
Ladder Program
Machine Controller MP3000 Series

PROGRAMMING MANUAL

MANUAL NO. SIEP C880725 13H

1

2

3

4

5

Ladder Program Development Flow

Registers

Sample Programs

Machine Controller Specifications

Error Codes

AppE

AppB

AppA

AppC

AppD

AppF

Features and Overview
of Ladder Programs

Ladder Language
Instructions

Features of the MPE720
 Engineering Tool

System Service
 Registers

Format for EXPRESSION
 Instructions

Precautions on Motion
 Parameters

Copyright © 2012 YASKAWA ELECTRIC CORPORATION

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form, or by any means, mechanical, elec-
tronic, photocopying, recording, or otherwise, without the prior written permission
of Yaskawa. No patent liability is assumed with respect to the use of the informa-
tion contained herein. Moreover, because Yaskawa is constantly striving to
improve its high-quality products, the information contained in this manual is sub-
ject to change without notice. Every precaution has been taken in the preparation
of this manual. Nevertheless, Yaskawa assumes no responsibility for errors or
omissions. Neither is any liability assumed for damages resulting from the use of
the information contained in this publication.

iii

About this Manual

This manual provides information on ladder programming for MP3000-series Machine Controllers.

Read this manual carefully to ensure the correct usage of the Machine Controller and apply the
Machine Controller to control your manufacturing system.

Keep this manual in a safe place so that it can be referred to whenever necessary.

Using this Manual

 Basic Terms
Unless otherwise specified, the following definitions are used:

 MPE720 Engineering Tool Version Number
In this manual, the operation of MPE720 is described using screen captures of MPE720 version 7.

 Indication of Reverse Signals
In this manual, the names of reverse signals (ones that are valid when low) are written with a for-
ward slash (/) before the signal name, as shown in the following example:
Notation Examples
• S-ON = /S-ON
• P-CON = /P-CON

 The Meaning of “Torque” in This Manual
Although the term “torque” is commonly used when describing rotary Servomotors and “force” is
used when describing linear Servomotors, this manual uses “torque” when describing either one
(excluding parameter names).

 Copyrights
• MECHATROLINK is a trademark of the MECHATROLINK Members Association.
• Ethernet is a registered trademark of the Xerox Corporation.
• Other product names and company names are the trademarks or registered trademarks of the

respective company. “TM” and the ® mark do not appear with product or company names in this
manual.

Basic Terms Meaning

Machine Controller MP3000-series Machine Controller

MPE720 The Engineering Tool or a personal computer running the Engineering Tool

PLC A Programmable Logic Controller

MP3200 A generic name for the Power Supply Unit, CPU Unit, Base Unit, and Rack Expansion Interface
Unit

MP3300 A generic name for the CPU Module and Base Unit.

MP3100 CPU Module

iv

 Visual Aids
The following aids are used to indicate certain types of information for easier reference.

Indicates precautions or restrictions that must be observed.

Indicates alarm displays and other precautions that will not result in machine damage.

Indicates operating or setting examples.

Indicates supplemental information to deepen understanding or useful information.

Indicates definitions of difficult terms or terms that have not been previously explained
in this manual.

Important

Example

Information

Term

v

Related Manuals

The following table lists the manuals that are related to the MP3000-series Machine Controllers.
Refer to these manuals as required.
Be aware of all product specifications and restrictions to product application before you attempt to
use any product.

Category Manual Name Manual Number Contents

Basic
functionality

Machine Controller MP3000 Series
Machine Controller System
Setup Manual

SIEP C880725 00

Describes the functions of the MP3000-
series Machine Controllers and the pro-
cedures that are required to use the
Machine Controller, from installation and
connections to settings, programming,
trial operation, and debugging.

Machine Controller MP3000 Series
Machine Controller System
Troubleshooting Manual

SIEP C880725 01 Describes troubleshooting an MP3000-
series Machine Controller.

Machine Controller MP3000 Series
MP3100 Product Manual SIEP C880725 24

Describes the specifications and sys-
tem configuration of an MP3000-series
MP3100 Machine Controller and the
functions of the CPU.

Machine Controller MP3000 Series
MP3200 Product Manual SIEP C880725 10

Describes the specifications and sys-
tem configuration of an MP3000-series
MP3200 Machine Controller and the
functions of the CPU Unit.

Machine Controller MP3000 Series
MP3300 Product Manual SIEP C880725 21

Describes the specifications and sys-
tem configuration of an MP3000-series
MP3300 Machine Controller and the
functions of the CPU Module.

Communications
functionality

Machine Controller MP3000 Series
Communications User’s Manual SIEP C880725 12

Describes the specifications, system
configuration, and communications
connection methods for the Ethernet
communications that are used with an
MP3000-series Machine Controller.

Motion control
functionality

Machine Controller MP3000 Series
Motion Control User’s Manual SIEP C880725 11

Describes the specifications, system
configuration, and operating methods
for the SVC/SVR or SVC32/SVR32
Motion Function Modules that are used
in an MP3000-series Machine Control-
ler.

Programming
Machine Controller MP3000 Series
Motion Program
Programming Manual

SIEP C880725 14

Describes the motion programming and
sequence programming specifications
and instructions of MP3000-series
Machine Controller.

Engineering Tool

Machine Controller MP2000/
MP3000 Series Engineering Tool
MPE720 Version 7
User’s Manual

SIEP C880761 03 Describes how to operate MPE720 ver-
sion 7.

vi

Safety Precautions

 Safety Information
To prevent personal injury and equipment damage in advance, the following signal words are used
to indicate safety precautions in this document. The signal words are used to classify the hazards
and the degree of damage or injury that may occur if a product is used incorrectly. Information
marked as shown below is important for safety. Always read this information and heed the precau-
tions that are provided.

DANGER
 Indicates precautions that, if not heeded, are likely to result in loss of life, serious injury, or fire.

WARNING
 Indicates precautions that, if not heeded, could result in loss of life, serious injury, or fire.

CAUTION
　

 Indicates precautions that, if not heeded, could result in relatively serious or minor injury, or in
fire.

NOTICE
 Indicates precautions that, if not heeded, could result in property damage.

vii

 General Precautions

 Storage and Transportation Precautions

WARNING
 The installation must be suitable and it must be performed only by an experienced technician.

There is a risk of electrical shock or injury.
 Before connecting the machine and starting operation, make sure that an emergency stop pro-

cedure has been provided and is working correctly.
There is a risk of injury.

 Do not approach the machine after a momentary interruption to the power supply. When power
is restored, the product and the device connected to it may start operation suddenly. Provide
safety measures in advance to ensure human safety when operation restarts.
There is a risk of injury.

 Do not touch anything inside the product.
There is a risk of electrical shock.

 Do not remove the front cover, cables, connector, or options while power is being supplied.
There is a risk of electrical shock, malfunction, or damage.

 Do not damage, pull on, apply excessive force to, place heavy objects on, or pinch the cables.
There is a risk of electrical shock, operational failure of the product, or burning.

 Do not attempt to modify the product in any way.
There is a risk of injury or device damage.

CAUTION
 Hold onto the main body of the product when transporting it.

Holding the cables or connectors may damage them or result in injury.
 Do not overload the product during transportation. (Follow all instructions.)

There is a risk of injury or an accident.
 Never subject the product to an atmosphere containing halogen (fluorine, chlorine, bromine, or

iodine) during transportation.
There is a risk of malfunction or damage.

 If disinfectants or insecticides must be used to treat packing materials such as wooden frames,
pallets, or plywood, the packing materials must be treated before the product is packaged, and
methods other than fumigation must be used.
Example: Heat treatment, where materials are kiln-dried to a core temperature of 56°C for 30 min-
utes or more.
If the electronic products, which include stand-alone products and products installed in machines,
are packed with fumigated wooden materials, the electrical components may be greatly damaged
by the gases or fumes resulting from the fumigation process. In particular, disinfectants containing
halogen, which includes chlorine, fluorine, bromine, or iodine can contribute to the erosion of the
capacitors.

NOTICE
 Do not install the product in any of the following locations.

• Locations that are subject to direct sunlight
• Locations that are subject to ambient temperatures that exceed product specifications
• Locations that are subject to relative humidities that exceed product specifications
• Locations that are subject to condensation as the result of extreme changes in temperature
• Locations that are subject to corrosive or flammable gases
• Locations that are near flammable materials
• Locations that are subject to dust, salts, or iron powder
• Locations that are subject to water, oil, or chemicals
• Locations that are subject to vibration or shock that exceeds product specifications
If you store the product in any of the above locations, the product may fail or be damaged.

viii

 Installation Precautions

CAUTION
 Never install the product in an atmosphere containing halogen (fluorine, chlorine, bromine, or

iodine).
There is a risk of malfunction or damage.

 Do not step on the product or place heavy objects on the product.
There is a risk of injury or an accident.

 Do not block the air exhaust ports on the product. Do not allow foreign objects to enter the
product.
There is a risk of internal element deterioration, malfunction, or fire.

 Always mount the product in the specified orientation.
There is a risk of malfunction.

 Leave the specified amount of space between the product, and the interior surface of the con-
trol panel and other devices.
There is a risk of fire or malfunction.

 Do not subject the product to strong shock.
There is a risk of malfunction.

 Suitable battery installation must be performed and it must be performed only by an experi-
enced technician.
There is a risk of electrical shock, injury, or device damage.

 Do not touch the electrodes when installing the Battery.
Static electricity may damage the electrodes.

NOTICE
 Do not install the product in any of the following locations.

• Locations that are subject to direct sunlight
• Locations that are subject to ambient temperatures that exceed product specifications
• Locations that are subject to relative humidities that exceed product specifications
• Locations that are subject to condensation as the result of extreme changes in temperature
• Locations that are subject to corrosive or flammable gases
• Locations that are near flammable materials
• Locations that are subject to dust, salts, or iron powder
• Locations that are subject to water, oil, or chemicals
• Locations that are subject to vibration or shock that exceeds product specifications
• Locations near devices that generate strong magnetic fields
• Locations that are subject to radiation
If you install the product in any of the above locations, the product may fail or be damaged.

ix

 Wiring Precautions

CAUTION
 Do not change any wiring while power is being supplied.

There is a risk of electrical shock, injury, or device damage.
 Check the wiring to be sure it has been performed correctly.

There is a risk of motor run-away, injury, or accidents.
 Always use a power supply of the specified voltage.

There is a risk of fire or accident.
 In places with poor power supply conditions, ensure that the input power is supplied within the

specified voltage range.
There is a risk of device damage.

 Install breakers and other safety measures to provide protection against shorts in external wir-
ing.
There is a risk of fire.

 Provide sufficient shielding when using the product in the following locations.
• Locations that are subject to noise, such as from static electricity
• Locations that are subject to strong electromagnetic or magnetic fields
• Locations that are subject to radiation
• Locations that are near power lines
There is a risk of device damage.

 Configure the circuits to turn ON the power supply to the CPU Unit/CPU Module before the 24-
V I/O power supply.
If the power supply to the CPU Unit/CPU Module is turned ON after the external power supply, e.g.,
the 24-V I/O power supply, the outputs from the CPU Unit/CPU Module may momentarily turn ON
when the power supply to the CPU Unit/CPU Module turns ON. This can result in unexpected oper-
ation that may cause injury or device damage.

 Provide emergency stop circuits, interlock circuits, limit circuits, and any other required safety
measures in control circuits outside of the product.
There is a risk of injury or device damage.

 If you use MECHATROLINK I/O Modules, use the establishment of MECHATROLINK communi-
cations as an interlock output condition.
There is a risk of device damage.

 Connect the Battery with the correct polarity.
There is a risk of battery damage or explosion.

 Select the I/O signal wires for external wiring to connect the product to external devices based
on the following criteria:
• Mechanical strength
• Noise interference
• Wiring distance
• Signal voltage

 Separate the I/O signal cables for control circuits from the power cables both inside and outside
the control panel to reduce the influence of noise from the power cables.
If the I/O signal lines and power lines are not separated properly, malfunction may occur.

Example of Separated Cables

Power cable
I/O signal
cables in

control circuits

Steel separator

x

 Operation Precautions

 Maintenance and Inspection Precautions

CAUTION
 Follow the procedures and instructions in the user’s manuals for the relevant product to perform

normal operation and trial operation.
Operating mistakes while the Servomotor and machine are connected may damage the machine or
even cause accidents resulting in injury or death.

 Implement interlock signals and other safety circuits external to the product to ensure safety in
the overall system even if the following conditions occur.
• Product failure or errors caused by external factors
• Shutdown of operation due to product detection of an error in self-diagnosis and the subsequent

turning OFF or holding of output signals
• Holding of the ON or OFF status of outputs from the product due to fusing or burning of output relays

or damage to output transistors
• Voltage drops from overloads or short-circuits in the 24-V output from the product and the subse-

quent inability to output signals
• Unexpected outputs due to errors in the power supply, I/O, or memory that cannot be detected by

the product through self-diagnosis.
There is a risk of injury, device damage, or burning.

 Observe the setting methods that are given in the manual of the Motion Control Function Mod-
ules to be used for the following parameters.
• Parameters for absolute position detection when the axis type is set to a finite-length axis
• Parameters for simple absolute infinite-length position control when the axis type is set to an infinite

length axis
If any other methods are used, offset in the current position when the power supply is turned OFF
and ON again may result in device damage.

 OL48 (Zero Point Position Offset in Machine Coordinate System) is always valid when the
axis type is set to a finite-length axis. Do not change the setting of OL48 while the
Machine Controller is operating.
There is a risk of machine damage or an accident.

CAUTION
 Do not attempt to disassemble or repair the product.

There is a risk of electrical shock, injury, or device damage.
 Do not change any wiring while power is being supplied.

There is a risk of electrical shock, injury, or device damage.
 Suitable battery installation must be performed and it must be performed only by an experi-

enced technician.
There is a risk of electrical shock, injury, or device damage.

 Replace the Battery only while power is supplied to the product.
Replacing the Battery while the power supply to the product is turned OFF may result in loss of the
data stored in memory in the product.

 Do not touch the electrodes when installing the Battery.
Static electricity may damage the electrodes.

 Do not forget to perform the following tasks when you replace the CPU Unit/CPU Module:
• Back up all programs and parameters from the CPU Unit/CPU Module that is being replaced.
• Transfer all saved programs and parameters to the new CPU Unit/CPU Module.
If you operate the CPU Unit/CPU Module without transferring this data, unexpected operation may
occur. There is a risk of injury or device damage.

 Do not touch the heat sink on the CPU Unit/CPU Module while the power supply is turned ON or
for a sufficient period of time after the power supply is turned OFF.
The heat sink may be very hot, and there is a risk of burn injury.

xi

 Disposal Precautions

 General Precautions

CAUTION
 Correctly discard the product and used batteries as stipulated by regional, local, and

municipal laws and regulations. Be sure to include these contents in all labelling and
warning notifications on the final product as necessary.

Observe the following general precautions to ensure safe application.

 Figures provided in this document are typical examples or conceptual representations. There
may be differences between them and actual wiring, circuits, and products.

 The products shown in illustrations in this document are sometimes shown without covers or
protective guards. Always replace all covers and protective guards before you use the product.

 If you need a new copy of this document because it has been lost or damaged, contact your
nearest Yaskawa representative or one of the offices listed on the back of this document.

 This document is subject to change without notice for product improvements, specifications
changes, and improvements to the manual itself.
We will update the document number of the document and issue revisions when changes are
made.

 Any and all quality guarantees provided by Yaskawa are null and void if the customer modifies
the product in any way. Yaskawa disavows any responsibility for damages or losses that are
caused by modified products.

xii

Warranty

 Details of Warranty

 Warranty Period

The warranty period for a product that was purchased (hereinafter called “delivered product”) is
one year from the time of delivery to the location specified by the customer or 18 months from the
time of shipment from the Yaskawa factory, whichever is sooner.

 Warranty Scope

Yaskawa shall replace or repair a defective product free of charge if a defect attributable to
Yaskawa occurs during the warranty period above. This warranty does not cover defects caused
by the delivered product reaching the end of its service life and replacement of parts that require
replacement or that have a limited service life.
This warranty does not cover failures that result from any of the following causes.
• Improper handling, abuse, or use in unsuitable conditions or in environments not described in

product catalogs or manuals, or in any separately agreed-upon specifications
• Causes not attributable to the delivered product itself
• Modifications or repairs not performed by Yaskawa
• Abuse of the delivered product in a manner in which it was not originally intended
• Causes that were not foreseeable with the scientific and technological understanding at the time

of shipment from Yaskawa
• Events for which Yaskawa is not responsible, such as natural or human-made disasters

 Limitations of Liability
• Yaskawa shall in no event be responsible for any damage or loss of opportunity to the customer

that arises due to failure of the delivered product.
• Yaskawa shall not be responsible for any programs (including parameter settings) or the results of

program execution of the programs provided by the user or by a third party for use with program-
mable Yaskawa products.

• The information described in product catalogs or manuals is provided for the purpose of the cus-
tomer purchasing the appropriate product for the intended application. The use thereof does not
guarantee that there are no infringements of intellectual property rights or other proprietary rights
of Yaskawa or third parties, nor does it construe a license.

• Yaskawa shall not be responsible for any damage arising from infringements of intellectual prop-
erty rights or other proprietary rights of third parties as a result of using the information described
in catalogs or manuals.

xiii

 Suitability for Use
• It is the customer’s responsibility to confirm conformity with any standards, codes, or regulations

that apply if the Yaskawa product is used in combination with any other products.
• The customer must confirm that the Yaskawa product is suitable for the systems, machines, and

equipment used by the customer.
• Consult with Yaskawa to determine whether use in the following applications is acceptable. If use

in the application is acceptable, use the product with extra allowance in ratings and specifica-
tions, and provide safety measures to minimize hazards in the event of failure.

• Outdoor use, use involving potential chemical contamination or electrical interference, or use in conditions
or environments not described in product catalogs or manuals

• Nuclear energy control systems, combustion systems, railroad systems, aviation systems, vehicle systems,
medical equipment, amusement machines, and installations subject to separate industry or government
regulations

• Systems, machines, and equipment that may present a risk to life or property
• Systems that require a high degree of reliability, such as systems that supply gas, water, or electricity, or

systems that operate continuously 24 hours a day
• Other systems that require a similar high degree of safety

• Never use the product for an application involving serious risk to life or property without first
ensuring that the system is designed to secure the required level of safety with risk warnings and
redundancy, and that the Yaskawa product is properly rated and installed.

• The circuit examples and other application examples described in product catalogs and manuals
are for reference. Check the functionality and safety of the actual devices and equipment to be
used before using the product.

• Read and understand all use prohibitions and precautions, and operate the Yaskawa product
correctly to prevent accidental harm to third parties.

 Specifications Change
The names, specifications, appearance, and accessories of products in product catalogs and
manuals may be changed at any time based on improvements and other reasons. The next edi-
tions of the revised catalogs or manuals will be published with updated code numbers. Consult
with your Yaskawa representative to confirm the actual specifications before purchasing a product.

xiv

Contents
About this Manual . iii
Using this Manual . iii
Related Manuals . v
Safety Precautions . vi
Warranty . xii

Features and Overview of Ladder Programs
1

1.1 What Is a Ladder Program? . 1-2

1.2 Features . 1-3
1.2.1 The Various Execution Timing of Ladder Drawings .1-3
1.2.2 Program Modules .1-4
1.2.3 Programming Complicated Numeric Operations. .1-4
1.2.4 Communications Control with External Devices .1-5
1.2.5 Complete Synchronization with Motion Control .1-5

1.3 Introduction . 1-6
1.3.1 Ladder Program Editor .1-6
1.3.2 Ladder Drawings .1-7
1.3.3 User Functions .1-13
1.3.4 Table Data .1-18

Ladder Program Development Flow
2

2.1 Introduction . 2-2

2.2 Preparation for Devices to be Connected 2-3
2.2.1 Connecting the Hardware .2-3
2.2.2 Installing MPE720 Version 7 .2-3

2.3 Creating a Project. 2-4

2.4 Self Configuration. 2-5

2.5 Going Online. 2-6

2.6 Creating Ladder Programs . 2-7

2.7 Writing the Ladder Programs . 2-11

2.8 Checking the Operation of the Ladder Programs 2-13
2.8.1 Preparations for Checking Operation .2-13
2.8.2 Confirming the Operation of the 0000th Line (AND Circuit)2-14
2.8.3 Confirming the Operation of the 0001st Line (Timer Circuit)2-15

2.9 Save the Ladder Program to Flash Memory 2-16

xv

Registers
3

3.1 Global Registers . 3-2

3.2 Local Registers. 3-4
3.2.1 Precautions When Using Local Registers within a User Function 3-5
3.2.2 Setting the D Register Clear When Start Option . 3-6
3.2.3 Setting for D Registers . 3-7

3.3 Structure of Register Addresses . 3-8
3.3.1 Register Types . 3-8
3.3.2 Data Types . 3-8

3.4 Index Registers (i, j) . 3-12

3.5 Array Registers ([]) . 3-14

Ladder Language Instructions
4

4.1 Introduction . 4-6
4.1.1 Ladder Language Instructions . 4-6
4.1.2 How to Read the Ladder Language Instructions . 4-10

4.2 Relay Circuit Instructions . 4-11
4.2.1 NO Contact (NOC) . 4-11
4.2.2 Rising-edge NO Contact (ONP-NOC) . 4-12
4.2.3 Falling-edge NO Contact (OFFP-NOC) . 4-13
4.2.4 NC Contact (NCC) . 4-14
4.2.5 Rising-edge NC Contact (ONP-NCC). 4-14
4.2.6 Falling-edge NC Contact (OFFP-NCC) . 4-15
4.2.7 1-ms ON-Delay Timer (TON(1ms)) . 4-16
4.2.8 1-ms OFF-Delay Timer (TOFF(1 ms)) . 4-18
4.2.9 10-ms ON-Delay Timer (TON(10ms)) . 4-19
4.2.10 10-ms OFF-Delay Timer (TOFF(10ms)). 4-21
4.2.11 1-s ON-Delay Timer (TON(1s)) . 4-22
4.2.12 1-s OFF-Delay Timer (TOFF(1s)) . 4-24
4.2.13 Rising-edge Pulses (ON-PLS) . 4-25
4.2.14 Falling-edge Pulses (OFF-PLS) . 4-27
4.2.15 Coil (COIL) . 4-29
4.2.16 Reverse Coil (REV-COIL) . 4-30
4.2.17 Rising-edge Detection Coil (ONP-COIL) . 4-31
4.2.18 Falling-edge Detection Coil (OFFP-COIL) . 4-31
4.2.19 Set Coil (S-COIL) . 4-32
4.2.20 Reset Coil (R-COIL) . 4-33

4.3 Numeric Operation Instructions . 4-34
4.3.1 Store (STORE) . 4-34
4.3.2 Add (ADD (+)). 4-35
4.3.3 Extended Add (ADDX (++)) . 4-36
4.3.4 Subtract (SUB (−)) . 4-38
4.3.5 Extended Subtract (SUBX (− −)) . 4-39
4.3.6 Multiply (MUL (x)). 4-41
4.3.7 Divide (DIV (÷)) . 4-42
4.3.8 Integer Remainder (MOD) . 4-43
4.3.9 Real Remainder (REM). 4-45

xvi

4.3.10 Increment (INC) .4-46
4.3.11 Decrement (DEC) .4-47
4.3.12 Add Time (TMADD) .4-48
4.3.13 Subtract Time (TMSUB) .4-50
4.3.14 Spend Time (SPEND) .4-52
4.3.15 Invert Sign (INV) .4-54
4.3.16 One’s Complement (COM) .4-55
4.3.17 Absolute Value (ABS) .4-56
4.3.18 Binary Conversion (BIN) .4-57
4.3.19 BCD Conversion (BCD). .4-58
4.3.20 Parity Conversion (PARITY) .4-59
4.3.21 ASCII Conversion 1 (ASCII). .4-60
4.3.22 ASCII Conversion 2 (BINASC). .4-61
4.3.23 ASCII Conversion 3 (ASCBIN). .4-62

4.4 Logic Operations and Comparison Instructions 4-64
4.4.1 Inclusive AND (AND) .4-64
4.4.2 Inclusive OR (OR) .4-65
4.4.3 Exclusive OR (XOR) .4-66
4.4.4 Less Than (<) .4-67
4.4.5 Less Than or Equal (≤) .4-68
4.4.6 Equal (=) .4-69
4.4.7 Not Equal (≠) .4-70
4.4.8 Greater Than or Equal (≥) .4-71
4.4.9 Greater Than (>) .4-72
4.4.10 Range Check (RCHK) .4-73

4.5 Program Control Instructions . 4-75
4.5.1 Call Sequence Program (SEE) .4-75
4.5.2 Call Motion Program (MSEE) .4-76
4.5.3 Call User Function (FUNC) .4-78
4.5.4 Direct Input String (INS) .4-79
4.5.5 Direct Output String (OUTS) .4-81
4.5.6 Call Extended Program (XCALL) .4-83
4.5.7 WHILE Construct (WHILE, END_WHILE) .4-84
4.5.8 FOR Construct (FOR, END_FOR) .4-86
4.5.9 IF Construct (IF, END_IF) .4-88
4.5.10 IF-ELSE Construct (IF, ELSE, END_IF) .4-90
4.5.11 Expression (EXPRESSION) .4-91

4.6 Basic Function Instructions . 4-93
4.6.1 Square Root (SQRT) .4-93
4.6.2 Sine (SIN) .4-94
4.6.3 Cosine (COS) .4-95
4.6.4 Tangent (TAN.) .4-97
4.6.5 Arc Sine (ASIN) .4-98
4.6.6 Arc Cosine (ACOS) .4-99
4.6.7 Arc Tangent (ATAN) .4-100
4.6.8 Exponential (EXP) .4-101
4.6.9 Natural Logarithm (LN) .4-102
4.6.10 Common Logarithm (LOG) .4-103

4.7 Data Shift Instructions . 4-104
4.7.1 Bit Rotate Left (ROTL) .4-104
4.7.2 Bit Rotate Right (ROTR) .4-105
4.7.3 Move Bit (MOVB) .4-106
4.7.4 Move Word (MOVW) .4-108
4.7.5 Exchange (XCHG) .4-110
4.7.6 Table Initialization (SETW). .4-111
4.7.7 Byte-to-word Expansion (BEXTD) .4-113
4.7.8 Word-to-byte Compression (BPRESS) .4-114

xvii

4.7.9 Binary Search (BSRCH) . 4-116
4.7.10 Sort (SORT) . 4-117
4.7.11 Bit Shift Left (SHFTL) . 4-118
4.7.12 Bit Shift Right (SHFTR) . 4-120
4.7.13 Copy Word (COPYW). 4-121
4.7.14 Byte Swap (BSWAP) . 4-122

4.8 DDC Instructions . 4-123
4.8.1 Dead Zone A (DZA) . 4-123
4.8.2 Dead Zone B (DZB) . 4-124
4.8.3 Upper/Lower Limit (LIMIT) . 4-126
4.8.4 PI Control (PI) . 4-128
4.8.5 PD Control (PD) . 4-133
4.8.6 PID Control (PID) . 4-137
4.8.7 First-order Lag (LAG) . 4-142
4.8.8 Phase Lead Lag (LLAG) . 4-144
4.8.9 Function Generator (FGN) . 4-147
4.8.10 Inverse Function Generator (IFGN) . 4-151
4.8.11 Linear Accelerator/Decelerator 1 (LAU) . 4-155
4.8.12 Linear Accelerator/Decelerator 2 (SLAU) . 4-161
4.8.13 Pulse Width Modulation (PWM) . 4-170

4.9 Table Manipulation Instructions . 4-173
4.9.1 Read Table Block (TBLBR/TBLBRE) . 4-173
4.9.2 Write Table Block (TBLBW/TBLBWE) . 4-177
4.9.3 Search for Table Row (TBLSRL/TBLSRLE). 4-181
4.9.4 Search for Table Column (TBLSRC/TBLSRCE) . 4-184
4.9.5 Clear Table Block (TBLCL/TBLCLE) . 4-187
4.9.6 Move Table Block (TBLMV/TBLMVE) . 4-190
4.9.7 Read Queue Table (QTBLR/QTBLRE and QTBLRI/QTBLRIE) 4-194
4.9.8 Write Queue Table (QTBLW/QTBLWE and QTBLWI/QTBLWIE) 4-198
4.9.9 Clear Queue Table Pointer (QTBLCL/QTBLCLE) 4-202

4.10 System Function Instructions . 4-204
4.10.1 Counter (COUNTER) . 4-204
4.10.2 First-in First-out (FINFOUT) . 4-207
4.10.3 Trace (TRACE) . 4-210
4.10.4 Read Data Trace (DTRC-RD/DTRC-RDE) . 4-212
4.10.5 Send Message (MSG-SND) . 4-216
4.10.6 Send Message Extended (MSG-SNDE) . 4-218
4.10.7 Receive Message (MSG-RCV) . 4-220
4.10.8 Receive Message Extended (MSG-RCVE) . 4-221
4.10.9 Write SERVOPACK Parameter (MLNK-SVW) . 4-223
4.10.10 Read SERVOPACK Parameter (MLNK-SVR) . 4-228
4.10.11 Flash Operation (FLASH-OP) . 4-233
4.10.12 Write Motion Register (MOTREG-W) . 4-236
4.10.13 Read Motion Register (MOTREG-R). 4-238
4.10.14 Import (IMPORT/IMPORTL/IMPORTLE) . 4-240
4.10.15 Export (EXPORT/EXPORTL/EXPORTLE) . 4-248

4.11 Storage Operation Instructions . 4-254
4.11.1 Open File (FOPEN) . 4-254
4.11.2 Close File (FCLOSE) . 4-257
4.11.3 Read Data from File (FREAD). 4-258
4.11.4 Write Data to File (FWRITE) . 4-260
4.11.5 Set File Position Indicator (FSEEK) . 4-262
4.11.6 Read Line from File to String (FGETS) . 4-264
4.11.7 Write String to File (FPUTS) . 4-266
4.11.8 Copy File (FCOPY). 4-268
4.11.9 Delete File (FREMOVE) . 4-270
4.11.10 Rename File (FRENAME) . 4-271

xviii

4.11.11 Create Directory (DCREATE) .4-274
4.11.12 Delete Directory (DREMOVE) .4-276
4.11.13 Send File to FTP Server (FTPPUT) .4-277

4.12 String Operation Instructions . 4-280
4.12.1 Convert Integer to String (INT2STR) .4-280
4.12.2 Convert Real Number to String (REAL2STR). .4-282
4.12.3 Convert String to Integer (STR2INT) .4-283
4.12.4 Convert String to Real Number (STR2REAL). .4-284
4.12.5 Store String (STRSET) .4-286
4.12.6 Partially Delete String (STRDEL) .4-287
4.12.7 Copy String (STRCPY) .4-288
4.12.8 Get String Length (STRLEN) .4-290
4.12.9 Concatenate Strings (STRCAT) .4-291
4.12.10 Compare Strings (STRCMP) .4-293
4.12.11 Insert String (STRINS). .4-294
4.12.12 Find String (STRFIND) .4-296
4.12.13 Extract String (STREXTR) .4-297
4.12.14 Extract String from End (STREXTRE) .4-299
4.12.15 Delete Spaces at String Ends (STRTRIM) .4-300

Features of the MPE720 Engineering Tool
5

5.1 Ladder Program Runtime Monitoring. 5-4

5.2 Search/Replace . 5-5
5.2.1 Searching and Replacing in Programs .5-5
5.2.2 Searching and Replacing in Project Files .5-7

5.3 Cross References . 5-10

5.4 Checking for Multiple Coils . 5-13

5.5 Forcing Coils ON and OFF . 5-14
5.5.1 Forcing Coils ON or OFF from a Ladder Program .5-14
5.5.2 Changing the Forced ON/OFF Status from the Force Coil List Pane.5-14

5.6 Viewing Called Programs . 5-17

5.7 Register Lists . 5-18
5.7.1 Displaying the Register Map. .5-18
5.7.2 Switching the Register Map Display .5-19
5.7.3 Editing Data .5-20

5.8 Tuning Panel . 5-21

5.9 Enabling and Disabling Ladder Programs 5-22

5.10 Watching . 5-23
5.10.1 Displaying Watch Data .5-23
5.10.2 Editing the Value Column .5-23

5.11 Security . 5-24

5.12 Tracing . 5-25

xix

5.13 Advanced Programming. 5-26
5.13.1 Motion Programs . 5-26

System Service Registers
AppendixA

A.1 Overview of System Registers . A-2

A.2 Common to All Drawings . A-3

A.3 Exclusive to DWG.H (High-speed Scan Process Drawings) . . . A-4

A.4 Exclusive to DWG.L (Low-speed Scan Process Drawings) A-5

A.5 Scan Execution Status and Calendar. A-6

A.6 System Program Software Numbers and Remaining Program Memory Capacity . . A-7

Sample Programs
AppendixB

B.1 Jogging from the Control Panel . B-2

B.2 Motion Program Control . B-3

B.3 Simple Synchronized Operation of Two Axes with a Virtual Axis . . B-4

Format for EXPRESSION Instructions
AppendixC

C.1 Elements That You Can Use in Numeric Expressions C-2
C.1.1 Operators . C-2
C.1.2 Operands . C-3
C.1.3 Instructions That You Can Use with EXPRESSION Instructions C-4

C.2 Notational Limitations . C-5
C.2.1 Arithmetic and Logic Operators . C-5
C.2.2 Comparison Operators . C-5
C.2.3 Logic Operators. C-5
C.2.4 Substitution Operator . C-6
C.2.5 Functions . C-6
C.2.6 Parentheses . C-6

Precautions on Motion Parameters
AppendixD

Machine Controller Specifications
AppendixE

xx

Error Codes
AppendixF

Index

Revision History

This section describes the features and gives an overview
of ladder programs.

1.1 What Is a Ladder Program? 1-2

1.2 Features . 1-3
1.2.1 The Various Execution Timing of Ladder

Drawings . 1-3
1.2.2 Program Modules . 1-4
1.2.3 Programming Complicated Numeric

Operations . 1-4
1.2.4 Communications Control with External

Devices . 1-5
1.2.5 Complete Synchronization with Motion

Control . 1-5

1.3 Introduction . 1-6
1.3.1 Ladder Program Editor . 1-6
1.3.2 Ladder Drawings . 1-7
1.3.3 User Functions . 1-13
1.3.4 Table Data . 1-18

Features and
Overview of
Ladder Programs 1

1.1 What Is a Ladder Program?

1-2

1.1 What Is a Ladder Program?

A ladder program uses ladder language instructions and registers to symbolically represent
electrical circuits consisting of switches, timers, lamps, and other devices.

Ladder programming allows you to easily program large, complex circuits.
Each of the ladder programs that you create is executed in a single scan and then executed
repeatedly at fixed intervals.

LampTimer
Switch

<Conceptual Circuit>

<Ladder Programming>

<Ladder Programming Example>

Execution is

repeated at

fixed intervals.

1.2 Features

1.2.1 The Various Execution Timing of Ladder Drawings

1-3

1

Fe
at

ur
es

 a
nd

 O
ve

rv
ie

w
 o

f L
ad

d
er

 P
ro

gr
am

s

1.2 Features

This section describes the features of ladder programs.

1.2.1 The Various Execution Timing of Ladder Drawings
Ladder programs are managed in units of drawings (DWG). These are called ladder drawings.
In the Machine Controller, ladder drawings are executed at various times, as illustrated in the
following figure.
Processing can be executed at the appropriate time by programming it in the appropriate lad-
der drawing.

The following table gives the execution timing for each drawing.

* The drawings with lower numbers have higher execution priority.

Ladder Drawing Priority* Execution Timing (Processing Example)

DWG.A 1 (High) This drawing is executed only once when the power supply is
turned ON (e.g., for data initialization).

DWG.I 2 (↑) This drawing is executed when an interrupt signal is detected
(e.g., for interrupt processing for external signals).

DWG.H 3 (↑) This drawing is executed every high-speed scan cycle (e.g.,
for motion control).

DWG.L 4 (Low) This drawing is executed every low-speed scan cycle (e.g.,
for touch panel display processing).

:

Executed only when
power is turned ON.

Executed only when an
interrupt signal is detected.

Executed in the
high-speed scan cycle.

Executed in the
low-speed scan cycle.

Power ON Processed during idle time
of the high-speed scan.

Interrupt
signal

Interrupt
signal

On standby while drawings of
higher priority are processed.

Low-speed scan cycle

High-speed scan
cycle

High-speed scan
cycle

High-speed scan
cycleDWG.A

DWG.H

DWG.L

DWG.I

1.2 Features

1.2.2 Program Modules

1-4

1.2.2 Program Modules
The main program can be separated into modular units to suit different processing require-
ments, such as child drawings, grandchild drawings, and functions, to make the program eas-
ier to read. The following example illustrates a modular program.

1.2.3 Programming Complicated Numeric Operations
Complicated calculations written over several lines can be written easily by using a single
EXPRESSION instruction.
Variables, structures, and basic functions, such as those for sine and cosine calculations, can
be programmed using familiar C-like expressions.
You can display the current value inside expressions in the same way as you can for other lad-
der language instructions.

H: Main program

Automatic operation processing

Manual operation processing �

Numeric processing

Manual operation processing �

Numeric processing

Modularization

Parent Drawing

H: Main program

Child and Grandchild
Drawings

Automatic operation
processing drawing.

Manual operation
processing (1) drawing

FUNC instruction

Manual operation
processing (2) drawing

FUNC instruction

Functions

Numeric
processing

END

SEE instruction

SEE instruction

SEE instruction

1.2 Features

 1.2.4 Communications Control with External Devices

1

Fe
at

ur
es

 a
nd

 O
ve

rv
ie

w
 o

f L
ad

d
er

 P
ro

gr
am

s

1-5

1.2.4 Communications Control with External Devices
The MSG-SND and MSG-RCV ladder language instructions support various protocols and can
be used to control communications with many external devices, such as a touch panels or host
PLCs. This allows external devices to access registers in the Machine Controller.

1.2.5 Complete Synchronization with Motion Control
Ladder programs that are started in the high-speed scan are processed in complete synchroni-
zation with motion control operations. This allows you to call and process a motion program
that performs complicated motion control synchronously with a ladder program.

Instead of using a ladder program, the Machine Controller can also communicate with exter-
nal devices by using I/O message communications or automatic reception.
Refer to the following manual for details.

MP3000 Series Communications User’s Manual (Manual No.: SIEP C880725 12)

Machine Controller

Ladder Program

� MSG-RCV instruction
 (Receive Message)

External Device

Touch Panel

Registers

� MSG-SND instruction
 (Send Message)

PLC

Information

Setting
motion
param-
eters

Sequence Control

M
ot

io
n

pa
ra

m
et

er
s

Motion Control
(Motion Module)

Synchronized
phase control

Ladder Program (High-speed Scan)

Start of a Motion
Program

Motion Program Position
control

Speed
control

Torque
control

Motion control is processed
in complete synchronization
with the high-speed scan.

1.3 Introduction

1.3.1 Ladder Program Editor

1-6

1.3 Introduction

This section provides an overview of ladder programming.

1.3.1 Ladder Program Editor
In MPE720 version 7, ladder programs are created and edited in the panes that are shown
below.

 Ladder Pane
Ladder programs are displayed by drawing.
Refer to the following section for details on drawings.

1.3.2 Ladder Drawings on page 1-7

 Tab Page to Edit Ladder Program
This tab page is used to edit ladder programs.

 Variable Pane
This pane displays variables. Refer to the following section for details on registers.

Chapter 3 Registers

In addition to the panes and tab pages that were just described, various other panes, tab
pages, and tool bars also exist.

  

1.3 Introduction

 1.3.2 Ladder Drawings

1

Fe
at

ur
es

 a
nd

 O
ve

rv
ie

w
 o

f L
ad

d
er

 P
ro

gr
am

s

1-7

1.3.2 Ladder Drawings
Ladder programs are managed as drawings (ladder diagrams) that are identified by their draw-
ing numbers (DWG numbers). The ladder drawings form the basis of the ladder programs.

Drawing Types and Hierarchical Configuration
This section describes the types of ladder drawings and their hierarchical configuration.

 Types
Ladder drawings are divided into four different types based on their purpose.
• DWG.A (Startup Drawings)

This type of ladder drawing is used to set register data. These ladder drawings are executed
before high-speed scan process drawings and low-speed scan process drawings.

• DWG.I (Interrupt Drawings)
This type of ladder drawing is used to perform processing with priority given to signals input
from an Optional Module. These ladder drawings are executed with higher priority than high-
speed scan process drawings regardless of the scan cycle.

• DWG.H (High-speed Scan Process Drawings)
This type of ladder drawing is used to perform motion control or high-speed I/O control.

• DWG.L (Low-speed Scan Process Drawings)
This type of ladder drawing is used for communications with HMIs and external devices as
well as for standard I/O control.

The following table lists the priority, execution conditions, and maximum number of drawings
for each type of ladder drawing.

* Drawings with lower numbers have higher priority.

 Hierarchical Configuration
There are four types of ladder drawings: parent drawings, child drawings, grandchild drawings,
and operation error drawings.
• Parent Drawings

These drawings are automatically executed by the system program when the execution con-
ditions are met.

• Child Drawings
These drawings are executed when they are called from a parent drawing with a SEE instruc-
tion.

• Grandchild Drawings
These drawings are executed when they are called from a child drawing with a SEE instruc-
tion.

• Operation Error Drawings
These drawings are automatically executed by the system program when an operation error
occurs.

Drawing Type Priority* Execution Condition
Maximum
Number of
Drawings

DWG.A (Startup Drawings) 1 Power ON (These drawings are executed once when the
power supply is turned ON.) 64

DWG.I (Interrupt Drawings) 2
External interrupt (These drawings are executed when a
DI interrupt or counter match interrupt is received from
an Option Module.)

64

DWG.H (High-speed Scan
Process Drawings) 3 Started at fixed intervals. (These drawings are executed

once every high-speed scan.) 1000

DWG.L (Low-speed Scan
Process Drawings) 4 Started at fixed intervals. (These drawings are executed

once every low-speed scan.) 2000

1.3 Introduction

1.3.2 Ladder Drawings

1-8

A parent drawing cannot call a child drawing from a different type of drawing. Similarly, a child
drawing cannot call a grandchild drawing from a different type of drawing. A parent drawing
cannot call a grandchild drawing directly. The parent drawing first must call the child drawing,
and then the child drawing must call the grandchild drawing. This is called the hierarchical con-
figuration of drawings.
The following figure shows the parent-child-grandchild structure in which a program is created.

The breakdown of the number of ladder drawings in each category is given in the following
table.

Drawings
Number of Drawings

DWG.A DWG.I DWG.H DWG.L

Parent Drawings 1 1 1 1

Operation Error Drawings 1 1 1 1

Child Drawings
Total of 62 max. Total of 62 max. Total of 998 max. Total of 1,998 max.

Grandchild Drawings

There are separate functions that can be called from the drawings as required. Functions are
executed when they are called from a parent, child, or grandchild drawing with the FUNC
instruction. You can create up to 2,000 functions.

User FunctionsGrandchild
Drawings

Child
Drawings

Parent
Drawing

Note: � = A, I, H, or L

DWG.� DWG.�01

DWG.�nn

DWG.�01.01

DWG.�01.02 FUNC-001

FUNC-006

FUNC-032

FUNC-064

DWG.�01.03

Grandchild drawing number

Parent drawing type (A, I, H, or L)

Child drawing number

Note: The following notation is used
for operation error drawings.

Parent drawing type (A, I, H, or L) of
the drawing where the error occurs

Fixed value (00)

DWG notation: DWG.� � . �

DWG.� 00

Information

1.3 Introduction

 1.3.2 Ladder Drawings

1

Fe
at

ur
es

 a
nd

 O
ve

rv
ie

w
 o

f L
ad

d
er

 P
ro

gr
am

s

1-9

Controlling the Execution of Drawings
Drawings are executed based on their priorities, as shown in the following figure.

*1. DWG.A drawings are executed immediately after the power supply is turned ON.
*2. When an interrupt signal is input, execution of the DWG.I drawing is given priority even if execution of a DWG.H

or DWG.L drawing is currently in progress.

Note: The parent drawing of each drawing is automatically called and executed by the system.

 Execution Processing of Drawings
The drawings are executed by calling them from the top to the bottom, following the hierarchy
of the drawings. The following figure illustrates the execution processing of a high-speed scan
drawing (DWG.H).

Note: 1. The parent drawing is automatically called and executed by the system. Child drawings and grandchild
drawings are executed by calling them from a parent or a child drawing using the SEE instruction.

2. You can call functions from any drawing. You can also call functions from other functions.
3. If an operation error occurs, the operation error drawing for the drawing type will be started automatically.
4. Always specify 00 as the drawing number for operation error drawings.

Power ON

DWG.A
(Startup Drawings)

Interrupt signal

DWG.I
(interrupt drawing)

Execution is continued
from the point before
the interrupt.

Every low-speed scan

Batch output

Batch input

DWG.L (low-speed
scan process drawing)

Every high-speed scan

Batch output

Batch input

DWG.H (high-speed
scan process drawing)

*1

*2

Functions

Execution is started by the
system program when the
execution condition is met.

Parent Drawing Child Drawings Grandchild Drawings

Execution is
automatically
started by the
system.

An operation
error occurs.

FUNC
01

END

FUNC 01

DWG.H DWG.H01 DWG.H01.01

SEE
H01

SEE
H01.H01

END

END

H02

H00

END END

SEE
H02

END

1.3 Introduction

1.3.2 Ladder Drawings

1-10

 Scheduling the Execution of High-speed and Low-speed Scan Process
Drawings

High-speed scan process drawings (DWG.H) and low-speed scan process drawings (DWG.L)
cannot be executed at the same time. DWG.L drawings are executed during the idle time of
DWG.H drawings.
The period during which DWG.H drawings are executed is called the high-speed scan time.
The period during which DWG.L drawings are executed is called the low-speed scan time.

* This time is used to execute internal system processing, such as communications processing.

 Setting the High-speed and Low-speed Scan Times
Use MPE720 version 7 and perform the procedure given below to set the high-speed and low-
speed scan times.

1. Select File − Environment Settings from the menu bar. Alternatively, click the System
Setting Icon on the My Tool View of the Start Tab Page. The Environment Setting Dialog
Box is displayed.

2. Select Setup − Scan Time Setting. The following dialog box will be displayed.

Setting Value:Enter the scan time settings.
Current Value:A value of 0.0 ms is displayed when the MPE720 is offline. Otherwise, the actual pro-
cessing times for the scans are displayed.
Maximum Value:The maximum processing time for the scan is displayed. You can set the maximum
value. The setting is retained until it is exceeded.

Low-speed scan time

High-speed
scan time

High-speed
scan time

High-speed
scan time

High-speed
scan time

DWG.H
(high-speed
scan process
drawing)

DWG.L
(low-speed
scan process
drawing)

Background
processing*

: Actual processing time during the scan

1.3 Introduction

 1.3.2 Ladder Drawings

1

Fe
at

ur
es

 a
nd

 O
ve

rv
ie

w
 o

f L
ad

d
er

 P
ro

gr
am

s

1-11

3. Enter the high-speed scan time in the Setting Value Box under High-speed Scan. Enter
the low-speed scan time in the Setting Value Box under Low-speed Scan.
The following table shows the possible set values and default values for each scan time.

Note: The possible set values and default values depend on the model. Refer to the user’s manual for the Mod-
ule you are using for details.

 High-speed Drawing Operation Mode Settings
The high-speed drawing operation mode is the mode that is set for DWG.H drawings.

If no DWG.I drawings are used, select the high-speed mode. This optimizes the processing of
DWG.H drawings.

If DWG.I drawings are used, select the normal mode. If the high-speed mode is selected,
DWG.I drawings will not be executed.

Item Possible Set Values Default

High-speed Scan Time 0.125 to 32 ms (in 0.125-ms increments) 4.0 ms

Low-speed Scan Time 2.0 to 300.0 ms (in 0.5-ms increments) 200.0 ms

Observe the following precautions when setting the high-speed scan time and low-speed
scan time.
1. Set the scan set value so that it is 1.25 times greater than the maximum value.

If the scan set value is too close to the maximum value, the refresh rate of the MPE720 window
will noticeably drop and can cause communications timeout errors to occur. If the maximum
value exceeds the scan set value, a watchdog error may occur and cause the Machine Con-
troller system to shut down.

2. If you are using MECHATROLINK-II or MECHATROLINK-III, set values that are an integral mul-
tiple of the communications cycle. If you change the communications cycle, check the scan
time set values.

3. Do not change the scan set value while the Servo is ON. Never change the scan set value
while an axis is in motion (i.e., while the motor is rotating). Doing so may cause the motor to
rotate out of control.

4. After changing or setting a scan time, always save the data to flash memory.

Important

When the high-speed operation mode is set:

The current high-speed
scan time decreases.
(The scan overhead is
reduced.)

The current high-speed
scan time decreases.
(The scan overhead is
reduced.)

The current high-speed
scan time decreases.
(The scan overhead is
reduced.)

High-speed scan
processing

High-speed scan cycle
(SW00014)

High-speed scan cycle
(SW00014)

High-speed scan
processing

Current high-speed
scan time (SW00008)

High-speed scan cycle
(SW00014)

High-speed scan cycle
(SW00014)

Current high-speed
scan time (SW00008)

DWG.H DWG.H DWG.H

DWG.H DWG.H DWG.H

1.3 Introduction

1.3.2 Ladder Drawings

1-12

Perform the following procedure with MPE720 version 7 to set the high-speed drawing opera-
tion mode.

1. Select File − Environment Settings from the menu bar. Alternatively, click the System
Setting Icon on the My Tool View of the Start Tab Page. The Environment Setting Dialog
Box is displayed.

2. Select Setup − System Setting. The following dialog box will be displayed.

3. Select High-speed or Normal for the High-speed Drawing Operation Mode.

• DWG.A, DWG.I, and DWG.L drawings do not have operation mode settings.
• The more often the following instructions are used, the greater the effect that the optimiza-

tion will have on DWG.H processing.

Information

Type Function

Relay Circuit Instructions

Rising-edge NO Contact

Falling-edge NO Contact

Rising-edge NC Contact

Falling-edge NC Contact

Rising-edge Pulse

Falling-edge Pulse

Coil

Reverse Coil

Rising-edge Detection Coil

Falling-edge Detection Coil

Set Coil

Reset Coil

Numeric Operation
Instructions

Increment

Decrement

1.3 Introduction

 1.3.3 User Functions

1

Fe
at

ur
es

 a
nd

 O
ve

rv
ie

w
 o

f L
ad

d
er

 P
ro

gr
am

s

1-13

1.3.3 User Functions

What Is a User Function?
A user function contains a function definition (program number and I/O definitions) and pro-
cessing instructions that are defined by the user.
The following figure shows an example of a function definition.

Overview of User Functions
The processing to be performed by a user function is created using a ladder program.
User functions are executed when they are called from a parent, child, or grandchild drawing
with the FUNC instruction.
The following user function calls are also allowed.
• User functions can be freely called from any drawing.
• User functions can be called simultaneously from drawings of different types and different

hierarchy levels.
• User functions can call other user functions.
• User functions can be called any number of times from different programs.
The use of functions provides the following advantages.
• Easy user program modularization
• Easy user programming and program maintenance

When you call a user function, consider what values could be in the registers in each function,
and perform initialization as needed.
Refer to the following section for details.

Chapter 3 Registers − 3.2.1 Precautions When Using Local Registers within a User Function on page 3-5

Function Input
Definition

Program Number

Function Input
Definition

Function Address
Definition

 Number of inputs
 Data types
 Comments

 Number of inputs
 Data types
 Comments

 Presence of definition
 Comment

Important

1.3 Introduction

1.3.3 User Functions

1-14

The following diagram shows the relation between I/O data for a user function and the registers
within that user function.

1. The X, Y, Z, and D registers are initialized to different values when a user function is called.
Refer to the following section for details.

 Chapter 3 Registers − 3.2.1 Precautions When Using Local Registers within a User Function on
page 3-5

2. The S, M, I, O, and C registers can also be accessed from within a function.

XB000000 to XB00000F

XW00001

XW00002

XW00003

XW00015

XW00016

YB000000 to YB00000F

YW00001

YW00002

YW00003

YW00015

YW00016

AW00000

AW00001

AW00002

AW00003

MW00100

MW00101

MW00102

MW00103

MA00100

Registers within a User Function

Bit data inputs
(16 bits max.)

Data inputs
� Word data
� Long data
� Float data

(16 words max.)

Data outputs
� Word data
� Long data
� Float data

(16 words max.)

Address Inputs

Z Registers # Registers D Registers

X Registers
(Function Input Registers)

Y Registers
(Function Output Registers)

Bit data outputs
(16 bits max.)

A Registers
(Function External Registers)

Information

1.3 Introduction

 1.3.3 User Functions

1

Fe
at

ur
es

 a
nd

 O
ve

rv
ie

w
 o

f L
ad

d
er

 P
ro

gr
am

s

1-15

Creating User Functions
This section describes how to create a user function that has, as an example, the following
specifications.

 Procedure

1. Select Programming − Ladder program from the Launcher.
The Ladder Pane will be displayed.

2. Right-click Function under Ladder program, and select New.

The Create New Program Dialog Box will be displayed.

3. Enter “FUNC01” in the Program No. Box.

Function Definition Item Name Remarks

Program Number FUNC01 −
Function Input Value IN Integer data

Function Output Value 1 OUT1 Integer data

Function Output Value 2 OUT2 Integer data

Processing Details

Multiply the function input value (IN) by 2 and output it to function output value 1 (OUT1).
Multiply the function input value (IN) by 3 and output it to function output value 2 (OUT2).

1.3 Introduction

1.3.3 User Functions

1-16

4. Select Function input definition under I/O definition and enter the following informa-
tion.

5. Select Function output definition under I/O definition and enter the following informa-
tion.

6. Click the OK Button. This concludes setting the function definition.

7. Create the following ladder program in the drawing of the FUNC01 sample user function
that was created in step 5.

1.3 Introduction

 1.3.3 User Functions

1

Fe
at

ur
es

 a
nd

 O
ve

rv
ie

w
 o

f L
ad

d
er

 P
ro

gr
am

s

1-17

8. While displaying the ladder program, select Compile − Compile from the menu bar to
compile the program.
When the compilation is finished, the ladder program will be saved automatically.

This concludes the creation of the user function.

Calling the User Function
The user function is ready to be called by using a FUNC instruction in the ladder drawing.

This section describes how to call the sample user function from the high-speed drawing
(DWG.H).

 Example for Calling the FUNC01 User Function from DWG.H
Program a FUNC instruction in DWG.H as shown below.

This diagram shows a conceptual image of what the programming shown above accomplishes.

When DW00000 in DWG.H is set to 10, DW00001 becomes 20 and DW00002 becomes 30,
demonstrating that the sample user function was called correctly.

If an error is displayed in the Output Pane during compilation, the ladder program will not be
saved.

Important

Input defined in
the user function

Program number of the
user function to call

Output defined in
the user function

XB000000 to XB00000F

XW00001

XW00002

XW00016

DW00001

YB000000 to YB00000F

YW00003

YW00016

YW00001

YW00002

DW00000

×2

×3

IN

OUT2

DW00002

OUT1

Registers within the FUNC01 User Function

X Registers
(Function Output Registers)

Values that are set Undefined value

Y Registers
(Function Input Registers)

1.3 Introduction

1.3.4 Table Data

1-18

1.3.4 Table Data

What Is Table Data?
Table data is data that is managed in tabular form. The data is stored separately from the regis-
ters. Data can be copied from a table to registers or from registers to a table by executing table
instructions in the ladder program. Tables can also be used to hold data when there is not a
sufficient range of registers.

Creating Table Data
To create table data, set the table definition information and column attributes as listed below.

Table Definition
Information

Description

Table Name This is the name of the table.

Table Type
Select an array-type or record-type table.
• Array type: Specifies a table where all columns have the same attributes.
• Record type: Specifies a table where each column has a different attribute.

Number of Columns This is the number of columns in the table. (32,767 columns max.)

Number of Rows This is the number of rows in the table. (65,535 rows max.)

Table Comment This is a comment for the table.

Table Data Storage
Location

Select normal or battery backup.
• Normal: The maximum size per table is 5 MB.
• Battery backup: The maximum size per table is 3 MB.
The details on the maximum size of tables and which models have battery backup
storage are given below.
• MP3100

16 axes: Total size: 15 MB, size for battery backup: 1 MB
32 axes: Total size: 31 MB, size for battery backup: 3 MB

• MP3200
16 and 32 axes: Total size: 32 MB, size for battery backup: 3 MB

• MP3300
16 axes: Total size: 15 MB, size for battery backup: 1 MB
32 axes: Total size: 31 MB, size for battery backup: 3 MB

���

���

TBL1

Data

Table data

Queue Table Read Instruction

Queue Table Write Instruction

Registers

1.3 Introduction

 1.3.4 Table Data

1

Fe
at

ur
es

 a
nd

 O
ve

rv
ie

w
 o

f L
ad

d
er

 P
ro

gr
am

s

1-19

 Procedure

1. Select Utility − Engineering Builder from the Launcher.
The Engineering Builder will start.

2. Select File − Open − Define Data Table − Data Table Map from the menu bar in the
Engineering Builder.
The Table Data Store Target Dialog Box will be displayed.

3. With the Table Data Store Target Dialog Box displayed, select File − Create New from
the menu bar in the Engineering Builder.
The Table Definition Dialog Box will be displayed.

4. Set the table definition information and click the OK Button.

The Data Table Column Attribute Dialog Box will be displayed.

Column Attributes Description

Column Name This is the name of the column.

Data Type The data type can be integer, double-length integer, quadruple-length integer, real
number, double-precision real number, or text string.

Size This is the length of the data type.

Display Type The display type can be binary, decimal, hexadecimal, real number, or text string.

Column Comment This is a comment for the column.

1.3 Introduction

1.3.4 Table Data

1-20

5. Set the table data column attributes.
Note: If the table is set to an array-type table in the table definition, set only one column attribute.

6. Select File – Save Project from the menu bar.
The Table Data Store Target Dialog Box displayed in step 2 will show the table created with this pro-
cedure.

This concludes the creation of the data table.

1. When a table is created, the contents are initialized to 0.
2. Select the table that was created in the Table Data Store Target Dialog Box, and click the

Table Data Button to read or write table data.
3. Use the table instructions to perform operations on the table data from a ladder program.

Information

This chapter describes the development flow for ladder
programs.

2.1 Introduction . 2-2

2.2 Preparation for Devices to be Connected . . 2-3
2.2.1 Connecting the Hardware 2-3
2.2.2 Installing MPE720 Version 7 2-3

2.3 Creating a Project . 2-4

2.4 Self Configuration . 2-5

2.5 Going Online . 2-6

2.6 Creating Ladder Programs 2-7

2.7 Writing the Ladder Programs 2-11

2.8 Checking the Operation of the Ladder Programs . . 2-13
2.8.1 Preparations for Checking Operation 2-13
2.8.2 Confirming the Operation of the 0000th Line

(AND Circuit) . 2-14
2.8.3 Confirming the Operation of the 0001st Line

(Timer Circuit) . 2-15

2.9 Save the Ladder Program to Flash Memory . . 2-16

Ladder Program
Development Flow 2

2.1 Introduction

2-2

2.1 Introduction

This section describes the flow for developing ladder programs as outlined below.

Note: The above flowchart is an example of the ladder program development process. Settings to interface the
external devices must be completed to use programs on the actual system.

� Preparation for Devices to be Connected
� Creating Ladder Programs

	 Write the Ladder Programs

 Check the Operation of the Ladder Programs

� Save the Ladder Program to Flash Memory

� Create a Project

� Self Configuration

 Going Online

Assemble and wire all devices to be con-
nected.
Install MPE720 version 7 on a PC.
Refer to the following sections for details.

2.2 Preparation for Devices to be Connected −
2.2.1 Connecting the Hardware on page 2-3

2.2 Preparation for Devices to be Connected −
2.2.2 Installing MPE720 Version 7 on page 2-3

Perform self configuration and start the system.
Refer to the following section for details.

2.4 Self Configuration on page 2-5

Create a project before starting ladder program
development.
Refer to the following section for details.

2.3 Creating a Project on page 2-4

Enter the ladder program in the Ladder Editor.
Refer to the following section for details.

2.6 Creating Ladder Programs on page 2-7

Transfer the programs that you created to the
Machine Controller.
Refer to the following section for details.

2.7 Writing the Ladder Programs on page 2-11

Check the operation of the ladder programs.
Refer to the following section for details.

2.8 Checking the Operation of the Ladder
Programs on page 2-13

Save the debugged ladder program to flash
memory.
Refer to the following section for details.

2.9 Save the Ladder Program to Flash Memory
on page 2-16Set the communications parameters for com-

municating with the Machine Controller.
Refer to the following section for details.

2.5 Going Online on page 2-6

2.2 Preparation for Devices to be Connected

2.2.1 Connecting the Hardware

2-3

2

La
d

d
er

 P
ro

gr
am

 D
ev

el
op

m
en

t
Fl

ow

2.2 Preparation for Devices to be Connected

This section describes the hardware connections and the installation of MPE720 version 7.

2.2.1 Connecting the Hardware
Assemble and wire all devices to be connected.
The hardware connections are described using the system configuration shown below.

* In this example, M registers in the Machine Controller are used to simulate a virtual I/O device.
In practice, the input and output signals would be connected to I/O Modules on the Machine Controller, and the
ladder program would be created using I and O registers.

2.2.2 Installing MPE720 Version 7
Install MPE720 version 7 on a PC.
Refer to the following manual for the installation procedure.

MP3000 Series Machine Controller System Setup Manual (Manual No.: SIEP C880725 00)

24-VDC
power supply

Machine Controller

Virtual I/O device*
Inputs activated in MPE720.

PC running MPE720

Ethernet cable

Lamp 1 Lamp 2

MB00002

SW1 SW2 SW3

MB00000 MB00001

MB00010 MB00011

2.3 Creating a Project

2-4

2.3 Creating a Project

Use the following procedure to create a project.

1. Double-click the icon shown below on the PC desktop to start MPE720 version 7.

2. Select New on the Start Tab Page.

3. Specify the file name, file storage location, Machine Controller series, and model.

 Specify the destination folder in the Save in Box.
 Enter the file name in the File name Box.
 Select the applicable series in the Series Box.
 Select the applicable model in the Controller Box.

4. Click the Create Button.



 

2.4 Self Configuration

2-5

2

La
d

d
er

 P
ro

gr
am

 D
ev

el
op

m
en

t
Fl

ow

2.4 Self Configuration

Set up the system by performing self configuration. Self configuration automatically recognizes
the Modules that are installed in the Machine Controller and the devices that are connected
through the MECHATROLINK connector. This allows you to quickly and easily set up the sys-
tem. You can perform self configuration by using the DIP switch on the Machine Controller or
by using the MPE720.
Refer to the following manual for details on self configuration.

MP3000 Series MP3200 Product Manual (Manual No.: SIEP C880725 10)

MP3000 Series MP3300 Product Manual (Manual No.: SIEP C880725 21)

MP3000 Series MP3100 Product Manual (Manual No.: SIEP C880725 24)

2.5 Going Online

2-6

2.5 Going Online

Set the communications parameters to perform communications between the Machine Con-
troller and PC.
Refer to the following manual for the procedure to set up communications.

MP3000 Series Machine Controller System Setup Manual (Manual No.: SIEP C880725 00)

2.6 Creating Ladder Programs

2-7

2

La
d

d
er

 P
ro

gr
am

 D
ev

el
op

m
en

t
Fl

ow

2.6 Creating Ladder Programs

Use the following procedure to create a ladder program.

1. Select Programming − Ladder program from the Launcher.
The Ladder Pane will be displayed.

2. Right-click High-speed under Ladder program, and select New.

The Create New Program Dialog Box will be displayed.

3. Click the OK Button.

The Ladder Editor will start.

4. Enter the ladder program.
Ladder programs are entered by inserting rungs, then instructions, and finally parameters for the
instructions. Refer to the following section for details.

Ladder Program Creation Example on page 2-8

The following example shows how to create a high-speed program, but low-speed and
startup programs can be created in essentially the same way.

Information

Right-click

2.6 Creating Ladder Programs

2-8

5. While displaying the ladder program, select Compile − Compile from the menu bar to
compile the program.
When the compilation is finished, the ladder program will be saved automatically.

Ladder Program Creation Example
The following example shows how to insert an NOC instruction.

1. Right-click the tab with the row number, and select Insert Rung.

A rung will be inserted.

2. Create the NOC instruction with one of the following methods.
• Drag NO Contact under RELAY in the Task Pane to the inserted rung.

• Double-click at the location at which to insert the NOC instruction, and select A: NO Contact from
the list.

If an error is displayed in the Output Pane during compilation, the ladder program will not be
saved.

Important

Right-click

Drag

2.6 Creating Ladder Programs

2-9

2

La
d

d
er

 P
ro

gr
am

 D
ev

el
op

m
en

t
Fl

ow

• Select the location at which to insert the NOC instruction, and click the NOC Instruction Button .

3. Double-click the box with a question mark.

The Edit Parameter Dialog Box will be displayed.

4. Enter “MB000000” in the Variable/Register Box and click the OK Button.

“MB000000” will be displayed for the NOC instruction.

Note: The types of registers and data you can use depend on the actual instruction. Refer to the following
chapter for details on the different types of instructions.

Chapter 4 Ladder Language Instructions

5. Repeat steps 1 to 4 until you have entered the entire ladder program. The following
example shows a ladder program and its timing chart.

Note: The ladder programming example that is shown above uses M registers for switches and lamps.
When you enter a ladder program for an actual system, use the appropriate I and O registers.

To insert a comment, right-click the tab with the row number, and select Insert Rung Com-
ment.Information

<Ladder Programming Example>

2.6 Creating Ladder Programs

2-10

<Timing Chart Example>

AND Circuit Operation

ON

OFF

ON

OFF

ON

OFF

Timer Circuit Operation

ON

OFF

ON

OFF

5 s

SW1 (MB00000)

SW2 (MB00001)

Lamp 1 (MB00010)

SW3 (MB00002)

Timer (DW00000)

Lamp 2 (MB00011)

5

0

2.7 Writing the Ladder Programs

2-11

2

La
d

d
er

 P
ro

gr
am

 D
ev

el
op

m
en

t
Fl

ow

2.7 Writing the Ladder Programs

Use the following procedure to transfer the ladder program to the Machine Controller. This pro-
cedure is not necessary if you created the ladder program online.

1. Click Communications Setting on the Start Tab Page.

2. Select the desired communications port in the Communication Port Box on the Com-
munications Setting Dialog Box. Click the Connection Button.

3. Select Transfer − Write into controller from the Launcher.

2.7 Writing the Ladder Programs

2-12

4. Click the Individual Button, then select only the Program Check Box. Click the Start
Button.

Note: 1. When an individual transfer is selected, the same file in the Machine Controller will be overwritten with the
selected project file data.

2. When a batch transfer is selected, the Machine Controller’s RAM will be cleared before the transfer, and all
project file data will be written in the RAM.

5. Click the CPU STOP Button.

The transfer will start.

6. Click the Yes Button in the following dialog box.

The Machine Controller will switch to RUN Mode.

2.8 Checking the Operation of the Ladder Programs

2.8.1 Preparations for Checking Operation

2-13

2

La
d

d
er

 P
ro

gr
am

 D
ev

el
op

m
en

t
Fl

ow

2.8 Checking the Operation of the Ladder Programs

Use the following procedure to confirm the operation of your ladder program.
Confirm that your program operates correctly by manipulating registers with the Register List,
and by checking the runtime monitor in the Register List and Ladder Editor.

2.8.1 Preparations for Checking Operation
Use the following procedure to prepare to check the operation of your program.

1. Double-click the target ladder program in the Ladder Pane.

2. Click the Register List 1 Tab.
The Register List 1 Dialog Box will be displayed.

If the Register List 1 Tab is not visible, display the Register List 1 Dialog Box by perform-
ing one of these steps.
• Select View − Register List − Register List 1 from the menu bar.
• Select Monitor − Register List from the Launcher.

Double-click

Information

2.8 Checking the Operation of the Ladder Programs

2.8.2 Confirming the Operation of the 0000th Line (AND Circuit)

2-14

3. Enter “MB000000” in the Register Box.
The register list will expand as shown below.

2.8.2 Confirming the Operation of the 0000th Line (AND Cir-
cuit)
Use the following procedure to check the operation of the 0000th line.

1. Set MB000000 to ON in the Register List. Confirm that the NO contact for MB000000 in
the Ladder Editor changes to blue.

Note: When a coil or contact is highlighted in blue, it means that it is ON.

2. Set MB000001 to ON in the Register List. Confirm the following points.
• In the Ladder Editor, the NO contact for MB000001 and coil for MB000010 must be blue.
• In the Register List, MB000010 must be ON.

Confirm that the contact changes
to blue.

Input ON.

Confirm that the contact
changes to blue.

Confirm that the coil
changes to blue.

Input ON.

Confirm that the
register is ON.

2.8 Checking the Operation of the Ladder Programs

 2.8.3 Confirming the Operation of the 0001st Line (Timer Circuit)

2

La
d

d
er

 P
ro

gr
am

 D
ev

el
op

m
en

t
Fl

ow

2-15

2.8.3 Confirming the Operation of the 0001st Line (Timer Cir-
cuit)
Use the following procedure to check the operation of the 0001st line.
Set MB000002 to ON in the Register List. Confirm the following points.
• The DW00000 timer must increment every second.

• After five seconds, the coil for MB000011 must turn blue in the Ladder Editor.
• In the Register List, MB000011 must be ON.

Input ON.

Confirm that the value
increments every second.

Confirm that the coil changes to blue.

Confirm that the register is ON.

2.9 Save the Ladder Program to Flash Memory

2-16

2.9 Save the Ladder Program to Flash Memory

Use the following procedure to save the Machine Controller RAM data to the flash memory in
the Machine Controller.

1. Select Transfer − Save to Flash from the Launcher.

2. Click the Start Button.

3. Click the No Button.

The MPE270 begins saving the data to flash memory.

4. Click the Yes Button.

The Machine Controller will switch to RUN Mode.

Make sure to save the data to flash memory after writing it to the Machine Controller’s RAM.
Failure to save the data to flash memory will result in loosing data when the power is turned OFF
and ON again, causing the Machine Controller to run on the data that was last saved in the flash
memory.Important

Registers are areas that store data within the Machine Con-
troller. Variables are registers with labels (variable names).
This chapter describes registers.

3.1 Global Registers . 3-2

3.2 Local Registers . 3-4
3.2.1 Precautions When Using Local Registers within

a User Function . 3-5
3.2.2 Setting the D Register Clear When Start

Option . 3-6
3.2.3 Setting for D Registers . 3-7

3.3 Structure of Register Addresses 3-8
3.3.1 Register Types . 3-8
3.3.2 Data Types . 3-8

3.4 Index Registers (i, j) 3-12

3.5 Array Registers ([]) 3-14

Registers 3

3.1 Global Registers

3-2

3.1 Global Registers

Global registers are shared by ladder programs, user functions, motion programs, and
sequence programs. Memory space for global registers is reserved by the system for each reg-
ister type.

The following table gives details about global registers.

Type Name
Designation

Method
Usable Range Description

S System registers
(S registers)

SBnnnnnh,
SWnnnnn,
SLnnnnn,
SQnnnnn,
SFnnnnn,
SDnnnnn,
SAnnnnn

SW00000 to
SW65534

These registers are prepared by the system.
They report the status of the Machine Controller
and other information.
The system clears the registers from SW00000
to SW00049 to 0 at startup.
They have a battery backup.

M Data registers
(M registers)

MBnnnnnnnh,
MWnnnnnnn,
MLnnnnnnn,
MQnnnnnnn,
MFnnnnnnn,
MDnnnnnnn,
MAnnnnnnn

MW0000000
to
MW1048575

These registers are used as interfaces between
programs.
They have a battery backup.

G G registers

GBnnnnnnnh,
GWnnnnnnn,
GLnnnnnnn,
GQnnnnnnn,
GFnnnnnnn,
GDnnnnnnn,
GAnnnnnnn,

GW0000000
to
GW2097151

These registers are used as interfaces between
programs.
They do not have a battery backup.

Continued on next page.

Ladder
programs

User
functions

Motion programs/
sequence
programs

Global Registers

S registers

65,535 words

M registers

1,048,576
words

G registers

2,097,152
words

I registers

65,536
words

Input data +
Monitor

parameters +
CPU interface

inputs

O registers

65,536 words
Output data +

Setting
parameters +
CPU interface

outputs

C registers

16,384 words

3.1 Global Registers

3-3

3
R

eg
is

te
rs

Note: n: decimal digit, h: hexadecimal digit

I Input registers
(I registers)

IBhhhhhh,
IWhhhhh,
ILhhhhh,
IQhhhhh,
IFhhhhh,
IDhhhhh,
IAhhhhh,

IW00000 to
IW07FFF,
IW10000 to
IW17FFF

These registers are used for input data.

IW08000 to
IW0FFFF,
IW18000 to
IW1FFFF

These registers store the motion monitor
parameters.
These registers are used for Motion Modules.

IW20000 to
IW23FFF

These registers are used for CPU interface
input data.

O Output registers
(O registers)

OBhhhhhh,
OWhhhhh,
OFhhhhh,
OQhhhhh,
OFhhhhh,
ODhhhhh,
OAhhhhh,

OW00000 to
OW07FFF,
OW10000 to
OW17FFF

These registers are used for output data.

OW08000 to
OW0FFFF,
OW18000 to
OW1FFFF

These registers store the motion setting param-
eters.
These registers are used for Motion Modules.

OW20000 to
OW23FFF

These registers are used for CPU interface out-
put data.

C Constant registers
(C registers)

CBnnnnnh,
CWnnnnn,
CLnnnnn,
CQnnnnn,
CFnnnnn,
CDnnnnn,
CAnnnnn

CW00000 to
CW16383

These registers can be read in programs but
they cannot be written.
The values are set from the MPE720.

Continued from previous page.

Type Name
Designation

Method
Usable Range Description

3.2 Local Registers

3-4

3.2 Local Registers

Local registers can be used within a specific drawing. They cannot be used in other drawings.
<Ladder Program Conceptual Diagram>

The following table gives details about local registers.

Type Name
Designation

Method
Usable
Range

Description Features

registers

#Bnnnnnh,
#Wnnnnn,
#Lnnnnn,
#Qnnnnn,
#Fnnnnn,
#Dnnnnn,
#Annnnn

#W00000 to
#W16383

These registers can be read in programs but they
cannot be written.
The values are set from the MPE720.

Pro-
gram-
specific

D D registers

DBnnnnnh,
DWnnnnn,
DLnnnnn,
DQnnnnn,
DFnnnnn,
DDnnnnn,
DAnnnnn

DW00000 to
DW16383

These registers can be used for general purposes
within a program.
By default, 32 words are reserved for each pro-
gram.
The default value after startup depends on the
setting of the D Register Clear when Start
Option.
Refer to the following section for details.

3.3.2 Data Types on page 3-8

X
Function
input
registers

XBnnnnnh,
XWnnnnn,
XLnnnnn,
XQnnnnn,
XFnnnnn,
XDnnnnn

XW00000 to
XW00016

These registers are used for inputs to functions.
• Bit inputs: XB000000 to XB00000F
• Integer inputs: XW00001 to XW00016
• Double-length integers: XL00001 to XL00015
• Quadruple-length integers: XQ00001 to

XQ00013
• Real numbers: XF00001 to XF00015
• Double-precision real numbers: XD00001 to

XD00013 Func-
tion-
specific

Y
Function
output
registers

YBnnnnnh,
YWnnnnn,
YLnnnnn,
YQnnnnn,
YFnnnnn,
YDnnnnn

YW00000 to
YW000016

These registers are used for outputs from func-
tions.
• Bit outputs: YB000000 to YB00000F
• Integer outputs: YW00001 to YW00016
• Double-length integers: YL00001 to YL00015
• Quadruple-length integers: YQ00001 to

YQ00013
• Real numbers: YF00001 to YF00015
• Double-precision real numbers: YD00001 to

YD00013

Continued on next page.

Parent drawing

registers
D registers

Child drawing
H01

registers
D registers

User function
FUNC01

X registers
Y registers
Z registers
registers
D registers

User function
FUNC02

X registers
Y registers
Z registers
registers
D registers

H

These registers cannot be shared between
different drawings.

These registers cannot be shared between
different drawings.

3.2 Local Registers

 3.2.1 Precautions When Using Local Registers within a User Function

3-5

3
R

eg
is

te
rs

Note: n: decimal digit, h: hexadecimal digit

3.2.1 Precautions When Using Local Registers within a User
Function
When you call a user function, consider what values could be in the local registers, and perform
initialization as needed.

Z
Function
internal
registers

ZBnnnnnh,
ZWnnnnn,
ZLnnnnn,
ZQnnnnn,
ZFnnnnn,
ZDnnnnn

ZW00000 to
ZW00016

These are internal registers that are unique within
each function. You can use them for internal pro-
cessing in functions.
• Bits: ZB000000 to ZB00063F
• Integers: ZW00000 to ZW00063
• Double-length integers: ZL00000 to ZL00062
• Quadruple-length integers: ZQ00000 to

ZQ00060
• Real numbers: ZF00000 to ZF00062
• Double-precision real numbers: ZD00000 to

ZD00060

Func-
tion-
specific

A
Function
external
registers

ABnnnnnh,
AWnnnnn,
ALnnnnn,
AQnnnnn,
AFnnnnn,
ADnnnnn

0 to
2097152

These are external registers that use the address
input value as the base address.
When the address input value of an M or D regis-
ter is provided by the source of the function call,
then the registers of the source of the function call
can be accessed from inside the function by using
that address as the base.

User functions can be called from any programs, any number of times.

Continued from previous page.

Type Name
Designation

Method
Usable
Range

Description Features

Important

Name Precautions

X registers
(function input
registers)

If input values are not set, the values will be uncertain.
Do not use X registers that are outside of the range that is specified in the input definitions.

Y registers
(function output
registers)

If output values are not set, the values will be uncertain.
Always set the values of the range of Y registers that is specified in the output definitions.

Z registers
(function internal
registers)

When the function is called, the previously set values will be lost and the values will be
uncertain.
These registers are not appropriate for instructions if the previous value must be retained.
Use them only after initializing them within the function.

registers These are constant registers. Their values cannot be changed.

D registers

When the function is called, the previously set values are preserved.
If a previous value is not necessary, initialize the value, or use a Z register instead.
D registers retain the data until the power is turned OFF.
The default value after startup depends on the setting of the D Register Clear when Start
Option. Refer to the following section for details.

3.3.2 Data Types on page 3-8

3.2 Local Registers

3.2.2 Setting the D Register Clear When Start Option

3-6

3.2.2 Setting the D Register Clear When Start Option
1. Select File − Environment Setting from the MPE720 Version 7 Window.

2. Select Setup − System Setting.

3. Select Enable or Disable for the D Register Clear when Start Option.
Disable: The initial values will be uncertain.
Enable: The initial values will be 0.

3.2 Local Registers

 3.2.3 Setting for D Registers

3-7

3
R

eg
is

te
rs

3.2.3 Setting for D Registers
Specify the range of registers that will be used on each drawing in the Program Property Dialog
Box.

The default setting for D registers is 32 words for one drawing, but this can be extended to a
maximum of 16,384 words.

Use the following procedure to extend the range of D registers.

1. Right-click the drawing in the Ladder Pane and select Property.

The Program Property Dialog Box will be displayed.

2. Change the range of D registers to 100 and click the OK Button.

This concludes extending the range of D registers.

3.3 Structure of Register Addresses

3.3.1 Register Types

3-8

3.3 Structure of Register Addresses

3.3.1 Register Types
Refer to the following section for the types of registers.

3.1 Global Registers on page 3-2

3.2 Local Registers on page 3-4

3.3.2 Data Types
There are various data types that you can use depending on the purpose of the application: bit,
integer, double-length integer, quadruple-length integer, real number, double-precision real
number, and address.

*1. These data types cannot be used for indirect designation of motion programs.
*2. Conforms to IEEE754 standards.

You can also use index registers or array registers as variables to address specific registers.
Refer to the following section for details.

3.4 Index Registers (i, j) on page 3-12

3.5 Array Registers ([]) on page 3-14

Register address = S W 00000

Range (The number of digits depends on the register type and data type.)

Data type

Register type

Information

Symbol Data Type Range of Values Data Size Description

B Bit 1 (ON) or 0 (OFF) − Used in relay circuits and to
determine ON/OFF status.

W Integer -32,768 to 32,767
(8000 to 7FFF hex) 1 word

Used for numeric operations.
The values in parenthesis on
the left are for logical opera-
tions.

L Double-length
integer

-2,147,483,648 to 2,147,483,647
(80000000 to 7FFFFFFF hex) 2 words

Used for numeric operations.
The values in parenthesis on
the left are for logical opera-
tions.

Q
Quadruple-length
integer*1

-9223372036854775808 to
9223372036854775807
(8000000000000000 to
7FFFFFFFFFFFFFFF hex)

4 words

Used for numeric operations.
The values in parenthesis on
the left are for logical opera-
tions.

F Real
number ± (1.175E-38 to 3.402E+38) or 0 2 words

Used for advanced numeric
operations. *2

D
Double-precision
real number*1 ± (2.225E-308 to 1.798E+308) or 0 4 words

Used for advanced numeric
operations. *2

A Address 0 to 2,097,152 − Used only as pointers for
addressing.

The MP3000-series Machine Controller does not have separate registers for each data type. As
shown in the following figure, the same address will access the same register even if the data
type is different.
For example, MB00001003, a bit address, and the MW0000100, an integer address, have differ-
ent data types, but they both access the same register, MW0000100.

Important

3.3 Structure of Register Addresses

 3.3.2 Data Types

3-9

3
R

eg
is

te
rs

Pointer Designation
When an address is passed to a function as a parameter, this is referred to as pointer designa-
tion.
When pointer designation is used, the continuous data area starting from the address of the
specified register address can be used in internal processing for functions with all data types.

[MW0000100]

[MW0000101]

[MW0000102]

[MW0000103]

[ML0000100]
[MF0000100]

[ML0000102]
[MF0000102]

0123456789ABCDEF

[MA0000101]

��
��
��

[MB00001003]

[MB0000103B]

Data Types and Register Designations

One word is allocated for each register address.

An extra digit that specifies the bit (3) is appended
to the end of the register address (0000100).

Address data
type

Integer data type
Bit data type

Bit data type Double-length integer or
real number data type

The addressed register (0000102) and
the following register (0000103) are
combined as a 2-word area. Therefore
the register addresses are specified at
intervals of 2.

If MA0000101 is specified as a pointer, it addresses a
continuous data area with the specified register
address (0000101) as the starting address. This data
area can be used with all data types in internal
processing for functions.

Term

3.3 Structure of Register Addresses

3.3.2 Data Types

3-10

Precautions for Operations Using Different Data Types
If you perform an operation using different data types, be aware that the results will be different
depending on the data type of the storage register, as described below.
• Storing Real Number Data in an Integer Register

<When Numbers Are Truncated After the Decimal Point>
MW0000100 = MF0000200: The real number data is converted to integer data and stored in

the destination register. (1) (1.5678)
<When Numbers Are Rounded Off>

MW00100 = MF000200
 (2) (1.5678)
MW100 = MF000200
 (-2) (-1.5678)

Note: There may be rounding error due to storing a real number in an integer register.
Whether numbers are rounded or truncated when converting a real number to an integer can be set
in the properties of the drawing.

Setting for Real Number Casting on page 3-11

MW0000100 = MF0000200 + MF0000202: The result of the operation may be different
depending on the value of the variable. (0124) (123.48) (0.02)

 (0123) (123.49) (0.01)
• Storing Real Number Data in a Double-length Integer Register

ML0000100 = MF0000200: The real number data is converted to integer data and stored in
the destination register. (65432) (65432.1)

• Storing Double-length Integer Data in an Integer Register
MW0000100 = ML0000200: The lower 16 bits of the double-length integer data are stored

without change. (-00001) (65535)
• Storing Integer Data in a Double-length Integer Register

ML0000100 = MW0000200: The integer data is converted to double-length integer data and
stored in the destination register. (0001234) (1234)

3.3 Structure of Register Addresses

 3.3.2 Data Types

3-11

3
R

eg
is

te
rs

Setting for Real Number Casting
The casting method (truncating or rounding) can be set in the detailed definitions in the Pro-
gram Property Dialog Box.
The method to use for real number casting is set for each drawing.

Use the following procedure to display the Program Property Dialog Box.

1. In the Ladder Pane, select the ladder program for which to view the properties.

2. Right-click the selected program and select Property from the pop-up menu.
The Program Property Dialog Box will be displayed.

The data is little endian, as shown in the following example.
• MB00001006

• MW0000100 = 1234 hex

• ML0000100 = 12345678 hex

• MQ0000100 = 123456789ABCDEF0 hex

Information

F E D C B A 9 8 7 6 5 4 3 2 1 0Bit

MB00001006

MW0000100

MW0000100 1234 hex

ML0000100
MW0000100 5678 hex

MW0000101 1234 hex

MQ0000100

MW0000100 DEF0 hex

MW0000101 9ABC hex

MW0000102 5678 hex

MW0000103 1234 hex

3.4 Index Registers (i, j)

3-12

3.4 Index Registers (i, j)

There are two special registers, i and j, that are used to modify relay and register addresses.
The functions of i and j are identical. They are used to handle register addresses like variables.
There are index registers for each program type, as shown in the following figure.

* Motion programs and sequence programs have separate i and j registers for each task.

Note: Functions reference the i and j registers that belong to the calling drawing.
For example, a function called by DWG.H will reference the i and j registers for DWG.H.

We will now describe how an index register behaves using examples for each register data
type.
• Attaching an Index to a Bit Register

Using an index is the same as adding the value of i or j to the register address.
For example, if i = 2, MB00000000i is the same as MB00000002.

• Attaching an Index to an Integer Register
Using an index is the same as adding the value of i or j to the register address.
For example, if j = 30, MW0000001j is the same as MW0000031.

• Attaching an Index to a Double-length Integer or a Real Number Register
Using an index is the same as adding the value of i or j to the register address.
For example, if j = 1, ML0000000j is the same as ML0000001. Similarly, if j = 1, MF0000000j
is the same as MF0000001.

Double-length integers and real numbers use a region that is 2 words in size. For example,
when using ML0000000j with both j = 0 and j = 1, the one-word area of MW0000001 will
overlap. Be careful of overlapping areas when indexing double-length integer or real number
register addresses.

DWG.H DWG.LDWG.A DWG.I Motion
program*

Sequence
program*

i and j
registers

i and j
registers

i and j
registers

i and j
registers

i and j
registers

i and j
registers

Equivalenti = 2;

DB000000 = MB00000000i; DB000000 = MB00000002;

Equivalent
DW00000 = MW0000031;DW00000 = MW0000001j;

j = 30;

If j = 0, ML0000000j is ML0000000.

If j = 1, ML0000000j is ML0000001.

Double-length Integer Upper 1 word
MW0000001

Lower 1 word
MW0000000

If j = 0, MF0000000j is MF0000000.

If j = 1, MF0000000j is MF0000001.

Real Number Upper 1 word
MW0000001

Lower 1 word
MW0000000

MW0000002 MW0000001

MW0000002 MW0000001

Information

3.4 Index Registers (i, j)

3-13

3
R

eg
is

te
rs

• Attaching an Index to a Quadruple-length Integer or a Double-precision Real Number Regis-
ter
Using an index is the same as adding the value of i or j to the register address.
For example, if j = 2, MQ0000000j is the same as MQ0000002. Similarly, if j = 2, MD0000000j
is the same as MD0000002.

Quadruple-length integers and double-precision real numbers use a region that is 4 words in
size. For example, when using MQ0000000j with both j = 0 and j = 2, the two-word area of
MW0000002 and MW0000003 will overlap. Be careful of overlapping areas when indexing
quadruple-length integer or double-precision real number register addresses.

If j = 0, MQ0000000j is MQ0000000.

If j = 2, MQ0000000j is MQ0000002.

Quadruple-length Integer Upper 2 words Lower 2 words

Upper 2 words Lower 2 words

If j = 0, MD0000000j is MD0000000.

If j = 2, MD0000000j is MD0000002.

Double-precision Real Number Upper 2 words Lower 2 words

Upper 2 words Lower 2 words

MW0000003 MW0000002

MW0000005 MW0000004

MW0000001 MW0000000

MW0000003 MW0000002

MW0000003 MW0000002

MW0000005 MW0000004

MW0000001 MW0000000

MW0000003 MW000000

Information

3.5 Array Registers ([])

3-14

3.5 Array Registers ([])

Array registers are used to modify register addresses, and are denoted by square brackets [].
They are used to handle register addresses as variables.

Similarly to index registers, an offset is added to the register address.
• Attaching an Array Register to a Bit Register

Using an array register is the same as adding the value of the array register to the register
address.
For example, if DW00000 = 2, MB00000000[DW00000] is the same as MB00000002.

• Attaching an Array Register to a Register Other Than a Bit Register
Using an array register is the same as adding the word size of the data type of the array reg-
ister times the value of the array register to the register address.
For example, if DW00000 = 30, ML0000002[DW00000] is the same as ML0000062.
DL00002 = ML00000 (30 × 2 + 2) = ML0000062

EquivalentDW00000 = 2;

DB000020 = MB00000000[DW00000]; DB000020 = MB00000002;

Equivalent
DW00000 = 30;

DL00002 = ML0000002[DW00000]; DL00002 = ML0000062;

This chapter describes the ladder language instructions in
detail.

4.1 Introduction . 4-6
4.1.1 Ladder Language Instructions 4-6
4.1.2 How to Read the Ladder Language

Instructions . 4-10

4.2 Relay Circuit Instructions 4-11
4.2.1 NO Contact (NOC) . 4-11
4.2.2 Rising-edge NO Contact (ONP-NOC) 4-12
4.2.3 Falling-edge NO Contact (OFFP-NOC) 4-13
4.2.4 NC Contact (NCC) . 4-14
4.2.5 Rising-edge NC Contact (ONP-NCC) 4-14
4.2.6 Falling-edge NC Contact (OFFP-NCC) 4-15
4.2.7 1-ms ON-Delay Timer (TON(1ms)) 4-16
4.2.8 1-ms OFF-Delay Timer (TOFF(1 ms)) 4-18
4.2.9 10-ms ON-Delay Timer (TON(10ms)) 4-19
4.2.10 10-ms OFF-Delay Timer (TOFF(10ms)) 4-21
4.2.11 1-s ON-Delay Timer (TON(1s)) 4-22
4.2.12 1-s OFF-Delay Timer (TOFF(1s)) 4-24
4.2.13 Rising-edge Pulses (ON-PLS) 4-25
4.2.14 Falling-edge Pulses (OFF-PLS) 4-27
4.2.15 Coil (COIL) . 4-29
4.2.16 Reverse Coil (REV-COIL) 4-30
4.2.17 Rising-edge Detection Coil (ONP-COIL) 4-31
4.2.18 Falling-edge Detection Coil (OFFP-COIL) 4-31
4.2.19 Set Coil (S-COIL) . 4-32
4.2.20 Reset Coil (R-COIL) . 4-33

Ladder Language
Instructions 4

4.3 Numeric Operation Instructions 4-34
4.3.1 Store (STORE) .4-34
4.3.2 Add (ADD (+)) .4-35
4.3.3 Extended Add (ADDX (++))4-36
4.3.4 Subtract (SUB (−)) .4-38
4.3.5 Extended Subtract (SUBX (− −))4-39
4.3.6 Multiply (MUL (x)) .4-41
4.3.7 Divide (DIV (÷)) .4-42
4.3.8 Integer Remainder (MOD)4-43
4.3.9 Real Remainder (REM) .4-45
4.3.10 Increment (INC) .4-46
4.3.11 Decrement (DEC) .4-47
4.3.12 Add Time (TMADD) .4-48
4.3.13 Subtract Time (TMSUB)4-50
4.3.14 Spend Time (SPEND) .4-52
4.3.15 Invert Sign (INV) .4-54
4.3.16 One’s Complement (COM)4-55
4.3.17 Absolute Value (ABS) .4-56
4.3.18 Binary Conversion (BIN)4-57
4.3.19 BCD Conversion (BCD) 4-58
4.3.20 Parity Conversion (PARITY) 4-59
4.3.21 ASCII Conversion 1 (ASCII) 4-60
4.3.22 ASCII Conversion 2 (BINASC) 4-61
4.3.23 ASCII Conversion 3 (ASCBIN) 4-62

4.4 Logic Operations and Comparison Instructions . .4-64
4.4.1 Inclusive AND (AND) .4-64
4.4.2 Inclusive OR (OR) .4-65
4.4.3 Exclusive OR (XOR) .4-66
4.4.4 Less Than (<) .4-67
4.4.5 Less Than or Equal (≤) .4-68
4.4.6 Equal (=) .4-69
4.4.7 Not Equal (≠) .4-70
4.4.8 Greater Than or Equal (≥)4-71
4.4.9 Greater Than (>) .4-72
4.4.10 Range Check (RCHK) .4-73

4.5 Program Control Instructions 4-75
4.5.1 Call Sequence Program (SEE) 4-75
4.5.2 Call Motion Program (MSEE) 4-76
4.5.3 Call User Function (FUNC)4-78
4.5.4 Direct Input String (INS)4-79
4.5.5 Direct Output String (OUTS)4-81
4.5.6 Call Extended Program (XCALL) 4-83
4.5.7 WHILE Construct (WHILE, END_WHILE) 4-84
4.5.8 FOR Construct (FOR, END_FOR)4-86
4.5.9 IF Construct (IF, END_IF) 4-88
4.5.10 IF-ELSE Construct (IF, ELSE, END_IF) 4-90
4.5.11 Expression (EXPRESSION)4-91

4.6 Basic Function Instructions 4-93
4.6.1 Square Root (SQRT) . 4-93
4.6.2 Sine (SIN) . 4-94
4.6.3 Cosine (COS) . 4-95
4.6.4 Tangent (TAN.) . 4-97
4.6.5 Arc Sine (ASIN) . 4-98
4.6.6 Arc Cosine (ACOS) . 4-99
4.6.7 Arc Tangent (ATAN) . 4-100
4.6.8 Exponential (EXP) . 4-101
4.6.9 Natural Logarithm (LN) 4-102
4.6.10 Common Logarithm (LOG) 4-103

4.7 Data Shift Instructions 4-104
4.7.1 Bit Rotate Left (ROTL) 4-104
4.7.2 Bit Rotate Right (ROTR) 4-105
4.7.3 Move Bit (MOVB) . 4-106
4.7.4 Move Word (MOVW) . 4-108
4.7.5 Exchange (XCHG) . 4-110
4.7.6 Table Initialization (SETW) 4-111
4.7.7 Byte-to-word Expansion (BEXTD) 4-113
4.7.8 Word-to-byte Compression (BPRESS) 4-114
4.7.9 Binary Search (BSRCH) 4-116
4.7.10 Sort (SORT) . 4-117
4.7.11 Bit Shift Left (SHFTL) 4-118
4.7.12 Bit Shift Right (SHFTR) 4-120
4.7.13 Copy Word (COPYW) 4-121
4.7.14 Byte Swap (BSWAP) . 4-122

4.8 DDC Instructions 4-123
4.8.1 Dead Zone A (DZA) . 4-123
4.8.2 Dead Zone B (DZB) . 4-124
4.8.3 Upper/Lower Limit (LIMIT) 4-126
4.8.4 PI Control (PI) . 4-128
4.8.5 PD Control (PD) . 4-133
4.8.6 PID Control (PID) . 4-137
4.8.7 First-order Lag (LAG) 4-142
4.8.8 Phase Lead Lag (LLAG) 4-144
4.8.9 Function Generator (FGN) 4-147
4.8.10 Inverse Function Generator (IFGN) 4-151
4.8.11 Linear Accelerator/Decelerator 1 (LAU) 4-155
4.8.12 Linear Accelerator/Decelerator 2 (SLAU) 4-161
4.8.13 Pulse Width Modulation (PWM) 4-170

4.9 Table Manipulation Instructions 4-173
4.9.1 Read Table Block (TBLBR/TBLBRE)4-173
4.9.2 Write Table Block (TBLBW/TBLBWE)4-177
4.9.3 Search for Table Row (TBLSRL/TBLSRLE)4-181
4.9.4 Search for Table Column (TBLSRC/

TBLSRCE) .4-184
4.9.5 Clear Table Block (TBLCL/TBLCLE)4-187
4.9.6 Move Table Block (TBLMV/TBLMVE) 4-190
4.9.7 Read Queue Table (QTBLR/QTBLRE and

QTBLRI/QTBLRIE) .4-194
4.9.8 Write Queue Table (QTBLW/QTBLWE and

QTBLWI/QTBLWIE) .4-198
4.9.9 Clear Queue Table Pointer (QTBLCL/

QTBLCLE) .4-202

4.10 System Function Instructions 4-204
4.10.1 Counter (COUNTER) .4-204
4.10.2 First-in First-out (FINFOUT) 4-207
4.10.3 Trace (TRACE) .4-210
4.10.4 Read Data Trace (DTRC-RD/DTRC-RDE)4-212
4.10.5 Send Message (MSG-SND) 4-216
4.10.6 Send Message Extended (MSG-SNDE) 4-218
4.10.7 Receive Message (MSG-RCV) 4-220
4.10.8 Receive Message Extended (MSG-RCVE) 4-221
4.10.9 Write SERVOPACK Parameter (MLNK-SVW) . .4-223
4.10.10 Read SERVOPACK Parameter (MLNK-SVR) . . .4-228
4.10.11 Flash Operation (FLASH-OP)4-233
4.10.12 Write Motion Register (MOTREG-W) 4-236
4.10.13 Read Motion Register (MOTREG-R)4-238
4.10.14 Import (IMPORT/IMPORTL/IMPORTLE) 4-240
4.10.15 Export (EXPORT/EXPORTL/EXPORTLE)4-248

4.11 Storage Operation Instructions 4-254
4.11.1 Open File (FOPEN) .4-254
4.11.2 Close File (FCLOSE) .4-257
4.11.3 Read Data from File (FREAD)4-258
4.11.4 Write Data to File (FWRITE) 4-260
4.11.5 Set File Position Indicator (FSEEK) 4-262
4.11.6 Read Line from File to String (FGETS) 4-264
4.11.7 Write String to File (FPUTS)4-266
4.11.8 Copy File (FCOPY) .4-268
4.11.9 Delete File (FREMOVE)4-270
4.11.10 Rename File (FRENAME) 4-271
4.11.11 Create Directory (DCREATE) 4-274
4.11.12 Delete Directory (DREMOVE)4-276
4.11.13 Send File to FTP Server (FTPPUT)4-277

4.12 String Operation Instructions 4-280
4.12.1 Convert Integer to String (INT2STR) 4-280
4.12.2 Convert Real Number to String (REAL2STR) . . 4-282
4.12.3 Convert String to Integer (STR2INT) 4-283
4.12.4 Convert String to Real Number (STR2REAL) . . 4-284
4.12.5 Store String (STRSET) 4-286
4.12.6 Partially Delete String (STRDEL) 4-287
4.12.7 Copy String (STRCPY) 4-288
4.12.8 Get String Length (STRLEN) 4-290
4.12.9 Concatenate Strings (STRCAT) 4-291
4.12.10 Compare Strings (STRCMP) 4-293
4.12.11 Insert String (STRINS) 4-294
4.12.12 Find String (STRFIND) 4-296
4.12.13 Extract String (STREXTR) 4-297
4.12.14 Extract String from End (STREXTRE) 4-299
4.12.15 Delete Spaces at String Ends (STRTRIM) 4-300

4.1 Introduction

4.1.1 Ladder Language Instructions

4-6

4.1 Introduction

This section describes the types of ladder language instructions and their functionality. It also
shows how to interpret the rest of this chapter.

4.1.1 Ladder Language Instructions
The following table lists the ladder language instructions.

Type Instruction Meaning GUI Name

Relay Circuit
Instructions

NOC NO Contact NO Contact

ONP-NOC Rising-edge NO Contact Rising-edge NO Contact

OFFP-NOC Falling-edge NO Contact Falling-edge NO Contact

NCC NC Contact NC Contact

ONP-NCC Rising-edge NC Contact Rising-edge NC Contact

OFFP-NCC Falling-edge NC Contact Falling-edge NC Contact

TON (1 ms) 1-ms ON-Delay Timer On-Delay Timer (1ms)

TOFF (1 ms) 1-ms OFF-Delay Timer Off-Delay Timer (1ms)

TON (10 ms) 10-ms ON-Delay Timer On-Delay Timer (10ms)

TOFF (10 ms) 10-ms OFF-Delay Timer Off-Delay Timer (10ms)

TON (1 s) 1-s ON-Delay Timer On-Delay Timer (1s)

TOFF (1 s) 1-s OFF-Delay Timer Off-Delay Timer (1s)

ON-PLS Rising-edge Pulses Rising Edge Pulses

OFF-PLS Falling-edge Pulses Falling Edge Pulses

COIL Coil Coil

REV-COIL Reverse Coil Reverse Coil

ONP-COIL Rising-edge Detection Coil Rising-edge Detection Coil

OFFP-COIL Falling-edge Detection Coil Falling-edge Detection Coil

S-COIL Set Coil Set Coil

R-COIL Reset Coil Reset Coil

Continued on next page.

4.1 Introduction

 4.1.1 Ladder Language Instructions

4-7

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Numeric
Operation
Instructions

STORE Store Store

ADD(+) Add Addition

ADDX(+ +) Extended Add Extended Addition

SUB(−) Subtract Subtraction

SUBX(− −) Extended Subtract Extended Subtraction

MUL(×) Multiply Multiplication

DIV(÷) Divide Division

MOD Integer Remainder Integer Remainder

REM Real Remainder Real Remainder

INC Increment Increment

DEC Decrement Decrement

TMADD Add Time Add Time

TMSUB Subtract Time Subtract Time

SPEND Spend Time Spend Time

INV Invert Sign Sign Inversion

COM One’s Complement 1's Complement

ABS Absolute Value Absolute Value

BIN Binary Conversion Binary Conversion

BCD BCD Conversion BCD Conversion

PARITY Parity Conversion Parity Conversion

ASCII ASCII Conversion 1 ASCII Conversion 1

BINASC ASCII Conversion 2 ASCII Conversion 2

ASCBIN ASCII Conversion 3 ASCII Conversion 3

Logic
Operation
Instructions

AND Inclusive AND Inclusive AND

OR Inclusive OR Inclusive OR

XOR Exclusive OR Exclusive OR

< Less Than Less Than (A<B)

≤ Less Than or Equal Less Than or Equal (A<=B)

= Equal Equal (A==B)

≠ Not Equal Not Equal (A!=B)

≥ Greater Than or Equal Greater Than or Equal (A>=B)

> Greater Than Greater Than (A>B)

RCHK Range Check Range Check

Program
Control
Instructions

SEE Call Sequence Subprogram Call Program

MSEE Call Motion Program Call Motion Program

FUNC Call User Function User Function

INS Direct Input String Direct Input String

OUTS Direct Output String Direct Output String

XCALL Call Extended Program Call Extended Program

WHILE
END_WHILE WHILE construct While/Do

While End

FOR
END_FOR FOR construct For

For End

IF
END_IF IF construct If/Then

If End

IF
ELSE
END_IF

IF-ELSE construct
If/Then
Else
If End

EXPRESSION Expression Expression

Continued on next page.

Continued from previous page.

Type Instruction Meaning GUI Name

4.1 Introduction

4.1.1 Ladder Language Instructions

4-8

Basic
Function
Instructions

SQRT Square Root Square Root

SIN Sine Sine

COS Cosine Cosine

TAN Tangent Tangent

ASIN Arc Sine Arc Sine

ACOS Arc Cosine Arc Cosine

ATAN Arc Tangent Arc Tangent

EXP Exponential Exponential

LN Natural Logarithm Natural Logarithm

LOG Common Logarithm Common Logarithm

Data
Manipulation
Instructions

ROTL Bit Rotate Left Bit Rotate Left

ROTR Bit Rotate Right Bit Rotate Right

MOVB Move Bit Move Bit

MOVW Move Word Move Word

XCHG Exchange Exchange

SETW Table Initialization Set Word

BEXTD Byte-to-word Expansion Byte to Word Expansion

BPRESS Word-to-byte Compression Word to Byte Compression

BSRCH Binary Search Binary Search

SORT Sort Sort

SHFTL Bit Shift Left Bit Shift Left

SHFTR Bit Shift Right Bit Shift Right

COPYW Copy Word Copy Word

BSWAP Byte Swap Byte Swap

DDC
Instructions

DZA Dead Zone A Dead Zone A

DZB Dead Zone B Dead Zone B

LIMIT Upper/Lower Limit Upper/Lower Limit

PI PI Control PI Control

PD PD Control PD Control

PID PID Control PID Control

LAG First-order Lag First Order Lag

LLAG Phase Lead Lag Phase Lead Lag

FGN Function Generator Function Generator

IFGN Inverse Function Generator Inverse Function Generator

LAU Linear Accelerator/Decelerator 1 Linear Accelerator/Decelerator1

SLAU Linear Accelerator/Decelerator 2 Linear Accelerator/Decelerator2

PWM Pulse Width Modulation Pulse Width Modulation

Table
Manipulation
Instructions

TBLBR/TBLBRE Read Table Block Table Block Read

TBLBW/TBLBWE Write Table Block Table Block Write

TBLSRL/TBLSRLE Search for Table Row Table Row Search

TBLSRC/TBLSRCE Search for Table Column Table Column Search

TBLCL/TBLCLE Clear Table Block Table Block Clear

TBLMV/TBLMVE Move Table Block Table Block Move

QTBLR/QTBLRE Read Queue Table Queue Table Read

QTBLRI/QTBLRIE Read Queue Table with Pointer
Increment

Queue Table Read with Pointer
Increment

QTBLW/QTBLWE Write Queue Table Queue Table Write

QTBLWI/QTBLWIE Write Queue Table with Pointer
Increment

Queue Table Write with Pointer
Increment

QTBLCL/QTBLCLE Clear Queue Table Pointer Queue Table Pointer Clear

Continued on next page.

Continued from previous page.

Type Instruction Meaning GUI Name

4.1 Introduction

 4.1.1 Ladder Language Instructions

4-9

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Standard
System
Function
Instructions

COUNTER Counter Counter

FINFOUT First-in First-out First-in First-out

TRACE Trace Trace

DTRC-RD/DTRC-RDE Read Data Trace Data-Trace Read Extend

MSG-SND Send Message Send Message

MSG-SNDE Send Message Extended Send Message Extend

MSG-RCV Receive Message Receive Message

MSG-RCVE Receive Message Extended Receive Message Extend

MLNK-SVW Write SERVOPACK Parameter Write Servo Pack Parameter with
MECHATROLINK

MLNK-SVR Read SERVOPACK Parameter Read Servo Pack Parameter with
MECHATROLINK

FLASH-OP Flash Operation Operate Flash Memory

MOTREG-W Write Motion Register Write the Motion Parameter to
Motion Register

MOTREG-R Read Motion Register Read the Motion Parameter from
Motion Register

IMPORT/IMPORTL/
IMPORTLE Import Import

EXPORT/EXPORTL/
EXPORTLE Export Export

Storage
Operation
Instructions

FOPEN Open File Open File

FCLOSE Close File Close File

FREAD Read Data from File Read Data from File

FWRITE Write Data to File Write Data to File

FSEEK Set File Position Indicator Set File Position Indicator

FGETS Read Line from File to String Read Line from File to String

FPUTS Write String to File Write String to File

FCOPY Copy File Copy File

FREMOVE Delete File Delete File

FRENAME Rename File Rename File

DCREATE Create Directory Create Directory

DREMOVE Delete Directory Delete Directory

FTPPUT Send File to FTP Server Send File to FTP Server

String
Operation
Instructions

INT2STR Convert Integer to String Convert Integer to String

REAL2STR Convert Real Number to String Convert Real Number to String

STR2INT Convert String to Integer Convert String to Integer

STR2REAL Convert String to Real Number Convert String to Real Number

STRSET Store String Store String

STRDEL Partially Delete String Partially Delete String

STRCPY Copy String Copy String

STRLEN Get String Length Get String Length

STRCAT Concatenate Strings Concatenate Strings

STRCMP Compare Strings Compare Strings

STRINS Insert String Insert String

STRFIND Find String Find String

STREXTR Extract String Extract String

STREXTRE Extract String from End Extract String from End

STRTRIM Delete Spaces at String Ends Delete Spaces at String Ends

Continued from previous page.

Type Instruction Meaning GUI Name

4.1 Introduction

4.1.2 How to Read the Ladder Language Instructions

4-10

4.1.2 How to Read the Ladder Language Instructions
This chapter describes each instruction using the following format.
The operation performed by the instruction is described.
Where necessary, a diagram is used to show the operation performed by the instruction.

Format
This section describes the format for programming the instruction.

Note: 1. ×: This data type cannot be used.
: All registers with this data type can be used.

2. Refer to the following chapter for details on data types.
Chapter 3 Registers

Programming Example
This section gives a ladder programming example that uses the instruction.

Additional Information
This section may contain additional information about the instruction. It is omitted if there is no
additional information that is required for the instruction.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Label used in the
ladder diagram ×   ×  × ×  

Icon: Shows the icon used in the MPE720.

Key entry: Shows the shortcut key combination used in the Ladder Editor.This area shows how the instruction
appears in a ladder program.

4.2 Relay Circuit Instructions

4.2.1 NO Contact (NOC)

4-11

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

4.2 Relay Circuit Instructions

4.2.1 NO Contact (NOC)
The relay outputs ON whenever the bit with the specified relay address is 1.

The relay outputs OFF when the bit is 0.

Format
The format of this instruction is shown below.

Programming Example
The DB000001 output coil is ON whenever the DB000000 relay in the NOC instruction is ON.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Relay address  × × × × × × × ×

1

0

ON

OFF

Relay address Bit

Output of the NOC instruction

Relay address
Icon:

Key entry:][

4.2 Relay Circuit Instructions

4.2.2 Rising-edge NO Contact (ONP-NOC)

4-12

4.2.2 Rising-edge NO Contact (ONP-NOC)
ON is output for only one scan when the bit input changes from 0 to 1.
The resulting operation is the combination of the NOC and ON-PLS instructions.

Format
The format of this instruction is shown below.

* The # and C registers will not produce the desired result because they are constant registers that do not undergo
value changes.

Programming Example
The DB000001 output coil turns ON when the DB000000 relay in the NOC instruction changes
from OFF to ON.

The timing chart is shown below.

• This is the same operation as that of the OFFP-NCC instruction.
• The ONP-NOC instruction cannot be used in user functions. Use an NO contact with the

Rising-edge Pulses (ON-PLS) instruction.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Relay address * × × × × × × × ×

If you program another instruction before the ONP-NOC instruction, the result of the operation
with the other instruction will be output.
In the following example, the DB000002 output coil turns ON when the AND condition of the
DB000000 and DB000001 relays changes from OFF to ON.

The following circuit is equivalent to the above circuit.

The timing chart is shown below.

Information

Relay address
Icon:

Key entry:]P[

1 scan 1 scan

DB000000

DB000001

Information

1 scan 1 scan

DB000000

DB000002

DB000001

4.2 Relay Circuit Instructions

 4.2.3 Falling-edge NO Contact (OFFP-NOC)

4-13

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

4.2.3 Falling-edge NO Contact (OFFP-NOC)
ON is output for only one scan when the bit input changes from 1 to 0.
The resulting operation is the combination of the NOC and OFF-PLS instructions.

Format
The format of this instruction is shown below.

* The # and C registers will not produce the desired result because they are constant registers that do not undergo
value changes.

Programming Example
The DB000001 output coil turns ON when the DB000000 relay in the NOC instruction changes
from ON to OFF.

The timing chart is shown below.

• This is the same operation as that of the ONP-NCC instruction.
• The OFFP-NOC instruction cannot be used in user functions. Use an NO contact with the

Falling-edge Pulses (OFF-PLS) instruction.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Relay address * × × × × × × × ×

If you program another instruction before the OFFP-NOC instruction, the result of the opera-
tion with the other instruction will be output.
In the following example, the DB000002 output coil turns ON when the AND condition of the
DB000000 and DB000001 relays changes from ON to OFF.

The following circuit is equivalent to the above circuit.

The timing chart is shown below.

Information

Icon:

Key entry:]N[
Relay address

1 scan 1 scan

DB000000

DB000001

Information

1 scan 1 scan

DB000000

DB000002

DB000001

4.2 Relay Circuit Instructions

4.2.4 NC Contact (NCC)

4-14

4.2.4 NC Contact (NCC)
The relay outputs OFF whenever the bit with the specified relay address is 1.
The relay outputs ON when the bit is 0.

Format
The format of this instruction is shown below.

Programming Example
The DB000001 coil is ON whenever the DB000000 relay in the NCC instruction is OFF.

4.2.5 Rising-edge NC Contact (ONP-NCC)
ON is output for only one scan when the bit input changes from 1 to 0.
The resulting operation is the combination of the NCC and ON-PLS instructions.

Format
The format of this instruction is shown below.

* The # and C registers will not produce the desired result because they are constant registers that do not undergo
value changes.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Relay address  × × × × × × × ×

Relay address
1

0

ON

OFFOutput of the NCC instruction

Bit

Relay address
Icon:

Key entry:]/

• This is the same operation as that of the OFFP-NOC instruction.
• The ONP-NCC instruction cannot be used in user functions. Use an NC contact with the

Rising-edge Pulses (ON-PLS) instruction.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Relay address * × × × × × × × ×

Information

Icon:

Key entry:]P/
Relay address

4.2 Relay Circuit Instructions

 4.2.6 Falling-edge NC Contact (OFFP-NCC)

4-15

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Programming Example
The DB000001 output coil turns ON when the DB000000 relay in the NCC instruction changes
from ON to OFF.

The timing chart is shown below.

4.2.6 Falling-edge NC Contact (OFFP-NCC)
ON is output for only one scan when the bit input changes from 0 to 1.
The resulting operation is the combination of the NCC and OFF-PLS instructions.

Format
The format of this instruction is shown below.

* The # and C registers will not produce the desired result because they are constant registers that do not undergo
value changes.

If you program another instruction before the ONP-NCC instruction, the result of the operation
with the other instruction will be output.
In the following example, the DB000002 output coil turns ON when the AND condition of the
DB000000 relay and the inverted status of the DB000001 relay changes from OFF to ON.

The following circuit is equivalent to the above circuit.

The timing chart is shown below.

1 scan 1 scan

DB000000

DB000001

Information

1 scan 1 scan

DB000000

DB000002

DB000001

• This is the same operation as that of the ONP-NOC instruction.
• The OFFP-NCC instruction cannot be used in user functions. Use an NC contact with the

Falling-edge Pulses (OFF-PLS) instruction.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Relay address * × × × × × × × ×

Information

Icon:

Key entry:]N/
Relay address

4.2 Relay Circuit Instructions

4.2.7 1-ms ON-Delay Timer (TON(1ms))

4-16

Programming Example
The DB000001 output coil turns ON when the DB000000 relay in the NCC instruction changes
from OFF to ON.

The timing chart is shown below.

4.2.7 1-ms ON-Delay Timer (TON(1ms))
The timer counts the time whenever the timer bit input is 1. The bit output is set to 1 when the
count value equals the set value.
If the bit input changes to 0 during counting, the timer will stop counting. If the bit input
changes to 1 again, the timer starts counting again from the beginning (i.e., from 0). The actual
counted time (in units of 1 ms) is stored in the Count register.

Note: The counting error is 1 ms or less.

If you program another instruction before the OFFP-NCC instruction, the result of the opera-
tion with the other instruction will be output.
In the following example, the DB000002 output coil turns ON when the AND condition of the
DB000000 relay and the inverted status of the DB000001 relay changes from ON to OFF.

The following circuit is equivalent to the above circuit.

The timing chart is shown below.

1 scan 1 scan

DB000000

DB000001

Information

1 scan 1 scan

DB000000

DB000002

DB000001

Bit input

Count value

Set value

0

Bit output

1
0

1
0

TimerBit input →

The set value and count
value are in units of 1 ms.

→ Bit output

4.2 Relay Circuit Instructions

 4.2.7 1-ms ON-Delay Timer (TON(1ms))

4-17

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

Programming Example
In the following programming example, the set value of the TON instruction is 50, and the count
value is stored in the DW00001 register.
The DB000001 coil will turn ON after the DB000000 relay stays ON for 50 ms.

The timing chart is shown below.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Set (Set value) ×  × × × × × × 

Count (Count value) × * × × × × × × ×

Key entry: [MSON
Count value

Set value

Icon:

DB000000

DB000001

ON
OFF

ON
OFF

DW00001

50

0

50 ms-Ts

(Ts: Scan time set value)

4.2 Relay Circuit Instructions

4.2.8 1-ms OFF-Delay Timer (TOFF(1 ms))

4-18

4.2.8 1-ms OFF-Delay Timer (TOFF(1 ms))
The timer counts the time whenever the timer bit input is 0. The bit output is set to 0 when the
count value equals the set value.

If the bit input changes to 1 during counting, the timer will stop counting. If the bit input
changes to 0 again, the timer starts counting again from the beginning (i.e., from 0). The actual
counted time (in units of 1 ms) is stored in the Count register.

Note: The counting error is 1 ms or less.

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Set (Set value) ×  × × × × × × 

Count (Count value) × * × × × × × × ×

Bit input

Count value

Set value

0

Bit output

1
0

1
0

TimerBit input →

The set value and count
value are in units of 1 ms.

→ Bit output

Count value

Set value

Icon:

Key entry: [MSOFF

4.2 Relay Circuit Instructions

 4.2.9 10-ms ON-Delay Timer (TON(10ms))

4-19

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Programming Example
In the following programming example, the set value of the TOFF instruction is 50, and the
count value is stored in the DW00001 register.
The DB000001 coil will turn OFF after the DB000000 relay stays OFF for 50 ms.

The timing chart is shown below.

4.2.9 10-ms ON-Delay Timer (TON(10ms))
The timer counts the time whenever the timer bit input is 1. The bit output is set to 1 when the
count value equals the set value.
If the bit input changes to 0 during counting, the timer will stop counting. If the bit input
changes to 1 again, the timer starts counting again from the beginning (i.e., from 0). The actual
counted time (in units of 10 ms) is stored in the Count register.

Note: The counting error is 10 ms or less.

DW00001

50

0
50 ms-Ts

(Ts: Scan time set value)

DB000000

DB000001

ON
OFF

ON
OFF

Bit input

Count value

Set value

0

Bit output

1
0

1
0

TimerBit input →

The set value and count
value are in units of 10 ms.

→ Bit output

4.2 Relay Circuit Instructions

4.2.9 10-ms ON-Delay Timer (TON(10ms))

4-20

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

Programming Example
In the following programming example, the set value of the TON instruction is 50, and the count
value is stored in the DW00001 register.

The DB000001 coil will turn ON after the DB000000 relay stays ON for 500 ms.

The timing chart is shown below.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Set (Set value) ×  × × × × × × 

Count (Count value) × * × × × × × × ×

Key entry: [ON
Count value

Set value

Icon:

DB000000

DB000001

ON
OFF

ON
OFF

DW00001

50

0

500 ms-Ts

(Ts: Scan time set value)

4.2 Relay Circuit Instructions

 4.2.10 10-ms OFF-Delay Timer (TOFF(10ms))

4-21

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

4.2.10 10-ms OFF-Delay Timer (TOFF(10ms))
The timer counts the time whenever the timer bit input is 0. The bit output is set to 0 when the
count value equals the set value.

If the bit input changes to 1 during counting, the timer will stop counting. If the bit input
changes to 0 again, the timer starts counting again from the beginning (i.e., from 0). The actual
counted time (in units of 10 ms) is stored in the Count register.

Note: The counting error is 10 ms or less.

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Set (Set value) ×  × × × × × × 

Count (Count value) × * × × × × × × ×

Bit input

Count value

Set value

0

Bit output

1
0

1
0

TimerBit input →

The set value and count
value are in units of 10 ms.

→ Bit output

Count value

Set value

Icon:

Key entry: [OFF

4.2 Relay Circuit Instructions

4.2.11 1-s ON-Delay Timer (TON(1s))

4-22

Programming Example
In the following programming example, the set value of the TOFF instruction is 50, and the
count value is stored in the DW00001 register.
The DB000001 coil will turn OFF after the DB000000 relay stays OFF for 500 ms.

The timing chart is shown below.

4.2.11 1-s ON-Delay Timer (TON(1s))
The timer counts the time whenever the timer bit input is 1. The bit output is set to 1 when the
count value equals the set value.

If the bit input changes to 0 during counting, the timer will stop counting. If the bit input
changes to 1 again, the timer starts counting again from the beginning (i.e., from 0). The actual
counted time (in units of 1 s) is stored in the Count register.

Note: The counting error is 1 s or less.

DW00001

50

0
500 ms-Ts

(Ts: Scan time set value)

DB000000

DB000001

ON
OFF

ON
OFF

Bit input

Count value

Set value

0

Bit output

1
0

1
0

TimerBit input →

The set value and count
value are in units of 1 s.

→ Bit output

4.2 Relay Circuit Instructions

 4.2.11 1-s ON-Delay Timer (TON(1s))

4-23

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

Programming Example
In the following programming example, the set value of the TON instruction is 50, and the count
value is stored in the DW00001 register.

The DB000001 coil will turn ON after the DB000000 relay stays ON for 50 s.

The timing chart is shown below.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Set (Set value) ×  × × × × × × 

Count (Count value) × * × × × × × × ×

Count value

Set value

Key entry: [SON

Icon:

DB000000

DB000001

ON
OFF

ON
OFF

DW00001

50

0
50 s-Ts

(Ts: Scan time set value)

4.2 Relay Circuit Instructions

4.2.12 1-s OFF-Delay Timer (TOFF(1s))

4-24

4.2.12 1-s OFF-Delay Timer (TOFF(1s))
The timer counts the time whenever the timer bit input is 0. The bit output is set to 1 when the
count value equals the set value.

If the bit input changes to 1 during counting, the timer will stop counting. If the bit input
changes to 0 again, the timer starts counting again from the beginning (i.e., from 0). The actual
counted time (in units of 1 s) is stored in the Count register.

Note: The counting error is 1 s or less.

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Set (Set value) ×  × × × × × × 

Count (Count value) × * × × × × × × ×

Bit input

Count value

Set value

0

Bit output

1
0

1
0

TimerBit input →

The set value and count
value are in units of 1 s.

→ Bit output

Count value

Set value

Key entry: [SOFF

Icon:

4.2 Relay Circuit Instructions

 4.2.13 Rising-edge Pulses (ON-PLS)

4-25

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Programming Example
In the following programming example, the set value of the TOFF instruction is 50, and the
count value is stored in the DW00001 register.
The DB000001 coil will turn OFF after the DB000000 relay stays OFF for 50 s.

The timing chart is shown below.

4.2.13 Rising-edge Pulses (ON-PLS)
The bit output is set to 1 for only one scan when the bit input changes from 0 to 1. The previ-
ous value of the bit input is saved in the Previous Value Register of the ON-PLS instruction.

The following truth table shows the relationship between the bit input, the Previous Value Reg-
ister, and the bit output of the ON-PLS instruction.

In the third row of the table, notice how the bit input changes from 0 in the Previous Value Reg-
ister to 1, causing the ON-PLS instruction to set the bit output to 1.

DW00001

50

0
50 s-Ts

(Ts: Scan time set value)

DB000000

DB000001

ON
OFF

ON
OFF

Bit Output Previous Value Register ON-PLS Instruction Bit Input

0 OFF → 0

0 ON → 0

1 OFF → 1

1 ON → 0

Bit input

Bit output

1
0

1
0

ON
OFF

1 scan 1 scan

Previous Value
Register

4.2 Relay Circuit Instructions

4.2.13 Rising-edge Pulses (ON-PLS)

4-26

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

Note: The Previous Value Register holds the previous value of the bit input. Do not use other instructions to set the
value of this register.

Programming Example
The DB000003 output coil turns ON for only one scan when the DB000000 relay changes from
OFF to ON. The DB000001 register is used to store the previous value of DB000000.

The timing chart is shown below.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Previous Value
Register * × × × × × × × ×

Do not use more than one previous value register for the same drawing.

Previous Value Register Icon:

Key entry:]P

Information

DB000000

DB000003

ON
OFF

ON
OFF

ON
OFF

1 scan 1 scan

DB000001

4.2 Relay Circuit Instructions

 4.2.14 Falling-edge Pulses (OFF-PLS)

4-27

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

4.2.14 Falling-edge Pulses (OFF-PLS)
The bit output is set to 1 for only one scan when the bit input changes from 1 to 0. The previ-
ous value of the bit input is saved in the Previous Value Register of the OFF-PLS instruction.

The following truth table shows the relationship between the bit input, the Previous Value Reg-
ister, and the bit output of the OFF-PLS instruction.

In the second row of the table, notice how the bit input changes from 1 in the Previous Value
Register to 0, causing the OFF-PLS instruction to set the bit output to 1.

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

Note: The Previous Value Register holds the previous value of the bit input. Do not use other instructions to set the
value of this register.

Bit Output Previous Value Register OFF-PLS Instruction Bit Input

0 OFF → 0

0 ON → 1

1 OFF → 0

1 ON → 0

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Previous Value
Register * × × × × × × × ×

Bit input

Bit output

1
0

1
0

ON
OFF

1 scan 1 scan

Previous Value
Register

Previous Value Register
Icon:

Key entry:]N

4.2 Relay Circuit Instructions

4.2.14 Falling-edge Pulses (OFF-PLS)

4-28

Programming Example
The DB000003 output coil turns ON for only one scan when the DB000000 relay changes from
ON to OFF. The DB000001 register is used to store the previous value of DB000000.

The timing chart is shown below.

Do not use more than one previous value register for the same drawing.Information

DB000000

DB000003

ON
OFF

ON
OFF

ON
OFF

1 scan 1 scan

DB000001

4.2 Relay Circuit Instructions

 4.2.15 Coil (COIL)

4-29

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

4.2.15 Coil (COIL)
The bit at the coil address is set to 1 whenever the bit input is 1. The bit at the coil address is
set to 0 whenever the bit input is 0.

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

Programming Example
The DB000000 coil turns ON when the DB000001 relay turns ON.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Coil address * × × × × × × × ×

Coil address

1

0

1

0

Bit input

Bit

Coil address
Icon:

Key entry: @

4.2 Relay Circuit Instructions

4.2.16 Reverse Coil (REV-COIL)

4-30

4.2.16 Reverse Coil (REV-COIL)
The bit at the coil address is set to 1 whenever the bit input is 0. The bit at the coil address is
set to 0 whenever the bit input is 1.

Format
The format of this instruction is shown below.

* # and C registers cannot be used.

Programming Example
The DB000000 coil turns OFF when the DB000001 relay turns ON.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Coil address * × × × × × × × ×

Coil address

1

0

1

0

Bit input

Bit

Icon:

Key entry: @RV
Coil address

4.2 Relay Circuit Instructions

 4.2.17 Rising-edge Detection Coil (ONP-COIL)

4-31

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

4.2.17 Rising-edge Detection Coil (ONP-COIL)
The bit at the coil address is set to 1 for only one scan when the bit input changes from 0 to 1.
The resulting operation is the same as the combination of the ON-PLS and COIL instructions.

Format
The format of this instruction is shown below.

* # and C registers cannot be used.

Programming Example
The DB000001 rising-edge detection coil turns ON when the DB000000 relay in the NOC
instruction changes from OFF to ON.

4.2.18 Falling-edge Detection Coil (OFFP-COIL)
The bit at the coil address is set to 1 for only one scan when the bit input changes from 1 to 0.

The resulting operation is the same as the combination of the OFF-PLS and COIL instructions.

Format
The format of this instruction is shown below.

* # and C registers cannot be used.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Coil address * × × × × × × × ×

Icon:

Key entry: @P

Coil address

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Coil address * × × × × × × × ×

Icon:

Key entry: @N

Coil address

4.2 Relay Circuit Instructions

4.2.19 Set Coil (S-COIL)

4-32

Programming Example
The DB000001 falling-edge detection coil turns ON when the DB000000 relay in the NOC
instruction changes from ON to OFF.

4.2.19 Set Coil (S-COIL)
The bit at the coil address is set to 1 when the bit input is 1. The set coil stays in the ON state.

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

Programming Example
The DB000001 set coil stays in the ON state when the DB000000 relay turns ON.

The timing chart is shown below.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Coil address * × × × × × × × ×

Bit input

Coil address

1
0

1
0

Bit

Coil address Icon:

Key entry: @S

DB000000 ON
OFF

ON
OFFDB000001

4.2 Relay Circuit Instructions

 4.2.20 Reset Coil (R-COIL)

4-33

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

4.2.20 Reset Coil (R-COIL)
The bit at the reset coil address is set to 0 when the bit input is 1. The reset coil stays in the
OFF state.

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

Programming Example
In the following programming example, the reset coil is used to turn OFF the set coil that was
turned ON in the first line.
The DB000001 reset coil in the second line turns ON if the DB000002 relay turns ON while the
DB000001 set coil is ON, therefore turning OFF the DB000001 set coil.

The timing chart is shown below.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Coil address * × × × × × × × ×

Bit input

Coil address

1
0

1
0Bit

Coil address

Key entry: @R

Icon:

DB000000

DB000001

ON
OFF

ON
OFF

ON
OFFDB000002

4.3 Numeric Operation Instructions

4.3.1 Store (STORE)

4-34

4.3 Numeric Operation Instructions

4.3.1 Store (STORE)
The input data is stored in the output register.

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

Programming Example
In the following programming example, the input data is stored in the output register.
• Storing the Input Data, an Integer Value of 12345, in the MW00000 Output Register

• Storing the Input Data, a Real Value of 123.45, in the MW00000 Output Register

• Storing the Input Data, a Double-length Integer Value of 89ABCDEF Hex, in the MW00000
Output Register
The lower word of the double-length integer, -12,817 (CDEF hex) is stored in MW0000.

• Storing the Input Data, an Integer Value of 1234, in the MF00000 Output Register

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Src (Input data) ×        

Dest (Output register) × * * * * * *  ×

When performing operations with different data types, the result of the operation will depend
on the data type of the output register.

Chapter 3 Registers− Precautions for Operations Using Different Data Types on page 3-10

Input data Output register

Output registerInput data

Icon:

Key entry: ;

Information

4.3 Numeric Operation Instructions

 4.3.2 Add (ADD (+))

4-35

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

4.3.2 Add (ADD (+))
Input data A and input data B are added and the result is stored in the output data.
An operation error occurs if the result produces an overflow or underflow.

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

Programming Example
In the following programming example, input data A and input data B are added and the result
is stored in the output data.
• Storing the Output Data in MW00000 When Input Data A Is 100 and Input Data B Is 200

100 + 200 → MW00000 = 300

• Storing the Output Data in MW00000 When Input Data A Is 10.5 and Input Data B Is 10
10.5 + 10 → MW00000 = 20 (when truncating below the decimal point is set)

• Storing the Output Data in ML00000 When Input Data A in MW00002 Is 20,000 and Input
Data B in MW00003 Is 30,000
MW00002 (20,000) + MW00003 (30,000) → ML00000 = 32,767*

* In the example given above, an overflow error occurs because both input data A and B are integers,
which limits the result to a number within the range for integers.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

SrcA (Input data A) ×      ×  

SrcB (Input data B) ×      ×  

Dest (Output data) × * * * * * ×  ×

Input data A Output dataInput data B+

Output dataInput data BInput data A

Key entry: +

Icon:

4.3 Numeric Operation Instructions

4.3.3 Extended Add (ADDX (++))

4-36

Additional Information
With integer operations, an overflow operation error occurs if the result exceeds 32,767 and an
underflow operation error occurs if the result is less than -32,768.
With double-length integer operations, an overflow operation error occurs if the result exceeds
2,147,483,647 and an underflow operation error occurs if the result is less than -
2,147,483,648.

4.3.3 Extended Add (ADDX (++))
Input data A and input data B are added and the result is stored in the output data.
Overflows are not treated as operation errors. Operation continues from the maximum value in
the negative direction.
Underflows are not treated as operation errors. Operation continues from the maximum value in
the positive direction.

The following figure shows how the output data changes.

Note: 1. In example shown above, the output data is integer data. With double-length integers, adding 1 to
2,147,483,647 (7FFFFFFF hex) results in -2,147,483,648 (80000000 hex).

2. Unlike operations for the ADD (+), SUB (-), or EXPRESSION instructions, overflows and underflows do not
occur.

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

When performing operations with different data types, the result of the operation will depend
on the data type of the output register.

Chapter 3 Registers − Precautions for Operations Using Different Data Types on page 3-10

Normally, addition and subtraction instructions (+, −, ++, and − −) involving double-length inte-
gers are performed as 32-bit operations.
However, these instructions are performed as 64-bit operations if they are used to correct the
remainder produced by an immediately preceding MUL (×) instruction and are immediately fol-
lowed by a DIV (÷) instruction.

Information

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

SrcA (Input data A) ×    × × ×  

SrcB (Input data B) ×    × × ×  

Dest (Output data) × * * * × × ×  ×

Input data A Output dataInput data B
Extended Add

++

Output data
0

32,767 (7FFF hex)

-32,768 (8000 hex)

+1

32,767

-32,768

+1

Icon:

Key entry: ++

Output dataInput data BInput data A

4.3 Numeric Operation Instructions

 4.3.3 Extended Add (ADDX (++))

4-37

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Programming Example
In the following programming example, input data A and input data B are extended-added, and
the result is stored in the output data.
• Storing the Output Data in MW00000 When Input Data A Is 32,760 and Input Data B Is 10

32,760 ++ 10 → MW00000 = −32,766

• Storing the Output Data in ML00000 When Input Data A in MW00002 Is 20,000 and Input
Data B in MW00003 Is 30,000
MW00002 (20,000) ++ MW00003 (30,000) → ML00000 = −15,536*

* In the example given above, ML00000 does not equal 50,000 because both input data A and B are inte-
gers, which limits the result to a number within the range for integers.

• Storing the Output Data in ML00000 When Input Data A Is 2,147,483,647 and Input Data
B Is 2
2,147,483,647 ++ 2 → ML00000 = −241,783,647

• Storing the Output Data in MW00000 When Input Data A Is -32,768 and Input Data B Is -1
−32,768 ++ −1 → MW00000 = 32,767

When performing operations with different data types, the result of the operation will depend
on the data type of the output register.

Chapter 3 Registers − Precautions for Operations Using Different Data Types on page 3-10

Normally, addition and subtraction instructions (+, −, ++, and − −) involving double-length inte-
gers are performed as 32-bit operations.
However, these instructions are performed as 64-bit operations if they are used to correct the
remainder produced by an immediately preceding MUL (×) instruction and are immediately fol-
lowed by a DIV (÷) instruction.

Information

4.3 Numeric Operation Instructions

4.3.4 Subtract (SUB (−))

4-38

4.3.4 Subtract (SUB (−))
Input data B is subtracted from input data A and the result is stored in the output data.
An operation error occurs if the result produces an overflow or underflow.

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

Programming Example
In the following programming example, input data B is subtracted from input data A and the
result is stored in the output data.
• Storing the Output Data in MW00000 When Input Data A Is 100 and Input Data B Is 200

100 − 200 → MW00000 = −100

• Storing the Output Data in MW00000 When Input Data A Is 10.5 and Input Data B Is 10
10.5 − 10 → MW00000 = 0 (when truncating below the decimal point is set)

• Storing the Output Data in ML00000 When Input Data A in MW00002 Is -20,000 and Input
Data B in MW00003 Is 30,000
MW00002 (−20,000) − MW00003 (30,000) → ML00000 = −32,768*

* In the example given above, an underflow error occurs because both input data A and B are integers,
which limits the result to a number within the range for integers.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

SrcA (Input data A) ×      ×  

SrcB (Input data B) ×      ×  

Dest (Output data) × * * * * * ×  ×

Input data A Output dataInput data B-

Output dataInput data BInput data A

Icon:

Key entry: －

4.3 Numeric Operation Instructions

 4.3.5 Extended Subtract (SUBX (− −))

4-39

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Additional Information
With integer operations, an overflow operation error occurs if the result exceeds 32,767 and an
underflow operation error occurs if the result is less than -32,768.
With double-length integer operations, an overflow operation error occurs if the result exceeds
2,147,483,647 and an underflow operation error occurs if the result is less than
-2,147,483,648.

4.3.5 Extended Subtract (SUBX (− −))
Input data B is subtracted from input data A and the result is stored in the output data.
Overflows are not treated as operation errors. Operation continues from the maximum value in
the negative direction.
Underflows are not treated as operation errors. Operation continues from the maximum value in
the positive direction.

The following figure shows how the output data changes.

Note: 1. In example shown above, the output data is integer data. With double-length integers, subtracting 1 from -
2,147,483,648 (80000000 hex) results in 2,147,483,647 (7FFFFFFF hex).

2. Unlike operations for the ADD (+), SUB (-), or EXPRESSION instructions, overflows and underflows do not
occur.

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

When performing operations with different data types, the result of the operation will depend
on the data type of the output register.

Chapter 3 Registers − Precautions for Operations Using Different Data Types on page 3-10

Normally, addition and subtraction instructions (+, −, ++, and − −) involving double-length inte-
gers are performed as 32-bit operations.
However, these instructions are performed as 64-bit operations if they are used to correct the
remainder produced by an immediately preceding MUL (×) instruction and are immediately fol-
lowed by a DIV (÷) instruction.

Information

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

SrcA (Input data A) ×    × × ×  

SrcB (Input data B) ×    × × ×  

Dest (Output data) × * * * × × ×  ×

Input data A Output dataInput data B
Extended Subtract

- -

0

-1

32,767

-32,768

-1

Output data

32,767 (7FFF hex)

-32,768 (8000 hex)

Output dataInput data BInput data A

Icon:

Key entry: －－

4.3 Numeric Operation Instructions

4.3.5 Extended Subtract (SUBX (− −))

4-40

Programming Example
In the following programming example, input data B is extended-subtracted from input data A
and the result is stored in the output data.
• Storing the Output Data in MW00000 When Input Data A Is -32,760 and Input Data B Is 10

−32,760 − − 10 → MW00000 = 32,766

• Storing the Output Data in ML00000 When Input Data A in MW00002 Is -20,000 and Input
Data B in MW00003 Is 30,000
MW00002 (−20,000) − − MW00003 (30,000) → ML00000 = 15,536*

* In the example given above, ML00000 does not equal -50,000 because both input data A and B are inte-
gers, which limits the result to a number within the range for integers.

• Storing the Output Data in ML00000 When Input Data A Is -2,147,483,648 and Input Data
B Is 2
−2,147,483,648 − − 2 → ML00000 = 241,783,646

• Storing the Output Data in MW00000 When Input Data A Is 32,767 and Input Data B Is -1
32,767 − − −1 → MW00000 = −32,768

When performing operations with different data types, the result of the operation will depend
on the data type of the output register.

Chapter 3 Registers − Precautions for Operations Using Different Data Types on page 3-10

Normally, addition and subtraction instructions (+, −, ++, and − −) involving double-length inte-
gers are performed as 32-bit operations.
However, these instructions are performed as 64-bit operations if they are used to correct the
remainder produced by an immediately preceding MUL (×) instruction and are immediately fol-
lowed by a DIV (÷) instruction.

Information

4.3 Numeric Operation Instructions

 4.3.6 Multiply (MUL (x))

4-41

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

4.3.6 Multiply (MUL (x))
Input data A and input data B are multiplied and the result is stored in the output data.

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

Programming Example
In the following programming example, input data A and input data B are multiplied and the
result is stored in the output data.
• Storing the Output Data in MW00000 When Input Data A Is 100 and Input Data B Is 200

100 × 200 → MW00000 = 20,000

• Storing the Output Data in ML00000 When Input Data A in MW00002 Is 200 and Input
Data B in MW00003 Is 300
MW00002 (200) × MW00003 (300) → ML00000 = 60,000

• Storing the Output Data in MW00002 When Input Data A in ML00000 Is -200 and Input
Data B in MW00003 Is 300
−200 × 300 → MW00002 = 5,536*

* The input data contains a double-length integer, so this operation is performed as a double-length inte-
ger operation. However, the output data is integer data, so if the operation result exceeds the range for
integers, the lower 16-bits of the original operation result will be stored in the output data.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

SrcA (Input data A) ×      ×  

SrcB (Input data B) ×      ×  

Dest (Output data) × * * * * * ×  ×

Input data A Output dataInput data B×

Output dataInput data BInput data A

Icon:

Key entry: *

×

4.3 Numeric Operation Instructions

4.3.7 Divide (DIV (÷))

4-42

4.3.7 Divide (DIV (÷))
Input data A is divided by input data B and the result is stored in the output data.

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

Programming Example
In the following programming example, input data A is divided by input data B and the result is
stored in the output data.

• Storing the Output Data in MW00000 When Input Data A Is 200 and Input Data B Is 100
200 ÷ 100 → MW00000 = 2

• Storing the Output Data in ML00000 When Input Data A Is 200 and Input Data B Is 1,000
200 ÷ 1,000 → ML00000 = 0

When performing operations with different data types, the result of the operation will depend
on the data type of the output register.

Chapter 3 Registers − Precautions for Operations Using Different Data Types on page 3-10

Normally, addition and subtraction instructions (+, −, ++, and − −) involving double-length inte-
gers are performed as 32-bit operations.
However, these instructions are performed as 64-bit operations if they are used to correct the
remainder produced by an immediately preceding MUL (×) instruction and are immediately fol-
lowed by a DIV (÷) instruction.

Information

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

SrcA (Input data A) ×      ×  

SrcB (Input data B) ×      ×  

Dest (Output data) × * * * * * ×  ×

Input data A Output dataInput data B÷

Icon:

Key entry: /

Output dataInput data BInput data A

4.3 Numeric Operation Instructions

 4.3.8 Integer Remainder (MOD)

4-43

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

• Storing the Output Data in MF00000 When Input Data A Is 200 and Input Data B Is 1,000
200 ÷ 1,000 → MF00000 = 0.2

4.3.8 Integer Remainder (MOD)
The remainder of the immediately preceding integer or double-length integer division is stored
in the output data. The MOD instruction must be executed immediately after the DIV (÷) instruc-
tion. If the MOD instruction is executed at any other time, the operation result obtained before
the next numeric operation instruction will be invalid.

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

When performing operations with different data types, the result of the operation will depend
on the data type of the output register.

Chapter 3 Registers − Precautions for Operations Using Different Data Types on page 3-10

Normally, addition and subtraction instructions (+, −, ++, and − −) involving double-length inte-
gers are performed as 32-bit operations.
However, these instructions are performed as 64-bit operations if they are used to correct the
remainder produced by an immediately preceding MUL (×) instruction and are immediately fol-
lowed by a DIV (÷) instruction.

Information

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Dest (Output data) × * * * × × ×  ×

Output data

Division of an integer or double-length integer

Execute MOD instruction
immediately after a division.

Output data

Icon:

Key entry: MOD

4.3 Numeric Operation Instructions

4.3.8 Integer Remainder (MOD)

4-44

Programming Example
In the following programming example, input data A is divided by input data B and the remain-
der is stored in the output data.
• If the immediately preceding division is as follows:

12,345 ÷ 123 → MW00000 = 100
And then the MOD instruction is executed immediately afterward → MW00001 = 45

• If the immediately preceding division is as follows:
123,456,789 ÷ 12,345 → ML00000 = 10,000
And then the MOD instruction is executed immediately afterward → ML00002 = 6,789

When performing operations with different data types, the result of the operation will depend
on the data type of the output register.

Chapter 3 Registers − Precautions for Operations Using Different Data Types on page 3-10

Information

4.3 Numeric Operation Instructions

 4.3.9 Real Remainder (REM)

4-45

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

4.3.9 Real Remainder (REM)
The remainder from a real number division is stored in the output data. Here, the remainder
refers to the remainder obtained by repeatedly subtracting the base value from the input data.

Specifically, the value obtained by subtracting the base value from the input data n number of
times (input data - base value × n) is output when it becomes less than the base value.

The output data is computed by using the first value of n that satisfies the following formula
when the value of n is incremented from 0, 1, 2, 3, etc.

(Input data - Base value × n) < Base value

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

Programming Example
In the following programming example, the base value is subtracted from the input data n times
and the remainder is stored in the output data.
• Storing the Output Data in MF00000 When the Input Data Is 5.0 and the Base Value Is 2.0.

5.0 − 2.0 − 2.0 = 1.0 < Base (2.0) → MF00000 = 1.0

• Storing the Output Data in MF00000 When the Input Data Is 3,000.0 and the Base Value Is
3.0.
3,000.0 − 3.0 − 3.0 .. = 0.0 < Base (3.0) → MF00000 = 0.0

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Src (Input data) × × × ×   × × 

Base (Base value) × × × ×   × × 

Dest (Output data) × × × × * * ×  ×

Input data Output dataBase value- × n

Output dataBase valueInput data

Icon:

Key entry: REM

4.3 Numeric Operation Instructions

4.3.10 Increment (INC)

4-46

4.3.10 Increment (INC)
A value of 1 is added to the integer or double-length integer data. No overflow or underflow will
occur for either an integer or double-length integer. This performs the same calculation as the
ADDX (++) instruction.

The following figure shows how the data changes when the INC instruction is executed.

Note: In example shown above, the data is an integer. With double-length integers, adding 1 to 2,147,483,647
(7FFFFFFF hex) results in -2,147,483,648 (80000000 hex).

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

Programming Example
The following programming examples demonstrate the usage of the INC instruction and the
ADDX (++) instruction.
This is equivalent to adding 1 to the data 1,000 in MW00000 using the ADDX (++) instruction.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Dest (Data) ×   * × × ×  ×

Data Data+ 1

0

+1

32,767

-32,768

+1

1
2

Data

32,767 (7FFF hex)

-32,768 (8000 hex)

���

Data

Icon:

Key entry: INC

Equivalent

4.3 Numeric Operation Instructions

 4.3.11 Decrement (DEC)

4-47

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

4.3.11 Decrement (DEC)
A value of 1 is subtracted from the integer or double-length integer data. No overflow or under-
flow will occur for either an integer or double-length integer. This performs the same calculation
as the SUBX (− −) instruction.

The following figure shows how the data changes when the DEC instruction is executed.

Note: In example shown above, the data is an integer. With double-length integers, subtracting 1 from
 -2,147,483,648 (80000000 hex) results in 2,147,483,647 (7FFFFFFF hex).

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

Programming Example
The following programming examples demonstrate the usage of the DEC instruction and the
SUBX (− −) instruction.
This is equivalent to subtracting 1 from the data 1,000 in MW00000 using the SUBX (− −)
instruction.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Dest (Data) ×   * × × ×  ×

Data Data-1

Data
0

-1

32,767

-32,768

-1

-1
-2

32,767 (7FFF hex)

-32,768 (8000 hex)

���

Data

Icon:

Key entry: DEC

-1-1

Equivalent

4.3 Numeric Operation Instructions

4.3.12 Add Time (TMADD)

4-48

4.3.12 Add Time (TMADD)
A duration (hours/minutes/seconds) is added to a time (hour/minutes/seconds). The add time
is added to time data A and the result is stored in time data A. Time data is two words long.

Format
The format of this instruction is shown below.

*1. Optional.
*2. C and # registers cannot be used.

The time data is formatted as shown below.

If the operation result exceeds any of the data ranges given above, time data A is not updated
and the seconds data will be set to 9999, and the status bit will set to 1.

If the operation result is within the ranges, the status bit is set to 0.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Src (Add time) × *2 × × × × × × ×

Dest (Time data A) × *2 × × × × × × ×

Sts (Status)*1 *2 × × × × × × × ×

Offset Contents Data Range (BCD)

0 Hour/minutes Upper byte (hour): 00 to 23
Lower byte (minutes): 00 to 59

1 Seconds 0000 to 0059

Time data A
+

Hour Minutes Seconds

Add time

Hours Minutes Seconds

Time data A

Hour Minutes Seconds

2 words 2 words 2 words

Icon:

Key entry: TMADD

StatusTime data AAdd time

4.3 Numeric Operation Instructions

 4.3.12 Add Time (TMADD)

4-49

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Programming Example
The following table gives typical conditions for creating ladder programming that uses the
TMADD instruction. The examples show time data A before instruction execution, and the add
time.

In the following programming example, the times are added according to the conditions given
above, and the result is stored in time data A.

The result of adding the add time to the value of time data A before instruction execution is
shown below.

Time Time Data A before Execution of Instruction Add time

Hour/minutes MW00000 = 0210 hex
(2:10)

MW00002 = 0050 hex
(0 hours 50 minutes)

Seconds MW00001 = 0050 hex
(50 seconds)

MW00003 = 0020 hex
(20 seconds)

Time Time Data A after Execution of Instruction

Hour/minutes MW00000 = 769 = 0301 hex
(3:01)

Seconds MW00001 = 16 = 0010 hex
(10 seconds)

4.3 Numeric Operation Instructions

4.3.13 Subtract Time (TMSUB)

4-50

4.3.13 Subtract Time (TMSUB)
A duration (hours/minutes/seconds) is subtracted from a time (hour/minutes/seconds). The
subtract time is subtracted from time data A and the result is stored in time data A. Time data
is two words long.

Format
The format of this instruction is shown below.

*1. Optional.
*2. C and # registers cannot be used.

The time data is formatted as shown below.

If the operation result exceeds any of the data ranges given above, time data A is not updated
and the seconds data will be set to 9999, and the status bit will set to 1.

If the operation result is within the ranges, the status bit is set to 0.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Src (Subtract time) × *2 × × × × × × ×

Dest (Time data A) × *2 × × × × × × ×

Sts (Status)*1 *2 × × × × × × × ×

Offset Contents Data Range (BCD)

0 Hour/minutes Upper byte (hour): 00 to 23
Lower byte (minutes): 00 to 59

1 Seconds 0000 to 0059

Time data A
-

Hour Minutes Seconds

Subtract time

Hours Minutes Seconds

Time data A

Hour Minutes Seconds

2 words 2 words 2 words

StatusTime data ASubtract time

Icon:

Key entry: TMSUB

4.3 Numeric Operation Instructions

 4.3.13 Subtract Time (TMSUB)

4-51

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Programming Example
The following table gives typical conditions for creating ladder programming that uses the
TMSUB instruction. The examples show time data A before instruction execution, and the sub-
tract time.

In the following programming example, the time is subtracted according to the conditions given
above, and the result is stored in time data A.

The result of subtracting the subtract time from the value of time data A before instruction exe-
cution is shown below.

Time Time Data A before Execution of Instruction Subtract time

Hour/minutes MW00000 = 0210 hex
(2:10)

MW00002 = 0050 hex
(0 hours 50 minutes)

Seconds MW00001 = 0050 hex
(50 seconds)

MW00003 = 0020 hex
(20 seconds)

Time Time Data A after Execution of Instruction

Hour/minutes MW00000 = 288 = 0120 hex
(1:20)

Seconds MW00001 = 48 = 0030 hex
(30 seconds)

4.3 Numeric Operation Instructions

4.3.14 Spend Time (SPEND)

4-52

4.3.14 Spend Time (SPEND)
The elapsed time is calculated by subtracting two data items (year/month/day/hour/minutes/
seconds). The instruction subtracts time B from time A, which gives the time elapsed from time
B to time A and the result is stored in time A.
Time data is four words long.

Format
The format of this instruction is shown below.

*1. Optional.
*2. C and # registers cannot be used.

Time B is formatted as shown below.

Time A is formatted as shown below.

If the operation result exceeds any of the data ranges given above, time A is not updated and
the seconds data will be set to 9999, and the status bit will be set to 1.
If the operation result is within the ranges, the status bit is set to 0.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Src (Time B) × *2 × × × × × × ×

Dest (Time A) × *2 × × × × × × ×

Sts (Status)*1 *2 × × × × × × × ×

Offset Contents Data Range (BCD) I/O

0 Year (BCD) 0000 to 0099 IN

1 Month/day (BCD) Upper byte (month): 01 to 12
Lower byte (day): 01 to 31 IN

2 Hour/minutes (BCD) Upper byte (hour): 00 to 23
Lower byte (minutes): 00 to 59 IN

3 Seconds (BCD) 0000 to 0059 IN

Offset Contents Data Range (BCD) I/O

0 Year (BCD) 0000 to 0099 IN/OUT

1 Month/day (BCD) Upper byte (month): 01 to 12
Lower byte (day): 01 to 31 IN/OUT

2 Hour/minutes (BCD) Upper byte (hour): 00 to 23
Lower byte (minutes): 00 to 59 IN/OUT

3 Seconds (BCD) 0000 to 0059 IN/OUT

4 Total number of
seconds

Operation result of years, months, days, hours, minutes, and
seconds converted into seconds (double-length integer). IN/OUT

5

Time A
-

Year Month Hour/minutes/
seconds

Time B

Year Month Hour/minutes/
seconds

6 words 4 words

The time elapsed from time B to time A is calculated.

(Total number of
seconds storage area)

Time A

Years Months Hours/minutes/
seconds

6 words

Total number
of seconds

Icon:

Key entry: SPEND

StatusTime ATime B

4.3 Numeric Operation Instructions

 4.3.14 Spend Time (SPEND)

4-53

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Programming Example
The following table gives typical conditions for creating ladder programming that uses the
SPEND instruction.
The following list shows time A (November 20, 2010, 02:10:50) before instruction execution,
and time B (October 10, 2009, 00:50:20).

A year is calculated as 365 days. Leap years are not supported.
The number of months is not calculated. Only the number of days is calculated.

Time A before Execution of Instruction Time B

Year MW00000 = 0010 hex
(2010)

MW00006 = 0009 hex
(2009)

Month/day MW00001 = 1120 hex
(November 20)

MW00007 = 1010 hex
(October 10)

Hour/minutes MW0002 = 0210 hex
(2:10)

MW00008 = 0050 hex
(0:50)

Seconds MW00003 = 0050 hex
(50 seconds)

MW00009 = 0020 hex
(20 seconds)

Information

4.3 Numeric Operation Instructions

4.3.15 Invert Sign (INV)

4-54

The execution result of this SPEND instruction example is shown below.

4.3.15 Invert Sign (INV)
The sign of the input data is inverted and the result is stored in the output data.

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

Programming Example
In the following programming example, the INV instruction inverts the sign of 1,234 in input
data A in MW00000 and stores the result in the output data in ML00002.

−1 × MW00000(1234) → ML00002 = −1234

Time A after Execution of Instruction

Years MW00000 = 1 = 0001 hex
(1 year)

Months/days MW00001 = 65 = 0041 hex
(0 months, 41 days)

Hours/minutes MW00002 = 288 = 0120 hex
(1 hour, 20 minutes)

Seconds MW00003 = 48 = 0030 hex
(30 seconds)

Total number of seconds ML00004 = 35083230

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Src (Input data) ×      ×  

Dest (Output data) × * * * * * ×  ×

When performing operations with different data types, the result of the operation will depend
on the data type of the output register.

Chapter 3 Registers − Precautions for Operations Using Different Data Types on page 3-10

Output dataInput data-1 ×

Output dataInput data

Icon:

Key entry: INV

Information

4.3 Numeric Operation Instructions

 4.3.16 One’s Complement (COM)

4-55

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

4.3.16 One’s Complement (COM)
The one’s complement of the input data is stored in the output data.

Note: This instruction inverts the 0’s and 1’s in the binary representation of the input data and stores the result in the
output data.

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

Programming Example
In the following programming example, the one’s complement of -3,856 (F0F0 hex) in the input
data in MW00000 is stored in the output data in MW00001.

MW00000 = −3,856 (F0F0 hex) → MW00001 = 3,855 (0F0F hex)

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Src (Input data) ×    × × ×  

Dest (Output data) × * * * × × ×  ×

When performing operations with different data types, the result of the operation will depend
on the data type of the output register.

 Chapter 3 Registers − Precautions for Operations Using Different Data Types on page 3-10

Output dataInput data
One’s complement

Output dataInput data

Icon:

Key entry: COM

Information

4.3 Numeric Operation Instructions

4.3.17 Absolute Value (ABS)

4-56

4.3.17 Absolute Value (ABS)
The absolute value of the input data is stored in the output data.

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

Programming Example
In the following programming example, the absolute value of -1.23 in the input data in
MF00000 is stored in the output data in MF00002.
 | MF00000 (−1.23) | → MF00002 = 1.23

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Src (Input data) ×      ×  

Dest (Output data) × * * * * * ×  ×

When performing operations with different data types, the result of the operation will depend
on the data type of the output register.

Chapter 3 Registers − Precautions for Operations Using Different Data Types on page 3-10

Output dataInput data
Absolute value

Icon:

Key entry: ABS

Output dataInput data

Information

4.3 Numeric Operation Instructions

 4.3.18 Binary Conversion (BIN)

4-57

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

4.3.18 Binary Conversion (BIN)
The value of the input data is converted from BCD data to binary data and stored in the output
data.

If the input data is not BCD data, such as 123F hex, the result of the binary conversion will be
incorrect.

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

Programming Example
In the following example, the BCD data (1234 hex (4,660)) in input data A in MW00000 is con-
verted to binary data (displayed in decimal notation as 1,234) and stored as the output data in
MW00001.
MW00000 = 1234 hex : (1 × 1,000) + (2 × 100) + (3 × 10) + 4 → MW00001 = 1,234

Input and output data are always displayed in decimal notation.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Src (Input data) ×    × × ×  

Dest (Output data) × * * * × × ×  ×

When performing operations with different data types, the result of the operation will depend
on the data type of the output register.

Chapter 3 Registers − Precautions for Operations Using Different Data Types on page 3-10

Output dataInput data
Converted to binary.

Note: The output data is computed as shown below
when the input BCD data is abcd.

Output data = (a × 1,000) + (b × 100) + (c × 10) + d

Information

Output dataInput data

Icon:

Key entry: BIN

Information

4.3 Numeric Operation Instructions

4.3.19 BCD Conversion (BCD)

4-58

4.3.19 BCD Conversion (BCD)
The input data is converted from binary data to BCD data and stored in the output data.
If the input data is greater than 9,999, or a negative value, the result will be incorrect.

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

Programming Example
In the following programming example, the binary data (displayed in decimal notation as 1,234)
in input data A in MW00000 is converted to BCD data (1234 hex (4,660)) and stored as the
output data in MW00001.
MW00000 = 1,234 : (1 × 4,096) + (2 × 256) + (3 × 16) + 4 → MW00001 = 1234 hex (4,660)

Input and output data are always displayed in decimal notation.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Src (Input data) ×    × × ×  

Dest (Output data) × * * * × × ×  ×

When performing operations with different data types, the result of the operation will depend
on the data type of the output register.

Chapter 3 Registers − Precautions for Operations Using Different Data Types on page 3-10

Output dataInput data
Converted to BCD.

Note: The output data is computed as shown below
when the input decimal data is abcd.

Output data = (a × 4096) + (b × 256) + (c × 16) + d

Information

Icon:

Key entry: BCD

Output dataInput data

Information

4.3 Numeric Operation Instructions

 4.3.20 Parity Conversion (PARITY)

4-59

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

4.3.20 Parity Conversion (PARITY)
The number of bits set to 1 in the input data is calculated in binary notation and stored in the
output data.

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

Programming Example
In the following programming example, the number of bits set to 1 in 255 (00FF hex) in the
input data A in MW00000 is stored in the output data in MW00001.

Number of 1 bits in MW00000 (0FF hex) = 8 → MW00001 = 8

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Src (Input data) ×    × × ×  

Dest (Output data) × * * * × × ×  ×

When performing operations with different data types, the result of the operation will depend
on the data type of the output register.

Chapter 3 Registers − Precautions for Operations Using Different Data Types on page 3-10

Output dataInput data

Number of 1 bits in binary
 notation of input data

Output dataInput data

Icon:

Key entry: PARITY

Information

4.3 Numeric Operation Instructions

4.3.21 ASCII Conversion 1 (ASCII)

4-60

4.3.21 ASCII Conversion 1 (ASCII)
The input text string is converted to ASCII and stored in the output data. The text string is case
sensitive.

The input text string can contain up to 32 characters (16 words).

The ASCII value for each character in the input text string is stored as shown below.

Note: If the text string contains an odd number of characters, the upper byte of the last word will be set to zeros.

Format
The format of this instruction is shown below.

*1. ASCII text
*2. C and # registers cannot be used.

Programming Example
In the following programming example, the input string “Hello” is converted to ASCII and stored
in the output data in MW00000.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Src (Input text string) ×*1

Dest (Output data) × *2 × × × × × × ×

Output dataInput text string

Converted to ASCII.

A

1st
character

B C D

2nd
character

3rd
character

4th
character

Lower byte

Upper byte

Lower byte

Upper byte

1st word in
output data

2nd word in
output data

'D'

'C'

'B'

'A'

Icon:

Key entry: ASCII

Input text string Output data

4.3 Numeric Operation Instructions

 4.3.22 ASCII Conversion 2 (BINASC)

4-61

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

The ASCII values are stored as given in the following table.

4.3.22 ASCII Conversion 2 (BINASC)
The 16-bit binary data stored in the 1-word input data is converted to four-digit hexadecimal
ASCII and stored in the 2-word output data.

The ASCII value for 10811 (2A3B hex) in the input data is stored as shown below.

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

Address ASCII Value Character

MW00000 (lower byte) 48 hex H

MW00000 (upper byte) 65 hex e

MW00001 (lower byte) 6 C hex l

MW00001 (upper byte) 6 C hex l

MW00002 (lower byte) 6 F hex o

MW00002 (upper byte) 0 −

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Src (Input data) ×  × × × × × × 

Dest (Output data) × * × × × × × × ×

Output dataInput data

Converted to hexadecimal
notation.

4-digit text string
(0 to 9, A to F)

Converted to ASCII.

3 A 2

Lower byte

Upper byte

Lower byte

Upper byte

1st word in
output data

2nd word in
output data

1st
character

4th
character

'2'

'A'

'3'

B

'B'

������

Icon:

Key entry: BINASC

Output dataInput data

4.3 Numeric Operation Instructions

4.3.23 ASCII Conversion 3 (ASCBIN)

4-62

Programming Example
In the following programming example, 10,811 (2A3B hex) in the input data is converted to
ASCII and stored in the output data in MW00000.

The ASCII values are stored as given in the following table.

4.3.23 ASCII Conversion 3 (ASCBIN)
The value given as a 4-digit hexadecimal ASCII and stored in the 2-word input data is con-
verted to 16-bit binary data and stored in a 1-word output data.

The following figure shows the output data when the first word of the input data is 4132 hex (‘2’
‘A’), and the second word is 4232 hex (‘3’ ‘B’).

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

Address ASCII Value Character

MW00000 (lower byte) 32 hex 2

MW00000 (upper byte) 41 hex A

MW00001 (lower byte) 33 hex 3

MW00001 (upper byte) 42 hex B

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Src (Input data) ×  × × × × × × ×
Dest (Output data) × * × × × × × × ×

Output dataInput data

ASCII converted to binary data.

2A3B

1st word in
input data

2nd word in
input data

Hexadecimal notation

Output data (1 word)

Lower byte ‘A’

Upper byte ‘2’

Lower byte ‘B’

Upper byte ‘3’

Output dataInput data

Key entry: ASCBIN

Icon:

4.3 Numeric Operation Instructions

 4.3.23 ASCII Conversion 3 (ASCBIN)

4-63

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Programming Example
In the following programming example, the ASCBIN instruction is used to store the input data
in MW00000 in the output data in MW00002.

The ASCII values are stored as given in the following table.

The output data in MW00000 is set to 10,811 (2A3B hex).

Address ASCII Value Character

MW00000 (lower byte) 32 hex 2

MW00000 (upper byte) 41 hex A

MW00001 (lower byte) 33 hex B

MW00001 (upper byte) 42 hex 3

4.4 Logic Operations and Comparison Instructions

4.4.1 Inclusive AND (AND)

4-64

4.4 Logic Operations and Comparison Instructions

4.4.1 Inclusive AND (AND)
A logical AND operation is performed on input data A and input data B and the result is stored
in the output data.
This instruction can be used only with integer or double-length integer data.

Each bit in the input data is evaluated as shown in the following truth table.

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

Programming Example
In the following programming example, a logical AND is performed on 12,345 (3039 hex) in
input data A in MW00000 and 3,855 (0F0F hex) in input data B in MW00001, and the result is
stored in the output data in DW00000.

Input Data A Input Data B Output Data

0 0 0

0 1 0

1 0 0

1 1 1

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

SrcA (Input data A) ×    × × ×  

SrcB (Input data B) ×    × × ×  

Dest (Output data) × * * * × × ×  ×

Input data A Output dataInput data BInclusive AND
(AND)

Output dataInput data BInput data A

Icon:

Key entry: &

0

Bit 0Bit 7Bit F Bit 3Bit B Bit 4Bit 8Bit C

MW00000 :
12345 (3039 hex) 0 1 1 0 0 0 0 0 0 1 1 1 0 0 1

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1

MW00001 :
3855 (0F0F hex)

DW00000 :
9 (0009 hex)

MW00000 & MW00001 → DW00000

4.4 Logic Operations and Comparison Instructions

 4.4.2 Inclusive OR (OR)

4-65

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

4.4.2 Inclusive OR (OR)
A logical OR operation is performed on input data A and input data B and the result is stored in
the output data.

This instruction can be used only with integer or double-length integer data.

Each bit in the input data is evaluated as shown in the following truth table.

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

Programming Example
In the following programming example, a logical OR is performed on 12,345 (3039 hex) in input
data A in MW00000 and 3,855 (0F0F hex) in input data B in MW00001, and the result is stored
in the output data in DW00000.

Input Data A Input Data B Output Data

0 0 0

0 1 1

1 0 1

1 1 1

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

SrcA (Input data A) ×    × × ×  

SrcB (Input data B) ×    × × ×  

Dest (Output data) × * * * × × ×  ×

Input data A Output dataInput data BOR
(Inclusive OR)

Output dataInput data BInput data A

Icon:

Key entry: |

0

Bit 0Bit 7Bit F Bit 3Bit B Bit 4Bit 8Bit C

MW00000 :
12345 (3039 hex) 0 1 1 0 0 0 0 0 0 1 1 1 0 0 1

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1

MW00001 :
3855 (0F0F hex)

DW00000 :
16191 (3F3F hex)

MW00000 | MW00001 → DW00000

4.4 Logic Operations and Comparison Instructions

4.4.3 Exclusive OR (XOR)

4-66

4.4.3 Exclusive OR (XOR)
An exclusive logical OR operation is performed on input data A and input data B and the result
is stored in the output data.

This instruction can be used only with integer or double-length integer data.

Each bit in the input data is evaluated as shown in the following truth table.

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

Programming Example
In the following programming example, an exclusive logical OR is performed on 12,345 (3039
hex) in input data A in MW00000 and 3,855 (0F0F hex) in input data B in MW00001, and the
result is stored in the output data in DW00000.

Input Data A Input Data B Output Data

0 0 0

0 1 1

1 0 1

1 1 0

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

SrcA (Input data A) ×    × × ×  

SrcB (Input data B) ×    × × ×  

Dest (Output data) × * * * × × ×  ×

Input data A Output dataInput data BXOR
(Exclusive OR)

Output dataInput data BInput data A

Icon:

Key entry: ^

0

Bit 0Bit 7Bit F Bit 3Bit B Bit 4Bit 8Bit C

MW00000 :
12345 (3039 hex) 0 1 1 0 0 0 0 0 0 1 1 1 0 0 1

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 1 1 1 1 1 1 0 0 1 1 0 1 1 0

MW00001 :
3855 (0F0F hex)

DW00000 :
16182 (3F36 hex)

MW00000 ^ MW00001 → DW00000

4.4 Logic Operations and Comparison Instructions

 4.4.4 Less Than (<)

4-67

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

4.4.4 Less Than (<)
Input data A and input data B are compared and the result is stored in the bit output.

Format
The format of this instruction is shown below.

Programming Example
In the programming example shown below, the INC instruction on the right end of the line is
executed because the comparison is true; that is, input data A is less than input data B when
input data A in MW00000 is 90 and input data B is a constant set to 100.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

SrcA (Input data A) ×      ×  

SrcB (Input data B) ×      ×  

With real number data, the value displayed by the MPE720 may not match the execution
result of the comparison instruction due to a slight precision error.

Input data A
True: Output ON

False: Output OFF
Input data B<

Compared.

Input data BInput data A

Icon:

Key entry: <

Information

4.4 Logic Operations and Comparison Instructions

4.4.5 Less Than or Equal (≤)

4-68

4.4.5 Less Than or Equal (≤)
Input data A and input data B are compared and the result is stored in the bit output.

Format
The format of this instruction is shown below.

Programming Example
In the programming example shown below, the INC instruction on the right end of the line is not
executed because the comparison is false; that is, input data A is greater than input data B
when input data A in MW00000 is 101 and input data B is a constant set to 100.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

SrcA (Input data A) ×      ×  

SrcB (Input data B) ×      ×  

With real number data, the value displayed by the MPE720 may not match the execution
result of the comparison instruction due to a slight precision error.

Input data A
True: Output ON

False: Output OFF
Input data B≤

Compared.

Input data A Input data B

Icon:

Key entry: <=

Information

4.4 Logic Operations and Comparison Instructions

 4.4.6 Equal (=)

4-69

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

4.4.6 Equal (=)
Input data A and input data B are compared and the result is stored in the bit output.

Format
The format of this instruction is shown below.

Programming Example
In the programming example shown below, the INC instruction on the right end of the line is
executed because the comparison is true; that is, input data A is equal to input data B when
input data A in MW00000 is 100 and input data B is a constant set to 100.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

SrcA (Input data A) ×      ×  

SrcB (Input data B) ×      ×  

With real number data, the value displayed by the MPE720 may not match the execution
result of the comparison instruction due to a slight precision error.

Input data A
True: Output ON

False: Output OFF
Input data B=

Compared.

Input data A Input data B

Icon:

Key entry: =

Information

4.4 Logic Operations and Comparison Instructions

4.4.7 Not Equal (≠)

4-70

4.4.7 Not Equal (≠)
Input data A and input data B are compared and the result is stored in the bit output.

Format
The format of this instruction is shown below.

Programming Example
In the programming example shown below, the INC instruction on the right end of the line is not
executed because the comparison is false and turns the output OFF; that is, input data A is
equal to input data B when input data A in MW00000 is 100 and input data B is a constant set
to 100.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

SrcA (Input data A) ×      ×  

SrcB (Input data B) ×      ×  

With real number data, the value displayed by the MPE720 may not match the execution
result of the comparison instruction due to a slight precision error.

Input data A
True: Output ON

False: Output OFF
Input data B≠

Compared.

Input data A Input data B

Icon:

Key entry: <>

Information

4.4 Logic Operations and Comparison Instructions

 4.4.8 Greater Than or Equal (≥)

4-71

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

4.4.8 Greater Than or Equal (≥)
Input data A and input data B are compared and the result is stored in the bit output.

Format
The format of this instruction is shown below.

Programming Example
In the programming example shown below, the INC instruction on the right end of the line is
executed because the comparison is true; that is, input data A is equal to or greater than input
data B when input data A in MW00000 is 100 and input data B is a constant set to 100.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

SrcA (Input data A) ×      ×  

SrcB (Input data B) ×      ×  

With real number data, the value displayed by the MPE720 may not match the execution
result of the comparison instruction due to a slight precision error.

Input data A
True: Output ON

False: Output OFF
Input data B≥

Compared.

Input data A Input data B

Icon:

Key entry: >=

Information

4.4 Logic Operations and Comparison Instructions

4.4.9 Greater Than (>)

4-72

4.4.9 Greater Than (>)
Input data A and input data B are compared and the result is stored in the bit output.

Format
The format of this instruction is shown below.

Programming Example
In the programming example shown below, the INC instruction on the right end of the line is not
executed because the comparison is false; that is, input data A is not greater than input data B
when input data A in MW00000 is 100 and input data B is a constant set to 100.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

SrcA (Input data A) ×      ×  

SrcB (Input data B) ×      ×  

With real number data, the value displayed by the MPE720 may not match the execution
result of the comparison instruction due to a slight precision error.

Input data A
True: Output ON

False: Output OFF
Input data B>

Compared.

Input data A Input data B

Icon:

Key entry: >

Information

4.4 Logic Operations and Comparison Instructions

 4.4.10 Range Check (RCHK)

4-73

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

4.4.10 Range Check (RCHK)
A check is made to see if the input data is between upper limit and lower limit and the result is
stored in the bit output.

• Bit output = 1

The bit output is set to 1 if the value of the input data is within the range that is greater than or
equal to the lower limit, and less than or equal to the upper limit.

• Bit output = 0

The bit output is set to 0 if the value of the input data is outside the range that is greater than or
equal to the lower limit, and less than or equal to the upper limit.

Format
The format of this instruction is shown below.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

In (Input data) ×      ×  

Lower (Lower limit) ×      ×  

Upper (Upper limit) ×      ×  

Always set the lower limit to a value that is less than or equal to the upper limit. If the lower
limit is greater than the upper limit, the result will be invalid.

Upper limit

Lower limit

Input data

Bit output = 0

Bit output = 1

Bit output = 0

Lower limit Upper limitInput data ≤≤

Input data Lower limit Upper limit

Icon:

Key entry: RCHK

Information

4.4 Logic Operations and Comparison Instructions

4.4.10 Range Check (RCHK)

4-74

Programming Example
The following programming examples execute the RCHK instruction.
• When Input Data (MW00000) = 80, Lower Limit = 100, and Upper Limit = 1,000

The INC instruction on the right end of the line is not executed because the value of the input
data is less than the lower limit and turns the bit output OFF.

• When Input Data (MW00000) = 500, Lower Limit = 100, and Upper Limit = 1,000
The INC instruction on the right end of the line is executed because the value of the input
data is within the range that is greater than or equal to the lower limit and less than or equal
to the upper limit, which sets the bit output to 1.

• When Input Data (MW00000) = 1,000, Lower Limit = 100, and Upper Limit = 1,000
The INC instruction on the right end of the line is executed because the value of the input
data is within the range that is greater than or equal to the lower limit and less than or equal
to the upper limit, which sets the bit output to 1.

4.5 Program Control Instructions

4.5.1 Call Sequence Program (SEE)

4-75

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

4.5 Program Control Instructions

4.5.1 Call Sequence Program (SEE)
A child drawing is called from a parent drawing, or a grandchild drawing is called from a child
drawing.

Format
The format of this instruction is shown below.

Programming Example
The SEE instruction calls drawing H01.02 when the MB000000 relay is ON. Thereafter, the pro-
cess is executed and execution resumes from the next step after the SEE instruction. The SEE
instruction does not call drawing H01.02 if the MB000000 relay is OFF.

I/O Item Applicable Data Types

Name (Program number) Registers may not be used. Specify the program number directly.
The name of the specified program appears below the program number.

Parent Drawing

Child Drawing

Program called.

SEE
instruction

Program number Program name

Icon:

Key entry: SEE

4.5 Program Control Instructions

4.5.2 Call Motion Program (MSEE)

4-76

4.5.2 Call Motion Program (MSEE)
The specified motion program is called.
Motion programs can be called only from H drawings.

Format
The format of this instruction is shown below.

* M or D register only.

The following table shows the configuration of the work registers.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Program No.
(Program number) × * × × × × × × 

Data
(First work register) × × × × × × * × ×

Address Data Type Name Contents I/O

0 W Status Flags Motion Program Status Flags OUT

1 W Control Signals Motion Program Control Signals IN

2 W Interpolation Override

The override is used when executing interpo-
lation instructions.
Range: 0 to 32,767
Unit: 1 = 0.01%

IN

3 W System Work Number This is the system work number that calls the
motion program. IN

Specify the program number from 1 to 512.
Refer to the following manual for details on motion programs.

MP3000 Series Motion Programming Manual (Manual No. SIEP C880725 14)

Drawing

Motion Program

Motion program called.

MSEE
instruction

First work registerProgram number

Key entry: MSEE

Icon:

Information

4.5 Program Control Instructions

 4.5.2 Call Motion Program (MSEE)

4-77

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Programming Example
The following programming example shows how to execute the motion program MPM001 with
program number 1.
When the IB00000 relay turns ON, the Request for Start of Program Operation (DB000010) in
the control signals turns ON and executes the MPM001 motion program.
• Direct Designation

The program number is directly set to 1.

• Indirect Designation
The program number is set to MW0000.

Continue execution of the MSEE instruction until execution of the motion program is completed.
When using indirect addressing, do not change the register value until the execution of the
motion program is completed.

Important

4.5 Program Control Instructions

4.5.3 Call User Function (FUNC)

4-78

4.5.3 Call User Function (FUNC)
A user function is called. The user function must be defined before it can be called.
The Call User Function (FUNC) instruction can be nested to up to eight levels.
Refer to the following section for details on user functions.

1.3 Introduction − 1.3.3 User Functions on page 1-13

Format
The format of this instruction is shown below.

Programming Example
Refer to the following section for programming examples for user functions.

1.3 Introduction − 1.3.3 User Functions on page 1-13

I/O Item Applicable Data Types

Name (Program number) Registers may not be used. Specify the program number directly.
The name of the specified program appears above the instruction.

Function input The register that is set in the function’s input definition can be used.

Function output The register that is set in the function’s output definition can be used.

Ladder Drawing

User Function

User function called.

FUNC
instruction

Program name

Program number

Icon:

Key entry: FUNC

Function input Function output

4.5 Program Control Instructions

 4.5.4 Direct Input String (INS)

4-79

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

4.5.4 Direct Input String (INS)
The INS instruction is executed in user programs to input data separately from the I/O process-
ing that is performed by the system at the start of the high-speed and low-speed scans. When
the INS instruction is executed, the inputs from the specified Module are processed according
to the settings in the parameter table. The next instruction is not executed until input process-
ing is completed.

The following Modules can be specified.
• LIO-01/02 Module (LIO)
• LIO-04/05 Module (LIO32)
• LIO-06 Module (MIXIO)
• AI-01 Module (AI)

Format
The format of this instruction is shown below.

*1. C and # registers cannot be used.
*2. Optional.

The following figure shows the structure of the parameter table.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Prm (First address of
parameter table) × × × × × × *1 × ×

Sts (Status)*2 *1 × × × × × × × ×

Address Data Type Symbol Name Specification I/O

0 W RSSEL Unit selection 1
Specify the Module to input from.

IN

1 W MDSEL Unit selection 2 IN

2 W STS Status Each bit receives the input status for one word.
0: Normal 1: Error OUT

3 W N Number of words Specify the number of continuous words. IN

4 W ID1 Input data 1
Receives the data that was input.
Contains 0 if an error occurs.

OUT

: : : : :

N + 3 W IDN Input data N OUT

Batch
outputs

Batch
inputs

Start of scan Processing
of drawings

Remaining
processing
of drawings

Inputs

INS instruction

Normally, the outputs and inputs
are processed at once for each
Module at the start of the
high-speed and low-speed scans.

These inputs are input from the Module
specified in the INS instruction, separately
from the batch inputs. Processing of the
drawings stops until the inputs are
processed.

Icon:

Key entry: INS

StatusFirst address of
parameter table

4.5 Program Control Instructions

4.5.4 Direct Input String (INS)

4-80

The following table gives details about the parameters in the Machine Controller.

*1. A unit number setting of 0 specifies unit number 1.
*2. If a channel for which the allocation has been deleted in the AI Module detailed definition is specified for the INS

instruction, the applicable channel number will be output for the bit. This is because it is not possible to read the
data on channels for which allocations have been deleted. The relation between bits and channels is shown
below.
Bit 0: Channel 1
Bit 1: Channel 2
Bit 2: Channel 3
Bit 3: Channel 4
Bit 4: Channel 5
Bit 5: Channel 6
Bit 6: Channel 7
Bit 7: Channel 8

Programming Example
When one word is input from the LIO at subslot number 1 on the LIO-01 Module mounted in
rack 1, unit 1, and slot 2, the input data of the LIO is stored in the MW00014 status word.

Parameter
Module Name

LIO-01/02
(LIO)

LIO-04/05
(LIO32)

LIO-06
(MIXIO)

AI-01
(AI)

DI-01
(DI)

RSSEL

Specify the rack, unit, slot, and subslot of the target Module.
Hexadecimal notation: zxuy hex
x: Rack number from 1 to 7
u: Unit number from 0 to 4*1

y: Slot number from 0 to 9
z: Subslot number from 1 to maximum value (determined by Module specifications)

MDSEL 0 (Not used.) Offset: 0 or 1 Channel number
- 1: 0 or 1

Channel number
- 1: 0 to 7 Offset: 0 to 3

STS Always 0. Always 0. Always 0. *2 Always 0.

N 1 1 to 2
 −MDSEL

1 to 2
 −MDSEL

1 to 8
 −MDSEL

1 to 4
−MDSEL

4.5 Program Control Instructions

 4.5.5 Direct Output String (OUTS)

4-81

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

4.5.5 Direct Output String (OUTS)
The OUTS instruction is executed in user programs to output data separately from the I/O pro-
cessing that is performed by the system at the start of the high-speed and low-speed scans.
When the OUTS instruction is executed, the outputs to the specified Module are processed
according to the settings in the parameter table.
The following Modules can be specified.
• LIO-01/02 Module (LIO)
• LIO-04/05 Module (LIO32)
• LIO-06 Module (MIXIO)
• DO-01 Module (DO)
• AO-01 Module (AO)

Format
The format of this instruction is shown below.

*1. C and # registers cannot be used.
*2. Optional.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Prm (First address of
parameter table) × × × × × × *1 × ×

Sts (Status)*2 *1 × × × × × × × ×

Batch
outputs

Batch
inputs

Start of scan
Processing
of drawings

Remaining
processing
of drawings

Outputs

OUTS instruction

These outputs are sent to the Module specified
by the OUTS instruction, separately from the
batch outputs. Processing of the drawings stops
until the outputs are processed.

Normally, the outputs and inputs
are processed at once for each
Module at the start of the
high-speed and low-speed scans.

First address of
parameter table

Status

Icon:

Key entry: OUTS

4.5 Program Control Instructions

4.5.5 Direct Output String (OUTS)

4-82

The following figure shows the structure of the parameter table.

The following table gives details about the parameters in the Machine Controller.

*1. A unit number setting of 0 specifies unit number 1.
*2. If a channel for which the allocation has been deleted in the AO Module detailed definition is specified for the

OUTS instruction, the applicable channel number will be output for the bit. This is because it is not possible to
read the data on channels for which allocations have been deleted. The relation between bits and channels is
shown below.
Bit 0: Channel 1
Bit 1: Channel 2
Bit 2: Channel 3
Bit 3: Channel 4

Programming Example
When one word is output to the LIO at subslot number 1 on the LIO-01 Module mounted in
rack 1, unit 1, and slot 2, the data in the MW00014 status word is output to LIO.

Address Data Type Symbol Name Specification I/O

0 W RSSEL Unit selection 1
Specify the Module to output to.

IN

1 W MDSEL Unit selection 2 IN

2 W STS Status
Each bit receives the input status for one
word.
0: Normal 1: Error

OUT

3 W N Number of words Specify the number of output words
(always 1). IN

4 W OD1 Output data 1

Specify the data to output.

OUT

: : : : :

N + 3 W ODN Output data N OUT

Parameter
Module Name

LIO-01/02
(LIO)

LIO-04/05
(LIO32)

LIO-06
(MIXIO)

DO-01
(DO)

AO-01
(AO)

RSSEL

Specify the rack, unit, slot, and subslot of the target Module.
Hexadecimal notation: zxuy hex
x: Rack number from 1 to 7
u: Unit number from 0 to 4*1

y: Slot number from 0 to 9
z: Subslot number from 1 to maximum value (determined by Module specifications)

MDSEL 0 (Not used.) Offset: 0 or 1 Offset: 0 or 1 Offset: 0 to 3 Channel number
- 1: 0 to 3

STS Always 0. Always 0. Always 0. Always 0. *2

N 1 1 to 2
− MDSEL

1 to 2
− MDSEL

1 to 4
− MDSEL

1 to 4
− MDSEL

4.5 Program Control Instructions

 4.5.6 Call Extended Program (XCALL)

4-83

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

4.5.6 Call Extended Program (XCALL)
An extended program, such as a table program that contains a table of constants, is executed.
The MPE720 converts an extended program into a ladder program. Converted ladder pro-
grams can be executed with the XCALL instruction.
Although more than one XCALL instruction can be used in a single drawing, the same
extended program cannot be called more than once.

Format
The format of this instruction is shown below.

Programming Example
This example shows how to call a MCTBL constants table.

I/O Item Applicable Data Types

Name (Program type) Registers may not be used. Specify the following type.
MCTBL: Constants table

I/O conversion tables, interlock tables, and part assembly tables cannot be used with the
Machine Controller.

Ladder Drawing

Extended Program

Extended program called.

XCALL
instruction

Program type

Icon:

Key entry: XCALL

Information

4.5 Program Control Instructions

4.5.7 WHILE Construct (WHILE, END_WHILE)

4-84

4.5.7 WHILE Construct (WHILE, END_WHILE)
The programming between the WHILE and END_WHILE instructions is executed when the con-
ditional expression for the WHILE instruction is satisfied. After the last line is executed, program
execution returns to the WHILE instruction. Execution of the programming is repeated for as
long as the conditional expression is satisfied.
If the conditional expression is not satisfied, program execution jumps to the next step follow-
ing the END_WHILE instruction. None of the programming between the WHILE and
END_WHILE instructions is executed.

*1. The programming is executed and then execution returns to the WHILE instruction.
*2. The programming is not executed and execution jumps to the next step.

Format
The format of this instruction is shown below.

* Write with the format for an EXPRESSION instruction.
Refer to the following appendix for details on the format used to write the expression.

Appendix C Format for EXPRESSION Instructions

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Conditional
expression * * * * * * × * *

Next step

Satisfied.*1

Not satisfied.*2

Programming

END_WHILE

Condition
satisfied?

WHILE instruction
<conditional expression>

Icon:

Key entry: WHILE and WEND

Conditional
expressionProgramming

4.5 Program Control Instructions

 4.5.7 WHILE Construct (WHILE, END_WHILE)

4-85

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Programming Example
In the following programming example, the registers from MW00100 to MW00105 are added
together and stored in the MW00000 register.
The conditional expression is I ≤ 5, so the ADD (+) instruction is executed while I is 0 to 5.
The conditional expression is no longer satisfied when I is 6, so program execution jumps to
the next step following the END_WHILE instruction.

Additional Information

 Applicable Conditional Expressions
The conditional expression for a WHILE instruction must be written with the format for an
EXPRESSION instruction to produce a Boolean (TRUE or FALSE) result. Numerical expressions
that include substitution operators will not be recognized.

Note: Refer to the following appendix for details on applicable instructions, operation order, and notation conven-
tions.

Appendix C Format for EXPRESSION Instructions

 Nesting Depth
The FOR, WHILE, and IF constructs can contain other constructs. This is called nesting. The
maximum depth of a nested structure that uses FOR, WHILE, and IF statements is limited to 8
levels.

If an instruction is preceded by a contact, it is treated like an IF construct and is included in the
number of nesting levels.

Execution of the programming is repeated for as long as the conditional expression for the
WHILE instruction is satisfied.
If the conditional expression never becomes unsatisfied, or if it takes too much time to become
unsatisfied, the Machine Controller system will shut down.
In the example given above, an endless loop would occur if the programming did not include the
instruction that increments I.

Expression Example Notation Remarks

MB000001 == true OK True: ON

MB000001 != false OK False: OFF

MW00002 < 100 OK

MF00002 < sin(60.0) OK

MW00001 == 0x00FF OK OK Prefix hexadecimal numbers with 0x.

MB000001 = true NG

MW00001 = MW00002 NG

Important

4.5 Program Control Instructions

4.5.8 FOR Construct (FOR, END_FOR)

4-86

4.5.8 FOR Construct (FOR, END_FOR)
The programming between the FOR and END_FOR instructions is repeatedly executed.
The initial value starts with the value in a register specified as the variable. This variable is incre-
mented by the step value each time execution is repeated.
The conditional expression for the FOR instruction is no longer satisfied when the value of the
variable exceeds the maximum value, so program execution jumps to the next step.

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Var (Variable) × * × × × × ×  ×
Init (Initial value) ×  × × × × ×  

Max (Maximum value) ×  × × × × ×  

Step (Step value) ×  × × × × ×  

Next step

Variable ≤ Maximum
 value?

Satisfied.

Not satisfied.

Variable = Variable + Step value

Initialization of FOR
instruction variable

END_FOR

Programming

,

Programming

Variable Initial value Maximum value Step value

Icon:

Key entry: FOR and FEND

4.5 Program Control Instructions

 4.5.8 FOR Construct (FOR, END_FOR)

4-87

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Programming Example
In the following programming example, the registers from MW00100 to MW00105 are added
together and stored in the MW00000 register.
In this example, variable I is initialized to 0 by storing 0. Thereafter, the ADD (+) instruction is
executed until variable I exceeds the maximum value of 5. The conditional expression is no lon-
ger satisfied when I is 6, so program execution jumps to the next step following the END_FOR
instruction.

Additional Information
The FOR, WHILE, and IF constructs can contain other constructs. This is called nesting. The
maximum depth of a nested structure that uses FOR, WHILE, and IF statements is limited to 8
levels.
If an instruction is preceded by a contact, it is treated like an IF construct and is included in the
number of nesting levels.

4.5 Program Control Instructions

4.5.9 IF Construct (IF, END_IF)

4-88

4.5.9 IF Construct (IF, END_IF)
Execution of the programming between the IF and END_IF instructions is repeated for as long
as the conditional expression for the IF instruction is satisfied.

The programming is not executed if the conditional expression is not satisfied.

*1. The programming is executed and execution jumps to the next step.
*2. The programming is not executed and execution jumps to the next step.

Format
The format of this instruction is shown below.

* Write with the format for an EXPRESSION instruction.
Refer to the following appendix for details on the format used to write the expression.

Appendix C Format for EXPRESSION Instructions

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Conditional
expression * * * * * * × * *

Next step

Condition
satisfied?

Satisfied.*1

Not satisfied.*2

Programming

END_IF

IF instruction
<conditional expression>

,

Programming 1

Icon:

Key entry: IF and IEND

Conditional
expression

4.5 Program Control Instructions

 4.5.9 IF Construct (IF, END_IF)

4-89

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Programming Example
When the conditional expression (MB000001) for the IF instruction turns ON, the value of
MW00010 is set in MW01000 and MW00011 is incremented.

Additional Information

 Applicable Conditional Expressions
The conditional expression for an IF instruction must be written with the format for an EXPRES-
SION instruction to produce a Boolean (TRUE or FALSE) result. Numerical expressions that
include substitution operators will not be recognized.

Note: Refer to the following appendix for details on applicable instructions, operation order, and notation conven-
tions.

Appendix C Format for EXPRESSION Instructions

 Nesting Depth
The FOR, WHILE, and IF constructs can contain other constructs. This is called nesting. The
maximum depth of a nested structure that uses FOR, WHILE, and IF statements is limited to 8
levels.
If an instruction is preceded by a contact, it is treated like an IF construct and is included in the
number of nesting levels.

Expression Example Notation Remarks

MB000001 == true OK True: ON

MB000001 != false OK False: OFF

MW00002 < 100 OK

MF00002 < sin(60.0) OK

MW00001 == 0x00FF OK OK Prefix hexadecimal values with 0x.

MB000001 = true NG

MW00001 = MW00002 NG

4.5 Program Control Instructions

4.5.10 IF-ELSE Construct (IF, ELSE, END_IF)

4-90

4.5.10 IF-ELSE Construct (IF, ELSE, END_IF)
When the conditional expression for the IF instruction is satisfied, only programming 1 is exe-
cuted. Programming 2 is not executed.

If the conditional expression is not satisfied, only programming 2 is executed. Programming 1 is
not executed.

*1. Programming 1 is executed and execution jumps to the next step.
*2. Programming 2 is executed and execution jumps to the next step.

Format
The format of this instruction is shown below.

* Write with the format for an EXPRESSION instruction.
Refer to the following appendix for details on the format used to write the expression.

Appendix C Format for EXPRESSION Instructions

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Conditional
expression * * * * * * × * *

IF instruction
<conditional expression>

Next step

Condition
satisfied?

Satisfied.*1

Not satisfied.*2

ELSE

Programming 1 Programming 2

END_IF

Programming 1

Programming 2

, , andIcon:

Key entry: IF, ELSE, and IEND

Conditional
expression

4.5 Program Control Instructions

 4.5.11 Expression (EXPRESSION)

4-91

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Programming Example
When the conditional expression (MB000001) for the IF instruction turns ON, the value of
MW00010 is set in MW01000 and MW00011 is incremented. When the conditional expression
(MB000001) for the IF instruction turns OFF, the value of MW00009 is set in MW01000.

Additional Information
The conditional expressions that can be used, and the nesting depth is the same as for IF con-
structs.

4.5.11 Expression (EXPRESSION)
An expression may contain the following elements:
• A variable name or structure can be used in place of a register, similar to C language.
• Basic functions such as the SIN and COS functions.
• Arithmetic operators, logical operators, comparison operators, and substitution operators
• Arrays

EXPRESSION Instruction

MW00000 = 10;
MW00001 = DATA1;
ML00002 = MW00000 + 100;
MF00004 = sin(MF00006);
MW00006 = 0x3FFF;

…

4.5 Program Control Instructions

4.5.11 Expression (EXPRESSION)

4-92

Format
The format of this instruction is shown below.

* Write with the format for an EXPRESSION instruction.
Refer to the following appendix for details on the format used to write the expression.

Appendix C Format for EXPRESSION Instructions

Programming Example
In the following programming example, multiple operations are programmed in a single
EXPRESSION instruction.

Additional Information
The EXPRESSION instruction can be programmed with numeric expressions in addition to
expressions that return Boolean TRUE or FALSE values.

Note: Refer to the following appendix for details on applicable instructions, operation order, and notation conven-
tions.

Appendix C Format for EXPRESSION Instructions

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Operation expression * * * * * * × * *

Expression Example Notation Remarks

MB000000 = true; OK True: ON

MW00000 = MW00001+10 OK −
MW00000 = 0x00FF; OK Prefix hexadecimal values with 0x.

MB000000 == true; NG −
MW00001 > MW00000; NG −

Icon:

Key entry: EXPR
Operation expression

4.6 Basic Function Instructions

4.6.1 Square Root (SQRT)

4-93

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

4.6 Basic Function Instructions

4.6.1 Square Root (SQRT)
The square root of the integer or real number input data is calculated and the result is stored in
the output data.
Double-length integers cannot be used.

 Integer SQRT: The Input Data and Output Data Are Integer Data.

 Real Number SQRT: For Any Other Data Types

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

If the input data is less than 0, the absolute value of the input data will be used to perform the
operation and output the result.

With integer SQRT instructions, the result is calculated using the following formula, unlike the
square root used in mathematics.

This is the same as multiplying the result of the mathematical square root by . If the
input is a negative number, the square root of the absolute value is calculated, and the nega-
tive number is given as the operation result. The maximum operation error is ±2.

The SQRT instruction uses the immediately preceding operation result (real number data) as
the input and returns the square root as real number data.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Src (Input data) ×  × ×   ×  

Dest (Output data) × * × × * * ×  ×

Information

Input data × 32,768 Output data

Information

sign (input data) input data 32,768× ×

32,768

Output dataInput data

Information

Key entry: SQRT

Icon:

Input data Output data

4.6 Basic Function Instructions

4.6.2 Sine (SIN)

4-94

Programming Example
The following programming examples demonstrate the SQRT instruction using integer and real
number input data.
• Integer SQRT

The square root of 64, an integer in the input data in MW00000, is multiplied by 128 and
the result is stored in the output data in DW00000.

 × 128 → DW00000 = 1448

• Real Number SQRT
The square root of 64.0, a real number in the input data in MF00000, is calculated and the
result is stored in the output data in DF00000.

 → DF00000 = 8.0

4.6.2 Sine (SIN)
The sine of the integer or real number input data is calculated and the result is stored in the
output data.
Double-length integers cannot be used.

 Integer Input Data and Output Data

Note: 1. The input data is in degrees, where 1 = 0.01 degree.
2. The operation result is multiplied by 10,000 and stored in the output data.

 Real Number Input Data and Output Data

Note: The input data is in degrees.

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

2

64 2

64.0

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Src (Input data) ×  × ×   ×  

Dest (Output data) × * × × * * ×  ×

Input data) × 10,000 Output dataSIN (

Input data) Output dataSIN (

Icon:

Key entry: SIN

Input data Output data

4.6 Basic Function Instructions

 4.6.3 Cosine (COS)

4-95

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

 Integer
The input data is in degrees, where 1 = 0.01 degree.
Therefore, the SIN function instruction can operate on values between -327.78 and 327.67
degrees.
The output of the SIN function is multiplied by 10,000, so the data will be output between -
10,000 and 10,000.

 Real Number
The input data is in degrees.

Programming Example
The following programming examples demonstrate the SIN instruction using integer and real
number input data.
• Integer SIN

The sine of 9,000, an integer in the input data in MW00000, is calculated and the result is
stored in the output data in DW00000.

SIN (90.00 deg) × 10,000 → DW00000 = 10,000

• Real Number SIN
The sine of 90.0, a real number in the input data in MF00000, is calculated and the result is
stored in the output data in DF00000.

SIN (90.0 deg) → DF00000 = 1.0

4.6.3 Cosine (COS)
The cosine of the integer or real number input data is calculated and the result is stored in the
output data.
Double-length integers cannot be used.

 Integer Input Data and Output Data

Note: 1. The input data is in degrees, where 1 = 0.01 degree.
2. The operation result is multiplied by 10,000 and stored in the output data.
3. The input data must be between -327.68 and 32.767 degrees. Any other number will not produce

the correct result.

 Real Number Input Data and Output Data

Note: The input data is in degrees.

Input data) × 10,000 Output dataCOS (

Input data) Output dataCOS (

4.6 Basic Function Instructions

4.6.3 Cosine (COS)

4-96

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

 Integer
The input data is in degrees, where 1 = 0.01 degree.

Therefore, the COS function instruction can operate on values between -327.78 and 327.67
degrees.

The output of the COS function is multiplied by 10,000, so the data will be output between -
10,000 and 10,000.

 Real Number
The input data is in degrees.

Programming Example
The following programming examples demonstrate the COS instruction using integer and real
number input data.
• Integer COS

The cosine of 18,000, an integer in the input data in MW00000, is calculated and the result is
stored in the output data in DW00000.

COS (180.00 deg) × 10,000 → DW00000 = −10,000

• Real Number COS
The cosine of 180.0, a real number in the input data in MF00000, is calculated and the result
is stored in the output data in DF00000.

COS (180.0 deg) → DF00000 = −1.0

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Src (Input data) ×  × ×   ×  

Dest (Output data) × * × × * * ×  ×

Icon:

Key entry: COS

Input data Output data

4.6 Basic Function Instructions

 4.6.4 Tangent (TAN.)

4-97

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

4.6.4 Tangent (TAN.)
The tangent of the real number input data is calculated and the result is stored in the output
data.

Note: The input data is in degrees.

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

Programming Example
In the following programming example, the tangent of 45 in input data in MW00000 is calcu-
lated and the result is stored in the output data in DF00000.

TAN (45.0 deg) → DF00000 = 1.0

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Src (Input data) × × × ×   × × 

Dest (Output data) × × × × * * × × ×

Input data) Output dataTAN (

Key entry: TAN

Icon:

Input data Output data

4.6 Basic Function Instructions

4.6.5 Arc Sine (ASIN)

4-98

4.6.5 Arc Sine (ASIN)
The arc sine of the real number input data is calculated and the result is stored in the output
data.

Note: The output data is in degrees.

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

Set the input data to a value between -1.0 and 1.0. The output is set to 0 if the input value is
out of range.

Programming Example
In the following programming example, the arc sine of 1.0 in input data in MF00000 is calcu-
lated and the result is stored in the output data in DF00000.
SIN (1.0) −1 → DF00000 = 90.0 (degrees)

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Src (Input data) × × × ×   × × 

Dest (Output data) × × × × * * × × ×

Input data) Output dataSIN (
-1

Icon:

Key entry: ASIN

Input data Output data

4.6 Basic Function Instructions

 4.6.6 Arc Cosine (ACOS)

4-99

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

4.6.6 Arc Cosine (ACOS)
The arc cosine of the real number input data is calculated and the result is stored in the output
data.

Note: The output data is in degrees.

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

Set the input data to a value between -1.0 and 1.0. The output is set to 0 if the input value is
out of range.

Programming Example
In the following programming example, the arc sine of 0.5 in input data in MF00000 is calcu-
lated and the result is stored in the output data in DF00000.
COS (0.5) -1 → DF00000 = 60.0 (degrees)

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Src (Input data) × × × ×   × × 

Dest (Output data) × × × × * * × × ×

Input data) Output dataCOS (
-1

Icon:

Key entry: ACOS

Input data Output data

4.6 Basic Function Instructions

4.6.7 Arc Tangent (ATAN)

4-100

4.6.7 Arc Tangent (ATAN)
The arc tangent of the real number input data is calculated and the result is stored in the output
data.

Note: The output data is in degrees.

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

Programming Example
In the following programming example, the arc tangent of 1.0 in input data in MF00000 is cal-
culated and the result is stored in the output data in DF00000.

TAN (1.0) -1 → DF00000 = 45.0 (degrees)

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Src (Input data) ×  × ×   × × 

Dest (Output data) ×  × × * * × × ×

Input data) Output dataTAN (
-1

Icon:

Key entry: ATAN

Input data Output data

4.6 Basic Function Instructions

 4.6.8 Exponential (EXP)

4-101

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

4.6.8 Exponential (EXP)
The value obtained by raising base e of the natural logarithm to the real number input data is
calculated and the result is stored in the output data.

Note: “e” is the base of the natural logarithm.

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

Programming Example
The following programming example calculates base e of the natural logarithm raised to 1.0 in
the input data in MF00000, and stores the result in the output data in DF00000.

e 1.0 → DF00000 = 2.718282

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Src (Input data) × × × ×   × × 

Dest (Output data) × × × × * * × × ×

If the operation result overflows, the output data will be set to the maximum value 3.402E+38
and an operation error will not occur.

Input data
Output datae

Key entry: EXP

Icon:

Input data Output data

Information

4.6 Basic Function Instructions

4.6.9 Natural Logarithm (LN)

4-102

4.6.9 Natural Logarithm (LN)
The natural logarithm of X (loge X), when the real number input data is X, is calculated and the
result is stored in the output data.

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

If the input data is less than 0, the absolute value of the input data will be used to perform the
operation and output the result.

The output data is set to -∞ if the input value is 0.

Programming Example
The following programming example calculates the natural logarithm when the input data is
2.718282 (≈ e) in MF00000, and stores the result in the output data in DF00000.

Loge2.718282 ≈ logee → DF00000 = 1.0

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Src (Input data) × × × ×   × × 

Dest (Output data) × × × × * * × × ×

Input data Output dataloge

Icon:

Key entry: LN

Input data Output data

4.6 Basic Function Instructions

 4.6.10 Common Logarithm (LOG)

4-103

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

4.6.10 Common Logarithm (LOG)
The common logarithm of X (log10 X), when the real number input data is X, is calculated and
the result is stored in the output data.

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

If the input data is less than 0, the absolute value of the input data will be used to perform the
operation and output the result.

The output data is set to -∞ if the input value is 0.

Programming Example
The following programming example calculates the common logarithm when the input data is
10.0 in MF00000, and stores the result in the output data in DF00000.

 log10
 10.0 → DF00000 = 1.0

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Src (Input data) × × × ×   × × 

Dest (Output data) × × × × * * × × ×

Input data Output datalog10

Key entry: LOG

Icon:

Input data Output data

4.7 Data Shift Instructions

4.7.1 Bit Rotate Left (ROTL)

4-104

4.7 Data Shift Instructions

4.7.1 Bit Rotate Left (ROTL)
The data specified by the first bit address and bit width is rotated to the left by the specified
number of bits.

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

Programming Example
In the following programming example, the data specified as 8-bit wide from the first bit
address at MB000000 is rotated to the left two bits.
The ROTL instruction is executed when switch 1 (DB000000) turns ON.

The following figure shows the operation when MW00000 is 12345 (3039 hex).

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Adr (First bit address) * × × × × × × × ×
Num (Number of bits
to rotate) ×  × × × × ×  

Width (Bit width) ×  × × × × ×  

Bit width (m)

First bit
address

m-1 m-2 m-3 4 3 2 1 0

Rotated.

Key entry: ROTL

Icon:

Bit widthNumber of
bits to rotateFirst bit address

0

Bit 0Bit 7Bit F Bit 3Bit B Bit 4Bit 8Bit CBefore
Execution

MW00000
(3039 hex)

0 1 1 0 0 0 0 0 0 1 1 1 0 0 1

0 0 1 1 0 0 0 0 1 1 1 0 0 1 0 0

Rotated 2 bits to the left.

Data specified by the first
bit address and bit width

After
Execution

MW00000
(30E4 hex)

4.7 Data Shift Instructions

 4.7.2 Bit Rotate Right (ROTR)

4-105

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

4.7.2 Bit Rotate Right (ROTR)
The data specified by the first bit address and bit width is rotated to the right by the specified
number of bits.

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

Programming Example
In the following programming example, the data specified as 8-bit wide from the first bit
address at MB000000 is rotated to the right two bits.
The ROTR instruction is executed when switch 1 (DB000000) turns ON.

The following figure shows the operation when MW00000 is 12345 (3039 hex).

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Adr (First bit address) * × × × × × × × ×
Num (Number of bits
to rotate) ×  × × × × ×  

Width (Bit width) ×  × × × × ×  

Bit width (m)

First bit
address

Rotated.

m-1 m-2 m-3 4 3 2 1 0

Key entry: ROTR

Icon:

Bit widthNumber of
bits to rotateFirst bit address

0

Bit 0Bit 7Bit F Bit 3Bit B Bit 4Bit 8Bit CBefore
Execution

MW00000
(3039 hex)

0 1 1 0 0 0 0 0 0 1 1 1 0 0 1

0 0 1 1 0 0 0 0 0 1 0 0 1 1 1 0

Rotated 2 bits to the right.

Data specified by the first
bit address and bit width

After
Execution

MW00000
(304E hex)

4.7 Data Shift Instructions

4.7.3 Move Bit (MOVB)

4-106

4.7.3 Move Bit (MOVB)
The designated number of bits of data is moved from memory starting at the first source bit
address to memory starting at the first destination bit address.

Note: The bits are moved one bit at a time from the lowest relay address.
If the source area and destination area overlap, the source data that is actually moved may not be the data
that was in the source area when the instruction was executed.

The following diagram shows an example where the source area and destination area overlap.

1 1 0 0 0 1

1 1 0 0 0 1

Source area

Destination area

Bit data moved.

First source bit address

First destination bit address

Number of bits to move m

0m

Number of bits to move m

• • •

d c b a 0 00 00

b a b a 0 0b a0

���

0347 18 256

Source area
(shaded portion)

Destination area
(shaded portion)

Overlap
First source bit address

MB000002

First destination bit address
MB000004

0

0

F …

…

…

Bit status is moved in the following order: � to
. This means that
the status of bits 2 and 3 are moved to bits 4 and 5 (� and �) and
then the status of bits 4 and 5 are moved (� and
).

4.7 Data Shift Instructions

 4.7.3 Move Bit (MOVB)

4-107

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

Programming Example
In the following programming example, 4 bits of data starting from the first source bit address
at MB000010 are moved to memory starting as the first destination bit address at MB000020.

The MOVE instruction is executed when switch 1 (DB000000) turns ON.

The following table illustrates how the data in the source area is moved to the destination area.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Src (First source bit
address)  × × × × × × × ×

Dest (First destination
bit address) * × × × × × × × ×

Width (Number of bits
to move) ×  × × × × ×  

Source area Destination area

Register Data Register
Data before Execution

of Instruction
Data after Execution

of Instruction

MB000010 0


MB000020 0 0

MB000011 1 MB000021 0 1

MB000012 1 MB000022 0 1

MB000013 1 MB000023 0 1

Number of
bits to moveFirst source bit address

Key entry: MOVB

Icon:

First destination bit address

4.7 Data Shift Instructions

4.7.4 Move Word (MOVW)

4-108

4.7.4 Move Word (MOVW)
The designated number of words of data are moved from memory starting at the first source
word address to memory starting at the first destination word address.

Note: The words are moved one word at a time from the lowest register address.
If the source area and destination area overlap, the source data that is actually moved may not be the data
that was in the source area when the instruction was executed.

The following diagram shows an example where the source area and destination area overlap.

6 5 4 3 2 1

6 5 4 3 2 1

Source area

Destination area

Word data moved.

First source word address

First destination word address

Number of words to move m

0m

Number of words to move m

d c b a 0 00 00

b a b a 0 0b a0

0347 18 256

Source area
(shaded portion)

Destination area
(shaded portion)

Overlap
First source word address

MW00002

First destination word address
MW00004

0

0

F …

…

…

���

Word contents are moved in the following order: � to
. This means
that the contents of MW00002 and MW00003 are moved to MW00004
and MW00005 (� and �) and then the contents of MW00004 and
MW00005 are moved (� and
).

4.7 Data Shift Instructions

 4.7.4 Move Word (MOVW)

4-109

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

Programming Example
In the following programming example, 4 words of data starting from the first source word
address at MW00010 are moved to memory starting at the first destination word address at
MW00020.
The MOVW instruction is executed when switch 1 (DB000000) turns ON.

The following table illustrates how the data in the source area is moved to the destination area.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Src (First source
word address) ×  × × × × ×  ×

Dest (First destina-
tion word address) × * × × × × ×  ×

Width (Number of
words to move) ×  × × × × ×  

Source area Destination area

Register Data Register
Data before Execution

of Instruction
Data after Execution

of Instruction

MW00010 10


MW00020 0 10

MW00011 20 MW00021 0 20

MW00012 30 MW00022 0 30

MW00013 40 MW00023 0 40

Icon:

Key entry: MOVW

Number of
words to move

First destination
word address

First source
word address

4.7 Data Shift Instructions

4.7.5 Exchange (XCHG)

4-110

4.7.5 Exchange (XCHG)
The designated number of data items are exchanged between table 1 and table 2.
The data contents of table 1 and table 2 specified by data table start 1, data table start 2, and
the number of words to move are exchanged.

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Table1 (Data table start 1) × * × × × × × × ×
Table2 (Data table start 2) × * × × × × × × ×
Width (Number of words
to move) ×  × × × × ×  

Table 1 data
table start 1

Table 2 data
table start 2

Number
of words
to move

1

2

3

4

5

11

12

13

14

15

Table 1 Table 2

11

12

13

14

15

1

2

3

4

5

Data exchanged.

6 16 6 16

Key entry: XCHG

Icon:

Number of
words to moveData table start 2Data table start 1

4.7 Data Shift Instructions

 4.7.6 Table Initialization (SETW)

4-111

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Programming Example
In the following programming example, 4 words of data are exchanged between table 1, which
starts at MW00010, and table 2, which starts at MW00020.
The XCHG instruction is executed when switch 1 (DB000000) turns ON.

The following table illustrates how the data is exchanged between table 1 and table 2.

4.7.6 Table Initialization (SETW)
The designated data is stored in all registers in the area designated by the first register address
and number of words to set. The data is stored one word at a time from the lowest register
address to the highest.

Table 1 Table 2

Register
Data before
Execution of
Instruction

Data after
Execution of
Instruction

Register
Data before
Execution of
Instruction

Data after
Execution of
Instruction

MW00010 10 123 MW00020 123 10

MW00011 20 234 ⇔ MW00021 234 20

MW00012 30 345 MW00022 345 30

MW00013 40 456 MW00023 456 40

abcd abcd

abcd

abcd

abcd

abcd

Number of
words to set

First destination register address

MW�����

MW����� + 1

MW����� + 5

Move data

aaaa

4.7 Data Shift Instructions

4.7.6 Table Initialization (SETW)

4-112

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

Programming Example
In the following programming example, the area of 1,000 words from MW00000 is initialized to
the move data 0 on the first scan of the high-speed scan after the power is turned ON.

The following table illustrates how the registers are initialized to 0 after execution of the first
scan of the high-speed scan when the power is turned ON.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Dest (First destination
register address) × * × × × × × × ×

Data (Move data) ×  × × × × ×  

Width (Number of
words to move) ×  × × × × ×  

Register Data

MW00000 0

MW00001 0

 : :

MW00998 0

MW00999 0

Key entry: SETW

Icon:

First destination
register address Move data Number of

words to move

4.7 Data Shift Instructions

 4.7.7 Byte-to-word Expansion (BEXTD)

4-113

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

4.7.7 Byte-to-word Expansion (BEXTD)
The byte data of an area designated by the number of bytes from the first source register
address is expanded into individual word data, one byte at a time, and moved to an area des-
ignated by the number of bytes from the first destination register address. When the byte is
expanded into a word, the upper byte is set to 0.

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Src (First source
register address) ×  × × × × × × ×

Dest (First destination
register address) × * × × × × × × ×

Width (Number of bytes
to move) ×  × × × × ×  

a

b

c

d

a

00 hex

b

00 hex

c

00 hex

d

00 hex

Lower byte

Upper byte

Lower byte

Upper byte

Lower byte

Upper byte

Lower byte

Upper byte

e

MW�����

MW����� + 1

MW����� + 2

MW����� + 3

Lower byte

Upper byte

Lower byte

Upper byte

Lower byte

MW�����

MW����� + 1

Number of
bytes to
move

Source area Destination area

Key entry: BEXTD

Icon:

First source
register address

First destination
register address

Number of
bytes to move

4.7 Data Shift Instructions

4.7.8 Word-to-byte Compression (BPRESS)

4-114

Programming Example
In the following programming example, the data from an area of 4 bytes that starts from the first
source register address at MW00010 is moved to an area of 4 bytes that starts from the first
destination byte address at MW00020.

The BEXTD instruction is executed when switch 1 (DB000000) turns ON.

The following table illustrates how the byte data in the source area is expanded and moved into
word data in the destination area.

4.7.8 Word-to-byte Compression (BPRESS)
The lower byte of word data from the designated number of bytes starting from the first source
register address is stored in the designated number of bytes starting at the first destination reg-
istration address, one byte at a time. This instruction performs the opposite operation of the
BEXTD instruction.
The upper byte is discarded.

Source area Destination area

Register Data Register Data

MW00010 Lower byte 10 hex



MW00020 Lower byte 10 hex

Upper byte 20 hex Upper byte 00 hex

MW00011 Lower byte 30 hex MW00021 Lower byte 20 hex

Upper byte 40 hex Upper byte 00 hex

MW00022 Lower byte 30 hex

Upper byte 00 hex

MW00023 Lower byte 40 hex

Upper byte 00 hex

a

b

c

d

Lower byte

Upper byte

Lower byte

Upper byte

Lower byte

Upper byte

Lower byte

Upper byte

0

MW�����

MW����� + 1

MW����� + 2

MW����� + 3

Lower byte

Upper byte

Lower byte

Upper byte

Lower byte

MW�����

MW����� + 1

Number of
bytes to
move

Source area Destination area

a

e

b

f

c

g

d

h

4.7 Data Shift Instructions

 4.7.8 Word-to-byte Compression (BPRESS)

4-115

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

Programming Example
In the following programming example, the lower byte of data from an area of 4 bytes that
starts from the first source register address at MW00010 is moved to an area of 4 bytes that
starts from the first destination register address at MW00020.

The BPRESS instruction is executed when switch 1 (DB000000) turns ON.

The following table illustrates how the word data in the source area is compressed and moved
into byte data in the destination area.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Src (First source
register address) ×  × × × × × × ×

Dest (First destination
register address) × * × × × × × × ×

Width (Number of bytes
to move) ×  × × × × ×  

Source area Destination area

Register Data Register Data

MW00010 Lower byte 12 hex



MW00020 Lower byte 12 hex

Upper byte 23 hex Upper byte 34 hex

MW00011 Lower byte 34 hex MW00021 Lower byte 56 hex

Upper byte 45 hex Upper byte 78 hex

MW00012 Lower byte 56 hex

Upper byte 67 hex

MW00013 Lower byte 78 hex

Upper byte 89 hex

Key entry: BPRESS

Icon:

First source
register address

First destination
register address

Number of
bytes to move

4.7 Data Shift Instructions

4.7.9 Binary Search (BSRCH)

4-116

4.7.9 Binary Search (BSRCH)
A search is made for the search data using a binary search method in the area designated by
the number of words from the first address of the search range. The search result is output as
the offset word number of the data that matches the search data from the first register in the
start range. Always sort the data in the search range in ascending order.

Note: 1. Always sort the search area in ascending order before executing the BSRCH instruction.
2. The conceptual diagram shown here is for integers. The instruction operates in the same way for double-

length integers and real numbers.

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Src (First address of
search range) ×      × × ×

Width (Number of
words in range) ×  × × × × ×  

Data (Search data) ×      ×  

Result (Search result) × * × × × × × × ×

Binary Search
A binary search is a data searching algorithm that is used to quickly search for data in a sorted
search area.
First, the median value of the search area is compared to the search data. If the search data is
greater than the median value, the same search procedure is performed in the search area to the
right of the median value. If the search data is less than the median value, the same search proce-
dure is performed in the search area to the left of the median value. To use this search method, the
data must first be sorted in ascending order.

4

First address
of search range

7

8

20

60

MW�����

MW����� + 1

MW����� + 2

MW����� + 3

MW����� + 4

Search data
20

4

First address
of search range

7

8

20

60

Found at address + 3 from
the first address of the
search range.

Search result: 3 (offset)

Number of
words in
range

Key entry: BSRCH

Icon:

Search resultSearch dataNumber of
words in range

First address of
search range

Term

4.7 Data Shift Instructions

 4.7.10 Sort (SORT)

4-117

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Programming Example
The data from ML00000 to ML00008 is sorted when the sort command (DB00000) turns ON.
Then, if the search command (DB000001) turns ON, the search data in ML00012 is searched
for in the sorted data area.

The following table shows how the sort is processed when the first line is executed. Here, the
data from ML00000 to ML00008 is as listed below, and the search data in ML00012 is 70.
When the second line is executed, the search result in MW00010 is set to 4 as the result of
finding 70.

4.7.10 Sort (SORT)
The data in the range of registers from the first address of the sort range is sorted in ascending
order.
The following diagram describes the operation using integers as an example. The sort is per-
formed in the same way for double-length integers and real numbers.
The maximum number of data items for a sort is 128.

Register Data before Execution of 1st Line Data after Execution of 1st Line
Execution Result of

2nd Line

ML00000 100 15

ML00004 = 70, so
MW00010 = 4

ML00002 30 30

ML00004 90 70

ML00006 15 90

ML00008 70 100

60

First address of sort range

Number of
registers
in range

7

20

8

100

4

4

First address of sort range

7

8

20

60

100

MW�����

MW����� + 1

MW����� + 2

MW����� + 3

MW����� + 4

MW����� + 5

Sorted in
ascending order.

4.7 Data Shift Instructions

4.7.11 Bit Shift Left (SHFTL)

4-118

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

Programming Example
In the following programming example, the data from ML00000 to ML00008 is sorted in
ascending order when the sort command (DB00000) turns ON.

The following table shows how the data from ML00000 to ML00008 is sorted when the SORT
instruction is executed.

4.7.11 Bit Shift Left (SHFTL)
The bits specified by the first bit address and bit width are shifted to the left by the specified
number of bits.

Data that overflows from the bit width is discarded and insufficient bits are padded with 0’s

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Table (First address
of sort range) × * * * * * × × ×

Width (Number of
registers in range) ×  × × × × ×  

Register Data before Execution of Instruction Data after Execution of Instruction

ML00000 100 15

ML00002 30 30

ML00004 90 70

ML00006 15 90

ML00008 70 100

Key entry: SORT

Icon:

Number of
registers in rangeFirst address of sort range

f e d c b ag00

d c b a 0 0e00

012345678…

fg

Number of
bits to shift

Bit width

First bit address
Before Shift

After Shift

Bits that overflow are discarded.

Insufficient bits are padded with 0’s.

4.7 Data Shift Instructions

 4.7.11 Bit Shift Left (SHFTL)

4-119

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

Programming Example
In the following programming example, 4 bits from the first bit address at MB00001E are
shifted two bits to the left when switch 1 (DB000000) turns ON.

The following figure illustrates the result when the above program is executed.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Adr (First bit address) * × × × × × × × ×
Num (Number of bits
to shift) ×  × × × × ×  

Width (Bit width) ×  × × × × ×  

Key entry: SHFTL

Icon:

Bit widthNumber of
bits to shiftFirst bit address

0 0 1 1 0 1

0 0 0 1 0 0

EF012…

11

Number of bits
to shift = 2

Bit width = 4

First bit address:
MB00001E

Before Shift

After Shift

Bits that overflow are discarded.

4.7 Data Shift Instructions

4.7.12 Bit Shift Right (SHFTR)

4-120

4.7.12 Bit Shift Right (SHFTR)
The bits specified by the first bit address and bit width are shifted to the right by the specified
number of bits.

Data that overflows from the bit width is discarded and insufficient bits are padded with 0’s

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

Programming Example
In the following programming example, 4 bits from the first bit address at MB00001E are
shifted two bits to the right when switch 1 (DB000000) turns ON.

The following figure illustrates the result when the above program is executed.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Adr (First bit address) * × × × × × × × ×
Num (Number of bits
to shift) ×  × × × × ×  

Width (Bit width) ×  × × × × ×  

f e d c b ag00

0 g f e d c000

012345678…

ab

Number of
bits to shift

Bit width

First bit address
Before Shift

After Shift

Bits that overflow are discarded.

Insufficient bits are padded with 0’s.

Key entry: SHFTR

Icon:

Bit widthNumber of
bits to shiftFirst bit address

0 0 1 1 0 1

0 0 0 0 1 1

EF012…

10

Number of bits
to shift = 2

Bit width = 4

First bit address:
MB00000E

Before Shift

After Shift

Bits that overflow are discarded.

4.7 Data Shift Instructions

 4.7.13 Copy Word (COPYW)

4-121

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

4.7.13 Copy Word (COPYW)
The word data in the area designated by the specified number of words is copied from the
source area to the destination area.

The data for each block is copied from the source to the destination. Unlike the MOVW instruc-
tion, the data is copied to the destination as is, even if the source and destination overlap.

Note: This instruction differs from the MOVW instruction by the way it handles overlap between the source and des-
tination areas.

The following diagram shows an example where the source area and destination area overlap.

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Src (First source address) ×  × × × × ×  ×
Dest (First destination
address) × * × × × × ×  ×

Width (Number of words
to move) ×  × × × × ×  

6 5 4 3 2 1

6 5 4 3 2 1

Source area

Destination area

Word data moved.

First source address

First destination address

Number of words to move m

0m

Number of words to move m

• • •

d c b a 0 00 00

b a b a 0 0d c0

0347 18 256

Source area
(shaded portion)

Destination area
(shaded portion)

Overlap

Unlike the MOVW instruction, all of the data in the source area
is moved to the destination area, even if the two areas overlap.

First source address
MW00002

First destination address
MW00004

0

0

F …

…

…

Key entry: COPYW

Icon:

Number of
words to move

First destination
addressFirst source address

4.7 Data Shift Instructions

4.7.14 Byte Swap (BSWAP)

4-122

Programming Example
In the following programming example, 5 words of data starting from the first source address at
MW00000 are copied to an area of 5 words that starts from the first destination address at
MW00100 when switch 1 (DB000000) turns ON.

The following figure illustrates the result when the above program is executed.

4.7.14 Byte Swap (BSWAP)
The upper byte and lower byte of the target register are swapped.

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

Programming Example
In the following programming example, the upper byte and lower byte of the target register
(MW00000) are swapped when switch 1 (DB000000) turns ON.
When MW00000 is 00FF hex, MW00000 will be FF00 hex after execution of the BSWAP
instruction.

Register Data Register
Data before Execution

of Instruction
Data after Execution

of Instruction

MW00000 1 MW00100 123 1

MW00001 2 MW00101 234 2

MW00002 3 MW00102 345 3

MW00003 4 MW00103 456 4

MW00004 5 MW00104 567 5

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Dest (Target register) × * × × × × × × ×

ab

Target register
(word data)

Lower byteUpper byte

cd cd

Target register
(word data)

Lower byteUpper byte

ab

Key entry: BSWAP

Icon:

Target register

4.8 DDC Instructions

4.8.1 Dead Zone A (DZA)

4-123

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

4.8 DDC Instructions

4.8.1 Dead Zone A (DZA)
The output value is calculated by comparing the input value against a predefined dead zone.

As shown in the following figure, if the absolute value of the input value is greater than or equal
to the absolute value of D, the input value is outside of the dead zone, so it becomes the out-
put value.
If the absolute value of the input value is less than the absolute value of D, the input value is
inside of the dead zone, so the output is set to 0.

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

In (Input value) ×      ×  

Zone (Dead zone set
value) ×      ×  

Out (Output value) × * * * * * ×  ×

Dead zone set value = D

0

� � �

� When | Input value | ≥ | D |,
Output value = Input value

� When | Input value | < | D |,
Output value = 0

Output value

Input value
+ | D |

- | D |

Key entry: DZA

Icon:

Dead zone set valueInput value Output value

4.8 DDC Instructions

4.8.2 Dead Zone B (DZB)

4-124

Programming Examples
In the following programming examples, the operation results are stored as the output value
(MW00000) when the dead zone set value is set to 10,000.
The output values are calculated with respect to the input values in MW00001 to MW00003 as
shown below.
• Outside of the Dead Zone

| MW00001(12,345) | ≥ | 10000 | so, MW00000 is 12,345.

| MW00002 (-12,345) | ≥ | 10,000 | so, MW00000 is -12,345.

• Inside of the Dead Zone
| MW00003 (6,789) | < | 10,000 | so, MW00000 is 0.

4.8.2 Dead Zone B (DZB)
The output value is calculated by comparing the input value against a predefined dead zone.
As shown in the following figure, if the absolute value of the input value is less than the absolute
value of D, the input value is inside of the dead zone, so the output is set to 0.
Unlike the DZA instruction, when the input value is outside of the dead zone, the sign of the
input value determines whether the output value is obtained by adding the absolute value to or
subtracting it from the input value.

0

���

Dead zone set value = D

+ | D |

- | D |

� If | Input value | < | D |
Output value = 0

� If Input value < 0 and | Input value | ≥ | D |
Output value = Input value + | D |

� If Input value ≥ 0 and | Input value | ≥ | D |
Output value = Input value - | D |

Output value

Input value

4.8 DDC Instructions

 4.8.2 Dead Zone B (DZB)

4-125

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

Programming Examples
In the following programming examples, the operation results are stored as the output value
(MW00000) when the dead zone set value is set to 10,000.
The output values are calculated with respect to the input values in MW00001 as shown below.
• Outside of the Dead Zone

Because MW00001 (12,345) ≥ 0 and | MW00001 (12,345) | ≥ | 10000 |, MW00000 = 12,345
- | 10,000 | = 2,345.

| MW00001 (-12,345) < 0, | MW00001 (-12,345) | ≥ | 10,000 | so, MW00000 = -12,345 + |
10,000 | = -2,345.

• Inside of the Dead Zone
| MW00001 (6789) | < | 10000 | so, MW00000 becomes 0.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

In (Input value) ×      ×  

Zone (Dead zone set
value) ×      ×  

Out (Output value) × * * * * * ×  ×

Key entry: DZB

Icon:

Dead zone set value Output valueInput value

4.8 DDC Instructions

4.8.3 Upper/Lower Limit (LIMIT)

4-126

4.8.3 Upper/Lower Limit (LIMIT)
The output value is controlled so that it does not exceed the specified upper and lower limits
for the input value.

As shown in the following figure, if the input value is within the upper and lower limits, the input
value is output unaltered.

The upper limit is output when the input value is greater than upper limit. The lower limit is out-
put when the input value is less than the lower limit.

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

In (Input value) ×      ×  

Lower (Lower limit) ×      ×  

Upper (Upper limit) ×      ×  

Out (Output value) × * * * * * ×  ×

Always set the lower limit to a value that is less than or equal to the upper limit.

� If Lower limit ≤ Input value ≤ Upper value
Output value = Input value

� If Input value > Upper limit
Output value = Upper limit

�

�

�

� If Input value < Lower limit
Output value = Lower limit

Upper limit

Lower limit

Output value

Input value

Key entry: LIMIT

Icon:

Input value Lower limit Upper limit Output value

Information

4.8 DDC Instructions

 4.8.3 Upper/Lower Limit (LIMIT)

4-127

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Programming Examples
In the following programming examples, the operation results are stored as the output value
(MW00000) when the lower limit is -100 and the upper limit is 10,000.
The output values are calculated with respect to the input values in MW00001 as shown below.
• The Input Value Is Outside of the Upper and Lower Limits

Because MW00001 (12,345) is greater than the upper limit (10,000), MW00000 becomes the
upper limit (10,000).

Because MW00001 (-12,345) is less than the lower limit (-100), MW00000 becomes the
lower limit (-100).

• The Input Value Is Within the Upper and Lower Limits
Because the lower limit (-100) is less than MW00001 (6,789), which is less than the upper
limit (10,000), MW00000 becomes 6,789.

4.8 DDC Instructions

4.8.4 PI Control (PI)

4-128

4.8.4 PI Control (PI)
When deviation X is input, P and I operations and a range operation are performed based on
predefined parameters in a parameter table, and the result is output as compensation Y.

When the reset integration bit in the parameter table is turned ON, the PI compensation is cal-
culated using an I compensation value of 0.

The input value to the PI instruction can be an integer or a real number. Double-length integers
cannot be used.

The structure of the parameter table is different for integers and real numbers.

The operation of the PI instruction can be expressed by the following formula, where X(s) is the
input value and Y(s) is the output value.

= Kp + Ki ×

If using an integer, set an integral multiple of 1 ms for the scan time.

Important

Kp: P (proportional) gain
Ki: I (integral) gain
Ts: Scan time
Ti: Integral time

Kp

Ki Ts/Ti

Yi’

LIMIT

+

+

+

+

I compensation

P compensation
Deviation X

Input value
for

PI instruction

IREM’

+
+

Previous I compensationPrevious I remainder
(remainder of Ki × Ts / Ti)

LIMIT DZA
Compensation Y

(PI output)

Output value for
PI instruction

LIMIT UL

LL

UL

LL

-DB

DB

IUL

ILL

The previous I remainder
(IREM’) is used only with
the integer PI instruction.

The previous I compensation (Yi’) is updated
or not, based on the value of P + I compensation.
· If Yi’ is inside the range of the PI upper and lower limits (UL, LL)
 → Yi’ is updated. (Yi’ = I compensation)
· If Yi’ is outside the range of the PI upper and lower limits (UL, LL)
 · If the P compensation and I compensation have the same sign
 (divergence)
 → Yi’ is not updated.
 · If the P compensation and I compensation do not have the same
 sign (convergence)
 → Yi’ is updated. (Yi’ = I compensation)

Y (s)

X (s)

1

Ti × s

4.8 DDC Instructions

 4.8.4 PI Control (PI)

4-129

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

 Parameter Table for PI Instruction with Integers

* The relay inputs and outputs are assigned as given below.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

In (Input value) ×  × ×  × ×  

Prm (First address of
parameter table) × × × × × × *  

Out (Output value) × * × × * × ×  ×

Address Data Type Symbol Name Specification I/O

0 W RLY Relay I/O Relay inputs and relay outputs* IN/OUT

1 W Kp P gain Gain for the P compensation (a gain of 1 is
equivalent to 100) IN

2 W Ki I gain Gain for the input to the integration circuit
(a gain of 1 is equivalent to 100) IN

3 W Ti Integral time Integral time (ms) IN

4 W IUL Upper integration
limit Upper limit for the I compensation IN

5 W ILL Lower integration
limit Lower limit for the I compensation IN

6 W UL PI upper limit Upper limit for the P + I compensation IN

7 W LL PI lower limit Lower limit for the P + I compensation IN

8 W DB PI output dead
zone Dead zone width for the P + I compensation IN

9 W Y PI output PI compensation output (output to Out) OUT

10 W Yi I compensation I compensation storage OUT

11 W IREM I remainder I remainder storage OUT

Bit Symbol Name Specification I/O

0 IRST Reset integration bit Turn ON the input to reset the integration operation. IN

1 to 7 − (Reserved.) Spare input relays IN

8 to F − (Reserved.) Spare output relays OUT

Key entry: PI

Icon:

Output valueFirst address of
parameter tableInput value

4.8 DDC Instructions

4.8.4 PI Control (PI)

4-130

 Parameter Table for PI Instruction with Real Numbers

* The relay input and output assignments are the same as for integers.

 Internal Operation of the Instruction
The deviation X input is used to calculate the output value (PI compensation) as shown below.
In the formula shown below, Yi’ is the previous I compensation of Yi and Ts is the scan time set
value.

P compensation = Upper/lower limit (UL or LL) of (Kp × X)

Yi (I compensation) = Upper/lower limit (IUL or ILL) of { (Ki × X + IREM) / + Yi’}

Y (PI compensation) = P compensation + Upper/lower limit (UL or LL) and Dead zone A (Width
DB) of the I compensation

Address Data Type Symbol Name Specification I/O

0 W RLY Relay I/O Relay inputs and relay outputs* IN/OUT

1 W − (Reserved.) Spare register −

2 F Kp P gain Gain for the P compensation (a gain of 1 is
equivalent to 1.0) IN

4 F Ki I gain Gain for the input to the integration circuit (a
gain of 1 is equivalent to 1.0) IN

6 F Ti Integral time Integral time (s) IN

8 F IUL Upper integration
limit Upper limit for the I compensation IN

10 F ILL Lower integration
limit Lower limit for the I compensation IN

12 F UL PI upper limit Upper limit for the P + I compensation IN

14 F LL PI lower limit Lower limit for the P + I compensation IN

16 F DB PI output dead
zone Dead zone width for the P + I compensation IN

18 F Y PI output PI compensation output (output to Out) OUT

20 F Yi I compensation I compensation storage OUT

When IRST (reset integration) is turned ON, the PI compensation is calculated with the I com-
pensation set to 0.Information

Ti
Ts

4.8 DDC Instructions

 4.8.4 PI Control (PI)

4-131

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Programming Example
This programming example calculates the reference value in MF00102 weighted with the PI
compensation.
The deviation in DF00024 is obtained from the reference value in MF00100 and the current
value in MF00098 and it is used as the input to the PI instruction.
The reference value to output is obtained by adding the original reference value in MF00100 to
the PI compensation output in DF00026.
The following block diagram illustrates the programming example.

· Upper/lower limits
UL = 100, LL = -100

· Dead Zone A
DB = 10

Kp=10 DF00026

DF00024

PI compensationDeviation

· Upper/lower limits
IUL = 100, ILL = -100

Ts/Ti
(Ti = 1.0 s)Ki = 10

Previous
I compensation

+

+

+

+

MF00100

Reference value

MF00098

Current value (feedback)

<PI Instruction>

MF00102

MF00100
+

+

+
-

Reference value

Reference value weighted with the compensation

4.8 DDC Instructions

4.8.4 PI Control (PI)

4-132

The programming example is shown below.

Note: The OL00000 (reference value) and IL00002 (feedback value) registers are assigned to external devices.

4.8 DDC Instructions

 4.8.5 PD Control (PD)

4-133

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

4.8.5 PD Control (PD)
When deviation X is input, P and D operations and a range operation are performed based on
predefined parameters in a parameter table, and the result is output as compensation Y.

The input value to the PD instruction can be an integer or a real number. Double-length integers
cannot be used.

The structure of the parameter table is different for integers and real numbers.

The operation of the PD instruction can be expressed by the following formula, where X(s) is
the input value and Y(s) is the output value.

= Kp + Kd × Td × S

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

If using an integer, set an integral multiple of 1 ms for the scan time.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

In (Input value) ×  × ×  × ×  

Prm (First address of
parameter table) × × × × × × *  

Out (Output value) × * × × * × ×  ×

Important

Kp

X’

Kd Td/Ts

+ +
LIMIT DZALIMIT

+ -

UL

LL

UL

LL

-DB

DB

Previous input value

Compensation Y
(PD output)

Output value for
PD instruction

Kp: P (proportional) gain
Kd: D (differential) gain
Ts: Scan time
Td: Differential time

Deviation X

Input value for
PD instruction

D compensation

P compensation

The differential time (Td) changes based on the relationship between the change
in the deviation input (X’ － X) and the previous deviation input (X’) as follows:
· If the change in the deviation input (X － X’) and the previous
 deviation input (X’) have the same sign (divergence)
 → Td = Td1 (differential time for divergence)
· If the change in the deviation input (X － X’) and the previous
 deviation input (X’) have different signs (convergence)
 → Td = Td2 (differential time for convergence)

Y (s)

X (s)

Key entry: PD

Icon:

Output valueFirst address
of parameter tableInput value

4.8 DDC Instructions

4.8.5 PD Control (PD)

4-134

 Parameter Table for PD Instruction with Integers

* The relay inputs and outputs are assigned as given below.

 Parameter Table for PD Instruction with Real Numbers

* The relay input and output assignments are the same as for integers.

 Internal Operation of the Instruction
The deviation X input is used to calculate the PD compensation output as shown below.
In the formula shown below, X’ is the previous input value of X, Ts is the scan time set value,
and Td is the differential time.
The differential time (Td) is Td1 when X − X’ and X’ have the same sign, and Td2 when X − X’
and X’ have different signs.
P compensation = Upper/lower limit (UL or LL) of (Kp × X)

D compensation = Kd × (X − X’) × Upper/lower limit (IUL or ILL) of

PD compensation = Upper/lower limit (UL or LL) of (P compensation + D compensation) and
Dead zone A (Width DB)

Address Data Type Symbol Name Specification I/O

0 W RLY Relay I/O Relay inputs and relay outputs* IN/OUT

1 W Kp P gain Gain for the P compensation (a gain of 1 is
equivalent to 100) IN

2 W Kd D gain Gain for the input to the differential circuit
(a gain of 1 is equivalent to 100) IN

3 W Td1 Differential time for
divergence

Differential time used when the input
diverges (ms) IN

4 W Td2 Differential time for
convergence

Differential time used when the input con-
verges (ms) IN

5 W UL PD upper limit Upper limit for the P + D compensation IN

6 W LL PD lower limit Lower limit for the P + D compensation IN

7 W DB PD output dead
zone Dead zone width for the P + D compensation IN

8 W Y PD output PD compensation output (output to Out) OUT

9 W X Input value storage Storage of current input value OUT

Bit Symbol Name Specification I/O

0 to 7 − (Reserved.) Spare input relays IN

8 to F − (Reserved.) Spare output relays OUT

Address Data Type Symbol Name Specification I/O

0 W RLY Relay I/O Relay inputs and relay outputs* IN/OUT

1 W − (Reserved.) Spare register −

2 F Kp P gain Gain for the P compensation (a gain of 1 is
equivalent to 1.0) IN

4 F Kd D gain Gain for the input to the differential circuit
(a gain of 1 is equivalent to 1.0) IN

6 F Td1 Differential time for
divergence

Differential time used when the input
diverges (s) IN

8 F Td2 Differential time for
convergence

Differential time used when the input con-
verges (s) IN

10 F UL PD upper limit Upper limit for the P + D compensation IN

12 F LL PD lower limit Lower limit for the P + D compensation IN

14 F DB PD output dead
zone Dead zone width for the P + D compensation IN

16 F Y PD output PD compensation output (output to Out) OUT

18 F X Input value storage Storage of current input value OUT

Td
Ts

4.8 DDC Instructions

 4.8.5 PD Control (PD)

4-135

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Programming Example
This programming example calculates the reference value in MF00102 weighted with the PD
compensation.
The deviation in DF00024 is obtained from the reference value in MF00100 and the current
value in MF00098 and it is used as the input to the PD instruction.
The reference value to output is obtained by adding the original reference value in MF00100 to
the PD compensation output in DF000026.
The following block diagram illustrates the programming example.

DF00026DF00024

PD compensation

Deviation

MF00100

Reference value

MF00098

Current value (feedback)

<PD Instruction>

MF00102

MF00100
+

+

+

-

Reference value

Reference value weighted with the compensation

Kp = 10

Previous
input value

+

+

+

-

• Upper/lower limits
UL = 100,
LL = -100

• Dead Zone A
DB = 10

Td/Ts
(Td1 = 1.0 s
Td2 = 2.0 s)

Kd = 10

4.8 DDC Instructions

4.8.5 PD Control (PD)

4-136

The programming example is shown below.

Note: The OL00000 (reference value) and IL00002 (feedback value) registers are assigned to external devices.

Additional Information

 Transfer Functions
The transfer function of the P and D operations can be expressed by the formula shown below.
X(s) is the input value and Y(s) is the output value.

= Kp + Kd × Td × S

 Relation between Current Deviation X and Previous Deviation X’ on the
Divergence and Convergence Sides

The following figure shows the relation between the current deviation X and previous deviation
X’ on the divergence and convergence sides.

Y (s)

X (s)

Deviation

X’ = 10 X = 15

(X - X’) = 5

Both are positive
(same sign).

X’ = 15 X = 10

(X - X’) = -5

The signs
are different.

TimeTime

Deviation

<Example of a Diverging Deviation> <Example of a Converging Deviation>

4.8 DDC Instructions

 4.8.6 PID Control (PID)

4-137

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

4.8.6 PID Control (PID)
When deviation X is input, P, I, and D operations and a range operation are performed based
on predefined parameters in a parameter table, and the result is output as compensation Y.

When the reset integration bit in the parameter table is turned ON, the PI compensation is cal-
culated using an I compensation value of 0.

The input value to the PID instruction can be an integer or a real number. Double-length inte-
gers cannot be used.

The structure of the parameter table is different for integers and real numbers.

The operation of the PID instruction can be expressed by the following formula, where X(s) is
the input value and Y(s) is the output value.

= Kp + Ki × + Kd × Td × S

If using an integer, set an integral multiple of 1 ms for the scan time.

Important

Kp

Ki Ts/Ti

X’

Kd Td/Ts

Yi’

LIMIT

+
+

+

+ +

IREM’

+
+

LIMIT DZALIMIT

+ -

UL

LL

UL

LL

-DB

DB

IUL

ILL

The differential time (Td) changes based on the relationship between the change
in the deviation input (X － X’) and the previous deviation input (X’) as follows:
• If the change in the deviation input (X － X’) and the previous
 deviation input (X’) have the same sign (divergence)
 →Td = Td1 (differential time for divergence)
• If the change in the deviation input (X － X’) and the previous
 deviation input (X’) have different signs (convergence)
 →Td = Td2 (differential time for convergence)

Previous input value

Compensation Y
(PID output)

Output value
for

PID instruction

Kp: P (proportional) gain
Ki: I (integral) gain
Kd: D (differential) gain
Ts: Scan time
Td: Differential time
Ti: Integral time

D compensation

I compensation

P compensation
Deviation X

Input value
for

PID instruction

Previous I remainder
(remainder of Ki × Ts / Ti)

The previous I remainder
(IREM’) is used only with
the integer PID instruction.

Previous I compensation

The previous I compensation (Yi’) is updated or not,
based on the value of P + I + D compensation.
• If Yi’ is inside the range of the PID upper and
 lower limits (UL, LL)
 →Yi’ is updated. (Yi’ = I compensation)
• If Yi’ is outside the range of the PID upper and
 lower limits (UL, LL)
 • If the P compensation and I compensation
 have the same sign (divergence)
 →Yi’ is not updated.
 • If the P compensation and I compensation
 do not have the same sign (convergence)
 →Yi’ is updated. (Yi’ = I compensation)

Y (s)

X (s)
1

Ti × s

4.8 DDC Instructions

4.8.6 PID Control (PID)

4-138

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

 Parameter Table for PID Instruction with Integers

* The relay inputs and outputs are assigned as given below.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

In (Input value) ×  × ×  × ×  

Prm (First address of
parameter table) × × × × × × *  

Out (Output value) × * × × * × ×  ×

Address Data Type Symbol Name Specification I/O

0 W RLY Relay I/O Relay inputs and relay outputs* IN/OUT

1 W Kp P gain Gain for the P compensation (a gain of 1 is
equivalent to 100) IN

2 W Ki I gain Gain for the input to the integration circuit
(a gain of 1 is equivalent to 100) IN

3 W Kd D gain Gain for the input to the differential circuit
(a gain of 1 is equivalent to 100) IN

4 W Ti Integral time Integral time (ms) IN

5 W Td1 Differential time for
divergence

Differential time used when the input
diverges (ms) IN

6 W Td2 Differential time for
convergence

Differential time used when the input con-
verges (ms) IN

7 W IUL Upper integration
limit Upper limit for the I compensation IN

8 W ILL Lower integration
limit Lower limit for the I compensation IN

9 W UL PID upper limit Upper limit for the P + I compensation IN

10 W LL PID lower limit Lower limit for the P + I compensation IN

11 W DB PID output dead
zone Dead zone width for the P + I compensation IN

12 W Y PID output PI compensation output (output to Out) OUT

13 W Yi I compensation I compensation storage OUT

14 W IREM I remainder I remainder storage OUT

15 W X Input value storage Storage of current input value OUT

Bit Symbol Name Specification I/O

0 IRST Reset integration bit Turn ON the input to reset the integration operation. IN

1 to 7 − (Reserved.) Spare input relays IN

8 to F − (Reserved.) Spare output relays OUT

Key entry: PID

Icon:

Output valueFirst address
of parameter tableInput value

4.8 DDC Instructions

 4.8.6 PID Control (PID)

4-139

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

 Parameter Table for PID Instruction with Real Numbers

* The relay input and output assignments are the same as for integers.

 Internal Operation of the Instruction
The deviation X input is used to calculate the PID compensation output as shown below.
In the formula shown below, X’ is the previous input value of X, Y’ is the previous I compensa-
tion, Ts is the scan time set value, and Td is the differential time.
The differential time (Td) is Td1 when X − X’ and X’ have the same sign, and Td2 when X − X’
and X’ have different signs.

P compensation = Upper/lower limit (UL or LL) of (Kp × X)

Yi (I compensation) = Upper/lower limit (IUL or ILL) of { (Ki × X + IREM) / + Yi’

D compensation = Kd × (X − X’) × Upper/lower limit (IUL or ILL) of
Y (PID compensation) = Upper/lower limits (UL or LL) of P + I + D compensation values and
Dead zone A (Width DB)

Address Data Type Symbol Name Specification I/O

0 W RLY Relay I/O Relay inputs and relay outputs* IN/OUT

1 W − (Reserved.) Spare register IN

2 F Kp P gain Gain for the P compensation (a gain of 1 is
equivalent to 1.0) IN

4 F Ki I gain Gain for the input to the integration circuit
(a gain of 1 is equivalent to 1.0) IN

6 F Kd D gain Gain for the input to the differential circuit
(a gain of 1 is equivalent to 1.0) IN

8 F Ti Integral time Integral time (s) IN

10 F Td1 Differential time for
divergence

Differential time used when the input
diverges (s) IN

12 F Td2 Differential time for
convergence

Differential time used when the input con-
verges (s) IN

14 F IUL Upper integration
limit Upper limit for the I compensation IN

16 F ILL Lower integration
limit Lower limit for the I compensation IN

18 F UL PID upper limit Upper limit for the P + I + D compensation IN

20 F LL PID lower limit Lower limit for the P + I + D compensation IN

22 F DB PID output dead
zone

Dead zone width for the P + I + D compen-
sation IN

24 F Y PID output PID compensation output (output to Out) OUT

26 F Yi I compensation I compensation storage OUT

28 F X Input value storage Storage of current input value OUT

When IRST (reset integration) is turned ON, the PID compensation is calculated with the I
compensation set to 0.

Information

Ti
Ts

Td
Ts

4.8 DDC Instructions

4.8.6 PID Control (PID)

4-140

Programming Example
This programming example calculates the reference value in MF00102 weighted with the PID
compensation.
The deviation in MF00000 is obtained from the reference value in MF00100 and the current
value in MF00098 and it is used as the input to the PID instruction.
The reference value to output is obtained by adding the original reference value in MF00100 to
the PID compensation output in MF00002.
The following block diagram illustrates the programming example.

MF00002MF00000

PD compensation

Deviation

MF00100

Reference value

MF00098

Current value (feedback)

<PID Instruction>

MF00102

MF00100
+

+

+
-

Reference value

Reference value weighted with the compensation

Kp=10

Previous
input value

+

+

+

-

Upper/lower limits
IUL = 100,
ILL = -100

Ts/Ti
(Ti = 1.0 s)Ki = 10

Previous
I compensation

+

+

+

• Upper/lower limits
 UL = 100,
 LL = -100

• Dead Zone
 A DB = 10

Kd = 10
Td/Ts
(Td1 = 1.0 s
Td2 = 2.0 s)

4.8 DDC Instructions

 4.8.6 PID Control (PID)

4-141

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

The programming example is shown below.

Note: The OL00000 (reference value) and IL00002 (feedback value) registers are assigned to external devices.

4.8 DDC Instructions

4.8.7 First-order Lag (LAG)

4-142

4.8.7 First-order Lag (LAG)
The first-order lag is calculated according to predefined parameters in a parameter table.
The input value to the LAG instruction can be an integer or a real number. Double-length inte-
gers cannot be used.
The structure of the parameter table is different for integers and real numbers.

The LAG operation in the figure shown above can be expressed by the formula shown below.

The following operation is performed internally by the LAG instruction, where dt = Ts and dY =
Y − Y’.
In the formula shown below, Y’ is the previous output value, Ts is the scan time set value, and
REM is the remainder.
The unit for Ts is the same as the unit for T.

If using an integer, set an integral multiple of 1 ms for the scan time.

When IRST (LAG reset) is ON, Y outputs 0 and REM outputs 0.

Important

Output value Y for
LAG instruction

Input value X for
LAG instruction

Time (t)
Time constant T

Approx. 63% →

= 1
1 + T × s

Y (s)
X (s)

T × + Y = X
dY
dt

Therefore,

Y = T × Y’ + Ts × X + REM
T + Ts

Information

4.8 DDC Instructions

 4.8.7 First-order Lag (LAG)

4-143

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

 Parameter Table for LAG Instruction with Integers

* The relay inputs and outputs are assigned as given below.

 Parameter Table for LAG Instruction with Real Numbers

* The relay input and output assignments are the same as for integers.

Programming Example
In the following programming example, the LAG instruction is executed where MF00000 is the
input value in the parameter table, MF00002 is the output value, and the first-order lag time
constant is set to 1.0.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

In (Input value) ×  × ×  × ×  

Prm (First address of
parameter table) × × × × × × *  

Out (Output value) × * × × * × ×  ×

Address Data Type Symbol Name Specification I/O

0 W RLY Relay I/O Relay inputs and relay outputs* IN/OUT

1 W T First order lag time
constant First order lag time constant (ms) IN

2 W Y LAG output LAG output (output to Out) OUT

3 W REM Remainder Remainder storage OUT

Bit Symbol Name Specification I/O

0 IRST LAG reset bit Turn ON this input to reset the LAG operation. IN

1 to 7 − (Reserved.) Spare input relays IN

8 to F − (Reserved.) Spare output relays OUT

Address Data Type Symbol Name Specification I/O

0 W RLY Relay I/O Relay inputs and relay outputs* IN/OUT

1 W − (Reserved.) Spare register −

2 F T First-order lag
time constant First-order lag time constant (s) IN

4 F Y LAG output LAG output (output to Out) OUT

Key entry: LAG

Icon:

Output valueFirst address of
parameter tableInput value

4.8 DDC Instructions

4.8.8 Phase Lead Lag (LLAG)

4-144

MF000002 changes as shown below when MF00000 changes from 0 to 10,000.

MF000002 changes as shown below when MF00000 changes from 0 to -10,000.

4.8.8 Phase Lead Lag (LLAG)
The phase lead and lag are calculated according to predefined parameters in a parameter
table. The input value to the LLAG instruction can be an integer or real number. Double-length
integers cannot be used.

The structure of the parameter table is different for integers and real numbers.

The LLAG operation in the figure shown above can be expressed by the formula shown below.

Therefore,

0

10,000

Approx. 6,300

1.0 s

Input value
(MF00000)

Output value
(MF00002)

0

-10,000

Approx. － 6,300

Input value
(MF00000)

Output value
(MF00002)

1.0 s

If using an integer, set an integral multiple of 1 ms for the scan time.

Important

Output value Y for
LLAG instruction

Input value X for
LLAG instruction

Time (t)

Phase lag time constant T1

Approx. 63% →

T2 + Ts
T1 + Ts

X →

100%

0%

=
1 + T1 × s

Y (s)
X (s)

1 + T2 × s

T1× + YdY
dt

T2 × + XdX
dt

=

4.8 DDC Instructions

 4.8.8 Phase Lead Lag (LLAG)

4-145

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

The following operation is performed internally by the LLAG instruction, where dt = Ts, dY = Y −
Y’, and dX = X − X’.
In the formula shown below, Y’ is the previous output value, X’ is the previous input value, Ts is
the scan time set value, and REM is the remainder.
The unit for Ts is the same as the unit for T1.

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

 Parameter Table for LLAG Instruction with Integers

* The relay inputs and outputs are assigned as given below.

When IRST (LLAG reset) is ON, Y outputs 0, REM outputs 0, and X outputs 0.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

In (Input value) ×  × ×  × ×  

Prm (First address of
parameter table) × × × × × × *  

Out (Output value) × * × × * × ×  ×

Address Data Type Symbol Name Specification I/O

0 W RLY Relay I/O Relay inputs and relay outputs* IN/OUT

1 W T2 Phase lead time
constant Phase lead time constant (ms) IN

2 W T1 Phase lag time
constant Phase lag time constant (ms) IN

3 W Y LLAG output LLAG output (output to Out) OUT

4 W REM Remainder Remainder storage OUT

5 W X Input value storage Input value storage OUT

Bit Symbol Name Specification I/O

0 IRST LLAG reset bit Turn ON this input to reset the LLAG operation. IN

1 to 7 − (Reserved.) Spare input relays IN

8 to F − (Reserved.) Spare output relays OUT

Y = T1 × Y’ + (T2 + Ts) × X － T2 × X’ + REM
T1 + Ts

Information

Key entry: LLAG

Icon:

Output valueFirst address of
parameter table

Input value

4.8 DDC Instructions

4.8.8 Phase Lead Lag (LLAG)

4-146

 Parameter Table for LAG Instruction with Real Numbers

* The relay input and output assignments are the same as for integers.

Programming Example
In the following programming example, the LLAG instruction is executed where MF00000 is the
input value in the parameter table, MF00002 is the output value, the phase lead time constant
is set to 1.0 seconds and the phase lag time constant is set to 2.0 seconds.

MF000002 changes as shown below when MF00000 changes from 0 to 10,000.

MF000002 changes as shown below when MF00000 changes from 0 to -10,000.

Address Data Type Symbol Name Specification I/O

0 W RLY Relay I/O Relay inputs and relay outputs* IN/OUT

1 W − (Reserved.) Spare register −

2 F T2 Phase lead time
constant Phase lead time constant (s) IN

4 F T1 Phase lag time
constant Phase lag time constant (s) IN

6 F Y LLAG output LLAG output (output to Out) OUT

8 F X Input value storage Input value storage OUT

0

10,000
Approx. 8,150

2.0 s

Input value
(MF00000)

Output value
(MF00002)

Approx. 5,000

0

-10,000
Approx. － 8,150

Input value
(MF00000)

Output value
(MF00002)

2.0 s

Approx. － 5,000

4.8 DDC Instructions

 4.8.9 Function Generator (FGN)

4-147

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

4.8.9 Function Generator (FGN)
A function is generated based on the parameters specified in the parameter table, and it is
used to calculate output value Y based on the value of input X.

The FGN instruction will be for integers, double-length integers, real numbers, quadruple-
length integers, or double-precision real numbers, depending on the data type of input value X.
The structure of the parameter table also changes accordingly.

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

Create the parameter table so that X1 < X2 < ⋅⋅⋅ < XN.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

In (Input value X) ×      ×  

Prm (First address of
parameter table) × × × × × ×  × ×

Out (Output value Y) × * * * * * ×  ×

Output value Y is calculated
from input value X for the function
generated by the parameter table.

Output
value Y

X1 X2 X3

Y1

Y2

Y3

Input
value X

…
…

XN

YN

Function generated by setting
X1···N, Y1···N in the parameter table.

Information

Output value YFirst address of
parameter tableInput value X

Key entry: FGN

Icon:

4.8 DDC Instructions

4.8.9 Function Generator (FGN)

4-148

 Parameter Table for FGN Instruction with Integers
If input value X is an integer, the FGN instruction will be for integers.
Create the parameter table as shown below.

 Parameter Table for FGN Instruction with Double-length Integers or
Real Numbers

If input value X is a double-length integer, the FGN instruction will be for double-length integers.
If input value X is a real number, the FGN instruction will be for real numbers.
Create the parameter table as shown below.

Address Data Type Symbol Name

0 W N Number of pairs of X and Y

1 W X1 Data X1

2 W Y1 Data Y1

3 W X2 Data X2

4 W Y2 Data Y2

: : : :

2N−1 W XN Data XN

2N W YN Data YN

Address Data Type Symbol Name

0 W N Number of pairs of X and Y

1 W − Reserved.

2 L/F X1 Data X1

4 L/F Y1 Data Y1

6 L/F X2 Data X2

8 L/F Y2 Data Y2

: : : :

4N−2 L/F XN Data XN

4N L/F YN Data YN

X1 X2 X3

Y1

Y2

Y3

…

…

XN

YN

Function generated by setting
X1···N, Y1···N in the parameter table.

4.8 DDC Instructions

 4.8.9 Function Generator (FGN)

4-149

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

 Parameter Table for FGN Instruction with Quadruple-length Integers or
Double-precision Real Numbers

If input value X is a quadruple-length integer, the FGN instruction will be for quadruple-length
integers. If input value X is a double-precision real number, the FGN instruction will be for dou-
ble-precision real numbers.

Create the parameter table as shown below.

Programming Example
In the following programming example, the function is generated using the FGN instruction for
real numbers with the parameter table given below.

Address Data Type Symbol Name

0 W N Number of pairs of X and Y

1 W − Reserved.

2 L − Reserved.

4 Q/D X1 Data X1

8 Q/D Y1 Data Y1

12 Q/D X2 Data X2

16 Q/D Y2 Data Y2

: : : :

8N−4 Q/D XN Data XN

8N Q/D YN Data YN

Make sure to set the data so that X1 < X2 < ⋅⋅⋅ < XN, regardless of whether the parameter table
is for integer data, double-length integer data, real number data, quadruple-length integer
data, or double-precision real number data.

Number of Pairs 4

X1, Y1 0.0, 2.0

X2, Y2 10.0, 6.0

X3, X4 20.0, 15.0

X4, Y4 30.0, 20.0

Information

4.8 DDC Instructions

4.8.9 Function Generator (FGN)

4-150

The following figure shows the relationship between input value X in MF00000 and output value
Y in MF00002.

Additional Information
Output value Y is calculated as shown below.

• If the pair Xn and Yn where Xn ≤ Input X ≤ Xn + 1 exists,

• If the pair Xn and Yn where Xn ≤ Input X ≤ Xn + 1 does not exist,
If Input value X < X1,

If Input value X > XN,

Input value X
MF00000

Output value Y
MF00002

0.0
10.0 20.0 30.0

2.0
6.0

15.0

20.0

X1, Y1

X2, Y2

X3, Y3

X4, Y4

Output value Y = Yn + × (Input value X － Xn) (1 ≤ n ≤ N － 1)
Yn+1 － Yn

Xn+1 － Xn

× (Input value X − X1)Output value Y = Y1 + Y2 － Y1

X2 － X1

× (Input value X － XN)Output value Y = YN + YN － YN - 1

XN － XN - 1

4.8 DDC Instructions

 4.8.10 Inverse Function Generator (IFGN)

4-151

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

4.8.10 Inverse Function Generator (IFGN)
A function is generated based on the parameters specified in the parameter table, and it is
used to calculate output value X based on the value of input Y.

The IFGN instruction will be for integers, double-length integers, real numbers, quadruple-
length integers, or a double-precision real numbers depending on the data type of input value
X.
The structure of the parameter table is the same as for the FGN instruction.

Set the parameter table so that Y1 < Y2 < ⋅⋅⋅ < YN.

Output value X is calculated
from input value Y for the function
generated by the parameter table.

Input
value Y

X1 X2 X3

Y1

Y2

Y3

Output
value X

…

…

XN

YN

Function generated by setting
X1···N, Y1···N in the parameter table.

Information

4.8 DDC Instructions

4.8.10 Inverse Function Generator (IFGN)

4-152

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

 Parameter Table for IFGN Instruction with Integers
If input value X is an integer, the IFGN instruction will be for integers.

Create the parameter table as shown below.

 Parameter Table for IFGN Instruction with Double-length Integers or
Real Numbers

If input value Y is a double-length integer, the IFGN instruction will be for double-length inte-
gers. If input value Y is a real number, the IFGN instruction will be for real numbers.
Create the parameter table as shown below.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

In (Input value Y) ×      ×  

Prm (First address of
parameter table) × × × × × ×  × ×

Out (Output value X) × * * * * * ×  ×

Address Data Type Symbol Name

0 W N Number of pairs of X and Y

1 W X1 Data X1

2 W Y1 Data Y1

3 W X2 Data X2

4 W Y2 Data Y2

: : : :

2N−1 W XN Data XN

2N W YN Data YN

Address Data Type Symbol Name

0 W N Number of pairs of X and Y

1 W − Reserved.

2 L/F X1 Data X1

4 L/F Y1 Data Y1

6 L/F X2 Data X2

8 L/F Y2 Data Y2

: : : :

4N−2 L/F XN Data XN

4N L/F YN Data YN

Icon:

Key entry: IFGN

Output value XFirst address of
parameter tableInput value Y

4.8 DDC Instructions

 4.8.10 Inverse Function Generator (IFGN)

4-153

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

 Parameter Table for FGN Instructions with Quadruple-length Integers
or Double-precision Real Numbers

If input value X is a quadruple-length integer, the FGN instruction will be for quadruple-length
integers. If input value X is a double-precision real number, the FGN instruction will be for dou-
ble-precision real numbers.

Create the parameter table as shown below.

Address Data Type Symbol Name

0 W N Number of pairs of X and Y

1 W − Reserved.

2 L − Reserved.

4 Q/D X1 Data X1

8 Q/D Y1 Data Y1

12 Q/D X2 Data X2

16 Q/D Y2 Data Y2

: : : :

8N−4 Q/D XN Data XN

8N Q/D YN Data YN

Make sure to set the data so that Y1 < Y2 < ⋅⋅⋅ < YN, regardless of whether the parameter table
is for integer data, double-length integer data, real number data, quadruple-length integer
data, or double-precision real number data.

X1 X2 X3

Y1

Y2

Y3

…

…

XN

YN

Function generated by setting
X1···N, Y1···N in the parameter table.

Information

4.8 DDC Instructions

4.8.10 Inverse Function Generator (IFGN)

4-154

Programming Example
In the following programming example, the function is generated using the IFGN instruction for
real numbers with the parameter table given below.

The following figure shows the relationship between input value Y in MF00000 and output value
X in MF00002.

Additional Information
Output value X is calculated as shown below.
• If the pair Xn and Yn where Yn ≤ Input Y ≤ Yn + 1 exists,

• If the pair Xn and Yn where Yn ≤ Input Y ≤ Yn + 1 does not exist,
If Input value Y < Y1 then,

If Input value Y > YN then,

Number of Pairs 4

X1, Y1 0.0, 2.0

X2, Y2 10.0, 6.0

X3, X4 20.0, 15.0

X4, Y4 30.0, 20.0

Output value X
MF00002

Input value Y
MF00000

0.0 10.0 20.0 30.0

2.0
6.0

15.0

20.0

X1, Y1

X2, Y2

X3, Y3

X4, Y4

 × (Input value Y － Yn) (1 ≤ n ≤ N － 1)Output value X = Xn + Xn+1 － Xn

Yn+1 － Yn

× (Input value Y － Y1)Output value X = X1 + X2 － X1

Y2 － Y1

× (Input value Y − YN)Output value X = XN + XN − XN - 1

YN − YN - 1

4.8 DDC Instructions

 4.8.11 Linear Accelerator/Decelerator 1 (LAU)

4-155

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

4.8.11 Linear Accelerator/Decelerator 1 (LAU)
The speed that results from applying a constant acceleration or deceleration rate to the input
speed is output. The acceleration or deceleration rate is applied according to predefined
parameters in a parameter table. The input value to the LAU instruction can be an integer or a
real number. Double-length integers, quadruple-length integers, and double-precision real
numbers cannot be used.

The structure of the parameter table is different for integers and real numbers.

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

If using an integer, set an integral multiple of 1 ms for the scan time.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

In (Input speed) ×  × ×  × ×  

Prm (First address of
parameter table) × × × × × ×  × ×

Out (Output speed) × * × × * × ×  ×

Important

Time (t)

Input speed

BT
(deceleration time)

AT
(acceleration time)

100% level

LAU instruction
input speed waveform

Time (t)

LAU instruction
output speed waveform

Input speed

Acceleration/deceleration
rate set in parameters

Icon:

Key entry: LAU

Output speedFirst address of
parameter tableInput speed

4.8 DDC Instructions

4.8.11 Linear Accelerator/Decelerator 1 (LAU)

4-156

 Parameter Table for LAU Instruction with Integers

* The relay inputs and outputs are assigned as given below.

Note: If QS (quick stop) is OFF, QT (quick stop time) is used as the acceleration/deceleration time.

 Parameter Table for LAU Instruction with Real Numbers

*1. The ratio between the set value for LV (input at 100% level) and the input speed determines the actual accelera-
tion/deceleration time.
Refer to the following section for details on the processing that is performed internally by the LAU instruction.

Additional Information on page 4-158

*2. The relay inputs and outputs are assigned as given below.

Address Data Type Symbol Name Specification I/O

0 W RLY Relay I/O Relay inputs and relay outputs* IN/OUT

1 W LV 100% level of input Scale for 100% input IN

2 W AT Acceleration time Time to accelerate from 0% to 100% (0.1 s) IN

3 W BT Deceleration time Time to decelerate from 100% to 0% (0.1 s) IN

4 W QT Quick stop time Time to make a quick stop from 100% to
0% (0.1 s) IN

5 W V Current speed LAU output (output to Out) OUT

6 W DVDT Current acceleration/
deceleration rate

Scaling with the normal acceleration rate set
to 5,000 OUT

7 W − (Reserved.) Spare register −

8 W VIM Previous speed
reference

For storage of the previous speed reference
input value OUT

9 W DVDTK DVDT coefficient Scaling factor for DVDT
(Current Acceleration Rate) IN

10 L REM Remainder Remainder of the acceleration/deceleration
rate OUT

Bit Symbol Name Specification I/O

0 RN Line running The line is running when this input is ON. IN

1 QS Quick stop A quick stop is performed if this input is turned
OFF. IN

2 DVDTF Skip execution of DVDT
operation

Execution of the DVDT operation is skipped when
this input is ON. IN

3 DVDTS DVDT operation selection Selects the method for calculating DVDT IN

4 to 7 − (Reserved.) Spare input relays IN

8 ARY Accelerating ON is output during acceleration. OUT

9 BRY Decelerating ON is output during deceleration. OUT

A LSP Zero speed ON is output during zero speed. OUT

B EQU Equal ON is output when the input speed equals the
output speed. OUT

C to F − (Reserved.) Spare output relays OUT

Address Data Type Symbol Name Specification I/O

0 W RLY Relay I/O Relay inputs and relay outputs*2 IN/OUT

1 W − (Reserved.) Spare register −
2 F LV*1 100% level of input Scale for 100% input IN

4 F AT Acceleration time Time to accelerate from 0% to 100% (s) IN

6 F BT Deceleration time Time to decelerate from 100% to 0% (s) IN

8 F QT Quick stop time Time to make a quick stop from 100% to
0% (s) IN

10 F V Current speed LAU output (output to Out) OUT

12 F DVDT Current acceleration/
deceleration rate

The current acceleration or deceleration rate
is output. OUT

4.8 DDC Instructions

 4.8.11 Linear Accelerator/Decelerator 1 (LAU)

4-157

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Programming Example
In the following programming example, the LAU instruction for real numbers is executed with
the specified acceleration and deceleration rates where MF00000 is the input speed and
MF00002 is the output speed.

The following parameters are set for the acceleration or deceleration rate.
• 100% level of acceleration/deceleration rate input = 20,000
• Acceleration time = 2.5 s
• Deceleration time = 3.5 s
• Quick stop time = 0.5 s

Bit Symbol Name Specification I/O

0 RN Line running The line is running when this input is ON. IN

1 QS Quick stop A quick stop is performed if this input is turned OFF. IN

2 to 7 − (Reserved.) Spare input relays IN

8 ARY Accelerating ON is output during acceleration. OUT

9 BRY Decelerating ON is output during deceleration. OUT

A LSP Zero speed ON is output during zero speed. OUT

B EQU Equal ON is output when the input speed equals the output speed. OUT

C to F − (Reserved.) Spare output relays OUT

When QS (quick stop) is turned OFF, the acceleration/deceleration time is set to the QT (quick
stop time).
To execute a quick stop, turn QS (quick stop) OFF and set the input speed to 0 at the same
time.

Information

4.8 DDC Instructions

4.8.11 Linear Accelerator/Decelerator 1 (LAU)

4-158

The following table shows how each register operates.

*1. The acceleration time is applied when moving away from 0, and the deceleration time is applied when moving
toward 0.

*2. The quick stop time is also applied as the acceleration time.

Additional Information

 Formulas for Calculating the Speed Output Value and Current Acceler-
ation/Deceleration Rate

This section describes the formulas for calculating the speed output values during acceleration,
deceleration, and quick stops, and the current acceleration or deceleration rates.

 LAU Instruction for Integers
The LAU instruction for integers calculates the speed output value during acceleration, deceler-
ation, and quick stops, and the current acceleration or deceleration rates using the formula
shown below based on predefined parameters.
In this formula, V is the speed output value, V’ is the previous speed output value, VI is the
input value for the speed reference, and Ts is the scan time set value.
• Speed Output Value during Acceleration

The speed output value during acceleration is calculated with the following formula.

• Speed Output Value during Deceleration
The speed output value during deceleration is calculated with the following formula.

Positive Side
VI > V’ (V’ ≥ 0)

Negative Side
VI < V’ (V’ < 0)

V = V’ + ADV V = V’ – ADV

Positive Side
VI < V’ (V’ ≥ 0)

Negative Side
VI > V’ (V’ < 0)

V = V’ – BDV V = V’ + BDV

MB00100
(Quick stop
bit OFF)

MF00000
(Input speed)

ON

OFF

0

20000

MF00002
(Output speed) 0

20000

3.5 s
(BT) 0.5 s*2

(QT)

-10000

-10000
2.5 s
(AT)

1.25 s*1
(AT/2)

1.75 s*1
(BT/2)

0.5 s
(QT)

(Quick stop time is applied.)(Acceleration time and deceleration time settings applied.)

ADV (acceleration rate) = LV × Ts (0.1 ms) + REM
AT (0.1 s) × 1,000

BDV (deceleration rate) = LV × Ts (0.1 ms) + REM
BT (0.1 s) × 1,000

4.8 DDC Instructions

 4.8.11 Linear Accelerator/Decelerator 1 (LAU)

4-159

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

• Speed Output Value during a Quick Stop
The speed output value during a quick stop is calculated with the following formula.

• Current acceleration/deceleration rate
If DVDTF (skip execution of DVDT operation) is ON, DVDT (current acceleration/deceleration
rate) will be calculated according to the setting of DVDTS (DVDT operation selection) using
one of the following formulas. If DVDTF is OFF, DVDT is set to 0.

 LAU Instruction for Real Numbers
The LAU instruction for real numbers calculates the speed output value during acceleration,
deceleration, and quick stops, and the current acceleration or deceleration rates using the for-
mula shown below based on predefined parameters.
In this formula, V is the speed output value, V’ is the previous speed output value, VI is the
input value for the speed reference, and Ts is the scan time set value.
• Speed Output Value during Acceleration

The speed output value during acceleration is calculated with the following formula.

• Speed Output Value during Deceleration
The speed output value during deceleration is calculated with the following formula.

• Speed Output Value during a Quick Stop
The speed output value during a quick stop is calculated with the following formula.

Positive Side
VI < V’ (V’ ≥ 0)

Negative Side
VI > V’ (V’ < 0)

V = V’ – QDV V = V’ + QDV

DVDTS = ON DVDTS = OFF

DVDT = (V - V’) × DVDTK

1. ARY (accelerating) turns ON at the following times:
When V’ ≥ 0 and ADV > 0, or when V’ ≤ 0 and ADV < 0

2. BRY (decelerating) turns ON at the following times:
• When V’ < 0 and BDV > 0, or when V’ > 0 and BDV < 0
• When V’ < 0 and QDV > 0, or when V’ > 0 and QDV < 0

3. LSP (zero speed) turns ON when V equals 0.
4. EQU (equal) turns ON when VI equals V.
5. If RN (line running) is OFF, the outputs for V, DVDT, and REM are set to 0.

Positive Side
VI > V’ (V’ ≥ 0)

Negative Side
VI < V’ (V’ < 0)

V = V’ + ADV V = V’ – ADV

Positive Side
VI < V’ (V’ ≥ 0)

Negative Side
VI > V’ (V’ < 0)

V = V’ – BDV V = V’ + BDV

Positive Side
VI < V’ (V’ ≥ 0)

Negative Side
VI > V’ (V’ < 0)

V = V’ – QDV V = V’ + QDV

QDV (quick stop rate) = LV × Ts (0.1 ms) + REM

QT (0.1 s) × 1,000

DVDT =
(V – V’) × 5,000

ADV

Information

ADV (acceleration rate) =
LV × Ts (0.1 ms)
AT (s) × 10,000

BDV (deceleration rate) =
LV × Ts (0.1 ms)
BT (s) × 10,000

QDV (quick stop rate) =
LV × Ts (0.1 ms)
QT (s) × 10,000

4.8 DDC Instructions

4.8.11 Linear Accelerator/Decelerator 1 (LAU)

4-160

• Current acceleration/deceleration rate
The DVDT (current acceleration/deceleration rate) is calculated with the following formula
after V (speed output) has been calculated.
DVDT = V - V’

 Acceleration and Deceleration When Input Speed Is Changed
This section describes acceleration and deceleration when the input speed is changed.
After the axis stops when the speed is set to 0, acceleration and deceleration are controlled by
the predefined deceleration time and acceleration time. (See .)
If the speed reference crosses the point where speed equals 0, acceleration and deceleration
are controlled by the deceleration time to keep the speed from fluctuating. (See .)

1. ARY (accelerating) turns ON at the following times:
When V’ ≥ 0 and ADV > 0, or when V’ ≤ 0 and ADV < 0

2. BRY (decelerating) turns ON at the following times:
• When V’ < 0 and BDV > 0, or when V’ > 0 and BDV < 0
• When V’ < 0 and QDV > 0, or when V’ > 0 and QDV < 0

3. LSP (zero speed) turns ON when V equals 0.
4. EQR (equal) turns ON when VI equals V.
5. ARY (accelerating) turns ON at the following times:

V ≠ V’, and DVDT and V have the same sign.
6. BRY (decelerating) turns ON at the following times:

V ≠ V’, and DVDT and V do not have the same sign.
7. If RN (line running) is OFF, the outputs for V and DVDT are set to 0.

Information

<Positive Speed → 0 → Negative Speed>

Deceleration DecelerationAccelerationDeceleration AccelerationDeceleration

0

<Negative Speed → 0 → Positive Speed>

V

� �� �

4.8 DDC Instructions

 4.8.12 Linear Accelerator/Decelerator 2 (SLAU)

4-161

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

4.8.12 Linear Accelerator/Decelerator 2 (SLAU)
The speed that results from applying a variable acceleration or deceleration rate to the input
speed is output. The acceleration or deceleration rate is applied as an S curve according to
predefined parameters in a parameter table.
The input value to the SLAU instruction can be an integer, double-length integer, or a real num-
ber. Quadruple-length integers and double-precision real numbers cannot be used.
The structure of the parameter table is different for integers and real numbers.

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

If using an integer, set an integral multiple of 1 ms for the scan time.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

In (Input speed) ×   ×  × ×  

Prm (First address of
parameter table) × × × × × × * * ×

Out (Output speed) × * * × * × ×  ×

Important

100% level of input

Acceleration/Deceleration
rate set in parameters

Input speed

Input speed

SLAU instruction
input speed waveform

Time (t)

SLAU instruction
output speed waveform

Time (t)Acceleration time +
Acceleration S-curve time

Deceleration time +
Deceleration S-curve time

Icon:

Key entry: SLAU

Output speedFirst address of
parameter tableInput speed

4.8 DDC Instructions

4.8.12 Linear Accelerator/Decelerator 2 (SLAU)

4-162

 Parameter Table for SLAU Instruction with Integers

* The relay inputs and outputs are assigned as given below.

Note: If QS (quick stop) is OFF, QT (quick stop time) is used as the deceleration time.

Address Data Type Symbol Name Specification I/O

0 W RLY Relay I/O Relay inputs and relay outputs* IN/OUT

1 W LV 100% level of input Scale for 100% input IN

2 W AT Acceleration time Time to accelerate from 0% to 100% (0.1 s) IN

3 W BT Deceleration time Time to decelerate from 100% to 0% (0.1 s) IN

4 W QT Quick stop time Time to make a quick stop from 100% to
0% (0.1 s) IN

5 W AAT Acceleration S-curve
time

Acceleration S-curve region time
(0.01 to 32.00 s) IN

6 W BBT Deceleration S-curve
time

Deceleration S-curve region time
(0.01 to 32.00 s) IN

7 W V Current speed SLAU output (output to Out) OUT

8 W DVDT1 Current acceleration/
deceleration rate 1

Scaling with the normal acceleration rate set
to 5,000 OUT

9 W − (Reserved.) Spare register −

10 W ABMD Speed increase when
holding

Amount of speed change until the speed
stabilizes after the hold command is exe-
cuted

OUT

11 W REM1 Remainder Remainder of the acceleration/deceleration
rate OUT

12 W − (Reserved.) Spare register −

13 W VIM Previous speed
reference

For storage of the previous speed reference
input value OUT

14 L DVDT2 Current acceleration/
deceleration rate 2

1,000 times the actual acceleration/deceler-
ation OUT

16 L DVDT3 Current acceleration/
deceleration rate 3

Current acceleration/deceleration rate
(= DVDT2/1,000) OUT

18 L REM2 Remainder Remainder of the S-curve region accelera-
tion/deceleration rate OUT

20 W REM3 Remainder Remainder of the current speed OUT

21 W DVDTK DVDT1 coefficient
Scaling factor for DVDT
(Current Acceleration Rate 1)
(−32768 to 32767)

OUT

Bit Symbol Name Specification I/O

0 RN Line running The line is running when this input is ON. IN

1 QS Quick stop A quick stop is performed if this input is turned OFF. IN

2 DVDTF Skip execution of
DVDT1 operation

Execution of the DVDT operation is skipped when this input
is ON. IN

3 DVDTS DVDT1 operation
selection Selects the method for calculating DVDT IN

4 to 7 − (Reserved.) Spare input relays IN

8 ARY Accelerating ON is output during acceleration. OUT

9 BRY Decelerating ON is output during deceleration. OUT

A LSP Zero speed ON is output during zero speed. OUT

B EQU Equal ON is output when the input speed equals the output speed. OUT

C − (Reserved.) Spare output relays OUT

D CCF Work relay System internal work relay OUT

E BBF Work relay System internal work relay OUT

F AAF Work relay System internal work relay OUT

4.8 DDC Instructions

 4.8.12 Linear Accelerator/Decelerator 2 (SLAU)

4-163

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

 Parameter Table for SLAU Instruction with Double-length Integers

*1. D is a double-precision real number expressed in 4 words. The MPE720 cannot display this value as a real num-
ber.

*2. The relay inputs and outputs are assigned as given below.

Note: If QS (quick stop) is OFF, QT (quick stop time) is used as the deceleration time.

 Parameter Table for SLAU Instruction with Real Numbers

Address Data Type Symbol Name Specification I/O

0 W RLY Relay I/O Relay inputs and relay outputs*2 IN/OUT

1 W − (Reserved.) − −
2 L LV 100% level of input Scale for 100% of input value IN

4 L AT Acceleration time Time to accelerate from 0% to 100% (0.1 s) IN

6 L BT Deceleration time Time to decelerate from 100% to 0% (0.1 s) IN

8 L QT Quick stop time Time to make a quick stop from 100% to
0% (0.1 s) IN

10 L AAT Acceleration S-curve
time Acceleration S-curve region time (0.01 s) IN

12 L BBT Deceleration S-curve
time Deceleration S-curve region time (0.01 s) IN

14 L V Current speed SLAU output (also the output to the A regis-
ter) OUT

16 L DVDT Current acceleration/
deceleration rate

The current acceleration/deceleration rate
(truncated below the decimal point) is out-
put.

OUT

18 L ABMD Speed increase when
holding

Amount of speed change until the speed
stabilizes after the hold command is exe-
cuted

OUT

20 D*1 V_D Current speed SLAU output for system use (double-preci-
sion real number) IN/OUT

24 D*1 DVDT_D Current acceleration/
deceleration rate

Current acceleration or deceleration rate for
system use (double-precision real number) IN/OUT

Bit Symbol Name Specification I/O

0 RN Line running The line is running when this input is ON. IN

1 QS Quick stop A quick stop is performed if this input is turned OFF. IN

2 DVDTF
Acceleration/
deceleration rate
flag

When the input turns ON, DVDT (current acceleration/
deceleration rate) is multiplied by 1,000 and then output. IN

3 to 7 − (Reserved.) Spare input relays IN

8 ARY Accelerating ON is output during acceleration. OUT

9 BRY Decelerating ON is output during deceleration. OUT

A LSP Zero speed ON is output during zero speed. OUT

B EQU Equal ON is output when the input value equals the output value. OUT

C to F − Work relay System internal work relay IN/OUT

Address Data Type Symbol Name Specification I/O

0 W RLY Relay I/O Relay inputs and relay outputs* IN/OUT

1 W − (Reserved.) Spare register −
2 F LV 100% level of input Scale for 100% input IN

4 F AT Acceleration time Time to accelerate from 0% to 100% (s) IN

6 F BT Deceleration time Time to decelerate from 100% to 0% (s) IN

8 F QT Quick stop time Time to make a quick stop from 100% to
0% (s) IN

10 F AAT Acceleration S-curve
time Acceleration S-curve region time (s) IN

12 F BBT Deceleration S-curve
time Deceleration S-curve region time (s) IN

Continued on next page.

4.8 DDC Instructions

4.8.12 Linear Accelerator/Decelerator 2 (SLAU)

4-164

* The relay inputs and outputs are assigned as given below.

Note: If QS (quick stop) is OFF, QT (quick stop time) is used as the deceleration time.

14 F V Current speed SLAU output (output to Out) OUT

16 F DVDT1 Current acceleration/
deceleration rate 1

The actual acceleration or deceleration rate
is output. OUT

18 F ABMD Speed increase when
holding

Amount of speed change until the speed
stabilizes after the hold command is exe-
cuted

OUT

Bit Symbol Name Specification I/O

0 RN Line running The line is running when this input is ON. IN

1 QS Quick stop A quick stop is performed if this input is turned OFF. IN

2 to 7 − (Reserved.) Spare input relays IN

8 ARY Accelerating ON is output during acceleration. OUT

9 BRY Decelerating ON is output during deceleration. OUT

A LSP Zero speed ON is output during zero speed. OUT

B EQU Equal ON is output when the input speed equals the output speed. OUT

C to F − (Reserved.) Spare output relays OUT

The following figure shows how the parameters are used in the actual instruction.

Note: Refer to the following section for details on the processing that is performed inter-
nally by the SLAU instruction.

Additional Information on page 4-166

When QS (quick stop) is turned OFF, the output decelerates at QT (quick stop time) and the
output speed is set to 0. It is not necessary to set the input speed to 0.
For a quick stop, the speed is decelerated linearly without applying the S-curve. Set the
parameters so that AT or BT (linear acceleration or deceleration time) is greater than or equal
to AAT or BBT (S-curve acceleration or deceleration time).

Continued from previous page.

Address Data Type Symbol Name Specification I/O

Example

Speed at
100% input

Linear period

AT － AAT

S-curve region

AAT

S-curve region

AAT

S-curve region

BBT

Linear period

BT-BBT

S-curve region

BBT

BT

BT + BBT

AT

AT + AAT

Acceleration Deceleration

Start of
acceleration

End of
acceleration

Start of
deceleration

End of
deceleration

Information

4.8 DDC Instructions

 4.8.12 Linear Accelerator/Decelerator 2 (SLAU)

4-165

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Programming Example
In the following programming example, the SLAU instruction for real numbers is executed with
the specified acceleration and deceleration rates where MF00000 is the input speed and
MF00002 is the output speed.

The following parameters are set for the acceleration or deceleration rate.
• Speed when input level of acceleration or deceleration rate is 100% = 20,000
• Acceleration time = 1.5 s
• Deceleration time = 2.5 s
• Quick stop time = 0.5 s
• Acceleration S-curve time = 0.5 s
• Deceleration S-curve time = 1.0 s

The following table shows how each register operates.

* If the quick stop bit is turned OFF, the speed is decelerated to a stop using the quick stop time, regardless of the
S-curve time and input speed.

MB00100
(Quick stop bit OFF)

MF00000
(Input speed)

ON

OFF

0

20,000

MF00002
(Output speed) 0

20,000

-10,000

-10,000
2.0 s

(AT + AAT)

(Acceleration time, deceleration time, and S-curve time settings applied.)

3.5 s
(BT + BBT)

1.25 s
(AT/2 + AAT)

2.25 s
(BT/2 + BBT)

2.0 s
(AT + AAT)

1.0 s*
(QT)

(Quick stop time
is applied.)

4.8 DDC Instructions

4.8.12 Linear Accelerator/Decelerator 2 (SLAU)

4-166

Additional Information

 Formulas for Calculating the Speed Output Value and Current Acceler-
ation/Deceleration Rate

This section describes the formulas for calculating the speed output values during acceleration,
deceleration, quick stops, S-curve acceleration, S-curve deceleration, and the current acceler-
ation or deceleration rates.

 Operation of the SLAU Instruction for Integers
The SLAU instruction for integers calculates the speed output value during acceleration, decel-
eration, quick stops, S-curve acceleration, S-curve deceleration, and the current acceleration
or deceleration rates using the formulas shown below based on predefined parameters.
In this formula, V is the speed output value, V’ is the previous speed output value, VI is the
input value for the speed reference, and Ts is the scan time set value.
• Speed Output Value during Acceleration

The speed output value during acceleration is calculated with the following formula.

• Speed Output Value during Deceleration
The speed output value during deceleration is calculated with the following formula.

• Speed Output Value during a Quick Stop
The speed output value during a quick stop is calculated with the following formula.

• Speed Output Value during S-Curve Acceleration
The speed output value during S-curve acceleration is calculated with the following formula.

Outside the S-curve region (ADVS > ADV)

Positive Side
VI > V’ (V’ ≥ 0)

Negative Side
VI < V’ (V’ < 0)

V = V’ + ADV V = V’ – ADV

Outside the S-curve region (BDVS > BDV)

Positive Side
VI < V’ (V’ ≥ 0)

Negative Side
VI > V’ (V’ < 0)

V = V’ - BDV V = V’ + BDV

QS = OFF

Positive Side
VI < V’ (V’ ≥ 0)

Negative Side
VI > V’ (V’ < 0)

V = V’ – QDV V = V’ + QDV

For a quick stop, the speed is decelerated linearly without applying the S-curve.

Inside the S-curve region (ADVS < ADV)

Positive Side
VI > V’ (V’ ≥ 0)

Negative Side
VI < V’ (V’ < 0)

V = V’ + ADVS V = V’ - ADVS

ADV (acceleration rate) =
LV × Ts (0.1 ms) + REM1

AT (0.1 s) × 1,000

BDV (deceleration rate) = LV × Ts (0.1ms) + REM1
BT (0.1 s) × 1,000

QDV (quick stop rate) =
LV × Ts (0.1ms) + REM1

QT (0.1 s) × 1,000

Information

AADVS =
ADV × Ts (0.1 ms) + REM2

AAT (0.01 s) × 100

ADVS (S-curve region acceleration rate) = ADVS’ ± AADVS

4.8 DDC Instructions

 4.8.12 Linear Accelerator/Decelerator 2 (SLAU)

4-167

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

• Speed Output Value during S-Curve Deceleration
The speed output value during S-curve deceleration is calculated with the following formula.

• Current acceleration/deceleration rate
If DVDTF (skip execution of DVDT1 operation) is ON, DVDT1 (current acceleration/decelera-
tion rate) will be calculated according to the setting of DVDTS (DVDT1 operation selection)
using one of the following formulas. If DVDTF is OFF, DVDT1 is set to 0.

The value for DVDT2 (current acceleration/deceleration rate 2) is calculated as follows:

During acceleration: Inside the S-curve region: DVDT2 = ±ADVS
 Outside the S-curve region: DVDT2 = ±ADV
During deceleration: Inside the S-curve region: DVDT2 = ±BDVS
 Outside the S-curve region: DVDT2 = ±BDV
During a quick stop: DVDT = ±QDV

The result of ABMD (speed increase upon holding) is output after the following operation is
performed.

Inside the S-curve region (BDVS < BDV)

Positive Side
VI < V’ (V’ ≥ 0)

Negative Side
VI > V’ (V’ < 0)

V = V’ – BDVS V = V’ + BDVS

1. ARY (accelerating) turns ON at the following times:
• When V’ ≥ 0 and ADV > 0, or when V’ ≤ 0 and ADV < 0
• If V’ ≥ 0 and ADVS > 0 inside an S-curve region, or if V’ ≤ 0 and ADVS < 0 inside an S-

curve region
2. BRY (decelerating) turns ON at the following times:

• When V’ < 0 and BDV > 0, or when V’ > 0 and BDV < 0
• When V’ < 0 and QDV > 0, or when V’ > 0 and QDV < 0
• If V’ < 0 and BDVS > 0 inside an S-curve region, or if V’ > 0 and BDVS < 0 inside an S-

curve region
3. LSP (zero speed) turns ON when V equals 0.
4. EQU (equal) turns ON when VI equals V.
5. If RN (line running) is OFF, the outputs for V, DVDT1, DVDT2, DVDT3, REM1, REM2, and

REM3 are set to 0.

BBDVS = BDV × Ts (0.1 ms) + REM2
BBT (0.01 s) × 100

BDVS (S-curve region deceleration rate) = BDVS’ ± BBDVS

If DVDTS = ON, DVDT1 =

If DVDTS is OFF, DVDT1 = (V － V’) × DVDTK

(V － V’) × 5,000
ADV

ABMD =

DVDT2’: Previous value of DVDT2 (current acceleration/deceleration rate 2)

DVDT2’ × DVDT2’
2 × AADVS (BBDVS)

Information

4.8 DDC Instructions

4.8.12 Linear Accelerator/Decelerator 2 (SLAU)

4-168

 Operation of the SLAU Instruction for Double-length Integers or Real Numbers
The SLAU instruction for double-length integers or real numbers calculates the speed output
value during acceleration, deceleration, quick stops, S-curve acceleration, S-curve decelera-
tion, and the current acceleration or deceleration rates using the formulas shown below.

In this formula, V is the speed output value, V’ is the previous speed output value, VI is the
input value for the speed reference, Ts is the scan time set value, ADVS’ is the previous ADVS
value, and BDVS’ is the previous BDVS value.
• Speed Output Value during Acceleration

The speed output value during acceleration is calculated with the following formula.

• Speed Output Value during Deceleration
The speed output value during deceleration is calculated with the following formula.

• Speed Output Value during a Quick Stop
The speed output value during a quick stop is calculated with the following formula.

• Speed Output Value during S-Curve Acceleration
The speed output value during S-curve acceleration is calculated with the following formula.

• Speed Output Value during S-Curve Deceleration
The speed output value during S-curve deceleration is calculated with the following formula.

Outside the S-curve region (ADVS > ADV)

Positive Side
VI > V’ (V’ ≥ 0)

Negative Side
VI < V’ (V’ < 0)

V = V’ + ADV V = V’ – ADV

Outside the S-curve region (BDVS > BDV)

Positive Side
VI < V’ (V’ ≥ 0)

Negative Side
VI > V’ (V’ < 0)

V = V’ – BDV V = V’ + BDV

QS = OFF

Positive Side
VI < V’ (V’ ≥ 0)

Negative Side
VI > V’ (V’ < 0)

V = V’ – QDV V = V’ + QDV

For a quick stop, the speed is decelerated linearly without applying the S-curve.

Inside the S-curve region (ADVS < ADV)

Positive Side
VI > V’ (V’ ≥ 0)

Negative Side
VI < V’ (V’ < 0)

V = V’ + ADVS V = V’ – ADVS

Inside the S-curve region (BDVS < BDV)

Positive Side
VI < V’ (V’ ≥ 0)

Negative Side
VI > V’ (V’ < 0)

V = V’ – BDVS V = V’ + BDVS

ADV (acceleration rate) =
LV × Ts (0.1 ms)
AT (s) × 10,000

BDV (deceleration rate) = − LV × Ts (0.1 ms)
BT (s) × 10,000

QDV (quick stop rate) = LV × Ts (0.1 ms)
QT (s) × 10,000

Information

AADVS =
ADV × Ts (0.1 ms)
AAT (s) × 10,000

ADVS (S-curve region acceleration rate) = ADVS’ ± AADVS

BBDVS = BDV × Ts (0.1 ms)
BBT (s) × 10,000

BDVS (S-curve region deceleration rate) = BDVS’ ± BBDVS

4.8 DDC Instructions

 4.8.12 Linear Accelerator/Decelerator 2 (SLAU)

4-169

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

• Current acceleration/deceleration rate
The value of DVDT1 (current acceleration/deceleration rate 1) is output after the following
operation is performed:

During acceleration: Inside the S-curve region: DVDT = ADVS
 Outside the S-curve region: DVDT = ADV
During deceleration: Inside the S-curve region: DVDT = BDVS
 Outside the S-curve region: DVDT = BDV
During a quick stop: DVDT = QDV

The result of ABMD (speed increase upon holding) is output after the following operation is
performed.

 Precautions in Using the SLAU Instruction

 Changing the Input Value for VI (Input Speed) during Acceleration or Deceleration
If VI (input value) is to be changed while accelerating or decelerating, do not use the SLAU
instruction for integers. Otherwise, overshooting or undershooting may occur as shown in the
following figures.

If VI (input value) is to be changed while accelerating or decelerating, take one of the following
measures in your application program.
• Use the SLAU instruction for real numbers.
• Use the SLAU instruction for integers in conjunction with the LIMIT instruction. Specifically,

use the output value of the SLAU instruction for integers as the input value to the LIMIT
instruction to prevent overshooting or undershooting.

1. LSP (zero speed) turns ON when V equals 0.
2. EQU (equal) turns ON when VI equals V.
3. If RN (line running) is OFF, the outputs for V, DVDT, and AVMD are set to 0.

ABMD = DVDT × DVDT
2 × AADVS (BBDVS)

Information

Overshoot

Time Time

Undershoot

Reference input changed during
acceleration (VI was changed to 0).

Reference input changed during
deceleration (0 was changed to VI).

Speed

VI

0

Speed

VI

0

4.8 DDC Instructions

4.8.13 Pulse Width Modulation (PWM)

4-170

 Cancelling a Quick Stop While Decelerating during a Quick Stop
When decelerating for a quick stop, do not cancel the quick stop before the output speed
reaches 0. Otherwise, undershooting may occur while approaching the input speed.

If you must reset the quick stop before the output speed reaches 0, use the LIMIT instruction
on the output speed to prevent undershooting.

4.8.13 Pulse Width Modulation (PWM)
The input value (from -100.00% to 100.00%) is converted using pulse-width modulation and
the result is output to the output value and parameter table. The input value can be used only
with integer data, and the output value can be used only with bit data. Double-length integers
and real numbers cannot be used.

The ON output time and number of ON output scans of the PWM instruction can be calculated
with the following formula.
X is the input value, PWMT is the PWM cycle (ms), and Ts is the scan time set value (ms).

Time

Speed

VI

0

Quick stop

Quick stop canceled
before speed is 0.

Undershoot

If using an integer, set an integral multiple of 1 ms for the scan time.

1. The relation between the input value and the PWM output ON ratio is shown below.
• Input value 100.00% → 100% ON (ON output time = PWMT)
• Input value 0.00% → 50% ON (ON output time = PWMT/2)
• Input value -100.00% → 0% ON (ON output time = 0)

2. After turning ON the power supply, turn ON PWMRST (PWM reset) to clear all internal cal-
culations before using the PWM instruction. The PMW operation will start executing from
the point when the PWM reset bit was turned ON.

Important

ON OFF OFFON

PWMT (PWM cycle)

ON output time
(number of ON output scans)

Output value for
PWM instruction

PWMT (PWM cycle)

Scan

ON output time =

Number of ON output scans =

PWMT (X + 10,000)
20,000

PWMT (X + 10,000)
Ts × 20,000

Information

4.8 DDC Instructions

 4.8.13 Pulse Width Modulation (PWM)

4-171

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

 Ranges of Input and Output Values
The input value must be between -10,000 and 10,000 in units of 0.01%.
If the input exceeds this range, processing is performed for the upper limit (10,000) and the
lower limit (-10,000).
The output value is set to 1 when the PWM output is ON, or to 0 when the PWM output is OFF.

 Parameter Table

* The relay inputs and outputs are assigned as given below.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

In (Input value) ×  × × × × ×  

Prm (First address of
parameter table) × × × × × × * * ×

Out (Output value) * × × × × × ×  ×

Address Data Type Symbol Name Specification I/O

0 W RLY Relay I/O Relay inputs and relay outputs* IN/OUT

1 W RWMT PWM cycle PWM cycle (1 ms)
Range: 1 to 32,767 ms IN

2 W ONCNT ON output setting timer ON output setting timer (1 ms) OUT

3 W CVON ON output counting
timer ON output counting timer (1 ms) OUT

4 W CVONREM ON output counting
timer remainder

ON output counting timer remainder
(0.1 ms) OUT

5 W OFFCNT OFF output setting timer OFF output setting timer (1 ms) OUT

6 W CVOFF OFF output counting
timer OFF output counting timer (1 ms) OUT

7 W CVOFFREM OFF output counting
timer remainder

OFF output counting timer remainder
(0.1 ms) OUT

Bit Symbol Name Specification I/O

0 PWMRST PWM reset bit Turn ON this input to reset the PWM operation. IN

2 to 7 − (Reserved.) Spare input relays IN

8 PWMOUT PWM output
PWM Output
(The output value is set to 1 when the output is ON,
or to 0 when the output is OFF.)

OUT

9 to F − (Reserved.) Spare output relays OUT

Icon:

Key entry: PWM

Output valueFirst address of
parameter table

Input value

4.8 DDC Instructions

4.8.13 Pulse Width Modulation (PWM)

4-172

Programming Example
In the following programming example, the PWM output for the input value in MW00000 is
stored in OB000000 where the PWM cycle is 100 ms.

This figure shows the output of OB000000 when MW00000 is 0 (0%: ON output time is 1/2 of
the PWM cycle).

This figure shows the output of OB000000 when MW00000 is 5,000 (50%: ON output time is
3/4 of the PWM cycle).

PWM cycle = 100 ms

ON

OFF ON output time = 50 ms
Number of ON output scans = 50 ms/scan time set value

ON

OFF

PWM cycle = 100 ms

ON output time = 75 ms
Number of ON output scans = 75 ms/scan time set value

4.9 Table Manipulation Instructions

4.9.1 Read Table Block (TBLBR/TBLBRE)

4-173

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

4.9 Table Manipulation Instructions

4.9.1 Read Table Block (TBLBR/TBLBRE)
A block of table data that is specified by the table name, row number, and column number is
moved to a continuous area that starts at the first destination address. The data is stored in the
destination area according to the data type of the elements that were read.
If an error occurs when accessing the table, such as data that is out of range or not enough
data length at the destination, an error is output and no data is read. The contents in the desti-
nation area will remain unchanged.

If the instruction ends normally, the number of words that were moved is output, and the status
is turned OFF. If an error occurs, an error code is output and the status is turned ON.

• If the Move Succeeds

• If the Move Fails

If the move fails, the destination area will retain the contents from before the instruction was
executed.

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

Columns →

 (W) (W) (L) (L) (W)

Rows

↓

7

8

9

12

13

Data type for each column

Block specified in parameter table

First destination address

MW����

ML���� + 1

ML���� + 3

MW���� + 5

14

ML���� + 6

ML���� + 8
Table data

Data is stored according to
the data type of the table data.

Transferred.

Number of
words moved Output data

StatusOFF

Output data

Status

Error code

ON

Information

4.9 Table Manipulation Instructions

4.9.1 Read Table Block (TBLBR/TBLBRE)

4-174

Format
The format of this instruction is shown below.

*1. Specify the registers in which the text string for the table name (8 bytes + NULL character max.) has been
stored.

*2. G, M, D, or C register only.
*3. Optional.
*4. C and # registers cannot be used.

Details on I/O Items

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Name
(Table name)*1*2 × × × × × ×  × ×

Data (First destination
address) × × × × × × *4 × ×

Prm (First address of
parameter table) × × × × × ×  × ×

Out (Output data)*3 × *4 × × × × ×  ×

Sts (Status)*3 *4 × × × × × × × ×

Item Name I/O Description

Name Table name IN
For the TBLBR instruction, directly enter the table name.
For the TBLBRE instruction, indirectly designate the table name in reg-
isters.

Data First destination
address IN Specify the first address of the destination.

Prm First address of
parameter table IN/OUT Specify the first address of the table data.

Out Output data OUT Specify the destination address of the output data.

Sts Status OUT Specify the address for checking the status of this instruction.

Note the following precautions regarding Name.
• Always add a NULL character to Name. If a NULL character is not added to Name, a fixed

length of 8 bytes (4 words) of data is read and handled as the table name. There is a risk that
an unintended table name may be referenced because of this.

• When characters have been set with ASCII instructions, the NULL character is not set at the
end of the text string. Use the STRSET instruction to set Name.

• An operation error will occur if the size from the first register to the maximum range of registers
is less than 8 bytes (4 words).

Status

Output data

First address of
parameter table

First destination
address

Source table name

Key entry: TBLBR

Icon:

Important

4.9 Table Manipulation Instructions

 4.9.1 Read Table Block (TBLBR/TBLBRE)

4-175

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

 Parameter Table

 Error Codes

Note: The error codes apply to all table manipulation instructions.

Programming Example
In the following programming example, the specified block in record table data TBL1 is moved
to a continuous area that starts at the first address of the parameter table (MW00100) when
switch 1 (DB000100) turns ON.
The parameter table is set as shown in the following table.

The contents of table data TBL1 are given below.

* Indicates the data type.

Address Data Type Symbol Name Specification I/O

0 L ROW1 First row number of table
elements

First row number of table elements to
move (1 to 65,535) IN

2 L COL1 First column number of
table elements

First column number of table elements
to move (1 to 32,767) IN

4 W RLEN Number of row elements Number of row elements (1 to 32,767) IN

5 W CLEN Number of column elements Number of column elements
(1 to 32,767) IN

Error Code Error Name Meaning

0001 hex Table undefined The target table is undefined.

0002 hex Outside range of row numbers The row number of the table element is outside the target
table.

0003 hex Outside range of column numbers The column number of the table element is outside the
target table.

0004 hex Incorrect number of elements The number of target elements is invalid.

0005 hex Insufficient storage area The storage area is insufficient.

0006 hex Insufficient element type The data type specified for the element is wrong.

0007 hex Queue buffer error An attempt was made to read from an empty queue buffer,
or to write to a full queue buffer by advancing the pointer.

0008 hex Queue table error The specified table is not a queue table.

0009 hex System error An unexpected error was detected in the system during
instruction execution.

Register Data Remarks

DL00000 2 First row number of table elements

DL00002 2 First column number of table elements

DW00004 3 Number of row elements

DW00005 3 Number of column elements

Column

Row 1
(W)*

2
(W)*

3
(L)*

4
(L)*

5
(F)*

1

2

3

4

5

1.1

1.2

1.3

1.4

1.5

10001

20002

30003

40004

50005

10000

20000

30000

40000

50000

1001

2002

3003

4004

5005

1000

2000

3000

4000

5000

Area to move

4.9 Table Manipulation Instructions

4.9.1 Read Table Block (TBLBR/TBLBRE)

4-176

After the instruction is executed, the data is moved to a continuous area that starts from
MW00100 as shown below.

The number of words that was moved is set to 15 in MW00000 (output data), and MB000010
(status) is set to 0 (move successful).

Note: The registers are assigned as shown in the above table.

Register Data Register Data Register Data

MW00100 2002 ML00101 20000 ML00103 20002

MW00105 3003 ML00106 30000 ML00108 30003

MW00110 4004 ML00111 40000 ML00113 40004

4.9 Table Manipulation Instructions

 4.9.2 Write Table Block (TBLBW/TBLBWE)

4-177

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

4.9.2 Write Table Block (TBLBW/TBLBWE)
Data from a continuous area that starts at the first source address is moved to a block of table
data that is specified by the table name, row number, and column number. The data is moved
under the assumption that the data type of the source area and each element in the table data
match.
If an error occurs when accessing the table, such as data that is out of range or not enough
data length at the source, an error is output and no data is written. The contents in the destina-
tion area will remain unchanged.

If the instruction ends normally, the number of words that were moved is output, and the status
is turned OFF. If an error occurs, an error code is output and the status is turned ON.

• If the Move Succeeds

• If the Move Fails

If the move fails, the table data at the destination will retain the contents from before the
instruction was executed.

1 2 3 4 5

6 100 101 102 10

11 103 104 105 15

Columns →

 (W) (W) (L) (L) (W)

Rows

↓

100

101

102

103

104

Data type for each column

Block specified in parameter table

First source address

MW����

ML���� + 1

ML���� + 3

MW���� + 5

105

ML���� + 6

ML���� + 8 Table data

Data is moved according to
the data type of the table data.

Transferred.

Number of
words moved Output data

StatusOFF

Error code Output data

StatusON

Information

4.9 Table Manipulation Instructions

4.9.2 Write Table Block (TBLBW/TBLBWE)

4-178

Format
The format of this instruction is shown below.

*1. Specify the registers in which the text string for the table name (8 bytes + NULL character max.) has been
stored.

*2. G, M, D, or C register only.
*3. Optional.
*4. C and # registers cannot be used.

Details on I/O Items

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Name
(Table name)*1*2 × × × × × ×  × ×

Data (First source
address) × × × × × × *4 × ×

Prm (First address of
parameter table) × × × × × ×  × ×

Out (Output data)*3 × *4 × × × × ×  ×

Sts (Status)*3 *4 × × × × × × × ×

Item Name I/O Description

Name Table name IN
For the TBLBW instruction, directly enter the table name.
For the TBLBWE instruction, indirectly designate the table name in
registers.

Data First source
address IN Specify the first address of the source.

Prm First address of
parameter table IN/OUT Specify the first address of the table data.

Out Output data OUT Specify the first address of the table data.

Sts Status OUT Specify the address for checking the status of this instruction.

Note the following precautions regarding Name.
• Always add a NULL character to Name. If a NULL character is not added to Name, a fixed

length of 8 bytes (4 words) of data is read and handled as the table name. This is a risk that an
unintended table name may be referenced because of this.

• When characters have been set with ASCII instructions, the NULL character is not set at the
end of the text string. Use the STRSET instruction to set Name.

• An operation error will occur if the size from the first register to the maximum range of registers
is less than 8 bytes (4 words).

Status

Output data

First address of
parameter table

First source address

Destination table name

Key entry: TBLBW

Icon:

Important

4.9 Table Manipulation Instructions

 4.9.2 Write Table Block (TBLBW/TBLBWE)

4-179

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

 Parameter Table

 Error Codes

Note: The error codes apply to all table manipulation instructions.

Address Data Type Symbol Name Specification I/O

0 L ROW1 First row number of table
elements

First row number of table elements to
move (1 to 65,535) IN

2 L COL1 First column number of
table elements

First column number of table elements
to move (1 to 32,767) IN

4 W RLEN Number of row elements Number of row elements (1 to 32,767) IN

5 W CLEN Number of column elements Number of column elements
(1 to 32,767) IN

Error Code Error Name Meaning

0001 hex Table undefined The target table is undefined.

0002 hex Outside range of row numbers The row number of the table element is outside the target
table.

0003 hex Outside range of column numbers The column number of the table element is outside the
target table.

0004 hex Incorrect number of elements The number of target elements is invalid.

0005 hex Insufficient storage area The storage area is insufficient.

0006 hex Insufficient element type The data type specified for the element is wrong.

0007 hex Queue buffer error An attempt was made to read from an empty queue buffer,
or to write to a full queue buffer by advancing the pointer.

0008 hex Queue table error The specified table is not a queue table.

0009 hex System error An unexpected error was detected in the system during
instruction execution.

4.9 Table Manipulation Instructions

4.9.2 Write Table Block (TBLBW/TBLBWE)

4-180

Programming Example
In the following programming example, a continuous area of data from the first address of the
parameter table at MW00100 is moved to a specified block in record table data TBL1 when
switch 1 (DB000100) turns ON.

The parameter table is set as shown in the following table.

The data to move is given below.

This table shows the contents of table data TBL1 after the instruction is executed.

The number of words that were moved is set to 15 in MW00000 (output data) and MB000010
(status) is set to 0 (move successful).

* Indicates the data type.

Register Data Remarks

DL00000 2 First row number of table elements

DL00002 2 First column number of table elements

DW00004 3 Number of row elements

DW00005 3 Number of column elements

Register Data Register Data Register Data

MW00100 1 ML00101 2 ML00103 3

MW00105 4 ML00106 5 ML00108 6

MW00110 7 ML00111 8 ML00113 9

Column
Row

1
(W)*

2
(W)*

3
(L)*

4
(L)*

5
(F)*

1

2

3

4

1

4

7

2

5

8

3

6

9

5

Moved area

4.9 Table Manipulation Instructions

 4.9.3 Search for Table Row (TBLSRL/TBLSRLE)

4-181

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

4.9.3 Search for Table Row (TBLSRL/TBLSRLE)
A search is made for the search data in column elements of the table data that is specified by
the table name, row number, and column number. The search result is output as the row num-
ber of the data that matches the search data. The type of the data to be searched is automati-
cally determined by the data type of the specified column elements.
If the instruction ends normally and the search data is found, the search result in the input
parameter table is set to 1, the output data is set to the row number, and the status is turned
OFF. If the search data is not found, the search result and output data are set to 0. If an error
occurs, an error code is set in the output data and the status is turned ON.

• Search Data Found

• Search Data Not Found

• Search Error

Columns →

 (W) (W) (L) (L) (W)
Rows

↓

Data type for each column

Table data

Search area selected
by first row number,
last row number, and
column number.

SearchSearch data

Row number Output data

StatusOFF

Search result
for parameters

1: Matching
 row exists

0 Output data

StatusOFF

Search result
for parameters0: No matching row

Error code Output data

StatusON

4.9 Table Manipulation Instructions

4.9.3 Search for Table Row (TBLSRL/TBLSRLE)

4-182

Format
The format of this instruction is shown below.

*1. Specify the registers in which the text string for the table name (8 bytes + NULL character max.) has been
stored.

*2. G, M, D, or C register only.
*3. Optional.
*4. C and # registers cannot be used.

Details on I/O Items

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Name
(Table name)*1*2 × × × × × ×  × ×

Data (First address of
search data) × × × × × ×  × ×

Prm (First address of
parameter table) × × × × × ×  × ×

Out (Output data)*3 × *4 × × × × ×  ×

Sts (W) (Status)*3 *4 × × × × × × × ×

Item Name I/O Description

Name Table name IN
For the TBLSRL instruction, directly enter the table name.
For the TBLSRLE instruction, indirectly designate the table name
in registers.

Data First destination
address IN Specify the first address of the destination.

Prm First address of
parameter table IN/OUT Specify the first address of the table data.

Out Output data OUT Specify the first address of the table data.

Sts Status OUT Specify the address for checking the status of this instruction.

Note the following precautions regarding Name.
• Always add a NULL character to Name. If a NULL character is not added to Name, a fixed

length of 8 bytes (4 words) of data is read and handled as the table name. This is a risk that an
unintended table name may be referenced because of this.

• When characters have been set with ASCII instructions, the NULL character is not set at the
end of the text string. Use the STRSET instruction to set Name.

• An operation error will occur if the size from the first register to the maximum range of registers
is less than 8 bytes (4 words).

Status

Output data

First address of
parameter table

First address
of search data

Table Name

Key entry: TBLSRL

Icon:

Important

4.9 Table Manipulation Instructions

 4.9.3 Search for Table Row (TBLSRL/TBLSRLE)

4-183

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

 Parameter Table

 Error Codes

Programming Example
In the following programming example, a search is made by row for search data 32 in
MW00000 from array table data TBL1.

The parameter table is set as shown in the following table.

The contents of table data TBL1 are given below. (Table elements are integer data.)

Address Data Type Symbol Name Specification I/O

0 L ROW1 First row number of table
elements

First row number of table elements to
search (1 to 65,535) IN

2 L ROW2 Last row number of table
elements

Last row number of table elements to
search (1 to 65,535) IN

4 L COLUMN Column number of table
elements

Column number of table elements to
search (1 to 32,767) IN

6 W FIND Search result
Search result
0: No matching row
1: Matching row exists

OUT

Error Code Error Name Meaning

0001 hex Table undefined The target table is undefined.

0002 hex Outside range of row numbers The row number of the table element is outside the target
table.

0003 hex Outside range of column numbers The column number of the table element is outside the
target table.

0004 hex Incorrect number of elements The number of target elements is invalid.

0005 hex Insufficient storage area The storage area is insufficient.

0006 hex Insufficient element type The data type specified for the element is wrong.

0007 hex Queue buffer error An attempt was made to read from an empty queue buffer,
or to write to a full queue buffer by advancing the pointer.

0008 hex Queue table error The specified table is not a queue table.

0009 hex System error An unexpected error was detected in the system during
instruction execution.

Register Data Remarks

DL00010 2 First row number of table elements

DL00012 5 Last row number of table elements

DL00014 2 Column number of table elements

Column

Row 1
 (W)*

2
 (W)*

3
 (W)*

4
 (W)*

5
 (W)*

1 14 15131211

2 21 22 23 24 25

3 33 34 353231

4 42 43 44 4541

5

Area to search

51 52 53 54 55

* Indicates the data type.

4.9 Table Manipulation Instructions

4.9.4 Search for Table Column (TBLSRC/TBLSRCE)

4-184

A match for 32 was found in row number 3 in the search area, so DW00001 (output data) is set
to 3.

4.9.4 Search for Table Column (TBLSRC/TBLSRCE)
A search is made for the search data in row elements of the table data that is specified by the
table name, row number, and column number. The search result is output as the column num-
ber of the data that matches the search data. The type of the data to be searched is automati-
cally determined by the data type of the specified row elements.

If the instruction ends normally and the search data is found, the search result in the input
parameter table is set to 1, the output data is set to the column number, and the status is
turned OFF. If the search data is not found, the search result and output data are set to 0. If an
error occurs, an error code is set in the output data and the status is turned ON.

• Search Data Found

• Search Data Not Found

• Search Error

Columns →

 (W) (W) (L) (L) (W)
Rows

↓

Data type for each column

Table data

Search area selected
by first column number,
last column number,
and row number.

Search
Search data

Column number Output data

StatusOFF

Search result
for parameters

1: Matching
 column exists

0 Output data

StatusOFF

Search result
for parameters

0: No matching
 column

Error code Output data

StatusON

4.9 Table Manipulation Instructions

 4.9.4 Search for Table Column (TBLSRC/TBLSRCE)

4-185

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Format
The format of this instruction is shown below.

*1. Specify the registers in which the text string for the table name (8 bytes + NULL character max.) has been
stored.

*2. G, M, D, or C register only.
*3. Optional.
*4. C and # registers cannot be used.

Details on I/O Items

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Name
(Table name)*1*2 × × × × × ×  × ×

Data (First address of
search data) × × × × × ×  × ×

Prm (First address of
parameter table) × × × × × ×  × ×

Out (Output data)*3 × *4 × × × × ×  ×

Sts (Status)*3 *4 × × × × × × × ×

Item Name I/O Description

Name Table name IN
For the TBLSRC instruction, directly enter the table name.
For the TBLSRCE instruction, indirectly designate the table name in
registers.

Data First destination
address IN Specify the first address of the destination.

Prm First address of
parameter table IN/OUT Specify the first address of the table data.

Out Output data OUT Specify the first address of the table data.

Sts Status OUT Specify the address for checking the status of this instruction.

Note the following precautions regarding Name.
• Always add a NULL character to Name. If a NULL character is not added to Name, a fixed

length of 8 bytes (4 words) of data is read and handled as the table name. This is a risk that an
unintended table name may be referenced because of this.

• When characters have been set with ASCII instructions, the NULL character is not set at the
end of the text string. Use the STRSET instruction to set Name.

• An operation error will occur if the size from the first register to the maximum range of registers
is less than 8 bytes (4 words).

Output data

Status

First address of
parameter table

First address
of search data

Table Name

Icon:

Key entry: TBLSRC

Important

4.9 Table Manipulation Instructions

4.9.4 Search for Table Column (TBLSRC/TBLSRCE)

4-186

 Parameter Table

 Error Codes

Note: The error codes apply to all table manipulation instructions.

Programming Example
In the following programming example, a search is made by column for search data 34 in
MW00000 from array table data TBL1.

The parameter table is set as shown in the following table.

The contents of table data TBL1 are given below. (Table elements are integer data.)

* Indicates the data type.

Address Data Type Symbol Name Specification I/O

0 L ROW1 Row number of table
elements

Row number of table elements to
search (1 to 65,535) IN

2 L COLUMN1 First column number of
table elements

First column number of table elements
to search (1 to 32,767) IN

4 L COLUMN2 Last column number of
table elements

Last column number of table elements
to search (1 to 32,767) IN

6 W FIND Search result
Search result
0: No matching column
1: Matching column exists

OUT

Error Code Error Name Meaning

0001 hex Table undefined The target table is undefined.

0002 hex Outside range of row numbers The row number of the table element is outside the target
table.

0003 hex Outside range of column numbers The column number of the table element is outside the
target table.

0004 hex Incorrect number of elements The number of target elements is invalid.

0005 hex Insufficient storage area The storage area is insufficient.

0006 hex Unexpected element type The data type specified for the element is wrong.

0007 hex Queue buffer error An attempt was made to read from an empty queue buffer,
or to write to a full queue buffer by advancing the pointer.

0008 hex Queue table error The specified table is not a queue table.

0009 hex System error An unexpected error was detected in the system during
instruction execution.

Register Data Remarks

DL00010 3 Row number of table elements

DL00012 2 First column number of table elements

DL00014 5 Last column number of table elements

Column

Row 1
 (W)*

2
 (W)*

3
 (W)*

4
 (W)*

5
 (W)*

1 11 12 13 14 15

2 21 22 23 24 25

3 31 32 33 34 35

4 41 42 43 44 45

5 51 52 53 54 55

Area to search

4.9 Table Manipulation Instructions

 4.9.5 Clear Table Block (TBLCL/TBLCLE)

4-187

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

A match for 34 was found in column number 4 in the search area, so DW00001 (output data) is
set to 4.

4.9.5 Clear Table Block (TBLCL/TBLCLE)
A block of data in the table data that is specified by the table name, row number, and column
number is cleared. The table elements are filled with spaces if the data type is for text strings,
and 0s if the data type is for numeric values.
If both the first row number and the first column number of the table element are 0, the entire
table will be cleared.
If an error occurs when accessing the table, such as data that is out of range or not enough
data length at the destination, an error is output and no data is written.
If the instruction ends normally, the number of words that were cleared is output and the status
is turned OFF. If an error occurs, an error code is set in the output data and the status is turned
ON.

• If the Clear Succeeds

1 2 3 4 abcd

6 0 0 0

11 0 0 0

16 17 18 19 hijk

Columns →

 (W) (W) (L) (L) (Text string)

Rows

↓

Data type for each column

Specified block

Table data

Text strings are set to spaces,
numeric values are set to 0s.

Data cleared.

Note: If both the first row number and
column number of the table element
are 0, the entire table is cleared.

Number of
words cleared Output data

StatusOFF

4.9 Table Manipulation Instructions

4.9.5 Clear Table Block (TBLCL/TBLCLE)

4-188

• If the Clear Fails

Format
The format of this instruction is shown below.

*1. Specify the registers in which the text string for the table name (8 bytes + NULL character max.) has been
stored.

*2. G, M, D, or C register only.
*3. Optional.
*4. C and # registers cannot be used.

Details on I/O Items

If the clear fails, the table data will retain the contents from before the instruction was exe-
cuted.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Name (Table name)*1*2 × × × × × ×  × ×
Prm (First address of
parameter table) × × × × × ×  × ×

Out (Output data)*3 × *4 × × × × ×  ×

Sts (Status)*3 *4 × × × × × × × ×

Item Name I/O Description

Name Table name IN
For the TBLCL instruction, directly enter the table name.
For the TBLCLE instruction, indirectly designate the table name in
registers.

Prm First address of
parameter table IN/OUT Specify the first address of the table data.

Out Output data OUT Specify the first address of the table data.

Sts Status OUT Specify the address for checking the status of this instruction.

Note the following precautions regarding Name.
• Always add a NULL character to Name. If a NULL character is not added to Name, a fixed

length of 8 bytes (4 words) of data is read and handled as the table name. This is a risk that an
unintended table name may be referenced because of this.

• When characters have been set with ASCII instructions, the NULL character is not set at the
end of the text string. Use the STRSET instruction to set Name.

• An operation error will occur if the size from the first register to the maximum range of registers
is less than 8 bytes (4 words).

Error code Output data

StatusON

Information

Output data

Status
First address of
parameter table

Table name

Key entry: TBLCL

Icon:

Important

4.9 Table Manipulation Instructions

 4.9.5 Clear Table Block (TBLCL/TBLCLE)

4-189

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

 Parameter Table

 Error Codes

Note: The error codes apply to all table manipulation instructions.

Programming Example
In the following programming example, the specified block is cleared from record table data
TBL1 when switch 1 (DB000100) turns ON.
The parameter table is set as shown in the following table.

The contents of table data TBL1 are given below.

* Indicates the data type.

Address Data Type Symbol Name Specification I/O

0 L ROW First row number of table
elements

First row number of table elements to
move (1 to 65,535) IN

2 L COL First column number of
table elements

First column number of table elements
to move (1 to 32,767) IN

4 W RLEN Number of row elements Number of row elements (1 to 32,767) IN

5 W CLEN Number of column elements Number of column elements
(1 to 32,767) IN

Error Code Error Name Meaning

0001 hex Table undefined The target table is undefined.

0002 hex Outside range of row numbers The row number of the table element is outside the target
table.

0003 hex Outside range of column numbers The column number of the table element is outside the
target table.

0004 hex Incorrect number of elements The number of target elements is invalid.

0005 hex Insufficient storage area The storage area is insufficient.

0006 hex Insufficient element type The data type specified for the element is wrong.

0007 hex Queue buffer error An attempt was made to read from an empty queue buffer,
or to write to a full queue buffer by advancing the pointer.

0008 hex Queue table error The specified table is not a queue table.

0009 hex System error An unexpected error was detected in the system during
instruction execution.

Register Data Remarks

DL00000 2 First row number of table elements

DL00002 2 First column number of table elements

DW00004 3 Number of row elements

DW00005 3 Number of column elements

Column
Row

1
(W)*

2
(W)*

3
(L)*

4
(Text string)*

5
(F)*

1

2

3

4

5

1000

2000

3000

4000

5000

1001

2002

3003

4004

5005

10000

20000

30000

40000

50000

ABCD

BCDE

CDEF

DEFG

EFGH

1.1

1.2

1.3

1.4

1.5

Area to clear

4.9 Table Manipulation Instructions

4.9.6 Move Table Block (TBLMV/TBLMVE)

4-190

The data is cleared after the instruction is executed as shown below.

* Indicates the data type.

4.9.6 Move Table Block (TBLMV/TBLMVE)
A block of data in the table data that is specified by the table name, row number, and column
number is moved to a different block in the table. The block can be moved between different
tables or within the same table.

If the data type of the column elements in the source and destination do not match, an error is
output and no data is moved.
If the instruction ends normally, the number of words that were moved is output, and the status
is turned OFF. If an error occurs, an error code is output and the status is turned ON.

Column

Row 1
(W)*

2
(W)*

3
(L)*

4
(Text string)*

5
(F)*

1

2

3

4

5

1000

2000

3000

4000

5000

1001

0

0

0

5005

10000

0

0

0

50000

ABCD

EFGH

1.1

1.2

1.3

1.4

1.5

Area cleared

1 2 3

4 5 6

1 2 3

Rows

↓

Table data 1

4 5 6

Columns →

(W)

1 2 3

4 5 6

Rows

↓

Columns →

Table data 2

Transferred.

Transferred.

(W)(L)(L)(W) (W) (L)(L)(W)

4.9 Table Manipulation Instructions

 4.9.6 Move Table Block (TBLMV/TBLMVE)

4-191

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

• If the Move Succeeds

• If the Move Fails

Format
The format of this instruction is shown below.

*1. Specify the registers in which the text string for the table name (8 bytes + NULL character max.) has been
stored.

*2. G, M, D, or C register only.
*3. Optional.
*4. C and # registers cannot be used.

Details on I/O Items

If the move fails, the table data will retain the contents from before the instruction was exe-
cuted.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Src Name*1*2 × × × × × ×  × ×

Dest Name*1*2 × × × × × ×  × ×
Prm (First address of
parameter table) × × × × × ×  × ×

Out (Output data)*3 × *4 × × × × ×  ×

Sts (Status)*3 *4 × × × × × × × ×

Item Name I/O Description

Src Name
Table name IN

For the TBLMV instruction, directly enter the table name.
For the TBLMVE instruction, indirectly designate the table name in
registers.Dest Name

Prm First address of
parameter table IN/OUT Specify the first address of the table data.

Out Output data OUT Specify the first address of the table data.

Sts Status OUT Specify the address for checking the status of this instruction.

Number of
words moved Output data

StatusOFF

Error code Output data

StatusON

Information

Output data

Status

First address of
parameter table

Destination table name

Source table name

Key entry: TBLMV

Icon:

4.9 Table Manipulation Instructions

4.9.6 Move Table Block (TBLMV/TBLMVE)

4-192

 Parameter Table

 Error Codes

Note: The error codes apply to all table manipulation instructions.

Programming Example
In the following programming example, the specified block in record table data TBL1 is moved
to the specified block in table data TBL2 when switch 1 (DB000100) turns ON.

The contents of table data TBL1 are given below.

* Indicates the data type.

Note the following precautions regarding Name.
• Always add a NULL character to Name. If a NULL character is not added to Name, a fixed

length of 8 bytes (4 words) of data is read and handled as the table name. This is a risk that an
unintended table name may be referenced because of this.

• When characters have been set with ASCII instructions, the NULL character is not set at the
end of the text string. Use the STRSET instruction to set Name.

• An operation error will occur if the size from the first register to the maximum range of registers
is less than 8 bytes (4 words).

Address Data Type Symbol Name Specification I/O

0 L ROW1 First row number of table
elements

First row number of table elements at
source to move (1 to 65,535) IN

2 L COLUMN1 First column number of
table elements

First column number of table elements
at source to move (1 to 32,767) IN

4 W RLEN Number of row elements Number of row elements (1 to 32,767) IN

5 W CLEN Number of column elements Number of column elements
(1 to 32,767) IN

6 L ROW2 First row number of table
elements

First row number of table elements at
destination to move (1 to 65,535) IN

8 L COLUMN2 First column number of
table elements

First column number of table elements
at destination to move (1 to 32,767) IN

Error Code Error Name Meaning

0001 hex Table undefined The target table is undefined.

0002 hex Outside range of row numbers The row number of the table element is outside the target
table.

0003 hex Outside range of column numbers The column number of the table element is outside the
target table.

0004 hex Incorrect number of elements The number of target elements is invalid.

0005 hex Insufficient storage area The storage area is insufficient.

0006 hex Insufficient element type The data type specified for the element is wrong.

0007 hex Queue buffer error An attempt was made to read from an empty queue buffer,
or to write to a full queue buffer by advancing the pointer.

0008 hex Queue table error The specified table is not a queue table.

0009 hex System error An unexpected error was detected in the system during
instruction execution.

Important

3
(L)*

1000 1001 10000

2000 2002 20000

3000 3003 30000

4000 4004 40000

5000 5005 50000

Column
Row

1

2

3

4

5

1
(W)*

2
(W)*

Area to move

4.9 Table Manipulation Instructions

 4.9.6 Move Table Block (TBLMV/TBLMVE)

4-193

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

The parameter table is set as shown in the following table.

The contents of table data TBL2 are given below.

* Indicates the data type.

This table shows the contents of table data TBL2 after the instruction is executed.

* Indicates the data type.

Register Data Remarks

DL00000 2 First row number at source

DL00002 1 First column number at source

DW00004 3 Number of row elements

DW00005 3 Number of column elements

DL00006 2 First row number at destination

DL00008 2 First column number at destination

Column

Row 1
(W)*

2
(W)*

3
(W)*

4
(W)*

5
(W)*

1

2

3

4

5

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Area to move

Column

Row 1
(W)*

2
(W)*

3
(W)*

4
(W)*

5
(W)*

1

2

3

4

5

2000

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2002 20000

3000 3003 30000

4000 4004 40000

Moved area

4.9 Table Manipulation Instructions

4.9.7 Read Queue Table (QTBLR/QTBLRE and QTBLRI/QTBLRIE)

4-194

4.9.7 Read Queue Table (QTBLR/QTBLRE and QTBLRI/
QTBLRIE)
Column elements of table data that are specified by the table name, row number, and column
number are continuously read and stored in a continuous area that starts at a specified register.
The data type of the elements read is automatically determined by the table that is specified.
The data type of the destination register is ignored and the data is stored according to the data
type of the table without any conversion.
The QTBLR/QTBLRE instruction does not change the queue table read pointer. The QTBLRI/
QTBLRIE instruction advances the queue table read pointer by one row.
If an error occurs when accessing the table, such as a table name error, an out of range row
number, or an empty queue buffer, an error is output, no data is read, and the pointer is not
advanced. The contents of the destination register will be retained.

If the instruction ends normally, the number of words that were moved is output, and the status
is turned OFF. If an error occurs, an error code is output and the status is turned ON.

* The pointer is not advanced after executing the QTBLR/QTBLRE instruction.
The pointer is advanced after executing the QTBLRI/QTBLRIE instruction.

• If the Read Succeeds

• If the Read Fails

If the read fails, the data at the destination will retain the contents from before the instruction
was executed.

Table data

Read pointer
First address of destination data

Read.

Advanced.*

Number of
words moved Output data

StatusOFF

Error code Output data

StatusON

Information

4.9 Table Manipulation Instructions

 4.9.7 Read Queue Table (QTBLR/QTBLRE and QTBLRI/QTBLRIE)

4-195

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Format
The format of this instruction is shown below.

*1. Specify the registers in which the text string for the table name (8 bytes + NULL character max.) has been
stored.

*2. G, M, D, or C register only.
*3. Optional.
*4. C and # registers cannot be used.

Details on I/O Items

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Name (Table name)*1*2 × × × × × ×  × ×
Data (First address of
destination data) × × × × × ×  × ×

Prm (First address of
parameter table) × × × × × × *4 × ×

Out (Output data)*3 × *4 × × × × ×  ×

Sts (Status)*3 *4 × × × × × × × ×

Item Name I/O Description

Name Table name IN

For the QTBLR and QTBLRI instructions, directly enter the table
name.
For the QTBLRE and QTBLRIE instructions, indirectly designate the
table name in registers.

Data First destination
address IN Specify the first address of the destination.

Prm First address of
parameter table IN/OUT Specify the first address of the table data.

Out Output data OUT Specify the first address of the table data.

Sts Status OUT Specify the address for checking the status of this instruction.

First address of
parameter table

First address of
destination data

Table name Output data

Status

Key entry: QTBLR or QTBLRI

Icon:

4.9 Table Manipulation Instructions

4.9.7 Read Queue Table (QTBLR/QTBLRE and QTBLRI/QTBLRIE)

4-196

 Parameter Table

 Error Codes

Note: The error codes apply to all table manipulation instructions.

 Setting the Relative Row Number of Table Elements

Note the following precautions regarding Name.
• Always add a NULL character to Name. If a NULL character is not added to Name, a fixed

length of 8 bytes (4 words) of data is read and handled as the table name. This is a risk that an
unintended table name may be referenced because of this.

• When characters have been set with ASCII instructions, the NULL character is not set at the
end of the text string. Use the STRSET instruction to set Name.

• An operation error will occur if the size from the first register to the maximum range of registers
is less than 8 bytes (4 words).

Address Data Type Symbol Name Specification I/O

0 L ROW Relative row number
of table elements

Relative row number of table elements at
source to move (1 to 65,535) IN

2 L COLUMN First column number
of table elements

First column number of table elements at
source to move (1 to 32,767) IN

4 W CLEN Number of column
elements

Number of column elements to move
(1 to 32,767) IN

5 W Reserved.

6 L RPTR Read pointer Read pointer of the queue after execution OUT

8 L WPTR Write pointer Write pointer of the queue after execution OUT

Error Code Error Name Meaning

0001 hex Table undefined The target table is undefined.

0002 hex Outside range of row numbers The row number of the table element is outside the target
table.

0003 hex Outside range of column numbers The column number of the table element is outside the
target table.

0004 hex Incorrect number of elements The number of target elements is invalid.

0005 hex Insufficient storage area The storage area is insufficient.

0006 hex Insufficient element type The data type specified for the element is wrong.

0007 hex Queue buffer error An attempt was made to read from an empty queue buffer,
or to write to a full queue buffer by advancing the pointer.

0008 hex Queue table error The specified table is not a queue table.

0009 hex System error An unexpected error was detected in the system during
instruction execution.

Relative Row Number Read Row Remarks

0 Read pointer row The pointer advances only for the QTBLRI instruction.

1 Read pointer row Pointer is not advanced.

2 Read pointer row - 1 Pointer is not advanced.

3 Read pointer row - 2 Pointer is not advanced.

: : :

n Read pointer row - (n - 1) Pointer is not advanced.

Important

4.9 Table Manipulation Instructions

 4.9.7 Read Queue Table (QTBLR/QTBLRE and QTBLRI/QTBLRIE)

4-197

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Programming Example
In the following programming example, the specified column elements in array table data TBL1
are read from the MW00010 area to the MW00012 area when switch 2 (DB000002) turns ON.
Before switch 2 is turned ON, the table data is set as shown below by turning ON switch 1
three times while the value is changed from MW00010 to MW00012. Refer to the following
section for details.

4.9.8 Write Queue Table (QTBLW/QTBLWE and QTBLWI/QTBLWIE) on page 4-198 − Programming Example on
page 4-201

The contents of table data TBL1 are given below.

* Indicates the data type.

The parameter table is set as shown in the following table.

The data that is read changes each time switch 2 (DB000002) turns ON, from the first time to
the third time, as shown below.

The read pointer is advanced each time the instruction is executed starting at the first row on
the first pass, the second row on the second pass, and so on, therefore resulting in the table
shown above.

Row
Column

1
(W)*

2
(W)*

3
(W)*

1 11 12 13

2 21 22 23

3 31 32 33

Register Data Remarks

DL00010 0 Relative row number of table elements

DL00012 1 First column number of table elements

DW00014 3 Number of column elements

Register 1st Data 2nd Data 3rd Data

MW00010 11 21 31

MW00011 12 22 32

MW00012 13 23 33

When the power is turned ON, the data pointed to by the read pointer and write pointer is
undefined. Always execute the QTBLCL/QTBLCLE instruction before using the QTBLR/
QTBLRE, QTBLRI/QTBLRIE, QTBLW/QTBLWE, or QTBLWI/QTBLWIE instruction.
An operation error may occur if the QTBLR/QTBLRE, QTBLRI/QTBLRIE, QTBLW/QTBLWE, or
QTBLWI/QTBLWIE instruction is executed without executing the QTBLCL/QTBLCLE instruc-
tion first.

Information

4.9 Table Manipulation Instructions

4.9.8 Write Queue Table (QTBLW/QTBLWE and QTBLWI/QTBLWIE)

4-198

4.9.8 Write Queue Table (QTBLW/QTBLWE and QTBLWI/
QTBLWIE)
Data in a continuous area that starts at a specified register is continuously written to columns in
a specified table data. The instruction is processed under the assumption that the data type of
the source and destination are the same.

The QTBLW/QTBLWE instruction does not change the queue table write pointer. The QTBLWI/
QTBLWIE instruction advances the queue table write pointer by one row.

If an error occurs when accessing the table, such as a table name error, an out of range row
number, or a full queue buffer, an error is output, no data is written, and the pointer is not
advanced. The contents of the destination register will be retained.
If the instruction ends normally, the number of words that were moved is output, and the status
is turned OFF. If an error occurs, an error code is output and the status is turned ON.

* The pointer is not advanced after executing the QTBLW/QTBLWE instruction.
The pointer is advanced after executing the QTBLWI/QTBLWIE instruction.

• If the Write Succeeds

• If the Write Fails

If the write fails, the table data will retain the contents from before the instruction was exe-
cuted.

Table data

Write pointer First address of source data

Written.

Advanced.*

Number of
words moved Output data

StatusOFF

Error code Output data

StatusON

Information

4.9 Table Manipulation Instructions

 4.9.8 Write Queue Table (QTBLW/QTBLWE and QTBLWI/QTBLWIE)

4-199

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Format
The format of this instruction is shown below.

*1. Specify the registers in which the text string for the table name (8 bytes + NULL character max.) has been
stored.

*2. G, M, D, or C register only.
*3. Optional.
*4. C and # registers cannot be used.

Details on I/O Items

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Name (Table name)*1*2 × × × × × ×  × ×
Data (First address of
source data) × × × × × ×  × ×

Prm (First address of
parameter table) × × × × × × *4 × ×

Out (Output data)*3 × *4 × × × × ×  ×

Sts (Status)*3 *4 × × × × × × × ×

Item Name I/O Description

Name Table name IN

For the QTBLW and QTBLWI instructions, directly enter the table
name.
For the QTBLWE and QTBLWIE instructions, indirectly designate the
table name in registers.

Data First destination
address IN Specify the first address of the destination.

Prm First address of
parameter table IN/OUT Specify the first address of the table data.

Out Output data OUT Specify the first address of the table data.

Sts Status OUT Specify the address for checking the status of this instruction.

First address of
parameter table

First address
of source data

Table Name Output data

Status

Key entry: QTBLW or QTBLWI

Icon:

4.9 Table Manipulation Instructions

4.9.8 Write Queue Table (QTBLW/QTBLWE and QTBLWI/QTBLWIE)

4-200

 Parameter Table

 Error Codes

Note: The error codes apply to all table manipulation instructions.

 Setting the Relative Row Number of Table Elements

Note the following precautions regarding Name.
• Always add a NULL character to Name. If a NULL character is not added to Name, a fixed

length of 8 bytes (4 words) of data is read and handled as the table name. This is a risk that an
unintended table name may be referenced because of this.

• When characters have been set with ASCII instructions, the NULL character is not set at the
end of the text string. Use the STRSET instruction to set Name.

• An operation error will occur if the size from the first register to the maximum range of registers
is less than 8 bytes (4 words).

Address Data Type Symbol Name Specification I/O

0 L ROW Relative row number
of table elements

Relative row number of table elements at
destination (1 to 65,535) IN

2 L COLUMN First column number
of table elements

First column number of table elements at
destination (1 to 32,767) IN

4 W CLEN Number of column
elements

Number of column elements to move
(1 to 32,767) IN

5 W Reserved.

6 L RPTR Read pointer Read pointer of the queue after execution OUT

8 L WPTR Write pointer Write pointer of the queue after execution OUT

Error Code Error Name Meaning

0001 hex Table undefined The target table is undefined.

0002 hex Outside range of row numbers The row number of the table element is outside the target
table.

0003 hex Outside range of column numbers The column number of the table element is outside the
target table.

0004 hex Incorrect number of elements The number of target elements is invalid.

0005 hex Insufficient storage area The storage area is insufficient.

0006 hex Insufficient element type The data type specified for the element is wrong.

0007 hex Queue buffer error An attempt was made to read from an empty queue buffer,
or to write to a full queue buffer by advancing the pointer.

0008 hex Queue table error The specified table is not a queue table.

0009 hex System error An unexpected error was detected in the system during
instruction execution.

Relative Row Number Row Write Remarks

0 Write pointer row The pointer advances only for the QTBLWI instruction.

1 Write pointer row Pointer is not advanced.

2 Write pointer row - 1 Pointer is not advanced.

3 Write pointer row - 2 Pointer is not advanced.

: : :

n Write pointer row - (n - 1) Pointer is not advanced.

Important

4.9 Table Manipulation Instructions

 4.9.8 Write Queue Table (QTBLW/QTBLWE and QTBLWI/QTBLWIE)

4-201

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Programming Example
In the following programming example, the data from MW00010 to MW00012 is written to the
specified column elements in array table data TBL1 when switch 1 (DB000001) turns ON.
Initialize table data TBL1 before executing this type of programming.

* Indicates the data type.

The parameter table is set as shown in the following table.

Switch 1 (DB000001) is turned ON three time while the data is changed from MW00010 to
MW00012, as shown below.

The write pointer is advanced each time the instruction is executed starting at the first row on
the first pass, the second row on the second pass, and so on. After three executions, TBL1 will
be set with data as shown below.

Row
Column

1
(W)*

2
(W)*

3
(W)*

1 0 0 0

2 0 0 0

3 0 0 0

Register Data Remarks

DL00010 0 Relative row number of table elements

DL00012 1 First column number of table elements

DW00014 3 Number of column elements

Register 1st Data 2nd Data 3rd Data

MW00010 11 21 31

MW00011 12 22 32

MW00012 13 23 33

When the power is turned ON, the data pointed to by the read pointer and write pointer is
undefined. Always execute the QTBLCL/QTBLCLE instruction before using the QTBLR/
QTBLRE, QTBLRI/QTBLRIE, QTBLW/QTBLWE, or QTBLWI/QTBLWIE instruction.
An operation error may occur if the QTBLR/QTBLRE, QTBLRI/QTBLRIE, QTBLW/QTBLWE, or
QTBLWI/QTBLWIE instruction is executed without executing the QTBLCL/QTBLCLE instruc-
tion first.

Column

Row 1
(W)*

2
(W)*

3
(W)*

1

2

3

11 12 13

21 22 23

31 32 33

Written on first pass

Written on
second pass

Written on third pass

* Indicates the data type.

Information

4.9 Table Manipulation Instructions

4.9.9 Clear Queue Table Pointer (QTBLCL/QTBLCLE)

4-202

4.9.9 Clear Queue Table Pointer (QTBLCL/QTBLCLE)
The queue read and queue write pointers are returned to their initial state (first row) for the table
data that is specified by the table name.

If the instruction ends normally, the output data is set to 0 and the status is turned OFF. If an
error occurs, an error code is set in the output data and the status is turned ON.

• If the Queue Clear Succeeds

• If the Queue Clear Fails

Format
The format of this instruction is shown below.

*1. Specify the registers in which the text string for the table name (8 bytes + NULL character max.) has been
stored.

*2. G, M, D, or C register only.
*3. Optional.
*4. C and # registers cannot be used.

If the clear fails, the queues will retain the contents from before the instruction was executed.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Name (Table name)*1*2 × × × × × ×  × ×

Out (Output data)*3 × *4 × × × × ×  ×

Sts (Status)*3 *4 × × × × × × × ×

Table data

Read pointer

Write pointer

Pointers return
to first row.

0 Output data

StatusOFF

Error code Output data

StatusON

Information

Output data

Status

Table Name

Key entry: QTBLCL

Icon:

4.9 Table Manipulation Instructions

 4.9.9 Clear Queue Table Pointer (QTBLCL/QTBLCLE)

4-203

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Details on I/O Items

 Error Codes

Note: The error codes apply to all table manipulation instructions.

Programming Example
In the following programming example, the queue pointers for the specified queue table are ini-
tialized when switch 2 (DB000003) turns ON.

Item Name I/O Description

Name Table name IN
For the QTBLCL instruction, directly enter the table name.
For the QTBLCLE instruction, indirectly designate the table name in
registers.

Out Output data OUT Specify the first address of the table data.

Sts Status OUT Specify the address for checking the status of this instruction.

Note the following precautions regarding Name.
• Always add a NULL character to Name. If a NULL character is not added to Name, a fixed

length of 8 bytes (4 words) of data is read and handled as the table name. This is a risk that an
unintended table name may be referenced because of this.

• When characters have been set with ASCII instructions, the NULL character is not set at the
end of the text string. Use the STRSET instruction to set Name.

• An operation error will occur if the size from the first register to the maximum range of registers
is less than 8 bytes (4 words).

Error Code Error Name Meaning

0001 hex Table undefined The target table is undefined.

0002 hex Outside range of row numbers The row number of the table element is outside the target
table.

0003 hex Outside range of column numbers The column number of the table element is outside the
target table.

0004 hex Incorrect number of elements The number of target elements is invalid.

0005 hex Insufficient storage area The storage area is insufficient.

0006 hex Insufficient element type The data type specified for the element is wrong.

0007 hex Queue buffer error An attempt was made to read from an empty queue buffer,
or to write to a full queue buffer by advancing the pointer.

0008 hex Queue table error The specified table is not a queue table.

0009 hex System error An unexpected error was detected in the system during
instruction execution.

When the power is turned ON, the data pointed to by the read pointer and write pointer is
undefined. Always execute the QTBLCL/QTBLCLE instruction before using the QTBLR/
QTBLRE, QTBLRI/QTBLRIE, QTBLW/QTBLWE, or QTBLWI/QTBLWIE instruction.
An operation error may occur if the QTBLR/QTBLRE, QTBLRI/QTBLRIE, QTBLW/QTBLWE, or
QTBLWI/QTBLWIE instruction is executed without executing the QTBLCL/QTBLCLE instruc-
tion first.

Important

Information

4.10 System Function Instructions

4.10.1 Counter (COUNTER)

4-204

4.10 System Function Instructions

4.10.1 Counter (COUNTER)
When the count up or count down command changes from OFF to ON, the current value is
incremented or decremented.
When the counter reset command turns ON, the current value of the counter is set to 0. The
current value of the counter is compared against the set value and the result is output.
If a counter error occurs (i.e., if the current value is greater than the set value), the current value
will neither be incremented or decremented.

Status

Rising edge of count up
command (OFF → ON)

Rising edge of count down
command (OFF → ON)

Counter reset command
ON

Count value incremented
(current value + 1).

Count value decremented
(current value － 1).

Counter reset
(current value = 0)

Counter set value

Counter current value

COUNTER instruction

Three status are output as shown below.
• Count matched (current value = set value).
• Count is zero (current value = 0).
• Counter error

(Current value > set value or current value < 0)

4.10 System Function Instructions

 4.10.1 Counter (COUNTER)

4-205

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Format
The format of this instruction is shown below.

*1. M or D register only.
*2. C and # registers cannot be used.

The following table describes each input and output item.

* If the count up command and count down command change from OFF to ON at the same time, the current value
stays the same.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Up-Cmd (Count up
command)  × × × × × × × ×

Down-Cmd (Count down
command)  × × × × × × × ×

Reset (Counter reset
command)  × × × × × × × ×

Cnt-Data (First address of
counter processing data
area)

× × × × × × *1 × ×

Cnt-Up (Count up) *2 × × × × × × × ×

Cnt-Zero (Zero count) *2 × × × × × × × ×

Cnt-Err (Count error) *2 × × × × × × × ×

I/O Item Description I/O

Up-Cmd (Count up command) The count value is incremented when this command changes
from OFF to ON.* IN

Down-Cmd (Count down command) The count value is decremented when this command
changes from OFF to ON.* IN

Reset (Counter reset command) The current value is reset to 0 when this command is ON. IN

Cnt-Data (First address of counter
processing data area)

+0 word: Set value IN

+1 word: Current value OUT

+2 word: Work flags OUT

Cnt-Up (Count up) Turns ON when the current value equals the set value. OUT

Cnt-Zero (Zero count) Turns ON when the current value equals 0. OUT

Cnt-Err (Count error) Turns ON when the current value is greater than the set value.
Also turns ON when the current value is less than 0. OUT

Icon:

Key entry: COUNTER

4.10 System Function Instructions

4.10.1 Counter (COUNTER)

4-206

Programming Example
In the following programming example, the first line sets the counter set value to 5, and the
third line monitors the counter current value in DW00001.
When the count up command (DB000100) changes from OFF to ON, DW00001 is incre-
mented, and when the count down command (DB000101) changes from OFF to ON,
DW00001 is decremented.

4.10 System Function Instructions

 4.10.2 First-in First-out (FINFOUT)

4-207

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

4.10.2 First-in First-out (FINFOUT)
This is a first-in first-out block data transfer function. The FIFO table consists of a 4-word
header and a data buffer. Make sure to set the data size, input size, and output size words in
the header before calling the FINFOUT instruction.

 If the Data Input Command (In-Cmd) Is ON
When the In-Cmd is ON, the specified number of data items from the specified input data area
are stored sequentially in the data area of the FIFO table.

 If the Data Output Command (Out-Cmd) Is ON
When the Out-Cmd is ON, the specified number of data items are moved from the first address
in the data area of the FIFO table to the specified output data area.

 If the Reset Command (Reset) Is ON
The number of words stored in the FIFO table is set to 0 and Tbl-Emp (FIFO table empty) turns
ON.
Note: The contents of the table buffer are retained and not cleared to 0.

If the data empty size is less than the input size or if the data size is less than the output size,
Tbl-Err (FIFO table error) turns ON.

1

FIFO table data buffer

Start23

1

…

Data size (words)

2

3

First address of input data

Input size
(words)

Data In-Cmd = ON

1

FIFO table data buffer

Start234

1

…

2

3

First address of output data

Output size
(words)

Data Out-Cmd = ON

4
After the output is completed, this data is moved to the first address.

Information

4.10 System Function Instructions

4.10.2 First-in First-out (FINFOUT)

4-208

Format
The format of this instruction is shown below.

*1. M or D register only.
*2. C and # registers cannot be used.

The following table describes each input and output item.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

In-Cmd (Data input
command)  × × × × × × × ×

Out-Cmd (Data output
command)  × × × × × × × ×

Reset (Reset command)  × × × × × × × ×
FIFO-Tbl (First address of
FIFO table) × × × × × × *1 × ×

In-Data (First address of
input data) × × × × × × *1 × ×

Out-Data (First address
of output data) × × × × × × *1 × ×

Tbl-Full (FIFO table full) *2 × × × × × × × ×
Tbl-Emp (FIFO table
empty) *2 × × × × × × × ×

Tbl-Err (FIFO table error) *2 × × × × × × × ×

I/O Item Description I/O

In-Cmd (Data input command) Data is stored in the FIFO table when this command is ON. IN

Out-Cmd (Data output
command) Data is transferred out of the FIFO table when this command is ON. IN

Reset (Reset command) The number of words to store is set to 0 when this command is ON. IN

FIFO-Tbl (First address of FIFO
table)

+0 word: Data size IN

+1 word: Input size IN

+2 word: Output size IN

+3 word: Data storage size OUT

+4 word and on: Data OUT

In-Data (First address of input
data) First address of input data IN

Out-Data (First address of
output data) First address of output data IN

Continued on next page.

Icon:

Key entry: FINFOUT

4.10 System Function Instructions

 4.10.2 First-in First-out (FINFOUT)

4-209

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Programming Example
In the following programming example, a FIFO table is created with a data size of 12 words,
input size of 4 words, and an output size of 2 words, and then the FINFOUT instruction is exe-
cuted.

The data from MW00000 to MW00003 is stored in the FIFO table buffer when switch 1
(MB000200) turns ON.
The data storage size in DW00005 is set to 4.

Tbl-Full (FIFO table full) Turns ON when the FIFO table is full. OUT

Tbl-Emp (FIFO table empty) Turns ON when the FIFO table is empty. OUT

Tbl-Err (FIFO table error) Turns ON when the FIFO table has an error. OUT

Continued from previous page.

I/O Item Description I/O

Register Data FIFO Table Data Buffer Data

MW00000

MW00001

MW00002

MW00003

123

234

345

456

DW00006

DW00007

DW00008

DW00009

DW00010

DW00017

123

234

345

456

0

0

Stored area

4.10 System Function Instructions

4.10.3 Trace (TRACE)

4-210

Next, when switch 2 (MB000201) turns ON, two words of data from the first address in the
FIFO table buffer are output to the area from MW0010 to MW0011. The data storage size in
DW00005 is set to 2.

4.10.3 Trace (TRACE)
This instruction performs trace execution control of the trace data that is specified by the trace
group number (1 to 4).
The MP3000 Series is equipped with the following three types of traces and the trace settings
are configured in the MPE720.

• The trace is executed if Execute (trace execution command) is ON.
• The trace counter is reset when Reset (trace reset command) turns ON. This also resets Trc-

End (trace end).
• Trc-End (trace end) turns ON when the specified number of traces have been executed.

FIFO Table Data Buffer Data Register Data

MW00010 DW00006

→345 MW00011

MW00012

123

234

0 DW00007

123

234

→456

Stored area

The output data is moved out and
the remaining data is moved forward.

Trace Type Key Items to Set in the MPE720
Limitations When Executed with the Trace (TRACE)

Instruction

Real-Time Trace

• Register address of trace subject
• Trace mode setting
• Sampling setting
• Trigger setting

Trc-End (trace end) cannot be used.

Trace Manager

• Register address of trace subject
• Sampling
• Trace count
• Trace start condition
• Trace stop condition

• Set the trace count to use Trc-End (trace end).
• The extended specifications on the MP3000 cannot

be used (register type/data type/register range/
maximum data buffer size).

XY Trace

• X-Y axis specification
• Trace subject
• Trace mode setting
• Sampling setting
• Trigger setting

Trc-End (trace end) cannot be used.

The trace definition is set in the Data Trace Definitions in the MPE720. Refer to the following
manual for details.

MP3000 Series Machine Controller System Setup Manual (Manual No.: SIEP C880725 00)

Information

Error

Status

TRACE execution command ON

TRACE reset command ON

Trace is executed.

Trace count reset
Trace end reset

Trace execution count = Set value
→ Trace end

TRACE instruction

Trace definition
Trace group No.

Set on the MPE720.

4.10 System Function Instructions

 4.10.3 Trace (TRACE)

4-211

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Format
The format of this instruction is shown below.

* C and # registers cannot be used.

The following table describes each input and output item.

The status configuration is shown below.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Execute (Trace
execution command)  × × × × × × × ×

Reset (Trace reset
command)  × × × × × × × ×

Group-No (Trace group
No.) ×  × × × × ×  

Trc-End (Trace end) * × × × × × × × ×
Error * × × × × × × × ×
Status × * × × × × ×  ×

I/O Item Description I/O

Execute (Trace execution command) Trace execution begins when this command turns ON. IN

Reset (Trace reset command) Trace execution is reset when this command turns ON. IN

Group-No (Trace group No.) Trace group No. (1 to 4) IN

Trc-End (Trace end) Turns ON when the trace ends. OUT

Error Turns ON when an error occurs. OUT

Status Trace execution status. OUT

Bit Name Remarks

0 Trace data full Turns ON after one turn through the data trace memory of the specified
group.

1 to 7 Reserved for system. –

8 No trace definition The function will not be executed.

9 Group No. error The function will not be executed.

A to C Reserved for system. –

D Execution timing error The function will not be executed.

E Reserved for system. –

F Reserved for system. –

For MPE720 software version 7.42 or higher and CPU version 1.37 or higher,
when there is a trace definition and the trace settings are disabled from the MPE720 or the
trace buffer was reset, bit 8 (No trace definition) of Status (Status) is turned ON.
Perform the following operations to turn OFF bit 8 (No trace definition) of Status (Status).
• Enable the trace settings.
• If the trace buffer was reset, save the trace data definition again.

Icon:

Key entry: TRACE

ExampleInformation

4.10 System Function Instructions

4.10.4 Read Data Trace (DTRC-RD/DTRC-RDE)

4-212

Programming Example
In the following programming example, the definition for trace group No. 1 is used to execute a
trace.
The trace starts when the trace execution command (DB000000) turns ON.

4.10.4 Read Data Trace (DTRC-RD/DTRC-RDE)
Trace data in the Machine Controller is read and stored in registers. The data in the trace mem-
ory can be read by specifying the record number and the number of records. You can desig-
nate and read only the required items in a record.

Set the data trace definition for trace group No. 1 on the MPE720 in advance. Make sure to
set the sampling condition to Program.

Information

Read data

First address

Read specified read items

Data trace memory

Record No.

n

Requested number
of records

Old

New
Number of first
record to read

M or D registers

0

4.10 System Function Instructions

 4.10.4 Read Data Trace (DTRC-RD/DTRC-RDE)

4-213

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Format
The format of this instruction is shown below.

*1. M or D register only.
*2. C and # registers cannot be used.
*3. For the DTRC-RD instruction.
*4. For the DTRC-RDE instruction.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Execute (Trace read
execution command)  × × × × × × × ×

Group-No (Trace
group No.) ×  × × × × × × ×

Rec-No (Record No.) × *3 *4 × × × × × ×
Rec-Size (Number of
records) × *3 *4 × × × × × ×

Select (Item selection) × *3 × *4 × × × × ×

Dat-Adr (First address) × × × × × × *1 × ×
Complete (Trace com-
pleted) *2 × × × × × × × ×

Error *2 × × × × × × × ×

Status × *2 × × × × × × ×
Rec-Size (Number of
records read) × *2*3 *4 × × × × × ×

Rec-Len (Length of 1
read record) × *2*3 *4 × × × × × ×

Icon:

Key entry: DTRC-RD/DTRC-RDE

4.10 System Function Instructions

4.10.4 Read Data Trace (DTRC-RD/DTRC-RDE)

4-214

The following table describes each input and output item.

<DTRC-RD>

<DTRC-RDE>

The status configuration is shown below.

I/O Item Description I/O

Execute (Trace read execu-
tion command) Data trace read execution command IN

Group-No (Trace group No.) Data trace group No. (1 to 4). IN

Rec-No (Record No.) Number of first record to read (0 to maximum records - 1) IN

Rec-Size (Number of
records) Requested records to read (0 to maximum records - 1) IN

Select (Item selection) Items to be read (0001 to FFFF hex)
Bits 0 to F correspond to data specifiers 1 to 16 in the trace definition. IN

Dat-Adr (First address) Number of first register to read (MA, DA) IN

Complete (Trace
completed) Turns ON when the trace read ends. OUT

Error Turns ON when an error occurs. OUT

Status Data trace read execution status OUT

Rec-Size (Number of
records read) Number of records read OUT

Rec-Len (Length of 1 read
record) Length of 1 read record (words) OUT

I/O Item Description I/O

Execute (Trace read
execution command) Data trace read execution command IN

Group-No (Trace group No.) Data trace group No. (1 to 4). IN

Rec-No (Record No.) Number of first record to read (0 to maximum records - 1) IN

Rec-Size (Number of
records) Requested records to read (0 to maximum records - 1) IN

Select (Item selection) Items to be read (0000000000000001 to FFFFFFFFFFFFFFFF hex)
Bits 0 to 3F correspond to data specifiers 1 to 16 in the trace definition. IN

Dat-Adr (First address) Number of first register to read (MA, GA, or DA) IN

Complete (Trace
completed) Turns ON when the trace read ends. OUT

Error Turns ON when an error occurs. OUT

Status Data trace read execution status OUT

Rec-Size (Number of
records read) Number of records read OUT

Rec-Len (Length of 1 read
record) Length of 1 read record (words) OUT

Bit Name Remarks

0 to 7 Reserved for system. –

8 No trace definition The function will not be executed.

9 Group No. error The function will not be executed.

A Specified record No. error The function will not be executed.

B Specified number of records error The function will not be executed.

C Data storage error The function will not be executed.

D Reserved for system. –

E Reserved for system. –

F Address input error The function will not be executed.

4.10 System Function Instructions

 4.10.4 Read Data Trace (DTRC-RD/DTRC-RDE)

4-215

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Programming Example
The following programming example reads the data trace for group definition No. 1.
The trace data is read when the trace read execution command (DB000000) turns ON.

Additional Information

 Structure of Read Data
The length of a record can be from 1 to 32 words, depending on the selected data items.
The maximum number of records can be from 1,015 to 32,511 depending on the record
length.

 Record Lengths
A record consists of the selected data items.

The record length (number of words in a single record) is determined by the selected registers
and the number of data items.
• Number of words for 1 record = Bn × 1 word + Wn × 1 word + Ln × 2 words + Fn × 2 words

Bn: Number of selected bit registers
Wn: Number of selected integer registers
Ln: Number of selected double-length integer registers
Fn: Number of selected real number registers
The maximum total is 16 items.

• Maximum record length = 32 words (with 16 double-length integers or real number registers)
• Minimum record length = 1 word (with 1 record for each bit or integer register)

Record 1 Item 1

Item 16

Record 2

Record n

Old

32,512 words max.

New

1 to 32 words

1 to 32 words

1 to 32 words

First address

4.10 System Function Instructions

4.10.5 Send Message (MSG-SND)

4-216

 Number of Records
The number of records that can be specified depends on the record length as shown below.
• Number of records with the maximum record length: 0 to 1,015
• Number of records with the minimum record length: 0 to 32,511

(Upper limit: 32,521 divided by the record length - 1)

 Latest record number
The most recent record number for each trace group is stored in the system registers as shown
below.

4.10.5 Send Message (MSG-SND)
A message is sent to a remote station on the specified circuit of the communications device
type.

This function supports the following communications devices and protocols.
Communications devices:CPU Unit/CPU Module, 215IF Module, 217IF Module, 218IF Module,
and SVB-01 Module
Protocol: MEMOBUS communications or no-protocol

System Register Address Description

SW00100 Latest record number in group 1.

SW00101 Latest record number in group 2.

SW00102 Latest record number in group 3.

SW00103 Latest record number in group 4.

SW00104 –

SW00105 –

SW00106 –

SW00107 –

Communications Device

Protocol:
MEMOBUS or

no-protocol
Data area specified by the first address
of the parameter list and size

M or I register only. Communications devices:
CPU Unit/CPU Module

215IF Module
217IF Module
218IF Module

SVB-01 Module

Parameter List

4.10 System Function Instructions

 4.10.5 Send Message (MSG-SND)

4-217

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Format
The format of this instruction is shown below.

*1. M, G, or D register only.
*2. C and # registers cannot be used.

Refer to the following manual for details on I/O items, parameters, and programming examples.
MP2000 Series Ladder Programming User’s Manual (Manual No.: SIEZ-C887-1.2)

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Execute (Send execution
command)  × × × × × × × ×

Abort (Send abort
command)  × × × × × × × ×

Dev-Typ (Communications
device type) ×  × × × × ×  

Pro-Typ (Communications
protocol) ×  × × × × ×  

Cir-No (Circuit number) ×  × × × × ×  

Ch-No (Communications
buffer channel number) ×  × × × × ×  

Param (First address of
parameter list) × × × × × × *1 × ×

Busy (Processing) *2 × × × × × × × ×
Complete (Processing
completed) *2 × × × × × × × ×

Error (Error occurred) *2 × × × × × × × ×

Icon:

Key entry: MSG-SND

4.10 System Function Instructions

4.10.6 Send Message Extended (MSG-SNDE)

4-218

4.10.6 Send Message Extended (MSG-SNDE)
A message is sent to a remote station on the specified circuit of the communications device
type.

This function supports the following communications devices and protocols.
Communications devices:CPU Unit/CPU Module, 215IF Module, 217IF Module, 218IF Module,
SVB-01 Module, and 218IF Module
Protocol: MEMOBUS communications or no-protocol

The basic operation is the same as for the MSG-SND function. However, normally, you should
use the MSG-SNDE function for compatibility with the MP3000-series Machine Controllers.
The MSG-SND function is compatible with the MP2000-series Machine Controllers. The acces-
sible range of registers is different, as shown below.

Note: R: Read only, RW: Read/Write

Name of the register Access Range for the MSG-SNDE Access Range for the MSG-SND

System registers SW00000 to 65534 RW – –

Hold registers MW0000000 to 1048575 RW MW0000000 to 0065534 RW

Data registers GW0000000 to 2097151 RW – –

Input registers IW00000 to 17FFF R IW00000 to 0FFFF R

Output registers OW00000 to 17FFF RW – –

Communications Device

Protocol:
MEMOBUS or

no-protocol

Data area specified by the first address
of the parameter list and size

S, M, G, I, or O registers Communications devices:
CPU Unit/CPU Module

215IF Module
217IF Module
218IF Module

SVB-01 Module
218IFD Module

Parameter List

4.10 System Function Instructions

 4.10.6 Send Message Extended (MSG-SNDE)

4-219

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Format
The format of this instruction is shown below.

*1. M, G, or D register only.
*2. C and # registers cannot be used.

Refer to the following manual for details on I/O items, parameters, and programming examples.
MP3000 Series Communications User’s Manual (Manual No.: SIEP C880725 12)

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Execute (Send execution
command)  × × × × × × × ×

Abort (Send abort com-
mand)  × × × × × × × ×

Dev-Typ (Communications
device type) ×  × × × × ×  

Pro-Typ (Communications
protocol) ×  × × × × ×  

Cir-No (Circuit number) ×  × × × × ×  

Ch-No (Communications
buffer channel number) ×  × × × × ×  

Param (First address of
parameter list) × × × × × × *1 × ×

Busy (Processing) *2 × × × × × × × ×
Complete (Processing
completed) *2 × × × × × × × ×

Error (Error occurred) *2 × × × × × × × ×

Icon:

Key entry: MSG-SNDE

4.10 System Function Instructions

4.10.7 Receive Message (MSG-RCV)

4-220

4.10.7 Receive Message (MSG-RCV)
A message is received from a remote station on the specified circuit of the communications
device type. Keep the message receive command ON until the Complete Bit turns ON. This
function supports the following communications devices and protocols.
Communications devices:CPU Unit/CPU Module, 215IF Module, 217IF Module, 218IF Module,
and SVB-01 Module
Protocol: MEMOBUS communications or no-protocol

Note: The Complete Bit turns ON when the message reception is completed.
Until then, keep the receive message command ON.

Format
The format of this instruction is shown below.

Communications Device

Protocol:
MEMOBUS or
no-protocol

Data area specified by the
first address of the parameter
list and size

M or I register only.
Communications devices:

CPU Unit/CPU Module
215IF Module
217IF Module
218IF Module

SVB-01 Module

Parameter List

Receive message command

Icon:

Key entry: MSG-RCV

4.10 System Function Instructions

 4.10.8 Receive Message Extended (MSG-RCVE)

4-221

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

*1. M, G, or D register only.
*2. C and # registers cannot be used.

Refer to the following manual for details on I/O items, parameters, and programming examples.
MP2000 Series Ladder Programming User’s Manual (Manual No.: SIEZ-C887-1.2)

4.10.8 Receive Message Extended (MSG-RCVE)
A message is received from a remote station on the specified circuit of the communications
device type. Keep the message receive command ON until the Complete Bit turns ON. This
function supports the following communications devices and protocols.
Communications devices:CPU Unit/CPU Module, 215IF Module, 217IF Module, 218IF Module,
SVB-01 Module, and 218IF Module
Protocol: MEMOBUS communications or no-protocol

Note: The Complete Bit turns ON when the message reception is completed.
Until then, keep the receive message command ON.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Execute (Receive
execution command)  × × × × × × × ×

Abort (Receive abort
command)  × × × × × × × ×

Dev-Typ (Communications
device type) ×  × × × × ×  

Pro-Typ (Communications
protocol) ×  × × × × ×  

Cir-No (Circuit number) ×  × × × × ×  

Ch-No (Communications
buffer channel number) ×  × × × × ×  

Param (First address of
parameter list) × × × × × × *1 × ×

Busy (Processing) *2 × × × × × × × ×
Complete (Processing
completed) *2 × × × × × × × ×

Error (Error occurred) *2 × × × × × × × ×

Communications Device

Protocol:
MEMOBUS or
no-protocol

Data area specified by the first
address of the parameter list and size

S, M, G, I, or O registers
Communications devices:

CPU Unit/CPU Module
215IF Module
217IF Module
218IF Module

SVB-01 Module
218IFD Module

Parameter List

Receive message command

4.10 System Function Instructions

4.10.8 Receive Message Extended (MSG-RCVE)

4-222

The basic operation is the same as for the MSG-RCV function. However, normally, you should
use the MSG-RCVE function for compatibility with the MP3000-series Machine Controllers.
The MSG-RCV function is compatible with the MP2000-series Machine Controllers. The acces-
sible range of registers is different, as shown below.

Note: R: Read only, RW: Read/Write

Format
The format of this instruction is shown below.

*1. M, G, or D register only.
*2. C and # registers cannot be used.

Refer to the following manual for details on I/O items, parameters, and programming examples.
MP3000 Series Communications User’s Manual (Manual No.: SIEP C880725 12)

Name of the register Access Range for the MSG-RCVE Access Range for the MSG-RCV

System registers SW00000 to 65534 RW − −
Hold registers MW0000000 to 1048575 RW MW0000000 to 0065534 RW

Data registers GW0000000 to 2097151 RW − −
Input registers IW00000 to 17FFF R IW00000 to 0FFFF R

Output registers OW00000 to 17FFF RW − −

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Execute (Receive
execution command)  × × × × × × × ×

Abort (Receive abort
command)  × × × × × × × ×

Dev-Typ (Communications
device type) ×  × × × × ×  

Pro-Typ (Communications
protocol) ×  × × × × ×  

Cir-No (Circuit number) ×  × × × × ×  

Ch-No (Communications
buffer channel number) ×  × × × × ×  

Param (First address of
parameter list) × × × × × × *1 × ×

Busy (Processing) *2 × × × × × × × ×
Complete (Processing
completed) *2 × × × × × × × ×

Error (Error occurred) *2 × × × × × × × ×

Icon:

Key entry: MSG-RCVE

4.10 System Function Instructions

 4.10.9 Write SERVOPACK Parameter (MLNK-SVW)

4-223

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

4.10.9 Write SERVOPACK Parameter (MLNK-SVW)
This instruction writes all the parameters that are saved in the Machine Controller as a SERVO-
PACK parameter backup file to the SERVOPACK that is specified with the circuit number and
axis number.
The MLNK-SVW instruction can be used to write SERVOPACK parameters using only a ladder
program (i.e., without the use of MPE720).
This instruction is convenient when replacing a SERVOPACK and at other times.

Format
The format of this instruction is shown below.

*1. M or D register only.
*2. C and # registers cannot be used.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Execute (Write command)  × × × × × × × ×
Abort (Write processing
abort command)  × × × × × × × ×

Cir-No (Circuit number) ×  × × × × ×  

St-No (Axis number) ×  × × × × ×  

Option (Option settings) ×  × × × × ×  

Param (First address of
parameter table) × × × × × × *1 × ×

Busy (Writing) *2 × × × × × × × ×

Complete (Write completed) *2 × × × × × × × ×

Error *2 × × × × × × × ×

Parameters for the SERVOPACK that is specified
with the circuit number and axis number

Backup file of SERVOPACK
parameters in the Machine Controller

Written in one operation.

Vendor ID code: An ID code managed by the MECHATROLINK Members Association
that identifies the vendor.

Product code: A unique code given to each device.

ID
(Vendor ID code,

product code)

Version

Parameter

ID
(Vendor ID code,

product code)

Version

Parameter

Key entry: MLNK-SVW

Icon:

4.10 System Function Instructions

4.10.9 Write SERVOPACK Parameter (MLNK-SVW)

4-224

The following table describes each input and output item.

The option settings are described in the following table.

I/O Item Meaning I/O

Execute (Write command) Writing the SERVOPACK parameters begins when this command is
turned ON. IN

Abort (Write processing
abort command) The write process is aborted when this command is turned ON. IN

Cir-No (Circuit number) Destination circuit number (1 to 16) IN

St-No (Axis number) Destination axis number (1 to 16). IN

Option (Option settings)

Command Option Bit Settings
Bit E: ID Check Enable/Disable; 0: Enable, 1: Disable
Bit F: Version Check Enable/Disable; 0: Enable, 1: Disable
The other bits are not used. Any settings in the other bits are ignored.

IN

Param (First address of
parameter table) First address of function workspace IN

Busy (Writing) Turns ON while the SERVOPACK parameters are being written. OUT

Complete (Write completed) Turns ON for one scan only after the SERVOPACK parameters are
written. OUT

Error Turns ON for one scan only when an error occurs.
(The error details are output to PARAM00 and PARAM01.) OUT

Bit Meaning

0 to D Not used. (Settings will be ignored.)

E

ID Check Enable/Disable (0: Enable, 1: Disable)
If the source ID information is not the same as the ID information at the write destination, an inconsis-
tent ID information error occurs.
If this bit is set to 1 (disable), this error will not be detected and the write process will still be exe-
cuted.
If this bit is set to 1 (disable), the model information is not checked. This can result in parameters for
the wrong model type to be written, which can cause problems.
An inconsistent ID Information error will also occur if a SERVOPACK parameters file that was edited
or saved offline is used. In this case, make sure that there are no problems before you set this bit to
1 (disable).

F

Version Check Enable/Disable (0: Enable, 1: Disable)
If the version of the source SERVOPACK (communications interface) is not the same as the version at
the write destination, an inconsistent version error occurs.
SERVOPACK parameters and setting ranges are sometimes different for different versions. Make
sure that there are no problems before you set this bit to 1 (disable). This will allow you to write the
parameters.
An inconsistent version error will also occur if a SERVOPACK parameters file that was edited or
saved offline is used. In this case, make sure that there are no problems before you set this bit to 1
(disable).

4.10 System Function Instructions

 4.10.9 Write SERVOPACK Parameter (MLNK-SVW)

4-225

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

 Details on Function Workspace
This section provides the details on the function workspace. The parameter number corre-
sponds to the word offset from the first address.

 Processing Result (PARAM00)
This parameter outputs the result of processing for the SERVOPACK.
• 0000 hex: Processing (Busy)
• 1000 hex: Processing completed (Complete)
• 8 hex: Error occurred (Error)

The following errors can occur.

 Error Code (PARAM 01)
This parameter outputs the error code from the communications interface task. This parameter
is valid only when the processing result (PARAM00) is 8800 hex.

For example, if the first address is MA00100, set the value in MW00105 to set PARAM 05.

Parameter No. IN/OUT Meaning

PARAM 00 OUT Processing Result

PARAM 01 OUT Error code

PARAM 02 OUT Copy of Cir-No

PARAM 03 OUT Copy of St-No

PARAM 04 SYS For system use #1

PARAM 05 SYS For system use #2

PARAM 06 SYS For system use #3

Error Code Meaning

8100 hex Reserved.

8200 hex Address setting error
(The set data address is outside of the valid range.)

8300 hex Reserved.

8400 hex Circuit number setting error
(The set circuit number is outside of the valid range.)

8500 hex Reserved.

8600 hex Axis number setting error
(The set axis number is outside of the valid range.)

8700 hex Reserved.

8800 hex Communications interface task error
(An error was returned from the communications interface task.)

8900 hex Reserved.

8A00 hex
Function execution duplication error
(More than one MLNK-SVW function was executed at the same time.
Or, the MLNK-SVR function was being executed.)

Error Code Meaning

0000 hex Reserved.

0001 hex No SERVOPACK parameter backup file

0002 hex Backup file error

0003 hex Inconsistent ID information

0004 hex Inconsistent version

0005 hex Module error

0006 hex SERVOPACK controller command duplication error

0007 hex Communications error

0008 hex Undefined command

0009 hex Invalid parameter

000A hex Internal system error

Example

4.10 System Function Instructions

4.10.9 Write SERVOPACK Parameter (MLNK-SVW)

4-226

 Copy of Cir-No (PARAM 02)
This is a copy of the Cir-No input data.

 Copy of St-No (PARAM 03)
This is a copy of the St-No input data.

 For System Use #1 (PARAM04)
This parameter is used by the system. Set this parameter to 0000 hex from a user program in
the first scan after the power supply is turned ON. Do not modify this parameter at any other
time.

 For System Use #2 (PARAM05)
This parameter is used by the system. Set this parameter to 0000 hex from a user program in
the first scan after the power supply is turned ON. Do not modify this parameter at any other
time.

 For System Use #3 (PARAM06)
This parameter is used by the system. Set this parameter to 0000 hex from a user program in
the first scan after the power supply is turned ON. Do not modify this parameter at any other
time.

4.10 System Function Instructions

 4.10.9 Write SERVOPACK Parameter (MLNK-SVW)

4-227

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Programming Example
The following programming example shows how to write parameters to the SERVOPACK.
If a backup file of the SERVOPACK parameters exists in the Machine Controller, the SERVO-
PACK parameters are written once to the specified SERVOPACK when DB000000 turns ON.
The specified SERVOPACK is the one that is defined in the module configuration definition with
a MECHATROLINK circuit number of 1 and defined in the MECHATROLINK detailed definition
with ST#8.

4.10 System Function Instructions

4.10.10 Read SERVOPACK Parameter (MLNK-SVR)

4-228

4.10.10 Read SERVOPACK Parameter (MLNK-SVR)
All of the parameters are read from the RAM area of the SERVOPACK with the specified circuit
number and axis number and then the read parameters are saved by overwriting the SERVO-
PACK parameter backup file that is saved in the Machine Controller. The MLNK-SVR instruction
can be used to read SERVOPACK parameters using only a ladder program (i.e., without the
use of MPE720).

This instruction is convenient when replacing a SERVOPACK and at other times.

Format
The format of this instruction is shown below.

• Machine Controller software version 1.23 or higher and MPE720 software version 7.34 or
higher are required to execute the MLNK-SVR instruction.

• The MLNK-SVR instruction reads the parameters from the RAM area in the SERVOPACK.
Therefore, if there are any difference between the parameter settings in the RAM area in the
SERVOPACK and the parameter settings in non-volatile memory, the parameter settings writ-
ten to the Controller and the parameter settings in the RAM area in the SERVOPACK will not
agree.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Execute (Read command)  × × × × × × × ×
Abort (Read processing
abort command)  × × × × × × × ×

Cir-No (Circuit number) ×  × × × × ×  

St-No (Axis number) ×  × × × × ×  

Option (Option settings) ×  × × × × ×  

Continued on next page.

Important

Parameters for the SERVOPACK that is specified
with the circuit number and axis number

Backup file of SERVOPACK parameters
in the Machine Controller

Read in one operation.

Vendor ID code: An ID code managed by the MECHATROLINK Members Association
that identifies the vendor.

Product code: A unique code given to each device.

ID
(Vendor ID code,

product code)

Version

Parameter

ID
(Vendor ID code,

product code)

Version

Parameter

Key entry: MLNK-SVR

Icon:

4.10 System Function Instructions

 4.10.10 Read SERVOPACK Parameter (MLNK-SVR)

4-229

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

*1. M or D register only.
*2. C and # registers cannot be used.

The following table describes each input and output item.

The option settings are described in the following table.

Param (First address of
parameter table) × × × × × × *1 × ×

Busy (Reading) *2 × × × × × × × ×

Complete (Read completed) *2 × × × × × × × ×

Error *2 × × × × × × × ×

I/O Item Description I/O

Execute (Read command)
Reading the SERVOPACK parameters begins when this command is
turned ON.
This command must be kept ON while the instruction is in execution.

IN

Abort (Read processing
abort command) The read process is aborted when this command is turned ON. IN

Cir-No (Circuit number) Destination circuit number (1 to 16) IN

St-No (Axis number) Destination axis number (1 to 32) IN

Option (Option settings)

Command Option Bit Settings
Bit E: ID Check Enable/Disable; 0: Enable, 1: Disable
Bit F: Version Check Enable/Disable; 0: Enable, 1: Disable
The other bits are not used. Any settings in the other bits are ignored.

IN

Param (First address of
parameter table) First address of function workspace IN

Busy (Reading) Turns ON while the SERVOPACK parameters are being read. OUT

Complete (Read com-
pleted) Turns ON for one scan only after the SERVOPACK parameters are read. OUT

Error Turns ON for one scan only when an error occurs.
(The error details are output to PARAM00 and PARAM01.) OUT

Bit Meaning

0 to D Not used. (Settings will be ignored.)

E

ID Check Enable/Disable (0: Enable, 1: Disable)
If the source ID information is not the same as the ID information at the read destination, an inconsis-
tent ID information error occurs.
If this bit is set to 1 (disable), this error will not be detected and the read process will still be exe-
cuted.
If this bit is set to 1 (disable), the model information is not checked. This can result in parameters for
the wrong model type to be read, which can cause problems.
If you replace a SERVOPACK, set this bit to 1 (disable).
An inconsistent ID Information error will also occur if a SERVOPACK parameters file that was edited
or saved offline is used. In this case, make sure that there are no problems before you set this bit to
1 (disable).

F

Version Check Enable/Disable (0: Enable, 1: Disable)
If the version of the source SERVOPACK (communications interface) is not the same as the version at
the read destination, an inconsistent version error occurs.
SERVOPACK parameters and setting ranges are sometimes different for different versions. Make
sure that there are no problems before you set this bit to 1 (disable). This will allow you to read the
parameters.
An inconsistent version error will also occur if a SERVOPACK parameters file that was edited or
saved offline is used. In this case, make sure that there are no problems before you set this bit to 1
(disable).

Continued from previous page.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

4.10 System Function Instructions

4.10.10 Read SERVOPACK Parameter (MLNK-SVR)

4-230

 Details on Function Workspace
This section provides the details on the function workspace. The parameter number corre-
sponds to the word offset from the first address.

 Processing Result (PARAM 00)
This parameter outputs the result of processing for the SERVOPACK.
• 0000 hex: Processing (Busy)
• 1000 hex: Processing completed (Complete)
• 8 hex: Error occurred (Error)

The following errors can occur.

 Error Code (PARAM 01)
This parameter outputs the error code from the communications interface task. This parameter
is valid only when the processing result (PARAM 00) is 8800 hex.

For example, if the first address is MA00100, set the value in MW00105 to set PARAM 05.

Parameter No. IN/OUT Description

PARAM 00 OUT Processing Result

PARAM 01 OUT Error code

PARAM 02 OUT Copy of Cir-No

PARAM 03 OUT Copy of St-No

PARAM 04 SYS For system use #1

PARAM 05 SYS For system use #2

PARAM 06 SYS For system use #3

Error Code Meaning

8100 hex Reserved.

8200 hex Reserved.

8300 hex Reserved.

8400 hex Circuit number setting error
(The set circuit number is outside of the valid range.)

8500 hex Reserved.

8600 hex Axis number setting error
(The set axis number is outside of the valid range.)

8700 hex Reserved.

8800 hex Communications interface task error
(An error was returned from the communications interface task.)

8900 hex Reserved.

8A00 hex
Function execution duplication error
(More than one MLNK-SVR function was executed at the same time. Or, the MLNK-SVW
function was being executed.)

Error Code Meaning

0000 hex No error

0001 hex No SERVOPACK parameter backup file

0002 hex Backup file error

0003 hex Inconsistent ID information

0004 hex Inconsistent version

0005 hex Module error

0006 hex SERVOPACK controller command duplication error

0007 hex Communications error

0008 hex Reserved.

0009 hex Reserved.

000A hex Internal system error

Example

4.10 System Function Instructions

 4.10.10 Read SERVOPACK Parameter (MLNK-SVR)

4-231

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

 Copy of Cir-No (PARAM 02)
This is a copy of the Cir-No input data.

 Copy of St-No (PARAM 03)
This is a copy of the St-No input data.

 For System Use #1 (PARAM 04)
This parameter is used by the system. Set this parameter to 0000 hex from a user program in
the first scan after the power supply is turned ON. Do not modify this parameter at any other
time.

 For System Use #2 (PARAM 05)
This parameter is used by the system. Set this parameter to 0000 hex from a user program in
the first scan after the power supply is turned ON. Do not modify this parameter at any other
time.

 For System Use #3 (PARAM 06)
This parameter is used by the system. Set this parameter to 0000 hex from a user program in
the first scan after the power supply is turned ON. Do not modify this parameter at any other
time.

4.10 System Function Instructions

4.10.10 Read SERVOPACK Parameter (MLNK-SVR)

4-232

Programming Example
The following programming example shows how to read parameters from the SERVOPACK.
If a backup file of the SERVOPACK parameters exists in the Machine Controller, the SERVO-
PACK parameters are read once from the specified SERVOPACK when DB000000 turns ON.
The specified SERVOPACK is the one that is defined in the module configuration definition with
a MECHATROLINK circuit number of 1 and defined in the MECHATROLINK detailed definition
with ST#8.

4.10 System Function Instructions

 4.10.11 Flash Operation (FLASH-OP)

4-233

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

4.10.11 Flash Operation (FLASH-OP)
You can compare the data in flash memory and RAM in the Machine Controller or you can save
the RAM data to the flash memory. You can use the FLASH-OP instruction to save data in the
flash memory using only a ladder program (i.e., without the use of MPE720).
This instruction is convenient to save the data to flash memory after reading the SERVOPACK
parameters with the MLNK-SVR instruction.

Format
The format of this instruction is shown below.

*1. M, G, or D register only.
*2. C and # registers cannot be used.

1. Machine Controller software version 1.23 or higher and MPE720 software version 7.34 or
higher are required to execute the FLASH-OP instruction.

2. Do not turn OFF the power supply to the Machine Controller until saving the data to flash
memory has been completed.
If you turn OFF the power supply to the Machine Controller while data is being saved to flash
memory, the data will be lost.
If you then turn ON the power supply to the Machine Controller, the Machine Controller will
start with the factory default conditions.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Execute (Flash operation
command)  × × × × × × × ×

Reserve (Reserved for system)  × × × × × × × ×
Option (Option settings) ×  × × × × ×  

Param (First address of
parameter table) × × × × × × *1 × ×

Busy (Executing) *2 × × × × × × × ×
Complete (Execution
completed) *2 × × × × × × × ×

Error *2 × × × × × × × ×
ErrorCode (Error code) ×  × × × × ×  

Status (Comparison result) ×  × × × × ×  

Important

RAM dataFlash memory

Data saved in flash memory
(when saving to flash memory).

Data compared
(when data is verified).

Key entry: FLASH-OP

Icon:

4.10 System Function Instructions

4.10.11 Flash Operation (FLASH-OP)

4-234

The following table describes each input and output item.

The option settings are described in the following table.

 Details on Function Workspace
This section provides the details on the function workspace. The parameter number corre-
sponds to the word offset from the first address.

 For System Use #1 (PARAM 00)
This parameter is used by the system. Set this parameter to 0000 hex from a user program in
the first scan after the power supply is turned ON. Do not modify this parameter at any other
time.

I/O Item Description I/O

Execute (Flash opera-
tion command)

The flash operation instruction is started when this command is turned ON.
This command must be kept ON while the instruction is in execution. IN

Reserve (Reserved for
system) – –

Option (Option settings)

Command Option Bit Settings
Bit D: CPU Operation; 0: Execute in CPU RUN status, 1: Execute with CPU
stopped.
Bit E: Verify Disable/Enable; 0: Disable, 1: Enable
Bit F: Flash Save Disable/Enable; 0: Disable, 1: Enable
The other bits are not used. Any settings in the other bits are ignored.

IN

Param (First address of
parameter table) First address of function workspace IN

Busy (Executing) Turns ON during the flash operation. OUT

Complete (Execution
completed) Turns ON for one scan only when the flash operation is completed. OUT

Error Turns ON for one scan only when an error occurs. OUT

ErrorCode (Error code) Turns ON for one scan only when an error occurs. OUT

Status (Comparison
result)

Outputs the comparison result for one scan only after verification has been
completed.
Otherwise outputs 0.
Comparison Result; 1: No differences, 2: One or more differences

OUT

Bit Meaning

0 to C Not used. (Settings will be ignored.)

D

CPU Operating Status during Flash Operation Execution (0: RUN, 1: STOP)
Select the CPU operating status for execution of the flash operation.
If you select 1 (STOP), the CPU will stop to execute the flash operation and then the CPU will start
again when execution of the flash operation has been completed.
The CPU will stop if you select 1 (STOP). Make sure that no problems will occur before you use this
selection.

E

Verify Disable/Enable; 0: Disable, 1: Enable
Select whether to compare flash memory and RAM data.
If you select 1 (enable), the data in flash memory and RAM will be compared.
If you enable both the verify and flash save operations, the data in flash memory and RAM will be
compared and if any differences are found, the RAM data will be saved in the flash memory.

F

Flash Save Disable/Enable Setting
Select whether to save the data to flash memory.
If you select 1 (enable), the data in RAM will be saved to flash memory.
If you enable both the verify and flash save operations, the data in flash memory and RAM will be
compared and if any differences are found, the RAM data will be saved in the flash memory.

For example, if the first address is MA00100, set the value in MW00101 to set PARAM 01.

Parameter No. IN/OUT Meaning

PARAM 00 SYS For system use #1

PARAM 01 SYS For system use #2

Example

4.10 System Function Instructions

 4.10.11 Flash Operation (FLASH-OP)

4-235

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

 For System Use #2 (PARAM 01)
This parameter is used by the system. Set this parameter to 0000 hex from a user program in
the first scan after the power supply is turned ON. Do not modify this parameter at any other
time.

 Error Codes
The following errors can occur.

Programming Example
The following programming example shows how to save data to the flash memory.
The data is verified when DB000000 is turned ON. If there are any differences in the data in the
flash memory and RAM, the CPU is stopped and the data in RAM is saved to flash memory.
When saving the data to flash memory has been completed, the CPU is automatically started.

Error Code Meaning

0000 hex Normal

0001 hex Instruction duplication

0002 hex Internal system error

0003 hex Neither the flash save or verify operation was specified.

4.10 System Function Instructions

4.10.12 Write Motion Register (MOTREG-W)

4-236

4.10.12 Write Motion Register (MOTREG-W)
This system function is used to access specified motion registers.
Values are written to a motion register by specifying the circuit number, axis number, and regis-
ter address.
This function is used with motion setting parameters.

Format
The format of this instruction is shown below.

* C and # registers cannot be used. These parameters may be omitted.

This function is useful for storing the same motion setting parameter for multiple axes with dif-
ferent circuit and axis numbers. If the STORE instruction or an EXPRESSION instruction is
used to write to the motion registers, you need to consider an offset to address the circuit and
axis numbers.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Axis-Inf (Axis information) ×  × × × × × × ×
Reg-No (Register address) ×  × × × × × × ×
Mode ×  × × × × × × ×
WR-Data (Write data) ×   × × × × × ×
Error * × × × × × × × ×
RD-Data (Read data) × * * × × × × × ×

Information

Motion setting parameter for the
specified circuit and axis numbers

OW���00

OL���1CWrite data

Write destination
register address (= 001C hex)

Key entry: MOTREG-W

Icon:

4.10 System Function Instructions

 4.10.12 Write Motion Register (MOTREG-W)

4-237

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

The following table describes each input and output item.

Programming Example
In the following programming example, the value of the write data (ML00000) is written to the
STEP Travel Distance parameter in OL44 for axis number 10 on circuit number 3.
Set the following items.
• Axis-Inf = 030A hex (circuit 3, axis 10)
• Register address = 0044 hex
• Mode = 0001 hex (double-length Integer)

The same result can be achieved by directly specifying the register address and storing data
with the STORE instruction.

I/O Item Description I/O

Axis-Inf (Axis
information)

Circuit number and axis number (Cir-No)
Upper byte: Circuit number (01 to 10 hex)
Lower byte: Axis number (01 to 10 hex)

IN

Reg-No
(Register
address)

Integer register: 0000 to 007F hex
Double-length integer register: 0000 to 007E hex IN

Mode

Access type and access size
• Upper byte: Access type

0: Write WR-Data to specified register.
1: Write inclusive OR of specified register and WR-Data to specified register.
2: Write AND of specified register and WR-Data to specified register.
Others: Write WR-Data to specified register.

• Lower byte: Access size
0: Integer data
1: Double-length integer data
Others: Integer data

IN

WR-Data
(Write data)

If the access size for Mode is an integer and the input data type is a double-length inte-
ger, only the lower word will be used. IN

Error

Error cause (Turns ON when an error occurs.)
The register could not be written to or read from because the circuit number, axis num-
ber, or register address is out of range, or because the Module does not exist.
When an error occurs, RD-Data is set to 0.

OUT

RD-Data
(Read data)

This is the data that is read after writing is completed.
If integer data is specified, the data is output with the sign. OUT

Equivalent

4.10 System Function Instructions

4.10.13 Read Motion Register (MOTREG-R)

4-238

4.10.13 Read Motion Register (MOTREG-R)
This system function is used to access specified motion registers.
The value is read from a motion register by specifying the circuit number, axis number, and reg-
ister address.
This function is to be used with motion setting parameters and motion monitor parameters.

Format
The format of this instruction is shown below.

* C and # registers cannot be used. These parameters may be omitted.

This function is useful for reading the same motion setting parameter from multiple axes with
different circuit and axis numbers. If the STORE instruction or an EXPRESSION instruction is
used to read from the motion registers, you need to consider an offset to address the circuit
and axis numbers.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Axis-Inf (Axis information) ×  × × × × × × ×
Reg-No (Register address) ×  × × × × × × ×
Mode ×  × × × × × × ×
Error * × × × × × × × ×
RD-Data (Read data) × * * × × × × × ×

Information

Motion setting or monitor parameter for
the specified circuit and axis numbers

IW���00

IL���12Read data

Register address of read
destination (= 0012 hex)

Icon:

Key entry: MOTREG-R

4.10 System Function Instructions

 4.10.13 Read Motion Register (MOTREG-R)

4-239

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

The following table describes each input and output item.

Programming Example
In the following programming example, the Machine Coordinate System Feedback Position in
IL8096 for axis number 2 on circuit number 1 is read.
Set the following items.
• Axis-Inf = 0102 hex (circuit 1, axis 2)
• Register address = 0016 hex
• Mode = 0001 hex (motion monitor parameter, double-length integer)

The same result can be achieved by directly specifying the register address and storing data
with the STORE instruction in DL00002.

I/O Item Description I/O

Axis-Inf (Axis
information)

Circuit number and axis number (Cir-No)
Upper byte: Circuit number (01 to 10 hex)
Lower byte: Axis number (01 to 10 hex)

IN

Reg-No (Register
address)

Integer register: 0000 to 007F hex
Double-length integer register: 0000 to 007E hex IN

Mode

Register type and access size
• Upper byte: Register type

0: I registers (motion monitor parameters)
1: O registers (motion setting parameters)
Others: I registers

• Lower byte: Access size
0: Integer data
1: Double-length integer data
Others: Integer data

IN

Error

Error cause (Turns ON when an error occurs.)
The register could not be written to or read from because the circuit number, axis
number, or register address is out of range, or because the Module does not exist.
When an error occurs, RD-Data is set to 0.

OUT

RD-Data
(Read data) If integer data is specified, the data is output with the sign. OUT

Equivalent

4.10 System Function Instructions

4.10.14 Import (IMPORT/IMPORTL/IMPORTLE)

4-240

4.10.14 Import (IMPORT/IMPORTL/IMPORTLE)
Register data is imported from a USB memory device, the built-in RAM in the CPU Unit/CPU
Module, or an FTP server and copied into registers.

The format of the import file is selectable between binary data (bin) and CSV data (csv).
You can specify to import into M registers, G registers, D registers, or C registers.
Two of the following instructions can be executed at the same time: IMPORT, IMPORTL, and
IMPORTLE.

 Differences between IMPORT, IMPORTL, and IMPORTLE

* The data is imported from the following files in a USB memory device, the built-in RAM in the CPU Unit/CPU Mod-
ule, or an FTP server.
\MP_DATA\DAT00001.BIN (CSV)
 :
\MP_DATA\DAT32767.BIN (CSV)

* The data is imported from specified files in a USB memory device, the built-in RAM in the CPU Unit/CPU Module,
or an FTP server.

Item IMPORT IMPORTL IMPORTLE

Number of words to move 1 to 32,767 1 to 2,147,483,647 1 to 2,147,483,647

File names Fixed Fixed Can be specified

Supporting
versions

USB memory device Version 1.00 or higher Version 1.08 or higher

Version 1.30 or higherBuilt-in RAM in CPU
Unit/CPU Module Version 1.30 or higher Version 1.30 or higher
FTP server

<IMPORT or IMPORTL>

USB memory device

Built-in RAM in
CPU Unit/CPU Module
or FTP server

M, G, D, or C registers

Imported.

#1 to #32767

Files*

bin, csv

M, G, D, or C registers

Imported.

File names can
be specified.

<IMPORTLE>

Files*

bin, csv

USB memory device

Built-in RAM in
CPU Unit/CPU Module
or FTP server

4.10 System Function Instructions

 4.10.14 Import (IMPORT/IMPORTL/IMPORTLE)

4-241

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Format
The format of this instruction is shown below.

*1. For the IMPORT instruction.
*2. For the IMPORTL instruction.

The following table describes each input and output item.
<IMPORT or IMPORTL>

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Execute (Import command)  × × × × × × × ×
Abort (Import abort
command)  × × × × × × × ×

Drv-No (Drive number) ×  × × × × ×  

Data-No (Data number) ×  × × × × ×  

Size (Number of words to
move) × *1 *2 × × × ×  

Ch-No (Parallel execution
channel number) ×  × × × × ×  

Dest (First destination
register address) × × × × × ×  × ×

Param (First address of
parameter list) × × × × × ×  × ×

Busy (Importing)  × × × × × × × ×
Complete (Execution of
import completed)  × × × × × × × ×

Error  × × × × × × × ×

I/O Item Description I/O

Execute (Import command) Import execution begins when this command is turned ON.
This command must be kept ON while the instruction is in execution. IN

Abort (Import abort
command) The import process is aborted when this command is turned ON. IN

Drv-No (Drive number) Drive number (1: USB memory device, 2: Built-in RAM in CPU Unit/
CPU Module, 101 to 120: FTP server) IN

Data-No (Data number) Data number (1 to 32,767) IN

Size (Number of words to
move)

Number of words to move
(IMPORT: 1 to 32,767, IMPORTL: 1 to 2,147,483,647) IN

Ch-No (Parallel execution
channel number) Parallel execution channel number (1 or 2) IN

Continued on next page.

Icon:

Key entry: IMPORT/IMPORTL/IMPORTLE

4.10 System Function Instructions

4.10.14 Import (IMPORT/IMPORTL/IMPORTLE)

4-242

<IMPORTLE>

* You can specify directory levels if you select a USB memory device or the built-in RAM in the CPU Unit/CPU Mod-
ule with the drive number.
Use a forward slash (/) to separate directory levels.
You cannot specify directory levels if you select an FTP server with the drive number. Specify only the file name.
The following restrictions apply to file names, including directory specifications.

• USB memory device or built-in RAM in CPU Unit/CPU Module: 250 characters max.
• FTP server: 32 characters max.

* Always delineate the end of the file name with a 0 (NULL character).

 Parameter Details
This section describes the parameters in detail.
<IMPORT>

Dest (First destination
register address) First destination register address (MA, GA, DA, or CA) IN

Param (First address of
parameter list) First address of parameter list (MA, GA, or DA) IN

Busy (Importing) Turns ON while importing is in progress. OUT

Complete (Execution of
import completed) Turns ON when execution of the import is completed. OUT

Error Turns ON when an error occurs. OUT

I/O Item Description I/O

Execute (Import command) Import execution begins when this command is turned ON.
This command must be kept ON while the instruction is in execution. IN

Abort (Import abort
command) The import process is aborted when this command is turned ON. IN

Drv-No (Drive number) Drive number (1: USB memory device, 2: Built-in RAM in CPU Unit/
CPU Module, 101 to 120: FTP server) IN

Size (Number of words to
move) Number of words to move (1 to 2,147,483,647) IN

Ch-No (Parallel execution
channel number) Parallel execution channel number (1 or 2) IN

Dest (First destination
register address) First destination register address (MA, GA, DA, or CA) IN

Param (First address of
parameter list) First address of parameter list (MA, GA, or DA) IN

FILENAME (File name) File name (ASCII) storage register address*
(MA, GA, DA, or CA) IN

Busy (Importing) Turns ON while importing is in progress. OUT

Complete (Execution of
import completed) Turns ON when execution of the import is completed. OUT

Error Turns ON when an error occurs. OUT

Address Data Type Parameter No. IN/OUT Description

0 W PARAM00 OUT Processing Result

1 W PARAM01 IN Format

2 W PARAM02 IN Number of offset lines in the CSV file

3 W PARAM03 IN Word offset for data in the file

4 W PARAM04 OUT Reserved for system.

5 W PARAM05 OUT Reserved for system.

Continued from previous page.

I/O Item Description I/O

4.10 System Function Instructions

 4.10.14 Import (IMPORT/IMPORTL/IMPORTLE)

4-243

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

<IMPORTL or IMPORTLE>

 Processing Result (PARAM00)
This parameter reports the processing result of the IMPORT, IMPORTL, or IMPORTLE instruc-
tion.
• 00 hex: Busy (Busy)
• 10 hex: Completed (Complete)
• 8 hex: Error occurred (Error)

The following errors can occur.

 Format Type (PARAM01)
This parameter sets the format of the import file.
To import register list data from the MPE720, set the format to 2.

1: Imports data from a binary file (DAT.BIN).
The  is set with the numeric value specified for the Data-No.
2: Imports data from a CSV file (DAT.CSV).

The  is set with the numeric value specified for the Data-No.

 Number of offset lines in the CSV file (PARAM02)
For CSV files, specify the number of offset lines.
To import register list data from the MPE720, set the format to 2.

This parameter is ignored for binary files.

Address Data Type Parameter No. IN/OUT Description

0 W PARAM00 OUT Processing Result

1 W PARAM01 IN Format

2 L PARAM02 IN Number of offset lines in the CSV file

4 L PARAM03 IN Word offset for data in the file

6 W PARAM04 OUT Reserved for system.

7 W PARAM05 OUT Reserved for system.

Error Code Description

8101 hex Drive number out of range error

8102 hex Data number out of range error

8103 hex Number of words to move out of range error

8104 hex Parallel execution channel number out of range error

8105 hex Destination or source register address out of range error

8106 hex Format type out of range error

8107 hex Open type out of range error

8108 hex Word offset for data in the file out of range error

8109 hex First address of parameter list out of range error

810A hex Number of offset lines in the file out of range error

810C hex File name error

810E hex FTP reception error

8201 hex No USB memory device

8202 hex File open error

8203 hex File seek error

8204 hex File write error

8205 hex File read error

8206 hex File close error

8301 hex Cannot be processed because there are too many files

8302 hex File I/O timeout

4.10 System Function Instructions

4.10.14 Import (IMPORT/IMPORTL/IMPORTLE)

4-244

 Word offset for data in the file (PARAM03)
This parameter sets the number of words to offset.
<IMPORT>

The setting range is 0 to 32,766.
<IMPORTL or IMPORTLE>
The setting range depends on the software version of the MP3000-series Machine Controller.
Set the value according to the following table.

 Reserved for System (PARAM04)
This parameter specifies the work area used by the system.

 Reserved for System (PARAM05)
This parameter specifies the work area used by the system.

Version Setting Range

Version 1.21 or lower 0 to 32,766

Version 1.22 or higher 0 to 2,147,483,646

4.10 System Function Instructions

 4.10.14 Import (IMPORT/IMPORTL/IMPORTLE)

4-245

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Programming Example
In the following programming example, the register list data in the MPE720 is imported into the
MW01234 to MW01243 registers.
Refer to the following section for operating procedures for the MPE720.

Additional Information on page 4-246

Before Instruction Execution After Instruction Execution
Register Value Register Value

MW01233 0 MW01233 0

MW01234 0 MW01234 2

MW01235 0 MW01235 3

MW01236 0 MW01236 4

MW01237 0 MW01237 5

MW01238 0 MW01238 6

MW01239 0 MW01239 7

MW01240 0 MW01240 8

MW01241 0 MW01241 9

MW01242 0 MW01242 10

MW01243 0 MW01243 11

MW01244 0 MW01244 0

4.10 System Function Instructions

4.10.14 Import (IMPORT/IMPORTL/IMPORTLE)

4-246

Additional Information
Use the following procedure to export the register list data on the MPE720.
The following procedure is based on the programming example given earlier in this section.

1. Insert a USB memory device into the PC.

2. Display the register list on the MPE720.

3. Right-click on the register list and select Export from the menu.

4. Select the drive for the USB memory device.

4.10 System Function Instructions

 4.10.14 Import (IMPORT/IMPORTL/IMPORTLE)

4-247

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

5. Click the MP_DATA folder.
If the MP_DATA folder does not exist, create one.

6. Enter “DAT00001” in the File name Box and click the Save Button.

7. Enter “MW01234” in the Start Register Box and the number “10” in the Number Box,
and then click the Export Button.

8. Remove the USB memory device from the PC.

9. Insert the USB memory device into the Machine Controller.

4.10 System Function Instructions

4.10.15 Export (EXPORT/EXPORTL/EXPORTLE)

4-248

10. Wait for the USB ACCESS indicator to light.

11. Create the programming example that is given earlier in this section.

12. Execute the IMPORT, IMPORTL, or IMPORTL instruction.

4.10.15 Export (EXPORT/EXPORTL/EXPORTLE)
Register data is exported to a USB memory device, the built-in RAM in the CPU Unit/CPU
Module, or an FTP server.
The format of the export file is selectable between binary data (bin) and CSV data (csv).
You can specify to export from M registers, G registers, D registers, C registers, S registers, I
registers, or O registers.
Two of the following instructions can be executed at the same time: EXPORT, EXPORTL, or
EXPORTLE.

 Differences between EXPORT, EXPORTL, and EXPOTRLE

* The data is exported to the following files in a USB memory device, the built-in RAM in the CPU Unit/CPU Module,
or an FTP server.
\MP_DATA\DAT00001.BIN (CSV)
 :
\MP_DATA\DAT32767.BIN (CSV)

* The data is exported to specified files in a USB memory device, the built-in RAM in the CPU Unit/CPU Module, or
an FTP server.

 USB
ACTIVE

Item EXPORT EXPORTL EXPORTLE

Applicable data types W L L

File names Fixed Fixed Can be specified

Supporting
versions

USB memory device Version 1.00 or higher Version 1.08 or higher

Version 1.30 or higherBuilt-in RAM in CPU
Unit/CPU Module Version 1.30 or higher Version 1.30 or higher
FTP server

<EXPORT or EXPORTL>

USB memory device

Built-in RAM in
CPU Unit/CPU Module
or FTP server

M, G, D, C, S, I, or O
registers

Exported.

#1 to #32767

Files*

bin, csv

M, G, D, C, S, I, or O
registers

Exported.

File names can
be specified.

Files*

bin, csv

<EXPORTLE>

USB memory device

Built-in RAM in
CPU Unit/CPU Module
or FTP server

4.10 System Function Instructions

 4.10.15 Export (EXPORT/EXPORTL/EXPORTLE)

4-249

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Format
The format of this instruction is shown below.

*1. For the EXPORT instruction.
*2. For the EXPORTL instruction.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Execute (Export command)  × × × × × × × ×
Abort (Export abort
command)  × × × × × × × ×

Drv-No (Drive number) ×  × × × × ×  

Data-No (Data number) ×  × × × × ×  

Size (Number of words to
move) × *1 *2 × × × ×  

Ch-No (Parallel execution
channel number) ×  × × × × ×  

Src (First source register
address) × × × × × ×  × ×

Str (Register address for
text string output) × × × × × ×  × ×

Param (First address of
parameter list) × × × × × ×  × ×

Busy (Exporting)  × × × × × × × ×
Complete (Execution of
export completed)  × × × × × × × ×

Error  × × × × × × × ×

Icon:

Key entry: EXPORT/EXPORTL/EXPORTLE

4.10 System Function Instructions

4.10.15 Export (EXPORT/EXPORTL/EXPORTLE)

4-250

The following table describes each input and output item.

<EXPORT or EXPORTL>

*1. Valid for CSV files. This item is ignored for binary files.
*2. Always delineate the end of a string with a 0 (NULL character).

<EXPORTLE>

*1. Valid for CSV files. This item is ignored for binary files.
*2. Always delineate the end of a string with a 0 (NULL character).
*3. You can specify directory levels if you select a USB memory device or the built-in RAM in the CPU Unit/CPU

Module with the drive number.
Use a forward slash (/) to separate directory levels.
You cannot specify directory levels if you select an FTP server with the drive number. Specify only the file name.
The following restrictions apply to file names, including directory specifications.
• USB memory device or built-in RAM in CPU Unit/CPU Module: 250 characters max.
• FTP server: 32 characters max.
Always delineate the end of the file name with a 0 (NULL character).

I/O Item Description I/O

Execute (Export command) Export execution begins when this command is turned ON.
This command must be kept ON while the instruction is in execution. IN

Abort (Export abort
command) The export process is aborted when this command is turned ON. IN

Drv-No (Drive number) Drive number (1: USB memory device, 2: Built-in RAM in CPU Unit/
CPU Module, 101 to 120: FTP server) IN

Data-No (Data number) Data number (1 to 32,767) IN

Size (Number of words to
move)

Number of words to move (EXPORT: 1 to 32,767, EXPORTL: 1 to
2,147,483,647) IN

Ch-No (Parallel execution
channel number) Parallel execution channel number (1 or 2) IN

Src (First source register
address) First source register address (MA, GA, DA, CA, SA, IA, or OA) IN

Str (Register address for text
string output) Register address for text string output*1*2 (MA, GA, DA, or CA) IN

Param (First address of
parameter list) First address of parameter list (MA, GA, or DA) IN

Busy (Exporting) Turns ON while exporting is in progress. OUT

Complete (Execution of
export completed) Turns ON when execution of the export is completed. OUT

Error Turns ON when an error occurs. OUT

I/O Item Description I/O

Execute (Export command) Export execution begins when this command is turned ON.
This command must be kept ON while the instruction is in execution. IN

Abort (Export abort
command) The export process is aborted when this command is turned ON. IN

Drv-No (Drive number) Drive number (1: USB memory device, 2: Built-in RAM in CPU Unit/
CPU Module, 101 to 120: FTP server) IN

Size (Number of words to
move) Number of words to move (1 to 2,147,483,647) IN

Ch-No (Parallel execution
channel number) Parallel execution channel number (1 or 2) IN

Src (First source register
address) First source register address (MA, GA, DA, CA, SA, IA, or OA) IN

Str (Register address for text
string output)

Register address for text string output*1*2

(MA, GA, DA, or CA)
IN

Param (First address of
parameter list) First address of parameter list (MA, GA, or DA) IN

FILENAME (File name) File name (ASCII) storage register address*3 (MA, GA, DA, or CA) IN

Busy (Exporting) Turns ON while exporting is in progress. OUT

Complete (Execution of
export completed) Turns ON when execution of the export is completed. OUT

Error Turns ON when an error occurs. OUT

4.10 System Function Instructions

 4.10.15 Export (EXPORT/EXPORTL/EXPORTLE)

4-251

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

 Parameter Details
This section describes the parameters in detail.
<EXPORT>

<EXPORTL or EXPORTLE>

 Processing Result (PARAM00)
This parameter reports the processing result of the EXPORT, EXPORTL, or EXPORTLE instruc-
tion.
• 00 hex: Busy (Busy)
• 10 hex: Completed (Complete)
• 8 hex: Error (Error)

The following errors can occur.

Address Data Type Parameter No. IN/OUT Description

0 W PARAM00 OUT Processing Result

1 W PARAM01 IN Format

2 W PARAM02 IN File open type

3 W PARAM03 IN Word offset for data in the file

4 W PARAM04 OUT Reserved for system.

5 W PARAM05 OUT Reserved for system.

Address Data Type Parameter No. IN/OUT Description

0 W PARAM00 OUT Processing Result

1 W PARAM01 IN Format

2 L PARAM02 IN File open type

4 L PARAM03 IN Word offset for data in the file

6 W PARAM04 OUT Reserved for system.

7 W PARAM05 OUT Reserved for system.

Error Code Meaning

8101 hex Drive number out of range error

8102 hex Data number out of range error

8103 hex Number of words to move out of range error

8104 hex Parallel execution channel number out of range error

8105 hex Destination or source register address out of range error

8106 hex Format type out of range error

8107 hex Open type out of range error

8108 hex Word offset for data in the file out of range error

8109 hex First address of parameter list out of range error

810B hex Text string error (NULL character not detected)

810C hex File name error

810D hex FTP transmission error

8201 hex No USB memory device

8202 hex File open error

8203 hex File seek error

8204 hex File write error

8205 hex File read error

8206 hex File close error

8301 hex Cannot be processed because there are too many files

8302 hex File I/O timeout

4.10 System Function Instructions

4.10.15 Export (EXPORT/EXPORTL/EXPORTLE)

4-252

 Format Type (PARAM01)
This parameter sets the format of the export file.
To export register list data from the MPE720, set this parameter to 2.

1: Exports data to a binary file (DAT.BIN).
The  is set with the numeric value specified for the Data-No.
2: Exports data to a CSV file (DAT.CSV).

The  is set with the numeric value specified for the Data-No.

 File Open Type (PARAM02)
This parameter sets the file open type for binary files.
1: Create and export to a new file.

2: Export to an existing file.
Select this type to change to only certain portions of existing data.
For CSV files, set this parameter to 1.

 Word offset for data in the file (PARAM03)
For binary files, specify the number of offset words.
This parameter is ignored for CSV files.
<EXPORT>

The setting range is 0 to 32,766.
<EXPORTL or EXPORTLE>
The setting range depends on the software version of the MP3000-series Machine Controller.
Set the value according to the following table.

 Reserved for System (PARAM04)
This parameter specifies the work area used by the system.

 Reserved for System (PARAM05)
This parameter specifies the work area used by the system.

Version Setting Range

Version 1.21 or lower 0 to 32,766

Version 1.22 or higher 0 to 2,147,483,646

4.10 System Function Instructions

 4.10.15 Export (EXPORT/EXPORTL/EXPORTLE)

4-253

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Programming Example
In the following programming example, the data from the MW01234 to MW01243 registers is
exported to a CSV file.

Register Data File in USB Memory Device (DAT00001.CSV)
Register Value Contents of Text File

MW01233 1 MW1234

MW01234 2

MW01235 3 00002

MW01236 4 00003

MW01237 5 00004

MW01238 6 00005

MW01239 7 00006

MW01240 8 00007

MW01241 9 00008

MW01242 10 00009

MW01243 11 00010

MW01244 12 00011

4.11 Storage Operation Instructions

4.11.1 Open File (FOPEN)

4-254

4.11 Storage Operation Instructions

4.11.1 Open File (FOPEN)
The file with the specified name is opened. When this instruction is executed, a file handle for
specifying the file in other instructions is output.

Format
The format of this instruction is shown below.

*1. C and # registers cannot be used.
*2. M, G, D, or C register only.
*3. M, G, or D register only.
*4. Optional.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Execute *1 × × × × × × × ×
Type ×  × × × × × × 

FileName × × × × × × *2 × ×

Param × × × × × × *3 × ×

Busy *4 *1 × × × × × × × ×

Complete *1 × × × × × × × ×

Error *4 *1 × × × × × × × ×

ErrCode *4 × *1 × × × × × × ×

FileHndl × × *1 × × × × × ×

4.11 Storage Operation Instructions

 4.11.1 Open File (FOPEN)

4-255

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Details on I/O Items

Note: 1. If Execute is turned OFF while this instruction is being executed, the processing result cannot be obtained
because the output data of the instruction is cleared.

2. Note the following precautions when specifying the registers used in Param. The function cannot be cor-
rectly processed if registers overlap.
• Make sure the registers do not overlap those of another instruction.
• Make sure the registers do not overlap when the same instruction is used in different locations.

3. Make sure the value of FileHndl (File Handle) will not be overwritten by another program. If the value of
FileHndle is different, the FCLOSE instruction will not be able to close the file and it will remain open. This
may result in file corruption when the power supply is turned OFF.

Parameters

I/O Item Name I/O Description

Execute Execute Instruction IN
Processing is executed on the rising edge when this bit is turned
ON. The processing itself is executed even if this bit is turned OFF
afterward.

Type Open Type IN Refer to the following section for details on open types.
Type (Open Type) on page 4-256

FileName File Name IN

Specify the first register in which the applicable file name (drive
name + folder names + file name) has been stored.
Specify the folder names and file name up to 250 alphanumeric
characters plus the NULL character.
• Drive name: “1:/”: USB memory device, “2:/”: Built-

in RAM
If the drive name is omitted, the USB memory device is selected.

• Folder names: The separator between folders is “/”.

Param Parameters IN/OUT First address of function workspace

Busy Processing OUT
This bit is turned ON while the function being executed. This bit is
turned OFF when processing is completed.
This bit is OFF when Execute (Execute Instruction) is OFF.

Complete Processing
Completed OUT This bit is turned ON when function execution is completed.

This bit is OFF when Execute (Execute Instruction) is OFF.

Error Error Occurred OUT

This bit is turned ON if an error occurs during function execution.
This bit is OFF when Execute (Execute Instruction) is OFF. How-
ever, this bit is turned ON when Param is outside the range of reg-
isters.

ErrCode Error Code OUT

This item outputs the error code. Refer to the following section for
details on error codes.

Appendix F Error Codes

The value is 0 when Execute (Execute Instruction) is OFF. How-
ever, 8000 hex (Param is outside range of registers) is output
when Param is outside the range of registers.

FileHndl File Handle OUT
This item stores the identification data for the file that was
opened.
The value is 0 when Execute (Execute Instruction) is OFF.

Offset in
Words

Data Type Purpose Description

0 W IN/OUT System use (status management)

1 W IN/OUT System use (status management)

2 W IN/OUT System use (status management)

3 W IN/OUT System use (status management)

4.11 Storage Operation Instructions

4.11.1 Open File (FOPEN)

4-256

Type (Open Type)

Note: Files are opened as text files.

Operation Overview
After this instruction is executed, FileHndle (File Handle) for specifying the file in other instruc-
tions is output.

The data stored in FileHndl is required when specifying the file in other instructions.

Create the program so that files opened with FOPEN are always closed with the FCLOSE
instruction.

Files cannot be opened in the following cases:
• The directory and file do not exist.
• A file is write-protected.
• The number of files that can be simultaneously opened was exceeded.
• The target file is already opened.
• The character size exceeds the maximum value.
• The USB memory device is not installed.
• File name error (no NULL before the maximum number of characters (no NULL in range of

registers)).
• Range of open type error.
• Four storage operation instructions are already being executed.
• The registers assigned to Param exceed the applicable range.

Value Description
No Existing File
When Executed

Existing File
When Executed

0x0000 The file is opened as read-only.
The file position starts from the beginning of the file. Error Normal operation

0x0001
The file is opened as write-only.
The file position starts from the beginning of the file.
An error will occur if the file exists and is write-protected.

Create new file
Discard existing
file and create
new file

0x0002
The file is opened for additional writing.
The file position for writing starts from the end of the file.
An error will occur if the file exists and is write-protected.

Create new file Overwrite file

Other than
above Error – –

1. If the CPU is stopped, all opened files are closed. If another instruction is being executed,
files are closed after processing of the instruction is completed.

2. Only ASCII characters can be used for file and directory names.

Information

4.11 Storage Operation Instructions

 4.11.2 Close File (FCLOSE)

4-257

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

4.11.2 Close File (FCLOSE)
The specified file is closed.

Format
The format of this instruction is shown below.

*1. C and # registers cannot be used.
*2. M, G, or D register only.
*3. Optional.

Details on I/O Items

Note: 1. If Execute is turned OFF while this instruction is being executed, the processing result cannot be obtained
because the output data of the instruction is cleared.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Execute *1 × × × × × × × ×

FileHndl × × *1 × × × × × ×

Param × × × × × × *2 × ×

Busy *3 *1 × × × × × × × ×

Complete *1 × × × × × × × ×

Error *3 *1 × × × × × × × ×

ErrCode *3 × *1 × × × × × × ×

I/O Item Name IN/OUT Description

Execute Execute
Instruction IN

Processing is executed on the rising edge when this bit is
turned ON.
The processing itself is executed even if this bit is turned OFF
afterward.

FileHndl File Handle IN Specify the file handle.

Param Parameters IN/OUT First address of function workspace

Busy Processing OUT
This bit is turned ON while the function being executed. This
bit is turned OFF when processing is completed.
This bit is OFF when Execute (Execute Instruction) is OFF.

Complete Processing
Completed OUT This bit is turned ON when function execution is completed.

This bit is OFF when Execute (Execute Instruction) is OFF.

Error Error Occurred OUT

This bit is turned ON if an error occurs during function execu-
tion.
This bit is OFF when Execute (Execute Instruction) is OFF.
However, this bit is turned ON when Param is outside the
range of registers.

ErrCode Error Code OUT

This item outputs the error code. Refer to the following sec-
tion for details on error codes.

Appendix F Error Codes

The value is 0 when Execute (Execute Instruction) is OFF.
However, 8000 hex (Param is outside range of registers) is
output when Param is outside the range of registers.

4.11 Storage Operation Instructions

4.11.3 Read Data from File (FREAD)

4-258

2. Note the following precautions when specifying the registers used in Param. The function cannot be cor-
rectly processed if registers overlap.
• Make sure the registers do not overlap those of another instruction.
• Make sure the registers do not overlap when the same instruction is used in different locations.

Operation Overview
The file specified by FileHndl (File Handle) is closed.

Files cannot be closed in the following cases:
• The processing cannot be executed because the target file is being used in another instruc-

tion.
• The file cannot be saved (e.g., insufficient space on the destination or the directory was

deleted).
• The target file is already closed.
• Four storage operation instructions are already being executed.
• Param is outside the range of registers.

4.11.3 Read Data from File (FREAD)
The target file and data size are specified and the data is read from the target file. The data can
be read up to 2,000 bytes.

Format
The format of this instruction is shown below.

1. If the USB memory device is ejected after a file is opened on the device, the file remains
opened.

2. Always use this instruction to close files opened with FOPEN.

Information

4.11 Storage Operation Instructions

 4.11.3 Read Data from File (FREAD)

4-259

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Details on I/O Items

*1. C and # registers cannot be used.
*2. M, G, or D register only.
*3. Optional.

Details on I/O Items

Note: 1. If Execute is turned OFF while this instruction is being executed, the processing result cannot be obtained
because the output data of the instruction is cleared.

2. Note the following precautions when specifying the registers used in Param. The function cannot be cor-
rectly processed if registers overlap.
• Make sure the registers do not overlap those of another instruction.
• Make sure the registers do not overlap when the same instruction is used in different locations.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Execute *1 × × × × × × × ×

FileHndl × × *1 × × × × × ×

Size ×  × × × × × × 

Count ×  × × × × × × 

Dest × × × × × × *2 × ×

Param × × × × × × *2 × ×

Busy *3 *1 × × × × × × × ×

Complete *1 × × × × × × × ×

Error *3 *1 × × × × × × × ×

ErrCode *3 × *1 × × × × × × ×

FileEnd *3 *1 × × × × × × × ×

RdCount *3 × *1 × × × × × × ×

I/O Item Name I/O Description

Execute Execute
Instruction IN

Processing is executed on the rising edge when this bit is
turned ON. The processing itself is executed even if this bit is
turned OFF afterward.

FileHndl File Handle IN Specify the handle of the file to read.

Size Block Size IN The size in bytes of one block of data to read (1 to 2,000).

Count Block Count IN Number of blocks to read (Block Count: 1 to 2,000).

Dest Read Data
Destination IN/OUT Specify the register address to store the read data.

Param Parameters IN/OUT First address of function workspace

Busy Processing OUT
This bit is turned ON while the function being executed. This
bit is turned OFF when processing is completed.
This bit is OFF when Execute (Execute Instruction) is OFF.

Complete Processing
Completed OUT This bit is turned ON when function execution is completed.

This bit is OFF when Execute (Execute Instruction) is OFF.

Error Error Occurred OUT

This bit is turned ON if an error occurs during function execu-
tion.
This bit is OFF when Execute (Execute Instruction) is OFF.
However, this bit is turned ON when Param is outside the
range of registers.

ErrCode Error Code OUT

This item outputs the error code. Refer to the following sec-
tion for details on error codes.

Appendix F Error Codes

The value is 0 when Execute (Execute Instruction) is OFF.
However, 8000 hex (Param is outside range of registers) is
output when Param is outside the range of registers.

FileEnd End of File OUT
This bit is turned ON when the EOF (a one-byte code added
after the end of a text file) is reached.
This bit is OFF when Execute (Execute Instruction) is OFF.

RdCount Read Block Count OUT This item stores the number of blocks that were actually read.

4.11 Storage Operation Instructions

4.11.4 Write Data to File (FWRITE)

4-260

Operation Overview
The data is read from the file specified by FileHndl (File Handle) at the position indicated by the
file position indicator and stored in Dest (Read Data Destination). The file position indicator is
moved by only the size of the data that was read. The size of data to read is calculated as Size
(Block Size) × Count (Block Count). Set the size of data to read to a maximum of 2,000 bytes.
The number of blocks that were actually read is stored in RdCount. Normally RdCount = Count.
If the size of the file is not a multiple of Size, the final block will not be read because it is smaller
than Size, RdCount will be less than Count, and FileEnd will be turned ON. However, if the size
to read (Size × Count) is smaller than the file, RdCount = Count and FileEnd is not turned ON.
When this instruction is executed on an area of the file that exceeds the file size, FileEnd is
turned ON.
File data cannot be read in the following cases:
• The target file cannot be accessed.
• The processing cannot be executed because the target file is being used in another instruc-

tion.
• Four storage operation instructions are already being executed.
• Param is outside the range of registers.
• Size is specified outside the range of registers.
• Count is specified outside the range of registers.
• Size × Count is outside the applicable range.
• The read destination registers are outside the applicable range.

4.11.4 Write Data to File (FWRITE)
The target file and data size are specified and the data is written to the target file. The data can
be written up to 2,000 bytes.

Format
The format of this instruction is shown below.

1. The data is handled as little-endian.
2. If the data size from the start position to read up to the end of the file cannot be divided by

the block size, the final block is not written to Dest (Read Data Destination) and FileEnd is
turned ON.

Information

4.11 Storage Operation Instructions

 4.11.4 Write Data to File (FWRITE)

4-261

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

*1. C and # registers cannot be used.
*2. M, G, D, or C register only.
*3. M, G, or D register only.
*4. Optional.

Details on I/O Items

Note: 1. If Execute is turned OFF while this instruction is being executed, the processing result cannot be obtained
because the output data of the instruction is cleared.

2. Note the following precautions when specifying the registers used in Param. The function cannot be cor-
rectly processed if registers overlap.
• Make sure the registers do not overlap those of another instruction.
• Make sure the registers do not overlap when the same instruction is used in different locations.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Execute *1 × × × × × × × ×

FileHndl × × *1 × × × × × ×
Size ×  × × × × × × 

Count ×  × × × × × × 

Src × × × × × × *2 × ×

Param × × × × × × *3 × ×

Busy *4 *1 × × × × × × × ×

Complete *1 × × × × × × × ×

Error *4 *1 × × × × × × × ×

ErrCode *4 × *1 × × × × × × ×

WrCount *4 × *1 × × × × × × ×

Item Name I/O Description

Execute Execute Instruction IN
Processing is executed on the rising edge when this bit is
turned ON. The processing itself is executed even if this bit
is turned OFF afterward.

FileHndl File Handle IN Specify the handle of the file to write.

Size Block Size IN The size in bytes of one block of data to write (1 to 2,000).

Count Block Count IN Number of blocks to write (Block Count: 1 to 2,000).

Src Write Data Source IN Specify the register address that stores the data to write.

Param Parameters IN/OUT First address of function workspace

Busy Processing OUT
This bit is turned ON while the function being executed. This
bit is turned OFF when processing is completed.
This bit is OFF when Execute (Execute Instruction) is OFF.

Complete Processing
Completed OUT This bit is turned ON when function execution is completed.

This bit is OFF when Execute (Execute Instruction) is OFF.

Error Error Occurred OUT

This bit is turned ON if an error occurs during function exe-
cution.
This bit is OFF when Execute (Execute Instruction) is OFF.
However, this bit is turned ON when Param is outside the
range of registers.

ErrCode Error Code OUT

This item outputs the error code. Refer to the following sec-
tion for details on error codes.

Appendix F Error Codes

The value is 0 when Execute (Execute Instruction) is OFF.
However, 8000 hex (Param is outside range of registers) is
output when Param is outside the range of registers.

WrCount Write Block Count OUT This item outputs the number of blocks that were written.

4.11 Storage Operation Instructions

4.11.5 Set File Position Indicator (FSEEK)

4-262

Operation Overview
The data stored in Src (Write Data Source) is written to the file specified by FileHndl (File Han-
dle) at the position indicated by the file position indicator. After the data is written, execute the
FCLOSE (Close File) instruction to save the file.

The size of data to write is calculated as Size (Block Size) × Count (Block Count). Set the size of
data to write to a maximum of 2,000 bytes.

The file position indicator is moved by only the size of the data that was written.
File data cannot be written in the following cases:
• The processing cannot be executed because the target file is being used in another instruc-

tion.
• Four storage operation instructions are already being executed.
• Param is outside the range of registers.
• Size is specified outside the range of registers.
• Count is specified outside the range of registers.
• Size × Count is outside the applicable range.
• The registers to write are outside the applicable range.

4.11.5 Set File Position Indicator (FSEEK)
The file position indicator is set for the specified file and data can be written to the desired posi-
tion in the file.

Format
The format of this instruction is shown below.

*1. C and # registers cannot be used.
*2. M, G, or D register only.
*3. Optional.

The data is handled as little-endian.Information

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Execute *1 × × × × × × × ×

FileHndl × × *1 × × × × × ×
Offset × ×  × × × × × 

Origin ×  × × × × × × 

Param × × × × × × *2 × ×

Busy *3 *1 × × × × × × × ×

Complete *1 × × × × × × × ×

Error *3 *1 × × × × × × × ×

ErrCode *3 × *1 × × × × × × ×

4.11 Storage Operation Instructions

 4.11.5 Set File Position Indicator (FSEEK)

4-263

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Details on I/O Items

Note: 1. If Execute is turned OFF while this instruction is being executed, the processing result cannot be obtained
because the output data of the instruction is cleared.

2. Note the following precautions when specifying the registers used in Param. The function cannot be cor-
rectly processed if registers overlap.
• Make sure the registers do not overlap those of another instruction.
• Make sure the registers do not overlap when the same instruction is used in different locations.

Operation Overview
The file position indicator is set to the position at which Offset is added to the position specified
by Origin (Reference Position). When Origin is SEEK_END (End of of the file), a position speci-
fied from the end of the file can be set by setting Offset to a negative value.
In the following cases, an error occurs and Error is turned ON.
• The target file cannot be accessed.
• The processing cannot be executed because the target file is being used in another instruc-

tion.
• Four storage operation instructions are already being executed.
• Param is outside the range of registers.
• A file seek error occurred.
• The offset is outside the applicable range (the file area has been exceeded).
• Origin is outside the applicable range.

I/O Item Name I/O Description

Execute Execute
Instruction IN

Processing is executed on the rising edge when this bit is
turned ON.
The processing itself is executed even if this bit is turned OFF
afterward.

FileHndl File Handle IN Specify the handle of the target file.

Offset Offset IN Specify the number of bytes to move from the specified Ori-
gin (Reference Position).

Origin Reference Position IN

Specify the reference for the offset.
0 (SEEK_SET): Start of the file
1 (SEEK_CUR): Current position in the file
2 (SEEK_END): End of the file
Other than above: Error

Param Parameters IN/OUT First address of function workspace

Busy Processing OUT
This bit is turned ON while the function being executed. This
bit is turned OFF when processing is completed.
This bit is OFF when Execute (Execute Instruction) is OFF.

Complete Processing
Completed OUT This bit is turned ON when function execution is completed.

This bit is OFF when Execute (Execute Instruction) is OFF.

Error Error Occurred OUT

This bit is turned ON if an error occurs during function execu-
tion.
This bit is OFF when Execute (Execute Instruction) is OFF.
However, this bit is turned ON when Param is outside the
range of registers.

ErrCode Error Code OUT

This item outputs the error code. Refer to the following sec-
tion for details on error codes.

Appendix F Error Codes

The value is 0 when Execute (Execute Instruction) is OFF.
However, 8000 hex (Param is outside range of registers) is
output when Param is outside the range of registers.

4.11 Storage Operation Instructions

4.11.6 Read Line from File to String (FGETS)

4-264

4.11.6 Read Line from File to String (FGETS)
One line (1,999 characters maximum) is read from the specified file to a text string.

Format
The format of this instruction is shown below.

*1. C and # registers cannot be used.
*2. M, G, or D register only.
*3. Optional.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Execute *1 × × × × × × × ×
TrimNL  × × × × × × × ×
FileHndl × × *1 × × × × × ×

Dest × × × × × × *2 × ×

Param × × × × × × *2 × ×

Busy *3 *1 × × × × × × × ×

Complete *1 × × × × × × × ×

Error *3 *1 × × × × × × × ×

ErrCode *3 × *1 × × × × × × ×

FileEnd *1 × × × × × × × ×

RdCount × *1 × × × × × × ×

4.11 Storage Operation Instructions

 4.11.6 Read Line from File to String (FGETS)

4-265

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Details on I/O Items

Note: 1. If Execute is turned OFF while this instruction is being executed, the processing result cannot be obtained
because the output data of the instruction is cleared.

2. Note the following precautions when specifying the registers used in Param. The function cannot be cor-
rectly processed if registers overlap.
• Make sure the registers do not overlap those of another instruction.
• Make sure the registers do not overlap when the same instruction is used in different locations.

Operation Overview
For the data to read, only one line of data is read from the file specified by FileHndl (File Handle)
at the position indicated by the file position indicator and stored in Dest (Read Data Destina-
tion).

The size of data that can be read with this instruction is up to 1,999 bytes plus the NULL char-
acter. To read a line longer than 1,999 bytes, you must split up the line by executing this
instruction multiple times.
The file position indicator is moved to the next line. If the file position indicator reaches the end
of the file, FileEnd (End of File) is turned ON.
When this instruction is executed on an area of the file that exceeds the file size, FileEnd is
turned ON.
If TRUE (Delete Newline Codes) is selected for TrimNL (Limit Newline Codes), the newline
codes (CR, LF, CRLF) are deleted from the line and then the line is stored in Dest. If FALSE (Do
Not Delete Newline Codes) is selected, the size of the read data also includes the newline
codes.

I/O Item Name I/O Description

Execute Execute
Instruction IN

Processing is executed on the rising edge when this bit is
turned ON.
The processing itself is executed even if this bit is turned OFF
afterward.

TrimNL Limit Newline
Codes IN TRUE: Delete Newline Codes

FALSE: Do Not Delete Newline Codes

FileHndl File Handle IN Specify the handle of the target file.

Dest Read Data
Destination IN/OUT Specify the register address to store the read data.

Param Parameters IN/OUT First address of function workspace

Busy Processing OUT
This bit is turned ON while the function being executed. This
bit is turned OFF when processing is completed.
This bit is OFF when Execute (Execute Instruction) is OFF.

Complete Processing
Completed OUT This bit is turned ON when function execution is completed.

This bit is OFF when Execute (Execute Instruction) is OFF.

Error Error Occurred OUT

This bit is turned ON if an error occurs during function execu-
tion.
This bit is OFF when Execute (Execute Instruction) is OFF.
However, this bit is turned ON when Param is outside the
range of registers.

ErrCode Error Code OUT

This item outputs the error code. Refer to the following sec-
tion for details on error codes.

Appendix F Error Codes

The value is 0 when Execute (Execute Instruction) is OFF.
However, 8000 hex (Param is outside range of registers) is
output when Param is outside the range of registers.

FileEnd End of File OUT
This bit is turned ON when the EOF (a one-byte code added
after the end of a text file) is reached.
This bit is OFF when Execute (Execute Instruction) is OFF.

RdCount Read Data Size OUT This item stores the data size that was read.

4.11 Storage Operation Instructions

4.11.7 Write String to File (FPUTS)

4-266

In the following cases, one line of the file cannot be read and Error is turned ON.
• The target file cannot be accessed.
• The processing cannot be executed because the target file is being used in another instruc-

tion.
• Four storage operation instructions are already being executed.
• Param is outside the range of registers.
• The read destination registers are outside the applicable range.
• If an out of range error (8113 hex) occurs while this instruction is being executed, the file

position indicator is moved to the location that was processed before the error occurred.
To execute this instruction after an out of range error has occurred, redo the processing from
the location at which the file is once again opened.

4.11.7 Write String to File (FPUTS)
A text string (1,999 characters maximum) is written to the specified file.

Format
The format of this instruction is shown below.

*1. C and # registers cannot be used.
*2. M, G, D, or C register only.
*3. M, G, or D register only.
*4. Optional.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Execute *1 × × × × × × × ×

FileHndl × × *1 × × × × × ×

Src × × × × × × *2 × ×

Param × × × × × × *3 × ×

Busy *4 *1 × × × × × × × ×

Complete *1 × × × × × × × ×

Error *4 *1 × × × × × × × ×

ErrCode *4 × *1 × × × × × × ×

4.11 Storage Operation Instructions

 4.11.7 Write String to File (FPUTS)

4-267

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Details on I/O Items

Note: 1. If Execute is turned OFF while this instruction is being executed, the processing result cannot be obtained
because the output data of the instruction is cleared.

2. Note the following precautions when specifying the registers used in Param. The function cannot be cor-
rectly processed if registers overlap.
• Make sure the registers do not overlap those of another instruction.
• Make sure the registers do not overlap when the same instruction is used in different locations.

Operation Overview
The data stored in Src (Write Data Source) is written to the file specified by FileHndl (File Han-
dle) at the position indicated by the file position indicator. After the data is written, execute the
FCLOSE (Close File) instruction to save the file.
To insert a newline, add newline codes (CR, LF) in the input text string.

The size of data that can be written at one time is up to 1,999 bytes plus the NULL character. If
newline codes are added to the line, the size of the newline codes is also included.

In the following cases, the text string cannot be written to the file and Error is turned ON.
• The target file cannot be accessed.
• The processing cannot be executed because the target file is being used in another instruc-

tion.
• Four storage operation instructions are already being executed.
• Param is outside the range of registers.
• The write registers are outside the applicable range.

Item Name I/O Description

Execute Execute Instruction IN

Processing is executed on the rising edge when this bit is turned
ON.
The processing itself is executed even if this bit is turned OFF
afterward.

FileHndl File Handle IN Specify the handle of the target file.

Src Write Data Source IN Specify the register address that stores the data to write.

Param Parameters IN/OUT First address of function workspace

Busy Processing OUT
This bit is turned ON while the function being executed. This bit
is turned OFF when processing is completed.
This bit is OFF when Execute (Execute Instruction) is OFF.

Complete Processing
Completed OUT This bit is turned ON when function execution is completed.

This bit is OFF when Execute (Execute Instruction) is OFF.

Error Error Occurred OUT

This bit is turned ON if an error occurs during function execution.
This bit is OFF when Execute (Execute Instruction) is OFF. How-
ever, this bit is turned ON when Param is outside the range of
registers.

ErrCode Error Code OUT

This item outputs the error code. Refer to the following section
for details on error codes.

Appendix F Error Codes

The value is 0 when Execute (Execute Instruction) is OFF. How-
ever, 8000 hex (Param is outside range of registers) is output
when Param is outside the range of registers.

4.11 Storage Operation Instructions

4.11.8 Copy File (FCOPY)

4-268

4.11.8 Copy File (FCOPY)
The specified file is copied.

Format
The format of this instruction is shown below.

*1. C and # registers cannot be used.
*2. M, G, D, or C register only.
*3. M, G, or D register only.
*4. Optional.

Details on I/O Items

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Execute *1 × × × × × × × ×
Option ×  × × × × × × 

SrcFile × × × × × × *2 × ×

DstFile × × × × × × *2 × ×

Param × × × × × × *3 × ×

Busy *4 *1 × × × × × × × ×

Complete *1 × × × × × × × ×

Error *4 *1 × × × × × × × ×

ErrCode *4 × *1 × × × × × × ×

I/O Item Name I/O Description

Execute Execute
Instruction IN

Processing is executed on the rising edge when this bit is turned ON.
The processing itself is executed even if this bit is turned OFF after-
ward.

Option Option Settings IN
Refer to the following section for details on option settings.

Option Settings on page 4-273

SrcFile Source File
Name IN

Specify the first register in which the source file name (drive name +
folder names + file name) of the write data has been stored.
Specify the folder names and file name up to 250 alphanumeric charac-
ters plus the NULL character.
• Drive name: “1:/”: USB memory device, “2:/”: Built-in

RAM
If the drive name is omitted, the USB memory device is selected.

• Folder names: The separator between folders is “/”.

Continued on next page.

4.11 Storage Operation Instructions

 4.11.8 Copy File (FCOPY)

4-269

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Note: 1. If Execute is turned OFF while this instruction is being executed, the processing result cannot be obtained
because the output data of the instruction is cleared.

2. Note the following precautions when specifying the registers used in Param. The function cannot be cor-
rectly processed if registers overlap.
• Make sure the registers do not overlap those of another instruction.
• Make sure the registers do not overlap when the same instruction is used in different locations.

Option Settings

Operation Overview
The file specified by SrcFile (Source File Name) is copied to the file specified by DstFile (Destination File
Name).
If a file with the same name already exists, the file is copied according to the overwrite permis-
sion setting in Option (Option Settings). If the overwrite permission setting is set to prohibit
overwriting, an error occurs and the file is not copied.

In the following cases, the file cannot be copied and Error is turned ON.
• The specified path does not exist.
• The target file cannot be accessed.
• The processing cannot be executed because the target file is being used in another instruc-

tion.
• Four storage operation instructions are already being executed.
• File name error (no NULL before the maximum number of characters or no NULL in range of

registers).
• Param is outside the range of registers.
• A file with the same name already exists when overwriting is prohibited.

DstFile Destination File
Name IN

Specify the first register in which the destination file name (drive name +
folder names + file name) of the read data has been stored.
Specify the folder names and file name up to 250 alphanumeric charac-
ters plus the NULL character.
• Drive name: “1:/”: USB memory device, “2:/”: Built-in

RAM
If the drive name is omitted, the USB memory device is selected.

• Folder names: The separator between folders is “/”.

Param Parameters IN/OUT First address of function workspace

Busy Processing OUT
This bit is turned ON while the function being executed. This bit is
turned OFF when processing is completed.
This bit is OFF when Execute (Execute Instruction) is OFF.

Com-
plete

Processing
Completed OUT

This bit is turned ON when function execution is completed.
This bit is OFF when Execute (Execute Instruction) is OFF.

Error Error Occurred OUT
This bit is turned ON if an error occurs during function execution.
This bit is OFF when Execute (Execute Instruction) is OFF. However, this
bit is turned ON when Param is outside the range of registers.

ErrCode Error Code OUT

This item outputs the error code. Refer to the following section for
details on error codes.

Appendix F Error Codes

The value is 0 when Execute (Execute Instruction) is OFF. However,
8000 hex (Param is outside range of registers) is output when Param is
outside the range of registers.

Bit Meaning

0
Overwrite Permission Setting
OFF: Overwriting is prohibited
ON: Overwriting is permitted

1 to F Reserved for system (set to 0).

Only ASCII characters can be used for file and directory names.

Continued from previous page.

I/O Item Name I/O Description

Information

4.11 Storage Operation Instructions

4.11.9 Delete File (FREMOVE)

4-270

4.11.9 Delete File (FREMOVE)
The specified file is deleted.

Format
The format of this instruction is shown below.

*1. C and # registers cannot be used.
*2. M, G, D, or C register only.
*3. M, G, or D register only.
*4. Optional.

Details on I/O Items

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Execute *1 × × × × × × × ×

FileName × × × × × × *2 × ×

Param × × × × × × *3 × ×

Busy *4 *1 × × × × × × × ×

Complete *1 × × × × × × × ×

Error *4 *1 × × × × × × × ×

ErrCode *4 × × *1 × × × × × ×

I/O Item Name I/O Description

Execute Execute
Instruction IN

Processing is executed on the rising edge when this bit is turned ON.
The processing itself is executed even if this bit is turned OFF after-
ward.

FileName File Name IN

Specify the first register in which the applicable file name (drive name
+ folder names + file name) has been stored.
Specify the folder names and file name up to 250 alphanumeric char-
acters plus the NULL character.
• Drive name: “1:/”: USB memory device, “2:/”: Built-in

RAM
If the drive name is omitted, the USB memory device is selected.

• Folder names: The separator between folders is “/”.

Param Parameters IN/OUT First address of function workspace

Busy Processing OUT
This bit is turned ON while the function being executed. This bit is
turned OFF when processing is completed.
This bit is OFF when Execute (Execute Instruction) is OFF.

Complete Processing
Completed OUT This bit is turned ON when function execution is completed.

This bit is OFF when Execute (Execute Instruction) is OFF.

Error Error
Occurred OUT

This bit is turned ON if an error occurs during function execution.
This bit is OFF when Execute (Execute Instruction) is OFF. However,
this bit is turned ON when Param is outside the range of registers.

Continued on next page.

4.11 Storage Operation Instructions

 4.11.10 Rename File (FRENAME)

4-271

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Note: 1. If Execute is turned OFF while this instruction is being executed, the processing result cannot be obtained
because the output data of the instruction is cleared.

2. Note the following precautions when specifying the registers used in Param. The function cannot be cor-
rectly processed if registers overlap.
• Make sure the registers do not overlap those of another instruction.
• Make sure the registers do not overlap when the same instruction is used in different locations.

Operation Overview
The file specified by FileName (File Name) is deleted.

In the following cases, the file cannot be deleted and Error is turned ON.
• The target file cannot be accessed.
• The processing cannot be executed because the target file is being used in another instruc-

tion.
• Four storage operation instructions are already being executed.
• Param is outside the range of registers.
• File name error (no NULL before the maximum number of characters or no NULL in range of

registers).

4.11.10 Rename File (FRENAME)
The specified file is renamed.

Format
The format of this instruction is shown below.

ErrCode Error Code OUT

This item outputs the error code. Refer to the following section for
details on error codes.

Appendix F Error Codes

The value is 0 when Execute (Execute Instruction) is OFF. However,
8000 hex (Param is outside range of registers) is output when Param
is outside the range of registers.

Only ASCII characters can be used for file and directory names.

Do not delete files that have been opened.

Continued from previous page.

I/O Item Name I/O Description

Information

Important

4.11 Storage Operation Instructions

4.11.10 Rename File (FRENAME)

4-272

*1. C and # registers cannot be used.
*2. M, G, D, or C register only.
*3. M, G, or D register only.
*4. Optional.

Details on I/O Items

Note: 1. If Execute is turned OFF while this instruction is being executed, the processing result cannot be obtained
because the output data of the instruction is cleared.

2. Note the following precautions when specifying the registers used in Param. The function cannot be cor-
rectly processed if registers overlap.
• Make sure the registers do not overlap those of another instruction.
• Make sure the registers do not overlap when the same instruction is used in different locations.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Execute *1 × × × × × × × ×
Option ×  × × × × × × 

SrcFile × × × × × × *2 × ×

DstFile × × × × × × *2 × ×

Param × × × × × × *3 × ×

Busy *4 *1 × × × × × × × ×

Complete *1 × × × × × × × ×

Error *4 *1 × × × × × × × ×

ErrCode *4 × *1 × × × × × × ×

I/O Item Name I/O Description

Execute Execute
Instruction IN

Processing is executed on the rising edge when this bit is turned ON.
The processing itself is executed even if this bit is turned OFF after-
ward.

Option Option Settings IN Refer to the following section for details on option settings.
Option Settings on page 4-273

SrcFile Source File
Name IN

Specify the first register in which the source file name (drive name +
folder names + file name) of the write data has been stored.
Specify the folder names and file name up to 250 alphanumeric char-
acters plus the NULL character.
• Drive name: “1:/”: USB memory device, “2:/”: Built-in

RAM
If the drive name is omitted, the USB memory device is selected.

• Folder names: The separator between folders is “/”.

DstFile Destination File
Name IN

Specify the first register in which the destination file name (drive name
+ folder names + file name) of the read data has been stored.
Specify the folder names and file name up to 250 alphanumeric char-
acters plus the NULL character.
• Drive name: “1:/”: USB memory device, “2:/”: Built-in

RAM
If the drive name is omitted, the USB memory device is selected.

• Folder names: The separator between folders is “/”.

Param Parameters IN/OUT First address of function workspace

Busy Processing OUT
This bit is turned ON while the function being executed. This bit is
turned OFF when processing is completed.
This bit is OFF when Execute (Execute Instruction) is OFF.

Complete Processing
Completed OUT This bit is turned ON when function execution is completed.

This bit is OFF when Execute (Execute Instruction) is OFF.

Error Error Occurred OUT
This bit is turned ON if an error occurs during function execution.
This bit is OFF when Execute (Execute Instruction) is OFF. However,
this bit is turned ON when Param is outside the range of registers.

ErrCode Error Code OUT

This item outputs the error code. Refer to the following section for
details on error codes.

Appendix F Error Codes

The value is 0 when Execute (Execute Instruction) is OFF. However,
8000 hex (Param is outside range of registers) is output when Param
is outside the range of registers.

4.11 Storage Operation Instructions

 4.11.10 Rename File (FRENAME)

4-273

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Option Settings

Operation Overview
The file specified by SrcFile (Source File Name) is renamed to the name specified by DstFile
(Destination File Name). Directories can also be renamed in the same manner.
If different directories are specified by SrcFile and DstFile, the files are moved to the directory
specified by DstFile. However, different drive names cannot be specified by SrcFile and DstFile.
If a file with the same name already exists, the file is copied according to the overwrite permis-
sion setting in Option (Option Settings). If the overwrite permission setting is set to prohibit
overwriting, an error occurs and renaming a file, moving files, and overwriting directories can-
not be executed.

In the following cases, the file cannot be renamed and Error is turned ON.
• The specified path does not exist.
• The target file cannot be accessed.
• The processing cannot be executed because the target file is being used in another instruc-

tion.
• Four storage operation instructions are already being executed.
• Param is outside the range of registers.
• File name error (no NULL before the maximum number of characters or no NULL in range of

registers).
• A file with the same name already exists when overwriting is prohibited.

Bit Meaning

0
Overwrite Permission Setting
OFF: Overwriting is prohibited
ON: Overwriting is permitted

1 to F Reserved for system (set to 0).

Only ASCII characters can be used for file and directory names.

1. Do not change text strings used as input values while the instruction is being executed.
2. Do not access the same file with multiple storage instructions at the same time.
3. Do not rename a directory that contains files that have been opened.

Information

Important

4.11 Storage Operation Instructions

4.11.11 Create Directory (DCREATE)

4-274

4.11.11 Create Directory (DCREATE)
A directory is created with the specified name.

Format
The format of this instruction is shown below.

*1. C and # registers cannot be used.
*2. M, G, D, or C register only.
*3. M, G, or D register only.
*4. Optional.

Details on I/O Items

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Execute *1 × × × × × × × ×

DirName × × × × × × *2 × ×

Param × × × × × × *3 × ×

Busy *4 *1 × × × × × × × ×

Complete *1 × × × × × × × ×

Error *4 *1 × × × × × × × ×

ErrCode *4 × *1 × × × × × × ×

Item Name I/O Description

Execute Execute
Instruction IN Processing is executed on the rising edge when this bit is turned ON.

The processing itself is executed even if this bit is turned OFF afterward.

DirName Directory
Name IN

Specify the first register in which the target directory name (drive name +
folder names) has been stored. Specify the folder name up to 200 alpha-
numeric characters plus the NULL character.
• Drive name: “1:/”: …USB memory device

“2:/”: …Built-in RAM
(If the drive name is omitted, the USB memory device is
selected.)

• Directory name: The separator between directories is “/”.

Param Parameters IN/OUT First address of function workspace

Busy Processing OUT
This bit is turned ON while the function being executed. This bit is turned
OFF when processing is completed.
This bit is OFF when Execute (Execute Instruction) is OFF.

Complete Processing
Completed OUT This bit is turned ON when function execution is completed.

This bit is OFF when Execute (Execute Instruction) is OFF.

Error Error
Occurred OUT

This bit is turned ON if an error occurs during function execution.
This bit is OFF when Execute (Execute Instruction) is OFF. However, this
bit is turned ON when Param is outside the range of registers.

Continued on next page.

4.11 Storage Operation Instructions

 4.11.11 Create Directory (DCREATE)

4-275

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Note: 1. If Execute is turned OFF while this instruction is being executed, the processing result cannot be obtained
because the output data of the instruction is cleared.

2. Note the following precautions when specifying the registers used in Param. The function cannot be cor-
rectly processed if registers overlap.
• Make sure the registers do not overlap those of another instruction.
• Make sure the registers do not overlap when the same instruction is used in different locations.

Operation Overview
The directory specified by DirName (Directory Name) is created.

In the following cases, the directory cannot be created and Error is turned ON.
• The directory name already exists.
• A path was specified that does not exist.
• The target file cannot be accessed.
• The processing cannot be executed because the target file is being used in another instruc-

tion.
• Other storage operation instructions are already being executed.
• Param is outside the range of registers.
• Directory name error (no NULL before the maximum number of characters or no NULL in

range of registers).

ErrCode Error Code OUT

This item outputs the error code. Refer to the following section for details
on error codes.

Appendix F Error Codes

The value is 0 when Execute (Execute Instruction) is OFF. However, 8000
hex (Param is outside range of registers) is output when Param is outside
the range of registers.

Only ASCII characters can be used for file and directory names.

• Do not change text strings used as input values while the instruction is being executed.
• Do not access the same file with multiple storage instructions at the same time.
• Do not rename a directory that contains files that have been opened.
• The DCREATE instruction and DREMOVE instruction cannot be executed at the same time.

Continued from previous page.

Item Name I/O Description

Information

Important

4.11 Storage Operation Instructions

4.11.12 Delete Directory (DREMOVE)

4-276

4.11.12 Delete Directory (DREMOVE)
The specified directory is deleted. All files and subdirectories inside the directory are deleted.

Format
The format of this instruction is shown below.

*1. C and # registers cannot be used.
*2. M, G, D, or C register only.
*3. M, G, or D register only.
*4. Optional.

Details on I/O Items

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Execute *1 × × × × × × × ×

DirName × × × × × × *2 × ×

Param × × × × × × *3 × ×

Busy *4 *1 × × × × × × × ×

Complete *1 × × × × × × × ×

Error *4 *1 × × × × × × × ×

ErrCode *4 × *1 × × × × × × ×

Item Name I/O Description

Execute Execute
Instruction IN

Processing is executed on the rising edge when this bit is turned ON.
The processing itself is executed even if this bit is turned OFF after-
ward.

DirName Directory
Name IN

Specify the first register in which the target directory name (drive name
+ folder names) has been stored. Specify the folder name up to 200
alphanumeric characters plus the NULL character.
• Drive name: “1:/”: …USB memory device

“2:/”: …Built-in RAM
(If the drive name is omitted, the USB memory device is
selected.)

• Directory name: The separator between directories is “/”.

Param Parameters IN/OUT First address of function workspace

Busy Processing OUT
This bit is turned ON while the function being executed. This bit is
turned OFF when processing is completed.
This bit is OFF when Execute (Execute Instruction) is OFF.

Complete Processing
Completed OUT This bit is turned ON when function execution is completed.

This bit is OFF when Execute (Execute Instruction) is OFF.

Error Error
Occurred OUT

This bit is turned ON if an error occurs during function execution.
This bit is OFF when Execute (Execute Instruction) is OFF. However,
this bit is turned ON when Param is outside the range of registers.

Continued on next page.

4.11 Storage Operation Instructions

 4.11.13 Send File to FTP Server (FTPPUT)

4-277

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Note: 1. If Execute is turned OFF while this instruction is being executed, the processing result cannot be obtained
because the output data of the instruction is cleared.

2. Note the following precautions when specifying the registers used in Param. The function cannot be cor-
rectly processed if registers overlap.
• Make sure the registers do not overlap those of another instruction.
• Make sure the registers do not overlap when the same instruction is used in different locations.

Operation Overview
The directory specified by DirName (Directory Name) is deleted. All files and subdirectories
inside the directory are deleted.

In the following cases, the directory cannot be deleted and Error is turned ON.
• The target file cannot be accessed.
• The processing cannot be executed because the target file is being used in another instruc-

tion.
• Other storage operation instructions are already being executed.
• Param is outside the range of registers.
• Directory name error (no NULL before the maximum number of characters or no NULL in

range of registers).

4.11.13 Send File to FTP Server (FTPPUT)
The specified file is transferred to the FTP server.

Format
The format of this instruction is shown below.

ErrCode Error Code OUT

This item outputs the error code. Refer to the following section for
details on error codes.

Appendix F Error Codes

The value is 0 when Execute (Execute Instruction) is OFF. However,
8000 hex (Param is outside range of registers) is output when Param
is outside the range of registers.

Only ASCII characters can be used for file and directory names.

• Do not access the same file with multiple storage instructions at the same time.
• Do not rename a directory that contains files that have been opened.
• The DCREATE instruction and DREMOVE instruction cannot be executed at the same time.
• Do not change text strings used as input values while the instruction is being executed.

Continued from previous page.

Item Name I/O Description

Information

Important

4.11 Storage Operation Instructions

4.11.13 Send File to FTP Server (FTPPUT)

4-278

*1. C and # registers cannot be used.
*2. M, G, D, or C register only.
*3. M, G, or D register only.
*4. Optional.

Details on I/O Items

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Execute *1 × × × × × × × ×
Drv-No ×  × × × × × × 

Option ×  × × × × × × 

SrcFile × × × × × × *2 × ×

Param × × × × × × *3 × ×

Busy *4 *1 × × × × × × × ×

Complete *1 × × × × × × × ×

Error *4 *1 × × × × × × × ×

ErrCode *4 × *1 × × × × × × ×

I/O Item Name I/O Description

Execute Execute
Instruction IN

Processing is executed on the rising edge when this bit is
turned ON.
The processing itself is executed even if this bit is turned OFF
afterward.

Drv-No Drive Number IN Destination drive number (101 to 120: FTP server)
Configure these settings in “FTP Client Settings”.

Option Option Settings IN Refer to the following section for details on option settings.
Option Settings on page 4-279

SrcFile Source File Name IN

Specify the first register in which the source file name (drive
name + folder names + file name) has been stored.
• Drive name: “1:/”: USB memory device, “2:/”:
Built-in RAM
If the drive name is omitted, the USB memory device is
selected.

• Folder names: The separator between folders is “/”.
The maximum number of characters for the path (including
the drive name, folder names, and separators):
• When “1:/” or “2:/” is added to the drive name, the maxi-

mum number of characters is 61 characters plus the NULL
character.

• When the drive name is omitted, the maximum number of
characters is 58 characters plus the NULL character. Spec-
ify the file name up to 31 characters plus the NULL charac-
ter.

Param Parameters IN/OUT First address of function workspace

Busy Processing OUT
This bit is turned ON while the function being executed. This
bit is turned OFF when processing is completed.
This bit is OFF when Execute (Execute Instruction) is OFF.

Complete Processing
Completed OUT This bit is turned ON when function execution is completed.

This bit is OFF when Execute (Execute Instruction) is OFF.

Error Error Occurred OUT

This bit is turned ON if an error occurs during function execu-
tion.
This bit is OFF when Execute (Execute Instruction) is OFF.
However, this bit is turned ON when Param is outside the
range of registers.

ErrCode Error Code OUT

This item outputs the error code. Refer to the following sec-
tion for details on error codes.

Appendix F Error Codes

The value is 0 when Execute (Execute Instruction) is OFF.
However, 8000 hex (Param is outside range of registers) is
output when Param is outside the range of registers.

4.11 Storage Operation Instructions

 4.11.13 Send File to FTP Server (FTPPUT)

4-279

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Note: 1. If Execute is turned OFF while this instruction is being executed, the processing result cannot be obtained
because the output data of the instruction is cleared.

2. Note the following precautions when specifying the registers used in Param. The function cannot be cor-
rectly processed if registers overlap.
• Make sure the registers do not overlap those of another instruction.
• Make sure the registers do not overlap when the same instruction is used in different locations.

Option Settings

Operation Overview
The file specified by SrcFile is transferred to the FTP server specified by Drv-No.

In the following cases, the file cannot be transferred to the FTP server and Error is turned ON.
• The target file cannot be accessed.
• The processing cannot be executed because the target file is being used in another instruc-

tion.
• Other storage operation instructions are already being executed.
• Param is outside the range of registers.
• File name error (no NULL before the maximum number of characters or no NULL in range of

registers).

Bit Meaning

0 Reserved for system (set to 0).

1
Setting to Delete the File after the FTP Transfer Is Completed
OFF: Do not delete
ON: Delete

2 to F Reserved for system (set to 0).

Only ASCII characters can be used for file and directory names.

Multiple FTPPUT instructions cannot be executed at the same time.

Information

Important

4.12 String Operation Instructions

4.12.1 Convert Integer to String (INT2STR)

4-280

4.12 String Operation Instructions

4.12.1 Convert Integer to String (INT2STR)
An integer is converted to a text string.

Format
The format of this instruction is shown below.

*1. M, G, or D register only.
*2. Optional.

Details on I/O Items

Option Settings

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

In ×    × × × × 

Option ×  × × × × × × 

MinLen ×  × × × × × × ×
Dest × × × × × × *1 × ×

Sts *2 *1 × × × × × × × ×

I/O Item Name I/O Description

In Numeric Value IN Specify the register or numeric value to convert.

Option Option Settings IN Refer to the following section for details on option settings.
Option Settings on page 4-280

MinLen Minimum Number
of Digits IN

Specify the minimum number of digits (0 to 127).
Leading spaces are added if the numeric value is less than
the minimum number of digits.

Dest Output Text String OUT Specify the register to store the output text string.
Output processing is not performed when Sts (Status) is ON.

Sts Status OUT

Status is turned OFF when processing was performed nor-
mally.
Status is turned ON when the following errors occur.
• The number of characters exceeds the maximum value.
• The text string to output exceeds the maximum range of

registers.
• MinLen is outside the applicable range.
• The input value cannot be converted correctly (Option or

MinLen are outside the applicable range).

Bit Description

0 ON: Hexadecimal notation
OFF: Decimal notation

1 ON: Pad upper digits with zeros if less than the maximum number of digits
OFF: Do not pad upper digits with zeros if less than the maximum number of digits

2 to F Reserved for system (set to 0).

4.12 String Operation Instructions

 4.12.1 Convert Integer to String (INT2STR)

4-281

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Operation Overview
The value of In (Numeric Value) is converted to a text string and stored in Dest (Output Text
String). Spaces are added to the text string if the number of digits is less than the minimum
number of digits specified by MinLength (Minimum Number of Digits). Switch between decimal
and hexadecimal notation with the hexadecimal notation setting in Option (Option Settings).
• In = 123, MinLen = 2, Option = 0x0000 (decimal notation and no zero padding) →

Dest = “123”
• In = 123, MinLen = 7, Option = 0x0000 (decimal notation and no zero padding) →

Dest = “ 123”
• In = 123, MinLen = 7, Option = 0x0002 (decimal notation and zero padding) →

Dest = “0000123”
• In = -123, MinLen = 7, Option = 0x0002 (decimal notation and zero padding) →

Dest = “-000123”
• In = 123, MinLen = 2, Option = 0x0001 (hexadecimal notation and no zero padding) →

Dest = “7B”
• In = 123, MinLen = 7, Option = 0x0001 (hexadecimal notation and no zero padding) →

Dest = “ 7B”
• In = 123, MinLen = 7, Option = 0x0003 (hexadecimal notation and zero padding) →

Dest = “000007B”
• In = -123, MinLen = 7, Option = 0x0003 (hexadecimal notation and zero padding) →

Dest = “000FF85”

If the same text string data is accessed by different tasks at the same time, the data may be cor-
rupted. Create the program so that the data is not accessed by different tasks at the same time.

Important

4.12 String Operation Instructions

4.12.2 Convert Real Number to String (REAL2STR)

4-282

4.12.2 Convert Real Number to String (REAL2STR)
A real number is converted to a text string.

Format
The format of this instruction is shown below.

*1. M, G, or D register only.
*2. Optional.

Details on I/O Items

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

In × × × ×   × × 

Option ×  × × × × × × 

MinLen ×  × × × × × × 

DecLen ×  × × × × × × 

Dest × × × × × × *1 × ×

Sts *2 *1 × × × × × × × ×

Item Name I/O Description

In Numeric Value IN Specify the converted register to convert.

Option Option Settings IN Refer to the following section for details on option settings.
Option Settings on page 4-283

MinLen Minimum Number
of Digits IN

Specify the minimum number of digits (0 to 327). Leading
spaces are added if the numeric value is less than the mini-
mum number of digits.

DecLen Number of Digits
in Decimal Part IN Specify the number of digits in the decimal part (0 to 15).

Dest Output Text String OUT
Specify the register to store the output text string (327 bytes
maximum).
Output processing is not performed when Sts (Status) is ON.

Sts Status OUT

Status is turned OFF when processing was performed nor-
mally.
Status is turned ON when the following errors occur.
• The number of characters exceeds the maximum value.
• The text string to output exceeds the maximum range of

registers.
• MinLen or DecLen is outside the applicable range.
• The input value cannot be converted correctly.

4.12 String Operation Instructions

 4.12.3 Convert String to Integer (STR2INT)

4-283

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Option Settings

Operation Overview
The value of In (Numeric Value) is converted to a text string and stored in Dest (Output Text
String).
For MinLen (Minimum Number of Digits), set the minimum number of digits. Spaces are added
to the beginning of the text string if the number of digits is less than the minimum number of
digits specified by MinLength.
For DecLen (Number of Digits in Decimal Part), set the number of digits in the decimal part. The
part that cannot be displayed is rounded.
Set exponent notation with Option (Option Settings).

4.12.3 Convert String to Integer (STR2INT)
A text string is converted to an integer.

Format
The format of this instruction is shown below.

*1. M, G, D, or C register only.
*2. M, G, or D register only.
*3. Optional.

Bit Description

0 ON: Exponent notation
OFF: Decimal point notation

1 ON: Omit + sign (“-” is not omitted)
OFF: Do not omit + sign

2 to F Reserved for system (set to 0).

If the same text string data is accessed by different tasks at the same time, the data may be cor-
rupted. Create the program so that the data is not accessed by different tasks at the same time.

Important

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Src × × × × × × *1 × ×

Out × *2 *2 *2 × × × × ×

Sts *3 *2 × × × × × × × ×

4.12 String Operation Instructions

4.12.4 Convert String to Real Number (STR2REAL)

4-284

Details on I/O Items

Operation Overview
The text string in Src (Input Text String) is converted to an integer and stored in Out (Output
Value). The text string in Src can be composed of only the characters 0 to 9. Note that the text
string can also be correctly converted if “+” or “-” indicating the sign is at the beginning of the
text string.
• Src = “12345” → Out = 12345
• Src = “+12345” → Out= 12345
• Src = “-12345” → Out= -12345

4.12.4 Convert String to Real Number (STR2REAL)
A text string is converted to a real number (single-precision floating-point value or double-pre-
cision floating-point value).

Format
The format of this instruction is shown below.

*1. M, G, D, or C register only.
*2. M, G, or D register only.
*3. Optional.

I/O Item Name I/O Description

Src Input Text String IN Specify the first register in which the text string to input is stored.

Out Output Value OUT This item outputs the integer.
0 is output when Sts (Status) is ON.

Sts Status OUT

Status is turned OFF when processing was performed normally.
Status is turned ON when the following errors occur.
• The number of characters exceeds the maximum value.
• The input value cannot be converted correctly.

If the same text string data is accessed by different tasks at the same time, the data may be cor-
rupted. Create the program so that the data is not accessed by different tasks at the same time.

Important

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Src × × × × × × *1 × ×

Out × × × × *2 *2 × × ×

Sts *3 *2 × × × × × × × ×

4.12 String Operation Instructions

 4.12.4 Convert String to Real Number (STR2REAL)

4-285

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Details on I/O Items

Operation Overview
The text string in Src (Input Text String) is converted to a real number and stored in Out (Output
Value). Input Src with the following format.
• Sign: “+”, “-”, or no sign.
• Integer part: Composed of the numbers 0 to 9.
• Decimal part: From '.' (decimal point) immediately after the integer part to the exponent part.

Composed of the numbers 0 to 9 up to 15 digits and can also be omitted.
• Exponent part: “e+nnn” or “e-nnn” or e can be uppercase characters. nnn is 1 to 308.

I/O Item Name I/O Description

Src Input Text String IN Specify the first register in which the text string to input is stored.

Out Output Value OUT This item outputs the real number.
0 is output when Sts (Status) is ON.

Sts Status OUT

Status is turned OFF when processing was performed normally.
Status is turned ON when the following errors occur.
• The number of characters exceeds the maximum value.
• The input value cannot be converted correctly.
• When FLOAT type is specified for Out (Output Value) and the

absolute value of Out is larger than the range of FLOAT.
Note: When the absolute value of Out is smaller than the range of FLOAT, no

error occurs and “0.0” is output.

Input Examples
• Src = “12.345” → Out = 12.345
• Src = “+12.345” → Out = 12.345
• Src = “-12.345” → Out = -12.345
• Src = “12” → Out = 12.0

If the same text string data is accessed by different tasks at the same time, the data may be cor-
rupted. Create the program so that the data is not accessed by different tasks at the same time.

Information

Important

4.12 String Operation Instructions

4.12.5 Store String (STRSET)

4-286

4.12.5 Store String (STRSET)
The desired text string (including multi-byte characters) is stored in registers.

Format
The format of this instruction is shown below.

*1. M, G, D, or S register only.
*2. Optional.

Details on I/O Items

Operation Overview
The StrIn (Input Text String) data is stored in Dest (Output Text String) as a text string. A NULL
character will be automatically added to the end of the text string.

When entering newline codes, do so using escape characters such as "\n" and "\r\n".

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

StrIn × × × × × × × × 

Dest × × × × × × *1 × ×

Sts*2 *1 × × × × × × × ×

I/O Item Name I/O Description

StrIn Input Text String IN 127 characters maximum (127 bytes not including the NULL
character).

Dest Output Text String OUT Specify the register to store the output text string.
Output processing is not performed when Sts (Status) is ON.

Sts Status OUT

Status is turned OFF when processing was performed nor-
mally.
Status is turned ON when the following errors occur.
• The number of characters exceeds the maximum value.
• The text string to output exceeds the maximum range of

registers.
• The input value cannot be converted correctly.

If the same text string data is accessed by different tasks at the same time, the data may be cor-
rupted. Create the program so that the data is not accessed by different tasks at the same time.

When StrIn = “1234”:

Important

Example

‘1’ ‘2’ ‘3’ ‘4’StrIn

‘1’ ‘2’ ‘3’ ‘4’ 0Dest Terminating code is added.

4.12 String Operation Instructions

 4.12.6 Partially Delete String (STRDEL)

4-287

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

4.12.6 Partially Delete String (STRDEL)
A part of the specified text string is deleted. The start position and size to delete can be speci-
fied.

Format
The format of this instruction is shown below.

*1. M, G, D, or C register only.
*2. M, G, or D register only.
*3. Optional.

Details on I/O Items

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Src × × × × × × *1 × ×
Pos ×  × × × × × × 

Size ×  × × × × × × 

Dest × × × × × × *2 × ×

Sts *3 *2 × × × × × × × ×

I/O Item Name I/O Description

Src Deletion Target IN Specify the first register in which the text string for deletion is stored.

Pos Deletion Start
Position IN

Specify the byte position to start deleting from (0 to 1,999).
When 0, the instruction deletes the data from the first byte.

Size Deletion Size IN Specify the number of bytes to delete (0 to 1,999).

Dest Deletion Result OUT
Specify the register to store the output text string.
Output processing is not performed when Sts (Status) is ON.

Sts Status OUT

Status is turned OFF when processing was performed normally.
Status is turned ON when the following errors occur.
• The number of characters exceeds the maximum value.
• The text string to output exceeds the maximum range of registers.
• Pos or Size (Deletion Size) is outside the applicable range or larger

than the number of bytes in Src.
• Pos + Size is larger than the number of bytes in Src.

4.12 String Operation Instructions

4.12.7 Copy String (STRCPY)

4-288

Operation Overview
Data in the amount of the specified size is deleted from the character at the specified position
in the text string specified by Src. The text string data after deletion is stored in Dest (Deletion
Result).

The text string after the deleted part is copied to Pos (Deletion Start Position). If there is no text
string after the deletion part, a NULL character is added to the position at Pos.
• Src = “1234567”, Pos = 2, Size = 2 → Dest = “14567”
• Src = “1234567”, Pos = 0 (=1), Size = 2 → Dest = “34567”
• Src = “1234567”, Pos = 4, Size = 10 → Dest = “123”

4.12.7 Copy String (STRCPY)
The specified text string is copied. The size of the strings to copy can be specified.

Format
The format of this instruction is shown below.

*1. M, G, D, or C register only.
*2. M, G, or D register only.
*3. Optional.

If the same text string data is accessed by different tasks at the same time, the data may be cor-
rupted. Create the program so that the data is not accessed by different tasks at the same time.

1. The same registers can also be set for Src (Deletion Target) and Dest (Deletion Result).
2. Text strings handled by this instruction are 1,999 characters maximum (1,999 bytes plus

the NULL character).

When Src = “12345678”, Pos = 3, and Size = 2:

Important

Information

Example

‘1’ ‘2’ ‘3’ ‘4’ ‘5’ ‘6’ ‘7’ ‘8’ 0Src

‘1’ ‘2’ ‘5’ ‘6’ ‘7’ ‘8’ 0Dest

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Src × × × × × × *1 × ×
Size ×  × × × × × × 

Dest × × × × × × *2 × ×

Sts *3 *2 × × × × × × × ×

4.12 String Operation Instructions

 4.12.7 Copy String (STRCPY)

4-289

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Details on I/O Items

Operation Overview
The number of bytes specified by Size (Copy Size) is copied from the text string specified by
Src (Source) and stored in Dest (Destination). If Size ≤ number of bytes in Src, a NULL charac-
ter is not added to the end of the text string. If Size > number of bytes in Src, the remaining
characters are padded with NULL characters.

I/O Item Name I/O Description

Src Source IN Specify the first register in which the input text string is stored.

Size Copy Size IN Specify the number of bytes to copy (0 to 1,999).
If 0 is specified, the entire source text string is copied.

Dest Destination OUT Specify the register to store the output text string.
Output processing is not performed when Sts (Status) is ON.

Sts Status OUT

Status is turned OFF when processing was performed normally.
Status is turned ON when the following errors occur.
• The number of characters exceeds the maximum value.
• The text string to output exceeds the maximum range of reg-

isters.
• Size (Copy Size) is outside the applicable range.

1. If the same text string data is accessed by different tasks at the same time, the data may be
corrupted. Create the program so that the data is not accessed by different tasks at the same
time.

2. Ensure that the areas for Src and Dest do not overlap. The text string cannot be copied cor-
rectly if the areas overlap.

When Src = “12345” (equivalent to Size = 6):
• Size = 0

• Size = 3 (< number of bytes in Src)

• Size = 8 (> number of bytes in Src)

Important

Example

Src

‘3’ ‘4’ ‘5’ 0

‘1’

Dest ‘1’ ‘2’

‘2’ ‘3’ ‘4’ ‘5’ 0

Src

‘3’

‘1’

Dest ‘1’ ‘2’

‘2’ ‘3’ ‘4’ ‘5’ 0

Terminating code is not added.

Src

‘3’ ‘4’ ‘5’ 0 0 0

‘1’

Dest ‘1’ ‘2’

‘2’ ‘3’ ‘4’ ‘5’ 0 Terminating code is added.

4.12 String Operation Instructions

4.12.8 Get String Length (STRLEN)

4-290

4.12.8 Get String Length (STRLEN)
The length of the text string (number of bytes) is obtained.

Format
The format of this instruction is shown below.

*1. M, G, D, or C register only.
*2. M, G, or D register only.
*3. Optional.

Details on I/O Items

Note: Text String Length outputs a value between 0 and 32,767.

Operation Overview
The number of bytes (not including the NULL character) in the text string specified by Src (Input
Text String) is stored in Len (Text String Length). Double-byte characters, such as JIS encoded
characters, are counted as two bytes.

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Src × × × × × × *1 × ×

Len × *2 × × × × × × ×

Sts *3 *2 × × × × × × × ×

I/O Item Name I/O Description

Src Input Text String IN Specify the first register in which the text string is stored.

Len Text String
Length OUT

This item stores the number of bytes in the text string that was
input (0 to 1,999).
0 is output when Sts (Status) is ON.

Sts Status OUT

Status is turned OFF when processing was performed nor-
mally.
Status is turned ON when the number of characters exceeds
the maximum value.

If the same text string data is accessed by different tasks at the same time, the data may be cor-
rupted. Create the program so that the data is not accessed by different tasks at the same time.

Important

4.12 String Operation Instructions

 4.12.9 Concatenate Strings (STRCAT)

4-291

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

4.12.9 Concatenate Strings (STRCAT)
Two text strings are concatenated. The size of the text strings to concatenate can be specified.

Format
The format of this instruction is shown below.

*1. M, G, D, or C register only.
*2. M, G, or D register only.
*3. Optional.

Details on I/O Items

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Src1 × × × × × × *1 × ×

Src2 × × × × × × *1 × ×
Size ×  × × × × × × 

Dest × × × × × × *2 × ×

Sts *3 *2 × × × × × × × ×

I/O Item Name I/O Description

Src1 Input Text String 1 IN First register in which Input Text String 1 is stored.

Src2 Input Text String 2 IN First register in which Input Text String 2 is stored.

Size Concatenation
Size IN Specify the size in bytes of Input Text String 2 to concatenate.

If 0 is specified, all of Input Text String 2 is concatenated.

Dest Output Text String OUT Specify the register to store the output text string.
Output processing is not performed when Sts (Status) is ON.

Sts Status OUT

Status is turned OFF when processing was performed nor-
mally.
Status is turned ON when the following errors occur.
• The number of characters exceeds the maximum value.
• The text string to output exceeds the maximum range of reg-

isters.
• Size (Concatenation Size) is outside the applicable range.
• Size > number of bytes in Src2.

4.12 String Operation Instructions

4.12.9 Concatenate Strings (STRCAT)

4-292

Operation Overview
The text string in Src2 (Input Text String 2) is concatenated to the end of Src1 (Input Text String
1). When concatenating text strings, only the size of the string specified by Size (Concatenation
Size) is concatenated.

If Size is specified as 0, all of the text string in Src2 is concatenated to the end of Src1. The
behavior is also the same when Size is larger than the text string in Src2.
• Src1 = “12345”, Src2 = “abcde”, Size = 0 → Dest = “12345abcde”
• Src1 = “12345”, Src2 = “abcde”, Size = 10 → Dest = “12345abcde”
• Src1 = “12345”, Src2 = “abcde”, Size = 2 → Dest = “12345ab”

A NULL character is added to the end of the text string.
Text strings handled by this instruction are 1,999 characters maximum (1,999 bytes plus the
NULL character).

If the same text string data is accessed by different tasks at the same time, the data may be cor-
rupted. Create the program so that the data is not accessed by different tasks at the same time.

When Src1 = “123”, Src2 = “ABC”:
• Size = 0

• Size = 2 (< number of bytes in Src2)

• Size = 8 (> number of bytes in Src2)

Important

Example

‘1’ ‘2’ ‘3’ 0Src1

‘1’ ‘2’ ‘3’ ‘A’ ‘B’ ‘C’ 0Dest

‘A’ ‘B’ ‘C’ 0Src2

‘1’ ‘2’ ‘3’ 0Src1

‘1’ ‘2’ ‘3’ ‘A’ ‘B’ 0Dest

‘A’ ‘B’ ‘C’ 0Src2

‘1’ ‘2’ ‘3’ 0Src1

‘1’ ‘2’ ‘3’ ‘A’ ‘B’ ‘C’ 0Dest

‘A’ ‘B’ ‘C’ 0Src2

4.12 String Operation Instructions

 4.12.10 Compare Strings (STRCMP)

4-293

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

4.12.10 Compare Strings (STRCMP)
Two text strings are compared. The size of the strings to compare can be specified.

Format
The format of this instruction is shown below.

*1. M, G, D, or C register only.
*2. M, G, or D register only.
*3. Optional.

Details on I/O Items

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Src1 × × × × × × *1 × ×

Src2 × × × × × × *1 × ×

Size ×  × × × × × × 

Result × *2 × × × × × × ×

Sts *3 *2 × × × × × × × ×

I/O Item Name I/O Description

Src1 Input Text String 1 IN First register in which Input Text String 1 is stored.

Src2 Input Text String 2 IN First register in which Input Text String 2 is stored.

Size Comparison Size IN
Specify the size in bytes of the text string to compare from the
beginning of the text string.
If 0 is specified, the size of Input Text String 1 is compared.

Result Comparison
Result OUT

0 is output if the text strings do not match and 1 is output if the
text strings match.
0 is output when Sts (Status) is ON.

Sts Status OUT

Status is turned OFF when processing was performed nor-
mally.
Status is turned ON when the following errors occur.
• The number of characters exceeds the maximum value.
• Size > number of bytes in Src1 or Size > number of bytes in

Src2.
• Size is outside the applicable range.

4.12 String Operation Instructions

4.12.11 Insert String (STRINS)

4-294

Operation Overview
Two text strings (Src1 (Input Text String 1) and Src2 (Input Text String 2)) are compared.
Result (Comparison Result) = 1 if the two text strings match. Result (Comparison Result) = 0 if the
two text strings do not match. How many bytes to compare from the beginning of the text strings
can be determined by Size (Comparison Size). If Size is specified as 0, the length of Src1 is com-
pared.

Examples of the instruction are shown below.
• Src1 = “12345”, Src2 = “12367”, Size = 0 → Result = 0
• Src1 = “abc123”, Src2 = “abc234”, Size = 3 → Result = 1
• Src1 = “abc123”, Src2 = “abc4567”, Size = 10 → Result = 0

Text strings handled by this instruction are 1,999 bytes maximum (plus the NULL character).

4.12.11 Insert String (STRINS)
A text string is inserted at the specified position inside another string.

Format
The format of this instruction is shown below.

*1. M, G, D, or C register only.
*2. M, G, or D register only.
*3. Optional.

If the same text string data is accessed by different tasks at the same time, the data may be cor-
rupted. Create the program so that the data is not accessed by different tasks at the same time.

Important

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Src1 × × × × × × *1 × ×

Src2 × × × × × × *1 × ×
Pos ×  × × × × × × 

Dest × × × × × × *2 × ×

Sts *3 *2 × × × × × × × ×

4.12 String Operation Instructions

 4.12.11 Insert String (STRINS)

4-295

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Details on I/O Items

Operation Overview
Src2 (Text String to Insert) is inserted into Src1 (Base Text String) at the desired positioned
specified by Pos (Insertion Position). The text string after insertion is stored in Dest (Text String
after Insertion).
Examples of the instruction are shown below.
• Src1 = “12345”, Src2 = “abc”, Pos = 0 → Dest = “abc12345”
• Src1 = “12345”, Src2 = “abc”, Pos = 3 → Dest = “123abc45”
• Src1 = “12345”, Src2 = “abc”, Pos = 5 → Dest = “12345abc”

Text strings handled by this instruction are 1,999 bytes maximum (plus the NULL character).

I/O Item Name I/O Description

Src1 Base Text String IN The register that stores the base text string into which the other
text string will be inserted.

Src2 Text String to
Insert IN The first register of the text string to insert.

Pos Insertion Position IN Specify the byte position in the base text string to insert the text
string at (0 to 1,999).

Dest Text String after
Insertion OUT Specify the register to store the output text string.

Output processing is not performed when Sts (Status) is ON.

Sts Status OUT

Status is turned OFF when processing was performed normally.
Status is turned ON when the following errors occur.
• The number of characters exceeds the maximum value.
• The text string to output exceeds the maximum range of regis-

ters.
• Size is outside the applicable range.
• Pos > number of bytes in Src1.

If the same text string data is accessed by different tasks at the same time, the data may be cor-
rupted. Create the program so that the data is not accessed by different tasks at the same time.

When Src1 = “123456”, Src2 = “ABC”, Pos = 3:

Important

Example

‘1’ ‘2’ ‘3’ 0Src1

‘1’ ‘2’ ‘3’ ‘A’ ‘B’ ‘C’Dest

‘A’ ‘B’ ‘C’ 0Src2

‘4’ ‘5’ ‘6’

0‘4’ ‘5’ ‘6’

4.12 String Operation Instructions

4.12.12 Find String (STRFIND)

4-296

4.12.12 Find String (STRFIND)
The specified text string is found inside another string.

Format
The format of this instruction is shown below.

*1. M, G, D, or C register only.
*2. M, G, or D register only.
*3. Optional.

Details on I/O Items

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Src1 × × × × × × *1 × ×

Src2 × × × × × × *1 × ×
Pos ×  × × × × × × 

Result × *2 × × × × × × ×

Sts *3 *2 × × × × × × × ×

I/O Item Name I/O Description

Src1 Target Text String IN First register in which the text string to be searched is stored.

Src2 Text String to Find IN First register in which the text string to find is stored.

Pos Search Start
Position IN

Specify the byte position at which the search starts in the text
string to be searched (0 to length of the input text string).
When 0 is specified, the text string is searched from the first
byte.

Result Search Result OUT
This item outputs the byte position from the search start posi-
tion at which the text string was found. 0 is output when the
text string is not found or Sts (Status) is ON.

Sts Status OUT

Status is turned OFF when processing was performed nor-
mally.
Status is turned ON when the following errors occur.
• The number of characters exceeds the maximum value.
• Pos is outside the applicable range.
• Pos > number of bytes in Src1.

4.12 String Operation Instructions

 4.12.13 Extract String (STREXTR)

4-297

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

Operation Overview
The search range is from the text string in Src1 (Target Text String) and within the text string in
Src2 (Text String to Find). Specify the position with Pos (Search Start Position). If the text string
in Src2 was found, the number of bytes from the search start position is stored in Result
(Search Result).
Examples of the instruction are shown below.
• Src1 = “12345”, Src2 = “34”, Pos = 0 (= 1) → Result = 3
• Src1 = “12345”, Src2 = “34”, Pos = 2 → Result = 1

Text strings handled by this instruction are 1,999 bytes maximum (plus the NULL character).

4.12.13 Extract String (STREXTR)
A text string with the specified start position and size is extracted from another string.

Format
The format of this instruction is shown below.

*1. M, G, D, or C register only.
*2. M, G, or D register only.
*3. Optional.

1. If the same text string data is accessed by different tasks at the same time, the data may be
corrupted. Create the program so that the data is not accessed by different tasks at the same
time.

2. If the target text string is long and if the target text string is at the end of the text string to be
searched, the processing time for this instruction may increase and exceed the scan set value.

When Src1 = “ABCDEFG”, Src2 = “EF”:
• Pos = 0

• Pos = 2

Important

Example

Src1

Result = 5 Pos

0‘A’ ‘B’ ‘C’ ‘D’ ‘E’ ‘F’ ‘G’

Src1 0‘A’ ‘B’ ‘C’ ‘D’ ‘E’ ‘F’ ‘G’

Pos Result = 3

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Src × × × × × × *1 × ×
Pos ×  × × × × × × 

Size ×  × × × × × × 

Dest × × × × × × *2 × ×

Sts *3 *2 × × × × × × × ×

4.12 String Operation Instructions

4.12.13 Extract String (STREXTR)

4-298

Details on I/O Items

Operation Overview
A text string of the specified Size is extracted from the number of bytes in Pos (Start Position) in
the text string in Src (Input Text String). The text string that was extracted is stored in Dest
(Output Text String).

Examples of the instruction are shown below.
• Src = “12345”, Pos = 0 (=1), Size = 2 → Dest = “12”
• Src = “12345678”, Pos = 3, Size = 3 → Dest = “345”

Text strings handled by this instruction are 1,999 bytes maximum (plus the NULL character).

I/O Item Name I/O Description

Src Input Text String IN Specify the first register in which the input text string is stored.

Pos Start Position IN
Specify the byte position from which to start extracting the text
string.
When 0, the text string is extracted from the first byte.

Size Size IN Specify the number of bytes to extract (0 to 1,999).

Dest Output Text String OUT Specify the register to store the output text string.
Output processing is not performed when Sts (Status) is ON.

Sts Status OUT

Status is turned OFF when processing was performed normally.
Status is turned ON when the following errors occur.
• The number of characters exceeds the maximum value.
• The text string to output exceeds the maximum range of regis-

ters.
• Pos or Size is outside the applicable range.
• Pos + Size > number of bytes in Src.

If the same text string data is accessed by different tasks at the same time, the data may be cor-
rupted. Create the program so that the data is not accessed by different tasks at the same time.

When Src = “12345678”, Pos = 3, and Size = 2:

Important

Example

‘1’ ‘2’ ‘3’ ‘4’ ‘5’ ‘6’ ‘7’ ‘8’ 0Src

‘3’ ‘4’ 0Dest

4.12 String Operation Instructions

 4.12.14 Extract String from End (STREXTRE)

4-299

4
La

d
d

er
 L

an
gu

ag
e

In
st

ru
ct

io
ns

4.12.14 Extract String from End (STREXTRE)
A text string of the specified size is extracted from the end of another string.

Format
The format of this instruction is shown below.

*1. M, G, D, or C register only.
*2. M, G, or D register only.
*3. Optional.

Details on I/O Items

Operation Overview
A text string of the specified Size (Size) is extracted from the end of the text string in Src (Input
Text String). The text string that was extracted is stored in Dest (Output Text String).
Src = “12345”, Size = 2 → Dest = “45”

Text strings handled by this instruction are 1,999 bytes maximum (plus the NULL character).

I/O Item
Applicable Data Types

B W L Q F D A Index
Con-
stant

Src × × × × × × *1 × ×
Size ×  × × × × × × 

Dest × × × × × × *2 × ×

Sts *3 *2 × × × × × × × ×

I/O Item Name I/O Description

Src Input Text String IN Specify the first register in which the input text string is stored.

Size Size IN Specify the number of bytes to extract (0 to 1,999).

Dest Output Text String OUT Specify the register to store the output text string.
Output processing is not performed when Sts (Status) is ON.

Sts Status OUT

Status is turned OFF when processing was performed normally.
Status is turned ON when the following errors occur.
• The number of characters exceeds the maximum value.
• The text string to output exceeds the maximum range of registers.
• Pos > number of bytes in Src.
• Pos is outside the applicable range.

If the same text string data is accessed by different tasks at the same time, the data may be cor-
rupted. Create the program so that the data is not accessed by different tasks at the same time.

When Src = “12345678”, Size = 2:

Important

Example

Src

Dest

‘1’ ‘2’ ‘3’ ‘4’ ‘5’ ‘6’ ‘7’ ‘8’ 0

‘7’ ‘8’ 0

4.12 String Operation Instructions

4.12.15 Delete Spaces at String Ends (STRTRIM)

4-300

4.12.15 Delete Spaces at String Ends (STRTRIM)
Leading and trailing spaces and tabs are deleted from the text string.

Format
The format of this instruction is shown below.

*1. M, G, D, or C register only.
*2. M, G, or D register only.
*3. Optional.

Details on I/O Items

Operation Overview
Tabs and spaces at the location specified by Option (Option Settings) are deleted from the text
string in Src (Input Text String). The text string after tabs and spaces are deleted is stored in
Dest (Output Text String).

Examples of the instruction are shown below.
• Src = “ 12345 ”, Option = 0x0001 (deleting leading whitespace) → Dest = “12345 ”
• Src = “ 12345 ”, Option = 0x0002 (deleting trailing whitespace) → Dest = “ 12345”
• Src = “ 12345 ”, Option = 0x0003 (deleting leading and trailing whitespace) →

Dest = “12345”
• Src = “ 12345 ”, Option = 0x0000 → Dest = “ 12345 ”

Text strings handled by this instruction are 1,999 bytes maximum (plus the NULL character).

I/O Item
Applicable Data Types

B W L Q F D A Index Constant

Src × × × × × × *1 × ×
Option ×  × × × × × × 

Dest × × × × × × *2 × ×

Sts *3 *2 × × × × × × × ×

I/O Item Name I/O Description

Src Input Text String IN Specify the first register in which the input text string is stored.

Option Option Settings IN
Bit 0: Delete leading tabs and spaces.
Bit 1: Delete trailing tabs and spaces.
Bit 2 to F: Reserved for system.

Dest Output Text String OUT Specify the register to store the output text string.
Output processing is not performed when Sts (Status) is ON.

Sts Status OUT

Status is turned OFF when processing was performed normally.
Status is turned ON when the following errors occur.
• The number of characters exceeds the maximum value.
• The text string to output exceeds the maximum range of registers.

If the same text string data is accessed by different tasks at the same time, the data may be cor-
rupted. Create the program so that the data is not accessed by different tasks at the same time.

Important

This chapter describes the key features of the MPE720
Engineering Tool for ladder programming.

5.1 Ladder Program Runtime Monitoring 5-4

5.2 Search/Replace . 5-5
5.2.1 Searching and Replacing in Programs 5-5
5.2.2 Searching and Replacing in Project Files 5-7

5.3 Cross References 5-10

5.4 Checking for Multiple Coils 5-13

5.5 Forcing Coils ON and OFF 5-14
5.5.1 Forcing Coils ON or OFF from a Ladder

Program . 5-14
5.5.2 Changing the Forced ON/OFF Status

from the Force Coil List Pane 5-14

5.6 Viewing Called Programs 5-17

5.7 Register Lists . 5-18
5.7.1 Displaying the Register Map 5-18
5.7.2 Switching the Register Map Display 5-19
5.7.3 Editing Data . 5-20

5.8 Tuning Panel . 5-21

5.9 Enabling and Disabling Ladder Programs . . 5-22

Features of the
MPE720 Engineering
Tool 5

5.10 Watching . 5-23
5.10.1 Displaying Watch Data .5-23
5.10.2 Editing the Value Column5-23

5.11 Security . 5-24

5.12 Tracing . 5-25

5.13 Advanced Programming 5-26
5.13.1 Motion Programs .5-26

5

Fe
at

ur
es

 o
f t

he
 M

P
E

72
0

E
ng

in
ee

rin
g

To
ol

5-3

This chapter describes the following ladder programming and debugging functions of MPE720
Engineering Tool version 7.

• Ladder program runtime monitoring
• Search/replace
• Cross references
• Multiple coils
• Forcing coils ON and OFF
• Viewing called programs
• Register lists
• Tuning panel
• Enabling and disabling ladder programs
• Watching
• Security
• Tracing
• Using motion programs

5.1 Ladder Program Runtime Monitoring

5-4

5.1 Ladder Program Runtime Monitoring

You can monitor the execution status of each instruction. Using runtime monitoring requires a
connection to the Machine Controller.
Instructions where the relay output is ON are displayed in blue.
The current values of the parameter registers of the instructions that are being executed are
also displayed.

Current values of

registers are displayed.

ON coils are displayed in

blue.

5.2 Search/Replace

5.2.1 Searching and Replacing in Programs

5-5

5

Fe
at

ur
es

 o
f t

he
 M

P
E

72
0

E
ng

in
ee

rin
g

To
ol

5.2 Search/Replace

5.2.1 Searching and Replacing in Programs
You can search for variables, instructions, and comments in a specified program. You can also
search for and replace registers and register comments.
The following section describes how to search for and replace text in programs.

Searching in Programs
1. Bring the program to search to the front in the Ladder Editor, and then select Edit − Find

from the menu bar.
The Search Dialog Box will be displayed.

2. Click the Variable, Instruction or Comment Tab to set the search criteria.

Variable Tab Page:Allows you to search for variables and registers. You can also enter the variable by
copying it from the Variable Pane.

Instruction Tab Page:Enter the name of the instruction or the assigned instruction key in the Instruc-
tion Box.
The Variable Box is displayed when an instruction is entered in the Instruction Box. If the SEE
instruction is entered in the Instruction Box, Variable changes to Program Name. You can also
enter the variable by copying it from the Variable Pane.

Comment Tab Page:Allows you to search for object comments, rung comments, program comments,
and expression comments.

5.2 Search/Replace

5.2.1 Searching and Replacing in Programs

5-6

• Use wild cards Check Box: Select this check box to use wildcard characters (* and ?) in the
search string.

• Find whole items only Check Box: Select this check box to search for comments where the string
in the comment box is exactly the same as the search string. Case sensitivity is controlled by the
Match case Check Box.

• Match case Check Box: Select this check box to differentiate between uppercase and lowercase
characters.

• Register compensation Check Box: Select this check box to convert search strings that are rec-
ognized as registers into register notation.

• Output log at Search 2 Check Box: Select this check box to display the search results in the
Search 2 Pane without changing the contents of the Search 1 Pane. If you clear the selection of the
check box, the search results will be displayed in the Search 1 Pane.

• Select Range Check Box: If you select this check box, you can specify the search range by setting
the start and end rungs.

3. Click the Search Button or the Search All Button to start searching.
If you click the Search Button, the instruction object that was found will be selected.
If you click the Search All Button, the search results will be displayed in the Search 1 or Search 2
Panes.

Replacing Text in Programs
1. Bring the program in which to search and replace to the front of the Ladder Editor, and

then select Edit − Replace from the menu bar.
The Replace Dialog Box will be displayed.

2. Click the Register or Comment Tab to set the search criteria and the replacement string.

Register Tab Page: Allows you to search for and replace registers.

Comment Tab Page: Allows you to search for object comments, rung comments, program com-
ments, and expression comments.

5.2 Search/Replace

 5.2.2 Searching and Replacing in Project Files

5

Fe
at

ur
es

 o
f t

he
 M

P
E

72
0

E
ng

in
ee

rin
g

To
ol

5-7

• Use wild cards Check Box: Select this check box to use wildcard characters (* and ?) in the
search string.

Note: If you enter an * or a ? character in the Replace Register or Replace Object Box, they will not be
handled as wildcards, but as regular characters.

• Select Range Check Box: If you select this check box, you can specify the search range by setting
the start and end rungs.
However, range selection is disabled on the Comment Tab Page.

3. Start the search/replace operation.
Click the Search Button. The instruction object that was found will be selected. If you click the
Replace Button, the object will be replaced by the contents of the Replace Register or Replace
Object Box.
If you click the Replace All Button on the Register Tab Page, the registers that are found will be
replaced, and the replacement results will be displayed in the Output Pane.

5.2.2 Searching and Replacing in Project Files
You can search for variables in all ladder programs and motion programs, or in only the speci-
fied programs in a project file. You can also search for and replace registers and addresses.

The following section describes how to search for and replace text in a project file.

Searching in Project Files
1. Bring the program to search to the front of the Ladder Editor, and then select Edit −

Search in Project from the menu bar.
The Search in Project Dialog Box will be displayed.

2. Specify the address of the variable to search for and the name of the program to search.

Note: 1. You can also enter the variable by copying it from the Variable Pane.
2. Use commas and spaces to specify more than one program in the Target Program Box. The following

wildcard (*) combinations can also be used in the Target Program Box:
, H, L*, I*, A*, F* (all functions), MPM*, and MPS*
Wildcards may be used only in the formats given above. Other uses, such as “H01.*”, are not allowed.

3. Output log at Search 2 Check Box: Select this check box to display the search results in the Search
2 Pane without changing the contents of the Search 1 Pane. If you clear the selection of the check
box, the search results will be displayed in the Search 1 Pane.

You can search the project file only when the Machine Controller is offline.Information

5.2 Search/Replace

5.2.2 Searching and Replacing in Project Files

5-8

3. Start the search operation.
Click the Search All Button. A progress bar will be displayed, and the search results will appear in the
Search Pane.

Replacing in Project Files

1. Bring the program to search to the front of the Ladder Editor, and then select Edit −
Replace in Project from the menu bar.
The Replace in the Project Dialog Box will be displayed.

2. Specify the address of the variable to search for and the name of the program to search.
Note: 1. You can also enter the variable by copying it from the Variable Pane.

2. Use commas and spaces to specify more than one program in the Target Program Box. The following
wildcard (*) combinations can also be used in the Target Program Box:
, H, L*, I*, A*, F* (all functions), MPM*, and MPS*
Wildcards may be used only in the formats given above. Other uses, such as “H01.*”, are not allowed.

3. Click the Register or Address Tab to set the search criteria and the replacement value.

Register Tab Page: Allows you to replace registers.

Address Tab Page: Allows you to replace registers that meet the specified criteria.
Note: The following wildcard (*) combinations can also be used in the Target Program Box:

, H, L*, I*, A*, F*, MPM*, MPS*

• After you perform a replace operation on a project file, the project file will be compiled and
saved, and there will be no way to return to the previous version. Always create a backup
before performing replacements on important files.

• If a motion program is already open in the MPE720 Engineering Builder before the replace-
ment is executed, the program will not be automatically updated. Close the motion program
before executing the replacement operation.

Information

5.2 Search/Replace

 5.2.2 Searching and Replacing in Project Files

5

Fe
at

ur
es

 o
f t

he
 M

P
E

72
0

E
ng

in
ee

rin
g

To
ol

5-9

4. Start the search/replace operation.
Click the Replace All Button. The replacement results will be displayed in the Output Pane.

Note: If an error occurs during compilation of a program, the replacements will not be completed.
After the replacement operation, the variables and addresses of the registers that were replaced will
be displayed.

5.3 Cross References

5-10

5.3 Cross References

Cross referencing allows you to check whether a register is used in a program, and where it is
used.
The search results indicate output registers in red, input registers in blue.

If the value of a register is different from its set value, it means that the value of the register may
have been overwritten somewhere in the program. In this case, you can search for the registers
using cross references. Check the registers displayed in red, and locate the program that is
overwriting them.

The following cross-reference criteria can be set. The following tables describe the check
boxes.

The following section describes the search operation on arrays.
1. Register[Register] Arrays

2. Register[Constant] Arrays

3. Register[Constant], LONG Arrays

Check Box Search Method

Selected. A search is made for local registers (D registers) in the active drawing in the MPE720 Window.

Not selected. A search is made for local registers (D registers) in the specified drawing.

Cross referencing executed.

Search Results Display

Red: Output registers
Blue: Input registers

Example

MW00000 and MW00001 are subject to searching.

MW00000 and MW00005 are subject to searching.

ML00000 and ML00010 are subject to searching.

5.3 Cross References

5-11

5

Fe
at

ur
es

 o
f t

he
 M

P
E

72
0

E
ng

in
ee

rin
g

To
ol

Check Box Search Method

Selected.

A search is made for registers that are the same as the register that was found.
Select this check box to display the results in a list when you search the following instruction for
a variable of MW00000.

Not
selected.

A search is not made for registers with the same data type as that of the register that was
found.
Clear the selection of this check box to not display the results in a list when you search the fol-
lowing instruction for a variable of MW00000.

Check Box Search Method

Selected.

Searches for redundant addresses.
Select this check box to display the results in a list when you search the following instruction
for a variable with a different data type, such as ML00000.

Not
selected.

A search is not performed for redundant addresses.
Clear the selection of this check box to not display the results in a list when you search the fol-
lowing instruction for a variable with a different data type, such as ML00000.

5.3 Cross References

5-12

Check Box Search Method

Selected.

When you perform cross referencing from the Cross Reference Pane, the results will be dis-
played in a separate pane.
Cross reference results can be displayed in up to 3 panes.

Not
selected.

When you perform cross referencing from a Cross Reference Pane, the results will be displayed
by updating the data in the same pane.

Cross Reference 1 Pane

Pane changed.

Cross Reference 2 Pane

Pane changed.

Cross Reference 3 Pane

Pane changed.

Cross Reference 1 Pane

Page updated.

5.4 Checking for Multiple Coils

5-13

5

Fe
at

ur
es

 o
f t

he
 M

P
E

72
0

E
ng

in
ee

rin
g

To
ol

5.4 Checking for Multiple Coils

You can check for multiple coils (different coils that use the same register) in an entire ladder
program, and display the search results.

Select Debug − Check for Multiple Coils from the menu bar.
Searching for multiple coils will start, and the results will be displayed in the Check for Multiple
Coils Pane.

When you use a project link connection, the data in the project file is used. Sometimes the
displayed results do not match the data in the linked Machine Controller. When you check for
multiple coils and use a project link connection, first always read the data to the project file
from the Machine Controller.

If the Enable to Multiple Coil Check Check Box is selected in the compile options, a search
for multiple coils will be performed during compilation and the results will be displayed as
warnings in the Output Pane.

Information

Multiple coils are displayed.

Information

5.5 Forcing Coils ON and OFF

5.5.1 Forcing Coils ON or OFF from a Ladder Program

5-14

5.5 Forcing Coils ON and OFF

You can force a specified coil ON or OFF from the Ladder Editor.
The coil will output ON or OFF regardless of the output of the instruction to the left of the coil.

In the following programming example, you can simulate turning ON the switch (IB00000) by
forcing the DB000001 relay ON even though the physical switch does not exist.

5.5.1 Forcing Coils ON or OFF from a Ladder Program
You can monitor a program by forcing specified coil objects ON or OFF in the Ladder Editor.

1. Select the coil to force ON or OFF.

2. Select Debug − Force ON or Force OFF from the menu bar.
The selected coil will be forced ON or OFF.

5.5.2 Changing the Forced ON/OFF Status from the Force Coil
List Pane
The Force Coil List Pane lists the ON/OFF status of the forced coils in the ladder program.

You can also change and cancel the ON, OFF, or canceled status of the forced coils in the
entire ladder program.

Searching for Forced Coils in the Force Coil List Pane
1. Display the Force Coil List Pane.

Note: You can show and hide the Force Coil List Pane by selecting View − Other Windows − Force Coil List
from the menu bar.

2. Select Debug − Force Coil List from the menu bar.
Note: In the above case, all programs will be searched for forced coils. To specify a program for the search,

press the Forced Coil Condition Setting Button () to display the Forced Coil Condition Setting Dialog
Box.

Select Debug − Disable Force from the menu bar to cancel forced ON or forced OFF
status.

<Coil is forced ON.>

Information

5.5 Forcing Coils ON and OFF

 5.5.2 Changing the Forced ON/OFF Status from the Force Coil List Pane

5

Fe
at

ur
es

 o
f t

he
 M

P
E

72
0

E
ng

in
ee

rin
g

To
ol

5-15

The search results will be displayed in the Force Coil List Pane.

3. Select the check boxes for the coils to force ON or OFF.

Names and Descriptions of the Force Coil List Pane Items
The Force Coil List Pane consists of a list where the forced coils are displayed, and a toolbar
that is used to search and repeat searches for forced coils, and to change the forced status of
coils.

1. If you right-click in the list in the Force Coil List Pane, you can use the pop-up menu to
select Check All or Uncheck All to select or clear the selections of the all of the Forcing
State Check Boxes.

2. If you select or double-click a search result row in the Force Coil List Pane, you can jump to
the corresponding coil in the ladder program. Alternatively, you can right-click in the list in
the Force Coil List Pane, and select Go to from the pop-up menu. If the program is not
open, it will be opened automatically and the display will jump to the corresponding coil in
the program.

3. If you right-click in the list in the Force Coil List Pane and select Cross Reference from the
pop-up menu, or select Debug − Cross Reference from the menu bar, the register that is
set for the coil will be checked for cross references and the results will be displayed in the
Cross Reference Pane.

4. If you edit the ladder program while the search results are displayed, the coils in the edited
program will be displayed in gray.

Information

Toolbar

List

    



5.5 Forcing Coils ON and OFF

5.5.2 Changing the Forced ON/OFF Status from the Force Coil List Pane

5-16

 Toolbar
• Forced Coil Condition Setting Button ()

Click this button to display the Forced Coil Condition Setting Dialog Box. Specify the program
to search for forced coils.

• Search Again Button ()
Click this button to repeat the forced coil search in the program that was specified in the
Force Coil Condition Setting Dialog Box.

• Force Reset Button ()
Click this button to cancel the forced status of the selected coils.

• Force ON Button ()
Click this button to force ON the selected coils.

• Force OFF Button ()
Click this button to force OFF the selected coils.

• Display Variable Button ()
Click this button to switch the display of the register that is used by the coil between a regis-
ter or a variable.

 List
 Forcing State

This column displays the forced ON or OFF status of the coils that were found.

 Coil
This column displays the coils that were found.
There are six types of coils.

 Program
This column displays the names of the programs where the coils were found.

 Variable
This column displays the variables or registers that are set for the coils that were found.

 Comment
This column displays the comments of the variables.

 Execution Step
This column displays the execution step numbers of the coils that were found.

 Check Boxes
The coils with selected check boxes will be subject to forcing operations (ON, OFF, or Can-
cel). You can use the toolbar buttons and also the pop-up menu to force the status of all
selected coils to ON, OFF, or canceled.

Coil Type
Coil Symbol

ON OFF

Coil −/ (ON)− −/ (OFF)−
Set Coil −/ (S ON)− −/ (S OFF)−
Reset Coil −/ (R ON)− −/ (R OFF)−

5.6 Viewing Called Programs

5-17

5

Fe
at

ur
es

 o
f t

he
 M

P
E

72
0

E
ng

in
ee

rin
g

To
ol

5.6 Viewing Called Programs

You can open a drawing that is called with an SEE instruction or a FUNC instruction.
Select the SEE instruction object or FUNC instruction object for the program to view, and
select Debug − Open Program from the menu bar.

Calling instruction

Called drawing: H01 Drawing

5.7 Register Lists

5.7.1 Displaying the Register Map

5-18

5.7 Register Lists

You can monitor the current values of the registers in a continuous area (register map) on any of
the Register List 1, 2, and 3 Panes. Realtime monitoring is possible if the Machine Controller is
connected. You can edit the values.

5.7.1 Displaying the Register Map
The following table gives the meaning of the background colors in the register map.

Use the following procedure to display the register map.

1. Click one of the tabs for the Register List 1, 2 or 3 Panes.
Select Monitor − Register List from the Launcher. The Register List 1 Pane will be displayed.
Note: You can show or hide the Register List 1, 2, and 3 Panes by selecting View − Register List − Register

List 1, View − Register List − Register List 2, or View − Register List − Register List 3 from the menu
bar.

2. Enter the address of the register for which to display a register map in the Register Box.
When displaying a list of D registers, enter the program number as shown below.

3. Press the Enter Key.
The specified register will be displayed in the top row of the register map.

Example of Displaying the D Register Map and Balloon

• The register map will show the data in the project file even for a direct connection.
If you use a project link connection, the data in the Machine Controller is accessed. When
the register map is displayed, the displayed results do not always match the project file of
the linked project.
If you display the register map when using a project link connection, first always transfer the
data to the project file by reading the data from the Machine Controller.

• The register list can display S, I, O, M, C, D, and G registers. However, C registers are read-
only. They can be read but not written.

Information

Green Indicates a register that is used in a ladder program.

Red Indicates a redundant register (i.e., a register that is used for more than one data type).

Number of Registers Displayed in One Row

Switching Buttons

5.7 Register Lists

 5.7.2 Switching the Register Map Display

5

Fe
at

ur
es

 o
f t

he
 M

P
E

72
0

E
ng

in
ee

rin
g

To
ol

5-19

Example of an M Register Map

5.7.2 Switching the Register Map Display
You can change the number of registers that is displayed in one row. You can use the five but-
tons on the top right to switch the displayed contents of the register map.

 Number of Registers Displayed in One Row
You can set the number of registers displayed in a row to between 1 and 16 either by direct
numeric input or by selection from a list. For bit registers, the number is always 16 and cannot
be changed. If you select Auto, the number of displayed registers will be set automatically
based on the size of the Register List Pane.

 Monitor ON ()/OFF () Button
This button is enabled only in Online Mode. Click this button to turn monitoring ON and OFF.
When monitoring is ON, the register data will be updated and displayed continuously. When
monitoring is OFF, the data will not be updated.

 Register Map Show ()/Hide () Button
Click this button to show and hide the register map.
Show mode: Registers that are used in the ladder program are displayed with a green back-
ground, and registers that are used for more than one data type are displayed with a red back-
ground.
Hide mode: All registers are displayed with a white background.

 Register Map Refresh Button ()
Click this button to refresh the values in the register map.

• If you move the cursor over the register map, a balloon will show the register and the status
of the register at the cursor position.

• You can change the number of registers displayed in one row. The five buttons on the top
right of the pane are used to switch the displayed contents.

• If you right-click the register list, you can select Decimal, Hexadecimal, BIN, or ASCII from
the pop-up menu to change the data type of the values. However, the B and F data types
cannot be changed.

• The display color alternate between blue and black for every other row.
• The Monitor Icon is enabled only when the Machine Controller is online.

Information

This button is disabled when the above Register Map Show/Hide Button is in Hide () sta-
tus.

Number of Registers Displayed in One Row

Information

5.7 Register Lists

5.7.3 Editing Data

5-20

 Redundant Register Search Button (/)
This button searches for and displays redundant registers. The [↑] Button searches for redun-
dant registers upward, and the [↓] Button searches downward.
If the same register is found, it will be displayed in the Register List Pane with a blue back-
ground.

5.7.3 Editing Data
You can perform the following editing operations by double-clicking cells on the register map or
by pressing the F2 Key to display the text cursor.
• Directly entering data
• Deleting data (setting the data to 0)
• Copying and pasting data
Press the Enter Key to confirm the change. If the Machine Controller is online, any changes in
the data immediately affect the operation of the Machine Controller.

This button is disabled when the Register Map Show/Hide Button is in Hide () status.Information

5.8 Tuning Panel

5-21

5

Fe
at

ur
es

 o
f t

he
 M

P
E

72
0

E
ng

in
ee

rin
g

To
ol

5.8 Tuning Panel

The Tuning Panel allows you to display and edit the current value of pre-registered variables. In
addition to the current values, the Tuning Panel also displays comments and visual status indi-
cators.

You can use the Tuning Panel to control and check the operation of your application.
You can adjust the Visual monitor Column to display data according to specific conditions.

5.9 Enabling and Disabling Ladder Programs

5-22

5.9 Enabling and Disabling Ladder Programs

Individual drawings in ladder programming can be enabled or disabled.

This feature is used to temporarily disable ladder drawings that contain processing to turn ON
the power supply to servomotors or jog processing for servomotors. This allows you to check
the operation of individual servomotors with the test run operation of the MPE720 or the mod-
ule configuration definition.

The diagram is
disabled.

• ON/OFF control of coils and instruction
execution are not processed.

• Disabled ladder drawings are not processed.

Disabled.

Disabled Ladder
Drawing

The motor cannot be controlled from the MPE720
because the ladder drawing is being executed.

The motor can be controlled from
MPE720 as required.

5.10 Watching

5.10.1 Displaying Watch Data

5-23

5

Fe
at

ur
es

 o
f t

he
 M

P
E

72
0

E
ng

in
ee

rin
g

To
ol

5.10 Watching

You can monitor the values and comments of the specified S, I, O, M, C, and D registers on the
Watch 1, 2, and 3 Panes. Realtime monitoring is possible if the Machine Controller is con-
nected. You can edit the values.

5.10.1 Displaying Watch Data
1. Click one of the tabs for the Watch 1, 2 or 3 Panes.

Select Monitor − Watch from the Launcher. The Watch 1 Pane will be displayed.
Note: You can show or hide the Watch 1, 2, and 3 Panes by selecting View − Watch − Watch 1, View −

Watch − Watch 2, or View − Watch − Watch 3 from the menu bar.

2. Double-click the Variable Column or press F2 to display the text cursor, and then enter
the register or variable register to monitor.
Note: 1. You can also drag or copy registers from the ladder program or from the Variable Pane.

2. When monitoring D registers, enter the program number as shown below.

3. Press the Enter Key.
The contents of the specified register will be displayed.

If you right-click a row, you can select Decimal, Hexadecimal, BIN, or ASCII from the pop-up menu
to change the data type of the Value Column.

5.10.2 Editing the Value Column
Double-click the Value Column or press F2 to display the text cursor. You can enter the value
directly or paste a value.
After entering the data, press the Enter Key to confirm the change.

When a project link is used, the data registered in the Watch Pane is saved only to the
Machine Controller. To apply the watch data to the project file, transfer all of the data from the
Machine Controller.

Information

If the Machine Controller is online, any changes in the data immediately affect the operation of
the Machine Controller.

Information

5.11 Security

5-24

5.11 Security

MPE720 version 7 has the following security features. You can use these security features for
data protection by specifying access privileges for individual projects and program drawings.
• User Administration (User Name and Password Setting)

You can register and change the name of the users who can open projects.
If the setting is performed while the Machine Controller is online, the setting will provide
access privileges to the Machine Controller.

• Project Password Setting
You can set a password for opening a project file.

• Program Password Setting
You can set a password for opening ladder programs and motion programs. A password can
be set for each program.

• Online Security Setting
You can set a security key (i.e., a password) and privilege levels for reading data from a
Machine Controller. This allows you to restrict the ability to read the program data from the
Machine Controller or the ability to open the programs to users who have the specified level
of privilege or a higher privilege.

5.12 Tracing

5-25

5

Fe
at

ur
es

 o
f t

he
 M

P
E

72
0

E
ng

in
ee

rin
g

To
ol

5.12 Tracing

MPE720 version 7 has three trace modes.
• Real-Time Trace

You can monitor specified registers on a graph in real time.
• Trace Manager

You can have the Machine Controller collect data for specified registers during a specified
time period, and perform operations on that data and plot it on a graph.
This allows you to analyze register data that is acquired during specific time periods to debug
ladder programs.

• XY Trace
This trace mode acquires the position data of the X axis and Y axis every scan, and displays
the data in a 2-dimensional graph.

All three modes support exporting the trace data to CSV files.
Use tracing to check operation and to debug the ladder programs and motion programs.
A typical pane for data tracing is shown below.

5.13 Advanced Programming

5.13.1 Motion Programs

5-26

5.13 Advanced Programming

5.13.1 Motion Programs
A motion program is written in a text-based motion language. In addition to basic motion con-
trol and operations, motion programs can also be used to easily program complex movements,
such as linear interpolation and circular interpolation.
You can execute motion programs either by placing MSEE instructions in ladder programming
in DWG.H (high-speed scan process drawings), or by registering the motion programs in Pro-
gram Definition Tab Page for the M-EXECUTOR Module.

Refer to the following manual for details on motion programs.
MP3000 Series Motion Programming Manual (Manual No. SIEP C880725 14)

H

H01

H02

H01.01

H01.02

M-EXECUTOR

SVR or
SVR32

SVC or
SVC32

SVB-01

SVA-01

PO-01

SVC-01

VEL [X]2000 [Y]2000;
ACC [X]100 [Y]100;
DCC [X]100 [Y]100;
MOV [X]0 [Y]0;
MVS [X]100.0 [Y]200.0;

ABS;
FMX T100000;
MVS [C1]300 [D1]400 F1000;
END;

MPM001

MPM002

Machine Controller

Ladder Programs
Motion Programs

MSEE Instruction

Program Definition

You can call up to
32 programs at
the same time.

You can create up
to 512 programs.

Called.

Called.
M

ot
io

n
pa

ra
m

et
er
s

You can call motion
programs without a
ladder program.

Appendix

This appendix describes the system service registers that
are part of the system registers that are provided with the
Machine Controller system.

A.1 Overview of System Registers A-2

A.2 Common to All Drawings A-3

A.3 Exclusive to DWG.H (High-speed Scan Process Drawings) . . A-4

A.4 Exclusive to DWG.L (Low-speed Scan Process Drawings) . . A-5

A.5 Scan Execution Status and Calendar A-6

A.6 System Program Software Numbers and Remaining Program Memory Capacity . . A-7

System Service
Registers

A

A.1 Overview of System Registers

A-2

A.1 Overview of System Registers

System registers are provided by the Machine Controller system. They can be used to read
system error information, the current operating status, and other information.

The System Service Registers are grouped into the following five categories.
• Common to All Drawings
• Exclusive to DWG.H (high-speed scan process drawings)
• Exclusive to DWG.L (low-speed scan process drawings)
• Scan Execution Status and Calendar
• System Program Software Numbers and Remaining Program Memory Capacity

Contents

SW000000 System Service Registers

SW000030 System Status

SW000050 System Error Status

SW000080 Overview of User Operation Error Status

SW000090 System Service Execution Status

SW000110 Detailed User Operation Error Status

SW000190 Alarm Counter and Alarm Clear

SW000200 System I/O Error Status

SW000504 Reserved for system.

SW000652 CF Card-related System Registers (MP2200-series CPU-02 and CPU-03 only)

SW000698 Interrupt Status

SW000800 Module Information

SW001312 Reserved for system.

SW001411 MPU-01 Module System Status

SW002048 Reserved for system.

SW003200 Motion Program Information

SW005200
 to

SW008191
Reserved for system.

A.2 Common to All Drawings

A-3

AppA

S
ys

te
m

 S
er

vi
ce

 R
eg

is
te

rs

A.2 Common to All Drawings

Name Register Address Remarks

Reserved for system. SB000000 Not used.

High-speed Scan SB000001 This register is ON for only the first scan after the
high-speed scan starts.

Low-speed Scan SB000003 This register is ON for only the first scan after the
low-speed scan starts.

Always ON SB000004 Always ON (1).

Reserved for system. SB000005,
SB000006 Not used.

High-speed Scan in Progress SB000007 ON (1) during execution of the high-speed scan.

Reserved for system.
SB000008

to
SB00000F

Not used.

A.3 Exclusive to DWG.H (High-speed Scan Process Drawings)

A-4

A.3 Exclusive to DWG.H (High-speed Scan Process Drawings)

Operation starts when the high-speed scan starts.

Name Register Address Remarks

1-scan Flicker Relay SB000010

0.5-s Flicker Relay SB000011

1.0-s Flicker Relay SB000012

2.0-s Flicker Relay SB000013

0.5-s Sampling Relay SB000014

1.0-s Sampling Relay SB000015

2.0-s Sampling Relay SB000016

60.0-s Sampling Relay SB000017

1.0 s After Start of Scan Relay SB000018

2.0 s After Start of Scan Relay SB000019

5.0 s After Start of Scan Relay SB00001A

1 scan

1 scan

0.5 s 0.5 s

1.0 s 1.0 s

2.0 s 2.0 s

0.5 s 0.5 s

1 scan

1.0 s 1.0 s

1 scan

1 scan

2.0 s 2.0 s

1 scan

60.0 s 60.0 s

1.0 s

2.0 s

5.0 s

A.4 Exclusive to DWG.L (Low-speed Scan Process Drawings)

A-5

AppA

S
ys

te
m

 S
er

vi
ce

 R
eg

is
te

rs

A.4 Exclusive to DWG.L (Low-speed Scan Process Drawings)

Operation starts when the low-speed scan starts.

Name Register Address Remarks

1-scan Flicker Relay SB000030

0.5-s Flicker Relay SB000031

1.0-s Flicker Relay SB000032

2.0-s Flicker Relay SB000033

0.5-s Sampling Relay SB000034

1.0-s Sampling Relay SB000035

2.0-s Sampling Relay SB000036

60.0-s Sampling Relay SB000037

1.0 s After Start of Scan Relay SB000038

2.0 s After Start of Scan Relay SB000039

5.0 s After Start of Scan Relay SB00003A

1 scan

1 scan

0.5 s 0.5 s

1.0 s 1.0 s

2.0 s 2.0 s

1 scan

0.5 s 0.5 s

1 scan

1.0 s 1.0 s

1 scan

2.0 s 2.0 s

1 scan

60.0 s 60.0 s

1.0 s

2.0 s

5.0 s

A.5 Scan Execution Status and Calendar

A-6

A.5 Scan Execution Status and Calendar

Name Register Address Remarks

High-speed Scan Set Value SW00004 This is the high-speed scan set value (0.1 ms).

Current High-speed Scan Time SW00005 This is the current value of the high-speed scan
(0.1 ms).

High-speed Scan Maximum Value SW00006 This is the maximum value of the high-speed scan
(0.1 ms).

High-speed Scan Set Value 2 SW00007 This is the high-speed scan set value (1 μs).

Current High-speed Scan Time 2 SW00008 This is the current value of the high-speed scan
(1 μs).

High-speed Scan Maximum Value 2 SW00009 This is the maximum value of the high-speed scan
(1 μs).

Low-speed Scan Set Value SW00010 This is the low-speed scan set value (0.1 ms).

Current Low-speed Scan Time SW00011 This is the current value of the low-speed scan
(0.1 ms).

Low-speed Scan Maximum Value SW00012 This is the maximum value of the low-speed scan
(0.1 ms).

Reserved for system. SW00013 Not used.

Current Scan Time SW00014 This is the current value of the scan that is currently
being executed (0.1 ms).

Calendar: Year SW00015 1999: 0099 (BCD) (last two digits only)

Calendar: Month Day SW00016 December 31: 1231 (BCD)

Calendar: Hour and Minutes SW00017 23:59: 2359 (BCD)

Calendar: Seconds SW00018 59 s: 59 (BCD)

Calendar: Week SW00019 0: Sunday, 1: Monday, 2: Tuesday, 3: Wednesday,
4: Thursday, 5: Friday, and 6: Saturday

A.6 System Program Software Numbers and Remaining Program Memory Capacity

A-7

AppA

S
ys

te
m

 S
er

vi
ce

 R
eg

is
te

rs

A.6 System Program Software Numbers and Remaining Program Memory Capacity

Name Register Address Remarks

System Program Software Number SW00020 Sxxxx (xxxx is replaced with the BCD value.)

System Number
SW00021

 to
SW00025

Not used.

Remaining Program Memory Capacity SL00026 Bytes

Total Memory Capacity SL00028 Bytes

Appendix

This appendix describes ladder programming examples
that perform test runs.

B.1 Jogging from the Control Panel B-2

B.2 Motion Program Control B-3

B.3 Simple Synchronized Operation of Two Axes with a Virtual Axis . .B-4

Sample Programs
B

B.1 Jogging from the Control Panel

B-2

B.1 Jogging from the Control Panel

The following configuration and ladder programming example illustrate how to control a motor
from switches on a control panel when the motor and control panel are connected to a
Machine Controller.

 Configuration Example

 Ladder Programming Example

Machine
Controller

MECHATROLINK-III

Σ-V

SERVOPACK (SGDV)
(Circuit No. 1, Axis 1)

Serial cable

Jog- command
(IB000003)

Jog+ command
(IB000002)

Alarm Clear command
(IB000001)

Servo ON command
(IB000000)

Control Panel

B.2 Motion Program Control

B-3

AppB

S
am

p
le

 P
ro

gr
am

s

B.2 Motion Program Control

The following ladder programming example demonstrates how to control execution of a motion
program.

Power to the Servomotor is turned
ON when IB00000 turns ON.

The MSEE instruction is used to register
the motion program for execution.

The motion program is started
when IB00001 turns ON.

B.3 Simple Synchronized Operation of Two Axes with a Virtual Axis

B-4

B.3 Simple Synchronized Operation of Two Axes with a Virtual Axis

A motion program moves an SVR (virtual axis) and a ladder program distributes the feedback
position of the SVR to two physical axes to perform synchronized operation with two axes.

The motion programming example and ladder programming example for the above operation
are given below.

 Motion Programming Example

FMX T10000K; ”Set maximum interpolation speed K = 1,000.
INC; ”Incremental Mode
IAC T500; ”Interpolation acceleration time = 500 ms
IDC T500; ”Interpolation deceleration time = 500 ms
MVS [SVR] 1000K F10000K; ”Interpolation for travel distance of 1,000,000
END;

One-axis interpolation operation is
executed with a motion program.

A ladder program copies the feedback
position of the SVR to the position
references for axes 1 and 2 to perform
synchronized operation.

SVC Axis 1

Axis 2

SVR (Virtual Axis)

B.3 Simple Synchronized Operation of Two Axes with a Virtual Axis

AppB

S
am

p
le

 P
ro

gr
am

s

B-5

 Ladder Programming Example

This programming example does not include recovery processing for axis errors. If you decide to
incorporate this programming example into your application, be sure to add the necessary pro-
gramming to ensure safe operation in the event of an axis error.

Important

Appendix

This appendix describes the format for EXPRESSION
instructions.

C.1 Elements That You Can Use in Numeric Expressions . . C-2
C.1.1 Operators . C-2
C.1.2 Operands . C-3
C.1.3 Instructions That You Can Use

with EXPRESSION Instructions C-4

C.2 Notational LimitationsC-5
C.2.1 Arithmetic and Logic Operators C-5
C.2.2 Comparison Operators . C-5
C.2.3 Logic Operators . C-5
C.2.4 Substitution Operator . C-6
C.2.5 Functions . C-6
C.2.6 Parentheses . C-6

Format for
EXPRESSION
Instructions C

C.1 Elements That You Can Use in Numeric Expressions

C.1.1 Operators

C-2

C.1 Elements That You Can Use in Numeric Expressions

Numeric expressions that can be used in EXPRESSION instructions include operators, oper-
ands (constants and variables), and functions. This section describes each of these elements.

C.1.1 Operators

Types of Operators and Usable Operators
The following list gives the types of operators and usable operators.

Order of Evaluation
Operators are evaluated according to their processing priority and the order in which operands
are grouped, as listed below.

Note: Operators on the same line have the same processing priority and are evaluated according to their grouping
order.

Type Usable Operators

Arithmetic and Logic Operators

+ Add

− Subtract

* Multiply

/ Divide

% Remainder

& Bit-wise AND

| Bit-wise OR

++ Extended Add

− − Extended Subtract

Logic Operators
(Usable only with bit data)

&& Inclusive AND

|| Inclusive OR

! Logical NOT

Comparison Operators

== Equal to right-side value

!= Unequal to right-side value

> Greater than right-side value

>= Greater than or equal to right-side value

< Less than right-side value

<= Less than or equal to right-side value

Substitution Operator = Substitutes left-side value with right-side value

Reserved Words
true TRUE for a logical expression

false FALSE for a logical expression

Control Instructions IF, ELSE, and IEND ELSE can be omitted.

Priority Operators Description Grouping Order

High [] () Expression Left to right

↑

↓

− ! Unary Right to left

* / % Multiplication, division, and remainder

Left to right

+ − ++ − − Addition, subtraction, extended addition, and extended subtraction

< > <= >= Relational

== != Equivalence

& Bit-wise AND

| Bit-wise OR

&& Inclusive AND

Low || Inclusive OR

C.1 Elements That You Can Use in Numeric Expressions

 C.1.2 Operands

AppC

Fo
rm

at
 fo

r
E

X
P

R
E
S
S

IO
N

 In
st

ru
ct

io
ns

C-3

C.1.2 Operands

Constants
Integers or real numbers may be used as a constant.
• An integer may be any number that can be expressed within the range of a 64-bit integer

(quadruple-precision integers).
(-9,223,372,036,854,775,808 to 9,223,372,036,854,775,807)
• A real number may be any number that can be expressed within the range of 64-bit data

(double-precision real numbers).
± (2.225E-308 to 1.798E+308)

Variables
The EXPRESSION instruction allows you to assign arbitrary variable names that are allowed in
C language to registers in the Machine Controller.

Although the C language does not have Boolean variables, bit registers in the Machine Control-
ler are treated as Boolean variables. Boolean variables are either TRUE or FALSE and can be
used only in logical expressions.

 Limitations on Variable Names
The following limitations apply to variable names.
• Variable names must start with a non-numeric character.
• For ASCII characters, only alphabetic characters, underscores, and numbers may be used.
• The following variable names cannot be used because they are already used as function

names.
C.1.3 Instructions That You Can Use with EXPRESSION Instructions on page C-4

Hexadecimal numbers must be expressed using the 0x notation when used in the
EXPRESSION, IF, or WHILE instruction.
The H notation will result in an error.
Example: H012F ⋅⋅⋅ NG 0x012F ⋅⋅⋅ OK
The H notation must be used for all other instructions, such as the STORE instruc-
tion.

AbcOK
Get_input()OK
1abNG
SinNG

Information

Example

C.1 Elements That You Can Use in Numeric Expressions

C.1.3 Instructions That You Can Use with EXPRESSION Instructions

C-4

C.1.3 Instructions That You Can Use with EXPRESSION
Instructions
The following list gives the instructions that can be used with EXPRESSION instructions.

Instruction Description Example Reserved Word

+ Add MW00001 = MW00002 + MW00003 √
− Subtract MW00001 = MW00002 − MW00003 √
* Multiply MW00001 = MW00002 × MW00003 √
/ Divide MW00001 = MW00002 / MW00003 √
% Remainder MW00001 = MW00002 % MW00003 √
& Bit-wise AND MW00001 = MW00002 & 4096 √
| Bit-wise OR MW00001 = MW00002 ⏐ 4096 √
++ Extended Add MW00001 = MW00002 ++ MW00003 √
− − Extended Subtract MW00001 = MW00002 −− MW00003 √
&& Inclusive AND MB000010 = MB000011 && MB000012 √
| | Inclusive OR MB000010 = MB000011 // MB000012 √
! Logical NOT MB000010 = !MB000011 √
== Equal to right-side value MB000010 = MB000011 == true √

>=
Right-side value is greater
than or equal to left-side
value

MB000010 = MW00020 >= MW00021 √

> Right-side value is greater
than left-side value MB000010 = MW00020 > MW00021 √

< Right-side value is less
than left-side value MB000010 = MW00020 < MW00021 √

<=
Right-side value is less
than or equal to left-side
value

MB000010 = MW00020 <= MW00021 √

= Substitute left-side value
with right-side value MW00001 = MW00002 √

true TRUE MB000010 = MB000011 == true √
false FALSE MB000010 = MB000011 == false √
sin() SIN MW00001 = sin(MW00002) √
cos() COS MF00002 = cos(MF00004) √
atan() ARCTAN MF00002 = atan(MF00004) √
tan() TAN MF00002 = tan(MF00004) √
() Parentheses MW00001 = (MW00002 + MW00003) / MW00004 √
asin() ARCSIN MF00002 = asin(MF00004) √
acos() ARCCOS MF00002 = acos(MF00004) √
sqrt() SQRT MW00001 = sqrt(MW00002) √
abs() ABS MW00001 = abs(MW00002) √
exp() EXP MF00002 = exp(MF00004) √
log() LOG natural logarithm MF00002 = log(MF00004) √
log10() LOG10 common logarithm MF00002 = log10(MF00004) √

C.2 Notational Limitations

C.2.1 Arithmetic and Logic Operators

C-5

AppC

Fo
rm

at
 fo

r
E

X
P

R
E
S
S

IO
N

 In
st

ru
ct

io
ns

C.2 Notational Limitations

Several limitations apply when combining operands and operators to form numeric expres-
sions. An expression is not recognized as a numeric expression unless it meets these condi-
tions.

This section describes these limitations.

C.2.1 Arithmetic and Logic Operators
These operators can be used with integer and real number operands. The unary minus opera-
tor can be used only once. Bit operations can be performed only on integer data. Bit operands
cannot be used for arithmetic operations. No automatic data type conversion is performed
even if the calculation result exceeds the range of the assigned register. Therefore, the user
must assign the appropriate data type to the register.

C.2.2 Comparison Operators
These operators can be used with integer and real number operands. The left side must be a
bit data register. To use an integer bit operand in a comparison operation with the == or !=
operator, compare it with TRUE or FALSE.

C.2.3 Logic Operators
These operators can be used with bit operands.

MW00001 = MW00002 + MW00003OK
MW00001 = MW00002 / 345OK
MF00002 = (MW00004 + MF00002) / (ML00018 + MW00008)OK
MW00001 = MW00002 & 4096OK
MB000010 = MB000011 - MB000012NG
MW00001 = MB000011 * MW00001NG

To perform bit operations, match the data types on the left and right sides of the operator.
If the operation is performed using different data types, the intended result may not be
obtained.

ML00000 = MW00002 | ML00004NG
ML00000 = ML00002 | ML00004OK

MQ00000 = 0xFFFF0000 & MQ00004NG
MQ00000 = 0x00000000FFFF0000 & MQ00004OK

Example

Important

MB000010 = MW00002 != MW00003OK
MB000010 = MF00002 < 99.99OK
MB000010 = MW00002 >= MW00003OK
MB000010 = MB000011 == trueOK
MB000010 = MB000011 != 0NG
MB000010 = MB000011 == 1NG

Example

MB000010 = MB000011 && MB000012OK
MB000010 = !MB000011OK
MB000010 = (MW000020 >= 50) && MB000011OK
MB000010 = MW00001 || MW00002 NG
MB000010 = !MW00001NG

Example

C.2 Notational Limitations

C.2.4 Substitution Operator

C-6

C.2.4 Substitution Operator
Real number and integer registers can be substituted with either real number or integer data,
even if the data type differs. When you substitute an integer register with a real number register,
a round-off error will occur.
Bit registers can be substituted only with logical values, such as another bit register or a TRUE/
FALSE. If you substitute a bit register with a non-logical value, that value will be compared
against 0 or 0.0 and the TRUE or FALSE outcome will be converted to a code before it is sub-
stituted.

Bit data cannot be substituted into non-bit registers.

C.2.5 Functions
The arguments and return values for functions depend on the specifications of the functions in
the Machine Controller.
Therefore, if the input for the sin(), cos(), and tan() functions is an integer or integer register, the
output value will be returned as an integer. If the input is a real number or a real number regis-
ter, the output value will be returned as a real number.

The argument for the tan() function is a real number so an integer register input will be treated
as a real number.

C.2.6 Parentheses

 Grouping
You can group multiple expressions by enclosing them with parenthesis ().

 Arrays
You can specify arrays by using square brackets [], just like with the C language.

MW00001 = MW00002;OK
MF00000 = MW00002 / 345;OK
MB000010 = MB000010; OK
MW00010 = MB0000101;NG
MW00001 = true;NG

Example

MW00001 = sin(MW00002);OK
MF00002 = cos(MF00000×3.14);OK
MW00001 = -atan(MF00002);OK

Example

MW00001 = −(MW00002 + 10) / (MW00003 − MW00005); OK

MW00001 = MW00002[100];OK
MW00001 = MW00002[MW00003];OK
MB000010 = MB000020[0];OK

Example

Example

Appendix

This appendix provides precautions on motion parameters.

Precautions on
Motion Parameters

D

D-2

The following precautions apply to using motion parameters.

 Do Not Use a Subscript to Reference a Motion Register from an I/O Register
I/O registers and motion registers are not assigned to consecutive memory locations. When
using a subscript, access registers within the range of I/O registers or within the range of
motion registers.

 Do Not Use a Subscript to Reference a Motion Register in a Different Circuit
Motion registers on different circuits are not assigned to consecutive memory locations.
When using a subscript, access registers within the range of motion registers for each circuit.
If the circuit number is the same, it is possible to access motion registers for different axes.

Circuit No. Axis 1 Axis 2 ⋅ ⋅ ⋅ Axis 16

1 OW08000 to OW0807F OW08080 to OW080FF ⋅ ⋅ ⋅ OW08780 to OW087FF

3 OW09000 to OW0907F OW09080 to OW090FF ⋅ ⋅ ⋅ OW09780 to OW097FF

5 OW0A000 to OW0A07F OW0A080 to OW0A0FF ⋅ ⋅ ⋅ OW0A780 to OW0A7FF

7 OW0B000 to OW0B07F OW0B080 to OW0B0FF ⋅ ⋅ ⋅ OW0B780 to OW0B7FF

9 OW0C000 to OW0C07F OW0C080 to OW0C0FF ⋅ ⋅ ⋅ OW0C780 to OW0C7FF

11 OW0D000 to OW0D07F OW0D080 to OW0D0FF ⋅ ⋅ ⋅ OW0D780 to OW0D7FF

13 OW0E000 to OW0E07F OW0E080 to OW0E0FF ⋅ ⋅ ⋅ OW0E780 to OW0E7FF

15 OW0F000 to OW0F07F OW0F080 to OW0F0FF ⋅ ⋅ ⋅ OW0F780 to OW0F7FF

17 OW18000 to OW1807F OW18080 to OW180FF ⋅ ⋅ ⋅ OW18780 to OW187FF

19 OW19000 to OW1907F OW19080 to OW190FF ⋅ ⋅ ⋅ OW19780 to OW197FF

21 OW1A000 to OW1A07F OW1A080 to OW1A0FF ⋅ ⋅ ⋅ OW1A780 to OW1A7FF

23 OW1B000 to OW1B07F OW1B080 to OW1B0FF ⋅ ⋅ ⋅ OW1B780 to OW1B7FF

25 OW1C000 to OW1C07F OW1C080 to OW1C0FF ⋅ ⋅ ⋅ OW1C780 to OW1C7FF

27 OW1D000 to OW1D07F OW1D080 to OW1D0FF ⋅ ⋅ ⋅ OW1D780 to OW1D7FF

29 OW1E000 to OW1E07F OW1E080 to OW1E0FF ⋅ ⋅ ⋅ OW1E780 to OW1E7FF

31 OW1F000 to OW1F07F OW1F080 to OW1F0FF ⋅ ⋅ ⋅ OW1F780 to OW1F7FF

IW00000/OW00000

IW07FFF/OW07FFF

IW08000/OW08000

IW0FFFF/OW0FFFF

I = 1;
OW07FFFi = 0;

Motion registers

Accessible.

Example:

Not accessible.

Accessible.
I/O registers

AppD

P
re

ca
ut

io
ns

 o
n

M
ot

io
n

P
ar

am
et

er
s

D-3

Axis 1 (IW08000 to IW0807F, OW08000 to OW0807F)
Axis 2 (IW08080 to IW080FF, OW08080 to OW080FF)

Axis 1 (IW09000 to IW0907F, OW09000 to OW0907F)
Axis 2 (IW09080 to IW090FF, OW09080 to OW090FF)

Axis 16 (IW09780 to IW097FF, OW09780 to OW097FF)

Circuit 1

Circuit 3

Axis 16 (IW08780 to IW087FF, OW08780 to OW087FF)

Example:
I = 1;
OW0807Fi = 0;

Accessible.

Not accessible.

Example:
I = 1;
OW087FFi = 0;

Appendix

This appendix provides the specifications for programs for
the Motion Controller.

Machine Controller
Specifications

E

E-2

The following table gives the specifications for programs for the Machine Controller.

Specification CPU Unit/CPU Module Remarks
M

ot
io

n
P

ro
gr

am
s

Number of
Programs 512 max.

You can create a com-
bined total of 512 motion
programs and sequence
programs.

Number of Groups 16 groups −

Number of Tasks 32 tasks max. (This is the number of simultaneously
executable motion programs.) −

Number of Parallel
Forks per Task

8 parallel forks max. (select from these 4 modes)
• 4 main program forks, 2 subprogram forks
• 8 main program forks, 1 subprogram forks
• 2 main program forks, 4 subprogram forks
• 1 main program forks, 8 subprogram forks

Change the mode using
the MPE720.

Execution
Registration

• Use the MSEE instruction from a ladder program.
• Use the M-EXECUTOR. −

Starting Method
Program execution starts on the rising edge of bit 0
(Request for Start of Program Operation) in the control
signals.

−

Override for
Positioning Speeds Can be specified from 0.01% to 327.67%. −

Operating Modes Absolute Mode and Incremental Mode
The mode is changed
with the ABS and INC
instructions.

Reference Unit

• SVC/SVC32/SVC-01/SVB-01/SVR/SVR32
pulse, mm, deg, inch, μm

• SVA-01/PO-01
pulse, mm, deg, inch

−

Minimum Reference
Unit

• pulse
1

• mm, deg, inch, μm
1, 0.1, 0.01, 0.001, 0.0001, 0.00001

−

Reference Range -2147483648 to +2147483647 (32-bit signed data) −

Number of
Simultaneously
Controlled Axes per
Task

• Positioning, Linear Interpolation, Zero Point Return,
Skip Function, and Set-time Positioning
32 axes max.

• Circular Interpolation
2 axes

• Helical Interpolation
3 axes

• External Positioning
1 axis

−

Number of
Simultaneously
Controlled Cameras

32 cameras max. −

Number of
Simultaneously
Controlled
Mechanisms

4 mechanisms max. −

Continued on next page.

AppE

M
ac

hi
ne

 C
on

tr
ol

le
r
S

p
ec

ifi
ca

tio
ns

E-3

S
eq

ue
nc

e
P

ro
gr

am
s

Number of
Programs

512 max.
(There are three settings for the execution timing:
startup processing, high-speed scan processing, or
low-speed scan processing.)

You can create a com-
bined total of 512 motion
programs and sequence
programs.

Number of Tasks 32 tasks max. (This is the number of simultaneously
executable sequence programs.) −

Number of Parallel
Forks per Task The PFORK instruction cannot be used. −

Execution
Registration Use the M-EXECUTOR. −

Starting Method Automatically started by the system.

The system starts
sequence programs that
are registered in the
M-EXECUTOR.

A
cc

es
si

b
le

 R
eg

is
te

rs

M Registers 1,048,576 words These registers are
backed up with a battery.

S Registers 65,535 words These registers are
backed up with a battery.

G Registers 2,097,152 words

These registers are
shared by all programs.
They are not backed up
with a battery.

I Registers 65,536 words + Setting parameters + Registers for
CPU interface −

O Registers 65,536 words + Monitor parameters + Registers for
CPU interface −

C Registers 16,384 words −

D Registers Can be specified from 0 to 16,384 words.

These are internal regis-
ters that are unique within
each DWG. They can be
referenced only within the
local drawing.

Continued from previous page.

Specification CPU Unit/CPU Module Remarks

Appendix

This appendix describes the error codes that correspond
to the storage operation instructions.

Error Codes
F

F-2

Error Code Description
Instructions in Which

This Error Occurs

0000 hex No error –

8000 hex Param is outside range of registers

FOPEN, FCLOSE, FREAD,
FWRITE, FSEEK, FGETS,
FPUTS, FCOPY, FREMOVE,
FRENAME, DCREATE, DRE-
MOVE, FTPPUT

8101 hex Drive number out of range error FTPPUT

810B hex Text string error (NULL character not detected) FPUTS

810C hex File or directory name error
FOPEN, FCOPY, FREMOVE,
FRENAME, DCREATE,
DREMOVE, FTPPUT

810D hex FTP transmission error FTPPUT

8110 hex Invalid file handler
FOPEN, FCLOSE, FREAD,
FWRITE, FSEEK, FGETS,
FPUTS

8111 hex Size out of range error FREAD, FWRITE

8113 hex Storage or read destination registers out of range error

FOPEN, FREAD, FWRITE,
FGETS, FCOPY, FREMOVE,
FRENAME, DCREATE,
DREMOVE, FTPPUT

8114 hex Offset out of range error FSEEK

8115 hex Origin out of range error FSEEK

8116 hex Open type out of range error FOPEN

8201 hex No USB memory device
FOPEN, FCOPY, FREMOVE,
FRENAME, DCREATE,
DREMOVE, FTPPUT

8202 hex Cannot open file (e.g., invalid path, inaccessible, or insufficient
space) FOPEN

8203 hex File seek error (inaccessible) FSEEK

8204 hex File write error (inaccessible or insufficient space) FWRITE, FPUTS

8205 hex File read error (inaccessible) FREAD, FGETS

8206 hex File close failure (inaccessible) FCLOSE

8207 hex Cannot save file (invalid path, inaccessible, or insufficient
space) FCOPY, FRENAME

8208 hex File or directory deletion failure FREMOVE, DREMOVE

8209 hex Cannot create directory (invalid path, inaccessible, or insuffi-
cient space) DCREATE

820A hex Cannot open write-protected file FOPEN

820B hex Exceeded number of files that can be opened simultaneously FOPEN, FCOPY, FREMOVE,
FRENAME

820C hex Exceeded number of workspaces that can be used simultane-
ously

DCREATE, DREMOVE,
FTPPUT

820D hex Cannot execute processing because target file is being used in
another instruction

FOPEN, FCLOSE, FREAD,
FWRITE, FSEEK, FGETS,
FPUTS, FCOPY, FREMOVE,
FRENAME

820E hex File already open FOPEN

820F hex Preparation for storage operation processing not completed

FOPEN, FCLOSE, FREAD,
FWRITE, FSEEK, FGETS,
FPUTS, FCOPY, FREMOVE,
FRENAME, DCREATE,
DREMOVE, FTPPUT

8210 hex Directory was specified FOPEN, FREMOVE, FCOPY,
FRENAME, FTPPUT

8211 hex Attempted to overwrite file or directory FCOPY, FRENAME,
DCREATE

Continued on next page.

AppF

E
rr

or
 C

od
es

F-3

8212 hex File or directory does not exist
FOPEN, FCOPY, FREMOVE,
FRENAME, DREMOVE,
FTPPUT

Continued from previous page.

Error Code Description
Instructions in Which

This Error Occurs

Index

Index-1

Index
Symbols

registers - 3-4

Numerics
10-ms OFF-Delay Timer (TOFF (10 ms)) - - - - - - - - - 4-21
10-ms ON-Delay Timer (TON (10 ms)) - - - - - - - - - - 4-19

1-ms OFF-Delay Timer (TOFF (1 ms))- - - - - - - - - - - 4-18
1-ms ON-Delay Timer (TON (1 ms))- - - - - - - - - - - - 4-16
1-s OFF-Delay Timer (TOFF (1 s)) - - - - - - - - - - - - - 4-24

1-s ON-Delay Timer (TON (1 s)) - - - - - - - - - - - - - - 4-22

A
Absolute Value (ABS) - 4-56
Add (ADD (+)) - 4-35

Add Time (TMADD) - 4-48
address - 3-8
Arc Cosine (ACOS) - 4-99

Arc Sine (ASIN) - 4-98
Arc Tangent (ATAN) -4-100
arithmetic operators - - - - - - - - - - - - - - - - - - C-2, C-5

ASCII Conversion 1 (ASCII) - - - - - - - - - - - - - - - - 4-60
ASCII Conversion 2 (BINASC) - - - - - - - - - - - - - - - 4-61
ASCII Conversion 3 (ASCBIN) - - - - - - - - - - - - - - - 4-62

B
background - 1-10

Basic Function Instructions - - - - - - - - - - - - - 4-8, 4-93
batch transfer - 2-12
BCD Conversion (BCD) - - - - - - - - - - - - - - - - - - 4-58

Binary Conversion (BIN) - - - - - - - - - - - - - - - - - - 4-57
Binary Search (BSRCH) - - - - - - - - - - - - - - - - - -4-116
bit- 3-8

Bit Rotate Left (ROTL) - - - - - - - - - - - - - - - - - - -4-104
Bit Rotate Right (ROTR) - - - - - - - - - - - - - - - - - -4-105
Bit Shift Left (SHFTL) -4-118

Bit Shift Right (SHFTR) - - - - - - - - - - - - - - - - - - -4-120
Byte Swap (BSWAP) -4-122
Byte-to-word Expansion (BEXTD)- - - - - - - - - - - - -4-113

C
Call Extended Program (XCALL) - - - - - - - - - - - - - 4-83

Call Motion Program (MSEE) - - - - - - - - - - - - - - - 4-76
Call Sequence Program (SEE) - - - - - - - - - - - - - - - 4-75
Call User Function (FUNC) - - - - - - - - - - - - - - - - - 4-78

calling user functions - 1-17
checking for multiple coils - - - - - - - - - - - - - - - - - 5-13
checking the operation of the ladder programs - - - - - 2-13

child drawings- 1-7
Clear Queue Table Pointer (QTBLCL) - - - - - - - - - - -4-202

Clear Table Block (TBLCL) - - - - - - - - - - - - - - - - 4-187
Coil (COIL) - 4-29
Common Logarithm (LOG) - - - - - - - - - - - - - - - - 4-103

comparison operators - - - - - - - - - - - - - - - - - C-2, C-5
compiling the program- -2-8
connecting the hardware - - - - - - - - - - - - - - - - - - -2-3

constant registers -3-3
constants - C-3
control instructions- C-2

controlling the execution of drawings - - - - - - - - - - - -1-9
Copy Word (COPYW) - - - - - - - - - - - - - - - - - - - 4-121
Cosine (COS) - 4-95

Counter (COUNTER) - 4-204
creating a project- -2-4

creating ladder programs - - - - - - - - - - - - - - - - - - -2-7
creating table data - 1-18
creating user functions - - - - - - - - - - - - - - - - - - - 1-15

cross reference criteria - - - - - - - - - - - - - - - - - - - 5-10
cross references - 5-10

D
D registers -3-4
Data Manipulation Instructions - - - - - - - - - - - - - - - -4-8

data registers -3-2
Data Shift Instructions - - - - - - - - - - - - - - - - - - - 4-104
data types- -3-8

DDC Instructions - - - - - - - - - - - - - - - - - - - 4-8, 4-123
Dead Zone A (DZA) - 4-123
Dead Zone B (DZB) - 4-124

Decrement (DEC)- 4-47
dialog box

Replace -5-6
Replace in the Project - - - - - - - - - - - - - - - - - - -5-8
Search -5-5
Search in Project- -5-7

Direct Input String (INS) - - - - - - - - - - - - - - - - - - - 4-79
Direct Output String (OUTS) - - - - - - - - - - - - - - - - 4-81

displaying watch data - 5-23
Divide (DIV (÷)) - 4-42
double-length integer -3-8

double-precision real number- - - - - - - - - - - - - - - - -3-8
DWG.A -1-8
DWG.H -1-8

DWG.I -1-8
DWG.L -1-8

E
enabling and disabling ladder diagrams - - - - - - - - - - 5-22
Equal (=)- 4-69

Exchange (XCHG) - 4-110
Exclusive OR (XOR) - 4-66

execution processing of drawings - - - - - - - - - - - - - -1-9

Index

Index-2

Exponential (EXP)- 4-101
Export (EXPORT/EXPORTL/EXPORTLE)- - - - - - - - - 4-248
Expression (EXPRESSION) - - - - - - - - - - - - - - - - -4-91

EXPRESSION instructions - - - - - - - - - - - - - - - - - - C-2
Extended Add (ADDX (++)) - - - - - - - - - - - - - - - - -4-36
Extended Subtract (SUBX − −)) - - - - - - - - - - - - - - -4-39

F
Falling-edge Detection Coil (OFFP-COIL) - - - - - - - - -4-31

Falling-edge NC Contact (OFFP-NCC) - - - - - - - - - - -4-15
Falling-edge NO Contact (OFFP-NOC)- - - - - - - - - - -4-13
Falling-edge Pulses (OFF-PLS) - - - - - - - - - - - - - - -4-27

First-in First-out (FINFOUT) - - - - - - - - - - - - - - - - 4-207
First-order Lag (LAG)- 4-142

Flash Operation (FLASH-OP) - - - - - - - - - - - - - - - 4-233
FOR Construct (FOR,END_FOR) - - - - - - - - - - - - - -4-86
Force OFF -5-14

Force ON -5-14
forcing coils ON or OFF - - - - - - - - - - - - - - - - - - -5-14

from a ladder program- - - - - - - - - - - - - - - - - -5-14
from the Force Coil List Pane - - - - - - - - - - - - - -5-14
searching for forced coils in the Force Coil
List Pane -5-14

function external registers - - - - - - - - - - - - - - - - - - 3-5

Function Generator (FGN) - - - - - - - - - - - - - - - - - 4-147
function input registers - - - - - - - - - - - - - - - - - - - 3-4
function internal registers - - - - - - - - - - - - - - - - - - 3-5

function output registers- - - - - - - - - - - - - - - - - - - 3-4

G
G registers - 3-2
global registers - 3-2
going online - 2-6

grandchild drawings - 1-7
Greater Than (>) -4-72
Greater Than or Equal (≥) - - - - - - - - - - - - - - - - - -4-71

H
high-speed drawing operation mode settings- - - - - - -1-11

I
IF Construct (IF, END_IF)- - - - - - - - - - - - - - - - - - -4-88

IF-ELSE Construct (IF, ELSE, END_IF) - - - - - - - - - - -4-90
Import (IMPORT/IMPORTL/IMPORTLE) - - - - - - - - - 4-240
Inclusive AND (AND) -4-64

Inclusive OR (OR)- -4-65
Increment (INC) -4-46
index registers (i, j) -3-12

individual transfer- -2-12
input registers- 3-3
inserting instructions - 2-7

inserting rungs - 2-7
installing MPE720 version 7 - - - - - - - - - - - - - - - - - 2-3

integer- 3-8
Integer Remainder (MOD) - - - - - - - - - - - - - - - - - - 4-43
Inverse Function Generator (IFGN) - - - - - - - - - - - - 4-151

Invert Sign (INV) - 4-54

L
ladder drawings - 1-7

execution timing - 1-3

ladder language instructions - - - - - - - - - - - - - - - - - 4-6
Ladder Pane - 1-6
ladder program- 1-2

Ladder Program Editor - 1-6
ladder program runtime monitoring - - - - - - - - - - - - - 5-4
Less Than (<) - 4-67

Less Than or Equal (≤) - - - - - - - - - - - - - - - - - - - 4-68
Linear Accelerator/Decelerator 1 (LAU) - - - - - - - - - 4-155

Linear Accelerator/Decelerator 2 (SLAU) - - - - - - - - 4-161
local registers - 3-4
Logic Operation Instructions - - - - - - - - - - - - - - - - - 4-7

Logic Operations and Comparison Instructions - - - - - 4-64
logic operators - C-2, C-5

M
motion programs- 5-26
Move Bit (MOVB)- 4-106

Move Table Block (TBLMV) - - - - - - - - - - - - - - - - 4-190
Move Word (MOVW) - 4-108
Multiply (MUL (×)) - 4-41

N
Natural Logarithm (LN) - - - - - - - - - - - - - - - - - - 4-102

NC Contact (NCC) - 4-14
NO Contact (NOC)- 4-11
Not Equal (≠) - 4-70

Numeric Operation Instructions - - - - - - - - - - - 4-7, 4-34

O
One’s Complement (COM) - - - - - - - - - - - - - - - - - 4-55
online security setting - 5-24
operands - C-3

operation error drawings - - - - - - - - - - - - - - - - - - - 1-7
operators - C-2
output registers - 3-3

P
parent drawings - 1-7

Parity Conversion (PARITY) - - - - - - - - - - - - - - - - - 4-59
PD Control (PD) - 4-133
Phase Lead Lag (LLAG) - - - - - - - - - - - - - - - - - - 4-144

PI Control (PI) - 4-128
PID Control (PID) - 4-137

preparation for devices to be connected - - - - - - - - - - 2-3
privilege levels - 5-24

Index

Index-3

Program Control Instructions - - - - - - - - - - - - - - - - 4-7
program password setting - - - - - - - - - - - - - - - - - 5-24
project password setting- - - - - - - - - - - - - - - - - - 5-24

Pulse Width Modulation (PWM) - - - - - - - - - - - - - -4-170

Q
quadruple-length integer - - - - - - - - - - - - - - - - - - - 3-8

R
Range Check (RCHK) - - - - - - - - - - - - - - - - - - - 4-73
Read Data Trace (DTRC-RD/DTRC-RDE) - - - - - - - -4-212
Read Motion Register (MOTREG-R) - - - - - - - - - - -4-238

Read Queue Table (QTBLR and QTBLRI) - - - - - - - -4-194
Read SERVOPACK Parameter (MLNK-SVR)- - - - - - -4-228

Read Table Block (TBLBR)- - - - - - - - - - - - - - - - -4-173
real number - 3-8
Real Remainder (REM) - - - - - - - - - - - - - - - - - - - 4-45

real-time trace- 5-25
Receive Message (MSG-RCV)- - - - - - - - - - - - - - -4-220
Receive Message Extended (MSG-RCVE) - - - - - - - -4-221

Register Lists - 2-13, 5-18
register map - 5-18
register types - 3-8

Relay Circuit Instructions- - - - - - - - - - - - - - - 4-6, 4-11
Replace Dialog Box- 5-6
Replace in the Project Dialog Box - - - - - - - - - - - - - 5-8

replacing in project files - - - - - - - - - - - - - - - - - - - 5-8
replacing text in programs - - - - - - - - - - - - - - - - - - 5-6
reserved words - C-2

Reset Coil (R-COIL)- 4-33
Reverse Coil (REV-COIL) - - - - - - - - - - - - - - - - - - 4-30
Rising-edge Detection Coil (ONP-COIL) - - - - - - - - - 4-31

Rising-edge NC Contact (ONP-NCC)- - - - - - - - - - - 4-14
Rising-edge NO Contact (ONP-NOC) - - - - - - - - - - 4-12
Rising-edge Pulses (ON-PLS) - - - - - - - - - - - - - - - 4-25

S
saving the ladder program to flash memory - - - - - - - 2-16
scheduling the execution of high-speed and
low-speed scan process drawings - - - - - - - - - - - - 1-10
Search Dialog Box - 5-5
Search for Table Column (TBLSRC)- - - - - - - - - - - -4-184

Search for Table Row (TBLSRL)- - - - - - - - - - - - - -4-181
Search in Project Dialog Box - - - - - - - - - - - - - - - - 5-7
searching and replacing - - - - - - - - - - - - - - - - - - - 5-5

searching and replacing in programs - - - - - - - - - - - - 5-5
searching in programs - 5-5
searching in project files - - - - - - - - - - - - - - - - - - - 5-7

security features - 5-24
security key - 5-24
self configuration - 2-5

Send Message (MSG-SND) - - - - - - - - - - - - - - - -4-216

Send Message Extended (MSG-SNDE) - - - - - - - - - 4-218
Set Coil (S-COIL) - 4-32
Setting the High-speed and Low-speed Times - - - - - - 1-10

Sine (SIN) - 4-94
Sort (SORT) - 4-117
Spend Time (SPEND) - 4-52

Square Root (SQRT) - 4-93
Standard System Function Instructions - - - - - - - - - - -4-9
Store (STORE) - 4-34

structure of register addresses - - - - - - - - - - - - - - - -3-8
substitution operator- - - - - - - - - - - - - - - - - - C-2, C-6
Subtract (SUB (−)) - 4-38

Subtract Time (TMSUB) - - - - - - - - - - - - - - - - - - - 4-50
switching the register map display - - - - - - - - - - - - - 5-19

system configuration example - - - - - - - - - - - - - - - -2-3
System Function Instructions - - - - - - - - - - - - - - - 4-204
system registers -3-2

System Service Registers - - - - - - - - - - - - - - - - - - A-2

T
Tab Page to Edit Ladder Program - - - - - - - - - - - - - -1-6
table data - 1-18
Table Initialization (SETW) - - - - - - - - - - - - - - - - - 4-111

Table Manipulation Instructions - - - - - - - - - - - 4-8, 4-173
Tangent (TAN)- 4-97
Trace (TRACE) - 4-210

trace manager - 5-25
tracing - 5-25
Tuning Panel - 5-21

U
Upper/Lower Limit (LIMIT)- - - - - - - - - - - - - - - - - 4-126

user administration- 5-24
user functions - 1-13

V
Variable Pane -1-6
variables- C-3

viewing called programs- - - - - - - - - - - - - - - - - - - 5-17
Visual monitor - 5-21

W
watching - 5-23
WHILE Construct (WHILE, END_WHILE) - - - - - - - - - 4-84

Word-to-byte Compression (BPRESS)- - - - - - - - - - 4-114
Write Motion Register (MOTREG-W) - - - - - - - - - - - 4-236
Write Queue Table (QTBLW and QTBLWI) - - - - - - - - 4-198

Write SERVOPACK Parameter (MLNK-SVW) - - - - - - 4-223
Write Table Block (TBLBW) - - - - - - - - - - - - - - - - 4-177
writing the ladder programs- - - - - - - - - - - - - - - - - 2-11

X
XY trace - 5-25

Revision History-1

Revision History

The date of publication, revision number, and web revision number are given at the bottom right of the
back cover. Refer to the following example.

Date of
Publication

Rev.
No.

Web
Rev.
No.

Section Revised Contents

September 2019 <7> 0 Chapter 4 Partly revised.

Back cover Revision: Format

May 2019 <6> 0 All chapters Partly revised.

Chapter 4 Addition: Storage operation instructions and string operation instructions

Back cover Revision: Address

October 2017 <5> 0 Chapter 3 Addition: Usable range of local registers

Addition: Setting for D Registers

4.8 Revision: Expression of dead zone set value for Dead Zone A and Dead Zone B

4.10 Revision: Trace (TRACE), Write SERVOPACK Parameter (MLNK-SVW), Read SER-
VOPACK Parameter (MLNK-SVR), Export (EXPORT/EXPORTL/EXPORTLE)

C.1 Addition: Information on extended addition and extended subtraction

C.2 Addition: Important information on arithmetic operators

July 2017 <4> 1 1.3 Revision: Maximum number of drawings for DWGH and DWGL

4.10 Deletion: Data number listed in I/O item of IMPORTLE table

Back cover Revision: Address

February 2017 0 − Same changes as for SIEP C880725 13D<3>-1 for the Web

4.10 Addition: Information on reading data traces (DTRC-RDE), importing (IMPORTLE),
and exporting (EXPORTLE)

Back cover Revision: Address

September 2016 <3> 1 4.8 Addition: Information on the scan time set value

December 2015 0 4.2 Revision: Information on OFF-Delay Timer (TOFF (1 ms))

4.8 Revision: Specifications for P gain, I gain, and D gain in the parameter tables for
the real-number PI, PD, and PID instructions

Revision: Programming examples for PI, PD, and PID control

4.9 Revision: Table data for Write Table Block (TBLBW)

4.10 Addition: Read SERVOPACK Parameter (MLNK-SVR)
Addition: Flash Operation (FLASH-OP)

Back cover Revision: Address

June 2015 <2> 2 4.2, 4.5 Addition: Precaution for user functions

Front cover,
back cover

Revision: Format

February 2015 1 4.2 Addition: Timing charts and notes on combining instructions

Back cover Revision: Address

September 2014 0 All chapters Addition: Information related to the MP3300.

Preface Revision: PL contents.

4.5 Revision: RSSEL parameter for JNS and OUTS instructions
Rack numbers changed from “1 to 4” to “1 to 7” and slot numbers changed from
“0 to 8” to “0 to 9.”

4.10 Addition: Information related to the IMPORTL and EXPORTL instructions.

Back cover Revision: Address

September 2012 <1> 0 All chapters Fully revised.

4.10 Addition: Write SERVOPACK Parameter (MLNK-SVW)

Back cover Revision: Address

June 2012 <0> 1 Appendix C.1 Addition: Control instructions as operators.

March 2012 − - − First edition

MANUAL NO. SIEP C880725 13A <0>-1

Published in Japan June 2012

Date of publication

Revision number
WEB revision number

IRUMA BUSINESS CENTER (SOLUTION CENTER)
480, Kamifujisawa, Iruma, Saitama, 358-8555, Japan
Phone: +81-4-2962-5151 Fax: +81-4-2962-6138
http://www.yaskawa.co.jp

YASKAWA AMERICA, INC.
2121, Norman Drive South, Waukegan, IL 60085, U.S.A.
Phone: +1-800-YASKAWA (927-5292) or +1-847-887-7000 Fax: +1-847-887-7310
http://www.yaskawa.com

YASKAWA ELÉTRICO DO BRASIL LTDA.
777, Avenida Piraporinha, Diadema, São Paulo, 09950-000, Brasil
Phone: +55-11-3585-1100 Fax: +55-11-3585-1187
http://www.yaskawa.com.br

YASKAWA EUROPE GmbH
Hauptstraβe 185, 65760 Eschborn, Germany
Phone: +49-6196-569-300 Fax: +49-6196-569-398
http://www.yaskawa.eu.com E-mail: info@yaskawa.eu.com

YASKAWA ELECTRIC KOREA CORPORATION
35F, Three IFC, 10 Gukjegeumyung-ro, Yeongdeungpo-gu, Seoul, 07326, Korea
Phone: +82-2-784-7844 Fax: +82-2-784-8495
http://www.yaskawa.co.kr

YASKAWA ASIA PACIFIC PTE. LTD.
30A, Kallang Place, #06-01, 339213, Singapore
Phone: +65-6282-3003 Fax: +65-6289-3003
http://www.yaskawa.com.sg

YASKAWA ELECTRIC (THAILAND) CO., LTD.
59, 1st-5th Floor, Flourish Building, Soi Ratchadapisek 18, Ratchadapisek Road, Huaykwang, Bangkok, 10310, Thailand
Phone: +66-2-017-0099 Fax: +66-2-017-0799
http://www.yaskawa.co.th

YASKAWA ELECTRIC (CHINA) CO., LTD.
22F, Link Square 1, No.222, Hubin Road, Shanghai, 200021, China
Phone: +86-21-5385-2200 Fax: +86-21-5385-3299
http://www.yaskawa.com.cn

YASKAWA ELECTRIC (CHINA) CO., LTD. BEIJING OFFICE
Room 1011, Tower W3 Oriental Plaza, No.1, East Chang An Ave.,
Dong Cheng District, Beijing, 100738, China
Phone: +86-10-8518-4086 Fax: +86-10-8518-4082

YASKAWA ELECTRIC TAIWAN CORPORATION
12F, No. 207, Sec. 3, Beishin Rd., Shindian Dist., New Taipei City 23143, Taiwan
Phone: +886-2-8913-1333 Fax: +886-2-8913-1513 or +886-2-8913-1519
http://www.yaskawa.com.tw

In the event that the end user of this product is to be the military and said product is to
be employed in any weapons systems or the manufacture thereof, the export will fall
under the relevant regulations as stipulated in the Foreign Exchange and Foreign
Trade Regulations. Therefore, be sure to follow all procedures and submit all relevant
documentation according to any and all rules, regulations and laws that may apply.

Specifications are subject to change without notice for ongoing product modifications
and improvements.

© 2012 YASKAWA ELECTRIC CORPORATION

Published in Japan September 2019

MANUAL NO. SIEP C880725 13H <7>-0

18-10-15

Ladder Program
Machine Controller MP3000 Series

PROGRAMMING MANUAL

Original instructions

	Front Cover
	About this Manual
	Using this Manual
	Related Manuals
	Safety Precautions
	Warranty
	Contents
	1 Features and Overview of Ladder Programs
	1.1 What Is a Ladder Program?
	1.2 Features
	1.2.1 The Various Execution Timing of Ladder Drawings
	1.2.2 Program Modules
	1.2.3 Programming Complicated Numeric Operations
	1.2.4 Communications Control with External Devices
	1.2.5 Complete Synchronization with Motion Control

	1.3 Introduction
	1.3.1 Ladder Program Editor
	1.3.2 Ladder Drawings
	1.3.3 User Functions
	1.3.4 Table Data

	2 Ladder Program Development Flow
	2.1 Introduction
	2.2 Preparation for Devices to be Connected
	2.2.1 Connecting the Hardware
	2.2.2 Installing MPE720 Version 7

	2.3 Creating a Project
	2.4 Self Configuration
	2.5 Going Online
	2.6 Creating Ladder Programs
	2.7 Writing the Ladder Programs
	2.8 Checking the Operation of the Ladder Programs
	2.8.1 Preparations for Checking Operation
	2.8.2 Confirming the Operation of the 0000th Line (AND Circuit)
	2.8.3 Confirming the Operation of the 0001st Line (Timer Circuit)

	2.9 Save the Ladder Program to Flash Memory

	3 Registers
	3.1 Global Registers
	3.2 Local Registers
	3.2.1 Precautions When Using Local Registers within a User Function
	3.2.2 Setting the D Register Clear When Start Option
	3.2.3 Setting for D Registers

	3.3 Structure of Register Addresses
	3.3.1 Register Types
	3.3.2 Data Types

	3.4 Index Registers (i, j)
	3.5 Array Registers ([])

	4 Ladder Language Instructions
	4.1 Introduction
	4.1.1 Ladder Language Instructions
	4.1.2 How to Read the Ladder Language Instructions

	4.2 Relay Circuit Instructions
	4.2.1 NO Contact (NOC)
	4.2.2 Rising-edge NO Contact (ONP-NOC)
	4.2.3 Falling-edge NO Contact (OFFP-NOC)
	4.2.4 NC Contact (NCC)
	4.2.5 Rising-edge NC Contact (ONP-NCC)
	4.2.6 Falling-edge NC Contact (OFFP-NCC)
	4.2.7 1-ms ON-Delay Timer (TON(1ms))
	4.2.8 1-ms OFF-Delay Timer (TOFF(1 ms))
	4.2.9 10-ms ON-Delay Timer (TON(10ms))
	4.2.10 10-ms OFF-Delay Timer (TOFF(10ms))
	4.2.11 1-s ON-Delay Timer (TON(1s))
	4.2.12 1-s OFF-Delay Timer (TOFF(1s))
	4.2.13 Rising-edge Pulses (ON-PLS)
	4.2.14 Falling-edge Pulses (OFF-PLS)
	4.2.15 Coil (COIL)
	4.2.16 Reverse Coil (REV-COIL)
	4.2.17 Rising-edge Detection Coil (ONP-COIL)
	4.2.18 Falling-edge Detection Coil (OFFP-COIL)
	4.2.19 Set Coil (S-COIL)
	4.2.20 Reset Coil (R-COIL)

	4.3 Numeric Operation Instructions
	4.3.1 Store (STORE)
	4.3.2 Add (ADD (+))
	4.3.3 Extended Add (ADDX (++))
	4.3.4 Subtract (SUB (-))
	4.3.5 Extended Subtract (SUBX (- -))
	4.3.6 Multiply (MUL (x))
	4.3.7 Divide (DIV (¸))
	4.3.8 Integer Remainder (MOD)
	4.3.9 Real Remainder (REM)
	4.3.10 Increment (INC)
	4.3.11 Decrement (DEC)
	4.3.12 Add Time (TMADD)
	4.3.13 Subtract Time (TMSUB)
	4.3.14 Spend Time (SPEND)
	4.3.15 Invert Sign (INV)
	4.3.16 One’s Complement (COM)
	4.3.17 Absolute Value (ABS)
	4.3.18 Binary Conversion (BIN)
	4.3.19 BCD Conversion (BCD)
	4.3.20 Parity Conversion (PARITY)
	4.3.21 ASCII Conversion 1 (ASCII)
	4.3.22 ASCII Conversion 2 (BINASC)
	4.3.23 ASCII Conversion 3 (ASCBIN)

	4.4 Logic Operations and Comparison Instructions
	4.4.1 Inclusive AND (AND)
	4.4.2 Inclusive OR (OR)
	4.4.3 Exclusive OR (XOR)
	4.4.4 Less Than (<)
	4.4.5 Less Than or Equal (<=)
	4.4.6 Equal (=)
	4.4.7 Not Equal (<>)
	4.4.8 Greater Than or Equal (>=)
	4.4.9 Greater Than (>)
	4.4.10 Range Check (RCHK)

	4.5 Program Control Instructions
	4.5.1 Call Sequence Program (SEE)
	4.5.2 Call Motion Program (MSEE)
	4.5.3 Call User Function (FUNC)
	4.5.4 Direct Input String (INS)
	4.5.5 Direct Output String (OUTS)
	4.5.6 Call Extended Program (XCALL)
	4.5.7 WHILE Construct (WHILE, END_WHILE)
	4.5.8 FOR Construct (FOR, END_FOR)
	4.5.9 IF Construct (IF, END_IF)
	4.5.10 IF-ELSE Construct (IF, ELSE, END_IF)
	4.5.11 Expression (EXPRESSION)

	4.6 Basic Function Instructions
	4.6.1 Square Root (SQRT)
	4.6.2 Sine (SIN)
	4.6.3 Cosine (COS)
	4.6.4 Tangent (TAN.)
	4.6.5 Arc Sine (ASIN)
	4.6.6 Arc Cosine (ACOS)
	4.6.7 Arc Tangent (ATAN)
	4.6.8 Exponential (EXP)
	4.6.9 Natural Logarithm (LN)
	4.6.10 Common Logarithm (LOG)

	4.7 Data Shift Instructions
	4.7.1 Bit Rotate Left (ROTL)
	4.7.2 Bit Rotate Right (ROTR)
	4.7.3 Move Bit (MOVB)
	4.7.4 Move Word (MOVW)
	4.7.5 Exchange (XCHG)
	4.7.6 Table Initialization (SETW)
	4.7.7 Byte-to-word Expansion (BEXTD)
	4.7.8 Word-to-byte Compression (BPRESS)
	4.7.9 Binary Search (BSRCH)
	4.7.10 Sort (SORT)
	4.7.11 Bit Shift Left (SHFTL)
	4.7.12 Bit Shift Right (SHFTR)
	4.7.13 Copy Word (COPYW)
	4.7.14 Byte Swap (BSWAP)

	4.8 DDC Instructions
	4.8.1 Dead Zone A (DZA)
	4.8.2 Dead Zone B (DZB)
	4.8.3 Upper/Lower Limit (LIMIT)
	4.8.4 PI Control (PI)
	4.8.5 PD Control (PD)
	4.8.6 PID Control (PID)
	4.8.7 First-order Lag (LAG)
	4.8.8 Phase Lead Lag (LLAG)
	4.8.9 Function Generator (FGN)
	4.8.10 Inverse Function Generator (IFGN)
	4.8.11 Linear Accelerator/Decelerator 1 (LAU)
	4.8.12 Linear Accelerator/Decelerator 2 (SLAU)
	4.8.13 Pulse Width Modulation (PWM)

	4.9 Table Manipulation Instructions
	4.9.1 Read Table Block (TBLBR/TBLBRE)
	4.9.2 Write Table Block (TBLBW/TBLBWE)
	4.9.3 Search for Table Row (TBLSRL/TBLSRLE)
	4.9.4 Search for Table Column (TBLSRC/TBLSRCE)
	4.9.5 Clear Table Block (TBLCL/TBLCLE)
	4.9.6 Move Table Block (TBLMV/TBLMVE)
	4.9.7 Read Queue Table (QTBLR/QTBLRE and QTBLRI/ QTBLRIE)
	4.9.8 Write Queue Table (QTBLW/QTBLWE and QTBLWI/ QTBLWIE)
	4.9.9 Clear Queue Table Pointer (QTBLCL/QTBLCLE)

	4.10 System Function Instructions
	4.10.1 Counter (COUNTER)
	4.10.2 First-in First-out (FINFOUT)
	4.10.3 Trace (TRACE)
	4.10.4 Read Data Trace (DTRC-RD/DTRC-RDE)
	4.10.5 Send Message (MSG-SND)
	4.10.6 Send Message Extended (MSG-SNDE)
	4.10.7 Receive Message (MSG-RCV)
	4.10.8 Receive Message Extended (MSG-RCVE)
	4.10.9 Write SERVOPACK Parameter (MLNK-SVW)
	4.10.10 Read SERVOPACK Parameter (MLNK-SVR)
	4.10.11 Flash Operation (FLASH-OP)
	4.10.12 Write Motion Register (MOTREG-W)
	4.10.13 Read Motion Register (MOTREG-R)
	4.10.14 Import (IMPORT/IMPORTL/IMPORTLE)
	4.10.15 Export (EXPORT/EXPORTL/EXPORTLE)

	4.11 Storage Operation Instructions
	4.11.1 Open File (FOPEN)
	4.11.2 Close File (FCLOSE)
	4.11.3 Read Data from File (FREAD)
	4.11.4 Write Data to File (FWRITE)
	4.11.5 Set File Position Indicator (FSEEK)
	4.11.6 Read Line from File to String (FGETS)
	4.11.7 Write String to File (FPUTS)
	4.11.8 Copy File (FCOPY)
	4.11.9 Delete File (FREMOVE)
	4.11.10 Rename File (FRENAME)
	4.11.11 Create Directory (DCREATE)
	4.11.12 Delete Directory (DREMOVE)
	4.11.13 Send File to FTP Server (FTPPUT)

	4.12 String Operation Instructions
	4.12.1 Convert Integer to String (INT2STR)
	4.12.2 Convert Real Number to String (REAL2STR)
	4.12.3 Convert String to Integer (STR2INT)
	4.12.4 Convert String to Real Number (STR2REAL)
	4.12.5 Store String (STRSET)
	4.12.6 Partially Delete String (STRDEL)
	4.12.7 Copy String (STRCPY)
	4.12.8 Get String Length (STRLEN)
	4.12.9 Concatenate Strings (STRCAT)
	4.12.10 Compare Strings (STRCMP)
	4.12.11 Insert String (STRINS)
	4.12.12 Find String (STRFIND)
	4.12.13 Extract String (STREXTR)
	4.12.14 Extract String from End (STREXTRE)
	4.12.15 Delete Spaces at String Ends (STRTRIM)

	5 Features of the MPE720 Engineering Tool
	5.1 Ladder Program Runtime Monitoring
	5.2 Search/Replace
	5.2.1 Searching and Replacing in Programs
	5.2.2 Searching and Replacing in Project Files

	5.3 Cross References
	5.4 Checking for Multiple Coils
	5.5 Forcing Coils ON and OFF
	5.5.1 Forcing Coils ON or OFF from a Ladder Program
	5.5.2 Changing the Forced ON/OFF Status from the Force Coil List Pane

	5.6 Viewing Called Programs
	5.7 Register Lists
	5.7.1 Displaying the Register Map
	5.7.2 Switching the Register Map Display
	5.7.3 Editing Data

	5.8 Tuning Panel
	5.9 Enabling and Disabling Ladder Programs
	5.10 Watching
	5.10.1 Displaying Watch Data
	5.10.2 Editing the Value Column

	5.11 Security
	5.12 Tracing
	5.13 Advanced Programming
	5.13.1 Motion Programs

	AppendixA System Service Registers
	A.1 Overview of System Registers
	A.2 Common to All Drawings
	A.3 Exclusive to DWG.H (High-speed Scan Process Drawings)
	A.4 Exclusive to DWG.L (Low-speed Scan Process Drawings)
	A.5 Scan Execution Status and Calendar
	A.6 System Program Software Numbers and Remaining Program Memory Capacity

	AppendixB Sample Programs
	B.1 Jogging from the Control Panel
	B.2 Motion Program Control
	B.3 Simple Synchronized Operation of Two Axes with a Virtual Axis

	AppendixC Format for EXPRESSION Instructions
	C.1 Elements That You Can Use in Numeric Expressions
	C.1.1 Operators
	C.1.2 Operands
	C.1.3 Instructions That You Can Use with EXPRESSION Instructions

	C.2 Notational Limitations
	C.2.1 Arithmetic and Logic Operators
	C.2.2 Comparison Operators
	C.2.3 Logic Operators
	C.2.4 Substitution Operator
	C.2.5 Functions
	C.2.6 Parentheses

	AppendixD Precautions on Motion Parameters
	AppendixE Machine Controller Specifications
	AppendixF Error Codes
	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	Revision History
	Back Cover

