Easy to build projects for everyone y

, 5 PRACTICAL ELECTRONICS

STEREO TUNER KIT

This easy to build 3 band stereo AM/FM tuner kit is designed in conjunction with Practical Electronics (July issue) For ease of construction and alignment it incorporates three Mullard modules and an IC. If. System

Features
VHF - M.W. - L.W. Bands. Interstation muting and A.F.C. on VHF Tuning Meter. Two back printed P.C.B's. Ready made chassis and scal Aerial: AM - Ferrite Rod, FM - 75 or 300 ohms.
Stabilized power supply with " C " core mains transfomer All components supplied are to P.E. strict specification. Front scale size $1012^{\prime \prime} \times 21 / 2^{\prime \prime}$ approx. Complete with circuil diagrams and instructions.

PRACTICAL ELECTRONICS

CAR RADIO KIT (Constuctoris pack 7)

6 wer output * Aedy alched unused compon
Incorporates supprassion circuits *Wow with tape input socket
All the electronic components to build the radio. you supply only the wire and solder as teatured in the Practical Electronics March issue. Features: Pre-set tuning with five push button options, black illuminated tuning scale, with matching rotary control knobs one. combining on/off volume and tone-controt, the other for manual tuning, each sel on wood simulated tascia.
The P.E. Traveller has a 6 watts output, neg ground and incor porates an integrated circuit output stage, a Mullard IF module LP1181 ceramic tilter type, pre-aligned and assembled and a Bird pre-aligned push button tuning unit. The radio fits easily in or under dashboards.
Complete with instructions.

CONSTRUCTORS PACK 7A
plus $E 2.00 \mathrm{p} \& \mathrm{p}$

Suitable stainiess stee fuly retractable locking aerial and speaker (approx. $6^{\prime \prime} \times 4^{\prime \prime}$) is. available as a kit complete $\mathbf{f 1 . 9 5} \begin{aligned} & \text { per pack. } \\ & \text { p\&p } £ 1.15\end{aligned}$

30 + 30 WATT STEREO AMPLIFIER BUILT AND TESTED

Viscount IV unit in teak simulate cabinet silver finished rotary controls and pushbuttons with matching fascia, red mains indicator and stereo ack socket. Functions switch tor mic magnetic and crystal pickups, tape and auxiliary. Rear panel features fuse holdef, OIN speaker and input socket $30+30$ watts. RMS $60+60$ watts peak for use with 4 to 8 ohm speakers. Size $1434^{\prime \prime} \times 10^{\prime \prime}$ approx.
ready to play $£ \mathbf{3 2 . 9 0}$ plus
£ 3.80 p 8 p

HI FI STEREO

AMPLIFIER MODULES

- Mullard LP1 183 built preamblifier suitable for ceramic and

Mullard LP1 183 built preamplifier su
auxiliary inputs f 1.95 plus $70 p$ p 8 p.
Muxiliary inputs, f 1.95 plus 70p p\&p.

- Muflard LP1184 built preamplifier suitable for magnetic/ceramic
and auxiliary inputs. $\mathbf{f 4 . 9 5}$ plus 80p p\&p
Matching I.C. $10+10$ Stereo Power amplifier kit. $\mathbf{f 3 . 9 5}$
plus 11.15 p\& 1 p
- Matching power supply kit with transtormer. f3.00 plus f1.96 p\&p Matching set of 4 slider controls complete with knobs for bas treble and volumes. $\mathbf{f 1 . 7 0}$ plus $80 \mathrm{p} p \& \mathrm{p}$
- Complete with application notes

INTRODUCTORY
 DRICE-ONLY

 £17.95

 £17.95}plus $£ 2.50 \mathrm{p} \& \mathrm{p}$

HIGH POWER

 MODULE KITS
125 WATT MODEL $E 10.50$

 200 WATT MODEL $£ 14.95$plus $\mathbb{C 1} .15 \mathrm{p} \& \mathrm{p}$

SPECIFICATIONS

Abstract

Operating voltage (D 25 watt RMS Loads 50-80 Max Frequency response measured at 100 watts Sensitivity for 100 watts 400 mV (2) 47 K Typical T.H.D@ 50 watts 4 ohms load 0.1% Dimensions 205×90 and 190×36 n The power amp kit is a module for high power applicationsdisco units, guitar amplifiers, public address systems and even high power domestic systems. The unit is protected against short circuiting of the load and is safe in an open cricuit condition. A large safety margin exists by use of generously rated components, result, a high powered rugged unit. The PC. Board is backprinted. etched and ready to drill for ease of construction, and the aluminium chasis is preformed and ready to use. Supplied with ail parts, circuit diagrams and instructions.

ACCESSORIES

125 W model
Suitable LS coupling electrolytic for 200W model

Suitable Mains Powet Supply Unit
for 125 W model
Suitable Twin Transformer Power
Supply for 200W model
$\varepsilon 1.00$ $\varepsilon 1.25$ $\varepsilon 7.50$ ع13.95
plus $54.00 \mathrm{p} \& \mathrm{p}$

MULLARD LP1183

 STEREO PREAMPOrigtnal listed price over $£ 5.00$. Suitable for ceramic and auxiliary inputs
purchase 2 power module kits.

50 WATT MONO MIXER AMPLIFIER
Six individually mixed inputs for two pick ups (Cer. or Mag.) two moving coil microphones and two auxileary for tape, tuner, organs etc. Eight slider controls - six for level and two for master bass and treble. four extra treble. conifols for mic and aux. inplins
Power output 50 watt R.M.S. (continuous) for use with 4 to 8 ohms speakers. Finish: Attractively styled black vinyl case, with matching fascia and knobs. Complete
£39.95
plus $£ 3.70$ p\&p

100 WATT MONO DISCO
 AMPLIFIER

Size approx $14^{\prime \prime} \times 4^{\prime \prime} \times 10 \%$. Five vertical slide
controls, master volume tape leverl, mic level. deck
level, PLUS INTER DECK FAOER for perfect graduated change from record deck No. 1 to No. 2, or vice versa. Pre fade level controls (PRL) lets YOU hear next disc before
fading it in. VU meter monitors output leve! Output 100 watts RMS 200 watts peak.

WATFORD ELECTRONICS

 MAIL ORDER, CALLERS WELCOME. Tel. Watford $40588 / 9$

 ALL DEVICES BRAND NEW, FULL SPEC. AND FULLY GUARANTEED ORDERSDESPATCHED BY RETURN OF POST. TERMB OF BUSINESE: CABH/CHEOUE/ PO. OR BANKERS DRAFT WITH ORDER. GOVERNMENT AND EDUCATIONAL INSTITUTIONS' OFFICIAL ORDERS ACCEPTED. TRADE AND EXPORT INQUIRY
WELCOME. PRP ADD 50 TO ALL ORDERS UNDER E10.00. OVERSEAS ORDERS
POSTAGE AT COST.
VAT Export orders no V.A.T. Appllcable to U.K. Customers only. Unless stated otherwise We stock many more items. It pays to visit us. We are sltuated behind Watford Football
Ground. Nearest Underground/BR Statlon: Watford Hlgh gtreet. Open Monday to Ground. Nearest Underground/BR Statlon: Watford HIgh Street.
Saturday $9.00 \mathrm{am}-6.00 \mathrm{pm}$. Ample Free Car Parking epace avaliable.

POLYESTER CAPACITORS: Axlal lead type (Values are in nAF)
$400 \mathrm{~V}: 1 \mathrm{nF}, 1 \mathrm{n} 5,2 \mathrm{n} 2,3 \mathrm{n} 3,4 \mathrm{n} 7,6 \mathrm{nB} 11 \mathrm{p} ; 10 \mathrm{n}, 15 \mathrm{n}, 18 \mathrm{n}, 22 \mathrm{n} 12 \mathrm{p} ; 33 \mathrm{n}, 47 \mathrm{n}, 68 \mathrm{n} 16 \mathrm{p} ; 100 \mathrm{n}, 150 \mathrm{n}$ $20 \mathrm{p} ;{ }^{220 n} 30 \mathrm{p} ; 330 \mathrm{n} 42 \mathrm{p} ; 470 \mathrm{n} 52 \mathrm{p} ; 680 \mathrm{n} 60 \mathrm{p} ; 1 \mu \mathrm{FF} 68 \mathrm{p} ; 2 \mu 282 \mathrm{p} ; 4 \mu 745 \mathrm{p}$.

POLYESTER RADIAL LEAD CAPACITORS (250V) $10 \mathrm{nF}, 15 \mathrm{n}, 22 \mathrm{n}, 27 \mathrm{n} 6 \mathrm{p} ; 33 \mathrm{n}, 47 \mathrm{n}, 68 \mathrm{n}, 100 \mathrm{n} 7 \mathrm{p}$;
$470 \mathrm{n} 17 \mathrm{p} ; 680 \mathrm{n} 19 \mathrm{p} ; 1 \mu \mathrm{~F} 23 \mathrm{p} ; 1 \mu 54 \mathrm{p} ; 2 \mu 246 \mathrm{p}$.
 $6820 \mathrm{p} ; 22024 \mathrm{p} ; 47032 \mathrm{p} ; 220090 \mathrm{p} .40 \mathrm{~V} ; 4.7,15,229 \mathrm{p} ; 330090 \mathrm{p} ; 4700120 \mathrm{p} .25 \mathrm{~V}: 1-5,6.8$,
 $220036 \mathrm{p} ; 330074 \mathrm{p} ; 4700^{\circ} 79 \mathrm{p}$.
TAG-END TYPE: $450 \mathrm{~V}=100 \mu 85 \mathrm{p} .70 \mathrm{~V} ; 4700 \mu 245 \mathrm{p} .64 \mathrm{~V} ; 3300198 \mathrm{p} ; 2200139 \mathrm{p} .50 \mathrm{~V}: 3300$
154p: $2200110 \mathrm{p} .40 \mathrm{~V}: 4700 \mu 160 \mathrm{p} .25 \mathrm{~V}: 40 \mathrm{H} 092 \mathrm{p} ; 330098 \mathrm{p}: 2500,220090 \mathrm{p} .15,000345 \mathrm{p}$

 CERAMIC CAPACITORS: 50 V $0 \cdot 6 \mathrm{BF}$ to 10 NF 4 p ; 22 to to 100 n 7 p .

EURO BREADBOARD $\mathbf{~} 5.20$

VOLTAGE REGULATORS* 1 A TO3 +ve -ve				
SV	7805	145p 79	7905	220p
12V	7812	145p 79	7912	220p
15 V	7815	145p 79	7915	220p
18 V	7818	145p		
1 A	TO220 Plastlc Casing			
5 V		60p 79	7905	65p
12V	7812	60p 79	912	${ }^{65 p}$
15 V	7815	60p 78	7915	55 p
18 V	7818	60p 79	7918	${ }^{65} \mathrm{p}$ p
24 V	7824	60p 78	7824	65p
100 ma				
5 V	$78 L 0530 \mathrm{p} \text { 79L05 }$			65p
6 V	78 L 62 30p			
8 V	78 L 2230 p			
12V	78 L 12	30p 79	99112	85p
15 V	$78 \mathrm{L15} 30 \mathrm{p}$		79 L 15	85p
CA3085	95	LM326N	240	78H05+5V/5
LM300H	170	LM327N	270	550
LM305H	140	LM723	35	78HG5A +5V
LM309K	135	TAA550	50	to $+25 \mathrm{~V} \quad 600$
LM317K	350	TBA625B	B 75	79HG 5A -2.25
LM323K		TDA1412	12150	$850 \mathrm{p}$

SLIDE 250V:	SWITCHES
14 DPDT 14p	SPST ${ }^{\text {S }}$
1 A DP c/off. 13p	DPDT 44p
HADPDT 13p	EUB-MIN
	TOCOLE
PUSH BUTTON	SP changeover Stp
Latching or	SPST on/oft 54p
Momentary.	DPDT 8 tag 75 p
SPST C/Over 99p	DPDT c/of en
DPDT C/Over 145p	DPDT Blased 445p

[^0]switCHES Minlature Non-LockIng
Push to Make 15p \quad Pu to Break 20p

JACKSONS VARIABLE CAPACITORS

JOIN UP WITH LITESOLD

New＇L＇Series soldering irons，designed to latest safety standards．Outstanding performance，lightweight and easy maintenance．Heating elements enclosed in stainless steel shafts and insulated with mica and ceramic．Non－seize interchangeable bits，＇Copper＇ or＇Long－Life＇，fit over heating elements for high efficiency．Non－roll GRP handles and screw－connected 3 －core mains leads

Order direct at these special prices or send 25p for 4 －page colour leaflet，or 60p for 16－page colour catalogue．

Model LC18 General

purpose 18 watt iron for virtually all electronics assembly and servicing Normally 240 volts but also available in 12 and 24 volt．Iron fitted with 3.2 mm copper bit： 55．23．Iron with 3 spare bits 1．6，2．4 and 4.7 mm ：$£ 7.11$

Model Lala

Intended mainly for fine work this 12 watt iron has a slimmer shaft and smaller bits．Normally 240 volts but available in 6,12 and 24 volts． Iron with 2.4 mm copper bit：$£ 5.19$ ．Iron with 2 spare bits 1.2 and 3.2 mm ：$£ 6.29$

DEPT．EE 2 97－99 GLOUCESTER ROAD，CROYDON，SURREY CRO 2DN．TELEPHONE：01－689 0574．TELEX 8811945

Bean म品GHiONC मNCDMम：

Do something PRACTICAL about your future．
Firms all over Britain are crying out for qualified people．With the right training，you could take your pick of these jobs．

Now，the British Institute of Engineering Technology will train you in your spare time to be an Electrical Engineer．

You risk nothing！We promi－ ise to get you through your chosen course－or，refund your fee！

So，join the thousands who have built a new future through home study Engineering courses．

POST COUPON FOR FREE 44 PAGE CUIDE BRITISH INSTTTUTE OF ENGINEERING TECHNOLOGY
 Aldermaston Court，Dept．TEE 63 Reading RG74PF，

NAME（Block capitals please）

[^1]Courses in
C \＆Elect．Technicians $C \& G$ Elect．Installations Telecomms．Technicians Exams Television Servicing Radio Maint．\＆Repairs（BIET） Pract．Radio \＆Electronics Plus over 60 other home study courses．

ELELTROTVKilt Introducing our new CHIP SHOP KITS

Each CHIP SHOP KIT is complete in every way and contains all the components necessary to build and operate the project described. All you need is a Soldering Iron (see Kit No. 2) and a 9 v battery. Each kit includes step-by-step instructions on construction and detailed educational notes about the individual circuit, together with advice about soldering techniques.

Kit No. 2-SOLDERING IRON-contains a high quality British soldering iron, a 1 Amp fuse and solder together with straightforward instructions upon how to handle your soldering iron and the best techniques for its use and maintenance.

Kit No. 3-ELECTRONICS TOOLS-contains a selection of useful tools for anyone starting in electronics, together with instructions about the use and care of your equipment.

SOLDER is included with every kit.

Kit No.		Price
1 (a)	Morning Call plus	
1 (b)	Transistor Tester	
2	Soldering Iron	¢5. 00
3	Electronics Tools	£4.50
4	Electronic Organ	£3.50
5	Morse Code Trainer and Siren Oscillator	£4.00
6	Light Operated Burglar Alarm	£4.00
7	Buzzer-Aircraft	£3. 00
8	Light and Sound Alarm	£3.00
9	Lie Detector	£3. 00
10 (a)	Lamp Flasher plus	¢4.50
10 (b)	Sleep Inducer	
11 (a)	Cat Sound plus	
11 (b)	Night Light Reminder	
12 (a)	Bicycle Horn plus	85.0
12 (b)	Electronic Shocker	
13 (a)	Light Sensitive Alarm plus	
13 (b)	Electronic Lamp	
14	2-Transistor Radio	¢4.00
15	Morning Alarm	E4.00
16	American Police Siren	£4.00
17	Flashing Dual-tone Horn	£3.50
18	Two-Way Interphone	c5.00
19	4 -Transistor Radio	¢5.00
20	Clicker-Helicopter Oscillator	£3.00

All kits packed individually in attractive boxes. Loudspeakers are included with each kit (except nos. 2, 3, 14 where they are not required)
Kit nos, 1, 10, 11, 12, 13 contain two separate projects.
These kits are becoming available in Hobby and Electronics Stores all over the Country-look out for the CHIP SHOP DISPLAY in your local store.

If you cannot locate a stockist please order direct from Electroni-Kit Ltd. Please add 50p per kit for postage and packing.
Trade and Educational Enquiries welcomed.
Cheque/P.O./Access/Barclaycard (or 23p for fullcolour illustrated literature) to DEPT. EECS.

ELECTRONI-KIT LTD RECTORY COURT, CHALVINGTON, E.SUSSEX, BN27 3 TD (032183 579)

E.E. PROJECT KITS

Make us your No. 1 SUPPLIER OF KITS and COMPONENTS for E.E. Projects. We supply carefully selected sets of parts to enable you to construct E.E. projects. Kits include ALL THE ELECTRONICS AND HARDWARE NEEDED. Printed circuit boards (fully etched, drilled and roller tinned) or veroboard are, of course, included as specified in the original article, we even include nuts, screws and I.C. sockets. PRICES INCLUDE CASES unless otherwise stated. BATTERIES ARE NOT INCLUDED. COMPONENT SHEET INCLUDED. If you do not have the issue of E.E. which includes the project-you will need to order the Instruction reprint at an extra 45p each.
Reprints available separately 45 p each + p. \& p. 40 p.
LIGHTS REMINDER AND IGNITION LOCATOR E.E. May 81 ¢4.81
SOIL MOISTURE INDICATOR E.E. May 8I...........................
T. V. INTERFERENCE FILTE

GUlate $2 \cdot 62$. HIGHPASE HEADPHONE AMPLIFIER E.E. May 81
$63 \cdot 60$
PHONE BELL REPEATER/BABY ALARM E.E. May 81
44.81

Rectangular cases
AUDIO TEST SET E.E. May 81. $£ 40 \cdot 84$............ Less case. Case extra $£ 6 \cdot 95$
DIGITAL RULE (ultrasonic) April 81 .. $87 \cdot 46$
£18 88
FREEZER ALARM April 81 ...|l-30
MODEL RAILWAY Deadman's Handle April 81 $£ 680$
SJMPLE TRANSISTOR $\&$ DIODE TESTERS. Mar. 81

MIN: SIREN. Mar, 81 ..6.84
LED DICE, Mar. 81. ... 8

MODULATED TONE DOORBELL. Mar. 81 $\mathbf{4 5}$.65
MODEL RAILWAY POINTS CO NTR OLLER. Mar. il $\mathbf{~} \mathbf{3} \cdot 58$.
BENCH POWER SUPPLY. Mar. 81 ... $447 \cdot 98$
TREBLE BOOST. Mar. 81 .
CAR ACTUATED DRIVEWAY LIGHT. Feb. 81 less socket......... E21.73
THREE CHANNEL STEREO MIXER. Feb. 81 615.89
SIGNAL TRACER. Feb. 81 ...66.95 less probe
FOUR BAND RADIO. Feb. 81
439.98

Ni-Cd BATTERY CHARGER. Feb, 81... £11.57

AUTO SLIDE CHANGER. Jan. 81 .
AUTO SLIDE CHANGER. Jan. 81
ICE ALARM. Jan. $81 .$.
LOGIC PULSE GENERATOR. Jan. 81
2 NOTE DOOR CHIME. Dec. 80...
SOUND TO LIGHT. Nov. 80.3 channel
622.83
$£ 6.71$
.. $£ 9.95$

RECISIO TIMER. Nay $80 \ldots$.
GUITAR PRACTICE AMPLIFIER. Nov. 80
10.96 less cas

Standard case E. $3 \cdot 58$. High quality case $28 \cdot 33$.
SOIL MOISTURE MONITOR. NO
64.94 inc. probes

TRANSISTOR TESTER. Nov. 80 $89 \cdot 89$ inc. test leads
AUDIO EFFECTS UNIT FOR WEIRD SOUNDS. Oct. $80 . . .$. € $11 \cdot 15$
PHONE CALL CHARGE JOGGER. Oct. 80 E6.19
BICYCLE ALARM. Oct. $80 \ldots \ldots .99 ~$

DARKROOM CONTROLLER. Oct. 80 $21 \cdot 65$ case differs
BEDSIDE RADIO. Sept. $80 \ldots \ldots . ~$

BEDSIDE RADIO. Sepr. 80
TTL LOGIC PROBE. Sept. 80.
TTL POWER SUPPLY UNIT. Sept. 80
CRICKET GAME, Aug. 80...
WEATHER GAME. Aug. 80 (less case $\mathbf{6 3 9 . 9 8}$)
AUDIO MILLIVOLTMETER. Aug. 80
AUTOPHASE. June 80. Rectangular Case
COURTESY LIGHT DELAY. June 80
A.F. SIGNAL GENERATOR. June 80

AUTOWAA, June 80. Rectangular Case
G.P. AMPLIFIER, June 80

SIGNAL TRACER. June 80° \qquad
ZNER DIODE TESTER, June 80 \qquad
415.98
$\mathbf{4} \cdot \mathbf{4 1}$

4 STATION RADIO. May 80 C 13.94 less $\mathbf{C 2 5}$
AUTOFADE. May 80
$\mathrm{C} 17 \cdot 42$

1981 ELECTRONICS CATALOGUE

KITS
1.C. 5

TRANSISTORS
CAPACITORS
Hundreds of lllustratlons, product data, educatlonal courses.
Up to date price list included. All products are stock IInes for tast dellivery. Send 70 D in stamps or add 70p to order.

ADVENTURES WITH ELECTRONICS :yynom

An wasy to follow book aultable for all ages, ideal for beginners. No Soldering, Uses an 'S Dec' breadboard. Glves clear Instructions with lots of plictures. 16 prolectaincluding three radlos, siren, metronome, organ, work, Component pack Includes an S-Dec and the components for the prolects.
Adventures WIth Electronics $£ 1 \cdot 90$. Component Pack $\mathbf{E 1 6} \mathbf{7 2}$ less battery.

ADVENTURES WITH MICROELECTRONICS

Same style as above book; 11 projects based on Integratea circuits-includes: dice two-tone doorbell, electronic organ, MW/LW radio, reaction timer, etc. Component pack
Includes a BImboard, 1 plug-in breadboard and the components for the projects.
Adventures with Microelectrontcs $£ 2$ - 35 . Component pack $£ 28 \cdot 55$ leas battery.

MAGENTA ELECTRONICS LTD.

LIGHTS WARNING SYSTEM. May 80 BATTERY VOLTAGE MONITOR. May GAS SENTINEL. April 80.
AUTO LEVEL CONTROL. April 80
CABLE \& PIPE LOCATOR. Mar. 80 KITCHEN TIMER. Mar. 80
$63 \cdot 50$ less coil $£ 3.99$
$£ 4.2$
$£ 3.53$
$E 26.32$

STEREO HEADPHONE AMPLIFIER. Mar. 80
5 RANGE CURRENT LIMITER. Mar. 80 MICRO MUSIC $80 \times$. Feb. 80 \& 13 - 82
SIMPLE SHORT WAVE RECEIVER. Feb. 80 Headphones $\mathbf{E 2} 98$.
SLIDE/TAPE SYNCHRONISER. Feb. 80...
MORSE PRACTICE OSCILLATOR. Feb. 80
SPRING LINE REVERB. UNIT. $\sqrt{\text { Ian. }} 80 \ldots$
UNIBOARD BURGLAR ALARM. Dec. 79
BABY ALARM. Nov. 79
OPTO ALARM. Nov 79
MW/LW RADIO TUNER. Nov. 79 79
$5 \cdot 77$ inc.............
$85 \cdot 77$ inc. option $\mathbf{1 5 . 5 0 \text { les ports }}$
ONE ARMED BANDIT. Oct. 79
.... $£ 22 \cdot 37$
HIGH IMPEDANCE VOLTMETER. Oct. 79
CHASER LIGHTS. Sept. 79
VARICAP M.W. RADIO. Sept. 79
SIMPLE TRANSISTOR TESTER. Sept. 79
ELECTRONIC TUNING FORK. Aug. 79
Suitable microphone \& plug $£ 1.59$ extra.
WARBLING TIMER. Aug. 79
9V POWER SUPPLY. Aug. 79
SWANEE WHISTLER. Aug. 79
DARKROOM TIMER. July 79
TREMOLO UNIT. June 79
TREMOLO UNIT. June 79
ELECTRONIC CANARY. June 79
LOW COST METAL LOCATOR. June 79
Hande \& coll former parts extra $\mathbf{E 5} 55$.
QUAD SIMULATOR. June 79.
INTRUDER ALARM. May 1979
Less Ext. Buzzer \& Lamp and Loop Componenes.
THERMOSTAT. 'PHOTO' SOLUTIONS. May 79. \qquad C $16 \cdot 71$

Less socket, tube and grease.
TRANSISTOR TESTER. April 79
TOUCH BLEEPER. April 79
ONE TRANSISTOR RADIO. Mar. 79 . Less case
MICROCHIME DOORBELL. Feb
VRISTOR TESTER. Feb 79
ADJUSTABLE PSU. Feb. 79.
HEADPHONE ENHANCER. Jan. 79
FUZZ BOX. Dec. 78
MIC. AMP. Dec. 78
AUDIBLE FLASHER. Dec. 78............................
AUDIO EFFECTS OSCILLATOR. Nov. 78
PASSIVE MIXER. Oct. 78.
FUSE CHECKER. Oct. 78.

TREASURE HUNTER. Oct. $78 \ldots17 \cdot 86$ less handle \& coil former

SOUND TO LIGHT. Sept. 78.
FILTER
E1. 66
CAR BATTERY STATE INDICATOR. Sept. 78. Less case..
f1. 79
R.F. SIGNAL GENERATOR. Sept. 78
$63 \cdot 20$ SLAVE FLASH. Aug. 78
LOGIC PROBE. July 78 SK1

IN SITU TRANSISTOR TESTER. June 78 E2.53
.c12-84 less calc and d
POCKET TIMER April
45.76

WEIRD SOUND EFFECTS GENERATOR. Mar. 78
CHASER LIGHT DISPLAY. Feb. 78.
AUDIO VISUAL METRONOME. I
44.80
$\epsilon 28.80$

ELECTRONIC TOUCH SWITCH. lan. 78
$2 \cdot 33$ 世5.12
EAEID DIODE TOUCH SWITCH. Jan. 78
$2 \cdot 33$ less case
AUTOMATIC PHASE BOX. Dec. 77.
HHTRASON. Nov. 77
ULTRASONIC REMOTE CONTROL. Nov./Dec. 77
ADD-ON CAPACITANCE UNIT. Sept. 77
PHONE/DOORBELL REPEATER. July 77 .
PHONE/DOORBELL REPEAT
ELECTRONIC DICE. March 77
p.e.b.
ci. 36
c14.36
65.99

MEMORY BANK
 SYNTHESISER

Minlature synthesiser featuring vibrato, envelope, tempo, volume

+ pltch controls. Uses 24 push + plich controls. inses 24 push
button switches in a keyboard style layout. Based on a custom designed I.c. The accessible memory stores a 32 beat length sequence of notes
Can be played 'llve'. Fitted wilh an Internal speaker. Jack socket allows the use of an external ampliffer if wished. Memory
Bank Synthesiser £33.85.

E. E. JUNE '8I

TREMELO UNIT Jun '8I less case $\mathbf{6 9 . 5 1}$ Rectangular case extra $£ \mathbf{\$ 3} \cdot 53$ TAPE AUTO START Jun '81 $£ 10.58$ less wire LOOP AERIAL CRYSTAL SET Jun '81 £4.98

MAGENTA ELECTRONICS LTD.
EK29, 135 HUNTER ST. BURTON-ON-TRENT, STAFFS.,
DE14 2ST. 0283 65435. MON.-FR1. 9-4. MAIL ORDER.
CALLERS BY APPOINTMENT.
ADD $40 p$ P. \& P. TO ALL ORDERS.
ALL PRICES INCLUDE 15% V.A.T

OFFICIAL ORDERS WELCOME. IRISH REPUBLIC \& B.F.P.O. EUROPE:
Deduct 10% from prices shown Payment. must be in Sterling.
ACCESS and BARCLAYCARD (VISA) ORDERS ACCEPTED BY PHONE OR
POST.

TEACH-IN - 80

E.E. 12 part series. Oct '79-Sept ' 80 . Covers the basics of electronics -lots of practical work. Circuits are built on a plug-in Eurobreadboard, which is built into a wooden console which houses the power supplies, speaker, meter, pots and LED indicators. The series uses a range of electronic components in the experimental work including a photocell, I.C.s, transistors, etc.
Wooden Console (Tutor Deck) kit $£ 5.98$ extra. Includes all the wood, glue, feet and strap handle.
Electronic components, including Eurobreadboard, for the console and the experiments $£ 25 \cdot 40$ (called list $A+B+C$ by E.E.). Reprints avallable-Parts 1-12, 45p each.
List 'C' only £2-45.

C						LINEAR I.C.s	N	£2. 27
T	49p	2N54	63 p	BFY52		32 p	LM3900W	85p
OA47	$11 p$		98 p	BFX88	32p	79 p	L	p
OA90		A	29p		48 p	741 28	LM3911N	E1-55
	16 p		38p	MPSA65	39p	748 - 55p	LM3914N	£2.49
WOO	33 p		39p	RPY58A	£1.16	CA3080 E1-21	LM3915N	E2. 98
W06	47p	AC176	37 p	TIP31a	52p	CA3085A	MC3340	¢ $£ 2.15$
Z5J	¢2. 92	BC182	$11 p$	TIP32A	83 p	CA3130T £1.12	TBA82	£1.05
IN4001	51p	BC182	$11 p$	TIP33A	94 p	CA3140E 57p	TL064	E2. 59
IN4005	6 p	BC183	11 p	TIP34A	99p	HA1388 \quad ¢2.85	U237	51.69
IN4148	5p	BC184	11 p	TIP121	$\mathrm{c}_{1} \cdot 12$		ULN2283	${ }_{81} 1.47$
INS	18	BC184	11p	TIP2955	69 p	ICL8038CCE3.92	ZN1034E	¢ $2 \cdot 19$
IN5408	19p	BC212	11 p	TIP3055	69	$1 \mathrm{ICM7555}^{\text {\& } 1.19}$	ZN4	£.1-09
BF2448	87	${ }^{\text {BC2 }}$ - 212 L	11 p	TIS43	38 p	LF351 58p	ZN419	¢ 22.59
MPF102	69 p	8C213	11p	TPSA1	35p	LF353 90p	ZN424	E2.14
TIS88A	57p	$8 \mathrm{BC214}$	11 p	2 N 3053	25	LF356 99	ZN425	£5.98
VN	- 21	BC214L	110	2N3055	59	LM301AN	CMO	
2N3819	28 p	BD131	$4{ }^{\text {P }}$	2N3702	11	LM309K \quad ¢2.9	400	p
2N382				2N3704	11p	LM317K E.3.5	4011	
TW CAREON FILM RESISTORS						E2.	40	
						LM380N	402	
						LM381N E.9.9	402	$76 p$
MIDGET POTS. LINEAR. 470R-4M7 37						LM382N E1-6	4069	31p
LOG. ${ }^{\text {SW7-2M3 }}$ SWITCHED POTS. $4 \mathrm{K7} 7$-1M, LIN, 75p. LOG 76 p						LM386N E1.04	4081	29p
						LM387N \quad £1-39	4093	89p
POLYESTER (C280) CAPACITORS, 250V 10 nF ; 15nF; 22nF; $33 \mathrm{nF} ; 47 \mathrm{nF} 7 \mathrm{p}$ each. 68nF; 100 nF 8p. 150nF; 220 nF 12p. 330nF 15p. 470nF 20p. $680 \mathrm{nF} 28 \mathrm{p} .1 \mu \mathrm{~F} 33 \mathrm{p} .1 \cdot 5 \mu \mathrm{~F}$ 49p. 2• $2 \mu \mathrm{~F}$ 65p.						$\underline{51}$	452	£1.79
						$\pm 2 \cdot 3$	40174	E1-50
						$\begin{aligned} & \text { OPTO } \\ & \text { BPX25 } \end{aligned}$		2.24
SUB MINIATURE PLATE CERAMICS, G3V Values In PF: 2.2; 3.3; 4.7; 5.6; 6.8; 8.2; 10; 15; 22; 33; 47 \& 56pF 7p each. 68pF; 100pF 7p each. 150 pF ; 220 pF , 330 pF 11 p each. 390 pF , 470 pF , 1000 pF 5 p each. 2200 pF 6 p each. $3300 \mathrm{pF}, 4700 \mathrm{pF}$ 7p each. 10nF 13p. 100nF 22p. 47nF 14p.						ORP		
						TIL32		
						TIL78		
						LEDS WITH	S	
						3 mm . Red 15	Gree	
						5 mm . Red		
AXIAL Leads: $1 \mu \mathrm{~F} / 16$								
						N		
						RECTANG		
12p; $47 \mu \mathrm{~F} / 40 \mathrm{~V} 15 \mathrm{p} ; 47 \mu \mathrm{~F} / 63 \mathrm{~V} 18 \mathrm{p} ; 100 \mu \mathrm{~F} / 16 \mathrm{~V} 12 \mathrm{p}$; $100 \mu \mathrm{~F} / 25 \mathrm{~V}$ 15p; $100 \mu \mathrm{~F} / 40 \mathrm{~V} 18 \mathrm{p}$; $100 \mu \mathrm{~F} / 63 \mathrm{~V} 29 \mathrm{p}$;								
$220 \mu \mathrm{~F} / 10 \mathrm{~V}$ 15p; $220 \mu \mathrm{~F} / 25 \mathrm{~V}$ 19p; $470 \mu \mathrm{~F} / 16 \mathrm{~V} 29 \mathrm{p}$;								
$470 \mu \mathrm{~F} / 25 \mathrm{~V} 36 \mathrm{p} ; 470 \mu \mathrm{~F} / 40 \mathrm{~V} 55 \mathrm{p}$; $680 \mu \mathrm{~F} / 16 \mathrm{~V} 32 \mathrm{p}$; $1000 \mu \mathrm{~F} / 10 \mathrm{~V} 30 \mathrm{p} ; 1000 \mu \mathrm{~F} / 46 \mathrm{~V} 33 \mathrm{p} ; 1000 \mu \mathrm{~F} / 25 \mathrm{~V} 46 \mathrm{p}$;						I.C. SOCKET		
						8 pln...... 16p	18 pln	22p
$1000 \mu \mathrm{~F} / 40 \mathrm{~V} 58 \mathrm{p}$; $1000 \mu \mathrm{~F} / 63 \mathrm{~V} 79 \mathrm{p}$; $2200 \mu \mathrm{~F} / 10 \mathrm{~V} 39 \mathrm{p}$; $2200 \mu \mathrm{~F} / 25 \mathrm{~V} 64 \mathrm{p}$; $2200 \mu \mathrm{~F} / 63 \mathrm{~V} £ 1 \cdot 10$.								
SWITCHES MIN. TOGGLE spst 59p; spdt 69p; dpdt 79p. MIN. PUSH ON. 18p. PUSH OFF. 22 p . FOOTSWITCH \& ALT. ACTION spco £1-39; dpco £1.88. ROTARY SWITCHES. 1p 12 way, 2p 6w, 3p 4w, 4 b 3w 69p each 12V 185R DPCO RELAY £2.93						JACKSON		
								E2.36
						500pF dilecon		ع2.92
						C804 Ver. Ca	10 pF ¢	2.28.
						25 pF £2.46.		
						01 355p F 2.3 .48	365	
MONO HEADPHONES............ £2.98 STEREO HEADPHONES								
ANTEX X25 SOLDERING IRON-25W... ¢4.98								
HOW TO SOLDER SHEET .. 12 l . ${ }^{\text {20 }}$								
DESOLDER PUNP..								
HEAT SINK TWEEZERS .. 15 l 15								
LOW COST LONG NOSE PLIERS ... £1-68								
PCB ASSEMBLY JIG C.. £ 11.4 .48								
EUROBREADBOARD .. £6.20. ${ }^{\text {¢ }}$								
BIMBOARD 1...988								
PP3 CLIPS								
MULTIMETER TYPE 1. 1,000 opv with probes. $2^{\prime \prime} \times 31^{\prime \prime \prime} \times \mathbf{1 "}^{\prime \prime} \ldots .6666$ CROC CLIP TEST LEAD SET. 10 leads with 20 clips. CONNECTING WIRE PACK. $5 \times 5 y$ colls RESISTOR COLOUR CODE CALCULATOR AM-FM AIRCRAFT BAND PORTABLE RADIO 2 STATION DESK INTERCOM $£ 7$ - 48 S 3 STATION. PLUG-IN POWER SUPPLY. $4.5 \mathrm{~V}, 6 \mathrm{~V}, 9 \mathrm{~V}, 300 \mathrm{~mW}$ DIMMER SWITCH PVC TAPE. 3 reels. DENTISTS INSPECTION MIRROR JEWELLERS EYEGLASS HAND MAGNIFIER. $3^{\prime \prime}$								

Horizon Electronics (Bristol) Limited
 MAIL ORDER. CALLERS WELCOME.

VAT: Please add 15% to total cost incl. P. \& P
Terms of Business: Cash/Cheque/P.Os.
P. \& P.: Please Add $\mathbf{4 0}$ p to all orders under $£ 10$.

Overseas add $\mathbf{£ 1} 50$ (Europe); $£ 4$ elsewhere for P. \& P
The following are all quality items and will be replaced should you not be satisfied.
TANT. BEAD CAPACITORS: $1 / 35 \mathrm{v}$, $\cdot 22 / 35 \mathrm{v}, ~ 47 / 35 \mathrm{v}, 1 / 10 \mathrm{v}, 1 / 35 \mathrm{v} \& 22 / 6 \cdot 3 \mathrm{v}$-all at 10 p each. $1 \cdot 5 / 35 \mathrm{v}, 4 \cdot 7 / 10 \mathrm{v}, 6 \cdot 8 / 6 \cdot 3 \mathrm{v}, 10 / 6 \cdot 3 \mathrm{v} \& 22 / 3 \mathrm{v}-\mathrm{all} 9 \mathrm{p}$ each. $2 \cdot 2 / 25 v, 3 \cdot 3 / 16 v, 4 \cdot 7 / 35 v$ \& $10 / 25 v-a l l$ 12p each. $100 / 3 v-14 p$ each. Solid Tant. Axial Type $2 \cdot 2 / 35 v-12 p$ each.
ELECTROLYTIC AXIAL: $0 \cdot 47 / 50 \mathrm{v}-3 \mathrm{p}$ each; $1 / 16 \mathrm{v}, 2 \cdot 2 / 16 \mathrm{v}-4 \mathrm{p}$ each; $2 \cdot 2 / 63 \mathrm{v}, 68 / 4 \mathrm{v}-5 \mathrm{p}$ each; $22 / 16 \mathrm{v}, 22 / 25 \mathrm{v}, 68 / 16 \mathrm{v}, 100 / 4 \mathrm{v}-6 \mathrm{p}$ each; $100 / 63 \mathrm{v}$, 220/50v-7p each; $150 / 63 \mathrm{v}, 1000 / 6 \cdot 3 \mathrm{v}, 1500 / 6 \cdot 3 \mathrm{v}-10 \mathrm{p}$ each; 1000/16v-17p each; 470/25v-20p each.
ELECTROLYTIC RADIAL: $1 / 100 \mathrm{v}, 10 / 16 \mathrm{v}, 22 / 10 \mathrm{v}, 47 / 10 \mathrm{v}$-all 3 p each; $10 / 6 \cdot 3 \mathrm{v}, 25 / 25 \mathrm{v}-4 \mathrm{p}$ each; $2 \cdot 2 / 50 \mathrm{v}, 100 / 6 \mathrm{v}-5 \mathrm{p}$ each; $100 / 20 \mathrm{v}-6 \mathrm{p}$ each; $47 / 63 v-7 p$ each; $10 / 50 v-8 p$ each; $100 / 50 v-9 p$ each; $470 / 40 v-14 p$ each; $1000 / 25 v-15 p$ each; $3,300 / 25 v$ inc. clip- $65 p$ each; $10,000 / 16 v$ inc. clip- $95 p$ each.
CERAMIC DISC/PLATE: 15pf, 18pf, 33pf, 39pf, 56 pf , 68 pf , 220 pf , 2200pf, all at 3 p each; $3,300 \mathrm{pf} / 63 \mathrm{v}-4 \mathrm{p}$ each; $\cdot 01 \mu / 63 \mathrm{v}-2 \mathrm{p}$ each; $\cdot 022 / 30 \mathrm{v}$ and
$10 \mu / 30 v-3 p$ each.
POLYESTER AXIAL Mullard-Most values, $2 p$ each. POLYESTER RADIAL C280 or boxed-5p each.
SEMICONDUCTORS: AAZ15-8p; BA157-12p; BAX13-1p; BAX16-3p; BC107, 108, 109C-9p each; IN4001/2-4p; IN4003/4-5p; IN4006/7-6p;
IN4148-2p; IN5401/2-10p; IN5403/4/6-12p each. Zener Diodes 400 mW . Range 2 v 7 to $39 \mathrm{v}-6 \mathrm{p}$ each. Zener 1 W . Range 3 v 3 to $33 \mathrm{v-12p}$ each BC173-6p; BC117-14p; BC178-12p; BC183-6p; BC183L-6p; BC184-6p; BC204-8p; BC209-8p; BC213, BC213L-7p; BC252, BC253-5p; BC327-10p; BC413, 415, 416-7p each; BD303B, BD304B-40p each; BR121T 12 amp, 70 v bridge- 95 p ; BFR80L-20p; BY154 (7kV)-10p.
TO3 POWER TANSISTORS: BUX12-£5; BUX15-£6; BUX20-£8.
SMALL SIGNAL TRANSISTORS: ME0402-12p; ME0462-12p; ME0491-22p; ME501-12p; MEF3819 (F.E.T.)-15p
BRIDGE RECTIFIERS: PW-005-45p; W04 (400v/1A)-20p; W06 ($600 \mathrm{v} / 1 \mathrm{~A}$)-25p; W08 ($800 / 1 \mathrm{~A}$)-30p.
REGULATORS: 7805-50p; 7812-50p; 7815-60p; 7905-80p ; 7912-80p.
SPECIALS: 5FF96364 VDU Chip-£9 each; 6800E-£5 each; 6880AE-£2 each; 6889E-£2 each.
CMOS: 4001B-16p; 4011B-16p; 4017A-35p. T.T.L. 7401-12p; 7409-19p; 7420-14p; 7430-14p.
LED's: $0.2^{\prime \prime}$ Red-10p; $0.2^{\prime \prime}$ Green-14p; $0.2^{\prime \prime}$ Yellow-14p; $0.13^{\prime \prime}$ Red-10p; $0.13^{\prime \prime}$ Green or Yellow-14p.
POTENTIOMETERS: Top quality Cermet Skeleton pre-set. Vertical and Horizontal-20p each.
Miniature Carbon pre-set. Vertical and Horizontal-6p each.
Top quality Carbon enclosed pre-set. Vertical and Horizontal-10p each.
RESISTORS: Top quality Carbon Film \ddagger W. 5%. E6 range-1p each (minimum 50 off)
Top quality Metal. 1\%. E6 range- 3 p each (minimum 10 off).
TRANSFORMERS : Top quality. 20 VA Miniature (PR1-240v, sec-9v)- $£ 1.75$ each.
Top quality. 6 VA Open ($0-4 \cdot 5 \mathrm{v}, 0-4 \cdot 5 \mathrm{v} \mathrm{sec}$) $-£ 1 \cdot 50$ each.
CONNECTORS : ' D ' type 15 -way socket- 70 ; 37 -way socket- $£ 1$; 25 -way plug \& socket- $\mathbf{8 4}$ the pair. l / C socket, low profile, 22 -way (60 " pitch)10p; 28-way-15p; Fuseholder panel mounting, $20 \times 5-29 p$.
TOOLS: Micro Nozzle Solder Sucker-£4.50; End Cutting Nippers (Bahco)-£5; Round Nose Pliers (Bahco)-£3.50; Microshear Cutters-£2.75. MISC: 12v Continuous Buzzer (Roxburgh)-89p; VVI Suction Vice (O.K. Tools)-£1 99 ; dK Bar Solder- $\mathbf{1 1} \cdot \mathbf{7 0}$.

Please note we also sell the following well known producis:-
ADCOLA; A.B. ENGINEERING; MICRO-E; UNGAR; BAHCO; BELCLERE; NEOHM; PLATO; O.K. TOOLS; THOMSON-CSF; SILICONE PRODUCTS; LINK CABINETS; EGM SOLDER; ROXBURGH; DIODES LTD.

B.K. ELECTRONICS-A SOUND CHOICE

STEREO CASSETTE TAPE DECK MODULE
Full record and play-back facilities. Supplied as one complete unit for horizontal installation into cabinet or console of own choice. Brand new, ready built and sested. Smart silver and black finish. Features: Three digit cape counter, Auto stop, Six piano type keys, Record, Rewind, Fast Forward, Play, Stop and Eject. Automatic record level control. Main inputs plus secondary inputs for stereo microphones. Input sensitivity 100 mV to 2 V . Output level 400 mV nominal. Wow and flutter 0.1%. Ideal for hi-fi, disco and computer applications etc. Easily connected. Dimensions-top panel $5 \frac{1^{\prime \prime}}{\prime \prime} \times 11 t^{\prime \prime \prime}$. Supplied complete with circuit and connecting diagrams. Power supply required- 18 V DC at 300 mA . PRICE $£ 26.70+£ 2.50$ post and packing. Power supply kit (including transformer) 13.00

G.E.C. TUNER AMPLIFIER CHASSIS-AM/FM

Originally designed for installation into a music centre. Supplied as two separate fully built and tested units which are easily wired together. Circuit diagram and inter-connecting wiring diagram supplied. Rotary controlg-tuning, Volume, balance, treble and bass. Push button controls-mono, tape, disc, A.F.C., F.M. (VHF), L.W., M.W., S.W. Power output-7 watcs RMS per channel into 8 ohms. Tape sensitivity Output typically 150 mV . Input 300 mV . Dise sensitivity 100 mV (Ceramic cartridge). Stereo Beacon indicator LED or bulb, Dimensions-Tuner $2 \frac{7}{2 \prime \prime}^{\prime \prime} \times 15^{\prime \prime} \times 7 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$. Power amp. $2^{\prime \prime} \times 7 \frac{1}{2}^{\prime \prime} \times 4 \frac{1^{\prime \prime}}{}$ ". PRICE $£ 23 \cdot 50+£ 2 \cdot 50$ post and packing

NEW RANGE QUALITY POWER LOUDSPEAKERS ($15^{\prime \prime}, 12^{\prime \prime}$ and $8^{\prime \prime}$). These loudspeakers are ideal for both hi-fi and disco applications. Both the $12^{\prime \prime}$ and $15^{\prime \prime}$ units have heavy dury die-case chassis and aluminium centre domes. All three units have white speaker cones and are fitced with attractive cast aluminium (ground finish) fixing escurcheons.
$\mathbf{5}^{\prime \prime} 100$ watt R.M.S. Impedance 8 ohm , $2^{\prime \prime}$ aluminium voice coil. Resonant Frequency 20 Hz . Frequency Response co $\mathbf{2} \cdot 5 \mathrm{KHz}$, Price 632 each. $\mathbf{2} .50$ Packing and Carriage each.
$12^{\prime \prime} 100$ wate R.M.S. Impedance 8 ohm, $\mathbf{2}^{\prime \prime}$ aluminium voice coil. Resonant Frequency 25 Hz . Frequency Response to 4 KHz . Price $\mathbf{2 3} \cdot 70$ each. $\mathbf{2} 2.50$ Packing and Carriage each.
$8^{\prime \prime} 50$ watt R.M.S. Impedance 8 ohm, $I^{\prime \prime}$ aluminium voice coil. Resonant Frequency 40 Hz . Frequency Response to 6 KHz . Price $68 \cdot 90$ each. $£ 1 \cdot 25$ Packing and Carriage each. Other units ayailable.

PIEZO ELECTRIC TWEETERS—MOTOROLA

loin the Piezo revolution. The low dynamic mass (no voice coil) of a Piezo tweeter produces an improved transient response with a lower distortion level than ordinary dynamic tweeters. As a crossover is not required these units can be added to existing speaker systems of up to 100 watts (more if 2 put in series). FREE EXPLANATORY LEAFLETS SUPPLIED WITH EACH TWEETER.

Type ' A ' 3in round with protective wire mesh. Ideal for bookshelf hi-fl speakers. Price (Type 'A') $£ 3.45$ each Type 'B' $3 \frac{1}{2}$ in super horn. For general purpose speakers disco and PA systems, etc. Price $64 \cdot 35$ each.
Type ' C ' $2 \mathrm{in} \times 5$ in wide dispersion horn For hi-fi systems and quality disco ete Price 65.45 each.
Trpe ' D ' 2 in \times in wide dispersion horn. Frequency response extending down to mid-range ($2000 \mathrm{c} / \mathrm{s}$) suitable for hi-fi systems and quality disco. Price 66 -90 each.
Post and Packing, all types, 15p each (or SAE for Piezo leaflets).

The

Proto-Board

Now circuit designing is as easy as pushing a lead into a hole ... No soldering No de-soldering No heat-spoilt components No manual labour No wasted time

For quick signal tracing and circuit modification For quick circuit analysis and diagramming With or without built-in regulated power supplies Use with virtually all parts - most plug in directly, in seconds.
Ideal for design, prototype and hobby

NO	$\begin{aligned} & \text { MODEL } \\ & \text { NO } \end{aligned}$	NO OF SOLDERLESS TIE POINTS	c CAPACITY $114 \mathrm{pm} 0 \mid \mathrm{Ps}$ s)	${ }_{\text {URIC }}$ UNIT	PAICE INC PEP 15% VA	OTHEA FEATUAES
1	P86	630	6	9.20	11.73	Kit
2	PB 100	760	10	11.80	14.72	Kit
3	PB 101	940	10	17.20	21.21	
4	PB 102	1240	12	22.95	27.83	
5	PB 103	2250	24	34.45	41.34	
6	PB 104	3060	32	45.95	54.56	
7	PB 203	2250	24	55.15	65.14	5V@1A
8	PB 203A	2250	24	74.70	87.63	$5 \mathrm{~V} \pm 15 \mathrm{~V}$
9	PB 203AK	2250	24	59.00	69.57	$5 \mathrm{~V} \pm 15 \mathrm{~V}$

Tomorrow's tools for today's problems
GLOBAL SPECIALTIES CORPORATION Г G.S.C. (UK) Limited, Dept. 4u, Unit 1. Shire Hill Industrial Estate, Saffron Walden, Essex CB11 $3 A \bar{\square} 7$

Unit 1, Shire Hill Industrial Estate,
Saffron Walden, Essex. CB11 3AO.
Telephone: Saffron Walden (0799) 21682
Telex: 817477
Everyday Electronics, July 1981

EDITOR

F. E. BENNETT

ASSISTANT EDITOR

B. W. TERRELL B.Sc.

PRODUCTION EDITOR

D. G. BARRINGTON

TECHNICAL SUBEDITOR

S. E. DOLLIN B.Sc.

ART EDITOR

R. F. PALMER

ASSISTANT ART EDITOR

P. A. LOATES

TECHNICAL ILLUSTRATOR

D. J. GOODING

EDITORIAL OFFICES

Kings Reach Tower,
Stamford Street,
London SE1 OLS
Phone: 01-261 6873

ADVERTISEMENT MANAGER

R. SMITH

Phone: 01-261 6671

REPRESENTATIVE

R. WILLET

Phone: 01-261 6885

CLASSIFIED MANAGER

C. R. BRO WM

Phone: 01-261 5762

MAKEUP AND COPY

DEPARTMENT
Phone 01-261 6615

ADVERTISEMENT OFFICER

Kings Reach Tower
Stamford Street,
London SE1 9LS

Projects... Theory... and Popular Features ...

NOT BY CHIPS ALONE

What's in a name. Quite a lot it seems. The term "microprocessor" never caught the imagination of the media and the public at large and has now been abandoned in favour of "microchip". Yet it is really just one particular kind of microchip, a microprocessor, that is the true basis of much comment in the media today.
As a marketing operation to stimulate general interest in the technology the use of "microchip" has proved effective. It is easy to remember and it rolls off the tongue freely. Its frequent inclusion into conversations can help convey an impression of deep understanding of technical mattess and appreciation of the true import of microelectronics in our advancing world. It has become, in short, a "buzz word".
Not that there is anything wrong in popularising electronics and bringing it into everyday conversation. Quite the contrary. Yet there is a danger that by concentrating on "the chip" an unnecessary and unwarranted aura is being created around this particular kind of device. The notion that a microchip is a magic box possessing most extraordinary powers and that it performs in splendid isolation is nonsense and the proliferation of such an idea in the public mind can only be detrimental to a proper intelligent understanding of electronics.

Such misunderstanding can lead to serious consequences if it diverts attention from the continuing need for skilled persons to design circuits and systems. These traditional skills are going to be as much in demand in future as they were before the integrated circuit appeared on the scene.

So despite all the wonders attribute to the microchip (actually, the microprocessor) the human element is likely to remain a vital factor in the world of electronics for many years to come. At this precise moment the need is for more technical educaion for young people so that we have adequate properly trained manpower to exploit fully the microchips that are already, and will continue to be, in abundance.

The principles of electronic circuit theory and the practical aspects of circuit design based on both discrete and ic. devices-with special attention to the interfacing of these com-ponents-are key subjects for serious and urgent consideration by our educationalists when planning curricula for the eighties.

Our August issue will be published on Friday, July 17. See page 473 for detalla.

Readers' Enquiries
 We cannot undertake to answer readers' letters requesting modifications, designs or information on commercial equipment or subjects not published by us. All letters requiring a personal reply should be accompanied by a stamped self-addressed envelope.
 We cannot undertake to engage in discussions on the telephone.
 Component Supplies
 Readers should note that we do not supply electronic components for building the projects featured in EVERYDAY ELECTRONICS, but these requirements can be met by our advertisers.

All reasonable precautions are taken to ensure that the advice and data given to readers are reliable. We cannot however guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

ELECTRONICS

CONSTRUGTIONAL PROJEGTS
ELECTRONIC MULTIMETER High sensitivity unit for the serious constructor by Gallam 452
COMBINATION LOCK Five figure combination for greater security by G. Southern 458
FUEL STRETCHER Digital read-out of miles per gallon 468
XENON STROBE LAMP for timing measurements on rotating machinery by J. C. May 482
TOUCH SWITCH AND VOLTAGE CONTROLLED CUT OUT Protection for Ni-Cd cells
GENERAL FEATURES
EDITORIAL Not By Chips Alone 450
READERS LETTERS' Your news and views 461
JACK PLUG AND FAMILY Cartoon by Doug Baker 461
DISCRETE SEMICONDUCTORS EXPLAINED Part 2: Bipolar transistors and f.e.t.s by J. B. Dance 462
SHOP TALK Product news and component buying by Dave Barrington 472
REMOTE SENSING Planet Earth seen from a different angle by S. E. Dollin 474
INTRODUCTION TO LOGIC Part 3: Binary arithmetic by J. Crowther 476
BACK TO BASICS Part 2: Telephone circuit and Amplification by George Hylton 478
EVERYDAY NEWS What's happening in the world of electronics 480
COUNTER INTELLIGENCE A retailer comments by Paul Young 487
FOR YOUR ENTERTAINMENT Pre-recorded backing tapes, High-speed video by Barry Fox 490
RADIO WORLD Open Channel proposals by Pat Hawker G3VA 493
EE SPECIAL REPORT Chip Shop Kits-a range of simple constructional projects 494
SQUARE ONE Beginners' Page: Components--Non-polarised capacitors 497
SEMICONDUCTOR NEWS Some recently introduced discrete and i.c. devices 498
PLEASE TAKE ONE Digital Rule (April 81) 498
CIRCUIT EXCHANGE A forum for readers' circuit ideas 501

Back Issues
Certaln back issues* of EVERYDAY ELECTRONICS are avallable worldwide price 80p inclusive of postage and packing per copy. Enquiries with remittance should be sent to Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. In the event of non-availability remittances will be returned.

- Not available: October 1978 to May 1979.

Binders
Binders to hold one volume (12 issues) are available from the above address for $£ 4$ - 40 (home and overseas) inclusive of postage and packing. Please state which Volume. Subscriptions

Annual subscription for delivery direct to any address in the UK: £10.00, overseas: £11.00. Cheques should be made payable to IPC Magazines Ltd., and sent to Room 2613, Kings Reach Tower, Stamford Street, London SE1 9LS

- IPC Magazines Limited 1981. Copyright in all drawings, photographs and articles published in EVERYDAY ELECTRONICS is fully protected, and reproductfons or imitations in whole or in part are expressly forbidden.

ELECTRONIC

THE NEWCOMER to electronics is soon faced with the problem of buying a multimeter. But what kind of multimeter should be bought and how much will it cost? The cost of a good instrument can bring one out in a cold sweat for $£ 40$ is not too much to pay for an analogue meter while digital types are often twice this amount.

ELECTRONIC INSTRUMENTS

Such would be the cost of the socalled "electronic" instruments which make use of solid-state components to obtain sensitivities of the order of 500 kilohm/volt and more. Multimeters costing less than $£ 10$ should be avoided for they are often fragile, difficult to read and of low sensitivity

While moving coil meters are still generally available, there is a lot to be said for building a multimeter, especially if its specifications are competitive with the electronic analogue types costing twice as much.

CIRCUIT DESCRIPTION

The design of the multimeter is based on four integrated circuits, as shown in the circuit diagram of Fig. 1.
The first of these, ICl , is a programmable current source which, on selection of one of the resistors R1 to R5 by means of switch S1, enables the value of a resistor placed across the input sockets SK1 and SK2 to be measured when the function switch S2 is in the ohms position and S3 is pressed.

IC2 is wired as a unity-gain buffer. amplifier which passes on the voltage developed across the resistor under test to the third i.c.
This component, IC3, is wired as a times-ten non-inverting amplifier which amplifies a 50 mV signal at its pin. 3 to provide a full scale reading on the meter ME1. This meter in association with the series resistor R24, gives an approximate 0.5 V f.s.d. reading and the meter is calibrated
by adjustment of VR1 as explained later.

The final i.c., IC4, is wired as a precision full-wave rectifier which enables the meter to record a.c. currents and voltages when S 6 is in the a.c. position and VR3 is adjusted for calibration.

VOLTAGE MEASUREMENT

The measurement of voltage requires the function switch S 2 to be set to volts, S 6 in the d.c. position and S5 and Sl to be in the off position. The on/OFF switch S7 must, of course, be on.
The voltage to be measured, applied across SK1 and SK2, appears across the voltage divider resistors R8 to R12. Suppose S4, the voltage range switch, is in position 2 . If a 50 mV d.c. signal is applied to the inputs, this voltage appears at the non-inverting input of IC3 and is amplified to give a full scale deflection on the meter as required. But if S4 is in position 5 , say, a 50 V signal across the input terminals is reduced by the voltage divider action of resistors R8 to R12 so that once again a 50 mV signal is applied to the input terminals of IC3 which again gives a full scale deflection on the meter, but this time corresponding to an input of 50 V .

Similarly, 50 mV appears at the input of IC3 for the other positions of S4 when the appropriate maximum d.c. voltage is being measured.

If a.c. voltages are being measured, S6 needs to be in the a.c. position so that full-wave rectified signals from IC4 are presented to the meter, VR3 being used to set the fuli scale deflection on the meter in this case.

RESISTANCE MEASUREMENT

The measurement of resistance requires the function switch S 2 to be in the ohms position, S 6 set to d.c. and S5 and S4 in the off position.

SPECIFICATION

Voltage Range

0 to 500 V in five ranges: 50 mV , $500 \mathrm{mV}, 5 \mathrm{~V}, 50 \mathrm{~V}, 500 \mathrm{~V}$, a.c. and d.c.

Current Range
0 to 500 mA in five ranges: $50 \mu \mathrm{~A}$ $500 \mu \mathrm{~A}, 5 \mathrm{~m} \mathrm{~A}, 50 \mathrm{~m} \mathrm{~A}, 500 \mathrm{~mA}$, a.c. and d.c.

Resistance Range
0 to $5 \mathrm{M} \Omega$ in five linear scales, calibrated left to right

Display Format
Analogue moving coil meter with integrated circuit input and range control

Accuracy
Better than 2 per cent
Input Inpedance
$20 \mathrm{M} \Omega$ on all voltage ranges

Fig. 1. Full circuit diagram far the Electronic Multimeter. Note that the meter ME1 is a 1 mA f.s.d. type.

S1 selects the resistance range on the. meter by placing one of the resistors R1 to R5 into the circuit based on IC1.

This three terminal device produces a constant current which is variable over the range $1 \mu \mathrm{~A}$ to 10 mA . Thus a 6.8 kilohm resistor gives a constant current of about 10 mA and a 68 ohm resistor a constant current of 1 mA , and so on

One of these currents flows through the resistance placed between the terminals of the multimeter. For example, suppose $S 1$ is in position 6 and selects the 68 kilohm resistor. ICI is now able to source a current of $1 \mu \mathrm{~A}$ which flows through the test resistor when S 3 is closed. If this resistor has a. value of 5 megohm, the voltage developed across the resistor is 5 V .
This voltage is presented to the input of the buffer amplifier IC2 and appears at the "top end" of the voltage divider chain R8 to R12 via the function switch S 2 . Now S 2 e connects pin 3 of IC3 to the 5 V position on the divider and so the actual volt-
age presented to pin 3 is 50 mV which is the voltage required to provide a full scale deflection on the meter indicating a resistance of 5 megohms.

A resistor of lower value than 5 megohm has the same current ($1 \mu \mathrm{~A}$) flowing through it and therefore produces a deflection on the meter which is proportional to this resistance.

If Sl is in position 5 , a 10 mA current flows through the resistor connected between the sockets so that a 500 kilohm resistor produces a 5 V at the "top end" of the resistor chain and once again the meter shows a full scale deflection corresponding to 500 kilohms.

CURRENT MEASUREMENT

The measurement of current requires S1 and S4 to be set to off and the function switch S2 set to amps. S5 now selects one of the resistors R13 to R17 to enable current to be measured.

Current flowing into SK1 passes through the fuse FS1 and then
through one of these resistors say R17, to 0 V . The voltage drop across this resistor when a current of 500 mA flows through it is 50 mV . This voltage is passed on to IC3 by means of S2b and S2c and is amplified by IC3 to produce a full scale deflection on the meter corresponding to 500 mA .
Similarly, a full scale deflection corresponding to a current of 5 mA occurs when 55 is in position 4 and a current of 5 mA flows through R15 and so on for the other current ranges.

LINEAR SCALE READINGS

Note that the scale readings on the meter for amps, ohms and volts are linear for the following reasons. First ${ }_{2}$ the meter itself is a linear transducer producing a deflection proportional to the voltage across its input terminals. Second, Ohm's law applies to any one of the range resistors through which current is flowing. Thind, op-an ps IC3 and ICA are wired as lineand voltage amplifiers.

PRINTED CIRCUIT BOARDS

Most of the components for the multimeter are assembled on two p.c.b.s as can be seen in the accompanying photographs. The foil layouts of the two boards are shown in Fig. 2 and you can either prepare these separately or on a single piece of copper-clad board to be split into two when the etching process has been finished.

In the completed unit the two boards are mounted back to back, the one nearest the case front (board A) carrying the range switches and resistors plus a few other odds and ends, and the other (board B) the integrated circuits and associated components.
Board B should be assembled first and the layout is shown in Fig. 3. This is quite straightforward and should present few problems. Make sure that the tantalum capacitors, diodes and ICl are all inserted cor rectly. The d.i.l. integrated circuits are mounted in sockets.

The other p.c.b., board A can be tackled next. The layout is shown in Fig. 4. The four rotary switches, Sl, S2, S4 and S5, together with asso ciated resistors plus the resistance test switch, S3, and fuseholder are mounted on this board. The orientation of these switches is important and this is shown clearly in the diagram.

RESISTANCE WIRE

Because resistors R16 and R17 are very low in value, they each consist of a length of resistance wire mounted between the terminals of a p.c.b. terminal block which has been cut in half

Suitable resistance wires should be selected for these resistors to give 1 ohm and 0.1 ohm respectively. As a guide, 50 mm of $32 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. nichrome wire will give a resistance of about 1 ohm , and 40 mm of $22 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. nichrome wire will give 0.1 ohm.

Clamp the wires between the p.c.b. terminal blocks and if an accurate ohmmeter is available adjust these wire lengths to obtain the required resistances. Otherwise wait and adjust these lengths after the multimeter has been initially calibrated.

RESISTORS

Accuracy is also essential for resistors R1 to R5 and it will be necessary

Resistors

R1					
R1	$68 \mathrm{k} \Omega$		R13	$1 \mathrm{k} \Omega$	metal oxide
R2	$6.8 \mathrm{k} \Omega$		R14	100Ω	metal oxide
R3	680Ω		R15	10Ω	metal oxide
R4	68Ω		R16	1Ω	wire **
R5	$6 \cdot 8 \Omega$		R17	$0 \cdot 1 \Omega$	wire **
R6	$10 \mathrm{k} \Omega$		R18	$1 \mathrm{M} \Omega$	
R7	$2 \cdot 2 \mathrm{k} \Omega$	metal oxide	R19	$1 \mathrm{k} \Omega$	
R8	$18 \mathrm{M} \Omega$	high stability carbon film*	R20	$10 \mathrm{k} \Omega$	
R9	$1 \cdot 8 \mathrm{M} \Omega$	high stability carbon film	R21	$4 \cdot 7 \mathrm{k} \Omega$	
R10	$180 \mathrm{k} \Omega$	metal oxide	R22	$10 \mathrm{k} \Omega$	
R11	$18 \mathrm{k} \Omega$	metal oxide	R23	$10 \mathrm{k} \Omega$	
R12	$2 \mathrm{k} \Omega$	metal oxide	R24	470Ω	

Fig. 2. (above) Foil pattern for board B full size. Foil pattern for board \mathbf{A} is shown to the left on the facing page, also full size.

Fig. 3. (below) Component layout for board B and interwiring to certain off-board components.

Fig. 5. Temporary circuit for selecting R1 to R5.

Board A is shown fixed in position mounted on the front panel, and board B is shown hinged back to reveal the wire links.
to select the most suitable resistor for each value from a selection of resistors with the same nominal value.

In order to do this a temporary circuit should be wired to board B as shown in Fig. 5. Resistors should be chosen from nominal values of 68 kilohm, $6 \cdot 8$ kilohm, 680 ohm, 68 ohm and 6.8 ohm to give $1 \mu \mathbf{A}, 10 \mu \mathrm{~A}$, $100, \mathrm{~A}, 1 \mathrm{~mA}$ and 10 mA respectively when measured with the test meter. These resistors correspond to R1 to R5 and should be soldered in their correct position on board A. The wires to the temporary circuit can then be removed.
At this stage the wire links between the two boards can be inserted according to Fig. 6. These are made of lengths of 18 s.w.g. tinned copper wire 15 mm long.

CASE

The whole unit is mounted in a plastics box size $190 \times 110 \times 60 \mathrm{~mm}$. Cut and drill the front panel and tinplate screen according to the dimensions shown in Fig. 7, and label the front panel as illustrated in the accompanying photographs. You can do this using rub-down transfers which may be protected by a clear varnish or fixing spray.
Fix the moving coil meter, ME1 and switches S6 and S7 to the front panel. Before fixing the 4 mm sockets, raise the head of each socket with a 3 mm spacer.

The two p.c.b.s can be temporarily secured to the front panel using the mounting nut of S3. The two sockets, SK1 and SK2, are designed to be soldered directly to board A but for the time being are connected up using lengths of insulated wire.
At this stage the other p.c.b., board B, can be mounted above board A using 4BA plastic nuts and bolts. The accompanying photographs should make this clear.

Final assembly can now go ahead according to Fig. 3. When this has been completed make a thorough visual check and then insert the three i.c.s. into their sockets making sure that they are the correct way round.

Make sure that all the switches are in their off positions and therr connect the two 9 V batteries to the circuit. Carefully and firmly support the panel and boards and make sure that you can gain access to the adjustment screws of the trimmers VR1, VR2 and VR3.

Incidently you will find it much easier to adjust these multi-turn presets if you use a special adjusting screwdriver. The unit is now ready for calibration.

CALIBRATION

The following sequence of adjustments must be carried out in order to calibrate the multimeter ranges:

1. Switch S 2 the function switch, to volts and S4, the volts range switch, to 50 mV . Ensure that Sl and S5 are off. Switch S6 to d.c. and

Fig. 7. Front panel and tin-plate screen drilling dimensions.

Fig. 8. Temporary circuit for calibrating current ranges.
link sockets SK1 and SK2 together. The inputs to IC3 are now effectively grounded. Switch power to the multimeter by means of S7 and adjust trimmer VR2 until the meter reads zero. Switch off the multimeter, remove the short from the input sockets and return the range switches to off.
2. Apply an accurately known 5 V d.c. supply to the input sockets of the multimeter. Switch S 4 to its 5 V position and $S 2$ to volts. Leave range switches S 1 and S 5 in their ofF positions and ensure that S 6 is in its d.c. position. Switch on the multimeter and adjust VR1 until the meter reads full scale deflection. At this stage linearity of the scales may be checked by using other values of d.c. input voltage. If any d.c. volts scale is not accurate, a change in the value of one of the resistors in the voltage divider chain may need to be made.
3. Similarly, the a.c. volts range can be checked. Set S6 to A.C. S1 and S5 remaining off. Apply a known a.c. voltage to the input sockets. Switch S4 to an appropriate range and S2 to volts. Adjust VR3 until the meter reads full scale deflection corresponding to the input voltage. Having already checked the d.c. volts ranges, the rest of the a.c. volts ranges will automatically be correct. Remove the a.c. input voltage and return all switches to off.
4. Connect a known resistor across the input terminals and switch S1 to an appropriate resistance range. Ensure that S4 and S5 are off and switch S2 is set to oHMs. S6 should be set to d.c. for resistance measure-
ments. Switch on the multimeter by means of S7 and check the value of the resistance.

It is unlikely that any changes are required to the values of resistors R1 to R5 since these have already been selected to provide the correct constant currents. Check the other resistance ranges, though, while you are about it. Return all switches to off and remove the test resistor. Note the necessity to press switch S3 when taking resistant measurements.
The purpose of this procedure has been explained earlier in this article.
5. In order to calibrate the five current ranges, the values of resistors R13 to R17 might need adjustment, particularly R16 and R17 for these determine the two upper current ranges, 50 mA and 500 mA , respectively. Set up the temporary circuit shown in Fig. 8 which will enable a variable current to be passed through the multimeter by the variable resistor. Set S1 and S4 to off and the function switch S2 to amps. S6 should be set to d.c. Set S5 to the low current range and adjust the variable resistor in the temporary circuit so that the external test meter reads $50 \mu \mathrm{~A}$.

Check that the multimeter reads full scale deflection to within a tolerable scale division. If not, replace R13 on the board A until the required accuracy is obtained. Note that if the reading is too low the
value of R13 should be increased. Repeat these checks on resistors R14 and R15.

The lengths of the two wires comprising R16 and R17 might need adjustment when calibrating the two higher current ranges. Their lengths will need shortening if the reading is too high and vice versa.
When all the ranges have been calibrated, remove the temporary wires connecting the terminals of the sockets to board A. Fit the p.c.b.s to the front panel using all the nuts to the switches and solder the terminals of the sockets to the board A. After a final check that all the leads are in place and that the two batteries are firmly positioned inside the case using pieces of foam, or better, aluminium brackets, the panel of the multimeter can be screwed down to the base of the box and the multimeter is then ready to use.

It should not be necessary to recalibrate the multimeter except that you should avoid mistreating it by exposing it to dampness or liquids or letting it become too warm (or cold). Good quality components have been suggested for the circuit and normal everyday changes of temperature should not cause any noticeable changes in reading. Note, finally that you might like to use a 1A fuse in the current circuit if the fuse blows too frequently on slight current overload and the meter movement is protected by diodes D3 and D4.

A^{N}n electronic lock has several advantages over a standard mechanical lock. No more is it necessary to fumble for door keys on a dark wet night, nor does the problem of lost keys arise.

This particular lock is operated by a five figure combination which is entered into the system by means of a push-button key pad.
Changing the number combination is also simple as this involves no more work than removing a plug from the circuit board, altering several connections and replacing.
In fact several plugs could be kept available for easy alteration of numbers. The number of combinations is enormous.

The lock cannot be operated by depressing all the keys at once for a number of times, because all unused keys are used to reset the system timer. When the system timer is reset, the outputs of all the bistable stages are also set to zero.

In order to simplify the design, no facility has been included to eliminate keyboard contact bounce. Consequently, consecutive numbers must not be the same, otherwise contact bounce will increment the register by two positions instead of only one.

Another facility is that once the first digit has been entered, only a set time is then available to key in the remainder of the combination number and open the lock. At the

By G. SOUTHERN

end of the timed period, the timer will reset the internal logic.

CIRCUIT

The circuit diagram is shown in Fig. 1. Integrated circuit ICl is connected as a monostable, which is triggered by the positive going edge of a pulse on pin 8. The quiescent voltage on pin 8 can be considered to be equal to $V_{\text {SS }}(0$ volts). When pushbutton $S 7$ is depressed, the voltage on pin 8 will rise to a value near to $V_{\text {DD }}$ (9 volts), limited by the values of the potential divider network resistors R3 and R4.

The rise in voltage will trigger the monostable, starting the internal

Fig. 1. Full circuit diagram of the Combination Lock. Note that the switches S 1 to S 9 are arranged in the form of a keypad.

oscillator in the chip and setting the \bar{Q} output to zero. The internal bistable will count two oscillator pulses and then set the \bar{Q} output to logic level 1 (approximately equal to V_{DD}). The frequency of the oscillator is set by the value of capacitor C2 and resistor R4, and this is directly related to the period of the monostable.

When the bistables (IC2, IC3) reset, lines are switched from logic " 0 " to logic " 1 " level, all Q outputs will be switched to logic " 0 " level ($V_{\text {ss }}$). The bistables used are D-type versions, that is to say if the D input is at logic " 1 " level, the positive edge of the clock pulse, will clock the Q output to logic " 1 " level.

If the D input is now changed to logic " 0 " level, the Q output will remain unchanged at logic " 1 " level until the next clock pulse arrives.

RESET LINE

The condition of the Q output depends on the D input and data on the D input is only clocked to the Q output when the clock changes state from logic " 0 " to logic " 1 ". So when the bistable reset lines are held at logic " 1 " level, if pushbutton S4 is depressed the voltage on pin 3 of IC2a rises from logic " 0 " to logic " 1 " level.
As the D input pin 5 of IC2a is already at $V_{D D}(\operatorname{logic}$ " 1 " level) the Q output pin 1 of IC2a will be clocked to logic " 1 " level. When the Q output of IC2a rises to logic " 1 " level, the D input of IC2b (pin 9) will also rise to logic " 1 " level, thus allowing the third digit of the combination number to be "keyed in".
Bistables IC2b, IC3a, IC3b are clocked in the same way as IC2a. It can be seen that the combination number must be entered in the correct order, that is, the monostable must be triggered first and then the bistables in order.

The bistables are a form of individually clocked shift register. All unused keys are connected between point A and $V_{D D}$. Thus when one of these keys is depressed, the monostable will be reset, so resetting all the bistables At the end of the timed period, which is typically 15 seconds, with the values of C2 and R4 as shown, the \bar{Q} output of ICl will rise from logic " 0 " to logic " 1 " thus resetting all the bistables.
Capacitor Cl is included to ensure that ICl is held at reset during initial power switch-on.

OUTPUT CIRCUIT

When the Q output of IC3b (pin 13) rises to logic " 1 " level, the base emitter junction of transistor TR1 will be forward biased. This causes transistor TR2 to saturate via resistor R14 thus switching on the relay RLA.

The operating current of RLA should be less than 1 amp and with the relay used was about 50 mA . It should be remembered that this unit is battery powered so any large current drain, such as a high power relay, will drain the battery very quickly.

A separate power supply to the solenoid or whatever is connected to the relay contacts will also be required. This will depend entirely on the nature of the solenoid, be it mains voltage or otherwise. Diode D1 is included to minimise the effect of the back e.m.f. generated by the switch off of RLA.

The relay or solenoid will be deenergised at the end of the monostable period or when the monostable is reset.

CIRCUIT BOARD

The main part of the circuit is assembled on a printed circuit board and its pattern can be seen in Fig. 2. The three logic i.c.s are not soldered direct to the board but located in sockets. Start off by soldering in the resistors and i.c. sockets followed by the capacitors and finally the transistors and diode.

The off-board connections are made via connector pins soldered into the
appropriate positions and ten-way ribbon cable is used to connect up the keyboard. This can be salvaged from an old calculator as in the prototype, although all the keys must be made to operate independently and not in matrix fashion.
An alternative would be to use separate push-to-make, release-tobreak push-button switches.

One novel feature is the method of combination selection. Here the appropriate inputs to the various logic stages and the connector pins to each of the ten keyboard switches are all terminated at a twenty way socket. By means of links in a matching twenty way plug, the required combination can be connected to the appropriate switches. This is explained in detail later on.

RELAY

The output of the final bistable is taken via a buffer amplifier to a relay. The most appropriate type would be a "Continental" relay and you should choose the contact ratings according to the sort of equipment you wish to control with the lock. For example if you are going to use a mains operated solenoid, the contacts will have to be mains rated.

INSTALLATION

It can be seen that this particular unit is not housed in any specified case. This is simply because every installation is different, and so will require different housing. The keypad should be installed outside the door or whatever is being controlled, suit-

COMPONENTS

Resistors
R1, $3,6,8,10,12 \quad 10 \mathrm{k} \Omega$ (6 off)
R2, $4,7,9,11,13$
R

All \ddagger W carbon $\pm 5 \%$
Capacitors
C1 47 nF polyester
C2 $\quad 6.8 \mu \mathrm{~F}$ non-polarised plastic

$0.1 \mu \mathrm{~F}$ polyester
page 472 $100 \mu \mathrm{~F} 25 \mathrm{~V}$ elect.

Semiconductors
IC1 CD4047 CMOS mono/astable multivibrator 1C2, 3 CD4013 CMOS dual D-type flip-flop (2 off)
TR1 BC107 npn silicon
TR2 BFY50 npn silicon
D1 1N4001 50V 1 A silicon diode

Miscellaneous
S1-S9 nine-way calculator type keyboard with separate normally open switches or nine push-to-make, release-to-break single push button switches (9 off)
RLA Continental type relay, 185 ohm coil resistance, with contacts to suit load being switched (see text)
B1 $9 \vee$ PP7 type
PL1/SK1 Twenty-way plug and socket for combination setting.
printed circuit board, $110 \times 75 \mathrm{~mm}$; ten-way ribbon cable; battery connectors; p.c.b. wiring pins; suitable case; p.c.b. mounting hardware; interconnecting wire.

Combination Lock

Completed circuit board with the keypad salvaged from an old calculator and a solenoid instead of a relay.

Fig. 2. Printed circuit board pattern and component layout. Note the 20 -way socket on the circuit board. The corresponding 20 -way plug is shown top left wired for the combination 74185.

Table I. PLI Connections.

Socket Pin	Connection
1	IC1 set
2	IC1 reset
3	keyboard 9
4	keyboard 8
5	keyboard 7
6	keyboard 5
7	keyboard 5
8	keyboard 4
9	keyboard 3
10	keyboard 2
11	1C2a CK
13	1C2b CK
14	IC3a CK
16	C3b CK
17	no connection
$18-20,12,15$	

ably weatherproofed, and the main circuit board should be positioned in some secure place where it cannot be tampered with.

COMBINATION

The combination that operates the lock can be set as follows. On the circuit board is a twenty-way socket. Each pin of that socket corresponds to the connections listed in Table 1. In other words each of the switch outputs from the keypad has a pin connection, and each of the $C K$ inputs to the i.c.s, and the set and reset inputs to IC1 have pin connections.

LETTERS

School for thought

I am writing to you in disgust on reading Mr. S. A. Courtney's letter in the May 1981 edition where he said "school children are abusing the use of CB radio".

Nothing could be further from the truth, in Manchester anyway. I do not know of any school children in Manchester who abuse CB. I do not think that Mr. Courtney knows what CB can and is used for.
But don't get me wrong, it can and is used extensively in emergency situations and for giving 10-13's (weather/road conditions). Take for example an accident in the Peak District of Derbyshire where a taxi with five people onboard suddenly collided with a van. As a result of this accident one man died and seven other people were seriously injured.
Following shortly behind was another CB'er "Flying Horse" who immediately put out a $10-33$ (emergency) and another CB'er relayed the message to the ambulance service. The taxi driver was seriously injured and at one point close to death. but through the use of CB his life was saved.

However, the main use of CB is to make friends with people. One trucker put it all succinctly when he said "CB radio is

To set the combination, you should take a corresponding 20 -way plug and link pin 1 (Set of ICl), to the pin that corresponds to the first number in the combination. Then link pin 13 (CK of IC2a), to the pin of the second number of the combination, pin 14 to the pin for the third number, pin 16 to the pin of the fourth number and pin 17 to the pin of the fifth number.

All the remaining number pins are connected to pin 2 (reset of ICl). The 0 key of the keypad is not used and consecutive numbers cannot be the same.

Once the combination has been set up on a twenty way plug, this can be inserted into the socket on the p.c.b. and the lock is ready for operation. It now becomes very easy to change the combination as this can be done by simply replacing the plug with another, wired up with a different combination.

For example to set up the combination 74185, the following links should be made on the twentyway plug:

Link pin 5 to pin 1, pin 8 to pin 13. pin 11 to pin 14 , pin 4 to pin 16 , pin 7 to pin 17 and pins $3,6,9,10$, to pin 2.

Light Reminder

In Mr. L. J. Privett's design for a Lights Reminder and Ignition Locator (May issue) he did not consider the many cars that have a manual switch for operating the courtesy lights when the doors are closed. If this switch is used when the side lights are on the audible alarm will operate.
This can be overcome by fitting a diode as shown below.
F. A. Burgess

Oakham,
Leicester.

Mr. Burgess's suggestion for modifying the Lights Reminder and Ignition Locator for vehicles with a manual courtesy light switch. This has not been tested by us.

JACK PIUA \& FAMILY...

BY DOUG BAKER

0UR discussion about diodes last month is naturally followed by a consideration of the various types of transistor. Diodes have only two connections, contain a single $p n$ junction and cannot amplify. However, transistors have three main connections, may contain one or two $p n$ junctions and can be employed to amplify signals.

The name transistor is derived from the words transfer and resistor, since the device effectively operates by the transfer of current from a low resistance emitter circuit to a high resistance collector circuit.

The most commonly used types of transistor are the bipolar types which are given this name because the output current flows through semiconductor materials of both polarities, that is, through p and n-type materials.

In the field effect transistor the output current flows only through one channel of either p-type or n-type material but not through both types, so these devices are sometimes called unipolar transistors. Unijunction transistors operate in a different way to bipolar or unipolar types.

BIPOLAR TRANSISTORS

Almost all modern bipolar transistors employ silicon as the semiconductor material, although some germanium types are still manufactured. Gallium arsenide devices are also used for special purposes.

Any bipolar transistor has one of the two possible polarities, namely $n p n$ or $p n p$. The npn type consists of a single crystal of the semiconductor material in which a thin, lightly doped p layer is sandwiched between two more heavily doped n layers as shown in Fig. 2.1a.

Similarly a pnp transistor contains a lightly doped n layer sandwiched between two more heavily doped p layers as shown in Fig. 2.1b.

In both npn and pnp transistors the thin central layer is known as the base, while the other two electrodes
are known as the emitter and collector. In most circuits the base is the input electrode and the current fed to or taken from this electrode controls a much larger current flowing between the collector and the emitter.
It may seem from Fig. 2.1 that the collector and emitter would be interchangeable, but in almost all transistors there is a considerable difference in construction between these electrodes and they are seldom interchangeable.

TRANSISTOR FUNCTION

Let us consider how an $n p n$ transistor functions. For normal operation the base is biased positively with respect to the emitter and the collector receives a positive bias too, but the collector potential is usually greater than that of the base, see Fig. 2.2.

Thus the base-emitter junction is forward biased (p-type material positive) and the collector-base junction is reverse biased (p-type material negative). A depletion region forms around the collector-base junction as in any reverse biased diode, so one would expect little current to flow across this junction.

FREE ELECTRONS

As indicated in Fig. 2.2, conduction in the forward biased baseemitter diode is mainly by means of free electrons passing from the emitter material into the base, since there are relatively few positive holes in the p-type material of the base which can pass into the emitter as the base is lightly doped.

When an electron from the emitter has entered the base, the chance of it being neutralised by a hole is small partly because the base region is very thin (about 0.025 mm in thickness) and partly because the hole concentration in the base is quite low. Most of the electrons which enter the base from the emitter are therefore drawn through the depletion region into the
collector by the electric field which exists across the collector-base junction.
The negative electrons which move from the emitter through the base into the collector are equivalent to a flow of a conventional current in the opposite direction from the collector to the emitter. However, this collector current will flow only when a much smaller current flows in the base circuit.

When electrons move to the collector, they are quickly replaced by others which enter the base from the

Fig. 2.1. The electrodes and structure of (a) an npn and (b) a pnp junction transistor.

Flg. 2.2. Functional circuit for a $n \rho n$ transistor showing electron movement from emitter, through the base to collector.
emitter. In many transistors about 99 per cent of the electrons from the emitter reach the collector, the other 1 per cent giving rise to the external current in the base circuit.
The value of the current from the emitter to the base determines the electron density in the base region and this controls the number of electrons reaching the collector and hence the collector current.

Thus as the base current increases the collector current increases in proportion to it, so this simple transistor circuit provides current amplification. The collector current in Fig. 2.2 passes through $R 2$ and, if this resistor has a relatively high value, the output from the collector shows a fairly large voltage change. Thus voltage amplification can be obtained.
In the case of a silicon $n p n$ transistor biased as in Fig. 2.2, the base will automatically take up a potential of about +0.65 V relative to the emitter. The voltage applied to the collector is normally larger than this and should be adequate to create a suitable electric field to attract electrons from the base region, but not large enough to produce collector-base junction breakdown.

CIRCUIT SYMBOL

The circuit of Fig. 2.2 may be drawn using the conventional circuit

Fig. 2.3. Basic circuit for an non transistor
 circuit using an npn transistor in a common emitter configuration.
symbol for an $n p n$ transistor as shown in Fig. 2.3. In an npn transistor the direction of the conventional current is from the collector through the base and out of the emitter.

The arrow in the circuit symbol thus shows the direction of this conventional current-which is opposite to the direction of electron flow. The base current also flows in the direction shown by this arrow.

PNP TRANSISTORS

The operation of a pnp transistor is exactly similar to that of an $n p n$ device, except that all polarities are reversed. Thus in a $p n p$ device holes pass from the p-type emitter to the lightly doped n-type base and hence into the p-type collector.

A negative voltage applied to the n-type base forward biases the baseemitter junction. A negative voltage is also applied to the collector so that the collector-base junction is reverse biased and a depletion region is created.

The circuit of Fig. 2.4 shows a $p n p$ transistor circuit analogous to the $p n p$ circuit of Fig. 2.3. It should be noted carefully that a negative bias is applied to the base and a negative bias to the collector-the opposite to that used in Fig. 2.3.

In a $p n p$ transistor the main current from the emitter to collector is carried by positively charged holes,

Fig. 2.4. Basic circuit for a pnp transistor

Fig. 2.6. An emitter follower circuit for providing low output impedance.
so the conventional current flows in the same direction as these holes. The arrow on the emitter symbol is therefore pointing towards the base and collector. It is only the direction of this arrow which distinguishes the $p n p$ transistor symbol from that of an $n p n$ transistor.

As the bias required by a $p n p$ transistor is opposite to that required by an $n p n$ transistor, it follows that different external circuits must be used for the two types of device.

High performance silicon transistors are available in both the $n p n$ and in the $p n p$ polarities, but $n p n$ types are more commonly used. Transistors for the very highest power levels and for the highest frequencies tend to be available only as $n p n$ devices. Some circuit designs require $p n p$ and $n p n$ transistors with a similar performance. Such similar transistors of opposite polarities are known as complementary types.

PRACTICAL CIRCUITS

The circuits of Figs. 2.3 and 2.4 require two batteries each and are obviously very inconvenient. The circuit of Fig. 2.5 shows a practical npn audio-amplifier circuit in which bias for the base is derived from the positive supply line using the two resistors R1 and R2. The capacitor Cl prevents any steady voltage at the base from reaching the previous circuit from which the signal is derived.
The optimum values of the components in the circuit of Fig. 2.5 depend somewhat on the positive supply voltage and on the input and output impedances, but the values shown are fairly typical for a circuit operating from a 9 V supply.
The use of a circuit biased in this way keeps the operating point relatively constant, that is, the steady collector current passing through the transistor and other parameters remain fairly constant as the temperature and supply voltage change. This is a most important consideration.

The circuit of Fig. 2.5 uses the base as the input electrode and the collector as the output electrode with the emitter as the common electrode for both the input and output circuits. However, two other electrode configurations are used.

EMITTER FOLLOWER

In Fig. 2.6 the circuit of an emitter follower is shown which is used to convert a high input impedance signal into a low output impedance. In the emitter follower the signal is applied to the base and the output is taken from the emitter with the collector as the common electrode.
The emitter follower derives its name from the fact that the emitter voltage "follows" any change in the

Fig. 2.7. Variation of d.c. current gain with collector current.
base voltage. Input and output capacitors are required to prevent steady voltages at the base and emitter from reaching other circuits to which the input and output of Fig. 2.6 are connected.
The circuit of Fig. 2.6 (unlike that of Fig. 2.5) cannot provide voltage amplification. Indeed, the output voltage is very slightly less than the input voltage, but the circuit can provide current amplification. The emitter follower is often used as an output stage to provide a low impedance output signal.

It is also possible to use the emitter as the input electrode, the collector as the output electrode and the base as the common electrode. Such grounded base circuits can sometimes be useful for the amplification of high frequencies.

CURRENT GAIN

One of the most important characteristics of any transistor is that it can provide a current gain. Let us consider the grounded emitter or common emitter circuit. The current gain in such a circuit is the collector current divided by the base current and is given the symbol $h_{\text {FE }}$.

If one plots values of h_{FE} against the collector current, I_{c}, one obtains a graph of the general form shown in Fig. 2.7. Some transistors, such as the well-known BC109, are designed for use at values of collector current mainly in the range 0.1 to 10 mA and give a maximum current gain somewhere in this range.

Other devices, such as the BFY50, are designed to operate at medium currents from about 10 mA to about 1A. They are useful in such applications as audio driver devices, since they can provide the moderately high current required by an audio output transistor of a high power amplifier. These transistors are usually mounted in small circular metal packages or in plastic packages such as those shown in Figs. 2.8a and b.

High current transistors for high power work (such as the common 2N3055 which can operate at collector currents of up to 15A) have internal junctions of greater area. They are manufactured in metal packages, which can be bolted to a heat sink or in a plastic package with a metal face piece which can be bolted to a heat sink as in Figs. 2.9a and b.

Low current transistors do not require a heat sink, but a small heat sink can be fitted to those medium current transistors which are supplied in metal packages.

The collector electrode of medium and high current transistors is connected to the metal case of the device, since most of the heat is developed in this electrode. The heat sink connected to such a transistor will therefore be at the collector potential unless arrangements are made to insulate the heat sink from the metal case or the metal insert of a plastic encapsulated device.

TRANSISTOR CHOICE

Our choice of a transistor for a particular purpose will thus be partly
determined by current carrying capacity, but we shall soon see that various other considerations may be important in many cases.
As $h_{\text {FE }}$ varies with I_{C}, when quoting a value of h_{FE} for a device, the value of I_{C} should also be stated. In addition, the value of the collector-toemitter voltage $V_{\text {CE }}$, should really be stated, since $h_{\text {FE }}$ varies with this too.
The value of $h_{\text {FE }}$ is known as the d.c. current gain. It is used for designing a circuit from the steady current aspects. For audio and other alternating signal design aspects, another form of current gain is most important. This is designated h_{fe} (or β) and is equal to a small change in the collector current divided by the change in the base current which produced it, all measurements being made at specified values of $I_{C}, V_{B E}$, and so on.
It may be noted that h_{FE} is not equal to h_{fe} and that care is needed to use lower case letters in their correct places both in the quantity symbol and in the subscript concerned. For those who wish to study it, Table 2.1 gives the basic rules on the symbols used.

OTHER PARAMETERS

Apart from current gain, other parameters are important in selecting a transistor for a particular application. For example, the maximum current which the transistor can safely handle without being damaged is important.

The maximum power a transistor can dissipate internally is another important factor, but it varies with the temperature of the transistor case. Manufacturers normally specify this power for a case temperature of 25 degrees Celsius.

Yet a further factor influencing the selection of a tranisistor is the maximum voltage which can be applied to its collector without the danger of breakdown. There are two ratings. The $V_{\text {oeo }}$ value is the maximum

Fig. 2.8b. Transistors in plastic packages.

Table 2.1. Upper and lower case characters in symbols for semiconductor parameters

SYMBOL	MEANING
Upper case quantity symbol	The steady current value under no signal conditions.
plus upper case subscript	The subscript (AV) may be added to indicate the total Example /c
average value with signal or (M) for the total peak value.	
Upper case quantity symbol	The r.m.s. value of the alternating signal component.
plus lower case subscript	The subscript (av) may be added to indicate the Example V be
	average value of the varying signal component or
(m) to indicate the peak value of this component.	

collector-to-emitter voltage with the base open circuited and $V_{\text {ово }}$ the maximum collector-to-base voltage with the emitter open circuited.

All transistors have a current gain which will fall off at very high frequencies. The f_{T} value is the product of the gain and the bandwidth measured at some high frequency. It may be thought of as the frequency at which the gain falls to unity in the common emitter circuit and is known as the transition frequency.
Typical values of some of these parameters are given in Table 2.2 for some well-known transistors of various types.

Table 2.2. Performance parameters for some typical transistors

Transistor Type	Polarity	$P_{T}{ }^{*}$ (W)	Ic* (A)	$V_{\text {CEO }}{ }^{*}$ (V)	$h_{\text {FE }}$	$f T$ (MHz)	Comments Devices are silicon unless otherwise stated.
AC127	npn	0.34	$0 \cdot 5$	12	50	$2 \cdot 5$	Germanium audio output
AC128	pnp	$0 \cdot 7$	-1.0	-16	60-175	$1 \cdot 5$	Germanium audio output
AC176	npn	1.0	1.0	18	50-250	3.0	Germanium audio output
AF139	pnp	0.06	-0.01	-15	55	550	Germanium mixer/oscillator
AF239	pnp	0.06	-0.01	-15	50	700	Germanium for TV tuners
BC107	npn	0. 36	$0 \cdot 1$	45	110-450	250	Audio driver
BC108	npn	$0 \cdot 36$	$0 \cdot 1$	20	100-800	250	General purpose low current
BC109	npn	$0 \cdot 36$	$0 \cdot 1$	20	200-800	250	Low-noise audio
BC142	npn	0.8	0.8	60	over 20	80	Audio driver device
BC147	npn	$0 \cdot 35$	0.1	45	110-450	300	Audio driver device
BC148	npm	0.35	0.1	20	100-800	300	General purpose
BC149	npn	$0 \cdot 35$	0.1	20	200-800	300	Low-noise audio device
BC182L	npn	$0 \cdot 3$	0.2	50	100-480	150	General purpose device
BC183L	npn	$0 \cdot 3$	$0 \cdot 2$	30	100-850	280	General purpose device
BC184L	npn	$0 \cdot 3$	$0 \cdot 2$	30	over 250	150	Low noise audio
BC212L	pnp	$0 \cdot 3$	-0.2	-50	60-300	200	General purpose device
BC213L	pnp	$0 \cdot 3$	-0.2	-30	80-400	350	General purpose device
BC214L	pnp	0.3	-0.2	-30	140-600	200	General purpose device
BC477	pnp	0.36	-0.15	-80	110-950	150	Audio driver device
BC478	pnp	$0 \cdot 36$	-0.15	-40	110-800	150	General purpose device
BC479	pnp	0.36	-0.15	-40	110-800	150	Low-noise audio device
BC547	npn	0.5	$0 \cdot 2$	45	110-800	300	General purpose device
BC548	npn	0.5	$0 \cdot 2$	30	110-800	300	General purpose device
BC557	pnp	0.5	-0.2	-45	75-475	150	General purpose device
BC558	$p \mathrm{p}$	0.5	-0.2	-30	75-850	150	General purpose service
BD115	$n p n$	0.8	0.15	180	60	145	High voltage power amp
BD131	npn	15***********	$3 \cdot 0$	45	over 20	60	Small power device
BD132	pnp	15**	-3.0	-45	over 20	60	Small power device
BDX32	npn	12***	$5 \cdot 0$	1700	-	-	TV time base
BF173	npn	0.175	0.025	25	-	1000	I.F. amplifier
BF180	npn	0.15	0.02	20	-	675	TV tuner r.f: amplifier
BF181	npn	0.15	$0 \cdot 02$	20	-	600	TV tuner mixer/oscillator
BFY50	npn	$0 \cdot 8$	1.0	35	30	60	General purpose device
MJE340	$n p n$	20**	0.5	300	over 30	-	Small power service
TIP33A	$n \mathrm{~nm}$	80	$10 \cdot 0$	60	20-100	3	Audio output
TIP34A	pnp	80	$-10 \cdot 0$	-60	20-100	3	Audio output
TIP2955	pnp	90	$-15 \cdot 0$	-60	5-30	8	Plastic audio output
TIP3055	npm	90	$15 \cdot 0$	60	$5 \cdot 30$	8	Plastic audio output
TPSA13	$n p n$	0.6	0.3	30	10,000	200	Darlington device
ZTX300	npn	$0 \cdot 3$	0.5	25	50-300	150	General purpose device
ZTX500	pnp	$0 \cdot 3$	-0.5	-25	50-300	150	General purpose device
2N697	npn	$0 \cdot 6$	1.0	40	50-120	50	General purpose device
2N3053	npn	0.8	$1 \cdot 0$	40	50-250	100	General purpose device
2N3054	npn	25	4.0	55	25-100	1	Power device
PN P3054	pnp	25	-4.0	-55	25-100	100	Power device
2N3055	npn	115	$15 \cdot 0$	60	20-70	1	High power device
PNP3055	$p \cap p$	115	$-15 \cdot 0$	-60	0-70	0.8	High power device
2N3703	pnp	$0 \cdot 3$	-0.5	-30	30-150	100	General purpose device
2N3705	$n \mathrm{n}$	$0 \cdot 36$	0.5	30	50-150	100	General purpose device
2N3706	npn	$0 \cdot 36$	$0 \cdot 5$	20	30-600	100	General purpose device
2N3771	$n p n$	150	$30 \cdot 0$	40	15-60	0.8	High power device
2N3772	npm	150	$20 \cdot 0$	60	15-60	0.8	High power device
2N3773	$n p n$	150	$16 \cdot 0$	140	15-60	0.8	High power, high voltage
2N3904	np	$0 \cdot 31$	$0 \cdot 2$	40	100-300	300	Fast switch
2N3906	pnp	$0 \cdot 31$	-0.2	-40	100-300	250	Fast switch

[^2]

Fig. 2.9a. Plastic package power transistors. The two devices in the centre are in fact the two sides of the same package. The metal plate attached to the collector, designed to be bolted onto a heat-sink can be clearly seen.

Fig. 2.9b. Power transistor in metal package. The collector is directly connected to the can and connection is made to it via the package.

TESTING TRANSISTORS

Most normal npn transistors can be tested with a multimeter switched to a resistance range using the

Fig. 2.10a. Shows testing a non transistor with a multimeter turned to the resistance range. (b) Shows similar testing of a pnp transistor.
method shown in Fig. 2.10a. The emitter should be connected to the meter terminal marked positive and the collector is connected to the terminal marked negative. In the case of a silicon transistor, the meter should indicate a very high resistance until the resistor R1 (about 47 kilohm for a typical transistor) is touched on the base lead whereupon the meter needle should move across a substantial part of the scale.

This is a quick test for current gain, but is not intended to be a perfect test for all transistors. Of course pnp devices may be tested similarly if the connections are all changed as shown in Fig. 2.10b.

This test can be performed even if one does not know the connections of the transistor. If one uses a low resistance range to find two electrodes which do not conduct in either direction, these are the emitter and collector.

If conduction occurs when the base is positive (the negative meter terminal) to either of the other electrodes, the device is $n p n$ and vice versa. The device is then tested as in Fig. 2.9, the collector and emitter being distinguished by the configura-
tion which provides the greater current gain (meter deflection when R1 is touched on the base).

DARLINGTON DEVICES

Modern silicon bipolar transistors have current gain values ranging from about 5 to 2,000, the gain generally being smaller in high current devices.

If this is inadequate, a greater current gain can be obtained by the use of the Darlington circuit. One can make a Darlington circuit using two separate transistors, but it is often more convenient to use a single Darlington device which contains two transistors suitably connected.

The internal circuit of an $n p n$ power Darlington device is shown in Fig. 2.11a and a similar pnp device is shown in Fig. 2.11b. In addition to the two transistors in each package, there are two stabilising resistors which help to prevent the operating point from changing adversely.

The input signal is fed to the base of the smaller transistor which amplifies the signal by an emitter follower action and drives the larger output device. The total current gain ranges from about 20 (in high power devices) to over 100,000 .

Fig. 2.11. Circuit of (a) npn and (b) pnp Darlington devices.

JFETS

Field effect or unipolar transistors may be divided into two main types, jfets and mosfets. The junction field effect transistor (JFET) has either a channel of n-type or of p-type silicon with a gate of the opposite type of silicon formed as a junction as shown in Fig. 2.12.

A JFET may be used in the type of circuit shown in Fig. 2.13. In the case of the n-channel device shown, a negative potential is applied to the p-type gate so that the gate-to-channel diode is biased into the non-conducting state.
As the negative gate potential is made more negative, the depletion region extends further into the channel until eventually it spreads right across the channel and no current can flow from the drain to the source (V_{p} in Fig. 2.14).
A bipolar transistor is a current amplifier, but the JFET is a voltage amplifier like a thermionic valve. Like the valve the input impedance of the gate circuit of a JFET is very high, since the gate is reverse biased

The drain current is plotted against the gate-to-source voltage for an n channel JFET in Fig. 2.14, the drain to-source voltage being held constant. The drain current which flows when the gate and source are connected together is designated I_{DSs}.
A p-channel JFET can be used in the type of circuit shown in Fig. 2.15 which is similar to that of Fig. 2.13, but with the polarities reversed. The n-type gate electrode is made positive with respect to the channel so that it is reverse biased. Note the arrow of the p-channel device of Fig. 2.15 points in the opposite direction to that of the n-channel device in the circuit symbol of Fig. 2.13.

Both n-channel and p-channel JFET devices are readily available, but the n-channel types are more common. The plastic encapsulated types 2N3819 (n-channel) and 2N3820 (p channel) are two of the best known JFET products for general purpose applications.

MOSFET DEVICES

A Metal Oxide Semiconductor field effect transistor (MOSFET) is somewhat similar to a JFET except that the gate electrode consists of a small piece of metal electrically insulated from the channel by a very thin layer of silicon dioxide. Thus the gate impedance is very high irrespective of the polarity of the bias.

An enhancement mosfet passes little drain current if the gate is connected to the source, but the drain current increases with the gate voltage. A depletion type mosfet passes a drain current even when the gate is connected to the source. However, the drain current varies with the
voltage applied between the gate and the source. The diagram in Fig. 2.16 shows the internal structure of an enhancement mosfet.
Unfortunately the thin layer of silioon dioxide in a mosfet is easily damaged by stray electrostatic voltages. The gate electrode of a mosfet device should therefore be shorted to one of the other electrodes at all times before the device has been soldered into a circuit, after which the circuit impedance provides protection against the accumulation of electrostatic charges.

Next month: Unijunctions, thyristors, triacs, thermistors.

Fig. 2.13. Basic circuit for using or testing a n-channel JFET.

Fig. 2.15. Basic circuit for using or testing a p-channel JFET.

Fig. 2.12. Structure of a JFET device.

Fig. 2.14. Variation of drain current with gate-to-source voltage in a n-channel JFET.

Fig. 2.16. Structure of a low-power enhancement MOSFET.

Tis article describes a fuel consumption monitor for in-car use, designed to fit most vehicles with a carburetter fuel system and cable driven speedometer.

The Fuel Stretcher gives instantaneous read out of miles per gallon (m.p.g.), with a frequency of update determined by fuel flow rate; for ex ample high flow rate gives high fre-
quency of change and low flow rate gives low frequency of change (update), thus providing another indication of fuel economy.
Normally frequency of update is between one and four seconds, but the fuel consumption monitor has a switch-to-half or -double this frequency facility to suit individual driving conditions. Furthermore,
there is a built-in zeroing which automatically changes the readout to 0 when the car stops, that is when no speed pulses are produced.
The fuel monitor can be easily changed to give litres per 100 km . This is the continental unit for fuel consumption, and most likely will be introduced into UK when the petrol pumps start to dispense in litres by the end of 1981. The m.p.g. to $1 / 100 \mathrm{~km}$ change is affected by changing two links on the processor circuit board.

The electronics can also be used for a variety of other applications, such as measurement of r.p.m., flow ratio, g per hr and 1 per hr , simply by changing transducer inputs or introducing a time base.

This design is based on a well proven, proprietary fuel consumption monitor supplied by EnviroSystems Ltd, Grange-over-Sands, Cumbria and available through a nationwide dealer network. The complete fuel consumption monitor, and also a kit and components are available from Marshalls, Kingsgate House, Kingsgate Place, London NW6 4AT.

MAIN FEATURES

The main features of the system are:
a. Four-digit display on its own p.c.b. with the counter/driver.
b. Processor board to process the signals from the road speed and fuel flow sensors and feed this information to the display unit. This board contains the speed pulse calibration switch and rate of update switch.

Fig. 1. Block diagram of the Fuel Stretcher. This shows the overall system and how it is arranged within the two units-the Processor and the Display,

Fig. 2. Circuit diagram of the Fuel Stretcher. The Display Unit circuitry occupies the lower r.h. corner. Clarification of the connections to IC12 is given in Table 1.

Table 1

CONNECTIONS BETWEEN	
R17 AND IC 12	
$1 C 12$	
$\frac{\text { PIN }}{1}$	FUNCTION
3	BLANKING
21	COCIMAL POINT
23	INHIBIT
N.B. PINS 21 AND 23 NOT	
SHOWN ON CIRCUIT DIAGRAM	

c. The system uses mainly low priced TTL.
d. Fuel flow related pulses are provided by a flow sensor, normally installed in the fuel line between the fuel pump and the carburetter.
e. Speed proportional pulses are pro vided by a speed sensor mounted in the speedometer cable. This sensor is independent of cable fittings.

PRINCIPLE OF OPERATION

Basically the road speed sensor counts pulses derived from the speedometer cable, while pulses from the flow sensor cause the generation of a series of internal control pulses which halt the speedometer cable rotation counting process, store and display the count to date, and reset the counter.

This will, therefore, give effectively a unit of distance covered over a number of units of flow, which with
the proper calibration factors and division factors will be m.p.g., and with another calibration factor km / l. For $1 / 100 \mathrm{~km}$ two small linkages have to be changed on the processor p.c.b. and the counting process will work in reverse, giving a unit of flow used over a unit of distance.

CALIBRATION

The unit is calibrated for each vehicle using its speedo calibration figure (number of revolutions per mile for the speedometer cable) and the calibration switch. The calibration switch for most UK cars is available from Marshalls.

CIRCUIT DESCRIPTION

The overall system arrangement is indicated in the block diagram, Fig. 1, while the complete circuit is given in Fig. 2. In practice, the circuitry is divided into two units:
(1) The Processor Unit including all the TTL circuitry and the power supply circuit, and embracing transistors TR1, TR2 and TR3; and integrated circuits IC1 to IC11.
(2) The Display Unit which incorporates the integrated counter/driver IC12 and the four-digit display X1 and the driver transistors TR4 to TR7. Also TR8.

Interconnections between these two units are made via SK2 and PL2.

The speed sensor is connected to the Processor Unit via a 3 -way cable. The fuel sensor is connected via PLl/SK1.

SPEED SENSOR SIGNALS

The speed sensor signal (10 pulses per cable revolution) is applied to in put buffer transistor TR1 via filter components R1, C1, R3, C3. The buffered, tTL compatible, signal then goes to IC11b, a 7493 binary counter.

Here, depending on the m.p.g./l per 100 km function link setting, it is divided by 4 (at pin 8, ICllb) for m.p.g. and then used to control the display counter (IC12) via the counter start/stop control IC8b; or for 1 per 100 km divided by a further factor of 2 ($\div 8$ total from pin 11, IC11b) and used to control the display latch and reset controls.

FLOW SENSOR SIGNALS

Flow sensor signals enter via filter network R2, C2 and (following the m.p.g. case through) are divided by 32 or 64 (selectable by S 1 for small/ large car respectively) by IC2b and IC5a, which together with IC4a, b, c, d (this constitutes a 5 -input NOR gate) and dual 3 -input NAND gate IC7, form

(left) The Processor Unit p.c.b. and top section of case with voltage regulator IC3 in position.
(below) The Display Unit prior to final assembly.

COMPONENTS

Resist		
R1 10ks	R16	$1.5 \mathrm{k} \Omega$
R2 1k	R17	$1 \mathrm{k} \Omega$
R3 $10 \mathrm{k} \Omega$	R18	$1 \mathrm{k} \Omega$
R4 $4 \cdot 7 \mathrm{k} \Omega$	R19-25	68Ω
R5 $2 \cdot 2 \Omega$		(7 off)
wire wound 2.5 W	R26	270Ω
R6 $33 \mathrm{k} \Omega$	R27	270Ω
R7 $4 \cdot 7 \mathrm{k} \Omega$	R28	270Ω
R8 $1 \mathrm{k} \Omega$	R29	270Ω
R9-15 $2 \cdot 2 \mathrm{k} \Omega$	R30	10k Ω
(7 off) s.i.l. 8 -	R31	68Ω
resistor package	R32	10k Ω
(one not	used)	

All $\frac{1}{4}$ W carbon film $\pm 5 \%$ except where otherwise stated

Capacitors
C1 10 nF plate ceramic
C2 470pF plate ceramic
C3 10 nF plate ceramic
C4 $47 \mu \mathrm{~F} 25 \mathrm{~V}$ elect.
C5 $1 \mu \mathrm{~F} 10 \mathrm{~V}$ tantalum
C6 $0.1 \mu \mathrm{~F} 25 \mathrm{~V}$ tantalum
C7 $4.7 \mu \mathrm{~F} 10 \mathrm{~V}$ tạntalum
C8 $0.1 \mu \mathrm{~F} 25 \mathrm{~V}$ tantalum
C9 $2 \cdot 2 \mathrm{nF}$ plate ceramic
C10 $4.7 \mu \mathrm{~F} 10 \mathrm{~V}$ tantalum
C11 10 nF plate ceramic
C12 $0.1 \mu \mathrm{~F} 25 \mathrm{~V}$ tantalum
Semiconductops
TR1, 3, 8 ZTX 302 npn silicon TR2, 4, 56,7 ZTX 502 pnp silicon
IC1 7400 quad 2-input N AND gate
IC2 74934 -bit binary counter
IC3 LM340T5 voltage regulator 5 V 1 A
IC4 7405 hex inverter o.c.
IC5 74934 -bit binary counter
IC6 7404 hex inverter
IC7 7410 triple 3 -input N AND gate
IC8 7410 triple 3-input NAND gate
IC9 7493 4-bit binary counter
IC10 74934 -bit binary counter
IC11 7493 4-bit binary counter
IC12 ZN1040E 4-decade counter/ driver
D1 1N4001 1 A 50V silicon diode D2 1N4001 1A 50V silicon diode -

Connectors
PL1, SK1 3-way plug and p.c.b. mounting socket
PL2, SK2 6 -way plug and p.c.b. mounting socket
Miscellaneous
FS1 1A cartridge fuse and cable type holder
(X2 Speed sensor)
$\times 3$ Fuel sensor with 3 -way cable Processor p.c.b; display p.c.b. CB8200, wire for battery supply metal case for processor, plastics case for display; screen, p.c.b. pillar. 4 -way cable with screen, 3 way cable with plug p.c.b. All parts and installation in structions are obtainable from Marshalls, Kingsgate House, Kingsgate Place, London NW6

IDLING RESET TO ZERO

When the car is idling and no distance speed pulses are produced and fuel pulses are few and far between, both $1 / 100 \mathrm{~km}$ and m.p.g. readings can be misleading. To prevent this, the display counter is caused to reset to zero by a charge-pump circuit comprising C5, D2, TR2, C7.

Pulses from speed buffer TR1 via IClc are used to charge C5 on the falling edge of the pulse and on the rising edge the emitter of TR2 is taken positive of the +5 V rail and turns TR2 on.
In this way each consecutive charge pulse charges C7 a little more as pulse repitation rate increases from zero. At a few m.p.h. the voltage across C7 is high enough to turn TR3 on hence IC6b pin 13 is low and pin 12 high; this enables latch and reset pulses to occur normally through gates ICla and b but as car stops C7 discharges via R6 into base of TR3 and TR3 turns off, IC6f pin 13 goes low therefore inhibiting latch and reset and counter displays zero.

OPTIONAL AID

An optional service aid is provided by R32 and C12 in the Display Unit. These components cause all decimal points to flash very briefly every reset pulse. This verifies correct operation of fuel sensor.

CONSTRUCTION

Component layouts for the two p.c.b.s are given in Fig. 4 and Fig. 5. The accompanying photographs provide additional details of the general asembly of the Processor Unit and the Display Unit.

PROCESSOR UNIT

After the components (including SK1 and SK2) have been mounted on the p.c.b., solder the battery leads (red and blue) and the speed sensor leads (blue, yellow and red of 3 -core cable) to the underside of the p.c.b., as indicated in Fig. 4.

Solder three leads (black, yellow, red) to the voltage regulator IC3 and their other ends to the p.c.b. Secure IC3 to the top section of the case with screw and nut.
Fit a plastic p.c.b. pillar to the hole at one end of the p.c.b.

Place the p.c.b. into the case, allowing the sockets SK1 and SK2 to pass through the rectangular holes provided.

Secure the board in position by means of a No. 6 self-tapping screw fitted into the p.c.b. pillar.

Fit grommets to the battery and speed sensor leads so that they fit into the slots at one end of the case when the leads are dressed over the p.c.b.

Fit the bottom section of the case and secure with two screws.

DISPLAY UNIT

After components have been assembled on the p.c.b., feed the 5 -core cable through the hole in the corner of the plastic case and then solder the leads (red, yellow, blue, green and metal braid) to the solder pads, as indicated in Fig. 5.
The p.c.b. assembly is held in position by the tongues and posts moulded in the case.

The plastic screen slots into the foremost groove, and the top section of the case is then snapped into position.

INSTALLATION

Detailed instructions for fitting the sensors into a car and for calibrating the complete system can be obtained from Marshalls. See components list.
Certain miscellaneous items such as spade terminals, nuts and bolts and snap-on connectors are available from car accessory shops.

By Dave Barrington

New technology is in the forefront this month and includes a unique innovation from a British manufacturer.

Battery Saver Radio

A portable radio that will virtually "pay for tself" is the claim for the latest model from Fidelity Radio.

Although the battery manufacturers will not be over the moon about this latest British designed set, the consumer will certainly welcome the Battery Saver portable radio which recharges ordinary-yes ordinary-batteries when plugged into the mains.
Powered by a standard PP9 or equivalent battery, circuitry is incorporated which automatically recharges the battery when the radio is plugged into the mains. Recharging can take place up to four times and can be carried out whether or not the radio is switched on. A red l.e.d. shows when the battery is being charged.

The claim is based on current prices, taking the average life of a radio as being five years and each battery having a life of three months. It is estimated that batteries will cost the owner of an ordinary radio about $£ 24$, assuming future price rises are similar to those over the last few years.

The Battery Saver will cost about £6 to run over the same period. This saving of £18 can be compared to the expected retail cost of the new radio of around $£ 20$.

Talking Time

With the latest talking watch now being marketed by Trafalgar Watch Company Ltd., that old catch phrase of "if you want to know the time ask a policeman" will have to be updated to ". . . ask your watch".

Using the very latest in microprocessor technology, the Tel-Time actually "speaks'" the time and can even be programmed, before it leaves the factory, to tell it in one of three languages-English. French, and German.

The Tel-Time is expected to sell for around £59. Addresses of nearest stockists can be obtained from Trafalgar Watch Company Ltd., Dept EE, Trafalgar House, Grenville Place, Hale Lane, London, N. W. 7

The versatllity of the recent crop of new generation timepieces is illustrated by the latest Casio CA90 wristwatch. Not only is
it a good timekeeper, accuracy of ± 15 seconds a month, but it also incorporates a four function 8 -digit calculator and a space invader game.

The watch function includes such features as: 12 or 24 hour format; auto calendar giving day, date, month and year preprogrammed until 2002; a 24 hour alarm and a hourly chime signal setting. There is also a professional stopwatch facility capable of $1 / 100$ second to 24 hours measuring net, lap and first and second place times.

The calculator has the four basic functions of addition, subtraction, multiplication and division.

For the game the keyboard is divided in half, the left hand keys become aim and the right hand keys the fire controls. The random digital invaders "attack" from the bottom right and move across the display. Apart from the attacks speeding up as the game is in progress, it also has sound effects and scoring.

For the person on the move, particularly during the holiday period, the Casio MA-1 quartz digital battery alarm clock, measuring only $1 \frac{3}{4} \times 4 \frac{1}{2} \times 3 \mathrm{in}$, has some useful features. These include hourly time signals, a symphonic alârm or buzzer, snooze facility and an integral amplifier with speaker and volume control.

During the snooze setting, the melody sounds for about 30 seconds and subsequently the buzzer sounds seven times for 60 seconds at intervals of four minutes at and after the preset time. A large push "button" on top of the clock functions as an alarm stop button and also as a night time illumination button.

Both the Casio CA-90 wristwatch (£24-95) and the MA-1 Quartz battery alarm clock (£9.95) are available from Tempus, Dept EE, Freepost, 164-167 East Road, Cambridge, CB1 1DB.

Trafalgar
"talking" watch

Casio CA-90 watch

CONSTRUCTIONAL PROJECTS

Xenon Strobe Lamp

Very high voltages are present in the Xenon Strobe Lamp and we strongly advise readers to use only those components specified.

The xenon flash tube and trigger coil used are available from any Tandy Store stock numbers 272-1145 and 272-1146.

The transformer T2 is a RS type 196-268 and the printed circuit board has been designed to accommodate the transformer pinning. Other similar types with a secondary rating of $3-0-3 \mathrm{~V}$ at 200 m A may be used but its location on the board, and in the case, may need to be changed.

It is important to pay special attention to the working voltages of the capacitors used and ones with lower ratings must NOT be used. Higher rating working voltages are quite acceptable.

Pay particular attention to C 7 which must NOT be an electrolytic type. A mixed dielectric type was found to be suitable

The bridge rectifier is available from Watford Electronics. A plastics case for housing the components should be used.

The rotary switch is available in metal or plastics construction. We strongly recommend that readers use the plastics encapsulated type, with plastics spindle.
A ready-made p.c.b. is available from Proto Design, 14 Downham Rd., Ramsden Heath, Billericay, Essex at a cost of $£ 3 \cdot 10$ incl. P/P.

Combination Lock

Only two parts look like being problem items in the Combination Lock. These are the keyboard and the 20-way connector.

The 20 -way connector used in the author's model is a RS printed circuit board connector; order as stock number 488-365.

Many advertisers now sell off old disused calculators and their keyboards could be salvaged for use here. Alternatively several printed circuit board push switches could be grouped together and used for the keyboard.

Any relay or solenoid with a coil rating greater than 185 ohms, with contacts to suit may be used. Also, ribbon cable is now generally available from most suppliers.

Electronic Multimeter

The only item that may cause buying problems in the Electronic Multimeter is likely to be IC1, the LM334Z programmable current source device. This is available from RS Components stockists and is listed as stock number 308-540.

Multiturn cermet trimmer potentio. meters are fairly expensive components but, in the interest of accuracy, we suggest they are used. These can be either 20 or 15-turn types.

Fuel Stretcher

Although it is not in the full constructional class, all components for the Fuel Stretcher project are available from A. Marshall (London) Ltd. They issue a complete price list and are able to supply complete kits.

As the sensor items are special to the system they are only available from Marshalls. Also, they are supplying all the necessary literature for installing the system in the vehicle.

The fuel line hose should be obtainable from any good car accessory shop.

FOR YOUR SUMMER FÊTE FUND RAISER... BUILD OUR

An all electronic version of this popular fairground game. A random number generator means that the number indicated is always unpredictable and a colourful light display shows the winning number clearly.

ALSO NEXT

SIMPLE pH METER

L.E.D. SANDGLASS

A simple design that gives an easy to build and reliable unit. The use of CMOS devices ensures low current consumption and hence long battery life.

A useful instrument for schools and colleges. Uses a single i.c. and a moving coil meter in a straightforward but useful design. Can be used with professional pH probes.

In this novel time-elapsed indicator, a vertical column of l.e.d.s lights up one by one to show times from 2 minutes, for soft boiled eggs, to 5 minutes for hard boiled.

Plus all the Regular Features

yxeryday

AUGUST 1981 ISSUE ON SALE FRIDAY, JULY 17

Confusion reigns in the US while UK develops new picture analysis technique

Remote sensing, or the use of satellites in earth orbit to detect conditions on the earth's surface, has been with us for about nine years and in that time has been used to collect useful data on such things as mineral resources, crop growth, water flow and so on.

This has been based largely on the Landsat series of satellites, a project run by NASA in the United States, and to date three satellites have been launched.
Landsat 1 was launched in 1972 and continued transmitting way beyond its one year design life until 1978 when it was shut down. Landsat 2 was launched in 1975 and operated for a similar period. The craft currently in use is Landsat 3 . This was put into orbit in 1978.

EQUIPMENT

All three satellites carry a wide variety of equipment including a multi-spectral scanner (MSS), return beam vidicon (RBV), and a data collection system (DCS). By orbiting the earth every 103 minutes, the satellite can scan a strip on the surface 100 km wide. The satellite shifts westwards on every orbit and so can scan adjacent strips, eventually building up a complete picture of the earth's surface. This takes 18 days.
The MSS detects sunlight that has been reflected from the surface. Different rock formations, vegetation, water and so on reflect light of different wavelengths in different strengths and this enables the MSS to distinguish them apart. The equipment is designed so that the sunlight
can be broken into five spectral bands and these are broken down into individual picture elements or "pixels" before being transmitted down to earth in digital form.

The RBV equipment uses high resolution TV cameras to pick up information from the earth's surface. Landsats 1 and 2 have three cameras and Landsat 3 has two, each operating in a different part of the visible spectrum.

The DCS is something of a side-line as this picks up data transmitted from over 1000 land stations and retransmits it back to ground stations in the USA.

In addition to the Landsat series, information is also used from Seasat satellites and weather satellities such as the GOES and TIROS series.

In Europe, remote sensing is handled by the European Space

Landsat's scanner sweeps across a 100 km wide strip of the earth's surface for every orbit. The information gathered is then transmitted back to a receiving station on earth in digital form where it is then processed and turned into meaningful pictures.

Agency (ESA), who operate two ground receiving stations for the Landsat programme as part of the Earthnet remote sensing network. One of these is at Fucino in Italy, the other at Kiruna in Sweden. From here information is sent to the UK point of contact at RAE Farnborough for processing.

COMPUTER PRODUCED MOSAIC

As it stands, the data is in digital form and must be processed before it is of any use. At the National Remote Sensing Centre based at RAE Farnborough computer specialists have developed a technique for producing a mosaic picture from the raw data that is more accurate than anything ever produced before and which could bring real benefits to the third world.

The mosaic is formed by taking separate 185 by 185 km scenes from the MSS and combining them with the same scenes shot with the RBV. This gives additional density information. The combined signals are then fed through a computer which joins the edges so that a continuous picture emerges. This is possible because there is some overlap in each shot and this information can be used by the computer program to arrive at an average signal level. This can then be processed to give the continuous image.
The final picture can then be matched to a map using prominent landmarks to give a cartographically correct image.

CLAIM AND
 COUNTER-CLAIM

Taking the Landsat project as a whole, processing of the information is almost as important as the actual satellites themselves and here Britain is in a leading position. However, with the gathering uncertainty about the future of Landsat, this advantage may be short lived. There have been problems with the satellites themselves. For instance Landsat 3 is only partly operational with a broken multi-spectral scanner.

To counteract this, the scientists at NASA have been forced to restart Landsat 2 even though it is well beyond its intended life span. In addition to this, the launch of Landsat 4 has been put back until 1982 so there is little room for further unforeseen difficulties.

The problem is further complicated by the fact that there are moves to transfer responsibility for Landsat from NASA to NOAA (the National Oceanographic and Atmospheric Administration), a process destined to take several years.

By doing this it is hoped to speed up the turn-round time on data input. Add to this the scientists' scepticism about the value of the work they are producing, and the optimism of the politicians' hype, and the real benefits of remotely sensed data become buried in a confusion of claim and counter claim.

Returning to the UK for the moment, the benefits of remote sensing can be immediate and lasting. For example the Bristol Channel is notorious for its sandbanks, yet it is impossible to survey the channel month by month as the sandbanks shift and change. Remote sensing makes this immediately possible. Other examples include crop and water management.

Perhaps the most dramatic examples of the benefits of remote sensing can be seen in such schemes as a hydrology project in Botswana undertaken by the NRSC where detailed cartographic information has been provided where maps were either very sketchy or didn't exist at all.

THE FUTURE OF LANDSAT

The future of Landsat and remote sensing generally will ultimately depend on the system getting off on a commercial footing. At present this system is little more than an elaborate experiment. The demand for information exists and an infrastructure for the dissemination of the information also exists. Indeed the NRSC is already geared to providing a service to all sorts of industries and users including forestry, mining, agriculture as well as research and higher education. The centre is also

Map below shows the positions of sandbanks in the Bristol Channel plotted both by satellite and by conventional means. The disparity between the two can be clearly seen. The three photos to

PARI 3 BY J.CROWTHER

BINARY ARITHMETIC

(b) Subtraction

Binary subtraction is similar to decimal subtraction but anything borrowed from the next column becomes a two instead of a ten.

example

Subtract 18 from 25.

decimal	binary	
1	22	borrow
25	11001	
$\frac{18}{7}-$	$\frac{10010}{111}$	
	equivalent to 7_{10}.	

As there is no facility on a computer to represent two, this method cannot be used. Subtraction is carried out by a process known as complementary addition.

Two's Complement

The complement of a number means changing all the 0 's to l's and all the l's to 0 's. This is known as 1 's complement. However this has limitations and in computers 2's complement is used. The latter is formed by adding I to the I's complement.

In the method of complementary addition, the number to be subtracted is transformed to its 2 's complement and then added to the other number. Any overflow is ignored.

example

Subtract 18 from 25.
Take the 1's complement of 18 (10010), 01101
add 1
1
to give 2 's complement $\overline{1110}$
decimal

Negative Numbers

In computers it is necessary to be able to represent both negative and positive numbers in binary. The complementary addition method of subtraction gives a clue to how this is achieved.

In mathematics the statement $25-18$ can be written as $25+(-18)$, and since in complementary addition we subtract by adding the 2 's complement it follows that the latter must represent the negative number.

example

$$
\begin{aligned}
+18 & =00010010 \\
\text { therefore }-18 & =11101101+1=11101110
\end{aligned}
$$

An alternative method which some people find easier is to write down the positive number, then starting from the right hand side, copy up to and including the first 1 that you come to, and then invert the rest.

example

To form -8 , write down +8 in binary $=00001000$.
Then using the above rule, $-8=11111000$.

Exercises

3.1. Write down the binary for the following decimal numbers: (a) $+3(b)-3(c)+16(d)-16(e)+127(f)-1$.

Sign Bit

Using the 2 's complement method of representing negative numbers raises an obvious problem.
We have just seen that -18 is represented by the binary string 11101110 , but this string also represents the positive number 238. The problem that now arises is how does the computer know whether 11101110 represents -18 or +238 .

In computers and microprocessors numbers are stored in registers of a certain length, for example 8 or 16 bits long (or more) depending on the particular computer.

To distinguish between a positive and negative number in a register, the extreme left hand bit, known as the most significant bit (m.s.b.) is the sign bit, and is used to determine if the number is positive or negative using the following code:

If the sign bit is 0 , the number is positive.
If the sign bit is 1 , the number is negative.
The remaining bits in the register represent the magnitude of the number as illustrated in Fig. 3.1.

Fig. 3.1. Arrangement of the sign and magnitude bits in a computer 8-bit register.

Range of Numbers that can be held in a register

For simplicity suppose the register was four bits in length. Since the most significant bit cannot be a 1 if the number is to be positive the highest positive number possible in a four-bit register is $0111(=7)$. As a 1 can appear in the m.s.b. for a negative number, the highest negative number possible in a four-bit register is $1000(=-8)$. It will be seen that there is always one more negative number that can be stored than positive numbers.

The full range of numbers that can be stored in any register is given by the formula:

$$
\text { Highest negative number }=2^{(n-1)}
$$

Highest positive number $=2^{(n-1)}-1$
where n is the number of bits in the register.
In an 8-bit register:

$$
\begin{aligned}
\text { Highest negative number } & =2^{(8-1)}=128 \\
\text { Highest positive number } & =2^{(8-1)}-1 \\
& =127
\end{aligned}
$$

(c) Multiplication

Binary multiplication is the same as decimal multiplication, that is, multiplying by each digit in turn, moving to the left each time and then adding.

example Multiply 12 by 13 .		
decimal	binary	
12	1100	
$13 \times$	1101	\times
36	$\overline{1100}$	
12	0000	
156	1100	
	1100	
	10011100	$=156_{10}$

As the computer can basically only do additions, it multiplies by a process of repeated addition.

example

To multiply 9 by 3 , the computer would add 9 together three times, thus:
$9+9+9=27$.

(d) Division

The computer does division by repeated subtraction, takes the 2 's complement and adds, until there is no remainder. It then adds together the number of processes carried out to reach this condition and this is the answer.

decimal	binary
13	0001101
5) 65	101) 1000001
5	101
15	110
15	101
00	101
	101
	000

example
To divide 9 by 3 .
$\left.\left.\begin{array}{lll}\left.\text { subtract } \begin{array}{ll}\frac{9}{3}\end{array}\right\} & 1 \\ \left.\text { subtract } \begin{array}{l}\frac{3}{3} \\ \frac{3}{3} \\ \text { subtract } \\ \frac{3}{0} \\ 0\end{array}\right\}\end{array}\right\} \begin{array}{l}1 \\ 1\end{array}\right\}$ processes so answer is 3.

Advantages

Whilst counting in binary is very slow and cumbersome for human use, it has many advantages in electronics:
(1) Binary only has two states, 1 and 0 (on and off) and is therefore very reliable.
(2) Electrical energy moves at 3×10^{8} metres per second, therefore any slowness due to long trains of additions is removed.

A computer can carry out about 500,000 additions per second.
(3) It makes subtraction using and addition process very easy.

LOGIC

Logic can be described as arriving at a reliable result by placing the correct information in the right order.

BINARY LOGIC

Binary logic is easier than most human logic since each decision has only one of two possibilities. A clear yes/no answer is given, there is no "maybe", "nearly", or "could be" as in human logic. Since switches are used for either of the two states, if they are set in the correct order a reliable result is obtained.

example

An automatic gas central heating system, see Fig. 3.2.
A result will not be obtained, that is no heat, unless:
(1) Pilot light is on.
(2) Temperature of the room drops below a certain predetermined value.
(3) The time is set correctly.

Fig. 3.2. Simplified circuit for an automatic gas central heating system.

GATES

As can be seen from the previous example a result can be obtained by a number of switching circuits. In logic circuits these switches are known as gates. These may be connected in series or parallel, or in complex systems, a combination of both. To use mechanical switches, such as relays for example, would be bulky, slow, and less reliable, so the transistor is used as a switch in logic circuits.

Answers to Exercises in Part 2

2.1. (a) 524 (b) 3640 (c) 751.
2.2. (a) 001010110011 (b) 110101010001111 (c) 100010110
(d) $101 \cdot 110010101$ (e) 011010111
2.3. (a) 1001,0100 (b) $0100,0010,1001$ (c) $0010,1001,0100,0111$
(d) $0001,0111,0011,0110$ (e) $0101,0011,1000$
(f) $0111,0011,0101$
2.4. (a) 95 (b) 709 (c) 364
2.5. (a) E1 (b) B8F (c) FC (d) 13
2.6. (a) 0100,1111 (b) $0001,1010,1100$ (c) 0110,0111
(d) $0010,1010,1000(e) 1110,1111(f) 1010,0001,1011$
2.7. (a) 45 (b) 431 (c) 538 (d) 430 (e) 251 (f) 87
2.8. (a) 660 (b) 1EE (c) 1436 (d) 43 (e) 7B.
2.9. (a) 1000 (b) 0001,0101 (c) 0001,1000 (d) 0001,0000,0000.

I^{N}N its earlier days the telephone was an upright instrument. Still to be seen in old films, a key feature was that the mouthpiece and earpiece were separate. The mouthpiece (containing the microphone or transmitter) was mounted on a thing like a candlestick. The earpiece or receiver was a bell-shaped device on the end of a flexible cable. To use it you held the earpiece to your ear and bent down to speak into the mouthpiece.

It didn't take the public long to discover that a trick could be played with the "candlestick" telephone. You called up a number (via an operator, of course) and on getting an answer you held the earpiece against the mouthpiece. The person you called then got a piercing howl into his ear. Great fun . . . for the caller.

FEEDBACK

The effect was very like what happens with present-day audio systems when a microphone is placed too close to a loudspeaker.

The resulting howl or whistle is usually called positive feedback because it is caused by sound being produced by the loudspeaker, fed back to the microphone, going through the amplifier, out again at the speaker, back to the microphone, and so on for ever-or until somebody turns down the volume.

TELEPHONE CIRCUIT

In the case of the howling telephone, there is just one problem. When the basic circuit is inspected (Fig. 2.1) there is no amplifier to be found. What there is consists of the two microphones (one at each end of the line), the two earphones and a battery.

Amplification implies an increase in energy. So where does this come from?

The answer is, the battery.
But a battery isn't an amplifier either, and the energy it normally gives out on demand is a steady direct current, not the rapidly-varying current needed to create a howl. Somehow, the energy of the battery is being converted into the sort of audiofrequency alternating currents which cause the howl.

The arrow from microphone to earphone at one end of the line indicates that these are coupled together (by holding them together, in this case).

This provides feedback, since sound from the earphone goes straight into the microphone and the resulting current from the microphone must flow right round the whole
circuit and therefore through the same earphone again, making more sound, and so on.

What we have to explain is how the volume gets greater as the sound signals go round and round the circuit.

CARBON MICROPHONE

The key component is the microphone. If you were to obtain an early telephone microphone and take it to bits you'd find a cone-shaped piece of thin aluminium. The tip of the cone presses against a little box or bag full of shiny black dust. It looks like coal dust, but is really a collection of tiny polished granules of a form of carbon.
Carbon is an electrical conductor, and current from the battery flows through the granules. But they are packed rather loosely, and held in place by gentle pressure from the aluminium cone. Increase the pressure and the little granules make better contact with one another, allowing current to flow more freely. Reduce pressure and less current flows.
The microphone is therefore capable of turning pressure variations on the aluminium cone into current variations. The trick is to make it respond to the variations in air pressure caused by the speaking voice. This is what the cone is for.
Its real name is the diaphragm and it is mounted so that it vibrates in sympathy with the sound waves from the voice (which are just rapid changes in air pressure).

As it vibrates it compresses or relaxes pressure on the granules, depending on whether the diaphragm is moving inwards or outwards at a particular instant.

The sound variations make the resistance of the carbon granules vary in sympathy, so producing corresponding changes in the amount of current drawn from the battery.

In the receiver, the current flows through the coil of an electromagnet. This produces changes in magnetic field strength. These changes vary the pull of the magnet on an iron diaphragm, which moves to and fro in sympathy, reproducing the original sounds, as air waves again.

EQUIVALENT CIRCUIT

Evidently it is the microphone and earphone at one end of the line which create the howl. The ones at the receiving end are merely part of the circuit which is inactive in howl-production.

Let's forget about the far end and rewire the circuit using just the active, near-end devices (Fig. 2.2.). The microphone is now shown as a variable resistance operated by the earphone. For the circuit to oscillate (howl) the microphone must generate more sound-producing current at each pass round the circuit, so that the volume builds up.

Fig. 2.1. Basic telephone circuit.
Fig. 2.2. Equivalent circuit with microphone and earphone.
Fig. 2.3. Resistance-variation generator.

RESISTANCE-VARIATION GENERATORS

The microphone acts as a sort of tap to turn the current on harder or softer. The howling telephone demonstrates an important class of electrically active devices. Forget about sound and think only of the variations in resistance.
In principle, anything that varies can be made to vary a resistance. The general idea simplifies itself to Fig. 2.3. Here there is just a variable resistance, a battery, and a mysterious box marked Load.

A "load", in electrical terms, is anything driven by energy from some sort of generator. An electric lamp is a load on the mains. A loudspeaker is a load on an amplifier . . . and so on.

In this circuit, so long as the resistance is not being varied but is just left at some fixed value, a steady (direct) current flows whose value depends on the total resistance in the circuit, that is the load resistance plus the "variable". If the variable resistance is now altered the current changes.

Since the load is traversed by the current it, too, experiences a change, and absorbs more energy or less energy as the current increases or decreases.

In this way the battery and the variable resistance act together to form a sort of generator of varying current. If the variations go on at audio frequency then the load receives audio energy mixed up with steady "d.c." energy from the battery.

Fig. 2.4. Essentials of an amplifier.
Fig. 2.5. (a) Bipolar Transistor currentcontrolled amplifier. (b) Field-effect transistor voltage-controlled amplifier.

AMPLIFICATION

What produces the variations in resistance? In the case of the howling telephone it was sound waves, but it could be other things.

Some substances change resistance according to how much light falls on them, for instance, so that could be a possibility. However, the most important class of devices in electronics are those which are controlled not by sound waves or light, but by voltages and currents.

Imagine that somehow a current produces variations in the resistance. The resistance, in its turn, produces variations in the current of the battery circuit. If these secondary variations are greater than the ones which cause the change of resistance then the circuit is amplifying. "Amplifying" merely means, "making larger".

The earliest kind of transistors behaved rather like the variable resistance in Fig. 2.3. A small input current controlled a larger output current, by changing the resistance of the device. The name "transistor" (from 'transfer resistor') suggests this form of action.

ACTIVE DEVICES

Transistors and other amplifying devices are examples of active devices. Fig. 2.4 shows how active devices are used, in general terms, without going into the complexities of complete amplifier circuitry.

The active device is controlled by a small input current, or input voltage in some cases. This control input, known in electronics as the input signal, whether or not it has anything to do with conveying messages, turns the active device on or off and so governs the amount of energy from the battery which reaches the load.

Note that the battery must be there. It is the real source of energy.

Fig. 2.4 doesn't say where the input is coming from. It could be a radio aerial, a microphone, a gramophone pickup or many other things. Also, the current path of the input signal is incomplete.

Fig. 2.4 shows one input terminal, but there ought to be two, because the input current must flow in at one terminal and out at another if it is to have its own complete circuit. And without a complete circuit no input current can flow.

Most practical amplifiers use active devices in which the missing signal terminal is at the same time one of the device's other terminals, that is the one at the bottom, where the battery is connected in Fig. 2.4, or the one at the top where the load is connected.

This shared terminal is called the common terminal, and since it is very often connected to the earth, or something equivalent to the earth, it is also called the earth terminal ("ground" terminal in America).

TRANSISTORS

Fig. 2.5 illustrates the point with two kinds of transistor.
The bipolar transistor (a) is controlled by an input current flowing between its base terminal and its emitter terminal. The emitter terminal is here the common terminal since the main current from the battery also flows through it.

The field effect transistor (b) is controlled by a voltage applied between gate and source. The source is here the common terminal. In principle, however, any one terminal can be common.

Continued next month

Everyday News

INTER-CITY SPECIAL

A novel way of publicising a novel industry is one way of describing the Microelectronics Applications Project's latest venture. This is the MAP Microtrain, a roving exhibition destined to visit 22 towns and cities before its run ends early in November.

This specially fitted out train was inaugurated on May 6 at Marylebone Station, London by Mr Kenneth Baker, minister for Information Technology and its purpose was spelled out when he said;
"We are taking the Microtrain all over the country to show people what can be achieved with microelectronics and help them get started. Microelectronics is going to affect all of our lives and if Britain is to reap the benefits, we have to begin taking our opportunities.
"Much has been achieved in the first phase of the Microelectronics Applications Project (MAP) in encouraging British companies to take up the challenge but too many, around 50 per cent, still have not appreciated that microelectronics is relevant to their business."

The exhibition features examples of micro-computers currently available, industrial applications and office equipment including word processors and Prestel equipment and a very full programme of seminars and lectures has been arranged on a wide variety of topics for a wide range of people.
In fact the major target of this exhibition is on the one hand industrialists and on the other schools and other educational establishments although the train will also be open to the public free of charge at certain times and organised parties will be particularly welcome.

One particular aspect of the exhibits are the opportunities to actually operate the equipment and gain some idea of how it actually feels to be faced with, say, a word
processor, whilst at the same time representatives from both manufacturers and the Department of Industry will be on hand to answer questions and talk in some depth about their various responsibilities.

At present the MAP Microtrain is at the Reading Motorail dock where it will stay until June 26, after that it moves on to Plymouth, Gloucester, Cardiff and Wrexham, stopping for a week at each place and opening from Monday to Friday. After a summer break the exhibition re-opens on August 31 at Glasgow High Street, and then visits Aberdeen, Dundee, Newcastle-upon-Tyne, Middlesborough, Birmingham International, Liverpool Lime Street, Manchester Piccadilly, Hull and finishing in Shef field on November 2.

WORLD SERVICE

Fears that the BBC World Service would be severely cut appear to be ill-founded. Marconi has won substantial contracts for antenna systems for the relay stations in Cyprus and at Orfordness in Suffolk.
It is estimated that the BBC has over 40 million regular listeners overseas plus an even greater number who casually listen.

Avionics Takes a Dive

Electronic fail - safe techniques developed for ciyil and military aircraft have been adapted by Marconi Avionics for use in remote control systems for oil wells on the sea bed.

First major installation in conjunction with NL Shaffer of Houston, Texas, is now in operation in the BP Magnus oil field.

Kenneth Baker M.P. aboard the MAP Microtrain.

Inmos Comes to Market

NEB-sponsored Inmos has appointed two distributors. in the UK to handle v.l.s.i. devices now coming off production lines in the USA. They are Rapid Recall, High Wycombe, and Hawke Cramer, Sunbury. European distributors are also being appointed.
First product is a $16 \mathrm{~K} \times 1$ static r.a.m. to be followed by a $64 \mathrm{~K} \times 1$ dynamic RAM and a $4 \mathrm{~K} \times 4$ static RAM.

Mobile Question

The Mobile Radio Committee is reviewing the spectrum requirements for land mobile terrestrial services up to 1000 MHz in the United Kingdom up to the end of the century in the light of the outcome of WARC 1979.

Questionnaires will be dis. tributed to representative organisations and individual users about their present and future use of radio channels, but any further contributions will be welcome before the end of June.

They should be addressed to Room 708, Radio Regulatory Department, Waterloo Bridge House, Waterloo Road, London, SE1 8UA.

TV/DX Group

A national DXTV (long distance) reception group has been formed mainly under the instigation of George Grzebieniak (RS 41733) from Chiswick, West London. The group has held regular meetings in the London area since February.

Several of the members have already acquired and used a large range of various pieces of TV equipment, ranging from a 5 inch multi-band B/W TV set to a 27 inch full colour model, which incorporates provision for satellite reception. Anyone wishing to contact this group should write to George Grzebieniak, c/o 185 Fleet Street, London EC4A 2HS, enclosing a self addressed stamped envelope.

-ANALYSIS

A BURNING IDEA

Once in a while an idea burns itself into the mind so compulsively it can't be resisted. This was the experience of Paul Galvin just 50 years ago. He had recently set up the Galvin Manufacturing Corporation in Chicago with five employees, hardly any capital and little previous business success. His trade was in radio sets and battery eliminators.

His inspiration was to make the world's first mass-produced car radio. In another brilliant flash, which came to him one morning while shaving, he conceived the name for the product, Motorola, with its subtle suggestion of motion coupled with radio.

Working in an entirely new field, mistakes were bound to be made both in the product and in installation with the result that the burning idea, now converted into hardware, had a habit of catching fire and burning all around it. While Galvin was arranging a loan to finance the venture with a friendly banker, his engineers fitted a radio to the banker, s new Packard car. A nice gesture designed to convince the banker of his sound business judgement. Within half an hour the Packard was a burnt out shell.

Another early user was a Chicago undertaker who had a set fitted in his hearse. On the way to the cemetery one day the hearse caught fire and to the horror of the mourners the intended burial became a cremation.

Despite these and other tragi-comic episodes, Galvin and his small team persisted and eventually overcame the technical problems, establishing Motorola as the number one name in car radio. They even recalled the entire production of one model, salvaged only the valves and speakers and smashed the rest with sledgehammers to preserve the integrity of the name.

In the mid-50s Motorola, by now a great company bearing the name of its first product, had a second testing period. A decision had to be made whether to stay in the semiconductor business with the huge risks involved, or to play safe and get out. The Motorola directors decided to "go for broke" and poured money into the plant at Phoenix, Arizona, with the result we see and admire today.

Paul Galvin, whose first exercise in free enterprise was selling Popcorn from a stall, died in 1959. His story has special significance today because his burning idea and his faith in its success came not in a boom time but in 1931 when the United States was in deep receision with bread lines and. soup kitchens a common sight.
Given the idea, the man, and the will to succeed, there 's no bad time to start a business.

Brian G. Peck

Changeover from old Strowger to new electronic telephone exchanges is accelerating. Some 21_{2} million of Britain's 18 million telephones are now coupled via electronic exchanges and present projections are 5 million by 1985 and 15 million by 1990.

Following a partnership agreement with Corning Glass, BICC is to spend e11.5 million on setting up an optical fibre manufactur. ing plant in the UK, most probably at Shotton on Teesside. Production of $50,000 \mathrm{~km}$ of fibre per year is planned for 1984.

CB Assault

A major assault on the CB market is being planned by Binatone when citizens band is finally legalised in the autumn (see Radio World).

They plan to launch two models in September and these will be on sale through their usual High Street out. lets.

A compact mobile set called "Breaker" will be sold at £59.95 excluding aerial, while a larger mains model will retail at $£ 99$.

JAPAN-UK LINK-UP

Britain's Department of Industry and Japan's Ministry of International Trade and Industry have started exploratory talks on joint projects for the future.

Among projects under discussion are computer-alded design and manufacturing equipment, computers, telecommunications and robotics.

Logic in UK

A top figure in world semiconductors and formerly chairman of Fairchild, Wilf Corrigan, is planning to have a UK subsidiary of his new company LSI Logic. Corrigan, British-born and educated, expects to have a UK design centre and manufacturing unit in operation sometime in 1982.

Main manufacturing base for high speed integrated circuits is now being established near Santa Clara in "Silicon Valley". The operation, supported by US and British backers, has recruited top men from the semiconductor industry and has a high prospect of success.

Digital Discs

Philips and Sony will market digital audio disc players by the end of 1982.
The format has been jointly developed from the Philips Compact Disc first demonstrated two years ago, following the cross-licensing agreement between the two companies on video and audio technology. The Compaot Disc .system finally decided upon uses 16 -bit linear coding and like the Philips video disc is laser read.

National Semiconductors has announced a 32-bit MPU hard on the beels of Intel's 32-bit project. Samples should be available to the trade by mid-summer.

The Home Secretary has appointed the Baroness Pike of Melton to be Chairman of the Broadcasting Complaints Commission from June 1, 1981.

Vertical Player

The first machine in the world to be able to play both sides of a record without it being turned over is the claim for the Sharp VZ3000 Bi-Play Disc Compo System.

The system comprises of a fully automatic 2 -speed belt driven vertical 12 inch turntable that detects the size and required speed of the record, and its two linear tracking arms with VM cartridges allow both sides of a record to be played automatically without turning it over.

The VZ3000 unit also incorporates a l.w./m.w./f.m. stereo radio with a 4-track 2 -channel stereo cassette deck, featuring the Sharp APSS (Auto Program Search System) that automatically finds the start of a piece of music, and a Dolby noise reduction system with metal tape capability.

The complete system, including speakers, is expected to retail at about $£ 325$ and will be introduced in the autumn.

BY J. C. MAY

THE unit described in this article was designed to be used in the workshop, laboratory and garage where timing measurements and observations are to be made on rotating, vibrating and other repetitive motion machinery and apparatus.
The effect of a strobe unit such as this is to "freeze the motion" making it appear stationary when its flashing rate is in sync with the speed of the machinery. Also it will make the machinery appear to be moving very slowly when near-synchronised. With a knowledge of the flashing rate the rotational speed of a motor shaft or pulley for example may be calculated in revs per minute (r.p.m.).

FACILITIES

The xenon strobe can be set to flash at a rate between about 180 and 1,800 f.p.m. (3 to 30 Hz). This is accomplished by means of a stable internal adjustable oscillator

The device is also equipped with an external trigger facility. Maximum external trigger rate must be limited to about 30 Hz for regular consecutive flashes. This facility is useful for positional alignment and deviation measurements. This input is also thought to be useful for photographic purposes to serve as an electronic flash although no tests have been carried out to verify this. A short is required between the two poles of ext. rrig. to trigger in this mode.

CAR TRIGGER

A further special external trigger is included for use in car timing adjustment. The pick-up for this is from the No. 1 spark plug in the car and this is fed directly to the trigger electrode of the xenon tube. On no account should the previously mentioned external trigger input be used for this purpose.

To make the unit portable and convenient to use, the power supply is derived from four dry cells (total 6V) contained in the case with the high d.c. voltage required being derived from an integral inverter.

Rechargeable cells, type AA, can also be used in this unit and are more suitable for prolonged use. Also, an external power source may be em ployed via a case mounted socket.

Although the unit could be used for local lighting effects by DJs in discos and by pop groups, it is not suitable for large area illumination due to the limited output power capability.

CIRCUIT DESCRIPTION

The complete circuit diagram of the Xenon Strobe Lamp is shown in Fig. 1. The internal oscillator is formed by ICl, a 555 timer and local components. A train of square waves is produced at its output. The frequency of this train is continuously variable from about 3 to 30 Hz by means of VR1.
A second 555 timer i.c. IC2, is connected as a monostable multivibrator. By grounding its trigger input, pin 2, via C_{2}, a single output pulse is pro-

WARNING

Very high voltages, $\mathbf{4 0 0 V}$ d.c. and a 4 kilovolt trigger pulse are generated in some parts of the circuitry. If touched a severe electric shock could be received so extreme care should be exercised during the testing of this project. For this reason we feel that this project should only be tackled by the more experienced constructor and beginners are urged to seek the help and advice from such a person before contemplating construction.
duced at pin 3. R4 discharges C2 when not grounded. S l selects internal or external triggering. The chosen out put is differentiated by C4/R6 to produce a positive going short duration spike to reach the gate of CSR1 in the high voltage part of the circuitry.

high voltage circuitry

The inverter/diode bridge (described below) produces pulsed d.c. about 400 V peak across $X Y$. C5 charges up to this peak and acts as the smoothing capacitor to maintain a d.c. level of approximately 400 volts.

Capacitor C6 charges towards this value through R7 and T1 primary (CSR1 assumed off at this stage). The charge time is proportional to the values of C6 and R7 and these have been chosen to make this time very much shorter than the internal oscillator maximum frequency, that is \ll 33 milliseconds.

This state of affairs is demanded by the xenon lamp, as a primary voltage pulse on voltage step-up transformer T1 of between 200 and 300 volts is needed to induce the required 4 kV pulse across Tl secondary to reach the lamp trigger electrode. On receipt of a positive pulse at CSR1 gate, CSR1 turns on pulling one side of C , which has been charged to about 300 V , down to 0 V . The result of this is to cause C6 to rapidly discharge through Tl primary producing the trigger voltage across its secondary winding.
While C6 is charging up, so is C7 through R9 to about 400 V and this is applied across the two extreme electrodes of LP1. The 4 kV trigger pulse ionises the xenon gas in the tube and current flows through the gas causing brief but intense illumination. CSR1 turns off as C6 discharges allowing C6 to recharge and be ready for the next trigger signal to CSR1 gate terminal.

The energy for each flash was contained in C7 and all is spent when the tube is activated. This energy is given by $\left({ }^{1} 2\right) C V^{2}$ joules, where C is the value of $C 7$ in farads and V is the voltage it has charged up to at the instant of triggering. For values shown, energy equals 45 millijoules.
R9 prevents continued discharge in the lamp between trigger pulses and serves to limit recharging rate of C7. Thus the brightness of the flash is determined by the value of C7 and its maximum repeat rate set by R 9 and in this instance by the output impedance of the inverter circuitry. The latter is dominant.

Under no circumstances should an electrolytic capacitor be used for C7 as the high discharge rate could destroy it.

INVERTER

The inverter first stage consists of two gates from IC3, a cmos hex inverter, cross coupled with C8 and R12 to form a square wave generator. There are two antiphase outputs available at pin 12 and pin 10 and these are buffered by IC3a and b to feed the bases of TR1 and TR2. The out-
puts are such that TR1 is on while TR2 is off and vice versa.

The two 3V windings of T2 form the collector loads of TR1 and TR2 wired as common emitter amplifiers. The flux change in these windings as TR1 and TR2 are alternatively switching on and off causes a much higher voltage to be induced across T2 secondary.

In fact T2 is a low voltage mains transformer being used in reverse. This is fairly inefficient and a switching d.c. supply of 6 volts is required to produce 280 volts r.m.s. across T2 secondary. This is full-wave rectified by D2-D5 to produce pulsed d.c. of about 400 V peak and this is fed to the xenon lamp and associated circuitry.

PRINTED CIRCUIT BOARD

Nearly all the components are mounted on a single fibreglass p.c.b.,

size $160 \times 100 \mathrm{~mm}$. The remainder of the components are mounted on the case. The case used in the prototype was a Vero type which has an integral battery compartment to hold four HP7 batteries. HP16 batteries can be accommodated if the connector clips are suitably bent. These are capable of supplying up to 1 amp (according to manufacturer's data sheet) and are therefore able to handle the requirements of the circuit here. Current consumption rises with flashing rate and reaches a maximum of about 500 mA for the highest rate.

Fig. 1. The complete circuit diagram for the Xenon Strobe Lamp. Type AA rechargeable cells may be used as the power source.

CIRCUIT BOARD

The full-size master p.c.b. pattern is seen in Fig. 2; the components mounted on the topside of the board can be seen in Fig. 3, together with wiring to the case mounted controls and sockets.
Sockets have not been used to hold the 555 i.c.s, but for safety in construction, a 14 -pin d.i.l. was thought wise for the cmos i.c.

Order of construction is not critical but it is advised that the four distinct sections of the circuit are assembled and tested separately during construction: (1) internal oscillator, (2) monostable, (3) inverter, (4) high voltage circuitry.

ASSEMBLY

Assemble the components of the oscillator section and connect all flying leads. Solder the appropriate leads to VR1, S1, SK1, and SK2 after they are fitted to the case. Connect a 6 V d.c. supply between the appropriate + ve lead and 0 V . Observe on an oscilloscope or an l.e.d. with series resistor that a square wave is being obtained from IC1 pin 3 and that this is reaching Sl pole for one of its positions. This will be int. trig. The frequency should increase for clockwise rotation of VR1.

Next assemble the monostable circuit. A scope or l.e.d. at IC2 pin 3 should show a short duration pulse when a wire is touched across the contacts of SK1. Check now that with Sl in its other position, ext. trig., this output reaches S1 pole. Solder C4 and R6 in place and observe that each of these pulses is being transformed to a spike across R6.

These can be seen as kicks on a voltimeter needle. A diode should be temporarily wired across R6, cathode to + ve probe to absorb the negative spikes generated by overshoot from

Resistors

R1	$1 \cdot 2 \mathrm{k} \Omega 2 \%$
R2	$10 \mathrm{k} \Omega 2 \%$
R3	$22 \mathrm{k} \Omega$
R4	$10 \mathrm{k} \Omega$
R5	$10 \mathrm{k} \Omega$
R6	$1 \cdot 2 \mathrm{k} \Omega$

R7	$120 \mathrm{k} \Omega$
R8	$1 \mathrm{M} \Omega \frac{1}{2} \mathrm{~W}$
R9	$150 \Omega 2 \mathrm{~W}$
R10	$1 \mathrm{k} \Omega$
R11	$1 \mathrm{k} \Omega$
R12	$4 \cdot 7 \mathrm{k} \Omega$
R13	$100 \mathrm{k} \Omega$

All $\frac{1}{4}$ W carbon $\pm 5 \%$ except where stated otherwise

Capacitors

C 1	$2.2 \mu \mathrm{~F} 6 \mathrm{~V}$ tantalum
C 2	$0.022 \mu \mathrm{~F}$ ceramic
C	$0.22 \mu \mathrm{~F}$ polyester
C 4	$0.4 \mu \mathrm{~F}$ polyester
C 5	$16 \mu \mathrm{~F} 400 \mathrm{~V}$ elect.
C 6	$0.02 \mu \mathrm{~F} 400 \mathrm{~V}$ polyester
C 7	$1 \mu \mathrm{~F} 400 \mathrm{~V}$ mixed dielectric
C 8	$0.22 \mu \mathrm{~F}$ polyester

page 472

Semiconductors

D1 $\quad 1 \mathrm{~N} 40041 \mathrm{~A} 400 \mathrm{~V}$ rectifier diode
D2-D5 VM181A 400V bridge rectifier 4-pin d.i.J.
TR1, TR2 TIP31 A silicon npm (2 off)
IC1,2 555 timer i.c. (2 off)
IC3 CD4069 CMOS hex inverter
CSR1 BT $\times 18-4001 \mathrm{~A} 400 \mathrm{~V}$ thyristor
Miscellaneous

VR1	$100 \mathrm{k} \Omega$ carbon potentiometer lin. law
SK1	panel mounting phono socket
SK2, 3	4 mm insulated panel socket (1 red, 1 black)
LP1	Kenon flash tube (Tandy No. 272-1145)
T1	High voltage trigger transformer (Tandy No. 272-1146)
T2	Mains primary/200mA 6 V centre tapped secondary (used in reverse)
	(RS 196-268)
S1	Single-pole, two-way rotary switch
S2	Three-pole, three-way plastic rotary switch
B1	HP16 1.5 volt cells or type A rechargeable cells (4 off)
Printed circuit board, fibreglass size $160 \times 100 \mathrm{~mm}$; control knobs (3 off); case,	
Vero plastic box Series II size $190 \times 138 \times 45 \mathrm{~mm}$ with integral battery com-	
partment (65-2072D); p.v.c. covered connecting wire.	

VR1 $100 \mathrm{k} \Omega$ carbon potentiometer lin, law
SK2, 34 mm insulated panel socket (1 red, 1 black)
LP1 Kenon flash tube (Tandy No. 272-1145)
T1 High voltage trigger transformer (Tandy No. 272-1146)
Mains primary/200m A 6 V centre tapped secondary (used in reverse) Single-pole, two-way rotary switch
S2 Three-pole, three-way plastic rotary switch
B1 HP16 1.5 volt cells or type A rechargeable cells (4 off)
Pinted circuit board partment (65-2072D); p.v.c. covered connecting wire.
the falling edge of the input pulse to the differentiator, C4/R6.

The p.c.b. has been made to suit a particular make of inverter mainstransformer which had pins suitable for direct insertion into the board when mounted upside down. Alternative fixing and connection arrangements will need to be devised for other transformers. Assemble the remainder of the inverter components.

For instant observation when the inverter is being tested, a mains neon can be connected to T2 secondary on the underside of the p.c.b. Connect +6 V to the inverter positive supply lead on the board and the supply negative to board or terminal. The

The completed prototype showing reflector in position and the controls seated in one section of the case. Note that SK2 and SK3 are mounted in the top half of the case as seen.

Fig. 3. The layout of the components on the topside of the circuit board and wiring details to the case mounted components. The tags on S 2 are shown splayed tor clarity.

View of the rear face of the case showing the external trigger sockets clearly labelled.

Plan view of the section of the case which holds the circuit board and emphasises the need for sleeving the tags on S2.

NOTE. The Strobe will work satisfactorily when constructed as shown. However, to keep within the specifications of T1, an additional resistor (330 kilohm $\frac{1}{4} W$) should be fitted across CSR1 anode and cathode. This will ensure that $T 1$ primary voltage does not exceed 300 V . The resistor may be soldered directly to the copper tracks (a) and (b) on the p.c.b. underside. Circuit description voltages assume this resistor is in circuit.
neon should glow brightly and the voltage across this should be about 280 volts r.m.s.
Switch off and connect the bridge rectifier in circuit paying attention to polarity. A " + " is marked on the p.c.b. foil pattern to correspond with the same on the bridge. A d.c. voltimeter set to 400 V d.c. or more will give a reading of about 380 V across the bridge outputs. Current consumption will be about 100 mA if all is well so far.
Finally, assemble the trigger and lamp components. T 1 has a polarising leg fitted to one side and this has been accounted for on the p.c.b. so should be straightforward. Pay attention to polarity of the diode and more importantly, C 5 , the electrolytic capacitor.

XENON LAMP

There is a red spot on the glass tube to indicate its polarity, so pay special attention when fitting this component in place. A pair of pliers should be used when bending the leads on the tube to fit the board in a horizontal position. Place the pliers between the glass and wire bend position. Failure to do this may result in a broken tube.

Connect the remaining flying leads to S2, including the one to the battery compartment positive terminal according to Fig. 3.
All components to S 2 must be made using p.v.c. covered wire, and although not shown in Fig. 3, all tags on S2b should be completely sleeved after soldering. Sleeves should also be fitted over the leadout wires of R8, and also its soldered connections to the lead from SK3, and SK3 tag itself.

Finally, connect the battery - ve terminal lead to the Veropin on the board.

FINAL TESTS—BEWARE

You will next be testing the board with high voltages about so be especially careful. Keep your hands well away from the tube, trigger transformer S2 and the large capacitors in particular.

Before switching on make up a lead using insulated wire to contain within its length a 10 kilohm ${ }^{1} 2 \mathrm{~W}$ resistor. This will be used to discharge capacitors C5 and C7 after testing to make them safe to touch during the later stages of construction. Placing the two ends of the wire across each capacitor in turn will discharge them fully after a couple of seconds.

Set S1 to int. Trig. and VR1 fully anticlockwise and S2 to INT./ExT. The tube should flash at regular intervals; VRl should increase flashing rate for clockwise rotation. If this does not

Fig. 4. Scale (actual size) for fitting around VR1, the rate control. This has been drawn to suit potentiometers with 270 degrees electrical rotation.
happen switch off, discharge the capacitors as described above and investigate.

If all is well check the ext. trig. facility. The trigger input for connection to the car ignition system is best tested in the garage with the unit fully assembled in its case. When doing this it is recommended that the connection between unit and car, and the appropriate settings, are made before the car is started up. Also, use of e.h.t. cable is advised.

CALIBRATION

With the circuit values shown, the theoretical frequency range of the internal oscillator should be from 3 Hz to 30 Hz (180 to 1,800 f.p.m.) and measurements on the prototype were extremely close to these theoretical values.

A linear scale can be made to encircle the control knob of VR1 over its electrical travel which for many potentiometers is 270 degrees. If this is the case with the potentiometer you have, then the scale shown in Fig. 4 may be used.

The relationship between flash rate and angular rotation of VR1 is given by :

$$
f=k \quad \frac{32 \cdot 48}{1 \cdot 06+r} \mathrm{~Hz}
$$

where r is the reading from the scale and k is the correction coefficient to allow for the tolerance on the timing capacitor Cl. A spot frequency check will need to be made to determine the value of k using the above formula.
f.p.m. $=60 \times f$

Periodic time $=1 / f$ secs
Ideally an oscilloscope will be needed for this or a second accurately calibrated strobe could be used

Fig. 5. Templates with dimensions marked for making a reflector to suit the specified case.
for a comparison check. Potentiometers with other angular rotations cannot use the scale in Fig. 4.
A calibrated knob is an alternative to the scale in Fig. 4.

REFLECTOR

For maximum forward transmission of the flash a reflector is needed behind the xenon tube. Ideally, this should be parabolic with the xenon tube at the focal point but this is not very easy to accomplish. Good results were obtained from the prototype which used curved cardboard covered with silvered "Contact" which is an insulator. The latter is self adhesive and is thus easily secured to the cardboard templates. On no account should metal be used for the reflector system shown.

A suitable reflector can be made to suit the specified case and dimensions of this are seen in Fig. 5. It consists of three sections: one is screwed to the inside of the case using the fixings available for a second board; another smaller flat section is glued to the circuit board beneath the xenon tube; the last section becomes curved when fitted in place and a little packing behind its extremes will hold it firmly in position.

The case comes complete with a metal front panel. This is not required and should be replaced with a piece of 1.5 mm clear Perspex of the same size, $124 \times 34 \mathrm{~mm}$.

Thunder Struck

Regular readers may remember, that a short while ago, I was enquiring if any Doctors could throw any light on the phenomenon of people who suffer stomach upsets during thunderstorms. Imagine my delight when I received three letters, from Flight Lieutenant P. Joiner, Dr. D. G. Mayne and Mr. C. Stone, two of whom are Doctors.

I am still trying to digest all the interesting information they have given me on the subject. I read their letters with great enjoyment and the common factor in their remarks, seems to be, that the effect could be due to too many positive ions which are present in the atmosphere after a storm.
I cannot resist quoting from the delight. ful ending to Flight Lieutenant Joiner's letter. "Please keep up the good work on $E E$, I have enjoyed the magazine since day one, it has served as a good introduction
to electronics which now involves most of my spare time and too much of my pocket money'
"Ion storms occur at home every time I order some bits, and their effect seems to be a constant vocal discharge of ' No '. Further, I can verify that these attacks are unrelated to weather, situation, time of year or time of day.'

Great Achievement

The other day 1 read an account of a production engineer who was made redundant at sixty. To keep occupied, he made himself a lathe out of an old bedframe and started making bar billiard skittle sets.
These consist of nine small wooden skittles, a small wooden ball on a string, attached to a three foot pole. You throw the ball at the skittles in an attempt to knock down as many as possible.

Within a short while he had orders worth about $£ 10,000$. Asked to what he attributed his success he said he thought it partly due to a reaction against all these mechanical and electronic games that have taken over.

Still on the subject of electronics, what a triumph of electronic technology the space shuttle was, even if one computer did go wrong at the last moment and took two days to repair. The most exciting part was the landing, it had to be right first time there was no second chance. Anyone who has flown aeroplanes for any length of time, will at some time or other have been in that position and believe me it can be quite hair raising.

While we cannot help but admit that electronics have immeasurably increased the pleasure we obtain from life, television and music naturally spring to mind, it has not yet reached its full potential. It is bound eventually to lead to a shorter working day working week, and finally, working life.

Provided those in power, realise in enough time, that this means a reappraisal of our.lite style, worldwide, and that teaching from an early age, must be orientated to showing the young how to enjoy their increased leisure, then all will be well.

Finally I think of all the applications of electronics, those that are used in the making of various prosthesis, must be accounted among the most praiseworthy. Prosthesis is the technical term for an electronic or mechanical substitute for a missing or defective part of the body.

TOUCH SWICH WITH
 FOR Ni-Cd POWERED EQUIPMENT By C.J. Delmege

Electronic equipment gets smaller every year, bringing higher running costs due to the smaller batteries used. Thus a small radio can, in the author's estimation, easily cost about $£ 7$ p.a. to run.

Although expensive initially, rechargeable batteries cost virtually nothing to run and the equipment remains fully portable. The initial cost is recovered in about a year.

Nickel cadmium cells are the most common; direct replacements are available for most dry cells, but the voltage is 1.20 volts per cell (compared with 1.5 volts per cell) dropping to $1 \cdot 1$ volts when discharged. Because of this steady discharge characteristic, the reduced voltage is not a problem in practice. The voltage, however, must never fall below 1.0 volts per cell, to avoid damage.

The circuit to be described here prevents this by automatically disconnecting the batteries when the voltage falls below a preset level, while simultaneously functioning as an on-off touch switch. It thus greatly extends the life of the combined volume/on-off controls used in many small radios, where repeated switching on and off wears the carbon track.

CIRCUIT DESCRIPTION

The circuit, Fig. 1, comprises three transisors in cascade. TR1 controls TR2 and TR3, the output switching transistor; TR1 is itself controlled by TR2 via a positive feedback loop from TR2 collector ballast resistor, VR1, to TR1 base via R3.

Initially, all three transistors are off. When the on plate is touched momentarily a few microamps flow across it to TRI base and it turns on. The collector voltage falls causing TR2 and TR3 to turn on also. The voltage across VR1 now rises to $4 \cdot 8 \mathrm{~V}$ 0.7 volts (0.6 volts across TR1 base/ emitter and about $0 \cdot 1$ volts across TR2 collector/emitter). About 0.7 volts (controlled by VR1 setting) is fed to TR1 base, sufficient to keep it conducting.

When the battery voltage falls so does the voltage across VR1 and the voltage fed to TR1 base. Eventually, this drops below 0.6 volts, and TR1 starts to turn off, reducing TR2 base and collector currents and further reducing the voltage across VR1. TR1 thus turns off even more and the whole process is rapidly repeated until all three transistors are fully off.

Preset VR1 controls the proportion of the battery voltage fed to TRI

Fig. 1. The complete circuit diagram of the Touch Switch with Voltage Controlled Cut-Out,

and thus the cut-out voltage. The higher its setting the lower the battery voltage at which TRI turns off and the circuit cuts out. The off plate works by diverting TR1 base current to ground, so turning it off followed by TR2 and TR3 turning off as described above.

Preset VR1 also limits TR3 base current and thus its maximum collector current. Small radios can draw up to 120 milliamps; TR3 minimum h_{FE} is 100 , so the minimum required base current is 1.2 milliamp. With $4 \cdot 1$ volts (as would result from a bank of four cells as shown in the circuit) across it, VR1 must be $3 \cdot 3$ kilohm or less. If less, a slightly increased current is drawn from the batteries.
Resistor R3 acts as a buffer between TR1 and VR1, preventing current from the touch plates flowing into VR1 instead of to TR1 base; R2 protects TR1 if the on plate is short circuited and R1 improves operation of the off plate by limiting TR1 collec tor current.

CIRCUIT BOARD

The unit does not have a separate case as it is intended to be incorporated in the equipment. So first decide where it will be mounted. Standard 0•1in pitch copper stripboard is used and the unit can be screwed in place, wedged with foam plastic, or glued. Component layout is not critical and may be altered to suit. The prototype layout is shown in Fig. 2.

Solder the three resistors in place first, then VR1 and finally the transistors. If the transistor leads are very short use a heat shunt on their leads to prevent thermal damage.

The prototype unit consumed less than 20 microamps when in the off state and so was connected direct to the batteries. The positive battery lead to the equipment should be disconnected from the batteries and joined to the "positive power line" in Fig. 2.

Drawing pins, or brass carpet tacks, make a neat form of touch plate.
Drill three holes in the equipment case to suit the three drawing pins (or in a piece of insulating material, such as Formica). Then tin the stems of the tacks and push them into the holes. Now solder the touch plate wires to the tips of the stems protruding through the case. The pins can easily be made a tight fit by thickly tinning the whole stem, then filing to the required thickness. The head of the on pin can also be tinned to distinguish it from the other two.

SETTING UP

Ideally, some form of variable voltage is required for setting up, otherwise a set of fully charged and a set
of discharged cells will be needed.
Set VR1 fully anti-clockwise then advance it about 20 per cent of its travel. Set the supply to the fully charged total cell voltage (1.2 volts/ cell) and connect to the circuit board. Now check the touchplate operation.

If VR1 is set too low the circuit will only remain on with a finger held on the on plate, while if it is too high the orf plate will not work. Now set the battery voltage level to the total discharge value ($1 \cdot 1$ volt/ cell)-the cut-out level. Slowly reduce VR1 until the circuit cuts out. VR1 is very sensitive, so repeat the operation a few times.

Note that the circuit is sensitive to both electrical noise and moisture. When VR1 is correctly set, lock it with a little candle wax. Before final installation, cover the copper strips with masking tape.

MODIFICATIONS

The transistors listed will give the best performance. However, most high-gain silicon transistors will work well. To minimize leakage current when the circuit is off TR1 should be a really low-leakage type. If the equipment is left idle for a lengthy period put the in-built switch to off.

This will reduce current consumption.
The maximum recommended voltage is 12 volts. As voltage is increased the sensitivity of VR1 increases. This may be reduced by including a series resistor of not more than 3 times the value of VR1 between VR1 and TR2. So in Fig. 1 VR1 could be 1 kilohm in series with a 1.2 kilohm (so TR3 base current remains the same).

Many radios have a socket for an external power supply. This has an integral switch to disconnect the batteries when a plug is inserted. If it is to be used for recharging with batteries in situ the integral switch must be bypassed.

HIGHER CURRENT OPERATION

With the listed component values TR3 will supply about 150 milliamps at 4.4 volts, rising to almost 300 milliamps at 8.8 volts, which is a sensible limit for continuous operation. (I_{C} max is 600 milliamps). For currents up to 600 milliamps replace TR3 by a 2N2905 with a cooling clip, and reduce R1 and VR1 proportionately to increase base current to TR2 and TR3. Alternatively a suitable relay can be connected to TR3 if space permits.
When used with dry batteries set the cut-out voltage level to two-thirds of the nominal battery voltage.
If leakage current becomes a problem in very humid conditions, it may be virtually eliminated by connecting a 1 megohm resistor between TR1 collector and the positive rail.

If the touch switch is to be operated in a unit using a mains derived power supply, hum pick-up may sometimes cause erratic operation of the touch plates. This can be cured by connecting a 0.1 microfarad capacitor across the on touch plate. It may be mounted either directly behind the touch plates, or on the board itself.

Keep Music Live

The Musicians' Union slogan is "Keep Music Live'. Every time a club or pub plays tapes or discs instead of booking a band more work is lost to everyday working musicians.

Singers now often carry cassette tapes of pre-recorded backing tracks round with them. To perform live they sing into the microphone while the tape is replayed over the house sound system.
Although it costs the artist money to have the backing track tape professionally made, it guarantees a good backing wherever they go. And it also saves the promoter money.
In Japan, where almost everyone seems to fancy themselves as an amateur singer, domestic amplifiers are now on sale which incorporate a "voice cancelling" switch. This reverses the phase of one of the two stereo channels and subtracts it from the other. So any equal-level, inphase material is eliminated.
On most commercially available recordings the solo voice is usually recorded at "centre front", and thus at equal-level and in-phase between channels. So the voice cancelling circuit usually removes the solo voice and leaves the backing. The proud owner of the amplifier can thus sing along with some of the world's best backing orchestras.
So far these ampliflers haven't yet appeared on the UK market. When they do they make the Musicians' Union job even more difficult.
Recently the Union had a dispute with the Royal Court Theatre management. The theatre was putting on a play about entertainment clubs and wanted to use a pre-recorded tape of musical accompaniment for the singers appearing in the club depicted in the play.
The theatre's argument was that because clubs so often use pre-recorded backing tapes it would be unrealistic for the theatre to employ a live band. The Unlon pressed its case but the Royal Court insisted on using the tape. Finally a compromise was reached; The theatre used the backing tape for the play but paid an equivalent number of musicians not to play.

It isn't only pre-recorded backing tracks that worry the Musicians' Union; it's also the replacement of live bands with discos.

Although (speaking as an ex-musician and ex-MU member) I'm all for keeping musicians in work, the sad truth is that live music is all too often an anachronism.
There is just no way that a three or four piece band can replicate the sound of a multi-tracked studio recording. So a band is only better than a disco if it is playing fresh music, or well known music in a fresh style.

Unfortunately this happens only occasionally. All too often a tired and inappropriately small band churns out unenterprising and anaemic mock-ups of top twenty tunes. The best part of the

Fast Talker

Some of the more exotic JVC VHS video recorders now incorporate an interesting audio circuit. This enables the video tape to be run at twice the normal speed to produce twice normal speed pictures on the screen, and sound reproduced also at twice normal speed, but at normal pitch.

This is no mean technical task. The necessary audio circuit was developed in the USA by a company called Variable Speech Control and is being licensed to an increasing number of companies for incorporation in audio and video equipment.

Donald Duck

Normally when a video or audio tape is run at twice normal speed, the sound is reproduced at twice speed with all the frequencies doubled to raise its pitch by an octave. This creates a Donald Duck sound which renders speech virtually unintelligible.
Anyone with a two speed tape recorder will already know the effect well. But by making a fairly rough and ready conversion of the sound into digital code, it is possible to reduce all frequencies by a half. So the sound reproduces at twice normal speed with the pitch normal. The rough and
evening may well be when the band takes a break and the management puts on records.

Also recorded music has the advantage that it always starts on time. How often have you arrived at a pub, club or show at the scheduled start time, and then had to wait for the musicians to arrive piecemeal and set up their equipment, while the manager bites his nails and worries himself sick?
Two items, adjacent on the agenda of a recent Musicians' Union meeting say it all. They also help explain why electronics and recorded music are taking over, and why live music is dying.
In the first motion the Central London Branch of the MU was asking to vote that "where musicians are engaged to fulfil casual dance engagements in the Greater London area and are called early for the purpose of setting up equipment or for other reasons, they shall be paid at the appropriate hourly rate from the time at which they are called irrespective of whether or not they are required to play". In other words a promoter, already hard pressed to pay for a live band instead of much cheaper electronic canned entertainment, would have to pay even more to ensure that the band started playing as promptly as a gramophone recordi
Perhaps mischievously, the very next motion on the agenda called for "an open meeting"' because "this Central London branch is concerned at the deterioration in the casual dance business'. In other words there is concern that more and more promoters are abandoning live music and opting instead for pre-recorded music which is available, cheap and punctual, at the flick of a switch.
ready digital conversion loses some quality but not enough to detract from intelligibility of the speech.

Slow Classic

According to the professional magazine, International Broadcasting, the VSC company has carried out research in the USA which suggests that the human brain is most comfortable when processing verbal information at around 250 to 300 words a minute, or twice the average speaking rate. At this speed, say VSC, comprehension increases since concentration improves.
I can vouch for this from personal experience. I've used a VHS machine with just such a circuit and found it very useful for scanning through video tape that I needed to watch for work, rather than entertainment for example, to cull a few facts from a televised interview.

However, I do have reservations over the suggestion, quoted by International Broadcasting that "Old movies are often quite slow paced, and viewers will find the show more lively if they increase the playback speed". I shudder to think of people watching classic movies like Citizen Kane, The Maltese Falcon and Casablanca, at twice normal speed. It's the slow pace of these classics that has made them classics.

How do we fit over 2000 electronics tools, toolkits and accessories into one envelope

Easy!

The 1981 all colour Toolrange catalogue is now available, offering a more comprehensive selection of electronics tools, toolkits and production aids than in previous years, with all items available from stock.

For your free catalogue contact Toolrange today

INTERESTED IN ELECTRONICS?

TRY A ZEDPACKI

 COMPONENTS AT A PRICE EVERYONE CAN AFFORD 21300 mixed $\frac{1}{4}$ and to watt resiators $\mathrm{E1} 1.95$ 22150 mlxed i and 2 watt resistors $£ 1 \cdot 95$ 100 mixed ciectrolytics 25400 mixed polystyrone cap 26300 mixed printed circult components27300 mixed printed etreult resiztors $£ 1.95$ 29. 100 mixed minlature $E 1.45$ plate caps $51 \cdot 20$ $Z 1025$ assorted pots. 21125 assorted presels, skeleton etc. Ef 21220 assorted vdr's and thermistors 213 1/b mixed hardware. Nuts, bolts self-tappers, sleeving, etc. $£ 1 \cdot 20$ 214100 mixed, new and marked, full spec. tranelstors. Pack ncludes:- BC148, PBC108 and, or lots of similar
c. 95
ener power, bridoe, ignal, germanlum, silicon eic. All full spec. \quad © 95 21720 1N4003/100?
1820 zeners, 1 watt and 400 mw 21912 . $125^{\prime \prime}$ TIL 209 RED. LED'S 2010 Assorted ewitches, Including push button, sllde, multipole, minlature etc. UHF MODULATORS UHF MODULATORS
625 line UHF housed in metol channel 36 " $\times 1^{\prime \prime}$ wlth 9^{\prime} coas lad TV Plu and connection data. $£ 2 \cdot 50$ ea. 3 for $£ 6$. Aluminlum finish slider knobs, standard Atting. Miniature levalfatt, 10 for 81 fitted to many cassette recorders. 90 p Deluxe FIBREGLASS printed circult
netudes kits. 100 ins. of copperelad F/G army to MIL, SPEC.), 1 dalo atch resist pen. abrasive cleaner, tweezers, etch resist dish and Instructions. OUR PRICE $£ 5.05$ 100 Miniature 25.
100 Miniature reed awitches. E2. 30 To Subminialure keed Switches. E. 20

10,000 f. 35v Tag ended. $20^{\prime \prime} \times 10^{\prime \prime}$ diam with fixing stud and nut High qually. $\$ 1$ each, 3 for $£ 2 \cdot 50$.
With SMALL MAGNETS
P/B SWITCH BANKS These cost a fortunal Were made for various music centres. Includes Indepenmulti pole c/o etc. Can be modined Can't be repeated. 3 Banks for Ef KNOBS for Swlich Banks 10 for ह1. Chrome or spun aluminlum finith. MINIATURE MAINS TRANSFORMERS Top quaility. Spllt bobbin construction $\times 11^{\prime \prime}$, all sorts of uses. ONLY ${ }^{\prime} \times 1 \frac{11}{}$
PP3 Batter Con 3 for E2:50 Miniatury Connectors 10 for 50 p . knob 3 for Press to Make Swltches, Red knob, 3 for 50 p .
Subminialure S.P.C.O. Silde Swltches. for ${ }^{30 \mathrm{p}} \mathrm{m}$.
of for D.P.C.O. Silde Swltches
Standard 2P. 3 Position Sllde Switch.
4 for 50 p .
Loudspeaker, 2t" Round 8Ω. 60 p ea. 3
for El 1.50 .
Assorted Fuse Holders including 20 mm for 50 3.5 mm Jack Sockets, switched. Enclosed type. P.C. or panel mounting 9 Section, Chrome on Brass Tel
Aorlal. Plugs Into any 3.5 mm socket Approx $25^{\prime \prime}$ extended Et each. 3 for $\mathrm{E2} 50$. Hi Power Infra Red Transmitter 5 mm LED. TIL 3860 pea . 3 for $\mathrm{Ef} \cdot \mathbf{3 0}$ Red, Green, Yellow, 10 of one colour $£ 1$ 10 of each £2.50.

ALTERNATOR RECTIFIERS

 Make lovely 60 amp bridges. Ideal forHigh Power Battery Chargers. Type $4 A F I$. Set of 4 (2 neg. case + 2 pos, case) $£ 2$.

Special Purchase enables us to offer Mullard C2s0 Polyester Capacitors (Liquorice Allsorts) at the unbeatable price of $£ 2$ for 100 mixed. These spillages, floor sweepings, cosmetic rejects etc. Also Mullard miniature electrolytics 200 mlxea $£ 2$.

To: "GEMINI ELECTRONIC COMPONENTS" DEPT EE "THE WAREHOUSE" SPEEDWELL ST. LONDON S.E.8.
Where shown. Send Cheque* or Posial Order. Plus 60p Pap. and 15% VAT.

 Wilmslow Audio
 THE firm for speakers!

SEND 50p FOR THE WORLD'S BEST CATALOGUE OF SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS ETC. AND DISCOUNT PRICE LIST

WILMSLOW AUDIO LTD. (Doent Ep
35/39 CHURCH STREET, WILMSLOW, CHESHIRE SK9 1AS
Tel: 0625-529599 FOR MAIL ORDER \& EXPORT OF DRIVE UNITS, KITS ETC.
Tel: 0625-526213 (SWIFT OF WILMSLOW) FOR HI-FI \& COMPLETE SPEAKERS

RADIO WORLD

By Pat Hawker, gzva

The CB Proposals

This issue by the Home Office Radio Regulatory Department of draft "performance specifications" for equipment for what has now officially become "the Citizens Band Radio Service" ("Open Channel" is apparently now a closed bookl) has at last shown clearly what, unless there are yet further changes of mind, will be with us legally later this year.

Two separate specifications cover 27 MHz "angle modulated" (frequency or phase modulated) equipment and 934 MHz angle-modulated equipment. The onus is placed on the "manufacturer, assembler or importer" to ensure that the CB equipment he sells conforms with the specifications together with "any additional requirement imposed by regulations under the Wireless Telegraphy Act 1949'
Equipment will not have to be typeapproved by the Home Office but the industry itself will be responsible for carrying out any measurements and tests to ensure compliance with the specification: such equipment can then be indicated by an authorised mark stamped or engraved on the front panel, including the letters $C B$ in a circle.

All CB equipment-hand-held, mobile or "base" stations-must be covered by a licence and it will be a condition of this licence that "the apparatus fulfils, and is maintained to, the minimum technical standards of the specification." For the user, this could be an important condition since performance of mobile equipment can often degrade quite rapidly in the hostile environment of a vehicle.

Equipment

On 27 MHz there will be 40 channels allocated each with 10 kHz spacing: thus Channel 1 will have a nominal carrier frequency of $27 \cdot 60125 \mathrm{MHz}$; Channel 2 $27 \cdot 61125 \mathrm{MHz}$; Channel $327 \cdot 62125 \mathrm{MHz}$ and so on up to Channel $4027 \cdot 99125 \mathrm{MHz}$. Output r.f. power is limited to 4 watts, which one would expect to be about equivalent to around 7 watts d.c. input.
It is worth noting that, in amateur radio practice, it is d.c. input power that is normally specified for f.m. transmitters. This power is intended to provide a limit of 2 W effective radiated power with specified aerials.
However, if the aerial is mounted at a height exceeding 10 metres "the licence will require a reduction of transmitter power of $10 \mathrm{~dB}^{\prime \prime}$. For this reason firms are expected to offer 10 dB attenuators as a standard accessory.

UHF Equipment

The allocation at u.h.f. is now given as a full MHz at 934 MHz with equipment expected to be sufficiently stable to permit working with 25 kHz separation between adjacent channel carrier fre-
quencies, although the draft specification shows 20 channels with 50 kHz spacing. The Home Office people assure me that this was not a mistake but rather that it is hoped that it will prove possible eventually to operate this band as a 40 -channel system if, in practice, stability of the equipment shows that this can be done.
In the draft specification, Channel 1 is 934.025 MHz ; Channel 2934.075 MHz and so on up to Channel $20934 \cdot 975 \mathrm{MHz}$.

On this band r.f. output power is limited to 8 watts and the effective radiated power (ERP) limit is 25 watts, indicating that directional aerials of moderate gain will be permitted. For equipment with an integral aerial the ERP is limited to 3 watts; this provision is clearly intended to apply to hand-held equipment where it is sensible to protect the eyes against excessive radiation levels; the specified power seems a logical choice.

Range

On 27 MHz an effective radiated power of 2 watts f.m. could, at certain times of the day, during certain seasons, and during years of high sunspot activity be capable of providing (in the absence of local interference) inter-continental communication, although clearly the Home Office proposals are designed to discourage rather than encourage this. Indeed, one feels that for those who seek long-distance communication, an amateur radio licence is the right answer. Additionally, on many summer days, it would be sometimes possible with this power to work over ranges of some hundreds of miles by taking advantage of the wafer-thin Spora-dic-E ionic layers brought about by windshears high above the Earth.

In practice, both bands should be capable of providing useful communication ranges from and to mobile units; the main snag with 934 MHz being the expense. A low-cost solid-state transmitter cap able of providing 8 watts of r.f. output at this frequency would be quite a challenge, and one suspects that it will be some time before equipments of this power are marketed.

Other Provisions

Equipment need not, of course, be suitable for use on all allocated channels on either 27 MHz or 934 MHz and indeed hand-held equipment may make provision for transmission on a few, or even only one, channel.
No CB equipment will be permitted to contain facilities for transmission on frequencies other than those specified for CB, and this would thus seem to rule out any equipment in which transmission is also possible in the 28 MHz amateur band. Another general point is that "controls which if maladjusted might increase the interfering potentialities of the equipment, shall not be easily accessible."

Most of the pages of the Home Office draft specifications are taken up with detailed information on how manufacturers can check that their equipment complies with the specifications. It perhaps needs to be emphasised that so far these specifications are still only "drafts "and may possibly be modified.

Critical Response

One notices that the response from the various organizations promoting CB has been in general critical, mainly because the 27 MHz channels have been shifted up in frequency compared to those used in other countries. This will mean that even if modified for t.m. operation, existing "illegal" CB equipment will remain illegal. Whether it would be possible to further modify these for the proposed British channels and a/so meet the performance. specifications probably depends on the equipment, but almost certainly would not often be possible.
Apart from the question of the "illegal" sets, the British channels will make it more difficult for sets carried in cars travelling overseas to make contact with "the natives" but this would probably be illegal anyway unless specifically permitted by the countries concerned. On the other hand it should decrease the chances of interference to radio-model controllers (remember, only model aircraft are permitted to use the new allocation of 35 MHz) so they are likely to welcome this degree of protection.

Social Problem

On the other hand, the placing of $C B$ channels right up to $27 \cdot 99125 \mathrm{MHz}$ will bring them right alongside the amateur 28 MHz band. This is bad news both for the amateurs and for the CB enthusiasts. In fact the amateurs, through the Radio Society of Great Britain, had speciffcally asked that CB should not be located too close to an amateur band.
The proposed arrangement seems certain to result in considerable mutual interference in those cases where a CB base station is located close to an amateur station legally using relatively high-power in the 28 MHz band. Such transmissions seem bound to overload or swamp nearby CB equipment; further since the amateur may well be seeking very weak signals, the out-of-band radiation from even a low-power CB rig may affect his working. Taken together this adds up to all the elements of a considerable social problem, with both CBer and radio amateur operating within the terms of their licences, yet each interfering with the otherl

Workable Service

Apart from these frequency problems, I feel that the Home Office proposals provide a workable basis for what one hopes will be a useful, enjoyable and worthwhile CB service.
If only these proposals had been put forward in 1977 most potential users would have been very happy indeed! it has been the many delays and changes that have brought about so much hassle-and has also had the unfortunate effect of making it seem that if enough people break the law, then laws will be changed accordingly. So let us hope that no further time is lost.

Many readers will already be familiar with the range of nonsoldering plug-in electronic construction kits distributed in the UK by Electroni-Kit Ltd. Now in response to many requests, they have developed a new range of simple soldering type kits, known as CHIP SHOP KITS. These are inexpensive, the highest priced being only $£ 5$. We have seen them all and believe them to be good value for money.
Besides being useful, these projects would also serve as a good introduction for anyone wishing to embark on the hobby of electronics.
At present there are 20 different kits in the series, 18 of these being constructional projects and in some cases two projects in one kit. It is expected that the range will be expanded later and will include some i.c. based projects.

A soldering iron is a basic requirement for the assembly of each of these, so it seemed logical to include such a tool in the range. In this kit there is a British soldering iron, a 1 amp fuse, some solder and instructions on basic soldering techniques. The remaining kit contains some more tools: a pair of wire strippers/cutters, tweezers, magnifying glass and emery paper-other necessary tools for con-struction-together with instructions on their use and application. See page 444 for a list of the kits in the CHIP SHOP SERIES.

CONTENTS OF KIT

All projects are based on p.c.b. which is supplied ready etched and drilled. The kit contains all the components necessary to produce a working model, and including, where

appropriate, loudspeaker(s), and in all but one kit a brightly coloured plastic case. All cases have an aperture for the loudspeaker which is "snapped" into position thereby eliminating the need for any form of hardware fixings, cutting or drilling thereby keeping construction as simple as possible. A neat solution!

Full step-by-step assembly instructions, a description of how the circuit works, circuit diagram, p.c.b. layout drawings and component list accompany each kit safely packaged in a polystyrene box. Resistor values are supplemented by their colour coding for easy identification-a most helpful addition especially for the beginner.

NO PROBLEMS

We chose a kit at random to buildup No. 16, American Police Siren. We followed the instructions and found no difficulties in understanding them or in the construction itself. Detailed help in identifying components is provided in the text which is especially useful for some of the small capacitors one obtains these days originating from foreign parts. Often the value is obscure being coded with other numbers on the body. This confusion has been eliminated here.

After making the final connection the battery was quickly connected and it worked-not an exact replica of the American Police Siren sound, but close enough to it nevertheless.

We were a little disappointed that the battery would not fit inside the case (with lid on) however we juggled with board position--and also that to turn the unit off the battery clip had to be disconnected. For some reason switches have not been made part of some kits including this one.

AVAILABILITY

CHIP SHOP KITS are not available by mail order from Electroni-Kit, but are being made available through Hobby Shops and Electronic Stores throughout the UK. If you find difficulty in locating a stockist in your area, contact Electroni-Kit Ltd, Rectory Court, Chalvington, Hailsham, East Sussex BN27 3TD.

BEGOME AN INSTANT MUSICHAN

NO EXPERIENCE NEGESSARY

CASIO'S REVOLUTIONARY VL-TONE As featured on "TOMORROW'S WORLD"

The success story of 1981. Hundreds sold already!
Create your own music with a VL-TONE. You combine the sound, rhythm and tempo and the VL-TONE plays it back . . . beautifully!

CASIO VL-TONE (VL-1)

Electronic Musical Instrument

 and Calculator
(R.R.P. £39.95) ONLY £35.95

Thanks to Casio's V.L.S.I. circuit and revolutionary technology you can now compose and play music with one fingerl it's as easy as this:
First choose one of the five Preset Instrument Sounds: Piano, Violin, Flute, Guitar or Fantasy. Now enter the notes of a melody into the memory (maximum 100 notes) via the numbered keyboard.
Notes entered (or played back) are shown digitally on the liquid crystal display Memory break-in allows you to correct any mistakes and add or delete individual notes.
You then simply press the One Key Play key to have each note played back in sequence. Vary the tempo and duration of the keystroke to create a melody. Now you're playing music!
To add the professional touch, select one of the ten Auto Rhythm accompaniments and adjust the 19 -step Tempo Control, with digital readout. Playing in time to the rhythm, record your best performance back into the memory.
The Auto Play function lets you re-listen to the melody you have just recorded. A repeat function can give you four non-stop playbacks. Choose any of the Auto Rhythms to accompany your recording and vary the tempo and pitch of both. For a change select another instrument voice, or switch to ADSR and programe in eight digits to create your own unique sound. With over 80 million variations of Attack, Decay, Sustain level and time and Release, as well as tremelo and vibrato intensities to play around with, the only limit to your creativity is your own imagination.
Manual playing, with Auto Rhythm, can also be recorded and played back. A medley of tunes can be entered up to a maximum of 100 notes.
VL-1: 29 note monophonic synthesiser with Octave Shift expanding the range to almost 5 octaves.
Calculator: 4 basic calculations (,,$+- \times,+$) with constants and percentage Non-volatile memory and square roots. 8 digit display.
Facilities: LC Display of notes, including sharps, tempo and calculations. Battery aving Auto Power Off with protection of the stored melody and the pre-se ADSR data (or calculator memory total). Built-in amplifier and loudspeaker Pitch control for tuning. Output jack for external amplifier or tape recorder (O/p 0-5V rms.)
Power supply: Four AA size batteries last approx. 12 hours playing or 4,000 hours calculating. AC adaptor, type AD 4160 costs $£ 5$.
Dimensions: $30 \times 300 \times 75 \mathrm{~mm}\left(1 \frac{1}{} \times 114 \times 3^{\prime \prime}\right)$. Weight: $438 \mathrm{~g} ; 15 \cdot 4 \mathrm{oz}$. Com plete with instruction book, Song book and soft cover.

** NEW CASIOTONE CT-202

"Son of success
the two harpsichords demonstrate the Casiotone's talen for sparkling, crystal clear tones . . . Even more impressive is the clav Melody Maker).
CT-202

(R.R.P. £325)

ONLY £275
Polyphonic playing of 49 instruments over 4 octaves. 3 vibrato settings and sustain switch. 4 voice memory function with push-button selection. Pitch control (+1 - tone). Built-in amplifier and speaker (10W output)
Output jack ($5 \mathrm{kilohm}, 1.4 \mathrm{max}$). Power source: AC only. OTHER CASIOTONES (Polyphonic)
MT-30. 22 instruments. 3 octaves. Mains/battery (R.R.P. £115) £95.
CT-301. 14 instruments. 4 octaves. 8×2 rhythm accompaniments. Vibrato and delayed vibrato. Pitch control. Output jack. AC only (R.R.P. £285) £245.
CT-401. As CT-301 but with Casio Auto Chord for one finger or auto accomp Cr-401. As CT-301 but with Casio Auto Chord for one finger or auto accompaniSend 20p (postage) for our illustrated catalogue of selected CASIO, CASIOTONE Send $20 p$ (postage) for
and SEIKO products.
PRICE includes VAT and P\&P. Delivery normally by return of post, subject to availability. Send your order FREEPOST, no stamp required.
Send cheques. P.O. or phone your ACCESS or BARCLAYCARD number to:

TBMPUS
 Deqt Ef fraspost
 164/167 East Road Cambridise CBI 1 DB

The latest craze sweeping the country "CUBE MANIA" - FREE OF CHARGE!

You can have this Hungarian Magic Cube (Rubik's Cube) absolutely free with any purchase from us totalling over $£ 17 \cdot 50$
Supplied only on request, at time of ordering Offer closes $31 / 8 / 81$. Subject to availability. Invented by Prof. Rubik of the Budapest Academy of Design, this $3 \times 3 \times 3$ array of 27 cubes starts of with each external face of 9 unit cubes in one of six colours. Although it does not come apart, any single layer of 9 cubes can be rotated about its centre, quickly confusing the colour symmetry. Since there are $43,252,003,274,489,856,000$ permutations, it may take a while to make just one face all the same colour again, and just a little longer to return it to its original pattern!

With step-by-step solution.

SNLY $£ 350$

THESE SPACE INVADERS WILL ALARM YOU

CASIO'S MOST AMAZING WATCHES EVER

Display: Hours, minutes, seconds, am/pm, day and date. 12 or 24 hour format.
Auto Calendar: Day, date, month, year
Alarm: 24 hour, with "On" symbol.
Hourly Chimes: Time signal every hour, on the hour. Easily switched on or off.
Professional Stopwatch: Lap times, etc., from $1 / 100$ second to 24 hours.
Dual Time: Second time zone.
Calculator: 8 digits, four functions, with constants and display symbols.
FINGER-TOUCH KEYBOARD
DIGITAL SPACE INVADER GAME
with sound effects and scoring.
Water resistant case. Mineral glass.
CA -90: $46 \times 36 \times 10.55 \mathrm{~mm}$. Black resin. (R.R.P. £29.95) ONLY £24.95 CA-901: $40.5 \times 35 \cdot 2 \times 10-5 \mathrm{~mm}$. Metal.

(R.R.P. £34-95) ONLY 29.95

CASIO ALARM CHRONOGRAPHS

W150C
Stainlesssteel case, black resin strap
$£ 25.95$

W100
All black
moulded
resin
$£ 19.95$

All have an easily-read display of full time and calendar, with half-hourly time signals which can be switched on or off. Easy-to-use functions include: 24-hour alarm. Professional stopwatch measuring lap times, etc., to $1 / 100$ second. Countdown alarm timer with repeater memory function. The time is always visible regardless of the display mode. One-touch selection of 12- or 24-hour format. Micro light for night viewing. +15 second/month accuracy. Amazing 5 -year battery life. 9.65 mm thick case with mineral glass face.

OTHER CASIO WATCHES

Sports: F5, resin. £6-95. Sports Chronograph: F500, resin. £9-95.
ALARM CHRONOGRAPHS. F81, resin. £15.95. Melody A/C: M12, resin. £19.95. M1200 S/S. £29-95. LCD Analogue/digital A/C: AA81, chrome. £29.95. AA82, S/S. £39.95. AA81G, gold plated. £49.95.
** NEW! t* UC50W, S/S 50 metre water resistant A / C with full month calendar display with forward and reverse stepping, alarm, chimes, etc. £19.95.

CASIO CALCULATORS

*** SPECIAL OFFER. FX502P programmable with FREE MASTERPACK software kit (R.R.P. £17-95) and 3 Rubik's Cubes ONLY £74.95. FAI cassette adaptor f 19.95.
Digital Space Invader game: MG880 £10-95. MG770 £12-95.
With alarm/s, calendar, etc.: BQ1100 Biolater. £16.95
With melody alarm/s: UC360 £19.95. UC365 £19.95. UC3000 £27-95 ML75 $£ 17.95$. ML90 £19.95. MQ1200 £19.95. ML2000 £22.95
CTIENT1FICS. FX81 f12.95 FX100 £16.95 FX 510 £19.95 Programoble FX2700P $£ 19.95$. FX180P $£ 19.95$. FX3500P $£ 22.95$.
With clock, alarms, stopwatch, etc.: FX6100 £18-95. FX7100 £24.95. FX8100 (also has calendar function) $£ 24 \cdot 95$.

A The two capacitors on the left are silvered-mica types. These are available in values up to about 10,000 picofarads and are used where high stability is required, such as in tuned circuits. Tolerance is very close, typically 1 per cent, and working voltage is typically 350 V .
The next two along are disc ceramics. Although they are both similar in physical size, the one on the left is a $0.001 \mu \mathrm{~F}, 750 \mathrm{~V}$ type and the other a $0 \cdot 1 \mu \mathrm{~F}, 18 \mathrm{~V}$ type. This shows clearly the trade off between value and voltage common with capacitors. Tolerance here is a very wide.

The capacitor far right is a resin dipped ceramic type for use where small size is mportant. Tolerance is 10 per cent.

C Various forms of polyester capacitor. Top left is a moulded case metallised type with radial leads. This is a useful general case metallised type with radianceads. This is a useful general
purpose device with a tolerance of 20 per cent and working voltage up to 400 V d.c. There are no problems in identifying the value as this is actually moulded into the case itself. Next to this are two miniature dipped case types. They are wax
treated and covered with a hard lacquer. The various coloured Next to this are two miniature dipped case types. They are wax
treated and covered with a hard lacquer. The various coloured bands represent the value of the capacitor in nanofarads using a similar code to the resistor one. The two top bands give the first two digits, and the third the multiplier. The actual colours are identical to those used for resistors. A fourth band gives tolerance idendical to those used for resistors. A fourth band gives the working voltage, red for 250 V , yellow for 400 V d.c. These capacitors are often referred to as C280 types and are
designed for general purpose applications. These capacitors are often referred to as C280 types and are
designed for general purpose applications.
The small device in the centre is a miniature layer type. This gives a superior tolerance of 10 per cent as well as small physical size and an improved operating temperature range.
The two devices along the bottom are both miniature sleeved types. They are protected by a shrunk-on plastic sleeve and are designed to give rapid recovery from adverse environments. They are available in a small range of values with voltage ratings up to 750 V d.c. Tolerance is 20 per cent. -

CAPACITORS come in a bewildering range of types and sizes mainly because, unlike resistors, it is impossible to devise a single method of construction that will yield a sufficiently wide range of values and working voltages.

A capacitor consists of two plates of conductive material separated by an insulator or dielectric. It is the combination of materials for these two elements that causes the confusion.

Besides its value, a capacitor also has a working voltage and tolerance. If either of these are important, they are specified in the components list.

Another major division is polarised and non-polarised types. Generally the polarised types are large in value and must be connected up correctly. Variable capacitors form yet another class on their own.

Within the above parameters, a capacitor is often chosen because of its size and stability. This being the case, it means that virtually any capacitor with the same value and the same or a higher voltage rating will work in a given circuit and this should be borne in mind when experimenting with spare or surplus components.

This month we look at the various non-polarised types.

B A selection of different plastic dielectric capacitors. Top left is a metallised polypropylene film capacitor encapsulated in a flame retardent plastic case. This is a general purpose type of device, tolerance 20 per cent and voltage rating 400 V d.c.

Next to this is a polycarbonate type. This has similar properties to the polypropylene types and also comes in a flame retardent case although some examples are available in cylindrical cases with axial leads. These capacitors are not recommended for continuous working on mains supply lines, but are particularly suitable for timing circuits.

Below these is a mixed dielectric capacitor. It is built from an impregnated paper/foil construction and can be used in a wide variety of applications. It is packaged in a polypropylene case and is physically larger than the metal film types. Working voltages can range up to 1000 V d.c. and tolerance is 20 per cent.
The device at the bottom of the picture is a plain foil tubuiar capacitor with polystyrene dielectric-polystyrene for short. These can be used as a general purpose low value type where tolerance is not so important. They are physically smaller than mica types with much the same range but tend to be available only with low voltage ratings (160 V d.c.). In fact tolerance is still very good at $2 \frac{1}{2}$ per cent and the only real drawback is a susceptibility to heat damage when soldering.

LUCY-THE VIEWDATA SYSTEM OF THE 80s

A revolutionary new integrated circuit system has just been announced by Mullard and they describe it as "without doubt the definitive solution to viewdata problems for this decade"

The heart of the system is the new SAA50\% control chip code named LUCY. This is designed as a dedicated integrated circuit for viewdata-type applications and is intended specifically as a microprocessor peripheral. In previous viewdata systems the central processor was surrounded by a whole host of peripheral chips including information converters, uart type devices and other control chips. Even then software space has been limited and little has been spared for anything other than basic functions.

However, the LUCY chip combines most of these functions and is able to take the pressure off the processor in terms of time and software. It also provides other features not previously incorporated into viewdata decoders. In fact Lucy can be considered as an interface between the processor and the outside world.
One outstanding feature of this system is its compactness, so much so that the ness, sockage much so that the viewdata acqusition is reduced to only four including the SAA5070 and the central processor, 8048. A further advantage comes from the fact that the accent is very
much on the system soft ware. The basic and optional features are all under the control of the microproces sor and are determined by the software that sits in the rom so the same LUCY chip can be used for all systems.
Furthermore, a user who needs a simple system is not paying a loaded price for features he doesn't need and the more sophisticated user gets the extra facilities at no extra cost.

The SAA5070 chip is in production now and already orders are being received. A three-module viewdata system based on the chip is in an advanced state of development and should be available next year.

A look inside LUCY-the Mullard SAA5070 i.c.

HIGH PERFORMANCE MPU

Following the success of their Z80 cPu, Zilog have now announced the $\mathbf{Z 8 0 0}$, a high performance 8 -bit micropro cessor, binary code compat ible with the Z80.

Quite part from this com patibility, the Z800 features multiply and divide instruc tions, three times performance improvement over the Z80, 8 and 16 -bit bus ver sions and on-board memory mapper for 4 megabyte address space. The Z800 will be available in this country from mid 1982.

CAR RADIO
 AMPLIFIERS

The monolithic i.c. power amplifier makes audio stage design very simple, a fact that has not been missed by manufacturers of consumer equipment. Not only are design and construction costs lower, but reliability is also increased-always a good selling point.

It is with this in mind that Mullard have introduced two new amplifier i.c.s, the TDA1020 and the TDA1510. They are both designed for use in a wide range of car entertainment equipment and many different configurations are possible with the two circuits both of which are designed to run from a nominal $14 \cdot 4 \mathrm{~V}$ supply.

The first i.c., the TDA1020. is a single channel device incorporating a preamplifier and power amplifier. A simple control circuit may be placed either before or after the preamplifier and the overall voltage gain is 49 dB . This means a power output of 12 W into a 2 ohm load.
The other device, the TDA1510, is aimed at the up. market high quality equip. ment manufacturer. It com prises two power amplifiers delivering 12 W each, which can be connected as a single channel circuit delivering 24 W into a 4 ohm load
This particular i.c. features variable gain, fixed by an external resistor and allows high quality control circuits to be connected in front of the device.

Both circuits are fully protected and are not sensitive to interference and car ignition signals. They also feature low output noise and distortion.

COMPUTER CHIPS

Another new product from Zilog is the Z6132, a highdensity byte-wide quasistatic RAM. This new device has a 4 K -bit capacity and conforms to the JEDEC 2716 28-pin package standard. Operating voltage is 5 V and the chip consumes about onesixteenth of the power needed by an equivalent type RAM array.
Although this device is a dynamic memory, it nevertheless behaves like a static device as far as the user is concerned. This is because all memory refresh control and implementation is car ried out within the chip and is "transparent" to the user.

Still on the subject of low power, Intersil have just announced two new 256×4 cmos 1K-bit static RAMs. These are designated IM65X51 and IM65X61 and differ only in their pin out arrangements. The former comes in a 22 -pin package with separate data input and output lines, and the former is an 18 -pin chip with multiplexed data lines.

The new devices are manufactured using a selective oxidisation high density cmos process called Selox-C and this provides better reliability and improved performance.

Many versions of these two devices are available all of which will retain data even when the power supply voltage drops down to as little as 2 V d.c. and this allows the use of battery standby for long periods without losing information

Digital Rule (Aprif 1981)
There were three errors in the presentation of this project.
In Fig. 5, pln 1 of IC4 should be left unconnected. This can be achieved by removing the track from the pad at position 1 of IC4.
In Fig. 3, pin 15 of IC4 should be left unconnected. The p.c.b. layout of Fig. 5 is correct.
Also in Fig. 3, capacitor C15 should be connected between pin 3 of IC4 and +9 V and not as shown. Once again the p.c.b. layout in Fig. 5 Is correct.

FREE
OUR CURRENT BARGAIN LIST WILL BE ENCLOSED WITH ALL ORDERS.

TRANSMITTER SURVEILLANCE *
Tiny, easily hidden but which will enable conversation to be picked up with FM radio. Can
parts and circuit. $£ 2.30$.

RADIO MIKE

Ideal for discos and garden parties, allows complete freedom of SAFE BLOCK
Malns quick connector will save you valuable time. Features include quick spring connectors, heavy plastic case and auto on and off switch. Complete kit. £1.95
LIGHT CHASER
Gives a brifliant display - a psvchedelic light show' for discos, parties and pop groups. These have three modes of flashing, two chase
patterns and a strobe effect. Total output power 750 watts per channel. Comlete kit. Price £16. Ready made up £4 extra. FISH BITE INDICATOR
Enables anglers to set up several lines then sit down and read a book As soon as one has a bite the loudspeaker emits a shrill note. Kit Price $£ 4.90$.
6 WAVEBAND SHORTWAVE RADHO KIT
Bandspread covering 13.5 to 32 metres. Based on circuit which appeared in a recent issue of Radio Constructor. Complete kit includes case materials, six transistors, end diodes, condensers, resist amplifier to connect it to or a pair of high resistance headphones Price £11.95.
SHORT WAVE CRYSTAL RADIO
All the parts to make up the beginner's model. Price $£ 2.30$. Crysta Kit includes chassis and front but not case.
RAOIO STETHOSCOPE
Easy to fault find - start at the arial and work towards the speaker INTERRUPTED BEAM
This kit enables you to make a switch that will trigger when a
steady beam of infra-red or ordinary titht is steady beam of infra-red or ordinary light is broken. Main compon ents - relay. photo trensistor, resistors and caps etc. Circuit diagram
but no case. Price $£ 2.30$ OUR CAR STARTER A
OUR CAR STARTER AND CHARGER KIT has no doubt saved mony motorists frome embarrassment in an emergency you can star hours. The kit comprises: 250w mains transformer, two 10 amp bridge rectiflers, start/charge switch and full instructions. You can assemble this in the evening, box it up or leave it on the shelf in the garage, whichever suits you best. Price $£ 11.50+£ 2.50$ dost GPO HIGH GAIN AMP/SIGNAL TFACER. In case measuring only 5 Kin $\times 3$ Kin $\times 1$ 1/ain is an extremely high gain (70 dB) solid state amplifier designed for use as a signal tracer on GPO cables, etc With a radio it functions very well as a signal rracer. By connecting
a simple coll to the input socket a useful mains cable tracer can be made. Runs on standard 4 Yiv battery and has input, output sockets and on-off volume control, mounted flush on the top. Many other uses include general purpose amp, cueing amp, etc. An absolute bargain at only $\mathrm{f} \mathbf{1 . 8 5}$. Suitable Boohm earpiece 69 p

NEW KIT THIS MONTH!

CB RADIO - Listen in with our 40 -channel monitor. Unique design ensures that you do not miss sender or compl

8 POWERFUL BATTERY MOTORS
For models, Meccanos, drilis, remote control planes, boats etc. $£ 2.50$. WATERPROOF HEATING WIRE
60 ohrms per yard, this is a heating element wound on a fibre glass
coil and then covered with p.v.c. Dozens of uses - around water pipes, under grow boxes in gloves and socks. 23p per metre.
COMPONENT BOARD Ret. W0998
This is modern fibreglass board which contains a multitude of very useful parts, most important of which are: 35 assorted diodes
and rectifiers including 4 3amp 400. types (made up in a bridge) 8 transistors type 8C107 and 2 type BFY. 51 electrolytic condensers. SCR ref 2 N 5062 , 250uf 100 DC and $100 u f 25 \mathrm{v}$ DC and over 100 other parrs including variable, fixed and wire wound resistors,

FRUIT MACHINE HEART, 4 wheets with all fruits, motorised and with solenoids for stopping the wheels with a little ingenuity you can defy your friends getting the "iackpot". $\mathbf{5 9 . 9 5}$. $+£ 4$ carriage. 4-CORE FLEX CABLE
White pve for telephone extensions, disco lights, etc. 10 metres $£ 2$, 100 metres $£ 15$. Other multicore cable in stock. MUGGER DETERRENT
A high-note bleeper, push latehing switch, plastic case and battery
connector. Will scare away any villain and bring help. $\mathbf{f} 2.50 \mathrm{com}$ connecto
plete kit.
EXTRACTOR FANS - Mains Voltage
Ex-computer, made by Woods of Colchest
ideal as biower: central heating
systems, fume extraction etc.
systerns, fume extraction erc. Easy fixing
through, panel, very powerful $2,500 \mathrm{rom}$
through .panel, very powerful 2,500 sut quiet running. Choice of 2 sizes,
$5^{\prime \prime} £ 5.50 .6^{\prime \prime} £ 6.50$. post $£ 1$ per fan.
KEYBOARD BARGAIN
50 computer type keys, logether with 5 miniature toggle switches, sistors and orher parts, in a case but the case may be
otherwise damaged
$\mathbf{f 1 1 . 5 0}+\mathbf{E 2}$ post. less than the value of the
switches alone switches alone. Dlagram of
this keyboard is included if you request It, or it is
separately. Price: $£ 1$.

SUPER HI-FI SPEAKER CABINETS
Made for an expensive Hi-Fi outfir - will suit any decor. Resonance
free cut-outs for $8^{\prime \prime}$ woofer and free cut-outs for $8^{\prime \prime}$ woofer and
$4^{\prime \prime}$ tweeter. The front material is 4 " Iweeter. The front material is
carved Dacron, which is thick and does not need to be stuck in and the completed unit is most pleas. ing. Colour black. Supplied in pairs price $\mathbf{£ 6 . 9 0}$ per palr (this is probably less than the original cost of

Vu METER SNIP

Approximately $15 / 8^{\prime \prime}$ square, suitable for as a recording level meter power output infront, cover easily removable if you wish to alter the scale. Special snip price $\mathbf{£ 1 . 0 0}$, or 10 for $\mathbf{£ 9 . 0 0}$.

MOTORISED DISCO SWITCH
With 10 amp changeover switehes. Multiadjustable switches all rated at 10 amps ,
this would provide a magnlficent display For mains operated 8 switch model
$£ 6.25,10$ switch model $£ 6.75,12$ switch E6.25, 105
model
E7.25.

3 CHANNEL SOUND TO LIGHT KIT

parts for a

parts for a
three-channe
sound to light inlt controlting over 2000
watts of lightwaits of hight
ing. Use thls at home 11

is plenty rugged enough for disco work. The unit is housed in an attractive two-tone metal case and has controls for each channe! and a master on/off. The audio input and output are by sockets and three panel mounting fuse holders provide thyristor ing lamps. Special snip price is $£ 14.95$ in kit form or $£ 19.95$ assembled and tested.
FLUORESCENT TUBE INVERTER
For camping - car repalring - emergency lighting ighting. It will offer plenty of well distribused light a
omical. We offer mical. We offer $12^{\prime \prime} 8$ watt miniature rube for only $£ 5.25$. (With tube and tu

THIS MONTH'S SNIP
1/2 PRICE CABLES! Flat P.V.C. covered mains cables - for lighting and power instalations.

SIZE	TYPE	100 mitres	carriage
1.5 mm	Single	E 3.95	£2.00
1.5 mm	Flat twin	E 6.50	E2.50
1.5 mm	Flat three core \& E	E 9.85	${ }_{\text {c }}$ E. 3.00
${ }_{4}^{6 \mathrm{~mm}}$		¢ 7.50 E17.50	${ }_{\text {¢ }} \mathrm{¢} 2.50$
6 mm	Flat three core	¢34.50	
mm	Twin \& E	¢65 + ¢	£10.00

SOLENOID WITH PLUNGER PLUNGER
Mains operated $£ 1.99$
$10-12$ volts DC $10-12$ volts B
operated $£ 1.50$.

MINI-MULTI TESTER Deluxe pocket size precision moving coil instrument, sewelled bearings - 2000 o.p.v. mirrored scale. AC volts $10,50,250,1000$ DC amps $0=100 \mathrm{~mA}$
Continuity and reststance $0-1$ meg ohms in
two ranges. Complete with test prods and instruction book showing how to measure cap. acity and inductance as well. Unbelievable FREE

REE Amps range kit to enble you to read EC current from $0-10$ omps, directiv current from 0.10 amps, directiy
on the 0 . 10 scale. It's free if you on the 0 . 10 scale. ir's own a Mini-Tester
one, send $£ 2.50$.

MULLARD UNILEX A mains aperated $4+4$ ste
system. Ahted one of the
finest pertormers in the system. Rated ore in the
finest pertormers
stereo fifld this would stereo field this would
make a wonderful pift for almost anyone. In easy to assemble modular form ihis should sell at about $£ 30$ - but due to a special bulk buy and as an in.
centive for you to buy this month we offer the system complete at only $\mathbf{E 1 6 . 7 5 \text { including VAT end post. }}$
 Goodman's eliptical $8 \times \times 5$ " speakers to match this amplifier.

VENNER TIME SWITCH Mains operated with 20 amp switch, one
on and one off per 24 hrs. repeats dally automatically correcting for the lengthen Ing or shor tening day. An expensive time switch but you can have if for only $\mathbf{E 2 . 9 5}$. can supoply plastic cases (base and cover) $\mathbf{E 1 . 7 5}$ or metal case with window $£ 2.95$. Also available is adaptor kit to convert this into a normal 24 hr . time switch bur with the added advantage of up to 12 on
offs per 24 hrs . This makes an ideal conoffs per 24 hrs . This makes an ideal con
roller for the immersion heater. Price of troller for the imm
adaptor kit is $\mathbf{~} 2.30$.

DELAY SWITCH
Mains operated - delay can be accurately set with pointers knob for periods of up
to $21 / 2 \mathrm{hrs}$. 2 contacts suitable to switch 10 amps - second contact opens a few min.
tes after Ist contact. $\mathrm{E1.95}$.

LEVEL METER
Size approximately ※" square scated signa and power but cover easily removable fo

TEREO HEADPHONES
Japanese made so very good quality
 plug. E2.99 Post 60 p.

BRIDGE RECIFIER

 1 arnp 400v 30p each.10 for $£ 2.50$. 100 . for $£ 20.00$

BURGLAR ALARM CONTROL PANEL Contains labelied connection block, latching relay, test switch and all you have to do is to take wires to pressure pads and to alarm all vou have to do is to take wires to pres
bell. Price $£ 7.95$, with complete diagram.

PRECISION MAINS OPERATED CLOCK

For only $£ 1.99$. Sounds unbelievable but that's what vou can have it you send your order right away. The ciocks which have
large clear dials were made by the famous Smiths Company for large clear dials were made by the famous Smiths Company for
use with domestic cooker/awitch, brand new and guaranteed.

12V SUBMERSIBLE PUMP

Just join it to vour car battery, drop it into the liquid to be moved and up it comes, no messing about, no priming, etc. and you get a very good head. Suitable for water, Daratfin and any non explosive non-corrosive Jiquid. One
a shower. Price: $£ 8.50$.

POPULAR SNIP - STILL AVAILABLE
And it still carries a free gift of a desoldering pump, which we are currently selling at $£ 6.350$. The snip is perhaps the most useful b
down parcel we have ever offered. It is a parcel of 50 nearly all down parcel we have ever offered. It is a parcel of 50 nearly all
different computer panels containing parts which must have cost a different computer panels containing parts which must have cost at
least $£ 500$. On these boards you will find over 300 IC's. Over 300 least $£ 500$. On these boards you will find over 300 ic s. Over 300
diades, over 200 transistors and several thousand other parts, resist ors, condensors, multi-turn pots, recifiers, SCR, etc. etc. It you act
promptly, you can have this parcel for only 88.50 , which when you ors, condensors, mouti-ity can have this parcel for only 88.50 , which when you deduct the value of the desoldering pump, works out to just a little over 4 p per panel. Surely this is a bargain you should not miss!
When ordering please add $£ 2.50$ post and $£ 1.27$ VAT
MAINS MOTORS precision made as used in record plavers, blow heaters, etc.
Soeed usually 1,400 . All have ample spindie lengith for coupling fan brade. pultey, etc. Power depends on stack size. $5 / 8^{\prime \prime}$ stack $£ 2.00$; $y^{\prime \prime \prime}$ stack $£ 2.50 ; 7 / 8^{\prime \prime}$ stack $£ 3.00 ; 1^{\prime \prime}$ stack $£ 3.50 ; 1 \%^{\prime \prime}$ stack
f4.50. Add 25% to mator COst to cover $£ 4.50$. Add 25% to motor cost to cover pat
tage, and then add 15% VAT.
YOUR LAST CHANCE FOR THIS BARGAIN 100 twist drills, regular tool shop price over $£ 50$, yours for oniy £11.50. With these you will be able to drill metal, wood, plastic, from the tiniest holes in P.C.B. right
this snip - send vour order today.
MINI MONO AMP on p.c.b., size 4 approx. Fisted volume control and a hol
for a tone control should you require it. The amplifier has three transistors and we estimate
the output to be $1 W$ rms. More technical data will be included with the amplifier. Brand new, perfect condition offered at the very low price of

J. BULL (Electrical) Ltd - Established 25 years. MAIL ORDER TERMS: Cash with order -- please add 60 p to all orders under $£ 10$, to offset packing. etc. ACCESS \& BARCLAYCARD WELCOMED. Our shop is open to callers. BULK ENQUIRIES INVITED. Telephone: Haywards Heath (0444) 54563.

DOUGLAS ${ }^{\text {transfoomes from ITIAN }}$
NEW FRANCHISE AT FANTASTIC PRICES - EX STOCK

MIGHTY NINETY PACKS

SUPER VALUE PACKS ALL AT 90p EACH
POSTAGE 20p PER PACK UP TO FOUR PACKS FIVE OR MORE POST FREE
BUY SIX PACKS AND GET A SEVENTH PACK FREEI

MN23. 1Ib asstd. screws, nuts, washers, self-tappers etc
MN24. 100 asstd. small springs.
MN25. 50 assid. pop rivets.
MN27. 200 items, promm crimps. cable markers, plastic screws, sleeving, te wraps etc.
 colours and sizes. MN30. $3 \times 2 \mathrm{~m}$ length, 3 core, mains cable.
MN31. 12 asstd. trimmer capacitors, compression film. Air-spaced etc.
MN32. 15 300f Beehive trimmers.
MN33. 20 coil formers, ceramic, plastic,
reed relay etc.
MN34. 25 min. glass reed switch.
MN35. 10 asstd. switches, toggle, slide, Micro, etc. MN37. 10 asstd. audlo connectors. Din
phono etc.
MN 38.1 PCE with triac control IC data inc. MN39. 1 oscillator PCB loads of components (no data).
MN42. 10 EC107 Transistors MN43. 10 BCi08 Transistors
MN44. 10 screw fix S.P. C.O. min. slide $\begin{aligned} & \text { SWitch. } \\ & \text { MN45. } \\ & 5\end{aligned} 1 \cdot 35 \mathrm{~V}, 1,000 \mathrm{~mA} / \mathrm{H}$. Mercury MN58. $2 \times$ CA 723 voltage regulat MN64. 5 press-to-make min. switches M N65. 3 BF 245 -FETS.

CHORDGATE LTD.

75 FARINGDON ROAD, SWINDON, WILTS.
Tel. Swindon (0793) 33877. Retall shop at above address.

TECHNICAL TRAINING IN ELECTRONICS AND TELECOMMUNICATIONS

ICS can provide the technical knowledge that is so essential to your success; knowledge that will enable you to take advantage of the many opportunities open to you. Study in your own home, in your own time and at your own pace and if you are studying for an examination ICS guarantee coachins until you are successful.

City and Guilds Certificates:

Telecommunications Technicians
Radio, TV, Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
MPT Radio Communications Certificate
Diploma Courses:
Colour TV Servicing
Electronic Engineering and Maintenance Computer Engineering and Programming Radio, TV, Audio Engineering and Servicing Electrical Engineering, Installation and Contracting

POST OR PHONE TODAY FOR FREE BOOKLET

4B5
To: International Correspondence
Schools
Dept 268J Intertext House, London
SW8 4UJ or telephone 6229911
Subject of Interest
Name
Address
Tel:
Age:

RACING CARS

This circuit is a game for one player and is entitled Racing Cars.

If the player thinks the light emitting diode (l.e.d.) D2 will win, he turns the select switch S 2 to position 2. He then presses the start switch Sl and the l.e.d.s D1 to D6 will start sequencing. Because they are sequencing too fast for the eye to see, it will appear that the l.e.d.s are all dimly lit.
When the player releases Sl one l.e.d. will remain lit. If it is the one he chose with S 2 the win l.e.d. D7 will light up.

The l.e.d.s D1 to D6 are connected to IC2, a CMOS 4022 1-of 8 -decoder. The outputs go from high to low in sequence; the first six outputs light D1 to D6, but the seventh output (pin 5) is connected to the reset pin which starts the output sequence again.

The enable pin 13 is connected to the start switch S1, and the clock will start counting/dividing only when this switch is pressed. The pulses are formed by ICla and ICIb.
The integrated circuit ICl can be a 4001 or a 4011 , and is connected in a standard CMOS configuration for astable clocks. Some unused pins are connected to the negative supply to prevent damage or spurious operation.

The win indication circuitry is formed by transistor TR1, S2, R3 and l.e.d. D7. It functions like a gate, and a light. So, when S2 is switched you are giving a chance of 1 in 6 for the appropriate l.e.d. to light D7 when S1 is released.

If the selected l.e.d. lights it will also provide an output to the win circuitry, via S2. If it does, it will turn on TR1 and will, therefore, light D7.

Capacitor C2 provides the power supply (PP7) decoupling that is required.

The start switch S1 must be a nonlocking push-to-make type. The choice of switch for S 2 will have to be made from a 2 -pole 6 -way or a 1 -pole 12 -way type. S3 is an on/off toggle switch.

David Mullen
Morecambe,
Lancs.

ELECTRONIC FUSE

This circuit for an Electronic Fuse uses a cheap thyristor instead of expensive and difficult to obtain complementary germanium transistors and a lower trigger voltage (about 0.6 V), which reduces the disturbance to the protected circuit.

Under normal conditions the thyristor is not conducting, the output voltage $V_{\text {out }}=V_{z}-1 \cdot 2$, resistors R1 + R2 supply the Zener diode D2 current and TR2 base current, and the voltage across R1, about 0.6 V , so that TR1 is off. When the load current increases beyond the "fused" value the

F.E.T. TOUCH SWITCH

This circuit, which I thought of, uses an f.e.t. (field effect transistor) as a variable resistor. Depending on the amount of time that your finger is on the touch pad, this is the amount of time that the light, LPl, is on for. When the gate of TR1 is touched a few microamps flows into it and stops the flow of current from the drain to the source thus turning on the lamp. Transistors can be: TR1-2N3819; TR2, 3-BC107; and TR4-2N3702.

Colin Ellis (aged 13), Sale Moor
Greater Manchester
thyristor switches to its conducting state causing $V_{\text {out }}$ to fall to zero and the voltage across R1 to exceed 0.6 V so that TR1 is turned on and the l.e.d. Dl lights.

The thyristor will remain in the "on" state as long as its anode to cathode current exceeds the "holding value" I_{H}, ($I_{\mathrm{H}}<5 \mathrm{~mA}$ for the device used). Operating the push switch Sl turns the thyristor off and resets the circuit.

In the "on" state the voltage across the thyristor is of the order of one volt and so diode DI is provided to ensure that TR2 is turned completely off.

To "fuse" at a load current I, resistor R is $0 \cdot 6 / I_{\text {f }}$. Choose the voltage rating V_{k} of $D 2$ to suit the maximum output voltage required.
J. Harrold. Stoke Bishop. Bristol.

New! Sinclair ZX81 Personal Computer. Kit: $£ 49 .{ }^{9}$ complete

Reach advanced computer comprehension in a few absorbing hours

1980 saw a genuine breakthrough - the Sinclair ZX80, world's first complete personal computer for under $£ 100$. At $£ 99.95$, the ZX80 offered a specification unchallenged at the price.

Over 50,000 were sold, and the ZX80 won virtually universal praise from computer professionals.

Now the Sinclair lead is increased: for just £69.95, the new Sinclair ZX81 offers even more advanced computer facilities at an even lower price. And the ZX 81 kit means an even bigger saving. At £49.95 it costs almost 40% less than the ZX80 kit!

Lower price: higher capability

With the ZX81, it's just as simple to teach yourself computing, but the ZX81 packs even greater working capability than the ZX 80 .

It uses the same micro-processor, but incorporates a new, more powerful SKBASICROM - the 'trained intelligence' of the computer. This chip works in decimals, handles logs and trig, allows you to plot graphs, and builds up animated displays.

And the ZX81 incorporates other operation refinements - the facility to load and save named programs on cassette, for example, or to select a program off a cassette through the keyboard.

Higher specification, lower pricehow's it done?
Quite simply, by design. The ZX80 reduced the chips in a working computer from 40 or so, to 21 . The ZX 81 reduces the 21 to 4 !

The secret lies in a totally new master chip. Designed by Sinclair and custom-built in Britain, this unique chip replaces 18 chips from the $Z \times 80$!

Built: £69.5

complete

Kit or builtit's up to you!

The picture shows dramatically how easy the ZX81 kit is to build: just four chips to assemble (plus, of course the other discrete components) - a few hours' work with a fine-tipped soldering iron. And you may already have a suitable mains adaptor -600 mA at 9 V DC nominal unregulated (supplied with built version).

Kit and built versions come complete with all leads to connect to your TV (colour or black and white) and cassette recorder.

New

Sinclair teach-yourself BASIC manual

Every ZX81 comes with a comprehensive, speciallywritten manual -a complete course in BASIC program-
 ming, from first principles to complex programs. You need no prior knowledge - children from 12 upwards soon become familiar with computer operation.

```
N MP T=N THEN GO TOE:
c=1
(x)=1|m
X
```



```
ENOR
```



```
=a(J)
q(y)=R|(1)
7(t)=%
y=4-1
THEN GD TQ 1:E
```

New, improved specification
Z Z80A micro-processor-new faster version of the famous Z80 chip, widely recognised as the best ever made.
 key word entry: the $\mathbf{Z X} 81$ eliminates a great deal of tiresome typing. Key words (RUN, LIST, PRINT, etc.) have their own single-key entry.

- Unique syntaxcheck and report codes identify programming errors immediately.
Full range of mathematical and scientific functions accurate to eight decimal places.
- Graph-drawing and animateddisplay facilities.
- Multi-dimensional string and numerical arrays.
- Up to 26 FOR/NEXT loops.
- Randomise function-useful for games as well as serious applications.
Cassette LOAD and SAVE with samed programs.
- 1K-byte RAM expandable to 16 K bytes with Sinclair RAM pack.
Able to drive the new Sinclair printer (not available vet - but comina soon!)

If you own a Sinclair ZX80...

The new 8K BASIC ROM used in the Sinclair ZX81 is available to ZX80 owners as a drop-in replacement chip. (Complete with new keyboard template and operating manual.)

With the exception of animated graphics, all the advanced features of the ZX81 are now available on your ZX80-including the ability to drive the Sinclair ZX Printer.

Coming soonthe IX Printer.

Designed exclusively for use with the ZX81 (and ZX80 with 8K BASIC ROM), the printer offers full alphanumerics across 32 columns, and highly sophisticated graphics. Special features include COPY, which prints out exactly what is on the whole TV screen without the need for further instructions. The ZX Printer will be available in Summer 1981, at around $£ 50$-watch this space!

16K-BYTE RAM pack for massive add-on memory.

Designed as a complete module to fit your Sinclair ZX80 or ZX81, the RAM pack simply plugs into the existing expansion port at the rear of the computer to multiply your data/program storage by 16 !

Use it for long and complex programs or as a personal database. Yet it costs as little as half the price of competitive additional memory.

How to order your ZX81

BY PHONE-Access or Barclaycard holders can call 01-200 0200 for personal attention 24 hours a day, every day. BY FREEPOST-use the no-stampneeded coupon below. You can pay by cheque, postal order, Access or Barclaycard.
EITHER WAY - please allow up to 28 days for delivery. And there's a 14-day money-back option, of course. We want you to be satisfied beyond doubt - and we have no doubt that you will be.

Marshalls

ElECTRONIC IGNITION SAVES PETROL

More and more new cars use electronic ignition to
give the best performance and economy. Bring YOUR
CAR up to top specification by fitting the latest TOTAL ENERGY DISCHARGE electronic system.
TOTAL ENERGY DISCHARGE gives all the
advantages of the best capacitive discharge ignitions;
\star Peak Performance-higher output voltage.

* Improved Economy-consistent high ignition performance.
* Better Starting-full spark power even with low battery.
* Accurate Timing-prevents contact wear without 'contactless' errors.
* Smooth Performance-immune to contact bounce effects.

PLUS
SUPER HIGH POWER SPARK- $3 \frac{1}{2}$ times the energy of ordinary C.D.
ITION-to get the very best performance and I Carburettor sectings.
ITY-with the ultimate insurance of a change-
intly to standard ignition.
RTER. A high-power, high efficiency, regulated
volt energy source-powerful enough to store
designs and regulated to provide fulloutput even

DIY MUSIC \& EFFECTS KITS

AUTOWAH UNIT

Automatically gives Wah or Swell sounds with each gultar note played.
Kit order cod SET 58 E16.04

GUITAR EFFECTS UNIT

Modulates the attack, decay and filter characteristics of a able sounds that can be further modifled by manual con$\begin{array}{lll}\text { trols. } \\ \text { Kit order code } & \text { SET } 42 & \text { E14.11 }\end{array}$

GUITAR FREQUENCY DOUBLER
Produces an output one octave higher than the input. inputs and outputs may be mixed to give greater depth.
Kit order code 98
SET
E. GUITAR MULTIPROCESSOR
An extremely versatlle sound processing unit capable of producing, for example, flanging, v/brato, reverb, fuzz and with most electronic instruments. Some SW's not Incl. in kit-mee lisi for selection.

SET $85 \quad$ £72:90

GUITAR OVERDRIVE

Sophisticated versatlle fuzz unit incl. varlabie controls affecting the fuzz quality whilst retaining the altack and decay, and also provldine filtering.
Kit order code

GUITAR PRACTISE AMPLIFIER

A 3 watt mains powered amplifler sultable for instrument practise or as a test gear monitor. Drives 8 or 15 ohm speakers (not incl. in kit).

SET 106 E1t. 72

GUITAR SUSTAIN

Malntains the natural attack whilst extending note duration.
Kit order code
SET 75

PHASER

An automatically controlled 6 stage phasing unit with in$\begin{array}{lll}\text { ernal ascillator. Depth can be increased with extension. } \\ \text { Main kit code } \\ \text { Extenslon klt } & \text { SET } 88 & \text { E18.34 } \\ \text { EXT } 88 & \text { E.7.3i }\end{array}$

PHASING \& VIBRATO
Includes manual and automatic control over the rate of phaser supply is included of superb full sounds. A separate $\begin{array}{ll}\text { Kit order code } \\ \text { E.42. } & 55\end{array}$

SMOOTH FUZZ
As the name impllesi Order code SET91 511 -68

SPLIT-PHASE TREMOLO

The output of the Internal generator is phase-split and modulated by an input sional. Output amplitudes, depth \& rate are panel controlled. The effect ls simllar to a rotary cablnet.
KII order code.
SET 102

SWITCHED TONE TREBLE BOOST

Provides s witched solection of 4 preset tonal responses.
Kit order code 89
Eio. 51

AUDIO EFFECTS UNIT

A varlable siren generator that can produce British \& Amerlcan police
sounds, etc. Kit order code

SET 105 £12.91

FUNNY TALKER

incorporates a ring modulator, choppers frequency modulator to produce faselnating sounds when used with speech \& music.

SET 99 \&15-43

WIND \& RAIN EFFECTS
SET 28 ES.94

DISCOSTROBE

A 4 -channel 200 -watt light controller olving a choice of A $\begin{aligned} & \text { sequential, random or full strobe mode of operation. } \\ & \text { Kit order code }\end{aligned}$ SET 57
E.36.52

LIST

Send stamped addressed envelope with all U.K. requests for free llst glving fuller detalls of PCBS, kits and other components. Overseas enquirles for list-Europe send 50 p other countries send $£ 1 \cdot \infty$

TERMS : C.W.O., Mall Order or Collection by appointment. Tel. 01-302-6184 (Mon.Fri).

KIMBER-ALLEN KEYBOARDS

Claimed by the manufacturers to be the finest moulded plastic keyboards available. All octaves are C-C, the keys are plastic slope fronted, spring loaded, fitted with actuators and mounted on a robust aluminium frame.
3-Octave £25-50, 4-Oct £32-25, 5-Oct £39-50. Gold-clad contacts (1 needed for each note) type GJ (SPCO) 33p each. ype GB (2-PR n/o) 38p each

CHOROSYNTH

A standard keyboard version of the published Elektor 30 -note chorus synthesiser wind flute to clarinet amonast many others Kit plus keyboard \& contacts SET 100 E.114-12

FORMANT SYNTHESISER

 For the more advanced constructor who puts performancefirst, this is a very sophlsticated 3-octave synthesiser with a wealth of facillities, including 6 oscillators, 3 waveform converters, voltage controlled filter, 2 envelope shapers and voltage controlled amplifier. Case and hardware not in cluded-see our IIsts for further details. SET $66 \quad$ E.323.35
KIt plus keyboard \& contacts

P.E. MINISONIC SYNTHESISER

A very ver satile 3-octave portable malns operated synthesiser with 2 osclliators. voltage controlled filter, 2 envelope supply and sub-min toggle switches to select the functions. A case is excluded, but the text gives comprehensive con structional details.
KIt plus keyboard \& contacte SET 38 £169.60

PRICES INCLUDE VAT@ 15% \& U.K. P. \& P.

NEW KIT MAKE-UP -SEE BELOW

128-NOTE SEQUENCER

Enables a voltage controlled synthesiser, such as the P.E Minisonic, to automatically play pre-programmed tunes of up to 32 pitches and 128 notes long. Programs are Initiated from the 4-octave keyboard and note length and rhythmlc patter are externally variable.
Kit plus keyboard \& contacts

SET 76 E114 01

16-NOTE SEQUENCER

Sequences of up to 16 notes long may be pre-programmed by the panel controls and fed into most voltage controlled syn-解 Kit order code
Kite
KET 86 E60.13

DIGITAL REVERB UNIT

A very advanced unit using sophlsticated I.C. techniques instead of nolse-prone mechanical spring lines. The basic delay range of 24 to 90 MS can be extended up to 450 MS using the extenslon unlt. Further delays can be obtained using more extenslons.
Main kit or
Extension kt code
$\begin{array}{ll}\text { SET } 78 & \text { £.67-22 } \\ \text { EXT } 78 & \text { £45.94 }\end{array}$

RING MODULATOR

Compatible with the Formant and most other synthe sisers.
KET 87
Kit order code

WAVEFORM CONVERTER

Converts saw-tooth waveform into sinewave, mark-space sawtooth, regular triangle, or squarewave with variable mark$\begin{array}{lll}\begin{array}{l}\text { spacillator. } \\ \text { Kit order code }\end{array} & \text { SET } 67 & \text { £20-13 }\end{array}$

BASIC COMPONENT SETS

include specialiy designed drilled \& tinned fibreglass printed circult boards, ail necessary resistors, capacitors, seml conductors, potentiometers, and transformers, They also include basic hardware such as knobs, sockets, switches, a nominal amount of wire and solder, a photocopy of the
orlginal published text, and unless otherwise stated, robust aluminium box. Most parts may be bought separately. For fuller kIt and component details see our current lists.

Kits originate from projects published in PE, EE, and Elektor

RHYTHM GENERATORS

Two different kits-The control units are designed around the M252 and M253 rhythm-gen chlps which produce pre-pro-
grammed switeh-selectable rhythms drlving 10 effects instrument generators feeding into a mixer 12-Rhythm unit 15-Rhythm unit
$\begin{array}{ll}\text { SET 103-253 } & \text { E64-10 } \\ \text { SET } & \text { 103-252 } \\ \text { E57. } & \end{array}$

6-CHANNEL MIXER

A hloh specification stereo mixer wlth variable input impedances. Specs glven in our lists. The klt excludes some channels. $\begin{array}{lll}\text { Main klt code } & \text { SET } 90 & \mathbf{8 . 8 8} \cdot \mathbf{9 9} \\ \text { Extension kit } & \text { EXT } 90 & \mathbf{£ 1 1} \cdot \mathbf{7 4}\end{array}$

3-CHANNEL STEREO MIXER

Full level control on left and right or each channel, and with
$\begin{aligned} & \text { master output control and headphone monitor. } \\ & \text { Kit Order code } \\ & \text { SET } \\ & \text { E.8.68 }\end{aligned}$

3-MICROPHONE STEREO MIXER

Enables stereo live recordings to be made without the 'hole In the miadle' efect. Independent control of each microKhone.
KIt order code
E12-31

HEADPHONE AMPLIFIER

For use with magnetic, ceramic or crystal pick-ups tapedeck, or tuner, and for most headphones. Designed with RIAA KIt order code SET 104 £. 18.10

VOICE OPERATED FADER

For automatically reducing music volume during disco taik$\begin{array}{lll}\text { over. } \\ \text { Kit order code } & \text { SET } 30 & \text { £. } 80\end{array}$

DYNAMIC NOISE LIMITER
Very effective stereo clicult for reducing nolse found in most tape recordings. SET $97 \quad$ £.12.67
KIt order code

DYNAMIC RANGE LIMITER

Automatically controls sound output levels. SET $62 \quad$ e. 51
Kit order code

TUNING FORK

Produces 84 switch-selectable frequency-accurate tones with ed monltor displaying beat-note adjustments.
KIt order code $46 \quad$ E34. 58

TUNING INDICATOR

A simple octave frequency comparitor for use with synKit order code SET 69 E14.41

PULSE GENERATOR

Produces controliable pulse widths from 100 NS to 2 Sec . Varlable frequency range of 0.1 Hz to 100 KHz .
KIt order code $\quad \mathbf{~} 115 \quad \mathrm{E} 21.45$

SIGNAL TRACER \& GENERATOR

Allows audio signals to be injected into circuits under test and for tracing their continulity. Includes frequency \& leve Kit order code SET $109 \quad$ E15.31

WAVEFORM GENERATOR

Provides sine, square and triangular wave outputs variable KIt order code

SPEECH PROCESSOR

Improves the intelliglbility of nolsy or fluctuating speech signals, and ldeal for Inserting Into P.A. or C.B. radio sys Kit order code SET 110 E.S.21

FREQUENCY COUNTER

EXPOSURE TIMER

Controls up to 750 watts $\ln 0.5 \mathrm{sec}$ steps up to 10 minutes, with bulit-in audio alarm. $\begin{aligned} & \text { KIt order code }\end{aligned}$ SET $93 \quad$ £.36.44

EXPORT ORDERS ARE WELCOME

Postage rates are shown in our Hats, All payments must be cash-with-order, in sterling by internatlonal money oroer or through an english bank. We do not offer a C.O.D. service.
To obtaln 1 ist-Europe send 50 p, other countries send $\boldsymbol{f} 1-00$.

MORE KITS AND COMPONENTS
ARE ON OUR LISTS

Prices are correct at time of press. E. \& O.E. sublect to avallability

ANDUNMND A NEN NEN NDIF MBA SIUIE
 This 5 volume set contains over 500 pages. Bound in stiff linen. Cover size $81 / 2 \mathrm{in} \times 5 \mathrm{in}$. Price $£ 10.00$ per set (we pay the postage)

Book 1. Introducing Electronics Book 4. Meters/Voltage-dividers Book 2. Resistors/Capacitors Book 5. Transistor Project Circuitry Book 3. Inductors/Diodes
The manuals are unquestionaby the finest and most up-to-date available and represent exceptional value.
This series has been written in a fascinating, absorbing and exciting way, providing an approach to acquiring knowledge that is a very enjovable experience. Suitable for industrial trainees, City and Guilds students, DIY enthusiasts and readers of electronic journals. Each part explains electronics in an easy-to-follow way, and contains numerous diagrams and half tone blocks with construction details and circuit diagrams for making the following transistor projects: Lamp Flasher, Metronome, Wailer, Photographic/Monostable Timer, Metal Locator, Geiger Counter, Radio Receiver, Intercom., Intruder Alarm Electronic Organ, Battery Eliminator, Anemometer, Sound Switch, Light and Water-operated Switches, Pressure-operated Switches, Light meter, Radio Thermometer, Ice Alarm,

Order now:
Selray Book Company
11, Aspen Copse,
Kent. BR
OUR 7DCO GUARANTEE
Should you decide to return the set state 10 days exam-
Ination, your moner will be refunded by roturn of poss.

Amount enclosed: $£$
Name:
Address:

LED'S

f25" \& $\cdot 2^{\prime \prime}$ ROUND RED YELLOW, GREEN or AMBER	TRIANGULAR Large, RED only Small, YELLOW or GREEN only
$2^{\prime \prime}$ ONLY WHITE Illuminated red	
RECTANGULAR RED YELLOW or GREEN	dECIMAL POINT RED YELLOW or GREEN $1{ }^{80}$
Cllps for ' $125^{\prime \prime}$ or $\mathbf{2}^{\prime \prime \prime}$ Sorry no elips for rectangular and triangular LED's.	We also supply Alarm Equipment (Retall \& Trade). PERSONAL CALLERS ONLY
All are top quality LED's-compare price with any other AdI P. \& P. 60p. Add VAT 15% (carflage free over £5). Export P. \& P, £1-00. Trade enquiries welcome.	
WE ARE WARRINGTON'S SUPPLIERS OF CB GEARI	
SHOP HOURS $9.30-6 \mathrm{pm}$ (5 pm Sat.). Closed every Thursday In June and July. W. WEBB ELECTRONICS	
41 WINWICK STREET, WARRINGTON, CHESHIRE. Tel. 54174	

DESIGNERS AND HOBBYISTS LOOK NO FURTHER!

THE E.A.C. MIGHTY MO IS HERE. It is the latest in sound transducers, comes complete in module form and is ready to use by just connecting into 0.8 to 20 volts D.C. You will get a very loud audio output of around 100 DB at 9 volts D.C. using only 4 mill amps nominal (the secret is in the drive circuit).
Only £3-90 per unit, plus $15 \%+$ (60 p p\&p).
Further discounts for quantity.
2. 9 kHz Piezo sound element 35 p . Element cavity for above 29 p . SPECIAL OFFER on components (all fully ouaranteed and branded). Capacitors electrolytic 100 mF 98 v radial ${ }^{5 p}$ each. Electrolytic 4.7 mF 35v radal 4 each. Polyester encapsulated 003 mF 250v A_{p} each.
detector IC with data only $\mathbf{5 1}$. 99 . Transistors. BC182L 8 p each. BC184L 6 p each. TBC546B (IC 200 mA) 6 p each. Zener dlodes. BZX79 5.6v 8.5p each. 194001 3p each. SMOKE ALARM (IC)
KIT. Everything supplled to make a professional smoke detector (case not supolied). Krits Everyining supolied to make a protessional smoke detector (ease not supplied).
Parts suppled are ready dritled PCB , radlal isotope detector. Plezo electro sound transPueer, IC resistors capacitors etc. Only $£ 7$. 99 . Ready bulli, tested guaranteed and cased
det dueer,
$£ 13.50$.

E.A.C. ELECTRONICS

(ADVANCED DESIGNERS AND MANUFACTURERS) 99-103 Clifton Road, Birmingham B12 8SR Tel No: 021 449-3850

GREENWVED

443D MILLBROOK ROAD, SOUTHAMPTON SO1 0HX All prices include VAT-just add 40p post. Tel (0703) 772501

THE SPECTACULAR

 1981 GREENWELDComponent Catalogue
Blgger and better than ever!!!

- 60p discount vouchers

First Class reply paid envelope - Free Bargain List

Priority Order Form
VAT inclusive prices
Quantity prices for bulk buyers SEND 75p FOR YOUR COPY NOW II!
VEROBLOC BREADBOARD New from vero, this versaflle ald for modate any size of IC. Blocs and be joinedtogether. Bus strlos on $X \& \times$ axls-total 360 connexion polnts for just £ $4-15$ (Pholo shows 2 blocs)

TTL AND REED PANEL 252974 Serles ICs-Gates and complex
logic. 20 asstd. ICs on panels $£ 1 ; 100$ ICs loglc.
84.
2527
 IN4006 DIODES
Speclal purchase of 1A rects, Russian made. Packed in boxes of $30, \mathrm{~EB} \cdot 50$ per DISC CERAMICS
$.22 \mu \mathrm{~F} 12 \mathrm{~V} 9 \mathrm{~mm}$ da. ldeal for decoupling. 00 for $£ 2$-75, 1000 220. 00
$0.5 \mu \mathrm{~F} \quad 12 \mathrm{~V} \quad 15 \mathrm{~mm}$ dia. $100 \mathrm{El} \cdot 50 ; 1000$
TRANSISTOR PACK K516 Take advantage of thls unbellevable offerll plastlc package at an incredibly low, low pricell Almost all are marked wlth type number-almost all are full spec deylces, some have bent leads. Over 30 different types have been found by us, Including
BC184/212/238/307/328; BF196/7; ZTX107 /9/342/450/550 etc. Only avallable as a mixed pack at $£ 3 / 100 ; £ 7 / 250 ; £ 25 / 1000$. CALC CHIPS 60p ! ! New full spec, supplled with data. Type
MK50321-full function Inc memory. Only 60 p .

COMPONENT PACKS
12 W , with a good range of values. $\mathrm{f} 1 \cdot 75$. K 505 , with a good range of values. 20 assorted potentlometers, all types including single, ganged, rotary and Bllder. $\Sigma_{1} \cdot 70$.
$\mathbf{K} 511$
200
caps from a fow of to 200 mica, ceramle ariety, $\mathbf{~} 1-20$. K514 100 sllver mica caps from 5 pF to a
few thousand pF. Tolerances from 1% to fow thousand pF. Tolerances from 1% to
$10 \% . £ 2.00$. PNP translators in plastlc packaoe Almost all are marked, fult spec devices but some have bent leads. Over 30 different types have been found by us; inc.
BC184/212/238/307/328; BF196/7; ZTX107/ $8 / 9 / 342 / 450 / 550$ etc. Look at the low pricel $8 / 90$ for $£ 3 \cdot 00 ; 250$ for $£ 7.00 ; 1000$ for $£ 25$.
K 520 Swltch pack-20 diferent, rocker, K520 Swltch pack-20 different, rocker,
sllde, rotary toggle, push H_{t} micro, etc. sllde, rotary, toggle, push, micro, etc.
Only $£ 2-00$. K521 Heats

2708 FULL SPEC £2

REGULATED PSU PANEL

 Exclusive Greenweld design, fully variable $0-28 \mathrm{~V}$ \& $20 \mathrm{~mA}-2 \mathrm{~A}$. Board contalns ali Only £7.75. Sultable transformer and pots E6.00. Send SAE for fuller details.
TRANSFORMERS

 Malns primary, 50 V 20A sec. $£ 20$. Malns ALFAC PCB TRANSFERS Lines, curves, dots, pads, DIL pads, etc. BARGAJN LIST 13 10 page $A 4$ list with 800 different items, many unusual, all at cut-price-switches, relays, pots, R's, C's, connectors, hard-ware, semiconductors, meters, displays, packs, panels, motors etc. etc. And Hs packs, panels, motors etc. etc. And
FREEI-just send 9×4 stamped SAE.

4 TERMINAL REGS
$\mu A 78 M G$ In power minl-dip case $5-30 \mathrm{~V}$ at
HA. £1.00.
HA79MG Negatlve version of above. £1-20.
Only 4 extra components required (50 p extra) to make a fully varlable supplyl!

1W AMP PANELS

A011 Compact audio amp Intended for record player on panel $95 \times 65 \mathrm{~mm}$ Including vol. control and switeh, complete around LM380N or TBA820M, there is a speed control clrcuit using 5 translstors. 9 ON operation, connexion data supplied. ONLY $£ 1 \cdot 50$

VU METERS

-20 to +5 dB . $250 \mu \mathrm{~A}$ movement. Ondy $\mathbf{8 1} 75$, or $£ 3.00$ pal

OP-AMP PSU KIT

A198 All parts + Instructions to make a
$50 \mathrm{~mA}+15,0,-15 \mathrm{~V}$ supply from mains input. Only £i-95
COPPER CLAD BOARD K52 All pleces too small for our etching hits. Mostly double slded fibreglass
250 gm (approx. 110 sq Ins) for just El -00.

JOB LOT OF

COMPONENTS

9500 1N4006; 10000 $\cdot 033 / 50 ; 2200010 \mathrm{pF} / 50$; $15000 \cdot 22 / 12 ; 11000270 \mathrm{pF} / 50 ; 1500068 \mathrm{pF} / 50$ 3000 various resistors. Total 112,500
components for $£ 400$ inc. VAT \& carr
12 VOLT INDICATORS Ideal for Iloht chasers, etc. Minlature
$12 \mathrm{~V} ~$
75 mA wire ended lamps in yellow, r. 10p each 20 each colour, total 100 for $£ 5 \cdot 50$.

PANELS

2521 Panel with 16236 (2N3442) on small heat sink, 2 N2223 dual translstor, 2 BC108, dlodes, caps, resistors, etc. 60p. 2482 Potted Osclliator Module works from $1-20 \mathrm{~V}$, can be used as LED flasher ($3 V$ min). Supplled with connection data relay panel-co
reeds, $6 \times 2 \mathrm{~S} 030$ or $2 \mathrm{~S} 230,6 \times 400 \mathrm{~V}$ rects + Rs, 50 p .
2529 Pack of ex-computer panels contalnIng 74 serles ICs. Lots of different gates and complex logic. All ICs are marked
with type no. or code for which an Identification sheet is supplled. 20 ICs \$1.00; 100 ICs $£ 4.00$.
A504 Black case $50 \times 50 \times 78 \mathrm{~mm}$ with octal base. PCB Inslde has 24 V reed
relay, 200 V 7 A SCR, $4 \times 5 \mathrm{~A} 200 \mathrm{~V}$ rects. relay, 200
etc. 60 p.

ODDS \& ENDS

Transformer, malns in, 1770V 10mA out W847 PCB mntg. relay $11 \times 33 \times 20 \mathrm{~mm}$. 37R 5-10V SPCO 3A. 95p. 901 A5 PickerIng DIL relay 500 R, SP make 3.7-10V, ex-equip on PCB. 75p

MW windings. 45 p .
$10 \mathrm{M} \frac{10}{i} \mathrm{~W} 5 \% \mathrm{CF}$ Resistors-pack of $200 \mathrm{E1}$ 40 W amp PCB $+\mathrm{cct}+$ layout, $£ 1 \cdot 00$. All parts to make $£ 3.50$.
$1 \% \frac{1}{W}$ W's-111k, $333 \mathrm{k}, 500 \mathrm{k}, 900 \mathrm{k}, 950 \mathrm{k}$ FNA5220 2 digit ${ }^{\frac{1}{4} / 1} 7$-seg dilsplay on PCB, CC. With date E1-50.
7 7-seg displays: FND $360,367,501$, all 50 p 7-seg displays: FND360, 367, 501, all 50 p ;
530,847
850, all $£ 1.50$, Regs, TO3 case: 7924 120p; 7885 100p;
7808 100p; 7912 100p; 78CB 230 p . Others on B/L 13 Op-Amps: $\mu A 4136$ 130p ; μ A 776 145p: $\mu A 777$ 300p; μ A318 245p.
Isolators: $F C D 831$;
Isolators: FCD831, IL15, TIL118, all 50 p.
P.C. ETCHING KIT MK V The best value in etching kits on the market-contalns to0 sq Ins copper clad board, Ferrlc Chlorlde, Etch resist pen
abrasive cleaner, two minhature drill blts etching dish and Instructions. All for ef. 95.

Rapid Electronics

HILLCROFT HOUSE, STATION ROAD, EYNSFORD, KENT.

SWITCHES
Subminature toggle
SPST 55p
SPDT
60p DPDT75p SPST 35p DPDT 48p Slide switches
Miniature 14p Standard DPDT 16p Rotary switches
$1 \mathrm{P} 12 \mathrm{~W}, 2 \mathrm{P} 6 \mathrm{~W}, 3 \mathrm{P} 4 \mathrm{~W}$, or 4 P 3 W 55 p ea. Push to make 15 p . Push to break 22 p . Push to make 15p. Push
$\frac{1}{2}$ Resistor klt. Contains 10 of each value from
480 p each
480p each.
Ceramic eapacitor kit. Contalns 5 of
$370 p$ each.
Polyester Capacitor klt. 5 of each value from 0.01 to 1 uF (65 capacitors). 575p Nut and Bolt Kit. Total 300 items. 140 p 256 B
25 6BA i" bolts 50 6BA washers 50 6BA nuts CAPACITORS
Polyester. Radial leads. C280 type. 0.01 0.015, $0.022,0.033,{ }^{6} p ; 0.047,0.1,7 p$;
$0.15,0.22,9 p: 0.33,0.47,13 \mathrm{p} ; 1 \cdot 0,23 \mathrm{p}$. Electrolytic. Radial leads.
$\begin{array}{ll}1 / 63 \mathrm{~V}, 2.2 / 63 \mathrm{~V}, 4.7 / 63 \mathrm{~V}, & 10 / 25 \mathrm{~V}, 7 \mathrm{p} \text { : } \\ 22 / 25 \mathrm{~V}, 47 / 25 \mathrm{~V}, \mathrm{D}: 100 / 25 \mathrm{~V}, 9 \mathrm{p}: 200 / 25 \mathrm{~V}\end{array}$ $22 / 25 \mathrm{~V}, 47 / 25 \mathrm{~V}, 8 \mathrm{p} ; 100 / 25 \mathrm{~V}, 9 \mathrm{p} ; 220 / 25 \mathrm{~V}$ TRANSISTORS

AC128	$\mathbf{2 5}$	BC178	18	BD131	35
AC116	$\mathbf{2 5}$	BC182L	10	BD139	35
AD161	40	BC184L	10	BD140	35

AD161	40	BC184L	10	BD140	35
AD162	40	BC212L	10	BFY51	23
BC107	10	BC214L	10	MJ2955	100
BC108	10	BC557	10	TIP2955	60
BC108C	12	BC548	10	TIP3055	55

BC108	10	BC547	10	TIP2955	60
BC10BC	12	BC548	10	TIP3555	55
BC109	10	BD131	35	ZTX107	$\mathbf{1 2}$

LINEAR

741	18	LM380	so	NE555	23
CA3046	60	LM381	120	NE556	55
CA3080	70	LM382	120	SN76477	
CA3130	30	LM1458	40	TL081	40
CA3140	45	LM3900	50	TL084	110
ICM7555	90	LM3909	70	XR2206	300
LF351	45	LM3914	260	ZN414	100
LF356	90	LM3915	260	ZN425E	390
LM324	45	LM13600	120	TBA800	80

Same day despatch * Competitive prices Topquality components * In-depth stock

ELEGTROALIUE BEST SELLERS

AECHARGEABLE CELLS by SANYO-CAONICA. Size AA 99p. C 2.21, D 3.76. PP3 4.10 CHARGERS PP3, C 2.43. D 3.99 . PLASTIC BOXES PB1 $116 \times 17 \times 35 \mathrm{~mm} 62 \mathrm{p}$
Bieadboards Euro 5.70N. Veroblock 3 .
 (Many more values in this fange).
Variable Diecon 100 pt 2.08, 500 pF 3.21 ELECTROLYTICS full ange
COMME CTORS J" jeck plug 32p skt 1
DIP header 14 pin 3 go. 16 pin 43 p
Ouick test mains blach 5.25
Fuse holders 20 mm panel 22 p , chassis $6 a$
Heat sinks Power $1.25^{\circ} \mathrm{CW} 285$
Heat sinks Power 1.25° CW 2.85; linget type T03 25p. T0220 25p
INTEGRATED CIRCUITS - hinderde
LM380N 99p. LM3914N 2.68. \$566B 2.14, TCA965 1.20. 555 23p. CA3140E 40 Cholders 8 pin "9p. 14-40 pin $1 p$ per pin
KNOBS. serew fittings $子$ " Irom 16%.

Magneto resistars from 1.60 N
Meters. panell $60 \times 45 \mathrm{~mm} 50$ uA 1 A ea 4.80
Opto LEDS red 7p. Yellow $9 p$. green 11 p : ultiabright 21 p all colours
LEO drivers UAAI
POTENTIOMETERS catbon 22 mm dis 100A-2M2 lin. 220R- 4 M 7
Shiders mano 72p. steread 1.18. berei 34 p
PHINTEO CIRCUIT MATE ed 1.5
PRINTED CIRCUIT MATERIALS. $300 \times 150 \mathrm{~mm}$ S/S SRSP $1.25,1 / \mathrm{gl} 1.90 .500 \mathrm{gm}$

 440. IP4 4 N 42 A ea 45 . TIP $2955 /$ /IP 3055 ea 55

SAONS ATtex C C CCN. CX or X 25 E Ea
ISO IIP cordess with charger 24.00 M
SO IIP cordtess with charger 24.00 M . 40 N . Oryx 50 temperalure controlied 11.50 N
 ea 40 p Time swich 13 A 3 on/3 off per day 14.68 N . Min toggles silver contacts SPD
57 p . DPOT 80 p . 3POT 1.64 . 4 PDT 2.75 DII pold Miniature drills. I2V dc TIIAN 10.2 BN. TITAN kil 17.06 N . Stand 12.00 N .
Tools CK phers. 4.20 . cutiers 6.10, stippers 4.95 .
Vero witing sratem kit 4.42, wite 1.17
Coro puting sstem kit 4.42, wirte 1.17
Nascom I buih f 140.00 N
Computers Nascorm 1 buih $£ 140.00 \mathrm{~N}$
MASCOM 2 kit $\mathbf{2 9 5 . 0 0}$ complete
32.50 N . 16 K RAM kit 110.00 N (lete (less 8×4118; f 225.00 N). P/S hit. 3 ami

7w20 On
Porthern Bianch (Personal Shoppets anlyd 680 8urnage Lane. Bur

Receivers and Components

 FIEREGLASS $12^{\prime \prime} \times 8^{\prime \prime}$ \&1-70.14" $\times 6^{\prime \prime}$ \&i 50 . D.S. 10$\}^{\prime \prime \prime} \times$ $\mathbf{7}^{\prime \prime}$ £1-35. $8^{\prime \prime} \times 7^{\prime \prime} £ 1 \cdot 10$. PANEL WITH 40 ASSORTED 74 SERIES I.Cs. $£ 1-60.20$ WIRE ENDED NEONS $£ 1 \cdot 20$
SMALL 3 TRANSISTOR AUDIO AMPS $400.3-£ 1.300$ SMALL 3 TRANSISTOR AUDIO AMPS 40p. 3- $£ 1.300$ 7 L日S ASSORTED COMPONENTS \&3. 95. 3 ASSORTED M.C. METERS E3. LIST 20p. REFUNDABLE. POST 50p INSURANCE ADD 20p. J. B. RADIO
2 BARNFIELD CRESCENT, SALE, CHESHIRE

TURN YOUR SURPLUS capacitors, transistors etc., into cash. Contact Coles Harding \& Co., 103 South Brink, Wisbech, Cambs. 0945 4188. Immediate settlement.

MIXED PACKS. 200 components £4. 100 $£ 2 \cdot 50$. 100 transistors $£ 5$. 100 diodes $£ 1$. 50 connectors $£ 1$. 1920s onward valves, wireless. Lists 25p SAE. SOLE ELECTRONICS, EE, 37 Stanley Street, Ormskirk, Lancs L39 2DH.

VEROBOARD $0 \cdot 1$ stripboards average size $\mathbf{3 1}_{2} \times 5_{2} 45 p$ each. Orders to ALCO ELECTRONICS, 5 Sharon Road, West End, Southampton.

QUALITY COMPONENTS at competitive prices. SAE lists. RKS ELECTRONICS, 13e Queens Terrace, Sherborne, Dorset.

Veteran \& Vintage

"SOUNDS VINTAGE"
The only magazine for all vintage sound
enthusiasts, packed with articles by top
writers, covering gramophones, phono-
graphs, 78 s , wireless, news, history, reviews,
etc.
Bimonthly. Annual subscription $£ 6.60$
(airmail extra). Send 75 por sample copy.
28 Chestwood Close, Billericay. Essex

Books and Publications

BOOKS. BOOKS. BOOKS. Large range of radio and electronic books in stock. Send S.A.E. for lists. Servio Radio, Dept. EE7, 156-158 Merton Road, Wimbledon, London SW 19 1EG.

MUSIC MAKER. Typewriter Keyboard replaces piano type. Amateur organ builders send $£ 1.00$ for your copy-post free"QWERTONIC MUSICAL KEYBOARD" a new book by P. G. Hoche to 71 Elmfield Avenue, Teddington, Mddx. TWll 8BX.

OUT OF PRINT Book Service. 17 Fairwater Grove(E), Cardiff. Send S.A.E. for details.

[^3]
CLASSIFIED

The prepaid rate for classified advertisements is 24 pence per word (minimum 12 words), box number 60 p extra. Semi-display setting £6. 16 per single column centimetre (minimum 2.5 cm). All cheques, postal orders, etc., to be made payable to Everyday Electronics and crossed "Lloyds Bank Ltd.'" Treasury
notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Everyday Electronics, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St., London SE1 9LS. (Telephone 01-2615942).

SERVICE SHEETS from 50p and SAE. Catalogue 25 p and SAE. Hamilton Radio, 47 Bohemia Road, St. Leonards, Sussex.

Any single service sheet £1/L.S.A.E. Thousands different Repair/Service Manuals/Sheets in stock. Repair data your named T.V. $£ 6$ (with circuits £8). S.A.E. Newsletter, Price Lists. Quotations.

AUSEE, 76 CHURCHES, LARKHALL, LANARKSHIRE (0698 883334).

Software

CARDBOARD COMPUTER: Learn Assembly Language Programming and Computer Architecture. $£ 8.97$ inc VAT. Also Solar Cells, Science Kits, Energy Books, Stirling Engines, Space Blankets etc. etc. Send 25p for lists. Edencombe Ltd., Dept PM., 34 Nathans Road, North Wembley, Middlesex HA0 3RX.

SIXTY ZX80/81 PROGRAMS. Specify which, listings only $£ 4 \cdot 95$, includes a multitude of games, utility programs, home finance, maths, cheque book, plus more in our "ZX80/81 Programs'. Includes hints ' n ' Tips. From Sussex Software, Wallsend House, Pevensey Bay, Sussex.

For Sale

NEW BACK ISSUES OF "EVERYDAY ELECTRONICS". Available 85p each Post Free, cheque or uncrossed PO returned If not in stock. BELL'S TELEVISION SERVICES, 190 Kings Road. Harrogate, Yorkshire. Tel: (0423) 55885 .
SECONDHAND ELECTRONIC TEST equipment including oscilloscopes, generators, psu's. NORFAB PLANT AND MACHINERY. Telephone Potter Heigham (069-27) 721.

Miscellaneous

PRINTED CIRCUITS. Make your own simply, cheaply and quickly! Golden Fotoka Light Sensitive Lacquer-now greatly improved and very much faster. Aerosol cans with full instructions. $£ 2 \cdot 25$. Developer 35p. Ferric Chloride 55p. Clear Acetate sheet for master 14p. Copper-clad Fibre-glass Board approx. 1mm thick £1•70 sq.ft. Post/packing 75 p. WHITE HOUSE ELECTRONICS, PO Box 19, Castle Drive, Penzance, Cornwall.

	LED	COPPER	WIRE
SWG	1 lb	$\frac{1}{2} 16$	± 16
10 to 19	2.60	1.60	0.70
20 to 29	2.65	1.70	0.75
30 to 34	3.10	1.90	- 0.85
35 to 39	$3 \cdot 30$	2.50	1.05
40 to 43	4.75	2.55	1.90
44 to 48	5.80	3.65	$2 \cdot 20$

FREE WIRE TABLES WITH EACH ORDER INDUSTRIAL SUPPLIES 102 Parrswood Road, Withington, Manchester 20
Prices full y inelusive in U.K.

THE SCIENTIFIC WIRE

 COMPANY| ENAMELLED COPPER WIRE | | | | |
| :---: | :---: | :---: | :---: | :---: |
| SWG | 11 b | 802 | 402 | 202 |
| 8 to 29 | 2.76 | 1.50 | $0 \cdot 80$ | 0.60 |
| 30 to 34 | 3.20 | 1.80 | 0.90 | 0.70 |
| 35 to 39 | $3 \cdot 40$ | $2 \cdot 00$ | $1-10$ | 0.80 |
| 40 to 43 | 4.75 | $2 \cdot 60$ | $2 \cdot 00$ | $1 \cdot 42$ |
| 44 to 47 | $5 \cdot 90$ | 3.90 | 2-39 | 2.00 |
| 48 to 49 | $15 \cdot 96$ | $9 \cdot 58$ | 6.38 | 3.69 |
| SILVER PLATEO COPPER WIRE | | | | |
| 14 to 30 | 6.50 | 3.75 | $2 \cdot 20$ | $1 \cdot 40$ |
| TINNED COPPER WIRE | | | | |
| 14 to 30 | 3.85 | $2 \cdot 36$ | $1 \cdot 34$ | 0.80 |

Prices Incl. P \& P vat. Orders under $£ 2$ add 20p. SAE
for List of Copper/Resistance welcome Copper/Resistance wire. Dealer enquiries

Reglstered Office 22 Coningsby Gardens.

GLASS FIBRE OPTIC LIGHT GUIDE multistranded 0.031 inch distal diameter, 80 p per metre, 0.064 inch $£ 1.20$ per metre. Minimum order value $£ 2 \cdot 40$ c.w.o. D. LLOYD (NYEWOOD EQUIPMENT), 91 Tilmore Gardens, Petersfield, Hampshire.

DIGITAL WATCH BATTERY

 REPLACEMENT KIT

These watches all require battery (power cell) replacement at regular intervals. This kit provides the means We supply eyeglass, nonmagnetic tweezers, watch screwdriver, case knife and screwback case opener, Also
one doz. assort. push-pieces one doz. assort. push-pieces, full instructions and battery
identification chart. We then identification chart. We then supply replacement batceries you fit them. Begin now.
Send for complete kit Send $\mathrm{f9}$ for complete kit
and get into a fast growing business. Prompt des patch.

BOLSTER INSTRUMENT CO. (EE28)
II Percy Avenue, Ashford, Middx., TWIS 2P B

BALLARD'S OF TUNBRIDGE WELLS have moved to 54 Grosvenor Road. No lists. SAE. All enquiries phone T/Wells 31803.

LEARN
 ELECTRONICS WITHOUT SOLDER

Build electronic

 circuits without solder on a Roden S-Dec This has built-Incontacts and holes into which you plug your components Suitable for all ages. Can be used time after time. Ideal gitt for time after time. Ideal gitt for
students or experimenters. Students or experimenters.
Full instructions and 2 circuit Fill instructions and 2 circu
diagrams with each S-Dec. Seno cheque or P. 0 . to: Roden Products, Dep EE High March, Daventry. Normants. NNIT 40E. $=3,84$

Notsomuchahobby...morea
 work of art
 The application of woodworking techniques plays a major part in all woodworking projects. Practical Woodworking's unique and authoritative style of approach explains basic and advanced methods and incorporates a wide variety of designs and projects.
 Features in our July issue include: an elegant canterbury stand from Thomas Sheraton's design book; modern ideas on a garden seat design from Ashley Cartwright a prominent young British designer - this and other matching garden pieces were featured in The Chelsea Garden Flower Show; a fishing stool for the new season, and a lantern greenhouse which uses plastic sheeting instead of glass.

 PAACTICAL

 PAACTICAL

 wood workina

 wood workina

 July Issue 70p

 July Issue 70p}
ORDER FORM PLEASE WRITE IN BLOCK CAPITALS

Please insert the advertisement below in the next evallable issue of Everyday Electronics for
Insertions. I enclose ChequelP.O. for £.......................................
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Everyday Electronics)

| | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |

NAME

ADDRESS

\qquad
\qquad

Send to: Claselfled Advertisement Manager
EVERYOAY ELECTRONICS
GMC, Classlfied Advertisements Dept., Room 2397 ,
King"s Reach Towor, Stemford Street, London SEi 0 .s.
Telephone 01-281 5942

Rate:

24 p per word, minimum 12 words. Bor No. eep extra.

R.C.S. LOUDSPEAKER BARGAINS

 $15 \mathrm{ohm}, 3 \ln .5 \times 3 \mathrm{in} .7 \times 41 \mathrm{n} . \mathbf{E 1} \cdot 50 ; 120 \mathrm{osm}, 3 \mathrm{iln} \mathrm{dia}$. $£ 1.50$.

LOW VOLTAGE ELECTROLYTICS

 $65 \mathrm{p} ; 50 \mathrm{~V} 95 \mathrm{p} ; 5600 \mathrm{mF} 76 \mathrm{~V}$ £1.75.

HIGH VOLTAGE ELECTROLYTICS $\begin{array}{rllll}8 / 450 \mathrm{~V} & 45 \mathrm{p} & 8+8 / 450 \mathrm{~V} & 75 \mathrm{p} & 50+50 / 300 \mathrm{~V} \\ 16 / 350 \mathrm{~V} & & 85 \mathrm{p} & 8+16 / 450 \mathrm{~V} & 75 \mathrm{p} \\ 32+32+32 / 325 \mathrm{~V}\end{array}$ $\begin{array}{llll}162 / 350 V & 750 & 80+20 / 450 \mathrm{~V} & 75 \mathrm{p} \\ 20 & 32+32+3 / 2735 \mathrm{~V} \\ & 100+100 / 275 \mathrm{~V}\end{array}$
 $50 / 500 \mathrm{~V} \quad £ 1 \cdot 20 \quad 32+32 / 500 \mathrm{~V} \quad £ 1 \cdot 30 \quad 220 / 450 \mathrm{~V}$
MANY OTHER ELECTROLYTICS IN STOCK
TRIMMERS 10pF, 30DF, 50 DF, 5p. 100pF, 150pF, 15p. CONDENSERS VARIOUS, 1 pF to 0.01 mF , 3D. PAPER 350V-0.17p; 0.5 13D: $1 \mathrm{mF} 150 \mathrm{~V} 20 \mathrm{D} ; 2 \mathrm{mF} 150 \mathrm{~V} 20 \mathrm{D}$
 MICRO SWITCH SINGLE POLE CHANGEOVER 30D TWIN GANGS 120pF 50p; 500pF $\mathbb{E 1}$.
GEARED TWIN GANGS 25DF 95p; 365DF E1: $365+365+25+25 \mathrm{pF}$ E1.
NEON PANELINDICATORS 250 V . Red 1$\} \times 45 \mathrm{p}$. ILLUMINATEO ROCKER SWITCH. Single pole. Red 65p. RESISTDRS. 10 R to 10 M . $\ddagger \mathrm{W} 20 \% 2 \mathrm{p} ; 2 \mathrm{~W}, 10 \mathrm{p}$. HIGH STABILITY. $\ddagger W^{2} \% 10$ ohms to 1 meo. 2 p Ditto 5%. Preferted values 100 hms to $10 \mathrm{meg} .3 \mathrm{3p}$. WIRE-WOUND RESISTORS 5 watt, 10 watt, 15 watt 15D. CASSETTE MOTOR. 6 vOItE1 00 .
ALUMINIUM CHASSIS 18 s.w.o. Undrliled, 4 sides, riveted corners; $6 \times 4 \times 2 \neq 1 \mathrm{~m} .-61 \cdot 20 ; 8 \times 6 \times 21 \mathrm{in}-. \times 1 \cdot 50 ; 10 \times 7 \times$

 ${ }_{81}^{8} \times 6 \mathrm{ln} .-600 ; 14 \times 3 \ln .-60 \mathrm{p}: 12 \times 51 \mathrm{n} .-60 \mathrm{p}: 16 \times 10 \mathrm{tn}$.
BLACK PLASTIC construction box with brushed aluminlum .
BRIDGE RECTIFIER 200V PIV ; amp 50p. $2 \mathrm{amp} £ 1 \cdot 00$.
mp £2-30
TOGGLE SWITCHES SP 30N. DPST 40P. DPDT S0p.
BSRTVIZ BSR 170/2 BUDGET SINGLE PLAYER Ideal for disco or HI -Fi system; stereo cartridge cuelno device
and blas compensator: 3 speeds
Post $£ 2$

BSR STEREO CARTRIDGES SC7 medium output $£ 2$. Sonotone 9TA-HC $£ 2 \cdot 50$. V. 100 Magnetlc $£ 7$. MAINS TRANSFORMERS
 50p
$75 p$
$65 p$ 70p
950 over.

\qquad

\qquad neas so.

MAINS INTERCOM batreries no WIRES $£ 37.99$ PER PAIR + VAT $£ 5.70$ + P\& $£ 1.95$

 The modern way of instant 2-way communications Just plug into power socket. Ready to use. Crystal clear communications from room to room. Range \pm-mile on the same mains phase. On/off switch. Volume control, with 'buzzer' call and light indicator. Useful as inter-office intercom. between office and warehouse, in surgery and in homes.Also F.M, 2 channel "touch" model $\mathbf{2 5 5} \cdot 95$ per pair AMT $8.40+$ P\&P $£ 2 \cdot 15$.

+ NEW AMERICAN TYPE CRADLE
TELEPHONE AMPLIFIER

Latest cransistorised Telephone Amplifier, with detached plug-in speaker. Placing the receiver on to the cradle activates a switch for immediate two-way conversation without holding the handset. Many people can listen at a time. Increase efficiency in office, shop, workshop. Perfect for "conference
calls: leaves the user's hands free to make consult fles. No long waiting saves time with notes, distance calls. On/oft switch, volume control conversation recording, model at $£ 20 \cdot 95+$ VAT $£ 3.15$

DOOR ENTRY SYSTEM

No house / business / surgery should be without a DOOR ENTRY SYSTEM in this day and age. The modern way to answer the door in safety to un-
wanted callers. Talk to the caller and admit him only if satisfied by pressing a remote control bution which will open the door electronically. A boon for the invalid, the aged, and busy housewife. Supplied complete d.i.y. Kit with one internal Teledhone, outside Speaker panel, electric door lock release (for Yale type surface latch lock): mains power unit,
 phones $£ 69 \cdot 95+$ VAT $£ 10 \cdot 50+$ P\&P $£ 2 \cdot 45$.

10-day price refund guarantee on all items
Access and Barclaycard welcome.
WEST LONDON DIRECT SUPPLIE
169 KENSINGTON HIGH STREET, EE 7
(Pre-Amp at $£ 6$ and Power Pack

available.)

ARE YOU FULLY ADAPTABLE?

We have $12 v$ Transformers at 400 mA on a panel with Rects. at only £1-10.
O.K. for $12 v$ mains adaptor for radio, cassettes, etc.
Boxes suitable for above available at $\mathbf{5 0 p}$ each.
SOLAR CELLS $\frac{z^{\prime \prime}}{4} \times z^{\prime \prime}$. Give 20 mA at $\frac{1}{2} \mathrm{~V}, £ 1 \cdot 50$ each.
OFFER. Demo. Kit: 2 cells and motor for £4.50.
12v MINI RELAYS (Continental type)
2p \times-over 700R-40p each.
$4 p \times$-over 430R-50p each.
100's more bargains. Full Cats. sent with orders received or send large S.A.E. P. \& P. 50p.

POPS COMPONENTS

$38 / 40$ LOWER ADDISCOMBE ROAD
CROYDON, CRO 6AA 01-688-2950
P POPS SPECIAL OFFERS THIS MONTH \star Free LEDs + Cat. with every Order! STEREO POWER AMPLIFIER MODULE 25W per channel into 8 ohms. In kit form. Really easy to build with fully comprehensive instructions at only $£ 9 \cdot 99$.

Fully built and tested-only £11.99.

INDEX TO ADVERTISERS

Alcon Instruments

B.I.E.T. 442
Bi-Pak 443
B.K. Electronics 446
B.N.R.E.S. 509
Bull J. 499
Chordgate 500
E.A.C. 506
E.D.A. 496
Electroni-Kit 444
Electronize D
Electrovalue 508
Gemini 492
Global Specialties 447
Greenweld 508
Home Radio 442
Horizon Electronics 446
I.L.P. Electronics 448, 449
Intertext (ICS) 500
Litesold 442
Magenta Electronics 444, 445
Maplin Electronic Supplies
Maplin Electronic Supplies
Ltd. Cov. IV
Marshalls 504
OK Machine Tools 491
Phonosonics 505
PM Components 504
Pops Components 512
Powell T. Cov. III
Radio Component Specialists 512
Radio TV Components 508
Remco 442
Science of Cambridge 502, 503
Selray Book 506
Silica Shop 507
Teleman Products 491
Tempus 495
PLEASE MENTION EVERYDAY ELECTRONICS WHEN REPLYING TO
ADVERTISEMENTS

. 2 P. 50p.

E.E. PROJECT KITS

Intercom
Digital Rule
Freezer Alarm
LED Dice
Mini Siren
Modulated Tone Doorbell
Bench Power Supply
Car Actuated Driveway Light 3 Channel Stereo Mixer Signal Tracer Nicad Battery Changer
Auto Slide Charger
ICB Alarm
Phaser Sound Effects
Mini I.C. Radio
Sound to Light
Guitar Practice Amplifier
RG Action Tester
Precision Timer
Transistor Tester Soil Moisture Monitor Audio Effects Unit Phone Call Charge Jogger Darkroom Controller
Bicycle Alarm
Lights Failure Monitor
TTL Power Supply Unit
Duo-Deci Timer
*TTL Logic Probe
Bedside Radio
Auto Lighting-Up Warning
Brakesafe Monltor
Cricket Game
Zener Diode Tester
Signal Tracer
General Purpose Amplifier'
Autowaa
A.F. Sighal Generator

Courtesy Light Delay
Auto Phase
Battery Voltage Monltor
Lights Warning System
Autofade
"Dual Line Game
*Pre-tuned 4-Station Radio
Gas Sentinel
Cycle Direction Flasher
Cable and Pipe Locator
Stereo Headphone Ampllfier
Doorbell Register

ZB149	April 81	£19.25
ZB148	April 81	£28.00
ZB147	April 81	£11.75
ZB146	March 81	£7-50
ZB145	March 81	£7. 25
ZB144	March 81	£6. 25
ZB143	March 81	£48.50
ZB142	March 81	£22.00
ZB141	Feb. 81	£16.25
ZB140	Feb. 81	£7-50
ZB139	Feb. 81	£12.00
ZB138	Jan. 81	£9.00
ZB137	Jan. 81	£7-25
ZB136	Jan. 81	£23.30
ZB126	Nov. 80	£10.35
ZB127	Nov. 80	£19.00
ZB128	Nov. 80	£16.85
ZB129	Nov. 80	£10. 25
ZB130	Nov. 80	£21.00
ZB131	Nov. 80	£8.00
ZB132	Nov. 80	£5.00
ZB122	Oct. 80	£12. 25
ZB121	Oct. 80	£6.00
ZB123	Oct. 80	£17.25
ZB124	Oct. 80	£9. 25
ZB77	Sept. 80	£8.75
ZB78	Sept. 80	£9.50
ZB75	Sept. 80	£8.50
ZB76	Sept. 80	£3. 25
ZB74	Sept. 80	£14.25
ZB71	Aug. 80	£5.65
ZB68	Aug. 80	£7.50
ZB69	Aug. 80	£14.95
ZB79	July 80	£5 00
ZB80	July 80	£5.00
ZB81	July 80	¢6.00
ZB83	July 80	£19.25
ZB84	July 80	¢20.00
ZB85	July 80	£5. 25
ZB86	July 80	£19.25
ZB64	May 80	£4.80
ZB63	May 80	£3.60
ZB66	May 80	£10.25
ZB65	May 80	£25.00
ZB62	May 80	¢14.00
ZB61	Aprit 80	£27.00
ZB59	April 80	£14.50
ZB54	March 80	£3.75
ZB57	March 80	£15.25
ZB58	March 80	£3.60

Flve Range Current Limiter
Kitchen Timer
Touch Switch
Micro Music Box
Simple Short Wave Receiver
Morse Practice Oscillator
Slide/Tape Synchroniser
Power Supply 3-9V
Burglar Alarm
Baby Alarm
Opto Alarm
Radio Tuner MW/LW
3-Function Generator
One Armed Bandit
Lights-on Reminder
Signal Level Indicator
Universal Oscillator
Chaser Light
Low Power Audlo Amplifler
SImple Transistor Tester
Varicap MW Radio
Quiz Referee
Trailer Flasher
Electronic TunIng Fork
Power Supply 9V
Warbling Timer
Water Level Indicator
Voltage Splitter
Electronlc Canary
Tremolo Unlt
Electronic Dice
Intruder Alarm
Touch Bleeper
Transistor Tester
One Transistor Radlo MW/LW
TIme Delay Indicator
Mlcro Chime
Llahts Reminder for Car
Continuity Tester
Fuzz Box
Vehicle Immobiliser
Audlo Effects Oscillator
Radio MW/LW
Sound to Llght
Guitar Tone Booster
A.F. SIgnal Generator

Weird Sound Effects Generator
Chaser LIght Display
Car System Alarm

ZB53	March 80	£4.50
ZB55	March 80	£12.75
ZB56	March 80	£9.00
ZB45	Feb. 80	£17-00
ZB44	Feb. 80	£18.00
ZB43	Feb. 80	£6.00
ZB42	Feb. 80	£11-50
ZB47	Jan. 80	£4.50
ZB51	Dec. 79	£5.00
ZB40	Nov. 79	E8.50
ZB41	Nov. 79	¢5. 00
ZB108	Nov. 79	E14:75
ZB52	Nov. 79	£25.00
ZB33	Oct. 79	E21-00
ZB34	Oct. 79	£4.60
ZB36	Oct. 79	£4.50
ZB37	Oct. 79	£3-50
ZB4	Sept. 79	£17-50
ZB3	Sept. 79	£3.75
ZB2	Sept. 79	£5-50
ZB1	Sept. 79	£8.50
ZB12	Aug. 79	£4.75
ZB9	Aug. 79	£3.00
ZB7	Aug. 79	£8.90
ZB6	Aug. 79	£8. 25
ZB5	Aug. 79	£5-80
ZB111	July 79	£4-50
ZB15	July 79	¢3. 25
ZB19	June 79	£4.50
ZB18	June 79	£10.00
ZB24	May 79	£13.50
ZB23	May 79	E23.00
ZB27	Aprll 79	£3. 25
ZB100	Aprll 79	£4.00
ZB104	March 79	£7.25
ZB98	March 79	£4.00
ZB96	Feb. 79	£12.00
ZB32	Jan. 79	£4.50
ZB115	Jan. 79	£4.30
ZB106	Dec. 78	£5.00
ZB110	Dec. 78	£5.00
ZB109	Nov. 78	£3-50
ZB116	Oct. 78	£7-00
ZB112	Sept. 78	£7-00
ZB117	Sept. 78	£5.00
ZB119	Aug. 78	£10.00
ZB113	March 78	£3.50
ZB97	Feb. 78	£22.00
ZB92	Feb. 78	£4.50

* TEACH-IN 80 *

This popular monthly constructional series started in E.E. in 1979 and is a must for beginners to electronics. The sheer simplicity of the whole project experiments lends itself to be made by any beginner young or old. Basic technical principles and symbols explained in great detail. Start at the beginning with a hobby that could become a worthwhile career, our kit comes complete with all parts as specified by E.E.

List A, B and C £22.50. Monthly reprints from Óctober 1979 available at $\mathbf{4 0 p}$ each per month extra or $\mathbf{£ 4} \mathbf{5 0}$ for whole series.
*All E.E. project kits supplied with cases except items marked *. All kits come complete with items as specified plus Texas i.c. sockets where required, also veroboard connecting wire etc.

If you do not have the issue of E.E. which contains the project we can supply a reprint at $\mathbf{4 0 p}$ extra.
Personal callers please ring to check availability of kits.
All prices include post, packing and 15% V.A.T.

IONISER KIT

This negative ion generator gives you the power to saturate your home or office with miflions of refreshing ions. Without fans or moving parts it puts out a pleasant breeze. A pure flow of ions pours out like water from a fountain, filling your room. The result? Your air feels fresh, pure, crisp and wonderfully refreshing. All parts, PCB and full instructions £12.50
A suitable case including front panel, neon switch etc... $£ 10 \cdot 50$

Hours Mon-Friday 9-5.30 p.m. Sat. 9-4.30 p.m.
Callers by appointment only.
Telephone: 01-226 1489
T. POWELL

Advance Works, 44 Wallace Road, London N.I.

Visa/Access cards accepted
Minimum telephone Orders $£ 5 \cdot 00$ Minimum Mail Order $£ 1$,00
nncurcaro
VISA
 of the M4 and the North and South Circular Roads.
There is excellent street parking on meters a few steps away and Hammersmith Underground Station is nearby. Call in and see us soon.

Over 100,000 copies sold already! Don't miss out on your copy. On sale now in all branches WH Smith price £1.
In case of difficulty check the coupon below.

* Same day service on in-stock lines
* Very large percentage of our stock lines in stock
* All prices include VAT
* Large range of all the most useful components
* First class reply paid envelope with every order
* Quality components-no rejects-no re-marks
* Competitive prices
* Your money is safe with a reputable company

On price, service, stock, quality and security it makes
 first choice for components every time!

[^0]:

 \qquad

[^1]: POSTCODE
 Other Subjects
 cts
 Accredited by CACC

[^2]: * Maximum ratings at $25^{\circ} \mathrm{C}$ (except where marked **)

[^3]: ## Service Sheets

 BELL'S TELEVISION SERVICE for service sheets on Radio, TV etc. £l plus SAE. Colour TV Service Manuals on requast. SAE with enquiries to BTS. 190 KIng', Rd, Harrogate, N. Yorkshire. Tel: 042355885.

