describes each instruction using the following format.
The operation performed by the instruction is described.
Where necessary, a diagram is used to show the operation performed by the instruction.

Format
This section describes the format for programming the instruction.

Icon: Shows the icon used in the MPE720.

This area shows how the instruction Key entry: Shows the shortcut key combination used in the Ladder Editor.

appears in a ladder program.

Applicable Data Types

1/0 ltem
B W L Q F D A Index Constant
Label usled in the % o o % o % % o o
ladder diagram

Note: 1. x: This data type cannot be used.
O: All registers with this data type can be used.

2. Refer to the following chapter for details on data types.
I Chapter 3 Registers

Programming Example
This section gives a ladder programming example that uses the instruction.

Additional Information

This section may contain additional information about the instruction. It is omitted if there is no
additional information that is required for the instruction.

4.2 Relay Circuit Instructions

4.2.1 NO Contact (NOC)

Relay Circuit Instructions

4.2

NO Contact (NOCQC)

The relay outputs ON whenever the bit with the specified relay address is 1.
The relay outputs OFF when the bit is 0.

Relay address Bit 1 ‘ liL

0

Output of the NOC instruction ON
OFF ‘ L
Format
The format of this instruction is shown below.
Relay address Icon:'"-
i Key entry:][
MEOOOOND
/O Item Applicable Data Types
B W L Q F D A Index Constant
Relay address O X X X X X X X

Programming Example
The DB0O00001 output coil is ON whenever the DB0O0000O0 relay in the NOC instruction is ON.

| DBO0000O DBO0O00T |

I — = I

Ladder Language Instructions

4.2 Relay Circuit Instructions

4.2.2 Rising-edge NO Contact (ONP-NOC)

422 Rising-edge NO Contact (ONP-NOC)

ON is output for only one scan when the bit input changes from 0 to 1.
The resulting operation is the combination of the NOC and ON-PLS instructions.

« This is the same operation as that of the OFFP-NCC instruction.
» The ONP-NOC instruction cannot be used in user functions. Use an NO contact with the
Rising-edge Pulses (ON-PLS) instruction.

Information

Format
The format of this instruction is shown below.

Relay address lcon: -ITI-

i Key entry: 1P[
HEOOQOOON
/O Item Applicable Data Types
B W L Q F D A Index Constant
Relay address O* X X X X X X X X

* The # and C registers will not produce the desired result because they are constant registers that do not undergo
value changes.

Programming Example

The DB000001 output coil turns ON when the DB0000OO relay in the NOC instruction changes
from OFF to ON.

LEOONOND DeOOOON |
Iy
‘ i oo

The timing chart is shown below.

DB000000 J \—‘ \—

DB000001 J] Q

1 scan 1 scan

; If you program another instruction before the ONP-NOC instruction, the result of the operation
Information " : , . .
with the other instruction will be output.
In the following example, the DBO00002 output coil turns ON when the AND condition of the
DB000000 and DBO00001 relays changes from OFF to ON.

| DBEIIDEIIDEID DBEIIDEIIDEH DEOOOOOZ |

o
The following circuit is equivalent to the above circuit.

| bBOOO0OOO © DEOOOOOY bBOOOOOZ |
| | | | f

I 1T 1T 1

The timing chart is shown below.

DB000000 4‘
DB000001 ’—‘ m

DB000002 m m
1 scan 1 scan

4-12

4.2 Relay Circuit Instructions
4.2.3 Falling-edge NO Contact (OFFP-NOC)

423 Falling-edge NO Contact (OFFP-NOC)

ON is output for only one scan when the bit input changes from 1 to O.
The resulting operation is the combination of the NOC and OFF-PLS instructions.

« This is the same operation as that of the ONP-NCC instruction.
* The OFFP-NOC instruction cannot be used in user functions. Use an NO contact with the
Falling-edge Pulses (OFF-PLS) instruction.

Information

Format
The format of this instruction is shown below.

Icon: 'Ill'

Relay address

i Key entry: IN[
Meooannn
—
Applicable Data Types
1/0 It
/O ltem B W L Q F D A Index | Constant
Relay address O* X X X X X X X X

* The # and C registers will not produce the desired result because they are constant registers that do not undergo
value changes.

Programming Example

The DB000001 output coil turns ON when the DB0000OQO relay in the NOC instruction changes
from ON to OFF.

Lenonono DeOOOONT |
Ty
‘ i’ o

The timing chart is shown below.

DB000000 J \—‘ _

DB000001 Q D
1 scan 1 scan
[nformation If you program another instruction before the OFFP-NOC instruction, the result of the opera-

tion with the other instruction will be output.
In the following example, the DBO00002 output coil turns ON when the AND condition of the
DB000000 and DB0O00001 relays changes from ON to OFF.

| DBODO00O DBODOOO! DAO0D02 |
o 1T

{3 e O
The following circuit is equivalent to the above circuit.

| bBOOO0OOO © DEOOOOOY bBOOOOOZ |
| | | | 1

I 1T 1T 1

The timing chart is shown below.

DB000000 ﬂ
DB000001 ’—‘ ’—\—

DB000002 D m

1 scan 1 scan

Ladder Language Instructions

4-14

4.2 Relay Circuit Instructions

4.2.4 NC Contact (NCC)

424 NC Contact (NCC)
The relay outputs OFF whenever the bit with the specified relay address is 1.
The relay outputs ON when the bit is O.
1
Relay address Bit 0 IﬁL
ON ’7
Output of the NCC instruction OFF Im
Format
The format of this instruction is shown below.
Relay address Icor -H-
i Key entry: |/
MEOOOOOD
i
/O Item Applicable Data Types
B W L Q F D A Index Constant
Relay address O X X X X X X X
Programming Example
The DB0O00001 coil is ON whenever the DBO0000O0 relay in the NCC instruction is OFF.
I DBE:UDIUUU OBO00001 |
| d e |
425 Rising-edge NC Contact (ONP-NCC)

ON is output for only one scan when the bit input changes from 1 to 0.
The resulting operation is the combination of the NCC and ON-PLS instructions.

 This is the same operation as that of the OFFP-NOC instruction.
« The ONP-NCC instruction cannot be used in user functions. Use an NC contact with the
Rising-edge Pulses (ON-PLS) instruction.

Information

Format
The format of this instruction is shown below.

Icon:-"l-

Relay address

i Key entry: |P/
Meooooon
/0 ltem Applicable Data Types
B W L Q F D A Index | Constant
Relay address O* X X X X X X X X

* The # and C registers will not produce the desired result because they are constant registers that do not undergo
value changes.

4.2 Relay Circuit Instructions

4.2.6 Falling-edge NC Contact (OFFP-NCC)

Programming Example

The DB000001 output coil turns ON when the DBO0O00QO relay in the NCC instruction changes
from ON to OFF.

Lenonono peOOOONT |
P
‘ : oo

The timing chart is shown below.

DB000000 m

DB000001 H ﬂ
T T

1 scan 1 scan

Information T You program another instruction before the ONP-NCC instruction, the result of the operation
with the other instruction will be output.
In the following example, the DBO00002 output coil turns ON when the AND condition of the
DB000000 relay and the inverted status of the DBO00001 relay changes from OFF to ON.

DBDIDEIIDDD DBDIDDIDm DBOODODZ

L L
The following circuit is equivalent to the above circuit.

DEDPDIDDD DEDPDIEIDI DBOOO0DZ
LI} I/I

The timing chart is shown below.

DB000000 J ﬁ
DB000001

DB000002 J] D

1scan 1 scan

4.2.6

Falling-edge NC Contact (OFFP-NCC)

ON is output for only one scan when the bit input changes from 0 to 1.
The resulting operation is the combination of the NCC and OFF-PLS instructions.

 This is the same operation as that of the ONP-NOC instruction.
» The OFFP-NCC instruction cannot be used in user functions. Use an NC contact with the
Falling-edge Pulses (OFF-PLS) instruction.

Information

Format
The format of this instruction is shown below.

Icon:-ul-

Relay address

l Key entry: |N/
MEOOOONN
——
/O ltem Applicable Data Types
B W L Q F D A Index Constant
Relay address O* X X X X X X X X

* The # and C registers will not produce the desired result because they are constant registers that do not undergo
value changes.

Ladder Language Instructions

4-16

4.2 Relay Circuit Instructions

4.2.7 1-ms ON-Delay Timer (TON(1ms))

Programming Example

The DB000001 output coil turns ON when the DBO000QO relay in the NCC instruction changes
from OFF to ON.

DeOONOND DBI]I]I]I]IJ1|
Iy
‘ " oo

The timing chart is shown below.

DB000000 J \—‘ \—

DB000001 J? D

1 scan 1 scan

Information T You program another instruction before the OFFP-NCC instruction, the result of the opera-
tion with the other instruction will be output.
In the following example, the DBO00002 output coil turns ON when the AND condition of the
DBO0000QO0 relay and the inverted status of the DB0O00001 relay changes from ON to OFF.

DBOOCOOOO - DBODOOO1 DBOOOOOZ
{ | 41
The following circuit is equivalent to the above circuit.
DEOODOOD DBOOOOO1 DEODOOOZ
{ |] +

The timing chart is shown below.

DB000000 —‘
DB000001 ’—‘ ’—\—

DB000002 Q D

1 scan 1 scan

4.2.7

1-ms ON-Delay Timer (TON(1ms))

The timer counts the time whenever the timer bit input is 1. The bit output is set to 1 when the
count value equals the set value.

If the bit input changes to O during counting, the timer will stop counting. If the bit input
changes to 1 again, the timer starts counting again from the beginning (i.e., from 0). The actual
counted time (in units of 1 ms) is stored in the Count register.

/
/

Bit input — Timer — Bit output
The set value and count
value are in units of 1 ms.
Set value
Count value
0

Bit input 1
0
) 1
Bit output

Note: The counting error is 1 ms or less.

4.2 Relay Circuit Instructions

4.2.7 1-ms ON-Delay Timer (TON(1ms))

Format
The format of this instruction is shown below.
W 5et [WCount
ToRtmsl T waoonn | pwonnoo
. TOM
L Count value loon: Tus
Key entry: [MSON
Set value
/O Itemn Applicable Data Types
B W L Q F D A Index Constant
Set (Set value) O X X X X X O
Count (Count value) X O* X X X X X X X

* C and # registers cannot be used.

Programming Example

In the following programming example, the set value of the TON instruction is 50, and the count
value is stored in the DW0O0O0O01 register.

The DB0O00001 coil will turn ON after the DBO0O00OQO relay stays ON for 50 ms.

[MSet [MCaunt |

| DBOIUOIOUO 00050 DHOO00 1 DEN0Q0 01
| 1 TON [] ms] 50 50 |

The timing chart is shown below.

DB000000 ON
OFF |

I

ON
DBO0000T eF

50

DwO00001 0

| 50 ms-Ts |

\ . \
(Ts: Scan time set value)

Ladder Language Instructions

4-18

4.2 Relay Circuit Instructions

4.2.8 1-ms OFF-Delay Timer (TOFF(1 ms))

428

1-ms OFF-Delay Timer (TOFF(1 ms))

The timer counts the time whenever the timer bit input is 0. The bit output is set to 0 when the
count value equals the set value.

If the bit input changes to 1 during counting, the timer will stop counting. If the bit input
changes to 0 again, the timer starts counting again from the beginning (i.e., from 0). The actual
counted time (in units of 1 ms) is stored in the Count register.

Bit input — Timer — Bit output
The set value and count
value are in units of 1 ms.
Set value
Count value
0

Bitinput |
0
) 1
Bit output 0

Note: The counting error is 1 ms or less.

Format
The format of this instruction is shown below.
a[[WEet [WICount
[TOFFLesl T nooon | pwooono
L | _ TOFF
Count value con: Tms
Key entry: [MSOFF
Set value
Applicable Data T
/O Item pplicable Data Types
W L Q F D A Index Constant
Set (Set value) O X X X X X O
Count (Count value) X Oo* X X X X X X X

* C and # registers cannot be used.

4.2 Relay Circuit Instructions
4.2.9 10-ms ON-Delay Timer (TON(10ms))

Programming Example

In the following programming example, the set value of the TOFF instruction is 50, and the
count value is stored in the DW000O01 register.

The DB0O00001 coil will turn OFF after the DBO0O000O relay stays OFF for 50 ms.

[WSet [MTCount
| CBI00000 e 00050 DHOOOO0 T
| [e 50 50

DE0OJ0 01
)

The timing chart is shown below.

DB000000 ON
OFF

ON
DB000001T (p

50

DWO00001 0
| 50 ms-Ts |

‘(I's: Scan time set value)‘

429 10-ms ON-Delay Timer (TON(10ms))

The timer counts the time whenever the timer bit input is 1. The bit output is set to 1 when the
count value equals the set value.

If the bit input changes to O during counting, the timer will stop counting. If the bit input
changes to 1 again, the timer starts counting again from the beginning (i.e., from 0). The actual
counted time (in units of 10 ms) is stored in the Count register.

Bit input — Timer — Bit output
The set value and count
value are in units of 10 ms.
Set value
Count value
0
Bitinput |
0
) 1
Bit output

Note: The counting error is 10 ms or less.

Ladder Language Instructions

4-20

4.2 Relay Circuit Instructions

4.2.9 10-ms ON-Delay Timer (TON(10ms))

Format
The format of this instruction is shown below.
(W 5et [WCaunt
— TOH[10ms] Hyonoon pWoooon —
TOM
lcon:
L Count value 10
Key entry: [ON
Set value
Applicable Data Types
1/0 ltem PR yp
B W L Q F D A Index Constant
Set (Set value) X @) X X X X X @)
Count (Count value) O* X X X X X X

* C and # registers cannot be used.

Programming Example

In the following programming example, the set value of the TON instruction is 50, and the count
value is stored in the DW00QO01 register.

The DB0O00001 coil will turn ON after the DBO0O00QO relay stays ON for 500 ms.
[WCaunt

| DBO000 DO

I L

TON[10ms]

(W5t

00050

OWO0001
50

DEOOO00T |
P

The timing chart is shown below.

DB000000 ON
OFF |

ON
DBO0000T eF

50

DwO00001 0

500 ms-Ts

(Ts: Scan time set value)

4.2 Relay Circuit Instructions

4.2.10 10-ms OFF-Delay Timer (TOFF(10ms))

4210 10-ms OFF-Delay Timer (TOFF(10ms))

The timer counts the time whenever the timer bit input is 0. The bit output is set to 0 when the

count value equals the set value.
If the bit input changes to 1 during counting, the timer will stop counting. If the bit input

changes to 0 again, the timer starts counting again from the beginning (i.e., from 0). The actual

counted time (in units of 10 ms) is stored in the Count register.

Bit input — Timer — Bit output
The set value and count
value are in units of 10 ms.
Set value
Count value
0
Bitinput |
0
) 1
Bit output 0
Note: The counting error is 10 ms or less.
Format
The format of this instruction is shown below.
a[[W] et [WCount
- TOFF [10ms] WWonono pwWooonn —
lcon TOFF
Count value con 10
Key entry: [OFF
Set value

Applicable Data Types

1/0O ltem
W Q F D Index | Constant
Set (Set value) O X X X X X @)
Count (Count value) O* X X X X X

* C and # registers cannot be used.

Ladder Language Instructions

4-21

4.2 Relay Circuit Instructions
4.2.11 1-s ON-Delay Timer (TON(1s))

Programming Example

In the following programming example, the set value of the TOFF instruction is 50, and the
count value is stored in the DW000O1 register.

The DB0O00001 coil will turn OFF after the DB0O0000O0 relay stays OFF for 500 ms.
G e (W] Count DBUP_QUU] |

DEOOGGO0
00050 OWo000 1
10 TOFF []DIHS] 5[] 50 N |

The timing chart is shown below.

DB000000 ON
OFF

ON
DBO0000T ep

50

DW00001 0

| 500 ms-Ts |

‘(Ts: Scan time set value)‘

4211 1-s ON-Delay Timer (TON(1s))

The timer counts the time whenever the timer bit input is 1. The bit output is set to 1 when the
count value equals the set value.

If the bit input changes to 0 during counting, the timer will stop counting. If the bit input
changes to 1 again, the timer starts counting again from the beginning (i.e., from 0). The actual
counted time (in units of 1 s) is stored in the Count register.

Bit input — Timer — Bit output
The set value and count
value are in units of 1 s.
Set value
Count value
0

Bitinput |
0
) 1
Bit output 0

Note: The counting error is 1 s or less.

4-22

4.2 Relay Circuit Instructions

4.2.11 1-s ON-Delay Timer (TON(1s))

Format

The format of this instruction is shown below.
a[[W5et [WICount

— TOH[1s] Wwanoon pwoooon —

TOM
L Count value loon: 1s

Key entry: [SON

Set value
Applicable Data T
/O Item pplicable Data Types
B w L Q F D A Index Constant
Set (Set value) O X X X X X O
Count (Count value) X O* X X X X X X X

* C and # registers cannot be used.

Programming Example

In the following programming example, the set value of the TON instruction is 50, and the count
value is stored in the DWO0OOQO1 register.

The DB0O00001 coil will turn ON after the DBO000QO relay stays ON for 50 s.

[W]5et W]Count
l 05000000 00050 Dwoopgp) | DBOOCOD! |

The timing chart is shown below.

DB000000 ON
OFF |
N
DB00000T SFF

50

DW00001 0

50s-Ts

(Ts: Scan time set value)

Ladder Language Instructions

4-23

4-24

4.2 Relay Circuit Instructions

4.2.12 1-s OFF-Delay Timer (TOFF(1s))

4.2.12

1-s OFF-Delay Timer (TOFF(1s))

The timer counts the time whenever the timer bit input is 0. The bit output is set to 1 when the
count value equals the set value.

If the bit input changes to 1 during counting, the timer will stop counting. If the bit input
changes to 0 again, the timer starts counting again from the beginning (i.e., from 0). The actual
counted time (in units of 1 s) is stored in the Count register.

Bit input — Timer — Bit output
The set value and count
value are in units of 1 s.
Set value
Count value
0

Bit input 1
0
) 1
Bit output 0

Note: The counting error is 1 s or less.

Format
The format of this instruction is shown below.

&[[WTEet [WICount
— TOFF[1s] yonoon pwoooon

con.TOFF
Count value con: 1s

Key entry: [SOFF

Set value
Applicable Data Types
1/0 ltem pplicable ype
B W L Q F D A Index Constant
Set (Set value) O X X X X X @)
Count (Count value) X O* X X X X X X X

* C and # registers cannot be used.

4.2 Relay Circuit Instructions
4.2.13 Rising-edge Pulses (ON-PLS)

Programming Example

In the following programming example, the set value of the TOFF instruction is 50, and the
count value is stored in the DW000O01 register.

The DB000001 coil will turn OFF after the DBO0O000O relay stays OFF for 50 s.
5et [WTCount

00050 pwooogy | PBO0ROOT |
51 51 L |

| beooooon
| | | TOFF [1=]

The timing chart is shown below.

DB000000 ON
OFF

ON
DB000001 e

50

DW00001 0

‘ 50s-Ts

‘(rs: Scan time set value)‘

4213 Rising-edge Pulses (ON-PLS)

The bit output is set to 1 for only one scan when the bit input changes from O to 1. The previ-
ous value of the bit input is saved in the Previous Value Register of the ON-PLS instruction.

i 1
Bit input
P o |
Previous Value | ON —\’
Register OFF
Bit output ! T T
(Op— T T

1 scan 1 scan

The following truth table shows the relationship between the bit input, the Previous Value Reg-
ister, and the bit output of the ON-PLS instruction.

Ladder Language Instructions

Bit Output Previous Value Register ON-PLS Instruction Bit Input
0 OFF — 0
0 ON - 0
1 OFF - 1
1 ON - 0

In the third row of the table, notice how the bit input changes from O in the Previous Value Reg-
ister to 1, causing the ON-PLS instruction to set the bit output to 1.

4-25

4-26

4.2 Relay Circuit Instructions

4.2.13 Rising-edge Pulses (ON-PLS)

Format
The format of this instruction is shown below.
Previous Value Register Icon: §
l Key entry: |P
DEOOOOOD
-§-
Applicable Data Types
1/0 It
em B W L Q F D A Index | Constant
Previous Value O*
. X X X X X X X X
Register

* C and # registers cannot be used.

Note: The Previous Value Register holds the previous value of the bit input. Do not use other instructions to set the
value of this register.

Programming Example

The DB000003 output coil turns ON for only one scan when the DB0O000QO relay changes from
OFF to ON. The DB0000O01 register is used to store the previous value of DBO000OQO.

Information DO not use more than one previous value register for the same drawing.

] DBOOODO0 DBOOOOOT DBOOOOC3 |

[f R
|

The timing chart is shown below.

DB000000 ON
OFF |
ON
DB00000T (pF

DBO00003 orf ﬂ ﬂ

1 scan 1 scan

4.2 Relay Circuit Instructions
4.2.14 Falling-edge Pulses (OFF-PLS)

4214 Falling-edge Pulses (OFF-PLS)

The bit output is set to 1 for only one scan when the bit input changes from 1 to 0. The previ-
ous value of the bit input is saved in the Previous Value Register of the OFF-PLS instruction.

. 1
Bit input
P 0
Previous Value | ON
Register OFF
) 1
Bit output 0 W ﬂ

1 scan 1 scan

The following truth table shows the relationship between the bit input, the Previous Value Reg-
ister, and the bit output of the OFF-PLS instruction.

Bit Output Previous Value Register OFF-PLS Instruction Bit Input
0 OFF — 0
0 ON - 1
1 OFF - 0
1 ON - 0

In the second row of the table, notice how the bit input changes from 1 in the Previous Value
Register to 0, causing the OFF-PLS instruction to set the bit output to 1.

Format
The format of this instruction is shown below.

. , lcon: %
Previous Value Register
l Key entry: N

DE0DOO0D
¥

Applicable Data Types

Ladder Language Instructions

I/0 ltem
B W L Q F D A Index Constant
Previous Value o* % % % N % % % %
Register

* C and # registers cannot be used.

Note: The Previous Value Register holds the previous value of the bit input. Do not use other instructions to set the
value of this register.

4-27

4-28

4.2 Relay Circuit Instructions

4.2.14 Falling-edge Pulses (OFF-PLS)

Programming Example

The DB000003 output coil turns ON for only one scan when the DBO0O00QO relay changes from
ON to OFF. The DB0O00001 register is used to store the previous value of DBO0O000O0.

Information DO not use more than one previous value register for the same drawing.

DBEOOOO0O DEOOOOOT
| 1

DBODODO3 |
Fint

The timing chart is shown below.

DB000000 ON
OFF
ON

DB000001 OFF

ON
DB000003 (yr

in

B N
N .

1 scan 1

Il

scan

e

4.2 Relay Circuit Instructions

4.2.15 Coil (COIL)

4215 Coil (COIL)

The bit at the coil address is set to 1 whenever the bit input is 1. The bit at the coil address is
set to 0 whenever the bit input is O.

Bit input ! ‘ L
Coil address | RBit ! ‘ L

Format
The format of this instruction is shown below.

Coil address
Icon: -Oi

i Key entry: @
DEOOOOOD

Appli le Data Ty
/O Item pplicable Data Types
B W L Q F D A Index Constant
Coil address O* X X X X X X X

* G and # registers cannot be used.

Programming Example
The DB0O000Q0O0 coil turns ON when the DB0O00001 relay turns ON.

| DBO000O] DBO0000 |

| . i

Ladder Language Instructions

4-29

4-30

4.2 Relay Circuit Instructions

4.2.16 Reverse Coil (REV-COIL)

4216 Reverse Coil (REV-COIL)

The bit at the coil address is set to 1 whenever the bit input is 0. The bit at the coil address is

set to O whenever the bit input is 1.

Bit input
Coil address | Rit
0
Format
The format of this instruction is shown below.
Coil address lcon: @
i Key entry: @RV
DEOODODOOND
Applicable Data Types
VO ltem B W Q F D Index Constant
Coil address O* X X X X X X
* # and C registers cannot be used.
Programming Example
The DB0O0000O coil turns OFF when the DB0O00001 relay turns ON.
] DB000001 DBO00000 |
| @

I

4.2 Relay Circuit Instructions

4.2.17 Rising-edge Detection Coil (ONP-COIL)

4217 Rising-edge Detection Coil (ONP-COIL)
The bit at the coil address is set to 1 for only one scan when the bit input changes from 0 to 1.
The resulting operation is the same as the combination of the ON-PLS and COIL instructions.
Format
The format of this instruction is shown below.
Coil address |con:-®-|
i Key entry: @P
DeOOOOON
VO It Applicable Data Types
em B w L Q F D A Index | Constant
Coil address O* X X X X X X X
* # and C registers cannot be used.
Programming Example
The DB0O00001 rising-edge detection coil turns ON when the DB0000OO relay in the NOC
instruction changes from OFF to ON.
DEOOOO0O0 DEOOOOOT |
[.-"]ET‘-.
J | P
4218 Falling-edge Detection Coil (OFFP-COIL)

The bit at the coil address is set to 1 for only one scan when the bit input changes from 1 to O.
The resulting operation is the same as the combination of the OFF-PLS and COIL instructions.

Format
The format of this instruction is shown below.
Coil address lcon: '®‘I
i Key entry: @N
Deonoonn
Applicable Data Types
1/0 It
/O ltem B W L Q F D A Index | Constant
Coil address O* X X X X X X X

* # and C registers cannot be used.

Ladder Language Instructions

4-31

4-32

4.2 Relay Circuit Instructions

4.2.19 Set Coil (S-COIL)

Programming Example

The DB0O00001 falling-edge detection coil turns ON when the DB0000OO relay in the NOC
instruction changes from ON to OFF.

DBO000OO DBO00OOT |
| | .f"ﬁ“\.
| . il

4.2.19

Set Coil (S-COIL)

The bit at the coil address is set to 1 when the bit input is 1. The set coil stays in the ON state.

o 1
Bit input m
P 0
Coil address Bit 2)

Format
The format of this instruction is shown below.
Coil address Icon: '@'
l Key entry: @S
peOOONON

/O Item Applicable Data Types
B W L Q F D A Index Constant
Coil address O* X X X X X X X

* C and # registers cannot be used.

Programming Example
The DB0O00001 set coil stays in the ON state when the DB0O0000O relay turns ON.

| DBOOO0O0 DBO0O0OT |
| || 5 |

The timing chart is shown below.

DB000000 ON ‘
OFF
ON

DB00000T N

4.2 Relay Circuit Instructions

4.2.20 Reset Coil (R-COIL)

4.2.20

Reset Coil (R-COIL)

The bit at the reset coil address is set to O when the bit input is 1. The reset coil stays in the

OFF state.
S| N
0

Bit input

Coil address Bit

Format
The format of this instruction is shown below.
Coil add
Oll aadress lcon: '®_
i Key entry: @R
MEOOOO00
Applicable Data Types
1/0 It
/O ltem B W L Q F D A Index | Constant
Coil address O* X X X X X X X

* C and # registers cannot be used.

Programming Example

In the following programming example, the reset coil is used to turn OFF the set coil that was
turned ON in the first line.

The DB000001 reset coil in the second line turns ON if the DB000002 relay turns ON while the
DBO000001 set coil is ON, therefore turning OFF the DB0O00001 set coail.

OB 000000 OEOOO0O1
|l Pt
| L5

OBO0000Z OEOOO0O1
|l Farat
| s

The timing chart is shown below.

ON —‘

OFF
ON
OFF

ON
OFF

DB000000

DB000002

DB000001

Ladder Language Instructions

4-33

4.3 Numeric Operation Instructions

4.3.1 Store (STORE)

Numeric Operation Instructions

4.3.1

Store (STORE)

4-34

The input data is stored in the output register.

Input data Output register
Format
The format of this instruction is shown below.
a|[WCFRD] %rc |[WLFRD]Dest lcon: =
— STORE Mwoonoo WWooonr — |
- - Key entry: ;
‘ Input data ‘ Output register
Applicable Data Types
1/0 ltem i yp
B W L Q F D A Index Constant
Src (Input data) O O O O O O @) @)
Dest (Output register) X O* Oo* O* O* O* O* O X

* C and # registers cannot be used.

Programming Example
In the following programming example, the input data is stored in the output register.
« Storing the Input Data, an Integer Value of 12345, in the MW00000 Output Register

= TG0 1Grc ([NLFQD]Dest

12345 MWODO00
el 12345 12345 [

 Storing the Input Data, a Real Value of 123.45, in the MWO0000O Output Register
| (I T F a0 IS e [WLFGDDest

1.234E+002 MWOOODO
STORE 1.234F+0072 123

« Storing the Input Data, a Double-length Integer Value of 89ABCDEF Hex, in the MW00000
Output Register
The lower word of the double-length integer, -12,817 (CDEF hex) is stored in MWO0OOQO.

] WCFGDISrc ((VLFaD]Dest

HBIABCOEF + MWOOOOO
-198bx1076 -12817

STORE

« Storing the Input Data, an Integer Value of 1234, in the MFO0000 Output Register

[W.FCD]Src [WLFOD Dest

01234 MF00000
1234 1. 234E+003

STORE

When performing operations with different data types, the result of the operation will depend
on the data type of the output register.
I Chapter 3 Registers— Precautions for Operations Using Different Data Types on page 3-10

Information

4.3 Numeric Operation Instructions

4.3.2 Add (ADD (+))

4.3.2

Add (ADD (+))

Input data A and input data B are added and the result is stored in the output data.
An operation error occurs if the result produces an overflow or underflow.

‘ Input data A ‘ + ‘ Input data B — Output data
Format
The format of this instruction is shown below.
« [[WLFBDTSrch [[WLFRDIErcB [[WLFRDIDest
L WYOOODOD | WMWOODO1 WWoDOOZ lcon: o
_T" _T" _{ Key entry: +
Input data A Input data B Output data
Appli le Data T
/O ltem pplicable Data Types
B W L Q F D A Index Constant
SrcA (Input data A) X O O O O O X @) @)
SreB (Input data B) x o 0 e} o e} X o} o}
Dest (Output data) X O* O* O* O* O* X O X

* C and # registers cannot be used.

Programming Example

In the following programming example, input data A and input data B are added and the result

is stored in the output data.

« Storing the Output Data in MW000OOO When Input Data A Is 100 and Input Data B Is 200

100 + 200 - MWO00000 = 300

[TEEEEY

00700
100

ADD

[WLFQD]S rck

(0z00
200

[WLFGD]Dest

MWO0000
300

+ Storing the Output Data in MW0000OO When Input Data A Is 10.5 and Input Data B Is 10

10.5 + 10 —» MWO0O0000 = 20 (when truncating below the decimal point is set)

WLFRD] Srch

1.05E+001
1.05E+001

ADD

[WLFRD] SrcE

oot
[

[WLFeD] Dest

Kioonnn
20

« Storing the Output Data in MLO0O000 When Input Data A in MW00002 Is 20,000 and Input

Data B in MWO0O0003 Is 30,000

MWO00002 (20,000) + MW00003 (30,000) — MLO0000 = 32,767*

[WLFaDTSrcA TTWLFODISrcB [[WLFQDIDest
Al MIt00002 MH00003 MLOOODD |
J 20000 30000 32767

* In the example given above, an overflow error occurs because both input data A and B are integers,
which limits the result to a number within the range for integers.

Ladder Language Instructions

4-35

4-36

4.3 Numeric Operation Instructions

4.3.3 Extended Add (ADDX (++))

Additional Information

With integer operations, an overflow operation error occurs if the result exceeds 32,767 and an
underflow operation error occurs if the result is less than -32,768.

With double-length integer operations, an overflow operation error occurs if the result exceeds
2,147,483,647 and an underflow operation error occurs if the result is less than -
2,147,483,648.

When performing operations with different data types, the result of the operation will depend
on the data type of the output register.
I Chapter 3 Registers —Precautions for Operations Using Different Data Types on page 3-10

Normally, addition and subtraction instructions (+, —, ++, and — —) involving double-length inte-
gers are performed as 32-bit operations.

However, these instructions are performed as 64-bit operations if they are used to correct the
remainder produced by an immediately preceding MUL (x) instruction and are immediately fol-
lowed by a DIV (+) instruction.

Information

433

Extended Add (ADDX (++))

Input data A and input data B are added and the result is stored in the output data.

Overflows are not treated as operation errors. Operation continues from the maximum value in
the negative direction.

Underflows are not treated as operation errors. Operation continues from the maximum value in
the positive direction.
Extended Add

++

Input data B — Output data

Input data A

The following figure shows how the output data changes.

32,767 (7TFFF hex) 32,767
+1 +1
0
Qutput data
y y
-32,768 (8000 hex) -32,768

Note: 1. In example shown above, the output data is integer data. With double-length integers, adding 1 to
2,147,483,647 (TFFFFFFF hex) results in -2,147,483,648 (80000000 hex).

2. Unlike operations for the ADD (+), SUB (-), or EXPRESSION instructions, overflows and underflows do not
occur.

Format
The format of this instruction is shown below.
& [[WLaT Sk A [WLaTSe B [WLalDest
m AODOE Myooooo Muoooo WWoooo:
-—- -—- -—- Icon: &= ==
w T T Key entry: ++
Input data A Input data B Qutput data
Appli le Data Ty
/O ltem pplicable Data Types
B W L Q F D A Index Constant
SrcA (Input data A) X O O O X X X @) @)
SrcB (Input data B) X O O O X X X O O
Dest (Output data) X O* O* O* X X X O X

* C and # registers cannot be used.

4.3 Numeric Operation Instructions

Programming Example

4.3.3 Extended Add (ADDX (++))

In the following programming example, input data A and input data B are extended-added, and

the result is stored in the output data.

« Storing the Output Data in MW00000 When Input Data A Is 32,760 and Input Data B Is 10

32,760 ++ 10 - MW00000 = -32,766

| [WLaTSrch
32760
| ADDY 32760

[WLa]Srch
oomao

10

[WLA]Dest

MWO0000
-32766

« Storing the Output Data in MLO0O000 When Input Data A in MW00002 Is 20,000 and Input

Data B in MWO0O0O0O0S3 Is 30,000

MWO00002 (20,000) ++ MWO00003 (30,000) — MLO0O000 = -15,536*

] T
MI0000 2
| HODR 20000

[MLO]Srch
MIWO0003

30000

[MLa]Dest
MLOD000
-15536

* In the example given above, MLOO0OO does not equal 50,000 because both input data A and B are inte-
gers, which limits the result to a number within the range for integers.

« Storing the Output Data in MLOO00O When Input Data A Is 2,147,483,647 and Input Data

Bls 2

2,147,483,647 ++ 2 — MLOO0O0OO = —-241,783,647

I W alSrof [WLaTSroE TTWLAlOest
ooy | 2147x10°6 00002 WLoo@Oo

| 2147=1078 2. -214=10°7

« Storing the Output Data in MWO000OOO When Input Data A Is -32,768 and Input Data B Is -1

-32,768 ++ -1 - MWO00000 = 32,767

] ETD
-32768
J AOD 32768

[(WLAlSrch
00001

-1

[WLalDest
MW 00000
32767

Information

When performing operations with different data types, the result of the operation will depend
on the data type of the output register.

I Chapter 3 Registers —Precautions for Operations Using Different Data Types on page 3-10

Normally, addition and subtraction instructions (+, —, ++, and — —) involving double-length inte-
gers are performed as 32-bit operations.
However, these instructions are performed as 64-bit operations if they are used to correct the
remainder produced by an immediately preceding MUL (x) instruction and are immediately fol-

lowed by a DIV (+) instruction.

Ladder Language Instructions

4-37

4.3 Numeric Operation Instructions
4.3.4 Subtract (SUB (-))

434 Subtract (SUB (-))

Input data B is subtracted from input data A and the result is stored in the output data.
An operation error occurs if the result produces an overflow or underflow.

4-38

‘ Input data A ‘ ‘ Input data B — Output data
Format
The format of this instruction is shown below.
& [[WLFRDTSrchA T[WLFRDTSrcE [[WLFED]Dest co: e
- suB MWODOOOD | MWOOODO1 o MWODOOE — eon
T - - Key entry: —
Input data A Input data B Output data
Applicable Data Types
1/0 It
em B W L Q F D A Index | Constant
SrcA (Input data A) X O O O @] O X O O
SrcB (Input data B) X O O O O O X O O
Dest (Output data) X O* Oo* O* Oo* O* X @) X

* G and # registers cannot be used.

Programming Example

In the following programming example, input data B is subtracted from input data A and the

result is stored in the output data.

« Storing the Output Data in MWO00000 When Input Data A Is 100 and Input Data B Is 200

100 - 200 - MW0O0000 = -100

[WLFOD]Srch

Qo100

[WLFQD]S reB

00200
200

[WLFQD]Dest

MWO000D
-100

+ Storing the Output Data in MW00000 When Input Data A Is 10.5 and Input Data B Is 10

10.5 - 10 - MWO00000 = 0 (when truncating below the decimal point is set)

[WLFaDTSrch '[WLFODISrcB [WLFQDIDest
SUB 1.060E+001 0ooTo MIO000D |
1.050E+001 10 0

« Storing the Output Data in MLO0O000 When Input Data A in MW00002 Is -20,000 and Input

Data B in MWO0O000S3 Is 30,000

MWO00002 (-20,000) — MWO00003 (30,000) — ML0O0000 = -32,768*

[WLFQDTSrch TTWLFQDISrcE [[WLFQD]Dest
S -20000 30000 MLOOODD |
I -20000 30000 -327638

* In the example given above, an underflow error occurs because both input data A and B are integers,
which limits the result to a number within the range for integers.

4.3 Numeric Operation Instructions

4.3.5 Extended Subtract (SUBX (- -))

Additional Information

With integer operations, an overflow operation error occurs if the result exceeds 32,767 and an
underflow operation error occurs if the result is less than -32,768.

With double-length integer operations, an overflow operation error occurs if the result exceeds
2,147,483,647 and an underflow operation error occurs if the result is less than
-2,147,483,648.

When performing operations with different data types, the result of the operation will depend
on the data type of the output register.
I Chapter 3 Registers —Precautions for Operations Using Different Data Types on page 3-10

Normally, addition and subtraction instructions (+, —, ++, and — —) involving double-length inte-
gers are performed as 32-bit operations.

However, these instructions are performed as 64-bit operations if they are used to correct the
remainder produced by an immediately preceding MUL (x) instruction and are immediately fol-
lowed by a DIV (+) instruction.

Information

435

Extended Subtract (SUBX (- -))

Input data B is subtracted from input data A and the result is stored in the output data.

Overflows are not treated as operation errors. Operation continues from the maximum value in
the negative direction.

Underflows are not treated as operation errors. Operation continues from the maximum value in
the positive direction.

Extended Subtract
Input data A - Input data B — Output data

The following figure shows how the output data changes.
32,767 (7TFFF hex) 32,767

‘ ‘
4 A

Output data

-32,768 (8000 hex) -32,768

Note: 1. In example shown above, the output data is integer data. With double-length integers, subtracting 1 from -
2,147,483,648 (80000000 hex) results in 2,147,483,647 (7TFFFFFFF hex).

2. Unlike operations for the ADD (+), SUB (-), or EXPRESSION instructions, overflows and underflows do not
occur.

Format
The format of this instruction is shown below.
& [[WLa] SrcA [WLaTSrcE [WLalDest o
- suBx MYOOOOD WMWODOO1 MWooOO® — Icon:
"' '{ "' Key entry: ——
Input data A Input data B Output data
Appli le Data T
/O ltem pplicable Data Types
B W L Q F D A Index Constant

SrcA (Input data A) X O O O X X X O O
SrcB (Input data B) X O O O X X X @) @)
Dest (Output data) X O* O* O* X X X O X

* C and # registers cannot be used.

Ladder Language Instructions

4-39

4.3 Numeric Operation Instructions
4.3.5 Extended Subtract (SUBX (- -))

Programming Example

In the following programming example, input data B is extended-subtracted from input data A

and the result is stored in the output data.

« Storing the Output Data in MWO00000 When Input Data A Is -32,760 and Input Data B Is 10
-32,760 — — 10 - MWO00000 = 32,766

] [WLaTSrch (WLAlsrch [WLA]Dest
CUB Y -32760 0omao MW 00000 L
| -52760 10 32768

« Storing the Output Data in MLO0O000 When Input Data A in MW00002 Is -20,000 and Input
Data B in MWO00003 Is 30,000
MW00002 (-20,000) - - MW00003 (30,000) — ML0O0O000 = 15,536*

[WLA TS rch [(WLO]Srch [MLQIDest
T -Z0000 30000 MLOOO00 -
| -20000 30000 15538

* |n the example given above, MLOOO0O does not equal -50,000 because both input data A and B are inte-
gers, which limits the result to a number within the range for integers.

« Storing the Output Data in MLOOOOO When Input Data A Is -2,147,483,648 and Input Data
Bls2
-2,147,483,648 — — 2 — MLOO00O = 241,783,646

l WL[]:ISrCﬂ\ [WLOSrcB [WLO]Dest
SUBY 21471078 o002 MLOODOO
| 21471076 7| 2147483646

+ Storing the Output Data in MW00000 When Input Data A Is 32,767 and Input Data B Is -1
32,767 — - -1 - MWO00000 = -32,768

| [WLO TS rch [(WLOISrch [WLGIDest
. Sun 32767 00007 MW 0000 L
J 32767 -1 -32768

When performing operations with different data types, the result of the operation will depend
on the data type of the output register.
5= Chapter 3 Registers —Precautions for Operations Using Different Data Types on page 3-10

Normally, addition and subtraction instructions (+, —, ++, and — —) involving double-length inte-
gers are performed as 32-bit operations.

However, these instructions are performed as 64-bit operations if they are used to correct the
remainder produced by an immediately preceding MUL (x) instruction and are immediately fol-
lowed by a DIV (+) instruction.

Information

4-40

4.3 Numeric Operation Instructions
4.3.6 Multiply (MUL (x))

436 Multiply (MUL (x))

Input data A and input data B are multiplied and the result is stored in the output data.

Input data A X Input data B —_— Output data

Format
The format of this instruction is shown below.

«[[WLFRO]SrcA [[WLFRO]Srck |[WLFAD]Dest con:
— ML WWOODOD WWOOODO1 | Myoooo: con: 3§
- - - Key entry: *
Input data A Input data B Output data
Appli le Data T
/O ltem pplicable Data Types
B W L Q F D A Index | Constant

SrcA (Input data A) X O O O O O X @) @)
SrcB (Input data B) X e} o e} o e} X o} e}
Dest (Output data) X O* O* O* O* O* X O X

* C and # registers cannot be used.

Programming Example

In the following programming example, input data A and input data B are multiplied and the

result is stored in the output data.

« Storing the Output Data in MW000OOO When Input Data A Is 100 and Input Data B Is 200
100 x 200 - MW00000 = 20,000

] [WLFGDTSrch [WLFGDTSrcB [WLFQDTDest
HUL 00100 00200 MHO00DD |
| 100 200 20000

« Storing the Output Data in MLO0O000 When Input Data A in MW00002 Is 200 and Input

Data B in MWO0O0003 Is 300

MWO00002 (200) x MW00003 (300) — MLO0O000 = 60,000

Ladder Language Instructions

] TWFaDISroh T WLFGD IS rcB LWLFQD]Dest
I Wit00002 W 00003 ML 00000 -
| 200 300 goo00

+ Storing the Output Data in MW00002 When Input Data A in MLO00OO Is -200 and Input
Data B in MWO0O0003 Is 300
—200 x 300 - MWO00002 = 5,536*

] [WFGDTSrch [WLFGDISreE T [WLFAD]Dest
MUL MLO0000 MWO0003 MWOO0DZ |
J =200 300 hh36

* The input data contains a double-length integer, so this operation is performed as a double-length inte-
ger operation. However, the output data is integer data, so if the operation result exceeds the range for
integers, the lower 16-bits of the original operation result will be stored in the output data.

4-41

4-42

4.3 Numeric Operation Instructions

4.3.7 Divide (DIV (+))

When performing operations with different data types, the result of the operation will depend
on the data type of the output register.
Iz Chapter 3 Registers — Precautions for Operations Using Different Data Types on page 3-10

Normally, addition and subtraction instructions (+, —, ++, and —) involving double-length inte-
gers are performed as 32-bit operations.

However, these instructions are performed as 64-bit operations if they are used to correct the
remainder produced by an immediately preceding MUL (x) instruction and are immediately fol-
lowed by a DIV (+) instruction.

Information

Divide (DIV (<))

Input data A is divided by input data B and the result is stored in the output data.

‘ Input data A ‘ - Input data B — Output data

Format
The format of this instruction is shown below.

a [[WCFRD]Srch [[WLFGO]SrcE [[WLFOD]Dest CON: e
m o WWoooon mirannn Witaooo: - .
- - - Key entry: /
Input data A Input data B Output data
Applicable Data T
/O ltem pplicable Data Types
B W L Q F D A Index Constant

SrcA (Input data A) X O O O O O X O O
SrcB (Input data B) X O O O O O X @) @)

Dest (Output data) X O* Oo* Oo* O* O* X O X

* C and # registers cannot be used.

Programming Example

In the following programming example, input data A is divided by input data B and the result is
stored in the output data.

+ Storing the Output Data in MW00000 When Input Data A Is 200 and Input Data B Is 100
200 + 100 - MW00000 = 2

| [WLFODTSrch [[WLFGDISrcE '[WLFQDIDest

DIV 00200 00100 MWOOO0DD |
| 200 100 i

« Storing the Output Data in MLOO00O When Input Data A Is 200 and Input Data B Is 1,000
200 + 1,000 — MLO0O000 =0

[WLFOD]Srcd C[WLFOD]SrcB [WLFQD]Dest
| DIY 00z00 01000 MLOOODDD |
J 200 1000 0

4.3 Numeric Operation Instructions

« Storing the Output Data in MFOO000 When Input Data A Is 200 and Input Data B Is 1,000
200 + 1,000 - MF0O0000 = 0.2

LWLFCD]Srcé
002 00

Information

OTv

4.3.8 Integer Remainder (MOD)

200

[WLFDISrcB |[WLFCO]Dest
01000 MFOODOO
1000 2. 000E-007

When performing operations with different data types, the result of the operation will depend
on the data type of the output register.

I Chapter 3 Registers — Precautions for Operations Using Different Data Types on page 3-10

Normally, addition and subtraction instructions (+, —, ++, and — —) involving double-length inte-
gers are performed as 32-bit operations.
However, these instructions are performed as 64-bit operations if they are used to correct the
remainder produced by an immediately preceding MUL (x) instruction and are immediately fol-

lowed by a DIV (+) instruction.

438

Integer Remainder (MOD)

The remainder of the immediately preceding integer or double-length integer division is stored

in the output data. The MOD instruction must be executed immediately after the DIV (+) instruc-
tion. If the MOD instruction is executed at any other time, the operation result obtained before

the next numeric operation instruction will be invalid.

Division of an integer or double-length integer

Execute MOD instruction
immediately after a division.

-

Output data

Format
The format of this instruction is shown below.

4[[WLo]Dest Icon: MOD
n KD MWoooon

-— Key entry: MOD
Output data
Applicable Data T
/O ltem pplicable Data Types
B W L Q F D A Index Constant

Dest (Output data) X O* Oo* O* X X X @) X

* G and # registers cannot be used.

Ladder Language Instructions

4-43

4.3 Numeric Operation Instructions

4.3.8 Integer Remainder (MOD)

Programming Example

In the following programming example, input data A is divided by input data B and the remain-
der is stored in the output data.

« If the immediately preceding division is as follows:
12,345 + 123 — MWO00000 = 100
And then the MOD instruction is executed immediately afterward — MWO00001 = 45

| [0015k [WFa015reB [[WLFGDIDest
12345 00123 MW 00000

DI 12345 123 100

Moo 45

If the immediately preceding division is as follows:
123,456,789 + 12,345 — ML0O000OO = 10,000

And then the MOD instruction is executed immediately afterward — MLO0O002 = 6,789
[WLFOD]Srch [[WLFOD]SrcB [WLFQD]Dest
23466759 12345 ML 00000

b 123456789 12345 10000 |
| TMaleat
ML 00002
Ll 5769 [

When performing operations with different data types, the result of the operation will depend
on the data type of the output register.
I Chapter 3 Registers — Precautions for Operations Using Different Data Types on page 3-10

Information

4-44

4.3 Numeric Operation Instructions

4.3.9 Real Remainder (REM)

439

Real Remainder (REM)

The remainder from a real number division is stored in the output data. Here, the remainder
refers to the remainder obtained by repeatedly subtracting the base value from the input data.

Specifically, the value obtained by subtracting the base value from the input data n number of
times (input data - base value x n) is output when it becomes less than the base value.

Input data

Base value

x N

E—

Output data

The output data is computed by using the first value of n that satisfies the following formula
when the value of n is incremented from O, 1, 2, 3, etc.

(Input data - Base value x n) < Base value

Format
The format of this instruction is shown below.
& [[FOT 5 [FOTEaze [FO]Dest)
~ REM MFODOOO ~ MFODDDZ MFODOD4 — loon: REM
- - - Key entry: REM
Input data Base value Output data
Applicable Data T
/O ltem pplicable Data Types
B W L Q F D A Index Constant

Src (Input data) X X X X O O X X O

Base (Base value) X X X X O O X X @)

Dest (Output data) X X X X O* O* X O X

* C and # registers cannot be used.

Programming Example

In the following programming example, the base value is subtracted from the input data n times

and the remainder is stored in the output data.

« Storing the Output Data in MFO0000 When the Input Data Is 5.0 and the Base Value Is 2.0.

5.0-2.0-2.0=1.0 < Base (2.0) - MFO0000 = 1.0

|
|

REM

[FO]5rc [FD|Base [FODest
5. 000E+000 | 2. 000E+000 MFOOO00
5.000E+000 + 2.000E+000 | 1. 000E+000

« Storing the Output Data in MFO0O000 When the Input Data Is 3,000.0 and the Base Value Is

3.0.

3,000.0 -3.0-3.0.. = 0.0 < Base (3.0) » MFO0000 = 0.0

| o IS

|

REM

[FD]Base
3. 000E+003 | 3.000E+000
3.000E+003 |+ 3.000E+000 | 0. 000E+000

[FO]Dest
MFOOO00

Ladder Language Instructions

4-45

4-46

4.3 Numeric Operation Instructions

4.3.10 Increment (INC)

4.3.10

Increment (INC)

A value of 1 is added to the integer or double-length integer data. No overflow or underflow will
occur for either an integer or double-length integer. This performs the same calculation as the
ADDX (++) instruction.

Data +1 — Data

The following figure shows how the data changes when the INC instruction is executed.

32,767 (TFFF hex) 32,767 ..
+1 +1
’ 2
Data 0
I4 I4
-32,768 (8000 hex) -32,768

Note: In example shown above, the data is an integer. With double-length integers, adding 1 to 2,147,483,647
(7FFFFFFF hex) results in -2,147,483,648 (80000000 hex).

Format
The format of this instruction is shown below.
& [[WLa]Dest
- | N kuuuuu . |COI’13+1
- Key entry: INC
Data
Applicable Data Types
VO ftem B W L Q F D A Index | Constant
Dest (Data) X O O O* X X X O X

* C and # registers cannot be used.

Programming Example

The following programming examples demonstrate the usage of the INC instruction and the
ADDX (++) instruction.

This is equivalent to adding 1 to the data 1,000 in MWO0O0O0OO using the ADDX (++) instruction.

l e
W00 000
I NG 1001 [
Equivalent
] [WLO TS rch (WLAISrch [WLa1Dest
20D Y MNO0000 00007 MO0 000 -
J 1000] 1001

4.3 Numeric Operation Instructions

4.3.11 Decrement (DEC)

4.3.11

Decrement (DEC)

A value of 1 is subtracted from the integer or double-length integer data. No overflow or under-
flow will occur for either an integer or double-length integer. This performs the same calculation
as the SUBX (- —) instruction.

Data 1 — Data

The following figure shows how the data changes when the DEC instruction is executed.

32,767 (7FFF hex) 32,767
4 4
1 1/
0
Data
-1
-2
-32,768 (8000 hex) -32,768

Note: In example shown above, the data is an integer. With double-length integers, subtracting 1 from
-2,147,483,648 (80000000 hex) results in 2,147,483,647 (7TFFFFFFF hex).

Format
The format of this instruction is shown below.
A [[WLaTDest

- DEe MWOO000 - leon: -1
- Key entry: DEC
Data
Applicable Data Ty
/O Item pplicable Data Types
B W L Q F D A Index Constant
Dest (Data) X O O O* X X X @) X

* C and # registers cannot be used.

Programming Example

The following programming examples demonstrate the usage of the DEC instruction and the
SUBX (- -) instruction.

This is equivalent to subtracting 1 from the data 1,000 in MWQ0O0O0OO using the SUBX (- -)
instruction.

[WLo]Dest
W O0000
| IEC 99—
Equivalent
] R T Te s (T0TE el [TL0TDest
UK Wl 00000 00001 W00 000 -
J 1000 | 999

Ladder Language Instructions

4-47

4-48

4.3 Numeric Operation Instructions

4.3.12 Add Time (TMADD)

4.3.12

Add Time (TMADD)

A duration (hours/minutes/seconds) is added to a time (hour/minutes/seconds). The add time
is added to time data A and the result is stored in time data A. Time data is two words long.

Time data A Add time Time data A
+ —_—
Hour ‘ Minutes‘ Seconds Hours‘ Minutes‘ Seconds Hour ‘ Minutes‘ Seconds
\ | \ | \ |
2 words 2 words 2 words

Format
The format of this instruction is shown below.
NI ET [WDest [E] [5t=] | . @
- TMADD MRODOOD WWODOOZ MEOOOO40 - con: %
- - - Key entry: TMADD
‘ Add time ‘ ‘ Time data A ‘ ‘ Status ‘
/O Item Applicable Data Types
B W L Q F D A Index Constant
Src (Add time) X 0™ X X X X X X X
Dest (Time data A) X 0™ X X X X X X X
Sts (Status)"! 0™ X X X X x X x X
*1. Optional.
*2. C and # registers cannot be used.
The time data is formatted as shown below.
Offset Contents Data Range (BCD)
. Upper byte (hour): 00 to 23
0 Hour/minutes Lower byte (minutes): 00 to 59
1 Seconds 0000 to 0059

If the operation result exceeds any of the data ranges given above, time data A is not updated
and the seconds data will be set to 9999, and the status bit will set to 1.

If the operation result is within the ranges, the status bit is set to O.

4.3 Numeric Operation Instructions

4.3.12 Add Time (TMADD)

Programming Example

The following table gives typical conditions for creating ladder programming that uses the
TMADD instruction. The examples show time data A before instruction execution, and the add
time.

Time Time Data A before Execution of Instruction Add time
, MWO00000 = 0210 hex MWO0002 = 0050 hex
Hour/minutes (2:10) (0 hours 50 minutes)
MWO0001 = 0050 hex MWO0003 = 0020 hex
Seconds (50 seconds) (20 seconds)

In the following programming example, the times are added according to the conditions given
above, and the result is stored in time data A.

. EXPRESEI0N E . |

Fd time data & (before added)

Weoooo0=0x0210; f£4 2:10

h28=h?8

MW0o0001=0x0080: /F &0 second
go=480

ff time to be added
MY00002=0x0060: S/ 0 hour G0min

g0=80
Mi'oooo2=0=0020: fF 20 second
a2=32
M5re [MDest BT [5t=]
THADD HW?El_UUE HW?EI_[IEIEI HEDDDD#UD [|
| . EXPRESSI0ON IEN" -

A& time data (after added)

Mitooooo=mMwooooo; fF

TEI=TEY

Wyoooot1=mMwanont: f4 =econd
16=186

The result of adding the add time to the value of time data A before instruction execution is
shown below.

Time Time Data A after Execution of Instruction
Hour/minutes MWOO0000 = 7.69 = 0301 hex
(8:01)
MWO0001 = 16 = 0010 hex
Seconds
(10 seconds)

Ladder Language Instructions

4-49

4-50

4.3 Numeric Operation Instructions

4.3.13 Subtract Time (TMSUB)

4.3.13

Subtract Time (TMSUB)

A duration (hours/minutes/seconds) is subtracted from a time (hour/minutes/seconds). The
subtract time is subtracted from time data A and the result is stored in time data A. Time data
is two words long.

Time data A Subtract time Time data A
Hour ‘Minutes‘ Seconds 7 Hours ‘Minutes‘ Seconds Hour ‘Minutes‘ Seconds
\ | \ | \ |
2 words 2 words 2 words

Format
The format of this instruction is shown below.
W 5re [WDhe=t [ET [5t=] lcon: @
n THEUE Wyoooon WWooonz WEOOOO40 = =
T - - Key entry: TMSUB
Subtract time Time data A Status
Appli le Data Ty
/O Item pplicable Data Types
B W L Q F D A Index | Constant
Src (Subtract time) X o X X X X X X X
Dest (Time data A) X o X X X X X X X
Sts (Status)™! 0™ X x X X x X X X
*1. Optional.
*2. C and # registers cannot be used.
The time data is formatted as shown below.
Offset Contents Data Range (BCD)
. Upper byte (hour): 00 to 23
0 Hour/minutes Lower byte (minutes): 00 to 59
1 Seconds 0000 to 0059

If the operation result exceeds any of the data ranges given above, time data A is not updated
and the seconds data will be set to 9999, and the status bit will set to 1.

If the operation result is within the ranges, the status bit is set to O.

4.3 Numeric Operation Instructions

4.3.13 Subtract Time (TMSUB)

Programming Example

The following table gives typical conditions for creating ladder programming that uses the
TMSUB instruction. The examples show time data A before instruction execution, and the sub-
tract time.

Time Time Data A before Execution of Instruction Subtract time
, MWOO0000 = 0210 hex MWO00002 = 0050 hex
Hour/minutes (2:10) (0 hours 50 minutes)
MWOO0001 = 0050 hex MWO0003 = 0020 hex
Seconds (50 seconds) (20 seconds)

In the following programming example, the time is subtracted according to the conditions given
above, and the result is stored in time data A.

. EXPRESSION N —

A time data & (before subtracted)

MWnoon0=0x0210; fF 2:10

h28=h21%

M¥ooo0ni1=0x0080: S5 50 =econd
a0=4a0

ff time to be zubtracted
Minoon2=0«x0080; fF 0 hour BO0min

20=80
MPOOO03=0x0020; // 20 second
37=32
Wsre (W Dest [B] [5t=]
THELR HW?l_]_DUE HW?El_[IDD |'|'|E|:||:||:||:|4|:||:| L
. EXPRESSION Ef. |

Fftime data (after substracted)

Mwaoono=mwoooon;: £S5 :

288=241%

HWoooot=Wooo01; /) second
48=44

The result of subtracting the subtract time from the value of time data A before instruction exe-
cution is shown below.

Time Time Data A after Execution of Instruction
Hour/minutes MWOO0000 = 2.88 = 0120 hex
(1:20)
MWOO0001 = 48 = 0030 hex
Seconds (80 seconds)

Ladder Language Instructions

4-51

4.3 Numeric Operation Instructions

4.3.14 Spend Time (SPEND)

4.3.14

Spend Time (SPEND)

The elapsed time is calculated by subtracting two data items (year/month/day/hour/minutes/
seconds). The instruction subtracts time B from time A, which gives the time elapsed from time
B to time A and the result is stored in time A.

Time data is four words long.

Time A Time B Time A

Year ‘ Month ‘Hour/minutes/

Year ‘ iy Onth‘Hour/minutes/ (Total nurber of ‘Hours/minutes/ Total number

Years ‘Months

seconds | Seconds storage areq) seconds seconds | of seconds
\ | \ | \ |
K 6 words 4 words J 6 words
The time elapsed from time B to time A is calculated.
Format
The format of this instruction is shown below.
a[[W] Src [WlDest [B] [5t=] |) @
- SPEMD MEOODOOD | WWODOO4 MBODOT0D — CO =
"" "" '1“ Key entry: SPEND
Time B Time A Status
/O ltem Applicable Data Types
B W L Q F D A Index Constant
Src (Time B) X 0™ X X X X X X X
Dest (Time A) X o X X X X X X X
Sts (Status)"! 0™ X X X X x X x x
*1. Optional.
*2. C and # registers cannot be used.
Time B is formatted as shown below.
Offset Contents Data Range (BCD) 1/0
0 Year (BCD) 0000 to 0099 IN
Upper byte (month): 01 to 12
1 Month/day (BCD) Lower byte (day): 01 to 31 IN
. Upper byte (hour): 00 to 23
2 Hour/minutes (BCD) Lower byte (minutes): 00 to 59 IN
3 Seconds (BCD) 0000 to 0059 IN
Time A is formatted as shown below.
Offset Contents Data Range (BCD) 1/0
0 Year (BCD) 0000 to 0099 IN/OUT
Upper byte (month): 01 to 12
1 Month/day (BCD) Lower byte (day): 01 to 31 IN/OUT
. Upper byte (hour): 00 to 23
2 Hour/minutes (BCD) Lower byte (minutes): 00 to 59 IN/OUT
3 Seconds (BCD) 0000 to 0059 IN/OUT
4 Total number of Operation result of years, months, days, hours, minutes, and IN/OUT
5 seconds seconds converted into seconds (double-length integer).

If the operation result exceeds any of the data ranges given above, time A is not updated and
the seconds data will be set to 9999, and the status bit will be set to 1.

If the operation result is within the ranges, the status bit is set to O.

4-52

4.3 Numeric Operation Instructions

Information

Programming Example

The following table gives typical conditions for creating ladder programming that uses the

SPEND instruction.

The following list shows time A (November 20, 2010, 02:10:50) before instruction execution,

and time B (October 10, 2009, 00:50:20).

4.3.14 Spend Time (SPEND)

A year is calculated as 365 days. Leap years are not supported.
The number of months is not calculated. Only the number of days is calculated.

Time A before Execution of Instruction Time B
Year MWOO0O000 = 0010 hex MWOO0006 = 0009 hex
(2010) (2009)
MWO0001 = 1120 hex MWOO0007 = 1010 hex
Month/day (November 20) (October 10)
. MWO0002 = 0210 hex MWOO0008 = 0050 hex
Hour/minutes (2:10) (0:50)
MWO00003 = 0050 hex MWOO0009 = 0020 hex
Seconds (50 seconds) (20 seconds)
| . EXPRESSION E -
A time & (before subtracted)
WWoooon=0=0010; £F 2010
16=18
MWnooni=0x1120; /4 MNow. 20th
4384=43534
WWooo02=0=0210; £F 2:10
hif=h2a
WWOO003=0x0080; fF 50 =econd
a0=a0
Fftime B
WWOO00E=0=0009; 47 2009
=1
MWnoony=ox1010; fF Oct. 10th
4112=4112
WWO000%=0=x0080; 4F 0:60
a0=a0
WWooooa=0x0020; fF 20 zecond
a2=3z
M W De=t [E] [5t=]

SPEND

HWaonne Hwaoono HEOOO040

ol |

. EXPRESSION

EA,. |

1=1
G5=65
2848=248
45=43

Jfotime & {after substracted)--» spended time
Wwooooo=Myoooonn; ff wvear

MWoooo1=M¥00001; /7 month day
MWOO0OZ=MW00002: 4/ hour min
MWoooa3=MW00003; 4/ second

MLOODOO4=MLOOOD4; // total second
35083230=35083230

Ladder Language Instructions

4-53

4.3 Numeric Operation Instructions

4.3.15 Invert Sign (INV)

The execution result of this SPEND instruction example is shown below.

Time A after Execution of Instruction

MWO0O0000 = 1 = 0001 hex

Years 4 yoar
Months/days MWOO0001 = 65 = 0041 hex

(0 months, 41 days)

Hours/minutes

MWO00002 = 288 = 0120 hex
(1 hour, 20 minutes)

Seconds

MWO0003 = 48 = 0030 hex
(80 seconds)

Total number of seconds

MLO0004 = 35083230

4.3.15

Invert Sign (INV)

4-54

The sign of the input data is inverted and the result is stored in the output data.

-1 x Input data — Output data
Format
The format of this instruction is shown below.
& [[WLFRD] 5rc [WLFeD] Dest | _
LG MWODODOD MWODOOOY con: INg
T o Key entry: INV
Input data Output data
/O ltem Applicable Data Types
B W L Q F D Index Constant
Src (Input data) @) O O O O X @)
Dest (Output data) X O* O* Oo* O* O* X

* C and # registers cannot be used.

Programming Example

In the following programming example, the INV instruction inverts the sign of 1,234 in input

data A in MWO0O0OO0O0O and stores the result in the output data in MLOO002.
-1 x MW00000(1234) — ML0O0002 = -1234

] [WLFODISrc [TWLFODIDest
WY M# 00000 MLOOODZ |
I 1234 -1234

When performing operations with different data types, the result of the operation will depend

Information” ., 6’ gata type of the output register.

Iz Chapter 3 Registers — Precautions for Operations Using Different Data Types on page 3-10

4.3 Numeric Operation Instructions

4.3.16 One’s Complement (COM)

4.3.16

One’s Complement (COM)

The one’s complement of the input data is stored in the output data.

Input data

One’s complement

Output data

Note: This instruction inverts the 0’s and 1’s in the binary representation of the input data and stores the result in the
output data.

Format
The format of this instruction is shown below.
af[Wielsre (WLl Dest |oon-r;ém
n COK Wwaooon Wwaooor - '
- - Key entry: COM
Input data Output data
Applicable Data Types
1/0 It
/O ltem W L Q F D A Index | Constant
Src (Input data) X O @] O X X X O O
Dest (Output data) X O* Oo* O* X X X O X

* G and # registers cannot be used.

Programming Example

In the following programming example, the one’s complement of -3,856 (FOFO hex) in the input
data in MWO0OOOQO is stored in the output data in MWO0OO0O01.

MWO00000 = —3,856 (FOFO hex) — MWO00001 = 3,855 (OFOF hex)

| WLOIS re [WLOIDest
oM MW OO0 000 MHOOODT |
3606 3855

J

Information

When performing operations with different data types, the result of the operation will depend
on the data type of the output register.
I Chapter 3 Registers —Precautions for Operations Using Different Data Types on page 3-10

Ladder Language Instructions

4-55

4-56

4.3 Numeric Operation Instructions

4.3.17 Absolute Value (ABS)

4317 Absolute Value (ABS)

The absolute value of the input data is stored in the output data.

Absolute value

Input data

Output data

Format
The format of this instruction is shown below.

& |[WCFaD] 5re [[WLFQD] Dest . |n|
] AES Wvaooon WWooont - lcon:

- Key entry: ABS

T T

Input data Output data
Applicable Data T
/O Item pplicable Data Types
W L Q F D A Index Constant
Src (Input data) X O O O O O X O O
Dest (Output data) X O* Oo* O* Oo* O* X @) X

* G and # registers cannot be used.

Programming Example

In the following programming example, the absolute value of -1.23 in the input data in

MFOO0O0QQ is stored in the output data in MFO0002.
| MFOO000 (-1.23) | = MF00002 = 1.23

] M Gre JIFD Dot
4BS MFOOO00 MEOOO0Z
J ~1.2E+000 | 1.23E+000

Information When performing operations with different data types, the result of the operation will depend

on the data type of the output register.

Iz Chapter 3 Registers — Precautions for Operations Using Different Data Types on page 3-10

4.3 Numeric Operation Instructions
4.3.18 Binary Conversion (BIN)

4318 Binary Conversion (BIN)

The value of the input data is converted from BCD data to binary data and stored in the output

data.
If the input data is not BCD data, such as 123F hex, the result of the binary conversion will be
incorrect.
Converted to binary.
Input data Output data

Note: The output data is computed as shown below
when the input BCD data is abcd.

Output data = (a x 1,000) + (b x 100) + (c x 10) + d

Information [nput and output data are always displayed in decimal notation.

Format
The format of this instruction is shown below.
a[[WLaTSrc (WLl Dest icon: BIN
con. BCD
n EIN wonnoo Wwoooolr —
--- -—- Key entry: BIN
Input data Output data
Applicable Data Types
1/0 It
/O ltem B W L Q F D A Index | Constant
Src (Input data) O @] O X X X O O
Dest (Output data) X O* Oo* O* X X X O X

* G and # registers cannot be used.

Programming Example

In the following example, the BCD data (1234 hex (4,660)) in input data A in MWO0O0OOQO is con-
verted to binary data (displayed in decimal notation as 1,234) and stored as the output data in

Ladder Language Instructions

MWOO0001.
MWOO0000 = 1234 hex : (1 x 1,000) + (2 x 100) + (3 x 10) + 4 — MWO00001 = 1,234
] MO ML=t
BIN MIWI0000 MWD 000 T
J 4660 1234
Information When performing operations with different data types, the result of the operation will depend

on the data type of the output register.
I Chapter 3 Registers —Precautions for Operations Using Different Data Types on page 3-10

4-57

4-58

4.3 Numeric Operation Instructions

4.3.19 BCD Conversion (BCD)

4319 BCD Conversion (BCD)

The input data is converted from binary data to BCD data and stored in the output data.

If the input data is greater than 9,999, or a negative value, the result will be incorrect.
Converted to BCD.

Input data Output data

Note: The output data is computed as shown below
when the input decimal data is abcd.

Output data = (a x 4096) + (b x 256) + (c x 16) + d

Information Input and output data are always displayed in decimal notation.

Format
The format of this instruction is shown below.
a([WLe]sre [WLa] De=zt ICOH:BCD
- BCD Weooooo o Wwoooot -~ BIN
-—- -—- Key entry: BCD
Input data Output data
/O ltem Applicable Data Types
W L Q F D A Index Constant
Src (Input data) O O O X X X O O
Dest (Output data) X O* O* O* X X X O X

* C and # registers cannot be used.

Programming Example

In the following programming example, the binary data (displayed in decimal notation as 1,234)
in input data A in MWO0OOOO is converted to BCD data (1234 hex (4,660)) and stored as the
output data in MW0O00O01.

MWO00000 = 1,234 : (1 x 4,096) + (2 x 256) + (3 x 16) + 4 — MW00001 = 1234 hex (4,660)

l T 0l5re e
BCD MWDO000 MWI0001
| 1734 4660

When performing operations with different data types, the result of the operation will depend
on the data type of the output register.
Iz Chapter 3 Registers — Precautions for Operations Using Different Data Types on page 3-10

Information

4.3 Numeric Operation Instructions
4.3.20 Parity Conversion (PARITY)

4320 Parity Conversion (PARITY)

The number of bits set to 1 in the input data is calculated in binary notation and stored in the
output data.

Number of 1 bits in binary
notation of input data

Input data _— Output data

Format
The format of this instruction is shown below.

A [[WLaTsr e [WLe] Dezt lcon: 0101

- PARITY Mioonoo Wuwoaootr - #?
-—- --- Key entry: PARITY

T

Input data Output data
/O ltem Applicable Data Types
W L Q F D A Index Constant
Src (Input data) O O O X X X O O
Dest (Output data) X O* O* O* X X X O X

* C and # registers cannot be used.

Programming Example

In the following programming example, the number of bits set to 1 in 255 (O0FF hex) in the
input data A in MWOO0O0QQ is stored in the output data in MWOO0O0O01.

Number of 1 bits in MWO0OOO0O0O (OFF hex) = 8 — MWO00001 = 8

] Malrc T Ol0est
MIO0000 MHO000 1
J PARITY 755 g
Information When performing operations with different data types, the result of the operation will depend

on the data type of the output register.
I Chapter 3 Registers — Precautions for Operations Using Different Data Types on page 3-10

Ladder Language Instructions

4-59

4.3 Numeric Operation Instructions

4.3.21 ASCII Conversion 1 (ASCII)

4321 ASCII Conversion 1 (ASCII)

The input text string is converted to ASCII and stored in the output data. The text string is case
sensitive.

The input text string can contain up to 32 characters (16 words).
Converted to ASCII.

Input text string Output data

The ASCII value for each character in the input text string is stored as shown below.

1st 2nd 3rd 4th
character character character character

A B C D
D
Upper byte]
2nd word in
c output data
Lower byte _ |
B
Upper byte]
1st word in
A output data
Lower byte _ |

Note: If the text string contains an odd number of characters, the upper byte of the last word will be set to zeros.

Format
The format of this instruction is shown below.

- SF e [WDest lcon: ASCI
— ASCI] ABCD MWyoooon —

-—- Key entry: ASCII

T |

Input text string Output data

/0 ltem Applicable Data Types
B | w | L [@ | F | b | A | Index |Constant
Src (Input text string) x'!
Dest (Qutput data) X ‘ 0™ ‘ X ‘ X ‘ X ‘ X ‘ X ‘ X ‘ X
*1. ASCII text

*2. C and # registers cannot be used.

Programming Example

In the following programming example, the input string “Hello” is converted to ASCIl and stored
in the output data in MWOOOOQO.

-l - Sre W Dest
J ASCI1 Hel lo Mi0000

4-60

4.3 Numeric Operation Instructions
4.3.22 ASCII Conversion 2 (BINASC)

The ASCII values are stored as given in the following table.

Address ASCII Value Character
MWOO0O000 (lower byte) 48 hex H
MWOOO0OO0 (upper byte) 65 hex e
MWO0O0001 (lower byte) 6 C hex |
MWO0O0001 (upper byte) 6 C hex |
MWOO0002 (lower byte) 6 F hex o]
MWOO0002 (upper byte) 0 -

4322 ASCII Conversion 2 (BINASC)

The 16-bit binary data stored in the 1-word input data is converted to four-digit hexadecimal
ASCII and stored in the 2-word output data.

Converted to hexadecimal Converted to ASCII.
notation.

4-digit text string
0t0o 9, Ato F)

Input data Output data

The ASCII value for 10811 (2A3B hex) in the input data is stored as shown below.

4th 1st
character character

B 3 A 2

2 Lower byte o]
1st word in
Al output data
Upper byte]
'3 _
Lower byte
2nd word in
B output data
Upper byte _
Format
The format of this instruction is shown below.
NINET [WDeszt . BIN
lcon: ASC
- BINASE MWoooan mwoooor
--- --- Key entry: BINASC
Input data Output data
Applicable Data Types
1/0O Item BR YR
B W L Q F D A Index Constant
Src (Input data) O X X X X X O
Dest (Output data) X O* X X X X X X X

* C and # registers cannot be used.

Ladder Language Instructions

4-61

4.3 Numeric Operation Instructions

4.3.23 ASCII Conversion 3 (ASCBIN)

Programming Example

In the following programming example, 10,811 (2A3B hex) in the input data is converted to
ASCII and stored in the output data in MWOO0O0OQO.

| TWre TWheat
BINASC 10811 W 0000
| 1 811
The ASCII values are stored as given in the following table.
Address ASCII Value Character

MWOQOO0000 (lower byte) 32 hex 2

MWO0O00QO (upper byte) 41 hex A

MWOO0001 (lower byte) 33 hex 3

MWOOO0O1 (upper byte) 42 hex B

4323 ASCII Conversion 3 (ASCBIN)

The value given as a 4-digit hexadecimal ASCII and stored in the 2-word input data is con-
verted to 16-bit binary data and stored in a 1-word output data.

ASCII converted to binary data.

Input data Output data

The following figure shows the output data when the first word of the input data is 4132 hex (‘2
‘A’), and the second word is 4232 hex (‘3" ‘B’).

— Lower byte ‘A’
1st word in
input data Output data (1 word)
| Upper byte 2’
2A3B
* Lower byte B’
2nd word in Hexadecimal notation
input data .
| Upper byte '3
Format
The format of this instruction is shown below.
PRI e [W Dest lcon:
— RASCEIH Myoaonn Wyooonz — " BIN
-—- - Key entry: ASCBIN
Input data Output data
Applicable Data Types
1/0O Item il P
W L Q F D A Index Constant
Src (Input data) X O X X X X X X
Dest (Output data) X O* X X X X X X X

* G and # registers cannot be used.

4-62

4.3 Numeric Operation Instructions

Programming Example

In the following programming example, the ASCBIN instruction is used to store the input data
in MWOQOO0O0QQ in the output data in MW00002.

4.3.23 ASCII Conversion 3 (ASCBIN)

[WiSre W Dest
WMWO0000 MW0002
The ASCII values are stored as given in the following table.
Address ASCII Value Character
MWO0O000O (lower byte) 32 hex 2
MWOO0O0QO0 (upper byte) 41 hex A
MWOO00O01 (lower byte) 33 hex B
MWOQO0001 (upper byte) 42 hex 3

The output data in MWOOOOQO is set to 10,811 (2A3B hex).

Ladder Language Instructions

4-63

4.4 Logic Operations and Comparison Instructions

4.4.1 Inclusive AND (AND)

m Logic Operations and Comparison Instructions

441 Inclusive AND (AND)

A logical AND operation is performed on input data A and input data B and the result is stored
in the output data.

This instruction can be used only with integer or double-length integer data.

Inclusive AND .
Input data A (AND) Input data B Output data

Each bit in the input data is evaluated as shown in the following truth table.

Input Data A Input Data B Output Data

0 0 0

0 1 0

1 0 0

1 1 1
Format
The format of this instruction is shown below.

& [[WLRTSrch [WLal Sk cE [WLa]Dest lcon: A
n AKND Muooooo Mwoooo1 DWooooo

-— -— - Key entry: &

T T T

Input data A Input data B Output data

/O Item Applicable Data Types
B w L Q F D A Index Constant
SrcA (Input data A) X O O O X X X O O
SrcB (Input data B) X O O O X X X O O
Dest (Output data) X O* Oo* O* X X X @) X

* C and # registers cannot be used.

Programming Example
In the following programming example, a logical AND is performed on 12,345 (3039 hex) in
input data A in MW0O000O0 and 3,855 (OFOF hex) in input data B in MWOOOO1, and the result is

stored in the output data in DW000QO.
BitF BitC BitB Bits Bit7 Bit4 Bit3 Bit0

MWO0O0000 :

123453089 hex) | O | O [T |1 0o jojojo ool l1lo]|o0]|1

MW00001
3855 (OFOF hex)

(02 O R e O IO 1 1 1 O[O0 | 0|01 1 1 1

I MW00000 & MW00001 — DW00000

DWO0O0000 :
9 (0009 hex) ojojo|jo|ojofo|o0o|O|O|O|O |1 |O]|O|H1
] s [TWCQISrcB (L0 0=t
A0 WMWOOD000 WWO000T Owooooon .
J 12345 3955 9

4-64

4.4 Logic Operations and Comparison Instructions

4.4.2 Inclusive OR (OR)

44.2

Inclusive OR (OR)

A logical OR operation is performed on input data A and input data B and the result is stored in
the output data.

This instruction can be used only with integer or double-length integer data.

OR

Inclusive OR) Input data B - Output data

Input data A ‘ (

Each bit in the input data is evaluated as shown in the following truth table.

Input Data A Input Data B Output Data
0 0 0
0 1 1
1 0 1
1 1 1
Format
The format of this instruction is shown below.
& ([WLR] SFeR [WL] SrcE [WLe] Dest
lcon:
~4 oA MWODDDD | WWOODOD1 | DWODODOO con:
= - --- Key entry: |
Input data A Input data B Output data
/O Item Applicable Data Types
B W L Q F D A Index Constant
SrcA (Input data A) X O @] O X X X O O
SrcB (Input data B) X O @] O X X X O O
Dest (Output data) X O* Oo* O* X X X O X

* C and # registers cannot be used.

Programming Example

In the following programming example, a logical OR is performed on 12,345 (3039 hex) in input
data A in MWO0OO0O0O0O and 3,855 (OFOF hex) in input data B in MWO0O0O0O1, and the result is stored
in the output data in DW0000O.

Bit F BitC BitB Bit8 Bit7 Bit4 Bit3 Bit O

MWOO0000 :

123453080 hex) | © | O [1| T [0 00 0|00 111|001

MW00001
3855 (OFOF hex)

DW00000 :
16191 @F3Fhex | O | O [1| T [Tt 1o o bt bt
| WLOISrch [(WLCSrcB (WL IDest
R MWOOD 00 MWO000OT OHo0000
J 12345 3805 16191

Ladder Language Instructions

4-65

4-66

4.4 Logic Operations and Comparison Instructions

4.4.3 Exclusive OR (XOR)

443

Exclusive OR (XOR)

An exclusive logical OR operation is performed on input data A and input data B and the result
is stored in the output data.

This instruction can be used only with integer or double-length integer data.

XOR

Input data A (Exclusive OR) Input data B —_— Qutput data

Each bit in the input data is evaluated as shown in the following truth table.

Input Data A Input Data B Output Data
0 0 0
0 1 1
1 0 1
1 1 0
Format
The format of this instruction is shown below.
a[[WCaTsrcA [WLe] &rcE [WLalDest |Con;$
n XOR WMoooon MiWoooo pwaooon -
i i — Key entry: A
Input data A Input data B Output data
Applicable Data Types
1/0 It
em B W L Q F D A Index | Constant
SrcA (Input data A) X O O O X X X O O
SrcB (Input data B) X O O O X X X O O
Dest (Output data) X O* Oo* O* X X X @) X

* C and # registers cannot be used.

Programming Example

In the following programming example, an exclusive logical OR is performed on 12,345 (3039
hex) in input data A in MWO0O0O0OO and 3,855 (OFOF hex) in input data B in MW000O01, and the
result is stored in the output data in DW0OO00OO.

Bit F BitC BitB Bit8 Bit7 Bit4 Bit3 Bit0

MWO00000 :

12345 (3039 hexy | © | O | T | T {000 00011 f1]0]| 0|1

MWO0Q0T: g g oo 11111 |olololol1]1]1]H1
3855 (OFOF hex)

MWO00000 A MWO00001 — DWO0000

DW00000 :
16182 (3F36 hex)

] (HLE]Srch, (HLESrcB (HLODest
YOR MWOOO0 00 MWDo001 O¥00000
J 17345 3855 16187

4.4 Logic Operations and Comparison Instructions

4.4.4 Less Than (<)

444 Less Than

(<)

Input data A and input data B are compared and the result is stored in the bit output.

Input data A

Format

The format of this instruction is shown below.

& [[WLFRDT Srch
Wyoanon

4 <

<

Input data B

Compared.

|

[WLFRD] SrcE

Mtooootr

|

E—

True: Output ON

False: Output OFF

Icon:

Key entry: <

Input data A Input data B
Applicable Data T
/O ltem pplicable Data Types
B W L Q F D A Index Constant
SrcA (Input data A) X O O O O O X O O
SrcB (Input data B) X O O @) O O X @) @)

Programming Example

In the programming example shown below, the INC instruction on the right end of the line is
executed because the comparison is true; that is, input data A is less than input data B when

input data A in MWO0O0O0OQQ is 90 and input data B is a constant set to 100.

[WLFODISr ch
00000

[MLFEDT5rc
o010

B

100

Information

ING

MHO0D01
1771

With real number data, the value displayed by the MPE720 may not match the execution
result of the comparison instruction due to a slight precision error.

Ladder Language Instructions

4-67

4.4 Logic Operations and Comparison Instructions

4.4.5 Less Than or Equal (<)

445 Less Than or Equal (<)

Input data A and input data B are compared and the result is stored in the bit output.

Input data A < Input data B — True: Output ON
False: Output OFF
Compared.
Format
The format of this instruction is shown below.
& ([WLFOD] Srcha [[WLFRD] SrcE Icon: é
" “= WMinoonn WWooont [K L
i i ey entry: <=
Input data A Input data B
Applicable Data Types
/0 It
em W L Q F D A Index | Constant
SrcA (Input data A) X O O O @] O X O O
SrcB (Input data B) X O O O O O X O O

Programming Example

In the programming example shown below, the INC instruction on the right end of the line is not
executed because the comparison is false; that is, input data A is greater than input data B
when input data A in MWOO0O0OQO is 101 and input data B is a constant set to 100.

[WLFADISrch TTWLFODISrcE a [[WLO]De st

. MHODO0O 00100 WH0000 1
< 101 100 IHE

With real number data, the value displayed by the MPE720 may not match the execution

Information result of the comparison instruction due to a slight precision error.

4-68

4.4 Logic Operations and Comparison Instructions

4.4.6 Equal (=)

44.6

Equal (=)
Input data A and input data B are compared and the result is stored in the bit output.
Input data A = Input data B —_— True: Output ON
False: Output OFF
Compared.
Format
The format of this instruction is shown below.
«[[WCFRDT SrcA [[WLFRD] SrcE lcon: ==
n == Mitoanon Minann
- - Key entry: =
Input data A Input data B
Applicable Data T
/0 ltem pplicable Data Types
w L Q F D A Index | Constant

SrcA (Input data A) O O O O O X @) @)
SrcB (Input data B) O O O O O O O

Programming Example

In the programming example shown below, the INC instruction on the right end of the line is
executed because the comparison is true; that is, input data A is equal to input data B when

input data A in MWOO0O0O0O is 100 and input data B is a constant set to 100.

[IR [MLFa0TS rch
_ MNO000 0 00100
100 100

Information

(s UEE.
MHO0001
ING 908

With real number data, the value displayed by the MPE720 may not match the execution
result of the comparison instruction due to a slight precision error.

Ladder Language Instructions

4-69

4-70

4.4 Logic Operations and Comparison Instructions

4.4.7 Not Equal (#)

447 Not Equal (#)

Input data A and input data B are compared and the result is stored in the bit output.

Input data A . Input data B HTrue: Output ON
False: Output OFF
Compared.
Format
The format of this instruction is shown below.
& ([WLFOD] Srcha [[WLFRD] SrcE lcon: #
il L= Miraoonn muwoooot - '
== == Key entry: <>
Input data A Input data B
Applicable Data T
/O ltem pplicable Data Types
B W L Q F D A Index Constant
SrcA (Input data A) X O O O O O X O O
SrcB (Input data B) O O O O O X @) @)

Programming Example

In the programming example shown below, the INC instruction on the right end of the line is not
executed because the comparison is false and turns the output OFF; that is, input data A is
equal to input data B when input data A in MWO0OOOO is 100 and input data B is a constant set

to 100.

[WLFRDTS rch

[MLFODTsrc

MAD000 0 00100

100

B

100

Information

a [[WLO]De st

MIO000 1

With real number data, the value displayed by the MPE720 may not match the execution
result of the comparison instruction due to a slight precision error.

4.4 Logic Operations and Comparison Instructions

4.4.8 Greater Than or Equal ()

448 Greater Than or Equal ()

Input data A and input data B are compared and the result is stored in the bit output.

Input data A > Input data B . True: Outout ON
False: Output OFF
Compared.
Format
The format of this instruction is shown below.
& [[WLFaDT Sreh [[WLFOD]SrcE lcon: ==
" ¥= MWoooan Wwooant -~ =
i i Key entry: >=
Input data A Input data B
Applicable Data Ty
/0 ltem pplicable Data Types
B W L Q F D Index | Constant
SrcA (Input data A) O O O O O @) @)
SrcB (Input data B) O O O O O O O

Programming Example

In the programming example shown below, the INC instruction on the right end of the line is
executed because the comparison is true; that is, input data A is equal to or greater than input
data B when input data A in MWOOO0OO is 100 and input data B is a constant set to 100.

Bz

[WLFODIS r ch [MLFGD]S e

MIO0000 00100
100

B

100

Information

ING

MHO0001
h4h

result of the comparison instruction due to a slight precision error.

With real number data, the value displayed by the MPE720 may not match the execution

Ladder Language Instructions

4-71

4-72

4.4 Logic Operations and Comparison Instructions

4.4.9 Greater Than (>)

449 Greater Than (>)

Input data A and input data B are compared and the result is stored in the bit output.

Input data A > Input data B — True: Output ON
False: Output OFF
Compared.
Format
The format of this instruction is shown below.
A [[WLFRDTSrcA [[WLFOD] SrcE lcon: =
n F Wioanoo Mwonoolr
I — Key entry: >
Input data A Input data B
/O Item Applicable Data Types
B W L Q F D A Index Constant
SrcA (Input data A) X @) @) @) O @) X @) @)
SrcB (Input data B) X O O O @] O O O

Programming Example

In the programming example shown below, the INC instruction on the right end of the line is not
executed because the comparison is false; that is, input data A is not greater than input data B
when input data A in MW0O0O0OQO is 100 and input data B is a constant set to 100.

MLFOD]Srch TWLFODISrc
MIHO0000 00100

100

B

100

Information

a [[WLATDe st

MIO00017

With real number data, the value displayed by the MPE720 may not match the execution
result of the comparison instruction due to a slight precision error.

4.4 Logic Operations and Comparison Instructions

4.4.10 Range Check (RCHK)

4410 Range Check (RCHK)

A check is made to see if the input data is between upper limit and lower limit and the result is
stored in the bit output.

Bit output =0
Upper limit
Bit output = 1
Input data r\
Lower limit
Bit output =0

+ Bit output =1

The bit output is set to 1 if the value of the input data is within the range that is greater than or
equal to the lower limit, and less than or equal to the upper limit.

Lower limit < Input data < Upper limit

* Bit output =0

The bit output is set to O if the value of the input data is outside the range that is greater than or
equal to the lower limit, and less than or equal to the upper limit.

Format

The format of this instruction is shown below.
B & |[WLFRD] I'n [WLFRD] Lower [TWLFROT Upper lcon: Cﬁh’
" RCHE Muoonnn MWoonoi Mwoonnz -
- - - Key entry: RCHK
‘ Input data ‘ ‘ Lower limit ‘ ‘ Upper limit ‘
/O Item Applicable Data Types
B W L Q F D A Index Constant

In (Input data) X O O O @] O X O O

Lower (Lower limit) X O O O O O X O O

Upper (Upper limit) X O O O O O X O O

Always set the lower limit to a value that is less than or equal to the upper limit. If the lower

o limit is greater than the upper limit, the result will be invalid.

Ladder Language Instructions

4-73

4.4 Logic Operations and Comparison Instructions

4.4.10 Range Check (RCHK)

Programming Example
The following programming examples execute the RCHK instruction.

« When Input Data (MWO00000) = 80, Lower Limit = 100, and Upper Limit = 1,000
The INC instruction on the right end of the line is not executed because the value of the input
data is less than the lower limit and turns the bit output OFF.

[WLFADI In [WLFRDIL ower '[WLFOD] Upper a | [WLO]Dest
come | MHOODOOD 00100 01000 e | MD000T
80 100 1000

« When Input Data (MWO00000) = 500, Lower Limit = 100, and Upper Limit = 1,000
The INC instruction on the right end of the line is executed because the value of the input
data is within the range that is greater than or equal to the lower limit and less than or equal
to the upper limit, which sets the bit output to 1.

[WLFRD] In [WLFOD]L awer '[WLFOD] Upper [WLE] Dest
om | Moo000 o000 01000 o Ry
500 100 1000 336

* When Input Data (MW00000) = 1,000, Lower Limit = 100, and Upper Limit = 1,000
The INC instruction on the right end of the line is executed because the value of the input
data is within the range that is greater than or equal to the lower limit and less than or equal
to the upper limit, which sets the bit output to 1.

[WLFALT In [WLFADTL ower [WLFAD] Upper [WLolDest
_ cow | MIO0D0O 00100 071000 we | Mooool
| T000 100 1000 1014

4-74

4.5 Program Control Instructions

4.5.1 Call Sequence Program (SEE)

m Program Control Instructions

4.5.1

Call Sequence Program (SEE)

A child drawing is called from a parent drawing, or a grandchild drawing is called from a child
drawing.

Parent Drawing Program called

I
| 4
SEE . .
instruction) Child Drawing

Format
The format of this instruction is shown below.

- Hame

i SEE HOT B lcon: SEE

Tc:h ild drami ng‘_| Key entry: SEE

‘ Program number

Program name

1/0O ltem Applicable Data Types

Registers may not be used. Specify the program number directly.

Name (Program number) The name of the specified program appears below the program number.

Programming Example

The SEE instruction calls drawing HO1.02 when the MB0O000OO relay is ON. Thereafter, the pro-
cess is executed and execution resumes from the next step after the SEE instruction. The SEE
instruction does not call drawing HO1.02 if the MB0O0O0O0OQO relay is OFF.

| MBOOODQO 2 e |
I I SEE HOT.0Z
J call grand:zh grandchi |d drawing 2 |
ild drawing

Ladder Language Instructions

4-75

4-76

4.5 Program Control Instructions

4.5.2 Call Motion Program (MSEE)

452 Call Motion Program (MSEE)

The specified motion program is called.
Motion programs can be called only from H drawings.

Drawing Motion program called.

'

| 4
_MSEE Motion Program
instruction 4

Format
The format of this instruction is shown below.

B [[WProgram HI[A]D=ata

M
Icon:
— MSEE aoon LDaooonn — Gog
i i Key entry: MSEE

[

Program number First work register

Applicable Data Types
I/0 ltem = 2
B w L Q F D A Index Constant
Program No. X O* X X X X X X O
(Program number)
Data %
(First work register) x x x % % x © % %
* M or D register only.
The following table shows the configuration of the work registers.
Address | Data Type Name Contents 1/0
0 W Status Flags Motion Program Status Flags ouT
1 W Control Signals Motion Program Control Signals IN
The override is used when executing interpo-
. . lation instructions.
2 W Interpolation Override Range: O to 32,767 IN
Unit: 1 =0.01%
This is the system work number that calls the
3 w System Work Number motion program. IN
Information Specify the program number from 1 to 512.

Refer to the following manual for details on motion programs.
(77 MP3000 Series Motion Programming Manual (Manual No. SIEP C880725 14)

4.5 Program Control Instructions

4.5.2 Call Motion Program (MSEE)

Programming Example

The following programming example shows how to execute the motion program MPMQ0O1 with
program number 1.

When the IBOO0OO relay turns ON, the Request for Start of Program Operation (DBO0O0010) in
the control signals turns ON and executes the MPMQ0O1 motion program.

* Direct Designation
The program number is directly set to 1.

[BOOOOO OBOO0310 DBOOOOT0
X O
--- pulse mot ion start
B | [WIProgram M. [10ata
— MSEE 00007 DADODOD

* Indirect Designation
The program number is set to MWO0OOO.

WLFOD]S Fe [WLFID Dest
STCRE 00001 | MO 0000 |
[BO0OOD DBOOO: 10 OBOO0010
| O
- pu lse motion start

B~ | [WProgram Mo.[[AData
MSEE MWOO0000 0A00000

Important

Continue execution of the MSEE instruction until execution of the motion program is completed.
When using indirect addressing, do not change the register value until the execution of the
motion program is completed.

Ladder Language Instructions

4-77

4.5 Program Control Instructions

4.5.3 Call User Function (FUNC)

453 Call User Function (FUNC)

A user function is called. The user function must be defined before it can be called.
The Call User Function (FUNC) instruction can be nested to up to eight levels.

Refer to the following section for details on user functions.
I 1.3 Introduction —1.3.3 User Functions on page 1-13

Ladoler L) User function called.

|
| 4
FUNC .
instruction User Function

Format
The format of this instruction is shown below.

r Program number

_E Fucol al

wzer’s function | g—p—n Program name
[WIIN [WJouT
MWD 0000 M 000 1 Icon: FUMC

Key entry: FUNC

| |

Function input

VN

Function output

1/0 Item Applicable Data Types

Registers may not be used. Specify the program number directly.

Name (Program number) The name of the specified program appears above the instruction.

Function input The register that is set in the function’s input definition can be used.

Function output The register that is set in the function’s output definition can be used.

Programming Example

Refer to the following section for programming examples for user functions.
I 1.3 Introduction — 1.3.3 User Functions on page 1-13

4-78

4.5 Program Control Instructions

4.5.4 Direct Input String (INS)

4.5.4

Direct Input String (INS)

The INS instruction is executed in user programs to input data separately from the 1/0O process-
ing that is performed by the system at the start of the high-speed and low-speed scans. When
the INS instruction is executed, the inputs from the specified Module are processed according
to the settings in the parameter table. The next instruction is not executed until input process-
ing is completed.
The following Modules can be specified.
 LIO-01/02 Module (LIO)

* LIO-04/05 Module (LIO32)
+ LIO-06 Module (MIXIO)

« Al-01 Module (Al)

INS instruction

Start of scan

Batch
outputs

Batch
inputs

Processing
of drawings

Inputs

Remaining
processing
of drawings

Normally, the outputs and inputs
are processed at once for each
Module at the start of the

high-speed and low-speed scans.

These inputs are input from the Module

specified in the INS instruction, separately

processed.

from the batch inputs. Processing of the
drawings stops until the inputs are

Format
The format of this instruction is shown below.
< [[a]Frm [E] [5t=] g
— I N5 Maooant meooaono — N S
- o Icon: S)
T T Key entry: INS 2
(0]
S
First address of Status]
parameter table 2
S
Applicable Data Types @
1/0O ltem o] 3 B
B W L Q F D A Index | Constant E
Prm (First address of %]
parameter table) x % x x % x o % %
Sts (Status)*™? o X x X x X X X X n
*1. C and # registers cannot be used.
*2. Optional.
The following figure shows the structure of the parameter table.
Address | Data Type | Symbol Name Specification 1/0
0 W RSSEL | Unit selection 1)) IN
- - Specify the Module to input from.
1 W MDSEL | Unit selection 2 IN
> W sTS Status Egch bit recen./es the input status for one word. ouT
0: Normal 1: Error
3 W N Number of words | Specify the number of continuous words. IN
4 W ID1 Input data 1 ouT
; Receives the data that was input. -
i i Contains O if an error occurs. :
N+3 W IDN Input data N ouT

4-79

4.5 Program Control Instructions

4.5.4 Direct Input String (INS)

The following table gives details about the parameters in the Machine Controller.

Module Name
Parameter LIO-01/02 LIO-04/05 LIO-06 Al-01 DI-01
(LIO) (LIO32) (MIXIO) (Al) (DI)
Specify the rack, unit, slot, and subslot of the target Module.
Hexadecimal notation: zxuy hex
x: Rack number from 1 to 7
RSSEL u: Unit number from 0 to 47!
y: Slot number from 0 to 9
Z: Subslot number from 1 to maximum value (determined by Module specifications)
. Channel number | Channel number .
MDSEL 0 (Not used.) Offset: 0 or 1 “1:0o0r 1 1 0to7 Offset: 0 to 3
STS Always 0. Always 0. Always 0. *2 Always 0.
N y 1to2 1to2 1t08 1to4
-MDSEL -MDSEL -MDSEL -MDSEL

*1. A unit number setting of 0 specifies unit number 1.

*2. If a channel for which the allocation has been deleted in the Al Module detailed definition is specified for the INS
instruction, the applicable channel number will be output for the bit. This is because it is not possible to read the
data on channels for which allocations have been deleted. The relation between bits and channels is shown
below.

Bit 0: Channel 1
Bit 1: Channel 2
Bit 2: Channel 3
Bit 3: Channel 4
Bit 4: Channel 5
Bit 5: Channel 6
Bit 6: Channel 7
Bit 7: Channel 8

Programming Example

When one word is input from the LIO at subslot number 1 on the LIO-01 Module mounted in
rack 1, unit 1, and slot 2, the input data of the LIO is stored in the MWO00014 status word.

L EHFRESSION Ed —]
MWO0010=0x1102 ; Sirack, slot, sitb-slot number;
4374=43H4
MWUOHBO;O S/ ot used:
MWI0013=1; Jword number;
L& Prm [BILSts]
INS MAODOTO MBOOOOUO]

4-80

4.5 Program Control Instructions

4.5.5 Direct Output String (OUTS)

4.5.5

Direct Output String (OUTS)

The OUTS instruction is executed in user programs to output data separately from the 1/O pro-
cessing that is performed by the system at the start of the high-speed and low-speed scans.
When the OUTS instruction is executed, the outputs to the specified Module are processed
according to the settings in the parameter table.

The following Modules can be specified.

Start of scan

\ outputs

LI0-01/02 Module (LIO)
LI0-04/05 Module (LIO32)
LIO-06 Module (MIXIO)
DO-01 Module (DO)
AO-01 Module (AO)

OUTS instruction

Batch

Batch Processing
inputs of drawings

Remaining
Outputs| processing
of drawings

Normally, the outputs and inputs

are processed at once for each
Module at the start of the
high-speed and low-speed scans.

until the outputs are processed.

These outputs are sent to the Module specified
by the OUTS instruction, separately from the
batch outputs. Processing of the drawings stops

Format
The format of this instruction is shown below.
& [[A] Prm [B] [5t=]
1 I ouT
ouTs I':'Iﬁ?_IZI_I]EII h'IBIZI_I]_IZI_I]I]EI lcon: §
T T Key entry: OUTS
First address of Status
parameter table
Applicable Data Types
1/0 ltem
B W L Q F D A Index Constant
Prm (First address of % % % % y % ol % %
parameter table)
Sts (Status)*? o X x x X x X X x

*1. C and # registers cannot be used.

*2. Optional.

Ladder Language Instructions

4-81

4.5 Program Control Instructions

4.5.5 Direct Output String (OUTS)

The following figure shows the structure of the parameter table.

Address | Data Type Symbol Name Specification I/0
0 w RSSEL Unit selection 1) IN
- - Specify the Module to output to.
1 w MDSEL Unit selection 2 IN
Each bit receives the input status for one
2 w STS Status word. ouT
0: Normal 1: Error
3 W N Number of words Specify the number of output words IN
(always 1).
4 W OoD1 Output data 1 ouT
: : : : Specify the data to output. :
N+3 W ODN Output data N ouT

The following table gives details about the parameters in the Machine Controller.

Module Name
Parameter LIO-01/02 LIO-04/05 LIO-06 DO-01 AO-01
(LIO) (LIO32) (MIXIO) (DO) (AO)
Specify the rack, unit, slot, and subslot of the target Module.
Hexadecimal notation: zxuy hex
x: Rack number from 1 to 7
RSSEL u: Unit number from 0 to 4"!
y: Slot number from 0 to 9
z: Subslot number from 1 to maximum value (determined by Module specifications)
MDSEL O(Notused) |Offset:Oor1 | Offset:0or1 | Offset: Otog | Shannelnumoer
STS Always 0. Always 0. Always 0. Always 0. *2
N ; 1to2 1to2 1to4 1to4
- MDSEL - MDSEL - MDSEL — MDSEL

*1. A unit number setting of O specifies unit number 1.
*2. If a channel for which the allocation has been deleted in the AO Module detailed definition is specified for the

OUTS instruction, the applicable channel number will be output for the bit. This is because it is not possible to
read the data on channels for which allocations have been deleted. The relation between bits and channels is

shown below.

Bit 0: Channel 1
Bit 1: Channel 2
Bit 2: Channel 3
Bit 3: Channel 4

Programming Example

When one word is output to the LIO at subslot number 1 on the LIO-01 Module mounted in
rack 1, unit 1, and slot 2, the data in the MW00014 status word is output to LIO.

4-82

o EXPRESSION EF P—
MWOD01 0=0x110% ; Jirack, slot, sub-slot number;
4354=43H4
MAOOD T]E]U;O /4 not used:
MAWOO0T3=1; . Jfword number (fixed 1)
M*ﬁ.’[][][]]4=[]><[][][]1C;1 /4 output data;
L& JFrm [BlL5t=]
WS MﬁUUD 10 MBOUOUUO]

4.5 Program Control Instructions

4.5.6 Call Extended Program (XCALL)

4.5.6

Call Extended Program (XCALL)

An extended program, such as a table program that contains a table of constants, is executed.
The MPE720 converts an extended program into a ladder program. Converted ladder pro-
grams can be executed with the XCALL instruction.

Although more than one XCALL instruction can be used in a single drawing, the same
extended program cannot be called more than once.

Ladder Drawing Extended program called.
|
XCALL g
Extended Program
¢
Format
The format of this instruction is shown below.
lcon: C%LL
I kea B wois '
MCTEL Key entry: XCALL

:

Program type

I/0 ltem Applicable Data Types

Registers may not be used. Specify the following type.
MCTBL: Constants table

Name (Program type)

Programming Example
This example shows how to call a MCTBL constants table.

EE Mame I
]‘ e MCTBL |

I/0 conversion tables, interlock tables, and part assembly tables cannot be used with the
Machine Controller.

Information

Ladder Language Instructions

4-83

4.5 Program Control Instructions

4.5.7 WHILE Construct (WHILE, END_WHILE)

457 WHILE Construct (WHILE, END_WHILE)

The programming between the WHILE and END_WHILE instructions is executed when the con-
ditional expression for the WHILE instruction is satisfied. After the last line is executed, program
execution returns to the WHILE instruction. Execution of the programming is repeated for as

long as the conditional expression is satisfied.

If the conditional expression is not satisfied, program execution jumps to the next step follow-

ing the END_WHILE instruction. None of the programming between the WHILE and

END_WHILE instructions is executed.

WHILE instruction
<conditional expression>,

Not satisfied.*2
Condition

satisfied?

Satisfied.*!

‘ Programming ‘

END_WHILE

h 4

Next step

*]1. The programming is executed and then execution returns to the WHILE instruction.
*2. The programming is not executed and execution jumps to the next step.

Format
The format of this instruction is shown below.

EFS
’» e~ MHD0000>0

| Conditional

Programming expression

I— EWD_WHILE

. END_
lcon: WHILE WHILE

Key entry: WHILE and WEND

Applicable Data T
/O Item pplicable Data Types
B W L Q F D Index Constant
Conditional o* O* O* O* O* O* O* O*
expression

* Write with the format for an EXPRESSION instruction.
Refer to the following appendix for details on the format used to write the expression.
I Appendix C Format for EXPRESSION Instructions

4-84

4.5 Program Control Instructions

4.5.7 WHILE Construct (WHILE, END_WHILE)

Programming Example

In the following programming example, the registers from MWO00100 to MWO00105 are added
together and stored in the MWOOOQOQO register.

The conditional expression is | £ 5, so the ADD (+) instruction is executed while | is O to 5.

The conditional expression is no longer satisfied when | is 6, so program execution jumps to
the next step following the END_WHILE instruction.

& |[WLFID1Sre [WLFOD Dest
00000 MID0000

STORE

& [[MLRI0TSre [WLFOD T0est

— 00000 L
|| e 1$0
| Z[[MF0Erch WD ErE LA est
B 40D MWO00 00 MWD 0100 MWO0000
7
| = WL GI0est
N 1 ||
5 TG)
L ENDHILE

WHILE instruction is satisfied.

If the conditional expression never becomes unsatisfied, or if it takes too much time to become
Important - unsatisfied, the Machine Controller system will shut down.

In the example given above, an endless loop would occur if the programming did not include the

instruction that increments /.

g@ Execution of the programming is repeated for as long as the conditional expression for the

Additional Information

€ Applicable Conditional Expressions

The conditional expression for a WHILE instruction must be written with the format for an
EXPRESSION instruction to produce a Boolean (TRUE or FALSE) result. Numerical expressions
that include substitution operators will not be recognized.

Expression Example Notation Remarks
MBO000001 == true OK True: ON
MBO000001 != false oK False: OFF
MWO00002 < 100 OK
MF00002 < sin(60.0) OK
MWO00001 == OxO0FF OK OK Prefix hexadecimal numbers with Ox.
MBO000001 = true NG
MWO00001 = MW00002 NG

Note: Refer to the following appendix for details on applicable instructions, operation order, and notation conven-
tions.

I Appendix C Format for EXPRESSION Instructions

€ Nesting Depth

The FOR, WHILE, and IF constructs can contain other constructs. This is called nesting. The
maximum depth of a nested structure that uses FOR, WHILE, and IF statements is limited to 8
levels.

If an instruction is preceded by a contact, it is treated like an IF construct and is included in the
number of nesting levels.

Ladder Language Instructions

4-85

4.5 Program Control Instructions

4.5.8 FOR Construct (FOR, END_FOR)

458

FOR Construct (FOR, END_FOR)

The programming between the FOR and END_FOR instructions is repeatedly executed.

The initial value starts with the value in a register specified as the variable. This variable is incre-
mented by the step value each time execution is repeated.

The conditional expression for the FOR instruction is no longer satisfied when the value of the
variable exceeds the maximum value, so program execution jumps to the next step.

Initialization of FOR
instruction variable

Variable = Variable + Step value

Not satisfied.

Variable < Maximum
value?

Satisfied.

h 4

‘ Programming ‘

FOR

N
END_

!

Next step

Format
The format of this instruction is shown below.
Variable Initial value Maximum value Step value
B[V ¥ar [Winit [W] Ma= [W]5tep
m FOR Muoooan Moot MWooooz2 Mwoooos
Programming
. EMD_
lcon: FOR ,
— EHWD_FOR PO
Key entry: FOR and FEND
Applicable Data Types
1/0 It
/O ltem B W L Q F D A Index | Constant
Var (Variable) X O* X X X O X
Init (Initial value) X O X X X X X O O
Max (Maximum value) X @) X X X X X @) @)
Step (Step value) X @) X X X X X O O

* C and # registers cannot be used.

4-86

4.5 Program Control Instructions

4.5.8 FOR Construct (FOR, END_FOR)

Programming Example

In the following programming example, the registers from MWO00100 to MWO00105 are added
together and stored in the MWOOOQOQO register.

In this example, variable [is initialized to O by storing 0. Thereafter, the ADD (+) instruction is
executed until variable | exceeds the maximum value of 5. The conditional expression is no lon-
ger satisfied when [is 6, so program execution jumps to the next step following the END_FOR
instruction.

| WO RBre TR0 Dest

STCRE 00000 MWOO0000 —
| =W War G (W ax MEter B
— FOR [00000 00005 0000
| TFD B (TNFa0 R [[WCFaD Dest
I\é‘ 400 MWOO000 MWO0100 MWOO0000 —
L EnD FOR

Additional Information

The FOR, WHILE, and IF constructs can contain other constructs. This is called nesting. The
maximum depth of a nested structure that uses FOR, WHILE, and IF statements is limited to 8
levels.

If an instruction is preceded by a contact, it is treated like an IF construct and is included in the
number of nesting levels.

Ladder Language Instructions

4-87

4-88

4.5 Program Control Instructions

4.5.9 IF Construct (IF, END_IF)

459

IF Construct (IF, END_IF)

Execution of the programming between the IF and END_IF instructions is repeated for as long

as the conditional expression for the IF instruction is satisfied.

The programming is not executed if the conditional expression is not satisfied.

IF instruction
<conditional expression>,

Condition
satisfied?

Satisfied.”!

h 4
Programming

END_IF

h 4

Next step

Not satisfied.*2

*1. The programming is executed and execution jumps to the next step.

*2. The programming is not executed and execution jumps to the next step.

Format

The format of this instruction is shown below.

Conditional
expression

Programming 1

-

] I B+ weooooon

— EMDO_IF
lcon: IF Eﬁ?‘
Key entry: IF and IEND
Applicable Data Types
I/0 ltem
B w L Q F D A Index | Constant

Conditional o | or | or | ox | or | o X o* o*
expression

* Write with the format for an EXPRESSION instruction.

Refer to the following appendix for details on the format used to write the expression.

I3 Appendix C Format for EXPRESSION Instructions

4.5 Program Control Instructions

4.5.9 IF Construct (IF, END_IF)

Programming Example

When the conditional expression (MB0O00001) for the IF instruction turns ON, the value of
MWOQ0010 is set in MW0O1000 and MWO0OQ0011 is incremented.

T~ MBO000OT

| Z[MF0Bre |[[WLFIDDest

3. ST(RE | MWOOD10 | MHOOI0D —
| a [[WLOIDest

3. NG MADOOTT —
— EMD_IF

Additional Information

€ Applicable Conditional Expressions

The conditional expression for an IF instruction must be written with the format for an EXPRES-
SION instruction to produce a Boolean (TRUE or FALSE) result. Numerical expressions that
include substitution operators will not be recognized.

Expression Example Notation Remarks
MBO000001 == true OK True: ON
MBO000001 |= false OK False: OFF
MWO00002 < 100 OK
MFO00002 < sin(60.0) OK
MWO00001 == OxO0FF OK OK Prefix hexadecimal values with Ox.
MBO0O0001 = true NG
MWO00001 = MWO00002 NG

Note: Refer to the following appendix for details on applicable instructions, operation order, and notation conven-
tions.
I Appendix C Format for EXPRESSION Instructions

€ Nesting Depth

The FOR, WHILE, and IF constructs can contain other constructs. This is called nesting. The
maximum depth of a nested structure that uses FOR, WHILE, and IF statements is limited to 8
levels.

If an instruction is preceded by a contact, it is treated like an IF construct and is included in the
number of nesting levels.

Ladder Language Instructions

4-89

4.5 Program Control Instructions

4.5.10 IF-ELSE Construct (IF, ELSE, END_IF)

4510 IF-ELSE Construct (IF, ELSE, END_IF)

When the conditional expression for the IF instruction is satisfied, only programming 1 is exe-
cuted. Programming 2 is not executed.

If the conditional expression is not satisfied, only programming 2 is executed. Programming 1 is
not executed.

|

IF instruction
<conditional expression>

= Not satisfied.™
Condition

satisfied?
Satisfied.”! ELSE

h 4

‘ Programming 1 ‘ ‘ Programming 2 ‘

Next step

*1. Programming 1 is executed and execution jumps to the next step.
*2. Programming 2 is executed and execution jumps to the next step.

Format
The format of this instruction is shown below.

Conditional

| expression

| | (F E* Weoooooon

Programming 1

I ELse E

Programming 2

— EHD_IF
lcon:IF , BLSE and E?Jg
Key entry: IF, ELSE, and IEND
Applicable Data Types
/O Item ERLE ik
B W L Q F D A Index | Constant

Conditional o* | oxr | o | o* | or | o X o* o*
expression

* Write with the format for an EXPRESSION instruction.
Refer to the following appendix for details on the format used to write the expression.
I3 Appendix C Format for EXPRESSION Instructions

4-90

4.5 Program Control Instructions

4.5.11 Expression (EXPRESSION)

Programming Example

When the conditional expression (MB0O00001) for the IF instruction turns ON, the value of
MWO0O0010 is set in MW0O1000 and MWQO0O011 is incremented. When the conditional expression
(MBO0O00001) for the IF instruction turns OFF, the value of MWOO0O0Q9 is set in MW01000.

" FF * MBOOOOT

| =LFOD5rc |[ALFODDest

3. ST(RE | MWOOD10 | MHOOI0D —
| : WL OT0est :

3. NG MADOOTT —
— ELSE

| & | [WLRID 5rc [WLFGD De=t

i STRE | MWOOOD2 | MWO1000 —
— ENDLIF

Additional Information

The conditional expressions that can be used, and the nesting depth is the same as for IF con-
structs.

4.5.11

Expression (EXPRESSION)

An expression may contain the following elements:

« A variable name or structure can be used in place of a register, similar to C language.

« Basic functions such as the SIN and COS functions.

 Arithmetic operators, logical operators, comparison operators, and substitution operators
* Arrays

EXPRESSION Instruction

MW00000 = 10

MW00001 = DATAT;
MLO0002 = MWO000O + 100;
MF00004 = sin(MFOO0O0B);
MW00006 = Ox3FFF;

Ladder Language Instructions

4-91

4-92

4.5 Program Control Instructions

4.5.11 Expression (EXPRESSION)

Format

The format of this instruction is shown below.

— EXPRESSIOHW

MWoooon
MWooonz

MWoooo1;
MWOOoo3 + MWooo04d;

T

Operation expression

lcon: F%&
Key entry: EXPR

1/0 ltem

Applicable Data Types

B

W

L

Q

F D A Index Constant

Operation expression

O*

O*

O*

O*

O* O* X O* O*

* Write with the format for an EXPRESSION instruction.

Refer to the following appendix for details on the format used to write the expression.

I3 Appendix C Format for EXPRESSION Instructions

Programming Example
In the following programming example, multiple operations are programmed in a single

EXPRESSION instruction.

—a EAPRESSION

Q.

2D=3%3+4x4
30=10+10%2
40=(10+10) %2

OWo0004=10+10%%2 ;
OMO0004=(10+10) %2 ;

DFO0008=5 in (DFO000G)
5. 000000E-001=5 in(3.000000E+001)

OR00000=0W0000TDWo000 T+0W00002xDW0000% ;

Additional Information

The EXPRESSION instruction can be programmed with numeric expressions in addition to
expressions that return Boolean TRUE or FALSE values.

Expression Example Notation Remarks
MBO0000OQO = true; OK True: ON
MWO00000 = MWO00001+10 OK -
MWOO0000 = 0x00FF; OK Prefix hexadecimal values with Ox.
MBO000000 == true; NG -
MWO00001 > MWO0O0000; NG -

Note: Refer to the following appendix for details on applicable instructions, operation order, and notation conven-

tions.

T Appendix C Format for EXPRESSION Instructions

4.6 Basic Function Instructions

4.6.1 Square Root (SQRT)

m Basic Function Instructions

4.6.1

Square Root (SQRT)

The square root of the integer or real number input data is calculated and the result is stored in
the output data.

Double-length integers cannot be used.

If the input data is less than 0, the absolute value of the input data will be used to perform the

Information operation and output the result.

€ Integer SQRT: The Input Data and Output Data Are Integer Data.

Input data X 32,768 — Output data

With integer SQRT instructions, the result is calculated using the following formula, unlike the
square root used in mathematics.

Information

sign (input data) x J\ input olata\ x 32,768

This is the same as multiplying the result of the mathematical square root by /32,768. If the
input is a negative number, the square root of the absolute value is calculated, and the nega-
tive number is given as the operation result. The maximum operation error is £2.

€ Real Number SQRT: For Any Other Data Types

Input data —_— Output data

The SQRT instruction uses the immediately preceding operation result (real number data) as

Information the input and returns the square root as real number data.

Format
The format of this instruction is shown below.
& [[WFDTSrc [WFDTDest
| :
- SR MFODD0D WFODOOZ - con:
-== -== Key entry: SQRT
‘ Input data ‘ ‘ Output data ‘
/O ltem Applicable Data Types
B W L Q F D A Index Constant

Src (Input data) X O X X O O X O O

Dest (Output data) X O* X X O* O* X @) X

* C and # registers cannot be used.

Ladder Language Instructions

4-93

4-94

4.6 Basic Function Instructions

4.6.2 Sine (SIN)

Programming Example

The following programming examples demonstrate the SQRT instruction using integer and real
number input data.

* Integer SQRT

The square root of 64, an integer in the input data in MWO0OOOQO, is multiplied by 128 /2 and
the result is stored in the output data in DW000QO.
J64 x 12842 — DWO0000 = 1448

-I f s [GEDEEE [WFD]0==t
SORT MID0000 | DWOO000
J 64 1448

» Real Number SQRT

The square root of 64.0, a real number in the input data in MFO00OQO, is calculated and the
result is stored in the output data in DFO000O.
J64.0 — DF00000 = 8.0

] WFD15rc [WFD10est
SART MFOOO 00D UFO0000
J 6. 40E+001 @ 8. 00E+000

4.6.2

Sine (SIN)

The sine of the integer or real number input data is calculated and the result is stored in the
output data.

Double-length integers cannot be used.

@ Integer Input Data and Output Data

SIN (| Inputdata |) x 10,000 — | Output data

Note: 1. The input data is in degrees, where 1 = 0.01 degree.
2. The operation result is multiplied by 10,000 and stored in the output data.

€ Real Number Input Data and Output Data

SIN (| Inputdata |) — Output data

Note: The input data is in degrees.

Format
The format of this instruction is shown below.
& [[WFOT S5k [WFOlDest
4 SN WFOOO00 MFOOQO2 - lcon: Sin
T T Key entry: SIN

‘ Input data H Output data ‘

/O ltem Applicable Data Types
w L Q F D A Index Constant
Src (Input data) O X @] O X O O
Dest (Output data) X O* X X O* O* X O X

* C and # registers cannot be used.

4.6 Basic Function Instructions

4.6.3 Cosine (COS)

@ Integer
The input data is in degrees, where 1 = 0.01 degree.

Therefore, the SIN function instruction can operate on values between -327.78 and 327.67
degrees.

The output of the SIN function is multiplied by 10,000, so the data will be output between -
10,000 and 10,000.

€ Real Number

The input data is in degrees.

Programming Example

The following programming examples demonstrate the SIN instruction using integer and real
number input data.

* Integer SIN
The sine of 9,000, an integer in the input data in MWOOOOQO, is calculated and the result is
stored in the output data in DWO0OO0OO.

SIN (90.00 deg) x 10,000 — DW0O0000 = 10,000

| [WFD 1Src [WFD Dest
SIN WI00000 | DHOOOOO
| | 9000 10000

» Real Number SIN
The sine of 90.0, a real number in the input data in MFO0O0QQ, is calculated and the result is
stored in the output data in DFO00Q0.

SIN (90.0 deg) — DF0O0000 = 1.0

| [WFD] Sre [WFD J0est
| -l SIN MFOOO0D OF00000

9.000E+007 | 1.000E+D00O

46.3

Cosine (COS)

The cosine of the integer or real number input data is calculated and the result is stored in the
output data.

Double-length integers cannot be used.

€ Integer Input Data and Output Data

Note: 1. The input data is in degrees, where 1 = 0.01 degree.
2. The operation result is multiplied by 10,000 and stored in the output data.

3. The input data must be between -327.68 and 32.767 degrees. Any other number will not produce
the correct result.

€ Real Number Input Data and Output Data

c0s [) —=

Note: The input data is in degrees.

Ladder Language Instructions

4-95

4.6 Basic Function Instructions

4.6.3 Cosine (COS)

Format

The format of this instruction is shown below.
a|[WFDT 5rc [WFDl Dest
n COs MFO0000 MFOOOO0Z - lcon: COS
I - Key entry: COS
‘ Input data ‘ ‘ Output data ‘
/O Item Applicable Data Types
w L Q F D A Index | Constant
Src (Input data) X O X X O O X @) @)
Dest (Output data) X O* X X O* O* X O X

* C and # registers cannot be used.

€ Integer
The input data is in degrees, where 1 = 0.01 degree.

Therefore, the COS function instruction can operate on values between -327.78 and 327.67
degrees.

The output of the COS function is multiplied by 10,000, so the data will be output between -
10,000 and 10,000.

€ Real Number

The input data is in degrees.

Programming Example

The following programming examples demonstrate the COS instruction using integer and real
number input data.

* Integer COS
The cosine of 18,000, an integer in the input data in MWOO0O0OQ, is calculated and the result is
stored in the output data in DWO0000O.

COS (180.00 deg) x 10,000 — DWO0000 = —-10,000

] [WFOTSrc (WD J0est
s MIDODOD | DHOOOOO
J | 18000 -10000

* Real Number COS
The cosine of 180.0, a real number in the input data in MFOOOOQO, is calculated and the result
is stored in the output data in DFOO00QO0.

COS (180.0 deg) — DFO0000 = -1.0

] IS IO [Dest
J Cos MFOOO00 OFO0000

F

1.800E+002 | -1.00E+000

4-96

4.6 Basic Function Instructions

4.6.4 Tangent (TAN.)

4.64

Tangent (TAN.)

The tangent of the real number input data is calculated and the result is stored in the output
data.

TAN () — | Output data

Note: The input data is in degrees.

Format
The format of this instruction is shown below.
& [[FO] Sr e [FOlDe=t
- TAN MFODOOD | MFOODDZ - lcon: TR

Key entry: TAN

| Inputdata || Output data |

Applicable Data Types
1/0O ltem i P
B W L Q F D A Index | Constant
Src (Input data) X X X X O O X X @)
Dest (Output data) X X X X O* O* X X X

* C and # registers cannot be used.

Programming Example

In the following programming example, the tangent of 45 in input data in MWO0OOOQQ is calcu-
lated and the result is stored in the output data in DFO000O.

TAN (45.0 deg) — DF0O0000 = 1.0

] R [P0 Dest
il MFOOD00 DFO0000
l 4 500E+001 | 1.000E+000

Ladder Language Instructions

4-97

4-98

4.6 Basic Function Instructions

4.6.5 Arc Sine (ASIN)

4.6.5

Arc Sine (ASIN)

The arc sine of the real number input data is calculated and the result is stored in the output

data.

-1
on]

Note: The output data is in degrees.

Format

The format of this instruction is shown below.
& [[FO] Src [FOlDe=t

n A%IH WEOO000 WFOOooz —

| Inputdata || Outputdata |

.1
Icon: SIN

Key entry: ASIN

/O Item Applicable Data Types
B w L Q F D A Index Constant
Src (Input data) X X @] O X X O
Dest (Output data) X X X X O* O* X X X

* C and # registers cannot be used.

Set the input data to a value between -1.0 and 1.0. The output is set to O if the input value is

out of range.

Programming Example

In the following programming example, the arc sine of 1.0 in input data in MFO00OQQ is calcu-
lated and the result is stored in the output data in DFO000O0.

SIN (1.0) =" — DF00000 = 90.0 (degrees)

| GIEE G
. MFODDOO | DFO0DOO
J 1.000E+000 | 9.000E+001

4.6 Basic Function Instructions

4.6.6 Arc Cosine (ACOS)

4.6.6

Arc Cosine (ACOS)

The arc cosine of the real number input data is calculated and the result is stored in the output
data.

-1
con ([! [oupacas]

Note: The output data is in degrees.

Format
The format of this instruction is shown below.

& [[FOlSrc [FOlDest A
- ACOS MFOOOO0 MFOOOD2 — lcon: cos

o - Key entry: ACOS

‘ Input data H Output data ‘

/O Item Applicable Data Types
W Q F D A Index | Constant
Src (Input data) X X X @] O X X O
Dest (Output data) X X X X O* O* X X X

* C and # registers cannot be used.

Set the input data to a value between -1.0 and 1.0. The output is set to O if the input value is
out of range.

Programming Example

In the following programming example, the arc sine of 0.5 in input data in MFO00OQQ is calcu-
lated and the result is stored in the output data in DFO000O.

COS (0.5) "' — DF00000 = 60.0 (degrees)

| FDISrc [FD]Dest
l o MFOO000 DFO0000

0.000E-007 | 6.000E+001

Ladder Language Instructions

4-99

4.6 Basic Function Instructions
4.6.7 Arc Tangent (ATAN)

46.7 Arc Tangent (ATAN)

The arc tangent of the real number input data is calculated and the result is stored in the output
data.

TAN ()_1 — Output data

Note: The output data is in degrees.

Format
The format of this instruction is shown below.
& [[WFDTSr [WFD] Dest 1
B ATAN MFOO00N0 MFOODOODZ lcon: tan
— — Key entry: ATAN
| Inputdata | | Output data |
Appli
/O ltem pplicable Data Types
W L Q F D A Index Constant
Src (Input data) O X O O X X O
Dest (Output data) X O X X Oo* O* X X X

* C and # registers cannot be used.

Programming Example

In the following programming example, the arc tangent of 1.0 in input data in MFOOOQO is cal-
culated and the result is stored in the output data in DFO000O.

TAN (1.0) "' — DF00000 = 45.0 (degrees)

-I [WFD1Sre (WFD1Dest
ATAN MFO0000 DF00000
J 1.00E+000 | 4 .50E+001

4-100

4.6 Basic Function Instructions

4.6.8 Exponential (EXP)

4.6.8

Exponential (EXP)

The value obtained by raising base e of the natural logarithm to the real number input data is
calculated and the result is stored in the output data.

Input data
e —

Note: “e” is the base of the natural logarithm.

Format

The format of this instruction is shown below.
& [[FO] Grc [FOlDe=t

n EXP MFOooon MFOoon:z

‘ Input data H Output data ‘

lcon: XY

Key entry: EXP

Applicable Data Types

1/0O Item
B L Q F D A Index Constant
Src (Input data) X X @] O X X O
Dest (Output data) X O* O* X X

* G and # registers cannot be used.

Programming Example

The following programming example calculates base e of the natural logarithm raised to 1.0 in
the input data in MFOO00O, and stores the result in the output data in DFO0000.

e "9 DFO0000 = 2.718282

Information and an operation error will not occur.

EXP

[FD I5rc
MFOOD00

1.00E+000 | 2. 71E+000

[FD Dest
OF00000

If the operation result overflows, the output data will be set to the maximum value 3.402E+38

Ladder Language Instructions

4-101

4.6 Basic Function Instructions

4.6.9 Natural Logarithm (LN)

4.6.9

Natural Logarithm (LN)

4-102

The natural logarithm of X (loge X), when the real number input data is X, is calculated and the
result is stored in the output data.

|Oge — Output data

Format
The format of this instruction is shown below.
& [[FOlSrc [FOTDe=t con: In
- LN MFOODOOOD | WFOOOOZ g
- - Key entry: LN
‘ Input data ‘ ‘ Output data ‘
Aopli
/O Item pplicable Data Types
W Q F D A Index Constant
Src (Input data) X X O O X X @)
Dest (Output data) X X X X O O* X X X

* C and # registers cannot be used.

If the input data is less than O, the absolute value of the input data will be used to perform the
operation and output the result.

The output data is set to -« if the input value is 0.

Programming Example

The following programming example calculates the natural logarithm when the input data is
2.718282 (= e) in MFO0000, and stores the result in the output data in DFO000O0.

Loge2.718282 = logge — DFO0000 = 1.0

I [F0T5ro [FO Dest
N MFOO00D DFO0000
I 2.718E+000 | 1.000E+000

4.6 Basic Function Instructions

4.6.10 Common Logarithm (LOG)

4610 Common Logarithm (LOG)

The common logarithm of X (logg X), when the real number input data is X, is calculated and
the result is stored in the output data.

G, [rosoms] —

Format
The format of this instruction is shown below.
& [[FO] 5S¢ [FOlDe=t N
- Lo§ MFOOOOD WFOODDZ - Icon: log
o - Key entry: LOG
‘ Input data ‘ ‘ Output data ‘
/O Item Applicable Data Types
w Q F D A Index Constant
Src (Input data) X X X O O X X O
Dest (Output data) X X X X O* O* X X X

* G and # registers cannot be used.

If the input data is less than O, the absolute value of the input data will be used to perform the
operation and output the result.

The output data is set to -« if the input value is 0.

Programming Example

The following programming example calculates the common logarithm when the input data is
10.0 in MFO000Q0, and stores the result in the output data in DFO0O0Q0.

log1o 10.0 — DFO0000 = 1.0

] [F0Ere [P0 Dest
L0G WMFOO000 DFOO000
] 1.00E+007 | 1. 00E+000

Ladder Language Instructions

4-103

4.7 Data Shift Instructions

4.7.1 Bit Rotate Left (ROTL)

Data Shift Instructions

4.7.1

Bit Rotate Left (ROTL)

4-104

The data specified by the first bit address and bit width is rotated to the left by the specified
number of bits.

Yy

%4 Bit width (m)
m-1 m-2 m-3 4 3 2 1 0

&

First bit

]—e— e address

l_,
[3

F

F 3

A

A
A

A

-+

e Rotated.

Format
The format of this instruction is shown below.
« [[ETRdr [T Hurm W Width ROT
lcon:
— ROTL WEOODOOON WWoononi Wwooooz —
- - - Key entry: ROTL
N Number of -
First bit address bitho %tgte Bit width

/O ltem Applicable Data Types
B W L Q F D A Index Constant
Adr (First bit address) | O* X X X X X X X
Num (Number of bits y o y y y y y o o
to rotate)
Width (Bit width) X @) X X X X X O @)

* G and # registers cannot be used.

Programming Example

In the following programming example, the data specified as 8-bit wide from the first bit
address at MB0O0OOQOQO is rotated to the left two bits.

The ROTL instruction is executed when switch 1 (DB0O00000) turns ON.

] DBOODO00 DBO00310 = ([Bdr [N [WIT oth
| | £ ROTL MBO00000D 00002 00008
J awitchl pu lse -

The following figure shows the operation when MW000O0O is 12345 (3039 hex).
Data specified by the first

bit address and bit width
N
4 N
Before Bit F Bit C Bit B Bit 8 Bit 7 Bit 4 Bit 3 Bit O

Execution
MwWooooo | OO 1T | 1T |JO0O|O0O]O0OLO0OO0O|O0O] 1T |11]0]O0]|1
(3039 hex)

Rotated 2 bits to the left. @
After

Execution
Mwoooo0 (O O |1 |1 |]O0O|O]O]O}T | 1T | 1T]O]O0O]|]1T|0]|O0
(B0E4 hex)

4.7 Data Shift Instructions

4.7.2 Bit Rotate Right (ROTR)

4.7.2

Bit Rotate Right (ROTR)

The data specified by the first bit address and bit width is rotated to the right by the specified

number of bits.

|< Bit width (m) >|

m-1 m-2 m-3 4 3 2 1 0
+#— First bit
address
GG A A A O
Rotated.
Format
The format of this instruction is shown below.
. [B]Fh:lr ['l'l'] Hum [lllll]lllllidth | _ ROT
— ROTR MEDOODOO — MWODOO1 MwoooO2 — con:
T - T Key entry: ROTR
‘First bit address‘ ‘bﬂgqﬁobreétg{e ‘ Bit width ‘
Applicable Data Ty
/O ltem pplicable Data Types
B W L Q F D A Index Constant
Adr (First bit address) | O* X X X X X X X X
Num (Number of bits « o « y y y y o o
to rotate)
Width (Bit width) X O X X X X X O @)

* G and # registers cannot be used.

Programming Example

In the following programming example, the data specified as 8-bit wide from the first bit
address at MB0O0O0OOQO is rotated to the right two bits.

The ROTR instruction is executed when switch 1 (DBO0O000O0) turns ON.

| DBOOODO0 DBOOO3 10 2 [[Bldr [WHum [WIHTdEh
| | 4 ROTR MBOOO000 00002 000083
I o itehl o | =e o

The following figure shows the operation when MW0000O is 12345 (3039 hex).

Data specified by the first
bit address and bit width

N

- N
Before Bit F Bit C Bit B Bit 8 Bit 7 Bit 4 Bit 3 Bit O
Execution
MWO00000 ojof1|t1t,0]O0|0]]O0OFyO0OC]O0O| 1T 1T |1]O0O0]O0]1
(8039 hex)

Rotated 2 bits to the right.

After
Execution
MWO00000 o(oft1t}tjo0ojojojogygojtjojofft1|ty|1]|o0
(B04E hex)

Ladder Language Instructions

4-105

4.7 Data Shift Instructions

4.7.3 Move Bit (MOVB)

4.7.3

Move Bit (MOVB)

4-106

The designated number of bits of data is moved from memory starting at the first source bit
address to memory starting at the first destination bit address.

Number of bits to move m

N

-

m P 0 First source bit address

Source area 1 1 0 0 0 1

First destination bit address

/

Bit data moved.

Destination area | 1 1 0 0 0 1

N J
e

Number of bits to move m

Note: The bits are moved one bit at a time from the lowest relay address.
If the source area and destination area overlap, the source data that is actually moved may not be the data
that was in the source area when the instruction was executed.

The following diagram shows an example where the source area and destination area overlap.
First source bit address

Overlap / MBO000002
F -~ 8 7 6 5 4 3 2 1 0

Source area
(shaded portion)| © | =~ | 0 |0 | O fd}fc|bja| 0 0

Destination area
(shaded porton)) O | - | O [b |a|bja | bjla|]0|O0

\Firs‘[destination bit address
A 4 MBO000004

Bit status is moved in the following order: @ to @. This means that
the status of bits 2 and 3 are moved to bits 4 and 5 (O and ®) and
then the status of bits 4 and 5 are moved (® and @).

4.7 Data Shift Instructions

4.7.3 Move Bit (MOVB)

Format
The format of this instruction is shown below.

a[[E] Sre [ETDest [MTWidth

—] KO MEOOOO00 MEOOOD10 Whooon: —
- - - Key entry: MOVB

I I

lcon: MOV
B

First source bit address | |First destination bit address é\lltlér?g ﬁzoo\je
Applicable Data Types
I/O ltem = U
B W L Q F D A Index | Constant

Src (First source bit o

X X X X X X X X
address)
Dest (First destination O* y y y y y y y y
bit address)
Width (Number of bits
to move) X O X X X X X O O

* C and # registers cannot be used.

Programming Example

In the following programming example, 4 bits of data starting from the first source bit address
at MB0O00010 are moved to memory starting as the first destination bit address at MB0O00020.

The MOVE instruction is executed when switch 1 (DBO00000) turns ON.

] DBOOO0O0 DBOO03 10 =[BErc [BTDest [WWT JEh
| | £ MOVE MBOOOD10 | MBOOODZ0 00004
J awitchl pulse — -

The following table illustrates how the data in the source area is moved to the destination area.

Source area Destination area
. . Data before Execution | Data after Execution
Register Data Register . .
of Instruction of Instruction
MBO000010 0 MB000020 0 0
=
MBO000011 1 MB000021 0 1
MB000012 1 MB000022 0 1
MB000013 1 MB000023 0 1

Ladder Language Instructions

4-107

4.7 Data Shift Instructions

4.7.4 Move Word (MOVW)

4.7.4

Move Word (MOVW)

4-108

The designated number of words of data are moved from memory starting at the first source
word address to memory starting at the first destination word address.

Number of words to move m
S

m L 0 First source word address

Source area 6 5 4 8 2 1

Word data moved. First destination word address

Destination area | g 5 4 3 2 1

N J
e

Number of words to move m

Note: The words are moved one word at a time from the lowest register address.
If the source area and destination area overlap, the source data that is actually moved may not be the data
that was in the source area when the instruction was executed.

The following diagram shows an example where the source area and destination area overlap.
First source word address

Overlap / MWO00002
F 8 7 6 5 4 3 2 1 0

Source area
(shaded portion)) © | ~~ | 0| O |0 }Jdjec|bja| 0]O0

Destination area
(shaded portion) O | =+ | O | b | a|b|a|b|a]|0]|O0

\First destination word address
MWO00004

v

Word contents are moved in the following order: @ to @®. This means
that the contents of MW00002 and MW00003 are moved to MW00004
and MWO0O0005 (@ and @) and then the contents of MW00004 and
MWO00005 are moved (® and @).

4.7 Data Shift Instructions

4.7.4 Move Word (MOVW)

Format
The format of this instruction is shown below.

«[[W 5re [WDezt [WIWidth MOV
— O WWoooon Wyonoio WWoooor — lcon: "y

T - T Key entry: MOVW

| | [

First source | |First destination Number of
word address| | word address ||words to move

/O ltem Applicable Data Types
B W L Q F D A Index Constant

Src (First source

word address) x © x x % x x © x
Dest (First destina- "

tion word address) X © x x x x % © x
Width (Number of y o N % y % y o o
words to move)

* C and # registers cannot be used.

Programming Example

In the following programming example, 4 words of data starting from the first source word
address at MWO0O0010 are moved to memory starting at the first destination word address at
MW00020.

The MOVW instruction is executed when switch 1 (DBO0O000O0) turns ON.

] OBOOOOOO OBOCO310 al[W5rc [W1Dest [N b
| | £ MO MWI00 10 MWDO0Z0 00004
J awitchl pu | se -—- -—-
The following table illustrates how the data in the source area is moved to the destination area.
Source area Destination area
. . Data before Execution | Data after Execution
Register Data Register . .
of Instruction of Instruction
MWO00010 10 - MW00020 0 10
MWOO0O011 20 MWO00021 0 20
MWOO0012 30 MWO00022 0 30
MWO00013 40 MWO00023 0 40

Ladder Language Instructions

4-109

4.7 Data Shift Instructions

4.7.5 Exchange (XCHG)

475 Exchange (XCHQG)

The designated number of data items are exchanged between table 1 and table 2.

The data contents of table 1 and table 2 specified by data table start 1, data table start 2, and
the number of words to move are exchanged.

Table 1 data Table 2 data
table start 1 table start 2 Table 1 Table 2
1 11 11 1
2 12 Data exchanged. 12 2
Number ﬁ
of words B 1lE 118 8
to move
4 14 14 4
5 15 15 5
6 16 6 16
Format

The format of this instruction is shown below.

& [WTablel [WTable2 [WIWidth
XCHE MWO0000 MUDOO10 Mwoooeon — Icon: REIS
. - - Key entry: XCHG

I I |

Number of
Data table start 1||Data table start 2 \words fo move

Applicable Data Types
1/0O ltem ool e
W L Q F D A Index | Constant
Table1 (Data table start 1) X O* X X X X X X
Table2 (Data table start 2) X O* X X X X X X X
Width (Number of words y o » y y y » o o
to move)

* C and # registers cannot be used.

4-110

4.7 Data Shift Instructions

Programming Example

In the following programming example, 4 words of data are exchanged between table 1, which
starts at MWO0O0O10, and table 2, which starts at MW00020.

The XCHG instruction is executed when switch 1 (DBO0000O0) turns ON.

| DBOOO000 DBO0OO310
| | £
l =witchl pu | se

a [[WTable1
MWIO0 10

HCHG

(W Table2

MO0 Z0

4.7.6 Table Initialization (SETW)

[ot

00004

The following table illustrates how the data is exchanged between table 1 and table 2.

Table 1 Table 2
Data before Data after Data before Data after
Register Execution of Execution of Register Execution of Execution of

Instruction Instruction Instruction Instruction
MWO00010 10 123 MW00020 1283 10
MWO00011 20 234 < MW00021 234 20
MWO00012 30 345 MW00022 345 30
MWO00013 40 456 MW00023 456 40

4.7.6

Table Initialization (SETW)

The designated data is stored in all registers in the area designated by the first register address
and number of words to set. The data is stored one word at a time from the lowest register
address to the highest.

First destination register address

Move data
abcd q abed MwOoooo |
abcd MwOoOoooo + 1
Nl
abcd
abed MWOOOod + 5
aaaa B

Ladder Language Instructions

4-111

4.7 Data Shift Instructions

4.7.6 Table Initialization (SETW)

4-112

Format
The format of this instruction is shown below.
a | [W] Dest [WData [WIWidth SET
Icon:
— SETHW Woonio Wioonnn Weoooolr — w

T - T Key entry: SETW

7

First destination Number of
register address‘ ‘ Move data ‘ ‘vvords to move
/O Item Applicable Data Types
B W L Q F D A Index | Constant
Dest (First destination % O* % % % % % % %

register address)

Data (Move data) X O X X X X X O @)

Width (Number of

X @] X X X X X O O
words to move)

* C and # registers cannot be used.

Programming Example

In the following programming example, the area of 1,000 words from MWOO0O0OO is initialized to
the move data O on the first scan of the high-speed scan after the power is turned ON.

SBO0000]T = [[West [Whata [WIWT dth
| | SETH MWI0000 00000 01000
AMiter High 5 o
can Start, 0
rly 1 Scan -

The following table illustrates how the registers are initialized to 0 after execution of the first
scan of the high-speed scan when the power is turned ON.

Register Data
MWO00000 0
MWO0001 0
MW00998 0
MWO00999 0

4.7 Data Shift Instructions

4.7.7 Byte-to-word Expansion (BEXTD)

4.17.7

Byte-to-word Expansion (BEXTD)

The byte data of an area designated by the number of bytes from the first source register
address is expanded into individual word data, one byte at a time, and moved to an area des-
ignated by the number of bytes from the first destination register address. When the byte is
expanded into a word, the upper byte is set to O.

Source area

Destination area

Ladder Language Instructions

Lower byte a) a Lower byte
MwOoOoooo MwOooooo
Number of Upper byte b 00 hex | Upper byte
bytes to
move Lower byte c b Lower byte
MwoOooooo + 1 MwoOooooo + 1
Upper byte d 00 hex | Upper byte
Lower byte e c Lower byte
MwOooOoooo + 2
00 hex | Upper byte
d Lower byte
MwOOoooo + 3
00 hex | Upper byte
Format
The format of this instruction is shown below.
| [W]5r e [W]Dest [Wlwidth B
— BEEXTD WWonooo WWoanna WWoonio — Icon: gerp
- T - Key entry: BEXTD
First source First destination || Number of
register address| |register address||bytes to move
Applicable Data Types
I/0 Item Bl 5
B W L Q F D A Index Constant
Src (First source y o y y y y y y y
register address)
Dest (First destination %
> X O X X X X X X X
register address)
Width (Number of bytes y o y » » y » o o
to move)

* C and # registers cannot be used.

4-113

4.7 Data Shift Instructions

4.7.8 Word-to-byte Compression (BPRESS)

Programming Example

In the following programming example, the data from an area of 4 bytes that starts from the first
source register address at MWO0O010 is moved to an area of 4 bytes that starts from the first
destination byte address at MW00020.

The BEXTD instruction is executed when switch 1 (DBO0O000O0) turns ON.

I OBO00000 DBOOOS 10 a[W5rc (W Dest [WTW dth
I I 5 BEXTD MWIO0 10 MWI0020 00004
l =witchl pu | se oo -

The following table illustrates how the byte data in the source area is expanded and moved into
word data in the destination area.

Source area Destination area
Register Data Register Data
MWO0010 Lower byte 10 hex MWO00020 Lower byte 10 hex
Upper byte 20 hex - Upper byte 00 hex
MWO00011 Lower byte 30 hex MW00021 Lower byte 20 hex
Upper byte 40 hex Upper byte 00 hex
MWO00022 Lower byte 30 hex
Upper byte 00 hex
MWO00023 Lower byte 40 hex
Upper byte 00 hex

4.78

Word-to-byte Compression (BPRESS)

4-114

The lower byte of word data from the designated number of bytes starting from the first source
register address is stored in the designated number of bytes starting at the first destination reg-
istration address, one byte at a time. This instruction performs the opposite operation of the
BEXTD instruction.

The upper byte is discarded.

Source area Destination area
Lower byte a » a Lower byte
MwOooooo MwOooooo
Upper byte e b Upper byte
Number of
bytes to
Lower byte b c Lower byte move
MwoOoooo + 1 MwoOoooo + 1
Upper byte f d Upper byte
Lower byte c 0 Lower byte

MwOoooo + 2

Upper byte g

Lower byte d
MwOOoooo + 3

Upper byte h

4.7 Data Shift Instructions

4.7.8 Word-to-byte Compression (BPRESS)

Format
The format of this instruction is shown below.

PR [MTDe=zt [MTWidth 8
— EPRESS Huoooan HWoonos wwoooto — lcon: papeg
_— i T Key entry: BPRESS

I R

First source First destination || Number of
register address| |register address | |bytes to move

/O ltem Applicable Data Types
B W L Q F D A Index | Constant

Src (First source

: X O X X X X X X X
register address)
Dest (First destination *

- X O X X X X X X X
register address)
Width (Number of bytes % o y y v y « o o
to move)

* G and # registers cannot be used.

Programming Example

In the following programming example, the lower byte of data from an area of 4 bytes that
starts from the first source register address at MWO0O0O10 is moved to an area of 4 bytes that
starts from the first destination register address at MW00020.

The BPRESS instruction is executed when switch 1 (DBO00000) turns ON.

| OBOCOO00 OBOOO310 [[WSrc (W Dest [WIWi it b
| | 4 BPRESS MWIOO 10 MWOO0020 00004
l awitchl pu | se - -

The following table illustrates how the word data in the source area is compressed and moved
into byte data in the destination area.

Source area Destination area
Register Data Register Data

MWO00010 Lower byte 12 hex MW00020 Lower byte 12 hex

Upper byte 23 hex Upper byte 34 hex
MWOO0011 Lower byte 34 hex - MWO00021 Lower byte 56 hex

Upper byte 45 hex Upper byte 78 hex
MWO0O0012 Lower byte 56 hex

Upper byte 67 hex
MWO0O0013 Lower byte 78 hex

Upper byte 89 hex

Ladder Language Instructions

4-115

4.7 Data Shift Instructions

4.7.9 Binary Search (BSRCH)

4.79

Binary Search (BSRCH)

4-116

A search is made for the search data using a binary search method in the area designated by
the number of words from the first address of the search range. The search result is output as
the offset word number of the data that matches the search data from the first register in the
start range. Always sort the data in the search range in ascending order.

First address First address
of search range of search range
— 1 1 Found at address + 3 from
MwOOoooo 4 4 the first address of the
> search range.
MwOooooo + 1 7 7 i
Search data
Number of 20
words in
range MwOOooo + 2 8 é 8 Search result: 3 (offset)
MwOooooo + 4 60 60

Note: 1. Always sort the search area in ascending order before executing the BSRCH instruction.

2. The conceptual diagram shown here is for integers. The instruction operates in the same way for double-
length integers and real numbers.

Format
The format of this instruction is shown below.

a[[WCFRDT&rc [WIWidth [WCFonlDatz [[WResult lcon: B
" BSRLCH Hyoonon HiOo0nns HWoon0ne WWooony - - gy

- --- --- --- Key entry: BSRCH

|

‘ ‘Search data‘ ‘ Search result ‘

First address of Number of
search range || words in range

Applicable Data Types
I/0 ltem B o
B w L Q F D A Index | Constant
Src (First address of « o o o o o y y v
search range)
Width (Number of y o y y y y y o o
words in range)
Data (Search data) X @)
Result (Search result) X O* X X X X X X X

* C and # registers cannot be used.

Binary Search
A binary search is a data searching algorithm that is used to quickly search for data in a sorted
search area.

Term First, the median value of the search area is compared to the search data. If the search data is
greater than the median value, the same search procedure is performed in the search area to the
right of the median value. If the search data is less than the median value, the same search proce-
dure is performed in the search area to the left of the median value. To use this search method, the
data must first be sorted in ascending order.

4.7 Data Shift Instructions

4.7.10 Sort (SORT)

Programming Example

The data from MLO0O00O to MLO0OOS is sorted when the sort command (DBO000O0) turns ON.
Then, if the search command (DB0O00001) turns ON, the search data in MLO0012 is searched
for in the sorted data area.

OBO00000 OBO003 10 [[WLFADTTable [TWING dth
| | i SORT MLO000O 00005
=ort pulse -

OBO0O0O OBO0O3 11 A [[WLFOD IS re [WIWi itk [WLFCD Data [WResult
| | 4 BSRCH MLOOOD0 00005 MLOOO 12 M00010
s=arch pulse == == ==

The following table shows how the sort is processed when the first line is executed. Here, the
data from MLOO0OO0OO to MLOOOOS is as listed below, and the search data in MLO0012 is 70.
When the second line is executed, the search result in MWO0OOO10 is set to 4 as the result of
finding 70.

Register |Data before Execution of 1st Line | Data after Execution of 1st Line Execuzt:]c;nLFi(::ult i
MLOO000 100 15
MLO0002 30 30 MLO00O4 = 70
=70, so
MLO0004 90 70 MWO00010 = 4
MLOO006 15 90
MLOO008 70 100

4.7.10

Sort (SORT)

The data in the range of registers from the first address of the sort range is sorted in ascending
order.

The following diagram describes the operation using integers as an example. The sort is per-
formed in the same way for double-length integers and real numbers.

The maximum number of data items for a sort is 128.

First address of sort range First address of sort range
| |
60 4 MwOoooo
7 7 MwOOOOO + 1
Sorted in
Number of X
registers 20 ascending order. 8 Mwooooo + 2
in range ﬁ
8 20 MwoOoooo + 3
100 60 MwoOoooo + 4
4 100 MwoOoooo + 5

Ladder Language Instructions

4-117

4.7 Data Shift Instructions

4.7.11 Bit Shift Left (SHFTL)

Format
The format of this instruction is shown below.

& | [WLFED] Table ([W]Width
- SORT M¥00000 M¥O000E loon: SoRT
T T Key entry: SORT

;

First address of sort range

Number of
registers in range

Applicable Data T
/O Item pplicable Data Types
B W L Q F D A Index Constant
Table (First address % O* O* O* O* O* % % %
of sort range)
Wi(jth (Ngmber of X O X X X X X O O
registers in range)

* C and # registers cannot be used.

Programming Example

In the following programming example, the data from MLOO0O0O0 to MLO0Q0OS is sorted in
ascending order when the sort command (DB0000O0) turns ON.

| DBO00OO0 DBOOO3 10 = ([LFaDTTable |WIWidth
| | 5 SORT MLO0D0O 00005
l sort pulse o

The following table shows how the data from ML0O000OO to MLOO0O0OS is sorted when the SORT
instruction is executed.

Register Data before Execution of Instruction | Data after Execution of Instruction
MLO0000 100 15
MLO0002 30 30
MLO0004 90 70
MLOO006 15 90
MLO0008 70 100

4711 Bit Shift Left (SHFTL)

The bits specified by the first bit address and bit width are shifted to the left by the specified
number of bits.

Data that overflows from the bit width is discarded and insufficient bits are padded with O’s
Bit width

First bit address
Before Shift| O 0 g f e d c b a

Number of
bits to shift

After Shift| 0O 0 e d © b a 0 0

(Insufficient bits are padded with O’s.

g f

Bits that overflow are discarded.

4-118

4.7 Data Shift Instructions

4.7.11 Bit Shift Left (SHFTL)

Format
The format of this instruction is shown below.
a [[ETAdr [WT Hom W Width
— SHFTL MEOOOODON HYOoons Myaoone — lcon: SEFF
- - - Key entry: SHFTL
‘ First bit address ‘ ‘ pumoer of ‘ Bit widith ‘
Applicable Data Types
1/0 It
/O ltem B W L Q F D A Index | Constant
Adr (First bit address)| O* X X X X X X X X
Num (Number of bits
to shift X (@) X X X X X O O
Width (Bit width) X [} X X X X X o} o

* G and # registers cannot be used.

Programming Example

In the following programming example, 4 bits from the first bit address at MBOOOO1E are
shifted two bits to the left when switch 1 (DBO0O0O000) turns ON.

-l DBOOODDO DBOOO310 a[[Bladr O Thum CWTW etk
| | £ SHFTL MBOCOO 1E 00002 00004
J awitchl pulse o

The following figure illustrates the result when the above program is executed.
Bit width = 4

First bit address:
MBOOOO1E

Before Shift| 0 0 1 1 0 1

Number of bits
to shift =2

After Shift 0 0 0 1 0 0

5

1 1

Bits that overflow are discarded.

Ladder Language Instructions

4-119

4.7 Data Shift Instructions

4.7.12 Bit Shift Right (SHFTR)

4.7.12

Bit Shift Right (SHFTR)

4-120

The bits specified by the first bit address and bit width are shifted to the right by the specified
number of bits.
Data that overflows from the bit width is discarded and insufficient bits are padded with 0’s

Bit width

87‘6543210‘

First bit address
Before Shift| O 0 g f e d c b a

Number of
bits to shift

After Shift 0 0 0 0 g f © d c

o1 D!

Insufficient bits are padded with O's. b a

Bits that overflow are discarded.

Format
The format of this instruction is shown below.
— SHFTR MEOOOOOOD | MWOODOOG MWOOO0E — Icon:

T - T Key entry: SHFTR

T Numb f

. . umoer O . .
First bit aoldress‘ ‘ bits to shift ‘ ‘ Bit width ‘
Appli le Data Ty
/O ltem pplicable Data Types
B W L Q F D A Index Constant

Adr (First bit address) | O%* X X X X X X X X
Num (Number of bits
to shift X O X X X X X O O
Width (Bit width) X o} X X X X X o o

* G and # registers cannot be used.

Programming Example

In the following programming example, 4 bits from the first bit address at MBOOOO1E are
shifted two bits to the right when switch 1 (DB0O0000O0) turns ON.

| 0BOODODD DBOOO310 =|ETAdr [WHam [WIT dth
| | £ SHFTR MBOODO 1E 00002 00004
l owitchl pulse [

The following figure illustrates the result when the above program is executed.

Bit width = 4
\ \
2 1 0 F E First bit address:
MBOOOOOE
Before Shift| g 0 1 1 0 1
—)
Number of bits
to shift =2

After Shift 0 0 0 0 1 1

~

0 1

Bits that overflow are discarded.

4.7 Data Shift Instructions

4.7.13 Copy Word (COPYW)

4.7.13

Copy Word (COPYW)

The word data in the area designated by the specified number of words is copied from the
source area to the destination area.

The data for each block is copied from the source to the destination. Unlike the MOVW instruc-
tion, the data is copied to the destination as is, even if the source and destination overlap.
Number of words to move m
N
4 N

m coe 0 First source address

Sourcearea | 6 | 5| 4| 3| 2| 1

\mr d data moved. First destination address

Destinationarea | 6 | 5| 4| 3| 2 | 1

\ J
Y

Number of words to move m

Note: This instruction differs from the MOVW instruction by the way it handles overlap between the source and des-
tination areas.

The following diagram shows an example where the source area and destination area overlap.

First source address

Overlap / MW00002
F -~ 8 7 6 5 4 3 2 1 0
e e ©| | 0| o] o[a]c]]a] o]0
raieapon 0| o [a]efola]o]a]o]o
\\First destination address
1 MW00004

Unlike the MOVW instruction, all of the data in the source area
is moved to the destination area, even if the two areas overlap.

Format
The format of this instruction is shown below.
a[[WEre [Whest [WIwWidth
— L lcon: COeY
CORYW Wwonoon Wiuoonio Weoonzo w

Key entry: COPYW

| | |

: First destination || Number of
First source address address words to move

Applicable Data T
/O Item pplicable Data Types
W L Q F D A Index Constant

Src (First source address) X O X X X X O X
Dest (First destination y O y « y v v o v
address)

Width (Number of words y o » y y y y o o
to move)

* C and # registers cannot be used.

Ladder Language Instructions

4-121

4.7 Data Shift Instructions

4.7.14 Byte Swap (BSWAP)

Programming Example

In the following programming example, 5 words of data starting from the first source address at
MWOOO0OQO are copied to an area of 5 words that starts from the first destination address at
MWO00100 when switch 1 (DBO0O0000) turns ON.

] DBOOODDO DBOOO310 alWl5re [WDe=t CWTW etk
| | £ COPYW MWOOD 00 MIt00100 00005
l awitchl pulse - .

The following figure illustrates the result when the above program is executed.

. . Data before Execution | Data after Execution
Register Data Register . .
of Instruction of Instruction
MWO0000 1 MWO00100 123 1
MWOO0001 2 MWO00101 234 2
MWO0002 3 MWO00102 345 3
MWOO0003 4 MWO00103 456 4
MWO00004 5 MWO00104 567 5

4.7.14

Byte Swap (BSWAP)

4-122

The upper byte and lower byte of the target register are swapped.

Target register Target register

(word data) (word data)

ab cd _— cd ab

Upper byte Lower byte Upper byte Lower byte
Format
The format of this instruction is shown below.
a|[W] best B

— BEWAP MYoooon — Ioon: - eieap

Key entry: BSWAP

3

Target register

Applicable Data T
/O Item pplicable Data Types
W L Q F D A Index Constant
Dest (Target register) X O* X X X X X X X

* C and # registers cannot be used.

Programming Example

In the following programming example, the upper byte and lower byte of the target register
(MWO0O0O00Q) are swapped when switch 1 (DBO00000) turns ON.

When MWO000O0O is O0FF hex, MWOO00O0O0 will be FFOO hex after execution of the BSWAP
instruction.

| 0DBOOOODODO DBOOO310 & |[]De st
| | 4 e BSHAP MO0 000
J switchl pu | se ==

4.8 DDC Instructions

4.8.1 Dead Zone A (DZA)

m DDC Instructions

4.8.1

Dead Zone A (DZA)

The output value is calculated by comparing the input value against a predefined dead zone.

As shown in the following figure, if the absolute value of the input value is greater than or equal
to the absolute value of D, the input value is outside of the dead zone, so it becomes the out-

put value.

If the absolute value of the input value is less than the absolute value of D, the input value is

inside of the dead zone, so the output is set to O.

Output value

Dead zone set value = D

- ID]
)

0 - Input value
+|D]

O] @ O]

@ When | Input value | > | D |, @ When | Input value | < | D |,
Output value = Input value Output value =0

Format
The format of this instruction is shown below.
& [[WLFROT I'n [WLFRD] Zane [[WLFROD] Out
4 DZA Mynooon MWaooo:2 Wyoooos - 'CO”:)J

- - - Key entry: DZA

1 1 1

‘Input value‘ ‘ Dead zone set value ‘ ‘Output value‘

Ladder Language Instructions

Applicable Data T
/O Item pplicable Data Types
B W L Q F D A Index Constant
In (Input value) X O O O O O X O O
Zone (Dead zone set
value) % © © © © © X © © n
Out (Output value) X O* O* O* O* O* X O X

* C and # registers cannot be used.

4-123

4.8 DDC Instructions

4.8.2 Dead Zone B (DZB)

Programming Examples

In the following programming examples, the operation results are stored as the output value
(MWO0O0O000) when the dead zone set value is set to 10,000.

The output values are calculated with respect to the input values in MWO00001 to MW0000S3 as

shown below.
« Qutside of the Dead Zone

| MWO00001(12,345) | = | 10000 | so, MWO00O0O is 12,345.

| MWO00002 (-12,345) | = | 10,000 | so, MW0OOOO is -12,345.

* Inside of the Dead Zone

| MW00003 (6,789) | < | 10,000 | so, MW0O000O is O.

|
|

o (DR [WF@lZone | [WLFQDIOUT
- MWO00D 1 10000 MWoo000 | |
12345 10000 12345
o (DR [WF@lZone | [WLFQDIOUT
- MWO00D 1 10000 MWoo000 | |
-12345 10000 -12345
LoD TN [WCFD]Zone | LWLFQD]Out
MWO00D 1 10000 MW00000
6759 10000 0

4.8.2

Dead Zone B (DZB)

4-124

The output value is calculated by comparing the input value against a predefined dead zone.

As shown in the following figure, if the absolute value of the input value is less than the absolute
value of D, the input value is inside of the dead zone, so the output is set to O.

Unlike the DZA instruction, when the input value is outside of the dead zone, the sign of the
input value determines whether the output value is obtained by adding the absolute value to or

subtracting it from the input value.
Qutput value

Dead zone set value = D

- |D|

0 +|

D

Input value

@ If Input value < 0 and | Input value | > | D |
Output value = Input value + | D |

@ If | Input value | < | D |
Output value = 0

® If Input value > 0 and | Input value | > | D |
Output value = Input value - | D |

4.8 DDC Instructions

4.8.2 Dead Zone B (DZB)

Format
The format of this instruction is shown below.
& [[WLFED] In [WLFeD] Zone [[WLFEDI Ot lcon: 7|"
n bZE Wiooooo M¥aooo WMwoooo:
== -—- == Key entry: DZB
‘ Input value ‘ ‘ Dead zone set value ‘ ‘ Output value‘
Aopli
/O ltem pplicable Data Types
W L Q F D Index Constant
In (Input value) X O O O O O X O O
Zone (Dead zone set y o o o o o y o o
value)
Out (Output value) X Oo* O* O* O* O* X O X

* G and # registers cannot be used.

Programming Examples

In the following programming examples, the operation results are stored as the output value
(MWQ00000) when the dead zone set value is set to 10,000.

The output values are calculated with respect to the input values in MW000O1 as shown below.

» Qutside of the Dead Zone

Because MWO00001 (12,345) > 0 and | MWO00001 (12,345) | > | 10000 |, MWO0000 = 12,345

- 110,000 | = 2,345.

| WCFD 1IN WP Zone O FODJ0T
D78 Mt 0000 1 10000 MWOO D00
J 12345 10000 7345
| MWO00O01 (-12,345) < 0, | MWO000O01 (-12,345) | = | 10,000 | so, MWO0000 = -12,345 + |
10,000 | = —2 345.
LoD TN [WCFD]Zone | LWLFQD]Out
D78 Mt 0000 1 10000 MWOO D00 ||
17345 10000 -734h5
* Inside of the Dead Zone
| MWO00001 (6789) | < | 10000 | so, MW0O0000 becomes 0.
| MFOIn [(WFDiZone A FODIOT
D78 Mt 0000 1 10000 MWOO D00 ||
5789 10000 1]

Ladder Language Instructions

4-125

4.8 DDC Instructions
4.8.3 Upper/Lower Limit (LIMIT)

483 Upper/Lower Limit (LIMIT)

The output value is controlled so that it does not exceed the specified upper and lower limits
for the input value.

As shown in the following figure, if the input value is within the upper and lower limits, the input
value is output unaltered.

The upper limit is output when the input value is greater than upper limit. The lower limit is out-
put when the input value is less than the lower limit.

Output value
. 0]
Upper limit
@ If Input value > Upper limit
Qutput value = Upper limit
@
Input value @ If Lower limit < Input value < Upper value
Output value = Input value
@ If Input value < Lower limit
QOutput value = Lower limit
Lower limit o

Format
The format of this instruction is shown below.
& [[WLFanlIn [WLFRDT Lower [[WLFRO] Upper [TWLFRO] Out

n LIMIT Wioooon WWoooo MWwooooz Wioooos -~ lcon: ==
i — Key entry: LIMIT

I I I I

‘ Input value ‘ ‘ Lower limit ‘ ‘ Upper limit ‘ ‘Output value‘

/O Item Applicable Data Types
B W L Q F D A Index Constant
In (Input value) X O O O O O X O O
Lower (Lower limit) X O O O O O X O O
Upper (Upper limit) X O ©) O O O X O O
Out (Output value) X O* O* O* O* O* X O X

* G and # registers cannot be used.

Information Always set the lower limit to a value that is less than or equal to the upper limit.

4-126

4.8 DDC Instructions

4.8.3 Upper/Lower Limit (LIMIT)

Programming Examples

In the following programming examples, the operation results are stored as the output value
(MWOO0000) when the lower limit is -100 and the upper limit is 10,000.

The output values are calculated with respect to the input values in MWO000O1 as shown below.

» The Input Value Is Outside of the Upper and Lower Limits
Because MW00001 (12,345) is greater than the upper limit (10,000), MWO0O000O becomes the
upper limit (10,000).

[WLFCOD] In [WLFD]Lower |[WLFCD]Upper |[WLFGDIOUt
LINIT MI0000 1 -00100 10000 MWOO00D
12345 -100 10000 10000

lower limit (-100).

Because MW000O01 (-12,345) is less than the lower limit (-100), MWO000O becomes the

[WLFCOD] In [WLFD]Lower |[WLFCD]Upper |[WLFGDIOUt
LINIT MI0000 1 -00100 10000 MWOO00D
-12345 -100 10000 -100

* The Input Value Is Within the Upper and Lower Limits
Because the lower limit (-100) is less than MWO00001 (6,789), which is less than the upper
limit (10,000), MW00000 becomes 6,789.

] TWLFODTIn [WLFD Lover [WF@Uoper [[WLFODIOLE
e MHO000 1 -00100 10000 MWOD000
J 6789 -100 10000 6789

Ladder Language Instructions

4-127

4.8 DDC Instructions

4.8.4 PI Control (PI)

484

Pl Control (PI)

4-128

When deviation X is input, P and | operations and a range operation are performed based on
predefined parameters in a parameter table, and the result is output as compensation Y.

When the reset integration bit in the parameter table is turned ON, the Pl compensation is cal-

culated using an | compensation value of O.

The input value to the Pl instruction can be an integer or a real number. Double-length integers

cannot be used.

The structure of the parameter table is different for integers and real numbers.

@ If using an integer, set an integral multiple of 1 ms for the scan time.

Important
LIMIT g'— , LMIT UL| pza
o Compensa“g” ps | ¥ |CompensationY
Deviation X Kp ~ . T I os |~ (Ploutput)
LL | compensation | LL
Input value
for LIMIT UL Output value for
Pl instruction + Pl instruction
Ki >~ ®
+
ILL
Kp: P (proportional) gain
Yi Ki: | (integral) gain
Ts: Scan time
Previous | remainder Previous | compensation Ti: Integral time

(remainder of Ki x Ts / Ti)

. . The previous | compensation (Yi') is updated
The previous | remainder 0 o4 hasod on the value of P + | compensation.

(IREM) is used only with

- If Yi" is inside the range of the Pl upper and lower limits (UL, LL)

the integer Plinstruction. -, viis’ ndated. (¥i = | compensation)
- If Yi" is outside the range of the Pl upper and lower limits (UL, LL)
- If the P compensation and | compensation have the same sign

(divergence)
- Yi is not updated.

- If the P compensation and | compensation do not have the same

sign (convergence)

- Yi is updated. (Yi' = | compensation)

The operation of the Pl instruction can be expressed by the following formula, where X(s) is the

input value and Y(s) is the output value.

7O - Kp 4+ Kix —

X (s) Tixs

4.8 DDC Instructions

4.8.4 PI Control (PI)

Format
The format of this instruction is shown below.
& [[WFT IR [A]PEm [WFTout
— Pl MFOOOOO WADODOD1O0 MFOODOZ — lcon: A
- - - Keyentry: Pl
‘Input value‘ ‘E';%%%?g??:ge‘ ‘ Output value ‘
Applicable Data Types
1/0O ltem o] i
w Q F D Index Constant
In (Input value) X O X @) X X O O
Prm (First address of % y y y % O* o o
parameter table)
Out (Output value) X O* X O* X X @] X
* C and # registers cannot be used.
€ Parameter Table for PI Instruction with Integers
Address | Data Type | Symbol Name Specification I/0
0 W RLY Relay I1/0 Relay inputs and relay outputs* IN/OUT
, Gain for the P compensation (a gain of 1 is
1 w Kp P gain equivalent to 100) IN
. . Gain for the input to the integration circuit
2 W Ki | gain (a gain of 1 is equivalent to 100) IN
3 W Ti Integral time Integral time (ms) IN
4 W UL thgirier Integration Upper limit for the | compensation IN
5 W ILL :i_r%\i/;/er integration Lower limit for the | compensation IN
6 W UL Pl upper limit Upper limit for the P + | compensation IN
7 W LL Pl lower limit Lower limit for the P + | compensation IN
8 W DB ZP(I)rc]):tput dead Dead zone width for the P + | compensation IN
9 W Y Pl output Pl compensation output (output to Out) ouT
10 W Yi | compensation | compensation storage ouT
11 W IREM | remainder | remainder storage ouT
* The relay inputs and outputs are assigned as given below.
Bit Symbol Name Specification I/0
0 IRST Reset integration bit | Turn ON the input to reset the integration operation. IN
1to7 - (Reserved.) Spare input relays IN
8toF - (Reserved.) Spare output relays ouT

Ladder Language Instructions

4-129

4.8 DDC Instructions

4.8.4 PI Control (PI)

4-130

€ Parameter Table for Pl Instruction with Real Numbers

Address | Data Type | Symbol Name Specification I/0
0 W RLY Relay I/0 Relay inputs and relay outputs* IN/OUT
1 W - (Reserved.) Spare register -

. Gain for the P compensation (a gain of 1 is
2 F Kp P gain equivalent to 1.0) IN
. . Gain for the input to the integration circuit (a
4 F Ki | gain gain of 1 is equivalent to 1.0) IN
6 F Ti Integral time Integral time (s) IN
8 F UL thgirier Integration Upper limit for the | compensation IN
10 F ILL :i_r%\i/:er Integration Lower limit for the | compensation IN
12 F uL Pl upper limit Upper limit for the P + | compensation IN
14 F LL Pl lower limit Lower limit for the P + | compensation IN
16 F DB ZP(I)r?:tput dead Dead zone width for the P + | compensation IN
18 F Y Pl output Pl compensation output (output to Out) ouT
20 F Yi | compensation | compensation storage ouT

* The relay input and output assignments are the same as for integers.

€ Internal Operation of the Instruction
The deviation X input is used to calculate the output value (Pl compensation) as shown below.

In the formula shown below, Yi’ is the previous | compensation of Yi and Ts is the scan time set
value.

When IRST (reset integration) is turned ON, the Pl compensation is calculated with the | com-

Information pensation set to 0.

P compensation = Upper/lower limit (UL or LL) of (Kp x X)
Yi (I compensation) = Upper/lower limit (IUL or ILL) of { (Ki x X + IREM) / = + Y7}

Y (Pl compensation) = P compensation + Upper/lower limit (UL or LL) and Dead zone A (Width
DB) of the | compensation

4.8 DDC Instructions

4.8.4 PI Control (PI)

Programming Example

This programming example calculates the reference value in MFO0102 weighted with the Pl
compensation.

The deviation in DF00024 is obtained from the reference value in MFO0100 and the current
value in MFO0098 and it is used as the input to the Pl instruction.

The reference value to output is obtained by adding the original reference value in MFO0100 to
the Pl compensation output in DFO0026.

The following block diagram illustrates the programming example.
Reference value

MF00100
i Current value (feedback)
+

-—— MF00098

Deviation

- Upper/lower limits Pl compensation
+ UL =100, LL =-100
‘ Kp=10 . Dead Zone A —=| DF00026
*1DB=10
DF00024 [
. Ts/Ti + |- Upper/lower limits
K= 10 = 1.0 9/ "% 7] 1UL =100, ILL = -100
Previous
| compensation <Pl Instruction>
Reference value
v

MF00100 [

k
~>| MF00102

Reference value weighted with the compensation

Ladder Language Instructions

4-131

4.8 DDC Instructions

4.8.4 PI Control (PI)

The programming example is shown below.

calculating

WLFTSr e [WLFTDest

ILoooz HFDDDBE L
0 O0E+000
Soo feedback
WLF] Srch [WLFT5r cE [WLFTDest

MEOO100 MF000493 DFOODZ24
0.00E+000 0 0.00E+000 . O.00E+000

reference feedback difference

DFO0002=10.0; A WpiP ogain
1.000000E4001=1.000000E4001

DFO0004=10.0; AEKiD gain
1.000000E+001=1.000000E+001

DFOO00B=1.0; A Tivintegral timeis)

1. DDDDDDE+DDD 1.000000E+000

DFO0008=100 A TUL:up limit of integzral
1. DDDDDDE+DDE 1.000000E+002

DFOOO10=-100.0; A ILL: low limit of intezral
-1.000000E+002=-1.000000E+002

DFOO012=100.0; A ULwup limit of PI
1-DDDDDDE+DDEZ]-DDDDDDE+DDQ

DFOOO14=-100.0; A LL:low limit of PI
-1.000000E+002=-1.000000E+002

DFO001B=10.0; /7 DB:PI output dead zane
1.000000E+001=1.000000E+0M

WFT In T&TPrm [WFTOut
DFOO024 banooon OFOODZ6
0.00E+000 - 0.00E+000

difference

adding the compensation to reference

WLFTSrch [WLFTSrcE [WLFTDest
DFO00Z6 MFOO100 MFOOT0Z
0. IZIIZIE+IZIIZID 0.00E+000 | 0. DIZIE+DIZIIZI

reference

WLFT Src [WLFTDest
MFOO0102 oLoooa -

0.00E+000

Note: The OLO000O (reference value) and ILO0002 (feedback value) registers are assigned to external devices.

4-132

4.8 DDC Instructions

4.8.5 PD Control (PD)

4.8.5

PD Control (PD)

When deviation X is input, P and D operations and a range operation are performed based on
predefined parameters in a parameter table, and the result is output as compensation Y.

The input value to the PD instruction can be an integer or a real number. Double-length integers
cannot be used.

The structure of the parameter table is different for integers and real numbers.

@ If using an integer, set an integral multiple of 1 ms for the scan time.

Important

The differential time (Td) changes based on the relationship between the change
in the deviation input (X' — X) and the previous deviation input (X)) as follows:
- If the change in the deviation input (X — X') and the previous

deviation input (X') have the same sign (divergence)

Previous input value — Td = Td1 (differential time for divergence)

X - If the change in the deviation input (X — X') and the previous
deviation input (X') have different signs (convergence)
— Td = Td2 (differential time for convergence)
"-
e———— =0 Kd Td/Ts
D compensation
LIMIT uL LMIT UL | bzA
P compensation + * oB | ¢ |CompensationY
Deviation X—@—= Kp - -0 —— D‘B = (PD output)
LL LL
Input value for
PD instruction Kp: P (proportional) gain Output value for
Kd: D (differential) gain PD instruction

Ts: Scan time
Td: Differential time

The operation of the PD instruction can be expressed by the following formula, where X(s) is
the input value and Y(s) is the output value.

O _ Kp+KdxTdxS
X (s)
Format
The format of this instruction is shown below.
A [WF] I'n [A]Prm [WF]out
— PO MFODOOD MADDO10 WFODODZ — lcon: PO

| | |

First address

Key entry: PD

Ladder Language Instructions

Input value of parameter table Output value
Applicable Data Types
1/0O ltem i P
w L Q F D A Index Constant

In (Input value) X O X @) X X @) @)
Prm (First address of % % % % % % O* o o
parameter table)

Out (Output value) X O* X X O* X X O X

* C and # registers cannot be used.

4-133

4.8 DDC Instructions

4.8.5 PD Control (PD)

€ Parameter Table for PD Instruction with Integers

Address | Data Type | Symbol Name Specification I/0

0 W RLY Relay 1/0 Relay inputs and relay outputs* IN/OUT

. Gain for the P compensation (a gain of 1 is
1 W Kp P gain equivalent to 100) IN
. Gain for the input to the differential circuit

2 W Kd D gain (a gain of 1 is equivalent to 100) IN

3 W Td1 D.|fferent|a| time for Dln°ferent|a| time used when the input IN

divergence diverges (ms)

4 W Tdo Differential time for | Differential time used when the input con- IN

convergence verges (ms)

5 w UL PD upper limit Upper limit for the P + D compensation IN

6 w LL PD lower limit Lower limit for the P + D compensation IN

7 W DB E(E)ngmpm dead Dead zone width for the P + D compensation IN

8 W Y PD output PD compensation output (output to Out) ouT

9 W X Input value storage | Storage of current input value ouT

* The relay inputs and outputs are assigned as given below.

Bit Symbol Name Specification I/0
Oto7 - (Reserved.) Spare input relays IN
8toF - (Reserved.) Spare output relays ouT

€ Parameter Table for PD Instruction with Real Numbers
Address | Data Type | Symbol Name Specification I/0
0 W RLY Relay 1/0 Relay inputs and relay outputs* IN/OUT
1 W - (Reserved.) Spare register -
. Gain for the P compensation (a gain of 1 is
2 F Kp P gain equivalent to 1.0) IN
. Gain for the input to the differential circuit
4 F Kd D gain (a gain of 1 is equivalent to 1.0) IN
Differential time for | Differential time used when the input
6 F TdH1 : . IN
divergence diverges (s)
Differential time for | Differential time used when the input con-
8 F Td2 IN
convergence verges (s)

10 F UL PD upper limit Upper limit for the P + D compensation IN

12 F LL PD lower limit Lower limit for the P + D compensation IN

14 F DB EoDngutput dead Dead zone width for the P + D compensation IN

16 F Y PD output PD compensation output (output to Out) ouT

18 F X Input value storage | Storage of current input value ouT

* The relay input and output assignments are the same as for integers.

@ Internal Operation of the Instruction
The deviation X input is used to calculate the PD compensation output as shown below.

In the formula shown below, X’ is the previous input value of X, Ts is the scan time set value,
and Td is the differential time.

The differential time (Td) is Td1 when X — X’ and X’ have the same sign, and Td2 when X - X’
and X' have different signs.

P compensation = Upper/lower limit (UL or LL) of (Kp x X)
Td
D compensation = Kd x (X — X’) x Upper/lower limit (IUL or ILL) of s

PD compensation = Upper/lower limit (UL or LL) of (P compensation + D compensation) and
Dead zone A (Width DB)

4-134

4.8 DDC Instructions

4.8.5 PD Control (PD)

Programming Example

This programming example calculates the reference value in MFO0O102 weighted with the PD
compensation.

The deviation in DF00024 is obtained from the reference value in MFO0100 and the current
value in MFO0098 and it is used as the input to the PD instruction.

The reference value to output is obtained by adding the original reference value in MFO0100 to
the PD compensation output in DFO00026.

The following block diagram illustrates the programming example.
Reference value

MF00100

l Current value (feedback)
+

a—«—— MF00098

Provi
ing%t]/tlci/islue <PD Instruction>
v Td/Ts
e »@» Kd=10—={(Td1=1.0s
Deviation + Td2=2.05)
Y o Upper/lower limits | | PD compensation
s UL = 100,
DF00024 |He—Kp=10 - = L =-100 —=| DF00026
+ e Dead Zone A
DB =10

Reference value

MFO0100

MF00102

Reference value weighted with the compensation

Ladder Language Instructions

4-135

4.8 DDC Instructions

4.8.5 PD Control (PD)

The programming example is shown below.

calculating the differ between reference

and feedback

here, feedback is
WLF] Sr e [WLFTDest
[Looog MEoonag [
0, 0.00E+000
- feedback
WLFTSrch [WLFTSrcE [WLFTDest
MFOOTO0 MFODO33 DFOODZ4 []
0.00E+000) O.00E+000 7 0.00E+000
reference feadback difference

o.0000DDE+000=2 . 00D00DE+D00
DFOOOTO=100.0; £
1.000000E+00%=1.000000E+002

caleulating the compensation
EXPRESS] ON m._
DFOOO02=10.0; £ KptP ogain
| .000000E+001=1.000000E+001
DFOOO04=10.0; S Kd:D gain
1.000000E+001=1.000000E+001
DFOO00E=1.0; S8 Tdlidivergence derivat ive
| .000000E+000=1.000000E+000
DFO0O0&E=2.0; Td2:converzence derivativ

/ UL:upper limit of PD

DFOOMZ=-100.03

-1.000000E+002=-1.000000E+002

A LL:low limit of PD

ensation to refer

DFOO014=10.0; A4 DBroutput dead zone of PD
1.000000E+001=1.000000E+001
WFlln [ATPrm [WFTOut
DFOO0Z4 bapoooa DFO002G
0.00E+000 - 0.00E+000 p—
difference compensati

an

ence

n

WLF] S ch [WLFT5r cE [WLFTDest
DFOO02e MFEOO100 MFEOO102
0.00E+000) O.00E+000 0.0 -

compensatio

DE+000

reference

WLFT Src [WLFTDest
MFOO102 oLooonn -

0.00E+000

Note: The OLO000O0 (reference value) and ILO0002 (feedback value)

Additional Information

€ Transfer Functions
The transfer function of the P and D operations can
X(s) is the input value and Y(s) is the output value.

" - Kp+KdxTdxS
X(s)

@ Relation between Current Deviation X
Divergence and Convergence Sides

The following figure shows the relation between the
X’ on the divergence and convergence sides.

<Example of a Diverging Deviation>

registers are assigned to external devices.

be expressed by the formula shown below.

and Previous Deviation X’ on the

current deviation X and previous deviation

<Example of a Converging Deviation>

Deviation

Deviation

 $(><-><‘)=-5

X =10 X=15

K} Both are positive
(same sign).

4-136

Time

\’The signs

are different.

4.8 DDC Instructions

4.8.6 PID Control (PID)

4.8.6

PID Control (PID)

When deviation X is input, P, |, and D operations and a range operation are performed based
on predefined parameters in a parameter table, and the result is output as compensation Y.

When the reset integration bit in the parameter table is turned ON, the Pl compensation is cal-
culated using an | compensation value of O.

The input value to the PID instruction can be an integer or a real number. Double-length inte-
gers cannot be used.

The structure of the parameter table is different for integers and real numbers.

Important

@ If using an integer, set an integral multiple of 1 ms for the scan time.

Previous input value

Deviation X-@—=

Input value
for
PID instruction

The differential time (Td) changes based on the relationship between the change
in the deviation input (X — X') and the previous deviation input (X') as follows:
¢ |f the change in the deviation input (X — X') and the previous

deviation input (X') have the same sign (divergence)

—Td = Td1 (differential time for divergence)

Previous | remainder
(remainder of Ki x Ts / Ti)

. e |f the change in the deviation input (X — X') and the previous
— X deviation input (X') have different signs (convergence)
—Td = Td2 (differential time for convergence)
-
pb——————————O0— Kd =~ Td/Ts
D compensation
LIMIT uL ' LIMIT uL |DzA
P compensationy + o | ¢ | CompensationY
Kp - - ~ ST 55 [~ (PIDoutpuy)
+
LL | compensation | LL
Output value
IuL
LIMIT for
Lo ki o To/Ti +O+ PID instruction
ILL) .
Kp: P (proportional) gain
Ki: | (integral) gain
Kd: D (differential) gain
IREM’ Yi Ts: Scan time

Td: Differential time
Ti: Integral time

Previous | compensation

The previous | compensation (Yi') is updated or not,

The previous | remainder pased on the value of P + | + D compensation.
(IREM) is used only with 4 |f Vi’ is inside the range of the PID upper and
the integer PID instruction. |ower limits (UL, LL)

-Yi is updated. (Yi" = | compensation)
« If Yi" is outside the range of the PID upper and

lower limits (UL, LL)

o If the P compensation and | compensation
have the same sign (divergence)
-Yi is not updated.

o If the P compensation and | compensation
do not have the same sign (convergence)
—Yi is updated. (Yi' = | compensation)

The operation of the PID instruction can be expressed by the following formula, where X(s) is
the input value and Y(s) is the output value.

Y (9)

——= Kp + Ki x

X(9)

;
ixs

+KdxTd xS

Ladder Language Instructions

4-137

4.8 DDC Instructions

4.8.6 PID Control (PID)

4-138

Format
The format of this instruction is shown below.
a([WF]I'n [alPrm [WF] ouwt l
— PID MFOOODO MADDOTO | MFODODZ — lcon; Fig
- - - Key entry: PID
First address
Input value of parameter table Qutput value
Applicable Data Types
I/0 ltem
W F D Index Constant
In (Input value) X O X X O X X O O
Prm (First address of y » y y y y O o o
parameter table)
Out (Output value) X O* X X O* X X O X
* C and # registers cannot be used.
€ Parameter Table for PID Instruction with Integers
Address | Data Type | Symbol Name Specification 1/0
0 W RLY Relay I/0 Relay inputs and relay outputs* IN/OUT
. Gain for the P compensation (a gain of 1 is
1 w Kp P gain equivalent to 100) IN
. . Gain for the input to the integration circuit
2 w Ki | gain (a gain of 1 is equivalent to 100) IN
. Gain for the input to the differential circuit
s w Kd D gain (a gain of 1 is equivalent to 100) IN
4 W Ti Integral time Integral time (ms) IN
5 W Tdi D'|fferent|a| time for Dl|fferent|a| time used when the input IN
divergence diverges (ms)
6 W Tdo Differential time for | Differential time used when the input con- IN
convergence verges (ms)
7 W UL thEEer Integration Upper limit for the | compensation IN
8 W ILL hr%\a/er Integration Lower limit for the | compensation IN
9 W UL PID upper limit Upper limit for the P + | compensation IN
10 W LL PID lower limit Lower limit for the P + | compensation IN
11 W DB Zpéaeoutput dead Dead zone width for the P + | compensation IN
12 W Y PID output Pl compensation output (output to Out) ouT
183 w Yi | compensation | compensation storage ouT
14 W IREM | remainder | remainder storage ouT
15 W X Input value storage | Storage of current input value ouT
* The relay inputs and outputs are assigned as given below.
Bit Symbol Name Specification I/0
0 IRST Reset integration bit | Turn ON the input to reset the integration operation. IN
1to7 - (Reserved.) Spare input relays IN
8toF - (Reserved.) Spare output relays ouT

4.8 DDC Instructions

4.8.6 PID Control (PID)

&€ Parameter Table for PID Instruction with Real Numbers

Address | Data Type | Symbol Name Specification I/0
0 W RLY Relay 1/0 Relay inputs and relay outputs* IN/OUT
1 W - (Reserved.) Spare register IN

) Gain for the P compensation (a gain of 1 is
2 F Kp P gain equivalent to 1.0) IN
. . Gain for the input to the integration circuit
4 F Ki gain (a gain of 1 is equivalent to 1.0) IN
. Gain for the input to the differential circuit
6 F Kd D gain (a gain of 1 is equivalent to 1.0) IN
8 F Ti Integral time Integral time (s) IN
Differential time for | Differential time used when the input
10 F Td1 divergence diverges (s) IN
Differential time for | Differential time used when the input con-
12 F Td2 convergence verges (s) IN
14 F UL ltiJrgiE[)el’ integration Upper limit for the | compensation IN
16 F ILL :i_r?q\iq[/er Integration Lower limit for the | compensation IN
18 F UL PID upper limit Upper limit for the P + | + D compensation IN
20 F LL PID lower limit Lower limit for the P + | + D compensation IN
55 F DB PID output dead Degd zone width for the P + | + D compen- IN
zone sation
24 F Y PID output PID compensation output (output to Out) ouT
26 F Yi | compensation | compensation storage ouT
28 F X Input value storage | Storage of current input value ouT

* The relay input and output assignments are the same as for integers.

€ Internal Operation of the Instruction

The deviation X input is used to calculate the PID compensation output as shown below.
In the formula shown below, X’ is the previous input value of X, Y’ is the previous | compensa-

tion, Ts is the scan time set value, and Td is the differential time.

The differential time (Td) is Td1 when X — X’ and X’ have the same sign, and Td2 when X - X’

and X’ have different signs.

Information

compensation set to 0.

When IRST (reset integration) is turned ON, the PID compensation is calculated with the |

P compensation = Upper/lower limit (UL or LL) of (Kp x X)

Yi (I compensation) = Upper/lower limit (IUL or ILL) of { (Ki x X + IREM) / % + Yi’

. - Td
D compensation = Kd x (X — X’) x Upper/lower limit (IUL or ILL) of T

Y (PID compensation) = Upper/lower limits (UL or LL) of P + | + D compensation values and
Dead zone A (Width DB)

Ladder Language Instructions

4-139

4.8 DDC Instructions
4.8.6 PID Control (PID)

Programming Example

This programming example calculates the reference value in MFO0102 weighted with the PID
compensation.

The deviation in MFOO0OO is obtained from the reference value in MFOO100 and the current
value in MFO0098 and it is used as the input to the PID instruction.

The reference value to output is obtained by adding the original reference value in MFO0100 to
the PID compensation output in MFO0002.

The following block diagram illustrates the programming example.
Reference value

MFO00100
l Current value (feedback)
+
~———{ MF00098
/ Previous ; \
input value <PID Instruction>
- Td/Ts
L e > »Kd=10={(Td1=1.0s
Deviation + Td2=205)
e Upper/lower limits | | PD compensation
4 UL = 100,
MF00000 [+e{Kp=10 - LL=-100 = MF00002
+ 74+ |®Dead Zone
ADB=10
. + Upper/lower limits
Uki= 10p= 1T Lo 1UL = 100,

(Ti=1.08) & | | =-100

Previous
| compensation

Reference value

+
MF00100 f———=

)
MF00102

Reference value weighted with the compensation

4-140

4.8 DDC Instructions

4.8.6 PID Control (PID)

The programming example is shown below.

caleulating

the differ between reference and feedback

here, feedback is from ILOOOOZ
WLF] Gr e [WLFTDest
ILoooz MEOooEE ||
0 0.00E+000
- feedback
WLFTSrch [WLFTSr cE [WLFTDest
MFOO0100 MFO00498 MFOOooo | |
0.00E+000 | 0.00E+000) 0.00E+000
reference feadback diffarance

the

calculating

DFO000Z=10.04

1 -000000E+0071=1
DFO0004=10.0;
1.000000E+001=1
DFO0006=10.04

1 -000000E+0071=1
bFO000&=1.0;
1.000000E+000=1
DFOOO10=1.0;

| .000000E+000=1
DFOO012=2.0;
2.000000E+000=2
DFO0014=100.03
1 .000000E+002= 1
DFO0O016E=-100.0

£ KpiP ogain
.000000E+0071
JA Wil gain
.0000onE+0m
KeiD gain
.000000E+0071
A Titintegral time(s)
.000000E+000
S Tdl:divergence derivative
.000000E+000
A4 Td?:converzence derivativ
.000000E+000

compensation

A TUL:up limit of integzral
ooooonE+002
ILL:low limit of intezral

£
-1.000000E+0022-1 . 000000E +002
DFOO018=100.0; IL:upper limit of PID
1.000000E +002=1 . 000000E+002
DFOO00Z0=-100.0; S LL:zlow limit of PID
-1.000000E+002=-1.000000E+002
DFOO022=10.0; /7 DBioutput dead zone of PI
1.000000E+001=1.000000E+001

difference

WFITn [ATPrm [WFT oot
WFOOa00 baoQooa MFOOOOZ | |
0.00E+000 -

adding

the compensation to

reference

0.00E+000

WLF]Srch
MFOO002

[WLFT%r cE
MFOO100

[WLFTDest
MFOO0102

0. DDE+DDD 0.00E+000, 0. DDE+DDD

reference

[WLFTDest
oLonon

WLFT Sr
WFOO102

0.00E+000

Note: The OLO00O0O (reference value) and ILO0002 (feedback value) registers are assigned to external devices.

Ladder Language Instructions

4-141

4.8 DDC Instructions

4.8.7 First-order Lag (LAG)

4.8.7

First-order Lag (LAG)

4-142

The first-order lag is calculated according to predefined parameters in a parameter table.

The input value to the LAG instruction can be an integer or a real number. Double-length inte-
gers cannot be used.

The structure of the parameter table is different for integers and real numbers.

Y
@ If using an integer, set an integral multiple of 1 ms for the scan time.

Important

Input value X for
LAG instruction ~~—__

N

APProX. B3% —» e / Output value Y for
i LAG instruction

A Time (t)
Time constant T
The LAG operation in the figure shown above can be expressed by the formula shown below.

Y(s) _ 1

X (s) 1+Txs
Therefore,

dy
TXE-FY— X

The following operation is performed internally by the LAG instruction, where dt = Ts and dY =
Y-Y.

In the formula shown below, Y’ is the previous output value, Ts is the scan time set value, and
REM is the remainder.

The unit for Ts is the same as the unit for T.

_ TxY +Tsx X+ REM
T+Ts

Y

Information When IRST (LAG reset) is ON, Y outputs O and REM outputs 0.

4.8 DDC Instructions

4.8.7 First-order Lag (LAG)

Format
The format of this instruction is shown below.
& [[WFTI'n [ATFrm [WFTOut
— LAB MFOOODD MADDOD1D WFOOODZ — Icon: LAG
- - . Key entry: LAG
First address of
Input value parameter table Output value
Appli le Data Ty
/O Item pplicable Data Types
W L Q F D A Index Constant

In (Input value) X O X X O X X O O

Prm (First address of y y y y y y O* o o
parameter table)

Out (Output value) X Oo* X X Oo* X X O X

* G and # registers cannot be used.

€ Parameter Table for LAG Instruction with Integers

Address | Data Type | Symbol Name Specification I/0
0 W RLY Relay 1/0 Relay inputs and relay outputs* IN/OUT
First order lag time | .)
1 w T constant First order lag time constant (ms) IN
2 w Y LAG output LAG output (output to Out) ouT
3 W REM Remainder Remainder storage ouT
* The relay inputs and outputs are assigned as given below.
Bit Symbol Name Specification I/0
0 IRST LAG reset bit Turn ON this input to reset the LAG operation. IN
1to7 - (Reserved.) Spare input relays IN
8toF - (Reserved.) Spare output relays ouT

&€ Parameter Table for LAG Instruction with Real Numbers

Address |Data Type | Symbol Name Specification I/0
0 W RLY Relay I/0 Relay inputs and relay outputs* IN/OUT
1 W - (Reserved.) Spare register -
First-order lag . .
2 F T time constant First-order lag time constant (s) IN
4 F Y LAG output LAG output (output to Out) ouT

* The relay input and output assignments are the same as for integers.

Programming Example

In the following programming example, the LAG instruction is executed where MFO00OQO is the
input value in the parameter table, MFO0002 is the output value, and the first-order lag time
constant is set to 1.0.

| EAPRESSION B —

OFO0002=1.0; // first-order lag time constant
1. 000000E+000=1.000000000000000F +000

W= 1T LA Frm [WF 100t
LAG MFOOO00 0AQ0000 MFODODZ
(0. 00E+000 === 0.00E+000

Ladder Language Instructions

4-143

4.8 DDC Instructions

4.8.8 Phase Lead Lag (LLAG)

MFO00002 changes as shown below when MFO0000 changes from 0 to 10,000.

Input value
(MFO0000)
10,000 -
Approx. 6,300 Output value
(MF00002)
() c—— 1.0s

MFO00002 changes as shown below when MFO0000 changes from 0 to -10,000.

¥ 1.0s Output value
0 (MF00002)
Approx. — 6,300 /
-10,000 Input value
(MFO0000)

488 Phase Lead Lag (LLAG)

The phase lead and lag are calculated according to predefined parameters in a parameter
table. The input value to the LLAG instruction can be an integer or real number. Double-length
integers cannot be used.

The structure of the parameter table is different for integers and real numbers.

2
@ If using an integer, set an integral multiple of 1 ms for the scan time.

Important

Input value X for
LLAG instruction

100%

Approx. 63% —

N

Qutput value Y for

™4+ Ts LLAG instruction

Ti+Ts ~ 7 0%

e

Time (t)

Phase lag time constant T1

The LLAG operation in the figure shown above can be expressed by the formula shown below.

Y (s) _ 1+T2xs
X (s) 1+T1xs

Therefore,
dy - ax
T1><W+Y T2 x o +X

4-144

4.8 DDC Instructions

4.8.8 Phase Lead Lag (LLAG

The following operation is performed internally by the LLAG instruction, where dt =Ts, dY =Y —
Y’, and dX = X - X',

In the formula shown below, Y’ is the previous output value, X’ is the previous input value, Ts is
the scan time set value, and REM is the remainder.

The unit for Ts is the same as the unit for T1.

_TIXY +(T2+T8) XX~ T2 XX + REM
T1+Ts

Y

Information When IRST (LLAG reset) is ON, Y outputs 0, REM outputs 0, and X outputs O.

Format
The format of this instruction is shown below.

| [WF] I'n [AlPrm [WF] Out lcon: LIAG
— LLAG HFOoooo WMannnin WFoooo2 — '

== == == Key entry: LLAG

1 1

Input value| | First address of | | output value
P parameter table P

)

/O Item Applicable Data Types
W L Q F D A Index Constant
In (Input value) X O X X O X X O O
rimsges | [x|« [« x| x o o | o
Out (Output value) X O* X X O* X X O X

* C and # registers cannot be used.

€ Parameter Table for LLAG Instruction with Integers

Ladder Language Instructions

Address | Data Type | Symbol Name Specification I/0

0 W RLY Relay 1/0 Relay inputs and relay outputs* IN/OUT

1 W T2 Phase lead time Phase lead time constant (ms) IN
constant

2 W T1 Phase lag time Phase lag time constant (ms) IN
constant

3 W Y LLAG output LLAG output (output to Out) ouT

4 w REM Remainder Remainder storage ouT

5 w X Input value storage | Input value storage ouT

* The relay inputs and outputs are assigned as given below.

Bit Symbol Name Specification I/0

0 IRST LLAG reset bit Turn ON this input to reset the LLAG operation. IN
1to7 - (Reserved.) Spare input relays IN
8toF - (Reserved.) Spare output relays ouT

4-145

4.8 DDC Instructions

4.8.8 Phase Lead Lag (LLAG)

€ Parameter Table for LAG Instruction with Real Numbers

Address | Data Type | Symbol Name Specification I/0

0 W RLY Relay 1/0 Relay inputs and relay outputs* IN/OUT

1 W - (Reserved.) Spare register -
Phase lead time .

2 F T2 constant Phase lead time constant (s) IN
Phase lag time .

4 F T1 constant Phase lag time constant (s) IN

6 F Y LLAG output LLAG output (output to Out) ouT

8 F X Input value storage | Input value storage ouT

* The relay input and output assignments are the same as for integers.

Programming Example

In the following programming example, the LLAG instruction is executed where MFOOO0OQO is the
input value in the parameter table, MFO0002 is the output value, the phase lead time constant
is set to 1.0 seconds and the phase lag time constant is set to 2.0 seconds.

o EXPRESSION ET R

OF00002=1.0; // T2: phase lead time constant(s);

1. 000000E+000=1.000000000000000F +000

OFO0004=2 .0; // T1: phase lag time constantis);

2.000000E +000=2.000000000000000E+000
W 1Tn L& Prm [WF T0ut
UL AG MFODOOD 0400000 MFODOD?Z

0.00E+000 - 7 .00E-016

MFO00002 changes as shown below when MFO0000 changes from O to 10,000.

10,000

Input value
(MFO0000)

/

Approx. 8,150
Approx. 5,000

0

_—

20s

\

Output value
(MF00002)

MFO00002 changes as shown below when MFO0000 changes from O to -10,000.

Approx. — 5,000

20s

Approx. — 8,150
-10,000

4-146

Qutput value
(MF00002)

/

~—_Input value
(MFO0000)

4.8 DDC Instructions

4.8.9 Function Generator (FGN)

489 Function Generator (FGN)

A function is generated based on the parameters specified in the parameter table, and it is
used to calculate output value Y based on the value of input X.

The FGN instruction will be for integers, double-length integers, real numbers, quadruple-
length integers, or double-precision real numbers, depending on the data type of input value X.
The structure of the parameter table also changes accordingly.

YN
Function generated by setting
X1-N, Y1-Nin the parameter table.
Ys
Output | — L — —
value Y i
Output value Y is calculated
| from input value X for the function
| generated by the parameter table.
I
Yo |
I
Y1 |
I
I
7 I
I
I
I
I
I
I
I
X1 Xo | X3 XN
|
Input
value X

Information Create the parameter table so that X; < X5 < -

Format

<XN'

The format of this instruction is shown below.

< [[WLFRDT In (AT Prm [WLFmD]out

- FGH WFOO000 MADDO10 | MFOOODOZ2 - lcon: FGN

T" T "T Key entry: FGN

First f
Input value X‘ plgsrar?wde?é??gtﬁe Output value Y‘
Applicable Data T
/0 ltem pplicable Data Types
W L Q F D Index | Constant

In (Input value X) X O O O O O X O O
Prm (First address of y % % % % % o % y
parameter table)
Out (Output value Y) X O* O* O* O* Oo* X O X

* C and # registers cannot be used.

Ladder Language Instructions

4-147

4.8 DDC Instructions

4.8.9 Function Generator (FGN)

€ Parameter Table for FGN Instruction with Integers
If input value X is an integer, the FGN instruction will be for integers.
Create the parameter table as shown below.

Address Data Type Symbol Name

0 wW N Number of pairs of X and Y
1 W X4 Data X4
2 W Y4 Data Y
3 W X5 Data X,
4 w Yo Data Y,
2N-1 w XN Data Xy
2N W YN Data Yy

€ Parameter Table for FGN Instruction with Double-length Integers or
Real Numbers

If input value X is a double-length integer, the FGN instruction will be for double-length integers.
If input value X is a real number, the FGN instruction will be for real numbers.

Create the parameter table as shown below.

Address | Data Type | Symbol Name
0 W N Number of pairs of X and Y
1 W - Reserved.
2 L/F X4 Data X4
4 L/F Y4 Data Y
6 L/F X2 Data X2
8 L/F Yo Data Y,
4N-2 L/F XN Data Xy
AN L/F YN Data Yy
YN
Y3
Y2 , .
Function generated by setting
Y X1-N, Y1-Nin the parameter table.
/
X1 Xo X3 XN

4-148

4.8 DDC Instructions

4.8.9 Function Generator (FGN)

€ Parameter Table for FGN Instruction with Quadruple-length Integers or
Double-precision Real Numbers

If input value X is a quadruple-length integer, the FGN instruction will be for quadruple-length

integers. If input value X is a double-precision real number, the FGN instruction will be for dou-
ble-precision real numbers.

Create the parameter table as shown below.

Address | Data Type | Symbol Name
0 w N Number of pairs of X and Y
1 W - Reserved.
2 L - Reserved.
4 Q/D X4 Data X4
8 Q/D Y4 Data Y
12 Q/D Xo Data X,
16 Q/D Yo Data Yo
8N-4 Q/D XN Data Xy
8N Q/D YN Data Yy

Information 'Viake sure to set the data so that Xy <X, < - <Xy, regardless of whether the parameter table
is for integer data, double-length integer data, real number data, quadruple-length integer

data, or double-precision real number data.

Programming Example

In the following programming example, the function is generated using the FGN instruction for

real numbers with the parameter table given below.

Number of Pairs 4
X1, Y1 0.0,2.0
X2,Y2 10.0, 6.0
X3, X4 20.0, 15.0
X4, Y4 30.0, 20.0
— SEES HighScan.FirstScan == true;
— EXPRESSION B —
DWoooo0 = 4; /! Mumber of pairs of X and ;
DFD0002 = 0.0; DFD0004 = 2.0; X1,
DFO000E = 10.0; CFDO00E = 8.0; N E2 X2,
DFO0010 = 20.0; DFOOD12=150; & X3I¥3,
DFO0014 = 30.0; DFO001E8 =200, 0 X4¥4;
— ENDF
[WLFQD]N TE VLFOD)Ou
_— MFOD000 CA00000 MFOO002
-1.200E+000 - 1.5200E+000

Ladder Language Instructions

4-149

4.8 DDC Instructions
4.8.9 Function Generator (FGN)

The following figure shows the relationship between input value X in MFOOOO0 and output value
Y in MFO0002.

Output value Y
MF00002

20.0

156.0

X3, Y3

X1, Y1

Input value X
0.0 MFO0000
10.0 20.0 30.0

Additional Information
QOutput value Y is calculated as shown below.
* If the pair X, and Y, where X,, < Input X < X, , 1 exists,

Output value Y = Yn + Y=V (Input value X — Xn) (1 <n <N —1)
n+1 — An
* If the pair X,, and Y, where X, < Input X < X, ; 1 does not exist,
If Input value X < Xy,
Yo — Y1
X2 — X1

Output value Y = Y1 + x (Input value X - X1)

If Input value X > Xy,

YN — YN-1

Output value Y = YN + A (Input value X — XN)

4-150

4.8 DDC Instructions

4.8.10 Inverse Function Generator (IFGN)

4.8.10

Inverse Function Generator (IFGN)

A function is generated based on the parameters specified in the parameter table, and it is
used to calculate output value X based on the value of input Y.

The IFGN instruction will be for integers, double-length integers, real numbers, quadruple-
length integers, or a double-precision real numbers depending on the data type of input value

The structure of the parameter table is the same as for the FGN instruction.

X1 X X3 . XN

YN
Function generated by setting
X1-N, Y1--N in the parameter table.
Ys
Input | _ | _ _ _ _ _ _ _ _ _ _ ___
value Y - I .

| Output value X is calculated
| from input value Y for the function
| generated by the parameter table.

Yo [
I

v I

! |
I
I
pd |

I
I
I
I
I
I
I

<
Output
value X

Information Set the parameter table so that Y4 < Yo < - < Y\

Ladder Language Instructions

4-151

4.8 DDC Instructions

4.8.10 Inverse Function Generator (IFGN)

Format
The format of this instruction is shown below.

& [[WCFaD] Tn [ATPrm [WLFRO] Out 1
4 | FGH MFODDON MADDD 10 MFOODOZ2 loon: Fgy

| | |

First address of
Input value Y parameter table Output value X

Key entry: IFGN

Applicable Data Ty
/O Item pplicable Data Types

B W L Q F D A Index Constant
In (Input value Y) X O O O O O X O O
Prm (First address of

X X X X X X O X X
parameter table)
Out (Output value X) X O* O* O* O* O* X O X

* G and # registers cannot be used.

€ Parameter Table for IFGN Instruction with Integers
If input value X is an integer, the IFGN instruction will be for integers.
Create the parameter table as shown below.

Address Data Type | Symbol Name

0 W N Number of pairs of X and Y
1 W X4 Data X4
2 W Yy Data Y
3 W X5 Data X,
4 W Yo Data Y,
2N-1 W XN Data Xy
2N W YN Data Yy

€ Parameter Table for IFGN Instruction with Double-length Integers or
Real Numbers

If input value Y is a double-length integer, the IFGN instruction will be for double-length inte-
gers. If input value Y is a real number, the IFGN instruction will be for real numbers.

Create the parameter table as shown below.

Address Data Type | Symbol Name
0 W N Number of pairs of X and Y
1 W - Reserved.
2 L/F X4 Data X
4 L/F Y1 Data Y
6 L/F Xo Data Xo
8 L/F Yo Data Y,
4N-2 L/F XN Data Xy
4N L/F YN Data Yy

4-152

4.8 DDC Instructions

YN

4.8.10 Inverse Function Generator (IFGN)

Ys

Y1

Function generated by setting
X1-N, Y1-Nin the parameter table.

Xi

Xo

X3 XN

€ Parameter Table for FGN Instructions with Quadruple-length Integers
or Double-precision Real Numbers

If input value X is a quadruple-length integer, the FGN instruction will be for quadruple-length

integers. If input value X is a double-precision real number, the FGN instruction will be for dou-

ble-precision real numbers.

Create the parameter table as shown below.

Address | Data Type | Symbol Name
0 w N Number of pairs of X and Y
1 W - Reserved.
2 L - Reserved.
4 Q/D X4 Data X4
8 Q/D Y4 Data Y
12 Q/D X5 Data X,
16 Q/D Yo Data Y,
8N-4 Q/D XN Data Xy
8N Q/D YN Data Yy
Information. Make sure to set the data so that Y4 <Y, < --- < Yy, regardless of whether the parameter table

is for integer data, double-length integer data, real number data, quadruple-length integer
data, or double-precision real number data.

Ladder Language Instructions

4-153

4.8 DDC Instructions

4.8.10 Inverse Function Generator (IFGN)

4-154

Programming Example

In the following programming example, the function is generated using the IFGN instruction for
real numbers with the parameter table given below.

Number of Pairs 4
X1, Y1 0.0, 2.0
X2,Y2 10.0, 6.0
X3, X4 20.0, 156.0
X4, Y4 30.0, 20.0
N E S . . —_ .
— F HighScan.FirstScan == true;
b ENPRESSION AL —
DWooooo = 4; /! Mumber of pairs of X and ¥;
DFO0002=0.0; DFO0004 =2.0; NEAN
DFOOQ0E = 10.0; DFOODDE =G.0; 2N,
DFO0010 =200, DFOODM2=15.0; WX3Y3
DFO0014=30.0; DFOODME=20.0; X4 Y4,
— EMD_IF
[WLFQD]n T [WLFQDICU
MFO0000 Ca00000 MFODO02
IFGN —
-1.200E+000 - -5.000E+D00

The following figure shows the relationship between input value Y in MFOOO0O and output value
Xin MFO0002.

Input value Y
MFO0000

20.0

15.0

X3, Y3
X1, Y1 Output value X
0.0 MF00002
: 10.0 20.0 30.0

Additional Information
Output value X is calculated as shown below.

* If the pair X,, and Y, where Y, < Input Y <Y, , { exists,

Xn+1— Xn

Output value X = Xn N =Y

x (Input value Y —Yn) (1 <n<N—1)

* If the pair X,, and Y, where Y, < Input Y <Y, , 1 does not exist,
If Input value Y < Y then,

X2 = X1

Y2 = Y1

If Input value Y > Yy then,

Output value X = X1 +

x (Input value Y — Y1)

XN = XN -1 x (

Output value X = XN + VARV

Input value Y - YN)

4.8 DDC Instructions

4.8.11 Linear Accelerator/Decelerator 1 (LAU)

4.8.11

Linear Accelerator/Decelerator 1 (LAU)

The speed that results from applying a constant acceleration or deceleration rate to the input
speed is output. The acceleration or deceleration rate is applied according to predefined

parameters in a parameter table. The input value to the LAU instruction can be an integer or a

real number. Double-length integers, quadruple-length integers, and double-precision real

numbers cannot be used.

The structure of the parameter table is different for integers and real numbers.

@ If using an integer, set an integral multiple of 1 ms for the scan time.

Important

LAU instruction
input speed waveform

Input speed

Time (t)

Acceleration/deceleration
rate set in parameters

100% level \ /

Input speed LAU instruction
output speed waveform

-~ - Time (t)
AT BT
(acceleration time) (deceleration time)
Format
The format of this instruction is shown below.
a[[WFT In [aTPrm [WFT Out .
— Lau MFOODOD WADDD1D MFODOD2 — lcon: L

- - - Key entry: LAU

I | I

Ladder Language Instructions

First address of
Input speed ‘ ‘ parameter table ‘ Output speed
Applicable Data Types
1/0 Item il yp
W L Q F D Index Constant
In (Input speed) X O X X @) X O O
Prm (First address of % % y % y % % %
parameter table)
Out (Output speed) X O* X X O* X O X

* C and # registers cannot be used.

4-155

4.8 DDC Instructions

4.8.11 Linear Accelerator/Decelerator 1 (LAU)

4-156

€ Parameter Table for LAU Instruction with Integers

Address | Data Type | Symbol Name Specification I/0
0 W RLY Relay 1/0 Relay inputs and relay outputs* IN/OUT
1 W LV 100% level of input | Scale for 100% input IN
2 W AT Acceleration time Time to accelerate from 0% to 100% (0.1 s) IN
3 w BT Deceleration time Time to decelerate from 100% to 0% (0.1 s) IN
. . Time to make a quick stop from 100% to
4 w QT Quick stop time 0% (0.1 s) IN
5 w Vv Current speed LAU output (output to Out) ouT
Current acceleration/ | Scaling with the normal acceleration rate set
6 w DvDT deceleration rate to 5,000 ouTt
7 W - (Reserved.) Spare register -
8 W VIM Previous speed For storage of the previous speed reference ouT
reference input value
- Scaling factor for DVDT
9 W DVDTK | DVDT coefficient (Current Acceleration Rate) IN
10 L REM | Remainder rRa?:ainder of the acceleration/deceleration ouT
* The relay inputs and outputs are assigned as given below.
Bit Symbol Name Specification 1/0
0 RN Line running The line is running when this input is ON. IN
; Qs Quick stop éSFLuck stop is performed if this input is turned IN
Skip execution of DVDT | Execution of the DVDT operation is skipped when
2 DVDTF ! e . IN
operation this input is ON.
3 DVDTS | DVDT operation selection | Selects the method for calculating DVDT IN
4t07 - (Reserved.) Spare input relays IN
8 ARY Accelerating ON is output during acceleration. ouT
9 BRY Decelerating ON is output during deceleration. ouT
A LSP Zero speed ON is output during zero speed. ouT
ON is output when the input speed equals the
B EQU Equal output speed. ouT
CtoF - (Reserved.) Spare output relays ouT
Note: If QS (quick stop) is OFF, QT (quick stop time) is used as the acceleration/deceleration time.
& Parameter Table for LAU Instruction with Real Numbers
Address | Data Type | Symbol Name Specification 1/0
0 W RLY | Relay I/0 Relay inputs and relay outputs™ IN/OUT
1 w - (Reserved.) Spare register -
2 F LVt 100% level of input | Scale for 100% input IN
4 F AT Acceleration time Time to accelerate from 0% to 100% (s) IN
6 F BT Deceleration time Time to decelerate from 100% to 0% (s) IN
1 H (o)
8 F QT Quick stop time Tlome to make a quick stop from 100% to IN
0% (s)
10 F \ Current speed LAU output (output to Out) ouT
12 F DVDT Current apceleration/ The current acceleration or deceleration rate ouT
deceleration rate is output.

*1. The ratio between the set value for LV (input at 100% level) and the input speed determines the actual accelera-
tion/deceleration time.

Refer to the following section for details on the processing that is performed internally by the LAU instruction.
I Additional Information on page 4-158

*2. The relay inputs and outputs are assigned as given below.

4.8 DDC Instructions

4.8.11 Linear Accelerator/Decelerator 1 (LAU)

Bit Symbol Name Specification I/0
0 RN Line running The line is running when this input is ON. IN
1 QS Quick stop A quick stop is performed if this input is turned OFF. IN
2to7 - (Reserved.) Spare input relays IN
8 ARY | Accelerating ON is output during acceleration. ouT
9 BRY Decelerating ON is output during deceleration. ouT
A LSP Zero speed ON is output during zero speed. ouT
B EQU Equal ON is output when the input speed equals the output speed. | OUT
CtoF - (Reserved.) Spare output relays ouT
Information When QS (quick stop) is turned OFF, the acceleration/deceleration time is set to the QT (quick

stop time).

To execute a quick stop, turn QS (quick stop) OFF and set the input speed to 0 at the same

time.

Programming Example
In the following programming example, the LAU instruction for real numbers is executed with

the specified acceleration and deceleration rates where MFO0O00Q is the input speed and
MFO0002 is the output speed.

The following parameters are set for the acceleration or deceleration rate.
« 100% level of acceleration/deceleration rate input = 20,000

» Acceleration time =2.5s
 Deceleration time = 3.5 s
» Quick stop time = 0.5 s

EXPRESSION B3, |
DFOOOOZ=20000; 7 L¥: 1003 input level
2.000000E+004=20000
DFOONN4=2.5; JAOAT: acceleration time
2. R00000E+000=2.500000000000000E4+000
DFOOONE= 3 b f4 BT: decceleration time
LHOOOOOE+0DO=2.500000000000000E4+000
DFOOONE= D b FAOT: quick stop time
E.O000000E-001=5.000000000000000E-001
HEODO100 DEOOOONY
| P
. -
quick stop qick =top
of f
DEOOGONND
| | &
&l ways ON run
WF1In [ATPrm [WFTDut
Lall WFEOOGOO0 Dannoon MEOOOOD2 [|
1.00E+004 = 1.00E+004

Ladder Language Instructions

4-157

4.8 DDC Instructions

4.8.11 Linear Accelerator/Decelerator 1 (LAU)

4-158

The following table shows how each register operates.

MB00100 ON o o . . . o .
(Quick stop (Acceleration time and deceleration time settings applied.) (Quick stop time is applied.)
bit OFF) OFF
20000
MF00000 0 |
(Input speed)
-10000
20000
MF00002
— V& —> S —
(Output speed) 0 25 35s / @*7 PN
-10000 (AT) [=h) 0587 05s
— > @Qr QT)
1.25 s 1.75 "
(AT/2) (BT/2)

*1. The acceleration time is applied when moving away from 0, and the deceleration time is applied when moving
toward 0.

*2. The quick stop time is also applied as the acceleration time.

Additional Information

€ Formulas for Calculating the Speed Output Value and Current Acceler-
ation/Deceleration Rate

This section describes the formulas for calculating the speed output values during acceleration,
deceleration, and quick stops, and the current acceleration or deceleration rates.

B LAU Instruction for Integers

The LAU instruction for integers calculates the speed output value during acceleration, deceler-
ation, and quick stops, and the current acceleration or deceleration rates using the formula
shown below based on predefined parameters.

In this formula, V is the speed output value, V'’ is the previous speed output value, VI is the
input value for the speed reference, and Ts is the scan time set value.

« Speed Output Value during Acceleration
The speed output value during acceleration is calculated with the following formula.

Positive Side Negative Side
VI>V (V' >0) Vi<V (V' <0)
V=V +ADV V=V -ADV

LV xTs (0.1 ms) + REM
AT (0.1 s) x 1,000

ADV (acceleration rate) =

» Speed Output Value during Deceleration
The speed output value during deceleration is calculated with the following formula.

Positive Side Negative Side
Vi<V (V' >0) VI>V (V' <0)
V=V -BDV V=V +BDV

LV x Ts (0.1 ms) + REM

BDV (deceleration rate) =
BT (0.1 s) x 1,000

4.8 DDC Instructions

» Speed Output Value during

4.8.11 Linear Accelerator/Decelerator 1 (LAU)

a Quick Stop

The speed output value during a quick stop is calculated with the following formula.

Positive Side Negative Side
Vi<V (V' >0) VI>V (V' <0)
V=V -QDbV V=V +QDV

LV xTs (0.1 ms) + REM
QT (0.1 s) x 1,000

QDV (quick stop rate) =

» Current acceleration/deceleration rate
If DVDTF (skip execution of DVDT operation) is ON, DVDT (current acceleration/deceleration
rate) will be calculated according to the setting of DVDTS (DVDT operation selection) using
one of the following formulas. If DVDTF is OFF, DVDT is set to 0.

DVDTS = ON DVDTS = OFF
pvor =V =VIXS000 1 bypt - (v - vy DVDTK
ADV
. 1. ARY (accelerating) turns ON at the following times:
Information

When V’ > 0 and ADV > 0, or when V'’ <0 and ADV < 0

2. BRY (decelerating) turns ON at the following times:
* When V'’ <0 and BDV > 0, or when V' >0 and BDV < 0O
* When V' <0 and QDV > 0, or when V' > 0 and QDV < 0

3. LSP (zero speed) turns ON when V equals 0.
. EQU (equal) turns ON when VI equals V.
5. If RN (line running) is OFF, the outputs for V, DVDT, and REM are set to 0.

IN

B LAU Instruction for Real Numbers

The LAU instruction for real numbers calculates the speed output value during acceleration,
deceleration, and quick stops, and the current acceleration or deceleration rates using the for-
mula shown below based on predefined parameters.

In this formula, V is the speed output value, V' is the previous speed output value, VI is the
input value for the speed reference, and Ts is the scan time set value.

» Speed Output Value during Acceleration
The speed output value during acceleration is calculated with the following formula.

Positive Side Negative Side
VIi>V (V' >0) Vi<V (V' <0)
V=V +ADV V=V -ADV
ADV (acceleration rate) = VT (0.1 ms)
AT (s) x 10,000

» Speed Output Value during

Deceleration

The speed output value during deceleration is calculated with the following formula.

Positive Side Negative Side
Vi<V (V' >0) VI>V (V' <0)
V=V -BDV V=V +BDV
. LV x Ts (0.1 ms)
BDV | =
(deceleration rate) BT () x 10,000
» Speed Output Value during a Quick Stop

The speed output value during a quick stop is calculated with the following formula.

Positive Side Negative Side
Vi<V (V' >0) Vi>V (V' <0)
V=V -QDbV V=V +QDV
) LV x Ts (0.1 ms)
DV k st te) = ———————
QDV (quick stop rate) QT () x 10,000

Ladder Language Instructions

4-159

4.8 DDC Instructions

4.8.11 Linear Accelerator/Decelerator 1 (LAU)

» Current acceleration/deceleration rate
The DVDT (current acceleration/deceleration rate) is calculated with the following formula
after V (speed output) has been calculated.
DVDT =V -V

1. ARY (accelerating) turns ON at the following times:
When V' > 0 and ADV > 0, or when V'’ <0 and ADV < 0

2. BRY (decelerating) turns ON at the following times:
* When V'’ <0 and BDV > 0, or when V' >0 and BDV <0
« When V' <0 and QDV > 0, or when V' >0 and QDV < 0

3. LSP (zero speed) turns ON when V equals 0.
4. EQR (equal) turns ON when VI equals V.

5. ARY (accelerating) turns ON at the following times:
V #V’, and DVDT and V have the same sign.

6. BRY (decelerating) turns ON at the following times:
V #V’, and DVDT and V do not have the same sign.

7. If RN (line running) is OFF, the outputs for V and DVDT are set to O.

Information

€ Acceleration and Deceleration When Input Speed Is Changed
This section describes acceleration and deceleration when the input speed is changed.

After the axis stops when the speed is set to 0, acceleration and deceleration are controlled by
the predefined deceleration time and acceleration time. (See @.)

If the speed reference crosses the point where speed equals 0, acceleration and deceleration
are controlled by the deceleration time to keep the speed from fluctuating. (See @.)

<Positive Speed — 0 — Negative Speed> <Negative Speed — 0 — Positive Speed>

Deceleration Acceleration Deceleration Deceleration Acceleration Deceleration

4-160

4.8 DDC Instructions

4.8.12 Linear Accelerator/Decelerator 2 (SLAU)

4812 Linear Accelerator/Decelerator 2 (SLAU)

The speed that results from applying a variable acceleration or deceleration rate to the input
speed is output. The acceleration or deceleration rate is applied as an S curve according to
predefined parameters in a parameter table.

The input value to the SLAU instruction can be an integer, double-length integer, or a real num-
ber. Quadruple-length integers and double-precision real numbers cannot be used.

The structure of the parameter table is different for integers and real numbers.

@ If using an integer, set an integral multiple of 1 ms for the scan time.

Important

SLAU instruction
nput speed waveform

Input speed

Time (1)

Acceleration/Deceleration
rate set in parameters
100% level of input
Input speed
SLAU instruction
/ output speed waveform
< N ¢ N)
Acceleration time + Deceleration time + Time (1)
Acceleration S-curve time Deceleration S-curve time
Format
The format of this instruction is shown below.
A [[WLFT Tn [ATPrm [WLFTout
= ELAU MEOOO00 Maoooto MFOOQo?2 — lcon: Ay,

Key entry: SLAU

1 1 1

First f
Input speed plgsrar%%ctjg??gt?le Output speed
Applicable Data Types
I/0O Item 22 o
W L Q F D A Index Constant

In (Input speed) X O O X O X X O O
Prm (First address of v « y « y « O O* v
parameter table)

Out (Output speed) X O* O* X O* X X O X

* C and # registers cannot be used.

Ladder Language Instructions

4-161

4.8 DDC Instructions

4.8.12 Linear Accelerator/Decelerator 2 (SLAU)

€ Parameter Table for SLAU Instruction with Integers

Address | Data Type | Symbol Name Specification I/0
0 W RLY Relay 1/0 Relay inputs and relay outputs* IN/OUT
1 w LV 100% level of input Scale for 100% input IN
2 W AT Acceleration time Time to accelerate from 0% to 100% (0.1 s) IN
3 w BT Deceleration time Time to decelerate from 100% to 0% (0.1 s) IN

. . Time to make a quick stop from 100% to
4 w QT Quick stop time 0% (0.1 s) IN
Acceleration S-curve | Acceleration S-curve region time
5 w AAT | ime (0.01 t0 32.00 s) IN
Deceleration S-curve | Deceleration S-curve region time
6 w BBT | time (0.01 t0 32.00 s) IN
7 wW Vv Current speed SLAU output (output to Out) ouT
Current acceleration/ | Scaling with the normal acceleration rate set
8 w DVDTH deceleration rate 1 to 5,000 ouT
9 w - (Reserved.) Spare register -
. Amount of speed change until the speed
10 W | aBmD | Speedincreasewhen | oo after the hold command is exe- | OUT
holding
cuted

11 W REM1 | Remainder rF;?(ranainder of the acceleration/deceleration ouT
12 W - (Reserved.) Spare register -
13 W VIM Previous speed For storage of the previous speed reference ouT

reference input value

14 L DVDT2 Current apceleration/ 1,QOO times the actual acceleration/deceler- ouT

deceleration rate 2 ation
Current acceleration/ | Current acceleration/deceleration rate

16 L DVDTS | Jeceleration rate 3 | (= DVDT2/1,000) ouT
18 L REM?2 | Remainder Bemainder oflthe S-curve region accelera- ouT

tion/deceleration rate

20 REM3 | Remainder Remainder of the current speed ouT

Scaling factor for DVDT
21 DVDTK | DVDT1 coefficient (Current Acceleration Rate 1) ouT
(-32768 to 32767)

* The relay inputs and outputs are assigned as given below.

Bit Symbol Name Specification I/0
0 RN Line running The line is running when this input is ON. IN
1 QS Quick stop A quick stop is performed if this input is turned OFF. IN
5 DVDTF Skip execution of | Execution of the DVDT operation is skipped when this input IN

DVDT1 operation |is ON.
DVDT1 operation .

3 DVDTS selection Selects the method for calculating DVDT IN

4to07 - (Reserved.) Spare input relays IN

8 ARY | Accelerating ON is output during acceleration. ouT
9 BRY | Decelerating ON is output during deceleration. ouT
A LSP | Zero speed ON is output during zero speed. ouT
B EQU | Equal ON is output when the input speed equals the output speed.| OUT
C - (Reserved.) Spare output relays ouT
D CCF | Work relay System internal work relay ouT
E BBF | Work relay System internal work relay ouT
F AAF | Work relay System internal work relay ouT

Note: If QS (quick stop) is OFF, QT (quick stop time) is used as the deceleration time.

4-162

4.8 DDC Instructions

4.8.12 Linear Accelerator/Decelerator 2 (SLAU)

€ Parameter Table for SLAU Instruction with Double-length Integers

Address | Data Type | Symbol Name Specification I/0
0 W RLY | Relay I/O Relay inputs and relay outputs™ IN/OUT
1 W - (Reserved.) - -
2 L LV 100% level of input Scale for 100% of input value IN
4 L AT Acceleration time Time to accelerate from 0% to 100% (0.1 s) IN
6 L BT Deceleration time Time to decelerate from 100% to 0% (0.1 s) IN
. . Time to make a quick stop from 100% to
8 L QT Quick stop time 0% (0.1 °9) IN
10 L AAT ﬁr%ceeleratlon S-curve Acceleration S-curve region time (0.01 s) IN
12 L BBT It?riceelerann S-curve Deceleration S-curve region time (0.01 s) IN
14 L v Current speed J[SeIF;AU output (also the output to the A regis- ouT
Current acceleration/ The current acceIeration/Qeoelergtion rate
16 L DVDT deceleration rate g[ﬁncated below the decimal point) is out- ouT
. Amount of speed change until the speed
18 L ABMD Spe?d increase when stabilizes after the hold command is exe- ouT
holding
cuted
20 D! V D Current speed SLAU output for system use (double-preci- IN/OUT
sion real number)
Current acceleration/ | Current acceleration or deceleration rate for
*1
24 D DVDT_D deceleration rate system use (double-precision real number) INOUT
*1. D is a double-precision real number expressed in 4 words. The MPE720 cannot display this value as a real num-
ber.
*2. The relay inputs and outputs are assigned as given below.
Bit Symbol Name Specification I/0
0 RN Line running The line is running when this input is ON. IN
1 QS Quick stop A quick stop is performed if this input is turned OFF. IN g
Acceleration/ . . 5
2 DVDTF | deceleration rate \C/theT thg input t“f“S OlN.’ P\SDJ ((;u(r)rggt acéoieratlon/ IN g
flag eceleration rate) is multiplied by 1, and then output. @
3to7 - (Reserved.) Spare input relays IN %
8 ARY | Accelerating ON is output during acceleration. ouT =4
9 BRY | Decelerating ON is output during deceleration. ouT §
A LSP | Zero speed ON is output during zero speed. ouT 5
B EQU | Equal ON is output when the input value equals the output value. | OUT §
CtoF - Work relay System internal work relay IN/OUT -
Note: If QS (quick stop) is OFF, QT (quick stop time) is used as the deceleration time. n
€ Parameter Table for SLAU Instruction with Real Numbers
Address | Data Type | Symbol Name Specification I/0
0 W RLY Relay 1/0 Relay inputs and relay outputs* IN/OUT
1 W - (Reserved.) Spare register -
2 F LV 100% level of input Scale for 100% input IN
4 F AT Acceleration time Time to accelerate from 0% to 100% (s) IN
6 F BT Deceleration time Time to decelerate from 100% to 0% (s) IN
i 1 (o)
8 F QT Quick stop time TLme to make a quick stop from 100% to IN
0% (s)
10 F AAT tAir<T:]ceelerat|on S-curve Acceleration S-curve region time (s) IN
12 F BBT Ei)r(re]ceeleration S-curve Deceleration S-curve region time (s) IN

Continued on next page.

4-163

4.8 DDC Instructions

4.8.12 Linear Accelerator/Decelerator 2 (SLAU)

Continued from previous page.

Address | Data Type | Symbol Name Specification 1/0
14 F \ Current speed SLAU output (output to Out) ouT
16 F DVDT1 ggg:jga?i(é%elrirtaeti?n/ thu?gt&él acceleration or deceleration rate ouT
18 F ABMD ﬁg@?ﬁg‘”crease when | e e bl commang b o | OUT
cuted
* The relay inputs and outputs are assigned as given below.
Bit Symbol Name Specification 1/0
0 RN Line running The line is running when this input is ON. IN
1 QS Quick stop A quick stop is performed if this input is turned OFF. IN
2to7 - (Reserved.) Spare input relays IN
8 ARY | Accelerating ON is output during acceleration. ouT
9 BRY | Decelerating ON is output during deceleration. ouT
A LSP | Zero speed ON is output during zero speed. OouT
B EQU | Equal ON is output when the input speed equals the output speed. | OUT
CtoF - (Reserved.) Spare output relays ouT

Note: If QS (quick stop) is OFF, QT (quick stop time) is used as the deceleration time.

The following figure shows how the parameters are used in the actual instruction.

Example
Speed at
100% input
Acceleration Deceleration
S-curve region ELinear period :S-curve region , . S-curve region :Linear period: S-curve region:
AAT AT - AAT AAT © BBT EBT—BBT' BBT
! . . :%Z
AT - - - BT :
AT + AAT ? ? BT + BBT
Start of End of Start of End of
acceleration acceleration deceleration deceleration
Note: Refer to the following section for details on the processing that is performed inter-
nally by the SLAU instruction.
I3 Additional Information on page 4-166
Information When QS (quick stop) is turned OFF, the output decelerates at QT (quick stop time) and the

output speed is set to 0. It is not necessary to set the input speed to O.

For a quick stop, the speed is decelerated linearly without applying the S-curve. Set the
parameters so that AT or BT (linear acceleration or deceleration time) is greater than or equal
to AAT or BBT (S-curve acceleration or deceleration time).

4-164

4.8 DDC Instructions

4.8.12 Linear Accelerator/Decelerator 2 (SLAU)

Programming Example

In the following programming example, the SLAU instruction for real numbers is executed with
the specified acceleration and deceleration rates where MFOO0OQO is the input speed and
MFO0002 is the output speed.

The following parameters are set for the acceleration or deceleration rate.
Speed when input level of acceleration or deceleration rate is 100% = 20,000
Acceleration time =1.5 s

Deceleration time =2.5 s

Quick stop time = 0.5 s

Acceleration S-curve time = 0.5 s

Deceleration S-curve time =1.0 s

ERPRESSION E . |

DFODOO0Z=20000; 47 LY: 100% input level
2.000000E+004=20000
DFOONN4=1.5; JAOAT: acceleration time
1.500000E+000=1.500000000000000E+000
DFOOONE=2.5; Ji BT: decceleration time
E.EDUDUDE+UDU 2.h00000000000000E+000
DFOOONB=0.5; JAOT: quick ztop time
B.000000E-001=6.000000000000000E-001
DFOOOI0=0.5; JAOBAT: B-curve acceleration time
B.000000E-001=6.000000000000000E-001
DFOON12=1.0; J4 BBT: B-curve decceleration time
1.000000E+000=1.000000000000000E+000

MEQOO100 DEOOOODY
| | &
quick staop quick stop
of f
DEOOOOON
] 1 T
11
& [wans 0N Fun
WLF]In [&TFrm [WLF] 0wt
2Ll HFOOO00 Danoono MFOOOODZ | |
1.00E+004 =0 1.00E+004

The following table shows how each register operates.

N . .
MB00100 (Acceleration time, deceleration time, and S-curve time settings applied.) i(gg'oﬁizgof time
(Quick stop bit OFF) o ppliea.
20,000
MFO0000 0
(Input speed) T
-10,000

20,000 /—\ f
MF00002 0 —

(Output speed) > >\ f% —>
20s 35s 20s 1.0s*

-10,000

(AT + AAT) (BT + BBT) <— > (AT+AAT) @QT)
1.25s 225s
(AT/2 + AAT) (BT/2 + BBT)

* |f the quick stop bit is turned OFF, the speed is decelerated to a stop using the quick stop time, regardless of the
S-curve time and input speed.

Ladder Language Instructions

4-165

4-166

4.8 DDC Instructions
4.8.12 Linear Accelerator/Decelerator 2 (SLAU)

Additional Information

€ Formulas for Calculating the Speed Output Value and Current Acceler-
ation/Deceleration Rate

This section describes the formulas for calculating the speed output values during acceleration,
deceleration, quick stops, S-curve acceleration, S-curve deceleration, and the current acceler-
ation or deceleration rates.

m Operation of the SLAU Instruction for Integers

The SLAU instruction for integers calculates the speed output value during acceleration, decel-
eration, quick stops, S-curve acceleration, S-curve deceleration, and the current acceleration
or deceleration rates using the formulas shown below based on predefined parameters.

In this formula, V is the speed output value, V' is the previous speed output value, VI is the
input value for the speed reference, and Ts is the scan time set value.

» Speed Output Value during Acceleration
The speed output value during acceleration is calculated with the following formula.

Qutside the S-curve region (ADVS > ADV)

Positive Side Negative Side
VI>V (V' >0) VI<V (V' <0)
V=V +ADV V=V -ADV

LV x Ts (0.1 ms) + REM1
AT (0.1 8) x 1,000

« Speed Output Value during Deceleration
The speed output value during deceleration is calculated with the following formula.

Outside the S-curve region (BDVS > BDV)

ADV (acceleration rate) =

Positive Side Negative Side
VI<V (V' >0) VI>V (V' <0)
V=V -BDV V=V +BDV

LV x Ts (0.1ms) + REM1
BT (0.1 s) x 1,000

BDV (deceleration rate) =

» Speed Output Value during a Quick Stop
The speed output value during a quick stop is calculated with the following formula.

QS = OFF
Positive Side Negative Side
VI<V (V' >0 VI>V (V' <0)
V=V -QDbV V=V +QDV

LV x Ts (0.1ms) + REM1
QT (0.1) x 1,000

QDV (quick stop rate) =

Information FOr @ quick stop, the speed is decelerated linearly without applying the S-curve.

« Speed Output Value during S-Curve Acceleration
The speed output value during S-curve acceleration is calculated with the following formula.

Inside the S-curve region (ADVS < ADV)

Positive Side Negative Side
VI>V (V' >0) VI<V (V' <0)
V=V +ADVS V=V -ADVS

ADVS (S-curve region acceleration rate) = ADVS' + AADVS
ADV x Ts (0.1 ms) + REM2
AAT (0.01 s) x 100

AADVS =

4.8 DDC Instructions

4.8.12 Linear Accelerator/Decelerator 2 (SLAU)

» Speed Output Value during S-Curve Deceleration
The speed output value during S-curve deceleration is calculated with the following formula.

Inside the S-curve region (BDVS < BDV)

Positive Side Negative Side
VI<V' (V' > 0) VI>V (V' <0)
V=V -BDVS V=V +BDVS

BDVS (S-curve region deceleration rate) = BDVS' £ BBDVS

BBDVS = BDV x Ts (0.1 ms) + REM2
BBT (0.01 s) x 100

» Current acceleration/deceleration rate
If DVDTF (skip execution of DVDT1 operation) is ON, DVDT1 (current acceleration/decelera-
tion rate) will be calculated according to the setting of DVDTS (DVDT1 operation selection)
using one of the following formulas. If DVDTF is OFF, DVDT1 is set to 0.
(V= V) x 5,000
ADV
If DVDTS is OFF, DVDT1 = (V — V') x DVDTK
The value for DVDT2 (current acceleration/deceleration rate 2) is calculated as follows:

If DVDTS = ON, DVDT1 =

During acceleration: Inside the S-curve region: DVDT2 = £ADVS
Outside the S-curve region: DVDT2 = tADV
During deceleration: Inside the S-curve region: DVDT2 = £BDVS
Outside the S-curve region: DVDT2 = +tBDV
During a quick stop: DVDT = £QDV

The result of ABMD (speed increase upon holding) is output after the following operation is
performed.

DVDT2' x DVDTZ'
2 x AADVS (BBDVS)

DVDT2' : Previous value of DVDT2 (current acceleration/deceleration rate 2)

ABMD=

1. ARY (accelerating) turns ON at the following times:
* When V' >0 and ADV > 0, or when V' <0 and ADV < 0
« If VV >0 and ADVS > 0 inside an S-curve region, or if V' < 0 and ADVS < 0 inside an S-
curve region
2. BRY (decelerating) turns ON at the following times:
* When V' < 0 and BDV > 0, or when V' > 0 and BDV < 0
« When V' <0 and QDV > 0, or when V' > 0 and QDV < O
* If V' <0 and BDVS > 0 inside an S-curve region, or if V' > 0 and BDVS < 0 inside an S-
curve region
3. LSP (zero speed) turns ON when V equals 0.
. EQU (equal) turns ON when VI equals V.

5. If RN (line running) is OFF, the outputs for V, DVDT1, DVDT2, DVDT3, REM1, REM2, and
REMS are set to 0.

Information

N

Ladder Language Instructions

4-167

4.8 DDC Instructions
4.8.12 Linear Accelerator/Decelerator 2 (SLAU)

B Operation of the SLAU Instruction for Double-length Integers or Real Numbers
The SLAU instruction for double-length integers or real numbers calculates the speed output
value during acceleration, deceleration, quick stops, S-curve acceleration, S-curve decelera-
tion, and the current acceleration or deceleration rates using the formulas shown below.

In this formula, V is the speed output value, V' is the previous speed output value, VI is the
input value for the speed reference, Ts is the scan time set value, ADVS'’ is the previous ADVS
value, and BDVS'’ is the previous BDVS value.

» Speed Output Value during Acceleration
The speed output value during acceleration is calculated with the following formula.

Qutside the S-curve region (ADVS > ADV)

Positive Side Negative Side

VI>V (V' >0) Vi<V (V' <0)

V=V +ADV V=V -ADV
ADV (acceleration rate) = LVxTs (0.1 ms)
AT (s) x 10,000

» Speed Output Value during Deceleration
The speed output value during deceleration is calculated with the following formula.

Outside the S-curve region (BDVS > BDV)

Positive Side Negative Side
Vi<V (V' >0) Vi>V (V' <0)
V=V -BDV V=V +BDV
BDV (deceleration rate) _ -V xTs (0.1 ms)
BT (s) x 10,000

« Speed Output Value during a Quick Stop
The speed output value during a quick stop is calculated with the following formula.

QS = OFF
Positive Side Negative Side
Vi<V (V' >0) Vi>V (V' <0)
V=V -QDbV V=V +QDV
QDV (quick stop rate) = LxTs(01ms)
QT (s) x 10,000

Information FOr a quick stop, the speed is decelerated linearly without applying the S-curve.

» Speed Output Value during S-Curve Acceleration
The speed output value during S-curve acceleration is calculated with the following formula.

Inside the S-curve region (ADVS < ADV)

Positive Side Negative Side
VI>V (V' >0) VI<V (V' <0)
V=V + ADVS V=V -ADVS

ADVS (S-curve region acceleration rate) = ADVS" £ AADVS
ADV x Ts (0.1 ms)
AAT (s) x 10,000

« Speed Output Value during S-Curve Deceleration
The speed output value during S-curve deceleration is calculated with the following formula.

AADVS =

Inside the S-curve region (BDVS < BDV)

Positive Side Negative Side
Vi<V (V' =0) Vi>V (V' <0)
V=V -BDVS V=V + BDVS
BDVS (S-curve region deceleration rate) = BDVS' + BBDVS
BDV x Ts (0.1 ms)

BBDVS =

BBT (s) x 10,000

4-168

4.8 DDC Instructions

4.8.12 Linear Accelerator/Decelerator 2 (SLAU)

» Current acceleration/deceleration rate

The value of DVDT1 (current acceleration/deceleration rate 1) is output after the following
operation is performed:

During acceleration: Inside the S-curve region: DVDT = ADVS
Outside the S-curve region: DVDT = ADV
During deceleration: Inside the S-curve region: DVDT = BDVS
Outside the S-curve region: DVDT = BDV
During a quick stop: DVDT = QDV

The result of ABMD (speed increase upon holding) is output after the following operation is
performed.

DVDT x DVDT
2 x AADVS (BBDVS)

ABMD=

1. LSP (zero speed) turns ON when V equals 0.
2. EQU (equal) turns ON when VI equals V.
3. If RN (line running) is OFF, the outputs for V, DVDT, and AVMD are set to O.

Information

€ Precautions in Using the SLAU Instruction

B Changing the Input Value for VI (Input Speed) during Acceleration or Deceleration

If VI (input value) is to be changed while accelerating or decelerating, do not use the SLAU
instruction for integers. Otherwise, overshooting or undershooting may occur as shown in the
following figures.

Overshoot

Speed '/ Speed

/N

Vi Vi Reference input changed during
deceleration (O was changed to V).

Reference input changed during
acceleration (VI was changed to Q).

0 Time 0 \—/\\ Time

If VI (input value) is to be changed while accelerating or decelerating, take one of the following
measures in your application program.

» Use the SLAU instruction for real numbers.

» Use the SLAU instruction for integers in conjunction with the LIMIT instruction. Specifically,
use the output value of the SLAU instruction for integers as the input value to the LIMIT
instruction to prevent overshooting or undershooting.

Undershoot

Ladder Language Instructions

4-169

4.8 DDC Instructions

4.8.13 Pulse Width Modulation (PWM)

B Cancelling a Quick Stop While Decelerating during a Quick Stop

When decelerating for a quick stop, do not cancel the quick stop before the output speed
reaches 0. Otherwise, undershooting may occur while approaching the input speed.

Speed

Quick stop
Vi “

Quick stop canceled
before speed is O.

/

/U Time

Undershoot

If you must reset the quick stop before the output speed reaches 0, use the LIMIT instruction
on the output speed to prevent undershooting.

4.8.13

Pulse Width Modulation (PWM)

4-170

The input value (from -100.00% to 100.00%) is converted using pulse-width modulation and
the result is output to the output value and parameter table. The input value can be used only
with integer data, and the output value can be used only with bit data. Double-length integers
and real numbers cannot be used.

Y
@ If using an integer, set an integral multiple of 1 ms for the scan time.

Important

Outpult value for PWMT (PWM cycle) PWMT (PWM cycle)
PWM instruction

ON OFF ON OFF

Scan

N J
e
ON output time
(number of ON output scans)

The ON output time and number of ON output scans of the PWM instruction can be calculated
with the following formula.

Xis the input value, PWMT is the PWM cycle (ms), and Ts is the scan time set value (ms).
ON output time = PWMT (X+10,000)

20,000
PWMT (X+10,000)

Number of ON output scans = Ts x 20,000

[—— 1. The relation between the input value and the PWM output ON ratio is shown below.
* Input value 100.00% — 100% ON (ON output time = PWMT)
* Input value 0.00% — 50% ON (ON output time = PWMT/2)
* Input value -100.00% — 0% ON (ON output time = 0)
2. After turning ON the power supply, turn ON PWMRST (PWM reset) to clear all internal cal-

culations before using the PWM instruction. The PMW operation will start executing from
the point when the PWM reset bit was turned ON.

4.8 DDC Instructions

4.8.13 Pulse Width Modulation (PWM)

Format
The format of this instruction is shown below.
& [[WIn [ATFrm [ETOut
— P MYOOOD0O0 WADODDTD MEOODOD1O — Icon e
- - - Key entry: PWM
Inout val First address of || Output val
IM, parameter table IM,
/O Item Applicable Data Types
W L Q F D Index Constant
In (Input value) X O X X X X X O O
Prm (First address of % % % % % % o* O* x
parameter table)
Out (Output value) O* X X X X X X O X

* C and # registers cannot be used.

€ Ranges of Input and

Output Values

The input value must be between -10,000 and 10,000 in units of 0.01%.
If the input exceeds this range, processing is performed for the upper limit (10,000) and the

lower limit (-10,000).

The output value is set to 1 when the PWM output is ON, or to O when the PWM output is OFF.

& Parameter Table

Address | Data Type | Symbol Name Specification I/0
0 W RLY Relay I/0 Relay inputs and relay outputs* IN/OUT
PWM cycle (1 ms)

1 W RWMT PWM cycle Range: 1 to 32,767 ms IN
2 W ONCNT | ON output setting timer | ON output setting timer (1 ms) ouT
3 w CVON tci)rwe?UtpUt counting ON output counting timer (1 ms) ouT

ON output counting ON output counting timer remainder
4 w CVONREM timer remainder (0.1 ms) out
5 W OFFCNT | OFF output setting timer | OFF output setting timer (1 ms) ouT
6 W CVOFF | OFF QUIPULCOUNtING | oEE qutput counting timer (1 ms) ouT
OFF output counting OFF output counting timer remainder
! W CVOFFREM timer remainder (0.1 ms) out
* The relay inputs and outputs are assigned as given below.

Bit Symbol Name Specification I/0

0 PWMRST | PWM reset bit Turn ON this input to reset the PWM operation. IN

2to7 - (Reserved.) Spare input relays IN

PWM Output
8 PWMOUT | PWM output (The output value is set to 1 when the output is ON, | OUT
or to 0 when the output is OFF.)

9toF - (Reserved.) Spare output relays ouT

Ladder Language Instructions

4-171

4.8 DDC Instructions
4.8.13 Pulse Width Modulation (PWM)

Programming Example

In the following programming example, the PWM output for the input value in MWOOOOQO is
stored in OB000000 where the PWM cycle is 100 ms.

reset PWW at 1st scan

Highscan.
Firstican DeOOOI00
|| Pt
1 -
after High P reset
Scan start,
Onlwy 1 3=
WLFRD]Sre T[WLFOD] Dest
noi1oo owooot
? oL 100 100 [
P cvcle
W In [ATFrm [Ef 0t
WWooonn Daonntn DEOOOOON
i P 0 i
== P outpot
autput to device
| aeooonn
i | | ()
P out put out put

This figure shows the output of OBO00000 when MWO0000 is O (0%: ON output time is 1/2 of
the PWM cycle).

PWM cycle = 100 ms

ON

OFF

ON output time = 50 ms
Number of ON output scans = 50 ms/scan time set value

This figure shows the output of OBO00000 when MWO00O0O is 5,000 (50%: ON output time is
3/4 of the PWM cycle).
PWM cycle = 100 ms

ON

OFF ON output time = 75 ms

Number of ON output scans = 75 ms/scan time set value

4-172

4.9 Table Manipulation Instructions

4.9.1 Read Table Block (TBLBR/TBLBRE)

m Table Manipulation Instructions

4.9

Read Table Block (TBLBR/TBLBRE)

A block of table data that is specified by the table name, row number, and column number is
moved to a continuous area that starts at the first destination address. The data is stored in the
destination area according to the data type of the elements that were read.

If an error occurs when accessing the table, such as data that is out of range or not enough
data length at the destination, an error is output and no data is read. The contents in the desti-
nation area will remain unchanged.

If the instruction ends normally, the number of words that were moved is output, and the status
is turned OFF. If an error occurs, an error code is output and the status is turned ON.

Data type for each column First destination address

Columns — ‘
wow 0 0 W !
7 MwOooo
Rows 1 2 3 4 5
8 MLOOOO + 1
v 6 7 8 9 10
Transferred. 9 MLOOOO + 3
11 12 13 14 15 _}
1 12 MwOOooo + 5
18 MLOOOO + 6
Table data
14 MLOOOO + 8
Block specified in parameter table

Data is stored according to
the data type of the table data.

« If the Move Succeeds

Number of) Output data

words moved

OFF 4 Status

 |f the Move Fails

Error code _— Output data
ON _— Status
. If the move fails, the destination area will retain the contents from before the instruction was
Information

executed.

Ladder Language Instructions

4-173

4.9 Table Manipulation Instructions

4.9.1 Read Table Block (TBLBR/TBLBRE)

4-174

Format
The format of this instruction is shown below.
- TELER =
Name [%] [Dut]
Source table name ———» THLT H""'?_D_DDD ~—— OQutput data
[#] Data [B] [5t=]
FlrSta%edSrtégitIOﬂ I h‘l.‘l?_[lj nn I'.'IEIZI_I]_IZI_IZI 11 ‘ Status

[A] Prm

| TBL
| :
First address of HADDD10 con:BR

parameter table o

Key entry: TBLBR

/O Item Applicable Data Types

B W L Q F D A Index Constant
Name
(Table name)*!™2 X X X X X X (@) X X
Data (First destination % % % % % % o % %
address)
Prm (First address of

X X X X X X O X X
parameter table)
Out (Output data)*? X o™ X X X X X O x
Sts (Status)”3 o™ X x X X X X X x

*1. Specify the registers in which the text string for the table name (8 bytes + NULL character max.) has been
stored.

*2. G, M, D, or C register only.
*3. Optional.
*4, C and # registers cannot be used.

Details on I/0 ltems

ltem Name 1/0 Description
For the TBLBR instruction, directly enter the table name.
Name | Table name IN For the TBLBRE instruction, indirectly designate the table name in reg-
isters.
First destination . . -
Data IN Specify the first address of the destination.

address

First address of

Prm parameter table IN/OUT | Specify the first address of the table data.
Out Output data ouT Specify the destination address of the output data.
Sts Status ouT Specify the address for checking the status of this instruction.

R Note the following precautions regarding Name.
@ » Always add a NULL character to Name. If a NULL character is not added to Name, a fixed
length of 8 bytes (4 words) of data is read and handled as the table name. There is a risk that
Important an unintended table name may be referenced because of this.
» When characters have been set with ASCII instructions, the NULL character is not set at the
end of the text string. Use the STRSET instruction to set Name.
» An operation error will occur if the size from the first register to the maximum range of registers
is less than 8 bytes (4 words).

4.9 Table Manipulation Instructions

& Parameter Table

4.9.1 Read Table Block (TBLBR/TBLBRE)

Address | Data Type | Symbol Name Specification I/0
First row number of table First row number of table elements to
0 L ROW1 elements move (1 to 65,535) IN
5 L COLA First column number of First column number of table elements IN
table elements to move (1 to 32,767)
4 W RLEN | Number of row elements Number of row elements (1 to 32,767) IN
Number of column elements
5 W CLEN | Number of column elements (1 to 32,767) IN

& Error Codes

Error Code

Error Name

Meaning

0001 hex

Table undefined

The target table is undefined.

The row number of the table element is outside the target

0002 hex | Outside range of row numbers table
. The column number of the table element is outside the
0003 hex | Outside range of column numbers target table.
0004 hex | Incorrect number of elements The number of target elements is invalid.
0005 hex | Insufficient storage area The storage area is insufficient.
0006 hex | Insufficient element type The data type specified for the element is wrong.
0007 hex | Queue buffer error An attempt was made to read from an emp’Fy queue b.uffer,
or to write to a full queue buffer by advancing the pointer.
0008 hex | Queue table error The specified table is not a queue table.
0009 hex | System error An unexpected error was detected in the system during

instruction execution.

Note: The error codes apply to all table manipulation instructions.

Programming Example

In the following programming example, the specified block in record table data TBL1 is moved
to a continuous area that starts at the first address of the parameter table (MW00100) when
switch 1 (DB0O00100) turns ON.

The parameter table is set as shown in the following table.

Register Data Remarks

DLOO00O 2 First row number of table elements
DL0O0002 2 First column number of table elements
DwO00004 3 Number of row elements

DwWO00005 3 Number of column elements

The contents of table data TBL1 are given below.

Column
Row 1 2 3 4 Area to move
(W) (W) (L) (L) (

1 1000 1001 10000 10001 .

2 2000 2002 20000 20002 /

3 3000 3003 30000 30003 /1 .3

4 4000 4004 40000 40004 1.4

5 5000 5005 50000 50005 1.5

* |ndicates the data type.

Ladder Language Instructions

4-175

4.9 Table Manipulation Instructions

4.9.1 Read Table Block (TBLBR/TBLBRE)

4-176

|« EXPRESSICN BN —
OLO0000=2 ; DLO0DDZ=2; /f table element leading row, colum number
=7 7=7
DW00004=3 ; DWON005=3; /f number of row, colum element
= 3=3
0BO00T00 3
| TBLER —
switchl
W
TBL1 MWO0000
15
[&1Data [B][5ts]
WMA00T00 MEODOO10
--- 0
[&1Prm
DA00000

After the instruction is executed, the data is moved to a continuous area that starts from

MWOO0100 as shown below.

The number of words that was moved is set to 15 in MWO0OO0O0O (output data), and MB0O00010
(status) is set to O (move successful).

Register Data Register Data Register Data
MWO00100 2002 MLO0101 20000 MLO0103 20002
MWO00105 3003 MLO0106 30000 MLO0108 30003
MWO00110 4004 MLOO111 40000 MLO0113 40004

Note: The registers are assigned as shown in the above table.

4.9 Table Manipulation Instructions

4.9.2 Write Table Block (TBLBW/TBLBWE)

49.2

Write Table Block (TBLBW/TBLBWE)

Data from a continuous area that starts at the first source address is moved to a block of table
data that is specified by the table name, row number, and column number. The data is moved
under the assumption that the data type of the source area and each element in the table data

match.

If an error occurs when accessing the table, such as data that is out of range or not enough

data length at the source, an error is output and no data is written. The contents in the destina-

tion area will remain unchanged.

If the instruction ends normally, the number of words that were moved is output, and the status
is turned OFF. If an error occurs, an error code is output and the status is turned ON.

First source address

100 MwOoooo
101 MLOOOO + 1
102 MLOOOO + 3
103 MwOood + 5
104 MLOOOO + 6
105 MLOOOO + 8

Data is moved according to
the data type of the table data.

« If the Move Succeeds

Number of)

words moved

OFF EE—

 |f the Move Fails

Error code _

ON e

Information

Rows

Transferred.

—_—

Data type for each column

Columns —
w W (] L W)
1 2 3 4 5
6 100 101 102 10
11 103 104 105 15
4
Table data

Block specified in parameter table

QOutput data

Status

Output data

Status

If the move fails, the table data at the destination will retain the contents from before the
instruction was executed.

Ladder Language Instructions

4-177

4.9 Table Manipulation Instructions

4.9.2 Write Table Block (TBLBW/TBLBWE)

4-178

Format
The format of this instruction is shown below.
- TELEW |
Hame %] [out]
Destination table name ——— TEL1 H""'?E'_D 1 [R Output data
[AlData [B] [5t=]
First source addressf———* H":"?I_]J 0o HBU_D_I{D (L Status
[A] Prm TEL
First address of WMannnin lcon: BW
parameter table — Key entry: TBLBW
Applicable Data Types
I/0 ltem oA i
B W L Q F D A Index Constant
Name X X X X X X X X
(Table name)*!*?
Data (First source x4
address) x X X X X X ¢} X x
Prm (First address of
X X X X X X O X X
parameter table)
Out (Output data)™ X o* X x x X X) x
Sts (Status)™ o™ x X x X X X X x
*1. Specify the registers in which the text string for the table name (8 bytes + NULL character max.) has been
stored.
*2. G, M, D, or C register only.
*3. Optional.
*4, C and # registers cannot be used.
Details on I/0O Items
ltem Name I/0 Description
For the TBLBW instruction, directly enter the table name.
Name Table name IN For the TBLBWE instruction, indirectly designate the table name in
registers.
Data First source IN Specify the first address of the source.
address
Prm First address of IN/OUT | Specify the first address of the table data
parameter table '
Out Output data ouT Specify the first address of the table data.
Sts Status ouT Specify the address for checking the status of this instruction.

Important

R Note the following precautions regarding Name.
@ » Always add a NULL character to Name. If a NULL character is not added to Name, a fixed
length of 8 bytes (4 words) of data is read and handled as the table name. This is a risk that an
unintended table name may be referenced because of this.
» When characters have been set with ASCII instructions, the NULL character is not set at the
end of the text string. Use the STRSET instruction to set Name.
» An operation error will occur if the size from the first register to the maximum range of registers
is less than 8 bytes (4 words).

4.9 Table Manipulation Instructions

& Parameter Table

4.9.2 Write Table Block (TBLBW/TBLBWE)

Address | Data Type | Symbol Name Specification I/0
First row number of table First row number of table elements to
0 L ROW1 elements move (1 to 65,535) IN
5 L COLA First column number of First column number of table elements IN
table elements to move (1 to 32,767)
4 W RLEN | Number of row elements Number of row elements (1 to 32,767) IN
Number of column elements
5 W CLEN | Number of column elements (1 to 32,767) IN

& Error Codes

Error Code Error Name

Meaning

0001 hex | Table undefined

The target table is undefined.

0002 hex | Outside range of row numbers

The row number of the table element is outside the target
table.

0003 hex | Outside range of column numbers

The column number of the table element is outside the
target table.

0004 hex | Incorrect number of elements

The number of target elements is invalid.

0005 hex | Insufficient storage area

The storage area is insufficient.

0006 hex | Insufficient element type

The data type specified for the element is wrong.

0007 hex | Queue buffer error

An attempt was made to read from an empty queue buffer,
or to write to a full queue buffer by advancing the pointer.

0008 hex | Queue table error

The specified table is not a queue table.

0009 hex | System error

An unexpected error was detected in the system during
instruction execution.

Note: The error codes apply to all table manipulation instructions.

Ladder Language Instructions

4-179

4.9 Table Manipulation Instructions

4.9.2 Write Table Block (TBLBW/TBLBWE)

4-180

Programming Example

In the following programming example, a continuous area of data from the first address of the
parameter table at MW0O0100 is moved to a specified block in record table data TBL1 when

switch 1 (DB0O00100) turns ON.

The parameter table is set as shown in the following table.

Register Data Remarks
DLO0000 2 First row number of table elements
DL00002 2 First column number of table elements
DW00004 3 Number of row elements
DWO00005 3 Number of column elements

The data to move is given below.

Register Data Register Data Register Data
MWO00100 1 MLOO101 MLO0O103 3
MWO00105 4 MLOO106 MLO0O108 6
MWO00110 7 MLOO111 MLO0O113 9

| . EXPRESSION BN

OLO0000=2 ; DLO000Z=2; /f table element leading row, colum number
=7 7=z
DW00004=3 ; DWOD005=3; /f number of row, colum element

3=3; 3=3
0BO00T00 EE—
| TELBY 1
switchl
ane [W]l0ut]
TBL1 MUO0000
15
[&1Data [B][5ts]
WA 00100 MEOOOD10
a
[&1Prm
DA00000

This table shows the contents of table data TBL1 after the instruction is executed.

The number of words that were moved is set to 15 in MWO0OOO0OO (output data) and MB0O00010
(status) is set to O (move successful).

Column
Row
1 2 8 4 B
(W)* (W)* (L)* (L)* F)*

;
2 1 3
3 4 6 |-
4 7
5

* Indicates the data type.

Moved area

4.9 Table Manipulation Instructions

4.9.3 Search for Table Row (TBLSRL/TBLSRLE)

493

Search for Table Row (TBLSRL/TBLSRLE)

A search is made for the search data in column elements of the table data that is specified by
the table name, row number, and column number. The search result is output as the row num-

ber of the data that matches the search data. The type of the data to be searched is automati-
cally determined by the data type of the specified column elements.

If the instruction ends normally and the search data is found, the search result in the input
parameter table is set to 1, the output data is set to the row number, and the status is turned
OFF. If the search data is not found, the search result and output data are set to 0. If an error
occurs, an error code is set in the output data and the status is turned ON.

Rows

Search data

Columns — Data type for each column

» Search | -

» Search Data Found

Row number

OFF

1: Matching
row exists

Table data
_—) Output data
_) Status

Search result
E— for parameters

» Search Data Not Found

0

OFF

0: No matching row

» Search Error

Error code

ON

_) Output data

—_) Status

Search result
» for parameters

_— Output data

e Status

Search area selected
by first row number,
last row number, and
column number.

Ladder Language Instructions

4-181

4.9 Table Manipulation Instructions

4.9.3 Search for Table Row (TBLSRL/TBLSRLE)

4-182

Format
The format of this instruction is shown below.
- TELSRL |
Hame [W] [Out]
Table Name ————— TBL HW?E'_DD T Output data
[A]lData [E] [5t=]
Firstaddress | | Ha00000 MEOOOOZN
of search data . o Ind— Status
[A] PEm TEL
First address of WManoo1n Icon:m_
parameter table -
Key entry: TBLSRL
/O Iltem Applicable Data Types
B W L Q F D A Index Constant
Name X X X X X X (@) X X
(Table name)*!*?
Data (First address of
X X X X X X (@) X X
search data)
Prm (First address of
X X X X X X (@) X X
parameter table)
Out (Output data)*? X o™ X X X X X @) x
Sts (W) (Status)™ o™ X X x X X x X x

*1. Specify the registers in which the text string for the table name (8 bytes + NULL character max.) has been

stored.
*2. G, M, D,
*3. Optional.

or C register only.

*4, C and # registers cannot be used.

Details on I/0 ltems

ltem Name I/0 Description
For the TBLSRL instruction, directly enter the table name.
Name Table name IN For the TBLSRLE instruction, indirectly designate the table name
in registers.
First destination . ' -
Data address IN Specify the first address of the destination.
Prm First address of IN/OUT Specify the first address of the table data
parameter table '
Out Output data ouT Specify the first address of the table data.
Sts Status ouT Specify the address for checking the status of this instruction.
R Note the following precautions regarding Name.
@ » Always add a NULL character to Name. If a NULL character is not added to Name, a fixed
length of 8 bytes (4 words) of data is read and handled as the table name. This is a risk that an
Important unintended table name may be referenced because of this.

When characters have been set with ASCII instructions, the NULL character is not set at the

end of the text string. Use the STRSET instruction to set Name.

An operation error will occur if the size from the first register to the maximum range of registers

is less than 8 bytes (4 words).

4.9 Table Manipulation Instructions

& Parameter Table

4.9.3 Search for Table Row (TBLSRL/TBLSRLE)

Address | Data Type | Symbol Name Specification I/0
First row number of table | First row number of table elements to
0 L ROW1 elements search (1 to 65,535) IN
Last row number of table | Last row number of table elements to
2 L ROW2 elements search (1 to 65,535) IN
Column number of table | Column number of table elements to
4 L COLUMN elements search (1 to 32,767) IN
Search result
6 w FIND Search result 0: No matching row ouT
1: Matching row exists

& Error Codes

Error Code

Error Name

Meaning

0001 hex

Table undefined

The target table is undefined.

The row number of the table element is outside the target

0002 hex | Outside range of row numbers
table.
0003 hex | Outside range of column numbers The column number of the table element is outside the
target table.
0004 hex | Incorrect number of elements The number of target elements is invalid.
0005 hex | Insufficient storage area The storage area is insufficient.
0006 hex | Insufficient element type The data type specified for the element is wrong.
An attempt was made to read from an empty queue buffer,
0007 hex | Queue buffer error or to write to a full queue buffer by advancing the pointer.
0008 hex | Queue table error The specified table is not a queue table.
0009 hex | System error An unexpected error was detected in the system during

instruction execution.

Programming Example

In the following programming example, a search is made by row for search data 32 in
MWOO000O0 from array table data TBL1.

The parameter table is set as shown in the following table.

Register Data Remarks

DLO0O010 2 First row number of table elements
DLO0012 5 Last row number of table elements
DLO0O14 2 Column number of table elements

The contents of table data TBL1 are given below. (Table elements are integer data.)

Column
Row 1 2 3 4 5
wW)° wW)° w)* w)° w)"
1 11 12 13 14 15
2 21 22 23 24 25
3 31 32 33 34 35
4 41 42 43 44 45
5 51 52 53 54 55

* Indicates the data type.

Area to search

Ladder Language Instructions

4-183

4.9 Table Manipulation Instructions
4.9.4 Search for Table Column (TBLSRC/TBLSRCE)

A match for 32 was found in row number 3 in the search area, so DW00001 (output data) is set

to 3.
. EXPRESSIOH "
YiR_OTELW_001.ROW = 25 YAR_GTBLW_O01.COLUMN = 5;//table element leading, end row number
pLODO 4 ="2; Aftable elennt colum number
WH00000 = 32; //search result
DBOOOOOT © DBOOOS1O =
— | iz TELSRL —

Hame [W] [out]
TBL1 piooom
[AlData [E] [5t=]
W&00000 | DEOOOCOO
[AlFrm

paoonn

494 Search for Table Column (TBLSRC/TBLSRCE)

A search is made for the search data in row elements of the table data that is specified by the
table name, row number, and column number. The search result is output as the column num-
ber of the data that matches the search data. The type of the data to be searched is automati-
cally determined by the data type of the specified row elements.

If the instruction ends normally and the search data is found, the search result in the input
parameter table is set to 1, the output data is set to the column number, and the status is
turned OFF. If the search data is not found, the search result and output data are set to 0. If an
error occurs, an error code is set in the output data and the status is turned ON.

Columns — Data type for each column
w)y (W) L L (W)

Rows Search area selected
by first column number,
last column number,

¢ and row number.

Search data » Search
Table data
« Search Data Found
Column number _ Output data
OFF [Status
1: Matching Search result
column exists > for parameters

» Search Data Not Found

0 _—) Output data
OFF —_) Status
% o o parameters
» Search Error
Error code e Output data
ON E— Status

4-184

4.9 Table Manipulation Instructions

4.9.4 Search for Table Column (TBLSRC/TBLSRCE)

Format
The format of this instruction is shown below.
H TELSRC =L
Hame [W] [Dut]
Table Name ———————* TEL ""'""'?E'_']D e Output data
[A]lData [E] [5t=]
First address
of search data I‘.‘Iﬁ?l_] _[I 00 B D_D_[I_D 2 . Status
[A] Prm | TBL
First address of con:
parameter table I'.'Iﬂ.?l]_[l 1o SHC
Key entry: TBLSRC
/O ltem Applicable Data Types

B W L Q F D Index Constant
Name X X X X X X X X
(Table name)*!*?
Data (First address of y y y » y v o y «
search data)
Prm (First address of

X X X X X X O X X
parameter table)
Out (Output data)*? X o™ X X x X X O X
Sts (Status)" o™ X X X X X X X X

*1. Specify the registers in which the text string for the table name (8 bytes + NULL character max.) has been

stored.

*2. G, M, D, or C register only.

*3. Optional.

*4. C and # registers cannot be used.

Details on I/0 Items

Ladder Language Instructions

ltem Name I/0 Description
For the TBLSRC instruction, directly enter the table name.
Name Table name IN For the TBLSRCE instruction, indirectly designate the table name in
registers.
Data First destination IN Specify the first address of the destination
address '
Prm First address of IN/OUT | Specify the first address of the table data
parameter table)
Out Output data ouT Specify the first address of the table data.
Sts Status ouT Specify the address for checking the status of this instruction.

o}

Important

Note the following precautions regarding Name.
Always add a NULL character to Name. If a NULL character is not added to Name, a fixed
length of 8 bytes (4 words) of data is read and handled as the table name. This is a risk that an
unintended table name may be referenced because of this.
» When characters have been set with ASCII instructions, the NULL character is not set at the
end of the text string. Use the STRSET instruction to set Name.
» An operation error will occur if the size from the first register to the maximum range of registers
is less than 8 bytes (4 words).

4-185

4.9 Table Manipulation Instructions

4.9.4 Search for Table Column (TBLSRC/TBLSRCE)

4-186

& Parameter Table

Address | Data Type | Symbol Name Specification 1/0
Row number of table Row number of table elements to
0 L ROW1 elements search (1 to 65,535) IN
First column number of | First column number of table elements
2 L COLUMN1 table elements to search (1 to 32,767) IN
Last column number of | Last column number of table elements
4 L COLUMN2 table elements to search (1 to 32,767) IN
Search result
6 w FIND Search result 0: No matching column ouT
1: Matching column exists

@ Error Codes

Error Code

Error Name

Meaning

0001 hex

Table undefined

The target table is undefined.

The row number of the table element is outside the target

0002 hex | Outside range of row numbers
table.
0003 hex | Outside range of column numbers The column number of the table element is outside the
target table.
0004 hex | Incorrect number of elements The number of target elements is invalid.
0005 hex | Insufficient storage area The storage area is insufficient.
0006 hex | Unexpected element type The data type specified for the element is wrong.
An attempt was made to read from an empty queue buffer,
0007 hex | Queue buffer error or to write to a full queue buffer by advancing the pointer.
0008 hex | Queue table error The specified table is not a queue table.
0009 hex | System error An unexpected error was detected in the system during

instruction execution.

Note: The error codes apply to all table manipulation instructions.

Programming Example

In the following programming example, a search is made by column for search data 34 in
MWOO0O0O0O0 from array table data TBL1.

The parameter table is set as shown in the following table.

Register Data Remarks

DLOO010 3 Row number of table elements
DLO0012 2 First column number of table elements
DLOOO14 5 Last column number of table elements

The contents of table data TBL1 are given below. (Table elements are integer data.)

Column
W) (W) W) (W) (W) Area to search
1 11 12 13 14 15
2 21 22 23 24 25
3 31 32 33 34 35
4 41 42 43 44 45
5 51 52 53 54 55

* Indicates the data type.

4.9 Table Manipulation Instructions

4.9.5 Clear Table Block (TBLCL/TBLCLE)

A match for 34 was found in column number 4 in the search area, so DW00001 (output data) is

set to 4.
|« EXPRESSICN BN —
OLO0010=3; /f table element row number;;
3=3
OLO0012=2 DLOODT 4=5; /f table element leading, end column number
2=2; =
MIO0000=34 ; /f search result
34=34
4 TBLSRC -
an e [W]l0ut]
TBL1 OWODO001
4
[&1Data [B][5ts]
W& 00000 DBEOOOOOD
0
[&1Prm
DAO0010

4.9.5

Clear Table Block (TBLCL/TBLCLE)

A block of data in the table data that is specified by the table name, row number, and column
number is cleared. The table elements are filled with spaces if the data type is for text strings,
and Os if the data type is for numeric values.

If both the first row number and the first column number of the table element are 0, the entire
table will be cleared.

If an error occurs when accessing the table, such as data that is out of range or not enough
data length at the destination, an error is output and no data is written.

If the instruction ends normally, the number of words that were cleared is output and the status
is turned OFF. If an error occurs, an error code is set in the output data and the status is turned
ON.

Data type for each column

Columns —» J
W) W) o (L) (Text string)
Rows 1 2 3 4 abcd
/ Data cleared.
o 6 0 0 0 Text strings are set to spaces,

numeric values are set to 0s.

16 17 18 19 hijk

Note: If both the first row number and
column number of the table element
are 0, the entire table is cleared.

Table data
Specified block
+ If the Clear Succeeds

Number of
—
words cleared Output data
OFF _ Status

Ladder Language Instructions

4-187

4.9 Table Manipulation Instructions

4.9.5 Clear Table Block (TBLCL/TBLCLE)

« |f the Clear Fails

Error code _— Output data
ON _— Status
. If the clear fails, the table data will retain the contents from before the instruction was exe-
Information

cuted.

Format
The format of this instruction is shown below.
L TELCL |
M= me [%W] [Out]
Table name —— | TEL1 MNDDD0D « | Output data
[AlPEm [B] [5t=] TEL
Firstaddressof | | Ma00010 WEOOOO10 Icon:
parameter table . - Status CL
Key entry: TBLCL
Applicable Data Types
1/0 ltem S o
B w L Q F D A Index | Constant

Name (Table name)*!*? X X X X X X O X X

Prm (First address of % % % % % % o % %

parameter table)

Out (Output data)™ X 0% x x x X x o) x

Sts (Status)™ o™ X x x X X x X x
*1. Specify the registers in which the text string for the table name (8 bytes + NULL character max.) has been

stored.
*2. G, M, D, or C register only.
*3, Optional.
*4, C and # registers cannot be used.
Details on I/O Items
ltem Name I/0 Description
For the TBLCL instruction, directly enter the table name.
Name Table name IN For the TBLCLE instruction, indirectly designate the table name in
registers.
Prm First address of IN/OUT | Specify the first address of the table data.
parameter table
Out Output data ouT Specify the first address of the table data.
Sts Status ouT Specify the address for checking the status of this instruction.

a Note the following precautions regarding Name.
@ » Always add a NULL character to Name. If a NULL character is not added to Name, a fixed
length of 8 bytes (4 words) of data is read and handled as the table name. This is a risk that an
Important unintended table name may be referenced because of this.
« When characters have been set with ASCII instructions, the NULL character is not set at the
end of the text string. Use the STRSET instruction to set Name.
» An operation error will occur if the size from the first register to the maximum range of registers
is less than 8 bytes (4 words).

4-188

4.9 Table Manipulation Instructions

& Parameter Table

4.9.5 Clear Table Block (TBLCL/TBLCLE)

Address | Data Type | Symbol Name Specification I/0
First row number of table First row number of table elements to
0 L ROW elements move (1 to 65,535) IN
5 L COL First column number of First column number of table elements IN
table elements to move (1 to 32,767)
4 W RLEN | Number of row elements Number of row elements (1 to 32,767) IN
Number of column elements
5 W CLEN | Number of column elements (1 to 32,767) IN
@ Error Codes
Error Code Error Name Meaning
0001 hex | Table undefined The target table is undefined.
0002 hex | Outside range of row numbers ;I';belerow number of the table element is outside the target
. The column number of the table element is outside the
0003 hex | Outside range of column numbers target table.
0004 hex | Incorrect number of elements The number of target elements is invalid.
0005 hex | Insufficient storage area The storage area is insufficient.
0006 hex | Insufficient element type The data type specified for the element is wrong.
0007 hex | Queue buffer error An attempt was made to read from an emp’Fy queue b.uffer,
or to write to a full queue buffer by advancing the pointer.
0008 hex | Queue table error The specified table is not a queue table.
0009 hex | System error An une>.<|oected error was detected in the system during
instruction execution.

Note: The error codes apply to all table manipulation instructions.

Programming Example
In the following programming example, the specified block is cleared from record table data

TBL1 when switch 1 (DB000100) turns ON.

The parameter table is set as shown in the following table.

Register Data Remarks

DLOO00O 2 First row number of table elements
DL0O0002 2 First column number of table elements
DwO00004 3 Number of row elements

DwWO00005 3 Number of column elements

The contents of table data TBL1 are given below.

Column
Row
(V\1/ y (Vs yr (E’)* i s4tring)* (F5)* Area to clear
1 1000 1001 10000 ABCD 1.1
2 2000 2002 20000 BCDE 1 /
3 3000 3003 30000 CDEF /1.3
4 4000 4004 40000 DEFG 14
5 5000 5005 50000 EFGH 1.5

* |ndicates the data type.

Ladder Language Instructions

4-189

4.9 Table Manipulation Instructions

4.9.6 Move Table Block (TBLMV/TBLMVE)

e EXFPRE==10M B -
pLoooon=2; bLoooo2=2; Jf table element leading row, column number
2=2; 2=z
pwonno4=3; Jf table element row number
=3
pwonnos=3; Jf table element column number
=3
pEOOOION P ——
i { } TELCL —
| switchl
ame (W] [Out]
TBL1 Myonoon
15
[&1Prm [B] [5t=]
Daonoon MEOOOOT0
=0 1]

The data is cleared after the instruction is executed as shown below.

Column
o ! e S 4 : 2 Area cleared
(W)* (W)* (L)* (Text string)* (F)*
1 1000 1001 10000 ABCD 1.1
2 2000 0 0 1 /
3 3000 0 0 =t
4 4000 0 0 1.4
5 5000 5005 50000 EFGH 1.5

* |ndicates the data type.

4.9.6

Move Table Block (TBLMV/TBLMVE)

4-190

A block of data in the table data that is specified by the table name, row number, and column
number is moved to a different block in the table. The block can be moved between different
tables or within the same table.

If the data type of the column elements in the source and destination do not match, an error is
output and no data is moved.

If the instruction ends normally, the number of words that were moved is output, and the status
is turned OFF. If an error occurs, an error code is output and the status is turned ON.

Columns — Columns —
W w L L W W WL L
|
Rows| 1 2 3 Transferred. Rows
v 4 5, 6 \ N 1 2 3
Transferred. 4 5 6
1 2 &
4 5) 6
Table data 2
Table data 1

4.9 Table Manipulation Instructions

 |f the Move Succeeds

4.9.6 Move Table Block (TBLMV/TBLMVE)

Number of
words moved E— Output data
OFF _— Status
« If the Move Fails
Error code _ Output data
ON _—) Status
. If the move fails, the table data will retain the contents from before the instruction was exe-
Information
cuted.
Format
The format of this instruction is shown below.
Y
4 TELKY o
Sre Name [W] [Out]
Source table name ———* TELT M'.'.'?_IZI_I] . Output data
Dest Hame [B] [5tz]
Destination table name ————| TBLZ HBD_D_D_'] Wle 1 status
[&] Prm TEL
First address of Waooo1n lcon: iy
parameter table -
Key entry: TBLMV
Applicable Data Types
I/0 ltem PP yp
w Q F D A Index Constant
Src Name™!*? x X X X O x x
Dest Name*!*2 X X X X X X @) X X
Prm (First address of
X X X X X X O X X
parameter table)
Out (Output data)*? X o™ X X X X X @) X
Sts (Status)” o™ X X X x X X X X

*1. Specify the registers in which the text string for the table name (8 bytes + NULL character max.) has been
stored.

G, M, D, or C register only.

Optional.

C and # registers cannot be used.

*2.
*3.
*4,

Details on I/0 Items

Ladder Language Instructions

ltem Name I/0 Description
Src Name For the TBLMV instruction, directly enter the table name.
Table name IN For the TBLMVE instruction, indirectly designate the table name in
Dest Name registers.
First address of .)
Prm parameter table IN/OUT | Specify the first address of the table data.
Out Output data ouT Specify the first address of the table data.
Sts Status ouT Specify the address for checking the status of this instruction.

4-191

4.9 Table Manipulation Instructions

4.9.6 Move Table Block (TBLMV/TBLMVE)

4-192

» Always add a NULL character to Name. If a NULL character is not added to Name, a fixed
length of 8 bytes (4 words) of data is read and handled as the table name. This is a risk that an
Important unintended table name may be referenced because of this.
» When characters have been set with ASCII instructions, the NULL character is not set at the
end of the text string. Use the STRSET instruction to set Name.
» An operation error will occur if the size from the first register to the maximum range of registers
is less than 8 bytes (4 words).

4@ Note the following precautions regarding Name.

& Parameter Table

Address | Data Type | Symbol Name Specification 1/0
First row number of table First row number of table elements at
0 L ROWH elements source to move (1 to 65,535) IN
First column number of First column number of table elements
2 L COLUMN1 table elements at source to move (1 to 32,767) IN
4 w RLEN Number of row elements Number of row elements (1 to 32,767) | IN
Number of column elements
5 wW CLEN Number of column elements (1 t0 32,767) IN
First row number of table First row number of table elements at
6 L ROW2 elements destination to move (1 to 65,535) IN
First column number of First column number of table elements
8 L COLUMNZ table elements at destination to move (1 to 32,767) IN
@ Error Codes
Error Code Error Name Meaning
0001 hex | Table undefined The target table is undefined.
The row number of the table element is outside the target

0002 hex | Outside range of row numbers table.

The column number of the table element is outside the

0003 hex | Outside range of column numbers
target table.

0004 hex | Incorrect number of elements The number of target elements is invalid.
0005 hex | Insufficient storage area The storage area is insufficient.
0006 hex | Insufficient element type The data type specified for the element is wrong.

An attempt was made to read from an empty queue buffer,

0007 hex | Queue buffer error or to write to a full queue buffer by advancing the pointer.

0008 hex | Queue table error The specified table is not a queue table.

An unexpected error was detected in the system during

0009 hex | System error ! : .
instruction execution.

Note: The error codes apply to all table manipulation instructions.

Programming Example

In the following programming example, the specified block in record table data TBL1 is moved
to the specified block in table data TBL2 when switch 1 (DB000100) turns ON.

The contents of table data TBL1 are given below.

Column
Row 1 2 3
(W) (W) (L)
1 1000 1001 10000 Area to move
2 2000 2002 20000
3 3000 3003 30000
4 4000 4004 40000
5 5000 5005 50000

* Indicates the data type.

4.9 Table Manipulation Instructions

4.9.6 Move Table Block (TBLMV/TBLMVE)

The parameter table is set as shown in the following table.

Register Data Remarks
DLO0000 2 First row number at source
DL0O0002 1 First column number at source
DwO00004 3 Number of row elements
DwWO00005 3 Number of column elements
DLOO006 2 First row number at destination
DL0O0008 2 First column number at destination
The contents of table data TBL2 are given below.
Column
Row 1 2 3 4 5 Area to move
(W) (W) (W) (W) (W)

1 0 0 0 0 0

2 0 0 0 0 ,§>’///'

3 0 0 0 0 /O

4 0 0 0 0 0

5 0 0 0 0 0

* |ndicates the data type.

BR.

This table shows the contents of table data TBL2 after the instruction is executed.

|« EXPRESSION
[]:U(.JUUUZQ_; DLO000Z2=1; /4 table element leading row, column number
%‘ﬁ%fJUMJS:;] A table element row number;;
DNUUUU5=33_;3 /4 table element column number; ;
[LO000B=2; DLUUUUS%E; /{ destimation table element leadirg row, column number
DBQUQ1UU
swlit‘chl

TBLIY
ﬁ[wﬂw

PR (6] [<]

[41Prm
DADODOO

TR 1 Minoo12
12

TBLZ MBOO0010
0

Column
Row 1 2 3 4 5]
(W) (W)* (W)* (W) | (W) Moved area

1 0 0 0 0 0
2 0 2000 2002 | 20000

3 0 3000 3008 | 30000 0
4 0 4000 4004 | 40000 0
5 0 0 0 0 0

* Indicates the data type.

Ladder Language Instructions

4-193

4.9 Table Manipulation Instructions

4.9.7 Read Queue Table (QTBLR/QTBLRE and QTBLRI/QTBLRIE)

4.9.7

Read Queue Table (QTBLR/QTBLRE and QTBLRI/
QTBLRIE)

4-194

Column elements of table data that are specified by the table name, row number, and column
number are continuously read and stored in a continuous area that starts at a specified register.
The data type of the elements read is automatically determined by the table that is specified.
The data type of the destination register is ignored and the data is stored according to the data
type of the table without any conversion.

The QTBLR/QTBLRE instruction does not change the queue table read pointer. The QTBLRI/
QTBLRIE instruction advances the queue table read pointer by one row.

If an error occurs when accessing the table, such as a table name error, an out of range row
number, or an empty queue buffer, an error is output, no data is read, and the pointer is not
advanced. The contents of the destination register will be retained.

If the instruction ends normally, the number of words that were moved is output, and the status
is turned OFF. If an error occurs, an error code is output and the status is turned ON.

. First address of destination data
Read pointer

) ‘
Aolvanced.*(> \ ‘
----- 4

Read.

Table data

* The pointer is not advanced after executing the QTBLR/QTBLRE instruction.
The pointer is advanced after executing the QTBLRI/QTBLRIE instruction.

« If the Read Succeeds

Number of
e
words moved Output data

OFF _— Status

 |f the Read Fails

Error code _ Output data

ON _—) Status

If the read fails, the data at the destination will retain the contents from before the instruction

Information
was executed.

4.9 Table Manipulation Instructions

4.9.7 Read Queue Table (QTBLR/QTBLRE and QTBLRI/QTBLRIE)

Format
The format of this instruction is shown below.
4 OTELR |
Hame [%] [Out]
TEL Hrooonn
[AlData [B] [5t=]
WMaooo0n MEOOOOZ0
[A] Prm
Maooo10
- QTELFI o
Hame [%] [Out]
Table name ——— TBL HWQEI_DD L Output data
[A] Data [B] [5t=]
First address of Wanooon MBOOOOZ0 Stat
destination data - —-- atus
[A] Prm)
First address of MATDN Icon: QE‘L CEE;L
parameter table - Key entry: QTBLR or QTBLRI
/O Item Applicable Data Types
Q F D A Index | Constant
Name (Table name)*'*? X X X x X o) x X
Data (First address of « v y y « v o y y
destination data)
Prm (First address of y y % % % N o % %
parameter table)
Out (Output data)™ x o™ X x x X X e X
Sts (Status)"? o™ X X X x X X X x

*1. Specify the registers in which the text string for the table name (8 bytes + NULL character max.) has been

stored.

*2. G, M, D, or C register only.

*3. Optional.

*4. C and # registers cannot be used.

Details on 1/0 Items

Ladder Language Instructions

Iltem Name 1/0 Description
For the QTBLR and QTBLRI instructions, directly enter the table
name.
Name Table name IN For the QTBLRE and QTBLRIE instructions, indirectly designate the
table name in registers.
First destination . ' L
Data address IN Specify the first address of the destination.
Prm First address of IN/OUT | Specify the first address of the table data.
parameter table
Out Output data ouT Specify the first address of the table data.
Sts Status ouT Specify the address for checking the status of this instruction.

4-195

4.9 Table Manipulation Instructions

4.9.7 Read Queue Table (QTBLR/QTBLRE and QTBLRI/QTBLRIE)

4-196

Important

R Note the following precautions regarding Name.
@ » Always add a NULL character to Name. If a NULL character is not added to Name, a fixed
length of 8 bytes (4 words) of data is read and handled as the table name. This is a risk that an

unintended table name may be referenced because of this.

» When characters have been set with ASCII instructions, the NULL character is not set at the
end of the text string. Use the STRSET instruction to set Name.

» An operation error will occur if the size from the first register to the maximum range of registers
is less than 8 bytes (4 words).

& Parameter Table

Address | Data Type | Symbol Name Specification I/0

0 L ROW Relative row number | Relative row number of table elements at IN
of table elements source to move (1 to 65,535)
First column number | First column number of table elements at

2 L COLUMN of table elements source to move (1 to 32,767) N
Number of column Number of column elements to move

4 w CLEN elements (1to 32,767) N

5 W Reserved.

6 L RPTR | Read pointer Read pointer of the queue after execution ouT

8 L WPTR | Write pointer Write pointer of the queue after execution ouT

@ Error Codes

Error Code Error Name Meaning
0001 hex | Table undefined The target table is undefined.
0002 hex | Outside range of row numbers tTaht;elerow number of the table element is outside the target
. The column number of the table element is outside the
0003 hex | Outside range of column numbers target table.
0004 hex | Incorrect number of elements The number of target elements is invalid.
0005 hex | Insufficient storage area The storage area is insufficient.
0006 hex | Insufficient element type The data type specified for the element is wrong.
An attempt was made to read from an empty queue buffer,
0007 hex | Queue buffer error or to write to a full queue buffer by advancing the pointer.
0008 hex | Queue table error The specified table is not a queue table.
0009 hex | System error An unexpected error was detected in the system during

instruction execution.

Note: The error codes apply to all table manipulation instructions.

& Setting the Relative Row Number of Table Elements

Relative Row Number Read Row Remarks
0 Read pointer row The pointer advances only for the QTBLRI instruction.
1 Read pointer row Pointer is not advanced.
2 Read pointer row - 1 Pointer is not advanced.
3 Read pointer row - 2 Pointer is not advanced.
n Read pointer row - (n - 1) | Pointer is not advanced.

4.9 Table Manipulation Instructions

4.9.7 Read Queue Table (QTBLR/QTBLRE and QTBLRI/QTBLRIE)

Programming Example

In the following programming example, the specified column elements in array table data TBL1
are read from the MWOO0O010 area to the MW00012 area when switch 2 (DB000002) turns ON.

Before switch 2 is turned ON, the table data is set as shown below by turning ON switch 1

three times while the value is changed from MW00010 to MW00012. Refer to the following

section for detalils.

T 4.9.8 ZVZIS-ZZI Queue Table (QTBLW/QTBLWE and QTBLWI/QTBLWIE) on page 4-198 — Programming Example on
page 4-

The contents of table data TBL1 are given below.

Column
Row 1 2 3
(W)* (W)* (W)*
1 11 12 13
2 21 22 23
3 31 32 33

* Indicates the data type.
The parameter table is set as shown in the following table.

Register Data Remarks
DLO0010 0 Relative row number of table elements
DL0O0012 1 First column number of table elements
DWO00014 3 Number of column elements
n EXPRESSIOH a_ |
e DLODID = 0; //
DLOOO1Z = 13 //
DUO0014 = 3; /7
—— Danlnnlnnz Dangnrsn o ~

176
Hame [W] [out]
TBL1 piooom

[A]0ata [B] [5ts]

W&00010 | DEOOOCOO

[AlFrm

Danoo1o

EXPRESS1 0N a_ |

DLOOO1E = DLOOO1GE;
pLOOO1E = DLOOO1E;

4715

The data that is read changes each time switch 2 (DB000002) turns ON, from the first time to
the third time, as shown below.

Register 1st Data 2nd Data 3rd Data
MW00010 11 21 31
MWO0001 1 12 22 32
MWO00012 13 23 33

The read pointer is advanced each time the instruction is executed starting at the first row on
the first pass, the second row on the second pass, and so on, therefore resulting in the table
shown above.

When the power is turned ON, the data pointed to by the read pointer and write pointer is
undefined. Always execute the QTBLCL/QTBLCLE instruction before using the QTBLR/
QTBLRE, QTBLRI/QTBLRIE, QTBLW/QTBLWE, or QTBLWI/QTBLWIE instruction.

An operation error may occur if the QTBLR/QTBLRE, QTBLRI/QTBLRIE, QTBLW/QTBLWE, or
QTBLWI/QTBLWIE instruction is executed without executing the QTBLCL/QTBLCLE instruc-
tion first.

Information

Ladder Language Instructions

4-197

4-198

4.9 Table Manipulation Instructions

4.9.8 Write Queue Table (QTBLW/QTBLWE and QTBLWI/QTBLWIE)

498

Write Queue Table (QTBLW/QTBLWE and QTBLWI/
QTBLWIE)

Data in a continuous area that starts at a specified register is continuously written to columns in
a specified table data. The instruction is processed under the assumption that the data type of
the source and destination are the same.

The QTBLW/QTBLWE instruction does not change the queue table write pointer. The QTBLWI/
QTBLWIE instruction advances the queue table write pointer by one row.

If an error occurs when accessing the table, such as a table name error, an out of range row
number, or a full queue buffer, an error is output, no data is written, and the pointer is not
advanced. The contents of the destination register will be retained.

If the instruction ends normally, the number of words that were moved is output, and the status
is turned OFF. If an error occurs, an error code is output and the status is turned ON.

First address of source data

Write pointer

—_— ‘
Advanced.*(> \ \
----- 4

Written.

Table data

* The pointer is not advanced after executing the QTBLW/QTBLWE instruction.
The pointer is advanced after executing the QTBLWI/QTBLWIE instruction.

« |f the Write Succeeds

Number of _ Output data

words moved

OFF _— Status

« |f the Write Fails

Error code _ Output data

ON _— Status

If the write fails, the table data will retain the contents from before the instruction was exe-

Information cuted.

4.9 Table Manipulation Instructions

Format

The format of this instruction is shown below.

4.9.8 Write Queue Table (QTBLW/QTBLWE and QTBLWI/QTBLWIE)

4 areLw L
Mz me [W] [out]
TEL Muooon
[A] Data [E] [5t=]
WManooon MBOOOODZD
[A] Frm
Manooio
4 aTELWI L
M= me [W] [out]
Table Name —————— TEL I'.'I'.'.'?_III_I]I] e Output data
[A]l Data [B] [5t=]
First address WManooon WMBOOODODZD Status
of source data - -
[Fi] Frm) QTBL QTBL
First address of MAOn010 lcon: i Wi
parameter table - Key entry: QTBLW or QTBLWI
Applicable Data Ty
/O Item pplicable Data Types
W F D A Index Constant
Name (Table name)'*2| X X X x X x x
Data (First address of
X X X X X X X X
source data)
Prm (First address of % % % % % % o % %
parameter table)
Out (Output data)*? X o™ x X x x X) X
Sts (Status)” o™ X X X X x X X x
*1. Specify the registers in which the text string for the table name (8 bytes + NULL character max.) has been
stored.
*2. G, M, D, or C register only.
*3. Optional.

*4. C and # registers cannot be used.

Details on I/0 Items

Ladder Language Instructions

Item Name 1/0

Description

name.
Name Table name IN ame

For the QTBLW and QTBLWI instructions, directly enter the table

For the QTBLWE and QTBLWIE instructions, indirectly designate the
table name in registers.

Data First destination IN
address

Specify the first address of the destination.

First address of

Prm parameter table IN/OUT | Specify the first address of the table data.
Out Qutput data ouT Specify the first address of the table data.
Sts Status ouT Specify the address for checking the status of this instruction.

4-199

4.9 Table Manipulation Instructions

4.9.8 Write Queue Table (QTBLW/QTBLWE and QTBLWI/QTBLWIE)

4-200

2 Note the following precautions regarding Name.
@ » Always add a NULL character to Name. If a NULL character is not added to Name, a fixed
length of 8 bytes (4 words) of data is read and handled as the table name. This is a risk that an
Important unintended table name may be referenced because of this.
» When characters have been set with ASCII instructions, the NULL character is not set at the
end of the text string. Use the STRSET instruction to set Name.
» An operation error will occur if the size from the first register to the maximum range of registers
is less than 8 bytes (4 words).

& Parameter Table

Address | Data Type | Symbol Name Specification I/0
0 L ROW Relative row number | Relative row number of table elements at IN
of table elements destination (1 to 65,535)
First column number | First column number of table elements at
2 L COLUMN of table elements destination (1 to 32,767) IN

CLEN
elements

Number of column Number of column elements to move

(1 to 32,767)

RPTR | Read pointer

Read pointer of the queue after execution | OUT

(OO b

W
W Reserved.
L
L

WPTR | Write pointer

Write pointer of the queue after execution ouT

@ Error Codes

Error Code Error Name Meaning
0001 hex | Table undefined The target table is undefined.
0002 hex | Outside range of row numbers tTaht;elerow number of the table element is outside the target
. The column number of the table element is outside the

0003 hex | Outside range of column numbers target table.
0004 hex | Incorrect number of elements The number of target elements is invalid.
0005 hex | Insufficient storage area The storage area is insufficient.
0006 hex | Insufficient element type The data type specified for the element is wrong.

An attempt was made to read from an empty queue buffer,
0007 hex | Queue buffer error or to write to a full queue buffer by advancing the pointer.
0008 hex | Queue table error The specified table is not a queue table.

An unexpected error was detected in the system during
0009 hex | System error instruction execution.

Note: The error codes apply to all table manipulation instructions.

& Setting the Relative Row Number of Table Elements

Relative Row Number Row Write Remarks
0 Write pointer row The pointer advances only for the QTBLWI instruction.
1 Write pointer row Pointer is not advanced.
2 Write pointer row - 1 Pointer is not advanced.
3 Write pointer row - 2 Pointer is not advanced.
n Write pointer row - (n - 1) | Pointer is not advanced.

4.9 Table Manipulation Instructions

4.9.8 Write Queue Table (QTBLW/QTBLWE and QTBLWI/QTBLWIE)

Programming Example

In the following programming example, the data from MWO00010 to MWO0OO0O012 is written to the
specified column elements in array table data TBL1 when switch 1 (DBO0O0001) turns ON.

Initialize table data TBL1 before executing this type of programming.

Column
Row 1 2 3
(W)* (W)* (Wy*
1 0 0 0
2 0 0 0
3 0 0 0

* |ndicates the data type.

The parameter table is set as shown in the following table.

Register Data Remarks
DL0O0010 0 Relative row number of table elements
DLO0012 1 First column number of table elements
DW00014 3 Number of column elements
q EXPRESS| N a.
i pLO0OTD = 05 Afrelative row number
pLOnOTZ2 = 15 A/first column number
pwooot4 = 3; A/number of colunn elements
DBOOOD0T DEODO3T0
. |} - OTELWI A

Switch 1 (DB000001) is turned ON three time while the data is changed from MWO00010 to

MWO00012, as shown below.

Hame [W] [out]
TBL1 piooom
[AlData [E] [5t=]
W&00010 | DEOOOCOO
[AlFrm
Danoo1o

Register 1st Data 2nd Data 3rd Data
MWO00010 11 21 31
MWO00011 12 22 32
MWO00012 13 23 33

The write pointer is advanced each time the instruction is executed starting at the first row on
the first pass, the second row on the second pass, and so on. After three executions, TBL1 will

be set with data as shown below.

Column
Row 1 2 3
(W) (W) (W)
1 11 12 13
2 21 22
3 31 32

* Indicates the data type.

Information

Written on first pass

23
second pass
33

Written on third pass

When the power is turned ON, the data pointed to by the read pointer and write pointer is

undefined. Always execute the QTBLCL/QTBLCLE instruction before using the QTBLR/
QTBLRE, QTBLRI/QTBLRIE, QTBLW/QTBLWE, or QTBLWI/QTBLWIE instruction.

An operation error may occur if the QTBLR/QTBLRE, QTBLRI/QTBLRIE, QTBLW/QTBLWE, or
QTBLWI/QTBLWIE instruction is executed without executing the QTBLCL/QTBLCLE instruc-
tion first.

Ladder Language Instructions

4-201

4.9 Table Manipulation Instructions

4.9.9 Clear Queue Table Pointer (QTBLCL/QTBLCLE)

499

Clear Queue Table Pointer (QTBLCL/QTBLCLE)

4-202

The queue read and queue write pointers are returned to their initial state (first row) for the table
data that is specified by the table name.

If the instruction ends normally, the output data is set to O and the status is turned OFF. If an
error occurs, an error code is set in the output data and the status is turned ON.

Pointers return
to first row.

Read pointer
—_—

Write pointer

_—

Table data
* If the Queue Clear Succeeds
0 _— Output data
OFF _ Status
« If the Queue Clear Fails
Error code _— Output data
ON _— Status

Information If the clear fails, the queues will retain the contents from before the instruction was executed.

Format
The format of this instruction is shown below.
H ATELECL |
Hame [W] [out]
Table Name —— | TELI1 M#O000D |« | Output data
[B] [31.‘5] . @TBL
MEOD0010 Status lcon: "GL
- Key entry: QTBLCL
Applicable Data Types
I/0 It
em B w L Q F D A Index | Constant
Name (Table name)*!*? X X X X X X O X X
Out (Output data)™ X o* X X x X x e) x
Sts (Status)™ o™ x x x X X x x x

*1. Specify the registers in which the text string for the table name (8 bytes + NULL character max.) has been
stored.

*2. G, M, D, or C register only.
*3, Optional.
*4. C and # registers cannot be used.

4.9 Table Manipulation Instructions

Details on I/0 Items

4.9.9 Clear Queue Table Pointer (QTBLCL/QTBLCLE)

Item Name I/0 Description
For the QTBLCL instruction, directly enter the table name.
Name Table name IN For the QTBLCLE instruction, indirectly designate the table name in
registers.
Out Output data ouT Specify the first address of the table data.
Sts Status ouT Specify the address for checking the status of this instruction.

Note the following precautions regarding Name.

.

Important

Always add a NULL character to Name. If a NULL character is not added to Name, a fixed
length of 8 bytes (4 words) of data is read and handled as the table name. This is a risk that an
unintended table name may be referenced because of this.

When characters have been set with ASCII instructions, the NULL character is not set at the
end of the text string. Use the STRSET instruction to set Name.

An operation error will occur if the size from the first register to the maximum range of registers

is less than 8 bytes (4 words).

@ Error Codes

Error Code Error Name Meaning
0001 hex | Table undefined The target table is undefined.
0002 hex | Outside range of row numbers ;I'ahkierow number of the table element is outside the target
. The column number of the table element is outside the

0003 hex | Outside range of column numbers target table.
0004 hex | Incorrect number of elements The number of target elements is invalid.
0005 hex | Insufficient storage area The storage area is insufficient.
0006 hex | Insufficient element type The data type specified for the element is wrong.

An attempt was made to read from an empty queue buffer,
0007 hex | Queue buffer error or to write to a full queue buffer by advancing the pointer.
0008 hex | Queue table error The specified table is not a queue table.

An unexpected error was detected in the system during
0009 hex | System error instruction execution.

Note: The error codes apply to all table manipulation instructions.

Programming Example

In the following programming example, the queue pointers for the specified queue table are ini-
tialized when switch 2 (DBO0O0003) turns ON.

Ladder Language Instructions

DBOOODOS DBOOO31Z -
o £ QTELCL —
w itch? pulse
Name [WICOut] n
TBL1 OWoo0z
[BILSt=]
DBO00Ddo
Information When the power is turned ON, the data pointed to by the read pointer and write pointer is

undefined. Always execute the QTBLCL/QTBLCLE instruction before using the QTBLR/
QTBLRE, QTBLRI/QTBLRIE, QTBLW/QTBLWE, or QTBLWI/QTBLWIE instruction.

An operation error may occur if the QTBLR/QTBLRE, QTBLRI/QTBLRIE, QTBLW/QTBLWE, or
QTBLWI/QTBLWIE instruction is executed without executing the QTBLCL/QTBLCLE instruc-

tion first.

4-203

4.10 System Function Instructions

4.10.1 Counter (COUNTER)

“JN) System Function Instructions

4101 Counter (COUNTER)

When the count up or count down command changes from OFF to ON, the current value is
incremented or decremented.

When the counter reset command turns ON, the current value of the counter is set to 0. The
current value of the counter is compared against the set value and the result is output.

If a counter error occurs (i.e., if the current value is greater than the set value), the current value
will neither be incremented or decremented.

Rising edge of count up
command (OFF — ON)

—— ————

Count value incremented
(current value + 1).

COUNTER instruction

Rising edge of count down
command (OFF — ON)

—|

Count value decremented
(current value — 1).

Counter set value

Counter current value

Counter reset command
ON E— L, Counterreset
(current value = 0)

Status

Three status are output as shown below.
« Count matched (current value = set value).
« Count is zero (current value = 0).
» Counter error
(Current value > set value or current value < 0)

4-204

4.10 System Function Instructions

Format

4.10.1 Counter (COUNTER)

The format of this instruction is shown below.

— COUNTER o
[E] Up-Crd [BlCnt-Up
MEOOOOODO MEOOOOODZ

[B]Down-Cmd ([B]lCnt-Zero
MEOOQOO001 MEOOOOO4

[B]Rezat [BlCrt-Err
MEOOOODZ MEOOOODG

[AlCnt-Data lcon: SEUN
MADOOD] TER
i Key entry: COUNTER
Applicable Data Types
1/0 ltem X o
B w L Q F D A Index Constant
ggrh(?nn;ﬂé?ount up o) x X X x x X X X
Down-Cmd (Count down o
X X X X X X X X
command)
Reset (Counter reset o
X X X X X X X X
command)
Cnt-Data (First address of
counter processing data X X X X X X o'! X X
area)
Cnt-Up (Count up) o™ X X X X X X X X
Cnt-Zero (Zero count) ok X X X X X X X X
Cnt-Err (Count error) o) X X X X X X X X

*1. M or D register only.
*2. C and # registers cannot be used.

The following table describes each input and output item.

Ladder Language Instructions

1/0O ltem Description I/0
Up-Cmd (Count up command) Irgfncggptt\éags If incremented when this command changes IN
The count value is decremented when this command
Down-Cmd (Count down command) changes from OFF to ON.* IN
Reset (Counter reset command) The current value is reset to 0 when this command is ON. IN
+0 word: Set value IN
Cnt-Data (First address of counter +1 word: Current value ouT
processing data area) .
+2 word: Work flags ouT
Cnt-Up (Count up) Turns ON when the current value equals the set value. ouT
Cnt-Zero (Zero count) Turns ON when the current value equals 0. ouT
Cnt-Err (Count error) Turns ON when the current value is greater than the set value. ouT

Also turns ON when the current value is less than O.

* |f the count up command and count down command change from OFF to ON at the same time, the current value

stays the same.

4-205

4.10 System Function Instructions

4.10.1 Counter (COUNTER)

Programming Example

In the following programming example, the first line sets the counter set value to 5, and the
third line monitors the counter current value in DWO000O1.

When the count up command (DB0O00100) changes from OFF to ON, DW00001 is incre-
mented, and when the count down command (DB0O00101) changes from OFF to ON,
DWO0O0001 is decremented.

MWLFA0]Sre [WLFOD]De st

STORE 00005 : DWUUUDU5__

set wvalue

COUNTER

(B]Up-Cud [BICnt-lp
DEOO0T UUU DBOOD103 .

[B1Dawn-Cmd [BICnt-Fero

OEOO07T 01 OBOO0OT04
0 0
[BIReset [BICat-Err
DEOOOT02 DEO001 05
0 i
[A1Cnt-Data
D&AD0000

MLFA0TSr e [WLFODTDe st

D0 000 1 OW00001
STORE 2 2P
current walu current wvalu
e g

4-206

4.10 System Function Instructions

4.10.2 First-in First-out (FINFOUT)

4102 First-in First-out (FINFOUT)

This is a first-in first-out block data transfer function. The FIFO table consists of a 4-word
header and a data buffer. Make sure to set the data size, input size, and output size words in
the header before calling the FINFOUT instruction.

m If the Data Input Command (In-Cmd) Is ON

When the In-Cmd is ON, the specified number of data items from the specified input data area
are stored sequentially in the data area of the FIFO table.

First address of input data
Data In-Cmd = ON

1 — FIFO table data buffer
Input size
(words) 2

3 & 2 1 Start

Data size (words)

m [f the Data Output Command (Out-Cmd) Is ON
When the Out-Cmd is ON, the specified number of data items are moved from the first address
in the data area of the FIFO table to the specified output data area.

First address ‘of output data

Data Out-Cmd = ON !

) Output size
FIFO table data buffer (words)
3
4 3 2 1 Start
4

After the output is completed, this data is moved to the first address. —

m |f the Reset Command (Reset) Is ON

The number of words stored in the FIFO table is set to 0 and Tbl-Emp (FIFO table empty) turns
ON.

Note: The contents of the table buffer are retained and not cleared to O.

If the data empty size is less than the input size or if the data size is less than the output size,

Information Tbl-Err (FIFO table error) turns ON.

Ladder Language Instructions

4-207

4.10 System Function Instructions

4.10.2 First-in First-out (FINFOUT)

4-208

Format
The format of this instruction is shown below.
FN
— FINFOUT -
[B]In-Cmd [E]TbI-Full
MEOOOOOOD - WMEBOOOOOZ
[B]Out-Cmd [E]ThI-Emp
MEOOOONT | MEOOOOO4
[E] Reset [E]TEI-Err
MEOODOOO2 © MEOOOOOR
[AlFIFO-ThI
Manoion
[A] In-Data
Wanoooo
[A] Dut-Data lcon: patir
Manoozo
. Key entry: FINFOUT
/O ltem Applicable Data Types
B w L Q F D A Index Constant
In-Cmd (Data input o % % % % % % % %
command)
Out-Cmd (Data output o % % % % % % % %
command)
Reset (Reset command) O X X X X X X X X
FIFO-Tbl (First address of y % % y % % ol % %
FIFO table)
In-Data (First address of y % y y % % ol % %
input data)
Out-Data (First address *1
of output data) x x % x x % O % %
Tbl-Full (FIFO table full) o™ X X X X X X X X
Tbl-Emp (FIFO table 0% % y % % % y % %
empty)
Tbl-Err (FIFO table error) (o) X X X X X X X X
*1. M or D register only.
*2. C and # registers cannot be used.
The following table describes each input and output item.
1/0O Item Description 1/0
In-Cmd (Data input command) | Data is stored in the FIFO table when this command is ON. IN
(C)éjrtr;r%r;ndngata output Data is transferred out of the FIFO table when this command is ON. IN
Reset (Reset command) The number of words to store is set to O when this command is ON. IN
+0 word: Data size IN
. +1 word: Input size IN
E‘E%Tbl (First address of FIFO +2 word: Output size IN
+3 word: Data storage size ouT
+4 word and on: Data ouT
I(;]a_t[;?ta (First address of input First address of input data IN
Out-Data (First address of '
output data) First address of output data IN

Continued on next page.

4.10 System Function Instructions

4.10.2 First-in First-out (FINFOUT)

Continued from previous page.

1/0O Item Description I/0
Tbl-Full (FIFO table full) Turns ON when the FIFO table is full. ouT
Tbl-Emp (FIFO table empty) Turns ON when the FIFO table is empty. ouT
Tbl-Err (FIFO table error) Turns ON when the FIFO table has an error. ouT

Programming Example

In the following programming example, a FIFO table is created with a data size of 12 words,
input size of 4 words, and an output size of 2 words, and then the FINFOUT instruction is exe-

cuted.
L« EXPRESS ION | —
DWooonz=12; A data size
12=12
OWO0003=4; OHooo04=2; A input output size
4=4; 2=2
WMBOODZ 00 OBOOO210 OBOOOO00
| | 4 O
swichl =5 FIFD input
OBOOOZ0T OBOOOZTT DEOOOO0T
| | 4 @
| - pulse FIFD output
FINFOUT
[B1Tn-Cud [BITh [=Full
DH]UUUUUU DBUUUUUSU
FIFO input switch?
[B10ut -Cnd [B1Th I-Enp
DEOO0001 DEOOOO04
0 0
FIFD autput ==
[BIReset [BITh [-Err
OBOOO00Z DBOOOO0S
] 0
switch? ==
[AIFIFO-Th
DAN000 2
[411n-Data
WAD000 0
[A10ut -Data
WAD00T 0

The data from MWOO000 to MWOOO0OS is stored in the FIFO table buffer when switch 1
(MB000200) turns ON.

The data storage size in DW000OQ5 is set to 4.

Stored area

Register Data FIFO Table Data Buffer Data
MWO00000 123 DWO00006 123
MWO00001 234 DW00007 234
MWO00002 345 DW00008 345
MWO00003 456 DW00009 456

DWO00010 0
DW00017 0

Ladder Language Instructions

4-209

4.10 System Function Instructions

4.10.3 Trace (TRACE)

Next, when switch 2 (MB000201) turns ON, two words of data from the first address in the
FIFO table buffer are output to the area from MW0010 to MWOO11. The data storage size in
DWOO0005 is set to 2.

FIFO Table Data Buffer Data Register Data Stored area
DWO00006 123 MW00010 123
—345 MWO00011 234
DwW00007 234 MWO00012 0
Sas6 o~

The output data is moved out and
the remaining data is moved forward.

4103 Trace (TRACE)

This instruction performs trace execution control of the trace data that is specified by the trace
group number (1 to 4).

The MP3000 Series is equipped with the following three types of traces and the trace settings
are configured in the MPE720.

Trace Type

Key Items to Set in the MPE720

Limitations When Executed with the Trace (TRACE)
Instruction

Real-Time Trace

 Register address of trace subject
 Trace mode setting

» Sampling setting

« Trigger setting

Trc-End (trace end) cannot be used.

Trace Manager

» Register address of trace subject
» Sampling

* Trace count

 Trace start condition

 Trace stop condition

« Set the trace count to use Trc-End (trace end).

» The extended specifications on the MP3000 cannot
be used (register type/data type/register range/
maximum data buffer size).

XY Trace

» X-Y axis specification
 Trace subject

» Trace mode setting

» Sampling setting

« Trigger setting

Trc-End (trace end) cannot be used.

Information

The trace definition is set in the Data Trace Definitions in the MPE720. Refer to the following
manual for details.

(72 MP3000 Series Machine Controller System Setup Manual (Manual No.: SIEP C880725 00)

« The trace is executed if Execute (trace execution command) is ON.

» The trace counter is reset when Reset (trace reset command) turns ON. This also resets Trc-
End (trace end).

 Trc-End (trace end) turns ON when the specified number of traces have been executed.
TRACE execution command ON

—

TRACE reset command ON

—

Trace group No.

TRACE instruction

4-210

Trace definition

Set on the MPE720.

Trace is executed.

— Trace execution count = Set value
— Trace end

Trace count reset
Trace end reset

Error

Status

4.10 System Function Instructions

4.10.3 Trace (TRACE)

Format
The format of this instruction is shown below.
F Y
— TRACE —
[BE]Esecute ([BE]Troc-End
MEOODOOOD @ MEOOOOOZ
[E] Rezet [E]Errar
MEOOOOOT | MEOOOOO3
[W] Group-Ho < [W]Status TRA
WMuoooo: Moooo lcon: ¢
I I Key entry: TRACE
/O Item Applicable Data Types
B W L Q F D A Index Constant
Executfa (Trace o % % % % % % % %
execution command)
Reset (Trace reset o % % % % % % % %
command)
Group-No (Trace group y o y v < y v o o
No.)
Trc-End (Trace end) O*
Error O* X
Status X O* X X X X X O
* C and # registers cannot be used.
The following table describes each input and output item.
I/0 Item Description 1/0
Execute (Trace execution command) Trace execution begins when this command turns ON. IN
Reset (Trace reset command) Trace execution is reset when this command turns ON. IN
Group-No (Trace group No.) Trace group No. (1 to 4) IN
Trc-End (Trace end) Turns ON when the trace ends. ouT
Error Turns ON when an error occurs. ouT
Status Trace execution status. ouT

The status configuration is shown below.

Ladder Language Instructions

Bit Name Remarks

0 Trace data full 'SIJ'LrJ(;szp.ON after one turn through the data trace memory of the specified
1to7 | Reserved for system. |-

8 No trace definition The function will not be executed.

9 Group No. error The function will not be executed.
Ato C | Reserved for system. |-

D Execution timing error | The function will not be executed.

E Reserved for system. | -

F Reserved for system. | -
[nformation For MPE720 software version 7.42 or higher and CPU version 1.37 or higher,

when there is a trace definition and the trace settings are disabled from the MPE720 or the
trace buffer was reset, bit 8 (No trace definition) of Status (Status) is turned ON.
Perform the following operations to turn OFF bit 8 (No trace definition) of Status (Status).
» Enable the trace settings.

« If the trace buffer was reset, save the trace data definition again.

4-211

4.10 System Function Instructions
4.10.4 Read Data Trace (DTRC-RD/DTRC-RDE)

Programming Example

In the following programming example, the definition for trace group No. 1 is used to execute a
trace.

The trace starts when the trace execution command (DBO0O000O0) turns ON.

Set the data trace definition for trace group No. 1 on the MPE720 in advance. Make sure to

Information X o
set the sampling condition to Program.

TRACE

[BIEsecute [B1Trc-End
OBOOO000 OBOOOOOZ
] 0

[BIReset [BlError
OBOO0N01 . OBOOOO03 .

MGroup-No [W1Status
00an : OWo000 T .

4104 Read Data Trace (DTRC-RD/DTRC-RDE)

Trace data in the Machine Controller is read and stored in registers. The data in the trace mem-
ory can be read by specifying the record number and the number of records. You can desig-

nate and read only the required items in a record.
Data trace memory

Record No. O
First address
T
old +* Read specified read items
Requested number ﬁ Read data
of records
N
Number of first ew‘ y
record to read " .
M or D registers

4-212

4.10 System Function Instructions

4.10.4 Read Data Trace (DTRC-RD/DTRC-RDE)

Format
The format of this instruction is shown below.
i OTRC-RO -
[E]Execute [[B]Complete
MEOOOOOD MEOOO00Y
[W] Group-Ha ([B]Error
Moo MBEOOOODZ
[W] Rec-Ha [W] 5tatus
Wwooon2 Hnoong
[WRec-5ize [WRec-Size
Waooons HInoooe .
| - OMRC
[W]5elect [W] Rec-Len con -Rp Data-Trace Read
M#00004 MHoooo? % Data-Trace Read Extend
[A] Dat-Adr
MADOOTO Key entry: DTRC-RD/DTRC-RDE
Applicable Data T
/O ltem pplicable Data Types
B W L Q F D A Index Constant
Execute (Trace read o
) X X X X X X X X
execution command)
Group-No (Trace » o y y » y » » y
group No.)
Rec-No (Record No.) X o" o™ X X X X X X
Rec-Size (Number of 3 %4
records) X e) e} X X X X X X
Select (Item selection) X o" X o™ X X X X X
Dat-Adr (First address) X X X X X X ol X X
Complete (Trace com- 0
pleted) e) X X X X X X X X
Error o™ X X X X X X X X
Status X ok X X X X X X X
Rec-Size (Number of %3 *4
records read) % o o x % x % % %
Rec-Len (Length of 1 %3 *q
read record) X o o X X x X X X

*1. M or D register only.

*2. C and # registers cannot be used.

*3, For the DTRC-RD instruction.
*4. For the DTRC-RDE instruction.

Ladder Language Instructions

4-213

4.10 System Function Instructions

4.10.4 Read Data Trace (DTRC-RD/DTRC-RDE)

4-214

The following table describes each input and output item.

<DTRC-RD>
1/0O ltem Description 1/0
Execute (Trace read execu- .
tion command) Data trace read execution command IN
Group-No (Trace group No.) | Data trace group No. (1 to 4). IN
Rec-No (Record No.) Number of first record to read (O to maximum records - 1) IN
Rec-Size (Number of ,
records) Requested records to read (0 to maximum records - 1) IN
. Items to be read (0001 to FFFF hex)
Select (Item selection) Bits 0 to F correspond to data specifiers 1 to 16 in the trace definition. IN
Dat-Adr (First address) Number of first register to read (MA, DA) IN
Complete (Trace
completed) Turns ON when the trace read ends. ouT
Error Turns ON when an error occurs. ouT
Status Data trace read execution status ouT
Rec-Size (Number of
records read) Number of records read ouT
Rec-Len (Length of 1 read
record) Length of 1 read record (words) ouT
<DTRC-RDE>
1/0 ltem Description 1/0
Execute (Trace read .
execution command) Data trace read execution command IN
Group-No (Trace group No.) | Data trace group No. (1 to 4). IN
Rec-No (Record No.) Number of first record to read (O to maximum records - 1) IN
Rec-Size (Number of Requested records to read (0 to maximum records - 1) IN
records)
Select (Item selection) ltems to be read (0000000000000001 to FFFFFFFFFFFFFFFF hex) IN
Bits O to 3F correspond to data specifiers 1 to 16 in the trace definition.
Dat-Adr (First address) Number of first register to read (MA, GA, or DA) IN
Complete (Trace Turns ON when the trace read ends. ouT
completed)
Error Turns ON when an error occurs. ouT
Status Data trace read execution status ouT
Rec-Size (Number of
records read) Number of records read ouT
Rec-Len (Length of 1 read Length of 1 read record (words) ouT

record)

The status configuration is shown below.

Bit Name Remarks

Oto7 Reserved for system. -
8 No trace definition The function will not be executed.
9 Group No. error The function will not be executed.
A Specified record No. error The function will not be executed.
B Specified number of records error The function will not be executed.
C Data storage error The function will not be executed.
D Reserved for system. -
E Reserved for system. -
F Address input error The function will not be executed.

4.10 System Function Instructions

Programming Example

The following programming example reads the data trace for group definition No. 1.
The trace data is read when the trace read execution command (DB0O00000) turns ON.

4.10.4 Read Data Trace (DTRC-RD/DTRC-RDE)

Additional Information

& Structure of Read Data

The length of a record can be from 1 to 32 words, depending on the selected data items.
The maximum number of records can be from 1,015 to 32,511 depending on the record

length.
First address —— 2
1toS2words| oo ord 1 ftem 1 old
[tem 16
32,512 words max.
110 32 words| Record 2
New
11032 words| Recordn L 4

DTRC-RD —
[BIExecute [BICome lete
DEOOOO00 DBO000O1
0 0
[W1Group-Ho [BIError
DWo000T DBO00O0Z
0 0
[#IRec-Ho [W]5t at us
DWooooz DWo00%
0 0
[MIRec-Size [WIRec-Size
DWoooo3 DWooooe .
[i]5elect [#IRec-Len
DWoooo4 DwWoooo7
0 0
[#]10at ~Adr
DADOOTO

Ladder Language Instructions

€ Record Lengths

A record consists of the selected data items.

The record length (number of words in a single record) is determined by the selected registers
and the number of data items.

* Number of words for 1 record = Bn x 1 word + Wn x 1 word + Ln x 2 words + Fn x 2 words
Bn: Number of selected bit registers
Wn: Number of selected integer registers
Ln: Number of selected double-length integer registers
Fn: Number of selected real number registers
The maximum total is 16 items.
« Maximum record length = 32 words (with 16 double-length integers or real number registers)

» Minimum record length = 1 word (with 1 record for each bit or integer register)

4-215

4.10 System Function Instructions

4.10.5 Send Message (MSG-SND)

€ Number of Records

The number of records that can be specified depends on the record length as shown below.
» Number of records with the maximum record length: 0 to 1,015

* Number of records with the minimum record length: O to 32,511
(Upper limit: 32,521 divided by the record length - 1)

@ Latest record number
The most recent record number for each trace group is stored in the system registers as shown

below.
System Register Address Description
SW00100 Latest record number in group 1.
SW00101 Latest record number in group 2.
SW00102 Latest record number in group 3.
SW00103 Latest record number in group 4.
SW00104 -
SW00105 -
SW00106 -
SW00107 -

4105 Send Message (MSG-SND)

A message is sent to a remote station on the specified circuit of the communications device
type.
This function supports the following communications devices and protocols.

Communications devices:CPU Unit/CPU Module, 215IF Module, 217IF Module, 218IF Module,
and SVB-01 Module

Protocol: MEMOBUS communications or no-protocol

Communications Device

Parameter List |

Protocol:
MEMOBUS or
no-protocol

Data area specified by the first address —
of the parameter list and size

M or | register only. Communications devices:
CPU Unit/CPU Module

215IF Module

217IF Module

218IF Module

SVB-01 Module

4-216

4.10 System Function Instructions

4.10.5 Send Message (MSG-SND)

Format
The format of this instruction is shown below.

— MSG-5HD ‘—
[E]Execute [B]Busy
WEOOOOOQ MeOOOOOZ

[E] Abort [E] Comp lete
WEOOOONT MEOOOODE

[WlDew-Typ [BIError
Wuoaonm MEODOODS

Ladder Language Instructions

[WIPro-Twp
Muooon2
[WICir-Ha
MWooona
[W]Ch-Ho
MiWooon4
[A] Par am .MSGE
Icon:
WADDO1D “END
== Key entry: MSG-SND
Applicable Data Types
1/0 ltem
B W L Q F D A Index | Constant
Execute (Send execution o
X X X X X X X X
command)
Abort (Send abort o
X X X X X X X X
command)
Dev-Typ (Communications y o y y y . y o o
device type)
Pro-Typ (Communications
protocol) X O X X X X X O O
Cir-No (Circuit number) X @) X X X X X O O
Ch-No (Communications
buffer channel number) % © x x % x x © ©
Param (First address of y y % % % N ol % %
parameter list)
Busy (Processing) o™ X X X X X X X X
Complete (Processing S
completed) % % X X X % X % %
Error (Error occurred) 0" X X X X X X X X

*1. M, G, or D register only.
*2. C and # registers cannot be used.

Refer to the following manual for details on I/O items, parameters, and programming examples.

(71 MP2000 Series Ladder Programming User’s Manual (Manual No.: SIEZ-C887-1.2)

4-217

4.10 System Function Instructions

4.10.6 Send Message Extended (MSG-SNDE)

4.10.6

Send Message Extended (MSG-SNDE)

4-218

A message is sent to a remote station on the specified circuit of the communications device
type.
This function supports the following communications devices and protocols.

Communications devices:CPU Unit/CPU Module, 215IF Module, 217IF Module, 218IF Module,
SVB-01 Module, and 218IF Module

Protocol: MEMOBUS communications or no-protocol

Communications Device

Parameter List |

Protocol:
MEMOBUS or
no-protocol

Data area specified by the first address —
of the parameter list and size

S, M, G, |, or O registers Communications devices:
CPU Unit/CPU Module

215IF Module

2171F Module

218IF Module

SVB-01 Module

218IFD Module

The basic operation is the same as for the MSG-SND function. However, normally, you should
use the MSG-SNDE function for compatibility with the MP3000-series Machine Controllers.

The MSG-SND function is compatible with the MP2000-series Machine Controllers. The acces-
sible range of registers is different, as shown below.

Name of the register Access Range for the MSG-SNDE Access Range for the MSG-SND
System registers SW00000 to 65534 RW - -

Hold registers MWOO000000 to 1048575 | RW MWO0000000 to 0065534 | RW
Data registers GW0000000 to 2097151 RW - -

Input registers IW00000 to 17FFF R IWO00O00 to OFFFF R
Output registers OWO00000 to 17FFF RW - -

Note: R: Read only, RW: Read/Write

4.10 System Function Instructions

Format

The format of this instruction is shown below.

MEG-SHDE

[ElExecute |[B]Busy
Meoooooo o Meooonnz
[E] Abort [B] Camp lete
MEOOOOOT | MEOOOOO3
[W]Dew-Twp [B]Error
M¥oooo MEOODOOO4

4.10.6 Send Message Extended (MSG-SNDE)

[W] Pro-Typ

mioononz
[W]Cir-Ho

Moonna
[W]Ch-Ha

Mioonn4 MSG
[A] Param Icon: snpe

WManonin Key entry: MSG-SNDE

Applicable Data Types
1/0 Item
B Q F D A Index | Constant
Execute (Send execution o
X X X X X X

command)
Abort (Send abort com- o % y y % y y
mand)
Devfl'yp (Communications y % y % y o o
device type)
Pro-Typ (Communications y % y y N o o
protocol)
Cir-No (Circuit number) X X X X X O O
Ch-No (Communications y y y y y o o
buffer channel number)
Param (First address of % % % y ol % %
parameter list)
Busy (Processing) o™ X X X X X X
Complete (Processing %)
completed) o x % % x % %
Error (Error occurred) o) X X X X X X

*1. M, G, or D register only.

*2. C and # registers cannot be used.

Refer to the following manual for details on I/0 items, parameters, and programming examples.
(710 MP3000 Series Communications User’s Manual (Manual No.: SIEP C880725 12)

Ladder Language Instructions

4-219

4.10 System Function Instructions

4.10.7 Receive Message (MSG-RCV)

410.7 Receive Message (MSG-RCV)

4-220

A message is received from a remote station on the specified circuit of the communications
device type. Keep the message receive command ON until the Complete Bit turns ON. This
function supports the following communications devices and protocols.

Communications devices:CPU Unit/CPU Module, 215IF Module, 217IF Module, 218IF Module,
and SVB-01 Module

Protocol: MEMOBUS communications or no-protocol

Communications Device

| Parameter List

Protocol:
MEMOBUS or
no-protocol

ﬁ Data area specified by the

first address of the parameter
list and size

Receive message command

Communications devices:
CPU Unit/CPU Module M or | register on|y_
215IF Module
217IF Module
218IF Module
SVB-01 Module

Note: The Complete Bit turns ON when the message reception is completed.
Until then, keep the receive message command ON.

Format
The format of this instruction is shown below.

s
- M3 G-REY -

[E]Execute ([E]Busy
WMEQOOOOO - MEBOOOOODZ
[E] Abort [BE]Comp late
WEOOO001 WBOOOOO3
[WDew-Twp [E]Errar
pWonno WBOOOO04
[W]Pro-Typ

mioonn:
[WICir-Ho

puonnna
[W] Ch-Ha

puonno4d

 MsG
[A] Param lcon: gy

Ma00010 Key entry: MSG-RCV

4.10 System Function Instructions

4.10.8 Receive Message Extended (MSG-RCVE)

Applicable Data Types
1/0 Item Bl e
B W L Q F D A Index | Constant
Execute (Receive o
) X X X X X X X X
execution command)
Abort (Receive abort o
X X X X X X X X
command)
Devfl’yp (Communications % o % % % y % o o
device type)
Pro-Typ (Communications % o % % % y % o o
protocol)
Cir-No (Circuit number) X O X X X X X O O
Ch-No (Communications y o y y y y y o o
buffer channel number)
Param (First address of -
. X X X X X X O X X
parameter list)
Busy (Processing) o™ X X X X X X X X
Complete (Processing o % % % % % % % %
completed)
Error (Error occurred) o) X X X X X X X X
*1. M, G, or D register only.
*2. C and # registers cannot be used.

Refer to the following manual for details on I/0 items, parameters, and programming examples.
(71 MP2000 Series Ladder Programming User’s Manual (Manual No.: SIEZ-C887-1.2)

4.10.8

Receive Message Extended (MSG-RCVE)

A message is received from a remote station on the specified circuit of the communications
device type. Keep the message receive command ON until the Complete Bit turns ON. This
function supports the following communications devices and protocols.

Communications devices:CPU Unit/CPU Module, 215IF Module, 217IF Module, 218IF Module,

SVB-01 Module, and 218IF Module
Protocol: MEMOBUS communications or no-protocol

Communications Device

Communications devices:
CPU Unit/CPU Module
215IF Module

217IF Module
218IF Module
SVB-01 Module
218IFD Module

Protocol:
MEMOBUS or
no-protocol

 —

Receive message command

Parameter List

Data area specified by the first

address of the parameter list and size

S, M, G, |, or O registers

Note: The Complete Bit turns ON when the message reception is completed.

Until then, keep the receive message command ON.

Ladder Language Instructions

4-221

4.10 System Function Instructions

4.10.8 Receive Message Extended (MSG-RCVE)

4-222

The basic operation is the same as for the MSG-RCV function. However, normally, you should
use the MSG-RCVE function for compatibility with the MP3000-series Machine Controllers.

The MSG-RCV function is compatible with the MP2000-series Machine Controllers. The acces-
sible range of registers is different, as shown below.

Name of the register Access Range for the MSG-RCVE Access Range for the MSG-RCV
System registers SW00000 to 65534 RW - -
Hold registers MWO0000000 to 1048575 | RW MWO0000000 to 0065534 | RW
Data registers GWO0000000 to 2097151 RW - -
Input registers IW00000 to 17FFF R IWO00000 to OFFFF R
Output registers OWO00000 to 17FFF RW - -
Note: R: Read only, RW: Read/Write
Format
The format of this instruction is shown below.
MSG-RCNE
[E]Execute [[E]EBusy
MEOOOOOD | WEBOOODOODZ
[B] Abar t [B]Camp lete
MEDOODO1 MEOOODOOS
[WDew-Typ [BlErrar
MWoooo MEOODOD4
[WIPro-Typ
WWoooo:
[WICir-Ho
WWooooa
[WCh-Ho
WWoooo4 VEB
[A]Param Icon:_m..IIIE
MADDD 10 Key entry: MSG-RCVE
Applicable Data T
/O ltem pplicable Data Types
B W L Q F D A Index | Constant
Execute (Receive y y y y y y » y
execution command)
Abort (Receive abort o
X X X X X X X X
command)
Dev-Typ (Communications y o y y y y y o o
device type)
Pro-Typ (Communications y o y y y » y o o
protocol)
Cir-No (Circuit number) X @] X X X X X O O
Ch-No (Communications
buffer channel number) x © x x X X x © ©
Param (First address of 1
. X X X X X X o) X X
parameter list)
Busy (Processing) o™ X X X X X X X X
Complete (Processing)
completed) e) X X X X X X X X
Error (Error occurred) 0™ X X X X X X X X

*1. M, G, or D register only.

*2. C and # registers cannot be used.

Refer to the following manual for details on I/0O items, parameters, and programming examples.
(70 MP3000 Series Communications User’s Manual (Manual No.: SIEP C880725 12)

4.10 System Function Instructions

4.10.9 Write SERVOPACK Parameter (MLNK-SVW)

4109

Write SERVOPACK Parameter (MLNK-SVW)

This instruction writes all the parameters that are saved in the Machine Controller as a SERVO-
PACK parameter backup file to the SERVOPACK that is specified with the circuit number and
axis number.

The MLNK-SVW instruction can be used to write SERVOPACK parameters using only a ladder
program (i.e., without the use of MPE720).

This instruction is convenient when replacing a SERVOPACK and at other times.

Backup file of SERVOPACK Parameters for the SERVOPACK that is specified
parameters in the Machine Controller with the circuit number and axis number
D D
(Vendor ID code, (Vendor ID code,

product code) product code)

Version

Written in one operation.

L

Version

Parameter Parameter

Vendor ID code: An ID code managed by the MECHATROLINK Members Association
that identifies the vendor.

Product code: A unique code given to each device.

Format
The format of this instruction is shown below.

Y
- MLME -5 -

[E]Execute [B]Busw
MEOOOOON WEOOOOO:

[E] Abort [E]Comp late
HEOOOOOT o WEOOOOOZ

[WICir-Ho [E]Errar
Wuonno WEOOOOO4

[W] 5t-Ha

Muooonz2
[W]dptian

Mitooons
[A] Param lcon: MILNK

MADDO04 =

. Key entry: MLNK-SVW
Applicable Data Types
I/0 ltem
B W L Q F D A Index | Constant

Execute (Write command) @] X X X X X X X
Abort (Write processing o % % % % % % % %
abort command)
Cir-No (Circuit number) X O O O
St-No (Axis number) X O O O
Option (Option settings) X O O O
Param (First address of y y % % % x ol % %
parameter table)
Busy (Writing) o™ X X X X X X X X
Complete (Write completed) | O™ X X X X X X X X
Error o™ X X X X X X X X

*1. M or D register only.
*2. C and # registers cannot be used.

Ladder Language Instructions

4-223

4.10 System Function Instructions

4.10.9 Write SERVOPACK Parameter (MLNK-SVW)

4-224

The following table describes each input and output item.

1/0 ltem Meaning I/0

Execute (Write command) Writing the SERVOPACK parameters begins when this command is IN
turned ON.

Abort (Write processing The write process is aborted when this command is turned ON. IN

abort command)

Cir-No (Circuit number) Destination circuit number (1 to 16) IN

St-No (Axis number) Destination axis number (1 to 16). IN
Command Option Bit Settings

. . . Bit E: ID Check Enable/Disable; O: Enable, 1: Disable

Option (Option settings) | git £+ Viersion Check Enable/Disable; O: Enable, 1: Disable IN
The other bits are not used. Any settings in the other bits are ignored.

Param (First address of . .

parameter table) First address of function workspace IN

Busy (Writing) Turns ON while the SERVOPACK parameters are being written. ouT

Complete (Write completed) Ivurirtr;ZnON for one scan only after the SERVOPACK parameters are ouT

Error Turns ON for one scan only when an error occurs. ouT
(The error details are output to PARAMOO and PARAMO1.)

The option settings are described in the following table.

Bit Meaning

0 to D | Not used. (Settings will be ignored.)
ID Check Enable/Disable (0: Enable, 1: Disable)
If the source ID information is not the same as the ID information at the write destination, an inconsis-
tent ID information error occurs.
If this bit is set to 1 (disable), this error will not be detected and the write process will still be exe-
cuted.

E

If this bit is set to 1 (disable), the model information is not checked. This can result in parameters for
the wrong model type to be written, which can cause problems.

An inconsistent ID Information error will also occur if a SERVOPACK parameters file that was edited
or saved offline is used. In this case, make sure that there are no problems before you set this bit to
1 (disable).

Version Check Enable/Disable (0: Enable, 1: Disable)

If the version of the source SERVOPACK (communications interface) is not the same as the version at
the write destination, an inconsistent version error occurs.

SERVOPACK parameters and setting ranges are sometimes different for different versions. Make
sure that there are no problems before you set this bit to 1 (disable). This will allow you to write the
parameters.

An inconsistent version error will also occur if a SERVOPACK parameters file that was edited or
saved offline is used. In this case, make sure that there are no problems before you set this bit to 1
(disable).

4.10 System Function Instructions

4.10.9 Write SERVOPACK Parameter (MLNK-SVW)

@ Details on Function Workspace

This section provides the details on the function workspace. The parameter number corre-
sponds to the word offset from the first address.

Example For example, if the first address is MAOO100, set the value in MWO0105 to set PARAM 05.
Parameter No. IN/OUT Meaning

PARAM 00 ouT Processing Result

PARAM 01 ouT Error code

PARAM 02 ouT Copy of Cir-No

PARAM 03 ouT Copy of St-No

PARAM 04 SYS For system use #1

PARAM 05 SYS For system use #2

PARAM 06 SYS For system use #3

B Processing Result (PARAMOQO)

This parameter outputs the result of processing for the SERVOPACK.
+ 0000 hex: Processing (Busy)

« 1000 hex: Processing completed (Complete)

- 80000 hex: Error occurred (Error)
The following errors can occur.

Error Code Meaning
8100 hex Reserved.
Address setting error
8200 hex (The set data address is outside of the valid range.)
8300 hex Reserved.
Circuit number setting error
8400 hex (The set circuit number is outside of the valid range.)
8500 hex Reserved.
Axis number setting error
8600 hex (The set axis number is outside of the valid range.)
8700 hex Reserved.
8800 hex Communications interface task error
(An error was returned from the communications interface task.)
8900 hex Reserved.
Function execution duplication error
8A00 hex (More than one MLNK-SVW function was executed at the same time.

Or, the MLNK-SVR function was being executed.)

® Error Code (PARAM 01)

This parameter outputs the error code from the communications interface task. This parameter
is valid only when the processing result (PARAMOO) is 8800 hex.

Error Code Meaning
0000 hex Reserved.
0001 hex No SERVOPACK parameter backup file
0002 hex Backup file error
00083 hex Inconsistent ID information
0004 hex Inconsistent version
0005 hex Module error
0006 hex SERVOPACK controller command duplication error
0007 hex Communications error
0008 hex Undefined command
0009 hex Invalid parameter
000A hex Internal system error

Ladder Language Instructions

4-225

4.10 System Function Instructions

4.10.9 Write SERVOPACK Parameter (MLNK-SVW)

4-226

® Copy of Cir-No (PARAM 02)
This is a copy of the Cir-No input data.

m Copy of St-No (PARAM 03)
This is a copy of the St-No input data.

B For System Use #1 (PARAMO04)

This parameter is used by the system. Set this parameter to 0000 hex from a user program in
the first scan after the power supply is turned ON. Do not modify this parameter at any other
time.

B For System Use #2 (PARAMO05)

This parameter is used by the system. Set this parameter to 0000 hex from a user program in
the first scan after the power supply is turned ON. Do not modify this parameter at any other
time.

B For System Use #3 (PARAMOG)

This parameter is used by the system. Set this parameter to 0000 hex from a user program in
the first scan after the power supply is turned ON. Do not modify this parameter at any other
time.

4.10 System Function Instructions

4.10.9 Write SERVOPACK Parameter (MLNK-SVW)

Programming Example

The following programming example shows how to write parameters to the SERVOPACK.

If a backup file of the SERVOPACK parameters exists in the Machine Controller, the SERVO-
PACK parameters are written once to the specified SERVOPACK when DB0O0000O0 turns ON.
The specified SERVOPACK is the one that is defined in the module configuration definition with
a MECHATROLINK circuit number of 1 and defined in the MECHATROLINK detailed definition

Ladder Language Instructions

with ST#8.
Processing at the time of power on.
“_ | - S* HizhScan. FirstScan==t e
010
| [W]Dest [WiData [WIWidth
B sew | DWODT4 00000 00003 —
. DH]IUUIU o DBU%QU[N DB]IU UIUUQ DE{J@IU 03 - DRO I@IU 07 DBUQQUU4
376 v - . vl
DB:]IUUIU[M
1T
ML NE - SVHW —
[ElExecute |[B]Busy
OBQOO004 DEIOOODOG
[E]&bart [B]Conplete
DBOOOO0S DEOOOODZ
[WICirNo [ElErrar
ooo01 DEO 00003
[W]st-MNo
0o0ng
[Wloptian
0o0oon
[&]Param
OA00010
DEOOOO0S DBOOOOOZ DBODONOT
— i A o
‘rocezzing at the error detection.
L r B DR000003==t rue
Parameter evacuation at the error detection.
- [W]3rc [W]Dest [Wlwidth
- copw | DWOOOTO DWOOO20 00008 —
" OrCoi | OBEOOQO07
M — | O
flwaws ON ---
1:
9f39 =L

4-227

4.10 System Function Instructions

4.10.10 Read SERVOPACK Parameter (MLNK-SVR)

41010 Read SERVOPACK Parameter (MLNK-SVR)

4-228

All of the parameters are read from the RAM area of the SERVOPACK with the specified circuit
number and axis number and then the read parameters are saved by overwriting the SERVO-
PACK parameter backup file that is saved in the Machine Controller. The MLNK-SVR instruction
can be used to read SERVOPACK parameters using only a ladder program (i.e., without the
use of MPE720).

This instruction is convenient when replacing a SERVOPACK and at other times.

o + Machine Controller software version 1.23 or higher and MPE720 software version 7.34 or
@ higher are required to execute the MLNK-SVR instruction.
» The MLNK-SVR instruction reads the parameters from the RAM area in the SERVOPACK.
Important Therefore, if there are any difference between the parameter settings in the RAM area in the
SERVOPACK and the parameter settings in non-volatile memory, the parameter settings writ-
ten to the Controller and the parameter settings in the RAM area in the SERVOPACK will not

agree.
Backup file of SERVOPACK parameters Parameters for the SERVOPACK that is specified
in the Machine Controller with the circuit number and axis number
D ID
(Vendor ID code, (Vendor ID code,
product code) Read in one operation. product code)
Version < Version
Parameter Parameter

Vendor ID code: An ID code managed by the MECHATROLINK Members Association
that identifies the vendor.

Product code: A unique code given to each device.

Format
The format of this instruction is shown below.

MLHE -5

[E]Execute [[B]Busy
WMEOOOOOOD - WEOOOQOOZ
[E] Abor t [E]Complate

WMEOOOOO1 | MEBOOOOOS
[WICir-Ho [E]Errar
Wiaooot MEOOOOO4

[W] 5t-Ha

Mwanonz
[W]0ption

Mwonons . MLNK
[A] Param loon: SVR

WADOODS Key entry: MLNK-SVR

/0 Item Applicable Data Types
B W L Q F D A Index | Constant

Execute (Read command) O X X X X X X X
Abort (Read processing o % % % % % y y y
abort command)
Cir-No (Circuit number) X @] O O
St-No (Axis number) X @] O O
Option (Option settings) O O O

Continued on next page.

4.10 System Function Instructions

4.10.10 Read SERVOPACK Parameter (MLNK-SVR)

Continued from previous page.

/O Itemn Applicable Data Types
B W L Q F D A Index | Constant
P Ersvegessol | [[[[[e Jon | e [
Busy (Reading) o) X X X X X X X X
Complete (Read completed) | O*2 X X X X X X X X
Error 0™ X X X X X X X X

*1. M or D register only.
*2. C and # registers cannot be used.

The following table describes each input and output item.

1/0O Item Description 1/0

Reading the SERVOPACK parameters begins when this command is

Execute (Read command) | turned ON. IN
This command must be kept ON while the instruction is in execution.

Abort (Read processing . . ,

abort command) The read process is aborted when this command is turned ON. IN

Cir-No (Circuit number) Destination circuit number (1 to 16) IN

St-No (Axis number) Destination axis number (1 to 32) IN
Command Option Bit Settings

, . . Bit E: ID Check Enable/Disable; O: Enable, 1: Disable

Option (Option settings) | git £ viersion Check Enable/Disable; 0: Enable, 1: Disable N
The other bits are not used. Any settings in the other bits are ignored.

Param (First address of First address of function workspace IN

parameter table)

Busy (Reading) Turns ON while the SERVOPACK parameters are being read. ouT

glzgpo)ll)ete (Read com- Turns ON for one scan only after the SERVOPACK parameters are read. | OUT

Error Turns ON for one scan only when an error occurs. ouT
(The error details are output to PARAMOO and PARAMO1.)

The option settings are described in the following table.

Bit

Meaning

OtoD

Not used. (Settings will be ignored.)

ID Check Enable/Disable (0: Enable, 1: Disable)

If the source ID information is not the same as the ID information at the read destination, an inconsis-
tent ID information error occurs.

If this bit is set to 1 (disable), this error will not be detected and the read process will still be exe-
cuted.

If this bit is set to 1 (disable), the model information is not checked. This can result in parameters for
the wrong model type to be read, which can cause problems.

If you replace a SERVOPACK, set this bit to 1 (disable).

An inconsistent ID Information error will also occur if a SERVOPACK parameters file that was edited
or saved offline is used. In this case, make sure that there are no problems before you set this bit to
1 (disable).

Ladder Language Instructions

Version Check Enable/Disable (0: Enable, 1: Disable)

If the version of the source SERVOPACK (communications interface) is not the same as the version at
the read destination, an inconsistent version error occurs.

SERVOPACK parameters and setting ranges are sometimes different for different versions. Make
sure that there are no problems before you set this bit to 1 (disable). This will allow you to read the
parameters.

An inconsistent version error will also occur if a SERVOPACK parameters file that was edited or
saved offline is used. In this case, make sure that there are no problems before you set this bit to 1
(disable).

4-229

4.10 System Function Instructions

4.10.10 Read SERVOPACK Parameter (MLNK-SVR)

@ Details on Function Workspace

This section provides the details on the function workspace. The parameter number corre-
sponds to the word offset from the first address.

Example For example, if the first address is MAOO100, set the value in MWOO105 to set PARAM 05.

Parameter No. IN/OUT Description

PARAM 00 ouT Processing Result

PARAM 01 ouT Error code

PARAM 02 ouT Copy of Cir-No

PARAM 03 OouT Copy of St-No

PARAM 04 SYS For system use #1

PARAM 05 SYS For system use #2

PARAM 06 SYS For system use #3

B Processing Result (PARAM 00)

This parameter outputs the result of processing for the SERVOPACK.
« 0000 hex: Processing (Busy)

« 1000 hex: Processing completed (Complete)

- 80000 hex: Error occurred (Error)
The following errors can occur.

Error Code Meaning
8100 hex Reserved.
8200 hex Reserved.
8300 hex Reserved.
8400 hex Circuit number setting error

(The set circuit number is outside of the valid range.)

8500 hex Reserved.

Axis number setting error

8600 hex (The set axis number is outside of the valid range.)

8700 hex Reserved.

Communications interface task error

8800 hex (An error was returned from the communications interface task.)
8900 hex Reserved.
Function execution duplication error
8A00 hex (More than one MLNK-SVR function was executed at the same time. Or, the MLNK-SVW

function was being executed.)

® Error Code (PARAM 01)

This parameter outputs the error code from the communications interface task. This parameter
is valid only when the processing result (PARAM 00) is 8800 hex.

Error Code Meaning
0000 hex No error
0001 hex No SERVOPACK parameter backup file
0002 hex Backup file error
00083 hex Inconsistent ID information
0004 hex Inconsistent version
0005 hex Module error
0006 hex SERVOPACK controller command duplication error
0007 hex Communications error
0008 hex Reserved.
0009 hex Reserved.
000A hex Internal system error

4-230

4.10 System Function Instructions

4.10.10 Read SERVOPACK Parameter (MLNK-SVR)

® Copy of Cir-No (PARAM 02)
This is a copy of the Cir-No input data.

m Copy of St-No (PARAM 03)
This is a copy of the St-No input data.

B For System Use #1 (PARAM 04)

This parameter is used by the system. Set this parameter to 0000 hex from a user program in
the first scan after the power supply is turned ON. Do not modify this parameter at any other
time.

B For System Use #2 (PARAM 05)

This parameter is used by the system. Set this parameter to 0000 hex from a user program in
the first scan after the power supply is turned ON. Do not modify this parameter at any other
time.

B For System Use #3 (PARAM 06)

This parameter is used by the system. Set this parameter to 0000 hex from a user program in
the first scan after the power supply is turned ON. Do not modify this parameter at any other
time.

Ladder Language Instructions

4-231

4.10 System Function Instructions

4.10.10 Read SERVOPACK Parameter (MLNK-SVR)

Programming Example

The following programming example shows how to read parameters from the SERVOPACK.

If a backup file of the SERVOPACK parameters exists in the Machine Controller, the SERVO-
PACK parameters are read once from the specified SERVOPACK when DBO0O000O0 turns ON.
The specified SERVOPACK is the one that is defined in the module configuration definition with

a MECHATROLINK circuit number of 1 and defined in the MECHATROLINK detailed definition
with ST#8.

H: Main Program

IF

*/8BO00O0T == true

a([WDest

[WTData [WIwidth
z €T pwoootd 00000 00003
— EWD_IF
DeOOOOOD - DEOOOOOY beOOOOOZ - DEOOOOOZ - DEOOOODT - DEOOODOO4
| 5 1 A A O
DEOOOOD4
{
MLHE-5%R -
[E]Emecute [[B]Busy
DEOOOQO4 . DEOOOODE
[ElAabort [ElCamp lete
DEOOONOS | DEOOOOOZ
[MCir-Ho [E]Error
noom beOOOODZ
[W] st-Ha
naong
[Waption
naooo
[AlParam
bao0o10
ing at the time of normal
DEOOOOOS - DEOOOOOZ DEOOOOOT
% | O

ing at the time

of abnormal

“/DBO0DO03 == true

_— IF

a[WSre [WDast [WIwWidth
z S pwoooin DwoooZo - 00006
SB000004 DEOONNOT
| 1)
2 L _/
— EHD_IF
[ENT)

4-232

4.10 System Function Instructions
4.10.11 Flash Operation (FLASH-OP)

41011 Flash Operation (FLASH-OP)

You can compare the data in flash memory and RAM in the Machine Controller or you can save
the RAM data to the flash memory. You can use the FLASH-OP instruction to save data in the
flash memory using only a ladder program (i.e., without the use of MPE720).

This instruction is convenient to save the data to flash memory after reading the SERVOPACK
parameters with the MLNK-SVR instruction.

Q 1. Machine Controller software version 1.23 or higher and MPE720 software version 7.34 or
@ higher are required to execute the FLASH-OP instruction.
2. Do not turn OFF the power supply to the Machine Controller until saving the data to flash
Important memory has been completed.
If you turn OFF the power supply to the Machine Controller while data is being saved to flash
memory, the data will be lost.
If you then turn ON the power supply to the Machine Controller, the Machine Controller will
start with the factory default conditions.

Flash memory RAM data

Data saved in flash memory
(when saving to flash memory).

4
N

Data compared
(when data is verified).

4 A
N |4

Format
The format of this instruction is shown below.

FLASH-0OP

[E]Execute [[B]Busy
WEOOOOOO @ WEOOOQOOZ
[E]Rezerve ([BlCamplets
MEOOOOO1 | WEOOOOOS
[W]ldptian [E]Errar
Moot MEOOOO04

Ladder Language Instructions

[A] Param [WErrorCode
MAODO10 Wiaooaz lcon: FLAsH
con:
[status 0P
Minooo3 Key entry: FLASH-OP
Applicable Data Ty
/O ltem pplicable Data Types
B W L Q F D A Index | Constant
Execute (Flash operation o
command) X X X X X X X X
Reserve (Reserved for system) O X X X
Option (Option settings) X O O O
Param (First address of -
parameter table) x x x % % % © % x
Busy (Executing) ok X X X X X X X X
Complete (Execution *
completed) > x x % X X x x X
Error o™ X X X X X X X X
ErrorCode (Error code) X O X X X X X @] O
Status (Comparison result) X O X X X X X O O

*1. M, G, or D register only.
*2. C and # registers cannot be used.

4-233

4.10 System Function Instructions

4.10.11 Flash Operation (FLASH-OP)

4-234

The following table describes each input and output item.

I/0 ltem Description 1/0
Execute (Flash opera- The flash operation instruction is started when this command is turned ON. IN
tion command) This command must be kept ON while the instruction is in execution.

Reserve (Reserved for | B
system)
Command Option Bit Settings
Bit D: CPU Operation; 0: Execute in CPU RUN status, 1: Execute with CPU
. . . stopped.
Option (Option settings) | gii'F- \erify Disable/Enable: 0: Disable, 1: Enable N
Bit F: Flash Save Disable/Enable; O: Disable, 1: Enable
The other bits are not used. Any settings in the other bits are ignored.
Param (First address of | . .
parameter table) First address of function workspace IN
Busy (Executing) Turns ON during the flash operation. ouT
Complete (Execution .
completed) Turns ON for one scan only when the flash operation is completed. ouT
Error Turns ON for one scan only when an error occurs. ouT
ErrorCode (Error code) | Turns ON for one scan only when an error occurs. ouT
Outputs the comparison result for one scan only after verification has been
Status (Comparison completed. ouT
result) Otherwise outputs 0.
Comparison Result; 1: No differences, 2: One or more differences
The option settings are described in the following table.
Bit Meaning
0 to C | Not used. (Settings will be ignored.)

CPU Operating Status during Flash Operation Execution (0: RUN, 1: STOP)

Select the CPU operating status for execution of the flash operation.

D If you select 1 (STOP), the CPU will stop to execute the flash operation and then the CPU will start

selection.

again when execution of the flash operation has been completed.
The CPU will stop if you select 1 (STOP). Make sure that no problems will occur before you use this

Verify Disable/Enable; O: Disable, 1: Enable
Select whether to compare flash memory and RAM data.

E If you select 1 (enable), the data in flash memory and RAM will be compared.

If you enable both the verify and flash save operations, the data in flash memory and RAM will be
compared and if any differences are found, the RAM data will be saved in the flash memory.

Flash Save Disable/Enable Setting
Select whether to save the data to flash memory.

F If you select 1 (enable), the data in RAM will be saved to flash memory.

If you enable both the verify and flash save operations, the data in flash memory and RAM will be
compared and if any differences are found, the RAM data will be saved in the flash memory.

@ Details on Function Workspace

This section provides the details on the function workspace. The parameter number corre-
sponds to the word offset from the first address.

Example For example, if the first address is MAOO100, set the value in MWOO101 to set PARAM 01.
Parameter No. IN/OUT Meaning

PARAM 00 SYS For system use #1

PARAM 01 SYS For system use #2

B For System Use #1 (PARAM 00)

This parameter is used by the system. Set this parameter to 0000 hex from a user program in
the first scan after the power supply is turned ON. Do not modify this parameter at any other

time.

4.10 System Function Instructions

4.10.11 Flash Operation (FLASH-OP)

B For System Use #2 (PARAM 01)

This parameter is used by the system. Set this parameter to 0000 hex from a user program in
the first scan after the power supply is turned ON. Do not modify this parameter at any other
time.

m Error Codes
The following errors can occur.

Error Code Meaning
0000 hex Normal
0001 hex Instruction duplication
0002 hex Internal system error
0003 hex Neither the flash save or verify operation was specified.

Programming Example
The following programming example shows how to save data to the flash memory.

The data is verified when DB0O000QO is turned ON. If there are any differences in the data in the
flash memory and RAM, the CPU is stopped and the data in RAM is saved to flash memory.
When saving the data to flash memory has been completed, the CPU is automatically started.

H: Main Program

- IF *|8B00000T == true

HL sETW [WDest [WData [WTWidth
2 pwooota ooooo ooooz
— EHO_IF
DROOODOD - DEOOODOO DEOOOOOZ - DEOOOOOS DEOOOOO4
I £ 7z A O
DEOOOOD4
|}
FLASH-OF ‘—

[ElExecute [[E]Euzy
DEOOOOO4 - DEOOOOOG
[E]Reserve [ElCamplete
DEOOOOOS | DEOOOOOZ
[Woption [E]1Errar
HEOOO DROOOOOS

[A] Param [W]ErrorCode
ba0nomo pWonoons
[W] status
pononz
— IF *|DBO00003 == true
HL EXPRESS| OH o |

pWoooos = Dwooom

—— EHWD_IF

EHD

ey
sy

Ladder Language Instructions

4-235

4.10 System Function Instructions

4.10.12 Write Motion Register (MOTREG-W)

41012 Write Motion Register (MOTREG-W)

This system function is used to access specified motion registers.

Values are written to a motion register by specifying the circuit number, axis number, and regis-

ter address.
This function is used with motion setting parameters.

This function is useful for storing the same motion setting parameter for multiple axes with dif-

Information
ferent circuit and axis numbers. If the STORE instruction or an EXPRESSION instruction is
used to write to the motion registers, you need to consider an offset to address the circuit and
axis numbers.
Motion setting parameter for the
specified circuit and axis numbers
owooooo
Write data 4 oLoooic
Write destination
register address (= 001C hex)
Format

The format of this instruction is shown below.

.

e MOTREG- —

[Wa=iz-Inf |[B] [Errar]
mMuonooo MBOOOD3D

[W Reg-Ho [WL] [RDO-Data
R0t MLOOOOR

[%] Mode
Muooooz
WL]WR-Data
L0 leon: ez
- Key entry: MOTREG-W
/0 ltem Applicable Data Types
B w L Q F D A Index Constant
Axis-Inf (Axis information) X O X X X X X X
Reg-No (Register address) X O X X X X X X X
Mode X O X X X X X X X
WR-Data (Write data) X O O X X X X X X
Error O* X X X X X X X X
RD-Data (Read data) X O* O* X X X X X X

* C and # registers cannot be used. These parameters may be omitted.

4-236

4.10 System Function Instructions

4.10.12 Write Motion Register (MOTREG-W)

The following table describes each input and output item.

1/0 ltem Description 1/0
) .| Gircuit number and axis number (Cir-No)
ﬁ?cl)i}:wnaft(iéﬁ;s Upper byte: Circuit number (01 to 10 hex) IN
Lower byte: Axis number (01 to 10 hex)
z;ee%izltoer Integer register: 0000 to O07F hex IN
address) Double-length integer register: 0000 to 007E hex
Access type and access size
« Upper byte: Access type
0: Write WR-Data to specified register.
1: Write inclusive OR of specified register and WR-Data to specified register.
Mode 2: Write AND of specified register and WR-Data to specified register. IN
Others: Write WR-Data to specified register.
» Lower byte: Access size
0O: Integer data
1: Double-length integer data
Others: Integer data
WR-Data If the access size for Mode is an integer and the input data type is a double-length inte-
. . IN
(Write data) | ger, only the lower word will be used.
Error cause (Turns ON when an error occurs.)
The register could not be written to or read from because the circuit number, axis num-
Error : ; i out
ber, or register address is out of range, or because the Module does not exist.
When an error occurs, RD-Data is set to O.
RD-Data This is the data that is read after writing is completed. ouT

(Read data)

If integer data is specified, the data is output with the sign.

Programming Example

In the following programming example, the value of the write data (MLOOQ0O0O0) is written to the
STEP Travel Distance parameter in OLOOO44 for axis number 10 on circuit number 3.
Set the following items.

» Axis-Inf = 030A hex (circuit 3, axis 10)

 Register address = 0044 hex

* Mode = 0001 hex (double-length Integer)

WOTREG-Y
[Wl&xis-Inf '[BI[Error]
HI304 DROOOOOD
77]
[W]Reg-Ho [WLI[RD-Data]
HI044 MLO000 2
Ba 10000
[IHode
HI001

1

MWLIWR-Data
MLOD00D
10000

The same result can be achieved by directly specifying the register address and storing data
with the STORE instruction.

@ Equivalent

| MCFGDISre (TWLFGD]Dest
MLOO00 0 0L94C4
HInE 10000 10000

Ladder Language Instructions

4-237

4.10 System Function Instructions
4.10.13 Read Motion Register (MOTREG-R)

41013 Read Motion Register (MOTREG-R)

This system function is used to access specified motion registers.

The value is read from a motion register by specifying the circuit number, axis number, and reg-
ister address.

This function is to be used with motion setting parameters and motion monitor parameters.

This function is useful for reading the same motion setting parameter from multiple axes with

Information ' o ;) ! ' C
different circuit and axis numbers. If the STORE instruction or an EXPRESSION instruction is
used to read from the motion registers, you need to consider an offset to address the circuit
and axis numbers.

Motion setting or monitor parameter for
the specified circuit and axis numbers
WOoOooo
Read data . Loooi2
Register address of read
destination (= 0012 hex)
Format

The format of this instruction is shown below.

— MOTREG-F ‘—
[Wla=iz-Inf [E] [Errar]
HWaoonn MEQOONZN

[W]Regz-Ho [WLIRD-Dat=a
Muoonni mLoonn4

[W] Mode T
MWO0002 lcon: - pes-F
I Key entry: MOTREG-R
Applicable Data Types
VO ltem B | W L Q F D A | Index |Constant
Axis-Inf (Axis information) X O X X X X
Reg-No (Register address) X O X X X X X X X
Mode X @] X X X X X X X
Error O* X X X X X X X X
RD-Data (Read data) X Oo* O* X X X X X X

* C and # registers cannot be used. These parameters may be omitted.

4-238

4.10 System Function Instructions

4.10.13 Read Motion Register (MOTREG-R)

The following table describes each input and output item.

I/0 ltem

Description

1/0

Axis-Inf (Axis
information)

Circuit number and axis number (Cir-No)
Upper byte: Circuit number (01 to 10 hex)
Lower byte: Axis number (01 to 10 hex)

Reg-No (Register
address)

Integer register: 0000 to 007F hex
Double-length integer register: 0000 to 007E hex

Mode

Register type and access size

» Upper byte: Register type
0O: | registers (motion monitor parameters)
1: O registers (motion setting parameters)
Others: | registers

» Lower byte: Access size
0: Integer data
1: Double-length integer data
Others: Integer data

Error

Error cause (Turns ON when an error occurs.)

The register could not be written to or read from because the circuit number, axis
number, or register address is out of range, or because the Module does not exist.

When an error occurs, RD-Data is set to O.

ouT

RD-Data
(Read data)

If integer data is specified, the data is output with the sign.

ouT

Programming Example

In the following programming example, the Machine Coordinate System Feedback Position in
IL8096 for axis number 2 on circuit number 1 is read.
Set the following items.

» Axis-Inf = 0102 hex (circuit 1, axis 2)

» Register address = 0016 hex

* Mode = 0001 hex (motion monitor parameter, double-length integer)

Equivalent

WOTREG-R
Wlixis-Inf '[BI[Error]
HI0z OBOOOO00
&8 0
[WIReg-Ho MWL IRD-Data
HID16 pLooonz2
22 0
[Mode
HI001

The same result can be achieved by directly specifying the register address and storing data

with the STORE instruction in DLO0002.

|

|

sTORE

MLFA0]Sr e
[LE0SE

[WLFQD]De st

DLOn00Z
]

Ladder Language Instructions

4-239

4.10 System Function Instructions

4.10.14 Import (IMPORT/IMPORTL/IMPORTLE)

41014 Import (IMPORT/IMPORTL/IMPORTLE)

4-240

Register data is imported from a USB memory device, the built-in RAM in the CPU Unit/CPU
Module, or an FTP server and copied into registers.

The format of the import file is selectable between binary data (bin) and CSV data (csv).
You can specify to import into M registers, G registers, D registers, or C registers.
Two of the following instructions can be executed at the same time: IMPORT, IMPORTL, and

IMPORTLE.
m Differences between IMPORT, IMPORTL, and IMPORTLE
ltem IMPORT IMPORTL IMPORTLE
Number of words to move 1to 32,767 1to02,147,483,647 110 2,147,483,647
File names Fixed Fixed Can be specified
USB memory device |Version 1.00 or higher | Version 1.08 or higher
Supporting Built-in RAM in CPU . .
! . Version 1.30 or higher
versions Unit/CPU Module Version 1.30 or higher |Version 1.30 or higher 9

FTP server

<IMPORT or IMPORTL>

-

#1 to #32767

_

Files™

bin, csv

Built-in RAM in

or FTP server

-

USB memory device

CPU Unit/CPU Module

~

Imported.

—

/

M, G, D, or C registers

* The data is imported from the following files in a USB memory device, the built-in RAM in the CPU Unit/CPU Mod-

ule, or an FTP server.
\MP_DATA\DATO0001.BIN (CSV)

\MP_DATA\DAT32767.BIN (CSV)

<IMPORTLE>

~

File names can
be specified.

Files*

bin, csv

N

Built-in RAM in
CPU Unit/CPU
or FTP server

.

USB memory device

~

Imported.

—

Module

/

M, G, D, or C registers

* The data is imported from specified files in a USB memory device, the built-in RAM in the CPU Unit/CPU Module,

or an FTP server.

4.10 System Function Instructions

4.10.14 Import (IMPORT/IMPORTL/IMPORTLE)

Format
The format of this instruction is shown below.
Y
| MPORT -
[BE] Execute [[BE]Busy
MEOOOOOOD MEBOOOODZ
[E]lAbort [ElCamp lete
MEOOOOD1 MEOOOOD3
[W] Orw=-Ha [E]Errar
Moo MENOOOD4
[W]Data-Ho
Mooz
W size
Minnona I
[W] Ch-Ho Icon: F% Import
Mianong M
[A] Dest PUFT Import Extend
[ﬁ:"lp'ﬂ'uu 100 P%E%T Impart with Specified File Mame
aram
MAOOO10 Key entry: IMPORT/IMPORTL/IMPORTLE
/O ltem Applicable Data Types
B W L Q F D Index | Constant
Execute (Import command) O X X X X X X X X
Abort (Import abort o
X X X X X X X X
command)
Drv-No (Drive number) X O O O
Data-No (Data number) X ©) O O
rSﬂié(\a/é;\lumber of words to % ol o2 % % % % o o
Ch-No (Parallel execution
channel number) % © x X % % X © ©
Dest (First destination y y y y y » o y y
register address)
Param (First address of y » y y y » o » »
parameter list)
Busy (Importing) O X X X X X X X X
Complete (Execution of o y y y y y y y y
import completed)
Error O X X X X X X X X

*1. For the IMPORT instruction.
*2. For the IMPORTL instruction.

The following table describes each input and output item.
<IMPORT or IMPORTL>

Ladder Language Instructions

1/0O ltem Description I/0

Execute (Import command) Import execution begins when this command is turned ON. IN
P This command must be kept ON while the instruction is in execution.
Abort (Import abort
command) The import process is aborted when this command is turned ON. IN
: , Drive number (1: USB memory device, 2: Built-in RAM in CPU Unit/

Drv-No (Brive number) CPU Module, 101 to 120: FTP server) N
Data-No (Data number) Data number (1 to 32,767) IN
Size (Number of words to Number of words to move IN
move) (IMPORT: 1 to 32,767, IMPORTL: 1 to 2,147,483,647)
Ch-No (Parallel execution .
channel number) Parallel execution channel number (1 or 2) IN

Continued on next page.

4-241

4.10 System Function Instructions

4.10.14 Import (IMPORT/IMPORTL/IMPORTLE)

4-242

Continued from previous page.

1/0O ltem Description 1/0
Degt (First destination First destination register address (MA, GA, DA, or CA) IN
register address)
Param (First address of , .
parameter list) First address of parameter list (MA, GA, or DA) IN
Busy (Importing) Turns ON while importing is in progress. ouT
Qomplete (Exscution of Turns ON when execution of the import is completed. ouT
import completed)
Error Turns ON when an error occurs. ouT
<IMPORTLE>
1/0O ltem Description 1/0
Import execution begins when this command is turned ON.
Execute (Import command) This command must be kept ON while the instruction is in execution. IN
Abort (Import abort
command) The import process is aborted when this command is turned ON. IN
. Drive number (1: USB memory device, 2: Built-in RAM in CPU Unit/
Drv-No (Drive number) CPU Module, 101 to 120: FTP server) IN
S:é?/e()l\lumber of words to Number of words to move (1 to 2,147,483,647) IN
Ch-No (Parallel execution ,
channel number) Parallel execution channel number (1 or 2) IN
Dest (First destination . L .
register address) First destination register address (MA, GA, DA, or CA) IN
Param (F'rST adaress of First address of parameter list (MA, GA, or DA) IN
parameter list)
FILENAME (File name) f&i”gﬂeéisgﬂg\?rage register address* IN
Busy (Importing) Turns ON while importing is in progress. ouT
Complete (Execution of . . ,
import completed) Turns ON when execution of the import is completed. ouT
Error Turns ON when an error occurs. ouT

* You can specify directory levels if you select a USB memory device or the built-in RAM in the CPU Unit/CPU Mod-

ule with the drive number.

Use a forward slash (/) to separate directory levels.

You cannot specify directory levels if you select an FTP server with the drive number. Specify only the file name.

The following restrictions apply to file names, including directory specifications.
« USB memory device or built-in RAM in CPU Unit/CPU Module: 250 characters max.
» FTP server: 32 characters max.

* Always delineate the end of the file name with a O (NULL character).

& Parameter Details

This section describes the parameters in detail.

<IMPORT>

Address Data Type | Parameter No. | IN/OUT Description
0 W PARAMOO ouT Processing Result
1 wW PARAMO1 IN Format
2 W PARAMO2 IN Number of offset lines in the CSV file
3 w PARAMOS3 IN Word offset for data in the file
4 W PARAMO4 ouT Reserved for system.
5 W PARAMO5 ouT Reserved for system.

4.10 System Function Instructions

4.10.14 Import (IMPORT/IMPORTL/IMPORTLE)

<IMPORTL or IMPORTLE>

Address Data Type | Parameter No. | IN/OUT Description
0 w PARAMOO ouT Processing Result
1 wW PARAMO1 IN Format
2 L PARAMO2 IN Number of offset lines in the CSV file
4 L PARAMO3 IN Word offset for data in the file
6 w PARAMO4 ouT Reserved for system.
7 W PARAMO5 ouT Reserved for system.

B Processing Result (PARAMOQO)

This parameter reports the processing result of the IMPORT, IMPORTL, or IMPORTLE instruc-
tion.

- 0000 hex: Busy (Busy)

- 10000 hex: Completed (Complete)

- 8000 hex: Error occurred (Error)
The following errors can occur.

Error Code Description

8101 hex Drive number out of range error

8102 hex Data number out of range error

8103 hex Number of words to move out of range error

8104 hex Parallel execution channel number out of range error
8105 hex Destination or source register address out of range error
8106 hex Format type out of range error

8107 hex Open type out of range error

8108 hex Word offset for data in the file out of range error
8109 hex First address of parameter list out of range error
810A hex Number of offset lines in the file out of range error
810C hex File name error

810E hex FTP reception error
8201 hex No USB memory device

8202 hex File open error
8203 hex File seek error
8204 hex File write error
8205 hex File read error
8206 hex File close error
8301 hex Cannot be processed because there are too many files

8302 hex File 1/0 timeout

B Format Type (PARAMO1)
This parameter sets the format of the import file.

To import register list data from the MPE720, set the format to 2.

1: Imports data from a binary file (DATOOOOO.BIN).

The OOODOO is set with the numeric value specified for the Data-No.
2: Imports data from a CSV file (DATOOOOO.CSV).

The OOODOO is set with the numeric value specified for the Data-No.

B Number of offset lines in the CSV file (PARAMO02)

For CSV files, specify the number of offset lines.

To import register list data from the MPE720, set the format to 2.
This parameter is ignored for binary files.

Ladder Language Instructions

4-243

4.10 System Function Instructions

4.10.14 Import (IMPORT/IMPORTL/IMPORTLE)

B Word offset for data in the file (PARAMO3)
This parameter sets the number of words to offset.
<IMPORT>

The setting range is 0 to 32,766.

<IMPORTL or IMPORTLE>

The setting range depends on the software version of the MP3000-series Machine Controller.
Set the value according to the following table.

Version Setting Range
Version 1.21 or lower 0 to 32,766
Version 1.22 or higher 010 2,147,483,646

B Reserved for System (PARAMO04)
This parameter specifies the work area used by the system.

B Reserved for System (PARAMO05)
This parameter specifies the work area used by the system.

4-244

4.10 System Function Instructions

Programming Example

In the following programming example, the register list data in the MPE720 is imported into the

MW01234 to MW01243 registers.
Refer to the following section for operating procedures for the MPE720.
I Additional Information on page 4-246

4.10.14 Import (IMPORT/IMPORTL/IMPORTLE)

Before Instruction Execution

Register

Value

MW01233

MW01234

MWO01235

MWO01236

MW01237

MW01238

MW01239

MWO01240

MWO01241

MW01242

MWO01243

O|O|lO|O|O|O|O|O|O|O|O|O

MW01244

L« EAPRESS [ON R N —
DWonoT 1=2; A csv
22
o001 2=2; A line offset
2=
IMPORT
[BIExecute [BIBusy
DEQOO000 OBOOOONZ
0 0
[Blabort [BlComp lete
OEOODO01 OBOOON0N3
0]
W10 w-No [BlError
00001 OBOOON0N4
1]
M0zt a-No
o000 1
MSize
Qoo
10
M 1Ch-Ha
o000 1
[A1Dest
MAN1Z234
[A1Param
0&an0010

After Instruction Execution

Register

Value

MW01233

MW01234

MW01235

MW01236

MW01237

MW01238

MW01239

MW01240

MW01241

O O N ~jw|NJO

MW01242

MW01243

—_ | =
— | O

MW01244

@]

Ladder Language Instructions

4-245

4.10 System Function Instructions

4.10.14 Import (IMPORT/IMPORTL/IMPORTLE)

Additional Information
Use the following procedure to export the register list data on the MPE720.
The following procedure is based on the programming example given earlier in this section.

1. Insert a USB memory device into the PC.
2. Display the register list on the MPE720.

3. Right-click on the register list and select Export from the menu.

v Decmal
Hexadecimal
BIM
ASCIT
CMFOEF

ED copy CHrl+C
B paste Crrl+w

Delete Delete

Register List 1 “ Refe .
Register [MwWD1233 -|| -|[6 -| B ==y 10es RETErEnte
- Add to Scope.., +
0 1 |2 E |4 |5
MW01233 1 2 3 4 5 6 ‘ariable Registration...
MW01239 7 8 9 10 11 He
MWD1245 0 0 0 o o 0 Impart
MW01251 0 0 0 0 0 0]
MWD1257 0 0 0 0 0 0 Exgort
MW01263 0 0 0 0 0 0
MW01269 0 0 0 0 0 0
MWD01275 0 0 0 0 0 0
MWO1281 0 0 0 0 0 0
MW01267 0 0 0 0 0 0
MW01293 0 0 0 0 0 0

|E10utput | EZJwatch 1 | [EERegister List 1 |

4. Select the drive for the USB memory device.

EEVEN O 3 R emiovable D

My Recent
Documents

?I_-

Desklop

2>

My Documents

My Computer

g File: name: | v | [Save]
MyNetwok | Saveastpe |CSV Files [“csv] v [_cancel |

4-246

4.10 System Function Instructions

4.10.14 Import (IMPORT/IMPORTL/IMPORTLE)

5. Click the MP_DATA folder.

If the MP_DATA folder does not exist, create one.

Save in: |°w-iF|emovabIe Dizk [J:] V| O _? . '

2 Dome_DaTA;

My Recent
Documents

Desklop
My Documents

My Computer

File name: | & | [Save]

MyNetwok | Saveastpe |CSV Files [“csv] v [_cancel |

Savein: | () MP_DATA v @ % @

My Recent
Documents

Desklop
My Documents

My Computer

File name: |paTo0001 v [[sae |

MyNetwok | Saveastpe |CSV Files [“csv] v [_cancel |

7. Enter “MW01234” in the Start Register Box and the number “10” in the Number Box,

and then click the Export Button.

Flease set exported start register and number,

A [B [C []
Start register | MW01234 ;
Prograrm name

End register MWD1243
Mumber 10

3

Export I Cancel |

4

8. Remove the USB memory device from the PC.

Insert the USB memory device into the Machine Controller.

Ladder Language Instructions

4-247

4.10 System Function Instructions

4.10.15 Export (EXPORT/EXPORTL/EXPORTLE)

10. Wait for the USB ACCESS indicator to light.

USB
ACTIVE

11. Create the programming example that is given earlier in this section.

12. Execute the IMPORT, IMPORTL, or IMPORTL instruction.

41015

Export (EXPORT/EXPORTL/EXPORTLE)

Register data is exported to a USB memory device, the built-in RAM in the CPU Unit/CPU

Module, or an FTP server.

The format of the export file is selectable between binary data (bin) and CSV data (csv).
You can specify to export from M registers, G registers, D registers, C registers, S registers, |

registers, or O registers.

Two of the following instructions can be executed at the same time: EXPORT, EXPORTL, or

EXPORTLE.

m Differences between EXPORT, EXPORTL, and EXPOTRLE

4-248

Item EXPORT EXPORTL EXPORTLE

Applicable data types W L L

File names Fixed Fixed Can be specified
USB memory device | Version 1.00 or higher |Version 1.08 or higher

rtin Built-in RAM in CP . .

\?:rg%%; ° UﬁiTt/CPU MOdU(é ’ Version 1.30 or higher | Version 1.30 or higher version 1.30 or higher

FTP server
<EXPORT or EXPORTL>

-

#1 to #32767

~

M, G,D, C, S, 1, orO
registers

Exported.

—

USB memory device

Built-in RAM in

CPU Unit/CPU Module
or FTP server

bin, csv

_ = Y,

* The data is exported to the following files in a USB memory device, the built-in RAM in the CPU Unit/CPU Module,
or an FTP server.
\MP_DATA\DAT00001.BIN (CSV)

. *
Files

\MP_DATA\DAT32767.BIN (CSV)
<EXPORTLE>

~

M,G,D,C, S, I,orO

File names can registers

be specified.

Exported.

—

USB memory device

Built-in RAM in
CPU Unit/CPU Module
or FTP server

i
|
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
-
|

Files*

1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
|
r
|

1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
.
1

& bin, csv /
* The data is exported to specified files in a USB memory device, the built-in RAM in the CPU Unit/CPU Module, or
an FTP server.

4.10 System Function Instructions

4.10.15 Export (EXPORT/EXPORTL/EXPORTLE)

Format
The format of this instruction is shown below.

FY

EXPORT

[E]Execute [[E]EBusy
WEODOO000 MEODOOODZ

[E] Abort [E]Comp lete
MEDOOODT | MBOOOOO3
[WDrw-Ha [BE]1Errar
MWoooo MEODOOO4
[WDatza-Ho
Mwanooz
[W]size
Mwonoos
[W] Ch-Ho
HWoooo4d
[A] 5re lcon: % Export
[ﬁ;ﬂ:EDIEIEI F'EET Export Extend
r
HADDZ00 PE'?!T Expart with Spedfied File Mame
[A]lParam LE
Maoooin Key entry: EXPORT/EXPORTL/EXPORTLE
/O ltem Applicable Data Types
B W L Q F D A Index | Constant
Execute (Export command) O X X X X X X X
Abort (Export abort o
command) X X X X X X X X
Drv-No (Drive number) X O O O
Data-No (Data number) X @] X X X X X @] @]
a(z)?/e(;\lumber of words to % ol o2 % % % % o o "
c
o
Ch-No (Parallel execution F=
channel number) % © X x x % X © © §
i i 7]
Src (First source register y y y y y » o y » <
address) g
Str (Register address for « o y « o « o « « S
text string output) 2
©
Param (First address of y » y y y y o » » -
parameter list) g
Busy (Exporting) o) X X X X X x X X §
Complete (Execution of o
X X X X X X X X
export completed)
Error O X X X X X X X X n

*1. For the EXPORT instruction.
*2. For the EXPORTL instruction.

4-249

4.10 System Function Instructions

4.10.15 Export (EXPORT/EXPORTL/EXPORTLE)

4-250

The following table describes each input and output item.

<EXPORT or EXPORTL>

I/0 ltem Description 1/0
Export execution begins when this command is turned ON.

Execute (Export command) This command must be kept ON while the instruction is in execution. IN
Abort (Export abort The export process is aborted when this command is turned ON. IN
command)

Drv-No (Drive number) Drive number (1: USB memory device, 2: Built-in RAM in CPU Unit/ IN

CPU Module, 101 to 120: FTP server)

Data-No (Data number) Data number (1 to 32,767) IN
Size (Number of words to Number of words to move (EXPORT: 1 to 32,767, EXPORTL: 1 to IN
move) 2,147,483,647)

Ch-No (Parallel execution Parallel execution channel number (1 or 2) IN
channel number)

Sre (First source register First source register address (MA, GA, DA, CA, SA, IA, or OA) IN
address)

Ettrrirggeogﬁ;i;)address for text Register address for text string output™*? (MA, GA, DA, or CA) IN
Param (First address of . ,

parameter list) First address of parameter list (MA, GA, or DA) IN
Busy (Exporting) Turns ON while exporting is in progress. ouT
Complete (Execution of Turns ON when execution of the export is completed. ouT
export completed)

Error Turns ON when an error occurs. ouT
*1. Valid for CSV files. This item is ignored for binary files.
*2. Always delineate the end of a string with a 0 (NULL character).
<EXPORTLE>

1/0 ltem Description I/0
Export execution begins when this command is turned ON.

Execute (Export command) This command must be kept ON while the instruction is in execution. IN
Abort (Export abort The export process is aborted when this command is turned ON. IN
command)

Drv-No (Drive number) Drive number (1: USB memory device, 2: Built-in RAM in CPU Unit/ IN

CPU Module, 101 to 120: FTP server)

a(z)?/e(;\lumber of words to Number of words to move (1 to 2,147,483,647) IN
Ch-No (Parallel execution .

channel number) Parallel execution channel number (1 or 2) IN
Sre (First source register | oo <0 1rce register address (MA, GA, DA, CA, SA, IA, or OA) IN
address)

Str (Register address for text | Register address for text string output” ™ N
string output) (MA, GA, DA, or CA)

Param (F'rST address of First address of parameter list (MA, GA, or DA) IN
parameter list)

FILENAME (File name) File name (ASCII) storage register address™ (MA, GA, DA, or CA) IN
Busy (Exporting) Turns ON while exporting is in progress. ouT
Complete (Execution of Turns ON when execution of the export is completed. ouT
export completed)

Error Turns ON when an error occurs. ouT

*1. Valid for CSV files. This item is ignored for binary files.
*2. Always delineate the end of a string with a 0 (NULL character).
*3. You can specify directory levels if you select a USB memory device or the built-in RAM in the CPU Unit/CPU

Module with the drive number.

Use a forward slash (/) to separate directory levels.

You cannot specify directory levels if you select an FTP server with the drive number. Specify only the file name.

The following restrictions apply to file names, including directory specifications.

+ USB memory device or built-in RAM in CPU Unit/CPU Module: 250 characters max.
» FTP server: 32 characters max.

Always delineate the end of the file name with a O (NULL character).

4.10 System Function Instructions

€ Parameter Details
This section describes the parameters in detail.

4.10.15 Export (EXPORT/EXPORTL/EXPORTLE)

<EXPORT>
Address Data Type Parameter No. IN/OUT Description
0 w PARAMOO ouT Processing Result
1 w PARAMO1 IN Format
2 W PARAMO2 IN File open type
3 w PARAMOS3 IN Word offset for data in the file
4 W PARAMO4 ouT Reserved for system.
5 W PARAMO05 ouT Reserved for system.
<EXPORTL or EXPORTLE>
Address Data Type Parameter No. IN/OUT Description
0 W PARAMOO ouT Processing Result
1 w PARAMO1 IN Format
2 L PARAMO2 IN File open type
4 L PARAMO3 IN Word offset for data in the file
6 W PARAMO4 ouT Reserved for system.
7 W PARAMO5 ouT Reserved for system.

B Processing Result (PARAMOO)
This parameter reports the processing result of the EXPORT, EXPORTL, or EXPORTLE instruc-

tion.

« 0000 hex: Busy (Busy)
- 1000 hex: Completed (Complete)
- 80000 hex: Error (Error)

The following errors can occur.

Error Code Meaning

8101 hex Drive number out of range error

8102 hex Data number out of range error

8103 hex Number of words to move out of range error

8104 hex Parallel execution channel number out of range error
8105 hex Destination or source register address out of range error
8106 hex Format type out of range error

8107 hex Open type out of range error

8108 hex Word offset for data in the file out of range error
8109 hex First address of parameter list out of range error
810B hex Text string error (NULL character not detected)
810C hex File name error

810D hex FTP transmission error

8201 hex No USB memory device

8202 hex File open error

8203 hex File seek error

8204 hex File write error

8205 hex File read error

8206 hex File close error

8301 hex Cannot be processed because there are too many files
8302 hex File 1/0 timeout

Ladder Language Instructions

4-251

4.10 System Function Instructions

4.10.15 Export (EXPORT/EXPORTL/EXPORTLE)

B Format Type (PARAMO1)

This parameter sets the format of the export file.

To export register list data from the MPE720, set this parameter to 2.
1: Exports data to a binary file (DATOOOON.BIN).

The OOMODOO is set with the numeric value specified for the Data-No.
2: Exports data to a CSV file (DATOOOONO.CSV).

The OOOONO is set with the numeric value specified for the Data-No.

m File Open Type (PARAMO02)

This parameter sets the file open type for binary files.

1: Create and export to a new file.

2: Export to an existing file.

Select this type to change to only certain portions of existing data.
For CSV files, set this parameter to 1.

m Word offset for data in the file (PARAMO03)
For binary files, specify the number of offset words.
This parameter is ignored for CSV files.
<EXPORT>

The setting range is 0 to 32,766.

<EXPORTL or EXPORTLE>

The setting range depends on the software version of the MP3000-series Machine Controller.
Set the value according to the following table.

Version Setting Range
Version 1.21 or lower 0 to 32,766
Version 1.22 or higher 010 2,147,483,646

B Reserved for System (PARAMO04)
This parameter specifies the work area used by the system.

B Reserved for System (PARAMO5)
This parameter specifies the work area used by the system.

4-252

4.10 System Function Instructions

Programming Example

4.10.15 Export (EXPORT/EXPORTL/EXPORTLE)

In the following programming example, the data from the MW01234 to MWO01243 registers is
exported to a CSV file.

3.
pwoont1=2; S caw
pwoonr2=1; £ new
Sro [WDe=t
Aettl WI1234 WWOO100
F
EXPORT -
[E]Execute [[E]EBusy
CBEOOOOOO - DEOQOOOZ
[E]Abar t [B] Comp lete
DEOOOOOT | DBEOOOOOS
[W]DFw-Ho [BE]Errar
nooot DEOOOOO4
[WData-Ho
nooot
[W5ize
ooo1o
[WICh-Ha
nooot
[A] Sk
Wao1234
[A] sty
Maoo100
[A] Param
ba00010
Register Data File in USB Memory Device (DATO0001.CSV)
Register Value Contents of Text File ®
MW01233 |1 MW1234 ¢ S
Mw01234 |2 o S
MWO01235 3 00002 + 2
MWO01236 |4 00003 « %
MWO01237 5 00004 + 2
MWO01238 |6 00005 « 3
MWO01239 7 00006 + g
MWO01240 8 00007 « §
MWO01241 9 00008 +
MWO01242 10 00009 «
MWO01243 11 00010+ n
MWO01244 12 00011 «

4-253

4.11 Storage Operation Instructions

4.11.1 Open File (FOPEN)

_NEl Storage Operation Instructions

4111

Open File (FOPEN)

4-254

The file with the specified name is opened. When this instruction is executed, a file handle for

specifying the file in other instructions is output.

Format
The format of this instruction is shown below.
il
FOPEH]
[BE]Esecute |[B] [Busy]
DEOQOOOD - DEOOOOOT
(W] Type [E]lCamp lete
pWoooor) DEOQOOOZ
[A]FileHame [E] [Errar]
oao0o00s5 | DEOQOOO3
[B] Param [W] [ErrCode]
oa00a010 pwononz
[LIFileHndl
DLa0ons
/O ltem Applicable Data Types
B W L Q F D A Index | Constant
Execute o*! X X X X X X X X
Type X ©) X X X X X X O
FileName X X X X X X o™ X X
Param X X X X X X o™ X X
Busy ™ o"! X x X X X X X x
Complete o™ X X X X X X X X
Error ™ o™ X X X X X X X X
ErrCode ™ X o™ X X X X X X X
FileHnd| X X o™! X X X X X X

*1. C and # registers cannot be used.
*2. M, G, D, or C register only.

*3. M, G, or D register only.

*4. Optional.

4.11 Storage Operation Instructions

Details on I/0 Items

4.11.1 Open File (FOPEN)

1/0 ltem

Name

1/0

Description

Execute

Execute Instruction

Processing is executed on the rising edge when this bit is turned
ON. The processing itself is executed even if this bit is turned OFF
afterward.

Type

Open Type

Refer to the following section for details on open types.
IZ Type (Open Type) on page 4-256

FileName

File Name

Specify the first register in which the applicable file name (drive
name + folder names + file name) has been stored.
Specify the folder names and file name up to 250 alphanumeric
characters plus the NULL character.
* Drive name: “1:/”: OOOUSB memory device, “2:/”: OOOBuUIlt-
in RAM
If the drive name is omitted, the USB memory device is selected.
» Folder names: The separator between folders is “/”.

Param

Parameters

IN/OUT

First address of function workspace

Busy

Processing

ouT

This bit is turned ON while the function being executed. This bit is
turned OFF when processing is completed.
This bit is OFF when Execute (Execute Instruction) is OFF.

Complete

Processing
Completed

ouT

This bit is turned ON when function execution is completed.
This bit is OFF when Execute (Execute Instruction) is OFF.

Error

Error Occurred

ouT

This bit is turned ON if an error occurs during function execution.
This bit is OFF when Execute (Execute Instruction) is OFF. How-
ever, this bit is turned ON when Param is outside the range of reg-
isters.

ErrCode

Error Code

ouT

This item outputs the error code. Refer to the following section for
details on error codes.
IS Appendix F Error Codes

The value is O when Execute (Execute Instruction) is OFF. How-
ever, 8000 hex (Param is outside range of registers) is output
when Param is outside the range of registers.

FileHndl

File Handle

ouT

This item stores the identification data for the file that was
opened.
The value is O when Execute (Execute Instruction) is OFF.

Note: 1. If Execute is turned OFF while this instruction is being executed, the processing result cannot be obtained

because the output data of the instruction is cleared.

2. Note the following precautions when specifying the registers used in Param. The function cannot be cor-
rectly processed if registers overlap.
» Make sure the registers do not overlap those of another instruction.
» Make sure the registers do not overlap when the same instruction is used in different locations.

3. Make sure the value of FileHnd! (File Handle) will not be overwritten by another program. If the value of
FileHndle is different, the FCLOSE instruction will not be able to close the file and it will remain open. This
may result in file corruption when the power supply is turned OFF.

Ladder Language Instructions

Parameters
va\;zfésm Data Type Purpose Description
0 w IN/OUT | System use (status management)
1 W IN/OUT | System use (status management)
2 W IN/OUT | System use (status management)
3 W IN/OUT | System use (status management)

4-255

4.11 Storage Operation Instructions

4.11.1 Open File (FOPEN)

4-256

Type (Open Type)

No Existing File

Existing File

Value Description When Executed | When Executed

The file is opened as read-only. .

0x0000 The file position starts from the beginning of the file. Error Normal operation
The file is opened as write-only. Discard existing

0x0001 The file position starts from the beginning of the file. Create new file file and create
An error will occur if the file exists and is write-protected. new file
The file is opened for additional writing.

0x0002 The file position for writing starts from the end of the file. | Create new file Overwrite file
An error will occur if the file exists and is write-protected.

Other than Error _ _

above

Note: Files are opened as text files.

Operation Overview

After this instruction is executed, FileHndle (File Handle) for specifying the file in other instruc-
tions is output.

The data stored in FileHndl is required when specifying the file in other instructions.

Information

1. If the CPU is stopped, all opened files are closed. If another instruction is being executed,
files are closed after processing of the instruction is completed.

2. Only ASCII characters can be used for file and directory names.

Create the program so that files opened with FOPEN are always closed with the FCLOSE

instruction.

Files cannot be opened in the following cases:

» The directory and file do not exist.

 Afile is write-protected.

» The number of files that can be simultaneously opened was exceeded.

» The target file is already opened.

» The character size exceeds the maximum value.

« The USB memory device is not installed.

* File name error (no NULL before the maximum number of characters (no NULL in range of
registers)).

» Range of open type error.

» Four storage operation instructions are already being executed.

The registers assigned to Param exceed the applicable range.

4.11 Storage Operation Instructions

4.11.2 Close File (FCLOSE)

4112 Close File (FCLOSE)

The specified file is closed.

Format

The format of this instruction is shown below.

FCLOSE

[BE] Execute [[E]

[LIFileHnd! .[E]

peOOOOO0 DEOOOO01
pLoooaz o DEOOO0OZ

Busy

Camp lete

Ladder Language Instructions

[A] Param [E]Errar
paoooto DEOOOOOA
[W]ErrCade
pwoonnt
Applicable Data Types
1/0 ltem s 5
B W L Q F D A Index | Constant

Execute o X X X X X X X X

FileHnd! X X o't X X X X X X

Param X X X X X X o)X X X

Busy ** o' X X X X X X X X

Complete o X X X X X X X X

Error *3 ol X X X X X X X X

ErrCode 3 X o X X X x x X X

*1. C and # registers cannot be used.
*2. M, G, or D register only.
*3. Optional.
Details on I/0O Items
I/0 ltem Name IN/OUT Description
Processing is executed on the rising edge when this bit is

Execute Execute IN turned ON.

Instruction The processing itself is executed even if this bit is turned OFF
afterward.

FileHndl File Handle IN Specify the file handle.

Param Parameters IN/OUT | First address of function workspace
This bit is turned ON while the function being executed. This

Busy Processing OUT | bit is turned OFF when processing is completed.

This bit is OFF when Execute (Execute Instruction) is OFF.
Processing This bit is turned ON when function execution is completed.

Complete | completed OUT | This bit is OFF when Execute (Execute Instruction) is OFF.
This bit is turned ON if an error occurs during function execu-
tion.

Error Error Occurred OUT | This bit is OFF when Execute (Execute Instruction) is OFF.
However, this bit is turned ON when Param is outside the
range of registers.

This item outputs the error code. Refer to the following sec-
tion for details on error codes.
A dix F Ei Cod

ErrCode Error Code ouT & ppen_ W Error bodes))

The value is O when Execute (Execute Instruction) is OFF.
However, 8000 hex (Param is outside range of registers) is
output when Param is outside the range of registers.

Note: 1. If Execute is turned OFF while this instruction is being executed, the processing result cannot be obtained
because the output data of the instruction is cleared.

4-257

4.11 Storage Operation Instructions

4.11.3 Read Data from File (FREAD)

2. Note the following precautions when specifying the registers used in Param. The function cannot be cor-
rectly processed if registers overlap.
» Make sure the registers do not overlap those of another instruction.
» Make sure the registers do not overlap when the same instruction is used in different locations.

Operation Overview
The file specified by FileHndl (File Handle) is closed.

1. If the USB memory device is ejected after a file is opened on the device, the file remains
opened.
2. Always use this instruction to close files opened with FOPEN.

Information

Files cannot be closed in the following cases:

» The processing cannot be executed because the target file is being used in another instruc-
tion.

» The file cannot be saved (e.g., insufficient space on the destination or the directory was
deleted).

» The target file is already closed.
» Four storage operation instructions are already being executed.
« Param is outside the range of registers.

4113 Read Data from File (FREAD)

The target file and data size are specified and the data is read from the target file. The data can
be read up to 2,000 bytes.

Format
The format of this instruction is shown below.
FREARD ‘-

[BE]Emecute [[E] [Eusy]
DEOOOOOD - DEOOOOOT

[LIFileHnd!| .[B]Complete
DLOnom DEOOOONZ

[WSize [E] [Errar]
pwoooo3 | DEOOOO0S
[W] Count [%] [ErrCade]
pwWonon4a pWoooos
[A] Dest [E] [FileEnd]
Da0000B o DEOOOOO4
[A] Param [W] [RdCount]

panooio o Dwooozo

4-258

4.11 Storage Operation Instructions

Details on I/0 Items

4.11.3 Read Data from File (FREAD)

Ladder Language Instructions

Applicable Data Types
1/0 ltem 2 s
B W L Q F D Index | Constant

Execute o™ X X X X X X X X

FileHnd! X X o X X X X x X

Size X O X X X X X X O

Count X O X X X X X X O

Dest X X X X X X o™ X X

Param X X X X X X o™ X X

Busy 3 o"! X X X X X X X X

Complete o't X X X X X X X X

Error ™3 o'l X X X X X X X X

ErrCode ™3 X o*! X X X X X X X

FileEnd * o™ X X X X x x x x

RdCount *3 X o"! X X x X X X X

*1. C and # registers cannot be used.
*2. M, G, or D register only.
*3. Optional.
Details on I/0O Items
I/0 ltem Name I/0 Description
Execute Processing is executed on the rising edge when this bit is

Execute Instruction IN turned ON. The processing itself is executed even if this bit is
turned OFF afterward.

FileHndl File Handle IN Specify the handle of the file to read.

Size Block Size IN The size in bytes of one block of data to read (1 to 2,000).

Count Block Count IN Number of blocks to read (Block Count: 1 to 2,000).

Dest Reaq D?ta IN/OUT | Specify the register address to store the read data.

Destination

Param Parameters IN/OUT | First address of function workspace
This bit is turned ON while the function being executed. This

Busy Processing ouT bit is turned OFF when processing is completed.

This bit is OFF when Execute (Execute Instruction) is OFF.

Complete Processing ouT This bit is turned ON when function execution is completed.

P Completed This bit is OFF when Execute (Execute Instruction) is OFF.
This bit is turned ON if an error occurs during function execu-
tion.

Error Error Occurred OUT | This bit is OFF when Execute (Execute Instruction) is OFF.
However, this bit is turned ON when Param is outside the
range of registers.

This item outputs the error code. Refer to the following sec-
tion for details on error codes.
A dix F Ei Cod

ErrCode Error Code ouT & ppen, P ETor-oaes))

The value is O when Execute (Execute Instruction) is OFF.
However, 8000 hex (Param is outside range of registers) is
output when Param is outside the range of registers.

This bit is turned ON when the EOF (a one-byte code added

FileEnd End of File ouT after the end of a text file) is reached.

This bit is OFF when Execute (Execute Instruction) is OFF.

RdCount Read Block Count OUT | This item stores the number of blocks that were actually read.

Note: 1. If Execute is turned OFF while this instruction is being executed, the processing result cannot be obtained
because the output data of the instruction is cleared.
2. Note the following precautions when specifying the registers used in Param. The function cannot be cor-
rectly processed if registers overlap.
» Make sure the registers do not overlap those of another instruction.
» Make sure the registers do not overlap when the same instruction is used in different locations.

4-259

4.11 Storage Operation Instructions

4.11.4 Write Data to File (FWRITE)

Operation Overview

The data is read from the file specified by FileHndl (File Handle) at the position indicated by the
file position indicator and stored in Dest (Read Data Destination). The file position indicator is

moved by only the size of the data that was read. The size of data to read is calculated as Size
(Block Size) x Count (Block Count). Set the size of data to read to a maximum of 2,000 bytes.

The number of blocks that were actually read is stored in RdCount. Normally RdCount = Count.
If the size of the file is not a multiple of Size, the final block will not be read because it is smaller
than Size, RdCount will be less than Count, and FileEnd will be turned ON. However, if the size
to read (Size x Count) is smaller than the file, RdCount = Count and FileEnd is not turned ON.
When this instruction is executed on an area of the file that exceeds the file size, FileEnd is
turned ON.

File data cannot be read in the following cases:

» The target file cannot be accessed.

» The processing cannot be executed because the target file is being used in another instruc-
tion.

» Four storage operation instructions are already being executed.
» Param is outside the range of registers.

* Size is specified outside the range of registers.

» Count is specified outside the range of registers.

« Size x Count is outside the applicable range.

» The read destination registers are outside the applicable range.

1. The data is handled as little-endian.

2. If the data size from the start position to read up to the end of the file cannot be divided by
the block size, the final block is not written to Dest (Read Data Destination) and FileEnd is
turned ON.

Information

4114 Write Data to File (FWRITE)

The target file and data size are specified and the data is written to the target file. The data can
be written up to 2,000 bytes.

Format
The format of this instruction is shown below.
FWRITE =

[E]lExecute [[B] [Busy]
DEOOOOOD - DEOOOODOY
[LIFileHnd| .[B] Camplete
DLoooot DeEOOOOOZ

[W]Size [BE] [Errar]
owoooo3 0 DEOOOOOS
[W]Count [W] [ErrCade]
pWonoo4d pWooona
[A]Sre [W] [WrCount]
D&A0000E pwoonzo

[A]Param
Dan0o10

4-260

4.11 Storage Operation Instructions

4.11.4 Write Data to File (FWRITE)

Ladder Language Instructions

Applicable Data Types
1/0 Item o s
B W L Q F D A Index | Constant

Execute o™ X X X X X X X X

FileHndlI X X o X X X X X X

Size X O X X X X X X O

Count X O X X X X X X O

Src X X X X X X o™ X X

Param X X X X X X o" X X

Busy ™ o*! X X X X X X X X

Complete ol X X X X X X X X

Error *4 o™ X X X X X X X X

ErrCode ™ X o X X x x X X X

WrCount ™ X oO*! X X X X X X X

*1. C and # registers cannot be used.
*2. M, G, D, or C register only.
*3. M, G, or D register only.
*4. Optional.
Details on I/O Items
ltem Name I/0 Description
Processing is executed on the rising edge when this bit is

Execute Execute Instruction IN turned ON. The processing itself is executed even if this bit
is turned OFF afterward.

FileHndl File Handle IN Specify the handle of the file to write.

Size Block Size IN The size in bytes of one block of data to write (1 to 2,000).

Count Block Count IN Number of blocks to write (Block Count: 1 to 2,000).

Src Write Data Source IN Specify the register address that stores the data to write.

Param Parameters IN/OUT | First address of function workspace
This bit is turned ON while the function being executed. This

Busy Processing ouT bit is turned OFF when processing is completed.

This bit is OFF when Execute (Execute Instruction) is OFF.

Complete Processing ouT This bit is turned ON when function execution is completed.

P Completed This bit is OFF when Execute (Execute Instruction) is OFF.
This bit is turned ON if an error occurs during function exe-
cution.

Error Error Occurred OUT | This bit is OFF when Execute (Execute Instruction) is OFF.
However, this bit is turned ON when Param is outside the
range of registers.

This item outputs the error code. Refer to the following sec-
tion for details on error codes.
IS Appendix F Error Codes

ErrCode Error Code ouT
The value is O when Execute (Execute Instruction) is OFF.
However, 8000 hex (Param is outside range of registers) is
output when Param is outside the range of registers.

WrCount Write Block Count OUT | This item outputs the number of blocks that were written.

Note: 1. If Execute is turned OFF while this instruction is being executed, the processing result cannot be obtained
because the output data of the instruction is cleared.

2.

rectly processed if registers overlap.
» Make sure the registers do not overlap those of another instruction.
» Make sure the registers do not overlap when the same instruction is used in different locations.

Note the following precautions when specifying the registers used in Param. The function cannot be cor-

4-261

4.11 Storage Operation Instructions
4.11.5 Set File Position Indicator (FSEEK)

Operation Overview

The data stored in Src (Write Data Source) is written to the file specified by FileHndl (File Han-
dle) at the position indicated by the file position indicator. After the data is written, execute the
FCLOSE (Close File) instruction to save the file.

The size of data to write is calculated as Size (Block Size) x Count (Block Count). Set the size of
data to write to a maximum of 2,000 bytes.

The file position indicator is moved by only the size of the data that was written.

File data cannot be written in the following cases:

» The processing cannot be executed because the target file is being used in another instruc-
tion.

» Four storage operation instructions are already being executed.
« Param is outside the range of registers.

* Size is specified outside the range of registers.

» Count is specified outside the range of registers.

« Size x Count is outside the applicable range.

» The registers to write are outside the applicable range.

Information The data is handled as little-endian.

4115 Set File Position Indicator (FSEEK)

The file position indicator is set for the specified file and data can be written to the desired posi-
tion in the file.

Format
The format of this instruction is shown below.
FSEEK -

[E]Execute [[B] [Busy]
pDEOOOOOO - DEOOOOOT
[LIFileHnd| ([B]Camplete
bLoon0n1 beOOOODZ

[L]Offzet [E] [Errar]
DLOoooo3 - DeOOOOOS
[Wlarigin [W] [ErrCade]
pwooong pwooone

[a]Param
panonio
Applicable Data Types
I/0 ltem
B w L Q F D A Index | Constant

Execute o™ X X X X X X X X
FileHnd| X X ol X X X X X X
Offset X X O X X X X X O
Origin X O X X X X X X O
Param X X X X X X O*? X X
Busy *? 0! X x x X X X X x
Complete o'! X X X X X X X X
Error ™3 o™ X X x x X X X x
ErrCode ** X o™ X X x x X X X

*1. C and # registers cannot be used.
*2. M, G, or D register only.
*3, Optional.

4-262

4.11 Storage Operation Instructions

4.11.5 Set File Position Indicator (FSEEK)

Details on I/0 Items

I/0 ltem Name 1/0 Description
Processing is executed on the rising edge when this bit is
Execute Execute IN turned ON.
Instruction The processing itself is executed even if this bit is turned OFF
afterward.
FileHndl File Handle IN Specify the handle of the target file.
Offset Offset IN Specify the number of bytes to move from the specified Ori-

gin (Reference Position).

Specify the reference for the offset.

0 (SEEK_SET): Start of the file

Origin Reference Position IN 1 (SEEK_CUR): Current position in the file
2 (SEEK_END): End of the file

Other than above: Error

Param Parameters IN/OUT | First address of function workspace
This bit is turned ON while the function being executed. This
Busy Processing OUT | bit is turned OFF when processing is completed.

This bit is OFF when Execute (Execute Instruction) is OFF.

Processing
Completed

This bit is turned ON when function execution is completed.

out This bit is OFF when Execute (Execute Instruction) is OFF.

Complete

This bit is turned ON if an error occurs during function execu-
tion.

Error Error Occurred ouT This bit is OFF when Execute (Execute Instruction) is OFF.
However, this bit is turned ON when Param is outside the
range of registers.

This item outputs the error code. Refer to the following sec-
tion for details on error codes.

IS Appendix F Error Codes

The value is O when Execute (Execute Instruction) is OFF.
However, 8000 hex (Param is outside range of registers) is
output when Param is outside the range of registers.

ErrCode Error Code ouT

Note: 1. If Execute is turned OFF while this instruction is being executed, the processing result cannot be obtained
because the output data of the instruction is cleared.

2. Note the following precautions when specifying the registers used in Param. The function cannot be cor-
rectly processed if registers overlap.
» Make sure the registers do not overlap those of another instruction.
» Make sure the registers do not overlap when the same instruction is used in different locations.

Operation Overview

The file position indicator is set to the position at which Offset is added to the position specified
by Origin (Reference Position). When Origin is SEEK_END (End of of the file), a position speci-
fied from the end of the file can be set by setting Offset to a negative value.

In the following cases, an error occurs and Error is turned ON.

» The target file cannot be accessed.

» The processing cannot be executed because the target file is being used in another instruc-
tion.

» Four storage operation instructions are already being executed.

« Param is outside the range of registers.

* A file seek error occurred.

» The offset is outside the applicable range (the file area has been exceeded).
« Origin is outside the applicable range.

Ladder Language Instructions

4-263

4.11 Storage Operation Instructions

4.11.6 Read Line from File to String (FGETS)

4116 Read Line from File to String (FGETS)

One line (1,999 characters maximum) is read from the specified file to a text string.

Format

The format of this instruction is shown below.
FRETS ol
[E]Esecute [[E] [Busy]
LEOOOOOO @ DEOOOOOS
[B]Tr imhL [B] Comp late
DEOOOOOZ | DROOOOO4
[LIFileHnd ! ([E] [Erruor]
DLonoot DEOOOOOS

[A]lDeszt [W] [ErrCade]
DAan000eE pwooons
[l Param [E]FileEnd

pDaooo1no o DEOOOOOG
[W] RdCount

pwoooond
/O ltem Applicable Data Types
B W L Q F D A Index | Constant
Execute o™l X X X X X X X X
TrimNL O X X X X X X X X
FileHnd!| X X o™ X X X X X X
Dest X X X X X X 0™ X X
Param X X X X X X 0O*? X X
Busy o*! X X X X X X X X
Complete o"! X X X X X X X X
Error ™3 o™ X X X x X X X x
ErrCode ™3 X o™l X X X X X X X
FileEnd o X X X X X X X X
RdCount X o™ X X X X X X X

*1. C and # registers cannot be used.
*2. M, G, or D register only.
*3. Optional.

4-264

4.11 Storage Operation Instructions

Details on I/0 Items

4.11.6 Read Line from File to String (FGETS)

I/0 Item Name 1/0 Description
Processing is executed on the rising edge when this bit is

Execute Execute IN turned ON.

Instruction The processing itself is executed even if this bit is turned OFF
afterward.

TrimNL Limit Newline IN TRUE: Delete Newline Codes

Codes FALSE: Do Not Delete Newline Codes

FileHndl File Handle IN Specify the handle of the target file.

Read Data . .

Dest Destination IN/OUT | Specify the register address to store the read data.

Param Parameters IN/OUT | First address of function workspace
This bit is turned ON while the function being executed. This

Busy Processing OUT | bit is turned OFF when processing is completed.

This bit is OFF when Execute (Execute Instruction) is OFF.

Complete Processing ouT This bit is turned ON when function execution is completed.

P Completed This bit is OFF when Execute (Execute Instruction) is OFF.
This bit is turned ON if an error occurs during function execu-
tion.

Error Error Occurred ouT This bit is OFF when Execute (Execute Instruction) is OFF.
However, this bit is turned ON when Param is outside the
range of registers.

This item outputs the error code. Refer to the following sec-
tion for details on error codes.
IS Appendix F Error Codes

ErrCode Error Code ouT
The value is 0 when Execute (Execute Instruction) is OFF.
However, 8000 hex (Param is outside range of registers) is
output when Param is outside the range of registers.

This bit is turned ON when the EOF (a one-byte code added

FileEnd End of File OUT | after the end of a text file) is reached.

This bit is OFF when Execute (Execute Instruction) is OFF.

RdCount Read Data Size OUT | This item stores the data size that was read.

Note: 1. If Execute is turned OFF while this instruction is being executed, the processing result cannot be obtained
because the output data of the instruction is cleared.
2. Note the following precautions when specifying the registers used in Param. The function cannot be cor-
rectly processed if registers overlap.
» Make sure the registers do not overlap those of another instruction.
» Make sure the registers do not overlap when the same instruction is used in different locations.

Operation Overview

For the data to read, only one line of data is read from the file specified by FileHndl (File Handle)
at the position indicated by the file position indicator and stored in Dest (Read Data Destina-

tion).

The size of data that can be read with this instruction is up to 1,999 bytes plus the NULL char-
acter. To read a line longer than 1,999 bytes, you must split up the line by executing this
instruction multiple times.

The file position indicator is moved to the next line. If the file position indicator reaches the end
of the file, FileEnd (End of File) is turned ON.

When this instruction is executed on an area of the file that exceeds the file size, FileEnd is

turned ON.

If TRUE (Delete Newline Codes) is selected for TrimNL (Limit Newline Codes), the newline
codes (CR, LF, CRLF) are deleted from the line and then the line is stored in Dest. If FALSE (Do
Not Delete Newline Codes) is selected, the size of the read data also includes the newline

codes.

Ladder Language Instructions

4-265

4.11 Storage Operation Instructions

4.11.7 Write String to File (FPUTS)

In the following cases, one line of the file cannot be read and Error is turned ON.
» The target file cannot be accessed.

» The processing cannot be executed because the target file is being used in another instruc-
tion.

» Four storage operation instructions are already being executed.
« Param is outside the range of registers.
» The read destination registers are outside the applicable range.

« If an out of range error (8113 hex) occurs while this instruction is being executed, the file
position indicator is moved to the location that was processed before the error occurred.
To execute this instruction after an out of range error has occurred, redo the processing from
the location at which the file is once again opened.

411.7

Write String to File (FPUTS)

4-266

A text string (1,999 characters maximum) is written to the specified file.

Format
The format of this instruction is shown below.
FRUTS -

[E]lExecute [[B] [Busy]
DEOOOOOD DEOOOOOY
[LIFileHnd] ([B]Camplete

pLoooot o DEOOOO0Z

[A]Src [E] [Errar]
DaOOoogE 0 DEOOOOOS
[a]Param [W] [ErrCode]

paoonio pioooos

Appli le Data Ty
VO ltem B w L opp cablia T)g)es A | Index | Constant
Execute o™l X X X X X X X X
FileHnd! X X o't X X X X X X
Src X X X X X X 0O*? X X
Param X X X X X X o" X X
Busy ™ o™ x x X X X x X X
Complete o"! X X X X X X X X
Error ™ o X X X X X X X X
ErrCode ™ X o*! X X X X X X X

*1. C and # registers cannot be used.
*2. M, G, D, or C register only.

*3. M, G, or D register only.

*4. Optional.

4.11 Storage Operation Instructions

4.11.7 Write String to File (FPUTS)

Details on I/0 Items

Iltem Name 1/0 Description
Processing is executed on the rising edge when this bit is turned
Execute Execute Instruction IN ON.
The processing itself is executed even if this bit is turned OFF
afterward.
FileHndl File Handle IN Specify the handle of the target file.
Src Write Data Source IN Specify the register address that stores the data to write.
Param Parameters IN/OUT | First address of function workspace
This bit is turned ON while the function being executed. This bit
Busy Processing ouT is turned OFF when processing is completed.
This bit is OFF when Execute (Execute Instruction) is OFF.
Processing This bit is turned ON when function execution is completed.
Complete | 5o moleted OUT | This bit is OFF when Execute (Execute Instruction) is OFF,

This bit is turned ON if an error occurs during function execution.
This bit is OFF when Execute (Execute Instruction) is OFF. How-

Error Error Occurred out ever, this bit is turned ON when Param is outside the range of
registers.
This item outputs the error code. Refer to the following section
for details on error codes.
A dix F Ei Cod
ErrCode Error Code ouT I Appendix F Error Codes

The value is 0 when Execute (Execute Instruction) is OFF. How-
ever, 8000 hex (Param is outside range of registers) is output
when Param is outside the range of registers.

Note: 1. If Execute is turned OFF while this instruction is being executed, the processing result cannot be obtained
because the output data of the instruction is cleared.

2. Note the following precautions when specifying the registers used in Param. The function cannot be cor-
rectly processed if registers overlap.
» Make sure the registers do not overlap those of another instruction.
» Make sure the registers do not overlap when the same instruction is used in different locations.

Operation Overview

The data stored in Src (Write Data Source) is written to the file specified by FileHndl (File Han-
dle) at the position indicated by the file position indicator. After the data is written, execute the
FCLOSE (Close File) instruction to save the file.

To insert a newline, add newline codes (CR, LF) in the input text string.

The size of data that can be written at one time is up to 1,999 bytes plus the NULL character. If
newline codes are added to the line, the size of the newline codes is also included.

In the following cases, the text string cannot be written to the file and Error is turned ON.

» The target file cannot be accessed.

» The processing cannot be executed because the target file is being used in another instruc-
tion.

» Four storage operation instructions are already being executed.
« Param is outside the range of registers.
» The write registers are outside the applicable range.

Ladder Language Instructions

4-267

4.11 Storage Operation Instructions

4.11.8 Copy File (FCOPY)

4118 Copy File (FCOPY)

4-268

The specified file is copied.

Format

The format of this instruction is shown below.

s
FCOopy
[E]Execute [[E] [Busy]
DEOOOOOD - DEOOOOO
[W0ption [E] Camp lete
oWoooot1) DEOOOOOZ
[AlSrecFile ([E] [Erraor]
paQoons | DEOOOOOS
[AlD=stFile [W] [ErrCodel
DanonnkE pwoonnz

[a] Param
panonin
Applicable Data Types
I/O ltem
B W L Q F D A Index | Constant
Execute ol X X X X X X X X
Option X @) X X X X X X O
SrcFile X X X X X X o™ X X
DstFile X X X X X X okt X X
Param X X X X X X o" X X
Busy ™ o'l X x X X X X X X
Complete o X X X X X X X X
Error ** o X X X X X X X X
ErrCode ™ X o*! X X X X X X X
*1. C and # registers cannot be used.
*2. M, G, D, or C register only.
*3. M, G, or D register only.
*4, Optional.
Details on I/0 Items
1/0O Item Name 1/0 Description
£ ¢ Processing is executed on the rising edge when this bit is turned ON.
Execute | xecute IN The processing itself is executed even if this bit is turned OFF after-
nstruction
ward.
. . . Refer to the following section for details on option settings.
Option Option Settings N IS Option Settings on page 4-273
Specify the first register in which the source file name (drive name +
folder names + file name) of the write data has been stored.
Specify the folder names and file name up to 250 alphanumeric charac-
SrcFile Source File IN ters plus the NULL character.
Name Drive name: “1:/”: OOOUSB memory device, “2:/”: OOOBuUIlt-in

RAM
If the drive name is omitted, the USB memory device is selected.
» Folder names: The separator between folders is “/”.

Continued on next page.

4.11 Storage Operation Instructions

4.11.8 Copy File (FCOPY)

Continued from previous page.

1/0O ltem Name 1/0 Description

Specify the first register in which the destination file name (drive name +
folder names + file name) of the read data has been stored.
Specify the folder names and file name up to 250 alphanumeric charac-

DstFile Destination File IN ters .plus the NULL character. ‘ .
Name * Drive name: “1:/”: OOOUSB memory device, “2:/”: OOOBuilt-in
RAM
If the drive name is omitted, the USB memory device is selected.
 Folder names: The separator between folders is “/”.
Param Parameters IN/OUT | First address of function workspace
This bit is turned ON while the function being executed. This bit is
Busy Processing OUT | turned OFF when processing is completed.
This bit is OFF when Execute (Execute Instruction) is OFF.
Com- Processing This bit is turned ON when function execution is completed.

ouT

plete Completed This bit is OFF when Execute (Execute Instruction) is OFF.

This bit is turned ON if an error occurs during function execution.
Error Error Occurred | OUT | This bit is OFF when Execute (Execute Instruction) is OFF. However, this
bit is turned ON when Param is outside the range of registers.

This item outputs the error code. Refer to the following section for
details on error codes.

I3 Appendix F Error Codes

The value is O when Execute (Execute Instruction) is OFF. However,
8000 hex (Param is outside range of registers) is output when Param is
outside the range of registers.

ErrCode | Error Code ouT

Note: 1. If Execute is turned OFF while this instruction is being executed, the processing result cannot be obtained
because the output data of the instruction is cleared.

2. Note the following precautions when specifying the registers used in Param. The function cannot be cor-
rectly processed if registers overlap.
» Make sure the registers do not overlap those of another instruction.
» Make sure the registers do not overlap when the same instruction is used in different locations.

Option Settings

Bit Meaning

Overwrite Permission Setting
0 OFF: Overwriting is prohibited
ON: Overwriting is permitted

1to F | Reserved for system (set to 0).

Operation Overview

The file specified by SrcFile (Source File Name) is copied to the file specified by DstFile (Destination File
Name).

If a file with the same name already exists, the file is copied according to the overwrite permis-
sion setting in Option (Option Settings). If the overwrite permission setting is set to prohibit
overwriting, an error occurs and the file is not copied.

Information Only ASCII characters can be used for file and directory names.

In the following cases, the file cannot be copied and Error is turned ON.
» The specified path does not exist.
» The target file cannot be accessed.

» The processing cannot be executed because the target file is being used in another instruc-
tion.

 Four storage operation instructions are already being executed.

« File name error (no NULL before the maximum number of characters or no NULL in range of
registers).

« Param is outside the range of registers.

A file with the same name already exists when overwriting is prohibited.

Ladder Language Instructions

4-269

4.11 Storage Operation Instructions

4.11.9 Delete File (FREMOVE)

4119 Delete File (FREMOVE)

The specified file is deleted.

Format
The format of this instruction is shown below.
FREMOVE
[B]Execute [[E] [Busy]
DEOOODOD @ DEOOOOOY
[A]FileName .[E]Complete
DaDonos DEOOOOOZ
[A] Param [E] [Errar]
paooo1o o DEOOOOOZ
[W] [ErriCade]
pwoonnt
Applicable Data Types
I/0 ltem 2 U
B W L Q F D A Index | Constant
Execute o X X X X X X X X
FileName X X X X X X o™ X X
Param X X X X X X o" X X
Busy ™ o™ X X X X X X X X
Complete o X X X X X X X X
Error ** ol X X X X X X X X
ErrCode ™ X X o*! X X X X X X
*1. C and # registers cannot be used.
*2. M, G, D, or C register only.
*3. M, G, or D register only.
*4. Optional.
Details on I/0 Items
I/0 Item Name 1/0 Description
Execute Processing is executed on the rising edge when this bit is turned ON.
Execute X IN The processing itself is executed even if this bit is turned OFF after-
Instruction ward
Specify the first register in which the applicable file name (drive name
+ folder names + file name) has been stored.
Specify the folder names and file name up to 250 alphanumeric char-
. . acters plus the NULL character.
FileName | File Name IN" | . Drive name: “1:/”: DOOUSB memory device, “2:/": OODBuilt-in
RAM
If the drive name is omitted, the USB memory device is selected.
» Folder names: The separator between folders is “/”.
Param Parameters IN/OUT | First address of function workspace
This bit is turned ON while the function being executed. This bit is
Busy Processing OUT | turned OFF when processing is completed.
This bit is OFF when Execute (Execute Instruction) is OFF.
Processing This bit is turned ON when function execution is completed.
Complete Completed ouT This bit is OFF when Execute (Execute Instruction) is OFF.
Error This bit is turned ON if an error occurs during function execution.
Error Ocourred OUT | This bit is OFF when Execute (Execute Instruction) is OFF. However,
this bit is turned ON when Param is outside the range of registers.

4-270

Continued on next page.

4.11 Storage Operation Instructions

4.11.10 Rename File (FRENAME)

Continued from previous page.
I/0O Item Name 1/0 Description

This item outputs the error code. Refer to the following section for
details on error codes.
IS Appendix F Error Codes

The value is 0 when Execute (Execute Instruction) is OFF. However,
8000 hex (Param is outside range of registers) is output when Param
is outside the range of registers.

ErrCode Error Code ouT

Note: 1. If Execute is turned OFF while this instruction is being executed, the processing result cannot be obtained
because the output data of the instruction is cleared.

2. Note the following precautions when specifying the registers used in Param. The function cannot be cor-
rectly processed if registers overlap.
» Make sure the registers do not overlap those of another instruction.
» Make sure the registers do not overlap when the same instruction is used in different locations.

Operation Overview
The file specified by FileName (File Name) is deleted.

Information Only ASCII characters can be used for file and directory names.

In the following cases, the file cannot be deleted and Error is turned ON.
» The target file cannot be accessed.

» The processing cannot be executed because the target file is being used in another instruc-
tion.

» Four storage operation instructions are already being executed.
» Param is outside the range of registers.

« File name error (no NULL before the maximum number of characters or no NULL in range of
registers).

@ Do not delete files that have been opened.

Important

41110

Rename File (FRENAME)

The specified file is renamed.

Format
The format of this instruction is shown below.

FREWAME

[ElExecute [[E] [Busy]
DEOOOOON - DEOOOOOT
[W]option [E]Comp late
pwoooot pDEOOOONZ

[l SrecFile ([E] [Errar]
DAOOOOS | DEOOOOOA
[AlO=tFile [W] [ErrCode]
Da0000eE bwoonne

[A] Param
pannotn

Ladder Language Instructions

4-271

4.11 Storage Operation Instructions

4.11.10 Rename File (FRENAME)

4-272

Applicable Data Types
I/0 ltem . 5
B W L Q F D A Index | Constant
Execute ol X X X X X X X X
Option X O X X X X X X @]
SrcFile X X X X X X o™ X X
DstFile X X X X X X 0™ X X
Param X X X X X X o* X X
Busy ™ o X X X X X X X X
Complete o'! X X X X X X X X
Error ™ ol X X X X x X X X
ErrCode ™ X o*! X X X X X X X
*1. C and # registers cannot be used.
*2. M, G, D, or C register only.
*3. M, G, or D register only.
*4. Optional.
Details on I/0 Items
I/0 ltem Name 1/0 Description
Execute Processing is executed on the rising edge when this bit is turned ON.
Execute | X IN The processing itself is executed even if this bit is turned OFF after-
nstruction
ward.
. . . Refer to the following section for details on option settings.
Option Option Settings IN I Option Settings on page 4-273
Specify the first register in which the source file name (drive name +
folder names + file name) of the write data has been stored.
Specify the folder names and file name up to 250 alphanumeric char-
SrcFile Source File IN acters plus the NULL character.
Name « Drive name: “1:/”: OOOUSB memory device, “2:/”: OOOBUIlt-in
RAM
If the drive name is omitted, the USB memory device is selected.
« Folder names: The separator between folders is “/”.
Specify the first register in which the destination file name (drive name
+ folder names + file name) of the read data has been stored.
Specify the folder names and file name up to 250 alphanumeric char-
DstFile Destination File IN acters plus the NULL character.
Name « Drive name: “1:/”: OOOUSB memory device, “2:/”: OOOBUIlt-in
RAM
If the drive name is omitted, the USB memory device is selected.
» Folder names: The separator between folders is “/”.
Param Parameters IN/OUT | First address of function workspace
This bit is turned ON while the function being executed. This bit is
Busy Processing OUT | turned OFF when processing is completed.
This bit is OFF when Execute (Execute Instruction) is OFF.
Complete Processing ouT This bit is turned ON when function execution is completed.
P Completed This bit is OFF when Execute (Execute Instruction) is OFF.
This bit is turned ON if an error occurs during function execution.
Error Error Occurred OUT | This bit is OFF when Execute (Execute Instruction) is OFF. However,
this bit is turned ON when Param is outside the range of registers.
This item outputs the error code. Refer to the following section for
details on error codes.
A dix F Ei Cod.
ErrCode | Error Code ouT = ppen_ p FError-odes .
The value is O when Execute (Execute Instruction) is OFF. However,
8000 hex (Param is outside range of registers) is output when Param
is outside the range of registers.

Note: 1. If Execute is turned OFF while this instruction is being executed, the processing result cannot be obtained
because the output data of the instruction is cleared.
2. Note the following precautions when specifying the registers used in Param. The function cannot be cor-
rectly processed if registers overlap.
» Make sure the registers do not overlap those of another instruction.
» Make sure the registers do not overlap when the same instruction is used in different locations.

4.11 Storage Operation Instructions

4.11.10 Rename File (FRENAME)

Option Settings

Bit Meaning

Overwrite Permission Setting
0 OFF: Overwriting is prohibited
ON: Overwriting is permitted

1to F | Reserved for system (set to 0).

Operation Overview

The file specified by SrcFile (Source File Name) is renamed to the name specified by DstFile
(Destination File Name). Directories can also be renamed in the same manner.

If different directories are specified by SrcFile and DstFile, the files are moved to the directory
specified by DstFile. However, different drive names cannot be specified by SrcFile and DstFile.

If a file with the same name already exists, the file is copied according to the overwrite permis-
sion setting in Option (Option Settings). If the overwrite permission setting is set to prohibit
overwriting, an error occurs and renaming a file, moving files, and overwriting directories can-
not be executed.

Information Only ASCII characters can be used for file and directory names.

In the following cases, the file cannot be renamed and Error is turned ON.
» The specified path does not exist.
» The target file cannot be accessed.

» The processing cannot be executed because the target file is being used in another instruc-
tion.

» Four storage operation instructions are already being executed.

« Param is outside the range of registers.

* File name error (no NULL before the maximum number of characters or no NULL in range of
registers).

A file with the same name already exists when overwriting is prohibited.

Q 1. Do not change text strings used as input values while the instruction is being executed.
@ 2. Do not access the same file with multiple storage instructions at the same time.

Important - DO Not rename a directory that contains files that have been opened.

Ladder Language Instructions

4-273

4.11 Storage Operation Instructions

4.11.11 Create Directory (DCREATE)

41111 Create Directory (DCREATE)

4-274

A directory is created with the specified name.

Format
The format of this instruction is shown below.
DCREATE
[E]lExecute [[B] [Busy]
pEOOOOOD - DEOOOOO
[AlDirHame [B]Complete
pa0000s o DEOOOODOZ
[A]Param [BE] [Errar]
proo010 o DBOOOOO3
[W] [ErrCade]
pwoonot
/O ltem Applicable Data Types
B W L Q F D A Index | Constant
Execute o X X X X X X X X
DirName X X X X X X o) X X
Param X X X X X X o" X X
Busy ™ ol X X X x x X X X
Complete ol X X X X X X X X
Error ** o X X X X X X X X
ErrCode ™ X o*! X X X X X X X
*1. C and # registers cannot be used.
*2. M, G, D, or C register only.
*3. M, G, or D register only.
*4, Optional.
Details on I/0 Items
ltem Name 1/0 Description
Execute Execute IN Processing is executed on the rising edge when this bit is turned ON.
Instruction The processing itself is executed even if this bit is turned OFF afterward.
Specify the first register in which the target directory name (drive name +
folder names) has been stored. Specify the folder name up to 200 alpha-
numeric characters plus the NULL character.
DirName Directory IN * Drive name: “1:/”: ...USB memory device
Name “2:/7: ...Built-in RAM
(If the drive name is omitted, the USB memory device is
selected.)
« Directory name: The separator between directories is “/”.
Param Parameters | IN/OUT | First address of function workspace
This bit is turned ON while the function being executed. This bit is turned
Busy Processing OUT | OFF when processing is completed.
This bit is OFF when Execute (Execute Instruction) is OFF.
Processing This bit is turned ON when function execution is completed.
Complete | completed | YT | This bit is OFF when Execute (Execute Instruction) is OFF.
Error This bit is turned ON if an error occurs during function execution.
Error Occurred OUT | This bit is OFF when Execute (Execute Instruction) is OFF. However, this
bit is turned ON when Param is outside the range of registers.

Continued on next page.

4.11 Storage Operation Instructions

4.11.11 Create Directory (DCREATE)

Continued from previous page.

ltem Name I/0 Description

This item outputs the error code. Refer to the following section for details
on error codes.

IS Appendix F Error Codes

The value is O when Execute (Execute Instruction) is OFF. However, 8000

hex (Param is outside range of registers) is output when Param is outside
the range of registers.

ErrCode | Error Code ouT

Note: 1. If Execute is turned OFF while this instruction is being executed, the processing result cannot be obtained
because the output data of the instruction is cleared.

2. Note the following precautions when specifying the registers used in Param. The function cannot be cor-
rectly processed if registers overlap.
» Make sure the registers do not overlap those of another instruction.
» Make sure the registers do not overlap when the same instruction is used in different locations.

Operation Overview
The directory specified by DirName (Directory Name) is created.

Information Only ASCII characters can be used for file and directory names.

In the following cases, the directory cannot be created and Error is turned ON.
» The directory name already exists.

+ A path was specified that does not exist.

» The target file cannot be accessed.

» The processing cannot be executed because the target file is being used in another instruc-
tion.

 Other storage operation instructions are already being executed.
» Param is outside the range of registers.

+ Directory name error (no NULL before the maximum number of characters or no NULL in
range of registers).

2 » Do not change text strings used as input values while the instruction is being executed.

@ » Do not access the same file with multiple storage instructions at the same time.
» Do not rename a directory that contains files that have been opened.

Important » The DCREATE instruction and DREMOVE instruction cannot be executed at the same time.

Ladder Language Instructions

4-275

4.11 Storage Operation Instructions

4.11.12 Delete Directory (DREMOVE)

41112 Delete Directory (DREMOVE)

4-276

The specified directory is deleted. All files and subdirectories inside the directory are deleted.

Format

The format of this instruction is shown below.

OREMOYE

[E]Execute [[B] [Busy]
DEOOODOD - DEOOOOO]
[AlDirMame [B]lComplete
panOoos) DEOOOOOZ

[A] Param [B] [Errar]
paoooi1n o DEOOOOOS
[W] [ErrCade]

pWoooont
Applicable Data Types
I/0 ltem EE 8
B W L Q F D A Index | Constant
Execute o’'! X X X X X X X X
DirName X X X X X X o™ X X
Param X X X X X X o" X X
Busy ™ o™ X X X X X X X X
Complete o! X X X X X X X X
Error ™ o™l X X X X X X X X
ErrCode ™ X ol X X X X X X X
*1. C and # registers cannot be used.
*2. M, G, D, or C register only.
*3. M, G, or D register only.
*4. Optional.
Details on I/0 Items
Iltem Name 1/0 Description
Execute Processing is executed on the rising edge when this bit is turned ON.
Execute : IN The processing itself is executed even if this bit is turned OFF after-
Instruction
ward.
Specify the first register in which the target directory name (drive name
+ folder names) has been stored. Specify the folder name up to 200
alphanumeric characters plus the NULL character.
DirName Directory IN * Drive name: “1:/”: ...USB memory device
Name “2:/7: ...Built-in RAM
(If the drive name is omitted, the USB memory device is
selected.)
« Directory name: The separator between directories is “/”.
Param Parameters IN/OUT | First address of function workspace
This bit is turned ON while the function being executed. This bit is
Busy Processing ouT turned OFF when processing is completed.
This bit is OFF when Execute (Execute Instruction) is OFF.
Complete Processing ouT This bit is turned ON when function execution is completed.
P Completed This bit is OFF when Execute (Execute Instruction) is OFF.
Error This bit is turned ON if an error occurs during function execution.
Error Occurred ouT This bit is OFF when Execute (Execute Instruction) is OFF. However,
this bit is turned ON when Param is outside the range of registers.

Continued on next page.

4.11 Storage Operation Instructions

4.11.13 Send File to FTP Server (FTPPUT)

Continued from previous page.
ltem Name 1/0 Description
This item outputs the error code. Refer to the following section for
details on error codes.
5 Appendix F Error Codes
The value is 0 when Execute (Execute Instruction) is OFF. However,

8000 hex (Param is outside range of registers) is output when Param
is outside the range of registers.

ErrCode Error Code ouT

Note: 1. If Execute is turned OFF while this instruction is being executed, the processing result cannot be obtained
because the output data of the instruction is cleared.

2. Note the following precautions when specifying the registers used in Param. The function cannot be cor-
rectly processed if registers overlap.
» Make sure the registers do not overlap those of another instruction.
» Make sure the registers do not overlap when the same instruction is used in different locations.

Operation Overview

The directory specified by DirName (Directory Name) is deleted. All files and subdirectories
inside the directory are deleted.

Information Only ASCII characters can be used for file and directory names.

In the following cases, the directory cannot be deleted and Error is turned ON.
» The target file cannot be accessed.

» The processing cannot be executed because the target file is being used in another instruc-
tion.

 Other storage operation instructions are already being executed.
« Param is outside the range of registers.

+ Directory name error (no NULL before the maximum number of characters or no NULL in
range of registers).

S » Do not access the same file with multiple storage instructions at the same time.
@ » Do not rename a directory that contains files that have been opened.
» The DCREATE instruction and DREMOVE instruction cannot be executed at the same time.

Important Do not change text strings used as input values while the instruction is being executed.

411.13

Send File to FTP Server (FTPPUT)

The specified file is transferred to the FTP server.

Format
The format of this instruction is shown below.
FTRRUT =

[E]Execute [[E] [Busy]
DEOOOOOD : DEOOOOOT
[W] Or w=Ho [E]Comp late
pw oo DEOOOONZ
[W] Option [E] [Errar]
pwooooz 0 DeEOOOO0A
[AlSrcFile [W] [ErrCode]

pAnOONG ownnoog
[A] Param
panoatn

Ladder Language Instructions

4-277

4.11 Storage Operation Instructions

4.11.13 Send File to FTP Server (FTPPUT)

4-278

Applicable Data Types
I/0 ltem Bl 5
B W L Q D A Index | Constant

Execute o™l X X X X X X X X

Drv-No X @] X X X X X X O

Option X O X X X X X X O

SrcFile X X X X X X o*? X X

Param X X X X X X o" X X

Busy ™ o™ X X X X X X X X

Complete o X X X X X X X X

Error ** o X X X X X X X X

ErrCode ™ X o™ X X X X X X X

*1. C and # registers cannot be used.
*2. M, G, D, or C register only.
*3. M, G, or D register only.
*4. Optional.
Details on I/0 Items
I/0 ltem Name I/0 Description

Processing is executed on the rising edge when this bit is

Execute Execute IN turned ON.

Instruction The processing itself is executed even if this bit is turned OFF
afterward.
: . Destination drive number (101 to 120: FTP server)

Drv-No Drive Number IN Configure these settings in “FTP Client Settings”.

. . . Refer to the following section for details on option settings.

Option Option Settings N IZ Option Settings on page 4-279
Specify the first register in which the source file name (drive
name + folder names + file name) has been stored.

e Drive name: “1:/”: OOOUSB memory device, “2:/”:
OO0OBuilt-in RAM
If the drive name is omitted, the USB memory device is
selected.

« Folder names: The separator between folders is “/”.

) . The maximum number of characters for the path (including

SrcFile Source File Name IN the drive name, folder names, and separators):

« When “1:/” or “2:/” is added to the drive name, the maxi-
mum number of characters is 61 characters plus the NULL
character.

* When the drive name is omitted, the maximum number of
characters is 58 characters plus the NULL character. Spec-
ify the file name up to 31 characters plus the NULL charac-
ter.

Param Parameters IN/OUT | First address of function workspace
This bit is turned ON while the function being executed. This

Busy Processing ouT bit is turned OFF when processing is completed.

This bit is OFF when Execute (Execute Instruction) is OFF.

Complete Processing ouT This bit is turned ON when function execution is completed.

P Completed This bit is OFF when Execute (Execute Instruction) is OFF.

This bit is turned ON if an error occurs during function execu-

tion.

Error Error Occurred ouT This bit is OFF when Execute (Execute Instruction) is OFF.
However, this bit is turned ON when Param is outside the
range of registers.

This item outputs the error code. Refer to the following sec-

tion for details on error codes.

I5 Appendix F Error Codes

ErrCode Error Code ouT
The value is O when Execute (Execute Instruction) is OFF.
However, 8000 hex (Param is outside range of registers) is
output when Param is outside the range of registers.

4.11 Storage Operation Instructions

4.11.13 Send File to FTP Server (FTPPUT)

Note: 1. If Execute is turned OFF while this instruction is being executed, the processing result cannot be obtained
because the output data of the instruction is cleared.

2. Note the following precautions when specifying the registers used in Param. The function cannot be cor-
rectly processed if registers overlap.
» Make sure the registers do not overlap those of another instruction.
» Make sure the registers do not overlap when the same instruction is used in different locations.

Option Settings

Bit Meaning
0 Reserved for system (set to 0).

Setting to Delete the File after the FTP Transfer Is Completed
1 OFF: Do not delete
ON: Delete

2 to F | Reserved for system (set to 0).

Operation Overview
The file specified by SrcFile is transferred to the FTP server specified by Drv-No.

Information Only ASCII characters can be used for file and directory names.

In the following cases, the file cannot be transferred to the FTP server and Error is turned ON.
» The target file cannot be accessed.

» The processing cannot be executed because the target file is being used in another instruc-
tion.

« Other storage operation instructions are already being executed.
« Param is outside the range of registers.

* File name error (no NULL before the maximum number of characters or no NULL in range of
registers).

@ Multiple FTPPUT instructions cannot be executed at the same time.

Important

Ladder Language Instructions

4-279

4.12 String Operation Instructions

4.12.1 Convert Integer to String (INT2STR)

‘%P4 String Operation Instructions

4.12.1

Convert Integer to String (INT2STR)

4-280

An integer is converted to a text string.

Format
The format of this instruction is shown below.
INT25TR

[WLolIn [A]l Dest

DEoaoza paADOO10
[Woption [E]5t=

pwonoot o DENOOOND
[WIHinLen

pioono2

/O ltem Applicable Data Types
B w L Q F D A Index | Constant

In X O @] O X X X X O

Option X O X X X X X X O

MinLen X O X X X X X X X

Dest X X X X X X oO"! X X

Sts 2 o"! X X x X X X X X

*1. M, G, or D register only.
*2. Optional.
Details on I/0 Items
I/0 Item Name 1/0 Description

In Numeric Value IN Specify the register or numeric value to convert.

. . . Refer to the following section for details on option settings.

Option Option Settings N I Option Settings on page 4-280

.. Specify the minimum number of digits (0 to 127).
MinLen g/]lclglmﬁgq Number IN Leading spaces are added if the numeric value is less than
9 the minimum number of digits.
. Specify the register to store the output text string.

Dest Output Text String out Output processing is not performed when Sts (Status) is ON.
Status is turned OFF when processing was performed nor-
mally.

Status is turned ON when the following errors occur.
» The number of characters exceeds the maximum value.

Sts Status OUT |« The text string to output exceeds the maximum range of

registers.

» MinLen is outside the applicable range.

« The input value cannot be converted correctly (Option or
MinLen are outside the applicable range).

Option Settings

Bit Description
0 ON: Hexadecimal notation
OFF: Decimal notation
; ON: Pad upper digits with zeros if less than the maximum number of digits
OFF: Do not pad upper digits with zeros if less than the maximum number of digits
2to F | Reserved for system (set to 0).

4.12 String Operation Instructions

4.12.1 Convert Integer to String (INT2STR)

Operation Overview

The value of In (Numeric Value) is converted to a text string and stored in Dest (Output Text
String). Spaces are added to the text string if the number of digits is less than the minimum
number of digits specified by MinLength (Minimum Number of Digits). Switch between decimal
and hexadecimal notation with the hexadecimal notation setting in Option (Option Settings).

In = 123, MinLen = 2, Option = 0x0000 (decimal notation and no zero padding) —
Dest = “123”

In = 123, MinLen = 7, Option = 0x0000 (decimal notation and no zero padding) —
Dest=" 123"

In = 123, MinLen = 7, Option = 0x0002 (decimal notation and zero padding) —

Dest = “0000123”

In =-123, MinLen = 7, Option = 0x0002 (decimal notation and zero padding) —

Dest = “-000123”

In =123, MinLen = 2, Option = 0x0001 (hexadecimal notation and no zero padding) —
Dest = “7B”

In =123, MinLen = 7, Option = 0x0001 (hexadecimal notation and no zero padding) —
Dest=* 7B

In = 123, MinLen = 7, Option = 0x0003 (hexadecimal notation and zero padding) —
Dest = “000007B”

In = -123, MinLen = 7, Option = 0x0003 (hexadecimal notation and zero padding) —
Dest = “O00FF85”

\@ If the same text string data is accessed by different tasks at the same time, the data may be cor-
rupted. Create the program so that the data is not accessed by different tasks at the same time.
Important

Ladder Language Instructions

4-281

4.12 String Operation Instructions

4.12.2 Convert Real Number to String (REAL2STR)

4122 Convert Real Number to String (REAL2STR)

A real number is converted to a text string.

Format

The format of this instruction is shown below.
REALZSTR “«

[FOIln [A] Dest

DFOO020 paoonto
[Woption [E]5t=
owoooom DEOOOOON

[WIKinLen
pioonaz
[WDecLen
pwonoons
Applicable Data Types
I/0 ltem EE 8
B W L F D A Index | Constant
In X X X X O O X X O
Option X O X X X X X X O
MinLen X O X X X X X X O
Declen X O X X X X X X O
Dest X X X X X X o™ X X
Sts *2 o™l X X X X X X X X
*1. M, G, or D register only.
*2. Optional.
Details on I/0 Items
ltem Name 1/0 Description
In Numeric Value IN Specify the converted register to convert.
. . , Refer to the following section for details on option settings.
Option Option Settings N IZ Option Settings on page 4-283
Minimum Number Specify the minimum number of digits (0 to 327). Leading
MinLen IN spaces are added if the numeric value is less than the mini-

of Digits mum number of digits.

Number of Digits

Declen in Decimal Part

IN Specify the number of digits in the decimal part (0 to 15).

Specify the register to store the output text string (327 bytes
Dest Output Text String OUT | maximum).
Output processing is not performed when Sts (Status) is ON.

Status is turned OFF when processing was performed nor-

mally.

Status is turned ON when the following errors occur.

» The number of characters exceeds the maximum value.

» The text string to output exceeds the maximum range of
registers.

» MinLen or Declen is outside the applicable range.

» The input value cannot be converted correctly.

Sts Status ouT

4-282

4.12 String Operation Instructions

4.12.3 Convert String to Integer (STR2INT)

Option Settings

Bit Description

ON: Exponent notation
OFF: Decimal point notation

ON: Omit + sign (“-” is not omitted)
OFF: Do not omit + sign

2 to F | Reserved for system (set to 0).

0

1

Operation Overview

The value of In (Numeric Value) is converted to a text string and stored in Dest (Output Text
String).

For MinLen (Minimum Number of Digits), set the minimum number of digits. Spaces are added
to the beginning of the text string if the number of digits is less than the minimum number of
digits specified by MinLength.

For DeclLen (Number of Digits in Decimal Part), set the number of digits in the decimal part. The
part that cannot be displayed is rounded.

Set exponent notation with Option (Option Settings).

A@ If the same text string data is accessed by different tasks at the same time, the data may be cor-
rupted. Create the program so that the data is not accessed by different tasks at the same time.
Important

4123

Convert String to Integer (STR2INT)

A text string is converted to an integer.

Ladder Language Instructions

Format
The format of this instruction is shown below.
STRZINT
[A]l Sre [WLR] out
Lanooin

owoonn

[E]5t=

DEOOOANO

/O ltem Applicable Data Types
B W L Q F D A Index | Constant

Src X X X X X X oO*! X X
Out X o O™ O™ X X X X X
Sts ™3 o™ X x X X X X x x

*1. M, G, D, or C register only.
*2. M, G, or D register only.
*3. Optional.

4-283

4.12 String Operation Instructions

4.12.4 Convert String to Real Number (STR2REAL)

Details on 1I/0 Items

1/0O ltem Name 1/0 Description
Src Input Text String IN Specify the first register in which the text string to input is stored.
Out Output Value ouUT This item outputs the integer.

0 is output when Sts (Status) is ON.

Status is turned OFF when processing was performed normally.
Status is turned ON when the following errors occur.

Sts Status out |, The number of characters exceeds the maximum value.

» The input value cannot be converted correctly.

Operation Overview

The text string in Src (Input Text String) is converted to an integer and stored in Out (Output
Value). The text string in Src can be composed of only the characters O to 9. Note that the text
string can also be correctly converted if “+” or “-” indicating the sign is at the beginning of the
text string.

e Src = “12345” — Out = 12345

* Src = “+12345” — Out= 12345

» Src = “-12345" — Out= -12345

\@ If the same text string data is accessed by different tasks at the same time, the data may be cor-
rupted. Create the program so that the data is not accessed by different tasks at the same time.
Important

4124 Convert String to Real Number (STR2REAL)

A text string is converted to a real number (single-precision floating-point value or double-pre-
cision floating-point value).

Format
The format of this instruction is shown below.
STRZREAL
[A]Src [FO]Out
Danootn DFOOOZ0
[E]5t=
DEOOOOOO
Appli
/O ltem pplicable Data Types
B W L Q F D A Index | Constant
Src X X X X X X o'! X X
Out X X X X o™ o X X X
Sts ™3 0*? X X X X X X X X

*1. M, G, D, or C register only.
*2. M, G, or D register only.
*3, Optional.

4-284

4.12 String Operation Instructions

4.12.4 Convert String to Real Number (STR2REAL)

Details on I/0 Items

1/0O ltem Name 1/0 Description
Src Input Text String IN Specify the first register in which the text string to input is stored.

ouT This item outputs the real number.
0 is output when Sts (Status) is ON.

Status is turned OFF when processing was performed normally.
Status is turned ON when the following errors occur.
» The number of characters exceeds the maximum value.
» The input value cannot be converted correctly.
St Stat ouT
s ats » When FLOAT type is specified for Out (Output Value) and the
absolute value of Out is larger than the range of FLOAT.

Note: When the absolute value of Out is smaller than the range of FLOAT, no
error occurs and “0.0” is output.

Out Output Value

Operation Overview

The text string in Src (Input Text String) is converted to a real number and stored in Out (Output
Value). Input Src with the following format.

« Sign: “+”, “-”, or no sign.

* Integer part: Composed of the numbers O to 9.

» Decimal part: From '." (decimal point) immediately after the integer part to the exponent part.
Composed of the numbers 0 to 9 up to 15 digits and can also be omitted.

* Exponent part: “e+nnn” or “e-nnn” or e can be uppercase characters. nnn is 1 to 308.

Input Examples

e Src =912.345" —» Out = 12.345

e Src="“+12.345" —» Out = 12.345
e Src ="-12.345" —» Out = -12.345
e Src="12" - Out=12.0

Information

K@ If the same text string data is accessed by different tasks at the same time, the data may be cor-
rupted. Create the program so that the data is not accessed by different tasks at the same time.
Important

Ladder Language Instructions

4-285

4.12 String Operation Instructions

4.12.5 Store String (STRSET)

4125 Store String (STRSET)

The desired text string (including multi-byte characters) is stored in registers.

4-286

Format
The format of this instruction is shown below.
Y
STRSET
Strin [a]lDest
anom padOa1a
[E]5t=
DEOOOO0N
Applicable Data Types
1/0O ltem o] i3
B W L F D A Index | Constant

Strin X X X X X X X X O

Dest X X X X X X o’'! X X

Sts*? oO*! X X X X X X X X

*1. M, G, D, or S register only.
*2. Optional.
Details on I/0O Items
I/0 ltem Name I/0 Description
. 127 characters maximum (127 bytes not including the NULL
Strin Input Text String IN character).
. Specify the register to store the output text string.

Dest Output Text String out Output processing is not performed when Sts (Status) is ON.
Status is turned OFF when processing was performed nor-
mally.

Status is turned ON when the following errors occur.

Sts Status ouT » The number of characters exceeds the maximum value.

» The text string to output exceeds the maximum range of
registers.
« The input value cannot be converted correctly.

Operation Overview

The Strin (Input Text String) data is stored in Dest (Output Text String) as a text string. A NULL
character will be automatically added to the end of the text string.

When entering newline codes, do so using escape characters such as "\n" and "\r\n".

If the same text string data is accessed by different tasks at the same time, the data may be cor-
rupted. Create the program so that the data is not accessed by different tasks at the same time.

Important
Example When Strin = “1234”:
Strin q o » »
Dest 1 2 3 4 0 ~—— Terminating code is added.

4.12 String Operation Instructions

4.12.6 Partially Delete String (STRDEL)

412.6

Partially Delete String (STRDEL)

A part of the specified text string is deleted. The start position and size to delete can be speci-

fied.
Format
The format of this instruction is shown below.
Fs
STROEL
[B] Src [a]Dezt
Danontn Da0o0t 1
[WPas [E]5ts
pianoot o DEOOOOO0
[WSize
pwoonnz
Applicable Data Types
I/O ltem 22 2
B W L Q D A Index | Constant
Src X X X X X X O*! X X
Pos X O X X X X X X @)
Size X @] X X X X X X O
Dest X X X X X X o™ X X
Sts "3 o2 X X X X X X X X
*1. M, G, D, or C register only.
*2. M, G, or D register only.
*3. Optional.
Details on I/O Items
I/0O Item Name 1/0 Description
Src Deletion Target IN Specify the first register in which the text string for deletion is stored.
Pos Deletion Start N Specify the byte position to start deleting from (0 to 1,999).
Position When 0, the instruction deletes the data from the first byte.
Size Deletion Size IN Specify the number of bytes to delete (0 to 1,999).
. Specify the register to store the output text string.
Dest Deletion Result out Output processing is not performed when Sts (Status) is ON.
Status is turned OFF when processing was performed normally.
Status is turned ON when the following errors occur.
» The number of characters exceeds the maximum value.
Sts Status ouT » The text string to output exceeds the maximum range of registers.
» Pos or Size (Deletion Size) is outside the applicable range or larger
than the number of bytes in Src.
» Pos + Size is larger than the number of bytes in Src.

Ladder Language Instructions

4-287

4.12 String Operation Instructions

4.12.7 Copy String (STRCPY)

Operation Overview

Data in the amount of the specified size is deleted from the character at the specified position
in the text string specified by Src. The text string data after deletion is stored in Dest (Deletion
Result).

The text string after the deleted part is copied to Pos (Deletion Start Position). If there is no text
string after the deletion part, a NULL character is added to the position at Pos.

« Src = “1234567”, Pos = 2, Size = 2 — Dest = “14567”

« Src = “1234567”, Pos = 0 (=1), Size = 2 — Dest = “34567”

e Src = “1234567", Pos = 4, Size = 10 — Dest = “123”

\@ If the same text string data is accessed by different tasks at the same time, the data may be cor-
rupted. Create the program so that the data is not accessed by different tasks at the same time.

Important
Information 1- The same registers can also be set for Src (Deletion Target) and Dest (Deletion Result).
2. Text strings handled by this instruction are 1,999 characters maximum (1,999 bytes plus
the NULL character).
Example When Src = “12345678”, Pos = 3, and Size = 2:
Src 1 2 3 ‘4 5 (5} 7 ‘8 0
Dest 1 2 ‘5 6 7 ‘8 0

4127 Copy String (STRCPY)

The specified text string is copied. The size of the strings to copy can be specified.

Format
The format of this instruction is shown below.

-
STRCPY
[A]5re [AlDest
paoooio pAOO01
[W5ize [B] 5t=
pWononl o DEOOOOOO0

Applicable Data Types
1/0 Item
B W L Q 7 D A Index Constant
Src X X X X X X O*! X X
Size X O X X X X X X O
Dest X X X X X X o X X
Sts ™3 0™ X X X X X X X X

*1. M, G, D, or C register only.
*2. M, G, or D register only.
*3. Optional.

4-288

4.12 String Operation Instructions

Details on I/0 Items

4.12.7 Copy String (STRCPY)

1/0 Item Name 1/0 Description
Src Source IN Specify the first register in which the input text string is stored.
. . Specify the number of bytes to copy (0 to 1,999).
Size Copy Size IN If O is specified, the entire source text string is copied.
- Specify the register to store the output text string.
Dest Destination out Output processing is not performed when Sts (Status) is ON.
Status is turned OFF when processing was performed normally.
Status is turned ON when the following errors occur.
Sts Status out |° The number of characters exceeds the maximum value.

» The text string to output exceeds the maximum range of reg-
isters.
» Size (Copy Size) is outside the applicable range.

Operation Overview

The number of bytes specified by Size (Copy Size) is copied from the text string specified by
Src (Source) and stored in Dest (Destination). If Size < number of bytes in Src, a NULL charac-
ter is not added to the end of the text string. If Size > number of bytes in Src, the remaining
characters are padded with NULL characters.

[©

time.

1. If the same text string data is accessed by different tasks at the same time, the data may be
corrupted. Create the program so that the data is not accessed by different tasks at the same

Important - 5 - Ensure that the areas for Src and Dest do not overlap. The text string cannot be copied cor-

rectly if the areas overlap.

Example

When Src = “12345” (equivalent to Size = 6):

« Size=0
Src 1 2 ‘3 4 5 0
Dest 1 2 ‘3 ‘4 ‘5 0

» Size = 3 (< number of

Src

Dest

« Size = 8 (> number of

Src

Dest

bytes in Src)

p

o

g

4 5 0

p

o

3

Terminating code is not added.

bytes in Src)

1 2 3 ‘4 5 0 | Terminating code is added.
1 2 3 ‘4 5 0 0 0

Ladder Language Instructions

4-289

4-290

4.12 String Operation Instructions

4.12.8 Get String Length (STRLEN)

4128

Get String Length (STRLEN)

The length of the text string (number of bytes) is obtained.

Format
The format of this instruction is shown below.
FY
STRLEM
ET [W Len
Danootn pWooom
[E]5ts
DROOOOAN
/O ltem Applicable Data Types
B w L Q F D A Index | Constant

Src X X X X X X o™ X X
Len X o™ X X X X X X X
Sts "3 0™ X x X x x X X x
*1. M, G, D, or C register only.
*2. M, G, or D register only.
*3. Optional.

Details on I/0O Items

I/0 ltem Name 1/0 Description
Src Input Text String IN Specify the first register in which the text string is stored.
. This item stores the number of bytes in the text string that was

Len [eefgfr:””g OUT | input (0 to 1,999).

0 is output when Sts (Status) is ON.

Status is turned OFF when processing was performed nor-

mally.
Sts Status ouT Status is turned ON when the number of characters exceeds

the maximum value.

Note: Text String Length outputs a value between 0 and 32,767.

Operation Overview

The number of bytes (not including the NULL character) in the text string specified by Src (Input
Text String) is stored in Len (Text String Length). Double-byte characters, such as JIS encoded
characters, are counted as two bytes.

\@ If the same text string data is accessed by different tasks at the same time, the data may be cor-
rupted. Create the program so that the data is not accessed by different tasks at the same time.
Important

4.12 String Operation Instruction

S

4.12.9 Concatenate Strings (STRCAT)

4129

Concatenate Strings (STRCAT)

Two text strings are concatenated. The size of the text strings to concatenate can be specified.

Format
The format of this instruction is shown below.
Fs
STRCAT

[A] Srel [a]lDeszt

Danootn paoont e
[A] Srcz [El5t=

paO00O11) DEOOOOOO
W Size

owoonot

Applicable Data Types
I/O ltem e o
B W L Q F D A Index | Constant

Src X X X X X X O*! X X

Src2 X X X X X X o! X X

Size X O X X X X X X O

Dest X X X X X X o™ X X

Sts ™3 0™ X x X x X X X X

*1. M, G, D, or C register only.
*2. M, G, or D register only.
*3. Optional.
Details on I/O Items
I/0 Item Name 1/0 Description

Src Input Text String 1 IN First register in which Input Text String 1 is stored.

Src2 Input Text String 2 IN First register in which Input Text String 2 is stored.

Size Concatenation IN Specify the size in bytes of Input Text String 2 to concatenate.

Size If O is specified, all of Input Text String 2 is concatenated.
. Specify the register to store the output text string.

Dest Output Text String out Output processing is not performed when Sts (Status) is ON.
Status is turned OFF when processing was performed nor-
mally.

Status is turned ON when the following errors occur.
Sts Status out |° The number of characters exceeds the maximum value.

» The text string to output exceeds the maximum range of reg-
isters.

» Size (Concatenation Size) is outside the applicable range.

 Size > number of bytes in Src2.

Ladder Language Instructions

4-291

4.12 String Operation Instructions

4.12.9 Concatenate Strings (STRCAT)

4-292

Operation Overview

The text string in Src2 (Input Text String 2) is concatenated to the end of Src1 (Input Text String
1). When concatenating text strings, only the size of the string specified by Size (Concatenation
Size) is concatenated.

If Size is specified as 0, all of the text string in Src2 is concatenated to the end of Src1. The
behavior is also the same when Size is larger than the text string in Src2.

» Srcl = “12345”, Src2 = “abcde”, Size = 0 — Dest = “12345abcde”

» Src1 = “12345", Src2 = “abcde”, Size = 10 — Dest = “12345abcde”

« Src1 = “12345”, Src2 = “abcde”, Size = 2 — Dest = “12345ab”

A NULL character is added to the end of the text string.

Text strings handled by this instruction are 1,999 characters maximum (1,999 bytes plus the
NULL character).

\@ If the same text string data is accessed by different tasks at the same time, the data may be cor-
rupted. Create the program so that the data is not accessed by different tasks at the same time.

Important
Example When Src1 = 123", Src2 = “ABC™:
« Size=0
Srci 1 ‘0’ ‘3 0
Src2 A B ‘C 0
Dest hh o’ ‘3’ N B c 0

» Size = 2 (< number of bytes in Src2)

Src1 v 2 3 0
Src2 ‘A B C 0
Dest 1 2 ‘3 ‘A B 0

» Size = 8 (> number of bytes in Src2)

Src1 v’ 2 3 0
Src2 ‘A B C 0
Dest 1 2 ‘3 ‘A B C 0

4.12 String Operation Instructions

4.12.10 Compare Strings (STRCMP)

41210 Compare Strings (STRCMP)

Two text strings are compared. The size of the strings to compare can be specified.

Format
The format of this instruction is shown below.
STRCMP
[A]Sret [W]Rezult
paoooto pwoonoz
[A]5rc2 [E]5ts
pAO0O11) DEOOOOOO
[MSize
pwooont
/O ltem Applicable Data Types
B W L Q F D A Index | Constant
Src X X X X X X o't X X
Src2 X X X X X X o™ X x
Size X O X X X X X X O
Result X o™ X X X X X X X
Sts ™3 0™ X x x x x X X X
*1. M, G, D, or C register only.
*2. M, G, or D register only.
*3. Optional.
Details on I/0 Items
1/0O ltem Name 1/0 Description
Src Input Text String 1 IN First register in which Input Text String 1 is stored.
Src2 Input Text String 2 IN First register in which Input Text String 2 is stored.
Specify the size in bytes of the text string to compare from the
Size Comparison Size IN beginning of the text string.
If O is specified, the size of Input Text String 1 is compared.
. 0 is output if the text strings do not match and 1 is output if the
Result ggg;ﬁanson ouT text strings match.
0 is output when Sts (Status) is ON.
Status is turned OFF when processing was performed nor-
mally.
Status is turned ON when the following errors occur.
Sts Status ouT » The number of characters exceeds the maximum value.
« Size > number of bytes in Src1 or Size > number of bytes in
Src2.
- Size is outside the applicable range.

Ladder Language Instructions

4-293

4.12 String Operation Instructions

4.12.11 Insert String (STRINS)

Operation Overview
Two text strings (Src1 (Input Text String 1) and Src2 (Input Text String 2)) are compared.

Result (Comparison Result) = 1 if the two text strings match. Result (Comparison Result) = 0 if the
two text strings do not match. How many bytes to compare from the beginning of the text strings
can be determined by Size (Comparison Size). If Size is specified as O, the length of Src1 is com-
pared.

Examples of the instruction are shown below.

e Src1 =“12345”, Src2 = “12367”, Size =0 — Result =0

» Src1 = “abc123”, Src2 = “abc234”, Size =3 — Result =1

» Src1 = “abc123”, Src2 = “abc4567”, Size = 10 — Result =0

\@ If the same text string data is accessed by different tasks at the same time, the data may be cor-
rupted. Create the program so that the data is not accessed by different tasks at the same time.
Important

Text strings handled by this instruction are 1,999 bytes maximum (plus the NULL character).

41211 Insert String (STRINS)

A text string is inserted at the specified position inside another string.

Format
The format of this instruction is shown below.
Fs
STRINS

CIEE [A] Dest

panootn panootz
BETE [E] 5t=

DaOOa11 DEOOODOO
[W] Pas

oWoono

Aopli
/0 ltem pplicable Data Types
B W L Q F D A Index | Constant

Srci X X X X X X o™ X X
Src2 X X X X X X o™ X X
Pos X (@) X X X X X X O
Dest X X X X X X o™ X X
Sts ™3 o* X X X X X X X X

*1. M, G, D, or C register only.
*2. M, G, or D register only.
*3. Optional.

4-294

4.12 String Operation Instructions

4.12.11 Insert String (STRINS)

Details on I/0 Items

1/0O ltem Name 1/0 Description
) The register that stores the base text string into which the other
Sret Base Text String IN text string will be inserted.
Src2 Eg;rtStrlng to IN The first register of the text string to insert.
. . Specify the byte position in the base text string to insert the text
Pos Insertion Position IN string at (0 to 1,999).
Dest Text String after ouT Specify the register to store the output text string.
Insertion Output processing is not performed when Sts (Status) is ON.
Status is turned OFF when processing was performed normally.
Status is turned ON when the following errors occur.
» The number of characters exceeds the maximum value.
Sts Status OUT |« The text string to output exceeds the maximum range of regis-

ters.
« Size is outside the applicable range.
» Pos > number of bytes in Src1.

Operation Overview

Src2 (Text String to Insert) is inserted into Src1 (Base Text String) at the desired positioned
specified by Pos (Insertion Position). The text string after insertion is stored in Dest (Text String
after Insertion).

Examples of the instruction are shown below.

« Src1 ="12345”, Src2 = “abc”, Pos = 0 — Dest = “abc12345”

» Src1 =“12345”, Src2 = “abc”, Pos = 3 — Dest = “123abc45”

» Src1 = “12345", Src2 = “abc”, Pos = 5 — Dest = “12345abc”

\@ If the same text string data is accessed by different tasks at the same time, the data may be cor-
rupted. Create the program so that the data is not accessed by different tasks at the same time.
Important

Text strings handled by this instruction are 1,999 bytes maximum (plus the NULL character).
When Src1 = “123456”, Src2 = “ABC”, Pos = 3:

Example
Src1 q’ 2 3 ‘4 5 6 0
Src2 ‘A B C 0
Dest v 2 3 ‘A B C ‘4 ‘5 ‘6 0

Ladder Language Instructions

4-295

4-296

4.12 String Operation Instructions

4.12.12 Find String (STRFIND)

41212 Find String (STRFIND)

The specified text string is found inside another string.

Format
The format of this instruction is shown below.
STRFIHD
[A]Sret [W]Fezult
panooto pwoonoz
[A] 5rc2 [E]5ts
paonotr o DEOODOO0
[WPas
pwooont
Applicable Data Types
I/0 ltem e 5
B W L Q F D A Index | Constant
Src X X X X X X ! X X
Src2 X X X X X X o't X X
Pos X O X X X X X X O
Result X o X X X X X X X
Sts ™3 o X X X x X X X X
*1. M, G, D, or C register only.
*2. M, G, or D register only.
*3. Optional.
Details on I/0 Items
I/0 Item Name 1/0 Description
Src Target Text String IN First register in which the text string to be searched is stored.
Src2 Text String to Find IN First register in which the text string to find is stored.
Specify the byte position at which the search starts in the text
Pos Search Start IN string to be searched (0 to length of the input text string).
Position When 0 is specified, the text string is searched from the first
byte.
This item outputs the byte position from the search start posi-
Result Search Result OUT | tion at which the text string was found. O is output when the
text string is not found or Sts (Status) is ON.
Status is turned OFF when processing was performed nor-
mally.
Sts Status ouT Status is turned ON when the following errors occur.

* The number of characters exceeds the maximum value.
» Pos is outside the applicable range.

* Pos > number of bytes in Src1.

4.12 String Operation Instructions

4.12.13 Extract String (STREXTR)

Operation Overview

The search range is from the text string in Src1 (Target Text String) and within the text string in
Src2 (Text String to Find). Specify the position with Pos (Search Start Position). If the text string

in Src2 was found, the number of bytes from the search start position is stored in Result
(Search Result).

Examples of the instruction are shown below.
* Src1 =“12345”, Src2 = “34”, Pos =0 (= 1) —» Result = 3

« Src1 =%12345”, Src2 = “34”, Pos = 2 — Result = 1
1. If the same text string data is accessed by different tasks at the same time, the data may be
corrupted. Create the program so that the data is not accessed by different tasks at the same

@ time.

Important > | the target text string is long and if the target text string is at the end of the text string to be

searched, the processing time for this instruction may increase and exceed the scan set value.

Text strings handled by this instruction are 1,999 bytes maximum (plus the NULL character).

When Src1 = “ABCDEFG”, Src2 = “EF”:

Example | Pos = 0
Srci ‘A B C D = T ‘G 0
Pos Result = 5
e Pos=2

Srci ‘A B C D E F G 0

Pos T Result = 3

41213

Extract String (STREXTR)

A text string with the specified start position and size is extracted from another string.

Ladder Language Instructions

Format
The format of this instruction is shown below.
STREXTR
[a] 5r [AlDest
Daoontn Daoo0t
[W]Poz [E]5t=
owooom DEOOOOO0
[W]5ize
owaonoz
/O Item Applicable Data Types
B W L F D A Index | Constant
Src X X X X X X oO*! X X
Pos X (@) X X X X X X O
Size X O X X X X X X @]
Dest X X X X X X o*? X X
Sts ™3 0™ X X X X X X X X

*1. M, G, D, or C register only.
*2. M, G, or D register only.
*3. Optional.

4-297

4.12 String Operation Instructions

4.12.13 Extract String (STREXTR)

4-298

Details on 1I/0 Items

1/0O ltem Name 1/0 Description
Src Input Text String IN Specify the first register in which the input text string is stored.
Specify the byte position from which to start extracting the text
Pos Start Position IN string.
When 0, the text string is extracted from the first byte.
Size Size IN Specify the number of bytes to extract (0 to 1,999).

Specify the register to store the output text string.

Dest Output Text String ouTt Output processing is not performed when Sts (Status) is ON.
Status is turned OFF when processing was performed normally.
Status is turned ON when the following errors occur.
» The number of characters exceeds the maximum value.

Sts Status ouT » The text string to output exceeds the maximum range of regis-

ters.
» Pos or Size is outside the applicable range.
» Pos + Size > number of bytes in Src.

Operation Overview

A text string of the specified Size is extracted from the number of bytes in Pos (Start Position) in
the text string in Src (Input Text String). The text string that was extracted is stored in Dest
(Output Text String).

Examples of the instruction are shown below.

« Src = “12345”, Pos = 0 (=1), Size = 2 — Dest = “12”

» Src = “12345678”, Pos = 3, Size = 3 — Dest = “345”

\@ If the same text string data is accessed by different tasks at the same time, the data may be cor-
rupted. Create the program so that the data is not accessed by different tasks at the same time.
Important

Text strings handled by this instruction are 1,999 bytes maximum (plus the NULL character).
When Src = “12345678”, Pos = 3, and Size = 2:

Example
Src v 2 '3 4 5 6 7 8 0
Dest ‘3 ‘4 0

4.12 String Operation Instructions

4.12.14 Extract String from End (STREXTRE)

41214 Extract String from End (STREXTRE)

A text string of the specified size is extracted from the end of another string.

Format
The format of this instruction is shown below.
STREXTRE
[A] Src [A]lDest
paO0O10 paO0011
W Eize [E]5ts=
pwoonnt DEOOOOON
Applicable Data Types
1/0 It -
em B w L Q F D A | Index | CON
stant
Src X X X X X o X X
Size @] X X X X X X @]
Dest X X X X X o™ X X
Sts "3 0" X x X x X X X X
*1. M, G, D, or C register only.
*2. M, G, or D register only.
*3. Optional.
Details on I/O Items
I/O ltem Name I/0 Description
Src Input Text String IN Specify the first register in which the input text string is stored.
Size Size IN Specify the number of bytes to extract (0 to 1,999).
. Specify the register to store the output text string.
Dest Output Text String | OUT Output processing is not performed when Sts (Status) is ON.
Status is turned OFF when processing was performed normally.
Status is turned ON when the following errors occur.
» The number of characters exceeds the maximum value.
Sts Status out |, The text string to output exceeds the maximum range of registers.
» Pos > number of bytes in Src.
» Pos is outside the applicable range.

Operation Overview

A text string of the specified Size (Size) is extracted from the end of the text string in Src (Input

Text String). The text string that was extracted is stored in Dest (Output Text String).
Src = “12345”, Size = 2 — Dest = “45”

Ladder Language Instructions

Important

If the same text string data is accessed by different tasks at the same time, the data may be cor-
rupted. Create the program so that the data is not accessed by different tasks at the same time.

Text strings handled by this instruction are 1,999 bytes maximum (plus the NULL character).

Example

When Src = “12345678”, Size = 2:

Src 1 2 3 4 ‘5 6 7 ‘8 0
Dest 7 ‘8 0

4-299

4.12 String Operation Instructions

4.12.15 Delete Spaces at String Ends (STRTRIM)

41215 Delete Spaces at String Ends (STRTRIM)

Leading and trailing spaces and tabs are deleted from the text string.

Format
The format of this instruction is shown below.
STRTRIH
[a] Src [AlDest
paoootn Daoontt
[Woptian [BE]5t=
pwoono DEOOODON
Applicable Data Types
I/0 ltem e 5
B W L Q F D A Index | Constant
Src X X X X X X ! X X
Option X O X X X X X X O
Dest X X X X X X 0™ X X
Sts ™3 0™ X X X x X X X X
*1. M, G, D, or C register only.
*2. M, G, or D register only.
*3. Optional.
Details on I/0O Items
1/0O Item Name 1/0 Description
Src Input Text String IN Specify the first register in which the input text string is stored.
Bit O: Delete leading tabs and spaces.
Option Option Settings IN Bit 1: Delete trailing tabs and spaces.
Bit 2 to F: Reserved for system.
. Specify the register to store the output text string.
Dest Output Text String | OUT Output processing is not performed when Sts (Status) is ON.
Status is turned OFF when processing was performed normally.
Status is turned ON when the following errors occur.
Sts Status out |, The number of characters exceeds the maximum value.
» The text string to output exceeds the maximum range of registers.

Operation Overview

Tabs and spaces at the location specified by Option (Option Settings) are deleted from the text
string in Src (Input Text String). The text string after tabs and spaces are deleted is stored in
Dest (Output Text String).

Examples of the instruction are shown below.

« Src =" 12345 7, Option = 0x0001 (deleting leading whitespace) — Dest = “12345 ”
« Src=" 12345 7, Option = 0x0002 (deleting trailing whitespace) — Dest = “ 12345”
« Src=" 12345 7, Option = 0x0003 (deleting leading and trailing whitespace) —

Dest = “12345”

*+ Src =" 12345 7, Option = 0x0000 — Dest = 12345 ”

\@ If the same text string data is accessed by different tasks at the same time, the data may be cor-
rupted. Create the program so that the data is not accessed by different tasks at the same time.
Important

Text strings handled by this instruction are 1,999 bytes maximum (plus the NULL character).

4-300

Features of the
MPE720 Engineering
Tool

This chapter describes the key features of the MPE720
Engineering Tool for ladder programming.

B Ladder Program Runtime Monitoring .54
[Soaroh/Roplace ..o

5.2.1 Searching and Replacing in Programs
5.2.2 Searching and Replacing in Project Files 5-7

[Cross References510
[0 Checking for Muliple Coils ... 513
(5 Foroing Cols ON and OFF814

Forcing Coils ON or OFF from a Ladder

Program 5-14
5.56.2 Changing the Forced ON/OFF Status
from the Force Coil List Pane 5-14

[Viewing Called Programs517
Bl Registor Lists518

5.7.1 Displaying the RegisterMap 5-18
5.7.2 Switching the Register Map Display 5-19
5.7.3 EditingData 5-20

B Toning Panel ... 521
[Evabiing and Disabiing Lacider Programs .. 5-22

Eil watchingehlll L 528

5.10.1 Displaying WatchData 5-23
5.10.2 Editing the Value Column 5-23

BT Securty oo 52
B Trating - 525
B Advanced Programming525

5.183.1 Motion Programs

This chapter describes the following ladder programming and debugging functions of MPE720
Engineering Tool version 7.

Ladder program runtime monitoring
Search/replace

+ Cross references

» Multiple coils

« Forcing coils ON and OFF

* Viewing called programs

Register lists

 Tuning panel

» Enabling and disabling ladder programs
+ Watching

 Security

« Tracing

» Using motion programs

Features of the MPE720 Engineering Tool

5-3

5.1 Ladder Program Runtime Monitoring

Ladder Program Runtime Monitoring

You can monitor the execution status of each instruction. Using runtime monitoring requires a
connection to the Machine Controller.

Instructions where the relay output is ON are displayed in blue.

The current values of the parameter registers of the instructions that are being executed are
also displayed.

MB000000 CB00000 ON caoils are displayed in
swi Lehi lenel blue.
MBOODOOT 0BO0001 /
/I
switéh? lanp?
[[TCF0D T8 [WLFGDIDest
STOnE 12345 Woool1 | |
12345 12345 Current values of
0 5 (Wra0Thest registers are displayed.
MBODUPUS STORE MWOO01 0 MHO0O0T 1
o 2000 2000 JA]

5.2 Search/Replace

Search/Replace

5.2.1 Searching and Replacing in Programs

5.2.1

Searching and Replacing in Programs

You can search for variables, instructions, and comments in a specified program. You can also

search for and replace registers and register comments.

The following section describes how to search for and replace text in programs.

Searching in Programs

1. Bring the program to search to the front in the Ladder Editor, and then select Edit — Find

from the menu bar.
The Search Dialog Box will be displayed.

2. Click the Variable, Instruction or Comment Tab to set the search criteria.

“ariable |Instruc:ti0n | Comment |
Search Variable LI Search |
Search All |
[~ Output log at Search 2 Search Direction ﬂl
 Up (+ Down
Select Ranee
Start Rune |D 32
End Rung |D 32

x|

Variable Tab Page:Allows you to search for variables and registers. You can also enter the variable by

copying it from the Variable Pane.

Wariable Instruction |Oomment|

Thstruction I][LI
Wariable |MEIDDDDDD LI Search All |
[~ Output loe at Search 2 Search Direction ﬂl
 Up * Down
Select Ranee
Start Rune |D 32
End Rung |D 32

Instruction Tab Page:Enter the name of the instruction or the assigned instruction key in the Instruc-

tion Box.

The Variable Box is displayed when an instruction is entered in the Instruction Box. If the SEE
instruction is entered in the Instruction Box, Variable changes to Program Name. You can also

enter the variable by copying it from the Variable Pane.

Wariable | Thetruction Somment |
Search Object |}{Serv00n LI Search |
Search All |

[ils
[~ Find whale items only
[~ Match caze

¥ Reeister compenzation Select Ranee
[~ Output log at Search 2 Start Rung m
End Rune [0 =

Search Direction Cancel |
’7 Up & Dawn

|

Comment Tab Page:Allows you to search for object comments, rung comments, program comments,

and expression comments.

Features of the MPE720 Engineering Tool

5-5

5.2 Search/Replace

5.2.1 Searching and Replacing in Programs

» Use wild cards Check Box: Select this check box to use wildcard characters (* and ?) in the
search string.

» Find whole items only Check Box: Select this check box to search for comments where the string
in the comment box is exactly the same as the search string. Case sensitivity is controlled by the
Match case Check Box.

« Match case Check Box: Select this check box to differentiate between uppercase and lowercase
characters.

» Register compensation Check Box: Select this check box to convert search strings that are rec-
ognized as registers into register notation.

» Output log at Search 2 Check Box: Select this check box to display the search results in the
Search 2 Pane without changing the contents of the Search 1 Pane. If you clear the selection of the
check box, the search results will be displayed in the Search 1 Pane.

+ Select Range Check Box: If you select this check box, you can specify the search range by setting
the start and end rungs.

3. Click the Search Button or the Search All Button to start searching.
If you click the Search Button, the instruction object that was found will be selected.
If you click the Search All Button, the search results will be displayed in the Search 1 or Search 2
Panes.

Search 1

Begin searching for "XMONITOR ServoQr

H02.01 : [Fune 0000, Step 0004, NOG, Operand 00] : XMOMITOR. ServaOn
H02.01 : [Fune 0006, Step 0023, NOG, Operand 00] : XMONITOR Servaln
Seatch complete. 2 found.

E0utput | (i Search 1 |3 Transfer | (B Register List 1 |0 Force Coil List | (2] Watch 1 | 3 Cross Reference 1 |5 Che

Replacing Text in Programs

1. Bring the program in which to search and replace to the front of the Ladder Editor, and
then select Edit — Replace from the menu bar.
The Replace Dialog Box will be displayed.

2. Click the Register or Comment Tab to set the search criteria and the replacement string.

x
Register |Oomment |
Search Register LI Search I
Replace Register | LI Replace |
Search Direction Replace All |
’7 Up & Dawn Cancel |
Select Ranee
Start Rune m
EndFue [I =

Register Tab Page: Allows you to search for and replace registers.
x|

Register Comment |

Search Object LI Search I
Replace Object | LI Replace |
[Use wild cards Search Direction
[~ Find whale items only ’7 C lp " Dawn Cancel |
[~ Match caze
¥ Reeister compenzation Select Ranee

Start Rune |D 32

End| Rurie |D 32

Comment Tab Page: Allows you to search for object comments, rung comments, program com-
ments, and expression comments.

5.2 Search/Replace

5.2.2 Searching and Replacing in Project Files

» Use wild cards Check Box: Select this check box to use wildcard characters (* and ?) in the
search string.

Note: If you enter an * or a ? character in the Replace Register or Replace Object Box, they will not be
handled as wildcards, but as regular characters.

» Select Range Check Box: If you select this check box, you can specify the search range by setting
the start and end rungs.
However, range selection is disabled on the Comment Tab Page.

Start the search/replace operation.

Click the Search Button. The instruction object that was found will be selected. If you click the
Replace Button, the object will be replaced by the contents of the Replace Register or Replace
Object Box.

If you click the Replace All Button on the Register Tab Page, the registers that are found will be
replaced, and the replacement results will be displayed in the Output Pane.

Output

Beein replacing 'ME300000 with 'MBE300000".

Succesz : HI1 [Rung 0002, Step 0004, NOG, Operand 00] : [Source]MB300000 = [Destination]MB300000
Success : HIY [Fune 0003, Step 0007, NOG, Operand 00] : [Source]MB300000 -> [Destination]ME300000
Replace complete. 2 replacements made.

Success 2, Failure 0

E0utput |(HiSearch 1 |2 Transfer |[ERegister List 1 |0 Force Coil List | (=] Watch 1 | 3 Cross Refe

5.2.2

Searching and Replacing in Project Files

You can search for variables in all ladder programs and motion programs, or in only the speci-
fied programs in a project file. You can also search for and replace registers and addresses.

Information You can search the project file only when the Machine Controller is offline.

The following section describes how to search for and replace text in a project file.

Searching in Project Files

1.

Bring the program to search to the front of the Ladder Editor, and then select Edit —
Search in Project from the menu bar.
The Search in Project Dialog Box will be displayed.

Specify the address of the variable to search for and the name of the program to search.

x
Wariable |
Search Variable = 00000 LI Search All |
Target Program + LI Cancel |

[~ Output log at Search 2

Note: 1. You can also enter the variable by copying it from the Variable Pane.

2. Use commas and spaces to specify more than one program in the Target Program Box. The following
wildcard (*) combinations can also be used in the Target Program Box:
* H* L*, I*, A*, F* (all functions), MPM*, and MPS*
Wildcards may be used only in the formats given above. Other uses, such as “HO1.*”, are not allowed.

3. Output log at Search 2 Check Box: Select this check box to display the search results in the Search
2 Pane without changing the contents of the Search 1 Pane. If you clear the selection of the check
box, the search results will be displayed in the Search 1 Pane.

Features of the MPE720 Engineering Tool

5-7

5-8

5.2 Search/Replace

5.2.2 Searching and Replacing in Project Files

3. Start the search operation.

Click the Search All Button. A progress bar will be displayed, and the search results will appear in the
Search Pane.

Start the gearch MB200000° [*

HO1 : [Rune 0002, Step 0004, NOG, Operand 00] : MB300000
HO1 : [Rune 0002, Step 0006, COIL, Operand 00] : MB300000
HO1 : [Rune 0003, Step 0007, NOG, Operand 00] : MB300000
End of search. 3 founds.

l|’1‘|0utput lWatch 1 lTransfer lmSearch 1 ‘

Replacing in Project Files

1.

[r—— o After you perform a replace operation on a project file, the project file will be compiled and

saved, and there will be no way to return to the previous version. Always create a backup
before performing replacements on important files.

« If a motion program is already open in the MPE720 Engineering Builder before the replace-

ment is executed, the program will not be automatically updated. Close the motion program
before executing the replacement operation.

Bring the program to search to the front of the Ladder Editor, and then select Edit —
Replace in Project from the menu bar.

The Replace in the Project Dialog Box will be displayed.

2. Specify the address of the variable to search for and the name of the program to search.

Note: 1. You can also enter the variable by copying it from the Variable Pane.

2. Use commas and spaces to specify more than one program in the Target Program Box. The following
wildcard (*) combinations can also be used in the Target Program Box:
* H* L*, 1*, A*, F* (all functions), MPM*, and MPS*

Wildcards may be used only in the formats given above. Other uses, such as “HO1.*”, are not allowed.

3. Click the Register or Address Tab to set the search criteria and the replacement value.

Replace in the project

X
Register | Address |
Search Register IMBSDDDDD LI Replace &ll |
Replace Register [SB000002 x| Gancel |
Target Program I* LI
‘hen the program is opened by Engineering Builder to the replacing execution, the
'5 proeram is not updated automatically. Please open azain after closing the proeram or
- executing.
Register Tab Page: Allows you to replace registers.
x

Register Address |

Source Kind IM vl Type |E| x| Address [30000 Replace All |

Wiords I‘I Cancel |
Destination Kind IM vl Address IDDDDD
Target Program I* LI

'E ‘hen the program is opened by Engineering Builder to the replacing execution, the
L

proeram is not updated automatically. Please open azain after closing the proeram or
executing.

Address Tab Page: Allows you to replace registers that meet the specified criteria.
Note: The following wildcard (*) combinations can also be used in the Target Program Box:

, H¥, L, 1%, A%, F*, MPM*, MPS*

5.2 Search/Replace

5.2.2 Searching and Replacing in Project Files

4. Start the search/replace operation.
Click the Replace All Button. The replacement results will be displayed in the Output Pane.

Start the replace Kind: M Type: B Address: 30000 Mo. of words: 17 iz replace with Kind: M Address: 00000 [*
Success : HIG.02 [Fune 0007, Step 0024, GOIL, Operand 00] : [Source]MB300008 -» [Destination]MBEO00003
Success : HO6.02 [Rune 0014, Step 0036, MGG, Operand 00] : [Source]MB300008 -» [Destination]MEO00003
Success : HO6.02 [Rune 0024, Step 0050, NOGC, Operand 00] : [Source]MB300008 -» [Destination]MEO00003
Success : HO6.02 [Rune 0025, Step 0052, NGGC, Operand 00] : [Source]MB300003 -» [Destination]MEO00003
Success : HO6.02 [Rune 0028, Step 0056, NOG, Operand 00] : [Source]MB300008 - [Destination]MBO00003
————————————————————— Start compiling : HOG.02 : phase contral 2 {electronic cam) ———————————————--—-
Error O @ Warning 0
Success : HI [Rune 0002, Step 0004, NOG, Operand 00] : [Source]MB300000 - [Destination]ME000000
Success : HI [Rune 0002, Step 0006, GOIL, Operand 00] : [Source]MB300000 - [Destination]MEB000000
Success : HI [Rune 0003, Step 0007, NOG, Operand 00] : [Source]MB300000 -» [Destination]MEO00000
Success : HI [Rune 0004, Step 0010, MOG, Operand 00] : [Source]MB300001 -» [Destination]MB000001
Success : HI [Rune 0005, Step 0012, MOG, Operand 00] : [Source]MB300001 -» [Destination]MB000001
————————————————————— Start compiling : HOT : common settings for axes ————-———--—————————
Error O @ Warning 0
Success : HO4 [Rune 0003, Step 0009, MOG, Operand 00] : [Source]MB300001 -» [Destination]MB000001
————————————————————— Start compiling : HO4 : main program for pozitioning -————---———--———-————
Error O : Warning 0
Success : LOG [Rune 0000, Step 0000, NGG, Operand 00] : [Source]MBE300008 ~» [Destination]MEOD0D03
————————————————————— Start compiling : LOG : electric cam table data eeneration ———--———--———--—————
Error O : Warning 0
nd of replace. 12 founds.
Silure [

l|’1‘|0utput lWatch 1 lTransfer lmSearch 1 ‘

Note: If an error occurs during compilation of a program, the replacements will not be completed.
After the replacement operation, the variables and addresses of the registers that were replaced will
be displayed.

Features of the MPE720 Engineering Tool

5-9

5.3 Cross References

Cross References

5-10

Cross referencing allows you to check whether a register is used in a program, and where it is
used.

The search results indicate output registers in red, input registers in blue.
EE! Cross Reference Setting @

Variable

M00000
Search Program
e

El
H# : all High-speed program
@ 18- Preeamm the opened program.

[E] HO1: Tnitial settine
axis|

axis?

axkd Brched.

[#] The result of the search is displayed in the next Cross Reference 2 window,

[' [oms '

Search Results Display

Red: Output registers
Blue: Input registers

Cross referencing executed.

Cross Reference 1 [MWO0D000-* : All program | Search Result 6]

Variable [search Setting... |

Register | Program & | Execution Instr... |Execution Step |Write/Read | Comn
= Same Register

MWOD00o HOZ : axis1 LOAD : Integer ... 0 Read

MWo0000 HO2 : axis1 STORE : Store 1 Write
= Same Memory Address

MBOOODO4 HOZ : axis1 MOC : NO Contact 2 Read

MBOO000S HO2 : axis1 COIL : Coil 3 Write

MLOOOD0 HO3 : axis2 LOAD : Integer ... 0 Read

MLODOGO HO3 : axis2 STORE : Store 1 Write

If the value of a register is different from its set value, it means that the value of the register may
have been overwritten somewhere in the program. In this case, you can search for the registers
using cross references. Check the registers displayed in red, and locate the program that is
overwriting them.

The following section describes the search operation on arrays.

Example 1. Register[Register] Arrays
& [[WLRTDest
IHC M¥onooo) ,
{ [Mwoooo1] | MWOOOOO and MWO0O0OO1 are subject to searching.
2. Register[Constant] Arrays
a[[WlalDest
INC Mwnooon , ,
[[5] MWOO0000 and MWOO0005 are subject to searching.

3. Register[Constant], LONG Arrays

[WLe]Dest

INE MLOD 00D . .
{ [5] MLO0000 and MLO0010 are subject to searching.

»

The following cross-reference criteria can be set. The following tables describe the check
boxes.

The local register is searched in the opened program.,

Check Box Search Method

Selected. A search is made for local registers (D registers) in the active drawing in the MPE720 Window.

Not selected. | A search is made for local registers (D registers) in the specified drawing.

5.3 Cross References

[¥] The same register iz searched.

Check Box Search Method
A search is made for registers that are the same as the register that was found.
Select this check box to display the results in a list when you search the following instruction for
Selected. |2 variable of MWQ0000O0.
& |[WLR] Dest
I NC
WWoooon
A search is not made for registers with the same data type as that of the register that was
found.
Not Clear the selection of this check box to not display the results in a list when you search the fol-
selected lowing instruction for a variable of MW000QO.

a|[WLo] Dest

HHE HyO0000

¥ The same memory address is searched.

Check Box

Search Method

Selected.

Searches for redundant addresses.
Select this check box to display the results in a list when you search the following instruction
for a variable with a different data type, such as ML0O00OO.

& ([WLo]Dezt

HE MO0 000

Not
selected.

A search is not performed for redundant addresses.
Clear the selection of this check box to not display the results in a list when you search the fol-
lowing instruction for a variable with a different data type, such as MLOOOOQO.

& ([WLo]Dezt

HE MO0 000

Features of the MPE720 Engineering Tool

5.3 Cross References

The result of the search is displayed in the next Cross Reference 2 windaow,

Check Box Search Method

When you perform cross referencing from the Cross Reference Pane, the results will be dis-
played in a separate pane.
Cross reference results can be displayed in up to 3 panes.

Cross Reference 1 Pane

Search Again

l Pane changed.

Cross Reference 2 Pane

Selected.

Search Again

l Pane changed.

Cross Reference 3 Pane

Search Again

Pane changed.

When you perform cross referencing from a Cross Reference Pane, the results will be displayed
by updating the data in the same pane.

Cross Reference 1 Pane

Not
selected.

Search Again

Page updated.

5-12

5.4 Checking for Multiple Coils

m Checking for Multiple Coils

You can check for multiple coils (different coils that use the same register) in an entire ladder
program, and display the search results.

When you use a project link connection, the data in the project file is used. Sometimes the
displayed results do not match the data in the linked Machine Controller. When you check for
multiple coils and use a project link connection, first always read the data to the project file
from the Machine Controller.

Information

Select Debug — Check for Multiple Coils from the menu bar.
Searching for multiple coils will start, and the results will be displayed in the Check for Multiple

Coils Pane.
HiMain P a i
MEOOOOO0 OEo00o0n .
“.1‘ |} O |5
! 2 '_ switchl lamp 1 :g
HEOOOOD1 DEO0000 | T
[1= [s
Fifs bl e
- switcha lzmp 1
Check for Multiple Coils [All program / Search Resi x
5 Multiple coils are displayed.
OutputT... | Register Program Execution
OB0o000 _[H-Manbrogom | 1 e |
-{- OBO00O0 H : Main Program 3

If the Enable to Multiple Coil Check Check Box is selected in the compile options, a search
for multiple coils will be performed during compilation and the results will be displayed as
warnings in the Output Pane.

Information

Features of the MPE720 Engineering Tool

5-14

5.5 Forcing Coils ON and OFF

5.5.1 Forcing Coils ON or OFF from a Ladder Program

m Forcing Coils ON and OFF

You can force a specified coil ON or OFF from the Ladder Editor.
The coil will output ON or OFF regardless of the output of the instruction to the left of the coil.

In the following programming example, you can simulate turning ON the switch (IBO0O000) by
forcing the DB0000O01 relay ON even though the physical switch does not exist.

551 Forcing Coils ON or OFF from a Ladder Program
You can monitor a program by forcing specified coil objects ON or OFF in the Ladder Editor.
1. Select the coil to force ON or OFF.
2. Select Debug — Force ON or Force OFF from the menu bar.
The selected coil will be forced ON or OFF.
<Coll is forced ON.>
1B00000 0BO000OT
| | @
=witch relay
DBOOOOO 0BOO0OO3
I 1l P
rlellcly lamp
| : Select Debug — Disable Force from the menu bar to cancel forced ON or forced OFF
nformation status.
552 Changing the Forced ON/OFF Status from the Force Caoil

List Pane

The Force Coil List Pane lists the ON/OFF status of the forced coils in the ladder program.

You can also change and cancel the ON, OFF, or canceled status of the forced coils in the
entire ladder program.

Searching for Forced Coils in the Force Coil List Pane
1. Display the Force Coil List Pane.

Note: You can show and hide the Force Coil List Pane by selecting View — Other Windows — Force Coil List
from the menu bar.

2. Select Debug — Force Coil List from the menu bar.

Note: In the above case, all programs will be searched for forced coils. To specify a program for the search,
press the Forced Coil Condition Setting Button (&) to display the Forced Coil Condition Setting Dialog
Box.

I Force Goil Condition Sett =

Flease input the program which search the Force coil,

Search Program I* s all program j

Search I Cancel |

5.5 Forcing Coils ON and OFF

5.5.2 Changing the Forced ON/OFF Status from the Force Coil List Pane

The search results will be displayed in the Force Coil List Pane.

Force Coil List [* : All program / Search Result 6]

BE owE =

Forcing State

ClorF - (OFF)-

HO1 : common settings For a:
HO1 : common settings for axes
H : High-speed Main Program
H : High-speed Main Program
H : High-speed Main Program
H : High-speed Main Program

MEOOO100
DEOOOOO01
MEOOO100
MEOOO100

Execution Step

relay g

3. Select the check boxes for the coils to force ON or OFF.

Force Coil List [* : All program / Search Result 6]

BE owE =

Faorcing State | Cail |Pragram | ariable Comment Execution Step
[l -1 {5 OM)- HO1 & commen setkings for axes MBOO0Z00 40
[wloFF -1 (R OFF)- HO1 & commen setkings for axes MBOO0Z00 42
[wlom -1 {OM)- H : High-speed Main Program MBOOO100]
H : High-speed Main Program _
-1 (ON)- H : High-speed Main Program MBOOO100 12
-1 (OFF)- H : High-speed Main Program MBOOO100 14

e aton 1. If you right-click in the list in the Force Coil List Pane, you can use the pop-up menu to
select Check All or Uncheck All to select or clear the selections of the all of the Forcing
State Check Boxes.

2. If you select or double-click a search result row in the Force Coil List Pane, you can jump to
the corresponding coil in the ladder program. Alternatively, you can right-click in the list in
the Force Coil List Pane, and select Go to from the pop-up menu. If the program is not
open, it will be opened automatically and the display will jump to the corresponding coil in

the program.

3. If you right-click in the list in the Force Coil List Pane and select Cross Reference from the

pop-up menu, or select Debug — Cross Reference from the menu bar, the register that is
set for the coil will be checked for cross references and the results will be displayed in the

Cross Reference Pane.

4. If you edit the ladder program while the search results are displayed, the coils in the edited

program will be displayed in gray.

Names and Descriptions of the Force Coil List Pane Iltems

The Force Coil List Pane consists of a list where the forced coils are displayed, and a toolbar
that is used to search and repeat searches for forced coils, and to change the forced status of

coils.

% E oW W

Fatcing Skate ®
[ON

[CJoFF -} (R OFF)-
[Clon - (o)
[Clon - (o)
[Clon - (o)
[CJoFF -} {OFF)-

HO1 : common settings for axes

HO1 : common settings for axes

H:

H
H
H

High-speed Main Program

: High-speed Main Program
: High-speed Main Program
: High-speed Main Program

MEOODZ00
MEO00Z00
MEO00100
DEOOOO01
MEO00100
MEO00100

relay

Toolbar

Features of the MPE720 Engineering Tool

mom

List

5-16

5.5 Forcing Coils ON and OFF

5.5.2 Changing the Forced ON/OFF Status from the Force Coil List Pane

¢ Toolbar

» Forced Coil Condition Setting Button (&.)
Click this button to display the Forced Coil Condition Setting Dialog Box. Specify the program
to search for forced coils.

I Force Goil Condition Sett =

Flease input the program which search the Force coil,

Search Program

il
Search I Cancel |

« Search Again Button (iZ1)
Click this button to repeat the forced coil search in the program that was specified in the
Force Coil Condition Setting Dialog Box.
« Force Reset Button («)
Click this button to cancel the forced status of the selected coils.
« Force ON Button ()
Click this button to force ON the selected coails.
» Force OFF Button (7%)
Click this button to force OFF the selected coils.
+ Display Variable Button (Y

Click this button to switch the display of the register that is used by the coil between a regis-
ter or a variable.

@ List

@ Forcing State
This column displays the forced ON or OFF status of the coils that were found.

@ Coil
This column displays the coils that were found.
There are six types of coils.

Coil Symbol
il Ty
Coil Type ON OFF
Coil —/ (ON)- —/ (OFF)—
Set Coil —/ (S ON)- —/ (S OFF)—
Reset Coil -/ (R ON)- -/ (R OFF)—
® Program

This column displays the names of the programs where the coils were found.

@ Variable
This column displays the variables or registers that are set for the coils that were found.

® Comment
This column displays the comments of the variables.

® Execution Step
This column displays the execution step numbers of the coils that were found.

@ Check Boxes
The coils with selected check boxes will be subject to forcing operations (ON, OFF, or Can-
cel). You can use the toolbar buttons and also the pop-up menu to force the status of all
selected coils to ON, OFF, or canceled.

5.6 Viewing Called Programs

m Viewing Called Programs

You can open a drawing that is called with an SEE instruction or a FUNC instruction.

Select the SEE instruction object or FUNC instruction object for the program to view, and
select Debug — Open Program from the menu bar.

Calling instruction

} = .

HEOOO0oo
| P—

Called drawing: HO1 Drawing

0BO0a00

switchl
NEOOO0O1
e

lamp 1

0BO0001

switchZ

IN

lamp 2
WLR]Dest

° WWaooo!
10832

Features of the MPE720 Engineering Tool

5.7 Register Lists

5.7.1 Displaying the Register Map

Register Lists

You can monitor the current values of the registers in a continuous area (register map) on any of
the Register List 1, 2, and 3 Panes. Realtime monitoring is possible if the Machine Controller is

connected. You can edit the values.

Information

» The register map will show the data in the project file even for a direct connection.
If you use a project link connection, the data in the Machine Controller is accessed. When
the register map is displayed, the displayed results do not always match the project file of
the linked project.
If you display the register map when using a project link connection, first always transfer the
data to the project file by reading the data from the Machine Controller.

» The register list can display S, |, O, M, C, D, and G registers. However, C registers are read-
only. They can be read but not written.

3.7.1

Displaying the Register Map

5-18

The following table gives the meaning of the background colors in the register map.

Green Indicates a register that is used in a ladder program.

Red Indicates a redundant register (i.e., a register that is used for more than one data type).

Use the following procedure to display the register map.

1.

Click one of the tabs for the Register List 1, 2 or 3 Panes.
Select Monitor — Register List from the Launcher. The Register List 1 Pane will be displayed.

Note: You can show or hide the Register List 1, 2, and 3 Panes by selecting View — Register List — Register
List 1, View — Register List — Register List 2, or View — Register List — Register List 3 from the menu
bar.

Enter the address of the register for which to display a register map in the Register Box.
When displaying a list of D registers, enter the program number as shown below.

Register List 1

Register [DBODDD10 s [[mwne RO T

|E10utput | 4O Farce Coil List | ERegister List 1 |

3. Press the Enter Key.

The specified register will be displayed in the top row of the register map.

Number of Registers Displayed in One Row

Register | DBO00OLO - |[Ho4 -|[16 [[Monkor EEG & 77

0 (1 [2 [3 |4 |5 [Register] A [B =

DS DB0000GS " Switching Buttons
DB000020 (OFF OFF OFF OFF [Using Register] (OFF OFF OFF OFF OFF OFF 9

OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF |

DBOOD040 | OFF OFF OFF OFF OFF OFF | O1¢ OFF OFF OFF OFF OFF OFF |

DBOODOS0 | OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF |

DBOODOGO |OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF |

DBOOOO70 OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF ‘,‘.L o,
||'?_-?|Dutput |LK|Search 1 l Transfer iRegister List 1 Iwatch 1 [m Cross Reference 1 liOForce Coil List |

Example of Displaying the D Register Map and Balloon

5.7 Register Lists

5.7.2 Switching the Register Map Display

Register List 1 X
Register [MW00014 - |[auto o] [Monitor B & F

1 2 3 |4 5 6 7 h
MW00014 | o 0) 0 |]
MWoo022] o o o 0 o] o
MWo0030 0] o] 0 0 0 0
MWO0038] o o] 0 o] o
MWO00046 0 0 o lo 0 0 0 0
MWOoo054] o o o o o] o
MWoo062 0 0] 0 0 0] 0 il
[E70utput | [HiSearch 1 |2 Transfer | [E5Register List 1 |[=]Watch 1 | 3 Cross Reference 1 |40 Force Coil List
Example of an M Register Map
Information * |f you move the cursor over the register map, a balloon will show the register and the status

of the register at the cursor position.

» You can change the number of registers displayed in one row. The five buttons on the top
right of the pane are used to switch the displayed contents.

« If you right-click the register list, you can select Decimal, Hexadecimal, BIN, or ASCII from
the pop-up menu to change the data type of the values. However, the B and F data types
cannot be changed.

» The display color alternate between blue and black for every other row.

» The Monitor Icon is enabled only when the Machine Controller is online.

5.7.2

Switching the Register Map Display

You can change the number of registers that is displayed in one row. You can use the five but-
tons on the top right to switch the displayed contents of the register map.

Number of Registers Displayed in One Row

[|]
T <][auto o & Manitor | B o & F

e B
- . I

o o o

=]

€ Number of Registers Displayed in One Row

You can set the number of registers displayed in a row to between 1 and 16 either by direct
numeric input or by selection from a list. For bit registers, the number is always 16 and cannot
be changed. If you select Auto, the number of displayed registers will be set automatically
based on the size of the Register List Pane.

€ Monitor ON (&)/OFF (muwons) Button
This button is enabled only in Online Mode. Click this button to turn monitoring ON and OFF.

When monitoring is ON, the register data will be updated and displayed continuously. When
monitoring is OFF, the data will not be updated.

€ Register Map Show (gg)/Hide (=) Button
Click this button to show and hide the register map.

Show mode: Registers that are used in the ladder program are displayed with a green back-
ground, and registers that are used for more than one data type are displayed with a red back-
ground.

Hide mode: All registers are displayed with a white background.

@ Register Map Refresh Button (<)

Click this button to refresh the values in the register map.

Information tTuhsis button is disabled when the above Register Map Show/Hide Button is in Hide (B&) sta-

Features of the MPE720 Engineering Tool

5-20

5.7 Register Lists

5.7.3 Editing Data

€ Redundant Register Search Button (7 / &)

This button searches for and displays redundant registers. The [T] Button searches for redun-
dant registers upward, and the [{] Button searches downward.

If the same register is found, it will be displayed in the Register List Pane with a blue back-
ground.

Information This button is disabled when the Register Map Show/Hide Button is in Hide (B&) status.

Register List 1

Register MwO0014 ALto - | W] Monitor B S & F
0 1 2 3 |5 & 7 E I |1u [11 [12 (13 \14
MW00014 0 i [IJ 0 i 0 [0 0 0 0 [0
Mw00029 |0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MWD0044 0 0 0 0 o 0 0 0 0 0 0 0 0 0
Mwo00s9 |0 0 0 [0 0 0 0 [0 0 0 0 [0
MWO00T4 0] 0 0 0 0 0 0 0 0 0 0 0 0
Mwo00s9 |0 u 0 [0 0 0 0 0 0 0 0 0 0 0
MWOO104 |0 o o o o _________
@________ =
l@output l*’OFDrce Cail List l-Reglster List 1 J

5.7.3

Editing Data

You can perform the following editing operations by double-clicking cells on the register map or
by pressing the F2 Key to display the text cursor.

* Directly entering data

« Deleting data (setting the data to 0)

» Copying and pasting data

Press the Enter Key to confirm the change. If the Machine Controller is online, any changes in
the data immediately affect the operation of the Machine Controller.

5.8 Tuning Panel

Tuning Panel

The Tuning Panel allows you to display and edit the current value of pre-registered variables.

In

addition to the current values, the Tuning Panel also displays comments and visual status indi-

cators.
You can use the Tuning Panel to control and check the operation of your application.
You can adjust the Visual monitor Column to display data according to specific conditions.

1% MPE720 Ver.7 - Sample - CPU201_SMPL_E [GPU-201] - [H02.01 : axis 1 manual operation (JOG&STEP)] (=] 3]

H‘ Fle Edit Wiew Onlne Program Compile Debug Window Help - &@x
DESE% $BR o h@EFE & @
HoE EUE ¥ % eoco MLi#EfFo 28 <==%£=>8

Ladder axis 1 manual operation (JOG&STEP)

&= e Y e
Program 12 B 24
=[1]] CPUZD1_SMPL_E [CPU-201] = [Reaister

1B Laddsr program
21 B High-spesd
= H ¢ High-speed Main Frogram

------- Bz comment List

~ Me300010 DBOODOD T
1
- - ﬂ?(isl|lm0ti -
on command

WLFeD]Sro WLFeD]Dest
1000 #”.Spesd
DB000001
f aLsnto
— —|“, 1 STORE - 0 Bl

5,5
peOOOODD DBOODOST DpBOOOODZ
10!10 1t :f

{@Ladder lMutmn l[l]]Svstem J | .~ Start HO2.02 : axis 2 manual operation{JOGRSTEP) r HO2.01 : axis 1 ranual operation (JOGRSTER) /Tuning Panel]

“
X

Variable |Comment |Current v...[Unit_|Visual moritor

li - DWOO0010 [L] 0 0
e ﬂ ‘ m o ¥.Ready(IBS0000) X~Mation controller operation ready OFF O
[Register [Fragram [Execution Y Ready(IB30300) f eMotion controler operation ready OFF 0

X Position.Monitor &... X~Machine coordinate feedback posit... 0 |] 0

' Position.Monitor A... ¥ ~Machine coordinate feedback posit. .. 0 |] 0

{@Output lmcross Reference 1 l-’OForce Coil List Register List 1§ . mwyonoio L] o] 0
Ready MB300000 Servo ON PB CFF o]
MB300001 Alarm reset PB OFF O

DWOO0010 [L] 0 0

DBO00010 [HO2.01] OFF O

DBO00011 [HO2.01] CFF o]

e 1

Features of the MPE720 Engineering Tool

5-21

5.9 Enabling and Disabling Ladder Programs

EEN Enabling and Disabling Ladder Programs

Individual drawings in ladder programming can be enabled or disabled.

Ladder

LS| Start H02.01 : axis 1 manual operation (JOGESTER)
B = FRERHERRER TR
= i
Program
=[] [cPu-zo1] DEODOOID DEOROOTT IBE0DO 1 DE10000D
"B Ladzer program .| it — |
B Hch o DBuiuruiulu DBuiuiuiun o
) [E] H: High-speed Main Program
© & HO1 + comman settings for axes 1t 1T
B 2] H02 main program far manual aperatian pRO00001 Dan?nsn HBI000 10 DEOODO01T
2] HU2.0Z : s 2 manug| operation(JOGESTEP) » L = I =t
+ [E)H0# s main program for g \stioning DEODOOO0 DEODOOSI DEO00DD?
- [2] HOE : phase control mair{ \ogram % ——t f-
Heo o - -
%Hgl [[wCFanlsre [[WLFeDIDest
[&ro2 DBOBDOOT 0
1 Low-spesd L S SToRE nigoin ||
[Start - X"peed re
) [E] Interrupt terence
5= = Fun

SITWFanT&e (TWFANT flast

The diagram is
disabled.

e Disabled ladder drawings are not processed.
e ON/OFF control of coils and instruction
execution are not processed.

This feature is used to temporarily disable ladder drawings that contain processing to turn ON
the power supply to servomotors or jog processing for servomotors. This allows you to check

the operation of individual servomotors with the test run operation of the MPE720 or the mod-
ule configuration definition.

St 0201 - s 1 manusal aperation (OGESTLR) |

TROTIOTY RIS T
4 ¥

ONOIE DIOUNS ME0N
[N / X |

BN A0S
- it £ = St HUZ01 5 anrs 1 maneal vperation (OGRS TER) |

(ATl Bl | et ad sy st [T L
= [L DadiD=10m:

DLAM4RELIDG 10:
Bonatans — |
¥ e o

— o | =] Disabled.

(L iy .) !
— - I TGE0E0I0 DO “n’;n;n

e, - 1 [TTT
s, | i owwan 0 LN Y &

COOINONY DA 1 o el domets
- -) [9 e ——

Test Run X
Disabled Ladder o=
DraV\”ng Bis I(Clr#US Axis#01) SYRIZ virtual axis
Test Run bad

o £ Serva Enable Alarm

]

P,
Enable Disable Manitor

/" Jog [Step
Speed reference —

—

The axis operates only while hold down
forward button or reverse butkon,

% only whils ho

B or reverse button

)

S| B

Fonard:

Reverse Forward Reverse
The motor cannot be controlled from the MPE720 The motor can be controlled from
because the ladder drawing is being executed. MPE720 as required.

5-22

5.10 Watching

5.10.1 Displaying Watch Data

m Watching

You can monitor the values and comments of the specified S, I, O, M, C, and D registers on the
Watch 1, 2, and 3 Panes. Realtime monitoring is possible if the Machine Controller is con-
nected. You can edit the values.

When a project link is used, the data registered in the Watch Pane is saved only to the
Machine Controller. To apply the watch data to the project file, transfer all of the data from the
Machine Controller.

Information

5.10.1

Displaying Watch Data

1. Click one of the tabs for the Watch 1, 2 or 3 Panes.
Select Monitor — Watch from the Launcher. The Watch 1 Pane will be displayed.

Note: You can show or hide the Watch 1, 2, and 3 Panes by selecting View — Watch — Watch 1, View —
Watch — Watch 2, or View — Watch — Watch 3 from the menu bar.

2. Double-click the Variable Column or press F2 to display the text cursor, and then enter
the register or variable register to monitor.

Note: 1. You can also drag or copy registers from the ladder program or from the Variable Pane.
2. When monitoring D registers, enter the program number as shown below.

Variable |Value Commenk Program
SWOooo1 1797

MwWooooo o

SWO0016 257 Calendar: Month Day

DEOODO01 (OFF

[E] HO202 : axis 2 manual operation (JOGESTER)
@ HO4 : main program for pozitioning

@ HOE : phase control main program
[E] HOBO1 : phase control 1 {electronic shaft!
[E] HOB02 : phase contral 2 (electronic cam)

[E] Hoo |
[E] Ha1

| | [E] Hoz -
iz MDtIDn IIDSYStem @ L : low gpeed main program LI Dlrﬂ

3. Press the Enter Key.
The contents of the specified register will be displayed.

Variable |Value Commenk Program

SWO0oo1 1793

MwWooooo o

SWO0016 257 Calendar: Month Day

DEOOOODL OFF HOZ.02 : axis 2 manual operation JOGRSTER)
I

If you right-click a row, you can select Decimal, Hexadecimal, BIN, or ASCII from the pop-up menu
to change the data type of the Value Column.

5.10.2

Editing the Value Column

Double-click the Value Column or press F2 to display the text cursor. You can enter the value
directly or paste a value.

After entering the data, press the Enter Key to confirm the change.

If the Machine Controller is online, any changes in the data immediately affect the operation of

Inf ti
UEMNEEah the Machine Controller.

Features of the MPE720 Engineering Tool

5-23

5.11 Security

Security

5-24

MPE720 version 7 has the following security features. You can use these security features for
data protection by specifying access privileges for individual projects and program drawings.

« User Administration (User Name and Password Setting)
You can register and change the name of the users who can open projects.
If the setting is performed while the Machine Controller is online, the setting will provide
access privileges to the Machine Controller.

 Project Password Setting
You can set a password for opening a project file.

» Program Password Setting
You can set a password for opening ladder programs and motion programs. A password can
be set for each program.

» Online Security Setting
You can set a security key (i.e., a password) and privilege levels for reading data from a
Machine Controller. This allows you to restrict the ability to read the program data from the
Machine Controller or the ability to open the programs to users who have the specified level
of privilege or a higher privilege.

5.12 Tracing

Tracing

MPE720 version 7 has three trace modes.

» Real-Time Trace
You can monitor specified registers on a graph in real time.

» Trace Manager

You can have the Machine Controller collect data for specified registers during a specified

time period, and perform operations on that data and plot it on a graph.

This allows you to analyze register data that is acquired during specific time periods to debug

ladder programs.
« XY Trace

This trace mode acquires the position data of the X axis and Y axis every scan, and displays

the data in a 2-dimensional graph.
All three modes support exporting the trace data to CSV files.

Use tracing to check operation and to debug the ladder programs and motion programs.

A typical pane for data tracing is shown below.

Scope|> Start II M Stop I Viewlg Snap I Manitar data ND.IIDDD VI Setting hrigger..l Type Hg@
[] I < egf] (AT CITATR] | 5
IAuto j Auto j
—15000 —15000
—20000 —20000
—25000 —25000
6200
Kl 1l o] I[ms] 'l g
] Manitar1 |% ¥ Graph I I Fle1d I ’I IEII jl Marmal j “ Find I Calculatel g
Selrct Disp. Caolar “Wariable Progiam__| Comment [ais scale 0.00 | 400~
1 I Swiiooa Calendar: Seconds Auto x| 70 70 o
() -
= — -
<1 ' LIJ

Features of the MPE720 Engineering Tool

5-25

5.13 Advanced Programming

5.13.1 Motion Programs

Advanced Programming

5131 Motion Programs

A motion program is written in a text-based motion language. In addition to basic motion con-
trol and operations, motion programs can also be used to easily program complex movements,
such as linear interpolation and circular interpolation.

You can execute motion programs either by placing MSEE instructions in ladder programming
in DWG.H (high-speed scan process drawings), or by registering the motion programs in Pro-
gram Definition Tab Page for the M-EXECUTOR Module.

Machine Controller

5-26

Refer to the following manual for details on motion programs.
(71 MP3000 Series Motion Programming Manual (Manual No. SIEP C880725 14)

Motion Programs
Ladder Programs I A\
H MSEE Instruction MPMOO01 SVR or
- ! VEL 2000 YOUC: SVR32
D HO L = Called. ACC X100 100
DCC [X[100]Y)100;
— MOVJOLYD:
HO01.01 MVS [X]100.0 [Y200.0;
SVC or
HO01.02 SVC32
HO2 D
]
—] :
@
=
©
@
M-EXECUTOR =
Program Definition '%
Lo e o 2
T O . MPMO002 SVB-01
Called. ABS;
T — FMX T100000;
VS [C1J300 D100 F1000;
END;

s SVA-01
You can call motion You can call up to SVC-01
programs without a %2 DrOgra?_ﬂS at

e same time.
ladder program. You can create up
to 512 programs. PO-01
N

System Service

Registers
Appendix A

This appendix describes the system service registers that
are part of the system registers that are provided with the
Machine Controller system.

EEN Overview of System Registers -.........A2
[Common to All Dravings -...............A3
I v o DG igh-peed Scan Proess Dravings) . A4
I v o DG (Low-peed S Process Dravings) . A
[0 Scan Exeoution Status and Calendar ... A6
IR e Pogan e s e e oty 1

A.1 Overview of System Registers

Overview of System Registers

System registers are provided by the Machine Controller system. They can be used to read
system error information, the current operating status, and other information.

Contents

SWO000000 | System Service Registers

SWO000030 | System Status

SWO000050 | System Error Status

SWO000080 | Overview of User Operation Error Status
SWO000090 | System Service Execution Status
SWO000110 | Detailed User Operation Error Status
SW000190 | Alarm Counter and Alarm Clear
SWO000200 | System I/O Error Status

SW000504 | Reserved for system.

SW000652 | CF Card-related System Registers (MP2200-series CPU-02 and CPU-03 only)
SW000698 | Interrupt Status

SWO000800 | Module Information

SW001312 | Reserved for system.

SW001411 | MPU-01 Module System Status
SW002048 | Reserved for system.

SW003200 | Motion Program Information

SW005200
to Reserved for system.
SW008191

The System Service Registers are grouped into the following five categories.

« Common to All Drawings

 Exclusive to DWG.H (high-speed scan process drawings)

 Exclusive to DWG.L (low-speed scan process drawings)

» Scan Execution Status and Calendar

« System Program Software Numbers and Remaining Program Memory Capacity

A.2 Common to All Drawings

Common to All Drawings

Name Register Address Remarks
Reserved for system. SB0O00000 Not used.
. This register is ON for only the first scan after the
High-speed Scan SB000001 high-speed scan starts.
: This register is ON for only the first scan after the
Low-speed Scan SB000003 low-speed scan starts.
Always ON SB000004 Always ON (1).
SB000005,
Reserved for system. SB000006 Not used.
High-speed Scan in Progress SB000007 ON (1) during execution of the high-speed scan.
SB000008
Reserved for system. to Not used.
SBO000OF

>
% System Service Registers

A-3

A-4

A.3 Exclusive to DWG.H (High-speed Scan Process Drawings)

Operation starts when the high-speed scan starts.

Exclusive to DWG.H (High-speed Scan Process Drawings)

Name

Register Address

Remarks

—| =1 scan

1-scan Flicker Relay SB000010
—| =1 scan
0.5-s Flicker Rel SB000011 JORI0s
.5-s Flicker Rela
/ | LT
| 1.0s | 1.0s
1.0-s Flicker Relay SB000012 \}—‘,7
‘ 20s | 20s ‘
2.0-s Flicker Relay SB0O00013 \ 4,—1
—---- o
‘ 0.5s05s ‘
0.5-s Sampling Relay SB000014 B
— =1 scan
. 10s | 10s |
1.0-s Sampling Relay SB000015 | B M
‘ ™ 1 scan
\ 20s l 20s
2.0-s Sampling Relay SB000016 ;7”" 1
—| I+ 1 scan
. 60.0s | 60.0s |
60.0-s Sampling Relay SB0O00017 ;7”” j S— -
™1 ™1 scan
1.0s
1.0 s After Start of Scan Relay SB000018 ‘
‘ 20s ‘
2.0 s After Start of Scan Relay SB0O00019]
}7 ,,,,,,
‘ 50s
5.0 s After Start of Scan Relay SBOO0O0O1A]
}_ ,,,,,

A.4 Exclusive to DWG.L (Low-speed Scan Process Drawings)

Exclusive to DWG.L (Low-speed Scan Process Drawings)

Operation starts when the low-speed scan starts.

Name Register Address Remarks
—| =1 scan
1-scan Flicker Relay SB0O00030
—| <=1 scan
|.0.5s | 0.5s
0.5-s Flicker Relay SB000031 \ w
|
| 1.0s | 1.0s |
1.0-s Flicker Relay SB000032 }—,—\—
\ 20s | 20s \
2.0-s Flicker Relay SB000033 \ j --- i
‘ 0.5s ‘ 0.5s
0.5-s Sampling Relay SB000034 | H T H ﬂ m
‘ —| = 1scan
\ 1.0s \ 10s \
\ |
1.0-s Sampling Rela SB000035 |
pling y ‘ m m
! —| = 1scan
| 20s | 20s |
\ |
2.0-s Sampling Relay SB0O00036 |
T
| 60.0 s | 600s |
I |
60.0-s Sampling Relay SB0O00037 | m
T
‘ 1.0s ‘
1.0 s After Start of Scan Relay SB000038
‘ 2.0s
2.0 s After Start of Scan Relay SB000039 J
‘ 50s
5.0 s After Start of Scan Relay SBOO0O0O3A

System Service Registers

.
=]
=]
>

A-5

A-6

A.5 Scan Execution Status and Calendar

'“Ws Scan Execution Status and Calendar

Name Register Address Remarks
High-speed Scan Set Value SW00004 This is the high-speed scan set value (0.1 ms).
Current High-speed Scan Time SW00005 ;I;)hqs rlﬁst)he current value of the high-speed scan
High-speed Scan Maximum Value SW00006 ;I;)h;s riﬁst)he maximum value of the high-speed scan
High-speed Scan Set Value 2 SW00007 This is the high-speed scan set value (1 pus).
Current High-speed Scan Time 2 SW00008 z;hljsl)s the current value of the high-speed scan
High-speed Scan Maximum Value 2 SW00009 z;hI:sl)S the maximum value of the high-speed scan
Low-speed Scan Set Value SW00010 This is the low-speed scan set value (0.1 ms).
Current Low-speed Scan Time SW00011 ;I;)hqs rlrswt)he current value of the low-speed scan
Low-speed Scan Maximum Value SW00012 ;I;)hqs rlist)he maximum value of the low-speed scan
Reserved for system. SW00013 Not used.
Current Scan Time SW00014 Th@s is the current value of the scan that is currently

being executed (0.1 ms).

Calendar: Year SW00015 1999: 0099 (BCD) (last two digits only)
Calendar: Month Day SWO00016 December 31: 1231 (BCD)
Calendar: Hour and Minutes SW00017 23:59: 2359 (BCD)
Calendar: Seconds SW00018 59 s: 59 (BCD)
Calendar: Week SWO00019 0: Sunday, 1: Monday, 2: Tuesday, 3: Wednesday,

4: Thursday, 5: Friday, and 6: Saturday

A.6 System Program Software Numbers and Remaining Program Memory Capacity

System Program Software Numbers and Remaining Program Memory Capacity

Name Register Address Remarks
System Program Software Number SW00020 Sxxxx (xxxx is replaced with the BCD value.)
SW00021
System Number to Not used.
SW00025
Remaining Program Memory Capacity SL0O0026 Bytes
Total Memory Capacity SL00028 Bytes

System Service Registers

.
=]
=]
>

A-7

Sample Programs
Appendix B

This appendix describes ladder programming examples
that perform test runs.

[0 Joaging from the Control PanelB2
[Motion Program ControlB:3
I il ycvnize peatonof o s with il s 54

B.1 Jogging from the Control Panel

Jogging from the Control Panel

The following configuration and ladder programming example illustrate how to control a motor
from switches on a control panel when the motor and control panel are connected to a

B-2

Machine Controller.

m Configuration Example

B |adder Programming Example

Machine Control Panel
Controller
Servo ON command Alarm Clear command

(IBO00000) (IBO000OT)

Serial cable O Q
Jog+ command Jog- command

MECHATROLINK-HI (1B000002) (B000003)

SERVOPACK (SGDV) Q Q
(Circuit No. 1, Axis 1) S

11
system busy

1IB00001 (alarm clear command)=on clear the alarm

[EO0000 [E30000 020000

N | O

switch run SEFYD 0N
I$0902

OB2000F
'S

alarm clear

alarm clear

IBEJU[IJUIB
J0G- Icolmmand

command
IB00003(J0G-)=on change the direction of JOG
[BO0003 OB20092
| O
JOG- command JOG -directi

an

<[[WLFOD]Src [WLFODIDest

0oooo ows008
STORE B o

motion comma
nd

<[[WLFOD]Src [WLFODIDest

[BOOOOZ [B20001 ooooy ows008
|| || STCRE B =

JOG + comman ready

motion comma
nd

B.2 Motion Program Control

Motion Program Control

The following ladder programming example demonstrates how to control execution of a motion

program.

sane | e ion program

E nfe s |

. IB?U?UU __[Power to the Servomotor is turned UBS&QUU
04 rvo on Oomk| ON when IBO000O turns ON. e o
[11=1at
IBE]OE]O] MBDE]BDO] DBOQ_QO]O
272 U o
start comman --- start
1BO00DZ The motion program is started DBOODO T
[when 1BO000T turns ON. O
bold command hlod
. IB[IJUE]US DBUQQU]E
7 I L
abort comman abort
18?0?04 J The MSEE instruction is used to register DBO%O 15
9,4 alam clear % the motion program for execution. Alam car

command

mot ion program

DBOODOO0 WEOOOOOI DBOOD04?

I} 1 O

L in rmun - run finisted

5 B= — |
B B 0R000042-t rue |
. . [eoF
B« [WProgram ho.|[AData

[—[\GEE 00001 | DADOODO
E]

e C END),

Sample Programs

=
=]
=]

o

B-3

B-4

B.3 Simple Synchronized Operation of Two Axes with a Virtual Axis

Simple Synchronized Operation of Two Axes with a Virtual Axis

A motion program moves an SVR (virtual axis) and a ladder program distributes the feedback
position of the SVR to two physical axes to perform synchronized operation with two axes.

SVC Axis 1

SVR (Virtual Axis) g \
\ Axis 2

One-axis interpolation operation is
executed with a motion program.

A ladder program copies the feedback
position of the SVR to the position
references for axes 1 and 2 to perform
synchronized operation.

The motion programming example and ladder programming example for the above operation
are given below.

B Motion Programming Example

FMX T10000K; ”Set maximum interpolation speed K = 1,000.
ING; "Incremental Mode

IAC T500; "Interpolation acceleration time = 500 ms

IDC T500; "Interpolation deceleration time = 500 ms
MVS [SVR] 1000K F10000K; “Interpolation for travel distance of 1,000,000
END;

B.3 Simple Synchronized Operation of Two Axes with a Virtual Axis

B | adder Programming Example

J

q

14714

V3

TES21

23/34

zample program for wirtual motion module
MED30000 [B30000 0BE20000
I N e
FErVO 0N Co axiz Al rea 41 zervo on
mm and dy
IEBIDfIJDQ
&1 slys;.em b
usy
[B30800 OB20800
N O
axis Bl rea Bl szervo on
dy
IB%UEIBU2
Bl Slys}.em b
usy
[B30000 OB30000
I O
VR ready YR =zervo o
n
[B20007 1B30801 DENODO40
] N O
ready -- A1LB1 in ru
Ileaoqm DEOOQO41
SVRIinI run A1.B1,8YR i
DEOOO040
10N |
41,81 inoru |OWB008=4; AAA1 axis irtempolate
n oWs088=4; /Bl axis irtemolate
DB000040
I/ 10l —_
A1,BT in ru | OWB008=0; A2 B] axis NOP
n Ois055=0; /7 Bl axis HOP
MEOS0001T DROOOO44 DROOOO4T DROO0OTO
| £ N O
moving axes --- &1,B1,3VR i notion star
n run

E & [N Program N [A]Data

WS EE

E 10N

0000 DaDODO0

0

L4071

1 axis posit

oLe01C= By A4
OL809C=113016; // Bl axis pesit

jon comman

d = SR fe
ion command = SYR fe

echade position
ecbadk position

=

i END

EEN

-,

@

Important

This programming example does not include recovery processing for axis errors. If you decide to
incorporate this programming example into your application, be sure to add the necessary pro-
gramming to ensure safe operation in the event of an axis error.

Sample Programs

=
=]
=]

o

B-5

Format for
EXPRESSION
Instructions

Appendix

This appendix describes the format for EXPRESSION
instructions.

C.1.1 Operators

C.1.2 Operands C-3

C.1.3 Instructions That You Can Use
with EXPRESSION Instructions

_

C.2.1 Arithmetic and Logic Operators

C.2.2 Comparison Operators C-5
C.2.3 LogicOperators C-5
C.2.4 Substitution Operator C-6
C.25 Functions C-6

C.2.6 Parentheses

C-2

C.1 Elements That You Can Use in Numeric Expressions

C.1.1 Operators

Elements That You Can Use in Numeric Expressions

Numeric expressions that can be used in EXPRESSION instructions include operators, oper-
ands (constants and variables), and functions. This section describes each of these elements.

C11 Operators

Types of Operators and Usable Operators
The following list gives the types of operators and usable operators.

Type Usable Operators
+ Add
- Subtract
* Multiply
/ Divide
Arithmetic and Logic Operators % Remainder
& Bit-wise AND
| Bit-wise OR
++ Extended Add
-— Extended Subtract
Loai && Inclusive AND
(L(J)sg;&(e)girlst\?v:tsh bit data) I Inclusive OR
! Logical NOT

Comparison Operators

== Equal to right-side value

I= Unequal to right-side value

Substitution Operator

Reserved Words

> Greater than right-side value

>= Greater than or equal to right-side value

< Less than right-side value

<= Less than or equal to right-side value

= Substitutes left-side value with right-side value
true TRUE for a logical expression
false FALSE for a logical expression

Control Instructions

IF, ELSE, and IEND | ELSE can be omitted.

Order of Evaluation

Operators are evaluated according to their processing priority and the order in which operands
are grouped, as listed below.

Priority | Operators Description Grouping Order
High 0o Expression Left to right
-1 Unary Right to left
T */ % Multiplication, division, and remainder
+ — ++ —— | Addition, subtraction, extended addition, and extended subtraction
< > <= >= | Relational
== = Equivalence i
—— Left to right
& Bit-wise AND
d | Bit-wise OR
&& Inclusive AND
Low I Inclusive OR

Note: Operators on the same line have the same processing priority and are evaluated according to their grouping

order.

C.1 Elements That You Can Use in Numeric Expressions

C.1.2 Operands

C.1.2

Operands

Constants

Integers or real numbers may be used as a constant.

« An integer may be any number that can be expressed within the range of a 64-bit integer
(quadruple-precision integers).

(-9,228,372,036,854,775,808 to 9,223,372,036,854,775,807)

» A real number may be any number that can be expressed within the range of 64-bit data
(double-precision real numbers).

+ (2.225E-308 to 1.798E+308)

Hexadecimal numbers must be expressed using the OxAOOO notation when used in the
EXPRESSION, IF, or WHILE instruction.

The HOODOO notation will result in an error.

Example: HO12F --- NG 0x012F --- OK

The HOOOO notation must be used for all other instructions, such as the STORE instruc-
tion.

Information

Variables

The EXPRESSION instruction allows you to assign arbitrary variable names that are allowed in
C language to registers in the Machine Controller.

Although the C language does not have Boolean variables, bit registers in the Machine Control-
ler are treated as Boolean variables. Boolean variables are either TRUE or FALSE and can be
used only in logical expressions.

W Limitations on Variable Names

The following limitations apply to variable names.

+ Variable names must start with a non-numeric character.

« For ASCII characters, only alphabetic characters, underscores, and numbers may be used.

» The following variable names cannot be used because they are already used as function
names.
I C.1.3 Instructions That You Can Use with EXPRESSION Instructions on page C-4

AbcOK
Get_input()OK
1abNG
SinNG

Example

Format for EXPRESSION Instructions

x>
=]
=]

D

C-3

C-4

C.1 Elements That You Can Use in Numeric Expressions

C.1.3 Instructions That You Can Use with EXPRESSION Instructions

C13

Instructions That You Can Use with EXPRESSION
Instructions

The following list gives the instructions that can be used with EXPRESSION instructions.

Instruction Description Example Reserved Word
+ Add MWO00001 = MWO00002 + MWO00003 N
- Subtract MWO00001 = MW00002 — MW00003 v
* Multiply MW00001 = MW00002 x MW00003 V
/ Divide MW00001 = MWO00002 / MW00003 N
% Remainder MWO00001 = MW00002 % MWO00003 v
& Bit-wise AND MW00001 = MWO00002 & 4096 \/
| Bit-wise OR MWO00001 = MWO00002 | 4096 N
++ Extended Add MWO00001 = MWO00002 ++ MWO00003 v
-— Extended Subtract MW00001 = MW00002 — MW00003 \/
&& Inclusive AND MB000010 = MBO0O0011 && MB0O00012 N
|| Inclusive OR MBO000010 = MB0O00011 // MB0O00012 \/
! Logical NOT MB000010 = IMB0000O11 N
== Equal to right-side value MBO000010 = MB0O00011 == true \/
Right-side value is greater
>= than or equal to left-side | MB0O0O0O0O10 = MW00020 >= MWO00021 R
value
> plght-side value Is greater | 118000010 = MW00020 > MWO0021 \
< pight-side value 9 1698 | MB000010 = MW00020 < MWO0021 N
Right-side value is less
<= than or equal to left-side | MB0O0O0010 = MW00020 <= MWO00021 V
value
_ fvﬂﬁsrﬁ';ﬁttes'gte side value | w0001 = MW00002 N
true TRUE MB000010 = MB000011 == true V
false FALSE MB000010 = MBO0O0011 == false V
sin() SIN MWO00001 = sin(MW00002) V
cos() COos MF00002 = cos(MFO0004) J
atan() ARCTAN MF00002 = atan(MFO0004) N
tan() TAN MFO0002 = tan(MFO0004) N
0 Parentheses MW00001 = (MW00002 + MW00003) / MW00004 V
asin() ARCSIN MF00002 = asin(MF00004) \/
acos() ARCCOS MF00002 = acos(MF0O0004) V
sqrt() SQRT MWO00001 = sqrt(MW00002) N
abs|) ABS MWO00001 = abs(MW00002) V
exp() EXP MF00002 = exp(MFO0004) N
log() LOG natural logarithm MFO00002 = log(MFO0004) v
log10() LOG10 common logarithm | MFOO002 = log10(MF00004) V

C.2 Notational Limitations

C.2

C.2.1 Arithmetic and Logic Operators

Notational Limitations

Several limitations apply when combining operands and operators to form numeric expres-
sions. An expression is not recognized as a humeric expression unless it meets these condi-
tions.

This section describes these limitations.

C21 Arithmetic and Logic Operators
These operators can be used with integer and real number operands. The unary minus opera-
tor can be used only once. Bit operations can be performed only on integer data. Bit operands
cannot be used for arithmetic operations. No automatic data type conversion is performed
even if the calculation result exceeds the range of the assigned register. Therefore, the user
must assign the appropriate data type to the register.
MW00001 = MW00002 + MWO00O0030K
Example) /\v00001 = MW00002 / 3450K
MF00002 = (MW00004 + MF00002) / (MLO0018 + MWO0008)OK
MW00001 = MW00002 & 40960K
MBO0O0010 = MBO0O0011 - MBO0O0012NG
MWO00001 = MB0O00011 * MWOOOO1ING
Q To perform bit operations, match the data types on the left and right sides of the operator.
@ If the operation is performed using different data types, the intended result may not be
obtained.
Important
MLO0O000 = MW00002 | MLOOO04NG
MLO0000 = MLO0002 | MLO0O0040OK
MQOO0000 = OxFFFFOO00 & MQO0004NG
MQOO0000 = 0x00000000FFFFO000 & MQO00040K
C22 Comparison Operators
These operators can be used with integer and real number operands. The left side must be a
bit data register. To use an integer bit operand in a comparison operation with the == or |=
operator, compare it with TRUE or FALSE.
MB0O00010 = MWQ0002 = MWO0O00030K
Bxample \15000010 = MFOD002 < 99.990K
MB0O0O0010 = MW00002 >= MWO000030K
MBO000010 = MB0O00011 == trueOK
MBO000010 = MB0O00011 != ONG
MBO00O0010 = MB0O00011 == 1NG
C23 Logic Operators

These operators can be used with bit operands.

MB000010 = MB0O00011 && MB0000120K
MB000010 = IMB0O000110K

MB000010 = (MW000020 >= 50) && MB0000110K
MB000010 = MWO00O01 || MWO00002 NG
MB000010 = IMWOO001NG

Example

b
% Format for EXPRESSION Instructions

C-5

C-6

C.2 Notational Limitations

C.2.4 Substitution Operator

C.24

Substitution Operator

Real number and integer registers can be substituted with either real number or integer data,
even if the data type differs. When you substitute an integer register with a real number register,
a round-off error will occur.

Bit registers can be substituted only with logical values, such as another bit register or a TRUE/
FALSE. If you substitute a bit register with a non-logical value, that value will be compared
against 0 or 0.0 and the TRUE or FALSE outcome will be converted to a code before it is sub-
stituted.

Bit data cannot be substituted into non-bit registers.
MWO00001 = MW00002;0K

Example \1£00000 = MW00002 / 345:0K
MB000010 = MB000010; OK
MW00010 = MB0O000101:NG
MWOO0O001 = true;NG
C25 Functions

The arguments and return values for functions depend on the specifications of the functions in
the Machine Controller.

Therefore, if the input for the sin(), cos(), and tan() functions is an integer or integer register, the
output value will be returned as an integer. If the input is a real number or a real number regis-
ter, the output value will be returned as a real number.

The argument for the tan() function is a real number so an integer register input will be treated
as a real number.

MWO00001 = sin(MW00002); OK

Example \1£00002 = cos(MFO0000x3.14):0K
MWO00001 = -atan(MFO0002);0K
C26 Parentheses
m Grouping

You can group multiple expressions by enclosing them with parenthesis ().
Example MWO00001 = ~(MW00002 + 10) / (MW00003 — MW00005); OK

m Arrays
You can specify arrays by using square brackets [], just like with the C language.
MWO00001 = MWO0O0002[100];0K

MWO00001 = MW0O0002[MW00003];0K
MBO000010 = MB000020[0]; OK

Example

Precautions on
Motion Parameters
Appendix D

This appendix provides precautions on motion parameters.

D-2

The following precautions apply to using motion parameters.

B Do Not Use a Subscript to Reference a Motion Register from an I/O Register

I/O registers and motion registers are not assigned to consecutive memory locations. When
using a subscript, access registers within the range of I/O registers or within the range of
motion registers.

W00000/OWO00000

IWO7FFF/OWOT7FFF

W08000/OW08000

IWOFFFF/OWOFFFF

Motion registers

) Accessible.
I/O registers

Not accessible.

Example:
=1

OWOT7FFFi = 0;

) Accessible.

B Do Not Use a Subscript to Reference a Motion Register in a Different Circuit
Motion registers on different circuits are not assigned to consecutive memory locations.

When using a subscript, access registers within the range of motion registers for each circuit.
If the circuit number is the same, it is possible to access motion registers for different axes.

Circuit No.

Axis 1

Axis 2

Axis 16

1

OW08000 to OW0807F

OwW08080 to OWO80FF

OwWO08780 to OWO87FF

OWO09000 to OW0907F

OwW09080 to OWO90FF

OWO09780 to OWO097FF

OWOAO000 to OWOAO7F

OWOAO080 to OWOAOFF

OWOA780 to OWOA7FF

OWO0BO000 to OW0OBO7F

OWO0B080 to OWOBOFF

OWO0B780 to OWOB7FF

O|N|O1| W

OWO0C000 to OWOCO7F

OWO0C080 to OWOCOFF

OWOC780 to OWOCT7FF

11

OWODO000 to OWODO7F

OwWO0DO080 to OWODOFF

OwWO0D780 to OWOD7FF

OWOEOOQO to OWOEOQ7F

OWOE080 to OWOEOFF

OWOE780 to OWOET7FF

15

OWOFO000 to OWOFO7F

OWOF080 to OWOFOFF

OWOF780 to OWOF7FF

17

OwW18000 to OW1807F

Ow18080 to OW180FF

OwW18780 to OW187FF

19

OW19000 to OW1907F

OwW19080 to OW190FF

OwW19780 to OW197FF

21

OW1AO000 to OW1AOQ7F

OW1A080 to OW1AOFF

OW1A780 to OW1A7FF

23

OW1B000 to OW1B0O7F

OW1B080 to OW1BOFF

OW1B780 to OW1B7FF

25

OW1C000 to OW1CO7F

OW1C080 to OW1COFF

OW1C780 to OW1C7FF

27

OW1DO000 to OW1DO7F

Ow1D080 to OW1DOFF

Ow1D780 to OW1D7FF

29

OW1EO000 to OW1EQ7F

OW1E080 to OW1EOFF

OW1E780 to OW1E7FF

31

OW1F000 to OW1FO7F

OW1F080 to OW1FOFF

OW1F780 to OW1F7FF

Circuit 1

Axis 1 (W08000 to IW0807F, OW08000 to OWO0807F)

Axis 16 (IW08780 to IW087FF, OW08780 to OWO87FF)

D Accessible.
Example:
| =1;
OWO0807Fi = 0;

Not accessible.

Example:

Circuit 3

Axis 1 (IW09000 to IW0907F, OW09000 to OW0907F)

Axis 16 (IW09780 to IW097FF, OW09780 to OW0O97FF)

| =1;
OWO87FFi = 0;

Precautions on Motion Parameters

D-3

Machine Controller
Specifications
Appendix E

This appendix provides the specifications for programs for
the Motion Controller.

The following table gives the specifications for programs for the Machine Controller.

Specification

CPU Unit/CPU Module

Remarks

Motion Programs

You can create a com-

Number of 512 max. bined total of 512 motion

Programs programs and sequence
programs.

Number of Groups 16 groups -

Number of Tasks

32 tasks max. (This is the number of simultaneously
executable motion programs.)

Number of Parallel
Forks per Task

8 parallel forks max. (select from these 4 modes)
* 4 main program forks, 2 subprogram forks
» 8 main program forks, 1 subprogram forks
» 2 main program forks, 4 subprogram forks
* 1 main program forks, 8 subprogram forks

Change the mode using
the MPET720.

Execution
Registration

» Use the MSEE instruction from a ladder program.
» Use the M-EXECUTOR.

Starting Method

Program execution starts on the rising edge of bit O
(Request for Start of Program Operation) in the control
signals.

Override for
Positioning Speeds

Can be specified from 0.01% to 327.67%.

Operating Modes

Absolute Mode and Incremental Mode

The mode is changed
with the ABS and INC
instructions.

Reference Unit

« SVC/SVC32/SVC-01/SVB-01/SVR/SVR32
pulse, mm, deg, inch, um

* SVA-01/PO-01
pulse, mm, deg, inch

Minimum Reference
Unit

* pulse
]
* mm, deg, inch, pm
1, 0.1, 0.01, 0.001, 0.0001, 0.00001

Reference Range

-2147483648 to +2147483647 (32-bit signed data)

Number of
Simultaneously
Controlled Axes per
Task

» Positioning, Linear Interpolation, Zero Point Return,
Skip Function, and Set-time Positioning
32 axes max.
« Circular Interpolation
2 axes
» Helical Interpolation
3 axes
» External Positioning
1 axis

Number of
Simultaneously
Controlled Cameras

32 cameras max.

Number of
Simultaneously
Controlled
Mechanisms

4 mechanisms max.

Continued on next page.

Continued from previous page.

Specification

CPU Unit/CPU Module

Remarks

Sequence Programs

Number of
Programs

512 max.

(There are three settings for the execution timing:
startup processing, high-speed scan processing, or
low-speed scan processing.)

You can create a com-
bined total of 512 motion
programs and sequence
programs.

Number of Tasks

32 tasks max. (This is the number of simultaneously
executable sequence programs.)

Number of Parallel
Forks per Task

The PFORK instruction cannot be used.

Execution
Registration

Use the M-EXECUTOR.

Starting Method

Automatically started by the system.

The system starts
sequence programs that
are registered in the
M-EXECUTOR.

Accessible Registers

These registers are

M Registers 1,048,576 words backed up with a battery.
. These registers are
S Registers 65,535 words backed up with a battery.
These registers are
. shared by all programs.
G Registers 2,097,152 words They are not backed up
with a battery.
. 65,536 words + Setting parameters + Registers for
| Registers CPU interface B
. 65,536 words + Monitor parameters + Registers for
O Registers CPU interface B
C Registers 16,384 words -
These are internal regis-
ters that are unique within
D Registers Can be specified from 0 to 16,384 words. each DWG. They can be

referenced only within the
local drawing.

Machine Controller Specifications

E-3

Error Codes
Appendix F

This appendix describes the error codes that correspond
to the storage operation instructions.

F-2

Instructions in Which

Error Code Description This Error Occurs
0000 hex | No error -
FOPEN, FCLOSE, FREAD,
FWRITE, FSEEK, FGETS,
8000 hex | Param is outside range of registers FPUTS, FCOPY, FREMOVE,

FRENAME, DCREATE, DRE-
MOVE, FTPPUT

8101 hex | Drive number out of range error FTPPUT
810B hex | Text string error (NULL character not detected) FPUTS
FOPEN, FCOPY, FREMOVE,
810C hex | File or directory name error FRENAME, DCREATE,
DREMOVE, FTPPUT
810D hex | FTP transmission error FTPPUT
FOPEN, FCLOSE, FREAD,
8110 hex | Invalid file handler FWRITE, FSEEK, FGETS,
FPUTS
8111 hex | Size out of range error FREAD, FWRITE
FOPEN, FREAD, FWRITE,
I . FGETS, FCOPY, FREMOVE,
8113 hex | Storage or read destination registers out of range error FRENAME, DCREATE,
DREMOVE, FTPPUT
8114 hex | Offset out of range error FSEEK
8115 hex | Origin out of range error FSEEK
8116 hex | Open type out of range error FOPEN
FOPEN, FCOPY, FREMOVE,
8201 hex | No USB memory device FRENAME, DCREATE,
DREMOVE, FTPPUT
8202 hex Cannot open file (e.g., invalid path, inaccessible, or insufficient FOPEN
space)
82083 hex | File seek error (inaccessible) FSEEK
8204 hex | File write error (inaccessible or insufficient space) FWRITE, FPUTS
8205 hex | File read error (inaccessible) FREAD, FGETS
8206 hex | File close failure (inaccessible) FCLOSE
8207 hex SCs;gg)t save file (invalid path, inaccessible, or insufficient FCOPY, FRENAME
8208 hex | File or directory deletion failure FREMOVE, DREMOVE
8209 hex Qannot create directory (invalid path, inaccessible, or insuffi- DCREATE
cient space)
820A hex | Cannot open write-protected file FOPEN
820B hex | Exceeded number of files that can be opened simultaneously FOPEN, FCOPY, FREMOVE,
FRENAME
820C hex Exceeded number of workspaces that can be used simultane- | DCREATE, DREMOVE,
ously FTPPUT
FOPEN, FCLOSE, FREAD,
820D hex Cannot execute processing because target file is being used in | FWRITE, FSEEK, FGETS,
another instruction FPUTS, FCOPY, FREMOVE,
FRENAME
820E hex | File already open FOPEN
FOPEN, FCLOSE, FREAD,
FWRITE, FSEEK, FGETS,
820F hex | Preparation for storage operation processing not completed FPUTS, FCOPY, FREMOVE,
FRENAME, DCREATE,
DREMOVE, FTPPUT
. - FOPEN, FREMOVE, FCOPY,
8210 hex | Directory was specified FRENAME, FTPPUT
8211 hex | Attempted to overwrite file or directory FCOPY, FRENAME,

DCREATE

Continued on next page.

Continued from previous page.
L Instructions in Which
Error Code Description This Error Occurs

FOPEN, FCOPY, FREMOVE,

8212 hex | File or directory does not exist FRENAME, DREMOVE,
FTPPUT

Error Codes

F-3

=
=
-

Index

\(Index)

Symbols
#registers - - - - - - - - - - - - 3-4
Numerics

10-ms OFF-Delay Timer (TOFF (10 ms)) - - - ------ 4-21
10-ms ON-Delay Timer (TON (10 ms)) - - - - - - - - - - 4-19
1-ms OFF-Delay Timer (TOFF (1 ms))- - - - - - - - - - - 4-18
1-ms ON-Delay Timer (TON (1 ms))- - - -------- - 4-16
1-s OFF-Delay Timer (TOFF (1 §))- -~ ---------- 4-24
1-s ON-Delay Timer (TON (1 §))- - - - - - -------- 4-22

A
Absolute Value (ABS) - - = = = = = = = = = === -~ - - - - 4-56
Add (ADD (#)) = = = = === === s e e e e e oo o - 4-35
Add Time (TMADD) - = = = = = = = == == === = = = = - - 4-48
address - - - - - - - 3-8
Arc Cosine (ACOS) - - - - - === ------------- 4-99
Arc SiNe(ASIN) - - - - - - - - - - - - - - - - - - 4-98
Arc Tangent (ATAN) - - - - = - - = - - - - - - - - - - - - - 4-100
arithmetic operators - - - - - ------------- C-2,C-5
ASCII Conversion 1 (ASCIl) - - - ------------- 4-60
ASCII Conversion 2 (BINASC)- - - - - - --------- 4-61
ASCII Conversion 3 (ASCBIN) - - = = = - - - - - - - - - - 4-62

B
background - - - - - - - - - - - - - - oo 1-10
Basic Function Instructions - - - = = = - - - - - - - 4-8, 4-93
batch transfer - - - - - - - - - - -------------- 2-12
BCD Conversion (BCD) - - - --------------- 4-58
Binary Conversion BIN) - = - - - - - - ---------- 4-57
Binary Search (BSRCH) - - ---------------- 4-116
bit- - === - - - 3-8
Bit Rotate Left (ROTL) - - - ---------------- 4-104
Bit Rotate Right (ROTR) = = = = = = = = = === = = - - - - 4-105
Bit Shift Left (SHFTL) = = = = = == == == = = == = = = - - 4-118
Bit Shift Right (SHFTR) - = = = = = = = === === = = - - - 4-120
Byte Swap (BSWAP) - 4-122
Byte-to-word Expansion (BEXTD)- - - - - - - - - - - - - 4-113

C
Call Extended Program (XCALL) - ------------ 4-83
Call Motion Program (MSEE) - - ------------- 4-76
Call Sequence Program (SEE)- - - - - - - - - - - - - - - 4-75
Call User Function (FUNC)- - - = - = - = = - = - - - - - - 4-78
calling user functions- - - - - - - ------------- 1-17
checking for multiple coils - - - = - = - = - - = - = - - - - 5-13
checking the operation of the ladder programs - - - - - 2-13
child drawings- - - - - = - = - - = - = - - - - - - - - - - -~ 1-7
Clear Queue Table Pointer (QTBLCL)- - - - - - - - - - - 4-202

Index-1

Clear Table Block (TBLCL) - ------=--------- 4-187
COIl(COIL) = === mmmmmmm e mmmm oo 4-29
Common Logarithm (LOG) - - -------------- 4-103
comparison operators - - - - - - - - - - - - - - - -~ C-2,C-5
compiling the program- - - = = = - = = = = == - - - - - - - - 2-8
connecting the hardware - - - - - - - - - - - - - - - - - - - 2-3
constant registers - - - -------------------- 3-3
constants - - - - - - - - - - oo - - oo C-3
control instructions- - = - - = = - - - - - - - - - - - --- C-2
controlling the execution of drawings - - - -------- - 1-9
Copy Word (COPYW) - - - - = = == == === - - - - - - 4-121
Cosine (COS)--------------“---------- 4-95
Counter (COUNTER)- - = - - - == === == - - - - - -~ 4-204
creating a project- - - - - - - - - - - - - - - - oo oo 2-4
creating ladder programs - - - - - - - - - - - - - - - - - - - 2-7
creating tabledata- - - ------------------- 1-18
creating user functions - - - - - - - - - - - - - - - - - - 1-15
cross reference criteria - - - - - - ------------- 5-10
cross references - - - - - - ----------------- 5-10
D
Dregisters - -------------------------- 3-4
Data Manipulation Instructions - - - - = - = - - - - - - - - - 4-8
dataregisters- - - - - - - - -------- - - - - - - - 3-2
Data Shift Instructions - - - - - - - - - - - - - - - - - - - 4-104
datatypes- - - -----------“--“--“-------- 3-8
DDC Instructions- - - - = = = = = = = = = = = = = - - 4-8, 4-123
Dead Zone A (DZA) - ------------------- 4-123
Dead ZoneB(DZB) - ------------------- 4-124
Decrement (DEC)- - - - == ----------------- 4-47
dialog box
Replace - - - - ----------"------------- 5-6
Replace in the Project- - - - - = = = - - - - - - - - - - - 5-8
Search - ---------------o oo 5-5
Search in Project- - - - ------------------ 5-7
Direct Input String (INS) = = - - - - === - - - - - - - - - - 4-79
Direct Output String (OUTS) - - - ------------- 4-81
displaying watch data = = = = = = = === - - - - - - - - - - 5-23
DiVide (DIV (#)) = = === === === === m oo oo 4-42
double-length integer - - - - - - --------------- 3-8
double-precision real number- - - - - - - - - - - - - - - - - 3-8
DWGA -------- - - - -~ 1-8
DWGH - ------- - - - - - m oo oo - - - - 1-8
DWG. - - === === == o oo m oo m e 1-8
DWG.L ------------ - - oo o~ 1-8
E
enabling and disabling ladder diagrams - - - - - - - - - - 5-22
Equal (=)- - - ------------------------- 4-69
Exchange (XCHG) - - ------------------- 4-110
Exclusive OR (XOR) = - == ----------------- 4-66
execution processing of drawings - - - - - - - - - - - - - - 1-9

Index

Exponential (EXP)- - - - - - - --------------- 4-101
Export (EXPORT/EXPORTL/EXPORTLE)- - - - - - - - - 4-248
Expression (EXPRESSION) - - --------------- 4-91
EXPRESSION instructions=- - - = = = = == - = - - - - - - - C-2
Extended Add (ADDX (++)) - - --------------- 4-36
Extended Subtract (SUBX — =) - - - - - - - - - - - - - - - 4-39
F
Falling-edge Detection Coil (OFFP-COIL) - - - ------ 4-31
Falling-edge NC Contact (OFFP-NCC)- - - - - - - - - - - 4-15
Falling-edge NO Contact (OFFP-NOC)- - - - - - - - - - - 4-13
Falling-edge Pulses (OFF-PLS) - - - - - - = = = = - - - - - 4-27
First-in First-out (FINFOUT) - - - - ------------ 4-207
First-order Lag (LAG)- - - - = - -------------- 4-142
Flash Operation (FLASH-OP) - - - - = = - - - ------ 4-233
FOR Construct (FOR,END_FOR) - - - = - - - - ----- - 4-86
Force OFF- - - - ---------m o oo oo - 5-14
FOrceON - - ---------mmmmmm oo o 5-14
forcing coils ON or OFF - - - - - - - - - - - oo - oo 5-14
from a ladder program- - - - - = - - - --------- 5-14
from the Force Coil List Pane- - - - - - - ------- 5-14
searching for forced coils in the Force Coll
ListPane - - - ---------------------- 5-14
function external registers - - - - - - - - - - - - - ----- 3-5
Function Generator (FGN) - = = = - - - = - - - - ----- 4-147
function input registers - - - - - ------------ - 3-4
function internal registers - - - - - - ------------ 3-5
function output registers- - - - - - - - - - - -------- 3-4
G
Gregisters - ------------------------- 3-2
global registers - - - == - - - - - - - - oo oo oo 3-2
goingonling=-=------------------------ 2-6
grandchild drawings - = - - - - - -------------- 1-7
Greater Than (>) - == ---=----------------- 4-72
Greater Thanor Equal (2) - - - --------------- 4-7
H
high-speed drawing operation mode settings- - - - - - - 1-11
I
IF Construct (IF, END_IF)- = = - - - = - - - - - - - - - - - - 4-88
IF-ELSE Construct (IF, ELSE, END_IF) - - = - = - - - - - - 4-90
Import IMPORT/IMPORTL/IMPORTLE) - - - - - - - - - 4-240
Inclusive AND (AND) - - - = === - - ------------ 4-64
Inclusive OR (OR)- = - - - == ---------------- 4-65
Increment INC) - = = - - - - -----------ooo--- 4-46
index registers (i, j) - = - ------------------- 3-12
individual transfer- - = - - - = == - - --------o- - 2-12
input registers- - - = - - - - - ------------- - 3-3
inserting instructions = = - - - = - - - ------------ 2-7
inserting rungs - - = --------------------- 2-7
installing MPE720 version 7- = = - - = = === - - - - - - - 2-3

integer------------------------------ 3-8
Integer Remainder (MOD) - - - = - = = = = = = - = - - - - - 4-43
Inverse Function Generator (IFGN)- - - - - - - - - - - - 4-151
Invert Sign (INV) = = = === == --------------- 4-54
L
ladder drawings - - - - -------------------- 1-7
execution timing- - - - - - - - - ------------- 1-3
ladder language instructions - - - - - = - - - - - ------ 4-6
LadderPane - - - - - - - ------------------- 1-6
ladder program- - - - = = - = - - - - - oo oo oo 1-2
Ladder Program Editor - - = - - - - - ------------ 1-6
ladder program runtime monitoring - - - - - - - - - - - - - 5-4
LessThan (<)- - === === =--=--=--=------- 4-67
Less ThanorEqual (€) - ------------------ 4-68
Linear Accelerator/Decelerator 1 (LAU) - - - - - - - - - 4-155
Linear Accelerator/Decelerator 2 (SLAU) - - - - - - - - 4-161
local registers - - - - - ---------- oo 3-4
Logic Operation Instructions - - = - = = - = = - - = - - - - - 4-7
Logic Operations and Comparison Instructions - - - - - 4-64
logic operators = = = = = == === - - - - - oo C-2,C-5
M
Motion Programs= - - = = = = = = = == == - = - - - - - - - 5-26
Move Bit (MOVB)- - - = == === -------- oo - - 4-106
Move Table Block (TBLMV) - = = = = = = -~ - - - - - - - 4-190
Move Word (MOVW) - = = = = = = === - oo oo - - - 4-108
Multiply (MUL (x)) === --=-----------mmm o 4-41
N
Natural Logarithm (LN) - - = - - = === - == - - -~ - - 4-102
NC Contact (NCC)- - = = = === === == === - -~ -~ 4-14
NO Contact (NOC)- = = = = = = = = === - == - === - -~ 4-11
Not Equal (#) - - - = == == === -------------- 4-70
Numeric Operation Instructions - - - - - - - - - - - 4-7,4-34
0]
One’s Complement (COM) - = - = == - == === - - - - - 4-55
online security setting - - - = = = - == - - - - - - - - - -~ 5-24
operands - - == === - -sssso oo C-3
operation error drawings - - - - --------------- 1-7
operators - - - == - - - - - -- oo oo C-2
output registers - - - - - - - - - oo oo oo oo 3-3
P
parent drawings - - - = - - - - - --------------- 1-7
Parity Conversion (PARITY) - - = = = === - === - - -~ 4-59
PD Control (PD) - --------------------- 4-133
Phase Lead Lag (LLAG)- - - - - - - - ---------- 4-144
PIControl (Pl) - - ---------ccooooooo o 4-128
PID Control (PID)- = = = == = === =----------- 4-137
preparation for devices to be connected - - - - - - - - - - 2-3
privilege levels - - - - - == - - - - - oo oo 5-24

Index

Program Control Instructions - - - - - - - - - ------- 4-7
program password setting- - - - - - - - --------- 5-24
project password setting- - - = - - - ----------- 5-24
Pulse Width Modulation (PWM) - = = = = = - - - - - - - - 4-170
Q
quadruple-length integer- - - - = = = = - - - - - - - - - - - 3-8
R
Range Check (RCHK) - ------------------ 4-73
Read Data Trace (DTRC-RD/DTRC-RDE) - - - - - - - - 4-212
Read Motion Register MOTREG-R) - - --------- 4-238
Read Queue Table (QTBLR and QTBLRI) - - ------ 4-194
Read SERVOPACK Parameter (MLNK-SVR)- - - - - - - 4-228
Read Table Block (TBLBR)- - - - = = === - - - - - -~ - 4-173
realnumber - - - - - - -------- oo 3-8
Real Remainder (REM) - = = - = - = = = = - - - - - - - - - 4-45
real-time trace- - - - === - - - - - - - - - - - - - - -~ 5-25
Receive Message (MSG-RCV)- - - - - - - - - - ----- 4-220
Receive Message Extended (MSG-RCVE) - - - - - - - - 4-221
Register Lists - - - = ===~~~ ---------- 2-13,5-18
register map------------------------- 5-18
register types - - = = - - - - - - - - - - - - oo oo 3-8
Relay Circuit Instructions- - - - = = = = = = = - - - - 4-6, 4-11
Replace Dialog Box- = = = = === -------------- 5-6
Replace in the Project Dialog Box - - ----------- 5-8
replacing in project files - - - - - - - - ----------- 5-8
replacing text in programs - - - - - - - - - - -------- 5-6
reserved wWords - - - - - - - - - - - - ------------ C-2
Reset Coil (R-COIL)- - ==~~~ -------------- 4-33
Reverse Coil (REV-COIL)- - - --------------- 4-30
Rising-edge Detection Coil (ONP-COIL) - - - - - - - - - 4-31
Rising-edge NC Contact (ONP-NCC)- - - - - - - - - - - 4-14
Rising-edge NO Contact (ONP-NOC) - - -------- 4-12
Rising-edge Pulses (ON-PLS) - - - = - = = = = = = - - - - 4-25
S
saving the ladder program to flash memory - - - - - - - 2-16
scheduling the execution of high-speed and
low-speed scan process drawings - - - - - - - - - - - - 1-10
Search Dialog BOX - - - - ------------------ 5-5
Search for Table Column (TBLSRC)- - - - - - - - - - - - 4-184
Search for Table Row (TBLSRL)- - - - - - - - - - - - - - 4-181
Search in Project Dialog Box - --------------- 5-7
searching and replacing - - - - - - ------------- 5-5
searching and replacing in programs - - - - - - - - - - - - 5-5
searching in programs - - - = - - - ------------- 5-5
searching in project files - - - - - - - ------------ 5-7
security features - - - - - - - - - - - oo oo oo oo - 5-24
securitykey - - - ------------ - oo 5-24
self configuration = = = = = = = = === -~ - - - - 2-5
Send Message (MSG-SND) - - - - - -~ --------- 4-216

Index-3

Send Message Extended (MSG-SNDE) - - - - - - - - - 4-218
Set Coil (S-COIL) == = = = === === === == oo - 4-32
Setting the High-speed and Low-speed Times- - - - - - 1-10
SiNe(SIN) = === == ------ - oo 4-94
Sort (SORT)- - - - - - === - - - oo oo o e oo — - - 4-117
Spend Time (SPEND) - - - - - - - - - = - - - - - - - - - - 4-52
Square Root (SQRT) - - = - - = = = - === - - - - - - -~ 4-93
Standard System Function Instructions - - - - - - - - - - - 4-9
Store (STORE) - - - - - ------------------- 4-34
structure of register addresses - - - - - - - - -------- 3-8
substitution operator- - - - - - - - - - - - - - - - -~ C-2,C-6
Subtract (SUB(-)) - - -------------------- 4-38
Subtract Time (TMSUB) = - - = = = - - = = = == = - - - - - 4-50
switching the register map display - - - - - - - - - - - - - 5-19
system configuration example - - - - ------------ 2-3
System Function Instructions - - = - - - = - - - - - - - - 4-204
system registers - - - - - - - - - - - - - - oo oo oo 3-2
System Service Registers - - - - - - - - - - - - - - - - - - A-2
T
Tab Page to Edit Ladder Program - - - - ---------- 1-6
tabledata- - - -------------"----------- 1-18
Table Initialization (SETW) - = - = - - = - = = - = - - - - - 4-111
Table Manipulation Instructions- - - - - - - - - - - 4-8,4-173
Tangent (TAN)- = - = = = = = = - = = - - - o oo o - oo o o 4-97
Trace (TRACE) -~ 4-210
trace manager - - - --------------------- 5-25
tracing----------------“------------ 5-25
TuningPanel - - - - - - ------------------- 5-21
U
Upper/Lower Limit (LIMIT)- - = = - == - - - - - - - - - - 4-126
user administration- - - = = = - - - - - -~ - -~ 5-24
user functions - - -------------------- - 1-13
\"
Variable Pane- - - - - - - - - - - - - - - - - - -------- 1-6
variables- - = = = - - - - - - - - oo C-3
viewing called programs- - - - - - - - - - - - - - - - - - - 5-17
Visual monitor - - ---------------------- 5-21
w
watching - -------------------------- 5-23
WHILE Construct (WHILE, END_WHILE) - -------- 4-84
Word-to-byte Compression (BPRESS)- - - - - --- - - 4-114
Write Motion Register MOTREG-W) - - - - - - - - - - - 4-236
Write Queue Table (QTBLW and QTBLWI)- - - - - - - - 4-198
Write SERVOPACK Parameter (MLNK-SVW) - - - - - - 4-223
Write Table Block (TBLBW) - - - = = = = = = = - - - - - - 4-177
writing the ladder programs- - - - - - = - - - - - - - - - - 2-11
X
XYtrace---------------“------------- 5-25

Revision History

The date of publication, revision number, and web revision number are given at the bottom right of the
back cover. Refer to the following example.

MANUAL NO. SIEP C880725 13A <0>-1
WEB revision number

Revision number
Published in Japan June 2012

Date of publication

Pqu?itc?a?ifon T\leov.' \%%? Section Revised Contents
September 2019 | <7> 0 Chapter 4 Partly revised.
Back cover Revision: Format
May 2019 <6> 0 All chapters Partly revised.
Chapter 4 Addition: Storage operation instructions and string operation instructions
Back cover Revision: Address
October 2017 <5> 0 Chapter 3 Addition: Usable range of local registers
Addition: Setting for D Registers
4.8 Revision: Expression of dead zone set value for Dead Zone A and Dead Zone B
410 Revision: Trace (TRACE), Write SERVOPACK Parameter (MLNK-SVW), Read SER-
VOPACK Parameter (MLNK-SVR), Export (EXPORT/EXPORTL/EXPORTLE)
C.1 Addition: Information on extended addition and extended subtraction
C.2 Addition: Important information on arithmetic operators
July 2017 <4> 1 1.3 Revision: Maximum number of drawings for DWGH and DWGL
4.10 Deletion: Data number listed in I/0 item of IMPORTLE table
Back cover Revision: Address
February 2017 0 - Same changes as for SIEP C880725 13D<3>-1 for the Web
410 Addition: Information on reading data traces (DTRC-RDE), importing (IMPORTLE),
and exporting (EXPORTLE)
Back cover Revision: Address
September 2016 | <3> 1 4.8 Addition: Information on the scan time set value
December 2015 0 4.2 Revision: Information on OFF-Delay Timer (TOFF (1 ms))
4.8 Revision: Specifications for P gain, | gain, and D gain in the parameter tables for
the real-number PI, PD, and PID instructions
Revision: Programming examples for PI, PD, and PID control
4.9 Revision: Table data for Write Table Block (TBLBW)
4.10 Addition: Read SERVOPACK Parameter (MLNK-SVR)
Addition: Flash Operation (FLASH-OP)
Back cover Revision: Address
June 2015 <2> 2 4.2,4.5 Addition: Precaution for user functions
Front cover, Revision: Format
back cover
February 2015 1 4.2 Addition: Timing charts and notes on combining instructions
Back cover Revision: Address
September 2014 0 All chapters Addition: Information related to the MP3300.
Preface Revision: PL contents.
4.5 Revision: RSSEL parameter for JNS and OUTS instructions
Rack numbers changed from “1 to 4” to “1 to 7” and slot numbers changed from
“0to 8" to “0t0 9.”
4.10 Addition: Information related to the IMPORTL and EXPORTL instructions.
Back cover Revision: Address
September 2012 | <1> 0 All chapters Fully revised.
4.10 Addition: Write SERVOPACK Parameter (MLNK-SVW)
Back cover Revision: Address
June 2012 <0> 1 Appendix C.1 Addition: Control instructions as operators.
March 2012 - - - First edition

Revision History-1

Machine Controller MP3000 Series

Ladder Program
PROGRAMMING MANUAL

IRUMA BUSINESS CENTER (SOLUTION CENTER)
480, Kamifujisawa, Iruma, Saitama, 358-8555, Japan

Phone: +81-4-2962-5151 Fax: +81-4-2962-6138
http://www.yaskawa.co.jp

YASKAWA AMERICA, INC.

2121, Norman Drive South, Waukegan, IL 60085, U.S.A.

Phone: +1-800-YASKAWA (927-5292) or +1-847-887-7000 Fax: +1-847-887-7310
http://www.yaskawa.com

YASKAWA ELETRICO DO BRASIL LTDA.

777, Avenida Piraporinha, Diadema, Sao Paulo, 09950-000, Brasil
Phone: +55-11-3585-1100 Fax: +55-11-3585-1187
http://www.yaskawa.com.br

YASKAWA EUROPE GmbH

HauptstraBe 185, 65760 Eschborn, Germany

Phone: +49-6196-569-300 Fax: +49-6196-569-398
http://www.yaskawa.eu.com E-mail: info @yaskawa.eu.com

YASKAWA ELECTRIC KOREA CORPORATION

35F, Three IFC, 10 Gukjegeumyung-ro, Yeongdeungpo-gu, Seoul, 07326, Korea
Phone: +82-2-784-7844 Fax: +82-2-784-8495

http://www.yaskawa.co.kr

YASKAWA ASIA PACIFIC PTE. LTD.
30A, Kallang Place, #06-01, 339213, Singapore
Phone: +65-6282-3003 Fax: +65-6289-3003
http://www.yaskawa.com.sg

YASKAWA ELECTRIC (THAILAND) CO., LTD.

59, 1st-5th Floor, Flourish Building, Soi Ratchadapisek 18, Ratchadapisek Road, Huaykwang, Bangkok, 10310, Thailand
Phone: +66-2-017-0099 Fax: +66-2-017-0799

http://www.yaskawa.co.th

YASKAWA ELECTRIC (CHINA) CO., LTD.

22F, Link Square 1, No.222, Hubin Road, Shanghai, 200021, China
Phone: +86-21-5385-2200 Fax: +86-21-5385-3299
http://www.yaskawa.com.cn

YASKAWA ELECTRIC (CHINA) CO., LTD. BEJING OFFICE
Room 1011, Tower W3 Oriental Plaza, No.1, East Chang An Ave.,
Dong Cheng District, Beijing, 100738, China

Phone: +86-10-8518-4086 Fax: +86-10-8518-4082

YASKAWA ELECTRIC TAIWAN CORPORATION

12F, No. 207, Sec. 3, Beishin Rd., Shindian Dist., New Taipei City 23143, Taiwan
Phone: +886-2-8913-1333 Fax: +886-2-8913-1513 or +886-2-8913-1519
http://www.yaskawa.com.tw

In the event that the end user of this product is to be the military and said product is to
YAS I(AWA be employed in any weapons systems or the manufacture thereof, the export will fall
under the relevant regulations as stipulated in the Foreign Exchange and Foreign
Trade Regulations. Therefore, be sure to follow all procedures and submit all relevant
YASKAWA ELECTRIC CORPORATION documentation according to any and all rules, regulations and laws that may apply.

Specifications are subject to change without notice for ongoing product modifications

and improvements.
© 2012 YASKAWA ELECTRIC CORPORATION

MANUAL NO. SIEP C880725 13H <7>-0
Published in Japan September 2019

18-10-15
Original instructions

	Front Cover
	About this Manual
	Using this Manual
	Related Manuals
	Safety Precautions
	Warranty
	Contents
	1 Features and Overview of Ladder Programs
	1.1 What Is a Ladder Program?
	1.2 Features
	1.2.1 The Various Execution Timing of Ladder Drawings
	1.2.2 Program Modules
	1.2.3 Programming Complicated Numeric Operations
	1.2.4 Communications Control with External Devices
	1.2.5 Complete Synchronization with Motion Control

	1.3 Introduction
	1.3.1 Ladder Program Editor
	1.3.2 Ladder Drawings
	1.3.3 User Functions
	1.3.4 Table Data

	2 Ladder Program Development Flow
	2.1 Introduction
	2.2 Preparation for Devices to be Connected
	2.2.1 Connecting the Hardware
	2.2.2 Installing MPE720 Version 7

	2.3 Creating a Project
	2.4 Self Configuration
	2.5 Going Online
	2.6 Creating Ladder Programs
	2.7 Writing the Ladder Programs
	2.8 Checking the Operation of the Ladder Programs
	2.8.1 Preparations for Checking Operation
	2.8.2 Confirming the Operation of the 0000th Line (AND Circuit)
	2.8.3 Confirming the Operation of the 0001st Line (Timer Circuit)

	2.9 Save the Ladder Program to Flash Memory

	3 Registers
	3.1 Global Registers
	3.2 Local Registers
	3.2.1 Precautions When Using Local Registers within a User Function
	3.2.2 Setting the D Register Clear When Start Option
	3.2.3 Setting for D Registers

	3.3 Structure of Register Addresses
	3.3.1 Register Types
	3.3.2 Data Types

	3.4 Index Registers (i, j)
	3.5 Array Registers ([])

	4 Ladder Language Instructions
	4.1 Introduction
	4.1.1 Ladder Language Instructions
	4.1.2 How to Read the Ladder Language Instructions

	4.2 Relay Circuit Instructions
	4.2.1 NO Contact (NOC)
	4.2.2 Rising-edge NO Contact (ONP-NOC)
	4.2.3 Falling-edge NO Contact (OFFP-NOC)
	4.2.4 NC Contact (NCC)
	4.2.5 Rising-edge NC Contact (ONP-NCC)
	4.2.6 Falling-edge NC Contact (OFFP-NCC)
	4.2.7 1-ms ON-Delay Timer (TON(1ms))
	4.2.8 1-ms OFF-Delay Timer (TOFF(1 ms))
	4.2.9 10-ms ON-Delay Timer (TON(10ms))
	4.2.10 10-ms OFF-Delay Timer (TOFF(10ms))
	4.2.11 1-s ON-Delay Timer (TON(1s))
	4.2.12 1-s OFF-Delay Timer (TOFF(1s))
	4.2.13 Rising-edge Pulses (ON-PLS)
	4.2.14 Falling-edge Pulses (OFF-PLS)
	4.2.15 Coil (COIL)
	4.2.16 Reverse Coil (REV-COIL)
	4.2.17 Rising-edge Detection Coil (ONP-COIL)
	4.2.18 Falling-edge Detection Coil (OFFP-COIL)
	4.2.19 Set Coil (S-COIL)
	4.2.20 Reset Coil (R-COIL)

	4.3 Numeric Operation Instructions
	4.3.1 Store (STORE)
	4.3.2 Add (ADD (+))
	4.3.3 Extended Add (ADDX (++))
	4.3.4 Subtract (SUB (-))
	4.3.5 Extended Subtract (SUBX (- -))
	4.3.6 Multiply (MUL (x))
	4.3.7 Divide (DIV (¸))
	4.3.8 Integer Remainder (MOD)
	4.3.9 Real Remainder (REM)
	4.3.10 Increment (INC)
	4.3.11 Decrement (DEC)
	4.3.12 Add Time (TMADD)
	4.3.13 Subtract Time (TMSUB)
	4.3.14 Spend Time (SPEND)
	4.3.15 Invert Sign (INV)
	4.3.16 One’s Complement (COM)
	4.3.17 Absolute Value (ABS)
	4.3.18 Binary Conversion (BIN)
	4.3.19 BCD Conversion (BCD)
	4.3.20 Parity Conversion (PARITY)
	4.3.21 ASCII Conversion 1 (ASCII)
	4.3.22 ASCII Conversion 2 (BINASC)
	4.3.23 ASCII Conversion 3 (ASCBIN)

	4.4 Logic Operations and Comparison Instructions
	4.4.1 Inclusive AND (AND)
	4.4.2 Inclusive OR (OR)
	4.4.3 Exclusive OR (XOR)
	4.4.4 Less Than (<)
	4.4.5 Less Than or Equal (<=)
	4.4.6 Equal (=)
	4.4.7 Not Equal (<>)
	4.4.8 Greater Than or Equal (>=)
	4.4.9 Greater Than (>)
	4.4.10 Range Check (RCHK)

	4.5 Program Control Instructions
	4.5.1 Call Sequence Program (SEE)
	4.5.2 Call Motion Program (MSEE)
	4.5.3 Call User Function (FUNC)
	4.5.4 Direct Input String (INS)
	4.5.5 Direct Output String (OUTS)
	4.5.6 Call Extended Program (XCALL)
	4.5.7 WHILE Construct (WHILE, END_WHILE)
	4.5.8 FOR Construct (FOR, END_FOR)
	4.5.9 IF Construct (IF, END_IF)
	4.5.10 IF-ELSE Construct (IF, ELSE, END_IF)
	4.5.11 Expression (EXPRESSION)

	4.6 Basic Function Instructions
	4.6.1 Square Root (SQRT)
	4.6.2 Sine (SIN)
	4.6.3 Cosine (COS)
	4.6.4 Tangent (TAN.)
	4.6.5 Arc Sine (ASIN)
	4.6.6 Arc Cosine (ACOS)
	4.6.7 Arc Tangent (ATAN)
	4.6.8 Exponential (EXP)
	4.6.9 Natural Logarithm (LN)
	4.6.10 Common Logarithm (LOG)

	4.7 Data Shift Instructions
	4.7.1 Bit Rotate Left (ROTL)
	4.7.2 Bit Rotate Right (ROTR)
	4.7.3 Move Bit (MOVB)
	4.7.4 Move Word (MOVW)
	4.7.5 Exchange (XCHG)
	4.7.6 Table Initialization (SETW)
	4.7.7 Byte-to-word Expansion (BEXTD)
	4.7.8 Word-to-byte Compression (BPRESS)
	4.7.9 Binary Search (BSRCH)
	4.7.10 Sort (SORT)
	4.7.11 Bit Shift Left (SHFTL)
	4.7.12 Bit Shift Right (SHFTR)
	4.7.13 Copy Word (COPYW)
	4.7.14 Byte Swap (BSWAP)

	4.8 DDC Instructions
	4.8.1 Dead Zone A (DZA)
	4.8.2 Dead Zone B (DZB)
	4.8.3 Upper/Lower Limit (LIMIT)
	4.8.4 PI Control (PI)
	4.8.5 PD Control (PD)
	4.8.6 PID Control (PID)
	4.8.7 First-order Lag (LAG)
	4.8.8 Phase Lead Lag (LLAG)
	4.8.9 Function Generator (FGN)
	4.8.10 Inverse Function Generator (IFGN)
	4.8.11 Linear Accelerator/Decelerator 1 (LAU)
	4.8.12 Linear Accelerator/Decelerator 2 (SLAU)
	4.8.13 Pulse Width Modulation (PWM)

	4.9 Table Manipulation Instructions
	4.9.1 Read Table Block (TBLBR/TBLBRE)
	4.9.2 Write Table Block (TBLBW/TBLBWE)
	4.9.3 Search for Table Row (TBLSRL/TBLSRLE)
	4.9.4 Search for Table Column (TBLSRC/TBLSRCE)
	4.9.5 Clear Table Block (TBLCL/TBLCLE)
	4.9.6 Move Table Block (TBLMV/TBLMVE)
	4.9.7 Read Queue Table (QTBLR/QTBLRE and QTBLRI/ QTBLRIE)
	4.9.8 Write Queue Table (QTBLW/QTBLWE and QTBLWI/ QTBLWIE)
	4.9.9 Clear Queue Table Pointer (QTBLCL/QTBLCLE)

	4.10 System Function Instructions
	4.10.1 Counter (COUNTER)
	4.10.2 First-in First-out (FINFOUT)
	4.10.3 Trace (TRACE)
	4.10.4 Read Data Trace (DTRC-RD/DTRC-RDE)
	4.10.5 Send Message (MSG-SND)
	4.10.6 Send Message Extended (MSG-SNDE)
	4.10.7 Receive Message (MSG-RCV)
	4.10.8 Receive Message Extended (MSG-RCVE)
	4.10.9 Write SERVOPACK Parameter (MLNK-SVW)
	4.10.10 Read SERVOPACK Parameter (MLNK-SVR)
	4.10.11 Flash Operation (FLASH-OP)
	4.10.12 Write Motion Register (MOTREG-W)
	4.10.13 Read Motion Register (MOTREG-R)
	4.10.14 Import (IMPORT/IMPORTL/IMPORTLE)
	4.10.15 Export (EXPORT/EXPORTL/EXPORTLE)

	4.11 Storage Operation Instructions
	4.11.1 Open File (FOPEN)
	4.11.2 Close File (FCLOSE)
	4.11.3 Read Data from File (FREAD)
	4.11.4 Write Data to File (FWRITE)
	4.11.5 Set File Position Indicator (FSEEK)
	4.11.6 Read Line from File to String (FGETS)
	4.11.7 Write String to File (FPUTS)
	4.11.8 Copy File (FCOPY)
	4.11.9 Delete File (FREMOVE)
	4.11.10 Rename File (FRENAME)
	4.11.11 Create Directory (DCREATE)
	4.11.12 Delete Directory (DREMOVE)
	4.11.13 Send File to FTP Server (FTPPUT)

	4.12 String Operation Instructions
	4.12.1 Convert Integer to String (INT2STR)
	4.12.2 Convert Real Number to String (REAL2STR)
	4.12.3 Convert String to Integer (STR2INT)
	4.12.4 Convert String to Real Number (STR2REAL)
	4.12.5 Store String (STRSET)
	4.12.6 Partially Delete String (STRDEL)
	4.12.7 Copy String (STRCPY)
	4.12.8 Get String Length (STRLEN)
	4.12.9 Concatenate Strings (STRCAT)
	4.12.10 Compare Strings (STRCMP)
	4.12.11 Insert String (STRINS)
	4.12.12 Find String (STRFIND)
	4.12.13 Extract String (STREXTR)
	4.12.14 Extract String from End (STREXTRE)
	4.12.15 Delete Spaces at String Ends (STRTRIM)

	5 Features of the MPE720 Engineering Tool
	5.1 Ladder Program Runtime Monitoring
	5.2 Search/Replace
	5.2.1 Searching and Replacing in Programs
	5.2.2 Searching and Replacing in Project Files

	5.3 Cross References
	5.4 Checking for Multiple Coils
	5.5 Forcing Coils ON and OFF
	5.5.1 Forcing Coils ON or OFF from a Ladder Program
	5.5.2 Changing the Forced ON/OFF Status from the Force Coil List Pane

	5.6 Viewing Called Programs
	5.7 Register Lists
	5.7.1 Displaying the Register Map
	5.7.2 Switching the Register Map Display
	5.7.3 Editing Data

	5.8 Tuning Panel
	5.9 Enabling and Disabling Ladder Programs
	5.10 Watching
	5.10.1 Displaying Watch Data
	5.10.2 Editing the Value Column

	5.11 Security
	5.12 Tracing
	5.13 Advanced Programming
	5.13.1 Motion Programs

	AppendixA System Service Registers
	A.1 Overview of System Registers
	A.2 Common to All Drawings
	A.3 Exclusive to DWG.H (High-speed Scan Process Drawings)
	A.4 Exclusive to DWG.L (Low-speed Scan Process Drawings)
	A.5 Scan Execution Status and Calendar
	A.6 System Program Software Numbers and Remaining Program Memory Capacity

	AppendixB Sample Programs
	B.1 Jogging from the Control Panel
	B.2 Motion Program Control
	B.3 Simple Synchronized Operation of Two Axes with a Virtual Axis

	AppendixC Format for EXPRESSION Instructions
	C.1 Elements That You Can Use in Numeric Expressions
	C.1.1 Operators
	C.1.2 Operands
	C.1.3 Instructions That You Can Use with EXPRESSION Instructions

	C.2 Notational Limitations
	C.2.1 Arithmetic and Logic Operators
	C.2.2 Comparison Operators
	C.2.3 Logic Operators
	C.2.4 Substitution Operator
	C.2.5 Functions
	C.2.6 Parentheses

	AppendixD Precautions on Motion Parameters
	AppendixE Machine Controller Specifications
	AppendixF Error Codes
	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	Revision History
	Back Cover

