Easy to build projects for everyone and

*

 -•• •

AND INSIDE A CHOICE OF DESIGNS TO BUILD ON THIS SRPP:OARD

CROTECH OSCILLOSCOPES

Range of Portable Scopes mains and battery operated Plus special features (UK $c / \mathrm{p} £ 3.00$)
3030 Single trace $15 \mathrm{MHZ} .5 \mathrm{mV}, 0.5$ micro secs. Plus buill in component tester. 95 mm tube 3131 Diual trace 15 MHZ . trig to 35 MHZ .5 mV .0 .5 micro 130 mm tube plus component tester.
3034 Battery-mains dual trace 15 MHZ , trig 1020 MHZ built in Nicads. 5 mV .0 .5 micro secs. (Eliminator charger optional £28.75)
Also Available 3033 . single trace 3034
3035. 130 mm 3030 3337. dual 30 MHZ . 130 mm
(Optional Probes all models - see below)
£293.25
£189.75
£408.25

RF AND AUDIO SIGNAL GENERATORS Mains operated

 UK c/D £1.00)Audio $20 \mathrm{HZ}-200 \mathrm{KHZ} 4$ band. Sine/Square o/p
TE220 Distortion max 1%
£63.00
AR26 Distortion max 1%
$\{73.70$
AG26 Distortion 0.5. 1% Ieader
A6203 $10 \mathrm{HZ}-1 \mathrm{MHZ} 5$ band max dis tortion 0.1% Trio AF All feature Int/Ext. MOD. Variable output TE200 $100 \mathrm{KHZ} \cdot 100 \mathrm{MHZ} 6$ band ($300 \mathrm{MH2}$ harmonics) SG16 100 KHZ - 100 MHZ 6 band (300 MHZ harmonics) Leader £126.50
£52.00
£63.25
£68.00

THANDAR - SINCLAIR

Reliable low cost portable instruments, bench models all $25.5 \times 15 \times 5 \mathrm{~cm}$. Generators mains operated rest battery (supplied). UK c/p Hand models $65 p$. bench £1.15)
OIGITAL MULTIMETEAS ($31 / 2$ digit LCD)

TM354 Hand held. DC 2A. 2 m ohm. $1 \mathrm{mV}-1000 \mathrm{~V}$ DC. 500 v
TM352 Hand heid. DC 10A. He test Continuity pest $£ 45.94$ TM353 Bench. 2A AC/DC. 1000 V AC/DC. 20 M ohm.
Typical 0.25\%
57.44
ypical 0.25\%
$£ 96.60$
m351 Bench, 10A ACIDC. 1000 V AC/DC. 20 M ohm
rypical 0.1\%
£113.85
FREQUENCY COUNTERS 18 Digit]
PFM200 Hand held LED. 200 MH 2. $10 \mathrm{mV}(600 \mathrm{MHZ}$ with TP600)
TF040 Bench LCD. $40 \mathrm{MHz}-40 \mathrm{mV}$ (400 MHZ with TPG00) $£ 126.50$ TF200 Bench LCD. 200 MHZ . $10-30 \mathrm{mV}(600 \mathrm{MHZ}$ with (TP600)

TP600 600 MHZ + 10 Prescaler 10 mv
GENEAAT OAS (All bench models) mains operated
TG100 Function $1 \mathrm{HZ}-100 \mathrm{KHz}$. Sine/S0/Triangle/TTL £90.85 TG102 Function. $0.2 \mathrm{HZ}-2 \mathrm{MHZ}$. Sine/S0/Triangle/TTL £ 166.75 TG105 Pulse 5 MHZ -5H2 (200nS-200mS) various outputs $\mathbf{\Sigma 9 7 . 7 5}$ OSCILLOSCOPE (Bench model low Dower portable) 10 MHZ 2 trace 10 mV .0 .1 micro sec. All tacilities Model SC110
£159.85
(Rechargable battery pack $£ 8.63$. AC adaptor/charger $£ 5.69$ OPTIOMAL ITEMS
Carry case (bench only) £6.84 AC Adaptors (state model) $£ 5.69$

SABTRONICS EQUIPMENT

New reliable range of DMM s and
frequency computers with those Arequency computers with those
extra facilities and competitlve prices. All battery operated (supplied). Except 5020A mains. Optional mains eliminators avallable 8 OIGIT COUNTERS 0.1 HZ 1010 HZ Res 10 mV sensilivily fo 100 MHZ
(UKC/O £1.00) 81 rOA $20 \mathrm{HZ}-100 \mathrm{MHZ}$ in 2 ranges
$8610 \mathrm{~A} 20 \mathrm{HZ}-600 \mathrm{MHZ}$ in
${ }_{\text {Inges }}$
OIGIT COUNTERS 30 mV sensitivly io
IGHZ. Resolution $0.1 \mathrm{HZ} \cdot 10 \mathrm{HZ}$ $8610810 \mathrm{HZ}-600 \mathrm{MHZ}$ in 3 ranges. $8000 \mathrm{~B} 10 \mathrm{HZ}-1 \mathrm{GHZ}$ in 3 range

£184.00

with mains adaptor
5020 A 1 HZ -200 KHZ Sine/Square Triangle/TTC Freq. sweep. Low distortion
Oigital multimeters two LCD
hand held - one with temperature
range. Also LCD and LED Bench models
2035A 3% digit LCD hand. 2A AC/DC 2OMeg ohm ETC
2037 A As 2035 A with $-50^{\circ} \mathrm{C}$
$150^{\circ} \mathrm{C}$ Temp. range 0.1
£95.45
esolution
£109. 25
2010A 3 $1 / 2$ Digit LED. Auto decimal 8

2015 LCO version of above. $£ 109.25 |$| $£ 95$ | Battery eliminators |
| :--- | :--- |
| 14.95 | |

(c/0 2035/37A 65p: All others $£ 1.00$) (state model) $£ 5.69$

POWER SUPPLIES

3105 amp
 3105 amp 5108 amp

 onput regulated mans operated (c/o $£ 1.00$)$\$ 15.50$

ALSO STOCKEO
 Further range of low cos

equipment Plus tools.
accessories etc Also special offers which vary from time to time for callers.

AMATEUR/CB

KOM6 1.5 to 250 MHZ Dip meter. 6 ranges $£ 38.50$ SW R9 3-150 MHZ SWR • F/S
SWA50 Twin meter SWR . P9.50 1KW max. $£ 13.95$ 310 Single meter SWR * Power 10W $£ 8.95$ 110 SWR/Power/FS•10/100W I71 As 110 Twin meter $£ 14.50$ I75 SWR/FS/AE Match (40 MHZ) $£ 13.80$ 176 As $175 \cdot 0 / 5 / 50$ Watt Oower $£ 16.95$ 78 As i75 - OlHOROOW •MOD HM20 SWR meter Plus 20K/Volt 19 range Multimeter $£ 28.95$ 19 range Multimeter $£ 28.95$
(Note: SWR-Power ETC 10 (Note: SWR.PO
144/150 MHZ)
Just a selection of a huge range in stock - send for latest lists including prolessional ranges. VARIABLE REGULATEO POWER SUPPLIES
Manns operated regulated single metre (UK C/D $£ 1.50$) $2410 / 12-0 / 24 \mathrm{~V} 1 \mathrm{amp} \quad £ 35.00$ $1545-15$ volt $3 \mathrm{amp} \quad £ 44.00$ $\begin{array}{ll}1545.15 \text { volt } 3 \text { amp } \\ 4230 / 12-0 / 24 \mathrm{~V} 3 \mathrm{amp} & £ 54.00\end{array}$

LCD DIGITAL MULTIMETRES

 SPECIAL PURCHASE - LIMITED PERIOD ONLY6220 Reliable 22 range hand held $31 / 2$ digit LCO with volt/ohms auto range. unit and range signs, $10 \mathrm{amp} A C / O C$, battery warning. lower power ohms range Modet 6110 Also has range hold continuity buzzer and improved accuracy. All models high qualify rolary operation. Resolution 0.1 milli volt: 10 - Micro amp: 0.1 ohm.
$62201000 \mathrm{vDC}: 0.2 / 10 \mathrm{~A} A C / D C \cdot 600 \mathrm{v}$ AC: 2 meg ohm. Was $£ 55.95$
NOW £42.95
6)10 As above plus 20 mA AC/DC and improved accuracy. Was $£ 85.95$ NOW £59.95
THIS SPECIAL OFFER IS QUALITY WITH VALUE
6200201200 mA version of 6220 (i.e. no 10 amp) \quad [37.95
61000.2 A version of 6110 (i.e. no 10 amp) $\quad £ 49.95$

188 m 16 range wh 189 m 30 range with Hfe checker

MULTIMETERS (UK c/p 65 p or $£ 1.00$ for two) choose fagm uk's largest range
KhTIOI 10 range pocket $1 \mathrm{~K} / \mathrm{Volt}$ KAT100 12 range pocket $1 \mathrm{~K} /$ Volt NH55 10 range pocket 2K/Volt ATI 12 range pocket Deluxe 2K/Volt ST5 11 range pockel $4 \mathrm{~K} / \mathrm{Volt}$
NH56 22 range pocket 20 K /Volt
Yn360Th 19 range plus Hie Test 20K/Volt ST303Th 21 range plus He Test $20 \mathrm{~K} / \mathrm{Volt}$ ATT5001 16 range - range double 50K/Volt ar 102019 range Deluxe plus Hie Test 20K/Volt ETC5000 As KRT5001 plus colour scales $50 \mathrm{~K} /$ Valt $£ 17.95$ 708118 range - range double $10 A$ DC $50 \mathrm{~K} / \mathrm{Volt}$ §20.85 TMK500 23 range. Plus IZA DC Plus Cont. Buzzer $30 \mathrm{~K} / \mathrm{Volt}$
AT205 21 range Deluxe 10A DC 50K/volt
C708026 range large scale 10A DC 5KV AC/DC 20K/Volt

360TA 23 range Large scale 10A AC/OC Hie Test 50 Meg ohm. 1KV AC/OC $100 \mathrm{k} / \mathrm{Volt}$

LOGIC PROBES/MONITORS/PULSERS circuit powered (UK c/o60p)
LPI OTL/TTL/CMOS 10 MHZ : Pulse Memory LP2 DTL/TTL/CMOS 1.5 MHZ: Pulse: LP3 DTL/TTL/CMOS. 50 MH2: Pulse: Memary LMI Logic monitor for 8 to 16 pin IC's DPI Digital pulser. Single or 100 pos . LOP076 50 MHZ: 10Meg ohm: Logic Probe. with case

OIRECT READ HV

 PROBE(UK c/p 65p) $0 / 40 \mathrm{KV}$: 20 K Volt $£ 18.40$

DISCOUNTS

Available for UK and Export fos small and large quantities For most products. Please enquire.

OSCILLOSCOPE

 PROBE KITS (UK c/D 50p per 110 3) Avanable BNC plug or Banana $\times 1 £ 8.50$: $\times 10$ $£ 10.50 \times 1 . \times 10 £ 12.95 \mathrm{Als}$ X 100 (BNC oniy) $£ 16.95$SAFGAN PORTABLE OSCILLOSCOPES
Range of low cosi Dual Trace Scopes mans operated Made in UK to exacting slandards. Available as 10 MHZ 15 MHZ or 20 MHZ . All leature 5 mV sensitivity: 0.5 micro sec: $6.4 \times 8 \mathrm{~cm}$ display (UK $\mathrm{c} / \mathrm{p} £ 2.50$)

OT410	Dual 10 MHZ	$£ 194.35$
OT415	Dual 14 MHZ	$£ 201.25$
OT420	Dual 20 MHZ	$£ 216.20$

T420 Dual 20 MHZ
$£ 216.20$

* MPU Section accepts $24,28,40 \& 64$ pin DIL microprocessors
* Auxiliary Areas accept any .3 " or .6 " RAM, ROM or peripheral chip
* Power Bus Strips on all sides
* 5 incoming turret Power Terminals
* Component Support Bracket included
* Over 1400 contact points
* Alpha-Numeric column and row indexing
* Eurocard size ($160 \mathrm{~mm} \times 100 \mathrm{~mm}$)
* Slots onto all BIMBOARDS
* Non-Slip rubber backing
* Ideal for schools and colleges
* Long life, $<10 \mathrm{~m}$. ohms, nickel silver contacts

The PROFESSIONALS breadboard that BEGINNERS can start on

BOSS INOUSTRIAL MOULDINGS LID

2 Herne Hill Rd, London SE24 OAU, England
Telephone 01.7372383
Telex 919693
Cables \& Telegrams: LITZEN LONDON SE24
Please send me
MPUroBreadBoard(s)@ £18.
This price includes VAT \& PP, is applicable from Mar. 1, '81, but please add 15% for Overseas Orders, make cheques/P.O. payable to BOSS Industrial Mouldings Led and allow 10 days for order processing and cheque clearance etc.

I enclose a cheque/P.O. to the value of $\mathcal{£}$.............................

Name

Company
Address

MIGHTY NINETY PACKS

SUPER VALUE PACKS ALL AT 90p EACH
POSTAGE 20p PER PACK UP TO FOUR PACKS FIVE OR MORE POST FREE BUY SIX PACKS AND GET A SEVENTH PACK FREE:

```
MN1. }30
```

PAC Mtg.
MN2. $200 \frac{1}{1}$, AND d-watt Reslstors
MN3. 100 'A 2-watt Resistors.
MN4. 50 WIrewound Reslators.
MN5. 100 metal oxide Reslstors. $1 \%, 2 \%$
and 5%. N . 12 astd, potentiometers.
MN7. 25 asstd. skeleton pre-set Resistors
MNs. 50 asstd. Eletrolytlc Capacitors.
MNS. 100 asstd. Ceramic Capacitors. Pite
MNE. 100 assid. Ceramic Capacitors. Pite
dise, tub and monolytlc etc.
MNio. 100 mixed capacitors. Polyester
Polystyrene. Metallised, Radial and Axlal
types.
MN1i. 20 asstd. Silver Mica Capacitors.
M N12.8 Tantalum Bead Capactiors (usefu
values). 20 aastd. Translators. BC, $2 N$
Series + Power etc.
MN14. 40 in 1148 Dlodes.
MNI5. 5 Light Sensitive Devices.
MNSE. 20 min. wire-ended Neons.
MN17. 2 12-volt Relays. Ex nearly new
MNIP.
MNIB. 3 Encapsulated Reed Relays. 9-12v.
coll, d.-pole and t.-pole.
MNis. 2 24-volt Relays. Ex nearly new
MN20. 1 240-110 to 12 -volt, 100 ma Trans
former. $1240-110$ to 24 -volt 100 ma Trans-
MN21.
MN21. $1240-110$ to 24 -volt toma Trans-
former.
yellow, 2 green.

M N23. 1/b asstd. serews, nuts, washers, self-tappers etc. MN25. 50 asstd. pop rivets.
MN26. 50 assted. insulated crimps.
MN27. 200 items, grommets, spacers cable markers, plastic screws, sleeving, MN2 ${ }^{\text {miss }}$ etc.
MN29. ${ }^{20} 75 \mathrm{~m}$ equipment wire, ase colours and sizes. MN30. $3 \times 2 \mathrm{~m}$ length, 3 core, mains cable. MN31. 12 assid. trimmer capacitora, compression fim. Air-spaced etc.
MN33. 20 coll formers, ceramic, plastic,
read relay etc.
MN 34.25 min. glase reed switch.
MN35. 10 asatd. switches, toggle, slide,
micro, etc. asatd. audio connectors. Din
phono etc.
MN3s. 1 PCB with triac control IC data inc.
MN39. 1 Oscillator PCB Joads of comMN39. 1 oscillator PCB loads of components (no data).
MN40. 50 Polystyren Capacitors
MN43. 10 BC108 Transistors.
MN44. 10 serew fix S.P. C.O. min. slide
Mwltch. 5 1.35V. $1,000 \mathrm{~mA} / \mathrm{H}$. Mercury
batterles fin diameter x inn high. MNSE. $2 \times$ CA 723 voltage regulator. MNE. 5 pres $\$$-to-make min. switches.
MNS5. 3 BF 245-FETS.

PLEASE QUOTE NO. OF PACKS WHEN OROERING

CHORDGATE LTD.

[^0]
NEW KITS THIS MONTH

combination swith

Bitectrical device up would control solenoid lock or any viecrical device up 1040 mats. Could be lee into wall the off position. Complete kit E4.50.
a SECRET SWITCH
Can be hidden behind a panet, door, wallpaper, etc. erc. 2 eects placed near enough to the surfice to be contacis of which will light the lamp or whatever device is secrelly controlled and it would also latch itsel on. The second reed will unlateh the relay. Complete kit $£ 1.95$.

COMPUTER DESK

Size approx. $4 \times 2 \times 26$ high. These were made for hard
wark, the top being formics covered. Suitable for housing Work, the top being formica covered. Suitable for housing cont over E 100 each, our price only E 11.50 each, however, you must arrange to colliect.

INSTRUMENT BOX WITH KEY
Very strongly made (ply-nood sides with hard.board 100 and bottom). This is black grained effect, vinyl covered, very pleasing appearance. Internal dimensions $12^{\prime \prime}$ long, 4^{4} wide, $6^{\prime \prime}$ deep. kesping them in a safe place, $\mathbf{2 2 . 3 0}$. Post paid it ordered with other goods, otherwise $£ 1.00$

ROPE LIGHT
4 sers of coloured lamps in translucent plastic lube arranged to give the appearance of a running or tr avelling light. With variabl
speed control box, ideal for disco or shop window display speed con trol box, ideal for disco or shop window display.
Complete, made up, ready 10 plug into malns. $£ 36.00+£ 2$ p COMPUTER KEY SWITCHES Imake your own keyboard) These are for making up on a p.e.b. and consist of a vertical mount.
ing computer pype reed swich, which makes circuit when a magnet

> passes over it. The magnet is located In
depressed by a push rod, to
hich the legended top is
fixed. These are made These are made
6. price banks of 6er bank of 6 (including tops)

OUR CAR STARTER AND CHARGER KIT has no doubt saved car ofl mains or fring your hassment in an emergency you can star car of Thains or bring your batery up to full charge in a couple of bridge rectifiers, start/charge switch and full Instructions you can assemble this in the evening box it up or leave it on the shelf in the garage, whichever suits you best. Price $£ 11.50+\varepsilon 2.50$ post GPO HIGH GAIN AMP/SIGNAL TRACER, In case measuring onty 5% in $x 3 \%$ in $x 1 \%$ in is an extremely high gain (70 aB) solio state amplifier designed for use as a signal rracer on GPO cables, er
With a radio it functions very well as a slgnal racer. By connecting a simple coil to the inpui socket a useful mains cable tracer can be made. Runs on standard 4 \%ivy battery and has input, outpur socket and an-off volume control, mounted flush on the top. Many other
uses include general purpose amp, cueing amp. etc. An absolute uses include general purpose amp, cueing amp, etc.
bargein ot only $£ 1.85$. Sultable goohm earpiece 69 p .

MINI MONO AMP on p.c.b., size $4^{\text {" }} \times$ approx. Fitted volume controt and a h
for a tone controt should you require it. The amplifier has three iransistors and we estimat the output to be $3 W$ rms.
More technical Moreluded with the amplifier Brand new, perfect condition offered at the very low price of £1.15 ach, or 10 for $£ 10.00$.

12V FLUORESCENT LIGHTING $12 v$ battery you can't beat fluorescent lighting. It will offer ple economical. We and efter an inverter for 21 " 13 watt miniature fluore itube not supplied

SUPER HI-FI SPEAKER CABINETS
Made for an expenslive Mi.Fi ourth - will suit any decor. Resonance $4^{\text {" }}$ iweerer. The front material carved Dacron, which is thick and does not need to be stuck in and the completed unit is most pleas. ing. Colour black. Supplied in pai price $\mathbf{\Sigma 6 . 9 0}$ per pair this is prob ably less than the original cost of
one cabinet) carriage $£ 3.50$ the pa

TANGENTIAL BLOW HEATER

2.5 KW quiet,
efficient instan heating from $230 / 240$ volt mains. Kit co
of blower as of blower as
illustrated. 2.5
 illustrated. 2.5 Km

MOTORISED DISCO SWITCH With 10 amp changeover swiftches. Multiadjustable switches all rated at 10 amps ,
this would provide a magnificent display For mains operated 8 switch model
$66.25,10$ switch model $£ 6.75,12$ switch £6.25, 10 s
model $£ 7.25$.
3 CHANNEL SOUND TO LIGHT KIT Complete kit of parts for a
three-channel sound to light unit controlling over 2000 watts of light-
ing. Use thls ing. Use this
at home if

you wish bur it
s plenty rugged enough for disco work. The unit is housed in an and a master on/oft. The audio inpur and outpur are by $\%$ sockets and three panel mounting fuse holders provide thyrist protection. A four-pin plug and socket facilitate ease of conne
ing lamps. Special snlo price is $£ 14.95$ in kit form or $£ 19.95$

nsemps. A Ceciar sin

THIS MONTH'S SNIP
 COMPUTER PRINTER FOR ONLY £4.95 -apanese made Epson 310 - has a self starting. brustiess, transistorised d.c. motor to drive the print Compl
 Complete in module form with electronics including Signal Ampilfier. Brand new and with technical and practical data. $£ 4,95$ post $£ 1.25$
 Data separately for $£ 1.00$

EXTRACTOR FANS - Mains Voitage Ex-computer, made by Woods of Colcheste deal as blower; central heating systems, fume extraction etc. Easy fixing hrough panel, very powerful 2,500 rp $5^{\prime \prime} \mathrm{E5} .50$. 6"' $£ 6.50$. post E 1 per fan,

100UA PANEL METER

 Japanese made (Shinohara Electrical) so very good quality, these have a full vision complete with me 2 square and come comple te with mounting studs and nuts. A alled at over $£ 4$, offered at a ship price this month of $\mathbf{2} 85$ or 10 ator $\$ 2500$12v MOTOR BY SMITHS Made for use in cars, these are series
wound and they become more powe ful as loadincreases. Size $31^{\circ "}$ long
by $3^{\prime \prime}$ dia. These have a good iength by $3^{\prime \prime}$ dia. These have a good ieng
of $x^{\prime \prime}$ spincle - price $£ 3.45$. Ditio, but double ended $\mathbf{E 4 . 2 5}$
 EXTRA POWERFUL $12 v$ MOTOR Made ro mork hatiry h.p., so it could be used to poner a go-kan or to drive MIN1MUL TI TESTER Delue
MINI-MULTI TESTER Deluxe pocket size precision mo ing coil instrument, welled bearings - 20000 ey mirrored scale. 11 instant range measures: DC volts $10,50,250,1000$.

$$
\begin{aligned}
& \mathrm{AC} \text { volts } 10,50,250,100 \\
& \mathrm{DC} \text { amps } 0-100 \mathrm{~mA} \text {. }
\end{aligned}
$$

 Continulty and resustance 0.1 meg ohms in
iwo ranges. Complete with test prods and in wruction book Chote with test prods and in acity and Inductance as well. Unbellevable alue at only $\mathbf{E 6 . 7 5}+50$ p post and insurance.

RE Amps range kit to enble you to read current from 0.10 amps, directly
on the 0.10 scale. It's free if you purchase quickly, but of you you own a Mini. Testes and would like own a Mini-Tester
one, send $\sum 2.50$.

צ: OUR CURRENT BARGAIN LIST WILL
TRANSMITTER SURVEILLANCE
Tiny, easily hidden but which will enable conversation to be picked with FM radio. Can be made in a matchbox -all electronic RADIO MIKE
deal for discos and garden parties, allows complete freedom of novernent. Play through FM radio or tuner amp. $£ 6.90$ comp, ki or icacable it the U.K.)
FM RECEIVER
Made up and working. complete with scale and pointer needs only mike £5. 85

CB RADIO

you do not miss sender or caller. Complete kit with case speaker you do not miss sender or ca
and instructions only $£ 5.99$.

VENNER TIME SWITCH Mains operated with 20 amp switch, on automatically correcting for the lengthen ing or shortening day. An expensive time These are new can have it for only $£ 2.95$ can supply plastic cases (base and cover) £1.75 or metai case with window $£ 2.95$. Also avaitable is adeptor kit to convert this into e normal 24 hr . sime switch bur with the added advantage of up to $12 \mathrm{on} /$ offs per 24 hrs . This makes an ideal con troller for the imm
adaptor kit is $\mathbf{E} \mathbf{Z} .30$.

STEREO HEADPHONES Japanesa made so very good qualit 8 ohm impedance. padded, term
inating with standard $1 / 4^{-1}$ lackplug. $£ 2.99$ Post 600

TIME SWITCH BARGAIN
Large clear mains frequency controlled correct time tstart and stop switchos with the dials. Comes complete with knobs
$\mathbf{2} .50$. SAFE BLOCK
Mains quick connector will save you valuable time. Features incluc quick spring connectors, heavy plastic case and auto on and of
6 WAVEBAND SHORTWAVE RADIO KIT
Bandspread covering 13.5 to 32 metres. Besed on circuit which appeared in a recent issue of Radio Constructor. Complete kit In-
cludes case materials, six transistors, and diodes, condensers. resis cludes case materials, six transistors, and diodes, condensers. resi amplifier to connect it to or a pair of high resistance headphones Price £11.95.
SHORT WAVE CRYSTAL RADIO
All the parts to make uo the boginner's model. Price $\mathbf{\$ 2 3 0}$. Cryste earpiece 65p. High resistance headphones (gives best results) $\mathbf{E 3 . 7 5}$. Kit includes chassis and front but not case.
RADIO STETHOSCOPE
Easy to fault find - start at the arial and work towards the speaker NTERRUPTED BEAM
This kit enables you to make a switch that will trigger when steady beam of intra-red or ordinary light is broken. Main compon. ents - relay, photo trans
ut no case. Price $£ 2.30$ MUGGER DETERRENT
A high-not bleeper, push latching switch, plastic case and battery A high-note bleeper, push latching switch, plastic case and battery
connector. Will scare amay any villain and bring help. $\mathbf{f 2} 20 \mathrm{com}$

UNUSUAL MOTORISED PUMP

SOLENOID AIR VALVE
made to work with the above pump. This mains operated valve will stop the applied to lt. $220 \mathrm{v}-230 \mathrm{v}$ model E3.45. 100 v model - 82.30 .

The New Generotion of high quolity oftroctive electronic enclosures Moulded in 3 mm thick AB5 ponels. circult boord guides ond integrol mounting bosses. All fixing screws and support feet ore included.

Nelfronic Lid. Dublin 510845 Cobbies Ltd. London. 01-699-2282 Microdigitol Lid. Liverpool. 051-227-2535 Electronico CG Ltd. Monchester. 061-788-0656 Speciron Electronics (Monchester) Ltd.; Solford. 061-834-4583 colours. Dust and splash proot.
Options inclucie speciol colours. RFI ond EMI shielding (oppliea by o sproy cooting). Speciol colour combinotions. UL opprove
customised trant ond reor ponels.

Tronsom

London. 014055240
A. Morsholl (London) Lid. London. 01-624-0805 Interfoce Components Ltd, Amershom. 02403-22307 New Beor Computing Store Ltd. Newbury. 0635-30505.

It's full of all sorts of exciting possibilities, including a digital barometer. So, if you don't trust the weather forecast, make your own. And get it right.

Like all Heathkits, it contains everything you need, right down to the right kind of solder. Unbeatable comprehensive assembly manual. Diagrams. Highest quality parts. Everything to make a first class professional job. One you'll be proud of. One that will give you far more satisfaction than a ready-made mass-produced shop-bought product can possibly offer.

Because you made it yourself.

＂＇IRRESISTABLE RESISTOR BARGAINS
 Pal Mo．Qto Description
 SKID 400 Mixed Pill e Sal $400 \quad$ Preformed $4-1 / 3$ watt Carbon $5112200 \quad$ Resistors
 $\begin{array}{lll}5013 & 200 & \text { 友 watt Carbon Resistors } \\ 5414 & 150 & \text { t／watt Resistors } 22 \text { ohm．}\end{array}$ 1／4 watt Resistors 22 omm ． 2 m 2 Mixed 1 and 2 watt Resistors 22 ohm 2 m 2 Maxed
 Pats 5×12.15 contain a range of Carbon film Resistors of assorted values from 22 ohms 102.2 meg．Save pounds on these resistor pals and have a full range to
 cover your projects． ＂Quantities approximate，count by weight．

BHPAK BARGANS
＂CAPABLE CAPACITOR PAKS＂

5×16 Oi Description

$\begin{array}{lll}5200 & 200 & \text { Ceramic Capacitors Miniature }\end{array}$ Ceramic
Mired
Mired Ceramics 22pl－390p1
$\begin{array}{lll}5 \times 18 & 100 & \text { Mined Ceramics 22p1．390 pl } \\ 5 \times 19 & 100 & \text { Mired Ceramics } 470 \mathrm{pl} .047 \mathrm{ul}\end{array}$ $\begin{array}{lll}\text { Sx19 } & 100 & \text { Mired Ceramics 470 pl 047ui } \\ 5 \times 20 & 100 & \text { Assorted Polyester／Polystyene }\end{array}$ $5 \times 2160 \quad \begin{array}{ccc}\text { Capacitors } \\ \text { Mixed C280 type capacitors }\end{array}$
$\begin{array}{lll} & & \text { metal foil } \\ 5 \times 22 & 100 & \text { Electiolytics，all sorts } \\ 5 \times 23 & 50 & \text { Quality Electrolytic }\end{array}$
50.100 mtd ．
$5 \times 24 \quad 20 \quad$ Tantalum Beads，mixed
QUantities approximate，count by weight．

AUDIO PLUGS，SOCKETS AND ACCESSORIES
25 pieces of Auto Plugs．Socthes and Sone Speakers．Phonon．Jack Stereo and Mono．etc．atc．Valued at well over $\{3$ normal．Order No 5×25 ．Our Pice $£ 1.50$ per pall．Guaranteed to save you money．

5×263 Prs．of 6 pin 240° DIN Plugs and Chassis

 5×27 I x Right Angle Stereo lack Plug 6.3 mm plus matching metal chassis mounting socket 5×284 Phone plugs and 2 dual phone connectors． 5×30 ： 3.5 mm Plug to 2.5 mm Socket adaptor $5 \times 311 \times 35 \mathrm{~mm}$ Plus to Phon Socket adaptor
9

$\$ \times 321 \times$ Standard Jack Plug to Phono Socket 3 Ialoggte Switch SPSI Miniature．125v 10A 5×34｜Toggle Switch SPDT Miniature． 125 v 10 A S135 1 a Rocker Switch SPOT Miniature 240v 5 A 5436 1 a Right Angle Mono back Plug 5×3720 pieces 1.28 smm plugs and sockets （Banana）Matching colours and sizes
SX50 10 Assorted Switches Toggle．Slide．Rocker Push button

Guarantee has always been BI．Pan＇s
 100

 GUARANTEE and il still is All these Sale items are in stock in quantity and we will despatch the same day as your order is received．$\$ \times 40 \quad 250$ Silicon on Drodes－Switching like N414800 35．All good－uncoded，Worth double our price． $45 \% 75 \mathrm{~mA}$ E1．25
250 Silicon Oiodes－General Purpose．like 141250 Silicon Orodes－General Purpose．like 0A200／202．BAX13／16．Uncoded $30 \cdot 100 \mathrm{v} 200 \mathrm{~mA}$ D0．7． 5×44 10 5A SCR＇s $1064.3 \times 50 \times .3 \times 100 \mathrm{v} .2 x$ 200 v 2 k 400 y ．Super value less than ha
 $200 \mathrm{r} .2 \times 400 \mathrm{r}$ ．Ali coded．Brand new．a gree away at

B

BARGAINS
5×4220 small 122 Red LED＇s． 5×1310 Rectangular trent ion $5 \times 46 \quad 30$ ancon ted tenet ind os $250 \mathrm{mw}-2 \mathrm{New}$ ．
attorn instrument
SX47 Black ins．ned with pointer t\％
standard screw fir size 29 a
20 mm ．
5×48
it． 15 mm ． mol 20 Assorted side etc．

SEMICONDUCTORS FROM AROUND THE WORLD
A Collection of Transitions．Diodes．Rectifiers．Bridges．SCR＇s 100
Incs．IC＇s both Logic and Linear plus Otto sill of which are current everyday usable devices

54：00＝

BI－PAK＇S OPTO BARGAIN OF THE YEAR
Valued at over $\{10-$ Normal Retail－we offer you a pack of 250 otto devices to include tED＇s Large and Small in Red．Green．Yellow and lear． 7 Segment Displays both Common Cathode and Common And PLUS bubble type displays－like DL．－33．Photo Transistors－simila 8

25

AND we guarantee your money bach if you are not
completely satisfied．full data etc included completely salistiec．full data etc included Order No．SX57．

25

MORE BARGAINS

 woe single and stiandect Hook－up ${ }_{25}$ Assorted MI Gates 7400 Series． 7401.7460 ITI Assorted tip Flops and MSI$\$ 160 \quad 20$ Assorted Slider
S461 25 Assorteters
Sx62 Rotary．Oval，etc
$5 x 62$ 40 Assorted，etc

E1FREE ${ }_{\text {DAK }}$

 Cl er $£ 10$ excluding VAI．Choose Pact free（or ex 50 p）add it pour order and save even more
money．This offer only applies to money．This offer only applies to

This offer only applies to this advertisement

IC SOCKETS

The lowest price ever．
The more you bur the cheaper they come
Pin． $10011 \quad 50$ off 100 off

$\begin{array}{llll}16 & 800 & 83.25 & £ 5.50\end{array}$

SLIDER POTENTIOMETERS
 $5 \times 635 \times 470$ ohms $\operatorname{lin} 5 \times 675 \times 47 \mathrm{~h}$ Ln $5 \times 645 \times 1 \mathrm{kLn} \quad 5 \times 695 \times 100 \mathrm{~h} 4 \mathrm{n}$
 5×665 All at 50 p per pack．

50 BC108＂f flouts＇，Manufacturers out II 5x71 50 BCl 108 fath gan You lest． sx72 A maned bundle of Copper clad Boorsid．A fantastic batzalin．

（1）$)^{5 \times 2}$

6 Black Heating will it 90.3 and 10－220．Ready drilled．Hall pice value

ed Heatsink．This healsink gives the greatest possible hear dissicatio in the smallest space owing fo th s unique staggered lin design．Die drilled
10.3 Size 45 mm square x 20 mm high． 40 p \＄554 70.66 size． $35 \mathrm{~mm} \times 30 \mathrm{~mm} \times 12 \mathrm{~mm}$ ． 35 p SK 55 I Heat Efficiency Power finned Heating $90 \mathrm{~mm} \times 80 \mathrm{~mm} \times 35 \mathrm{~mm}$ High ．Drilled to

5 watt（RMS）Audio Amp Nigh Quality audio amplifier Module．Ideation use record players，tape recorders，stereo amps and cassette players，e
with each module．
Specification
－Power Output 5 watts RMS © Load Impedance 8 －1 ohms Frequency response 50 Hz ；0 $25 \mathrm{KMz}-300$－ Sensitivity 70 mu for full out out Input Impedance
50 h ohms－Sue $85 \times 64 \times 30 \mathrm{~mm}$ ．Ital Harmonic
$\xrightarrow{-\quad \text { distortion less than } 5 \%}$
£2．25
You could not
tor this price

BI－PAK＇S COMPLETELY NEW CATALOGUE

Completely redesigned．Full of the type of components you require．plus some very interesting ones you mill soon be using and of course．the largest range of semiconductors tor the Amateur and Professional you could hope to find． There are no wasted pages of useless information so often included in Catalogues published nowadays．Just solid facts sine．price，description and individual features of what we have available．But remember，Bi．Pan＇s policy has always been to sell qualify components al compebtive prices and That WE STILCDO．
BI．Par＇S COMPLETELY MLW CATALOGUE is now available to you．You will be amazed how much you can save when you shop for \＆lectionic Components wilt a Bipack Catalogue．Have one by you all the time－it pays to buy bi．Pak．
To reeve your copy send $\mathbf{7 5 p}$ plus $25 p$ p 8 p

S338 100 Silicon NPN Transistors－all perfect Coded maxed types with data and equi sheet No rejects．Real value．$\quad \$ 2.50$ 5 339100 Silicon PNP Transistors－all perfect Coded mixed types with＂data and equiv． Sheet，No rejects．fantastic value．$\{2.50$

MILLARD．ASS 17 PAP

Germ 10.3 Power Trans
60 VCB 8A Poss Replacement for
$32 \mathrm{VCE} 30 \mathrm{~W} \quad$ AO130／31／140／149 20 VE Hie $30 \mathrm{~min} \quad 0 \mathrm{C} 25 / 26 / 28 / 35$

2N3613／14／
17／2N1533
Gear Value at 65p each or 2 tor $£ 1$ ．

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to start or further a career in electronics or as a selfemployed servicing engineer.
All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write personally at any time, for advice or help during your work. A Certificate is given at the end of every coursé.
You will do the following:

- Build a modern oscilloscope
- Recognise and handle current electronic components
- Read,draw and understand circuit diagrams
- Carry out 40 experiments on basic electronic circuits used in modern equipment
Build and use digital electronic circuits and current solid state 'chips'
- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio, T.V., $\mathrm{Hi}-\mathrm{Fi}$ and microprocessor/computer
 equipment.

Newdob? NewCareer?NewHobby?Getinto Flectronics Now!

THE AX-210 IS OUT OF THIS WORLD

THE WORLDS MOST VERSATILE WATCH

CASIO AX-210
Multiple Display LCD Analogue/Digital

ANALOGUE display of time plus:
"Digital time display, 12 or 24 hour system.
*Digital date, month and year, plus day flag.
*Full month calendar display, current month.
"Full month calendar display, next month. Auto-calendar pre-programmed to the year 2029.

Dual time modes
*ANALOGUE display of local time plus digital second time zone, 12 or 24 hour system.
Alarm mode
"ANALOGUE time with digital "Alarm Set Time", 24 hour system, AM/PM and "alarm on" indicators.

"Buzzer for 20 seconds or select "Dixie Land". "Green Sleeves" or "My Darling Clementine".
Hourly time slignal' with 'Big Ben' type
RRP (34.95)
chimes at noon. Easily switched on or off.
ONLY £29.95
Countdown alarm timer mode
*Amazing ANALOGUE display, plus digital countdown. Normal and net times from 1 to 60 minutes with automatic retrieval of pre-entered time. Stopwatch mode
*ANALOGUE countup, with digital timing of net, lap and first and second place times from $1 / 100$ second to 1 hour. Confirmation signal.
Easy setting of times and alarm with forward and backward stepping, and rapid run facility. Dims: $9.25 \times 35 \times 36 \mathrm{~mm}$ approx. Mineral glass. Long life lithium battery. $+/ .15 \mathrm{secs} /$ month.

100 METRE WATER RESISTANT WATCHES

WITH C/D ALARM AND STOPWATCH

Time and auto calendar, alarm, hourly chimes, countdown alarm timer with repeat memory function, stopwatch. Time is always on display, regardless of mode. Stainless steel. (W100 Resin).

THESE SPACE INVADERS WILL ALARM YOU

CA90 (LEFT)
£19.95*
CA901 (RIGHT)
£29.95

Time and auto calendar, calculator, alarm, hourly chimes, stopwatch, dual time. DIGITAL SPACE INVADER GAME.
CASIO's MOST AMAZING WATCHES EVER

LCD scrolling display of alpha/numeric (dot matrix) characters. Input can be varied from 1680 programme steps, with 26 independent memories, to 80 programme steps with 226 memories. (All retained when switched off.) Up to 10 programmes can be stored (P 0 to $\mathrm{P9}$). Subroutine: Nested up to 10 levels. FOR-NEXT looping: Nested up to 8 levels. Straightforward programme debugging by tracing. Editing by moving cursor. 55 built-in scientific and statistical functions, including regression analysis and correlation coefficient, can be incorporated in programmes. Programme/data storage on cassette tape via optional FA 2 (available soon). Optional FP 10 mini printer, PLUG-IN ROM MODULES available soon. Two lithium batteries give approx. 200 hours continuous operation, with battery saving Auto Power Off after approx. 6 minutes non use. Dimensions: $17 \times 165 \times 82 \mathrm{~mm}\left(5 / 8\right.$ ths $\times 6 \frac{1}{2} \times 3$ ปี゙). Weight: $180 \mathrm{~g}(6 \cdot 30 z)$.

PRICE includes VAT and P\&P. Send your company order, cheque, PO or phone your Access or Barclaycard number to

THE KEYBOARD REVOLUTION
 WNNNNNMNN

CASIOTONE POLYPHONIC KEYBOARDS With built in Amplifier and Loudspeaker.

CASIOTONE MT-30

नाणागयाग

(RRP £112.00)
ONLY £95.00
22 instruments over 3 octaves. 4 -position sound memory. Battery or mains. O / P jack. Dims: $21 / 2 \times 22 \frac{1}{2} \times 61 / 2^{\prime \prime}$. 6 lb .

CASIOTONE 202

(RRP £325.00) ONLY $£ 275.00$

"Son of success... The two harpischords demonstrate the Casiotone's talent for sparkling crystal clear tones... Even more impressive is the clav..." (Melody Maker).
49 instruments over 4 octaves. 4 voice memory function with push button selection. 3 vibrato settings and sustain. Pitch control. O/P jacks. AC only. $31 / 2 \times 341 / 2 \times 111 / 2^{\prime \prime}$. 15.81 bs

CASIOTONE 301

(RRP £245.00)

ONLY £199.00
14 instruments over 4 octaves. 8×2 rhythm accompaniments. Vibrato and delayed vibrato. Start/stop, synchro start, tempo control tempo indicator, and rhythm volume. Pitch control. AC only. O/P jacks. $41 / 2 \times 311 / 2 \times 1212^{\prime \prime}$. 27 lbs.

CASTIOTONE 401

(RRP 345.00) ONLY £295.00
As 301 plus following: 16 rhythm accompaniments, with fill-in. Casio Auto Chord for one finger or auto accompaniment. Plays major, minor and 7th chords with bass. Balance control, C.A.C. lever, chord lever, memory lever and octave switch. Dimensions as 301 . Weight 28.2 lb .

BECOME AN INSTANT MUSICIAN NO EXPERIENCE NECESSARY

The success story of 1981. Hundreds sold already! As featured on "Tomorrow's World".
CASIO VL-TONE (VL-1)
Electronic Musical Instrument and calculator

(RRP 39.95)

 ONLY $£ 35.95$V1.1 records and plays back up to 100 notes as a melody. ONE KEY PLAY or AUTO PLAY of Piano, Violin, Flute, Guitar and Fantasy, or create your own unique sounds with A.D.S.R. 10 built-in AUTO RHYTHMS and TEMPO CONTROL. LCD digital readout of notes and tempo Also a calculator. Battery powered with memory and programme retention. Integral amplifier/sp-aker. Output jack. With song book. Dimensions: $11 / 2 \times 11 / 2 \times 3^{\prime \prime}$
Send 20p for illustrated catalogue of selected casio and seiko products.

Buy British-Buy Douglas Transformers Mail Order from TITAN Transformers \& Components
Central Hall Chambers, Duncombe Street, Grimsby, South Humberside DN32 7EG Prices include 15% V.A.T. Send for aur Catalogue.
12/24V RANGE PAI 220/240Y
-

tYpe				
	12 v	24		
213	1	$0 \cdot 50$	2.65	0.87
71	2			$1 \cdot 10$
18	4	2	3.98	1.43
68	3	1.5	3.46	1.43
85	5	2.5	6.06	1.43
70	6	3	6.67	$1 \cdot 43$
108	8	4	8.03	1.43
72	10	${ }_{5}$	$8 \cdot 66$	$1 \cdot 73$
116	12	6	9.31	1.90
17	16	8	11.46	2.05
187	30	15	19-23	$2 \cdot 35$
232	40	20	27.61	4.50

TYPE		MPS	PRICE	P/P
	30%	60%		
124	1	0.5	3.30	1.43
126	2	1	6.36	1.43
127		2	7.86	1.73
125	6	3	11.78	$1 \cdot 90$
123	a	4	14.72	$2 \cdot 20$
40	10	5	17.10	$2 \cdot 20$
120	12	5	19.44	$2 \cdot 35$
121	16	8	27.70	2.65
122	20	10	32.05	4.00
189	24	12	37.02	

$\begin{gathered}200.220-115 \mathrm{v} \\ 55 \mathrm{VA}\end{gathered}$

					 vorts u- $44=0-48$					CASED AUTOTRANSFORMERS 24OVEEAD IN THV ZFIN SOCKET OUT			
TYPE		PS	PRICE	P/P	TYPE	AM		PRICE	P/P	TYPE	\checkmark A	PRICE	P/P
	15v	30v				48y	96v						
112	1	$0 \cdot 50$	$2 \cdot 84$	1-10	430	1	0.5	$5 \quad 4.69$	1.43	56 W	20	$6 \cdot 60$	0.87
79	2	1	$3 \cdot 29$	1-10	431	2	1	$7 \cdot 14$	1.43	$6.4 W$	80	8.43	1.43
3	4	2	6.19	1.43	432	4	2	12.94	$2 \cdot 05$	4W	150	10.86	1.73
20	6	3	$7 \cdot 19$	1.73	433	6	3	14.62	$2 \cdot 20$	69 W	250	13.17	1.90
21	8	4	8.52	1-73	434	8	4	20.04	$2 \cdot 45$	67W	500	20.46	$2 \cdot 20$
51	10	5	10.57	$1 \cdot 90$	435	10	5	28.75	$2 \cdot 65$	84 W	1000	$30 \cdot 24$	$2 \cdot 55$
117	12	6	11.94	2.05	436	12	6	$36 \cdot 16$	4.00	95W	2000	54.83	$5 \cdot 00$
88	16	8	16.14	$2 \cdot 20$	437	16	8	$39 \cdot 47$	$5 \cdot 00$	73W	3000	$78 \cdot 67$	$6 \cdot 50$
89	20	10	18.54	$2 \cdot 35$									
90	24	12	20.57	$2 \cdot 55$									
91	30	15	23.63	2. 65									
92	40	20	3329	4.50									
										Lime ad justmint hutotransigamans [00700000605008108\$000] 			
TYPE	AMPS $24 v \quad 50 v$		PRICE	P/P	TYPE	\checkmark A	PRICE		$\underset{E}{P / P}$	TYPE	VA	$\begin{gathered} \text { PRICE } \\ \Sigma \end{gathered}$	$\mathrm{P}_{\varepsilon} \mathrm{P}$
102			¢ 3.29	1 ¢ ${ }_{1}$ ¢ 4	149F			8		415C	50		
103	2	1	4.09	1.43	150 F	100		9.71	1.73	416 C	100	3.46	0.87
104	4	2	7.65	1.73	$151 F$	200		13.84	2.05	417C	200	4.00	$1 \cdot 10$
105	6	3	9.09	1-90	152F	250		46.69	$2 \cdot 20$	418F	350	6.26	1.43
106			12.24	1.90	$153 F$	350		20.77	$2 \cdot 55$	419 F	500	6.74	1.73
107	12	6	16.15	$2 \cdot 20$	$154 F$	500		25.03	$2 \cdot 65$	420 E	750	$8 \cdot 33$	1.90
118	16		22.45	$2 \cdot 55$	155F	750		36.75	5.00	421 F	1000	11.64	$2 \cdot 05$
119	20	10	27.05	$2 \cdot 55$	$156 F$	1000		47-42	6.00				
109	24	12	32.44	$4 \cdot 50$									

Send Today 50p (Refundable with First Order) for Catalogue TITAN TRANSFORMERS AND COMPONENTS
CENTRAL HALL CHAMBERS GRIMSEY ON32 7EG MAIL ORDER ONLY P PRICES INCLUDE $\mathbf{1 5 \%}$ VAT EE 8

Anand Tardind A NIEWH SEIE D. ${ }^{2}$ BASMC
 This 5 volume set contains over 500 pages. Bound in stiff linen. Cover size $81 / 2 i n \times 5 i n$.
 Price £ 10.00 per set (we pay the postage).

Book 1. Introducing Electronics Book 4. Meters/Voltage-dividers Book 2. Resistors/Capacitors Book 5. Transistor Project Circuitry Book 3. Inductors/Diodes
The manuals are unquestionaby the finest and most up-to-date available and represent exceptional value.
This series has been written in a fascinating, absorbing and exciting way, providing an approach to acquiring knowledge that is a very enjoyable experience. Suitable for industrial trainees, City and Guilds students, DIY enthusiasts and readers of electronic journals.
Each part explains electronics in an easy-to-follow way, and contains numerous diagrams and half tone blocks with construction details and circuit diagrams for making the following transistor projects: Lamp Flasher, Metronome, Wailer, Photographic/Monostable Timer, Metal Locator, Geiger Counter, Radio Receiver, Intercom., Intruder Alarm, Electronic Organ, Battery Eliminator, Anemometer, Sound Switch, Light and Water-operated Switches, Pressure-operated Switches, Light meter, Radio Thermometer, Ice Alarm,

Order now
Selray Book Company
11, Aspen Copse.
Bromiey
Kent. BR1 2NZ.

OUT 100% GUARANTEE

ination your money will be refunded by return of post.

Amount enclosed: £
Name:
Address:
,
4

MICRO TIMES

19 Mill St., Bideford, North Devon EX39 2JR, Engiand Telephone Bideford (023 72) 79798 It is our policy to offer you brand-new,
Prices sublect to change without notice.

INTRODUCING CMOS AND TTL

ordering
INFORMATION Pleasendd 50p P. AP. Plus 15\%
all orders.
EXPORT ORDERS ACCEPTED. Add 15\% P. \& P. ori total order. V.A.T. not applicable. ACCESS, BARCLAYCARD WELCOME

081CP .. 38p	sound
TL082CP .. 60p	EFFECTS
TLOEACN .. 98p	GENERATOR
LM3302 . . . 85p	Sultable for video
TL690 ¢ ¢ $1 \cdot 10$	games. larms,
1488........ 70p	
1489........ 70p	51p S.A.E.
$\begin{array}{lll} 8 T 26 & \ldots . . & £ 1 \cdot 50 \\ 8 T 28 & \cdots \cdots & £ 1.50 \end{array}$	IN
$8 T 95 \text { \& } 1.50$	ICL
ICM 7555 .. 80p	Voltage Converter
LM1871 £1.90	E2.25
LM1872 81.90	Data 50p. Large
SN76477N E1.75 ea	
KITE FOR EECINNERS	
LIGHT ACTIVATED SWITCH	
Used for automatic lighting control. £. 50	
ELECTRONIC WHEEL OF FORTUNE Fun kit. £5.00	
ULTRONIC FLY REPELLER	
A must for campers.	84.50
YOLTACE REGULATORS 1A	THYRISTORS
7805 5V 53p	TIL
7812 12V 53p	TIL32 45p
7905 5V 58p	Tlla09, red 10p
7912 12V 58p	TIL232, areen 18p
	TIL212, yellow 16p
$78 L 055 \mathrm{~V}$	ThL216, red 18p
78L12 12V 29p	TIL228, red 20 p
500 mA	TIL224, yellow 18p
79M12 12V.... 62p	TIL311 $\quad 65.50$
79M05 5V 662p	$\begin{array}{ll}\text { TIL312/3 } & \text { E1.00 } \\ \text { THL321/A } & \text { E1.15 }\end{array}$
32p	

VEROBLOC SOLDERLESS BREADBOARD

360 rellabie contacts. Will accommodate any size IC. Can be fully interjocked with S100 Prototyping Boards Microboard Pattern 06-2175L 9a. Pad. Universal Pattern Sa. Pad. Universarp E16.40 ITT 2020

2144450 ns 2114300 ns
T C5514P TK CMOS RAN (1K x 4) 450 ns 4116 200ns
4116150 ns 4116150 ns
CMOS RAM 510
EPROMS

2708450 ns

FLOPPY DISC CONTROLLERS FD1771 FD1791-2 WD191D WD 19143.01

* SPECIAL *
includes FD1791-2 + WD1691D +
WD2143-01.
Setdata available $£ 3$ (51 p S.A.E. please).
MK3886, 21 meg. AY-3 8910
G SOUND COMPUTER CMIP
SPECIAL PRICE E6.95
Data fi. Large S.A.E. please. Data E1. Large S.A.E. please.

 incl. base/stand + solder. KIt SK3, 17 W . SK3 and SK4 C MLX Repair Kit Can be us
avallable. Spalare Bits.

G309 SINGLE BOARD COMPUTER Complete kit £175 plus 15% V.A.T. Complete
Ei P. \& P.
Uses Motorolas Powerful MC6809 CPU KK/8K/16K ROM, 2K RAM, ACIA, PIA 8080 simulated 1/O, RS-232 Handshake $11 x 17 \mathrm{ln}$. Schematic Parts IIst. User Notes, Sottware listings and morel Bare Board Uses 6809 E850, 6821 -buy set for 518.50 ADMONS' (2716) Data avallable. S.A.E. please.

6520.	E3.15	Z80CTC	
6522.	E5.00	280P10	£4.25
6532.	E7.60	z80ACTC.	\$5.40
6810	E2. 50	Z80AP10	¢5.40
6821.	E1.90	Z800 MA	E14.95
6845	E15.00	Z80A DMA	E18.00
6850	E1.95	Z80S10/0	E17.50
6852	E3. 30	Z80AS10/0	E22. 50
8212	E4.75	z80S10/1	$\underline{517.50}$
8216	E1.75	280AS10/1	£22.50
8228	c3.95	z80S10/2	$\underline{16250}$
255	4.00	280AS 10	$\underline{22}$

CPU'	
6502........ ¢5.45	8080A £4.15
6504........ E7.25	8085A $£ 5.45$
$680215 .70$	280 $54 \cdot 60$
6809........ $815 \cdot 00$	Z80A 55 -85
NEW	$5 \cdot 100$ PROMBLASTER

FAMILIES OF EPROMSI
Accepts $1 \mathrm{~K} / 2 \mathrm{~K} / 4 \mathrm{~K}$ or 8 K Eproms. Extended Device Option All Programming Software controlled
Accepts single or 3 supply parts. \star Device Address switch selectable. Put On-Board Walt States.
BAREBOARD EPROM1 E49.00 $\begin{array}{lr}\text { BAREBOARD } & \text { \&49.00 } \\ \text { PROMWRITER } & \times 40.00\end{array}$ sockets and Promwrite Del. 2 weeks.
Kluge CARD
NEW

YOUR SUCCESDESTO

 Soldering side

The Low Cost Eurocard Size Microboard

Fully Compatible with indirect connectors! and Card Frames to the latest international specifications.

Accepts any Integrated circuit package allows high packing density.

Screen Printed with 'island' pattern for ease of use - ideal for solder and wire wrap applications.

Verohascountless reasons tocelebrate 20 years of Veroboard.

That's how Vero began and many of you started.

Twenty years ago Vero introduced Veroboard to the designer and hobbyist market.

It was then unique in its concept and is still one of the basic boards for the electronics industry. Such is the influence that Veroboard has had, and is still having, that the very name has become part of general vocabulary. Twenty years is a long time in a new industry and Vero have been in the forefront with their standards, quality control and customer service throughout that time.

From Veroboard through Card Frames to Vero Cases, we are proud to be of service and hope that you will agree that sales of millions of Veroboards is a suitable cause to celebrate our twentieth birthday. Please Telephone for further information about Veroboard and our other products.

EDITOR

F. E. BENNETT

Assistant EDITOR

B. W. TERRELL B.Sc.

PRODUCTION EDITOR
D. G. BARRINGTON

ART EDITOR

R. F. PALMER

A8818TANT ART EDITOR

P. A. LOATES

TECHNICAL ILLUSTRATOR
D. J. GOODING

EDITORIAL OFFICE8

KInge Reach Tower
Stamford Street,
London SE1 OLS
Phone: 01-261 6873

ADVERTIBEMENT MANAGRR

R. SMITH

Phonet 01-281 6871

REPRESENTATIVE

R. WILLETT

Phone: 01-261 6865

CLABSIFIED MANAGER

C. R. BROWN

Phone: 01-261 6762

MAKE-UP AND COPY DEPARTMENT

Phone 01-261 6815

ADVERTISEMENT OFFICES

KIngs Reach Tower
Stamiord Streat,
London SE1 9LS

Projects...Theory...

and Popular Features ...

COME AND JOIN US
Whether you intend to make a career of it or indulge in it for amusement, and maybe profit, in your leisure, electronics is a very worthwhile subject to study. We have enthusiasts from ten through to four-score, at least, amongst our regular readers. So if you are not already a committed follower of electronics, be assured you won't be too young nor too old to make a start.

Our new series Teach-In 82 offers an easy way to understand the principles of electronic circuits and to gain practical experience with actual components through simple experiments in our 12-part course.

A SURE FOUNDATION

By happy chance this issue which includes a free piece of Veroboard ("stripboard") coincides with the 20 th anniversary of its invention. Like many clever inventions, this one happened almost accidentally.

Veroboard was the brain child of a couple of electronic engineers who were designing machine tool control equipment in the factory of Vero Precision Engineering Ltd. Their success in making a few one-off "wiring boards" from copper clad plastics laminate was noted by someone on the management who had the foresight to realise its potential. So this "printed wiring board" was put into large scale production (a
"natural" for the firm's milling capabilities) and marketed. The electronics industry took to the product as ideal for assembling circuits incorporating the new semiconductor devices, and constructors soon afterwards discovered its virtues and gave a further fillip to sales. Because of its success a separate company Vero Electronics was soon set up.

Those of us who had wrestled with transistors in the 'fifties, using makeshift methods and materials such as Paxolin, hardboard cut-offs and even cardboard as mounting bases for components, or tag strips designed for the valve era, seized on this new. product with delight. It is no exaggeration to say today's thriving pastime of electronics has been built literally on Veroboard.

We congratulate the original inventors and the company managers whose bold step turned out to be no gamble.

TEN POPULAR DESIGNS

With newcomers to electronics particularly in mind, we include this month a fine selection of Ten Popular Designs, any one of which can be accommodated comfortably on the free piece of Veroboard. As anniversaries are in the air, we chose one design from each complete year of Everyday Electronics. That makes us just ten, come next month.

FRED BENNETT

Our November Issue will be published on Friday, October 16. See page 683 for detalls,

Readers' Enquiries

We cannot undertake to answer readers' letters requesting modifications, designs or Information on commercial equipment or subjects not published by us. All letters requiring a personal reply should be accompanied by a stamped self-addressed envelope.
We cannot undertake to engage in discussions on the telephone.

Component Supplies

Readers should note that we do not supply electronic components for building the projects featured in EVERYDAY ELECTRONICS, but these requirements can be met by our advertisers.

[^1]GONSTRUGTIONAL PROJECTS
SUSTAIN UNIT For electric guitar by R. A. Penfold 654
EE MINILAB Breadboarding unit with built in electronics by O. N. Bishop 664
TEN POPULAR DESIGNS 671
Snap Indicator. 672
Tape Noise Limiter 674
Continuity Tester 676
Fuzz Box 678
Soil Moisture Unit 680
CAPACITANCE METER A desirable test instrument by J. R. W. Barnes 690
QENERAL FEATURES
EDITORIAL Come and Join Us; A Sure Foundation; Ten Popular Designs 652
TEACH-IN '82 Part 1: Conduction in Materials and Devices by O. N. Bishop 658
COUNTER INTELLIGENCE A retailer comments by Paul Young 663
SHOP TALK Product news and component buying by Dave Barringfon 670
EVERYDAY NEWS What's happening in the world of electronics 684
FOR YOUR ENTERTAINMENT Pacemaker, Talking Memories, Chatter Box by Barry Fox 685
RADIO WORLD Armchair Travellers, Television News by Pat Hawker G3VA 686
INTRODUCTION TO LOGIC Part 6: AND, OR, NAND, Symbols and Truth Tables by J. Crowther 688
JACK PLUG AND FAMILY Cartoon by Doug Baker 694
SQUARE ONE Beginners Page: Fixed value resistors 697
READERS' LETTERS Your news views 698
BRIGHT IDEAS Readers' hints and tips 698

Back Issues
Certain back issues* of EVERYDAY ELECTRONICS are available worldwide price 80 p inclusive of postage and packing per copy. Enquiries with remittance should be sent to Post Sales Department, IPC Magazines Lid., Lavington House, 25 Lavington Street, London SEi OPF. In the event of non-availability remittances will be returned.

- Not available: October 1978 to May 1979.

Binders

Binders to hold one volume ($\mathbf{1 2}$ issues) are available from the above address for £4.40 (home and overseas) inclusive of postage and packing. Please state which Volume. Subscriptions
Annual subscription for delivery direct to any address in the UK: £14-0¢. Overseas: £12.00. Cheques should be made payable to IPC Magazines Lid., and sent to Room 2613, Klngs Reach Tower, Stamford Street, London SE1 9LS.

- IPC Magazines Limited 1981. Copyright in all drawings, photographs and articles published in EVERYDAY ELECTRONICS is fuily protected, and reproductions or imitations in whole or in part are expressly forbidden.

Sustain units are primarily intended for use with electric guitars, and as the name implies, devices of this type extend the maximum duration of the note from the instrument.

The output signal from a guitar normally has a high initial ampltude which quickly drops to a much lower level, and then steadily dies away to virtually nothing over a few seconds. A sustain unit boosts the signal as it dies away, giving an almost constant output amplitude and effectively increasing the maximum time for which a note can be sustained.

METHODS OF OPERATION

There are two reasonably simple ways of obtaining a sustain effect, the most simple one being to use a clipping circuit of the type outlined in the block diagram of Fig. 1(a). Here the input signal is first considerably amplified and then fed to a clipping circuit. The latter normally uses a couple of silicon diodes to clip the signal at about $\pm 0.6 \mathrm{~V}$.

Thus the output amplitude is set at this level by the clipping action and is largely independent of the input level. In fact, however large the input
level may be, the output will not rise above the clipping level.

It can fall below the clipping level if the input signal is inadequate, but the input amplifier is given a high enough gain to ensure that this does not happen until a few seconds after the commencement of a note.

DRAWBACKS

One major drawback to this system is that by clipping the signal it is considerably distorted. Strong harmonics of the fundamental note are produced, giving the same effect as a "Fuzz" unit. A low pass filter is therefore normally included at the output of the circuit in order to attenuate the harmonics that would otherwise give an undesired effect.

This does not completely solve the problem though, since strong intermodulation distortion is caused by the clipping, and this produces a very unpleasant sounding output if more than one note at a time is played Most of the intermodulation distortion products will not be attenuated by the low filter as they are mainly in the same frequency range as the desired signals.

SECOND METHOD

The second method, which is shown in the block diagram of Fig. 1(b), is slightly more complicated but is capable of much improved results. As before, the signal is first fed to an amplifier. It is then fed to a voltage controlled attenuator (v.c.a.), which is a circuit that reduces the amplitude of the input signal by an amount which depends upon the voltage fed to its control terminal.
In this type of circuit the v.c.a. gives little attenuation with only a small control voltage, and increasing attenuation as the control voltage is raised.
The control voltage is derived from the output of the v.c.a. by way of a rectifier and smoothing network, and a certain amount of additional amplification is also needed in order to obtain a sufficiently large control voltage.

Fig. 1 (below). Simple methods for obtaining sustain effect. (a) clipping circuit; (b) voltage controlled attenuator or compressor type of circuit.

(a)

(b)

Fig. 2. The complete circuit diagram of the Sustain Unit.

Under quiescent condition or with only a very low input level there will be at most only a very small control voltage, and a greatly amplified signal appears at the output. At higher input levels a significant control voltage is produced, and the signal receives a lower level of amplification in consequence.

At still higher input signal amplitudes the control voltage is increased further, and little or no amplification is provided by the unit. This has the effect of holding the output signal at a certain level, provided the input is sufficiently strong to produce this output level. Raising the input above this minimum level causes the gain of the circuit to drop and results in very little increase in the output level.

This gives the required sustain effect because as the input level decays, the gain of the circuit increases so as to maintain the output level.

ATTACK AND DECAY TIMES

The attack and decay times of the smoothing circuit must be carefully chosen so that the unit will respond with suitable rapidity to changes in input amplitude, but not so rapidly that the waveform of the processed signal is altered and significant distortion is generated.

The unit will not properly respond to the transient at the beginning of each note as it is too brief, but this does not matter and is really of benefit as it maintains the guitars natural attack, which is lost when the clipping method is employed.

With either system a variable attenuator is included at the output
so that the signal level from the unit can be adjusted to one which is comparable to the output from a guitar.

THE CIRCUIT

Fig. 2 shows the complete circuit diagram for the unit finally evolved, and this is of the second type, which is usually called a "compressor".

The input amplifier is based on operational amplifier IC1. R2 and R3 bias the non-inverting input to slightly more than half the supply voltage, and R4 biases the inverting input and output of the device to the same potential due to a negative feedback action. This bias voltage gives the circuit optimum unclipped peak to peak output voltage swing capability.

The voltage gain of the amplifier is determined by the ratio of R1 to R4, and is approximately equal to R4 divided by R1, or about 70 in other words. This gives sufficient sensitivity to produce a good sustain effect with any normal instrument.
It is essential for the input amplifier to have a low noise level as the circuit will produce maximum output from input levels below 1 mV . A poor noise performance would result in low input levels being swamped in noise. ICl provides a suitably high performance in this respect as it is a bifet type which has a low noise jfet input stage. The distortion performance is also very good, and these devices are ideal for critical audio applications.

voltage controlled ATTENUATOR

The v.c.a. is based on p-channel jfet TR1, and it is its drain to source resistance plus R 5 that form the two
elements of the attenuator. C3 couples the output from ICl to the attenuator.

Under quiescent conditions R6 and R7 strongly reverse bias TR1 so that it is fully switčhed off and exhibits a drain to source resistance of typically about 1,000 megohms. It therefore causes no significant losses through R5, although output attenuator VR1 and other loads on the output do cause losses of a few dB. However, the circuit still exhibits a voltage gain of more than 50.

Some of the output signal is coupled by C5 to a common emitter amplifier which uses TR3 in a conventional configuration. The gain of the amplifier is far higher than is necessary, and so R8 is inserted in the signal path to reduce the gain to a more appropriate level. This resistor also boosts the input impedance of the stage and thus helps to reduce loading on the output.
The output from TR3 is fed by C7 and R10 to the smoothing and rectifier circuitry which is comprised of D1, D2, C6 and R9.

If the input signal is sufficiently strong, the positive bias produced by the rectifier and smoothing circuit will be high enough to switch on TR2 to some extent. TR2 then reduces the bias on TR1, causing it to conduct more heavily and increasing the losses through R5. The stronger the input signal is made, the lower the bias voltage fed to TR1 and the greater the losses through R5. This gives the required stabilisation of the output signal amplitude.

C4 rolls-off the high frequency response of the circuit (above about 4 to 5 kHz) under quiescent or low signal level conditions. This helps to give an improved signal-to-noise ratio

under the conditions where any noise will be most noticeable.

C4 has little effect at medium and high input levels where the resistance of TR1 is quite low, and the shunting effect of C4 even at the highest audio frequencies is of far less significance.

BYPASS SWITCH

Sl can be used to bypass the circuit so that the sustain effect can be switched out when it is not required. Sl is a heavy duty push button type switch having a sequential action, so that it can be operated by foot.
S2 is the on/off switch, and on the prototype it is actually a makecontact on the input socket (SK1) so that the unit is automatically switched on when the guitar is plugged into it. This is quite common practice with effects units.
An 18 volt supply is needed in order to enable the unit to handle high input signal levels without clipping occuring, and this is provided by two small 9 volt batteries (PP3 size) connected in series. The unit only consumes about 5 mA .

PERFORMANCE

The graph of Fig. 3 shows input voltage versus output voltage for the prototype. As can be seen from this, the compression commences at less than 1 mV , and increasing the input to as much as 50 mV or so causes only a marginal increase (about 15 per cent) in the output. At higher input levels TR1 saturates and the gain of the unit stays at approximately unity.

As the output from a guitar is only likely to reach a high enough level to saturate TR1 during the initial transient (if at all), when full compression is not necessary or achieved anyway, in practice the unit gives the
desired effect with the initial attack followed by an almost constant output until the input signal decays to an insufficient level.

HOUSING THE UNIT

Due to the high sensitivity of the unit it is advisable to use a metal case so that the circuitry is screened from sources of electrical interference. The case must also be very strong due to the manner in which the unit will be used. A diecast aluminium box measuring about $152 \times 82 \times 50 \mathrm{~mm}$ makes an ideal housing for the project.

Sl is mounted on the top panel of the case, and this panel should be left clear of other controls, or sockets, which could otherwise cause confusion

Fig. 3. Input voltage versus output voltage characteristic of the Sustain Unit.
or get in the way when operating S1. Apart from this the physical layout of the unit is not critical.

CIRCUIT BOARD

The circuit is built on a piece of $0 \cdot$ lin matrix stripboard, size 31 holes by 17 strips. The component layout and the breaks needed in the copper strips on the underside of the panel are shown in Fig. 4. The two mounting holes are 3.3 mm in diameter and accept either 6BA or M3 mounting bolts.

Before mounting the completed panel connect flying leads of sufficient lengths at the four appropriate points. Spacers must, of course, be used over the mounting bolts to hold the connections on the underside of the panel clear of the metal casing.

There is a small amount of point to point fashion wiring, and this is illustrated in Fig. 5. SK1 has d.p.d.t. contacts, but four tags are unused in this application as only a s.p.s.t. switch is required. One of the four spare tags is used as a convenient point to provide the interconnection between the two battery clips.

USING THE UNIT

Best results from the unit will probably be obtained with the volume control on the guitar set at maximum. VR1 is merely adjusted to give the same volume level with the unit switched in as when it is bypassed.

The unit provides a considerable increase in gain, and this could lead to problems with stray mechanical or magnetic feedback between the loudspeaker and pick-up if the latter is not a humbucking type. In such cases it is essential to ensure that the guitar is as far away from the loudspeaker as can be arranged, and if necessary the volume control on the guitar can be backed off slightly. II

USTAIN UNIT

COMPONENTS

Resistors

R1	47k	
R2	3.9k	
R3	4.7k	
R4	3.3M	
R5	15k	See
R6	1 M	- 0
R7	680k	-
R8	100k	\% 5
R9	390k	-1.
R10	56k	page 670
R11	4.7k	
R12	$2 \cdot 2 \mathrm{M}$	

All miniature \ddagger watt $\pm 5 \%(\pm 10 \%$ over 1 M)

Potentiometer

VR1 $47 \mathrm{k} \Omega 2 \mathrm{log}$. carbon

Capacitors

C1 $100 \mu \mathrm{~F} 25 \mathrm{~V}$ elect.
C2 470nF type C280
C3 $10 \mu \mathrm{~F} 25 \mathrm{~V}$ elect.
C4 3-3nF ceramic plate
C5 $\quad 1 \mu \mathrm{~F} 25 \mathrm{~V}$ elect.
C6 $10 \mu \mathrm{~F} 25 \mathrm{~V}$ elect
C7 $1 \mu \mathrm{~F} 25 \mathrm{~V}$ elect.
Semiconductors
IC1 LF351 f.e.t input op-amp
TR1 2N3820 n-channel f.e.t.
TR2 BC109C silicon non
TR3 BC109C silicon non
D1 1 N4148 small signal silicon diode
D2 1N4148 small signal silicon diode

Switches

S1 d.p.d.t. sequential heavy duty push button type
S2 Part of SK1

Sockets

SK1 Standard (6.3mm) jack socket with d.p.d.t. contacts
SK2 Standard (6.3 mm) jack socket

Miscellaneous

Diecast aluminium box measuring about $152 \times 82 \times 50 \mathrm{~mm}$. 0.1in matix stripboard. Control knob. Two PP3 size batteries and connectors to suit. Wire, solder.

Fig. 4. Circuit board details, topside and underside.

CONDUCTION IN MATERIALS AND DEVICES

E lectronics is the study of devices in which electric charge is moved. The movement of charge is called conduction, so it makes sense to begin our course in electronics by studying this. We will then be ready to look next month at some of the devices in which charge is conducted.

ELECTRIC CHARGE

First of all we should ask "What is electric charge?" The surprising answer to this is that we do not really know what it is, in spite of the fact that it is a major factor in all our lives today.

We know that electrons and protons carry electric charge and that these charges are of two different kinds. We call them negative and positive, but the use of the word "negative" does not mean that electrons are lacking in charge when we say they carry negative charge.

Negative charge is just as real as positive charge. The two kinds of charge are simply opposites in the sense that one unit of positive charge (as carried by a proton) exactly cancels out one unit of negative charge (as carried by an electron). We will leave out of this discussion the fractions of unit charge carried by quarks and similar sub-atomic particles.

The only way we can tell that a particle is charged is when we can detect a force caused by the charge. The force between two similarly charged particles drives them apart. The force between two oppositely charged particles attracts them together.
The amount of charge on an electron is exceedingly small. For practical use we need a unit of charge much larger than this. Our unit is the coulomb (symbol C) which equals the charge on about six million million million electrons.

COMPONENTS required for experiments during the first 6-Parts of Teach-In 82. Complete kits of these (LIST 2) may be obtained from the retailers listed on page 670.

Resistors

$10 \mathrm{k} \Omega$
$22 \mathrm{k} \Omega$
50k
$220 \mathrm{k} \Omega$
$70 \mathrm{k} \Omega$
$\mathrm{M} \Omega$
All $\ddagger W$ or $\frac{1}{3} W$ carbon types $\pm 5 \%$ tolerance. Types prepared for p.c.b.s. with short preformed leads are not suitable.
All leads on components to be between 0.5 and 0.8 mm diameter to fit specified breadboard (Verobloc)

Capacitors
Quantity Value
1 47nF-metallised polyester, Mullard C280, ITT PMT2R or similar.

$$
\begin{aligned}
& 16 \mathrm{~V} \text { types } \\
& \text { preferred, } \\
& \text { axial or } \\
& \text { radial } \\
& \text { leads. } \\
& \text { Short } \\
& \text { lead-ou! } \\
& \text { types are } \\
& \text { not } \\
& \text { suitable. }
\end{aligned}
$$ Very large types should not be obtained.

Semiconductors
Quantity Type
\checkmark A1067S thermistor
TIL100 infra-red photodiode 1N4148 small signal silicon VN10KM VMOS power fleldeffect transistor
ORP12 light dependent resistor 555 timer i.c. (8 pin di.l.)
CD4011 CMOS quad 2-input NAND gates
D4027 CMOS dual J.K flip. CD4070 CMOS quad 2-input exclusive-OR gates

Miscellaneous

 Verostrip: 0.1 inch matrix 75 200-21086K)Crystal Microphone Insert s.p.s.t.

Rotary Swltch 1 -pole, 6 -way reak before make contacts Knob: to fit rotary switch and Terminal Pins single-sided to fit Verostrip (Vero half-pin 200-21017B) stranded $7 / 0.2 \mathrm{~mm}$: 1 metre of each of 5 different colours inned Copper Wire 20 s.w.g. 4BA bolt (25 mm)
2 4BA shakeproof washer 4BA nut

Fig. 1.1. Electric field around a charged object. Potential is high close ta the object, but low at a distance.

CONDUCTION

If charge is to be carried from one place to another, there are three requirements:
(1) Charge carriers
(2) A medium in or through which the carriers can move
(3) An electric field to provide the force to make them move.
Electrons have already been mentioned as examples of charge carriers. These are the type we find most often in electronics, but there are other kinds, as we shall see later.

An electric field exists when there is a potential difference between one point and another. In Fig. 1.1 the charged object contains many particles which are positively charged. There is an electrical field around the object. Positively charged bodies are repelled by it, negatively charged objects are attracted by it.

If these charged objects are free to move, they will move. There will be movement of electric charge-which is what electronics is all about.

When we talk about the movement of charge we do not usually think of the amount of charge being moved. We think of the rate at which charge is moved. Our unit for rate of movement of charge is the ampere, (symbol A). A current of one ampere carries charge from one place to another at the rate of 1 coulomb per second.

The motion of charge causes a magnetic field, and an ammeter uses this effect to measure current.

The strength of an electric field is measured by the potential difference (p.d.) between two points in the field. Roughly speaking, the p.d. tells us how much energy is needed to move a charged object from one point in the field to the other. The unit for measuring p.d. is the volt (symbol, V).

Now that we have looked at some ideas on conduction, let us see how well different kinds of material can
conduct by carrying out some simple experiments.

It is expected that the Minilab (see page 664) will take a little time to complete, but this should not prevent you from carrying out the experiments immediately. The only facilities we shall be using from the Minilab in the early experiments will be the battery supply, the meter and of course the Verobloc.

You can see from the experiment layouts, in Fig. 1.3 for example, that connections to the meter and battery are made via screw terminal blocks. Essentially this is all that is required, especially for the simple experiments. Even the terminal blocks may be dispensed with initially with the meter and battery leads "plugged" directly into the Verobloc.

The experimental layouts therefore are suitable for use with and without Minilab.

EXPERIMENT 1.1

How well do different materials conduct?

Look at the circuit diagram (Fig. 1.2) and how to set it out on the breadboárd in Fig. 1.3. You are using
the electric field produced by a 3 V battery. In other words, the p.d. between the ends of wires A and B is $3 V$. The meter is included in the circuit to measure the current. A sensitive meter is used because the currents will be small.

When the needle is deflected fully to the right the current is $100 \mu \mathrm{~A}$. The symbol " $\mu \mathrm{A}$ " is read as "microampere", or "microamp" for short. A microampere is one millionth of an ampere.

The aim of this experiment is to measure the current that flows through different materials when a p.d. of 3 V is applied. Use the two bare ends of wires X and Y as probes to touch against the different materials and devices listed below. Measure the current (if any), and keep a note of its value. Be ready to take the probes away quickly if the needle should swing beyond the right-hand end of the scale. Here are some tests to try:
(a) Hold one bare wire end X and Y in Fig. 1.3 in each hand, gripping its metal firmly. Measure the current flowing through your body (seen on the meter). Remember this point in future, and always hold the wire by its insulation. Remember this also when handling plugs-always hold

EXPERIMENT 1.1

Fig. 1.2. Circuit for investigating current

Fig. 1.3. A suggested layout on the breadboard and wiring to meter and batteries for the circuit in Fig. 1.2.

Fig. 1.6. Two ways of connecting resistors. In (a) they are said to be in series and in (b) they are connected in parallet.

OHM'S LAW

In the early 19th century a German physicist, George Ohm, did some experiments rather like the ones you have just done. He did not have semiconductors to work with, but he measured the current flowing through wires of various kinds. He summarised his results like this:
"The current passing through a wire at constant temperature is proportional to the p.d. between its ends."
This has since become known as Ohm's Law. Nowadays we use this idea to define our unit for measuring resistance that a wire or other piece of material offers to the flow of electric current. We say that if the p.d. between two ends of a wire (or other material) is $1 V$ and the current is 1A the resistance of the wire is 1 ohm (symbol, Ω).
We can write this as a formula which we shall use many times during this course:

$$
V=I R
$$

In this formula, V is the p.d., measured in volts; I is the current, measured in amperes; and R is the resistance, measured in ohms. We can write the formula in two other ways:

$$
I=\frac{V}{R} \quad \text { and } \quad R=\frac{V}{I}
$$

Given any two of the quantities, we can calculate the third.

COMBINING RESISTANCES

There are two ways in which resistances can be combined, in series and in parallel. Fig. 1.6 shows what these terms mean.

In Fig 1.6a the same current I passes through each resistance. So we can write:
$V_{1}=I R I$ and $V_{2}=I R 2$ and $V_{3}=I R 3$
The total p.d. across all three resistances is:
$V_{T}=V_{1}+V_{2}+V_{3}=I(R I+R 2+R 3)$
If the combined resistance of all three is R_{T}, then:

$$
\begin{aligned}
R \mathbf{T}= & \frac{V}{I}=\frac{I(R I+R 2+R 3)}{I} \\
& =R I+R 2+R 3
\end{aligned}
$$

In short, their combined resistance equals the sum of their separate resistances.

With resistances in parallel, there is the same p.d. across all three resistances, but different currents may flow through each. The total current is:

$$
\begin{aligned}
& I \mathrm{~T}=\frac{V}{R I}+\frac{V}{R 2}+\frac{V}{R 3} \\
&=V\left(\frac{1}{R I}+\frac{1}{R 2}+\frac{1}{R 3}\right)
\end{aligned}
$$

Their total resistance can be found from the formula:

$$
\frac{1}{R \mathrm{~T}}=\frac{I_{\mathrm{T}}}{V}=\frac{1}{R 1}+\frac{1}{R 2}+\frac{1}{R 3}
$$

EXPERIMENT 1.2

MEASURING P.D.

Given a known current and a known resistance we can calculate the p.d. across the resistance. We make use of this fact in electronics to measure p.d. by measuring current.

The meter in Minilab has resistors R1, R2 and R3 connected in series with it, see Fig. 1 on page 665. The resistance of the meter in the prototype is 4000Ω (4 kilohm , or $4 \mathrm{k} \Omega$), and the resistance of $R 1$ is $100 \mathrm{k} \Omega$. Their combined resistance in series is $104 \mathrm{k} \Omega$, according to the formula above. If we connect a supply voltage, say V_{1} to $-V E$ and iov to pass a current of $100 \mu \mathrm{~A}$ through the meter and R1, the p.d. between the sockets is $V_{1}=I R=1000 \times 10^{-6} \times 104 \times 10^{8}=$ $10 \cdot 4 \mathrm{~V}$.

The factor 10^{-6} is used because current is in microamps ($1 \mu \mathrm{~A}=10^{-6} \mathrm{~A}$), and the factor 10^{3} is used because the resistance is in kilohms ($1 \mathrm{k} \Omega=10^{3} \Omega$).

Fig.1.8. A simple potential divider network composed of two resistors.

Fig. 1.9. The layout of the components on the breadboard to investigate the potential divider circuit of Fig. 1.8.

The meter shows full scale deflection (f.s.d.) when the p.d. is $10 \cdot 4 \mathrm{~V}$, which is close enough to 10 V for our purposes.

The series resistor converts the microammeter to a voltmeter reading 10 V f.s.d. Readings of other p.d.s are

Fig. 1.7. Testing the meter connected as a 10 volt full scale voltmeter. The wire shown in 3 V position should be placed in each of the positions: shown dotted.
in proportion: when the needle points to " 40 ", the p.d. is 4 V

To test the voltmeter, connect up as in Fig. 1.7 and put the meter iov lead in to each of the battery terminal block positions in turn except 12v.

When we connect to - VE and $2 \cdot 5 \mathrm{~V}$ the meter is in series with R2 and R3. Their total resistance is $4 \mathrm{k} \Omega+$ $20 \mathrm{k} \Omega+1 \mathrm{k} \Omega=25 \mathrm{k} \Omega$. For a f.d.s. current of $100 \mu \mathrm{~A}$, the p.d. between sockets is

EXPERIMENT 1.2

SIRIP A

Fig. 1.10. Using a potentiometer instead of the two fixed value resistors in Fig. 1.8.

Fig. 1.11. Suggested layout of components for the circuit in Fig. 1.10.
$\mathrm{V}=100 \times 10^{-5} \times 25 \times 10^{3}=2 \cdot 5 \mathrm{~V}$.
This gives a $2 \cdot 5 \mathrm{~V}$ f.s.d. voltmeter, useful for measuring lower p.d.s. with greater accuracy.

POTENTIAL DIVIDER

If we require a p.d. which is less than any of the fixed p.d.s from the battery, we can use two resistors in series as shown in Fig. 1.8. If the p.d. across the two resistors is $V_{\text {In }}$, the current is $I=V_{I N} /(R 4+R 5)$. The p.d. across the lower resistor is $V_{\text {out }}$ and $I=V_{\text {out }} / R 5$. Since I is the same for both equations:

$$
\frac{V_{\mathrm{IN}}}{R 4+R 5}=\frac{V_{\text {OUT }}}{R 4}
$$

giving:

$$
V_{\text {OUI }}=\frac{V_{\text {IN }} R 5}{R 4+R 5}
$$

The network of resistors has divided the potential, so we call it a potential divider. The calculations assume that no current flows from the divider into the meter or into any other circuit that may be connected at the same point. In practice a small current does flow to the meter, so the actual p.d. across $R 5$ is always a little less than the calculated value.

However, provided the outflowing current is small, we need not worry about this. In general, if the current leaving the junction of the resistors is less than one tenth of the current flowing through the network, we ignore its effects.

EXPERIMENT 1.2

To make and investigate a potential divider network

The circuit for this experiment is shown in Fig. 1.8 and the suggested layout on the breadboard in Fig. 1.9. The voltage across $R 5$ can be read from the meter.

Measure the output p.d., using the meter. Does this agree with the result obtained by calculation? Try again with a 330 resistor in place of R4. Then make R4=470』 and R5= 330Ω and try again.

If we connect a variable resistor as in the circuit of Fig. 1.10, it acts like two resistors in series, with the wiper at their junction. The resistor becomes a potential divider which can be set to give any p.d. between 0 V and $V_{\text {IN }}$. Investigate its action, using the layout shown in Fig. 1.11.

PRACTICE SPOT

In Experiment 1.1 you measured current through various materials and devices when the p.d. was 3 V . Calculate the resistance of (a) your body, hand to hand; (b) the wet tissue; (c) the lamp; (d) the thermistor warm and cold; (e) the transistor warm and cold.

TEACH-IN 82
COMPONENTS IDENTIFIED

The components used in this month's experiments are shown above. Here we show a physical drawing of the component, its circuit symbol and its circuit reference.

There are four different resistor values required. The value of each is
coded on the body in the form of a number of coloured rings. See page 697 for full account of resistor coding.

The transistor is a special type, a vmos power field effect transistor. This must be connected exactly as shown in circuit diagram-otherwise
the device may suffer damage.
The potentiometer can be considered as a resistor which can be tapped anywhere between its extremes. As the shaft is rotated clockwise, the wiper moves towards B.

The VAl067S rod thermistor is a heat sensitive resistor made of semiconductor material. May be connected in circuit either way round.

To be continued

QUESTION TIME
 1.1. Which part of an atom carries negative charge?
 1.2. What kind of force exists between two positively charged objects?
 1.3. What is the practical unit of electrical charge?
 1.4. Name three examples of charge carrier.
 1.5. If a current of 2 amperes flows for 3 seconds, how much charge is carried?
 1.6. Which kinds of material make the best conductors?
 1.7. What does f.s.d. stand for?
 1.8. The bands on a resistor are brown, red, orange. What is its resistance?
 1.9. When a resistor has a p.d. of 3.4 V across it, the current flowing through it is 5 mA . What colours are the bands on the resistor?
 1.10. If the potential divider of Fig. 1.8. has $R 1=150 \mathrm{k} \Omega$ and $\mathrm{R} 2=$ 15Ω and $V_{\text {IN }}=11 \mathrm{~V}$, what is $V_{\text {OUT }}$?
 Answers in Part 2.

Ordering Components

Around this time of the year many new recruits are commencing the most fascinating of all hobbies, "Electronics", and it is my agreeable task to guide their faltering footsteps in the mysteries of purchasing components. This being the case I must ask my regular reader to bear with me, that is, unless he or she wishes to refresh his or her memory on these procedures.

You may be extremely lucky and have a little man round the corner who will attend to some of your requirements, but many of you will have to rely on Mail Order. Don't be dismayed by this, there are plenty of us dying to fulfil your needs and while 1 and my colleagues have always been eager to help you, the recession has put a keener edge on our performance. In other words it is a "Buyers Market".

I suggest your first move is to send for about four or five catalogues and then study them carefully. Make a list, showing
who has the best selection of capacitors, resistors, etc., and so on. For example, dealer " A " might have the best selection of variable capacitors, and dealer " B " the largest selection of transistors, this will be a useful guide when ordering parts for a project. Let me say, at this point, never fail to read the Shop Talk page which gives invaluable information especially on the sources of supply of unusual components.
Let us assume you have reached the point where you have made your llst of what you wish to buy. Most mail order companies supply order forms, always use them when provided. Paperwork is time consuming and costly and not many of us keep copies of your orders. Instead we ask you to return the original, in case of a query, so make sure you keep the order until you have checked that all the goods are there and as ordered.
Naturally, you are keen to start on your project and any delays are irritating but always remember your letter may take two or three days to reach us and even with a by return service you must allow another
two days and most likely there will be an intervening weekend.
Many firms have a fixed postal charge which means you lose on the small parcels and gain on the big ones. Last, but most important of all, write your name and address clearly on your order.

Component Ratings

Probably the two most used building blocks in construction are resistors and capacitors, so a few words on these would not be out of place. The two factors you need to know with capacitors are the capacity given in either Picofarads (PF) Nanofarads (nF) or Microfarads ($\mu \mathrm{F}$) and the voltage.

The designer usually states quite clearly the type he expects to be used, that is, ceramic, silver mica, polyester or electrolytic, but remember that with electrolytics the tolerance is usually +50 per cent and -20 per cent. As far as voltage goes, it is usually safe to go above the suggested one, but not below, remembering of course that as the voltage increases, so does the physical sizel
The two factors given with resistors are wattage and tolerance buit here we have a curious anomaly. It might be thought that the wattage is given to indicate the current passing through them, which in term means it must dissipate a certain number of watts, but when the value given is below one watt it is usually given as an indication of physical size; larger ratings and in some cases even smaller wattage types may be used.

As regards tolerance, these days most resistors are 5 per cent which is adequate for the majority of purposes.

The Minilab was designed to provide a portable electronic experimental deck for those who are starting to follow the Teach-In 82 series beginning this month, see page 658 . With the facilities provided by Minilab and the additional components listed on page 658, you will be able to undertake every experiment described in Parts 1 to 6 of this series.

When the series is over, Minilab will continue to be of great use to you. In fact it is a generally handy workplace for any electronics enthusiast, ranging from the beginner to one who has reached the stage of wanting to design and build his or her own circuits.

FEATURES
The general purpose circuitry within the basic Minilab is shown in Fig. 1 and provides the facilities listed below. All facilities are accessible through terminal strips TB1, TB2, TB3, mounted immediately behind the Work Panel.

Power Supply
With the younger and least experienced experimenters in mind we have decided that a battery is the safest and most convenient form of supply. The circuits to be built have low current requirements, for which a battery is perfectly adequate. There is also the great advantage that the Minilab is completely portable and can be used in any room, without need for a mains power socket.

The battery supply consists of eight dry cells, Bl to B8 providing a maximum voltage of 12 volts(V) d.c. It is tapped at several points to give $1 \cdot 5 \mathrm{~V}, 3 \mathrm{~V}, 6 \mathrm{~V}$, 9 V , as well as a balanced $\pm 6 \mathrm{~V}$ supply for operational amplifiers.

The batteries are housed in the case of Minilab, together with all the other facilities.

COMPONENTS
A complete kit of the components listed below may be ordered as LIST 1 from the retailers appearing on page 670 .
Resistors

R1	$100 \mathrm{k} \Omega$
R2	$\left.{ }_{1}^{20 \mathrm{k} \Omega}\right\}$

All $\ddagger W$ carbon or metal film $\pm 2 \%$
Potentiometers
VR1 $10 \mathrm{k} \Omega$ carbon lin. law
VR2 $100 \mathrm{k} \Omega$ carbon lin. law
Capacitor
C1 500 pF miniature variable capacitor, solid dielectric

Semiconductors
D1, 2, 3 TIL209, TIL220 or similar red light emitting diodes with fixing clip/ bush (3 off)

Switches
S1, S2 push-to-make, releaseS3 push-to-break, release. S4 to-make miniature single-pole doublethrow standard toggle

Miscellaneous
ME1 $\quad 100 \mu$ A d.c. moving coil LS1 8ohm moving coil loud. speaker, 45 to 80 mm dia.
B1-B8 HP2 1.5 volt cells (8 off)
TB1-TB3 2-amp 12-way screw terminal blocks (30 off) Verobloc solderless breadboard or-similar-see text; battery holders to suit four HP2 type cells (2 off); control knobs, skirted with index line to fit VR1, VR2 and C1 (3 off); p.v.c. covered stranded wire, $7 / 0.2 \mathrm{~mm}, 1$ metre each of six different colours (6 metres); OBA solder tags (3 off)-only for in-line battery holders; 2A 12-way terminal block (for modules); materials for case, see CUTTING LIST on page 667. and cáse

Meter

A single low-cost microammeter ME1 is provided for measuring currents up to 100 microamps. The series resistors (R1, R2 and R3) allow it to be used to measure voltages up to $2: 5 \mathrm{~V}$ or 10 V .

The values of the resistors, in particular R2 and R3, shown in the circuit diagram have been selected for use with a particular meter having an internal resistance of 4 kilohms. Teach-In 82 kit suppliers will be selecting resistor values to suit the meter supplied which may be other than 4 kilohm. This selection is only likely to affect the values of R2 and R3. It is possible that only a single resistor will be required and supplied.
By means of suitable shunt resistors it can also be used for measuring currents larger than 100 microamps. The way to use this meter will be fully explained during the series.

Light emitting diodes

Small lamps have many uses as visual indicators as will be explained during the series. The Minilab is equipped with three visual indicators in the form of light emitting diodes
(1.e.d.s) D1, D2 and D3 mounted on the Control Panel. These are semiconductor devices which when excited by the application of a voltage, emit a red light.

Switches

There are four switches S1, S2, S3 and $S 4$ having three different functions: S1 and S2 are push-to make, release to break button types; S3 is the inverse of the previous being push-to-break, release-to-make push button type; S 4 is known as a single pole double-throw (s.p.d.t.) or singlepole two-way. Here the centre terminal makes with either of the other two depending on its position.

Potentiometers

There are two potentiometers VRI, VR2 having values of 10 kilohm and 100 kilohm respectively. These devices have three terminals. The extremes have a specially prepared carbon track between them forming a resistance in these instances of 10 kilohm and 100 kilohm. The centre terminal, known as the wiper is in contact with the track and its position along the

Fig. 1. Circuit diagram of the basic Minilab.

track is determined by the angular position of its shaft. Variable resistors may be formed by using the wiper and one other terminal.

Variable Capacitor

A variable capacitor Cl having a capacitance suitable for radio tuning circuits is included.

The capacitance is a function of the fixed distance between, and overlap area of, two sets of parallel plates. Angular rotation of its shaft moves one set of plates relative to the other varying the overlap and thus its capacitance.

Loudspeaker

A miniature low power loudspeaker is fitted to the base of the Minilab for audio experiments. This transducer converts electrical signals to sound waves.

Modules

The Minilab described in this issue is the basic version. It will be noted that there are vacant spaces on the Control Panel. These are left ready to receive the controls and readout of three special modules, that are to be built into Minilab at a later date during the series. The circuits and the way the modules work will be described in the series as it progresses.

Each module is simple to construct and is a useful experimental and design tool. The three modules to be included are
(a) a low-noise signal amplifier
(b) a square-wave oscillator which can be set to any one of four frequencies
(c) a 7 -segment l.e.d. display.

BREADBOARD

A "solderless breadboard" is used for interwiring the components according to the circuit diagram. It has a matrix of "sockets" arranged on a $0 \cdot 1$ inch grid and these are grouped (wired internally) to provide blocks of common sockets, in all 58 five-input sockets with four separate bus bars on the perimeter in the case of the Verobloc used here. The centre section sockets each allow up to five components to be interconnected at one point and should therefore be suitable for many circuits. This number can be extended by linking two or more groups as required.

The leads of the components and wires are simply pushed into the sockets to make a good electrical connection. This is an economical and quick way of wiring up components for experiments and project testing. When the experiment is completed, they can be quickly "unplugged" ready for re-use in other experiments.

How the contacts are interwired inside the Verobloc.

The breadboard is fitted to the Work Panel with double-sided adhesive tape. There is ample working space around the breadboard with plenty of room for mounting an additional board or boards should your en thusiasm take you in the direction of expansion.
The breadboard used in Teach-In 82 is the Verobloc, which is one of the smaller and least expensive of the 0.1 inch matrix boards. Should you already possess a different board of this type (for example EuroBreadBoard or Protoboard) it can be used instead of the Verobloc.

Note that integrated circuits are to be used on several occasions during the series, so it is essential that what ever breadboard you install is capable of holding at least two 16-pin dual-inline integrated circuits.

CASE

Details for constructing the Minilab case are shown in Fig. 2. Also contained on this page is the cutting list for all parts. All dimensions are in millimetres.

All parts should be cut to size according to this list and any rough edges arising from saw cuts rubbed smooth with glasspaper. Nails and woodworking adhesive, Resin W, were used for all fixings. The nails were later punched below the surface and filled in with Polyfilla and then sanded.

Fix the batten, control panel support and rear panel fixing to each frame side panel followed by the batten on the frame front member. When set, apply adhesive to the ends of the frame front member, frame divider and frame top member and

The Verobloc may be used as a "handle" to remove the Work Panel allowing access to the storage compartments.
secure each in position with nails using the base panel to keep the assembly square. When set, glue and nail the base in position, having previously made the array of holes to suit the loudspeaker. This can be followed by the horizontal rear panel support. The centre support can finally be glued in position to complete the case frame.

In the prototype the Work Panel and Control Panel were made up from 3 mm plywood and covered with Formica. These may be painted or varnished if preferred.

The bare plywood panels, shopld be tried in position on the framework, and if necessary their dimensions modified to fit neatly in their final positions. A gap of about 4 mm should exist between Control Panel lower edge and frame divider to allow the wires to pass from the terminal blocks to control panel components. A slightly oversized piece of plastic laminate can be glued to the panels using Evo-Stik or Thixo Fix and wherrset filed down to size.

Only the drilling of the rear and control panels remains. With the latter, use of a sheet of self adhesive paper or a number of self adhesive labels strategically placed are advised for marking out the positions of the holes on this panel. Besides providing protection to the surface during this operation, the paper will also reduce any likelihood of the drill bit slipping as drilling starts.

NOTES ON DRILLING

It is advisable to wait until you have the Minilab components to hand before drilling the holes in the Control Panel. The diameters of the holes shown are for the particular components at hand when building our Minilab. It is possible that you may obtain alternative types of component which may not be exactly the same size as specified. Do not be tempted to rearrange the layout on the Con-
trol Panel. Soace has been left for the modules to be added later.

Panel mounted components for the modules will not be at hand until later in the series, but it is advised that the holes to accommodate these are made at the same time as the others, before any components are mounted.

We believe it will be safe to go ahead and drill the three uppermost right hand holes the same size as that you drill for S4. Also the hole between VR2 and Cl the same slze as VR2 fixing hole.

The rectangular cut-out in the panel is to suit a particular 7 -segment display that will be uniquely defined later in the series. It is in order therefore to cut this aperature to the size shown.

METER CUT-OUT

A large circular cutter will be required for making the meter cut-out, its diameter to accommodate the meter rear moulding. Alternatively a ring of small holes may be drilled side by side around the internal circumference of the cut-out and a small saw blade used to cut between adjacent holes and then filed smooth using a half-round file. A fret saw may also be used to make the cut-out.

Fixing hole positions can then be determined and made with the meter sitting in the cut-out.

The rectangular cut-out is to accommodate a seven-segment display to be fitted later in the series and is easiest made by drilling two holes about 10 mm diameter and then filing square. A file with an uncut edge is advised.

The two fixing holes for the variable capacitor should be marked and drilled using measurements taken from the capacitor supplied in your kit. Alternatively it can be glued using an adhesive such as Araldite.
Finally countersink the four panel fixing holes.

GE MINILA: CASE COHSTRUCTIDN TIC. 2

WORKPANEL

frame sIDE dejall

Cutiling IIS

WORKPANEL
$300 \times 179 \times 3$ Plywood $300 \times 179 \times 1$ Formica CONTROL PANEL $300 \times 205 \times 3$ Plywood $300 \times 205 \times 1$ Formica FRAME SIDES $425 \times 135 \times 14$ (2) Softwood FRAME FRONT MEMBER $300 \times 45 \times 14$ Softwood FRAME TOP MEMBER $300 \times 22 \times 14$ Softwood FRAME DIVIDER
$300 \times 40 \times 18$ Softwood SIDE BATTENS
$389 \times 35 \times 8$ (2) Softwood FRONT BATTEN 284×353 Softwood CENTRE SUPPORT $163 \times 35 \times 8$ Softwood REAR PANEL FIXINGS $101 \times 13 \times 13$ (2) Softwood $300 \times 13 \times 13$ Softwood CONTROL PANEL
SUPPORTS
$165 \times 13 \times 13$ (2) Softwood BASE PANEL $397 \times 300 \times 3$ Plywood REAR PANEL

CONTROL PAMEL DETAIL

Fig. 3. Overhead view of screw terminal blocks showing wiring positions of leads from Control Panel mounted components. You can see the meter series resistors R1, R2 and R3 connected directly to the terminal block and secured by the terminal block screws. Solder R2 and R3 after they are secured to the block.

Fig. 4. Underside view of the Control Panel with all its components in place and wiring details to the terminal blocks. Connect A to A, B to B and so on.

Fig. 5. Wiring details when using the lateral style battery holders showing connections to be made to the terminal block, see Fig. 3.

Fig. 7. Full-size label that may be cut out or copied and then glued on the Work Panel top edge to identify functions of terminal block positions.

Wiring to the terminal blocks with the Control Panel conveniently supported in an upright position.

For neater appearance, the underside of the control panel top edge was chamfered so that it fitted close up against the frame top member.

When this has been done, the fixing holes for this panel should be made in the panel supports using the Panel as a template.

The external framework can now be prepared and painted; gloss or varnish is considered more suitable than emulsion paint.

CONTROL PANEL LABELLING

It is recommended that all controls/ indicators on the Control Panel are clearly labelled so that you know exactly which control to use during your experiments. This can be carried out with Letraset or similar rub-down
lettering. The result with this method is seen in the photographs of our Minilab.
This is more easily done before mounting the components on the panel, but make allowance for protruding bushes, nuts and knobs which might cover the lettering when the items are in position. The lettering should be protected from wear by spraying with a clear lacquer such as Letracote.
Embossed labelling tape (for example, Label-Mate) may be used instead, but this and other "panel type labels" are better added after the items are mounted.

The coloured spots on the Control Panel are intended to help identify the settings of S4, VR1 and VR2. The spots may be painted on or you can punch discs from coloured card and stick them in place.

COMPONENT ASSEMBLY

Depending on which battery holders you have, wire up according to Fig. 5 or Fig. 6. Connect long enough leads to these to reach the terminal block positions when holders are in place. The holders should touch the inside face of rear panel support. These may

Fig. 6. Wiring of the alternative, in-line battery holders. With this type of holder, the tapping leads need to be fitted with a solder tag as shown. This is then pushed between the appropriate cells to make the tapped connection.

then be screwed or glued to the base panel. Do likewise with the speaker.

With reference to Fig. 4 mount all the components in place on the Control Panel. It may be necessary to recess the Control Panel underside at locations D1, D2 and D3 to properly fix the l.e.d. clips/bushes, and S1 S2, S3 to allow the fixing nut of these switches to be screwed on.

Connect sufficient lengths of wire to these components to comfortably reach the terminal blocks.

All terminal block positions are to be labelled on the Work Panel top side. A two-part label, actual size is provided in Fig. 7 and may be cut-out (or copied) and glued centrally on the Work Panel. With this done, the terminal blocks may be screwed to the frame divider to align with these.

With the Control Panel supported as seen in the photograph, all leads should be trimmed, insulation cut back and the stranded wire twisted and tinned (coated with solder). Referring now to Figs. 3 to 6, secure each of the leads, including battery and speaker, to their terminal block positions.

It is important to connect the meter and l.e.d.s the correct way round. The meter will be marked with a " + " and a " - " to correspond with " $100 \mu \mathrm{~A}$ " and " $-V E$ " on the terminal block.

The two leads from an l.e.d. are polarity conscious being known as anode(a) and cathode(k).

Also pay attention to connections from VR1, VR2 and S4 to avoid confusion during experiments later on.

The wires to Cl should be as short as possible and be as far as possible from any other wires.

Once you have checked and double checked the wiring, the Control Panel may be screwed in place and the batteries inserted. Pay special attention to cell polarity when doing this, see Fig. 5 (or 6). The rear panel may now be screwed on to complete the unit.

LEAD SET

A set of leads need to be made up to provide a means of interconnecting components on the breadboard and to the Control Panel components via the terminal blocks, see table below.

Quantity	Length (cm)
8	20
10	15
10	10
8	6
10	4

We recommend $7 / 0.2 \mathrm{~mm}$ p.v.c. covered wire.

About 5 mm of insulation should be stripped from each end, and the exposed strands twisted tightly together. Both ends should next be tinned to produce a suitable "plug" for inserting in the Verobloc "sockets".

By Dave Barrington

Special Offer

We strongly advise all our readers to take advantage of our Special Offer (see page 664) of a $£ 1$ off a Verobloc solderless breadboarding system module.

Apart from its use in the new Teach-In series, this Verobloc is suitable for most instant circuit experiments before being committed to a final "hardwired" version. Also it will repay for its self many times over in respect of damaged components through one cause and another.

Component Storage

When considering items for the workshop one item that seems to be regularly overlooked is the component storage bin or rack. However, if we are to make serious attempts at keeping the work area "clutter free" then these are well worth the investment.

The price will, of course, vary according to whether you choose a single plastics or cardboard tray, or one of the multidrawer cabinets available from most of our advertisers.

Available in three sizes and three colours, red, blue and yellow, the latest range of polypropylene storage bins from Link-Hampson are easily stackable and feature a corrugated inner base. The new base, it is claimed, makes it easier to pick up smaller components, such as glass diodes and transistors, from the bottom of the bins.
A moulded handle on the front of each "tray" has a slot for inserting an identification tab. Also, seethrough bins are

Storage bins from Link-Hampson.

included in the range and have the advantage of displaying their contents at a glance.

The dargest of the polypropylene bins, $400 \mathrm{~mm} \times 156 \mathrm{~mm} \times 186 \mathrm{~mm}$ deep, cost $£ 2.05$ and the medium size, $300 \mathrm{~mm} \times$ $156 \mathrm{~mm} \times 186 \mathrm{~mm}$ deep, $£ 1 \cdot 65$. The smallest bins, 250 mm and $130 \mathrm{~mm} \times$ 149 mm deep, cost 90 p each.
The storage bins can be ordered direct or for addresses of nearest stockists write to Link-Hampson Ltd., Dept EE, 5 Bone Lane, Newbury, Berks.
Using their experience in providing document storage systems for banks, Bankers Box are now producing a range of fibreboard bins which make excellent low cost component storage trays.
This firm started by making document storage systems for banks, hence its name, but seeing possibilities in other fields it has applied its technical know how to broaden its range of products. The result is a flat-pack tray which folds into shape using no clips or staples. The folds are designed to provide plenty of strength and are grease resistant.

The bins come in seven slzes from 51 mm wide by 102 mm high by 305 mm long up to $203 \mathrm{~mm} \times 102 \mathrm{~mm} \times 457 \mathrm{~mm}$. Available in packs of 10 the $102 \mathrm{~mm} \times 102 \mathrm{~mm} \times$ 305 mm size usually retails at $£ 3.75$ per pack.

Further information can be obtained from Bankers Box, Dept EE, Doncaster Road, Kirk Sandall, Doncaster, DN3 1HT.

CONSTRUCTIONAL PROJECTS

Sustain Unit

Some of the components called forl in the Guitar Sustain could cause readers buying problems.

First investigations reveal that it would appear only Watford and Electrovalue Electronics stock the 2 N 3820 field effect transistor (f.e.t.). The f.e.t. input op-amp type LF351 is stocked by Rapid, Watford, Maplin and Electrovalue.

Although the jack socket SK1 is listed as a standard type incorporating a doublepole double-throw switch this item is in very short supply. It does not appear in the Watford catalogue but we understand that they are able to supply this component.

Of course, there is no reason why a single-pole on/off toggle switch and a standard jack socket should not be used. The layout of components within the case will, of course, have to be altered.

Capacitance Meter

The multiturn cermet trimmer potentiometer (VR1) is available from most advertisers but check that it is of the correct physical dimensions for mounting on the circuit board. This component is fairly expensive and could be replaced by a standard skeleton miniature preset type of the same value.

However, for the sake of accuracy we recommend that readers use the com. ponents specified in the parts list.

EE Mini Lab and Teach-In '82

For those readers who will have to master the art of woodworking when tackling the EE MiniLab, there is no need for dispair as most of the components required for the first few experiments in the Teach-In 82 series can be wired direct to the Verobloc "instant" circuit module.
A list of complete kit suppliers for the EE MiniLab (List (1) and components for the first six instalments of Teach-In 82 experiments (List 2) is set out in table below.

One of the reasons for the price variations (see relevent advertisements) is caused by component sourcing and the quality and type of the final selection of components used in making up the kits. This applies particularly to the meter, variable capacitor and battery holders.

Popular Designs

Most of the components called for in Popular Designs should be readily available from advertisers. We see that some of them offer an identical size piece of board in packs of five.

TEACH-IN 82 KIT SUPPLIERS

Supplier	LIST 1	LIST 2	LISTS 1 \& 2
Bi-Pak (p.645)	£15-65	£8.94	£23.00
Electrovalue (0.709)	£16.56	£6. 32	£21 79
Greenweld ($p .699$)	£18.50	£8.10	£25.00
Magenta Electronics (p. 700)	£16.40	£9.34	£24.98
A. Marshall Ltd (p.696)	$£ 17.00$	£12.50	£28.50
T. Powell (p .708)	$£ 19.75$	$£ 10 \cdot 50$	£26.50
T.K. Electronics (p. 705)	£19.50	£9.50	£27.50
Watford Electronics (p. 641)	£18.08	£9.33	£25.54

NOTE

(1) All prices are inclusive of VAT; postage and packing.
(2) If Vero coupon is enclosed deduct $£ 1$ from List 1 price quoted.
(3) Price quoted in last column applies only when Lists 1 and 2 are ordered at the same time. Deduct $£ 1$ from this price if Vero coupon is enclosed.
(4) For suppliers full address refer to page number following company name.

COLLECTION of ten simple projects-comprising one from each volume of EVERYDAY ELECTRONICS 1971-1981. These have been selected to provide a wide range of subjects and fields of interest.

Any of these designs can be built on the piece of Veroboard (Stripboard) given with this issue.

1 Snap Indicator 672
2 Damp Locator 673
3 Tape Noise Limiter 674
4 Heads and Tails Game 675
5 Continuity Tester 676
6 Photo Flash Slave 677
7 Fuzz Box 678
8 Opto Alarm 679
9 Soil Moisture Unit 680
10 Ice Alarm 681

Newcomers to electronics should refer to page 682 for general information concerning construction of these projects.

SNAP INDICATOR

N some games, such as snap and question games, it is necessary to know which person or team is first, If recognition of pairs or readiness to answer is declared by voice, it is not always clear who was first.

The device described here was built to avoid this difficulty. Its simple electronic circuit is arranged so that when one person has pressed a button, a later response by the opponent is blocked; and an indicator lamp shows who was first. The circuit automatically returns to its original condition when the push-buttons are released, and hence is ready for the next turn.

CIRCUIT OPERATION

Transistors TR1 and TR2 act as switches for LP1 and LP2 that are in the collector circuits of the transistors.

One push-button is operated by each player and S3 is the on/off switch. Normally S1 and S2 are open and the transistor bases are held off and no collector current flows.

If Sl is now pressed, connecting R1 to the base of TRl, this shifts TRI into conduction so that the indicator lamp LPl lights. Almost the whole supply voltage is dropped across LP1, so that the supply voltage between the negative line and TRI collector, R3 junction is very small. If S 2 is now closed, TR2 will not be turned on since its base will not be taken positive enough. Hence LP2 will not light.

Should S2 be closed first, LP2 lights and LP1 cannot be lit.

Push-buttons S1 and S2 are bell-pushes, suitably placed for each competitor. The button is pressed and held down, to show recognition of pairs or readiness to answer. LP1 and LP2 are low-consumption bulbs (0.06 A 6 V) which limit collector current to a low value.

When both pushes are released, the circuit returns to the normal condition.

Fig. 1. Circuit diagram of the Snap Sequence Indicator.

COMPONENTS

Resistors

R1	$5 \cdot 6 \mathrm{k} \Omega$	R3	$4.7 \mathrm{k} \Omega$
R2	$4 \cdot 7 \mathrm{k} \Omega$	R4	$5.6 \mathrm{k} \Omega$

All $\frac{1}{6} W \pm 10 \%$ carbon

Transistors

TR1, TR2 2N2926 silicon npn

Lamps

LP1, LP2 0.06A 6V bulb and holder
Switches
S1, S2 S.P.S.T. push button (bell push)
S3 S.P.S.T. toggle (on/off)
Miscellaneous
B1 $\quad 4.5 \mathrm{~V}$ torch battery
Veroboard: 10 strips by 12 holes $0 \cdot 1 \mathrm{in}$, matrix P.V.C. covered connecting wire (7 strand coloured)

ASSEMBLY

The complete unit is housed in a small box, ours was a wooden box made up for the job, but almost any small box will do. Holes are cut for the two indicator lamps (LPI and LP2), the on/off switch, S3, and the wires to Sl and S2.

The wires used to connect the circuit to S1 and S2 are twin core mains or bell wire.

If a metal case is used it is a good idea to cover the metal area under the component board with insulation tape.

For team games, leads to Sl can run to two or more pushes connected in parallel, and leads to S2 similarly to the required number of pushes.

Fig. 2. Veroboard layout and wiring diagram.

POPULLAR
 IDESIGNS
 DAMP LOCATOR

The device to be described is an inexpensive, simple, but effective, damp locator that will reveal damp in a variety of normally non electrically conducting materials such as stone, concrete, plaster, papers and textiles.

Since the device is intended to indicate a low level of dampness that is normally hard to determine by hand or eye, the use of a meter was not merited, and indeed by using an l.e.d. a fair portion of space and cost are saved.

CIRCUIT DETAILS

The two transistors, TR1 and TR2, are arranged in a configuration known as a Darlington pair. This arrangement has the property of providing extremely high gain-approximately equal to the multiplied gains of TR1 and TR2-with very high input impedance. Thus a small current flowing between TR1 base/emitter causes a very much larger current to flow between TR2 collector and emitter.

When the Damp Locator is placed upon a damp surface, a minute current is able to pass via that surface between the sensors. This small current provides the base bias for TRl causing it to be in the conducting state and allows a larger current to pass trough its collector and emitter to the base of TR2. This in turn allows TR2 to reach a state of conduction allowing a current to flow through the light emitting diode, Dl, damp is indicated by the resultant glow.

In the absence of a conducting media between the sensors, the circuit draws negligible current from the battery, thus an on/off switch was not used on the prototype, the battery being removed during long periods of non use.

TEST

Carry out the following test. Hold the battery fly. ing leads on the battery and touch the sensor lead (from B4) on the positive terminal of the battery. The diode should glow brightly. If this does not happen re-check and rectify.

Fig. 1. The circuit diagram of the Damp Locator.

ASSEMBLY

The unit should be housed in a plastic box. A metal case is NOT suitable. The sensor is made from two parallel strips of 22 s.w.g. wire threaded through four holes drilled in the base of the box. The finighed unit should appear to have a "railway track" running across the bottom outer surface of the case.

COMPONENTS

Resistors

R1	$100 \mathrm{k} \Omega$	R3 180Ω
R2	$15 \mathrm{k} \Omega$	$\frac{1}{4}$ watt $\pm 10 \%$ carbon

Capacitors
C1 $0.01 \mu \mathrm{~F}$ sub-miniature type
Semiconductors
TR1, TR2 BC108 or similar silicon non
D1 TIL209 or similar light emitting diode
Miscellaneous
B1 $5 \cdot 6$ volt Mercury type PX-23
Veroboard 10 strips 12 holes 0.1 in . matrix; small transparent plastic box; 22 s.w.g. tinned copper wire. Connecting wire.

Fig. 2. The layout of the components on the Veroboard.

TAPE NOISE LIMITER

|NEXPENSIVE portable cassette tape recorders are extremely popular, but they usually have only a rather limited output power, driving a small internal loudspeaker, and the noise level is rather high.
The noise level cannot be entirely overcome, but a worthwhile improvement can be made by connecting the unit described in this article between the output of the recorder and the amplifier input.

CIRCUIT DESCRIPTION

Resistors R1 and R2 form a potential divider across the supply, and produce a low voltage supply for the field effect transistor, TR1. With only a small supply potential such as this, the d-s connections of the f.e.t. act as a simple resistor. With the gate ter minal tied to earth via R4, its resistance is very low, at about 100 ohms, or even less.
Resistor R3, together with the d-s resistance of TR1, R5, and C3, forms an attenuator. The main complication is C 3 , as its reactance (its resistance to a.c.) varies with frequency. It has a reactance of approximately 50 kilohms at 100 Hz , but of only approximately 500 ohms at 10 kHz .

This means that the attenuation factor of the circuit changes with frequency. If one calculates the attenuation factor of the circuit at 100 Hz , and 1 kHz , it will be found to be a little over one, which is barely noticeable.

If it is calculated for 10 kHz , it will be found to be almost exactly three, which is of course considerable, and will increase still further at high frequencies. This gives the required treble cut.

Some of the input signal is fed via C4, VR1, C6, and R6, to the base of TR2. This is a high gain common emitter amplifier, and the amplified signal is fed from TR2 collector, via C8 and R9, to a voltage doubling rectifier circuit, D1, D2, and C7. The resultant negative d.c. bias is fed to the gate of TR1.

COMPONENTS

Resistors

Resis					
R1	$68 \mathrm{k} \Omega$	R4	$100 \mathrm{k} \Omega$	R7	$1 \mathrm{M} \Omega$
R2	$18 \mathrm{k} \Omega$	R5	$15 \mathrm{k} \Omega$	R8	$2 \cdot 7 \mathrm{k} \Omega$
R3	$1 \cdot 2 \mathrm{k} \Omega$	R6	$2 \cdot 2 \mathrm{k} \Omega$	R9	$2 \cdot 2 \mathrm{k} \Omega$
All	+ watt carbon $+10 \%$				

Potentiometer

VR1 $50 \mathrm{k} \Omega$ sub-miniature preset, horizontal

Capacitors

C 1	$100 \mu \mathrm{~F}$ elect. 10 V	C 5
C 2	$10 \mu \mathrm{~F}$ elect. 10 V	
C 3	$10 \mu \mathrm{~F}$ elect. 10 V	C 6
$0.033 \mu \mathrm{~F}$		
C 4	$0 \cdot 1 \mu \mathrm{~F}$	C 7
F	$2.2 \mu \mathrm{~F}$	
C	$0.1 \mu \mathrm{~F}$	

Semiconductors
TR1 2N3819 n channel f.e.t.
TR2 BC107 silicon non
D1, D2 OA91 (2 off)
Miscellaneous
B1 PP3 9V battery
SK1, $2 \quad 3 \cdot 5 \mathrm{rm}$ Jack socket (2 off)
S1 s.p.s.t. rotary switch
Veroboard: 0.1 in. matrix; battery clips for PP3; aluminium case $135 \times 70 \times 40 \mathrm{~mm}$ with removeable lid; control knob.

Fig. 1. Circuit diagram of the Tape Noise Limiter.
On low level signals, this bias voltage will have little or no effect, but on strong signals it will be large enough to cause the resistance of TR1 to be greatly increased, to as much as a few megohms. Components C3 and R5 are virtually switched out of circuit, and the treble cut is thus removed.
The tape hiss is less noticeable in the presence of high frequencies, than in the presence of low or middle frequ\&ncies; $\mathrm{C} 4, \mathrm{C} 6$, and C 8 are given rather low values, so that the circuit responds more readily to high frequencies.

A SSEMBLY

Solder all the flying leads to the board; the leads should be about 70 mm long insulated wire. The board should now be mounted in a suitable case by means of two 12 mm long 6BA nuts and bolts. Finally, wire up the flying leads to the case-mounted components.

ADJUSTMENT AND USE

The "tape" or "radio" input of most amplifiers or record players has a fairly high input impedance (50 to 100 kilohms), and should be used. The unit can be used with amplifiers having fairly low input impedances (5 to 10 kilohms).
Potentiometer VRl adjusts the level at which the treble cut is removed. Experiment a little using various settings. If this is set too high, tape hiss will be heard on low level signals.

Fig. 2. Layout of components on the Veroboard.

HEADS \mathcal{E} TAILS GAME

THis simple little novelty device demonstrates how it is possible to electronically simulate the tossing of a coin
The circuit is arranged so that it is purely a matter of chance whether the heads or tails lamp is illuminated when the push button is pressed, the circuit thus providing the same effect as tossing a coin.

CIRCUIT OPERATION

The two indicator lamps are two light emitting diodes (l.e.d.s), D1 and D2. These are protected against passing excessive currents by the series resistors R1 and R4, Diode D1 is illuminated when TR1 is turned on, and D2 will be illuminated when TR2 is turned on.

If VR1 is ignored for the time being, when the push button switch, S1, is depressed, the positive supply will be connected to the circuit. The transistors will obviously both begin to turn on, TR1 receiving its base bias current via R4, D2, and R3, and TR2 receiving its base current via R1, D1, and R2.
It is, however, not possible for both transistors to turn hard on at the same time, as if TR1 is turned hard on, only a fraction of a volt will appear at its collector, and TR2 cannot receive the necessary bias current to turn hard on. If TR2 turns hard on then the same is true for TR1
What happens when the supply is connected is that both transistors begin to turn on, but due partially to chance, and partially to a slight unbalance in the resistor values, transistor gains, etc. of each half of the circuit, one will begin to turn on faster than the other. In doing so it tends to starve the other transistor of base current as its own collector swings towards earth potential.

On the other hand this enables it to obtain a heavy base current from the collector of the other transistor, as this has its collector still at virtually the full supply potential. This regenerative action results in one transistor being biased to saturation, and the other being cut off. Obviously only only of the lamps will light up.

COMPONENTS

Resistors

R1	470Ω	R3
R2	$82 \mathrm{k} \Omega$	$82 \mathrm{k} \Omega$
All $\frac{1}{4} W$ carbon $\pm 5 \%$		
R4	$470 \Omega \Omega$	

All \ddagger W carbon $\pm 5 \%$

Potentiometer

VR1 $1 \mathrm{k} \Omega$ horizontal skeleton preset Semiconductors
TR1, TR2 BC109 silicon npn
D1, D2 TIL209 or similar l.e.d. with holder

Miscellaneous

S1 push-to-make, release-to-break pushbutton switch
B1 9V PP3 with connector
Veroboard: 0.1 inch matrix size 10 strips by 24 holes; case.

Fig. 1. The circuit diagram of the Heads \& Tails Game.

VR1, compensates for the component tolerances by supplying a higher supply voltage to one or other side of the circuit, and is adjusted by trial and error.

ASSEMBLY

Connect up the l.e.d.s and Sl using approx. 75 mm lengths of thin insulated wire, Make quite sure that the l.e.d.s are connected with the correct polarity.

The front panel of a suitable case should next be drilled to take Sl and the diodes. Switch Sl is mounted in the centre of the panel, and the l.e.d.s are mounted to the right of this, one above the other.

A DJUSTMENT

Start with the slider of VR1 at a central position and then press Sl a number of times (25 or more) It will probably be found that one lamp lights up much more often than the other. If Dl lights up more frequently, then VR1 should be adjusted slightly in an anticlockwise direction to compensate for this. If D2 lights up more frequently, then VR1 needs to be adjusted slightly in a clockwise direction.

Repeat this procedure until the circuit is properly balanced with each lamp lighting up approximately the same number of times.

Fig. 2. Stripboard component layout.

WHEN building and servicing electronic equipment, there are numerous occasions when some form of electrical continuity tester is required. It may be when tracing out the wiring around a complicated array of switches, or perhaps something more everyday such as checking for a break in a mains cable; sorting out the contacts of a wavechange switch; or checking a fuse which one suspects has blown.

The very simple tester described here produces an audible tone to indicate continuity. The unit is very simple to construct and is also quite inexpensive as few components are used.

CIRCUIT OPERATION

The circuit consists of a relaxation oscillator, feeding a miniature speaker.
A unijunction transistor, TR1 forms the active component in the oscillator. Unijunction transistors have little in common with ordinary bipolar transistors except that they are also three terminal devices. The terminals are named differently though, being called base 1 (b1), base 2 (b2) and emitter (e).

With no voltage present at the emitter, the base 1 and base 2 terminals have a resistance of about three to 10 kilohms across them. Therefore, when the test prods are short-circuited, a current of about a couple of milliamps will flow through the loudspeaker via the unijunction.

This does not, of course, take into account that $\mathbf{C l}$ will have charged to the supply potential within a fraction of a second of the battery being connected and so there is about 9 V at the emitter of TR1.
If more than about half the supply potential is present at this terminal the emitter input impedance (which is otherwise extremely high) suddenly falls to a very low level and the base 1 to base 2 resistance of the device falls to about half its previous level.

Thus, at the instant the test prods are touched together, Cl discharges into the emitter of TR1 and a pulse of current is fed to the loudspeaker via the bl, b2 terminals of TR1.

Once Cl has largely discharged, TR1 operates as previously described until Cl is charged via R1 to the trigger voltage once again. Then Cl will again discharge and another pulse of current will be fed

Fig. 1. The complete circuit diagram of the Continuity Tester.

COMPONENTS

Resistor

R1 $\quad 6 \cdot 8 \mathrm{k} \Omega \pm 10 \%+W$ carbon
Capacitor
C1 $\quad 0 \cdot 22 \mu \mathrm{~F}$ polyester type C280
Transistor
TR1 TIS43 unijunction transistor
Miscellaneous
LS1 25 to 80Ω speaker
B1 9V PP3 battery
Veroboard 0.1 in matrix; 10 strips $\times 11$ holes; aluminium box; test leads and prods; speaker fret; PP3 battery connector.
to the loudspeaker. This will continue in rapid succession causing a continuous tone to be emitted from the loudspeaker as long as the test prods are connected together.

If a resistance of more than a few hundred ohms is present between the two test prods, TR1 will cease to function and no audio tone will be generated,

ASSEMBLY

Virtually any small case can be used to house the unit, the minimum suitable size being about 100×70 $\times 25 \mathrm{~mm}$.

CONCLUSION

When using the unit it should be borne in mind that if the circuit under test has a resistance of perhaps as much as several hundred ohms the unit will still produce an audio tone even though there is not true continuity. This is not a major drawback however as, if the resistance between the prods is more than just a few ohms, the volume of the tone drops and the type of note changes noticeably.

Fig. 2. Layout of components on Veroboard and complete wiring details.

PHOTO FLASH SLAVE I295

THERE now seems to be a very wide range of electronic aids available to photographers, and most such aids appear to be fairly complex devices. Although a photo-flash slave unit is probably the most simple of these devices it is nevertheless one of the most useful.

A flash slave unit triggers a secondary flashgun when it receives a pulse of light from the main flashgun.

CIRCUIT OPERATION

A thyristor is a unilateral device, and it will therefore only function properly if it is fed with a voltage of the correct polarity. In order to avoid any problems here, a bridge rectifier consisting of D2 to D5 has been added in series with the flash lead, and this provides a signal of the correct polarity to the thyristor (CSR1) regardless of which way round the flash lead is connected.

Resistors R2, R3, and diode D1 form a simple Zener shunt regulator, and these limit the voltage which can be fed to the gate of CSR1 via the photoDarlington amplifier TR1. Capacitor Cl is needed in order to provide the current required to trigger CSR1.

While Cl charges up it is receiving a current of only a few microamps for about one second. When the light from the main flashgun is received by the photocell (TRI), it's normally very high resistance falls to a level of only about a few hundred ohms. This happens extremely quickly, and as a result C1 almost instantaneously discharges through TR1 and into the gate of CSR1. Because the charge on C1 is released so rapidly, the discharge current is many times greater than the charge current. It is thus sufficient to switch on CSR1 which then places a low impedance path across the flash lead and so fires the flashgun.

Fig. 1. Complete circult diagram of the Photoflash Slave Unit.

COMPONENTS

Resistors
R1 $4 \cdot 7 \mathrm{k} \Omega$ R2 10M \quad R3 $10 \mathrm{M} \Omega$ All resistors are carbon $\frac{1}{4} W \pm 10 \%$

Capacitors

C1 220 nF polyester
Semiconductors
TR1 2N5777 photo darlington npm
CSR1 2N1599 200V 1A invristor or equivalent
D1 BZY88C6V86.8V 400m W Zener
D2-D5 IN4003 rectifier (4 off)

Miscellaneous

SK1 extension lead for flash gun
Small transparent plastic case, $50 \mathrm{~mm} \times$ $40 \mathrm{~mm} \times 25 \mathrm{~mm}$; stripboard 0.1 inch matrix 10 strips $\times 12$ holes; small rubber grommet; solder.

After the flashgun has gone off the current through CSR1 falls to virtually zero and this component switches off. The circuit is then ready to start a fresh cycle when the flashgun is recharged again.

ASSEMBLY

The unit should be housed in a small transparent plastic case.

FUZZ BOX

THE POP musician is being constantly bombarded with new and improved musical effects units, but still polling high in the popularity charts is the "old" Fuzz Box.

CIRCUIT DESCRIPTION

Input to the unit is at SKl a stereo jack socket wired to complete the d.c. power circuit when the input jack is inserted. The signal then passes to the op-amp via d.c. blocking capacitor C1. Resistor R1 sets the input impedance at 100 kilohms which should suit most guitars and electronic organs.

The gain of the sustain 741 op-amp is controlled by feedback and is equal to: (VR1 $+\mathrm{R} 2+\mathrm{R} 3$)/R2. With specified values gain is from 6 to 92, depending on the setting of VR1. However, all output signals are limited to 600 mV peak by the effect of D1, D2 in the feedback chain. VRI setting controls the rise time of the signals towards the diode clipping level and thus the high order harmonic content in the signal which determines the depth of fuzz.

The resulting signal from the op-amp is reduced in amplitude by the potential divide action of R6 and R7, giving an attenuation factor of approximately four. Thus the maximum output signal via C3 available for inputting to an amplifier is about 150 mV . This level will be maintained during the period of clipping (fuzz) and will then decay naturally to zero.

The 741 requires a split supply and this is derived by the potential divide action of R4 and R5 producing +4.5 volts with respect to the op-amp reference line which is decoupled by C2.

A foot-switch S1 is incorporated to allow the unit to be readily by-passed when desired.

ASSEMBLY

The assembled stripboard, Fig. 2 was mounted horizontally in a die-cast aluminium box.

COMPONENTS

Resistors

R1	$100 \mathrm{k} \Omega$	R4	$10 \mathrm{k} \Omega$	R6 $3.3 \mathrm{k} \Omega$
R2	$1 \cdot 2 \mathrm{k} \Omega$	R5	$10 \mathrm{k} \Omega$	R7 $1 \mathrm{k} \Omega$
R3	$10 \mathrm{k} \Omega$	All $\frac{1}{4}$ watt carbon film $\pm 10 \%$		

-

All $\frac{1}{4}$ watt carbon film $\pm 10 \%$
Capacitors
C1, C3 $\quad 0 \cdot 1 \mu \mathrm{~F}$ plastic or ceramic C2. $10 \mu \mathrm{~F} 6 \mathrm{~V}$ elect.

Semiconductors

IC1 741 operational amplifier 8 pin d.i.l.
D1, D2 1 N4148 or similar silicon diode
Miscellaneous
SK1 standard stereo jack socket
SK2 standard jack socket
S1 s.p.d.t. successional action
foot-switch
B1 9V PP3
VR1 100 kilohm carbon lin.
Stripboard: 0.1 inch matrix 13 strips $\times 21$ holes; PP3 battery clip; aluminium diecast box; knob for VR1; connecting wire.

Fig. 1. The complete circuit diagram of the Fuzz Box.

Fig. 2. Layout of components on the stripboard.
Attach the flying leads including the battery connector, Fig. 3, and then proceed with drilling the case.

Screened lead should be used for input and output connections.

A much harsher fuzz can be produced by connecting a 1 kilohm resistor across SK2, signal to earth.

Fig. 3. Interwiring details. To be fitted in a metal box.

BOPULAR DMESIGNS

This simple single-transistor circuit is designed to sound a miniature audible warning device when light falls on to a photocell. The photocell is normally mounted in a dark room and the alarm is triggered when either the room lights are switched on or possibly when light from an intruder's torch falls directly on to the photocell.

CIRCUIT DESCRIPTION

The photocell PCC1 is an ORP12 light-dependent resistor which is located in the room to be protected, and is connected by means of PL1 and SK1. Together with R1, PCCl forms a potential divider: the voltage at the junction of R1 and PCCl varies with the amount of light striking the l.d.r.
In absolute darkness the resistance of an ORP12 is at least 10 megohms, and so the voltage at the junction of R1/PCCl is very nearly that of the supply rail, 9 V . Transistor TR1 is therefore firmly switched off as its base is not biased.

When light falls on PCCl , its resistance drops (albeit relatively slowly) and this causes TR1 to switch on. A triggering pulse is therefore delivered to the gate of CSR1 and this component conducts. The audible warning device (WD1) will therefore sound.

The thyristor will now remain in this low impedance state even if the triggering signal is removed. The only way to reset CSR1 and mute the alarm is to switch off the power supply. Resistor R 5 will ensure that a minimum holding current is flowing in the anode-cathode circuit of the triggered thyristor, and so preventing any undesirable resetting.

ASSEMBLY

The prototype was built into an ABS "Bimbox" type 4003 . This measures approximately $85 \times 55 \times$ 35 mm and has an aluminium front panel.

There should be no problems with the construction of the circuit; Fig. 2 illustrates the recommended arrangement of components.

Fig. 1. The circuit diagram of the Opto Alarm.

COMPONENTS

Resistors

R1	$22 k \Omega$	R3	680Ω	R5
R2	$4 \cdot 7 \mathrm{k} \Omega$	R 4	$2 \cdot 2 \mathrm{k} \Omega$	
All $\frac{1}{4} \mathrm{~W}$ carbon $\pm 5 \%$				
Car				

Capacitors

C1 $150 \mu \mathrm{~F} 16 \mathrm{~V}$ elect.
C2 $0 \cdot 1 \mu \mathrm{~F}$ polyester C280 or similar
Semiconductors
TR1 BC178 silicon pnp
CSR1 MCR102 thyristor rated 30V 0.8A or at least 9 V 100 mA
PCC1 ORP12 or similar light dependent resistor

Miscellaneous

SK1 $\quad 3.5 \mathrm{~mm}$ jack socket (2 off)
PL1 $\quad 3.5 \mathrm{~mm}$ jack plug
WD1 miniature 9 V audible warning device Stripboard: 0.1 inch matrix, 10 strips $\times 24$ holes; case BIM 4003 or similar; twin-core flex; stranded connecting wire; 6BA fixings including 5 mm spacers; 9 volt battery and connector; on/off switch.

All interconnections between the component board and front panel can be completed with stranded flexible hook-up wire.

Fig. 2. The layout of the components on the topside of the stripboard

THis device has partly a novelty value, but also definitely does give some indication of when the soil that it is measuring is "wet" or "dry". It may therefore help to give more consistent and successful results, assisting those who don't have much luck with potted plants.

CIRCUIT DESCRIPTION

Most of the work is done by ICl, a cheap and readily available 741C op-amp.

The variable resistor VR1, is wired between the supply lines and its wiper is connected to the inverting input. The setting of VR1 therefore determines the voltage at pin 2, and this can be altered from +9 V to 0 V .
At the non-inverting input we have the same sort of thing. The two probes, when inserted into soil, in effect form a resistor. The value of this "resistor" is dependent upon the moisture within the soil: the more moisture there is, the lower the value of this resistance.

Assuming that VR1 is at mid-position, when the soil is wet, we can say that the voltage at pin 3 will be lower than at pin 2. Therefore the output of IC1 is low. Current can therefore flow through R2 and D1, and "sink" into the output pin causing the green l.e.d. to light up. This is labelled wer.

Similarly with dry soil, the high resistance of the soil ensures that pin 3 is at a greater voltage than pin 2. The output pin therefore swings high, and it allows current to flow through the red l.e.d. D2 and R3 to 0 V lighting up this l.e.d. This is labelled DRY.

ASSEMBLY

A Bimbox type BIM2002/12 houses the unit. This handy-sized box measures $100 \times 50 \times 25 \mathrm{~mm}$.

COMPONENTS

Resistors

R1 $5 \cdot 6 \mathrm{k} \Omega \quad$ R2 470Ω R3 680Ω
All $\ddagger W$ carbon $\pm 5 \%$.

Semiconductors

IC1 741C 8-pin d.i.l. operational amplifier
D1 TIL221 0.2 inch green l.e.d.
D2 TIL220 0.2 inch red l.e.d.

Miscellaneous

VR1 $10 \mathrm{k} \Omega$ miniature horizontal skeleton preset
S1 single-pole push-to-make, release-tobreak
B1 9 V type PP3
0.1 inch matrix stripboard; 10 strips by 24 holes; case, $100 \times 50 \times 25 \mathrm{~mm}$, Bimbox BIM2002/12 or similar; battery connector; 4BA fittings, threaded brass rod for probes; 8 pin d.i.I. socket; connecting wire; mounting clips for D1 and D2.

Fig. 1. Circuit diagram of the Soil Moisture Unit.

Any other plastic case can be used.
The two probes are made of 4BA threaded brass rod about 120 mm long. Connections to the probes are made by solder tags placed under the mounting nuts within the case.

The two light-emitting diodes can be secured in position with either an appropriately-coloured lensclip or a standard plastic fixing clip.

SETTING UP

With construction completed, set VR1 to approximately midway, connect up a battery and press Sl. The red l.e.d. should glow. Bend the two probes together at their tips so that they short together: the red lamp should extinguish and the green l.e.d. illuminate.

If this happens the unit is ready to use. Set VR1 to give the desired switchover point of the two indicators. Here it may prove useful if you have some small containers of soil available. The individual samples should have various levels of water content, ranging from dry to saturated. It should then be possible to eventually adjust VR1 until a desired sensitivity is obtained.

Fig. 2. Stripboard layout and interwiring diagram.

THis Ice Alarm warns the driver when possible conditions exist for the formation of black ice. It does this by monitoring the temperature outside the car. When this drops to about two or three degrees Celsius, slightly above freezing, the unit flashes a warning lamp on the dashboard.

CIRCUIT

The heart of the unit is ICI, a cmos multivibrator which has been wired up as a gated astable. This means that the device oscillates only when pin 5 is high, otherwise it is inoperative.

Along with RI and VR1, the thermistor forms a potential divider, the output of which is connected to the base of TR1.

If TR1 is on, pin 5 is high and so the i.c. oscillates freely. If the transistor is off, however, the reset pin is grounded through R2 and so the i.c. is disabled.

As the temperature of RTHI decreases towards $0^{\circ} \mathrm{C}$, its resistance will increase and the voltage at TRI base will be reduced. Eventually a point is reached where the base terminal is 1.2 V less than the emitter and so TRI must turn on. Pin 5 of ICI goes high, permitting it to oscillate normally; pin 11 then presents a square wave signal to TR2 and this causes the indicator lamp to flash.

Note that the lamp is normally fully alight to show that the Ice Alarm is on, but it flashes when RTHI detects a low temperature.

Connections for the power feed and thermistor are taken by flying leads from the stripboard, through the case to a four-way screw terminal block mounted outside the case.

INSTALLATION

Ascertain whether the car chassis is positive or negative earth and connect this to the positive or negative terminal on the terminal block. The other supply wire should come from an ignition-controlled circuit (possibly at the fusebox), so that the Ice Alarm is not inadvertently left switched on when the ignition is switched off.
The position of the thermistor module may be rather a trial and error affair. The unit is obviously not waterproof and so it must not be exposed to spray or road filth. Furthermore it needs to be placed away from the car's exhaust system and cooling

Fig. 1. Full circuit diagram of the lce Alarm.

COMPONENTS

Resistors

$$
\begin{array}{lll}
\text { R1 } & 82 \mathrm{k} \Omega & \text { R3 } 470 \mathrm{k} \Omega \\
\text { R2 } & 22 \mathrm{k} \Omega & \text { All } \frac{1}{4} \mathrm{~W} \text { carbon } 10 \%
\end{array}
$$

Capacitors

C1 $0.1 \mu \mathrm{~F}$ tantalum bead 35 V
C2 $0 \cdot 22 \mu \mathrm{~F}$ polyester C280

Semiconductors

IC1 CD4047 CMOS mono/astable multivibrator
TR1 MPSA65 pnp silicon Darlington
TR2 BFY50 npn silicon

Miscellaneous

VR1 $47 \mathrm{k} \Omega$ miniature horizontal preset potentiometer
RTH1 VA1066S negative coefficient rod thermistor
LP1 $\quad 14 \mathrm{~V} 40 \mathrm{~mA}$ integral type MA lamp (amber)
S1 push-on, push-off single pole switch Case, $110 \times 60 \times 30 \mathrm{~mm}$, Bimbox type 2003/13 or similar; stripboard, 0.1 inch pitch, 10 strips 24 holes; 14 pin d.i.l. socket for IC1; fourway screw terminal block; piece of tagstrip for mounting RTH1; twin core flex, mounting hardware for circuit board; lamp holder for LP1.
system-parts which get hot during normal operation.

Final positioning must vary from car to car. A suggestion is behind (i.e. inside) the front bumper.

Fig. 2. Circuit board layout and component inter-wiring. Note that the thermistor RTHi is not shown in this diagram but is connected to the terminal block via a long cable and located at some remote location.

CONSTRUCYRON GUIDE

1 Any one of these Popular Designs can be built on a piece of stripboard (Veroboard) measuring $1 \frac{1}{16}$ in by $2 \frac{3}{8}$ in, or 10 strips by 24 holes, such as the piece of board given free with this issue. Further boards of this size can be obtained from retailers advertising in this magazine.

2 Before attempting to build one of these Popular Designs, read carefully the article and study the circuit diagram and the component layout diagram. Note the method of coding the strips (letters) and holes (numbers) of the stripboard. This helps positive identification of connection points on the board. See Fig. 1.

3 Make any required breaks in the copper strips as indicated in the diagrams. This operation is performed using a twist drill (hand held); or with the aid of a special tool which can be purchased. See Fig. 2.

Fig. 1

Fig. 2

4 Solder in position the resistors, capacitors and semiconductors. Carefully check the identity of the semiconductor lead out wires, also the polarity of electrolytic capacitors, before placing in position. It is advisable to use a heatsink when soldering semiconductor leads. I.C. sockets are recommended for the mounting of these devices.

5 Any other components such as potentiometers and switches that are mounted externally to the stripboard should be connected to the appropriate points on the stripboard as indicated. Use insulated (preferably flexible) wire of sufficient length to suit the mounting arrangements and general assembly of the complete unit.

6 Note any special recommendations regarding the housing of the project, and the fixing arrangements for the stripboard within the case. Where a plastic (non-conductive) case is specified do NOT use a metal one.

SIIMPLE IIIFRR RED REMOTE COITROL

Pulsed beam gives high efficiency and strong peak output using a single l.e.d. Receiver uses a special i.r. photodiode that does not respond to visible light. The receiver energises a relay which can be used for switching electrically operated apparatus. The i.r. remote control could also be applied as a burglar alarm.

LOUDHAILER

A self-contained electronic megaphone unit built around an LM380N audio i.c. and designed to feed either a small conventional loudspeaker or a horn speaker. The output power of 1 W is adequate for many applications and enables the unit to operate for long periods from small batteries.

This solid state replacement for the conventional car ignition system will improve m.p.g., extend spark plug life, minimise points wear and reduce demands on starter motor and battery.

EKPERIMENTAL CRYSTAL SET

A fascinating starter project for beginners of all ages. Easy to build and inexpensive in parts. Home-made coils cover medium and shori waves.

Everyday News

ELECTRONICS AND microelectronics

RADIO ELECTRONICS FOR SCHOOLS

With a new school term just starting it's a bumper month for the hard pressed physics teacher who, due to lack of qualified electronics teachers, is the one person invariably "press-ganged" into running the school's elec. tronics classes.

Not to worry! Hard on the heels of our new beginners Teach-In 82 series comes news that, under the School Radio banner, the BBC Radio 4 will be starting on September 22 a sound plus vision series for the teaching of electronics in secondary schools, including practical work. With our new series and the radio broadcasts, this should keep the pupils happy and relieve some of the pressure from the teacher.

The arrival of this more ambitious project from BBC School Radio entitled Electronics and Microelectronics is aimed at the 14 to 16 year olds and is designed to introduce some of the developments which have taken place in the last ten years.

The series consists of ten programmes and are accompanied by five Radiovision film strips. Also complete pupils' kits of component parts incorporating three transistors, two integrated circuits and a special softwood base (which take woodscrews for non-soldering
experiments) are available. It is claimed that each kit is suitable for 3 or 4 pupils and costs $£ 7 \cdot 95$.
Full details of how to obtain the kit and the filmstrips (which cost $£ 5 \cdot 70$ each) are included in a 24-page Teacher's Notes booklet. These notes which contain master copies of pupils' worksheets, are available Free from "Electronics and Microelectronics" BBC School Radio, 1 Portland Place, London WIA 1AA, on receipt of a A4 self-addressed envelope stamped at 20 p .
In collaboration with this BBC School Radio project

Electronics and Microelectronics is produced by Arthur Vialls. The series can be heard on Radio 4 VHF on Tuesdays, at 2.20-2.40 p.m., starting September 22.

MAPLIN ROADSHOW

At the end of September ' 81 Maplin are taking the Atari personal computers and their new Matinee Organ to five cities in the UK. This is a golden opportunity for mail order customers or anyone for that matter to actually see and handle these popular products and ask questions on the spot.

A warm welcome (between 6 pm and 10 pm) awaits anyone wishing to enjoy a pleasant informal evening which is completely free, so make a note of the following dates in your diary:

Newcastle upon Tyne, Priday, September 25, at the Grainger Room, Newcastle Centre Hotel, New Bridge Street, Newcastle upon Tyne.

Edinburgh, Saturday, September 26, at the Rosebery Room, Grosvenor Centre Hotel, Grosvenor Street, Edinburgh.

Manchester, Sunday, September 27, at the Ullswater Room, Portland Hotel, 3 Portland Street, Piccadilly Gardens, Manchester.

Birmingham, Monday, September 28, at the Malvern Suite, Birmingham Centre Hotel, New Street, Birmingham.

Norwich, Tuesday, September 29, at the Riverside Suite, Hotel Nelson, Prince of Wales Road, Norwich.

Talking Memories

A radio receiver and a television set which took the art of speech synthe sis and recognition a stage further was demonstrated by Toshiba at a recent trade show. Although the prototypes are not in themselves to be taken too seriously they provide a useful pointer to the future.

The radio receiver is a fairly conventional hi fi unit, but it can be operated under volce control. Although interesting this, in itself, isn't new. Last year Toshiba was showing a television set that operated under voice control. You tell it to switch on, switch off and change channels. The new receiver is important because it can memorise, and mimic, up to ten phrases, each of two seconds in length.

To "teach' the receiver to do what you want, you speak command -phrases into a microphone while microprocessor and memory chip store a digital coding of the words and dialect. Each stored phrase is then delegated to a switched function of the receiver.

For instance if you speak the phrase "BBC Radio 4", the microprocessor and memory store the sound of your voice saying those words. If you delegate that stored command to switch to the frequency for BBC Radio 4, then whenever you subsequently shout "BBC Radio 4" at the receiver it will recognise the command and switch to the appropriate frequency.

The breakthrough is in storage capacity. Ten phrases of two seconds each is a 20 second speech store. And as well as recognising the memorised phrases, the receiver can also speak them out as a check on what is memorised.

This points to the imminence of much larger solid state speech stores, pro. grammable by the user. Imagine for instance a telephone answering machine on which the master message is recorded on a solid state memory, rather than a clumsy endless tape loop.

Talking TV

The other Toshiba development is a TV set which talks to the viewer. This is a digitally stored voice which is pre-programmed to speak appropriate phrases at
user-selected times. For instance a timer will switch the TV on in the morning with an alarm call and a spoken "Good morning" at any chosen time.

At night the set will switch itself off at a pre-appointed hour with a "Now l'il fade out-have a goodnight's sleep". If you turn the volume up too loud the solid state voice (in the prototype a very female voice) advises you to "remember the neighbours, lower the volume'".

An ultrasonic ranging device (not photoelectric as wrongly reported elsewhere) senses if anyone in the room is too close to the set. The voice then warns "Watch from a distance, for your eyes' sake".

The ultrasonic sensor also detects when everyone has either left the room, or moved out of range of the set. "Now I'll fade out'", says the synthesised voice and the set switches it self off.

Chatter Box

It now looks as if we shall get legal CB radio on 27 MHz f.m. any day now.

If recent experience in both Germany and Austria is anything to go by, it will rapidly become a craze, but a short-lived craze. The sad truth is that CB-even on f.m.-only "works" while the system is illegal and its use is restricted to those who are prepared to risk breaking the law. As soon as the system becomes legal, the electronics industry floods the market with cheap sets and these are heavily advertised. The number of CB users increases dramatically and very soon no one can get a word in edgeways over the air.

Journalists from Germany and Austria have told me that the airwaves there are now so cluttered with CB shouting that useful communication is impossible.

Pacemaker

When King Khaled visited London in the early summer of 1981, there was much publicity given for his heart ailment and the need for constant communication with his private surgeon in the USA. The word went round Fleet Street that King Khaled wore a miniature transmitter which provided a direct link with a machine in an American hospital continually monitoring his heart beat.

It was rumoured that King Khaled's personal transmitter beamed signals up to a satellite, from where they were beamed down again to the hospital. "Money can buy anything these days", said the political correspondents, "Nonsense" said the science correspondents," satellite trans. mitters are too big to hide in your clothes."

We'll probably never know whether King Khaled was or was not hooked up to a heart monitoring machine in America, but it was certainly technically possible, despite what the science correspondents told their editors. The clue is to be found in an erudite article published in The Radio and Electronic Engineer, official journal of the IERE (Institution of Electronic and Radio Engineers). The article, titled "Manpack Satellite Communications Earth Station" was by coincidence published at almost exactly the same time as King Khaled visited the UK.

Manpack Station

To cut a long, technical story short the Royal Signals and Radar Establishment in Worcestershire has now built a prototype ground station for satellite communication which can be carried as a military back-pack. Normally satellite linked.gound stations are either permanent, with large dish aerials secured to the ground, or are mounted on a lorry. This is because the dish for such a ground station is around 2 metres in diameter and the transmitter is of between 30 and 60 watts power needing either a mains or generator supply to drlve it.

The RSRE manpack station is just 45 cm $\times 45 \mathrm{~cm} \times 20 \mathrm{~cm}$ in size, weight 17 kilos and draws only 30 watts of power from a battery. The aerial dish is built into the case and measures only 45 cm in diameter. The system transmits either low quality analogue speech or a 50 baud telegraph signal.

Although the unit is small enough for one man to carry around on his back, it isn't used as a mobile back-pack. To transmit, the unit is dumped onto the ground and aligned with a sky satellite using its built-in compass and signal strength meter.
It would have been perfectly possible for for King Khaled to wear a radio micro. phone, of the type now routinely used by performers in TV studios, strapped close to his heart. This radio mic would transmit heart beat signals over a short distance to a back pack satellite earth station in constant contact with the American heart hospital.

As I said we've no idea whether or not King Khaled actually used such a system, but it was certainly dangerous for Fleet Street science correspondents to dismiss the idea out of hand. But then, my experience of Fleet Street science correspondents is that some of them are remarkably naive about up-to-date -science.
communications terminal bullt on the island by the Marconi Company as part of the NASA Apollo network for the moon landings. Small though it is, Ascension supports more aerials to the acre than almost anywhere else on Earth.

Ascension, a tiny volcanic dot in the vast South Atlantic, has no indigenous population but-it supports changing communities of Britons, Americans and con-tract-workers from "neighbouring" St Helena, some 800 miles away.

The island, in fact, is a remarkable mixture of the old and the new. Space and missile tracking stations (at that time it was near the end of the main American missile testing range), a large BBC overseas relay base with numbers of 250 kW h.f. 'transmitters, a long-established Cable \& Wireless telegraph cable station linking South America to Europe (and more recently on the route of the South African telephone cable) with a mass of glittering brass telegraph instruments, local medi-um-wave broadcasting stations and other futuristic electronics co-exist with vast colonies of wideawake terns and enormous green turtles.

While on the island I spoke over the satellite circuit to an American amateur in the NASA base in Maine-and many of the BBC and C\&W staff who spend just a few years on this remote island are attracted there by the chance to operate with the rare ZD8 prefix. The American community also often includes a few radio amateurs.

Defence and H.F. Radio

It is becoming increasing clear that there has been a real revival of interest in h.f. radio communications systems among British and NATO Defence planners According to a recent article by C. R. M. Noonan in the Marconi journal "Communication \& Broadcasting", the NATO countries are currently planning to spend over £100 million on such long-established communications techniques as relatively low-speed radio-teleprinters, unprocessed analogue speech (ssb) and hand Morse.

It is recognised that this picture does not conform to the now accepted image of modern radio communications and may even seem "old hat" when compared to wideband, high-speed data and multichannel digitally-encrypted links for speech. But h.f. is seen as having a num ber of special, almost unique, advantages while there is a growing belief that communications based on space satellites are vulnerable to enemy action. It is also ac cepted that with hand Morse operating one can continue to pass traffic in con ditions which would defeat other systems.

There is also, it would appear, an in. creasing concern with the possible effects of the electromagnetic pulse (e.m.p.) that would follow a nuclear explosion in the upper atmosphere. It has been suggested that a single explosion, about 300 miles above the Earth's surface, could put out of action solidstate radio and electronic control equipment (including computers) over much of a continent unless inore effective ways of "hardening" equipment are adopted.

For this reason we may see a revival not only of h.f. but also of miniature valves in place of the much more e.m.p.-vulnerable solid state devices. There is some evidence that this course is already being followed in the USSR.

The WORID
 of Radio \& Dlisctronics

CONCISE PARTS CATALOGUE

OUT NOW!

AMBIT'S NEW CATALOGUE

In an attempt to collate and organize our burgeoning ranges of 'stock' components (now over 7000 line items), we have at last produced a 'concise' 80 page parts catalogue to supplement the popular 'Tecknowledgey" series of 'wordy' applications catalogues, which now lists a wide range of basic components - as well as our unique RF and Communications components. The World of Radio and Electronics contains everything the informed electronics user needs, at prices which we guarantee will match the lowest on the market for equivalent product.
Prices appear on the page alongside the part numbers, and the catalogue is now updated quarterly - available either direct from here (60 p all inc) or at most newsagents and bookstalls where you can find electronics publications. So as well as all the 'run-of-mill' items like resistor, capacitors, hardware, solder etc - you now have the first genuinely complete parts source for the radio, communication, electronics, computer user.

> Ambit International 200, North Service Road, Brentwood, Essex CM14 4SG

A PROFESSIONAL TOOLCASE FOR UNDERETO

Designed for the professional Electronics, T.V or Instrument Technician who needs to carry a large number of specialist tools.
The T L 99 sets a standard as a low cost alternative to more expensive cases.

Features

- 2 sided Reversible Multi-purpose tool pallet
- Document area
- 90° opening lock back stays
- 3" deep ABS lid and base

Twin handles with 8 fixing points on aluminium frames

- Burst proof toggle locks with keys
- Moulded adjustable tray in base
- Heat sink for hot soldering iron

Dimensions TL $9917^{\prime \prime} \times 12^{\prime \prime} \times 6^{\prime \prime}$ split (shown) also available TL100 19" $\times 14^{\prime \prime} \times 6^{\prime \prime \prime}$ split Tools NOT included. British made.
Money back guarantee. Allow 7-21 days for delivery.
Teleman Products Ltd. Ermine House, Post St, Godmanchester, Cambs. PE 1888 A

INTRODUCTILN TO

THE "AND" GATE
The AND gate is equivalent to relays (switches) in series, see Fig. 6.1

An output will be obtained if A and B are energised, that is if A and B are at logic 1 .

Boolean Equation

$A B=S$ for two inputs
$A B C=S$ for three inputs

Fig. 6.1. A 2-input AND gate made up using relays.

Symbols

A number of different symbols are currently in use for representing logic gates; Fig. 6.2. shows most commonly found AND symbols. Types shown in (a) in each "symbol" diagram are those used in E.E.

Fig. 6.2. Three different ways of representing AND gates in a circuit.

Truth Tables

In order to see at a glance what combination of inputs give an output, Truth Tables for a particular gate or circuit are constructed.

Truth Table for a Two Input "AND" Gate

inputs		output
\boldsymbol{A}	\boldsymbol{B}	$\boldsymbol{A} \boldsymbol{B}=\boldsymbol{S}$
0	0	0
0	1	0
1	0	0
1	1	1

The more inputs a gate has, the more complicated the truth table becomes. For example, if a gate has ten inputs the number of possible combinations of the inputs will be 1,024. In order to be certain that none of the possible combinations have been omitted the following procedure is useful:

The number of possible combinations is given by the formula: Number of combinations $=: 2^{n}$ where n is the number of inputs.
Once the number of combinations has been established, allow this number of lines, and number them in binary, starting at 0 .

example

To construct a Truth Table for a three input "AND" gate.
Since there are three inputs the number of combinations are: $2^{3}=8$
Now draw eight rows and number them in binary, from 0 to 7 as shown.

	Inputs			Outputs
	A	B	C	$A B C=S$
0	0	0	0	0
1	0	0	1	0
2	0	1	0	0
3	0	1	1	0
4	1	0	0	0
5	1	1	0	0
6	1	1	0	0
7	1	1	1	1

Fig. 6.3. Making up a 2 -input $O R$ gate from two relays connected in parallel.

THE "OR" GATE

The or gate is equivalent to relays (switches), in parallel. See Fig. 6.3.

Boolean Equation

$A+B=S$ For two inputs
$A+B+C=S$ For three inputs

Symbols

Fig. 6.4. Three different ways of representing OR gates in a circuit.

Truth Tables

Two Inputs

Inputs		Output
A	B	$A+B=S$
0	0	0
0	1	1
1	0	1
1	1	1

c		
Three Inputs		
Inputs Output A B C $A+B+C=S$ 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 1		

THE "NOT" OR "INVERTER" GATE

The not or inverter gate is the special case of one input only, and it turns logic 0 into logic 1 and vice-versa.
Therefore it turns A into \bar{A}, and \vec{A} into A.
In other words we get an output if there is no input, so it is equivalent to a normally closed relay or switch.

Fig. 6.5. Shows how a relay may be used to realise a NOT (or INVERT) function.

Truth Table

Inputs A	Output $\bar{A}=S$
0	1
1	0

Boolean Equation

$$
\vec{A}=S
$$

Symbols

Fig. 6.6. Some symbols seen in use for representing a NOT gate in a circuit.

THE "NAND" GATE

NAND means "NOT AND", that is there is no output if AND B are both at logic 1 .

Boolean Equation

Since $A B$ means A and B, and a bar means not, it follows that:
$\overline{A B}$ means NOT A AND B.
The Boolean equations for a "NAND" gate are:

$$
\overline{A B}=S \text { for two inputs }
$$

$$
\overline{A B C}=S \text { for three inputs }
$$

If we apply Demorgan's Theorem to $\overline{A B}$ we get $\overline{A+} \bar{B}=S$ This represents two normally closed switches or relays in parallel. Therefore a NAND gate is equivalent to Fig. 6.7.

Fig. 6.7. A 2 -input NAND function may be realised by uśing two relays (with normally closed contacts) in parallel.

Truth Tables

Two Inputs		
$\boldsymbol{I n p u t s}$	\boldsymbol{B}	Output
0	0	1
0	1	1
1	0	1
1	1	0

Three Inputs

Inputs		Output	
A	B	C	$\overline{A B C}=S$
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

By comparing the "Nand" truth table with that for the "AND" gate we will see that it is the inverse, in other words it is an "AND" gate followed by a "NOT" gate, and the symbols show this.

Symbols

Fig. 6.8. Common symbols for representing NAND gates.

CAPACITANCE METER by נ.R.w.barnes

|T is inevitable that at some stage most constructors will be faced by an unmarked or suspect capacitor. How do you measure capacitance? Most multimeters don't have capacitance ranges, the traditional L.C.R. bridge is expensive and difficult to use. Surely a direct reading capacitance meter could be designed. As is the first step in any design, the desired specifications were chosen.
(1) The ability to measure most capacitors encountered in electronics excluding electrolytics.
Useful measurements can be made with the prototype of capacitors between 50 pF and $1 \mu \mathrm{~F}$.
(2) A linear scale is very desirable.
(3) An accuracy of around 3 to 5 per cent can be obtained depending on the calibration standard (see later).
(4) The decision to make the unit mains powered was taken because, unlike a multimeter, a capacitance meter has few uses outside a workshop.

CIRCUIT

The full circuit of the Capacitance Meter is shown in Fig. 1.

To ease explanation and promote understanding the circuit can be split into four sections: pulse generator, monostable multivibrator, meter circuit and power supply.

The pulse generator is based on a unijunction relaxation oscillator. Cl charges through R10 and VR1 until the voltage across Cl equals the supply voltage multiplied by the intrinsic stand-off ratio of the unijunction, approximately equal to 7 V . The capacitor is then discharged through the emitter/base 1 junction of the unijunction transistor TR1 resulting in positive pulse across R12. This turn TR2 on, reducing the voltage at pin 2 of ICl below ${ }^{1} \mathrm{I} \mathrm{Vcc}$, and so triggering the monostable. VR1 is the calibration control; it controls the frequency with which the monostable is triggered.

TIM.NG RESISTOR

The widely used 555 i.c. was selected for the monostable primarily for its ability to handle wider variation of components in its timing circuit. Upon application of a trigger pulse, the unknown capacitor connected to SK1 and SK2 is charged through the timing resistor (one from R1 to R9 as selected by the range switch Sla). When the voltage across the capacitor reaches ${ }^{2}{ }_{3} V_{C c}$ the capacitor is discharged. For the duration of the timing cycle the output pin 3 on ICl goes high, this period being equal to $1 \cdot 1 R_{t} C$ (where R_{t} is one from $R 1$ to R9).

When the output is high Dl conducts allowing C3 to charge through R15. The voltage across C3 is indicated on the meter ME1. The deflection

COMPONENTS

Resistors

Potentiometer
VR1 $1 \mathrm{M} \Omega$ 雲in square multiturn cermet trimmer
Capacitors
E1 $10 n \mathrm{~F}$ polyester, axial
C2 100 nF ceramic disc
C3 $100 \mu \mathrm{~F} 16 \mathrm{~V}$ elect., axial
C4 $100 \mu \mathrm{~F} 25 \mathrm{~V}$ elect., axial
C5 1OnF ceramic disc

Semiconductors

D1-3 1 N4148 small signal silicon diode (3 off)
TR1 2N2646 unijunction transistor
TR2 2N3904 silicon npn
IC1 NE555 timer i.c.
IC2 $\mu \mathrm{A} 7812$ regulator 12 V 1 A
Miscellaneous
ME1 meter $500 \mu \mathrm{~A}$ (SEW type MR65P)
SK1 insulated screw terminal, black
SK2 insulated screw terminal, red
S1 miniature Maka switch assembly and two 12-way 1 -pole wafers
T1 mains transformer: 12.012 V 100 mA secondary
Stripboard 32 holes by 23 strips 0.1 in matrix. Case $100 \times 100 \times$ 150 mm . Miniature tag board 9 way. 6 BA nuts (8 off) and bolts (4 off). Veropins. Three core mains lead. Knob, skirted with index mark. Grommet for mains lead.

Guidance only
1540
excluding case

Fig. 1. Circuit diagram of the Capacitance Meter.
of the meter is proportional to the value of the unknown capacitor.

The power supply consists of Tl , $\mathrm{D} 2, \mathrm{D} 3$ and C 4 providing raw d.c. and IC2 providing a regulated 12 V .

LAYOUT IMPORTANT

Begin construction with the stripboard; the layout given was carefully designed to minimise stray capacitance, and should be strictly adhered to. The stray capacitance shows up as residual reading of around 30 pF on the lowest two ranges. This however poses no problems, it is simply subtracted from the measured reading.

HOW IT WORKS

The unknown capacitor along with the resistor selected by the range switch form the timing elements in a monostable multivibrator, the length of the output pulse being proportional to the unknown capacitor. The monostable is triggered at regular intervals by the pulse generator built around the unijunction transistor. The output of the monostable is fed to a low pass filter to produce a voltage proportional to the unknown capacitor. This voltage is displayed on the meter.

Fig. 2. Constructional details of the Capacitance Meter. The front panel has been lifted clear of the case to expose all components and wiring. At the top is an underside view of the stripboard with details of breaks in copper strips and drilling for meter terminals.

So you've fancied some WHARFEDALE E90 speakers -

But the bank m

 Nitmsere are flat-pack kits for the Wharfedale E50, E70 and E90 A few hours of easy and interesting work will complete your speakers at a veryconsiderable saving on buying 'assembled' Esystems.

The kits contain all cabinet components - accurately machined for easy assembly - all drive units, crossover networks, acoustic wadding, reflex port trim, nuts, bolts, terminals, grille fabric, etc. The cabinets can be painted or stained or finished with iron-on veneer. Easy, foolproof assembly instructions are supplied - no electronic or woodworking knowledge necessary.
Prices: E50 kit £182 per pair including VAT, carriage and insurance £ 8 E70 kit $£ 220$ per pair including VAT, carriage and insurance $£ 8$ E90 kit $\mathbf{£ 3 3 0}$ per pair including VAT, carriage and insurance $\mathbf{£ 1 0}$ Credit terms available: Deposit 20%, balance over 12 months (charges cúrrently 26.9 APR) Through a leading Finance House. Written details on request.

8

0625529599
35/39 Church Street, Wilmslow, Cheshire SK9 1AS

EIECTAONIC IGNTITON SAVES PEIROL

More and more new cars use electronic ignition $z 0$ give the best performance and economy. Bring YOUR CAR up to top specification by fitting the latest TOTAL ENERGY DISCHARGE electronic system.
TOTAL ENERGY DISCHARGE gives all the
advantages of the best capaclitive discharge ignitions:

* Peak Performance-higher output voltage
* Improved Economy-consistent high ignition performance.

Ł Better Starting-full spark power even with low battery. \& Accurate Timing-prevents contact wear without 'contactless' errors. \star Smooth Performance-immune to contact bounce effects. PLUS
SUPER HIGH POWER SPARK - $3 \frac{1}{2}$ times the energy of ordinary C.D. systems.
OPTIMUM SPARK DURATION-so get the very best periormance and economy with today's lean carburettor settings.
DESIGNED IN RELIABILITY-with the 'ultimate insurance' of a change over switch to revert instantly to standard ignition.
TECHNICAL DETAILS
HIGH EFFICIENCY INVERTER. A high-power, high efficiency, regulated inverter provides a 400 -volt energy source-powerful enough to store twice the energy of other designs and regulated to provide full output even wish the batery down to 4 volts.
SUPERB DISCHARGE CIRCUIT. A brand new technique prevents energy being reflected back to the storage capacitor, glving $3 \frac{1}{2}$ times the spark energy and 3 times the spark duration of ordinary C.D. systems, generat ing a spark powerful enough to cause rapid ignition of even the weakest fuel mixtures without the ignition delay associated with lower power 'long burn inductive systems. In addition this circuit maintains the correct output polarity, thereby preventing unnecessary stress on the H.T. system. SOPHISTICATED TRIGGER CIRCUIT. This circuit removes all unwanted signals caused by contact volt drop, contact shuffle, contact bounce, and external cransients which, in many designs, can cause timing errors or damaging un-timed sparks. Only at the correct and precise contact opening is a spark produced. Contact wear is almost eliminated by reducing the contact breaker current to a low level-iust sufficient to keep the contacts clean.

IN MONEY-SAVING KIT FORM at $£ 14.85$

ALSO MOTORCYCLE TWIN OUTPUT KIT 62.94 Plus 1 UK P P \&P All you need is a small soldering iron and a few basic tools - everything else is supplied with easy-to-follow instructions.

FITS ALL $6 / 12$ volt NEGATIVE EARTH vehicles

ELECTRONIZE DESIGN
Magnus Road, Wilnecote,
Tamworth, B7758Y
Phone (0827) 281000

The normal practice of cutting the board to size, drilling the large holes for the meter terminals and breaking the strips, should be followed. Then insert the Veropins, i.c. socket and wire links. The resistors and capacitors are then added. Finally the diodes and transistors can be soldered in place. Take care to ensure the diode, integrated circuit and the electrolytic capacitor are the right way round. A drawing of the stripboard is shown in Fig. 2.

The prototype used a Sew panel meter type MR65P. If a different meter is used the position of the mounting holes may need adjusting; simply move the mounting hole and the positive ends of both C3 and D1 accordingly.

Mount the range switch, two screw terminals and the meter onto the front panel.

WIRING THE SWITCH

The wiring details of the range switch are shown in Fig. 2. Care should be taken to avoid over heating the range resistors $\mathrm{R} 1-\mathrm{R} 9$ as this will change their values and subsequently effect the calibration.
Mount the main circuit board onto rear of meter and secure with nuts on the terminal screws.
The power supply was built on a small piece of tag board as shown in Fig. 2. Construction is straight forward, just take care to observe the polarity of the diodes and the electrolytic capacitor.
Solder the mains lead to the power supply board then feed this lead through the grommet hole at the rear of the case.
Complete all the interwiring between the range switch, test terminals, main circuit board and power supply board as shown in Fig. 2.
The tag board is mounted together with the transformer on the rear
panel of the case, with 6BA nuts and bolts.

Place the front panel assembly in position and secure to the case with four screws.

FRONT PANEL

The large hole for the meter is best made by drilling a series of smaller holes and filing the resultant hole. Alternatively an "Abrafile" may be used.

CALIBRATION

In order to calibrate the instrument a "standard" capacitor is required. It is best to use a standard of either $0.01 \mu \mathrm{~F}$ or $0.1 \mu \mathrm{~F}$ preferably 1 per cent tolerance. Simply connect the capacitor using short leads to the terminals, select the appropriate range and adjust VR1 for full scale deflection. This single process calibrates all the ranges.

The meter scale should be linearly divided into ten, with five subdivisions between each. The main divisions should be marked 0 to 10 at the top of the scale. The bottom edge of the scale should be marked at the appropriate points " 0 ", " $0 \cdot 5$ ", " 1 ", " $1 \cdot 5$ ", " 2 ", " $2 \cdot 5$ " and " 3 ".

This will facilitate readings to be made on all the nine ranges. See Table 1 for range coverage. The values have been specified in nanofarads throughout, though in practise μ Fs would be often used, certainly for the larger values. Table 2 provides at a glance conversion from nanofarads and picofarads to microfarads.

USING THE CAPACITANCE METER

When measuring capacitors take them out of the circuit by disconnecting one lead. This is most important because any parallel components
will effect the reading. It is also advisable to discharge any capacitor before measurement as any stored charge could damage the instrument.

TABLE 2
CAPACITANCE UNIT CONVERSION Each line indicates equivalents

nanofarad $(10-9 \mathrm{~F})$	picofarad $(10-12 \mathrm{~F})$	microfarad $(10-6 \mathrm{~F})$
0.1 nF	100 pF	$0.0001 \mu \mathrm{~F}$
0.3 nF	300 pF	$0.0003 \mu \mathrm{~F}$
1 nF	$1,000 \mathrm{pF}$	$0.001 \mu \mathrm{~F}$
3 nF	$30,000 \mathrm{pF}$	$0.003 \mu \mathrm{~F}$
10 nF	$10,000 \mathrm{pF}$	$0.01 \mu \mathrm{~F}$
30 nF	$30,000 \mathrm{pF}$	$0.03 \mu \mathrm{~F}$
100 nF	$100,000 \mathrm{pF}$	$0.1 \mu \mathrm{~F}$
300 nF	$300,000 \mathrm{pF}$	$0.3 \mu \mathrm{~F}$
1.000 nF	$1.000,000 \mathrm{pF}$	$1 \mu \mathrm{~F}$

OTHER APPLICATIONBROKEN CABLE

An ohmmeter will tell you if a cable is broken, a capacitance meter will tell you where.

Fig. 3. Locating the break in a cable.
Measure the capacitance between the two wires or the core and the screen at both ends. The ratio of the two capacitances is also the ratio of the length from the break. In the diagram Fig. $6 \frac{C_{\bar{X}}}{C_{Y}}=\frac{a}{b}$.

JACN PIUA \& FAMMK...

BY DOUG BAKER

PRACTICAL ELECTRONICS- STEREO
 This easy to build 3 band stereo AM/FM tuner kit is designed in conjunction with Practical Electronics (July issue). For ease of construction and alignment it incorporates three Mullard modules and an I.C. IF. System.
 FEATURES: VHF, MW, LW Bands, interstation muting and AFC on VHF. Tuning meter. Two back printed PCB's. Ready made chassis and scale, Aerial AM - ferrite rod, FM - 75 or 300 ohms. Stabilised power supply with " C ' core mains transformer. All components supplied are to P.E. strict specification. Front scale
 SPECIAL OFFER!
 - Matching I.C. $10+10$ Stereo Power amplifier kit (usually $£ 3.95+£ 1.15 p \& p$) amplifier kit (usually $£ 3.95+£ 1.15$ p\&p) - Mullard LP: 183 built prearnp. suitable - Mullard LP1183 built prearnp. suitable for magnetic/ceramic and auxiliary Inputs (usually $£ 1.95+70$ p pap) - Matching power supply kit with trans former (usually $£ 3.00+£ 1.95$ p\&p)
 - Matching set of 4 slider controls complete with knobs for bass, ireble and volumes (usually $£ 1.70+80 p p \& p$)
 $\Sigma 21.95$
 ${ }_{638}^{\text {rus }}$ ${ }_{\text {E }} .80 \mathrm{p} 8 \mathrm{p}$.

 ${ }^{\text {onver }} 17.95$ E2.50 p\&p

STEREO AMPLIFIER KIT

- Featuring latest SGS/ATES TDA 200610 watt output IC's with in-built thermal and short circuit protection. With in-built thermal and short circuit
- Attractive black vinyt finish cabinet, 9 " $\times 8 \%_{4}{ }^{\prime \prime} \times 3 \%^{\prime \prime}$ (approx) - $10+10$ Stereo converts to a 20 watt Disco amplifler.
- $10+10$ Stereo converts to a 20 watt Disco amplifler.
To complete you just supply connecting wire and solder.

To complete you just supply connecting wire and solder.
Features include din input sockets for ceramic cartridge, mic Features include din input sockets for ceramic cartridge, mic rophone, tape or tuner. Outputs - tape, speakers and headphones. By the press of a button it transforms into a 20 watt mono disco amplifier with twin deck mixing. The kit incorp orates a Mullard LP1183 pre-amp module, plus power amp assembly kit and mains power supply. Also features 4 slider level controls, rotary bass and treble controls and 6 push button switches. Sliver finish fascia with matching knoos and contrasting cabinet. Instructions
available, price 50 p . Supplied
$£ 14.95$
FREE with the kit
Plus $\mathbf{£ 2 . 9 0} \mathbf{p \& p}$.
SPECIFICATIONS: Suitable for 4 to 8 ohm speakers. Frequency response $40 \mathrm{~Hz} \cdot 20 \mathrm{KHz}$.
P.U. 150 mV . Aux. 200 mV

Mic. 1.5 mV
Bass $\pm 12 \mathrm{db} @ 60 \mathrm{~Hz}$
Treble $\pm 12 \mathrm{db} @ 10 \mathrm{KHz}$
Tone controls
Distortion
0.1% ivpically $@ 8$ watts
220.250 volts 50 Hz .
Mains supply STEREO MAGNETIC PRE-AMP CONVERSION KIT Includes FREE Magnetic cartridge with diamond styli. All components including p.c.b. to convert your ceramic input on the $10+10$ to magnetlc.
Only available with $10+10$ amp. $£ 2.00$ includes p\&p.
$8^{\prime \prime}$ SPEAKER K1T Two $8^{\prime \prime}$ iwin cone domestic speakers $\mathbf{£ 4 . 7 5}$ per stereo pair plus $£ 1.70$ p\&p, when purchased with

PRACTICAL ELECTRONICS CAR RADIO KIT

2 WAVE
BAND
MW - LW

- Easy to build
- 5 pust buiton
tuning - Modern design
- 6 watt output . Ready otched Alt the electronic components to build the radio, you supply only the wire and the solder, featured in Practical Electronics March issue. Features: pre-set tuning with 5 push button ootions, black illuminated tuning scale. The P.E. Traveller has a 6 watt oulput neg. ground and incorporates an integrated circuit output stage, a Mullard IF Module LP11B1 ceramic filter type pre-aligned and assembled, and a Bird pre. £10.50 aligned push button tuning unit Suitable stainless steel fully rettactable aerial (locking) and speaker (6"x 4 "app.). available as a kit complete £1.95/pack. Plus £1.15p\&p

HIGH POWER AMPLIFIER MODULES

READY BUILT OR IN KIT FORM

125 WATT MODEL

200 WATT MODEL
$£ 10.50$ Plus E 1.15 p\& \& Plus $£ 1.1$
£14.95 £18.95
Plus E 1.15 p \& p Plus E 1.15 p \&p.
SPECIFICATIONS:
125 W Model
Max. output power (RMS) 125 watts Operating voltage (DC) $50-80 \mathrm{max}$ Frequency response
measured @ 100 watts
4. 16 ohms

Sensitivity for 100 watts $25 \mathrm{~Hz}-20 \mathrm{KHz}$
$400 \mathrm{mV} @ 47 \mathrm{~K}$

200 watts 70.95 max 4. 16 ohms Trpical T.H.D. @

50 watts, 4 ohms
Dimensions, (both mor 0.1%
0.1%
$25 \mathrm{~Hz}-20 \mathrm{KHz}$ $25 \mathrm{~Hz}-20 \mathrm{KHz}$
$40 \mathrm{mV} @ 47 \mathrm{~K}$ Dimensions (both models) 205×90 and 0.1% The P.E. power amp kit is a module for high power applic ions - disco unlts, guitar ampliffers, pubiic address systems and even high power domestic systems. The unit is protected against short circuiting of the load and is safe in an open clicuit condition. A large safety margin exists by use of

$30+30$ WATT STEREO AMPLIFIER

Viscount IV unit in teak simulate cabinet, silver finished

 rotary controls and pushbuttons with matching fascis, mains indicator and stereo jack socket. Functions switch for mic magnetic and crystal pickups, iape and auxiliary. Rear panel features fuse holder. DIN speaker and input socket $30+30$ watts RMS, $60+60$ watts peak. For use with 4108 ohm speakers.Size $14 y^{\prime \prime} \times 10^{\prime \prime}$ approx
£32.90
BUILT ANDTESTED.
Plus'£3.80p\&p
PHILIPS BELT DRIVERECORD PLAYER, DECK GC037 (Size: 15% "x 12% "zpprox.)
HIFi record player deck, 2 speed, damped cueina. autn shut-off, belt drive with floating sub chassis to
minimise acoustic feed. back. Complete with GP401 stereo magnetic cartrlage
LIMITED STOCK
UNBEATABLE
OFFER AT
£27.50
COMPLETE

generously rated components, result, a high powered rugged drill the PC B oard is back printed, etched and ready to preformed and ready to use. Supplied with all parts, circuit diagrams and instructions.

ACCESSORIES

Suitable LS coupling electroivic for 125 W model
Sultable LS coupling electrolytic for 200 W model
£1.00 plus 25p p\&p

Suitable mains power supply
unit for 125 W model
supply for 200 W model
£ 13.95 plus $\mathbf{£ 4 . 0 0}$ p\&o.

MONO MIXER AMPLIFIERS

50 WATT six individually mixed inputs for two pick ups ICer, or Mag.1, iwo moving coil microphones and two aux. for leve tape, tuner, organs, etc. Eight slider controls - six for met and two for master bass and irebie, four exra irebie Power output 50 and aux inputs. Size: 13%. 6%. $\times 3 \%$, 4 8 ohm speakers. Attractive
biack vinyl case with matching $\quad \mathbf{\$ 3 9 . 9 5}$ fascia and knobs. Ready to use.

Plus f 3.70 p\&

100 WATT
Brushed
Aluminium rascia and rot
ary controls
Size: approx. $14^{\prime \prime} \times 4^{4 \prime} \times 10 \%$
Five vertical slider controls, master volume, tape level, mic level, deck level, PLUS INTERDECK FADER for perfect graduated change from record deck No. 1 to No. 2, or vice versa. Pre fade level controls (PFL) lets YOU hear the next disc before fading it in.
VU meter monitors output.
$£ 76.00$
CALLERS ONLY
323 Edgware Rd, London W2. Tel: 01.723 8432. Open $9.30 \mathrm{am} \cdot 5.30 \mathrm{pm}$, Closed all day Thursday Persons under 16 not served without parents
authorisation.

MAIL ORDER ONLY

21A HIGH STREET, ACTON, W3 6NG
Note: Goods despatched to UK-postal addresses only. For further information send for instructions 20p
plus stamped addressed envelope.

CONTINUE THEIR SPECIAL OFFER mini 20

$20 k \Omega / V$ d.c.

$6.6 \mathrm{k} \Omega / \mathrm{V}$ a.c.

only $£ 19.50$
 INCLUSIVE OF POST PACKAGE-V.A.T.

The Mini 20 is an ideal instrument for the constructor
This special offer is a wonderful opportunity to acquire an essential piece of test gear with a saving of nearly $£ 10$ on the normal retail price.
The 26 ranges cover all likely requirements. Operation is straight-forward, just turn the selection switch to the required range.

RANGES:

d.c.V: $100 \mathrm{mV}, \mathbf{1 V}, \mathbf{1 0 V}, \mathbf{3 0 V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 1000 \mathrm{~V}$.
a.c.V: $10 \mathrm{~V}, 30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 1000 \mathrm{~V}$.
d.c.l: $50 \mathrm{u} A, 1 \mathrm{~mA}, 10 \mathrm{~mA}, 100 \mathrm{~mA}, 1 \mathrm{~A}, 3 \mathrm{~A}$.
a.c.l: $3 \mathrm{~mA}, 30 \mathrm{~mA}, 300 \mathrm{~mA}, 3 \mathrm{~A}$.

Ohms: $0-1 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 100 \mathrm{k} \Omega, 1 \mathrm{M} \Omega$.
Accuracy: 2\%d.c. \& resistance, 3\% a.c.
Dimensions: $105 \times 130 \times 40 \mathrm{~mm}$
Movement protected by internal diode and fuse.
The instrument is supplied complete with case, leads and instructions.

For details of this and the many other exciting instruments in the Alcon range, including multimeters, component measuring and electronic instruments please write or telephone:

A TGO)N

instruments Ltd.
19 MULBERAY WALK. LONOON SW3 60Z. TEL: 01.3521897. TELEX: 918867

Marshall's

TRANSISTORS—JUST SOME OF OUR LARGE RANGE

2N335	51.00	2N3771	£1.65	AC187	20.35	BC258A	¢0.12	BDY77	21:80
2N398	20-30	2N3772	51.90	AC188	¢0. 25	BC260C	£0.15	BDY55	¢1-25
2N697	£0.23	2N3789	20.90	AC188k	$\mathbf{2 0 . 3 0}$	BC261/A	20. 22	BF160	20.24
2N698	f0.40	2N3790	£1.50	ACYz2	¢0. 12	BC262/B	£0.23	BF177	£0.25
2N706	f0-25	2N3791	£1.50	ACY 30	20. 12	BC266	£0.15	BF180	¢0.35
2N706A	¢0. 18	2N3794	£0.12	AD161	f0.40	BC302	£0.30	BF183	2.0.30
2N718	¢0.27	2N3854A	£0. 20	AD162	£0.40	BC307A	£0. 10	BF195	50.14
2N753	£0.25	2N3856A	£0.25	AF108	f0. 12	BC308B	£0.10	BF196	50.15
2N929	f0. 20	2N3905	20.14	AF109	¢0. 12	BC309A/	20.10	BF197	50.12
2N1131	¢0. 20	2N3962	£0. 25	AF114	20. 12	B/C		BF198	S0. 17
2N1507	50. 12	2N4036	£0.48	AF126	c0. 26	BC318	£0.13	BF198	£0.17
2N1637	¢0-18	2N4058	£0.13	AF200	21.00	BC347	£0.12	BF225	£0.15
2N1638	¢0.25	2N4059	f0.13	AF280	21.00	BC350	£0.12	BF255	20.20
2N1991	¢0-35	2N4060	£0. 13	BC107	20.15	BC384	80.17	BF257	20.33
2N2060	23.00	2N4249	£0.13	BC109B	¢0. 15	BC^{814}	50.14	BF338	£0.35
2N2193	c0-50	2N4284	20. 15	${ }^{8} \mathrm{C} 115$	c0. 19	${ }^{8 C 415}$	20.14	BF271	20.20
2N2103A	£0.50	2N4286	£0.12	${ }^{8} \mathrm{C} 118$	co	BC418	E0	BF362	¢0.40
2N2217	¢0.45	2N4288	¢0. 12	${ }^{\mathrm{BC}} 135$	C0.12	BC418	20.14	BF451	0.30
2N2221	£0.22	2N4400	£0.15	BC136	20. 12	${ }^{\text {BC517 }}$	20.30	BFR29	C0. 30
2N2221A	¢0-23	2N4822	10. 50	BC140	50.30	BC547	£0.12	BFR81	20.22
2 N 2368	¢0.24	2N4898	£1.00	BC147A/B	2. 210	BC549C	£0.12	BFX13	50. 42
2N2646	¢0.45	2N4901	50.50	BC149C	20.10	BC557	50.12	BFX86	20.40
2N2714	¢0-12	2N4903	£1.50	BC157A/B	20.10	BC559B	f0.12	BFY50	¢0. 27
2 N 2904	50-28	2N4907	21.75	BC158	E. 0.10	BCY	¢0.50	BFY51	¢0.27
2N2905	¢0.26	2N5033	£0. 35	BC159/B	20.11	BCY58	50.20	BFY52	50. 23
2N2907	¢0. 26	2N5129	20.12	BC	C0.35	8CY59	20.20	BSY51	50.20
2 N 3053	¢0. 26	2N5220	¢0.12					BSY53	0.20
2 N 3054	¢0.70	2N5222	£0.15	BC169B	20.10	BCY78	£0.20 $\times 0.15$	BSY54	£0.25
2 N 3055	¢0.70	2N5223	£0. 12	BC170B	£0.10	BD115	£0.25	BSY65	60.35
2N3108	£0.30	2N5248	£0.15	BC171B	c0. 10	BD116	¢0.40	BSY78	£0.75
2N3393	£0.14	2N5293	¢0. 30	BCl 72 /	20.10	BD121	¢0.50	ME4101	£0.12
2N3402	£0. 11	2N5355	£0. 13	B/C		BD131	20.40	MJ430	£0.75
2 N 3439	¢0.67	2N5448	¢0. 12	BC1731B	20.11	BD138	¢0.35	MJ481	$51 \cdot 20$
2N3440	¢0-80	2N6109	£0.30	BC174B	20.15	B0201	\$1.00	M J490	£1.20
2 N 3441	£0.90	2N6123	£0.53	8C182/L	£0. 10	B0204	£1.20	MJE370	£0.37
2N3638	£0-15	2N6124	£0.50	BC183/L	£0.10	BD235	20.35	TIP29A	£0.39
2N3642	£0.15	40254	£0.50	BC18s	£0.10	BD240	¢0. 38	TIP30A	£0.47
2N3643	£0. 15	40312	£0.50	BC205	£0.17	BD241	80. 50	TIP31A	50.44
2N3702	¢0. 10	40318	£0.75	BC212/L	20.10	BD242	¢0. 42	TIP34A	10.85
2N3705	c0-10	40363	£0.20	BC213/L	£0.10	BD243	80. 50	TIP41A	50.50
2N3706	¢0-10	40389	£0.20	BC214/L	£0.10	BD244	50. 60	TIP54	¢1.40
2N3708	¢0.10	40512	£0.50	BC238	£0.10	BD433	f.0. 32	TIP110	$\mathbf{5 0 . 6 7}$
2N3709	¢0-10	AC127	£0.20	BC239	£0-10	B0535	¢0. 45	TiP115	¢0.50
2N3711	c0. 10	AC128	¢0.24	BC250	£0.12	BD536	E0.45	TIP117	¢0.80
2N3714	£1-00	AC132	£0.21	BC251/B	f0.10	BD538	20.44	ZTX301	c0.16
2N3718	f.1-30	AC152	£. 35	BC253/C	¢0.10	80539	f0. 37	2TX303	¢0.24
2N3732	¢1.50	AC176K	£0.36	BC256A/B	co. 10	BD540	¢0.40	ZTX50!	c0.14

LINEAR INTEGRATED CIRCUITS				DIGITAL CIRC	
AY2513	¢3.95	LM723CH	¢0. 85	CD4009	£0-31
CA3034	22.50	LM723C14	20. 60	CD4013B	£0.33
CA3049	c0. 75	LM741C8	£0. 20	CD4015	. $50-62$
CA3053	20.90	LM741C14	23. 57	CD4022B	¢0.65
CA3054	¢2.00	L.M923	20.44	CD40278	¢0-37
CA3075	£2.05	LM1458N	20.44	CD4028B	£0.57
CA3086	£1.70	LM1801	22.04	CD4030B	f0.45
CA3089	\&2.00	LM1871	E.3.75	CD4042B	\&0. 55
DP8212N	¢2. 205	LM1872	E.3.75	CD4043	f0. 81
INS8254N	c8. 15	LM3914	£2.20	CD4044	£0.62
ISP8A500D	£17-50	LM3915	£2. 20	CD4045	¢1.30
LF1331N	¢2.95	LM7824KC	£1.50	CD4046B	c0.74
LF13741H	20.40	LM78L12CZ	20.50	CD4048B	20.43
LM137K	£11.52	LM78L15CZ	10.50	CD4051B	c0. 80
LM301AH	20.72	UA7912	21.65	CD4052B	$\underline{20.60}$
LM304H	£1.35	LM78L05CH	£0.77	CD4063	c0. 96
LM317T	£1.50	LM78L15CH	£0.77	CD 4066 B	80.35
LM320MP5	£1-30	MC789P	£0.75	CD4068	20. 20
LM320MP24	£1.30	MM57160N	£5.76	CD4077	£0. 23
LM320T12	£1.85	NE543K	£2.00	CD4093B	20. 42
LM320T24	£1.85	NE544	£1.75	CD4094	£1.66
LM337K	E.3.15	NE555	10.25	CD4098B	¢0.85
LM337MP	c0.80	NE556	£0.60	CD4099B	60.30
LM341P5	¢0.77	NE558	f3-12	CD4503	¢0.47
LM341P2U	£0.77	NE565	£1-10	CD4510B	£0. 65
LM342P12	£0.56	NE566	11.53	CD4515	£1.95
LM348	£0.90	NE570	¢4.25	CD4516	£0.70
LM350K	¢5.50	SAA5000	E.3.04	CD4522	\&1.10
LM380N14	£0.75	SAA5010	£7.11	7404	¢0. 10
LM38iN	S1.44	SAA5012	£7-11	7406	¢0. 33
LM383	£1.60	SAA5020	¢5-23	7407	E0. 27
LM389N	¢0.95	SAA5030	E8-26	7411	£ 0.22
LM340T5	£0. 25	SAA5040	£15-14	7412	¢0. 18
LM716	£0.95	SAA5050	E8-51	7413	¢0.28
CLOCK MODULES				7417	£0.25
MA 1002H ALARM 24 HR. MA 1012 ALARM $12 / 24$ HR. MA 1003 12V CAR CLOCK MA 1026 ALARMITHERMOMETER CASE FOR MA 1003					
			£3.50	7423	£0.25
			£.3.50	7425	¢0. 25
			£12.50	7426	£0. 29
			£11.50	7427	£0.29
			£1.00	7432	£0.2
PRESENSITISED POSITIVE FOTO RESIST PC					
BOARDS 9.8 mm THICK					
SIZE		SINGLE SIDE		DOUBLE SIDE	
		£1.40		51.65	
		£1.95		¢2.05	
$100 \times 220 \mathrm{~mm}$ $203 \times 114 \mathrm{~mm}$		51.70		¢2.10¢4.50	
$203 \times 114 \mathrm{~mm}$$233.4 \times 220 \mathrm{~mm}$					
SENSORS FOR DIGITAL FUEL STRETCHERS					

A. Marshall (London) Ltd.

Kingsgate House, Kingsgate Place, London NW6 4TA
Industrial Sales: 01-328 1009 Mail Order: 01-624 8582 24hr service Also retail shops: 325 Edgware Road, London W2,

85 West Regent Street, Glasgow
PLEASE ADD POSTAGE/PACKING 60p UNLESS STATED,
ALSO 15\% VAT ON TOTAL ABOVE PRICES ARE MAIL ORDER ONLY

This regular feature provides an easy guide to circuit components and materials and the techniques involved in building electronic projects.

This month we look at resistors. These are the most commonplace of components.
Resistors fall into the following classes:
(a) fixed value
(b) variable (potentiometers).

FIXED VALUE RESISTORS

Some fixed value resistors are wire wound. These are only used for certain special applications.
The most frequently used fixed value resistors are small tubular components with lead out wires emerging from either end. There are four
 principal types: carbon composition,

| RESISTOR |
| :--- | :--- | :--- | :--- | :--- |
| COLOUR CODE |

carbon film, metal film and metal oxide. All of these are available in a very wide range of resistance values -expressed in ohms (Ω)-from 10 ohm to 1 megohm and even higher.

The generally available "preferred" values are $10,12,15,18,22,27,33,39$, $47,56,68,82$ ohms, and decadal multiples of these.

For example: $10,100,1,000,10,000$, $100,000,1,000,000$ ohms.
$39,390,3,900,39,000,390,000$, $3,900,000$ ohms. These are expressed in more practical terms as $39 \Omega, 390 \Omega$, $3 \cdot 9 \mathrm{k} \Omega, 39 \mathrm{k} \Omega, 390 \mathrm{k} \Omega, 3 \cdot 9 \mathrm{M} \Omega$.
It will be seen that k (kilo) means 10^{3} and M (mega) means 10^{6}.
Fig. 1. Fixed value resistors. Shown here are carbon composition, carbon film and metal oxide resistors of typical wattage ratings. All are drawn to scale and are actual size. The circuit symbol for a fixed value resistor is also shown.

COLOUR CODE

The resistance value is indicated by coloured bands on the body of the resistor. This colour code is explained in the illustration.
It is an excellent idea for beginners to obtain an assortment of resistors and practise working out the code.

WATTAGE

The physical size of these fixed value resistors determines the power they can safely carry, without over heating with possible degradation of rated ohmic value. Power (volts \times amps) is expressed in watts (W).

The forementioned values are available in the following wattage ratings. Carbon composition: $0.125 \mathrm{~W}, 0.5 \mathrm{~W}$, 1W
Carbon film: $0.25 \mathrm{~W}, 0.5 \mathrm{~W}, 1 \mathrm{~W}, 2 \mathrm{~W}$ Metal film: 0.25 W
Metal Oxide: 0.5 W

EAGER TO START?

If you are handy with a light. weight soldering iron, try one of our Popular Designs. Read the notes on page 682.

How to Solder will be the subject of next month's Square One.

TEAGH-IN 82
 STARTS THIS MONTH!!

Full set of parts as specified by "EE". All new goods, despatched by return of post.
\star All parts for the "MINILAB" only $£ 17.50$ + £1 post
\star All components for first 6 parts of "TEACH-IN ' 82 ' $£ 7 \cdot 50+60$ p post.

BUY BOTH SETS FOR $£ 24$ + £1 post !!
Deduct $£ 1$ if Vero voucher enclosed
FREE catalogue with all orders ! !
FREE component Identification Chart!!
FREE piece of Veroboard!!
Send NOW to:
(All prices inc. VAT)

GREENWELD

443D Millbrook Road, Southampton, SO1 0HX Tel (0703) 772501

fun and entertainment as well as education" -

(EVERYDAY ELECTRONICS mag.)

This is the final opportunity to obtain this first-class multi-project kit at little more than its 1977 price! (Current value over £40).
Circuits are constructed by plugging the encapsulated components into the boards provided, foflowing the Instruction manual. Technical details are also given concerning each project. The components are used over and over again and you can design your own circuits too, or use the kit as a useful testing board. No previous experlence of electronics is requlrea but you learn as you build-and have a lot of fun too. The kits are safe for anyone.
SR-3A KIT ($16 \frac{1}{2}{ }^{\prime \prime} 10^{\prime \prime} 2 \frac{1}{2}{ }^{\prime \prime}$)
£29.95

 warning device, wireless photoelectric warning device, elc.
All kits are guaranteed and supplled complete with extensive construction manual PLUS Hamlyn's "All Colour" 160 page book "Electronics" (free of charge whilist stocks last).
Prices include educational manual, free book, VAT, p \& p (in the UK), free introduction to the British Amateur Electronics Club.

PLEASE NOTE OUR NEW ADDRESS.

 PERSONAL CALLERS WELCOME.Cheque/P.O./Access/Barclay card (or23p for illustrated literature) to ELECTRONI-KIT LTD., Dept. EE.

ELECTRONI-KIT LTD. 388 ST. JOHN STREET LONDON, EC1V 4NN (01-278:0109)

E.E. PROJECT KITS

Make us your No. 1 SUPPLIER OF KITS and COMPONENTS for E.E. Projects. We supply carefuily selected sets of parts to enable you to construct E.E. projects. Kits include ALL THE ELECTRONICS AND HARDWARE NEEDED. Printed circuit boards (fully etched, drilled and roller tinned) or veroboard are, of course, included as specified in the original article, we even include nuts, screws and I.C. sockets. PRICES INCLUDE CASES unless otherwise stated. BATTERIES ARE NOT INCLUDED. COMPONENT SHEET INCLUDED. If you do not have the issue of E.E. which includes the project-you will need to order the Instruction reprint at an extra $45 p$ each.
Reprints available separately 45 p each + p. \& p. 40p.
LED SANDGLASS. Aug. 81.
WHEEL OF FORTUNE. Aug.
CMOS METRONOME. A
DOOR ALARM. Aug. 81.
WOOR ALARM. Aug. 81.
COMBINATION LOCK. July 81 Less case
COMBINATION LOCK. July 81 Less case
BURGLAR ALARM SYSTEM. June 81 Less bell, loop switches,
microphones
TAPE AUTO START. June 81
TREMELO. June 81 Less case
LOOP AERIAL CRYSTAL SET. June 81
LIGHTS REMINDER AND IGNITION LOCATOR E.E. May 81
SOIL MOISTURE INDICATOR E.E. May 81.
T. V. INTERFERENCE FILTERS E.E. May 81. LOW PASS less tinplate $\mathbf{E 2}$ 88. HIGH PASS $£ 1.56$
GUITAR HEADPHONE AMPLIFIER E.E. May 81.
PHONE BELL REPEATER/BABY ALARM E.E. May 81 . \qquad 43.96
$\mathbf{4} .29$ Rectangular cases.
 INTERCOM Aprill 81
FREEZER ALARM Aprii 81
SIMPLE TRANSISTOR E DIODE TESTERS. Mar. 81
Ohmeter version $\mathbf{f l}$ - 89 Led version.
MINI SIREN. Mar. 81
LED DICE. Mar. 81.
LED FLASHER, Mar. 81
MODULATED TONE DOORBELL. Mar. 81
BENCH POWER SUPPLY. Mar. 81
TREBLE BOOST. Mar. 81
CAR ACTUATED DRIVEWAY LIGHT, Feb. 81 less socket.......... $£ 63.90$
THREE CHANNEL STEREO MIXER. Feb. 81 … 17.47
SIGNAL TRACER. Feb. 81
£7.64 les
FOUR BAND RADIO. Feb
Ni-Cd BATTERY CHARGER
ULTRASONIC INTRUDER DETECTO
AUTO SLIDE CHANGER. Jan. 81
PHASER SOUND EFFECTS. Jan. $81{ }^{\circ}$
LOGIC YULSE GENERATOR. Jan.
2 NOTE DOOR CHIME. Dec. 80
SOUND TO LIGHT. Nov. 80.3 channel
GUITAR PRACTICE AMPLIFIER. Nov. 80
Standard case 63-88. High quality case 68.33.
TRANSISTOR TESTER Nov 80 Nov. 80
TRANSISTOR TESTER NOY 80
PHONE CALL CHARGE IOGGER. Ocr 80 NDS. Ocr. $80 \ldots .$. Ł $12 \cdot 26$
BICYCLE ALARM. Oct. 80 49.68 less mounting brackets
IRON HEAT CONTROL. Oct. 80 .. $\mathbf{E S} 48$
DARKROOM CONTROLLER. OCE. 80
BEDSIDE RADIO. Sept. 80
TTL LOGIC PROBE. Sept. 80
TTL POWER SUPPLY UNIT. Sepe. 80
CRICKET GAME. Aug. 80 .
WEATHER CENTRE. Aug. 80 (less case)
AUDIO MILLIVOLTMETER. Aug. 80..
AUTOPHASE. June 80. Recrangular Case
COURTESY LIGHT DELAY. June 80
A.F. SIGNAL GENERATOR. June 80

AUTOWAA. June 80. Rectangular Case.
G.P. AMPLIFIER. June 80

SIGNAL TRACER. June 80
ZENER DIODE TESTER. June 80
\qquad
.98
.98
$18 \cdot 30$
438.30
411.96
610.46
£10.46

ADVENTURES WITH sytom MICROELECTRONICS

An easy to follow book suitable for all ages. Ideal for beginners. No soldering. Uses a Bimboard 1 breadboard, gives clear instructions with lots of pictures. 11 projects based on integrated circuits -includes dice, iwo-tone doorbell, electronic organ, MW/LW radio, reaction timer, etc. Component pack includes a Bimboard 1 breadboard and all the components for the projects.
Adventures with Microetectronics $£ 2 \cdot 55$. Component pack £29.64 less battery.

ADVENIURES WITH ELEGTRONIOS BuTom

An easy to follow book suitable for all ages. Ideal for beginners. No soldering, uses an S-Dec breadboard. Gives clear instructions with lots of pictures. 16 projects-including three radios, siren, metronome, organ, intercom, timer, etc. Helps you learn about electronic components and how circuits work. Component pack includes an S-Dec breadboard and all the components for the projects.
Adventures with Electronics £2.40. Component pack £17.98 less battery.

4 STATION RADIO. May 80
AUTOFADE. May 80
LIGHTS WARNING SYSTEM. May 80
BATTERY VOLTAGE MONITOR. May 80
AUDIO TONE GENERATOR. May 80
GAS SENTINEL. April 80.
AUTO LEVEL CONTROL. April 80
CABLE E PIPE LOCATOR. Mar. 80
KITCHEN TIMER. Mar. 80
STEREO HEADPHONE AMPLIF\&ER. Mar. 80.
5 RANGE CURRENT LIMITER. Mar, 80
MICRO MUSIC BOX. Feb. 80 \& $15 \cdot 20$..........
SIMPLE SHORT WAVE RECEIVER. Feb. 80
Headphones $\mathbf{C 2} 98$.
SLIDE/TAPE SYNCHRONISER. Feb. 80.
MORSE PRACTICE OSCILLATOR. Feb. 80
SPRING LINE REVERB. UNIT. Jan. $80 \ldots$
UNIBOARD BURGLAR ALARM. Dec. 79
BABY ALARM. Nov. 79
OPTO ALARM. Nov. 79... $88 \cdot 98$
MW/LW RADIO TUNER. Nov, 79 16.99 less dial
ONE ARMED BANDIT. Oct. 79.
HIGH IMPEDANCE VOLTMETER. Oct. 79
CHASER LIGHTS. Sept. 79
VARICAP M.W. RADIO. Sept. 79
VARICAP M.W. RADIO. Sept. 79.
SIMPLE TRANSISTOR TESTER. Sept. 79
ELECTRONIC TUNING FORK. Aug. 79
Suitable microphone \& plug $£ 1 \cdot 79$ extra.
WARBLING TIMER. AUg. 79.
9V POWER SUPPLY. AUg. 79.
SWANEE WHISTLER. Aug. 79
TREMOLO UNIT. June 79
ELECTRONIC CANARY. June 79
LOW COST METAL LOCATOR. Juna 79
Handle \& coll former parts exera $\mathbf{6} 6 \cdot 10$.
QUAD SIMULATOR. June 79.
Less Exe. Buzzer \& Lamp and Loop Components
THERMOSTAT. 'PHOTO' SOLUTIONS. May 79
Less socket, tube and grease.
TRANSISTOR TESTER. April 79
TOUCH BLEEPER. April 79.
ONE TRANSISTOR RADIO. Mar. 79. Less Case
MICROCHIME DOORBELL. Feb. 79.
AUDIO MODULATOR. Feb. 79
79 ..

THYRISTOR TESTER. Feb. 79
ADJUSTABLE PSU. Feb. 79
HEADPHONE ENHANCER. Jan. 79
FUZZ BOX. Dec. 78
MC. AMP. Dec. 78

AUDIBLE FLASHER. Dec. 78
VEHICLE IMMOBILISER. Inc. PCB. Dec. 78
AUDIO EFFECTS OSCILLATOR. Nov. 78
PASSIVE MIXER. Ocr. 78
FUSE CHECKER. Oct. 78
TAEASURE HUNTER. OCt. $78 \ldots19 .64$ less handle 8 coil former
GUITAR TONE BOOSTER. Sept. 78................................. $5 \cdot 48$ in
SOUND
FILTER
CAR BATTERY STATE INDICATOR. Sept. 78. Less case
R.F. SIGNAL GENERATOR. Sept. $78 .$.

SLAVE FLASH. Aug. 78
LOGIC PROBE. July 78
IN SITU TRANSISTOR TESTER. June 78
FLASHMETER. May 78
PO
CHASER LIGHT DISPLAY. Feb. 78..
AUDIO VISUAL METRONOME. Jan. 78.
$78 .$.
78
.22 .56 le
RAPID DIODE CHECK. Jan. 78.
AUTOMATIC PHASE BOX. Dec. 77.
Ell:50i
VHF RADIO. NOV. 77.
ULTRASONIC REMOTE CONTROL. Nov./Dec. 77
ADD.ON CAPACITANCE UNIT. Sept. 77
PHONE/DOORBELL REPEATER. July 77.
ELECTRONIC DICE. March 77
….. 86 .36

1981 ELECTRONICS CATALOGUE

KITS
I.C.s

TRANSISTORS
CAPACITORS

Hundreds of lljustratlons. product data,
cliccults, and details of all our klts and circuits, and details
educational courses.
Up to date pricellsifinciuded. All producis
Up to date price ilsi/included. All producis are stock lines for tast dellvery.
In stamps of add 70p 10 order.

TOOLS RESISTORS hardware CASES

MAGENTA glves yOu FAST DELIVERY OF QUALITY COMPONENTS \& KITS All products are stock lines and are new \& full spectifcation We pinersonal service quality products to all our customers-HAVE YOU TRIED US?

MAGENTA ELECTRONICS LTD.

en 32 , i35 hunter st. burton-on.trent, staffs., DE14 2ST. 0283 65435. MON.-FRI. 9.4. MAIL ORDER ONLY. ADD 40p P. \& P. TO ALL ORDERS.
ALL PRICES INCLUDE 15% V.A.T.

OFFICIAL ORDERS WELCOME RISH REPUBLIC 4 B.F.P.O. EUROPE: Deduct 10% from prices shown Payment. ust be In Sterling. ACCESS and BARCLAYCARD (VISA) POST.

CTRONICS LTD

TEACH IN 82

NEW SERIES-ALL COMPONENTS IN STOCK NOW FOR FAST DELIVERY. All top quality components as specified by
Everyday Electronics. Our kit comes complete with FREE COMEveryday Electronics. Our kit comes complete with FREE COM
PONENT IDENTIFICATION SHEET. Follow this educationa serles and learn about electronics-Start today.
Send $£ 24.98$ for List 12 . 'VERO/E.E. $£ 1 \cdot 00$ vouchers accepted WOODEN CASE KIT also available. Phone or send SAE for price and details.
IDEAL SOLDERING EQUIPMENT FOR THE TEACH IN AND ELECTRONICS
ANTEX X5 SOLDERING IRON 25W £5. 48
SOLDERING IRON STAND £2.40
SPARE BITS. Small, standard large. 65p each. For XS + X25. SOLDER. Handy size 99p.
HOW TO SOLDER LEAFLET
DESOLDER BRAID 69p
HEAT SINK TWEEZERS 29p DESOLDER PUMP £6.48 SOLDER CARTON £1-84 LOW COST CUTTERS £1-69 LOW COST LONG NOSE PLIERS £.1-68 WIRE STRIPPERS \& CUTTERS

EE KITS SEPT ' 81

MODEL RAILWAY SPEED CONTROLLER, Sept. 81 0-12V POWER SUPPLY, Sept. 81 ANTI THEFT LINK DEVICE, Sept. 81 CMOS CAR SECURITY ALARM, Sept. 81 AUDIO COMPRESSOR MIXER, Sept. 81 CMOS DIE, Sept. 81

0			30	QFY52									
OA	11p												
			25 p										
	16 p	AC141	3 p			74							
W					1.16								
IN54		BC181		TIP									
INS		BC21	11										
TIS88		BC21											
VN67A		BC2		2N305		LM301a							
				2N3702	$1{ }^{\circ}$	LM							
2N3820													
W CARBON FILM RESISTORS E12 SERIES. 1R-10M MIN. HORIZ. PRESETS. 100R-4M7 MIDGET POTS. LINEAR. 47OR-4M7 12P each LOG. $4 \times 7.2 \mathrm{M} 3$ SWITCHED POTS. 4K7-1M. LIN. 7SP. LOG 74 p						LM31		401					
								${ }_{4} 402$					
POLYESTER (C280) CAPACITORS, 250 V 10 nF : $15 \mathrm{nF} ; 22 \mathrm{nF}_{\mathrm{j}} 33 \mathrm{nFF}$; 47 nF 7 P each. 68 nF ; 100nF 8 p . 150 nF ; 220 nF 12 p . 330 nF 15p. 470 nF 20p. ©80nF 23p. $1 \mu \mathrm{~F} 33 \mathrm{p} .1 \cdot 5 \mu \mathrm{~F} 43 \mathrm{p} .2 \cdot 2 \mu \mathrm{~F} 3 \mathrm{sp}$.													
ELECTROLYTIC CAPACITORS AXIAL Leads: $1 \mu \mathrm{~F} / 16 \mathrm{~V}$ 11D: $1 \mu \mathrm{~F} / 63 \mathrm{~V}, 1 \mu \mathrm{~F} / 100 \mathrm{~V}$ $12 \mathrm{p}: 47 \mu \mathrm{~F} / 40 \mathrm{~V} 15 \mathrm{p}: 47 \mu \mathrm{~F} / 63 \mathrm{~V}$ 18p ; $100 \mu \mathrm{~F} / 16 \mathrm{~V} 12 \mathrm{p}$; $1000 \mu \mathrm{~F} / 10 \mathrm{~V} 30 \mathrm{P} ; 1000 \mu \mathrm{~F} / 16 \mathrm{~V} 33 \mathrm{P}: 1000 \mu \mathrm{~F} / 25 \mathrm{~V} 40 \mathrm{D}$; ${ }^{10000 \mu \mathrm{~F} / 40 \mathrm{~V} 54 \mathrm{D}: 1000 \mu \mathrm{~F} / 63 \mathrm{~V} 79 \mathrm{p} ; 2200 \mu \mathrm{~F} / 10 \mathrm{~V} 39 \mathrm{p} \text { : }}$ $2200 \mu \mathrm{~F} / 25 \mathrm{~V}$ AS ; $2200 \mu \mathrm{~F} / 63 \mathrm{~V}$ £ $1 \cdot 10$.													
						ORP12							
						LEDS WI	H						
						3 mm Red	20	Gr					
						5 mm . R							
						Flashin	G LE						
						RECTAN							
						Mains							
MULTIMETER TYPE 1. 1,000 opy with probes. $2^{\prime \prime} \times 34^{\prime \prime} \times 1^{\prime \prime}$ … Et 68 MULTIMETER TYPE 2, 20,000 opy with translistor tester. CROC CLIP TEST LEAD SET. 10 leade with 20 cllpe. CDNNECTING WIRE PACK. 5×5 yd colls RESISTOR COLOUR CODE CALCULATOR TOWERS INTERNATIONAL TRANSISTOR SELECTOR AM.FM AIRCRAFT BAND PORTABLE RADIO 2 STATION DESK INTERCOM E7.4 ${ }^{3}$ STATION PLUG-IN POWER SUPPLY. 4.5V, $8 \mathrm{~V}, 9 \mathrm{~V}, 300 \mathrm{~mW}$ DIMMER SWITCH PVCTAPE. 3 reele DENTISTS INSPECTION MIRROR JEWELLERS EYEGLASS HAND MAGNIFIER. $3^{\prime \prime}$													

Wednesday 11 th November 10 a.m. -6 p.m Thursday 12th November 10 a.m. -8 p.m Friday 13 th November 10 a.m. -6 p.m Saturday 14th November 10 a.m. -6 p.m Sunday 15th November 10 a.m. -4 p.m

COMPONENTS © DEMONSTRATIONS • SPECIAL OFFERS © MAGAZINES • BOOKS

> ROYAL HORTICULTURAL SOCIETY'S NEW HALL, GREYCOAT STREET, WESTMINSTER, LONDON S.W. 1.

17,000 PEOPLE CAN'T BE WRONG

For 5 days last year they packed the RHS halls for Breadboard " 80 . All the leading companies were there
and they're back again this year for BREADBOARD '81..... with larger stands and wider gangways
Whether you're buying or just browsing, BREADBOARD '81 has something to offer you The top electronics magazines will be there. If you're interested in kits, components or computing, BREADBOARD ' 81 covers it all books, bargains and demonstrations. It's all happening at BREADBOARD ' 81.
Cost of entry will be $£ 2.00$ for adults. and $£ 1.00$ for children under 14 yrs and O.A.P.s.

TECHNICAL TRAINING IN ELECTRONICS AND TELECOMMUNICATIONS

ICS can provide the technical knowledge that is so essential to your success: knowledge that will enable you to take advantage of the many odportunitics open to you. Study in your own home, in your own time and at your own pace and if you are studying for an examination ICS guarantec coaching
until you are successful.

City and Guilds Certificates:
Telecommunications Technicians
Radio, TV, Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
MPT Radio Communications Certificate
Diploma Courses:
Colour TV Servicing
Electronic Engineering and Maintenance Computer Engineering and Programming Radio, TV, Audio Engineering and Servicing Electrical Engineering, Installation
and Contracting
POST OR PHONE TODAY FOR FREE BOOKLET

ILS
To: International Correspondence Schools

Dept 268M Intertext House, London
SW8 4UJ or tekphone 6229911
Subject of Interest
Name
Address

JOIN UP WIMI: THM3SOTD

Litesold's new 'L' Semes soldering iron - now at a bargain price. Outstanding performance Lightweight. Easy to maintain Elements are enclosed in Stainless Steel shafts. insulated with mica and ceramic. Non-seize interchangeable bits. choose from 'copper' or 'long life' A very spectal tool at a very spectal direct' price. Just 5.22 for fron flted with 3.2 mm copper bit. Just $£ 2.27$ for 3 spare copper bits (1.6: 2.4:4.7). A mere $£ 4$ for professional spring stand! or buy the fot for $\$ 10.34$ and save 10%. All prices inc. Vat P. \&eP

LIGHT SOLDERING DEVELOPMENTS LTD

DIY MUSIC \& EFFECTS KITS

AUTOWAH UNIT

Automatically gives Wah or Swell sounds with each guitar ote played. SET 58 E16.04

GUITAR EFFECTS UNIT

Modulates the attack, decay and filter characteristics of a slonal from most audio sources, producing 8 different switch able sounds that can be further modified by manual con Kit order code SET 42 E14-11

GUITAR FREQUENCY DOUBLER

Produces an output one octave higher than the input. In outs and outputs may be mixed to glve greater depth.
Kit order code
SET 98
E10.5s

GUITAR MULTIPROCESSOR

An extremely versatile sound processing unit capabie o producing, for example, flanging, vibrato, reverb, fuzz and tremolo as well as other fascinating sounds. May be used with most electronic instruments. Some SW's not Inct. In Kit order codelection

SET $85 \quad$ \& $72 \cdot 90$

GUITAR OVERDRIVE

Sophisticated versatile fuzz unit incl, varlable controls affecting the fuzz qualliy whilst retaining the attack and decay, and also provlding filtering.
Kit order code

SET $56 \quad$ E19-60

GUITAR PRACTISE AMPLIFIER

A 3 watt mains powered ampllfer suitable for instrumen practlse or as a test gear monitor. Drives 8 or 15 ohm speaker (notincl. in kit).

SET 106 E1E.72

GUITAR SUSTAIN

Maintains the natural atlack whilst extending note durallon.
SET 75 Eider code

PHASER

An automatically controlled 6 stage ohasing unit with inMain kit code. SET 88 Eis - 3 Extension kit
$\begin{array}{rr}\text { SET 88 } & \text { E1E.34 } \\ \text { EXT } 88 & \text { £ } 71\end{array}$

PHASING \& VIBRATO

Includes manual and automatic controt over the rate of phasing \& vibrato. Capable of superb full sounds. A seoarate Kit order code

SET $70 \quad$ £42.15

SMOOTH FUZZ

As the name impliest Order code

SPLIT.PHASE TREMOLO

The output of the internal generator is phase-split and modulated by an input signal. Output amplitudes, depth \& rate are panel controlled. The eflect Is similar to a rotary cabinet.
SET 102
E27.55

SWITCHED TONE TREBLE BOOST

Provides switched selection of 4 preset tonal responses.
SET 89
Eio. 51

AUDIO EFFECTS UNIT

A variable siren generator that can produce British \& Amerl can police sirens. Star-Trek red alert, heart beat monito sounds, etc.
Kit order code
E12.M1

FUNNY TALKER

Incorporates aring modulator, chopper \& frequency modulator to produce fascinating sounds when used with peech \& Kit order code SET 99 E15.43

WIND \& RAIN EFFECTS

As the name sayal Order code SET 28 Es.e4

DISCOSTROBE

A 4-channel 200 -watt llght controller giving a cholce of

LIST

Send stamped addressed envelope with all U.K. requests for free list giving fuller detalis of PCBS, kits and other com ponents. Overseas enquir
other countries send $81-\infty$.

TERMS : C.W.O., Mall Order or Collection by appoint ment. Tol. 01.302 .5184 (Mon.Fri).

KIMBER-ALLEN KEYBOARDS

Claimed by the manufacturers to be the finest moulded plastic all octaves are C.C, the keys are platic enronted, spring loaded, fitted with actuators and mount -Octave $£ 25 \cdot 50$, 4-Oct $£ 32 \cdot 25,5$-Oct $£ 38 \cdot 50$. Gold-clad contacts (1 needed for each note) type GJ (SPCO) 33 p each Tyoe GB (2-PR n/o) 380 each.

CHOROSYNTH

A standard keyboard version of the published Elektor 30 -note chorus synthesiser with an amazing variety of sounds ranging rom violin to celo and fute to charinet emongst many others. Kit plus keyboard a contacts

FORMANT SYNTHESISER

For the more advanced constructor who puts pertormance first, this is a very sophisticated 3 -octave synthesiser with weath of facilities, including 6 oscillators, 3 waveform con verters, voltage controlied filter, 2 envelope shaperi and
coltage controlled amplifier. Case and hardware not in cluded-see our lists for further defalls. \quad SET $66 \quad$ e.323-3 $\begin{array}{llll}\text { Kit plus keyboard \& contacts } & \text { SET } 66 & \mathbf{4 2 3} 35\end{array}$

P.E. MINISONIC SYNTHESISER

A very versatile 3-octave portable mains operated synthesiser. with 2 osciliators, voltage controlied upply and sub modulator, noise generator, mixer, power A case is excluded, but the text gives comprehensive con tructional detalls.
Kit plus keyboard a contacts SET 38 E169.6

PRICES INCLUDE
VAT@ $\mathbf{1 5 \%}$ \& U.K.P.\&P.

NEW KIT MAKE-UP -SEE BELOW

128-NOTE SEQUENCER

Enables a voltage controlled synthesiser, such as the P.E. Minisonic, to automatically play pre-programmed funes of up to 32 pltches and 128 notes long. Programe are inltiated from the 4 -octave keyboard and note length and rhythmi Ktl plus keyboard \& contacts

SET 76 E114.04

16-NOTE SEQUENCER

Sequences of up to 15 notes long may be pre-programmed by the panel controls and ted into most voliage controlled synnotes and rhythms may be changed whlle Kit order code more versatlie than the name would sugges
SET B6
EOD.

DIGITAL REVERE UNIT

A very advanced unit using sophisticated I.C. techniques Instead of nolse-prone mechanical spring lines. The baslic the extension unit. Further delays can be obtained using more
extensions.
$\begin{array}{lll}\text { Malnkit order code } & \text { SET } 78 & \text { E57.22 } \\ \text { Extenslonklt } & \text { EXT 78 } & \text { E45. } 84\end{array}$

RING MODULATOR

Compatible with the Formant and most other synthe sisers.
Kit order code
SET 87
Eil-G

WAVEFORM CONVERTER

Converts saw-tooth wavelorm into sinewave, mark-tpace con id each synthesiser osclliator. Klt order code SET $67 \quad$ E24-13

BASIC COMPONENT SETS

 Include gecially deslgned drilled a tinned fibreglase printedcircuit boarda, all necessary resistors, capacttors, semi. circuit boardi, all necessary resistors, capactiors, semi-
conductors. potentlometers. and transformers. They alio include basic hardware such as knobs, sockets, switches. a nominal amount of wire and solder, a photocopy of the original publlshed text. and unless otherwise stated, For fullerkit and component details see our current lists.

Kits originate trom projects oublished in PE, EE, and Elektor.

RHYTHM GENERATORS

Two diflerent kits-The control units are desianed around the M252 and M253 rhyihm-gen chips which produce pre-programmed witch-nelectable rhythms driving 10 effects instrument penerators feeding into a mixer
12. Rhylhm unit

6-CHANNEL MIXER

A high specification stereo mixer with variable input im pedances. Soecs glven in our IIsts. The kit excludes some SW's-see lists for selection. The extension gives two extra

Mannels. kit code
Extenalon kit
$\begin{array}{ll}\text { SET } 90 & \text { EAE.94 } \\ \text { EXT } 90 & \text { E11.74 }\end{array}$

3-CHANNEL STEREO MIXER

Full level control on left and right or each channel, and with masier output control and headphone monitor.
Kit order code 107 Eit 64

3-MICROPHONE STEREO MIXER

Enables stereo live recordings to be made without the 'hole In the miodle' effect. Independent control of each micro ohone Kit order code

SET 108 E12.31

HEADPHONE AMPLIFIER

For use with magnetic, ceramic or crystal plck-ups tapedeck or tuner, and for most headphones. Deslgned with RIAA equalisation.

SET 104 EIE-10

VOICE OPERATED FADER

For automatically reducing music volume during disco talk $\begin{array}{lll}\text { over. } \\ \text { Kit order code } & \text { SET } 30 \quad \text { E7•皿 }\end{array}$

DYNAMIC NOISE LIMITER

Very effective stereo clrcult for reducing notse found in $\begin{array}{lll}\text { mosttape recordings. } \\ \text { Kit order code } & \text { E12.67 }\end{array}$

DYNAMIC RANGELIMITER
Automaticalfy controls sound output levels:
Kit order code
SET ED.51

TUNING FORK

Produces 84 swith-selectable frequency-accurate tones with led monitor displaying beat-note adjustments.
Kit order code $46 \quad$ S.34.56

TUNING INDICATOR

A simple octave frequency comparitop for use with synthesisere where the full versatility of KIT46 is not needed. KIt order code

PULSE GENERATOR

Produces controllable pulse widths from 100 NS to 2 Sec | Varlable frequency range of ${ }^{\circ} 0.1 \mathrm{~Hz}$ to 100 KHz . \quad SET $115 \quad$ E21. 45 |
| :--- |
| $\begin{array}{l}\text { Kit order code }\end{array}$ |

SIGNAL TRACER \& GENERATOR

Allows audio slgnals to be injected into clrcults under test. and for traclng their continulty. Includes trequency \& leve control:

Kit order code SET 109 E15.31

WAVEFORM GENERATOR

Provides sine, square and trlangular wave outputs variable KIt order code SET 112 E21-5

SPEECH PROCESSOR

improves the inteligibility of nolsy or fluctuating speech signals, and Ideal tor inserting into P.A. or C.B. radio sya KIt order code

SET 110 EE 29

FREQUENCY COUNTER

EXPOSURE TIMER

Controls up to 750 watte in 0.5 sec steps up to 10 minutes.
with bulti-In audlo alarm.
Kit order code
EXPORT ORDERS ARE WELCOME
Postage rates are shown in our liste. All payments must-be cash-with-order, in sterling by international money oroer or To obtain list-Europe send 50 p, other countries send E 1.00

> MORE KITS AND COMPONENTS ARE ON OUR LISTS

Prices are correct at time of press. E. \& O.E. subject to avaliability.

BUILD THE WORLD FAMOUS CHROMA-CHIME

Give your friends a warm welcome. Yes, think how delighted and amazed they will be to hear the musical Chroma-Chime play when they press your button!
The Chroma-Chime uses a microcomputer to play 24 well-known tunes. The kit is simplicity itself for ease of construction. Absolutely everything needed is supplied, including:

* Resistors, Capacitors,

Diodes, Transistors,
I.C. Socket and all hardware
\star Texas Instruments TMS 1000 microcomputer
\star Comprehensive kit manual with full circuit details

Ready built version also

 avallable. Special offer price $£ 15.95$ incl. p\& p.Plays 24 well-known tunes including:
Star Spangled Banner, William Tell Overture, Greensleeves, Rule Britannia,
Colonel Bogey, Oh come all ye faithful,
plus many other popular tunes.

* No previous microcomputer experience necessary
* All programming retained is on chip ROM
* Fully guaranteed
t Ideal present any time

TMS 1000N Whntis

- MP0027A Micro-computer chip available separately if required. Full 24 tune apec device fully guaranteed. This unque chip can be used not anly for electronic door chimes but for other profecis requiring musical ounp Carmorne Muaces Boxet Alorme. $\approx=$.
or 3 for $£ 12.50$ incl.p\&p.
ALL CHROMATRONICS PRODUCTS SUPPLED WITH MONEY BACK GUARANTEE

Please send me
TO: CHROM ATRONICS, RIVER WAY, HARLOW, ESSEX
NAME
ADDRESS

I enclose cheque/PO value \mathcal{E} or debit my ACCESS/BARCLAYCARD account no.

Signature
 ChROMATROCNICS

SUPER VALUE PACKS AND COMPONENTS

$$
\begin{aligned}
& \text { P1. } 50 \text { Ass. Electrolytics Caps. } \\
& \text { P2. } 80 \text { Polyester, Polycarbonate } \\
& \text { Polypropylene } \\
& \text { P3. } 100 \text { Small Cer. Dises } \\
& \text { P4. } 80 \text { Square Cer. Plates } \\
& \text { P5. } 50 \text { Polystyrene caps. } 5 \cdot 6 \mathrm{pf}-3900 \mathrm{pf} \\
& \text { P6. } 45 \text { Polystyrenecaps. } 4700 \mathrm{pf}-047 \mathrm{ff} \\
& \text { P7. } 20 \text { SHver Mica 5-5pf-220pf } \\
& \text { P8. } 18 \text { Silver Mica 270pf-0047uf } \\
& \text { 80p P11 } 10 \text { 8KV } 1000 \mathrm{pt--0suf.} \\
& \mathrm{ap}_{\mathrm{p}} \text { P12. } 10 \quad 20 \mathrm{~mm} \text { in line fuse holders } \\
& \begin{array}{l}
\text { 80p P12. } 10 \quad 5 \text { pin din chassis socket } \\
\text { 80p P13. } 150 \text { Axial } \text { watt resistors... }
\end{array} \\
& \text { 80p P14. } 5 \text { 100K Multitone trimmers for } \\
& \text { 80p 14. Thorn Varicap tuners } \\
& \text { 80p }
\end{aligned}
$$

> 1N4001; 04p. 1N4002; 04p. 1N4003; 04p. 1N4004; 05p. 1N4005; 05p. OA90; 06p. OA91; 06p
> TANT BEAD CAPACITORS
> $-1 / 35 \mathrm{v},-22 / 35 \mathrm{v},-33 / 35 \mathrm{v},-47 / 35 \mathrm{v},-68 / 35 \mathrm{v}, 1 / 35 \mathrm{v} 10 \mathrm{p}$ each. $2 \cdot 2 / 16 \mathrm{v}, 3 \cdot 3 / 16 \mathrm{v}, 4 \cdot 7 / 6 \mathrm{v} \cdot 12 \mathrm{p}$
33/10v-25D. 47/6v-25p. $47 / 16 \mathrm{v}$ 50p. 100/16v -65p.
Polystyrene Caps. from-03p. Low Voltage discs from -03p. Silver Mlca from - 10p. Etc., Etc
$\begin{aligned} & \text { Lists enclosed with first order or S. A.E. Post and packing add -20p per pack or 20p on } \\ & \text { orders for components only. }\end{aligned}$

C. H. J. SUPPLIES
4 STATION ROAD, CUFFLEY, HERTS. TEI:01-440 8959.

POPS COMPONENTS

38/40 Lower Addiscombe Road, Croydon CR0 6AA 01-688-2950 * POPS SPECIAL OFFERS THIS MONTH $*$ Free L.E.D.s + LIST with every order! P. 8. P. 50p.

AUDIO \& RADIO PANELS, damaged or incomplete, Thorn manufactured, hundreds of modern useable components including PB switches, transistors, Resistors, Caps, Tants \& Electrolytics. Mini Toko IF \& OSC Coils. 3Ib Lots. $£ 6 \cdot 00$.
SOLAR CELLS. Give 20 mA at $\frac{1}{2} v . £ 1 \cdot 50$ each
OFFER. Demo Kit: 2 cells and motor for $£ 4.50$.
12v MINI RELAYS (Continental type)
$2 p \times$ over $700 \Omega-50 p$ each $4 p \times$ over $430 \Omega-80 p$ each.
VIDEO-R.F. MODULATORS Calibrated channel 36 (625 Line U.H.F.) 9 v supply $2 \frac{1}{2}$ metre R.F. lead with TV Ae Plug use for video games, etc. $£ 2 \cdot 50$ each or 10 for $£ 18 \cdot 00$!
MICRO SWITCHES Pack of three different types. £1.00.
TELESCOPIC Ae, with 9 segments, hinged, plugs into 3.5 mm skt. £1-00.
12v TRANSFORMERS at 400 mA on a panel with rects. O.K. for 12 v mains adaptor for radio cassettes, etc. $£ 1 \cdot 10$. Boxes to suit 50 p each. Lots more bargains! Full list sent with orders received, or send S.A.E.

Sinclair 2X8I Personal the heart of a system that grows with you.

1980 saw a genuine breakthrough the Sinclair ZX80, world's first complete personal computer for under $£ 100$. Not surprisingly, over 50,000 were sold.

In March 1981, the Sinclair lead increased dramatically. For just $£ 69.95$ the Sinclair ZX81 offers even more advanced facilities at an even lower price. Initially, even we were surprised by the demand - over 50,000 in the first 3 months!

Today, the Sinclair ZX81 is the heart of a computer system. You can add 16 -times more memory with the ZX RAM pack. The ZX Printer offers an unbeatable combination of performance and price. And the ZX Software library is growing every day.
Lower price: higher capability With the ZX81, it's still very simple to teach yourself computing, but the ZX81 packs even greater working capability than the ZX80.

It uses the same micro-processor, but incorporates a new, more powerful 8K BASIC ROM - the 'trained intelligence' of the computer. This chip works in decimals, handles logs and trig, allows you to plot graphs, and builds up animated displays.

And the ZX81 incorporates other operation refinements - the facility to load and save named programs on cassette, for example, and to drive the new $Z X$ Printer.

Every 2×81 comes with a comprehensive, specially- written manual - a complete course in BASIC programming. Irom first principles to complex programs.

Higher specification, lower price -

 how's it done?Quite simply, by design. The ZX80 reduced the chips in a working computer from 40 or so, to 21 . The ZX81 reduces the 21 to 4 !

The secret lies in a totally new master chip. Designed by Sinclair and custom-built in Britain, this unique chip replaces 18 chips from the ZX80!
New, improved specification - Z80A micro-processor - new faster version of the famous Z 80 chip, widely recognised as the best ever made.

- Unique ‘one-touch' key word entry: the ZX81 eliminates a great deal of tiresome typing. Key words (RUN, LIST, PRINT, etc.) have their own single-key entry.
- Unique syntax-check and report codes identify programming errors immediately.
- Full range of mathematical and scientific functions accurate to eight decimal places.
- Graph-drawing and animateddisplay facilities.
- Multi-dimensional string and numerical arrays.
- Up to 26 FOR/NEXT loops.
- Randomise function - useful for games as well as serious applications. - Cassette LOAD and SAVE with named programs.
- 1K-byte RAM expandable to 16 K bytes with Sinclair RAM pack - Able to drive the new Sinclair printer.
- Advanced 4-chip design: microprocessor, ROM, RAM, plus master chip - unique, custom-built chip. replacing 18 ZX80 chips.

Built: 56

Kit or built -it's up to you!

You'll be surprised how easy the ZX81 kit is to build: just four chips to assemble (plus, of course the other discrete components) - a few hours' work with a fine-tipped soldering iron. And you may already have a suitable mains adaptor -600 mA at 9 VDC nominal unregulated (supplied with built version).

Kit and built versions come complete with all leads to connect to your TV (colour or black and white) and cassette recorder.

uter-

16K-byte RAM pack for massive add-on memory.

Designed as a complete module to fit your Sinclair ZX80 or ZX81, the RAM pack simply plugs into the existing expansion port at the rear of the computer to multiply your data/program storage by 16 !

Use it for long and complex programs or as a personal database. Yet it costs as little as half the price of competitive additional memory.

With the RAM pack, you can also run some of the more sophisticated ZX Software - the Business \& Household management systems for example.

6 Kings Parade, Cambridge, Cambs., CB2 1SN. Tel: (0276) 66104 \& 21282.

Available nowthe IX Printer for only £49.95

Designed exclusively for use with the ZX81 (and ZX80 with 8K BASIC ROM), the printer offers full alphanumerics and highly sophisticated graphics.

A special feature is COPY, which prints out exactly what is on the whole TV screen without the need for further intructions.

At last you can have a hard copy of your program listings - particularly

How to order your $\mathbf{Z X 8 1}$

BY PHONE - Access, Barclaycard or Trustcard holders can call 01-200 0200 for personal attention 24 hours a day, every day.
BY FREEPOST - use the no-stampneeded coupon below. You can pay
useful when writing or editing programs.

And of course you can print out your results for permanent records or sending to a friend.

Printing speed is 50 characters per second, with 32 characters per line and 9 lines per vertical inch.

The ZXPrinter connects to the rear of your computer - using a stackable connector so you can plug in a RAM pack as well. A roll of paper (65 ft long $x 4$ in wide) is supplied, along with full instructions.
by cheque, postal order, Access, Barclaycard or Trustcard. EITHER WAY - please allow up to 28 days for delivery. And there's a 14-day money-back option. We want you to be satisfied beyond doubt and we have no doubt that you will be.

Wheel of Fortune	ZB164	Aug. 81	£27-50
Simple P.H. Meter	2B165	Aug. 81	£22.00
LEU S and Glass	2B162	Aug. 81	£5.00
Morse Practice Oscillator	ZB163	Aug. 81	£10.95
Door Alarm	2B166	Aug. 81	£6.00
CMOS Metronome	ZB167	Aug. 81	£6. 25
Xenon Strobe Lamp	ZB161	July 81	£18.50
Combination Lock	2B160	July 81	£13.75
Electronic Multimeter	2B159	July 81	£32.50
*Tremolo Unit	ZB157	June 81	£8. 25
Loop Aerial Crystal Set	2B158	June 81	£5. 25
Darkroom Timer	ZB155	June 81	¢4.00
Tape Auto Start	ZB156	June 81	£10.25
Audio Test Set	ZB152	May 81	£46.00
Soil Moisture Indicator	2B154	May 81	£3. 95
Phone Bell Repeater or Baby Alarm	ZB153	May 81	£5 25
Guitar Headphone Amplifier	ZB151	May 81	£4.00
Lights Reminder or Ignition Locator	ZB150	May 81	£5. 20
Intercom	ZB149	April 81	£19.25
Digital Rule	ZB148	April 81	£28.00
Freezer Alarm	ZB147	April 81	£11.75
LED Dice	ZB146	March 81	£7.50
Mini Siren	ZB145	March 81	£7. 25
Modulated Tone Doorbell	2B144	March 81	£6. 25
Bench Power Supply	ZB143	March 81	£48.50
Car Actuated Driveway Light	ZB142	March 81	£22.00
3 Channel Stereo Mixer	ZB141	Feb. 81	£16.25
Signal Tracer	ZB140	Feb. 81	£7-50
Nicad Battery Charger	ZB139	Feb. 81	£12.00
Auto Slide Charger	ZB138	Jan. 81	£9.00
Ice Alarm	ZB137	Jan. 81	£7. 25
Phaser Sound Effects	ZB136	Jan. 81	£23.30
Mini I.C. Radio	ZB126	Nov. 80	£10.35
Sound to Light	Z8127	Nov. 80	£19.00
Guitar Practice Amplifier	ZB128	Nov. 80	£16.85
Transistor Tester	ZB131	Nov. 80	£9.00
Soil Moisture Monitor	ZB132	Nov. 80	£5.00
Audio Effects Unit	ZB122	Oct. 80	£12.25
Phone Call Charge Jogger	Z8121	Oct. 80	£6.00
Darkroom Controller	Z8123	Oct. 80	£18.25
Bicycle Alarm	ZB124	Oct. 80	£9. 25
TTL Power Supply Unit	Z878	Sept. 80	£9.50
*TTL Logic Probe	ZB76	Sept. 80	£3.75
Bedside Radio	2874	Sept. 80	£14.75
Signal Tracer	Z880	July 80	£5.50
Autowaa	2B83	July 80	£19.75
A.F. Signal Generator	ZB84	July 80	£20.50
Auto Phase	ZB86	July 80	£19.75
Lights Warning System	2B63	May 80	£4.00
Autofade	ZB66	May 80	£10.25
Cable and Pipe Locator	ZB54	March 80	£4.00
Micro Music Box	ZB45	Feb. 80	£17.50
Simple Short Wave Receiver	2B44	Feb. 80	£19.50
Morse Practice Oscillator	ZB43	Feb. 80	£6.00
Slide/Tape Synchronlser	ZB42	Feb. 80	£11.50
Burglar Alarm	ZB51	Dec. 79	£5.50
Baby Alarm	2B40	Nov. 79	£8.50
Chaser Light	ZB4	Sept. 79	£18.50
Simple Transistor Tester	ZB2	Sept. 79	£6.00
Varicap MW Radio	2B1	Sept. 79	£8.50
Electronic Tuning Fork	ZB7	Aug. 79	£9.50
Warbling Timer	2B5	Aug. 79	£6. 30
Electronic Canary	2B19	June 79	£5.00
Tremolo Unit	ZB18	June 79	£10.50
One Transistor Radio MW/LW	ZB104	March 79	£7.25
Micro Chime	ZB96	Feb. 79	£13.00
Lights Reminder for Car	ZB32	Jan. 79	£5.00
Fuzz Box	ZB106	Dec. 78	£6.75
Sound to Light	ZB112	Sept. 78	¢7.00
Weird Sounds Effect Generator	ZB113	March 78	£6.00

TEACH-IN 82
All parts in stock

	All parts in stock.
List (1)	
List (2).75	
Special Price List 1 and 2	$\mathbf{£ 2 6 . 5 0}$

(A further $£ 1$ reduction on receipt of Vero Coupon from October issue valid only to $30 / 11 / 80$.)

All Prices include Post \& VAT
Callers Please Ring To Check Availability Of Kits

MAINS IONISER KIT ZDI3
This negative ion generator gives you Dower to saturate your home or office with millions of refreshing lons. Without fans or moving parts it puts out a pleasant breeze. A pure flow of lons pours out like water from a fountain, filling your room. The result? Your air feels like tresh ocean air, pure crisp and wondertully retreshing. All parts PCB and full inatructions $\mathbf{£ 1 2 \cdot 5 0 \text { . A sultable }}$ case including front panel, neon switch, etc. Avallable at $£ 10 \cdot 50$.

T. POWELL

44 WALLACE ROAD, LONDON N Tel: 01-226 1438
HOURS: Mon-Fri 9-5.30p.m, Sat 9-4.30p.m Minimum Mail Order fil 00

ELECTRONICS?

TRY A ZEDPACK!

COMPONENTS AT A PRICE EVERYONE CAN AFFORD
 $\frac{22}{23} 300$ m|xed eapacitors.
${ }^{24} 100$ mixed lectrolyiles
25100 mixed polytyrone cap
26300 mixed printed clrcuit
z7 300 mixed prin
-
plate mixed
21025 cassorted pols
pots. fore
if. 45
le and

Z10 25 assorted pois.
z11 25 assorted preset
21220 assorted prasets, skeleton efc. f1 50
21220 assorted vor's and thermistors
$Z 13$ 11ts mixed hardware. Nuts, bolts
selffappers, sleeving. etc. $£ 1-20$
214100 mixed, new and marked, full spec.
transistors. Pack includes:- BC148,
PBC10s and, or lote of similar types
215 $\mathbf{1 0 0}$ mixed diodes including:-zener
oower, bridge, slonal, germanium,
silicon etc. All full spec. E4.gs
$\begin{array}{ll}216201 N 4148 \\ Z 17 \\ 20 & \text { in } 4003 / 1002\end{array}$
Z18 20 zener s. 1 watt and 400 mw
Z18 12 . $125^{\prime \prime}$ TIL 209 RED LED'S

220 bution, sllde, multipole, miniature etc.
UHF MODULATORS Fantle value. $\mathbf{£ 1} \cdot \mathbf{2 0}$.
UHF MODULATORS
(625 line UHF) housed in metal box $21^{+\prime} x$ $2^{\prime \prime} \times \mathbf{p}^{\prime \prime}$ with 9° coaxial lead. TV plug and connection data. Ez . 50 ea. 3 for Es . Aluminium finish sl/der knobs, standard
 fitted to many cassette recorders. 90p Deluxe FIBREGLASS printed circuit stching kite.
neludes 10089 ins. of copperclad F/G board. It ferric chloride, (made for U.S. army to MIL. SPEC.), 1 dalo etch resist pen, abresive cieaner, tweerers, elch reast dish
and Instructions. OUR PRICE E5.es 116 of FeCl . $\mathrm{E} 2 \cdot 25$.
$\begin{array}{ll}100 \text { Minlature reed ewitchet. } & £ 2 \cdot 34 \\ 100 & \text { Subminiature Reed Switches. } \\ \text { £4.20 }\end{array}$
TO: "GEMINI ELECTRONIC COMPONENTS". DEPT EE
"THE WAREHOUSE" SPEEDWELL ST. LONDON S.E.8.
Where shown. Send Cheque or Postal Order. Plua 60p PdP, and 15% VAT
Please Quote ZED Code. 2ED PACKS now avatlable for Callers at 50 Depttord Broadway, London, S.E.8.

B.K. ELECTRONICS-A SOUND CHOICE

STEREO CASSETTE TAPE DECK MODULE
full record and play-back facilities. Supplied as one complete unic for horizonca inscatlation inco cabinet or console of own choice. Brand new, ready buile and tested. Smare silver and black finish. Features: Three digit tape councer, Auco stop, Six piano type keys, Record, Rewind, Físs Forward, Play, Scop and Ejece. Aútomacic record level control. Main inputs plus secondary inpues for scereo microphones. Input sensitivity 100 mV to 2 V . Output level 400 mV nominal. Wow and flutter 0.1%. Ideal for hi-fi, disco and compuser applicacions ecc Easily connected. Dimensions--cop panel $5 \frac{t^{\prime \prime}}{\Sigma^{\prime \prime}} \times 111^{\prime \prime}$. Supplied complece wich eireuit and connecting diagrams. Power supply required-18V DC as 300 mA former) $£ 3.00$

G.E.C. TUNER AMPLIFIER CHASSIS—AM/FM

Originally designed for installation into a music centre. Supplied as two separate fully built and cested units which are easily wired cogether. Circuit diagram and inter-connecsing wiring diagram supplied. Rotary controls-tuning. A.F.C., F.M. (VHF), L.W., M.W., S.W. Power outpue- 7 wates RMS per channel inco 8 ohms. Tape sensitivity Oucput eypically 150 mV . Input 300 mV . Disc sensitivity 100 mV (Ceramic carcridge). Stereo Beacon indicator LED or bulb. Dimensions-Tuner $22^{\prime \prime} \times 15^{\prime \prime} \times 7 \frac{1}{2}^{\prime \prime}$. Power amp. $2^{\prime \prime} \times 7 \xi^{\prime \prime} \times 4 t^{\prime \prime}$ PRICE $£ 23 \cdot 50+62 \cdot 50$ post and packing.

NEW RANGE QUALITY POWER LOUDSPEAKERS ($15^{\prime \prime}$, $12^{\prime \prime}$ and 8"). These loudspeakers are ideal for borh and $15^{\prime \prime}$ unics have heavy ducy die-case chassis and aluminium cencre domes All chassis and aluminium cencre domes. Al threeunits wirh acreactive cast aluminlum (reound finith) fixing escuscheons (ground finish) fixing escurcheons.
15" 100 watt R.M.S. Impedance 8 ohm, $\mathbf{2 "}^{\prime \prime}$ aluminium voice coil. Resonant Frequency 20 Hz . Frequency Response co $\mathbf{2 \cdot 5 K H z}$. Price $£ 32$ each. $\mathbf{E 2} \cdot 50$ Packing and Carriage each.
12" 100 watt R.M.S. Impedance 8 ohm, $2^{\prime \prime}$ aluminium voice coil. Resonane Fre quency 25 Hz . Frequency Response co 4 KHz . Price $\mathbf{6 2 3} 70$ ezch. $\mathbf{1 2} \cdot 50$ Packing
and Carriage each. $8^{\prime \prime} 50$ wate R.M.S. Impedance 8 ohm, I" aluminium voice coil. Resonant Fre-
and Carriage each. $8^{\prime \prime} 50$ wate R.M.S. Impedance 8 ohm, I" aluminium voice coil. Resonant Frequency 40 Hz . Frequency Response to 6 KHz . Price $\mathbf{~} 8 \cdot 90$ each. $\mathrm{El} \cdot 25$ Packing and Carriage each. Other units available.

PIEZO ELECTRIC TWEETERS-MOTOROLA

Join the Piezo revolution. The low dynamie mass (no voice coil) of a Piezo tweeter produces an improved eransient response with a lower discortion level than ordinary dynamic tweeters. As a crossover is not required these unics can be added to existing speaker systems of up to 100 waccs (more if 2 put in series). FREE EXPLANATORY LEAFLETS SUPPLIED WITH EACH TWEETER.

Type 'A' 3in round with proceccive wire mesh. Ideal for bookshelf hi-fi speakers. Price (Type 'A') $\mathbf{6 3 . 4 5}$ each. Type B 3fin super horn. For genera purpose speakers disco
Trpe ' C ' 2 in $\times 5$ in wide dispersion horn. For hi-fi systems and quality disco ete. Price 65.45 each.
Type ' D ' 2 in $\times 6$ in wide dispersion horn. Frequency response extending down co mid-range ($2000 \mathrm{c} / \mathrm{s}$) suicable for hi-fi systems and quality disco. Price $£ 6 \cdot 90$ ench.
Poss and Packing, all types, 15p each (or SAE for Piezo leaflers).

B.K. ELECTRONICS

VSA
Dept. EE, 37 Whitehouse Meadows, Eastwood, Leigh-on-Sea, Essex SS9 5TY
\star SAE for current lists. \star Official orders welcome. \star All prices include VAT. \star Mail order only. \star All items packed (where applicable) in special energy absorbing PU foam. Callers welcome by prior appointment. Please phone 0702-527572

The prepaid rate for classified advertisements is 28 pence per word (minimum 12 words), box number 60p extra. Semi-display setting £7.24 per single column centimetre (minimum 2.5 cm). All cheques, postal orders, etc., to be made payable to Everyday Electronics and crossed '"Lloyds Bank Ltd.' Treasury
notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Everyday Electronics, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St., London SE1 9LS. (Telephone 01-261 5918).

Receivers and Components

TURN YOUR SURPLUS capacitors, tran. sistors etc., into cash. Contact Coles Harding \& Co., 103 South Brink, Wisbech, Cambs. 0945 4188. Immediate settlement.

VEROBOARD. $0 \cdot 1$ stripboards average size 31_{2} in $x 5$ in, 25 p each. Orders to Alco Electronics, 5 Sharon Road, Westend, Southampton.

300 SMALL COMPONENTS. Transistors, diodes £160. 7LBS ASSORTED COMPONENTS $£ 3 \cdot 95$. $101 \mathrm{bs} \quad £ 5 \cdot 25$. FORTY 74 series ICs on panel $£ 1 \cdot 60$. 500 capacitors $£ 3 \cdot 00$. List 20 p refundable. Post 50 p optional insurance 20 p. J. W. B. Radio, 2 Barnfield Crescent, Sale, Cheshire M33 INL.

100 MIXED ICs-Transistors-Diodes £2.25. Lists 25p. Sole Electronics, E/E, 37 Stanley Street, Ormskirk, Lancs L39 2DH.

For Sale

NEW BACK ISSUES OF "EVERYDAY ELECTRONICS". Available 85p each Post Free, cheque or uncrossed PO returned if not in stock. BELL'S TELEVISION SERVICES, 190 Kings Road, Harrogate, Yorkshire. Tel: (0423) 55885.

SILICON SOLAR CELLS 4 in diameter, 1.5A at 0.45 V £ 10.18 inc VAT. We also stock other sizes of cells and batteries also Solar Panels, Science Kits, Fresnel Lenses, Stirling Engines, Cardboard Computer Kits, Energy Books, Space Blankets. Send 50p for lists. Edencombe Ltd, 34 Nathans Road, North Wembley, Middlesex HA0 3RX.

SECONDHAND ELECTRONIC TEST equipment including oscilloscopes, generators, psu's. NORFAB PLANT AND MACHINERY. Telephone Potter Heigham (069-27) 721.

EVERYDAY ELECTRONICS Vols 1 and 2 1971 to 1973 bound. Offers to M. Scivier, 8 Bucknill's Close, Epsom, Surrey.

Books and Publications

OUT OF PRINT Book Service. 17 Fairwater Grove (E), Cardiff. Send S.A.E. for details. PARAPHYSICS JOURNAL (Russian translations): Psychotronic Generators, Kirlianography, gravity lasers, telekinesis. Details: SAE 4in x 9in: Paralab, Downtown, Wilts. MUSIC MAKER. Typewriter Keyboard replaces piano type. Amateur organ builders send £1-00 for your copy-post free"QWERTONIC MUSICAL KEYBOARD" a new book by P. G. Roche to 71 Elmfield Avenue, Teddington, Middx TWll 8BX.

Service Sheets

Any single service sheet £1/L.S.A.E. Thousands different Repair/Service Manuals/Sheets in stock. Repair data your named T.V. $£ 6$ (with circults $£ 8$). S.A.E. Newsletter, Price Lists. Quotations.

AUSEE, 76 CHURCHES, LARKHALL, LANARKSHIRE (0698 883334).

BELL'S TELEVISION SERVICE for service sheets on Radio, TV etc. £l plus SAE. Colour TV Service Manuals on request. SAE with enquiries to BTS, 190 King's Rd. Harrogate, N. Yorkshire. Tel: 042355885.

OSCILLOSCOPE repair and calibration. Quick service, competitive rates. W. I. R. Electronics, 01-567 6816.

Software

NEW-ZX80/ZX81 Programmable Character Generator. Built $£ 34 \cdot 50$. Keyboard Kit £ $19 \cdot 50$, built £25. Memory Expansion $£ 9.95$. UK 101/Superboard P.C.G. Kit £39.95, built £45.50. S.A.E. for details. Haven Hardware, 4 Asby Road, Asby, Workington, Cumbria.

SIXTY-FIVE ZX81 PROGRAMS. Listing only $£ 4 \cdot 95$, Barclaycard accepted. Includes many games, utility programs, home finance, maths, chequebook, plus more. Includes hints'n'tips, from SUSSEX SOFT. Ware, Wallsend House, Pevensey Bay, Sussex.

Educational

COURSES-RADIO AMATEURS EXAMINATION. City \& Guilds. Pass this important examination and obtain your G8 licence, with an RRC home study course. For details of this, and other courses (GCE professional examinations etc), write or phone: THE RAPID RESULTS COLLEGE, Dept JR1), Tuition House, London SWl9 4DS. Tel: 01-947 7272 (Careers Advisory Service).

Miscellaneous

BALLARD'S OF TUNBRIDGE WELLS have moved to 54 Grosvenor Road. No lists. SAE. All enquiries phone T/Wells 31803.

HEATHKIT continuing education ET-3100 trainer, also Sinclair DM 235 digital multimeter, both new. Offers to 57 Ballaghmore Road, Portballintrae, Co Antrim, N. Ireland,

ORDER FORM please write in block capitals

Please insert the advertisement below in the next available issue of Everyday Electronics for Insertions. I enclose Cheque/P.O. for $£$.
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Everyday Electronics)

DIGITAL WATCH BATTERY REPLACEMENT KIT

These watches all require battery (power cell) replacement at regular intervals. We supply eyeglass, nonmagnecic tweezers, watch screwdriver, case knife and screwback case opener. Also one doz, assort, push-pieces. full instructions and bactery identification chart. We then supply replacement batteries -you fit them. Begin now Send $f 9$ for complete kit and get into a fast growing business. Prompt desparch.

BOLSTER INSTRUMENT CO. (EE3I) II Percy Avenue, Ashford, Middx., TWIS 2PB

CABINETS chassis panels etc to your requirements. Send drawing for quote, en* thusiast or trade. 8 Park Vale Close, Castle Hedingham, Halstead, Essex.

RECHARGEABLE
 BATTERIES

PRIVATE OR TRADE ENQUIRIES WELCOME

FULL RANGE AVAHLABLE, SAE FOR LISTS. $£ 1.45$ for Booklet "Nickel Cadmium Power"plus catalogue. Write or call. Sandwell Plant Lid, 2 Union Drive, Boldmere. Sutton Coldfleld, West Mldiands. $021 \cdot 3549764$.

GOVERNMENT SURPLUS open seven days. Five acre depot. Millions of consoles, cabinets, components, receivers, meters, transformers, cable etc. No lists, stock constantly changing. Come and browse. Anchor Electronics, Eastwood, Nottingham. Tel: Langley Mill (07737) 67281.
DIGITAL WATCH SPARES. Standard parts for all LCD watches. Send SAE for full list. Profords, Copners Drive, Holmer Green, Bucks.

THE SCIENTIFIC WIRE

 COMPANYPO Box 30. London E.4. 01531 1568.

ENAMELLED COPPER WIRE					
SWG	1 Ib	8 Oz	40 Oz	8 oz	
8 to 28	2.76	1.50	0.80	0.60	
30 to 34	3.20	1.80	0.90	0.70	
35 to 39	3.40	2.00	1.10	0.80	
4040	43	4.75	2.80	2.00	
44 to 47	5.90	3.40	2.39	2.00	
481049	15.96	0.58	6.38	3.80	

SILVER PLATED COPPER WIRE
$\begin{array}{lllll}14 & \text { to } 30 & 6.50 & 3.75 & 2.20 \\ 1.40\end{array}$
TINNED COPPER WIRE
$\begin{array}{lllll}14 & \text { to } 30 & 3.85 & 2.36 & 1.34 \\ 0.90\end{array}$
Prices Incl. P A P vat. Ordert under 22 add 20p. SAE for List of CopperfReststance wire. Dealor enquirles wolcome.
Reglatered Office 22 Coningsby Gardens.

PRE-PACKED. Screws, nuts, washers, solder tags, studding. Send for price list. Al SALES (EE), PO Box 402, London SW6 6LU.

PROFESSIONAL

DIGITAL STOPWATCH

* $1 / 100$ sec quartz accuracy-lap \& total times
* BIG 1"Liquid Crystal Display
* PLUS—clock/calendar-month; date; day;hrs; mins; secs
* Approx $3^{\prime \prime} \times 2 \frac{1^{\prime \prime}}{}{ }^{\prime \prime} \times \frac{z^{\prime \prime}}{}$
* Consult the clock/calendar at any time without disturbing the stopwatch timing

PLASTIC BOXES			
Size (mm)	Styrene Col. Black	ABS PlasticCol. Orange, Blk., Blue, Grey	
		Col. met. Lid	Clear Lid
$85 \times 56 \times 35$	55	92	102
$112 \times 62 \times 31$	60	101	111
$121 \times 65 \times 39$	81	135	148
$150 \times 30 \times 39$	97	162	178
$190 \times 110 \times 60$	176	293	322

ALUMINIUM DIE CAST BOXES with Flanged Lid-Natural Finish Size (mm) Price

$91 \times 38 \times 25$	112
$109 \times 58 \times 25$	122
$116 \times 91 \times 28$	166
$116 \times 91 \times 51$	191
$185 \times 119 \times 51$	323
$185 \times 119 \times 76$	337
$185 \times 185 \times 64$	675
$50 \times 51 \times 25$	105

All Prices in pence. Terms: C.W.O. Add VAT 15% on Fotal order. Add 30p p \& p.
Full Coloured Brochure of Boxes and Consoles, send 50 p.
E. A. HUDSON
'SOUTHWAY', THORPE GREEN,
THORPE MORIBUX, BURY ST. EQMUNDS,
SUFFOLK IP30 OMZ

LEARN
 EEECTHONICS WITHOUT SOLDER

Build electronic
circuits without solder
on a Roden S-Dec.
on a Roden S-Dec
This has bulli-in
This has built-in
contacts and holes into
which you plug your components.
Suitabie for all ages. Can be used
time atter time. Ideal gift for
students or experimenters.
Full instructions and 2 circuit diagrams with each S-Dec.
Send cheque or P.O. 10 : Aocen Producti, DeD EE Migh March, Daventry.
Norhants. NN $\ddagger \$ 40 E$. £3.85

5
plus 40p D. 8p. each

METERS: $110 \times 82 \times 35 \mathrm{~mm}$ $30 \mu \mathrm{~A}, \quad 50 \mu \mathrm{~A}, \quad 100 \mu \mathrm{~A}$. £6.10. Post 50p.

METERS : $45 \times 50 \times 34 \mathrm{~mm}$ $50 \mu \mathrm{~A}, 100 \mu \mathrm{~A}, 1 \mathrm{~mA}, 5 \mathrm{~mA}, 10 \mathrm{~mA}$, 5A. e3.42. Post 30p.

METERS: $60 \times 47 \times 33 \mathrm{~mm}$ $50 \mu \mathrm{~A}, 100 \mu \mathrm{~A}, 1 \mathrm{~mA}, 5 \mathrm{~mA}, 10 \mathrm{~mA}$, $100 \mathrm{~mA}, 1 \mathrm{~A}, 2 \mathrm{~A}, 5 \mathrm{~A}, 25 \mathrm{v}, 50 \mathrm{v}$, $50-0-50 \mu A, 100-0-100 \mu A$. e4. 76. VU meters. £5•18.
Post on above meters 30p.

TRANSFORMERS
240 v Primary

3-0.3v	100 mA	82p
6-0-6v	100 mA	87p
6-0-6v	250 mA	E1-22
12-0-12v	50 mA	92p
12-0-12v	100 mA	¢1-15
Post on above transformers 48p.		
9-0-9v	1 A	£2.05
12-0-12v	1 A	¢2.60
15-0-15c	1 A	£2.80
$6 \cdot 3 \mathrm{v}$	11/ A	£2.05
6-0-6v	$1 \frac{1}{2} A$	£2.50
Post on above transformers 87p.		

All above prices include V.A.T. Send 50p for new 1981 fully illustrated catalogue, S.A.E. with all enquiries. Speclal prices for quantity quoted on request.

M. DZIUBAS

158 Bradshawgate, Bolton Lancs. BL2 1BA

MAIL ORDER ADVERTISING

British Code of Advertising Practice

Advertisements in this publication are required to conform to the British Code of Advertising Practice. In respect of mail order advertisements where money is paid in advance, the code requires advertisers to fulfil orders within 28 days, unless a longer delivery period is stated. Where goods are returned undamaged within seven days, the purchaser's money must be refunded. Please retain proof of postage/despatch, as this may be needed.

Mail order Protection Scheme

If you order goods from Mail Order advertisements in this magazine and pay by post in advance of delivery, EVERDAY ELECTRONICS will consider you for compensation if the Advertiser should become insolvent or bankrupt, provided:
(1) You have not received the goods or had your money returned; and
(2) You write to the Publisher of EVERYDAY ELECTRONICS summarising the situation not earlier than 28 days from the date you sent your order and not later than two months from that day.
Please do not wait until the last moment to inform us. When you write, we will tell you how to make your claims and what evidence of payment is required.
We guarantee to meet claims from readers made in accordance with the above procedure as soon as possible after the Advertiser has been declared bankrupt or insolvent.
This guarantee covers only advance payment sent in direct response to an advertisement in this magazine not, for example, payment made in response to catalogues, etc., received as a result of answering such advertisements. Classified advertisements are excluded.

BAKER 50 WATT AMPLIFIER		\%	
Superior quality ideal for Halls/PA systems. Disco's and Gruups. Two inpuls with Mixer Volume Controls. Master Bass. Treble and Gain Conitols. 50 watts RMS. Three loudspeaker outlets 4.8. 16 ohm . AC 240 V (120 V avalable). Blue wording on black cabinet.			
BAKER 150 Watt AMPLIFIER 4 Inputs \quad E89 DRIIT SPEED CONTROLLFR/LIGiIT DIMMER Kild. DELUXE MODEL Ready Buill. 800 watus $\mathbf{f 4}$			
STEREO PRE-AMP KIT. All parts to build this pre-amp. 3 inputs for high medium or tow gain per channel. with volume control and P.C. Board.Can be ganged to make multi way stereo miners. $\mathbf{£ 2 . 9 5}$			
SOUNO TO LIGHT CONTROL KIT MK II Complete kit of parts. printed circuit. Mains transformer. 3 channels. Up to 1,000 watts each. Will operate from 200 MV to 100 u atts signal source. Suitable for home $\mathbf{~ 1} 5$ Hi-Fi and a!l Disco Amplifiers. Cabinet entra $£ 4.50$. 200 Watt Rear Reflecting White Lighi Bulbs. Ideal for Disco Lughts. Edison Screw ispeach or 6 for $£ 4$. or 12 for $£ 7.50$.			
MAINS TRANSFORMERS Primary 240V A.C. POS			
$250-0250 \mathrm{~V} 70 \mathrm{~mA} .6$	d	¢4.50	12
00.2504 .80 mA .6 .3 V			
3500.350 V 250 mA .6	4 A	V/6-3V 2A	2
$3000-300 \mathrm{~V} 120 \mathrm{~mA}$.	3V 2	$f 10.00$	¢2
220 V 45 mA . 6.3 V 2 A			
GENERAL PURPOSE LOW VOLTAGE			
2 mmp 3.4 .5 .6 .8 .9 .10 .12 . 5 . 18.25 and 30 V			
${ }^{5} \mathrm{amp} 6.8$. 10. 12. 16. 18. 20. 24. 30. 36. $10.48 .60 \ldots . . .12 .50$			
$5 \operatorname{smp} 6.8,10.12,16,18.20,24,30,36,40.48,60 \ldots . \ldots 16.00$			
12 V .100 mA 11.3080 p ($20 \mathrm{~V} .40 \mathrm{~V} .60 \mathrm{~V}, 1 \mathrm{la} 44.00$			
12 V .750 mA . $\ldots \ldots . . .12 .00$		12 V .3 a .-me......... $£ 3.50$	¢1
30V. 5a and $17 \mathrm{~V}-0.17 \mathrm{~V}$. $12 \mathrm{~V}, 2 \mathrm{a}$.......... 53.25			
2a 14.00	£2	20V, 1 a $\mathbf{£ 3 . 0 0}$	¢
0.5 .8 .10 .16 V . ta $£ 2.50$ ¢ 1 20-0.20V.1a			
15.015 V 2 a 53.75	fl	2 of 18 V . 6 a $\{11.00$	12
AUTOTRANSFORMERS 115 V to 240 O 500 Wil2.00 f2			
CHARGER TRANSFORMERS - RECTIFIERS			
			80

R.C.S. LOUDSPEAKER BARGAINS

 ©3.00 Bin. £3.50 10 Oin . C4.00. 12 in . 44.50
 $10-6 \mathrm{in}$. $£ 3.50 .25 \mathrm{ohm} 3 \frac{1}{\mathrm{in}}, 35 \mathrm{ohm} 3 \mathrm{in}$. $£ 1.50$. R.C.S. LOW VOLTAGE STABTLISED
POWER PACK KITS OO- 100 mA Pos $77_{p} £ 2.95$ All parts and instructions with Zener diode printed circuit. rectufiers and
double wound mains transformer input 200240 a.c. Output voltages available 6 or 7 for 9 or 12 V on PP BATTERY ELIMINATOR. BRITISH MADE
Mains power pack y volt $4 W$ ma siabilised. Post $75 p$
$\mathbf{4} \mathbf{4} \mathbf{5}$
 THE -INSTANT" BULK TAPE ERASER Suitable for casseltes, and all sizes of tape reels.
A.C. main $200 / 2$ Jov. Leanect $\mathrm{P}, \mathrm{A}, \mathrm{L}$
f8 ${ }_{9}^{\text {Post }}$
HEADDEMAGNETISER PROBE SS.00

ALUMINIUM CHASSIS 18 s.w.e. Undrilled, 4 sides. rivered
corners: $6 \times 4 \times 2$ in. $£ 1.20: 8 \times 6 \times 2$ in. $£ 1-50: 10 \times 9 \times 2$ in

 ALI ANGLE BRACKET 6
ALUMINIUM PANELS $18 \times$ s. $\mathbf{4}$ o. $12 \times 12 \mathrm{in}$. £1.30: $14 \times 9 \mathrm{in}$.
 |ALUMINIUMBOXES, MANYSIZESINSTOCK.

DE LUXE BSR HI-FI AUTOCHANGER

Slereo Ccsame Cartridge Plays 12 in.. 10 in . or 7in records
Auto or Manual. A high quality uni 240 V AC.

aSR Single Player P207 cueing device ceramic cartridge.

Garrard Single Player 7.0 Sp metat ang device. Siake arm. Magnetic cartsidge. 17 post f 2 ke arm. Magnetic cartsidge. $\mathbf{2 7 . 5 0}$ post $£ 2$ Head. Cueing Device Auto Stop £20 posi $£ 2$
BSR Auto Changer. 11 in . Turntable. Budge
ISKRA. Disco Deck 3 speed stereo $\{9.95$ or $£ 18$ pair post free
Rapid Mait Order 65p minimum postage. Callers Welcome.
archey-Acsess - Vise Lisls 30 p . Closed Wed

Radio Components Specialists 337. 'NHITEHORSE ROAD

CROYDON, SURREY, U.K. TEL: 01-684 1665.

The modern way of instant 2-way communications Just plug into power socket. Ready to use. Crysta ciear communications from room to room. Range $t-m i l e$ on the same mains phase. On/off switch Usefume control, with 'buzzer' call and light indicator Useful as inter-office intercom. between office and warehouse, in surgery and in homes.
Also FM. 2 channel touch model $£ 55.95$ per pair

Latest transistorised Telephone Amplifier. with detached plug-in speaker. Placing the receiver on to the cradle activates a switch for immediate two-way people can listen at holding the handset. Many office. shop, workshop. Perfect for "conference". calls: leaves the user's hands free to make notes consult fles. No long waiting, saves time with long distance calls. On/off switch, volume control. Con versation recording. model at $£ 20 \cdot 95+$ VAT $£ 3 \cdot 15$
DOOR ENTRY SYSTEM
No house / business / surgery should be without a modern way to answer the door in safety to unwanted callers. Talk to the caller and admit him only if satisfled by pressing a remote control button which will open the door electronically. A boon for the invelid. the aged. and busy housewife. Supplied complete di.y. kit with one internal Telephone. Outside Speaker panel. electric door lock release (for Yale type surface latch lock): mains power unit. cable (4 pairs) 50 ft and wiring diagram. Price phones $£ 69.95+$ VAT $£ 10.50+$ P\&P $£ 2.45$

10-day price refund guarantee on all liems
Access and Barclaycard welcome.
WEST LONDON DIRECT SUPPLIES EE 9 LONDON. W8 Tel: $01-9375548$

If you find an ad unacceptable, don't turn the page: turn to us.

Every week, millions of advertisements appear in the press, on posters and in the cinema.

Most of them comply with the rules contained in the British Code of Advertising Practice and are legal, decent, honest and truthful.

But if you find one that, in your opinion, is wrong in some way, please write to us at the address below.

We would like you to help us keep advertising up to standard.

Alcon 69
Ambit 687
Amtron 693
Audio Electronics .. Cov. II, 699
Bi-Pak 645
B.K. Electronics 709
B.N.R.E.S. 647, 646

Boss Industrial 642
Bull J. 643
C.B. Magazine 704
CHJ Supplies

Chordgate 642
Chromatronics 704
Dziubas M. 711
Electroni-Kit 699
Electronize Design 693
Electrovalue 709
Gemini 708
Greenweld 699, 701
Heath-Kit 544
Home Radio 702
intertext (ICS) 702
Litesold 702
$\begin{array}{lll}\text { Magenta Electronics } & \text {. } & 700,701 \\ \text { Maplin Electronic Supplies Ltd. } & \text { Cov. IV }\end{array}$
Marshalls 696
Micro Times 650
Mod Mags 702
OK Machine Tools 644
Phonosonics 703
PM Components 709
Pops Components 704
Powell T. 708
Radio Component Specialists .. 712
Radio TV Components 695
Rapid Electronics 642
Science of Cambridge .. 706, 707
Selray Book 649
Silica Shop Cov. III
Spimin Electronics 708
Teleman Products 687
Tempus 648,649
Titan Transformers 649
T.K. Elèctronics 705

Vero Electronics 650,651
Watford Electronics 641
West London Direct Supplies .. 712
Wilmslow Audio 693
Wireless World 705

[^2]
ELECTRONIC CAWES

DATABASE T.V. GAME

FULLY PROGRAMMABLE
CARTRIDGE T.V. GAME 14 Cartridges available Normal Price 887.86
NOW REDUCED TO:

SPACE INVADERS

Hand-held Invaders Games avallable f19.95 - Invaders Cartridges avallable to fit
AIARURAOOFIN ACEIRONIC PHILIPS G7000 Carridges also avallable for

CHESS COMPUTERS

We carry a range of ov
different Chess computers Electronic Chess 629.95
$f 39.95$ $\mathbf{f} 39.95$ 79.00
$\mathbf{f} 119.00$ £119.00
$\mathbf{8} 259.00$ Sensory Voice \quad f259.00 special offers
VOICE CHESS CHALLENGER Normal Price $£ 245$ NOW f135.00 SARGON 2.5/BORIS 25

SPEAK \& SPELL
ADDING MACHINE OLYMPIA HHP 1010

HAND HELD GAMES
EARTH INVADERS

 and GALAXY 1000

THE OLYMPIA - POST OFFICE APPROVED TELEPHONE ANSWERING MACHINE

WITH REMOTE CALL.IN BLEEPER

Thls telephone answering machine is manulaciured by Olympia Business Machines, one of the
largest Office Equipment manulacturers in the U.K. It IU Iuly POST OFFICE APPROVED and will
 Answer/Record Unit. which will at your command repeat messages. kall in in bleeper activates the activated from anywhere in the world. or on your return to your homeges. or office. The macher erame canalso
be used for message referral it you have simply record the 'phone number' and location where you can be reached with optional exllia
 bleepers (513 each) this facility can be the famity. Using a C90 standard casselte The announcement can as 45 messages. seconds long and the incoming message The machine is easy 10 install and comes your junction box with ine spade connec. tors provided or alternatively a ack plug
can be provided to plug inoo a jack socket Most importanh. of course, is the fact that The price of $£ 135$ linc. VAT) inctudes ine machine, an exira-light remote call-in A / C mains adapior. The unit is 12 months. The telephone can be placed £135

24 TUNE ELECTRONIC DOOR BELL
 $£^{12}{ }^{70} 1$

${ }_{\text {ADDPPTOR }}^{\text {ADD.ON }} £ 199$
Normal Price E19.70
NOWREOUCEO TO:

Plays 24 different tunes
with separate speed
conirol and volume
control Select the most
aporopriate tune for your
visitor, with appopriate
iunes ior different times of
the yearl

MATTEL T.V. GAME

,

PRESTEL VIEWDATA
10y
Prestel

Sumbilied controls for quick easy opetatio
Special graphics teature lor high Splcial graphics leature tor high resotution
Stale-ot.-1he ant micropocesssor controller
Standard remote elephone hers " ${ }^{\circ}$. Truelisition colour encodet using reliable ic chinmaum inter and dela line incorporated io includes convemient TV - Prestel swicribos
Easily connecled to slandaid lephone lines SPECIAL
PRICE
$£ 228.85$
FOR FREE BROCHURES -TEL: 01-301 1111

For personal service visit one of our stores.
Our new store at Hammersmith is conveniently situated near the end of the M4 and the North and South Circular Roads.
There is excellent street parking on meters a few steps away and
Hammersmith Underground Station is nearby. Call in and see us soon.

Over 100,000 copies sold already! Don't miss out on your copy. On sale now in all branches WH Smith in price $£ 1$.
In case of difficulty check the coupon below.

[^0]: 75 FARINGDON ROAD, SWINDON, WILTS.
 Tel. Swindon (0793) 33877. Retall shop at above address.

[^1]: All reasonable precautions are taken to ensure that the advice and data given to readers are reliable. We cannot however guarantee it, and we cannot accept legal responslblity for it. Prices quoted are those current as we go to press.

[^2]:

