

ell summer sake-barcans calorz?

MISIE

Lountile
Cha mathurid

SHilin be Eple mand

NEWS.

SC/MP Rules
 SYSTEM

aional semiconductors have reduced the price of the Mm52040 UU erasable PROM to only $£ 10.95$ lor a 512 byle PROM. We can supply these PROMs. blank at this price or for only a little exira we can supply them programmed wilh one of our soltware roultines. Examples are. voubug SC/MP control for System 68. 512 byles. program charge
KITBUG SC/w control for Intrakit. 512 byles. program charge $£ 11.00$ UBL SC/MP BASIC MiBL SC/MP BASIC lanquage, 4K byles, program charge ... E60.00 We can also arrange programming ha your spacificaion
TEMPORARY STORAGE
This manth we include in our stock list two new program starage media. The lirst is the ER3401 Electrically Alterable ROM which can be slill relain its data lor up io 10 years. The secand is a low pawer CMOS RAM the MM74C920 which has the high R/W spead of a RAM but can be run on standby batteries (ar even a charged capacitor) lor long periods without date loss. Both units come in a four bit wide configuration with the ER3401 having 1024×4 bits and the MM74C920 having 256×4 bits.
Prices per chip are:
ER3401E28.85 Mm74c920........... $£ 11.83$
LOW COST POWER SUPPLY
apply at 2.25 A plus a $-12 v$ and a $-5 v$ each av $[\pm 0.5 \mathrm{v}]$ variable electronic components are included with a specially wound transformer and PCB which can be mounted on the transiormer. The supply is suitable for most mPls and for other mixed vottage logic anits 297 Power Supply
NEW SCRUMPI PRICE
You can now have a complete MPU kit for less than f60! Our new price on our SCRUMPI kit is only E55.56 for SC/MP. 256 byles RAM, switches. LEOs. etc. For review see Practical Electronics Aug. 77 hiter kits we stock are:
NTROKT SC/MP From MS. requires TTY or KBOKIT
K80KIT adds to iNTROKI to give complete systen
£66.33
$\begin{array}{r}\text { £66.50 } \\ \mathbf{~} 334.33 \\ \hline\end{array}$

MPU SUPPORT

74COO Quad NAND 74 C 10 Triple NAND 74C42 BCD-Dec Decoder 74C157 Quad Selector 74C163 4 bit counter 74 C 164 PISO Shift reg 74 C 165 SIPO Shift reg 74 C 173 TriState Quad Latch DM8095 TriState Hex Buffer DM8095 Tristate Hex DM8096 Invert 8095 (8 True) DM81LS95 TriState Buffer (8 True)
DM81LS96 TriState Buffer (8 Inv) 1.45 DM81LS96 TriState Buffer (8 Inv) 1
DM81LS97 TriState Buffer $(4+4$ True) DM81LS98 TriState Buffer ($4+4$ Inv)

DS8833 TriState Transceiver (4 bit) 2.00 DM8678 CAB Char Gen 5×7 bit) 15.00 DM8678 BWF Char Gen $7 \times 9 \quad 15.20$ DM74LS 139 Dual 2-4 line decoder 1.50

MPU KITS

SCRUMPI
55.56

INTROKIT
KBDKIT (for INTROKIT)
-
349.30

SOFTWARE in 5204 PROMs
SC/MP VDUBUG
SC/MP NIBL (BASIC)
6800 HALBUG

MEMORIES

RAMS

MM2102-2 1 Kx 1 650nS RAM 2.11 MM2112-2 $256 \times 4650 \mathrm{nS}$ RAM $\quad \mathbf{3 . 0 8}$ MM 74C920 256×4 CMOS RAM 11.83 $21141 \mathrm{Kx4}$ RAM
24.00

Erasable PROMs

MM1702Q 256x8 11.90
MM52040 $512 \times 8 \quad 10.95$

MM2708Q 1024×8 31.15
N.B Can be supplied programmed

Elect. Alterable ROM
ER3401 1 Kx4 EAROM $950 n \mathrm{~S}$
28.25

Communications

MM5307AA Baud Rate Generator 12.68
MM5303 (AY-5-1013) UART $\quad \mathbf{6 . 3 4}$ Crystal for 5307

MPU Chips

SC/MP PMOS	$\mathbf{1 2 . 0 0}$
SCMP2 NMOS	$\mathbf{1 0 . 0 0}$

System 68
VEROCASE KIT 39.92
VDU KIT $\quad 83.34$
SC / MP Control Card with VDUBUG PROM
6800 Control Card with HALBUG PROM
4 K PROM Card (5204) with 2 blank PROMs
29.63

CLOCK CHIPS \& KITS

TYPE SPECIALFEATURES
 MM5309 $7 \mathrm{seg}+\mathrm{BCD}$. RESET ZERO

MM53117 seg + BCD
MM5312 $7 \mathrm{seg}+$ BCD 4 DIGIT ONLY
MM53137seg + BCD
MM5314 $7 \mathrm{seg}+\mathrm{BASIC}$ CLOCK
MM5314 $7 \mathrm{seg}+$ BASIC
MM5315 $7 \mathrm{seg}+$ BCD RESET ZERO
MM5315 $7 \mathrm{seg}+$ BCD RES
MM5316 Non-mpx ALARM
MM5316 Non-mpx ALARM
MM5318 7 seg + BCD External digit select MM5371 ALARM. 50 Hz
MM5378 CAR Clock. Crystal control LED
MM5379 CAR Clock. Crystal control Gas discharge MK5025 ALARM SNOOZE
MK50395 UP/DOWN Counter - 6 Decade MK50396 UP / DOWN Counter - HHMMSS MK50397 UP/DOWN Counter - MMSS 99 FCM 7001 ALARM. SNZ CALENDAR. 7 seg FCM 7002 ALARM. SNZ CALENDAR BCD CT7003 ALARM SNZ CALENDAR Gas discharge FCM 7004 ALARM. SNZ CALENDAR 7 seg AY5. 12027 seg. 4 digit AY5. 12307 seg . ON and OFF ALARM driver IC. MH15378 also includes crystal and trimmers When ordering kit please use prefix MHI, e.g. MHI 5309

DISPLAYS

DL707,	704,	$7010.3^{\prime \prime}$	1.70	Litronix class 2 product	
DL727.	728	$72105^{\prime \prime}$	(2 dig.)	DL707E	0.85
			4.31	DL727E (2 dig.)	2.00
DL747,	750	$74606^{\prime \prime}$	2.82	DL747E	1.80

MHI DISPLAY KITS

MHI DISPLAY MTS			
MH1707/4 digit 0.3"	7.60	MHI707E/4	4.30
MH1707/6	11.00	MHI707E/6	5.70
MHI727/40.5"	9.70	MHI727E/4	5.30
MHI727/6	13.80	MHI727E/6	7.20
MHI747/40.6"	11.40	MHI747E/4	7.20
MHI747/6	17.30	MHI747E/6	9.90

Any one or two of the above MH display kits will interface directly with any of the MHI clock kits

CASES (with perspex screen) SOCKETS
ERO $1.8^{\prime \prime} \times 51 / 2^{\prime \prime} \times 3^{\prime \prime} \quad 3.00$ 3.00
3.00

74COO Quad NAND 74 CO 4 Hex Inverter 74 C 10 Triple NAND 74 C 42 BCD $74 \mathrm{C4} 2$ BCD Decoder 74 C 1634 Quad Selecto 74 C 1634 bit counter 74 C 164 PISO register $74 C 165$ SIPO register $74 C 173$ 3S Quad latch 74LS139 Dual 2-4 Dec DM8095 3S Hex buffer DM8096 Inv 8095 DM81LS95 358 bit buff DM81LS96 Inv 95
DM81LS97 3S $4+4$ buffer DM81LS98 Inv 97

BITS \& BYTES
0.25 MM2102-2 $1 \mathrm{~K} \times 1$ RAM 2.11
0.25 MM2112.2 256×4 RAM $\quad 3.08$ MM74C920 256×4 CMOS 3.08 MM74C920 256×4 CMOS RAM
$\times 21141 \mathrm{~K} \times 4$ RAM $\quad 2400$ MM 17020256×8 EPROM 11.90 MM1702Q 256×8 EPROM $\mathbf{1 1 . 9 0}$
MM5204Q 512×8 EPROM $\mathbf{1 0 . 9 5}$ MM2708Q 1024×8 EPROM

EPROM prices for blank devices ER3401 1024×4 EAROM 28.85 MM5307AA Baud Rate Gen 12.68 MM5303 (AY-5-1013) UART 6.34 Xtal for 5307 TBA DM8678 Char Gen $\quad 15.20$
(both CAB \& BWF avail.)

CLOCK MODULES

LT601 Alarm Clock Module, similar to MA1002 MTX1001 Transformer

OLDE CLOCKS

In kit form or built these clocks are based on designs hundreds of years old Wood, stone and iron are used to reproduce authentic "olde worlde" wall clocks in full detall. The kits contain all you need including glue, screws, etc., and very comprehensive instructions. Stones for weights are excluded For coloured brochure please send $95 p$ stamps

PAYMENT TERMS

Cash with order, Access, Barclaycard (simply quote your number) Credit facilities to accredited account holders. 15\% handling charge on goods ordered and paid for then cancelled by custome All prices exclude 8% VAT PLEASE SEND 30p POST AND PACKING

SEPTEMBER 1977 Vol. 6 No. 9
Features
CHARGE COUPLED DEVICES 10
The bucket brigade are herel Understand them without 18
The primary aim here is to unwind the mystery around the subject 34
LASER LIGHTSHOWS 47
COMPONENTS - PART 13 47
R.F. chokes -
MICROFILE 51
Our monthly MPU magazine 52
ACTIVE FILTERS PART 3
ELECTRONICS - IT'S EASY - PART 43 62
The final part of our introductory series 68
Ever wondered why things go wrong? Find out NOW 73
Three pages of YOUR circuits. From you to you via us
Projects
SYSTEM 68 CPU BOARD 22
The heart of the matter - get the bits between your teeth! 27
Whether you like it straight or kinky this unit delivers! 16
CONTINUITY TESTER 38
LOUDHAILER 56
Data Sheet
LM 3919 TEMPERATURE SENSOR 59
Provides a guaranteed voltage output, with on chip sensing!
MC 14433 ANALOGUE TO DIGITAL CONVERTOR 60
$31 / 2$ digit A to D to build a DVM aroundNewsNEWS DIGEST6
ELECTRONICS TOMORROW 69
Information
SUBSCRIPTIONS 15
ETI CLOCK 15
T.SHIRTS
4658
4658
ETI BOOK SERVICE
ETI BOOK SERVICE
41
41
OCTOBER ISSUE PREVIEWED
OCTOBER ISSUE PREVIEWED 44
BINDERS 67
READER SERVICES INFORMATION 82
Offer

EDITORIAL AND ADVERTISEMENT OFFICE
 25-27 Oxford Street London W1R 1 RF
 Telephone 01-434 1781/2
 Telex 8811896
 HALVOR W. MOORSHEAD
 Editor
 RON HARRIS B.S.c
 Assistant Editor
 GARY EVANS
 Editorial Assistant
 JIM PERRY
 Specials Editor
 TONY ALSTON
 Project Development
 PAUL EDWARDS
 Technical Drawing
 SANDRA ZAMMIT-MARMARA
 Subscriptions
 MARGARET HEWITT
 Administration
 DAVID LAKE (Manager)
 BRENDA GOODWIN
 KIM HAMLIN
 Reader Services

For Advertising Enquiries ring MARK STRATHERN
 on 4341781 / 2

INTERNATIONAL EDITIONS

AUSTRALIA:	Collyn Rivers Publisher Les Bell Assistant Editor
HOLLAND:	Anton Kriegsman Editor-in-chief
CANADA:	Mike Kenward Editor
FRANCE	Denis Jacob Editor-in-chief

Electronics Today International is normally published on the lirst Friday of the month prior to the cover date

PUBLISHED BY
Modmays Lid
25.27 Oxford Street. W1R 1RF

DISTRIBUTED BY
Argus Distribution Lid (British Isles)
Gordon \& Gotch Lid (overseas)
PRINTED BY
QB Limited. Coichester

COPYRIGHT All material is subject 10 world wide Copyright protection. All reasonable care is taken in the preparatıon of the magazine to ensure accuracy bui ET cannot be held responsible fir it legally Where errors do occur a correction will be published as soon as possible afterwards in the magazine

74 SERIES
TTL IC'S

Type	Quantity		Type	Quantity		Type	Quantity	
	1	100		1	100			100
	£ p	£ p		$\varepsilon \mathrm{p}$	£ p		E p	£ ${ }^{\text {p }}$
7400	0.09	0.08	7448	0.70	0,68	74122	0.45	0.42
7401	0.11	0.10	7450	0.12	0.10	74123	0.65	0.62
7402	0.11	0.10	7451	0.12	0.10	74141	0.68	0.65
7403	0.11	0.10	7453	0.12	0.10	74145	0.75	0.72
7404	0.11	0.10	7454	0.12	0.10	74150	1.10	1.05
7405	0.11	0.10	7460	0.12	0.10	74151	0.65	0.60
7406	0.28	0.25	7470	0.24	0.23	74153	0.70	0.68
7407.	0.28	0.25	7472	0.20	0.19	74154	1.20	1.10
7408	0.12	0.11	7473	0.26	0.22	74155	0.70	0.68
7409	0.12	0.11	7474	0.24	0.23	74156	0.70	0.68
7410	0.09	0.08	7475	0.44	0.40	74157	0.70	0.68
7411	0.22	0.20	7476	0.26	0.25	74160	0.95	0.85
7412	0.22	0.20	7480	0.45	0.42	74161	0.95	0.85
7413	0.26	0.25	7481	0.90	0.88	74161	0.95	0.85
7416	0.28	0.26	7482	0.75	0.73	74163	0.95	0.85
7417	0.26	0.25	7483	0.88	0.82	74164	1.20	1.10
7420	0.11	0.10	7484	0.85	0.80	74165	1.20	1.10
7422	0.19	0.18	7485	1.10	1.00	74166	1.20	1.10
7423	0.21	0.20	7486	0.28	0.26	74174	1.10	1.00
17425	0.25	0.23	7489	2.70	2.50	74175	0.85	0.82
7426	0.25	0.23	7490	0.38	0.32	74176	1.10	1.00
7427	0.25	0.23	7491	0.65	0.62	74177	1.10	1.00
7428	0.36	0.34	7492	0.43	0.35	74180	1.10	1.00
7430	0.12	0.10	7493	0.38	0.35	74181	1.90	1.80
7432	0.20	0.19	7494	0.70	0.68	74182	0.80	0.78
7433	0.38	0.36	7495	0.60	0.58	74184	1.60	1.40
7437	0.26	0.25	7496	0.70	0.68	74190	1.40	1.30
7438	0.26	0.25	74100	0.95	0.90	74191	1.40	1.30
7440	0.12	0.10	74104	0.40	0.36	74192	1.10	1.00
7441	0.60	0.57	74105	0.30	0.25	74193	1.05	1.00
7442	0.80	0.70	74107	0.30	0.28	74194	1.05	1.00
7443	0.95	0.90	74110	0.48	0.45	74195	0.80	0.75
7444	0.95	0.90	74111	0.76	0.72	74196	0.90	0.85
7445	0.90	0.75	74118	0.85	0.82	74197	0.90	0.86
7446	0.80	0.75	74119	1.30	1.20	74198	1.90	1.80
7447.	0.70	0.68	74121	0.28	0.28	74199	1.80	1.70
Devices may be mixed to qualify for quantity price. Data is available for the above series of IC's in booklet form Price 35p.								

for the above series of IC's in booklet form Price 35p.

CMOS Cs					
CD4000	¢0.18	CD4022	£0.80	CD4046	¢0.95
CD4001	¢0.18	CD4023	¢0.18	CD4047	E0.75
CD4002	¢0.18	CD4024	¢0.64	CD4049	E0.46
CD4006	¢0.80	CD4025	¢0.18	CD4050	$\mathbf{8 0 . 4 6}$
CD4007	¢0.18	CD4026	£1.85	CD4054	$\mathbf{E} 0.95$
CD 4008	¢0.80	CD4027	¢0.48	CD4055	E1.60
CD4009	£0.50	CD4028	¢0.80	CD4056	£1.15
CD4010	¢0.50	CD4029	¢0.95	CD4069	¢0.32
CD4011	£0.18	CD4030	£0.46	CD4070	¢0.32
CD4012	¢0.18	CD403 1	E1.80	CD4071	¢0.20
CD4013	¢0.42	CD4035	E1.40	CD4072	¢0. 20
CD4015	¢0.80	CD4037	¢0.78	CD4081	¢0. 20
CD4016	¢0.42	CD4040	$\underline{6} 0.78$	CD4082	¢0.20
CD4017	¢0.80	CD404 1	¢0.68	CD4510	£1.10
CD4018	¢0.85	CD4042	c0.68	CD4511	E1.25
CD4019	¢0.45	CD4043	¢0.78	CD4516	E1.10
CD4020	¢0.95	CD4044	¢0.78	CD4518	E1.10
CD4021	¢0.85	CD4045	£1.15	CD4520	£1.10

PLEASE WORD YOUR ORDERE EXACTLYAS PRINTED NOT FORGETTING TO include our "J" numbers.
V.A.t.

AND PACMI
POSTAGE AND PACKING
ADD 25 P FOR POSTAGE ANO PACEING UNLESS OTHERWISE SHOWN. ADD EXTRA FOR AIRMAIL

TESTED TRANSISTOR PAKS

```3 each AC 128/AC176 10 of1 BC107 10 off BC108 10 off BC109 3 вach BC148/149-2 BC147. 3 each- BC169/171/172 2 each BC177/8/9 2 rach BC182/3/4. 2 each BC212/213/214* 2\times8C327 3 < 8C328. 2 each BC337 3 < BC338. 2 each BF115-BF167-BF173 2 each BF194/5/6 2\timesBF258 2\times BFX29 3 < BFX84```



TESTED DIODE PAKS


PRICE 60p PER PAK
OPTOELECTRONICS

## $\mathrm{J} 434 \times \mathrm{DL} .707+$ Data

J45 $5 \times 2$ Red LED
J46
$5 \times 2$ and 125 mixed colours LED

THYRISTOR PAKS

UNIJUNCTION/F.E.T. PAKS

P.C.B. PRODUCTS
${ }_{j 53} 2 \times 2 \times$ etch rasss pens

## D.I.Y. PRINTED CIRCUIT KIT

CONTAINS 6 preces copper laminate. box of etchant powder and measure
FULL easy-to-fillow instructions
$J 59$ SALE PRICE E5.50 RESISTOR PAK
$J 55240$ first quainy $1 / 2 / 1 / 4 w$ feststors-mixed from 1000 hm . 820 k
$\mathbf{\& 1 . 6 0}$
$\mathbf{f 1 . 6 0}$
ELECTROLYTIC PAK
CERAMIC PAK
15893 first quality ceramic capacitors - mixed from 22pF. 047uF $\quad$ £1.60
I.C. SOCKET PAKS
$J 6011 \times 8$ pin 011 Sockets
$J 6110 \times 14$ pin 011 Sockets
$J 629 \times 16$ pin 01 Sockets
ZENER PAKS
J63 20 mixed vilue 400 mm zener diodes 3.10 V
J64 20 mixed value 400 mw zener diodes 1133 V
$£ 1.00$
$\mathbf{E 1 . 0 0}$

P.O. BOX 6, WARE . HERTS SHOP 18 BALDOCK ST., WARE, HERTS AT OPEN 9 to $530 \mathrm{Mon} /$ Sat

## -1 Wilmslow Audio

## THE firm for speakers!

Send 10p stamp for the world's best catalogue of Speakers, Drive Units, Kits, Crossovers, etc., and discount price list

> ATC AUDAX BAKER BOWERS \& WILKINS
> CASTLE CELESTION CHARTWELL
> COLES DALESFORD DECCA EMI EAGLE ELAC FANE GAUSS GOODMANS HELME IIM.F ISOPHON JR JORDAN WATTS KEF LEAK LOWTHER MCKENZIE MONITORAUDIO PEERLESS RADFORD RAM RICHARD ALLAN SEAS TANNOY VIDEOTONE WHARFEDALE

## WILMSLOW AUDIO Dept. ETI

SWAN WORKS, BANK SQUARE, WILMSLOW, CHESHIRE, SK9 1HF
Discount HiFi, etc., at 5 Swan Street and 10 Swan Street
TEL: WILMSLOW 29599 FOR SPEAKERS WILMSLOW 26213 FOR HIFI



TIMEBAND DIGITAL ALARM CLOCK (MAINS) WAKE UP TO TIMÉBAND. Precise timekeeping. Solid state reliability and silent running, 9 minute snooze features. Alarm on and mains fail indicators. C500 and C590 can be
synchronised to the exact second and will display last minute digit and seconds.

$$
\text { C500 (left) H } 31 / 9^{\prime \prime} \times \text { W. } 33 / 4^{\prime \prime} \times 0.33 / /^{\prime \prime} \text {. Black or White }
$$

C590 (right). With built-in high/low intensity elevating reading lamp £23.35


FAIRCHILD TIMEBAND
NEW 1977 MODELS WITH BATTERY HATCH AND FREE REPLACEMENT BATTERY VOUCHER $5+4$ functions. Constant LCD display of Hours and Minutes. At the touch of a button. Month and Date. Push button twice for seconds readout. Push again to return Time display. Automatic Calendar. Backlight. Optional alternating Time/Date display easily selected.


IBICO
Stainless steel: $402 \mathrm{ELB}, 402 \mathrm{ES} \mathbf{£}$ 39.95. $4 \mathrm{D} 5 \mathrm{ILB}, 405$ IS $\mathbf{£ 3 3 . 5 0}$.
404 OLB £ 33.50. 403 NS $£ \mathbf{3 9 . 7 5 .} 700$ Analogue $£ \mathbf{\$ 3 . 5 0}$.
INSTAR. $21 / 2$ function LCD Gold plated with matching bracelet $\mathbf{£ 9 . 9 5}$


OPTIM Digital car clock. AA approved Display switches on with ignition $£ 24.50$ Offers subject to availability. All items advertised are in stock or on order at copy date Prices include VAT. P\&P Send cheque, P.O. or phone your credit card no. to.
TEMPUS
Dept. ETI
19/21 Fitzroy Street Cambridge CB1 1E

A CASE OF BEING GAME


Videomaster have had the rather neat idea of putting their superscore T.V. Game into its proper perspective - boxed with all accessories. Called the Compendium, it is now sold complete with a verv neat pistol, mains pack and hand controllers. Should be in your local stores about now. Price around $£ 60$.
VIDEOMASTER LTD., 14-20, Headfort Place, London. S.W.1.X. 7HN.
SILVER TONGUED?


After five years of selling to industry, most interesting and unusual Industrial Science Ltd., are now introducing ELECOLIT 340 into the consumer electronics market.
ELECOLIT 340 is a pure, silver filled, electrically conductive acryllic paint. It exhibits excellent con--ductivity because of the pure silver and enviromental protection due to its acryllic base. ELECOLIT 340 sets by solvent evaporation similar to most good lacquer systems. It forms a tough film with good adhesion to ceramics, glass, rubber, plastic and most plastic films.
Typical applications include R.F. shielding, printed circuit repair, use as a conductive ink, prototype circuit manufacture and one of the
applications of all which is to repair the rear window demister of a car by means of painting over the existing track which may have either broken or shorted out.
Although ELECOLIT 340 is air drying, conductivity CAN be improved by heating and typical volume re--sistivity figures are $0.001 \mathrm{chm}-\mathrm{cm}$. when cured at room temperature. The shelf life is a minimum of 1 year in a closed container, and the operating temperature of ELECOLIT 340 is from - 60 degrees centigrade to +175 degrees centigrade. Industrial Science Ltd., Leader House, 117-120 Snargate Street, Dover, Kent.

DIGITS ON A DIET


Made to slip into a pocket or handbag, this new CBM LCD calculator is only $1 / 4$ inches thick. Called the LC5K1and obviously aimed at the female half of the human race, the case is a nice 'posh' brushed beige metal. Based on a 3 volt CMOS chip, its power consumption is very low, giving the battery an anticipated life of 5,000 hours. (This means that if you left it on accidentally, it would still be work--ing seven months later - handy if you're prone to a long unexpected illness!).
The LCD display allows the figures to be seen even in strong sunlight, and the machine has the arthmetic functions plus square root, percentage and 4-key memory.
It is available at the RRP of $£ 14.95$. CBM, 446, Bath Rd., Slough, Berks.
SL1 6BB.

## GETTING 10 BITS ON THE SIDE?

Precision Monolithics have announced two complete single chip mono--lithic 10 -bit D/A convertors. The LAC-05 is a 10 -bit plus sign DAC with a logic controlled polarity switch and the DAC-06 is a Two's comple--ment coded version with a bipolar offset circuit. Both devices have a voltage output, precision reference, R-2R resistor ladder network and a high speed ( 1.5 uS settling time) output op amp included.
(Trimpot) Limited, Hodford House, 17/27, High Street, Hounslow, Middx. TW3 1TE.

## HARVEST OF A QUIET EYE

BY ALAN MACKAY
EDITED BY MAURICE EBISON PUBLISHED BY THE INSTITUTE OF PHYSICS.

## PRICE $£ 5.20$

As a non technical member of the ETI staff, this lovely book would, I felt sure supply me with much needed ammun--ition against the dedicated ETI boffins. (George Phillip (air vice marshal) Chamberlain 1905)
Boffin: A Puffin, a bird with a mournful cry, got crossed with a Baffin, a bird of astonishingly queer appearance, burst--ing with wierd and sometimes inopportune ideas, but possessed of staggering inventiveness, analytical powers and persistance. Its ideas, like its eggs were conical and unbreakable. You push the unwanted ones away, and they just roll back
It's an eclectic compilation of quotes cither by scientists, or appertaining to science and technology, happily Alan Mackay has decided to include graffiti in his selection. Thus:
'God is not dead: He is alive and well and working on a much less ambitious project.'
The quotations are arranged alphabet--ically by author and are numbered seperately on each page. The indispens--able 'first line' index is at the back Personally, I can't wait to try some of these out. Sooner or later there's going to be the perfect opening for my favourite (after the second pint in the ETI local?)
'There are three roads to ruin; women, gambling and technicians. The most pleasant is with women, the quickest is with gambling, but the surest is with technicians'
Would I have joined ETI if a kindly Uncle had let THAT one drop before I took the plunge?
The historical and cultural scope of the quotes in the book could not be wider, ranging from Thomas Aquinas to Nietsche to Lao Tzu, and from the flip to the profound. Whatever is YOUR particular hobby horse or hive of bees in the bonnet, there's a nicely primed verbal grenade ready for you to toss into the converasational battlefield.
Or is there?
Ralph Waldo Emmerson
'I hate quotations, tell me what you know'.
Well.... I know very little of electronics so I suppose l'll have to go on feeling like Alice;
'Can you do additional?' The white queen asked. 'What's one and one?'
'I don't know' said Alice 'I lost count'
DAVID LAKE

## BUBBLING OVER

Next year Rockwell are hoping to launch their now developed one--megabit bubble menory price? One millicent per bit!
Their device can operate up to 300 kHz and measures $10 \times 9.5 \mathrm{~mm}$ and is designed for a 1.8 microm bubble diameter.
"PLUG IN TEXT"


A new reasonably easy to build kit has been produced for telextext decoding of the BBC's Ceefax and ITV's Oracle that plugs into the back of your set. Based on the Texas Tifax module. Manor Supplies have produced a kit that will allow those without the technical knowledge (or courage) to try direct modification of the $£ 400$ colour telly to pick up Teletext. The unit has its own tuner and i.f strip (prealigned) and after decoding the signal is remodulated to
an unused channel. This format leads to a certain amount of colour degration of Teletext signals but on the set we saw was very acceptable. Rental companies will be much happier if you don't start rewiring their sets too! The unit has all the usual Tifax capabilities plus Teletext reversed out on the normal vision picture.
The kit will be $£ 218$. Manor Supplies, 172 West End Lane, London, NW6 1SD.

## SOUNDS VANDALOUS!

Apparently electronic cigarette lighters are causing the manufacturers of these new fangled one armed bandits to get a little hot under the collar,
Some bright spark has figured out that that the electrical interference caused by striking these implements can cause spurious readings within the machine, and result in it paying out.
This latest show of British ingenuity has been dubbed 'Malicous Noise' by the flaming-mad manufacturers, and steps are being taken to defeat it. In the main this consists of switching to MPU's.
All this has come to light because of an amazing difference in what

Those of you have ordered anything from Marshalls and have not yet received it - have patience! Marshalls have been trapped by the infamous Grunwick dispute, and are having severe postal difficulties. (To put it mildly!) They are doing their best so please - give them a chance. Don't forget that Marshalis do run a mail-order service from their Glasgow and Bristol branches as well as Cricklewood Broadway, and these will be happy to process your orders.
works on a test bench and what is reliable in an enviroment such as fruit machines are liable to meet. One firm, Marian Electronics, cites the case of a Liverpool dockside pub. (Never a place for the faint of heart or incompetant knife-throwers). A machine here will turn over $£ 150$ per week, but it is VERY likely to be subjected to 'Malacious Noise'. Should it fail to pay-out at the correct time however, experience shows it will meet with anything from kicks to iron bars! On one almost poetic occassion a relluctant machine was bodily lifted from the bar by intoxi--cated dockers and given a seamans burial in the closest portion of the Irish Sea!

## WATCHES FACE COLLAPSE!

Five companies have dropped production of digital watches, due entirely to the price war raging around the product. Gruen, Benrus, Armin Litronix and Gillette have decided the wrist borne digit is not for them. Those still there are sufferin too. Bulova are expected to make a loss this year. Gillette in fact pulled out before they pulled in, scraping well laid plans to burst into the 'marketplace' at the eleventh hour.


Protoboard 6 is a new development from the USA. At $£ 10.45$ Protoboard is claimed (by its manufacturer, who else?) to be the lowest priced breadboard kit available today. It holds 6 14-pin IC's for basic testing and building applications,
PB-6 includes one QT-47S socket -

BIG BANDS!


The MC4558 and MC4558C dual operational amplifiers are, bandwidth excepted, performance and package compatible with the 'industry standard' MC1558/MC1458. Unity-gain bandwidth is increased to 2.5 MHz
MOTOROLA LTD., Semiconductor Products Division, York House, Empire Way, Wembley, Middlesex, HA9 OPR.
size $5 \times 94$ contacts, two QT-47B bus strips size $-2 \times 40$ contacts, four 5 -way binding posts, a metal ground and base plate with rubber feet.
Available from: Continental Specialties, 44, Kendall Street, P.O Box 1942, New Haven, Connecticut, USA.

## MEMORIES ARE MADE OF THIS

Aimed at the bulk memory market such as drum and disc, the MOS/CCD products division of Fairchild Camera and Instrument Corporation has a 65,536-bit CCD block addressable memory developed.
Typical data range is 5 MHZ , with average latency of 400 micro-seconds. Power dissipation is less than five microwatts per bit in active mode and less than one microwatt in standby. The device is packaged in a standard 0.300 inch 16 -pin DIP, and is the densest semiconductor memory now available.
The device, which will be available shortly in the UK, will cost around £70 (one off). 100-up quantity prices will be significantly less.
Fairchild Camera \& Instrument (UK) Ltd., 230, High Street, Potters Bar, Herts. EN6 5BU.

## A PICTURE OF SILENCE

The BBC has developed, and is currently testing, a digital signalprocessing system designed to reduce the amount of noise transmitted with television pictures. Random video noise is usually seen on viewers' screens as a moving 'crainy' background and most of it is usually generated within the receiver, but some noise is inevitably transmitted with the picture, varying in level from source to source. The new equipment is designed to alleviate the effects of this TRANSMITTED video noise. The BBC noise reduction equipment is the first to be successfully used with the PAL colour television system, and some formidable problems had to be overcome in achieving a satisfactory design. During recent trials, which have proved very succ--essful, the equipment has been used on a wide variety of programme material transmitted on both BBC-1 and BBC-2. Over a period of ten days about fourteen hours of live and recorded programmes were processed; these included a Silver Jubilee concert transmitted from the Royal Albert Hall where the difficult lighting conditions led to rather noisy pictures which were greatly improved by noise reduction processing.
The new system, uses a television picture store in a recirculating mode, so that many successive television pictures are added together. The effect of this operation is to reduce noise by integration. The wanted picture detail, being present on every picture, is reinforced relative to the noise, which is random, However this technique cannot be applied to areas of the picture containing rapid movement, because integra--tion of successive pictures would result in smeared images of moving objects. An additional problem is that the colour subcarrier would be reduced along with the noise because it is transmitted in a sequence of eight television fields.
Patent applications have been filed.

## TOYING WITH THE IDEA!

A firm in America has produced a two inch solar cell to power toys instead of batteries. According to the firm, Solar Technology, a single cell will power most toy trucks etc in sunlight, and can be used to re charge cells for indoor use.

## I'M SORRY I'LL PRINT THAT AGAIN

Tachometer:- July, 1977

Soil Moisture Indicator:- August, 1977
Capacitor C2 should be 56 n .
Formula for calibrating in conjunction should be 100 R as shown in parts list. with an amplifier should read
$\mathrm{f}=2 \mathrm{M} / 60$.
SYSTEM 68 VDU:- We are aware of the errors which are present on the PCBs for this project. A FULL list of these is being published on page 26 of this months System 68 article. Our thanks to those readers who drew our attention to these initially.

## Metac

## THE <br> METAC DIGITAL CLOCKS <br> * COMPLETE KIT »



- Pleasant green display 12/24 Hour readout
- Silent Synchronous Accuracy Fully electronic
- Pulsating colon Push-button setting
- Building time 1 Hr . Attractive acrylic case
- Easy-to-follow instructions Size $10.5 \times 5.7 \times 8 \mathrm{~cm}$
- Ready drilled PCB to accept components

A professional product for the home constructor. It has been designed by engineers using the most modern techniques and components. It will appeal both to the confirmed hobbyist and to the man who simply wants to 'have a go'. The kit contains everything except a mains lead. The only tools required are a small soldering iron, solder, screwdriver and wire cutters

KIT PRICE $£ \mathbf{E} \mathbf{7 5}+78 \mathrm{p}$ vat


Metac-Electronics Time Centre

DAVENTRY
67 HIGH STREET

DAVENTRY
NORTHANTS TEL: (032-72) 76545

## UXBRIDGE <br> 3 THE NEW ARCADE high st., UXBRIDGE midDLESEX TEL: UXBRIDGE (0895) 56961

SHOWROOMS OPEN 9-5.30 DAILY

## GIVE YOURSELF A TREAT

Why not pay us a visit and see for yourself the full range of top-quality watches: clocks; treasure tracers.
electronic ignition: TV games and
battery eliminators.

[^0]


Speed up your precision work with

## MINIATURE POWEREQUIPMENT

SUPER 30 KIT- $\mathbf{3 0}$ tools incl. drill without stand $£ 19.39$ pp $£ 1,00$ PIS DRILL STAND $\quad$ £5.13 pp 38p PI DRILL £9.67 pp 38p FLEXIBLE DRIVE SHAFT
£5.94 pp 34p

## TRANSFORMER

continuous ac/12v dc £7.56 pp 81p
VARIABLE SPEED
TRANSFORMER £9.50 pp 81p
Replacement drills, stones, burrs, etc. $40 p$ each Circular saw blades, set of four with arbor £2.50
P. \&P. any quantity $25 p$

All VAT inclusive
$9^{\prime \prime} \times 4^{\prime \prime}$ S A.E please for leaflet and order form

PRECISION PETITELTD

TEDDINGTON MIDDLESEX TWII 8HG

## The 'Bucket Brigade' are marching on the audio world, but what are . . .

# CHARGE COUPLED 

 DEVICES Mark Sawicki considers this new technologyCHARGE COUPLED DEVICES represent a new and rapidly developing area of monolithic integrated circuit technology and are basically intended to delay analogue signals.

The principle is that CCD operates as a monolithic shift register, and is commonly referred to as 'Bucket-Brigade'. (The reason being that their operation is analogous to a chain of firemen passing buckets of water from hand to hand.)

In CCD 'buckets' correspond to the IC's capacitors and 'water' corresponds to the electric charge being the analogue sample of an applied waveform. CCD IC's were first introduced by Philips Laboratory back in 1968, and the first papers dealing with this innovation were published by 'Philips Technical Review' and also in the 'I.E.E.E. Journal'.

The basic structure of the MOS CCD is shown in Fig. 1.

Early bucket brigade analog delay lines had many shortcomings with problem number 1 being poor transfer efficiency, (the amount of

charge left behind decreasing at each transfer). In the early 70's these devices were improved at Philips with the introduction of a "tetrode" structure with a DC biased gate separating each clocked element from the next one as shown in Fig. 2.

The performance of this new structure was enhanced because these tetrodes in effect, reduced the MILLER capacitance (an analogy can be made to a tetrode grid in a vacuum tube).

## Charge to couple

Simultaneous research was undertaken at Bell Telephone Laboratories


Fig 2. Philips improved tetrode structure
who in turn produced a successful inovation of a CCD possessing much better performance than the old CCD The improved principles of operation and specific structure, were first published by W. S. Boyle and G. E. Smith.

The first steps in the development of CCD concentrated on general structure technology as well as processing techniques. The Reticon research team came up with many interesting ideas such as:

1. Self-aligned structures reducing parasitic capacitance and improving specific efficiency.
2. A decrease in substrate resistivity helping to minimise the sensitivity to voltage as well as clock wave shapes, with a very important reduction of the conductivity modulation of the region under the transfer gate. This has a general influence on specific transfer efficiency.
3. They felt that modern CCD structure should have the advantages of a high resistivity basic substrate for reduced junction capacitance but without any effect on modulation.
4. The idea that the ion implantation could be used to control thresholds so that N channel devices would become feasible, with the advantages of higher speed and transfer efficiency.
Bearing in mind point 4 as far as audio delay is concerned, the comparison of transfer efficiency for both N as well as P channels is shown in Fig. 3.

Table 1 gives a summary of the performance of some of these devices.

## Practical Applications:

For amateur purposes, most of these devices are far too expensive. However, the Reticon SAD 1024 and 512D are very reasonably priced for the performance offered. (The SAD 1024 is easily obtainable, e.g. Herbert Controls and Instruments Ltd, Spring Road, Lethworth, Herts.)

The most important features of CCD for application as an audio delay lines are:

1. Wide bandwidth with flat frequency response
2. Large dynamic range with a good stability margin
3. Simplicity of practical applications and low cost
Until recently, the only delay system available for musicians and constructors was the electromechanical type (tape/spring). The spring type reverberation units reached a very high level of popularity thanks to their much lower production costs when compared


Fig 3. Transfer efficiency for both types of CCD, plotted against clock rate i.e. audio delay.

TABLE 1   PRODUCT SUMMARY ANALOG MEMORY PRODUCTS Tapped			
Maximum Sample Rate (f.)	5 MHz	1.5 MHz	1 MHz
Typ Retention Time ( $\%$ Loss, $25^{\circ} \mathrm{C}$ )	40 ms	200 ms	200 ms
Aperture Time Jitter	$<20 \mathrm{~ns}$	$<20 \mathrm{~ns}$	$<20 \mathrm{~ns}$
Signal/ Noise ratio	60 db	70 db	70 db
Distortion (Total Harmonic)	1\%	1\%	$1 \%$
Evaluation Circuit	TC32	SC1024	SC512D
Delay in-puts (Sample Periods)	1 to 32	512	256
Readout	Destructive	Destructive	Destructive
Package	40 pin DIP	16 pin DIP	16 pin DIP
Analog Signal Bandwith (Single Pole 6 db )	2 MHz	200 KHz	200 KHz
Typical Applications	Discrete-time filters   Transversal filters   Recursive filters   Reverberation effects	Analog time delay Reverberation effects Time-base correction Transient recorder	Low-cost   audio-effects Reverberation Delay egualizer Variato speed control
important parameters of the CCD devices discussed in this article and made by Reticon. The characteristics of the Mullard devices are given in Table 2 overleaf.	Correlation Pattern recognition Active filtering	Generate trace for oscilloscope Flanger and audio effects	

with tape units but both these types just cannot withstand CCD competition!

Electro-mechanical delay lines have many limitations and one of
them as far as the spring type reverberation unit is concerned, is 'microphonic' distortion which causes unwanted 'metallic voice' and very often something worse -
acoustic feedback.
Spring type reverberation systems are so delicate that they require quite a complicated suspension drive which can sometimes produce strange resonances and other uncalled for effects.

Employing C $\bar{C} \bar{D}$ to produce synthetic reverberation with multi reflection paths is one of the major SAD 1024 applications. The basic block diagram is shown in Fig. 4.


Fig 4. Reverberation achieved using CCD circuitry

Differing path lengths are arranged using different delays. Specific attenuation in a path represents acoustic absorption loss which, by its adjustment, allows for the overall control of delayed reverberation time.

Audio reverberation is generally speaking the build-up of sound(s) in an enclosed space, at the same time as the direct result of the addition of sound components from simple/multiple reflected pencils/rays of sound returned from the reflecting surfaces.

Reverberation time is defined as the time for the sound to decay (usually exponentially) to one-millionth of its initial energy level, a level of 60 dB down. For single closed-loop paths this can be explained by a simple formula:-
$T=60 \frac{t}{\propto} \quad$ (seconds)
where: $T=$ reverberation time in seconds
where $t=$ time delay in seconds for one passage
$\propto=$ attenuation (in dB)

This relationship results in the following conclusions:

1. Shorter reverberation time T can be produced by introducing greater attenuation or shorter delay.

## CHARGE COUPLED DEVICES

2. Longer reverberation time $T$ requires longer path delay or less attenuation.
Also note that a 10 milliseconds delay corresponds to a room path length of less than 10 feet for one trip:

## Stables bolted

As one of the most important problems is maintaining the stability, it is preferable to use relatively long delays with higher values of attenuation.

Coming back to Fig. 4, the $0 / P$ power is increased approximately in proportion to the number of paths N , with an overall system gain of 10 log N (dB), thus additional paths are added to maintain the same total reverberation time. In audio practice many parallel delay paths are required to simulate a 'real' reverberant room with a minimum number of four.

The SAD 1024 uses a single 15 volt power supply, input bias of +6 volts, and because of the existence of op-amps in this circuit, $0, \pm 15$ volts.

Analysing one section only of this evaluation circuit (Fig. 5), let's set the TTL clock input at a frequency input of 200 kHz and the audio signal input to a single sinusiodal tone at 5 kHz . The SAD 1024 requires a "two-phase" signal 01 and 02 as the clock drivers are complementary pairs of associated waves. This is done by dividing the 'virgin' clock input rate employing both sections of 'flip-flop' chip. As the input was 200 kHz dividing this by two gives waveforms of 100 kHz rate with a $.10 u \mathrm{sec}$. period.

Assuming that 01 is "high" the input N channel MOS transistor applies signal input $A$ to $C_{s}$, the relevent op-amp ( $A R_{2}$ in fig. 5 ) inverts


## Reticon SAD 1024 CCD

For evaluation (and some applications) Reticon developed their SC 1024 Evaluation circuit. The basic design is presented in Fig. 5.

This circuit provides all the necessary buffering, power supply, input bias, TTL - clock input and input/output facilities. (Practically independently for both 512 stage halves of the device too.)
the input signal, and superimposes it on an (approximate) 6 volt bias.

Meanwhile 01 changes its state to "low" and the input voltage level is charges the storage capacitor ( $\mathrm{C}_{\mathrm{s}}$ in Fig. 2). As 02 is at this moment "high" a connection between $\mathrm{C}_{\mathrm{s}}$ and the first bootstrap capacitor of the output of Cell no. 1.

Cell no. 1 now accepts acharge from $C_{s}$ and clock 01 goes "high",
(02 - low) passing our charge to the next exchange cell. This completes one full cycle.

## Cell locks

The SAD 1024 is built from 512 cells (in one section) with a clock frequency of 200 kHz as an example, the input signal appears at output after a 2.56 millisecond delay. Both outputs are connected to a 11 k balance potentiometer thus providing a summed signal with a continuity over the full clock period. Note that the output signal, and 02, in channel A, both cover the whole length of the cycle.

Finally, the output op-amps $\left(A R_{1} / A R_{2}\right)$ invert the signal, and smooth the "stair-steps" discriminating against residual clock glitches.

The 512 stages of SAD 1024 are available separately under the commercial name of Reticon SAD 512.

## Mullard TDA 1022

The TDA 1022 is a MOS monolithic integrated circuit with an internal structure and pin identification as shown in Fig. 6.

This particular device contains 512 stages and with the clock frequencies ranging from $5 \mathrm{kHz}-500$ kHz will produce a time delay from 51.2-0.512 m.sec.

The package is a 16 lead plastic dual-in-line and amongst its many applications are:-

Variable delays of analogue
signals, E.Q. - speech delay
in P.A. systems, instruments:
Vibrations / chorus / echo effects
/ reverberation.
Variable compression / expansion
of speech in tape-recorders.
Specifications of the device are shown in Table 2.

Last year during the 9th International Exhibition of APRS 76 (International Association of Professional Recording Studios), the MANTIS Echo Unit from Carlsbro sound equipment was presented. This employs in its construction eight Mullard TDA 1022s.
The MANTIS construction is a commercial example of successful TDA 1022 application, and as seen in this case several TDA 1022's work in a series configuration. A practical diagram from the Mullard Application Report (Ref. 6) shows a completed circuit using 2 CCD's. Fig. 7.


Fig 6. Internal circuitry of the Mullard TDA 1022 Bucket Brigade chip. The pin functions are as follows: Clock input ( $V_{C L 2}$ ). 2. NC. 3. NC. 4. Clock input ( $V_{(L 2)}$ ). 5. Signal input. 6. NC. 7. NC. 8. Output 513. 9. V $V_{D D}$ 10. NC. 11. NC. 12. Output 512. 13. Tetrode gate. 14. NC. 15. NC. 16. Ground.


Fig 7. A Mullard circuit for general purpose use of the TDA 1022. Here two units are connected in series to obtain a longer delay time between input and output. No clock circuitry is shown.

## Clock Oscillators for SAD 1024 and TDA 1022

Both CCDs reviewed here are pure analogue "clocked" devices and require a relevant incorporated oscillator facility. As far as TDA 1022 is concerned, up to 10 chips can be
operated with the system configuration recommended by the manufacturer and shown in Fig. 8.

The circuit consists of an all IC clock oscillator capable of generating the frequency $0 / P$ signal from a range of $5-500 \mathrm{kHz}$ by suitable

choice of components, and a BC 327/337 driver system.

Power requirements are standard $(0 \pm 15 \mathrm{~V})$ and any choice of frequency (see Table 3) is simple using easily obtainable components. Clock pulse rise/fall time is better than 100 ns .

$f$   $k H z$	$C$	$R$   $k S z$
5	$8 n 4$	10
10	$3 n 9$	10
30	$1 n 3$	10
100	330 p	10
300	68 p	10
500	30 p	10

TABLE THREE: Setting the clock frequency for the TDA 1022 by selecting component values. $R$ and $C$ are referred back to Figure 8. Altering this changes $f$ as shown above.

Returning to the Reticon SAD 1024 or SAD 512, the manufacturer's data contains two simple clock constructions (Fig. 9) recommended when using these Bucket Brigade devices. The first one is based on an IC400 and is simple in design with a variable frequency adjustment using a 250 k potentiometer

The second variable frequency clock generator is slightly more sonhisticated and consists of a 4013 IC and a single NPN transistor. Both halves of the 4013 are coupled in series producing the required clock signal and dividing the waveform into the complementary train of pulses. A single 500k lin potentiometer acts as the frequency adjustment element.佂

Fig 8. A fairly sophisticated clock driver circuit for use with the Mullard 7DA 1022. This configuration will drive up to 10 CCD chips, and provides both 01 ana 02

CHARGE COUPLED DEVICES


Acknowledgements to Herbert Controls, Mr. Andy Longford, and Mullard's Technical Information Department for providing information, data, technical papers and other significant contributions.

## REFERENCES

1. F. L. J. Sangster - The Bucket Brigade Delay Line - A Shift Register for Analogue Signals, Phillips Technical Review, Vol. 31
2. F. L. J. Sangster \& K. Teer - Bucket Brigade Electronics - New Possibilities for Delay, Time Axis Conversion and Scanning. I.E.E.E. Journal, solid State Circuits Volume SC4. June 1969.
3. G. P. Weckler - Making Music With Charge Transfer Devices Paper Presented at 55th Convention of AES, November 1976 (Print No. 1160 )
4. W. S. Boyle \& G. E. Smith - Charge Coupled Semiconductor Devices, B.S.T.J. Vol. 49.
5. Reticon - Application SAD 1024 Note No 104
6. Mullard Ltd - TDA 1022 Development Sample Data, November 1975.
7. Carlsbro Sound Equipment - Mantis Echo Instruction Guide.
8. Reticon - SAD $1024 /$ SAD 512 Informa tion Leaflet 77032.
9. Reticon - Application Note No. 113.



## Gaps?



It can be a nuisance can't it, going from newsagent to newsagent? "Sorry squire, don't have it - next one should be out soon." Although ETI is monthly, it's very rare to find it available after the first week. If it is available, the newsagent's going to be sure to cut his order for the next issue - but we're glad to say it doesn't happen very often.

Do yourself, your newagent and us a favour. Place a regular order for ETI; your newsagent will almost certainly be delighted. If not, you can take out a postal subscription so there's nothing for you to remember - we'll do it for you.

For a subscription, send us $£ 6.00$ ( $£ 7.00$ overseas) and tell us which issue you want to start with. Please "make your payment (in sterling please for overseas readers) to ETI Subscriptions and keep it separate from any other services you want at the same time.

ETI Subscription Service,
Electronics Today International, 25-27 Oxford Street, London W1R 1RF.


## SHORT CIRCUIS

## STEREO SIMULATOR <br> offe - <br> Make more of mono with this ETI project team design

IF YOU ARE a member of that illustrious band - the hi-fi enthusiast - read no further. The suggestions contained below are not for your eyes.

If, however, you are a normal human being who wants to get as much fun out of life as possible, read on.

The stereo simulator is designed to take a mono signal, from a mono cassette recorder or, via an isolator please, your TV set, and turn it into a pseudo stereo signal.

It does this by splitting the input into two signal paths and then filtering each signal. The high frequencies are fed to the left input of your stereo amplifier and the low frequencies to the right hand channel

While this may not sound too exciting, we here at ETI were amazed at the extra something this circuit added to many different types of music.

Now they say that one picture is worth a thousand words (hence all the lovely pictures in ETI) and we are sure that somewhere, someone, sometime has said the same sort of thing about sound (no not a picture, silly), so if you want to appreciate the effect of our stereo simulator, please build it and try it. We think you will be amazed too

## Picking Up The Pieces

The circuit should be assembled according to our component overlay

Make sure the quad op-amp is correctly positioned before soldering. The input lead from SK 1 was earthed at both ends but the leads to SK2 and SK3 should only be earthed at the socket end (to prevent earth loops). Current consumption should be about 2.5 mA per battery. The power supply switch, SW1, was a double pole switch to switch both supply batteries, the common of the batteries being OV



Shown full size $(60 \times 40 \mathrm{~mm})$ above is the foil pattern for the stereo simulator. To the left is the component overlay


## Playing The Part

Connect up the stereo simulator to your stereo amp and to a mono signal source. The effect of the circuit can be modified by use of the amplifiers tone controls (giving a sort of width control) and the balance control.
Have fun.


## ELECTRONIC CALCULATORS scientific

TEXAS SR60 (40 memory printer)
TEXAS PC 100 (Printing Unit for
$£ 1150.00$
EXAS PC 100A (Printing Unit for £161.23
TEXAS SR52 (Card Prog. 20 mem.) E180.00 ble. types TEXAS Libraries and Accessories avalaber
T $\$ .59$. (New Card Progs. 960 steps or 100 Mem.). TEXAS T1-58 (New Key Progs., 480 steps or 60 Mem )
TEXAS SR56. (10 memory; key programme 100 steps)
TEXAS SR5: II (3 Mem. / Stat. Sci.)
TEXAS T1.30 (Sci. Mem. [ ] etc)
TEXAS T 1 -41 (Fin. Exp. 9 dig .)
'NOVUS $4525(100$ step prog. $\cdot$ exp.
CBM 4148 R (Scient-Exp 10 dig .)
00 steps)
$\mathbf{£ 5 4 . 0 0}$
$€ 41.00$
$£ 14.30$
hp range now available. Prices on request.
HP 27 (Sci (Manme)
HP 67 (Fully prog.)
HP 97 (Fully prog with Printer)
All HP range available. Prices on reques
CASIO 110 (Sci. Exp. Frac. \& Dg.)
CASIO CQI (Cal.Dig. Alarm Clock)
-CASIO FX201P (Sci 11 mem, 127
step prog.)
$£ 14.30$
$£ 27.95$
step prog.) (Scil
ofl) (as above but cont. mem. prog even if
CASIO PROFXI $£ 64.70$
Mains charger included
Other calculators available include: Adler. Silver Read
SPECIFICATION LISTS ON REQUEST
GOODS FULLY GUARANTEED. PRICES EXCLUDE VAT
(ADD 8\%) BUT INC P\&P CHEQUE WITH ORDER
Company / Hospital and Government orders EXPORT accepted by phone
Barclaycard, Access order accepted by phone
Tel. 01-455 9855
MOUNTAINDENELTD
22 Cowper Street, Loridon, EC2
(Near Old St. Station)
Tel. 01-455 9855


## A mains transformer is often the single most expensive item in a project H. E. Clayton of Reading Windings takes a close look at this often neglected item.



TRANSFORMERS ARE USED to increase or decrease either an AC voltage or an AC current level.

All transformers change both AC current and voltage levels simultaneously, but no transformer significantly changes power levels, as the input power equals the output power plus losses which are in general, negligible. Transformers can also be used to transform impedance from one level (in the primary circuit) to another level in the secondary circuit, the impedance transfer ratio being the square of the transformer turns ratio.

It is often possible to use transformers in the opposite mode to that for which they were designed e.g. by feeding into the secondary of a step down transformer and using it to step up in voltage. This will, however, usually give an output voltage below the rated value because the turns ratio is normally made less than the rated transformation ratio to compensate for voltage drops in the windings.

Power transformers can usually be operated at frequencies higher than that for which they were designed, e.g. a 50 Hz transformer can be used at 60 Hz , but not vice versa

## What we want is ...

Before deciding on a transformer for a particular application, it is helpful to list one's requirements and to have some idea of what options there are it is hoped that the following outline will help.

RMS input voltages and supply frequency: In addition to the nominal input voltage the maximum value to which this can rise should also be considered. Most transformers will operate satisfactorily at about 6\% overvoltage for short periods of time but if it expected to exceed this figure it is advisable to increase the rated input voltage. Primary windings can be tapped to cater for several voltages but this adds considerably to the cost of the transformer and may detract from performance. Twin series parallel windings on the other hand, although adding a little to the cost, do not substantially interfere with efficiency as all of the winding is in use for both series and parallel connections. They are however limited to dual input voltage applications where one voltage is twice the other e.g. 240/120V.
Output Currents and Voltages: Unless otherwise agreed, the nominal or rated output voltage is that at full load output current based on resistive load. Again, several voltages can be provided by tapping and, unlike the primary taps, several secondary tappings can be used simultaneously to supply a number of loads. If, however, there is a significant difference between the load currents at different tappings, it may be preferable to have separate windings. NB: The information above is the minimum which must be decided by the user, all the following requirements may remain unspecified unless circumstances demand otherwise, always remembering that special
features can add considerably to a transformer's cost.
Regulation (usually Maximum Value): The regulation is defined as the difference between a secondary terminal voltage on open circuit and the secondary terminal voltage at rated full load current.

Maximum permissible Temperature rise: This is often decided by the manufacturer rather than the user as it may depend on the materials used. Higher standard temperature rises are associated with lower ambient temperatures


Fig. 1. Plot of excitation currents vs. RMS input voltage for typical transformer. The transformer should not be operated for long periods above the 'knee' of this curve.

Input Current (or Excitation or Magnetising Current): The no load input characteristic is shaped as in Fig. 1 and care should be taken not to use the transformer for long periods
with voltages much higher than the "knee" of the curve.
Electrical requirements: Limitations to distortion of secondary waveform, any special phasing requirements etc.
Insulation requirements: The basic standard requirement is for a 2 kV RMS test between the input and output windings and between any winding and the core if accessible.
Impregnation etc: Transformers without hygroscopic materials (those that absorb moisture) are often varnish dipped while those using absorbent materials such as paper are varnish impregnated. Both of these processes are effective for minimising lamination vibration and sealing against ingress of moisture.
Dimensions: Any limiting dimensions and/or fixing centres.
Construction: Some of the common alternatives are described below.

## What Core

Interleaved laminations are widely used for small power transformers, the most common shape being the no-waste ' $E$ ' and ' $I$ ' in which the 'I's are cut from the 'E's (see Fig. 2) and the coils assembled over the centre limb (shell type construction). These are available in .50 mm and .355 mm thickness in various grades of hot rolled silicon iron and in 0.355 mm grain-orientated silicon iron.


Toroids and ' C ' cores are made of 0.355 and 0.10 mm thickness, the thicker material being used in the $50-60 \mathrm{~Hz}$ devices. Toroids have a highly efficient magnetic circuit and by virtue of their circular shape, low leakage flux. They are sometimes chosen because they can be used to make a "low profile" i.e. low height transformer.

Because the cost of toroidal transformers can be three times that of an E and I laminated transformer, a compromise between the two which is sometimes used for low profile units uses $U$ and I laminations with the coils on the long limbs of the ' $U$ '. (Core type construction).

## Winding Things Up

Moulded bobbins are widely used for smaller transformers. They have the advantage that they can be wound on high speed machines. Insulation thickness between windings and core and between windings can be assured. The winding space factor (ratio of area occupied by active copper and total winding area) is high and terminal tags can be mounted on the bobbin cheeks. Certain bobbins may be fitted with shrouds encasing the windings and giving good mechanical and electrical protection.

## Ending It All

The cheapest terminations are solder tags on the bobbin cheeks. For applications where solder connections are not convenient terminal blocks can be mounted on the transformer. For larger transformers terminal panels with turret lugs or bolted connections are used.

## Mounting Up

Mounting brackets are available for the range of standard no-waste $E$ and I laminations. They take the form of ' $U$ ' clamps with two hole fixing which are crimpled on to the smaller sizes (up to about 50VA) and flanged and frames secured to the larger transformers with core bolts and providing four fixing slots on each of their four sides (universal mounting). At the small end of the range (up to about 5VA) pin terminations can be used for PCB mounting.

## Electrical Performance

In its simplest form a transformer consists of an input and output winding magnetically coupled with an iron core. The windings represent an impedance in series with the load
and the core can be considered to be an impedance shunting the load. The winding impedances cause voltage drops proportional to the load current and a watts (copper) loss proportional to the square of the load current. The core impedance does not directly produce a voltage drop but is associated with an energy (iron) loss approximately proportional to the square of the volts per turn for a fixed supply frequency. The total losses (copper and iron) determine the operating temperature rise of the transformer which is usually the most important factor limiting the use of the transformer.

## Watts A VA

Although the transformer total losses depend on both voltage and current, they are independent of the phase factor. For this reason transformers are rated in maximum VA and not in watts although with resistive loads VA = watts.

Transformer windings also have "self inductance" which can be thought of as a reactance in series with the winding resistance and the load and is usually referred to as the "leakage reactance". This does not usually effect the performance of small power transformers (below about 100 VA size) particularly when used with resistive loads.

## Physical Performance

As transformers increase in VA rating and physical size, the working flux density and the winding current density are reduced, but even over a relatively large range of sizes, the variation is small enough to assume that they are constant.

With this premise, it is interesting to consider the effect on various parameters of change in physical size for the same overall shape.


## TRANSFORMERS

We can show that

1) The regulation of small transformers with resistive loads decreases in inverse ratio to the increase in any linear dimension and
2) The reactive voltage drop increases while the resistive drop decreases linearly with dimensions.
Figure 4 shows the relationship between transformer VA rating, volume (or weight) and regulations. The volume here is the length $x$ width $\times$ height, not the displacement. This is based on mains transformers using $E$ and I no waste laminations and operating at 50 Hz . It is often possible to increase the output current of a power transformer beyond the rated value if one can accept a temperature rise higher than the designed value. Overloading the transformer in this way will, however, cause the output voltage to fall because of the increased voltage drops in the windings.

## Trying Time

The following tests can be used to establish basic transformer characteristics.
Turns Ratio: Apply a known voltage, less than the rated value, to the primary winding and measure the secondary voltage. Care should be taken, especially with transformers below about 20VA rating, that the instrument used does not impose a significant load on the transformer.
Excitation Characteristic Connect as in Fig. 5 and apply the rated input voltage to primary terminals and measure input current and voltage.


Fig. 5. Connections for the excitation or open-circuit test. The rated input voltage is applied to the primary and the excitation current is shown by $A$.

Winding Resistance Measure the primary and secondary DC winding resistances with a multimeter or Wheatstone bridae.
Phasing. Where windings can be interconnected e.g. with series/parallel designs, it is important to establish the relative polarity of terminations. This can be done by connecting the windings concerned in series, applying an alternating voltage

to one and measuring the overall voltage (Fig. 6). If this measured voltage is greater than the applied voltage, then the windings are in phase. Conversely, if the measured voltage represents the difference of the two winding voltages the connection is in anti-phase.

## It Takes All Sorts

## Transformers Feeding Rectifiers.

A common application for small transformers is to supply full wave rectifier circuits including capacitor input filters. The most common are the bridge amd bi-phase circuits shown in Fig. 7.

For the same power rating, the transformer for the bi-phase circuit

will be larger than that for the bridge circuit because its secondary produces twice the voltage and carries current during each half cycle only. Ideally the secondary winding for the bi-phase transformer occupies $\downarrow 2$ times the space of the primary winding. Although transformer cost is higher, rectifier costs are lower for the bi-phase circuit.

The relationship between the average DC voltage and the RMS secondary voltage is complex and is dependent on the smoothing capacitance, the supply frequency, the transformer series impedance and the load impedance. Curves illustrating this and other relevant relationships are published by rectifier manufacturers but neglect the effect of transformer leakage reactance which may be significant on some larger transformers. Because the waveform of the transformer current is very 'peaky' the effective reactive volt drop is greater than may be expected by considering RMS values.
Autotransformers have a single tapped winding to provide both input and output circuits. With transformation ratios near unity, autotransformers can be much smal-

ler than similarly rated double-wound transformers

A disadvantage of autotransformers is that there is a direct electrical connection between primary and secondary circuits so that both circuits share a common relationship to earth. Isolating Transformers usually have a $1: 1$ transformation ratio and are provided specifically to electrically isolate the secondary circuit from any earth connection in the primary circuit e.g. 'mains circuits

## Inverter 'Transformers (e.g

for switched mode power supplies). These usually operate in the kilohertz range of frequencies and are supplied with square wave-form voltages
High Impedance Transformers are used for a variety of purposes a few of which are mentioned below
Short-Circuit Proof transformers are designed to continue in operation without damage when the secondary terminals are short-circuited. Small transformers (below about 5VA size) are sometimes made with sufficiently high winding resistances to restrict the short circuit current but with larger transformers an adjacent winding structure is used with an intermediate magnetic shunt. This gives an output characteristic as


Fig. 8. Relationship between output current and output volts of high reactance transformer with resistive load.
shown in figure 8 when used with resistive loads.

## High Frequency Transformers.

The foregoing is concerned with transformers operating only at a constant supply frequency and with sinusoidal waveforms. Transformers used in communication circuits are required to handle a wide range of frequencies and waveforms, although any repetitive waveform can be expressed as a series of sine wave components. Such transformers are often used in an impedance matching role. It is well known that to transfer the maximum amount of energy into a load from a voltage source the load impedance should equal the source of impedance

## SCREENING

Stray magnetic fields produced by power transformers can cause hum in high gain amplifiers in the same locality. Screening around the power transformer is not normal because a large percentage of the stray flux, which is emitted in all directions, would strike the screen at right angles and pass through it rather than be diverted. On the other hand input (e.g. microphased transformers are often enclosed in a screen of magnetic material to reduce pick-up)

## PRODUCTION METHODS

Coil winding techniques and machinery have improved immensely in recent years. Unfortunately it is not always possible to make the best use of these improvements which are mainly geared to high volume production of standard products. Although some degree of standardisation in small transformers has been achieved equipment designers still expect transformers to be tailor-made, often in small quantities, to their particular electrical and dimensional requirements

Summarising, before seeking a special transformer, consider first if readily available standard transformers can be used. It will often be cheaper to use two or more standard transformers than one special unit.


# OSOO CPU CARD 

Designed by John Miller-Kirkpatrick

## THE MOTOROLA 6800 is a

monolithic 8 bit microprocessor which requires only an oscillator and a few bytes of ROM and RAM to . become a simple MPU system. For the System 686800 control card card we have added these parts plus some bus buffering to a 6800 chip to give the basic unit of a 4 K system which can readily be extended up to the full 65 K potential of the MPU chip.

## Data Plus

If you are intending to use the 6800 in system 68 it would be advisable to obtain copies of some of the data manuals for the 6800 series. The 'M6800 system design data manual' contains full data on the 6800 MPU chip and other 6800 series support chips, while the 'M6800 programming manual' provides useful information for those wanting to write software for System 68.

## 6800 MPU Chip

The 6800 has a 16 bit address bus, an 8 bit bi-directional data bus and a number of 'special function' input and output pins. Some of these functions are not used in System 68 at this stage whereas others have to be used in any minimum 6800 system.

## Memory requirements

The 6800 uses top locations in memory to access the starting addresses of subroutines for reset or -interrupts. For this reason at power-on reset the MPU would expect to find non-volatile memory (PROM) at these locations (rather than RAM which would power-up
with rubbish). In an extended system it would be possible to have a switch to enable RAM at these locations to be used in non-standard interrupts but in our basic system we have allocated a 512 byte PROM to these top areas of memory.

A set of 6800 instructions can access the first 256 bytes in a 6800 system as RAM with a 2 byte instruction rather than a 3 byte instruction. In order to make use of this fact we must allocate machine addresses 0000-00FF as RAM.
The memory decoding on the CPU card enables these memory devices at the appropriate locations. This decoding is carried out with 74LS 139 2-4 line decoders.

In order to allow for easy expansion of the basic system the devices on the control card (with the MPU and clock excepted) are enabled by a signal external to the card. In the extended system this signal would be decoded from the address lines to enable the card only when the correct 4 K page was selected.

## Control Signals

The CPU card provides a number of signals for control of the reset of the system and for user control of MPU operation.

Four signals are brought out to front panel switches (SW1-4). These are the $\overline{R E S E T}, \overline{I R Q}, \overline{N M I}$ and a TRI-STATE control input switch. The first three are biased to the run state to allow normal operation and upon operation allow manual resetting or interrupting. The TRI-STATE control can be omitted in most applications but is a must if DMA work is envisaged.

The CPU card also generates a $\overline{\text { HALT }}$ signal, this is not brought out
as a front panel control as the $\overline{\text { HALT }}$ status cannot be used to check the status of the buses as it causes them to go TRI-STATE.

As well as the above control signals the CPU card provides $\overline{R D S}$ WDS (read and write strobes) and a NAND of the VMA and Clock 2 output. These three signals are used for control of peripheral devices or in memory decoding.

## Buffering Buses

To allow for expansion we have also included data and address buffering on the control card. The devices used are TRI-STATE chips and could thus be enabled by the card enable signal if required. This can lead to over complexity at this stage so that we have permanently enabled the address bus with the DATA buffers dependant only of the READ/WRITE strobes.

## Other MPUs

The specifications for the CPU card described above would apply to a card based on any MPU, with only minor changes to cater for the requirements of a specific MPU. A SC/MP card will be described later in the series while a $Z 80$ card is to be developed.

## Clocking on - Clocking off

The main problem encountered in the design of a M6800 system is the provision of a suitable system clock. While many MPUs will accept a crystal, or even capacitor, tied between two pins as a complete clock driver the 6800 will not. It requires the clock signal to be within

## MC 6800 MPU-THE HARDWARE

$1 \square V_{S S}$	$O$ Reset
2	

HALT. When this input is in the low state all activity in the MPU is halted at the end of the current instruction. The output buses go TRI-STATE.
$\overline{\operatorname{IRQ}}$ (Interupt Request). When this input is taken low the MPU will go into its interrupt service routine if the interrupt bit is not set. This routine stores registers on the software stack and then branches to a software routine at an address which is specified at location FFF8-FFF9.
VMA (Valid Memory Address). This output goes high to indicate to peripherals that a valid and steady address is now on the bus.
$\overline{\text { NMI }}$ (Non-maskable Interrupt). Similar to $\overline{\text { IRQ except that it causes a non-maskable }}$ interrupt. The software vector is at FFFC-FFFD.
'BA (Bus Available). This output goes high if MPU is in wait status. All TRI-STATE outputs are in a high impedance state enabling other equipment to use the system buses.

R/W (Read/Write). This output goes low when the MPU wishes to write to a peripheral.

DBE (Data Bus Enable). This input enables the data bus when in the high state. In normal operation it is driven by 82 clock.

TSC (Tri-State Control). This input has the same effect as DBE except that it affects the status of the address and R/W lines.

RESET. A low on this input causes the MPU to enter a restart routine which resets all internal counters and then branches to a software routine starting at FFFE-FFFF.


BLOCK DIAGRAM


## CLOCK TIMING WAVEFORMS

## MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	-0.3 to +7.0	Vdc
Input Voltage	$\mathrm{V}_{\text {in }}$	-0.3 to +7.0	Vdc
Operating Temperature Range	$\mathrm{T}_{\mathrm{A}}$	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$
Thermal Resistance	$0_{\mathrm{JA}}$	70	${ }^{\circ} \mathrm{C} / \mathrm{W}$

This device contains circuitry to protect the input against damage due to high static voltages; however, it is advised that normal precautions are taken to avoid application of voltages higher than those shown under maximum ratings.
6500 CPU

B inputs. The outputs are thus enabled by the
MPU for addresses X $000-\mathrm{X} 0 \mathrm{FF}, \mathrm{X} 100-\mathrm{X} 1 \mathrm{FF}$,
X $200-\mathrm{X} 2 \mathrm{FF}$ and X $300-\mathrm{X} 3 \mathrm{FF}$ i.e. into four 256
byte lumps.

The Y3 output of IC4a is used to enable
IC5a which uses address line A9 as both the A


 enable the PROM at the locations required by the MPU. IC5a output Y0 is used to enable
IC9. This IC is not required in the basic system.

## BUS BUFFERING



## CONTROL SIGNALS




 output is combined with the R/W MPU
output in IC5b to produce the WDS and RDS

 operation is to be undertaken.
RDS is low if VMA and $\phi 2$ are high with
 the run state and four of these can be brought
 an
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 (RESET), SW3 (IRQ) and SW4 (NMI) to



The CPU card may be treated as a number of different sections. The most important of these is the 6800 MPU itself. We shall discuss the operation of this (from the software side) later in this series.   The next section is the system clock generator circuit which is centred on IC2 together with IC3a and IC3b		two, rather than three, byte instruction, we need to enable RAM for the first 256 bytes. The above requirements are represented on the memory map shown and the decoding is carried out in IC4 and IC5a.		
	give an adjustment range RV1 and R			
	47 K or 50 K preset types with a 10			
	The outputs of the two monostables ar directed through IC3 which acts as			
	inverter and NMOS driver giving the			
The CPU card also provides some system memory This is of two types, READ ONLY.				
(IC8, IC9) and READ/WRITE (IC6, IC7).   Memory decoding is carried out in IC4 and	MEMORY REQUIREMENTS			
	The 6800 requires two different			
IC5a while IC10, IC11, IC12, IC13 carry out		X000 $\quad$ IC6,7256 BYTE RAM ${ }^{\text {2 }}$		
buffering of the address and data buses.   Firally a number of control signals to and   located in the top region of addresses and some read/write memory which may start at				
from the MPU are processed by various gates and switches on the card.		any address.   The read only memory is supplied by IC8	X3FF	
We shall now move on to deal with each of the sertions mentioned above in greater detail.	and IC9. These are the MM5204 4096 bit $(512 \times 8)$ PROMS. They do not lose their data content when power to the CPU card is	P $\times 400$		
CLOCK GENERATOR   The clock generator for the system is	removed (non-volatile). The fact that they are read only memories means that the MPU			
		+800		
formed by the two sections of IC2 (8602), a				
dual retriggerable monostable. The total				
ycle time of the clock signal may be varied	operation - instead the 5204 must be programmed with an additional piece of			
between $1 \mu \mathrm{~S}$ and $10 \mu \mathrm{~S}$ but the relationship	hardware or, alternatively, be supplied with			
between the two waveforms ( $\phi 1$ and $\phi 2$ )	the required data content.	$\times \mathrm{CoO}$		
specifies that each pulse can be high for only	The second type of memory is	XE00		
$45 \%$ of this cycle. The clock generator is thus in theory quite ccmplicated with the timing	READ/WRITE. This is supplied by IC6, IC7. The devices used are MM2112 types, a 1024			
		XFFF IC8 512 BYTE PROM		
46-100 with $\phi 2$ low for 0-50, high for 51-95,	the $256 \times 8$ bit bytes required by the system.			
returning low for $96-100$; where the counts	This memory can be written to by the MPU	X=PAGE NUMBER   (NOT DECODED IN BASIC SYSTEM;		
	but will lose its data when power is removed.			
	With both types of memories the data			
The 8602 dual monostable is used to generate two pulses each to represent $45 \%$ of				
a cycle, the two $5 \%$ clock overlaps (or more' depend on the particular address that is correctly - clock non-overlaps) rely on the presented to its input. The devices are,				
propogation delays inherent in the 8602 .	however, TRI-STATE and this means that	The address lines $12-15$ are ignored in decoding device addresses and thus access-		
A typical propagation delay for this device	the output drivers will not be enabled, presenting the data to the data bus, unless			
40 nS and thus with a monostable output				
pulse of 460 nS duration, the timing	the chip enable line is low.In this way more than one driver can share 1 IFFE, 2FFE is the same as accessing OFFE,			
requirements would be met. The timing of				
the output pulse depends on the values of the	the buses with only the "selected" chip outputting to the data bus.	The decoding of lines $0-11$ is carried out		
1,2 , and 14,15 .		with 74LSI39 ICs. The internal configuration of this IC was shown in Fig. 3 last month.		
The pulse width is given by the formula   where $t$ is in seconds   Rx is in ohms   $C x$ is in farads.   Substituting $\mathrm{Cx}=33 \mathrm{pF}$ and rearranging we obtain $t=0.31 R x C x(1+1 / R x)$	MEMORY DECODING   A look at the pin descriptions for the 6800	Each half is a complete 2 to 4 line decoder with active low outputs and an enable line.		
	will show that it uses the top range of. As can be seen from the truth table the			
	addresses to access the starting addresses of 'enable line has to be low to enable the			
	subrouting for reset or interrupts. For this reason the MPU would expect to	outputs.IC4a is enabled by the external card enable		
	find non-volatile memory in these regions (rather than volatile types which would	line and uses address lines A10 and A11 for its $A$ and $B$ input. Y0 of IC4a will go low in the address range X000-X3FF, Y 1 for X400-X7FF etc, where $X$ is the page number selected by the card enable input.   IC4b is enabled from the Y0 output of IC4a and uses address lines A9 and A8 as its A and		
$10.23(\mathrm{Rx}+1) \times 10^{-12}$				
$\mathrm{t}=460 \mathrm{nS}$ we require	power up with rubbish). We therefore need to			
$460 \times 10^{-9}=10.23(\mathrm{Rx}+1) \times 10^{-12}$	e the 5204 PROMS in top regions of			
$\begin{aligned} & 10.23 \times 10^{-12} \\ = & 45 \mathrm{~K} \end{aligned}$	To make use of the fact that the 6800 can address the first 256 bytes of memory with a			

## -6S00 CPU CARD

very tight specifications and does not tolerate any degrading of these specs.

We tried many clock circuits that were simpler than the final design but none would meet both the level and rise time requirements of the clock signal. The final design is based on a clock generator used by Motorola in some of their 6800 based systems.

We could not find out why the 8602 dual monostable could not be replaced with a 74123 which is an almost identical but cheaper device Both IC2 and IC3 are expensive chips but the only alternative is a clock driver chip from Motorola which may be more expensive or difficult to obtain.

## PARTS LIST

INTEGRATED CIRCUITS

IC1	MC6800 MPU
IC2	MC8602
IC3	MC3459
IC4,5	74 LS139
IC6,7,	MM2112
IC8	MM5204Q
IC9	MM5204O
(not required for basic system)	

12,13 DM81LS97
RESISTORS

R1, R2	10 k
R3, 4,5	1 k
R6	2.2 k
R7	10 k
R8	2.2 k
R9	2.2 k
R10	2.2 k

## POTENTIOMETERS

RV1,RV2 47k Preset

CAPACITORS

C1,C2	33 pF
C3,4,5,6,7,8	100 n

SWITCHES
SW1 1p 1 way toggle
(not required for basic system)
SW2,3,4 simple push on. release off,
SOCKETS
$1 \times 40$ pin
$1 \times 14$ pin
$6 \times 16$ pin
$4 \times 20$ pin
$2 \times 24$ pin

## Full Circuit

The final circuit of the CPU card is shown in Fig. 1. This is assembled on a Eurocard sized PCB which will be described next month.

## Next Month

Completing the CPU board plus the software monitor, ETI BUG.

## CORRECTIONS

VDU Board A:-
PCB layout omits ground connections on IC2, IC4.
Link from IC10 Pin 1 to IC 9 Pin 6 is omitted on component overlay.
Circuit diagram shows LS connected to IC5/c. This should be connected to IC $5 / \mathrm{d}-\mathrm{PCB}$ is correct.

LS DISEN is shown connected to IC 7/d. This should be connected to IC $7 / \mathrm{c}$. PCB is incorrect and must be altered for VDU to operate correctly.

VDU Board B:-
IC 24 Pin 16 and IC 28 pin 7 should be linked on PCB layout.

ETI PROJECT


GRAPHIC EQUALIZERS are popular with both the professional and domestic user alike. However until the presentation of our earlier equalizer (ETI 427) the cost of such a device was very high and this limited its wide use. We have now redesigned the equalizer to simplify the construction and it now has no coils and one additional filter has also been added.
available cannot give correct reproduction in an inadequate room. It is a sad fact that very few rooms are ideal, and most of us put up with resonances and dips, convinced that this is something we have to live with.

Whilst the octave equalizer will not completely overcome such problems, it is possible to minimize some non-
particular system. One adjusts the equalizer to provide a uniform response, the settings of the potentiometer knobs then graphically display the areas where the speaker etc is deficient.

There is a snag, however, one must have an educated ear in order to properly equalize a system to a flat response. It is not much use equalizing to your own preference of peaky bass


The advantages of an equalizer are not generally well known but are as follows.

Firstly an equalizer allows the listener to correct deficiencies in the linearity of either his speaker system alone, or the combination of his speaker system and his living room.

As we have pointed out many times in the past, even the best speakers
linearities of the combined speaker/ room system.

In a concert hall it is also possible to use the unit to put a notch at the frequency where microphone feedbac occurs, thus allowing higher power levels to be used.

Thirdly, for the serious audiophile, an equalizer is an exceedingly-valuable tool in evaluating the deficiencies in a
etc in order to evaluate a speaker.
Ideally, a graphic equalizer should have filters at $1 / 3$ octave intervals, but except for sound studios and wealthy pop groups, the expense and size of such units are too much for most people.

The equalizer described here has 10 octave spaced filters but if desired it could be modified to give $1 / 2$ or $1 / 3$




With all filter sections in circuit the
maximum cut and boost available is maximum cut and boost available is
点
 control stage. With the values shown the
 +14 dB . By replacing R22 by a link RV11 will act like a normal volume control.
Now to the gyrator.

To ondy difference between an inductor and a capacitor - electrically, that is, not mechanically - is the phase relationship between the current and
 to reverse the phase relationship of a
capacitor and make it appear like an capacitor and make it appear like an
inductor. In the circuit below the inductance is given by the formula
$\mathrm{L}=\mathrm{R} 1 \times \mathrm{R} 2 \times \mathrm{C} 1 \mathrm{H}$ where C is in
 resistance (winding resistance) or R2 and a parallel resistance R1 (in a coil this is due to winding capacitance). The lowest
value of R2 depends on the amplifier used but for standard op-amps it would be about 100 ohms. At the high end the
value of R1 is limited by input current.
 The output of the amplifier in this case
is approximately the input signal times $(10000+1000) / 100$ giving a gain of 20
dB. If the slider is at the other end of the dB . If the slider is at the other end of the
potentiometer, (Fig. B), the signal potentiometer, (Fig. B), the signal
appearing at the positive input, and thus also the negative input is about 0.1 ( $1000 /$ $(10000+1000))$ of the input. There will and in RC, thus the output will be 0.1 and in RC, thus the output will be 0.1
of the input. That is, there will be a loss of

If the wiper is midway, both the input signal and the feedback signal are attenuated equally, and the stage will have
unity gain.
circuits must be changed to narrow the band. At the moment the impedance of the capacitor and inductor (gyrator) is about 3000 ohms at the centre frequency and this should be increased to about 8000 ohms for the third octave unit. The capacitors and inductors can
be calculated by

## where $X_{C}=X_{L}=8000 \Omega$

and $f=$ centre frequency
It is recommended to reduce loading IC1/2 that the potentiometers be increased to 10 k .

The volume controls mount straight onto the chassis, and can easily be wired in once the board assemblies

Now build up the PSU, and test it throughly before wiring it to the boards. Mount the transformer as and if possible screen it with a metal enclosure. On the original shallow metalwork shown here screening the PSU added considerably to the overall quality of sound.

Third octave filters
While we have not built up a third octave unit we see no reason why it will not work. Additional stages can simply
that the board itself is spaced away from the board by about an not short across any of the tracks as it passes through the PCB. It's a good idea also now to ensure that once you've with the metalwork holes for mount ing. lidyour sliders have to be spaced away from
the chassis. We found that this was best done by using four washers between the body of the pot and chassis.

If this is not done, the tang fouls
the bolt within the body, and limits the travel.
of the network. At either side of slope dependant on the $Q$ of the network which is 3) due to the uncancelled reactance. This will be inductive above resonance and capacitive below resonance.
We can therefore represent the equalizer stage by the equivalent circuit below.


It must be emphasized that this equivalent circuit represents the condition
with one filter only, at its resonant frequency. Additionally letters have been used to designate resistors to avoid con-
fusion with components in the actual
octave spacing as large values of inductance are easily obtained with
gyrators (active inductors). gyrators (active inductors).

## Construction

Assemble the PCB's as per the
overlays, leaving off the sliders for overlays, leaving off the sliders for
now. Check everything carefully to make sure it's correct, as once they are mounted onto the board you'll
To fit these potentiometers, solder a generous 2 inch length of tinned wire to each of the end contacts, and one of the slider pins. Offer up the pot to the board, push the wire through the board from the back and solder to the pc pins, such




## GRAPIIC EOUALISER




#### Abstract

-BUY LINES Maplin are producing a full kit, including metalwork, for this project at a cost of $£ 65$ all inclusive. All components will be available separately. Note that we have not given metalwork dimensions ourselves, since sliders vary greatly in dimensions and mounting requirements. Maplin are also working on a wooden sleeve to suit their kit, and details will be available short--ly. See ad on back cover for address The 4136 op-amp can be bought from Eurosem International Ltd., Haywood Hse., Pinner, Middx. HA5 5QA (phone or write for price) if you are one of these people who don't like kits!




Component overlay and foil pattern for the power supply. The LED dropper resistor is wired from C32. The foil pattern is shown full size i.e. 88 mm width


The power supply board in situ. Note the LED dropper resistor wired from the reservoir capacitor. The support pillars are missing from one end of the pcb here, as they help support the screen around the transformer and this had to be removed For some rea. son our camera wouldn't work through aluminium

Below: The beast assembled and lying beneath our camera. Note that here the screening has been removed from around the power supply so you can see what's gone where. The LED wiring can be seen as a twisted pair running from the regulator board top left.




TRANSISTORS



Lasers for entertainment looked at by starry-eyed Jim Perry
'AND ON THE FIRST DAY there was light, but it was incoherent it was a long time before coherent light was produced, July 1960, the birth of the Laser. The first laser was produced by Theodore H. Maiman, while working at the Hughes Aircraft Research Laboratories in Malibu, California. This first laser was a Pulsed Ruby type.

Lasing mediums currently in use include Chromium (Ruby lasers): Neon, Argon, Krypton and $\mathrm{CO}_{2}$ (gas lasers), organic dyes (liquid lasers), and recently, certain semiconductors. The method of pumping energy into the medium determines whether it will be a pulsed or continuous laser. Optical pumping, focussing a bright light source such as Xenon flashtube on the lasing medium, is used with Ruby and liquid lasers providing a pulsed laser output. Continuous lasing is possible with gas lasers, where electron collision pumping, sending an electrical discharge through the gas filled tube, is used.

## Early Experiments

Even though lasers have now been around for 17 years, very few people have actually seen one! Apart from the scientific and industrial iuses, lasers also are amazing just to look at (not directly into the beam though!). This was realised as early as 1967, when people started artistic experimentation with lasers, projecting the beam through various transparent materials (such as crystal cut glass) to produce abstract patterns, and moving effects.


Laser light is an impressive sight, because of the dynamic-almost tactile-purity of it. The air in fact can appear to be solid, if dust is present in the path of the beam. The early experimental laser lightshows. used this property, in conjunction with smoke machines, to produce numerous shafts of red 'solid air' moving over peoples heads.

It was soon realised that vibrating mirrors could be used for more complex images. One of the earliest uses was at the 1970 World Exhibition in Osaka. Pepsi-Cola commissioned Lavell Cross, Carson Jeffries and David Tutor (from Mills College, U.S.A.), to build Video / Laser II for use in the Pepsi-Cola Art and Technology Pavilion. This
system produced complex Lissajous type patterns within the confines of the Pavilion, and was more sophisticated than the simple "mirrors stuck on a loudspeaker" approach used previously, but still relatively crude.

As well as being simple mechanically, the early laser shows tended to use separate small lasers, as powerful Krypton lasers were prohibitively expensive. So now for details of some modern Laser lightshows and their background.

## Crystal Machine

Tim Biake (synthesiser player extraodinarre) joined the band Gong in 1972, he started using small Helium Neon (red) lasers for special effects during concerts. He teamed up with Patarice Warrener (technical boffin extraordinaire) and they called themselves Crystal Machine. The lasers used were replaced with slightly more powerful ones $(2.5 \mathrm{~mW}$ instead of 1.5 mW ) of the same type, most of the effects were produced by diffraction gratings, mirrors on loudspeakers and manual manipulation.

Crystal Machine left Gong and moved to Paris, with the loan of 6 new 20 mW lasers (from Spectra Physics of California), they started mixing conventional light show techniques with Laser techniques. One memorable event was at a Parish church, with no place to hang a screen they projected an Argon (blue) laser onto the clouds, to the sound of Tim playing his huge synthesiser bank! Crystal Machine also built laser light show equipment for Yes, and still performs as a total

sound light experience - one not to be missed if you get a chance!

## Light Fantastic

Was the name given to a recent exhibition cum laser show at the Royal Academy in London. This was mainly to let the public see the results of recent research in Holography and special laser effects by Nick Phillips, Anton Furst and John Wolff - collectively known as Holoco. The show consisted of dozens of Holograms, of different types, and an automated light show every 15 minutes - over the heads of the public - to the accompaniment of classical music. The main
attraction for passing crowds, was the EıR symbols lased into the London sky over the Royal Academy

Light Fantastic was a tremendous success with huge queues all the time, in fact it seems to have sparked off the recent upsurge in Lasers as good things to watch! John Wolff is also the technical manager for The Who, and has been using powerful lasers at their concerts for some time. His own show is due to open in August at the New London Theatre, using 9 lasers each 4W in power. In fact John probably has the biggest collection of lasing power outside of industry, some of his big (one new

one is 60 W ) lasers vapourised the mirrors used to deflect them!

## General Scanning

In 1975 Jean 'Coco' Montagu of General Scanning Incorporated, Massachusetts, became the first man to develop a Laser Projector capable of reproducing graphically alpha-numeric symbols as well as the more familiar and simplistic abstract patterns. He demonstrated this development in a dramatic way. Using his Laser Skywriter PCX101 the logo of the magazine Industrial Research was "written" on the clouds over Cambridge, Massachusetts, as were other graphics, including a 'flying-saucer'.

Since then General Scanning Inc. (who happen to be the main manufacturers of scanners in the world), have developed a unique type of laser projector. What makes this type of Laser Projector different and far in advance of other such Laser Projectors used in the field of Entertainment is that in addition to being able to describe abstract patterns and shapes it has the capability not only of creating alpha-numeric images but also moving line drawings of amazing diversity. At the time of writing no other Laser Image-Making Machine has quite the same advanced capabilities

Top photograph was taken in Holoco studios, when they were preparing for the Royal Academy show "Light Fantastic". The EIIR symbol was projected above the Royal Academy during the show. (Photo: Theo Bergström.)

On the left is a view of Crystal Machine in full flight, the massive synthesiser bank can be easily seen.

## Lovelight

Realising the possibilities of the General Scanning machine, Gerd Stern - of Intermedia Systems devised and produced Lovelight. With a team of over 50 people (technicians, artists and musicians) the master tape took about 9 months to produce. They literally had to start at the drawing board. The drawings were then processed via an X-Y pad into digital form, the basic system can be seen in the drawing on the left.

The original idea was to produce a laser musical, in fact they ended up with a tape and a machine instead of a live production. The world premiere of Lovelight was on February 2nd 1977, at the Charles Hayden Planetarium in Boston, U.S.A.

The difference between Lovelight and all other laser shows is that graphics are projected as well as the spectacular effects produced by other systems. The colour photograph on our front cover is one such mixture, a spider climbing a laser web! A second machine was built and is being used in England, producing an identical show to its Boston twin. The English Lovelight is being staged at the Metropole Laser Theatre (formerly a cinema) in Victoria, London. This show is being put on by Laser Visuals Ltd in association with Rank Leisure Services Ltd and the American producers.

The Hewlett Packard instrumentation recorder has its 8 tracks multiplexed, to give an effective capacity of 32 information channels. The stereo sound track is recorded separately on a Teac 3340, with a third track providing sync pulses to keep everything together. The response of the resonant scanners (which provide control beam width and intensity) is up to a phenomenal 8 kHz , the $X-Y$ scanners have a more normal 2 kHz


Schematic of the system used in Lovelight. This is the most advanced system in use at the moment. The scanner network is duplicated for the three other colours shown.
response. This may not seem very impressive, but up until fairly recently controlled response up to 1 kHz was difficult to obtain.

The laser used is made by Control Laser of Florida, and is a 1.2W Krypton/Argon type. A 42 foot diameter, parabolic aluminium screen is used as the projection surface (the largest ever built in England). Watching the show one has the same feeling that was probably felt by early cinema audiences. The overall effect is that of watching a computer generated animation film, but the figures are simple - even childish - in comparison to genuine computer animations. Nevertheless, it is an interesting experience, to be seen if you get a chance.

## Laserium

Laserium was created in America by Ivan Dryer, a Californian film-maker and photographer, who
developed the idea after seeing a laser projection technique demonstrated at the California Institute of Technology in 1970. He made a film of it (Laserimage) but recognised that film could not adequately capture the vivid effect of live laser beams. His years as a guide at the 'Griffith Observatory, Los Angeles, prompted him to choose a planetarium as the ideal environment and in 1971 he formed Laser Images Inc to explore the applications of lasers in entertainment.

Laserium was first presented at the Griffith Observatory in late 1973, since then it has been playing in 14 other centres, including Kyoto, Japan, where a specially constructed Laserium dome was opened in March 1976. Recently Laserium opened at the Planetarium in London as well.

The system used by Laserium is based around a 1W Spectra Physics Krypton laser.

The greenish white beam is



Three effects produced by the Laserium system. On the left is the basic type of geometric pattern produced by simple (but sophisticated! X-Y scanning. Centre is the strange sort of effect produced when passed through a sheet of clouded glass, with deformation of the geometric pattern. Right is a "chopped" pattern. all of these patterns are continually changing.
passed through a prism, which splits the beam into red, yellow, green and blue beams. Each of these beams is processed via modulators, scanning mirrors etc, to produce multicoloured images on the Planetarium dome. Sound tracks and basic control signals are provided from a pre-recorded tape (played on a Teac 3340 four channel machine), but the main modulation signals are mixed and blended live, by an operator called a Laserist. Even though far less sophisticated than Lovelight's system, the effect is far more vivid, and no two performances are ever the same.

## Other developments

So with all the laser shows at present, London seems to be the laser capital of the world. The only drawback to more people experi-
menting with similar systems is cost, most of the systems described have cost at least $£ 100,000$ and the laser itself is about $£ 4,000$

However, if you fancy playing with lasers Holographic Developments Ltd may have the answer. They are developing a small $1 / 2 \mathrm{~mW}$ laser for home use, which is expected to cost less than $£ 200$, also they are working on cheap scanning and effect attachments to stick on the end - the home laser light show may be just around the corner.

So lasers have become not only a tool for measuring, cutting, welding, and burning, but also an imaging device. As a contribution to visual displays and media, scanning projection is very appealing. These projections are not confined to a frame, as are film and television, nor
to a particular projection surface. Lasers can be aimed at walls, clouds, balloons, or mountains, and can be safely used in indoor environments when not aimed directly at the audience, but reflected from a surface such as a planetarium dome.

## Stop Press:

The Science Museum is staging a laser exhibition in November for three months - are lasers contagious?

Special thanks for help in research on this article to: Tim Blake (Crystal Machine), Wilf Eggers (General Scanning Inc.), Carolyn Fairley and Brian Scott (Laser Visuals Ltd.-Lovelight), Ivan Dryer and Roger Helm (Laser Images Ltd. Laserium), Theo Bergström, Holoco and Andy Harris (Holographic Developments Ltd.).


# Short Circuit CONTINUITY TESTER 

One of the commonest uses of a multimeter is to prove continuity - it's not the best way of doing it however.

THE PROBLEM WAS IN A TV receiver; a loom of wires connecting one section to another had duplicate colours within the loom so that amid the usual amount of dirt and dark corners it was impossible to trace the course of one particular wire. The answer to the problem was a
straightforward continuity tester, a multi-range ohmmeter may be suitable but could cause some trouble in differentiating between zero and a few hundred ohms and also in reading "through" a semiconductor that was in circuit and giving misleading readings.

In the course of servicing a variety of apparatus this question of continuity occurs over and over again; the absence of firm points available for contact clips often means that pointed probes must be pressed into a small joint or onto part of a princed circuit, and while concentrating on the probes it is of course difficult to keep an eye on the meter pointer and in particular to read the value of resistance - or the lack of it.

## Design Considerations

Several simple circuits were tried - a lamp, battery and probes still demanded the attention of the eyes; replacing the lamp by a buzzer was more successful but needed some three to four volts and gave no indication of a series semiconductor junction if the polarity was ocrrect while the current flow was large enough to damage the more delicate devices within the circuit under test. An extension of the principle to operate an astable (multivibrator) type of oscillator gave good audiblity but would operate from zero through to several thousands of ohms and so was too general an indication.

Designed by D. H. E. King Built by ETI Project Team


A set of specifications was becoming apparent; (i) probe current to be small) (ii) probe voltage to be as low as possible, preferably less than 0.3 V to avoid seeing germanium or silicon junctions as a continuous circuit; (iii) no on-off switch to be used.

The circuit was the result and several dozen have been constructed and are earning their keep for both "heavy" electricians and electronic technicians.

The output from the speaker is not loud but is more than adequate for the purpose. We used a surplus telephone insert which are often available from component retailers Small transistor radio loudspeakers with impedances of $25-80$ ohms are also available. In both cases the resistance should be brought up to 300 ohms by adding series resistor R8.


Fig. 1. Circuit of the continuity tester; note that an on-off switch is unnecessary. D1 is used when the battery is brand-new and giving over the nominal 9V01, 02 and O3 act as the switch for supplying power to the multivibrator.

Starting with a 9 V supply, when the probes are short-circuited there is $8 \mathrm{~V} 2(8.2 \mathrm{~V}$ ) dropped across the zener diode ZDI leaving a maximum of $0 \mathrm{~V} 8(0.8 \mathrm{~V})$ across R 1 . Application of Ohms law shows that a maximum current of $0.8 / 1000=0.8 \mathrm{~mA}$ flows via the probes and this satisfies the first design requirement of low probe current.
Q1 is a silicon type and the baseemitter voltage will need to be about $0 \mathrm{~V} 5-0 \mathrm{~V} 6(0.5-0.6 \mathrm{~V})$ to forward-bias the junction and initiate collector current. With a maximum of 0 V 8 available across R1 it is seen that if a semiconductor junction or resistor is included in the outside circuit under test and drops only 0V3 then there will be $0 \vee 5$ remaining across

R1, barely enough to bias Q1 into conduction.
Assuming that the probes are joined by nearly zero resistance, the pd across R 1 is $0 \mathrm{~V} 7-0 \mathrm{~V} 8$ and Q 1 turns on, its collector voltage rising positively to give nearly 9 V across R3. Q2 is an emitter follower and its emitter thus rises to about 8 V 3 and this base voltage on Q3 (a series regulator circuit or another emitterfollower if you prefer it) results in some 7V7 being placed across the Q4 - Q5 oscillator circuit. All the transistors are silicon types and unless the probes are joined, only leakage current flows from the battery thus avoiding the need for an on-off switch. When not in use, the battery in the tester has a life in excess of a year.
drop since test current for zener selection and marking is typically 5 mA or more. A further possible source of error is the battery; the one suggested nominally provides 9 V but a brand-new specimen may perhaps provide some 9.5 to 9.8 V until slightly run-down and this "surplus" voltage, combined with an "under-voltage" zener volt-drop will leave considerably more than the forecast voltage available at the probes. A silicon diode D1 is therefore connected in series with the zener to decrease the probe voltage by a further 0.6 V or so. During final test and just before boxing the completed circuit, the most suitable connection, A or B , is selected for the positive probe wire. The aim is to have the circuit


Fig. 2. The pcb pattern shown full size $(73 \mathrm{~mm} \times 33 \mathrm{~mm})$.

$-v e$
Fig. 3. The component overlay on the pcb and other wiring.

## BUY LINES

All components should be available as standard items from most stockists. LS1 can be between 25 and 80 ohms although the 80 ohm types are generally $21 / 2^{2}-23 / 4^{\prime \prime}$ in diameter and these will not fit into the case that we used.
The speaker used in the prototype was a GPO type earpiece from a handset; these are available from some surplus suppliers. See note about R8.

The total cost of this project should be $£ 3.50-£ 4.00$ depending on the case and the speaker used.


Inside view of our unit built into a small plastic box with metal top.

An experiment worth doing is to select the value of either C1 or C2 to produce a frequency of oscillation that coincides with the mechanical resonant frequency of the particular earpiece transducer in use. Having chosen the correct value, which probably lies in the range $10 \mathrm{n}-100 \mathrm{n}$, the tone will be louder and more piercing. A
"freewheel" diode D2 is connected across the transducer since the fast switching action of the oscillator circuit can produce a surprisingly high back e.m.f. across the coil and these high voltages might otherwise lead to transistor damage or breakdown.

Zener diodes do not provide an absolutely constant volt-drop regardless of current; at the 0.8 mA design current an 8.2 V diode will quite possibly give only about 8.0 V
oscillating with short-circuited probes but to stop oscillation with the least amount of resistance or the inclusion of a diode (try both ways) between the probes.

No sensitivity control is fitted although it would be possible to take R2 from the slider of a control replacing R1. It was not thought worthwhile, however, to spoil the simplicity of the apparatus with anything external other than just the two probes.

There is no easy way to proof the unit against connection to the mains supply. Be careful if checking mains wiring and switch off first. In a similar way, if checking electronic apparatus for unwanted bridging between Veroboard tracks, for instance or a suspected crack in a printed circuit track switch off first.

## SINTEL for KITS

THESE ITEMS STILL ON SPECIAL OFFER THIS MONTH－OPEN UNTIL 31st AUGUST， 1977 INCLUSIVE


## ANNOUNCEMENT <br> FURTHER INFORMATION ON Z8O COMPUTER SYSTEMS AVAILABLE SODN FROM SINTEL

We will be oftering two different packages．The first system，the RESEARCH MACHINES 3802，will be available buit．and tested and also in kit form．This is a fully recorder
he second system，the RESEARCH MACHINES 2802，will be available in uncased kit form，with a low cost keyboard．The RESEARCH MACHINES 2802 is designed to set a new low in computer system pricing and it will bring a full computer system within reach of many more private computer enthusiasts
（These computers are designed and manufactured in Oxford by SINTEL＇s parent company RESEARCH MACHINES LIMITED，and will be sold through SINTEL．）

RESEARCH MACHINES 3802 will have the following specifications
ALPHANUMERIC DISPLAY The $380 Z$ has a UHF output which plugs into the aerial socket of a completely unmodified domestic television．The TV screen will then display 24 rows of 40 characters（ 960 characters）．The unit can display the 128 character ISO set，including upper and lower case ASCII． 80 （horizontal）$\times 72$（vertical）．Graphics and alphanumeric characters can be intermixed． QPUT Very high quality，robust keyboard with ASR－33 standard layout
CASSETTE INTERFACE CUTS，Kansas City standard， 300 bits per second
CPU SPEC． 280 Microprocessor．Fully buffered bus．
RANDOM ACCESS MEMORY $4 K$ bytes dynamic RAM minimum．The system can accommodate up to 32 K bytes without adding any memory PCBs．Using a page select mode，the computer memory can be expanded indefinitely
IRMWARE（This means sottware supplied and available at Switch－On，in ROM therwise known as the MONITOR．）
MONITOR COMMANDS：List Memory，Modify Memory．Load From Cassette，Dump on Cassette，Single Step＇Trace，＂Go To User Programme，Breakpoint，etc
SOFTWARE We will be offering：Extended Monitor Various Basics俗 Games Rackages．Resident Assembler． power suppty．and a lot of room for expansion．Keyboard is in a separate case．All connections between units are made with unpluggable connections．
RESEARCH MACHINES 2802
An exciting new low cost computer using the 280 microprocessor，suitable for amateur use or as a professional Engineer＇s Computer Development Kit．RESEARCH MACHINES 2802 features optional power supply．a low cost keyboard．VDU UHF output providing an ASCI alphanumeric display on a domestic television，cassette interface and a money It will cost somewhere between the price of a Manufacturer＇s Development Kit using hex display and keyboard，and a fully cased computer system．

MPUs   MC6800   280		Xtal timebase	$2 /$ SPDT	847.461	C04027	0.58	CO4069	0.23
	24.8 A	modules		1.10	CO4028	0.92	CO4070	0.51
	29.50	50 Hz 671－50	4／SPOT	991.461	CD4029	1.18	CO4071	0.23
TRANSFORMERS		7.30		1.86	CO4030	0.58	CD4072	0.23
		100 Hz 821.100			CO4031	2.30	CD4073	0.23
LEOTRF	1.95	7.40			CD4032	1.02	C04075	0.23
5Ltrf	1.95	Clock chips			CD4033	1.44	CO4076	1.34
UEROBOARDS		AY51202 3.10			CD4034	1.97	C04077	0.45
$375^{\prime \prime} \times 5^{\prime}$		AY51224 3.50			CO4035	1.22	CD4078	0.23
		MK50253 5.60			CD4036	3.29	CD4081	0.23
	1.12				CD403	0.98	C04082	0.23 0.74
		SOLDERCON	CDM000	r 0.17	CO4038	1.10	CO4085	0.74
	55	NS	CO400 1	0.18	CD4040	1.11	C04089	0.74 1.60
verocases		$100 \quad 0.50$	C04002	0.17	CO4041	0.86	C04093	0.92
		$1000 \quad 4.00$	C04006	1.20	CD4042	0.86	CD4094	1.94
751410 J	3.36	$3000 \quad 10.50$	C04007	0.18	CD 4043	1.01	CD4095	1.08
7514110 $751237 J$	4.10 2.50		C04008	1.00	CD 4044	0.96	CO4096	1.08
7512380	3.00	OLL SWITCHES	CO4009	0.58	CO4045	1.45	C04097	3.85
751239 K	3.58	PCB mounting	CD4010	0.58	C04046	1.37	CD4098	1.13
		switches 0．1＂pin	CO4011	0.20	CO4047	1.04	C04099	1.90
crystals＊		spacing． $03^{\prime \prime}$	CO4012	0.23	CO4048	0.58	CO4502	1.24
32.768 kHz	3.50	between rows，eg	－CO4013	0.58	CO4049	0.58	CO4510	1.41
5.12 MHz	3.60	187.461 firs in a	CO4014	1.04	CD4050	0.58	CD4511	1.72
		standard 16 pin	C04015	1.04	CO405 1	0.94	CO4514	2.84
MEMORIES		DIL socket．	CD4016	0.58	CD4052	0.94	CO4515	3.24
9131	19.50	2／SPST 259－461	CO4017	1.04	CD4053	0.94	CO4516	1.40
2102A． 6	3.10	0.59	C04018	1.03	CD4054	1.20	CO4518	1.25
2142 A .4	4.10	4／SPST 560－461	CO4019	0.58	CO4055	1.36	CO4520	1.19
6508	8.05	1.09	CO4020	1.28	CD4056	1.36	C04527	1.64
		8／SPST 187－461	C0402 1	1.04	CO4059	4.93	CO4532	1.39
DISPLAYS		1.85	CO4022	0.94	C04060	1.15	C04555	0.90
FN0500	1.30	10／SPST 726．461	CO4023	0.23	C04063	1.13	CD4556	0.90
THL321	1.50	2.10	C04024	0.80	C04066	0.63	MC14528	1.22
TIL322	1.49	1／SPOT 425－461	CO4025	0.23	C04067	3.85	MC14553	4.68
SLTO1	5.80	0.60	CO4026	1.78	C04068	0.23	IM6508	8.05

[^1]ORDERS：C W O and VAT＠8\％＋250 P\＆P TELEPHONE and CREDIT（Invorce）Orders add VAT＠ $8 \%$ $50 \%$ ．

## SINTEL



SINTEL
$\begin{array}{ll}\text { YOUR } & \text { POBOX 75A } \\ \text { ORDER } & \text { OXFORD }\end{array}$
Tel． 086549791

## THE SINTEL ALARM CLOCK WITH BLEEP ALARM AND TOUCH－SWITCH SNOOZE

with a deep red display filter and features automatic intensity concrol and airracive，sim whie case Wwelve or twenty－tour hour format can be selected during construction，or a swigh can easily be added berween them this clock has proved a popular and reliable kit Order as ACK
$\qquad$ rom mains supply，and with Crystal Control to improve accuracy
$\mathbf{A C K}+\mathbf{B E K}+\mathbf{X T K}$

AND A NEW KIT
FROM SINTEL
THE RED LED DESK CLOCK
 supply For kit with additional bartery backup and crystal control
Order as

## ALL KITS BY RETURN POST

GCK ClOCK KIT
Also av

```
Ond battery
Ond battery
 Start－Stop Reser．Selecting disp：ay to show tinne or efapsed time－All controls functional
trespective of display mode K 1 t complete with case Order as CCK
THE SINTEL CAR CLOCK KIT
 \(€ 17.85\)

\section*{A RANGE OF SINTEL INDUSTRIAL MODULE KITS} KITS FOR LATCHED COUNTER MODULES
Each kit has a set of red LED displays， 1 wo PCBs and the appropriate number of TTL or CMOS ICs，plus brackets．etc．，resistors，capacitors，single in－line plug and sockets and instructions
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{TTL Prict} & \multicolumn{2}{|l|}{CMOS} \\
\hline & Part No & Price & Part No & Price \\
\hline 2 digit & 526－412 & £10．52 & 548－470 & £．10．42 \\
\hline 4 digit & 657.412 & £17．98 & 191－470 & £18．11 \\
\hline 6 digit & 721－412 & £25．66 & 869.470 & ¢ 25.85 \\
\hline \multicolumn{5}{|l|}{COUNTER PCB SETS} \\
\hline \multicolumn{5}{|l|}{Sets of 2 PCBs plus brackets，layout，circuit and instructions} \\
\hline 2 digit & 915－950 & £2．97 & 855－950 & £2．48 \\
\hline 4 digit & 246－950 & £4．53 & 462.950 & £3．73 \\
\hline 6 digit & 610－950 & £6．16 & 719 －950 & £5．01 \\
\hline \multicolumn{5}{|l|}{For other Counter Sets and Modules available from SINTEL please send for our free catalogue which will be sent by return post} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
SETS OF JUMBO OISPLAYS WITH OISPLAY HOLDING PCB \\
Each kit consists of the appropriate number of \(0.5^{\prime \prime}\) red LED displays（either common anode TIL321／FND507s or common cathode TIL322／FND500s）and a display holding PCB．OPTIONS：PCBs wired for multiplexing or non－multiplexing，clock format or counter format．
\end{tabular}}} \\
\hline & & & & \\
\hline \begin{tabular}{l}
TYPE \\
Non－Multiplexed
\end{tabular} & \multicolumn{2}{|l|}{COMMON ANODE
Part No
Price} & \multicolumn{2}{|l|}{COMMON CATHODE Part No Price} \\
\hline 2 digit Counter & 574－822 & £3．37 & 446.822 & £2．97 \\
\hline 4 digit Counter & 777.822 & £6．63 & 128.822 & ¢5．83 \\
\hline 6 digit Counter & 684－822 & £9．89 & 271－822 & ¢8．69 \\
\hline \multicolumn{5}{|l|}{Muhiplexed} \\
\hline 4 digit Clock & 301－822 & \(£ 6.66\) & 262－822 & \(£ 5.86\) \\
\hline 6 digit Clock & 417.822 & £10．15 & 452－822 & \(£ 8.95\) \\
\hline 8 digit Counter & 119.822 & £13．09 & 515－822 & ¢11．49 \\
\hline \multicolumn{5}{|c|}{DATABOOKS} \\
\hline \multicolumn{5}{|l|}{Intei Memory Dasign Handbook ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．¢5．20} \\
\hline \multicolumn{5}{|l|}{Intel \(\mathbf{8 0 8 0}\) Microcomputer Systems User＇s Manual ．．．．．．．．．．．．．．．．．．．．．．．．．．．．． \(\mathbf{6 5 . 2 5}\) Motorolan Booklet From the Computer to the Microprocestar ．．．．．．．．．．．．．． \(\mathbb{\$ 1 . 8 0}\)} \\
\hline \multicolumn{5}{|l|}{} \\
\hline \multicolumn{5}{|l|}{Motorola M6800 Microprocessor Applications Manual ．．．．．．．．．．．．．．．．．．． \(\mathbf{E 1 2 . 9 5}\)} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{National Semiconductor TTL Databook}} \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{A very useful set of gloss cards showing top and bottom pun on views of 7400 ICs plus many oiners iT I Memories} \\
\hline \multicolumn{5}{|l|}{Op．Amps．erc｜．．¢2．95} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & Zlog \(\mathbf{z 8 0}\)－ctC Product Specifications \\
\hline \multicolumn{5}{|l|}{Zziog 280．P10 Technical Manual ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．E3．30} \\
\hline
\end{tabular}

\section*{Germonimitin}

\section*{What to look for in the October issue: On sale September 2nd}

\section*{DIGITAL THERMOMETER}

Using the new National temp. control chip (data sheet this issue) with an A/D converter and 7 -segment display - our digital ther--mometer provides an accurate and attractive alternative to those fragile columns of quicksilver,

\section*{SHORT CIRCUITS Inebriation indicator!}

An easily constructed pocketable device to give an accurate indicated of when you're too sloshed to drive home! Guaranteed to cause some arguments in the pub, and it might just save you becoming a victim of the dreaded little bag!

\section*{3-channel tone control}

Combining our desire to go one better than other designs published for tone controls, together with a keen presense of mind - we have produced a three channel unit which controls those all important mid-frequencies as well as the bass and treble.

Not a canine approximation. Nor an electronic rabies spreader. Instead a simple 'robot' which will not allow you to leave the hi-fi or television running when you're not using it. The circuit monitors the audio signal coming from the appliance, and will remove the mains supply when none appears for a pre-set (long) time period. Operation is 'fail-safe' so that potential fire risks from energised mains wires are avoid--ed. No more wasted watts!

\section*{Digital electronics by experiment}

The start of a new series by 1 . Sinclair designed to lead you through the maze of logic circuitry and design, step by step and by practical experiment! A must for anyone interested in digital . circuitry from the advanced expert to the tyro.

\section*{MPU 4U?}

Ever asked yourself 'Why not use an MPU in my next project?'. If, as we suspect, the answer is no then John Miller-Kirkpatrick's article next month is for you.

\section*{Soldering iron}

\section*{survey}

One of the few items in electronics that is not solid state, anymore, is the soldering iron. Gone are the days when you had to heat up your iron on a gas ring, at least we loope ETI readers have stopped this primative practise!
To meet the many different requirements of enthusiasts and industry, manufacturers have produced dozens of different types of iron. Ranging from heavy duty guns to low power rechargable irons, we cover the spectrum, together with the how and why of selecting the correct iron, for the job.

\footnotetext{
Features mentioned on this page are in an advanced state of preparation but circumstances, including late developments may affect the final contents.
}

\title{
पヨコJ0 \\ 7VIOヨdSON ALL ADVERTISED ITEMS UP TO SEPT．30， 1977 10\％DISCOUNT MAIL ORDER \(15 \%\) DISCOUNT CALLERS Please quote ETI Sept．，1977，issue
}

\section*{} 7／9 ARTHUR ROAD，READING，BERKS．

 SPECIAL OFFER COUPON PAPERMATE PENS and SETS：

 \(\stackrel{+}{+}\)

\section*{จัจํํํํํํํํํํ}

\begin{tabular}{|c|}
\hline \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Ot yroq uo abersod \\
OG＇23 人｜｜em．an \\
OG： 13 人וIEmson \\
 \\
I＇ON SIINJyIO 113 \\
 UMO S،113
\end{tabular}} \\
\hline \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & \multirow[t]{2}{*}{} \\
\hline & \\
\hline & \\
\hline \[
\cap
\] & AYOLJNOOU1N \\
\hline
\end{tabular}

\section*{THE METAC DIGITAL CLOCKS and WATCHES}

15\% OFF ALL ORDERS ON PRESENTATION OF THIS VOUCHER

VALID FOR PERSÓNAL CALLERS AN̄D MAIL ORDER CUSTOMERS

SEE ADVERTISEMENT ON PAGE 9 This offer expires on September 30th, 1977

\section*{SENO PCB WORKFRAME}

The Seno PCB Workframe holds PCB's up to \(240 \times 200 \mathrm{~mm}\) in size, at any angle for easy soldering, inspection or test. Adjustment is simple and instant, and the Workframe may be used free-standing, or screwed down to the bench. It's the ideal tool for the amateur and professional constructor.
Normal price is \(£ 13.50\), post and VAT paid.
Available on special ETI offer at only £9, post and VAT paid! Direct from:

Decon Laboratories Limited Freepost, Portslade, Brighton BN4 1 EQ (No stamp needed on your envelope)

\section*{GREENBANK ELECTRONICS}

SOLDERCON PINS
29p/100 \(+8 \%\) VAT
LED DISPLAYS
DL704E/DL707E
DL728E/DL727E
\(49 p+8 \%\) VAT
\(119 p+8 \%\) VAT
\(99 p+8 \%\) VAT
CA3130
\(75 p /\) each \(+8 \%\) VAT
NOTE: These prices only while stocks last. Valid until 30th September 1977. Orders can only be accepted when accompanied by this advert. Strictly cash with order.

GREENBANK ELECTBONICS

KRAMER PRICE BREAKTHROUGH ON HIGH TECHNOLOGY PRODUCTS

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{CAMBRIDGE LEARNING ENTERPRISES} \\
\hline \multicolumn{2}{|r|}{\[
100 / 00 E=\triangle L \square
\]} \\
\hline \multicolumn{2}{|r|}{ORDERS ON} \\
\hline \multicolumn{2}{|l|}{} \\
\hline & \\
\hline & VOUC픈 \\
\hline \multirow[t]{2}{*}{SEE} & ADVERTISEMENT PAGE 79 \\
\hline & This offer expires September 30th, 1977 \\
\hline
\end{tabular}

\section*{UPDATE1: 3,4000 more Transistor Substitutes \\ The most comprehensive, low-cost, single volume coverage of transistors you can buy.}

\section*{Towers' International Transistor Selector}

TOTOME, MEE, MA, BSC, CEM, MIERE

\section*{We've got the new one.}

COMPLETELY REVISED. 30\% MORE COVERAGE. ONLY £5.00 INC. P \& P.

When the first edition of this excellent book was published in 1975 . ETI was the first to offer it.

We are doing it again!
UPDATE 1 increases the coverage of transistors by about 30\% on the first edition.

European Proelectron Standard devices increase by 1500 and now ensure a very comprehensive coverage of Philips, Siemens, Telefunken and Texas Instruments in Europe.

The Japanese 2S Standard Devices coverage has been increased from 1,850 to 3,000 and a further 800 American 2 N devices have been selected.

The original 10,000 entries have been fully edited and this new production has been clearly printed from new computer setting.

Your order will be processed on the day of receipt.

To: ETI BOOK SERVICE
P.O. BOX 79, MAIDENHEAD, BERKS SL6 2EG

Please send me \(\qquad\) copies of
Towers' International Transistor Selector
Revised Edition Up Date 1 at \(£ 5.00\) each inc. p\&p.
I enclose cheque/postal order forf
made payable to ETI BOOK SERVICE.
NAME
ADDRESS

\section*{别 Bundic}

\section*{Part 13 of our component series examines the differing styles of RF chokes and the important parameters connected with their design.}

RADIO FREQUENCY chokes are used to prevent the passage of radio energy (hence the term 'choke') while allowing direct current or lowerfrequency signals (eg, audio) to pass. This sort of application is principally one of decoupling; that is, isolating the RF - carrying portions of a circuit by providing a high RF impedance between two portions of the circuit. The principle also applies in RF interference suppression applications. For example, in reducing RF 'hash' from SCR or Triac motor speed controllers, light dimmers, etc.

RF chokes are also used widely in a variety of filter applications, eg, lowpass and high-pass filters. They are also used in pulse-forming networks and as frequency compensation components in wideband amplifiers (eg, video amplifiers).

RF chokes are also referred to as 'minichokes', 'microchokes' and 'video peaking chokes'.

\section*{Construction}

The general range of construction styles employed are illustrated in Fig. 1. The different winding styles have particular advantages and characteristics on which we will elaborateshortly. RF chokes are generally made in values according to the preferred series E6, E12, and E24. in tolerances of \(5 \%, 10 \%\) and \(20 \%\).

Regardless of the form of the winding or the encapsulation, RF chokes are wound on bobbins consisting either of a phe.iolic or plastic material (non-magnetic), powdered iron or ferrite material. The last two materials, because of their high permeability increase the inductance of the winding effecting a decrease in the number of turns required as well as influencing the other characteristics of the choke.

The bobbin generally has integral pigtail leads moulded into the material to which the winding is terminated. Axial leads are the most common form although radial-lead RF chokes are ob-
tainable - principally intended for printed-circuit mounting.

A form of construction that reduces the external magnetic field of the choke to negligible proportions is illustrated in Fig. 2. This form of construction completely encloses the winding with the result that it has a very weak stray field, reducing 'crosstalk', or coupling,

Fig. 1. General range of constructor styles of RF chokes. The particular style emploved depends on the required or allowable com. ponent size, the inductance, the application and the required characteristics.
between the choke and adjacent components. In fact, two chokes can be mounted so that they touch each other over the full length of the bobbin - and crosstalk attenuation is quoted as 60 dB .

Low inductance RF chokes are usually 'solenoid' wound, whereby a single layer of wire is closewound on the bobbin. Chokes in the range \(0.1 \mu \mathrm{H}\) to \(200 \mu \mathrm{H}\) are generally solenoid-wound. The very low inductance types below \(10 \mu \mathrm{H}\) are generally wound on a nonmagnetic bobbin. Powdered iron bobbins are generally used for chokes between about \(5 \mu \mathrm{H}\) and \(100 \mu \mathrm{H}\), ferrite for the higher inductances to \(200 \mu \mathrm{H}\) or so.

Higher inductance chokes are obtained by overlapping several closewound layers on the bobbin. There is a limitation to this as the selfcapacitance of the winding increases, decreasing the frequency range over which the choke is effective. This is discussed later. Chokes in the range \(20 \mu \mathrm{H}\) to 10 mH are often multilayer wound, generaliy on powdered iron or ferrite bobbins.

The Philips series of 'micro-chokes' cover the inductance range from 0.1 \(\mu \mathrm{H}\) to 100 mH and employ solenoid or multilayer windings on the enclosed ferrite bobbins as illustrated in Fig. 2.

Fig. 2. Construction of fully-enclosed style of RF choke. Philips' 'microchokes' are made in this style.

RF chokes from around \(47 \mu \mathrm{H}\) through to 100 mH are often 'piewound'. This is a form of winding where the wire is zig-zagged around the circumference of the bobbin and built up ilı many layers. The individual turns are not colinear - lying alongside the adjacent turns - but the wires cross at an angle due to the zig-zag winding, thus reducing the total self-capacitance of the coil. A multilayer winding wound in this way is termed a 'pie', the method of winding is also referred to as 'universal' winding.

Pie-wound RF chokes may have 1 , 2,3 or as many as 5 or 6 , pies making up the inductance. Generally the pies are of the same width, diameter and number of turns but some types for special applications, or where special characteristics are required, are wound with a number of pies, each having a smaller diameter but a greater width than the preceding pie. This achieves a more uniform impedance characteristic over the desired frequency range.

A variation on the pie winding is the 'progressive lateral' type where the zigzag winding is progressively moved along the bobbin rather than building a high, multilayer pie. This technique reduces the inherent self-capacitance of the winding and provides a more uniform impedance characteristic across the required frequency range.

Encapsulāted chokes are generally of solenoid or multilayer construction, and are encapsulated in an epoxy or other suitable material. Pie-wound chokes are sometimes encapsulated although they are more usually wax-impregnated. Heatshrink tubing is also used to enclose and protect RF chokes.

\section*{Characteristics}

RF chokes are an inductance that is required to have a high value of impedance over a wide range of frequencies.

In practice, an RF choke has inductance, distributed capacitance, and resistance. At low frequencies, the distributed capacitance has negligible effect and the electrical equivalent of the choke will be as shown in Fig. 3(a). With increasing frequency the effect of the distributed capacitance becomes more evident untıl at some particular frequency it becomes a parallel resonant circuit. The equivalent circuit at and around this frequency is

all impedance of the choke rapidly becoming lower past the initial cycles. This sort of characteristic is illustrated in Fig. 4.

The lower the self capacitance of a particular style of winding, the higher will be the series resonant frequency (also referred to as the self-resonant frequency), thus allowing the choke to operate over a wide frequency range. Special windings, such as the progressive lateral, have extremely low distributed capacitance as well as less variation in impedance across the frequency range, compared to other styles. The variation in self resonant frequency versus choke inductance for three different bobbins and winding styles is illustrated in Fig. 5.

The equivalent series resistance of a choke is made up of the actual dc resistance of the winding plus the RF resistance of the wire used due to 'skin effect'. The actual dc resistance of the choke may need to be taken into account in a circuit, particularly in high current circuits or with high inductance chokes. The latter may have dc resistances up to 500 or 600 ohms.

The equivalent series resistance (also called the 'apparent resistance') varies with frequency, reaching a peak before decreasing due to the shunting effect of the distributed capacitance of the winding. The variation of \(R_{5}\) with frequency for a range of inductances is illustrated in Fig. 6.

Naturally enough, RF chokes have a limit to the amount of dc current they can carry without either overheating or effecting a change in the inductance outside the specified tolerance limits. Manufacturers specify a maximum dc current for their chokes.

Fig. 4. Typical behavior of two RF chokes \((A=\operatorname{around} 10 \mu \mathrm{H}, B=\) around \(40 \mu \mathrm{H})\) aver a range of frequencies.

Fig. 6. Typical variation or equivalent serves resistance of a range of RF chokes against frequency.

RF chokes are generally low Q components. The actual O specified by a manufacturer is generally the minimum Q, measured at a particular frequency. generally in the manner illustrated for several values and two sizes in Figure 7.

\section*{Markings}

RF chokes are marked with their value and tolerance with the standard colour code or typngraphic code, in much the same way that resistors and some capacitors are marked.

The nominal inductance value is always indicated in microhenries \((\mu \mathrm{H})\).

Where a typographic code is employed it is generally of a quite simple form, similar to that used on resistors. The nominal inductance value, again, is always expressed in microhenries \((\mu \mathrm{H})\). The value is identified as follows:-

Nominal inductance values less than \(100 \mu \mathrm{H}\) are identified with three (3) numbers representing the significant figures, the letter R being used to designate the decimal point.
eg, \(\quad\)\begin{tabular}{ll}
\(0.68 \mu \mathrm{H}\) & \(=\mathrm{R} 680\) \\
\(4.7 \mu \mathrm{H}\) & \(=4 \mathrm{R} 70\) \\
\(33 \mu \mathrm{H}\) & \(=33 R 0\)
\end{tabular}

Nominal inductance values of 100 \(\mu \mathrm{H}\) and above are identified by a four digit number. The first three (3) digits represent the significant figures of the value and the last digit specifies the number of the following zeroes,
\[
\begin{gathered}
\text { eg, } \quad 680 \mu \mathrm{H}=6800 \\
4700 \mu \mathrm{H} 4701(4.7 \mathrm{mH}) \\
33000 \mu \mathrm{H} 3302(33 \mathrm{mH})
\end{gathered}
\]

In addition, a single letter may be added to indicate the tolerance, as follows:
\[
\begin{aligned}
& J= \pm 5 \% \\
& K= \pm 10 \% \\
& M= \pm 20 \%
\end{aligned}
\]

Frequency (MHz)

Frequency (MHz)
Fig. 7. Typical Q values versus frequency for several values of two different sizes of moulded RF chokes (From (RH).
\(C L A=6.4 \mathrm{~mm}\) dia. \(\times 78 \mathrm{~mm}\) long .
\(C L 1=6.4 \mathrm{~mm}\) dia. \(\times 27 \mathrm{~mm}\) long.

MARCONI VALVE VOLTMETER
TF428B£15 ea

\section*{EX-MINISTRY}

GENERATOR 0-20KHZ
Sinewave output. Metered. 600 Onms 240 V Input. Size \(16 \times 10 \times 9^{\prime \prime}\) deep. \(£ 22.50\) each

\section*{EX-MINISTRY}

MARCONI O-6WATTS
Multi Range, Multi Impedance POWER METERS \(£ \mathbf{3 0}\) each

EDWARDS HIGH VACUUM PUMPS
Type 1SC30@£50 each
Type ES35@£40 each
Carriage \(£ 2.75\)

\section*{MARCONI TF675F WIDE RANGE PULSE GENERATOR}
+ / - variable outputs up to 50 V Optional delay. Small compact unit. £18 ea

ROYAL INVERTORS manufactured USA. 28V DC Input. Output 115 V AC 400 HZ up to 24 KVA Brand new. Crated \(£ 12.50\) ea.

\section*{MARCONI NOISE GENERATOR} TF987/1
4 Ranges 0-5; 0-10; 0-15; 0-30 Due to large purchases now priced at \(£ 15\) ea

AVO TRANSISTOR ANALYSER CT446

Suitcase style NOW \(£ 27.50\) each

\section*{TRANSFORMERS - All 240V 50HZ}

Type A. 170-17V 250MA: \(7.5-0.7 .5 \mathrm{~V}\) 250MA 0 - 20 V 5 Amps \(0-4 V 5\) Amps \(0-1.1-5 V 5\) Amps \(£ 2\) each. P\&P \(\mathcal{L} 1.25\).
Type B 17-0-17V \(250 \mathrm{MA} ; 8-0-8 \mathrm{~V} 250 \mathrm{MA} ; 0.125-13.5 \mathrm{~V} 5\) Amps OType C \(19-0.19 \mathrm{~V} 250 \mathrm{MA}\); 8 -0-8V
Type C. \(19-0.19 \mathrm{~V} 250 \mathrm{MA} ; 8-\mathrm{O}-8 \mathrm{~V} 250 \mathrm{MA} 0-7.5 \mathrm{~V} 5 \mathrm{Amps}\); 0.1 .4 V 5 Amps \(£ 1.25\) ea. P\&P \(£ 1.25\).
All brand new (APT surplus types A, B, C).
\(\star\) POT PACK. All Brand New Modern. Single and Ganged. Our choice. 7 for 25 p . P\&AP 48 p . SEMICONDUCTORS Guaranteed all full spec. devices all at 5 p ea . . P\&P extra. BC147; 2N3707: \(2 \mathrm{~N} 4403 ; \mathrm{BC} 172 \mathrm{~B} ; \mathrm{BC} 261\); BC 251 B ; BC 348 B . BC171A/B.
2N5879 with 2 N 5881 Motorola 150 Watt. Comp. pair \(£ 2\) pr. P\& P 15 p.
*linear Amp 709 25p ea. P\&P 8p
TUBES. All Brand New Boxed.
Electrostatic deflection
Type GEC \(924 \mathrm{~F} 3^{1 / 2^{\prime \prime}}\) dia, (Replacement for Telequipment 033 \& Solartron 1016 scopes) £25 ea. P\&P \(£ 1.50\)
Type GEC \(924 \mathrm{E} 312^{\prime \prime \prime}\) dia. (Replacement for Solartron 1015 scope)位BEGLASS BOARD
FIBREGLASS BOARD PACK. More board - less money. Larger

\(\$ 31 \mathrm{~b}\) Electronic Goodies \(£ 1.60\) post paid.
*htigh Value Printed Board Pack - hundreds of components, thigh
transistors, etc. - no flat to the board transistors \(£ 1.65\) post paid. YERY SPECIAL PRICES
* 1000 Feed thru Capacitors 10 for 30p. P\&P 15p.

HIVAC Miniature NEONS
App. 60V. Brand New. 10 of 20 p
P\&P exira
GRATICULES \(12 \times 14 \mathrm{~cm}\). high quality plastic 15p ea. P\&P 10 p . *CAPACITOR Pack 50. Brand New components only 50p. P\& P 48 p .
*TRIMMER PACK. All Brand New. 2 Twin 50/200pf ceramic. 2 Twin 10/60pf ceramic: 2 min. strips with 4 preset \(5 / 20\) pf on each;
3 arir spaced preset \(30 / 100\) pt on ceramic base 25p the lot. P\&P
\({ }^{15 \mathrm{p}}\) SPECIAL OFFER
Guaranteed full spec. devices. Manufacturers markings
POWER TRANSISTOR \(2 N 305540 p\) ea \(\mathrm{P} \& \mathrm{P} 8 \mathrm{p}\).
JUST IN! ELLIOTT 803 MAIN PROCESSOR with core memory and software circuits etc. £120

TRIPODS with PAN se TILT HEAD will take 751 b . load \(\mathbf{£ 3 2 . 5 0}\) Ex-Ministry OSCILLOSCOPE. CT436 Double beam DC 6MHZ £95 SOLARTRON CD 1212 SB 40 meg. £85. DB 24 meg twice \(\mathbf{£} 120\).
Many other types available.
MARCONI SIGNAL GENERATORS. Freq. range \(10-470 \mathrm{MHZ}\) Type TF8018/3/S. £150 each
MARCONI TF142F DISTORTION FACTOR METER giving percentage distortion on a directly calibrated dial and includes any MARCONI PORTABLE FREOUENCY METE
MARCONI PORTABLE FREQUEN.
DATA LOGGER
by DYNAMCO
These are BRAND NEW not finished - DATA L
GERS BY DYNAMCO. GERS BY DYNAMCO. They are complete
the plug-in boards.
the plug-in boards.
The case with hinged lid is quite superb and extremely adaptable contains as well as the mother board an equally superb Power Supply with the following voltages \(+28 \mathrm{~V}+15 \mathrm{~V}+5 \mathrm{~V}(2.5 \mathrm{~A})-\) this supply with the for protected: \(-5 \mathrm{~V},-14 \mathrm{~V},-20 \mathrm{~V},-24 \mathrm{~V},-48 \mathrm{~V}\) and other supplies including auto 110 V . This unit supplied in its original cardboard box complete with original manual and must be of serious interest to the professional constructor and anyone considering the construction of a micro processor system. Unit size \(71_{2}^{\prime \prime}\) high \(\times 19^{\prime \prime}\) wide \(\times 23^{\prime \prime}\) deep

\section*{PICK-A-PACK 50 PENCE A POUND}

From Our "Pick-A-Pack" area weigh up your own components. No restrictions on what you take

EX-DYNAMCO Oscilloscopes INVERTORS 30 V Input
GKV Output. Size \(2^{24} \times 4^{1 / 2^{\prime \prime}} \times 1 / 2^{\prime \prime}\). Complete with

MINIATURE OXLEY PATCH PANELS-BRAND NEW
EX-DYNAMCO. \(10 \times 10\) COMplete WIT PINS \(£ 8\) each. P\&P
 50p

 *HANDSETS only 706 style \(\mathbf{£ 1 . 7 5}\) each older style \(\mathbf{£ 1}\) P\&P 75p
fexchange ontyl from \(£ 95\).
(exchange onfy) from \(\mathbf{6 9 5}\).
MOOERN FANS. \(41 / 4 \times 11 /{ }^{\prime \prime} \quad 240\) Volts. Superbly
quet 6 blades \(£ 4.50\) ea P\&P 750
PAPST Model 240 V avalable at \(£ 7.50\) ea P\& 750
SURPLUS - BRAND NEW - REPLACE SURPLUS - BRAND NEW \(\rightarrow\) REPLACE-
MENT TUBES FOR DYNAMCO 7100 SERIES OSCILLOSCOPES TYPE BRIMAR D13-51GH Mesh P.DA. Transistor Scan Wide Bandwidth Mesh PPA. Transisior Scan Wide Bandwidth
\(60 \mathrm{MHZ}+\) Rectangular \(6 \times 10 \mathrm{~cm}-1 \mathrm{KV}\) EHT \(\times\) \(60 \mathrm{MHZ}+\) Rectangular \(6 \times 10 \mathrm{~cm}-1 \mathrm{KV}\) ERT \(\times\)
Sensitivity \(15 \mathrm{~V} / \mathrm{CM}\) Y Sensitivity \(6 \mathrm{~V} / \mathrm{CM}\) THIS IS A MUST AS Length \(131 / 4\) OYNAM A MUST AS A SPARE FOR THE OYNAMCO 7100 SCOPE OR IDEAL FOR THE HIGH QUALITY TRANSISTOR SCOPE BUILDER

At \(£ 65\) each. Carriage \(£ 2.50\)
To Tube purchasers only. Numetal Shields at
ALSO AVAILABLE TUBE TYPE BRIMAR D10-210GH/32. Rectangular \(7 \times 5 \mathrm{~cm}\). Mesh PO.A. Shori \(9 / 1 / \mathrm{BOMHZ}+\) Sensitivity
\(14 \mathrm{~V} / \mathrm{CM}: Y 10 \mathrm{~V} / \mathrm{CM}\) BRAND NEW at \(\mathbf{7 5}\) each Carriage \(£ 2.50\)

\section*{Photomult}

Types avalable
+POTENTIOMETERS
bodies AB Linear PCB - All 5p ea P\&P extra Metal ganged 250 K ganged, 100 K ganged concentric shatis
 E1 25 OUO OIC25, P\&P © 150 from \(0300 \mathrm{~V} 2^{\prime \prime}\) © \(\mathbf{E}\), to 20 KV Max Gerveral gulde \(5 \mathrm{KV} 3^{1 /}\) £5. Thereatier \(£ 1\) per KV. P\&P 75 .
DON'T FORGET YOUR MANUALS. SAE with
requrements
TUBE Type DB7, 36 - Replacement for 「elequipments S 31
E.H.T. TRANSFORMERS 2OKV 2 KVA \(£ 70\) ea 240KV SINGLE PAHSE 20 KVA OUTPUT \(2 \times 25 \mathrm{KV}\) €85.
240V SINGLE PHASE KVA Output 40 KV 25 MA £ 175. 240V SINGLE PHASE YKVA Output 40 KV 25 MA \(£ 175\).

A LARGE QUANITITY OF MISCELLANEOUS TEST
GEAR CHASSIS UNITS, ETC, On view at LOW COST GEAR, CHASSIS UNITS, etc., on view at LOW COST

PICK-A-PIECE
FROM OUR
PICK-A-PIECE" AREA

\section*{PICK-A-METER - £1 EACH}
a large selection of brand NEW AND EX-EQ. METERS

DESKS with Punch. Reader. Printer and Keyboard Some ASCii
Various models from \(£ 200\)

\section*{1/2" MAG TYPE}

Approx 2,000 t. NOW 25 p each. P\&P £ 1

\section*{INTERFACING}

SERIAL/PARALLEL - PARALLEL/SERIAL. TTL buffered Ins and Outs inverted and Noninverted; Pos or Neg strobe. Adjustable Baud rates (dispatched at 110); Min 20mA drive for all outputs TLL/232 (CCITT) - 232 (CCITT)/TTL. Min TTI outpu: 20 mA Requires +12 V : -12 V , and \(/ 5 \mathrm{~V} £ 19.50\) ea. \(\mathrm{P} \& \mathrm{P} 75 \mathrm{p}\)
DRIVER BOARD to suit Paper Tape Punches. TTL to \(24 / 48 \mathrm{~V}\) for solenoids, etc. 9 Channel £55 ea. P\&P \(£ 2\)
TELETYPE PLUG COMPATIBLE 20 mA to 0.5 amp Drive Board with edge connector \(£ 18,50\) ea P\&P £1. Requires externa \(18-0-18 \mathrm{~V} 1 \mathrm{amp}\) transformer. 1500 mfd 50 V Cap and Power Transistor

NOTE. Demand for these tems already means one month delay Save Money, save time order "KITS'" at HALF PRICE -- you assemble.

WE ARE BREAKING COMPUTERS
UNIVAC/HONEYWELL/ICL 1900. etc
Boards, Power Supplies. Core Stores are available
AIL AND SEE

\section*{ITEMS OFTEN AVAILABLE}

CORE STORES with Drivers from \(£ 100\)
Some small RAM Boards from \(£ 15\).
Good used TWIN PACKS £10 each
Good used MULTI PACK \(£ 25\) each
SINGLE DISK \(£ 5\) each
CORE PLANES (no drivers) from \(\mathbf{E 5}\)
HEADS for PACKS (individual) \(£ 15\) each
P.C. MOTORS (Disc Drives?) £15 each

FOR THE VDU BUILDER. New stock of Large Rectangular Screen \(30 \times 20 \mathrm{~cm}\) tube. Type M 38 at the ridiculous price of \(\mathbf{£ 4}\) each. And also still available the CME1220, \(24 \times 15 \mathrm{~cm}\) at \(£ 9\) ea Base connections for both tubes supplied.

\section*{C.D.C. DISK DRIVES \\ TWIN E.D.S.}

Single phase - air conditioning not required Guaranteed fine condition £240 each. Complete with copy of manual and 50 packs Size approx \(2^{\prime} \times 2^{\prime} \times 3^{\prime} 6^{\prime \prime}\) high

SUPERB PROFESSIONAL VDU CASES, size \(23^{\prime \prime} \times 16^{\prime \prime} \times 15^{\prime \prime}\) on stands. Hammer grey. BRAND NEW. SCHLUMBERGER Surplus \(£ 20\) each

\section*{SOMETIMES AVAILABLE}

\section*{TELETYPE ASR33 at 5500}

KSR33 at \(£ 325\).
KSR33 non standard, e.g. basic ASCii-20ma loop - but small print 0 to 9 above stan

\section*{BACK IN STOCK}
ie \(16 \frac{1}{2} \times 151 / 2 x\) \(51 / 8\) containing 72 push buttons with manual or electrical reset symbols or functions (complete with 28 V lamps) which again you can change; 16 bit front panel microswitch assembly to enable your coded cards to be read, and host of other electronic parts. NOW £5 each.
We have been trying. and are still trying. and should soon succeed in getting a few systems up and running to enable us to demonstrate the increasing number
will be Welcome.

NO TIME WASTERS PLEASE!

\section*{Gary Evans compares one of the latest development kits with a soon to be launched "home" computer.}

The new MEK 6800 D2 development kit from Motorola together with the announcement, that a leading manufacturer of kits for the home constructor is to launch a home computer kit, has prompted us to take a look at some of the differences between development and computer kits.

\section*{Development of a development}

First though, lets just think back to the early days of MPU activity and trace the origins of the development kit. In those early days the MPU was seen as a control system, replacing many of the then, and still, standard TTL chips of a hard wired system. The manufacturers of Micros had to sell them to industrial users and stressed, not only the small size, low power etc of these devices, but also the ease with which the control characteristics of a system could be altered by simply plugging in a new PROM.

To enable the manufacturer to develop the software for any particular system, a means of readily building up a program in some form of memory was required. To write and debug software it was recognised that the minimum requirement was for some form of keyboard entry of data, in hex or octal codes, together with the ability to examine and modify locations as development proceeded and bugs were identified.

The development kits were designed to fulfil this role: The early kits were quite simply an MPU plus clock chip, small amount of RAM together with a PROM storing the minimum monitor routine. These routines were often configured with a TTY \(1 / 8 /\) ? routine reliable for an industrial user this was the easiest form in which to input and record data. The provision of a TTY was not a problem for the majority of industrial users.

The development systems small amount of on-board RAM could be augmented by additional RAM cards, but in most cases the partial memory decoding used on the development kits board limited the amount of uniquely addressable locatıons, to a fraction of the full range of the MPU. This was, again, not a serious
disadvantage to the men in industry as most control applications do not equire the full 64 K byes range of most 8 bit processors.

\section*{Home market}

When development kits on the lines described above first became available in the States it was soon realised that many were being bought by private individuals who were interested in this new product. It became evident that a vast new market was being opened up.

One of the major advances in development kits, from the amateurs point of view, was when the manufacturers realised that not every home hobbyist had a TTY. This was when the first LED displays and hex keyboards became available and allowed anybody with a power supply to get a system up and running.

The new Motorola kit has all these features, plus a few more. Data can be entered via a hex keyboard at any location in the 256 Byte RAM supplied with the kit, the data together with address is displayed on a series of 7 segment LEDs. To aid development of software, breakpoints can be inserted in a program, returning control to the systems monitor routine. The program may also be single stepped to allow the user to find any obstinate bug.

These features make the monitor program a very good example of its kind, allowing fast, painless development of software. It has the additional feature of allowing the user to dump sections of the systems memory to a cassette tape using the CUTS standard. These sections can then be loaded back to the system at any desired point in memory.

The D2 then represents one of the most versatile and easy to use development kits available at present. It does however have its limitations. These lie mainly in the area of system expansion.

The means by which memory decoding is undertaken means that a great deal of thought has to be given to the way in which additional memory is added to the system. There is also the fact that although the board is EXORciser compatible, which suits industrial users, it does not by any means have a nice simple
bus structure which, it is agreed, is almost a must for any Micro-computer system.

\section*{New kit - New bus}

The new computer kit combines the best features of the development kits with a good bus structure and flexible individual units.

The kit, called the H 8 , is to be launched by Heathkit in the States very soon. It is based on the Intel 8080 MPU , and will come with a 1 K monitor program in ROM together with data entry and display devices. Data is entered via a bank of switches with display in an Octal Format. Dump and load functions will be available, again using CUTS.

The kit will come complete with a cassette tape of an 8K BASIC interpreter. To run this it will be necessary to obtain a memory card which is also part of the system.

The system uses a bus structure based on a Heath design and is a 50 way bus. It is interesting to note that Heathkit have rejected the S-100 bus more usually associated with the American Hobby fields. They have done this both on technical grounds and also on financial grounds, the cost of a hundred way connector being excessive in their view.

These features, together with the proposed addition of VDU and keyboard input modules, mean that the H 8 is the perfect base on which to build a powerful and versatile home computer and, lets face it, thats what most MPU users want to finish up with.

\section*{Cut a record}

Last month you may remember that we discussed bar coding of data for the home computer user. This enabled large scale, low cost, distribution of software. This month we have come across another system for this type of software trading with all the advantages of the bar code.

The new system is a disc (as in L.P.) that has the data recorded in CUTS and which can be played back on most record players. It overcomes the main drawback to distributing CUTS encoded cassette tapes, namely that of cost. It also means that there is no need to invest in a bar code reader plus software to interpret the input.

\title{
DESIGNING \& USING \\ PART 3 \\ Active filters
}

Concluding our detailed examination of this particular building block Tim Orr takes a good look at band pass and band reject circuits.

\section*{Band reject (notch) filters}

SO FAR NOTCH FILTERS have been realised in this article by two methods; by mixing a bandpass signal with the original or by mixing the low and high pass outputs. There are of course, many other methods of obtaining a notch

Firstly, the Twin T circuit, Fig. 1

Fig. 1: Twin-T band notch filter configuration.

This is interesting, in as much as by using only resistors and capacitors, a notch response can be obtained! However, as this filter is passive, only a low 0 is possible. This circuit is not used very much, because it has six components that determine its notch frequency. However, it is of interest to note that, when the Twin \(T\) is placed in the feedback loop of a high gain inverting amplifier, a bandpass response is obtained. Also if R is made variable it is possible to move the centre frequency, although in doing so, the \(Q\) varies. This has been the basis of many Wah Wah effects pedals, Fig. 2.

Another method of obtaining a notch is to use the 'Allpass' filter, Fig. 3. The frequency response shows that its output is flat! Not much of a filter I hear you saying. However, it suffers a phase shift which goes from 180 , through 90 at fc, to 0 . By cascading two of these filters, the phase shift is doubled

If we then mix the phase delayed signal with the original, a notch response is obtained. This is because at fc the two signals have the same magnitude, but the opposite phase and so they cancel each other out.

If the notch is to be made tuneable, then the RC time constants must be varied. For a small tuning range just one \(R\) can be varied, for a large tuning range then the R's must be realised with a 'stereo' pot.

\section*{All change}

If lots of Allpass filters are cascaded then several notches can be produced. This type of filter is known as a comb filter. Note that it takes two Allpass filters to produce a usable 180* phase shift, and therefore every notch in the comb requires two Allpass sections. By making the R's variable then the notches can be made to move up and down in frequency. This filter forms the well known 'phasing' effect unit, widely used in the music industry to produce colouration!

Fig. 4 shows a small section of just such a unit. A CMOS chip is used to provide a MATCHED set of six MOS FETS. A common voltage is used to control the MOS FETS channel resistance. Thus as the control voltage varies then so do the six MOSFET resistors, and the three notches move in unison along the frequency axis.

Fig4: One section of a comb filter. The response produced by the full (six times above) circuit is shown below the circuit

Fig. 5: Alternative method of producing a comb filter using a Mullard delay line.

Another form of comb filter is shown in Fig. 5
Instead of a phase delay line, a time delay line is used. This produces a large number of notches which are linearly spread along the frequency axis. Their spacing being determined by the delay time.

A bucket brigade delay line can be used to implement the time delay and this can be made variable. This type of filter is known as a Flanger, which is a superior type of phasing unit, and is used to generate high quality phasing effects. An even more impressive sound can be produced by adding some feedback around the delay line. A multi peak, high Q filter is formed which makes very interesting musical sounds when swept.

\section*{Variable Tuning}

Very often a variable centre or cut off frequency is wanted. This causes problems in filters of order greater than two, simply because getting ganged potentiometers with more than two sections is difficult. One well known manufacturer uses four presets mounted on a common spindle to produce a fourth order Rumble and scratch filter. For manually controlled filters, the resistors are made variable by using ganged potentiometers or switched resistor networks

The switches can be mechanically operated or electronically controlled, Fig. 6. An alternative method of switching control is to use mark/space modulation, Fig. 7. This has the advantage of being a continuously variable control with a useable sweep range of 100 to 1 . Also, lots of sections can be used, and they will all track. Therefore, if two CD4016 packs were used, then an eighth order 4 transmission gates per packı, variable frequency filter could be constructed There are of course, problems;

CONTROL VOLTAGES A,B,C,D PROVIDE A RANGE OF 15 VALUES OF RESISTANCE.

\section*{CMOS CD4016 or CD4066}

Fig. 6: Varying the tuning of an active filter by use of CD4016 transmission gates (TG) to switch in different resistor values.
1. The switching waveform must be several times higher in frequency than the highest frequency to be filtered.
2. More circuitry, to generate the switching waveform is required.
3. Switching noise is generated.

Fig. 7: Another method of varying the notch frequency, mark/space ratio modulation, and has the advantage of possessing a wide range.

\section*{Multiplying FETS}

Voltage controlled resistors can be used. These take the form of junction or MOS FETS, where the gate voltage controls the channel resistance, Rds. The problems with this method are that the characteristics from FET to FET vary considerably and also the RDS does not have a predictable relationship to the gate voltage. Also, to avoid distortion, low signal levels must be used. Nevertheless, FETS are used in many variable filters such as phasing units.

A set of six MOS FETS having matched characteristics can be obtained from a CD4049 or a CD4010 pack. Alternatively LED photo conductor arrays can be used. The LED produces light which controls the photo conductor's resistance, the two devices being housed in a lightproof box. Large signals can be handled with very low distortion and low noise generation.

Again there are drawbacks. The units are quite expensive, the relationship between LED current and photo conductor resistance is rather unpredictable and the photo conducter's characteristics drift. Another method of varying a filter frequency is to use electronic multipliers. A two quadrant multiplier function can be used to vary the gain of a stage and so produce frequency scaling.

\section*{Some Audio Circuits}

Active filters have found great use in equalising audio signals, from tone controls on a domestic \(\mathrm{Hi}-\mathrm{Fi}\) to Parametric equalisers in recording studio. Fig. 8

Fig. 8: Simple tone control circuit, with the lift and cut responses shown beneath it.

shows a common tone control with just bass and treble functions. Again cut and lift ranges are 20 dBs . If a more flexible control of the spectrum is needed then a ten band graphic equaliser (Fig. 9) could come in handy.

\section*{Testing Designs}

Once the process of designing active filters has been reduced to a simple procedure, testing them should also be made as easy as possible. The most basic is to use a swept sinewave oscillator (Fig. 10).

An \(X Y\) oscilloscope is used to display frequency log) against amplitude linear). The ideal display would be log. amplitude, but this is not so easy to obtain. The beauty of this method of testing is that the display is real time and so any changes made to the filter, like varying one of the capacitors, appear instantly on the oscilloscope. If high Q 's or rapid roll offs at low frequencies are involved, then the sweep time will have to be reduced, otherwise the effects of Ringing, will 'Time smear' the display. The harmonic distortion of the sinewave can be quite large, 0.5 to \(2.0 \%\) without causing too much of a display problem for most filter designs.

TIM ORR, THE AUTHOR OF THIS SERIES, IS EMPLOYED BY EMS LTD IN THE DESIGN OF AUDIO EFFECT CIRCUITS.

\section*{Sionit dinculs}

\section*{Make yourself heard with our}

\title{
OUD hiallen
}
"COME IN NUMBER SIX" is the call heard at boating lakes, however you need large lungs and good \(h\) t. th to shout as loud as the professionals. A simpler vic for electronics enthusiasts is to build our Loud-Hailer, guaranteed to make you heard above the general noise at fetes, street parties, etc. Most commercial designs are expensive and need to be held up like a megaphone, ours is cheap and can be used in a variety of ways. The electronics and batteries, complete with speaker, are separate from the microphone - this enables you to hold the heavy part in one hand at a comfortable position, and talk through the microphone You can also hand the microphone to some other person or even conduct an interview!
The diecast box used makes the unit impervious to 3 inches of water if placed on the ground, and the stick-on rubber feet stop it scratching the paint, if placed on a car bonnet or roof. When held in the hand the volume control can be operated with a thumb (to prevent acoustic feedback), also if the microphone used has no on / off switch the unit's switch can be used. In fact acoustic feedback with our system is not a great problem, as the microphone can be up to 100 feet from the loudspeaker!

\section*{Design}

A low impedance microphone was used for a couple of reasons, firstly you can use far longer cable without noise and hum pickup. Second reason is that virtually all cassette recorders are supplied with low impedance microphones, so most of our readers will have one!
The first prototype used 12 V as a supply, the final version (shown here) uses 18 V . Power output is about 3 W at 18 V , and if run off a car battery (12 V) will give out 2 W - still quite loud. A socket can be fitted for external power source if needed with a changeover switch. The output of 3 W may not seem very much, but the HDB4 speaker specified is very efficient, and sounds very loud!

Internal view of the completed loud hailer. Note foam to hold batteries in place

Fig. 2 Compnent overlay and interwiring

\section*{Construction}

The microphone we used (Eagle DM82), and most others, is fitted with 3.5 and 2.5 mm jack plugs these are changed for a 1805 pin din plug, this is to stop earthing problems with miniature jack sockets. Pin connections (for plug and socket) are as follows: Pins 1 and 4 live microphone connection. Pin 2 screen of microphone and equipment earth. Pins 3 and 5 used for remote on / off on microphone switch.

Toggle switch SW1 is connected across pins 3 and 5, to act as another on/ off control if your microphone has no switch (or you want to use very long single screened cable). Screening is
important, pin 2 on the din socket is shorted to the earth tag on the socket. The input screen is also taken to the board input, the output screen from the LM381 is looped, via the earthy end of RV1, to the input screen of the LM380 ie: back to itself. RV1 itself is not earthed separately, just bolted tight to the case. This might seem strange to Hi-Fi boffins, but prevents instability in the circuit - we know because we did it!

The rest of the construction is reasonably straightforward. A large piece of foam is glued to the lid, to prevent the batteries from rolling around inside the box. Finishing touch is a clip for the microphone.

Fig. \(3 P C B\) pattern \((105 \mathrm{~mm} \times 30 \mathrm{~mm})\)

\section*{HOW IT WORKS}

The LM381 is a dual low noise preamplifier - only half is used in this application. Most of the compensation network is inside the chip, hence the low parts count outside! Resistors R4 and R5 provide negative input bias current, and establish the dc output level at one-half the supply voltage.
Gain is set by the ratio of R4 to R2 which in this design is 100 . C2 establishes the low frequency -3 dB point, the value of \(470 \mu \mathrm{~F}\) used stops the system sounding "boomy". For more bass C2 can be reduced to \(100 \mu \mathrm{~F}\).

High frequency roll off is set by C3, with the DM82 no capacitor was needed. With a condenser electret microphone 100 pF was required to reduce the high frequency gain, so if you use a different type C3 can be varied between 10 pF and 100 pF for best response.

Cl reduces the effect of \(1 / \mathrm{f}\) noise currents at low frequencies.
The output of the LM381 passes through C5 and RV1 to the LM380 general purpose power amp. R5 and C7 act as a Zobel network on the output to stop instability, when driving reactive loads (like P.A. horn speakers!).

\begin{tabular}{|c|c|c|}
\hline R1 & 39k & R4 \\
\hline R2 & 56R & R5 \\
\hline R3 & 1k2 & \\
\hline \multicolumn{3}{|l|}{CAPACITORS} \\
\hline C1 & - & 1 uO 25 v \\
\hline C2, & & 470 u 16 V \\
\hline C3 & & See text \\
\hline C4, & 7, 8 & 100n polyeste \\
\hline C6 & & \(4 u 716 \mathrm{~V}\) \\
\hline
\end{tabular}

POTENTIOMETER
RV1 10k log rotary
SEMICONDUCTORS
IC1 LM381
IC2 LM380
SWITCH
SW1. Subminiature SPSI
LOUDSPEAKER \& MICROPHONE
LS 1 Eagle PA type HDB4
Microphone Eagle DM82
CASE \& HANDLE
Diecast bo \(171 \times 121 \times 106 \mathrm{~mm}(509-743)\)
Handle \(107 \times 12.7 \times 27.4 \mathrm{~mm}(509-917)\)

\section*{MISCELLANEOUS}

5 pin din plug and chassis socket (180). PCB to pattern, nuts, bolts, spacers, etc. Screened wire, knob, foam, microphone clip. Batteries (\(2 \times \mathrm{PP9}\)) and connectors, 4 stick-on feet and connecting wire. etc.

AOVANCED APPLICATIONS FOR POCKET
ADYANCED AP
CALCULATORS
CALCULAT
64.10
getting the most out of your electronic calculator
w. Hinter

\section*{COMPUTER \& MICROPROCESSORS}

BUILD YOUR OWN WORxING ROBOT
O. Heisaman

COMPUTER CIRĊUITS ANO HOW THEY WORK
B. Wells

COMPUTER TECHNICIANS HANDBOOX
B. Werd
digital electronic circuits amd systems
N. M. Morris
introduction to oigital filtering
Bognar
INTROOUCTION TO MICROCOMPUTERS
Vol. 1 Basic Concepts
Vol. 2 Some Real Products
Adem Oabome Aas.
MICROPROCESSOR/MICROPROGRAMMING
handBCOK
B. Werd

MICROPRDCESSORS
O. C. MeGirmn

MODERN GUIDE TO DIGITAL LOGIC
Processors - Momories and Intertaces
LOGIC DESIGN PROJECTS USING
STANDARD ICs
J. Wakerty
practical digital design using ics
J. Greenfield

\section*{COMMUNICATION}

COMMUNICATION SYSTEMS IMTRO TO SIGNALS 8 NOISE
8. Corizon
Oigital Signal processing. Theory
\& APPLICATIONS
L. R. Rebiner

ELECTRONIC COMMUNICATION SYSTEMS
frequency synthesis, theony \& design
Menraseewitach
PRINCIPLES OF COMMUNICATION SYSTEMS
H. Thub

ELECTRONICS
active filter cooxboox
o. Lencaster
aPPLICATIONS OF OPERATIONAL AMPLIFIERS Grmerne (Burr Brown)
basic matus courses for electronics
H. Jecobowinz
build it book of miniature test INSTRUMENTS
R. Haviland
dESIGNING WITK TTL INTEGRATED CIRCUITS
Taxae instruments
DESIGNING WITH OPERATIONAL AMPLIFIERS
Burt Brown
ELECTRONIC ENGIMEERS REFERENCE BOOK 4th Edition
L. W. Turnar

SOLID STATE CIRCUIT GUIDE BDOX
B. Werd

TRANSDUCERS IN MEASUREMENT CDNTROL
P. H. Sydentism

TRANSISTOR CIRCUIT DESIGN
Toxes
\(£ 3.40\)
£4.00

c5.00
\(\varepsilon 1.75\)
£2.15
\(£ 2.75\)
ELECTROMIC COMPONENTS
M. A. Colwell

ELECTRONIC DIAGRAMS
M. A. Colwell

ELECTRDNIC FAULT DIAGNOSIS
f. R. Sinclair

ELECTRONIC MEASUREMENT SIMPLIFIED
C. Hallmark
electronics and photography
R. Brown

ESSENTIAL FORMULAE FOR ELECTRICAL AND Lectrical engineens
N. M. Morrin

FIRE AND THEFT SECURITY SYSTEMS
B. Wela
how to read electronic circuit diagrams
B. Brown

Now ro builo proximity oetectors ano metal locators
J. Shielda
how to use ic circuit logic elements J. Streater

INTEGRATED ELECTRONICS
J. Milmun

C OP-AMP COOKBOOK
W. Jung

INEAR In TEGRATED CIRCUIT APPLICATIONS
G. Clayton

FUNCTION CIRCUITS DESIGN applications Burn Brown
I 10 electronic alarm projects
R. M. Meraton

110 OPERATIONAL AMPLIFIER PROJECTS FOR THE HOME CONSTRUCTOR
R. M. Merston

10 SEMICONDUCTOR PROJECTS FOR THE HOME CONSTRUCTOR
R. M. Marston

10 COSMOS DIGITAL IC PROJECTS FOR THE home cons truction
R. M. Marston

110 integrateo circuit projects for the HOME CONSTRUCTOR
R. M. Marston

110 thyristor projects using scrs
A. M. Marston
micRoelectronics
Hallmark
MODERN ELECTRONIC MATHS
clifford
mos digital ics
G. Flynn

OPERATIONAL AMPLIFIERS OESIGN AND APPLICATIONS
G. Tobey (Bur Brown)
op-amp CIRCUIT DESIGN \& APPLICATIONS Cart
PRACTICAL ELECTRONIC PROJEGT BUILDING
Ainalie and Colwall
PRACTICAL SOLID STATE D.C. SUPPLIES
Practical triac/scr projects for the
\(£ 8.95\)
\(\varepsilon 13.65\)
\(£ 27.60\)
£2.15
£9.25

\section*{HOW TO ORDER}

> Please add 10p per book to cover increased postal rates.
> Orders to:
> ETI Book Service
> P.O. Box 79

> Maidenhead Berks.

> Payment in sterling
> please
R. Sinclair
R. Sinctair

Understanding cmos imtegrated circuits
understanding solid state circuits
N. Crowhuras

E2.20 SEMICONDUCTOR DATA
international thansistor selector
T. D. Towore
international fet selector
T. D. Towers

POPULAR VALVE/TRANSISTOR SUBSTITUTION GUIDE

E2.15
adio valve ano semiconductor data
A. M. Ban

RADID, TELEVISION AND AUDIO
AU01O HANDBDOX
G. King

BEGINMERS GUIDE TO AUDIO
I. R. Sinclair

RADIO TV-AUDID CASSETTE TAPE RECORDERS
J. Eart
foundations of wireless and electronics
M. G. Scroggie

COLOUR TELEVISION THEORY
Hudmon
WORID RADIO TV KAMDBODK 1977
(A complete Oirectory of Radio, TV Stations)

ThE OSCILLOSCOPE IN USE
Rado, TV AND AUDIO TECKHICAL REFERENCE
BOOK
Amoz
SOLIO STATÉ COLOUR TY CIRCUITS
G. R. Wibding
\begin{tabular}{l}
TEST EQUIPMENT \& OSCILLOSCOPES \\
\hline \\
BASIC ELECTRONIC TEST PROCEDURES \\
I. M. Gottiob \\
THE OSCILLOSCOPE IN USE \\
Ian Staclair
\end{tabular}
THE DSCILLOSCOPE E2.10
practical test equipment you can buhlo w. Oreen

TEST INSTRUHENTS FOR ELECTRONICS M. Clifford
A. Saunders
\begin{tabular}{|c|}
\hline HOW TO ORDER \\
\hline \begin{tabular}{c}
Please add 10p per book to \\
cover increased postal \\
rates. \\
Orders to:
\end{tabular} \\
ETI Book Service \\
P.O. Box 79 \\
Maidenhead \\
Berks. \\
Payment in sterling \\
please \\
\hline
\end{tabular}

PRINCIPLES of TRANSISTOR CIRCUITS

RAPID SERVICING Of TRANSISTDR EQUIPMENT
G. King

SEmiconductor circuit elements
T. D. Towere

The LM3911 is a highly accurate temperature measurement and/or control system for use over a \(-25^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) temperature range. Fabricated on a single monolithic chip. it includes a temperature sensor, a stable voltage reference and an operational amplifier.

The output voltage of the LM3911 is directly proportional to temperature in degrees Kelvin at \(10 \mathrm{mV} / \mathrm{K}\). Using the internal op amp with external resistors any temperature scale factor is easily obtained. By connecting the op amp as a comparator, the output will switch as the temperature transverses the set-point making the device useful as an on-off temperature controller.

An active shunt regulator is connected across the power leads of the device to provide a stable 6 V 8 voltage reference for the sensing system. This allows the use of any power supply voltage with suitable external resistors.

The input bias current is low and relatively constant with temperature, ensuring high accuracy when high source impedance is used. Further, the output collector can be returned to a voltage higher than 6V8 allowing the circuit to drive lamps and relays up to a 35 V supply.

The LM3911 uses the difference in emitter-base voltage of transistors operating at different current densities as the basic temperature sensitive element. Since this output depends only on transistor matching the same reliability and stability as present op amps can be expected.

The device is available in three package styles - a metal can 4 -lead TO-5, a metal can TO-46 and an 8-lead epoxy mini-DIP. In the epoxy package all electrical connections are made on one side of the device allowing the other 4 leads to be used for attaching the device to the temperature source. The LM3911 is rated for operation over a - 25 C \(10+85 \mathrm{C}\) temperature range.

\section*{Applications \\ - Thermometer}
- Over/Under temperature alarm
- Fish tank controller
- Photographic development systems
- Greenhouse controller
- Weather station transducer
- Fire alarms

\section*{Absolute Maximum Ratings}

Supply Current (Externally Set) Output Collector Voltage Feedback Input Voltage
Output Short Circuit Duration OV \(\quad 36 \mathrm{~V}\) V to + 7 VO Indefinite

\section*{Features}
- Uncalibrated accuracy \(\pm 10-\mathrm{C}\)
- Internal op amp with compensation
- Linear output of \(10 \mathrm{mV} / \mathrm{K}^{\mathrm{K}}(10 \mathrm{mV} / \mathrm{C})\)
- Can be calibrated in degrees Kelvin, Celsius or Fahrenheit
- Output can drive loads up to 35 V
- Internal stable voltage reference

Low cost

power dissipation. In free, still air this raises the package temperature by about 1.2 K. Although the regulator will operate at higher reverse currents and the output will drive loads up to 5 mA , these higher currents will raise the sensor temperature to about

\section*{Application Hints}

As with any temperature sensor, internal power dissipation will raise the sensor's temperature above ambient. Nominal suggested operating current for the shunt regulator is 1 mA and causes 7 mW of

19:K above ambient - degrading accuracy Therefore, the sensor should be operated at the lowest possible power level.

\section*{Heat Sinks}

With moving air, liquid or surface temperature sensing, self-heating is not as great a problem since the measured media will conduct the heat from the sensor. Also. there are many small heat sinks designed for transistors which will improve heat transfer to the sensor from the surrounding medium. A small finned clip-on heat sink is quite effective in free-air. It should be mentioned that the LM3911 die is on the base of the package and therefore coupling to the base is preferable.

The internal reference regulator provides a temperature stable voltage for offsetting the output or setting a comparison point in temperature controllers. However, since this reference is at the same temperature as the sensor temperature changes will also cause reference drift. For application where maximum accuracy is needed an external reference should be used. Of course, for fixed temperature controllers the internal reference is adequate.

\section*{Pin Functions}

\section*{ANALOG GROUND (\(\mathbf{V}_{\mathrm{AG}}\), \(\operatorname{Pin} 1\))}

Analog ground at this pin is the input reference level for the unknown input voltage \(\left(V_{x}\right)\) and reference voltage \(\left(V_{r e f}\right)\). This pin is a high impedance input.

\section*{REFERENCE VOLTAGE (\(\mathrm{V}_{\text {raff }}\) Pin 2)} UNKNOWN INPUT VOLTAGE (\(V_{x}\), Pin 3)

This A/D system performs a ratiometric A/D conversion; that is, the unknown input Voltage, \(V_{x}\), is measured as a ratio of the reference voltage, \(V_{\text {ret }}\). The full-scale voltage is equal to that voltage applied to \(\mathrm{V}_{\text {ref }}\). Therefore, a full-scale voltage of 1.999 V requires a reference voltage of 2.000 V while full-scale voltage of 199.9 mV requires a reference voltage of 200 mV . Both \(\mathrm{V}_{\mathrm{x}}\) and \(\mathrm{V}_{\text {tef }}\) are high impedance inputs. In addition to being a reference input, pin 2 functions as a reset for the A/D converter. When pin 2 is switched to \(\mathrm{V}_{\mathrm{EE}}\) the system is reset to the beginning of a conversion cycle.

\section*{EXTERNAL COMPONENTS}
\(\left\langle R_{1} R_{1} / C_{1}, C_{1 ;}\right.\) Pins 4, 5, 6)
These pins are for external components for the integration used in the dual ramp A/D conversion. A typical value for the capacitor is 0.1 if (mylar) while the resistor should be \(470 \mathrm{k} \Omega\) for 2.0 V full scale operation and 27 \(\mathrm{k} \Omega\) for 200 mV full scale operation. These values are for a 66 kHz clock frequency which will produce a conversion time of approximately 250 ms .

\section*{OFFSET CAPACITOR}

\section*{(CO1, CO2; Pins 7, 8)}

These pins are used for connecting the offset correction capacitor. The recommended value is \(0.1 \mu \mathrm{~F}\).

\section*{DISPLAY UPDATE INPUT (DU, Pin 9)}

If a positive edge is received on this input prior to the ramp-down cycle, new data will be strobed into the output latches during that conversion cycle. When this pin is wired

\section*{Features}

Accuracy: \(\pm 0.05 \%\) of Reading \(\pm 1\) Count
Voltage Ranges: 1.999 V and 199.9 mV
Up to 25 Conversions per second
\(Z_{1 n}>1000 \mathrm{M}\) ohm
Auto-Polarity and Auto-Zero
Single Positive Voltage Reference
Standard B-Series CMOS Outputs
Uses On-Chip Clock, or External Clock
Low Power: 8.0 mW typical @ \(\pm 5.0 \mathrm{~V}\)
Supply Range: ' \(\quad 4.5 \mathrm{~V}\) to \(\pm 8.0 \mathrm{~V}\)
Overrange and Underrange Signals
directly to the EOC output (pin 14), every conversion will be displayed. When this pin is driven from an external source, the voltage should be referenced to \(\mathrm{V}_{\mathrm{Ss}}\).

\section*{Clock (Clk I, Clk O, Pins 10, 11)}

The MC14433 device contains its own oscillator system clock. A single resistor connected between pins 10 and 11 sets the clock frequency. If increased stability is desired, these pins will support a crystal or LC circuit. The clock input, pin 10, may also be driven from an external clock source which need have only standard CMOS output drive. For external clock inputs this pin is referenced to \(V_{\mathrm{EE}}\). A \(300 \mathrm{k} \Omega\) resistor results in clock frequency of about 66 kHz .

\section*{NEGATIVE POWVER SUPPLY}
(\(V_{\text {EE }}\) Pin 12)
This is the connection for the most negative power supply voltage. The typical current is 0.8 mA . Note the current for the output drive circuit is not returned through this pin, but through pin 13.

\section*{NEGATIVE POWER SUPPLY FOR} OUTPUT CIRCUITRY (\(\mathbf{V S S}_{\text {ss }}\), Pin 13)

This is the low voltage level for the output pins of the MC14433 (BCD, Digit Selects, EOC, OR). When this pin is connected to

analog ground, the output voltage is from analog ground to \(V_{00}\). When connected to \(V_{E E}\) the output swing is from \(V_{E E}\) to \(V_{D O}\). The allowable operating range for \(V_{S S}\) is between \(V_{O O}-3.0\) volts and \(V_{E E}\).

\section*{END OF CONVERSION (EOC, Pin 14)}

The EOC output produces a pulse at the end of each conversion cycle. This pulse width is equivalent to one half the period of the system clock (pin 11).

\section*{OVERRANGE (OR, Pin 15)}

The OR pin is low when \(V_{x}\) exceeds \(V_{\text {rel }}\). Normally it is high.

DIGIT SELECT (DS4, DS3, DS2, DS1; Pins 16, 17, 18, 19)

The digit select output is high when the respective digit is selected. The most significant digit (\(1 / 2\) digit) turns on immediately after an EOC pulse followed by the remaining digits, sequencing from MSD to LSD. An inter-digit blanking time of two clock periods is included to ensure that the BCD data has settled. The multiplex rate is equal to the clock frequency divided by 80 . Thus, with a system clock rate of 66 kHz , the multiplex rate would be 0.8 kHz .

BCD DATA OUTPUTS (03, 02, 01, 00; Pins 20, 21, 22, 23)

Multiplexed BCD outputs contain 3 full digits of information during DS2, 3, 4, while during DS 1, the \(1 / 2\) digit, overrange, underrange and polarity are available.

POSITIVE POWER SUPPLY (\(V_{\text {DD }}\), Pin 24)
The most positive supply voltage pin.

\section*{Simple DVM}

The \(31 / 2\) digit voltmeter of Figure 4 is an example of the use of the MC14433 in a system with a minimum of components.

In this circuit the MC14511B provides the segment drive for the \(31 / 2\) digits. The MC75492 or MC1413 provides sink for digit current. (The MC75492 or MC1413 are devices with 6 or 7 darlingtons respectively with common emitters.) The worst case digit current is 7 times the segment current at \(1 / 4\) duty cycle. The peak segment current is limited by the value of \(R\). The current for the display flows from \(V_{00}(\pm 5 \mathrm{~V}\)) to ground and does not flow through the \(\mathrm{V}_{\mathrm{EE}}\) (negative) supply. The minus sign is controlled by one section of the MC 75491 or MC1413 and is turned off by shunting the current through \(R_{M}\) to ground, bypassing the minus sign LED. The minus sign is derived from the Q 2 output. The decimal point brightness is controlled by resistor \(R_{\text {pp }}\). Since the brightness and the type and size of LED display are the choice of the designer, the values of resistors \(R, R_{M}\). \(R_{\text {op. }}\) and \(R_{R}\) that govern brightness are not given.

During an overrange condition the \(31 / 2\) digit display is blanked at the Bl pin on the MC14511B. The decimal point and minus sign will remain on during a negative overrange condition. In addition, an alternate overrange circuit with separate LED is shown. There are leftover sections in either the MC75492 or MC1413.
-The MC1433 is available ex-stock from Celdis Ltd., 37-39 Loverock Road, Battle Farm Estate, Reading, Berks. Plastic package is \(£ 12.53\), ceramic package is £14.95. Both prices are for 1 off inclusive of small order charge, for further prices contact Celdis direct.

A high performance, low power, \(31 / 2\) digit A/D converter combining both linear CMOS and digital CMOS circuits on a single monolithic IC, the MC14433 is designed to minimize use of external components. With two external resistors and two external capacitors, the system forms a dual slope A / D converter with automatic zero correction and automatic polarity.

The MC14433 is ratiometric and may be used over a full-scale range from 1.999 volts to 199.9 millivolts. Systems may operate over a wide range of power supply voltages for ease of use with batteries, or with standard 5 volt supplies. The output drive conforms with standard B-Series CMOS specifications and can drive a low-power Schottky TTL load.

\section*{Absolute Maximum Ratings}

Supply voltage 18 V
Pin current 10 mA
\(V_{E E} \leqslant\left(\right.\) in or \(\left.V_{\text {out }}\right) \leqslant V_{D D}\)

\section*{Circuit Operation}

During each conversion, the offset voltages of the internal amplifiers and comparators are compensated for by the system's autozero operation. Also each conversion "ratiometrically" measures the unknown input voltage. In other words, the output reading is the ratio of the unknown voltage to the reference voltage with a ratio of 1 equal to the maximum count 1999. The entire conversion cycle requires slightly more than 16000 clock periods and may be divided into six different segments. The waveforms showing the conversion cycle with a positive input and a negative input are shown in Figure 2. The six segments of these waveforms are described below.

Segment 1 - The offset capacitor (\(\mathrm{C}_{0}\)) which compensates for the input offset voltages of the buffer and integrator amplifiers, is charged during this period Also, the integrator capacitor is shorted. This segment requires 4000 clock periods

Segment 2 - The integrator output decreases to the comparator threshold voltage. At this time a number of counts equivalent to the input offset voltage of the comparator is stored in the offset latches for later use in the autozero process. The time for this segment is variable, and less than 800 clock periods.

\section*{Applications}
- DVM / DPM
- Digital scales
- Digital thermometers

Remote A/D and D/A systems
MPU based interface
Current and resistance meters
Segment 3 - This segment of the conversion cycle is the same as Segment 1.

Segment 4 - Segment 4 is an up-going ramp cycle with the unknown input voltage \(\left(V_{\lambda}\right)\) as the input to the integrator. Figure 3 shows the equivalent configuration of the analog section of the MC14433. The actual configuration of the analog section is dependent upon the polarity of the input voltage during the previous conversion cycle.

Segment 5 - This segment is a down-going ramp period with the reference voltage as the input to the integrator. Segment 5 of the conversion cycle has a time equal to the number of counts stored in the offset storage latches during Segment 2. As a result, the system zeros automatically.

Segment 6 - This is an extension of Segment 5 . The time period for this portion is 4000 clock periods. The results of the A/D conversion cycle are determined in this portion of the conversion cycle.

\title{
ELECTRONICS -it's easy!
}

\section*{Control of power}

This is the 43rd and last part of this series.
The intention has been to provide introductory information about modern electronics for intelligent people who had no prior training in the subject.

Electronics Today International wishes to give its heartiest thanks to the very many companies who provided information and illustrations used. We are most grateful for their willing and prompt cooperation.

WHEN DISCUSSING THE TYPES of amplifiers, we briefly mentioned the power stage found at the output end of electronic systems. Typical devices requiring amplifiers to drive them are loudspeakers, electric motors, and heaters.

The power handling capability of the various designs of these special amplifiers can range from one watt to many kilowatts. In this final part we introduce the special semiconductors and techniques used in electronic power control.

\section*{HEATSINKS}

As some power is lost as heat in power transistors they may usually be recognized by the large heatsinks on which they are mounted. A rectifier stage using flat-plate heatsinks is shown in Fig. 1. These metal structures are needed to rapidly conduct away and dissipate to the air the heat generated at the junction of the device - this is a critical design requirement. The approach to designing heatsinks is common to all power components.

All semiconductors used in analogue control will have heat losses (the power lost as heat equals the current through the device multiplied by the voltage drop across it) which will cause the junction temperature to rise above the case outer temperature. For example, a transistor power amplifier stage may have at half output power (say) 10 V drop and 10 amp collector current. The heat loss is, therefore, 100 W and this must be liberated in order to keep the transistor temperature lower than its recommended maximum value.

\section*{PART 43}

All materials resist the conduction of heat to some extent - this property is called 'thermal resistance' and its value depends upon the material (copper is less resistive to heat flow than iron) and the cross-sectional area (increasing the area decreases the resistance). In practice catalogues for power components usually quote the thermal resistivity \(\theta\) (which has units \({ }^{\circ} \mathrm{C} / \mathrm{W}\)) between two points on the device. For example, typical measured temperatures for a certain power transistor mounted on a heatsink are as shown in Fig. 2. From these temperatures we can see that:-
\(\theta_{\mathrm{J} . \mathrm{C}}=(95-79.5) / 20=0.77^{\circ} \mathrm{C} / \mathrm{W}\)
\({ }^{\theta} \mathrm{C} \cdot \mathrm{H}=(79.5-75) / 20=0.23^{\circ} \mathrm{C} / \mathrm{W}\)
\(\theta_{H \cdot A}=(75-25) / 20=2.5^{\circ} \mathrm{C} / \mathrm{W}\)
\(\theta \mathrm{J} \cdot \mathrm{A}=\left(\theta_{\mathrm{J}-\mathrm{C}}+\theta_{\mathrm{C}-\mathrm{H}}+\theta_{\mathrm{H}-\mathrm{A}}\right)=3.5^{\circ} \mathrm{C} / \mathrm{W}\)
Where \(\mathrm{J}=\) junction, \(\mathrm{C}=\) case of device, \(H=\) heatsink and \(A=\) air.

From this example we can see that the thermal resistance within the device - the parameter the user has

no control over - is larger than the case-to-the-heatsink value. This means it is not worth improving the contact and heatsink material. The important thermal resistance is that between the junction and the air (presumed to be at constant ambient value); in many cases a different shape heatsink, one that transfers heat better to the air (finned for example) would make an improvement. The thermal restivity (heatsink to air) can also be reduced by forcing air past the heatsink and/or by increasing the heatsink surface area. The latter measure, however, also has its limits because the thermal resistance between the device connection point and extremities of larger plates rises with increasing dimensions (reducing the effectiveness of outer areas).

The above example illustrates how a heatsink stage can be designed using the concept of series thermal resistances. In practice the design procedure must be worked in reverse. The aim is to ensure that the junction temperature remains less than a specified maximum limit. Beyond this quoted value the junction will be destroyed. A practicai difficulty is that the junction temperature cannot be measured to ensure that the design is adequate so selection of mounting and heatsink type must be made with care using manufacturers' quoted thermal resistance values as the basis of a
design. The following steps are given as a guide but full detail should be sought from more detailed accounts -

Step 1: Assess the maximum power (W max) to be dissipated by the device. This will be the worst case of V.l product remembering to allow for temperature effects and maximum values. In switching designs the base to emitter junction voltage of a transistor is significant.
Step 2: Establish TJmax, TAmax from data sheets and expected ambient conditions. This enables the minimum required value of \(T_{J}-A\) to be calculated.

Step 3: Calculate the overall thermal resistivity needed from \(\theta_{\mathrm{J}} \mathrm{A}=\) TJ-A/W max.
Step 4: Establish \(\theta_{2}-\mathrm{C}\) and \(\theta \mathrm{C}-\mathrm{H}\) from device table charts and the mount thermal resistivity for the device clamping method. Fig. 3 lists typical \(\theta\) values for various clamping methods.
Step 5: Calculate \(\theta_{H}-A\) required
\(\theta_{H-A}=\theta_{J-A}-\left(\theta_{J-C}+\theta_{C-H}\right)\)
Step 6: Use heatsink tables to find suitable design having \(\theta_{\mathrm{H}-\mathrm{A}}\) value or smaller.

In general if \(\theta_{H-A}\) needs to be less than 2 to \(5^{\circ} \mathrm{C} / \mathrm{W}\) the heatsink becomes prohibitively bulky. Design of the

\section*{TABLE 1}
\begin{tabular}{|c|c|c|}
\hline & Thermal Resistance & \(\theta^{\mathrm{C}-\mathrm{H}}\) in \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Material used between device and heat sink (for insulation) & Dry & with heat conducting grease \\
\hline Direct contact (TO3) & 0.20 & 0.10 \\
\hline Teflon insulator shim (TO3) & 1.45 & 0.80 \\
\hline Mica shim (TO3) & 0.80 & 0.40 \\
\hline Anodized aluminium (TO3) & 0.40 & 0.35 \\
\hline 0.25 in stud mount (direct) & 0.40 & 0.25 \\
\hline 0.50 in stud mount (direct) & 0.12 & 0.07 \\
\hline 0.75 in stud mount (direct) & 0.07 & 0.04 \\
\hline
\end{tabular}

\section*{ELECTRONICS-it’s easy!}
whole system is usually limited by the manufacturer's value of \(\theta_{\mathrm{J}-\mathrm{C}}\), which cannot be reduced. The interface coefficient \(\theta \mathrm{C}-\mathrm{H}\) is usually around \(0.15-0.20^{\circ} \mathrm{C} / \mathrm{W}\) for direct contact using the recommended heat conducting silicon grease. Mica insulation degrades this value a little, poor heat conducting insulators should be avoided as they contribute a quite high value of \(\theta_{\mathrm{C} . \mathrm{H}}\).

Heatsinks for analogue control power units will need to be much larger than those of switching designs such as the switching regulator and normal rectifier stacks. This is because the latter need only dissipate the \(V . I\) product of the two extremes of V and I . The voltage drop across a power diode running at many amperes is around one volt: when reverse biassed the voltage is high but the current negligible.

Figure 4 shows a wide selection of heatsinks including units for fluid cooling applications. Fins should always be positioned to assist the vertical convective flow of air over the surfaces. Total immersion of the electronic circuit in cooling liquid is not used.

\section*{POWER TRANSISTORS}

Power transistors are little different to small-signal devices in their basic semiconductor principle of operation: the distinguishing factors are the heavy-duty design which enables high collector currents and voltages to be controlled. The junction areas are much larger and the case design is made to keep the thermal resistivity as low as possible (around \(0.8^{\circ} \mathrm{C} / \mathrm{W}\)) in order that the losses can be removed. Collector currents being higher and the gains being lower than small-power transistors means the base currents are also large. Thus, high power stages have to have lesser power stages driving them. They are available for several hundred volts operation and current levels exceeding a 1000 A . Cut-off frequencies into the gigahertz region are available (with less gain than that of lower frequencies). At RF frequencies gains range from \(4-13 \mathrm{~dB}\) for powers in the range \(0.1-80 \mathrm{~W}\). There are few power applications that transistor devices cannot handle. In practice, however, certain other semiconductor devices are often a better choice.

CONTROLED FULL WAVE FOR AC OR DC

Fig. 5. Five arrangements by which a load can be fed with power flow controlled by SCR devices.

\section*{SCRs, THYRISTORS AND TRIACS}

Semiconductors and diodes have one \(p\)-n junction and transistors have two junctions, p-n-p or n-p-n. A logical progression is the three-junction device, \(\mathrm{p}-\mathrm{n}-\mathrm{p}-\mathrm{n}\). This family contains such devices as the silicon-controlled rectifier SCR, the silicon-controlled switch SCS, the gate-turn-off switch GTO, the light-activated, siliconcontrolled switch LASCS, and the Shockley diode. Of these, the SCR (also called a thyristor) mainly concerns us as it is able to control highpower levels (they were introduced in Part 16). The SCR has an anode and cathode and a gate lead (which when held positive prevents the unit from conducting).

By controlling the gate voltage it is possible to control when power begins to flow during an ac cycle. Once the SCR is triggered (or fired) it remains on until the anode-cathode voltage
falls to zero again. SCRs are, there fore, extremely useful when an alternating current source is available as this automatically provides the necessary switch-off conditions at each half cycle.

TRIACS are special SCRs that can be switched on to allow both positive and negative half cycles to pass. This action can also be arranged by using two SCRs.

This class of device cannot control the flow of dc power from a dc source, because once turned on they remain on, acting like an adequately lowresistance contact. They are, however, invaluable for controlling loads which can be energised by ac power heating coils, motors, lighting and furnaces.

The operating circuitry for an SCR is designed to provide the appropriate gate on-voltage level at the correct time during the half cycle. Fig. 5 shows five basic forms of phase con-
trol. A typical trigger circuit is given in Fig. 6. One difficulty in this kind of control is that large line transients are generated, along with RF interference, when the power begins to flow during each cycle.

A more refined type of control derives the required average output power as the mean of a series of complete whole-cycles rather than as the mean of many partial cycles. This method generates substantially reduced line transients and RF interference because switching always occurs at the zero voltage condition: Figure 7a shows one form of proportional zero-voltage-switching controller using a TRIAC to control the heat prodused in the element. Figure 7b is a typical output signal burst of gradually increasing power

Capabilities of SCR devices range to hundreds of amperes, reverse voltages to as much as 2000 V . The maximum voltage drop across the turned-on SCR lies in the range \(1.3-2.5 \mathrm{~V}\), with leakage currents being in the region of 40 mA in the turned-off state.

These characteristics may make SCR devices appear extremely robust. Design of reliable, high-power, units, however, is a matter for a specialist. Many pitfalls can occur if their operation is not understood in detail. Designed properly they will, however, give utmost reliability.

Fuses for SCR circuitry also need special consideration because semiconductor junctions when overloaded will blow more rapidly than simple wire fuses or electromagnetic circuit breakers. The criterion is that the \(1^{2} t\) rating of the SCR must be greater than that of the fuse. \(\left.\right|^{2} t\) values are usually provided in maker's data sheets. During the turn-on period of the SCR this value may drop significantly. Selection of adequate protection fuses is a matter that must be studied in some der.th. Care must be taken to

Fig. 7.
(a) Zero-voltage-switching temperature controller using a zero voltage switching IC driving a TRIAC from a thermistor sensor.
(b) Output signal with gradually increasing power.

\section*{ELECTRONICS-it's easy!}

As well as reducing the losses the method also can use a smaller capacity transistor. The price paid is the need for a filter stage and for a pulse generator to drive the switch.

Switching regulators are especially 'necessary when the voltage drop between the source and the load requirements becomes large.

Modern designs often make use of an integrated circuit as the basic control unit adding an additional switching transistor to cope with the output current needed. Fig. 9 is a high-current switching regulator which can supply 3 A continuously at 30 V input with losses sufficiently small to allow the use of quite small heatsinks.

Switching is also a suitable method to efficiently control output loads the difference between this and regulator design is that the feedback loop (dotted in Fig. 8) is not used; the mark-space ratio of the generator being controlled instead by the input signal to be amplified. This principle is used in high-current dc motor control and in advanced forms of audio amplifier.

\section*{INVERTERS AND CONVERTERS}

A converter, in the electrical power engineering sense, is a machine (or a circuit) that changes current from one kind to another, or from one frequency to another. An inverter, in the same sense, is a machine that specifically converts dc to ac -- being one kind of converter. Originally rotating machines were used but today the trend is to use static solid-state equipment.

Fig. 8. Schematic of switching regulator or controller (see text).

There are many instances where these are required - providing a 240 V ac 50 Hz supply when only 12 V batteries exist, providing a 200 V dc supply from 12 V dc and to change frequency such as where a 240 V ac 50 Hz mains might be needed to drive aircraft equipment operating at 400 Hz .

The basic principles used in each are based on the technology discussed before in this part. These are now summarised with examples of the procedures used.

AC to DC: This conversion path has been discussed when we dealt with rectification. A transformer is used to obtain the required ac voltage; this is then rectified with diodes and smoothed to provide dc.
\(D C\) to \(A C\) : This path first changes the dc into a suitable ac signal which can then be transformed to the desired signal level. The frequency of the ac signal is decided by the output load requirement for once produced it must remain at that frequency. (In some
cases it is preferable to make use of a higher frequency than 50 Hz). Figure 10 shows a number of configurations used to produce ac power from a dc supply.

Switching produces square-wave energy after inversion and in many instances this roughly square-wave output waveform is satisfactory. Where the output must be sinusoidal more complex circuitry is required to obtain an undistorted wave shape. When choosing a commercially made inverter it is important to verify if the output waveshape is suitable for the task.

Crystal oscillaters can be incorporated into an inverter design where the output frequency must be kept within exacting limits.

DC to DC: The procedure here is to first form the dc to ac conversion. After transformation to the correct voltage (usually the need is a voltage increase) with a double-wound transformer the output is full-wave rectified

Fig. 10. Various inverter configurations using SCR switches. Triggering methods have been omitted for clarity.
and smoothed. The transformers used use special iron laminations material to get the best out of the square-wave input waveforms.
\(A C\) to \(A C\) : Some mains equipment can run on either 50 or 60 Hz frequency with little change in performance. Occasionally, however, it is necessary to use the correct frequency specified. To change frequencies the simplest procedure is to convert the original ac supply to a suitable dc value inverting this back to ac at the other frequency. This procedure is easiest to implement because it makes use of standard rectification and inverter packages.

The cost of semiconductor converters has fallen rapidly over the 1970 decade. This has brought about new philosophies in power electrical engineering. In the future there will be more use made of dc electrical transmission. Speed-changing motors are becoming easier to implement using frequency-varied supplies to drive conventional ac machines. Large dc motors are also becoming useful again because regenerative braking of large units - using them as a generator driving into a load - can be put to use to charge power into the ac mains by the use of dc to ac inverters.

Revolutions have occurred in both power and signal electronics. Attitudes to problem solving are now quite different to just a decade ago. No doubt this trend will continue.

\title{
E. R. NICHOLLS \\ \\ P.C.B. TRANSFERS \\ \\ P.C.B. TRANSFERS \\ 46a LOWFIELD ROAD, STOCKPORT, CHESHIRE 061-480 2179
}

\section*{ETCH RESIST TRANSFER KIT I:I}

Complete kit 13 sheets, \(6^{\prime \prime} \times 41 / 2^{\prime \prime}\)
\(£ 2.50\)
With all Symbols for Direct Application to P.C. Board, Individual Sheets (1) Mixed Symbols / (2) Lines 05 /(3) Pads / (4) Fish Plates and Connectors/(5) 4 Lead and 3 Lead and Pads/(6) DILs/(7) Bends \(90^{\circ}\) and \(130^{-/(8) ~ 8-10-12 ~ T . O . ~} 5\) Cans/(9) Edge Connectors. 15 (10) Edge Connectors \(1 /\) (II) Lines \(02 /(12\)) Bends . 02/(13) Quad In Line

\section*{CIRCUIT LAYOUT TRANSFERS SIZE 2:1}

One Sheet \(12^{\prime \prime} \times 9^{\prime \prime}\) giving all transfers as in Etch Resist from No. 3-No. 10 inclusive. Makes Circuit Layout easy, Black only. Price
£1.00

\section*{FRONT AND REAR PANEL TRANSFER SIGNS}

All Standard Symbols and Wording over 250 Symbols, Signs and Words. Also available in reverse for Perspex, etc. Choice of colours, Red, Blue, Black or White. Size of Sheet \(12^{\prime \prime} \times 9^{\prime \prime}\). Price
£1.00

\section*{GRAPHIC TRANSFERS WITH SPACER ACCESSORIES}

Available also in reverse lettering. Colours Red, Blüe, Black and White Each Sheet \(12^{\prime \prime} \times 9^{\prime \prime}\) contains capitals, lower case and numerals. \(1 / \mathbf{B}^{\prime \prime}\) Kit or \(1 / 4^{\prime \prime}\) Kit £1.00 Complete

All Orders Dispatched promptly. All post and VAT paid Ex UK add 50p for Air Mail Shop and trade enquiries welcome

We've got something to interest you if you're that way inclined. Sorry, it's got nothing to do with kinkiness if that's what you thought, but if you want your old copies of ETI under bondage, we've got the perfect binder for you.

Beautiful quality as well, this binder. No messing with string, either: it has concealed rivets and gold lettering, and made specially for us in black simulated leather to take twelve issues of ETI.
P.S. Just in case, binders are sent under plain cover.

Send \(\mathbf{5 3 . 0 0}\) (which includes VAT and postage) to: ETI Binders, 25-27 Oxford Street, London W1R 1RF.

\title{
MEDRPTBETR \\ \\ LAW
} \\ \\ LAW
}

T HAS LONG BEEN the consideration of the author that the contributions of Edsel Murphy, specifically his general and special laws delineating the behaviour of inanimate objects, have not been fully appreciated. It is deemed that this is, in large part, due to the inherent simplicity of the law itself.
, It is the intent of the author to show, by references drawn from the literature, that the law of Murphy has produced numerous corollaries. It is hoped that by noting these examples, the reader may obtain a greater appreciation of Edsel Murphy, his law, and its ramifications in engineering and science.
As is well known to those versed in the state-of-the-art, Murphy's Law states that "If anything can go wrong, it will". Or, to state it in more exact mathematical form: \(1+1\)
where \(\}\)
Some authorities have held that Murphy's Law was first expounded by H . Cohen when he stated that "If anything can go wrong, it will during the demonstration". However, Cohen has made it clear that the broader scope of Murphy's general law obviously takes precedence.
To show the all-pervasive nature of Murphy's work, the author offers a small sample of the application of the law in electronics engineering.

\section*{Engineering}
1.1 The more innocuous a design change appears, the further its influence will extend.
1.2 Firmness of delivery dates is inversely proportional to the tightness of the schedule.
I. 3 Dimensions will always be expressed in the least usable term. Velocity for example, will be expressed in furlongs per fortnight.
I.4 An important Instruction Manual or Operating Manual will have been discarded by the Receiving Department.

\section*{Mathematics}
II. 1 Any error that can creep in, will. It will be in the direction that will do the most damage to the calculation. II. 2 All constants are variables.
II. 3 In any given computation, the figure that is most obviously correct will be the source of error.
II. 4 A decimal will always be misplaced.

\section*{Prototyping}
III. 1 Any wire cut to length will be too short.
III. 2 Tolerances will accumulate unidirectionally toward maximum difficulty of assembly.
III. 3 Identical units tested under identical conditions will not be identical in the field.
III. 4 The availability of a component is inversely proportional to the need for that component.
III. 5 If a project requires \(n\) components, there will be \(n-1\) units in stock.
III. 6 If a particular resistance is needed, that value will not be available. Further, it cannot be developed with any available series of parallel combination.
III. 7 A dropped tool will land where it can do the most damage. (Also known as the law of selective gravitation.) III. 8 A device selected at random from a group having \(99 \%\) reliability, will be a member of the \(1 \%\) group.
III. 9 When one connects a 3-phase line, the phase sequence will be wrong
III. 10 A motor will rotate in the wrong direction.
III. 11 The probability of a dimension being omitted from a plan or drawing is directly proportional to its importance. III. 12 Interchangeable parts won't.
III. 13 Probability of failure of a component, assembly, sub-system or system is inversely proportional to ease of repair or replacement.
III. 14 If a prototype functions perfectly, subsequent production units will malfunction.
III. 15 Components that must not and cannot be assembled improperly will be.
III. 16 A dc meter will be used on an overly sensitive range and will be wired in backwards.

\section*{General}
IV. 1 After the last of 16 mounting screws has been removed from an access cover, it will be discovered that the wrong access cover has been removed.
IV. 2 After an access cover has been secured by 16 hold-down screws, it will be discovered that the gasket has been omitted
IV. 3 After an instrument has been fully assembled, extra components will be found on the bench.
IV. 4 In an instrument or device characterized by a number of plus-or-minus errors, the total error will be the sum of all errors adding in the same direction.
IV. 5 In any given price estimate, cost of equipment will exceed estimate by a factor of 3 .
IV. 6 In specifications, Murphy's Law supercedes Ohm's.

\footnotetext{
The man who developed one of the most profound concepts of the twentieth century is practically unknown to most engineers. He is a victim of his own law. Destined to a secure place in the engineering hall of fame, something went wrong.
His real contribution lay not merely in the discovery of the law but more in its universality and in its impact. The law itself, though inherently simple, has formed a foundation on which future generations will build.

In fact, the law first came to him in all its simplicity when his bride-to-be informed him that his boss had 'gazumped' him to the altar.

This hitherto unpublished photograph of Edsel Murphy was taken just after he had heard his ex-fiancée's news.
}

Many months ago I mentioned the idea of using a calculator chip with a microprocessor to enable some comprehensive maths routines to be used by even the simplest of MPU chips. The solution was rather complicated and involved using the MPU first of all as a key entry simulator and then as an LED reader. The problem was set up in RAM storage and then the calculator interface routine executed, at the end of the execution lo and behold a result of the calculation in RAM.

It seemed that a fully scientific calculator chip would be required to give as many 'instant' functions as possible and at the time calculators of this type were in the \(£ 70\) price area - much too expensive to experiment with: A second problem at that time was the expense of the PROM to store the rather complicated program would have added another \(£ 35\) or more to the overall cost. These two problems have now become insignificant with the recent drop in price of some PROMS and the announcement of the MM57109 number cruncher.

\section*{Crunching Digits}

The feature of the MM57109 include up to 8 digit mantissa plus 2 digit exponent, memory and stack registers, trigonometric and logarithmic functions, conditional and unconditional branching, simple clock input and low power consumption. In effect it is a cross between a standard scientific calculator chip and a simplified SC/MP MPU .

All internal clocks are generated from the single external oscillator which can be provided by a simple CMOS oscillator running at about 400 KHz . The processor is reset by applying 5 v to the POR input and then setting it to \(-4 v\) (this input is not TTL compatible). The chip will then set the various outputs to their proper levels and then produce three strobes at the ready (RDY) output. This sequence sets up the processor and indicates to peripheral devices that it is ready to accept input data or instructions.

The RDY output goes high whenever the processor is ready to accept another 6 bit instruction (or data which is a form of instruction). This output works with the HOLD input to allow handshaking with MPUs or
peripherals, when RDY goes high with HOLD high the processor will enter a wait state until the HOLD input is taken low, it will then accept the instruction on the input pins, store and execute that instruction and then signal RDY again for the next instruction. In a stand-alone system the RDY output would be used as a clock pulse to increment a counter which in turn addressed a PROM or other form of stored instruction sequence - this counter is called a Program Counter (PC). In an MPU system RDY is used to inform the MPU that the processor is ready for the next instruction and the HOLD input is used to allow the MPU time to respond to the MM57109.

The control logic decides whether the data input is an instruction or digit and routes it accordingly. Digital data is routed to the \(X\) register where it is stored with up to 8 mantissa digits, 2 exponent digits, decimal point position, mantissa sign and exponent sign. The \(X\) register is used for input and output storage and is one of 5 similar internal registers (\(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{T}\) and M). If the processor is in floating-point mode then digital data is input as mantissa digits, mantissa sign and DP position, in scientific notation the data is input as mantissa digits, exponents digits, signs and DP position.

There are three ways of entering digital data into the processor, firstly by inputing digits as instructions as one would with a calculator keyboard and also by executing an \(I N\) or \(A I N\) instruction. The \(A I N\) instruction will input one digit each time that it is executed whereas the IN instruction will input a complete number of up to 8 digits from a RAM or similar \(1 / 0\) device. The OUT instruction will store a complete number in the RAM in a similar method. The RAM or other device is addressed by four Digit Address lines (DA1-DA4), a R/W line and either or both of the Digit Input lines (11-14) or Digit output lines (DO1-DO4).

Some of the instructions are two word instructions where the second word is an address to indicate a register (high RAM address) for the \(I N\) and OUT instructions or a PC address for the branch instructions. It would seem to be possible to use a 256 byte RAM to add an extra 16 registers to the basic processor assuming that each register requires 16 four bit bytes.

\section*{MM57109 plus MPU}

The MM57109 can be added to an MPU in one of two ways. Firstly it would be possible to give the 57109 a fixed proram to work on in its own PROM or in a RAM which has been preset by the MPU with a sequence of instructions. The 1/O would then be handled by DMA sharing of the RAM mentioned earlier with the MPU regularly HOLDing the 57109 and accessing the data in the RAM. This type of application would seem to be suitable for Linear Programming where a 'correct' result is not usually possible and the program continues to narrow down the problem until the result is within specified tolerances. In this application both processors are considered to be independantly 'intelligent' and could possibly be used separately with the independent keyboards for each.

The second method of interfacing the 57109 with an MPU is for the MPU to communicate via a single port and to pass digital data and instructions in serial form to the 57109 and then collect results in a similar manner via another port. In this form the MPU would use the 57109 as if it had a keyboard simulator attached and would thus enter the data in the same way as one would enter data from a calculator keyboard. The software routine in the MPU would presumably have the data stored as a mathematical statement such
as \(X=A+B-\cos C / \log D\). Such a sequence could be from a BASIC or similar language statement or could have been input from the MPU keyboard for immediate execution. The software would check the text of the statement for syntax and then execute the statement in the correct sequence (Brackets, exponent, multiply, divide, add, subtract). The variables A,B,C,D could appear as numbers or as labels in which case the MPU would look up the number associated with that variable before outputing it to the 57109. At the end of the calculation an Out instruction would be executed and the data read back into the MPU from the DO1-DO4 lines of the 57109, this data would then in our example be assigned to the variable labelled by \(X\).

Execution times vary from the input of digits or simple instructions which require about 200 microcycle times to SIN and COS instructions which in worst case conditions can take nearly 100,000 microcycles. With a clock speed of 400 KHz this latter figure would take only \(1 / 4\) second to execute and our example would be solved for \(X\) in less than one second.

National Semiconductors do a very comprehensive data sheet on the MM57109 and if you send an SAE to them at 19 Goldington Road, Bedford, I am sure they will send you a copy. The price of the MM57109 is still not fixed but a good guestimate would be in the \(£ 15\) to \(£ 20\) price range.

\section*{EAROMS at Last}

After a couple of false starts General Instruments appear to have debugged the ER3400 series of Electrically Alterable ROMs. These devices are made as a \(1 \mathrm{~K} \times 4\) bit memory array which can be used as a non-volatile memory in an MPU system or in any other system requiring the facilities of a RAM with the unpluggable facilities of a ROM. Unlike some of the
earlier EAROMS the ER3400 and ER3401 require a simple set of pulses to Read, Write or Erase the data held in the ROM. Any one of four operating modes can be selected by setting up the correct binary code on the two mode control inputs CO and C 1 , the four modes are READ, WRITE, BLOCK ERASE and WORD ERASE. When in the READ mode data is read during the Chip Enable pulse, a WRITE ENABLE pulse informs the device that the data on the DO-D3 lines is valid and can be latched internally for use during the WRITE operation. Both Write and Erase require a dummy Read operation to follow, this can be used to confirm the Write or Erase has been successfully completed.

The timings of the devices require a slowish MPU or an MPU with additional interfacing to allow for a slow 1/O device. As an example the chip enable pulse width has to be between 650 nS and 2000 nS , this is approximately double that found in most MPUs and so the MPU must be run at half speed for easiest interface, in most applications this would not be a problem. The ER3400 is the faster of the two devices with an access time of 650 nS the more readily available ER3401 has an access time of better than 950 nS

Power requirements are +5 at \(12 \mathrm{~mA},-12\) at 7 mA and -30 v at 3 mA ; the -30 v line could be derived from an inverter powered from the \(-12 v\) line.

No particular order of power supply sequencing is needed as circuits are provided to force the device into READ mode during power turn on. Erasing and Writing are inhibited if Vdd or Vgg are not at the correct operating levels. With no power supply the device will retain the data for 10 years and can be erased and rewritten up to \(10^{5}\) times per word. At about \(£ 30\) per chip for the ER3401 the price compares favourably with the price per 1 K bytes of 4 K STATIC RAMs or 4 K PROMS. Data on the ER3401 can be obtained from GI at 57/61 Mortimer St, London W1N 7TD

\section*{STALLION MANUFACTURING ADD COLOUR TO YOUR TV GAMES}

Our Add On Unit interfaces with ANY television game using THE GI AY 8500 series chips.

\section*{Features include:}
F.C.C. approved U.H.F. modulator

Four brilliant, clear, colours
Choice of ball/score colours
Uses TV games own power supply
Full easy to follow instructions and data sheets supplied.

ONLY £9.95 + 25p p\&p
From:

\section*{STALLION MANUFACTURING 28 Hermitage Court South Woodford, London}

\section*{Automatic Night Light}
C. N. Harrison

This circuit was devised to turn. off a bedroom light after a period of an hour. It could, however, be used to control any load up to a maximum of 200 W . At the end of the period the unit switches off both itself and the load.

The timing period is generated by a standard 555 timer in monostable mode controlled by SW 1b and PB1. For reliable operation timing capacitor C should be selected for low leakage. The output of the timer switches Q1 which in turn controls the gate current for the triac. During the timing period the triac is fully turned on so there is no degradation of the waveform across the load or RFI due to switching transients.

To initiate the timing period mains must be applied to the transformer to provide a DC supply for the timing circuitry. This is achieved by momentarily bypassing the triac with one pole of the ON switch, SW1a. Because this switch must also provide power to the load

it must be rated accordingly. SW1b is used to trigger the 555 and start the timing period. ' Q 1 will then be turned on, providing gate current to turn on the triac. When SW1 is released the supply and the load is maintained until the end of the timing period. PB1 is provided so
that the load can be switched off at any time. It may be omitted if this. feature is not required.

Great care must be exercised with this circuit as all components are connected to mains neutral even when inactive.

ONE CHANNEL ONLY SHOWN

\section*{Headphone Amplifier \\ J. Macaulay}

The circuit will deliver full 'orchestral' levels to four pairs of stereo headphones connected in parallel across the output.

Input signals are coupled to the non inverting input of a 741 op amp via the volume control RV1.

This IC is used to drive a quasi-complementary output stage consisting of Q1-4.

Quiescent current in the output transistors is provided by the voltage drop across R7 and local feedback provided by R6 in O2's emitter circuit.

R6 is included to render the whole amplifier short circuit proof (to protect Q2 and Q4). Overall feedback is applied from the 'earthy' end of R6 so this component has negligible effect on the damping factor of the amplifier.

With the components shown the frequency response is -3 dB at 4 Hz and 100 KHz , distortion below \(0.1 \%\) at \(1 \mathrm{KHz}(50 \mathrm{~mW}\) out, \(8 \Omega\) load), and sensitivity 60 mV .

Complete Kit to build this 40 watt power amplifier \(-£ 18.55\}\)

\section*{PLESSEY SLGOO, etc. I.C.S}
```

SL620C {3 38 SL621CE3 38 SL622CE8 3O
SL624C{312}\mathrm{ SL630C\&2 1 SL640C\&375

```

\section*{NATIONAL/SIGNETICS/TEXAS TTL}

\section*{- ALL INCLUDING VAT -}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 7400 & 19p & 7421 & 28p & 7486 & 35p & 74164 & £1.38 \\
\hline 7402 & 19p & 7427 & 34p & 7490 & 58p & 74165 & £1.70 \\
\hline 7403 & 19p & 7428 & 47p & 7492 & 60p & 74174 & £1.19 \\
\hline 7404 & 24p & 7430 & \(21 p\) & 7493 & \(65 p\) & 74175 & £1.30 \\
\hline 7406 & 44p & 7432 & 38p & 74107 & 52p & 74177 & £1.40 \\
\hline 7408 & 26p & 7442 & 84p & 74121 & 43 p & 74180 & £1.30 \\
\hline 7410 & 22p & 7474 & \(36 p\) & 74123 & £1.05 & 74221 & £1.55 \\
\hline 7411 & 22p & 7475 & 56 p & 74150 & £2.49 & 74H04 & 44p \\
\hline 7412 & 27p & 7483 & £1.00 & 74153 & 90p & 74H10 & 39p \\
\hline 7420 & 19p & 7485 & £1.33 & 74157 & 90p & & \\
\hline \multicolumn{8}{|l|}{Quantity discount: 25-99 less 10\%; 100 or more less 20\%} \\
\hline \multicolumn{8}{|c|}{A/l prices inc/ude VAT at current rates.} \\
\hline
\end{tabular}
where indicated, is 20 p. EXPORT ORDERS welcomed.

\section*{Dipt. 20 WALLINGTON SQUARE, \\ WALLINGTON, SURREY, SMG \(8 R G\)}

Tal: 01-669 6700 (9 a.m. to 6 p.m., 1 p.m. Sat.)

\title{
Yourfree start to a rewarding newhobby.
}

Heathkit make the world's largest range of electronic kits.

Including amateur radio, test equipment, educational and general interest kits.

Every one of which comes to you absolutely complete-right down
to the last nut and bolt.
You'll also get a very easy to understand instruction manual that takes you step by step through the assembly.

So, besides making an attractive, useful piece of equipment,you'll also have the makings of a satisfying, rewarding hobby. To find out more, post the coupon and we'll send you our latest catalogue. Heath (Gloucester) Ltd., Dept. Bristol Rd., Gloucester, GL2 6EE Tel: Glos (0452) 29451.

HEATHKIT
BETTER BUILT BECAUSE YOU BUILD IT YOURSELF The new Heathkit catalogue.Out now FREE.

Showrooms at 233 Tottenham Court Road, London and Bristol Road, Gloucester.

\section*{Digital Fuel Gauge}

\section*{P. Walsh}

This circuit will give a digital readout of tank capacity in gallons, up to the 4 gallon mark. As the sender is of a log. nature, and knowing you have at least 4 gallons in the tank I did not find it necessary to provide a greater figure display.

The switch is a means of switching to fuel gauge. The voltage across the sender unit must not exceed five volts, thus, the resistance of RX must be 2.5 x resistance of sender, when the tank is empty, presuming that the resistance is high on an empty tank. Disconnecting the output of a sender unit on a car fuel tank, and wiring it in series with a resistor \(R X\) we create a positive potential at point \(Y\), relative to earth, which varies in relationship to the fuel level. Connecting point \(Y\) to the inverting input of a 741 op . amp., and using a trimmer at the non-inverting input, a condition is created whereby the output of the IC is either + or - , depending on the fuel level. A corresponding voltage, which represents \(X\) gallons, can be set at pin 3, and a drop in fuel will give an increase in potential at pin 2, which will result in a negative output, at pin 6. In the circuit above, voltage drop may cause one particular IC to go negative, but still be at a level to give another IC a positive output.

\section*{'Warmth' Indicator}

\section*{C. J. Cooksey}

A simple indicator was required for a gas fridge in a caravan to show when the pilot light had gone out. The sensing element used was a thermistor, attached to the outlet which is 'warm' when the pilot light is on. A rod-type thermistor was used for cheapness, with a resistance of about 3 k at \(20^{\circ} \mathrm{C}\).

Two gates of the 7400 provide a Schmitt trigger with a low hysterysis (determined by the 18 k feedback resistor) and the third gate inverts that output. When the pilot light is on, the input of IC1a is high, IC1c output is logic 0 and LED2 (green) is on. If the pilot light fails, the

In the case of IC4 (representing 4 gallons), the voltage at point \(Y\) may be of a level to give IC4 a + output, but also be lower at pin 3 on ICs 3, 2 and .1. This would mean that the non-inverting inputs would, in each case, also be positively biased, giving a positive output from each IC. To overcome this positive feedback from pin 6, of any IC
which has a positive output, is fed to inverting inputs to preceding ICs causing those particular ICs to 'turn off'

The outputs from pin 6 of each IC may then be used to drive individual indicators, or the discrete decoder which drives a seven segment display as shown in the circuit.

temperature falls, all gates change state, LED2 goes off and LED1 (red) comes on.

The temperature at which the changeover takes place is set by the 1 k preset.

\section*{techtips}

\section*{Car A.V.C.}

\section*{R. Johnson}

As the noise from the engine increases the lamp LP1 is lit by Q3 which causes the resistance of LDR1 to decrease. This change in resistance controls the volume of the radio. A home-made optocoupler is used to reduce circuit cost, and the LDR is connected as shown. Adjustment of RV1 and RV2 is necessary so that the increase in engine noise corresponds to an approximately equal increase in radio volume.

\section*{Time Delay Switch}
T. Huffinley

IC1a is provided with resistive and capacitive feedback to form an integrator with initial conditions. IC1b is in an "open loop" mode so that its output is either high or low depending on its inputs, and changes state when the output of IC1a goes more negative than the voltage set at ZD2. When the output of IC1b goes positive the transistor Q1 biases hard on switching the SCR on. Diodes D1-D4 are to make the SCR conduct on both halves of the mains wave form.

The delay period is set by the components ZD1, ZD2, C, RV1, and
\(\overline{\mathrm{R}}\). If ZD 1 is chosen to be OV5 and ZD 2 at 5 V , then the maximum delay period is given by \(T=10 . C\). \(R\).
\[
R V 1=\frac{Z D 2}{Z D!} \times R<10 . R
\]

The meter is a voltmeter with a fsd equal to the value of ZD2. The switch then operates when the meter reaches fsd. The meter can therefore be calibrated to show remaining delay with OV equal to \(T\) and fsd equal to zero.

SW2 changes round the inputs of the op-amp so that the output either swings from high to low, or, low to high. SW3 is to reset the time delay which it does by discharging the capacitor. ZD3 should be chosen

\section*{15 \\ 240 Watts!}

\section*{HY5}

Preamplifier

HY30
15 Watts into \(8 \Omega\) and thermal protection. The kit consists of I C, heatsink, P.C. board, 4 resistors, 6 capacitors, mounting kit, together with easy to follow construction and operating instructions. This amplifier is FEATURES: Complete kit -- Low Distortion -- Short Open and Thermal Protection - Easy to Build APPLICATIONS: Updating audio equipment Guitar practice amplifier Test amplifier Audio APPLICATIONS: Updating audio equipment -- Guitar practice amplifier -- Test amplifier -- Audio SPECIFICATIONS:
OUTPUT POWER 15 W R.M.S into 8 © DISTORTION \(0.1 \%\) at 15 W INPUT SENSITIVITY 500 mV . FREQUENCY RESPONSE \(10 \mathrm{~Hz}-16 \mathrm{kHz}-3 \mathrm{~dB}\) SUPPLY VOLTAGE \(\pm 1 B V\)
Price \(55.22+65\) p VAT P\& P free.
HY50
25 Watts into \(8 \Omega\)
The HY50 leads I.L.P's total integration approach to power amplifier design. The amplifier features an the amplifier has been refined to the extent that it must be one of the most reliable and robust High Fidelity modules in the World
FEATURES: Low Distortion -. Integral Heatsink -. Only five connections -- 7 Amp output transistors NTURES: Low Distortion
APPLICATIONS: Medium Power Hi-Fi systems -- Low power disco -- Guitar amplifier
SPECIFICATIONS: INPUT SENSITIVITY 500 mV
OUTPUT POWER 25 W RMS in 8:) LOAD IMPEDANCE 4-16!) DISTORTION \(0.04 \%\) at 25 W at
SIGNAL/NOISE RATIO 75dB FREQUENCY RESPONSE \(10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}\)
SUPPLY VOLTAGE +25 V SIZE \(1 Q 5.5025 \mathrm{~mm}\)
HY120
60 Watts into \(8 \Omega\)
The HY120 is the baby of I.L P.s now high power range designed to meet the mosi exacting requirements including load line and thermal protection, this amplifier sets a new standard in modular design
FEATURES: Very low distortion -- Integral Heatsink -- Load line protection -- Thermal protection Five connections.- No external components
APPLICATIONS: Hi-Fi -- High quality disco - Public address -- Monitor amplifier - Guitar and SPECIFICATIONS
SPECIFICATIONS:
INPUT SENSITIVITY 500 mV
OUTPUT POWER GOW RMS into B!2 LOAD IMPEDANCE 4-16! DISTORTION \(0.04 \%\) at 60W at
SIGNAL/NOISE RATIO 9OdB FREQUENCY RESPONSE \(10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}\). SÚPPLY VOLTAGE \(\pm 35 \mathrm{~V} .14 \times 50 \times 85 \mathrm{~mm}\)
Price \(£ 15.84+£ 1.27\) VAT PAP free
HY200
120 Watts into \(8 \Omega\)
The HY200, now improved 10 give an output of 120 Watts, has been designed to stand the mos
rugged conditions, such as disco or group while stift retaining true Hi,Fi performance FEATURES: Thermal shutdown - very Iow distortion - Loadiline protection - Integral tieatsink No external components APPLICATIONS: Hi-Fi -- Disco -- Monitor - Power Slave -- Industrial - Public address
SPECIFICATIONS:
INPPUT SENSITIVITY 500 mV .
OUTPUT POWER 120 W RMS into B:? LOAD IMPEDANCE 4-16) DISTORTION \(005 \%\) at 100 W at
1 kHz
SIGNAL/NOISE RATIO 96 dB FREQUENCY RESPONSE \(10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}\) SUPPLY VOLTAGE SIZE \(114 \times 100 \times 85 \mathrm{~mm}\)
Price \(£ 23.32+£ 1.87\) VAT P\& P free
HY400
240 Watts into \(4 \Omega\) high nower disco or public address applications tit the amplitier is to be used at continuous high power lead the market as a true high power hi-fidelity power module
FEATURES: Thermal shutdown - Very low distortion - Load tine protecition -- No external components
APPLICATIONS: Public address -- Disco -- Power slave -- industrial
SPECIFICATIONS
OUTPUT POWER 24OW RMS into 4!) LOAD IMPEDANCE 4-16!) DISTORTION \(01 \%\) at 240 W at SIGNAL/NOISE RATIO 94dB FREQUENCY RESPONSE \(10 \mathrm{~Hz}_{2}-45 \mathrm{kHz}\) - 3 dB SUPPLY VOLTAGE INPUT SENSITIVITY 500 mV SIZE \(114 \times 100 \times 85 \mathrm{~mm}\)
Price \(£ 32.17\) + £2.57 VAT P\& P free.
POWER SUPPLIES

The HY5 is a mono hybrid amplifier ideally suited for all applications. All common input functions (mag Cartridge, tuner. etc) are catered for internally, the desired function is achieved either by a mult-way switch or direct connection to the appropriate pins. The internal volume and tone circuits I.L.P. power amplifiers and power supplies. To ease construction and mounting a P.C connector is SEATU with each pre-amplifie
FEATURES: Complete pre-amplifier in single pack -- Multi-function equalization -- Low noise - Low APPIo - High overload -- iwo simply combined for stereo
APPELCATIONS: Hi-Fi -- Mixers -- Disco -- Guitar and Organ -- Public address
Aurias Ceramic Pick-up 30 mV : Tuner 100 mV ; Microphone 10 mV OUTPUTS Tape 100 mV : Main output 500 mV R.M.S
/ACTIVE TONE CONTROLS Treble \(\pm 12 \mathrm{~dB}\) at 10 kHz : Bass \(\pm\) at 100 Hz
DISTORTION \(0.1 \%\) at 1 kHz , Signal/ Noise Ratio 68 dB
Price 52 BdB on Magnetic Pick-up: SUPPLY VOLTAGE
Price \(£ 5.22\) + 65p VAT P\&P free

\section*{TWO YEARS' GUARANTEE ON ALL OF OUR PRODUCTS}

\section*{UNBEATABLE OFFER T.V. GAME KITONLY £10:50 \(0^{\text {raceral }}\) WHILE OFFER LASTS, USING THE AY-3-8500 CHIP \\ KIT COMPRISES OF:- \\ P.C. Board. AY-3-8500 I.C. Components for VHF/UHF Modulator, 2 Meg Clock and Sound Amp. (No switches, cables or loudspeakers supplied) \\ (TRADE ENQUIRIES WELCOME) \\ SPARE AY-3-8500 CHIPS £550p each \\ SEND NOW TO:- TELECRAFT, 4 Pinevale, Prospect Rd., New Barnet, Herts. Tel: 01-440 7033 \\ P.O.'s \& cheques to be made payable to 'Telecraft'}

\title{
Mpahnitank
}

Capacitive discharge electronic ignition kits

\section*{VOTED BEST
OFESSYTEMS
TESED BY
'POPULAR
MOTORING
MAGAZINE
oct 74
\(*\) Smoother running
\(*\) Instant all-weather starting
\(*\) Continual peak performance
\(*\) Longer coil/battery/plug life
\(*\) Improved acceleration/top speeds
\(*\) Optimum fuel consumption}

Sparkrite Mk. 2 is a high performance, high quality capacitive discharge electronic ignition system in kit form. Tried, tested, proven, reliable and complete. It can be assembled in two or three hours and fitted in 15/30 mins.
Because of the superb design of the Sparkrite circuit it completely eliminates problems of the contact breaker. There is no misfire due to contact breaker bounce which is eliminated electronically by a pulse suppression cipcuit which prevents the unit firing if the points bounce open at high R.P.M. Contact breaker burn is eliminated by reducing the current to about \(1 / 50\) th of the norm. It will perform equally well with new, ald or even badly pitted points and is not dependent upon the dwell time of the contact breakers for recharging the system. Sparkrite incorporates a short circuit protected inverter which eliminates the problems of S..R lock on and, therefore, eliminates the possibility of blowing the transistors or the SCR. (Most capacitive discharge ignitions are not completely foolproof in this respect). All kits fit vehicles with coil/distributor ignition up to 8 cylinders.
'THE KIT COMPRISES EVERYTHING NEEDED
Ready drilled pressed steel case coated in matt black epoxy resin, ready drilled base and heai-sink, top quality 5 year guaranteed transtormer and components, cables, coil connectors, printed circuit board, nuts, bolts, silicon grease, full instructions to make the kit negative or positive earth, and 10 page installation instructions. OPTIONAL EXTRAS
Electronic/conventronal ignition switch
Gives instant changeover from "Sparkrite" ignition to conventiona ignition for performance comparisons, static timing etc., and will also switch the ignition off completely as a security device, includes switch connectors, mounting bracket and instructions. Cables excluded Also available RPM limiting control for dashboard mounting (fitted in case on ready built unit).
CALLERS WELCOME. For Crypton tuning and fitting service 'phone (0922) 33008
Improve performance \&economy NOW
Note: Vehicles with current impulse tachometers (Smiths code on dial R.V.1) will require a tachometer pulse-slave unit. PRICE \(\ddagger 335\) PRICES INCLUDE VAT, POST AND PACKING

\section*{POST TODAY:}

Quick installation
No engine modification required

Electronics Design Associates, Dept. ET9
82 Bath Street, Walsall, WS1 3DE. Phone: (0922) 33652Name
Addres

onlv required.

\section*{Greenbank \\ cmos with oiscounts}
\(10 \%\) for \(25+25 \%\) for \(100+331 / 2 \%\) for
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 4000 & 0.20 & 4027 & 0.60 & 4051 & 1.04 & 4081 & 0.24 \\
\hline 4001 & 0.20 & 4028 & 1.00 & 4052 & 1.04 & 4082 & 0.24 \\
\hline 4002 & 0.20 & 4029 & 1.27 & 4053 & 1.04 & 4085 & 0.80 \\
\hline 4006 & 1.31 & 4030 & 0.60 & 4054 & 1.29 & 4086 & 0.80 \\
\hline 4007 & 0.20 & 4031 & 2.46 & 4055 & 1.46 & 4089 & 1.74 \\
\hline 4008 & 1.07 & 4032 & 1.19 & 4056 & 1.46 & 4093 & 0.89 \\
\hline 4009 & 0.60 & 4033 & 1.55 & 4057 & 29.81 & 4094 & 2.08 \\
\hline 4010 & 0.60 & 4034 & 2.11 & 4059 & 6.20 & 4095 & 1.16 \\
\hline 4011 & 0.20 & 4035 & 1.31 & 4060 & 1.24 & 4096 & 1.16 \\
\hline 4012 & 0.20 & 4036 & 3.09 & 4061 & 25.60 & 4097 & 4.13 \\
\hline 4013 & 0.60 & 4037 & 1.06 & 4062 & 10.10 & 4098 & 1.22 \\
\hline 4014 & 1.12 & 4038 & 1.20 & 4063 & 1.22 & 4099 & 2.03 \\
\hline 4015 & 1.12 & 4039 & 3.09 & 4066 & 0.69 & 40101 & 1.76 \\
\hline 4016 & 0.60 & 4040 & 1.19 & 4067 & 4.13 & 40102 & 2.16 \\
\hline 4017 & 1.12 & 4041 & 0.93 & 4068 & 0.24 & 40103 & 2.16 \\
\hline 4018 & 1.12 & 4042 & 0.93 & 4069 & 0.24 & 40104 & 226 \\
\hline 4019 & 0.60 & 4043 & 1.12 & 4070 & 0.65 & 40107 & 0.66 \\
\hline 4020 & 1.24 & 4044 & 1.04 & 4071 & 0.24 & 40108 & 6.18 \\
\hline 4021 & 1.12 & 4045 & 1.56 & 4072 & 0.24 & 40109 & 2.21 \\
\hline 4022 & 1.07 & 4046 & 1.48 & 4073 & 0.24 & 40181 & 4.30 \\
\hline 4023 & 0.20 & 4047 & 1.01 & 4075 & 0.24 & 40182 & 1.73 \\
\hline 4024 & 0.87 & 4048 & 0.60 & 4076 & 1.71 & 40194 & 226 \\
\hline 4025 & 0.20 & 4049 & 0.60 & 4077 & 0.65 & 40257 & 2.26 \\
\hline 4026 & 1.92 & 4050 & 0.60 & 4078 & 0.24 & & \\
\hline \multicolumn{8}{|l|}{14100 mad 14400 Series (Motorola)} \\
\hline 14160 & 1.18 & 14175 & 1.04 & 14415 & 7.35 & 14450 & 2.67 \\
\hline 14161 & 1.18 & 14194 & 1.17 & 14419 & 2.67 & 14451 & \\
\hline 14162 & 1.18 & 14410 & 5.70 & 14422 & 4.98 & 14490 & 6.51 \\
\hline 14163 & 1.18 & 14411 & 9.54 & 14435 & 7.93 & & \\
\hline 14174 & 1.08 & 14412 & 17.07 & 14440 & 11.58 & & \\
\hline \multicolumn{8}{|l|}{14500 Sariee (fica / Motorola)} \\
\hline 14501 & 0.20 & 14518 & 1.39 & 14537 & 13.17 & 14561 & 0.70 \\
\hline 14502 & 1.38 & 14519 & 0.57 & 14539 & 1.24 & 14562 & 5.59 \\
\hline 14503 & 0.75 & 14520 & 1.39 & 14541 & 1.62 & 14566 & 1.67 \\
\hline 14505 & 4.38 & 14521 & 2.77 & 14543 & 1.82 & 14568 & 3.15 \\
\hline 14506 & 0.57 & 14522 & 215 & 14549 & 4.10 & 14569 & 3.72 \\
\hline 14507 & 0.60 & 14526 & 2.15 & 14552 & 10.50 & 14572 & 0.27 \\
\hline 14508 & 3.08 & 14527 & 1.76 & 14553 & 4.66 & 14580 & 8.35 \\
\hline 14510 & 1.51 & 14528 & 1.22 & 14554 & 1.67 & 14581 & 4.30 \\
\hline 14511 & 1.74 & 14529 & 1.72 & 14555 & 1.01 & 14582 & 1.64 \\
\hline 14512 & 1.03 & 14530 & 0.95 & 14556 & 1.01 & 14583 & 0.84 \\
\hline 14514 & 3.47 & 14531 & 1.74 & 14557 & 4.65 & 14584 & 0.71 \\
\hline 14515 & 3.47 & 14532 & 1.39 & 14558 & 1.25 & 14585 & 1.10 \\
\hline 14516 & 1.51 & 14534 & 8.15 & 14559 & 4.10 & & \\
\hline 14517 & 4.02 & 14536 & 4.00 & 14560 & 2.17 & & \\
\hline \multicolumn{8}{|l|}{74C00 Serips (National)} \\
\hline 14C00 & 0.26 & \(74 \mathrm{C86}\) & 0.69 & \(74 C 173\) & 1.21 & 74C910 & 7.20 \\
\hline \(74 \mathrm{CO2}\) & 0.26 & 74C89 & 4.65 & 74C174 & 1.21 & \(74 \mathrm{C914}\) & 1.50 \\
\hline 74 CO 4 & 0.26 & \(74 \mathrm{C9O}\) & 0.92 & 74 Cl 192 & 1.49 & 74C918 & 290 \\
\hline 74 COB & 0.26 & 74 C 93 & 0.92 & \({ }_{74}{ }^{\text {C193 }}\) & 1.49 & \(74 C 920\) & 9.84 \\
\hline \(74 \mathrm{C10}\) & 0.26 & \(74 \mathrm{C95}\) & 1.31 & 74C195 & 1.31 & 74C921 & 9.84 \\
\hline 74 C 14 & 1.51 & \(74 C 107\) & 1.31 & 74C200 & 7.20 & 74 C 925 & 8.28 \\
\hline 74 C 20 & 0.26 & 74 C 150 & 4.17 & 74.221 & 1.50 & \(74 C 926\) & 8.28 \\
\hline 74.30 & 0.26 & \({ }^{74 C 151}\) & 2.63 & \(74 \mathrm{C901}\) & 0.74 & \(74 \mathrm{C927}\) & 8.28 \\
\hline 74.32 & 0.26 & \(74 \mathrm{C154}\) & 3.93 & \(74 C 902\) & 0.74 & 74C928 & 8.28 \\
\hline 74.42 & 1.20 & 74 Cl 57 & 2.36 & 74C903 & 0.74 & 80 C 95 & 1.20 \\
\hline \(74 \mathrm{C48}\) & 2.37 & 74C160 & 1.49 & 74C904 & 0.74 & \(80 ¢ 96\) & 0.92 \\
\hline \(74 C 73\) & 0.74 & 74 Cl 61 & 1.49 & \(74 \mathrm{C905}\) & 7.71 & \(80 \mathrm{C97}\) & 0.87 \\
\hline 74.74 & 0.63 & \({ }_{74 C 162}\) & 1.49 & 74C906 & 0.74 & \(80 \mathrm{C98}\) & 0.92 \\
\hline \(74 C 76\) & 0.74 & 74 C 163 & 1.49 & \(74 C 907\) & 0.74 & 88C29 & 6.21 \\
\hline 74.83 & 1.97 & \(74 C 164\) & 1.31 & 74C908 & 2.63 & 88С30 & 6.21 \\
\hline \(74 \mathrm{C85}\) & 1.97 & 74C165 & 1.31 & 74C909 & 1.74 & & \\
\hline
\end{tabular}

TIME ROX. Digital Clock Case \(56 \times 131 \times 71.5 \mathrm{~mm}\) with red acrylic window choice of case colour white,
£2.25.

\section*{SPECIAL OFFER FOR READERS}

- AM/FM Radio Alarm Clock (SC 220-240V only)
- 24-hour Clock
- High quality white ABS Case
- Push-button Mode Selection
- Sleep delay Control
- I'uminated Clock and Radio Scale
- Alarm with Buzzer and/or Music
- All Chrome Control Knobs
- Complies with BS415 (1972) Safety Requirements
- Each Unit full inspected before despatch
- Guaranteed for one year
*See our extra special offer on special offer pages.
Please send cheque or postal order to:

\section*{D\&D POWER SUPPLY CO. LTD.}

79 LOWFIELD STREET, DARTFORD, KENT
Please allow \(10-14\) days for delivery
Callers welcome Monday-Friday 9-5, Saturday 9-1

\section*{Join the Digital Revolution}

\section*{Understand the latest developments in calculators,} computers, watches, telephones, television, automotive instrumentation

Each of the 6 volumes of this self-instruction course measures \(113 / 4^{\prime \prime} \times 8 \frac{1}{4} 4^{\prime \prime}\) and contains 60 pages packed with information. diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra to memories. counters and simple arithmetic circuits. and on to a complete understanding of the design and operation of calculators and computers
Uesign of Diqital Systems

plus 80p packing and surtace post anywhere in the world

Payments may be made in loreign currencies
Quantity discuunts avallable on request
VAT zero rated

Also available - a more elementary course assuming no prior knowledge except simple arithmetic
Digital Computer Loqic and Electronics
In 4 volumes

Basıc Computer Logıc
2 Logical Circuit Elements
3 Designing Circuits to
Carry Out Logical Func.
tions
4 Flipflops and Regısiers

\section*{\(£ 4.20\)}
plus 80p P. \& \(P\)
Offer Order both courses for the bargain price \(£ 9.70\). plus 80 p P. \& P .

Designer
Manager
Enthusiast
Scientist
Engineer
Student

\section*{Guarantee-no risk to you}

If you are not entirely satisfied with Design of Digital Systems or Digital Computer Logic and Electronics, you may return them to us and your money will be refunded in full, no questions asked

\footnotetext{
To Cambridge Learning Enterprises. Dept DIG. FREEPOST
Rivermill House. St lves Huntingdon. Cambs PE174RR
- Flease sendme set(s) of Design of Digital Systems at \(£ 700\) each
\(p \& p\) included
or set(s) of Digital Computer Logic and Electronics at \(£ 5.00\) each. p\& pincluded
or combined set(s) at \(£ 1050\) each. p \& pincluded
Nane
Address
I
1
- delete as applicable

No need to use a stamp -- ןust print FREEPOST on the invelope

}

\title{
C CLASSIFIED
}

\section*{THIS SECTION IS A PRE-PAYMENT SERVICE ONLY}

MINIADS: \(31 / 4^{\prime \prime} \times 21 / 8^{\prime \prime}, 1-3\)) £26, 4-11) £23,12 or more) £22 per insertion. CLASSIFIED DISPLAY: £3.50 per single column centimetre. No P.O. Box Numbers can be accepted without full address.
INQUIRIES TO: Mark Strathern, Advertising Department 01-4375982), 25-27 Oxford Street, London W1R1RF.

\footnotetext{
CARBON FILM RESISTORS. \(5 \%\) E'12 Series, \(1 / 8 \mathrm{~W}, 1 / 4 \mathrm{~W}, 1 / 2 \mathrm{~W}\). Mixed to your choice, 100 for 90p. ELECTROLYTICS \(50 / 15 \mathrm{v}, \quad 100 / 15 \mathrm{v} 7 \mathrm{p}\). MICROPROCES SORS SC/MP £15, introkit £77, Keyboard kit \(£ 74\), MM6800 £27. P\&P \(15 p\). Mail Order only. CANDAR, 9 Galloway Close, Denbigh Hall, Bletchley

VHF pocket portable radio tuning 108 to 138 MHz . Very sensitive. Easily adjusted to tune over the 144 MHz band. \(£ 16.50\) (inc. post and VAT). Romak Eng. Ltd., 10 Hibel Road. Macclesfield Sheshire.
}

FULL SPEC. COMPONENTS. Special offer. \(74 \mathrm{HOO} 22 \mathrm{p}, 7490 \mathrm{~A} 30 \mathrm{p}, 7474 \mathrm{~A}\) 28p. 8080A £19.95, 2102 £1.95.

ITT 5870ST N \(1 \times 1+\) Data 50 p . MM5314 + Data £3.25, Sperry SP425.09 (9 digit 7 seg\()+\) Data \(£ 1\) SKT 50p. 55545 p. 741 20p. 741 T099 (Dil) 30p, 1 N4148 3p, BC108C 10p. T1L 209 + Clip 15p, BYX49 (1200v \(2.5 \mathrm{Amps}) 35 \mathrm{p}, 747.6^{\prime \prime} £ 1.35\), RS Fuse Holder \(11 / 4^{\prime \prime}\) Panel Mnt 20p, P/P \(10 p\).
LB Electronics, 43 Westacott
Hayes, Middx. UB4 8AH (ETI)

Mono or stereo
60 mm track faders
with anodised panels and cue switches as required
These faders, although less than a third of the cost of our professional faders
are eminently suitable for small mixers, PA systems, discos, etc., where a consistent performance is required.
(Send \(7 p\) stamp for information sheet)
AUDIOFAD, 46 West Way Bournemouth, Dorset
BH9 3EB
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { LEDs } \\
112 . \\
2^{\prime \prime} \\
\text { OPTO } \\
\hline
\end{gathered}
\] & \[
\begin{array}{lr}
\text { Red } & \mathrm{Grt} \\
15 \mathrm{p} & 2 \\
19 \mathrm{O} & 3 \\
\text { LATOR TIL1 } \\
\hline
\end{array}
\] & \begin{tabular}{l}
Green \\
27p \\
L111 £1
\end{tabular} & \[
\begin{array}{r}
\text { Yellow } \\
27 \mathrm{p} \\
33 \mathrm{p}
\end{array}
\] & & Orange
27p
\(33 p\) & INFRA
6mW
ORP12
OCP71 & 11.55
\(55 p\)
\(40 p\) \\
\hline Pane 1 & SCRE & 50 V & 100 V & 400 V & 400 V & tıa & \\
\hline clip 1p & T05A 1A & A 25p & 27p & 46p & TO5 & & \\
\hline & 1066 3A & 3 27p & 35p & 50p & TO22 & & \\
\hline LEO & Stuo 7a & A 50p & 55p & 65p & Oac & BR10 & 21p \\
\hline \multicolumn{2}{|l|}{\multirow[t]{33}{*}{}} & \multicolumn{3}{|l|}{} & \multicolumn{3}{|l|}{OP. AMPS} \\
\hline & & \multicolumn{2}{|l|}{2N2926} & 15p & & & \\
\hline & & \multicolumn{2}{|l|}{} & 45p & & & \\
\hline & & \multicolumn{2}{|l|}{2N3054.} & \(41 p\) & & O1L & \\
\hline & & \multicolumn{3}{|l|}{- N3 3 2/3/4 12p} & \multicolumn{3}{|l|}{voltage} \\
\hline & & \multicolumn{3}{|l|}{2N3903/4/5/6 16p} & \multicolumn{3}{|l|}{5 V 7805} \\
\hline & & \multicolumn{2}{|l|}{2N2646} & 45p & & 7812 & \\
\hline & & \multicolumn{2}{|l|}{rist3uJ} & 25p & p 15 V 7 & 7815 & \\
\hline & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\({ }^{\text {BF244 }}\) MPF102}} & 35p & p 18 V & 7818 & 50 \\
\hline & & & & 408 & p 24 V 7 & 7824 & \\
\hline & & \multicolumn{2}{|l|}{2N3819} & 45 & 723 & OIP 14 & \({ }^{50} \mathrm{p}\) \\
\hline & & \multicolumn{2}{|l|}{3N3823E} & 30p & \multicolumn{3}{|l|}{ERIDGE REC} \\
\hline & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{(2 25459}} & 40p & 2A 50 & & \\
\hline & & & & & & & 41 \\
\hline & & \multicolumn{2}{|l|}{IN916} & 6 p & p 2A 20 & 00v & 48p \\
\hline & & \multicolumn{2}{|l|}{in4001} & 5 p & p 3 a 40 & & \\
\hline & & IN4002 & & 6 p & Pa 10 & OOV & 65 \\
\hline & & \multicolumn{2}{|l|}{IN \(4004 / 5\)} & 7 p & \multicolumn{3}{|l|}{ZENERS 2.7 -} \\
\hline & & \multicolumn{2}{|l|}{IN4006/} & & P \(\mathrm{B}_{2}\) & 8 or s & \\
\hline & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(3 \mathrm{~A} / 100 \mathrm{~V}\)}} & 15p & \multicolumn{3}{|l|}{555 Timer} \\
\hline & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & & & \\
\hline & & & & \({ }_{4 p} 2\) & & & \\
\hline & & \multicolumn{2}{|l|}{} & & p LM38 & & ¢1.65 \\
\hline & & \multicolumn{2}{|l|}{\[
\begin{array}{l|l}
\mathrm{Bp} & \mathrm{BA} 1 \\
\mathrm{E} 1 & \mathrm{BA} 1
\end{array}
\]} & 12p & LM30 & 1 105 & \({ }^{40 p}\) \\
\hline & & \multicolumn{2}{|l|}{} & & LM39 & & p \\
\hline & & \multicolumn{2}{|l|}{\[
5 \mathrm{p} \mid \mathrm{Pax}_{\mathrm{BY} 12}^{87}
\]} & & p NE56 & & ¢2.00 \\
\hline & & \multicolumn{2}{|l|}{\[
\begin{array}{l|l}
5 p & \text { BY12 } \\
5 p & 0 A 47
\end{array}
\]} & & & & \\
\hline & & \multicolumn{2}{|l|}{OA70 0a79} & \(8_{\text {8p }}\) & & & 12p \\
\hline & & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{OA91 OA95}} & 7 p & p 14 -pl & & 13p \\
\hline & & & & & & & \\
\hline & & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{OA202}} & & & TOLE & \\
\hline & & & & & Oalo & \({ }_{\text {Per }}\) & \\
\hline & & & & & Avdel & Bond 2 & M65p \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{ISLAND DEVICES, PO BOX 11 MARGATE, KENT CT9 10X}} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & & & \\
\hline
\end{tabular}

SIX 7-Segment LED displays \(£ 1\). In arrays of six. Ex-equipment but guaranteed. Also 9 array for \(£ 1.50\). Supplied with data and clock circuit.
For experimenters - part working arrays £1 per pack (my choice). Postage 10 p per order. MR. BOBKER, 29 Chadderton Drive, Unsworth, Bury, Lancs.

STATIC RAMS TMS 4033. DIRECT EQUIV. \(2102 / 2\) (FASTER) 450 NS. \(1024 \times 1\) VDUS, MPUS £2.95 EACH 6 UP £2.75 EACH INCLUDING DATA, VAT P\&P CWO B.S.L. ASSOCIATES, 2 MANOR PARK, RICHMAND. SURREY. O1-940 6386.

PLUS Professional tools essential for successful wire threading
ORYX Temp. Cont. Sold Iron (fine tip fitted)

Safety Stand
Microshear Cutters (with safety clip) \(\quad £ 4.40\) Quality Tweezers

MISC: Conductive Paint - PCB repair bus bars RF Shielding, etc
bars,

TERMS: Add 8\% VAT to all items. Cash with order. Min order £2.50. P \& P 30p per order. Mail Order only. Access available

ZARTR \(\square N \mid \times{ }^{115}\) LION LaNE HASLEMERE, SURREY

MICROPROCESSOR to cassette tape. 'THE SILENT PAPER TAPE.' A neat little CMOS IC device to interface serial data at 110 to 300 Baud to/from your audio tape recorder. Built, \(£ 15\) (inc). 52 Jubilee Road, Littlebourne, Kent

50 AXIAL ELECTROLYTICS up to 800 F various voltages, for only \(£ 2.00+25 p\) p\&p. L. J. Jones (8), 14 Cornelian Avenue Scarborough, North Yorks, YO 11 SAW.

TURN YOUR SURPLUS capacitors, transisters, etc. into cash. Contact COLES HARDING \& CO., 103 South Brink, Wisbech,

COMPUTER LIGHT PENS FOR V.D.U./TV GAMES E1.50 (INC.). 8 BIT PAPER TAPE READER HEAD ASSY £12.50 (INC.). S.A.E FOR FURTHER COMPUTER BITS \& U SA. COMPONENTS. MAR. DEVELOPMENTS. 163 RODING ROAD, LOUGHTON, ESSEX. \(01-5083355\). post, air or seam mail. 2700 Types in stock, 1930 10 1976 Obsolete types a speciality List 20p Quotation S.A.E Open to callers Monday to Saturday 930 to 5.00 Closed Wednesday 1.00 . We wish to purchase Cox Radio (Sussex) Lid. Dept Cox Radio (Sur ale 2023 (STO Code 024366) 8 BN. West Wittering 2023 (STD Code 024366).

\section*{ADVERTISEMENT INDEX}

\section*{BRAND NEW COMPONENTS}

\section*{C. N. STEVENSON (E TI)}

304 Avery Hill Road, London SE9 2JN. England
ambit mitematoronal NEW SSE MECHANICAL FILTER-MFL—
TOKO announce an entirely new SSB mechanical filter, with 6 elements. ultra smooth passband, easy transformer matching, 2.1 kHz at -6 dB , at an unbeatable price of \(£ 9.95\). (including two matching transformers) Type MFL455. -6dB: \(2.1 \mathrm{kHz},-60 \mathrm{~dB} ; 5 \mathrm{kHz}, F \mathrm{Fc}: 453.5 \mathrm{kHz}, 5 \mathrm{k}\) ohms in/ 1 k out.
NEW'UNIBAND' TUNER MODULES
Based on the incomparable HA1197 radio system, the 7122 has three stage tuning - either varicap or crystal controlled. The varicap control will cover any \(3: 1\) frequency range in the region 100 kHz to 30 MHz , with the correct coil pack. Kit - with varicaps - f9.00. MW coil pack standard.
Use the Uniband tuner for tuneable IFs/dual conversion, or simply to provide AM facilities on FM only equipment.
The Bionic Ferret 4000 VCO metal locator. Tunermodules: The Best:
The sophisticated metal detector system All IF systems have deviation muting, AGC, that can be aligned with just a test meter. meter outputs, additive AFC.
 \(\begin{array}{ll}\text { Complete tuner and amplifier kits } & 7030 \text { linear phase/double detector } \\ 7253 \text { stereo tunerset with varicap }\end{array}\) The Larsholt signalmaster Mk comes with (4 stage) IF and decoder integral unerhead a preadjusted RF/IF tunerset and decoder 14 stage /F and decoder integral and is thus a sophisticated performer with a EF5800 dual MOS RF sta simple construction. Suitable for even the EFS Bed circuits, AGC etc. relatively inexperienced. \(£ 85.00\) ex VAT \(\begin{aligned} & \text { tuned circuits, AGC etc. } \\ & \text { EF5801 as } 5800 / \text { with }\end{aligned}\) \begin{tabular}{ll|l}
And the 25 W per channel matching audio & EF5801 as \(5800 /\) with orc op (pose hi) \\
EF5600 5 cot varicap tunerhead
\end{tabular} amplifier, the Audiomaster. Torroidal PSU \({ }_{\text {EC 3302 }} 3\) ct varicap tunerhead \begin{tabular}{ll|l}
and very wide dynamic range. \(£ 79.00\) & EC 3302 3 ct varicap tunerhead \\
91196 hi-spec PLL decoder/filters
\end{tabular}

TOKO coils, chokes, ceramic, mechanical and LC filters for radio, audio, TV, MPX MFFT 455 mech. filters 195p Chokes
 \begin{tabular}{lll}
CFO 470 ceramic fit. & 65 p & 1 mH to .22 mH most \\
CF T & \(55 / 470\) \\
\hline 5 p \\
\hline \(1.51,100,120 \mathrm{mH}\)
\end{tabular} \(\begin{array}{lll}\text { CFSE } 10.7 \text { FM ceramic } & 50 \mathrm{p} \\ 50 \mathrm{p} \\ 5,1 \text { and } 43 \mathrm{mH}\end{array}\) SE 6 MHz gif ceramic \({ }^{80 \mathrm{p}}\) ITs for \(455 / 470 \mathrm{kHz}\) many

 News for radio, audio, TV, Mp
New ils for SW. formers
op coils for VHF.
ip Too many to list here, pose
19 p Too many to list here, pose
33 p send for 33 p send for caraloguve.or send
30 p SAE for price list short form SAE for price list shorfform.
Edgewise meters: many Edgewise meters: many new low cost flat meters

ISs, varicaps, trimmers, discrete semiconductors, varicap tuning pots, MOSFETs etc.

TERMS: CWO pase. Postage 25 per order/ \(£ 3.00\) for complete tuners/amplifiers kits Catalogue 40p, SAE with enquiries pase. VAT \(12.5 \%\) except where shown. Write to:Ambit International, 37a High Street, Brentwood, Essex. CM 14 4RH telephone (0277) 216029

\section*{Alaftriniss \\ mater \\ read er senices}

\section*{BACK NUMBERS}

These cost 60 p each inclusive of postage. Overseas charge: 70p each all inc, sterling only. All orders to ETI BACK NUMBERS DEPT.
We CANNOT supply the following issues: All 1972: January. February. April. May. August, October and November 1973: January. March. September. October. November and December 1974: January, June. July. August, September. October. November and December 1975: January. February; March. April, June and November 1976: May 1977.

\section*{PHOTOCOPYING SERVICE}

Due to the steady pressure on our back numbers department. and the dwindling number of issues available, we have set up a photocopying service. This involves our staff in considerable time consuming endeavour. so we hope our readers understand our decision to apply a flat charge of 50 p inclusive. This covers any article. regardiless of the number of pages involved. from any ONE issue of ETI
Please state clearly NAME of article, and from which issue the copy you require is taken.
Address envelope to 'ETI Photocopy Service

\section*{EDITORIAL QUERIES}

Written queries can only be answered when accompanied by an SAE, and the reply can take up to three weeks. These must relate to recent articles and not involve ETI staff in any research. Mark your envelope ETI QUERY ... Telephone queries can only be answered when technical staff are free.

\section*{BINDERS}

Binders. for up to 13 issues, are available for £3.00 including VAT and carriage. Send orders to ETI BINDERS DEPT

\section*{SPECIAL ISSUES}

Presently we produce five Specials. See our ads on page 44.

\section*{T-SHIRTS}

ETI T-shirts are available in Large. Medium, or Small sizes. They are yellow cotton with black printing and cost £2.00 each. Send orders to ETI T-SHIRTS Dept.

\section*{BOOKS}

ETI Book Service sells books to our readers by mail order. The prices advertised in the magazine including postage and packing. SEND DRDERS to ETI BOOK SERVICE. P.O. Box 79, Maidenhead, Berks.
NON-FUNCTIONING PROJECTS
We cannot solve the problems faced by individual readers building our projects unless they are concerning interpretation of our articles. When we know of any error we print a correction as soon as possible at the end of News Digest. Any useful addenda to a project will be similarly deall with. We cannot advise readers on modifications to our projects.

\section*{SUBSCRIPTIONS}

The annual subscription to ETI for UK readers is £6. The current rate for readers overseas is \(£ 7\) Send orders to ETI SUBS Depl. PAYMENT IN STERLING DNLY PLEASE.

\section*{PCBs}

PCBs are avallable for our projects from companies advertising in the magazine.

PLGASE MARK AEVERSE OF EA CH CHEOUE WITH NAME A ADDRESS AMD ITEMS AEOUIRED.
ALLOW 14 TO 21 DAYS FOR DELIVERY

\section*{COMPLETE digital clock kits}

REAL TEAK CASE NON aLARM \(£ 10.65\) VAI
\(+85 p\)
aLARM £13.43 vai
Teak or Perspex Case, \(6^{\prime \prime} \times 21 / 2^{\prime \prime} \times 3^{\prime \prime}\)
Including P\&P

FEATURES
Red \(1 / 2\)-inch high LEDSs, 12 hour display with AM/PM indication. Power failure indicated by flashing display.
Precise accuracy from mains frequency
Beautiful' Burma teak case, or stylish Perspex (state first and second colour choice
White Red, Blue, Green, Biack, Mauve
NON ALARM: Complete Kit, including Teak case \(\mathbb{C 1} 1.50\) incl
ALARM EXTRAS: Pulsed alarm tone Tilt operated Snooze per \(\mathbf{E 9 0 0} \mathbf{i n c l}\)
ALARM EXTRAS: Puised alarm tone Tilt operated Snooze period Automatic
ALightness control Simple setting
\(£ 14.50 \mathrm{incl}\)
Module Kit including case
PERSPEX CASES: 50 p less than Teak
14.50 incl

READY BUILT: Extra \(£ 2.00\) on complete clocks Extra 50 p on Modules
TIMER/STOPWATCH FACILITY: Count in seconds up to 9 m 59 sec . Exira 500

\section*{AUDIBLY SUPERIOR AMPLIFICATION}

HIGH DEFINITION - 'MUSICAL’ - POWER AMP MODULES
* T.H.D. TYPICALLY .007\%
@ 10W, 500Hz
\(\star\) ZERO T.I.D. ISLEW-RATE
LIMIT 16 V/ \(\sim S\))
Module size:
\(120 \times 80 \times 25 \mathrm{~mm}\). using
glass fibre pch with ident
and solder resist
Hllustrated
light duty heatsin

CRIMSON ELEKTRIK power amplitiet modules are last gaining a reputation as the best sounding. mos musical modules avatably Perhaps the most important leatures of this dessign are exceptionnal treedomm
from crossover distortion (due to the use of output trples) and \(2 e r o\) TI 1 D The amplitier is protected against Trom crossover distiontion (due to the use of output triples) and zero I ID The amplifier is protected against
open and shori circuit loads and yes will drive a highly teactive lower impedance load, which is more representative of a real loudspaker Square waves mantain thetr rise trins up to fult powet whilst
simulated electrostatic loads are eas iy handled, with negligible overshoot and a setthng time of 12 . S Other specs \(\mathrm{S} / \mathrm{N}>110 \mathrm{~dB}\). Rise time 10 S Sensitivity 775 mV . DC coupled. \(5 \mathrm{H}_{2}-35 \mathrm{kHz}\) _30B): THD
\(015 \% 100 \mathrm{~m}\) CRIMSON ELEKTRIK power supplits are in kit lorm for maximum liextuhtity and teature a bow lieto stiminne toroida ail lixings
Healsinks are atuactive biack anodised extrusions. 80 mm wide
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{POWER AMP modules} & Home & EUROPE & \multirow[b]{3}{*}{CRIMSON} \\
\hline CE \(60860 \mathrm{Wr}_{\text {mis } / 8} \mathrm{~d}\) ohms & \multirow[t]{2}{*}{\(35 v\)
356
350} & ¢15.30 & 116.30 & \\
\hline CE \(1004100 \mathrm{wrms} / 4\) onms & & ¢19.22 & ¢19.00 & \\
\hline CE \(1000100 \mathrm{Wras} / 8\) ohims & 45v de & t23.22 & £22.70 & \multirow[t]{4}{*}{\begin{tabular}{l}
ELEKTRIK \\
[ET]
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{POWER SUPPLIES} & & & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{CPS I For 2xCE 508 or lacel 1004 CPS 2 fof \(2 \times\) CE100 4 or 2 or \(4 \times\) CE60}} & \({ }^{1} 12.85\) & ¢14.20 & \\
\hline & & \$14.55 & £17.90 & \\
\hline \multicolumn{2}{|l|}{CPS 3 for 2xCE 1008} & [15.85 & ¢19.20 & 74 STATIOM ROAD \\
\hline heatsinks & & & & RATBY \\
\hline \({ }^{\text {a Light Outy }}\) & \(50 \mathrm{~mm} 2 \mathrm{c} / \mathrm{w}\) & 90 & ¢1.30 & LEICESTER, LE6 OJN \\
\hline \({ }^{\text {Hiphn power }}\) & \(100 \mathrm{~mm} 1.4{ }^{\circ} \mathrm{C} / \mathrm{W}\) & \({ }_{51} 1.68\) & E2.40 & TEL: [0533] 386211 \\
\hline Disco/group & \({ }^{\circ} 150 \mathrm{~mm} 1.1{ }^{\circ} \mathrm{C} / \mathrm{W}\) & 12.30 & ¢3.65 & \\
\hline
\end{tabular}

\footnotetext{
Home prices include VAT and carrage Payment by cheque/PO COD 60p (E50 limil) Export no problem European prices incl de carrage, insurance and handling, payment in Sterling by bank drall. PO two International Reply Coupons for full iterature. Favourable irade quannity price list on request. Sultable pre-amp circuit 20 p
}

```


[^0]:    SEE OUR COMPONENTS ADVERT ON PAGE 80

[^1]:    official orders are welcome from Companien，Govt．Depte．，Netn．Inds．，Univs．，Polys．， etc．Terme： 30 daye net

