Radio-Electronics

THE MAGAZINE FOR NEW IDEAS INELECTRONICS

ADAPTIVE NOISE FILTER Hi-fi add-on you build SATELLITE TV RECEPTION A new DX craze
Build your own AC POLARITY CHECKER Don't get zapped!

TV ADD-ON GADGETS

Do they really work?

WIRING SYSTEMS

Easy ways to build projects
Build this $41 / 2$-digit
PRECISION DMM
with true RMS and temperature

* New FM Tuner Circuits
$\star 2$ R.E.A.L. Lab Test Reports
* Hobby Corner * Equipment Reports * Service Clinic

Value where it counts.

Count up to 550 MHz or more count down to \$69.95* Smaller size, lower prices and professional accuracy help make CSC portable frequency counters the best in the business.

MAX-550 lets you count up to 550 MHz on your fingers! This amazing counter is as small as some pocket calculators, yet offers continuous six-digit readings from 30 KHz to 550 MHz , updated six times a second to speed your work. Battery powered, it's just \$149.95.*

MAX-100 measures down to the last Hertz from 20 Hz to past 100 MHz , displaying the count on eight big $0.6^{\prime \prime}$ LED digits. It's battery operated, portable, and perfect for professional precision applications - and just \$134.95.*

MAX-50 in its calculator-sized case lets you
grab ahold of 100 Hz to 50 MHz and displays the count on six bright LED digits. Its accessory mini-whip antenna even lets you pick up RF fields when a cable is inconvenient. And it's a speed reader, with six updates per second. All for just \$69.95.*

PS-500 is our very capable Buffered Prescaler, which extends the range of almost any frequency counter ten times, up to 500 MHz . Its buffered 400 mV output can drive even tired old counters reliably. And you can add this extra capability for just \$59.95.*

We have a full line of accessories, too, including cables, battery charger/eliminators and more

From audio to UHF, microprocessor to radio control, whatever your application, you can count on CSC frequency counters for performance - and valuewhere it counts.

CONTINENTAL SPECIALTIES CORPORATION

Smarter tools for testing and design.

[^0]
Don't take our word forit.

"We can heartily recommend the Superboard II computer system for the beginner who wants to get into microcomputers with a minimum of cost. Moreover, this is a 'real' computer with full expandability."

Popular Electronics March, 1979
"(Their) new Challenger 1 P weighs in at $\$ 279$ and provides a remarkable amount of computing for this incredible price."

Kilobaud Microcomputing February, 1979
"Over the past four years we have taken delivery on over 25 computer systems. Only two have worked totally glitch free and without adjustment as they came out of the carton: The Tektronic 4051 (at $\$ 7,000$ the most expensive computer we tested) and the Ohio Scientific Superboard II (at \$279 the least expensive) . . . The Superboard II and companion C1P deserve your serious consideration."

Creative Computing January, 1979
"The Superboard II and its fully dressed companion the Challenger 1P series incorporate all the fundamental necessities of a personal computer at a very attractive price. With the expansion capabilities provided, this series becomes a very formidable competitor in the home computer area."

Interface Age April, 1979
"The graphics available permit some really dramatic effects and are relatively simple to program... The fact that the system can be easily expanded to include a floppy means that while you are starting out with a low-cost minimal system, you don't have to throw it away when you are ready to go on to more complex computer functions. Everything is there that you need; you simply build on to what you already have. You don't have to worry about trading off existing equipment to get the system that will really do what you want it to do. At \$279, Superboard II is a tough act to follow."

Radio Electronics June, 1979
"The Superboard II is an excellent choice for the personal computer enthusiast on a budget."

C1P MF \$995.00
The first floppy disk based computer system the world has ever seen for under $\$ 1,000$. 8K BASIC-in-ROM, 12K RAM. Expandable to 32K RAM

WHEN THE GOING GETS TOUGH, BECKMAN'S NEW DIGITAL MULTIMETERS KEEP GOING.

Featuring new continuity function.

If you've ever been troubled by a faulty multimeteror had to use one that wasn't quite up to the tougher jobs your troubles are over. Now there's the Beckman line of digital multimeters. A new generation of $31 / 2$-digit models that combine superior reliability with highly versatile features.

Features like a unique continuity test function. With Beckman's new Insta-Ohms ${ }^{\text {TM }}$ quick continuity indicator, you no longer need an analog VOM for fast, convenient continuity checks.

There's also $10-\mathrm{amp}$ current ranges, in-circuit resistance measurement capability in all six-ohm ranges, a dedicated diode test function, and up to two years normal operation from a common 9 V battery.

The Model TECH 310 with all these features,

7 functions, 29 ranges, and $0.25 \% \mathrm{Vdc}$ accuracy is only $\$ 130$.
The Model TECH 300 with 0.5% Vdc accuracy, but without the continuity function or the 10 -amp current ranges, is just $\$ 100$.

Whichever model you choose, you get a multimeter that won't let you down. There's exceptional overload and 6 kV transient protection, plus ruggedness to take a 6 -foot fall and to come up working.

So get the Beckman digital multimeter that performs and keeps on performing. No matter how tough the going gets. For information on the complete line and accessories, write or call your local distributor or the Advanced-Electro Products Division, Beckman Instruments, Inc., 2500 Harbor Boulevard, Fullerton, CA 92634, (714) 871-4848, ext. 3651.

THE MAGAZINE FOR NEW IDEAS IN ELECTRONICS
Electronics publishers since 1908

Intimathatt

9-hour VCR? Things have changed in just 30 days' time. Last month, the Beta group announced that they had finally overtaken the VHS group in recording time per cassette, by means of a third (slower) speed and a cassette containing more tape. This combination provides five hours, as compared with four hours for the longest recording per cassette with the VHS system.

The VHS camp lost no time in adding a third speed of its own, which it calls "super long play" or SLP. Like Beta's new speed, this is one-third slower than the previous slowest tape movement in this format. Thus, VHS recorders push recording duration to six hours on the same cassette that will record for two hours on the original speed and four hours on the LP speed. But one technique employed by the Beta group is yet to be tried by VHS - longer and thinner tape. This is currently under development, however, and could expand the recording time to nine hours per cassette.

The first super-long-play VHS recorder will be a Matsu-shita-built programmable machine to be offered by RCA, but the third speed is expected to be added eventually to all VHS brands. Among other new VCR's is a Betamax by Sony, and a similar unit from Zenith, that offer stop motion, visible rewind and visible fast-forward (the latter function valuable for speeding through commercials without missing any of the program), all controlled from a wired remote panel.

TV for the deaf: A government-sponsored "closedcaptioning" project is designed to make television more meaningful for America's 14 million hearing-impaired citizens. The system approved by the FCC uses one line of the vertical blanking interval, doesn't affect the picture seen by those viewing in the normal way, but superimposes a caption on the screen of those using special decoders. The Public Broadcasting System will supply 10 hours of programming weekly, ABC and NBC will supply five hours each to a new nonprofit National Captioning Institute that will encode the broadcast material for captions. The captioning decoders, using a Texas instruments IC, initially will be manufactured by Sanyo Manufacturing Co. in Forrest City, AK. Decoders will be sold by Sears Roebuck next year at $\$ 225$ to $\$ 250$ and 19 -inch color sets with built-in decoding capability will retail at about $\$ 500$. The National Captioning Institute will be supported by captioning fees paid by the networks and an eight-dollar royalty on each decoder or decoder-equipped TV set. CBS has declined to join the other networks in using the captioning system because it believes captioning should be but one of the features of a more all-inclusive teletext system. The other networks agree that teletext systems can accomplish more and conserve vertical-interval space, but say it could be many years before such services are available, while captioning can start early next year. They also argue that teletext decoders will be far more expensive than simple captioning attachments.
introduced by RCA 25 years ago, will fade into history before the end of this year. Tube makers are now phasing out the last of these tubes in favor of slot-mask tubes with in-line electron guns. In the latter, instead of phosphor dots there are strips of colored phosphors. Europe and Japan have already switched over, and in the U.S. the change is almost complete. Manufacture of delta-gun tubes will be confined to the replacement market.

Slot-mask in-line-gun tubes simplify the TV set manufacturing process and are more reliable because they eliminate most convergence adjustments. Until recently, their use was principally confined to small-screen tubes because of resolution problems involved in their use in larger tubes. But new electron gun designs have increased the resolution to the point where it is claimed to be better than that of delta-gun tubes. The new tubes in 19- and 25 -inch sizes generally employ 100 -degree deflection, which also helps increase resolution and makes the set about two inches slimmer from front to back. Most manufacturers are expected to change over their entire large-screen lines to 100-degree deflection.

Computers \& games: Consumer logic and data-storage devices keep getting more sophisticated. Although computers as such have failed to catch on with the general non-sophisticated public, there's no doubt they will when somebody finds the correct formula. Mighty Texas Instruments is betting that it has that formula, although it hasn't yet announced what it is-only that it will have a home computer TV attachment for under $\$ 500$ with color graphics and a 16-bit MPU.

Semi-computers and video games have caught on, though, and their sophistication grows every day. Portable storage and retrieval devices-such as the language translators by Craig and Lexicon-are being snapped up almost as fast as they can be made. Now Texas Instruments has come up with its own version, a talking language translator which gets the accent right every time. It has combined a translator with a voice synthesizer. You merely punch in the word in English, and the translation comes out the loudspeaker while the proper spelling is displayed. The handheld unit accommodates modules containing 1,000-words, of which half the words can be pronounced by the unit, all of them displayed. English and Spanish modules (150 each) are scheduled for marketing in September, along with the under-\$500 translator, with French, German, Japanese and Chinese modules due later.
A video game that is programmed by cable TV is the new "Playcable" by Mattel and Jerrold, which will be tested by four CATV systems. Two-way cable systems aren't required. For $\$ 50$, an "emulator" cartridge is inserted into the standard Mattel video game, the user selecting the program he wishes from a catalog of 20 to 40 games stored in the cable system's head-end computer-for a monthly fee. After the initial games are tried, computer programs are expected to become available.

Farewell to dots: The phosphor dots and delta guns that were important parts of the first practical color TV tube, as

Dnyournewsstand September 18...

the single most exciting issue of any olectronics magarine in the Itwenticth Century....

October 1979 Radio-Electronics $50_{\text {th }}$

Anniversary Issue

From "Radio-Craft" in 1829 to Radio-Electronics today, and tomorrow, from the vacuum tube to the chip, from "wireless radio" to interplanetary communicatiom-it's fifty years of history, experiments, and excitement from the pages of America's greatest newsstand electronics magazine, all in the most spectacular issue ever of any electronics magazine-October, 1979 Radio-Ellectronics.

Don't miss a word of this colorful, extra-special retrospective issue, bursting with all the excitement of all those years-or of our experts' fascinating projections and predictions for "The Next Fifty Years" of our lives.

It's October Radio-Electronics. On your newsstand September 18 ... but not for long. Don't miss it.

What's Special About Radio-Electronics?

I was asked that question recently by a prospective reader. It's a simple question; a good one and it requires much more than just a simple response.

The answer starts off simply enough - Everything!
But that's only the start. Let's look at the issue you are now reading. There are six major articles. They range from a full-blown detailed story on how you can build your own $41 / 2$-digit precision DMM, to a newsbreaking article on tuning in television satellites to a how-to story on wiring systems to use when building projects. There are also a variety of features including an article on new FM tuner circuits, two R.E.A.L. Sound reports and numerous columns, equipment reports and product previews.

All of the material in this issue was carefully selected with your specific interests in mind. There is a variety of material because you have a variety of interests. Sure, some will like one article more than another and all of you may find some particular story that doesn't appeal to you at all. But what has been done is to put together a package of information deliberately designed to keep you up to date on what is happening in our industry.

When the computer came along, Radio-Electronics presented the first article to ever tell readers how to build one for themselves. When the Videodisc was announced, Radio-Electronics presented a group of three articles to show how the player works. When flat-screen or 3-D color TV comes along we'll tell you about that too.

In this issue, our story on Satellite TV Reception is a first. The satellites have been there for quite some time. Now you will discover just what is being broadcast, how it is being broadcast; and in the next few months, how you can tune in on these broadcasts-direct from space to your home.

That's the kind of magic that makes Radio-Electronics special. That's how we have kept Radio-Electronics special and young and growing. That's why in October 1979 we will celebrate 50 years of publication; 50 years of new events and happenings; 50 years of excitement in a never-dull field. That's why we are special and that's why we will continue to be special.

We don't promise to make all of our readers happy all of the time. We do promise to deliver the best and most authorative electronics magazine you can purchase.

Ratio-Electronics.

Hugo Gernsback (1884-1967) founder
M. Harvey Gernsback, editor-in-chief and publisher
Larry Steckler, KTX-3644, CET, editor
Arthur Kleiman, KTZ-3288, managing editor
Robert F. Scott, CET, W2PWG. KXK-8533, technical editor
Jack Darr, CET service editor

Leonard Feldman

 contributing high-fidelity editorKarl Savon, semiconductor editor
Herb Freidman, communications editor
David Lachenbruch, contributing editor
Earl "Doc" Savage, K4SDS, hobby editor
Ruby Yee, production manager
Robert A. W. Lowndes, production associate

Marie J. Stolfi, production assistant
Gabriele Margules, circulation director
Arline R. Bailey, advertising coordinator
Cover design by Louis G. Rubsamen
Cover photo by Walter Herstatt
Radio Electronics is a member of the Institute of High Fidelity and is indexed in Applied Science \& Technology Index and Readers Guide to Periodical Literature.

Gernsback Publications, Inc.
200 Park Ave. S., New York, NY 10003 (212) 777-6400

President: M. Harvey Gernsback
Vice President: Larry Steckler
Treasurer: Carol A. Gernsback
Secretary: Bertina Baer

ADVERTISING SALES

Paul McGinnis
Director of Marketing

EAST

Stanley Levitan
Radio-Electronics
200 Park Ave. South
New York, NY 10003
(212) 777-6400

MIDWEST/Texas/Arkansas/Okla.

Ralph Bergen
The Ralph Bergen Co.
540 Frontage Road-Suite 361-A
Northfield, Illinois 60093
(312) 446-1444

PACIFIC COAST

Mountain Stales
Jay Eisenberg
J.E. Publishers Representative Co.,

8732 Sunset Blva.
4th Floor,
Los Angeles, CA 90069
(213) 659-3810

Sales Mart Building
1485 Bayshore Blvd., Box 140
San Francisco, CA 94124
(415) 467-0125

Data precision Model 935 DIGITAL MULTIMETER

- accurate basic 0.1\% DC accuracy better than that of many bench/lab DMM's.
- VERSATILE all the functions and ranges you need... 29 in all: volts \& amps, AC \& DC switchable HI \& Lo ohms.
- ECONOMICAL operates up to 200 hours on a standard 9 V alkaline battery.
- TOUGH built to take rough everyday field usage and electrical overload ... yei maintain its calibration.
- HANDY -
easy to hold, to carry, to use, to read...
- RELIABLE backed by a full 2 -year warranty.

ALSO AVAILABLE Model 938 $0.1 \cdot 3^{112} 2$-digit CAPACITANCE METER, only \$149. Ask for details.

Order Toll-Free: Call 800-223-0474

BASIC SPECIFICATIONS

- 24 Measurement Ranges $100 \mu \vee-1000 \mathrm{VDC}, 5$ ranges, $\pm 0.1 \%$ Accuracy $100 \mu \mathrm{~V}-700 \mathrm{VAC}, 5$ ranges, $\pm 0.5 \%$ Accuracy $1 \mu \mathrm{~A}-2 \mathrm{~A} D C, 4$ ranges, $\pm 0.5 \%$ Accuracy $1 \mu \mathrm{~A}-2 \mathrm{~A} \mathrm{AC}, 4$ ranges, $\pm 0.75 \%$ Accuracy $100 \mathrm{~m} \Omega-20 \mathrm{M} \Omega, 6$ ranges, $0.1-0.3 \%$ Accuracy
- $31 / 2$-Digit, $1 / 2$ " Liquid-Crystal Readout
- Automatic Polarity Indication
- Automatic Overload Indication
- Automatic Low-Battery Indication
- Optional Battery Eliminator Available, for $120 \mathrm{VAC} \pm 10 \%, 50-60 \mathrm{~Hz}$ line operation

ADVANCE-C=

54 W. 45th Street, New Y.,.rk, N.Y. 10036, (212) 687-2224

PLEASE SEND ME:
\square Model 935 DMM @ $\$ 149.00$
\square CS11 20-amp Curren Shunt (a) $\$ 20.00$
\square CC35 Vinyl Carrying Case @ $\$ 7.00$
\square BE9 Battery Eliminato
(120VAC, $50-60 \mathrm{~Hz}$) $\$ 15.00$

Payment Enclosed $\square \quad$ Bill my: Master Charge \square Visa
Add $\$ 3.00$ to cover postage and handling. N.Y. residents add sales tax
Account \# \qquad Exp. Date \qquad
Name
Address
City, State, Zip

New from NRI! 25"color TV that tunes by computer, programs an entire evening's entertainment.

Just part of NRI's training in servicing TV, stereo systems, video tape and disc players, car and portable radios.

Only NRI home training prepares you so thoroughly for the next great leap forward in TV and audio ...digital systems. Already, top-of-the-line TV's feature digital tuning, computer programming is appearing, and new digital audio recording equipment is about to g 0 on the market.

NRI is the only home study school to give you the actual "hands-on" training you need to handle servicing problems on tomorrow's electronic equipment. Because only NRI includes this designed-for-learning, 25 " diagonal color TV with electronic tuning, built-in digital clock, and computer programmer as part of your training. With this advanced feature, you can pre-program an entire evening's entertainment... even key lock it in to control children's viewing.

As you assemble it, you learn how digital tuning systems work, how to adjust and service them. You work with the same advanced features used in the new programmable

TV's and video tape recorders. It's exclusive NRI training that keeps you up with the leading edge of technology.

Exclusive

 Designed-forlearning Concept The color TV you build as part of NRI's Master Course looks, operates, and performs like the very finest commercial sets. But behind that pretty picture is a unique designed-forlearning chassis ...
the only such unit in the world. Rather than retrofit lessons to a hobby kit or an already-built commercial set, NRI instructor/engineers have designed this television so each step of construction is a learning experience. As you build it, you perform meaningful experiments. You see what makes each circuit work, what it does, how it interacts with other circuits. You even introduce defects, troubleshoot and correct them as you would in actual practice. And you end up with a magnificent, big-picture TV with advanced features. One you can sell or use in your home.

Also Build Stereo, Test Instruments

That's just a start. You demonstrate basic principles and circuits on the unique NRI Discovery Lab, ${ }^{\circledR}$ then apply them as you assemble a fine AM/FM stereo receiver, complete with speakers. You also get practical experience as you build your own test instruments, including a $5^{\prime \prime}$ triggered sweep oscilloscope, CMOS digital frequency counter, color bar generator, and transistorized volt-ohm meter. Use them for learning, use them for earning as a full- or part-time TV, audio, and video systems technician.

Complete, Effective Training Includes Video Systems

Using NRI's exclusive methods, you learn far more than TV servicing, You'll be prepared to work with stereo systems, car radios, record and tape players, transistor radios, short-wave receivers, PA systems, musical instrument amplifiers, electronic TV games, even video tape recorders and tape or disc
video players. Your training covers just about every kind of electronic entertainment equipment available now or in the near future.

And because NRI has unmatched experience gained in over 60 years and a million students worth of training, your course is designed for ease of learning and practical utility. You need no previous experience of any kind. Starting with the basics, exclusive "bite-size" lessons cover subjects thoroughly, clearly, and concisely. "Hands-on" experiments reinforce theory for better comprehension and retention. And your personal NRI instructor is always available for consultation, ready with explanations, answers, and advice.

Send for Free Detailed Catalog... No Salesman Will Call

Get all the facts on this exciting course and its potential for you by mailing the postage-paid card today. Our free 100-page catalog includes color photos of all kits and equipment, complete lesson plans, convenient time payment plans, and information on other electronics courses. You'll also find out about NRI's new Computer Technology

microcomputer. Or Complete Communications with 2-meter transceiver that gets you ready for opportunities in broadcasting, 2 -way radio, microwave, and other growing fields. If card has been removed, write to:

NRI Schools

McGraw-Hill Continuing Education Center 3939 Wisconsin Ave. Washington, D.C. 20016

3 UNIQUE PROJECTS

The " 3 Unique Projects" article (April 1979 issue, page 48) has been a godsend.
We built two of the One-Station Intercoms and installed them in Sales and Engineering; communications between the two are now on an order of magnitude better than before! The next two we build will go to Production and Quality.
Our Engineering Director has been complaining that he doesn't get "hands-on" duties since his promotion, so we gave him the Solar-Powered Night Light to debug: A glitch you failed to notice is the unit's behavior in semidarkness-when the lamp light reflects from our receptionist's jewelry onto the solar cells, which in turn increases drive to the lamp, etc. This feedback ultimately results in broadband oscillations centered just below $10^{15} \mathrm{~Hz}$. Our Engineering Director solved the problem by replacing the lamp with one of National's DarkEmitting Arsenide Diodes (DEAD's).

Finally, the Single-Shot Logic Indicator
with Memory ended our long search for a readout device for Signetics' 25120 WriteOnly Memory (WOM). Due to the WOM's unique architecture (all inputs are wired-don't-care), we've had trouble remembering if we had loaded a given IC with the program, and if so, with which program. The Logic Indicator worked so well in this application, it's no exaggeration so say it left us with stars in our eyes.
DOUG PRUNER
Genisco Technology
Compton, CA
I have been a subscriber to Radio-Electronics since 1956. I received my April issue and, with trepidation derived from past experience, examined the index, and was immediately drawn to the construction articles on pages 48 and 49.

I think the authors of these articles should be admonished on two counts:

1. They failed to emphasize the main outstanding feature of the One Station In-
tercom-its portability over all other systems.
2. The Solar-Powered Night Light would be a great boon on polar expeditions. With suitable modifications to maintain orientation, it should operate at full brilliance for six months at zero degrees, north or south latitude. The cells should be oriented to the noon sun and the light 180 degrees away, illuminating the midnight area.
I will not construct the Logic Indicator as searching for logic in this day and age is an exercise in futility.
JOHN MOON
Brossard, Canada
The Solar-Powered Night Light in the April 1979 article contains a philosophical error, which I figured out as soon as I built it. Those charlatans, Weinstein and Gartman, don't really care about energy conservation. That's why the lamp runs wastefully all the time even when it is not needed.
continued on page 14

Now,an automotive computer plus cruise control at your fingertips!

This is CompuCruise! The first true computer for your car, truck or RV. It's the most effective and functional cruise control ever designed, PLUS complete trip computing, an effcient fuel management system, and a split-second-accuracy quartz time system.

CompuCruise is a cruise control with a memory. A unique seek-and-hold capability makes highway driving easier and more enjoyable. Fully electronic, making it more accurate and reliable.

CompuCruise is a true computer, constantly reacting via automatic sensors to changing conditions, updating vital data for you every second. Just look at what CompuCruise gives you:

Time, E.T. Lap timing, Alarm
Time, Distance, Fuel to arrival
Time, Distance, Fuel to empty
Time, Distance fuel on trip
Current or average MPH, MPG, GPH
Fuel used, Distance since fillup
Inside, outside or coolant temp.
Battery voltage
English or Metric display
CompuCruise works on foreign or American cars (except Diesel and fuel-injected vehicles). It's priced for the budgetminded, and easily installable by you or your automotive outlet.

Only $\$ 199.95$ with Cruise Control, $\$ 159.50$ without. Fully warranted for 90 days from date of purchase. Delivered
complete with easy-to-follow installation guide. And backed by a 100% satisfaction guarantee. If not fully satisfied when you receive your unit, return it before installation and your money will be fully refunded without question.

For the name of your nearest dealer, call or write us right now: ZEMCO, 12907 Alcosta Blvd., San Ramon, CA 94583. Phone (415) 838-8060.

Do it today-for a better cruise control and more automotive information than you've ever had before.

Th Compulvulise

Build better value with world-famous Heathkit Electronic Products

NEW! One-
Button Dialer
Real convenience
for any telephone

NEW! DC to 5 MHz Oscilloscope Low-priced scope great for TV great
service.

NEW! Auto Ranging Digital Multimeter Automatically selects proper range for best measurements.

If coupon is missing, write Heath Company, Dept. 020-560 Benton Harbor, M1 49022
Heathkit products are displayed, sold and serviced coast-to-coast at Heathkit Electronic Centers (Units of Schlumberger Products Corporation). See the white pages of your phone book.

NEW! Low
NEW! Low
Priced Multimeter Great for hobbyist or service bench.

NEW! cw

 TransmitterDeluxe transmitter
with famous Heath with fa
value.

NEW! X-Y Chart Recorder Two channels for plotting.
NEW! All-In-One Computer System Desk top computer with Terminal, Floppy Disk, and Keyboard in one compact unit.
NEW! Deluxe Metal Locator Adjustable discrimination for finding any kind of metal
HEATH
Schlumberger
$\left.\begin{array}{l}\text { Heath Company, Dept.020-560 } \\ \text { Benton Harbor, Michigan 49022 } \\ \text { Please send me my FREE Heathkit Catalog. } \\ \text { lam not currently receiving catalogs. } \\ \text { Name_ } \\ \text { Address } \\ \text { City } \\ \text { CL-708 }\end{array}\right]$

LETTERS

continued from page I2

So ladded an on-off switch in series with the circuit (at the risk of increasing circuit complexity and operating-procedure confusion). I refrained from the temptation to use a momentary-on pushbutton switch as that would increase the number of on-off surges and lead to short bulb life. This disadvantage would offset the automaticoff mode's advantages.

The on-off switch is also essential in case of extreme positive feedback from the lamp output back to the cells, which could happen if you carried the night light into a wellmirrored bathroom, for example. Turning the switch promptly off can prevent the
familiar motorboating condition or the dread runaway situation.

By the way, I was able to increase the usefulness of the night light by simply connecting about 10,000 miles of twisted pair in the circuit. Just put the solar cells either east or west of the lamp location.
ROBERT A. PEASE
Transtronics
San Francisco, CA

VIDEODISC SYSTEMS

Regarding the article that appeared in the April 1979 issue on the competing Magnavox and RCA videodisc systems, there are several points that should be made. No matter how biased my statements may sound, I am not professionally connected with any companies involved in

The DMM you've wanted: Quality and performance at a low, low cost

A surprisingly low $\mathbf{\$ 6 9 . 9 5}$. Surprising because you get the type of performance you've wanted but expected to pay much more for.

Quality, Performance and Accuracy

The 2010A offers you long-term accuracy with a laser-trimmed resistor network, a stable bandgap reference element, and single-chip LSI circuitry. With 31 ranges and 6 functions, you can measure AC or DC volts from $100 \mu \mathrm{~V}$ to $1000 \mathrm{~V}, \mathrm{AC}$ and DC current from $0.1 \mu \mathrm{~A}$ all the way to 10 A ; resistance from 0.1Ω to 20 $\mathrm{M} \Omega$. Typical DCV and Ohms accuracy is 0.1% ± 1 digit. Easy-to-read $31 / 2$ digit LED's with 9 mm numerals and automatic decimal point

Extra features for greater convenience and flexibility

- Unique X10 multiplier switch gives you convenient selection of the next higher decade Hi-Low Power Ohms capability gives you three high-ohm ranges that supply enough voltage to rurn on a semiconductor junction. You use the three low-ohm ranges for in-circuit resistance measurements.
- Wide Frequency Response: 40 Hz to 40 kHz bandwidth lets you measure audio through ultrasonic $A C$ signals.
- Touch-and-Hold Capability (with optional probe) lets you hold readings as long as you wish so you can make measurements in hard-to-reach places without taking your eyes off the prohe tip.
- And More: automatic polarity and zeroing; overrange indication; overload protection on all ranges.
This compact unit is powered by 4 " C " cells (not included) so that you can take your lab quality benchtop unit anywhere with you

Kit or Factory-Assembled

Either is a tremendous value. Complete kit only $\$ 69.95$; assemble it yourself with our easy-to-follow instructions. Or, for only $\$ 99.50$, Sabtronics will ship your 2010A factoryassembled and calibrated.
Whether you're a professional or a hobbyist (or both!): When quality, accuracy, and price count, you should check out the 2010A DMM for yourself. Order one today for a full 10 days to inspect it; if you're not completely satisfied, merely return it in its original condition for a prompt and courteous refund of purchase price. Call with your Master Charge or Visa number or write the address below.

2010A Kit: $\$ 69.95$ (plus $\$ 4.00$ S\&H)

2010A Assembled: $\$ 99.50$ (plus $\$ 4.00$ S\&H)
AC•115 Adaptor: $\$ 7.50$
NB-120 Nickel Cadmium Batteries: $\$ 17.00$
THP-20 Touch and Hold Probe: $\$ 18.00$

Making Performance Affordable sabtronics 0

13426 Floyd Circle M/S 35 Dallas. Texas 75243 Telephone 214/783-0994
promoting either system, although I do own and enjoy a Magnavox optical videodisc player and an assortment of the programs.

The author makes the point that several Japanese manufacturers (Panasonic and JVC) have already joined RCA in promoting the capacitive format. This has not yet occurred; and the JVC Visc system has so many obvious advantages over RCA's approach that if there is to be any standardization between these three companies, it may well be that RCA will join them.

Also, while the article states that these companies are at least talking with RCA about standardization, no mention is made of the fact that there is presently a partnership between MCA and Pioneer Electronics (under the name of Universal-Pioneer) to market optical videodisc players, and that General Motors has already placed an order for a minimum of 7000 players from the new company.
Although the article points out that due to the laser scanning of the MCA discs there is no deterioration from repeated playing, it does not tell us that with the RCA capacitive design, the discs wear out after about 200 plays and that the stylus that tracks RCA's grooves must be replaced after (approximately) 300 hours of use.
The paragraph that states that MCA is supplying the discs for the optical system reads as if MCA is the only source of feature movies. It is true that MCA is the only manufacturer of the discs; however, the initial program catalog includes feature films licensed to MCA from other studios, including Paramount, Disney and Warner Brothers.
ALFRED W. MYERS
White Plains, NY

EXPERIMENTERS' GROUP

I am a longtime reader and subscriber to your magazine, and it goes without saying that I like it very much. The articles give a very rounded insight into many aspects of electronics.
Being an experimenter by nature, I have felt there was a need for an organization to bring amateur scientists together. Now that need has been filled-the Amateur Scientists Research Organization has been formed. Interested persons can find out more by writing to ASRO, P. O. Box 4, McMechen, WV 26040. The latest newsletter and bulletin will be sent free with no obligation.
RICHARD S. MEYER
McMechen, WV

ON-SCREEN DIGITAL CLOCK

This is in reply to J. G. Ash's letter in the March 1979 issue regarding construction of the on-screen digital clock (July 1977 issue).

It appears to me that if S1 is held down longer than the C9-R13 time constant, the clock will be permanently on. This is because when S1 is initially closed, a ground is applied not only to pins 4 and 5 of IC2-b, but also to the negative side of C8. This will cause C8 to charge more or less instantly to pin 3's level, which is now going low. After C9 charges (from 4 to 6 seconds), current ceases to flow through R13, causing pins 1 and 2 to go low and pin 3 to go high. At this point, if $S 1$ is still depressed, continued on page 16

LETTERS

continued from page 14

C8 will charge instantly to this new level and will stay there even if S 1 is released. We now have a stable state and the clock will stay on indefinitely.

My solution was to place an SPST toggle switch in parallel with C9. Closing the switch and activating S1 will cause the clock to stay on indefinitely (for setting purposes). After the clock is set, open the switch and the display will turn off after 4 to 6 seconds. I call this switch "Display Hold" on my clock.
D. A. TABBUTT

Las Vegas, NV

BURGLAR ALARM FLAW

Several years ago I built and installed a burglar alarm from an article in RadioElectronics ("Anti-Theft Devices," R.M. Marston, November, December 1976). The circuit was ingenious and worked well-so well that I later built several for friends. But recently I discovered a basic and serious flaw in this design that applies to any other circuits using CMOS gates as sensitive switches.

The circuit takes advantage of the very high input impedance of CMOS gates, in order to use the series loop of normally closed switches with very low standby current. The switches are in series with a 22 megohm resistor. If all switches are closed, the input to the gate is pulled high; if any switch opens, the 22-megohm resistor pulls
the input low, triggering the alarm.
The system I installed in my apartment uses conventional magnetic reed switches with exposed screw terminals. The apartment was painted recently by a sloppy housepainter using water-based latex paint. Several days afterward, quite by accident I discovered the alarm would not trigger if a particular door was opened.

A careful investigation revealed some paint had been slopped over the screw terminals of the reed switch. While the top surface of the paint was dry and measured infinite resistance, the underside of the peeled-off chip was evidently still damp and showed a series resistance of only 300 K across the 1 -inch span between terminals.

Since this 300 K resistance was shunting the open switch, the alarm system interpreted it as a closed door. I don't know how long it would take for the paint to dry enough to increase its resistance to the 30 megohms or so that would be required to allow the circuit to function normally.

But this suggests a more serious problem. Any moisture across the screw terminals would shunt the open switch to the point where the circuit would not trigger! Readers who have installed alarms using this circuit should be warned to do one of two things:

1. Decrease the value of the pulldown resistor from 22 megohms to no more than 50 K . Unfortunately, this will increase standby current to about $250 \mu \mathrm{~A}$, but it will prevent dampness and condensation from defeating the system. OR
2. Paint, spray or otherwise completely insulate the terminals on all sensor switches with a non-water-based paint or lacquer to prevent them from being shunted by moisture.
ROBERT R. LEVINE
New York, NY

CB REPAIR INFO WANTED

Your Jack Darr service format is one of the finest columns in any electronics magazine. I have been using the column for years in my TV servicing and have found many service troubles, thanks to Mr . Darr.

Now I have branched off into CB repair, and the same type of service format would be very useful. You definitely don't have enough information (in some months, none at all) or articles regarding CB's. I would think there would be more readers interested in CB's than in microprocessors, etc. Please stick more with the items the consumer on the street is likely to have.
CHET WHEELER
Bethlehem, PA

FUTURE DEVICES

Your April 1979 editorial was a wellproduced mini-history lesson that many have probably taken for granted. Concerning the last paragraph about future products, I would probably not be able to fill the bill on dreaming; however, since you did ask:
I have been visualizing the day when our energy problems could be reduced to perhaps 10% of what they are now. To help this continued on page 22

Exclusive Sheldahl FLEXSWITCH ${ }^{\circledR}$ kits

With scissors, modify the

 .030 thick, non-tactile panel into water/dust resistant switching module. Kit includes design guidelines, instructions, Sheldahl membrane switching panel, flexcircuit connector, press-on nomenclature and RFQ checklist. Production quantities cost less. Pressure sensitive back.$9 \mathrm{key} \mathrm{kt}(1 \times \mathrm{x})$ $\$ 9.00$

10 key kt ((xa) $\$ 10.00$

- Stereo ... Eleven Bands Per Channel • Extremely Low Noise \& Distortion - LED Peak Indicators • Center Detent ("flat") sliders• Built-in "record" Switching •Line and Microphone Level Inputs/Outputs - Regulated Power Supply • Fully Guaranteed • Horizontal or Vertical Cabinets • Kit or Fully Assembled • Plus Much, Much More!

sophisticated soldering of space-age heat- \& vollage-sensitive components

DEMANDS THE RELIABILITY OF

Weller controlled output irons and stalions

Modern, ultra-sophisticated electronic technology calls for totally dependable soldered connections. This requires nat only sensing the soldering tip temperature, but applying and removing wattage at precisely the right moment to control the selected aperating range of the iron.

That, in a nutshell, is what the Weller family of Controlled Output Soldering Equipment is all about. And that explains how it can avoid defects in soldered connections and damage to heat- and voltage-sensitive components and substrates, as well as deteriorating over-exposure from needlessly long soldering contact. In other words, dependence on the human element is eliminated. But there are other significant benefits from the Weller controlled output soldering technique. Soldering tips last longer. Much longer. And power consumption is less than that of uncontrolled irons.

What's the secret of Weller's controlled output? It's really no longer a secret. Today it's a time-proved principle: Closed loop, low voltage circuitry and a ferromagnetic sensor control temperature at a pre-selected range. Sounds simple? It is. That's why it's totally reliable!

Ready to meet the whole Weller Temperature Controlled family? This way, please for a brief introduction to the members presented below.

LINE VOLTAGE PORTABLE IRGMS
Models W60 and W100: 60 and 100 watts. Operate from 120 V outlet. Interchangeable 600,700 , and $800^{\circ} \mathrm{F}$ tips, grounded and non-grounded available in 9 sizes. Optional de-soldering adaptor and non-heat-sinking tool holders.
COMPLETE SOLDERING AND DE-SOLDERING STATIONS Include iron holder, tip-wiping sponge and receptacle, power on-off switch with indicator light, stepdown transformer dropping power to 24 V in heating element, positive tip-grounding to prevent build-up of electrostatic charges that injure delicate components, non-burnable silicone rubber cord, and dosens of other Weller quality features.
Model WTCPN: Plug-in pencil soldering iron with comfort-cool heat shield, 17 available styles and sizes of interchangeable tips for 600,700 , and $800^{\circ} \mathrm{F}$ temperature Control, integral tip storage tray. $120 \mathrm{~V}, 60 \mathrm{~Hz}, 60 \mathrm{~W}$. Optional de-soldering adaptor.
Model MP: For precision soldering of miniaturized electronics, especially PC wwrk. Plug-in, true pencil shape 650 or $750^{\circ} \mathrm{F}$ iron with $1 / 8^{" 1}$ ciam. tips available in 8 sizes and styles. $120 \mathrm{~V}, 60 / 40 \mathrm{~Hz}, ? 2 \mathrm{~W}$.

CIRCLE 13 ON FREE INFOTMATION CARD

Model DS 100: De-soldering and re-soldering unit designed for PC board repair and re-work lines. Utilizes interchangeable 600,700 , and $800^{\circ} \mathrm{F}$ soldering tips and interchangeable 700 or $800^{\circ} \mathrm{F}$ de-soldering heads. Complete with tootswitch, twin safety tool holder, vacuum adjustment gauge, and cleanable, replaceable see-thru solder collector 8 de-soldering tiplet sizes and 17 soldering tip stries (in 3 temps) available. Operates from factory air and line voltage.

Yes, of course, the entire family is UL listed and OSHA compliant. Now that you've been introduced, any leading electronic distributor will display the units and fill you in on all the features. For technical information and consultation, write the factory on your company letterhead.

Yo11 gotta shop aironind.

When you do, youril probably pick CIE. Yon can't afiord to settle for

When you shop around for tires, you look for a bargain. After all, if it's the same brand, better price - why not save money?

Education's different. There's no such thing as "same brand." No two schools are alike. And, once you've made your choice, the training you get stays with you for the rest of your life.

So, shop around for your training. Not for the bargain. For the best. Thorough, professional training to help give you pride and confidence.

If you talked to some of our graduates, chances are you'd find a lot of them shopped around for their training. They pretty much knew what was available. And they picked CIE as number one.

Why you should shop around yourself.

We hope you'll shop around. Because, frankly, CIE isn't for everyone.

There are other options for the hobbyist. If you're the ambitious type - with serious career goals in electronics take a close look at what we've planned for you at CIE.

What you should look for first.

Part of what makes electronics so interesting is it's based on scientific discoveries -on ideas! So the first thing to look for is a program that starts with ideas and builds on them!

That's what happens with CIE's Auto-Programmed ${ }^{\text {® }}$ Lessons. Each lesson takes one or two principles and helps you master them - before you start using them!

How practical is the training?

This is the next big important question. After all, your career will be built on what you can do-and on how well you do it.

Here are ways some of CIE's troubleshooting programs help you get vour "hands-on" training...

With CIE's Experimental Electronics Laboratory. .
you learn and review the basicsperform dozens of experiments. Plus, you use a 3 -in- 1 precision Multimeter to learn testing, checking, analyzing!

When you build your own 5 MHz TriggeredSweep, Solid-State Oscilloscope you take your first real professional step. You use it as a doctor uses an X-ray machine - to "read" wave form patterns. . . lock them in . . . study, understand and interpret them!

When you get your. Zenith 19-inch Diagonal Solid-State Color TV you

Patiern simulated.
apply your new skills to some real on-the-job-type troubleshooting! You learn to trace signal flow. . . locate malfunctions. . . restore perfect operating standards-just as with any sophisticated electronics equipment!

you work with a completely Solid-State Color Bar Generatoractually a TV signal transmitter - you study up to ten different patterns on your TV screen . . . explore digi-
tal logic circuits . . . observe the action of a crystal-controlled oscillator!

Of course, CIE offers a more advanced training program, too. But the main point is
simply this
All this training takes effort. But you'll enjoy it. And it's a real plus for a troubleshooting career!

Do you prepare for your FCC License?

Avoid regrets later. Check this out before you enroll in any program.

For some troubleshooting jobs, you must have your FCC License. For others, employers often consider it a mark in your favor. Either way, it's govern-ment-certified proof of specific knowledge and skills!

More than half of CIE's courses prepare you for the government-administered FCC License exam. In continuing surveys, nearly 4 out of 5 CIE graduates who take the exam get their Licenses!

Shop around ...but send for CIE's free school catalog first:

Mail the card. If it's gone, cut out and mail the coupon. If you prefer to write, mention the name and date of this magazine. We'1l send you a copy of CIE's FREE school catalogplus a complete package of independent home study information! For your convenience, we'll try to have a representative contact you to answer your questions. Mail the card or coupon or write: CIE, 1776 East 17th St., Cleveland,
OH 44114.

LETTERS
continued from page 16
become fact, a better system of transportation would be the chief ingredient - how about a transport system that operates over the phone lines. Sounds a little like "Star Trek," doesn't it? California to New York in two minutes? Remember, you said-dream!! If I get busy this week, maybe I'll have it in operation by, say, 2190. [The article on page 6 ("New \& Timely") concerning the light-powered phone gave me the idea.]

And we just loved the Solar-Powered Night Light. As I see it, this should be the first practical perpetual motion machine. Now, how about an LED on a giant scale
to be used for illumination? What a savings in power consumption for street lights, home lighting, etc. And then, how about a fiber-optic cable system to reduce power even more for street lights by putting one LED cluster in a 10 -block sector and cabling to the immediately surrounding blocks?
DAVID HARTMAN
Portsmouth, VA

WIRE-WRAP TECHNIQUES

Thank you for an excellent presentation of my article "PC/Wire-Wrap-New Construction Technique" (Radio-Electronics, February, 1979).

However, while all basic principles of combined wire-wrap and PC board design of tri-level technigues have been included

When you're into electronics, Calectro is into whatever you need - whether it's ideas, instructions, or a complete supply of parts

Calectro has projects designed for you: a "Project of the Month", conceived by the Calectro engineering department, along with detailed instructions and a list of all the Calectro parts you need to build it!

Calectro has parts and accessories: printed circuit materials, tools, meters, testing devices, equipment boxes, sockets, switches, IC's, transistors, rectifiers, lugs, fuses, bulbs, wire, connectors, terminals, jacks, transformers, and lots more - everything you need to complete your project. And you'll find more of the parts you want at your Calectro store than anywhere else.

> Calectro has literature: the Calectro Handbook - a valuable guide and product reference for the experimenter, hobbyist, audiophile, technician, and student; plus handbooks on semiconductors, circuits, and more! Coming soon: a new Calectro Handbook, a compendium of popular project ideas.
> Whatever you need in electronics, your Calectro distributor is your surest, finest source!

Calectro

Products of GC Electronics, Rockford, IL 61101
in the article, your drawing of the 2102 PC board on page 54 (Fig. 1) does not make clear the breakpoints of the data-in and data-out pins. The top side of the PC board design shows clearly the breakpoints for 1K (18 IC's) enable lines, but the drawing will still have to show the breakpoints for each data input/output pin. A drawing of the bottom side of the PC board for the 2102 memory IC would have made this important detail clear

Each 2102 IC must have an isolated wirewrap foil pad. These pads are made by cutting the final etched PC line, just as the enable lines were separated. The final data lines are then connected for each input or output data bit by wire-wrap process. The data-bit 1 input requires eight wire-wrap connections, and the data-bit 1 output also requires eight wire-wrap connections.
Also the drawing of the edge connections in Fig. 1 for the wire-wrap circuits is misleading. The correct edge-connection pattern would have the following connecting points: 10 address lines, 1 positive line, 1 ground line, 8 enable lines for an 8 K board by 1 K increments, 8 Data Input Lines and 8 Data Output lines. The correct edgeconnector pattern, then, is 36 individual connections for the wire-wrap points.
I hope this omission can be corrected since Fig. 1 only lacks the data line breakpoints of the bottom side of the PC board and the correct 36 -line edge connections. Readers who use the drawing as shown will not have all the data that is needed to make this tri-level technique work; corrected drawings will help them beat the "wirewrap jungle."
JAMES E. TEMPLE

ELECTRONIC EQUATION

Mr. Ecklin's letter ('Letters," RadioElectronics, April, 1979) about the "electronic equation' appears to correctly challenge the now-sacred law for the conservation of energy. Today's permanent magnets last for decades and off-the-shelf magnets easily lift 25 times their weight in iron, while most lodestones could not lift their own weight

We now have tiny IC's for 16-bit computers with many thousands of active circuits on them that draw a total current in milliamperes. Even with this high efficiency, IBM is researching superconducting devices for even higher efficiency and speed. It is hard to guess how little power would be required to stop a magnetic field with a superconductor as Mr. Ecklin has suggested. It is also difficult to imagine a direct correlation between a $25-\mathrm{lb}$. magnet that could cause antigravity to over 600 lbs . of iron, and turning a superconductor on and off below the magnet's pole faces

Maybe a magnet can store an unending supply of potential energy if we can divert or stop its magnetic field at will. So far we know of no way to stop or divert a gravitational field to create perpetual motion devices. One paragraph in a letter to RadioElectronics may solve our energy crisis in spite of a well-proven law of science
(By the way, Mr. Ecklin has informed me that the Doppler equation as shown in his letter was wrong; the last equal sign should have been a minus sign-i.e., $d=w f-$ c.)

DALE BERG
Annapolis; MD

Better Quality

SUBSTITUNER

tsC provides you with a complete SERVICE FOR ALL YOUR TELEYISION TUNER REQUIREMENTS
TUNER REPAIRS
TUNER REPAIRS
EXACT
REPLACEMENT

Faster Service

MODULES

If you want to branch out into the TV Tuner Repair Business write to the Bloomington Headquarters about a franchise.

Sinclair Radionics Model DM350 DMM

CIRCLE 101 ON FREE INFORMATION CARD
THE NAME OF SINCLAIR RADIONICS HAS BEEN familiar in England for quite a while. Now it's appearing in the U.S. The company is Sinclair Radionics, Inc., 66 Mt . Prospect Avenue, Clifton, NJ 07015.

The unit 1 tested was the model DM350 bench digital multimeter (shown). This unit is one of a pair; the model DM350 has a 3.5 -digit display and the model DM450 has a 4.5 -digit display. Otherwise, the meters are identical, except for the greater resolution of the 4.5digit model.

The meters measure AC or DC voltages from 200 mV up to 1200 volts DC or 750 volts AC in six ranges; AC or DC currents from 2.0 $\mu \mathrm{A}$ to 10 A . A separate input jack is included that can handle up to 20 A for up to 10 seconds. Resistance can be measured from 200 ohms to 30 megohms on six ranges. Overrange is indicated by the display being blanked, except for the left-hand digit that displays a " 1 ."

Some unusual switching is used. When you read "6 ranges" and then notice there are only five voltage pushbuttons on the range selector, you start wondering. Then you read the instructions, and the mystery clears up. A special $2000-\mathrm{mV}$ range can be used that has a tremendously high input impedance-greater than 1000 megohms. To set up this range you press both the volts and milliampere buttons simultaneously, and then you release all the range pushbuttons. The display is in millivolts divided by 10 .
On DC and AC current ranges, you do the same thing: the lowest range pushbutton is 200 $\mu \mathrm{A}$. A $2-\mu \mathrm{A}$ scale is produced by pressing the V and the mA pushbuttons in plus the $200-\mu \mathrm{A}$ pushbutton. For a $20-\mu \mathrm{A}$ scale, press the 20 V pushbutton.

Autozeroing is used on all ranges. On the lowest resistance range, shorting the test leads displays the lead resistance-typically 0.3 ohm. For precise readings, subtract this value. Accuracy on the DC voltage ranges is 0.1% on the three lowest ranges and 0.25% on the higher ranges; for AC voltages, 0.25% on the low range and 0.4% on the higher ranges; and for AC or DC currents, accuracy is typically 0.2%. Ohmmeter accuracy is 0.2% on all ranges.

The model DM350 provides overload pro-
tection up to 1200 volts DC on all ranges, and to 750 volts AC on the AC ranges. The ohmmeter withstands up to 400 volts peak AC. Current ranges are protected by a 2 A fuse (located in the back panel) except for the 10 amp range, which is not fuse protected.

The model DM350 is housed in a small flat plastic case that measures 10 inches wide but is only 1.5 -inches high. Despite the compactness of the DMM, the panel is easily accessible, and the pushbuttons are large enough and spaced far enough apart so that they are easy to hit. The displays are 7 -segment LED's that are bright enough to read at any practical distance. The test leads (which are included) plug into three jacks at the far right of the panel, out of the way. A bail-type carrying handle doubles as a bench rest to hold the panel at the best viewing angle.

Power is provided by four built-in dry "C" batteries or from an AC adapter. The batteries are located under a sliding cover on the back of the unit. A selector switch on the back allows you to choose either disposable or rechargeable batteries. When the switch is in the disposable position, the internal batteries are disconnected when the AC adapter is plugged in. If rechargeable batteries are used, just set the switch to the rechargeable position, and the battery charge is maintained while the unit is plugged in. A low-battery condition is indicated by the whole display flashing; this means the batteries are down to 4.4 volts. However, accurate measurements can still be made for a few minutes before errors occur.

These DMM's are manufactured in England, and the workmanship looks good. Incidentally, if you misplace the manual, a label on the bottom of the case gives complete information on all ranges and functions. This is a very handy little instrument, at a reasonable price\$139.

PTS Model 8001

Component Analyzer

CIRCLE 102 ON FREE INFORMATION CARD
PTS ELECTRONICS, INC., (BOX 272, BLOOMINGTON, IN 47401) has added test equipment to its TV tuner repair and module rebuilding ser-
vices. There are several units. One of these is the model 8001 Component Analyzer. It's a compact instrument that is easy to run. All you need is a scope (of any kind) and connect the model 8001 to its vertical and external horizontal inputs and off you go. Calibration and setup are fast. Adjust the scope's vertical gain plus the horizontal calibration control on the analyzer and there you are.

The model 8001 can be used for tests on all solid-state components, such as transistors, diodes, etc. On a good diode or transistor junction, the analyzer shows a sharp right-angle pattern. A rounding of the angle shows there is leakage. A straight vertical line indicates shorted parts; open circuits show up as a horizontal line. Here's a quick check before starting: short the test leads together, a vertical line shows. If the circuit's open, then a horizontal line appears.

The model 8001 can be used for in-circuit transistor testing. The patterns will differ from the out-of-circuit patterns, but the characteristic sharp angle will be there. The patterns are distinctive enough to indicate whether the component is bad or good. Several manufacturers have adopted this testing method, and their service manuals show the typical patterns that are found in various stages.
A good resistor shows a straight diagonal line. The angle varies with the value of resistance. A good capacitor will show an oval or a round pattern. Large capacitors have very low impedance. The model 8001 has a Low-MEDHIGH range switch to check any size. Many low-frequency inductors, such as power transformers, vertical-output transformers, chokes, etc., can be checked for shorts. If the winding is good, the analyzer will show a definite ellipse or even a circle if the inductance is high enough. If the component has shorted turns, a straight vertical line appears, and you cannot get a loop at any range-switch setting. Check the analyzer on a few good parts and you'll discover what to look for.

This instrument is useful for making $A-B$ comparisons between identical circuits. In a stereo amplifier with one bad channel (a common fault), the same stage and junctions can be cross-checked between the working channel and the bad one. Here again, check some working circuits and observe what the patterns look like.
The front panel of the model 8001 contains all the controls. The scope is connected to the horizontal and vertical jacks, and the test leads (provided) go to two universal binding posts. These binding posts are colored red and black, but the model 8001 has no polarity. Hook up the leads one way, the angle goes up and to the right; reverse the leads, the angle goes down and to the left; but the sharp angle remains. The scope's vertical-gain control sets the length of the vertical line; the horizontal calibration control on the 8001 front panel adjusts
continued on page 26

Heathkit Self-Instruction Program for ASSEMBLY Language Programming.

- Use the full capacity of your computer.
- Execute programs faster.
- Store more in less space.

ASSEMBLY Language lets you do everything your computer is capable of doing. It's the most versatile, most powerful language you can use.
ASSEMBLY includes a mnemonic for every machine operation. No time is wasted interpreting, so programs run much faster.
ASSEMBLY makes more efficient use of memory. It stores in less space because codes are shorter, more explicit.
The Heathkit Self-Instruction Program teaches you to program your computer in ASSEMBLY Language. You learn

Abstract

at your own pace through a special text designed for selfstudy. An exercise workbook provides hands-on experience with programming exercises performed by you on your computer. You learn in a way that's fast, fun and thorough. The Heathkit Program is designed for computers using the popular 8080/8085/Z80 microprocessor series. This includes the Heathkit H8, H88 and H89 Computers. The concepts of the program, however, can be applied to any computer. Now's the time to learn the language that puts you in total command of your computer's full potential. Send today for the Heathkit Self-Instruction Program for ASSEMBLY Language. Order No. EC-1108: \$49.95, plus shipping and handling.

Heathkit Self-Instruction Program for BASIC Language Programming.

- Easiest of all languages to use.
 - Now easiest of all to learn.

More programs are written in BASIC than any other language. Because it uses English statements and commands, it's the easiest to learn and the easiest to use.
When you know BASIC you can adapt and run hundreds of existing programs. You can exchange programs with others. And you can write your own programs for your specific needs.

In 14 easy-to-follow segments, the Heathkit Program covers all formats, commands, statements and procedures. A special workbook provides programming instructions and experiments performed on your computer. You learn practical problem-solving techniques.
Until you know BASIC, you're missing the full selection of programs available to you. Send today for the Heathkit SelfInstruction Program for BASIC Language.
Order No. EC-1100: $\$ 39.95$, plus shipping and handling.

Send Today or Phone for faster service on VISA and Master Charge. 616-982-3411 Heath Company, Dept. 020-562, Benton Harbor, MI 49022

SHIP MY ORDER TO:

Name
(please print)
Address
City \qquad

Zip

MONEY-BACK GUARANTEE OF SATISFACTION
 If you are not completely satisfied with the EC-1100 BASIC Program or the EC-1108 ASSEMBLY Program, simply return programs for a full refund of purchase price.

Heath Company
Dept
Dept. 020-562
Benton Harbor, MI 49022

PLEASE RUSH ME:
\square ASSEMBLY Language
ASSEMBLY Language
EC-1108 $\$ 49.95$, plus $\$ 2.60$ shipping \& handling.
\square BASIC Language \quad EC-1100 $\$ 39.95$, plus $\$ 2.40$ shipping \& handling.
Total price
Michigan residents add
4% sales tax
Add shipping \& handling
Total enclosed . .
\square check \square money order \square Heath Revolving Charge Or charge my \square VISA/BankAmericard \square Master Charge
Account No. \qquad Expiration Date

Signature x \qquad Prices are mail order and subject to change without notice

EQUIPMENT REPORTS
 continued from page 24

the length of the horizontal line. The pattern will get smaller as you switch from Hi to LOW on the RaNGE switch. If the pattern becomes too small, just reset the horizontal calibration and vertical gain controls. The size makes no difference.

This is a simple but handy instrument that can be very accurate when used properly. It doesn't take long to set up, and it is priced at $\$ 54.95$.

R-E

Apple Disk I/ Floppy Disc System

CIRCLE 103 ON FREE INFORMATION CARD
OWNERS OF THE APPLE II COMPUTER (APPLE Computer, Inc., 10260 Bandley Drive, Cupertino, CA 95014) now have an alternate to their cassette tape system for saving programs and data. The Disk II system allows fast, reliable storage on standard $5 / 4$-inch minifloppy dis-
kettes. Up to 14 disc drives can be connected to the Apple II for access to nearly 1.6 M bytes of data. The DOS (Disc Operating System) is activated via a PROM-based bootstrap loader and master diskette supplied by Apple. The DOS adds the following commands: OPEN, Close, read, Write, Save, load, EXEC, RUN, APPEND, RENAME, POSITION, VERIFY, CHAIN, LOCK, UNLOCK, DELETE MON, NOMON MAXFiles, CATALOG, INIT, BSAVE, BLOAD, BRUN, FP, and INT.

The Disk II consists of a controller card that plugs into one slot of the Apple II motherboard, a modified Shugart SA-400 disc drive, a system software diskette, a blank diskette and instructions. The packaging of the drive is excellent; the color-coordinated steel cabinet fits nicely on top of the computer. One controller card handles two drives; so up to a maximum of seven controllers can be used. Each drive is then referred to by its number, D, and by its controller's slot number, S (e.g., D1 and S6). Once a drive has been accessed, these values default to that drive until they are explicitly changed. Included on the software diskette is a game program, ANIMALS that demonstrates very nicely how the disc can be used to store data.
Using the Disk II is a breeze. Programs save and load by name, and about 10 times faster than by cassette. Thus, to store a program on the disc, you simply type Save <file name>, where <file name> is any name you select for the program. The DOS automatically keeps a directory of all files; these files can be seen by using the catalog command. The catalog command also shows the nature of the file (BASIC, Applesoft, machine code, or text),
whether the file is protected, and also gives you some indication of the file length. Using the LOCK command protects files from accidental change or deletion.

The command list gives a fairly good indication of the power of the disc system. Particularly noteworthy are the EXEC, FP and INT commands. The EXEC command is similar to a RUN command except that the indicated file may contain entries not normally allowed in a BASIC program; for example, the HIMEM command used to run many programs (i.e., the Apple Startrek game). Normally, such a program must be loaded into the computer and a HIMEM: command issued to set memory pointers correctly before it is run. Using the EXEC command allows such a program to be run from the disc just like any other program.

Another good feature of the disc is that the floating-point BASIC (Applesoft) is always handy and can be loaded within 8 seconds. For convenience, the commands FP and INT are used to switch between BASIC's. When a program is loaded from the disc, the computer checks which BASIC it was written in, and then loads Applesoft (or selects the Applesoft firmware card when installed) if necessary. Incidentally, this Applesoft is actually Applesoft II, an improvement over the original version. The DOS also allows a program to begin executing immediately after booting for a turnkey type of operation.

The DOS however has two flaws; its inability to CHAIN Applesoft programs, and the lack of any password security for files. While this last feature is of little value to most homecomputer hobbyists, it is very important in
continued on page 33
 to release (all Kleps spring loaded).
Klaps 10. Boathook clamp grips wires, lugs, terminals. Accepts banana plug or bare wire lead. $43 / 4$ " long. $\quad \$ 1.59$ Kleps 20. Same, but $7^{\prime \prime}$ long.
Kleps 30. Completely flexible Forked-tongue gripper AcNepts bana plug or bare lead. $6^{\prime \prime}$ long. gripper. Accepts banana plug or bare lead. $6^{\prime \prime}$ long. $\$ 1.99$ Kleps 40. Completely flexible. 3-segment automatic collet firmly grips wire ends, PC-board terminals, connector pins. Accepts banana plug or plain wire. $61 / 4^{\prime \prime}$ long.
Kleps 1. Economy kleps for light line work (not lab quality. Meshing claws $41 /{ }^{\prime \prime}$ long Meshing claws. $41 / 2$ long
$\$ 1.09$
Pruf 10. Versatile test prod. Solder connection. Molded phenolic. Doubles as scribing tool. "Bunch" pin fits banana jack. Phone tip. $51 / 2^{\prime \prime}$ long.
$\$.99$ All in red or black - specify. (Add 50ç postage and handling). Write for complete catalog of - test probes, plugs, sockets, connectors, earphones, headsets, miniature components. A vailable through your local distributor, or write to:
RYEINDUSTRIES INC.
130 Spencer Place, Mamaroneck, N.Y. 10543
In Canada: Rye Industries (Canada) Ltd. CIRCLE 27 ON FREE INFORMATION CARD

Full Features ... Yet Portable

Say "Hello" to an excitingly new $15 \mathrm{lb} ., 15 \mathrm{MHz}$ 'scope. Smart looking and really convenient - only $51 / 4^{\prime \prime}$ high yet features a large, bright $10 \mathrm{~cm} \times 8 \mathrm{~cm}$ rectangular CRT.

Check this capability: Versatile triggering in excess of $25 \mathrm{MHz}, 2 \mathrm{mV}$ sensitivity, differential mode, and much more. Quality? You Bet! Backed by Exclusive Gould 2-yr. warranty.

It's a winner! Call us for the full story on the OS255. For free brochure call: TOLL fREE NUMBER (800) 325-6400 In Missouri (800) 342-6600

Gould Inc., Instruments Division 3631 Perkins Ave., Cleveland, OH 44114

TRI-COLOR
 WIRE CUTIING AND STRIPPING DISPENSER

Model No. WD -30-TRI

> Paten Pending
Buikin outthe plunsor curswire to dos wid length Bullion stripperstrips 1 of insulation sesily refille ole

Train with NTS for the MicroComputers, digital the first name

The world of electronics is daily becoming more challenging. Technology is growing more specialized, and the importance of digital systems increases every day. Test instruments, home entertainment units and industrial control systems are all going digital. And now, NTS training programs include a wider choice of solid-state and digital equipment than ever before offered in any home study course: Advanced NTS/Heath digital color TV (25" diagonal with optional programming capability), NTS/Heath microcomputer, digital test equipment, digital stereo receiver (70 watts per channel), NTS compu-trainer, plus much more state-of-the-art equipment to make your training exciting and relevant.
The equipment you receive with NTS training programs is selected to provide you with a solid
background in electronic systems. Kits and lessons are designed to work together to demonstrate electronic principles and applications. The kit-building not only shows you how electronic hardware functions, but how various circuit designs accomplish different purposes. Your lessons guide you through any number of experiments associated with many projects. This is the Project-Method, and it works. Step-by-step, you learn how and why digital electronics has become a part of our world, and the even bigger role it is sure to play in the future.

Whether you are looking for training in Consumer, Commercial, or Industrial electronics, NTS offers fourteen courses, some basic, many advanced, in several areas of electronics. An all-new full-color NTS catalog shows you what each course covers,

electronics of the future.

 systems and more...from in home study.
and every piece of equipment included.
Send for it today, and see for yourself what's really happening in electronics training technology at NTS. Find out how much has changed, and what new directions the field is taking. You'll probably want to be a part of it.
It's free. Just mail the card or coupon. Today.

NO OBLIGATION. NO SALESMAN WILL CALL. APPROVED FOR VETERAN TRAINING.

NATIONAL EEM, SCHOOLS

TECHNICAL-TRADE TRAINING SINCE 1905 Resident and Home-Study Schools 4000 South Figueroa St., Los Angeles, Calif 90037

NATIONAL TECHNICAL SCHOOLS Dept. 206-089 4000 South Figueroa Street, Los Angeles, California 90037
Please send FREE Color Catalog and Sample Lesson
\square Color TV Servicing
\square B \& W TV and Radio Servicing
\square FCC License Course
\square Electronic Communications
\square Electronics Technology
\square Audio Electronics Servicing
\square Digital Electronics
\square MicroComputers/MicroProcessors
Name
Address
Apartment Number Age
State 2ip
\square Check If interested in G.I. Bill information
\square Check if interested ONLY in classroom training in Los Angeles$\square \square \square \square \square \square \square \square \square \square$

Steel pivot pin. Engineering-grade thermoplastic body molded around contact pins. Made to last|

New button-head pins keep probes from sliding off. (Straight pin models for logical connections.)

The new A P Super Grip II is, without question, the best way there is to troubleshoot DIP ICs.

You get positive contacts. No intermittents. No shorts. Ever.

So it's end lessly useful to you-and it's
built to stay useful indefinitely.
Try one. You'll find 8, 14, 16, 16 LSI, 18, 20 ,

AP PRDDレCTS INCDFPDRATED
Box 110B - 72 Corwin Drive
Painesville. Ohio 44077
Tel. 216/354-2101
TWX: 810-425-2250
$22,24,28,36$ and 40 -pin models at your nearby A P store. (Make sure it's your A P store.)
Need the address? Call (toll-free) 800 -321-9668. And ask for our complete A P catalog, The Faster and Easier Book.

Faster and Easier is what we're all about.

EQUIPMENT REPORTS

continued from page 26
multiuser systems such as schools or businesses (where many Apple II's are currently found). Without such file security, a programmer could inadvertently (or even purposely!) change or destroy another programmer's files. Since the DOS resides in RAM, undoubtedly Apple and other computer companies will supply improved versions in the near future.

Overall, the Disk II performed very well. I have transferred all my programs from tape to disc, which quickly filled up more than six diskettes (over 600 K bytes), and the disc has operated flawlessly. Indeed, the Disk II appears to be up to the high standards that the company has shown in the Apple II comput-

The Disk $/ I$ costs $\$ 595$, including the controller card. Additional drives (without controller) cost $\$ 495$. It should be noted that due to high demand, delivery may be quite slow for a while.

Realistic Model DX-300 Receiver

CIRCLE 104 ON FREE INFORMATION CARD

AFTER A PROLONGED PROMOTION PERIOD, REAListic (Radio Shack) has now made available its newest entry into the hobby listening market: the model $D X-300$ general-coverage receiver.
This receiver is continuously tuncable from 10 kHz through 30 MHz and features a large, bright digital-frequency display, a frequency synthesizer and triple conversion. Specifications include: a shortwave sensitivity better than 1 mV ; an image ratio $70-80 \mathrm{~dB}$ down; AM/LSB/USB/CW detection modes; a selectivity of $\pm 3 \mathrm{kHz}(-6 \mathrm{~dB})$ and ($\pm 70 \mathrm{~dB}$); and less than $1-\mathrm{kHz}$ drift after a one-hour warmup period.
The receiver's appearance is exceptionally attractive with a military black finish, aluminum knobs and colorfully illuminated dials.
Since we are aware that packaging is an important part of salesmanship, we were eager to test the receiver to see whether its looks were deceiving. Our first reaction was one of disappointment. The drift rate on the sample receiver we tested was very rapid; it was virtually unusable in the single-sideband or continu-ous-wave modes until after a lengthy warmup period (the specifications warn the user of this).
Proper adjustment for each frequency range (it tunes in $1-\mathrm{mHz}$ increments) is cumbersome: Alter the frequency range to be tuned is selected, the megahertz dial ring must be tuned for best signal, and then the preselector must be tuned.

Although the importance of proper adjustment of the megahertz tuning knob is not emphasized in the manual, the setting of this knob is crucial to acceptable performance.
continued on page 34

NOW! For the first time . . . a clear, concise, understandable book on the Earth's most promising energy source

Solar Electricity

140 EASY-TO-READ FACT FILLED PAGES
Loaded with charts, graphs, pictures of actual solar installations by World's Foremost Authority SOLAREX
Most books and articles on Solar Energy are either jam packed with mind-boggling technical jargon, or they're so basic you can't find what you really want to know.
Here for the first time - is a definitive study of all the real (not blue sky) applications of solar. written by the world's leading experts written in everyday language so you can understand and put to work the real. significant benefits of Solar electricity in scores of practical ways. both large and small Must reading for everyone from the casual enthusiast right up to the trained solar professional
Nine Clear, Concise Chapters Covers everything from a glossary of solar electric terms. how to use cells and practical solar electric generators, to the rapidly exploding variety of industrial.

educational, consumer, and military applica tions. It also includes solar electric projects, commercially available accessories the use of solar cells as light sensors rather than as power sources, and much, much more

Don't take our word for it! Take your time In fact-take two full weeks. Order the book. Read it. See if you don't compietely agree that this is the best Solar electric summary you ve ever read. If notsimply return the book and we"ll refund your money by return mail.
Use handy coupon below or phone 301-948-0202. Dealers in quiries invited.
STOCK NO. 37005E . . \$5.95 Ppd.

- - COMPLETE AND ORDER TODAY - -

SOLAREX	CPD-Dept. 100 E. 1335 Piccard Drive.
CORP.	Rockville. MD 20850

Please send me_-Electricty" (m $\$ 595$ each $\$$
Shipping \& Handling
IOTAL | Md resident please add 5%)

Enciosed is___ Check._MO in amount of \$ ___
SOLAREX
Comporation
CPD-Dept. 100 E
1335 Piccard Drive.
Rockville, MD 20850

CIRCLE 61 ON FREE INFORMATION CARD

EQUIPMENT REPORTS
continued from page 33
Intermediate frequency feedthrough (i.e., the same interfering station is heard in the background, regardless of the setting of the tuning dial) is frequently present; this interference can be reduced by carefully adjusting the megahertz tuning knob and peaking the preselector. An external tuner or preselector would be very helpful here. "Birdies" (spurious signals generated by the synthesizer circuit) are present but no more troublesome than those found on similar receivers employing frequency synthesis.

Our particular sample receiver had a bad AC hum that could have resulted from shipping damage; also, the antenna screw-terminal was nonfunctional, as though it were disconnected internally. A subsequent inspection confirmed that a cold-soldered antenna-coupling capacitor was dangling loose in its solder pad.
Sensitivity was good above 150 kHz or so; below 150 kHz , the sensitivity became progressively worse. The receiver was virtually useless below approximately 70 kHz , even when using an external antenna tuner for optimum signal coupling. The VLF range was very unstable and full of oscillations.

Although the receiver can provide signalcopying capability without a tuner in the lowfrequency range down to about 200 kHz , an external antenna-matching circuit is strongly recommended.

The IF selectivity is not adjustable, and some adjacent interference from the crowded frequency spectrum should be expected.

Make sure to read the instruction manual thoroughly while acquainting yourself with the receiver, or you may become very discouraged; with some practice, optimum tuning and adjustments will become automatic.

A company spokesman told us that the receiver is intended for general-purpose use; it is not a communications receiver. Now the receiver looks much better to us.

The reception on the AM band is excellent; the audio is crisp and a three-position tune control is provided for customizing the sound. The internal speaker works well without producing acoustic feedback at high volume. The ANL (Automatic Noise Limiter) circuit is highly effective; in a particularly noisy environment, the hash noise was virtually eliminated without degrading the desired audio signal.

The tuning has a particularly good feel; a spinner dial coupled with silicone damping gives a professional touch to the tuning mechanism. A three-way power supply allows 120 VAC, 12 VDC, or battery operation (selfcontained; the batteries are optional).

For the international broadcast enthusiast, the model $D X-300$ is excellent. When you dial up the proper frequency, you know that you are right on target (within 1 kHz). Singlesideband stations will be offset by several kHz (the manual indicates 3 kHz , but our sample receiver was off by 5 kHz)

The built-in code-practice oscillator could be considered a handy device by an aspiring ham, or just a gimmicky toy by a more serious listener; it depends upon your point of view!

The manual provides several helpful charts, including Morse Code, common radio terms
overheard on the air, and the "Q-signals" that are used to expedite communications over the air. The manual also contains a list of public safety " 10 -code" signals.
All in all, the receiver is a satisfactory addition to the casual hobby radio market. It is recommended for AM broadcast and shortwave listeners who would like to be able to occasionally copy continuous-wave and singlesideband signals.

We are certain that enterprising experimenters will devise improvements and modifications to increase the receiver's performance. The Realistic model DX-300 costs $\$ 379.95$ and is available from Radio Shack, 1400 One Tandy Center, Fort Worth, TX 76102. (As of this writing, Radio Shack has informed us that several improvements have been made in the model $D X-300$, particularly in frequency stability. We advise our readers therefore to make sure they purchase the most recent model.-Editor)

There's something wrong with this digital readout-it's nothing but a bunch of numbers.

CIRCLE 25 ON FREE INFORMATION CARD

Design of Digital Systems - six volumes

Designing Digital Systems

Two programmed learning courses: hardware and software; theory and application.

ADVANCED COURSE
 DESIGN OF DIGITAL SYSTEMS

Six large format volumes - each $11 \frac{1}{6} \times 81 / 4$ ".

CONTENTS

The contents of Design of Digital Systems include:
Book 1: Octal, hexadecimal and binary number systems; representation of negative numbers; complementary systems; binary multiplication and division.

Book 2: OR and AND functions; logic gates; NOT, exclusive-OR, NAND, NOR and exclusive - NOR functions; multiple input gates; truth tables; DeMorgan's Laws; canonical forms; logic conventions; Karnaugh mapping; three-state and wired logic.
Book 3: Half adders and full adders; subtractors; serial and parallel adders; processors and arithmetic logic units (ALUs); multiplication and division systems.
Book 4: Flip-flops; shift registers; asynchronous counters; ring, Johnson and exclusive-OR feedback counter; random access memories (RAMs); read-only memories (ROMs).

Book 5: Structure of calculators; keyboard encoding; decoding display data; register systems; control unit; program ROM; address decoding; instruction sets; instruction decoding; control program structure.

Book 6: Central processing unit (CPU); memory organization; character representation; program storage; address modes input/output systems; program interrupts; interrupt priorities programming; assemblers; executive programs, operating systems, and time-sharing

OUR CUSTOMERS

Design of Digital Systems has been bought by more than half the 50 largest corporations in America, and by Motorola, Intel, DEC, National Semiconductor, Fairchild, General Instrument. Hewlett. Packard, Heath Co., M.I.T., NASA, Smithsonian Institute, Bell Telephone Labs. And many, many more, as well as corporations and individuals in over 50 countries.

BASIC COURSE

Digital Computer Logic \& Electronics

CONTENTS

Digital Computer Logic and Electronics is designed for the beginner. No mathematical knowledge other than simple arithmetic is assumed, though you should have an aptitude for logical thought. It consists of 4 volumes - each $11^{1 / 2^{\prime \prime}} \times 8^{1 / 4^{\prime \prime}}$ - and serves as an introduction to the subject of digital electronics.

Contents include: Binary, octal and decimal number systems; conversion between number systems; AND, OR, NOR and NAND gates and inverters; Boolean algebra and truth tables; DeMorgan's Laws; design of logical circuits using NOR gates; R-S and J-K flip-flops; binary counters, shift registers and half-adders.

NO RISK GUARANTEE

There's absolutely no risk to you. If you're not completely satisfied with your courses, simply return them to GFN within 30 days. We'll send you a full refund, plus return postage.

TAX DEDUCTIBLE

In most cases, the full cost of GFN's courses can be a tax deductible expense.

PHONE ORDERS • FREE

To order by phone, call (603) 224-5580 with your credit card information. It won't cost you a dime, because we'll deduct the cost of your call from the price of the courses you order.

TO ORDER BY MAIL

You may use the order form below if you wish, but you don't need to. Just send your check or money order (payable to GFN Industries, Inc.) to the address below. If you don't use the order form, make sure your address is on your check or the envelope, and write "DDS" (Design of Digital Systems). "DCLE" (Digital Computer Logic \& Electronics), or "both" (both courses) on your check.

There are no extras - no sales tax. And we pay all shipping costs.
We also accept company purchase orders.

AIR MAIL

The prices shown include surface mail postage anywhere in the world. Air mail postage costs an extra $\$ 10$ for both courses (10 volumes).

DISCOUNTS

Call or write for details of educational and quality discounts, and for dealer costs.

SAVE $\$ 5$
If you order both courses, you save $\$ 5$. Order at no obligation today.

GFN Industries, Inc.
Bldg. 7-20
203 Loud
Order free by phone
Concord
NH 03301

Call (603) 224-5580 to order by phone - free.

7 days, 24 hours

No sales tax

* No shipping charges * Money-back guarantee
- Tax deductible
*Save $\$ 5$

To: GFN Industries, Inc., Bldg. 7-20, 203 Loudon Road, Concord, NH 03301
Please send me

___ sets of Design of Digital Systems.	\$19.95	
- sets of Digital Computer Logic \& Electronics	\$14.95	
sets of both courses	\$29.90	
Enclosed is check/money order (payable to GFN Ind) for total	
NAME		
ADDRESS		
CITYISTATEIZIP		R8

When we started in 1951, we were sort of set in our ways. We lived, slept and ate nothing but banana plugs.

Then, our banana plug customers began asking us for other things. We listened, and adapted to meet their needs.

We"ve been adapting ever since 1951. Todav, we manufacture and stock 180 different adapters to meet the changing needs of the industries we serve.

FREE 1979 YEARBOOK CATALOG Comains 100 pages of axlapters. cable assemblies, jacks, plugs. boxes. suckets, connecrars. jumpers, clips, probes. patch cords. wire, and much more. Yours free upon request. See our pages in EEM.

In fact, 25 pages of our new catalog are dedicated to adapters alone.

Get a copy for yourself. and get the whole story on the quality, value and specifications of Pomona Electronics adapters.

You'll also find nearly 640 other quality electronics products you know and trust.

Including, of course, banana plugs.
Although we've done a lot of adapting over the years, we've never stopped plugging away. ITT Pomona Electronics, 1500 East Ninth Street. Pomona, CA $91766 \cdot$ Phone: (714) 623-3463 • TWX: 910-581-3822

AVAILABLE THROUGH YOUR FAVORITE ELECTRONIC PARTS DISTRIBUTOR

4122 Digit Precision DMM

Abstract

This digital multimeter is ideal for the experimenter, engineer and service technician. Its basic accuracy is 0.05% and includes temperature and true-RMS capability.

BILL OWEN*

THE TRMS-5000 IS A FULL-FUNCTION, state-of-the-art $41 / 2$-digit multimeter with many extra features that usually cost hundreds of dollars as options and accessories. In addition to the industry standard $A C / D C$ amperes, $A C / D C$ volts and resistance ranges, a precision temperature probe gives a switch selectable Celsius and Fahrenheit readout to $.01^{\circ}$. A true-RMS-to-DC converter is used for accurate AC voltage and current measurements of complex waveforms from near DC to over 250 kHz . A $10-\mathrm{amp} \mathrm{AC} / \mathrm{DC}$ current range is available through a separate protected input jack.

Lab bench multimeter features include jumbo $1 / 2$-inch LED digits, uncluttered pushbutton controls and a rugged, yet attractive, aluminum case. Portability is maintained, however, by the convenient size and the optional rechargeable NiCad batteries. A precision band-gap Zener voltage reference and temperature tracking input attenuator network give better than $.05 \%$ DC accuracy.

The heart of the multimeter is a new analog-to-digital converter IC set from Texas Instruments. The TL500C and TL502C 41/2-digit converter features auto zero and true differential high-impedance inputs with autopolarity and overrange indication. A complete list of specifications appears in Table 1.

Theory of operation

The heart of this digital multimeter is the analog-to-digital converter (ADC).
*Product Engineer, Optoelectronics, Inc., Fort Lauderdale, Florida

TABLE 1-TRMS-5000 DMM / THERMOMETER SPECIFICATIONS

DC VOLTAGE				
Range	Max. Reading		Accuracy $18^{\circ}-28^{\circ} \mathrm{C}$, 1 Year	
$\begin{aligned} & 2 \mathrm{~V} \\ & 20 \mathrm{~V} \\ & 200 \mathrm{~V} \\ & 1000 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1.9999 \mathrm{~V} \\ & 19.999 \mathrm{~V} \\ & 199.99 \mathrm{~V} \\ & 1000.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & .04 \% \pm 1 d * \\ & .04 \% \pm 2 d \\ & .04 \pm 2 d \\ & .04 \pm 2 d \end{aligned}$	
Maximum Input Voltage: 1040 V				
AC VOLTAGE				
		Accuracy $18^{\circ}-28^{\circ} \mathrm{C}$, 1 Year		
Range	Max. Reading	$45 \mathrm{~Hz}-10 \mathrm{kHz}$	$10 \mathrm{kHz}-40 \mathrm{kHz}$	$40 \mathrm{kHz}-250 \mathrm{kHz}$
$\begin{aligned} & 2 \mathrm{~V} \\ & 20 \mathrm{~V} \\ & 200 \mathrm{~V} \\ & 1000 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1.9999 \mathrm{~V} \\ & 19.999 \mathrm{~V} \\ & 199.99 \mathrm{~V} \\ & 1000.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & .35 \%+15 d \\ & .35 \%+15 d \\ & .35 \%+15 d \\ & .35 \%+15 d \end{aligned}$	$\begin{array}{r} .35 \%+15 d \\ 1 \%+15 d \\ 1 \%+15 d \\ 2 \%+15 d \end{array}$	$\begin{aligned} & 3 D B \\ & 3 D B \\ & 3 D B \\ & 3 D B \end{aligned}$
Crest Factor: 3 Maximum Input Voltage: 1040 V				
RESISTANCE				
			Accuracy $18^{\circ}-28^{\circ} \mathrm{C}, 1$ Year	
Range	Maximum Reading		High Ohms	Low Ohms
2 K ohm 20K ohm 200K ohm 2 megohm 20 megohm	1.999 19.99 199.9 1.999 19.99	ohm ohm ohm megohm megohm	$\begin{aligned} & \pm .05 \%+1 d \\ & \pm .05 \%+1 d \\ & \pm .05 \%+1 d \\ & \pm .1 \%+1 d \\ & \pm .3 \%+2 d \end{aligned}$	$\begin{aligned} & \pm .10 \%+15 d \\ & \pm .10 \%+15 d \\ & \pm .10 \%+15 d \\ & \pm .15 \%+15 d \\ & \pm .3 \%+15 d \end{aligned}$
Maximum Voltage Output: High 1.5 V Low 5 V Maximum Input Voltage: 150 V RMS Settling Time: 2 seconds to ± 1 digit of final reading except 10 seconds on megohm range.				

Specifications continued on page 39
RADIO-ELECTRONICS

FIG. 1-SCHEMATIC DIAGRAM of the TRMS-5000 digital multimeter. One ususual feature is that on $A C$, it displays the true RMS value of any waveform, regardless of its complexity.

The ADC converts DC voltages between -2 and +2 volts applied to its input terminals into a digital count from $-20,000$ to $+20,000$. A display of 10,000 results from a one-volt input to the ADC.

The ADC employs the dual-slope method of conversion. The TL500C performs the analog processing while the companion TL502C digital processor provides the logic control signals for the TL500C as well as the counter and LED display drivers.

The entire conversion cycle timing is tied to the clock frequency generated by an external oscillator consisting of XTALI, IC3, IC4 and IC5 (see Fig. I). The $3.84-\mathrm{MHz}$ crystal is divided down to 240 kHz by IC4. The resultant 240 kHz is a multiple of 60 Hz and is used to reject power-line-frequency interference. IC3 protects against false comparator triggering due to clock-frequency interlerence on the comparator input.

The precision voltage reference used is an Intersil 8069 CCQ 1.2 -volt band-gap Zener. Resistors R7, R8 and R9 form an adjustable divider to obtain 1.0000 volt for the reference input. Resistor R6 limits current through the reference to 2 mA .

Voltage measuring circuits

Because the ADC input is limited to +2 volts DC, additional signal-conditioning circuitry must be used for the extended multimeter functions and ranges. A voltage divider is used to extend the input voltage range up to ± 1000.0 volts while on any one range the ADC will see less than ± 2 volts.

The voltage divider consists of nine resistors connected in series across the multimeter's input terminals. Five are in the precision decade divider network RN1; the others are R17-R20. The total divider resistance is 10 megohms with each resistor having one-tenth the value of the resistor in series above it. When a voltage is applied to the multimeter's input terminals a current flows through the divider, producing a voltage across each resistor that is proportional to its resistance. Thus if 100 volts is applied across the divider, then 10 volts will be measured between the first and second resistors and 1 volt between the second and third and so on. Figure 2 shows the voltage divider with range switches to select the appropriate ratio; $1 \times$ for the 2 -volt range, $10 \times$ for the 20 -volt range and so on. A separate pole on each range switch is used to activate the appropriate decimal point in the L.ED display.

The multimeter's accuracy is dependent upon the ratio stability of the divider resistors. The first five decade resistors are contained in a thick-film network (RN I) in which the resistors track together to maintain their ratios over wide temperature variations. The bottom four discrete resistors plus the 900 -ohm sec-
tion of RNI are used as shunts in the current-measuring ranges.

For AC measurements, a converter circuit generates a $D C$ voltage equal to the RMS (Root Mean Square) value of the applied AC voltage. Two poles of AC switch S6 are used to insert the converter in series with the ADC inputs. Most multimeter converter circuits simply compute the average rectified value of the input signal and are calibrated to display the equivalent sinewave RMS value. For other types of waveforms (square, triangle, pulse, complex, etc.) this type of conversion is inaccurate. The TRMS5000 uses a true RMS converter that computes the RMS value of any complex waveform. This is a much more useful measurement because it is based upon the equivalent effective DC heating value of the AC voltage. The integrated circuit that performs this conversion is the Analog Devices AD536.IH which actually solves the equation:

$$
\mathrm{V}_{\mathrm{rms}}=\mathrm{Avg} \cdot\left[\frac{\mathrm{~V}_{\mathrm{iN}}{ }^{2}}{\mathrm{~V}_{\mathrm{rms}}}\right]
$$

The AD536JH (IC6) measures AC signals from 10 Hz to over 100 kHz . This wide frequency range (many multimeters have only a few kilohertz of bandwidth) greatly enhances the usefulness of the
multimeter in making AC measurements at not only power line frequencies but throughout the audio frequency spectrum and beyond.

Current measurements

Both alternating and direct current measurements are made by placing a known resistor in the current path and measuring the voltage drop across it. The bottom five divider resistors shown in Fig. 2 are used for current measurements. A separate current input is used with the current-range switches. Because there is almost no current flowing into the ADC's analog inputs (input resistance is 10^{9} ohms) the voltage across the current shunt resistors is seen through the 10 megohms in series with the inputs. The 10 -AMP current range has a direct input, so that a 10 -amperc current will not have to be switched. The power ratings of the current shunt resistors range from 3.6 milliwatts for the 900 -ohm section to 10 watts for the 0.1 -ohm resistor.

Resistance measurements

The TL500C ADC actually has two sets of analog inputs if the reference voltage and common inputs are considered. The ADC compares the unknown voltage at the input terminals to the known voltage at the reference input when making a

DC AND TRMS AC CURRENT				
		Accuracy $18^{\circ}-28^{\circ} \mathrm{C}, 1$ Year		
Range	Max. Reading	DC	$45 \mathrm{~Hz}-10 \mathrm{kHz}$	$10 \mathrm{kHz-40} \mathrm{kHz}$
$\begin{aligned} & 2 \mathrm{~mA} \\ & 20 \mathrm{~mA} \\ & 200 \mathrm{~mA} \\ & 2000 \mathrm{~mA} \\ & 10 \mathrm{AmP} \end{aligned}$	1.9999 mA 19.999 mA 199.99 mA 1999.9 mA 10.000 A	$\begin{aligned} & .6 \%+2 d \\ & .6 \%+2 d \\ & 6 \%+2 d \\ & 6 \%+2 d \\ & .6 \%+2 d \end{aligned}$	$\begin{aligned} & 1 \%+2 d \\ & 1 \%+2 d \end{aligned}$	$\begin{aligned} & 1.5 \%+2 d \\ & 1.5 \%+2 d \end{aligned}$
Maximum Burden Voltage: 2 V Crest Factor: 3				
TEMPERATURE				
	Celsius			Fahrenheit
Range: Resolution: Accuracy:	$\begin{aligned} & -50.00^{\circ} \text { to }+150.00^{\circ} \\ & .01^{\circ} \\ & \pm .5^{\circ} \end{aligned}$			$\begin{aligned} & -67.00^{\circ} \text { to }+199.99^{\circ} \\ & .01^{\circ} \\ & +.9^{\circ} \end{aligned}$
Voltage Standoff: Sensor tip to voltmeter common ± 200 volts				
GENERAL				
Display: Five 0.5" Red LED Digits Conversion Period: 1664 Sec Power Supply: Wall Plug Transformer-input 105-125 VAC; output 9 DVC @ 300 mA Dimensions: $31 / 4^{\prime \prime} \mathrm{H} \times 71 / 4^{\prime \prime} \mathrm{W} \times 6^{3 / 4^{\prime \prime} \mathrm{D}}$ Weight: Approximately 2 pounds Input Impedance: 10 megohm shunted by less than 80 pF				
BATTERY OPTION				
Type: 8, AA NiCAD cells in holders, mounting inside the multimeter cabinet. Charge/ operate switch mounts on rear of multimeter cabinet. Operation: 2 hours from full charge Charge Period: 12 hours				

[^1]measurement. This voltage ratio measuring ability of the converter is used in making resistance measurements. As shown in Fig. 3, a known reference resistor (one of the precision attenuator resistors) is placed in series with the unknown resistor at the input terminals. A precise 3.3 volts from Zener diode DI2 is placed across the reference and unknown resistors and a current flows through them. The voltage drop across the known resistor is applied to the voltage reference and common inputs of the ADC while the voltage drop across the unknown resistor is applied to the analog + and - inputs. The meter's output then becomes the ratio between the reference resistor and the unknown resistor. For different ranges the reference resistor is changed from IK up to 10 megohms.

Temperature

The TRMS-5000 can measure temperature using an external sensor probe that plugs into a front panel jack (J6). The sensor is an Analog Devices AD590K temperature-dependent current source that generates $1 \mu \mathrm{~A}$-per-degree-Kelvin. The Kelvin temperature scale starts at absolute zero and has Celsius-sized degrees such that $0^{\circ} \mathrm{K}=-273.2^{\circ} \mathrm{C}$. The temperature sensor's current output is converted to a voltage, using scaling resistors R 28, R29, R30 and R31. The output voltage (referenced to the -5 -volt supply) from R29 is equal to 10 mV -per-degree-Kelvin while the output voltage from R31 is equal to 10 mV -per-degree Rankine (the Rankine temperature scale starts at absolute zero and has Fahren-heit-sized degrees). To generate Celsius and Fahrenheit output voltages, the Kelvin output must be offset by 2.732 volts and the Rankine output offset by 4.595
volts. ICl3 is a 6.9 -volt integrated circuit Zener reference. Its output is divided by R35, R36 and R37 to generate the Celsius offset and by R32. R33 and R34 to generate the Fahrenheit offset voltage.

When either the ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$ switch is depressed, the ADC's analog inputs are switched to the correct temperature and reference voltage as shown in Fig. 4. A temperature range of $-50.00^{\circ} \mathrm{C}$ $\left(-60.00^{\circ} \mathrm{F}\right)$ to $199.99^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$ is obtained with the $4^{1 / 2}$-digit ADC. The sensor can be calibrated to within $\pm .2^{\circ} \mathrm{C}$ from 0° to 100° using trimmers R29 and R31. Because the AD590K sensor is a current source, it requires only a twoconductor cable and can be located over hundreds of feet away from the multimeter because it is not affected by voltage or noise pickup.

FIG. 2-VOLTAGE DIVIDER AND CURRENT SHUNTS. Resistor string is proportioned so maximum voltage applied to the A / D converter is 2 volts on any voltage or current range.

The multimeter (see complete schematic in Fig. 1) uses a 9 -volt DC plug transformer/power supply to keep the $60-\mathrm{Hz}$ line frequency outside of the instrument case. The circuit operates from three regulated power supplies, one positive and two negative. A 7805 voltage regulator (IC11) supplies +5 volts to the circuit, and because it supplies over 200 mA of current it is heat sunk to the cabinet's rear pancl. A 555 timer (IC8) generates a $20-\mathrm{kHz}$ squarewave that is AC -coupled and diode-clamped by a voltage doubler circuit to produce approximately -11 volts. A 79 MO 8 CP regulator supplies -8 volts to the TL500C analog processor ($\mathrm{IC1}$) and a 7905 regulator supplies -5 volts to the AD536 RMS-to-DC converter and the temperature circuit. An optional 10 -volt NiCad battery pack consisting of eight size-AA cells is charged through R3 and automatically switched in on the absence of line power by D2. Diode DI prevents battery discharge through the plug transformer.

The multimeter readout consists of four Fairchild FND507 $1 / 2$-inch common-anode red 7 -segment LED digits with one FND508 ± 1 digit. The LED digits are multiplexed by the TL502C that directly drives the segments through current limiters R41 through R47 and drives the digits through external digit drive transistors Q2 through Q6.

Overvoltage protection

A series string of eight metal-oxide varistors across the input divider will provide a short circuit path if 1040 volts or more is applied. Each varistor maintains a very high impedance until 130 volts is applied across it causing it to conduct. The varistors will pass 10 amps and fail as a short circuit if continuous overvoltage is applied.

Both the 2 -amp (ma) and 10-amp current inputs are fused and the 2 -amp input

FIG. 4-BASIC DIAGRAM of circuit used for temperature measurement. The temperature sensor is a current source; passing $1 \mu \mathrm{~A}$-per-degree Kelvin. Readout is in ${ }^{\circ} \mathrm{C}$ and ${ }^{\circ} \mathrm{F}$.
on three PC boards. The main board and the TRMS-to-DC converter board are double-sided. The foil patterns for the main board are in Figs. 5 and 6 and the parts layout is in Fig. 7. The two foil patterns for the TRMS board are in Figs. 8 and 9 and the parts are positioned as in Fig. 10. The four 7 -segment displays and the polarity and overflow display are on a separate board. The foil pattern in Fig. 11 and the assembly diagram in Fig. 12 show how the readout goes together.

Begin assembly by soldering the components on the display, TRMS-AC and main printed circuit boards. Use the component placement drawings and the parts list to aid assembly. It is helpful to install jumper wires, diodes and resistors before the larger capacitors, trimmers, etc. The TRMS-AC PC board is double-sided but not plated through, so component leads must be soldered to the foil on both sides wherever the foil comes right up to the lead. The three PC boards are mated before the switches are installed. Assemble the front panel, rear panel and side
is diode clamped as well to blow the fuse if an overvoltage is applied to the lowcurrent range shunts.

The ohmmeter circuit is fused for $1 / 100$ ampere. Low-leakage diodes (D15, D16) steer currents around the reference resistor if a voltage is applied to the input terminals while measuring resistance.

Making it work

The design of the multimetcr's printed circuit board takes into account several factors that would otherwise seriously degrade performance. Ground paths are kept separate to prevent ground loops that cause offset errors that the ADC's autozero circuit cannot remove. Ground planes are used (where possible) to keep resistance in the ground returns as low as possible. The layout avoids putting supply or ground paths close enough to the highimpedance inputs or to the 10 -megohm divider to allow leakage currents to cause offset errors. All insulation materials have extremely high resistance to prevent leakage paths. Digital and analog signal paths are kept apart and not parallel to each other on the PC board. The ADC's comparator output causes a problem if there is a path from it to any of the analog lines.

The multimeter's high-impedance input is susceptible to noise pickup, especially 60 hertz, which is almost universally present in our environment. The AC converter circuit's wide bandwidth makes it susceptible not only to 60 -hertz pickup but to audio as well as RF frequencies. The TRMS-5000's heavy-gauge aluminum case provides shielding against noise pickup. There is also a filter on the analog inputs to the ADC , consisting of R48, $\mathrm{R} 49, \mathrm{C} 12$, and C 33 , that rejects $60-\mathrm{Hz}$ voltages.

Assembly

The TRMS-5000 multimeter is built

FIG. 5-FOIL PATTERN for Side 1, the top surface of the main board. Pattern is approximately one-half size. Enlarge to $71 /$ inches across.

FIG. 6-PATTERN for the under side of the main PC board shown half-size. The pushbutton range and function switches are on this side.

PARTS LIST

Resistors, 1/4 watt, 5\% unless noted
R1-1000 ohms
R2 - 30,000 ohms
R3- 10 ohms
R4-2200 ohms
R5, R41-R47-100 ohms
R6-2000 ohms, 1%
R7, R48-100,000 ohms, 1\%
R8-18,000 ohms, 1%
R9-10,000 ohms, 10 -turñ trimmer
R10-25,000 ohms, trimmer
R11-22,000 ohms
R12-20,000 ohms, trimmer
R13-2500 ohms, trimmer
R14, R15- 100 ohms, trimmer
R16-100 ohms, 1\%
R17-90 ohms, 1%, factory calibrated
R18-9 ohms, $1 \%, 3$ watts, factory calibrated
R19-0.9 ohm, 1\%, 5 watts, factory calibrated
R20-0.1 ohm, $1 \%, 10$ watts, factory calibrated
R21 - 500 ohms, trimmer
R22-243 ohms, 1%
R23-470 ohms
R24 - 47,000 ohms, trimmer
R25-39,000 ohms, 1\%
R26-12,000 ohms
R27- 10 megohms
R28-9530 ohms, 1%
R29, R3 1, R33, R36-1000 ohms, trimmer
R30, R32, R35-7860 ohms, 1\%
R34-4020 ohms, 1%
R37-11,800 ohms, 1%
R38-2700 ohms, 1%
R39-3.9 ohms
R40-9 ohms, 3 watts, 1%
R49-10,000 ohms
R50-270 ohms, $1 / 2$ watt
RN-1-Temperature tracking precision resistor attenuator (Caddock 1776-231 7849)

Capacitors

C1-2-8 pF, trimmer

C2, C3, C9, C10-1 $\mu \mathrm{F}$, Mylar
$\mathrm{C} 4-4.7 \mu \mathrm{~F}$, tantalum
C5, C6, C 19, C20, C26-. $01 \mu \mathrm{~F}$, disc ceramic
C7, C8, C13, C14-10 $\mu \mathrm{F}, 10$ volts, tantalum
C11, C12-0.22 $\mu \mathrm{F}$, Mylar
C15, C18, C21, C22, C24, C31, C32-39 $\mu \mathrm{F}, 10$ volts, tantalum
C 16, C17-20 pF, disc ceramic
C23-2200 $\mu \mathrm{F}, 25$ volts, electrolytic
C25-. $001 \mu \mathrm{~F}$ disc ceramic
C27, C28- $100 \mu \mathrm{~F}, 25$ volts, electrolytic
C29, C30- $220 \mu \mathrm{~F}, 25$ volts, electrolytic
C33-. $047 \mu \mathrm{~F}$, polypropylene
C34-470 pF, disc ceramic
C35-8.2 pF
C36-390 pF
C37-15-60 pF, trimmer
C38-3000 pF
C39-1100 pF

Semiconductors

Q1-Q6 - PN3638A (National) or MPS 3638 (Motorola)
D1, D2-3-amp, 100 PIV diode
D3-D11-1N4002
D12-D14-IN4728, 3.3-volt Zener diode
D15, D16-FDH-300 low-leakage diode (Fairchild only)
D17-miniature red LED
V1-V8-V130LA1 varistor (GE)
DIS1-DIS4 - FND570, 7-segment LED
DIS5-FND508, +1 LED display
IC1—TL500C analog processor (TI)
IC2 - TL502C digital controller (TI)
IC3-74LS75 D-type flip-flop
IC4-74LS93 counter
IC5-CD4001-quad 2-input NAND gate
IC6-AD536JH-RMS-to-DC converter (Analog Devices)
IC7-LF351N bi-FET op-amp
1C8-555 timer
IC9-7905-5-volt regulator
IC10-79MO8CP -8-volt regulator (National)

IC11-7805 5-volt regulator
IC12-ICL8069CCQ 1.22-volt reference
IC13-LM329DZ 6.9-volt reference (National only)
IC 14 -AD590KH temperature sensor (Analog Devices)

Miscellaneous

S1, S6-2PDT pushbutton switch
S2-S5-4PDT pushbutton switch, interlocked
S7-S11-5PDT pushbutton switch, interlocked
S12, S13-D PDT miniature slide switch J1—banana jack, black
J2-J4 - banana jack, red
J5-pin-type DC power receptacle
J6-PC mount right-angle phono jack
XTAL $1-3.84 \mathrm{MHz}$ crystal
F1-2 ampere fuse
F2-10 ampere fuse
F3-1/100 ampere fuse
Thermometer test cable, power
transformer - 9 VDC, 300 mA plug type with hollow-pin plug. IC sockets: 2 8-pin, 2 16-pin, 1 18-pin, $120-$ pin, 1 14-pin. PC boards, cabinet and assorted hardware.

Note: The following are available from Optoelectronics, 5821 N.E. 14th Ave., Ft. Lauderdale, FL 33334.
Factory-assembled multimeter with
1-year guarantee (TRMS-5000) \$279.95; complete kit (TRMS-5000K) \$199.00.
Set of three PC boards-all boards are glass epoxy, solder-plated with screened printed component
layout- $\$ 28.50$. Set of all switches (13) $\$ 20.00$. TL500C and TL502C IC's $\$ 16.95$. Include 5\% for shipping, handling and insurance (to a maximum of \$10) with all orders. Florida residents add 4\% sales tax.

FIG. 7-WHERE PARTS ARE PLACED on the main PC board. Most are on Side 1-the top side. Parts on the underside are outlined in dashed lines.
rails, and then bolt the main PC board to the side rails. Align the foil fingers on the display board to the pads on the main PC board, and after checking alignment solder them together. The TRMS-AC PC board installs in the same way over the S6 switch area. Install the switches and then use No. 14 or No. 16 hookup wire to make the following connections:

From	To
J1	E1
J2	E10
J3	E8
J4	E9
E2	E3
E4	E5

Connect the following resistors between the points indicated below

R20-0. 1 ohm 10W - E1, E6
R19-0.9 ohm 5W - E11, E6
R18-9 ohm 3W-E12, E11
R17-90 ohm $1 / 4^{\prime \prime}$ W - E13, E12
Use hookup wire to connect the center pin of the power input jack to E10 and the bracket to E11.

Before applying power to the multimeter, check all parts for correct place-
continued on page 79

MANY POPULAR NOISE-REDUCTION SYStems are complementary in nature; i.e., the signal is processed by some compression technique prior to being recorded and then decoded by the equivalent expansion technique during playback. This leaves a large quantity of older recorded material, both disc and tape, unable to benefit from the noise-reduction circuits built into many hi-fi systems. Since many of us have treasured recordings that fall into this catcgory, the need exists for a single-ended, add-on Adaptive Noise Filter that will permit us to enjoy these recordings at the same quality level we expect from encoded material.

A great deal of the noise in tape and FM sources is located in the frequency band from about 1 kHz to 7 kHz . This frequency band is also the area in which the human ears are most sensitive. Fortunately, when musical signals are also present in this same frequency band, at a few dB higher level, they effectively mask the noise. This makes it possible to use a variable-frequency low-pass filter in the audio channel to reduce the noise without audibly affecting the dynamics of the desired signal. If no signal is present, between musical passages for instance, a low-pass filter with a cutoff frequency of 800 Hz will substantially reduce the level of the audible noise. When music of sufticient amplitude is present at frequencies above 800 Hz , the filter opens to pass the music, and since the noise and music occupy the same spectral area, the noise is masked and the music faithfully reproduced.

About the circuit

A block diagram of a suitable circuit is shown in Fig. 1. The circuit consists of
three major sections: a signal path, a control path and an LED bar-graph display.

The signal path is straightforward, consisting of two (one per channel) currentcontrolled low-pass filters with 6-dB-peroctave slopes. The two filters are designed to roll off at a corner frequency of 800 Hz with no input and at a corner frequency of 30 kHz when fully driven by the common control voltage.

Figure 2 gives a detailed look at the actual current-controlled filter circuits. Most existing variable filter designs use one or more field-effect transistors as voltage-controlled resistors in an active or passive filter configuration. This can lead to Iwo troublesome problems. One is the need for some means of offsetting the difference in pinch-off voltages between individual FET's. A trimmer from each gate to a fixed bias voltage must be adjusted to calibrate each device. The second problem is the modulation of the drain-to-source resistance with moderately large input signals. This modulation quite often results in excessive distortion
at the filter output and, in some cases, will require another trimmer from each gate to minimize the effect.

Both of these pitfalls are successfully avoided in this circuit by using a new operational transconductance amplifier (OTA) as the controlled device. National Semiconductor has recently introduced the LM13600, a dual OTA with Darlington buffers and input linearizing diodes in a single 16 -pin DIP package. The linearizing diodes compensate for the logarithmic characteristics of the input stage of the OTA, enabling it to pass relatively large signals with low distortion. (OTA circuits in the past have required very small input signals to obtain respectable distortion levels.)

The transconductance of the OTA's is set by the amplifier bias current (supplied to pins 1 and 16 in the case of the LM13600). The signal path of Fig. 2 uses this variable transconductance (conductance being the inverse of resistance) to implement a current-controlled filter (CCF).
The filter cutoff frequency is initially set at 800 Hz by the current through

TABLE 1-SPECIFICATIONS (typical)

Effective noise reduction (CCIR/ARM weighted cassette tape noise): 14 dB

FIG. 1-BLOCK DIAGRAM of the adaptive noise filter. Audio signals are summed into the bandpass filter and then rectified to develop a control current that varies with noise in the signals.

R15. Additional cürrent supplied through R16 by the control path circuitry
increases this $-3-\mathrm{dB}$ frequency to as high as 30 kHz , this bandwidth being
directly proportional to the applied current. Figure 3 shows the filter bandwidth vs. the amplitude of an $8-\mathrm{kHz}$ input signal.

The control path consists of two basic stages: a bandpass filter with $40-\mathrm{dB}$ gain and a specially configured peak detector with $20-\mathrm{dB}$ gain. The LM 387 operational amplifier was chosen because of its highgain capability at 20 kHz and its high slew rate (required at the output of the peak detector)

The left and right input signals are summed together by resistors R17 and R18. Capacitor C7 provides a rolloff above 16 kHz , while a rolloff below 1.6 kHz is provided by C8. This low-level input signal is then amplified by the lirst half of IC2, whose gain is attentuated below 4.8 kHz by C 10 with R20. R22, $\mathrm{ClI}, \mathrm{C} 12, \mathrm{LI}$ and C13 couple the signal into the peak detector and provide additional frequency shaping, LI being tuned to provide a filter notch at 19 kHz for use with FM stereo sources. Figure 4 shows the response of the control path.

R-E TESTS IT

LEN FELDMAN

THE NR-2 NOISE FILTER WAS EVALUATED IN our laboratory, both for its measured characteristics and its performance as a singleended noise reduction filter. Its principle of operation depends upon signals passing through variable-bandpass filters whose cutoff frequencies are made to vary between 800 Hz and 30 kHz , depending upon a control current derived from the original audio signal. While this is certainly not an original concept, the execution of the design is excellent. Attack time (confirmed as approximately 1 millisecond) and decay times (around 50 milliseconds) are ideally chosen so that, in use, the action of the filter is almost inaudible-except of course for the great audible improvement in noise. The NR-2 can be used to reduce noise in program sources such as records, weak FM signals and, most significantly, playback of cassette tapes that have not had the benefit of a two-sided noise reduction system such as Dolby or dbx encoding and decoding.
Figure 1 illustrates how different levels of swept signals (from 20 Hz to 20 kHz) affect overall response of the device. We see that when the device "senses" low-level signals

FIG. 2
(equivalent to noise) bandwidth is restricted. On the other hand, when high-amplitude signals, corresponding to musical sig- claimed.
nal content, are fed through the device, bandwidth is fully restored so that overall frequency response is virtually flat to 20 kHz.

Figure 2 illustrates the attack and decay times of the device. A tone burst, consisting of several cycles at 1 kHz , was fed through the filter. Upper trace is the input signal, while lower trace is the output signal. Note that the first cycle of each burst, whether negative going or positive going, is accurately reproduced at the output, while the last cycle in each burst is somewhat retarded in the output trace, indicating the slower but desired decay time of the device.

Table 1 summarizes our measured findings as compared with the author's claimed specifications.

TABLE I		
SPECIFICATIONS	DESIGNERS' CLAIM	MEASUREMENTS
Attack Time (ms)	1.0	0.8
Decay Time (ms)	50.0	40.0
Minimum Bandwidth (Hz)	800	800
Maximum Bandwidth (kHz)	30	30
THD (1V, Max. Sensitivity) (\%)		
1 kHz	0.11	0.12
20 Hz	N/A	0.3
20 kHz	N/A	0.11
S/N (re: 1V)		
800 Hz B.W.	$88 \mathrm{~dB}\left(98 \mathrm{Wt}{ }^{\text {d }}\right)^{*}$	90 dB (95 W $\mathrm{W}^{\prime} \mathrm{d}$)
30 kHz B.W.	859 B (87 W'td)*	85 dB (90 W'td)
Effective Noise Reduction (tested with cassette tape)	$14 \mathrm{~dB}\left(W t^{\prime} \mathrm{d}\right)^{*}$	12 dB (Wt'd)*

* Small differences in weighted results arise from the fact that the author used CCIR/ARM weighting whereas we used IHF " A " weighting, but, as can be seen, unweighted results are as good or better than

FIG. 2-SCHEMATIC DIAGRAM of the current-controlled variable-bandwidth low-pass filter circuits.
Bandwidth is controlled by a current developed from the input signal.

The peak detector amplifies the AC output from the frequency-selective control amplifier and converts it into a DC voltage at the emitter of Q3. Resistor R28 sets the system attack time or charging rate into the peak-detector storage capacitor, C16. Capacitor C16 is discharged at a much slower rate (decay

FIG. 3-FILTER BANDWIDTH and how it varies with the input of an $8-\mathbf{k H z}$ signal.

FIG. 4-RESPONSE of the final control path sensitivity vs. input frequency.
time) by the current drains of the two CCF's through resistor R16. Resistor R27 sets the initial no-signal DC level at the peak-detector output.

The attack and decay times and response characteristics were chosen with great care as they determine the subjective effects of the filter. An attack time of 1 ms was selected because it is fast enough to accommodate the response time of the human ear and yet slow enough to be relatively insensitive to "clicks" and "pops" on the record surface. The decay time was set at 50 ms so the filter could close quickly after the passing of high-frequency musical information and thus pass a minimum of noise. A shorter decay time would cut into the natural reverberation time of some program sources, making them sound "sterile" or flat.

The third section of the Adaptive Noise Filter is the bandwidth bar-graph display. A bar graph was used instead of a meter because of the millisecond response time of the control signal. The National LM3915 bar-graph display driver was chosen as it requires only a few external parts and contains all the necessary circuitry for a 10 -point logarithmic bargraph display. The common control voltage at the top of R16 has upper and lower limits of 9.3 VDC and 1.1 VDC , respectively. Therefore, the upper and lower limits of the LM3915 are set accordingly at pins 4 and 6 (internal logarithmic resis-
tor string between these two pins sets the DC levels at which each of the internal comparators drives its associated LED). The left-hand LED corresponds to an $800-\mathrm{Hz}$ bandwidth and the right-hand LED corresponds to a $30-\mathrm{kHz}$ cutoff. The LED's between these two extremes represent steps of approximately 1.5 times the frequency display by the preceding step.

A logarithmic display was selected because it was most indicative of the audible

FIG. 5-CONTROL SWITCHING illustrating how the adaptive noise filter can be switched in and out of play-only circuit.

PARTS LIST

All resistors $5 \%, \frac{1}{4}$ watt unless
otherwise noted

- 100,000 ohms

R3, R4, R9, R10- 22,000 ohms
R5, R11-51,000 ohms
R13- 15,000 ohms
R14, R26, R27-10,000 ohms
R15-200,000 ohms
R16-3900 ohms
R17, R18-20,000 ohms
R19-100,000 ohms, miniature pot, audio
taper (Clarostat $389 \mathrm{~N} 100 \mathrm{~K}-\mathrm{Z}$)
R20, R32-3300 ohms
R21-330,000 ohms
R22, R25-100 ohms
R23-1000 ohms
R24- 10 ohms
R28-27 ohms
R29-91,000 ohms
R30-5100 ohms
(-750 ohms
R32-360 ohms
C1, C4, C20-1 $\mu \mathrm{F}, 16$ volts electrolytic, radial leads

C2, C5-. $0047 \mu \mathrm{~F}, 50$ volts, Mylar, 10\%
, $5 \mu \mathrm{~F}, 10$ volts, electrolytic, radia leads
. 001μ, 50 volts, ceramic disc
C9, C10-. $01 \mu \mathrm{~F}, 50$ volts, ceramic disc
C11, C14, C15, C17, C21, 022-0.1 μ F, 50
,015 μ, 50 volts, Mylar,
13 -. $033 \mu \mathrm{~F}, 50$ voits, Myla radial leads
C $18-470 \mu \mathrm{~F}, 25$ volts, electrolytic, radial

eads

Semiconductors
D1, D2 1 NO
Q1, Q2, A3-2N4401
IC1-LM 13600 dual operational transconductance amplifier (National)
dual low-noise preamplifier
(National)
IC4-LM3915N logarithmic bar-graph display driver (National)
LED1-LED 10—NSL57 124 rectangular LED for bar graph (National)

Miscellaneous

S1-miniature SPST toggle switch S2, S3-miniature 4PDT toggle switch 1 -power transformer, 14 VAC, 250 mA Triad F-112X)
L1—adjustable inductor, $4.7 \mathrm{mH}, \mathrm{Q}=35$ at 19 kHz (TOKO CLN20 740 HM)
J1-J8-panel-mount RCA-type phono
F1-1/4-amp slow-blow fuse knobs, hardware
The following parts are available from Advanced Audio Systems, PO Box 24,
Los Altos, CA 94022:
DX-244 (NR-2) complete kit including case-\$69.95

DX-245 (NR-2) main and display PC boards-\$19.95
DX-247 (NR-2) component kit; includes D1, D2, D3, IC1, IC2, IC3, IC4, Q1, Q2, Q3 cal taxes, as applicable.

FIG. 6-IDEAL SWITCHING ARRANGEMENT is simple and flexible. User must be careful not to place both switches in non-bypass positions simultaneously.

TOP VIEW OF THE PC BOARD shows the locations of most of the components. Parts not shown include the bar-graph display and power supply.
action of the filter. It should be noted that the LED bar graph does not indicate signal level, but rather the instantaneous bandwidth of the two filters and, as such, should not be used as a signal-level indicator.

If the Adaptive Noise Filter is used for only one source, such as for tape playback, then a bypass switch will be the only switching needed in addition to the power switch. Figure 5-a shows a suitable arrangement. Alternatively, the filter may be defeated by switching the junction of C13 and R23 (Fig. 2) to ground, as shown in Fig. 5-b, thereby forcing the filter to a constant $30-\mathrm{kHz}$ bandwidth. This approach has the advantage of requiring only a single-pole switch as opposed to the four-pole switch and associated wiring required for the straight-wire bypassing.
A more flexible system, as used in the
prototype model, can be obtained by providing for insertion of the filter either before or after the tape deck (record or playback). The rather unusual switching scheme shown in Fig. 6 was selected for its relative simplicity. A setup having a PRE TAPE/POST TAPE and a FILTER/BYPASS switch would require one four-pole and one eight-pole switch. The scheme of Fig. 6 only requires two four-pole switches, but the user should be careful not to place both switches in the non-bypass positions simultaneously.

Printed-circuit construction techniques are used in the assembly of the prototype adaptive noise filter. Foil patterns for the printed-circuit boards used for the filter and associated display board will be published next month along with complete construction details and calibration and operating instructions.
continued next month Home Reception via * SATELITIE

An introduction to comestic satellite communications; wits dètails on how those illusive TV signals are pulled from sp?

YOU NAY BE TOO YOUNG TO HAVE BEEN A PART OF THE EXCITING 1946-1952 "dawn of television era." I was a youngster in upstate New York who spent his high school years souping up 630-t pe chassis, building cascade and cascode signal boosters with EBQ7's and trying out every anterma I could lay my design hands on-from stacked 10 -element Vagi arrays to 12 wavelengtr rhombic antennas.

Teləvision happened for me at an infectious age. A paper route helped me maintain a library of that era's Radio-Electronies and a host of other valuable trade magazines that were documenting the fast changing world of television technology. Summer odd jobs and caddying at the golf course enabled me to buy a uminum tubing, wire, electronics parts and bargain-base-ment-priced 630 chassis. In later years I would sometimes wish that I had been born "only five or ten years sooner" so that I woulc have been old enough by 1950 to have really been in a position to participate fully in the television revolution. "But alas" I would say to myself "that's it "or the television revolution. Now that it's established noth ng will come along to change it 'that much' so I'll just have to find my nitch someplace else."

And so it was until 1975 when I discovered a whole new televizion revolution just getting underway-satellite TV transmission and reception. And I have been tracking it, playing an active part in it and enjoying it ever since.

Forget everything you know

If you are in the television business to make a livng, you probably think you know all there is to kncw (or need to know) about reception techniques and equipment. You've tracked down ghosts and explained away weather-caused co-channel interference. You've doped out MATV systems and traced bad components. You've been stuck with an inventory full o* "brand name" parts that overnight went off the market, and you own every Sam; Photofact that they ever printed. Forget it all!

First, let me tell you a bit about the TV recep:ion in my present home, some 20 miles outside of Oklahoma City. We have the usual three major networks as well as PBS (Public Broadcasting System). And like a good majority of the United States, that is all we have (or had until the fall of 1977).

In August 19771 placed some 1×2 stakes in our sidelawn and backhoed enough clay 10 let me refill the holes with a few pieces of properly formed steel and arounc 4 yards of concrete Then, in September 1977, I brought in a crew of frierds and this funny-looking, 3000-lb., all-steel saucer-shaped apparctus, and in about eight hours we had the saucer mounted on a ses of steel posts. (See Fig. 1.) The salcer pointed more or less sonth of us and up int the sky.

The same evening 1 sat down with a special receiver and watched the evening news hive from Vancouver, British Columbia; a baseball game from Atlanta, GA; and a movie via some-

FIG. 1-SATELLITE RECEIVING ANTENNA as it is being installed on steel mounting posts.
thing called HBO (Home Box Office).
My home is located just 18 airline miles from our local network and PBS stations, and I had always been able to receive the best-looking TV pictures this side of a network monitor, up until that fabled September 1977 evening. Until you have had a high-quality color monitor plugged directly into the video output of a satellite TV receiver and observed 54dB signal-to-noise-ratio video produced by people who really care about how good it looks when it leaves their studio, you simply have not seen how good NTSC color reception can really be!

Let me digress a bit and explain what satellite television is all about, how it works and why it works the way it does.

How it began

The first man-made satellite was Russia's SPUTNIK (1) in the fall of 1957. It shook a lot of people up as you may recall. The idea of a ton or so of steel and electronics going around and around the world and crossing our country beeping in Morse code and doing who knows what else spurred the U.S. into the space race. We responded by launching a U.S. Airforce satellite named SCORE in December 1958, and to one-up the Russians, we added a prerecorded message from the President of the United States who welcomed in the American space age and the Christmas season.

TABLE 1-INTELSAT GEOSTATIONARY satellites operating in the 3.7- to 4.2-GHz downlink frequency band are clustered in three separate areas.

Longitude (west)	Name	Year Launched	Service Status
$\mathbf{1}^{\circ}$	I-IV-F7	1973	Secondary
$\mathbf{4}^{\circ}$	I-IV-F2	1971	Reserve
$\mathbf{1 9 . 5 ^ { \circ }}$	I-IVA-F4	1977	Reserve
$\mathbf{2 4 . 5 ^ { \circ }}$	I-IVA-F1	1975	Primary
$\mathbf{2 9 . 5 ^ { \circ }}$	I-IVA-F2	1976	Reserve
$\mathbf{3 4 . 5 ^ { \circ }}$	I-IV-F3	1971	Secondary
$\mathbf{1 8 1 ^ { \circ }}$	I-IV-F4		
$\mathbf{1 8 6 ^ { \circ }}$	I-IV-F8	1972	Reserve
$\mathbf{2 9 7}^{\circ}$		1974	Primary
$\mathbf{2 9 8 . 6 ^ { \circ }}$	I-IVA-F3		
$\mathbf{3 0 0 ^ { \circ }}$	I-IV-F1	1978	Primary
$\mathbf{3 0 0 ^ { \circ }}$	I-IV-F5	1975	Primary
	I-IV-F6	1972	Reserve

SPUTNIK, SCORE and all the satellites that followed them through 1963 had one common fault. They were launched into a "low orbit' and (with reference to a point on earth) they were always moving. To receive messages from or transmit messages to these "low orbit birds" required that the stations working with the satellite know rather precisely its orbit path and the timing of that path, and then be prepared to track the satellite as it came over one horizon, moved in an arc through the sky and finally disappeared beyond the opposite horizon.

In 1963 space technology and rocket power progressed, and SYNCOM, designed and built by the Hughes Aircraft Corporation, was launched - the world's first geostationary (or geosynchronous) satellite. (A geostationary satellite has an orbit directly above the equator and an orbital velocity that matches the rotational velocity of the earth. (See Fig. 2.) In this way, the satellite appears to remain stationary in the sky with respect to a point on the earth.) SYNCOM was an experiment. It provided the capacity to relay either a single TV channel or 50 separate telephone conversations; from its orbit above the Equator between Africa

FIG. 2-GEOSYNCHRONOUS ORBIT is achieved by launching satellite into a highly elliptical orbit that is followed by a transfer to an equatorial plane orbit. Satellite's position over equator is typically maintained to ± 0.1 degree.
and South America, it interconnected North America and Europe with their first real-time (live) television transmissions. By 1965 the geostationary satellite looked like a winner, and 19 countries joined to form something called Intelsat, a consortium of nations that would fund the launching of a series of satellites.

The Intelsat world

With nearly 14 years to grow, the Intelsat system is relatively mature. Today, more than 100 nations belong to the system, which consists of 12 separate satellites located in three distinct "groups." Commercial Intelsat installations cost in the megabuck region, but amateur builders of backyard terminals have successfully tapped into the Intelsat circuit, using surplus-salvaged parabolic antennas as small as 8 feet in diameter and with investments well under $\$ 500$, as we'll discuss in some detail.

As mature as Intelsat is today, it is in a constant state of evolution. The present satellite series is generally of the so-called Number IV (or " 4 ") class, indicating there have been three previous series. Table 1 lists where they are located; a sharp eye will spot the three "clusters" in operation: One is over the Equator in the Pacific Ocean; another over the Indian Ocean north of the Seychelles Islands; and a third between the tip of Africa and the tip of South America. Each location has as a minimum a "primary" and a "reserve" satellite, but heavy Atlantic and Indian Ocean traffic has resulted in additional satellites in these areas. In 1971 the Intelsat consortium agreed that identicalfrequency satellites should be spaced over the equator in 4 - to 5 -degree increments. In this fashion the large parabolic ground-receiving antennas could intercept the desired satellite's signals without interference from adjacent-position satellites, even though both would be operating on the same frequency simultaneously. The present series IV satellites will begin to be replaced with a new, advanced family of satellites during 1979 , the Intelsat V series. We'll look at these later on.

GADGETS EALLY WORK?

feedline for coupling had no effect. Interference bars were again apparent on several TV channels, with or without the CB filter attached. The trap circuitry is a series L-C filter, designed to short-circuit much of the $27-\mathrm{MHz}$ CB signal, but it has no effect at TV frequencies. The schematic is shown in Fig. 3. Similar to the filter described above, it would be effective only in preventing front-end overload by a powerful $27-\mathrm{MHz} \mathrm{CB}$ signal. In fact, if an interference filter were designed to attenuate interfering signals on TV channels, it would also diminish the TV signals since they occupy the same frequencies.

Ghost eliminator

Phantom borders that accompany the TV picture as a smear or additional outline alongside the primary image are due to phase delay-two identical picture signals arriving slightly apart in time. As a result, the sweep lines that draw the picture on your screen trace two sets of images; one is usually weaker because ghosts are caused by a reflection of the signal from nearby objects, arriving at the antenna both weaker and at a later time than the direct signal from the broadcasting station.

The ghost eliminator shown in Fig. 4 was installed and adjusted as directed; the ghosts were unaffected. Suspecting that the unit was labeled backwards, I reversed the leads, but the ghosts remained.

FIG. 4-GHOST ELIMINATOR is inserted in antenna lead-in and adjusted for best picture.

The ghost eliminator is an L-pad (see Fig. 5) consisting of carbon resistances that remain essentially noninductive throughout the VHF range; UHF performance is unpredictable. Because the device is a variable attenuator, it makes signals weaker; and weaker signals are more vulnerable to electrical

.
FIG. 5-GHOST ELIMINATOR is actually an L-pad attenuator as shown in a. Equivalent circuit when adjusted for minimum signal is shown in b. When adjusted for maximum signal, equivalent circuit is shown in c.
interference. Although it is stated on the eliminator's blister pack that the unit remains at a constant 300 ohms, it does not; the resistance of the device I tested varied from 300 to 7000 ohms at the TV terminals.

While it is dangerous to make generalizations, no inexpensive add-ons can take the place of a good antenna system; an outside antenna is always better than an inside antenna; interference is best eliminated at its source.

This article is not meant to be a blanket indictment of all TV accessories. High-quality picture-enhancing devices such as antenna preamplifiers, cavity wavetraps, etc., are available but at a substantially higher cost. Hqwever, the bottom line is: Use a good antenna and transmission line, and additional gadgets will rarely be necessary.

TV/FM splitters

A splitter is a coupling device that permits you to hookup two sets, to one antenna. Since most TV antennas are rather broadband in nature, they work quite well on the FM broadcast band as well as on TV channels; so why not use this feature for your benefit? Since most stereo receivers have a 300 -ohm (two screws) antenna input, it is a simple matter to run a length of TV twin-lead from the receiver to the TV antenna splitter and enjoy greater quieting, stronger distant reception, and less flutter and fadc. Of course, the FM reception is enhanced in the same direction as the TV antenna is pointed. The TV reception will be virtually unaffected, since splitter loss is minimal. Acceptable units are mass-produced for most retail outlets and large chain discount houses. They are all fairly identical (see Fig. 6) so shop for price; the average price for a typical two-set coupler is from $\$ 3.50-\$ 4.00$. (Be aware that some of the better TV antennas are designed to trap out FM signals-thus eliminating them as a source of interference.-Editor)

Privacy earphone attachments

Although not all TV sets come with earphone jacks, many imported portable sets do. Make sure that the plug size is compatible with the jack on your set (most measure $1 / 8$ inch, and adapters are available). If there's no carphone jack on your set, it is a relatively straightforward procedure to cut off the speaker

FIG. 6-TYPICAL TV/FM SIGNAL SPLITTER manufactured by the Finney Company.
lead inside the TV set and attach the adapter; before undertaking this minor surgery make sure instructions are included with the adapter. (Modern TV sets frequently do not have power transformers and, therefore, have a "hot" chassis. The audio output stages are similarly transformerless and the speaker leads can present a potentially dangerous shock hazard.-Editor)
Such units are sold for convenience, not hi-fi quality. They are available from the same sources as TV/FM splitters.

Antenna boosters

These little preamplifiers make a weak signal stronger, and strong signals stronger. They improve a snowy picture. Outdoor antenna-mounted preamplifiers are recommended over indoor antenna boosters, since you want a stronger signal to come down the antenna transmission line and don't want to amplify the

FIG. 7-TYPICAL ANTENNA BOOSTER that is mounted on the antenna mast itself. Made by Channel Master.
interference picked up by the lead-in itself. A typical booster is shown in Fig. 7.

If you are plagued with weak-signal reception, a booster will probably help. Make sure that you purchase one that is weatherproof, with all-channel capability (if you watch UHF transmissions), and that you cover the terminals with a good lacquer or silicone rubber caulk to retard corrosion after you have installed and tested the booster. Unit prices vary from $\$ 30$ to $\$ 70$.

Line-noise filters

Noise from motors, fluorescent lights and dimmers, and other sources of AC line interference constantly arrive at the TV line plug as voltage spikes. These interfering electrical pulses may not get filtered out by the TV set's power-supply circuitry and, as a result, show up as a tearing of the picture, or may be even heard through the speaker.

Inexpensive ($\$ 1.50-\$ 6.00$) filters usually consist of a plug and receptacle housing containing a capacitor or two. The TV line plug is inserted into the receptacle, and the unit is plugged into the wall. The line-noise filters are almost always either totally ineffective or inadequate because most electrical interference arrives through the antenna. An external ground should always
be present (and rarely is); more sophisticated (and more expensive) units containing inductor coils are more likely to provide some relief from power-line noise.

Color purifiers

Color TV pictures are very sensitive to magnetic fields. Iron picture-tube envelopes, nearby steel hardware, etc., all may cause potential color distortion. If a TV set has been recently moved, transported for repair, exposed to strong electric motor fields, exposed to a nearby lightning strike or a host of other unexpected sources of magnetic energy, its components may have become magnetized and could degrade the purity of color distribution on the face of the picture tube. Color purifiers (also called degaussers) are simply multiturn loops of wire which, when plugged into the AC power line, produce a strong, fluctuating magnetic field capable of neutralizing the vestigial magnetism on the chassis parts.

At a cost of $\$ 5$ or $\$ 6$, this device is not a bad investment if it is properly designed and can deliver a strong enough demagnetizing field. Only a test of the unit will confirm this.

Wall-plate terminals

Many houses are built with TV lead wire "stubbed in"-i.e., twin-lead is left dangling through a hole in the wall for connection. Alternately, a more cosmetic plastic cover plate is connected to the lead-in and affixed to the wall to cover the hole. Connections are then made to the TV set by a short length of twin-lead that is either attached to screw terminals or plugged into the wall plate.

The wall-plate terminals offer very little loss to the TV signals, and are relatively inexpensive. They are worthwhile if you want to give a finished look to the TV installation. Some wall plates contain internal splitters for FM reception as well.

Wall-through tubes

There are many ways to bring a transmission line into a house from an external antenna: through a louvered vent, a hole under the eaves, or via a hole in the wall. But along with the hole comes another problem: How do you keep bugs, rain, or even intemperate air from penetrating the house? The wall-through tube provides a seal. (See Fig. 8.) Consisting of a plastic tube with

FIG. 8-THROUGH-WALL TUBES serve a dual purpose-they protect the lead-in at the point of entry into the house, while covering the hole in the wall. Available from several sources.
finished and adjustable ends, the unit is used to line the hole drilled for the lead-in. Of course, a larger hole must be drilled than would be required for the wire alone, but the device provides isolation and insulation from both the wall and the outside. At a cost of $\$ 2$, it is a worthwhile investment.

Lightning arresters

Solid-state TV sets are far more vulnerable to failure from high-voltage spikes than the old tube sets. Even a nearby lightning stroke can induce enough voltage in a TV antenna line to destroy tuner components. A lightning arrester probably won't protect your set from a direct hit, but it should guard it from nearby lightning during an electrical storm.

A variety of arresters are available for $\$ 3-\$ 5$. Make sure to follow directions to insure both TV protection and efficient signal transfer. A well-grounded antenna mast is mandatory in any TV installation! If your reception seems to be a little weaker than usual, check the lightning arrester, perhaps even replace it after a stormy season.

R-E

AC OUTLET

 CHECKERIs the ground grounded or ungrounded? Your life can depend on the answer!

WILLIAM D. KRAENGEL, JR.

DO YOU KNOW IF YOUR 3-WIRE AC OUTLETS are functioning properly? If you accept the premise that the purpose of a 3 -wire system is to provide an additional margin of safety (with a grounding conductor to which frames, cabinets, housings; etc., are separately grounded), it is necessary to be able to verify that the system is indeed working as designed; i.e., that the ground is really grounded.

How can this be done easily? You can use the Outlet Polarity Checker described in this article. With a little additional sleight-of-hand, the unit can be used to check 2 -wire systems 10 determine if they can be used safely with a 2to 3 -wire adapter. (I don't like them-as shall be seen later, these can lead to a false sense of security!) And it can also be used to check an appliance that has a 3 blade plug.

The checker consists of three neon lights (see Fig. 1) wired so that they light in different combinations according to circuit conditions. Since only one combination of lights (the ones labeled "O" and "K") indicate a correctly wired outlet, the other combinations indicate various faults. Table 1 lists these possible light combinations and their causes. In most cases, but not always, any trouble will be due to an incorrectly wired outlet. However, the entirc branch circuit can be incorrectly wired, especially if it has been installed by nonqualified personnel.

When 3 -wire systems are working properly, they do provide an extra margin of safety. But what happens when a homeowner wants to use a new 3 -wire appliance with an existing 2-wire system? He sometimes buys an adapter or uses the one that is conveniently furnished with many ncw 3-wire appliances. He hooks the adapter up according (sometimes) to

FIGURE 1-OUTLET POLARITY CHECKER. A simple and sure way of knowing if the outlet that you are about to plug into is functioning properly.

TABLE 1 - SIGNAL LIGHT COMBINATIONS

LIGHTS			CIRCUIT CONDITIONS
OfF		ON	
0	K	x	
\bigcirc	\bigcirc	\bigcirc	OFF - FUSE OR CIRCUIT BREAKER OPEN
-	-	\bigcirc	OK (SAFE!)
-	\bigcirc	\bigcirc	NEUTRAL OPEN - DANGER!
\bigcirc	-	\bigcirc	GROUND OPEN - DANGER!
\bigcirc	\bigcirc	\bigcirc	HOT TERMINAL OPEN AND HOT ON NEUTRAL TERMINAL - DANGER!
-	\bigcirc	\bigcirc	HOT AND GROUND REVERSED - DANGER!
\bigcirc	-	\bigcirc	HOT AND NEUTRAL REVERSED - DANGER!
-	-	-	(NOT POSSIBLE)

PARTS LIST

DS1, DS3-Amber neon lamp assembly (Lafayette No. 99A62259 or equal)
DS2-Red neon lamp assembly (Lafayette 99 A62267 or equal)
P1-3-wire polarized plug and cord
Misc. - Bakelite case (Lafayette No. 99E80780 or equal); grommet to fit cord.
the instructions (if any). He now blithely assumes that he has successfully converted his old 2 -wire system into a safe, grounded 3 -wire system-but has he? Unless he has actually grounded the green lead of the adapter, he hasn't! Just fastening the green lead under an outletplate mounting screw grounds the appli-

\title{

Wiring For

\section*{A comparison look at four different ways you can wire your

A comparison look at four different ways you can wire your projects. Selecting the right one for your next construction project will make the task easier and more pleasurable.

EARL "DOC" SAVAGE, K4SDS

 HOBBY EDITORNOT SO LONG AGO THERE WAS ONLY ONE WAY TO WIRE AN ELEC. tronic project; and too many people believe there is still only one way.

Today there are four major wiring systems from which to choose. If you are not familiar with these systems and their advantages and disadvantages, you are likely to spend too much time constructing and correspondingly less time designing and using your projects.

To avoid wasting time, a knowledge of available wiring systems is a must. Although it is equally important to be able to use all systems, first you must be able to choose which one is best for a given project. So let"s examine and compare the four major wiring systems.

CSH wiring

This wiring system has been in use for many years. It is conventional or traditional wiring, but many call it CSH (Cut/ S trip/Hook). The name itself shows how slow and tedious it is.

We'll review the CSH wiring system, briefly, but, first, since every project must be built on something let's see what's available.

Figure I shows several types of perforated boards that are used with the CSH system. A plain perforated board is often chosen. Three types of universal PC boards are also shown. Depending upon the nature of the project circuit, a universal PC board can ease the wiring task.

The cut/strip/hook wiring method started when components projects were large. Even so, it is still used on modern small board-mounted projects. Figure 2 shows the tools and materials used in this system. It's the cutting, stripping and hooking that takes so much time; and the hooks must then be clamped to the joints. The final step is soldering, and, a very small iron tip is essential. Note that components can be wired directly or sockets can be used.
The overwhelming disadvantage of this wiring system is the great amount of time and effort it requires. This fact will become more apparent as we look into the following systems.

However, the other side of the coin is that there is no limit to the size wire you can use. When constructing high-current and / or high-voltage circuits, this can be an advantage. The CSH wiring method is generally used in constructing power supplies and high power amplifier stages. Of course, it is standard in tube circuits.

FIG. 1-PERFORATED BOARDS are used with the cut/strip/hook and wire-wrap wiring methods. Also shown is a universal-type printed-circuit board.

FIG. 2-TOOLS AND MATERIALS required for the cut/strip/hook wiring method.

Pencil wiring system

Figure 3 shows the tools and materials used in the pencil (or pen) wiring system. This type of wiring is very much like drawing with a regular pencil. The pencil contains a roll of special wire at one end that passes down the shaft and is dispensed through a small metal point.

The wire is wrapped three or four times around a component lead or socket tail, then fed to the next component and so forth, daisy-chain fashion. At the end of the chain, you cut the wire by

A series of four $1 / 2$-inch videotapes describing various aspects of satellite television communications are available from Satellite, Television Technology, P.O. Box G, Arcadia, OK 73007:
Tape HTS-1, "How The Home Terminal works'"

Tape HTS-2, "Private Terminals Today"

Tape HTS-3, "TV Terminal Technical Topics"

Tape HTS-4, "How The Bird Flies"

Tapes are $1 / 2$-inch and run from 70 to 110 minutes and are in full color. Specify either VHS or Beta format when ordering and enclose payment with order. Price is $\$ 50$, each in Beta format; \$55, each in VHS format.
Also available is a "Satellite Study Package," including a 52-page booklet explaining private terminals, a 22 by 35 four-color wall chart showing all satellites in operation and how the receive terminal is designed and installed, and a copy of a recent issue of $C A T J$ (the worldwide monthly publication dealing with satellite terminal systems) is available for $\$ 13$ postpaid ($\$ 16$ outside the U.S.

The first national seminar conference dealing with practical technology for building and operating your own private television receive satellite terminal will be held August 14, 15 and 16 in Oklahoma City.

This conference will feature worldwide experts in the field of private (low cost) satellite terminals demonstrating their equipment design and construction techniques. Numerous operating terminals from 6 to 20 feet in size will be on hand and several firms marketing equipment in this field will be on hand to explain their marketing approaches to home terminal installations. Firms interested in acting as area marketing, servicing and installation affiliates of the national suppliers in this field will have the opportunity to learn about the various products being offered in this field.

Among the systems to be demonstrated will be ten foot terminal systems operating without any LNA devices (utilizing new technology in the receiver area), various approaches to low cost privately built receivers and antenna sub-systems, and a series of sessions on the projected growth and activity in this fast moving area.

Attendance is by advance registration only; for full information contact Satellite, Television Technology, P.O. Box G, Arcadia, OK 73007 (405) 396-2574

Domestic satellites

As needed as the Intelsat-type satellites are. they cannot serve all the communications needs of all countries. Some nations, such as the U.S., Canada and Russia, have unique internal needs that in sheer

FIG. 3-DOMESTIC SATELLITE "parking" spots. Ten domestic satellites are currently active-3 Canadian and 7 U. S. A. A third WESTAR satellite should have been launched by the time you read this and a third SATCOM is due for launch between October and December of this year.
message volume (or circuits required), far outstrip Intelsat's services. For example, in the Atlantic Intelsat cluster five separate satellites have a total flat-out capacity of 100 separate "channels" or transponders. A single transponder can provide (typically) up to 900 voice or message circuits, or one TV channel circuit. Obviously, not all these circuits are used full time, so satellite communications planners take advantage of what are called "peak load times." They attempt to have enough circuits available to handle peak or maximun traffic-time loads. In the long haul, the average number of circuits in use would be somewhat less than 50% of the total capacity available.

Some smaller nations, such as Nigeria, Sudan, Uganda, etc., lease one or more transponder/channels full time from Intelsat to provide ground-to-satellite-toground communications for circuits wholly within their own countries (except for the satellite link). Other countries such as Spain, lease full-time circuits to maintain ground-to-satellite-to-ground communications with distant outposts of their nation, for example, television, telephone and data circuits with the Canary Islands.

In 1970-1971 individual countries with projected satellite circuit needs for exceeding Intelsat's capability persuaded other Intelsat nations to allow some portions of the equatorial orbit belt to be reserved for non-Intelsat geostationary satellites, or for domestic satellites. In the interim so-called Domestic Satellite Sys-
tems have been activated for Indonesia, Canada, Russia and the U.S. although actually the Russian system was first made operational back in 1965.

In North America the orbit parking region from 70 degrees west longitude (a point due south of New England) to around 135 degrees west (roughly due south of the Alaskan peninsula) is reserved for North American domestic satellites. (See Fig. 3.) Canada was the first to launch a domestic satellite into this region (ANIK l in 1972); and in seven years, 10 other Canadian or U.S. domestic satellites have joined ANIK l. An additional pair of U.S. domestic satellites will join the crowd before 1979 is over. There are 13 satellites in all, and all are parked between 70 degrees west and 135 degrees west.

On a transponder or channel-capacity basis, the North American satellites have the full-load capability 10 provide as many as 228 separate TV channels, or more than 200,000 telephone voice channels simultaneously-more than twice that available on the Intelsat system. With all that capacity available, you might suspect there is some extremely interesting, perhaps even downright enticing, "television" up there.

Indeed there is. There's a lot of good watching-more than 40 channels worth-to be had from those U.S. And Canadian domestic birds. Next month, we'll take you channel-by-channel, bird-by-bird as we scan programming available to TV viewers in other locations throughout North America.

R-E

Abstract

As we strive for improved TV reception, we are offered innumerable gadgets that promise us a near-perfect picture. Not all work as well as the sellers claim that they do.

ROBERT B. GROVE

WE ARE ALL TEMPTED AT ONE TIME OR ANOTHER-BY THE quick-and-easy-remedy syndrome: Gas-tank additives, pill-popping medication, flea collars, spray deodorants. Even the family TV set is besieged with handy accessories that promise fantastic results for a minimum investment in time and money.

The TV gadget syndrome began soon after World War II, when small-screen black and white TV was just catching on, and families, friends and neighbors clustered for hours around the magic box, squinting at teeny-tiny pictures.

A few enterprising souls decided to capitalize on the small screen problem by selling attachable magnifiers: A clear, convex cell of mineral oil was braced in front of the tiny screen; if the viewer sat directly in front of the screen, he could view an enlarged (albeit blurry) picture. The hapless souls who had to view the magnified image from an angle were plagued by incredible distortion. The magnifiers finally went the way of the dinosaurs!

Another item that appeared was the color-filter adapter, an incredible hoax consisting of alternating horizontal bands of colored plastic tilm stuck to the face of the picture tube. True, your black and white TV set could then show color . . . if you didn't mind seeing Ed Sullivan with red eyes, green nose, blue lips and a yellow chin!

Accessory gadgets are still in popular demand, but do they really work? I decided to find out. A trip to my local electronic store provided several devices intended to improve TV picture quality. Interestingly enough, none carried a guarantee of any kind!

The devices were tested on two separate TV sets in two different locations, and the results were disturbing. Here's what I found:

TV interference filters

These devices are advertised as being effective against neon signs, fluorescent lights, auto ignition noise, airplanes, appliances, amateur radio transmitters, medical and X-ray equipment, electric razors, and oil burners. I purchased the filter shown in Fig. 1 and tested it using a CB transcciver; the filter did not reduce the interference on either set. Further experiments using an RF signal generator radiating local interference on TV channels also resulted in no improvement with the filter attached. The filter was then tested for its effectiveness in

FIG. 1-TV INTERFERENCE FILTER is inserted in the antenna lead-in.

FIG. 2-INTERFERENCE FILTER is a high-pass filter that attenuates signals below 54 Hz .

FIG. 3-CB TRAP is a series filter that eliminates $27-\mathrm{MHz}$ CB signals.
suppressing the spark-tearing of the picture caused by electrical appliances; again, no improvement.

Internally, the TV interference filter is a constant-k high-pass filter, attenuating all signals below 54 MHz (Channel 2). The schematic diagram is shown in Fig. 2. It should be effective in preventing front-end overload from signals below 54 MHz , but it has no effect on interfering signals in the TV frequency bands, which is where the majority of interference originates!

CB interference trap

Turning the $C B$ transceiver on transmit next to the antenna

ems ects

FIG. 3-PENCIL WIRING SYSTEM also requires perforated board and soldering iron.

FIG. 4-TWO TECHNIQUES are available for wire-wrap construction. The tools and materials required for both techniques are shown.
pinching it against the board using a chisel-like tool or an Xacto knife or other type of blade.

So far, we have not mentioned stripping the wire. This is because the wire has a special insulation that vaporizes at a temperature of about $750^{\circ} \mathrm{F}$, making wire-stripping unnecessary. You only have to touch the wire with a hot iron to melt the insulation so that solder can be applied.

Quite obviously, the great advantages to the pencil wiring method are its simplicity and speed. It is ideal for most modern
digital and analog circuits. As you might expect, the disadvantage is the limited wire size-gauges No. 32 through No. 38 are usually available. Therefore, pencil wiring would not be suitable for constructing a $2-\mathrm{amp}$ power supply.

Wire-wrapping

There are two wire-wrapping methods, and the tools and materials for both are shown in Fig. 4. One method (Type 1) resembles the CSH system, although it is much faster.

The first wire-wrapping method (Type 1) requires that the wire be cut and stripped. Fortunateiy, these operations are simplified by the wire dispenser and stripper shown in Fig. 5. OK Machine and Tool's refillable wire dispenser has a built-in cutter and stripper that saves a lot of time. The other device has a stripper built into the handle of the double-ended wrap/ unwrap tool. Kits are also available containing various lengths of precut and prestripped wire.

Wiring is performed by simply wrapping the wire around the terminal. In case of error or modification, the other end of the tool can be used to unwrap the connection.

The second wire-wrapping method (Type 2) is called slit-and-wrap wiring and is accomplished with a tool from Vector Electronics that resembles a wiring pencil. This wire is also contained in a spool mounted on one end of a hollow shaft through which the wire passes. The business end of the tool not only wraps the wire but slits the insulation as it does so, allowing contact to be made with the terminal.

The slit-and-wrap technique has two decided advantages over the Type 1 method. First, cutting and stripping are not required. Second, continuous daisy-chain connections can be made (see Fig. 6). These two factors greatly improve convenience and time-saving (and there are also motor-driven wrapping tools).

You will note that no mention has been made of soldering. The ultra-speed of the wire-wrapping system (the slit-and-wrap technique especially) results from the fact that there is no soldering. As strange as it may seem, a properly wrapped connection is at least as stable mechanically, and has as low a resistance as a soldered connection.

The wire-wrapping system is not a cure-all, however. It has some disadvantages: The wire is of limited size, although typically a little heavier than pencil wire (but, as previously noted, this is seldom a problem). What is more important is that connections must be made on special wrapping posts.

Wire-wrapping cannot be performed on component leads. The wrapping posts must have sharp edges to dig into the

UNIVERSAL PC BOARD and wiring pen manufactured by Vero Electronics, Inc.
wrapped wire. This means using special wire-wrapping sockets and through-board posts for mounting discrete components.

Printed-circuit boards

There is some confusion about the meaning of the term PC board because both universal and dedicated boards can be called PC boards. In order to distinguish between the two types, the adjective "universal" is included for that type of board. (An unqualified PC board generally refers to a dedicated boardthat is, one designed for use with a specific circuit.)

The PC board wiring technique is the simplest and quickest technique of all. It would win hands down over the others except for two factors: First, modifications are more difficult (although not impossible) to make on PC boards. It is just a matter of cutting the traces and substituting actual wires, and, with reasonable care, this procedure works quite well.

The more important difficulty is making the PC board itself. At the outset, the copper-clad board is plain and undrilled. Somehow the circuit must be placed on the board - either by drawing, transferring, pasting-up, or using a photosensitive process. Next, the unwanted copper must be removed-by etching, grinding, or even sawing. Finally, the PC board must be drilled for component mounting.

Several excellent methods have been devised for constructing PC boards. Everyone should become familiar with them in order to be able to select the correct one. However, there is no presently available fast method of doing the job.

Time can be saved only when a quantity of identical boards must be constructed, which is a rare situation for the individual builder. Even ordering a preconstructed board takes time. In spite of all this, time and effort are not always the most important considerations, so PC board wiring should not be overlooked.

Material sources

For your convenience, some of the manufacturers of tools and materials needed for the various wiring systems are listed in Table 1. Listed under each name are applicable tools, identification numbers and the latest prices (subject to change). Each manufacturer also produces materials and accessories, so request a catalog from each one.

You can sometimes find these items in many mail-order catalogs. There may also be sources in your own area, such as retail

FIG. 5-WIRE DISPENSER and wrap/unwrap tool available from OK Machine and Tool Corp.

FIG. 6-SLIT-N-WRAP tool from Vector Electronics has wire stripper built-in so the wire is automatically stripped as it is wrapped.

TABLE 1-MANUFACTURERS of tools and materials for various wiring systems

OK Machine \& Tool Corp., 3455 Conner St., Bronx, NY 10475: CIRCLE 148 ON FREE INFORMATION CARD WSU-30-Wrap/unwrap tool, $\$ 6.95$, plus materials, accessories, boards. JWK-6-Just Wrap kit, \$24.95.
Vector Electronics Co., Inc., 12460 Gladstone Ave., Sylmar, CA 91342: CIRCLE 149 ON FREE INFORMATION CARD P-178-1-Wiring pencil, $\$ 7.95$. P -183-Chisel knife and forming tool, $\$ 1.95$. P-180-Slit-N-Wrap tool, $\$ 24.50$, plus materials, accessories, boards, kits.
Vero Electronics, Inc., 171 Bridge Rd., Hauppauge, NY 11787: CIRCLE 150 ON FREE INFORMATION CARD 79-1732G-Wiring pen, $\$ 8.00$. 58-2808J-Wrap tool, \$21.70, plus materials, accessories, boards, kits.

stores and electronic supply distributors. If you cannot locate what you need, you can write the manufacturer.

Summary

Knowledge is, indeed, a powerful thing. You can save yourself much "fussin' an' cussin'" if you know enough about the four major wiring systems to pick the right one at the right time. Choosing the wrong one can result in anything from frustration to disaster. After all, old Murphy's Law says that something will go wrong anyway-you don't have to make it worse by selecting the wrong one from the start!

Every electronics hobbyist should not only read about, but try out each wiring system. That way, you really know. Don't take someone else's word-even mine - because we may have different expectations. Try all of them and then you can choose the system you need when you need it.

R-E

New FM Tuner CIRCUITS

Abstract

During the last few years the sound quality developed by the FM detector and stereo decoder has improved noticeably. Here is a look at some state-of-the-art circuits that make this possible.

LEN FELDMAN
CONTRIBUTING HI-FI EDITOR

IT WASN'T VERY LONG AGO THAT AN FM tuner capable of delivering an audio signal with less than 1.0% total harmonic distortion at the output of its ratio detector or discriminator was considered to be a very high-quality product. Today, it is not uncommon to find FM tuners with distortion as low as 0.1%, even in the stereo FM mode. Despite such giant reductions in overall distortion of FM signal reception, some manufacturers continue to explore other innovative ways to improve FM reception.

For cxample, Kenwood Electronics (1315 E. Watsoncenter Rd., Carson, CA 90745) has developed a separate tuner, the model KT-9I7, that achieves a distortion rating of 0.05% in the monophonic mode and 0.09% in the stercophonic mode at any audio frequency from 50 Hz to 10 kHz . Several new and unusual circuits are responsible for this additional lowering of overall distortion; we'll examine four of these new circuits.

Pulse-count detector

Conventional discriminators and ratio detectors, which have been in use since FM broadcasting began, use tuned circuits which first convert the FM signal into one that varies in amplitude. Nonlinear devices (diodes) then rectify the frequency-dependent AM signal to recover the original audio modulation. Both steps in this process are inherently nonlinear. The discriminator (or ratio-detector) S-curve, formed by transformercoupled tuned circuits, is a continuous curve (sec Fig. 1). It is this curve that converts frequency variations into varia-

FIG. 1-CONVENTIONAL DISCRIMINATOR has a nonlinear S-curve characteristic to convert FM signals into $A M$ signals.

BLOCK OIAGRAM OF PULSE COUNT OETECTOR

FIG. 2-pULSE COUNT DETECTOR is a digital circuit that performs the function of a conventional discriminator but with much less distortion.
tions in amplitude. By restricting the FM deviation to a portion of this curve, linearity is approached but not fully realized. The second step in the demodulation process uses a diode's nonlinear characteristics for rectification. Here, with careful attention given to input-signal amplitude, linearity is again approached but not totally realized.
A pulse-count detector system, on the other hand, is theoretically linear. In this system each individual waveform (at the IF) is converted to a pulse of uniform amplitude and duration. An integrating circuit counts these pulses and averages the count over a given time interval; the output is proportional to the pulse count. A block diagram of the Kenwood pulsecount detector system is shown in Fig. 2. The pulse count rises as a linear function of frequency, and the counting process remains linear until there is no space left between pulses. This point of saturation occurs far beyond maximum deviation. The system uses no nonlinear analog elements. It is a digital system in that the precision-pulse formers use digital techniques. The pulse counter is a form of digital-to-analog converter.

In applying this technique to FM demodulation, Kenwood found that the best detector efficiency can be achieved when demodulation occurs at a frequency much lower than 10.7 MHz (the normal FM IF). Therefore, a second converter is incorporated to heterodyne the IF down to 1.96 MHz . This causes the deviation to be much greater compared with the center frequency, and suits the operating characteristics of the digital processors. Referring to Fig. 2, note the $1.96-\mathrm{MHz}$ signal is shaped into narrow triggering spikes (one for each cycle) that drive a one-shot multivibrator. The multivibrator produces output pulses of uniform amplitude and duration. Only the frequency or density of pulses varies. A low-pass filter performs the pulse-counting function, producing an audio output that is determined solely and linearly by pulse count.

There is an additional performance advantage to this system. The multivibrator count detector.
is either off (zero volts) or on (supply voltage). In either state, no noise is produced, since the system is sensitive to noise only at the instant of triggering. This results in an important reduction in overall noise. Furthermore, since there are no tuned circuits the pulse-count detector never needs alignment and is not affected by temperature or humidity.

Figure 3 shows the differential gain for a conventional ratio detector and for a pulse-count detector. Note that ratiodetector gain varies as the frequency deviates farther and farther away from the center, while the pulse-count detector gain remains linear over a very wide frequency range

Distortion detection loop

With distortion caused by nonlinear detection virtually eliminated by the pulse-count detector, the one remaining possible source of distortion is the IF system of the FM tuner. In many FM tuners an indicator displaying centertuning makes use of a balanced detector whose output voltage goes to zero when the converted signal is at the center of the detector's response. The drive from this circuit controls the deflection of the familiar zero-center tuning meter, or an AFC (Automatic Frequency Control) system, if one is used. This system works on the assumption that the IF response is perfectly symmetrical and has the same center frequency as that of the detector driving the tuning meter. Unfortunately, this is not always the case.

The DDL (Distortion Detection Loop) system developed by Kenwood examines distortion and adjusts local oscillator frequency to place the converted IF signal precisely where it should be for minimum distortion. The block diagram of Fig. 4 shows that the local oscillator is frequen-cy-modulated by an internally generated $95-\mathrm{kHz}$ signal that contains 10% positive and negative deviation components.

To avoid interference with the selected incoming channel, the $95-\mathrm{kHz}$ signal was chosen to be five times the $19-\mathrm{kHz}$ pilotsignal frequency. It is mixed with the selected carrier signal in order to place

PULSE COUNT OETECTOR

FIG. 3-TRANSFER CHARACTERISTICS for the conventional ratio detector and for the new puise
frequency-modulated signals on the upper and lower skirts of the IF response curve. After FM detection, original test signals and any distortion (which appears as twice the $95-\mathrm{kHz}$ signal) are extracted by a high-pass filter and applied to a synchronized detector where the original test signals and distortion components are compared. If an imbalance exists a DC error voltage is produced; this voltage is filtered and applied to the same varactor diode used to add the frequency-modulated injection signal to the local oscillator. This error voltage corrects the local oscillator's center frequency to balance the DDL phase detector. In this way the DDL system monitors the distortion by injecting test signals that accompany the selected channel through the IF system. It serves to balance the distortion and to place the selected channel at the precise mid-point of the IF passband.
To prevent interference with normal tuning, a logic-control circuit interrupts DDL control until manual tuning places a selected channel in the approximate center of the IF passband. Inputs to the control logic are a touch detector that is linked to the tuning knob, a noise detector that monitors IF output, and the output of the high-pass filter that delivers the recovered injection signals to the DDL phase detector. When the operator relcases the tuning knob, the DDL system starts working, and a light is turned on to indicate that tuning for minimum distortion has occurred.

Sample-and-hold decoding

In the conventional stereo FM decoding process, the ($L-R$) and $-(L-R)$ audio information is recovered from the positive and negative excursions of the $38-\mathrm{kHz}$ composite-signal envelope. In such switching systems the ($\mathrm{L}-\mathrm{R}$) and $-(L-R)$ information is recovered in the form of averaged $38-\mathrm{kHz}$ components. In the course of filtering the ripple components of the $38-\mathrm{kHz}$ signal to reclaim the original modulation some sacrifice in stereo separation normally occurs.
In a newly developed sample-and-hold technique, the $38-\mathrm{kHz}$ signal envelope is examined in short bursts at a rate that is determined by the $38-\mathrm{kHz}$ signal produced by a phase-locked-loop (PLL) system . The recovered levels, in terms of modulation envelope voltage, are stored in a capacitor that is effectively disconnected from the sampling switch after the sampling burst has passed. This voltage value is retained by the capacitor until the next sampling burst arrives. The capacitor then charges or discharges to the new envelope voltage value. As a result the envelope is traced in the form of horizontal voltage steps, as shown in Fig. 5. This represents a more accurate reproduction of the modulation envelope voltage. The resultant ripple component is lower and little filtering is required.

BLOCK DIAG RAM OF DISTORTION-DETECTION LOOP (DDL)
FIG. 4-DISTORTION DETECTION LOOP senses the distortion level at the output of the detector and adjusts the local oscillator frequency for minimum distortion.

SAMPLE-AND-HOLD DETECTOR FOLLOWS 38 kHz ENVELOPE PEAKS AND REQUIRES
LESS FILTERING.

FIG. 5-SAMPLE-AND-HOLD stereo decoding circuit output follows the $38-\mathrm{kHz}$ envelope and requires less filtering than conventional techniques.

Two-speed phase-locked loop

Another form of distortion can be introduced into stereo decoding circuits that use a phase-locked loop circuit to regenerate the $19-\mathrm{kHz}$ and $38-\mathrm{kHz}$ carrier signals during decoding. Ideally, the regenerated $38-\mathrm{kHz}$ subcarrier signal should be immune to noise-induced frequency jitter. To reduce such frequency jitter, some designers narrow the bandwidth of the phase-locked loop, $19-\mathrm{kHz}$ capture range. This approach makes it more difficult for the PLL circuit to lock onto the incoming pilot-carrier signal. Opening the bandwidth to allow fast and reliable capture of the pilot signal, on the other hand, increases the possibility of pilot jitter; this normally peaks at around 200 Hz to produce high-order audible intermodulation. In the Kenwood stereo decoder (shown in the block diagram of Fig. 6) a dual time-constant filter is used in the PLL circuitry: a wide filter
for acquisition; followed by a narrow filter, which is inserted after lockup (of the pilot signal) to keep tight and jitterfree control of the regenerated pilot signal.

Figure 6 also demonstrates the way in which this PLL circuit eliminates any residual $19-\mathrm{kHz}$ signals from the recovered audio outputs. Removal of this highfrequency signal is important because the presence of $19-\mathrm{kHz}$ components in the output signals can produce beat frequencies during tape recordings (the $19-\mathrm{kHz}$ harmonics can beat with the tape deck's bias oscillator); and can also cause improper tracking of built-in Dolby or other types of noise-reduction circuits. The conventional way of removing the $19-\mathrm{kHz}$ pilot signal from the audio output signals is by using a simple low-pass filter. For the filter to be effective at 19 kHz , however, it must also rolloff response at
lower audio frequencies, beginning at around 10 kHz or 12 kHz . The decoding system shown in Fig. 6 does not use such simple filters. Instead, a sample of the regenerated $19-\mathrm{kHz}$ signal from the twospeed phase-locked loop is applied to a subtractor circuit in the decoder input section. Here, the original pilot signal and the regenerated $19-\mathrm{kHz}$ pilot signal are 180 degrees out-of-phase. By adjusting the out-of-phase $19-\mathrm{kHz}$ signal so that it is equal in amplitude to the incoming $19-$ kHz signal (part of the overall detected composite stereo signal), the two $19-\mathrm{kHz}$ components cancel each other out without affecting audio frequency response.

Manufacturers of high-fidelity FM equipment such as Kenwood and others seem to be able to develop more and more improved circuits to provide audibly better FM reception in the home. Unfortunately, only a few FM broadcast stations are able to transmit clean enough signals to allow state-of-the-art hi-fi FM tuners and receivers to perform optimally. The truth is that the performance of most FM receivers today is limited by the antiquated transmission equipment used by a majority of FM stations, not 10 mention the scratched recordings, worn styluses, and hum-and-noise in studio consoles and cables that many stations continue to transmit.

R-E

FIG. 6-BLOCK DIAGRAM of the Kenwood stereo decoder designed to eliminate pilot jitter. Two filters, one narrowband and the other wideband, provide a jitter-free regenerated pilot signal.

Radio-Electronics Audio Lab Tests

 CIRCLE 106 ON FREE INFORMATION CARD

LEONARD FELDMAN
CONTRIBUTING HI-FI EDITOR

SONY CORPORATION HAS DEVELOPED ITS MOST powerful stereo receiver to date, the model STR-V7 (see Fig. 1). This receiver's control layout has been carried over from earlier Sony models. The tuning knob and master volume control are conveniently placed in the upper right-hand side of the panel, and the POWER on/off pushbutton is located at the upper lefthand side. In between these controis are placed three meters-the center meter acts as either a signal-strength meter (when a pushbution adjacent to the tuning knob is depressed) or, used with the meter on the left, as one of a pair of power-output meters directly calibrated in watts across an 8 -ohm load. The third meter, next to the volume control, serves as a center-of-channel tuning indicator in the FM listening mode.

The FM dial scale is linearly calibrated with markings at every 200 kHz , while below it is a nominally calibrated AM scale. Above these scales are a series of indicator lights that denote program source as well as stereo FM reception. The remaining controls and switches are located along the bottom section of the panel. Adjacent to the usual headphone output jack at the extreme left is a SPEAKER selector
switch. Next to this control are three toggle switches for the low-cut and high-cut filters and for bypassing the bass and Treble controls. Next come a rotary balance control, LOUDNESS and MODE (stereo/mono) switches, TAPE switch and FUNCTION selector switch. The TAPE mode switch permits you to monitor either of two connected tape decks as well as to copy tape from one deck to another. The FUNC. TION switch has two phono settings: for magnetic cartridges, or, alternatively, for movingcoil cartridges. Three additional toggle switches on the lower right-hand side of the panel are used for varying FM-IF selectivity (both normal and narrow bandwidths), for FM muting and for activating the built-in Dolby FM decoding circuitry.

The upper left of the rear panel contains antenna terminals for 300 -ohm or 75 -ohm coaxial FM transmission lines and for connecting to an external AM antenna. A useful addition is an antenna lead-in clamp that retains the antenna line and protects it from strain. Nearby are a built-in ferrite-bar AM antenna, pivotable in two planes, and a chassis ground terminal. Near the two pairs of phono inputs is a two-position slide switch that selects either

MANUFACTURER'S PUBLISHED SPECIFICATIONS:

FM TUNER SECTION:

Usable Sensitivity: $9.3 \mathrm{dBf}(1.6 \mu \mathrm{~V}) 50$-dB Quieting: mono, $14.2 \mathrm{dBf}(2.8 \mu \mathrm{~V})$; stereo, $37.3 \mathrm{dBf}(40 \mu \mathrm{~V})$. S/N Ratio: mono, 75 dB ; stereo, 70 dB . Frequency Response: 30 Hz to $15 \mathrm{kHz}, \pm 0 \mathrm{~dB}$. Selectivity: normal, 50 dB ; narrow: 80 dB . Capture Ratio: 1.0 dB . AM Suppression: 60 dB . Image Rejection: 80 dB . IF Rejection: 100 dB . Spurious Rejection: 100 dB . Muting Threshold: $5 \mu \mathrm{~V}$ (19.2 dBf). Distortion, Mono: normal, 0.08% at 100 Hz and $1 \mathrm{kHz}, 0.1 \%$ at 10 kHz ; narrow, 0.2% at $100 \mathrm{~Hz}, 1 \mathrm{kHz}$ and 10 kHz . Distortion, Stereo: normal, 0.15% at 100 Hz and $1 \mathrm{kHz}, 0.3 \%$ at 10 kHz ; narrow, 0.4% at 100 Hz and $1 \mathrm{kHz}, 0.6 \%$ at 10 kHz . Stereo Separation: normal, 40 dB at $100 \mathrm{~Hz}, 48$ dB at $1 \mathrm{kHz}, 43 \mathrm{~dB}$ at 10 kHz ; narrow, 35 dB at $100 \mathrm{~Hz}, 40 \mathrm{~dB}$ at $1 \mathrm{kHz}, 37 \mathrm{~dB}$ at 10 kHz .

AM TUNER SECTION:

Usable Sensitivity: $100 \mu \mathrm{~V}$ (external antenna). S/N Ratio: 50 dB . Harmonic Distortion: 0.5%. Selectivity: 40 dB . Image and IF Rejection: 40 dB .

AMPLIFIER SECTION:

Power Output: 150 watts-per-channel, $8 \mathrm{ohms}, 20 \mathrm{~Hz}$ to 20 kHz . Rated THD: 0.07%. IM Distortion: 0.07%. Input Sensitivity: phono, 2.5 mV and 0.25 mV ; high level, 150 mV . S/N Ratio (Phono, A-Weighted): 80 dB and 65 dB (moving coil); high level, 100 dB . Frequency Response: phono, RIAA, $\pm 0.5 \mathrm{~dB}$; high level, 5 Hz to $50 \mathrm{kHz},+0,-2 \mathrm{~dB}$. Tone Control Ranges: $\pm 10 \mathrm{~dB}$ at 100 Hz and 10 kHz . Filter Cut-Off Frequencies: 50 Hz and $9 \mathrm{kHz}, 6 \mathrm{~dB}$-per-octave

GENERAL SPECIFICATIONS:

Dimensions: $201 / 2 \mathrm{~W} \times 71 / 2 \mathrm{H} \times 17^{3 / 4}$ inches D. Net Weight: 48 lbs ., 6 oz .
Power Requirements: 120 volts, $60 \mathrm{~Hz}, 250$ watts. Suggested Retail Price: $\$ 820$.

MM (Moving Magnet) or MC (Moving Coil) cartridge operation. The tape-input and tapeoutput jacks are located in the lower left of the rear panel. On the right-hand side are located two sets of spring-loaded, color-coded speakerconnection terminals, while just below are two AC receptacles (one switched and one unswitched). No external access to fuses is provided. A view of the rear panel is shown in Fig. 2.

The owner's manual contains virtually no information regarding the circuit design and no schematic diagram is provided. From a quick examination of the internal construction of the unit and an analysis of the block diagram (which is provided), we learned that the FM front-end uses a four-section tuning capacitor, and has separate filter systems for the normal and narrow bandwidth IF settings of the frontpanel selectivity switch. The multiplex decoder comprises a phase-locked-loop circuit followed by low-pass filters to eliminate subcarrier products at the output. The AM circuit uses a single IC and a two-gang tuning capacitor. The Dolby FM decoding circuitry is also incorporated in a single IC. Power-output circuits are protected by electronic and mechanical-relay circuitry. The latter also serves to delay turnon for a few seconds to prevent thumps and other noises from reaching the loudspeakers. Figure 3 is a diagram that shows how this receiver can be hooked up to associated components.

FM measurements

Table 1 contains the measurements made for the FM tuncr section of the model STR-V7. While usable sensitivity was poorer than claimed, the more important $50-\mathrm{dB}$ quieting specification proved to be better than claimed, with readings of $2.3 \mu \mathrm{~V}(12.4 \mathrm{dBf})$ in mono and $38 \mu \mathrm{~V}(36.8 \mathrm{dBf})$ in stereo as opposed to the $2.8 \mu \mathrm{~V}$ and $40 \mu \mathrm{~V}$ claimed by Sony. On the other hand, the signal-to-noise ratio at strong signal levels failed to reach the manufacturer's specified levels. Even more surprising (and

watts-per-channel at mid-frequencies (and somewhat more than its rated power at high frequency), it was barely able to detiver its rated power at 20 Hz . Dynamic headroom

measured a moderate 1 dB . The manufacturer's specifications for S / N ratio and input sensitivity are reported by Sony in a manner that does n^{+}yet reflect the new IHF Measurement S : $n d a r d s$ for Audio Amplifiers. Therefore, you should not attempt to compare the input sensitivity values and signal-to-noise
disappointing) were the relatively small differences observed between distortion readings measured in the normal and narrow bandwidth modes. And, whereas we normally expect THD readings to be poorer in stereo than they are in mono, the opposite was true with this receiver. There is no easy way to determine whether this is the result of two types of distortion "tending to cancel each other out" or not. Stereo separation, while certainly adequate for all listening purposes, also fell short of published claims, both for the normal and narrow IF bandwidth settings; and, again, the differences were relatively small when shifting from one selectivity setting to the other.

Muting threshold and stereo-switching threshold (and, hence, usable stereo sensitivity) were all set a bit too high-at around $12 \mu \mathrm{~V}$ (26.8 dBf). Sony specifications call for a $5-\mu \mathrm{V}$ threshold. The frequency response of the FM section was excellent, with deviations of no more than 0.5 dB from 30 Hz to $15,000 \mathrm{~Hz}$, as shown in the top trace in Fig. 4. The lower trace in Fig. 4 shows the separation (or, more properly, the crosstalk) in stereo FM. Two scope sweeps were taken; one for the normal IF mode, the other for the narrow mode; and results agrec fairly well with the static point-by-point measurements discussed above and shown in Table 1.

Figure 5 shows the built-in Dolby FM decoder action. At higher modulation levels (see the upper trace), frequency response is virtually flat, while at progressively lower modulation levels, the appropriate treble attenuation is introduced automatically by the Dolby circuitry.

Figure 6 shows only the frequency-response curve of the AM section. In this respect, the model $S T R-V 7$ is neither better nor worse than most competitive units. You should not expect anything resembling hi-fi performance from this minimal AM section.

Amplifier measurements

Table 2 shows the results of measurements made on the amplifier/preamplifier control section. While the power-amplifier section delivered considerably more than its rated 150

TABLE 1

R.E.A.L. SOUND PRODUCT TEST REPORT

Manufacturer: Sony Corporation
Model: STR-V7
FM PERFORMANCE MEASUREMENTS

SENSITIVITY, NOISE AND	R-E	R-E
FREEDOM FROM INTERFERENCE	Measurement	Evaluation
IHF sensitivity, mono: ($\mu \mathrm{V}$) (dBf)	1.9 (10.8)	Good
Sensitivity, stereo ($\mu \mathrm{V}$) (dBf)	12.0 (26.8)	Fair
$50-\mathrm{dB}$ quieting signal, mono ($\mu \mathrm{V}$) (dBf)	2.3 (12.4)	Excellent
$50-\mathrm{dB}$ quieting signal, stereo ($\mu \mathrm{V}$)	38 (36.8)	Fair
Maximum S / N ratio, mono (dB)	70	Good
Maximum S/N ratio, stereo (dB)	68	A verage
Capture ratio (dB)	1.2	Very good
AM suppression (dB)	60	Excellent
Image rejection (dB)	83	Very good
IF rejection (dB)	$100+$	Superb
Spurious rejection (dB)	$100+$	Superb
Alternate channel selectivity (dB)	80/48 (narrow)	Very good
FIDELITY AND DISTORTION MEASUREMENTS	Narrow/broadband	
Frequency response, 50 Hz to 15 kHz ($\pm \mathrm{dB}$)	0.5	Excellent
Harmonic distortion, 1 kHz , mono (\%)	0.22/0.2	Fair
Harmonic distortion, 1 kHz , stereo (\%)	0.08/0.085	Excellent
Harmonic distortion, 100 Hz , mono (\%)	0.3/0.28	Fair
Harmonic distortion, 100 Hz , stereo (\%)	$0.14 / 0.10$	Good
Harmonic distortion, 6 kHz , mono (\%)	0.16/0.25	Good
Harmonic distortion, 6 kHz , stereo (\%)	0.20/0.25	Very good
Distortion at $50-\mathrm{dB}$ quieting, mono (\%)	1.0/1.0	Fair
Distortion at $50-\mathrm{dB}$ quieting, stereo (\%)	0.3/0.3	Good
STEREO PERFORMANCE MEASUREMENTS	Narrow/broadband	
Stereo threshold ($\mu \mathrm{V}$) (dBf)	12.0 (26.8)	Fair
Separation, $1 \mathrm{kHz}(\mathrm{dB})$	45/45	Very good
Separation, $100 \mathrm{~Hz}(\mathrm{~dB})$	42/41	Very good
Separation, 10 kHz (dB)	25/27	Fair
MISCELLANEOUS MEASUREMENTS		
Muting threshold ($\mu \mathrm{V}$) (dBf)	12.0 (26.8)	Fair
Dial calibration accuracy ($\pm \mathrm{kHz}$ at MHz)	75 at 108	Very good
EVALUATION OF CONTROLS, DESIGN, CONSTRUCTION		
Control layout		Excellent
Ease of tuning		Excellent
Accuracy of meters or other tuning aids		Very good
Usefulness of other controls		Very good
Construction and internal layout		Excellent
Ease of servicing		Very good
Evaluation of extra features, if any		Very good
OVERALL FM PERFORMANCE RATING		Good

values indicated in Table 2 with those shown by the manufacturer. The measured values should be judged on their own merits and compared with those obtained for other products that have been measured using the new IHF Standards. The RIAA equalization was as nearly perfect as we have ever measured, and phono overload was a much-more-than-adequate 230 mV (Sony's specification lisı makes no claims for this important parameter).
Tone controls operated fairly normally, with the pivot frequency of both the bass and treble control set at around 1 kHz , as shown in Fig. 7. (Note: In this and all other scope photos, one vertical division on the scope face equals $10-\mathrm{dB}$ difference in amplitude.) Figure 8 is a scope photo of the high-cut and low-cut filter action. The high-cut filter has little audible effect upon hiss and scratch, while the lowcut filter, although it does help reduce turntable rumble, also considerably affects the lower bass frequencies in music programming. Both

filter circuits use only a minimal 6 dB -peroctave roll-off slope. Figure 9 depicts the loud-ness-control circuit at various master volumecontrol settings (approximately $10-\mathrm{dB}$ apart) in which both treble and bass frequencies are boosted as volume control settings are reduced The treble accentuation has been kept at moderate levels compared with the bass boost.

TABLE 2

AMPLIFIER PERFORMANCE MEASUREMENTS

POWER OUTPUT CAPABILITY

RMS power/channel, 8 -ohms, 1 kHz (watts)
RMS power/channel, 8 -ohms, 20 Hz (watts)
RMS power/channel, 8 -ohms, 20 kHz (watts)
RMS power/channel, 4 -ohms, 1 kHz (watts)
RMS power/channel, 4 -ohms, 20 Hz (watts)
RMS power/channel, 4 -ohms, 20 kHz (watts)
Frequency limits for rated output ($\mathrm{Hz}-\mathrm{kHz}$)
Dynamic headroom (dB)
DISTORTION MEASUREMENTS
Harmonic distortion at rated output, 1 kHz (\%) Intermodulation distortion, rated output (\%) Harmonic distortion at 1 -watt output, $1 \mathrm{kHz}(\%)$ Intermodulation distortion at 1-watt output (\%)
DAMPING FACTOR AT 8 OHMS, 50 Hz
PHONO PREAMPLIFIER MEASUREMENTS
Frequency response (RIAA $\pm \mathrm{dB}$)
Maximum input before overload (mV)
Hum/noise, A-weighted, referenced to 1 -watt or 0.5 -volt output, for $5-\mathrm{mV}$ input (dB)

HIGH-LEVEL INPUT MEASUREMENTS
Frequency response ($\mathrm{Hz}-\mathrm{kHz}, \pm \mathrm{dB}$)
Hum/noise A-wt'd, re: 0.5 or 1 W out, 0.5 V in (dB)
Residual noise, A-wt'd, minimum volume, re: iw out (dB)
TONAL COMPENSATION MEASUREMENTS
Action of bass and treble controls
Action of secondary tone controls
Action of high- and low-cut filters
COMPONENT MATCHING MEASUREMENTS
Input sensitivity, phono 1/phono 2, re: 1w or 0.5 v out (mV) Input sensitivity, high level, re: 1 w or 0.5 v out (mV)
Output level, tape outputs, at rated output (mV)
Output level, headphone jack, at rated output (mV or mW)

EVALUATION OF CONTROLS,

CONSTRUCTION AND DESIGN
Adequacy of program source and monitor switching
Excellent
Adequacy of input facilities
Front panel layout
Action of controls and switches:
Design and construction
Ease of servicing
OVERALL AMPLIFIER PERFORMANCE RATING
Excellent
Superb
Very good
Excellent
Good
Good

TABLE 3
R.E.A.L. SOUND PRODUCT TEST REPORT

Manufacturer: Sony Corporation
Model: STR-V7

OVERALL PRODUCT ANALYSIS

Retail price
Price category High
Price/performance ratio
Styling and appearance
Sound quality
Excellent
Mechanical performance
Comments: Sony's top-powered receiver for 1979 left us with mixed emotions. On the one hand, the control and front-panel layout was excellent. Controls functioned smoothly and accurately, and although such top-of-the-line features as a subsonic filter and a midrange tone control were missing, there were ample input and output facilities including built-in Dolby decoding for Dolby FM broadcasts (a feature which is worth about $\$ 100.00$).

What was disappointing was the tuner performance and, to a lesser degree, some of the measurements made on the amplifier section. Even after Sony went to the trouble of incorporating selectable IF bandwidth for the FM tuner, we found very little difference in distortion and separation capability between the two selectivity settings even though the readings themselves approached published specifications. The FM reception was not poor; it was, in fact, quite good, but no better than we have heard from receivers costing far less.
Table 2 shows that the amplifier just barely equaled its power-output specifications at the frequency extremes. We expect a certain degree of conservatism and reserve power in receivers selling for more than $\$ 800$. This is not to criticize the sound the receiver produces when driving even low-efficiency speakers. Nor can we overlook the incorporation of a built-in "head amp" or pre-preamplifier, which will appeal to audiophiles who prefer moving-coil cartridges. It seems that the rising value of the Japanese yen (and the sinking U.S. dollar) is at last causing Japanese hi-fi manufacturers to drive up the prices of their products to levels that no longer yield the superb price/performance ratios of a year or two ago.

Summary

Table 3 contains our overall product evaluation as well as summary comments regarding this Sony receiver. The model STR-V7 is, in

many ways, an excellent instrument insofar as human engineering is concerned. Its controls are well placed and smooth operating. If it cost perhaps two hundred dollars less (or even one
hundred dollars less) we might be more enthusiastic about its performance. As it is, we do feel that the model $S T R-V 7$ is priced too high for what it does. We do recognize that prices of all Japanese products have been skyrocketing owing to the drastic shifts in currency exchange rates; but, in most cases, technology has kept pace with rising costs and tends to offset them. We now seem to be reaching the point where costs are rising more rapidly than advances in circuitry are able to keep them down.

In summary, we believe that only the more innovative manufacturers are going to succeed in this changing audio market, and, the new Sony model STR-V7 receiver, while certainly adequate in every sense, lacks the features and state of the art performance one would expect from a receiver in such a high price bracket.

R-E

Radio-Electronics Audio Lab Tests
 CIRCLE 107 ON FREE INFORMATION CARD
 dbx, Inc. Model 2BX Dynamic Expander

2195) specializes in expanders and noisereduction devices. The company's new twoband expander, the model $2 B X$, is shown in Fig. 1. The unit is intended for connection to a stereo component system via either the tape-input/tape-output jacks on a receiver or integrated amplifier, or by being interposed between a separate preamplifier/amplifier in sep-arate-component systems.

The front panel of the model $2 B X$, which is finished in black and silver, has a POWER on/ off switch and an indicator light on the lefthand side. A slide-control knob labelled exPANSION to the right adjusts the degree of linear expansion-from 1.0 (no expansion) to $1.5(50 \%$ expansion, in which every $2-\mathrm{dB}$ change for input signals results in a $3-\mathrm{dB}$ change at the output).

The most important innovation of this expander is its use of two separate frequency bands. Low frequencies are handled by one expansion circuit, while high frequencies are controlled by another circuit. (We'll discuss the importance of this feature later on in this

MANUFACTURER'S PUBLISHED SPECIFICATIONS:

Expansion Ratio: 1.0 to 1.5 , linear, in dB. Transition Level Range: 30 mV to 3.0 volts. Frequency Response (at 1.0:1.0 Expansion): 20 Hz to $20 \mathrm{kHz}, \pm 0.5 \mathrm{~dB}$. Harmonic Distortion (at 1.0:1.0 Expansion): $0.2 \%(20 \mathrm{~Hz}$ to 20 kHz). IM Distortion (at 1.0:1.0 Expansion): 0.15%. Input Impedance: 50,000 ohms. Maximum Output Level: 6.0 volts. Power Requirements: 117 volts, 50 to $60 \mathrm{~Hz}, 20$ watts. Dimensions: $173 / 4 \mathrm{~W} \times$ $33 / 4 \mathrm{H} \times 101 / 2$ inches D. Weight: 8 lbs., 5 oz. Suggested Retail Price: $\$ 450$.

article.) Two rows of LED's (five amber LED's and five red LED's per bank) indicate what is happening within each frequency band. The illumination of the amber lights in either row indicates that the signal frequencies are being downward expanded (i.e., low-level signals are lowered even more), while the illumination of the red LED's means that instantaneous signals are being expanded upward (loud signals are being made still louder).
The transition level control to the right of the rows of LED's determines the threshold or transition point between upward or downward expansion, and can be varied over a wide range to take care of a variety of program levels and types of music. Next to this control, two pushbuttons let you compare source and taped results, and two others let you select whether you want the expansion to occur after the tape outputs on the rear panel or ahead of them (for pre-expansion prior to taping).

The rear panel is shown in Fig. 2.
Part of the reason why less-sophisticated expanders tend to breathe or pump audibly is due to their attack-and-release times. While a rapid attack-and-release time may be good for
some types of music, different attack-andrelease times may be desirable with other types of music. The model $2 B X$ s attack-and-release times actually follow the rate of change of the program envelope. In addition, attack-andrelease times are scaled differently in each pair of frequency bands to provide an expansion characteristic that best suits the music.
As for the division of program material into two frequency bands, consider what would happen if in a given instant, a bass drum beat, or a series of beats, were to be sensed by a single-band expander. The level-detection circuits would momentarily increase the gain of the system, and, if other instruments or a vocalist's signal were also present, the entire program level would be expanded, resulting in an unnatural sort of heaving or breathing. By separating the lower frequencies from the midand high frequencies, the model $2 B X$ does not allow the bass tones to influence vocals or midrange instruments.
To demonstrate how the expander is able to handle different frequencies differently, we fed in a mixture of 60 Hz and 7 kHz (readily available from our IM Distortion Analyzer).

With our spectrum analyzer set to its higher sensitivity mode (2 dB of amplitude per-verti-cal-division), we first examined the output with the expansion control set for 1.0 (no expansion). Figure 3 shows the response from 20 Hz to 20 kHz . Note that the $60-\mathrm{Hz}$ component at the output is some $7-\mathrm{dB}$ greater than the $7-\mathrm{kHz}$ contribution to the overall signal.

Next, the threshold control was set so that the $60-\mathrm{Hz}$ signal caused the first "upwardexpansion" LED to light up. Since the highfrequency component was considerably lower in amplitude, amber lights in the high-frequency row of LED's lit up, indicating downward expansion. We advanced the expansion control to 1.5 (that is, to maximum expansion) and examined the output signal again, as shown in the scope photo of Fig. 4. Note that the lowfrequency component has been expanded by some 2 dB (one vertical division). By contrast, the high-frequency component was actually downward-expanded by more than 3 dB . Thus,

TABLE 1
R.E.A.L. SOUND PRODUCT TEST REPORT

Manufacturer: dbx, Inc.
Model: 2BX

EXPANDER PERFORMANCE MEASUREMENTS

SPECIFICATIONS
Expansion ratio range (\%)
Transition level range (volts)
Frequency response at $1: 1$
expansion ($\mathrm{Hz}-\mathrm{kHz}, \pm \mathrm{dB}$)
THD at 1:1 expansion (\%)
at 20 Hz
at 1 kHz
at 20 kHz
THD at maximum expansion (\%)
at 20 Hz
at 1 kHz
at 20 kHz
IM distortion, 1:1 expansion (\%)
IM distortion, maximum expansion (\%)
Maximum output level (volts)
R-E
Measurement

0 to 50
0.015-3.0

20-35, 0.5
0.022
0.02
0.02
0.1
0.037
0.045
0.02
0.18
7.0

SUBJECTIVE EVALUATIONS
Attack time
Decay time
Noise-reduction effect
Effectiveness of controls
Ease of installation
Ease of use
Additional features
OVERALL EFFECTIVENESS OF EXPANDER

R-E
Evaluation Excellent Excellent

Excellent
Excellent
Very good
Excellent
Very good
Excellent
Excellent
Excellent
Good
Very good

Excellent
Very good
Very good
Excellent
Very good
Excellent
Very good
Excellent

TABLE 2

OVERALL PRODUCT ANALYSIS	
Retail price	$\$ 450$
Price category	Medium/high
Price/performance ratio	Very good
Styling and appearance	Excellent
Sound quality	Excellent
Mechanical performance	Very good

Comments: The model $2 B X$ expander goes a long way towards overcoming the chief objection many serious audiophiles have had against "add-on" dynamic expanders. It produces very little "breathing and pumping"-a rise and fall of the background noise level as the gain of variable-voltage-controlled amplifiers changes. Much of the improvement comes from the two-band design of the unit, and from its carefully programmed attack-and-delay times. The only expander that goes one step beyond this expander is dbx's model $3 B X$, which sells for $\$ 200$ more and divides the music frequency spectrum into three separate bands.
The effectiveness of the model $2 B X$ will vary depending upon the type of music being reproduced. Obviously, not all program sources have been subjected to the same degree of compression and peak-limiting. It is important, therefore, to experiment with the model $2 B X$ and to use its few front-panel controls to select the best overall effect for each type of musical program source. With FM radio programs, it was hardly ever necessary to alter the threshold setting once the unit was set up since FM modulation levels tend to remain fairly constant. With phonograph records, however, the average groove modulation can vary over a wide range from one disc to another, which is especially true in direct-to-disc records. The unit's secondary benefit-noise reduc-tion-is clearly evident with all program material, but its chief virtue lies in its ability to restore missing dynamic range from just about any music program source. Once you experience the sound of music played through an expander such as this one, you may find not using it may make music sound extremely bland and unexciting
the difference in levels between the two signal components is now around 12 dB . No singleband expander could have achieved these results.

Lab measurements

The few lab measurements we made on the model 2BX are summarized in Table 1. It is clear that the distortion produced by the device is so low as to be inaudible, even when the maximum expansion is used. Frequency response is uniform over more than the audio spectrum, and therefore does not affect the tonality of reproduced program material.
The overall product analysis is shown in Table 2, along with our summary comments.

The model $2 B X$ is easy to install and use. It covers an adequate adjustment range, and we
believe any expansion beyond 1.5:1 range would tend to make any reproduced music sound unnatural or artificial. A side benefit that should not be overlooked is the unit's ability to serve as a noise-reducing device. Since, with a properly adjusted threshold it provides both downward as well as upward expansion, residual noise levels (such as tape hiss or record-surface noise) that the detection circuits perceive as "low-level" signals are expanded downward and become less audible.

The model $2 B X$ is a carefully engineered device that will appeal to serious music lovers who recognize the dynamic-range limitations of present-day program sources. Even though such devices may one day become obsolete, until that happens, the model $2 B X$ provides the best alternative.

$\operatorname{lx}(0)$
 ALITHE MOST WANTED F FATURES ata Mos Waniti Pric...

BIG $1 / 2^{\prime \prime}$ HIGH LCD DISPLAY USE INDOORS OR OUT 200 HOUR 9V BATTERY LIFE AUTO ZERO, POLARITY, OVERRANGE INDICATION 100 mV DC F.S. SENSITIVITY 19 RANGES AND FUNCTIONS

X10 DCV probe adapter available for protecting input up to 10 KV .

CIRCLE 48 ON FREE INFORMATION CARD

[^2] (216) 541-8060 TWX: 810-421-8286

Here is the handfull of accuracy you've been waiting for. Handsomely encased Compact. Efficient Only 12 ounces Hickok's exciting. new LX 303, $31 / 2$ digit Mini-Multimeter with high quality components, one year guarantee and rugged Cycolac ${ }^{\circledR 1}$ case offers features previously found only in expensive units. . at a price under $\$ 75.00$! So why wait any longer? The amazing LX 303 is here, NOW! Another American made test equipment breakthrough from Hickok, The Value Innovator. Order today!

SPECIFICATIONS:
DC VOLTS (5 RANGES): 0.1 mV to 1000 V ; Accuracy $\pm 0.5 \% \mathrm{rdg} \pm 0.5 \%$ f.s.; Input imped: $1 \mathrm{DM} \Omega$; Max. input 1 kV except 500 V on 200 mv range.
AC VOLTS (40 Hz to 5 kHz): 0.1 V to 600 V ; Accuracy: $\pm 1.0 \%$ rdg $\pm 0.5 \%$ f.s. $(-2 \mathrm{~dB}$ maz. at 5 kHz); Max. input: 600V.
RESISTANCE (6 LOW POWER FIANGES): 0.1Ω to $20 \mathrm{M} \Omega$; Accuracy: $\pm 0.5 \% \mathrm{rdg} \pm \mathrm{C} 5 \% \mathrm{I} . \mathrm{s}$. $(\pm 1.5 \% \mathrm{rdg}$ on $20 \mathrm{M} \Omega$ range); input protectec to 120 VACatl ranges.
DC CURRENT (6 RANGES): 01 I A ta 100 mA ; Accuracy: $\pm 1.0 \% \mathrm{rdg} \pm 0.5 \%$ f.s.
DIMENSIONS AND WEIGHT: $5-.18^{\prime \prime} \times 3-3 / 8^{\prime \prime} \times$
1-3/4", 12 oz.; POWER: 9 V batt. Mot incl.) or Hickok AC adapter; READ RATE: $3 / \mathrm{sec}$. OPERATING TEMPERATURE: $0^{\circ}-50^{\circ} \mathrm{C}$.

HOBBY CORNER

How to modify an alarm clock for multiple alarms and longterm alarms. EARL "DOC" SAVAGE, K4SDS, HOBBY EDITOR

IN A PREVIOUS ARTICLE WE DISCUSSED how to build a "slow" digital clock to measure weeks, months or years. I hope you have had an opportunity to build the recommended oscillator and experiment with your own slow clock. Now it is time (!) to add some refinements to it with a few additional simple circuits. Each of the circuits described here can be added to either a slow or a regular clock.

Multiple alarm

A serious shortcoming of any alarm clock-slow or regular-is that it can be set to go off at one time only. Suppose, for example, you set your slow clock to go off at 10 am on the 18 th of next month to remind you to have the car inspected. How then can you be reminded of your wife's birthday two weeks carlier and of your dental checkup three weeks later?

You could build several clocks, but a better solution would be to add more alarms to the one clock. Then, you could set each alarm for a different time. What you need is a way to build changeable interfaces between the clock IC output and an audio oscillator or LED's.

First, let's examine carefully the way a 7 -segment readout creates the digits. The segments are designated by the letters shown in Fig. 1. Segments b and c are on to display a " 1 "; segments a, b, g, e and d display a " 2 " and so on. If you wrote all these letters and numbers down and studied the list, you would discover that there are certain short combinations that identify each digit exclusively.

FIG. 1

For example, segments a and f are off (10,0) simultaneously only when digit 1 is being displayed. Segment d is on (hi, 1) while segment f is lo only when digit 3 is displayed. Such a short definitive pattern

TABLE 1

Digit	Segments	
	on/hi/1	of//lo/0
0	f	g
1		a, f
2		c, f
3	d	f
4	f	a, d
5	a	b, e
6	b, e, f, g	f, f
7	a, f	d, e
8		
9		

exists for each digit, and some digits even have more than one pattern. One useful set of patterns is shown in Table 1; and the alarm circuits we'll describe are based on this set. Note that the hi and lo (1 and 0) states are for a clock using common cathode displays; just reverse these for common anode displays.

With the segment information shown in Table 1 , you're halfway to building the circuit. All you need now are a few gates and an audio or visual indicator.

Let's build a circuit to remind yourself when the clock shows 7 hours and 20 minutes, whatever date or time that stands for. (You can use the same principles to set an alarm for any "time.")

The circuit in Fig. 2 lights the LED only when the hours digit is " 7 " and the 10 's-of-minutes digit is " 2 ." Trace out
the action of the gates to see how it accomplishes this. Of course, other gate combinations will produce the same result. Just use what is most convenient for you.

In Fig. 2, the 1 's and 0 's indicated in parentheses show the state of each line at 7:20. The LED requires no limiting resistor when it is used with CMOS gates unless the $+V$-supply is higher than 14 volts or so. The inset shows how to connect an LED that you want to light when the line goes high.

The input lines are connected to the digit drive pins of the clock IC . The top input line goes to segment a of the hours output, etc. If you have to use a segment connection on more than one alarm circuit, don't worry-you can add any practical number with no change in operation.

On a 12 -hour clock you can use the AM/PM pin as a gate input to distinguish between 7:20 and 19:20, for example. On a 24 -hour clock, you can use segments b and g as shown in Table 2.

TABLE 2

10's Hrs. Digit	Segments	
	hi	lo
Blank		b
1	c	
2	g	

Depending upon your clock's digitaldrive circuit, you may find that the IC pin does not go high or low enough to switch the gate inputs. This may happen when there are current-limiting resistors between the pins and the digits. If you find this happens, simply replace the resistors with values up to 2 K . The decrease in

digit brightness will be very little, but the changed load will allow the pin voltage to swing more.

I used LED's as alarm outputs on my clock. The LED's are arranged on a small panel next to labels on which is marked what cach alarm is set for. You may want to use audible indicators with or without LED's to show which alarm is sounding off. A suitable audio oscillator can be made in many ways: by using transistors, unijunctions, 555's, etc. (See previous "Hobby Corners" and other articles if you need an oscillator circuit suitable for use as an alarm.)

Of course, you will have to change gate and clock IC connections whenever you wish to set an alarm for another "time." One approach is to use a bank of switches. Another method is to use a small section of solderless breadboard for cross-patching connections. Because changing alarm connections are made so seldom on a slow clock, I just tack-solder the connections as I need them.

A normal, real-time clock can be made into a multiple-alarm unit using the circuits described above for a slow clock. However, the inconvenience of resetting the alarms makes this of questionable value. With a normal clock, a more practical approach would be to use gates to pick off, say, 30-minute "ticks" that would drive counters, with the appropriate outputs being selectable through a switch or patch-cords.

Long-term alarm

Suppose you want to leave your digital clock unmodified so that it displays the time, yet also provides a reminder for next week or next year. This problem is relatively simple to solve using a few "external" components.

For example, suppose you want an alarm set at exactly 3 pm 43 days from now. First, if the clock has a built-in alarm circuit, disconnect the alarm from the clock IC output; then set the alarm for 3 pm .

Next, use the IC alarm pin to drive one or more counters. Finally, connect the counter output(s) to enable the original alarm circuit (or some other indicator) after 43 pulses (produced by 4324 -hour periods) have elapsed.

There is a wide variety of CMOS counters to choose from. There are standard counters, programmable counters, and even counters that can count up to 16,384 (for instance, the 4020 IC)! For proper functioning, you may have to invert the output of the IC alarm pin, depending upon your use of a positiveedge or negative-edge triggering counter, otherwise, the alarm may be 12 hours fast or slow when triggered on next month.

Note that you can use this same alarm technique with a slow clock (described last month) to count times of any desired length.

R-E

Shure makes microphones for every imaginable use.
Like musical instruments, each different type of Shure microphone has a distinctive "sound," or physical characteristic that optimizes it for particular applications, voices, or effects.
Take, for example, the Shure SM58 and SM59 microphones:

SM59
 SM58

Mellow, smooth, silent...

The SM59 is a relatively new, dynamic cardioid microphone. Yet it is already
widely accepted as a standard for distinguished studio productions. In fact, you'li often see it on TV
especially on musical shows where perfection of sound quality is a major consideration. This revolutionary cardioid microphone has an exceptionally flat frequency response and neutral sound
that reproduces exactly what it hears It's designed to give good bass response when miking at a distance.
Remarkably rugged--it's built to shrug off rough handling. And, it is superb in rejecting mechanical stand noise such as floor and desk vibrations because of a unique, patented built-in shock mount. It also features a special hum-bucking coil for superior noise reduction!

Crisp, bright "abuse proof"
Probably the most widely used onstage, hand-held cardioid dynamic microphone. The SM58 dynamic mi crophone is preferred tor its punch in live vocal applications ...especially where close-up miking is important it is THE world-standard professional stage microphone with the distinctive Shure upper midrange presence peak for an intelligible. lively sound World-renowned for its ability to withstand the kind of abuse that would destroy many other microphones. Designed to minimize the boominess you'd expect from close miking. Rugged, efficient spherical windscreen eliminates pops. Lightweight (15 ounces!) hand-sized. The first choice among rock, pop, R \& B, country, gospel, and jazz vocalists.

professional microphones...by
 "FBHRE

Shure Brothers Inc., 222 Hartrey Ave, Evanston. IL 60204, In Canada: A C. Simmonds \& Son Limited Manufacturers of high fidelity components, microphones, sound systems and related circuitry.

communications coriar

Are the new computerized CB's really computerized? HERB FREIDMAN, COMMUNICATIONS EDITOR

AS EXPECTED, THE FIRST "COMPUTERIZED" CB transceivers-those incorporating a microprocessor-are the higher-priced, high-performance models. A natural question, however, is: "Does computerization improve communications?" (After all, communications is what CB isallabout.)

The answer, unfortunately, is no. Computerization has essentially no effect on communications, at least not at the present time. At best, it is simply an operating aid or convenience. And, depending on your particular application, computerized CB can be a decided convenience or inconvenience.

The microprocessors-generally shown in schematics as a box outline with many connections protruding from each side-are basically user-programmable channel-selection (switching) circuits much as you might find in late-model VHF scanners before they also were computerized. At the touch of a button, the transceiver tunes through all 40 channels,

FIG. 1

stopping on busy or clear channels. The touch of another button lets you step through the channels one at a time; or by pressing a combination of pushbuttons, you can direct-access a particular channel. All this can be done (and has been done) with individual IC's; we don't really need the large-scale integration of a microprocessor. Although the use of a single IC does increase reliability.

The real difference between a comput-
erized $C B$ and a scanning $C B$ is in the memory. The microprocessor permits you to program a specific group of channels to be scanned in a specific order. As a general rule, most $C B$ microprocessors contain from 5 to 10 channel memories. Some manufacturers chose to make one of the memories Channel 9, which actually means you have less user-selected channel memory. The advantage is that you can receive the emergency-only channel at the push of a button.

The microprocessor also features keyboard entry, whereby a keypad similar to those used on Touch-Tone telephones provides the means to select channels, program memories and to choose the various functions.

Most of the "computerized" transceivers use each keypad switch for two purposes, as if the designer couldn't stand to see a switch with a single numeral or function printed above or below. As you might expect, this produces complexity beyond what is generally needed, which tend to confuse the consumer.

One of the few manufacturers who opted to go "the other way" (i.e., using

FIG. 2
the microprocessor for what many would consider the most important functions) is Robyn, whose uncluttered keypad from the model SB-540D AM/SSB Base Station is shown in Fig. 1. In this unit pushbuttons M1-M5 handle the memories, which can be programmed in any sequence at any time. You can scan only the memory channels by pressing the memo SCAN switch, or you can directly tune to a memory by first pressing the мемо RECALL switch that also permits you to reprogram any memory at any time. The sCan delay switch holds the channel while it is in the scan mode so the tuning doesn't skip to the next memory or channel during the pause between transmissions. If there is no activity on the channel, the scan delay releases and the scanning resumes.

The Robyn keypad is presently the easiest to use and understand. It is almost self-explanatory, something that cannot necessarily be claimed of keypads of other computerized CB's.
But regardless of the complexity and sophistication of a microprocessor-controlled CB, the transceiver remains essentially the same in terms of reception and transmission as those of other CB's: Computerization has no effect on sensitivity, selectivity, RF output or modulation. Essentially, the microprocessor simply provides memory and scanning on a single IC, rather than on several. And if the microprocessor is simply a substitute for several IC's previously used in VHF receivers, and if it has no effect on communications specifications, do we in fact truly have computerized CB transceivers? Does computerization of only operating conveniences justify the term "computerized"? We'd like to hear your opinion-pro or con-so just drop us a short note. (Address all correspondence to: Communications Corner, Radio-Electronics, 200 Park Avenue South, New York, NY 10003.-Editor)

Look Ma, no tuning capacitor!

If you ever had the need for relatively widely spaced VHF coverage (approximately $150 \mathrm{MHz}-170 \mathrm{MHz}$) you know that you can generally peak the tuned circuits-such as the receiver's front end-for maximum performance to the low, middle or high side while experiencing reduced performance somewhere within the unit's frequency range. Generally, scanners are peaked for the center of the frequency band and you take whatever performance you can get at the frequency extremes.

While "letting the ends take care of themselves" is fine for hobbyist and semiprofessional receivers, things should not take care of themselves if a life might depend on optimum performance. For instance, commercial VHF radios, such as those used on all kinds of ocean-going craft, optimize performance on all frequencies; it's handled very easily now that
the phase-locked-loop (PLL) digital-frequency synthesizer is almost universal in all multifrequency receivers. In fact, because the PLL digital synthesizer is so convenient and competitively priced, it's used in many hobby/professional scanners such as those manufactured by Regency, Electra and Radio Shack; and even a hobbyist can enjoy optimum sensitivity from one end of the frequency band to the other

While the tuning of the synthesizer is electrical, it doesn't require variable tuning capacitors or even trimmers. And it's the lack of a tuning capacitor that makes it all possible

The Fig. 2 schematic shows how this can be accomplished. The circuit shown represents the front end of a commercial ship-to-shore VHF radio. The four diodes with the parallel-line capacitor symbol at the cathode end are varactors - diodes whose anode/cathode capacitance can be preciscly controlled by an applied DC voltage. The varactor capacitance represents only a small part of the total capacitance needed to tune each resonant circuit using adjustable coils LV100 LV104. A fixed capacitor in series with each varactor, in addition to stray capacitance, establishes the minimum circuit capacitance for the L-C network. Note that the DC supply for each varactor originates at a common source-the collector circuit of transistor Q101.

When the user sets the frequency selector(s) of the VHF radio, a shift current is applied to the base of Q101, which, in turn, changes the transistor's collector-emitter current that flows through R110-R111. This causes a variation in the voltage available at the junction of R110-R111 that is the "control" voltage for the varactors. The varactors' capacitance changes simultaneously, tuning each $\mathrm{L}-\mathrm{C}$ network to the operating frequency.

While commercial radios apply a fixedshift voltage so that the receiver tunes to one specific frequency, the same idea is used in the digitally controlled scanning monitors. As the scanning frequency sweeps within the chosen limits, the PLL circuits also provide a sawtooth (or sweeping) waveform (increasing or decreasing the DC voltage) to the front-end varactors, thereby tuning the front end precisely to the frequencies being tuned. When the radio is in the manual mode, the PLL circuit applies a fixed voltage to the varactor diodes, tuning the front end to whatever frequency you selected (or "punched in").

Essentially, the digital-frequency synthesizer allows you to tune precisely to the operating frequency, rather than settle for a broadband adjustment. It is one of the important differences between a broad-tuned crystal-controlled VHF monitor and continuously tuned digitally controlled VHF scanner

R-E

> The Kit Project of a Lifetime...

A Schober Electronic Organ

When an electronic project ends, we always seem to wish there were more to do. Well, here's the project where there really is more to do. It's the ultimate electronic kit, a Schober Electronic Organ.

We've had thousands of letters in our 24 years from enthusiasts all over the world who have had the time of their lives assembling Scho ber quality parts into fine musical instruments, guided by the famous crystal-clear, step-by-step Schober instructions. Many were family projects; even the little ones can sort resistor colors!

But when assembly is done, the fun is just beginning. You're ready to start a lifetime of musical enjoy ment as a Schober course teaches you and your family to play.

A Schober Organ makes a wonderful gift for a music-loving wife or child-or for yourself. It sounds great-far more pleasing and au thentic, with far greater musical resources than anything ready-built at a comparable price. In fact, you could easily pay twice as much and not get a better organ.

Basic Schober Organ Kits range from $\$ 650$ to $\$ 3391$-with five models to choose from. Each kit is complete with everything needed. The instructions are compreherisive, precise, and specific, giving you every bit of information you need, assuming no prior knowledge of or-gans-or even electronics.

There's optional equipment, too, which you can add any time later, new effects for more fun.

Send TODAY for the free color catalog. Enclose $\$ 1$ if you'd like the 12 -inch demo record, so you can let your own ears tell you about Schober musical quality.
SCHOBER ORGAN CORP, Dept.RE-186 43 West 61 st St., New York NY, 10023 Send Catalog. \square I enclose $\$ 1$ for record.

Name:
Address:
City, State, Zip
CIRCLE 56 ON FREE INFORMATION CARD

8085
 A look at the 8085 and how it compares to the 8080.
 P. RONY, C. TITUS, D. LARSEN, J. TITUS*

PAST COLUMNS HAVE LOOKED AT SOME applications of the 8085 central processing unit and some of IC's that are among the 8085 family. Now let's take a closer look at the 8085 and how it compares with the 8080 .

One of the 8085 's main features is that it is software-compatible with the 8080 machine codes. Thus, a 303 code is a jump (JMP) instruction in both systems. (The 8085 has two additional instructions to be discussed later.) Basic 8080 systems generally include a clock generator and a status latch circuit for external control. These functions are now provided for within the 8085 . A simple R-C network or a crystal can be used directly with the 8085 to generate the necessary clock pulses. Many of the control signals required by external devices are now generated in the 8085 IC, further reducing the amount of external logic required.

There is a price to pay for this, though. The 8085 uses one set of eight lines to transmit both data and address information. In some systems, it may be necessary to latch the address bits (A7-A0) so that they are readily available for use. An Address Latch Enable signal (ALE) is output by the 8085 to control such a latch circuit. This type of bus multiplexing was also done in the 8008, the first generalpurpose 8 -bit microprocessor IC

The 8085 provides the high-address bits (A15-A8) on eight output pins. These signals have no other purpose and they are not multiplexed. They are equivalent to the A15-A8 lines in an 8080based computer. Some other 8085 input and output signals such as interrupt (INTR), inţerrupt acknowledge ($\overline{\text { INTA }}$), RESET, HOLD, hold-acknowledge (hlda), and ready operate as they do in 8080 systems. Two new 8085 outputs include Clock out, a TTL-compatible clock signal of one-half the system clock frequency, and Reset out, which can be used to reset other system components. The RESET OUT signal is derived from the reset input to the 8085 .

[^3]Three control signals manage the flow of data to and from memories and the CPU, as well as to and from I/O devices and the CPU. These signals are: $10 / \bar{M}, \overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$. The $\operatorname{r} / \overline{\mathrm{M}}$ signal is used to indicate what type of device the 8085 is attempting to communicate with: logic 1 $=\mathrm{I} / \mathrm{O}$ devices and $\operatorname{logic} 0=$ memories. The $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ signals coordinate the reading or writing of data, respectively. These three signals are used directly by the 8085 -compatible memory and by $1 / \mathrm{O}$ devices such as the 8155 and 8355. In other systems, you may have to use these signals to generate the $\overline{M R}, \overline{M W}, \overline{I N}$ and OUT signals that were discussed previously. Figure 1 shows the gating.
In almost all 8080 -based systems, in-
like interrupt input. These interrupts have their vector addresses placed within the address space 000000 to 000100 . Some of these addresses are placed between the usual 8080 vector addresses, leaving only four bytes of storage space between interrupt vector addresses. These new interrupts act in the same manner as the normal 8080 -like interrupts, which means you still need a stack.

The 8085 also has a single input pin and a single output pin on the IC itself that can be controlled directly by software. Of course, the 256 addressable I/O port capability is still maintained. The two single I/O connections can be used for a single sense input and a single control output. Additionally, they could be used for serial I/O to a terminal or a teletypewriter, with the actual serialization being done by software.

Two new, single-byte instructions al-

FIG. 1
terrupts are implemented with an interrupt instruction port and restart instructions. The 8085 has four new interrupts that have been implemented,. (See Table 1,) The overall priority of these interrupts from the highest to the lowest is as follows: TRAP, RST 7.5 , RST 6.5 , RST 5.5 and int. The int input is the usual $8080-$
low you to manage the new interrupts and the two I/O lines, SID and SOD, (Serial Input Data and Serial Output Data). These instructions are: Set Interrupt Mask ($\mathrm{SIm}=060$) and Read Interrupt Mask (RIM $=040$). The A-register is used as the source or the destination of the data bytes for each operation. R-E

TABLE 1-INTERNAL 8085 INTERRUPTS

Name	Restart Address	Characteristics
TRAP	000044	Highest priority of all interrupts; nonmaskable, always "on"; both edge- and level-sensitive.
RST 5.5	000054	Maskable, logic-1 sensitive
RST 6.5	000064	Maskable, logic-1 sensitive
RST 7.5	000074	Maskable, positive-edge sensitive

saviag olinit

If the symptom is a horizontal bar, suspect the filter capacitors.
 JACK DARR, SERVICE EDITOR

EVERY ONCE IN A WHILE, AN OLD FAMILiar problem crops up again. Back in the "old days," we used to run into one particular symptom at quite frequent intervals. This symptom was the horizontal bar on the TV screen. It usually measured from $1 / 4$-inch to $3 / 4$-inch high, and crawled slowly up the screen. The bar could be lighter or darker than the picture, and it showed up mainly in less-expensive black-and-white TV sets.

The cause of this symptom was a voltage pulse getting into the video stages, where it caused partial blanking (a dark bar) or an increase in brightness (a light bar). Since there was only a single bar, this was obviously a $60-\mathrm{Hz}$ line phenomenon. Many of the DC power supplies were full-wave supplies; so ripple would create two bars. In that case, where does the single bar come from?

It comes from the high-current pulse that is drawn by the vertical-output stage, once for each field. If this voltage isn't filtered out and gets into the video amplifiers, it causes the bar to appear. The bar crawls up the screen because of the very small difference between the vertical frequency of the picture and the local $60-\mathrm{Hz}$ line ripple.

The major cause of this problem in the older sets was poor DC power supply filtering; that is, defective filter capacitors or poorly designed filter circuits. In some old TV sets, I have had to add as much as $100 \mu \mathrm{~F}$ of capacitance in order to get rid of the bar. Now, the same symptom is showing up in late-model solidstate TV sets. The "Service Clinic" mailbag has received quite a few questions on this problem.

The basic cause is still apparently that voltage pulse from the vertical-output stage getting into the video stages, which happens because the pulse isn't being filtered out. There is one new cause, but the reason is the same (more on this later).

Here, the scope is the best tool to use for a quick test. You don't have to scope the video-stage signals because you know that pulse is there just from looking at the screen. Scope the DC supply to the verti-cal-output stage and look for the voltage pulse. If it appears there, check the large
filter capacitor that should be there. You can also go back to the filter output of the DC power supply and look at the ripple waveform. The amplitude of this waveform should be very low-typically, only 1.2 volt or so maximum. It should be stationary and usually looks like a sawtooth. If too much vertical signal is managing to get back into this, the waveform will slowly writhe and bend. Here again, this is due to the small phase difference between the $60-\mathrm{Hz}$ frequency and the vertical frequency.

This usually means that one or more of the filter capacitors is not working properly. High power factor is a common cause; this reduces the filtering efficiency of the capacitor. One odd reaction occurs in these cases. If the defective capacitor does have high power factor, you can bridge it with a good one but it won't help! To make sure, unhook the original capacitor and put in a new one that's just as large or larger.

Now, here's the new wrinkle. In newer sets, particularly those with modules or separate circuit-board assemblies, the crawling bar can be caused by a very small difference in ground potential between the grounds on a board and the main chassis ground on the motherboard. In some sets, you can clear this up by adding a heavy jumper between board ground and the chassis, or by moving the ground-return point of a big capacitor from the board to the chassis. Check the service notes and modifications on the set; you may find this procedure is recommended.

Always examine all grounds very carefully. If they look suspicious, resolder them. I can vouch for this from recent bitter experience! My own antique model $C T C-15$ had exhibited an assortment of weird symptoms. I wasted quite a bit of time changing tubes, cleaning socket contacts, etc. One day, in desperation, I drew my trusty solder gun and resoldered all seven ground points on the color board. This cleaned up all the symptoms! So, if all else fails, try soldering grounds-you never can tell!

As I said before and repeat for emphasis, this pulse always appears in the video signal. All you have to do is find out the
cause and repair it. Changing filter capacitors is the answer in most cases; and fixing bad ground connections should take care of what's left! When replacing a capacitor, make sure that the replacement has an equal or higher voltage rating. R-E

service questions

DOUBLE TROUBLE

Thanks for your leffer concerning the problems I had in a General Electric chassis H-3. You confirmed my idea that the trouble was in the AGC. Checking out the AGC circuit complefely, I found a 7 -ohm short to ground on the AGC control itself. I fook it off, took it apart and found . . . nothing! / put back after cleaning and if worked!

Now there was a picture, but it was weak and full of color blobs. This problem was due to a break in the +280 -volt supply line, where focus resistor R554 goes to the +280 -volt line. Apparently when the chassis was moved around, this resistor had been pushed over or moved enough to break the printed-circuit conductor to which it was soldered. Everything works fine now, and thanks for holding my handl-W. McL., Phoenix, AZ.

Glad to have been of some help!

half A RASTER, BLOWN DIODES

There are several problems in this Magnavox model T982. The scan board was a mess where D207, D208 and D209 are, and the three litlle chokes marked on the board had beeen replaced with small resistors, which were also burned up. I replaced the diodes with 2.5-amp diodes, and the resistors with $0.5-$ ohm types. When I furned the set on, only the top half of the raster showed with picture, color and sound all OK. Then I lost all the vertical sweep, and everything got hot.

Diode D208 had opened up again. I killed the $\mathbf{1 2 . 7 - v o l t ~ s u p p l y ~ a n d ~ c h e c k e d ~}$ capacitor C204 on the -12.7-volf supply; it was OK. Do you have any ideas?-M.D., $A P G, M D$.

A few. First, do not use stock diodes as substitutes for D207-D209. These diodes are fed from the flyback, and you must use fast-recovery diodes. The half-raster
problem is due to one of the transistors in the vertical-output stage (a comple-mentary-symmetry circuit) being open or having lost the DC supply. One transistor is fed from the +16 -volt line, the other transistor from the -12 -volt line, and both these supplies come from the same area. Check for a possible shorted capacitor.
(Feedback: "Capacitor C203 was blown! That really helped!")

VOLTAGE OVERLOAD

Please send help. This Zenith 25EC58 has a raster but no video. Resistor R355 is open. Replacing R355 blows the hori-zontal-output transistor and resistor R354 smokes. One side of diode CR221 reads +50 volts, the other side reads +250 volts. What's wrong!-A. C., Puerto Nuevo, PR.
From the symptoms you describe, there's a short or an overload somewhere in the boost voltages, especially in the +240 -volt supply that flows through R355. Check both boost diodes, CR221 and CR219. Make sure to use fast-recov-ery-type diodes for replacements in this and any other set using flyback-derived DC power supplies.
(Feedback: "Diode CR221 was very leaky. I replaced it, and changed CR219 just for luck. The set now works OK. Thanks a lot!")

R-E

CIRCLE 42 ON FREE INFORMATION CARD

For faster service

 USEZIP
CODE USE
ZIP
CODE USE
ZIP
CODE
 on
all
mail

THEGONERNMENT THEGONERNMENT
CANDOEVERYTHING
THE UNITEDWAYDOES ONLYTHEY WRAPITUPFORYOU
IN NICEREDRIBBON. MILESAND MILESOFIT.

One of the best things about United Way is not what it does, but what it doesn'? do For instance, because entirely by volunteers, it is able to return an amazing $89 r$ of every dollar to people who need it That means less than 11% goes for administrative costs.
So it doesn't waste

So it doesn your money.

And because United Way is re-created each year with a combination of old and new volunteers, it doesn become over encumbered with huge staffs of people who might actually get $i n$ way of progress
So it doesn't strangle you in red tape. because of what United Way doesn't do, it can do a much
better job at
what it does do. Helping
people.

Thanks
morks you
nof
alt of us

INTERNATIONAL FM-2400CH

FREQUENCY METER FOR

 TESTING MOBILETRANSMITTERS
AND RECEIVERS

- Portable • Solid State - Rechargeable Batteries

The $\mathbf{F M} \mathbf{- 2 4 0 0} \mathbf{C H}$ provides an accurate frequency standard for testing and adjustment of mobile transmitters and receivers at Dredetermined frequencies

The FM-2400CH with its extended range covers 25 to 1000 MHz
The frequencies can be those of the radio frequency channels of operation and/or the intermediate frequencies of the receiver between 5 MHz and 40 MHz
Frequency stabilily: $\pm .0005 \%$ from $+50^{\circ}$ to $+104^{\circ} \mathrm{F}$.
Frequency stability with built-in thermometer and temperature corrected charts: $\pm .00025 \%$ from $+25^{\circ}$ to $+125^{\circ}$ (. $.000125 \%$ special 450 MHz crystals available).

- Tests Predetermined Frequencies $\mathbf{2 5}$ to 1000 MHz
- Extended Range Covers 950 MHz Band
- Pin Diode Attenuator for Full Range Coverage as Signal Generator
- Measures FM Deviation

FM-2400CH (meter only) Cat. No. 035320	\$627.72
RF crystals (with temperature correction)	26.26 ea.
RF crystals (less temperature correction)	19.93 ea
IF crystals	catalog price

OSST N NEWELECTANHE :OOKSt		
	\square Master Hdak of 1001 MORE Practical Eloct. Chts 700 p .	\$12.95
	Handhook of Electrical Noise: Msmnt itechnology 280 p.	6.95
	Microprocessor Cookbook 266 p., 124 il.	95
	How To Build Your Own W	$\$ 6.95$
	Practical Electricai-Installation, Repr \& Rewiring	\$7.95
	Radio Controi Handtook-4th Edition 420 p. 315	59.95
	The Giant Book of Amatuer Radlo Antennas 462 p .,	\$8.95
	How to Puild Your Den Working 16 Bir	5
	Electronic Designer's Handhook	95
	Electrical Hdhk for RVs, Campers, Vans, Boats \& Trailers	\$3.95
	making and Using Electricity From the Sun 144 p., 85	\$5.95
	Lasers, the Light Fantastic 294 p., 158 il.	95
	The Power Supply Handbook $420 \mathrm{p} ., 282 \mathrm{il}$.	95
	The Complete Handbook of Robotics 364 p.	\$7.95
	Artificiál Intelligence 252	\$7.95
	Habk of Remote Controd Automation T	37.95
	Install Your Own Home or Mobile Electric Power	95
	1 Build Your 0 wn Working Robot 238 p., 117 II.	\$5.95
	The "Compulator" Book 322 p., 224	\$7.95
	\square Miniprocessors: From Calculators to Computers	\$5.95
	Master Iransistor/IC Substitution Handiook 518	57.95
	1 CBer's Handy Manual of Base Stations 96 p., 55	\$2.50
	Complete Hdbk of Public Address Sound Sys 272 p.	\$7.95
	Modern Transistor Radios 64 D., 112 il.	52.50
	Modern Crystal Radios (Make and Use Series) 64	\$2.50
	Home-Brew HF/VHF Antenna Handbook 210	\$5.95
	Wicrowave Oyen Service \% Repair 420	\$9.95
	IC Function Locator 224 p., 28	55.95
	CBer's Mandy Manual of SSB 80 p .	\$2.25
	Beginner's 6uide to Making Electronic Gadgets	95
	Fire \& Theft Security Systems - 2nd Edition 192 p	95
	Modern Digital Communications 308 p., 122 il.	\$6.95
	Practical CB Radio T'shooting/Repair 2nd Ed	i1. $\$ 7.95$
	Microprocessor Program. for Computer Hoble	\$8.95
	Illus. Dict of Broadcast-CATV-Telecommunications 420	\$8.95
	Hdbl of Marlne Electronic \& Electrical Sys $546 \mathrm{p} ., 338$	\$9.95
	Linear IC Applications Handbook 280 p., 184 il.	\$6.95
	Build-It Book of Optoelectronic Projects 238 p., 175	\$5.95
	Photo Guide to AM/FM Stereo Repair 288 p., 2	
	Servicing Medical \& Bloelectronic Equipmen	
	Solid-State Motor Controls $322 \mathrm{p} ., 162 \mathrm{il}$.	\$8.95
	How to Use AF \& RF Signal Generators 238 p., 162 i	\$5.95
	Madel hailroad Electronics $308 \mathrm{p} ., 22411$.	\$5.95
	The ABC Book of Hi-Fi/Audio Projects 182 p., 131 II	\$4.95
	Repair Small Gasoline Engines, 2 nd Ed $392 \mathrm{p} ., 251 \mathrm{il}$.	\$6.9
	88 Practical Op Amp Circuits You Can Build 140 p., 120	\$4.95
	Restoring and Collecting Antique Reed Organs $320 \mathrm{p} ., 124 \mathrm{il}$.	I. 58.95
	How to Build Metal/Treasura Locators 140	\$3.95
	Build-It Book of Digital Electronic Timepieces 294 p., 209 il	il. $\$ 6.95$
	C.E.T. License Handhook, 2nd Edition 448 p., 38	\$9.95
	Third Class FCC License Study Guide 322 p ., 88	\$6.95
	Practical Solid-State DC Power Supplies 196 p	6.95
	106 Easy Electronics Proj...Beyond the Transistor 244 p.	5.
SENO MO MONEY We'll invoice you on 10-OAY FREE TRAL CIID entire ad to order 100% guaranteed or your money refunded		
AB 300 OS OEPT RE-89		

CIRCLE 9 ON FREE INFORMATION CARD

John Simonton's time -proven design provides two envelope generators VCA, VCO \& VCF in a low cost, easy to use package.

Use alone with its built-in ribbon controller or modify to use with guitar, electronic piano, polytonic keyboards, etc.

The perfect introduction to electronic music and best of all, the Gnome is only $\$ 59.95$ in easy to assemble kit form. Is it any wonder why we've sold thousands? (1 Send GNOME MICRO SYNTHESIZER Kit ($\$ 59.95$ plus $\$ 2.00$ postage)

促

 - alar wak of T001 Mone Practical Elact Chts 700 p Handhoon of Electrical Noise: msmint Eechnology 280 microprocessor Cookaook 266 p., 1241How To Butid Your Own Working Rosot Pot 238 P.i 86 il Radio Controt Handtook-4th Edition 420 p. 315 il How to Build Your Dwn Working 16-8it Microcomputer 96 p. $\$ 3.95$ Electronic Designer's Handhook - 3rd Edition 350 p.. 278 il. $\$ 9.95$ Eloctrical Habk for RVs, Campers, Vans, Boats \& frailers Lasers, the Light fantastic 294 p., 158 H.
The Power Supply Handoook 420 p ., 282 in.
ha Compleie handluok of rodotics 364 D., 137 it. Articial inteingence 252 p ., 118 il .
Hubk of Remote Control Automation The The Compulator book 322 p., 224 il. - miniprocessors: From Laiculators to Computers 192 p.,. 67 ti. $\$ 5.95$ \square Cber's Handy Manual of Base Stations 96 D., 55 il. \square Modern Transistor Radios 64 p., 112 il. Modern Crystal Radios (Make and Use Series) 64 p. 101 il
\square Microwaw hr/
\square IC Function Locator 224 p., 28 il.
\square CBer's Mandy Manual of SSB 80 p., 42 il

- Celmar's Guide to making Electronic Gadgets
- Fire 2 Thett Security Systems - 2nd Edition 192
-1 Microprocessor Program. for Computer Hobbyists
Holbk of Marlo Electronic \& Electrical Sys 546 F 238 B
Linear IC Applications Handbook $280 \mathrm{p} ., 184$ il.
Photo Cuide to AM/FM Stereo Repair 288 p 281 il
Servicing Medical \& Bloelectronic Equipment 350 p
- Solid-State Motor Controls $322 \mathrm{p} ., 162 \mathrm{il}$.
\square How to Use AF \& RF Signal Generators 238 p., 162 i
\square Model hailroad Electronics 308 p., 22411.
Repair Small Gasoline Engines, 2nt Et 392 -, 251
-98 Practical Op Amp Circuits You Can Buid 140 p 120 Restoring and Coliecting Antique Reed Organs 320 p 124 il Bow to Build Metal//reasura Locators 140 p., 58
CET License Hanthook 2nd Edition 448 p. 381 il \square Third Class FCC License Study Guide $322 \mathrm{p} ., 88$ il. - 106 Easy Electronics Proj...Beyond the Transistor 244 . SEWD MO MONEY We'll invoice you on 10 -OAY FREE TRAL Cild Entire ad to order 100% guaranteed or your money refunded TAB BOOKS
(Fully Assembled) $\$ 100.00$ plue $\$ 2$ 中hage () Send Free Catalog name: address: city: $\& P$, state: -11^{4} 0.

BAC/VISA - cardno.
; * © DEPT.8R 1020 WHISHRE, OXLAHOMA CITY, OK 73116 CIRCLE 19 ON FREE INFORMATION CARD

More information on stereo products is available from manufacturers of items identified by a Free Information number. Free Information Card is inside the back cover.

HI-FI SPEAKER SYSTEM, the Wharfedale model Teesdale, features an 8 -inch wooter, a 4 -inch mid-range cone and an isodynamic tweeter. Both the mid-range and tweeter were designed using laser beam holography techniques. The unit pro-

CIRCLE 131 ON FREE INFORMATION CARD
vides a frequency response from 40 Hz to 26 kHz $\pm 3 \mathrm{~dB}$, and an 87-dB sound-pressure level for 1 watt at 1 meter. The Teesdale comes in walnut veneer, measures $23 \times 131 / 2 \times 11$-inches, welghs 31 lb. , and has a suggested retail price of \$270. Rank Hi-Fi, Inc., 20 Bushes Lane, Elmwood Park, NJ 07407.

AM/FM STEREO RECEIVER, Realistic model STA-2100, provides 120 watts-per-channel into 8 ohms from 20 Hz to 20 kHz , with no more than 0.1% THD. Its features include bass, mid-range and treble controls; 25- and 75- $\mu \mathrm{s}$ de-emphasis; multiplex filter; dual tape monitors and dubbing;

CIRCLE 132 ON FREE INFORMATION CARD
DIN and phono tape-In/tape-out jacks; phono sensitivity swiltch; and high-cut and low-cut filters. The model STA-2100 also includes built-In noisereduction protectlon, plus AM signal-strength and FM center-channel meters and power meters.
The FM front end contains a MOSFET amplifier, ceramic filters and PLL circuitry. Specifications include: For the amplifier: Frequency response, $15 \mathrm{~Hz}-25 \mathrm{kHz} \pm 2 \mathrm{~dB}$ at 10 watts; IM distortion, 0.05% at 70 watts; S / N ratio, 70 dB
(phono); 75 dB (aux). For the FM section: IHF sensitivity, $1.6 \mu \mathrm{~V}$ (10.1 dBf); capture ratio, 1.5 dB ; alternate channel rejection, 75 dB ; stereo separation, 52 dB at $1 \mathrm{kHz} ;$ THD 0.1%, stereo, 0.05% mono. The model STA-2 100 measures $67 /$ $\times 201 / 2 \times 16 \%$ inches, and sells for $\$ 599.95$. Radio Shack, 1400 One Tandy Center, Fort Worth, TX 76102.

DIRECT-CONTROL TURNTABLES, Project 7 models AF977 and AF967, are belt driven and use a phase-locked loop to control turntable speed. Selectable speeds are $331 / 2$ RPM and 45 RPM. Speed variation is specified to be within $\pm 0.002 \%$. The model AF977 (shown) is an automatic single-play turntable with digital speed readout, and the model AF967 is a semi-automat-

CIRCLE 133 ON FREE INFORMATION CARD
ic unit. Wow-and-flutter in both turntables is 0.02% WRMS. Suggested retail prices: model AF977, \$399; model AF967, \$349.-Philips High Fidelity Labs, Ltd., Box 2208, Fort Wayne, IN 46801.

FM TUNER PREAMPLIFIER, model Beta III, uses FET's in all its stages to provide low noise and low distortion. The first stage of the equalization amplifier section uses a single-cascade dual-FET input stage and the last stage uses a 3 -parallel, regulated current load source follower. The tonecontrol amplifier uses attenuators in the I/O stages for lowest S/N ratio.
Specifications include: For phonos 1 and 2: frequency response, $30 \mathrm{~Hz}-15 \mathrm{kHz} \pm 0.2 \mathrm{~dB}$; input sensitivity, 2.0 mV ; input impedance,

CIRCLE 134 ON FREE INFORMATION CARD
22,000, 47,000 and 100,000 ohms; S / N ratio, 81 dB (at input reference level of 2 mV); and THD, less than 0.004%. The unit is rack-mountable and comes with matte black front panel. The model Beta III measures $19 \times 23 / 22 \mathrm{H} \times 13$ inches and weighs 13 lbs. \$399.-Nikko Audio, 16270 Raymer St., Van Nuys, CA 91406.

compurer produchs

More information on computer products is available from manufacturers of items identified by a Free Information number. Free Information Card is inside the back cover.

INTERFACE/MOTHERBOARD, Betsi, comes as a kit or assembled. Attaches to any PET computer to provide, on a single board, both interface and S-100 motherboard with four slots. Unit allows most $\mathrm{S}-100$ compatible boards to be plugcompatible with PET. The board features a dynamic memory controller that allows use of Expandoram board for expansion to 32 K of

CIRCLE 121 ON FREE INFORMATION CARD
memory, plus sockets and address decoding for 8K of PROM (intel 27 16).

Kit includes single-sided board, owner's manual, plus all components and one 100-pin connector. Assembled, the Betsi comes with four 100pin connectors and manual. Price: kit, $\$ 119$; assembled, $\$ 165$.-Forethought Products, P.O. Box 8066, Coburg, OR 97401.

LOGIC ANALYZER KIT, model LTC-2, contains three high-speed ($10-\mathrm{ns}$) digita! troubleshooting tools- the model LP-3 logic probe, the model $D P-1$ digital pulser and the model $D M-1$ logic monitor. The model LP-3 probe features 0.5megohm input impedance, switch-selectable TTL/DTL and CMOS/HTL thresholds, LED indicators, built-in pulse stretcher and memory switch. The model DP-1 provides single-pulse or

CIRCLE 122 ON FREE INFORMATION CARD
100-hz-pulse operation and a TTL/CMOS mode switch. The model LM- 1 monitor clips onto standard 14- or 16-pin DIP IC's; LED's show pin state.

Accessories include probe tips, adapters, ground leads, operator's manuals and guides-all housed in rugged plastic case. Suggested retail price: $\$ 235.05$.-Continental Specialties Corp;, 70 Fulton Terrace, New Haven, CT 06509

DATA ACQUISITION/PROCESS CONTROL SYSTEM, Real World Interface System (available as kit or assembled) is designed for use with both mini- and microcomputers, with typical applications in environmental control, robotics and automated assembly-line testing. The system cabinet contains a power supply, card cage and motherboard for up to 12 plug-in modules, including AID

CIRCLE 123 ON FREE INFORMATION CARD
and D/A converters and a computer interface card. Plug-in modules contain from 8 to 32 I/O channels (the Current Probe has 4 I/O channels) Plug-in module price range: kits, $\$ 65-\$ 125$; assembled, $\$ 79.50-\$ 150$. Cabinet with power supply, motherboard and parallel CPU interface, $\$ 299$ for the kit; $\$ 360$, assembled. - General Computer Technology, 400 S . Lipan, Denver, CO 80223.

DISC SOFTWARE, model SL8O-10F text editing system, model SL80-11F text processing system and model SL80-12F mnemonic assembler, are designed for the 8080 microcomputer and operate under the CP/M disc operating system. The text editor features block move and copy, tabs, overlays, append and restrictive column searches. The text processor provides over 50 commands covering pagination, margin/indent settings, spacing, titling, centering and justification. New instructions can be implemented with conditional commands, number registers, terminal prompts and a loop command. A separate data file can be read for information required by the text file. The mnemonic assembler supports standard pseudo op-codes, plus paging, titling. hex or octal listings, line numbers, etc. All programs include user's manual, source listing and an 8 -inch disc. Prices: model SL80-10F editor, \$40; model SL80-11F processor, \$50; model SL80-12F assembler, \$40.-Technical Systems Consultants, Inc., P.O. Box 2574, West Lafayette, IN 47906.
CIRCLE 124 ON FREE INFORMATION CARD

Three supplies in one

Model 1650 \$275

- Functions as three separate power supplies
- 5V DC, 5A fixed output
- Two separate (A and B) 0 to 25 VDC outputs at 0.5 A
. B supply can be set to track A supply directly or in any ratio from 0 to 100\%
- All terminals are fully isolated in all modes
- Outputs may be connected in series or parallel
- Fully automatic, current limited overload protection

The B\&K-PRECISION 1650 was designed to fill your bench power needs for both linear and digital circuitry. The exclusive opto-isolator controlled automatic tracking circuit allows the B output to precisely track voltage changes of the A supply, while maintaining complete electrical isolation.

Available for immediate delivery at your local B\&K-PRECISION distributor.

6460 West Cortland Street Chicago, lllinois 60635 • 312/889-9087 in Canada Allas Electronics Onlario

CIRCLE 57 ON FREE INFORMATION CARD

communleations products

More information on communications products is available from manufacturers of items identified by a Free Information number. Free Information Card is inside the back cover.

MOBILE CB TRANSCEIVERS, the McKinley Thomas J., and Andrew J., all provide a 4-watt AM power output (the McKinley has a 12 -watt

CIRCLE 111 ON FREE INFORMATION CARD
SSB output) and -60 dB spurious rejection. Both the Thomas J. and Andrew J. transceivers have 100% modulation. The McKinley unit (shown) features standard controls plus a clarifier. The Thomas J. unit has standard controls, plus a

Channel 9 priority switch and an SWR meter. The Andrew J. unit contains a combination transmit/ receive light and variable RF gain control. Prices: the McKinley, $\$ 269.95$; the Thomas J., \$159.95; the Andrew J., \$119.95. -President Electronics, Inc., 16691 Hale Ave., Irvine, CA 92714.

MORSE CODE COPIER, model DE-150, is designed to operate with communications receivers and transceivers and features a built-in $100-\mathrm{Hz}$ bandpass filter with $800-\mathrm{Hz}$ center frequency Other features include an 8 -character 5×7 dot

CIRCLE 112 ON FREE INFORMATION CARD
matrix LED display and 50-10 60-word-per-minute copying capability. Comes with built-in 115VAC power supply, patch cord and output monitor jack and measures $2 \times 10 \times 4$ inches. Suggested retail price: \$425.-Dynamic Electronics, Inc., Box 896, Hartselle, AL 35640.

MARINE TRANSCEIVER, model $T / 2100$, is a fully synthesized solid-state VHF/FM unit with programmable scan feature that enables simulta-

CIRCLE 113 ON FREE INFORMATION CARD
neous channel monitoring. The unit also provides 55-channel transmit and 76-channel receive capabilities (includes 4 weather stations) and operates on all USA and international channels. Keyboard automatically selects simplex, duplex, 1 -

THIS VISE IS CATCHING.

Catch PanaVise. It tilts, turns and rotates your work exactly where you want. Add our new Tray! It catches small parts you drop, separates tools, and keeps parts sorted. The Tray's wide $81 / 4^{\prime \prime}$ diameter of cast metal gives 'no-tip' stability, and has 6 slip resistant neoprene feet. Catch all the PanaVise combinations at your distributors now. Write for FREE brochure and distributor list.

Dran/a/SE

Dept. CE 11 2850 29th St. Long Beach, CA 90806

Shown \# 315 Circuir Board Holder, \#300 Base, \# 312 Tray Base Mount.

CIRCLE 38 ON FREE INFORMATION CARD
watt or receive-only operation. Other features include high-visibility displays, squelch and remote control. Suggested retail price: \$795.Texas Instruments, Inc., P.O. Box 226080, Dallas TX 75266.

AM/FM CUSTOM ANTENNAS, models KL-16F, NL-15-B, PM-95H, PM-21D, PM-30, PM-58, is a complete line of OEM-styled customized antennas for imported autos. The antennas are in-

CIRCLE 114 ON FREE INFORMATION CARD
tended for BMW, Datsun, Fiat, Mazda, Saab, Honda, Subaru, Toyota and VW. All models (model PM-95H designed for the Honda Accord is shown) feature stainless steel masts, shielded bodies and cables, and heavy chrome-plated hardware. Suggested retail price range \$5-\$7.50.-Harada Industry of America, Dept P, 145 E. Albertoni St., CA $90746 . \quad$ R-E

Put Professional Knowledge and a

COLLEGE DEGREE
in your Electronics Career through HOME STUDY

by correspondence, while continuing your present job. No commuting to class. Study at your own pace. Learn from complete and explicit lesson materials, with additional assistance from our home-study instructors. Advance as fast as you wish, but take all the time you need to master each topic.

The Grantham electronics degree program begins with basics, leads first to the A.S.E.T. degree, and then to the B.S.E.T. degree. Our free bulletin gives complete details of the program itself, the degrees awarded, the requirements for each degree, and how to enroll. (We are located at 2500 S. LaCienega Bl., Los Angeles, Calif.) Write to our mailing address shown below for Bulletin R-79.
Grantham College of Engineering P. O. Box 35499

Los Angeles, California 90035
Worldwide Career Training thru Home Study
CIRCLE 36 ON FREE INFORMATION CARD

Build The World's Most Powerful 8-Bit Computer
 Featuring The Famous Intel 8085! Explorer/85 ${ }^{\text {™ }}$

Starting for just $\$ 129.95$ you can now build yourself a sophisticated, state-of-the-art computer that can be expanded to a level suitable for industrial, business and commercial use. You learn as you go. . . in small, easy-to-understand, inexpensive levels

- Features intel 8085 cpu/100\% compatible with 8080A software!
- Onboard S-100 bus (up to 6 slots)!
- Onboard RAM and ROM expansion!
- Built-in deluxe 2K Monitor/Operating ROM!
- Cassotte/RS 232 or $20 \mathrm{ma} / 4 \cdot 1 / 2$ 8-bit parallel
//O and timer all on beginner's Level " A " system!
EXPLORER/85 gives you '-big compuler leatures immediately. without lurning you info an applance operator. doomed to run pre-developed software tor life Simply Conneci EXPLORER to a terminal, video monitor or Iv sel and 8 vot power supply an slart running programs. the very lirst night' Level A teaches you machin language and compuler iundamentals it tets you run exercise programs including programs to examine the cpu registers. examine memory thl memory, move memiory cas selle-ano display your ettoris on any tv screen video monitor or prinler (\$885 RF modulator required tor Iv use) The simplifited archilecilite of ihe intel 8089 makes EXPLORER tar easier to understand than computers using the oider. more
complex but Iess powertel 8080 A Then when you re ready. EXPLORER can be complex but less powertul 8000 A Then when you re ready. EXPLORER can be
expanded-by you-to nuval the power of any 8 -bit compuler on earth or you can customize it to perlorm a dedicaled task, thanks 10 onboard brototyong. RAM and ROM expansion capabhities
LEVEL "A" SPECIFICATIONS
EXPLORER's Level "A" system teatures an advanced Inte! 8085 cpu . Which 15.50% laster than its 8080 A predewhich, you'll discover, exists by the ton "Big computerfeatures include an 8355 ROM with 2 K deluxe monito operating system which has two programmable 8-bil Di. directional parallel $1 / 0$ ports, built-1n casselte interlace with tape control circuitry to allow labeling cassette liles. and commands which include "display contents of memory.- "Tun al user location go top . "insert data.' move contents ol memory." "examine registers individualty or all." lill command co toll the contents ol memory
with any variable). automatic baud rate selection. program. with any variable). automatic baud rate selection. program-
mabte characters per line display output tormat. and more' mabte characters per line display output tormat. and moret
An 8155 RAM $-1 / 0$ chip contains 256 bytes of RAM. Two programmabie 8-bit bi-direclional and one programmable 6 -mi bi-directional $1 / 0$ poris plus programmable 14 -bil

CIRCLE 44 ON FREE INFORMATION CARD

PTS...the NEW name you need to know for semiconductors!

 minal or \square hex keypad input). $\$ 12995$ plus
$\$ 3$ $\$ 308 \mathrm{~h}$.
Power Supply knt. $5 \mathrm{amp} \pm 8$ volt. $\$ 3495$
plus $\$$ 2 p m plus $\$ 2$ p 8 n

- intel 8685 user 5 Manual $\$ 750$ ppa
- ASCI keyobara/Vireo Terminal kll. \$14995 plus $\$ 3$ p\&h
Hex keypad kit tor hex version. $\$ 6995$ plus
$\$ 2087$
 Level ' B' $\mathrm{S} \cdot 100$ /Onboard RAM/ROM Decoder
kis (less $S \cdot 100$ connectors) $\$ 4995$ plus $\$ 2$

\square Level C. $\$.1005$-Card Expander kit (iess
connectors). $\$ 3995$ plus $\$ 2$ p\& $\$ 3995$ plus $\$ 3 \mathrm{p} 8 \mathrm{n}$
Deluxe Steet Cabinet for keybo
minal $\$ 1995$ plus $\$ 250$ p 8 h
- RF Modulator kII \$8 95 ppd
\square RF Modulator kil $\$ 895 \mathrm{ppd}$
\square Tolal Enclosed (Conn res add tax)
\square VISA \square Master Charge Exp. Oate
PHONE ORDERS CALL (203) 354-9375
Primt
Name
aress

D
 Transistors...SCRs. ICs...diodes...rectifiers. zeners...the same components we use for our module and tuner rebuilding. A high quality line of profit-builders for the servicing technician/dealer! Ask for a complete price list at any PTS tuner/module servicenter.

PTS ELECTRONICS, INC.
The Only Name You Need To Know

FREE STHIE
CATALOG
Audio-Computers Instruments Kits \& Assembled

Southwest Technical Products Corporation 219 W. RHAPSODY SAN ANTONIO TEXAS 78216

CIRCLE 55 ON FREE INFORMATION CȦRD

Try thisexciting new hobbyl Build your own electronic concert organ. It's easy. No technical knowledge required. Just follow the clearly pictured instructions of the famous Wersi-do-it-yourself system. Choose from seven different models. Send \$2.00 (refundable) with coupon for colorful 104 page catalog.


```
Wersi Electronics, Inc
Dept. }4
1720 Hempstead Road
Lancaster. PA 17601
Enclosed is $2.00 for my copy of your 104 page catalog.
Name
Address
City ____State
    CIRCLE 28 ON FREE INFORMATION CARD
```

AC OUTLET CHECKER
continued from page 53
ance only if the outlet box itself is grounded.

What happens all too often is that the adapter gives the user a false sense of

The same method can be used to check that the neutral (white) wire in a 2 -wire system is grounded. Connect the green lead of the adapter to a known ground and then test it. If it checks out OK, then the ground is grounded. If not, you will get a "no ground" indication.

FIG. 2-HOW THE LIGHTS INDICATE different conditions. Indications are same as in Table 1.
security and he tends to forget the safety precautions he once observed. Unwittingly, he has created a system that can potentially be even more dangerous than the original.

How then do you know when the system is safe? It's simple; just hook the adapter up as it will be used, then plug the Outlet Polarity Checker into it. If the adapter checks out OK, all is well and it can be used with confidence. If not, the best remedy is to rewire the outlet to the proper 3 -wire configuration. Figure 2 shows the various combinations of lights.

The Outlet Polarity Checker is a oneevening project. In most cases it can be made entirely from junk-box parts. For DS1, DS2 and DS3 you can use neon lamp assemblies with built-in currentlimiting resistors. It is recommended that DS1 ("O") and DS3 ("K") have amber or clear lenses, and that DS2 ("X") have a red lens. The plug and cable can be cut from any 3 -wire polarized (grounding) cord. The completed checker is housed in a small Bakelite case. You can use transfer lettering to label the panel for a professional appearance.

R-E

Make America smarter. Give to the college of your choice.

PRECISION DMM
continued from page 42

FIG. 8-TOP SIDE of the board for the true-RMS converter.

FIG. 9-PATTERN for the bottom side of the TRMS converter board.

FIG. 10-HOW PARTS ARE POSITIONED on the TRMS converter board.
ment and check all solder connections for cold joints and possible bridges. Plug in the instrument, apply power and check for $+5 \mathrm{~V},-5 \mathrm{~V}$ and -8 volts at the output pins of the three voltage regulators.

If the correct supply voltages are obtained, then remove power from the instrument and install all remaining IC's in their sockets taking care to observe proper pin orientation.

Calibration

Table 2 shows the calibration sequence for the multimeter. The ADC voltage reference is calibrated by allowing the meter to read a known voltage between I and 2 volts and adjusting R9 until the known value is obtained. (Use the 2 -volt range.) The known voltage can be from a voltage reference source or a standard cell, or a stable voltage calibrated by another digital voltmeter or a fresh mercury cell (1.35 volts). The temperature references must be calibrated by another voltmeter, measuring between the test point indicated in Table 2 and the -5 volt supply. Known resistors are supplied with the kit of parts (see parts list) to calibrate the resistance ranges.
There are two adjustments for the AC converter calibration. Trimmer R24 is continued on page 80

For faster service

One of the best things

 about United Way is not what it does, but what it doesn't do. For instance, because United Way is run almos entireiy by volunteers, it is able to return an amazing $89 x$ of every dolar to people who need it. That meansless than 11% goes for administrative costs. So it doesn't waste your money.
And because United Way is re-created each year with a combination of old and new volunteers, it doesn't with huge staffs of people who might actually get in the way of progress.
So it doesn't strangle you in red tape.
All of which means that because of what United Way doesn't do, it can do a much what it does do. what it does
Helping Helping
people.

Thanks to you it

The personal computer keyboard with industrial quality and features. From the PROfessionals who know keyboards best...(CHERRY)
Versatile. Reliable. Ideal for personal computer and small business applications. Modifiable to add total obsolescence protection. Versatile, expandable to grow as your system grows.
These unique standard features: Complete and ready to use... with full customizing instructions. Easily modified by hard wiring. Full 67 key array. Five user-definable spare keys with keycaps that have "quick change" clear plastic tops. Only one power supply voltage required: +5 volts at 325 ma . max. - TTL and DTL compatible output circuitry. Positive logic with outputs resting low. Four modes: Lower case, upper case, control case and teletypewriter alpha lock configuration. Piggyback a "daughter" board instantly. - Standard 22-pin dual card connector on $.156^{\prime \prime}$ center.
PLUS: These on-the-spot customizing special features (fully explained in 8 page brochure PRO-977-2 containing specifications and instructions):

- Negative logic - Tri state - positive logic - High voltage output-CMOS compatible Non encoded outputs - Encoded outputs - Flexible key assignments Automatic repeat \bullet and MORE.

BUY THE PRO:

Special introductory price: $\$ 1150^{00}$ postpaid A full $\$ 20$ discount off the usual $\$ 135$ price if you order now.

\square Ship me \qquad Cherry PRO keyboards at $\$ 115.00$ each, postpaid. Total enclosed: \$___ (check or money order). Illinois residents add 5% Sales Tax.
\square Charge to my Master Charge
Card Number
Expiration date
Signature
\square I'd like more information. Please mail 8 page brochure PRO-977-2.
Please type or print clearly.

Name

Street . . . _ _ _

CHERRY ELECTRICAL PRODUCTS CORP. 3600 Sunset Avenue, Waukegan, IL 60085 Dealer inquiries invited

HEAR YE!
 HEAR YE!

AMELECT
 CHIMES

AMELECT Clock Models CL7401A and CL7402 are available with complete sound.

FEATURING:

1. A realistic tic-toc sound: hear the seconds go by.
2. Beautiful, modified Westminster chimes have synthesized sounds composed of six frequencies. Four notes are provided on the quarter hour, eight notes on the half hour, twelve notes on the three quarter hour, and sixteen notes on the hour.
3. Following on the hour chimes, the hour displayed on the clock is counted out using the lowest chime note.
4. Chime volume, tic-toc volume, pitch and decay are adjustable.

Available assembled or in kit form. Can easily be added to any Amelect Clock.

	Silent Models			
	Kit	Assembled	With Base	
CH 7401A	$\$ 55.00$	$\$ 75.00$	$\$ 85.00$	
CL 7402	$\$ 71.50$	$\$ 95.00$		
Chimes Models				
CL 7401A	$\$ 94.00$	$\$ 114.00$	(3)	
CL 7402	$\$ 110.50$	$\$ 140.00$		
Indiana residents include 4\% sales tax.				
Shipping and Handling $\$ 3.50$				

To order write or call 1-219-297-3320

AMELEET

 INCORPORATED P.O. Box 367-106 S. Newton St. GOODLAND, INDIANA 47948 Allow 3-4 weeks for Del. CIRCLE 62 ON FREE INFORMATION CARDPRECISION DMM
continued from page 79
TABLE 2-MULTIMETER CALIBRATION SEQUENCE

Step No.	Calibrate	Pot No.	Switches	Display
1	ADC Reference	R9	S5, S7	Known input voltage between 1 and 2 volts DC or 1.35 volts from a fresh mercury battery cell.
2	Celsius Reference	R36	S2	2.732 volts measured from arm of R36 to - 5 -volt supply using an external voltmeter.
3	Fahrenheit Reference	R33	S3	4.594 volts measured from arm of R33 to -5 -volt supply using an external voltmeter.
4	Celsius Range	R29	S2	$.0000^{\circ}$ (ice water bath) 100.00° (boiling water)
5	Fahrenheit Range	R31	S3	Adjust R31 to equal Celsius range using conversion equation.*
6	2000-ohm Range	R15	S4, S7	Adjust to equal known resistance.
7	20,000-ohm Range	R14	S4, S8	Adjust to equal known resistance.
8	$\begin{aligned} & \text { 200,000-ohm } \\ & \text { Range } \\ & \hline \end{aligned}$	R13	S4, S9	Adjust to equal known resistance.
9	2-megohm Range	R12	S4, S 11	Adjust to equal known resistance.
10	20-megohm Range	R10	S4, S11	Adjust to equal known resistance.
11	AC Offset	R24	$\begin{aligned} & \mathrm{S5}, \mathrm{~S} 6, \\ & \mathrm{S7} \end{aligned}$	0.0000 V with input shorted or with pins 2 and 4 of IC6 shorted.
12	AC Calibration	R25	$\begin{aligned} & \text { S5, S6, } \\ & \text { S7 } \end{aligned}$	Adjust to equal known AC input voltage (RMS value, not peak).

- ${ }^{\circ} \mathrm{C}=5 / 9\left({ }^{\circ} \mathrm{F}-32\right)$
${ }^{\circ} \mathrm{F}=\left(9 / 5 \times{ }^{\circ} \mathrm{C}\right)+32$

FIG. 11-FULL-SIZE PATTERN for the display board. All components are mounted on the front surface.

FIG. 12-DISPLAY BOARD parts placement. The IC is the display segment driver. The transistors are used in digit multiplexing.
the offset or zero trim, which is adjusted with the input shorted. There is a possibility of significant noise pickup due to the high input impedance of buffer 1C7, so it may be necessary to short the input pin to IC 6 by shorting pin 4 to pin 2 while
adjusting the offset to zero. Trimmer R 25 is used to fine adjust the AC calibration with a known R MS value AC voltage applied to the input. If a calibrated AC voltage is not available, the pot should be centered for accuracy.

R-E

hools

UNDERSTANDING DIGITAL ELECTRONICS, Texas Instruments Learning Center. Texas Instruments, Inc., Box 3640, M.S. 84, Dallas, TX 75285. 265 pp. $51 / 4 \times 81 / 4 \mathrm{in}$. Softcover $\$ 3.95$.
Finding out how digital electronics work by using a handheld calculatok is the goal of this book, and a step-by-step approach explains circuits, from the most basic to the very sophisticated. Because it is really a self-teaching course, the book should be read chapter by chapter; self quizzes are provided at the end of each chapter (with the answers in the back of the book); and a glossary of special terms and a bibliography are also provided.

THE INCREDIBLE SECRET MONEY MACHINE, by Don Lancaster. Howard W. Sams \& Co., Inc., 4300 W. 62nd St., Indianapolis, IN 46,268. 159 pp. 51/4 \times 81/4 in. Softcover $\$ 5.95$.
This is not a "get-rich-quick" book, but rather a "cookbook" and guide on how to turn your own full-time small-scale computer, technical or craft business into a successful enterprise. Written in tongue-in-cheek yet down-to-earth style, the book contains helpful hints on how to reduce your taxes, not pay a utility bill, get totally free insurance, and many other necessary adjuncts to running a successful "secret money machine."

HOW TO BUILD YOUR OWN STEREO SPEAKERS: CONSTRUCTION, APPLICATIONS, CIRCUITS AND CHARACTERISTICS, by Christopher Robin. Reston Publishing Co., Div. of Prentice-Hall Co., Reston, VA 22090. 193 pp. $61 / 4 \times 91 / 4 \mathrm{in}$. Hardcover $\$ 15.95$.
The title of this book says it all-it is a "how-to" guide for hobbyists and professional engineers who want simple step-by-stop instructions on constructing a state-of-the-art speaker enclosure. The book also includes data on acoustics, planning and designing speaker crossover networks, and basic woodworking. Dimensional drawings and photographs accompany the text; and the back of the book contains several appendixes and a complete glossary of terms.

TAPED EDITING, by Joel Tall. Elpa Marketing Industries, Inc., Thorens \& Atlantic Aves., New Hyde Park, NY 11040. 32 pp. $51 / 2 \times 81 / 2 \mathrm{in}$. Softcover $\$ 2$.
This little book explains in detail all the ins and outs of audio and video tape splicing. It also gives you helpful tape editing hints such as how to run the tape backward in order to recognize speech sounds. Other chapter topics deal with splicing and editing procedures, speech characteristics and how to work within the limits of hearing sensitivity.

BASIC FOR HOME COMPUTERS, by Bob Albrecht, LeRoy Finkel and Jerald R. Brown. John Wiley \& Sons, Inc., 605 Third Ave., New York, NY 10016. 336 pp. $61 / 2 \times 10 \mathrm{in}$. Softcover $\$ 5.95$.

This book is a self-instruction course in the BASIC programming language for home computer applications; it does not require access to an actual computer. The version of BASIC used is Microsoft BASIC developed for the Altair MITS. Some of the topics covered are assigned statements, stored programs and branching; subscripted variables, double subscripts; string variables and functions; and subroutines. Each chapter contains a self-test section, and there is a final self-test in the back, together with appendixes containing lists of computing periodicals, BASIC functions and ASCII character codes.

S S IMICROCOMPUTER SOFTWARE GUIDE. S S I Publications, 4327 East Grove St., Phoenix, AZ 85040. 140 pp. $51 / 2 \times 81 / 2 \mathrm{in}$. Softcover $\$ 7.95$ (also available on mini-floppy disc).
This book is a must for anyone planning a microcomputer system for business, home or education applications. It consists of a listing of over 2200 software programs, alphabetically arranged from ASCII (codes, displays, etc.) to Zip Code (mail-code sorting \& printing). The 236 classifications are drawn from discs, cassettes, books, paper tapes, listings, pamphlets and magazines; and the back of the book contains a list of 130 microcomputer software sources and addresses.

BUGBOOK VIII, 8080/8085 SOFTWARE DESIGN WITH 190 SOFTWARE SOLUTIONS, by Christopher A. Titus. E\&L Instruments, Inc., 61 First St., Derby, CT 06418. $288 \mathrm{pp} .6 \times 9 \mathrm{in}$. Softcover $\$ 9$.

This detailed treatment of assembly language programming for 8080-and 8085-based computers contains many elementary and advanced instructions. It analyzes and discusses programming techniques for mathematical routines, number system conversions, command decoders, arrays and tables, interrupt programming, etc. Many complete and tested programs in standard mnemonics are included.

R-E

Nobody does it better than NZ

ISOTAP ${ }^{\text {¹ }}$ Isolation Transformers MINIMIZE SHOCK HAZARDS

Here's new safety for service technicians. Protection for test instruments. ISOTAP provides AC output voltages isolated from AC power lines. You need an ISOTAP for servicing any transformerless equipment. Absolutely necessary for today's solid state TVs and stereos. Essential for safe servicing in the industrial plant, laboratory or technician training school.

WP-25A
275 VA isolated, 500 VA direct. Outputs at 105, 115 and 130 V
$\$ 49$

WP-26A
400 VA isolated 500 VA direct. Outputs at 105, 115 and 130 V .
$\$ 58$

WP-27A ISOTAP II 400 VA isolated only. Outputs 25 to 150 Vac in 5 V steps.
\$68

NEW Porta-lsotap
 wp.28 544.95

Compact, lightweight unit. Ideal for TV servicing. Easily carried for house calls. Has two fused outlets: (1) Isolated, 150 VA continuous for solid state TV; (2) Direct, 500 VA, a convenient power source for service instruments. Comes with accessory cords to take power from TV set back. No need to hunt for wall outlet. Weight 8 lb . Dimensions $33 / 4 \times$ $33 / 8 \times 53 / 8 \mathrm{in}$.
See your local VIZ distributor.

VIZ
 Test Instruments Group
 335 E. Price St., Philadelphia, PA 19144

The VoltOhmyst company

CLASSIFIED COMMERCIAL RATE（for firms or individuals offering commercial products or services）．\＄1．50 per word（no charge for zip code）．．．minimum 15 words．
NONCOMMERCIAL RATE（for individuals who want to buy or sell personal items）85¢ per word ．．． no minimum．
ONLY FIRST WORD AND NAME set in bold caps．Additional bold face（not available as all caps）at 104 per word．Payment must accompany all ads except those placed by accredited advertising agencies． 5% discount for 6 issues， 10% for 12 issues within one year，if paid in advance．All copy subject to publisher＇s approval．Advertisements using P．O．Box address will not be accepted until advertiser supplies publisher with permanent address and phone number．Copy to be in our hands on the 26th of the third month preceding the date of the issue（i．e．，August issue closes May 26）．When normal closing date falls on Saturday，Sunday，or a holiday，issue closes on preceding working day．

FOR SALE

FREE catalog（anglais）．IC＇s，semi＇s．CORONET ELECTRONICS，649A Notre Dame W．，Montreal， Que．，Canada，H3C 1H8．US inquiries．
RADIO \＆TV tubes 364 each．One year guaran－ teed．Plus many unusual electronic bargalns． Free catalog．CORNELL，4217－E University，San Diego，Calif． 92105
TEST equipment catalog listing used Tektronix， HP and GR equipment at bargain prices．Price $\$ 1.00$ refundable with first order．PTI，Box 8699 ． White Bear Lake，MN 55110
NAME brand test equipment．Guaranteed dis－ counts up to 50% ．Free catalog．SALEN ELEC－ TRONICS，Box 82－M，Skokie，IL 60077
PRINTED－circuit boards，reasonable．Also，art－ work，prototypes，designs，fabrication and test－ ing．MICROCON INC．，Box 43，Glenview，IL 60025

RCA，Zenith original TV parts．Dealer prices，fast service．Send part and modei numbers．L．I．ELEC－ TRONICS， 981 Sunrise Hwy．，Bayshore，NY 11706, 516－666－7360
TEKTRONIX 5440 Opt． $160-\mathrm{MHz}$ scope， 5 A 48 ， 5B42 \＄1750．Tektronix DM501 with temp．and probes，TM504 maintrame， 2 blank plug－ins，flexi－ ble extender cable $\$ 550$ ．H－P 5326 A systems counter $\$ 550$ ．Wavetek 142 function generator $\$ 400$ ．All excellent with manuals．Call 518－489－ 4946 after 6 P．M．Eastern Time．
VIDEO recorders，cameras，blank tapes，prere－ corded movies at low dlscount prices．MIDWEST VIDEO，Box 3233，Dayton，OH 45431，513－227－ 7609
NEW．Meter solid－atate inolated relay．Control 5 millivolts 5 microamperes 1000 ohms DC．Lead circuit 3 amperes 125 VAC．Write today for facts． EGYED ELECTRONICS，Box 92，Huntingdon Val－ ley，PA 19006

To run your own claseified ad，put one word on each of the lines below and send this form along with your check for $\$ 1.50$ per word（minimum 15 words）to：
Radio－Etectronics， 200 Park Avenue South，N．Y．，N．Y． 10003
ORDER FORM
PLEASE INDICATE in which category of classified advertising you wish your ad to appear．For special headings，there is a surcharge of $\$ 10$ ．
（ ）Plans／Kits（ ）Business Opportunities（）（）For Sale

Special Category：$\$ 10$
（PLEASE PRINT EACH WORD SEPARATELY，IN BLOCK LETTERS．）

An imvoluoble banase to laponese subssitution guide for oporoximately
3000 iransistors

Covers the XA 250 2SX and 250 series

 iniroducian includes o guide to underionding laponese to undertion
PARTS PROCUREMENT PROBLEMS

FUJI-SVEA Has the Largest Inventory of Original Japanese Parts Anywhere

Seeking Original Japanese Replacement Parts for CB, TV and Stereo Repair Use?

SpeakerGuts.
 The absolute latest in advanced speaker techno logy, Wave Aperature Divers, the Patented Nestrovic Woofer System

 speaker components selected for
 mldranges he. Honds your own speaker system and we'll provide top quality speakers and design information. Send for FREE 48 page color catalog from the largest. most experienced speaker kit manufacturer in the world. DON T DELAY. Write todoyl
 ?

PLANS \& KITS

SCANNER users-build many useful accessories. Free kit catalog. CAPRI ELECTRONICS, Route 1R, Canon, GA 30520
PRINTED circuit boards from your sketch or artwork. Affordable prices. Also fun kit projects. Free details. DANOCINTHS INC., Box 261, Westland, Ml 48185
FREE schematic. Touchlite electronic switch and dimmer. Send stamp: TOUCHLITE, Box 161. Plainville, NY 13137
ALUMINUM panels $19 \times 6 \times 1 /$. Perfect for rack or custom installations. $\$ 6.50$ each. RJP SALES, 2360 Rockymont, St. Louis, MO 63136
CONSTRUCTION plans for profitable business ideas. Catalog \$1.00. GARLING, 438 N. Garfield Street, Lombard, IL 60148

CHRISTMAS IN AUGUST

DELTA'S FIRST-TIME-EVER SALE! We bring you Christmas $1 / 20$ OF
These TV game boards are a fantastic source of parts as you can see by the parts listed below
Included with ea. board is step-by-step instru ions for the removal of all these parts. Nommernain uad 2-Input NOR gate. C-MOS
bit Full adder
uad 2 -Inpunt NAND gate.
nal Triple 3-Input NAND Eate.
uad 2-Input OR gate,
CD-to-7 segment latc
Bit AND/OR selector. \qquad Bit AND/ORselector.
ual Binary UP counte vibrat
vifier. $\$ 25.00$ WORTH d Operational Amplifier. OF ICS
TREASURE Without
Joysticks
No. 6939 R
With Joysticks.
No. 6938 R, LM $301 \mathrm{~A}-1$ pc-High-performance operational amplifiers. NE555-2 pcs.-NPN high speed switching transistor.
2N 3904 - 2 pcs. -timer.
2N 3906 - pc -PNP high speed switching transistor. Also included are two 10 K joysticks (which we sell for
$\$ 3.95$), many capacitors, resistors, trimmers \& diodes.

> EMATCHEMAEX 1/20re $\$ 3.50$ Pushbutton Assemblies! $\begin{aligned} & \text { This is the top-of-the-line SWITCHCRAFT } \\ & \text { multi-gang switch. It has SIX push buttons. }\end{aligned}$ Button 1 is SPST. momentary switch; and releases any button that has been depressed. $\begin{aligned} & \text { release when switches } 1-4-5 \text { or } 6 \text { is depre- } \\ & \text { ssed. Switiches 4- } 5 \& 6 \text { are interlocked, de- }\end{aligned}$ $\begin{aligned} & \text { press any one of them releases the others. } \\ & S \text { witch } 2 \text { is SPST normally open. Swith } 3\end{aligned}$ $\begin{aligned} & \text { Switch } 2 \text { is SPST normally open. Switoh } 3 \\ & \text { is SPDT \& SPST normally open. Switch } 4\end{aligned}$ $\begin{aligned} & \text { is DPDT. Switch } 5 \text { is DPDT } \& 3 \text { SPST nor- } \\ & \text { mally open switches. Switch } 6 \text { is DPDT \& }\end{aligned}$ SPST normally open. A fantastic feature tions may be removed from its initial posand ganged so that more combinations are $\begin{aligned} & \text { possible on any of the push buttons. This } \\ & \text { switch has the special SWITCHCRAFT }\end{aligned}$ LOCKOUT feature which prevents opera$\begin{aligned} & \text { tion of more than one push button at a } \\ & \text { time. Switchcraft catalog price (in } 1976 \text {) } \\ & \text { was } \$ 29.48 \text {. Delta's original price } \$ 6.95 \text {. }\end{aligned}$

1/2 OFF! Momentary
 Push Button Switches
 Delta's This switch is the same physical shape as original tary swith has only TWO switches. Com-

 The first is a momentary on-off switch. entand has 4 functions, the 1 st is a mom- enf, the 2 nd is a SPDT, the 3 rd Each

 CopperClad PC Boards!

BEAM-X Counters!

With 3 Nixie Tubes!

This ciounter was orizinall 5 used by a large mif of copy
ink machines. Function: the number of coptes desired was preset by dials \& the machine then made this numwas preset by dias \& copies-displaying the count on the NIXIE tubes. When the preset number was reached, the counter stopped the machine. These counters were removed from the
copiers \& replaced by new models. Input: 115 VAC and copiers \& replaced by new models. Inputt. 115 VAC and tulses its own power supply, plus a 200 VDC \& 6.3 VAC supply. It contains 3 Burroughs NIXIE tubes, type
B5092A which currently sells for s17 each. We supply B5092A which currently sells for $\$ 17$ each. We supply some application data. We are selling these counters at
this low price because of the minor defects that some of these counters have. Unfortunately we do not have the time to test or make the minor repairs needed to make
the counters operational. $61 / 2 \times 61 / 2 \times 11^{1 / 2^{\prime \prime}}$. Wt. 7 lbs . Beam X Tubes worth \$50. apiece if you can find 'em.

$1 / 2$ OFF! POTBonanza

We have acquired the entire inventory (2 million pieces) of ganged pots from one of the largest makers of auto-
mobile radios in the country. There are 2 -gang, 3 gang. 4-gang, 5 -gang and 6 -gang pots: almost all also include line switch. These are made by C-T-S (American made)
All the popular resistance values, tapers and many of All the popular resistance values, tapers and many of
the pots are tapped. Any one of these pots would cost
WoW! Less Than 17c Each!
NGW MATI-ORDWR ADDREBS

76 SECOND AVE WALTHAM, MASS 02154

RCA Cosmac Super Elf Computer $\$ 106.95$

Compare leatures before you decide to buy any other computer. There is no other computer on the market today that has all the desirable benefits of the Super Elf for so little money. The Super Elf is a small single board computer that does many big things. It is an excellent computer for training and for learning programming with its machine tanguage and yet it is easily expanded with additional memory, Tiny Basic, ASCll Keyboards, video character generation, etc. The Super Elf includes a ROM monitor for program loading, editing and execution with SINGLE STEP for program debugging which is not included in others at the same price. With SINGLE STEP you can see the microprocessor chip opera ting with the unique Quest address and data bus displays betore, during and after executing in structions. Also. CPU mode and instruction cycle are decoded and displayed on 8 LED indicators An RCA 1861 video graphics chip allows you to connect to your own IV with an inexpenslye video modulator to do graphics and games. There is speaker system included for writing your own
music or using many music programs already music or using many music programs already
written. The speaker amplitier may also be used to drive relays for control purposes.
A 24 key HEX keyboard includes 16 HEX keys plus load, reset, run, walt, Input, memory protect, monitor select and single step. Large, on

Super Expansion Board with
board displays provide qutput and optional high and low address. There is a 44 pin standard connector for PC cards and a 50 pin connector for the Quest Super Expansion Board Power supply and sockets for all $1 C$'s are included in the price plus a detailed 127 pg . instruction manual which now includes over 40 pgs . of software info. in cluding a series of lessons to help get you started and a music program and graphics target game. Remember, other computers only offer Super Elf features at additional cost or not at all. Compare before you buy. Super Eff Kit \$106.95, High address option S8.95, Low address option \$9.95, Custom Cabinetwith drilled and labelled plexiglass front panel \$24.95. Expansion Cabine with room for $4 \mathrm{~S}-100$ boards $\$ 41.00$. NiCad Battery Memory Saver Kit $\$ 6.95$. All kits and options also come completely assembled and tested.
Questdata, a 12 page monthly software publication for 1802 computer users is available by subscription for $\$ 12.00$ per year

Attention Elf Owners

 New productTiny Basic cassette $\$ 10.00$, on ROM $\$ 38.00$ original Elf kit board $\$ 14.95$

Cassette Interface \$89.95

mprovements and revisions are easily done with the monitor. If you have the Super Expansion Board and Super Monitor the monitor is up and running at the push of a button.
Other on board aptions include Parallel input and Output Ports with full handshake. They allow easy connection of an ASCII keyboard to the input port. RS 232 and 20 ma Current Loop for teletype or other device are on board and if you need more memory there are two $\$-100$ slots for static RAM or video boards. A Godbout 8 K RAM board is available for $\$ 135.00$. Also a 1 K Super Monitor version 2 with video driver for full capability display with Tiny Basic and a video interface board. Parallel I/O Ports $\$ 9.85$, RS $232 \$ 4.50$ TTY $20 \mathrm{ma} \mathrm{l} / \mathrm{F} \$ 1.95, \mathrm{~S}-100 \$ 4.50$. A 50 pin connector set with ribbon'cable is available al $\$ 1250$ for easy connection between the Super Elf and the Super Expansion Board.
The Powor Supply KIt for the Super Expansion Goard is a 5 amp supply with multiple positive and negative voltages $\$ 29.95$. Add $\$ 4.00$ for shipping Prepunched frame $\$ 7.50$. Case $\$ 10.00$. Add $\$ 1.50$ for shipping.

Digital Temp. Meter Kit $\$ 39.95$ Indoor and outdoor. Switches back and forth Indoor and outdoor. Switches back and forth,
Beautiful. $50^{\prime \prime}$ LED readouts. Nothing like it Beautiful. $50^{\prime \prime}$ LED readouts. Nothing like it
available. Needs no additional parts tor comavailable. Needs no additional parts for com-
plete, full operation. Will measure -100° to plete, full operation. Will measure -100° to
$+200^{\circ} \mathrm{F}$, tenths of a degree, air or liquid, $+200^{\circ} \mathrm{F}$, tenths of a degree, air or liquid,
Beautiful woodgrain case w/bezel $\$ 11.75$
NiCad Battery Fixer/Charger Kit Opens shorted cells that won't hold a charge and then charges them up, all in one kit w/full parts and instructions $\$ 7.25$

PROM Eraser will erase 25 PROMs in
is minutes. Ultraviolet, assembled $\$ 34.50$ Rockwell AlM 65 Computer 6502 basea single board with full ASCII keyboard and 20 column thermal printer. 20 char, at phanumeric dispiay, ROM monitor, fully expand able. $\$ 85.00$. 8 K Basic Interpreter $\$ 100.00$ bler $\$ 85.00$, 8 K Basic Interpreter $\$ 100.00$
Power supply assem. in case $\$ 60: 00$. AlM 65 in Power supply assem. in case $\$ 60: 00$. AlM
thin briefcase with power supply $\$ 485.00$.

Multi-volt Computer Power Supply $8 \mathrm{v} 5 \mathrm{amp}, \pm 18 \mathrm{v} .5 \mathrm{amp}, 5 \mathrm{v} 1.5 \mathrm{amp},-5 \mathrm{v}$ $.5 \mathrm{amp}, 12 \mathrm{v} .5 \mathrm{amp},-12$ option. $\pm 5 \mathrm{v}, \pm 12 \mathrm{v}$ are regulated. Kit $\$ 29.95$. Kit with punched frame $\$ 37.45$. Woodgrain case $\$ 10.00$
Video Modulator Kit \$8.95
Convert your TV set into a high quality monitor without aftecting normal usage. Complete kit with full instructions.
2.5 MHz Frequency Counter Kit Complete kit less case
$\mathbf{3 0} \mathrm{MHz}$ Frequency Counter Kil Complete kit less case

79 IC Update Master Manual $\$ 3500$

 Complete ic data selector, 2500 pg . master reference guide. Over 50.000 cross references. Free erence guide service through 1979. Domestic postage update service through 9978 iC Master closeout$\$ 3.50$. Foreign $\$ 5.00 .1978$. -

Full six digit batfery operated 3.2768 MHz crystal accuracy. min., 59 sec., 99 1/100 sec. Time and Taylor. 7205 chip, all compon case Full instructions.	operated. 2-5 volts. accuracy. Times to 59 00 sec . Times std., split p, all components minus s.
Hickok $31 / 2$ Digit LCD Multimeter Batt/AC oper. 0.1mv-1000v. 5 ranges. 0.5% accur. Resistance 6 low power ranges 0.1 ohm-20M ohm. DC curt. . 01 to 100 ma . Hand helf. $1 / 2{ }^{2 \prime}$ LCD displays, auto zero, polarity, overrantige. $\$ 69.95$.	
atic RaM Kit Godbo	bout \$13
K Static Ram Kit	
24 K Static RAM Kit	423.00
32 K Dynamic RAM Kit	
K Dynamic RAM Kit	kit 470.
8K/16k Eprom Kit (less PROMS)	(ess PROMS) \$889.00
Video Interface Kit	
Motherboard $\mathbf{5 3 9}$. Extender Bo	der Board

Slopwatch Kit

9.95
$\begin{array}{c}12.35 \\ 12.50 \\ 16.50 \\ 13.50 \\ 13.60\end{array}$

 *eraoapos
 87.50
7.50
60.00
one
44.95

 dismay Leo
 กivicis
 \qquad00
.95
.95

 N.

] FLECTRONIÇS

CIRCLE 31 ON FREE INFORMATION CARD

Electricity from the sun.
5 Volt panel $1 / 4 \mathrm{amp} \$ 502.5$ Volt panel $1 / 2 \mathrm{amp} \$ 40$ GIANT $31 / 2$ inch cell, delivers $1 \mathrm{amp} \$ 8.50$
Above cell with special motor \& prop, runs in sun $\$ 10.25$
LOGIC power supplies, unused, solid state construction. 5 Volt 4 amp $\$ 355$ Volt $15 \mathrm{amp} \$ 455$ Volt $25 \mathrm{amp} \$ 45$ 5 volt $35 \mathrm{amp} \$ 5012$ Volt $15 \mathrm{amp} \$ 40$

Meshna Inc., PO Box 62, E. Lynn, Mass. 01904

Poly Pak,' ECONOMY MINDED INFLATION FIIHTING

12VDC 10 AMP POWER SUPPLY

FAIRCHILD RED LED LAMPS
\#FLV5057 Medium Size. Clear Case REDEMITTING. These are not retested off-spec units as sold by some of our competition. These are tactory prime. first quality, new unts

10 FOR ${ }^{5} 1^{19}$ 50 FOR ${ }^{5} 4^{95}$
"WE BOUGHT 250,000 PCS.

"THE COLOSSUS"

FAIRCHILD SUPER JUMBO LED READOUT A full 80 inch character. The biggest readout we have ever sold! Super efficient. Compare at up to $\$ 2.95$ each from others!
FND 847 Common Anode
YOUR CHOICE $\$ 149 \mathrm{EA}$
FND 850 Common Cathode
(6 for \$6.95)

NATIONAL SEMICONDUCTOR
JUMBO CLOCK MODULE
$\$ 4^{95}$
$\$ 795$
REG. ${ }^{59.95}$
$A D D S 195$ FDR
$A C$ XFMR
PERFECT FOR USE WITH A TIMEBASE

EATURES
FOUR JUMBO \% INCH LED DISPLAYS 24 HR ALARM SIGNAL OUTPUT 50 OR 60 hz OPERATION LED BRIGHTNESS CONTROL - SLEEP \& SNOOZE TIMERS - DIRECT LED DRIVE (LOW RFI) COMPARE AT UP TO TWICE OUR PRICE! MANUFACTURER'S CLOSEQUT!

16K DYNAMIC RAM CHIP
 MORKS IN TRS-80 OR APPLE II

6K X 1 Bits. 16 Pin Package Same as Mostek 4116 -4.250 NS access 410 NS cycle time. Our best price yet for this state of the art RAM. 32 K and 64 K RAM boards using this chip are readily available. These are new, fully guaranteed devices by a major mig

VERY LIMITED STOCK!
"MAGAZINE SPECIAL" - 8 For $\$ 79.50$

EXPERIMENTER'S CRYSTAL
262. 144 KHZ This Irequency is 2 to the 18th power. Easily divided down to any power of 2 and even to 1 HZ New by CTS-Knight A $\$ 5$
vatue:
$\$ 1.25$ each
4.00 MHZ - \$1.75

TOSHIBA POWER AUDIO AMP 5.8 Watt RMS Typical Output. 50 to $30,000 \mathrm{HZ} \pm 3 \mathrm{DB}$. For CB's, tape decks, PA's. etc. Works off of a single supply voltage from 10.5 to 18 VDC 10 Pin plastic DIP with special built in heat sink tab. Perfect for use on 12VDC. With Data

FAIRCHILD PNP
 SUPER TRANSISTOR

2N4402 TO-92 Plastic Slicon PNP
Drwer Hign Current VCEO-40 HFE -50 10150 at 150 MA FT-150 MHZ A super
BEEFED-UP" Version of the 2 N 3906 8 FOR $\$ 1$

FET SALE!
2N4304. Brand New N Channel, Junction Fet BVGDO-30VIDSS-15 MA Typ 1500 UMHOS TO- 18 Plastic Case. Mifg by Teledyne 6 FOR \$1
G.I. FULL
WAVE BRIDGE

4 AMP 600 PIV
3/4 In. Square
With Lugs, \#LM-1
754 ea. 3 For \$2

MOTOROLA POWER TRIAC
TO-220 CASE 15 AMP 400 PRV SPECIAL $894_{\text {each }}$ 5 FOR $\$ 3.95$

COMPLEMENTARY POWER TRANSISTORS

 SILICON NPN AND PNP. TO-220 CASE VCEO - 40 V PD - 30 WATTS FOR AUDIO POWER AMPS, ETC TIP29-NPN YOUR CHOICE TIP30-PNP 3 FOR $\$ 1$
EXPERIMENTER'S HEATING PLATE

Large Manufacturers Surplus. $5 \frac{1}{4} \times 10^{1 / 2} \operatorname{In}$. Made of $3 / 8 \mathrm{in}$. tempered glass with heating element laminated on back. Works off 120 VAC. Protected by thermostat and iwo thermal fuses. Rated 120 Watts. Use for any heating applications. Perfect for heating ferric chloride to increase PC board etching efficiency. Units are brand new. non-submersible.

Digital Research: Parts

P. O. BOX 401247

GARLAND, TEXAS $75040 \bullet(214)$ 271-2461

ANNOUNCEMENT:
To better serve our customers we are splitting Digital Research Corp of Texas into two operating sections: PARTS AND COMPUTERS. We feel this change will allow us to offer you lower prices, better service. and many more new products Continue to order parts clock modules. etc from D R.P.P O Box 401247 Garland. T× 75040 . To order computer parts and computer kits order from Digital Research: Computers P.O Box 401565 Garland. TX 75040
TERMS: Add 50 e postage, we pay balance. Orders under $\$ 15$ add 754 handling. No C.O.D. We accept Visa, Mastercharge, and American Express cards. Tex. Res. add 5\% Tax. Foreign orders (except Canada) add 20% P \& H. 90 Day Money Back Guarantee on all ftems.

SUBSCRIBE AND SAVE!

Get every excitement-packed issue of Radio-Electronics delivered to your door. And save money, tooup to $\$ 9$ off newsstand prices! Use the handy coupon and subscribe today!

[^4]

CIRCLE 37 ON FREE INFORMATION CARD

CIRCLE 45 ON FREE INFORMATION CARD

ismsay alarirnolas
The CT- 50 is a versatile and precision frequency counter which will measure frequencies to 60 mHz and up to 600 mHz with the CT- 600 option. Large Scale Integration, CMOS circuitry and solid state display technology have enabled this counter to match performance found in units selling for over three times as much. Low power consumption (typically 300-400 ma) makes the CT-50 ideal for portable battery operation. Features of the CT-50 include: large 8 digit LED display, RF shielded all metal case, easy pushbutton operation, automatic decimal point, fully socketed IC chips and input protection to 50 volts to insure against accidental burnout or overload. And, the best feature of all is the easy assembly. Clear; step by step Instructions guide you to a finished unit you can rely on. Order your today!

CT-50, $60 . \mathrm{mHz}$ counter kit	589.95	C8-1. Color TV callbrator-stablizer	4.95
CT-50WT. 60 mHz counter, wired and tested	159.95	DP-1, DC probe, general purpose probe	12.95
CT. 600.600 mHz scaler option, add	29.95	HP-1, Hlgh impedance probe. non-loadir	15.95

29.95 PP-1, DC probe. general purpose probe 12.95

CT-600. 600 mHz scaler option, add

Incredible Price

SPECIFICATIONS

Frequency range: 6 Hz to $65 \mathrm{mHz}, 600 \mathrm{mHz}$ with CT- 600 Resolullon: 10 Hz (" 0.1 sec gate, $1 \mathrm{~Hz}(\mu \quad 1$ sec gate Readout: 8 dignt. $04^{\prime \prime}$ high LED, direct readout in mH Accuracy: adjustable to 0.5 ppm Stability: 2.0 ppm over 10° to $40^{\circ} \mathrm{C}$, te nperature ompensated
Input: BNC, 1 megohm/20 pl direct, 50 ohm with CT-60X Overload: 50 VAC maximum, all modes
Sensitivity: less than 25 mv to $65 \mathrm{mHz}, 50-150 \mathrm{mv}$ to 630
Power: 110 VAC 5 , Watts or 12 VDC $(d) 400 \mathrm{ma}$ Size: $6^{\prime \prime} \times 4^{\prime \prime} \times 2^{\prime \prime}$. high quality aluminum case. 2 lbs Size: $6^{\prime \prime} \times 4^{\prime \prime} \times 2^{\prime \prime}$. high quality aluminum case, 2 lbs ICS: 13 units, all socketed

OP-AMP SPECIAL

741 mini dip
12/\$2.00
B1-FET. minı dip. 741 type
10/\$2.00

VIDEO TERMINAL

A completely self-contained, stand alone video terminal card. Requires only an ASCO keyboard and available, common teateres are single 5 V supply. XTAL controlled sync and baud rates (to 9600). complete computer and keyboard control of cursor. Parity error control and display. Accepts and generates serial ASCll plus parallel keyboard input. The 3216 is 32 char. by 16 lines, 2 pages with memory dump feature. The 6416 is 64 char. by 16 lines, with scrolling, upper and lower case (optional) and has RS- 232 and 20 ma loop interfaces on board Kits include sockets and complete documentation RE 3216, terminal card
$\$ 149.95$ RE 6416. terminal card 189.95 Lower Case option, 6416 only 13.95 Power Supply Kit
14.95

Video/RF Modulator. VD-1
6.95

CALENDAR ALARM CLOCK

The clock that's got it all: 6- 5" LEDs. 12 24 hour snooze. 24 hour alarm, 4 year calendar battery backup. and lots more. The super 7001 chip is used Size $5 \times 4 \times 2$ inches
Complete kit. less case (not available) DC-9
$\$ 34.95$

30 Watt 2 mtr PWR AMP

Simple Class C power amp features 8 times powe gain $t W$ in for 8 out, 2 in for 15 out, 4 W in tor 30 out Max. output of 35 W . incredible value. complete with all parts. less case and T-R relay.
PA-1. 30 W pwr amp kit
$\begin{array}{lr}\text { TR-1. RF sensed T-R relay kit } & \mathbf{6} \text {.95 }\end{array}$

Ramsey's famous MINI-KITS

FM WIRELESS MIKE KIT Transmits up to 300'
to any FM broadcas
to any FM broadcast
radio. Uses any type of
mike Runs on 3109 V
Type FM-2 has added sen
FM mike preamp stage

COLOR ORGAN/MIISIC LIGHTS See music come alivel 3 different lights flicker with music One light
for lows one for the midrange and one tor the highs Each channel individually adjuslable, and drives up to 300W Great tor parties. band music, nite clubs and more
Complete kil. ML. 1
LED BLINKY KIT
A great altention getter which alter-
nately tashes nately tlashes 2 jumbo LEDs Use
for name badges buttons. wamng for name badges. buttons, warning
panel lights, anyining ${ }^{t}$ Runs on 3 to panel ligh
15 volts

VIDEO MODULATOR KIT Converts any TV to video monitor Super stable tunable over ch 4-6 Runs on 5-15V accepts std video signal Best unit on the market Complete kit. VD. \cdot $\$ 6.95$
TONE DECODER A complete tone decoder on a single PC board Features $\quad 400-5000$ Hz adjustable range via 20 turn pot voltage regulation. 567 ic Usetul for touch-tone decoding. tone burst detection. FSK etc Can also be used as a stable tone encoder Runs on 5 to 12 volts Complete kit TD- 1 $\$ 5.95$
WHISPER LIGHT KIT An interesting kl!. small mike picks up sounds and converts them to light The louder the sound the brighter the light Completely seffcontained. includes mike. runs on 110 VAC . Controts up to 300 watts. Complete kit. WL-1 $\mathbf{\$ 6 . 9 5}$

Under dash car clock

inur

tifui plastic case features. 6
mbonl instructions Optonal dimmer automatically adjusts display to ambient light level.
DC-11 clock with mitg brackel
527.95

OM-1 dimmer adapter

49.95

Extend the range of your with any counter. Includes 2
transistor pre-amp to give super sens, typically 20 PS-1e 600 mz Specily - 10 or $\div 100$ ratio
PS-1BK. 600 mHz orescaler kit

PRESCALER

$\$ 22.95$
$\$ 5.95$

Complele kit BL-1 $\quad \mathbf{\$ 2 . 9 5}$

P. O. BOX $401244 R$ GARLAND, TX 75040 214/278-3553

SE-01 SOUND EFFECTS KIT

- all parts
- COMPLETE instructions
- quality plateo $\&$ ORILLED BOARD
- IC SPECS InCLUDEO
- runs dn one gVOLT BATTERY
- SMALL $31 / 2^{\prime \prime} \times 5^{\prime \prime}$
$\$ 16.95$
LESS SPEAKER \& BATtERY

76477 CHIP IS INCLUDED, EXTRA

OTHERS WILL SELL YOU THE CHIP. BUT ONLY BULLET CAN FURNISH YOU A COMPLETE KIT OF ALL THE PARTS YOU NEED TO PUT THE T.I. 76477 SOUND CHIP THROUGH ITS PACES! WE INCLUDE SPECS AND PROGRAMMING CHARTS. YOU WILL BE AMAZED AT THE THOUSANDS OF SOUND EFFECTS YOU CAN PRODUCE WITH OUR KIT! MAKE PHASOR GUN, STEAM TRAIN, GUNSHOT AND OTHER SOUNDS. BOARD HAS AUXILLARY PULSE GENERATOR. COMPARATOR AND MULTIPLEX OSC FOR EVEN MDRE VERSATILITY.

7 WATT AUDIO AMP KIT

SMALL. SINGLE HYBRID IC AND COMPONENTS FIT ON A $2^{\prime \prime} \times 3^{\prime \prime}$ PC BOARD (INCLUDED) RUNS ON 12 VDC gREAT FOR ANY PROJECT THAT NEEDS AN INEXPENSIVE AMP. LESS THAN 3% THO @ 5 WATTS. COMPATIBLE WITH SE-01 SOUND KIT.

6 DIGIT AUTO/VAN CLOCK

- LaRge $1 / 2^{n}$ Characters (LEO)
- Quartz xtal timebase
- alarm \& Snooze options
- noise filtering
- easy to assemble
- $4^{5 / 8^{\prime \prime}} \times 3^{\prime \prime} \times 11 / 2^{\prime \prime}$
- orilled \& plated pC boards

ULTRASONIC RELAY KIT

INVISIBLE BEAM WORKS LIKE A PHOTO ELECTRIC EYE. USE UP TO 25 FT. APART. COMPLETE KIT. ALL PARTS
\& PC BOARDS

- NO COI'S
- SEND CHECK. M.O M.C. OR VISA 半
- AOO 5\% FOR

SHIPPING

- catalog free upon request
- orders under \$10

ADO 75c

- TEX. RESIDENTS AOO

5\% SALES TAX

- FOREIGN AOO 10\%

päàī̀

301 OP AMP 8 LEAD CAN $\quad 3 / 1.00$
723 VOLT REG. 10 LEAO CAN
13741 FET INPUT 741 MINI DIP $3 / 1.10$ $30.000 @ 15 V$ COMPUTER GRADE 2.10
2N4400 NPN GEN. PURPOSE $\quad 8 / 1.00$
2N4402 PNP COMPLIMENT 8/1.00
2NG028 P.U.T. W/SPECS
.50
LM380 2W AUOIO IC W/SPECS $\quad 1.09$
LM377 OUAL LM380 W/SPECS 2.50
*7815 VOLT REG. 1 A 15V
*725 LOW NOISE OP AMP
IL.I OPTO ISOLATOR MINI OIP
"MEM 531 OUAL GATE MOSFET
DIDOE PROTECTED. SIMILAR
T0 40673
MVI624 VARICAP DIOEE 10 PFO
IN4003 1a ROOV DIODE 15/1.00
TIP30 TAB PNP POWER $\quad 3 / 1.00$
*MCI 35IP FM IF. OISC IC
-inoicates item is "house numbered"
LEDं'゚

JUMBO GREE LED'S	$4 / 89$
JUMBO RED	$5 / 89$
MEDIUM RED $/$ //a")	15
MEDIUM GRN OR YELLOW	.16

YOU'RE UNDER SURVEILLANCE!! A HOST OF PEOPLE, AGENCIES, AND COMPUTERS ARE BUSY SPYING ON YOU AND YOUR BUSINESS EVERY DAY, OFTEN ILLEGALLY.

HOW TO STOP IT OR DO IT BACK!

A Large Format ($81^{1} 2^{\prime \prime} \times 11^{\prime \prime}$) Quality Paperback, 240 Pages
BUGGING
WIRETAPPING
TAILING
$\$ 1195$
ELECTRONIC SURVEILLANCE
SURREPTITIOUS ENTRY
DETECTIVE TECHNIQUES
WEAPONS
COUNTERMEASURES
"A VIRTUAL ENCYCLOPEDIA ON SURVEILLANCE EVERYTHING YOU'VE ALWAYS WANTED TO KNOW ABOUT SPYING."
playboy magazine

With this order
FREE SHOPLIFTING BOOKLET FOR DETECTIVES-pius other
investigative materials.

QUIMTRONIX

Postpaid-P.O. Box 548-RE
Seattle, Washington 98111
CIRCLE 11 ON FREE INFORMATION CARD

HICKOK TEST INSTRUMENTS

HICKOK New Digital Mini-Multimeter

 Lowest PriceMODEL LX303

- Big 1/2" high LCD display
- Use indoors or out - 200 hour 9 V batery life - Auto zero, Polarity, Overrange Indicatión
- 100 mV DC F.S. sensitivity
- 19 ranges and functions

Call TOLL FREE (800) 645-9518 In N.Y. State call (516) 752-0050

"We Will Beat Any Advertised Price"

DIGITAL AUTO SECURITY SYSTEM

4 DIGIIS
PERSONAL CODE!!

- proximity triggered
- voltage triggered
mechanically triggered

3-WAY PROTECTION!

This alarm protects you and itself! Entering protected area will set it off, sounding your car horn or siren you add. Any change in voltage will also trigger the alarm into action. If cables within passenger compartment are cut, the unit protects itself by sounding the alarm. SPECIAL \$19.95

100 W CLASS A POWER AMP KIT

Dynamic Bias Class " A " circuit design makes this unit unique in its class. Crystal clear, 100 watts power output will satisfy the most picky fans. A perfect combination with the TA. 1020 low T.I.M. stereo pre-amp.
Specifications:
*Output power: 100W RMS into 8 -ohm 125W RMS into 4 -ohm *Frequency response: $10 \mathrm{~Hz}-100 \mathrm{KHz}$ *T.H.D.: less than 0.008% *S/N ratio: better than 80 dB *Input sensitivity: IV max.
 Power supply: +40 V @ 5 amp TA-1000 KIT \$51.95
Power
transformer
$\$ 15.00$ each

LOW TIM DC STEREO

PRE-AMP KIT TA-10-20

Incorporates brand-new D.C. design that gives a frequency response from $0 \mathrm{~Hz}-100 \mathrm{KHz}$ $\pm 0.5 \mathrm{~dB}$! Added features like tone defeat and loudness control let you tailor your own frequency response. Independent I.C. regulated power supplies to eliminate power fluctuation! Specifications: "T.H.D. less than . 005% *T.I.M. less than 005% "Frequency response: DC to $100 \mathrm{KHz} \pm 0.5 \mathrm{~dB}$ *RIAA deviation: $\pm 0.2 \mathrm{~dB}$ *S/N ratio: better than 70 dB "Sensitivity: Phono $2 \mathrm{MV} 47 \mathrm{~K} / \mathrm{Aux} .100 \mathrm{MV} 100 \mathrm{~K}$ *Output level: 1.3 V *Max output: 15 V *Tone control: bass $\pm 10 \mathrm{~dB} @ 50 \mathrm{~Hz} /$ treble $\pm 10 \mathrm{~dB} @ 15 \mathrm{~Hz}$ *Power supply: ± 24 D.C. @ 0.5A Kit comes with regulated power supply. all you need is a 48 V C.T. transformer @ 0.5 A

ONLY $\$ 44.50$
X'former

THE MOST ADVANCED TIMEPIECE

 OF ITS KIND IN THE WORLD!
play panel!! This Mark lll kit with arc-shape dis play panel!! This Mark IIt LED level indicator is a
new design PC board with an arc-shape 4 colors new design PC board with an arc-shape 4 colors
LED display tchange color from red yellow LED display (change color from red. vellow, green and the peak output indicated by rose red. The power range is verv large, from -30 dB to +5 dB .
The Mark lll indicator is applicable to 1 wall The Mark Ill indicator is applicable to 1 walt
200 watts amplifier operating voltage is $3 \mathrm{~V}-9 \mathrm{~V}$ 200 watts amplifier operating voltage is $3 \mathrm{~V}-9 \mathrm{~V}$
DC at max 400 MA . The circuit uses 10 LEDS DC at max 400 MA . The circuit uses 10 LEDs
per channel. It is very easy to connect to the am. per channel. It is very easy to connect to the am.
plifier. Jusi hook up with the speaker outpur! IN KIT FORM $\$ 18.50$

EUAL ELECTRONIC
DUAL SPEAKER PROTECTOR

load to protec your amplifier as well as your speak. ers. A must for OCL cırcuits. S8.75 EA.

FM WIRELESS MiC Kit
It is not a pack of cigarettes. It is a new FM wireless mic kit! New design PC board fits into a plastic cigarette box (case included). Uses a condensor microphone to allow you to have a better response in sound pick-up. Transmits up to 350 ft .! With an LED indicator to signal the unit is on.

PROFESSIONAL FM WIRELESS MICROPHONE

TECT model WEM-16 is a factory assembled FM wireless microphonep powered by an AA size battery Transmits in the range of $88-108 \mathrm{MHz}$ with 3 transistor circuits and an omni-directional electric condenser. Element built-in plastic tube type case; mike is $61 /{ }^{\prime \prime}$ long. With a standard FM radio, can be heard anywhere on a one-acre lot; sound quality was judged very good. $\$ 16.50$

sanua

- COMPACT -

LIGHTWEIGHT

- ULTRASLIM

BATTERY CHECKER
LED TESTER
T-55D (w/o temp probe) $\$ 44.50$
T-55THD(temp probe) $\$ 66.50$

HICKOK LX303

 DIGITAL LCD MULTIMETER- $31 / 2$ digits display
- 200 hours 9 V battery life
- Auto zero; polarity; overrange indication
- 100 MV DC F.S. sensitivity
- 19 ranges and functions
- D.C. volt: 0.1 MV to 1000 V
- A.C. volt: 0.1 V to 600 V
- D.C. current: 0.01Ω a to 100 MA

CALL FOR OUR DISCOUNTED PRICE

COMPLETED UNIT-NOT A KIT! OCL pre amp. \& power stereo amp. with bass, middle, treble 3 -way tone control. Fully assembied and tested, ready to work. Total harmonic distortion less than 0.5% at full power. Output maximum is 60 watts per channel at 8Ω. Power supply is 24 . 36 V AC or DC. Complete unit

Assembled $\$ 49.50 \mathrm{ea}$

3OW 3OW STEREO HYBRID AMPLIFIER KIT

It works in 12V D.C. as well! Kit includes 1 PC SANYO STK-043 stereo power amp. IC LM 1458 as pre amp, all other electronic parts, PC Board, all control pots and special heat sink for hybrid. Power transformer not included. It produces ultra hi-fi output up to 60 watts (30 watts per channel) yet gives out less than 0.1% total harmonic distortion between 100 Mz and 10 KHz .

MARKIV 18 STEPS LED POWER LEVEL INDICATOR KIT

This new stereo level indicator kit consists of 364 -color LED (18 per channel) to indicate the sound level output of your amplifier from $\cdot 36 \mathrm{~dB} \sim+3 \mathrm{~dB}$. Comes with a well-designed silk screen printed plastic panel and has a selector switch to allow floating or gradual output indicating. Power supply is $6 \sim 12 V D . C$. with THG on board input sensitivity controls. This unit can work with any amplifier from 1W to 200W!
Kit includes 70 pcs. driver transistors, 36 pes. matched 4 -color LED, all other electronic components, PC board and front panel.

MARK IV KIT \$31.50

JUMBO

I" LED ALARM CLOCK MODULE

KIT FORM \$7.95

SUPER 15 WATT AUDIO AMP KIT

ONLY $\$ 23.50$ each

Uses STK-015 Hybrid Power Amp
Kit includes: STK-015 Hybrid IC, power supply with power transformer, front Amp with tone control, all electronic parts as well as PC Board. Less than 0.5% harmonic distortion at full power $1 / 2 d B$ response from $20-100,000 \mathrm{~Hz}$. This amplifier has QUASI-Complimentary class B output. Output max is watt (10 watt RMS) at 4 !?

P.0. B0X 74D

HOME of SURPLUS BARGAINS
 P.O. BOX 619 - (DEPT. R-8) LYNNFIELD.MASS. 01940

For faster service

USE ZIP CODE

 mail

Sincial
 MA 1003 CLOCK MODULE -1650- $\$ 13.20$
 20% off our very best clock module. Internal xtal timebase, fluorescent readouts, full documentation, simple assembly (add 2 time-set switches and MV DC - you're ready to go! and ware \& optical filter: $\$ 5.95$. Hurry - clock prices

16K MEMORY EXPANSION

 CHIP SET \$109 \$87.20:Radio Shack-80, Exidy Sorcerer, Apple com puters. 250 ns access time, low power parts, DIP shunts included, 1 year limited warranty, and easy-to-follow instructions that make memory expansion a snap.

MORE MEMORY FOR YOUR MONEY

memory chips guranteed to run with static

 MHz system, at the very low price of $10 / \$ 9.90$ that's tess than $1 \$$ per byte! Stock up now, we can't predict now much forger we ll have theseFREE FLYER: Whether you're a computer user, electronic musician. experimenter, or mad scientist, we have bargains for you and they're all listed in our flyer (including lots of specials that are too provocative to put in lamily magazines such as this). Send us your name CIRCLE 35 ON FREE INFORMATION CARD
Texas Instruments Low Profile Sockets
Finest Quality Socket available in the world. Nobody can match Texas Inst ruments quality - a unique combina tion of I.C. technology and multi. metal expertise.
Over one million pieces in stock.
Contacts Price Contacts Price

8 PIN	.08	22 PIN	.22
14 PIN	12	24 PPN	.24
16 PIN	14	28 PIN	.28
18 PIN	18	40 PIN	.40

20 PIN
P.O. BOX 1035 FRAMINGHAM, MASSACHUSETTS 01701

Limited shipoing

UNIVEASAL ACTIVE FILTEA HYBAID: identical to Nat'I AF-100-IC 3 State variable filter hybrid $w / 4$ on-board op amps, capacitors, etc. A complete active filter with hipass, bandpass, lopass, and notch outpurs.
Makes simple. low disto sinewave oscillator. Easly tuned with 2 ext Makes simple, low disto sinewave oscillator. Easlly tuned with 2 ext'l
resistors or pots. Range $\mathrm{DC}-10 \mathrm{kHz}$. With Data............. $\$ 6.95$ ea.

EXCLUSIYE OFFERHII

Audio Comb Fiter, Flanger-phase deiay kit. Creates increditle audo effects not avallable from ary other device of a similar nature. So unique we PIPE. Sounds like a varlable pipe with adjustable resonance from a mooden pipe to one of silver. Features 10 norch variable comb filter response.
$10 \mathrm{~V} \mathrm{P-P}$ inpu/ /oviput levers lideat for synthesizers). Needs $\$ 15$ 10 V P-P input/output levels lideat for synthesizers). Needs ± 15 volts
at 30 mA . Includes all components. PC board, instructions, ete. Nothing even touches
Nothing even
The PIPE Kit.
$\$ 99.00$ ea
(k)

RS-232C CONNECTORS: Removed from equipment , Sherwise like new. Specify male of female type. ONLY $\$ 2.59$ Ea.: $2 / \$ 5.00$

* OP AMP SPECIALS

```
NE.
#A.911. fast. lo noise. TO-99.............................4.40 %8.
```

- Minimum order $\$ 10.00$ - Add $\$ 2.00$ for shipping SA. \& C.O.D. accopled © phone orders
SATISFACTION GUARANTEED (603)382-5179

CIRCLE 64 ON FREE INFORMATION CARD

PICTURE TUBE MACHINE We buy and sell NEW and USED CRT TRAINING, Buy with CONFIOENCE from the OHIGINAL: MFGR.
for complete detalls send name. address,
LAKESIDE INDUSTRIES
4071 N. EIston Avenu
Chicago, III. 60618
Phone: 312-583-6565

MECHANICALLY INCLINED INDIVIDUALS

Assemble electronic devices in your home. Invest ment, knowledge, or experience not necessary. Gel started in spare time. Above average profits. $\$ 300$ $\$ 600 /$ wk. possible. Sales handled by others. Write for free details

ELECTRONIC DEVELOPMENT LAB Box 1560R, Pinellas Park, PL 33565

AMAZING ELECTRONIC PROJECTS and PRODUCTS

 Lasers Super Powered. Burning, Cutting, Ritle, Pistol. Pocket. See in Dark-Shotgun Directional Mike-Unscramblers--Glant Testa-Siunwand- Disment er-Energy Producing, Surveillance, Detection, Electrifying. Ultrasonic, CB , AuI ANO MNLTD PARTS SER VICE Catalog \$1. Information Unlimited, Dept. R8 Box 716 Amherst, N.H. 03031
Give to the college of your choice.

save on gas!

Enjoy the benefits of 20% better gas mileage, quicker starting, elimination of tune-ups, reduced pollution, and 50,000 miles on plugs and points.

Update your car with a TIGER solid state electronic ignition system. Easily installed in 30 minutes
even on
new cars.
Tiger 500 CD
Assembled
$\$ 49.95$
Simplikit
$\$ 29.95$

Postpaid USA.

Master Charge \& BankAmericard accepted

TrI-Star Corporation

Phone (303) 243-5200
P.O. Box 1727

Grand Junction, Colorado 81501
CIRCLE 20 on free information card

RADIO-ELECTRONICS

	Oscilloscope with Delay - $5 \mathrm{~m} V$ sensitivity. - Single shot trigger ($\mathrm{CH}-1, \mathrm{CH}-2$). - 5" P-D-A CRT assures brighter, sharper trace - 20 nsicm sweep capability plus 11.7 nsec ris LIST PRICE: \$1050 OUR PRICE:\$8	NEW DIGITAL MULTIMETERS $10,000 \mathrm{M} \Omega$ resistance meas with conductance function Extensive overload and transient protection Rugged construction - MIL-T-28800 Hi_{i} Lo power ohms for in-circuit resistance and diode testing $10 \mathrm{M} \Omega$ input impedance doesn't load circuit 200 hour battery life - low battery indicator Large LCD readout - 2000 counts 1 year calibration cycle - only 3 adjustments One-hand operation 8022A OUR PRICE: $\$ 129$	
	25 MHz Dual Trace, Oscilloscope Delayed Sweep - Sweep delay, continuously variable from 1 usec 105 Sec . 5 mVIVIV. Vertical Sensitivity with $\pm 3 \%$ acc - Rectangular CRT with internal gratícule. - 14 nsec rise time. - CH. 1 or 2 trigaer; HF filler; and TV sync. LISTPRICE: \$1395 OUR PRICE: $\$ 118$		
	Oscilloscope - Add \& subtract modes (with CH-2 inver - Front panel X-Y operation. - 17.5 nanosec rise time. - Automatis, trigger from either channet,		
		SEND FOR OUR CATALOG Call TOLL FREE: n.J. CALL: [800\|526-2514* (201)227-7720 AMPOWER INST., INC. 26 JUST ROAD, FAIRFIELD, N. J. 07006 THE MEASUREMENT SPECIALISTS "WE SERVICE WHAT WE SELL"	
680.507	The 20 MHz Single Trace Triggered Oscilloscope - Outstanding trigger sensitivity over - entire operational range. - 10 mV sensitivity and 17.4 nSec rise time. - X5 magnification $(\pm 5 \%$) delivers $100 \mathrm{~ns} / \mathrm{cm}$ maximum speed for easy, precise readings. LIST PRICE: $\$ 549$ our price: $\$ 455$		

Radio Shack：No． 1 Parts Place Low Prices and New Items Everyday！

Top－quality devices，fully functional，carefully inspected．Guaranteed to meet all specifications，both electrically and mechanically：All are made by well－known American manufacturers，and all have to pass manufacturer＇s quality control procedures．These are not rejects，not fallouts，not seconds．In fact，there are none better on the market！Always count on Radio Shack for the finest quality electronic parts！

TTL and CMOS Logic ICs		
Full－Spec Devices Motorola and Motorola and		
Type	Cat No．	ONLY
7400	${ }^{276-1801}$	${ }^{496}$
${ }_{7} 7404$		${ }_{496}^{496}$
${ }_{7}^{7447}$		${ }_{996}$
${ }_{7}^{7473}$		${ }_{496}^{996}$
${ }_{7775}^{747}$	$\underbrace{27806}_{\text {276－1818 }}$	${ }_{\substack{\text { che } \\ 896}}$
${ }_{\substack{7476 \\ 7 \\ 7 \\ 7493}}$		coss
${ }_{7}^{7492}$		cock
74454 74192		${ }_{1}^{1.19}$
${ }_{4001}^{74193}$	${ }^{2766-18201}$	${ }_{1}^{1.199}$
${ }_{4012}^{4011}$	${ }_{\text {cherer }}^{\text {276－2411 }}$	${ }_{796}^{696}$
${ }_{4017}^{4013}$	${ }_{\text {coser }}^{276-2413}$	${ }_{1.69}^{996}$
${ }_{4}^{4020}$		${ }_{1}^{1.69}$
4021 4027 4027 4		（1．09
${ }_{4}^{40228}$		－
${ }_{4049}^{4046}$	$\underset{\substack{276-2466 \\ 27-2499}}{ }$	$\underset{796}{1.69}$
${ }_{40551}^{4050}$	$\xrightarrow{2766-2450}$	－ 71.49
¢ 40066		$\underset{\substack{1,39 \\ 798}}{ }$
${ }_{4}^{4511}$		${ }_{1}^{1.69}$
4518 4543	（276－24901	1.99

MC14553 3－Digit
BCD Counter IC
For Low－Cost Digital Readout
CMOS chip replaces over 8 separate IC＇s in a digital display circuit．Input pulse shaping．Master reset pin．
16－pin DIP．276－2498．．．．．．．．．． 3.49

RAM Memory ICs

Under 450 nS Access Time 21021024×1 Array．Low－cost static memory chip．16－pin DIP．Buy 8 and save！
2.49 Ea．or $8 / 14.95$ $2114 \mathrm{~L} 1024 \times 4$ Array．NMOS static RAM． 18 －pin DIP 276－2504 ．．．．New Low Price 10.99

SN－76477 Sound／Music Synthesizer IC

 299
 Featured in Oct． Popular Electronics

Creates almost any type of sound－ music to＂gunshots！＂Built－in audio amp． ncludes 2 VCO s，LF osc．，noise gen． filter， 2 mixers，envelope modulator，logic circuit．28－pin DIP．With data／appli－ cations circuits．276－1765 ．．．．．．．．． 2.99

（目
® PC Board．Mounts two 14 or 16－pin ICs or sockets for bread boarding．Copper clad． 1／2x5x1／16．276－151
（回 PC Board．Mounts single 14 or $16-\mathrm{pin}$ IC or socket
276－024

Mercury Tilt Switch
 －Hermetically Sealed －Perfect for Alarm Circuits Actual Size！

Subminiature position－detecting switch for use in projects or specia applications．Switch is normally closed when upright，opens when tilted more than 45° ．Rated 100 mA at 24 VDC ． 275－025

1^{98}
15 Ceramic Trimmers

Assorted low－loss RF trimme capacitors．May include both com pression and piston types rated up to 500VDC with maximum capacity values of 3 to 100 pF
272－805 ．．．．．．．．．．．．．Pkg．of 15／1．98

DPDT Dual

 Inline Relay449

Fits Std． 14
Pin IC Socket

Subminiature relay is designed for use with TTL or CMOS circuitry．Contacts rated 1 A at 125 VAC ．Coil requires 5 VDC．Coil resistance， 50 ohms． 275－215 4.49

16－Pin DIP Header．With snap－o
（0）16－Pin DIP Header．With snap－on cover．276－1980
－Position DIP Switch．275－1301
$\begin{array}{r}1.89 \\ \hline .1 .29\end{array}$

Position DIP Switch．（Not shown．）275－1304
16－Pin 16－pin Socket．For LED displays．276－1986
1.49

\section*{Handheld 6－Digit Frequency Counter $=49^{95}$
 | Digital IC |
| :--- |
| Logic Probe |
| $\mathbf{9 5}$ |
 Multi－Logic Family Compatibillty from 5－15VDC}

－Lead Zero Blanking
－ 100 Hz Up to 45 MHz
－kHz and MHz Decimals
Accuracy is 3 ppm at $25^{\circ} \mathrm{C}$ or less than 30 Hz at 10 MHz ．Overload－protected 1 －meg input． Sensitivity， 30 mV up to $30 \mathrm{MHz} .3 \times 4 \frac{1}{2} 2^{\prime \prime}$ ．With mini－rod antenna，leads，case，instructions
Requires 9 V battery．22－351．．Sale 49.95 Requires 9 V battery．22－351 ．．．Sale 49.95 AC Adapter．U．L．listed．65－731 ．．．．． 4.95

Detects one－shot low repetition rate，narrow pulses scopes miss． Combines level detector，pulse de－ indicates logic＂1＂，Lo－LED is logic ＂ 0 ＂．Pulse LED displays pulse tran－ sitions to 300 nanoseconds，blinks at 3 Hz for high－frequency signals $\operatorname{lup}_{22-300 \ldots .24 .95 ~}^{\text {to }}$

Computer Data Manuals \＆ Semiconductor Handbook

＇因 Intel 8080／8085 Programming Manual．Handy reference for programming with Intel＇s assembly reference for programming with Intel＇s assembly
language． $62-1377 .35$固 Intel Memory Design Handbook．Explains use of Intel＇s memory components and support cir cuits in systems．62－1378
（ Intel Data Catalog． 928 pages of specifications on most of Intel＇s standard microcomputer－ related products．62－1379
OU Semiconductor Reference and Application Handbook．Complete specs and applications for popular IC transistors，diodes．
276－4002

Sale 996
NEW LEEDS
－Tri－Color
－Red Flasher

Digital Project Accessories

 ens opering Molded Dis eight 0.3^{7} LED digts．Whth brackets． $13 /, \times 37 / 4 \times 4^{4} / 10$ four 0.6 of | $270-285$. |
| :--- |
| 10 |

（B）

Rated8A＠250V．Standard．093＂pin djameter

2－Pin Male \＆Female．（Not shown）274－222 Pair 89 e

WHY WAIT FOR MAIL ORDER DELIVERY？
IN STOCK NOW AT OUR STORE NEAR YOU！

ADVERTISING INDEX

RADIO-ELECTRONICS does not assume any responsibility for errors that may appear in the index below.

Independent News Company, Inc. is pleased to announce a Retail Display Plan available to all retailers interested in earning a display allowance on Radio-Electronics magazine and who purchase the magazines from suppliers other than Independent News Co., Inc., or the publisher.

To obtain details and a copy of the formal contract please write to Director, Retail Sales Division, Independent News Co., Inc., 75 Rockefeller Plaza, New York, N.Y. 10019. Under the display plan in consideration of your acceptance and fulfilment of the terms of formal contract to be sent to you upon your request you will receive a display allowance of 10% of the cover price per copy sold by you. This plan will become effective with all issues of Radio-Electronics delivered to you subsequent to the date your written acceptance of the formal Independent News Co., Inc. Retail Agreement is received and accepted by our Company.

Real-State-of-the-Art

TWO NEW ACODCOBATTERY PORTABLE COUNTERS

OPTO-8000.1A 10 Hz to 600 MHz - FREQUENCY COUNTER
黄 - Precision TCXO time base 0.1 PPM Stability $17-40^{\circ} \mathrm{C}$

- Super Sensitivity with preamps in both HI-Z \& 50 Ohm inputs $<10 \mathrm{mV}$ to $50 \mathrm{MHz}, 25 \mathrm{mV}$ @ $150 \mathrm{MHz}<50 \mathrm{mV}$ to 600 MHz
- Auto Decimal Point - Aluminum Case - Socketed IC's
- Three position attenuator: X1, X10, X100 (avoids false counting)
$\begin{array}{ll}\text { \#OPTO-8000.1 A } & \text { Factory Assembled } \ldots \text {. } \$ 329.95 \\ \text { \#OPTO-8000.1AK } & \text { Kit Form } \$ 279.95 \\ \text { \#NI-CAD-80 } & \text { NI-CAD Battery Pack } \$ 19.95\end{array}$
OPTO-7000 10 Hz to 600 MHz MINIATURE COUNTER
- XTAL (TCXO) Time Base $\pm .08 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$
- Aluminum Case - HI-Z \& 50 Ohm inputs
- 1 Sec. \& 1/10 Sec. Gate times - Auto Dec. Pt.
- Built-in Prescaler and Preamps Standard
\#OPTO-7000 Factory Assembled - 1 Year-Guar . . \$139.95
* \#OPTO-7000K Kit Form................................... 99.95
*. \#AC-70 AC Power Pack......................... 4.95
- \#NI-CAD-70 NI-CAD Battery Pack 19.95
\#TCXO-70 Precision TCXO Time Base <0.1PPM, $17-40^{\circ} \mathrm{C}$. 79.95

ORDER FACTORY DIRECT - PHONE OR MAIL
TERMS: Orders to U.S. and Canada, add 5% to maximum of $\$ 10.00$ per order for shipping, handling and insurance. To all other countries, add 10% of total order. Florida residents add 4% state tax. C.O.D. fee: $\$ 1,00$. Personal checks must clear before merchandise is shipped.
${ }^{\text {i }}$ Accessories

PROBES:

\#P-100 50 Ohm, 1X $\$ 13.95$
\#P-101 Lo-Pass..................... 16.95
\#P-102 H1-Z, 2X 16.95
\# AP-8015 UHF Counter Preamp 20 MHz to 600 MHz 15-50 DB Gain
(Not Shown) . . \$49.95/Kit \$39.95

\#D-450 Antenna

Rubber Duck RF Pick-up $450 \mathrm{MHz} \ldots \$ 12.50$
\#D-146 Same as above
$146.5 \mathrm{MHz} \ldots . \$ 12.50$
\#RA-BNC Right-Angle BNC Adapter for above Antenna
2.95

5821 NE 14 Avenue
Ft. Lauderdale, FL 33334
Phones: (305) 771-2050 771-2051
Phone orders accepted

[^0]: - Suggested U.S. resale Available at selected local distributors. Prices, specifications subject tochange without notice © Copyright 1979 Continental Specialties Corporation

[^1]: * $\pm \%$ of reading + digits

[^2]: THE HICKOK ELECTRICAL INSTRUMENT CO 10514 Oupont Avenue . Cieveland. Ohio 44108

[^3]: *This article is reprinted courtesy American Laboratories. Dr. Rony, Department of Chemical Engineering, and Mr. Larsen, Department of Chemistry, are with the Virginia Polytechnic Institute \& State University. Both Dr. C. Titus and Mr. J. Titus are with Tychon, Inc.

[^4]: Mail to: Radio-Electronics
 SUBSCRIPTION DEPT., P.O. BOX 2520
 BOULDER, COLO. 80322 (please print)

 Name
 Address
 City State Zlp Code
 Indicate the offer you prefer
 $\square 1$ Year-12 haues ONL Y sess (You'save $\$ 2.02$ of newsstand price.
 $\square 2$ Yeare-24 leavee ONLY $\$ 19.00$ (Save Morel $\$ 5.00$ ofl newsstand price.)

 - Payment enclosed Bill me

 Check here If this is a new subscription
 Check here if you are extending or renewing your subscription.
 Extra Shipping: Canada $\$ 3.00$ per year, all other countrles $\$ 5.00$ per year. 41 H 9

