VOLUME XIX

JOHN F:RIDER

TO TURN RADIO ON AUTOMATICALLY:

Tune radio to station and volume desired. With timer switch set at "ON" press in "center" knob and turn until setting hand is at desired time. This operation turns radio off, but it will automatically turn on at the time set.

TO TURN RADIO OFF AUTOMATICALLY:

While radio is playing press in "center" knob and turn until setting hand is at desired time. This setting operation turns radio off. Turn "ON-OFF", by turning knob clockwise and radio will resume playing but will automatically turn off at the time set.

ANTENNA:

The looptenna incorporated in the DeWald Model B-512 receiver makes use of an outside antenna unnecessary in most localities. If additional pick-up is desired, weave an insulated wire through the outer holes of the cabinet back, connect one end to the outside antenna and the other end to an outside ground. See back of cabinet. The looptenna has a directional effect, it may be necessary to change the angle of the receiver for the best reception.

REPLACEMENT PARTS
1001 Antenna Loop
1003 Oscillator Coil
1000 Ist I.F. Coil
1002 2nd I.F. Coil
2000 Paper Condensers
2001 Mica Condensers
2002 Comb. Electrolytic
2003 Variable Condenser
3000 Resistors
3002 Volume Cont. \& Sw.
5000 Line Cord

6000 Dial Scale
7006 Speaker
8001 Pilot Lamp Socket
9000 Shaft
9762 Drive Spring
4000-2 Cabinet
8026 Clock
6013 Crystal Face
\#47 Pilot Lamp
8027 Clock Face

PAGE 19-2 DEWALD

The choice of antenna to be used for the best F. M. reception depends on many factors: location, the type of building, power and distance of the F. M. station. The three main types of antennas are explained below. Test your Dewald F. M. Wireless Tuner and choose the one most practical for your use.
A. For local high-powered F. M. stations: The Wireless Tuner is equipped with a permanent built-in antenna that will be satisfactory for good reception of most local F. M. stations. This built-in antenna is connected internally by connectina the green wire to the red wire in the rear of the tuner. For best results when usina the built-in antenna, keep the electric line cord extended to its full length.
B. For distant F. M. stations: An outside F. M. dipole antenna may be found to be necessary when the wireless Tuner is operated at a great distance from the broadcasting station, or under unusual operating conditions. The outside dipole antenna (equipped with a 300 ohm flat lead-in) should be connected to the red and orange leads, at the rear of tuner, after the areen wire has been disconnected from the red wire.
C. For local weak-powered F. M. stations: f it is not possible to erect an outside F. M. dipole antenna, an indoor type of antenna, made of 300 ohm flat lead-in wire, can be used. This indoor antenna must be installed so that its horizontal view faces the location of the desired stations.

OPERATION OF THE F. M. TUNER:
After the necessary installation has been made accordina to the instructions contained in the preceding paragraphs, the electric line cord of the wireless Tuner may be plugged into an electric wall socket. Turn the ON-OFF switches of both the tuner and your radio receiver to the "ON" position. The hrown wire coming out of the rear of the tuner is to be placed approximately 1 foot near the radio receiver loop or antenna lead, if radio receiver has no loop. The radio receiver is to be set at 540 Kc or any nearby clear channe!, and the re-broadcast oscillator frequency control sliahtly adjusted until a rushing sound is heard from your radio receiver. The volume for F . 14 . reception is realated by the volume control of your own radio receiver.

The F. M. band is ultra-hiah frequency. This necessitates precision tuning. Therefore, it is necessary to move the tuning knob of the wireless Tuner very slowly when tuning in stations. Rotate the tuning knob back and forth several times over the station desired. You will note that the station is "on the button" when all side band noise disappears.

If the Wireless Tuner is connected to an $A C-D C$ type radio receiver operated on $A C$, a very slight hum may occur when the radio receiver volume control is on full for reception on weak powered stations. If this hum is excessive, reverse the electric line cord plug of your radio receiver or of the wireless Tuner, or both in the wall socket.

Alignment of the wireless Tuner
Insulated alianment tools are necessary. The output meter should be a D. C. vacum tube voltmeter with a range of at least 20 volts. The signal generator should cover the frequencies of $10.7,90$ and 105 M . C. Allow the wireless Tuner to warm up for at least 5 minutes before making any adjustments. The location of the adjustment screws is indicated clearly on the license label. Follow the following sequence.

I. F. ALIGNMENT:

Connect the signal generator through a. Ol mfd condenser to the grid of the $12 A T 7$ converter tube. Connect the low side of the generator through a $1 / 10 t h \mathrm{mfd}$. condenser to tuner chassis. Adjust signal generator to 10.7 mc . Connect VTVM to junction of 100 M -Ohm diode load resistors. Adjust primary and secondary slugs or trimmers of each 1 . F. for maximum D. C. voltage output. Remove VTVM lead from junction point and connect lead to pin 5 of $12 A L 5$ tube. Adjust secondary slug or trimmer of discriminator for zero D. C. voltage output, lcheck proper zero set of VTVM. Meter should register reverse polarity when slug or trimmer is rotated through zero output.)

R. F. ALIGMMENT:

Remove signal aenerator leads from $12 A T 7$ control grid. Connect in series with each generator lead a carbor 150 ohm resistor. Connect the high side generator lead to the red wire, in rear of tuner, and the low side generator lead to the orange wire. Adjust signal generator to 109 Mc. Open the tuner variable condenser for minimum capacity. Peak oscillator section of tuner condenser for maximum signal. Next set signal aenerator to 105 Mc . Tune in this signal. Adjust R. F. section of receiver variable condenser for maximum signal strength. To adjust the low frequency end, set the tuner and signal generator to 90 MC . Peak the oscillator padder for maximum output. The variable condenser should be rocked during this operation. Keep the signal generator output as low as possible when making all of these measurements. It is extremely necessary In making the R. F. adjustmentis, that the fundamental osclllator signal be tuned in and not the image frequency. This can be checked by using a calibrated wavemeter.

REPLACEMENT PARTS

1038-1	I. F. Coll	3003	1/2 Watt Resistors
1038-2	Discriminator Coil	3005	4 Watt Pigtail Resistor
$1040-2$	R. F. Chokes	4016	Cabinet
1041	A. M. oscillator Coil	4069	Cabinet Back
1042	Filter Choke	$4044-2$	Knob
1043	Antenna Coil	5000	Line Cord
1044	F. M. oscillator Coll	6014	Dial Scale
2000	Paper Capacltors	8001	Pilot Lamp Socket
2005	Electrolytlc	8003	Power Switch
2012	Ceramic Condensers	9762	Dial Spring
2023	Variable Condensers	2018	Electrolytic
2040	Trlmmer Condensers	$\# 47$	Pilot Lamp

www.americanradiohistorv.com

MODEL 537,
 EMERSON RADIO AND PHONO. CORP.

 CHASSIS 120043

DESCRIPTION

TYPE: Console AM-FM superheterodyne with automatic record changer.
FREQUENCY RANGE:
Broadcast band (AM) -530-1620 kilocycles
Frequency modulation band (FM)-87.75-108.5 megacycles
TYPE OF TUBES:
1-6AG5, r-f amplifier
1-6BE6, converter
2-6BA6, i-f amplifier
2-6AU6, limiter and AM second detector; audio amplifier
1-6AL5, FM ratio detector
2-6V6GT, power output
1-5U4G, rectifier
$1-6 \mathrm{U} 5 / 6 \mathrm{G5}$, tuning eye
POWER SUPPLY: 60-cycle a.c.
VOLTAGE RATING: $105-125$ volts.
POWER CONSUMPTION: 125 watts.
CURRENT DRAIN: 1.0 amp. at 117 volts a.c.
GENERAL NOTES

1. If replacements are made or the wiring disturbed in 4 the r-f section of the circuit, the receiver should be care. 5 . fully realigned.
2. The color coding of the i-f transformer leads is as fol- C lows:

$$
\begin{array}{ll}
\text { Grid-green } & \text { Plate-blue } \\
\text { Grid reiturn-black } & \text { B }+ \text {-red }
\end{array}
$$

3. A self-contained loop antenna is provided for broadcast band reception. If it is desired to improve reception of weak stations, however, an additional outdoor antenna may be used. Connect the external antenna to the outside terminal on the "AM" side of the terminal strip at the rear of the cabinet. Connect the ground to the adjoining terminal.
4. An internal power line antenna is provided for FM operation in relatively strong signal areas. An external dipole antenna is recommended for best FM operation. To connect dipole, remove the wire from the terminal on the "FM" side of the terminal strips and connect the two dipole leads to the two "FM" terminals. A ground connection is not required for FM operation.

DISASSEMBLY INSTRUCTIONS

1. Remove four push-on type control knobs from top of cabinet.
2. Remove phono motor plug, phono pickup plug, and two speaker plugs from chassis.
3. Remove two Phillips head screws holding antenna terminal strip to chassis.
Remove two nuts and washers fastening loop to cabinet. Remove two Phillips head bolts in phono compartment retaining chassis to cabinet.
Remove two hex head bolts and washers retaining chassia to cabinet. Remove loop and chassis from rear of cabinet.
4. Remove four nuts fastening speaker to cabinet and remove speaker.

CFISLSIS 120043 EMERSON RADIO AND PHONO. CORP.

INSTRUCTIONS FOR VOLTAGE AND RESISTANCE READINGS

1. Voltage readings are in volts and resistance readings in ohms unless otherwise specified.
2. All readings taken in broadcast position except those for items 4,5 and 6 , which should be taken in FM position.
3. D-C voltage measurements are at 20,000 ohms per volt; a-c voltages measured at 1,000 ohms.
4. Socket connections are shown as bottom views.
5. Measured values are from socket pin to common negative.
6. Line voltage maintained at 117 volts for voltage readings.
7. Nominal tolerance on component values makes possible a variation of $\pm 15 \%$ in voltage and resistance readings.
8. Volume control at maximum, no signal applied for voltage measurements.
9. Resistance readings in the $B+$ circuits may vary widely according to the condition of the filter capacitors.

VOLTAGE READINGS

SYMBOL	TUBE	PIN 1	PIN 2	PIN 3	-PIN 4	PIN 5	PIN 6	PIN 7	PIN 8
	6AG5	-0.4DC	0	6.2AC	0	225DC	137DC		
2	6BE6	-0.4DC	0		6.2AC	270DC	100DC		
3	6BA6	-0.3DC	0	6.2AC	0	270DC	122DC		
4	6BA6	-0.5DC	0	6.2AC	0	260DC	110DC		
5	6AU6	-0.6DC	0	6.2AC	0	280DC	48 DC	${ }^{0}$	
6	6ALS	0	0	0	6.2AC	0.4DC 50 DCC	${ }_{0}$		
7	6AU6	-0.7DC	0	6.2AC		59DC	29DC	6.2AC	15DC
9 10	6V6GT	0	0	320DC 320DC	290DC 290DC	0 0	S9DC 0	6.2AC	15DC
10 11	6V6GT 5U4G	0	330DC	0	300AC	0	300AC	0	330DC
RESISTANCE READINGS									
SYMBOL	TUBE	PIN 1	PIN 2	PIN 3	PIN 4	PIN 5	PIN 6	PIN 7	PIN 8
1	6AG5	1.1 meg.	0	0.2	0	85,000	120,000		
2	6BE6	22,000	0.7	0.2	$0 \cdot 4$	80,000	98,000	12,000	
3	6BA6	650,000	0	0.1	0	80,000	110,000		
4	6BA6	650,000	0	0.1	0	45,000	70,000		
5	6AU6	45,000	0	0.1	0	45,000	10,000		
6	6ALS	inf.	inf.	0	0.1			15,000	
7	6AU6	2.4 meg.	0	0.1		770,000 450,000	1.8 meg.	0.1	
10	6V6GT	0	0 0	$\mathbf{8 0 , 0 0 0}$ $\mathbf{8 0 , 0 0 0}$	80,000 80,000	0	620,000	0.1	170
11	5U4G	inf.	80,000	inf.	69	inf.	72	inf.	80,000

ALIGNMENT

To set pointer turn variable condenser fully closed and act pointer to last reference mark at low frequency end of dial. To inject signal in Steps 5,6 and 7 , remove $6 B E 6$ and connect wire to pin 1. Replace tube, making certain that wire does not shert to shield base. In Step 9, connect two 100,000 ohm resistory in series from pin 7 of 6ALS to chassis. These resistors should be equal within 5%. After Step 9, turn variable condenser fully counterclockwise and check adjustment of FM tun. ing unit per dial cord drawing. Loop shou!d be maintained in same relative position to chassis as when receiver is in cabinet. Volume contiol should be at maximum position; output of signal generator should be no higher than necessary to obtain an output reading. Use an insulated alignment acrewdriver for adjusting.

	DUMMY ANTENNA	$\begin{aligned} & \text { SIGNAL } \\ & \text { GENERATOR } \\ & \text { COUPLING } \\ & \hline \end{aligned}$	SIGNAL GENERATOR FREQUENCY	$\left\|\begin{array}{c}\text { BAND } \\ \text { SWITCH } \\ \text { POSITION }\end{array}\right\|$	RADIO DIAL SETTING	$\begin{aligned} & \text { OUTPUT } \\ & \text { METER } \\ & \hline \end{aligned}$	ADJUST	REMARKS
1	0.1 mfd .	Heli side to front atator oi varialite condenser. l.ow she to ehassis.	455 kc	BC (center position)	High fre. quency end of dial.	Across voice coil.	$\begin{aligned} & \text { A1, A2 } \\ & \text { A3, A4 } \end{aligned}$	Adjust for maximum output.
2	0.1 mfd .	Illuh vide in front stator "i vartalile candenser. l.ow sile to chansls.	455 kc	BC (center position)	Low frequency end of dial.	Across voice coil.	A5	Adjust for minimum output.
3	0.05 mfd .		10.7 mc (unmodulated)	FM (fully clockwise)	High frequency end of dial.		A6, A7	Adjust for maximum deflection.
4	0.05 mfd .		10.7 mc (unmodulated)	FM (fully clockwise)	$\overline{\text { High frequency }}$ end of dial.		A8, A9	Adjust for maximum deflection.
5	0.05 mfd .		10.6 mc unmodulated)	FM (fully clockwise)	High frequency end of dial.		A10	Adjust for maximum deflection.
6	0.05 mfd .		10.8 me (un modulated)	$\begin{aligned} & \text { FM (fully } \\ & \text { clockwise) } \end{aligned}$	$\overline{\text { High frequency }}$ end of dial.		A11	Adjust for maximum deflection.
7	0.05 mfd .		10.7 mc (unmodulated)	FM (fully clockwise)	High frequency end of dial.	VTVM con nected icom int 7 of 6 ALS chasis. to	A12	Adjust for maximum deflection.
8	0.05 mfd .		10.7 mc (unmodulated)	FM (fully clockwise)	High frequencr end of dial.		A13	Adjust for maximum deflection.
9	0.05 mfd .		10.7 mc (un. modulated)	FM (fully clockwise)	High frequency end of dial.		A14	Adjust for zero deflection.
10	150 ohms in series with each lead.		108 mc (un. modulated)	FM (fully clockwise)	108 mc	$\begin{aligned} & \text { VTYM con- } \\ & \text { neted from } \\ & \text { pht of rAL } \\ & \text { to chassis. } \end{aligned}$	A15	Adjust for maximum deflection.
11	150 ohms in series with each lead.		88 mc (un. modulated)	FM (fully clockwise)	88 nic	$\begin{aligned} & \text { VTVM foni- } \\ & \text { nected from } \\ & \text { pin : of } 6 A 15 \\ & \text { to chassis. } \end{aligned}$	A16	ABlust Iron core (hold briss in prosition) for minximum deflection.
12	150 ohnss in series with each lead.	Migh side to ungrounded ly mitenna terminal. Low side to chassls. (D)connect Intermat untenna.)	98 mc (unmodulated)	FM (fully clockwise)	98 mc	VTVM con- ncted from pht of $6 A 15$ to chassis.	A16	Adjust Iron and brass cores (slngle screw) for maximum deflection. Re peat steps 10, 11, 12 until no further Im. provement can be made.
13	150 ohms in series with each lead.	Himh she to unkrounded l"M antpnan terminal. low slate to chassis. (Hsconneet interual antemar.)	106 mc (unmodulated)	FM (fully clockwise)	Tune for maximum deflection.	VTVM connerted from pin 7 of 6ALs to chassis.	$\begin{aligned} & \mathrm{Al7}, \\ & \mathrm{Al8} \end{aligned}$	\qquad
14	150 ohms in series with each lead.	```Mlgh vale to ungrounded M antenma termimal. Low slite to chassis. (Bmeonnect futernal antemma.)```	90 mc (unmodulated)	FM (fully clockwise)	Tune for maximum deflection.	$\begin{aligned} & \text { VTYM con- } \\ & \text { nected from } \\ & \text { pin of oAl5 } \\ & \text { to chassis. } \end{aligned}$	$\begin{gathered} \text { A19, } \\ \text { A20 } \end{gathered}$	Aljust Iron core (hold brass in position) for maximum deffection.
15	151 कhms in series with each lead.	Migh slife to unfrounded FI antenna terminal.how slde to chassis. (IDsconnect intermal antenna.)	100 mc (unmodulated)	FM (fully clockwise)	Tune for maximum deflection.	VTVM connected from pin 7 of fAL. to chassis.	$\begin{gathered} \text { A19, } \\ \text { A20 } \end{gathered}$	Adjust Iron and brass cores (single screw) for maximum deflection. Rejeat steps $13,14,15$ until no further Im. provement can be made.
16	200 mmfd .	IHgh side to AS Mn grounded lug on antenna terminal strip. to chassis.	1600 kc	BC	1600 kc	Across voice coil.	A21	$\begin{aligned} & \text { Adjust for maximum } \\ & \text { output. } \end{aligned}$
17	200 mmfd .		1400 kc	BC	Tune for maximum output.	Across voice coil.	A22	Adjust for maximum

REPLACEMENT PARTS LIST

Symbol	${ }^{+}$Part No.	DESCRIPTION	Symbol	\dagger Part No.	DESCRIPTION
1	6AG5 68 C	Tube, r-f amplifier	37	910356	0.005 mfd ., 500 volt mica condenser (2nd i.f decoupling)
2	6BE6	Tube, converter			(2nd i.f decoupling) 0.005 mfd ., 500 volt mica condenser
3	6BA6 686	Tube, 1st i-f amplifier ${ }_{\text {Tube, 2nd i-f amplifier }}$	38	910356	0.005 mfd ., 500 volt mica condenser 2nd i-f screen bypass)
4	6BA6 6AU6	Tube, 2nd i-f amplifier	39	910356	2nd i-f screen bypass) 0.005 mifd., 500 volt mica condenser
6	6 AL5	Tube, FM ratio detector			(1st i-f screen bypass)
7	6AU6	Tube, audio amplifier	40	910356	$0.005 \mathrm{mfd} ., 500$ volt mica condenser
8	6U5/6G5	Tube, tuning eye			
9	6V6GT	Tube, power output	41	910100	0.0001 mfd ., 500 volt mica condenser (diode filter)
10	6V6GT	Tube, power outpat			$0.005 \mathrm{mfd} ., 500$ volt mica condenser
11.	5U4G 925006	Tube, rectifier $40-30 \mathrm{mfd}$., 400 volt electrolytic	42	910356	
12A, B	925006 925190	$40-30 \mathrm{mfd}$., 400 volt electrolytic condenser (filter)	43	915003	0.0005 mfd ., 300 volt mica condenser (converter screen bypass)
13	925190	condenser (a-f plate decoupling) 5 mfd., 50 volt electrolytic con-	44	928102	50 mmfd ., 300 volt ceramic condenser (converter cathode bypass)
14	925005	denser (ratio detector bias)	45	928101	25 mmfd , 300 volt ceramic condenser (oscillator grid)
15 16	920180 920090	$0.005 \mathrm{mfd} ., 400$ volt condenser (tone compensation) $0.01 \mathrm{mfd} ., 400$ volt condenser (audio	46	910320	0.00025 mfd ., 500 volt mica condenser (wave trap)
16	920090	coupling)	47	928002	10 mmfd., 300 volt ceramic conden.
17	920250	0.1 mfd ., 400 volt condenser (feedback coupling)	48	928106	ser (r-f plate decoupling) 0.0001 mfd ., 300 volt ceramic con-
18	920180	0.005 mfd ., 400 volt condenser (audio coupling)	49	915003	denser (r-f coupling) $0.0005 \mathrm{mfd} ., 300$ volt mica condenser
19	920090	$0.01 \mathrm{mfd} ., 400$ volt condenser (tone compensation)	50	915003	(r-f decoupling) 0.0005 mfd ., 300 volt mica condenser
20	920090	$0.01 \mathrm{mfd} ., 400$ volt condenser (tone compensation)	51	910356	(r-f screen bypass) 0.005 mfd ., 300 volt mica condenser
21	920090	0.01 mfd ., 400 volt condenser (audio coupling)	52	910356	(r-f filament bypass) 0.005 mfd ., 300 volt mica condenser
22	920180	$0.005 \mathrm{mfd} ., 400$ volt condenser (phono coupling)	53	928107	(r-f filament decoupling) 30 mmf d., 300 volt ceramic conden-
23	920060	$0.05 \mathrm{mfd} ., 200$ volt condenser (AM eye grid filter)	54	928102	ser (r-f coupling) 50 mmfd ., 300 volt ceramic conden-
24	920040	0.1 mfd ., 200 volt condenser (AVC filter)	55	928105	ser (FM-r-f coupling) 7 mmfd., 300 volt ceramic conden-
25	920060	0.05 mfd ., 200 volt condenser (AVC filter)	56	928105	ser (FM-r-f coupling) 7 mmfd., 300 volt ceramic conden
26	920090	0.01 mfd ., 400 volt condenser (AVC filter)	57	390004	ser (FM-r-f coupling) Volume control, 1 meg.
27	920180	0.005 mfd ., 500 volt mica condenser (AVC filter)	58 59	$\begin{aligned} & 390081 \\ & 320490 \end{aligned}$	Tone control and switch, 1 meg. 1000 ohms, $1 / 4$ watt resistor (FM
28	910320	0.00025 mfd , 500 volt mica condenser (FM antenna coupling)	60	321130	antenna loading) 470,000 ohms, $1 / 4$ watt resistor (r-f
29 30	928107 910320	30 mmfd., 300 volt ceramic condenser (a-f plate bypass)	61	320970	grid) 100,000 ohms, $1 / 4$ watt resistor (AVC network)
30 31	910320 910320	0.00025 mfd ., 500 volt mica con. denser (diode filter)	62	370872	39,000 ohms, 1 watt resistor (r-f screen dropping)
31	910	0.00025 mfd , 500 volt mica condenser (ratio detector load)	63	310650	4,700 ohms, $1 / 4$ watt resistor (r - f
32	910320	0.00025 mfd , 500 volt mica condenser (ratio detector load)	64	310750	plate decoupling) 12,000 ohms, $1 / 4$ watt resistor (con-
33	920180	0.005 mfd . 500 volt mica condenser (deemphasis)	65	310810	verter grid) 22,000 ohms, $1 / 4$ watt resistor (oscil-
34 35	910356	0.005 mfd ., 500 volt mica condenser (limiter plate decoupling)	66	320290	lator grid) 150 ohms, $1 / 4$ watt resistor (parasitic
35 36	910356 910356	0.005 mfd , 500 volt mica condenser (r-f bypass power supply)	67	397070	suppressor) 18,000 ohms, 2 watt resistor (converter screen dropping)
36	910356	0.005 mfd ., 500 volt mica condenser (limiter screen bypass)	68	320490	1,000 ohms, $1 / 4$ watt resistor (converter plate decoupling)

* Not supplied separately.

[^0]

REPLACEMENT PARTS LIST (continued)

Symbol	\dagger Part No.	DESCRIPTION
69	321210	1 meg., $1 / 4$ watt resistor (tuning eye plate load)
70	320970	100,000 ohms, $1 / 4$ watt resistor (AVC network)
71	311210	1 meg., $1 / 4$ watt resistor (AVC network)
72	370830	27,000 ohms, 1 watt resistor (1st i-f screen dropping)
73	320490	1,000 ohms, $1 / 4$ watt resistor (1 st i-f plate decoupling)
74	321210	1 meg., $1 / 4$ watt resistor (AVC network)
75	321210	1 meg., $1 / 4$ watt resistor (AVC network)
76	320970	100,000 ohms, $1 / 4$ watt resistor (AVC network)
77	310650	4,700 ohms, $1 / 4$ watt resistor (2nd FM i.f transformer shunt)
78	320490	1,000 ohms, $1 / 4$ watt resistor (2nd i.f plate decoupling)
79	370830	27,000 ohms, 1 watt resistor (2nd i-f screen dropping)
80	370890	47,000 ohms, 1 watt resistor (limiter screen dropping)
81	370730	10,000 ohms, 1 watt resistor (limiter screen bleeder)
82	340610	3,300 ohms, $1 / 2$ watt resistor (limiter plate decoupling)
83	350810	22,000 ohms, $1 / 2$ watt resistor (deemphasis)
84	340410	470 ohms, $1 / 2$ watt resistor (ratio detector bias)
85	310771	15,000 ohms, $1 / 4$ watt resistor (ratio detector bias network)
86	310890	47,000 ohms, $1 / 4$ watt resistor (diode filter)
87	310970	100,000 ohms, $1 / 4$ watt resistor (diode load)
88	321210	1 meg., $1 / 4$ watt resistor (series phono)
89	310890	47,000 ohms, $1 / 4$ watt resistor (tone compensation)
90	321290	2.2 meg., $\mathrm{I} / 4$ watt resistor (a.f grid)
91	321130	470,000 ohms, $/ 4$ watt resistor (a-f plate load)
92	321050	220,000 ohms, $1 / 4$ watt resistor (a-f plate decoupling)
93	311250	1.5 meg. , $1 / 4$ watt resistor (a-f screen dropping)
94	321130	470,000 ohms, $1 / 4$ watt resistor (out. put grid)
95	394140	180 ohms, 2 watt resistor (output cathode)
96	310810	22,000 ohms, $1 / 4$ watt resistor (3rd i.f transformer shunt)
97	737002	Filter choke

Symbol	\dagger Part No.	DESCRIPTION
98	730002	Power transformer
99	734004	Output transformer
100	180023	Speaker, 12 inch permanent magnet dynamic
*101		Speaker cone (part of 180023)
102	700003	Loop antenna
103	710014	FM antenna coil
104	705000	R-F plate choke
105	708001	AM wave trap
106	713013	FM r-f coil
107	716113	AM oscillator coil
108	716112	FM oscillator coil
109	720015	1st AM.FM ijf transformer
110	720016	2nd AM-FM i-f transformer
111	720014	3rd FM i-f transformer
112	708145	Ratio detector transformer
113	705002	R.F choke
114	705002	R-F choke
115	705002	R-F choke
116	705002	R.F choke
117	705005	Converter plate r-f choke
118	705003	R-F choke
119	705007	R-F choke
120	705002	R-F choke
121	705002	R.F choke
122	705000	R-F choke
123	807020	Dial light
124	807020	Dial light
125		Crystal pickup
126	510051	Band switch
127	900007	Two-gang variable condenser
128		FM tuning assembly
	500500	A-C receptacle
	508010	Phono receptacle
	555004	Terminal strip, speaker
	580032	Speaker pin terminal
	580033	Speaker pin terminal
	505005	A-C plug, phono motor
	505040	Connector plug, pickup
	583150	Line cord and plug
	507001	Dial light socket assembly
	585210	Tuning indicator socket and cable
	819020	Record Changer, curved spindle, brown
	819022	Record changer, straight spindle, blue
	140065	Cabinet
	620034	Knob, mahogany
	620035	Knob, mahogany, with indicator dot
	280002	Drive shaft, dial
	280505	Drive shaft, FM tuner
	520002	Dial back plate
	520003	Dial face
	525002	Pointer

* Not supplied separately.

Specify part numbers when ordering.

EMERSON RADIO AND PHONO. CORP. MODELS 556, 557, 565 , CHASSIS 120018 B

MODEL 565

DESCRIPTION

TYPE: Amplitude modulation (AM) and frequency modulation (FM) superheterodyne.
FREQUENCY RANGE:
Broadcast band (AM) - $540 \cdot 1620$ kilocycles
Frequency modulation band (FM)-88-108 megacycles TYPE OF TUBES:

1-12BA6 FM r-f amplifier
1-12BA7 FM and AM converter
1-12BA6 FM and AM first i-f amplifier
1-12AU6 FM limiter
1-19T8 FM discriminator, AM detector, a.v.c., audio amplifier
1-35B5 Power output
1-Selenium rectifier
POWER SUPPLY: 60 cycle a.c.
VOLTAGE RATING: $105-125$ volts
POWER CONSUMPTION: 35 watts
CURRENT DRAIN: 0.30 amps . at 117 volts a.c.

MODEL 557

GENERAL NOTES

1. If replacements are made or the wiring disturbed in the r-f section of the circuit, the receiver should be carefully realigned.
2. A self.contained loop antenna is provided for broadcast band reception. For permanent home installation, however, if it is desired to improve reception of weak stations, an additional outdoor antenna may be used. Connect the the outdoor antenna to the screw on the loop terminal strip marked "AM".
3. An internal power line antenna is provided for FM operation in relatively strong signal areas. The line cord should be completely uncoiled for effective operation of this antenna. An external dipole antenna is recommended for maximum FM operation. To connect the dipole, first remove the wire from the screw on the loop terminal strip marked "FM" and connect the dipole leads to the "FM" terminal and "G".
4. A ground connection is not required for $A M$ and $F M$ operation.

INSTRUCTIONS FOR VOLTAGE AND RESISTANCE READINGS

1. Voltages readings are in d.c. volts and resistance readings in ohms, unless otherwise specified.
2. D.c. voltage measurements are made at 20,000 ohms-per-volt and a.c. voltages are measured at 1000 ohms-per-volt.
3. Socket connections are shown as bottom views. Values are measured from socket pin to common negative.
4. Line voltage maintained at 117 volts a.c. for voltage readings.
5. Nominal tolerance on component values makes possible a variation of $\pm 15 \%$ in readings.
6. Volume control at maximum, with no sig--. applied and bandswitch in broadcast position (unless otherwise noted), for voltage measurements.

VOLTAGE READINGS

SYMBOL	TUBB	PIN 1	PIN 2	PIN 3	PIN 4	PIN 5	PIN 6	PIN 7	PIN 8	PIN 9
V1	12BA6	0	0	80AC	67AC	76*	78*	.8*	-	-
V2	12BA7	100	-. 5	0	67AC	55AC	0	-. 5	0	95
V3	12BA6	-. 2	0	55AC	43AC	93	98	0	-	-
V4	12BA6	0	0	43AC	30AC	70*	70*	.6*	-	-
V5	12AU6	-. 4	0	30AC	18AC	50	50	0	-	$\bar{\square}$
V6	19 T 8	-. 5	-. 4	5.5*	18AC	0	-. 8	0	. . 5	33
V7	35B5	0	6	117AC	80AC	132	100	NC	-	-

NC denotes "no co.mecion"; * for bandswitch in FM position only.
RESISTANCE READINGS

SYMBOL	TUBE	PIN 1	PIN 2	PIN 3	PIN 4	PIN 5	PIN 6	PIN 7	PIN 8	PIN 9
V1	12BA6	0	0	16	12	65K*	65K*	66	-	-
V2	12BA7	65K	24K	1	56	75	0	0	0	65K
$V 3$	12BA6	2.8 meg.	0	56	44	65K	65K	0	-	-
V4	12BA6	68	0	44	32	65K	65K	68	-	-
V5	12AU6	100K	0	32	20	65K	65 K	0	-	550\%
V6	19T8	90 K	90 K	150 K	20	${ }^{0} 6$	1 meg.	0	4 meg.	550K
V7	3585	400K	190	112	80	65 K	65K	NC		

K-K:lohms; meg.-megohms.

ALIGNMENT INSTRUCTIONS

Ta position pointer, turn variable condenser fully closed and set pointer to reference mark on dial backplate at the low frequency end of the dial. Volume control should be set at moximum pasition. The output of the signal generator should be no hig
tenuate the signal input as alignment proceeds. Use isolation transformer if available; otherwise connect a. 1 mfd . condenser in series with low side of signal generator to chassis.

AM ALIGNMENT

	$\begin{aligned} & \text { DUMMY } \\ & \text { ANTENNA } \end{aligned}$	SIGNAL GENERATOR COUPLING	SIGNAL GENERATOR FREQUENCY	BAND SWITCH POSITION	$\begin{aligned} & \text { RADIO DIAL } \\ & \text { SETTING } \end{aligned}$	OUTPUT METER	ADJUST	REMARKS
1	. 1 mfd .	High side to Pin 12BA7. Low side to chossis.	455 KC	Broadeast	Tuning condenser fully open.	Across voice coil.	A1, A2, (Trana T4). A3, A4, (Trans. T2).	Adjust for maximum output. Reduce dummy antenna to .001 mfd . If isolation trans. is not used.
2		Loop	1600 KC .	Broadcast	Tuning condenser fully open.	Across voice coil.	A5, (Trimmer cond. C6).	Form loop of several tume of wire. Radiate signal into receiver loop. Adjust for maximum output.
3		Loop	1400 KC .	Broadcast	Tune for max. output.	Across voice coil.	A6, (Trimmer cond. C5).	Adjust for maximum output.

FM I-F and Disc. Alignment Using AM Signal Generator and VTVM

	DUMMY ANTENNA	SIGNAL GENERATOR COUPLING	SIGNAL GENERATOR FREQUENCY	$\begin{aligned} & \text { BAND SWITCH } \\ & \text { POSITION } \end{aligned}$	$\begin{aligned} & \text { RADIO DIAL } \\ & \text { SETTING } \end{aligned}$	$\begin{aligned} & \text { CONNECT } \\ & \text { VTVM } \end{aligned}$	Adsust	REMARKS
1	. 01 mfd .	High side to Pin 1 (grid) of 12BA6 2 nd i. ${ }^{2}$ (V4). Low side to chassis.	10.7 mc . (Unmodulated)	Frequency modulation	Tuning condenser fully open.	Connect d.c. probe to point $A^{\prime \prime}$. Common to chassis.	$\begin{gathered} \text { A7, } \\ \text { (Trans. T5) } \end{gathered}$	Adjust for maximum output.
2	. 01 mfd .	High side to Pin 1 (grid) of 128A6 lst i-f (V3). Low side o chassis.	10.7 mc . (Unmodulated)	Frequency modulation	Tuning condenser fully open.	Connect d.c. probe to point "A". Common to chassis.	$\begin{array}{\|c\|} \text { A8, A9, } \\ \text { (Trans. T3). } \end{array}$	Adjust for maximum output.
3	. 01 mfd .	High side to PIn 2 (osc. grid) of 128A7 conv. (V2). Low side to chassis.	10.7 mc . (Unmodulated)	Frequency modulation	Tuning condenser fully open.	Connect d.c. probe to point "A". Common to chassis.	A10, A11, (Trans. T1).	Adjust for maximum output.
4	. 01 mfd .	High side to Pin 1 (grid) of 128A6 2nd l-श (V4). Low side to chassis.	10.7 mc . (Unmodulated)	Frequency modulation	Tuning condenser fully open.	Connect d.c. probe to point "B". Common to chassis.	$\underset{\text { (Trans. T6) }}{\mathrm{A} 12,}$	Adjust for maximum output.
5	. 01 mfd .	"	$\begin{gathered} 10.7 \mathrm{mc} \\ \text { (Unmodulated) } \end{gathered}$	Frequency modulation	Tuning condenser fully open.	Connect d.e. probe to point to chassis.	A13, (Trans, T6).	Adjust for zero output. Continue with FM r-f alignment.

FM R-F ALIGNMENT

	DUMMY ANTENNA	SIGNAL GENERATOR COUPLING	SIGNAL GENERATOR FREQUENCY	BAND SWITCH POSITION	$\begin{aligned} & \text { RADIO DIAL } \\ & \text { SETTING } \end{aligned}$	CONNECT VTVM	ADJUST	REMARKS
1	$\begin{gathered} 150 \text { ohm re- } \\ \text { sistor in series } \\ \text { with each } \\ \text { gen. lead. } \end{gathered}$	IIigh side tr FM ant. term. Low side to chassis.	108.0 mc . (Unmodulated).	Frequency modulation	Tuning condenser fully open (108.0 mc .)	Connect d.c. probe to point "A". Common to chassis.	A14 (Trimmer cond. C8).	Adjust for maximum output.
2	"	"	106.0 mc.	Frequency modulation	Tune for maximum output.	"	A15 (Trimmer cond. C7).	Adjust for maximum output.

MODELS 556, 557, EMERSON RADIO AND PHONO. CORP. MODELS 555,5570
565, OEASSIS 120018 B

DESCRIPTION
TYPE: Single band (AM) superheterodyne
FREQUENCY RANGE: 540-1620 KC.
TYPES OF TUBES: 1-12SG7 converter
1-6SS7 i-f amplifier
1-50L6GT power output
1-35Z5GT rectifier
POWER SUPPLY: A.c. or d.c.
VOLTAGE RATING: 105-125 volts POWER CONSUMPTION: 30 watts
CURRENT DRAIN: 0.24 amp. at 117 volts a.c.

\qquad

GENERAL NOTES

 If replacements are made or the wiring disturbed in ther-f section of the circuit, the receiver should be care
fully realigned.
In aperating the receiver on d.c., it may be necessary to 1.
\qquad
nection.
12SG7
 ts are made or the wiring disturbed in the 1-6SS7 i-f amplifier a.f amplifien

$$
\begin{aligned}
& \text { may be used. For this purpose a lead has been brought } \\
& \text { out in the rear near the line cord. Use no ground con. }
\end{aligned}
$$

$$
\begin{array}{ll}
\text { The receiver has a self-contained antenna, and does not }
\end{array} \text { 4. } \begin{aligned}
& \text { The self-contained loop antenna operatea at maximum } \\
& \text { efficiency when its position is at right angles to the }
\end{aligned}
$$

volume.

INSTRUCTIONS FOR VOLTAGE AND RESISTANCE READINGS

1. Voltage readings are in d.c. volts and resistance readings in ohms unless otherwise specified.
2. D.c. voltage measurements are at 20,000 ohms-per-voit; a.c. voltages measured at 1,000 ohms-per-volt.
3. Socket connections are shown as bottom views.
4. Measured values are from socket pin to common negative ($\mathrm{B}-$).
5. Line voltage maintained at 117 volts for voltage readings.
6. Nominal tolerance on component values makes possible a variation of $\pm 15 \%$ in voltage and resistance readings.
7. Volume control at maximum with no signal applied, for voltage measurements.

VOLTAGE READINGS

SYMBOL	TUBE	PIN 1	PIN 2	PIN 3	PIN 4	PIN 5	PIN 6	PIN 7	PIN 8
V1	12SG7	0	18 AC	1.2	-. 5	NC	86	30 AC	82
V2	6SS7	0	12 AC	88	3	0	86	18 AC	86
V3	6SS7	0	36 AC	0	-. 5	0	86	30 AC	86
V4	12AT6	-. 7	0	0	12 AC	-. 5	-. 5	45	-
V5	50L6GT	NC	86 AC	105	86	0	NC	36 AC	5.5
V6	35Z5GT	NC	117 AC	112 AC	112	110 AC	NC	86 AC	112

RESISTANCE READINGS

SYMBOL	TUBB	PIN 1	PIN 2	PIN 3	PIN 4	PIN 5	PIN 6	PIN 7	PIN 8
V1	12SG7	250 K	22	70	3.5 meg.	NC	150 K	33	150 K
V2	6SS7	250 K	15	150 K	22 K	0	150 K	22	150 K
V3	6SS7	250 K	40	0	3.5 meg.	0	150 K	33	150 K
V4	12AT6	10 meg .	0	0	16	480 K	3.5 meg.	600 K	-
V5	50L6GT	Inf.	90	150 K	150 K	420 K	Inf.	40	160
V6	35Z5GT	Inf.	120	118	150 K	160	NC	90	150 K

$\mathrm{NC}=$ no connection; $K=$ kilohm; meg. $=$ megohm; Inf. $=$ infinity

ALIGNMENT PROCEDURE

1. To set pointer, turn variable condenser fully closed and set pointer at mark near left end of dial backplate.
2. Use isolation transformer if available. If not, connect a $0.1 \mathbf{m f d}$. condenser in series with low side of signal generator and chassis.
3. Volume control should be at maximum position; output of signal generator should be no higher than necessary to obtain an output reading.
4. Use an insulated alignment screwdriver for adjusting.

	$\begin{gathered} \text { DUMMY } \\ \text { ANTENNA } \end{gathered}$	SIGNAL GENERATOR COUPLING	SIGNAL GENERATOR FREQUENCY	RADIO DIAL SETTING	METER OUTPUT	ADJUST	REMARKS
1	0.1 mfd .	High side to pin 4 (grid) of 12 SG7 (VI). Low side to chassis.	455 kc	Variable condenser fully open.	Across voice coil.	A1, A2 (2nd i-f trans. T2) A3, A4 (lst i-f trans. T1)	Adjust for maximum ontpot If Isolation transformer Is not psed, reduce dmmmy antonns to 0.001 mid . to rodnee ham modulation.
2	200 mmfd .	High side to oxternal antenna lead. Low side to chassis.	1620 kc	Variable condenser fully open.	Across voice coil.	A5 (Trimmer cond. C4).	Adjust for maximum output.
3	200 mmfd .	High side to external antenna lead. Low side to chassis.	1400 kc	Tune for maximum output.	Across voice coil.	A6 (Trimmer cond. C3).	Adjust for maximum output.

REPLACEMENT PARTS LIST

Symbol	\dagger Patr No.	DESCRIPTION	Symbol	\dagger Patr No.	DESCRIPTION
V1	12SG7	Converter	R2	340810	22 kilohms, $1 / 2$ watt resistor
V2	6SS7	Oscillator	R3	351050	220 kilohms, $1 / 2$ watt resistor
V3	6SS7	I-f amplifier	R4	340890	47 kilohms, $1 / 2$ watt resistor
V4	12AT6	Detector, a.v.c., a-f amplifier	R5	351330	3.3 megohms, $1 / 2$ watt rsistor
V5	50L6GT	Power output	R6	390044	. 5 megohms, volume control
V6	35Z5GT	Rectifier	R7	351490	15 megohms, $1 / 2$ watt resistor
C1, C2	900027	Two gang var. condenser	R8, R9	351130	470 kilohms, $1 / 2$ watt resistor
C3, C4	*	Trimmers, part of var. cond.	R10	340290	150 ohms, $1 / 2$ watt resistor
C5	920050	.2 mfd . 400 volt paper cond.	R11	370150	39 ohms, 1 watt resistor
C6	920100	. 02 mfd ., 200 volt paper cond.	R12	370490	1000 ohms, 1 watt resistor
C7	920040	.1 mfd., 200 volt paper cond.	L1	700000	Loop antenna
C8	920030	. 05 mfd ., 400 volt paper cond.	L2	716025	Oscillator coil
C9	910010	110 mmf., mica condenser	T1	720061	First i-f transformer
C10	910000	220 mmf., mica condenser	T2	720036	Second i-f transformer
C11	920010	. 002 mmf ., 600 volt paper cond.	T3	734043	Output transformer
C12	920240	$500 \mathrm{mmF}$. , 600 volt paper cond.	SP1	180015	P.m. speaker
C13, C14	920020	.02 mfd ., 400 volt paper cond.		*	Line switch, part of vol. control
C15	925112	$50-50 \mathrm{mfd} ., 150$ volt electrolytic condenser	P.L.	$\begin{aligned} & 807000 \\ & 583014 \end{aligned}$	Dial light, $6-8$ v.g .15 amp . Line cord
R1	340450	680 ohms, $1 / 2$ watt resistor		507006	Dial light socket

© John F. Rider
HOLEL 568, CriASSIS EMERSON RADIO AND PHONO. CORP.
$120070 \mathrm{~A}, 120070 \mathrm{~B}$

Schematic Circuit Diagram Model 568 Chassis 120070A

Schematic Circuit Diagram Model 568 Chassis 120070B

ALIGNMENT PROCEDURE

1. Use battery power when available. When a.c. power is used, connect the line cord through an isolation transformer if available. Otherwise connect a 0.1 mfd . condenser in series with the low side of the signal generator and B-
2. Set the volume control at maximum. The output of the signal generator should be no higher than that necessary to obtain an output reading. Attenuate the signal input as alignment proceeds. Use an insulated alignment tool.
3. Maintain the loop in the same position relative to the chassis as when the receiver is in the cabinet.

	DUMMY ANTENNA	$\begin{aligned} & \text { SIGNAL } \\ & \text { GENERATOR } \\ & \text { COUPLING } \end{aligned}$	SIGNAL GENERATOR FREQUENCY	$\begin{gathered} \text { RADIO } \\ \text { DIAL } \\ \text { SETTING } \end{gathered}$	OUTPUT METER	ADJUST	REMARKS
1	0.1 mfd .	High side to grid (pin 6) of V_{1} (1R5). Low side to chassis.	455 KC .	Variable condenser fully open.	Across voice coil	A1, (2nd i-f trans), A2, A3 (1st i-f trans.)	Adjust for maximum output. If a.c. is used, without an isolation transformer, reduce dummy antenna to 200 mmf . to reduce hum modulation.
2	200 mmf .	High side to external antenna lead. Low side to chassis.	$1620 \mathrm{KC}$.	Variable condenser fully open.	Across voice coil	A4 (trimmer cond. C4.)	Adjust for maximum output.
3	200 mmf .	"	1400 KC.	Tune for maximum output.	Across voice coil	A5 (trimmer cond. C2).	Adjust for maximum output.

INSTRUCTIONS FOR VOLTAGE AND RESISTANCE READINGȘ

1. Voltage and resistance readings are measured for 117 volt a.c. line operation. Socket connections are shown as bottom views. Measurements are taken from socket pin to chassis (chassis 120070A) or socket pin to common negative (chassis 120070B).
2. Voltages are d.c. unless otherwise indicated, measured with a 20,000 ohms-per-volt meter. A.c. voltages are measured at 1000 ohms-per-volt.
3. For voltage measurements, set volume control at maximum; no signal applied.
4. Nominal tolerance on component values makes possible variation of $\pm 15 \%$ in voltage and resistance readings.
5. On the voltage and resistance analysis diagram NC denotes no connection; K-kilohms; meg.-megohms; inf.-infinity.

DESCRIPTION

TYPE: Three way (battery, a.c., d.c.) portable superheterodyne. FREQUENCY RANGE: $540-1620 \mathrm{KC}$.

TYPE OF TUBES:

1-1R5, pentagrid converter
1-1U4, i-f amplifier
1—1S5, or $1 U 5$, detector, a.v.c., a-f amplifier
1 -3V4, power output
1—117Z3 rectifier
POWER SUPPLY: Battery powerpack, or a.c., or d.c.
VOLTAGE RATING:
Line operation-105-125 volts, a.c. or d.c.
Battery operation- $71 / 2$ volts (chassis 120070A); 9 volts (chassis 120070 B) "A" supply 90 volts "B" supply
POWER CONSUMPTION: Line operation 20 watts
CURRENT CONSUMPTION:
"A" battery-. 053 amp. (chassis 120070A) . 015 amp . (chassis 120070B)
"B" battery-. 013 amp .
117 volts a.c.-. 170 amp .

REPLACEMENT PARTS LIST

Symbol	\dagger Part No.	DESCRIPTION	Symbol	\dagger Part No.	DESCRIPTION
V1	1 R 5	Converter	R15	340470	820 ohms, $\pm 10 \%, 1 / 2$ watt resistor
V2	$1 \mathrm{U}^{4}$	I-f amplifier	R16	340450	680 ohms, $\pm 10 \%, 1 / 2$ watt resistor
V3	IS5 or 1U5	Detector, a.v.c., a-f amplifier	R17	341330	$3.3 \mathrm{meghoms}, \pm 10 \%, 1 / 2$ watt
V4	3 V 4	Power output			resistor -
V5	11723	Rectifier	R18	341490	15 megohms, $\pm 10 \%, 1 / 2$ watt
C1, C3	900043	Two-gang variable condenser			resistor
C2, C4	*	Trimmers, part of var. condenser	R19	340550	1800 ohms, $\pm 10 \%$, $1 / 2$ watt resistor
C5, C18	920060	. 05 mfd ., 200 volt condenser	R23	370132	33 ohms, $\pm 10 \%, 1 / 2$ watt resistor
C6, C15,	920539	. 05 mfd ., 400 volt condenser	R24	340110	27 ohms, $\pm 10 \%, 1 / 2$ watt resistor
C19			L1	$700039 \triangle$	Loop antenna
C7, C11	920092	. $01 \mathrm{mfd} ., 400$ volt condenser		$700042 \square$	
C8, C 12	910000	220 mmf., mica condenser	L2	716029	Oscillator coil
C9, C20	915005	2.2 mmf., molded condenser	T1	720525	First i-f transformer (alternate parts
C10, C21	920515	. 002 mfd ., 400 volt condenser			720051 or 720062) \#
C13, C14	920180	. 005 mfd ., 400 volt condenser	T2	720066	Second i-f transformer
C16	925059	80-40-30-100 mfd., $150-150-150-25$ volt electrolytic condenser	T3	$\begin{array}{r} 734039 \triangle \\ 734039 \mathrm{~A} \square \end{array}$	Output transformer
C 17	920040	. 1 mfd ., 200 volt condenser	SW1	$510008 \triangle$	Power changeover switch, d.p.d.t.
R1	351290	2.2 megohms, $1 / 2$ watt resistor		510043 []	" " " , t.p.d.t.
R2	340770	15 kilohms, $\pm 10 \%$, $1 / 2$ watt res.	SW2	*	On-off switch, part of volume control
R3	350970	100 kilohms, $1 / 2$ watt resistor		$585031 \triangle$	Battery cable ("A" and "B")
R4, R7	351330	3.3 megohms, $1 / 2$ watt resistor		$585033 \square$	
R5	390063	1 megohm, volume control		$583012 \mathrm{P} \triangle$	Line cord
R6	351450	10 megohms, $1 / 2$ watt resistor		583017P \square	
R10	340210	1.5 megohms, $1 / 2$ watt resistor 68 ohms, $\pm 10 \%, 1 / 2$ watt resistor			Eveready No. 753 or Rayovac No.
R11	370170	47 ohms, $\pm 10 \%, 1 / 2$ watt resistor			AB994.
R12	394041	1100-1100 ohms, $\pm 5 \%$, wire-wound resistor			
$\begin{aligned} & \text { R13, R14, } \\ & \text { R20, R21, } \\ & \text { R22 } \end{aligned}$	340530	1500 ohms, $\pm 10 \%, 1 / 2$ watt resistor			

CABINET AND DIAL PARTS

${ }_{\dagger}$ Part No.	DESCRIPTION
140182°	Cabinet
$140183 \mathrm{~S}^{\circ}$	Cabinet back, with hinge springs
460081°	Speaker grille
520092	Dial Crystal
520085	Dial backplate
595006°	Handle, with rings
460082°	Knob
808205	Cabinet catch clip
280079	Cover catch stud
525041	Dial pointer
280070	Drive shaft
530002	Drive cord (30')
587040	Drive cord spring

\dagger State part numbers when ordering.

* Not supplied separately.
\# Replace with parts having same number as that removed.

EMERSON RADIO AND PHONO. CORP. MODELS 563, 593, 603, CHASSIS $120063 B$

DESCRIPTION

IYPE: Console AM-FM superheterodyne with automatic record changer.
PREQUENCY RANGE:
Broadcast band (AM)-535.1620 kilocycles
Frequency modulation band (FM)-88.0 to 108.0 megacycles
I-6AG5, r-f amplifier
1-6BE6, converter
2-6SG7, i-f amplifiers
$1-6 \mathrm{U} / 6 \mathrm{G} 5$, tuning eye
1 -5U4G, rectifier
$1-6 \mathrm{~S} 8 / \mathrm{GT}$, AM detector, FM discriminator, audio amplifier
1-6SH7, FM limiter
2-6V6/GT, power output
1-6SQ7, phase inverter
POWER SUPPLY: 60-cycle a.c. only
VOLTAGE RATING: $105 \cdot 125$ volts
POWER CONSUMPTION: 140 watts

MODEL 563

GENERAL NOTES

1. If replacements are made or the wiring disturbed in the $r-f$ section of the circuit, the receiver should be carefully realigned.
2. Ine color coding of the if transformer leads is as fol- 4. lows:
$\begin{array}{ll}\text { Grid-green } & \text { Plate-mblue } \\ \text { Grid reftirn-hlack } & B+-r e d\end{array}$

MOIPFI. 593
3. A self-contained loop antenna is provided for broadeast band reception. It it is desired to improve reception of weak stations, however, an additional outdoor antenna may be used. Connect the external antenna to the outside terminal on the "AM" side of the terminal strip at the rear of the cobinet. Connect the ground to the adjoining terminal.
An internal power line antenna is provided for FM operation in relatively strong signal areas. An external dipule antenna is recommended for best FM operation. To connect dipole, remove the wire from the terminal on the "FM" side of the terminal strips and connect the tivo dinole leads to the two "FM" terminals. A ground connection is not required for FM operation.

DISASSEMBLY INSTRUCTIONS

1. Remove four push-or, type control knobs from front of cabinet.
2. Remove phone motor plug, phono pickup plig, and tiro speaker pin-terminals from chassis.
3. Remove two Phillips head screws holding antenna terminal strip to cabinet.
4. Remove two nuts and washers fastening loop to cabinet.
5. Remove for hex-head bolts in chassis shelf retaining chassis to cabinet.
6. Remove four nuts fasteming spenker to cabinet and ro move speaker.

PAGE 19-20 EMERSON
MODELS 563, 593, 603, EMERSON RADIO AND PHONO. CORP. CHASSIS 120063 B

AM ALIGNMENT
Volume control should be at maximum position; output of signal generator should be no higher than necessary to obtain ant out reading. Use an insulated alignment screw driver for adjusting.

	DUMMY ANTENNA	SIGNAL GENERATOR COUPLING	SIGNAL GENERATOR FREQUENCY	BAND SWITCH POS.	$\begin{gathered} \text { RADIO } \\ \text { DIAL } \\ \text { SETTING } \end{gathered}$	OUTPUT METER	ADJUST	REMARKS
1	. 1 mifd .	High side to Pin No. 1 of V2 6BE6. Low side to chassis.	455 kc	Center position BC.	High frequency end of dial.	Across voice coil.	$\begin{aligned} & \text { C. } 25, \mathrm{C} .26 \\ & \text { C. } 58, \mathrm{C} .59 \end{aligned}$	Adjust all trimmers for maximum response.
2	. 1 mfd .	"	455 kc	"	"	"	C. 16 IF-trap trimmer	Adjust for minimum response.
3	200 mmfd .	High side to AM ungrounded lug on antenna terminal strip. Low side to chassis.	1620 kc	"	1620 kc Reference. marker on dial backplate.	"	C. 4	Adjust for maxinum response.
1	200 mmfd .	"	1400 kc	"	Tune in 1400 kc for maximum output.	"	C. 3	Adjust for maximum response.

FM IF ALIGNMENT USING FM SIGNAL GENERATOR AND VTVM Use FM Signal with 60 Cycle Modulation and 500 KC Deviation

	DUMMY ANTENNA	SIGNAL GENERATOR SIGNAL	SIGNAL GENERATOR FREQUENCY	BAND SWITCH POS.	RADIO DIAL SETTING	CONNECT VTVM	ADIUST	REMARKS
1-2	. 005 mfd .	High side to Pin No. 1 V2 6BE6. Luw side to chassis.	10.7 mc freq. mod.	Fully clock. wise FM position.	High frequency end of dial.	"Aoint"	$\begin{array}{ll} \text { C. } 23, & \mathrm{C} .24 \\ \text { C. } 57, & \mathrm{C} .56 \\ \text { C. } 52, & \mathrm{C}-51 \end{array}$	Adjust oll trimmers for maximum deflection while attenuating signal so as ta reod opproximotely 2 volts of Point " A " during olignment.
	. 005 mfd .	"	10.7 mc freq. mod.	"	"	$\begin{aligned} & \text { Point } \\ & \text { "A" } \end{aligned}$	C. 21	Adjust for maximum deflection.
FM IF ALIGNMENT USING AM SIGNAL GENERATOR AND VTVM								
	DUMMY ANTENNA	SIGNAL GENERATOR COUPLING	$\begin{array}{\|c\|} \text { SIGNAL } \\ \text { GENERATOR } \\ \text { FREQUENCY } \\ \hline \end{array}$	$\begin{aligned} & \text { BAND } \\ & \text { SWITCH } \\ & \text { POS. } \end{aligned}$	$\begin{gathered} \text { RADIO } \\ \text { DIAL } \\ \text { SETTING } \end{gathered}$	$\begin{gathered} \text { CONNECT } \\ \text { VTVM } \end{gathered}$	ADJUST	REMARKS
1	. 05 mfd .	High side to Pin No. 1 V2 6BE6. Low side to chassis.	10.7 mc unmodulated	Fully clockwise FM pos.	High frequency end of dial.	Point "A"	$\begin{aligned} & \text { C. } 52 \\ & \text { C. } 51 \end{aligned}$	Adjust for maximum deflection.
	. 05 mfd .	"	10.7 mc unmodulated	"	"	"	$\begin{aligned} & \text { C. } 56 \\ & \text { C-57 } \end{aligned}$	"
3	. 05 mfd .	"	10.7 mc unmodulated	"	"	"	$\begin{aligned} & \text { C. } 24 \\ & \text { C. } 23 \end{aligned}$	"
4	. 05 mfd .	"	10.7 mc unmodulated	"	"	Point "B"	C-37	"
5	. 05 mfd .	"	10.7 mc unmodulated	"	"	Pin No. 5 GS8-V6A	C. 36	Adjust for zero mininum deflection
Vol. control in max. pos. FM DISCRIMINATOR ALIGNMENT								
	DUMMY ANTENNA	SIGNAL GENERATOR COUPLING	SIGNAL GENERATOR FREQUENCY	$\begin{gathered} \text { BAND } \\ \text { SWITCH } \\ \text { POS. } \\ \hline \end{gathered}$	RADIO DIAI. SETTING	$\begin{aligned} & \text { CONNECT } \\ & \text { VTVM } \end{aligned}$	ADJUST	
1	.05 mfd .	High side to Pin No. 1 of 6 BE 6 V 2. I.ow side to chassis.	10.7 mc freq. mod.	Fully clock wise Pos. FM.	High frequency end of dial.	Point "B"	C. 37	Adjust for moximum de: flection. Attenuate signal so that reading of approximately 2 volts indicates maximum response of discriminator alignment.
2	05 mfd	..	10.7 mc ummoditated	"	,	Connect scope or AC-VTVM across voice coil.	C. 36	Adiust for minimum deflection. Moking sure that o shorp rise con be abtained if the secondory of discrimside of minimum defleetion setting.

MODELS 563, 593, 603, EMERSÓN RADIO AND PHONO. CORP. CHASSIS 120063B

Vol. control in .nax. pos. FM RF ALIGNMENT USING AM GENERATOR AND VTVM

	DUMMY ANTENNA	SIGNAL GENERATOR COUPLING	SIGNAL GENERATOR FREQUENCY	$\begin{gathered} \text { BAND } \\ \text { SWITCH } \\ \text { POS. } \\ \hline \end{gathered}$	RADIO DIAL SETTING	$\begin{aligned} & \text { CONNECT } \\ & \text { VTVM } \end{aligned}$	ADJUST	REMARKS
1	300 ohm carbon resistor	High side to FM antenna terminal. Low side to chassis. Disconnect interal antenna.	108 mic unmodulated	Fullv clockwise FM pos.	108 mc	Point "A"	C-17	Adjust for maximm deflection.
2	"	"	$\begin{gathered} 88 \mathrm{mc} \\ \text { unmodulated } \end{gathered}$	"	88 mc	"	L-8	Adjust iron core only for maximum deflection. (Hold brass in position).
3	"	"	$\begin{gathered} 98 \mathrm{mc} \\ \text { unmodulated } \end{gathered}$	"	98 mc	"	L-8	Adjust iron and brass cores together (single screw). For maximum deflection repeat steps $1,2,3$ until no further improvement can be obtained.
4	"	"	$\begin{gathered} 106 \mathrm{mc} \\ \text { unmodulated } \end{gathered}$	"	Tune for maximum deflection.	"	$\begin{gathered} \text { C. } 18 \\ \text { C. } 9 \end{gathered}$	Adjust for maximum deflection
5	"	"	90 mc unnodulated	"	Tune for maximum deflection.	"	- $\begin{array}{r}\text { L. } 6 \\ \text { L. } \\ \hline\end{array}$	Adjust iron core only. For maximum deflection (Hold brass in position).
6	"	"	$\begin{aligned} & 100 \mathrm{mc} \\ & \text { unnodulated } \end{aligned}$	"	Tune for maximum deflection.	"	$\begin{aligned} & \text { L-6 } \\ & \text { L. } 3 \end{aligned}$	Adjust iron and brass cores together (single serew) for maximum deflection. Repeat 1, 2, 3 until no fur ther improvement can be made.

FM-RF ALIGNMENT USING FM GENERATOR AND OSCILLOSCOPE
Vol. control in max. pos.
Use FM Signal with 500 KC Deviation

	DUMMY ANTENNA	SIGNAL GENERATOR COUPLING	SIGNAL GENERATOR FREQUENCY		$\begin{gathered} \text { RADIO } \\ \text { DIAI. } \\ \text { SETTING } \end{gathered}$	$\begin{gathered} \text { CONNECT } \\ \text { SCOPE } \end{gathered}$	ADJUST	REMARKS
1	300 ohm carbon resistor	Hish side to FM antenna terminal. Low side to chossis. Disconnect internal ontenno.	108 mc unmodulated	Fully clockwise FM pos.	108 me	Point "A"	C. 17	Adjust trimmer so as to center response curve on scope. Choose 108 mic peak at maximum capacity.
2	"	"	108 mc unmodulated	"	"	"	$\begin{gathered} \mathrm{C}-18 \\ \mathrm{C}-9 \end{gathered}$	Adjust trimmers for maximum responseuse maximum height of response curve as in-dication-See Fig. 1
3	"	"	$\begin{gathered} 88 \mathrm{mc} \\ \text { unmodulated } \end{gathered}$	"	88 mc	"	L. 8	Adjust iron core only for maximum response. (Hold brass in position).
4	"	"	100 mc manodulated	"	100 mc	"	L. 8	Adjust iron and brass cores together (single screw) for maximum response-Repeat steps 1, 2, 3, 4 until no further improvement can be made.
5	"	"	$\begin{gathered} 88 \mathrm{mc} \\ \text { unmodulated } \end{gathered}$	"	88 mc	"	$\begin{aligned} & \mathrm{L} .6 \\ & \mathrm{~L} \cdot 3 \end{aligned}$	Adjust iron core only for maximum response. (Hold brass in position).
6	"	"	100 mc unmodulated	"	100 mc	"	$\begin{aligned} & \mathrm{L}-6 \\ & \mathrm{~L}-3 \end{aligned}$	Adjust iron and brass cores together (single screw) for maximum response.
7	"	"	$\begin{aligned} & 108 \mathrm{mc} \\ & \text { unmodulated } \end{aligned}$	"	108 mic	"	$\begin{gathered} \mathrm{C}-18 \\ \mathrm{C} .9 \end{gathered}$	Adjust trimmers for maximum response to 108 me signal. Repeat steps 5, 6, 7 until no further improvement can be made.

INSTRUCTIONS FOR VOLTAGE AND RESISTANCE READINGS

1. Voltage readings are in volts and resistance readings in ohms unless otherwise specified.
2. D.C voltage measurements are at $\mathbf{2 0 , 0 0 0}$ ohms per volt; a-c voltages measured at 1,000 ohms.
3. Socket connections are shown as bottem views.
4. Measured values are from socket pin to common negative.
5. Line voltage maintained at 117 volts for voltage readings.
6. Nominal tolerance on component values makes possible a variation of $\pm 15 \%$ in voltage and resistance readings.
7. Volume control at maximum, no signal applied for voltage measurements.
8. Resistance readings in the $B+$ circuits may vary widely according to the condition of the filter capacitors.

VOLTAGE READINGS

SYMBOL	TUBE	PIN 1	PIN 2	PIN 3	PIN 4	PIN 5	PIN 6	PIN 7	PIN 8	CAP.
1	6AG5	-0.4 DC	0	6.2 AC	0	195 DC	137 DC	0		
2	6BE6	-0.3 DC	0	0	6.2 AC	250 DC	100 DC	0		
3	6SG7	0	0	0	-0.75 DC	0	150 DC	6.2 AC	250 DC	
5	5U4G	0	260 DC	0	260 AC	0	260 AC	0	260 DC	
* 6	6S8GT	-0.5 DC	0	-1.0 DC	-0.6 DC	-0.2 DC	100 DC	0	6.2 AC	-0.75 18.
* 7	6SH7	0	0	0	-0.65 DC	0	35 DC	6.2 AC	175 DC	
*8	6SG7	0	0	0	-0.75 DC	0	125 DC	6.2 AC	235 DC	
9	6V6GT	0	6.2 AC	250 DC	240 DC	0	0	0	13 DC	
10	6V6GT	0	0	250 DC	240 DC	0	0	6.2 AC	13 DC	
11	6SG7	0	-0.25 DC	-0.5 DC	0	0	70 DC	6.2 AC	0	

RESISTANCE READINGS

SYMBOI.	TUBE	PIN 1	PIN 2	PIN 3	PIN 4	PIN 5	PIN 6	PIN	PIN 8	CAP.
1	6AG5	1 meg.	0	0	0.2	60,000	110,000	0		
2	6BE6	22,000	0.7	0.2	0.4	50,000	100,000	12,000		
3	6SG7	0	0	0	800,000	0	70,000	0	50,000	
5	5U4G	Inf.	60,000	Inf.	60	Inf.			60,000	
6	6S8GT	250,000	0	100,000	100,000	200,000	100,000		0.2	15 meg.
7	6SH7	0	0	0	47,000	0	75,000	0.2	100,000	
8	6SG7	0	0	0	2.2 meg.	0	80,000	0.2	50,000	
9	6V6GT	Inf.	0.2	60,000	60,000	440,000	Inf.	0	180	
10	6V6GT	Inf.	0.2	60,000	60,000	440,000	Inf.	0	180	
11	6SQ7	0	220,000	1000	Inf.	Inf.	80,000	0	0.2	

[^1]

MODELS 563, 593, 603, EMERSON RADIO AND PHONO. CORP.
CHASSIS 120063B CHASSIS 120063 B

REPLACEMENT PARTS LIST

Symbol	\dagger Part No.	DESCRIPTION	Symbol	\dagger Part No.	DESCRIPTION
$\left\lvert\, \begin{array}{cc} \mathrm{Cl}_{4} & \mathrm{C} 2 \\ * \mathrm{C}, & \mathrm{C} 4 \end{array}\right.$	900007	Variable Condenser Trimmers, part of variable condenser	$\begin{aligned} & \text { R2, R20, } \\ & \text { R22 } \\ & \text { R3 } \end{aligned}$	351130 370872	470,000 ohms, $1 / 2$ watt resistor 39,000 ohms, 1 watt resistor
C5, C6	928105	7 mmf ., 300 volts ceramic con-	R4	240650	4,700 ohms, $1 / 2$ watt resistor
		denser 30 volts ceramic con.	R5	340750	12,000 ohms, $/ 1 / 2$ watt resistor
$\begin{aligned} & \text { C7, C20, } \\ & \text { C50 } \end{aligned}$	928102	50 mmf., 300 volts ceramic condenser	R6 R7	340810	22,000 ohms, !i watt resistor
C8	928107	30 mmf ., 300 volts ceramic con-	R8		510 ohms, resistor, part of $1 .-\mathrm{I}$;
		denser	R10, R37	370830	27,000 ohms, 1 watt resistor
C9	900313	1.6-18 tmmf., trimmer	R11	350290	150 ohins, $1 / 2$ watt resistor
C10	928109	$5000 \mathrm{mmf} .$, ceramic condenser C.T.S.	R12		1 meg., $1 / 2$ watt resistor, part of tuning eye socket cable
$\underset{\text { C12 }}{\text { C1 }}$	915003	500 mmf., 300 volts ceramic condenser	$\begin{aligned} & \text { R14, R34 } \\ & \text { R15, R27, } \end{aligned}$	351210	1 meg. $\cdot \frac{1 / 4}{4}$ watt resistor
C13	928106	100 mmf., 300 volts ceramic con-	R38 ${ }^{\text {R15, }}$	351290	2.2 meg., $1 / 4$ watt resistor
		denser	R16	350930	68,000 ohms, $/ \%$ watt resistor
C14	928002	10 mmf ., 300 volts ceramic condenser	R17, R18 R19, R30,	340970	100,000 ohms, $1 / 2$ watt resistor
C15, C43	910320	250 mmf., 500 volts mica condenser	R35	340890	47,000 ohms, $:$ watt resistor
+16		Trimmer, part of L-7	R21, R24	351050	
C17	900026	1-8 mmf., trimmer	R26, R40	351050	220,000 ohms, $/ 2$ watt resistor
C18 C 19	900314	10-60 mmf., trimmer	R23	394140	180 ohms, 2 watt wirewound re-
C19	928101	25 mmf., 300 volts ceramic condenser	R28	397000	sistor 15 meg., $1 / 2$ watt resistor
C21	900012	$10-60 \mathrm{mmf}$., trimmer	R29	? 96081	1 meg., 1, watt tone control
$* \mathrm{C} 23, \mathrm{C} 24$ $* \mathrm{C} 25, \mathrm{C} 26$		Trimmers, part of T-1	R31	390004	1 meg., $1 / 2$ watt volume control
-C25, C26		Trimmers, part of T-2	R32	370890	47,000 ohms, 1 watt resistor
$\begin{gathered} \text { C27., C29, } \\ \text { C31, C } 38, \end{gathered}$:R39	,	ohms, 1 watt resistor 27,000 ohms, resistor, part of '「-я
C40, C41,	920090	.01 mfd., 400 volts tubular paper	T1	720046	First I.F. transformer F.M.
C44, C45,		condenser	T2	720045	First I.F. transformer A.M.
C46, C53,			T3	708005	Discriminator coil
$\mathrm{C}^{\text {C62 }}$			T4	720049	Third I.F. transformer F.M.
C28, C49	920040	.1 mfd , 200 volts tubular paper	T5	$\begin{aligned} & 720047 \\ & 720048 \end{aligned}$	
C32, C33		condenser	T6	$\begin{aligned} & 720048 \\ & 730011 \end{aligned}$	Second I.F. transformer A.M.
	925	trolytic condenser	T8	734004	Power transformer Output transformer
$\begin{array}{ll} \text { C } 30, & \text { C42 } \\ \text { C48, } \end{array}$	920180	. 005 mfd ., 400 volts tubular paper			
C34	920514	. 001 mfd ., 400 volts tubular paper	SW 1	510018	Band change
		condenser	SW2		On-Off switch, part of k -2')
C35	928013	100 mmf., 300 volts ceramic	X2	500500	Power outlet
		condenscr	X3	555004	Terminal strip-speaker
*C36, C37 C39		Trimmers, part of T-3	X4	540540	Pick-up socket
C39	920544	. $003 \mathrm{mfd}, 600$ volts tubular paper	P1 P2	583204 505005	Line cord and plug
C47	9101	condenser 360 mmf., 400 volts mica condenser	P3	5580006	A.C. plug record changer Pin terminal leads-speaker
$\cdots{ }^{*} \mathrm{C} 51, \mathrm{C} 2$,	Trimmers, part of T-4	P4	505040	Pin terminal leads-speaker Connector plug-pick-up
C55	920060	. 05 mfd ., 200 volts tubular paper		507001	Dial light socket assembly
		condenser		585210	Tuning eye socket and cable
*C58, C59		Trimmers, part of T-5			Cabinet (model 563)
* C60, C61		Trimmers, part of T.6 110 nimf, cond, part of T. 6		14028	Cabinet (model 593)
V12, V13	807020	Pilot might (lind, part of T.6		620034	Cabinet (model 603) Knob for models (603.563)
L1	700003	Antenna loop		620035	Knob for models (603.563)
L2	705003	R.F. choke		620094	Knob for model (593)
L3 L4, L10	710014	Antenna coil F.M.		620095 819022	Knob for model (593)
L11, L12	705002	R.F. choke		819022	Automatic record changer-rotating action record support, or
L5	705000	R.F. choke		819039	Automatic record changer-lever
L6	713013	R.F. coil F.M.			action record support
L8	708001	I.F. wave trap A.M.		280002	Drive shaft
L8	716112	Oscillator coil F.M.		280505	Drive shaft for F.M. tuner
L9	705007	R.F. choke		520002	Dial backplate
L13	705005	Converter plate R.F. choke		520058	Dial face
L14	737002	Filter choke		525002	Pointer
L15 ${ }_{\text {R1, R9, }}$	716113	Oscillator coil A.M.			
$\begin{aligned} & \text { R13, R25, } \\ & \text { R36 } \end{aligned}$	350490	1000 ohms, $1 / 2$ watt resistor			

Specify part numbers when ordering.

* Nat supplied scparately.

To set pointer, turn tuning cap. fully closed and set pointer $2.3 / 8^{\prime \prime}$ from left edge of dial backplate. This is the calibration

	DUMMY ANTENNA	SIGNAL GENERATOR COUPLING	SIGNAL GENERATOR FREQUENCY	$\begin{gathered} \text { RADIO } \\ \text { DIAL } \\ \text { SETTING } \\ \hline \end{gathered}$	OUTPUT METER	ADJUST	REMARKS
1	. 1 mfd .	High side to pin 8 (grid) of 6SAT. Low side to chassis.	455 KC	Tuning cap. fully open.	Across voice coil.	$\begin{aligned} & \mathrm{A} 1, \mathrm{~A} 2, \\ & \mathrm{~A} 3, \mathrm{~A} 4 \end{aligned}$	Adjust for maximum output.
2	.1 mfd .	High side to ext. antenna leod. Low side to chassis.	"	Tuning cap. fully closed.	"	As	Adjust for minimum output.
3	200 mmf .	"	1400KC	$5^{\prime \prime}$ from calibration mark.	"	A6	Adjust for maximum output.
4	200 mmf .	"	"	Tune for maximum output.	"	A7	Adjust for maximum output.
5	200 mmf.	"	600 KC	"	"		Use adjusting turn in rea of loop. Adjust for max output.

GENERAL NOTES

1. If replacements are made or the wiring disturbed in the r-f section of the circuit, the receiver should be care-
fully realigned.
2. The color coding of the i-f transformer leads is as fol-
$\begin{array}{ll}\text { Grid-green } & \text { Plate-blue } \\ \text { Grid return-black } & \text { B }+ \text {-red }\end{array}$
3. The receiver has a self-contained antenna and normally does not require additional antenna or ground connection. far removed from broadcasting stations, an additional

 ground to black lead at rear.
 583. Other change noted in parts list.

INSTRUCTIONS FOR VOLTAGE AND RESISTANCE READINGS

1-DC Voltage measurements are at 20,000 ohms per volt; AC Voltages measured at 1,000 ohms per volt.
2-Socket connections are shown as bottom views.
3-Measured values are from socket pin to common negative.
1 Line voltage maintained at 117 volts for voltage readings.
${ }^{2}$

SYMBOL	TUBB	PIN 1	PIN 2	PIN 3	PIN 4	PIN 5	PIN 6	PIN 7	PIN 8
1	6SK7	0	0	0	-.3V DC	0	43 V DC	6.6 V AC	53V DC
2	6SA7	0	6.6V AC	95V DC	80 V DC	-11V DC	0	0	$\cdots 2 \mathrm{Cb}$
3	6SK7	0	6.6 V AC	0	-.3V DC	0	95V DC	0	95 V DC
4	6SQ7	0	-.5V DC	0	0	0	95 V DC	6.6 V AC	0
5	6SQ7	0	1.1V DC	.7V DC	-.1V DC	0	55V DC	0	6.6 V AC
6	6U5/6G5	-	-	-	-	-	-	-	-
7	6V6GT	0	6.6V AC	280 V DC	280 V DC	0	90 V D ${ }^{\text {c }}$	0	15V DC
8	6V6GT	0	0	295V DC	280 V DC	0	-.IV DC	6.6 V AC	15V DC
9	5.Y3GT	0	300 V DC	225 V DC	300 V AC	78 V AC	300 V AC	. 7 V DC	300 V DC

$\left.\right|^{T a}$
RESISTANCE READINGS

SYMBOL	TUBE	PIN 1	PIN 2	PIN 3	PIN 4	PIN 5	PIN 6	PIN 7	PIN 8
1	6SK7	0 ohm	0 ohm	0 ohm	3.1 meg.	0 ohm	200K ohm	. 1 ohm	160K ohm
2	6SA7	0 ohm	. 1 ohm	150K ohm	150K ohm	22K ohm	1 ohm	0 ohm	2.9 meg.
3	6SK7	0 ohm	. 1 ohm	0 ohm	2.7 meg.	0 ohm	150K ohm	0 ohm	150K ohm
4	6SQ7	0 ohm	15 meg.	0 ohm	0 ohm	0 ohm	770 K ohm	. 1 ohm	0 ohm
5	6SQ7	0 ohm	240K ohm	10 ohm	550K ohm	0 ohm	370K ohm	0 ohm	. 1 ohm
6	6U5/6G5	-	-	-	-	-	-	-	-
7	6V6GT	0 ohm	. 1 ohm	150K ohm	150K ohm	460 K ohm	150K ohm	0 ohm	190 ohm
8	6V6GT	0 ohm	0 ohm	150K ohm	150K ohm	460 K ohm	220K ohm	. 1 ohm	190 ohm
9	5Y3GT	inf.	150K ohm	300K ohm	85 ohm	inf.	88 ohm	10 ohm	150K ohm

REPLACEMENT PARTS LIST

Symbol	${ }^{+}$Part No.	DESCRIPTION	Symbol	${ }^{\dagger}$ Part No.	DESCRIPTION
1	6SK7	RF amplifier	37	397000	AVC network, $15 \mathrm{meg} ., 1 / 2$ watt re-
2	6SA7	Converter			sistor
3	6SK7	IF amplifier	38	351290	AVC network, 2.2 meg., $1 / 2$ watt resistor
4	6SQ7	Det.-AVC-phase inverter			sistor
5	6SQ7	AF amplifier	39	350650	Tone compensation, 4700 ohms, $1 / 2$ watt resistor
6	6U5/6G5	Tuning eye (omitted on Model 583)	40	350650	Tone compensation, 4700 ohms, $1 / 2$
7	6V6GT	Power output	40	350650	watt resistor
8	6V6GT	Power output	41	397000	AF grid, 15 meg., $1 / 4$ watt resistor
9	5Y3GT	Rectifier	42	351130	
10A	925007	Filter (elect.), $16 \mathrm{mfd} ., 450$ volt condenser	43	351010	resistor AF plate decoupling, 150 K ohms,
B		Filter (elect.), $16 \mathrm{mfd} ., 450$ volt condenser	44		1/2 watt resistor
C		Filter (elect.), $16 \mathrm{mfd} ., 450$ volt condenser	44 45		Phase inverter grid, 240K ohms, $1 / 2$ watt resistor Phase inverter plate, 240 K ohms,
1	922020	Line filter, .01 mfd ., 400 volt condenser	46		watt resistor Output grid, 240 K ohms, $1 / 2$ watt
12	920230	Output plate bypass, . 005 mfd. , 600 volt condenser	47	351050	resistor Output grid, 220 K ohms, !': watt
13	920030	Audio coupling, 05 mfd ., 400 volt condenser	48	394140	resistor Output cathode, 180 ohms, 2 watt
14	920030	Audio coupling, 05 mfd ., 400 volt condenser	49	340010	resistor Phase inverter cathode feedback,
15	920250	AF plate decoupling, . 1 mfd ., 400 volt condenser on Model 573	50	351210	10 ohms, $1 / 2$ watt, resistor Phono feedback, 1 meg., $1 / 2$ watt re
15	920260	AF plate decoupling, 25 mfd ., 400 volt condenser on Model 583	51	394002	sistor Filter, 6800 ohms, 5 watt resistor
16	920230	Tone compensation, . 005 mfd ., 600 volt condenser	52 53	397001	Filter, 560 ohms, 2 watt resistor
17	920010	Audio coupling, . 002 mfd . 600 volt condenser	53 54	351210 Part of	Series phono, 1 meg., $1 / 2$ watt resis tor Tuning eye plate load, 1 meg., $1 / 2$
18	920030	Tone compensation, 05 mfd ., 400 volt condenser	55	$\begin{aligned} & 585001 \\ & 730017 \end{aligned}$	watt resistor Power transformer
19	920040	A V C filter, . 1 mfd., 200 volt condenser	56	734005 180037	Output transformer
20	920030	Decoupling, 05 mfd ., 400 volt con. denser	58	180037	$6^{\prime} \times 9^{\prime \prime}$ oval speaker (PM) Cone (part of 180037)
21	920030	RF Screen bypass, 05 mfd ., 400 volt condenser	$\begin{aligned} & 59 \\ & 60 \end{aligned}$	180037	6" $\times 9^{\prime \prime}$ oval speaker (PM) Cone (part of 180037)
22	910000	AF plate bypass, 220 mmf., 500 volt condenser	$\begin{array}{r} 61 \mathrm{~A} \\ \mathrm{~B} \end{array}$	700024	Loop antenna Antenna coupling coil (part of
23	910000	Tone compensation, 220 mmf ., 500 volt condenser	62	708060	700024) Wave trap
24	910010	Diode RF filter, 110 mmf ., 500 volt condenser	$\begin{aligned} & 63 \\ & 64 \end{aligned}$	716050	Oscillator coil Input i-f
25	923004	Fixed trimmer, $4.7 \mathrm{mmf} ., 300$ volt condenser	$\begin{aligned} & 65 \\ & 66 \end{aligned}$	$\begin{aligned} & 720533 \\ & 807020 \end{aligned}$	Output i-f Type 44 pilot lamp
26	910000	RF coupling, 220 mmf ., 500 volt condenser	67	807020	Type 44 pilot lamp Type 44 pilot lamp
27	910250	RF coupling, 50 mmf ., 500 volt condenser	$\begin{aligned} & 68 \\ & 69 \end{aligned}$	510002 900008	Radio-phono switch 2-gang variable capacitor
28	910250	Phono tone compensation, 50 mmf ., 500 volt condenser		$\begin{aligned} & 520062 \\ & 525027 \end{aligned}$	Dial crystal Dial pointer
29	390006	Volume control with switch, 500 K ohms		$\begin{aligned} & 520130 \\ & 280004 \end{aligned}$	Dial backplate Drive shaft
30	390007	Tone control		587070	Drive cord spring
31	351130	RF grid, 470 K ohms, $1 / 2$ watt resistor		460241 505040	Knob and cover assembly Phono pickup plug
32	340890	RF screen 47 K ohms, $1 / 2$ watt resistor		508010 585001	Phono pickup socket
33	340730	RF plate load, 10 K ohms, $1 / 2$ watt resistor		507001	Tuning socket and cable Pilot lamp socket
34		Converter grid, 240 K ohms, $1 / 2$ waft resistor		$\begin{aligned} & 583001 \\ & 555004 \end{aligned}$	Line cord Speaker terminal strip
35	340810	Oscillator grid, 22 K ohms, $1 / 2$ watt resistor		140141	Mahogany cabinet Record changer, or
36	340510	Decoupling, 1200 ohms, $1 / 2$ watt resistor		$\begin{aligned} & 819031 \\ & 819039 \end{aligned}$	Record changer, or Record changer

FREQUENCY RANGE: 540-1620 kc.
TYPE OF TUBES:

$$
\begin{aligned}
& 1-12 \mathrm{BE} 6 \text {, converter } \\
& 1-12 \mathrm{BA} 6 \text {, i-f amplifier } \\
& 1-12 \mathrm{AT} \text {, detector a.v.c.-a.f. amplifier } \\
& 1-50 \mathrm{~B} 5 \text {, power output } \\
& 1-35 \text { W4, rectifier }
\end{aligned}
$$

POWER SUPPLY: 60 cycle a.c.
VOLTAGE RATING: $105-125$ volts
POWER CONSUMPTION: 50 watts
CURRENT DRAIN: . 43 amp . at 117 volts a.c.

ALIGNMENT

To eet pointer turn tuning cap. fully cloeed and set pointer $21 / 4^{\prime \prime}$ from top right edge of dial backplate. This is calibration mark referred to below.

Use isolation transformer if available. If not, connect, a .1 mfd . capacitor in series with low side of signal generator and B-.
Volume control should be at maximum position, output of signal generator should be no higher than necesary to obtain an output reading. Use an insulated alignment acrewdriver for adjusting.

	DUMMY ANTENNA	SIGNAL GENERATOR COUPLING	SIGNAL GENERATOR FREQUENCY	$\begin{gathered} \text { RADIO } \\ \text { DIAL } \\ \text { SETTING } \end{gathered}$	$\begin{aligned} & \text { OUTPUT } \\ & \text { METER } \end{aligned}$	ADJUST	REMARKS
1	. 1 mfd .	High aide to Pin 7 (grid) of 12BE6. Low side to B -.	455KC	Tuning cap. fully open.	Acrose voice coil.	$\begin{aligned} & A 1, A 2 \\ & A 3, A 4 \end{aligned}$	Adjust for maximum output. If inolation transformer is not used, reduce dummy ant. to .001 mfd . to reduce hum modulation.
2	200 mmf.	High side to ext. ant. lead. Low side to ext. ground lead.	1600KC	41/4" from calibration mark.	"	A5	Adjust for maximum output.
3	200 mmf .	" "	1500 KC	Tune for maximum output.	\bullet	A6	" " " "

INSTRUCTIONS FOR VOLTAGE AND RESISTANCE READINGS

1 -DC Voltage measurements are at 20,000 ohms per volt; AC Voltages measured at 1000 ohms per volt. 2-Socket connections are shown as bottom views.
3-Measured values are from socket pin to common negative.
4-Line voltage maintained at 117 volts for voltage readings.
5-Nominal tolerance on component values makes possible a variation of $\pm 15 \%$ in voltage and resistance readings.
6-Volume control at maximum, no signal applied for voltage meaaurements.
VOLTAGE READINGS

SYMBOL	TUBE	PIN 1	PIN 2	PIN 3	PIN 4	PIN 5	PIN 6	PIN 7	PIN 8
1	12BE6	-14V DC ${ }^{\dagger}$	0	27V AC	13 V AC	95 V DC	95 V DC	1.15 DC	
2	12BA6	-1V DC	0	27 V AC	40 V AC	95 V DC	95 V DC	.7V DC	
3	12AT6	-.7V DC	0	0	13 V AC	-.6V DC	0	46 V DC	
4	50B5	0	5.8 V DC	85 V AC	40 V AC	108 V DC	95V DC	0	
5	35W4	0	115V DC	85 V AC	117 V AC	111 V AC	113 V AC	115 V DC	

© Taken with vacuum tube voltmeter, Radio-Phono switch in radio position.
RESISTANCE READINGS

SYMBOL	TUBE	PIN 1	PIN 2	PIN 3	PIN 4	PIN 5	PIN 6	- PIN 7	PIN 8
1	12BE6	22K ohm	. 5 ohm	24 ohm	12 ohm	200K ohm	200K ohm	3.8 meg.	
2	12BA6	3.8 meg.	0 ohm	24 ohm	37 ohm	200 K ohm	200K ohm	100 ohm	
3	12AT6	15 meg .	0 ohm	0 ohm	12 ohm	540 K ohm	0 ohm	670K ohm	
4	50B5	470K ohm	150 ohm	85 ohm	37 ohm	200K ohm	200K ohm	470 K ohm	
5	35W4	inf.	200 K ohm	85 ohm	115 ohm	150 ohm	110 ohm	200K ohm	

GENERAL NOTES

DIAL
CORD

1. If replacements are made or the wiring diturbed in the -f section of the cincuit, the receiver should be carefully realigned.
2. The color coding of the i-f transformer leads is as follows:

Grid-green	Plate-blue
Grid return-black	B- + -red

3. The receiver has a self-contained antenna and does not require additional antenna connections. For permanent home installations, however, if it is desired to improve reception of weak stations, an additional outdoor antenna should be used. For this purpore a lead has been brought out of the rear near the line cord.

Symbol	${ }^{+1}$ Part No.	DESCRIPTION	Symbol	\dagger Part No.	DESCRIPTION
1	12BE6	Converter	25	340290	Output ca
2	12BA6	IF amplifier			resistor
3	12AT6	Detector - AVC - audio amplifier	26	340650	Tone compensation, 4700 ohms, $1 / 2$ wart resistor
4 5	50B5 35 W	Power output Rectifier	27	351290	Feedback, 2.2 megohms, $1 / 2$ watt
6	925012	Filter (elect.), $50-50 \mathrm{mfd}$., 150 volt condenser	28	351210	resistor Phono tone compensation, 1.0 megohms, $1 / 2$ watt resistor
7	920030	Line filter, .05 mfd ., 400 volt condenser	29	370490	Filter, 1000 ohms, $1 / 2$ watt resistor
8	920030	Tone compensation, .05 mfd ., 400 volt condenser	30	370150	Rectifier ballast, 39 ohms, $1 / 2$ watt resistor
9	920020	Audio coupling, .02 mfd ., 400 volt condenser	31 32	35150	Line isolation, 220 K ohms, $1 / 2$ watt resistor
10	920010	Audio Coupling, .002 mfd ., 600 volt condenser	32 33	$\begin{aligned} & 734080 \\ & 180037 \end{aligned}$	Output transformer $6^{\prime \prime} \times 9^{\prime \prime}$ oval speaker
11	920040	AVC filter, . 1 mfd ., 200 volt condenser	$* 34$ 35	700025	Cone (part of 180037) Loop antenna
12	920030	Phono isolation, .05 mfd ., 400 volt condenser	36 37	716010 720220	Oscillator coil Input i-f coil
13	920050	Line isolation, .2 mfd ., 200 volt condenser	38 39	720039 80700	Output i-f coil Type 47 pilot lamp
14	910000	Audio plate bypass, 220 mmf ., 300 volt condenser	$\begin{aligned} & 39 \\ & 40 \end{aligned}$	807000 L-70	Type 47 pilot lamp Phono cartridge
15	910000	Phono tone compensation, 220 mmf ., 300 volt condenser	$\begin{aligned} & 41 \\ & 42 \end{aligned}$	510120	Tone switch Phono-radio switch
16	910010	Diode r-f filter, 100 mmf ., 300 volt condenser	43	$\begin{aligned} & 900070 \\ & 520062 \end{aligned}$	2-gang variable capacitor Dial glass
17	390042	Volume control with switch, 500 K ohm, resistor		525028 520061	Dial pointer Dial backplate
18	340810	Oscillator grid, resistor 22K ohms, $1 / 2$ watt		280313 587070	Dial drive shaft Drive cord spring
19	397000	AVC network, 15 megohms, $1 / 2$ watt resistor		520064	Escutcheon
20	340250	IF cathode, 100 ohms, $1 / 2$ watt resistor		460470 140149	Plastic knob Cabinet, mahogany
21	351330	AVC network, 3.3 megohms, $1 / 2$ watt resistor		140159 507060	Cabinet, toasted mahogany Pilot lamp socket
22	397000	Audio grid, 15 megohms, $1 / 2$ watt resistor		508010 505040	Pickup socket Pickup plug
23	351130	Audio plate load, 470 K ohms, $1 / 2$ watt resistor		583016 819031	Line cord Record changer
24	351130	Output grid, 470K ohms, $1 / 2$ watt resistor		819032	Record changer

[^2]「 Specify part numbers when ordering.

MODELS 579, 596, EMERSON RADIO AND PHONO. CORP.
CHASSIS 120034A
 D.c. voltage measurements are at 20,000 ohms-per-volt; a.c. voltages are measured at to common negative. Socket connections are shown as bottom viels. Values are
Line voltage maintained at 117 volts for voltage readings.
Volume control at maximum; radio-phono switch in radio position; no signal applied for voltage measurements. Nominal tolerance on component valves makes possible a variation of $\pm 15 \%$ in voltage and resistance readings.

SYMBOL	TUBE	PIN 1	PIN 2	PIN 3	PIN 4	PIN 5	PIN 6	PIN 7
V1	12BE6	-4.5	0	25 A.C.	13 A.C.	95	96	-. 1
V2	12BA6	-. 1	0	25 A.C.	38 A.C.	95	96	. 4
V3	12AT6	-. 5	0	0	13 A.C.	0 107	-96 ${ }^{3}$	${ }^{42} \mathrm{NC}$
$\checkmark 4$	50B5	0	${ }^{6.5}$	82 A.C.	38 A.C.	107 A.C.	96 112 A.C.	NC 115
V5	35W4	0	NC	82 A.C.	117 A.C.	110 A.C.	112 A.C.	115

SYMBOL	TUBE	PIN 1	PIN 2	PIN 3	PIN 4	PIN 5	PIN 6	PIN 7
V1	12BE6	24 K	. 5	25	13	80 K	80 K	3 meg .
V2	12BA6	3 meg .	0	25	37	80 K	80 K	100
V3	12AT6	15 meg .	0	0	13		600 K	700 K
V4	50B5	550 K	150	82	37	80 K	80 K	Inf.
V5	35W4	0	Inf.	82	110	145	105	80 K

NC-no connection; K—kilohm; meg.-Megohm; Inf.-infinity.
ALIGNMENT INSTRUCTIONS
To position pointer, turn variable condenser fully closed and set pointer to reference mark at low-frequency end of dia
To position pointer, turn variable condenser fully closed and set pointer to reference mark at low-frequency end of dia
backplate.
Use isolation transformer if available. If not, connect a .1 mfd . condenser in series with low side of signal generato
Volume control should be at maximum position; radio-phono switch in radio position. Output of signal generator shoul,
be no higher than necessary to obtain an output reading. Use an insulated screw driver for adjusting.

~~~~~~		$\begin{aligned} & \text { ?ndino } \\ & \text { unnuixeur } 10 \text { isn!py } \end{aligned}$	$\begin{gathered} \text { Jndino } \\ \text { unnuyeua joj } \operatorname{ssn}!\mathrm{PV} \end{gathered}$
$\frac{6}{2}$			
$\begin{aligned} & 5 \% \\ & W_{4}^{2} \\ & \text { 品 } \end{aligned}$			
	$\begin{aligned} & u \\ & \text { 台 } \\ & \tilde{n} \end{aligned}$	0 8 0 0 0	-
	$\underset{-}{\square}$	$\begin{aligned} & \text { U } \\ & \text { E } \\ & \text { O } \\ & \text { N } \end{aligned}$	
	$\cdots$	$N$	$m$

© John F. Rider


MODEL 579


MODEL 596

REPLACEMENT PARTS LIST

Symbol	$\dagger$ Part No.	DESCRIPTION	Symbol	tPart No.	DESCRIPTION
V1	12BE6	Pentagrid converter	R8, R9	351130	470 kilohms, $1 / 2$ watt resistor
V2	12BA6	I-f amplifier	R10	340290	150 ohms, $1 / 2$ watt resistor
V3	12AT6	Detector, a.v.c., a-f amplifier	R11	340730	10 kilohms, $1 / 2$ watt resistor
V4	50B5	Power output	R112 R13	370150 370490	39 ohms, 1 watt resistor 1000 ohms, 1 watt resistor
$\mathrm{Cl}^{\mathrm{V}} \mathrm{C}_{3}$	35W4	Rectifier	R13 L1	370490 700035	1000 ohms, 1 watt resistor Loop antenna
C1, C3 C2, C4	900023	Two-gang variable condenser Trimmer, part of var. condenser	L2	716026	Oscillator coil
${ }_{C 5}$	*	Trimmer, part of loop antenna	T1, T2	720055	First and second i-f transformers
C6, C7	920040	.1 mfd ., 200 volt paper condenser	T3	734023	Output transformer
${ }_{-}^{\text {C8, C13 }}$	920030	. 05 mfd , 400 volt paper condenser	SP1 SW1	180032 H 510027	P.M. speaker   Radio-phono switch, d.p.d.t.
C9, C11	910000	220 mmf., mica condenser   (alternate part 928104) \#	SW2	510034	Tone control switch, s.p.s.t. Line switch, part of volume control
C10	920515	. $002 \mathrm{mfd} ., 400$ volt paper condenser	SW4	*	Phono-motor switch, part of record changer
C12	920180	.005 mfd ., 400 volt paper condenser $30-50 \mathrm{mfd}$., 150 volt elect. condenser	P1	505040	changer Phono pickup plug
R1, R7	351490	15 megohms, $1 / 2$ watt resistor	J2	508010	Phono pickup socket
R2	340810	22 kilohms, $1 / 2$ watt resistor		583021	Line cord
R3	340250	100 ohms, $1 / 2$ watt resistor		819032	Record changer
R4	351330	3.3 megohms, $1 / 2$ watt resistor			(alternate part 819031) \#
R5	351210	1 megohm, $1 / 2$ watt resistor		$807000$	Dial light   Dial light socket
R6	390024	500 kilohms, volume control		$507003$	Dial light socket
		CABINET AND DIAL PARTS			
	520048	Dial backplate		140108	Cabinet, walnut plastic
	525023	Dial pointer		140196	Cabinet, walnut wood
	280035	Drive shaft		450115	Knob, black
	530002	Drive cord (26") Drive cord spring		460076B	Speaker grille (Model 596 only)

$\dagger$ Specify part numbers when ordering.
\# Replace with part having same number as that removed.

* Not supplied separately.

Note: C9, C10, C11, C12 may be combined in one unit, part No. 470310, on some chassis.


MODEL: 586

## DESCRIPTION

TYPE: Console AM-FM superheterodyne, with automatic record changer.
FREQUENCY RANGE:
Broadcast band (AM)-540-1620 kilocycles.
Frequency modulation band (FM) -88-108 megacycles.
TYPE OF TUBES:
1-6BA6 FM r-f amplifier (chassis 120083B only)
1-6SB7Y FM and AM converter
1-6SG7 FM and AM first i-f amplifier
1-6SG7 FM second i-f amplifier
1-6SH7 FM limiter
1-6S8GT FM discriminator, AM detector, a.v.c., audio amplifier
1-6AT6 Phase inverter
2-25L6GT Push-pull power output
1-25Z6GT Rectifier
POWER SUPPLY: 60 cycle a.c.
VOLTAGE RATING: 105-125 volt
POWER CONSUMPTION: 90 watts
CURRENT DRAIN: 0.77 amp . at 117 volts a.c.

## GENERAL NOTES

1. If replacements are made or the wiring disturbed in the r-f section of the circuit, the receiver should be carefully realigned.
2. A self-contained loop antenna is provided for broadcast band reception. For permanent home installation, however, if it is desired to improve reception of weak stations, an additional outdoor antenna may be used. Connect the outdoor antenna to the screw on the terminal strip marked "AM".
3. An internal power line antenna is provided for FM operation in relatively strong signal areas. The line cord should be completely uncoiled for effective operation of this antenna. An external dipole antenna is recommended for maximum FM operation. To connect the dipole, first remove the chassis cover at the rear of the cabinet. Then remove the wire from the screw on the terminal strip marked "FM" and connect the dipole leads to the "FM" terminal and "G".
4. A ground connection is not required for AM or FM operation.

## DISASSEMBLY INSTRUCTIONS

1. Remove four push-on type knobs at front of cabinet.
2. Remove five screws holding chassis cover in place.
3. Remove phono plug at left side of chassis. Unscrew wire nuts from phono motor leads. Disconnect speaker leads.
4. Unfasten interlock socket by removing two screws from mounting bracket.
5. Remove four chassis mounting bolts and carefully withdraw chassis.

MODEL 586, CHASSIS EMERSON RADIO AND PHONO. CORP. 120023B, 120083B


## EMERSON RADIO AND PHONO. CORP. <br> TIODEL 586, CHASSIS <br> 120023B, 120083B

## ALIGNMENT INSTRUCTIONS

To position pointer, turn variable condenser fulty closed and set pointer to reference mark on dial backplate at the low frequency end of the dial. Volume control should be set at maximum position. The output of the signal generator should be no higher than necessary to obtain an output reading. At tenuate the signal input as alignment proceeds. Use an insuiated alignment tool for all adjustments.
Use isoiation transformer if avaitable; otherwise connect a . 1 mfd . condenser in series with low side of signal generator to chassis.
AM Alignment

	DUMMY ANTENNA	SIGNAL GENERATOR COUPLING	SIGNAL GENERAtor frequency	BAND SWITCH	$\begin{aligned} & \text { RADIO DIAL } \\ & \text { SETTING } \end{aligned}$	OUTPUT METER	ADJUST	REMARKS
1	. 1 mfd	High side to Pin $65 \mathrm{BF}^{8}$ (grid) of B7Y. Low shossis. to	. 455 KC	Broadcast	Tuning condenser fully open.	Across voice coil.	A1, A2, (Trans T4). A 3, A4, (Trans. T2).	Adjust for maximum output. Reduce dummy ontenno to .001 mfd . if isolation trans. is not used.
2		Loop	1600 KC .	Broadcast	Tuning condenser fully open.	Across voice coil.	A5, (Trimmer cond. C6).	Form loop of several turns of wire. Radiate signal into of wire. receiver loop. Adjust for maximum output.
3		Loop	1400 KC .	Broadcast	Tune for max. output.	Acrom voice coil.	A6, (Trimmer cond. C5).	Adjust for maximum output.

FM I-F and Disc. Alignment Using AM Signal Generator and VTVM

	DUMMY ANTENNA	SIGNAL GENERATOR COUPLING	SIGNAL GENERATOR FREQUENCY	BAND SWITCH POSITION	$\begin{aligned} & \text { RADIO DIAL } \\ & \text { SETTING } \end{aligned}$	CONNECT VTVM	ADJUST	REMARKS
1	. 01 mfd .	High side to $P$ in 4 (grid) of 6SG7 2nd i.f (V4). Low side to chassis.	10.7 mc . (Unmodulated)	Frequency modulation	Tuning condenser fully open.	Connect d.c. probe to point "A". Common to chossis.	A7, A8, (Trans. T5).	Adjust for maximum output.
2	. 01 mfd .	High side to Pin 4 (grid) of 6SG7 ist l-f (V). Low side to chassis.	10.7 mc . (Unmodulated)	Frequency modulation	Tuning condenser fully open.	Connect d.c. probe to point " $A$ ". Common to chassis.	A9, A10, (Trans. T3).	Adjust for maximum output.
3	. 01 mfd .	High side to Pin 5 (asc. grid) of 6SB7Y cony. (V2). Low side to chassis.	10.7 mc (Unmodulated)	Frequency modulation	Tuning condenser fully open.	Connect d.c. probe to point "A". Common to chassis.	A11, A12, (Trans. T1).	Adjust for maximum output.
4	. 01 mfd .	High side to Pin 4 (grid) of 6SG7 2nd i-f (V4). Low side to chossis.	10.7 mc . (Unmodulated)	Frequency modulation	Tuning condenser fully open.	Connect d.c. probe to point "B". Common to chassis.	$\begin{gathered} \text { A13, } \\ \text { (Trans. T6) } \end{gathered}$	Adjust for maximum output.
5	. 01 mfd .	"	10.7 mc . (Unmodulated)	Frequency modulation	Tuning condenser fully open.	Connect d.c. probe to point to chassis.	$\begin{gathered} \text { A14, } \\ \text { (Trans. T6) } \end{gathered}$	Adjust for zero output. Continue with FM r-f alignment.

FM I-F and Disc. Alignment Using Sweep Signal Generator and Oscilloscope.
Use frequency modulated signal, with 60 cycle modulation and 450 kc . sweep. Use 120 cycle sawtooth sweep voltage in oscilloscope for horizontal deflection

	DUMMY ANTENNA	SIGNAL GENERATOR COUPLING	SIGNAL GENERATOR FREQUENCY	$\begin{aligned} & \text { BAND SWITCH } \\ & \text { POSITION } \end{aligned}$	$\begin{aligned} & \text { RADIO DIAL } \\ & \text { SETTING } \end{aligned}$	$\begin{aligned} & \text { CONNECT } \\ & \text { OSCILLOSCOPE } \end{aligned}$	ADJUST	REMARKS
1	. 01 mfd .	High side to Pin 4 lst i-f (V3). Low side to chassis.	10.7 mc . (Unmodu. lated).	Frequency modulation	Tuning condenser fully open.	Vertical Input to Paint "A". Ground to chassis.	A7, A8, (Trans. T5). A9, A10. (Trans. T3).	Adjust for maximum output (height) and symmetry as per i-f allignment curve shown (page 5).
2	. 01 mfd .	High side to Pin 5 Tosc. grid) of 6SB7Y conv. (V2). Low side to chassis.	10.7 mc . (Unmodulated).	Frequency modulation	Tuning condenser fully open.	Vartical input ta Point "A". Ground to chassis.	A11, A12, (Trans. T1).	Adjust for maximum output (height) and symmetry as per i-f alignment curve shown (page 5 ).
3	. 01 mfd .	High side to Pin 4 (grid) of 6 SG7   2nd li-f (V4). Low	10.7 mc . (Unmodulated).	Frequency modulation	Tuning condenser fully open.	Vertical input to Point ' $C$ '. Ground to chassis.	A13, A14, (Trans. T6).	Alternately adjust A13 for AT4 for moximum straight. ness of cross-over lines, with cross-over occurring ot center of pattern as per discriminator alignment curve (page 5). Continue with FM r-f ailgnment.
FM R-F Alignment								
	OUMMY ANTENNA	SIGNAL GENERATOR COUPLING	SIGNAL GENERA-   TOR FREQUENCY	$\begin{gathered} \text { BAND SWITCH } \\ \text { POSITION } \\ \hline \end{gathered}$	RADIO DIAL SETTING	CONNECT VTVM	ADJUST	REMARKS
1	150 ohm rosistor in series with each gen. lead.	High side to FM ant. term. Low side to chassis.	108.0 mc . (Unmodulated).	Frequency modulation	Tuning condenser fully open $(108.0 \mathrm{mc}$.)	Connect d.c. probe to point "A". Common to chassis.	A15, (Trimmer cond. C8).	Adjust for maximum output.
2	"	"	106.0 mc.	Frequency modulation	Tune for maximum output.	"	A16, (Trimmer cond. C7).	Adjust for maximum output.

## INSTRUCTIONS FOR VOLTAGE AND RESISTANCE READINGS

1. Voltage readings are in d.c. volts and resistance readings in ohms, unless otherwise specified.
2. D.c. voltage measurements are made at 20,000 ohms-per-volt and a.c. voltages are measured at 1000 ohms-per-volt.

Socket connections are shown as bottom views. Values are measured from socket pin to common negative.
4. Line voltage maitained at 117 volts a.c. for voltage readings.
5. Nominal tolerance on component values makes possible a variation of $\pm 15 \%$ in readings.
6. Volume control at maximum, with no signal applied and bandswitch in broadcast position (unless otherwise noted), for voltage measurements.

VOLTAGE READINGS

SYMBOL	TUBE	PIN 1	PIN 2	PIN 3	PIN 4	PIN 5	PIN 6	PIN 7	PIN 8	CAP
V1	6BA6	0	0	37AC	31AC	82*	80**	.7*	-	-
V2	6SB7Y	0	37AC	100	92	-. 5	0	44AC	-. 5	-
V3	6SG7	0	95	0	0	0	95	31AC	95	-
V4	6SG7	0	25AC	0	-. 4	0	78*	19AC	78*	-
V5	6SH7	0	12AC	0	0	0	22	19AC	45	-
V6	6S8GT	-. 5	0	0	0	5.5*	42	0	6AC	-. 7
V7	6AT6	0	. 8	6AC	12AC	0	0	74	-	-
V8	25L6GT	89	44AC	107	100	0	110	70AC	7.6	-
V9	25L6GT	0	70AC	107	100	0	74	95AC	7.6	-
V10	25Z6GT	107	95AC	117AC	107	117AC	83	117AC	107	-

RESISTANCE READINGS

SYMBOL	TUBE	PIN 1	PIN 2	PIN 3	PIN 4	PIN 5	PIN 6	PIN 7	PIN 8	CAP
V1	6BA6	0	0	26	20	30K*	30K*	68	-	-
V2	6SB7Y	0	29	30K	33K	25K	1	30	0	-
V3	6SG7	0	22	0	4 meg .	0	30K	26	30K	-
V4	6SG7	0	22	0	2 meg.	0	30K*	15	30K*	2.2 meg .
V5	6SH7	0	10	0	46K	0	8K	15	80K	
V6	6S8GT	450K	0	100K	100K	200 K	550 K	0	5	-
V7	6AT6	68K	1200	5	10	Inf.	Inf.	50K	-	-
V8	25L6GT	30K	35	30K	30K	500 K	30K	51	90	-
V9	25L6GT	Inf.	51	30K	30K	500 K	65K	68	90	-
V10	25Z6GT	30K	68	86	30K	86	30K	86	40K	-

NC-No connection; * for bandswitch in FM position only
K—kilohms; meg.-megohms; Inf.-infinity
NOTE: Chassis 120023 B does not contain the r-f amp. V1, (6BA6). Voltage and resistance measurements are substantially the same as chassis 120083 B .


## REPLACEMENT PARTS LIST

Symbol	$\dagger$ Part No.	DESCRIPTION	Symbol	$\dagger$ Part No.	DESCRIPTION	
V1	6BA6	I-M r-f amplifier (Chassis 120083B only)	R6	340830	27 kilohms, $\pm 10 \%$, $1 / 2$ watt resistor (may be part of i-f trans. T4)	
V2	6SB7Y	FM and AM converter	R7	350450	680 ohms, $1 / 2$ watt resistor	
$\vee 3$	6SG7	FM and AM 1st i-f amplifier	R8	340890	47 kilohms, 土 $10 \%$, $1 / 2$ watt resistor 6800 ohms, $+10 \%$, $1 / 2$ watt resistor	
V4	$6 \mathrm{SG7}$	FM 2nd i-f amplifier	R9 ${ }^{\text {R11 }}$	340690 350890	47 kilohms, $1 / 2$ watt resistor	
V6	6SH7 6S8GT	FM disc., AM detector, a.v.c., audio	R12, R13	340970	100 kilohms, $\pm 10 \%$, $1 / 2$ watt resistor	
$\checkmark 6$	6S8GT	amplifier	R14, R23	350930	68 kilohms, $1 / 2$ watt resistor	
V7	6AT6	Phase inverter	R15	390057	.5 megohms, tapped volume control	
V8	25L6GT	Power output	R16, R21	350810	22 kilohms, $1 / 2$ watt resistor	
V9	25L6GT	Power output	R19	390046	2 megohms, tone control	
V10	25Z6GT	Rectifier	R20, R22,	351130	470 kilohms, $1 / 2$ watt resistor	
C1, C2 C3, 4	900046	Two gang, four section variable condenser	R24 R25	340510	1200 ohms, $\pm 10 \%$, $1 / 2$ watt resistor	
C5, C6,	*	Trimmers, part of C1, C2, C3, C4	R26	370230	82 ohms, $\pm 10 \%$, $1 / 2$ watt resistor	
C7, C8			R27	370450	680 ohms, $\pm 10 \%$, 1 watt resistor	
C9	928023	5 mmf., ceramic condenser	R29	$\begin{aligned} & 340490 \\ & 380050 \end{aligned}$	15 ohms, $+10 \%, 1 / 2$ watt resistor	
C10, C11,	928006	1500 mmf., ceramic condenser	R30	380050 351330	3.3 megohms, $1 / 2$ watt resistor	
C13, C14 C15, C18	928015	$75 \mathrm{mmf} .$, ceramic	R32	350610	3300 ohms, $1 / 2$ watt resistor	
C16	915005	2.2 mmf., molded condenser	L 1	700011	AM loop antenna	
C17	928016	15 mmf ., ceramic condenser	L2	710019	FM antenna coil	
C19, C29	928109	. 005 mfd , ceramic condenser	L3	713008	FM r-f coil	
C20, C22,	920092	. 01 mfd., 200 volt paper cond.	L4	$\begin{aligned} & 716015 \\ & 716013 \end{aligned}$	FM oscillator coil	
C25, C26,			L6, L7	705002	FM occillator choke	
C21	920060	. 05 mfd., 200 volt paper condenser	L8	-	R.f. choke, plate supply	
C23, C24		110 mmf ., part of i-f trans. T4	L9, Lio	705011	R.f. choke, filament	
C27	928102	50 mmf., $\pm 10 \%$, ceramic condenser	T1	720024	First i-f trans. (FM)   (Alt. part 720067) \#	
C30	910010 920514	110 mmf., mica condenser		720031	(Alt. part 720067) \#   First i-f trans. (AM)	
C31, C35	920514 920100	. 001 mfd ., 400 volt paper condenser	T2	720031	(Alt. part 720075) \#	
C34, ${ }_{\text {C39 }}$	$\begin{aligned} & 920100 \\ & 920090 \end{aligned}$	$.02 \mathrm{mfd} ., 200$ volt paper condenser .01 mfd ., 400 volt paper condenser	T3	720025	Second i-f trans. (FM)	
$\\| \begin{aligned} & \text { C34, C39 } \\ & \text { C40, C42, } \end{aligned}$	92009	. 01 mfd., 400 voit paper condenser			(Alt. part 720067) \#	
C50, C51			T4	720032	Second i-f trans. (AM)	
C52						
C36, C53	920030	.05 mfd., 400 volt paper condenser .002 mfd ., 400 volt paper condenser	15	720026	Third i-f trans. (FM)   (Alt. part 720067) \#	
C38, ${ }_{\text {C3 }}$	920515 910014	.002 mfd ., 400 volt paper condenser 470 mmf., mica condenser	T6	708005	Discriminator trans. (FM)	
C38, C43 C41	920020	. 02 mfd ., 400 volt paper condenser			(Alt. parts 708012, 708013) \#	
C44, C47	925067	50.50 mfd ., 150 volt elect. condenser	T7	734028	Output transformer	
C45	928014	50 mmf ., ceramic condenser	SW1	510038	Three position, band-phono switch	
C46	920180	. 005 mfd ., 400 volt paper condenser	S		Line switch, part of vol. contr	
C48, C49	925101	$50-50 \mathrm{mfd}$, 150 elect. condenser	SW 3 SP1		Phogo switch, part of changer P.m. speaker, 12"	
C54	922101	. 05 mfd , 400 volt moided condenser	SP1	$180042$	P.m. speaker, $12^{\prime \prime}$   Phono pickup plug	
R1	340210	68 ohms, $\pm 10 \%$, $1 / 2$ watt resistor	P1	505040 508100	Phono pickup plug   Phono pickup socket	
R2, R28	340450	680 ohms, $\pm 10 \%$, $1 / 2$ watt resistor	${ }^{\mathbf{J} 1}$	508100	Phono pickup socket	
R3, R10	340810	22 kilo'vms, $\pm 10 \%$, $1 / 2$ watt resistor	P2	508008 500005		
R4	350290	150 ohms, $1 / 2$ watt resistor	J2	500005	Line cord connector plug	
R5, R17,	351290	2.2 megohms, $1 / 2$ watt resistor		$\begin{aligned} & 583202 \\ & 807003 \end{aligned}$	Line cord and internal antenna Dial light, 115 volts, 10 watts	
R18				$\begin{aligned} & 807003 \\ & 507008 \end{aligned}$	Dial light, 115 volts, 10 watts Dial light socket	

CABINET AND DIAL PARTS

Symbol	+Part No.	DESCRIPTION	Symbol	tPart No.	DESCRIPTION
	140181   560054   819039   460470	Cabinet (for 819039 changer). (Alt. part 140233 for 819044 changer) Cabinet back   Record changer (GI type 700 FS) (Alt. part 819044, Webster type 146)   Knob, black push-on		$\begin{aligned} & 460041 \\ & 520071 \\ & 410177 \\ & 280039 \\ & 530002 \\ & 587070 \\ & 525017 \end{aligned}$	Knob, black, push-on, indicator type   Dial crystal   Dial backplate   Dial drive shaft   Dial drive cord (44")   Dial cord spring   Pointer

Specify part numbers when ordering.

* Not supplied separately.
\# Replace with part having same number as that removed.

MODEL 591, EMERSON RADIO AND PHONO. CORF CHASSIS 120055 A

© John F. Rider

## INSTRUCTIONS FOR VOLTAGE AND RESISTANCE READINGS

1. Voltages are in volts d.c.; resistances in ohms unless otherwise specified.
2. D.c. voltage measurements are at $\mathbf{2 0 , 0 0 0}$ ohms-per-volt; a.c. voltages measured at 1000 ohms-per-volt.
3. Socket connections are shown as bottom views.
4. Measured values are from socket pin to common negative (chassis).
5. Line voltage maintained at 117 volts for voltage readings.
6. Nominal tolerance on component values makes possible a variation of $\pm 15 \%$ in voltage and resistance readings.
7. Volume contral at maximum with no signal applied, for voltage measurements.

## VOLTAGE READINGS

SYMBOL	TUBE	PIN 1	PIN 2	PIN 3	PIN 4	PIN 5	PIN 6	PIN 7	PIN 8
V1	6SS7	0	19 AC	0	-. 6	0	55	12 AC	50
V2	12SA7	0	31 AC	83	85	-.4.5	0	19 AC	-. 5
V3	6SS7	0	37 AC	0	-. 6	0	85	31 AC	83
V4	12SQ7	0	-. 9	0	-. 4	0	52	0	12 AC
V5	50L6GT	NC.	87 AC	100	85	0	NC	37 AC	5.8
V6	35Z5GT	NC	117 AC	113 AC	106	112 AC	NC	87 AC	106

RESISTANCE READINGS

SYMBOL	TUBE	PIN 1	PIN 2	PIN 3	PIN 4	PIN 5	PIN 6	PIN 7	PIN 8
V1	6SS7	0	26		2.8 meg.		100 K		
V2	12SA7 6SS7	0	40	45 K	45 K	25 K	100 K	19	60 K 2.8 meg.
V3	6SS7	0	47	0	2.8 meg.		45 K	40	2.8 meg.
V5	12SQ7 50L6GT	O Inf.	15 meg. 110	0 45	2.8 meg.	600 K	540 K	0	
V6	35Z5GT	Inf.	110 160	45 K	45 K	450 K	Inf.	47	150
,	3525 T	Inf.	160	150	45 K	190	Inf.	110	45 K

$\mathbf{N C}=$ no connection; $K=$ kilohm; meg. $=$ megohm; Inf. $=$ infinity

## ALIGNMENT PROCEDURE

1. To set pointer, turn variable condenser fully closed and set pointer at mark near left end of dial backplate.
2. Use isolation transformer if available. If not, connect a 0.1 mfd . condenser in series with low side of signal generator and chassis.
3. Volume control should be at maximum position; output of signal generator should be no higher than necessary to obtain an output reading.
4. Use an insulated alignment screwdriver for adjusting.

	DUMMY ANTENNA	$\begin{gathered} \text { SIGNAL } \\ \text { GENERATOR } \\ \text { COUPLING } \end{gathered}$	SIGNAL   GENERATOR   FREQUENCY	$\begin{gathered} \text { RADIO } \\ \text { DIAL } \\ \text { SETTING } \end{gathered}$	OUTPUT METER	ADJUST	REMARKS
1	0.1 mfd .	High side to pin 8 (grid) of 12SA7 (V2).   Low side to chassis.	455 KC .	Variable condenser fully open.	Across voice coil.		Adjust for maximum output. If isolation transformer is not used, reduce dummy antenna to .001 mfd to reduce hum modulation.
2	0.1 mfd .	High side to external antenna lead. Low side to chassis.	$455 \mathrm{KC}$.	Variable condenser fully open.	Across voice coil.	$\begin{gathered} \text { A5 } \\ \text { (Trimmer) } \\ \text { cond. C7). } \end{gathered}$	Adjust for minimum output.
3	200 mmf .	*	1620 KC.	Variable condenser fully open.	Across voice coil.	$\begin{gathered} \text { A } 6 \\ \text { (Trimmer) } \\ \text { cond. C4). } \end{gathered}$	Adjust for maximum output.
4	200 mmf .	*	1400 KC .	Tune for maximum output.	Across voice coil.	$\begin{gathered} A 7 \\ \text { (Trimmer) } \\ \text { cond. C3). } \end{gathered}$	Adjust for maximum output.

REPLACEMENT PARTS LIST

Symbol	$\dagger$ Part No	DESCRIPTION	Symbol	$\dagger$ Part No.	DESCRIPTION
V1	6SS7	R-f amplifier	R4, R9	351490	15 megohms, $1 / 2$ watt resistor
V2	12SA7	Converter	R5		22 kilohms, part of L3
V3	6SS7	I-f amplifier	R6	351330	3.3 megohms, $1 / 2$ watt resistor
V4	12SQ7	Detector, a.v.c., audio amplifier	R7	${ }^{*}$	47 kilohms, part of T2
V5	50LGGT	Power output	R8	390053	. 5 megohms, volume control
V6	35Z5GT	Rectifier	R10, R11	351130	470 kilohms, $1 / 2$ watt resistor
C1, C2 C3, C4	900037	Two-gang variable condenser	R12	340290	150 ohms, $1 / 2$ watt resistor
C3, C4 C5, 88	${ }_{920060}$	Trimmers, part of var. cond. .05 mfd ., 200 volt paper cond.	R13	370150 370490	39 ohms, 1 watt resistor
C6	910010	110 mmf., mica condenser	L1	700033	Loop antenna
C7	*	Trimmer, part of wave trap L2	L2	708060	Wave trap
C9	*	Part of 2nd i-f trans. T2	L3	716024	Oscillator coil
C10, C11,	470310	220 mmf .- $002 \mathrm{mfd} .-220 \mathrm{mmf}$.-	T1	720058	First i-f transformer
$\underset{\mathrm{Cl}}{\mathrm{C12}, \mathrm{C} 13}$		. 005 mfd .coupling cond. assembly	T2	720390	Second i-f transformer
C15, C16	920020	. $02 \mathrm{mfd} ., 200$ volt paper cond.	T3	734046 180043	Output transformer
C17	925104	30-50 mfd., 150 volt elect. cond.	SW1	180043	P.m. speaker, $4^{\prime \prime}$ Line switch, part of vol. control
R1	340730	10 kilohms, $1 / 2$ watt resistor	P.L.	807000	Dial light
R2	340810	22 kilohms, $1 / 2$ watt resistor		507060	Dial light socket
R3	340870	39 kilohms $1 / 2$ watt resistor		583070	Line cord

CABINET AND DIAL PARTS

$\dagger$ Part No.	
140210	Cabinet, walnut plastic
140213	Cabinet, ivory plastic
560190	Cabinet back
460470	Knob, black
525035	Pointer
520076	Dial glass
520078	Dial back plate
280313	Dial drive shaft
530002	Dial drive cord (39")
587070	Dial drive spring

Specify part numbers when ordering.

* Not supplied separately.


MODEL 605, 026 EMERSON RADIO AND PHONO. CORP.
OHASSIS 120076B


## INSTRUCTIONS FOR VOLTAGE AND RESISTANCE READINGS

1. Voltages readings are in d.c. volts and resistance readings in olıms, unless otherwise specified.
2. D.c. voltage measurements are made at 20,000 ohms-per-volt and a.c. voltages are measured at 1000 ohms-per-volt.
3. Socket connections are shown as bottom views. Values are me asured from socket pin to common negative.
4. Line voltage maintained at 117 volts a.c. for voltage readings.
5. Nominal tolerance on component values makes possible a variation of $\pm 15 \%$ in readings.
6. Volume control at maximum, with no signal applied and bandswitch in broadcast position (unless otherwise noted), for voltage measurements.

VOLTAGE READINGS

SYMBOL	TUBE	PIN 1	PIN 2	PIN 3	PIN 4	PIN 5	PIN 6	PIN 7	PIN 8	PIN 9
V1	12BA6	0	0	80AC	67 AC	76*	78*	.8*	-	-
V2	12BA7	100	-. 5	0	67AC	55AC	0	-. 5	0	95
V3	12BA6	-. 2	0	55AC	43AC	93	98	0	-	-
V4	12BA6	0	0	43AC	30AC	70*	70*	.6*	-	
V5	12AU6	-. 4	0	30AC	18AC	50	50	0	-	-
V6	19T8	-. 5	-. 4	5.5*	18AC		-.8		-. 5	33
V7	35B5	0	6	117AC	80AC	132	100	NC		

NC denotes "no connection"; * for bandswitch in FM position only.

## RESISTANCE READINGS

SYMBOL	TUBE	PIN 1	PIN 2	PIN 3	PIN 4	PIN 5	PIN 6	PIN 7	PIN 8	PIN 9
V1	12BA6	0	0	16	12	65K*	65K*	66	-	-
V2	12BA7	65K	24K	1	56	75	0	0	0	65K
V3	12BA6	2.8 meg.	0	56	44	65K	65K	0	-	6SK
V4	12BA6	68	0	44	32	65K	65K	68	-	-
V5	12AU6	100K	0	32	20	65K	65K	0	-	-
V6	19T8	90K	90K	150K	20		1 meg.	$0$	4 meg.	550K
V7	35B5	400K	190	112	80	65K	$65 \mathrm{~K}$	NC	-	Ss0k

K-Kilohms; meg.-megohms.


## ALIGNMENT INSTRUCTIONS

To position pointer, turn variable condenser fully closed and ret pointer to reference mark on dial backplate ot the low frequency end of the dial. Volume contral should be set ot maximum position. The output of the signal generotor should be no higher than necessory to obtain on output reading. tenuate the signal input as olignment proceeds. Use an insulated alignment fool for all adjustments.
Use isolation transformer if ovallable; otherwise connect a .1 mfd. condenser in series with daw side of signal generator to chassis.

## AM ALIGNMENT

	DUMMY ANTENNA	SIGNAL GENERATOR COUPLING	SIGNAL GENERATOR FREQUENCY	$\begin{aligned} & \text { BAND SWITCH } \\ & \text { POSITION } \end{aligned}$	$\begin{aligned} & \text { RADIO DIAL } \\ & \text { SETTING } \end{aligned}$	$\begin{aligned} & \text { OUTPUT } \\ & \text { METER } \end{aligned}$	ADJUST	REMARKS
1	. 1 mfd .	High side to Pln 12BA7. Low side to chossis.	455 KC	Broadcast	Tuning condenser fuily open.	Across voice coil.	A1, A2, (Tranz T4). A3, A4, (Trans. T2).	Adjust for maximum output. Reduce dumm antenna to .001 mid . $f$ isolotion trans. is not used.
2		Loop	1600 KC	Broadcast	Tuning condenser fully open.	Across voice coil.	A5, (Trimmer cond. C6).	Form loop of several turna of wire. Radiote signal into receiver loop. Adjust for maximum output.
3		Loop	$1400 \mathrm{KC}$.	Broadcast	Tune for max. output.	Across voice coil.	A6, (Trimmer cond. C5).	Adjust for moximum out put.
FM I-F and Disc. Alignment Using AM Signal Generator and VTVM								
	DUMMY	SIGNAL GENERATOR COUPLING	SIGNAL GENERATOR FREQUENCY	$\begin{aligned} & \text { BAND SWITCH } \\ & \text { POSITION } \end{aligned}$	$\begin{aligned} & \text { RADIO DIAL } \\ & \text { SETTING } \end{aligned}$	CONNECT VTVM	ADJUST	REMARKS
1	. 01 mfd .	High side to Pin 1 (grid) of 12 BA 62 nd i.f (V4). Low side to chossis.	10.7 mc . (Unmodulated)	Frequency modulation	Tuning condenser fully open.	Connect d.e. probe to point " A ". Common to chassis.	$\begin{gathered} \mathrm{A}, \\ (\mathrm{Trans}, \mathrm{~T} 5) \end{gathered}$	Adjust for maximum output.
2	. 01 mfd .		10.7 mc . (Unmodulated)	Frequency modulation	Tuning condenser fully oper.	Connect d.e. probe to point " $A$ ". Common to chassis.	$\underset{\text { (Trans. T3). }}{\substack{\text { A8, A9, } \\ \hline}}$	Adjust for maximum output.
3	. 01 mfd .	High side to Pin 2 (osc. grid) of 12BAT conv. (V2). Low. side to chossis.	$\begin{gathered} 10.7 \mathrm{mc} . \\ \text { (Unmodulated) } \end{gathered}$	Frequency modulation	Tuning condenser fully open.	Connect d.c. probe to point "A". Common to chossis.	$\begin{gathered} \text { A10, A11, } \\ \left(\text { Trans. T1 }^{2}\right) \end{gathered}$	Adjust for maximum ontput.
4	. 01 mfd .	High side to Pin 1 (grid) of 12 BAG 2 nd i-f (V4). Low side to chassis.	$\begin{gathered} 10.7 \mathrm{mc} . \\ \text { (Unmodulated) } \end{gathered}$	Frequency modulation	Tuning condenser fully open.	Connect d.c. probe to point "B". Common to chassis.	$\begin{gathered} \text { A12, } \\ \text { (Trans. T6) } \end{gathered}$	Adjust for maximum output.
5	. 01 mfd .	"	10.7 mc . (Unmodulated)	Frequency modulation	Tuning condenser fully open.	Connect d.c. probe to point " ${ }^{\prime}$ ". Common to chassis.	$\begin{gathered} \text { A13, } \\ \text { (Trans. T6) } \end{gathered}$	Adjust for zero output. Continue with FM r-f alignment.

I-F AND DISC. ALIGNMENT USING SWEEP SIGNAL GENERATOR AND OSCIL LOSCOPE. Use frequency modulated signal, with 60 cycle modulation and 450 ke sweep. Use 120 cycle sowtooth sweep voltage in oscilloscope for horizontal deflection.

	DUMMY ANTENNA	SIGNAL GENERATOR COUPLING	SIGNAL GENERATOR FREQUENCY	BAND SWITCH POSITION	$\begin{aligned} & \text { RADIO DIAL } \\ & \text { SETTING } \end{aligned}$	CONNECT OSCILLOSCOPE	ADJUST	REMARKS
1	. 01 mfd .	High side to Pin 1 (grid) of 12BA6 lst i-f (V3). Low side to chassis.	10.7 mc . (Unmodulated).	Frequency modulation	Tuning condenser fully open.	Vertical input to Point "A". Ground to chossis.	A7, A8, A9, (Trans. T5 and T3).	Adjust for maximum output (height) and symmetry as per i-f alignment curve shown (page 3).
2	. 01 mfd .	High side to Pin 2 lose. grid) of $12 \mathrm{BA7}$ conv. (V2). Low side to chassis.	10.7 mc . (Unmodulated).	Frequency modulation	Tuning condenser fully open.	Vertical input to Point "A". Ground to chassis.	A10, A11,   (Trans. T1).	Adjust for maximum output (height) and symmetry as per i-f alignment curve shown (page 3).
3	. 01 mfd .	High side to Pin 1 (grid) of 12BA6 2nd i.f (V4). Low side to chassis.	10.7 mc . (Unmodulated).	Frequency modulation	Tuning condenser fully open.	Vertical input to Point " C ". Ground to chassis.	A12, A13,   (Trans. T6).	Alternately adjust A12 for moximum amplitude and Al3 for moximum straightness of cross-over lines, with cross-over occurring of center of pattern as per discriminator olignment curve (page 3). Continue with FM r-f alignment.

FM R-F ALIGNMENT

	DUMMY ANTENNA	SIGNAL GENERATOR COUPLING	SIGNAL GENERA-   TOR FREQUENCY	$\begin{aligned} & \text { BAND SWITCH } \\ & \text { POSITION } \end{aligned}$	$\begin{aligned} & \text { RADIO DIAL } \\ & \text { SETTING } \end{aligned}$	CONNECT VTVM	ADJUST	REMARKS
1	150 ohm re- sistor in series with each gen. lead.	High side to FM ant. term. Low side to chassis.	108.0 mc . (Unmodulated).	Frequency modulation	$\begin{aligned} & \text { Tuning con- } \\ & \text { denser fully } \\ & \text { open } \\ & (108.0 \mathrm{mc} \text {.) } \end{aligned}$	Connect d.c. probe to point "A". Common to chassis.	A14 (Trimmer cond. C8).	Adjust for maximum output.
2	"	"	106.0 mc.	Frequency modulation	Tune for maximum output.	"	A15 (Trimmer cond. C7).	Adjust for maximum output.

REPLACEMENT PARTS LIST

Symbol	tPart No.	DESCRIPTION	Symbol	tPart No.	DESCRIPTION
$\mathrm{V}_{1}$	12BA6	FM r-f amplifier	R12	340450	680 ohms, $1 / 2$ watt
V2	12BA7	FM and AM converter	R13, R16,	$340970$	100 kilohms, $1 / 2$ watt reaistor
V3 V4	12BA6	FM and AM 1st i-f amplifier	R17 ${ }^{\text {R13, }}$		
V4	12BA6	FM 2nd i-f amplifier	R14	350770	15 kilohms, $1 / 2$ watt resistor
V5	12AU6	FM limiter	R15	351210	1 megohm, $1 / 2$ watt resistor
V7	$35 \mathrm{B5}$	Power output	R18 R19	350930 390057	68 kilohms, $1 / 2$ watt resistor
V8	817101	Selenium rectifier	R20	390057 351370	500 kilohms, tapped volume contro 4.7 megohms, $1 / 2$ watt reaistor
C1, C2,	900045	Two-gang, four section variable	R21, R26	$\begin{aligned} & 351370 \\ & 351130 \end{aligned}$	4.7 megohms, $1 / 2$ watt reaistor 470 kulohme, $1 / 2$ watt resistor
C5, C6,	*	denser (alt. part y00400A) *	R22	390046	$\angle$ megohms, tone control
C7, C8			R24	370310 394042	180 ohms, 1 watt resistor
C9	928017	5 mmf ., ceramic condenser	R25	394042 380090	299 ohms, 3 watt wire wound rea
C10, C11,	928006	1500 mmf , ceramic condenser	R28	380090 350810	22 ohms, 2 watt resistor
C12, C13, C36,			L1	700011	AM loop antenna (alternate
C14, C17	928015	75 mmf., ceramic condenser	L2	710019	part of 700021)
C15	915011	1.5 mmf., molded condenser	L3, L5,	705002	FM oscillator choke
C16	928016	15 mmf ., ceramic condenser	L9, L10	705002	FM oscillator choce
C18	928109	5000 mmf , ceramic condenser	L4	713024	FM r-f coil
C19, C21,	920092	. 01 mfd ., 200 volt paper cond.	L6	716013	FM oscillator coil
C24, C25,			L7	716015	AM oscillator coil
C20, C39,	920030	. 05 mfd ., 400 volt paper cond.	L8	705013	R-f choke
C45		. 05 mid., 400 volt papee cond.		720024	First i-f trans. (FM).   (Alternate parts 720082, 720067) \#
C22, C26	928110	Part of T4 (2nd i-f, AM)	T2	720031	First i-f trans. (AM).
C28	9	25 mmf., ceramic condenser			(Alt. parts 720084, 720075) \#
C29, C33	910014	470 mmf., mica condenser		7200	Second i-f trans. (FM).
C30, C31	920515	. 002 mfd ., 400 volt paper cond.	T4	720032	Second iof trans. (AM)
C32, C35,	920090	. 01 mfd , 400 volt paper cond.	T4	720032	Second i-f trans. (AM).   (Alt. parts 720085, 720076) \#
C34	925126	$100-50 \mathrm{mfd}$. 150 volt elect. cond.	T5	720069	Third i-f trans. (FM).
C41	920514	. 001 mfd , 400 volt paper cond.	T6		(Alt. parts 720083, 720077) \#
C42	920100	. 02 mfd ., 200 volt paper cond.	T6	708005	Disc. trans. (FM). (Alt. parts 708012 708013) \#
C43	922101	$.05 \mathrm{mfd} ., 400$ volt molded	T7	734042	Output transformer
C44	*	paper condenser	SW1	510038	Three position band-phono switch
R1, R6,	340210	$\mathbf{6 8}$ momms, part of loop antenna L1	S		Line switch, part of vol. control
R10, R11			SP1	180051	Phono switch, part of changer
R2, R4,	350290	150 ohms, $1 / 2$ watt resistor	P1	$505040$	
R5, R8			J1	508100	Phono pickup plug Phono pickup socket
$\begin{array}{ll}\text { R3 } \\ \text { R7, } & \text { R27 }\end{array}$	340810 351290	22 kilohms, $1 / 2$ watt resistor, $\pm 10 \%$	P2	505007	Line cord connector plug
R7, R27 R9	351290 340830	2.2 megohms, $1 / 2$ watt resistor	J2	500005	Line cord interlock socket
R	340830	27 kilohm, $1 / 2$ watt resistor   (may be part of 2nd i.f		583202	Line cord and internal ant.
		e part of 2nd 1-f		807003 507008	Dial light, 115 volt, 10 watt

CABINET AND DIAL PARTS

	$\dagger$ Part No.	DESCRIPTION		$\dagger$ Part No.	DESCRIPTION
	140206   560064   819039   460470	Cabinet (for 819039 changer).   (Alt. part 140246 for 819044 changer).   Cabinet back   Record changer (GI type 700FS). (Alt. part 819044, Webster type 146).   Knob, black push-on		$\begin{aligned} & 460041 \\ & 410177 \\ & 520071 \\ & 280039 \\ & 530002 \\ & 587070 \\ & 525017 \end{aligned}$	Knob, black indicator, push-on   Dial backplate   Dial crystal   Dial drive shaft   Dial drive cord (44")   Dial cord spring   Pointer

* Not supplied separately. †Specify part numbers when ordering. \# Replace with part having same number as that removed.


ALIGNMENT CURVES (FM)



CJohn F. Rider

This Receiver features the latest in A. M. . F. M., fivor that station. On AM, the loop should be turned so Receiver Design. Eleven (11) tubes plus a Rectifier are that the edge faces toward the station desired. On FM, used in the A. M. - F. M. superheterodyne circuit. the entire cabinet should be positioned so that the back separate antennas are supplied for A. M. and F. M. An is broadside to the direction from which the signals are automatic frequency control tube is used to stabilize the transmitted

TUBE COMPLEMENT

## tube complement

I Type 6BA6 - F. M. R F. Amplifier
1 Type 7F8 - F. M. Converter
1 Type 7Q7 - A. M. Converter
1 Type 6C4 - Automatic Frequency Control
1 Type 7AH7- I. F. Amplifier
1 Type 6SH7 - Detector Driver (F.M.)
1 Type 6SQ7 - 1st Audio Amplifier, A. M. Detector
1 Type 7A6 - Ratio Detecitor
1 Type 7F7 - 2nd Audio Amplifier and phase inverter 1 Type 7F - 2nd Audio Amplifier
2 Type 5 - Beam power output.
1 Type 5Y3/GT -- Rectifier.

For the reception of weak or distant stations, or for he operation of the receiver in unfavorable locations, provisions are made for the use of external antennas. The folded dipole should be disconnected when an ex ternal FM antenna is employed.
Do not disconnect the AM loop when an external antenna is used on standard broadcast

## 3. SERVICE NOTES

Failure of the Receiver to operate may be due to

1) All tubes not firmly in sockets
) No current at power socket.
2) Band Switch in wrong position.
3) Speaker not plugged in.
4) Antennas not attached.
5) Defective fuse in Receive

## 1. OPERATING CONTROLS

1) The "ON-OFF" power switch and Tone Control is the knob at the extreme left of the set. Turn this con trol in a clockwise direction until the switch clicks and the dial becomes illuminated. Turning this control further in the same direction will change the tone.
2) The Volume Control is the second knob from the left. Turning this control in a clockwise direction will increase the volume.
3) The Band Switch is the third knob from the band Connect the Signal Generator across the broadciast left. The extreme counterclockwise position of this knob The "high" side of the Generator should connect to the is for phonograph operation. The center position is for stator section and the "ground" side to the chassis. F.M. reception. The extreme clockwise position is for Adjust the Signal Generator to 455 kc and with the A. M. reception. receiver switched on, adjust the first and second I. F
4) The Tuning Control is the extreme right hand transformers for peak output as shown on the output knob. Turning this knob in either direction will move meter. The signal injected into the receiver should be as the dial pointer and select the stations on the A. M. or small in magnitude as possible, consistent with a useful F. M. Bands. deflection on the output meter.
4. Connect the "high" side of the Generator to the

## 2. ANTENNAS

 antenna terminal with a 200 mmf condenser inserted in In most cises it will not be necessary to use external series.. Connect the "ground" side of the Generator to antennas, since the receiver is equipped with a loop an the chassis. Tune receiver to 60 on the dial, adjust Sig. tenna for AM reception and an indoor type folded dipole nal Generator to 600 kc . Adjust the BC antenna coil for antenna for FM receptionWhen inadequate reception is obtained from a desired
station, it may be necessary to reposition the antennas to

## ALIGNMENT PROCEDURE FOR A M

a) Broadcast Band Signal Generator

## Output Meter

1. Set band switch to AM, advance volume control to volume setting.
2. Tune receiver to 160 on the dial. Adjust Signal Generator to 1600 kc . Adjust BC oscillator and BC antenna trimmers for maximum output.
3. Repeat operations 4 and 5.

## 5. ALIGNMENT PROCEDURE FOR F. M.:

Note: Points A. B. C. D. E. F. G. and $H$ are noted on circuit diagram. Points $C$, and $D$ have been brought out to the unused contacts of the speaker socket at the rear of the chassis.
Equipment Required:
a) High frequency Signal Generator with 88.108 Mc tuning range.
b) Signal Generator capable of delivering 11 Volt at 10.7 mc .
c) Audio output meter.
d) D. C. vacuum tube voltmeter with zero center scalc.
e) Tuning wand.

Disable A.F.C. during alignment of F.M. circuits by short circuiting point " $B$ " to chassis.

## A. Ratio Detector Alignment:

1. Connect V.T.V.M. across point " C " and ground, (Detector Voltage).
2. Feed 10.7 mc unmodulated R.F. Signal into 6 SH 7 grid (point A) through . 01 ufd . condenser. This signal should be .1 volt.
3. Adjust primary of Ratio Detector (T-5) for maximum voltage indication on V.T. V. M.
4. Connect zero centered V. T. V. M. across point "D" and ground.
5. Adjust secondary of Ratio Detector (T-5) for zero indication.
6. Tune 10.7 mc Signal Generator higher in frequency (about 200kc) until maximum voltage reading is obtained on V. T. V. M.; note this voltage, then tune signal generator lower in frequency until maximum voltage of the opposite polarity is obtained. Note this voltage, then if necessary re-adjust primary of the Det. (T-5) until the voltages are about equal on either the high or low side of 10.7 mc .

## B. 10.7 I. F. ALIGNMENT:

1. Shunt a 1,000 -ohm carbon resistor across the primary of the detector (T-5) (Points G and H).
2. Connect output meter across speaker voice coil.
3. Volume and tone controls at maximum clockwise position.
4. Connect 10.7 mc (modulated $30 \%$ ) signal generator through .01ufd. condenser across point "F" and ground.
5. Adjust secondary, then primary of (T-3) for maximum audio output. (Reduce input signal to maintain output at .5 -watt level.)
6. Connect $10.7 \mathrm{mc} 30 \%$ modulated signal generator across point " $E$ " and ground.
7. Adjust secondary, then primary of (T-1) for maximum audio output. (Reduce input signal to maintain output at .5 -watt level.)
8. Remove 1000 -ohm shunting resistor from across primary of (T-5).

## C. OSCILLATOR AND R.F. ALIGNMENT:

1. Connect V. T. V. M. across point " C " and ground, (detector voltage).
2. Connect 108 mc signal generator to FM antenna terminals. If generator impedance is low, put one 150 . ohm carbon resistor in series with each of the generator leads. Tune receiver dial to 108 mc .
3. Adjust FM oscillator trimmer (C-51) for maximum V. T. V. M. reading.
4. Adjust FM R.F. trimmer (C-52) for maximum V. T. V. M. reading. During alignment reduce input signal to maintain Detector voltage at 2.V.
5. Repeat steps 3 and 4.
6. Feed a 90 mc signal into antenna terminals (as in $\mathrm{C}-2$ ), tune receiver dial to signal.
7. Test R. F. coil with tuning wand and if necessary adjust spacing of FM R.F. coil (L-4) for maximum V.T. V.M. reading at 90 mc . During alignment reduce input signal to maintain Detector voltage at 2.V.
8. Repeat steps 2 and 4 if necessary.
9. Remove A.F.C. shorting jumper.


## failure of the radio receiver to operate may be due to:

1. No current at power socket.
2. Tubes not firmly in sockets.
3. Antenna not connected.
4. Defective tube.
5. Band Switch in wrong position.
6. "Phono" terminal jumper missing or or incorrectly connected.


Figure 1 Tube and Trimmer Locations Radio Receiver Model 502 K


PAGE 19-8 ESPEY
MODEL 528 ESPEY MFG. COMPANY, INC.


©John F. Rider


©John F. Rider


©John F. Rider


## TUBE LAYOUT




## ALIGNMENT PROCEDURE

No attempt should be made to realign the various circuits until all other causes have been checked, unless the condition is so obvious as to indicate that realignment is necessary. Then proceed as follows:
A.M

Band switch in AM position
Volume Control and Tone Control in maximum clockwise position.
Low range A.C meter connected across voice coil to indicate output.
Keep signal generator attenuated so as to maintain $1 / 2$ scale reading on output meter
Make certain that the dial pointer is exactly horizontal when variable condenser is fully meshed

Receiver Dial at   Variable Cond. fully open	Signal Generator Frequency $456 \mathrm{KC}$	Dummy Antenna   1 MF	Connect Signal Generator To:   Control Grid 6BE6 tube. pin \#7.	Hefer to Chasaim Layout for Location of component to be adjusted   Adjust L1, L2, L3 and L4 for maximum output.
Variable Cond fully open.	456 KC	. 1 MF	Top of first section of variable condenser (stator of the A.M.RF. section)	Adjust L5 for minimurn output.
Variable Cond. fully open   3.	1680 KC	200 MMF	Terminal \#4 on back of loop.	Adjust Tl for maximum output.
$4 . \quad 1500 \mathrm{KC}$	1500 KC	200 MMF	Terminal \#4 on back of loop.	Adjust T2 for maximum output.
5.	600 KC	200 MMF	Terminal \#4 on back of loop.	Check tracking and bend slotted end plate (first section) of variable if necessary.

F.M.:

Band switch F.M. position. Allow at least 10 minutes "warming up" period.
Use a standard V.T.V.M. with zero center setting.
Use an A.M. signal generator with no modulation, taking harmonics if fundamentals are not available.
Keep signal generator attenuated so as to maintain approximately a 3 volt reading.
Make certain that the dial pointer is exactly horizontal when variable condenser is fully meshed.

Receiver Dial at: $\text { 1. } \quad 98 \mathrm{MC}$	Signal Generator Frequency   10.7 MC	Signal Generator Connected to:   Control grid Pin \#l 6BA6 (2nd. IF.) Socket Series with . 01 Condenser.	V.T.V.M. Connected to:   Across the two 100,000 ohm resistors marked X .	Refer to Chassis Layout for Location of Components to be adjusted   Adjust L6 and L 7 for maximum output.
$\text { 2. } \quad 98 \mathrm{MC}$	10.7 MC	Control grid Pin \#7 6BE6 Socket Series with 01 condenser.	"	Shunt L9 with a 680 ohm carbon resistor and adjust L8 for maximum output.
3.	10.7 MC	"	*	Shunt L8 with a 680 ohm carbon resistor and adjust L9 for maximum output.
4.	10.7 MC	"	"	Adjust L10, L11 and L6 for maximum output.
5.	10.7 MC	"	Ground lead of V.T.V.M. to point $A$ on schematic and probe to point B.	Adjust L7 for zero output. (Check zero setting of V.T.V.M.) Meter should register reverse when slug is rotated through zero output.
6.	108 MC	Terminals $1 \& 2$ in series with 2130 ohm carbon resistors.	Same as step \#l.	Adjust T3 for maximum output. Starting with the trimmer at minimum capacity use the first peak.
+ $\quad 88 \mathrm{MC}$	88 MC	"	"	Adjust Ll2 for maximum output.
8.	Repeat steps 6 \& 7 until L12 requires no further adjustment.			
9.	98 MC	Same as step \#6	Same as step \#l.	Adjust Ll3 and L14 for maximum output.

Caution: If any adjustments are made in the A.M.-I.F.'s after the F. M.
I.F.'s have been aligned, it would be necessary to readjust the F.M. I.F.'s.



## ALIGNMENT PROCEDURE

Nc attempt should be made to realign the various circuits until all other causes have been checked, unless the condition is so ekvious as to indicate that rechignment is necessary. Then proceed as follows
A.M:

Band switch in A.M position
Volume Control and Tone Control in maximum clockwise position.
Low range AC meter connected across voice coil to indicate output
Keep signal generator attenuated so as to maintain $1 / 2$ scale reading on output meter.
Make certain that the dial pointer is exactly horizontal when variable condenser is fully meshed.

Receiver Dial at   Variable Cond lully open 1	Signal Generator Frequency $456 \mathrm{KC}$	Dummy Antenna   1 MF	Connect Signal Generator To:   Control 'Grid 6BE6 tube, pin \#7.	Rofor to Chassie Layout for Location of component to be adjuated   Adjust L1, L2, L3 and L4 for maximum output.
Variable Cond fully open.	1630 KC	200 MMF	Terminal \#4 on back of loop.	Adjust TI for maximum output.
$3 \quad 1500 \mathrm{RC}$	1500 KC	200 MMF	Terminal \#4 on back of loop.	Adjust T2 for maximum output.
4600 KC	600 KC	200 MMF	Terminal \#4 on back of loop.	Check tracking and bend slotted end plate (last section) of variable if necessary.

FM
Band switch F.M. position. Allow at least 10 minutes "warming up" period
Use a standard V.TV.M. with zero center setting.
Use an A.M signal generator with no modulation, taking harmonics if fundamentals are not available.
Keep signal generator attenuated so as to maintain approximately a 3 volt reading.
Make certain that the dial painter is exactly horizontal when variable condenser is fully meshed.

Receiver Dial at: $\text { 1. } \quad 98 \mathrm{MC}$	Signal Generator Frequency   10.7 MC	Signal Generator Connected to:   Control grid Pin \#l 6BA6 (2nd. I.F.) Socket Series with 01 Condenser.	V.T.V.M. Connected to:   Across the two 100.000 ohm resistors marked X.	Refer to Chaseis Layout for Location of Components to be adjusted   Adjust L5 and L6 for maximum cutput.
$\text { 2. } \quad 98 \mathrm{MC}$	10.7 MC	Junction of L 12 and T 4 in Series with .01 condenser.	"	Shunt L8 with a 680 ohm carbon resistor and adjust L7 for maximum output.
3.	10.7 MC	$\cdots$	$\cdots$	Shunt 17 with a 680 ohm carbon resistor and adjust L8 for maximum outout.
4.	10.7 MC	-	"	Adjust L9, L10 and L5 for maximum output.
5.	10.7 MC	"	Ground lead of V.T.V.M. to point $A$ on schematic and probe to point B.	Adjust L6 for zero output. (Check tero setting of V.T.V.M.) Meter should register reverse when slug is rotated through zero output.
6. $\quad 108 \mathrm{MC}$	108 MC	Ground to terminal 1 and hot side to terminal 2 in series with a 270 ohm carbon resistor.	Same as step \#1.	Adjust T3 for maximum output. Starting with the trimmer at minimum capacity use the first peak.
7. 88 MC	88 MC	*	*	Adjust Lll for maximum output.
8	Repeat steps 6 \& 7 until Lll requires no further adjustment.			
9. 105 MC	105 MC	Same as step \#6	Same as step \#l.	Adjust T4 for maximum output.
13. 30 MC	90 MC	Same as step \#e	Same as step \#1	Adjust L12 for maximum output.
11	Repeat steps 9 \& 10 until T4 requires no further adjustment.			

Caution: If any adjustments are made in the A.M.I.F's after the F. M.
I.F's have been aligned, it would be necessary to readjust the F.M. I.F.'s.


## PARTS LIST

## Part No.

Description
12.1 Tubular Condenser . 002200 W.V.
12.19 Tubular Condenser . 005400 W.V.
12.6 Tubular Condenser 01400 W.V.
12.11 Tubular Condenser 05 200 W.V.
12.12 Tubular Condenser 05400 W.V.
12.56 Tubular Condenser . 005200 W.V.

$$
\pm 10 \%
$$

17.59 Ceramic Cond. $2 \mathrm{mmf} \pm .5 \mathrm{mmf}$ Insul.
17.78 Ceramic Cond. $2 \mathrm{mmf} \pm .5 \mathrm{mmf}$ Insul. M750
17.79 Ceramic Cond. $5 \mathrm{mmf} \pm .5 \mathrm{mmf}$ Insul.
17.61 Ceramic Cond. $30 \mathrm{mmf} \pm 10 \%$ Insul.
17.47
17.21
17.81
17.57
17.62
17.45 Ceramic Cond. $1500 \mathrm{mmf} \pm 20 \%$
17.44 Ceramic Cond. 5000 mmf gmv
17.80 Ceramic Cond. $10,000 \mathrm{mmf}$ gmv
17.46 Ceramic Cond. $10,000 \mathrm{mmf} \mathrm{gmv}$
17.28 Ceramic Cond. $10 \mathrm{mmf} \pm 20 \%$
22.36 Electrolytic $30-40-40$ 150 W.V. Alum. Can
22.52 Electrolytic $30 \mathrm{mf} 150 \mathrm{~W} . \mathrm{V}$. Alum. Tube
22.31 Electrolytic 25 mf 25 W.V. Alum. Tube
22.53 Electrolytic $4 \mathrm{mf} 50 \mathrm{~W} . \mathrm{V}$. Alum. Tube
27.37 Variable Cond. With drum
32.109 Carbon Res. 22 ohm $1 / 2$ W. $\pm 10 \%$ Carbon
32.1 Carbon Res. 68 ohms $1 / 2$ W. $\pm 10 \%$ Carbon
32.3 Carbon Res. 130 ohms $1 / 2 \mathrm{~W} . \pm 10 \%$ Carbon
32.4 Carbon Res. 150 ohm $1 / 2 \mathrm{~W} . \pm 10 \%$ Carbon
32.5 Carbon Res. 220 ohm $1 / 2 \mathrm{~W} . \pm 10 \%$ Carbon
32.30 Carbon Res. 470 ohm $1 / 2 \mathrm{~W} . \pm 10 \%$ Carbon
32.153 Carbon Res. 820 ohm $1 / 2$ W. $\pm 20 \%$ Carbon
32.8 Carbon Res. 1000 ohm $1 / 2$ W. $\pm 10 \%$ Carbon
32.12 Carbon Res. 15000 ohm $1 / 2$ W. $\pm 10 \%$ Carbon
32.85 Carbon Res. 27000 ohm $1 / 2 \mathrm{~W} . \pm 10 \%$ Carbon
32.13 Carbon Res. 22000 ohm $1 / 2$ W. $\pm 10 \%$ Carbon
32.18 Carbon Res. 220,000 ohm $1 / 2 \mathrm{~W} . \pm 20 \%$ Carbon

## Part No.

## Description

32.19 Carbon Res. 330,000 ohm $1 / 2 \mathrm{~W} . \pm 20 \%$ Carbon
32.20 Carbon Res. 470,000 ohm $1 / 2$ W. $\pm 20 \%$ Carbon
32.23 Carbon Res. I megohm $1 / 2 \mathrm{~W} . \pm 20 \%$ Carbon
32.24 Carbon Res. 2.2 megohm $1 / 2 \mathrm{~W} . \pm 20 \%$

Carbon
32.99 Carbon Res. 10 megohm $1 / 2 \mathrm{~W} . \pm 20 \%$ Carbon
32.41 Carbon Res. 1000 ohm l W. $\pm 10 \%$ Carbon
32.40
32.115
32.154
32.2
37.116
37.112
37.132

Coil F.M. 2nd I.F
Coil B.C. 1st. \& 2nd I.F.
37.194 Coil B.C. Oscl.
37.195 Coil F.M. Oscl. (Made at Fada)
37.196 Coil F.M. R.F. (Made at Fada)
37.193 Coil B.C. Loop
77.128 Crystal
77.125 Dial Plate
77.126 Dial Pointer
77.152 Dial Scale
77.5 Dial Cord
77.4 Dial Spring
77.124 Vernier Drive
97.138 Baffle Speaker
97.141 Grille Silk
97.130 Back
97.131W Cabinet (Walnut)
97.131V Cabinet (Ivory)
97.142 Metal Grille
107.24 Speaker with Trans. \& Bracket 6" PM
117.24 Ballast Tube
132.9 Ceramic Trimmer $3-12 \mathrm{mmf} \mathrm{NPO}$
142.45V Knob Band Selector (Ivory)
142.45W Knob Band Selector (Walnut)
142.46 V Knob Tuning (Ivory)
142.46W Knob Tuning (Walnut)
142.47W Knob Volume (Walnut)
142.47V Knob Volume (Ivory)
142.48W Knob Tone AC-On-Off (Walnut)
142.48V Knob Tone AC-On-Off (Ivory)

6AL5
Selenium

## ALIGNMENT PROCEDURE

No attempt should be made to realign the various circuits until all other causes have been checked, unless the condition is so obvious as to indicate that realignment is necessary. Then proceed as follows:
Remove chassis from cabinet, turn on tuner and allow at least 10 minutes "warming up" period.
Use a standard V.T.V.M. with zero center setting.
Use an A.M. signal generator with no modulation, taking hormonics if fundamentals are not available.
Keep signal generator attenuated so as to maintain a 3 V reading.

Receiver Dial at:	Signal Generator Frequency	Signal Generator Connected to:	V.T. V.M.   Connected to:	Reter to chassis Layout for location of trimmers.
$\begin{aligned} & 98 \mathrm{MC} \\ & \text { 1. } \end{aligned}$	10.7MC	Control Grid Pin \#l 6BA6 (2nd I.F.) Socket Series with 01 cond.	Across the (2) 22000 ohm Resistors Pin \#2 6AL5, Marked X.	Adjust L1, L2 for Maximum Output.
$\text { 2. } 98 \mathrm{MC}$	10.7MC	Control Grid Pin \#7 6BE6 Socket Series with 01 Cond.	"	Shunt L4 with a 680 ohm $1 / 2$ W carbon \& adjust L3 for maximum output.
$\text { 3. } 98 \mathrm{MC}$	10.7MC	"	"	Shunt L3 with a 680 ohm $1 / 2$ W carbon \& adjust $L 4$ for maximum output.
$\text { 4. } 98 \mathrm{MC}$	10.7MC	"	"	Adjust L5, L6 \& Ll for maximum output.
$\begin{aligned} & \quad 98 \mathrm{MC} \\ & 5 . \end{aligned}$	10.7MC	"	Ground lead of V.T. V.M. to point A on schematic, and probe to point B.	Adjust L2 for zero output. (Check zero setting of V.T. V.M.) Meter should register reverse when slug is rotated through zero output.
Variable Condenser Fully open. 6.	109MC	Terminals 1 \& 2 in series with (2) 130 ohm carbon $1 / 2$ W resistors.	Same as Step \#l	Adjust Tl for maximum output "Top" peak on trimmer.
Variable Condenser Fully closed 7.	87 MC	"	"	Adjust L7 for maximum output.

Repeat steps 6 \& 7 until L7 requires no further adjustment.
8

98 MC	98 MC	Same as step \#6	Same as Step \#1	Adjust L8 \& L9 for maximum   output.


MODEL 1005 FADA RADIO \& ELECTRIC CO., INC.


FADA RADIO \& ELECTRIC CO., INC.
MODEL 1005

## ALIGNMENT PROCEDURE

No attempt should be made to realign the various circuits until all other causes have been checked, unless the condition is so obvious as to indicate that realignment is necessary. Then proceed as follows:
Volume Control full on.
Low range A.C. meter connected across voice coil to indicate output.
Keep signal generator attenuated so as to maintain $1 / 2$ scale reading on output meter.
Make certain that dial pointer is exactly horizontal when variable condenser is fully meshed.

$\begin{aligned} & \text { Receiver } \\ & \text { Dial at: } \\ & \hline \end{aligned}$	Signal Generator	Dummy   Antenna	Connect Signal Generator to:	Hefer to Chossis Layout for Location of Trimmers
Full Open $2$	Exactly 456 KC	.1 MF	Control Grid 12BE6 Tube (Top) Rear Section Variable Condenser	Adjust for Minimum Output   T5 Note: On later production this trimmer is eliminated.
$3^{\begin{array}{l} \text { Full } \\ \text { Open } \end{array}}$	$\begin{aligned} & \text { Exactly } \\ & 1680 \mathrm{KC} \end{aligned}$		Radiating Loop ( $1 / 2$ meter) $20^{\prime \prime}$ from Receiver	Ādjust for Maximum Output T6
$\begin{aligned} & \text { Approx. } \\ & 1500 \mathrm{KC} \\ & 4 \end{aligned}$	$\begin{aligned} & \text { Approx. } \\ & 1500 \mathrm{KC} \end{aligned}$		Radiating Loop ( $1 / 2$ meter) $20^{\prime \prime}$ from Receiver	Adjust for Maximum Output T7
Approx. 600 KC 5	Approx. 600 KC		Radiating Loop ( $1 / 2$ meter) $20^{\prime \prime}$ from Receiver	Check tracking and bend slotted end plate (rear section) of variable if necessary.



MODEL 1005
FADA RADIO \& ELECTRIC CO., INC.


12.4	Tubular Condenser .005 mf 600 V
12.6	Tubular Condenser .01 mf 400 V
12.9	Tubular Condenser 03 mf 400 V
12.11	Tubular Condenser 05 mf 200 V
12.12	Tubular Condenser 05 mf 400 V
17.21	Mica Condenser $100 \mathrm{mmf} \pm 10 \%$
17.22	Mica Condenser $220 \mathrm{mmf} \pm 10 \%$
22.19	3.Section Electrolytic Condenser $30-40-20 \mathrm{mf} \mathrm{l} 50 \mathrm{~W} . \mathrm{V}$
27.20	Variable Condenser
37.57	Oscillator Coil
37.54	Loop Antenna \& Back
37.61	Input I.F. Transformer complete
37.22	Output I.F. Transformer complete
52.1	Volume Control w/switch
72.1	Power Cord (Approved)
77.78	Dial Pointer
77.92	Dial Scale (Calibrated)
97.71	Cabinet - state color
142.25	Cabinet Knobs - state color
97.80	Cabinet Handle - state color
107.19 T	4"P.M. Speaker with Transformer
107.19	4" P.M. Speaker less Transformer
42.2	Speaker Transformer for Above
117.1	30 ohm l W. Resistor

Tubes:

Osc. Converter	12BE6	Power Output	50B5
I.F. Amplifier	12BA6	Rectifier	35W4

Det. Avc. A.F. 12AT6

FARNSWORTH PAGE 19-1

©John F. Rider

MODELS ET-067BRV, FARNSWORTH TELEV. \& RADIO CORP.
CHASSIS C-172;
ET-667BRX, CHASSIS
C-164; ET-668WTV,
CHASSIS C-172;
ET-668WTX, CHASSIS
$\mathrm{c}-164$


MODELS ET-607BRV, FARNSWORTH TELEV. \& RADIO CORP.
NHASSIS C-172;
ET-667BRX, CHASSIS
C-164; ET-668WTV,
CHASSIS C-172;
c-164


## EQUIPMENT AND PROCEDURE FOR ALIGNMENT

An output meter and a signal generator are required for proper alignment of these sets. The signal generator should be calibrated at the following points: $455 \mathrm{Kc} ., 600 \mathrm{Kc}, 1000 \mathrm{kc} ., 1500 \mathrm{Kc} ., 3.5 \mathrm{Mc} ., 8$ $\mathrm{Mc} ., 9 \mathrm{Mc}$. and 20 Mc . All adjustments should be made with the volume control set for maximum, keeping the signal generator output as low as possible to prevent . IVC action and incorrect settings.

Connect the low side of the signal generator to the ground terminal on the chassis through a . 1 Mff condenser. Connect the high side of generator to antenna terminal through dummy load of 200 MMF for broadcast band and a dummy load of 400 ohms for shortwave.

STEPS	DUMMY ANTENNA	$\begin{array}{\|c} \text { SET } \\ \text { GENERATOR } \\ \text { AT } \end{array}$	$\begin{gathered} \text { SET GANG } \\ \text { AT } \end{gathered}$	ADJUST	LOCATED	TO   OBTAIN
1	SET VOLUME CONTROL, AT MAXIMUM				Top of I.F. Trans.	Maximum Output
2	Broadcast   200 MMF	455 Kc .	Minimum	2nd. I.F.   Trimmers		
3				1st. I.F.   Trimmers		
4			1000 Kc .	Wave Trap Trimmer	See   Illustration on page one	Minimum Output
5		1500 Kc .	1500 Kc .	1BC. Ose.   Trimmer		$\begin{aligned} & 5 \\ & 2 \\ & 0 \\ & 0 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$
6		1500 Kic .	1500 Kc .	B.C. RF   Trimmer		
7		CHECK POIN	R CALIBR	ION AT 1000	Kc. \& 600 Kc .	
8	S.W. 1   400 ohms	8 Mc .	8 Mc .	S.W. 1 Osc. Trimmer *	See   Illustration on page one	
9		8 Mc .	8 Mc .	S.W. 1 RF Trimmer **		
10			CHECK 3.5 M			
11	S.W. 2 400 ohms	20 Mc .	20 Mc .	S.IV. 2 ()sc Trimmer *		
12		20 Mc .	20 Mc .	$\text { S.IV. } 2 \mathrm{RF}$   Trimmer **		
13		CHECK 9 Mc .				

*When aligning the Shortwave oscillators use the peak found farthest out from maximum capacity on the oscillator trimmers.
** Use the peak nearest maximum capacity on the R.F. trimmers.



## SPECIFICATIONS

CIRCUIT
POWER.

Superheterodyne 105-125 volts A.C. 50 watts at 117 volts A.C $.540 \mathrm{Kc}-1625 \mathrm{Kc}$ Intermediate Frequency ГUBE COMPLEMENT

12SK7
12SA7
12SK7 ANTENNA SPEAKER
RECORD CHANGER
RF Amplifier
Converter-Oscillator
IF Amplifier
35L
35L6GT
35Z5GT
Built-in loop (connection for external antenna)
Alnico \#5 PM--6 x 9 Elliptical
Type P-73

## ALIGNMENT OF THE RECEIVER

## EQUIPMENT REQUIRED

Signal generator, calibrated at $455 \mathrm{Kc}, 600 \mathrm{Kc}$, and 1500 Kc .

Output Indicator
Insulated Screw Driver
PRELIMINARY INSTRUCTIONS
Volume control is set to maximum. Keep the signal generator output as low as possible to
prevent A.V.C. action and incorrect alignment. The use of an excessively strong signal is almost certain to produce misalignment.

Connect the high side of the signal generator to one side of the loop primary. Connect the other side of the primary to the B-lead. The other side of the signal generator should then be connected to the B-lead.

TABULATION FOR ALIGNMENT

Steps	Connect Signal Generator	Set Generator At	$\begin{gathered} \text { Set Gang } \\ \text { At } \end{gathered}$	Adjust	Located	To Obtain
1	Set Volume Control For Maximum Output					
2	To Loop Primary	455 Kc .	Minimum Capacity	2nd I. F. Trimmers	Top of I.F.   Transformer	MaximumOutput
3				1st I. F.   Trimmers		
4		1500 Kc .	1500 Kc .	Osc.   Trimmer	On Tuning Condenser	
5		1500 Kc .	1500 Kc .	Ant. Trimmer	On Tuning Condenser	
6	Check Pointer Calibration at 600 Kc .					

MODEL K-262P FARNSWORTH TELEV. \& RADIO CORP.


FARNSWORTH PAGE 19-9


Ref. No.	Part No.	DESCRIPTION
1	77185	150 ohm resistor
2	77170	470 ohm resistor
3	77168	4700 ohm resistor
5	77246 77169	15K ohm resistor
6	77178	220 K ohm resistor
7	77173	470 K ohm resistor
8	77171	2.2 Megohm resistor
9	77223	3.3 Megohm resistor
10	47177	6.8 Megohm resistor
11	25182	.1 mfd tubular cap., 200 volts
12	25494	.08 mfd . tubular cap., 200 volts
13 14	25181 25195	. 05 mfd tubular cap., 200 volts
15	25186	. 01 mfd tubular cap., 400 volts
16	25193	47 mmfd . mica capacitor
17	25188	100 mmfd . mica capacitor
18	25187	240 mmfd mica capacitor
19	25022	Electrolytic Cond. $30 \mathrm{mfd} . \& 20 \mathrm{mfd} ., 150$ volt
20	114484	Tuning Capacitor Assembly
22	38706	Oscillator Coil Ass'y.
23	94267	Filter Choke
24	38322	1st I.F. Transformer
25	38324	2nd I.F. Transformer
26	78048	500 M Volume Control
27	94091	Output Transformer
28	81188	Speaker
29	27050	Line Cord
30	22198	Phone Accord
31	22169	Pickup Cable
32	90273	Band Suritch
34	38984 42186	Loop Antenna Ass'y,
	42186 22199	Pilot Lamp Mazda 47 Speaker Cable
	07692	Speaker Cable Ass'y.
	59183	Dial Pointer ...
	05047 92192	Drive Cord Assy.
	31265	Drive Cord
	18058 59476	Dial Background Ass'y.
	59476	Knob
	H-313-2	Cabinet and Packing-Mahogany Cabinet and Packing-Walnut
	H-313-3	Cabinet and Packing-Maple.

All Resistors are $1 / 2$ watt, $20 \%$ Tolerance


Model	Cabinet	Record Changer	
118P4	Georgian	41E-MP	
116P4	Sheraton	41E-MP	
$31 P 4$	Hepplewhite	P-71	
30P4	French Provincial	P-71	"Whistles" and Heterodynes
29P4	Early American	P-71	Check IF rejection ratio by application of signal
24P4	Hepplewhite	P-71	generator at the intermediate frequency to the
21P4	Chippendale	P-71	antenna terminals.
$\begin{aligned} & 116 \mathrm{~N} 4 \\ & 114 \mathrm{~N} 4 \end{aligned}$	Early Georgian	Capehart 41 E	A defective wave trap will cause heterodynes.   Low Volume
31N4	Sheraton	Panamuse P-63	If low volume of N4 combinations is experi-
26N4	Modern	P-63	enced, we suggest the following:   1. Test tubes
24N4	Hepplewhite	P-63	
19N4	Hepplewhite	P-63	2. Check alignment of the receiver.

## RECEIVER SPECIFICATIONS



POWER AND VOLTAGE REQUIREMENTS
185 Watts at 117 Volts
60 Cycles 105 to 125 Volts. AC

## DIAL SCALE

The AM Band conventionally calibrated in Kilocycles
The conversion of FM Dial Scale readings to frequency may be made from the following analysis:

The FM band extends from 88 to 108 mc ., each station channel 200 kc ., in width, Channel 201, that lowest in frequency, has center frequency at 88.1 mc . Each succeeding channel is successively 200 kc ., higher, so channel 202 is centered at 88.3 ( 200 kc . higher) channel 203 is centered at 88.5 mc ., etc.

FM Band is marked with the new Channel Numbers


## ANTENNAS

P4 \& N4 series instruments both incorporate two internal antennas; a loop antenna used in broadcast band reception and a folded-dipole antenna used for FM reception.

These internal antennas are intended for use only in the presence of adequate field strength, as in large metropolitan areas where local stations supply the majority of desired programs. Neither a loop nor a dipole element which is within the confines of the cabinet can be considered as efficient
signal pickup devices and, should field strength requirements be not fulfilled, it will be necessary, for satisfactory reception, to install an efficient outside antenna.

Both the loop and the dipole (internal or external) antennas exhibit certain characteristics of directivity, with which the experienced serviceman is familiar, which should be borne in mind when locating the receiver (or external antenna) in the home.

## MODIFICATION KIT NO. 41140

The N4 tuner modification kit no. 41140 was issued for the purpose of revising the Phono Pre-Amplifier curcuit of the tuner, in the field. This was so that P-71 record changers, using the variable reluctance pickup could be incorporated in N4 instruments already in the field The kit is also applicable to N 4 tuners that are used with the 41 E record changers. A kit was also issued for the purpose of revising 41 E changers to equal the new 41 E-MP, by addition of the variable reluctance pickup, the Noise Eliminator and various other modernizations.

The N4 tuner which has been modified, following the instructions accompanying kit no. 41140, is the electrical equivalent of the P4 tuner

If the N 4 tuner is of early production (C-175) then the circuit is different

N4 tuners that have not been modified by modification kit no. 41140 will have the Phono modification kit no.

## ALIGNMENT OF THE RECEIVER

Two methods of alignment of P4 \& N4 receivers are presented. Service shops possessing a suitable sweep generator and oscilloscope will effect a considerable saving of time by using the first method.

The alternate method using an amplitude modulated signal generator is preferred by some servicemen. This method requires careful attention to details to attain accurate alignment.

## GENERAL INSTRUCTIONS

## 1. Adjustment of Dial Pointer

## ALIGNMENT

1. Equipment required will be an oscilloscope, a frequency modulated signal generator covering the range 87.5 mc to 108.5 mc on fundamentals, a sweep generator producing a signal of 10.7 mc and sweeping at least 150 kc each side of 10.7 mc , and an outpur meter.
2. The vertical or " $Y$ " axis terminals of the oscilloscope should be connected between pin 3 of the 6 H 6 discriminator and ground. The sweep voltage of the sweep generator should be fed to the horizontal or "X" axis terminals of the ocilloscope. The 10.7 mc output of the sweep generator should be fed into the grid of the 6SF7 tube through a condenser of approximately 3300 mmfd .
3. Remove the negative lead of the 4 mfd . electrolytic from pin \#3 of 6H6 socket. Remove 6SL7 tube from socket. Turn the set on and turn both the tone control and the volume control all the way to the right. Detune the secondary of the third FM IF transformer by turning the bottom slug screw out as far as possible. Ad just the primary top slug acrew, until pattern (A) appears on the oscilloscope. Adjust the secondary, bottom slug screw, until pattern " $B$ " is obtained on the oscilloscope and until both sides of this pattern are symmetrical.
4. Remove the 10.7 mc output of the sweep

To prevent misalignment, do not proceed with alignment until dial pointer has been checked for correct mechanical adjustment

## 2. Test Signal Conditions

All alignment shall be done with only sufficient signal amplitude to provide satisfactory signal to noise ratio, and acceptable pattern size on oscilloscope or readable output on output meter. The use of excessively strong signal is almost certain to produce misalignment.
output transformer. Tune receiver to channel 300 FM dial. With signal generator set at 107.9 mc adjust oscillator trimmer condenser, third from front, for maximum reading on output meter. Set signal generator to 87.9 mc and tune receiver to channel 200 on FM dial. Adjust oscillator coil screw, third from front, (see chassis layout) for maximum reading on output meter. Recheck os cillator setting for channel 300 .
8. Tune signal generator and receiver to 105 mc (channel 285 approx.). Adjust converter signal
grid trimmer condenser, second from front, for maximum reading on output meter. Tune signal generator and receiver to 92 mc , (channel 220 approx:) and adjust converter coil screw, (second from front), to maximum reading on output meter. Recheck converter trimmer setting at 105 mc (channel 285 approx.).
9. Repeat operations of paragraph (7) for antenna trimmer condenser and coil. This completes FM RF alignment.


ALTERNATE FM ALIGNMENT PROCEDURE

## Necessary Equipment:

Signal generator
Vacuum tube voltmeter or DC voltmeter 20,000 ohms per volt.

FM IF ALIGNMENT
Adjust dial pointer as outlined in section VII
Connect voltohmyst from ground to pin \#3 of 6 H 6 . Connect generator tuned to 10.7 mc to pin \#4 on 6SG7. Turn secondary slug of third FM IF (closest to chassis) out as far as it will turn. Tune primary of third IF for maximum negative voltage. Tune primary and secondary of the second FM IF for maximum output. Move generator to pin \#8 of 6 SB7Y and tune primary and secondary of first FM IF for maximum output. Next tune secondary of third FM IF to balance to zero volts, using high resistance voltmeter connected to middle terminal of FM IF transformer (tertiary winding)

## FM RF ALIGNMENT

With high resistance voltmeter connected between ground and pin $\# 3$ on 6 H 6 socket, connect generator between ground and small pin of dipole antenna socket. Use very short leads on generator and a 300 ohm resistor as a dummy antenna. Set generator to 108.5 mc and gang to minimum and adjust oscillator trimmer for maximum voltage. Go back and check low frequency end. Next set generator at 92 mc , tune in signal on receiver, approximately 220 on dial. Adjust converter and antenna slug for maximum voltage output. Set generator at 105 mfd . Tune in signal on receiver, approximately 280 on dial. Tune converter and antenna trimmer for maximum voltage output. Check adjustment of antenna and converter slugs at 92 mc .

## ALIGNMENT INSTRUCTIONS FOR AM BAND

An output meter and a signal generator calibrated at $455 \mathrm{Kc} ., 600 \mathrm{Kc} ., 1500 \mathrm{Kc}$. and 1600 Kc ., are required to properly align these receivers on AM band. Keep the output of the signal generator as low as possible to prevent AVC action and false settings. Connect the high side of the generator to the blue wire found at rear of set and low side to the white wire.

STEPS	DUMMY ANTENNA	SET GENER ATOR AT	SET GANG AT	ADJUST	LOCATED	
1	SET VOLUME AND TONE CONTROLS AT MAXIMUM					
2	. 1 Mfd . to converter RF grid	455 Kc .	Minimum	$\begin{aligned} & \text { 2nd IF } \\ & \text { Trimmers* } \end{aligned}$	Top of IF Transformers	3343333
3				$\begin{aligned} & \text { 1st IF } \\ & \text { Trimmers** } \end{aligned}$		
4		1600 Kc .	1600 Kc.	B.C. Osc. Trimmer	See Trimmer Layout	
5	200 MMF .	1500 Kc .	1500 Kc .	B.C. RF   Trimmer**	See Under Chassis	
6		1500 Kc .	1500 Kc .	B.C. Ant. Trimmer	On Loop	$\bigcirc$
7		600 Kc .	600 Kc . Rock Gang	600 Kc . Padder	See Trimmer Layout	袻
8		600 Kc .	600 Kc .	Peak loading coil slug	See Trimmer Layout	
9	Recheck 1500 Kc .					

[^3]
## RECEIVER RF-IF COILS



Letters on terminals of coils correspond to similarly lettered terminals on the coils shown in the circuit diagram.

## MAINTENANCE OF THE TUNER



1. Adjustments of Dial Pointer
a. Tune teceiver to extreme low frequency end of dial and set pointer to index at the last calibration mark of either scale
b. Carefully determine that the gang condenser plates are completely meshed with the pointer in this position.

Warning: This adjustment is extremely important if subsequent alignment is to provide accurate calibration.

NOTE: The pointer remains dark when the band switch is in the phonograph position.
c. Tune the dial across the entire range and observe that the pointer line is a single sharply defined line of uniform brilliance. If this is not obtained, it indicates that mechanical adjustment of the spacing of the light-box from the dial glass is necessary.

## 2. "Sticking" Light-Boxes

The traveling light-box may be sticking, causing dial slippage. This may be due to (a) lubricant on rods, (b) bent rods, (c) rough rods, (d) misalignment of rods.
(a) The rods must be free of all lubricants.

Lubrication, momentarily helpful, causes gum to form at the light-box mounting, resulting in "sticking." Clean well with carbon tetrachloride.
(b) Bent rods must be accurately straightened or replaced.
(c) Rough portions of the rod surface should be cleaned with crocus cloth until perfectly smooth.

```
3. Dial Glass Plate
Paint scratched. This
``` is due to the light-box as-
sembly contacting the painted surface. Adjust the horizontal positioning of the light-box for optical focus of the projected line of light, so that (1) focus is maintained throughout the entire path of travel, (2) front of light-box assembly does not at any point touch the scale. The clamps which hold the glass rod in place may be clipped back if necessary.

Touch-up paint may be obtained at automobile service stations.

\section*{4. Control Knobs-Eccentric-Loose-How}

\section*{to Remove}
A. Knobs eccentric (wobbly motion) or loose.

This may be caused by pinching together the two halves of the split-shaft end. One-half section becomes bent toward the axis of the shaft to a greater degree than does the other. Re-form the split portions of the shaft so that they are symmetrical with respect to the axis of the shaft.

\section*{B. To remove control knobs.}

Loop a heavy cord behind the knob, bringing out the two ends at opposite sides of the knob. Pull both ends firmly. If the cord (both ends) is brought out on one side only, there will be a tendency to cause the difficulty of 4 A , above.

\section*{5. Microphonics and Feedback}
A. Microphonic tubes.
B. Check the variable condenser stator plates to ascertain whether they are loose. If so, apply a laquer cement to the clamp which holds the stator plates to the insulating material.
C. "Twin lead" to antenna binding posts may be stapled to cabinet in taut condition. whereby feedback is introducted mechanically. Re-staple the twin lead, leaving somewhat free and loose.
D. On FM, microphonics and howl may be caused by the lead from stator plate to sub-chassis assembly being taut. Re-solder with less tension in the flat ribbon lead.

NOTE: Oscillator trimmer may have to be readjusted.
E. If howl on the FM position persists, the following may alleviate the condition: Sponge rubber bits added as shown in sketch. Rubbers must be trimmed so that they will not touch rotor plates when the condenser is fully-meshed. Observe dial calibration for any change resulting from increased capacity.

MODELS N4, P4 FARNSWORTH TELEV. \& RADIO CORP. Series, Capenart



Early production N4 tuners used a two gang broadcast tuning capacitor and wave trap connected as indicated in the RF portion of the schematic reproduced above:
- John F. Rider



John F. Rider
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|l|}{MODELS N4, P4, FARNSWORTH TELEV. \& RADIO COR
Series, Capehart} \\
\hline \multicolumn{13}{|l|}{} \\
\hline \multicolumn{13}{|l|}{\begin{tabular}{l}

\(\qquad\) \\
 \\
 \\
 \\
 \\

\end{tabular}} \\
\hline \multicolumn{13}{|l|}{\multirow[t]{3}{*}{}} \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}
- John F. Rider

SECTION I
RECEIVER FREQUENCIES
Broadcast Band
Frequency Modulation Band
Intermediate Frequency AM Band
FM Band

TUBE COMPLEMENT
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|c|}{P7} & P9 \& P10 \\
\hline Type & Application & Type & Application \\
\hline 6AG5 & AM-FM, RF Amplifier & 6AG5 & AM-FM, RF Amplifier \\
\hline 12 AT 7 & FM Oscillator-Mixer & 12 AT 7 & FM Oscillator-Mixer \\
\hline 6BE6 & AM Converter-Osc. & 6BE6 & AM Converter-Osc \\
\hline 6 SK 7 & 1st IF Amplifier. FM-AM & 6SK7 & 1st IF Amplifier, FM-AM \\
\hline 6SK 7 & 2nd IF Amplifier, FM-AM & 6SK7 & 2nd IF Amplifier, FM-AM \\
\hline 6SK 7 & 3rd IF Amplifier, FM & 6SK7 & 3rd IF Amplifier. FM \\
\hline 6 T 8 & FM-AM Detector. AVC and 1 st Audio Amp. & 6 T 8 & FM-AM Detector, AVC and 1st Audio Amp. \\
\hline 6SQ7 & Phase Inv. and Gas Gate & 6V6GT & Power Amplifier \\
\hline 6V6GT (2) & Push Pull Power Amps. & 5Y3G/Gl' & Full Wave Rectifier \\
\hline 5Y3G/GT & Full Wave Rectifier & 6 SC 7 & Phono. Pre-Amplifier \\
\hline 6 SC 7 & Phono Pre-Amplifier & & \\
\hline
\end{tabular}

6SC7. Phono Pre-Amplifier
* Used only in P7 and P9 instruments.

Total Number Of Tubes
P7-12 tubes \(\quad\) P9—10 tubes P10—9 tubes
 POWER AND VOLTAGE REQUIREMENTS
Power Consumption-105 watts at 117 volts. Voltage- 105 to 125 volts at 60 cycles per second.

\section*{ANTENNAS--INTERNAL AND EXTERNAL}

\section*{SECTION III}

Two antennas are provided within the cab-inet-a Capehart Low Impedence Loop and a Folded Dipole, constructed of 300 ohm "twin lead."

The loop antenna provides signal pickup for broadcast-band AM reception. This antenna is a directional device (its radiation pattern would show greatest signal pickup directly in front and in back of the loop, with very little if any pickup from its sides). Therefore, the reception of a desired weak signal may be improved by swinging the loop to a new position. The loop is fastened to the inner cabinet wall by means of two hinges which permit it to be adjusted. The built-in loop normally provides satisfactory reception, however in locations remote from broadcasting stations or where poor receiving conditions exists, an outdoor antenna will improve reception.

By shorting terminals 3 and 4 on the antenna terminal strip on the rear of the chassis, the outdoor FM dipole (if used) can be utilized as an outdoor antenna for AM reception. However, if a separate AM outdoor antenna is to be used the lead-in from the antenna should be connected to terminal 4 on the antenna terminal strip, on the rear of the chassis.

The half-wave folded dipole within the cabinet is for FM reception, connection being made by a section of 300 ohm transmission line. It should be borne in mind that the dipole is also a directional device. Should the reception of a desired FM station be inadequate after installation in the home, it may be possible to correct the condition by relocating the receiver in the room.

Internal antennas are intended for use only in the presence of adequate field streng'h as
in large metropolitan areas where local stations supply the majority of desired programs. Neither a loop nor a dipole element which is confined within a cabinet can te considered as efficient signal pickup devices, therefore if field strength requirements are not met. it will be necessary for satisfactory reception, to install an efficient outside antenna.

When an outside dipole is used, disconneet the transmission line to the internal dipole from the Fahenstock clips on the rear of the cabinet
and connect the transmission line from the outside dipole to these clips.

The same chassis as used in the P7 instruments is also used as an AM-FM chassis in Capehart Television-Radio-Phono Combinations. In this case an outside television antenna will be connected to the clips at the rear of the cabinet and it will be necessary to connect the antenna terminals on the video chassis to terminals 1 and 2 on the oreceiver antenna terminal strip.

\section*{MAINTENANCE OF THE RECEIVER}

\section*{SECTION IV}

\section*{1. Adjustment of Dial Pointer}
a. Tune receiver to extreme low frequency end uf dial and set pointer to index at the last calibration mark of either scale.
b. Carefully determine that the gang condenser plates are completely meshed with the pointer in this position.

Warning: This adjustment is extremely important if subsequent alignment is to provide accurate calibration.

\section*{2. Dial Slippage}
a. The dial pointer may te sticking. causing dial slippage. This may be due to 'a l lubricant on rod, (b) tent rod. (c) rough rod.
(a) The rod must be free of all lubricants.

Lubrication, momentarily helpful. causes gum to form at the pointer mounting. resulting in "sticking." Clean well with carbon tetrachloride.
(b) Bent rods must be accurately straightened or replaced.
(c) Rough portions of the rod surface should be cleaned with crocus cloth until perfectly smooth.

\section*{3. Replacing Miniature Tubes}

Inadvertently inserting miniature tubes in their sockets incorrectly will result in damage to the tube pins. Therefore extreme care should te taken to see that the tuke pins are properly aligned with the tuke socket before applying pressure to insert the tube. As an aid to the serviceman we have placed an indicating mark on the miniature tube sockets to show the correct position for the center of the separation space between the first and last pins on the tube.

In this manner it is posible to line-up the tube with the socket before exerting pressure.
4 Control Knobs-Eccentric-Loose-How to Remove
a. Knobs eccentric (wobbly motion) or loose.

This may te caused by pinching together the two halves of the split-shaft end. One-half section becomes bent toward the axis of the shaft to a greater degree than does the other. Re-form the split portions of the shaft so that they are symmetrical with respect to the axis of the shaft.
b. To remove control knobs.

Loop a heavy cord behind the knob, bringing out the two ends at opposite sides of the knob. Pull both ends firmly. If the cord (both ends) is brought out on one side only. there will be a tendency to cause the difficulty of 4 a , above.
5. Microphonics and Feedback
a. Microphonic tubes.
b. Check the variable condenser stator plates to ascertain whether they are loose. If so. apply a laquer cement to the clamp which holds the stator plates to the insulating material.
c. "Twin lead" to antenna binding posts may be stapled to cabinet in taut condition, whereby feedback is introduced mechanically. Re-staple the twin lead. leaving somewhat free and loose.
d. On FM, microphonics and howl may be caused by the lead from stator plate to subchassis assembly being taut Re-solder with less tension in the flat ribbon lead.

NOTE: Oscillator trimmer may have to be readjusted.

\section*{REMOVING CHASSIS FROM CABINET}

Following is the suggested procedure to be employed in removing the receiver and preamplifier chassis from the cabinet for service purposes.

\section*{Model 35P7}
1. Remove the knobs.
2. Disconnect the A.C. cable and phono input cable from the record changer. To do this simply remove the two palnuts in the front of the record changer slide drawer and lift the drawer up just enough to reach in and remove the plugs from the power socket and the phono output jack on the changer. It will be necessary to unfasten the cables from the changer slide where they are held in place. Upon reassem-
blying the instrument, be certain that these cables are again fastened so that they will not tecome entangled in the changer mechanism.
3. Remove the Phono Pre-amplifier chassis by removing the three mounting screws which fasten it to the cabinet wall.
4. Remove the pre-amp output cable from the phono input jack on the receiver chassis and disconnect the pre-amp power cable.
5. Disconnect the speaker cable and antenna leads.
6. Remove the two mounting bolts in rear of the receiver chassis and slide the chassis out on the chassis mounting board. The mounting board will have to be removed to get at the underside of the chassis.

\section*{Models 32P9 and 33P9}
1. Remove the knobs.
2. Disconnect the a.c. cable and phono input cable from the record changer. The underside of the changer is easily accessible from the rear of the cabinet. Both cables are fastened to the inner wall of the cabinet by means of insulated staples, it will be necessary to remove these staples. Upon reassembling the instrument, be certain that these cables are again fastened as they were.
3. Remove the phono preamplifier chassis by removing the three mounting screws which fasten it to the cabinet wall.
4. Remove the pre-amp output cable from the phono input jack on the receiver chassis and disconnect the pre-amp power cable.
5. Disconnect the speaker cable and antenna leads.
6. Remove the molding from around the glass escutcheon and remove the escutcheon.
7. Remove the chassis mounting bolts. (The chassis is mounted on the wall of the cabinet. The bolts, which are accessible from the record
storage compartment, are concealed by plug buttons.) The two top bolts are to be removed first, then loosen the bottom bolt slightly. Grasp the chassis from the top, preferably by placing the fingers under the dial background panel, remove the final mounting bolt with the other hand and then lower the chassis to the bottom of the cabinet.

\section*{Model 34P10}
1. Use the same procedure as described for models 32P9 and 33P9 with exception of steps 3 and 4. (The 34P10 does not use the phono preamplifier.)

NOTE: It is not necessary to remove the chassis from the cabinet to replace tubes or dial lights or to remove tubes for testing in any of these models. All tubes are accessible from the rear of the cabinet in the 35P7. In the other models there is a removable panel in the partition separating the receiver and record changer compartments. Tubes that are not accessible from the rear of the cabinet are accessible through the opening provided by this panel.

\section*{PARTS IDENTIFICATION}

\section*{SECTION V}

\section*{RF. OSCILLATOR AND MIXER COILS}


MODELS P7, P9, PIO,FARNSWORTH TELEV. \& RADIO CORP. Series, Capehart



Q Bohn F. Riter

\section*{ALIGNMENT OF AM BAND}

\section*{SECTION VI}

\section*{EQUIPMENT REQUIRED}

A calibrated RF Signal Generator having fundamental frequencies of from 455 KC to 1620 KC.
A Voltohmyst. or some such high resistance type AC voltmeter.

An insulated screwdriver.
GENERAL INSTRUCTIONS
For IF alignment the signal generator is to te connected through a .1 mfd . capacitor to the grid (pin 7 ) of the 6BE6 AM converter tube

For RF alignment the signal generator is to ke connected through a .1 mfd . capacitor to the RF section of the gang tuning capacitor.

Fcr adjustment of the -wavetrap the 455 KC signal should be connected to terminal 4 on the Antenna Terminal Strip on the rear of the chassis. The wavetrap is mounted on the loop antenna.

The AC voltmeter can be connected either across the voice coil of the loud speaker or if the meter range is high enough, from plate to plate of the output tubes, using a .1 mfd . capacitor for isolation.

TABULATION FOR AM ALIGNMENT
See page 11 for Trimmer locations

* This adjustment should be made while gang is rocked.
\(\dagger\) After any adjustment of oscillator padder, repeat steps 4 to 8 inclusive.

©John F. Rider

©John F. Rider

LOCATION OF TRIMMERS
SECTION VIII


Top View of P9, P10 Chassis


Bottom View of P9, P10 Chassis

\section*{FM ALIGNMENT}

\section*{SECTION IX}

This section presents information on two methods of alignment of Capehart receivers. Those service shops possessing a suitable Sweep Generator and Oscillograph will effect considerable saving of time, as well as assuring more precise alignment, by using the first method, the sweep generator method. This is the method used in factory alignment.

An alternative method, using an amplitudemodulated signal generator, is presented in the second portion of this section, which covers alignment of FM, IF and RF stages.

The conversion of FM dial scale readings to channel numbers can be made, with the help of the charts shown here, from the following analysis:

The FM band extends from 88 to 108 mc ., each station channel 200 kc . in width. Channel 201, that lowest in frequency, has center frequency at 88.1 mc . Each succeeding channel is successively 200 kc . higher, so channel 202 is centered at 88.3 ( 200 kc . higher), channel 203 is centered at 88.5 mc ., 206 at 89.1 mc ., etc.



These curves were obtained under ideal conditions and show curves to be expected. They should be duplicated as nearly as possible.
1. Equipment required: Oscilloscope, 10.7 MC Sweep Generator, Voltohmyst and RF Signal Generator.
2. Make connection from vertical deflection amplifier of oscilloscope to pin No. 2 of 6 T8 discriminator tube. Make certain that the 4MFD electrolytic condenser is disconnected from this same circuit. It is necessary that the lead to the oscilloscope be shielded, of low total capacity and connection to the receiver isolated by means of a 47 K resistor.
3. Connect Sweep Generator to last FM IF grid (pin 4 6SK7) through a 001 MFD coupling capacitor.
4. Connect a 350 mmf . capacitor across the discriminator secondary. Back out discriminator secondary slug (top slug) as far as it will turn. Align primary (bottom slug) to obtain a somewhat broad but single peaked curve. Then remove the 350 mmf . capacitor and tune the secondary to obtain a curve similar to figure 1. This does not constitute a final alignment of the discriminator, but is a convenient expedient to assist in IF alignment.
5. Shift connection of sweep signal generator to the grid of the second FM IF tube.

NOTE: As alignment moves from stage to stage, reduce input instead of reducing oscilloscope gain.
6. Align the third FM IF transformer by
first turning the secondary slug all the way out, adjust the primary and then the secondary for a symmetrical flat top pattern, as in Fig. 2.
7. Align second IF transformer in same manner as described in Section 6. Note that the width of the nose of the curve is the same as kefore, but the sides have become steeper as in Fig. 3.
8. Connect the signal generator to the grid of the mixer tube. in series with a 10,000 resistor and a .001 MFD capacitor or loosely couple by stray capacitance of an insulated wire.
9. Align first FM IF Transformer in the same manner as in Section 6. Note that the sides of the curve have further steepened, but that the nose of the curve has retained approximately the same width as in Fig. 3.
10. Connect 4 MFD electrolytic capacitor, that was previously disconnected.
11. Connect oscilloscope to audio output terminal of the discriminator transformer
12. With sweep signal input to converter grid, align discriminator transformer for conventional discriminator pattern, as in Fig. 4.
15. Connect the signal generator to the mixer tube grid. With an unmodulated signal at 10.7 MC adjust the input to 190 microvolts. Connect a voltohmyst to the AVC line. Rock the signal generator until the peak is obtained on the voltohmyst. With a 190 microvolt input this peak should read -1 volt.

\section*{SIGNAL GENERATOR METHOD}

\section*{GENERAL INSTRUCTIONS}
a. Tune receiver to extreme low frequency end of dial and set pointer to index at the last calibration mark.
b. Carefully determine that the gang condenser plates are completely meshed with the pointer in this position.

WARNING: This adjustment is extremely important if subsequent alignment is to provide accurate calibration.
c. With the pointer at the extreme low end of the range, rotate band switch through all po-
sitions and note that the pointer line is accurately indexed on both the AM and FM bands.

Unless otherwise indicated, the receiver controls shall be set as follows during all alignment operations:
a. Set treble tone control to maximum treble position.
b. Set tass tone control to maximum bass position.
c. Set volume control to maximum.

\section*{FM IF ALIGNMENT}
1. Connect a voltohmyst or high resistance voltmeter on AVC line inegative lead to pin 2 of 6T8 and positive lead to chassis) through a .001 capacitor. Connect on AM signal generator. set at 10.7 MC , to the grid of the last FM IF amplifier. Connect output meter on voice coil of speaker.
2. Turn the secondary slug of the FM detector transformer itop slug) out as far as it will turn. Then. tune the primary bottom slug) for maximum output inegative voltage ' on the voltmeter.
3. Connect generator to grid of second FM IF amplifier (6SK7).
4. Detune the secondary of the 3rd IF transformer by turning out as far as possible
5. Tune the primary of the 3rd IF transformer for maximum voltage. next tune the secondary for maximum voltage.

NOTE: In each step do not use an input greater than necessary to give three volts AVC.
6. Connect signal generator to grid of first IF amplifier (6SK7).
7. Detune the secondary of the 2nd IF amplifier by turning out as far as possible.
8. Tune the primary of the 2nd IF for maximum voltage. next tune the secondary for maximum voltage.

9 . Connect the signal generator to the FM mixer grid 12AT7).
10. Tune the 1st IF transformer as in steps 7 and 8.
11. With the generator still connected to the FM mixer grid and modulated with 400 cycles, about 200 microvolts input. adjust the FM detector secondary slug for minimum output voltage on the output meter which is connected across the voice coil.

\section*{FM RF ALIGNMENT}
1. Equipment required:
a. RF Signal Generator. Range 88 to 108 MC .
b. Output Meter.
c. Insulated Screw Driver.
2. Connect RF signal generator in series with 330 ohm carbon resistor to "high" side of FM antenna socket. Connect output meter across voice coil of speaker.
3. Set tuning control for pointer to calibrate at 108 .
4. Apply 108 MC Signal.
5. Set converter and antenna trimmers at minimum capacity.
6. Adjust oscillator trimmer by tuning from maximum capacity to first signal that is heard, and peak for maximum output.
7. Adjust antenna and converter trimmers for maximum output.
8. Set tuning controls so dial pointer calibrates at 88 MC .

\section*{9. Apply 88 MC signal.}
10. Adjust oscillator. converter, and antenna slugs to maximum output.
11. Repeat operations 3 to 10 inclusive.

NOTE: The degree of adjustment required in the tuning of the oscillator slug will determine the number of times operations 3 to 10 must be repeated until no further gain in sensitivity is obtained.
12. Carefully tune across the entire \(F M\) band for the observance of the dead or weak spots that may be a resultant of improper alignment or defective components. This can be determined by carefully noting the degree of receiver noise. that is. high noise generally is accompanied by good sensitivity.
MODELS FARNSWORTH TELEV. \& RADIO CORP.
P7, P9, PlO, P7 INSTRUMENTS
Series, Capehart

\begin{tabular}{|c|c|c|c|c|c|}
\hline Ref. & & & \[
\begin{aligned}
& \text { Ref. } \\
& \text { No. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Part } \\
& \text { No. }
\end{aligned}
\] & escription \\
\hline No. & & Ins Carbon Description & 73 & 38959 & FM Mixer Coil Ass'y \\
\hline . 1 & 77181 & Ins. Carbon Res. 1 Meg. & 74 & 38960 & FM Osc. Coil Ass'y \\
\hline 2 & 77233 & Ins. Carbon Res. 1 K & 75 & 38961 & AM Conv. Coil Ass'y \\
\hline 3 & 77245 & Ins. Carbon Res. 68 & 76 & 38962 & AM Osc. Coil Ass'y. \\
\hline 4 & 77183 & Ins. Carbon Res. 33 K & 77 & 38963 & AM Loading Coil Ass'y. .-.-.---- \\
\hline 6 & 77173 & \begin{tabular}{l}
Ins. Carbon Res. 470 K \\
Ins. Carbon Res. 47 K
\end{tabular} & 78 & 13893 & Low Impedance Loop Antenna \\
\hline 6 & 77186 & Ins. Carbon Res. 220 & & & Assembly \\
\hline 8 & 77178 & Ins. Carbon Res. 220 K & 79
80 & 13869
95005 & Equalizer Ass y. (Pre-Amp Chassis) Bias Cell (Pre-Amp Chassis) \\
\hline 9 & 77508 & Ins. Carbon Res. 680 K (P10 only)- & 81 & 05150 & Dipole Lead and Plug Assembly -- \\
\hline 10 & 77169 & Ins. Carbon Res. 22 K & 82 & 80439 & 3 prong socket (FM dipole) -.-- \\
\hline 11 & 77236 & Ins. Carbon Res. 22 & 83 & 80469 & Speaker Plug (part of \#13897) -- \\
\hline 12 & 77182 & Ins. Carbon Res. 10 Meg . & 84 & 94235 & Output Transformer --..- \\
\hline 13 & 77174 & Ins. Carbon Res. 2701 W & 85 & 38996 & Wave Trap Coil .- \\
\hline 14 & 77492 & Ins. Carbon Res. 3.3 ohms 1 W .-- & 86 & 13892 & 12" PM Speaker \& Output Trans- \\
\hline 15 & 77167 & \begin{tabular}{l}
Ins. Carbon Res. 100 K \\
Molded Res. 1000 ohms, 400 ohms_
\end{tabular} & & & \\
\hline 17 & 77180 & Ins. Carbon Res. 10 K & 87 & 38898 & Osc. Series choke \\
\hline 18 & 77184 & Ins. Carbon Res. 2.2 K & & 31460 & Dial Escutcheon (32P9) \\
\hline 19 & 77246 & Ins. Carbon Res. 15 K & & 05143 & AM Dial Glass \\
\hline 21 & 77219 & Ins. Carbon Res. 47 ohms & & 31438 & FM Dial Glas \\
\hline 22 & 77022 & Ins. Carbon Res. 10 K 1 W & & 59495 & Tuning Knob \\
\hline 24 & 25273 & Ceramic Cap. 1500 mmf . & & 59508 & Band Switch Kno \\
\hline 25 & 25188 & Ceramic Cap. 100 mmf & & 59509 & Bass Tone Knob \\
\hline 27 & 25193 & Ceramic Cap. 47 mmf & & 31459 & Dial Escutcheon (33P9 \&34P10) \\
\hline 28 & 25299 & Mica Cap. 1500 mmf . & & 60428 & Washer \\
\hline 29 & 77223 & Ins. Carbon Res. 3.3 Meg . & & 05151 & Dipole Antenna Ass'y. \\
\hline & & (Pre-Amp Chassis) & & 15214 & Drive Shaft Assembly \\
\hline 30 & 25492 & Ceramic Cap. 20 Mmf . & & 80456 & Miniature Tube Socket \\
\hline 31 & 25493 & Ceramic Cap. 50 Mmf & & 80479 & Miniature 9-pin Tube Socket \\
\hline 32 & 25497 & Ceramic Cap. 1 Mmf . & & 17213 & Dial Back Plate Ass'y. \\
\hline 33 & 25329 & Ceramic Cap. \(30 \mathrm{Mmf}\). ( N 750 ) & & 37609 & Plug Button 1" dia. \\
\hline 34 & 25427 & Ceramic Cap. 240 Mmf & & 55385 & Drive Shaft Bearing \\
\hline 35 & 25504 & Silver Mica Cap. 480 Mmf & & 62032 & Rubber Grommet (R.F. Chassis) -- \\
\hline 36 & 25196 & Tub. Paper Cap. \(05-600 \mathrm{~V}\). & & 80139 & Molded Octal Socket \\
\hline 37 & 25185 & Tub. Paper Cap . \(002-600 \mathrm{~V}\) & & 80239 & Molded Octal Socket \\
\hline 38 & 25184 & Tub. Paper Cap. .003-600V & & 58939 & 9-pin Min. Tube Shieldbase \\
\hline 39 & 25195 & Tub. Paper Cap . \(02-600 \mathrm{~V}\) & & 58940-2 & Tube Shield (9-pin Min) \\
\hline 40 & 25031 & Tub. Paper Cap . \(005-600 \mathrm{~V}\) & & 80494 & Bias Cell Mounting (Pre-Amp \\
\hline 41 & 25182 & Tub. Paper Cap . \(1-200 \mathrm{~V}\). & & & Chassis) \\
\hline 42 & 25194 & Tub. Paper Cap . \(01-600 \mathrm{~V}\) & & 80491 & 9-pin Min. Mica Tube Socket \\
\hline 43 & 25270 & Elect. Cap. 4 Mfd . 100 V & & & (12AT7) \\
\hline 44 & 25158 & Elect. Cap. 25 Mi.-25V & & 62172 & Rubber Grommet ............-. \\
\hline 45 & 25424 & Elect. Cap. 30, 20, 20 Mf.-450V. & & 62189 & Rubber Bushing \\
\hline 46 & 25463 & Elect. Cap. 20, 20, Mf.-450V (Pre-Amp Chassis) & & \[
3626 \mathrm{c}-
\] & \begin{tabular}{l}
c3 \\
Phil Rd. Hd. Wood Screw, \(\# 6 \times 5 / 4\)
\end{tabular} \\
\hline 47 & 25507 & Ceramic Cap. 40 Mmf . ( \(\mathrm{N}-750\) ) & & & (Pre-Amp. Mtg.) \\
\hline 48 & 26278 & AM Conv. Osc. Trim. Strip & & 80348 & Pilot Lamp Soc. \& Cord .-. -- \\
\hline 49 & 26279 & AM Ant. Trimmer & & 80522 & Pilot Lamp Soc. \& Cord .-.-. - \\
\hline 50 & 26280 & FM Mixer-Ant. Trim. Strip & & 07674 & Chassis End Brkt. Ass'y. (R.H.) -- \\
\hline 51 & 26231 & FM Osc. Trimmer & & 07673 & Chassis End Brkt. Ass'y. (L.H.) .- \\
\hline 52 & 17210 & Gang Capacitor \& Drive Drum & & 05154 & Light Shield .-----.-.-.-....... \\
\hline & & Assembly & & 04133 & Dial Pointer Ass'y. .-. .-...-.-.-. - \\
\hline 53 & 38957 & 1st IF Trans. & & 55383 & Pointer Rod \\
\hline 54 & 38950 & 2nd IF Trans. & & 62099 & Rubber Grommet \\
\hline 55 & 38951 & 3rd IF Trans. & & H-318 &  \\
\hline 56 & 38952 & Discriminator Trans. & & H-319 & Cabinet (34P10) --.-.-.........-. \\
\hline 57 & 94262 & Power Trans. & & H-320 & Cabinet (32P9) \\
\hline 58 & 78153 & Tone Control & & 2000-3 & 5071 \\
\hline 59 & 78155 & Volume Control & & & \# \(10 / 32 \times 11 / 4 \mathrm{Rd}\). Hd. Mach. screw \\
\hline 60 & 42185 & Dial Light Mazda \#44 & & & (Chassis Mtg.) -----.-------- \\
\hline 61 & 38884 & RF Choke (heater) & & 2000-3 & 1003 \\
\hline 62 & 27118 & Line Cord & & & \#10/32 x \({ }^{\prime \prime}\) " Rd. Hd. Mach. screw \\
\hline 63 & 22193 & Phono AC Cord \& Socket & & & (Chassis Mtg. Board) --.....- \\
\hline 64 & 22173 & \begin{tabular}{l}
Pre-Amp Power Cable (Fem.) \\
(P9 only)
\end{tabular} & & \[
2015-00
\] & 0503 \#8/32 Steel Hex nut (Speaker Mtg \\
\hline 65 & 22171 & Pre-Amp Power Cable (Male) (Pre-Amp Chassis) & & 09373 & Mtg. Spring Assy. (P72 \& P73 Changers) \\
\hline 66 & 22169 & Pickup Cable (Pre-Amp Chassis) - & & 37066- & \\
\hline 67 & 22170 & Output Cable (Pre-Amp Chassis) & & 37066-07 & \#10/32 Acorn Palnut (Changer \\
\hline 68 & 80244 & 5 Prong Speaker Socket -- & & & Mtg. \\
\hline 69 & 80497 & (SS) Power Adapter Socket & & 74605 & Operating Instructions \\
\hline 70 & 80030 & Phono Socket & & & (32P9 \& 33P9) \\
\hline 71 & 90269
38958 & Band Switch & & 74608 & Operating Instructions (34P10) --- \\
\hline & & All resistors are \(1 / 2\) watt & othe & wise sp & pecified. \\
\hline
\end{tabular}


\section*{DUAL AMPLIFIER SYSTEM}

Power output tubes each amplifier - four 6V6G - Push - Pull - Parallel - 20 Watts Total Pomer Output - Audio Amplifier System. . . . . . . . . . . . . . . 40 Watts

\section*{DUAL SPEAKER EQUIPMENT}

1-12" Treble Electrodynamic - 450 ohm field - 8 ohm voice coil at 400 cycles 1-14" Bass Electrodynamic - 450 ohm field - 8 ohm voice coil at 400 cycles

AUTOMATIC RECORD CHANGER
Type - Capehart 16-E
Fully Automatic
Record Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 to 18 records either \(10^{\text {T }}\) or 12"
Turntable Speed
78 R.P.M
Drive \(\qquad\) Motor - Thru gear reduction unit
Pickup - Light Weight - Crystal Uhit. . . . . . . . . . . . . . . . . . . . . . . 1-1/4 oz. Needle Pressure
True Tangent Tone Arm Electric Play Control Uhit

\section*{POWER AND VOLTAGE REQUIREMENTS}
Power Watts. . . 400
Voltage \(-105-125 \mathrm{AC}\)\(\quad\) At \(\quad\)\begin{tabular}{c}
117 Volts \\
Frequency
\end{tabular}\(\quad\) Either 50 or 60 Cycles


TUBE LOCATIONS


\section*{GENERAL DESCRIPTION}

\section*{SECTION 2}

It has been our aim in this Service Brochure to include all of the necessary information to guide an experienced service man in locating and correcting all types of service difficulties that may be encountered during nomal operation of the instrument. No atteript has been made to include an elementary discussion of the basic fundamentals or principles of operation of the component parts since it is assumed that no attempt will be made to service a Capehart Deluxe Instrument unless the service man has sufficient technical training or experience to be familiar with the practice and theory involved in fundmental radio circuits and automatic record changing mechanisms.

In the design of the 400 M series Capehart Deluxe linstruments we have endeavored to not only retain all of the desirable features incorporated in the " K " series, but to improve upon the performance of every unit in keeping with Capehart tradition. When considered as a whole each 400 M series Instrument represents a group of interconnected components of sound design offering the best in radio and record reproduction as we know it today.

The features retained in the tuner are the motor driven selector switch to permit extended and remote control; separate Bass, Master and Treble volume controls, the latter being used in conjunction with a high fidelity switch; and the "R1" band for the reception of frequency modulated signals. For record reproduction we have retained the fanous Capehart 16-E Record Changer, which is the only fully automatic, continuous playing record changer on the market today, plus the play control feature which permits playing a predetermined number of selections and then automatically shuts the instrument off.

Again triple unit construction is employed, i.e., separate chassis for the tuner and each amplifier, resulting in improved circuit stability and perfomance, together with dual speakers for perfect Bass and Treble response. Authentic cabinet styling is a characteristic of all fine Capeharts. Each cabinet bears the stamp of approval of the Halnut and Mahogany Institutes.

The new improvements incorporated in the "M" series DeLuxe Capeharts are the electrically operated play control; improved broadcast and shortwave reception, due to improvements in tubes and circuits; superior "FM" performance, which includes an exclusive Capehart squelch circuit
to prevent inter-station noise; band spread tuning on the important 25 and 31 meter bands for added ease of tuning, and improved performance in the motor driven selector switch which has been accomplisned by modifications in design.

A brief review of features incorporated in the various units of this instrument will be of considerable assistance in following the circuit diagram and in analyzing circuit difficulties when present. In the event trouble is experienced with an instrument it is important to first localize the condition in a particular unit before an attempt at correction is made. For example, do not "pull a speaker" as has been done, when the pickup crystal is really at fault, and when switching from phono to radio would have disclosed the fact that the reproduction was only bad on record reproduction.

\section*{SECTION 3 THE RADIO TUNER}

The radio tuner is an assembly complete in itself except for the plate voltage supply which is obtained fron the amplifiers, The filament or heater transformer for tubes in the tuner, however, is mounted on the tuner chassis. Electrically, the tuner is of sound design utilizing the the highest quality of parts available and incorporates many modem improvements.

Features which contribute to its performance are as follows:
A. Provision for doublet or regular antenna system with a switch provided to rearrange the input circuit for maximun efficiency with either type system.
B. Tuned "RF" stage on all bands in manual tuning position, and use is made of a high gain 1853/6AB7 tube in this circuit.
C. Separate oscillator and mixer greatly improving stability and conversion gain.
D. Two " \(1 F\) " stages using permeability tuned iron core "IF" transformers for increased over-all gain and selectivity.
F. Separate "IF" channel for "R1" using air core air tuned "IF" transformers for minimum drift and maximum gain.
F. In the " FM " position a second 6 SC 7 high gain pentode replaces a \(6 \mathrm{B8}\) tube used in the "AM" position, the change being automatically handled by the band switch.
G. Amplified "AVC" which tends to reduce fading and allows substantially constant output with wide variations in signal input.
II. Tuning eye amplifier which assures sufficient deflection of the tuning eye for correct tuning even on weak signals.
I. An exclusive Capehart " PM " squelch circuit for the elimination of noise when tuning from station to station in the " FM " band. This arrangement makes use of a 6 SN7 \(T T\) tube, one section being used as an oscillator operating on approximately 200 KC . and used as a source of voltage for control of the bias on the first audio stage. The other section of the 6 SN7GT is used as a grid controlled rectifier for the rectification and control of the squelch voltage applied to the first audio grid.
J. Improved system of push button tuning permitting the setting of any push button to any desired frequency within the broadcast band.
K. Motor driven selector switch allows selection of stations or other services at instrument or for Fxtended or Remote Control.
L. The incorporation of this switch and a 15 prong socket in the tuner chassis makes possible either remote or extended control of the complete instrument when the necessary extended or remote units are added. The remote and extended control feature of the 400 M instrument greatly increases its flexibility and operating convenience and opens added sales opportunities for the dealer who. has not taken advantage of this feature previously.
M. Bass and Treble volume controls allow individual adjustment of the high or low frequency response.

\section*{SECTION 4 AUDIO AMPLIFIERS}

The first audio stage is located in the tuner chassis. The output of this tube after passing through the Bass and Treble networks is fed into \(t\) wo separate 20 watt audio power amplifiers, the inputs of which are effectively in parallel. The audio power amplifiers make use of the most modem tubes and circuits. Inverse feedback is incorporated effectively lowering the plate impedance of the push-pulleparallel connected output tubes and contributes to over-all noise and hum reduction. All of the tubes and components in the audio system are operated conservatively as evidenced by the use of three \(5 Y \mathcal{Y}\), rectifiers in each amplifier. The operation of the push-pull parallel connected output tubes at conservative voltage rather than using only two such tubes in each output stage
operating at higher potentials results in longer tube life.

\section*{SECTION 5 SPEAKERS}

Two heavy duty electrodynamic speakers are incorporated in each 400 M series instrument. Adequate field excitation is provided and the construction of the speaker is such that the \(14^{\prime \prime}\) speaker responds to the lower frequencies and the ' \(12^{\prime \prime}\) speaker favors the highs. Careful consideration has been given to baffle and cabinet design for high fidelity reproduction.

\section*{SECTION 6 CAPEHART IG-E RECORD CHANGER}

This record changer is fully automatic, is continuous in operation has a maximum capacity of 20 records, either \(10^{\prime \prime}\) or \(12^{\prime \prime}\) or intermixed, and will play either one or both sides of a record as desired. Because of variations in records (thickness and warpage) we recommend that 16 to 18 records generally be loaded in the record magazine

An outstanding feature of the \(16-E\) Changer is the "True Tangent Tone Arm" which maintains the needle or stylus at the correct tangent with respect to the record groove throughout the playing of the record.

Another important feature not found in other automatic record changers is the heavy duty drive motor and gear reduction unit. This gear reduction unit controls the speed or R.P.M. of the turntable which for perfect reproduction of records must be constant and even. Tnis motor and gear reduction unit in addition to the use of a heavy cast turntable compares with the precision type of equipment generally found in broadcast stations.

\section*{SECTION 7 EXTENDED AND REMOTE CONTROL}

The Capehart 400 M: Series Deluxe Instruments are designed to permit either Extended or Remote Control. Extended or Remote Control equipment may be added so that Radio or Record reproduction identical to that reproduced at the instrument may be controlled or distributed to any number of rooms around the house or grounds.

\section*{PART 2 \\ OPERATION AND MAINTENANCE RADIO TUNER}

SECTION 8 SETTING INSTRUMENT UP FOR OPERATION
The importance of care in checking every part of the equipment in setting up an instrument for operation cannot be over emphasized. This applies when the instrument is being set up on the sales floor for sales demonstration purposes, as well as when delivered to the customer's home. It is obvious that an instrument not properly set up in the dealer's store may fail to perform to its best advantage when demonstrated. An improperly installed instrument in the customer's home means extra service calls, customer dissatisfaction and excessive service costs.

Following is a suggested Inspection Routine, covering " 30 " important items to check when installing a Deluxe Capehart Instrument. We request that you at least cover all of these, and if you are thorough in your work, you undoubtedly will add to this list. We would also advise that a check of these "30" items will often be found to quickly isolate service difficulties when trouble is encountered.
SUGGESTED INSPECTION ROUTINE FOR THE INSTALLATION OF CAPEHART DELUXE 400 SERIES INSTRUMENTS
1. Unpacking. . Remove the instrument from its shipping case carefully
2. Inspect condition of Cabinec. NOTE: Packing case should be checked carefully. If panel broken, look for concealed damage -- if cabinet damaged due to rough handling in transit consealed damage claim should be filed with "carrier."
3. Remove packing material around the record changer and shipping bolts which hold the changer in place during transit. Put plug buttons in changer base. Remove back covering tuner and amplifier compartinents.
4. Insert tubes in proper position in the amplifier, by refering to tube complement label. Put "Eye Tuning" tube in position, making certain not to place tube too far forward as it is likely to press dial scale out of shape.
5. Put in Cear Reduction Unit "Bottle of Oil" supplied with instrument... Be sure to replace oil plug.
6. Important -- Make sure record changer is free floating on mounting rubbers and that all four support rubbers are in proper position. Changer unit position should be shifted slightly until there is no tendency to touch against any part of changer mounting frame.
7. Level Cabinet by adjustable glides. This is important for proper automatic phonograph operation.
8. Check adjustment of clutch tension and clutch shaft assembly connecting gear box to record changer, making certain that it is straight and in line... A tendency to MOTOR RUMBLE orHUM may be prevalent otherwise, and this may also cause uneven tumtable speed.
9. Make sure Reverse Arm and Fork Assembly is in correct position by moving this through its normal reverse motion.
10. Make sure Automatic Trip Switch under turntable is in proper position. This means end of lever arm or quadrant should be in the center of the trip switch contacts.
11. Make sure Tone Arm Stop Lever, Part Number 64197, is adjusted properly.
12. Insert New Needle or desired type of permanent point stylus in Pickup.
13. Attach "Control Knobs" to Tuner, putting felts between the knobs and the Escutcheon.
14. Check Line Voltage and Frequency to determine if same agrees with electrical specifications plate on rear of the instrument. Plug instrument into proper source of power supply.
15. Read carefully Operating Instructions accompanying instrument, then... Turn Instrument On.
16. Place a blank phonograph record on turntable. Set all controls, Volume, Bass and Treble in wide open position for acoustic feedback test. RCA Record, Number 49196 is good for this purpose. This test will locate excessive noise or rumble. Shifting the changer into a "free floating position" while this record is playing should clear up any rumble which may be present. If this does not quiet operation, again check for proper positioning of drive shaft between gear box and record changer, try shifting motor and gear box "mounting board" assembly.
17. Properly load 16 or 18 assorted \(10^{\prime \prime}\) and \(12^{\prime \prime}\) records in record magazine. Warped or damaged records should not be used. Make sure all record edges are free of "flash"... Records with excessive "flash" and rough edges should be smoothed down with fine sand paper.
18. Put automatic "On-Off" switch in "On Position." Instruments are all shipped with this switch in "Automatic 'OFF' Position."
19. Put selector arm lever in "REPEAT" position. Play one record.
Put selector arm lever in "CNE SIDE" position. Play one record. Put selector arm lever in "BOIH SIDES" position. Play one record.
The above tests check for proper action of the "Selector Arm Lever." At the same time that the

\section*{MODEL 4OOM Series, FARNSWORTH TELEV. \& RADIO CORP. Capehart}
above tests are being made, a visual check for "Feed In" or "Indexing" of the pickup, Trip Action and setting down of records from magazine to turntable can be made.
20. Check Play Control action for indexing and shutting instrument off.
21. Operate Volume, Bass and Treble Controls to observe proper action.
22. Check next for maximum and minimum hum by lifting Pickup off record. When this has been done rotate Volume Control wide open. If excessive hum is present, reverse power line cord or attach good ground connection to instrument. Hum should be negligible except possibly with the volume control in "wide open" position which is seldom if ever necessary during normal operation of the instrument.
23. Check for Quality Reproduction. To do this, use a good record, the quality of and type of reproduction with which you are familiar. Check reproduction of the record at both High and Low Volume Levels.
24. Attach proper "Antenna System." A fine instrument deserves a good antenna. Check reception and calibration of radio tuner on all
bands. If a new antenna is required, install a Capehart Stock Number 41-80, or Stock Number 41-79 Dipole especially efficient for reception of " PM " signals.
25. Check action of "Electric Eye" tube, and position, so tuning segments are horizontal.
26. Tap tubes in tuner gently to locate any excessively microphonic tubes.
27. By the time the foregoing tests have been conducted, the instrument will have been in operation for 35 or 40 minutes and should be sufficiently warmed up so that the "Push Ruttons" may be set without subsequent drift. Set up "Push Buttons" according to instructions accompanying instrument.
28. Attach proper Station Tabs.
29. Replace "back" of cabinet. Carefully clean up cabinet to remove all finger marks. For this purpose a piece of cheese cloth folded into a pad and moistened with water and a few drops of vinegar is very good. The use of furniture polish on Capehart cabinets is not recommended.
30. Instruct customer on all phases of operation of the machine. Personally place in the customer's hands the operation manual which accompanies the instrument.


FARNSWORTH PAGE 19-39
FARNSWORTH TELEV. \& RADIO CORP. MODEL 400 M Series, Capehart

SECTION 9 DRIVE CORD ASSEMBLIES
Quite often in handling a radio chassis the "drive cord" may slip off the controls or pulleys on which it rides. So many different types of mechanical drive methods have been devised depending on the tuner construction or the mechanical
genius who designed them that it is impossible for a service man to quickly figure out just how they should be restrung. In this connection we are sure that stringing diagrams below will be found most welcome.


VOLUME CONTROL
Tuming knob in clockwise direction causes pointer. to move to right.


BASS TONE CONTROL
Shaft geared to tone control, turning knob in clockwise direction causes pointer to move upward.


TREBLE TONE CONTROL
Shaft geared to tone control, turning knob in clockwise direction causes pointer to move upward.


METHOD OF DIAL STRIMGING
Tuming tuning knob counter-clockwise moves pointer from top to bottom, drive drum turns clockwise, viewed from shaft end.

\section*{ALIGMMENT OF AM BAMDS}

\section*{EQUIPMENT NECESSARY}

A calibrated signal generator having fundamental frequencies from 455 Kc . to 20 Mc . In addition to the signal generator a crystal calibrator is a great convenience.

An indicating device for showing correct alignment, this may be a high resistance A.C. calibrator, a vacuum tube voltmeter, a high resistance D.C. voltmeter ( 20,000 ohms per volt minimum) or a Cathode Ray oscilloscope.

The A.C voltmeter can be used either across the voice coil of one of the loud speakers or if the meter range is high enough from plate to plate in the output stage (don't forget a condenser ( 0.1 Mfd .)) to keep the D.C. out of the meter.

Either the vacuum tube voltmeter or high resistance D.C. voltmeter may be used to read the AVC voltage. This may be connected to pin \#4 of the 6AB7 while aligning the 1.F. and to pin \#4 of the 6B8 while aligning the R.F. Converter and Oscillator.

The use of a Rider Volt Ohmist connected
from ground to the AVC Bus is the preferred method as the high input impedance of the meter does not appreciably affect the alignment. And its high sensitivity allows the use of low input voltages.

Special care must be employed when aligning the short wave spread band, for the adjustment of the shunt trimmer affects the adjustment of the series pad. At the high frequency end of the band it is possible to peak the oscillator trimer and the pad at the low frequency end at the image so in the alignment instructions we have indicated the fundamental frequency and the correct oscillator setting for the image so by resetting the signal generator it is possible to see if the alignment is correctly made. In each case the image is found at a frequency 910 Kc . higher than the fundamental that is if the set is aligned at 12 Mc . when the oscillator using high output is tuned to 12.91 Mc ., the signal will be heard if the right peak has been used. This also applies to the short wave band.

TABULATION FOR ALIGMMENT
\begin{tabular}{|c|c|c|c|c|c|}
\hline STEPS & IN SERIES WIDH ANT & \[
\begin{gathered}
\text { SET GBNERATOR } \\
\text { AT }
\end{gathered}
\] & \[
\begin{gathered}
\text { SET GANG } \\
\text { AT }
\end{gathered}
\] & \begin{tabular}{l}
ADJUST AND \\
SEE FIG.
\end{tabular} & \[
\begin{gathered}
\text { TO } \\
\text { OBTAIN }
\end{gathered}
\] \\
\hline 1 & \multirow{8}{*}{250 MmF} & \multirow{3}{*}{455 KC} & \multirow{3}{*}{Quiet Point} & \begin{tabular}{l}
3rd IF \\
Trimmers
\end{tabular} & \multirow[b]{3}{*}{\[
\begin{aligned}
& \stackrel{H}{2} \\
& 0 \\
& \stackrel{2}{2} \\
& 0
\end{aligned}
\]} \\
\hline 2 & & & & \begin{tabular}{l}
2nd IF \\
Trimpers
\end{tabular} & \\
\hline 3 & & & & \begin{tabular}{l}
lst IF \\
Trimmers
\end{tabular} & \\
\hline 4 & & \multirow{3}{*}{1500 KC} & \multirow{3}{*}{1500 KC} & BC Osc Trimmer & \multirow[t]{4}{*}{} \\
\hline 5 & & & & BC Ant Trimmer & \\
\hline 6 & & & & \[
\begin{aligned}
& \hline \text { BC R F F } \\
& \text { Trimmer }
\end{aligned}
\] & \\
\hline 7 & & 600 KC & 600 KC & 600 KC Pad & \\
\hline 8 & & 455 KC & Press Any Push Button & IF Trap & \[
\begin{gathered}
\text { Min } \\
\text { Output }
\end{gathered}
\] \\
\hline 9 & \multirow{3}{*}{\(400 \Omega\)} & \multirow{3}{*}{15 MC} & \multirow{3}{*}{\[
\begin{gathered}
15 \mathrm{MC} \\
\text { Image At } \\
15.91 \mathrm{MC}
\end{gathered}
\]} & S \(\begin{gathered}\text { Oime } \\ \text { Trimer }\end{gathered}\) & \multirow[b]{3}{*}{\[
\begin{aligned}
& \text { F } \\
& \text { a } \\
& \text { a }
\end{aligned}
\]} \\
\hline 10 & & & & \[
\begin{aligned}
& \text { So Ant } \\
& \text { Trimmer }
\end{aligned}
\] & \\
\hline 11 & & & & \[
\begin{aligned}
& \mathbf{S W} \mathbf{F} \\
& \text { Trimmer }
\end{aligned}
\] & \\
\hline 12 & Check At & & 6 Mc & & \(\stackrel{\square}{\square}\) \\
\hline 13 & \multirow[t]{3}{*}{Check At} & \multirow{3}{*}{12 Mc} & \multirow{3}{*}{\[
\begin{gathered}
12 \mathrm{MC} \\
\text { Image At } \\
12.91 \mathrm{MC}
\end{gathered}
\]} & \[
\begin{aligned}
& \text { BS Osc } \\
& \text { Trimmer }
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 0
\end{aligned}
\] \\
\hline 14 & & & & 'B S Ant & \(\Sigma\) \\
\hline 15 & & & & B S R F & 2 \\
\hline 16 & \multirow{3}{*}{\(400 \Omega\)} & \multirow{3}{*}{9. 5 MC} & \multirow{3}{*}{9. 5 MC Image At 10.41 MC} & B S Ozc & \(\square\) \\
\hline 17 & & & & B S \(\mathrm{Sad}^{\text {Pat }}\) & \multirow[t]{3}{*}{\[
\dot{\Sigma}
\]} \\
\hline 18 & & & & \[
\mathrm{B}_{\mathrm{Pad}}^{\mathrm{S}_{2} \mathrm{~F}}
\] & \\
\hline 19 & Recheck Steps & 18 Inclusive & & & \\
\hline
\end{tabular}

FARNSWORTH PAGE 19-41


PAGE 19-42 FARNSWORTH
MODEL 4OOM Series, FARNSWORTH TELEV. \& RADIO CORP.
Capehart

\section*{ALIGNMENT OF FM BAND}

\section*{SECTION 11}

Following are described two (2) methods for the Alignment of the F.M. Band.

Method r will require the use of a Cathode Ray Oscilloscope, a sweep frequency generator providing a fundamental frequency at 4.3 Mc and a deviation of at least 150 Kc and also a signal generator with a fundamental high frequency range of \(42-50 \mathrm{Mc}\).

As an indicating device, a meter with at least 10 Nkg . ohm internal resistance can be used or as a second choice - a low range micro-ammetor with a 1 Meg. ohm resistor in series.

Method 2 will require the same equipment with the exception of the Oscilloscope and the 4.3 Mc sweep generator.

\section*{ALIGNENT BY METIOD 1}

Connect the vertical deflection input of the oscilloscope with a 1 Meg . ohm resistor in series to the grid of the limiter tube. Care must be exercised to maintain the connection of the resistor to the grid of the limiter tube as short as possible to avoid regeneration. The ground terminal of the oscilloscope must be connected to the chassis.

Limiter Alignment - Connect the ground terminal of the 4.3 Mc . I. F. sweep generator to the chassis. Connect the output of the signal generator to the grid of the second I. F. tube with 2 . 1 Mfd. paper condenser ir series, adjust the deviation control of the generator for a usable picture on the oscil. loscope screen, with the input control of the oscilloscope set at maximum gain. Detune the secondary trimmer of the limiter transformer, adjust the primary trimer until you obtain a pattern as shown in Figure 1 of the oscilloscope photos. Then adjust the secondary trimmel until you obtain a pattern as shown in Figure 2. The pattern should be kept centered on the oscilloscone screen.

Align 2nd J.F. - Move the signal generator to the grid of the 1 st I.F. tube and repeat the same procedure as described for the iimiter stage.

Align 1st I.F. - Move the signal generator to the grid of the Mixer tube and repeat the limiter stage procedure.

Align Discriminator - Connect the oscilloscope to the Cathode of the 6116 F.M. detector which is not grounded. Connect the signal generator to the secondary of the limiter transformer as indicated by A in Figure 6. Adjust the secondary trimer of the discriminator transformer with an insulated screw driver, for pattern as in Figure 2, then adjust the primary trimmer to obtain symetrical and linear trace and centering of the picture on the oscilloscope screen. It will be necessary to go over the primary and secondary trimmer several times to adjust the stage accurately.
R.F. Alignment F.M. Band - Connect the high frequency generator to the regular antenna terminal with a 400 ohm carbon resistor in series. Make certain the F.M. antenna Selector Switch is in regular position.

Set the signal generator at 50 Mc and adjust the Oscillator trimmer for correct dial calibration at this frequency. Connect high resistance Voltmeter to point \(A\), Figure 4 and then adjust the signal generator to 49.5 Mc adjust the mixer and the R.F. Trimmers for maximum deflection of the meter.

Another indicating device for the K. F. alignment - connect a \(0-1\) millameter between point \(A\) and ground or a low range microammete, with 21 Meg. ohm resistor as series between \(C\) and ground. Tune for maximum deflection of the meter.

Lacking the above meters, the R.F. and Mixer alignment may be trimmed for minimum noise on signal. To avoid false peak when aligning the Mixer and the R.F. Trimmers the gang condenser must be rocked through the signal.

\section*{ALIGNMENT BY MFTHOD 2}

Limiter Alignment - Connect one of the indicating meters as shown in Figure 4 or Figure 5.

Feed 2 4.3 Mc signal through . 1 Mfd. paper condenser to the grid of the second I. F. tube. Place a 1000 ohm carbon resistor across the secondary of the limiter transformer then tune the primary for maximum meter deflection. Remove the 1000 ohm carbon resistor from the secondary and place it acruss the primary and tune the secondary for maximum meter deflection.

\section*{SECTIOW 11}

ALIGNMENT OF FM BAKD
Another indicating device for the R.F. alignment : connect a \(0-1\) millameter between point \(A\) and ground or a low range microammeter with a 1 Meg. ohm resistor in series between \(C\) and ground. Tune for maximum deflection of the meter.

Lacking the above meters, the R.F. and Mixer alignment may be trimmed for minimum noise on signal. To avoid false peak when aligning the Mixer and the R.F. trimmers the gang condenser must be rocked through the signal.

Note: If a high frequency signal generator is not available a standard signal generator which will give good hamonic output between 42 - 50 Mc can be used.

Two methods using a micro-ammeter or a V. T. voltmeter may be used for the alignment of the discriminator are shown in the accompanying illustrations.

It will be necessary to go over the primary and secondary trimers several times to accurately. align this stage.
R.F. Alignment F.M. Band - Connect the high frequency generator to the regular antenna terminal with a 400 ohm carbon resistor in series. Make certain the F. M. antenna Selector Switch is in regular position.

Set the signal generator at 50 Mc and adjust the Oscillator trimmer for correct dial calioration at this frequency. Connect high resistance Voltmeter to point A, Figure 4 and then adjust the signal generator to 49.5 Mk adjust the mixer and the R.F. trimmer for maximum deflection of the meter.
when reading the other side of the signal.
SECTION 13
CABINET PARTS
Stock
No.
\(31-95\)
31.96

59-58
\(59-71\)
59-62 Push Bucton Knob
6058 Tuning Knob
77-176 Tuning Knob (B1.)
67-177 Bass or Treble Knob (B1.)
67-178 Band Switch Knob

59-74 Push Button Knob (B1.)

6060 Bass or Treble Knob

\section*{Description}

Capehart Decal
DeLuxe Decal
Dial Escutcheon
Dial Escutcheon (B1.)

No. Description
Stock

67-179 Rand Switch Knob (B1.)
61163 Compartment Lamp
31.93 Push !utton Trimmer Cover

13-368 Play Control \& Cab Light (Comp•
36-468 Fscutcheon Screws (Pkg. 10)
56-538 Soss Hinge for \(506,410,411\)
13-219 Basic Glide ea.
36-383 16-F Mtg. Bolts ea.
\(5092 \quad 16-\mathrm{F}\) Mtg. Rubbers ea.
50117 16-F Main Frame Pads
36-597 16-E Plug Rutions


FARNSWORTH PAGE 19-45
FARNSWORTH TELEV. \& RADIO CORP. MODEL 4OOM Series, Capehart


MODEL 4OOM Series, FARNSWORTH TELEV. \& RADIO CORP. Capehart

PART 3 MAINTENANCE - AMPLIFIERS - JUNCTION BOX - SPEAKERS
SECTION IS
AUDIO AMPLIFIER CIRCUIT WIRING DIAGRAM


SECTION 15
A-10 AUDIO AMPLIFIER PARTS LIST
\begin{tabular}{|c|c|c|}
\hline Reference & Part & \\
\hline No. & No. & Description \\
\hline 1 & 773-53 & \(470 \mathrm{M} \mathrm{Ohms} \mathrm{1/2} \mathrm{Watt}\) \\
\hline 2 & 773-39 & 1000 Orms \(1 / 2\) Watt \\
\hline 3 & 77-32 & \(10 \mathrm{MChms} 1 / 2 \mathrm{Watt}\) \\
\hline 4 & 773-41 & 2200 Oums \(1 / 2\) Watt \\
\hline 5 & 773-72 & 3300 Ohms \(1 / 2\) Watt \\
\hline 6 & 773-81 & \(220 \mathrm{M} \mathrm{Orms} 1 / 2\) Watt \\
\hline 7 & 773-51 & 220 Ohms 1/2 Watt \\
\hline 8 & 77-71 & 110 Orms 10 Watt \\
\hline 9 & 25-54 & . 25 Mfd .600 V . \\
\hline 10 & 254-8 & . 05 Mfd .600 V. \\
\hline 11 & 256-2 & . 1 Mfd . 200 V . \\
\hline 12 & 25-46 & .003 Mfd .1000 V . \\
\hline 13 & 257-2 & . 01 Mfd . 600 Line Buffer \\
\hline 14 & 253-3 & 500 M.M. F. Mica \\
\hline 15 & 25-52 & 20 Mfd .25 V . \\
\hline
\end{tabular}

Reference Part
\begin{tabular}{cll} 
No. & \multicolumn{1}{c}{ No. } & \multicolumn{1}{c}{ Description } \\
16 & \(25-38\) & 50 Mfd .25 V. \\
17 & \(25-138\) & 15 Mfd .475 V. \\
18 & \(25-139\) & 30 Mfd .475 V. \\
19 & \(35-146\) & 30 Mfd .450 V. \\
20 & \(24-42\) & 25 Mfd .400 V. \\
21 & \(94-85\) & Phase Conector Reactor \\
22 & \(77-102\) & Voltage Divider \\
23 & \(94-61\) & Power Trans. \\
24 & \(94-32\) & Output Trans. \\
25 & \(805-1\) & Input Jack \\
26 & \(80-57\) & Speaker Socket \\
27 & \(80-50\) & Tuner Voltage Socket \\
28 & \(94-65\) & Choke \\
& \(27-118\) & A. C. Line Cord \\
& \(13-204\) & Shorting Plug
\end{tabular}

SECTION 17
LOUD SPEAKER PARTS LIST
\begin{tabular}{|c|c|c|c|}
\hline Stock & & Stock & \\
\hline No. & Lescription & No. & Description \\
\hline 81-72 & Treble Speaker \({ }^{12}\) & 81-101 & Cone \& Voice Coil for 81-72 \\
\hline \(81-73\) & Bass Speaker 14" & & Speaker \\
\hline 81-114 & Field Coil for 81-72 Speaker & 81-113 & Cone \& Voice Coil for 81-73 \\
\hline 38-287 & Ficld Coil for 81-73 Speaker & & Speaker \\
\hline
\end{tabular}

Should it be necessary to replace either the cone and voice coil assembly or the field coil, care should be taken in order to insure proper phasing.

JUNCTION BOX CIRCUIT WIRIMG DIAGRAM

© John F. Rider

MODEL 4OOM Series, FARNSWORTH TELEV. \& RADIO CORP. Capehart
SECTION 20
operation and maintenance - record reproducing equipment

\section*{PART 4}

It is not the purpose in these Service Notes to cover the 16 -E Record Changer completely because a separate publication is devoted to that instrument. In the event of some difficulty with the 16 - E Record Changer we urge technicians not to attempt any service adjustments until they have carefully analized the trouble. Too many service men have the habit of aimlessly delving into the instrument and often attempt adjustments which are entirely foreign to the fault, and thereby, disturb adjustments which were entirely proper. We urge you to first read all service material available covering the operation and servicing of the 16 -E Changer before attempting any extensive adjustments.

Because of rough handling an instrument may be subjected to intransit between factory and the customer, each instrument should be carefully checked in the customer's home.
Once the record changer has been adjusted and properly set up in the customer's home it seldom requires attention, barring misuse by those operating the machine, or because of 2 faulty record product.

Before considering adjustments that may be required from time to time it would be well to consider a few factors which are quite often responsible for unnecessary service calls.
1. Failure to carefully instruct the customer as to the proper procedure to be followed in loading and operating the record changer.
2. Variations in records such as trip groove, thickness, feed-in groove, diameter, rough edges, improperly centered spindle hole, pinched recording grooves and warpage.
3. Failure of customer or dealer to insist upon a complete periodic inspection of the instrument for lubrication and cleaning. OPERATING SEQUENCE
In order to more easily understand the operation of the 16-E we should consider it as being able to perform as four individual or separate record playing devices all built into one wachine. If this thought is kept in mind a clearer comprehension of its structure and operating sequence will be possible.

\section*{MANUAL OPERATION}

On the top rear right hand corner of the base plate is located the automatic On-Off switch. When this switch is in the "Off" position the circuit to the clutch solenoid
relay is opened. When such is the case, and the record changer motor is turned on, the turntable revolves and records may be played manually.

\section*{REPEAT POSITION}

When the selector lever is moved to the repeat position and the previously mentioned automatic "On-Off" switch is changed to the "On" position, the tone arm and trip mechanism operates automatically. In the repeat position it will be noted that when the needle moves into the trip groove it operates the trip. The record magazine tips but does not discharge a record to the turntable and the record tray does not lift. The record originally placed on the turntable will continue to repeat as many times as desired.

ONE SIDE
When the selector lever is moved to the "One Side" position, the record tray is in gear and will operate to remove the record from the turntable and return it to the record magazine, as this record returns to the magazine another record is discharged from the bottom of the stack and placed on the turntable by the record tray, then the tone arm swings into the playing position. At the completion of the record the mechanism trips and the above cycle is repeated.

\section*{TURNOVER POSITION}

When it is desired to play the stack of records in the record magazine in sequence on both sides, the selector lever is moved to the "Both Sides" position.

In addition to the cycle outlined under "One Side" the operation of turning the record over is introduced. That is, after the first side is played, the reverse arm intercepts the record before being fully returned to the magazine and returns it to the turntable with the other side up ready for playing. A new record is discharged from the magazine only after the complete record (both sides) has been played.

To facilitate repairs or adjustments to the electrical circuits we have prepared a complete wiring diagram of the 16 -E control circuits which has been included in this booklet.

Starting in the tuner when the "Phono" button is pressed the "On Off" relay shelf holding through the "Off" relay whose contacts are closed except when energized by "Off" button.

\section*{SECTION 22 MOTOR DRIVE - GEAR REDUCTIOM UWIT - drive shaft aligmment}

A silent and smooth operating drive motor, and gear reduction unit properly coupled to the record changer is of utmost importance for perfect reproduction of records. Unless these parts areall functioning proferly there is a possibility that waver, or wows may be noticed in the sound reproduction from records. It is also possible that objectionable hum or rumble may be discernable during low passages in records or the change cycle. If such conditions are apparent we suggest a careful check and adjustment in accordance with the procedures whith follow.

After freeing the record changer by removing the four hold dow bolts used in shipment, make certain that the record changer is floating freely on its rubber mounting supports and that it does not touch the record changer mounting shelf at any point. There should be a feeling of entirely free floating motion when the changer is shaken slightly. If such is the case, it is a good indication of full free floating action. By making sure that the record changer is "free floating" the possibility of acoustic feedback, hum or rumble is eliminated.

Because of the importance for positioning the record changer into a free floating positionit is always advisable to check the alignment relation of the record changer drive shaft with respect to the gear reduction unit and

Detween this unit and the drive motor. Unless the correct alignment relationship is maintained excessive hum or rumble may be present as well as the possibility of uneven tumtable speed causing waver or mows in the record reproduction.

If the above conditions are apparent with record changer in free floating position, try shifting the gear reduction and motor assembly slightly until a position is found where the difficulty is eliminated or negligible.

NOTE: Drive motors and gear reduction units are "run-in" and aligned on the mounting board at the factory, and will seldom, if ever, require adjustwent in the field unless they have been tanpered with or in the event the motor has shifted due to rough handling in transit. If hum or rumble persists after trying previous suggestions, loosen the motor and shift slightly locking same back in place when minimum hum position is located.

\section*{SECTION 23 SAFETY CLUTCH -}

\section*{PURPOSE AMD ADJUSTMENT}

The purpose of this feature is to uncouple the record changer from the gear reduction unit in the event a faulty record or improper operation of the machine causes the record changer to \(j\) am during some portion of the change cycle.

Essentially this device consists of two metal discs with a leather washer between. The driving power is transmitted from the lower to the upper dise through the leather washer because of the pressure developed by the nut, part \(368-2\), controlling the pressure of the spring, part 3938. Pressure of the spring determines the amount of back pressure and by its adjustment it may be set so as to cause the clutch to slip if more than noral drive tension or load developes soemwere in the record changer during its change cycle, thereby acting as a "safety" feature.


SECTION 25 PLAY CONTROL - INSTALLATION
1. The following parts comprise a complete play control installation. Flay control with cables, plug and switch, compartinent light, mounting bracket, two bracket mounting screws, two switch mounting bolts, and fotir wood screws Check packing material so no parts are overlooked The mounting bracket should be installed on the record changer first. See illustration 3 . . The bracket is mounted on the boss winich supports the clutch fork shaft and the reverse cam shaft, on the side of the boss away fron the main cam, so the clutch fork shaft sets in the cutout. Pass the two screws that fit the tapped holes in the switch bracket through the old play control bracket holes when mounting the bracket.
4. Remove the plug button from the partition between radio and changer, put the six prong plug, the switch and the cables through the holes in the partition. Fasten the play control on the partition by means of the wood screws being careful not to crack the plastic case by drawing the
adjustments \& maintenance
screws too tight or driving the screws in crooked Al so be sure the record tray clears the play control housing before driving any screws.
5. Fasten the switch to the bracket by means of the two bolts. See illustration. This puts the switch in such a position that the throw out cam can actuate the switch. Of course, the switch goes on the bracket with the leads at the bottom and pointing toward the left (when looking in the back of the cabinet), this brings the spring finger in line with the throw out cam.
6. Remove play control shorting plug (six prong) from junction box and plug in cable from play control. Set play control at any number except zero (off) and run changer through several cycles, if the switch is too close to the throw out cam the relay in the play control will buzz, if not close enough the action will be erratic. Be sure the bolts holding the switch and the screws holding the bracket are properly tightened.


4OOM SERIES PLAY CONTROL PARTS LIST
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Stock} & \multicolumn{2}{|l|}{Stock} \\
\hline No. & Description & No. & Description \\
\hline 13-396 & Ratchet Ass' y & 64-311 & nog Spring \\
\hline 22-126 & Cable and Plug & 90-125 & Light Switch \\
\hline 31-213 & Dial Scale & 92-140 & Back Cushion \\
\hline 56-1099 & Shaft & 51163 & Light Bulb \\
\hline 56-1100 & Steel Ball Rearing & 90-133 & Relay (Complete) \\
\hline 59-142 & Control Knob & 90-134 & \(\mathrm{s}_{\text {witch }}\) \\
\hline \(59-143\) & Housing & 621.2 & Rubler Crommet \\
\hline 62.75 & Kubler Gronmet & 13-368 & Play Control \& Cabinet Assembly (Complete) \\
\hline
\end{tabular}

13-396
\(56-1099\)
\(56-1100\)
59-142

John F. Rider

PAGE 19-54 FARNSWORTH
HODEL 4OOM Series, FARNSWORTH TELEV. \& RADIO CORP. Gapehart

SECTION 20 OPERATION AND MAINTENANCE \(16-E\) RECORD CHANGER
The "(On-Off" relay is used to turn on the 117 volts for the entire set. Due to the fact 117 volts are always on the transformer in the set, the 6.3 volts for the heaters is supplied through one set of contacts on the relay. Another set of contacts supplies the audio amplifiers and another set in conjunction with the selector switch energizes the Reject Relay located in the Junction Rox.

This latter relay closes the \(A C\) circuit oo the Phono motor and the "Phono Relay" also in the Junction mox. Due to the fact the "Phono kelay" contacts are closed until it is energized the \(A C\) is also applied to the Clutch Solenoid in the 16-F Changer causing the clutch to be engaged. Thus whenever the Phono" button is pushed the 16 -E goes into

SECTION 23
The proper method of checking the ad ustment of the safety clutch follows. With the record changer in cycle and the record magazine fully loaded apply a slight downward pressure on the bottom of the record magazine, while the magazine is cilting backward. When such pressure is applied it should cause the safety clutch to slip and the turntable should stop revolving. In the event the action of the safety clutch is not as described loosen nut, part 368-2, thereby releasing pressure on spring, 3938, this will permit safety clutch to unload sooner. After this adjustment is made the changer should be put through a number of cycles to make ceftain that the clutch does not slip at any point in the normal change cycle as this would cause the changer to stall.

The action of this safery clutch should
always be checked when the instrument is per-
\begin{tabular}{|c|c|c|c|}
\hline SECTION & 24 MOTOR DRI & Parts & \\
\hline Stock Number & Description & Stock Number & Description \\
\hline 13-151 & 40 ©9 Frict. Drive Ass' \(y\). & 66105 & Flexible Coupl. Set Screw 99-28-13 \\
\hline 56-418 & 4080. Shaft & 50126
21156 & \\
\hline 5466
5718 & 400: (pper Frict. Drive Disc. & 21156
21157 & Notor 60 Cycle
Mbror 50 Cycle \\
\hline 50170 & 40 AM Mrive Facint (leather) & 66399 & Cear kox 60 Cycle \\
\hline 36-501 &  & 66435
\(1315-1\) & (ear hox so Cycle \\
\hline \({ }_{99}\) & 4 ¢0M Cotter & & 1/4" Allen Wrencı \\
\hline 3938 & 40641 .rring \({ }^{2 \prime \prime}\) & 67-88 & Mtg. Coard \({ }^{\text {d }}\) \\
\hline 368-2 & \(4 \mathrm{LSM} 3 / 8 \times 32^{\prime \prime}\) Hex Nut & 54.38 & keduction linit Sirim \\
\hline - 3 13-151 & 410 M Prict. Drive Ass' y. & \begin{tabular}{l}
\(62-46\) \\
36.258 \\
\hline
\end{tabular} & Notor (rommet \\
\hline - \(13-148\) & 41 lm Friction Drive Ass' \({ }^{\text {d }}\). & 36-13¢ & * 10 Pla in Masner \\
\hline 56-415 & 411, Shaft for Friction lrive & 35-550 & *10/32xx 3/4" Slotted lima \\
\hline 13-150 & 41 MP Friction Drive Ass' y & \(3611-4\) & 410 . 10 lock yasher \\
\hline \[
\begin{aligned}
& 56-417 \\
& 56399
\end{aligned}
\] &  & &  \\
\hline 29-28-13 & \(1 / 4 \times 2{ }^{\text {a }} \times 4^{\text {" }}\) Alfen Set Screx & 36-551 & Ia, Screw \\
\hline
\end{tabular}
(C)John F. Rider
( temperature before a record is played.

In the 16-E Changer the Clutch Solenoid is energized by the above starting cycle, pressing the Reject Button or by the Automatic Trip Switch. As soon as the change cycle starts the Solenoid Motor Switch opens the Solenoid circuit and shunts the reject relay to keep the motor running until the change cycle is completed even if the "Off" button is pushed.

The Automatic Trip Switch, located under the turntable is actuated by the tone arm moving the trip lever when the needle enters the trip or change groove.

The "Automatic On-Off" switch is used to open the Clutch Solenoid circuit when it is desirable to play records manually.
manently set up in the customer's home since it acts as a safety device to prevent record breakage or damage to changer in the event of a jam because of reasons previously mentioned. be kept free

GEAR REDUCTION UNIT
At least once a year the gear reduction unit should be removed, the oil drained gear box flushed and refilled with \(1 / 2\) ounce, No. 10 S.A.E. oil. Stock No. 1315-1.

LUBRICATION
At lesst every six months a few drops of oil should be applied to the drive motor oil cups. See illustration. For this purpose use the special electrical motor on for electric fans, sewing machine motors, et


PAGE 19-2.FED TEL
MODEL 6001 PO FEDERAL TELEPHONE AND RADIO CORP.
No attempt should be made to realign the various circuits untı all other causes have been checked, unless the condition is so ubvious as to indicate that realignment is necessary. Then proceed as follows: Low range A.C. meter connected across voice coil to indicate
Keep signal generator attenuated so as to maintain \(1 / 2\) scale reading on output meter. Make certain that dial pointer is exactly on index line (top left side
of dial plate) when variable condenser is fully meshed.

GLVTd WOLLOG SISSUHO ヨ

Adjust for maximum outful T8 \begin{tabular}{l|l|l}
\(\begin{array}{l}\text { Exactly } \\
1650 \mathrm{KC}\end{array}\) & .1 MF & \(\begin{array}{l}\text { Control Grid 1T4 top } \\
\text { rear section var. cond. }\end{array}\)
\end{tabular}\(\quad\) Adjust for maximum output T5



The next two operations are performed with the bottom plate on and the chassis in the cabinet - with lid closed
\begin{tabular}{|c|c|c|c|c|}
\hline Approx. 1500 KC & \begin{tabular}{l}
Approx. \\
1500 KC
\end{tabular} & . 1 MF & Control Grid 1 T4 same as No. 3 & Adjust for maximum output 7 \\
\hline \multicolumn{5}{|l|}{The next two operations are pertormed with the bottom plate on and the chassis in the cabinet - with lid closed} \\
\hline \begin{tabular}{l}
5 \\
Approx. \\
1500 KC
\end{tabular} & Approx. 1500 KG & .1 MF & Radiating Loop 20" from Receiver & Adjust 77 for maximum output \\
\hline \begin{tabular}{l}
6 \\
Approx. 600 KC
\end{tabular} & Approx 600 KC & & Radiating Loop 20" Irom Receiver & Adjust T8 for maximum while rocting variable condenser \\
\hline \multicolumn{3}{|l|}{} & \multicolumn{2}{|l|}{} \\
\hline \multicolumn{3}{|l|}{Battery Block Battery Layout} & \multicolumn{2}{|l|}{rumine rance s3a-1650 kc} \\
\hline
\end{tabular}


Power Supply: 105 - 125 V . 10.60 cyle AC
Same Voltage DC, 15 Watts Power Consumption IF Gircuits: 456 KC Tubes: ITA RF. Amplifier ISS Dot Ave. A.F. iRS Onc Converier 305 Powor Output Speoker: 5" P.M, 1.47 oz. Alnico V Magnel
Sppaker Transiormer: 8500 ohma - 400 cyeloe
Speaker Voice Coil 3.2 ohma Speoker: 5 P.M, 1.47 oz, Alnuco Magnol
Speaker Tranalormer: 8500 ohma - 400 cycies
Specaker Voice Coil 3.2 ohms Tubular Condenser 002 ml 600 V Tubular Condenser 01 mi 200 V
Tubular Condenser 05 mi 200 V
 돈 Ew
 Kica Condenser \(220 \mathrm{mml} \pm 10 \%\)
Mica Condersear \(100 \mathrm{mml} \pm 10 \%\) Elecirolytic Condenser \(150-150 \mathrm{mf}\) - \(15 \mathrm{~W} . \mathrm{V}\). Electrolytic Condenser \(40-30-20 \mathrm{ml}-150 \mathrm{~W} V\)
3 Section Variable Condenser 397 mml 3 Section Variable Condenser 397 mml
Loop Antenno \(w\) Trimmer Input I.F. Tranatormer Diode I.F Tranmiormer
Omeillonor Coil R. F. Coil
Volume Contro Volume Controi
Baitery Electric Changeover Switch Dial Pointer Dhal Seale (Calibrated) Outpul Tranalormer S"P. M. Speak er
1850 chm 10.W W.W. Aecisitor Padder Condennear
Tuning Knob Tuning Knob
Volume Knob Battery-OH-Dectric Knob rollowing appl:; to
Sodel PLic only.
Cabunel 30 ohm i \(W-W\) W Tuning Knob (wood)
Volume Knob (wood) Batlery-OH-Electric Knob (wood)


© John F. Rider

\section*{CIRCUIT DESCRIPTION}

The chassis utilized in these modern Firestone radio receivers in corporates a basic superheterodyne type of circuit that is designed to provide reception from standamt broadcast stations in the frequency range of 540 to 1600 KC as well as reception from the new frequency modulation stations that are located in the 88 to 108 MC band. Many of the stages of the complete circuit will be readily recognized as necessary elements of a typical superheterodyne sys. tem, however, the detection method that is used for frequency modulation reception embodies an entirely new principle that will be fully explained in this pamphlet. All sections of the circuit have been developed in accordance wtih the most modern radio engineering technique and some of the more prominent features are described in the following paragraphs.

Built-in antennas are provided for reception of AM as well as FM stations. In locations where signal strength is adequate, these built-in antennas wili give satisfactory performance but where FM signals are weak. it is desirabie to obtain greater signal pick-up by installing an outdocr antenna such as:

\section*{FIRESTONE FOLDED DIPOLE FM ANTENNA STOCK NO. 4-D. 126}

The built-in antenna used for AM reception is a high impedance loop that is mounted on rear edge of cabinet. A specially arranged and accurately cut length of "ribbon-type" high frequency transmission line serves to form the built-in folded dipole antenna for FM. reception.

Tuning of the radio frequency circuits of the receiver is accomplished by a sturdily constructed permeability ("slug") tuner. This tuning system provides a means of minimizing the effects of "microphonism" that are inherent in other tuning devices. A high degree of accuracy in calibration and alignment of tuned circuits is also oblained with the permeability tuning system.

An R. F. amplifier stage is utilized to give maximum sensitivity and selectivity as well as hiof image rejection on FM and manual tuning AM reception.

Both transformer coupled I.F. stages are used for FM and one stage is used for AM. The first and second I.F. transformers have two sets of windings; one set is tuned to 455 KC for AM operation and the other is tuned to 10.7 MC for FM operation. Switching of the windings, to alleviate undesired beat frequencies, is necessary only in the first I.F. transformer

Detection of amplifude modulated 455 KC signals is accomplished by the 6SQ7 diode rectification circuit and the resulting audio signal is passed to a conventional 6SJ7 audio amplifier stage.

Frequency modulation detection is obtained by an entirely new circuit that is known as the "RATIO DISCRIMINATOR." This FM detector circui! has the unusual ability to reject noise or other brief variations in the amplitude of the signal. The relative insensitivity of the Ratio Discriminator to signal amplitude variation makes it possible to eliminate the use of a "limiter" stage that ordinarily precedes the discriminator in other types of FM detector systems. It will therefore be noted that this receiver utilizes a:normal I.F. amplifier stage instead of a low gain limiter stage preceding the FM discriminator. The theory of operation of the Ratio Discriminator is given in a subsequent section.

Two stages of voltage amplification (6SQ7 and 6SJ7) are provided for the audio frequency output from the FM discriminator circuit. The final audio power amplifier stage incorporates a 6V6GT tube in a special inverse feedback arrangement which reduces distortion and contributes to exceptionally good tone quality.

When the receiver is used for phonograph operation, audio voltage and power amplification is accomplished by the 6SJ7 and 6V6GT. cudio stages. Gain of this system is intentionally limited so that the output tube will not be driven into the high distortion region. This design permits the volume control to be advanced to its maximum position before reaching an audio level where distortion would otherwise cause unintelligible blasting-hence the maximum volume control position approximates the highest sound level that would be obtainable with an acceptable percentage of distortion.

\section*{THE RATIO DISCRIMINATOR}

\author{
(Theory of Operation)
}

With the introduction of frequency modulated radio transmission it was necessary to devise a means of "detecting" or extracting th' audio frequency intelligence from a carrier wave after it was appro priately amplified at the receiver. Since the frequency modulation process involves variation of a given carrier frequency for as much as 75 KC in either direction, it is apparent that the intelligence for modulating signal) can best be extracted from the wave by a circuit that is capable of "discriminating" or recognizing the frequency of the carrier at any instant. Thus, the receiver circuit which converts FM carrier frequency variations into a corresponding vollage variation has become known as a discriminator.

When considering the function of a discriminator it is important io keep in mind that the output voltage amplitude is determined by the extent of the carrier frequency deviation from its center frequency; the greater the deviation, the greater the amplitude of the discriminator output voltage-ihis determines volume of the resultant audible signal.

The rate at which the FM carrier frequency is being deviated above and below its center value determines the rate at which the dis criminator output voltage will vary and therefore it will be seen that this rate of variation of output voltage corresponds to the audio fre quency of the intelligence that was to be extracted from the carrier wave: rapid variation of carrier frequency causes the discriminator to produce high audio frequencies and vice versa

Unfortunately the conventional type of discriminator cirfuit is also sensitive to amplitude variations in the carrier wave and it must be preceded-by a limiter stage that is capable of delivering a constant amplitude FM carrier wave to the discriminator. If the limiter stage were omitted, noise signals, which cause a variation in signal amplitude, would pass through the discriminator and would be audible in the output system.

With the advent of the "RATIO" Discriminator, an FM detector circuit was devised which was found to be relatively insensitive to amplitude variation of the incoming signal and therefore the use of a limiter stage could be dispensed with. After careful consideration of the performance of the Ratio Discriminator, Firestons engineers selected it as the means of FM detection in this receiver

The outstanding difference between the "Ratio" Discriminator and other discriminators is as its name implies-the output voltage is dependent upon the ratio of two voltages rather than upon a comparison of these voltages on the basis of magnitude alone. Full significance of this feature will become apparent after studying the following description of the Ratio Discriminator circuit.

Operation of the Ratio Discriminator can best be understood by starting with a simple 3 wire D.C. circuit as an analogy and building up the discriminator circuit in easily comprehended sections. A typical 3 wire D.C. circuit is therefore shown in Fig. 1 and the following performance characteristics should be particularly noted.


Fig. 1
When resistors \(R_{1}\) and \(R_{2}\) are equal, the circuit is said to be balanced and no current will flow in the center conductor A-B providing point B is a center tap on the batiery supply voltage. In addition the voliage drop \(E_{1}\) across resistor \(R_{1}\) equal to voltage drop \(E_{2}\) across resistor \(R_{2}\) If we now introduce batteries of equal voltage in the \(R_{1}\) and \(R_{2}\) sec
tions of the circuit as shown in Fig. 2, the system will remain balanced and although the current changes, there will be no change in the reading of voltmeters \(E_{1}\) and \(E_{2}\). It should be noted that the introduction of the batteries (with polarity as indicated), has caused a reduction in current. This current reduction results in a lower voltage drop across both load resistors but the sum of the drop across either resistor plus the battery voltage \(V\) must be equal to one-half of the supply vollage which is \(\mathrm{E}_{1}\) or \(\mathrm{E}_{2}\)


Fig. 2
This principle is made use of in the Ratio Discriminator so as to make it relatively insensitive to variation in amplitude of the incoming signal. By substituting the center tapped secondary winding of an I.F. transformer as shown in Fig. 3 for the two batteries labelled \(V\) in Fig. 2 it will be seen that a comparable condition is produced as equal voltages are induced in both halves of the secondary winding. Diode rectifier tubes are substituted for resistor \(R_{1}\) and \(R_{2}\) since we are now dealing with A.C. induced voltages that must be rectified. Do not overlook the fact that the plate resistance of the diodes creates a voltage drop and is analogous in that respect to the action of \(R_{1}\) and \(\mathrm{R}_{2}\).


Fig. 3

Observe that irrespective of the magnitude of incoming signal volt age \(E_{3}\), the voltage \(V\) induced in each half of tine secondary winding will be equal since it is center-tapped. It has been previously shown that as long as equal voltages \(V\) are added to each load section of the 3 wire system, there would be no change in the reading of meters \(\mathrm{E}_{1}\) and \(\mathrm{E}_{2}\) and thus these voltages remain the same irrespective of the variation in the input signal voltage \(\mathrm{E}_{3}\). The ratio of the voltages \(E_{1} / E_{2}\) also may be said to remain constant with variation in magnitude of incoming signal.


Fig. 4

Fig. 4 shows a slight rearrangement of the same circuit that was illustrated in Fig. 3 with the exception that the I.F. transformer has a condenser across the secondary in order to resonate it to the desired trequency. In addition, the conductor between points \(A\) and \(B\) has been eliminated since current will not flow thru it as long as the system is balanced. Center tap A on transformer secondary is still retained.

The foregoing circuit has been shown to be insensitive to variations in amplitude of the incoming signal and if it can now be arranged so that it will be capable of "discriminating" between variations in the frequency of the incoming signal, it will prove to be an ideal FM delector. Frequency discrimination can be accomplished by introducing some voltage from the primary of the I.F. transformer in series with the resonant voltage of the secondary so that the vector sum of these two voltages will effectively determine the instantaneous voltage between points \(A\) and \(E\) as well as between \(A\) and \(F\). (These are the voltages that are measured by meters \(E_{1}\) and \(\left.E_{i}\right)\). The cir-uit of Fig. 5 shows how a portion of the primary voltage of the l.F. trars former is introduced into the secondary circuit by means of a tertiary winding on the transformer.


Condensers \(C_{1}\) and \(C_{2}\) have low reactance at the I.F. frequency, however, their reactance is appreciable at audio frequencies and therefore the voltage drop across these condensers will readily follow circuit voltage variations that occur at an audio rate.

If an examination is now made of the conditions that would prevail under each of the following circumstances, it will be possible to determine whether the voltages \(\mathrm{E}_{1}\) and \(\mathrm{E}_{2}\) can be made to vary in accordance with the variation of carrier frequency since that action would follow the intelligence that is contained in the FM signal.
1. Ratio of voltage \(E_{1}\) to \(E_{n}\) when frequency of incoming signal is exactly equal to the I.F.
2. Ratio of voltage \(E_{1}\) to \(E_{e}\) when frequency of incoming signal is above I.F.
3. Ratio of voltage \(E_{1}\) to \(E_{2}\) when frequency of incoming signal is below I.F.

CONDITION \#I: INCOMING SIGNAL EQUAL TO I.F.: When this condition prevails, the vector diagram shown in Fig. 6 illustrates how the voltage across tertiary winding \(A B\) is added vectorially to the resonant secondary voltage across \(A C\) or across \(A D\) to produce a resultant voltage that determines the voltage indicated by meters \(E_{1}\) and \(E_{\text {? }}\).
\(A X\) and \(A B\) represent the voltages that are coupled into the secondary and tertiary windings of the I.F. transformer. When the secondary is tuned to resonance, the voltage AC (across one-half the resonant circuit) will be 90 degrees ahead of induced voltage \(A X\) as well as induced voltage AB. It should be remembered that the phase difference between applied voltage (or induced voltage as in this case) and the voltage developed across an inductance in an A.C. circuit will vary with frequency and only at the resonant frequency will the phase difference he equal th 90 degrees.


Fig. 6


The manner in which a Ratio Discriminator extracts the intelligence from a frequency modulated carrier by means of a variation in the ratio between two voltages should now be apparent from the foregoing discussion and Fig. 9 illustrates the complete discriminator circuit as used in this receiver.

*Condenser \(\mathrm{C}_{1}\) is represented in the actual circuit by distributed capacitance of associated wiring.

Elimination of the battery that was shown in prevtous illustrations is accomplished by using a long time constant resistor:condenser combination consisting of \(R_{4}\) and \(C_{5}\). Since the two diodes in the discriminator circuit are in series, they will conduct on the same half cycle, and the rectified current thru \(R_{4}\) will charge condenser \(C_{5}\) so that the point labelled \(Y\) becomes negative. The time constant of \(R_{t}-C_{\overline{3}}\) is about 0.1 secord so that the negative potential at point \(Y\) will remain constant at even the lowest audio frequencies.

A rapid increase in carrier voltage cannot momentarily increase the voltage across \(R_{4}\)-Cs due to the large time constant; similarly, a sudden reduction in carrier voltage will not be accompanied by a change in voltage across \(R_{4}-C_{3}\). Thus, the voltage across this R - C combination stabilizes the Ratio Discriminator against amplitude modulation. In addition it should be noted that the same voltage serves as an excel. lent A.V.C. voltage and is used for that purpose in this receiver.

The "threshold" effect that is noticeable in other types of FM limiterdiscriminator combinations is absent in the ratio type discriminator and there is no specific minimum carrier level that must be applied (as in the case of a limiter stage) to prevent noise from reaching the audio system.

Since the higher audio frequencies are intentionally emphasized in the frequency modulation transmission process, de-emphasis is used at the receiver in order to provide normal tone rendition and to reduce high frequency noises. De-emphasis is accomplished by resistor \(R_{3}\) and condensers \(C_{3}\) and \(C_{4}\) in the discriminator circuit shown in Fig. 9.

\section*{BROADCAST BAND - "AM" - ALIGNMENT PROCEDURE}
1. Disconnect leads from FM antenna terminal strip (labelled "A-G-A") at back of chassis; also disconnect speaker plug. AM loop antenna plug and phono plugs. Remove chassis from cabinet.
2. It will be necessary to perform this alignment procedure with the chassis placed relatively close to the cabinet in order to avoid removing the AM loop antenna that is attached to cabinet frame.
3. After conveniently locating chassis with respect to the cabinet, reconnect AM loop antenna plug, speaker plug and brown lead of "External Antenna" coupling turn to blue lead at back of receiver.
4. Connect an output meter across speaker voice coil or from plate of 6 V 6 GT tube to chassis through a 0.1 Mfd . condenser.
5. Connect ground lead of signal generator to reteiver chassis.
6. Set volume control to the maximum volume position and use \(\dot{\alpha}\) weak signal from the signal generator.
7. If alignment of both \(A M\) and \(F M\) chenneis is requared, it is necessary to align the \(A M\) channel first; then align FM channel as instructed in preceding section.
8. R.F. leads from slug tuner assembly should be dressed away from wave trap coil and close to chassis.
9. After alignment procedure is compieted and chassis has been reinstalled in cabinet, arrange leads to loop antenna so that they are separated from each other as much as possible... avoid twisting or taping these leads together.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline DUMMY ANT. IN SERIES WITH SIGNAL GENERATOR & CONNECT
HIGH SIDE OF
SIGNAL
GENERATOR TO & \begin{tabular}{l}
SIGNAL \\
GENERATOR \\
FREQUENCY
\end{tabular} & FM-AM
PHONO
SWITCH
POSITION & \[
\begin{aligned}
& \text { RECEIVER } \\
& \text { DIAL } \\
& \text { SETTING }
\end{aligned}
\] & TRIMMER OR SLUG NUMBER & TRIMMER DESCRIPTION & TYPE OF ADJUSTMENT \\
\hline \multirow[b]{2}{*}{0.1 MFD. Condenser} & \multirow[t]{2}{*}{Terminal K on tuner unit (see Fiq. 11).} & \multirow[t]{2}{*}{455 KC} & \multirow[t]{2}{*}{\begin{tabular}{l}
" \(\mathrm{AM}^{\prime}\) " \\
Center \\
Position
\end{tabular}} & \multirow[t]{2}{*}{Any position where it does not affect the signal.} & 1-2 & 2nd I.F. & \multirow[t]{2}{*}{Adjust for maximum output. Then repeat adjustment.} \\
\hline & & & & & 3-4 & 1st I.F. & \\
\hline 0.1 MFD. Condenser & Terminal K on tuner unit (see Fig. 11). & 455 KC & " AM \(^{\prime \prime}\) Center Position & Any position where it does not affect the signal. & 5 & Wave Trap & Adjust fcr minimum output. \\
\hline
\end{tabular}

If positions of movable slugs in the slug tuner assembly have been disturbed (examine cement seal near top of threaded stem on each slug) or if a coil or slug has just been replaced in the tuner assembly, omit the next 5 instructions in this chart and start with the procedure entitled "Slug Tuner Adjustment Procedure-AM Section." Where the tuner assembly has not been disturbed, ignore this instruction and proceed with the next step.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 500 MMFD. Mica Condenser & External Antenna clip at back of Cabinet. & 535 KC & \begin{tabular}{l}
"AM" \\
Center \\
Position
\end{tabular} & Set Slug tuner assembly to fully closed position. Disregard. position of dial pointer. & 6 & Oscillator Trimmer & Adjust for maximum output. \\
\hline \begin{tabular}{l}
500 MMFD. Mica \\
Condenser
\end{tabular} & \begin{tabular}{l}
External \\
Antenna clip at back of Cabinet.
\end{tabular} & 1000 KC & \begin{tabular}{l}
"AM" \\
Center Position
\end{tabular} & \multicolumn{4}{|l|}{Tune to 1000 KC generator signal and check position of dial pointer. If it is set incorrectly. release clip on pointer and repesition to 1000 KC calibration mark. Note that the 1000 KC mark is located under the last " C " in the numeral " 100 ." Exercise care to set pointer accurately.} \\
\hline \[
\begin{aligned}
& 500 \text { MMFD. } \\
& \text { Mica } \\
& \text { Condenser }
\end{aligned}
\] & External Antenna clip at back of Cabinet. & 1500 KC & \begin{tabular}{l}
" AM \(^{\prime \prime}\) \\
Center \\
Position
\end{tabular} & Tune to 1500 KC generator signal. & 7 & Antenna Trimmer & Note the difference between the dial pointer setting and the 1500 KC mark on the scale do not disturb pointer position even it pointer does not coincide with 1500 KC mark. If the difference does not exceed 20 KC , adjust trimmer No 7 for maximum output and proceed with next two instructions in this chart. Where the calibration error exceeds 20 KC it is advisable to omit the next two instructions in this chart and adjust the slug tuner as described in the following section. \\
\hline 500 MMFD. Mica Condenser & External Antenna clip at back of Cabinet. & 600 KC & \begin{tabular}{l}
" AM \(^{\prime \prime}\) \\
Center Position
\end{tabular} & Tune to 600 KC generator signal. & 8 & Antenna Padder & Adjust for maximum output. Try to increase output by detuning padder and retuning receiver dial until maximum output is obtained. \\
\hline
\end{tabular} Repeat adjustin ond

John F. Rider

\section*{"AM" ALIGNMENT PROCEDURE CONTINUED} SLUG TUNER ADJUSTMENT PROCEDURE - AM SECTION

This procedure is to be used only where the positions of slugs in the slug tuner have been disturbed or in event of a coil or slug replacement, or where a serious calibration or tracking error is noted after attempting to align the receiver as described in the preceding section
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline DUMMY ANT. IN SERIES WITH SIGNAL GENERATOR & CONNECT
HIGH SIDE OF
SIGNAL
GENERATOR TO & SIGNAL GENERATOR FREQUENCY & \[
\begin{gathered}
\text { FM-AM } \\
\text { PHONO } \\
\text { SWITCH } \\
\text { POSITION }
\end{gathered}
\] & \[
\begin{gathered}
\text { RECEIVER } \\
\text { DIAL } \\
\text { SETTING }
\end{gathered}
\] & TRIMMER OR SLUG NUMBER & TRIMMER DESCRIPTION & TYPE OF ADJUSTMENT \\
\hline 500 MMFD.
Mica
Condenser & \[
\begin{gathered}
\text { External } \\
\text { Antenna clip } \\
\text { at back of } \\
\text { Cabinet. }
\end{gathered}
\] & 535 KC & \[
\begin{aligned}
& \text { "AM" } \\
& \text { Center } \\
& \text { Position }
\end{aligned}
\] & Set Sina tuner assembly to
fully closed position. Disregara pointer. & 9 & Oscillator
Tuning Slug & The object of this adjustmen is to set slug \#9 to a posi reaches maximum induct ance at
complished by first backing off trimmer condenser \#6
until its plates are woll apaced (lowest capacity) then rotate siug \(\left.{ }^{\text {note whether a peak be }} \begin{array}{l}\text { and }\end{array}\right)\) obtained on the output reached, turn trimmer con denser \#6 to a slightly
higher capacity setting and higher capacity setling slag \#9 for peak output. Whon approach the peck output setting by rotating the sug
so that it is moving down in. to the coil form. The correct setting of slug
mined when \(\alpha\) dofinite peak can be reached wirh irimmer
\(\# 6\) at the lowest capacity position that permits the coil \({ }_{535} \mathrm{KC}\). \\
\hline 500 MMFD. Condenser & \[
\begin{gathered}
\text { External } \\
\text { Anetnack clip } \\
\text { at back of of } \\
\text { Cabinet. }
\end{gathered}
\] & 1500 KC & \[
\begin{gathered}
\text { "AMY" } \\
\text { Center } \\
\text { Position }
\end{gathered}
\] & Set Accurately to 1500 KC mark on scale. & 6 & \(\underset{\substack{\text { Oscillatior } \\ \text { Trimmer }}}{\text { a }}\) & Adjust for maximum output. \\
\hline 500 MMFD.
Mica
Condenser & External Antenna clip Cabinet. & 535 KC & \[
\begin{gathered}
\text { "AM" }{ }_{\substack{\text { Center } \\
\text { Position }}} \text { Por }
\end{gathered}
\] & \begin{tabular}{l}
Set Slug tuner assembly \({ }^{\circ} 0\) \\

\end{tabular} & 10 & \[
\begin{aligned}
& \text { Oscillator } \\
& \text { Padder Slug }
\end{aligned}
\] & Adjust to receive 535 KC sig nal and tor maximum output \\
\hline
\end{tabular}

Repeat adjustment of oscillator trimmer \(=6\) at 1500 KC and oscillator padder slug at 535 KC until both points are correctly calibrated with the dial scale.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 500 MMFD . Mica Condenser & External Antenna clip at back of Cabinet. & 1500 KC & \begin{tabular}{l}
" \(\AA\) M" \\
Center \\
Position
\end{tabular} & Tune to 1500 KC generator signal. & 7 & Antenna Trimmer & Adjust for maximum output. \\
\hline 500 MMFD. Mica Condenser & External Antenna clip at back of Cabinet. & 1000 KC & \begin{tabular}{l}
"AM" \\
Center Position
\end{tabular} & Tune to 1000 KC generator sig nal. & 11 & Antenna Tuning Slug & Adjust for maximum output. \\
\hline 500 MMFD Mica Condenser & External Antenna clip at back of Cabinet & 600 KC & \begin{tabular}{l}
" \(\mathbf{R M}^{\prime}\) \\
Center Position
\end{tabular} & Tune to 600 KC generator signal. & 8 & Antenna Padder & Adjust for maximum output. Try to increase output by de. tuning padder and retuning receiver dial until maximum output is obtained. \\
\hline
\end{tabular}

Repeat the three preceding adjustments until no further improvement can be made in output at \(1500 \mathrm{KC}, 1000 \mathrm{KC}\) and 600 KC . Apply a coating of speaker cement at top of each tuning slug stem to prevent movement

\section*{DIAL AND POINTER DRIVE CORD ARRANGEMENT}

To string dial cord, furn the main drive drum to maximum counter-clockwise posi tion and use following parts:

114955-Clip on end of cord
117057 -Cord ( 7 feet)
119087-Ring for dial cord
113177 -Tension Spring


\section*{FREQUENCY MODULATION - "FM" - ALIGNMENT PROCEDURE}

INSTRUMENIS: Alignment of the FM circuits in this receiver may be accomplished with either a conventional AM type signal generator or an FM signal generator. The output indicator should be an oscilloscope or a vacuum tube voltmefer

Although it is preferable to use an FM generator and an oscilIcscope, reasonably accurate alignment is obtainable when using a conventional AM generator and vacuum tube voltmeter providing proper care is exercised in adjusting the discriminator circuit trimmer condenser.

IMPORTANT: If an AM signal generator is used, it should be capable of producing fundamental frequencies of 10.7 MC and 88 to 108 MC avoid using an AM generator which produces signals in the 88 to 108 MC range by using harmonics higher than the second. Generators which are dependent upon third fourth or fifth harmonics for output frequencies of 88 to 108 MC will generally produce undesirable spurious beat signals with the local oscillator in the receiver and alignment will be ex ceedingly difficult.

The following procedure is adaptable for use with either an AM or FM generator and oscilloscope or vacuum tube voltmetermerely follow the instructions which are applicable to the in struments that are used.
1. If alignment of both \(A M\) and \(F M\) channels is required it is necessary to align the AM channel first, then align the FM channel as instructed in adjacent chart (AM alignment pro ccdure is given on page 9). Do not attempt to reposition pointer by releasing it from clip on dial cord this is done only during \(A M\) alignment
2. Disconnect leads from FM antenna terminal strip (labelled "A.G.A") at back of chassis; also disconnect all other plugs on rear of chassis and remove chassis from cabinct. It is not necessary to remove the built in antennas.
3. Remove speaker from cabinet and reconnect plug to recciver chassis.
4. A specific selting of the receiver volume control is not re quired, however, it will be found convenient to leave it in the maximum volume position so that alignment signals will be audible even though the output indication is obtained by a V-T voltmeter or scope connected to points in the dis criminator circuit
5. ГM circuit leads should be dressed as short and straight as possible, particularly those in the oscillator circuit. I.F. plate and grid leads should also be kept short and straight
6. Alignment of receiver circuits may now be accomplished by using the procedure in the adjoining chart


TRIMMER LOCATION CHART


SLUG TUNER A.SSEMBLY


FIRESTONE PAGE 19-9
THE FIRESTONE TIRE \& RUBBER CO.


\section*{REAR OF CHASSIS}

NOTE A: Grounding of center sfud on tube socket is necessary to reduce capacity coupling between other pins. Oscillation may result if this ground is omitted.

\section*{SOCKET VOLTAGES}

Measured with voltmeter having sensitivity of 1000 ohms
per volt except where indicated by (*). The (*) per volt except where indicated by (*). The (*)
symbol designates a vacuum tube voltmeter measurement.
ALL MEASUREMEN'TS MADE WITH EM-AM-PHONO SWITCH IN "FM" POSITION UNLESS OTHERWISE INDICATED DIAL TUNED TO 108MC. FOR "FM" MEASUREMENTS DIAL TUNED TO 540KC. FOR "AM" MEASUREMENTS
VOLUME CONTROL SET TO MINIMUM WITH NO SIGNAL TONE SWITCH IN SPEECH POSITION


\section*{CLARI-SKEMATIX}

PAGE 19-10 FIKESTONE
THE FIRESTONE TIRE \& RUBBER CO.


©John F. Rider

FM" ALIGNMENT PROCEDURE CONTINUED
NSTRUCTIONS GIVEN ON PRECEDING PAGE MUST BE FOLLOWED BEFORE USING THIS CHART
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{SIGNAL GENERKTOR CONNECTIOMS} & \multicolumn{2}{|l|}{OSCILOSCOPE OR V.T VOLTMETER CONNECTIONS} & \multicolumn{4}{|c|}{VER} & \multicolumn{2}{|l|}{TYPE OF RDIUSTMENT AND OUTPUT INDICATION} \\
\hline CONNECT HIGA SIDE OF SIGNAL GENERATOR TO & \[
\begin{aligned}
& \text { CONNECT GROUND } \\
& \text { LEAD OF SIGNAL } \\
& \text { GENERATOR TO }
\end{aligned}
\] & \[
\begin{aligned}
& \text { FREQUENCY } \\
& 8 \text { TYPE OF } \\
& \text { MODULATION }
\end{aligned}
\] & IF
IS ON OSCLLLCSCOPE
USED, CONNECT IT AS FOLLOWS: & \[
\begin{aligned}
& \text { IF A V.T VOLTMETER } \\
& \text { IS USED. CONNET IT } \\
& \text { AS FOLLOWS: }
\end{aligned}
\] & FM.AM.PHONO
SWITCH
POSITION & \[
\begin{aligned}
& \text { DETTIL } \\
& \text { SETING }
\end{aligned}
\] & \[
\begin{aligned}
& \text { TRIMMER } \\
& \text { OR SLUG } \\
& \text { NUMBER }
\end{aligned}
\] & \[
\begin{gathered}
\text { TRIMMER } \\
\text { DESCRIPTION }
\end{gathered}
\] & RDIUSTMENT RND OUTPUT INDICATION WHEN USING A V.t VOLTMETER & ADJUSTMENT RND OUTPUT indication when using AN OSCILLOSCOPE \\
\hline \begin{tabular}{l}
 \\

\end{tabular} & Receiver chasesis in
vicinity of \(68 \Omega 6\) (FM) zicinity of l.F. tube. & \begin{tabular}{l}
10.7 MC \\
 lated FM signal should preterably be mod
ulated \(\pm 300 \mathrm{KC}\).
\end{tabular} & Connect vertical amplitier 'high"' lead in series with pin \(\# 6\) of 6SQ7 tube. Con. nect scope ground & Connect common (or ground) ter
minal of meler to receiver chase D.C. probe lead of meter is then tube. &  & Any position whoro
in doos not atict in aois nol
ine mignol. & 12 & Diacriminator
Primary & \begin{tabular}{l}
Sel moter to a low p.c. vollage range and
adiuti rimmor \(\# 12\) ior maximum meter \\

\end{tabular} &  \\
\hline Same as abore & Same ata above & Same as abore & Same at above &  & Same as above & Same as above & 13 & \begin{tabular}{l}
Discriminator \\
Use an insulated phan ing tool
\end{tabular} &  &  \\
\hline \multicolumn{11}{|l|}{} \\
\hline  &  & Same as abor* & Same as above &  & Same as above & Same at above & 14 and 15 & 2 nd 1. . &  &  \\
\hline \begin{tabular}{l}
 \\
denser in werid
\end{tabular} & Receiver chastis in
vicinity of
nug tuner & Same as above & 16 and 17 & 1 lat I.F. &  &  \\
\hline \multicolumn{11}{|l|}{} \\
\hline  &  &  & Same as abovo & Same as above & \[
\begin{gathered}
\text { Maximum } \\
\text { cackuy } \\
\text { poxition } \\
\text { por }
\end{gathered}
\] & 98 MC & 18 & ( Oncillator &  &  oblaired whe
trally localed. \\
\hline \multicolumn{2}{|c|}{\multirow[t]{2}{*}{Same at above}} & \multirow[t]{2}{*}{Same ata abors} & \multirow[t]{2}{*}{Same at above} & \multirow[t]{2}{*}{Same as above} & \multirow[t]{2}{*}{Same at above} & \multirow[t]{2}{*}{98 MC} & 19 & R.F. Trimmer & , & Adiuat Himmer \(=19\) tor maximum amplitude of \\
\hline & & & & & & & 16 and 17 & 181. I. & (eater &  \\
\hline \multicolumn{2}{|c|}{Same as above} &  & Same at abovo & Same as abovo & Same as above &  & 20 &  & \[
\begin{aligned}
& \text { Adjust trimmer } \pm 20 \text { tor maximum meter } \\
& \text { reading. }
\end{aligned}
\] &  \\
\hline \multicolumn{11}{|l|}{} \\
\hline \multicolumn{11}{|l|}{} \\
\hline \multicolumn{2}{|l|}{\multirow{3}{*}{Same as abovo}} & \multirow[t]{3}{*}{} & \multirow{3}{*}{Same at abore} & \multirow{3}{*}{Same as abovo} & \multirow{3}{*}{Same at abovo} & \multirow{3}{*}{} & 18 & Osaillator & Sot trimmer \# 18 to rective 88 MC. i ignal. & Adiust trimmer \(=18\) to obtain the eymmetrical pat
torn thown above. \\
\hline & & & & & & & 19 & R.F. Trimmer & \multirow[b]{2}{*}{Adjuat trimmora \(\# 19\) and \# 20 tor maxinum meter reading} & \multirow[b]{2}{*}{Adjuan trimmern \(=19\) and \(=20\) or maximum ampliUde of patiorn.} \\
\hline & & & & & & & 20 &  & & \\
\hline \multicolumn{2}{|l|}{Same ate abore} & & Same atamber & same atabore & Same as abore &  & 21 & Oocillator &  & Adium alug \#2 to oblain the eymmotrical pattern \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Samo ataboro}} & \multirow[t]{2}{*}{108 MC} & \multirow[t]{2}{*}{samo atabovo} & \multirow[t]{2}{*}{Same as abore} & \multirow[t]{2}{*}{Same atabors} & \multirow[t]{2}{*}{By meane of tuning
control knob, et Midit poimber to tiod Mc. mark on dial.} & - & - &  & Note heavy braidod lead connection to oace. coil torn uhown abovo in oblain od coat braid with apeaker cement attor coritect postion is located. \\
\hline & & & & & & & 22 & \({ }_{\text {tuning }}^{\text {R.F. }}\) /uq & (tading. & (idjur \\
\hline \multicolumn{11}{|l|}{} \\
\hline
\end{tabular}

OJohn F. Rider

FIRESTONE PAGE 19-15
THE FIRESTŌNE TIRE \& RUBBER CO.

THE FIRESTONE TIRE \& RUBBER CO.
SOCKET VOLTAGES
\[
\begin{aligned}
& \text { BOTTOM VIEW OF CHASSIS } \\
& \text { I17 YOLT } 60 \text { CYCLE A.C. } \\
& \text { POWER SUPCY YSED } \\
& \text { FOR HESE MEASUREMENTS. } \\
& \text { ALL YOLTAEES MEASURED BETHEEH } \\
& \text { SOCKET TERMIALS AMO CHASSIS. }
\end{aligned}
\]
\[
\begin{gathered}
\text { 6BA6 } \\
1 \leq \perp . . . .
\end{gathered}
\]
\[
\begin{aligned}
& \text { A special cable and socket, ex ex } \\
& \text { tending from the rear of the }
\end{aligned}
\]
 tending from the rear of the
chassis, is provided for the connection of a wire recorder unit accessory.
THE CONTEMPORARY



\footnotetext{
©John F. Rider
}

FIRESTONE PAGE 19-19

\section*{Stage gain measurement procedure}

REQURED INSTRUMENTS: The amount of amplification or Gain
of most of the stages of this receiver can be measured with an \(A . C\)


 used. PROCEDURE: It is exceedingly important to adhere to the procedure
outlined below sinee the crccuracy of these measuremenis will be
atiected to conder
 erating conditions.
Be sure that R.F.. I.F. and Discriminator stages are carefully and
accurately aligned by utilizing the alignment procedure given in this manual.
2. Connect Signal Generator as shown Eelow. Note that generator
connections differ for "AM" and "FM" measurements.
3. For "AM" measurements, set signal generator 10600 KC. (400
cycle modulation) and then carefully tune radio receiver to this
 signal by using an output meter to indicate peak output. If a
local station interieres, set generator to a nearby frequency and
lot re-tune the receiver.
For "FM" measurements, set signal generalor to 98 MC . (400
cycle modulation with \(22 / \frac{1}{2} \mathrm{KC}\). deviation) and then carefull cycle modulation with \(221 / 2 \mathrm{KC}\). deviation) and then carefully tune
radio receiver to this signal by using \(a\) D.C. Vacuum Tube Volt


NOTE B: Measured with input vollage of 0.3
vote \(c\) : Measured with input voltage of 0.05 .
DIFFERENCES in tube characteristics, tolerance of parts, adjustment of tuned circuits and vina dins in line voltage will influence stage gain. These factiors
should be given due attention in event the gain of a stage varies extensively
from the values shown

\(\underset{\text { Moder View }}{\substack{\text { Re-64 }}}\)


Rear
Model 4-A
4- -65

\section*{BROADCAST BAND - "AM"-ALIGNMENT PROCEDURE}
1. Disconnect leads from FM-AM aerial terminal strip (labeled leads and phono plugs. Remove chassis and speaker. desired allow speakes, to remore chassis and speaker. It in cabinet and connect to
receiver by extension load. Stand chassis extension lead
that all trimmers are accessible.
3. Builtin loop aerial leads do not have to be connected to ter.
minal strip on rear of chassis while I. F. slages are being
aligned


at botiom of trame; then remove screw which holds external
aerial clip on top suppori block so as to release connecting pointer should be ine postion indicaled ty the last division below 55 on
the dial. If it is set incorrectly, hold tuning shaft steady and
5. Connect an oulput meter across speaker voice coil. or from
6. Connect ground lead of signal generator to the receive
6. chassis.
7. Sol oveume control at maximum volume position and use
weak signal from the signal generator
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline DUMMY ANT. IN SERES GENERGTOL generator & CONNECT
HIGA SIDE
SIGNAL GENERATOR TO & \[
\begin{gathered}
\text { SIGNAL } \\
\text { GENERATOR } \\
\text { FREQUENCY }
\end{gathered}
\] & \[
\begin{gathered}
\text { BNAD } \\
\text { SWITCH } \\
\text { POSTION }
\end{gathered}
\] & \[
\begin{gathered}
\text { RECEIVER } \\
\text { SIITING }
\end{gathered}
\] & TRIMMER NUMBER & \(\underset{\text { DESCRIPTION }}{\text { TRIMMER }}\) & type of adjustment \\
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Lug on trimmer No. } \\
& 6 \text { at top of gang } \\
& \text { (see figure below for } \\
& \text { location of trimmer). }
\end{aligned}
\]} & \multirow[t]{2}{*}{455 KC} & \multirow[t]{2}{*}{\[
\underset{\substack{\text { Broadcast } \\ \text { (Middle) }}}{\text { MM }}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Any point where } \\
& \text { it does not } \\
& \text { afiect the signal. }
\end{aligned}
\]} & 1-2 & 2nd 1F. & \multirow[t]{2}{*}{} \\
\hline & & & & & \(3-4\) & 1.5 & \\
\hline \[
\begin{aligned}
& 260 \text { MMFD. } \\
& \text { MMCen } \\
& \text { Condenser }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Exkernal } \\
& \text { Kational }
\end{aligned}
\] & 1500 KC &  & 1500 Kc & 5 &  & Adjust tor maximum output. \\
\hline \multirow[b]{2}{*}{260 MMFD
Mica Condens} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { External } \\
& \text { Chipial }
\end{aligned}
\]} & \multirow{2}{*}{1500 KC} & \multirow{2}{*}{Broddases)} & \multirow[b]{2}{*}{} & 6 & \(\underset{\substack{\text { Broodeast } \\ \text {.f. }}}{ }\) & Adjust tor maximum output. \\
\hline & & & & & 7 & \(\underbrace{\substack{\text { a }}}_{\substack{\text { Broadcast } \\ \text { Anionna }}}\) & Adjust fcr maximum output. \\
\hline \multirow[t]{2}{*}{260 MMFD
Mica
Condenser} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Exiernal } \\
& \text { Chificial } \\
& \text { Clip }
\end{aligned}
\]} & \multirow{2}{*}{600 KC} & \multirow{2}{*}{\[
\begin{gathered}
\text { AM } \\
\text { Broadcast } \\
\text { (Middle) }
\end{gathered}
\]} & \multirow{2}{*}{\[
\begin{aligned}
& \text { Tune to } 600 \\
& \begin{array}{l}
\text { Kc. } \\
\text { signal. }
\end{array} \\
& \text { sigerator }
\end{aligned}
\]} & 8 &  & Adjust for maximum output. \\
\hline & & & & & 9 & \[
\begin{gathered}
\text { Adiustable } \\
\substack{\text { corod of } \\
\text { Broctast } \\
\text { Aneanna } \\
\text { Coil. }}
\end{gathered}
\] & Adjust tor maximum output. \\
\hline
\end{tabular}

trimmer location chart
© John F. Rider

AGE 19-20 FIRESTONE

\section*{MODETS 4 A \\ - 6 \\ THE FIRESTONE TIRE \& RUBBER CO.}

\title{
FREQUENCY MODULATION_"FM"-ÁLIGNMENT PROCEDURE (USING AN OSCILLOSCOPE AND FM "SWEEP" GENERATOR)
}

INSTRUMENTS: Alignment of the FM circuits in this receiver can be most conveniently accomplished with an FM signal qenerator. When using this type generator, the output indicator must be an oscilloscope.
1. If alignment of both AM and FM channels ts required it in nec essary to align the AM channel first. then align the FM channel as instructed in chart below (AM alignment procedure is given on page 8).
2. Disconnect leads from FM-AM aerial terminal strip (labelled FM-FM-AM-AM) at back of chastis; also disconnect speaker leads and phono plugs. Remove chassis and speaker. (It desired. allow speaker to remain in cabinet and connect to receiver by extension leads.)
3. With the gang condenser fully meshed, dial pointer should be in the position indicated by the last division below 88 on the dial.

If it is set incorrectly, hold funing shaft steady and reposition pointer.
4. A specific setting of the receiver volume control is not required. however, it will be found convenient to leave it in the maximum volume position so that alignment signala will be audible even though the output indication is obtained by an oscilloscope con nected to points in the discriminator circuit.
5. Dress FM circuit leads as short and straight as possible, particularly those in the oscillator circuit. I.F. plate and grid leads should also be kept short and straight.
6. Set band switch to the FM (extreme counter-clockwise) position.
7. Set tone control to fully counter-clockwise position.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { SIGNAL } \\
\text { GENERATOR } \\
\text { CONNECTIONS }
\end{gathered}
\] & FREQUENCY 8 TYPE OF MODULATION & OSCLLIOSCOPE CONNECTIONS & \[
\begin{gathered}
\text { RECEIVER } \\
\text { DIAL } \\
\text { SETIING }
\end{gathered}
\] & TRIMMER OR SLUG NUMBER & \[
\left\lvert\, \begin{array}{c|}
\text { TRIMMEER } \\
\text { DESCRIPTION }
\end{array}\right.
\] & TYPE OF ADJUSTMENT and output indication \\
\hline \begin{tabular}{l}
Connoct high
side in series with an 01 Mid on trimmer No 17 at top of
gang (see illur tration on page trimmer). Con. nect ground lead \\

\end{tabular} & 10.7 MC
FM signal should
Profor ibly
moductod
KC. &  & Any
where
position
does where it does signal. & 10 & Discriminator Secondary &  \\
\hline \multirow{3}{*}{\[
\begin{aligned}
& \text { Same } \\
& \text { as above }
\end{aligned}
\]} & \multirow{3}{*}{\[
\begin{aligned}
& \text { Same } \\
& \text { above }
\end{aligned}
\]} & \multirow{3}{*}{Same abovo} & \multirow{3}{*}{\[
\begin{gathered}
\text { Same } \\
\text { Sas above }
\end{gathered}
\]} & 11 & \(\underset{\substack{\text { Discriminator } \\ \text { Primary }}}{ }\) & \multirow{3}{*}{Adjust these trimmers for maximum amplitude and steepness of that portion of the pattern between " A " and "C"' (see Fiq. 2).} \\
\hline & & & & 12 and 13 & 2nd I.F. & \\
\hline & & & & 14 and 15 & 1 19t.f. & \\
\hline
\end{tabular}

Recheck adjustments of trimmers No. 10 and No. 11 to be aure that both are sef as accurately as possible to obtain correct cross-over point or symmetry of pottern
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Connect qenerafor "high" side in series with a 300 ohm carbon resistor to end terminal marked ' \(\mathrm{FM}^{\prime}\) " on strip at back of chas. sis. Generator ground lead must connect to next ferminal marked "GND". & \begin{tabular}{l}
106 MC \\
FM signal should preferably be modulated \(\pm 400\) KC.
\end{tabular} & Same as above & 106 MC & 16 & Oscillator Trimmer & \begin{tabular}{l}
Adjust trimmer No. 16 to obtain the symmetrical pattern shown in Fig. 2. Correct setting of trimmer No. 16 is obtained when cross-over point in pattern is centrally located. \\
MPORTANT: It will be noted that there are two different settings of trimmer No. 16 at which the desired scope pattern can be obtained-always select the trimmer setting which is nearest to the low capacity end of its range.e
\end{tabular} \\
\hline \multirow{3}{*}{Same me above} & \multirow{3}{*}{\[
\begin{aligned}
& \text { Same } \\
& \text { as above }
\end{aligned}
\]} & \multirow{3}{*}{Same as above} & \multirow{3}{*}{Tune to 106 MC. generator siqnal.} & 17 & \[
\begin{gathered}
\text { R.F. } \\
\text { Trimmer }
\end{gathered}
\] & Adjust trimmer No. 17 for maximum amplitude of patiern. \\
\hline & & & & 18 & \begin{tabular}{l}
Antenna \\
Trimmer
\end{tabular} & Adjust trimmer No. 18 for maximum amplitude of pattern. \\
\hline & & & & 14 and 15 & 1st I.F. & Recheck adjustment of these trimmers for maximum amplitude of pattern. \\
\hline
\end{tabular}

Check calibration and tracking of receiver with input signals of 90 and 98 MC. If difference between dial pointer setting and 90 or 98 MC . calibration mark does not exceed \(\pm 0.3 \mathrm{MC}\). and antenna and R.F. circuits are tracking properly, then alignment may be considered satisfactory and no further adjustment is necessary.
Where the calibration error is greater than \(\pm 0.3 \mathrm{MC}\). it is advisable to mqke the following adjustments:
1. If pointer falls above the 90 MC . calibration point, it will be necessary to slightly spread the windings of the FM oscillator coil. Then repeat the two preceding adjustments of trimmers 16 , 17 and 18 at 106 MC. Should it be found impossible to obtain the 106 MC . signal at the proper point on the dial by adjustment
of the trimmers it will then be necessary to adjust the spacing of the gang condenser plates.
2. If pointer falls below the 90 MC . calibration point. it will be necessary to push the windings together on the FM oscillator coil. Then repeat the two preceding adjustments of trimmers 16. 17 and 18 at 106 MC. Should it be tound impossible to obtain the 106 MC . signal at the proper point on the dial by adjustment of the trimmers it will then be necessary to adjust the spacing of the gang condeniser plates.
3. Correction for mistracking of antenna and R.F. may be accomplished by adjusting coil turns and gang plate spacing in the same manner.

\section*{FREQUENCY MODULATION-''FM"-ALIGNMENT PROCEDURE (USING A VACUUM TUBE VOLTMETER AND AM SIGNAL GENERATOR)}

INSTRUMENTS: Although it is preferable to use on FM generator and an oscilloscope, reasonably accurate alignment is obtainable when using a conventional AM generator and vacuum tube voltmeter providing proper care is exercised in adjusting the discriminator circuit trimmer.

IMPORTANT: When using an AM signal generator, it should be capatle of producing fundamental frequencies of 10.7 MC and 88 to 108 MC - avoid using an AM generator which produces signals in the 88 to 108 MC range by using harmonics higher than the second. Generators which are dependent upon third. fourth or fifth harmonics for output frequencies of 88 to 108 MC will generally produce undesirable spurious beat signals with the local oscillator in the receiver and alignment will be exceedingly difficult.
1. If alignment of both AM and FM channels is required it is necessary to align the AM channel first, then align the FM channel as instructed in chart below (AM alignment procedure is given on the preceding page)
2. Disconnect leads from FM.AM aerial terminal strip (labelled FM-FM-AM-AM) at back of chassis; also disconnect speaker leads and phono plugs. Remove chassis and speaker. If desired, allow speaker to remain in catinet and connect to receiver by extension leads.
3. With the gang condenser fully meshed, dial pointer should be in the position indicated by the last division below 88 on the dial. It it is set incorrectly, hold tuning shaft steady and re. position pointer.
4. A specific setting of the receiver volume control is not required However, it will be found convenient to leave it in the maximum volume position so that alignment signals will be audible even though the output indication is obtained by a V-T voltmeter connected to points in the discriminator circuit.
5. Dress FM circuit leads as short and straight as possitle, particularly those in the oscillator circuit. I.F. plate and qrid leads should also be kept short and straight.
6. Set band switch to the FM (extreme ccunter-clockwise) position.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SIGNAL GENERATOR CONNECTIONS & FREQUENCY 8 TYPE OF MODULATION & VACUUM TUBE VOLTMETER CONNECTIONS & \[
\begin{aligned}
& \text { RECEIVER } \\
& \text { DIAL } \\
& \text { SETTING }
\end{aligned}
\] & TRIMMER OR SLUG NUMBER & TRIMMER DESCRIPTION & TYPE OF ADJUSTMENT AND OUTPUT INDICATION \\
\hline \multirow[t]{3}{*}{Connoct high
side in series
with on 01 Mid
condenser to lug
on trimmer No.
17 at top of
gang isee illus-
tration on page
sior location of
trimmer. Con-
nect ground lead
to receiver chas-
sis in vicinity} & \multirow{3}{*}{\begin{tabular}{l}
10.7 MC \\
AM signal may be 400 cycle modulated.
\end{tabular}} & \multirow{3}{*}{Connect common (or ground) terminal of meter to receiver chassis. D.C. probe lead of meter is then connected to pin No. 7 of the 6AL5 tube.} & \multirow{3}{*}{Any .. position where it does not affect the signal.} & 11 & \[
\begin{aligned}
& \text { Discriminator } \\
& \text { Primary }
\end{aligned}
\] & \multirow{3}{*}{Adjust these trimmers for moximum meter reading-the output voltage will be of negative polarity.} \\
\hline & & & & 12 and 13 & 2nd I.F. & \\
\hline & & & & 14 and 15 & 1st I.F. & \\
\hline \[
\begin{gathered}
\text { Same } \\
\text { as above }
\end{gathered}
\] & \[
\begin{aligned}
& \text { Same } \\
& \text { as above }
\end{aligned}
\] & \begin{tabular}{l}
Connect common (or ground) terminal of V-T voltmeter to the iunction of resistors 87 and 88 in the discriminator circuit. D.C.
probe lead of meter is then conprobe lead of meter is then No. 67 ( 18,000 ohms) and condenser No. 70 (. 003 MFD.) which are in the discriminctor output circuit. \\
Set meter for operation on its lowest D.C. voltage range.
\end{tabular} & \[
\begin{aligned}
& \text { Same } \\
& \text { as above }
\end{aligned}
\] & 10 & Discriminator Secondary & Note that as trimmer No. 10 is rotated \(\alpha\) point will be found where voltmeter will swing from a positive to a nega tive reading or vice versa. Correct setting of trimmer No. 10 is obtained when meter reads zero as trimmer is moved through this point. The adjustment is somewhat critical and con siderable care must be exercised to set
the trimmer for a zero meter indication. \\
\hline \multicolumn{7}{|l|}{Recheck adjustment of trimmers No. 10 and No. 11 to be sure that both are set as accurately as possible to obtain the specified output indication.} \\
\hline Connect generator "high" side in series with a
300 chm carbon resistor to ond terminal marked at back of chassis. Generator ground lead next terminal marked 'GND' & \begin{tabular}{l}
106 MC \\
AM signal may be 400 cycle modulated.
\end{tabular} & Connect common (or ground) terminal of meter to receiver chassis. D.C. probe lead of meter is then connected to Pin No. 7 of the 6AL5 tube. & 106 MC & 16 & Oscillator
Trimmer & \begin{tabular}{l}
Set trimmer No. 16 to receive 106 MC . signal as indicated by maximum meter reading. \\
IMPORTANT: It will be noted that there are two different settings of trimmer No. 16 at which the 106 MC . signal will be received-always select the trimmer setting which is nearest to the low capacity end of its range.
\end{tabular} \\
\hline \multirow{3}{*}{\[
\begin{aligned}
& \text { Same } \\
& \text { as above }
\end{aligned}
\]} & \multirow{3}{*}{\[
\underset{\text { as above }}{\text { Same }}
\]} & \multirow{3}{*}{\[
\underset{\text { as }}{\text { Sameve }}
\]} & \multirow{3}{*}{Tune to 106 MC. generator signal.} & 17 & \[
\begin{gathered}
\text { R.F. } \\
\text { Trimmer }
\end{gathered}
\] & Adjust trimmer No. 17 for maximum meter seading. \\
\hline & & & & 18 & Antenna Trimmer & Adjust trimmer No. 18 for maximum meter reading. \\
\hline & & & & 14 and 15 & 1st I.F. & flecheck adjustment of these trimmers for maximum meter reading. \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
Check calibration and tracking of receiver with input signals of 90 and 98 MC . If difference between dial pointer setting and 90 or 98 MC . calibration mark does not exceed \(\pm 0.3 \mathrm{MC}\). and antenna and R.F. circuits are tracking properly, then alignment may be considered satisfactory and no further adjustment is necessary. \\
Where the calibration error is greater than \(\pm 0.3 \mathrm{MC}\). it is advisable to make the following adjustments: \\
1. If pointer falls above the go MC. calibration point, it will be necessary to slightly spread the windings of the FM oscillator coil. Then repeat the two preceding adjustments of trimmers 16. 17 and 18 at 106 MC . Should it be found impossible to obtain the 106 MC . signal at the proper point on the dial by adjust-
\end{tabular}} & \multicolumn{3}{|l|}{\begin{tabular}{l}
ment of the trimmers it will then be necessary to adjust the spacing of the gang condenser plates. \\
If pointer falls below- the 90 MC . calibration point, it will be necessary to push the windings together on the FM oscillator coil. Then repeat the two preceding adjustments of trimmers 16 , 17 and 18 at 106 MC. Should it be found impossible to obtain the 106 MC . signal at the proper point on the dial by adjustment of the trimmers it will then be necessary to adjust the spacing of the gang condsenser plates. \\
Correction for mistracking of antenna and R.F. may be accomplished by adjusting coil turns and gang plate spacing in the same manner as outlined above for the oscillator stage.
\end{tabular}} \\
\hline
\end{tabular}


ALIGNMENT PROCEDURE
Be sure to follow procedure carefully and in the order given-otherwise the receiver will be insensitive and the dial calibration
incorrect. For alignment procedure read tabulations from left to right. Make the adjustment marked (1) first, (2) next, etc. Before starting alignment:
a) Check tuning dial adjustment by tuning gang condenser until plates touch maximum capacity stop (completely in mesh)
at which point the dial needle must be exactly even with the last line at the low frequency end of the dial calibration. If
dial needle does not point exactly to last line move to correct position. (b) Use an accurately calibrated test oscillator with some type of output meas
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{范} & \multirow[t]{2}{*}{Set receiver dial to:} & \multicolumn{3}{|l|}{test oscillator} & \multirow[t]{2}{*}{Refer to parts layout diagram for tocation of trimmers mentioned below:} \\
\hline & & Adjust test osceillator frequency to: & Use dummy antenna in series with output of test oscillator consisting of: & Attach output of test oscillator to: & \\
\hline 1 & I. F. Any noint where no interference signal is received & 455 K ¢ & .02 MFD & High side to arid terminal of 1 A 7 GT tube do Not remove cap Low side to receiver black ground lead. & Adjust each of the second I.F. transformer trimmers for maximum output-then adjust each of the first I.F. irimmers for maximum output. \\
\hline 2 & \[
\begin{aligned}
& \text { Exactly } \\
& 1730 \mathrm{~K} . \mathrm{c} .
\end{aligned}
\] & \[
\begin{aligned}
& \text { Ezactly } \\
& 1730 \mathrm{~K} . \mathrm{c} .
\end{aligned}
\] & \begin{tabular}{l}
00025 MFD \\
condenser
\end{tabular} & Receiver blue antenna lead Receiver black ground lead & diljust 1730 K. © osrillatis trimmer for maximum output. \\
\hline 3 & \[
\begin{aligned}
& \text { Exactly } \\
& 1400 \mathrm{~K} \cdot \mathrm{C} .
\end{aligned}
\] & \[
\begin{aligned}
& \text { Exactly } \\
& 1 \neq 00 \mathrm{~K} . \mathrm{c} \text {. }
\end{aligned}
\] & \begin{tabular}{l}
.000:5 MF'D. \\
condenser
\end{tabular} & Rexwiver blue anetma lead Receiver black ground lead & While rocking gang condenser adjust 1400 ふ. C. antenna trimmer for maximum output. \\
\hline
\end{tabular}


THE FIRESTONE TIRE \& RUBBER CO.

Be sure R.F.and I.F.stages ere accurately aligned before measuring gain. R.F. gains can be measured with a "channel" type instrument
 motor may be used for audir eain acasurements. Observe following precautions.
1. For all gain measurements connect signal generator as shown. Use 600 KC . signal with 400 cycle modulation (use nearby frequency if local station interferes.)
2. Be sure radio is carefully tuned to generator signal (use weak signal for sharp tuning.)
3. When using a "channel" type instrument carefully tune it for maximum output at desired frequency before making measurements.


Differences in tube characteristics, tolerance of parts, adjustment of tuned circuits, and variations of line voltage will influence stage gains. Accuracy of measurements is dependent upon careful tuning of receiver to generator signal and experience in using your test equipment. These factors may create considerable variation in gain measurements.

PARTS LIST



\section*{ALIGNMENT PROCEDURE}

specifications
ube Complement
12SA7 - Oscillator Converter 12 SA 1 -
12 SQ7 - AVC, Detector, 1 st Audio 50L6GT - Power Output 35Z5GT - Rectifier Power Supply
105-125 volts, \(50-60\) cycles, AC or DC Tuning Range
540 to 1630

> I. F. Frequency 455 KC Loud Speaker 5 inch P. M. Voice Coil Impedance 3.2 ohms at 400 cycles Power Output Maximum 1.65 watts


THE FIRESTONE TIRE \& RUBBER CO. THE SUNRISE
Before proceeding with stage measurements be sure the receiver is properly aligned. R.F. gains can be measured by a "channel" type instrument containing a tuned and
calibrated R.F. amplifier. A vacuum tube voltmeter may be used for audio gain measurements. Observe the following precautions:
1. For all gain measurements connect the "hign" side of a signal generator to the flexible antenna lead. The ground side of the signal generator is connected
through a . 25 Mfd . condenser to receiver chassis. Use a \(600 \mathrm{K.C}\). signal with 400 cycle modulation. (Use nearby frequency if local station interferes.)
2. Be sure radio is carefully tuned to generator signal. (Use weak signal for sharp tuning.)
3. When using a "channel" type instrument, carefully tune it for maximum output at desired frequency before making measurements.

Stage gain measurements can be influenced by the normal manufacturers tolerances allowed in parts, differences in individual tube characteristics, the
adjustment of the tuned circuits and variations in line voltage. Careful tuning of the receiver as well as experience in using your test equipment will deter-
mine the accuracy of the measurements taken. Due to all of these factors, the stage gains shown in the above diagram are approximate values rather than
absolute as it is possible to introduce many variations in these measurements.
\[
\begin{aligned}
& \underset{\Sigma}{\Sigma} \\
& \dot{\delta} \\
& \dot{U}
\end{aligned}
\]



4077 A Cabinet, molded, mahogany 4079 Cabinet back 4080-3 Knob, mahogany mahogany
ALIGNMENT PROCEDURE
The alignment should be made with volume control fully on, and the output from the signal generator as low as possible, to prevent A.V.C. action from interfering with correct alignment.
For alignment procedure read tabulations from left to right, and make the adjustment marked (1) first, (2) next, (3) third. Before starting alignment:
(a) Check tuning dial adjustment by tuning gang condenser until plates touch maximum capacity stop (completely in mesh) at which point the dial pointer must be exactly even with the last mark at the low frequency end of the dial calibration. If dial pointer is incorrectly set, release pointer clip on dial cord and reposition pointer.
(b) Use an accurately calibrated test oscillator with some type of output measuring device.
(c) PLACE LOOP ANTENNA IN THE SAME POSItION IT WILL BE IN WHEN THE SET IS IN THE CABINET.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & \multicolumn{3}{|l|}{TEST OSCILLATOR} & \multirow[t]{2}{*}{Refer to parts loyout diagram for location of trimmers mentioned below:} \\
\hline \% & Set receiver dial to: & Adjust test oscillator frequency to: & Use dummy antenna in series with output of test oscillator consisting of: & Attach output of test oselliator to: & \\
\hline 1 & Minimum capacity (fully open) & 455 K.C. & . 1 MFD. condenser & High side to grid of tuning condenser. Low side to B- buss (through . 25 MFD. Cond.) & Adjust each trimmer on the second I. F. transformer for maximum oufput-then adjust each trimmer on the first I. F. transformer for maximum output. \\
\hline 2 & Minimum capacity (fully open) & \[
\begin{aligned}
& \text { Exactly } \\
& 1700 \text { K.C. }
\end{aligned}
\] & NONE & \begin{tabular}{l}
High side to receiver antenna lead. Low side to chassis. \\
(Through . 25 Mfd . Cond.)
\end{tabular} & Adjust 1700 K.C. oscillator trimmer for maximum output. \\
\hline 3 & \begin{tabular}{l}
Approx. \\
1500 K.C.
\end{tabular} & Approx. | 500 K.C. & NONE & High side to receiver antenna lead. Low side to chassis. (Through . 25 Mfd. Cond.) & While rocking gang condenser adjust 1500 K.C. antenna trimmer for maximum output. \\
\hline
\end{tabular}

GANG CONDENSER SHOWN
FULY IN MESH


FIRESTONE PAGE 19-33

MODEL 4-B-31, THE FIRESTONE TIRE \& RUBBER CO. THE ROMAER

ALIGNMENT PROCEDURE
The following equipment is necessary for proper alignment:
Sigal generalor that will provide the test frequencies as lisied. Non-metallic screwdriver.
Ouiput meter.
Dummy antennas-. 1 MFD., . 00025 MFD.
For alignment points reíer to Figures 4,5 and 8.
THE FIRESTONE TIRE \& RUBBER CO. MODEI 4-B-j1,
THE ROAMER

Component Parts Location
Volume control-Maximum, all adjustments.
No signal applied to antenna.
Connect dummy antenan in scries wihh output lead of signal generator.
Connect output meter across voice coil.
Connect ground lead of signal generaior to chassis.
Repeat alignment procedure as a final check.
©John F. Rider

THE FIRESTONE TIRE \& RUBBER CO.

\section*{THE ROAMER}

\section*{SERVICE NOTES}

Voltages iaken from the different points of the circuit to the chcissis are measured with volume control in maximum position, all lubes in their sockets, no signal applied, and wish a volt meier having a resistance of 20,000 ohms per volt. These voltages are clearly shown on the voltage chart, (Fig. 7).

All voliages should be measured with an input poltage of 6.3 volis DC.

To cireck for open by-pass condensers, shunt each condenser with another one having the same capacity and voliage raling which is known to be good until the defective unit is located.

\section*{ALIGNING INSTRUCTION}

Never attempt any adjustments on this receiver unless it becomes necessary to replace a coil or transformer, or the adjusimen's have been lampered with in the field. Always make certain that other circuit components, such as tubes, condensers, resisiors, etc., are normal before proceeding with realignment.

If realigrment is necessary follow the instructions given under the heading "ALIGNMENT PROCEDURE". After realignment has been completed repeat the procedure as a final check.

\section*{DIAL POINTER ADJUSTMENT}

If it should become necessary to readjust the dial pointer for correct calibration, this may be easily done without removing the radio from the car by proceeding as follows:
A. Turn tuning knob to the right (clockwise) as far as it will go.
B. Remove snap button located on the right side of the case (viewed from the front), in the extreme upper front corner.
C. Insert screwdriver through hole in case and move dial pointer directly over white dot at high end of dial ( 1600 KC ).
D. Tune receiver to station of known frequency in the center of the dial and readjust pointer for more accurate indication, if necessary.
E. Replace snap button into hole in case.

CAUTION: Be careful not to scratch or damage.dial scale or dial pointer when making this adjustment.


\section*{INSTRUCTIONS FOR REMOVING CHASS!S FROM THE CASE}

The bottom cover (the one with the speaker louvers) can be removed to permit servicing of major components, such as lubes and vibrator, by removing the eight (8) screws holding it to the top cover. There are three (3) screws on cach side, one (1) in the rear, and one (1) in the front.

CAUTION: Before attempting to remove the top cover, to service condensers, resistors, etc, the screw connecing the spark plate to the " \(A\) " terminal (inside case) must be removed. This is a round head screw, and is located on the rear of the case, close to the mounting stud bolt. It is recessed in a \(1 / 2\) inch hole in the case itself, thereby permitirg coniact with the spark plate.

After removing the spark plate screw, remove the two knobs by pulling forward and remove the eight (8) screws securing the cover to the chassis. Lift the chassis at the rear, at the same lime moving it away from the front of the case so that the volume and tuning shafts will clear the holes in the cover.

NOTE: When reinstalling the chassis into the case, be sure the screw connecting the spark plaie to the "A" terminal (inside case) is tightened very securely, otherwise the receiver will not operate properly.


CONDENSERS
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
Schematic \\
Diagram \\
Reforence
\end{tabular} & Part No. \\
\hline C1A, C1B & B19-196 \\
\hline C2, C6, C12 & A16-187 \\
\hline C3 & A15-196 \\
\hline C4 & A15-202 \\
\hline C5 & A15-204 \\
\hline C7, C15, C17 & A15-176 \\
\hline C8 & A16-190 \\
\hline C9 & A16-195 \\
\hline C10 & Al6-193 \\
\hline C11, C21 & A16-192 \\
\hline C13 & A16-188 \\
\hline C14 & Al|6-185 \\
\hline C16, C18 & Al6-184 \\
\hline C19 & A20-145 \\
\hline C20 & A16-189 \\
\hline C22 & \\
\hline \[
\begin{aligned}
& C 23 \\
& C 24
\end{aligned}
\] & A18-289 \\
\hline R1 & A60-722 \\
\hline R13, R14 & A60-752 \\
\hline R2, R5 & A60-744 \\
\hline R3 & A60-685 \\
\hline R4, R17 & A60-726 \\
\hline R6 & A60-753 \\
\hline R7 & A60-716 \\
\hline R8 & A60. 728 \\
\hline R9 & A60-657 \\
\hline R10 & A60-731 \\
\hline R11 & A60-754 \\
\hline R12 & AC0-698 \\
\hline R15 & A60-694 \\
\hline R16 & A24-177 \\
\hline 4 & A10-513 \\
\hline 12 & 810.511 \\
\hline L3 & A10-512 \\
\hline 14 & A33-229 \\
\hline 15 & A33-228 \\
\hline L6 & A10-510 \\
\hline T1 & A10-508 \\
\hline T2 & A10-509 \\
\hline T3 & B80-242 \\
\hline T4 & B80-243 \\
\hline
\end{tabular}

A11-303
A11-304
A72-29
A70-130
B48-44
C40-144
A58-55
B67-526
A52-270
A89-10
A71-39
A65-37
A75-68
A75-67
A70-132
A70-133

A83-421
A83-51.7
A43-10
A28-101
A47-112
B31-134
A31-140
S84-192
A87-38
B79.362
584-232
A34-105
HODEI \(4-\mathrm{C}-3\) THE FIRESTONE TIRE \& RUBBER CO.

Be sure R.F. and I.F. stages are accurately aligned hefore measuring gain. R.F. gains can he measured with a "chamel" tye instrument contammg a tuned and calibr
1. For all gain measurements \(\quad\) 2. Be sure radio is \(\quad\) 3. When using a "chan-
shom. Use हo KC . signal to generator carefully tune it for
\(\begin{array}{lll}\text { with } 400 \text { eycle modulation } & \text { signalluse weak } & \text { maximum output at } \\ \text { luse nearby frequency if } & \text { signal for sharp } & \text { desixed frequency be- }\end{array}\)
ments.


Differences in tube characteristics, tolerance of parts, adjustment of tuned circuits, and variations of line voltage will influence
stage gain. Accuracy of measurements is dependent upon careful tuning of receiver to generator signal and experience in
using your


\section*{ALIGNMENT PROCEDURE}

Be sure to follow procedure carefully and in the order given-otherwise the receiver will be insensitive and the dial calibration incorrect. For alignment procedure read tabulations from left to right. Make the adjustment marked (1) first, (2) next, (3) third, etc.

Before starting alignment:
(a) Check tuning dial adjustment by tuning gang condenser until plates touch maximum capacity stop (completely in mesh) at which point the dial needle must be exactly even with the last line at the low frequency end of the dial calibration. If dial needle does not point exactly to last line, move to correct position.
(b) Use an accurately calibrated test oscillator with some type of output measuring device.
(c) WHEN ADJUSTING 1620 KC OSCILLATOR TRIMMER AND 1400 KC R . F. TRIMMER, remove chassis from cabinet and disconnect the white-green and white-black loop connection wires from the two Fahenstock clips mounted on rear of chassis. Attach a 1 megohm resistor across these Fahenstock clips and feed output of test oscillator across the 1 negohm resistor.
(d) THE 1400 KC LOOP ANTENNA TRIMMER is accessible from the rear of the chassis when the inner back is removed. It should be adjusted only after all other adjustments have been made and with the set mounted in the cabinet, and the loop in an upright posit on. When aligning the 1400 KC Antenna Trimmer, couple test oscillator to receiver loop by: (1) make loop consisting of five to ten turns of No. 20 to No. 30 size wire, wound on a \(2^{\prime \prime}\) or \(3^{\prime \prime}\) form; (2) connect this limil acrose nitmut of test nscillator; (3) place test oscillator loop near radio loop. BE SURE THAT NEITHER LOOP MOVES WHILE ALIGNING.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\(\frac{\square}{6}\)} & \multirow[b]{2}{*}{Sel receiver dial to:} & \multicolumn{3}{|c|}{test oscillator} & \multirow[b]{2}{*}{Refer to parts layout diagram for location of trimmers -mentioned below:} \\
\hline & & Adjust test oscillator frequency to: & Use dummy antenna in series with outaut of test oscillator consisting of: & Attach outrout of test oscillator to & \\
\hline 1 & Any noint where no interfering slgnal is received & \[
\begin{gathered}
\text { Fxactly } \\
4 \leq 5 \mathrm{~K} . \mathbf{c} .
\end{gathered}
\] & 0.2 Mfd. Condenser & High side to grld of la7GT tube, Low side to chassis (if non-Underwriter Approved) or Comamin Negative (If Underwriter Approved. & Adjust each of the 2nd I.F. transfornter trimmer adjustment serews for maxinnum output. then adjust each of the 1st I.F. trangforner trimmer adjustment screws for maximum output \\
\hline 2 & \begin{tabular}{l}
Rotite gank condenser to mini- \\

\end{tabular} & Wanctly & & & Adjust 1620 Osc. Trimater for maximum 162 y K. C. sismal. \\
\hline 3 & Botate rank condenser to 1100 に゙. C. & \[
\begin{aligned}
& \text { Fractly } \\
& 1400 \mathrm{~K} . \mathbf{c} .
\end{aligned}
\] & thase & & Adjust \(1400 \mathrm{~K} . \mathrm{C} . \operatorname{R.F}\). Trimmer for maximum output. \\
\hline 4 & \[
\begin{aligned}
& \text { Apuroximately } \\
& 1400 \mathrm{~K} . \mathrm{c}
\end{aligned}
\] & \[
\begin{aligned}
& \text { Anprox. } \\
& 1400 \mathrm{~K} . \mathrm{c} .
\end{aligned}
\] & \[
\begin{gathered}
\text { See } \\
\text { paragrayh } \\
\text { sbove }
\end{gathered}
\] & \[
\begin{gathered}
\text { See } \\
\substack{\text { naragraph } \\
\text { above }}
\end{gathered}
\] & Atjust 1400 K.C. anteuna trimmer for maximum output. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \[
\begin{array}{ll}
\mathrm{Nom.} \\
\mathrm{No} \\
\hline 1
\end{array}
\] & \({ }_{\text {Part No. }}\) & Patrame \\
\hline \(\frac{2}{3}\) & 206118 & Cable \\
\hline 4 & 20 & Coil \\
\hline * 5 & 20 2037 & Coil \\
\hline *5 & 205248 & coil \\
\hline \({ }_{7}^{6}\) & \({ }_{24}^{20 E 48}\) & Coindenser \\
\hline * 7 & \({ }^{\text {OR }}\) 24E78 & Condenser \\
\hline 8 & 25511 & Con \\
\hline 9 & \({ }^{23 E 218}\) & Condenser \\
\hline 10 & 23E218 & \\
\hline 11 & \({ }_{\text {cke }}\) & Coidenser \\
\hline 13 & 23 E 218 & Condenser \\
\hline \({ }_{15}^{14}\) & \begin{tabular}{l}
236216 \\
236224 \\
\hline
\end{tabular} & Condenser \\
\hline 16 & \(23 E 216\) & Condenser \\
\hline 17 & 23 E416 & Conden \\
\hline 18 &  & Conde \\
\hline 20 & \(23 \mathrm{ETO6}\) & Condenser \\
\hline 21 & 23539 & Conde \\
\hline 23 & 23 E39 & Condens \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & & & Name \\
\hline \(17 E 3.2\) & A & Batte & ery Plug \\
\hline 17 ES -5 & "B & Batter & y Plug \\
\hline \(7 E 63\) & Cabin & net & \\
\hline 41 E1 & Cord & & \\
\hline \(20 \mathrm{El21}\) & Door & Stop & Assembly \\
\hline \(5 E 17\) & Dial & Plate & Assembly \\
\hline \(5 E 16\) & Dial & Frollt & Plate \\
\hline 9 E 6 & Dial & Crysta & \\
\hline 36 E 22 & Dial & Scale & \\
\hline 4 El & Dial & Cord & \\
\hline 68 E 10 & Dial & Shaft & \\
\hline
\end{tabular}


LIIST

\section*{MISCELLANEOUS PARTS}
Prong "A. A \(A\). Battery Plug
\({ }_{3}\) Prong "AA" Battery Plug
Cabinet less Loop Door \& Inner Barr
6 Ft. Rubber Line Cord.
Stop for Door \& Leop Assembly
Dial Back Plate Assembly less Dial Scale.
Metal Control Plate for Cabinet. Iess Crystal
Crystal for Frant Plate.
Calibrated Scale
5 lb . Dial Drive Cord
Complete Shaft Assen.
\begin{tabular}{|c|c|}
\hline \[
10 \mathrm{E} 43^{\mathrm{Par}}
\] & t No. Part Name \\
\hline 35 20.1 & Dial Scale Fastence \\
\hline 35 E20.1 & Dial Pointer \\
\hline 65 E2 & Diai Soring \\
\hline 37E1-1 & Knob \\
\hline 37E2-1 & Knob \\
\hline \(55 E 18\) & Hinge \\
\hline 17E17 & ```
Pilot Lamo Socket
    Assembly
``` \\
\hline 40E2 & Pilot Lamp \\
\hline 69E72F47 & Rivet \\
\hline 69E92F47 & Rivet \\
\hline
\end{tabular}

* + NOTE No. 1: In early production, the two low voltage sections of filter condenser. Illus. No. 8. Part \(25 E 11\), shown in dotted lines on circuit diagram, were not used and in theit place the 100 Mid .. Illus. No. 49. Part 25E19 was used.
In later production all four sections of lilus. No. 8 . Part 25E11, were used and conden ser. Illus. No. 49. Part \(25 E 19\), was eliminated.
*NOTE No. 2. CHASSIS MARKED WITH LETTER \(\because\) A., adjacent to seriat number Use Part 2 HE7A Gang Condenser and Part 20E237 Oscillator Coil.
THESE GANG CHASSIS MARKED WITH LETTER B', adjacent to serial number use Part 24E78 Gang Condenser and Part \(20 E 248\) Oscillator Coil.
DO NOT use Part 24E7A Gang Condenser with Part \(20 E 248\) Osc. Coil. or Part \(24 E 7 \mathrm{~B}\) Gang Condenser with Part 20 E 237 Osc. Coil.

© John F. Rider
Before proceeding with stage measurements be sure the receiver is properly aligned．R．F．gains can be measured by a＂channel＂type instrument con－ taining o tuned ond calibrated R．F．amplifier．A vacuum tube voltmeter may be used for oudio gain measurements．Observe the following precautions：
1．For goin measurements connect the high side of the signal generator through a 1 I MFD condenser to the appropriate point as indicated on the diagram
below．The ground of the signal generator should be connected to comman negative．The RF and if measurements are made using \(30 \%\) cycle modu－
lation．
2．Be sure radio is carefully funed to generator signal（Use weak signal for sharp tuning）．
3．When usingo＂channel＂type instrument carefuly tune it for maximum output at desired frequency before making measurements． Stage gain measurements can be influenced by the normal manufacturers tolerances allowed in ports，differences in individual tube characteristics，the
adjustment of the tuned circuits and variations in line valtage．Careful tuning of the receiver as well as experience in using your test equipment will deter－ mine the accuracy of the measurements taken．Due to all of these factors，the stage gains shown in the obove diagrom are approximate values rather than Part No．Description
A60－663 10 megohm \(1 / 2\) wott \(20 \%\) resistor A60－685 47 K ohm \(1 / 2\) wott \(20 \%\) resistor A60－684 2.2 megehm \(1 / 2\) wots \(20 \%\) resistor
A60－725 160 ohm 5 watt \(10 \%\) resistor A60－722 470 ohm \(1 / 2\) wott \(10 \%\) resistor
A24－178 Volume control，with switch A60－757 2000 ohm 10 watt \(10 \%\) resistor
A50－724 3300 ohm 1 watt \(10 \%\) resistor AE0－655 390 ohm \(1 / 2\) watt \(10 \%\) resister
A60－756 1200 ohm \(1 / 2\) watt \(10 \%\) resistor
See Note Below
1st and 2nd I．F．transformer
Output transformer
A17－100
A \(10-514\)
C10－475
品
C15，C16，C17，R14，R15，R16 are con

Code No．
R3，R9
R4
R5
R6
R7
R8，SI
R10
R11
R12
R13
R14
R15
R15
L1
T1，T2
T3
S2
WNOTE： absolute as it is possible to introduce many variations in these measurements．


B19－197 Varioble condenser
A16－152 ． 05 MFD 200 volt condenser A16－158 ． 05 MFD 400 volt condenser

A15－175 50 MMF mico condenser
A16－153 ． 005 MFD 600 volt condenser
A16－157 ． 1 MFD 200 volt condenser
\(\begin{array}{ll}\text { A16－189 } & .05 \text { MFD } 400 \text { volt condenser } \\ \text { A15－188 } & 100 \text { MMF mica condensar }\end{array}\)
A1 8－290 \(\left\{\begin{array}{l}40 \text { MFD } 150 \text { vcit electrolytic cond．} \\ 30 \text { MFD }\end{array}\right.\) 100 MFD 10 volt electrolytic cond．
.002 MFD 200 volt condenser
.005 MMF
.005 MFD
50 MMF
100 K ohm
1500 ohm \(1 / 2\) wott \(\mathbf{2 0}\) w resister

A10－182
A17－100
A60－671 A60－680

0
0
0
0
0
－
\(10^{\prime 2} 5\)
\(0_{0}^{\infty} 0\)
ำッチ
テun～～
－n
\(\underset{\sim}{\boldsymbol{x}}\)```


[^0]:    + Specify part numbers when ordering.

[^1]:    *Taken in FM Position.

[^2]:    * Not supplied separately.

[^3]:    *Recheck after FM alignment.

