BACK-TO-SCHOOL SECTIQN DGAOTHQBLESHOOTNG

 fir $0=[\mathrm{CHO}$
DIGITAL WIPER DELAY

Build it and add it to your car.
Provides intermittent windshield wiper operation and is programmed automatically. Turn to page 60.

AUDIO BREAKTHROUGH

New metal-particle tape for recording promises ultra-performance in the near future. For the complete story. turn to page 49.

VIDEO TANK GAME

Use your cannon to destroy your opponent first but watch out for the barriers.
Construction starts on page 52.
CAPACITANCE METER
Part 2: 4-digit display reads out between 1 DF and $9999 \mu \mathrm{~F}$. Jurn to page 67.
COVER STORX

PLUS

\star Digital Crib Sheets

* Computer Corner
* Hobby Corner
* Service Clinic

600 MHZ . FREQUENCY COUNTER ± 0.1 PPM TCXO

OPTO-8000.1

This new instrument has taken a giant step in front of the multitude of counters now available. The Opto-8000.1 boasts a combination of features and specifications not found in units costing several times its price. Accuracy of ± 0.1 PPM or better - Guaranteed - with a factory-adjusted, sealed TCXO (Temperature Compensated Xtal Oscillator). Even kits require no adjustment for guaranteed accuracy! Built-in, selectable-step attenuator, rugged and attractive, black anodized aluminum case (. 090 " thick aluminum) with tilt bail. 50 Ohm and 1 Megohm inputs, both with amplifier circuits for super sensitivity and both diode/overload protected. Front panel includes "Lead Zero Blanking Control" and a gate period indicator LED. AC and DC power cords with plugs included.

SPECIFICATIONS:
Time Base-TCXO ± 0.1 PPM GUARANTEED!
Frequency Range- 10 Hz to 600 MHz
Resolution- 1 Hz to $60 \mathrm{MHz} ; 10 \mathrm{~Hz}$ to 600 MHz
Decimal Point-Automatic
All IC's socketed (kits and factory-wired)
Display-8 digit LED
Gate Times- 1 second and $1 / 10$ second
Selectable Input Attenuation-X1, X10, X100
Input Connectors Type -BNC
Approximate Size- $3^{\prime \prime} \mathrm{h} \times 71 / 2^{\prime \prime} \mathrm{w} \times 61 / 2^{\prime \prime} \mathrm{d}$
Approximate Weight- $2^{1 / 2}$ pounds
Cabinet-black anodized aluminum ($090^{\prime \prime}$ thickness)
Input Power-9-15 VDC, $115 \mathrm{VAC} 50 / 60 \mathrm{~Hz}$
or internal batteries
OPTO-8000.1 Factory Wired \$299.95
OPTO-8000.1K Kit
\$249.95

ACCESSORIES:
Battery-Pack Option-Internal Ni-Cad Batteries and charging unit
$\$ 19.95$
Probes: P-100-DC Probe, may also be used with scope $\$ 13.95$ P-101-LO-Pass Probe, very useful at audio frequencies
$\$ 16.95$
P-102-High Impedence Probe, ideal general purpose usage
$\$ 16.95$
VHF RF Pick-Up Antenna-Rubber Duck w/BNC \#Duck-4H \$12.50 Right Angle BNC adapter \#RA-BNC \$ 2.95

FC-50 - Opto-8000 Conversion Kits:
Owners of FC-50 counters with \#PSL-650 Prescaler can use this kit to convert their units to the Opto-8000 style case, including most of the features.

FC-50 - Opto-8000
Kit \$59.95
*FC-50 - Opto-8000F Factory Update $\$ 99.95$
FC-50 - Opto-8000.1 (w/TCXO) Kit \$109.95
*FC-50 - Opto-8000.1F Factory Update $\$ 149.95$
*Units returned for factory update must be completely as-
sembled and operational
OPTOELECTRONICS, INC.
5821 NE 14 Avenue
Ft. Lauderdale, FL 33334
Phones: (305) 771-2050 771-2051

TERMS: Orders to U.S. and Canada, add 5% to maximum of $\$ 10.00$ per order for shipping, handling and insurance. To all other countries, add 10% of total order. Florida residents add 4% state tax. C.O.D. fee: $\$ 1.00$. Personal checks must clear before merchandise is shipped.

Only eight TV tubes can make a warehouse out of your backroom.

To offer fast replacement for 385 different TV tubes, you'd have to open a warehouse. Or, you could open eight Sylvania picture tube cartons.

Our eight Universal Color Bright tubes are designed as
direct replacements for 385 bonded safety plate picture tubes. And they're designed so well that they're offered with a five-year limited warranty.*

Call your Sylvania distributor to stock up on Color

Bright tubes. Then, you won't have to wait days for your customer's new tube to be delivered

You can order a Color Bright for immediate delivery right from your own backroom.

We didnt have to make a better2 track than our RS-1500. So we made a 4 track. Introducing the RS-1506.

Ingenuity is trolv ra־e. Repeated ingencity s true genius. Like the Tec nnics 4-track RS -1506. D offers twice the prccram time of our 2-treck R5-1500.

It also cfle-s the award-winning RS-1500's "Isolated Loop" tape trensport with a quariz-locked, phase-conirol e \pm, direct-drive capstan.

By isoloting the tape from externa influences we minimize d tc pe ension to a corstant 80 mgs . Previding extre nely stasle tape transport and lou head wear. Wh le reducing modulatior no se and wow and fluter to a point where they are tarely measurable כ ו sanventional laborstor" equipmert.

Electronizally, too, Technics RS -1E06 כrovides the same leval cf professional cont-ol as its predecessor. A zeparate microphone ampl fier. Mixing amplifer. And separate three-posit on biae equalization switches. While IC full- og c function permits absclute freedon in switching nodes. Also available is an opticnal full-fecture in:rared wireless remう`e cortrol 'RP-070). It lets yol opera-e
all transport functions and record from up to 20 feet.
For the same performance as the RS - 1506 with the convenience of a jto reverse, there's the RS - 1700.

Zompare specifications. Even with the best 2-track deaks. TRACK SYSTEM: 4-łradk, 2-channel recording, plcyback and erase. 2-rack 2-channel playback 4-hec d system. FREQ. R $¥$ SP.: $30-30,000 \mathrm{~Hz}, \pm 3 \mathrm{~dB}$ (-1CdB rec. level) at 1 Sips. WOW \& FLUTTER: 0.018\% WRNS at 15ips.S/NRATIO: 57 dB (NAB weighted) at 15 ps . SEPARATION: Jrea-er than 50dB. RISE TIME: 0.7 secs. SPEED DEVIATIDN: $\pm 0.1 \%$ with 1.0 or 1.5 mil tape at 15 jips . SPED RLUCT.: 0.05% with 1.0 or 1.5 mil tape at 15 ips . $\mathrm{PI}^{-} \mathrm{CH}$ CONTROL: $\pm 6 \%$.

Technics 4-track RS-1506 and auto-reverse RS-1700. A rare combinatio 7 of audio technology. A new standard of audio excellence.
Technics
Professional Series

Radio-Electronics.

THE MAGAZINE FOR NEW IDEAS IN ELECTRONICS Electronics publishers since 1908

BUILD ONE
 OF THESE

52 Tank!
A dedicated TV battle game. Use your cannon to destroy your opponent, but watch out for the land mines.
60 Automatic Wiper Delay
Digital system for your car provides intermittent windshield wiper operation and is programmed automatically

642 to $200,000-\mathrm{Hz}$ Function Generator
Part 2: Build it around the latest state-of-the-art waveform generator IC

67 Digital Capacitance Meter
Part 2: 4-digit display reads out between 1 pF and $9999 \mu \mathrm{~F}$
71 Frequency Counter In A Probe
Part 2: Self-contained in a probe this 6-digit counter makes a worthwhile project

DIGITAL ELECTRONICS

41 Digital Troubleshooting Is A Cinch
A look at typical faults, troubleshooting techniques, and test equipment to speed the job.
45 Digital Logic Charts
4-pages of tear-out reference sheets that are chock full of logic circuit information

77 Circuit Ideas
A nifty way to generate sinewaves digitally.
82 Computer Corner
How to use the 8085 with an A/D converter to monitor eight analog channels.
GENERAL
ELECTRONICS

4 Looking Ahead
Tomorrow's news today.

14 Guest Editorial
Science for journalists
37 New! All-In-One Speakerphone
Standard phone and speakerphone in a single compact ultra-modern package. Here's the circuitry and how it works.

80 Hobby Corner
Where to get parts, substituting parts and wiring prototype projects.

49 New Breakthrough In Audio Tape
Metal-particle tape for audio recording provides increased output level, reduced distortion, added hic -frequency response and improved signal-to-noise ratio

TELEVISION	78	Test your knowledge. Another in ontinuing series of CET practice guides.		
	84	Jack Darr's Service Clinic Locating replacement parts for orphan sets.		
	84	Service Questions R-E's Service Editor solves reader problems.		
EQUIPMENTREPORTS	26	Data Precision Model 1350 Digital Multimeter		
	32	Simpson Model 452 Dual-Trace Scope.		
	34	Radio-Shack TRS-80 Computer System		
	36	Electra Bearcat Model 250 Programmable Scanner		
DEPARTMENTS	134	Advertising Index	105	Market Center
	14	Advertising Sales Offices	6	New \& Timely
	98	Books	99	New Literature
	94	Computer Products	88	New Praducts
	135	Free Information Card	96	Stereo Praducts
	16	Letters		

ON THE COVER

That brick wall is made up of a large number of very special telephones. Take a look at the circuitry and how it works. Just turn to page 37.

NEW METAL-PARTICLE TAPE promises higher output levels with lower distortion. Story starts on page 49 and presents full details.

WIRED-OR/WIRED-AND is just one kind of digital circuit covered in digital troubleshooting story on page 41.

Radio-Electronics, Published monthly by Gernsback Publications, Inc., 200 Park Avenue South, New York, NY 10003. Phone: 212-777-6400. Second-class postage paid at New York, NY and additional mailing offices. $\$ 9.98$ ear subscription rate: U.S.A. and U.S. possessions copies \$1.25. 1978 by Gernsback Publications, Inc. All rights reserved. Printed in U.S.A.

Subscription Service: Mail all subscription orders, changes, correspondence and Postmaster Notices of undelivered copies (Form 3579) to Radio-Electronics Subscription Service, Box 2520, Boulder, CO 80322.

A stamped self-addressed enveiope must accompany all submitted manuscripts and/or artwork or photographs if their return is desired should they be rejected. We disciaim any responsibility for the loss or damage of manuscripts and/or artwork or photographs while in our possession or otherwise.

Projection TV: Three-tube projection TV is now in the lines of several major-brand TV manufacturers. Advent's new Model 760 has a 72 -inch screen and a horizontal in-line-tube arrangement permitting a long, low projector which does added duty as a cocktail table. (Please don't spill your drinks on the electronics.) Panasonic and Quasar both have different versions of 60 -inch one-piece sets-the optics are the same but electronics and furniture are different. Mitsubishi (MGA) has a two-piece 72-inch projection system and a one-piece 50 -inch system. Sharp has a $72-$ inch two-piece system similar to Mitsubishi's. Sony has two one-piece units, with 50 - and 70 -inch screens, each with three tubes and two lenses. GE has the rear-view unit described in the July 1978 issue of Radio-Electronics. All the three-tube major-brand systems sell for more than $\$ 3,000$. The GE single-tube unit is $\$ 2,800$.

New feud? Remember hand wiring vs. printed circuits? We may be getting ready for a new RCA-vs.-Zenith dispute over set construction, but this one is much tougher to call. In introducing its 1979 color TV models, RCA quietly inaugurated a new chassis in two high-end 19 -inch sets, and company spokesmen indicated that this indeed is RCA's chassis of the future. What's so special about it? Well, it's all one piece-not modular. RCA officials explain that the modular chassis has performed its function by introducing technicians to solid-state TV circuits. They said that 20\% of modules returned to RCA for servicing have tested good, with no defects, and presumably the problem was in the connections. The new chassis reduces physical connections by 75% (to 30), wires from 150 to 40 , hand-solder joints from 200 to 75. RCA concedes that it might cost a little more to repair the new set than its modular predecessors, but says repairs should be required less frequently.

So the very next week, what does Zenith do? Why, it introduces a brand spanking-new modular chassis, that's what. Well, the chassis has been quietly in use for some months, but now it's got a name (Triple-Plus). It has eight modules and low-cost Zenith-developed connectors that are claimed to compare favorably with military specs. Zenith's argument for modular: "The cost saving of the unitized chassis is not enough to give up the service advantages . . . This 100% modular chassis permits virtually 100\% in-home repair."

More metal tapes: Although criticized by some competitors, 3M's introduction of its revolutionary metal-alloy audio tape (see Radio-Electronics, September 1978) may have established a standard of sorts. Fuji already has announced it will be next on the market with a metal tape, and company spokesmen indicated that it would be compatible with the 3M Metafine tape. Next to come in line has been BASF, which announced it had distributed samples to Japanese equipment manufacturers, with coercivity levels of both 950 and 1,100 oersteds. However, BASF suggested that any industry coercivity standard not exceed 1,000 oersteds. TDK also has a metal-particle tape and has provided samples to hardware manufacturers.

Videodisc boxscore: As the time draws nearer for the first U.S. consumer marketing of home videodiscs and players (at press time it was still scheduled for December or January in three or four introductory cities), more new systems are showing up. For the record, here's a summary of what has surfaced to date: Ted-developed by German Telefunken, British Decca and a joint subsidiary called Teldec, this mechanical system uses a flexible one-sided $8^{3 / 4}$-inch discs which play for up to 10 minutes each. It has been marketed in Germany and Japan, is now principally used for education and training purposes. Philips/MCAan optical system which will be marketed to consumers initially by Magnavox, later also by Universal-Pioneer of Japan. It uses 12 -inch reflective double-sided discs. These play for up to 30 minutes-per-side and revolve at 1800 rpm while longer-playing discs (up to 60 minutes-per-side) revolve at a speed varying from 600 to 1800 rpm . The pickup never touches the disc. RCA-this is a capacitance needle-in-groove system that plays for up to one hour-per-side of each two-sided disc, revolving at 450 rpm . RCA hasn't yet made a commitment for marketing. Thomson-CSF-this French system, like Philips/MCA, is a laser-read optical system, but the discs are transparent rather than reflective. Two-sided discs are possible. Discs demonstrated have played for up to 30 minutes-per-side. The disc revolves at 1500 rpm for the PAL color system, 1800 rpm for NTSC.
A few units are being produced for demonstration and industrial-institutional uses. MDR-Magnetic disc recorder, originated in Germany and demonstrated in various forms, both records and plays back using an oxide-coated plastic disc. Visc-Mechanical system developed by Matsushita, playing 30 minutes or 60 minutes-per-side of a 12 -inch disc, depending on version used, revolving at 450 rpm. Smaller seven-minute disc is the size of a 45-rpm audio disc and revolves at 720 rpm . No announced plans for commercialization. Sony-Reflective optical disc, laserread, similar to the Philips/MCA development except that it revolves at 900 rpm . Provides up to one hour-per-side of two-sided 12 -inch disc. No announced plans for commercialization. JVC-Capacitance system using ungrooved disc revolving at 900 rpm , claimed to have many advantages of optical systems but lower costs because of elimination of necessity to use laser pickup. No known plans for commercialization.

Color, China and USSR: The U.S. may be officially tilting toward China in its foreign policy, but in color TV technology it's dealing more closely with the Soviet Union. RCA, Owens-Illinois Glass and several Japanese firms have received contracts, estimated to total more than $\$ 100$ million, to provide the USSR with color tube manufacturing equipment and technology. Meanwhile, Hitachi and Toshiba are understood to have negotiated contracts with China to build a color tube plant and an IC development and manufacturing facility, respectively, with a total value of about $\$ 245$ million.

DAVID LACHENBRUCH
CONTRIBUTING EDITOR

SAME DAY SERVIGE

ONE YEAR GUARANTEE

The Company of Independent Professionals

3etter Quality

 Personal Attention

 Personal Attention
 Faster Service

TSC PROVIDES YOU WITH A COMPLETE SERVICE FOR ALL YOUR TELEV $\|$ SION TUNER REQUIREMENTS

SUBSTITUNER

MODULES

HEADQUARTERS
ALABAMA
ARKANSAS
CALIFORNIA

FLORIDA

GEORGIA

illinois
indiana
KENTUCKY
Louisiana MASSACHUSETTS missouri nevada NEW JERSEY

NEW YORK
NORTH CAFOLINA оні
oregon pennsylvania tennessee texas．
canada

BLOOMINGTON，INDIANA 47401 BIRMINGHAM，ALABAMA 35212 LITTLE ROCK，ARKANSAS 72204 MODESTO，CALIF． 95351 NATIONAL CITY，CALIF． 92050 NORTH HOLLYWOOD，CALIF． 91601 SAN MATEO，CALIF． 94402 TAMPA，FLORIDA 33606 FT．LAUDERDALE，FLORIDA 33309 ATLANTA，GEORGIA 30310 URBANA，ILLINOIS 61801 SKOKIE，ILLINOIS 60076 INDIANAPOLIS，INDIANA 46204 SOUTH BEND，INDIANA 46619 LOUISVILLE，KENTUCKY 40217 SHREVEPORT，LOUISIANA 71104 SPRINGFIELD，MASS． 01109 ST．LOUIS．MISSOURI 63132 LAS VEGAS，NEVADA 89102 TRENTON，NEW JERSEY 08638 JERSEY CITY，NEW JERSEY 07307 ROCHESTER，NEW YORK 14606 GREENSBORO，N．CAROLINA 27405 CLEVELAND，OHIO 44109 PORTLAND，OREGON 97210 PITTSBURGH，PENNSYLVANIA 15209 MEMPHIS，TENNESSEE 38111 DALLAS，TEXAS 75218 ST．LAURENT，QUEBEC H4N－2L7 CALGARY，ALBERTA T2H－1Y3

537 South Walnut Street 5623 1st Avenue N． 4200－C Asher Avenue 123 Phoenix Avenue． 117 East 8th Street 10654 Magnolia Boulevard 600 South Amphlett Boulevard 1505 Cypress Street． 3516 N．W．10th Avenue 646 Evans Street S．W． 908 East Main Street． 5110 West Brown Street． 112 West St．Clair Street 2010 Western Avenue \＃7 Dahlem Center， 826 Eastern Parkway 2423 Southern Avenue． 144 Boston Road． 9577 Page Avenue
1114 South Casino Center Blvd．
1139 Pennsylvania Avenue
454 Central Avenue 25 Howard Road 2914 East Market Street 4525 Pearl Road 1732 N．W．25th Ave．，P．O．Box 10141 515 Grant Avenue． 3158 Barron Avenue 11540 Garland Road 305 Decarie Boulevard P．O．Box 5823，Station＂A＂

Tel． 812 ；334－0411 Tel．205／592－9150 Tel． 501 ／661－0393 Tel．209／521－8051 Tel． $714 / 477-8746$ Tel． 213 ／769－2720 Tel． $415 / 348-3292$ Tel． 813 ／253－0324 Tel．305／566－4882 Tel．404／758－2232 Tel．217／384－2052 Tel．312／675－0230 Tel．317／632－3493 Tel．219／288－891B Tel． $502 / 452-1191$ Tel．318／221－3027 Tel．413／788－8206 Tel． $314 / 429-0633$ Tel． $702 / 384-4235$ Tel．609／393－0999 Tel．201／792－3730 Tel． 716 ／647－9180 Tel． $919 / 273-6276$ Tel． 216 ／741－2314 Tel．503／222－9059 Tel． $412 / 821-4004$ Tel． $901 / 458-2355$ Tel． 214 ／327－8413 Tel． 514 ／748－8803 Tel．403／243－097 \dagger

If you want to branch out into the TV Tuner Repair Business write to the

new A timely

Bell Labs designs communications system for the disabled

Bell Laboratories, together with the Telephone Pioneers of America (a voluntary industrial organization), has designed Unix, an experimental computer-based communications system for severely handicapped persons, such as cerebral palsy victims.

BELL LABS COMMUNICATIONS SYSTEM, Unix, contains a large keyboard with recessed keys that can be used by severely handicapped persons. Here a cerebral-palsied child uses a cap pointer to type a message on the keyboard.

The Unix system uses a special oversized keyboard coupled to a computer that is connected to a TV set and a page printer. The keys are large recessed pushbuttons that can be pressed either by a finger or by a pointer attached to a cap worn by the user that is controlled by head motion. Pressing the buttons with the pointer causes the "typed" message to appear immediately on the screen; two other pushbuttons can be pressed for a copy of the message.

For simplicity and to reduce the amount of typing to a minimum, abbreviations are used for words, word endings and phrases. For example, "GH" stands for "I want to go home," and "gb" means "goodbye." A standard list of abbreviations has been preprogrammed by Bell, and instructions for adding more abbreviations are being developed.

The Unix system is designed so that up to three persons can share it; it also lets the computer perform store, retrieve, process and control tasks simultaneously.

Best record of 1978 receive audio awards

The 1978 Audio Excellence Record Awards were recently presented by AudioTechnica U.S., Inc., for discs in three categories: classical music, rock/pop and spe-cial-interest recordings.

The winner in the classical music category is a British recording of Tchaikovsky's Six Symphonies and Manfred performed
by the London Philharmonic conducted by Mstislav Rostropovich (EMI ELS 5099) and produced by David Mottley. For rock/pop, the top record was Steely Dan's "Aja," produced by Gary Katz (ABC AA 1006). In the special-disc category, the award was given to a direct-to-disc recording by Harry James and His Big Band, produced by Doug Sax and Lincoln Mayorga (Sheffield Lab 6).

Tl's quarter-million-bit magnetic bubble memory due in late '78

Some time in the last quarter of 1978, TI will release its new quarter-million-bit magnetic bubble memory IC, the TIB0303, with a family of interface and control circuits available in 1979.

The bubble IC is composed of a gadolin-ium-gallium garnet substrate on top of which is superimposed a layer of magnetic epitaxial film. Permalloy metal patterns placed on the film determine the way the 3-micron-diameter bubble domains move when they are exposed to a rotating magnetic field, provided by two orthogonal coils. When the magnetic field rotates, the bubble domains move under the permalloy patterns similar to shift registers.

TI'S MAGNETIC BUBBLE MEMORY is a quarter-million-bit device. The advantages of bubble memory technology include storage density and nonvolatile characteristics.

The TIB0303 has a $7.2-\mathrm{ms}$ average access time (for the first bit of the 224-bit page), a 0.9-watt power consumption, a read-data rate of 100 K bits-per-second, and an operating temperature of 0° to $50^{\circ} \mathrm{C}$. It comes in a 20 -pin dual-in-line package and measures $1.2 \times 1.2 \times 0.4$ inches; the package includes the IC, the magnetic coils, a permanent magnet set and magnetic shielding, and costs $\$ 500$.

Connecticut to receive first off-track betting/entertainment center

By the fall of 1979, New Haven, CT, will be the site of Teletrack, the very first offtrack betting and entertainment center in a
theatre environment. The center will use a closed-circuit TV system to provide betting customers with on-track events and paddock activities as they occur.

Teletrack was developed by General Instrument Corporation, manufacturer of electronic systems and components, and built by AmTote, a subsidiary of the company, as part of the state's off-track betting system. Microwave transmissions will bring the track events into the betting center, where they will be displayed on giant 24 foot by 32 -foot screens, as well as on strategically placed monitor screens. Customers will place their bets through TIM 300 ticket-issuing machines, insuring the efficiency of the betting operations.

TV MODULE SERVICING AIDS

GTE-SYLVANIA CHEK-A-BOARD CABLE kits make it possible for technicians to service solid-state TV sets without removing the chassis. The Chek-A-Board kits, designed for use with RCA and Zenith modular sets, contain cables with female connectors on one end for modules, and mating chassis connectors on the other end. The two-foot cables, composed of stranded multilead ribbon wire, feature platedalloy conductors on acrylic plastic PC boards. The side of each cable bears a different color for ease in orientation.

1978 mid-year VTR sales to dealers exceed 1977 figures

According to the Marketing Services Department of EIA, total U.S. market sales of home videotape recorders to dealers increased in June 1978, and showed an upward trend in the first six months of the year - in contrast to sales for a similar period in 1977. During the first 26 weeks of 1978 VTR sales to dealers amounted to 142,490 units and the June VTR sales came to 31,339 .

Fotomat offers new

film-to-videotape service

Fotomat Corporation is now offering a special service at all its 3400 stores in the U.S.: it will transfer your film and/or slide photography to a videotape cassette.

How it works is this: You take your film (either $8-\mathrm{mm}$ or Super $8-\mathrm{mm}$) and/or 35mm or $126-\mathrm{mm}$ color slides to your Fotomat dealer who will transfer the material to either $1 / 2$-inch Beta or VHS-format videotape. All you have to do is inform Fotomat what type of VTR you own so that the correct cassette format can be chosen.
continued on page 12

We＇ve done the impossible again！ A versatile and superior frequency counter kit for only $\$ 89.95$

Now you can forget about price／performance trade－offs when you select a frequency counter．In Sabtronics＇ Model 8100 you get features you once expected to pay several hundreds of dollars for．But you pay only our low， low price of $\$ 89.95$ ！
Dare to Compare．This frequency counter，using LSI technology，has the performance and input character－ istics you demand．Note the specifications：You will see that the frequency range is guaranteed all the way to 100 MHz ；and a high or low input impedance allows you to select for high－frequency operation．And you＇ll see a sensitivity that holds well over the frequency range；con－ venient selectable gate－time for best resolution；and selectable attenuation；and even an optional pre－scaler． Note the highly accurate time base，and its excellent ageing and temperature characteristics．And a full 8－digit LED display with floating decimal point，leading zero suppression，and overflow indicator．

You would expect to find all these features together only on a much higher－priced instrument．But Sabtronics＇ad－ vanced digital technology combines with your own skill －you assemble this kit from our easy－to－follow instruc－ tions－to make it possible for you to have this fine frequency counter at a fraction of what you would other－ wise expect to pay

Free 10－day trial

Examine the 8100 Frequency Counter Kit for 10 days．If not completely satisfied，return unassembled for fult refund of $\$ 89.95$ purchase price．

13426 Floyd Circle • Dallas，Texas 75243 Telephone 214／783－0994

Brief Specifications

－Frequency Range： 20 Hz to 100 MHz guaranteed（10 Hz to 120 MHz typical）－Sensitivity： 25 mV RMS， 20 Hz to $70 \mathrm{MHz}(20 \mathrm{mV}$ typical）； 45 mV RMS， 70 MHz to 120 MHz （ 30 mV typical）－Selectable Impedance： $1 \mathrm{M} \Omega$ at 25 pF ，or $50 \Omega \bullet$ Selectable Attenuation：X1，X10，or X100 －Accuracy：$\pm 1 \mathrm{~Hz}$ plus time－base accuracy－Ageing rate：$\pm 5 \mathrm{ppm} / \mathrm{yr} \bullet$ Temperature stability： $\pm 10 \mathrm{ppm}, 0^{\circ}$ to $50^{\circ} \mathrm{C}$－Selectable Gate－time： $0.1 \mathrm{sec}, 1 \mathrm{sec}$ ．，or 10 sec．－ 8 －digit LED display with floating D．P．，overflow indication－Input：9－15 VDC， $350 \mathrm{~mA}(550 \mathrm{~mA}$ with op－ tional prescaler）－Input protection： 150 V RMS， 20 Hz to $10 \mathrm{kHz} ; 30 \mathrm{~V}$ RMS to 2 MHz ；and 3 V RMS to 100 MHz －Optional prescaler extends frequency range to 650 MHz ． （Available soon）

To：Sabtronics International，Inc． 13426 Floyd Circle，Dallas，TX 75243
Please send me＿＿Sabtronics Model 8100 Frequency Counter Kit（s）at $\$ 89.95$ each $\$$ $\$$ Texas Residents add Sales Tax
Shipping and handling，$\$ 5.00$ per unit （USA only）＊

Payment enclosed \square

Charge my Master Charge \square
Visa
Account No．
Exp．Date \qquad
Name
Street
City
State \qquad Zip
＊Canada \＄6．50．All other countries $\$ 19.00$ Airmail．

Now NRI makesit TV/Audiohome

Abstract

Side-by-side equipment comparison of NRI and two other leading schools shows what you get for what you pay. When you have to pay as much as $\$ 985$ more for another school's course, you should carefully consider your tuition investment.

When you sit down and try to pick out the school that's best for you, it gets
to be a problem. Catalogs are radically different and some are not too clear as to what you actually get for your money. So NRI has done a lot of the work for you. And put the prices right up front so you can make your own judgment.

Of course, we can't compare everything. Lesson clarity and content vary. What one covers here, another covers there...or not at all. The material one school breaks down into eight lessons may be four at another. And the qualifications and abilities of instructors are another question.

	NRI	SCHOOL A	SCHOOL B
COURSE TTTLE	Master Course in TV, Audio, and Video System Servicing	Master Course in Color TV Servicing	Electronics Technology and Advanced Troubleshooting 1 \& II
CASH PRICE (terms available)	\$1295	\$1539	\$2280
TV SET	NRI designed-for-learning kit. Dual speaker 25 " (diagonal) color TV with cabinet	Heathkit GR-2001 $25^{\prime \prime}$ (diagonal) color TV (cabinet extra)	Zenith model G4020W' 19" (diagonal) color TV (fully assembled)
OSCILLOSCOPE	NRI designed-for-learning kit. $5^{\prime \prime}(8 \times 10 \mathrm{~cm})$ triggered sweep	Heathkit 10-45415" ($8 \times 10 \mathrm{~cm}$) triggered sweep (not given until after graduation)	Heathkit I0-45415" ($8 \times 10 \mathrm{~cm}$) triggered sweep
COLOR BAR GENRRATOR	NRI designed-for-learning kit. 10 patterns	Elenco SG-200 (kit) 10 patterns	Elenco SG-200 (fully assembled) 10 patterns
FREQURNCY COUNTER	NRI designed-for-learning kit. Complimentary metal oxide semiconductor digital type		
METER	NRI designed-for-learning kit. Transistorized AC/DC volt-ohm meter	Heathkit (part of TV kit) DC only; IK Ohm/volt	Private label multimeter
AUDIO	NRI designed-for-learning kit. Four-channel highfidelity AM/FM tuner with speakers	Private label pocket transistor AM radio kit and AM-FM-SW solid-state portable radio kit	
TRAINER	NRI Discovery Lab	Breadboard	Experimental Electronics Lab
MISCELIANEOUS EQUTPMENT		EICO Digital Logic Probe	

All data as shown in each school's catalog as of September 1, 1978.

One Million Students, Over 60 Years' Experience

So we can only tell you what NRI has to offer. We've been in education since 1914 , starting as a radio school six years before commercial broadcasting was even on the scene. Since then, we've kept right up with the times, improving techniques, adding material, creating new courses to help people improve their skills and income.

Early on, we learned to keep our lessons compact...thoroughly covering a subject, but not so much that students would be overwhelmed. We call them "bite-size" lessons because they're easy to digest.

Learn by Doing with "Hands-on" Training

And, we pioneered the concept of "hands-on" training. NRI goes far beyond theory and textbooks to give our students actual bench experience and prepare them for the realities of electronic servicing. Every piece of equipment in our Master Course in TV and Audio Servicing is designed for learning. As you assemble the kits we supply, you build a highest-quality, up-to-date 25 " (diagonal) color TV, a 4 channel amplifier and tuner with speakers, your own oscilloscope,

easy to compare studycourses.

digital frequency counter, and other instruments you'll use in your course, use later to earn good money as a TV/ Audio technician.

The point is, none of this equipment is hobby-kit or commercial assembly line units with lessons "retro-fitted" to what was at hand. NRI has designed each so you get invaluable training and experience you just can't get any other way. As you build, you study operation of circuitry, see how sections interact, perform "power-on" experiments only possible with NRI. This total training is exclusive with NRI...no other school, home study or resident, offers it.

Instructors
 Who Know Their Business

NRI instructors are thoroughly qualified, with both technical and educational experience. Most of them helped develop NRI courses, lessons, and equipment, so they really know what they're talking about. They're interested in their students, always ready to help with a question, a problem...give good advice to help you reach your goals.

It's instructors and training like this that have made NRI the choice of professional TV servicemen who have taken home study courses. As a national survey shows (summary on request), they recommend NRI by a majority of three to one over any other school.

So how does NRI give you all this and still cost so little? We keep costs down by designing our own training kits, eliminating the middleman's profit on hobby kits or commercial units. And by offering our training by mail only. We have no sales force, no commissions to pay. You make up your mind in your own time, without pressure, let the facts speak for themselves. We pass these savings on to you in the form of lower tuitions, more equipment, carefilly designed courses and effective lessons.

Send for Free Catalog, No Salesman Will Call

Send for our free catalog today and get all the details. See every piece of equipment and kit you get....a complete listing of fully described lessons...explanations of each and every experiment you perform. Read about NRI's background and qualifications...career opportunities ...what NRI graduates say about their training ...costs and monthly payment plans for the courses that interest you. Then compare NRI value and results and make your decision. Like the million that have gone before you, we think you'll choose NRI. Send the card tocay.

Build and keep 2-meter transceiver, test equipment for a communications career.

Orcheck out NRI value-training in Compułer or Communications/CB Equipment Servicing.

If you're interested in learning how to service and maintain digital computers, check out our NRI course. You learn at home, in your spare time, and actually build a programmable, integrated circuit, digital computer with expanded memory Or maybe your interest is CB or the expanding world of communications... mobile radio, microwave,

TV broadcasting, and much more NRI can help you there, too, as you build and experiment with your own digitally synthesized 2 -meter transceiver. For these and other NRI horre study courses, just check the postage-paid card and mail today. If card is missing, write to:

NRI Schrools
McGraw-Hill Continuing
Education Center
3939 Wisconsin Avenue
Washington, D.C. 20016

new C timaly

continued from page 6

It is expected that this new service will beneflt most those with an enormous backlog of already developed but rarely viewed movies and slides, as well as in the development and creation of new film and silde llbraries. Sound narration or music to accompany a prevlously transferred movie or sllde can be added by merely plugging in a mike or an audio Input Into the jack on the front of a VTR. In addition to home applications, Fotomat also sees possible future use for the new service In business, medlcal and educational flelds.

The videotape cassette offered In Fotomat stores as an adjunct to the new service will cost the same as those presently belng offered in the Fotomat drlve-In stores. The cost of transferring a 400-foot roll of Super $8-\mathrm{mm}$ film, plus the videotape cassette, is $\$ 14.95$ (for the 1-hour format).

NESDA/ISCET INSPECTS AND RATES RCA CHASSIS

In Las Vegas recently, a NESDA/ISCET inspection team looked over and rated three RCA TV chassis: the CT 92A, CTC 93D and CTC 88AC. The CT 92A was rated as "good," and the CTC 93D and CTC 88AC were each given an "excellent." The inspection forms used were developed by the serviceability committee from information supplied by manufacturers and from the service induatry. Shown from left to right are CET members Don Winchel, Dean Mock, Jack Lang, R. E. Eddy, Hal Robbins, Frank Grabiec (ISCET vice-chairman) and Edward Burroughs.

NRBA approves proposed law to deregulate radio

The National Radio Broadcasters Assoclation (NRBA) has approved proposed new legisiation to deregulate the radio industry. The Communications Act (HR 13015) has as one of its primary objectives the release of radio from government restrictions. While not all the Act's proposals received the NRBA blessing, the association belleves it will insure the continued growth and diversity of the radio industry in a competitive free marketplace, and that this will best serve the publlc interest. It is hoped that there will be enough input to the subcommittee from industry representatives and private individuals that the pro-
posed legislation will be passed, or at the very least that appropriate amendments will be made to the Communicatlons Act of 1934.

Service-profits rise revealed by retail association survey

The National Assoclatlon of Retall Dealers of America (NARDA) has published a cost-of-dolng-business Survey that reveals that In 1977 service operations showed a 5.8\% net profit (as agalnst total sales) plus a 4.7% after-taxes profit.

Referring to a 9.5\% Increase in overall sales, John Gooley, manager of the NARDA service division, cautioned that "it should be kept in mind that the Increase is among actual particlpants in the survey," and adds that the service Industry volume may have decilned due to a corresponding deciline in the incidence of fallure (In equipment). Labor Income, however, was greater than parts Income-the result of the gross margin on labor income being greater than that on parts. The Survey also indicates that Inventories continued to rise during 1977, with 18.5% more inventory on hand at the end of the year than at the beginning.

The figures listed in the Survey are all percentages, making it possible to compare them with data from earller years. The Survey costs $\$ 25$ ($\$ 10$ to NARDA members), and can be obtained from NARDA, 2 North Riverside Plaza, Chicago, IL 60606.

Programmable VCR provides

 up to 4-hour recording capabilityRCA has designed a programmable video cassette recorder, the SelectaVis/on 400 (model VCT400), that can be preprogrammed to record up to four TV shows simultaneously on different channels over a seven-day period. The unit is microproces-sor-based, has a varactor tuner and two switch-selectable speeds: the long play setting provides a four-hour-per-cassette recording time; the standard play setting

PROGRAMMABLE VCR can be preprogrammed to record up to tour TV programs on different channels over a seven day period. In addition, the RCA VCT-400 has a 14 -channel varactor tuner and a program indexing feature that leta you find the atarting point of a recorded program.
provides a two-hour-per-cassette recording time.

To preset the VCR to record up to a full week's programs in advance, all that's needed is to store Into memory the day, time, length and channel of the program you want taped. Other features include an electronlc Indexing capabllity, tape counter with memory switch, remote pause control, a tracking control (to correct distortlons) and 14 channel selector switches that recelve all UHF/VHF channels In any desired sequence. The SelectaVIs/on 400 carries a suggested retall price of $\$ 1275$.

IHF installs hi-fi systems in the White House

The Instltute of High Fidelity, Inc. (IHF) was instrumental in selecting and assembling two complete high-fidellty systems for the Whlte House - one for the President's living quarters, the other for the White House solarium.

Leonard Feldman, IHF technical dlrector, selected the components and accessories from a list of IHF member companles whose names, in turn, had been drawn by Chip Carter.

Mr. Feldman said that the IHF intent in selecting the individual components for both systems was that they be representative of typical hi-fi equipment enjoyed by American families. The 14 manufacturers chosen to supply the White House are U.S. Ploneer, JVC America, Shure, Kenwood, Koss Corporation, Altec, Sony, Jensen Sound Labs, TDK Electronics, Sansul, B.I.C./ Avnet, Pickering \& Company, TEAC Corporation of America, and Maxell. The Institute also has the responsiblity of reviewing the systems and replacing the components with new, more technologicaily up-to-date units as the need warrants.

TI awarded Japanese patent for miniature calculator

In August 1978, over the objections of several Japanese calculator companies, the Japanese Patent Office issued a patent to Texas Instruments covering the manufacture of practically all minicalculators incorporating their circultry in a single IC. The Japanese patent is based on U.S. patent $3,819,921$ originally filed in 1967 and granted Tl in 1974

The calculator described in the 1967 patent was the first to provide the computational capability of larger machines. The heart of the TI minicalculator was an integrated circuit that performed four basic arithmetic functions. It measured $41 / 4 \times 61 / 3$ $\times 13 / 4$ inches, and featured a small 18pushbutton keyboard and a thermal printer to display up to 12 digits.

Nineteen other countries to date have issued patents to TI for manufacturing minicalculators.

BEARCAT SCANNERS ANNOUNCE AMERICA＇S ONLY 50－CHANNEL，MICRO PROCESSOR CONTROLLED SCANNER． IT SEARCHES，STORES，REMEMBERS AND ALL BUT THINKS FOR YOU．

The new Bearcat 250. An unbelievable advancement in no－crystal scanning．

Bearcat＇s new， 250 is fully synthesized for punch－in programming．It searches， stores，and recalls every bit of programming， on a vast，50－channel spectrum．

Automatically．
Unbelievable？Read and believe．

CRYSTAL－LESS
Micro processor
controlled．Brings in every
local frequency．
automatically．without a crystal
50 CHANNELS ．Scans up
to 50 channels in banks of 10 each
Scans any combination of banks at the touch of a button．
SEARCH／STORE．Seeks out and stores up to 64 active local public service frequencies automatically．
SEARCH／RECALL．Retrieves stored frequencies for simple entry into scan program．
PRIORITY CHANNEL Samples a designated priority frequency on channel 1 every two seconds
DIGITAL CLOCK．A genuine，LED quartz crystal digital clock．Shows hours， minutes，seconds．
5－BAND COVERAGE．Low，high． UHF，UHF－T．Plus 2 meter amateur ham band，and other UHF frequencies． COUNT Transmissions on each frequency counted automatically to determine which are most active． SCAN／SEARCH LOCKOUT．A unique teature．Not only locks out channels while scanning，it also eliminates unwanted frequencies while searching．

AND
MUCH MORE
Selective Scan Dela
Direct Channel
Selection．Scan Speed
Control．Automatic Sauelch．
Track Tuning Circuitry Front
Mounted Speaker Decimal
Display Quality Construction
AC／DC．UL．listed．FCC Certified．

THE INCREDIBLE，NEW BEARCAT²5O SCANNER．
LEADING THE WAY TO REAL EXCITEMENT．

guget actionion

SCIENCE FOR JOURNALISTS

Journalism students often explain their choice of profession by saying that they want to write. One caustic observer noted that this statement is tantamount to a medical student wanting to study surgery so that he can operate.

The point is that the surgeon's goal is not to cut but to cure. Likewise, the aim of the journalist should not be to "write" but rather to communicate. And there is much evidence that journalists are not communicating well.

The reason, according to some experts, is that journalism graduates today simply are not well educated. Whether dealing with history, economics, government, or science, they often demonstrate a poor grasp of principles, confusion over issues, or an inability to weigh the significance of events.

Science, in particular, gets apathetic coverage by the press. Shortly after NASA placed a probe on the surface of Mars, a poll by the Indianapolis News indicated that its readers regarded the event as one of the top ten news stories of the year. Surprisingly, a poll of the editors of that newspaper failed to place the Mars landing on the list. Editors subordinated this outstanding achievement to such events as a Korean border conflict and the outbreak of Legionnaires disease.

Other cases demonstrate befuddlement of technical concepts, sometimes with an amusing twist. When the roof of the Hartford Civic Center collapsed last winter, Newsweek magazine reported that the structure had been "designed by a computer." A perceptive reader noted that a statement such as that could appear only in an article written by a typewriter.

Even some of the most respected periodicals downplay important technical aspects of a story. When Chrysler introduced its Omni and Horizon automobiles, the event was covered extensively in The Wall Street Journal. The report dwelt at length on the price of the cars and their competitive posture with respect to other compact automobiles. Only in the last sentence did it mention what is perhaps the most significant facet of the introduction-that the cars are the first U.S. built compacts with front-wheel drive.
All of this would amount to mere nit-picking if it were not for a worrisome aspect. The public, which relies heavily on the consumer press for information, is increasingly asked to support political decisions on technical matters ranging from the energy crisis to the neutron bomb. Journalists who are either confused by or indifferent to technology can hardly be counted on to provide meaningful information.

We don't have a ready solution to the problem. But it is encouraging to note that one liberal arts college has recently required its students to take courses in mathematics. The purpose, according to the college provost, "is to emphasize quantitative and logical ways of thinking."
Perhaps that avenue, or some other form of "science-appreciation" curriculum, should also be considered by journalism schools.

RON KHOL
Managing Editor
Machine Design

Reprinted from MACHINE DESIGN, July 6, 1978. Copyright, 1978, by Penton/IPC, Inc., Cleveland, Ohio.

Radio-Electronics.

Hugo Gernsback (1884-1967) founder
M. Harvey Gernsback, editor-in-chief and publisher
Larry Steckler, KTX-3644, CET, editor
Arthur Kleiman, KTZ-3288, managing editor
Robert F. Scott, CET, W2PWG, KXK-8533, technical editor

Sonia Greenbaum, copy editor
Jack Darr, CET service editor

Leonard Feidman

contributing high-fidelity editor
Karl Savon, semiconductor editor
David Lachenbruch, contributing editor
Earl "Doc" Savage, K4SDS, hobby editor
Vincent P. Cicenia, production manager
Ellen Celnik, production assistant
Harriet I. Matysko, circulation director
Sheila Wertling, circulation assistant
Arline R. Bailey, advertising coordinator
Cover design by Louis G. Rubsamen
Cover photo by Mel Small
Radio Electronics is a member of the Institute of High Fidelity and is indexed in Applied Science \& Technology Index and Readers Guide to Periodical Literature.

Gernsback Publications, Inc.
200 Park Ave. S., New York, NY 10003
(212) 777-6400

President: M. Harvey Gernsback
Vice President: Larry Steckler
Treasurer: Carol A. Gernsback
Secretary: Bertina Baer

ADVERTISING SALES

Paul McGinnis
Director of Marketing
EAST
Stanley Levitan
Radio-Electronics
200 Park Ave. South
New York, NY 10003
(212) 777-6400

MIDWEST/Texas/Arkansas/Okla.
Ralph Bergen
The Ralph Bergen Co.
540 Frontage Road-Suite 361-A
Northfield, illinois 60093
(312) 446-1444

PACIFIC COAST
Mountain States
Jay Eisenberg
J.E. Publishers Representative Co., 8732 Sunset Blva.,
4th Floor,
Los Angeles, CA 90069
(213) 659-3810

Sales Mart Building
1485 Bayshore Blvd., Box 140
San Francisco, CA 94124
(415) 467-0125

SOUTHEAST
J.E. Publishers Representative Co., 214-387-2424

How to listen to Moscow, Russia ..Moscow,Idaho and your good buddy, Max Moscow.

Panasonic introduces the Command Series:

Tune in. Sit back. And travel the world V th Panasonic's short wave radios-the Sommand Series. Set your tinerary by simply setting the dial. Scep off in London for a concert with the London Philharmonic. Be in Peking when they annource the new pecking order. Or visit old friends in the ald country. Any old country: Even the gcod ol U.S A

There are thousands of overseas anc domestec short wave transrrissions* you can tuns in. Anc with an optional outside antenna, you'll get ncredible aczuracy with the Re-2800 (shown abover. Because Panasonis's LED 自igital Frequency Display is so pezise, li's accurate so within 1 kHz . That's the kind of tuning that used to cost twice the price. That was sp intil the Panason © RF-2800.

And if you want to hear more than shcrt wave, the RF-2800 gives you more. like SSB (sing e sideband) amateur radio. All 40 CB chanrels. Ship to shore. Even Marse communicetions, And of course there's AM and FM.
Anc like more expensive short wave recsivers, the RF-2800 has an FF-Eain Contrcl to enhance weak, distant stations 0°. C prevent overloac distortion from oversirong szations

The Command Series from Penasonic. Now you can trave the world without ever leaving home.
"Short wave reception will vary with weather corditions, operater's geograph c lacation and other factors.

Panasonic.

just sighly a heas of our sime.

CRYSTAL OSCILLATOR PROJECT

The Hobby Corner article in the July 1978 issue states it is often desirable to change the frequency coverage of a receiver with a converter, the main part of which is a crystal oscillator.
The next paragraph is disappointing in that it does not explain how to use the oscillator to change receiver frequency, or a typical converter circuit.

I found the remainder of the article very clear and interesting. Was a paragraph left out; does R-E plan a follow-up article; could you send instructions on using the oscillator to change receiver frequency? H. WOODS

Brentwood, NY
No, a paragraph was not omitted. There was no intention to go into further detail on frequency converters at that time.

Often the topic of a Hobby Corner column is some basic circuit that has many uses. In such cases, it is quite impossible to delve into all the possible applications.

Only a limited number can be discussed in the space available. Other uses can only be mentioned in passing.

It is our hope that readers will be stimulated to look further into circuit applications. I am indeed glad that the converter idea aroused your interest. Perhaps in the future such applications can be discussed in Hobby Corner, but I am sure you will not want to wait that long.

So that you can follow up on your interest, here are a couple of references:

ARRL Radio Amateur's Handbook, and Solid State Design for the Radio Amateur, published by the American Radio Relay League, Newington, CT 06111 . Each publication has sections on frequency converters plus a great deal more. You can probably obtain them from the publishers or from the public library.
EARL "DOC' SAVAGE

TRS-80 PROGRAM ERROR

Congratulations to your typesetter for being so accurate in exactly copying my

TRS-80 Investment Evaluation Program listing (August 1978 issue). He even copied an error I made in the manuscript I sent you! In line 170, instead of the PRINT statement (P.) at the beginning of the line, it should be INPUT (IN.). It must have been another typesetter that mispelled my name in the byline.
FRED BLECHMAN

COSMAC NEWSLETTER

Readers of Radio-Electronics may be interested to know that a new RCA COSMAC 1802 computer newsletter has been published by Quest Electronics, entitled Questdata. Owners of Elf, Super Elf, Elf II, COSMAC VIP, COSMAC Development System or Homebrew 1802 systems will find programs, applications and experiments supporting their RCA 1802 COSMAC. The newsletter will feature complete instruction sets; how to set up programs for graphics, control, games, and business applications; plus sections on Tiny BASIC, Elf expansion possibilities, light pens, reader

MINIMUM BILLING $\$ 25.00$ ADD SHIPPING CHARGE $\$ 1.00$ NEW YORK STATE RESIDENTS ADD APPLICABLE TAX

OK MACHINE \& TOOL CORPORATION
3455 CONNER ST.,BRONX,N.Y. 10475 U.S.A.
TELEX 125091

"LOADED" P.C. BOARD
(6)

Unique new insertion tool. Also aligns bentout pins. A twist of the handle compresses out pins. A twist of the handle compresses
the pins to proper .600 inch spacing and locks the IC into the tool. Then simply place the tool on the socket and depress the plunger for instant and accurate insertion. Features heavy chrome plating throughout for reliable static dissipation. Includes terminal lug for attachment of ground strap.

IC IISERTION TOOL 36-40 PII CMO5-5月FE

 nalug for atachmer orquestions and music programs. The subscription cost is $\$ 12$; foreign subscriptions are $\$ 18$ (to cover postage). Write Questdata, P.O. Box 4430, Santa Clara, CA 95054. BILL HASLACHER
Editor
Santa Clara, CA

DeFOREST NOT EDISON

I've been a reader since the early Thirties when I subscribed to Radio-Craft.

You pulled a boo-boo In your September issue. In the article on "Pioneers in Radio,'" you show a plcture of Lee DeForest holding the audion tube which, because of the added grid to the dlode, started radio broadcasting. And he is not even mentloned in the article-you named him Thomas Alva Edlsonl
JOE BERO
Newark, DE
Boo-boo is rightl The plcture on page 46 of the September Issue Indeed shows Lee DeForest and not Thomas Alva Edison. The ed/torial staff of Radio-Electronics extends their deepest apology for th/s most unfortunate and careless error-Editor.

HOME COMPUTERS

You've done it againl First, you want to know where all the designers have gone (June 1978 editorial); now you want to know where the home computers are comIng from (August 1978 edltorial),

It seems that pretty much for the 20 years l've been workIng with computers, the computer has been a solutlon looking for a problem.

But, suppose the computer has utllity as a home appliance, where will that utility emerge? Let me suggest the three E's: Entertainment, Education and Economics. (A fourth E, Environment, can be identified separately or included under the Economics category.)

Using home computers in entertainment and education applications should be selfexplanatory. By economics, I mean supporting the household as an economic unit. This leads to a peculiar wrinkle: the value of a computer as an education and economics instrument only makes sense to households that are already pretty self-reliant in those areas. It is foolish, I agree, to expect a family to use a computer for things that no one's already eager to do. Given existing motivation, the computer operates as an amplifying device. But you can't amplify what isn't there.

With that viewpoint, I can see a market for the home computer but certainly not one comparable to that for, say, color television. Even by sneaking a computer into the house for entertainment purposes, a way of opening up the other possibilities, I don't see how that market can be substantially increased. We need another 15-20 years.

I do not believe that the foreseeable home computer market is inconsequential. I do believe that present computer systems are inadequate, with no immediate solution to compatibility and software problems. The convenience of computing just isn't there yet. The purchaser also need strong protection from obsolescence. System upgrading instead of replacement seems indispensable.
continued on page 22

You know that's a great price. Especially when you consider the outstanding performance you get with this Gould OS245A oscilloscope.

And you get clear, bright displays. 5 mV /div. sensitivity and exceptionally versatile trigger performance. It's ideal for TV or general electronic service work; perfect for hobbyists and educational institutions. You can rely on Gould to live up to these specs:

- DC to 10 MHz ; dual trace
- Trigger performance in excess of 15 MHz
- TV trigger facilitates solid synchronization with TV signals

- Portable; weighs just 11 lbs.
- Carries full two year warranty on all parts and labor excluding normal calibration, fuses and minor maintenance. Jusi one phone call gets you action.
Don't miss out on this bargain. Pick up the phone now and call us toll-free at 800-325-6400. (In Missouri call 800-342-6600). We'll rush you free literature and ordering information on the OS245A as well as other Gould oscilloscopes applicable to your needs. Gould Inc., Instrument Systems Division, 3631 Perkins Averue, Cleveland, Ohio 44114.

shop aironind.

When you do, you'11 probably pick CIE. Yon canit afiord to settic for

When you shop around for tires，you look for a bar－ gain．After all，if it＇s the same brand，better price－why not save money？

Education＇s different． There＇s no such thing as＂same brand．＂No two schools are alike．And，once you＇ve made your choice，the training you get stays with you for the rest of your life．

So，shop around for your training．Not for the bargain． For the best．Thorough，profes－ sional training to help give you pride and confidence．

If you talked to some of our graduates，chances are you＇d find a lot of them shopped around for their training．They pretty much knew what was available．And they picked CIE as number one．

Why you should

shop around yourself．
We hope you＇ll shop around． Because，frankly，CIE isn＇t for everyone．

There are other options for the hobbyist．If you＇re the ambitious type－with serious career goals in electronics－ take a close look at what we＇ve planned for you at CIE．

What you should look for first．

Part of what makes elec－ tronics so interesting is it＇s based on scientific discoveries －on ideas！So the first thing to look for is a program that starts with ideas and builds on them！

That＇s what happens with CIE＇s Auto－Programmed ${ }^{\text {© }}$ Lessons．Each lesson takes one or two principles and helps you master them－before you start using them！

How practical is the training？

This is the next big impor－ tant question．After all，your career will be built on what you can do－and on how well you do it．

Here are ways some of CIE＇s trouble－ shooting programs help you get your＂hands－on＂ training．．

With CIE＇s

 Experimental Electronies Laboratory．．．you learn and review the basics－ perform dozens of experiments． Plus，you use a 3 －in－1 precision Multimeter to learn testing， checking，analyzing！

When you build your own 5 MHz Triggered－ Sweep，Solid－State Oscil－ loscope you take your first real professional step．You use it as a doctor uses an X－ray machine－to＂read＂waveform patterns．．．lock them in．．． study，understand and inter－ pret them！

When you get your
Zenith 19－inch Diagonal Solid－State Color TV you
simply this：
All this training takes effort．But you＇ll enjoy it．And it＇s a real plus for a trouble－ shooting career！

Do you prepare for your FCC License？

Avoid regrets later．Check this out before you enroll in any program．

For some troubleshooting jobs，you must have your FCC License．For others，employers often consider it a mark in your favor．Either way，it＇s govern－ ment－certified proof of specific knowledge and skills！

More than half of CIE＇s courses prepare you for the government－administered FCC License exam．In continuing surveys，nearly 4 out of 5 CIE graduates who take the exam get their Licenses！

Shop around．．．but send for CIE＇s free school catalog first：

Mail the card．If it＇s gone， cut out and mail the coupon．If you prefer to write，men－ tion the name and date of this magazine．We＇ll send you a copy of CIE＇s FREE school catalog－ plus a complete pack－ age of independent
home study information！ For your convenience， we＇ll try to have a repre－ sentative contact you to answer your questions． Mail the card or coupon－ or write：CIE， 1776 East 17 th St．，Cleveland， shooting！You learn to trace signal flow．．．locate malfunc－ tions．．．restore perfect operat－ ing standards－just as with any sophisticated electronics
equipment！

you work with a completely Solid－State Color Bar Generator－ actually a TV signal transmitter－you study up to ten different patterns on your TV screen ．．．explore digi－ tal logic circuits．．．observe the action of a crystal－con－ trolled oscillator！
Of course，CIE offers a more advanced training pro－ gram，too．But the main point is

OH 44114. real on－the－job－type trouble－

Pattern simulated．
\square IES ．．I＇m shopping around for the right kind of career training in electronics troubleshooting－and CIE sounds well worth looking into． Please send me my FREE CIE school catalog－including details about troubleshooting courses－plus my FREE package of home study information！

Print Name
Address
 Apt．

City

Age＿＿＿Phone（area code）
Check box for G．I．Bill information； \square Veteran \square Active Duty

Mail today：

LETTERS

continued from page 17

That these problems can be solved is practically an article of faith among computer buffs. Whether these problems will be resolved, and when, remains to be seen. I hardly dare suggest that it will take more than five years, although it's hard to see how it might happen sooner.
In the meantime, digital processing will cover the Earth in microprocessor chips and a few of our neighbors will become BASIC freaks.
DENNIS E. HAMILTON
System Design Consultant
Penfield, NY

Your editorial certainly hit the mark. I, too, see little use for a home computer. Even as one of the people who helped start the spread of hobby computers, I don't expect to have one at home doing bookkeeping, inventory or burglar alarming.
The home computer can be used to teach programming and have fun with, but my wife can keep track of the foods we need better than a computer. Who expects a housewife to "key-in" each item she uses just so she can have a computer-output shopping list? It's easier to keep this information in your head.
Simple controllers can be used to manage energy use, air conditioning, swimming pool heating, etc. Home computers just aren't needed.

This all reminds me of the tunnel diode, which was touted as the answer to many, many electronic problems. It's still the answer, it's just that no one has any questions.
JONATHAN A. TITUS
Tychon, Inc.
Blacksburg, VA

WHERE ARE THE ELECTRONIC DESIGNERS?

In your June 1978 editorial, you speak of design as if hooking up IC's is not design. Where do you draw the line? Any new device is designed (even if you modify your Heathkit). You may be an expert in capacitors but not know how to use them to couple IF stages. You may understand the quantum mechanics of $P N$ junctions but not how to build a good FM tuner. We are all extremely specialized . . . some persons are good at designing corporate organizations, though ignorant of the skills and knowledge of those they organize.

The advent of IC's has lightened the burden for us all, and, yes, it has allowed some of us to design with devices we do not understand fully. How many engineers who use a calculator could design one (or even a slide rule)? The history of technical progress is marked with mechanisms that allow the designer to move to higher levels without worrying about details and trivia.

Yes, making a device smaller and less expensive is not the same as making a novel device. However, remember that the cost and performance of devices has traditionally been more important than their novelty. For instance, who would have bought a TV set in 1950 when the cost was so high? Mass production and production engineering are important fields. Design is where you find it and the injection of human energy with a foundation of education more often than not comprises the creation of things that are new, different, cheaper, etc.

One final word on the state of electronics: There are few colleges or universities which can keep faculty that is knowledgeable about the latest advances in such a fast-moving field as electronics. As you'd expect, the persons who have the latest information are out making a lot of money using that knowledge. Most of the latest data comes to us via the media (such as Radio-Electronics). It is an important service that you render and a contribution to technical progress.
DION L. JOHNSON
Santa Cruz, CA

SHOT-PUT EXPERIMENT

Were W. Cochran and Radio-Electronics promoting a religious revival in the June 1978 issue (see "Free Energy," Letters, p. 22)? None of the laws I ever alluded to can be found in my Bible.

Also, where did we come by this lossless spring and who needs it? If you place a shot-put on top of a helical car spring and push down on the shot-put until there is 600 lb of tension in the spring, the shot will receive much more kinetic, potential and heat energy when released than any heat loss in the spring. Caution: Do not attempt this experiment indoors unless you have a very high ceiling.
JOHN ECKLIN
Alexandria, VA

May we send you your cholce of 4 of the se pracan unusual offer of a Trial Membership in Electronics Book Club

Here are quality hardhound volumes. each especially designed to help you increase your know-how, earning power, and enjoyment of electronics. Whatever your interest in electronics you'll find Electronics Book Club offers practical. quality books that you can put to immediate use and benefit.

This extraordinary offer is intended to prove to you through your own experience, that these very real advantages can be yours.. that it is possible to keep up with the literature published in your areas of interest, and to save substantially while sodoing. As part of your Trial Membership. you need purchase as few as four books during the coming 12 months. You would probably buy at least this many anyway, without the substantial savings offered through Club Membership

To start your Membership on these attractive terms, simply fill out and mail the coupon today, You will receive the 4 books of your choice for 10-day inspection. YOU NEED SEND NO MONEY. If you're not delighted, return the books within 10 days and your Trial Membership will be cancelled without cost or obligation. ELECTRONICS BOOK CLUB, Blue Ridge Summit, Pa. 17214

Facts About Club Membership

- The 4 introductory books of your choice carry publisher 's retail prices of up to 865.80 . They are yours for only 496 each (plus postage/handling) with your Trial Membership. - You will receive the Club News, describing the current Selaction. Alternates. and other books. every 4 weeks ($13 x$ a year) - If you want the Selection, do nothing; it will be sent to you automatically. lf you do not wish to recelve the Selection, or if you want to order one of the many Alter nates offered, you simply give instructions on the reply form (and in the envelope) provided, and return it to us by the date specified. This date allows you at least 10 days in which to return the form. If, because of late mail delivery. you do not have 10 days to make a decision and so receive an unwanted Selection, you may return it at Club expense.
- To complete your Trial Membership. you need buy only four additional monthly Selections or Alternates during the next 12 months. You may cancel your Membership anytime after you purchase these four books.
- All books - including the Introductory Offer - are fully returnable atter 10 cays if you're not completely satisfied - All books are offered at low Member prices, plus a small postage and handling charge.
- Continuing Bonus: If you continue after this Trial Membership. you will earn a Dividend Certificate for every book you purchase. Three Certificates plus payment of the nominal sum of $\$ 1.99$ will entitle you to a valuable Book Dividend of your choice which you may choose from a list provided Members.

ELLCTRONICS BOOK CLUB

Blue Ridge Summit, Pa. 17214
Please open my Trial Membership in ELECTRONICS BOOK CLUB and send me the 4 books circled below. I understand the cost of the books I have selected is only 49 C each, plus a small shipping charge. If not delighted, I may retum the books within 10 days and owe nothing, and have my Trial Membership cancelled. I agree to purchase at least four additional books during the next 12 months, after which I may cancel my memberslip at any time. $\begin{array}{lllllll}101 & 300 & 678 & 800 & 811 & 841 & 856 \\ 874\end{array}$ $919 \quad 929 \quad 9661011101510191023$ $\begin{array}{lllllll}1028 & 1054 & 1055 & 1060 & 1064 & 1070 & 1083\end{array}$

Name	Phone
Address	
City	
State	Zip

C-Meter: model 30 A precision, autoranging, capacitance meter
-utornging
10 ranges sic
and
 a maximin restoration of 0.1 pu platadts.
Accurate
The Come

 $15^{\circ} 105^{\circ} \mathrm{C}$ (($\Xi^{\circ} 1095^{\circ} \mathrm{O}$).

New Low Distortion Function Generator

FLaK

MULTIFUNCTION COUNTERS

Regular price $\$ 175$.

LEADER

7

DISTINCTIVE PERFORMANCE FEATURES YOU CAN USE

The 1910A. 911A And 1912A Family
 features and benefits that distingash thess hard working counters from all others in this price range.

> Multifunction

The amply doss lix work wi counters

 Automatic Clean Dropout

 The 1911 , and $1912 A \quad$ SPECIFICATIONS

Sensitivity

Auroreset

$135 \mathrm{MHz} \quad 1910 \mathrm{~A} \$ 395$
$250 \mathrm{MHz} \quad 1911 \mathrm{~A} \$ 495$
550 MHz 1912A \$620

$\stackrel{\text { F- }}{\text { F- }}$

LCR-740
Transistorized LCR Bridge

- Highly accurate 3 digit readout.
- Measures Inductance (L), Capacitance (C) and
Resistance (A), within $+0.5 \%$ accuracy
- Range expandable - buill-in 10°, aver ran
- Range expandable - buill-in 10% over range
- Loss Factor scale (D).
- Battery. or AC adapter operation

Regular price 8319.

Simen TRIPLETT VIZ

LBO-520
3GMrz, Fixed Delay

LEADER
Inseruments Corp

Daar trace, 30MHz bandwidit
-5eV/om Vertical Sensitivity.
FFed fetas facilitates hi-speed reacings of 1 re leadi
And, subitract, alternate selection, chopped, end frin
panel $X-Y$ modes broaden areas of application.

- T"-V and TV-H sync. for both CH- $1 \mathbf{3} 2$

$\$ 849.9$
Regular price $\$ 1,050$

L:O-50:
20LHE, Dual Trace

LEADER
inst uments Corp.

- Ads, stotrast modes on CH-18 CM- \geq facilita e eaty ch-ckert for simultaneous pulses, siznal levtis. disortizn \& noise cancelling.
- Frent panelX-Y operation uselul tor phase shitt mesung. sweep ailgnment, vector acope service
- 17.5 n Sec rise time.
- Aurometic chop and all

S614. ${ }^{95}$

- ALeome tic t-igger lor $\mathrm{CH}-1$ or 2 inclucés TV sync
- 10 mV . o2CV/cm Vertical Sensitivity 11 sters.
- 0. $\mu \mathrm{\mu}$ Sたm iJ $200 \mathrm{mS} / \mathrm{cm}$ sweep speed; 18 steps:

3-1/2 Digii DMM with. 5% Accuracy

THE TEST EQUIPMENT SPECIALISTS

Data Precision Corp. Model 1350 DMM

CIRCLE 106 ON FREE INFORMATION CARD
THE DATA PRECISION CORP. (AUDUBON ROAD, Wakefield MA 01880) specializes in digital multimeters and they have introduced a new one. They call it a General Purpose Multimeter, and it is. It's designed for any kind of electronic/electrical work. It is a 3.5 -digit instru-
ment and has a basic accuracy of 0.1%. It has a tough plastic case with a handle that doubles as a bench rest. The readouts are LED's, large enough (0.43 in .) to see quite a way off.

DC voltages can be read from $\pm 100 \mu \mathrm{~V}$ to a full 1200 volts. AC volts from $100 \mu \mathrm{~V}$ to 1000 volts RMS. The input impedance is 10.0 megohms on all ranges. Six pushbuttons are used for range switching on all functionsvolts, ohms and mA . The ranges are set up in the simple $1-10-100-1000$ sequence (the lowest range is $100 \mu \mathrm{~V}$) and all but the top range have 100% overrange capability. With 100% overrange, a $0-10$ range will read up to 19.9. If the 100% overrange capability is exceeded, it is indicated by the display being blanked except the left-hand digit that displays a "l" and the decimal point. Resistance ranges start at $0-100$ ohms, and go up to a 10.0 -megohm range. Same overrange as the others; the 10.0 megohm will actually read 19.99 megohms. Either high-ohms with 2.8 volts on the prods or low ohms with only 300 mV can be selected on all resistance ranges by a pushbutton.

The panel is plain and simple. The functions are chosen by 4 pushbuttons and ranges by 6 pushbuttons, all along the bottom of the panel. Input jacks are at the right side, out of the way. A separate jack is used for current readings only. I like this approach better; it eliminates the chance of accidentally connecting the meter across a voltage with the switch on mA!

Early DMM's suffered from overload accidents. The model 1350 is well protected on every range. It will take 1200 volts on any range, including resistance, and it will handle a 6000 -volt spike on any voltage input for 500 ns , with no damage. The current ranges are protected by 2 A 250 -volt fuses. The AC frequency response is specified up to 10 kHz , except for the two highest current ranges that are specified up to 2 kHz .

The model 1350 is all IC's with the exception of a couple of transistors used as voltage regulators. Even the DC power supply uses an IC regulator. The basic circuitry has the beauty of simplicity. A couple of op-amps and an continued on page 32

Double your capability. The VIZ Supplysts ${ }^{\text {m }}$

Power supplies with built-in circuit
testing capability.
Only the VIZ Supplysts let you power equipment and circuits and test dc voltage points, all with the same instrument.

The Supplysts speed your work, help cut down bench clutter, and free VOMs for other jobs. And even with their extra testing capability, they cost less than most quality fully-regulated power supplies.

Single 0-25Vdc, 0-4A supply with two 0-99.9V DC voltmeters WP-706 $\$ 240.00$
\checkmark The Circuit Tester line Accuracy and stability assured

Single 0-50Vac. 0-2A supply with two 0-99.9V DC voltmeters WP-705
 WP-705 \$240.00

SUPPLY MEASURE

Dual Supplyst
Two 0-25Vdc. 0-2A supplies with two 0-99.9V DC voltmeters WP-707 $\$ 299.00$

Triple Supplyst

Two 0-20Vdc, 0-2A supplies One 5 Vdc (to 4A) fixed-output supply with two 0-99.9V DC voltmeters WP-708
$\$ 333.00$

NEN for Professional Technicians

TBAINING WORKSHOps 1978

－THREE－DAY
－Includes lodging
－INTENSIVE
－UP－TO－DATE
－PERSONAL
－UNIQUE
－Breakfasts，lunches，and coffee breaks during WORKSHOPS
－Grand AWARDS BANQUET
－FREE Extra SEMINAR

ADVANCED

VIDEO SERVIIING

Featuring VCRs，Digital Controls，VIR ．．．
and much more

Intensive Forest Belt teaching techniques and exclusive，proven training aids bring you right up－to－date in the troubleshooting and repair of today＇s video equipment for home or industry．
Special emphasis on solid－state and integrated circuits．See new IF and color alignment methods you probably never thought of．Learn about Vertical Interval Reference（VIR）auto－ matic color control in newly introduced TV receivers．Under－ stand digital and solid－state tuning systems．Participate in live equipment demonstrations．Sit in on the industry＇s first look at practical，Easi－WayTM repair of video cassette recorders．
DON＇T BE LEFT BEHIND in your own industry！Be the one technician in your region who not only keeps up but stays AHEAD of new technology and servicing methods．ENROLL NOW to be sure you do not miss this vital and unique Ad－ vanced Video Servicing WORKSHOP．

FREE Price and Profit SEMINAR Tuesday evening．

September
 11．13（Communications） or 18－20（Video）
 Hospitality Inn East Interstate $\mathbf{7 0}$ at Post Road Indianapolis，INDIANA

Centrally placed for convenient travel from anywhere in the mainland U．S．Also timed earller in the year，in case you should not be away from your shop during the pre－Christmas season． You can attend in time to prepare you for the year－end serv－ ice rush and the new sets being sold．
Comfortable，pleasant accommodations：two people to a room （two beds）．Indoor pool．Shopping downtown by freeway．Bring your spouse if you wish，at the nominal No－WORKSHOP fee （she joins the WORKSHOP group for breakfasts and lunches）． If you prefer to room with a specific other WORKSHOP attendee，tell us．

Enroliments close August 4，1978，or when capacity is reached． Per Workshop $\$ 495$

ADVANCED

COMMUNICATIONS SERVICING

Featuring FM Two－Way，PLL，Single Sideband ．．． and much more
Here，too，intensive Forest Belt teaching methods and ex－ clusive，tested learning aids assure you up－to－the－minute train－ ing troubleshooting and maintaining communications systems．
Special emphasis on solid－state and integrated circuits．Ob－ serve professional alignment and tuneup methods．Deal profit－ ably with Business and Land Mobile Radio－and the growing General Mobile Radio on UHF wavelengths．Learn of new de－ velopments in Marine and Aircraft Radio．Study the latest phase－locked loops，including their digital programming．Take part in live equipment demonstrations．See Easi－Way ${ }^{\text {TM }}$ tech－ niques applied to communications．
GROW AS A REAL EXPERT in your specialty．Grab this ex－ ceptional opportunity to polish up your diagnosis and repair skills．Become familiar with new technology and money－saving instruments．ENROLL NOW in Advanced Communications a giant step beyond our popular CB Servicing WORKSHOPS．
FREE Math and Formulas SEMINAR Tuesday evening．

November 6－10（Communications） or 13－17（Video）

South Seas Plantation Captiva Island，FLORIDA （near Sanibel and Ft．Myers）

For technicians who could use a bit of get－away time as part of this unique training package．Two days of consulting or on－ your－own follow each WORKSHOP．Make your own airline res－ ervations，well in advance；but we take care of placing you in our luxury cottage lodging．
Exceptional resort accommodations：four people（two bed－ rooms，four beds，two baths）or six people（three bedrooms，six beds，three baths）in fancy beach cottages．Bring your spouse， if you wish，at the nominal No－WORKSHOP fee（she joins the WORKSHOP group for breakfasts and lunches）．If you prefer to share a room with a specific other WORKSHOP attendee， tell us．Cottages have kitchen facillies．An unusual winter－ season bargain．
Enroliments close Sept．15，1978，or when capacity is reached． Per Workshop \＄595

Yes，enroll me promptly for TRAINING WORKSHOP at right．
I enclose check or money order for \＄ Advanced Communications Servicing
\square Advanced Video Servicing
$\$ 495$ per WORKSHOP in Indianapolis
$\$ 595$ per WORKSHOP in Florida
\＄175 for spouse $\$ 250$ for spouse （includes lodging． same meals as for WORKSHOP enrollee） $\$ 475$ for CB Service WORKSHOP（same as 1977，and includes lodg－ ing）at Indianapolis August 21－23， 1978.
\qquad
Company
Address＿＿＿＿＿＿＿＿＿＿Phone

City \qquad State \qquad Zip
NOTE：You need 2 years electronics training or experience to gain proper benefit from these Advanced TRAINING WORKSHOPS．NOT FOR BEGINNERS．
Mail to：Forest Belt＇s TRAINING WORKSHOPS， Box 68120，Indianapolis IN 46268

The whole team wondered what Ron Brown was up to in his basement.

Word has it he was up to something mighty special. And when he didn't show up for bowling practice one Wednesday night, the Lucky Strikers (that was the name of his neighborhood team) began to wonder, too.

So it was that a bunch of the boys decided to pay their "star" a visit, and talk him out of his secret project and back into action. It didn't happen that way, though.

Matter of fact, it was Ron Brown who talked the Lucky Strikers out of their bowling night and down into his workshop. What was it ... what could be exciting enough to keep a bunch of ten-pin tigers from their favorite pastime? One of the most fascinating learn-at-home programs in the world, that's what!

Actually build and experiment with a new big-screen color TV in ASI's fascinating learn-at-home program. It will help you develop new skills as an electronics troubleshooter.

You'll set up your own electronics laboratory to discover first-hand the technology behind the most exciting innovations in the world of home entertainment electronics.

In fact, as part of the program, you'll actually build and experiment with a beautiful, integrated circuit 100% solid state color TV.

But most important of all will be the new skills you'll develop all along the way...the kind of skills that could lead you in exciting new directions. For example, like many of ASI's 140,000 graduates, once you complete the program you could use your training:

1. To provide part-time income
2. To start a business of your own
3. To seek out a job in the electronics industry
4. To upgrade your current job
5. As a foundation for advanced programs in electronics

Go exploring at home, in your spare time. No traveling to class. No lectures. No one breathing down your neck.

ASI wants to make it easy for you to get to know the exciting world of home entertainment electronics. You'll be able to develop new skills in your own home on whatever days and hours you choose. So you don't have to give up your present job or paycheck just because you want to prepare yourself for some future opportunities.

What's more, we believe that when you're exploring a field as fascinating as home entertainment electronics, reading about it is just not enough. That's why you'll get lots of "hands on" training experience with some of the most impressive electronic training tools you've ever seen!

No Electronics Background Necessary

That's one of the advantages of this program. We start you off with the basics and help you work your way up, one step at a time. You'll start right off using your hands as well as your head. That's because ASI firmly believes that one of the best ways to develop skills is the exciting "hands on"way.

Each time you receive new materials you will assemble and experiment with the kind of fascinating electronic equipment that will guide you with tests and experiments and will help you become familiar with operations and applications. With ASI you BUILD, EXPERIMENT, and KEEP:

- Signal Generator-This important tool helps you explore AM alignment and signal injection. This is a source of modulated or unmodulated signals. It provides a wide range

of frequencies for use in AM, FM, TV, LW and SW broadcast bands.
- Transistorized Radio Receiver - Build your radio in a spread out format directly on a large schematic diagram. You will learn how transistors, capacitors, resistors and other parts work together to receive radio signals and convert them into sound.
- VTVM (Vacuum Tube Voltmeter) - Build and troubleshoot measurements of $D C+, D C-, A C$ rms and peak-to-peak voltages.
- Solid State Triggered Sweep Oscilloscope - See the heartbeats of tiny integrated circuits with one of the most universal of all testers. You'll experiment with displays of voltage waveforms found in audio devices, television receivers, transmitters and other electronic equipment.
- Vectorscope - Patterns for converging, adjusting and troubleshooting color television receivers. Solid state circuitry and integrated circuits are used for accuracy, stability and reliability since this will be a key instrument for troubleshooting and servicing color television receivers.
- Color Television Set-As you build, you explore automatic fine tuning, plug-in circuit boards, the cathode ray tube and all the components and circuitry used in the late model color receivers. Besides these, you will also receive a pre-wired and assembled multi-tester plus a professional quality set of electronic hand tools and tool box.

And Only ASI Offers Audio/Visual Aids Tool

You will receive a filmstrip projector, filmstrips and records that SHOW and TELL you the proper way to perform some of the fascinating tests and experiments you'll do in the program. Only ASI offers this exciting way to combine theory with practice... and our graduates tell us that these aids are some of the most helpful and interesting parts of the program.

We try to give more personal attention than other learn-at-home programs.

1. Toll-free phone-in assistance. Should you ever run into a rough spot, we'll be there to help. While many schools make you mail in your questions, we have a toll-free line for questions that can't wait.
2. Every student is assigned a Personal Technical Advisor. He'll follow your progress and be available whenever you want to "talk shop" or bounce around an idea or two.

Send for free details today-for a more secure tomorrow.

Whether your goal is higher-paid job skills...extra income from part-time work...being your own boss in your own business... or simply to become your own electronics expert and experience the comfortable confidence that comes with having another marketable skill to fall back on, in case of hard times...ASI can help you reach it.

Mail postpaid card today for free
course outline and sample lesson.
No cost or obligation of any kind.
APPROVED FOR VETERANS BENEFITS
WHEN TAKEN FOR VOCATIONAL PURPOSES.
If card has been removed-write to:

Our whole family helped assemble this wonderful Schober Organ... now we all play it! ${ }^{\text {² }}$

Talk about real family fun! we all worked together, for a few hours almos every day Almost too soon, our Schober Organ was finished. Our keen-eyed daugh ter sorted resistors. Mom soldered transistor sockets, although she d never soldered anything before. And it did our hearts good to see the care with which our son-he's only 12 -installed the transistors. Me? I was the quality control inspector-they let me do the final wiring. And when it came time to finish the beautiful walnut cabinet the easy Schober way, we all worked at it 1

Now, we gather around our Schober Organ every evening to play and sing together. Some of us play better than the others, but we're all learning - with the help of the easy Schober Organ playing courses I might add that I'm especially pleased with all the money we saved. Our completed Schober Organ compares favorably with a "ready-made" one costing twice as much (The five models range from $\$ 650$ to $\$ 2850$.) And we didn't even need to pay the whole amount all at once, because we were able
to buy Schober Kits a component at a tıme. to spread costs out. Or we could have had two-year time payments

Families like ours have been building Schober Organs for 20 years. How about your family? You can have all the details. without cost or obligation. Just send the coupon for the fascinating Schober color catalog for enclose $\$ 1$ for a 12 -inch LP record that lets you hear as well as see Schober quality). Clip the coupon right now-and mail it TODAY

CIRCLE 45 ON FREE INFORMATION CARD

P184-4T with batteries and recharger, $\$ 89.50$ (includes P184).
P184-4T1 110 V AC, $\$ 99.50$ (includes P184). Tefzel wire, 28 gage, various colors, $\$ 4.18 / 100 \mathrm{ft}$. If not available locally, factory order-add $\$ 2$ handling charge.

Prices subject to change without notice

ELECTRONIC COMPANY, INC., 12460 Giadstone Av., SyImar, CA 91342
phone (213) 365-9661, tw \times 910-496-1539
571177

EQUIPMENT REPORTS

continued from page 26

A/D converter do all of the work
The instrument carries a full one-year warranty, and you get a certificate of conformance that traces its accuracy to NBS Standards Calibration is needed only at one-year intervals. When calibration is necessary, only two adjustments are required.

An attractive feature of the model $/ 350$ is its price- $\$ 169.00$ complete with test leads, operating manual, certificate and even a spare fuse. This is getting it down to the point where the typical shop can have instruments of laboratory accuracy and stability that are also rugged enough for everyday use.

Simpson Model 452 Dual-Trace Oscilloscope

CIRCLE 107 ON FREE INFORMATION CARD
THE SIMPSON ELECTRIC COMPANY, 853 DUNDEE Avenue, Elgin, IL 60120, has been making high-quality test instruments for a long time. Their latest introduction, the model 452 dualtrace triggered-sweep oscilloscope, is an all-solid-state unit with many applications: lab work, production-line testing, design, or any kind of consumer electronics work. It is especially useful for color TV applications of any kind.

The model 452 has all the regular features Its two channels are identical: DC to 15 MHz and AC from 2 Hz to 15 MHz . The highimpedance inputs are 1.0 megohm shunted by 25 Pf , and handle a maximum input of 500 volts DC plus AC peak.

Calibrated vertical step attenuators give a deflection sensitivity from 5 mV -per-centimeter (.005 volt) up to 10 volts-per-centimeter with a direct probe. The attenuator switch uses the 1-2-5 sequence. A continuously variable control allows fine adjustment if needed; simply turn the control fully clockwise for calibration. The inputs can be switched to AC or DC A total of 11 positions are used for the volts-per-centimeter selector switch.

Channel selection and other functions are handled by well-spaced push-push controls that lock in on the first push and release on the second. All pushbuttons are very plainly marked so that you know where you are all the time. Channel A or Channel B can each be used by itself if you want a single trace. Just press the Channel A button, leaving Channel B off; or move the Channel B trace up off the screen using the vertical position control. For a dual trace, the sweep is automatically chopped, at a rate of 200 kHz , for sweeps from 1 ms per-centimeter and slower. For all higher speeds, the two traces are scanned alternately There is no perceptible flicker in either one.

Other pushbuttons allow other types of test ing: One adds the signals in Channel A and Channel B and then displays the sum waveform. Another pushbutton inverts the Channel continued on page 34

EQUIPMENT REPORTS
continued from page 32

B waveform．This control performs all kinds of tricks．For instance，when you make the stan－ dard input－output tests on any amplifier stage， the output waveform is inverted．You can press the Channel B invert pushbutton，adjust the traces to the same amplitude，and then super－ impose one trace on the other．This will display instantly any significant differences，phase shifts and distortion．
By pressing the Channel B invert and ADD pushbuttons，you can subtract Channel A from Channel B．This test is used for compar－ ing differential voltages between two points in a circuit，etc．
The model 452 dual－trace scope is indis－ pensable for testing digital circuitry．Since we＇re going to be dragged kicking and scream－ ing into digital work（at least I am！）we might as well have the right tools for it．Timing rela－ tionships are vital；pulses must arrive at the right place at exactly the right time（and exactly means just that！）．

The model 452 manual shows a good typical example using a set of waveforms produced by the Simpson model 7016 frequency counter to show the exact timing．In only one case，the reset pulse，using its negative edge，triggers a control flip－flop．By hooking the scope up to observe the reset pulse on one channel and the flip－flop output on the other，this can be check－ ed with the greatest of ease！This applies to any other type of digital circuitry．
The model 452 manual gives a very com－ plete description of how to take phase readings
on any kind of signal－sinewave，pulse，square－ wave，etc．After a simple calibration，the phase angle is very easy to read．After setup，just push the $\times 5$ magnification switch and the display expands（the sweep speed goes up）．If the original resolution was，say， 40°－per－divi－ sion，pressing this switch brings it to only 8°－ per－division，which can easily be read to a close tolerance．You can also make Lissajous fig－ ures，which are shown in the manual．
In hi－fi audio applications，you can use the scope to read the phasing of the inverse feed－ back．If the phase is off far enough，it can cause the feedback to become regenerative instead of degenerative，and force the amplifier into violent oscillation．In color TV，you can easily check to make sure that the gating pulse and color burst are in precisely the correct phase（timing）relation．If the pulse arrives too soon or too late，the burst finds the gate slammed in its face！
Five trigger selector switches are on the right－hand side of the panel below the trigger－ level control．These switches let you select Channel A，Channel B or external trigger signals using either positive or negative going slopes；and also switch to normal or auto（to display a trace on the screen without triggering if you need it）．The last switch changes the Channel B input so that it becomes the hori－ zontal amplifier．This feature is used in sweep alignment，vectorscope display，Lissajous fig－ ures，etc．The Channel B gain controls adjust the trace horizontally．
Vertical interval test signals（VITS）are very handy for quick IF／RF response and alignment tests．However，since the patterns are broad－ cast on only two lines of the vertical blanking
interval，they are not very easy to pick out and lock on to．（I know，l＇ve tried it！＇）

The model 452 TIME／CM selector switch has three extra positions：Tvv，TvH and vits．The instruction manual shows a simple method for picking the VITS signal out of the video，lock－ ing onto it，then displaying it．Again，just press the $\times 5$ magnification switch，and the display opens up so that the VITS signal is easy to observe．All you do is look at the multiburst part of the VITS signal，which consists of several short bursts of video at a gradually increasing frequency．

If the IR／RF stages are working properly， these burst frequencies will all be amplified equally，and the top of the multiburst will be flat．If it slopes in either direction（becomes wedge－shaped）this indicates there is either a loss of high－frequency or low－frequency re－ sponse somewhere ahead of the video detector． If a good flat top is displayed，just dig into the video stages to locate the source of your trou－ ble．

The test probes used with the model 452 are 10：1 divider types；they use the popular minia－ ture spring－－loaded hook design．Special tips can be pushed on for testing IC＇s and several other types of components．

The DC power supply is regulated to within an inch of its life．I counted seven separate voltage regulators，and I may have missed one or two．The patterns are therefore very stable and the calibration remains accurate during variations of the AC line voltage

The model 452 is a lot of instrument，and its price（ $\$ 635$ ）is well within the ballpark for an instrument of its capabilities and construc－ tion．

FOR OROERS ONLY
Press the TIME button and the LED display reads the correct time（in hours and minutes）．The clock may instead be used to display ELAPSED TIME．

> METER

Press the INST MPG button and read how many miles per galion your vehicle is attaining at each moment．Press the AVE MPG button，and read the average miles per gallon the vehicle has at－

$3 \begin{gathered}\text { Automotive } \\ \text { instruments in }\end{gathered}$ DIGITAL CLOCK

tained since the last reset（up to 200 MPG ）．

Press the FUEL button and read the amount of fuel the vehicle has used since last reset（up to 1000 gallons）．Press the DIST button and read the distance the vehicle has traveled since last reset（up to 1000 miles）．

Today＇s most exciting automotive acces－ sory，AUTOCOMP，is actually three com－ plete instruments in one－each operated by electronic microprocessor control． AUTOCOMP is a digital clock，which may be programmed to read elapsed time or correct time in hours and minutes．AUTO－ COMP is also a true MPG meter，utidizing a patented flowsensor and a speedsensor to compute instantaneous miles－per－gallon or average milles－per－gallon as you drive． And AUTOCOMP is a complete trip com－ puter．It will display the amount of fuel your vehicle has used since last fill－up or beginning of trip and it will display the dis－ tance your vehicle has traveled since the last reset．AUTOCOMP mounts easily in or on your dash and provides large LED readouts of these functions by pushbutton control．With this valuable data at your fingertips，you can significantly reduce fuel bills by monitoring and improving your driving habits．You will know precise－ ly how changes in acceleration，speed， weight，wind，hills，etc．，affect fuel econ－ omy．You can also tell when your engine is burning extra gas by not running at peak performance．AUTOCOMP will allow you to operate your vehicle more efficiently， saving you dollars，not only in fuel bills， but also by helping you avoid the costly repairs of a major breakdown．In one year＇s operation you can easily save the cost of AUTOCOMP in fuel and repairs．AUTO－ COMP can be installed on most American and Japanese make autos and vans except those with fuel injection，and is supplied with all necessary components and hard－ ware，as well as clear illustrated instruc－ tions，that make it easy for a do－it－your－ selfer to install．AUTOCOMP is covered by a 1 year Manufacturer＇s Limited Warranty．

B\&K-PRECISION's new digital probe offers more than logic
 to 10 nanoseconds

- Overload and reverse polarity protected

The new B\&K-PRECISION DP-50 50MHz digital probe simplifies the troublesiooting and analysis of all digital circuits by clearly displaying in-circuit logic activity and pulse presence.

This compact instrument includes every important logic probe feature and more. Three bright LED indicators display pulse presence and high- and low-logic states. Unlike ordinary togic probes, the DP-50 digital probe will continue to indicate pulse presence to 50 MHz .

Available for immediate delivery at your local distributor.

6460 West Cortland Street
Chicago, Illinois 60635 • 312/889-9087 In Canada Atlas Electronics. Ontario

Radio Shack Model TRS-80 Computer

CIRCLE 110 ON FREE INFORMATION CARD

Abstract

\section*{SPECIFICATIONS}

Z-80 based CPU; $4 K$ bytes RAM; BASIC in $4 K$ ROM; integrated 53key ASCII keyboard; 500 baud cassette interface; 12 -inch monitor displays 16 lines $\times 64$ characters (32 characters selectable); interspersed graphics (128 horizontal by 48 vertical); 21 general commands with 14 functions, plus special commands including array and strings. Price: $\$ 599.95$.

THE TANDY CORPORATION (1400 ONE TANDY Center, Fort Worth, TX 76102) appears to have become a serious competitor in the field of small computer systems. The Radio Shack model TRS-80 (based on the popular Z-80 microprocessor) is rapidly becoming a standard item in homes and offices. Educators are also finding it both affordable and practical for instructing students in basic computer programming.

The model TRS-80 is available either with Level I BASIC with 4K RAM (\$599.95), or with Level 2 BASIC and 16K RAM (\$789). Included are such accessorics as a 12 -inch video monitor, cassette recorder and an easy-to-follow user's manual. A game tape (Blackjack and Backgammon) is also included.

The operator's manual itself is impressivethe style is witty, comprehensive, informative, and an excellent introduction to the world of computer programming.

Although the complete three-piece model TRS-80 package is recommended as a system, the keyboard terminal alone is available for $\$ 400$. Its video output can be fed to any video monitor (even a simply converted TV set), and data can be transferred into a good-quality portable cassette recorder. The video display provides 16 lines of 64 characters each.

The modular construction of the model TRS-80 system allows for future expansion as peripheral equipment becomes available. The keyboard terminal circuit board is designed to accomodate 16 K RAM and Level 2 BASIC to handle more involved computer requirements, such as advanced string manipulation and peripheral control.

In the home, the Level 1 BASIC system would be ideal for recipes, bookkeeping, filing and even games (many already available from other sources). For educators, the system's applications could include keeping records of grades, familiarizing students with how a computer operates and for visual instruction.

Small business applications for the model

TRS-80 include record- and inventory-keeping.

With Level 2 BASIC, data exchange with the cassette is faster. and the system provides for more flexible software for alphanumeric data handling and improved graphics. Level 2 BASIC is required for such peripheral equipment as a printer or floppy-dise recorder.

Using the TRS-80

As uncrated from the box. the model TRS80 Level 1 system is ready-to-go in minutes. The three units (keyboard, video monitor and cassette player) are interconnected with cables (provided), and initial starting and testing instructions are simple to follow.

By following the instructions, it soon became apparent that the sample system was in excellent working order. The keyboard is especially responsive and comfortable.

The 16 -line, 64 -character-per-line video display is bright and sharply defined. The 12 -inch video monitor makes the characters quite readable even at a considerable distance, an advantage for classroom instruction.

After an extended period of familiarization, we developed an involved program to test the computer: It performed flawlessly. Occasionally, in the interval between commanding the computer to transfer data to the cassette and commanding the cassette to return the data to memory, a small glitch developed-the information did not always return. This usually caused no particular problem, however, since a blinking video signal constantly alerts you as to the status of the data transfer. If the blinking stops, this means a bit error has occurred and the transfer must be repeated.

If the error occurs during a data transfer from the terminal to the tape, you will not realize it until you attempt to reload the cassette data back into memory; this process will also erase the program presently in the memory. Thus, it is advisable to record the data on two or three tapes first before reloading the computer memory to check the tape. This routine precautionary step will prevent much anguish later if for any reason (including power-line spikes, incorrect cassette volumecontrol playback settings, loose connections. or operator error) the data did not transfer.

All things considered, the Level 1 model $T R S-80$ appears to be an excellent computer system; and, as system needs grow, the model $T R S-80$ can grow with them.

R-E

Electra Bearcat model 250 Programmable Scanner

CIRCLE 111 ON FREE INFORMATION CARD
the model bC-250 bearcat is the latest addition to the programmable, frequencycontinued on page 36

The option is yours! You can have the next 12,24 or 36 excitementpacked issues of Radio-Electronics delivered to your door each month and save up to $\$ 9$ of the newsstand price while enjoying the convenience of home delivery. And you'll enjoy all the news of electronics you get in Radio-Electronics: projects to build, new-equipment test reports, computer technology, servicing tips, and all your favorite columnists on solid state, hobbies, hi-fi, servicing and computers. Check out the money-saving subscription offers on the coupon below, and check off the one that suits you best. It's the best move you can make today, or for the next three years.

Mail to: Radio Electronics

SUBSCRIPTION DEPT., P.O. BOX 2520
BOULDER, COLO. 80323

You've always heard that high price equals high performance?
NOT ANY MORE! The new Recion XK multi-channel radar monitor offers all the teatures of other units that start at $\$ 14995$

Our price? \$69.95!

Compare these outstanding feature:

- X-BAND SENSITIVITY UP TO 5 MILES* AT 10.525 CHz .
- K-BAND SENSTTIVITY InCLUDES "HANDHELD" RADAR AT $\mathbf{2 4 . 1 5 0} \mathbf{~ C H z}$.
- SOPHISTICATED ELECTRONIC FILTER CIRCUIT REDUCES FALSE SIGMAUNG.
- warning ughts a adjustable CONTROLS FOR X \& K BANDS AND POWER INDICATOR.
- ADJUSTABLE ON-OFF/VOLUME CONTROL FOR AUDIBLE TONE WARNING.
- BLACK MILTARY CONTRCL PANEL
- ALUMINUM CASE \& 2-WAY "ALl PURPCSE", MOUNTING BRACKET.
- EXCLUSIVE EUROPEAN SPORTS STYLING
Reception varies iccording to terra in tratl C and weather cond

If you compare the Recon XK wth other radar detectors. ycu will find onily the most expensive units offering similar features. A simple glance will also reveal the difference in styling that Kitmaster ${ }^{\text {c }}$ engneers have effected
Now as a result of superior design and production technology, YOU CAN ASSENBLE THIS AD VANCED RADAR DETECTOR - AT HOME - USING BASIC TOOLS ANID OUR

DETAILED INSTRUCTION
GUIDE. Order yo
Recon XK Kit
today - a: les;
than half its list
price value! -10-DAY MONEY BACK GUARANTEE --
TO Cialas Electronkc Products, Inc.
FEECON XK KTT OFFER Kimazter ${ }^{\star}$ Dviso Dept RE
P.O. Box 225238, Dallas, TX 75265

Please send:
Recon XK Kits $\$ 6995$ ea
(PLUS \$2.00 SHIIPPING USA)
Attached is my check \square or money order \square tcr
TEXAS RESIDENTS ADD S3 50 SALES TAX EAGH
UNTT. CANADA S6 75 SHIPPING LTHER
UNIT. CANADA $\$ 67$.
COUMTRIES $\$ 19.25$.
Bill my \square Master Cnarge \exists Visa
Card No
Name
Address
City
Signature

AGCURAGY MADE EASY

DUAL TRACE MODEL 532 - 30 MHz

DUAL TRACE MODEL 517 - 15 MHz USABLE TO 27 MHz

SINGLE TRACE MODEL 515-15 MHz
Put Hickok Scope reliability on your side and get things done easier, faster, better and with complete assurance that you're doing them right.

Economically priced Hickok push. button-triggered Scopes are quick and easy to set up and use. A color-coded front panel speeds up and simplifies operation. Triggering is practically fool-proof, well in excess of the MHz rating. And excellent pulse responses virtually eliminate overshoot and ringing.

Call your nearby Hickok distributor and set up a demonstration today. See for yourself how a modestly priced Hickok single or dual trace 15 MHz , or dual trace 30 MHz , Scope will save you time and exasperation.

If you're outside of Ohio, call us toll free at 800-321-4664 for the name of your nearest Hickok distributor.

the value innovator
instrummentation \& Controls division THE HICKOK ELECTRICAL INSTRUMENT CO. 10514 Dupont Avenue • Cleveland, Ohio 44108 (216) 541-8060 • TWX: 810-421-8286 CIRCLE 77 ON FREE INFORMATION CARD

EQUIPMENT REPORTS

continued from page 34
synthesized VHF/UHF scanners already on the market. It is manufactured by Electra Company (300 South on East County Line Rd., Cumberland, IN 46229) the pioneer of scanning receivers.

At first glance, the BC- 250 looks nearly identical to the popular model BC-210, but a closer look at the keyboard reveals the differences.

A custom-designed microprocessor IC greatly expands the flexibility of this scanner: It has 50 -channel scanning capability; it counts the number of times any (or all) of the 50 channels have been heard in use while scanning; and it can search through any of its frequency ranges for unknown frequencies (up to 64) and store them for later display during recall.
The nonvolatile memory retains its frequency and instruction programming even if the unit is unplugged while it is operating, or if a power failure occurs; there is no battery to replace every few months.

The 50 channels are programmed into the scanner by a keyboard and stored in five banks of 10 channels each. The banks can be individually or collectively selected in or out of the scanning sequence. Thus, the frequency blocks of such agencies as fire and police departments, ambulances, etc., can be selected in and out of scanning at will.

The squelch control can be adjusted manually or rotated to an automatic position at which it is activated only when a received signal exceeds a preset level above the background noise. Plus any one of the 50 channels can be manually selected at random without having to step in sequence through the scanning order.

A delay feature places a two-second hold on any channels after a signal is received before scanning or searching is resumed. This feature allows you to hear a reply to an intercepted transmission from a simplex operation. The delay feature is not necessary for monitoring repeaters, since they have their own built-in delay for incoming signals.

Both scanning speed and search speed can be slowed down or speeded up at the touch of a button (a choice of 5 or 15 channels-persecond). The unit has a lockout feature which when activated, prevents unwanted signals from stopping the scan or search sequence.

A priority channel is also provided; no matter what function the monitor is presently executing, the priority channel overrides it and can be heard when it is active. In addition, an automatic 12 -hour clock display appears when the receiver is switched off, and can also be read with the receiver on without disabling any receiving function.

The rear apron of the model BC-250 provides an audio output for an external speaker or recorder, plus a control circuit to activate an external device such as a tape recorder. The quality of the audio sound is voice-tapered crisp and clean.

Specifications

The manufacturer's specifications for the model $B C-250$ show a noticeable improvement over those of earlier scanners. Naturally, published specifications are average, and will vary somewhat among individual receivers.

SPECIFICATIONS

Frequency range: 32-50, 146-174, 420-512 MHz
Sensitivity ($12-\mathrm{dB}$ SINAD): $.6 \mu \mathrm{~V}$. low and high band; $.9 \mu \mathrm{~V}$ UHF
Adjacent-channel rejection: better than 50 dB
Audio output: 1.5 watts
Power requirements: 120 VAC or 13.5 VDC Size: $105 / \mathrm{W} \times 3 \mathrm{H} \times 75 / 8$ inches D
Weight: 5 lb

Lab tests

To avoid strong signal overload in metropolitan area monitoring, Electra recommends the use of the small telescoping antenna provided with the model BC-250. We couldn't resist using a rooftop monitoring antenna. Distant weak signals came in surprisingly well, and problems with intermodulation and images were less than expected. A major metropolitan area is a beehive of signal activity, and only the better receivers can endure the signal overload presented by an outside antenna! Still, with the internal antenna provided, distant signals were very readable due to the model $\mathrm{BC}-250$'s improved sensitivity.

The automatic search feature, with searchlockout for unwanted signals, is a pleasure to use. The ability to recall active channels discovered during search, and the automatic capability to count transmissions intercepted on scan are very handy. A modest spectrum study of active channels in an area can be quickly accomplished using the $B C-250$.

Expected delivery for the new scanner was tentatively set for mid-summer, 1978, at a suggested retail price of $\$ 399.95$. R-E

Radio-Electronics ${ }^{\circ}$

 us available in MICROFILMUNIVERSITY MICROFILMS 300 N. Zeeb Road Ann Arbor, Michigan 48106
 MICROFICHE

MICROCARD EDITIONS

A Division of Information Handling Services P.O. Box 1154 Englewood, Colorado 80110

BELL \& HOWELL CO. Micro Photo Division Old Mansfield Road Wooster, Ohio 44691 Attn.: Mr. Splers

Please write for complete information

> It's a standard telephone and speakerphone housed in a compact ultra-modern package. Here's a look at the circuitry and how it works.

HANS R. CAMENZIND*
if you have ever used a speakerphone, or if you have ever talked to somebody who was using a speakerphone, it is immediately apparent because it sounds as if the call is being made from inside a large wine barrel, a quite annoying phenomenon. Also, all except some of the most expensive speakerphones ($\$ 300$ and up) tend to drop off a word or a syllable here or there. And, if you happen to have a bad connection with much background noise, your speakerphone may not work at all. For all these reasons, speakerphones are almost exclusively used for group conversations. The much-advertised "hands-free" feature is really more of a nuisance than a valuable asset.

In attempting to design a speakerphone that eliminated, or at least greatly reduced, these shortcomings, the first and most serious problem encountered was the barrel sound that is caused by room acoustics. For example, if you place a tape recorder microphone in the middle of a room and speak into it from a few feet away, the sound bounces off the walls and you get a noticeable echo effect. In a face-to-face conversation, you do not notice this echo at all because your ears are stereophonic and the brain does a marvelous job of signal processing.

When you move a microphone to within about 18 inches from your mouth, the echo starts disappearing. At this distance, or even shorter distances, the direct sound becomes so much stronger than the reflected sound that the echo is no longer a factor.

There is at present no electronic solution to the echo problem. It is possible to process the signal so that the gain is reduced for a period of time after a sound peaks. This method works well for tone bursts, but it makes a conversation less intelligible. In addition, the time it takes for the echo to arrive at the microphone varies with room size. This means that the suppression time would have to be adjusted for each room.

The best solution to this problem is to design the speakerphone so small and light that the person using it would naturally

[^0]move it closer. This design choice was influenced by the electronic calculator: When you use a calculator you draw it close to you because it is small and handy.

A calculator-sized speakerphone also solves the problem of the noise interference on the line. If the connection is very bad, you simply pick the speakerphone up and hold it to your ear. The Tridar speakerphone contains a mercury switch that senses the angle at which the phone is being held. When it is tilted more than 45°, the gain is automatically reduced, and the speakerphone becomes a normal telephone.

This latter feature also has another advantage. Suppose you have been holding a hands-free conversation. Somebody walks into your office and you would rather continue the conversation privately. You simply pick up the phone.

Two other features are built into the Tridar speakerphone. One is a volume control to adjust the varying amplitude on the phone line and to make the speakerphone useful for a group conversation as well. The other control is a hold pushbutton to shut off the microphone so that the group can speak in private, or allow you to leave temporarily.

The most difficult problem to solve in the circuit design was the delay, which can chop off a part of the speech. Unlike a regular telephone, the microphone and the speaker in the speakerphone cannot be on simultaneously; otherwise the speaker feeds into the microphone, the signal is amplified and a portion of it returns to the speaker, creating the howling sound sometimes heard in public address systems.

The simplest solution here is to sense the microphone level. When the level exceeds a preset threshold, the speaker is turned off. However, since this threshold cannot be set very low (otherwise it would be triggered by room noise, e.g., a typewriter clicking), part of the first syllable is lost. To minimize the effect, typical low-cost speakerphones turn the speaker on with a delay of about I second so that the microphone channel is held on continuously for the entire sentence.

But such relatively unsophisticated circuitry used in low-cost speakerphones has the disadvantage that comments interjected by the conversation partner can be missed. Especially if the other party in the conversation is long-winded, it becomes impossible to get a word in edgewise!

To avoid this delay a rather complex voice-level sensing scheme was designed. This is the main reason that high-performance speakerphones are rather bulky and heavy. Therefore, to provide this complexity in a small and light package, customdesigned integrated circuits were used. In fact, using custom IC's not only allowed the Tridar phone to be designed in a very small package, it reduced the cost to less than that of a design using components and standard IC's.
There is a great deal of misconception about custom IC's. Most designers feel that a custom IC is only economically feasible for very large quantities because of the enormous tooling cost and that you should design a product with standard, off-the-shelf components first. However, neither of these assumptions is quite true.
Semicustom IC's require little extra expense or added time for the development. And, especially for this speakerphone, a design using off-the-shelf components would have made no sense at all, since the end product would have been of the size of a normal telephone and weighed at least two pounds.

Basic design

Figure 1 shows the block diagram of the Tridar speakerphone. The most important feature that is responsible for the high performance of the speakerphone is the peak detector/comparator circuit. Its design represents a drastic departure from older speakerphone designs.
The most difficult task in designing a speakerphone is to devise a circuit that decides who is talking at any given moment. You cannot simply assume that if there is a signal in the microphone channel, it is the person at the speakerphone end that is talking. What makes this assumption wrong is the fact that the speakerphone's speaker also talks into the microphone.
At the other end-the telephone line-the distinction between the voices of the two parties is also unclear. On the telephone line itself the two signals are completely mixed and, supposedly, of equal amplitude so you cannot distinguish between the two. The connection to the phone line is usually made through a hybrid transformer, in which the two directions
can be separated somewhat. In the Tridar speakerphone, the hybrid circuit is an active circuit to reduce space and weight.

The separation of the two signals in even the best hybrid circuits is only about 10 dB , the reason being the telephone line impedance. If the impedance were 600 ohms , as specified, the hybrid circuit could be matched to the line and a separation of at least 30 dB would be possible. In reality, both impedance and phase vary wildly between 300 Hz and 3 kHz and depend on the length of the line.

How then can you tell which channel should be open? The information is there but just barely. The signal from the phone line coming from the hybrid circuit is slightly stronger even after the limited separation afforded by the hybrid circuit.

FIG. 1-PEAK DETECTORS AND COMPARATOR determine which party is talking. This represents a drastic departure from earlier designs.

[^1]Speaking directly into the microphone does result in a slightly larger amplitude than the indirect sound produced by the loudspeaker if the microphone is pointed away from the loudspeaker. In the Tridar design, the amplitudes of these two signals are converted into DC voltages in the peak detectors and then compared (see Fig. 1). If the microphone channel is louder, the upper section of the analog switch is closed and the lower one is opened; thus, the microphone sound will go to the line and the speaker channel is cut off.

During each pause in the microphone signal - even between words-the comparison is made again, i.e., the signal from the line is connected. To allow this, the time constant of the microphone peak detector is quite short.

Two factors help here. First, when you are talking, you cannot really hear anything. You shut off the other person's voice in your brain. You may be aware that he or she wants to say something, but you cannot understand it. Second, even segments of the other person's voice in this instance tell you what you need to know, namely that you are about to be interrupted and that you had better stop talking and start listening.

This is precisely what was built into this design. During each pause in the microphone signal, however short, the speaker channel is opened up. Thus, if the other person has been talking, a part of his speech is heard on the speakerphone.

If the user of the speakerphone continues to talk (despite the fact that sound is coming through) another effect takes place. The other person automatically raises his voice. This increases the level of the line peak detector, and the line signal begins to outweigh the microphone signal, thus opening the speaker and shutting off the microphone.

The entire speakerphone contains 465 components, of which 410 are contained in three custom IC's (not counting the touchtone encoder, which is a standard, off-the-shelf IC). Figure 2 shows a view of the PC board. Here are some highlights of some of the important circuit blocks.

The hybrid circuit

The function of the hybrid circuit is to separate the two signals on the telephone line. In an ordinary telephone, this is accomplished with a rather bulky differential transformer. In the Tridar speakerphone, this function is duplicated in one of the custom IC's.

Figure 3 is the schematic diagram of the hybrid circuit. The

FIG. 3-ELECTRONIC HYBRID CIRCUIT duplicates function of bulky transformer used in ordinary telephone.
telephone line is connected to the phone through a small simple transformer to meet the FCC's 2000-volt isolation specification. The signal is then obtained at the secondary and arrives at the base of Q6 through D1, D2 and R1. Note that the signal cannot go through Q3 because transistor Q2 blocks the signal applied to Q3's base.

A signal coming from the microphone is buffered by Q1, Q2 and Q3. The impedance of the telephone line is nominally 600 ohms, and with a $1: 1$ ratio in the transformer, the collector load impedance of Q3 is the same as its emitter resistance. Thus, the signal going into the transformer has the same amplitude as the signal at the emitter of Q3, but the opposite phase. These two
signals are summed at the junction of R1 and R2. Since R1 and R2 are equal, the microphone signal cancels exactly at the base of Q6 so that only the line signal appears at this point. This, however, is true only if the line impedance is, in fact, 600 ohms. In reality, the line impedance can vary considerably and the cancellation at the base of Q6 is about 10 dB . This performance is identical to that of a hybrid transformer.

Diodes D1, D2 and D3 are used for DC level-shifting only; their influence on the gain and cancellation is minimal.

Mike amplifier and peak detectors

Figure 4 shows the diagram of the microphone amplifier. The

FIG. 4-MICROPHONE AMPLIFIER and peak detector features a differential input stage.
input is biased at 1.4 volts through R8. Transistors Q7 and Q8 form a differential pair with an active load D5/Q101. This active load is a diode-biased current source. The collector current of Q8 flows into D5. The internal base-emitter diode of Q101 is connected across D5. Therefore, as the current through D5 increases, the collector current of Q101 increases by the same amount. At the collectors of Q7 and Q101 there is a push-pull effect: When, with a signal at the input, one collector current increases, the other decreases by the same amount, resulting in a large amount of gain. Note, however, that this configuration can only be used in IC's since it requires a near perfect matching of the components.

The signal is then further amplified in Q102 and buffered by Q10. At this point there is an open-loop gain of several thousand that is then reduced to 140 with feedback resistors R11 and R12.

The operating current of the differential stage and the output is derived from D4. Diode D4 and the base-emitter diode of Q11 are identical in size; therefore, the collector current of Q11 will be similar to that of D 4 , or $100 \mu \mathrm{~A}$. The current of Q9 and Q12 is reduced by emitter resistors.

The microphone-amplifier output is fed into both the analog switch (CMOS) and the peak detectors. The configuration of the peak detector is almost identical to the amplifier. However, there is no load current at the emitter of Q15. The positive peaks of the signal charge up capacitor C4 at the output. The only discharge path for C4 is R19. These two elements then set the time constant of the peak detectors.

Loudspeaker amplifier

Approximately 250 mW of audio power is required for a speakerphone, which can easily be integrated on a bipolar IC chip. The loudspeaker amplifier uses two of the four highcurrent ($200-\mathrm{mA}$) NPN transistors contained in a linear IC.

Figure 5 is the schematic of the speaker amplifier. Coming from the volume control, the telephone line signal is first amplified in a differential pair with an active load. A diode string (D9-D11) and resistor R21 are biased through D8/Q107 at a

FIG. 5-SPEAKER AMPLIFIER circuit generates 250 mW of power.
current of $500 \mu \mathrm{~A}$. These four elements match the internal base-emitter diodes of Q18/Q20 and Q108/R22, so that the idling current of the output stage Q is also $500 \mu \mathrm{~A}$. The signal is fed into the diode string through Q17 and is amplified in the output stage. The closed-loop gain is set at approximately 5 by R19 and the input impedance.

Ring detectors and oscillators

The final circuit causes a ringing sound in the loudspeaker

FIG. 6-RING DETECTOR AND OSCILLATOR generates a $1-\mathrm{kHz}$ tone that varies between $\mathbf{6 0}$ and 150 volts $P-P$ at a $20-\mathrm{Hz}$ rate.
that eliminates the need for the bell. As shown in Fig. 6, the ring signal is picked up directly at the telephone line through a combination of Zener diodes, capacitors and resistors. In direct contrast to the voice signal, the ring signal has a very large amplitude that varies between 60 and 150 volts peak-to-peak at 20 Hz .

When the negative peak of the ring signal exceeds the Zener diode breakdown, Q110 and Q25 turn on. This powers up the relaxation oscillator made up of Q23/Q24 and Q109 through voltage divider R27/R28. The frequency of the relaxation oscillator is set by R 26 and C 8 at 1 kHz . The $1-\mathrm{kHz}$ sound signal, which is modulated by 20 Hz , is fed into the speaker amplifier.

One large custom IC contains three of the four circuits discussed plus part of the control circuitry. As a result of using this type of IC, the Tridar speakerphone is smaller than the smallest telephone now offered and and weighs less than the handset of a desk telephone. The custom integrated circuit is making its presence felt in consumer electronics.

R-E

Oscilloscopes gaining worldwide acceptance in computer field

As the mechanical design, layout and circuitry of oscilloscopes have improved so has their worldwide marketability. Hans Toorens, oscilloscope product manager for Philips Test \& Measuring Instruments, Inc., believes that the broader range of applications and functions for an oscilloscope in computer servicing, as well as in other areas, has caused the market to expand both in the U.S. and abroad. He also believes oscilloscopes are destined to become the "workhorse" of the computerservice industry.

Purchasers of test equipment such as oscilloscopes have become increasingly sophisticated in their requirements-they use more precise parameters in judging an oscilloscope, looking for electronic measurement capability, cost reliability and its effectiveness both on the bench and in the field.

Connecticut judge dismisses radar-detector case

The city of Waterbury, CT, has probably experienced its last arrest for possession of a radar detector. This past June, Judge Norman Buzaid dismissed charges against Dr. Howard Rofsky who had been arrested for possession of a detector. Judge Buzaid termed the 1962 state ruling against radar detectors "ridiculous."

Most Connecticut courts have been reluctant to prosecute such cases, and Dr. Rofsky's case was only one of several less-er-known incidents. However, the Connec-
ticut decision came only days after the Supreme Court of the State of Virginia struck down a portion of that state's antiradar law, declaring that a presumption of guilt in the statute was unconstitutional. The law will still be on the books, but police will now have a hard time proving the detector in the car was being used illegally. Virginia is the only state in the country to have a law against radar detectors.

The charge-coupled device, an idea come of age

In 1969 Bell Labs scientists Willard S. Boyle and George E. Smith devised the chargecoupled device (CCD), an invention that since then has inspired a great many technical papers but has now finally come of age.

CCD WAFER has a 3 -inch diameter and contains 169 CCD devices.

Scientists Boyle and Smith arrived at the idea for the CCD almost accidentally. They were looking for a semiconductor device that could control and handle data similar to magnetic bubble devices. (Bubbles store data in a very small space, making possible high-density data storage.) While at that time bubbles were fairly new devices, the semiconductor was well-known; the resulting invention was the CCD-a result of applying the principles of bubble devices to a semiconductor.

The CCD has three layers-one layer made of metallic electrodes, another of silicon crystal, and an insulating layer of silicon dioxide. Standard MOS processing techniques can be used to manufacture a CCD, which can then be used to perform many electronic functions now performed by larger, more complicated IC's.

Negatively charged electrons in the CCD can be moved about. The information (in the form of electrical charge packets) is stored in small areas or "wells" on the surface. Applying the desired voltage results in data transfer from one well to another. Since the amount of charge in a well can be varied continuously, this makes the CCD an analog device that can be used in analog communications transmissions. When the charge packets are digitized (i.e., the wells are either empty or full), the CCD can be used as a digital memory. If the charge packets are introduced optically, instead of electronically, with an image focused on the silicon surface, an imaging device results. It can then be used as an image sensor in an all solid-state television camera.

R-E

How To Troubleshoot Digital Circuits

Isolating a fault in a digital circuit can be both difficult and time consuming if you don＇t know how to go about it．Here＇s an in－depth look at the faults，the right troubleshooting procedures and the test equipment to make it easier．

L．STEVEN CHEAIRS

MOST PROTOTYPE INSTRUMENTS HAVE A few design or fabrication bugs，and any system can malfunction due to a defective component．Unfortunately，these prob－ lems do not generally announce them－ selves in a way that makes them easy to identify．This is because a defect in the system can affect many other components and produce a number of secondary faults．This article will try to present a method that the average hobbyist can use to debug his own prototype or to repair malfunctioning logic circuits．

A list of digital troubleshooting equip－ ment will be included．For each unit，we will try to outline when and where it should be used，noting its limitations．The reader will be led step－by－step through a few typical problems and we＇ll show vari－ ous methods of obtaining the data re－ quired to pinpoint the fault．Since most of you only come into contact with TTL， CMOS and MOS devices，only these technologies will be covered．

Test equipment

Traditionally，when the individual components of a circuit were accessible， you could perform relatively simple tests to verify proper operation of each component by using a signal generator， voltmeter，ohmmeter，diode tester，tran－ sistor tester，tube tester，or an oscillo－ scope．All this equipment is defined as traditional troubleshooting equipment．

Now that a circuit element must be viewed as a little＂black box，＂where the components are not accessible，a new troubleshooting philosophy must be adopted．Simply the IC must be tested for a complete circuit operation rather than just for a few characteristics such as capacitance，inductance，resistance and turn－on voltages．Note also that now we must observe complex digital signals， rather than simple circuit characteristics， to determine if the IC is functioning correctly．Complicating the situation fur－ ther，you must consider a large number of inputs and outputs and compare the rela－ tionship of incoming signals to outgoing signals．This requires an intricate knowl－ edge of many complex circuits．However．

I am not trying to scare you off but just trying to show why a new variety of test equipment was devcloped

Multimeter and oscilloscope

The only two pieces of traditional test equipment that you will find some use for in digital troubleshooting are your mul－ timeter and oscilloscope．With the mul－ timeter you can check the power－supply voltage of a malfunctioning circuit．An oscilloscope can also find much use，espe－ cially if it is a dual－trace unit with trig－ gered sweep．However，the older scopes will be next to useless because both time and frequency measurements cannot be made，and the amplitude，the Y －axis，is not generally calibrated，therefore pre－ venting threshold measurements．

When viewing logic levels，absolute amplitudes are unimportant．A digital signal has three states．Only two of these states are used to convey information； they are logic 1 and logic 0 （the third state is designated as undefined）．These states are defined by the threshold levels of the logic family；for TTL（Transistor－ Transistor Logic）the low threshold is 0.4 volt and the high threshold is 2.4 volts． When the amplitude of the signal is less than 0.4 volt，it is considered to be at a logic 0 level；when it is above 2.4 volts it is at a logic 1 level；and when the amplitude is between 0.4 volt and 2.4 volts，the output is undefined．Therefore，when you use an oscilloscope，all signals must be checked in order to determine if the data is at a valid logic level！I have seen tech－ nicians spend days troubleshooting a cir－ cuit only to discover a problem that had been staring at them all along because they were only looking at waveforms and not logic levels．

Logic clip and probe

Two logic test instruments that almost anyone who works with logic has become familiar with are the logic clip and logic probe－both overcome the oscilloscope problem．When observing static or low－ frequency data，the logic clip and logic probe function quite well；many units have a pulse stretcher and／or memory to
enable short pulses to be observed．The clip is simply piggybacked onto the IC；it will find its own power．If pin－to－pin contact is good，then the LED＇s will indi－ cate the logic levels（where LED on $=$ logic 1 and LED off $=\operatorname{logic} 0$ ）．
To use the logic probe，connect the two wires that exit from the end opposite the tip to the power supply（the red wire is positive and the black is negative）．Some probes only have one indicator light；thus， a lit indicator is a logic 1 and an unlit indicator is a logic 0 ．Other probes may have two or more indicator lights；for instance，a light for the logic 1 state， another for the logic 0 state，and yet another light connected to a pulse stretch circuit or memory．To use the probe， simply touch a PC card run or the pin of one of the IC＇s and observe the indicators． The logic probe can detect pulses of short duration that have low repetition rates； these pulses would be difficult for an oscilloscope to detect．The probe should be used in one of two ways：First，you can let the circuit operate at its normal clock rate and monitor only key signal lines． Second，you can slow the system clock down using a low－frequency clock source so the logic changes are slow enough for the probe（or clip）to be useful．

Unfortunately，when you slow the clock down，the circuit will probably react differently－due to propagation de－ lay．Many design problems that occur are due to the delaying of parallel signals；the glitches produced by propagation delays in two or more logic paths；or because of PC track inductance and capacitance （both of these are frequency sensitive）．
The solution to these problems was provided by two instruments，the logic comparator and the logic analyzer．The logic comparator is a small hand－held unit having a cord protruding from one end，a 16－LED display and a cradle for a refer－ ence IC．The end of the cord contains an IC clip．The instrument has two modes of operation：First，connecting the IC clip to an IC and observing the LED provides you with a simple logic clip（when no reference IC is used and the mode switch is set to the clip position）；second，insert－
ing the known good reference IC and setting the mode switch to the comparator position gives you a tester that will detect operational differences in the two IC's.

Since the reference IC is known to be good, it is assumed that any fault must be due to a bad IC; however, this is not always the case. Problems can occur when say a flip-fiop or counter is being tested and the two IC's are not synchronized. The solution here is to use a logic pulser to reset the devices before testing. When testing memories or shift registers, attach the comparator for a long enough period for both IC's to acquire the same data.

The comparator does have some serious problems, however; it will not function properly with IC's that have a TTL input and a non-TTL output. Sometimes it will detect a problem that may not be caused by the test IC but by another IC, a bad clip connection, or a faulty circuit board. The worst problem the comparator has, and it shares this problem with all the other logic tools (with the exception of the current tracer), is that it cannot test any wired-OR/wired-AND connections. Thus, the whole set of open-collector IC's are untestable.
The logic analyzer is probably one of the most useful digital test instruments. Very simply, it monitors one or more signal lines until it observes a preprogrammed qualifier that is user-programmed. After detecting the qualifier, it loads its internal memory at a sample rate that is also user-determined; the rate may be synchronous or asynchronous to the data lines. It is also possible to wait a predetermined number of clock pulses (or amount of time) before or after the qualifier. The data is then displayed on a CRT screen as waveforms or truth tables. The logic analyzer also has difficulties testing wired-OR/wired-AND configurations.

The best solution to the wired-or/ wired-AND problem (as well as shorts and opens in the PC card) is to use a current tracer. This probe can be obtained in two forms. The first resembles a logic probe; one end has power leads and the other has a tip. The tip is not used to make electrical contact as with the logic probe; instead it contains a magnetic sensor used to monitor the field produced by current flow. Also, the probe can only detect lowimpedance faults.
To detect a wired-or/wired-AND fault, simply place the probe near the pull-up resistor and adjust the gain control until the indicator lamp lights up (see Fig. 1). Next, place the probe to each output pin of the open-collector gates--only the defective gate will cause the indicator to light up. Also, when a low-impedance fault exists between two gates, the current tracer and a logic pulser can be used as quick diagnostic tools (the logic pulser should be used on all faults responsible for abnormal current flow if the current
flow does not provide enough stimulation to use the current tracer). If a signal line between IC's is shorted to ground, place the logic pulser on the foil trace midway between the IC's. Next, use the current

FIG. 1-WIRED-OR/WIRED-AND configuration is formed by connecting the outputs from open-collector gates and connecting a pull-up resistor.
tracer to follow the current to the defective component. A solder bridge may also be detected using the current tracer. Start with the gate that is sourcing the current and follow the current flow until you find the short. Another useful application is when a buffer is driving numerous inputs and one input is shorted to ground. Adjust the current tracer at the output of the buffer and then touch the probe to each input; the one that causes the indicator to light is the defective gate.

Logic pulser

A logic pulser is simply a pulse generator that provides either a single-pulse or a continuous-pulse stream. To use a logic pulser, place the tip of the pulser to the input of the suspected logic element. Next, press the trigger button and the logic element will be forced into its opposite logic state. With most conventional signal generators, either circuit compo-
nents have to be unsoldered and/or the foil trace has to be cut. Most pulsers will provide around 790 mA of current, which is more than sulficient to force the IC to change states. The pulser must generate a very narrow pulse to prevent any IC damage that might be caused by applying too much current. The pulser, as should all other test equipment, should have a high-impedance input to prevent adversely affecting normal circuit operation while using it.

Beyond this collection of equipment all you need is a set of IC test clips and jumper wires. It should also be emphasized that all the equipment described above will be required in any single application. The scope is a general-purpose instrument that can be used in almost any application, whereas the voltmeter may find use only in specific cases - such as checking the power supply. The logic clip should only be used for checking static or low-frequency signals. The logic probe also works best at low-frequency levels, but can be used on higher-frequency circuits if it is used just to monitor key control lines. The IC comparator is useful only for testing a restricted number of the available IC types (because of the need for a reference IC). Both the pulser and current tracer are very valuable troubleshooting tools. The logic analyzer is unquestionably a valuable tool especially when used with systems that have parallel information, such as synchronous counter strings, address buses, data buses, etc.

IC technologies

To troubleshoot effectively, a knowledge of the individual IC's and the logic

FIG. 2-INPUT AND OUTPUT CIRCUITRY FOR TTL, PMOS, CMOS and MOS logic families. Input circuitry for a 2 -input TTL NAND gate is shown in a. Input of PMOS gate is shown in b. Circuit of a CMOS inverter is shown in c. Open-drain MOS output circuit is shown in d. Resistor pull-down MOS output circuit is shown in e. Push-pull MOS output circuit is shown in f.
family associated with them is required. Thus, the troubleshooter must have a library containing the pinouts and functional truth tables for all the common IC's, plus some not so common ones. Also, a firm understanding of the IC's input and output characteristics for the logic family is required. Figure 2 shows the input and output circuitry associated with TTL, CMOS and MOS logic families.

This article will not discuss such design characteristics as propagation delays, setup times, power supplies, filtering, bypassing, fan-in/fan-out, etc. When discussing specific logic families, only threshold levels and failure modes will be examined. Furthermore, emphasis will be placed upon poor PC layout, with less emphasis on defective components. This is because more than 90% of the problems are a result of design and fabrication failures and less than 10% a result of faulty components. Of course, the exception to this rule is the digital circuit that experiences a logic failure after proving itself in operation for an extended period. In this case, the odds are in favor of a defective component.

I will assume that you have access to IC pinout information and description of all the IC functions. If not, such information is available from many sources. The most common IC's used by hobbyists are of the MOS, CMOS, or TTL technologies. For the MOS types-NMOS and PMOS-you should consult the individual components data sheet for switchingthreshold levels. For most MOS/CMOS IC's that are TTL-compatible, the maximum low-level output, $V_{\text {ol }}$, with no noise at the input and assuming only capacitive loading, is given as $\mathrm{V}_{\mathrm{oL}}=\mathrm{V}_{\mathrm{ss}}$ +0.01 volts. The minimum high-level output, V_{OH}, for the same conditions, is given as $\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-0.01$ volts. For optimum performance, the high-level input should equal $V_{D D}$ and the low-level should equal $\mathrm{V}_{\text {ss }}$. Due to the high DC noise immunity of MOS/CMOS devices, an acceptable logic 1 is $V_{D D}-0.3\left(V_{D D}\right)$ and a logic 0 is $\mathrm{V}_{\mathrm{SS}}+0.3\left(\mathrm{~V}_{\mathrm{DD}}\right)$. Therefore, as a worst case, V_{H} may equal 3.5 volts, and V_{L} may equal 1.5 volts, using a 5 -volt power supply. Also, variations in the power-supply potential, $V_{D D}$, will directly affect the threshold point.

Transistor-Transistor Logic (TTL or $\mathrm{T}^{2} \mathrm{~L}$) can be subdivided into five fami-lies-regular, low-power, low-power Schottky, Schottky and high-speed. Table 1 shows threshold-level comparisons of each type. In this table, both the absolute and typical levels are shown; when testing use only the absolute levels. Thus, for standard TTL the low-level threshold is 0.4 volt and the high-level threshold is 2.4 volts (the area between 0.4 volt and 2.4 volts is undefined).

The failure modes for these logic families are similar, although some logic families may be more prone to one particular
type of failure. Basically, there are only five kinds of failure: (1) failure of the internal logic; (2) the input/output is shorted to ground; (3) the input/output is shorted to V_{cc}; (4) the input/output is open; and (5) there is a short between two or more of the IC pins.

The first failure, that of internal logic, results in erratic circuit operation. Therefore, the output of the IC will not be predictable. This failure will block normal signal flow and most assuredly has a catastrophic effect upon circuit operation.

The second and third failure modes, the input/output being shorted to ground or to V_{CC}, do not qualify as catastrophic
will perform normally, but when they are driven into alternate states, the output will go low. Note that since the outputs must dissipate more power under these conditions, at some point a catastrophic failure may occur due to excessive heat buildup.

A troubleshooting example

Whenever you troubleshoot, it is mandatory to narrow the problem down as much as possible by observing the symptoms. By using the controls and displays provided on the front panel of the malfunctioning equipment, isolate the problem to as few circuits as possible. Obtain all the written information available, such

TABLE 1—THRESHOLD LEVELS for TTL logic families. Values are given in volts.							
V_{V}	Logic Level	$\mathbf{7 4 0 0}$	$\mathbf{7 4 L 0 0}$	$\mathbf{7 4 L S 0 0}$	$\mathbf{7 4 S 0 0}$	$\mathbf{7 4 H 0 0}$	
	Typical	0.2	0.2	0.35	0.35	0.2	
	Vaximum	0.4	0.4	0.5	0.5	0.4	
	Typical	3.4	3.2	3.4	3.4	3.4	
	Minimum	2.4	2.4	2.7	2.7	2.4	

failures since in many cases normal curcuit operation continues with only occasional circuit malfunctions. In most cases, however, some expected system operations will not exist and thus can manifest themselves as catastrophic failures. The actual effect of this type of fault is that an input/output will be held high or low, depending upon the failure, and thus prevent normal circuit operation.

The fourth failure, open input/output, generally will be due to a bad internal wire bond between the IC pin and the silicon wafer. When the problem is due to an open input bond, then no signal will be delivered to the silicon wafer. Thus, the input will float at some undefined level. Note also that there will be no effect upon the signal source driving this input. An open bond on an output will cause the IC inputs being driven by that output to float (high in the case of TTL). For both TTL and DTL, a floating input drifts to about 1.4 volts to 1.5 volts. Therefore, an open bond on an output (for TTL or DTL) forces all corresponding inputs to a logic 1 level (even though this is below the valid logic 1 level).

The final failure, a short between two pins, is one of the harder cases to analyze. When two pins are shorted, two outputs that drive those lines are placed in opposition; i.e., they both will attempt to pull the other high or low. These outputs may be on the bad IC (when two outputs are shorted) or external to the IC (when two inputs are shorted), or there may be only one output on the IC (when an output and input are shorted together). In the case where one output attempts to go high and the other tries to go low, excessive current will be drawn through both outputs. The end result is that the short will pull both outputs to a low state. Therefore, when both outputs are driven low or high simultaneously, the circuit
as service manuals, operator's manuals and schematics. Look and think before touching! Remember you have enough problems now, do not create any more by hasty actions. A well-written service manual can provide information about key signals that may aid in isolating the failure to a single circuit.

When troubleshooting a complex system, such as a computer that contains hundreds of IC's, the first step is to isolate the malfunction to as few IC's as possible. Most of your time will be spent searching for the problem, not fixing it. Next, by using key signals and the proper test equipment, zero in on the faulty IC.

Let's look at a typical circuit containing a few problems. To enhance your skills for both general-purpose repair work and prototype testing, two separate troubleshooting paths will be followed: The first is to assume that the circuit has only one failure at a time and it will be due to a faulty component (this is basically what we see when a proven circuit fails); second, in order to simulate design, layout and fabrication problems, several concurrent problems are shown to exist.

The circuit is shown in Fig. 3 This circuit is one-half of the logic used in building a limited graphic terminal that uses subjective color. Subjective color, unlike standard color, can be displayed on a black-and-white monitor screen-if you stay within its limitations. The circuit board contains the video-output amplifier, sync generation circuits, composite blanking circuit, character generator, subjective color circuits, and the computer I / O circuits.

The schematic (see Fig. 3) shows six circuit failures. The first is an open circuit at the output of the video multiplexer. The symptom observed on the monitor is: No picture, with a white raster being displayed. This immediately

suggests you should check the signal path between the video amplifier and the multiplexer, because both blanking and sync seem to be working. Since this is a highfrequency signal with only one line, use the oscilloscope. If there is no signal on that line, check the strobe input using a logic probe (this input should be a logic 0 or be checked at a low frequency). Since
this input checks OK, next use the logic analyzer or oscilloscope to verify that the 8 -bit data lines and 3-bit control lines are active-they should be. After verifying these inputs, the only possible problem could be an open bond inside the multiplexer on the output.

The second fault is between two input pins of the composite summing circuit;
this fault causes the color-blanking and computer-access blanking outputs to be tied together. The symptoms of this failure are (1) the color cannot be observed, and (2) erratic images are displayed during computer access. During normal noncolor operation when the computer is not loading a new character pattern into the continued on page 87

NUMBER SYSTEM

Our present number system（decimal）uses base 10 to perform all necessary arithmetic operations．Example： $312=3 \times 10^{2}+1 \times$ $10^{1}+2 \times 10^{0}$ ．Binary number system uses combinations of 0 ＇s and 1 ＇s to represent and perform all arithmetic operations that are pos－ sible in the decimal system．Binary number system uses base 2 ：

2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
128	64	32	16	8	4	2	1

Table progresses to the left indefinitely as 2^{n} ，where $n=0,1,2,3,4, \ldots$ To change any binary number to base 10 ，write binary number underneath table and add decimal equivalent where 1＇s appear．Example，change 11000100 to decimal：

2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
128	64	32	16	8	4	2	1
1	1	0	0	0	1	0	0

$2^{7}+2^{6}+2^{2}=128+64+4=196$ ．The number then is 196.

To change decimal to binary：Divide number by 2 and keep remainder that will always give 1 or 0. Example： 196.

	Remainder
$196 \div 2=98$	0
$98 \div 2=49$	0
$49 \div 2=24$	1
$24 \div 2=12$	0
$12 \div 2=6$	0
$6 \div 2=3$	0
$3 \div 2=1$	1
$1 \div 2=0$	1

To write binary number from decimal begin at bottom row of remainder table and write the dig－ its from left to right．Example： $196=11000100$

BINARY WORDS

A bit is a digit in binary language．A digit can be either a 1 or 0 ．Binary numbers are also known as binary words．Consequently a 5 bit binary numbet is referred as a 5 bit word．The longer the word the greater the decimal number that can be represented．Example：A 5 bit word can represent 32 different combinations． A 2 bit word can represent 4 different combina－ tions．By the equation：combinations $=2^{n}$ where n is the number of bits in the digital word． Example：Represent the maximum number of combinations with a 2 bit word．Combinations $=$ $2^{n}=4$ ．See table．

Decimal	Binary
0	00
1	01
2	10
3	11

The highest decimal number that can be ex－ pressed for a given word is the total number of combinations minus one．Equation：Decimal Number $=2^{n}-1$ ．Example：What is the highest decimal number that can be expressed by a 2 bit word．The total decimal number is $2^{n}-1=$ $2^{2}-1=3$ ．

ADDITION

Binary addition is manipulated the same as decimal addition but keep in mind that $1+1=0$ and 1 carries over．

Addition table	
	Carry
$0+0=0$	0
$0+1=1$	0
$1+0=1$	0
$1+1=0$	1

Examples：

$$
\begin{array}{r}
\text { Add } 101011 \\
+111001 \\
\hline 1100100
\end{array}
$$

$$
\text { Add } 10000
$$

$\begin{array}{r}+00100 \\ \hline 10100\end{array}$

SUBTRACTION

Reversed procedure from addition remem－ bering to borrow one from the left column．

$\begin{array}{r} 1001 \\ -\quad 100 \end{array}$	Subtraction table	
0101		Borrow
Here borrow	$0-0=0$	0
from the left	$1-0=1$	0
which makes the	$1-1=0$	0
next number	$0-1=1$	1

MULTIPLICATION

Proceed as arithmetic multiplication．

DIVISION

Binary division：proceed as arithmetic division．

$$
\begin{gathered}
10 \begin{array}{c}
1100 \\
\frac{10}{11000} \\
\hline 010 \\
\frac{10}{0000}
\end{array}
\end{gathered}
$$

Division Table
$0 \div 1=0$
$1 \div 1=0$

DIGITAL PULSES

In digital logic，pulses are defined as voltage transitions that occur during a determined lapse of time．Timing pulses are usually generated by a circuit called a clock．A set of digital pulses is known as a train of pulses．The duration and length of the pulses can be changed to fit the

needed application．A pulse is an abrupt change in a voltage level．

For the pulse shown in the figure：the max－ imum amplitude is 5 volts；the reference level is 0 or ground．The total time duration is from t_{2} to $t_{1}=t_{\text {total }}$ ．If the pulse occurs 1 time in one second，the frequency is one pulse per sec－ ond．The period $=1 / \mathrm{f}$ ．The duty $\mathrm{cycle}=\mathrm{d}_{\mathrm{y}} / P$ ．

$$
P=1 / \text { frequency }
$$

The left－hand side of the pulse is called the leading edge．The right－hand side of the pulse is catled the trailing edge．The width of the dotted area under the leading edge is known as the pulse risetime．The width of the dotted area under the trailing or decay edge is known as the falltime． Digital pulses are fast pulses with very sharp leading edges and very sharp trailing edges．Pos－ itive logic equates the maximum amplitude of the pulse as the digital number 1 and the ground or zero level as digital logic zero．Negative logic equates the maximum amplitude of the pulse as the digital number 0 and the ground or zero level as digital 1.

OCTAL．NUMBER SYSTEM

Number system widely used in computer lan－ guage．The octal system is a simpler way to store and recall values stored in computer memory banks．The binary numbers to be stored are converted to octal saving considerable time and possible errors．The octal number system has a base of 8 ．The symbol to represent the numbers are： $0,1,2,3,4,5,6 \& 7$ ．Notice the absence of the number 8 ．The conversion from decimal to octal follows the same procedure as the dec－ imal to binary，but the base is 8 ．

8^{4}	8^{3}	8^{2}	8^{1}	8^{0}
4096	512	64	8	1

The table progresses indefinitely to the left as 8^{n} ；where $n=0,1,2,3,4 \ldots$ ．

Convert the octal number 421_{8} to decimal．

8^{4}	8^{3}	8^{2}	8^{1}	8^{0}
4096	512	64	8	1
		4×8^{2}	2×8^{1}	1×8^{0}
		256	16	1

Add the powers of 8 to get the decimal number． Example： 421 octal $=4 \times 8^{2}+2 \times 8^{1}+1 \times$ $8^{1}=273_{10}$（decimal）．To convert decimal number to octal，divide decimal number by 8 and keep remainder that will give octal number．

	Remainder
$273 \div 8=34$	1
$34 \div 8=2$	2
$4 \div 8=0$	4

To write octal number begin at the bottom row or last digit of the remainder and write octal number from left to right．Example： 421_{8} （octal）$=273_{10}$（decimal）．The conversion of a binary digit to octal is accomplished by group－ ing the binary number into groups of 3 digits． Then proceed to evaluate the octal number in each group of 3 digits．Example：Change binary number 111100111110 to octal．Separate from right to left in groups of 3．Example：111－100－ $111-110=7476_{8}$ ．Change each group of 3 digits to octal converting binary to decimal． $111=7_{8}$ ； $100=48 ; 110=68$ ．

BOOLEAN ALGEBRA RULES

4 symbol indicates a logic variable. This can be either a logic 0 or a logic 1 level.

1	$0+\boldsymbol{\Delta}=\boldsymbol{\Delta}$
2	$1+\Delta=1$
3	$\boldsymbol{\Delta}+\boldsymbol{\Delta}=\boldsymbol{\Delta}$
4	$\mathbf{\Delta}+\overline{\mathbf{\Delta}}=1$
5	$0 \cdot \boldsymbol{\Delta}=0$
6	$1 \cdot \mathbf{\Delta}=\mathbf{4}$
7	
8	$\mathbf{\Delta} \cdot \overline{\mathbf{4}}=0$
9	$\overline{(\overline{\mathbf{4}})}=\mathbf{\Delta}$
10	- + $\mathrm{Y}=\mathrm{Y}+\boldsymbol{\Delta}$
11	А $\cdot \mathrm{Y}=\mathrm{Y} \cdot \boldsymbol{\Delta}$
12	$\Delta+(Y+Z)=(\Delta+Y)+Z$
13	$\mathbf{\Delta}(\mathrm{Y} Z)=(\mathbf{\Delta} Y) Z$
14	$\Delta(Y+Z)=\Delta Y+\Delta Z$
15	$\Delta+\Delta Z=\Delta$
16	$\boldsymbol{\Delta}(\boldsymbol{\Delta}+\mathrm{Y})=\boldsymbol{\Delta}$
17	$(\Delta+Y)(\Delta+Z)=X+Y Z$
18	$\mathbf{\Delta}+\overline{\mathbf{\Delta}} \mathbf{Y}=\mathbf{\Delta}+Y$

BOOLEAN SIMPLIFICATION

Simplify $P+X+\bar{X}$. Using Rule 4 from above table, $P+X+\bar{X}$ reduced to $P+1$. Using Rule 2 reduced $P+1$ to 1 . Therefore, $P+\bar{X}+X$ is always equal to a logic 1.

Simplify PQ $\bar{O} \mathrm{~L}$. By Rule 8 of above table, $\mathrm{Q} \cdot \overline{\mathrm{Q}}=0$. Therefore, $\mathrm{PQ} \overline{\mathrm{Q}} \mathrm{L}=\mathrm{P} \cdot \mathrm{O} \cdot \mathrm{L}$. By Rule 5, $P \cdot O \cdot L=0$. Therefore, $P Q \bar{Q} L=0$.

Simplify: $\bar{M}+\operatorname{CS} \bar{C}+F$. Use Rule 8: $\operatorname{CS} \bar{C}$ $C \bar{C}=0$. Use Rule 5: $0 \cdot \mathrm{~S}=0$. Expression becomes $\bar{M}+0+F$, which reduces to $\bar{M}+F$. Note we should not apply Rule 4 of boolean table $\bar{M}+F$ because variables are not identical. The answer is $\overline{\mathrm{M}}+\mathrm{F}$ or an OR gate with inputs \bar{M} and F.

LAW OF PRODUCTS

The law of Products is also called the law of Intersection. This law explains the behavior of an AND gate. It follows Rules 5 and 6 from the above table.

According to Rule $6(1 \cdot \Delta=\mathbf{\Delta})$, if we apply a logic 1 and the variable Δ to the input of an AND gate, the output will be equal to the variable 4 . According to Rule $5 \quad(0 \cdot \mathbf{\Delta}=0)$, if we set the variable \triangle equal to a binary 1 , the output of an AND gate is still 0 .

For a pulsed input:

Consequently for a four input AND gate, applying Rule 5 of the boolean angebra table:

A•B•M•O=0. It is obvious that in the preceding AND gate expression if any of the variables is a logic 1 level, but either of the inputs is zero, the output will be 0 .

If the input 0 becomes 1 , then:

THE LAW OF UNIONS

This law pertains to the OR gate and is related to Rule 1 and 2 of the boolean table.

According to Rule $1(0+\boldsymbol{\Delta}=\boldsymbol{\Delta})$, if one of the inputs of an OR gate is 0 and we apply the variable 4 to the other input, the output will be the variable 4 . According to Rule $2(1+\Delta=1)$,

if we apply a 1 and the variable Δ to the inputs of an OR gate, the output will be 1 .

LAW OF TAUTOLOGY

The known Law of Tautology applies to Rules 3 and 7 of the boolean table. Rules 3 and 7 apply to AND gates and OR gates. Using this law, simplification of long algebraic expressions becomes simple. The rules merely state that equal variables in an equation should be omitted. Example: Simplify the equation ($\mathrm{M}=\boldsymbol{\Delta}+\boldsymbol{+}$ $K+L$). It is obvious that the variable Δ repeats twice. By Rule 3, the equation simplifies to $M=$ $\Delta+K+L$.

THE LAW OF COMPLEMENTS

If a logic signal and the complement of this logic signal is applied to a logic gate the resulting output is 1 or 0 depending on the logic gate being used. The law of the complement is stated in Rules 4 and 8 of the boolean table. Let's apply this rule to an OR gate.

According to Rule $4(\mathbf{\Delta}+\overline{\mathbf{\Delta}}=1)$, if one of the inputs of the OR gate is logic $(1=\Delta)$ and the other input is $(0=\overline{\mathbf{A}})$ the output will be 1 . Example: Pulsed

According to Rule $8(\mathbf{\Delta}+\mathbf{\Delta}=0)$, if one input to an AND gate is variable Δ and the other input is 0 , the output of the gate will be 0 .

THE LAW OF DOUBLE NEGATION

The Law of Double Negation is expressed by Rule 9 of the boolean algebra table. This law states that feeding the negation of a variable through an inverter produces the original variable.

Complementing a signal an even number of times produces the original signal.

FLIP-FLOPS

A digital logic circuit able to memorize by storing logic levels. A flip-flop has two stable
states: It will remain in either set or reset state until its state is changed by external signals. The data stored in a flip-flop can be quickly checked by using an oscilloscope or meter to detect the state of its output. There are three basic types of flip-flops.

> 1 The RS
> 2 The D type
> 3 The JK

The logic symbol for an RS flip-flop is

The inputs are S and R. The outputs are Q and $\overline{\mathrm{Q}}$. Application of a logic 1 level on the S input will make the Qoutput go to a logic 1 level and the $\overline{\mathrm{Q}}$ output go to a logic 0 level. If the logic? level is applied to the R input, the output levels are reversed. The unused input must be held at a logic 0 level.

RS FLIP-FLOP LOGIC TABLE			
INPUTS		OUTPUTS	
R	S	\mathbf{Q}	$\overline{\mathbf{Q}}$
High	Low	Low	High
Low	High	High	Low
Low	Low	Unchanged	
High	High	Not Permitted	

When the S input is 1 and the R is 0 the flipflop is reset. When the S is 0 and R is 1 , it is set. All the other input combinations produce ambiguous or race states.

The D-type flip-flop logic symbol.

The D-type flip-flop generally behaves like the RS flip-flop but the main difference is that a low-to-high transition must be applied to the Tinput for the D flip-flop to toggle and store information.

D-TYPE FLIP-FLOP LOGIC TABLE				
INPUT		OUTPUT		
D	\mathbf{T}	Q		$\overline{\mathbf{0}}$
Low	Low	Previous state		
Low	High	Low		High
High	Low	Previous state		
High	High	High		Low

The JK flip-flop symbol

The S and C inputs presets the JK flip-flop to a desired state before another operation is begun. The S and C inputs are referred to as asynchronous inputs because they don't require a transition on the T input. The J and K inputs only affect the O and $\overline{\mathrm{Q}}$ outputs when a transition occurs on the T or clock input. If the J input is 1 and the K input is 1 , the flip-flop will reset from the previous state in the presence of a low-to-high transition on the T input. To set the JK flip-flop, apply a 1 to the J input and a 0 to the K input, then apply a low-to-high transition (clock pulse) to the T input. This operation is referred as synchronous with the clock operation.

THE NOR GATE

A logic circuit with two or more input ca－ pable of resolving the equation $A=\bar{C}+B$ ．The NOR gate is a combination of an OR logic gate followed by an inverter．

The NOR gate could be constructed using an OR gate followed by an inverter．

The operation of a NOR gate is represented in the following truth table．

Input		Output
B	C	$A=\overline{B+C}$
0	0	1
0	1	0
1	0	0
1	1	0

Notice that the NOR table is the exact oppo－ site or complement of the OR tiuth table． Summary：The 2 input NOR gate produces an output when both of the inputs are logic 0 level． If either of the inputs is 1 ，the output is always a logic 0 level．

几ூに

 \square^{\prime}

A NOR gate using inverters in the input will act as an AND gate．

Truth Table for inverted input NOR gate shown above．

B	\mathbf{C}	\bar{B}	\bar{C}	A
1	0	0	1	0
0	1	1	0	0
0	0	1	1	0
1	1	0	0	1

DUALITY OF LOGIC GATES

Gates can provide different functions de－ pending on the assumed reference logic level applied to the input．There are two widely used types of combinational logic levels used in pres－ ent logic circuits．These are known as positive logic and negative logic．

POSITIVE LOGIC LEVELS
Input Output Logic $1=+5$ volts +5 volts Logic $0=$ 0 volts to +0.2 volts

The logic 0 is relatively close to the 0 or ground reference level but in practical gate de－ sign the 0 reference is usually a few tenths of a volt above ground level．

NEGATIVE LOGIC LEVELS

Input	Output
Logic $1=0$ volts to	0 volts to
+0.2 volts	+0.2 volts
Logic $0=+5$ volts	+5 volts

Truth Table for Positive Logic
2 －input AND gate
Voltage Table

Input		Output
B	C	A
0 V	0 V	0 V
0 V	+5 V	0 V
+5 V	0 V	0 V
+5 V	+5 V	+5 V

Truth Table

Input		Output
B	C	A
0	0	0
0	1	0
1	0	0
1	1	1

Compare above Truth Table with Truth Table below for a negative logic 2 －input AND gate．

Negative Logic AND gate．
Voltage Table

Input		Output
B	C	A
0 V	0 V	0 V
+5 V	0 V	0 V
0 V	+5 V	0 V
+5 V	+5 V	+5 V

Truth Table

Input		Output
B	C	A
1	1	1
0	1	1
1	0	1
0	0	0

Notice that the Truth Table for the negative logic AND gate is exactly opposite to the Truth Table for the positive logic AND gate．The negative logic AND gate acts as a positive logic OR gate．

Consequently an AND gate can provide the OR function and an OR gate can provide the AND function by selecting positive or negative logic level assignments．

Flexibility in implementation of the basic gate functions．NOR gates and NAND gates can be used to implement any of three basic logic functions．Example：By connecting all the in－ puts of a NOR or NAND gate together we can implement an inverter．

By connecting an inverter in the output of a NOR gate，we can implement an OR gate．（Same applies for a NAND gate．）

BOOLEAN ALGEBRA

Is the mathematical method of analyzing logic circuits．Boolean equations describe the operation and provides the mathematical tool for the manipulation of logic circuits．For ex－ ample，draw the logic circuit that solves the boolean equation $A=(B+C)+(M+D)$ ：The expression indicates that there are two $O R$ gates being OR＇ed by another single OR gate：Analy－ sis：Draw the sumbol for the first member of the equation．$(B+C)$ ：

Then draw the symbol for the second member of the equation（ $M+D$ ）．

Use a single OR gate to combine the two OR gate outputs as required by the indicated + symbol．

Draw symbol for the second term of the equation（M＋D）．

Draw the logic circuit to solve the boolean equation $A=(B+C) \cdot(M+D)$ ．

The first term $(B+C)$ of the equation indicates an $O R$ gate with inputs B and C ．

Combine the two OR gate outputs using a sin－ gle AND gate as required by the multiplication．

Write the boolean algebraic expression from the given logic circuit．

First write the expression describing the out－ put of gate 2．This is an OR gate，therefore，the expression is $X+Y$ ．Secondly write the out－ put equation for gate 3 ．This is another OR gate， so the expression is $M+P+S$ ．Notice that the algebraic expressions are being AND＇ed by gate 1．Consequently the output expression so far is $(X+Y) \cdot(M+P+S)$ ．Input T could have been in－ cluded anywhere in the equation because it is being AND＇ed by gate 1 with the other two equations．The complete output equation is： $W=(X+Y)(M+P+S) \bar{T}$.

Write the boolean equation for the logic diagram．

AND GATE
Logic circuits with two or more inputs and a single output capable of resolving an output with combinations of input variables. The two-input $A N D$ gate resolves the equation $A=B C$. The output (A) is expressed in terms of the two variables (B) and (C). The expression $A=B C$ does not imply multiplication but rather (A) is the result of quantity (B) AND quantity (C) presented at the input. AND gate symbol

The operation of the AND gate is better represented by the use of a Truth Table that indicates the output for the various input combinations.

Truth Table for 2-input AND gate:

IN		OUT
B	\mathbf{C}	A
0	0	0
1	0	0
0	1	0
1	1	1

The AND gate performs binary multiplication.

MULTIPLICATION TABLE
$0 \times 0=0$
$1 \times 0=0$
$0 \times 1=0$
$1 \times 1=1$

The total number of possible input combinations for a gate with an even number of inputs is given as (inputs) ${ }^{2}=$ outputs. For a two input AND gate; $2^{2}=4$. The truth table then contains 4 possible input combinations. Summary: A two-input AND gate gives an output only when both inputs are logic 1 .

For a pulse input.

Notice that the AND gate produces 2 output pulses out of 4 input pulses arriving at the B input because the duration of pulse C is exactly twice the total duration of input pulses B.

Algebraic equations. Example: For $A=W$. TX - MPS. Using AND gate

THE INVERTER
A digital gate that inverts the input signal. It is also known as a complementary gate because the output is inverted in relation to the input. The inverted output is written with a bar over the inverted variable.

The inverter has only one input connection and one output connection.

For a pulse input:

CASCADED INVERTERS
If an odd number of inverters are connected in series, the output will always be the negation of complement or the input variable.

The OR GATE preserves the individual characteristics of pulses arriving at the input.

Note: Each output pulse has the same time interval at the output as it had in the input. If there is time coincidence at the input, the output pulse will be equivalent to the longest pulse at the input. Example:
 pression $A=B+C$ does not imply addition but rather A is the result of either B or C acting on the input.

The operation of the OR gate is better represented by the use of a Truth Table that indicates the output when the inputs are modified by (1) or (0):
2 INPUT OR GATE

INPUT		OUTPUT
B	C	A
0	0	0
0	1	1
1	0	1
1	1	1

Below is a 3 -input OR gate Truth Table.

INPUT			OUTPUT
A	B	C	D
0	0	0	0
1	0	0	1
1	1	0	1
1	1	1	1
0	0	π	1
0	1	1	1
0	1	0	1
1	0	1	1

The number of inputs determines the number of combinations in the same manner as for the AND gate: input $=$ combinations -1 . Example: $3^{2}-1=8$.
Note: The equation; inputs ${ }^{2}=$ combinations -1 ; is for an ODD number of inputs. Use inputs ${ }^{2}=$ combinations for an EVEN number of inputs. Example: An OR gate with 2 inputs has $2^{2}=4$ possible input combinations. An OR gate with 5 inputs has $5^{2}=25-1=24$ possible input combinations.

The OR gate equation satisfies the rule of binary addition.

LOGICAL ADDITION TABLE
$0+0=0$
$1+0=1$
$0+1=1$
$1+1=1$

Note: Binary addition and logical addition are not EQUAL. Summary: The OR gate gives an output when any input is a logic one. Output is zero when all inputs are zero.

THE NAND GATE
The NAND (NOT-AND) gate is the combination of an AND gate and inverter. The operation of a NAND gate is represented by the equation $A=\overline{B \cdot C}$ and is read A is the result of B and C operating at the input of the NAND gate but inverted at the output. The solid bar over B • C means inversion.

The NAND gate could be constructed by using an AND gate followed by an inverter.

The operation of a 2 -input NAND gate is easily represented by a truth table form.

INPUT		OUTPUT
\mathbf{C}	\mathbf{B}	$\mathbf{A}=\overline{\mathbf{B} \cdot \mathbf{C}}$
0	0	1
1	0	1
0	1	1
1	1	0

Note: The NAND gate truth table is the complement of the AND gate truth table. Both inputs must be at a logic 1 level to produce a logic 0 output. Pulse behavior:

Non-coincident input pulses have no effect on the output of a NAND gate. The output always stays at logic 1 level. Coincidence at input of logic 1 level pulses produces a negative going pulse at the output.
$\square^{\square} \square \square^{A-\overline{B \cdot C}}$ ป็०
A NAND gate with inverters connected to the inputs will act as an OR gate.

New Breakthrough In Audio Tape

New metal particle tape for recording provides increased output level，reduced distortion，added high－frequency response and improved S／N ratio．

LEN FELDMAN
CONTRIBUTING HI－FI EDITOR

THE HISTORY OF CASSETTE TAPE RECORD－ ing has been marked by many minor and a few major technological breakthroughs． When the cassette format was originally introduced in 1964 by the Philips Com－ pany of the Netherlands，it was not much more than a tape recording medium suit－ able for low－fi voice recording．Over the years，there have been improvements both in tape hardware（i．e．，better elec－ tronics，more efficient tape heads，smaller tape－head gaps and such noise－reduction techniques as Dolby and dbx）and，equal－ ly significantly，in tape software．

Initially all tapes used ferric－oxide par－ ticles suspended in a binder and coated onto a plastic base material．Later on， chromium dioxide $\left(\mathrm{CrO}_{2}\right)$ and other par－ ticles（such as cobalt－doped ferric oxide）

FIG．1－HYSTERESIS LOOP is obtained by plot－ ting remanence versus coercivity．
appeared．These formulations primarily improved high－frequency performance， but also the signal－to－noise capability of the cassette recording medium，since they could produce higher maximum－output levels at high frequencies before reaching magnetic saturation．

To understand how these improved tapes worked，it is necessary to examine a typical hysteresis loop associated with magnetic recording．Figure 1 shows such a hysteresis loop．Coercivity，plotted along the horizontal axis，demonstrates how difficult it is to magnetize（or demagnetize）a given tape formulation． Remanent magnetization（also known as remanence）indicates how strong such a magnetization can be．The area shown in the upper－left quadrant of Fig． 1 helps us in judging any particular tape formula－ tion．

FIG．2－INCREASING REMANENCE improves high－frequency performance．

If the area in the upper－left quadrant is redrawn with what magnetic tape engi－ neers call＂frequency load lines，＂two things become apparent（see Figs． 2 and 3）．In Fig． 2 typical load lines were drawn for 20 kHz and 200 Hz ．The lower partial hysteresis curve might be considered typ－ ical of ferric－oxide－particle tape；the up－ per curve could typify the characteristics of chrome tape or one of the treated ferric compounds．Note that increasing the remanent magnetization has a profound effect upon high－frequency performance but little effect upon performance at low－ er frequencies．

Conversely，Fig． 3 shows that if the coercivity of a given formulation is im－ proved compared with a reference tape， the tape＇s low－frequency performance is improved significantly while its high－ frequency performance remains virtually the same．Clearly，then，an ideal tape is

FIG．3－INCREASING COERCIVITY improves low－frequency performance．
one in which both the remanence and the coercivity are greater than in any of the standard tapes.

Thirteen years of research

In 1965, barely more than a year after the cassette tape format was introduced commercially, the 3M Company, a leading magnetic tape manufacturer, began a long-term research project in search of a better magnetic tape medium. The project centered around using fine metal particles as the magnetizing medium rather than metal-oxide particles. Seven years later, in 1972, samples of a tape then known as XRM-4 were distributed to several tape equipment manufacturers. Between 1972 and 1976, the performance capabilities of the new tape were verified by many manufacturers, but problems related to its economical mass production prevented it's being marketed. There were also other problems. Available state-of-the-art tape recorders could not take full advantage of the new tape's capabilities. Existing record and erase tape heads were incapable of recording program material onto the new tape.

By 1976, 3M Company licked some of the production problems, and became convinced that the metal-particle tape had economic possibilities. At that point, the name of the tape was changed to Metafine, a name that is 3 M 's own registered trademark for the new tape. In 1977, adequate recording and erase heads were developed for use with Metafine tape, and recording heads became commercially available by the end of the year. By late 1977 and early 1978, equipment manufacturers were able to build prototype tape decks to fully demonstrate the capabilities of Metafine tape.
By the end of 1978, at least one tapedeck manufacturer (Tandberg of America, Inc.), and quite possibly several others, will be marketing stereo cassette decks that can handle both conventional oxide-particle tapes as well as the new metal-particle tapes.
There are indications that many other tape manufacturers have the capability for making pure metal-particle tapes. Fuji, for example, recently announced that they had come up with a metal-particle tape and would be able to produce it if they perceive a demand and greater availability of machines that can use the tape. Though TDK has not officially announced marketing dates for any metalparticle tape, they are quick to admit that they, too, know how to make the tape and could bring it to dealers' shelves just as soon as they saw a demand for it. Maxell, on the other hand, has indicated that they have no plans to market a metal-particle tape at this time. They maintain that the looming digital tape recording techniques would more than offset any advantages in the use of metal-particle tape. BASF is also in no rush to introduce metal-particle tape (though a spokesman for the compa-
ny says that the technology for producing such tape is well within the skills and experience of this German-based company), citing lack of standardization as one of the reasons for their reticence.

Indeed, lack of standardization may well be one of the things which impedes the proliferation of metal-particle tape. While 3 M has proposed that 70 -microsecond playback equalization be used for the new tape, others feel that a 50 -microsecond standard would take best advantage of the new tape's capabilities. Nor is there complete agreement regarding the

FIG. 4-METAFINE TAPE will be packed in C-60 and C-90 cassettes.
other parameters, such as coercivity and retentivity. Unless manufacturers of tape, worldwide, can agree upon standards for the new tape (and thereby enable tape deck manufacturers to proceed in an orderly development of equipment suitable for use with the new tape), metalparticle tape may run into the same sort of resistance that consumers showed with respect to the multiplicity of 4-channel

FIG. 5-HYSTERESIS CURVES for Metafine, chromium-dioxide, and ferric-oxide tapes are superimposed.

FIG. 6-OUTPUT LEVEL of Metafine versus chromium-dioxide tape.
recording systems that were popular just a few years ago. The 3M Company must nevertheless be credited with being first to announce the availability of metalparticle tape for use in cassette tape recording. The tape packaging will be similar to that used in 3 M 's other popular cassette tape formulations (see Fig. 4), and tape lengths will be in the popular $\mathrm{C}-60$ and $\mathrm{C}-90$ packages.

Comparing Figs. 2 and 3 with Fig. 5 gives you some idea of Metafine tape's tremendous improvement in performance and output levels. Figure 5 shows three hysteresis curves; the curve for Metafine tape is superimposed on that for chromi-um-dioxide or "high-energy" oxide tapes, as well as on a smaller curve representing the practical limits of earlier ferric-oxide tapes. The dramatic increase in the up-per-left quadrant area of Fig. 5 indicates the performance capabilities of Metafine tape. Note that both coercivity and a remanent magnetization have been widely increased, indicating that both lowfrequency and high-frequency output can be much higher than that obtained from any previous tape formulation.

According to 3 M , in typical applications the Metafine cassettes delivered maximum outputs of 5 dB to 10 dB greater than typical chromium-dioxide tapes and 3 dB to 7 dB greater than 3 M 's own premium Scotch Master 11 cassettes. This means that the maximum output was double that of the other tapes or

FIG. 7-MAXIMUM MODULATION level and harmonic distortion of Metafine versus chromium dioxide.

FIG. 8-OUTPUT versus frequency of Metafine and chromium-dioxide tape. For mid-frequencies, the maximum modulation level takes into account distortion. For high frequencies, saturation limits output.
more，depending upon the frequency．
Exact increases in performance charac－ teristics will depend，in part，upon the benefits that home recording equipment manufacturers build into future tape re－ corders．Lower distortion，added high－ frequency response，improved signal－to－ noise ratio，increased maximum recorded output，etc．，are all benefits that the new generation of recorders can provide（in various degrees）with the new metal－ particle tapes．

Figure 6 shows the comparative output levels for Metafine and chromium－diox－ ide tape．Maximum output level（satura－ tion）at 12.5 kHz is approximately $7-\mathrm{dB}$ higher for the Metafine tape when each tape is biased optimally．（Bias A is the optimum bias level for chromium diox－ ide，Bias B is set for minimum distortion for Metafine，while Bias C is set for the flattest frequency response．）Note，how－ ever，that optimum bias for the Metafine tape is between 5 dB and 6.5 dB greater than for chromium－dioxide tapes whose bias is already several dB greater than that required for ferric－oxide tapes．This is one of the problems of compatibility．

Figure 7 shows the maximum modula－ tion and harmonic－distortion level as a function of bias for Scotch Metafine tape and for chromium－dioxide tape．Max－ imum modulation level（the recording level that produces 3% third－order har－ monic distortion at a $333-\mathrm{Hz}$ test fre－ quency）is up to $9-\mathrm{dB}$ higher for the metal－particle tape．Distortion for the Metafine tape is more than $20-\mathrm{dB}$ lower （when optimally biased）compared with optimally biased chromium－dioxide tape．

Both Figs． 6 and 7 show results for a record head having a 2.5 －micron gap． Such a wide gap is typical of that used in three－head cassette tape decks，since the record head and play head can be opti－ mized separately and the record－head gap will be more efficient at this width．Less expensive cassette decks generally use record－play combination heads，however， in which the gap must be made narrower for high－frequency reproduction．

Figure 8 shows the maximum output （at optimal bias）plotted against frequen－ cy for Scotch Master II chromium－diox－ ide tape，and the new Scotch Metafine tape，using a two－head tape deck in which the combination record－play head has a 1．25－micron gap．Under these conditions， the Metafine tape had a consistently higher output．

Compatibility／incompatibility

Present audio cassette decks having 70－ μ s equalization（now required for playing back chromium－dioxide and treated ferric tapes such as Scotch Master II，TDK－ SA，Maxell UD－XL－II and others）can play prerecorded cassette tapes without requiring any modifications in the play－ back electronics or the tape heads．How－ ever，most stereo cassette deck owners are more interested in being able to record

TABLE 1—PERFORMANCE SPECIFICATIONS

Recording Head Gap		1．25 Micron （2－head type）		2．5 Micron （3－head type）		
Tape	Chrome	Master II	Metafine	Master II	Metaf	fine
Bias reference point	0	0	$+6$	± 1.3	$+6^{1 / 2}$	$+5^{2}$
$\begin{gathered} \text { Sensitivity, dB } \\ \mathrm{S}_{\mathrm{L}}-333 \mathrm{~Hz} \\ \mathrm{~S}_{\mathrm{H}^{-}}-12.5 \mathrm{kHz} \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & +3 \\ & +2^{1 / 2} \end{aligned}$	$\begin{aligned} & +21 / 2 \\ & +21 / 2 \end{aligned}$	$\begin{aligned} & +3 \\ & +2 \end{aligned}$	$\begin{aligned} & +3 \\ & +1 / 2 \end{aligned}$	$\begin{aligned} & +3 \\ & +3 \end{aligned}$
Maximum Modulation Level（MML）at 333 Hz ， in dB	0	$+2^{1 / 2}$	$+5^{1 / 2}$	$+51 / 2$	$+10$	＋9
Maximum Output Level $\left(\mathrm{MO}_{\mathrm{H}}\right)$ at 12.5 kHz ，in dB	0	＋4	$+11$	＋3	＋5	$+7$
Distortion Level $\left(\mathrm{HDL}_{3}\right)$ ，in dB	0	$-61 / 2$	-10	－ $111 / 2$	－－231／2	－21

1．Biased for minimum distortion（＂B＂on graph）．
2．Biased for flat－frequency response（＇ C ＂）．
TABLE 2－TAPE SPECIFICATION COMPARISONS

	Typical Chrome	Scotch Master II	Metafine
Retentivity（gauss）	1400	1500	3400
Remanence（lines－per－1／4 inch）	0.43	0.60	0.8
Coercivity（Oersteds）	550	550	1000

FIG．9－TANDBERG MODEL TCD－340－AM cassette recorder can handie the new Metafine tape．
their own programs from records，tapes， FM radio or live program sources．In this respect，present－day recorders are incapa－ ble of handling the new metal－particle tapes．Bias－current requirements are much higher for Metafine tape than for previously available cassettes．Erase cur－ rent applied to the erase head must also be considerably higher．Many present－ day record and erase heads cannot handle such high erase and bias currents．On the other hand，such tape head types as Sendust or Sen－Alloy are able to handle the necessary increased current providing that suitable electronic changes are made in cassette decks using these heads．

Almost coincident with 3 M ＇s an－ nouncement of the availability of Meta－ fine tape，Tandberg of America，1nc．， announced its model TCD－340－AM cas－ sette recorder，which is claimed to be the
first production cassette deck offered for use with the new metal－particle tapes． The new deck is shown in Fig．9．Un－ doubtedly，a tape－technology improve－ ment such as metal－particle tape won＇t be allowed to flounder while the industry becomes involved in a＂chicken－or－egg＂ debate．

Summary

Table 1 summarizes the values ob－ tained from 3M Company＇s tests of Me－ tafine tape and compares them with those of chromium dioxide and Scotch Master $I I$ tape．In the case of chromium－dioxide tape， $0-\mathrm{dB}$ reference values were used for the parameters．These comparisons show that the Metafine tape clearly wins out in every single instance．Comparisons of typical tape specifications are given in Table 2.

Part 1. The object is to use your cannon to destroy your opponent first, but watch out for the land mines and anti-tank barriers. The circuit provides a composite video signal to your TV set and produces realistic sound effects.
L. STEVEN CHEAIRS
a FEW years ago i was affiliated with a small repair company that specialized in video games. After the arcade pong-type games were retired from the market, they were replaced by road race and tank games. At that time, a pong game filled a 10 -inch by 14 -inch printed circuit board, with about 80 to 100 TTL, SSI and MSI IC's. The road race, baseball and tank games used two or three cards of that size and composition.

In the last few years, the arcade units have been improved by using newer LSI IC's; and the older pong games are now produced on a single LSI IC for home use, with a television set used as a display. It is interesting to note that many of the first arcade games used a converted black-and-white TV set as a monitor. In fact, the prototype of the game described in this article was tested on a TV set that was removed from a retired arcade pong game. Although the monolithic game IC's have permitted these games to be played at home, the quality has always been inferior to the arcade games. Now with the newer LSI IC's, the quality of the games has improved dramatically.
explosions-the illusion of battle is complete.

Playing the game

The game was designed to work into a standard domestic 525-line black-andwhite receiver.

When the game is reset, the scores are cleared (to 0), all the mines reappear and the tanks are placed in their corners. The tanks remain in a stationary state until the control sticks are manipulated. These control sticks are single-pole doublethrow (SPDT) center-off, momentary-contact-type switches. When the player pulls the control sticks toward himself the tank advances at a slow speed. If the control sticks are held back for another $1 / 2$ second, then the speed increases to medium. If the sticks are again held for another $1 / 2$ second, the tank switches to high speed. When the sticks are released, the tank remains at the selected speed.

If the control sticks are now momentarily pushed in the opposite direction, the tank will stop. When the sticks are pushed forward, the tank backs up. Again, the speed increases for each $1 / 2$
every four seconds is possible. The shell explodes when it hits an object or reaches the end of its range. If a shot is fired during a tank rotation, the shell follows a curved trajectory - in the direction of the tank rotation.

Twenty-two fixed-terrain antitank barriers are provided. These barriers can retard or help your progress in the game. They stop shells and tanks if the barrier interaction switch is closed-for the AY-3-8710-1 IC only. This switch is not included in the prototype model designed around the AY-3-8700-1. Also, six mines are distributed over the battlefield area. When a tank hits one of these mines-the tank explodes and fragments momentarially, as it does when hit by a shell. When the tank image returns, it is stationary and the gun is inactive for about 2 to 4 seconds. The mine that was hit vanishes for the rest of the game. If you hit a mine a point is scored for the enemy's tank.
Scoring is automatic. When a tank is hit by gunfire or it hits a mine, this increments the opponent's score. The game ends when a player's score indicates a total of 16 points; the score then flashes at

The leader in home monolithic game IC's is General Instruments Corporation's Microelectronics Group. This company is now producing an arcade-level single IC tank game. This single IC, the AY-3-8710-1, replaces the set of PC boards traditionally used in the arcadetype game that contained a couple of hundred TTL logic circuits and read-only memories (ROM's). This undoubtedly represents the start of a new generation of dedicated home video games.

To start the two-player tank game, you simply press the reset pushbutton. Two tanks, one white and one black, suddenly materialize in a battlefield of antitank barriers and mines. Realistic engine sounds, provided for each tank, help create the illusion of combat; four distinct sounds are produced, one for each of the motor speeds and one for the stationary condition. Next comes the sound of gunfire, coupled with shell bursts and tank
second the switches are closed, for a tota! of three speeds.
The tanks can be rotated by pushing one control stick forward and the other back. Rotation in the opposite direction occurs when the control sticks are reversed. Rotation may occur during all seven motion states stationary, three speeds forward and three speeds backward. Rotation stops when the controls are returned to the normal standby position. A total of 32 rotation angles are provided.

The main gun is fired by pressing the SPST normally open pushbutton switch. A shell exits from the gun barrel and traverses the screen, unless it hits the enemy's tank or a barrier. The gun's range, if it is fired along the horizontal axis is about two-thirds of the TV screen; the range for the other directions varies with the angle. The switch must be depressed for each firing; only one shot
a $1-\mathrm{Hz}$ rate and no further points are recorded. Of course, the object of the game is to maximize your score while minimizing your opponent's score.

The audio output is provided on five lines-one for each tank motor (plus bearing and track squeak), a gunfire envelope, an explosion envelope and a noise source. Figure 1 shows a typical waveform observed on the prototype tank game. In a typical system the tank motor sounds are summed. The noise and gunfire envelopes are gated with the noise output. These signals are summed with the motor noise. The composite audio signal then drives an audio-out put amplifier that drives the speakers.

The circuit

The circuit described in this article is a modification of one shown in Application Note Bulletin 104 developed by M. S. Sellars III, senior design engineer, Gen-

Train with NTS for the MicroComputers, digital the first name

The world of electronics is daily becoming more challenging. Technology is growing more specialized, and the importance of digital systems increases every day. Test instruments, home entertainment units and industrial control systems are all going digital. And now, NTS training programs include a wider choice of solid-state and digital equipment than ever before offered in any home study course: Advanced NTS/Heath digital color TV (25" diagonal with optional programming capability), NTS/Heath microcomputer, digital test equipment, digital stereo receiver (70 watts per channel), NTS compu-trainer, plus much more state-of-the-art equipment to make your training exciting and relevant.

The equipment you receive with NTS training programs is selected to provide you with a solid
background in electronic systems. Kits and lessons are designed to work together to demonstrate electronic principles and applications. The kit-building not only shows you how electronic hardware functions, but how various circuit designs accomplish different purposes. Your lessons guide you through any number of experiments associated with many projects. This is the Project-Method, and it works. Step-by-step, you learn how and why digital electronics has become a part of our world, and the even bigger role it is sure to play in the future.

Whether you are looking for training in Consumer, Commercial, or Industrial electronics, NTS offers fourteen courses, some basic, many advanced, in several areas of electronics. An all-new full-color NTS catalog shows you what each course covers,

electronics of the future.

systems and more...from in home study.

and every piece of equipment included.
Send for it today, and see for yourself what's really happening in electronics training technology at NTS. Find out how much has changed, and what new directions the field is taking. You'll probably want to be a part of it.
It's free. Just mail the card or coupon. Today.

NO OBLIGATION. NO SALESMAN WILL CALL. APPROVED FOR VETERAN TRAINING.

TECHNICAL-TRADE TRAINING SINCE 1905 Resident and Home-Study Schools 4000 South Figueroa St., Los Angeles, Calif. 90037

\square ?

All resistors are $1 / 4$ watt, 5%.
R1- 180 ohms
R2-510 ohms
R3-470 ohms
R4-1800 ohms
R5-1000 ohms
R6-270 ohms
R7, R16, R19, R20, R23, R28-10,000 ohms
R8-1600 ohms
R9-2400 ohms
R10-12 megohms
R11- 220 ohms
R12-5000-ohm, PC-type potentiometer
R13-2.2 megohms
R14-2200 ohms
R15, R21, R26-20 megohms
R17, R22-3.9 megohms
R18-22,000 ohms
R24, R25- 10 megohms

R27-30,000 ohms
R29-15 ohms
C1, C2- $100 \mu \mathrm{~F}, 50$-volt electrolytic
C3-2.7- $\mu \mathrm{F}$ tantalum
$\mathrm{C} 4-\mathrm{C} 6, \mathrm{C} 13, \mathrm{C} 14-0.1-\mu \mathrm{F}$ disc
C7, C8-30-pF disc
C9, C10-0.01- $\mu \mathrm{F}$ disc
C11, C12-0.22 F
C15, C16, C20-5 $\mu \mathrm{F}$
C17-0.47 $\mu \mathrm{F}$
C 18 - 200 pF disc
C $19-100-\mathrm{pF}$ disc
C21-220- $\mu \mathrm{F}$, 15-volt electrolytic
D1-D10-1N4148 or similar
D11-D14-1N4005 or similar
Q1-Q3-2N3904 or similar
IC1-AY-3-8700-1 or AY-3-8710-1 LSI game
IC2, IC3-4001, CMOS quad NOR gates
IC4-78M05,5-volt regulator

J1-miniature open-circuit jack
S1-S4-SPDT center-off,
momentary-contact toggle switches
S5-S7-SPST normally open
pushbutton switch
S8-SPST switch
S9-SPST toggle switch
T1-12VAC, 1A secondary transformer
XTAL-4.090900-MHz crystal
SPKR - 8 ohms
MISC. $-12 \times 7 \times 3$-inch aluminum chassis, line cord, hook-up wire, four $11 / 2$ inch stand-off busings.
The following parts are available from
Questar Engineering Company,
McDonald Street, Mesa, AZ 85202:
PC board, \$12.95; AY-3-8700-1 or
A Y-3-8710-1 (please specify), $\$ 29.00$; crystal, \$5.50; set of all switches, \$12.25. Kit of all parts, \$63.95.
eral Instruments Corporation, Microclectronics Group.

Figure 2 shows a block diagram of the tank ganie system and Fig. 3 is the sche-
 PIN 25

PINS 21 \& 23
RANDOM NOISE

PIN 20
FIG. 1-TYPICAL AUDIO SIGNALS as they appear at the pins of the pins of the game IC.

FIG. 2-BLOCK DIAGRAM of the tank battle game. Sections 5 and 6 are included on the LSI game integrated circuit.
matic diagram. Block one is the game IC, which, it is claimed, is more complex than most microprocessors. There are also two IC's, the AY-3-8700-1 and AY-8710-1. The two circuits are identical with the exception of one input pin: The AY-3-$8710-1$ has a barrier interaction select input, pin 22. If the pin is left floating.
the two IC's function identically. On the other hand, if the input pin is brought to the system ground potential, then the tanks cannot drive over the barricades.
Block two in Fig. 2 is a crystalcontrolled clock. One inverter is used along with two resistors, two capacitors and a crystal to form a $4.0909-\mathrm{MHz}$ oscil-

UNDER-SIDE VIEW of the tank game's chassis/enclosure. All components except the speaker, power transformer and switches are mounted on the printed-circuit board.

FIG 3-SCHEMATIC DIAGRAM of the tank battle video game. When using the AY-3-8700-1 IC, do not connect anything to pin 22.
lator. The output is isolated by passing the signal through another C MOS inverter. This inverter drives a 5,000 -ohm potentiometer. This pot is adjusted so that the signal amplitude provided by this pot is between a 3.0 -volt to 3.2 -volt peak level.

The third block represents the controls. Eight switches, ten diodes and two capacitors are required. The four SPDT centeroff momentary-contact switches are used to control the tank motions; the two SPST normally open pushbutton switches are used to fire the tank's main gun. The diodes provide isolation between these switches, thus allowing multiple closures. Reset is provided by an SPST normally open pushbutton and an $0.1-\mu \mathrm{F}$ capacitor; the capacitor provides for a small amount of debouncing. The last
switch, an SPST-type, and its capacitor select the barrier interaction.

Block four, the power supply. takes a 12 -volt AC input and generates a 7 -volt regulated DC output. Four I-amp rectifiers convert the AC voltage into a pulsating full-wave DC voltage. Next, a filter capacitor smooths the ripple. The regulator is a 5 -volt three-terminal unit. Two volts are dropped across the ground resistor. Another filter capacitor is used on the output.

Block five represents the video-summing and video-amplifier circuits. The passive summing circuit sets the luminance level (by the ratios of the resistors). Five outputs are provided: Sync; right tank/score/shells/shell burst/mines: left tank/score/shells/shell burst/mines; background: and blanking.

One tank is white, the other is black and the background is gray. The black video outputs and blanking are tied to a single resistor since the modulation levels are approximately equal. The video amplifier is formed using one NPN 2N3904 transistor and an emitter voltage divider. In Mr. Sellars' Application Note, this amplifier drove an Astec UM1082 RF modulator. If a different modulator is used, then the summing resistors and the emitter resistor may have to be adjusted. In the prototype version, the video signal was fed directly into the TV set's video amplifier; thus, no modulator was used.

Block 6 is the audio-output network. The speaker is driven by the emitter of a Darlington transistor amplifier via a DC blocking capacitor.
continued next month
most variable-delay windshield wiper control circuits use a unijunction transistor or a 555 timer to periodically turn on the windshield wiper motor for one sweep of the blades. Invariably, a potentiometer is provided so that the driver of the vehicle can control the time delay between cycles.

This system has several disadvantages. Usually, when the wipers are first turned on, the delay control must be turned down all the way for a few cycles until windshield streaking has subsided. Then, you have to search for the right control setting to match the intensity of the rain. Even installing a delay control can be a headache as you search for a suitable spot on the dashboard to mount it.

This article describes a wiper-control system that eliminates these problems. First, installation is easier because no additional controls are required other than the existing windshield wiper switch. And you don't have to adjust the desired time between cycles by trial and error. When the wipers are first switched on, they run continuously in normal fashion. If the rain is only a light drizzle, the driver can select intermittent operation by switching the wipers off, then back on again when the windshield needs it. The control circuit "remembers" how long the wipers were switched off and repeats this delay between each successive cycle. The wipers continue to run intermittently at this rate until switched off.

If the rain changes intensity, you can easily readjust the delay by switching the wipers off and back on after the desired pause between the strokes. If continuous operation is needed, switching the wipers off and immediately back on (an almost instinctive reaction) in effect sets a zero delay between cycles. Whenever the wipers are left switched off for longer than 40 seconds (the maximum delay) the circuit resets itself.

Circuit description

Figure ! shows the timing control assembly, in which gates ICI-a and IC1-b comprise a $50-\mathrm{Hz}$. clock oscillator that drives address counter IC6 via IC1-c. Counter IC6 is a 12-stage binary
counter with the second through eleventh-stage outputs connected to the 10 address input pins of RAM IC7. The most significant bit, Q_{12}, is used to inhibit the counter via IC1-c when the address input to IC7 rolls over from 1023 to 0 . The least significant bit, Q_{1}, enables gate IC4-d and inhibits gate IC2-a so that proper timing is maintained between addressing, data input and the read/write control of the RAM.
When the wipers are switched on, the Q output of IC5-a goes high on the next clock pulse, and the Q output of IC5-b goes high on the clock pulse following. With the Q_{12} output of IC6 also high, IC4-a is enabled, keeping transistor Q2 turned on so that relay RY1 is energized. The contacts of RY1 are wired into the wiper metor circuit so that the motor runs continuously.
When the wipers are switched off, the Q outputs of !C 5-a and IC5-b are clocked low in sequence, calusing IC4-b to be enabled for one clock cycle to deliver a rese! pulse to IC6 via IC4-c. The counter now starts measuring the prospective delay interval. With pin 2 of IC5-a high, the outputs of IC2-b and IC2-c are low, causing a 0 to be loaded into the RAM since the WRITE input to IC7 goes low momentarily following each change of address, as shown in Fig. 2. Note that the lowest-order address bit, Q_{2}, changes on every odd clock cycle, and write pulses occur on every even cycle. This causes a Read-write-read sequence at IC7 pin 3 for each new address input.

When the wipers are switched back on, outputs Q of IC5-a and IC5-b are clocked high sequentially, as before. This causes the IC2-b output to go high for one clock cycle so that a single I is written into the RAM. Since the output pin of the RAM continuously shows the data at the selected address, it goes high immediately. As the RAM is incremented to the next address (where a 0 is stored) its output goes low, triggering a $50-\mathrm{ms}$ one-shot created by IC 3-c and IC3-d. The output of this oneshot resets IC6 via IC4-c, and passes through a pulse stretcher consisting of C6, R8 and D3. The puise stretcher energizes RY1 for about $3 / 4$ second, long enough for the wiper motor to latch on and complete one cycle.

DEVICE	TYPE	+6.2 V	COMMON
IC1, IC2	4001	PIN 14	PIN 7
IC3, IC4	4011	PIN 14	PIN 7
IC5	4013	PIN 14	PIN 4, 6,7, 8, 10
IC6	4040	PIN 16	PIN 8
IC7	2102	-	PIN 9, 13

ADDRESS	IC6	IC7	ADDRESS	IC6	IC7
02	7	8	07	4	2
03	6	4	08	13	1
04	5	5	09	12	16
05	3	6	010	14	15
06	2	7	$\square 11$	15	14

FIG. 1-SCHEMATIC of the windshield-wiper pause control. Circuit is simpler than it looks and is mounted on a perforated circuit board with point-to-point wiring.

All resistors $1 / 4$ watt, 5%.
R1, R7, R10-10,000 ohms
R2- 100 ohms
R3, R5-220,000 ohms
R4, R6-100,000 ohms
R8, R9-1 megohm
C1, C2- $10 \mu \mathrm{~F}, 16$-volt electrolytic
C3-C5, C7-0.1 $\mu \mathrm{F}, 50$-volt ceramic disc
C6-1 $\mu \mathrm{F}, 10$-volt electrolytic
D1-Zener diode, 5.6 volts, 1N4734
D2,D3-1N914/4148
D4-1N4001, used in Fig. 13

PARTS LIST

RY1, RY2-relay, 12 -volt coil, 3-amp contacts (Radio Shack 275-206 or equal)
Q1, Q2-2N3904
Q3-2N3906
IC1, IC2 - CD4001
IC3, IC4-CD4011
IC5-CD40 13
1C6-CD4040
IC7-2102 static RAM
Misc. -2×4.8-inch glass-epoxy perforated board, $21 / 4 \times 21 / 4 \times$ 5 -inch Minibox (Bud CU-3004-A or equal).

The system is now in its delay timer mode. The output of IC2-c is high, causing ICI-d to inhibit IC4-d so that no write pulses can be applied to the RAM. Each time the address counter steps over the location where the 1 is stored in the RAM, the one-shot resets the counter and momentarily energizes the relay via the pulse stretcher. If the wipers are switched off to set a longer delay, the I previously stored in the RAM appears briefly at the RAM output before rewritten as a 0 . However, this will not trigger the one-shot and reset IC6 because pin 8 of IC3-c is held low by output Q of IC5-a while the wipers are switched off. Any time the wipers are switched off and on quickly, RYI remains energized to run the motor continuously, since the pulse stretcher blends the closely spaced output pulses from the RAM into one steady output.
The timer's performance is more than adequate for this application. The resolution of the delay interval is 1 address count. which is 2 clock cycles, or about 40 ms using the component values shown in Fig. 1. The maximum time interval is approxi-

IC7, PIN 3

 (WRITE)FIG. 2-TIMING DIAGRAM of the windshield-wiper pause control. A read-write-read sequence appears at pin 3 of IC7, a 2102 static RAM.
mately 40 seconds. This range can be modified easily by changing the value of C4 or R4 to speed up or slow down the system clock.

To minimize power consumption and prevent battery discharge during periods when the car is not being driven, the system uses CMOS IC's throughout except for the RAM, which needs about 30 mA at 5 volts. Since the RAM is needed only during actual operation, transistor Q3 shuts off its power when output Q_{12} of IC6 goes high (standby condition) and the total current drain is then reduced to less than 1 mA . The power supply and logic connections are well filtered to protect the circuit from transient surges and noises within the vehicle's electrical system.

Construction

The circuit fits neatly on a 2.0 - by 4.8 -inch piece of glassepoxy perforated board, as shown in Fig. 3. Use sockets for the IC's so they will not be damaged by static electricity during construction. Figure 4 shows a drilling layout of the holes in the

FIG. 3-INTERIOR VIEW shows positions of the various components on the perforated circuit board. Note that IC's are in sockets.

FIG. 4-DRILLING GUIDE shows locations and sizes of the 17 holes that must be drilled in the perforated circuit board.

FIG. 5-THE BASIC two-speed windshield wiper.
perforated board that must be enlarged. Use several flat washers beneath the relay socket to prevent it from breaking or distorting the board when the mounting screw is tightened.

The termination points for external wiring are made by first securing flat solder terminal lugs to the top of the board with No. 6 by $1 / 4$-inch-long, self-tapping sheet-metal screws, then anchor them in place with the component leads bent back up through the board from below and soldered. The self-tapping screws hold remarkably well in glass-epoxy material, and can be loosened and retightened to attach spade lugs or bare wires many times without any problem.

Mount the board assembly on threaded standoffs in a $21 / 4 \times$ $21 / 4 \times 5$-inch metal utility box, as shown in the photograph. After checking the circuit operation, mount the box in a conve-
nient location beneath the dashboard and hook up the appropriate wires.

Installation

Since windshield wiper motor circuits are rarely standardized, for the details of your particular model you should refer to a shop manual or experiment. In some systems the positive supply to the motor circuit is switched, and in others it is on the ground side. Most automotive systems use permanent-magnet-field motors; but a few, including General Motors, use motors with series and shunt-field windings to obtain dual-speed operation. Let's look at a few of these circuits to determine how they can be modified to work with the wiper control circuit.
Figure 5 shows a simple dual-speed wiper circuit, such as is used on a ' 77 Jeep CJ model. The motor has a permanentmagnet field and uses different brush orientations to obtain slow and fast speed. If the wipers are switched off in the middle of a stroke, the motor continues to run slowly until the park switch opens when the blades are about five degrees from the bottom of their stroke. Figure 6 shows how the timing control is hooked up so that it is effective only in the slow position. Each time the control relay pulls in momentarily, it energizes the motor long enough for the park switch to close. When the relay opens,

FIG. 6-HOW CONTROL IS ADDED to the two-speed windshield-wiper motor circuit.

FIG. 7-WINDSHIELD-WIPER MOTOR with dynamic braking provided through the park switch.

FIG. 8-CONNECTING THE CONTROLLER to the wiper motor. Fast position bypasses the timer and runs wiper continuously at slow speed.
current continues to flow through DI until the motor completes one cycle．In this arrangement the FAST speed circuit is unaf－ fected．This provides a backup in an emergency or a circuit failure．

Figure 7 shows the circuit for 2 －speed nonconcealed wipers used on 1969－1973 Chrysler Motors vehicles．The same basic circuit，with minor switch modifications and elimination of the resistor，is used on the Volkswagen Dasher model．This circuit is similar to that in Fig． 6 except that the park switch shorts the armature when it removes power from the motor，stopping it abruptly by dynamic braking．This makes the park position more precise because it is less susceptible to variations in fric－ tion between the wiper blades and wet or dry glass．Figure 8

FIG．9－INSTALLATION，with fast－speed operation made possible through addition of the relay．

FIG．10－REVERSIBLE MOTOR CONCEALS wiper blades in the park posi－ tion when wiper is switched off．

FIG．11－TIMER IS EFFECTIVE at slow and fast speeds in this installa－ tion．

FIG．12－BASIC CONTROL CIRCUIT modifications for use with wind－ shield wiper motors that are controlled by switching in the grounded power lead．

FIG．13－TWO－SPEED circuit with switched ground is used in some GM automobiles．

FIG．14－TIMER CONTROL operates in either fast or slow－speed modes．
shows a method of attaching the control to this system．In this circuit the fast position bypasses the timer and runs the motor continuously，but at slow speed．Figure 9 shows how to retain the fast speed by using an additional relay to disable the slow－ speed circuit．

The wiper circuit of a＇ 73 Ford with concealed blades in the park position is shown in Fig．10．In this system the motor runs forward at either slow or fast speed for normal operation．When the wipers are switched off，the polarity of the motor is reversed to the slow－speed brushes．As the motor rotates backwards，it activates a mechanism that increases the stroke of the wiper arm and moves the blades down out of sight in the park position． Figure 11 shows how the wiper control can be interfaced to this type of circuit，with the timer effective in both slow and fast speed．

Figure 12 shows some slight modifications that allow the continued on page 104

THIS FUNCTION GENERATOR IS DESIGNED around the 8038 waveform generator IC. Specifications, schematic, details of circuit operation and Len Feldman's Test Report on this versatile precision test instrument appeared last month.

Construction

Construction begins with the PC boards. Figure 2 is the foil pattern for the combined power supply and main circuit boards. Figure 3 shows the placement of components of the main board and Fig. 4 shows how parts are placed on the power supply section.

In an effort to minimize PC board-tofront panel wiring, all pots and switches (except S4 and S5) mount directly to the main PC board. The resulting assembly is then bolted to the chassis front panel and held in place by the threaded shafts of the pots and rotary switches. It is therefore important that the holes for the PCmounted pots and switches accurately line up with the corresponding holes in the front panel. To do this the procedure outlined below should be followed.

After the circuit board has been etched and drilled, cut it along the indicated line. The smaller piece is the power supply board and the larger is the main board. Do not, however, begin mounting components in either board until after the drilling described below is done.

Using the LMB type 000-946 chassis, place the main PC board against the chassis' face; the foil side facing outward toward you, the component side resting against the chassis front. The drilling location for pots R 5 and switch S1 will be on the chassis left-hand side while pots R23 and R33 and switch S3 are on the right-hand side. With this orientation, center the PC board so the hole location for switch S2 is exactly centered on the chassis' front-panel face (left-to-right, top-to-bottom). Using small scraps of PC board to protect the PC board's foil, tightly clamp the board in place using C clamps. Repeat: tightly. Drill six $1 / 16$-inch pilot holes in the PC board-chassis sandwich at the locations shown for pots R5, R23, R33 and switches S1, S2 and S3. Then drill out these holes to the diameter required by your switches and pots ($3 / 8$ inch diameter is standard). Be careful that the PC board not slip due to the drilling torque, as you want perfect alignment between board and chassis holes.

Remove the clamps and set the PC board aside for now. Drill out the rest of the chassis front as shown in Fig. 5.

A standard $1 / 2$-inch aluminum angle bar is used to heat sink the voltage regulators and to attach the power supply board to the chassis. Cut five 1 -inch strips of the bar and drill out each as shown in Fig.

2-200,000 Hz Function Generator

Part 2-Construct your own function generator around the latest state-of-the-art waveform generator IC. Delivers sine, square and triangle waves with precision not possible with discrete components or IC's of a few years ago.

DOUG FARRAR

3-a. Take two of the pieces and position them on the power supply board as shown in Fig. 3-b, lining up each bar with the board's edges. Hold each in place with a C-clamp and then drill two $\% / 64$-inch holes at the locations shown. Hold each in place with a $6-32 \times 1 / 2$-inch bolt and nut.

The power supply board will be mounted on an angle bar bolted to the back edge of the chassis (Fig. 3-d). To line up and drill the two chassis mounting holes, place the board-angle bar network on the outside of the chassis rear panel, centering it left-to-right as close as possi-

FIG. 2-FOIL PATTERNS for the main board and power supply. Cut boards apart along indicated line after etching and drilling.

ble. With the bottom of the angle bar up $3 / 8$ inch from the bottom of the chassis, pencil in the location of the two holes on the chassis, and drill out each with a $5 / 32-$ inch drill. Remove all burrs. Lastly, drill out another hole in the chassis back for the power cord strain-relief. Center it
left-to-right, 2 inches up from the chassis bottom.

The chassis is now ready for painting and lettering. I found it difficult to get the dry transfer lettering to stick to the unit's baked enamel finish, so I applied three coats of flat white lacquer, followed

FIG. 3-PLACEMENT OF PARTS on the main PC board. Control shafts fasten this board to the front of the enclosure.

FIG. 4-MOUNTING BRACKETS and heat sinks for three regulator IC's are made from pieces of aluminum angle. These and other power supply components are placed on board as shown.
by two coats of flat clear lacquer. This surface, when thoroughly dry, is much more amenable to the lettering. When you've finished the lettering, apply three more coats of clear lacquer as a sealer.

You're now ready to begin component mounting and assembly. First, mount each of the heat-sink angle bars between the regulators and PC board as shown in Fig. 6-c. Use a small amount of silicone glue under each heat sink to prevent it from twisting loose.

Mount and solder the remaining components on the power supply board. The board can accept two different types of power transformers; either a 4-pin Radio Shack variety or a 6-pin Triad unit. Use whichever one is more convenient to locate.

Now assemble the main PC board, being careful to note the IC pin 1 locations. Trim all leads as close to the foil as possible, since the foil side will be held very close to the conducting chassis. If the leads are too long, shorts will occur. Mount trimmer pots R47 and R48 and remove R20 only if you have a distortion meter. Otherwise, omit the two trimmers and use only resistor R20. (In this case, pin 12 of IC8 goes to -12 volts through R20, pin 1 connects only to C8.) When all components are soldered in place, attach pots R5, R23 and R33 and switches S1, S2 and S3 to the board. These items mount to the component side of the board and are held in place on the foil side with a lockwasher and nut. Use short jumper wires to connect the terminals of the pots and switches to the board.

Take two 30 -inch lengths of wire and twist them together with an electric drill. Cut four 4 -inch wire pairs and solder them into the PC board pair locations labeled as D-E, F-G, O-P and Y-Z. Cut a 9 -inch length of the twisted pair and solder it to the power supply PC board locations LL and MM. At the other end of this cable, solder switch S5. Now make a 4 -inch 3 -wire twisted cable and solder the wires to the locations called EE-FFGG. To the other ends of these wires solder switch S4, making sure that PC board location GG connects to S 4 's center post.

Twist four 12 -inch wires together, then connect the wires between the two boards' power connections. Be sure that +24 connects to $+24,+12$ to +12 , etc. Use an ohmmeter for verification.

You're now ready for a preliminary debug. Place all trimmer potentiometers in their center positions. Set the nowinterconnected PC boards on a nonconducting surface, plug in the power cord and turn switch S5 on. Be very careful at this point with the exposed $117-$ VAC wiring! With a voltmeter, verify

PARTS LIST

Resistors $1 / 4$ Watt, 5% unless otherwise

 notedR1, R4-3300 ohms
R2, R7, R8, R41, R42, R46-10,000 ohms
R3-220 ohms
R5-10,000 ohms, potentiometer, linear taper (Centralab HMP-10K)
R6-470 ohms
R9, R16, R30, R31, R44, R45 - 2000 ohms
R10, R15, R22, R24, R29-1000 ohms
R11, R17-2200 ohms
R12, R25-1800 ohms
R13- 1000 ohms, printed circuit trimmer
R14, R38-10,000 ohms, printed circuit trimmer
R18-5600 ohms
A19- 1500 ohms
R20, R40, R43-82,000 ohms
R21, R28, R36, R37, R39-100,000 ohms
R23-1000 ohms, potentiometer, linear taper (Centralab HMP-1000)
R26-180 ohms
R27-22 ohms
R32, R34 - 56,000 ohms
R33-100,000 ohms, potentiometer, linear taper (Centralab HMP-100K)
R35-1 megohm
R47, R48-100,000 ohms, printed circuit trimmer (optional, see text).

Capacitors

C1-C4, C7-C10, C21, C25-0.1 $\mu \mathrm{F}, 50 \mathrm{~V}$, Mylar
C5, C6, C20, C22-47 $\mu \mathrm{F}, 35 \mathrm{~V}$, radial electrolytic
C11-4.7 $\mu \mathrm{F}, 25 \mathrm{~V}, 10 \%$ tantalum
C12-0.47 $\mu \mathrm{F}, 25 \mathrm{~V}, 10 \%$ tantalum
C13-. $047 \mu \mathrm{~F}, 25 \mathrm{~V}, 10 \%$ Mylar
C14-. $0047 \mu \mathrm{~F}, 25 \mathrm{~V}, 10 \%$ Mylar
C15-470 pF, 25V, 10% ceramic
C16, C26, C28-10 pF, 25V, ceramic
C17, C23, C24-10 $\mu \mathrm{F}, 25 \mathrm{~V}$, radial electrolytic
$\mathrm{C} 18-220 \mu \mathrm{~F}, 50 \mathrm{~V}$, radial electrolytic
C19-100 $\mu \mathrm{F}, 50 \mathrm{~V}$, radial electrolytic

D1, D2 - $1 \mathrm{~N} 4004,100 \mathrm{~V}, 1 \mathrm{~A}$ diode
IC1, IC9-LM324 quad op-amp
IC2, IC6-LM341CN op-amp
IC3-IC5-LM318CN high-speed op-amp
IC7-8038 waveform generator (Intersil, Lithic Systems)
IC8 - 4001 CMOS quad nor gate
IC10-LM34OT-24, +24 V regulator
IC11-LM34OT-12, +12 V regulator
IC12-LM32OT-12, 12V regulator
LED1, LED2 - XC209 (or equal) LED lamp
Q1-MPSA13, NPN Darlington

Q2-Q5-MPSA63, PNP Darlington
S1-1-pole 6-position miniature rotary switch (CTS T-206)
S2-1-pole 4-position miniature rotary switch (CTS T-206)
S3-1-pole 3-position miniature rotary switch (CTS T-206)
S4-SPDT miniature toggle switch
S5-SPST miniature toggle switch
T1-power transformer, 25.2-VAC $300-\mathrm{mA}$ secondary. PC mount (Triad type F-148XP or Radio Shack 273-1386)
Miscellaneous-LMB 007-946 case,
$1 / 2$-inch aluminum angle bar, $6-32 \times 1 / 2^{\prime \prime}$ bolts with hex nuts' $1 / 8^{\prime \prime} \times 32$ nuts, $3 / \mathrm{k}^{\prime \prime}$ lockwashers. Binding posts ($\mathrm{J} 1-\mathrm{J} 8$). power cord, strain relief, hookup wire.

A complete kit of parts including all components, and undrilled and unlabeled cabinet is available for $\$ 79.95$. Etched, drilled and silk-screened PC boards $\$ 11.00$. Full-size photo-negative of PC pattern $\$ 3.50$. Available postpaid from Noveltronics, PO Box 4044, Mountain View, CA 94040. California residents add state and local taxes as applicable. Foreign readers add 5% for extra postage and handling.

FIG. 5-FRONT PANEL has holes drilled in its three lower surfaces. The five holes for the switches and pots must be precise. See text.

a

FIG. 6-ALUMINUM ANGLE STOCK is used to construct board mounting brackets and heat sinks for regulator IC's. See construction details for explanation.
that the three power supply voltages are arriving into the main board. Set pot R5 in its counterclockwise position, pots R23 and R33 in their clockwise positions. Place switch S 1 in the " $2-20$ "- Hz position, S 2 in the triangle position, S 3 in the " 10 " position and S 4 in the var position. You should now be getting a 10 -volt triangle waveform at the generator output. The low-frequency output can be observed with the voltmeter by probing at board locations Y-Z. The calibrator LED's should also be alternately blinking. Place function selector switch S2 in the square and sine positions and confirm their voltage excursions with the voltmeter. If anything is wrong at this point, remove power and locate the problem.

Calibration

Plug the power cord into an outlet and turn on power. Again keep your hands clear of the exposed line voltage at the power supply board's foil side. With a voltmeter, measure the +12 -volt supply. Adjust trimmer R38 in the calibrator circuit until the voltage at pin 8 of IC9 is exactly half of the supply voltage.

Place frequency switch Sl in the " $20-200 "-\mathrm{Hz}$ position with FINE FREQUENCY pot R5 in its fully clockwise position. Adjust trimmer R13 until both LED's are off. This is a very touchy adjustment, and you shouldn't expect the lights to remain off for any great length of time-thermal drift makes stability impossible. Now place S1 in the "2002 K "- Hz position and rotate R 5 fully counterclockwise and adjust trimmer R14 until both LED's are off or just slightly glowing. Repeat this procedure one more time. The generator output will
now have a 50% duty cycle for any frequency setting．

If you＇re lucky（or rich）enough to have a distortion meter you can make one more distortion trimming．Set the gener－ ator for a $1-\mathrm{kHz}$ sinewave and then adjust trimmers R47 and R48 for minimum distortion at the output．If you don＇t have such a meter then you shouldn＇t bother trying to make this adjustment；in fact， you should have omitted soldering the two trimmers to the board．

Operation

Using the function generator is fairly straightforward．Sine，triangle and square waveforms can be supplemented by any signal you may want to add at the exter－ nal input．If you would like the output to be centered around a frequency different from that of the front panel，you can add an external timing capacitor at the $\mathrm{C}_{\mathrm{EXT}}$ terminals．The swept frequency range（in Hertz）will be given by

$$
10 / \mathrm{C}_{\mathrm{ext}}(\mu \mathrm{~F}) \leq \text { frequency } \leq 100 / \mathrm{C}_{\mathrm{ext}}(\mu \mathrm{~F})
$$

with about a 20% overlap on each side of the ranges．

There is a minimum capacitance that can be added at the $\mathrm{C}_{\text {EXT }}$ input of about 200 pF ．Any value less than this causes gross signal distortion．The only limit on the maximum capacitance value is deter－ mined by the capacitor＇s leakage cur－ rent．

By using the baseline offset control， the waveform generator can be used as a digital pulse generator with a fixed 50% duty cycle．The output buffer will typi－ cally sink and source 25 mA ，making it more than adequate for driving TTL and CMOS circuitry．

The function generator＇s frequency can be swept via the modulate input．This input overrides the signal applied by FINE FREQUENCY pot R5．Its input impedance is 10,000 ohms．The net effect of the input is to force a frequency determined by this instantaneous voltage and the selected timing capacitor．Of course，if the input voltage is time－varying，then so is the output frequency．The exact rela－ tionship between input voltage，timing capacitor，and frequency is

$$
\text { Frequency }=\frac{14 \times V_{\text {in }}}{C_{\text {timing }}(\mu \mathrm{F})}
$$

Modulation voltage $\mathrm{V}_{\text {in }}$ should be kept between 0.4 and 9.1 volts for reliable operation．The upper sinusoidal AC limit for the modulated input is about 20 kHz ， limited by op－amp frequency response．

Another potential use for the function generator is to measure capacitance．By switching S1 to the $\mathrm{C}_{\mathrm{EXT}}$ mode，different output frequencies will be produced by different－valued capacitors．If you have an oscilloscope or a frequency meter， there will be an inverse relationship be－ tween frequency and capacitance．You thus have a new way to measure capaci－ tance．

CAPACITOR VALUES FROM 1 pF TO $9,999 \mu \mathrm{~F}$ are easily measured using this digital capacitance meter．A quartz timebase， precision resistors and a premium IC timer yield $1 \% \pm$ count accuracy．Story begins in the September issue．

Construction

The model CM－l000 is constructed using two double－sided plated－through glass－epoxy PC boards．The display board contains a complete four－digit counter and requires only power，ground，clock input，latch enable，and three decimal point connections．This arrangement greatly simplifies the building，testing and interfacing of the display and main counter boards．The remaining circuitry with the exception of the fuse and line cord is installed on the main counter board．The POWER／RANGE switch module solders directly to the main counter board eliminating almost all of the point－to－ point wiring．The electronics assembly bolts in place in the custom black ano－ dized heavy－gauge aluminum enclosure． The front panel is cut out for the push－ button switch module and has a window with a high contrast lens for the LED digits．The front panel controls are la－ beled with a two－color silk screen．The instrument top is extended forward to protect the LED digits from direct over－ head light and the instrument bottom has a tilt stand for angled viewing．Four machine screws recessed in each side allow easy removal of instrument covers． ＊Product Engineers，Optoelectronics，Inc．

An exploded view of the meter assembly is in Fig． 3.

Begin construction with the two PC boards．Figures 4 and 5 are foil patterns for the bottom and top sides of the master board while Fig． 6 shows the component layout．Similarly，Figs． 7 and 8 are foil patterns for the display board while Fig． 9 shows parts placement．All components， with the exception of the POWER／RANGE switch and trimmer capacitor C 2 ，mount on the component screened side of the PC board．Refer to Figs． 5 and 6 for compo－ nent placement．Use a 20 －to 25 －watt small－tipped soldering pencil and small diameter solder．Be careful not to force solder through the plated－through holes as shorts can result from solder pools on the component side of the PC board．Do not install the IC＇s at this time．

The Power／Range switch assembly is installed using No． $41 / 16$－inch－thick fiber washers next to the PC board．See Fig． 3 for assembly details．Assemble the front and rear panels and side rails using hard－ ware provided．Set the assembled PC boards in place on the chassis．The main counter board bolts to the side rails at four locations．When the two PC boards are aligned there are eight mating pairs of foil fingers that will be soldered to con－ nect the two boards．Place a 1 －inch piece of excess component lead in the hold in the third finger from each end of the display board．With the component lead wires centered in the display board as shown，solder to the foil finger and bend each side of both wires down to align with

FIG. 3-EXPLODED VIEW of the model CM-1000 digital capacitance meter. Parts are as supplied in the kit. Use this as a guide if you build your meter from scratch.

Resistors are 10%, $1 / 4$ watt unless otherwise noted
R1-243,000 ohms, metal film, 0.25\%, 1/8 watt
R2-11,300 ohms, metal film, $0.25 \%, 1 / 8$ watt
R3-2430 ohms, metal film, $1 \%, 1 / 8$ watt
R4-220 ohms, 5%
R5, R8, R21- 100 ohms, carbon
potentiometer, 1 watt
R6-243 chms, metal film, $1 \%, 1 / 8$ watt
R7-33 ohms, 5\%
R9, R11-10,000 ohms
R10--3300 ohms
R12, R14-330 ohms
R13-6.8 megohms
R15-8.2 megchms
R16-180 ohms
R17-R19-2200 ohms
R20-1000 ohms
R22-11 megohms
R23-R26-100 ohms
R27, R28-4700 ohms
C1-47 pF NPO disc
C2-15-60 pF, ceramic trimmer

PARTS LIST

C3, C 13, C 19, C23-0.47 $\mu \mathrm{F}, 50$ volts
$\mathrm{C} 4, \mathrm{C} 5-3.3 \mu \mathrm{~F}$ tantalum
C6-. $001 \mu \mathrm{~F}$
$\mathrm{C} 7, \mathrm{C} 8, \mathrm{C} 9, \mathrm{C} 11, \mathrm{C} 12, \mathrm{C} 14, \mathrm{C} 17, \mathrm{C} 20$,
C27, C28-0.1 $\mu \mathrm{F}$
$\mathrm{C} 10-.01 \mu \mathrm{~F}$
C18-. $02 \mu \mathrm{~F}$
C21-3300 $\mu \mathrm{F}, 16$ volts, electrolytic
$\mathrm{C} 22-220 \mu \mathrm{~F}, 25$ volts, electrolytic
C24-33 pF NPO disc
C25-8.2 oF NPO disc
C26-470 pF disc
D1-D4-1N4002 silicon rectifier diode
IC1-556 dual timer
IC2-IC4, IC 12, IC 14, IC 16, IC 18-74LS90 decade counter/divider
IC5-74LS73 flip-flop
IC6-4001 quad NOR gate
IC7-74LS04 hex inverter
IC8, IC9-74LS00 quad 2-input NAND gate
IC10-SE555 precision timer
IC11-voltage regulator, 7805
IC13, IC15, IC17, IC 19--4511 BCD to 7-segment decoder/driver

DIS1-DIS4 -MAN-6680 7-segment LED display
XTAL1-quartz crystal, 3.579 MHz
S1-S5-5-gang SPST pushbutton switch
T1-power transformer, 117 VAC primary, 10 VAC secondary
J1, J2-insulated banana jack
F1-120-volt, $125-\mathrm{mA}$ fuse
Miscellaneous: PC boards, 18-pin IC socket,
416 -pin !C sockets, 1414 -pin IC sockets, line cord, hardware
The following parts are available from Optoelectronics, Inc., 5821 N.E. 14 Avenue, Fort Lauderdale, FL 33334.
CM-1000K Complete Kit \$129.95
CM-1000WT Factory Wired \&

Tested

179.95

CM-1000 PC Boards Only............. 24.95
P-1000K Cap. Counter Probe Kit $\quad 3.95$
P-1000 Assembled Probe 6.95
Add 5% shipping, handling and insurance, for foreign orders add 10%. Florida residents add 4% State Sales Tax.
holes in the main counter board. Insert the wire ends in their respective locations on the main counter board and push the display board down until the foil finger pairs touch. Check alignment to see that the display board is at right angles to the counter board and that the foil fingers are
perfectly aligned. Solder the wires to the main counter board and after rechecking alignment solder the matching foil fingers together.

Feed 6 feet of the AC line cord through the back panel and secure using plastic strain relief. Mount the transform-
er, fuse holder, using hardware provided on the back panel where indicated. Wire one side of the AC line through the power switch to the transformer primary as shown. The other side of the AC line runs to the other side of the transformer primary through the fuse holder.

FIG. 4-FOIL PATTERN for the bottom (solder) side of the main board.

Before installing IC's into sockets, perform a simple test by plugging in the AC power cord and depressing one of the range switches. Connect a voltmeter between the negative input terminal on the front panel and test point 1 (TP1). It
should be possible to measure 5 volts DC by adjusting R21. If the voltage checks, then install all IC's in their sockets making sure that the notch on the IC is aligned with the outline on the printedcircuit board.

FIG. 6-COMPONENT LAYOUT for the main board. Trimmer capacitor C2 is mounted on underside of board. See text on $R_{c} 1$ and $R_{c} 2$.

INTERIOR VIEW of the Optoelectronics model CM-1000 digital capacitance meter.

Calibration

With IC's installed, reapply power and adjust TPl for +5 volts referenced to ground. Depress the RI/PF switch and use a small bladed screwdriver to turn the zERO ADJUST control (trimmer capacitor C2) until a reading of 0001 is observed. Continue to turn the control until the " 1 " turns to " 0 ." Do not adjust any further.

The next step requires the use of an accurately known capacitor. The parts kit

FIG. 7-BACK SIDE OF DISPLAY PANEL is etched with this foil pattern.

FIG. 8-FOIL PATTERN for the component (front) side of the display PC board.
includes a calibrated capacitor with its value marked on the package. Connect this capacitor across the input terminals and depress the $R 3 / \mu \mathrm{F}$ switch. Adjust trimmer R5 to produce a reading equal to the value given.

Use a low-leakage capacitor between 10 and $22 \mu \mathrm{~F}$ to calibrate range $\mathrm{R} 4 / \mu \mathrm{F}$ with trimmer R8 by comparing its reading to that observed on the previously

R-E
calibrated $\mathrm{R} 3 / \mu \mathrm{F}$ range.

FIG. 9-DISPLAY BOARD components are laid out as shown. Decade counters and driver IC's are on board along with the LED displays and a few capacitors and resistors.

BUJIITD TMATS
 Frequency Counter In A Probe

Part 2-Completely self-contained in a handy probe, this frequency counter was constructed using a unique assembly method that makes possible an instrument that is rugged, compact and convenient to use.

WALTER T. CARDWELL, JR.

Beginning last month, this article describes an instrument that is constructed using an unusual technique (see "IC Bricklaying" in the December 1977 issue) Counter measures to 2.5 MHz with $10-\mathrm{Hz}$ resolution.

Now build one

Figure 4 shows component placement using the "bricklaying" technique and keying of sockets S01 and S02. Glue a 12 -pin socket on each end of the block of IC's, and a $1 / 16$-inch acrylic plastic spacer between the socket pins. Then clip the socket flush with the spacer to allow $1 / 16^{-}$ inch of space for soldering leads to the socket. Cut the sockets from an 80 -pin PC-board edge connector.

The case is made from black opaque acrylic plastic. Glue a $1 / 8$-inch-thick piece, as wide as the IC block, to the sides of the sockets at each end. On the front, glue a $1 / 16$-inch black opaque piece of plastic to a $1 / 16$-inch piece of transparent amber plastic; this strip is then glued to the front side with the transparent part placed over the readouts. Use cyanoacrylate glue, but don't get glue on the plastic surface.

Once the two sides are in place, file the top and bottom of the block flat using a metal file. You can curve the top to make it more comfortable to hold and easier to identify. When you file the block, bring the sides down as close to the IC's as possible to keep the overall size of the meter small. Be careful of the wires when you file. If the wiring is covered with tape, you are safe until the tape is marked by the file. You may have to add shims to the top of the sockets if the sockets are not as thick as the IC block. Once the top and bottom have been filed, glue two more pieces of $1 / 16$-inch black plastic to the top and bottom. If you use cyanoacry-
late glue, you can open the case easily by inserting a razor blade along the seam.

The square block that plugs inte the back is the battery pack and is made from $1 / 16$-inch glass-epoxy double-sided PC board. The battery case is also made of black acrylic plastic. The meter is powered by 20 mAH NiCad button cells. Also included in the power supply is a 2-volt reference, using an MC1403 IC and a 1000 -ohm, 10 -turn trimmer (see Fig. 5). This voltage reference will be used by certain meter accessories (still on the drawing board) that will plug into the front of the unit. You can use larger batteries if you don't find their weight and size objectionable.

The probe tip on the front contains the blocking capacitor, the $\times 10$ prescaler and hold switch. A CD4013 dual-D flipflop generates the hold and $\times 10$ signals. The two dots on the top of the probe tip are two small copper nails inserted through a $1 / 4$-inch black plastic strip and filed flush. These nails serve as a touchcontrol switch (S 2) to select the $\times 10$ range. One side is connected to the +5 volt supply through a 100,000 -ohm isolation resistor, as shown in Fig. 6-a. Placing your finger across the pins charges capacitor C2 through resistor R3 and the skin resistance. Diode DI and capacitor C2 must be used to eliminate the $60-\mathrm{Hz}$ charge that the body receives from the

component placement. Location of signals on socket pins is shown in b.
power lines. Resistor R2 discharges capacitor C2. Charging C2 sets the dual-D flip-fiop; the $\times 10$ input is high and the DP1-display is low. As soon as connector S goes low, output from the $3.57-\mathrm{MHz}$ oscillator resets the flip-flop.

The clear plastic front holds momentary contact switch S1. Cut the front piece from $1 / 2$-inch clear acrylic plastic, which you then glue to the front of the
completed black plastic back section of the unit. Sand both pieces with 100 -grit sandpaper in a disc sander until you obtain the final shape (see Fig. 6-b). The drawings do not show dimensions since the size depends on the components used. Sand the probe tip with finer-grit paper, stopping at 400 grit.

Once the shape is roughed out, remove the clear plastic section with a razor $-0+5 \mathrm{~V}$ s02-12

b
FIG. 5-POWER SUPPLY SCHEMATIC AND PARTS LAYOUT. The MC1403 voltage-regula
the 1K pot are for a 2-volt source used as a reference for accessories not yel completad.

blade. Drill a $1 / 18$-inch hole through the center to hold the wire probe tip, which is made from $1 / 8$-inch piano wire ground to a point. Wrap AGC No. 10 copper wire once around the back end and silversolder it using a propane torch. Then, file the copper until the tip resembles a long flathead nail.

The $1 / 8$-inch hole in the clear acrylic plastic is drilled out from the back deep enough so that the SPST miniature pushbutton switch fits completely in the clear plastic section. Remove the pushbutton and metal section. Then, remove a white spacer on the red pushbutton to the end of the copper head on the probe tip. Room is hollowed out in the clear plastic to contain the switch lugs, which are bent at right angles to the switch body.
Solder two wires to the copper part of the probe tip. These wires must be flexible; we recommend phonograph pickup wires. Before assembling the switch, glue the clear plastic back on the probe front. Then, to restore the gloss on the plastic, polish the entire unit, using jewelers' rouge on a cloth buffing wheel. Be careful not to let the edges catch in the buffing wheel.

Calibration is the next step

After the probe tip is polished, you can assemble it. Unglue the clear plastic section again and file off the old glue from both sections. Push the probe tip through the $1 / 8$-inch hole that was drilled in the clear plastic section. Insert first the spring and then the flat contact disc into the switch body. Place the switch assembly in the back of the clear plastic section and glue it in place. There should be sufficient room at the front of the switch body to allow the wires on the probe tip to move. Check the switch to make sure that it closes when the probe tip is pushed in. When the switch is finished, connect the wires to the switch, and the probe tip wires to the input capacitor. The clear plastic section is now glued to the front permanently. Any glue that appears on the surface can be removed with the buffing wheel. Be especially careful of the sharp point waiting to get you if it catches in the wheel!

When the tip is pushed in, the meter will convert until it is removed. The count will be held as long as the tip is not pushed in. When the prescalers are added you insert them between the probe tip and the meter body.

The usefulness of the basic frequency probe can be greatly expanded by accessories that plug into the main body. You can add a 5 -volt calculator battery eliminator so that the meter can function off the AC power line. You can also construct a new front section so that you can use the probe as a normal bench meter. You can also add a $20-\mathrm{MHz}$ to $125-\mathrm{MHz}$ prescaler. Due to the construction of the main body, the number of accessories you can add is almost unlimited.

 OR GATE

OUTPUT WAVEFORM

DIGITALLY CONTROLLED SINE WAVE GENERATOR PETER ALFKE

Digitally derived sine waves are ideal in instruments that cover a wide frequency range, and in Irequency shift keying. e.g., for data storage on audlo cassette Conventionally. these sine waves are created by filtering symmetrical square waves through low-pass filters. Such filters require several precision components (capacitors, resistors, or even inductors) and work proper!y only over a limited firequency range.

The approach used here eliminates the filtering and the frequency-sensitive components by generating a staircase approximation of a sine wave (of arbitrary frequency) through a specialized digital-to-analog converter.

The counter, with outputs Q_{0} through Q_{4}, counts clock pulses at 32 times the rate of the sine wave frequency to be generated (a $1-\mathrm{kHz}$ sine wave requires a $32-\mathrm{kHz}$ clock rate).

The three least significant counter outputs are fed through three exclusive-OR gates into the address inputs of an 8 -
input analog multiplexer. The next counter output $\left(\mathrm{Q}_{3}\right)$ controls the exclusive-OR gates so that the address inputs fo the multiplexerfirst count up ($0 \ldots 7$), then count down ($7 \ldots 0$), then count up again.

The inputs of the analog multiplexer are connected to a resistor chain, and the multiplexer output feeds into the inverting input of an operational amplifier. The non-inverting op amp input is connected to 50% of the supply voltage, e.g.. 2.5 V in a 5 V system.

Address 0 connects the highest, and address 7 the lowest. resistor value to the op amp input. The other end of the resistor chain is tied to the most significant counter output. so that it alternates between sourcing current into the amplifier and sinking current from the amplifier. By proper choice of the eight resistor values, the amplifier output is a 32-step approximation of a sine wave with a dc component equal to half the CMOS supply voltage. R-E

CHAPTER 4

TRY YOUR HAND AT THESE SAMPLE TEST questions on transistors and semiconductors. The answers to this month's and a new set of questions will appear in a future issue of Radio-Electronics. When you feel ready to take the CET Exam write to ISCET: $310^{1 / 2}$ Main St., Ames, IA 50010. Ask for the name and number of the nearest Certification Administrator, and take the CET exam.

Chapter 4 Questions, transistors and semiconductors

1. A good method of determining if the transistors are operating in a Class-A circuit, such as an audio amplifier, IF or RF amplifier, would be to check the:
() a. collector-base voltage
() b. bias voltage
() c. emitter-collector voltage
() d. base voltage
2. In a Class-A transistor amplifier cir-
cuit using a NPN silicon transistor, which of the following conditions would appear to be normal?
() a. collector -5 V ; emitter 0 V
() b. base -5 V ; collector -5.6 V
() c. emitter -5 V ; base -5.6 V
() d. collector -5 V ; emitter -10 V
3. Which of the following statements regarding Zener diodes is true?
() a. a Zener diode will operate the same as any low-current solid-state diode if forward-biased
()b. a Zener diode will operate the same as any low-current solid-state diode if reverse-biased
()c. variations in the reverse-current flow in a Zener diode will cause similar variations in the Zener diode voltage level
() d. most Zener diodes are germanium
4. Which of the following statements is true regarding FET's (Field Effect Transistors)?
() a. the gate voltage necessary to cause the FET to cut off is called the "pinch-off" voltage
() b. the channel of a FET must be of ' N '-type material
() c. MOSFET's are immune to static charges
() d. the difference between a junction FET (JFET) and a MOSFET is that the JFET has an insulated gate to reduce reverse-bias gate current

FIG. 1
(such as the $15,750-\mathrm{Hz}$ horizontalsync pulses) find the capacitive reactance low, and are passed to ground-or filtered out-by the circuit. Low frequencies will appear at the output.
3. Correct answer is "d." The formula for impedance in a series LRC circuit is:

$$
\mathbf{Z}=\sqrt{\mathrm{R}^{2}+\left(\mathbf{X}_{\mathrm{L}}-\mathbf{X}_{\mathrm{c}}\right)^{2}}
$$

In this example X_{C} and X_{L} are equal and therefore would cancel. This leaves only the resistance as a factor, or a total of 10 ohms. The formula with X_{C} and X_{L} canceling would be: $Z=\sqrt{R^{2}}$. The square root of R_{2} is C $=10$
2. Correct answer is "b." High frequencies are bypassed to ground through the capacitors. Low frequencies (such as vertical-sync pulses (60 Hz) in TV sets) find the capacitive reactance high, while high frequencies

Correct answers to Chapter 3 Questions on DC circuits

Here are the answers to the questions on DC circuits that appeared in the September 1978 issue.

1. Correct answer is "d." A scope calibrated for vertical deflection of 100 volts-per-inch will show about 3.3 inches of peak-to-peak deflection. An AC RMS meter would show 117 volts AC because the meter first rectifies the AC voltage and then reads the effective voltage, not the peak-to-peak voltage as the scope displays. Peak-to-peak voltage is 2.82 times RMS.

ANSWERS TO

DICK GLASS

5. The symbol shown in Fig. 1 is a:
() a. MOSFET
() b. thyratron
() c. tunnel diode
() d. SCR
6. A tunnel diode is most likely found in which location?
() a. a power supply
() b. the horizontal or vertical oscillator circuits of a TV set
() c. a UHF tuner
() d. an audio detector
7. The gain-bandwidth product of a transistor can tell you:
() a. the frequency at which the gain has decreased to 0.707 times the gain at 1000 Hz
() b. the frequency at which the gain has decreased 3 dB from the gain at $1000 \mathrm{H}_{7}$
() c. the frequency at which the gain has decreased to 1
() d. none of the above
8. A frequency correction circuit using a transistor rather than a varactor uses which two elements as the variable capacitor?
() a. collector-base
() b. emitter-collector
() c. all three elements must be connected
() d. emitter-base
9. What type of transistor is shown in Fig. 2?
() a. a triac

FIG. 2
() b. an N-channel JFET
() c. a P-channel JFET
() d. a unijunction transistor
10. In most high power-output transistors used in radio, amplifiers and TV receivers:
() a. the case is connected to the emitter
() b. the case is connected to the base
() c. the case is connected to the collector
() d. the case should be grounded for better shielding

Be sure to keep this month's issue of Radio-Electronics so you can check your answers in the next CET test. The new questions appearing in the next CET test will be on electronic components and circuits. R-E

PRIOR QUIZ

FIG. 5
shunted through C , and the lower-than-resonance frequencies find L an easier path to ground. Only the resonant frequency finds X_{L} and X_{C} equal. The circuit responds to the resonant frequency, all others-higher or lower-to a lesser degree.
6. Correct answer is "a." Refer to discussion in answer 5 above.
7. Correct answer is "d." The time constant or R-C time for the cathode circuit is as follows:

$$
\mathrm{t}=\mathrm{R} \times \mathrm{C}
$$

in which t is the time it takes for the capacitor to charge to 63% of full charge.
(September 1978)
$\mathrm{t}=4700 \times 1 \mu \mathrm{~F}$
$\mathrm{t}=4700 \times .000,001$
$\mathrm{t}=.0047$ seconds, or 4.7 ms
8. Correct answer is "c." A resistor in series with either leg of a parallel $\mathrm{L}-\mathrm{C}$ circuit changes the resonant frequency. It therefore could be used to tune such a circuit.
(Many practical technicians would instinctively select answer " b " as the correct one. However answer " c " is technically correct. The exact formula for the natural resonant frequency f_{n} is:

$$
f_{n}=\frac{1}{2 \pi} \sqrt{\frac{1}{L-C}-\frac{R^{2}}{L / L^{2}}}
$$

When the value of R is smail compared with $2 \sqrt{L / C}$, natural resonant frequency f_{n} approaches resonant frequency f_{o} (when $R=0$) and is approximately equal to

$$
\frac{1}{2 \pi \sqrt{l-C}}
$$

Where to get parts, substituting parts and wiring prototype projects. EARL "DOC" SAVAGE, K4SDS, HOBBY EDITOR

VERY OFTEN READERS OF HOBBY CORNER come up with some good questions of general interest. Then, also, some questions appear again and again, showing rather widespread problems. Here are a few that might include some answers you need.

1. Where do you get the components to build your projects? To be perfectly honest, most of the components come out of my "junkbox" (that's what hams call whatever holds their component invento-ry-a shoebox, cabinet, cigar box, shelf, etc.). So a better question might be: "Where do I get the stuff to put in the junkbox?" I do manage to keep a fairly good stock of many kinds of components, and I work at keeping the stock up as it is used. Here's how I do it.

Perhaps the best way to build up a stock of components is to buy mixed assortments of resistors, capacitors, LED's, coils, transistors, IC's, and so forth. Mixed assortments can usually be bought for a low unit cost, so you can save 50% to 90% over the cost of individual components. Then, if you use only half of them in the course of time, you are still ahead. Of course, you won't have a choice of size or value buying components this way, but remember, if you don't have any on hand as you build a project, you'll have to buy each one you need at full price.

My assortment purchases come from several sources but mainly from surplus mail-order suppliers. I read the ads carefully in the back of Radio-Electronics each month and keep the postman busy delivering the flyers, catalogs and parts I have ordered.

Another source of components is from sources offering small bulk purchases. When I discover a commonly used part (for example, a 2 N 2222 or 7400 or IN4004) and the price is especially favorable, I order 10 or 25 or more, even though I have no immediate need for them-sooner or later they will be used. These bargains are found in catalogs but most often in ads as monthly specials.

Another source that bears watching is the local retail outlet if you have one nearby. Every few months they take inventory and order in an especially big shipment. Someone usually decides that
certain items should no longer be carried; then those parts go on a "bargain table." I have found that prices vary from store to store, but you can save from 25% to 50% when you find useful goodies on the bargain table.

As time goes by, you can build up a good stock from these and other sources. Another source you should not overlook, especially if you are just beginning to accumulate components, is old equipment. Anytime someone offers you a TV, radio, recorder, amplifier, or anything electronic, accept it! Very rarely does something like that come along that won't yield at least a few parts. I guess most of us started our junkboxes with real junk. You can find all sorts of components in those discarded sets-speakers, tubes, transistors, resistors, capacitors, transformers, dial lamps, sockets-they can be a real gold mine. (However, watch out for picture tubes-they can implode and cause severe damage!)

No matter how you go about it, however, you can't stock everything even if you try. Remember Doc's law: No project can be completed with just the components on hand! You'll always need something else to make it work.

At the start of a project when I discover something is missing, I try to find it locally to save time. I check the local retail stores, and then, if necessary, one or two of the wholesale distributors. As a final resort, I order the component and impatiently await its delivery.

In any case, I have found that time and money are saved by accumulating a stock of parts. I believe you will also find this useful.
2. I am a beginner in electronics and I want to build the projects you write about. Do I have to use exactly the same parts that you list? The answer to this is: Yes and no! There are times when you must use the exact value specified in a schematic. Fortunately, such instances are not frequent but you will experience them. You should always read very carefully both the text and any special schematic notes before starting any project.
In the Hobby Corner projects, I always try to indicate any parts that are critical in type or value; most other construction
project articles also do this. Of course, there are times when you just know it makes a difference. For example, in a coil-capacitor tuned circuit or a resistorcapacitor timing circuit, you know that a change of value changes the frequency.

Most of the time, however, component values simply are not critical. Usually, the next standard value up or down is sufficient. An even greater difference will often do the trick, too. In fact, marked values are normally 10% or even 20% tolerance.

We sometimes fall in the trap of thinking of values as absolute just because they are numbers. If a capacitor is marked .01 , we think of it as exactly .01 even though the chances of that being true are pretty slim unless we pay a premium price for a precision (low-tolerance) capacitor. So, when a schematic calls for a 5000 -ohm resistor, for example, and you put one in marked 5 K , it could range from 4500 ohms to 5500 ohms, or more!

Now you can see why the next standard value almost always works-it may be closer to the specified value than one so marked. Note that the $5 \mathrm{~K} 10 \%$ resistor could be 5500 while a 5.6 K resistor could be 5040 ohms!

Let's take a look at a typical case. Figure 1 shows part of a transistor amplifier stage in which R1 and R2 form a

FIG. 1
voltage divider that is expected to provide +4 volts on the base of the transistor. $(12 \times R 2) \div(R 1+R 2)=4$.
But suppose R1 is $11 \mathrm{~K}(10 \mathrm{~K}+10 \%)$ and R 2 is $4.5 \mathrm{~K}(5 \mathrm{~K}-10 \%)$. The base voltage would be 3.48 , or if the resistors went the other way, the base voltage could be as much as 4.55 .
The situation would be even more variable with 20% resistors (use some values in the formula to see just how much it would vary). The point is that unless 1% or 5% components are specified, the values range all over the countryside.

The next value up or even two greater
works just as well in most circuits．In substituting resistors and capacitors you should stay within the power and voltage ratings，however．If a 2 －watt resistor is specified，you must use one that is 2 watts or larger．If a 16 －volt capacitor is speci－ fied，make sure to use one that is rated 16 volts or more．

However，what do you do when you can＇t even come close to the specified value with the components you have on hand？Purchase what is needed or make them yourself if there is space in the project for one or two extra components． Note that I keep mentioning resistors， but the same principles apply to capaci－ tors，inductors（coils）and other compo－ nents．

You should always keep in mind the simple formulas for resistors and capaci－ tors in series and in parallel．For example， suppose you need a 15 K resistor．Do you have two 33 K resistors to hook in paral－ lel？

$$
\frac{\mathrm{R} 1 \times \mathrm{R} 2}{\mathrm{R} 1+\mathrm{R} 2}=\frac{33 \mathrm{~K} \times 33 \mathrm{~K}}{33 \mathrm{~K}+33 \mathrm{~K}}=16.5 \mathrm{~K} .
$$

Or how about two 6.8 K resistors in series？

$$
6.8 \mathrm{~K}+6.8 \mathrm{~K}=13.6 \mathrm{~K}
$$

Or a 5.6 K ，an 8.2 K and so on．Of course， capacitors work identically except that the series and parallel formulas are re－ versed．

FIG． 2

This method of making your own com－ ponents can also be quite handy with pots． A reader asked recently where he could obtain a 150 K pot，stating he could only find values of 100 K and 500 K ．I advised him to make the pot（see Fig．2）．The 500 K pot in parallel with the 270 K fixed resistor works similar to a 175 K pot；this is close enough for most purposes．Actu－ ally，it＇s also possible to measure a hand－ ful of 20% resistors to find one at 200 K ， and that would yield the equivalent of a 153 K pot！

With rectifier diodes，use substitutes that have an equal or higher P eak Reverse Voltage（PRV or PIV）．A 50 or 100 PRV diode replaces a 25 PRV diode in almost any circuit－or two 25 PRV＇s can replace a 50 PRV （with equalizing resistors）．

Most LED＇s have almost identical elec－ trical values．They come in different sizes and colors and have different lenses，but one will serve as well as another in all but the most critical circuits．

The same holds true for most digital readouts，although if the ones you substi－ tute differ greatly in size，you should check the current requirements．Of
course，you cannot interchange common－ cathode and common－anode units without also making other circuit changes．

Transistors are hard to keep up with because there are so very many types． Most circuits work with dozens of differ－ ent numbers．Usually it is a good idea to stay in the same transistor＂families＂－ NPN，PNP，FET，audio，RF，silicon， germanium（even this list could go on forever！）．Certainly you should have a transistor substitution book near your workbench．

There you have the parts story，or most of it at least．You seldom have to use the part exactly as specified．Use what you have that is in the right ball park and see how it works．I do it all the time as do all experienced builders．By the way，that＇s why I always run up a circuit on a solder－ less breadboard before building it perma－ nently－I want to see if the circuit works properly with the components I have on hand．
3．What＇s the best way to wire a project？You came to the right place with that one！The truth is，I spend a lot of time trying to figure out the quickest and easiest way to build a project．I guess that＇s why I like the pencil wiring．

Over the years I must have tried every possible means of wiring．Of them all，I have settled on pencil wiring for most of my projects．It is effective and neat but， best of all，it is easy and fast．

You must understand that pencil wir－ ing will not replace all the other wiring methods．I haven＇t given up wire－wrap－ ping，PC boarding or even the old cut／ strip／hook techniques－they still have their uses．However，most of my IC and transistor circuits are ideally suited to pencil wiring．

All you have to do is use a pencil－like device that also holds a roll of wire．As you move the point from place to place， just make a couple of loops around the components to be connected．Then go back and solder each joint－there＇s no need to scrape off the insulation because it vaporizes when it is touched with the hot iron．

I just finished wiring a project using Vector＇s new model P178－1 wiring pencil （Vector Electronic Company，Inc．， 12460 Gladstone Avenue，Sylmar，CA 91342）． Vector＇s old model wiring pencil per－ formed quite well，but this new slim one fits my hand better and gives me im－ proved control．With its long metal snout， the wire can be laid exactly where you want it as you move quickly from one connection to the next．What？You＇ve never done any pencil wiring？According to a once－popular expression，try it，you＇ll like it！

I hope these reader questions and an－ swers have been interesting and helpful． If so，from time to time，we＇ll take a look at some more of them．

R－E

Now you can safely plug away without the problems of overload or coming up short．
 SGL WABER ${ }^{\circ}$ MULTIPLE OUTLET STRIPS

You can do it thanks to SGL WABER＂－ the finest quality multiple outlet strip available！There are 240 versatile models－each unit exceeds National Electrical Code standards and is safety tested．Ideal for organizing your work area and having extra outlets when and where you need them．Over 2000 electronic distributors carry the SGL WABER line Send for your free 24 page catalog today！

SCL WABER Electric

A division of SGL INDUSTRIES，INC．
Dept．H－300 Harvard Avenue
Westville，New Jersey 08093
（609）456－5400
SGL Waber．．．THE POWER SOURCE IN ELECTRICAL OUTLET STRIPS

THIS MONTH'S COLUMN wILL SHOW HOW to interface an 8085 microcomputer with an A/D converter so that eight analog channels can be monitored with the time period between measurements programmed by the user. It is assumed that all eight channels are monitored quickly with a long period between these quick samplings. The system's computer, the 8085, must have the following input/ output (I/O) devices:

1. A fast 10 -bit analog-to-digital ($\mathrm{A} /$ D) converter with an eight-channel multiplexer.
2. A set of thumbwheel switches to select the time period (1 second to 99 seconds).
3. A set of eight control on-off outputs that can be used to control the process being monitored.
The block diagram of Fig. 1 shows how we assigned I/O ports and bits to various I/O devices. One 8155 read/write memory and one 8355 read-only memory (ROM) device are used. Note that the six I/O lines of Port C on the 8155 have not been used. These I/O lines can be used for later expansion.

The 8355 's I/O ports were chosen to control the A/D converter system because a combination of inputs and outputs was needed. The 8355's I/O ports can be assigned input or output functions on a bit-by-bit basis. The 8155 was used for the switch inputs and the control outputs since these were already prearranged in groups of eight lines each.

The bits of the I/O ports must first be assigned input or output functions. The eight bits at Port A are all input bits, while those at Port B are a combination of input and output bits. Thus, the following control words must be sent to the 8355 's two port-control registers:

Port A Control $=00000000_{2}$

$$
0=\text { Input Bit }
$$

Port B Control - 11111000

$$
1=\text { Output Bit }
$$

*This article is reprinted courtesy American Laboratories. Dr. Rony, Department of Chemical Engineering, and Mr. Larsen, Department of Chemistry, are with the Virginia Polytechnic Institute \& State University. Both Dr. C. Titus and Mr. J. Titus are with Tychon, Inc.

M MULTIPLEXER UPDATE, SWITCH TO THE NEXT CHANNEL

LDA	GET THE STATUS WORD, BITS PB7 - PB4
STATUS	/ARE THE MULTIPLEXER CHANNEL ADDRESS

0
ADI /ADD ONE TO MULTIPLEXER ADDRESS
020
OUT IOUTPUT IT TO THE MULTIPLEXER
001
STA
STATUS
0
NOP
/STORE THE NEW STATUS WORD BACK IN IITS MEMORY LOCATION
/CONTINUE HERE

FIG. 3

/TIMER CONTROL PROGRAM FOR THE 8155 CHIP	
MVIA	/PRESET THE 8 LSBS OF TIMER'S COUNT
020	
OUT	/OUTPUT TO TIMER
204	
MVIA	
347	/THE 2 MODE CONTROL BITS, D6 \& D7
OUT	/OUTPUT THEM TO THE TIMER
205	
MVIA	/SET UP PORTS A \& C FOR INPUT,
302	/PORT B FOR OUTPUT, AND START THE
OUT	/COUNTER
200	
NOP	/CONTINUE HERE
	FIG. 4
/RESTART 7.5 INTERRUPT SERVICE ENABLINC STEPS	
MVIA	/CLEAR ANY PREVIOUS RST7.5 INTERRUPTS
020	
SIM	/SET INTERRUPT MASK
MVIA	/ENABLE RST7.5 INTERRUPTS
013	
SIM	/SET INTERRUPT MASK
	FIG. 5

The output of these control words is shown in Fig. 2.

When these control words are output to the control registers, the ports will be configured as required. It is wise to exercise some caution when you use Port B, since you want to control bit PB3 and bits PB7-PB4 independently. Therefore, when bit PB3 changes, bits PB7-PB4 must not be altered. Some careful thought must be applied to this problem so that the program does not start a conversion when all you want to do is
change the multiplexer's 4-bit address. A status word, stored in read/write memory, is used to tell the program the current status of the output lines. Individual bits can then be manipulated without affecting the other bits. Figure 3 shows two sections of the program, one indicating how the multiplexer is updated without affecting the converter, and the other showing how the converter is started without affecting the multiplexer. In fact, each routine can be treated as a subroutine.

The $1 / \mathrm{O}$ ports on the 8155 are also easy to control. The bits at Port A are used as inputs and the bits at Port B are used as outputs; Port C is not used. Rather than using a software delay loop, we used the timer function in the 8155 to help time the 1 -second period. Assume that the 8085 has a $1-\mu$ s clock period. With a 14 -bit counter this provides periods of up to 16.36 ms . In our example, we used a $10.00-\mathrm{ms}$ time period, using a $14-$ bit binary count of 10011100010000 , which must be loaded into the counter. Since the timer will be used repeatedly, we used it in mode 3-automatic reload with a pulse at the end of each programmed period. Now it is necessary to initialize the 8155 to control Ports A and B plus the timer. The following sequence (see Fig. 4) initializes the system and starts the $10-\mathrm{ms}$ clock period.

The timer's pulse output generates an interrupt (RST 7.5) whenever a $10-\mathrm{ms}$ period "times out." To activate the RST 7.5 interrupt (on the 8085) the RST 7.5 interrupt mask must be enabled using the instruction steps shown in Fig. 5.

To initialize the I/O ports fully, only combine the steps from Figs. 2, 4 and 5. Remember also that you will have to establish a stack pointer before the interrupts can be used. In a future article, we will discuss the overall software integration necessary for this application. R-E

The next time you need a tuner repaired or module rebuilt:
Remember
FAST SERVICE
Remember
PROFESSIONAL QUALITY
Remember
ONE-YEAR UMITED WARRANTY Remember

PTS ELECTRONICS

PTS ELECTRONICS, INC.
SEe the yellow pages for the
pts Servicenter location nearest you

GEYPG A EDS

Test probes designed by your needs - Push to seize, push to release (all Kleps spring loaded).
Kleps 10. Boathook clamp `grips wires, lugs, terminals Accepts banana plug or bare wire lead. $43 / 4^{\prime \prime}$ long. $\quad \$ 1.59$ Kleps 20. Same, but $7^{\prime \prime}$ long. $\quad \$ 1.69$
Kleps 30. Completely flexible. Forked-tongue gripper. Accepts banana plug or bare lead. 6" long.
Kleps 40. Completely flexible. 3-segment automatic collet
firmly grips wire ends, PC-board terminals, connector pins. Accepts banana plug or plain wire. $61 / 4^{\prime \prime}$ long. $\$ 2.89$ Accepts banana plug or plain wire. $61 / 4$ long.
Kleps 1. Economy Kleps for light line work (not lab quality). Kleps 1. Economy Kleps for light line work (not lab quality).
Meshing claws. $41 / 2^{\prime \prime}$ long. Pruf 10. Versatile test prod. Solder connection. Molded phenolic. Doubles as scribing tool. "Bunch" pin fits banana jack. Phone tip. $51 / 2^{\prime \prime}$ long.
All in red iplack - 5 pecify. (Add 50c postare and ha All in red or black-specify. (Add 50c postage and handling). Write for complete catalog of - test probes, plugs, sockets, connectors, earphones, headsets, miniature components.
 A vailable through your local distributor, or write to:
RYE INDUSTRIES INC 129 Spencer Place, Mamaroneck, N.Y. 10543 In Canada: Rye Industries (Canada) Ltd. CIRCLE 32 ON FREE INFORMATION CARD

Locating replacement parts for orphan sets can be a real chore. For help, use your ingenuity and the part numbers.

JACK DARR, SERVICE EDITOR

in the electronics service industry we often find so-called "orphans" dumped on our doorstep. These are TV sets and radios sold by parent companies that have left town and cannot be located! In most cases, but specifically with the less costly imports, there's only one logical solution: Don't accept them! These sets lack service data and replacements, and are a lost cause.

With a few "brand-name" sets built by U.S. companies, there's some hope. One in particular is the Bradford line. This line appears to have been manufactured by a record number of companies, 16 in all! (This information was provided by the Coil Replacement Guide No. 175, published by the J. W. Miller Company of Compton, CA. This guide lists sets by brand and manufacturer.)

So far, in practically all cases, Bradford seems to use the original factory part numbers. Therefore, we have been able to trace them back and cross-reference them to the numbers used by the manufacturers in their own sets. Component numbers are often individual and identifiable. The Miller Company Guide lists only radio-stereo components. However, by checking the part number, you can identify the manufacturer, then use the TV transformer guides (such as those published by Thordarson, Triad, etc.) to find a replacement. We have done this in quite a few cases with good results.

Bradford is shown in the Miller Company Guide as having been manufactured by Admiral, Arvin, GE, RCA, WellsGardner and Westinghouse, as well as Sanyo, Aiwa, Matsushita, Mitsubishi and Toshiba. The American companies have distinctive part numbers. For example, an Admiral set will have flyback circuits numbered "79C187-1," and deflection yokes numbered "94C87-1." (Incidentally, the letter " C " in the number doesn't seem to be critical; it can also be a "D," etc.) Find the listing for Admiral and look for the same number; the chances are you will find the information you want.

Arvin uses five-digit numbers or sevendigit numbers with a suffix. For example, the numbers "68504-123" or "2002783-

2 " are used for flyback circuits. Some components have letter-digit numbers, such as "TLF-413," which can also help. General Electric uses two letters, two digits, an " X " and more digits; "ET77X88" designates flyback circuits, "ET76X32" indicates yokes.

RCA uses six-digit numbers, usually without suffixes-"133640" (flybacks), "136642" (yokes), etc.

Wells-Gardner also uses an "X." However, there is a difference: " 53 X 362 C " is used for flyback circuits and "9A2403" for yokes. Flyback circuits, vertical-output transformers, audio transformers, etc., all seem to use numbers in the 50 's. The designation for yokes and smaller coils starts with "9A."

A Westinghouse component is perhaps the easiest to identify at a glance since a typical number for a flyback circuit will be, say, " 690 V 39 H 32 ." The " 690 " or " 490 " and the " V " are the key clues. All coils and transformers have that " V " in their number.

Of the imported sets, the larger ones may be in such quantities that the replacement-transformer companies manufacture parts. In any case, just cross-reference the component to a factory number for assistance. Sony, Panasonic (Matsushita), Mitsubishi and Toshiba all have parts centers around the country, and it is often easy to find the one you need. Some of these components are listed now in the transformer guides.

Service data on many Bradford sets is found in Sams Photofacts, in which the part numbers are listed. Many of the part numbers for other sets are also covered in this publication. Another company that has service data and parts for the Bradford line is the firm known as the Marcel Companies (57 Enfield Street, Enfield, CT 06082).

You can often discover some helpful information by accident. I once received a letter asking for data on a "XAM" D12BW74. I found that this used a Philco 3DL20 chassis (listed in Sams No. 1277). Another reader asked for data on a XAM 14CP74. I told him to research the Philco folders. He replied, "I looked all through the area you suggested (around

1200-1300 in Sams Photofact) and came up empty! A week later, a Philco C3052BWA came in. I took the back off and a light bulb lit up! It looks familiar! It turns out this one is a Philco 3CN20, Sams No. 1414." Thanks to Paul Fedisson of Paul's TV in Jackson, NJ, for this help.

This cross-checking method works with other things as well. If you can find the part number, either from available data or the part itself, cross-check it to find a match. Once you can decode these numbers they can be very helpful. Good luck!

R-E

service questions

B+ VOLTAGES DOWN

This Sylvania model E-21 came in with no picture, raster, or sound. It showed about 15 kV on the high voltage and all the $B+$ voltages were low. I opened the $B+$ circuit between the rectifier and filter, and read only 240 mA . This should read 700 mA . I don't get it.-R. P., Bristol, VA.

In all solid-state TV sets, the value of the $\mathrm{B}+$ voltage is critical. There are three things that can cause these symptoms you describe: excessive current, a weak supply, and a bad DC voltage regulator. You don't have a current overload, as you noted. Check the $\mathrm{B}+$ voltage right out of the rectifier; this should read +145 volts. If so, check the output of the voltage regulator, which should read +112 volts. If it is quite low, check out the voltageregulator circuit. Something in this circuit seems to be dropping the output voltage.

SHADED RASTER

The trouble with this Sony model sCC644 is it has a shaded raster-dark on the left side, becoming gradually brighter to a whiteout on the right side. This shading tracks evenly with adjustment of the brightness control.-D. L., Battle Creek, MI.

This was the original letter. I suggested he check parts that are "common," such as the picture tube, grids, etc. This is his answer:

When I scoped the grids of the picture
tube with the gain cranked up as high as I could get it, I detected a very tiny sawtooth waveform! Working my way back through the "Las Vegas Strip" (all those neon lamps!), I found that C707 was open. This is the filter capacitor for the +199 -volt supply, and it comes from a winding on the flyback. Replacing the open capacitor with a new one cleared up the shading.
(Thanks to Darwin Lapham, Dar's TV, Battle Creek, MI.)

ERRATIC VOLTAGE SHUTDOWN

This Quasar model TT934HW would shut down after playing for some time. After tracing everything on the JA powersupply panel, I finally ordered a new power supply. The note included with it said if there was erratic volfage shutdown with the new panel, to install a beam current limiter kit. When I turned the set on, I had a very bright raster. I could not turn it down far enough and it shut down again. I then ordered the beam current limiter and installed it. This didn't help. I'm going in circles.-K.F., Darby, MT.

So was I for a while! This is a model 934, but the chassis is No. 938. The Quasar service note states that this shutdown problem could be due either to a poor contact at pin 7 of plug $\mathbf{P} 2$, or to a poor contact where the +200 -volt lead clips to the CA panel. Also, you could run a complete check of all the DC voltages and adjust any that are off. These voltages are all critical and can cause shutdown on low voltages as well as high.

TRANSISTOR IGNITION CUTOUT

The transistor ignition system on my car used to cut out on the highway. I've replaced the original TO-36 transistor with a 2N2527. Now it runs up to 50 mph at
highway speeds, but cuts out if I slow up for traffic. Any helpful ideas?-E. D., Tappan, NY.

I hope so. From the symptoms, the transistor is going into secondary breakdown and is not firing. This transistor is a germanium; germaniums can do this, then heal up when they cool off! The transistor is probably not getting sufficient cooling. (Try spraying coolant on it the next time it stops and see if this helps.)

If so, then add more heat-sink area. Make an auxiliary heat sink out of a big sheet of aluminum painted flat black. Also, place the unit in the car so that air does not get to it from the radiator but. rather directly from outside the car. In

NOW FROM LEADER . . .

The Basic LCR

 Bridge, Updated.

${ }^{\text {s }} 319^{95}$. . . includes 2 year warranty.

Model LCR-740 . . . with accessories.
See your Distributor or Write for De'ails

A P Products, you've got it made.

To electronics hobbyists, A P Products are a "find" every time. You'll see.

You'll find yourself building and testing your circuits faster and easier than you've been able to before. And with optimum electronic integrity.

Part of it is the practical, sensible, useful design of our solderless,
reusable breadboards and interconnectors and testing devices.
The other part is quality. Superior materials. Superior manufacture. Everything pretested. You can truly depend on A P Products.
Item: Our connectors are molded onto the cable, not just crimped on. They just don't pull loose. Try one and see.

Where? Call (toll-free) 800-321-9668 for the name of your local A P store. And ask for our complete A P catalog, The Faster and Easier Book.

AP PRODUCTS
incorporated
Box 110•72 Corwin Drive
Painesville, Ohio 44077
Tel. 216/354-2101
TWX: 810-425-2250
some cars, you can run a hose through the side of the radiator shell and place it so that it blows right on the transistor.

THIN VERTICAL LINE

I have problems now with a transistor TV I built while taking a course. Do you know where / can get a Sams schematic on the set? It's an HSK-T1. The problem is that all that appears on the screen is a thin white vertical line. I've replaced the horizontal driver, output and the driver transformers, with no result. This symptom indicates an open vertical deflection coil, but the continuity checks out! Help!-B. H., Orlando, FL.

Here are a couple of answers: First, you can't get a Sams schematic for anything but commercial TV sets. Second, let's recheck the cause of the problem.

A thin vertical line on the screen shows a loss of horizontal deflection, not vertical. In this set, as in many solid-state TV sets, the horizontal-deflection coil and the flyback are connected in parallel to the output of the horizontal-output transistor, which in this circuit is the emitter (sec the diagram). If the horizontaldeflection circuit is open, there will be no sweep but there will be high voltage.

Check the horizontal yoke windings for continuity. Then follow the foke-return circuit, which must be good. This circuit contains a width coil (L107) and a 3.5- $\mu \mathrm{F}$ capacitor to ground.

VERTICAL PROBLEM

This Motorola model TS-921 has a vertical problem. If a man is shown on the screen, his head is at his stomach level and his tie is over his head! There's not enough height, either. The voltages around the vertical stage are not too bad. Any ideas?-A.L., Dierks, AR.

You seem to have a simply massive foldover, plus other problems. Coupling capacitors can cause this problem, but you've tried these.

One thing that is easy to miss in this vertical circuit is the little $20-\mu \mathrm{F}$ capacitor. This capacitor is actually in the verti-cal-output cathode circuit. It's located over on the pincushion circuit board, so it's casy to miss. Check this plus the 1500 -ohm resistor across it. It can cause some odd problems.
(Feedback: "Bingo! The $20-\mu \mathrm{F}$ shorted; the resistor was bad.")

TROUBLESHOOTING DIGITAL CIRCUITS

Continued from page 44
RAM, no problems are detectable. If color operation is chosen or the computer accesses the RAM, the screen is not blanked properly. In the case of color operation, the color is simply not dis-played-since subjective coloring is an optical illusion and requires specific conditions to be observed.

Start the test by using the logic probe to check the counters and decoding circuits. Since they seem to work as designed, proceed to the AND gates; the video signal will blink the probe indicator at a low frequency. The blanking signal will be held low or in the undefined region. Since the output of that gate should have been pulsing at a low frequency, the problem exists on that line.

Using the current tracer (and pulser if required), follow the current into the NOR gate. Since the current flows from the AND gate into the NOR gate but is not pulsing, then either the input is shorted to ground, or another output is shorted to this line. Recalling that the blanking also malfunctions during computer access, this implies that the second case is true. Now, use the current probe to follow the flow into the inverter. Since these two lines only join at the NOR gate, the conclusion is simply that the two inputs are shorted together.

The third failure for the most part acts like and produces the same symptoms as the second failure, except that during computer access the blanking functions normally. The troubleshooting should begin and proceed in similar fashion. However, you will discover there is no output from the and gate. Now, you should suspect a broken input wire bond in the and gate. Use the logic probe on the output and place the pulser on the suspected input-there will be no signal. Next, place the pulser on the other input-you will receive a pulse. Since you have verified that the output, the other input and the power line connecting to that pin are all functioning, the only conclusion is an open input bond.

The fourth failure is due to two outputs being shorted together. During normal operation (computer is not accessing the circuit) both NAND gates are at a logic 1 state and normal operation continues. If the computer loads a new color command, then the character generator will be affected. Similarly, if a computer access to the RAM occurs, then the color circuits may be affected (depending upon the state of signal A_{o}). Use the same troubleshooting procedure used in the second failure case to locate the malfunction.

The fifth failure is due to an internal short, to ground, of the computer-access blanking signal. The obvious symptom is that the screen will always be blanked.

Start by checking the NOR gate-the computer-access blanking line is always high. Next, starting at the NAND gate (the gate that drives the chip selects pins of the data IC's) follow the logic pulser's signal using a logic probe. Since this line is shorted to ground, even the pulser cannot change its state. Again using the pulser to inject a signal, but this time using the current probe, follow the current flow into the inverter-the input of the inverter therefore must be shorted to ground.

The final circuit problem shows the effect of an input being shorted to V_{cc}. The symptoms are that color is not displayed (remember that a small percentage of people cannot observe subjective color, so be sure that you can). Again, starting with the color-counting circuit, proceed to the and gates. The blanking signal will be OK, but the video line is held high. Again the pulser cannot change the state of the line. Furthermore, if the color circuits are not selected (the Q output of the D-type flip-flop is at a logic 0 level) then the current flows into the and gate. This indicates that the input of the video multiplex is shorted to a logic high.

Put Professional Knowledge and a

 COLLEGE DEGREE in wout resemonis cocerer movoph by correspondence, while continuing your present job. No commuting to class. Study at your own pace. Learn from complete and explicit lesson materials, with additional assistance from our home-study instructors. Advance as fast as you wish, but take all the time you need to master each topic. Profit from, and enjoy, the advantages of directed but self-paced home study.

The Grantham electronics degree program begins with basics, leads first to the A.S.E.T. degree, and then to the B.S.E.E. degree. Our free bulletin gives complete details of the program itself, the degrees awarded, the requirements for each degree, and how to enroll. Write for Bulletin R-79.
Grantham College of Engineering 2000 Stoner Avenue
P. O. Box 25992

Los Angeles, CA 90025
Worldwide Career Training thru Home Study CIRCLE 11 ON FREE INFORMATION CARD

faster and requires no blade resharpening. Limits depth of hole to $1 / 8^{\prime \prime}$ to prevent damage to underlying headliner of cars. Special guide drill bit restricts walking of saw. Tool is available in $3 / 4^{\prime \prime}$ and $1^{5 / 16^{\prime \prime}}$ sizes and designed for $3 / 8^{\prime \prime}$ or larger electric drill. Low-cost replaceable blades available. For fast, professional mounting jobs, this tool is indispensable. Write or call for literature and prices.

How Can You Work Without it?

If you service electronic equipment you've probably had more than one occasion where looking for a missing screw, nut, washer or other piece has wasted valuable time

FIND IT FAST

Used in the servicing of:

- CB Radio
- Ham Gear
- Car Stereo
- Television
- Tape Recorders - Video lape Rec
- Hi Fi Equipment - Test Equipment

And More

A MUST FOR EVERY TECHNICIAN, ENGINEER, HOBBYIST!!!

LOOK NO MORE FIND IT FAST Over 1.050 Pieces
METRIC (ISO.) (Japanese Standard)

- Round head Screws a pon heod sciews a E Rings
- hex Nuts Spling washers Chrome Sxiews - Nyton Screws asolder lugs

NOT SOLD IN MOST HARDWARE STORES!

CALL TOLL FREE (800) 423-5336 In California (800) 382-3663
free Original Japanese Parts Catalag Iransistors IC S Capacitors FE TS and more

Be sure to send for this FREE Catalog'
Available from your distributor or send coupon to
ORA ELECTRONICS
7235 Canby Ave.
Reseda, CA 91335
Please send_ea FIND II FASI Hardware Pack $\$ 2495$ plus $\$ 150$ Shipping (Call Res oad of law)
Enclosed
Name
Address
(l'd also like a Full - Line Catalog
CIRCLE 17 ON FREE INFORMATION CARD

newproutrets

More information on new products is available from manufacturers of items identified by a Free Information number. Free Information Card is inside back cover.

SOLDERLESS BREADBOARD, Experimentor Socket, model EXP-350, permits youngsters learning electronics to simply plug a transistor or IC into the face of a wafer-shaped plastic block. add some components and wire to create a fascinating beeping, blinking, or ticking device. The model EXP-350 only requires a simple wire cutter

and stripper-no expensive tools-and necessary components for simple projects are inexpensive. Priced at $\$ 3.50$, the model EXP-350 can be used to design easy circuits obtainable from public libraries or electronic dealer sources. Continental Specialties Corp., 70 Fulton Terrace, New Haven, CT 06509.

CIRCLE 112 ON FREE INFORMATION CARD
DUAL-TRACE OSCILLOSCOPE, model 1432, is a portable dual-channel, $15-\mathrm{MHz}$ instrument that offers sweep ranges from $0.5 \mu \mathrm{~s}$ to 1.5 seconds in 19 steps, with $\pm 3 \%$ linearity. The unit has a 2 mV -per-division vertical sensitivity and $24-\mathrm{ns}$ risetime. Features include a 3 -inch CRT with internal graticule; $\times 5$ magnification; front-panel

$X-Y$ operation. Vertical modes include Channel-A only, Channel-B only, A \& B, A + B and A - B. Timebase automatically switches between chopped or alternate sweeps. Unit operates on $117 \mathrm{VAC}, 234 \mathrm{VAC}, 12 \mathrm{VDC}$; an optional rechargeable battery pack is also available for incase mounting. Other options include a carrying case and demodulator probes. Provided with

10:1 direct probes and tips, the model 1432 weighs 18.3 lb . and measures $8.26 \times 5.5 \times 2.3$ inches. Prices: model 1432, \$750; model BP-32 battery pack, $\$ 50$; model LC- 132 carrying case, \$25; model PR-32 demodulator probes, \$18.B\&K Precision, Dynascan Corp., 6460 W. Cortland Ave., Chicago, IL 60635
CIRCLE 113 ON FREE INFORMATION CARD

RADAR DETECTOR, model Bearfinder Two + Two, is the first to use two antennas to detect X and K-bands that emanate from both moving radar and hand-held radar guns. Super-sensitive detector alerts driver both coming and going from signal emission point. Unit features "fail safe" indicator to warn of malfunction; sensitivity control dial; and a choice of either visual or audi-

tory alert signal. Bearfinder works on all 12-volt systems, can be plugged into car's cigarette lighter, requires no license to operate, and is guaranteed not to interfere with car radio performance or CB transceivers. The Bearfinder Two + Two comes in rugged heavy-gauge metal case and carries a 90 -day warranty. Suggested retail price: \$149.95.-Bearfinder, Inc., 221 Crane St., Dayton, OH 45403.
CIRCLE 114 ON FREE INFORMATION CARD

GENERAL-PURPOSE TEMPLATES with metric dimensions together with their decimal equivalents include metric circles, large circles, squares, extra-large circles, pocket aids and sketch aids. Other templates featuring the standard U.S. deci-

mal measure include decimal circles, squares, arrowheads, brackets, combo ellipses, a freehand lettering guide and more. Shapes and dimensions conform to MIL-STD 175 and the

WIDEBAND CABLE SPLITTER，model 1502A， provides a two－way split for 75 －ohm cable lines． The unit can handle any audio or video signal； and has a nominal $6-\mathrm{dB}$ loss and typical return

losses of 30 dB to 300 MHz and 25 dB to 890 MHz ．Prices are available from the manufactur－ er．－Extronix，Inc．， 64 Gough Ave．，Ivyland，PA 18974.

CIRCLE 116 ON FREE INFORMATION CARD

For faster service

USE ZIP CODE

Our new test equipment catalog．Free！

With this catalog you can browse through one of the nation＇s largest electronics warehouses，packed floor to ceiling with the finest test instruments．Everything from probes to dual trace scopes；and everything at sensational savings made possible only by mail order selling．Volume pricing on orders over $\$ 500$ gives you even greater

Grandfather＇s Clock＇Was $\mathcal{S N e v e r}^{\text {Like This！}}$

If you love con－ temporary design and yet appreciate the more tradition－ al，here＇s the per－ fect clock for you！ Amelect has cre－ ated their own ver－ sion of the ever popular grandfa－ ther clock．Not only do the electronic eyes around the modern clock face light up displaying each second， minute，and hour，but our grandfa－ ther model includes a very novel and exciting electronic pendulum． There＇s even a shelf for displaying your prized treasures！

The upper section of the clock is $9^{3 / 4^{\prime \prime}}$ square with an overall length of $191 / 4^{\prime \prime}$ all encased in beautiful， hand crafted hardwoods．Select from solid walnut，maple，mahoga－ ny，or cherry．This clock is covered by a 1 year warranty on material and workmanship．

As shown on R－E April＇78 front cover and described by Fred Blechman． A vailable completely assembled or in kit form．
CL7402 Assembled $\$ 95.00$
CL7402 Kit with Cabinet 71.50
CL7402 Kit less Cabinet 56.25
Shipping and Handling 3.50

To order write or call 219－297－3320
Indiana residents include 4\％Sales Tax

INCORPORATED
P．O．Box 367 － 106 S．Newton St． GOODLAND，INDIANA 47948

Allow 3 to 4 weeks for delivery

Professional or not, the Computer the best books in the field.

PROGRAMMING LANGUAGES. By Allen B. Tucker. Jr. 439 pp., Illus. Gives you not only the principles of design but the applications of six major programming languages so you can decide-among the special teatures of each-what best suits your operations. Shows you the languages' strengths and weaknesses through demonstrations of their use in solving varous representative "benchmark" problems. Also provides programs using a variety of computers so you can evaluate languages and their compilers on a basis of uniform and meaningful criteria.
654/158 Pub. Pr., $\$ 19.95$ Club Pr. $\$ 14.95$
MICROPROCESSOR PROGRAMMING
For Computer Hobbyists. By Nell Graham. 282 pp.. with figures, tables, and samples if you are a personal computer enthusiast or technician. this book will prove to be one of the most valuable and interesting investments you can make it contains full details on programming - from the very basics to the state-of-the-art capablities-and yet it is written so simply, and progresses in such a direct and logical manner that any reader. no matter how inexperienced, can easily follow it. 783/56X Pub. Pr., $\$ 12.95$ Club Pr., $\$ 10.95$

A DISCIPLINE OF PROGRAMMING. By

 Edsger W. Dijkstra. 217 pp., with figures Based on the author's conviction that a carefully chosen separation of concerns is essentral for the design of high-quality programs, this book focuses on-and solves with fresh insight and originality-a separate problem of design in each chapter. Rather than choosing one of the existing programming languages to work with, he has designed a mini-language that helps to stress the more fundamental aspects of the task770/115 Pub. Pr.. \$19.95 Club Pr., \$15.75

BE SURE TO CONSIDER THESE IMPORTANT TITLES AS WELL-

GRAMMARS FOR PROGRAMMING LAW $\begin{array}{lll}\text { GUAGES. By J C Cleaveland } 8 \text { R C Uzgalis } \\ 783 / 594 & \text { Pub. Pr.. } \$ 15.95 & \text { Club Pr.. } \$ 12.75\end{array}$ GETTING INVOLVED WITH YOUR OWN COM PUTER A Guide for Beginners. By L Solomer: \& S Vel!
$771 / 952$

Pub. Pr.. $\$ 9.95$
Club Pr., $\$ 3.35$ DIGITAL COMPUTER DESIGN. By R KIINe 784/450 Pub. Pr. S19.50 Club Pr.. \$1.5. 75 MINICOMPUTER SYSTEMS Organization and $\begin{array}{lll}\text { Programming. By R } & \text { H Ecknouse Ji } \\ 768 / 641 & \text { Pub. Pr.. } \$ 18.95 & \text { Club Pr.. } \$ 13.95\end{array}$ MICRO-ANALYSIS OF COMPUTER SYSTEM PERFORMANCE. By B Beize: 785/058

TOP-DOWN STRUCTURED PROGRAMMING TECHNIQUES. By C L McGowan \& J. R Kelly 769/052 Pub. Pr.. \$15.95 Club Pr.. $\$ 13.50$
FUNDAMENTALS OF DATA STRUCTURES. BYE Horowitz \& S Sanni 770.522 Pub. Pr. $\$ 17.95 \quad$ Club Pr.. $\$ 14.95$

COMPUTER ARCHITECTURE. By C C Foster 770:794 Pub, Pr., $\$ 17.95$ Club Pr., $\$ 13.95$
PROGRAMMING MICROPROCESSORS. By M.W McMurran
$770 / 913$

Pub. Pr., $\$ 9.95$
Club Pr.. S8.45
MICROPROCESSOR/MICROPROGRAMMING HANDBOOK. By B Ward
768/749 Pub. Pr.. 59.95
Club Pr., $\$ 8.45$

This title counts for

 two premium books
ENCYCLOPEDIA OF COMPUTER

SCIENCE. Edited by Anthony Ralston and C L. Meek, 1.500 pp., 60 illus. 100 charts, 7×10 format. This first and only in-depth coverage of the entire field of computer science in a single volume is utterly comprehensive and completely up to date. An invaluable reference work for specialists, nonspecialists, educators, students, general readers, and hbrarians, it provides answers to any computer science discipline question in minutes. In addition to covering every aspect of the discipline in five broad areas, each is broken down into some 500 articles, most of them contanning vibliog raphic information to make intensive study of any one subject easier.
769/01X Pub. Pr., $\$ 60.00 \quad$ Club Pr., $\$ 39.95$

THE "COMPULATOR" BOOK.

Building Super Calculators and
Minicomputer Hardware with
Calculator Chips. By R. P. Haviland. 320 pp.. illus. Calculator chips are good for more than calculators-and here's the book to prove it. An imaginative, one-of-a-kind guide, it shows you how to use calculator chips in hundreds of innovative, practical ways, building bigger displays, designing better calculators, and creating exotic functions. Now experimenters can approach the full power of their own desktop minicomputers-multifunctioned, superbrained, and ready to do everything but get up and walk away
783/578 Pub. Pr., $\$ 10.95$ Club Pr. $\$ 9.30$

THE 8080A BUGBOOK:

Microcomputer Interfacing and Programming. By Peter R. Rony. David G. Larsen. and Jonathan A. Titus. 416 pp. with figures. charts. and tables, paperbound. Gives you the basic concepts of microcomputer interfacing and the associated microcomputer I/O programming so you can develop your own interfaces to other digital devices. For the 8080 user, this book will be invaluable, because the Intel 8080 is penetrating every facet of life today. creating new industries and threatening old ones, and this book teaches you the fundamental tasks of microcomputer interfacing.
783/845 Pub. Pr. . $\$ 9.95 \quad$ Club Pr., $\$ 8.45$

MICROCOMPUTERS/

MICROPROCESSORS
Hardware, Software, and
Applications. By John L. Hilburn and Paul N. Julich. 372 pp., illus. This book was expressly created for people involved in the design, use, or maintenance of digital systems using microcomputers. The opening chapters provide needed background in digital logic and present well-organized discussions of number systems, arithmetic operations, and codes employed in microcomputers. The authors then describe the theory and workings behind microprocessor architecture, read-only memory (ROM), random-access memory (RAM), and input/output interfacing methods.
771/499 Pub. Pr., \$22.50 Club Pr., \$16.50

APPLYING MICROPROCESSORS

New Hardware, Software, and

Applications. Edited by Laurence Altman and Stephen E. Scrupski. 200 pp.. illus., $81 / 2 x$ 11 format. A follow-up volume to Electronics magazine's recently published book. Microprocessors. this work takes you into the second- and third-generation devices rolling off semiconductor lines today. The collection of articles here is designed to smooth your way to mastery of new design methods, and it gives you both an overview of the state of the art and a wealth of design ideas, analyses, and applications.

Professionals＇Book Club provides you with （and at great savings，too！）

AUTOMATIC DATA PROCESSING

HANDBOOK．Edited by The Diebold Group． 976 pp．． 269 Illus．Written by a staff of interna－ tionally recognized authorities on ADP and sponsored by one of the nation＇s leading man－ sponsored by one of the nations firms．this utterly com－ prehensive handbook explains and discusses computer systems，programming and lan－ guages，communications processes，and the design and instaliation of today＇s computers． 168／075 Pub．Pr．，S 34.95 Club Pr．．$\$ 23.75$

MICROPROGRAMMING PRIMER．By

 Harry Katzan．Jr． 254 рp．，illus．An introductory how－to book that treats microprogramming and emulation topics，this volume assumes that readers are acquainted with basic con－ cepts of computers．Discussions include the complex relationships between programs． computers，and modern methods of implementation．333／874 Pub．Pr．\＄20．95 Club Pr．，\＄15．70

DATABASE PROCESSING

Fundamentals，Modeling，Applica－ tions．By David M．Kroenke． 408 pp．，illus．An introduction to database－oriented systems． presenting material that covers the full spec－ trum of all activities involved．Physical repre－ sentation，modeling，commercial systems，and implementation are discussed equally with no particular emphasis on one area to the neglect of any other．
${ }_{769 / 931} \quad$ Pub．Pr．，$\$ 16.95 \quad$ Club Pr．，$\$ 12.95$

MICROPROCESSOR

APPLICATIONS MANUAL．By Motorola Semiconductor Products．inc． 720 pp．．illus． $81 / 2 \times 11$ format．With a nuts－and－bolts kind of practicality．this manual by the Motorola people （who should know）gives you detaled applica－ tions information on microprocessors and as sumes no prior knowledge on your part about MPUs．It covers all the systems phases and explores such topics as architecture，the instruction set．addressing modes，interrupt structure，and other vital MPU features
435／278 Pub．Pr．，$\$ 32.50$ Club Pr．，$\$ 24.00$
MINICOMPUTERS：Structure and
Programming．By T．G．Lewis and J．W． Doerr 282 pp．illus．This valuable handbook makes an outstanding introductory guide to both the hardware and software of today＇s minicomputers．Its broad coverage includes assembly language machine architecture． and small machine algorithms．＂Timely．．．a nice job on structure and content．＂－Data Pro－ cessing Digest．
773／009 Pub．Pr．，\＄13．95 Club Pr．．\＄11．75

ILLUSTRATING BASIC：A Simple
Programming Language．By Donald Al－ cock． 134 pp．，illus．Completely handwritten by the author in a most unusual way，and contain－ ing an abundance of figures，diagrams，and drawings．this book was inspired by the need for a guide that would help readers who have to use computers but are terrified by them．
771／928 Pub．Pr．，$\$ 10.95 \quad$ Club Pr．，$\$ 8.95$
CHESS AND COMPUTERS By David Levy． 145 pp．．illus．All over the world，great human effort and computer resources are being de－ voted to producing a program that can play chess as well as a master．This first comprehen－ sive book on the subject shows why the project is wor thwhile because the techniques employed in writing a strong chess program may be used to help solve other programs．
785／252 Pub．Pr．，$\$ 12.95 \quad$ Club Pr．，$\$ 10.50$

THE Z－80 MICROCOMPUTER

HANDBOOK．By William Barden，Jr． 304 pp． illus．．paperbound．Sooner or later the Z－80 will have a successor．For the time being．this book gives you the entire＂state of the art＂in microcomputer technology today．Arranged in three convenient and logically developed sec－ tions，the book discusses architecture and interface signals，then the powerful interrupt sequences of $Z-80$ and interfacing examples of $1 / O$ memory devices．
784／914 Pub．Pr．，$\$ 8.95$
Club Pr．，$\$ 7.60$

ADVANCED ANS COBOL WITH

STRUCTURED PROGRAMMING．By Gary D．Brown． 497 pp．，illus．More and more people learn COBOL each year，increasing the number of active COBOL programmers．Hav－ ing advanced beyond the introductory stages， they need a book that touches only lightly on the basics，and then goes into detail on both advanced programming techniques and ad－ vanced COBOL statements．This book begins where the basic manuals leave off
772／1 18 Pub．Pr．，$\$ 19.95 \quad$ Club Pr．，$\$ 15.95$

COMPUTER ARCHITECTURE AND

ORGANIZATION．By John P．Hayes． 512 pp．，illus．Assuring you a far deeper under－ standing of computer design at the systems level，this comprehensive，in－depth volume gives you the broad coverage you need of computer architecture－and in a most rigor－ ous but highly readable manner．It provides all the mathematics needed for analyzing com－ puter performance，plus extensive reterences for additional reading．
273／634 Pub．Pr．，\＄21．50 Club Pr．，\＄16．50

COMPUTER PROFESSIONALS＇BOOK CLUB

saves you both time and money！

Here is a book club designed to meet all of your professional as well as hobbyist needs by providing practical books about computers on a regular basis at below publisher prices．If you＇re missing out on important technical literature－if today＇s high cost of reading curbs the growth of your library－here＇s the solution to your problem．

The Computer Professionals＇Book Club was organized for you，to provide an econom－ ical reading program that cannot fail to be of value．Administered by the McGraw－Hill Book Company，all books are chosen by qualified editors and consultants．Their understanding of the standards and values of the literature of interest to you guarantees the appropriateness of the selections．
How the club operates：Thirteen times a year you receive free of charge The Computer Professionals＇Book Club Bulletin．This announces and describes the Club＇s featured book as well as alternate selections available at special members＇prices．If you want to examine the Club＇s feature，you do nothing．If you prefer one of the alternate selections－or if you want no book at all－you notify the Club by returning the card enclosed with each Bulletin．
As a Club member，you agree only to the purchase of four books（including your first selection）over a two－year period．Considering the many books published annually，there will surely be at least four you would want to own anyway．By joining the Club，you save both money and the trouble of searching for the best books．

Two Special premium books come to you with your first selection

－－－MAIL THIS COUPON TODA
 COMPUTER PRRFESSIONALS BOCK CLUB

Please enroll me as a member and send me the three books indicated．I am to receive the two bonus books at books indicated．I am to receive the two
the introductory price of $\$ 2.95$ plus my first selection，plus tax，postage，and handling．If not completely satisfied．I may return the books within 10 days and request that my membership be cancelled．If I keep the books．I agree to take a minimum of three additional books during the next two years at special Club prices（guaranteed 15% dis－ wount often more）．I will receive the Club Bulletin 13 times a year．If I want to examine the ff atured selection．I need take no action．It will be shipped aistomatically．If，however， I want an alternate selection－or no book at all－I simply notify the Club by returning the convenient card always enclosed．I will always have a minimum of 10 days in which to return the card and you will credit my account fully， including postage．if this is not the case．Membership in the Club is continuous but cancellable by me at any time after the four－book purchase requirement has been filled． This order subject to acceptance by McGraw－Hill．Or－ ders from outside the continental U．S．must be prepaid． Company，business or institutional tax exemption status is not applicable to purchases made through individual Club memberships．All prices subject to change with－ out notice．Offer good for new members only．Postage and handling charges are acded to all shipments． Members are billed when books arrive．

NAME
ADDRESS
CITY \qquad STATE ZIP

EXTRA SAVINGS：Remit in full with your order．plus any local and state tax．and McGraw－Hill will pay all regular postage and handling state tax．and McGraw－Hili will pay all egular postage a 39349
charges．

TELLS YOUR CUSTOMERS THAT YOU ARE THE P.R.I.D.E. OF ELECTRONICS SERVICE

Your NESDA membership says you are Professional, Reliable, Industrious, Dependable and Ethical

Don't YOU want to

 say nice things about YOUR business?JOIN NESDA
Sothetor iotormation io NESOO\$ \% 25 ExaCo Lane pyll maodis in 46224

Use Quick Wedge to repair a control panel, hook up a power monitor, connect a power supply, install a motor starter

They do all that ordinary screwdrivers do, PLUS they hold and start the screw

Screw-holding screwdrivers
Unconditionally guaranteed. bUY A SET TODAY
See your dealer or write to:
Kedman Company, P.O. Box 25667,
Salt Lake Citv, Utah 84125 CIRCLE 15 ON FREE INFORMATION CARD

computar produchs

More information on new products is available from

 manufacturers of items identified by a Free Information number. Free Information Card is inside back cover.COMPUTER, Prom Setter, assembled or in kit form, is designed to read/write 1720A and 2704/ 2708 EPROM's. The unit consists of an S-100 bus-compatible main module board and a low-insertion-force PROM socket unit, with no external power supplies needed. The main module functions as an I/O device using 4 consecutive

addresses out of 256 available segments. The Prom Setter can be used to read/write other EPROM's just by rearranging the main module's interconnecting cable to the 25 pin connectors. Adding a DPDT switch allows the unit to read/ write different EPROM combinations; i.e., 1720A, $2704 / 2708$ and TI's 2716. Changing to a 6 -pole 3 -throw switch, plus diode, Zener diode and 2 resistors, lets the unit read Intel's 27 16. The Prom Setter comes complete with all hardware and software. It sells for $\$ 210$ (kit) and $\$ 375$ (assem-bled).-Szerlip Enterprises, 1414 W. 259th St., Harbor City, CA 90710.
CIRCLE 117 ON FREE INFORMATION CARD

GRAPHICS COMPUTER, Compucolor 11 , is available in five models, all with 13 -inch, 8 -color CRT; separate ASCll keyboard; 8080A CPU; all editing features (page/roll, erase line, etc.); and a built-in

minifloppy disc drive. The models range from one providing 4 K RAM with a 16 -line by 64 -character per-line format to a top-of-the-line unit with 16 K RAM, complete vector graphics, 32 -line by $64-$
character-per-line format and an expanded keyboard. The high-level language is BASIC 8001 . Available software includes tutorial games, a checkbook balancing program and game programs for fun, such as Star Trek, Chess and Biorhythm. Suggested retail price: \$795-\$1995.Compucolor Corp., Box 569, Norcross, GA 30091.

CIRCLE 118 ON FREE INFORMATION CARD
HIGH-LEVEL LANGUAGE, 6800 Compiler, is a fast 3-pass compiler providing a high-level discbased language for 6800 computers having at least 16 K RAM. The new language is called STRUBAL (STRUctured BAsic Language) and uses relocatable and linkable code. The software contains a full set of scientific functions, one- and two-dimensional arrays, 3 data types, structured programming modes, variable-length strings, embedded assembly language in the source program, and COMMON and DUMMY sections. The 6800 Compiler is provided on floppy disc along with a user manual. Price: $\$ 99.95$.-Hemenway Associates, Inc., 151 Tremont St., Suite 8P, Boston, MA 02111.

CIRCLE 119 ON FREE INFORMATION CARD

LOW-PROFILE KEYBOARD, Touchcoder, eliminates "double-strike" syndrome and produces 8 bit ASCII and other codes in any level or polarity without interfacing electronics. With the standard ASCII keyboard there is no restriction on the layout or number of keys; on the the standard cluster keyboard, the format is $10,12,16$ digits

Other specifications are: rise- and falltimes, less than $1 \mu \mathrm{~s}$; zero bounce; life, 100 million operations. Unit can either be flush-mounted or topsurface mounted. Price: $\$ 35$, OEM quantities.Computronics Engineering, 7225 Hollywood Blvd., Los Angeles, CA 90046.
CIRCLE 120 ON FREE INFORMATION CARD
COMPUTER SOFTWARE, Cosmac 1802 Simulator Program, allows a 6502 microprocessor to execute the Cosmac 1802 instruction set. All Cosmac internal registers can be viewed in a single-step mode or in a trace mode. All Cosmac software is supported except for DMA (Drect Access Memory).
The software is in a KIM-1 mode that enables a KIM-1 to be a development and debugging tool for Cosmac software; no additional hardware or software are required. The simulator leaves two full pages of memory open for Cosmac programs;
alternative run mode provides an optional onehalf page. The simulator program can be relocated in ROM and adapted to other 6502 systems.
Complete package contains KIM- 1-format cassette tape, manual and assembly level source/ object listing. priced at $\$ 10$, plus $\$ 1.50$ postage/ handling (California residents add state and loca taxes as applicable.)-Dann McCreary, Apt. 2R, 4758 Mansfield St., San Diego, CA 92116
CIRCLE 121 ON FREE INFORMATION CARD
PARALLEL INTERFACE is $\mathrm{S}-100$ bus compatible and can be used with System 2 and System 3 computers. It provides 8 bidirectional 8 -bit I/O ports that can be used singly or coupled together For handshaking operations, I/O status flags can be grouped on one port and accessed with a single $1 / O$ statement

Additional features include 8 sense switches, 8 ED's, 2 bits of opto-isolated input and 2 bits of relay-driven output. The board is available assembled for $\$ 295$, or in kit form for $\$ 195$. Cromemco, Inc., 280 Bernardo Aye., Mountain View, CA 94040 .

CIRCLE 122 ON FREE INFORMATION CARD

Try this exciting new hobby! Build your own electronic concert organ. I's easy. No technical knowledge required. Just follow the clearly pictured instructions of the famous Wersi do-it-yourself system. Choose from seven different models. Send $\$ 2.00$ (refundable) with coupon for coloriul 104 page catalog.
 (11) 11 =1-

CIRCLE 30 ON FREE INFORMATION CARD

A fine selection of small tools, measuring instruments, hard-to-find items for shop, home and lab Convenient one-stop shopping for technicians, engineers, craftsmen, hobbyists. Major credit cards accepted, satisfaction assured. Get your NATCAM catalog today

National Gamera, Inc. 2000 Wesf Union Ave., Dept. GBF Englewood co soifo USA
CIRCLE 16 ON FREE INFORMATION CARD

MATHEMATICS ELECTRONICS ENGINEERING MATHEMATICS ADVANGED MATHEMATICS DIETIAL TECHNOLOCY

These unusual courses are the result of many years of study and thought by the President of Indiana Home Study, who has personally lectured in the classroom to thousands of men, from all walks of life, on mathematics, and electrical and electronic engineering
'You will have to see the lessons to appreciate them!

WE ARE THIS SURE:-you order your lessons on a money-back guarantee.
In plain language, if you aren't satisfied you don't pay, and there are no strings attached.
Write today for more information and your outline of courses.
You have nothing to lose, and everything to gain!

The INDIANA
 HOME STUDY INSTITUTE

EASTERN DIVISION
P.O. BOX 1189

PANAMA CITY, FLA 32401
CIRCLE 13 ON FREE INFORMATION CARD

FREE GTTRE CATALOG

Audio-Computers

Instruments

 Kits \& Assembled

Southwest Technical Products Corporation 219 W. RHAPSODV SAN ANTONIO, TEXAS 78216

CIRCLE 60 ON FREE INFORMATION CARD

steran praduats

More information on new products is available from manufacturers of items identified by a Free Information number. Free Information Card is inside back cover.

IN-DASH CAR STEREO UNITS, Series S600 8track models and Series T607 cassette models. Some units in the Series S600 contain RoadRated Receiver circuitry for increased performance when the automobile is in motion and a dial-in-door cartridge slot. Additional unit features are: for the model S604, repeat and separate bass/treble controls; model S605. LOC/DX and stereo indicator; model S608, repeat, separate bass/treble, FM muting, stereo matrix, LOC/ DX; model S682, Powerplay, repeat, fast-forward, FM muting, LOC/DX; model S683, preset tuning. fast-forward, repeat, LOC/DX: model S685 (shown), Powerplay, digital readout, clock, preset luning switch, FM muting, LOC/DX, and poweroff eject button. Price range: $\$ 129.95-\$ 279.95$.

Most units in the Series $T 600$ cassette format include the following features: Road-Rated Receiver circuitry, dial-in-door slot. FM muting, locking fast/forward rewind and LOC/DX. The model T607 contains an auto-reverse switch and fader: model T6 10, stereo matrix and end-of-tape eject button; model T611, fader, power-off and end-of-tape eject buttons; model T633, preset tuning, fader, power-off and auto-eject buttons; model T681, Powerplay, power-off and end-oftape eject buttons; model T683, auto-reverse. loudness and fader; model T685, digital readout, Powerplay. clock, preset tuning, auto-reverse and fader. Price range for the Series $T 600$ cassettes: \$114.95-\$299.95.-Craig Corp., 921 W. Artesia Blvd., Compton. CA 90220.

CIRCLE 123 ON FREE INFORMATION CARD

PHONO RIBBON CARTRIDGE, model HV-9 100, is fully handmade and assembled using ribbon technology to eliminate internal conductance problems. Designed to be used with the model HA-9000 head amplifier, the model HV-9100

(shown) has the following specifications: a nominal frequency response of $20 \mathrm{~Hz}-30 \mathrm{kHz}$; channel balance within 1 dB at 1 kHz ; 3 -ohm impedance at 1 kHz ; rated output voltage of $0.04 \mathrm{mV}(4 \mathrm{mV}$ with model HA-9000 amplifier); stylus pressure of $1.6-1.8$-grams and a solid diamond 0.4×0.8
elliptical stylus. The cartridge weighs 19 grams. Suggested retail prices: model HV-9100 cartridge, \$220; model HA-9000 amplifier, \$275.Nagatronics, 2280 Grand Ave., Baldwin, NY 11510.

CIRCLE 124 ON FREE INFORMATION CARD

CASSETTE STORAGE CASE. Large plastic case holds 12 cassettes along with insert cards and outer box, making it ideal for developing cassette

libraries. Retail price: \$5.95.-Maxell Corp. of America, 130 Commercial Way, Moonachie, NJ 07074.

CIRCLE 125 ON FREE INFORMATION CARD

AM/FM STEREO RECEIVER, model LR-120DB, is a top-of-the-line receiver that provides 120 watts-per-channel RMS into 8 ohms from 20 Hz to 20 kHz , with no more than 0.9% THD. The features include: dual tape monitors and dubbing, phono sensitivity switch, FM and audio muting switches, high-blend switch, high-cut and low-cut filter switches and stereo/mono switch, it also includes power output meters with dual ranges, built-in Dolby FM noise reduction and twin headphone jacks.

Specifications include: For the amplifier - a 15 $\mathrm{Hz}-40-\mathrm{kHz}$ frequency response at 1 watt and a phono input sensitivity of $2.5 \mathrm{mV} / 5 \mathrm{mV} / 10 \mathrm{mV}$ (switch-selectable); for the FM section-alternate channel selectivity, 80 dB ; capture ratio, 1.3 dB ; $1.8-\mu \mathrm{V}$ sensitivity; $50-\mathrm{dB}$ quieting, 14.1 dBf (mono) 36.8 dBf (stereo); frequency response, $30-$ $\mathrm{Hz}-15 \mathrm{kHz}+0.5,-1.4 \mathrm{~dB}: \mathrm{S} / \mathrm{N}$ ratio, 74 dB (mono), 70 dB (stereo) without Dolby, 84 dB (mono) 80 dB (stereo) with Dolby: and IF rejection, 85 dB . The AM section provides an alternate channel selectivity of 32 dB at 1 MHz . The model LR-120DB measures $21 \frac{1}{2} \mathrm{~W} \times 7 \mathrm{H} \times 17^{5 / 8}$ inches D and weighs $41 \mathrm{lb}, 14 \mathrm{oz}$. Price: $\$ 599 .-$ Lafayette Radio Electronics Corp., 111 Jericho Turnpike, Syosset, NY 11791.
CIRCLE 126 ON FREE INFORMATION CARD

TURNTABLE TONEARM，model MA－707，is in corporated in Micro Seiki turntables（models DQX－500，DQ－43 and DO－33）and is also available separately．A torsion bar system is used in the tonearm to provide optimum $10-\mathrm{Hz}$ resonance． Specifications include：maximum tracking error less than 1.5 degrees／inch；tracking force adjust－ ment of $0-3$ grams；and a $315-\mathrm{mm}$ overall length； a 4 －to 12 －gram－weight cartridge is recom－ mended．

The model DOX－500 turntable is a direc1－drive， quartz－locked manual unit，with a 5.75 －lb platter and dustcover；the model DQ－43 turntable has a $3.33-\mathrm{tb}$ aluminum platter with automatic lift and shutoff capability，and a rosewood base：and the model DD－33 features a servo－controlled motor and a $2-\mathrm{Ib}$ atuminum platter．Suggested retail prices：model MA－707 tonearm，\＄200；model DQX－500．\＄500：model DQ－43，\＄450；model DD－ 33．$\$ 350$－TEAC Corp．of America， 7733 Tele－ graph Rd．，Montebello，CA 90640.
CIRCLE 127 ON FREE INFORMATION CARD

WANT BIGGER
PROFITS？ PROFITS？
More and more servicemen More and more serviceme
are finding out now great Oneida＇s NuColor Picture Tube Restorer is！Not a Brightener，but a pow life in many new way to put colorless．picture old．Weak，Customer satisfaction now tubes．Ine way to a picture tube sale see your
paves ine down the line．Get all the facts．．．see your us direct．

Oneidàs

 NEW．．． TRIED AND TESTEDNU－COLOR PICTURE TUBE RESTORER

Cramped for Antenna space？

The McKAY DYMEK DA 100.

The DA 100 is a compact，wide dynamic range，broadband，untuned，omni－direc－ tional receiving antenna covering the frequency range of 50 kHz to 30 MHz ． The exterior module，a small weather－proot box with a 56 inch（ 142 cm ）whip delivers the signal to the power supply unit through a supplied 50^{\prime} coaxial cable
The power supply locates near your general coverage receiver and attaches with a supplied patch cord．
The DA 100 antenna is small，but will equal or outperform a 100^{\prime} long wire antenna， and is priced within reach of everyone！ Output Impedance－Attenuator Switch provided to match receiver input requirements and prevent overload

Order factory Direct．Call toll free today！ Money Back guarantee．Rent／Own Plan available．Specs and details on request．
Nationwide 800／854－7769 V／x California 800／472－1783

11McKay Dymek Co．
111 S．College Ave．，PO Box 5000 Claremont CA 91711
CIRCLE 8 ON FREE INFORMATION CARD

Don＇t risk a ${ }^{\text {s20 }}$ IC chip ．．．be safe with－2］ DIP SOCKETS costing pennies！

Don＇t damage an expensive IC chip with soldering iron heat！Simply solder an R－N DIP socket to your PC board，then insert IC chip into the socket．Changes in your microprocessor system are easy．Just remove the IC chip－and then take the low cost socket off of the board without harming the chip．
ORDER ROBINSON－NUGENT DIP SOCKETS FROM：

DIGI－KEY Corp．

Carries a full line of R－N IC Sockets
TOLL FREE－1－800－346－5144 In Minnesota－1－218－681－6674

ALLIED Electronics

Specify 906 Series IC Sockets
TOLL FREE－1－800－433－1570 In Texas－1－800－792－8760

The best speaker kit is a system designed by Electro-Voice that allows you to choose your own level of performance; from a studio monitor to a modest bookshelf system, from a wide selection of woofers, tweeters, midrange drivers and crossovers.
Then Electro-Voice provides detailed plans on how to construct the enclosures designed specifically for the drivers you chose.
Only Electro-Voice gives you all the options. But, then, Electro-Voice is known for their superb quality speakers - not for kits.
To get your component speaker cata\log and construction plans package, just send $\$ 1.00$ to Electro-Voice Component Speaker Systems, 600 Cecil St., Buchanan, MI 49107.

$\mathrm{E}_{\boldsymbol{v}}$
 Electro.Voice
 a gultan company

600 Cecil Street, Buchanan, Michigan 49107

PROFESSIONAL AIDS SHIELF FILES KEEP MAGAZINES. CATALOGS, MANUALS, JOURNALS. AND REPORTS NEAT, ORGANIZED

Eliminate the clutter of loose magazines, catalogs, etc. Find what you want, when you want it by utilizing these handy shelf or desk top files. Available in 6 sizes from Reader's Digest to newspaper size. Constructed of heavy duty fibreboard. Attractive ront panel.
Adhesive identification abels included. Popular letter size: $111 / 2 \times 9 \times 33 / 4$

ORDER DIRECT

10 for $\$ 15.89$ - 25 for $\$ 28.97$
 Other sizes availabia Organize hipped pre-peid, Canade, Ruest Catalog visa \& master charge accepted adse card no. and expiration pate PROFESSIONAL AIDS CO. 1 S . WACKER DR., SUITE RE 130 CHICAGO, ILL. 60606

CIFCLE 78 ON FREE INFORMATION CARD

new lit

More information on new lit is available from the manufacturers of items identified by a Free Infor－ mation number．Use the Free In－ formation Card inside the back cover of this issue．

ELECTRONIC COMPONENTS CATALOG， 1978 Purchasing Manual 518， 88 pages offering a broad range of components，tools，hardware and equipment．The catalog features an extensive semiconductor line，LED＇s and lamps，SCR＇s and Triacs，plus hundreds of other components－ from alligator clips to wire and cables．A handy order form is contained in the back，and a conve－ nient quick index on the front cover．－Mouser Electronics， 11511 Woodside Ave．，Lakeside，CA 92040.

CIRCLE 128 ON FREE INFORMATION CARD
COMPUTER PRODUCTS GUIDE， 1978 System Builders＇Catalog，contains 48 pages of data on computers，peripherals and computer books and magazines，complete with descriptions and a comparison chart for over 1500 products．In－ cluded are Southest Tech 6800，IMSAI 8080， Processor Tech Sol 20，IASIS 8080，Olivetti P6060，Intersil Intercept．Jr．，Commodore Kim， RCA Cosmac，Motorola 6800 and National SC／ MP computers．

There＇s also a wide choice of used equipment， including Centronics printers，Teletype and Oliv－ etti teletypewriters，CRT terminals，video moni－ tors，keyboards，modems，and many more．The back side of the catalog carries an additional 31 pages of used computers，memory and peripher－ als．The catalog is available for $\$ 1$ ．－Computer Warehouse，American Used Computer Corp．， 584 Commonwealth Ave．，Boston，MA 02215.

MICROCOMPUTER BROCHURE is a four－page roundup of manufacturer＇s line of computers， peripheral devices and software．Among the 18 products described is the Memorite video－based text－editing system incorporating the Vector－1 computer．Many S－100 bus－compatible boards are also included，as well as an assembler／editor program，a dissassembler and a flexible－disc operating system．－Vector Graphic，Inc．， 790 Hampshire Rd．，$A+B$ ，Westlake Village，CA 91361.

CIRCLE 129 ON FREE INFORMATION CARD
HEATH SCHLUMBERGER INSTRUMENTS，Cat－ alog 811－25，contains 32 pages of assembled test instruments for hobbyists and service techni－ cians．Some of the products featured are oscillo－ scopes，power supplies，signal and function gen－ erators，VOM＇s，DMM＇s，strip－chart recorders， and a complete line of accessories，including probes and connecting cables．Additionally，the catalog contains a list of self－instruction courses suitable for industrial training，covering such top－ ics as AC and DC electronics，semiconductor devices and digital techniques．－Heath Schlum－ berger Instruments，Dept．570－020，Benton Har－ bor，MI 49022.

CIRCLE 50 ON FREE INFORMATION CARD
 rotates every which way to quickly and securely position electronic parts and PC boards exactly where wanted． Sturdy all metal construction．Model 396 PanaVise shown．Available at your electronic distributors，boxed ready to go，along with a variety of other

PanaVise interchangeable bases，holders and accessories．
 CIRCLE 47 ON FREE INFORMATION CARD

You Can Count On DAVIS！

NEW CTR－2A

$500 \mathrm{MHz} \& 1 \mathrm{GHz}$ COUNTERS
NOW WITH
PERIOD MEASUREMENT（Optional） AND BUILT－IN PREAMP
－ 8 Digit ．3＂LED Display
－High Stability TCXO Time Base
－Built－in VHF－UHF Prescaler \＆Preamp
－Period lus to 1 sec ．（optional）
－TCXO Sta．± 2 ppm
－Input Diode Protected
－12V－DC Operation（optional）
－Oven Crystal .5 ppm（optional）
－Selectible Gate Times ． 1 sec ．\＆ 1 sec ．
500 MHz kit CTR－2A－500K $\$ 249.95$
500 MHz assembled CTR－2A－500A 349.95
1 GHz kit CTR－2A－1000
399.95

1 GHz assembled CTR－2A－1000A 549.95
OPTIONS
（02）Oven Crystal
$\$ 49.95$
（03） $43^{\prime \prime}$ LED
10.00
（04） 12 V －DC
10.00
（05） 10 sec．Time Base
10.00
（06）Period Option
15.00

DRD］

DAVIS ELECTRONICS
636 Sheridan Drive
Tonawanda，NY 14150
716／874－5848

ADVANCING the state of the art

features：score editing，bridges，introt， external sync to sequencers foot controls， memory save switct \＆much more．

Enter scores in seconds
NO PROGRAMMI NG KNOWLEDGE IS REQUIRED

High Fidelity describes the 3750 as ＂an easy project．．．fun to do and yields delightful results．．．．an excellent educational tool and versatile aid to the musician who can＇t afford a live rhythm section．＇
\＃3750 ．．．．．\＄84．95．．．（＋\＄3 shipping） Another Great Kit from：；ain
11 r 1020 WEST WILSHIRE BIVD．OKLANOWA CITY，OK 73116
\square Send Programmable Drum Set Kit
（ $884.95+$ shipping enclobed）
\square Faotory assembled Programmable Drum Set （ $8149.95+\$ 3.00$ shipping）
name：
address：
City：\quad State：＿＿＿Zip：＿＿ \square SEND FREE CATALOG

CIRCLE 21 ON FREE INFORMATION CARD

World's biggest and best source of top-quality electronic kits!
Look at what's new in our new just-off-the-press catalog!
NEW
Computerized Weather Monitor

NEW
Digital
Readout Car

Clock with Trip Timer

Versatile clock/imer for any vehicle shows time in hours and minutes, has 24 -hour timer that reads to nearest second. Bright easy-to-read display, low-power circuit doesn't drain battery

NEW

Deluxe Dual-Trace Oscilloscope
Low-priced dual-trace scope
 ideal for audio and TV servicing. Features outstanding sensitivity, extra-bright traces, selectable triggering, 7-position variable time base, DC to 5 MHz bandwidth.

NEW

Hand-Held 2-Meter Transceiver Superb features specifications and a great low price make the VF-2031 a terrific buy in a hand-held
 two-meter transceiver. Features 8 -channel simplex with $\pm 600 \mathrm{kHz}$ offset using one crystal per channel, minimum 2 watts out, and $0.5 \mu \mathrm{~V}$ sensitivity for 20 dB quieting. Includes built-in antenna, nickel-cadmium batteries and battery charger. An optional tone encoder and other accessories also available.

800000000000000000

EXPERIENCE NECESSARY

Thousands of people with no electronics experience whatsoever - people who have never handled a soldering iron before - have proved that you can build any Heathkit product you want - and enioy every moment of it! Simple step-by-step manuals make it easy as 1-2•3, and every Heathkit product you build will be a source of pride and satisfaction for years to come as you say "I built it mysell'"!

NEW

Rack-Mount Stereo Components
Heath has developed an entire new line of sophisticated audio equipment designed to offer the striking good looks and versatility of rack mounting combined with specifications and performance capabilities that are the equal of the finest components available today! The AA-1600 Stereo Power Amplifier features 125 watts, minimum RMS, per channel into 8 ohms, with less than 0.05% total harmonic distortion from $20-20,000 \mathrm{~Hz}$. The AD-1700 provides a graphic LED display of power output to monitor system performance and help prevent overloads. Other components soon to come will be a versatile, low-distortion stereo preamplifier, and a deluxe digital FM-AM Stereo Tuner.

ARIzONA - Phoenix, b5017, 2727 W. Indian School Rd. 602-279-6247
CALIFORNIA - Anaheim, 92b05, 330 E. Ball Rd 714-776-9420; El Cerrito, 94530,6000 Potrero Ave. 415-236-8870: Loz Angeles, $90007,2309 \mathrm{~S}$. Flower St 213-749-0261; Pomona, 91767, 1555 Orange Grove Ave. N 714-623-3543. Redwood City, 94063,2001 Middlefield Rd 415-365-8155: Sacramento, 95825 , 1860 Fulton Ave. 916-486-1575; San Diego, (La Mesa, 92041), 8363 Center S. Bascom Ave. $408-377-8920$: Woodland Hills, 91364 22504 Vent ara Blud. 213-882-0531
COLORADO - Denver, 80212, 5940 W. 38th Ave. 303-422-3408.
CONNECTICUT - Hartord (Avon, 06001), 395 W. Main St (Rie. 44) 203-678.0323.
FLORIDA - Miami (Hialean. 33012). 4705 W. 16th Ave. 305.823-2280: Tampa, 33614. 4019 West Hillsborough Ave 813-886-254
GEORGIA - Allants, 30342, 5285 Roswell Rd. 404-252-4341 ILLINOIS - Chicago, $60645,3462-66$ W. Devon Ave
$312-583-3920$, Chicago (Downers Grove, 60515), 224 Ogden Ave. 312-852-1304.
INDIANA - Indianapolis, 46220, 2112 E. 62nd St 317-257-4321

KANSAS - K

913-362-4486.
KENTUCKY - Louisville, 40243, 12401 Shelbyvilie R 502-245-7811.
LOUISIANA - Now Orleans (Kenner, 70062)
1900 veterans Memorlal Hwy -504-722-6321.
MARYLAND - Baltimore, 21234, 13. E. Joppa Rd 301-661-4446; Rockville, 20852,' 5542 Nichoison Lane. 301-881-5420
MASSACHUSETTS - BOBIO (Peabody, 01960). 242 St. 617-531-9330: Boaton (Wellesley. 02181), 165 Worcester Ave. (Rt. 9 Just west of Rt. 128) 617-237-1510. MICHIGAN - Detrolt, 48219, 18645 W. Elght Mile Rd. $313-535-6480$
$313-772.0416$
MINNESOTA - MInneapoils (Hopkins, 55343), 10ヶ Shady Oak Rd. 612-938-6371; St. Paul, 55106, 1645 white Bear Ave 612-778.1211
MISSOUAI - St. Louis (Bridgeton) 63044, 3794 McKelvey Rd. 314-291-1850.
NEBRASKA - Omaha, 68134, 9207 Maple St. 402-391-2071
NEW JERSEY - Fair Lawn, 07410, 35-07 Broadway
(Rte, 4) 201-791-6935: Ocean, 07712, 1013 State Hwy. 35
if you want quality...value...and pride of craftsmanship get the NEW HEATHKIT' CHRISTMAS

COAST-TO-COAST

NEW YORK - Buftalo (Amherst, 14226). 3476 Sheridan Dr. 716-835-3090; Jerlcho, Long Island, 11753, 15 Jericho
Turnpike. 516-334-8181; Rochester, 14623, 937 Jefferson Turnpike. 516-334-818i; Rochest (North White Plains, 10803), 7 Reservoir Rd. 914-761-7690.

OHIO - CIncinnetI (Woodiawn, 45215), 10133 Springfield Pike. 513-771-8850; Cleveland, 44122, 2B100 Chagrin Blvd. 216-292-7553; Columbus, 43229, 2500 Morse Rd. 614 -475-7200; Toledo, 43615, 48 S. Byme Rd. 419-537-1887. PENNSYLYANIA - Philadelphla, 19149, 6318 Roosevelt Blvd. 215-288-0180; Frazer (Chaster Co.) 19355, 630 Lancaster Pike (Rt. 30) 215-647-5555; Pliteburgh, 15235 3482 Wm . Penn Hwy. 412-824-3564.
RHODE ISLAND - Providence (Warwick, 02886) 558 Greenwich Ave. 401-738-5150.
TEXAS - Dallas, 75201, 2715 Ross Ave. 214-826-4053; Houston, 77027, 3705 Westheimer. 713-623-2090; San Antonio, 78216, 7111 Blanco Road. 512-341-8876. VIRGINIA - Aloxandile, 22303, 6201 Richmond Hwy. 703-765-5515; Norfolk (VIrginia Beach, 23455), 1055 Independence Blvd. 804-460-0997
WASHINGTON - Seattle, 98121, 505 8th Ave., N. 206-682-2172.
WISCONSIN - Mllwaukee, 53218, 5215 W. Fond du Lac 414-873-8250.

INTERNATIONAL FM-2400CH

FREQUENCY METER FOR IESTING MOBILE TRANSMITTERS AND RECEIVERS
 - Portable - Solid State - Rechargeable Batteries

The $\mathbf{F M} \mathbf{- 2 4 0 0} \mathbf{C H}$ provides an accurate frequency standard for testing and adjustment of mobile transmitters and receivers at predetermined frequencies

The FM-2400CH with its extended range covers 25 to 1000 MHz .
The frequencies can be those of the radio frequency channels of operation and/or the intermediate frequencies of the receiver between 5 MHz and 40 MHz .

Frequency stability: $\pm .0005 \%$ from $+50^{\circ}$ to $+104^{\circ} \mathrm{F}$
Frequency stability with built-in thermometer and temperature corrected charts: $\pm .00025 \%$ from $+25^{\circ}$ to $+125^{\circ}$ (.000125\% special 450 MHz crystals available).

- Tests Predetermined Frequencies 25 to 1000 MHz
- Extended Range Covers 950 MHz Band
- Pin Diode Attenuator for Full Range Coverage as Signal Generator
- Measures FM Deviation

FM-2400CH (meter only) Cat. No. 035320
$\$ 595.00$
RF crystals (with temperature correction)
24.90 ea.

RF crystals (less temperature correction) 18.90 ea IF crystals catalog price

DIGITAL WINDSHIELD WIPER DELAY
continued from page 63
control circuit to be used with wiper circuits having a switched ground connection. Note that the D input to IC5-a is normally high with the wipers switched off; therefore, the connections to pins 1 and 2 of IC5-a have been transposed. Rectifier D4 blocks +12 volts from any leakage paths in the wiper circuit. A wiper circuit with switched ground (used by General Motors) is shown in Fig. 13. When the wipers are switched on, the relay closes to energize the field winding in series with the armature. A secondary field winding shunts the armature in slow speed. In fast speed a 20 -ohm resistor is place in series with the shunt winding to minimize its effect. When the wipers are switched off, the relay is de-energized, but its contact remains latched closed until released mechanically by the motor when it reaches the park position. Figure 14 shows how to attach the control to this type of wiper circuit to affect both slow and fast speed.

The most difficult windshield wiper circuits to interface with are those having one fixed speed and one variable speed plus concealed blades; some even use three-pole and even four-pole selector switches. However, with a little patience, ingenuity, and perhaps using a supplementary relay or the second set of timerrelay contacts, you should be able to create a satisfactory arrangement. (Radio-Electronics would like to hear from anyone who feels he has developed an unusually clever circuit for attaching the control to a popular model car, and will consider publishing details in a future issue for the benefit of other readers.)

R-E

TheWünderBuss"

End noise and cross-talk with our exclusive Noiseguard" system

Build your S-100 system on the WunderBuss ${ }^{\text {TM }} 20$ slot bus-board with Noise "textbook clean" signals. reflections.
guard ${ }^{2 \times 1}$ and you'll get

The Noiseguard ${ }^{T M}$ system's interlaced ground system shields all bus lines from cross-talk. . and lowpower active termination absorbs noise and signal

The printed circuit board is double-sided and (of course) has a solder mask. And there's 3 uncommitted
positions for peripheral power.
The incomparable WünderBuss ${ }^{\mathrm{TM}}$, by Morrow's Micro-Stuff, is now available for $\$ 76$ alone. With 10 edge connectors, $\$ 120$. With 20 edge connectors

[^2] CIRCLE 49 ON FREE INFORMATION CARD

merktitentier

Abstract

CLASSIFIED COMMERCIAL RATE（for firms or individuals offering commercial products or services）．$\$ 1.50$ per word（no charge for zip code）．．．minimum 15 words． NONCOMMERCIAL RATE（for individuals who want to buy or sell personal items） $\mathbf{8 5} \mathbf{\$}$ per word ．．． no minimum． ONLY FIRST WORD AND NAME set in bold caps．Additional bold face（not available as all caps）at 104 per word．Payment must accompany all ads except those placed by accredited advertising agencies． 5% discount for 6 issues， 10% for 12 issues within one year，if paid in advance．All copy subject to publisher＇s approval．Advertisements using P．O．Box address will not be accepted until advertiser supplies publisher with permanent address and phone number．Copy to be in our hands解 26 th of the third month preceding the date of the issue（i．e．，August issue closes May 26 ） When normal closing date falls on Saturday，Sunday or a holiday，issue closes on preceding working day．

FOR SALE

FREE catalog（anglais）．IC＇s，semi＇s．CORONET ELECTRONICS，649A Notre Dame W．，Montreal， Que．，Canada， $\mathrm{H} 3 \mathrm{C}-1 \mathrm{H} 8$ ．US inquiries．
RADIO \＆TV tubes $36 \$$ each．One year guaran－ teed．Plus many unusual electronic bargains． Free catalog．CORNELL，4217－E University，San Diego，Calif． 92105

BLITZ ZOINK ZATT：UNSCRAMBLE these fascinating police communications with our CODE－BREAKER and keep informed．Tunes all scramble frequencies，works with all scan ners，and is factory built and guaranteod． \＄34．95PP．UNSCRAMBLER KIT：La－ test Technology， $21 / 4 \times 21 / \times X^{1 / 2}$－inch，com－ plete instructions，only \＄19．95PP．Thou－ sands of satisfied customers．Catalog 50 Order from KRYSTAL KITS，BOX 445 BENTONVILLE，ARK．72712．COD or－ ders．501－273－5340．

NOTICE：RECORD RATERS WANTED

No experience required）Each month you will receive nationally released albums to rate．THERE IS NO EXTRA CHARGE for the LP＇s you receive You pay a small membership fee which covers all cosis of the LP＇s．We pay postage．In return for your opinion，build your LP collection．＂First come basis For application write：EARS，DEPT．RX Box 10245 5521 Center St．．Milwaukee．WI 53210.
（C） 1975

SANKEN 50－watt power AMP 22.50 postpaid 50 －volt transformer for above 8.00 postpaid PRARIE SOUNDS，P．O．Box 982，Champaign，IL 61820
RECORDS－TAPESI Discounts to 73\％；all lapels no purchase obligations；newsletter；discoun dividend certificates；100\％guarantees．Free de－ tails DISCOUNT MUSIC CLUB， 650 Main St． Dept．3－1178，New Rochelle，NY 10801

To run your own ciassilied ad，put one word on each of the lines below and send this form atong with your check for $\$ 1.50$ per word（minimum 15 words）to：

Radio－Electronics， 200 Park Avenue South，N．Y．，N．Y． 10003

ORDER FORM
PLEASE INDICATE in which category of classified advertising you wish your ad to appear．For special headings，there is a surcharge of $\mathbf{\$ 1 0}$ ．

```
( )Plans/Kits ( ) Business Opportunities () For Sale
() Education/Instruction ( )Wanted ( )
```

Special Category：$\$ 10$
（PLEASE PRINT EACH WORD SEPARATELY，IN BLOCK LETTERS．）

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25
26	27	28	29	30
31	32	33	34	35

AUDIO modules $15 \mathrm{~W}-60 \mathrm{~W} \times 2$ under $\$ 85.00$ ． Free catalog：AUDIOVISION，Box 955，STN．B， Willowdale，Ont．，Canada M2K 2 T6

PRINTED CIRCUIT
 Positive Acting Photo Resist；Carbide bits；Bubble etchers；Artwork；Epoxy Glass Boards．
 Send stamp \＆address label for flyer TRUMBULL 833 Balra Dr．，El Cerrito，CA 94530

NEW electronic parts．Continuously stocked． Stamp brings cataiog．DAYATPRO ELECTRON－ ICS， 3029 Wilshire Ln．，Dept．RE，Arlington Hts．， IL 60004

SPEAKER INFORMATION KIT

Get 70 pages of speaker facts．specs．construction tips plus info on our raw speakers，crossovers and a line of 9 quality hi－fi speaker system kits．We＇ll send you our full． color catalog：plus How to Hook Up Your System an exhaustive step－by－step treatise on hi－fi system installation：and our Speaker Operating Manual． hock tull of tacts on how to get he most from any speaker system．for only \＄1．00．Even if you don t buy from us we want you to have the facts． That＇s how we got to be the world＇s largest manutac－ urer of speaker kits．
Send to：
Speakerlab，Dept．RE－H 735 N．Northlake
Seattle．WA 98103

TS－510A signal generator $10-420 \mathrm{MHz} \$ 250.00$ ， USM－140C dual－trace oscilloscope $\$ 250.00$ ． Stamp for catalog．E．FRENCH，Box 249，Aurora， IL 60507

QUARTZ crystal－controlled clock movements $\$ 14.95$ ．．．transistorized movements $\$ 8.50$ use C battery ．．．hands included．604 shipping． PEKO，Box 1215 ，Studio City，CA 91604

TASCO offers reliable TV antenna sys－ tem components below wholesale prices． Write for our FREE 32 page catalog full of great surplus bargains．Such bargains as：

B \& K test equipment. Free catalog. Free shipping. Dinosaur discounts. SPACETRON-DL, 948 Prospect, Elmhurst, IL 60126

WHOLESALE, auto stereos, adapters, blank tapes. Write PACIFIC PRODUCTS, 3969 Pacific Coast Hwy, Torrance, CA"90505

NEW, adjustable three-output, regulated power supply, plus 900 parts worth over $\$ 400.00$ in complete cartrivision television electronics assembly. Documentation included. Perfect for microprocessor and all electronic applications. $\$ 16.95$ plus $\$ 4.50$ S\&H. Master Charge, VISA. Free brochure. MADISON ELECTRONICS, 369, Madison, AL 35758. Satisfaction guaranteed.

AMAZING ELECTRONIC PROJECTS and PRODUCTS Lasers Super Powered. Burning. Cutting, Rifte, Pistol. Pockel. See in Dark-Shotgun Directional Mike-er-Energy Producing, Surveillance, Detection Electrifying, Ultrasonic, CB, Auto and Mech, Devices, Elecdreds More-All New Plus INFO MNLTD PARTS SERVICE. Catalog $\$ 1$. Information Unlimited, Dept. R8 Box 716 Amherst, N.H. 03031.

Sinclair 31/2 Digit Multimeter Batt./AC oper 1 mV and. TNA resolution. Resistance to $20 \mathrm{meg} .1 \%$ accuracy. Small portable. completely assem. in case. 1 yr .
guarantee. Best value ever! $\quad \$ 59.95$

Not a Cheap Clock Kit \$14.95 Includes everything except case. 2-PC boards. 6-50"LED Displays. 5314 clock chip, transtormer. all components and full avail. Same kit $w / .80^{\prime \prime}$ displays. $\$ 21.95$
Digital Temperature Meter Kit Indoor and outdoor. Switches back and
forth. Beautiful. $50^{\prime \prime}$ LED readouts. Nothing like it available. Needs no additional parts for complete, full operation. Will measure -100° to $+200^{\circ}$, tenths of a degree, air or liquid. Very accurate. $\$ 39.95$

NiCad Batt. Fixer/Charger Kit Opens shorted cells that won't hold a Opens shorted cells that wont hold a
charge and then charges them up, all in charge and then charges them up. all in
one ktt w/full parts \& instruc. $\$ 7.25$

RCA Cosmac VIP Kit 249.00

Video computer with games and graphics.
'78 IC Update Master Manual 1978 IC Update Master Manual $\mathbf{5 3 0 . 0 0}$ Complete IC data selector 2175 pg . Mas ter reference guide. Over 42.000 cross references. Free update service through 1978. Domestic postage $\$ 3.50$. Foreign $\$ 6.00$.

New Cosmac Super "ELF RCA CMOS expandable to 64 K micro RCA
computer w/HEX keypad input and video output for graphics. Just turn on and start loading your program using the resi dent monitor on ROM. Pushbuttion selection of all four CPU modes. LED indicators of current CPU mode and four CPU states. Single step op. for program debug. Built in pwr supply. 256 Bytes of RAM, audio amp \& spkr. 100 pg . detailed assy. man. incl. new exten. software section. PC board soider masked \& all parts fully socketed. Comp. Kit $\mathbf{\$ 1 0 6 . 9 5}$ High ad dress display option 8.95; Low address display option 9.95; Custom hardwood cab.; drilled front panel 19.75; Nicad Battery Backup Kit w/all parts 4.95; Fully wired \& tested in cabinet 151.70; Quest data 1802 software club. $10-12 \mathrm{pg}$ monthly publication 12.00 per yr 4K EIf Expansion Board Kit with Cassette I/F $\quad \$ 79.95$ Available on board options. 1 K super ROM monitor $\$ 19.95$ Parallel I/O port $\$ 7.95$ RS232 I/F $\mathbf{\$ 3 . 5 0}$ TTY 20 ma I/F $\mathbf{\$ 1 . 9 5}$ S-100 Memory I/F $\$ 4.50$
Tiny Basic for ANY 1802 System Cassette $\$ 10.00$. On ROM Monitor $\$ 38.00$. Super Elf owners, 30% oft. Object code listing or paper tape with manual $\mathbf{\$ 5 . 5 0}$ Original ELF Kit Board \$14.95

Video Modulator Kit $\$ 8.95$ Convert your TV set into a nigh quality monitor without affecting normal usage Complete kit with full instructions

60 Hz Crystal Time Base Kit $\$ 4.40$ Converts digital clocks from AC line frequency to crystal time base. Outstanding accuracy. Kit includes: PC board, MM5369, crystal, resistors. capacitors and trimmer

Clock Calendar Kit $\$ 23.95$ CT7015 direct drive chip displays date and time on $.6^{\prime \prime}$ LEDS with AM-PM indicator. Alarm/doze feature includes buzzer. Complete with all parts, power supply and instructions. less case.
2.5 MHz Frequency Counter

Kit Complete kit less case $\quad \mathbf{\$ 3 7 . 5 0}$ 30 MHz Frequency Counter Kit Compiete kit less case $\quad \mathbf{\$ 4 7 . 7 5}$ $\begin{array}{ll}\text { Prescaler Kit to } 350 \mathrm{MHz} & \$ 19.95\end{array}$

PROM Eraser Ultraviolet, assembled $\$ 49.95$

Stopwatch Kit
$\$ 26.95$
Full six digit battery operated. 2-5 volts. Full six algit battery operated. $2-5$ volts
3.2768 MHz crystaj accuracy. Times to 3.2768 MHz crystai accuracy. Times to
59 min., $59 \mathrm{sec} ., 991 / 100 \mathrm{sec}$. Times std. 59 min., $59 \mathrm{sec}, 9911100 \mathrm{sec}$. Times std.
split and Taylor. 7205 chip, all composplit and Taylor, 7205 chip, all
nents minus case. Full instruc

Auto Clock Kit

$\$ 15.95$
DC clock with 4-50" displays. Uses National MA-1012 module with alarm option. Includes light dimmer, crystal timebase PC boards Fully regulated, comp. instructs. Add $\$ 3.95$ for beautifu dark gray case. Best value anywhere.

PC boards, your artwork. No setup charge. $\$ 0.45 / \mathrm{sq}$. in. single sided, $\$ 0.60 / \mathrm{sq}$. in. double sided. Ohio residents add 4.5% sales tax. DIGITRONICS, P.O. Box 2494, Toledo, OH 43606

SOLID-state brownout protector for central airconditioning systems. Simple 3 -wire connection to existing 24 V controi transformer. $\$ 14.95$ ppus S \& S Electronics, Box 430260, Miami, FL 33143

PRINTED circuit boards from camera-ready art work. Free details. Quantity discounts. CM CIR CUITS, 22 Maple Avenue, Lackawanna, NY 14218

FREE catalog of new electronic parts. KEY ELECTRONICS, Box $3506-R E$, Schenectady, NY 12303
 - RECEIVERS special DX mods - ANTENNAS - PRESELECTORS - TUNERS - CALIBRATORS

- CLOCKS - HEADPHONES • BOOKS - LOGS

GILFER SHORTWAVE
Dept. RE11, Box 239, Park Ridge NJ 07656

KITS•KITS•KITS

Perforated Boards NOT INCLUDED w/100 Series

103 MINI-WINK NEON FLASHER. Random flash pattern. Interesting displays. 6 neon lamps. AC operated

103

$\$ 3.00$
103A (103 w/PCB)
4.65

103B (103 w/PCB,CASE)
6.90

110 ELECTRONIC WHOOPER SIREN. Powerful wailing sound. Dual oscillator circuit. Use with any alarm circuit. Battery not included. 110
$\$ 4.95$
110A (110 w/PCB)
6.50

110B (110 w/PCB,CASE)
9.60

117 TUNABLE ELECTRONIC ORGAN. Tunable 7-note scale. Play sing-a-long favorites. Battery not included.
117
$\$ 7.55$
117A (117 W/PCB)
117B(117 W/PCB,CASE)

120 SIREN/CODE OSCILLATOR. Loud, piercing alarm. Practice Morse code. Battery not included
120
$\$ 4.20$
120A (120 w/PCB)
5.55

120B(120 w/PCB,CASE)
8.65

104 VARIABLE STROBE LIGHT. Great for parties and photography. Variable flash rate. AC operated
104
$\$ 10.60$
$104 \mathrm{~A}(104 \mathrm{w} / \mathrm{PCB}$)
104B (104 w/PCB,CASE)

126 PROGRAMMABLE DOORBELL. Adjust able rate and pitch for 15 musical notes. Play favorite tunes. $6 / \mathrm{C}$'s. Uses existing transformer and switch

502 POWER SUPPLY. Switch from 6 to 9V DC. 100 mA output. Filtered. Manual. Stepdown transformer. Insu lated test clips.

540 BINARY CLOCK. Handcraft tomorrow's timepiece today. Watch constantly changing patterns of LED's as they display Binary Time. This unique clock project enhances the learning of Digital Logic and the Binary Coding System, as well as offering a beautifully styled conversation piece.
10 TTL INTEGRATED CIRCUITS • VOLTAGE REGULATOR - MANUAL TEACHES BINARY SYSTEM - FAST, SLOW AND HOLD CONTROLS • 115VAC 50 or 60 Hz .

523 STROBE LITE. Create flashing light effects. Ideal for creating kaleidoscope effects for photography. Long life flash tube. PCB. Manual. Variable flash control. On-off switch. Silicon diodes. 117 VAC $50-60 \mathrm{~Hz}$

\$22.95 Complete

536 8-TRANSISTOR AM RADIO. Experience jewel-like clarity in sound. The best superheterodyne kit circuit available. SEPARATE LOCAL OSCILLATOR for high sensitivity and excellent selectivity. Unique IF Transformer mounting system. Manual. 9 V battery required (not included)

\$16.45 Complete

504 TRANSISTOR AMPLIFIER. 4 Transistors. Push-Pull output. Variable volume control. Requires one 9 V battery (not included). PCB. Manual. 3 transformer stages for maximum gain. Power output 360 mW . Can be operated with any $3.2-8$ ohm speaker.

\$6.95 Complete

510 FIVE TUBE RADIO. Rediscover TUBES. This tun antique circuit offers high selectivity and sensitivity. 2 IF Transformers. Hi-Q Ferrite antenna. Manual. Superheterodyne circuit. Large PM speaker. For 110-120 VAC or $D C$.

$\$ 34.95$ Complete

401 TACHDMETER. Know exactly when to shift. This fabulous Tach, with a range from $0-8$ grand, will mount anywhere - dash, steering column, boat, motorcycle frame, etc. 250° wide sweep scale. Reading accuracy within 2% of full scale. PCB. Manual. Illuminated dial. For all cylinder engines.

$\$ 27.95$ Complete

DO NOT SEND CASH • NO COD • ORDER BY PHONE OR MAIL

THE NEW HOBBY WORLD CATALOG

Your source for factory prime, professional quality equipment. Computers, add-on boards, IC's, sockets, resistors, supplies, tools, test equipment, books, and more. Shop your buy list at Hobby World. You'll find what you want, and at a solid savings. For example, look at this month's specials:

THE NEW ELENCO $3 ½$ DIGIT SOLID STATE MULTIMETER

The ultimate in performance measures resistance to .01 ohms, voltage to 100 micro-volts, current to one micro-amp. Assembled and tested, with 2-Year warranty. Lists at S99.95, HOBBY WORLD PRICE ONLY \$74.95! 16K MEMORY ADD.ON FOR APPLE OR TRS-80
HOBBY WORLD PRICE IS ONLY \$145.00 (specify when ordering) WAHL ISO-TIP CORDLESS SOLDERING IRON
Includes ni-cad batteries and wall plug transformer Lists at $\$ 19.95$, BUT HOBBY WORLD HAS IT FOR \$14.95!

SEND ME A FREE CATALOG!

Name

Address

Hobby World
19355 Business Center Dr *o Northridge CA91324

TELEPHONE ORDERS
Inside Cal 2438869200
Outside Cal 8004235387

TAPE RECORDERI

5 TRACK, 4CASSETTE
EASILY MODIFIED TO PLAY ONE RECORD ANOTHER, ALL CONT-
TOL SIGNALS ON EDGE CONNE TORSI 2OOL CTORSI 2OOOFT $1 / 4$ TTAPE /CASS Q TACH'GEN; BALL BEARINGS TOP 5 OUALTY TACH REN; BALL BEARINGS, TOP DATA BOOK Q I CASSETTE FUVNISHED. WT 85 LBS SHIPD COD. BOOK $\$ 25$, CASSETTE $\$ 25$.

STEPPING MOTOR

 15\%STEP, 28 VOLT, LEAD SCREW SHAFT PRECISION BALL BEARING, 5 LEAD WINDING, $\$ 4.95$ WITH FOLLOWER 8 GUIDE $\$ 9.50$ SHAFT 3 IODIA 5 I/I6LG 4"WORKING MOTOR $17 / 16^{\prime D}$ DI 2 15/16"LONG NEW CATALOG! please SEND SELF ADDRESSED STAMPED ENVELOP FOR FREE COPY NOW! DC MOTORSSMALL SIZE I5/8"DIA
27/16"LG, SHAFT I/8
DIA I/2'LGG, PM FIELD, BALL BEARING, 28 VOLT REMOVED FROM EQUIP. $\$ 6.00 \mathrm{EACH}$ HITORQUE 3/I6"DIA 3 3/4"LG SHAFT, PM FIELD W/MU-METAL SHIELD, B.B., 28 VOLT, EA. $\$ 7.50$ MOTOR \& TACH GENERATOR SET $\$ 11.00$ TACH GENERATOR I"DIA $3 / 4$ "LG, SHAFT $1 / 8$ " DIA $3 / 8$ LONG, PM FIELD, WIRE LEADS, $\$ 5.00$

CIRCUITBOARD

WIREWRAP, GOLD, 8-I6PIN 32-14PIN, 8-26 PIN. 025 SQ. YOU STRIP EACH $\$ 1000$ NEW KLUGE BOARDS! EPOXY-GLA 2 SIDE COPPER, $1 / 16^{\prime \prime} \times 71 / 2^{\prime \prime} \times 101 / 2^{\prime \prime}$ DRILLED FOR 7-I6PIN, 28-14PIN,1-24PIN, \& 4-28PIN SOCKETS, MANY THRU HOLES, EACH $\$ 5.00$ NO. 2 SAME EXCEPT HAS $13-16$ PIN, 8 36-I4PIN PATTERNS, YOU ETCH. $\$ 7.50 \mathrm{MIN}$ ORDER $\$ 10.00$ J\&E ELECTRONICS SALES PO BOX 4504, FT.WORTH, TX. 76106

Looking for Original Japanese Replacement Parts for CB, TV and Stereo?

TIL LOW POWER SCHOTTKY PLASTIC DUAL-IN-LINE I.C.

Part No.	Price	Part No. Price	
74LS00	15	74LS47	89
74LS01	15	74LS48	89
74LS02	15	74LS49	89
74LS03	15	74LS51	19
74LSO4	19	74LS54	19
74LS05	19	74LS55	19
74LS08	19	74LS63	1.50
74LS09	19	74LS73	29
74LS 10	15	74LS74	35
74LS 11	19	74LS75	49
74LS 12	19	74LS76	39
74LS 13	35	74LS78	39
74LS14	59	74LS83	79
74LS 15	19	74LS85	99
74LS20	15	74LS86	35
74LS21	19	74LS90	59
74LS22	. 19	74LS91	99
74LS26	25	74LS92	59
74LS27	21	74LS93	49
74LS28	. 21	74LS95	70
74LS30	15	74LS96	99
74LS32	25	74LS107	39
74LS33	27	74LS 109	32
74LS37	23	74LS112	32
74LS38	23	74LS113	39
74LS40	19	74LS 114	39
74LS42	54	74LS122	. 50

 Part No. Price
74 LS $170 \quad 1.25$ 74LS170 1.25
 $\begin{array}{lllrl}74 L S 173 & 95 & 74 L S 259 & 1.45 & 74 \\ 74 L S 175 & 69 & 74 L S 260 & .29 & \end{array}$ $\begin{array}{lrr}74 \text { LS } 175 & 69 & 74 \\ 74 \text { LS } 181 & 2.50 & 74 \\ 74 L S 173\end{array}$

UV EPROM

MOS Static RAM'S

Stock level	Part No.	Price
41400	$\mathbf{2 1 1 4}$	$\mathbf{7 . 5 0}$
	$4 \mathrm{~K}(1 \mathrm{~K} \times 4) 450 \mathrm{Ns}$ 59500 2102LFPC	$\mathbf{1 . 1 9}$

MOS Dynamic RAM'S		
Stock level	Part No.	Price
21110	4K 4060	3.95
27550	16K 416-3	11.95
18650	16K 416-5	8.95

UART's		
Stock level	Part No.	Price
29000	AY5-1013A	4.95
9200	AY3-1015	5.95
1 K CMOS RAM		
Stock level	Part No.	Price
4400	5101	4.95

MICROPROCESSOR

CHIPS

CPU'S
Stock level Part No Price
21600 8080A 5.955 .50
$27006800 \quad 8.957 .95$

INTERFACE SUPPORT CIRCUITS

Stock level	Parto.	Price
1250	8212	1.98
1800	8214	\$095.95
11200	8216	1.98
1700	8224	2.75
2800	8226	1.98
1500	8228	4.75
1000	8238	4.75
4900	8251	5:954.95
500	8253	14.95
5200	8255	5.95
1100	8257	9.95
300	8259	14.95
1500	6810	3.953 .50
1700	6820	4.933.95
1400	6821	203 3.95
2800	6850	5954.95
700	6852	5.964 .95

P O. BOX 1035 FRAMINGHAM. MASSACHUSETTS 01701

Over the counter sales.
MINIMUM ORDER $\$ 10.00$ - ADD $\$ 200$ TO
12 Mercer Ra.. Natıck. Mass 0:760 COVER POSTAGE \& HANDLING - Canadian

Eehind Zayies on Rte. 9
Telephone Orders \& Enquires (617) $879 \cdot 0077$ customers add 30% for exchang
federal and provincial taxes extra
Telephone Orders \& Enquires (617) 879 -0077
Foreign customers please remit payment on an Foreign customers please remit payment on an
inteinationai bank draft or international costal money order in American dollars.

NAME brand test equipment. Up to 50% discount. Free catalog and price list. SALEN ELECTRONICS, P.O. Box 82, Skokie, IL 60076

PLANS \& KITS

SCANNER users-build many useful accessories. Free kit catalog. CAPRI ELECTRONICS, Route 1R, Canon, GA 30520
CONSTRUCTION plans; over 100. From TV to telephone, from broadcasting to computers. Catalog air mailed $\$ 1.00$; includes year's subscription to Electronic Newsletter. DON BRITTON ENTERPRISES, PO Box G, Waikiki, HI 96815
HOBBYIST give your project the professional look. Printed circuit boards from your sketch or artwork. Affordable prices. Also fun kit projects. Rush free details. DANOCINTHS, Box 261 , Westland, MI 48185

LINEAR AMPLIFIER: Ham only $\mathbf{2 - 3 0} \mathbf{~ M H z}, 100$ watt, solid-state. FREQUENCY COUNTER: 300 MHz , miniportable/mobile, memory! voXCOMPRESSOR: Splatter-free modulation booster. Construction plans $\$ 3.00$ each. All $\$ 7.50$! Many others, catalog with order. PANAXIS PRO DUCTIONS, Box 130-F11, Paradise, CA 95969
AMPLIFIER kits: Low TIM, Class A, BI-FET circuitry. Free 60 -page manual. MOONLIGHTER ELECTRONICS, 117 Inverness, San Francisco, CA 94132
TESLA coil: simplified instructions, inexpensive parts easily obtained, plans $\$ 3.00$. TOM ABRAMS, 1359 Lakeland Drive, North Charleston, SC 29406

PROJECTION TV . . . Convert your TV to project 7 -foot picture. Results equal to $\$ 2,500$ projector. Total cost less than $\$ 20.00$. Plans \& lens $\$ 16.00$. Illustrated information free. MACROCOMM, Washington Crossing, PA 18977

GOVERNMENT SURPLUS

JEEPS - \$59.30! - Cars - \$33.50! - 200,000 items! Government surplus-most comprehensive directory available tells how, where to buyyour area-\$2.00-moneyback guaranteeGOVERNMENT INFORMATION SERVICES, Department VA-10, Box 99249; San Francisco, CA 94109

BIORHYTHMS

PERSONALIZED biorhythms. Three month printout only $\$ 1.00$, send birthdate. BRIAN PETERSON, Box 231 , Northfield, MN 55057

BUSINESS OPPORTUNITIES

HIGHLY
 PROFITABLE

ELECTRONIC
ONE-MAN FACTORY
Investment unnecessary, knowledge not required, sales handled by professionals. Ideal home business. Write today for facts! Postcard will do. Barta-RE-K, Box 248, Walnut Creek, CA 94597.

MECHANICALLY inclined individuals desiring ownership of Small Electronics Manufacturing Business-without investment. Write: BUSINESSES, 92-R, Brighton 11th, Brooklyn, NY 11235

MECHANICALLY INCLINED INDIVIDUALS —WANTED-

Assemble electronic devices in your home. Get started in spare time. Experience. Knowledge or Investment Not spare time. Experience, Knowledge or investment Not
Necessary. Expect big profits: $\$ 300 \cdot \$ 600 / W k$. Possible. Necessary. Expect big profits: $\$ 300$
Write for free literature telling how.

ELECTRONIC DEVELOPMENT LAB
 Box 1535R, Pinellas Park, FL 33565

Radio Shack：No． 1 Parts Place Low Prices and New Items Everyday！

Top－quality devices，fully functional，carefully inspected．Guaranteed to meet all specifications，both electrically and mechanically．All are made by well－known American manufacturers，and all have to pass manufacturer＇s quality control procedures．These are not rejects，not fallouts，not seconds．In fact，there are none better on the market！Always count on Radio Shack for the finest quality electronic parts！

Linear ICs

By National Semiconductor and Motorola－first quallty

Type	Cat．No．	ONLY
301 CN	$276-017$	496
324 N	276－1711	1.49
${ }_{386 \mathrm{CN}}^{33 \mathrm{~N}}$	276－1712	1.49
${ }^{3856 C N}$	276－1731	996
${ }_{556 C N}$	276－1728	1.39
566 CN	276－1724	1.69
567 CN	276－8721	1.99
723 CN	276－1740	699
741 CN	276－007	494
741 H	276－010	498
3900 N	276．7713	996
3909 N	276．1705	996
3911 N	276－1706	1.99
4558 CN	276－038	799
75491	276－1701	994
75492	276－1702	996
7805 7812	$276-1770$ $276-1771$	1.29 1.29
7815	276－1772	1.29

Computer Chip

8－Bit Data Bus，
16－Bit Address Bus
8080A Microprocessor．100\％prime CPU handles up to 65 K bytes memory

RAM Memory IC

Under 450 ns Access Time

2102 1K Static RAM．Low power ver sion． 16 －pin DIP．Buy
276 －2501 276－2501

TTL and CMOS Logic ICs

Full－Spec Devices Direct from
Natlonal Semiconductor

Type	Cat．No．	ONLY
7400	276－1801	355
7402	276－1811	396
7404	${ }^{276-1802}$	$35 ¢$
7406	${ }^{276-1821}$	494
7410 7413	$\xrightarrow{276-1807}$	${ }_{795}$
77420	－	396
7427	276－1823	496
7432	${ }^{276-1824}$	496
7441	276－1804	996
7447	276－1805	998
7448	276－1816	994
7451	276－1825	396
7473	276－1803	496
7474	276－1818	496
7475	276－1806	796
7476	276－1813	594
7485	276－1826	1.19
7486	276－1827	494
7490	276－1808	794
7492	276－1819	696
74123	276－1817	999
74145	276－1828	1.19
74150	276－1829	1.39
74154	276－1834	1.29
74192	276－1831	1.19
74193	276－1820	1.19
74194	276－1832	1.19
74196	276－1833	1.29
4001	276－2401	499
4011	276－2411	494
4013 4017	276－2413 $276-2417$	894 1.49
4020	276－2420	1.49
4027	276－2427	895
4049	276－2449	699
4050	276－2450	698
4511	276－2447	1.69
4518	276－2490	1.49

Hand－Held 6－Digit

 Frequency CounterCounts from
100 Hz to 45 MHz
-kHz and MHz
Decimals Decimals

A high quality＂pocket＇counter with accuracy of 3 ppm at $25^{\circ} \mathrm{C}$ or less tha 30 Hz at 10 MHz ！Overload－protected 1－meg input．Sensitivity， 30 mV up to 30 With mini－rod antenna leads case in－ With mini－rod antenna，leads．case．in battery．22－351 ．．．．．．．．．．．．．．．．．．． 99.95

NEW

IC Breadboard

Modular boards snap together and feature standard $0.3^{\prime \prime}$ center．Ac cepts 22 through 30－gauge solid hookup wire．
因 550 connections in 2 bus strips of 40 tie points each with 47 rows of 5 connected tie paints． $2^{1 / 8 \times 6 " .} 276-174$回 270 connections in 2 bus strips of 40 tie points each with 23 rows of
 ［］）Mini－Socket． 22 rows of 5 tie points each，plus 2 bus strips with 10 connections each．21／8x17／8＂，276－176 ．．．．．．．．．．．．．．．．．．．．．．．．．．．． 3.95 276－120

Low－Cost Power Transformers
－Primaries Designed to Operate from 120VAC， 60 Hz －Solder Lugs for Easy Wiring or PC Board Mounting

Volts	Current	Cat．No．	Each
6.3 CT	3 A	273.1510	$\mathbf{3 . 9 9}$
12.6 CT	3 A	$273-1511$	$\mathbf{4 . 6 9}$
25.2 CT	2 A	$273-1512$	$\mathbf{4 . 9 9}$
12 CT	5 A	$273-1513$	$\mathbf{8 . 9 5}$
$18 \mathrm{CT}^{*}$	4 A	273.1514	$\mathbf{8 . 9 5}$
18 CT	2 A	273.1515	$\mathbf{4 . 9 9}$

Volts	Current	Cat．No．	Each
6.3	1.2 A	$273-050$	2.49
6.3	300 mA	$2733-1384$	1.99
12	300 mA	$273-1385$	1.99
24	300 mA	273386	2.49
24	1.2 A	$273-1480$	2.49
12.6 CT	1.2 A	$273-1505$	2.89

－Ideal for 5 V （using CT or 12 V solid－state regulators

Wire Wrapping Accessories

Radio Shack Reference Books

WHY WAIT FOR MAIL ORDER DELIVERY？ IN STOCK NOW AT OUR STORE NEAR YOU！

CABLE FM station. No experience required excellent spare-time income, others operate for you. Details free. BROADCASTING, Box 130 F11. Paradise, CA 95969

WANTED: Manual for model MC-930 TV camera by Javelin Electronics. DAN OGLE, Box 84 Council, ID 83612

EDUCATION \& INSTRUCTION

GRANTHAM's FCC License Study Guide-377 pages, 1465 questions with answers/discus-sions-covering third, second, first radiotelephone examinations. $\$ 13.45$ postpaid. GSE PUBLICATIONS, 2000 Stoner, Los Angeles, CA 90025
UNIVERSITY degrees by mail! Bachetors, Masters, Ph'D's . . . Free revealing details. COUN. SELING, Box 317 -RE11, Tustin, CA 92680

TELEPHONE bugged? Don't be Watergated! Countermeasures brochure $\$ 1.00$. NEGEYE LABORATORIES, Box 547-RE, Pennsboro, WV 26415

Have regular medical check-ups.

American Heart Association
We're Fighting For Your Life

Why is this the
 LARGEST SELLING low cost COUNTER KIT?

This counter is such a great seller because people like you have found that, feature for feature, the CT- 50 gives you more for your money. Advanced LSI and CMOS circuitry has; lowered power consumption, increased performance, and reduced cost. Complete push button operation makes using the CT. 50 a snap, and automatic decimal point positioning gives you quick, reliable readings. Battery operation is also possible becuase the CT-50 runs equally as well on 12 VOC as it does on 110 VAC . For ultra-accuracy we offer the CB- 1 color burst adapter, it locks the CT-50's internal crystal to the television networks color standard for .001 ppm accuracy! Why sacrifice performance by using another counter when you can get professional quality at the unheard of price of $\$ 89.95$? Order yours today!

SPECIFICATIONS
Sensitivity: less than 10 mv
requency range 5 Hz to $60 \mathrm{MHz}_{\text {, ivpically }} 65 \mathrm{MH}$ decimal point positioning on both direct and presacle
Displav: 8 digit red LED . $\mathbf{4}^{\prime \prime}$ height
Accuracy: 2 ppm, internal TCXO standard
nput: BNC, 9 megohm direct, 500 hm with
Prescale, option
Power $110 \vee$ ac 5 Warts or 12 V dc @ 300400 ma
Size: Approx. $6^{\prime \prime} \times 4^{\prime} \times 2^{\prime \prime}$ hion
Size: Approx. $6^{\prime \prime} \times 4^{\prime \prime} \times 2^{\prime \prime}$, high quality aluminum
CT $50,60 \mathrm{MHz}$ Counter Kit
$\$ 89.95$
CT-50 wt 60 MHz Counter Wired \& Tested
$\$ 159.95$

MINI-KITS

FM WIREL ESS MIKE KIT
Transmit up to 300 ' to any
FM broadcast radio uses
FM broadcast radio, uses
any type of imike. Runs on
3 to 9V. Type FM-2 has
sensitive mike preamp.
FM-1- $\mathbf{\$ 2 . 9 5}$ FM-2- $\mathbf{\$ 4 . 9 5}$
SUPER-SLEUTH AMPLIFIER
A super sensitive amplifier which will
pick up a pin droo at 15 feet Great
for monitoring baby's room or a gen erat purpose test amplifier. Fuli 2 watts of output, runs on 6 to 12 volts,
uses any type of mike. Requires $8-45$ ohm speaker
Complete Kit, BN-9. $\$ 4.95$
COLOR ORGAN/MUSIC LIGHTS See music come alivel 3 different
lights flicker with music or woice. One light for lows, one for the mid-range
lice and one for the highs. Each channel individually adjustable, and drives up
to 300 watts. Great for panies, bat to 300 watts. Great for parties, band music, nite clubs and mor
Complote Kit, ML. $1 . . .$. . TONE OECOOER KIT A complete tone decade on a single PC Board. Fea able frequency renge, vol age regulation, 567 ic . Use fut for touch-tone decoding, tone
burst detection, FSK demod, signat ing, and many other uses. Use 7 for
12 button touchtone decoding 12 button touchtone decoding. Runs
on 5 to 12 volts.
Comple ED BLINKYKIT A great attention getter which alter. A grear attention getter which
nately flashes. 2 Jumbo LEDs. name badges, buttons. or warning type panel lights. Runs on 3 to 9
voits.
POWER SUPPLY KIT
Complete triple regulated power sup-
ply provides varisble +15 volts at 200 ply provides variable +15 volto si 200 mA and ± 5 volts at 1 Amp 50 mV lowd ragulation good filtering and
small size. Kit less transformers, Re quires 6.8 V at 1 Amp and 18 to 30 VCT. VCT.
Complete Kit, PS-3LT 56.95 SIREN KIT
Produces upward and downward wail characteristic of police siren. 5 wett oudio output, runs on $3-9$ volts, uses Complate kit SM. VIDEO MODULATOR KIT Converts any TV to video Monitor. Super stable tunable over Ch. 46 Runs on $5-15 \mathrm{~V}$. accepis std. signsl. Best unit on then
Compleme Kit, Vo-

SIX DIGIT 12/24 HOUR CLOCK KIT

Here's a clock you can be proud of. The best looking, mosi complete kit on the market' Features include : time set push buttons. jumbo $4^{\prime \prime}$ readouts, and extrud ed aluminum case available in 5 colors All parts included. Colors: gold, silver bronze, black, blue (specify) Clock Kit, DC-5
\$22.95 Alarm Clock, 12 Hr . DC-8
Alarm Clock, 12 Hr DC.8 ... 24.95 25.95 Clock with HAM 10 timer DC. $10 \quad 25.95$ Assembled and tested clocks available, add $\$ 10.00$ to Kit price

600 MHz
 PRESCALER

Extend the range of your counter to 600 MHz . Works with all counters. Less than 150 mv sensitivity. Specify -10 or -100 . Wired, tested. Kit, $\mathrm{PS}-1 \mathrm{~B}$
K
59.95
44.95

CALENDAR ALARM CLOCK Has every feat ure one could ever ask for.
Kit includes everything except case, FEATURES

- 5 O.gits. 5 " Hign LED $: 12$ R A Hour Format

Complete Kit, Iess case DC-9

TV TYPEWRITER KIT

CIRCLE 42 ON FREE INFORMATION CARD

FROM KIT TO CAR IN 80 MINUTES!
Electronic ignition is "in." Update your car with the TOPS in power, efficiency and reliability - the TIGER SST capacitive discharge ignition (CD).
The TIGER delivers everything other CD's promise - and more: quicker starting, more power, more gas mileage, tune-ups elim inated, lifetime plugs and points, reduced repairs and pollution.
The TIGER can be built and installed in your car in 80 minutes. The TIGER is unique!
The TIGER comes with a switch for TIGER or standard ignition for 12 V negative ground only.

Simpli-Kit \$21.95
 POST PAID U.S.A.

WE ACCEPT
Mastercharge or Bank Americard.
Send check or money order with order to

TrIStar Corporation

DEPT. FF, P.O. Box 1727
Grand Junction, Colorado 81501
CIRCLE 28 ON FREE INFORMATION CARD

YOU'RE UNDER SURVEILLANCE!!

A HOST OF PEOPLE, AGENCIES, AND COMPUTERS ARE BUSY SPYING ON YOU AND YOUR BUSINESS EVERY DAY, OFTEN ILLEGALLY.

HOW TO STOP IT OR DO IT BACK!

A Large Format ($81 / h^{\prime \prime} \times 11^{\prime \prime}$) Quality Paperback, 240 Pages

BUGGING
WIRETAPPING
TAlliNG
$\$ \mathbf{9}^{95}$
OPTICAL AND
ELECTRONIC SURVEILLANCE
SURREPTITIOUS ENTRY
DETECTIVE TECHNIQUES
WEAPONS
COUNTERMEASURES
'A VIRTUAL ENCYCLOPEDIA ON SURVEILLANCE
EVERYTHING YOU'VE ALWAYS WANTED TO
KNOW ABOUT SPYING.'
PLAYBOY MAGAZINE
With Each Order You Receive Free Other Material And Literature For Investigative Procedure.
Anarchist Cookbook
CIA Improved Munitions Black Book

QUIMTRONIX

Postpaid-P.O. Box 548-RE
Seattle, Washington 98111
CIRCLE 34 ON FREE INFORMATION CARD

FREQUENCY COUNTERS

- 1 ppm TCXO time base on 380X/385X meets FCC regulations for most communications service. - External time base input on 380/385. - TCXO output on 380X, 385X will drive 4 other counters. - Standard 10 ppm time base (380/385) meets FCC regulations for CB service. - Built-in tilt stand/handle.
-Autodecimal in prescaled mode 385/385X - Display freeze (380/385). SPECIFICATIONS

- External timebase input. • TCXO timebase output (388X). • AC or DC powered.

CIRCLE 39 ON FREE INFORMATION CARD

NEAR -2 national emergency alarm repeater
 GOVERNMENT TO WARN OF NUCLEAR
ATTACK. IT WAS TO BE PLUGGED ATACK. IT WAS TO BE PLUGGE into
ThE WALL OUTLET ANO WAS TO SOUNO OFF W EN THE POWER COMPAN SWITCHED FROM SONO
CYCLE EN 50 CYCLESS. CONTANS RELAY, TIMR/NOISE
CEMERAIOR, RESISTORS, CAPACITORS, OIODE, REEO GENERAIOR, RESISTORS, CAPACITORS, OIODE, REEO
SWITCHAND 50 CYGLE V BRATING REED ALL IN AN
 Brano new in boxes. C22706 \$3.95

GE FAST CHARGE Micad Pack
CONTAINS 3 SERIES CONNECIED AA SIZE CE
EACH RATEO $1.2 Y$ AT SOOMAH. CAN BE CUT

150 Watt Seconds Those TVBE
1
$\$ 3.95$

CARRYNG
CASE
Cins
moser nues a monation

5

Speaker C23068 99°		
		$\left\{\begin{array}{l} 200 \mathrm{vou} \\ \text { in An } \\ \mathrm{s}_{1.00} \end{array}\right.$
	12 for $\$ 1$ C22	Dotin, lemps C22791 30 for $\$ 1$

OOM ÓCHOAON KI
SIMPLE TO ASSEMSLE KIT
INCLUOES PRE-ASSEMELET
INCLUOES PRE-ASSEMELED
CIRCUIT BOARD, CAPACIT
FLASHTVEE, REFLECTTRA,
SWITCH AND HOOKUP OLAGRAM.
SWITCH ANO HOOKUP OIAGRAM.
LESS CASE, BATTERY HOLOER ANO GATTERIES (OPERATES

CMANEY

- Minimum order $\$ 5,00$
- Pleste include \$1 tor postoge
- Phone or ders are welcome.

PO. BOX 2703B. DENVER , CO. 80227 Ph 303 -781.5750
 CIRCLE 9 ON FREE INFORMATION CARD
 SUPER 15 WATT AUDIO AMP KIT

ONLY $\$ 23.50$ each

Kit Includes: STK-015 Hybrid IC, power supply with power transformer, front Amp with tone control, all electronic parts as well as PC Board. Less than 0.5% harmonic distortion at full power $1 / 2 \mathrm{~dB}$ response from $20-100,000 \mathrm{~Hz}$. This ampllfier has QUASI-Complimentary class B output. Output max is watt (10 watt

TR5-BU memary SpELIAL
 Our Conversion Kit upgrades TRS-80 mainframe from 4 K to 16 K , or populates

 Memory Expansion Module. With conversion instructions. Also works with APPLEs. Only $\$ 159$ ($\mathbf{k i t s} / \mathbf{\$ 4 5 0}$) . . . and we back up our parts with a 1 year warranty.
HEATH HB memary speciai

Econoram VITm brings 12 K of Econoram quality to the H 8 buss. Fully static. Regula price: $\$ 235$ for "unkit" (sockets, bypass caps pre-soldered in place); now, through cover month of magazine, buy 2 unkits for $\$ 399$.

SEE OUR PRODUCTS AT YOUR
LOCAL COMPUTER STORE.
the 5-1014 ECDIDDRAIT family...
Our memories are recognized as outstanding buys, thanks to static design, compatiblity with all S-100 machines, buffering, high speed/low power parts, conservative engineering and useful extras. Econoram II is 8 K of cost-effective memory; kit $\mathbf{\$ 1 3 5}$, assembled/tested $\$ 155$. The 16 K Econoram IV costs $\mathbf{\$ 2 7 9}$ for "unkit" (sockets, bypass caps soldered in place); \$314 assembled/tested; and $\$ 414$ for CSC qualified* The top of the line 24K Econoram Vil costs $\$ 445$ for "unkit"; \$485 assembled/tested; and \$605 CSC qualified

Certified Systems Components board are assembled, tested serial numbered, burned in for 200 hours, and guaranteed to yon at 4 MHz over full temp tange. Board exchanged if failure
occurs within 1 year of invoice date.

MA1003 clock module $\$ 16.50$

Simple to apply; requires only 3 time-setting

CIRCLE 43 ON FREE INFORMATION CARD

AUDIO/ANALOG Experimenters

VOLTAGE CONTROLLED SINEWAVE OSCILLATOR BasiKit'm w sine G

 cosine dutpulsEasy to build

 $\because 15$ VOC ANALOG OELA
delay w/data
ARTICLES \& sYnthesis literature "Tech notes", our own bgo newselles Featurng articles on building Active filters, Audio Frea TECH NOTES Subscription/12 issues
DUAL SEC PWR TRANSFORMERS
5 voly
UNUSUAL IC 14-pin DIP, generates psuedo-fandom musical sequence synthesizer-on-a chip 'Clear plaslic pkg: also. senses molion visually
 "NON.LINEAR CIRCUITS HANDBOOK. BY A. D. This is protabiy THE

reference work tor analog multiplers. | eference work tor analog multipliers, dividers, logging. \& antiliogging |
| :--- |
| arcuits. A WEAL TH of unique information. Over 500 pages. $\$ 5.95$ | THE INVISIBLE IC. This clear plastic IC lets vou peet into the inner workings

of an intergrated circult. 14, pin OIP Features gold witetonding G BIG TO-220 POWER TRANSISTORS: Complimentary pair, 10 amp $\$ \mathrm{C}$, Oven
60 V 5 mHz PREMIUM MINIDIP OP AMPS: BB. 3500 , to noise, bias: NE-531,
Slew rate. DUAL 15 VOLT REGULATOR IC. Oulputs ± 15 VDC $@$ over 50 mA , more
with pass x sistors. Baianced. tracking outpuls with 5% reg'n or berter

 MiNIDIP SOCKEI Solid nvion w/machuned gold plated pins. Augat 1 UF. 50 VDC CAPACITORS: Mylar construction, PC leads. | Special |
| :---: |
| Solice. |
| 121.00 |
| 1.00 |

CA 3140 minidip. OP $\underset{79 \text { esea }}{\operatorname{SPECIALS}} \underset{\mathrm{LM} 307 \text { min }}{\text { LM }}$

| - Minimum order $\$ 10.00$ |
| :---: | :---: | - MC, VISA, \& C.O.D. acce - Phone orders are welcome SATISFACTION GUARANTEED

TNTEGRAIEO	CuITS	integrated circuits	
AN1 15	225	M51202	1.55
AN228	465	M53216P	180
AN272	390	M53273P	1.60
AN313	4.85	M58473p	790
AN321	2.25	M83710	2.95
AN326	3.30	M88719	770
AN362	2.70	MN3006	5.90
AN366	2.49	MN3007	19.95
AN606	+ 50	NPCS107	1495
AN612	270	PLL03a	14.95
BA401	1.50	SG264A	780
BA402	150	SG609	4.50
BA505	630	SG629.3	3.40
8 8461?	240	SG6523	1750
8A1310.	234	S11010	6.90
HA1125	210	\$11020	13.95
HA1329	245	S11030	1900
HA1366W	330	Sil 1050	27.80
HA1366WR	330	SMS104	8.90
HA1388	335.	SM5107C	1195
HA1406	1.20	STKO13	11.25
(4)222	- 59	STKO14	11.85
LA1365	2.20	STKO41	17.40
LA1368	342	STK075	8.22
LA3101	375	STK413	6.75
LA4220	255	TA7092p	650
LA4430	270	TA7117P	3.60
L03000	2.25	TA7206P	3.06
L03080	270	TA7214P	5.15
LD3110A	375	tA 7217 AP	3.30
L03150	195	TA7222P	3.50
M5i09P	330	TA7521M	355
M5112Y	670	TA7607P	9.90
M5118L	250	TA7609P	4.80
M5130p	3.12	tbabioas	3.30
M5135P	3.40	T8A8100S	3.30
M5142P	570	TBAB10S	3.30
M5340P	1.55	teasiosh	3.30
M5930P	85	t8a820	2.10
M5935P	1.20	TOA11902	6.50
M5946P	. 85	T0A2002	4.60
M5953P	2.55	UPC 141C	2.50
M5962P	85	UPC572C	4.10

NJ Residents adat 5% Sales Tax
We pay postage lar prepard ordets al $\$ 5000$ or more
nder \$50 d0 add \$1 100 Camada $\$ 150$

integrateo circuits		thansistors	
UPC574	1.20	2SC1429	1.49
UPCS83C	3.30	2SC1452	140
UPC 1028	180	2SC1474	96
UPC: 031 H	2.98	2SC1548	79
UPC 1032H	1.35	2SC.1583	68
		2SC:622	49
		$2 \mathrm{CC1630}$	360
		2SC168 ${ }^{1}$	39
		2SC 1682	39
		2SC1761	1.58
		2SC1762	4.85
		$2 \mathrm{SC1775}$	54
transistors		$2 \mathrm{SC1778}$	45
		${ }^{25 C 1787}$	62
254772	89	$2 \mathrm{SC1811}$	1.29
2SA786	39	2SC1844	54
2SA8:1	54	2SC1885	79
$2 \mathrm{SAB18}$	105	2SC1906	48
2 2SAB35	135	2SC 9923	39
${ }^{2 S A 840}$	168	2SC1940	64
2SA84 ${ }^{\text {¢ }}$	39	2SC1945	6.75
2SABA2	43	2SC1951	1.59
2SA861	129	2SC 1959	39
254879	93	2SC:963	3.30
2 2AB80	75	2SC198 ${ }^{1}$	2.60
2 SA9 11	6.33	2SC 1982	3.30
2SA915	77	2SC2009	. 85
2SA922	398	2SC2021	65
2 SA923	4.50	2SC2072	3.95
2SA940	96	2SC2120	45
2SA991	. 58	$25 \mathrm{C2212}$	165
$2 \mathrm{SB509}$	2.79	$2 \mathrm{SC2213}$	1.45
2 SB528	99	2SC2214	2.95
2 SB549	79	2S0388	3.65
$2 \mathrm{SB567}$	230	2S0477	1.65
2S8618	2.65	$2 \mathrm{SO528}$	3.30
2SC352A	2.55	2Sk58	4.45
2SC356	. 95	2SK97	4.85
${ }^{2 S C 583 C}$	81	2SK107	1.15
$2 \mathrm{SC895}$	4.90	2Sk120	120
${ }^{25 C 983}$	89	2SK'21	1.20
2SC1056	5.50	2SK125	1.75
2SC1424	2.98	2SK130A	3.90

COO's WELCOME

CIRCLE 62 ON FREE INFORMATION CARD

NEW-TONE ELECTRONICS
Specializing in Japanese Semiconductors, with the largest inventory and lowest prices anywhere AND YOU CAN ORDER TOLL FREE 800.631.1250

\section*{| | | |
| :--- | ---: | :--- |
| | INTEGRATEO CIRCUITS | INTEGRATEO CIRCU |
| AN214 | 2.75 | UH1COO4 |
| AN217 | 5 | |}

> AN239
> AN247

in TRANSISIORS
2SB175
2SB324 \qquad NEW. TONE ELECTRONICS INTERNATIONAL
PO. BOX 1738 BIOOMfiEID N I 78003 New Jersey Phone: 2017748.6171

HIFCTRONTC SUPRRMAPETH

Terms: Add postage. No C.O.D.s. Phone Orders BA-MC-AF: (617) 5322323. Trunntide, Massachusets 01940 Dept. $\mathrm{B} \cdot \mathrm{-11}$ P.O. Box 619 REMOTE CONTROL SYSTEM

This handy control was part of an Admiral
remote control package for color TV. The original functions were: On-Off, Volume, VHF relays and one-four position Receiver contains 3 all ko complete 4 page data pkg. Use it to make detectors, of remote operating tovs, alarms $A A$ cell (not included). Q ty Lensmiter requires

 \$69.88/3

"REPAIRMAN SPECIAL Surplus Brand-name receiver/amplifier chassis, including bulls-eye stereo light on tuning needle, slide controls, amp \& uner (no case). Mfr.'s "questionables" nay need repair. You fix \& save! Qty. 5 Lbs. . . 8 K $3035 \$ 19.88$ ea.

믄 INTEGRATED Electranics

540 Weddell Drive, \#4, Sunnyvale, CA 94086 (408)734-8470

- For more 74LSxx, refer to our ad in the June issue of this magazine.

SPECIAL DISCOUNT
OEM EDUCATORS AND SCHOOLS
For a low quote, send a list of your needs and, if possible, desired prices. No quantity is too small.
mnimuern order 85.00 US curtency. Check or money order only. Add $5 x$ to cover wipping ond

 bULLET ELEGTRONICS P.O. BOX 19442R DALLAS, TEX. 75219 (214)823-3240

1. Keyboard and Video Mod
ado ram for lower case characters and clean up horizontal smear (SEND YOUR TRS. 80 MICROCOMPUTER ONLY) PARTS AND LABOR $\$ 59^{\circ}$
2. Clock Mod

INCREASE YOUR PROCESSING SPEED BY 30% WITH THIS OPTION YOU CAN SWITCH-SELECT BETWEEN THE FASTER 2.66 MHZ CLOCK RATE AND 1.77 MHZ .
installation, paris and labor $\$ 49^{00}$

2. Install 16 K Memory

JUSt SEND US yOUR trs-80 microcomputer and WE 00 THE REST.

16K OF memory and labor $\$ 18900$

5. Serial Printer Interiace Mod

operate crystal controlled tiy with level 1 or 2. We install switch selectable baud rates of 75, 110, 137.5, 150, 300, 600, 1200, 2400, 4800, 9600 OR EXTERNAL. EIA RS232 AND CURRENT LOOP OUTPUT. parts and labor $\$ 11900$

3. Level 2 plus 1 Mod

WE install your level 2 so you keep level 1 and can use it by Just flipping a SWITCH. (SEND LEVEL 2 WITH YOUR TRS.80) $\$ 6900$

6. Mini Floppy Mod

you provide expansion interface and WE'LL INSTALL A PERTEC F D 200 MINI FLOPPY.
parts and labor (PERTEC F D 200 mini floppy INCLUDED) FOR ONIY $\$ 425^{\circ 0}$

SPECIALS!! DO MORE THAN ONE MOD AND SAVE	
MODS 1, 2, 3, 4 AND 5	$\$ 44900$
MODS 1 AND 2	$\$ 23400$
MODS 2 AND 3	$\$ 24300$
16K OF MEMORY, PARTS AND INSTALLATION DATA.	$\$ 15900$

aLl worn guaranteed unconditionally for 1 year

REPAIR-WE WILL REPAIR ANY ORIGINAL TRS-80 MICROCOMPUTER OR ONE OF OUR MODIFICATIONS.

ALL PARTS AND LABOR $\$ 69^{\circ}$
NOTE: This is an independent service effort not affllated WITH RADIO SHACK* OR TANOY CORPORATION.

IERMS FOR TRS-80 WORK: WE ACCEPT ONLY TRS-80 MICROCOMPUTERS! SHIP YOUR TRS. 80 MICROCOMPUTER TO US, INSURED AND SUITABLY PACKAGED AND WE WILL RETURN SAME FREIGHT COLLECT. ALL FACTORY SEALS MUST BE INTACT. ANY UNIT WHOSE SEALS HAVE BEEN TAMPERED WITH WILL BE SHIPPED BACK IMMEDIATELY. MODS 1, 2, 4 AND 5 SEND TRS 80 MICROCOMPUTER ONLY. MOD 3 SEND YOUR TRS 80 MICROCOMPUTER AND LEVEL 2. MOD 6 SEND IRS-80 AND EXPANSION INTERFACE. HORMAL TURN AROUND TIME IS UNDER 10 DAYS

WITH CERTIFIED FUNDS

- $\$ 20$ minimum ORDER - free ups delivery on US. ORDERS ONLY—OR BY	- SORRY! NO COD'S.	DROP INTO ONE OF OUR LOCATIONS		
	- calif res ado 6%			
U.S. ORDERS ONLY-OR BY	- CALIF. RES. ADD 6\%	LOS ANGELES	PORTLAND	DENVER
SURFACE MAIL IF SPECIFIED - money back guarantee	SALES TAX - canada, puerto ricd	(213) 967-4611	(503) 646-4044	(303) 573.5214
(mOS \& LED DEVICES EXCLUDED) - Under 8 hour processing	\& U.S. POSSESSIONS ADD U.S. $\$ 3.50$. ALL	LMN ELECTRONICS	WIZARD OF PARTS	ELECTRONIC LOLLIPOP
ON MONEY ORDERS \& CASHIER'S CHECK	OTHERS ADD U.S. $\$ 7.00$. - U.S. FUNDS ONLY.	1042 E. GARVEY AVE. WEST COVINA. CA	8225 S.W. CIRRUS DR. beaverton, OREGON	5643 N. BROADWAY DENVER ($1.25 \& 58$ th AVE)

ASCII KEYBOARD KIT $\$ 74.00$

Additional Improvements: Double Size Return Key Control Characters Molderd on Key Caps

- Power: +5V 275mA
- Upper and Lower Case
- Full ASCII Set
- 7 or 8 Bits Parallel Data
- Optional Serial Output
- Selectable Positve or Negative Strobe, and Strobe Pulse Width
- 2 Key Roll-Over
- 3 User DEtineable Keys
- P.C. Board Size $17-3 / 16^{\prime \prime} \times 5^{\prime \prime}$

OPTIONS:

- Metal Enclosure Painted Blue and White
- 18 Pin Edge Con.
$\$ 27.50$
$\$ 2.00$
- I.C. Sockets
- Serial Output Provision (Shift Register)
- Upper Case Lock Switch for Capital Letters and Nos. \$ 2.00
Assembled (on Sockets) and Tested
$\$ 90.00$

Shipping: Keyboard \$3.50;
California residents add 6% sales tax
ELECTRONICS WAREHOUSE Inc.
1603 AVIATION BLVD. REDONDO BEACH, CA. 90278

TEL. (213) 376-8005
WRITE FOR FREE CATALOG

- PRECUT WIRE -

 Why buy wire on rolls? PRECUT \& STRIPPED WIRE IS: - Fast - No more cutting \& stripping by hand - Reliable - Good ciean, uniform strip Economical - Cheaper than using bulk w Wrekil al 55 95-2 1/3c/ti

WIRE KITS

INTERCONNECT CABLES
bon cable connectors for connecting boards to front panels. or board to board.
Single ended double ended
\$34.95
hOBBY WRAP
MODEL BW 630 ($\$ 6.95$ Value)

Batternes \& Charger

WSU 30 Hand Wrap-Unwrap Strip Tool WSU 30M, for Modified Wrap BT 30 Extra Bit

WIRE WRAP TOOLS

$\$ 11.00$
6.25
6.25
7.25
2.95

PAGE DIGITAL ELECTRONICS

EDGOE ELERTBDNOLES TEST EQUIPMENT BONANZA.
 B\&K Dual-Trace 10 MHz Triggered 5" Scope
 B\&K 520 MHz Frequency

EICO 272
Measures up to 1000 DC volts and up to 600 AC volts up to 1000 DC and AC millamperes. Resistance in kilohms up to 1 meg, 3 digits 3 in four ranges 1(.999), 10(9.99) 100(99.9) 1000(999) Accuracy: DC volts $\pm 0.5 \%$ of reading All other functions $\pm 1 \%$ of reading. Automatic zero, automatic polarity
Reg. $\mathbf{\$ 7 9 . 9 5}$. Our price $\mathbf{\$ 6 7 . 9 5}$

DE 109 \# 22 GAUGE TWISTED PAIR (Solid) : available in the following colors: Red and Black. Blue and Black. Yellow and Black.

1000 ft , rolls Price only $\$ 1200$ per roil

DE108

Red, White, Grey. OH-White (Clear), Or ange, Black with White. Please Specify
Color Desired
100 ft . rolls 10 rolls assorted 1000 ft . rolls (1 color) color

MODEL 1471B
Mode automatically shifts between CHOP and ALTERNATE as you change sweep time for fast set-up. Bright P31 blue phosphor. 18 calibrated sweeps- 1 μ SEC/ cm to . 5 SEC/cm. Sweep to Front panel $X-Y$ operation using matched vertical amps. Input grounding switches. TV sync separators. Check most digital logic circuitry including CMOS. Character display applications using TTL compatible \mathbf{Z}-axis intensity modulation. Includes probes.
Reg. price $\$ 599.00$. Our price $\$ \mathbf{5 0 5 . 0 0}$

Back by popular demand. Mini speaker/dynamic mike element. 500 Q impedance. Used for Hi-Fi, experimentation, or even digital. Price now only 994 3 for $\$ 2.65$

EDLIE Electronics 2700 Hempstead Tpke. Levittown, N.Y. 11756
Your one stop, full line Electronic Discount Center (516) 735-3330

Counter MODEL 1850
$\mathbf{5 H z}$ to 520 MHz reading quaranteed600 MHz typical. Gate time from 10 ms to 10 seconds. Full period from 10 ms to capability. 50 mV input sensitivity at 520 MHz . Operates from 115 to 230 VAC , or 12 VDC. Well protected input circuitry. Temperature compensated crystal oscillator (TCXO).
APPLICATIONS RF frequency measurement to 520 MHz , including business band, broadcast service, amateur radio, marine band, paging systems, mobile telephones and citizens band.
Reg. price $\$ \mathbf{4 5 0 . 0 0}$. Our price $\$ \mathbf{3 8 2} .50$

Another EDLIE Super Tape Special. 1800 Quality Tape made by Scotch, Ampex or Quaity Tape made by Scotch, Ampex or were bought surplus and are of excellent were bought surplus and are of excellent grade.

79 © $\mathbf{3}$ for $\$ 2.25 \quad 6$ for $\$ 3.99$
WRITE FOR FREE Value packed catalog Mastercharge BankAmericard VISA accepted
Terms: Minimum order $\$ 10.00$. Include postage. Either full payment with order or 30\% deposit, balance C.O.D. F.O.B. Levittown, N.Y.

B\&K Industrial Transistor

 Tester MODEL 520BNow with HI/LO Drive. Works in-circuit when others won't Identifies all circuit transistor leads. Randam lead connection. Audibly and visually indicates GOOD transistor. Automatic NPN/PNP determination. Positive Si/Ge identification. Tests diodes, SCR's, FET's and Darlingtons.
The 520 with HI/LO Power Drive lets you test even more trans stors and semiconductors in-circuil-
with shunt resistances as low as 10 ohms and shunt apacitances ake less than nine seconds.
Reg. price $\mathbf{\$ 1 7 5 . 0 0}$. Our price $\mathbf{\$ 1 4 8 . 7 5}$
DE391 extra special!! $8^{\prime \prime}$ high compliance suspension speaker.
10 oz . magnet. Capable of fandling the really heavy wattage Stereo \& Hi-Fi Equip ment. Buy!! Only

DE944
Heavy Duty 6 " $\times 9$ " Air Suspension Speaker, 10 0z. magnet, $55-15.000 \mathrm{~Hz}$. Price $\$ 6.95$ ea.

SALE S-100 BUS EDGE CONNECTORS SALE

| 7 |
| :--- | :--- | :--- | cluded

Measures DC Volts, AC Volts, Ohms and Current indication
Rechargeable batteries and charger

- Measures DC Volts, AC Volts, Ohms and Current
Automatic polarity, decimal and overioad Indication
No zero adjustment and no tull-scale ohms adjust
Battery-operated - NICed batteries; also AC line operation.
Large LED display for easy reading without Interpolation
Size $19^{\prime} H \times 2.7$
Slze: $1.9^{\prime \prime} \mathrm{H} \times 2 . \mathrm{r}^{7} \mathrm{~W} \times 4^{\prime \prime} \mathrm{D}$
Tilt stand option
Leather case...
Purchase any of the $L M$ series Meters and buy the LEATHER CASE for 1 C

Automatic \& line aperation.
\qquad

Powmatconsumption <15 matts

- MS-215 Dual Trace Version of MS-15 \$435.

AL S. 100 BUS EDGE CONNECTORS 5

 OWs tor VECTOR and

 17.35

Other Popular Edge Connectors

\qquad

	$1-24$	25.49	50.99	100.249	$250-999$	$1 K-5 K$
8 pin*	.41	.38	.35	.31	.27	.23
14 pin*	.39	.38	.36	.32	.29	27
16 pin*	.43	.42	.39	.35	.32	.30
18 pin	.63	.58	.54	47	.42	.36
20 pin	.80	.75	.70	.63	.58	.53
22 pin	.90	.85	.80	.70	.61	.57
24 pin	.90	.84	.78	68	.63	.58
28 pin	1.10	1.00	.90	.84	.76	.71
40 pin	1.50	1.40	1.30	1.20	1.04	89

Sockets purchased in multiples of 50 per type may be combined for best price. All sockets are GOLD 3 level closed entry *End and side stacable. 2 level, Solder Tail, Low Profile, Tin Sockets and Dip Plugs available. CALL FOR QUOTATION

	$\sqrt{9010}$
-	
边	cose
-ramble	
Vecemememememe	
cosememe	
	Price:
- Lucsice	
-	\$29.50

8.INCH COAXIAL

Combines a high quality $8^{\prime \prime}$ woofer and a tweeter into a pre-phased sound reporducer Built-in cross-over network. Exceilent choice for a low cost Hi-Fi system for autos, vans, o in your home. Frequency response is a smooth $80-15000 \mathrm{~Hz}$. 8 -ohm VC, 10 oz. ceramic ring magnet. 25 W rating.

WT577 $\$ 13.99$ plus 40 cents postage

10.INCH WOOFER

The speaker for your "big sound" system. Frequency response is $20-4000 \mathrm{~Hz}$; 8-ohm aluminum VC, powerful 20 oz. ceramic ring magnet and a rubberized accordion edge suspension for excellent compliance. Handles 50W max. Use with the NT576 for a super system.

NT578 \$17.99 plus $\mathbf{4 0}$ cents postage

50W DOME TWEETER

Here is the super tweeter. A rugged $10 \mathrm{~cm}\left|4^{\prime \prime}\right|$ dome tweeter which handles 50 W max. Frequency response is $4000-20000 \mathrm{~Hz} .8$ ohm VC, 8-02. ceramic magnet. Your system can have a brilliance you never imagined.

HT576 \$6.99

Resistors Standard values, $\pm 5 \%$, first quality. Packed 5 of one value
 Y/W 5 for $\$.25$ Y/W 5 for $\$.30$

Capacitor Special 3600 mF , 40Vdc Sprague "Powerlytic" $\mathbf{\$ 1 . 8 9}$
Relay SPDT, 12Vdc - 5A contacts NT565\$1.79
Sound Activated Switch Complete, ready to use. Buith-in microphone's output triggers a Triac which acts as a switch. Measures only 1 " $\times 3^{\prime \prime}$. Requires 3.6 Vdo

NT527 \$1.29
And, the largest inventory of domestic and Japanese transistors and ICs in the United States.

New Tone Electronics
PO BOX 1738
Bloomfleld, N.J. 07003

Digital Auto Security System 3-Way Protection For Your Entire Car or Van
 (0) (2)

- Proximity Triggered Theft Protection - for valuables, CB or Ham equipment.
- Voltage Triggered Entry Protection - for doors and trunk.
- Mechanically Triggered Entry Protection - for under-hood parts.
- Activated by Personal 4.Digit Code.
- Uses Your Auto Horn As An Alarm, Or Add A Siren.

Forget about anything you may have heard about other anti-theft systems. The OCULAR 2^{\circledR}, total security system, adds a new dimension to automobile security - Proximity Detection. Even if the would-be thief could enter your car without triggering the voltage sensing circuit (not likely) - just approaching the protected area will sould your alarm instantly. He does not have to touch anything! Attention is the one thing the "rip-off" artist doesn't want.
And, there's more protection. Raising the hood sounds the alarm. Any change in voltage (dome or trunk light on, starting the car) sounds the alarm. If the cable connecting the units in the passenger compartment is cut, the OCULAR 2 turns itself on and sounds the alarm.
Your personal 4.digit code activates and deactivates the whole system. Just enter your code through the attractive push-button "Code Lok" keyboard when you leave your car and the system is activated. When you return, there's enough time to enter your code to deactivate the system before the alarm sounds.
Installation is easy and requires only simple hand tools. Complete with all hardware, instructions and your personal code. For 12-volt, negative-ground electrical systems only.
Sorry, but at this price, we must limit each order to only two systems per customer.
Was \$49.95, now
Ocular $2 \$ 19.95$

CIRCLE 66 ON FREE INFORMATION CARD

COMPUTER INTERFACES \& PERIPHERALS

For free catalog including parts lists and schematics, send a self-addressed stamped envelope.

APPLE II SERIAL I/O INTERFACE *

Part no. 2
Baud rate is continuously adjustable from 0 to 30.000 • Plugs into any peripheral connector - Low current drain. RS232 input and output • On board switch selectable 5 to 8 data bits. 1 or 2 stop bits, and parity or no parity either odd or even - Jumper selectable address SOFTWARE • Input and Output routine
from monitor or BASIC to teletype or other serial printer - Program for using an Apple il for a video or an intelligent terminal. Also can output in correspondence code to interface with some selectrics. Board only $-\$ 15.00$; with parts $-\$ 4200$; assembled and tested $-\$ 62.00$.

MODEM*

Part no. 109

- Type 103 - Full or halt duplex - Works up to 300 baud - Originate or Answer - No coils, only low cost comporents - TTL input and output-serial Connect 8 ohm speaker and crystal mic directly to board Uses XR FSK demodulator - Requires +5 volts - Board $\$ 7.60$; with parts $\$ 27.50$

DC POWER SUPPLY*

Part no. 6085

- Board supplies a regulated +5 volts at 3 amps., $+12,-12$, and -5 volts at 1 amp . Power required is 8 volts AC at 3 amps ., and 24 volts AC C.T at 1.5 amps. - Board only $\$ 12.50$; with parts excluding transformers $\$ 42.50$

TAPE INTERFACE *

Part no. 111

- Play and record Kansas City Standard tapes Converts a low cost tape recorder to a digital recorder - Works up to 1200 baud - Digital in and out are TTL-serial - Output of board connects to mic. in

recorder connects 10 input on board • No coils • Requires +5 volts, low power drain \bullet Board $\$ 7.60$; with parts $\$ 27.50$

T.V. TYPEWRITER

Part no. 106 - Stand alone TVT - 32 char/line, 16 lines modifications for 64 char/tine included - Paralle| ASCII (TTL) input • Video output - $1 k$ on board memory Output for computer controiled cur-
 ser - Auto scroll -Non-destructive curser - Curser inputs: up, down, left, right, nome, EOL, EOS - Scroll up, down - Requires +5 volts at 1.5 amps , and -12 volts at 30 mA - All 7400 . TTL chips • Char gen. 2513 - Upper case only - Board only $\$ 39.00$, with parts $\$ 145.00$

Part no. 112

- Tape Interface Direct Memory Access - Record and play programs without bootstrap loader (no prom) has FSK encoder/decoder for direct connections to low cost recorder at 1200 baud rate, and direct connections for inputs and outputs to a digital recorder at any baud rate. $5-100$ bus compatible - Board only $\$ 35.00$; with parts $\$ 110.00$

UART \& BAUD RATE GENERATOR*

Part no. 101

- Converts serial to parallel and parallel to serial - Low cost on board baud rate generator - Baud rates: 110 . 150, 300, 600, 1200, and 2400 - Low power drain +5 volts and -12 volts required
 - TTL compatible - All characters contain a start bit, 5 to 8 data bits, 1 or 2 stop bits, and either odd or even parity. - All connections go to a 44 pin gold plated edge connector Board only $\$ 12.00$; with parts $\$ 35.00$ with connector add $\$ 3.00$

8K STATIC

 RAMPart no. 300 - 8K Altair bus memory Uses 2102 Static memory chips • Mem ory protect • Gold contacts • Wait states • On board regulator - S-100 bus compatible - Vector input option - TRI state buffered - Board only $\$ 22.50$; with parts $\$ 160.00$

RF MODULATOR*

Part no. 107

- Converts video to AM modulated RF, Channels 2 or 3 . So powerful aimost no tuning is required. On board regulated power supply makes this ex-
 tremely stable. Rated very highly in Doctor Dobbs' Journal Recommended by Apple. - Power required is 12 volts AC C.T., or +5 volts DC • Board $\$ 760$; with parts $\$ 13.50$

RS 232/TTY * INTERFACE

Part no. 600

- Converts RS-232 to 20 mA current loop, and 20 mA current loop to RS-232 - Two separate circuits - Requires +12 and -12 volts - Board only $\$ 4.50$, with parts $\$ 7.00$

RS 232/TTL* INTERFACE

Part no. 232

- Converts TTL to RS-232, and converts RS-232 to
TTL - Two separate circuits
 - Requires -12 and +12 volts
- All connections go to a 10 pin gold plated edge connector - Board only $\$ 4.50$; with parts $\$ 7.00$ with connector add $\$ 2.00$

ELECTRONIC SYSTEMS

JUMBO LED READOUT ARRAY
 $\$ 1.95$ limited stock By Bowmar. 5 in. character common cathode. Designed for use with multiplexed clock chips MICRO-MINI TOGGLE SWITCH
$99 ¢$
EACH SPDT. By RAYTHEON

EACH MADEINUSA! WITHHDWR

16K DYNAMIC RAM CHIP

$16 \mathrm{~K} \times 1$ Bits. 16 Pin Package. Same as Mostek 4116-4. 250 NS access. 410 NS cycle time. Our best price yet for this state of the art RAM. 32 K and 64 K RAM boards using this chip are readily available. These are new. fully guaranteed devices by a major mfg

VERY LIMITED STOCK!
${ }^{5} 17{ }^{95} \mathrm{EACH}$
8 FOR \$129
NATIONAL SEMICONDUCTOR
JUMBO CLOCK MODULE
MAI008A

$\$ 6^{95}$
2 FOR
$\$ 13$

ASSEMBLED! NOT A KIT
zULU VERSION!
We have a limited number of the 24 HR Real \#MA1008D - \$9.95

EATURES:
12 HR AEAL TIME FORMAT DISPLAYS
24 HR ALARM SIGNALMAT 50 OA 60 Hz OPEAATION - LED BRIGHTNESS CONTRO * POWER FAILURE INDICATOR * SLEEP \& SNOOZE TIMERS * DIRECT LED DRIVE (LOW RFi)

COMPARE AT UP TO TWICE OUR PRICE!
MANUFACTURER'S CLOSEOUT!

FAIRCHILD JUMBO READOUTS - 5 Inch Char High Efticiency FND-510-Common Cathod YOUR CHOICE 69 e 10 FOR $\$ 5.75$
FET SALE! 2N4304. Brand New NChannel, Junction Fet. BVGDO-30V IDSS-15 MA Typ. 1500 UMHOS TO- 18 Plastic Case Mig. by Teledyne. 6 FOR $\$ 1$

Full Wave Bridge 4 Amp 200 PIV 69cea. 10/5.75

COMPUTER CAPACITOR
By GE. 36,000 MFD 15W VDC Small Size: $43 / 4 \times 13 / 4$ Inches. SUPER DEAL! $\$ 2.95$ Each 3 FOR \$8

262.144 KHZ This trequency is to the 18th power. Easily divided down to any power of 2 and even to HZ New by CTS-Knight. A $\$ 5$
$\$ 1.25$ each

SALE!

1N4148 DIODES
High speed switching diodes Silicion. Same as 1N914. Brand New. Full Leads. Prime! 100 FOR \$2 1000 FOR \$17.50

MALLORY POWER SUPPLY CAPACITOR

 1500 MFD 16 WVDC3/\$1.00 10/\$2.95
FACTORY FRESH: SMALL SIZE
RCA MICRO-POWER OP AMP.
\#CA3078T. Metal Can Most OPAMPS require $=15 \mathrm{~V}$ to operate. But the CA3078 is designed to operate tromi. $75 \mathrm{~V} 10-6 \mathrm{~V}$ "I Pertect for battery use. Standby power as iow as 700 NW .
High Gain. 92 DB typical Open Loop Gain. Requires only one capacitor tor compensation See RCA Linear Data Book lor more details. Similar to National LM112. Origlnally cost abou: 52 each $\quad 754$ Each 3 FOR \$2

[^3]

1．Proven Quality Factory tested products only，no re－tests

2．Same Day Shipment All prepaid orders with cashiers

SUPPORT DEVICES MICROPROCESSORS

LOGOS I BK STATIC RAM
\star Low Power
＊Selectable Memory Prote
－Totally Buffered
－Battery Back－up
－Requires no front pand
－Requires no fro
－No wait states
250ns． 149.95
450ns．
ASSEMBLED \＆TESTED

Bare PC Board w／Data \＄21．95 ＂Special Ofter＂Buy（4） 8 K 45Ons．Kits $\$ 117.00$

paratronics logic
ANALYZER KIT

MODEL 100A （analyzes any type of digital	
Trigger Expander Model 10	\＄229．00
Baseplate	9.95
Model 10 Manual	4.95
Model 150 Bus Grabber Kit	369.00

dC hayes data communi－ CATIONS ADAPTER

\star Telephone／TWX \star S－100 compatible
Bell 103 trea © Originate $\&$ answer mode
Assembled $\&$ Tested
279.95
49.95

6800

 DESIGNER BOARDS MODULES PROTO BOAROS

Z－80／Z－80A CPU BOARD
＊Power on jump
＊ 2708 included（450ns）
＊completely socketed

＊For 4 MHz Speed Add $\$ 15.00$

MICRODESIGN MR－16 2716 EPROM BOARD IMR． 8 Also Available
＊Individual Prom Address
－Uses Low cost 16 K TI EPROMS
\star Optional 1 K RAM Phantom－control
$\begin{array}{ll}\text { Assembled and Tested } \ldots & 174.95 \\ \text { Kit ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．} & 990\end{array}$
SPECIAL SPECIAL SPECIAL
$2708 \cdot 6$ Eprom ．．．．．．．．．．．．． 8 ＠$\$ 5.50$ ea
416.16 K Ram $\$ 16.95$ ea
$1771-01$ Floppy．．．．．．．．．．．．．．．$@ \$ 25.95 \mathrm{ea}$ $1771-01$ Floppy．．．．．．．．．．．． $5 @ \$ 25.95 \mathrm{ea}$
Pet Connector Set．．．．．．．．．． 5 ＠$\$ 7.95 \mathrm{ea}$.

TRS BO UPGRADE KIT

PET TO S－100 ADAPTER
 Aliows Pet to be interfaced to

popular S－100
Bus．
Assembled
For Low Cost 8 Siot Bus to expand
your Pet only．

first quality CARBON RESISTOR KITS 1/4W
кіт \boldsymbol{B} 500 Prs. $\mathbf{9}^{95}{ }_{\text {ppd. }}$ Includes FREE compartmentalized box (\$2.00 value)
$\begin{aligned} & \text { KIT C } \\ & 250 \text { pes. } 49.49 \\ & \text { in Poly Bag } \end{aligned}$
MANY OTHER KITS Aluminum Electrolytic, Tantalum and Ceramic Capacitor Kits. Semiconductor Kits, too. Lamps also.

> We have over 2,000 quality Receiving Tubes.

> Many hard-to-get types.
> All at 75\% off list.

ORIGINAL JAPANESE SEMICONDUCTORS

Full range available to fill just about any requirement.

Send for complete catalog

TO ORDER:
Send check or Money Order N.Y. residents add appropriate tax.

P. O. BOX 698, MELVILLE, N.Y. 11746

CIRCLE 31 ON FREE INFORMATION CARD

ADVERTISING INDEX

RADIO-ELECTRONICS does not assume any responsibility for errors that may appear in the index below.

Free Information Number Page

37 Active Electronics....................................... 109

- Advance Electronics 24,25

Advance Schools 28-31
3 Advanced Computer Products 133
33 Aldelco ... 114
AMC Sales .. 106
Amelect .. 89
American AntennaCov. 4
AP Products, Inc. ... 86
AVR Electronics.. 110
Karel Barta.. 110
Forest Belt's Training Workshop................. 27
58 B\& K Precision Dynascan Co...................... 34

- Bullett Electronics 120

Burdex Security Co. 106
62 C F R Associates 118
Chaney Electronics..................................... 116
69 Channellock ... 22
CIE-Cleveland Institute of Electronics ... 18-21
Command Productions 112
Continental SpecialtiesCov. 3
Cornell Electronics 105
CREI-Div. of McGraw Hill Continuing
Education 72-75

- Dage Scientific Instruments 106

86 Dallas Electronic Products 35
64 Davis Electronics .. 99
54 Delta Electronics .. 110
83 Diamondback Electronics........................... 132
59 Digi-Key .. 131

- Digital Research Corporation 132
E.A.R.S., Inc.. 105

38 Edlie Electronics... 122
7 E I C O ... 97
36 Electra Company ... 13

- Electro-Voice, Inc. 98
- Electronic Development Lab 110

65 Electronic Supermarket.............................. 120

- Electronic Systems 130

48 Electronic Warehouse 122
29 Electronics Book Club (Tab) 23
35 Electronics \& Control Engineer's Book
Club-McGraw Hill Book Div. 90-9
EMC-Electronics Measurements 98
41 Etco Electronics .. 127
73 Fordham Radio Supply.............................. 114
9 Formula International 116,117

- Fuji-Svea.. 108

Gilfer Shortwave .. 106
43 Godbout Electronics 118
63 Gould.. 17
11 Grantham College of Engineering 87
10 Graymark International 107
68 G.T.E. Sylvania-Consumer Renewal 1
100 Heath ... 100-103
77 Hickok Electrical Instruments 36
74 Hobby World ... 108
13 Indiana Home Study 95
Information Unlimited 106
Integrated Electronics 120
International Crystal Mfg. Co. 104
International Electronics............................ 113
James Electronics 128,129
J\& E Electronics 108
15 Kedman... 94
Krystal Kits ... 105
Lakeside Industries..................................... 106
70 Leader .. 85
80 LMN Electronics....................................... 121
8 McKay Dymek .. 97
39 Meshna ... 114
49 Morrow's Micro Stuff 104
6 M T I-Mobile Training Institute 84

16 National Camera Supply 95

- National Radio Institute (NRI) 8-11
- National Technical Schools..................... 54-57
- NESDA ... 94

53 Netronics ... 95
66 New-Tone Electronics 126
71 New-Tone Electronics International 118
81 North American Electronics......................... 89
2 O.K. Machine \& Tool................................. 16
Olson.. 119
2 Oneida Electronics....................................... 97
18 OptoelectronicsCov. 2
17 ORA Electronics... 88
22 Page Digital.. 122
21 P A I A ... 99
57,19 Panasonic.. 2,15
47 Panavise 99
40 Poly Paks .. 123

- Priority 1 Electronics

78 Professional Aids... 98
61 PTS Electronics .. 83
46 Quest ... 106
34 Quimtronix .. 112

- Radio Shack .. 111

42 Ramsey Electronics 112
23 Ripley Co. .. 87
Robinson Nugent ... 97
Rye Industries ... 83
Sabtronics ... 7
Schober Organ .. 32
S G L Waber ... 81
Solid State Sales.. 126
Southwest Technical Products 96
Spacekom.. 33
Speakerlab Inc. ... 105
Spyder Co. ... 96
A. F. Stahler Co. .. 106

Steven Products .. 134
Tasco .. 105
Trinico International 115
Tri-Star .. 112
Trumbull .. 105
Tuner Service... 5
Vector .. 32
VIZ Mfg. .. 26
Wersi Electronics .. 95
West Side Electronics 132

name (please print)
address
city state zip code

\$44.95 KNOW-IT-ALL

CSC's multi-family Logic Probe 1 with memory. Already the industry standard for performance and value.

Th s compact, erormsusly versatile test and troubleshooting eid is like a pe 1 l -sizec scope at you-fingert ps. Simply connect itsc ip eads :o the c rcuit's pawer supjly. set a switch to the proper logis ta nils and tcuzh the prcte tip to the rodeunder test.

LP-1's Lnicue circui:-y does the wark of a lexel detector, pulse detector, pulse s:"etcher and memory FT LED indicates og c "1," _O LED, logiz 'D", and all pa se transitions-positise and negative, as narrow as 50nanosec⿹ 7 ds - are stretched to 1/3 secord and displased on the PULSE LED. One-shot, low-rec-rate narrow pulses -nearly impossible to see eten witt a fast scope, are eas ly detec-able and visible. And you can irde initel, stcresir gle-shot as well as low-rep-rate evenls.
At freauerc es atove 1 MHz , the e is an additicnalindicalior with ur symmetricel pulses: Juty zycles if less than 30%, light tie LO LED; ove ${ }^{-70 \%}$ t $e-11$ LED. Inall modes and circu t stares, LP-1 shigh input impedance tirtual y ellrina:es load ng problems The uni- also teatures overvoltaçe and reverse-solarity prosection, interchangeable orobetips cables and other optional accesscries.
Ordertadar Call 203-624-31J3 (East Cosst) or 415-421-8872 N/est Coast): 9 a.m . -5 p.m. losa time Major credit cards acceptec. On see your DSC dealer. Pr ces sligr tly higher outside LUSA.

Logic Farily SwitchTTLDTL or CNCS maches Logic " 1 " and " 0 " levels: CUOS position also compatibe with HTL, fiN Lanc NOS besic PULSE/MEMORY Squitch \& LED-PULSE LOSition detezts and streteres pulses as na*row as 50 rancsesonds to 13 sec.: MEMORY stres singeshot and low-rep-rate even's indel nitely: HisLe LED's r=main extive HI/LO LED's - Display level IHI-Ingiz *" LO-icgic 'C') as signa ectivitsInterchangezole probe tips - Straight to supp ied coptionsl allingetor if pant insthated quich-conrecting clip awalak's. Citionel irput ground lead.
Plug-in leads - $36^{\prime \prime}$ suppiec with alligator clips. Virtually any ler gh eams

Specifications

Input impedance: 100,000
Thresholds (switch selectable) DTLTTT
logic "." threshoids (HIFLED) $2.25 \mathrm{~V} \pm .15 \mathrm{~d} \quad 70 \%$. $\mathrm{CC} \pm 15 \%$
ATL:CMOS logic " 0 " t tresholds (LO-LED) $\quad 0 . E O V \pm .10 \mathrm{~J} \quad 30 \% \mathrm{Lcc} \pm 12 \%$
Min. deteztable pulse wisth 50 nsec. guaranteec
Pulse detector (PULSE LED) in PL LSE positiono FULSE , $E M O R Y$ switch $1 / 3$-sec. pulse stretcher nates Tight speed pulse trair or single events (+ or - t-arsilipns) disible; in MEMOZY position, tirst tıansitior lightsand -atches LED
Jperating temperature $0-50^{\circ} \mathrm{C}$
Thysical size ($\mathbf{x} \mathbf{w} \times \mathbf{d}$)
$5.8 \times 1.0 \times 0.7^{\prime \prime}(147 \times 25.4 \times 17.8 \mathrm{~mm})$
Weight 3oz. (.0E5Kg)
Power leads renovable $\mathbf{6} 6^{\prime \prime}$ (914 mm) withco orzoded insulated zlips; others available
Input protectio o overlozd, $\pm 50 \mathrm{CV}$ cor Invo \lrcorner s 117 VAC for less than 15 sec ; reverse Rclerity, 5JV; power leads reverse-voltege jrolected.

CONTINENIAL SPECIALTIE CCPPORAMON

70 Fulton Terrace Bo< 1492 , New Haven, I 06509 273-624-3103 T4× 71 J-e65--227 WEST COAST: 351 Califo nia St., Sin Franc see, CA 94104, 41 5-421-8372 TMX 91 J-"2.7992 GREAT BRITAIA: CSEUK LTO Spur Road, Nort Felthem Tredi ${ }^{2}$ Estate. Feltham, NiJclesex England. 01-850-0782 Ir t'I Telex: 85-831-3669 CANADA: _en Fizer Lid ; Ortario
TCLE 5 ON FREE INFO FNATIC CARD

Exclusive Octopole Construction.

That's eight magnets set in eight different directions to give you a magnetic seal so complete and powerful, your antenna would stay up there if you could squeeze between two semis passing each other at 180 miles an hour. That's magnetic octopower.

* GUARANTEE I

Placed on the roof of a vehicle; properly tuned, the K40 Magnamount is guaranteed to transmit a further distance than a standard K40 withoit the Magnamount or you will receive a prompt and full refund fromyour K40 dealer who installed and tuned the Magnamount K40 for you.

* GUARANTEE II

Materials and workmanship are guaranteed for a full 12 months. Any part that fails to perform satisfactorily will be replaced absolutely free.

Exclusive K40 Flux Harmonics for Greater Transmission.

The magnetic radiation pattern was designed to match the K40 antenna radiation for greater distance than the standard K40. See our guarantee.

The facts: Physics and Physical.

1. Magnamount is a bigger, stronger magnet - in fact it's 8 bigger, stronger, magnets.
2. It doesn't just hold the K40 antenna, it helps it transmit further.
3. Remember the law of reciprocity. The antenna that transmits better, receives better.
4. It provides a flatter, lower SWR because the Magnamount is capacitance grounded.
5. It puts your $5 / 8$ wave K40 antenna securely in place in the most advantageous place to work against a ground plane-high and free from obstruction. That's square in the middle, right up on top.

[^0]: *Tridar Corporation.

[^1]: FIG. 2-CUSTOM IC's and careful layout result in a compact circuit.

[^2]: Order it at your local computer shop. Or phone BAC/MC orders to (415) 524-5317

[^3]: TERMS: Add $30 \uparrow$ postage, we pay balance. Orders under \$15 add 75\$ hiandling. No C.O.D. We accept Visa, Mastercharge, and American Express cards. Tex. Res. add 5\% Tax. Foreign orders (except Canada) add 20\% P \& H. 90 Day Money Back Guarantee on all items

