

THIRD IN A SERIES OF IRC TECHNIC-AIDS

HOW TO ASSEWBLE LOUDNESS CONTROLS FOR HI-FI TONE AT ANY VOLUME LEVEL WTH IRC a CoNTROLS AND MULITSECTIONS

 sation in Most AM, FM, TV Sets
Here, at last, is a simple Loudness Control that actually lets the listener hear every tone with almost perfect balance -even at whisper level! It is available as a completely assembled unit, stock No. LCI or you can assemble it yourself economically, in just a few minutes, with a few standard parts obtainable from your IRC Distributor. You can install it in most audio systems as easily as you would an ordinary volume control. And you can use it to "upgrade" your service sales-because it's the very thing your customers have wanted for years.

Compare the Performance of This New

 Loudness Control with That of Any Other Compensating Device

Tapped volume controls-stepped-type loudness controls-bass and treble boost circuits-you've probably tried them all at one time or another. And you probably found that none of them gave the performance of a true continuously variable loudness control.
Tapped volume controls afford compensation only when contactor is at the tap. For wider spread of compensation, two or three taps must be used-which makes the controls more difficult and expensive to manufacture. Stepped-type controls permit considerable change of volume between steps, but do not provide full flexibility of adjustment. Also, they are relatively expensive. Bass and treble boost circuits require multiple adjustments with change of volume for ideal compensation.
The new Loudness Control, originated by IRC, does what these other devices
have failed to do. It is the only continuously variable loudness control that can be easily and inexpensively assembled from standard parts. With it, you boost highs and lows automatically as volume is decreased-maintain depth and brilliance of tone-without expensive taps or multiple adjustments. The chart at left shows response curves for control

Here Are All the Parts You Need to Assemble the New IRC Loudness Control IRC's small "sti" Q Control and original Multisections combine with 2 Advanced BT Resistors and 2 capacitors to form the most efficient loudness control you've ever seen. This is the same Q Control with adaptable fixed shaft feature that technicians have widely used to satisfy most replacement requirements. And Multisections for months have provided an easy answer to ganged control requirements. More than likely you've already used IRC's Q Controls and Multisections to assemble standard duals.

Here's How Easy It Is to Assemble the New IRC Loudness Conirol
Assembling the new IRC Loudness Control is simplicity itself. A glance at the pictorial schematic above will show you how completely easy it is. Here's all you do...
Fasten two specified Multisections to Q Control, as shown, attaching them just as you would switches. Assemble the additional parts-2 BT resistors and 2 capacitors-and make all connections as shown in the diagram. Type $76-1$ or $76-2$ switches may be added if required. Cut shaft to required length and wire into any high gain audio amplifier.
That's all there is to it. In a matter of minutes, using no special tools, you've assembled a really efficient loudness control that suits most Radio and TV sets.

Only 3 Connections Needed to Install Control. No Special Taps or Complicated Circuits Required
The above diagram of the IRC Loudness Control shows not only the simplicity of design-but the ease of installation as well. Actually, there are only 3 connec-tions-IN, OUT and C or GROUND. It's as easy to wire into most audio systems as an ordinary volume control would be.
With only a few exceptions, the new IRC Loudness Control can be used to improve tonal quality in record players, amplifiers, AM and FM radio and television sets.

Every customer, who puts up with ordinary uncompensated volume control, is a prospect for the new IRC Loudness Control. This inexpensive, easily-assembled loudness control demonstrator unit will help you convince them and sell them. You can build it yourself-quickly and easily-with IRC's Concentrikit. This is the simple kit of universal parts, which you may already have used to assemble concentric duals. As for instructions, we'll furnish them-free of charge.
Your request on a penny postal card will bring you full step-by-step directions for assembling the IRC Loudness Control Demonstrator Unit. We'll also be glad to send you any further information you may wish on the Loudness Control itself.

Pick of the Trade

ANTIQUE BRASS

"From the Army's top level comes the proposal that, in times of emergency, FM and TV stations should be closed down, and only AM broadcast transmitters be allowed to stay on the air. But we seem to recall that Jap planes shot down in the attack on Pearl Harbor were found to have receivers tuned to one of the local AM stations."

Milton B. Sleeper, Editor
FM-TV, Radio Communication See March 1951 Issue
"During our present emergency the use of only first-class quality material will pay out. It pays big dividends to the radio technician in the end.
"At best from now on the service technician will be continuously harassed and his time will become more precious as long as the emergency lasts."

Hugo Gernsback, Editor
Radio-Electronics
See April 1951 Issue
" Magnetic Recording Units having a retail value of $\$ 15,000,000$ were produced during 1950 by 46 licensees of Armour Research Foundation."

DISTRIBUTORS AND THE SERVICE MAN

"Too often the importance of the distributor is discounted by the Service Man. Actually, his value to the shop is inestimable.
"It is the distributor who provides that important component or accessory at the right time. He's the man who follows through on the shipments and sees to it that his shelves are stocked with the merchandise required for that installation or servicing call.
"His trained sales personnel often provide the Service Man with vital application guidance. It is the distributor who even assumes the credit responsibility for the service shop.
"The distributor is a true friend of the Service Man and his shop!"

Lewis Winner, Editor
Service Magazine
See March 1951 Issue

JAMES R. RONK, Editor

Editorial Staff: Merle E. Chaney - Robert B. Dunham W. William Hensler • Ann W. Jones - Glenna M. McRoan

Art Directors: Anthony M. Andreone - Thomas Culver
Production: Archie E. Cutshall
Prinfed by: The PHOTOFACT Press; Joseph C. Collins, Manager
Photofact and PF Index Trademarks, Reg. U. S. Pat. Ofice Circulation: First Printing, 75,000 Copies

CONTENTS

Shop Talk

Milton S. Kiver
Video IF Amplifiers
W. William Hensler 5
Converting the RCA Victor 730TV-1
Robert B. Dunham 11
Dollar and Sense Servicing
John Markus 17
As I See It
Walfer R. Jones 21
Keyed AGC Application
R. B. Dunham and W. Wm. Hensler. 23
Experiments in Audio James R. Ronk 27
PHOTOFACT CUMULATIVE INDEX
No. 26 Covering PHOTOFACT
Folder Sets Nos. 1-134 Inclusive 33
Picłure Tube Replacement Chart 59
+More or Less - 62

HOWARD W. SAMS, Publisher
COPYRIGHT 1951. Howard W. Sams \& Co., Ine. 2201 East 46 th Street - Indianapolis 5, Indiana

The PF (PHOTOFACT) INDEX is published every other month by Howard W. Sams \& Co. at 2201 E. 46th Street, Indianapolis 5. Indiana, and is available from PHOTOFACT Distributors in the United States and Canada.

ABOUT THE COVER: The photograph is of R. D. Cichy, proprietor of a service shop in Belding, Michigan. Mr. Cichy writes: "Here is an actual 'unsolicited' letter of praise for Sams' Photofact services. I am the guy who always wonders how much was paid for so-called unsolicited testimonials. To keep it short, my business would soon become very tedious if it were not for your most practical way of furnishing service data. Keep up the good work. Enclosed is a photo of what you might call a Sams' shop. Your full set of manuals is one of the most important parts of my shop and as you can see I like to have all I can of it in view of the public."
"WHAT TEST EQUIPMENT WILL I NEED AND HOW MUCH MUST I SPEND FOR IT?" is the big problem confronting every techniciancontemplating television servicing.

The answer to the first question has been given many times and is well known by now. Basically, you need a VTVM, an oscilloscope, an AM signal generator, and a sweep signal generator. If you wish to measure high voltage, a special probe can be bought for the VTVM which will accomplish this job. The same can be said of a high frequency probe. So if you want the absolute minimum, there you have it.

The answer to the second question has not received as much attention as the first, although, to a great extent, it is the more important of the two. While the TV service aspirant can usually figure out what he might need in the way of equipment, he does not know how low he dare go in price and still obtain something worth while. The emphasis here is on low priced equipment because if you can afford a Hickok 610A, or a Simpson Genescope, or a Precision 400 -C, or an RCA scope, and others of similar quality, then by all means go out and get them. In test equipment, as in most other items, you get only what you pay for.

The major problem, as the writer sees it, concerns the man who has limited capital to spend, yet who wants to get as many different items for his few dollars as he can. With this in mind, let us examine each of the above mentioned basic instruments and see what you should try to get for your money.

VTVM. The VTVM has been around long enough by now to have become quite standard in design. You will readily discover, after some investigation, that nearly all such units employ some form of bridge circuit and that the differences in prices stem primarily from certain refinements that have been added to the instrument. Thus, one VTVM will contain a zero center scale, another will possess an extra Db scale, a third will have a special high frequency probe capable of RF measurements up to 300 mc , etc.

Most of the refinements are good to have and will, to a certain extent, make your servicing tasks easier. But 90 per cent of your TV service work deals with resistance and voltage checks - and so you have to settle in your own mind whether certain refinements are worth the extra money you have to pay for them. If you feel that you are only concerned with the work this meter will have to perform 90 per cent of the time, then get a mit which has only D D volt scale, AC volt scale, and a resistance scale. And you will Tind that it ansters your purpose. But
if you feel that you should have one with the additions mentioned above, then adjust your budget to include one of these.

OSCILLOSCOPES. The range of prices that you will encounter in oscilloscopes will be more extensive than those of VTVM's. Yet here again you are dealing in circuit refinement rather than basic circuit difference. An expensive oscilloscope will possess high gain and wide frequency response. A less expensive unit will have a frequency response (in its vertical amplifiers) perhaps up to 100,000 cycles and require possibly .2 of a volt input for one inch deflection on the screen. This means that more signal will have to be pumped into the circuit in order to obtain a sizeable pattern.

There is considerable controversy about the bandpass of the vertical deflection amplifiers and how wide this should be for television servicing. For ordinary servicing, where you are generally interested more in determining whether the video signal is present rather than how rectangular its sync pulses are, a frequency response to the vicinity of 100,000 cycles will suffice. The same is true of the vertical and horizontal sweep systems of the TV receiver where the fundamental frequency of the deflection voltages are quite low (vertical 60 cycles, horizontal 15,750 cycles). As the bandpass increases, the pulses more nearly approach their rectangular form. But greater bandpass means lowered gain and to offset this reduction, more amplifiers are needed. Which, in turn, raises the cost of the instrument.

The chief difficulty you will find in low priced oscilloscopes is obtaining one which will give you a sizeable deflection for a moderate input voltage. Pay particular attention to this point because nothing will hamper your service work more than dealing witho small pattern and trying to figure out whether it conforms to the recommended shape or not. Forego a little vertical amplifier response - but try to get as high a deflection sensitivity as possible for the amount of money you can afford to spend.

SIGNAL GENERATCRS. The problem of the AM signal generator and the sweep generator can be considered at the same time because they serve a common purpose - to help in aligning the various TV circuits. To gain a better appreciation of the job these instruments must do, let us briefly consider the character of the tuned circuits in television receivers.

In the RF and video IF stages you will find wide-band amplifiers designed to pass a band of frequencies from 3 to 6 mc wide Obviously, to properly - Please turn to page 49 .

In order to understand the requirements of video IF amplifier systems, the nature of the signal which the amplifier must handle should be taken into consideration.

The video carrier is an amplitude modulated signal with approximately 4 mc as the maximum modulation frequency. In conventional double sideband transmission, an 8 mc bandwidth would be required to transmit this signal. Since the allocated TV channel is only 6 mc wide, it is obvious that the double sideband method cannot be employed.

It is possible, however, to transmit $t h i s$ intelligence using single sideband transmission. This is accomplished by filtering out one of the side bands at the transmitter. In actual practice, a high pass filter is usually placed in the transmission line between the transmitter and the transmitting antenna, thus filtering out the lower sideband beyond a point approximately 750 kc from the video carrier frequency. This type of transmission is known as "vestigial" sideband modulation, since only a small part, or "vestige," of one sideband is transmitted.

Figure 2-1 shows the frequency distribution at the output of a transmitter operating on Channel 6. The video carrier is 1.25 mc above the low end of the channel, and the sound carrier is .25 mc below the high end of the channel, making the sound and video carriers 4.5 mc apart.

Figure 2-1. Frequency Distribution of a Channel 6 TV Transmitter.

The shaded portion to the right and left of the video carrier represents that part of the signal which has double sideband transmission. In other words, all modulation frequencies below 750 kc will be transmitted with twice the power as compared to those above 750 kc .

If special precautions are not taken in the design and alignment of receiver video IF amplifiers, the lower frequencies will be over-emphasized, resulting in poor picture reproduction.

Referring again to Figure 2-1, it can be seen that in order to utilize the complete transmitted signal, the video IF amplifier must have a bandpass of 4 mc . and must also incorporate some means of reducing the gain of the signal which carries the lower modulation frequencies.

Although the sound transmission has nothing to do with the transmission of picture information, its signal must be taken into account in the video $1 F$ amplifier design for several reasons.

There are two major classifications for video IF amplifiers: (1) The separate channel system, where sound IF and video IF signals are amplified separately, and (2) the intercarrier system, where both of the IF signals are amplified in the intercarrier strip.

In the case of the separate channel system, the sound IF signal is removed through the use of trap circuits in the video IF input, and is then fed to the sound IF channel for amplification. Hence, the nature of the sound transmission must be considered for satisfactory trap design and alignment to make sure that the sound does not get through the video IF strip.

In the intercarrier system, the sound IF signal is allowed to continue through the video IF strip, with its amplitude held at a predetermined percentage of the video IF signal.

Figure 2-2A. Ideal Separate Channel Video IF Response Curve.

Figure 2-2A shows an ideal separate channel video IF response curve placed over the transmitter output curve. Since this is an ideal response curve, it follows the transmitter output curve at the high end indicating that the bandpass is sufficient to pass all modulation frequencies.

In actual practice, the bandpass may not be the full 4 megacycles wide, but it is shown here as such to indicate the ideal condition.

It should also be kept in mind that the IF response curve will be inverted from that shown in those receivers where the local oscillator operates above the incoming signal.

As mentioned above, some means of preventing over-amplification of the sign al representing the lower modulation frequencies must be taken. As can be seen in Figure 2-2A, the video IF amplifier is so aligned that the video carrier is halfway up the slope. The lined area represents the amount of the lower sideband that is passed through the video IF amplifier while the dotted area represents the amount of upper sideband that is not passed. If the video carrier is at the midpoint of the slope, and the slope is straight, the lined and dotted areas will be equal. Under these conditions all frequencies will be amplified an equal amount. If, however, the video carrier is too far up the slope, too much of the lower sideband will be passed, resulting in over-emphasis of the lower frequencies. On the other hand, if the video carrier is too far down the slope, the lower frequencies will be weak, resulting in poor reproduction.

Figure 2-2B shows an ideal response of an intercarrier IF placed over the frequency distribution curve of the transmitter. The response curve is the same as that in Figure 2-2A at the video carrier end but differs at the other end. A "shelf" has been added which allows the sound IF frequency to be amplified in the video IF amplifier, but at a much lower level than the video carrier. In actual practice the "shelf" may not be nearly so pronounced as shown or, as in many cases, the sound carrier is

Figure 2-2B. Ideal Intercarrier IF Response Curve.
placed at a predetermined point up the slope and no actual "shelf" will be present. In either case the sound carrier is placed at a point which provides only 5% of total amplitude. At the video detector the beat note of the video and sound carriers produces a 4.5 mc sound IF signal which is trapped out and fed to the sound IF portion of the receiver.

Some means must be provided to control the gain of the video IF amplifier since all signals that are received will not be of the same strength. Otherwise, weak signals would not be amplified enough for the detected signal to be useful. Likewise, if the gain cannot be reduced when receiving strong signals, overloading will occur. Several methods have been incorporated to vary the gain of the IF amplifier. In one case a varying bias is manually applied to the bias line of the IF strip. In other circuits a control in the cathode circuits of the IF amplifiers is manually operated to control the gain.

At the present time, however, the trend is to incorporate some means of automatic gain control where the signal itself is used to develop a bias that is proportional to the amplitude of the signal. Through this means the signal will adjust the gain of the amplifier so that an approximately equal signal is developed at the video detector load whether the signal is weak or strong.

The video IF amplifier must be so designed that there is a minimum of noise developed within the circuit. Special care must be taken in selecting the type of tubes and circuits to be used. Pentode tubes are almost always used because of their high transconductance which makes possible a reasonable gain even though low Q coils are used in the tuned circuits. The amplifier must be stable at all gain settings as any tendency for oscillation will result in poor picture reproduction.

The choice of video IF frequency that is used is important. The higher the frequency, the easier it becomes to obtain full bandpass with a minimum of stages. As the frequency is increased, however, the gain decreases and the possibility of unstable operation increases. Thus it c an be seen that a compromise must be made. The most popular frequencies that have been used for video and sound IF is in the region between 21 and 26 mc . At these frequencies a reasonable gain, as well as adequate bandpass, can be achieved. In a receiver using these IF frequencies, however, it is necessary to operate the local oscillator at a frequency which is within some of the television channels. Under these conditions the radiation from the oscillator may interfere with the reception on another receiver.

Considerable work has been done on tuners to keep oscillator radiation at a minimum but the results are not always the same on production models. The present trend is to increase the IF frequency which places the oscillator frequency farther away from the incoming signal. The oscillator frequency is then more easily attenuated in the tuned circuits of the tuner. With the IF in the 41 to 46 mc range, the operating point of the oscillator does not fall within any of the tellevision channels. The recent action of the Federal Communications Commission provides
tentative approval of the 41 to 46 mc range. The use of these higher frequencies is made possible by the development of higher gain tubes which will provide adequate gain at these frequencies.

In order to reject unwanted signals, trap circuits are employed in the video IF strip. The traps may be absorption, series or parallel tuned circuits. The type that is employed depends on the nature of the signal that is being rejected and also the circuit in which it is used. The operation of each of these traps will be discussed later.

The video IF amplifier must be selective. That is, it must be able to reject signals that are not within the channel which is being received. Because of past experience in radio, it is a natural tendency to associate selectivity with an amplifier having a very narrow bandpass. By definition selectivity means the ability to discriminate or separate a predetermined band of frequencies from all other signals. Thus applied to television reception, good selectivity would require that a receiver accept only those frequencies within the television band being received and reject all other signals. It would seem that such good selectivity would not be required since adjacent channel assignments are not made in a given locality. It is possible, however, to have a receiver operating at a point between two stations that are operating on adjacent channels where adjacent channel rejection would be required. It is because of this possibility that adjacent channel sound and video traps are incorporated.

Another need for good selectivity is for the rejection of interfering signals that are near the channel which is being received. The results of an interfering signal are much more objectionable in TV reception than in sound reception, since it may degrade the picture and, in some cases, may cause loss of synchronization. Obviously, if the interfering signal is within the frequency limits of the desired channel, it will be accepted as a part of the desired signal and very little can be done to reject it. Good selectivity, however, will make possible the rejection of unwanted signals outside the frequency limits of the desired channel.

From the requirements set forth so far it has been established that a video IF amplifier should provide the following:

1. Adequate Bandpass.

2. Compensation for Vestigial Sideband Trans mission.
3. Trap Circuits to Reject Unwanted Signals.
4. Variable Gain.
5. Stable Operation.
6. Sufficient Gain with a Minimum of Noise.
7. Good Selectivity.

TUNED CIRCUITS

Some of the requirements above are design problems and do not directly concern the service technician. The problem of obtaining adequate bandpass, however, must be solved quite frequently when an alignment is performed on the video IF strip. The alignment procedure that is followed is governed by the type of tuned circuits that are employed. Three basic types of tuned circuits used in television video IF amplifiers, up to the present time, listed in their order of popularity, are as follows:

1. Stagger Tuned.
2. Transformer Coupled.
3. Bandpass Circuits.

The simplest method of obtaining adequate bandpass in a video IF amplifier is through the use of several single tuned stages. Each of the stages are tuned to different frequencies making possible the wide bandpass of the complete video IF strip. Since the coils are tuned to different frequencies, the tendency for oscillation is decreased, making the production problem easier as far as placement of parts is concerned. The coils themselves need not be high Q units. On the contrary they should be low Q units to provide a wider response. This makes it possible to keep down the cost of the coils resulting in lower production costs.

Figure 2-3 shows the response curve of a single tuned stage, along with a partial schematic of a stage representative of the type used in video IF amplifiers.

Figure 2-3. Response Curve and Circuit of Single Tuned Stage.

A single tuned coil (L1) is placed in the plate circuit of the GAU6. L1 is tuned by the output and input capacities of the two tubes along with the distributed capacity of the wiring. Use of a minimum capacity makes possible a higher inductance value for L 1 over the value which would be permissible if more capacity were placed in the capacitive branch of the tuned circuit. Thus a higher L to C ratio can be maintained, making possible more gain in the circuit.

Figure 2-4. Equivalent Circuit of Circuit in Figure 2-3.

The gain of a stage having a plate load which is small in comparison with the plate resistance of the tube, is dependent upon the transconductance of the tube and the impedance of the load. Figure 2-4A shows the equivalent circuit of the video IF amplifier illustrated in Figure 2-3. Es represents the signal voltage, R_{p} the plate resistance of the tube, C_{s} represents the tube capacity along with the distributed capacity, R_{S} is the series resistance of L1, and R3 is the grid resistor. C2 can be disregarded in the equivalent circuit as its reactance is so low at the operating frequency. Since the signal is developed across the parallel network of $\mathrm{C}_{\mathrm{S}}, \mathrm{L} 1$ and R3, these three branches can be lumped together and designated as Zt_{t}, the total impedance of the load. This is shown in Figure 2-4B.

Current (Ip) will flow in the closed circuit and the voltage* (mu E_{S}) will be divided between Rp_{p} and Z_{t}. With Z_{t} extremely small in comparison to R_{p}, any change in Z_{t} (as long as its value is kept low) will not change the amount of current flowing in the circuit. Since the amount of current remains constant, the gain of the stage (the voltage across Z_{t}) can be changed only by varying the value of Z_{t}.

In conclusion, it has been said that the gain of a stage having a load which is extremely small in comparison to the plate resistance of the tube, is dependent upon the G_{m} of the tube and impedance of the load. In order to obtain maximum gain, the L to C ratio should be kept as high as possible and a tube having a high mutual conductance should be employed.

The impedance of a parallel resonant circuit is in proportion to the Q of the circuit. The higher the Q, the higher the impedance and vice versa. Another characteristic of the circuit which is dependent on the Q is the bandwidth. The bandwidth, at the halfpower point, is equal to the resonant frequency divided by the Q of the circuit. Assuming that the resonant frequency of the circuit shown in Figure $2-3$ to be 24 mc , and the Q to be 10 , the bandwidth of the circuit would be 2.4 mc . By increasing the Q ,
in order to increase the impedance, the bandwidth of the circuit would be decreased. Some compromise must be made in arriving at the value of the effective Q so that a reasonable gain can be achieved and still maintain adequate bandpass.

The coil illustrated in Figure 2-5 is a tunable choke representative of the type that is used in stagger-tuned video IF systems. A core has been removed from another identical coil and is shown alongside to illustrate its construction. In taking measurements on this coil, the minimum inductance, with the slug all the way out, was found to be 1.75 microhenries, and the maximum inductance, with the slug all the way in, was found to be 4.1 microhenries. The Q of the coil is 75 .

The circuit shown in Figure $2-3$ employs this type of coil to perform the functions of L1. Note that no additional capacity is placed across L1 other than the tube capacity and the distributed capacity of the wiring. In order to resonate the circuit with the slug set all the way in, to achieve maximum inductance, the maximum allowable capacity in the circuit would be 10 mmf . The input and output capacities of the two tubes are across the coil, and, by referring to the tube manual, the sum of these two capacities is found to be 10.5 mmf . This does not allow for distributed capacity or Miller Effect, so it is obvious that this amount of inductance cannot be used. Assuming that the total capacity in the circuit is 15 mmf ., an inductance of approximately 2.9 microhenries would be required. This is well within the range of the tunable choke shown in Figure 2-5.

The reactance of the coil at this setting would be 437 ohms, and assuming that the effective Q of the circuit could remain at 75 , the total impedance of the

[^0]Substituting the equation 2-1 for ${ }^{1} p$ in equation $2-2$ we have:

$$
E_{0}=\frac{m u E_{S} \times Z_{t}}{R_{p}+Z_{t}} \quad \text { (Equation 2-3) }
$$

The voltage output of any stage equals the voltage input, times the gain or:
$\mathrm{E}_{\mathrm{O}}=$ Gain $X \mathrm{E}_{\mathbf{S}} \quad$ (Equation 2-4)

Substituting equation 2-4 for E_{O} in equation 2-3 and removing E_{S} from both sides we have:

Gain $X E_{S}=\frac{\operatorname{mu} E_{S} X Z_{t}}{R_{p}+Z_{t}}$ or Gain $=\frac{m u X Z_{t}}{R_{p}+Z_{t}} \quad \quad$ (Equation 2-5)
Since in this case Z_{t} is extremely small in comparison with R_{p}, the quantity of R_{p} plus Z_{1} may be considered as R_{p} only, making the equation $2-5$ read:

Gain $=m u \times \frac{Z_{t}}{R_{p}} \quad$ or Gain $=\frac{m u}{\mathbf{R}_{p}} \times \mathrm{Z}_{t} \quad \quad$ (Equation 2-6)
The transconductance (G_{m}) of a tube equals the amplification factor (mu) divided by the plate resistance (R_{p}):
$\mathrm{G}_{\mathrm{m}}=\frac{\mathrm{mu}}{\mathrm{R}_{\mathrm{p}}}$
(Equation 2-7)

Substituting equation 2-7 for $\frac{m u}{\bar{R}_{p}}$ in equation $2-6$ we have:
Gain $=G_{m} \times Z_{t}$
(Equation 2-8)

Figure 2-5. Tunable Choke Used in Stagger-Tuned Video IF Systems.
load would be 437 times 75 or 32,775 ohms. The mutual conductance of the 6AU6 tube is listed at 4450 micromhos which would provide a gain of around 145. Gains of this quantity cannot be obtained in this type of circuit for several reasons, the most important of which is the need for lowering the Q of the circuit to obtain wider bandpass. With a Q of 75 , a tuned circuit of this type would have bandpass of only 320 kc which falls far short of the requirements. If the effective Q were lowered to a value between 6 and 10 , however, the bandpass would widen out to between 2.4 and 4 mc , and the stage will give a gain of 10 to 17 which is average. It should be kept in mind that the above calculations do not exactly duplicate the design characteristics of the circuit, but are given as an example to show what problems are involved. By gaining a better understanding of the design problems of this type of circuit, the service technician will be able to make component replacements and be assured of proper performance.

R3, in the partial schematic of Figure 2-3, serves as the grid return for the following stage, and also acts as a shunt across L1 to aid in lowering the Q. A resistance placed across a coil lowers the Q since the resistance is shunting the load resulting in a lower total impedance. In this type of circuit, all the developed signal is coupled to the following stage. If the gain is excessive, regeneration might take place. By varying the value of the shunt in the circuit the gain of the stage can be held below the oscillation point. When making replacement of these
resistors, exact duplicates must be used to maintain proper gain and bandpass in the video IF strip.

Figure 2-6 is a schematic of a video IF strip employing tunable chokes similar to the type illustrated in Figure 2-5.

Four 6AU6 type tubes are employed, having stagger-tuned circuits to obtain adequate bandpass. Note that all the coils are tuned to different frequencies which widens the frequency response and also lessens any tendency for oscillation in the strip. AGC is applied to each stage with a ladder-type decoupling network added to prevent feedback through the AGC line. The plate and screen of each stage is also decoupled by means of an RC network.

Tracing the signal through the circuit, we find that the output of the mixer has a parallel tuned circuit composed of L1 and the output capacity of the mixer tube. The mixer is decoupled by C1 and R2. The signal is coupled to the 1 st IF grid by C 2 , and R3 serves as the grid load of the tube. The value of R3 is 8200 ohms which lowers the effective Q of L 1 , thereby broadening its bandpass characteristics.

The second and third IF stages are essentially the same as the first IF except for the values of the grid resistor and the decoupling resistor in the plate and screen circuit. Another change is the addition of an unbypassed 68 ohm resistor in the cathode circuit to introduce a very small amount of degeneration. This has the effect of increasing the input resistance of the tube and also lessens the change of input capacity caused by the Miller effect. The small loss in gain can be disregarded, since the advantage of decreasing the capacity change due to Miller effect overshadows this disadvantage.

The tuned circuit of the last IF stage differs from the others in that it has a resistive plate load and the coil is moved to the right of the coupling capacitor. Since it is necessary to use a low value detector load, a low DC resistive path is required at the input side of the diode to prevent a loss of signal at the input side.

It is interesting to note that this IF amplifier has no traps. The selectivity is achieved by proper stagger tuning of the tunable chokes. All of the chokes

Figure 2-6. Complete Stagger-Tuned Video IF Strip Using Tunable Chokes.

SIMPLE, SNAP-IN INSTALLATION OF 402-M CARTRIDGE

Installing in the Admiral Arms for which it was designed is a simple matter of inserting the three-prong terminals into the three snap-in receptacles found in these arms. Snap-in action holds the cartridge firmly in place and nothing else need be done.

ASTATIC CARTRIDGE REPLACEMENTS FOR ADMIRAL EQUIPMENT

 ASTATIC MODEL 402-M CERAMIC CARTRIDGE replaces admiral 78 RPM SNAP-IN Cartridge (ADM. PART NO. Al372) Output has been increased above that of similar cartridges. Light weight and low minimum needle pressure are additional advantages. Employs Astatic Type "G" Needle, with 3-mil precious metal tip. Needle is replaceable, slipping easily from its rubberchuck with a quarter-turn slipping easily from its rubber sideways.

COMPLETE REFERENCE

 CHART on Astatic Cartridges which are replacements for various Admiral Phonographs and Phonograph Combinations is available. Write for Form No. 51.SPECIFICATIONS

Model No.	Element Type	List Price	Minimum Needle Pressure	Output Voltage 1000 c.p.s. 0.5 Meg Load	Frequency Range c.p.s.	Needle Type	Approx. Net Wt. in Grams	Code
402-M	Ceramic	\$6.90	12 gr.	*Audio-tone Test Record	50 to 10,000	$\begin{gathered} \text { G-78 } \\ \text { (osmium tip) } \end{gathered}$	8	ASWZN

ASTATIC AC-AG AND AC-J CRYSTAL CARTRIDGES are ideal replacements for admiral 409al3, 409A13-1 AND 409A300 CARTRIDGES

Model	List Price	Minimum Needle Pressure	Output Voltage 1000 c.p.s. 0.5 Meg Load	Frequency Range c.p.s.	Needle Type	Application	Code
AC-J AC-AG-J	58.90 8.90	$\begin{aligned} & 5 \mathrm{gr} . \\ & 6 \mathrm{gr} . \end{aligned}$	$\begin{aligned} & 1.0^{* *} \\ & 1.0^{* *} \end{aligned}$	50 to 10,000 50 to 10,000	A-1 (1-mil sapphire tip) A-AG \boldsymbol{A} (sapphire tip)	Replaces Admiral 409A300 Replaces Admiral 409A13 and 409A13-1	ASWYJ ASWYH

[^1]$\dagger^{\prime \prime}$ ALL-GROOVE"' Needle tip of special design and size to play either $331 / 3$ and 45 RPM (narrow groove) or 78 RPM (standard groove) records.

OTHER ASTATIC	REPLACEMENTS		
FOR ADMIRAL	CARTRIDGES		
ADMIRAL	ASTATIC	ADMIRAL	ASTATIC
PARTNO.	REPLACEMENT	PARTNO.	REPLACEMENT
A-1372- (33025)	$402-M$	$409 A 13$	AC-AG-J
409A1	L-92A	$409 A 13.1$	AC-AG-J
409A2	L-92A	$409 A 300$	AC-J
409A3	L-92A	$409 A 301$	AC-J
409A10	L-29		

Converting the RCA Victor 730TV-1 to 14 inch Operation

by Robert B. Dunham

The cabinet and chassis design of the RCA Victor Model 730TV1 (See Figure 1) is such that it may be converted to use a $14^{\prime \prime}$ rectangular tube with a minimum of physical changes in the chassis and the cabinet. Figure 2 illustrates this model after conversion to use a $14^{\prime \prime}$ tube.

This set incorporated a $10^{\prime \prime}$ tube as original equipment and the tube was mounted unusually high above the chassis to position it at a point that would follow the design of the cabinet. The resulting added height of the deflection yoke and focus coil above the chassis, makes it possible to mount the $14^{\prime \prime}$ tube in the original bracket and still allow the tube to clear the components on the chassis. The front of the tube is supported by a cutout in a subpanel at the front of the cabinet. It is necessary to cut a new opening in this subpanel to support the new tube. The front panel of the receiver can be removed by taking out the two screws at the top of the panel. This will permit the alteration of the front panel to be performed on the work bench, which is much easier than doing the work within the cabinet itself.

Because of the minor nature of the cabinet work required in this conversion, it can be performed in the service shop without the need of special wood working tools. A complete description of the cabinet work required is given later. It is suggested that no work be dome on the cabinet until the electrical con-

Figure 1. RCA Victor Model 730TV1.

Figure 2. The Converted Receiver.
version of the chassis is completed. This practice is wise to follow on any conversion job, so that in the event the chassis cannot be converted for some unforeseen reason, it can be restored to its original circuitry and placed back in the cabinet.

CIRCUIT CHANGES

A partial schematic showing the original wiring in the horizontal circuit is shown in Figure 3. The components located in the high voltage compartment, which need to be removed in this conversion, are shown in Figure 4. These components are the horizontal output transformer, the width coil and the high voltage filter capacitor. After the removable section of the high voltage compartment was taken off, the leads to terminals $1,4,5$ and 6 were unsoldered and the four screws which mount the horizontal transformer to the HV compartment were removed. The remainder of the high voltage compartment was then taken off which gave access to the high voltage rectifier filament leads. After these filament leads were unsoldered, the horizontal output transformer was removed. The high voltage filter capacitor is mounted in a single clip socket in this model and was removed by slipping the clip off the top connector pin and lifting the capacitor from the socket. The original width coil was then removed from the bracket. This completed the removal of the major components from the HV compartment.

See your Jobber!

*

The new 1951 MERIT

CATALOG \#5111 shows complete up-to-date specifications on the entire Merit line of TV, Radio, Amateur and Industrial Transformers. The Merit TV line is as complete as current and advance information will permit.
You'll need the DEC. 1950 MERIT TV REPL
GUIDE \& CATALOG for saving time in selecting the correct replacements for all popular television receivers. This handy, easy-to-use popular guide lists model and part numbers of 70 manufacturers, covering 800 models and chassis. First two pages list all TV Transformers and Specs.
DEALER PRICE SHEET-FORM No. 2, dated MARCH 15. 1951 shows the part No., Net price and List price of over 280 parts.
AUTO VIBRATOR TRANSFORMER SHEET-FORM No. 3, dated DEC. 30, 1950, shows model No., Net, List prices and Specs. of VIBRATOR TRANSFORMERS for FORD-GM. MOTOROLA and MOPAR car radios. Also simple easy-to-read replacement guide covering 30 manufacturers.
MERIT OUTPUT TRANSFORMER CHART-FORM No. 4, single sheet shows proper Merit output transformer for use with all popular output tubes. Both MERIT specific and universal types are shown. Mounting style is included for further convenience.
MERIT TV COMPONENTS-FORM No. 5, dated APRIL, 1951 -illustrated descriptive sheet on MERIT "FLYBACKS" "DEFLECTION YOKES," "FOCUS COILS" and WIDTH LINEARITY COIL WITH AGC.

MERIT comparative part number sheet for TV \& RADIO FORM No. 10-shows numerical listing of MERIT part Nos. to competitive Nos. on TV- on Radio, competitive Nos. to MERIT, for easy conversion.

REFERTO MERIT'S LISTING IN SAMS PHOTOFACTS
See Your Jobber or Wrife Direct to

Figure 3. Schematic of Original Horizontal Sweep Circuit.

The new high voltage capacitor was then inserted in the original capacitor socket and the top clip connected. A 15 or 20 KV unit should be used since the criginal unit has a 10 KV rating and might break down under the voltage developed in the revised circuit. The new horizontal output transformer, a Merit type HVO-6, was then mounted. It was positioned close to the high voltage rectifier socket so that the high voltage rectifier filament leads could be kept as short as possible. This required the drilling of three holes to mount the new unit. The placement

Figure 4. High Voltage Compartment.
of the components is shown in Figure 6. The filament leads were then soldered to the proper tube socket terminals.

Editor's Note: As this goes to press, the Merit Transformer Corporation is starting production on a type HVO-7 horizontal output transformer which is identical electrically to the HVO-6. The type HVO-7, however, has a mounting bracket which is drilled to fit in the same mounting holes used by the original RCA transformer. The leads on this unit are long enough to allow it to be mounted in the same location and position as the original unit. If the HVO-7 transformer is used there will be no need for drilling the new mounting holes previously described in connection with the Merit type HVO-6.

The next step was the mounting of the new width coil, a Merit type MWC-1. This coil is slightly larger than the original unit and requires slight reaming of the hole in the width coil bracket. After the width coil was mounted in the bracket, the side of the high voltage compartment was remounted on the chassis. The leads to the horizontal output transformer were then soldered to the proper terminals as indicated in the schematic of Figure 5.

The next step was the removal of the focus coil and deflection yoke. A Merit type MD-70 deflection yoke which is designed for use with tubes requiring 70 degree deflection, replaces the original yoke. The damping capacitor and resistors were first installed in the yoke per the manufacturer's instructions. The original focus coil was tried with the $14^{\prime \prime}$ tube but it was found that the focus point was not quite reached at the limit of the focus control. By using a higher resistance unit, such as the Merit type MF-3, proper focus could be obtained. This type focus coil is the same style as the original unit and will mount in the original bracket with no changes required.

LOAD-CHEK for the first time makes it possible for every technician to utilize what is perhaps the simplest and quickest of all service methods-Servicing by Power Consumption Measurements.
Power consumption measurement has long been proved by auto-radio servicemen as a rapid method of localizing troubles in auto radios. But Triplett's new LOAD-CHEK is the first Wattmeter to be produced at moderate cost, and with the proper ranges, to bring this short-cut method within the reach of every radio and TV service man.

Basis of the LOAD-CHEK method is the tag or label on every radio and TV chassis which shows the normal power consumption. The following examples are only two of many time-saving uses of this new instrument.
LOCATING A SHORT - The chassis tag may show a normal consumption of 225 Watts. Simply plug the power cord of the chassis into LOAD-CHEK (there are no loose ends to connect or be in the way). Note the reading which should be possibly 350 Watts. By removing the
rectifier tube you can determinc at once which side of the tube the short is on. With a soldering iron and long-nosed pliers you can check through the chassis, locate and correct the trouble without having to lay down tools or to check with lead wires!

REPLACING BURNED OUT RESISTORS-With the chassis to be repaired plugged into a LOAD-CHEK MODEL 660, note the wattage reading with the burned out resistor circuit open. Now replace the resistor. Should the increase in watts be greater than that of the resistor rating being installed, it indicates that an extra load has caused the trouble which has not been cleared.
LOAD-CHEK is made-to-order for the busy service man and can help stop costly "come back" repair jobs. It's a profit-maker because it's a Time-Saver. And at its moderate cost LOAD-CHEK can be standard equipment on every service bench. By all means, inspect this versatile instrument at your distributor and place your order, for under present conditions we must fill all orders on a basis of "First Come, First Served."

Figure 5. Schematic of Revised Horizontal Sweep Circuit.

In order to insure that the new tube will clear the top adjustment screw on the discriminator transformer, spacers were installed between the deflection yoke and the bracket to which it is mounted. About an eighth of an inch is all the spacing required and conventional steel nuts serve the purpose very well. Select them so that the center hole is slightly large, to slip easily over the studs. This small amount of added height helps considerably in providing adequate clearance.

Figure 6. High Voltage Compartment after Conversion.

The screen resistor of the 6BG6G horizontal output tube was changed to a $2200 \mathrm{ohm}, 1$ watt unit. This change was made to improve horizontal linearity in the new application.

The original ion trap used in this model was an electro-dynamic type having two windings. This type trap cannot be used on the $14^{\prime \prime}$ tube. A $39 \mathrm{ohm}, 1$ watt resistor was wired in the circuit in place of the ion trap winding. Actually it is not necessary to remove the trap from the circuit; it can be taped to the back of the chassis and left wired in the set.

This completed the wiring and electrical changes in the chassis. The new tube was installed to check the operation. It is necessary to temporar ily block up the tube during this check since there is no provision for holding the tube on the chassis. A new single permanent magnet ion trap was installed and the operation on the receiver was checked. The horizontal drive, horizontal linearity and width coil were adjusted to obtain proper horizontal linearity and width.

It was then found that it was impossible to obtain sufficient height by adjusting the height and vertical linearity controls. This model employs a 6SN7GT as a vertical oscillator and vertical output. Several new 6SN7GT tubes were tried in this application, but none would furnish sufficient power to sweep the tube vertically. A 6BL'7GT was then tried and it was found to work satisfactorily with no changes required in the socket wiring or in the components. An additional tube could be added to serve as a vertical output tube but this would require the punching of a new tube socket hole and considerable wiring changes. The use of the 6BL7GT solves the vertical deflection problem and its use in this conversion is recommended.

After making all the above changes the receiver should sweep the new tube with good linearity, both

NewITreel puono-cararales: REPLACEMENT CHART

No ather like it!

You Can Make Most Cartridge Replacements with Fewer E-V Models!

- Use this Chart to get your share of the $\$ 70,000,000$ replacement market. It gives you exact replacements for the many thousands of E-V cartridges used in original equipment of leading manufacturers. It gives you the models that replace most cartridges listed in photofact Folders. It tells you what to use for replacements in RCA, Columbia, Admiral, Motorola, Sears, and most other players.

It's More than a Chart . . . it's Today's Most Complete and Helpful Replacement Guide!

- Gives handy cross-reference listings of exact and duplicate replacements - Tells when to replace a cartridge-and what tests to make - Tells how compliance, tracking pressure and weight affect reproduction and record wear Illustrates finger-tip compliance test - Explains performance differences between old-style and modern cartridges - Tells what model cartridge to use for each type of installation - Shows how to make cartridge replacement sales. - It's yours free-Send for it now!

Electro-Voicsinc.

423 CARROLL STREET - BUCHANAN, MICHIGAN Export: 13 East 40 th St., New York 16, N. Y., U.S.A. Cables: Arlab PHONO-PICKUPS • MICROPHONES • HI-FI SPEAKERS • TV BOOSTERS

Dollar and Sense Servicing

SUMMER SLUMP. Buying of new receivers tapered off early this year, with no likelihood of revival until September at the earliest. Instead of cutting contract prices or granting dealer kickbacks to hold new-installation business up artificially a while longer even though at a loss, smart service organizations are retrenching and settling down to operate profitably with their present volume of business. In one way this business slump is good, because it means time to examine overhead expenses and pare them down, time to improve staff efficiency, time to rebuild shop benches and rearrange things for faster and better rush-season servicing, and time for well-deserved days off and vacations.

POSITIONS OPEN. There's almost a black market in engineers and technicians this spring. Companies are hiring men away from each other, and there's even some farming out of development engineers on a loan basis. At the IRE convention in March, companies hired suites of rooms in hotels, to which would be brought likely prospects for softening with refreshments. A good many dotted lines got signed on before the show was over.

Some succumbed to the lure of a new job just to see new faces and new shop benches. Some saw their chance to try out California living, in response to one famous airplane maker's inducement of " 10% more then you're making now, plus moving expenses." Many companies also provide on-the-job training and free night school or home study courses that enable a serviceman to upgrade himself.

There's even a bit of protective hiring, to get men now for military orders expected later or to improve chances of getting hoped-for contracts. All is good for servicemen, as experience in television servicing makes them highly valuable on radar, guided missile and other military electronic projects.

Hiring of servicemen has been found to pay off, in that it frees scarcer engineers for the toughest research and development jobs. The men who know their circuitry and want to kick their last griping customer out the door can just about take their choice of where to work and who to work for, on military projects that will protect our way of living.

TV NOT GROUNDS FOR EVICTION. A justice of the peace in St. Paul, Minn., ruled recently that a tenant cannot be legally evicted because he installed a TV antenna in the room of a rented house. Despite this, it's still good business to insist that a customer in a rented house show written permission from the landlord for a rooftop TV installation.

COMING DOWN THE LINE. Picture tubes in 14,17 and 20 -inch rectangular sizes using electro-
static focusing, are already on production lines of cathode ray tube makers. This means that they must have orders from manufacturers, so look for the electrostatic tubes in sets sometime during the last half of this year. Reports are that they're the same physical size and shape as magnetically focused tubes and give comparable picture quality. Electrostatic tubes save scarce cobalt, copper and nickel.

TV AND DIVORCE. In England, the judge agreed with one husband's suspicions and granted a divorce, despite his wife's assertion that the living room lights were out only so she and her gentleman friend could see television better.

SAVING TWINLEAD. When the shortage of 300 -ohm ribbon loomed, one manufacturer's service division put the heat on their boys to place the antenna as near to the receiver as possible, measure the required length of line accurately and splice together and solder short lengths. This resulted in reducing the average transmission line usage per job from 123 feet to 83 feet. In addition to conserving that much scarce copper, there's a cash-on-theline saving of almost a dollar per job, plus the time and cost of installing standoffs on 40 feet of line.

THREE KINDS OF TIME. In one service organization, there are three different ways for a serviceman to charge off his time during the working day. First is Applied Time, which is directly chargeable to specific service iobs. Second is Accountable Unapplied Time, which covers such things as being out sick, running assigned errands, doing necessary bench and shop cleaning, and suchlike. Third is Unaccountable Unapplied Time, in which the serviceman did nothing useful or can't recall what he did. At the end of each week, the slips are totalized and the results entered on a chart for all to see. The system makes men feel that their productive time receives due publicity. The fellow with the highest figure for Unaccountable Unapplied Time is in for considerable kidding by his co-workers, hence there is rivalry to keep this figure down.

ADJUST-A-CONE Suspension

Permits precision centering of voice coil in final production operation.

Special Voice Coil Impedances

Speakers used in Intercommunications systems have voice coil impedances that vary from the standard 3.2 Ohms. Quam Speakers with these special impedances can be furnished promptly.

U-Shaped Coil Pot

Provides an unbroken flux path of sufficient cross section to carry full energy of magnetic field.

Universal Brackef

Furnished with all $31 / 2^{\prime \prime}$ to $61 / 2^{\prime \prime}$ speakers, this bracket simplifies the most difficult installations. May be attached to any two of the four mounting holes in the pot.

WRITE FOR COMPLETE CATALOG

HOME RECEIVERS• AUTO RECEIVERS • T.V. SETS • INTER-COM. SYSTEMS • OUTDOOR THEATRES

Engineered for the replacement and public address fields, Quam Adjust-A-Cone Speakers are offered in a complete line of EM and P.M. Speakers in the following sizes: $31 / 2^{\prime \prime}, 4^{\prime \prime}, 5^{\prime \prime}, 5 \frac{1}{4} "^{\prime \prime}, 61 / 2^{\prime \prime}, 7^{\prime \prime}, 8^{\prime \prime}, 10^{\prime \prime}, 12^{\prime \prime}, 4^{\prime \prime} \times 6^{\prime \prime}, 5^{\prime \prime} \times 7^{\prime \prime}$ and $6^{\prime \prime} \times 9^{\prime \prime}$. Public Address P. M. Speakers in $8^{\prime \prime}, 10^{\prime \prime}$ and $12^{\prime \prime}$ sizes with 6-8 Ohm Voice Coil Impedance. Coaxial Speakers in $12^{\prime \prime}$ and $15^{\prime \prime}$ sizes. Television Speakers in $5^{\prime \prime}$, $4^{\prime \prime} \times 6^{\prime \prime}$ and $61 / 2^{\prime \prime}$ sizes with 62 and 95 Ohm Field Resistance, and 3.2 Ohm Voice Coil Impedance. Special Field Resistances supplied promptly when T.V. circuits demand it.

FOCMANTER

FOR REPLACEMENT OF WIRE WOUND FOCUS COILS

The perfect units for replacement or rebuilding television sets for larger tubes, now used as original equipment in many leading sets. The Quam Focalizer* Unit provides sharper focus of the television picture and is unaffected by temperature and voltage fluctuations. No wiring required. Kits are available for anode voltages up to 12 KV and for 12 KV and up, and are furnished complete with centering handle and mounting plate for easy and simple installation.

QUAM-NICHOLS COMPANY cottage grove \& 33rd place . chicago 16, ílinois makers of gualtty speakers for over a quarter of a century

THE CRYSTAL BALL. Those close to the television receiver market are saying that the present figure of 12 million TV receivers in use is closer to the final peak than we think. Unfreezing the station allocation setup, they say, will make the market only 50% bigger. This means that another $6,000,000$ sets will enable the rest of the country to catch up. True, people will continue buying television receivers, but from here on the business will be gradual and seasonal. Therefore, expand your business slowly and carefully. It is far safer to solidify than expand, when in doubt about the future.

HOPE FOR MORE PARTS. To lick shortage of replacement parts for TV sets and radios, NPA early in March permitted use of extra quantities of material above allocation quotas, to be used for making replacement parts at 100 to 150% of rate a company used materials for that purpose during first half of 1950.

REBIRTH. The old capacitance loudspeaker of the $20^{\prime} \mathrm{s}$ is being given another whirl in the research labs, in hopes it can be perfected as a substitute speaker using little or no critical scarce material. Major part in it is a sheet of aluminum foil serving as the diaphragm, nioving back and forth in front of a fixed metal plate in accordance with the polarity and strength of the voltage applied between foil and plate.

STRING SAVERS. To overcome a prevalent habit among servicemen of saving used parts that might possibly someday have further use, one service
manager has shellacing day once a month. On that day, usually Friday, they stop service work about two hours early and have to shellac the bench top and all shelves. After a few shellacing days their bench drawers get so crammed that they just have to throw the newly acquired junk away.

TENSENESS TEST. Can you go to sleep during a long dull sermon in church? If not, you're too tense - taking yourself or your servicing problems too seriously. But according to one minister, you've got lots of company; his complaint is that he's no longer able to put his congregation to sleep, because they're all too tense these days.

DISCOURAGE TRADE-INS. Smart servicemen are doing everything they can to encourage people to
keep their small-screen set when buying a new set. The small sets are ideal for the basement, where the minority of the family can watch Captain Video or Hopalong in peace. The small sets are equally valuable in bedrooms in time of sickness, for they can be viewed comfortably at arm's length with the controls all in reach. Once a family has had two sets for a while, they become indispensable and provide twice the servicing business of one set.

When sets are traded in, on the other hand, they are seldom resold in the same locality. Instead, they are shipped in bulk to poorer sections of the country, to dealers in poorer sections of cities, or even to Cuban, Mexican and South American markets now that these countries are getting stations. Each such trade-in means the loss of one service card in your customer file.

PICTURE TUBE SIZES. Most popular picture tube in new 1951 sets will be the 17 -inch rectangular if production continues at present rate. Last year it was the 15 -inch round. Next year, barring a drastic change in the military situation, it could be either the 20 -inch or 21 -inch rectangular. At Corning, the 20 -inch rectangular is already 25% of their total production of glass blanks. There is no likelihood of a shortage of glass for these big tubes, hence the public will get what it demands. You can expect a few 24 -inch, 28 -inch and 30 -inch tubes in 1951, but not many. Engineers consider these big tubes just as safe as the 10 -inchers, judging from the way in which the big tubes were displayed without safety glass at the IRE Convention.

SHOCKING NEWS. Yearly death toll from homemade devices for electrifying fence wires is estimated at 10 to 15 humans and hundreds of animals. Commonest (and probably most lethal - Ed.) scheme used by novices is connecting ungrounded side of 120 volt AC power line to the fence through fuses or electric lights. This arrangement works fairly well during ordinary weather conditions, works poorly in dry weather, and is a killer during good grounding conditions such as after a rain. On the other hand, the approved commercial electric fence controller is today a safe, effective, and economical aid to modern farming. If you come across a homemade installation in your servicing travels, warn the owner tactfully that his system can become as deadly as the electric chair. Keep your customers alive.

ALMOST PERFECTION. In the famous RCA Laboratories at Princeton is one television trans-mitter-receiver combination that's as perfect as today's dollars and engineering brains can make it. If you hold an 8×10 photo in front of the camera and take an 8×10 photo of the picture on the receiving screen, you can't tell the two pictures apart at arm's length. The equipment uses U. S. standards for picture lines and frames. This proves that we've got the right standards now, and need to concentrate only on improving the equipment.

HABIT. Chimney-strap TV antenna installations can get to be a habit, or maybe some would call it a disease Seems as if once an installation crew has made a few it favors that mounting despite its many drawbacks, and goes to great lengths of roof-ridge walking and rooftop gymnastics to put up a chimney
job. Check your installation boys and keep score for a while.

WOOD MASTS. In the good old days of radio, wood was the only thing accepted for outdoor antenna masts by customers. Not so today, patriotic servicemen learned to their sorrow when good-quality aluminum or steel nasts became scarce. And that's why the wood masts at your jobbers have a shiny coat of aluminum paint; once up, they look like the metal jobs on neighboring homes and last just as long, so there's no complaint. The wood should be ash, oak, or an equally strong wood, though; none of this pine or fir clothes-hanger rod if you want a trouble free job. To a customer complaining about getting a wood mast, one serviceman explained: "We use only the best piece of ash in the cord."

HOMEWORK. Latest figures on per cent of television receivers fixed in homes on first call are 80% for one large manufacturer's service organization that takes in service contracts on their make of set, and 95% for another manufacturer who sends men out only on demand-service calls that for some reason or another cannot be handled by ordinary service organizations. The latter figure is achieved by using top-grade technicians who are almost fullblooded engineers. Each has a delivery truci in which he can cram all the spare parts he wants. Some of these boys come into the office only about once a week, to replenish their stocks and collect the pay check. Each morning they get the day's quota of calls by phone. The chap who gets stumped and has to bring a chassis into the shop gets a lot of friendly advice while troubleshooting with shop instruments, and a lot of ribbing if the trouble turns out to be some simple defect he overlooked in the field. Such high morale among technicians is a real credit to their service manager.

V-NECK BATTLE ON TV. How low can a Vneck gown get on television? Engineers attending the annual IRE Convention in New York City saw the answer on one picture-tube screen - all the way. To demonstrate its new flying-spot picture generator, Telechrone, Inc., used a Hollywood pretty-girl art slide (f or artists only; saves costly model fees) in front of the photomultiplier pickup tube, and did a beautiful job of stopping traffic. Incidentally, for less than a thousand bucks you can get the complete equipment along with a low-power oscillator. It's fun to dream about what the next-door neighbor would say if he tuned in that picture - and what his wife would say if she caught him looking at it!

TVGicture Quality

 TV ANTENNAS

 TV ANTENNAS}

OUTSTANDING MECHANICAL SPECIFICATIONS

Part	Malerial	Yiold Strength	Size	
		рst	a.d.	Woll
Mast (galv.)	y/4 Ihinwall Steal Conduir	32.000	0.922 ${ }^{\circ}$. $0400^{\prime \prime}$
Large Folded Dipola	3s \% H Al.	19.000	500"	049"
Small Folded Dipole	$35 \% \mathrm{Hal}$.	19,000	.375"	0490*
Refiector	$351 / 2 \mathrm{HAN}$.	19,000	. $500^{\prime \prime}$	049*
Crassorm	35 HA Al.	20,000	$875^{\prime \prime}$.065"
Center 5upponis T Costing	Al. Alloy $45,000 \mathrm{psi}$ tensile strength			

EXCELLENT RADIATION PATTERNS
These are the radiation patterns of the AMPHENOL Inline antenna at $58 \mathrm{mc} ., 66$ mc . and 88 mc ., in the low band, and $174 \mathrm{mc} . .194 \mathrm{mc}$., and 215 mc . in the high band. Notice the uniformity of these lobes at all frequencies. The lack of lobes off the sides and negligible ones off the back maintains high front-to-back and front-to-side ratios necessary for the rejection of various interferences. The

n of Amphenol
IV Aniunna Model No. 114-005

presence of a single forward lobe is usually a very desirable feature, especially when it is wide enough to provide adequate interception area for some differences in transmitter location, changes in the wave front's direction of travel, or physical movement of the antenna in high winds. Furthermore, it is not too critical of orientation. It is necessary only to aim it and forget it.

HIGHER GAIN

These gain curves of the AMPHENOL Inline antenna represent the intercepted voltage of the AMPHENOL Inline Antenna as plotted against the intercepted voltage of a reference folded dipole cut to the frequency being compared. There is no channel in either the low band or high band where there is more than a three decible change within the channel that can cause picture modulation or "fuzziness." Gain of the AMPHENOL Inline antenna is quite flat over all channels.

You will find more gain designed into the high band because of greater need for it, due to higher losses at these frequencies. Also, notice the drop-off on channel six. This is at the edge of the FM band and is subject to FM interference, so the Inline's gain is purposely held down at that frequency.
The excellent broadband character istics, impedance match. single forward lobe radiation patterns on all channels. maximum gain, lightning protection, and superior mechanical features of the AMPHENOL Inline Antenna make it the antenna for greatest TV picture quality!

YOURS FOR THE ASKING
Send "for "The Antenna Story" - a sincere dis. cussion of TV antennas based on acfual field tests.

AC RECEIVER POWER SUPPLY PROBLEMS

Fower Supply Impedance Considerations

Have you ever had an AC receiver brought in for servicing that had that easily recognized sickish smell of burned insulation? Usually when this happens the power transformer has become very hot and may even have been permanently damaged. Fur ther examination may indicate a shorted rectifier tube and a ruined first electrolytic capacitor. A survey should be made initially to determine the extent of the damage. A further study should identify immediate cause of the overload, and replacement of the defective part or parts should be made. Undoubtedly most of us would stop here, if the transformer were still capable of satisfactory operation. However, there is a further point which should receive consideration to limit damage in the event of future overloads.

Examination of the circuit diagram in Sams' Photofacts may give a clue. If the resistance from one plate pin of the rectifier tube to the other is not roughly twice that shown in Table I for the rectifier tube employed, then it is highly probable that too low an impedance in the plate circuit would be responsible for the total destruction of the transformer, tube and filfer capacitor.

Figure 1 indicates how the required information is given in Photofact Folders. Figure 1(a) shows a schematic of a circuit taken from Set 110 , Folder 12, while Figure 1(b) shows the resistance chart. The illustrations indicate several things:

1. The center tap of the transformer is grounded.

2. The rectifier tube is a type 6 X 5 GT .

3. Reference to 1 (b) shows resistance from plate pin No. 3 to ground is 95 ohms and that from plate pin No. 5 to ground is also 95 ohms.
4. Table I indicates that rated impedance for each plate of the $6 \times 5 \mathrm{GT}$ is 150 ohms. The resistance values shown represent pretty closely the total impedance in the circuit. (Calculated or measured impedance values would vary slightly from DC re-

Figure 1A

Figure 1B
sistance readings, but for the purposes outlined in this article the measured resistance values can be employed satisfactorily.)
5. The 95 ohms per plate is considerably less than the rated value of 150 ohms so that in the event of a short circuit in the power supply, very high currents could flow, resulting in damage to both tube and transformer.

If the transformer is still good, it might be desirable to supply two plate resistors as shown in Figure 2. Care must be taken so that these resistors, which will run pretty hot in service, are located so that they will not cause damage. If the transformer must be replaced, it would be advisable to select one having the proper resistance in the windings, thus eliminating the necessity of adding the plate resistors.

Frequently one wants to change over a receiver which has employed a 5Y3GT tube to a 6X5GT tube. Examination of Table I indicates t hat the required impedance for 5 Y3GT tube is 50 ohms per plate while that required for the 6 X 5 GT is 150 ohms per plate. If one desires to have trouble free results, the plate resistors must be added if the same transformer is to be used unless, of course, the resistance of the windings is reasonably close to 150 ohms per side.

Rectifier Substitution Factors

When given rectifier tube types are not available, it is often necessary to substitute another type in order that the receiver may be kept in operation.

The problems which arise in connection with the substitution of one type for another may be considered as listed below.

1. Filament requirements - voltage and current.
2. Voltage drop - in the tube itself and hence the resulting voltage applied to the filter capacitors.

"We believe in replacing picture tubes with
 Exact
 These executives, heading six of the biggest TV service

 FRANK J. MOCHProsildont of Notional Alliomee of Talovision and Electronic Service Associatione, Chicago. organizations in the United States, represent the experience gained through hundreds of thousands of house calls and shop jobs. As presidents of companies employing hundreds of technicians they know the value of replacing picture tubes with the exact original equipment. Their experience proves that this exact replacement saves them money because it means fewer call-backs, longer set life and more satisfied customers.

THOMAS PHOTO-TRON Picture Tubes are the exact original equipment used by the 20 famous TV set makers listed below. Servicemen everywhere know you take no chance when you replace with Thomas because you replace with the exact tube you are taking out. If the set is not listed in the 20 famous brands listed below you make the set perform better by using a THOMAS PHOTO-TRON picture tube!

ART RHINE Teluvision, Yonkers, N. Y. 1.
JOE MCMILLIAN
Prouldent of A.1 Yolovidon
and Rodio Company.
Si. Lowis, Miseouri.

Thomas - Simpson sonus plan
Ask your THOMAS distributor for complete details on how you can obtain SIMPSON Test Equipment without cost.
-AS ADVERTISED IN THE SATURDAY EVENING POST

Admiral	\|foffman	hallierafters	Magnavox	Pachand Bell	Imperial
Thomas ELECTRONICS INC. PASSAIC, NEW JERSEY					SCOTT
					Motorola
Westinghouse	Oluppric	Bendix	CROSLEY	Starrett	Tele tone
PILOT	Syunstruly	Meck	Callaes	Theting	Kaya-ltallart

Keyed AGC

A procedure for adding Keyed AGC to the 630-type chassis.

Figure 1. Type 630 Chassis with AGC Tube Mounted.

The application of keyed AGC to the 630-type chassis requires the addition of a 6AU6 tube, an AGC winding on the width coil and minor circuit changes. All the required components are standard replacement items with the exception of the width coil with an AGC winding. Some manufacturers are planning to make available a separate coil which may be slipped over the original width coil. If this type of coil can be obtained, the original width coil need not be replaced. When it is necessary, however, to use a new width coil with an AGC winding, it is imperative that the new width coil have the same inductance range as the original. The new coil should be mounted on the same bracket as the original.

A schematic of the original contrast and video circuits affected in this conversion, is given in Figure 2. Reference may be made to this schematic while rewiring the receiver.

The first step is the mounting of the socket for the AGC tube. Figure 1 shows the chassis with this

Figure 2. Original Contrast Circuit of Type 630 Chassis.

Frank J. Moch says-
 "there is no other OSCILLOSCOPE like the NEW Simpson MODEL 476 MIRROSCOPE"

FRANK J. MOCH,
president of the
National Alliance of Television an-

Simpson's

 neu and completely advanced type of oscilloscope - Model 476 MIRROSCOPE - is designed to eliminate certain inherent lisadvantages found in the conventional type of oscilloscope by use of the Mirroscope principle." In this kind of construction the 5 -inch cathode ray sube is mounted in a vertical position. thus reducing bench space requirements to an area of only $9^{\prime \prime} \times 8^{\prime \prime}$ thereby permitting better concentration of associated equipment for any type of test procedure. The cathode ray image is reflected from an optical type front surfaced mirror mounted in the adjustable cover at the top of the cahinet bringing the viewing surface of instrument near eye level when insirument is used on benches of normal height. The mirror angle is quickly and easily adjusted to any position of the operator. The cover with integral side wings forms an effective shield against external light sources or may be closed down for protection of the tube and mirror when the instrument is not in use. The upright construction purmits location of controls and connections for maximum convenience and allows for internal cathode ray tube connections at the front of the panel instead of the rear.SENSITIVITY:
Vertical direct....... 12 volts rms per in. Vertical amplifier 20 millivolts rms per in. Horizontal direct. .. . 14 volts rms per in. Horizontal
amplifier.... 38 millivolts rms per in.

INPUT IMPEDANCE:
Vertical direct. ... 10 megohms, 15 mmf . Horizontal direct. . 10 megohms, 15 mmf . Vertical amplifier. 300,000 ohms, 30 mmf . Horizontal
amplifier. 500,000 ohms, 15 mmf .

Horizontal trace expansion is over 4 times tube diameter. This makes it possible to examine minute portions of a response pattern for finer detail.

Linear Sweep frequency is continuously adjustable in five overlapping ranges from 15 cycles to 60,000 cycles. Internal, external or line frequency synchronization with variable amplitude is available.
Means for intensity or "Z axis" modulation is provided. Approximately 14 volts peak will blank a trace of normal intensity.
The vertical amplifier frequency response is within 3 DB from 20 cycles to over 300,000 cycles and is usable to well over three megacycles. Square wave slant and over-shoot is held to less than 5 per cent of amplitude. This response will be found adequate for all phases of television receiver service

SIMPSON ELECTRIC COMPANY
5200 W. Kinzie St., Chicago 44، Ill.
Phone Ccembus 1.1221
in Canada:
Bach-Simpsen Lid., London, Ortario
tube mounted in place. The tube is positioned near the video detector and the video amplifier tubes, V8 and V9, so that the length of the connecting leads may be kept to a minimum. After mounting the new tube socket, the following circuit changes were made.

The coupling from the video detector to the first video amplifier was changed to direct coupling by removing C50 and R49 (see Figure 2), and connecting the junction of L18 and L19 directly to pin 1 of V9. R48, the video detector diode load resistor, was changed from 3900 to 4700 ohms. Refer to Figure 4 for placement of parts. The bias on the video amplifier is now derived from the rectified signal or from the rectified noise when no signal is present.

In the contrast circuit, R40, R41, R42, R43, and R44 were removed. These components are located near the contrast control at the front of the chassis. Removing these components leaves the contrast control free from all connections. Pin 6 of V9 was then disconnected from the plus 135 volt line and connected to the arm of the contrast control, and bypassed with a .1 mfd. capacitor (C106). A 10 K ohm resistor (R134) was added from the low side of the control to gronnd and the high side of the control connected to the plus 135 volt line.

In the plate circuit of V9, R51 and the connection to $C 4 B$ were removed. The low side of $R 50$ was then connected to plus 135 volts.

The next step was the connecting of the keyed AGC tube in the circuit. Pin 3 was grounded and pin 4 was connected to the filament line. R135, a 47 K ohm isolation resistor, was connected from pin 1 of
the AGC tube to the junction of L21 and R50. Pins 2 and 7 were connected to the plus 135 line. Pin 6 was bypassed to the plus 135 line with a .01 mfd . capacitor (C103), and was also connected to the plus 275 line through a 27 K ohm resistor (R 136).

Because of the length of the lead required to connect the AGC winding to the keyed AGC circuit, a shielded cable was used. This prevents the coupling of the sharp pulses present to the other circuits. Amphenol 21-138 microphone cable, or similar type, can be used in this application. In order that the phase relationship of the pulses fed to the AGC tube are correct, it may be necessary to reverse the connections on the AGC winding after the set is put in operation. The center conductor of the cable was connected to pin 5 of the AGC tube. The shield portion of the cable was connected to chassis through two 100 K ohm resistors (R139 and R140) which were by passed by C104. The junction of R139 and R140 was bypassed by C105 and connected to the video IF bias line where the original contrast bias voltage was applied. A lead was then connected from the junction of C104 and R140 to a terminal strip which was added near the contrast control. R137 was then wired from the termination of this lead to pins 5 and 6 of the bias clamper tube. The end of R29 which connects to the terminal strip was unsoldered and a 4.7 meg. resistor (R138) was added in series with it. The other end of the 4.7 meg. resistor was then connected to the plus 135 volt line as shown in Figure 3. Actually R29 may be removed from the circuit but due to the close spacing of components around it, it is much easier to merely connect R138 in series with it. The net result is the same.

Figure 3. Keyed AGC Circuit.

What You Want! Where You Want It! When You Want It!

ERIE CERAMICON TV REPLACEMENT KIT

- Popular types in quantities correctly proportioned as determined by popularity of sales for replacement.
- Individually packed by type and capacity in handy plastic kit.

Contains General Purpose Tubular and Disc Types . . . ideal for replacing paper and molded micas.

- Ideal for service man in the shop and on the job.
- Assortment "D"-contains 70 Condensers and Color Code Card for easy Ceramic Condenser identification. List Price \$17.75

Dept. F-Electronics Division

Figure 4. Bottom View of Converted Chassis.

On some models the bias line to the tuner was grounded. If this is the case on the particular model which is being converted, this line should be removed from chassis and connected to pins 5 and 6 of the bias clamper tube.

This completed the circuit changes required for the addition of the keyed AGC circuit. The set was then turned on and checked for operation. If the circuit fails to operate properly, it may be necessary to reverse the connections on the AGC coil as previously mentioned.

Although this circuit is directly adaptable to the 630-type chassis, it may be incorporated in many other models with certain modifications. The prime requisite, however, is that a positive going video signal be present in the plate circuit of the video amplifier.

ENGINEERING VIEWPOINT

A group of engineers were coming home from a party one night. They stood in front of the house of one of their number and called for the father.
"Will you please do ush a favor?" asked one.
"What do you want?" replied the father.
"Will you please come out here and pick out Jimmie so the rest of ush can go home."

- The CORNE LL ENGINEER

[^2] in Atudia

by James R. Ronk

SQUARE WAVE GENERATION

A simple device for converting a sine wave signal into a square wave for general audio experimentation.

It might be wise to first review the design of the unit and then, with operating principles in mind, study its general application.

The square wave generator, or rather, clipper, is pictured in Figures 1 and 2, and the schematic diagram appears in Figure 3.

Fig. 2. Clipper Unit, Bottom Chassis View.

As indicated in these illustrations, the design does not include'a self-contained power supply since our own application was in conjunction with already existing chassis and rack assemblies containing a master supply. However, power supply voltages are not critical. Standard values of 6.3 volts @ 1.2 amperes for the heaters and 275 volts @ approximately 40 milliamperes for the plate supply were used on the original.

The plate supply voltage should be well filtered since appreciable hum voltage will make comparison

Fig. 3. Schematic Diagrams of Square Wave Clipper.
of waveforms difficult, especially at low audio frequencies.

One-half of the type 6SN7GT (V1) is used as a conventional voltage amplifier stage. Sine wave voltage input to this stage is controlled by R1. With component values as shown, the stage has an approximate gain of 17 .

The remaining half of V 1 is employed as a cathode follower which, through transformer T1, couples the output of the voltage amplifier to the diode rectifier.

An earlier design with which we experimented had the 6SN7GT connected as a combination voltage amplifier-rectifier stage; however, the low impedance load of the diode circuit affected the voltage amplifier to such extent that it was impossible to develop proper rectified signal for the clipper stage, with reasonable input voltage to V .

Transformer T 1 is an interstage unit having a primary to secondary ratio of 1 to 2.6 . The unit employed was selected from several similar types on hand, because the DC resistance of the primary winding of 1120 ohms provides the proper bias to limit plate current to the 10 milliampere maximum recommended.

The shunt resistor R 6 across the transformer secondary is included to prevent winding resonance from causing spurious "pips" or traces in the waveform. Its value, 27 K ohms in this instance, should probably be arrived at by cut and try with the individual unit chosen.

Resistor R7-47,000 ohms - acts as the diode load, and Resistor R8-1.5 megohm - serves to clamp the grid of the clipper (V3) to prevent "bounce" which might occur as it returns to the zero point. Note that the grid of V3 is directly coupled to the diode output and that this is the bias source for V3. The 6SJ7 clipper tube, with a nominal 6 or 7 -volt cutoff, is driven far beyond the cutoff point on the negative excursion, with the result of square wave formation in the plate circuit.

The clipper output is coupled to the 100 K ohm output control by electrolytic capacitor C3. The 16
mfd. capacity of C3 is not actually required - lower values (down to 5 mfd .) will do, but these units were at hand and worked satisfactorily.

Immediately following are some measurements taken during typical operation:

Frequency	100 Cycles	1000 Cycles
Sine Wave Input (Volts)		
(1st Grid, Pin 1 of V1)	4.0	3.4
Signal Voltage - 2nd Grid (Pin 4 of V1)	71	61
Signal Voltage-Cathode (Pin 7 of V1)	- 61	52
Signal Voltage-Diode (Pins 1, 5 of V2)	100	89
Maximum Square Wave Output (Volts)	75	71

This table shows that the square wave output is sufficient for single stage analysis in conventional amplifiers.

As a general consideration, the greatest steepness of wavefront occurs with maximum sine wave signal amplitude; however, it is possible with this device to reach an overload point. Consequently, R1 should be adjusted for maximum symmetry of square wave output.

Before proceeding to application, we would like to say that no originality is claimed for the design of this clipper unit. We investigated several designs and found that, for the application which involves comparatively low sine wave voltage availability, the circuit shown here has the best operation and possibilities.

For those who are interested in experimenting with this clipper, a Parts List is included at the end of this article.

As previously mentioned, the clipper described is intended for use in the audio field. In actual use here, we had highly satisfactory results with input frequencies ranging from 100 to 10,000 cycles. Most audio square wave experimental work is done at either 400 or 1,000 cycles. It is possible, because of the richness of harmonic content of the square wave,

Fig. 4. Equipment Setup for Use of the Square Wave Clipper.
to observe extended frequency response, using only these two frequencies; however, for what it may be worth in future experiments, this clipper unit can provide extremely wide-range fundamentals, as the above frequency range shows.

APPLICATION

Figure 4 shows a representative setup of equipment for use in square wave analysis of amplifiers. As shown, the sine wave generator is fed into the clipper stage, the output of the clipper is applied to the amplifier, and the amplifier output is observed on the scope. The dotted portion of the figure represents optional use of an electronic switch. If at all possible, the electronic switch should be included, since it provides the basis for instantaneous comparative performance of differing or successive stages, or the ability to view the square wave output to the amplifier, and the amplifier output, simultaneously.

A word or two about the use of the scope for interpretation of the wave forms might help a little. First, keep the waveform limited to the center area of the scope. If the scope should have any nonlinearity in either the horizontal or vertical direction, it will tend to distort or amplify any variations from the square waveform, if they occur at the extreme range of the scope. Also, in observing the square waveforms, always have a minimum of two complete cycles for accurate observation.

Figure 5 is an illustration of an ideal square waveform, and the output of the clipper should very closely approximate this figure.

Figures 6 through 9 show waveforms obtained through a representative amplifier.

Figure 6 indicates poor high-frequency response of an amplifier, while Figure 7 shows an improved high-frequency response.

Figure 8 is indicative of poor low-frequency response, while Figure 9 shows an improvement in the low-frequency characteristics.

Fig. 5. Ideal Square Waveform.

Fig. 6. Amplifier with Poor High Frequency Response.

Fig. 7. Amplifier with Improved High Frequency Response.

Fig. 8. Amplifier with Poor Low Frequency Response.

- Continued from page 9 -

are identical but they have sufficient range to obtain resonance from 22.8 to 26.3 mc . Each of the chokes are tuned to the different frequencies which are marked on the schematic.

Figure 2-7. Overall Response Curve of Stagger Tuned IF Amplifier.

Figure 2-7 illustrates the overall bandpass that is obtained through stagger tuning. The five resonant curves represent the response curve of each of the tuned chokes in the circuit. These curves are not drawn to exact scale but serve to show how the sum of the individual response curves are additive. The variation in gain is due to a difference of loading on the chokes.

Another type circuit, which has some advantages over the capacitively coupled circuit of Figure 2-6, employs dual winding transformers that are single tuned. By employing inductive coupling of this type, the gain of the stages can be controlled by varying the spacing between the windings or by changing the turns ratio itself. The response curve of this type of transformer is essentially the same as the tunable choke just described. Either the primary or secondary, or both, can be shunted to obtain the desired effective Q , thus controlling gain and bandpass.

Another advantage of this type of coupling is the low DC resistance in the grid circuit and the low capacity between stages. When the signal is capacitively coupled to a grid having a resistive load, the discharge time is much longer than the charge time, which may cause white dots or streaks to appear in the picture after noise pulses.

In order to better understand what causes this, refer to Figure 2-6 and assume that a noise pulse is received at the grid of the second IF amplifier. On the positive half of the signal the noise pulse may be strong enough to cause grid current to flow, charging

Figure 2-9. Dual Winding Transformer Having Single Tuning.
the coupling capacitor with an excess of electrons on the right side. After the noise pulse, the capacitor will discharge and the electron flow will be down through the grid resistor which will decrease the gain of the stage for an instant or may even momentarily drive the grid to cut-off. Since the discharge current of the coupling capacitor is in the reverse direction from the noise pulse, which corresponds to a "blacker than black" signal, a white dot or streak follows the noise pulse. This is especially noticeable in cases of ignition interference and in weak signal areas where there is a poor signal-to-noise ratio, resulting in "snow." Some manufacturers have placed a small coil across the grid resistor to reduce the DC resistance in the grid circuit. These coils are sometimes referred to as "grass cutters" since they tend to decrease the "snow" or "grass'" in the picture.

The circuit of Figure 2-8 shows a typical video IF strip using dual winding transformers with single tuning. Three stages are used and the four IF transformers are stagger tuned to provide adequate bandpass. The grids of the first two stages are returned to the AGC line to control the gain of the IF strip. Since a change of gain of these stages causes the input capacity to vary, due to the Miller effect, an unbypassed 47 ohm resistor is placed in the cathode circuit to introduce a small amount of degeneration. This degeneration decreases the input capacity of the stage which results in a smaller change in input capacity as the gain of the stage is varied. The grid of the third stage is returned to ground a nd since its gain is not varied, the input capacity will remain con-

Figure 2-8. Complete Stagger-Tuned Video IF Strip Using Dual Winding Transformers with Single Tuning.
stant. This makes it possible to bypass the cathode resistor and realize more gain from the stage. The value of the cathode resistor is increased to provide adequate bias for the stage. Figure 2-9 illustrates a dual winding transformer representative of the type used in thits circuit.

The alignment of either of the circuits shown in Figures 2-6 and 2-8 is comparatively simple. Each of the alignment frequencies is fed to the mixer while the appropriate coil is adjusted for maximum output at the detector load. The overall response curve can then be checked by the use of an oscilloscope and sweep driven generator. If the circuit is normal, only slight touch-up adjustments are required after checking the overall response curve.

The pre-alignment instructions should always be read carefully so that tine proper bias can be applied to the circuits. In some cases, even though all components are okay, oscillation will take place in the IF amplifier. This is usually caused by misadjustment of the coils so that adjacent stages are tuned to the same frequency. In most cases readjustment will stop the oscillation, but should it continue, it may be necessary to inject the signal near the end of the IF strip and remove the tubes ahead of that point. After the adjustment of that stage is made, the tube in the stage ahead is replaced and the signal is injected at this point. Adjustment can then be made on this stage. By progressing forward in this manner, the IF strip can be aligned to obtain stable operation. In receivers having series filament operation, the coils can be shunted which will accomplish the same thing as far as oscillation is concerned.

Another method of obtaining wide bandpass is through the use of double tuned, over-coupled transformers. By closely spacing the primary and secondary windings, and tuning both to the same frequency, a double humped response can be obtained. Figure $2-10$ shows a partial schematic of a stage employing a double tuned over-coupled transformer along with the response curves that are obtained from such a circuit. By tuning both primary and secondary to the resonant frequency, the band width can be varied by changing the spacing, or coupling, between the two windings. The three response curves shown are obtained with variations in coupling. The response that is obtained with loose coupling, less than critical ${ }_{\mathrm{y}}$ is similar to that of the single tuned choke. If, however, the spacing between the windings is decreased, the response curve starts to flatten at the top as shown in Figure 2-10. By further increasing the coupling, the bandpass increases but there is a dip in the eurve at the resonant frequency. In some cases two such stages are used along with additional single tuned stages which are so aligned to fill in the dip in the response curve.

One of the advantages in the use of overcoupled transformers is the fact that the gain of the stage can be controlled so that any tendency for oscillation can be prevented. Also by referring to Figure 2-10, it can be seen that the output capacity of one stage and the input capacity of the following stage are separated by the transformer, since the two capacities are across the primary and secondary, respectively. Thus the inductance of the windings of the transformer can

Figure 2-10. Response Curve and Circuit of Overcoupled Stage.
be made greater than the single winding tunable choke, since in this case the input and output capacities were in parallel, requiring a lower value of inductance to obtain resonance.

In some instances, a small capacitor, .5 to 5 mmf., may be added between plate and grid to provide a small amount of high side coupling to hold up the gain at the high end of the pass band.

When aligning over-coupled IF stages, a special procedure must be followed to assure proper alignment. Several methods are employed, but the most popular is through the use of a sweep signal generator and oscilloscope. With this method the response curve can be checked as alignment progresses, and any deviation from the desired results will show up immediately.

One procedure for aligning over-coupled IF stages calls for the adjustment of the transformers progressively starting from the last stage and working toward the mixer stage. The scope is connected to the video detector output and the signal is injected into the IF grids, progressing forward in the circuit. At each point, adjustments are made to obtain the desired response curve at that point. If any components are defective, they will show up in the ability to obtain the proper response at that stage. By progressing forward in the IF strip, the final response curve is obtained.

Another procedure for the alignment of overcoupled IF stages, is the adjustment of each stage separately through the use of a detector probe. The signal is injected at the grid of the stage and the response curve of that stage can be seen by connecting an oscilloscope, through a detector probe, to the

HERE'S THE BEST FOR EVERY TEST Sylvania Radio and TV Testing Equipment

Television Oscilloscope

An exceptionally High-Gain, WideBand Oscilloscope Designed for Television. Accurately displays any TV pulse or wave-shape on a large, eyesaving 7 " screen. Sensitivity: 0.01 v./in. Vert. response useful to 4.0 mc . Hardtube sweeps to 50 kc ; phasing control; pos. or neg. sync. control; many other outstanding features. Recommended for servicemen; laboratories; advanced schools and industry. Price $\$ 249.50$.

Type 400

Type 132 Z

General Purpose Oscilloscope

A Versatile 7" 'Scope with Many Features Found in Type 400 above, priced as low as oscilloscopes with smaller screens. Sensitivity: $0.1 \mathrm{v} . / \mathrm{in} . ;$ freq. response: exceeds 7 cps. to 70 kc . Widely used by servicemen, schools and industry for AM-FM-TV testing. Price: $\$ 149.50$.

Tube Tester Type 220 Made by a Tube Manufacturer for Tube Users, these instruments test for ALL usual faults-not just one particular characteristic. New and exclusive ohm-meter-type shorts/leakage test indicates "GOOD" or "REPLACE," directly on the illuminated meter. Gas and special heater-cathode leak-
 age tests made in single operation. Single composite dynamic test for emission, trans-conductance and relative tube life. Panel-mounted rollerchart; convenient switches; provisions for future tubes. Portable Type 220 has durable metal case and handle; removable cover. Size: $6^{\prime \prime} \times 111 / 4^{\prime \prime} \times 17^{\prime \prime}$. Price: $\$ 114.50$.

Tube Tester Type 219 The counter Type 219 is electrically equivalent to the portable type. Attractively housed in a streamlined wood and metal cabinet. Adaptable to any surroundings. Occupies small counter space. Size: $53 /^{\prime \prime} \times 13^{\prime \prime} \times 183 / 4^{\prime \prime}$. Price: $\$ 114.50$.

TV Sweep Signal Generator An ALl ELECTRONIC Sweep Generator for TV and FM. Fundamental center frequencies: 2-25, 20-64, 60-120, and $140-230 \mathrm{mc}$. Two adjustable sweep widths: $0-600 \mathrm{kc} . / 15 \mathrm{mc}$.; excellent sweep linearity; output 0.1 v . Edgelighted dial; simplified controls; small size: $111 / 2^{\prime \prime} \times 81 / 2^{\prime \prime} \times 7^{\prime \prime}$. May be used with any 'scope and marker, including those shown above and below. Price: \$139.50.

Type 500

Polymeter-TV Vacuum-Tube Voltmeter A Sensitive DC, AC and RF Vacuum-Tube Voltmeter, Ohmmeter and DC Current Meter. The basic instrument for every TV, FM and AM shop. Ranges: if to 300 volts (only $3 \mu \mu \mathrm{f}$ shunt capacity); ac and dc to 1000 volts (10 or 30 kv dc using h.v. probes); dc current from 50 micro-amperes to 10 amperes; and resistance from 0.5 ohims to 1000 megohms. Frequency range to 300 meg . acycles. High input impedance on all voltage ranges. Size identical to TV generator at left. Price: $\$ 99.50$.

Type 221 Z

Audio Oscillator An Accurate Sine-Wave Generator for Better Equipped Shops and Sound Specialists. Maximum output: 22.5 volts, $20-20,000 \mathrm{cps}$, flat within 2 db . Price: $\$ 129.50$.
Type 145
$\star \quad \star \quad \star \quad \star$
For full information about Sylvania's complete line of quality testing equipment, write today to: Sylvania Electric Products Inc., Dept. R-2805 Emporium, Penna.

Type 216

Marke A versatile AM-FM generator doubly useful for peaking alignment of TV and as a TV marker. Calibrated to 0.05%. Fundamentals 80 kc to 120 mc ; harmonics to 240 mc . Modulation: $0-100 \%$ AM; $0-30 / 150 / 700 \mathrm{kc}$ FM. 1.0 volt max. output. Low leakage. Builtin circuit for external crystal. Price: $\$ 139.50$.

SYLVANIA $=$ ELECTRIC

radio tubes; teiension picture tubes; electronic prooucts; electronic iest equipment; fluorescent tubes, fixtures; sign tubing, wiring genices; lieht bulbs; photolamps; televilion sets

INDEX to PHOTOFACT

radio and television service data folders
how to use this index: To find the PHOTOFACT Folder you need, look for the name of the receiver in the alphabetical listing below. Then find the required model number under the receiver name. Opposite the model you will find the number of the Set in which it appears and the Folder number. For example, under ADMIRAL, Chassis 3A1, the reference is 2-24. The bold 2 identifies the PHOTOFACT Set number in which the Folder appears. The light face number, 24, identifies the individual Foider. It's easy to find the set you need.

IMPORTANT: The suffix letter " A " following the Set or Folder Number in the index listing below indicates a "Preliminary Data Folder." These Folders are designed to provide the service technician immediately with preliminary basic data on Television Receiv-ers-pending their complete coverage in the standard, uniform Рhotofact Folder Set presentation.

Set Folder No. No.	Sef Faldar No. No.	Set Folder No. No.	Set Folder No. No.	Set Folder No. No.
ADAPTOL	AD	A	ADMIRAL-Cont.	ADMIRAL-Cont.
CT.1 48-1	Chassis Tel. Rec. Rel, 2ICl, 21D	Models 6A21, 6A22, 6A23 (See Ch (A2) 103	Models $17 \mathrm{~K} 11,17 \mathrm{~K} 12 \mathrm{Tel}$. Rec. (See Ch. 2IFI) ...127-1A	Models 27K15, 27K16, 27 K 17 Tel . Rec.
ADMIRAL	Tel. Rec. Chassis 21F1, $21 \mathrm{G1}$	(See Ch. 6A2) Model 6C11 (See Ch. 6C1) 53	Rec. (See Ch. 21FI)127-1A Models 19Al15, 19All5N,	$\begin{aligned} & \text { 27K17Tel. Rec. } \\ & \text { (See Ch. 21F1) 127- } \end{aligned}$
	Tol. Rec. ${ }_{\text {Cola }}$	Model SC71 (Soe Ch, 10A1) 3	$19 A 125,19 A 12 S N$	dels 27K25, 27K26,
Chassis UL7CI	Chossis 2lHI, 21	Models 6F10, 6F11, هF12	19A15S. 19A15S	27 K 27 Tel. Rec. (Soe Ch. 21F1)
(See Chassis 7C1)..... 25	Chassis $21 \mathrm{kl}, 21 \mathrm{Ll}$ Tel.	N) $11 . \cdots \cdots{ }^{6}$	de	Models 27K35, 27 K 36
Chassis 3Cl ${ }^{\text {See Ch. }}$	Rec. (See Ch. 21F1)	Mod	Rec. (Se	Tel, Rec. (S
20T1) ……....... 117	Chassis-21P1, $21 \mathrm{Q1}$ Tel. Rec. (See Model 21F1) , 127-1A	6Q14 (See Ch. 6Q1)... 78 Modal 6R11 (See Ch. 6R1) 54	Madel 20×122 (See Ch. 20×1). 100	Madels 27 K 46 Tol.
Chassis 3CI Prod. Chge. Bul. 15 126-1	Chassis 24DI, 24E1, 24F1, 24G1, 24H1 Tel. Rec... 103-2	Model 6RP48, 6RP49. 6RP50 (See Ch. 3A1)	Model 20X136 Tol. Rec. (See Ch. 20×1). .100	(Soo Ch. 21F1) Models $29 \times 15,29 \times 16$,
Chassis 4A1 24-31	Chassis 24DI, 24EI, 24FI,	Models 6RT41, 6RT42, 6RT43	Models $20 \times 145,20 \times 146$.	29직 Tel. Rec.
Chassis 4B1 24-1	24G1, 24 Hl Tel. Rec	(See Ch. 5Bi) Phono)... 4	20×147 Tel. R	(Soo Ch. 24D1)...... 103
Chassis 4HI (See Chassis J0B1). 71	Prod. Chge. Bul. 9....114-1 Chassis 30A1 Tel. Receiver 57-2	Model 6RT41A, 6RT42A, 6RT43A (See Ch. 5BiA) 18	(See Ch. 20x1). Model 22×12 Tel. R	Models 29) 25 , 29x 29×27 Tel. Rec.
Chassis 4JI, 4E1 (Soo Ch. 20^1) 77	Chassis $30 \mathrm{BI}, 30 \mathrm{Cl}$, 30D 1 Tol. Roc........ 71-2	Model orT44 (See Ch. 7B1) 18 Models 6S11, 6S12	Models $22 \times 25,22$)	Modal 29×25A Tel. Rec (See Ch. 2181)
Chassis 4LI, 451....... 100	Model 4D11, 4D12, 4D13	(See Ch. 651)........ 10		
Chassis 4R1............ 108-3	Models $4 \mathrm{HI} 5,4 \mathrm{HI6}, 4 \mathrm{HI} 7$	Model 6T02, 6 TO4	Models 24A1l, 24A	(S or SN) Tol. R
Chossis 581 (See Model 6T02). 1	(A or B) Tel. Rec.		Rec. (See Ch. 20A1)... 77 Madel 24A125 Tel. Rec.	(See Ch. 30A1). Models 30A14, 30A15,
Chassis 581 Phono 18-24 Chassis 5B1A 18-......... 18	Models 4H15, 4HI6, 4H17,	(See Ch. 4A1) 3		30A16, Television Ra. coivers (See Ch. 30A1). 7
Chassis 582 100-1	H. 4 H 19 (S or SN)	Model 6 TII (See Model	$\text { (See Ch } 20 \times 1 \text {) }$	(1)
Chassis 5D2 (See Ch. 2181). 118	3081) ……..... 71	Model ST12 (See Ch. 4Ai) 3	Models 24	$30 \mathrm{B17}$ (5 or SN)
Chassis 5F1 57-1	Models 4H18, 4H19 (C or	Models SV11, oV12	Tel Rec.	Tel. Rec. (Stoe
Chassis 5 HI	A1) 77		Models 24C15, 24 Cl 16.	30 Cl 7 (5 ar SN)
Chassis 5K1	odels 4 Hilis, 4Hilio.	Chassis 6W1)........ 71	24 Cl 7 Tol. Rec.	Tal. Rec. (See Ch. 30B1) 71
Chassis 5N1 ${ }^{\text {31-1 }}$	4H117 (S or SN)	dels GY18, GY19 (See	(See Ch. 20A1), 77	Models 30F15, A, 30F
Chassis 5T1 68-1	Tel. Rec. (See Ch, 3081) 71	Chassis ofll . .7o..... 75	Models 24RII, 24 RI	
Chassis 5W1 79-2	odels 4H126A, B, C or	dol $7 \mathrm{C6OB}, 7 \mathrm{C6OM}$ (${ }^{\text {a }}$		
Chassis 5X1 76-3	N Tel. Rec. (See Ch.	7C60W (See Ch. 6B1).. 48	$24 \times 16,24 \times 165$,	Rec. (See Ch. 20
Chassis SAl (See Madel etol)	20A1) Madel 4H126 (S or SN)	$\text { (See Ch. ©́M1) } 25$	Tel. Rec. (See	and 451) 100
		Model 7C63, $7 \mathrm{CS} 3 . \mathrm{UL}$	20x1 ond 411), 100	Models $32 \times 26,32 \times 27$ Tel.
Chassis 681 48	odels 4H137 (A or B)	(5ee Ch. 7C1)	Modeli 25ats,	$\text { and } 5821 \text {.... } 100$
Chassis 6C1 53-1	Tel. Rec. (See Ch. 20A1) 77	Model 7 Co	See Ch. 20all....... 77	Models 32
Chassis 6E1, 6E1N ${ }_{\text {chasis }}^{\text {SFl }}$ (1)	Model 4Hi37 (S or SN) Tel. Rec. [See Ch. 3081) 71	Models $7 C O 5 B$, 7 Cosm. 7CS5W (See Ch. 7E1) .. 36	Models 26R1I, 26R1	Rec. (See Ch. 20)
Chassis 611	Models 4H146, 4H147	Model 7 C73 (See Ch. 9Al) 32		Models 34R15, A, 34R
Chassis कM1 2	(A or B) Tel. Rec. 77	de	Rec. (See Ch. 24D1	
Chassis 6Q1 78	(See Ch. 20A1)...... 77		Models 26R25A	(See Ch. 2011) 117
Chassis 6 R1	Models 4H145, 4H146	See Ch. 71	Tel	Model 36 R 37 Tel . Rec
Chassis ov1 62	(See Ch. 20A1)....... 77	7 P 35 (See Ch. 5HI) ... 26		
Chossis 6W1 7	diols	T42		(See Ch. 2181).. 118
Chassis 6Y1 75-1	4 H 147 (S or SN) Tel.	7RT43 (See Ch. 611)	h. 24 DI	odels 36×35
Chassis 781 ${ }^{\text {18-2 }}$	Rec. (See Chassis 30B1). 71	Models 7TO1, 7 TOIM.UL,		6×37 A Atol. Rec.
Chassis 7C1 ${ }^{\text {25-2 }}$	Models 4 H 155.	T04.UL	26R37A Tel. Rec	(Seo Ch, 24D1 (Set 103)
Chassis 7E1 36-1	Rer 15 Ch 2041)	Ch. 5N1) 31	(See Ch. 2181)....... 118	and Radio Ch. Sb2
	Rec. (See Ch. 20Al)... 77		Models $26 \times 35,26 \times$	37 Ki 5.37 K 16 Tel.
Chassis 8C1 (See Ch. 9D1) 67		Model 7T10, 7 T14, 7 TIIS		Rec. (See Ch. 21F1) . 127-1A
Chassis 8D1 67-1	Rec. (See Chassis 3081). 71	(See Ch, 5K1)....... 30		deis $37 \mathrm{~K} 27,37 \mathrm{k} 28$
Chassis 9A1 32-1	odels $4 \mathrm{H} 165,4 \mathrm{H1} 66$.	Madals 8C11, $8 \mathrm{Cl2,8C13}$	Rec. (See Ch, 24D1)	Rec. (See Ch, $21 \mathrm{F1}$) - 127
Chassis 981 49-2	$4 \mathrm{H167}$ (A or B) Tel.	[See Chassis 30A1 (Set	Models $26 \times 55,26 \times 56$	Models $37 \mathrm{~K} 35,37 \mathrm{k} 36$ Tel. Rec. (See Ch. 21 Fl) 127
Chassis 9E1 Chassis 10A1	Rec. (See Ch. 20A1)... 77	57) and 8D1 (Set 67)		
Chassis 19A1 Tol. Rec.... 59-2	Models 4H165, 4 H167		See Ch. 24D1).	39×17 A, B Tel. Rec. [See
Chassis 19A1 Tal. Rec. Prod. Chge. Bul. 5... . 106-1	(See Ch. 20A1)....... 77	8C17 (See Ch. 8D1)... 67	Models $28 \times 55 A, 26 \times 56$ A, 26X57A Tel. Rec.	4D1 (Set 103) and Ch. 582 (Sel 100)]
assis 20A1, 20B1, Tel. Rec.	Models 4H165, 4H186. 4 H 167 (S or SN) Tol.	$\begin{aligned} & \begin{array}{c} \text { Adels 8D15, 8D16 } \\ \text { (See Ch. 8D1)......... } 67 \end{array} \end{aligned}$	(See Ch. 21B1). Models $26 \times 85,28 \times 66$,	Model 39Xi7C Tel. Rec. (See Ch. 21B1)....... 118
Chassis 2011 Tel. Rec... . . 117-2	Models 4R11, 4R12	(See Chassis 3Al)	26)67 Tel. Rec.	Models Tel Rec.
Chassis 20 T 1 Tal . Rec. Prod. Chge. Iul. 15 . . 126-1	(See Ch. 4R1). 108	Model 9B14,9815, 9B16	odels $26 \times 654,26 \times 66 A^{\prime}$,	$\begin{aligned} & \text { Tel. Rec. 2181)........ } 118 \\ & \text { (See Ch. 21 } \end{aligned}$
hassis 20 VI Tel. Rec. (See Ch. 2011). 117			26X67A Tel. Rec. (See Ch. 21B1)	Models $39 \times 35,39 \times 36$, 35×37 Tel. Rec.
Chassis 20V1 Tel. Rec.			Models $26 \times 75,26 \times 76$	(See Ch. 2181)118
Prod. Chgo. Bul. 15, 126-1	SR14 (See Ch. SRI).... 59		Rec. (See Ch. 24D1). ..	Models $221 \mathrm{K16}$, 221K18A
Chassis 20X1, 20Y1, $2 \mathbb{Z 1}$ Tel. Rec.	Model ST12 (Ch. 5T1).... 68 Models 5W11, 5W12 (See	Rec. (See Ch. 20x1)... Models 14 R 11 , 14 R 12 Tel.	Models 26X75A, 26×76A	Tel. Rec. [See Ch. 21F1)
hassis 2021 Tel. Rec	Ch. 5w1) 79	Rec. (See Ch. 2071).	(See Ch. 2181).	dels 221 k 26.
$\begin{aligned} & \text { Prod. Chge. Sul. 7... 110-1 } \\ & \text { Chassis 21A1 Tml. Rec.... 77-1 } \end{aligned}$	$\begin{aligned} & \text { Models } 5 \times 11,5 \times 12,5 \times 13, \\ & 5 \times 14(\text { See } \mathrm{Ch} .5 \times 1) \ldots 76 \end{aligned}$	Models $16 R 11,16 R 12$ Tol. Rec. (See Ch. 2181)... 118	Models 27K12 Tel. Rec. (See Ch. 21F1)127-1A	Tel. Rec. [See Ch. 21F1)127-IA

* REGULAR PHOTOFACT SUBSCRIBERS MAY OBTAIN SPECIFIC SERYICING DATA ON THIS RECEIVER PRIOR TO ITS COVERAGE IN A PHOTOFACT FOLDER BY SENDING THE SERIAL NUMBER, CHASSIS DESIGNATION, NAME AND MODEL NUMBER, TO US

This Service is Free to Regular PHOTOFACT Subscribers

Please request-Schematic, Alignment Data, or whatever you require. Please acrompany your request with a statement giving the number of the last PHOT'OFACT Volume or Set Number that you have purchased and the name of the Parts Jobber who sees to it that you receive each Set of PHOTOFACT Folders as they are published.
be a regular photofact subscriber. instruct your parts jobber to send photofact sets to you regularly as they are published. ask ABOUT THE EASY PAY PLAN

Production Change Bulletins contain data which is supplementary to previously issued Photofact Folders, and are listed in this Index immediately following the listing of the initial coverage of the same models or chassis.

BELMONT (Also See Raytheon)	BRUNSWICK
A-60110 17-7	BJ-6836 ''Tuscany,'"
3AW7 ${ }_{\text {B115 }}$.............. 10-	
4817	D. $6876^{\text {" }}$ "Buckingham"
48112, 48113 (Series A).. 10	(See Modot T-4000).
50110^{\prime} …........... 22	T. $4000, \mathrm{~T} .40001 / 2$
${ }^{5 D 128}$ (Series A) ${ }^{\text {S }}$	
${ }_{5 P 19}{ }^{\text {P }}$	T. 6000, T. $60001 /{ }_{2}$,
$5{ }^{\text {SP1 } 13}$	T. 80005
601	
6 6120	See Model T-40001. 29
$8^{8 A 59}$,	T-9000 (See Model D-1000) 56
	512.513 Tel. Rec.
Television Receiver 55-5	812 Tel. Rec.
dendix	810 Tel.
BENDIX	91 Te
C172 Tel. Rec. 134	9228, M Tel
C174 Tel. Rec. (Soe Model 2051) 111	5000
C200 Tel. Rec.	6165 Tel. Rec
(See Model C172).... 134	8125 Tol. Rec
70 Tel. Rec	8165 Tel
(See Modei 2051)111	BuICK
${ }^{3} \mathrm{Tel}$. Reck.	980690, 980
(See Model 2051)	9807
0526A, 0520 , O526E, 0526 F .. 1-22	98078
PAR B0 39-3	980868
5512, 5513, 55P2,	
${ }_{6594}^{55 \times 4} \cdot \cdots \cdots \cdots \cdots \cdots \cdots \cdots$	(See Air Knight or Sky Rover)
6988, о9м8, б9м9..... 63	cadillac
7585, 75M5, $75 \mathrm{M8}$,	7241938
7578, 75w	7253207
$79 \mathrm{M7}$	7256609
9583, 95M3. $95 \mathrm{M9} 9$	7258155
$110,110 \mathrm{~W}, 111.111 \mathrm{~W}$.	7258755 i.......... 109
112, 114, 115 . 41	7260205
235B1, 235M1 (Ch.	7258755) 109
MA, MB, MC, MD)	CALLMASTER (See lyman)
$300.300 \mathrm{~W}, 301,302 \ldots . .40-2$	CAPEHART
416Á … 43	504.P10 Tel.
$526 \mathrm{MA}, 526 \mathrm{mb}, 526 \mathrm{MC}$. 29	Model 461
O20.A (0026a)	P9,
636A, 836 C . . .j..... 15	$19 \mathrm{NL} 21 \mathrm{P4} 24 \mathrm{Ns}$
636D (See Model 636A) . . 15	19N4, 21 Pa , 24N4, 24 Pa
646A	31N4; 31P4, ${ }^{\text {a }}$, 65
656 A	${ }^{32 \mathrm{P9}}$ 33P9
678B, 676C, 6760	34 PlO
$6874 . . \cdots \cdots \cdots \ldots . . .61$	3 3P7 (Ch. P7)
	114 NA IIONA
	11 Pés (Seo Model
${ }_{847.5}^{847.8}$,iFacto Meter. ${ }^{\text {a }}$. ${ }^{\text {a }}$ 28-	19 N 4
${ }_{1217,12178,12170}^{29}$	115 P 2
	${ }^{32 \mathrm{C}-\mathrm{B},} 32 \mathrm{O-M}$ (Ch .
1518, 1519, 1524, 1525.. 37-3	CX. 334 Tel Rec.
1521 , ${ }^{\text {a }}$,	(5ee Model 323 m) ... 112
1531, 1533 …....... 43-6	
2001, 2002 Tel.	Prod. Chase. But, 13.122-
2020, 2021 Tel. Rec.	321.8, 321-M, 322-8,
25 Tel	$322 . \mathrm{M}$ (Ch. CX-33
2051 Tel. Rec.......... 111	${ }^{\text {Rec. }}$ (See Model 323
2051 Tel. Rec	$322-\mathrm{M}$ (Ch. CX-33)
Prod. Chas.	Tol. Rec, Prod, Chge
(See Model 2051)....111	
80 Tel. Rec.	323 M (Ch. Cx-33F), 324
(Seo Model 2051) Prod. Chge. Bul. 16 ... 126	325 F (Ch. CX-33) Tel. Rec. $112-3$
	4-M, 325-F, $325-\mathrm{M}$
(See Model 2051) 111	${ }_{\text {chen }}$
[See Model 2051]	326-M (Ch. CX-33L) Tel.
Prod. Chae. Bul. 16 ... 126	S-M (Ch. $\mathrm{CX}-331)$ Tel.
(Seoe Model 2001 1)...... 84	Rec. Prod. Chase But. 13 122-1
3030, 3031 Tel . Rec	32-B, $332-\mathrm{M}, 334$.
(See Model 2001). 84 3033 Tel. Rec.	(See Model 323M) 112
(See Model 2025) 99	$332 \cdot \mathrm{~B}, 332 \cdot \mathrm{M}, 334 \cdot \mathrm{M}$
(See Model 2051).... 111	Prod. Chge. Bul. 13
3051 Tel. Rec.	${ }^{413 P}$
(See Model 2051) Prod. Chge. Bul. 16 ... 126	$461 \mathrm{P}, 462 \mathrm{P} 12$ Tel. Rec.... 87
01 Tel	
ISea Model	Set 87 and 35P7 Sel
- ${ }_{\text {Sool }}^{\text {(See Model }}$	A)
Prod, Chge. Bul. $16 . . .126$	
-002 Tel. Rac.	10058, M, W (Ch. C-296); 1008 B. M, W
(See Model M025)..... 99	(Ch. C'287) .o... 132-5
(See Model 2051) 111	3001,3002 (ch. Cx-30, A,
3 Tel Rec.	99 A. 1
${ }^{\text {(See Model }}$ 2051)	C-272] Tel. Rec.. 99A-2
(toct. Rec.	3004 -M (Ch, CX - 31 , Prod.
See Modal 2051) ... 111	
Tel. Rec	${ }_{\text {c-279) Tel. Rec. }}$
	C-M (Ch. Cx-31, prod.
7001 Te	C.274) Tel
[See Model 2051)	3007 (Ch. Cx-30, Prod. ${ }^{\text {cha }}$
ISee Model.	C.276) 99A
Prod. Chge, Bul. 16 . . 126	008 (Ch. CX-32, Prod.
bOGEN (See David Bogen)	Model 3005 ${ }^{\text {a }}$ - 93A
BREWSTER 9.1084, 9-1085, 9.1086.2-13.	$\begin{aligned} & 301 / \mathrm{B}, \mathrm{M}, 3012 \mathrm{~B}, \mathrm{M} \\ & \text { (Ch. CX-33) Tel. Rec. } \end{aligned}$
Brook	${ }^{\text {(See Model }}$ 323M) . 112
10 C	C.268) Tel. Rec. isee
10C2-A 43-7	Model 3004-M ${ }^{\text {a }}$, 93A
	02.M (Ch. Cx-31, Prod.
100 (See Model 10C).... ${ }^{41}$	C-274) Tel. Rec. (See
12A 89-3	
BROWN	${ }_{\text {S }}$ ee Model 323 M) . . 11
RJ.12A, RJ-14A ${ }^{\text {a }}$,	CAPITOL
RJ-20 67	D.
	${ }_{\text {T-13 }}$ (2................ ${ }^{28-5}$
${ }_{\text {RJI-22 }}$ (See Model RJ20). . 67	U.24 29-6
RV-10A RV.11 (See Model RV-10)	CARDWELL, ALLEN D. CE. 26

CENTURY (Also See Industrial Television)	
$226,326 \text { (Ch. } 1 \mathrm{~T} .26 \mathrm{R} \text {, }$ [T-35R, IT-39R, IT-46R)	
Tel. Rec.	
$721,821,921,1021 \text { lCh. }$	97 A.8
CENTURY (20th)	
100X, 101, 104	12
201	21
300	21-6
Challenger	
CC8	63-4
CCl 8	67-7
CC30	88-6
CC60	70-3
CC618	66-1
CD6	85
20R	69--5
60R	62
200 (See Model 20R)	69
601) (See Model 60 R)	
CHANCELLOR (See Radionie)	
35p	30-25
CHEVROLET	
985792	6-5
985793	19-6
985986	
986067	90-2
986146	28-6
986240	75
986241	
986388	104
CHRYSLER (See Mopar)	
CISCO	
IA5	37
9 A 5	20--3
CLARION	
C100	1-5
C101	5-9
C102	9
Cl 103	6-6
C104	1
Cl05 (See Model C104)	
Cl05A	6-7
C108 (Ch. 101)	5-8
150	
155	
167 Tel. Rec.	95A-1
11011	17
11305	18-11
$11411 . \mathrm{N}$	30-5
11801	23-6
11802 V -M (See Model	
11801)	
12110 M	54-5
12310-W	31-6
12708	41-5
12801	61
13101	46-7
13201. 13203	62-8
14601	60-9
14965	66-5
16703 Tel . Rec	102-2
CLARX	
PA-10	12-6
PA.10A	18-12
PA 20	13-12
PA.20A	18-13
PA. 30	19-7

CLEARSONIC (See U. S. Television)

COLLINS AUDIO PRODUCTS
FMA-6..................99-6.
45-D.
COLLINS RADIO
COMMANDER INDUSTRIES

Commander 3 Tube Record Player .	17-10
CONCORD	
CDE1P	19-9
IN434, IN435, IN436	
IN437 (Similar to Chassis)	121
1N549 (Similar to Chassis)	38
IN551 (Similar to Chassis)	38.
IN554, IN555	
INS56, IN557	55-10
Similar to Chassis).	109
IN559 (Similar to Chas	90
IN560 (Similar to Ch	
IN561, IN562	
INB19 (Similar to Chassis)	69-7
OCSIB	19
OC51W (See Model 8C51B)	19
6ES1B	20
6 F 26 W	19-10
6R3ARC	21
7R3APW (See Model	
6R3ARC)	21
OTOIW	22-11
7G28C	20
1-402, 1.403	45
1.411 48	
1.501 (Se0 6E518)	20
1.504 55	
1-509, 1-510 (See 6C51B)	
1-516, 1-517 49	
1.601, 1.602, 1-603	
(See 7G26C)	
1.608 45 -7	
1-608 (See 6F26W)	19
1.609 (5ee бTб1W) 22	
1-611	46
3.1201 55-7	
$2.105($ See 315WL) 532.10654	
2-200, 2-201, 2.218,	
2-219, 2-232, 2-235,	
2-236, 2.237, 2.238,	
2-239, 2-240	62-9
315 WL .315 WM 53	
$25 \mathrm{WL}, 325 \mathrm{WM}$	
(See 2.106)	54

DUMONT
RA. 101 Tel. Rec.
RA-102B1, RA-102B2,
RA-102B3 Tel Rec

Prod. Chge. Bul. 6....108-1
RA-1030 Tel. Rec........93-4
RA-1030 Trel.
Rec. Prod. Chge, Bul. $9.114-1$ Rec. Prod. Chge, Bul. 9.114 -
RA-104A Tel. Rec.
(See Model RA-1030).. 93 (See Model RA-1030). . 93
RA.104A Tel. Rec.
Prod. Chge. Bul. 9.... 114-1
RA-105 Tel. Rec....... 72-8 Prod Chge.
RA-105 Tel. Rec.
RA. 105 Tel . Rec.
RA.105 Tel. Rec.
Prod. Chge. Bul. $6 \ldots .108-1$
RAA-105B Tel. Rec...... 95-3 RA-105B Tel. Rec.
RA-106 Tel. Rec. (SuDD.
to RA-TO5, Set 72).... 99A-4 RA-106 Tel, Rec.
Prod. Chge. Bul. 6....108-1
RA-108A Tel Rec RA-108A Tel. Rec.
(See Mol RA- $105 B$)... 95
RA.109-A1, $-A 2,-A 3,-A 5,110$

 RA-112A Tel. Rec.
RA. 113 Tel. Rec.
(See Model RA-T12A). . 119 (See Model RA-112A).. 119
RA-117A Tel. Rec.........131-5
DUOSONIC
K1, K219-15

ECHOPHONE

Fidelotuner	33-4
ElCAR	
602	5-19
ELECTONE	
t5TS3	12-34
ELECTRO	
B20	14-9
ELECTROMATIC	
APH301-A, APH301-C 606A 607A	$\begin{aligned} & 7-11 \\ & 5-32 \end{aligned}$

ELECTRO-TONE

706, 712 (See Model
ELECTRONIC CORP.
OF AMERICA (See EC

ELECTRONIC SPECIALTY CO.

E/L (ELECTRONIC LABS.
75 (Sub-Station) (See 20

76E, $76 \mathrm{~K}, 76 \mathrm{M}, 76 \mathrm{~W}$ (See Model 2701)

(See Model 2701)..... 4
76RU ('Rodio-Utiliphone') 20
$710 \mathrm{~B}, 710 \mathrm{M}, 710 \mathrm{~T}, 710 \mathrm{~W}, 20$,

$\begin{array}{cc}\text { 710PB, 710PC Orthosonic } \\ \text { (Ch. 2887) } & 24-16 \\ 2660: \text { Master Utiliphone: } & \text { 24-8 } \\ 2701 & 4-28\end{array}$

EMERSON
$120029)^{5}$ Ch. 120000 ,

FIRESTONE-Cont.
4. A-25 (Code 291-6

4-A-25 (Code 291-6-572) - 13-6	
307-6.9030-A)	33
4-A-27	28-12
4-A.30	
4-A-31 (Code	
No. 177-5-4A31)	11-20
4.A.37 (Code 177-5.4A37)	13-7
4.A.40	
4-A-41 (Code 291-7-576)	52
4-A-42 (Code	
No. 177-7-4A42)	30-9
4-A-60 (Code No.	
307-8-9047A)	38
4.A-bl (Code No.	
332-8-137.22T)	48
4.A.62, 4-A.63	67-10
4.A.64, 4.A.65	68
4. A. 66 (Code No. 177-8. 4A6 61	
4.A-68 (Code No.	
4.A.69 (Code No.	
155-8-85)	61-8
4.A.71 (Code 291-8.628)	59
4-A.78, 4.A.79	17-5
4-A-85 118 - 7	
4.A.86	29-6
4-A.87 …......... 119	
4.A.88 132	
4.A.89 (See Model 4-A-85) .. 1118	
(See Model 4-A-85).	
B-1 (Code 7-6-PM15)	7
4.E-2 (Code 7-6.PM14)	18-18
4-B-6 (Code	
No. 177.7.PM) ${ }^{1}$	29
4-B-31	
4-8-56 133-6	
4-8.57	
4.C. 1	
4.C.3 19-17	
4-C-5 (Code 291-7-574)	33-6
4.C-6 (See Model 4C3)... 19	
4-C-13 (Code	
332-8.140623)	66-9
4.C-16, 4-C-17...... 1 120-6	
4.C-18 1110	
13-G-3 Tel. Rec........ 86	
13-G-4 (Code 347-9.249B) Tel Rec.	
13.G-5 (Code 291.9-651)	
Tel. Rec. \ldots......... . 83-3	
13.G-33 Tel. Rec........ 108-6	
13-G-46, 13-G-47	

GAROD-COnt.

GENERAL ELECTRIC

$12 \mathrm{Cl} 108,12 \mathrm{Cl} 08 \mathrm{~B}$ $12 \mathrm{C} 109,12 \mathrm{C} 109 \mathrm{~B}$

$412,14 \mathrm{T3}$ Tel. Rec.
(See Model $14 \mathrm{ClO2}$) . 123
18ClO3 Tel. Rec
(See Model 14Cl02) .. 123
(See Model 14C(102) 12
16 C 113 Tel Rec. (See
Model I4Cl02)

Model 14 Cl 1021
$16 \mathrm{TH}, 16 \mathrm{~T} 2,16 \mathrm{~T} 3,16 \mathrm{TH}, . .12$
1o15, Tel. Rec.
(See Model 14 Clo2) .. 123
17 C 01.17 Cr 02 Tel . Rec.
(See Model 14 Cl 102) $\quad 123$

41, 42, 43, 44, 45	99A
50	7-16
60,62	36
64, 65	98
66, 67	76
100, 101	6-13
102, 102W	41
103, 105 (See Models 100,1011	
106	
107, 107W (See Mode	
102, 102W)	41 -8
3	51

114, 114W, 115, 115w (See Models 102, 102W)
$18,119 \mathrm{M}, 119 \mathrm{~W}$

(See Models 102, 102W) $118,119 \mathrm{M}, 119 \mathrm{~W}$	$\begin{aligned} & 41 \\ & 39-5 \end{aligned}$
123, 124	$97-7$
135, 136	81
140	30-10
143	75-9
145	60-13
150	56-11
160	56-12
165	89
180	20-11
186-4	57-7
$\begin{gathered} 200,201,202,203, \\ 205,205 \mathrm{M}, \ldots \end{gathered}$	
210, 211, 212 .	51 -8
218, $218{ }^{\circ} \mathrm{H}$	21
219.220, 221	4-1
226	91-5
230 \|See Kaiser-Frazer	
200001)	35
250	4-13
254	32-9
260	15-13
280	23-10
303	18-19
304	32-10
321	3-26
324	64-7
326, 327	30-11
328 (See Model 324)	64
329, 330 (See Mode! 324)	64
354,355	33-9
356, 357.	37-6

GEN		GRANTLINE-Cont.
376, 377	45-11	605.
400, 401		
404, 405		Os
		510
410 (Soe Model 404)	121	547
411 (See Model 400)		HALLICRAFTERS
	16	
500	$\begin{aligned} & 98 \\ & 35 \end{aligned}$	CA-2, CA-2A $\ldots . . .{ }^{\text {a }}$. 30
505, 50		
$1500 \mathrm{M}^{\text {M }}$		
510	112-7	S.388 S.40
521,522 530 50	114	
		S.408 122
601, 803 ,		S. 41
	101	S. 47
752.	123	S-51 ${ }^{40-8}$
		S.52
See Model	78	$\begin{aligned} & \text { S-55, } \\ & \text { S-58, } \end{aligned}$
T		$\begin{aligned} & \text { S-58 } \\ & 5.59 \end{aligned}$
2 Tol.	914.7	S. 72
,		578
5, 80		ST-74
		Sx.42
$1{ }^{\text {Pe }}$ R		SX. 62
${ }_{814} 811 \mathrm{Tel}$. Rectir	$63-9$ $69-9$	SX-71 Mi...........111-6
5 Tel.	974	
817 Tel. Re		T-54
[Soe Model		T.61
$18 \text { Tel. }$		
821 Tel		(Seo Madel T. 60) 63
		Tel. Rec........... 130-7
5 Early, Tel		$\begin{aligned} & \text { SR11, 5R12, SR13, 5R14, 129—7 } \\ & 400,406,409,410,411, \end{aligned}$
See Model 830 E	81	
(See Mod 1 Tel. Re	81	505, 500 Tol. Rec.
Tel. Rec.		505, 500 (lato) (See
		Model T-54 late). 91 509,510 Tel. Rec. (See Model Tbl)
NERAL IN		
GENERAL MOTORS		
RP.		
2233029	93	5 Tel . Re
eneral		
5		$18,519,52$
SG,		
9868		521 E
	3-21	524 Tel Rec (See ${ }^{\text {a }}$
Models 1A5, 2 A 3A5, 5A5)		
19A5 (Ch. 1-1)		
Models IAS,		
$2245 C$	13	(SSee Model 080) 113
		(See Madel 680)....... 113 730, 731 (Run 1) Tel. Rec. (See Model 680).......113-3
	36	
Ilfillan		740, 741 (Run 1) Tel. Rec. See model 880)....l13-3
56A, 588.		745 Tel. Rec...........105-4
$56 \mathrm{BC1}, 56 \mathrm{BCR}, 56$		
56E [See Model		780 , 761 Tol. Rec. isee
M.		
66A,		
66B		5, 800 T Tel. Rec. \cdot. 125
660, 860 M (See Mode		
The		
	46	(See Model 810 A) $\ldots .124{ }^{\text {(}}$
	61	
86C, 86P, 860186		
108.48	59-10	
globe		
	18	
6AP1 (See Model 601		880 Tel. Rec.
	2	
SU1 (See Mo		HAM
	28	H-15-5 16-17
	19	HAMILTON RADIO CORP. (See Olympic)
45	41	
456		
457		
500	- $21-18$	SP-400-X 10-20
55		HARVEY-WELLS $\left.\begin{array}{lll}\text { AT-3B-6, AT-3B-12 } & \ldots . . & 32-11 \\ \text { ATR.3-6, ATR-3-12 } & \ldots . . & 36-14\end{array}\right)$
552	27-13	
553	28-15	
	50	
godrrey		
	28-17	
GON-SET		${ }_{\text {A-302 }}^{\text {A }}$ (Ch .119$) \ldots \ldots .2$ 11-11
-30 Meler	61-1	
10-11 Meter Converter	37	
B. F. GOODRICH (See M	Mantola)	
GOO		
	70-5	
NSA-20	73-6	
T. Grant (See	antline)	
ANTLINE		
300 (S		
500.		

INDUSTRIAL ELECTRON Corp. (See Simplon)	ont.
CORP. (See Simplon)	145490, 14F495, 14F496, 63-
industrial televis	15H609 (See Model 5118) 125
(Also See Century)	9_{93-017} …......... 31
IT-40R, IT-42R ICh. IT-26R,	${ }_{93-024}$ …............. 32-13
[T.35R, IT.39R, IT.48R)	93.103 31-18
Tol. Rec. 99A-7	$93-146$............... 36-15
IT-48R Tel. Rec.	93.155 …............ 37-10
JACKSON	93.181
10C, 10T Tel. Roc. 132-8	93.320
${ }^{12 \mathrm{C}}$, 12 T Tel. Rec.	${ }_{93.350}$................. ${ }^{\text {76-13 }}$
15ee Model 10C) 132	${ }_{93.350}$ - 79-9
	${ }_{93-370}$.............. 750
18C, 18 T Tel. Rec.	${ }_{97-870}^{93-380}$ …........... ${ }_{78}{ }^{90}$
(See Model 10C) 132	${ }_{449}{ }^{\text {a }}$................. 8^{83}
${ }_{150}^{29 C}$ tel. Rec.............. 130-8	5118 …............ 125
153 (See Model 150) ... 130	Lafayette
312 Tel. Rec.	FAISW, FAISY 15-15
(See Model 10C) 132	J62, 162 C . ${ }^{\text {a }}$. $\ldots \ldots \ldots$. 16-21
316 Tel. Rec.	мс10в, мCior 14-16
(See Model 10C) 132	MC11 28 -18
350 131-9	MC12 . ${ }^{\text {27-15 }}$
412 Tel . Rec	MC13
(See Model IOC) 132	MC16 27-16
418 Tel. Rec.	IN434, IN435, IN436 ${ }^{\circ}$
(See Model 10C) 132	ilar to
5000,5050 Tol. Rec.... 88	IN437 (Similor to Chassis) 121
5200, 5250 (Soe Model	IN549 (Similar to Chassis) 38
5000) Tel. Rec....... 88	IN551 (Similar to Chassis) 38
5600, 5650 (Sae Model	IN554, IN55
5000) Tel. Rec........ 88	(Similar to Chassis).... 55-10
JEFFERSON-TRAVIS	iN556. IN557
MR-2B 10-2	IN559 (Simila
MR3 17-19	INS60 (Similar to Chassis) 109
JEWEL	INS51. INS
300	Similar to Chassis).... 97
	IN819 (Similar to Chassis) 69
A	amc
$502 \mathrm{~A}, \mathrm{~B}, \mathrm{C}_{;} 503 \mathrm{~A}$	16-20
$504 \mathrm{~A}, \mathrm{~B}, \mathrm{C} ; 505 \mathrm{~A}$	learadio
505 ' ${ }^{\text {Pin }}$ - U_{p}	
801 (Trixie) 45	
814 $51-10$	RM.402C (learavian) 42-15
	565, 56581, 566. 567 , 568 9-20
915 (Soe Model 910) 95	
935 (See Model 920)... 55	$6610 \mathrm{PC}, 6611 \mathrm{PC}, 0612 \mathrm{PC}$. 9-21
949 105 -5	8614, 6615, 6616, $6619 . .3^{3-18}$
955 98	6817PC 16-22
960	lee tone
${ }_{5010} 85$ (See Model 910)	AP. 100
5010111-7	
5050	LEWYT
50570 109	
KAISER-FRAZER	
100170 … 128-8	71 42
200001 35	LEXIN
200002 56-13	15 13-
KAPPLER	LIBERTY
1027 54-10	A 6 K, ASP, $6 \times \ldots \ldots$. . 20 -18
KARADIO	507A 20-19
	LINCOLN (Auto
1275, 1275A 85-7	7ML080 (5EH-18805-A)
1276115-4	M1081 (5EH-18805-B). 66
Kaye-halbert	1882
231, 232, 233, 234, 235,	
236, 237, 238, 239	$8 \mathrm{ML985}$ (81-18805
240,241 Tel. Rec.	8 9L985E (8L-18
242 Tel , Rec.	
731 Tel. Rec 733 Tel Rec	
$821 . C$ 821-T	
${ }_{921-\mathrm{C}, \mathrm{C}}^{821 .-T ~ T o l}$	S $131-\mathrm{B}$.............. 2 -
1621-C, 1621-T Tel. Rec..	CO
kay musical	(ALIIED RADIO CORP.
INSTRUMENT	34
77 42-13	LINDEX CORP. (See Swank)
KITCH	
5 T	IPAN (See
Knight	LABY (See Mifchell)
4D.450 - ${ }^{\text {40- }}$	LYM
${ }_{4 \mathrm{G440} \text { - }}$	CM10, CM2O 44
5A150, 5A152, 5A154 ... 12-17	tYRIC (Also See Rauland)
	546T, 546TY, 546TW 7-
58.160 . $176 \ldots \ldots$.... 20-15	5461, 546TY, 5461W
58-175, 58-176........ 20	MAGIC TONE
	500. 501 5-40
	504 (Botle Receiver) 22-18
SD-250, $50-455$ 50.251	${ }_{510}^{508}$ (Keg Radio) ${ }_{5}^{38}$
${ }_{5 \mathrm{E}-250}$, 5E-25i	${ }_{900}^{510}$ (See Model 508) ${ }^{58}$
(Similar to Chassis) ... 36-25	maguvox
5E-457 (Similar to Chassis) 53-23	MAGNAVOX
5F-525, 5F-526 53-	hassis AMP.
5F-565 55-12	AMP. 1018
${ }_{5}^{56-583}$ (Similar to Chassis) ${ }^{\text {97- }}$	Chassis AMP.108A,
${ }_{5}^{5 H 605}$ -	AMP. 1088
isimis 5 -608	Chassis AMP-109
	AMP.111A, B, C
(Similar to Chossis) . . . 109-7	Chossts AMP.
5H-700 123	Chassis CR-188 1155 L
6A.122 9-18	Regency Symp
6A.127 9-19	Chassis CR190A, CR190b.
6A.195 16-19	Chassis CR.192A, CR-1928
68. 122 (See Model	Chassis CR-1
6A-122)	sis CR-198A, B, C
SB. 127 (See Model	THepplewhite, Modern
S0.235 ….......... 54	Chassis CR-200A, B, C, D.
	E, F
SG-400 (See Model 449). 83	Chass is CR-2
	Chassis CR.203
	Chassis CR-204
38.210 …........... 20-17	Chassis CR-207A, B, C, ${ }^{\text {O }}$, 41-1
	Chassis CR.208A, CR-208B 43
8G-200, 86-201 .l. 1288	is CR-209
${ }_{108-249}$	
	Chassis CR-211A, $(S$ ee Ch. AMP-11

MAGNA VOX-Cont.	MA	MANTO	MECK-Cont.	MOPAR-Cont.
assis CR-2		R.75343 (See Model 75143139 39	${ }^{\text {XL7 }} 50$ Tel. Rec........ 76	94 67-12
Chassis Chassis CR-215		R-76143 (See Model 2486) 25 R -76162		${ }_{806}^{805} 807$ (See Model 803$)^{71-11}$
Chassis CR-21	del 17Da) 127	62 Ifoct. No	XOB Tel. Rec. (See	808 (1............ 107
Chassis CR-223	160, 1608, 162, 163	-17) $\ldots \ldots . \ldots . . .{ }^{\text {51-12 }}$	MMS10T) _... 110	809 (See Model 805).... 71
Chassis CR-229	127	R.78161	XP-775, XQ-776, XQA.776	motorola
Chassis CT-214, CT-213, Tel. Rec. $62-13$	(See Modet 17DA) 127 170 (Ch. 101) Tel. Rec.		101	AR.96-23 (M-5) \ldots al. 11-16
Chassis CT-219, CT-220	(See Model 17DA) ... 127	92-520, 92-521, 92-522.. 68	XQA, XQR Tel. Rec. ISee	BkO.A (See Ch. (104)...106-23
Tel. Rec.	902, 903 (Ch .103)	92502 (Seee Model 4	Model MMSIOT, 110	BK8, BKBX (See Ch. 8A). ${ }_{46}$
Chassis CT-221 Tel. Rec. (See Ch. CT-214)...... 62	Rec. (See	43W) 3. 92504	See 110	CR-o (Chrysler) …e... ${ }^{\text {20-24 }}$
Chassis CT .222 Tel. Rec.	910.911 (Ch. 103)	..	778, XS-786, XT-785	
(See Ch. CT, 219)	Tel. Rec. ${ }^{\text {See }} 127$		Rec. (See Model	
Chassis Cr. 224 Tel			777) 101	(e).
Chassis Cr-232 Tet. Rec... 93A-9	1042, G, GU, T,	23	el.	C18.4 (See Ch, 10A)..... 106
Chassis CT-235 Tel. Re	(See Model 12C4) 108			Ст9 82
(1ssis CT. 236 Tel). Rec.	1142, 1143 Tel			
See Model CT-232) ... 93A	C4	MARK SIMPSON (See Mas	Tel. Rec.	FO7 (Ford) (See Model FD6)
,	GU, T, TX	co	rod. Chge.	FD8 (Soe Ch. 8 Al
Rec.	G Model 12C4).... 108	1m.5 41-13		GMOT (See Ch 10A) .. 106
hassis CI239 Tel	348 Tel. Rec. (See		IA, XTR Tel. Rec. See	
Se9 Ch. CT232)..... 93A	Model $12 \mathrm{C4}$)	S	Model MMS10T)...... 110	
lassis C1244, CT2	(ch	JR	900 Tel. Rec. (See	HNE, HNO (See Ch. 8A).. 46
93 A	lital (Ch. 105)	MA.5NO	Model MM51OT) 110	06
	17DA) 127			KR1 (See Ch. \|A) 134
Tel. Rec.	546	MA.10EX	5A7.PII, 5A7.pBiI 31二18	KR8. KR9 (Seo Ch. 8A) . 46
assis	G, GU, T, 1548, G, GU	MA-12 HF ${ }^{\text {51-13 }}$	507/WL18 21-22	KRPA (Soe Ch. 10A) ...106 NHE (Nash)
T259, CT260 Tel. Rec. 119-1A	T, 1549, G, GU, Tel. 108	MA-17 $\ldots \ldots \ldots \ldots \ldots$ 14-32		NHE (Sae Ch. 8 A)
Chassis CT262, CT263,	e Model	MA-17N 50	514C, T(Ch. 8018)	NHE (See Ch. 10A) 100^{46}
	,	MA-17P (See Model MA.17) 14	Tel. Rec.	-6E (see ch. 14a) 16
CT267, C1209 Tel. Rec.	del 170A) 127	MA-17N	${ }^{616 C}$ T/iCh.	OES (Oldsmobile)
lassis CT270, C127	1605. 1605B (Ch. 102)	MA-20HF …......... 28-21	619C (Ch. 9018)	See Model CTO)
CT272 CI273 C12		MA-25 16-24	Tel. Re	
		MA. 25 E	MedCo (See	
assis CT283, CT	10. 1610 ClCh	MA-25HF 5	MEDS (Seo relosonic)	
CT285, СT286, CT28		$\underset{\text { MA-25N }}{\text { MA }}$. 43 - 14	NER	See Model CT
$291{ }^{29}$ Tel. Rec.	1646, 1647, 1648, 1649	MA.2SP (See Modei MA-25) 16	TV.1 (Ch. 24TV) Tel. Rec.. 56-	PC8, PC9 (See Ch. 8A) .. 46
(See Ch. CT262) 131-1A	Tel. Rec. (See 108	25PN (See Model	571	PCP.A (See Ch. 10A) ... 106
lassis CT293, CT2	Model 12C4) 108	MA-25	57	
Rec	co		661, 661 A) 12	SRo, SR8, SR9
Chastis CT295, CT296	1675 Tet. Roc.	MA.35N		SR9a (See Ch. 10a)
	$170 \mathrm{Ch}^{\text {chel }} 1011 \mathrm{I}$	MA-35RC (Soed		VFI02, A, C Tel. Rec
hassis CT297 Tel. Rec. (See Ch. CT262)131-1A	(See Model 1			(See Model VK101)... 51
Chassis MCT228 Tel. Rnc. 95A-9	1900	MA-50N (Seo	9.1091 C -	F103, VF103M (Ch. TS-8)
MAGUIRE		A.5NO)	1093	Vkioi, M Tel. Rec..... 51 - 14
500BI, $500 \mathrm{BW}, 500 \mathrm{DI}$,	2T, 20431		16 A	Vk106 ${ }^{\circ} \mathrm{Ch}$. TS.9
5000w	See Model 12C4).... 108	MA-75 ……		Rec. Photofact Servicer 82
56181.561 BW, 561DI.	6T, $2547 \mathrm{~T}, 2548$	MA-75N	Soee Model TVI)..... 56	106, VK1008, VK106M
571	2549 T Tel.	MA.121 24-21		
	Model 12C4) 108	MA-808 $\ldots \ldots \ldots \ldots \ldots{ }^{26}$	571) 44	vkiob
		MAP-15 ${ }^{\text {26-10 }}$	Seo	TS.9E1)
砍 …….......... 15-17	Ch. 5805 Sa	MAP-18 59-12	(1)	VTTI (Ch . T
MAJESTIC	See Model 54 K 7311	MAP-105N	2961 Series 27	Tel. Rec. ${ }^{\text {a }}$,
G-414 Tol.	Ch. 68020	MAP-120 21-21	ERCURY	VT.T3, VT.7
G. 614 Tel .	lsee Model	MAP-120	6MM790 (See Ford	viloi Television Recaiver 51-14
See Model $\dot{6} .414$) . . 133	(See Mode! 6FM773)... 57	MB-50N \quad MB. 60 58-12	Model SMF7	VT105 (Ch. TS.9D) Tol.
624 Tel.	$\mathrm{Ch}, 7 \mathrm{P} 04 \mathrm{~A}$		(805-8) ….... 49-13	ece. Photofoct Servicor. 82
	(See Model 7YR752)... 29	MC. 10	8 вм9990 (8м-18805-в) .. 69-10	TIOS, VTI 05 M (Ch. TS.9,
(See Model ${ }^{\text {c }}$-414) ... 133	Ch. 7B09A	MC-25.MC.25P 17-21	8MM991) (8M-18805-B)	67-13
1010	Ch. 7809 Al		MM991-E (8M.18805) . 83-4	Vtioj (Ch. is. 90)
A430	(See Model 7YR753)... 42		MIDLAND	ci. Photofact Servicer. 82
445,	10	MH	M6B . .n........... 2	
k731, saķbo	See Modal 7FM867)... 56	MHP.110	MIDWEST	(See Model VTIOS) ... 67
AK731; 5AK730, (Ch. 5B05A) 28-19	$7 C 25 A$	Midgetal	P-6, PB.6 ${ }^{\text {M }}$ (1)....... 14-19	Tell ${ }^{\text {chec }}$
SLAS, 5lab	Ch. 88060		R-12, RG-12	WRE (Ch. HS IB)
A7) SLA8 ${ }^{\text {S }}$ (Ch 3020	See Model 8FM744)... 30	mu-5 117		WRT, WR8 (Seo Mo
	Ch. 88070	RK.5 33-11		WR6)
	(See Model	T-16 ……........ 123-8	R-16. RG-16, RT.	5A1 (Ch. HS-6)....... 2-11
			(ch. RGT-Io).	
7 C 432 (Ch. 4706),		TP. 164	S8, ST.8. TM 8	5 5A7A (Ch. HS.62A) ... 29-16
$7 \mathrm{C447}$ (Ch .4707) 14		76,711 86,811	${ }_{5-12}^{12}$	SCl (Ch. HS-228)..... 116
M877, TFM888 (Ch. 7 CllD)	Ch. 10 C 23 E	86, 811 20-21	S-12, SG-12, ST-12 (Ch. SGT.121 21-23	$\mathrm{SC}_{2} \mathrm{ich} . \mathrm{HS}$
${ }^{\text {Ch }} 777 \mathrm{R}$ (Ch. 470	(See Model lofm981). . 65	MASON		ee Model 5C11. . . . 116
711860 (Ch. 7 C254)	$\mathrm{Ch}^{122826 E}$	45-1A	(Ch. SGT-i6) 21-	16
7 P 420 (Ch. 47C5) $26-17$		45.18, 45.5	d, 7164	4 ($\mathrm{Ch} . \mathrm{HS}$-270)
, 75450.75470			Soe Model S-16)..... 21	(See Model 5C1)..... 116
		mayfair	Minerva	
$18 \mathrm{C90}$, 18C91) Tei.	(See Model 7TV	${ }_{510}^{510} 510 \mathrm{~W}, 520,520 \mathrm{~W}, 25-20$	1.702 (See W-702B)..... 12	
R752 (Ch. 7804A) 29	Chisee Model 5A410].... 1		W.728, W-728 Matar ... 11-15	(See Model 5C1) 116
R753 (ch. $7 \mathrm{7B09A}$	Ch. 4504		${ }_{\text {W. } 11717.3}$ Iropic Mastar ... $11-14$	
R772 (Ch. $7 \mathrm{POO9A}) \ldots{ }_{30-17}^{42-15}$	(See	Grab	7028 ……....... 12-20	
M775 (Ch. 8808D).	4	16-27	W710, w710A w w 191 5-25	
$8 \mathrm{mg7} \mathrm{\%}$ (Ch. 8807D - . 29.14	703 (1451.... 23	MECK (Trail Blazer-Ply mouth)	W.728(See Model (.728). 11-14 410,411	
	odel 7S433)... 22	CD-500 (PX-5C5-EW-19) 33-12	${ }_{702 \mathrm{H}, ~ 702 \mathrm{H}-1}$ …....... 30 - 18	(Ch. HS-224) (See Model 511 100
	h. 4709		729 (Portapal)	$5 \mathrm{MI}, 5 \mathrm{MIU}$ SM2 $5 \mathrm{SM2O}$
10FM89) (See Model	(See Model $\mathrm{P} 4201 . . .26$	$\mathrm{CR}_{\text {R-500 }}$	MIRRORTONE (Sea Meck)	(Ch. HS.249, HS-223) , 101
OfM981) 65		Cw. 500 40-11		A
$10 \mathrm{FM981}$ (Ch .10 l 23 E) \ldots. $65-8$	Ch. 4707		$55-14$	$A, 5$
CA, 12C5 Tell Rec. . . 108	(See Model 7(447) ... 14			(Ch. HS-280) (See Model 5RIIU) 115
	${ }^{\text {Ch. }}$ (See Model		1268 R 127	model
12 FM 895 (Ch. $12 \mathrm{C} 22 \mathrm{Ek} \ldots . .589-11$	$\mathrm{Ch} .4810$	Ch 100031 89-8	MOLDED INSULATION CO.	5R14U, 5R15U, 5R16U
Model 1212 Tal) Rec. (See 108	(See Model 85452		(Also see Viz)	(Ch. HS.242) 115- XIIU $5 \times 12 \mathrm{U}, 5 \mathrm{X} 13 \mathrm{U}$
Model 12C4) 108			MR-6 (Wiretone) 41-	
(See Model 12T2) 108		Tel. Rec, 110-9		
CT4 Tel. Rec. (See Model G-414) . . . 133	(See Model 12Fm475).		M-403 (Fact. No. 470.2) . 22-20	(Ch. HS-259) 120-9 6 F11. 6 F11B
1412 Tel. Roc.		M Prod. Chge. But		(Ch. H5. 264) … 117-10
(See Model 12T2) . 108	MANTOLA (B. F. Goodrich Co.	MMbloc, T Tol.		611.812 (Ch , HS-226) . . 102-7
16C4, 16 C 5 Te . Rec. (See Model 12C4 108		Model MM61 4C) . . 117		
	R643-p	120	TA56M, TW56M 6-18	7F11, 7F118
(See Model G.414)... 133	R463W ${ }^{4-29}$	motic tel. Res	montgomery ward	(Ch. HS-265) …...113-5
K1 (94 Series)	R643-PM, R643W ${ }^{\text {4-29 }}$	del MM614C) . 117	(See Airline)	Ti, 7VT2, TVTS
Tel. Rec. (Sees Model		Mmbioc Tel. Rec 12,		15.18) Tel. Rec. Ch. ${ }^{83}$
	R654.PM, R654.PV \ldots, 3--5	O-	MOPAR	8 BEDT 8GMT (See Ch. 8A) 46
2, 16 T3 Tel. Rec. (Seo 108	R655W (Ch. Ro62, R662N		602 (Colonial Model 671 A)	
Model 12C4) 17.	R602, R602N RS64.PM, RO64.PV,	${ }_{\text {PM }}$		
(Ch'. 101) 'rel. Rec. ...127-7	23-13	RC-6A7-P6 31-19	604 106	(Ch.' HS.246) 114
19 C 7 Tel. Rec.	743.W (See Model			(Ch. ${ }^{\text {S }}$-18,
$\left.{ }_{\text {(See M Model }} \mathrm{G}-414\right) \ldots .133$		XA.701 Tel. Rec........ 61-16 XE. 705 See Model		Rec. (See Model $7 \mathrm{VVI1)}$. 83
Tel. Rec. (See Model 17DA		XE. 705 (See Model XA-701) XF-777 Tel. Rec \qquad 101-	802 (Revised) \ldots. 80 42-19 803 (Philco PD-4908).... $66-12$	Tel. Rec. (See Model 7VT1)

NASH	OLYMPIC-Cont.
6MNOB2 . \ldots......... 9-25	7.728 (See Model 7-724) 29
Ch. SC82 isee Model	
6MN082) .-.....	
national co.	${ }_{8}$-533V, B. 5
HfS … $62-14$	8.618
HRO-7R. HRO-it 50-12	8.925, 8.934, 8.936
HRO. 50-....... 112	752, $752 \mathrm{U}, 753,753$
NC.TV7, NC.TV7M, NC-TV7W Tel. Rec. $67-14$	Tel. Rec 755, 755 U Tel. Rec
NC.TV-10C, I_{2} W Tel. Rec. 94-5	(See Model 752) 126
NC.TV-IOC, T, W Tel. Rec. Prod Chge. Eul. 1..... 103-19	764. 764 U Tel. Rec. (See Model 752) 126
NC.TV.12C, W Tel. Rec.	766 Tel. Rec.
(See Model NC-TV-10C) 94	(See Model 752) 113
NC.TV-12C, W Tel	767 Tel. Rec
Prod. Chge Bul. 1.... 103-19	(See Model 752) 126
co	operadio
(See Model NC-T-10C) 94	1A30 34-15
NC.TV. 1001 Tril. Rec. 103-19	1 1335 ${ }^{33}$
Prod. Chge Eul. 1.... 103-19	IA45
NC.TV. 1025 Tel.	\|A65 52
See Model NC-(V-10C) 94	A 40
- 025	IA
Prod. Chge Bul, 1.... 103-19	4A25:E $\ldots . . \cdots \cdots \cdots \cdots 101$
NC-TV-1201, NC-TV. 1202	4A30.A 102
	4A35, 4A55
(See Model NC.TV-10C) 94	4A50-A, 4A51-A 15ee
Prod. Chae Bul	Model 4A30-A
NC-TV.1225, NC.TV. 1226	4 m 25 C
Tel. Rec. ${ }^{\text {der }}$	
(See Model NC.TV.10C) 94	$\begin{aligned} & 30.531,1335 \\ & \because \text { Soundcaster" }37-14 \end{aligned}$
Tel. Rec. Fod. Chge. 10	ORTHOSONIC
Bul. 103	(See Electronic Labs.)
NC-2-400R, NC-2-400才 . . 47 -16	PACKARD
	Packard
NC-46	
NC-57 ${ }^{48}$	PA-393607 57
NC.108R, NC-108T 47	PACKARD-bell
	C1362
NC-183R, NC.183 T $49 \mathrm{49-15}$	C1461
TV-1201 Tel. Rec....... 119-10	50.
TV. 1226 Tel. Rec	508
(See Model TV-1201). 119	5 FP
TV. 1601 Tel. R	100 53-16
(See Model TV-1201) . 119	261 21-28
IV. 1625 rel. Rec.	471 30-22
NATIONAL UNION	551-D (See Model 551)
C.613 "Commuter" 19-23	
	563 (See Model 561)
571, 571A, 5718 17-22	566 (See Model
NEWCOMB	
H-10 14-20	
H-14 15-22	581 (See Model 508)
kx-30 15-23	651
	661 8-25
NIELSON	662 13-22
1018 Tel. Rec	673A, 673B 46
1618	${ }^{682}$................ ${ }^{54}$
NOBLITt Sparks (See Arvin)	771
OLDSMOBME	872
982375 20-25	880, 8804 15 ee
${ }_{982376}$.	Model 673 A)
982399 59-14	881-A, 881-B 47-17
982420 ...-.......... 57-12	
982421 …e.e.e.e. 87-7	
982454 60-16	
982455	${ }^{1054 B}$
982544, 982573 96-7	1063
OLYMPIC	1181, 1181A \ldots......... 75-12
DX-214, Dx-215,	$1272{ }^{\text {2 }}$.......
DX-216 Tral. Rec. 106	
-619, Dx.620, Dx-621,	1291 TV Te
DX-622 Teil. Rec. (See	1472
DX-931, DX. 932	2001 TV, 2002 TV Tel. Rec. 98
Tel. Rec. ISee	2091, 2092 Tel. Rec.
Model Dx-214) 106	2101, 2102 Tel. Rec. . . 123 --10
DX-950 Tel. Rec. (See Model DX 214)	$2105,2105 \mathrm{~A}$ Tel.
Model (0x-214)..... 106	(Soe Model 2101)
TV-104, TV 105 S Tel. Rec.. $67-15$	${ }^{2202,2} 2204$ Tel. Rec.
TV.106, TV 107, TV-108	2291 TV , 2292 TV , 229
Tel. Rec. (See Model	$2294 \mathrm{TV}, 2295 \mathrm{TV}$
TV.104 ${ }^{67}$	2296TV Tel. Rec......iv 82-10
V.922 Telovision Re	2297-TV De Luxe, 2297
TV. 922 L Tell. Rec. (See Mocel IV-104) . . . 67	Standard Tel. Rec. (See Model 2291-TV)... 82
TV928 Tel. Rec.	2298 -TV Tel. Rec.
(See Moclel TV922)... 58	(See Model 2291-TV)... 82
TV-944, TV-945, TV.946	${ }^{2301-T V}$ Tel. Rec. 126
Tel. Rec. (See Modet TV.104).	2801 -TV Tel. Rec. 122
TV.947 Tel Rec......... 85-10	${ }^{2601}$ (See Moldel 2101) ... 123
TV-94E Tel. Rec. (See	
Model TV-104) 67	(See Model 2601-TV) . 122
V.949, TV.950 Tel. Rec. ${ }^{\text {(See Model }}$	2801-TV, 2801 A .TV
	Tel. Rec. (See Model $2301-T V) ~$ 126
xL -612, \times (L-613	2803 TV Iel Rec 129
Tel, Rec. (${ }^{\text {See }}$	2991 TV Tel. Rec......... 94
Model X1.210)...... 109	3191.3192 Tel. Re
501, 6.502, 6-502-P, 4-10	${ }^{3381}$ Tel. Rec.
${ }_{0}^{6.503}$ - 501 S See Model	4580 Tel. Rec
6-501 V-U (See Model	4691 TV Tel. Rec.
	Philco
$6-504,6.5941$	C-4608 (See Mopar Model
$0^{0.601 ~ W, ~ G-601 V, ~} 6.602 \cdot{ }^{8-24}$	8021) 18
6-604 Series 60.0 22-21	C. 4608 (Revised) (Soe Mo- ${ }^{\text {cose }}$
$6.604 \mathrm{~V}-1119$, $6.604 \mathrm{~W}, 110.604 \mathrm{~V}-220$. 0.604 W .	par Model 802 Revised) 42
6.604 W .110 .6 .604 W - 1504.604 W .220	C. 4908 (See Mopar
mode 0.604 Series).... 22	CR-4, CR-6 33-17
6-606-A 11	
$6.606 . \mathrm{U}$. 11	CR.9 \cdot............. ${ }^{44}$
617 … 4	CR.12 \cdots............ 39-16
6-617U (Sam Model (0.617) ${ }^{4}$	CR-503 CR-505
7-421V, $7.421 \mathrm{w}, 7.421 \mathrm{x}$. 57-13	CR-505
	P-4635 (See Pockard Model PA-382042)
	${ }_{\text {P-4735 (See Packord }}^{\text {Model }}$ (${ }^{\text {M }}$
537 . ${ }^{\text {a }}$	Model PA-3936071 57
	Model B03]

PHILCO-Cont
51-T1606 (Code 131) Tel.
Rec. (See Model)
50-T1600)
51-T1606 (Code 132) 91A
Tel. Rec.
51-T1 607 (Code 12i) TeI.
Rec. (See Model
Rec. (See Model
31 I1601 Code 121) ...115-1A
51.1607 (Code 122)
51.1807 (Code 122)
Tel. Rec.
51 .IIs34 (Codes 121, 122)

Tel. Rec. (See Model
$50 . \mathrm{T} 1800$ Code 122) ... 110
51 -T1834 (Codes 121, 122)
Tet. Rec. Prod. Chge.
Bul 20
Tel. Rec. Prod.Chge. .134-1
51-T1634 (Code 123)
Tel. Rec.
(See Model 51-T1601) .. 115-1A
(See Modet 5:-T160
51 T1634 (Code 124)
Tel. Rec.
51. TI 34 (Code 125)
Tel. Rec.
Th-T1800 (Code 121)
Tel

51-T1833 (Code 121)
Tel. Rec (Code 121)
5T-T1834 (Code.

51-T1871 (Code 122)
Tel. Rec.
51-T1872 (Code 121)
Tel. Rec...........................
$51-T 1872$ (Code 122)
Tel. Rec. .
51-T1874 (Code 121)

51 T2130 (Code 121)
Tel. Rec. ${ }^{2}$ See Model
$51-\mathrm{T} 2102$).
51.T2132, 51-T2133 (Cade
T2V) Tel. Rec. (See
(Model 51-T2102) 132
(Model 51-T2102) $\ldots . . .132$
s1-T2134 (Code 124)
Tel. Rec.
(See Model 51-T2102) . 132
51 -T2136 (Code 124)
(St)
Tel. Rec.
(See Model 51-12102), 132
51-T2138 (Code 124)
Tel. Rec.
(See Model 51.T2102). 132
51-T2170(Code 121)
51-T2. Rec.
Tel.
(See Model $51-\mathrm{T} 2102$). 132
$51-\mathrm{T} 2175,51-\mathrm{T} 2176$
51-T2175, 51-T2176
(Code 124) Te

PHILHARMONIC

100C 38-16	
inot	33-20
$149 \mathrm{C}, 249 . \mathrm{C}$	55-19
349-C	58-17
$\begin{gathered} 6810,8701,8702,8703, \\ 8710,8711,8712 \end{gathered}$	
(Ch. RR14]	18-27
Ch. RRI4 (See Model 6810) 18	
PHILLIPS 66 (See Woolaroc)	
3-62A (See Wooldroc	
3-81A 48-20	
PHILMORE CP-73ID Tel. Rec......... 132-11	
PhONOLA	
K-92, K-104	51-17
K-105	79-11
K-202, K-263	55-20
TK-134	83-8
TK. 234	
PILOT	
T.411-U	15-25
T-500 Series	12-2
T510. T511	5-24
T. 521	19-27
T-530 Series	12-2
7.601 'Pilotuner	28
T-700	
T-741	37-18
tV-37 Tel. Rec	62
TV-40 Tel. Rec	
TV. 950 Tel. Re	
PLYMOUTH (See Mopar)	
PLYMOUTH (Interstafe Stores) 	

RME-SILVERTONE

SILVERTONE-COHI.

SILVERTONE-SPARTON

SILVERTONE-CONT. Ch. 109.638	SILVERTONE-CONt. Ch. 548.358-1 (See
(See Model 8168)..... 46	
Ch. 110.451 , 110.452 (See Model 6051)..... 13	Ch. $548.360-1$ $\text { (See Model 239) } 115$
Ch. 110.454	Ch. 548.363
(See Model 6072)..... 13	(See Modei 33)..... 111
Ch. $110.466,110.460 .1$	Ch. $549.100,549.100-1$
	Ch. $549.100 \cdot 3$
(See Model 8103).... 56	(See Model 138) 99A
Ch. 110.499	Ch. 549.100-4 (See Mode: 160.12) 97A
Ch. 110.499 .1	SImplon
(See Model 9124) 79	
Ch. 110.499-2 (See Model 9: 26)..... 79	WVV2 …............ 17-30
Ch. ${ }^{132.807-2}$	SKY KNIGHT (See Air Knight)
	SKYRIDER (See Hallicrafters)
Chisee Model 6011) 15	Skyrover
Ch. 132.818	NS.RD-250 (9022-N).
(See Modet 6002).	NSS-RD-251 (9022.-H) ... ${ }^{6-31}$
132.818.1	N5-RD295 (Ch. 5A7) 21-30
(See Model 8003)..... 53	sky weight
${ }^{\text {Chi }}$ (See Model 6016) 27	818 20-30
Ch. 132.825.4	82
(See Model 6050)..... 15	SONOGRAPH
(See Medel 6071) 15	BL100 122
Ch. 132.838 (see model $6071 . . .15$	${ }^{\text {BW100 (See Model }}$
(See Model 8000).... 31	bil00) 122
Ch. 132.839 839	SONOR
(See Model 8005) 33	RBU-176 5-31
132.840	RB-207 (See Model RB-176)
(See Model 8010) 40	RCU-208 5-30
132.841	RDU- 209 ${ }^{3-29}$
(See Model 8020) 43	RET-210 24-24
Ch. 132.858 (72	RGMF-212, RGMF-230 ... 27-26
(See Model 9005) 72	RKRU. 215 (Ch. RKRU) ${ }^{9}$ 9-31
. 132.868	RMR.219 19-28
${ }_{\text {(See Model }}^{132.871}$ (S021).... 70	RMR 220, RMR. 245
isee Model 9022) 76	(See Model Rmp.
$\mathrm{Ch}_{\text {(See Model }}^{\text {(132.875 }}$ 9022).... 76	RQU-222 8-23
iSee Model 91051..... 89	RWFU-238 ${ }_{10}^{23-24}$
(See Model 1 (132.878 101	
h. 132.880 (See	WCU-246 …........ 36-22
Model 210) 109	WDU-233 25-27
h. 132.882	WDU-249 37-20
Ch. 132.887	WGFU 241, WGFU-242 .. ${ }^{24-25}$ WMU-25
Ch. 132.888	WKRU-254A 34-20
(See Model 54)....... 115	WLRU-219A A
Ch. 132.888	WLRU-220A (See Model
Ch ${ }_{\text {(See }} 132.890$ Model 106)	WLRU-219A) 37
(See Model 179-16) .. 130	WLRU-245A (See Model WLRU-219A) 37
	WXIU-700, WxTUA-700A
	Tel. Rec.
$\mathrm{Ch}_{\text {isee Model }}$ 135.243-1 9073$) \ldots . . .83$	YB.299 112
$\mathrm{Ch}^{\text {(See Model }} 135.244,135.244-1 \times 83$	100 ${ }^{41} \mathbf{4 1}^{21}$
${ }^{\text {Chis }}$ isee Model 9073)..... 83	101 ${ }_{53}^{48-24}$
Ch. 135.245	171 …................ 109-13
(See Model 41)	172 (See Model 171)... 109
h. 137.906	302, 303 Tel . Rec....... 974.13
(See Model 246) , . 111	306 108-11
Ch. $139.150,139.150 .1$ is	401 ….... ${ }^{\text {a }}$ - ${ }^{47-21}$
	402A (See Model RMR-219) 19
is 185.706 (70 (el 1304)	402 F (See Model WLRU-219A) 37
Ch. 319.190 13011 91	SOUND, INC.
Ch [$319.200,319.200-199$	"Intersound". 7-27
(See Model 1300].... 90	MB6P3, MB6PG, MB6P30,
431.188, 431.188-1	
(See Model 7148).... 23	
Ch. 431.199	
$\mathrm{Cr}_{\text {(See Model }}^{\text {431.202 }}$ 8144)..... 32	5R2 28-32
$\mathrm{Ch}_{\text {iSee Model }}^{431} \mathbf{8 1 3 0 \text {) } \ldots . . 2 4 9} 49$	SPARK 5-WITHINGTON
$\mathrm{Ch}^{434.140}$	(See Sparton)
$\mathrm{Ch}^{\text {(See Model }} \mathbf{4 3 5 . 2 4 0}$	Sparton
(See Model 7300)..... 45	
Ch. 435.410	5AH06, 5A106 (See
(See Model 7350).... 38	Model 5AW06) ..
Ch. 435.417	
(See Model 9153)..... 67	5AM26-PS (Ch. 5-26.PS) - 5-17
Ch. ${ }^{436} 200$ 71451 23	
(See Model 7145) 23	5AW16 (Ch. 5-16) See
	Model SAl1s (Ch. 5-16) 30
Chisee Model 8024)..... 80	OAW26PA) 15
Ch. 478.210	6AW26PA (Ch. PC5-6-26) 15-33
(See Model 9131)..... 84	
Ch. 478.221 9151. 97	7AM46 (Ch, 7-46)....... 1-31
(Soe Model 9115) 97	7AM $46 \mathrm{PA}, 7 \mathrm{TBM46PA}$,
Ch. 478.224 (See Model 9115) 97	7BW46PA, 8AM46 (See Model 7am46).
Ch. 478.252	$10 \mathrm{AB76}$-PA, $10 \mathrm{AM} 76-\mathrm{PA}$,
(See Model 91251	$108 m 76$. Pa (See
Ch. 478.25312104	Model 108W76.PA) ${ }^{\text {a }}$ 15
(See Model 125)..... 104	102, 103, 104
Ch. 478.289	
${ }^{\text {(See }}$ Model	
$\mathrm{Ch}_{\text {(Seg }} \mathbf{4 7 8 . 3 0 9}$ Model 120) $\ldots \ldots . .115$	122 (See Model 131$).$ $130,132,135,139$
Ch. 478.311	(Ch. 5A10) 121..... 94-10
(See Model 120) 115	${ }^{141}$ (See Model 121).... $\mathbf{S c}^{\mathbf{5 7}}$
Ch. 528.168 92801 94	$141 \times \times 142 \times x$ (Ch.
Ch. 528.171-1 (See	8w 101 …...... 126-12
Model 225) 107	142 (Seo Model 1211).... 57
Ch. 528.173 (See	
Model ${ }^{\text {M }}$ 220)	
(See Model 215)..... 117	1000, 1001, 1003 (00
Ch. 528.6293 .2 (See Model $62931 \ldots99$	
	${ }_{\text {(Ch. 8-57) }}$
(See Model 6295) 98	1010 (Ch. 717) …… 35-22
Ch. 547.245	1015 (See Model $108 W 76 P A) \ldots ~$ 15
Ch. 548.358	1020, 1021, 1023 (See Model 1000

silvertone-Con	SPARTON-Cont.
Ch. 548.358-1 (See Model 245) …..... 107	1030, 1030A (Ch. 6L8) ... 37-22 1031, 1031A
Ch. 548.360-1	(See Model 1030) 37
(See Model 239) 115	1035, 103
Ch .548 .363	
(See Modei 33)..... 111	1039, 1040, 1041
Ch. 549.100, 549.100-1	(Ch. $9181 \times$.
(See Model 101)..... 102	1040×1
- 3	
(See Model 138) 99A	141 XX)
Ch. $549.100-4$ (See Mode: 160.12) 97A	$\begin{aligned} & 1051,1052(\mathrm{Ch} .689) \ldots 58-21 \\ & 1058,1059,1000,1001, \end{aligned}$
SIMPLON	1064, 1071, 1072
CA-5 22-27	1085, 1086 (Ch. 8wi
WVV2 17-30	(See Model $14 \left\lvert\, \begin{aligned} & \text { (}\end{aligned}\right.$) 126
SKY KNIGHt (See Air Knight)	1090, $1091(\mathrm{Ch}, 8 \mathrm{FW} 10)$
SkYrider (See Hallicrafters)	4900 TV (Ch. 24 TV9C.
KYrover	3TV9C, 9(8A) Tel. Rec. 64-11
NS.RD-250 (9022-N). N5-RD.251 (9022.H) 6-31	$4916,4917,4918(\mathrm{Ch}$ $24 \mathrm{~T} 110,3 \mathrm{~T} 110,6510)$
N5-RD295 (Ch. 5A7) 21-30	Tel Rec.
sky weight	$24 \mathrm{TM10,3}$ TM10, 6510$)$
818 20-30	Tel
$82 \ldots \ldots \ldots \ldots \ldots$.... 13-13	4935 (Ch .23 Cl 10$)$
SONOGRAPH	$4939 \mathrm{TV}, 4940 \mathrm{TV}, 494$
BL100	(Ch. $24 \mathrm{TV9,3} \mathbf{3} \mathrm{Vg}$) Tel.
BWloo (See Mode	Roc. (Se
Bil00) 122	49007V) 64
so	4942 (Ch. $23 \mathrm{TCl0}$)
REU-176 ${ }^{\text {5-31 }}$	Mel. Rec. See
${ }^{\text {RB- } 207(\text { (See Model RB-176) }}$	
RCU-208 RDU. 209 R	24 TB101 Tel. Rec...... 86-10
	4951, 4952 (See Model
RGMF-212, RGMF-230 ... 27-26	4954 ch.
RKRU-215 (Ch. RKRU)	${ }^{\text {Tel Rec }}$ (See
	Model 4935) 133-1A
	4960 (Ch. 23TCl0)
RQU-222	Iel. Rec. (See
U. 238 23	4935) .-133-1A
RX-223........... 19-29	4964,4965 (Ch. $23 \mathrm{tB10}$, 93A-14
WAU-243 ${ }^{\text {WRRU-239 }}$ W...... ${ }^{27-27}$	4970, 4971 (Ch. 8Sio)
WBRU-239 ${ }_{\text {W }}$	(See Model 141A).... 92
WDu.233 \ldots............ 25 27-27	5002,5003 (Ch. 23 TD
WDU-249 37-20	
WEU-262 ${ }^{33}$	5006 ,
WGFU-241, WGFU-242 .. 24	${ }_{5002}$ Rec.
WJU-252 ${ }^{\text {a }}$ W....... 36	$5006 \times$ (
WRRU-254A . .l. ${ }^{\text {Whe. }}$ W 34	Tel. Rec. 121-13
WLRU-219A	5007 X (Ch. 25TK10A)
WLRU-220A (See Model	Rec. (See M
WIRU-245A (See	
WLRU-219A)	5010 , Tel Rech.
WXIU-700, WXIUA-700A	5014.5015 (Ch. 19TSiO.
100 41-21	(see Modet 5
101 ${ }^{48}$	265s 160 I Tel. Rec. 128-13
${ }_{171} 12^{\text {a }}$. ${ }^{53-23}$	5029,5030 (Ch
	$265 D 160)$ Tel. Rec.
172 (See Model 302.303 Tel Rec....... ${ }^{\text {a }}$ 97a	(See Model 5025).... 128
306 ,	35. 5036,5037 (Ch.
401 …............. 47-21	$26551600)^{\text {a }}$ (eel. Re
402A (See Model R	${ }^{(S 5 e e}$ Model 5025) 128
402 F (See Mode)	5052(Ch. $24 \mathrm{tR10}, \mathrm{3TR10)}$ Tel. Rec.
WLRU-219A) 37	56, 5057 ich. 19rsio.
SOUND, INC.	
"Intersound"	(See Model 5010).... 104
M86P3, MB6P6, MB6P30,	004, 5065 (Ch. $231 \mathrm{TB10}$
MB6R4 $\ldots \ldots \ldots \ldots \ldots .{ }^{35}$	and 31810) Tel. Re.
	(See Model 4964) , ${ }_{5068}$
	5068. 5069 (Ch. 24 TV
SPARK5-WITHINGTON (5ee Sparton)	5071, 5072 (Ch. 19 TSIO, A) Tel. Rec.
SPARTON	(See Modet 5010).
4AWI7 (Ch. 417)...... 50-18	
AAWI7-A (Ch. 417A) 49-22	
5AH06, 5A106 (See	${ }^{\text {B) Tel. Rec. }}$ Model So2s)....... 128
5A116 (Ch. 5-16) …… 30	079, 5080 Ch .
5AM 26 -PS (Ch. 5.26.PS)	${ }^{2650160)}$ Tel. Rec.
5AW06 (Ch. 5-06) …. 4—17	(See Model 5025) 128
5AW16 (Ch. 5-16)	5082, 26 SD160, 265 SD
Model SAlls (Ch. 5-16) 30	26SD160, 265 SD 170)
6AM06 (Ch. 6.06) 34-21	Tel. Rec.
	Model 141 XX Set 126)
6AW26PA (Ch. PC5.6.26) 15-33	88, 50898.5090
${ }^{6-664}$ (Ch .666 A)....	Tel. Rec. (See Model
7AM46 [Ch, 7-46)	
7AM46PA, 78 CM 46 PA,	
(See Model 7 AM46).... 1	Ch. PC. 5-6-26
10AB70-PA, $10 \mathrm{AM} 76-\mathrm{PA}$,	(See Model 6AW26PA). 37
108m76.pA 15 See	Chisee Model 4944)..... 86
108W7\%-PA (Ch. 10.76 PA) ${ }^{\text {Model }}$ 15-34	Ch 3 3R10 (See Model
100, 101 (Ch. SA7)..... 38-23	
102, 103, 104	- iSee Model 4900TV)... 64
${ }_{121}$ (See Model (${ }^{\text {M }}$ (190) 38 57-19	Ch. 4E10 (See Model 150) 91
122 (See Model 121) 57	Ch. 5A7 (See Model 100). 38
130, 132, 135, 139	${ }^{\text {Ch. }}$ (SSe Model SAWO6) ...
	Ch. SAlO (See Model i 30) 94
	Ch. 5-16 ${ }^{\text {c }}$
$141 \times \mathrm{x}$, 142xx (Ch.	(See Model 5A116).... 30
8w10) … ${ }^{\text {a }}$	$\mathrm{Ch}^{5.2685}$
142 (Seo Model $1211 \ldots \ldots 57$ $150.151,152,155$	Ch. 689 (See Model losil) 58
	Ch. 618 (See Model 1030) ${ }^{7}$
$1000,1001,{ }^{1003}$ $(\mathrm{Ch}, 12(7)$${ }^{103}$ 60-18	Ch. 7 (ST) (See Model Moiol 35
1005, 1006, 1007, 1008	Ch. 7.46
	(See Model 7AM46).... ${ }^{1}$
1010 (Ch. 717) 35-22	Ch. 819 (See Model 121). 57 Ch. 8110 (See Model 141A) 92
1015 (See Model $108 W 76 P A)$	
	Ch. 8W10 (See Model

Le-king-Cont.	E-TONE-COnt.
210 Tel. Rec	114)
310 Tel. Rec.	(See Model 145)
410 Tel. Rec. 88-12	156 (Ch. Series U)
6 Tel. Rec	157 (Ch - Series H)
	(See Model 135)
(See Modet 4101..... 88	157 (Ch. Series AE) ${ }^{\text {a }}$ 49-24
512 Tel. Rec. (See Model 410$) \ldots . .$. 88	158 (Ch. Series AT)..... 159 $1 / C h$. Series AA)
612 Tel. Rec.	160 (Ch. Series Y) $\ldots \ldots . .3$. 36
(See Model 410)..... 88	161, 162 (Ch. Series T)
0 Tel. Rec.	odel 1501..... 38
(See Model 410) 88	163, 164 (Ch. Series H)
712 Tel. Rec.	(See Model 135).
(See Model 410)...... 88	165 (Ch. Series
(See Model 162)....... 129	60 (Ch. AE) (See Model 157)...... 49
816.3 CR Tel. Rec	167.168, 171 (Ch. Series
C 1 l.	(See Model
(See Model 162)..... 129	172 (Ch. Series U)
9, 919Caf Tel. Rec. .. *	(See Model 156)
telequip	
Ch. $12 \mathrm{TR}, 14 \mathrm{~T}, 14 \mathrm{TR}$	176 (Ch . Series U)
16TR, 19T, 19TR	(See Model 156)...... 35
Tel. Rec.	
5135, 5136, 5140A 11-24	183
TELESONIC (Medco)	185 (Ch. Series AH).... 52
1635 20-22	190 (Ch. Series AZ).... 61
1636 21	195 (Ch. Series BH)..... $71-15$
1642 20-23	198 (See Model 158)
1643 21-34	200 (Ch. Seris
TELE-TONE	201 Ch Series AX
TV149 Television Rec.... 56-22	
TV-170 Tel. Rec......... 83	206 (Ch. Series BD...... 127
TV. 208 Tel. Rec. 90	214 (Ch. Seties AZ)
TV208TR Tel. Rec........ 95-6	(See Model 190).
TV-209 Tel. Rec. (See Model TV-249)	(${ }^{\text {(Ch. Series }}$ SD)
TV-210 Tel. Rec....	
TV. 220 Tel. Ree	[See Model 100)..... 39
(See Model TV208TR).. 95	Ch. Series AA
TV.249 Telovision Rec..... 57-21	(See Model
TV-250 Tel. Rec........ 91	$C h$ Sories AE
TV. 254 Tel. Rec.	Ch Series AG
(See Model TV-250) 91	- ${ }_{\text {See Model }} 1651 \ldots . . .50$
TV-255, TV. 2568 (Ch.' TS) Tel. Rec. ... 101-13	Ch. Series AH
TV259 Tel. Rec.	Ch. Series AT
	See Model (158)..... 59
TV. 283 Tel. Rec.	Ch. Series AX (See Model
(See Model TV-285)	$C \mathrm{C}$. Series AZ
TV.284 Tel. Rec..	(See Model 190)..... 61
TV.285 Tel. Rec.e....... ${ }^{\text {TV }} 286$	Chassis Series BD
Rec. (See Model TV.284) 93	See Model 20.
-300, TV-301 (Ch. TAA,	Chassis Series BH
${ }^{\text {AB }}$	
300, TV. 301	
(Ch. TW) Tel. Rec.	Ch. Series CA
TV-304. TV. 305 (Ch.	(See Model 133)...... 11
(See Model TV-300).... 99A	$\mathrm{Cr}^{\text {r }}$ Series D
304, TV-305 (Ch.	
Tel. Rec. (See	Chisee Model 135)...... 14
V.306, TV.307	Ch. Series K
(Ch. 'TY, TZ)	(See Model 109)
Tel. Rec.	${ }_{\text {Ch }}$ See Mories N (el 138) 23
TV. 308 (Ch. TAC)	Ch . Series
TV314 (Ch. TAJ)	(See Model 145)
Tel. Rec.	
TV-315 (Ch. TAA, TAB)	Ch Series T (
TV.317 Tel. Rec.....	(See Model 1501..... 38
318 (Ch. TAM)	Ch. TAA, TAB (See Model TV-315) 115
TV322, TV323 (Ch. TAM)	$\mathrm{Cn}^{\text {n TAC }}$ TSee
Tel. Rec. (See Model	Model TV-308)...... 109
TV318) 124	
(Ch. TAP, TAP-1	$C^{\text {C }}$. TAM (See Model
TAP-2) Tel Rec. ... 127-12	TV318) \ldots) 124
TV328, TV329 iCh, TAP,	Ch. TAP, TAP-1, TAP
TAP.1, TAP-2) ${ }_{\text {Tos }}$	$\mathrm{Ch}_{\text {. }} \mathrm{TS}$
Reck ${ }_{\text {TV24) }}$	(See Model TV-255) . . 101
335, TV336 (Ch. TAP.	Ch. TW, IX (See
TAP. 1 TAP. 2) Tel	Moder TY TZ
TV340 (Ch. TAP, TAP. 1 ,	(See Model TV-308
TAP-2) Tel. Rec. (See	(See Model 156)...... 35
Model Ch. TAP TAP. 1	Ch . Series Y
TAP-2) Tel ${ }^{\text {a }}$ Rec ((See	(See Model 160)
Model TV324) 127	ielevox
. 352 Tel. Rec.	22-29
	${ }^{277 B-2 w ~}$
(See Model TV-324) . . 127	
0, 100-A, 101, 109	
(Ch. Series A) 39-26	TEl-var (See Audor)
110 (See Model 117	temple
111, 113 (See Model 100) 39	E-301 21-35
117.A Ch . Series '"D']. 1-35	E-510 1^{2-3}
119, 120 (See Model	E.511
117.A)	${ }_{\text {E-512, }}^{\text {E.5i0) }}$ E-514 (See Mode
124 (See Model 117-A) ...	E-519 (See Model E-510).
125 (See Model 100)... 39	F-301 12-26
126 (See Model 117-A)... 1	
127, 130. 131	
	${ }_{0}^{\mathrm{F} .617}$-410 \ldots............... $\mathbf{2 7}^{\text {27-28 }}$
${ }_{133}$	6.4i5 …l.......... ${ }^{\text {43-18 }}$
134 13-32	C-418, G-419 $26-25$
${ }_{138}^{135}$ Series Ni ${ }^{\text {a }}$ - ${ }^{\text {23-29 }}$	0.513
138 (Ch. Series N) Sories ${ }^{\text {23-27 }}$	6.516 18-31
Hi) (See Model 135) ... 14	G-518 …........... 29-27
42, 143. 144	
148 (Ch. Series S) $\ldots \ldots . .24$ 24-26	6.622 44-24
149 (Ch. Series H)	G.721 (See Model C-722). 24
See Model 135)	6.722 …...... ${ }^{\text {24-27 }}$
150 (Ch. Series T) 38-25	G.723 (See Model G.722). 24
${ }_{\text {(See Model }}$ (148) $\ldots . . .24$	

TELE-TONE-WESTINGHOUSE

wOOLAROC-Cont.	zenith-Cont.	Nith-Cont.
${ }_{3}^{3.34}\left(\operatorname{Code}\right.$ 7.9003-D) ... ${ }^{6} \mathbf{6}^{-38}$	$\mathrm{G}_{\text {Tel }} 0622$ (Ch. 24G26)	6DO15, 6D015Y, 60030 3-24
	Tel. Rec.	(Ch. $6 \operatorname{CO5}$, 6CO5z) $\ldots . .3$ 3-24
3-6A/5 \ldots. \ldots. \ldots... 24-32	G3157R2, Z (Ch. 23G24, ${ }^{\text {a }}$,	
3-9A, 3.104 $7.10 \cdot \ldots$ 7-30	${ }_{\text {B620/221 Tel. Rec.... 91A-13 }}$	60815Y (Ch. 6EO5).... 55-24
		G001, 6G001Y
3-13A , 3-14A, 3-15A,	G3158R2 (Ch. 23G24.	(Ch. ${ }^{\text {6C4 }}$ (0) , 3-14
		-6G001)
	(Ses Model G3157R2).. 91	6G004Y (Ch. ©C41) 20-35
	G3158RZ1 (Ch. 23G242I)	
${ }_{3-61 \mathrm{~A}}^{3-29 \mathrm{~A}}$ (See Model $\left.3-71 \mathrm{~A}\right){ }^{36}{ }^{\text {7-31 }}$		${ }_{6 G 801}(\mathrm{Ch} .8 E 40) \ldots . . .{ }^{\text {a }}$ 53-26
3-70A	6G20/22) Tel. Rec.	$6 \mathrm{R060}$
3.71 A	(See Model G3157RZ). . 91A	$6 \mathrm{RO84}$ (Ch. 6C21) 20-36
ZENITH	G3174RZ (Ch. 23G24,	$6 \mathrm{RO87}$ (Ch. 6C22) 7-32
		6R886 (Ch. 6E02)
G503 (Ch. 5G41)......... 99		
G510, G510Y (Ch. 5G02). 84-14	8G20/22] Tol. Rec. 91A.12, 13	7H822 (Ch. 7E02).
G511. G511w, G511Y	G3259RZ1 (Ch. 24G2621)	7H822WZ, 7 7 822 Z
(Ch. 5601) \ldots. ${ }^{\text {a }}$. ${ }^{\text {a }}$ 85-14	Tel. Rec	(Ch. 7E02Z) .1..... 55-25
G516 (Ch. 5G03)..... 109-15	G32627 (Ch. 24G26,	7H918 (Chessis 7F03).... 75-18
G615, G615W, G615Y 86-14		$7^{7} 920 \mathrm{O}$ 7 H 920 W (Ch.
	(See Model G3259RZ).. 91A	7F01) 77-13
G660. G663, G665	G3262Z) (Ch. 24G26Z1)	7H921 (Chassis 7F04).... 73-16
	Tel. Rec.	7H922 (Ch. 7F02) 87-15
G723 (Ch. 7G04)..... 104-13	G3275RZ (Ch. 24G26,	$7 \mathrm{RO70}$ (Ch. 6C06) 37
G724 (Ch. 7G02)...... 103-18	8G20/22) Tel. Rec	7R887 (Ch. 7E22)....... 54-22
G725 (Ch. 7G01)....... 101-18	(See Model G3259RZ)	${ }_{86005 Y}$ (C). 8C40) ${ }^{\text {7-33 }}$
G881, G882, G883	32767 (Ch. 24G26,	$\begin{aligned} & 8 \mathrm{G005Y} \text { (Ch. 8C40) } \\ & 8 \mathrm{G} 005 \mathrm{YT}(\mathrm{ZI})(\mathrm{Ch} .8 \mathrm{C} 40 \mathrm{~T})^{7-33} \end{aligned}$
G885 (Ch. 8620)..... 98	8G20/22) Tel. Rec	(Z1), 8G005YT) (Z2)
G. 2322 (Ch. 23G22)	(See Model G3259RZ). . 91A	(Ch. 8(40T) (Z2) 53-
		$8 \mathrm{HO23}$ ($\mathrm{Ch} .8 \mathrm{8CO1)} \ldots \ldots .{ }_{4}$
Tel. Rec. ${ }^{\text {a }}$ (13.13	H6O1E, H6O1R (Ch. ${ }^{\text {che. }}$	8H032, 8 HO 033
G-2322Z1 (Ch. 23G2473)	6HOi) ${ }^{\text {a }}$ (135-13	(Ch. 8 C 20) ${ }^{\text {d-33 }}$
el. Rec.	H665, R, RZ, Z (Ch. SHO1)	${ }^{8} \mathrm{BHO34}$ (See Model 8HO23)
277 (Ch. 23G24)	(See Model H661E) ... 125	${ }^{8+1}$
		${ }_{84 \mathrm{HO2}}$
G.2340, R (Ch. 23G22] ${ }^{\text {a }}$		8H832, 8H861 (Ch. 8E2O) 52-24
Tel. Rec. (See Model	H880, H880R (Ch. 8H20	$9 \mathrm{HO79}, 9 \mathrm{HO79E}$, 9H07
G2322) …...... 98	Revised) …...... 127-15	9 НO81, 9H082R,9H0
G2340RZ, Z (Ch. 23G24) Tel. Rec.		
(See Model G2322Z)... 91A	H880RZ (Ch. 8H20) $114{ }^{\text {a }}$	9H888R (Ch. 9E21) ... 43-25
G2340Z1, RZ1 (Ch.	H-1083E (Ch. 10H20)	9H984. 9H984LP
23624Z1) Tel. Rec.	(See Model H2437E) ... 120	(Ch. 9F22) 64-14
2346R (Ch. 23G22)	H1086R, H1087R (Ch.	9H995 (Chassis 9E212)...74-12
Tel. Rec. (See Model $\mathrm{G}^{\text {c322 }}$		12H090, 12H091, $12 \mathrm{HO92}$
G2322) 98	Model H2437E) 120	$2 \mathrm{HO93}$,
G2346RZ (Ch. 23G24)	H2226R, H2227E, H2227R	
Tel.	Ch. 22H20) Tel. Rec...114-13	$14 \mathrm{H789}$ (Ch. ${ }^{\text {13022 }}$
G2350RZ, T (Ch. 23G24)	H2241R (Ch. $22 \mathrm{H2T}$)	
(See Model G2322z)... 91A		Rec. (See Model G2931)
G2353E (Ch. 23G22)	2250R, H2255E IC	${ }^{28}$ Tel. Rec............ 64
		28TP26E, 28T926R
G2322) 98	(See Model H2226R) . . 114	(Chassis 28F25)
2353EZ (Ch. 23G24)	H2252R, H2253E (Ch.	Tel. Rec. (See Mod
Tel. Res. (See Model G23227) ... 91A	Model H2229R) (127-1A	$2819251 . \ldots 6{ }^{\text {2 }}$
G2353EZ1 (Ch. 23G2471)	H2328EZ, RZ (Ch .23 H 22 Z)	281963 (Ch 28 F 20,
Tel. Rec.	Rec.	28F202, 28F21)
G235EEZ (Ch. 23G24)		Tel. Ret. (See
(See Model G2322Z) ... $91 \mathbf{4}$	${ }_{\text {Model }}$	Model 281925$)$ 281964R (Chassis
G2420E (Ch. 24G20)	H2437E, R, H2438R,	28F23) Tel. Rec...... 74-13
Tel. Rec. .a........ 93-17		291926R, E (Ch. 28F25)
$2420-\mathrm{EOX}$ (Ch. $24 \mathrm{Cl} 20-\mathrm{O}$) Tel. Rec.	H2445R (Ch. 24H21) Tel.	Tel. Rec. (See Model 28T925
24G20-OX) Tel. Rec. (See Model G2420E) . . 93	Rec. (See Model	
2420 R (Ch. 24G20)	H2437E) 120	28F23,9E21立)
Tel. Rec. (Seo Model G2420E) 93	H2447R (Ch. ${ }_{\text {Rece }} \mathbf{2 4 \mathrm { H } 2 1)}$ Tel.	Recc. (Seee Models
(See Model G2420E)... 93 G2420-ROX (Ch.	${ }_{\text {H24 }}$	421999R1P and ${ }^{\text {4 }}$
$24620.0 X)$ Te	H2449E (Ch. $24 \mathrm{H2O}$) Tel .	$28520,9 E 21 \mathrm{Z}$) Te
(See Model G2420E)... 93	Roc. (See Model 112437 E	[See Model 289925 (S
	H3068R (Ch. 22 H 21) Tel.	64) and Model 9 H 9 (Set 74)]
-G2439RZ (Ch. 24G26)... $91 \mathrm{~A}-12$	Rec. (See Mod	42T999RLP (Chassis 28F23,
	H2229R1127-1A	
G2441R (Ch. $24 \mathrm{G} 22 / 23$)	3267 R (Ch. $24 \mathrm{H20}$ and	Rec. See Model
Tel. Rec.	Rec. [See Model H2437E	28T964R2) 74
(See Model G2322).... 98	(Set 120) and Model	Ch. 4C52 (See Model 4KO16)
G2441R2, Z (Ch. 24G26) Tel. Rec.	${ }_{\text {H280Rz }}$ (Set 114]	$\mathrm{Ch}_{\text {. }} \mathrm{4C53}$
(See Model G2437RZ). . 91A	H3273E, H3274R (Ch. 22H21) Tel. Rec. (See	(See Model 4k035).
	Model H2229R)	$\mathrm{Ch}_{\text {iSee Model }}$ 4E8001...35 ${ }^{\text {a }}$
$24 \mathrm{cke} \mathrm{R}{ }^{\text {chel. Rec. }}$	H3467R (Ch. 24H20 ond	
	Radio Ch. Rec. (See Model cel	${ }^{\text {Chi }}$ (See Model 4G800Z)... 52
G2322) 98	${ }_{\text {Reck }}$	Ch. 4F40 (See Model
G2442R2 (Ch. 24G26)	H3469E (Ch. 24 H 20)	4G9031 76
Tel. Rec. (See Model G2437RZ) . 91A		Ch. 5CO1, 5COIZ (See Model Soo
G2442EZ3), R21 (Ch.		$\mathrm{Ch}^{\text {SCO2, 5CO22 }}$
24626211 Tel. Rec.		(See Model 5 R080).
2448 R (Ch. $24 \mathrm{G} 222 / 23$)	Rec. (See Model	Ch. 5C04
	H2437E) 120	See Model 5R08
	H 3477 R Ch. $24 \mathrm{H21}$ and Radio Ch .10 H 201 Tal.	$\text { Ch. } 5 \mathrm{C} 40$
	Rec. (See Model	Ch. 5C40Z, 5C40zz
(See Model G2437R2)., 91A	H2437E) …...... 120	(See Model 5G0032) . . 30
G2448RZ1 (Ch. 24G26Z1) Tel. Rec.	H3478E (Ch. 24 H 21 and	Ch. SC5 1
G2454R (Ch. 24G21)	Rec. (See Model	Ch. 5 E02
Tel. Rec. (See Model G2420E) 93	H2437E) .1e.il. 120	(See Model 50810) 54
	4G800 (Ch. 4E41) 35-27 46800WZ. 4G800YZ	Ch. 5601 (See Model
${ }^{24621-O X 1}$ Tel. Rec. ${ }^{\text {a }}$	4G800Z (Ch. 4E412) ... 52-23	Ch 5G02 (See Model
(See Model G2420E)... 93	46903, 4G903Y (Ch.	
	4F40) 76-20	Ch. 5603 (See
G2952-ROX (Ch. 29G20) Tel. Rec. 95-8	4K016 (Ch. 4C52)) 6-39	Model G516) 109
G2957R (Ch. $23 \mathrm{G23}$ \&	4K035 (Ch. 4C53) 50011,50027 50,	Ch. $5 \mathrm{G40}$ (Seo Model
		$\begin{aligned} & \text { G5001 } \\ & \text { Ch. 5G41 } \end{aligned}$
	50810 (Ch. SE02) 54-21	Chisee Model G503).... 99
Radio Ch. 6 G20) Tol	5G003 (Ch. 5C40) 17-35	Ch. 6 CO 1
Rec. (See Model G2322) 98		(See Model obol4)
	$\begin{array}{ccc} 5 G 003 z Z & (\mathrm{Ch} . & 5 C 40 z Z) \\ 50-30-31 \\ 5 G 036(\mathrm{Ch} . & 5 C 51) & \ldots \end{array}$	Ch. 6C05, 6C05Z (See Model 60105)
Rodio (See Model G2322) 98	5RO80-5R08S	
02 (Ch. $24 \mathrm{G} 24 / 258$		(See Model 7r070).... 37
Rec. (See Model G2322) 98	60029 G (Ch. 8 CO 1) \cdots, $9-35$	Ch. 6C21 (See Model 6R084).... 20

ZENITH-Cont
Ch. ©C22
(SCe Model 6R087) 7
Ch. oC40

Ch. SEES Model OR886).... 34
(See Model 6D815).... 55
Ch SE40
(See Model 6G801).... 53
Ch SGO1

(See Model G615) 86
Ch. SG20
(See Model G2957).... 98
Ch. SHOI (See
Model Ho6lE) $\ldots \ldots . . .125$
Ch. 7EO2, 7EO2Z
(See Model 7H822).... 55
Ch. 7E22
$\begin{aligned} & \text { (See Model 7R887).... } 54 \\ & \text { Ch. 7FO1 (See Model) }\end{aligned}$
Ch. 7F01 (See Model
(H920)
Ch. 7 7FO2
Chee Model 7H922) 87

(Shassis 7FO3
(See Model 7H918)

Chatsis 7FO4
(See Model 7H921).... 73
Ch. 7GO1
(See Model G725) 101
Ch. 7G02
Ch. 7G02 ${ }^{\text {(See Model G724) } 103}$

Ch .8 CO 1
(See Model 8H023).... 4
Ch. 8C2O
(See Model 8H032).... 1
$\begin{array}{cc}\text { (See Model 8H032) } \ldots . . & 1 \\ \text { Ch. 8C2) } \\ \text { (See Model 9H079) } \ldots . & 7 \\ \text { Ch. 8C40 } \\ \text { (See Model 8G005Y) }\end{array}$
(see Model 8G005Y)...
Ch. 8C4OT(Z1), 8C4OT(Z2)
(See Model 8G005YT(Z1)
(See Model 8G005YT(Z1) 53
Ch. 8E20
(See Model 8H832).... 52
Ch. 8G20
(See Model G881).....
Ch. 8G20/22 (See Model

TSee Model 9 H
Chassis 9 E 217
Chassis 9E21Z
(See Model 9H995) 74
Ch. 7 F22
(See Model 9H9844).... 64
Ch. 10 H 20
(See Model H2437E) $\ldots 120$

Ch. 23G24Z1 $\begin{aligned} & \text { (See Model G232221). }\end{aligned}$
Ch. 23 H22Z
(See Model H2328EZ). 118
Ch. 24G20 (See Mode
G2420E)
Ch. 24 G 20 -OX (See Model
G2420E)
Ch. 24G21 (See Model
G2454R)
Ch. 24G21-OX (See Model
G2454-ROX)
Ch. $24 \mathrm{G} 22 / 23$
(See Model G
(See Model G2441R)... 98
Ch. 24G24
$\mathrm{Ch}_{\text {(Soe Model }}$
(See Model 3059R) 98
Ch. 24G26
Ch. 24G26
(See Model G2437RZ). . 91 A
Ch. 24G26Z1 $\begin{aligned} & \text { (See Model G2441Z1). }\end{aligned}$
Ch. ${ }^{24 H}$ H20, 24H21
(See Model H2437E) ... 120
(See Model 27T965R). . . 95
Ch. 28F20, 28F202, 28F21,
$28 F 22$ (See Model
2819253.
Ch. 28523
(See Model 28T964R).. 74
28F25

ADDITIONAL BENEFITS From time to time, PHOTOFACT Folder Sets include valuable "bonus" materials, as well as useful data of a special nature FROM PHOTOFACTS The following useful materials are extra benefits available in the Sets indicated at no additional cost.

Set No.	Set No.	Sof No.
1-RMA Production Source Code	7-Mica Capacitor Color Codes. 48	14-Photofact Television Course
(July 1, 1946) 5	8-Ion Trap Alignment. 62	appearing serially in38-51, 54
2-RMA Production Source Code	9-"Let's Look at the Sync Pulses" 64	15-CR Tube Dimension Chart. 112
(Jan. 1, 1949) 70	10-_Replacement of Disc \& Plate Type	16-CR (Electromagnetic) Tube
3-RMA Production Source Code	Ceramic Capacitors	10-CR (Electromagneric) Tube
(Revisions as of July 1, 1949). 4-TRADE DIRECTORY-	11-Certificate entitling subscriber to PHOTO- FACT Volume Labels for Vols. 1-10.... 62	17-CR Tube Interchangeability Chart 112
Parts Manufacturers. 12	12-Certificate entitling subscriber to PHOTO-	$18-\mathrm{NPA}$ maintenance and repair
5-National Electrical Code on Antennas.... 88	FACT Volume Labels for Vols. 11-20... 102	
6 -Record Changer Cross Reference by	13-Certificate entitling subscriber to	
Manufacturer and Model 118	100 Door Knob Hangers. 80	19-Proposed Television channel allocation. 132

RECORDCHANGERS

(CM-1) indicates service data also available in Howard W. Sams 1947 Record Changer Manual. (CM-2) indicates service data available in Howard W. Sams 1948 Record Changer Manual. (CM-3) indicates service data available in Howard W. Sams 1949, 1950 Record Changer Manual.

AMPRO 730 133-4	CRESCENT-Cont. H-2A) Series(CM-3) $119 \ldots-4$	GENERAL INDUSTRIES. R70, R90 …...(CM.1) 35-28	RCA MI. 12875 $(C M-2) 85-12$	ST. GEORGE 1100 Series
		R70, R90(CM.1) 35-28		Wire Recorder .. (CM-1) 40-24
GRUSH SOUND MIRROR 8K-401 Tope Recorder	H.22A1 125-4	INTERNATIONAL ELECTRONICS	REELEST	WEBSTER-CHICAGO
(CM-1) 42-25	M-2000, M. 3000 Series. . 120-4	(CM-2) 88-4	C1A 123-13	79-80 Wire Recorder
BK. 403 (CM-2) 78-3	1000 Series (CM-2)	LEAR DYNAPORT		(CM-1) 37-26
BK.418(CM-2) B1-4	1000 Series Revised (CM-3) 77-4	WC-31I-D(CM-2) 80-8	SILVERTONE	178(CM.3) 113-12
BRUSH MAIL-A-VOICE	CRESTWOOD		70 (Ch. 567.230,	
$\underset{\text { BK-503 }}{8 \mathrm{BK}-502,}(\mathrm{CM}-1)$	CP-201(CM-3) 118-4	AD-1RCM-2) 84—7	567.231)121-11	WEbSter electric Ekotope(CM-3) 116-12
CRESCENT	EICOR	MASCO	101.774.2, 101.774.4	WIRE RECORDING CORP.
H.14 130-5	1000 (CM-3) 90-4	375(CM.3) 117-7	(CM.3) 114-10	WP (CM-2) 76-19

INDEX TO ADVERTISERS

American Phenolic Corp 20
Radio Electronics 52
The Astatic Corporation 10
Camburn, Inc. 50
Electro-Voice, Inc 16
Erie Resistor Corp. 26
General Cement Mfg. Co 52
Insuline Corporation of America 52
International Resistance Co Inside Front Cover
Littelfuse, Inc. Inside Back Cover
Merit Transformer Corp. 12
Park Metalware Co., Inc 52
Radio Receptor Company, Inc 56
Shure Bros., Inc. 50
Simpson Electric Co 24
Sylvania Electric Products Inc 32
Technical Appliance Corp. 58
Television Communications Institute 50
Thomas Electronics, Inc. 22
Triplett Electrical Instrument Co 14
V-M Corporation 52
The Ward Products Corp. 62

RECORDERS

" SHOP TALK " (Continued from page 4)

align such circuits we require a sweep generator. The generator should be capable of generating the frequencies we desire and its output should be constant aver the section of the range it is sweepmg. (Note that this does not mean its output need be constant over its entire frequency range.)

Basically, the foregoing is all you require of any sweep generator. Any other function that such a unit can perform is desirable (if it helps you shorten your work) but not absolutely essential. Hence, for the fellow with a limited amount of money to spend, only the two basic requirements stated above need be given service consideration.

Built-in marker generators are handy, but seldom essential since a separate AM generator is usually available. The ability to blank out the return trace will make it more convenient to do your job but here, too, is a refinement that the fellow with limited capital can forego.

The choice of an AM signal generator is a little more critical because it is this generator upon which you will lean heavily during nearly all of your alignment work. In stagger-tuned IF systems, this generator will be used to help you accurately peak the various coils prior to an overall check. And, when the sweep check is being made, the same AM generator will be used as a frequency marker, showing you exactly what the response of the circuit is. It will tell you if the video carrier is at the 50 per cent level; it will tell you at what frequency the response drops; it will show you how wide the passband is and it will reveal whether the traps are where they should be.

In shori, it will tell you everything that the sweep generator cannot tell you - and if the AM generator is accurately calibrated, it will tell you all this in precise terms.

In view of the importance of this AM generator, any extra money lying around should be sunk into this instrument. You can get by with AM generators possessing an accuracy of only 5%, but if you want to be sure, get one that has an accuracy of 1 per cent. Better still, get an AM generator which uses a crystal callbrato and has a large, easy-to-read dial face. And get one that permits youto read up to 150 mc or betters on fundamentals. Harmonics can and have been used - but you will frequently find that spurious signals will develop which will confuse and mislead you. If possible, stick to fundamentals up to whatever frequency you desire to reach.

The foregoing discussion is intended to serve as a guide to those entering the TV service field. It is a result of the author's experience plus the experience of his associates. No attempt was made to indicate specific models because within the same price class there are generally several units of similar quality to choose from. Some men may prefer one instrument, others may prefer a different make, etc., and both groups will be equally vehement about the virtues of their choice.

Choose whichever instrument you prefer, but make sure it serves the purpose you intended.

* * *

REVIEW: This month we are concerned with the review of an article for improving sound reproduction of typical television receivers. The article is as follows:

IMPROVED AUDIO QUALITY FROM STANDARD TV RECEIVERS
 by G. C. Proud

AUDIO ENGINEERING - October 1949
Copyright 1949 by
Radio Magazines, Inc. 342 Madison Avenue
New York 17, New York

Subscription Price $\$ 3.00$ per year

in U. S. A., Possessions, and Canada
In every television receiver, the major design emphasis is on the video circuits and the quality of the picture that is produced. The sound section of the receiver is relegated to a secondary position and, as a consequence, it has suffered considerably in quality. The most widely used arrangement, as exemplified by the audio section of the RCA 630 TS circuit (shown in Figure 1), consists of a high-mu triode with contact potential bias for the first stage, and a pentode output stage without feedback. As Mr. Proud points out in his article, add to this an output transformer, which has a $5 / 8 \times 5 / 8$ inch core, and a small speaker with inadequate baffling, and the sound you hear is bound to be less than ideal.

As a start toward the improvement of the sound quality, it is suggested that the output transformer be changed to one containing more iron in its core. Just what type to get will be governed by the amount of space that you have available on the chassis for mounting the unit.

Figure 1. Audio Section RCA Victor 630TS.

FREE NEW SHURI

Cartridge Replacement GUDE

A turn of the dial gives the correct
REPLACEMENT MODEL OF ALL SHURE CARTRIDGES AND MOST OTHER MAKES

Ask your Shure Distributor for a "Guide' -or write direct, giving us his name.

SHURE BROTHERS, INC.
Microphones and Acoustic Devises
225 West Huron Street • Chicage 10, Ithinois

Write for Camburn Catalog P-5

The next step is an alteration of the circuit itself involving a change in tubes, replacement of some of the components; and the inclusion of negative feedback. The revised circuit diagram of the 630TS is shown in Figure 2. Principally, the following changes have been made.

1. The 6AT6 audio stage has been replaced by substituting a type 6 AU6 for audio amplification and a type 1N34 germanium diode for the diode rectifier.
2. The 6 K 6 audio output stage was changed to employ a type 6 V 6 GT
3. The interstage coupling capacitor, C67, has been increased in value (to aid low-frequency response). For the same reason, C64 has been changed, too.
4. C67 and C69 have been eliminated.
5. Feedback from the plate of the 6 V 6 to the cathode of the 6 AU 6 .
6. The arm of the volume control is now connected directly to the grid of the 6AU6, permitting the elimination of C66.

V"EXCELLENT WAY FOR RADIOMEN TO PREPARE FOR TV!'

MARTIN MOODY, SUCCESSFUL RADIOMAN, PRAISES T.C.I. TELEVISION TRAINING!

Make use of your present radio skill to learn television servicing the right way . . the PRACTICAL way. Take a tip from Martin Moody and take T.C.I. television training! This all-TV PRACTICAL home-study program is not a
theory course but a non-mathematical training program where you learn television servicing by actually doing television servicing. It's designed by servicemen, for servicemen, to help you get ahead faster in the big money TV field.

LOOK AT THE EXPERIENCE YOU GET!

You use the experlence-tested, feld-tested serviolng techniques perfected by more than 200 successful television servicemen. You learn testing, servicing, trouble-phooting, repairing, bet conversion, master antengs installation, feld servicing short-cuts. In fact erery phase of TV servteing is covered by
this do-it-yourself method. Even COLOR TV and conversion from black and white is included. As an optional feature you ean get two weeks of actual fild experience, working on the repair bench and going out on bervice calls for Chicago's largest independent TV servicing organization.

TRAIN AT HOME-SET YOUR OWN PACE!

You don't have to leave your present job to get TV servicing training with T.C.I. You learn at home with easy to understand, practical lessons prepared by Milton 8 . Klver Short, but practical examinations after each bulld and traln check your progreas. You television recelver glven to you as part of
your course. You don't have to repeat your iadio traIning. Every lesson is on television! Age is no barrier to T.C.I. tralning. Many
T.C.I. students are ever 40 .

ACT NOWI Fend for FREE Catalog and sample leason. See how T.C.I. PRACTICAL sample leason. see how T.C.i. PRACTICAL
TELEVIBION training can help you. Write !

TELEVISION COMMUNICATIONS IWST.

205 W. WACKERDR., DEPT. PC3, CHICAGO 6, IIL.

Figure 2. Revised Audio Section RCA Victor 630 TS (Type 1).

Since the diode portion of the 6AT6 is used in the contrast control circuit of this particular receiver, provision must be made to replace this when the 6AU6 is substituted for the 6AT6.

A germanium crystal, 1 N 34 , will do this very nicely.

An alternate diagram is suggested by Mr. Proud, one in which the output transformer is included in the feedback loop (see Figure 3).

To determine which side of the secondary winding of the output transformer the resistor R5 (feedback resistor) should be connected to, the following test is suggested.

Make a temporary ground connection to one side of the transformer secondary. Then, with a signal passing through the set, momentarily connect the feedback resistor $R 5$ to the other output lead. If the output is reduced, correct polarity is indicated. If not, reverse the connections to the transformer secondary.

When these changes have been made, you will find that additional filtering of the $B+$ voltage to both stages is desirable in view of the improved low-frequency response. In this particular receiver, the 300 volts B_{+}is obtained from the power supply just before the filter choke (i. e., on the rectifier side of the choke). If this connection is transferred to the other side of the filter choke, the hum level will decrease. In the 630 receiver, there is an adequate number of filter condensers and no additional units need be added. In other receivers, it may help to include additional filter capacitors of 40 to 80 mfd .

It might be pointed out that there is a considerably more elaborate system outlined in a recent article, "Viewer's Amplifier" by Melvin C. Sprinkle in the January 1951 issue of FM-TV Radio Communications. However, the amplifier described is actually a custom built project from scratch, so to speak, so that it lies a little bit outside typical TV receiver improvement. However, the equipment described is capable of excellent reproduction and should a custom application arise it would be well to consult Mr. Sprinkle's write-up.

Figure 3. Revised Audio Section RCA Victor 630 TS (Type 2).

TEAEISION HIOH VOATACK COROMA DOPE

> Used by manufacturers and servicemen to prevent corona shorts on high voltage circuits in television sets. Easy to apply, airdrying. No. $47-2 \ldots . . .2-o z$. TELEVISION

GENERAT GEMENT MFG. CO
rockiond, Itimols, v. S. A.

WANTED!

by Service Technicians

Gives you the latest each month in television - radio - audio

- Servicing - New Circuits
- Testing - Engineering
- Trouble Shooting - New Developments
- Construction - Service Clinics

SUBSCRIPTION RATES

1 Year $\$ 3.50 \quad 2$ Years $\$ 6.00 \quad 3$ Years $\$ 8.00$ Also on Sale at Parts Distributors and Newsstands

RADIO-ELECTRONICS
25 West Broadway New York 7, N. Y.

- - Ccntinued from page 31 •

plate of the following tube. By adjusting each of the stages to the proper response, the over-all response will be correct.

One of the disadvantages of this type of transformer is the inability to vary the mutual coupling between the coils. In other words the bandpass is fixed since it is dependent on the mutual coupling between the coils. In many cases one of the windings is wound on a tubular form which is slipped over the other winding. Should this tube slip or change pos ition in any way, the bandpass of the circuit will be changed.

Another way of obtaining the same results is through the use of a "common impedance" type coupling. In this circuit a capacitor or coil, or both, is placed in the circuit so that it is a part of both the output circuit of one stage and the input circuit of the following stage. By adjusting the common impedance component so that its impedance is equal to that of the mutual inductance in the overcoupled transformer, similar bandpass characteristics are obtained.

Figure 2-11. "Common Impedance" Coupled Video IF Stage.

Figure 2-11 is a partial schematic showing a "common impedance" coupling. The tuned circuit in the input consists of L1 in series with L2, shunted with the output capacity of the tube along with the distributed capacity in the wiring. The tuned circuit in the output consists of L3 in series with L2, shunted by the input capacity of the tube and the distributed capacity in the wiring. C2 serves as a DC blocking capacitor and its reactance is so low at the IF frequency that it need not be considered as a part of the tuned circuit. Since L2 is a part of both the input and output circuits, the signal is coupled from one stage to the next, and the pass band is dependent on the inductance value of L2. In the schematic of Figure $2-11, \mathrm{~L} 2$ is shown as a variable inductance. In many cases, however, the common impedance coil is not variable, its value having been predetermined to provide proper bandwidth. R1 and R3 shunt the input and the output circuits respectively, lowering the Q of the circuit to make possible wider bandpass characteristics.

It is possible to use a capacitor as the "common impedance' component instead of an inductance, but less gain is realized. As a result, the inductance is most commonly used.

TRAP CIRCUITS

Up to this point our discussion of video IF amplifiers has dealt with the circuits which were designed to give amplification of the signal. Equally important are the trap circuits which are used for rejecting certain unwanted signals.

There are four basic type trap circuits employed in the video IF amplifiers. They are:

1. Absorption Traps.

2. Parallel Resonant Traps.

3. Series Resonant Traps.

4. Bridged T Traps.

The three frequencies which are undesirable in the video IF strip are the adjacent channel sound IF, the adjacent channel video IF, and the accompanying sound. Obviously all frequencies that are not a portion of the video signal would be undesirable. The three signals mentioned above, however, are ones which will occur at a certain point when a channel is properly tuned, making it possible to tune traps to reject them. One exception to the above would be in the case of an intercarrier receiver in which case the sound IF is allowed to continue through the video IF strip but at a much lower level than the video IF signal.

As a general rule the traps which are tuned to the most objectionable signals will be located near the front end of the IF strip. Thus the signal can be rejected while it is still at a lower level. If this signal were allowed to go through several amplifying stages before it was trapped, it would be much more difficult to reject.

In many cases two traps that are tuned to the same frequency will be used. This is especially true in the case of the accompanying sound IF signal in receivers having separate sound and video IF channels. The first sound IF trap, which also serves as a sound IF take-off point, is usually located in the plate circuit of the mixer. The second trap is located in the last IF stage and is normally some form of absorption trap.

Figure 2-12 shows a few of the most frequently used trap circuits. The circuit shown in (A) is an absorption type trap. The secondary, or trap winding, is positioned close to the primary so that the two windings are mutually coupled. The trap has a very high Q winding, usually around a Q of 300 , and at its resonant frequency will "suck out" a very narrow band of frequencies. The energy that is required to set up parasitic oscillations in the trap winding is taken from the primary of T1, thus it is not passed on to the rest of the circuits. This trap winding is an excellent source for the sound IF signal and the circuit shown in (A) has a lead connected to a tap on the trap winding which is connected to the input of the sound IF.

Circuit (B) shows a similar absorption trap, except that in this case the primary is in the cathode
circuit of the tube instead of the plate circuit. At the resonant frequency of the trap (usually the sound IF), degeneration is introduced into the cathode circuit, thus reducing the gain of the stage at this frequency. The Q of this trap winding is usually around 300 , which makes possible the rejection of a very narrow band of frequencies. In some cases the trap circuits of (A) and (B) will both be used in the same video IF strip. The small amount of signal which is not rejected by circuit (A) will be rejected by circuit (B). Note that in circuit (B) C2 bypasses R1 to prevent degeneration at frequencies other than the resonant frequency of the trap.

The trap circuit illustrated in (C) is also a form of absorption trap. At first glance it appears to be a parallel resonant circuit which would present maximum impedance at the resonant frequency. If this were the case there would be an increase in the signal level instead of the desired decrease. The answer lies in the value of $C 1$, which in this case is 1.2 mmf . With this low value, the reactance of C 1 , even at the comparatively high IF frequency, is quite high. Thus the resonant circuit of L 1 and C 2 can be considered to be loosely coupled to the secondary of T1. This is the same condition which exists when two coils are loosely coupled, in that energy will be coupled from one to the other. Another approach to the subject would be to realize the fact that the energy that is dissipated to ground, due to the parasitic oscillations of the resonant circuit C2 and L1, must be taken from the grid circuit, therefore rejecting the unwanted signal. This type of trap seems to be gaining in popularity, probably due to the fact that it can be added almost anywhere in the circuit without disturbing existing components.

The $t r a p$ circuit of (D) is a form of parallel resonant trap. A portion of the circuit, C2 and L2, is in series with the plate current path for the preceding stage. When a signal is passed by the preceding stage that corresponds to the resonant frequency of the trap circuit, degeneration will be introduced into the plate circuit. In this manner the undesired signal will be trapped out. It is interesting to note that in many respects this circuit resembles that of (C). In the case of (C) the signal was coupled to the trap by a small capacitor while in the case of (D) the signal is coupled across only a small portion of L2.

The trap circuits shown in (E) are parallel resonant traps and are placed in series with the signal. At the resonant frequency, the trap will present maximum impedance to the signal which will produce a loss in the coupling circuit. In most cases the traps shown are adjusted to the accompanying sound IF and adjacent sound IF signals, but they may be used for rejection of any signals.

The series tuned trap is less frequently used than those previously described. A trap of this type consists of a capacitor and a tunable choke in series and is usually placed between the plate and ground. One application of the series resonant trap is in the plate circuit of the mixer. The trap is tuned to the center of the adjacent channel IF frequency and aids in rejecting any interference from this source.

The bridged T trap in circuit (F) produces good results but is not used very often, probably due to the

Figure 2-12. Representative Types of Trap Circuits.
expense of the extra components. A circuit of this type will produce a much narrower null point than a parallel resonant trap alone. The trap consists of L2, C2, C 3 and the resistor R1 connected between the junction of the two capacitors and ground. L2 is adjustable so that the circuit can be resonated at the desired frequency. The bridge is balanced when the reactance of the capacitive branch equals the reactance of the inductive branch, and the resistor is equal to approximately $1 / 4$ of the parallel resistance of the circuit. In the event of replacement of the capacitors or resistor, the new part should exactly duplicate the original to maintain proper balance of the circuit.

Another version of this same trap consists of a center tapped coil with a single capacitor across it. The operation of the circuit is the same as that of circuit (F).

The adjustment of the traps in the video $I F$ circuit is very critical. Misaligned traps may result
in poor picture reproduction, excessive interference in the picture, or loss of the sound signal. The most positive method of adjusting the traps is through the use of sweep alignment. By increasing the level of the sweep signal and the marker, a more positive indication can be obtained on the scope. An even greater degree of accuracy can be obtained by decreasing the sweep width in the generator so that only a narrow band is swept on either side of the trap "notch." This has the effect of increasing the width of the notch making possible a more critical adjustment.

As previously stated, most of the requirements of the video IF amplifier are design problems and are solved at the manufacturing level. The service technician, on the other hand, is very frequently called upon to align the TV receiver. This operation is probably the most exacting of all adjustments and the result may mean the difference between a good picture or an unacceptable one.

- Continued from page 15 - -

vertically and horizontally. If it does not, check the wiring carefully for any errors that might have been made.

The design of the new horizontal transformer used in this conversion is such that a much higher degree of efficiency is obtained over that of the original unit. Even though greater power is required in the deflection yoke to sweep the larger tube, the current drain through the 6 BG 6 G tube is less in the revised circuit than it was in the original circuit. In the original circuit the total current through the 6BG6G was 100 ma . In the revised circuit the current is only 87 ma . The total B plus current drain in the set fell from 250 ma to 225 ma . The added resistance in the focus coil circuit reduced the low B plus volt age approximately 5 volts. This reduction will not affect the operation of the receiver.

CABINET CHANGES

The first step in altering the cabinet to accommodate the new tube was the enlarging of the cutout in the subpanel. The four tube mounting brackets were removed and the subpanel was marked to indicate the points where the cutout was to be made. All dimensions for making this cutout are given in Figure 8. The four corners were cut diagonally to provide additional strength. Cutting the enlarged opening out to square corners may weaken the panel. The subpanel can be sawed very easily with a keyhole saw or hacksaw blade. The dimensions given should be followed very closely so that the mounting brackets can be positioned to hold the new tube. After making the cutout, four holes were drilled in the subpanel to secure the mounting brackets. The positioning of these brackets is not critical but it is suggested that they be mounted in approximately the same position as those in Figure 7, where two brackets are mounted at the bottom and one on each side near the top. This provides adequate support for the tube as well as a means of properly positioning it. These brackets were originally mounted with the ears pointing to-

Figure 7. Sub-Panel Cutout and Tube Mounting Arrangement.
ward the front of the cabinet. The new mask, however, made it necessary to move the tube farther back in the cabinet which caused the edge of the tube to miss the brackets. The brackets were turned around with the ears facing to miss the back but even then it was found that the particular mask which was used forced the tube back to a point where the tube rested on the edge of the ears. To overcome this, longer bolts were used in the mounting brackets and spacers were placed between the mounting brackets and the subpanel. These spacers were made of small blocks of $1 / 4$ inch plywood which moved the brackets back enough to support the tube. The position of the tube is dependent on the type of mask that

When you specify Seletron "Safe Center" Selenium Rectifiers you eliminate arc-over danger, short circuits and heating at the center contact point. Assembly pressure, or pressure applied in mounting the rectifier cannot affect its performance-a Seletron feature accomplished by deactivating the area of the plate under the contact washer.

The millions of Seletron Selenium Rectifiers in satisfactory service as original equipment in the products of leading manufacturers are millions of reasons why you can specify Seletron and be safe!

Consult your local jobber!

MILLIONS OF "SAFE CENTER" SELETRON RECTIFIERS

MODEL NO.	PLATE SIZE	STACK THICKNESS	MAX. INPUT VOLTAGE R.M.S.	MAX. PEAK INVERSE vOLTAGE	MAXI D.C. OUTPUT CURRENT
$1 \mathrm{M1}$	1" 54.	1/8"	25	75	100 MA
8 Y 1	1/2" 54.	最"	130	380	20 MA*
$16 Y 1$	$1 / 2^{\prime \prime}$ sq.	H"	260	760	20 MA*
8.1	H" sq.	星"	130	380	65 MA
5M4	1"sq.	H"	130	380	75 MA
5M1	1 " 54.	7/8"	130	380	100 MA
5 P 1		7/8"	130	380	150 MA
$6 \mathrm{P2}$	$13^{3}{ }^{\text {" }}$ sq.	$1{ }^{176}$	156	456	150 MA
521	$11 / 2^{\prime \prime} \times 1{ }^{1 / 4^{\prime \prime}}$	$7 / 8^{\prime \prime}$	130	380	200 MA
501	1/2" 129.	11/8"	130	380	250 MA
601	11/2" ${ }^{1 / 4}$	11/8"	156	456	250 MA
60.2	11/2" 89.	17/8"	156	456	250 MA
604 (\dagger)	11/2" 89.		130	380	300 MA
5aSt	$11 / 2^{\prime \prime} \times 2^{\prime \prime}$	1/1/8"	130	380	350 MA
6as2	$11 / 2^{\prime \prime} \times 2^{\prime \prime}$	11/4"	156	456	350 MA
551	2" $\mathrm{sq}^{\text {a }}$.	11/8"	130	380	500 MA
652	2" sq.	17/8"	156	456	500 MA

*This rectifier is rated at 25 MA when used with a 47 ohm series resistor.
(\dagger.) Stud mounted-overall; $\mathbf{2}^{\prime \prime}$

is used, and spacers may not be necessary in some applications.

Figure 8. Dimensions of Sub-Panel Cutout.
The next step was that of making the cutout in the front panel. The dimensions of the new opening are given in Figure 9. The dotted line shown in this figure represents the decorative groove that is cut in the front panel. The top and bottom grooves may be used as guide lines while the sides should be cut $3 / 8$
inch beyond the side grooves. This size opening is proportional to the face of the tube. Note that the corners have a $1 / 2$ inch radius curve which gives a neater appearance than would be obtained if the corners were perfectly square. The edge of the cutout should be sanded and stained. The rounded corners can be sanded by wrapping the sandpaper around a GT type vacuum tube.

The panel was then ready for the mounting of the mask. Figure 10 is a back view of the panel with the mask in place. In order to prevent the face of the plastic mask from being scratched, a piece of glass was placed in front of the mask. The use of this glass is optional. However, not only will it protect the mask, but it will also prevent dirt from falling between the mask and the panel. Since the glass has a much smoother surface than the mask, a better seal to the back of the front panel can be obtained. Three strips were then cut which had the same thickness as the combined thickness of the mask and the glass. These strips were glued to the back of the front panel to form a sort of frame for the mask. After the glue had dried, three more wider strips were mounted by screws so that the inside edge lapped over the mask, holding it in place, as shown in Figure 10. Extreme care must be taken that the screws are not too long so as to extend through the panel and come out the front which would obviously ruin the appearance of the front panel. They should be long enough, however, to extend just into the panel itself so that the support of the mask does not depend upon the glued strips alone.

Figure 9. Dimensions of Front Panel Cutout.

With the mounting arrangement described above, the mask and glass can be very easily removed for cleaning by loosening the screws that hold the mounting strips, and sliding the mask and glass up out of the frame.

This completed the work on the front panel. It was then installed on the cabinet to determine what thickness spacers would be required to bring the front panel out flush with the radio panel. These spacers may be mounted as shown in Figure 7 or they may be slipped over the two screws that hold the front panel in position.

The chassis was then installed in the cabinet and the $1 厶^{\prime \prime}$ tube was inserted from the front. The bolts which hold the chassis should not be tightened, as yet, to permit slight shifting of the chassis if required. The tube mounting brackets were then adjusted to properly position the tube and the front panel was installed. If the tube is too far forward, it is necessary to loosen the bolts holding the deflection yoke mounting hood, allowing it to be shifted back. This should allow the TV front panel to fit flush with the radio panel. If required, the complete chassis may be shifted a small amount to allow the tube to move back far enough into the cabinet. After the front panel is in position, the chassis bolts should be tightened and the deflection yoke mounting hood should be moved forward as far as possible. This is important ${ }_{p}$ as failure to do so may result in the cutting off of the corners of the picture. When the tube is properly positioned, the tube should be clear forward against the mask, and the deflection yoke should be against the bulb of the tube. Check to see that the tube is not pressing against the high voltage compartment or any of the components at the front of the chassis.

The ion trap was then mounted on the tube and the high voltage and tube socket connections were made. The audio and AC plugs were inserted into the proper sockets in the radio chassis. The set was then turned on and the ion trap setting as well as the required deflection yoke and focus coil adjustments were made. It is suggested that the set be operated for a few hours before delivery is made to check for
any possible failure due to lead dress or faulty components. Check especially for any arcing or corona discharge in the high voltage compartment.

All of the wiring changes outlined in this article will also apply to the RCA Victor model 730TV2, which is an identical set except for the cabinet. The chassis incorporated in models 721 TS and 721 TCS are identical to the TV chassis of the above models except that an audio output is incorporated. Therefore the wiring changes required for conversion will also apply to these models. The cabinet changes out lined apply to the model 730 TV 1 only and cannot be used on any other model. The instructions for converting the chassis may serve as a guide, however, in making changes on other models.

ADDITIONAL RCA VICTOR TELEVISION RECEIVERS SUITABLE FOR CONVERSION

The following list of RCA Victor TV receiver models have similar deflection circuits and can be converted by following a similar procedure to that outlined under "Wiring changes" in this article.

8T241	8TV323	9TC 247	T121
8T243	9T240	9TC249	TA128
8T244	9TC240	9TW309	TA129
8TK29	9T246	9TW333	TC124
8TR29	9T256	T100	TC125
8TV321	9TC245	T120	TC127

No change should be required in the vertical deflection circuit of any of these models since all of them employ a type 6K6GT tube which ordinarily supplies enough power for vertical deflection.

If the horizontal circuit of any of these receivers is rewired as shown in the schematic of Figure 5 , it should adequately sweep from $14^{\prime \prime}$ to $20^{\prime \prime}$ picture tubes. It should be kept in mind that the cabinet design of most of these receivers will not accommodate a larger tube. If the chassis is to be mounted in another cabinet, however, such a conversion can be made.

Figure 10. Rear View of Mask Assembly.

TACO YAGIS

* Proved in thousands of fringe area installations.
* Excellent gain, front-to-back ratio and directivity.
* Built to withstand extreme weather conditions without mechanical or electrical failure.
* Twin-Driven, or 5-Element Yagi designs available to fit your requir ements.

NEW TACO CATALOG

Contains all the technical information on each of the many antenna types offered by Taco. Shows directivity patterns, and performance curves. ASK YOUR TACO JOBBER FOR YOUR FREE COPY, or write -

In Canada:
Stromberg-Carlson Co., Ltd. Toronto 4, Ontario

Any methods or techniques that are offered here should be considered as suggestions rather than recommendations, since they may not necessarily be the easiest way to effect the conversion. However, our experiments on these models have enabled us to present data known to be effective.

PARTS LIST

1 - Horiz. Output Merit HVO-6 or

Trans.
1 - Width Coil
1 - Deflection Yoke

1 - Focus Coil
$1-15 \mathrm{KV}$ or 20 KC
H.V.Filter Capacitor
1-2200 Ohm, 1 Watt Resistor 1-39 Ohm, 1 Watt Resistor
1-6BL7GT Tube
1 - Single Magnet Ion Trap
1 - Mask for $14^{\prime \prime}$ Rect. Tube

* If this chassis is converted to employ a short-neck type picture tube, a thin focus coil unit such as the Merit type MF-2 should be employed.

> * * *

TELEVISION: As a solution to appearance problem of indoor TV antennas, Volk-M-Rick Co., Minneapolis, Minn., is offering a flower pot with built-in antenna. (Tide)

"I had it custom built so my teenage son won't have to sit up to watch TV."

PICTURE TUBE REPLACEMENT DATA

The picture tube replacement chart on the facing page lists the standard replacement type tube which can be used to replace practically all type picture tubes that have been used in television receivers. In some cases it will be found that the original type tube is no longer in production and cannot be obtained. The type tube which is available and will make an effective replacement can be determined from the replacement chart.

Particular attention should be paid to all notes following a replacement listing. Each note indicates a variation of the replacement tube from the original and it should be determined if this variation would prevent the use of the replacement in each particular application. This is especially true on those replacement listings which are followed by Note 5. In these cases the replacement tube is slightly larger than the original and measurements should be made to determine whether the cabinet and mounting structure will accommodate the larger unit.

The presence of Notes 1 and 6 indicates that a different style ion trap magnet is required on the replacement tube than was used on the original unit while Note 3 indicates that no ion trap magnet is required on the replacement tube.

Where Note 2 follows a replacement listing care must be taken after the new tube is installed to see that the outer coating of the tube is grounded. Since the original tube did not have a coating there is a possibility that the manufacturer did not provide a grounding clip. If such is the case a grounding clip should be added to prevent arc-over from the coating to ground. Note 4 indicates that the high voltage connector must be changed and Note 7 indicates that a high voltage capacitor must be added at the tube end of the high voltage filter resistor. This is required because the replacement tube listed does not have an outside coating to perform the required filtering.

Where no listings are given in the replacement columns, no substitution of tube types should be made.

PICTURE TUBE REPLACEMENT DATA

" AS I SEE IT " (Continued from page 21)
TABLE I
RATED IMPEDANCE IN PLATE CIRCUIT FOR VARIOUS RECTIFIER TUBES

TYPE	BASE	PLATE PINS	RATED IMPEDANCE
5AX4	5 T	4 and 6	50
5AZ4	5 T	4 and 6	50
5U4G	5 T	4 and 6	170
5V4G	5L	4 and 6	100
5W4GT	5 T	4 and 6	50
5 Y 3 GT	5 T	4 and 6	50
5Y4G	5Q	3 and 5	50
$5 \mathrm{Z3}$	4C	2 and 3	170
5Z4GT	5 L	4 and 6	50
6AX5GT	6 S	3 and 5	50
6X4	5BS	1 and 6	150
6X5GT	6 S	3 and 5	150
7 Y 4	5 AB	3 and 6	150
$7 \mathrm{Z4}$	5 AB	3 and 6	75

3. The current drain to be required.
4. The heating time of the rectifier tube compared to the rest of the equipment.

These problems will now be considered one at a time.

Filament Requirements -
It is important to compare the ratings of the proposed substitute tube to learn whether the present filament winding on the transformer will handle the additional current if any is required. If it is desired to substitute a cathode type six volt heater tube for a 5 volt one, it is necessary to determine whether the six volt heater winding will handle the added drain and also whether the present six volt winding is tied to ground or chassis at any point. If it is, then there might be a greater possibility of a

Figure 2
heater to cathode short developing than if the heater is floating. Table II indicates the filament requirements of several of the most commonly used rectifier tubes.

Voltage Drop in the Tube -

The voltage drop in the tube is a function of the spacing between the plate and cathode (or filament in directly heated tubes) and the current flowing. In a given circuit which requires a certain plate current drain, and a given power transformer, the relation between voltage drop and voltage applied to the filter is such that the total remains practically constant. Figure 3 illustrates this and "A" designates "tube drop" while " B " indicates that voltage available at the filter. The sum of " A " and " B " is constant for a given receiver application. Thus the greater the voltage drop ("A") in the tube, the lower the voltage across the filter (" B "). A comparison of these values in Table II for the original tube type and the proposed type will indicate whether this problem will be encountered if the substitution is made. If " B " is much higher than the rating of the filter capacitors, breakdowns might occur if that substitution were carried out.

Current Drain -

When a substitution is contemplated it is necessary to make certain that the proposed tube can supply the required current without being overloaded. Table II also gives a listing of current ratings for various types of rectifiers.

TABLE II

RECT. TUBE TYPE	FILAMENT			RATED	"A" TUBE DROP AT RATED PLATE CURRENT (VOLTS)	
	VOLTAGE	CURRENT (AMPERES)	$\begin{gathered} \text { HEATING } \\ \text { TIME } \end{gathered}$	PLATE CURRENT (MILLI-AMP.)		${ }^{\text {' }}$ B'" *
5AZ4	5.0	2.0	FAST	125	60	Et-60
5U4G	5.0	3.0	FAST	225	58	Et-58
5V4G	5.0	2.0	SLOW	175	25	Et-25
5W4GT	5.0	2.0	FAST	110	50	Et-50
5 Y 3 GT	5.0	2.0	FAST	125	60	Et-60
5 Y 4 G	5.0	2.0	FAST	125	60	Et-60
5Z3	5.0	3.0	FAST	125	58	Et-58
$5 \mathrm{Z4GT}$	5.0	2.0	SLOW	125	20	Et-20
6X4	6.3	0.6	SLOW	70	22	Et-22
6X5GT	6.3	0.6	SLOW	70	22	Et-22
7Y4	6.3	0.5	S LOW	70	22	Et-22
$7 \mathrm{Z4}$	6.3	0.9	SLOW	100	40	Et-40
80	5.0	2.0	FAST	125	60	Et-60

* E_{t} indicates the voltage rating of one-half of the secondary (high voltage) winding. The expression $E_{t}-60$, as used in the text, actually means the maximum DC voltage developed minus the 60 volt drop in the tube. Transformer regulation, input filter capacitance, etc., represent variables so that it is impossible to translate the transformer AC voltage rating into the developed DC voltage value without these variables being known.

Figure 3
Heating Time -
The heating time of a directly heated tube is much less than that of an indirectly heated tube.

This means that voltage will be available at " B " in Figure 3 much sooner than with an indirectly heated tube. If the tubes constituting the load in the receiver are of the cathode or indirectly heated types then they will not require current for ain appreciable time after there is voltage available at " B " if the rectifier tube is a fast heater. This would cause the voltage at " B " to increase considerably until the receiver began to draw current. This increase is due to the fact that with little or no current drain the voltage drop in the rectifier tube (" A ") is very small. This may be further increased by the regulation of the power transformer. Thus if the substitution of a fast heating rectifier is contemplated, steps must be taken to prevent this voltage rise. Table II also includes a column indicating slow or fast heating time.

The substitution of rectifier tubes requires consideration of many factors. It is hoped that this article will help the reader to make intelligent substitutions so that receivers may be kept in operation.

- Continued from page 29 *

Fig. 9. Amplifier with Improvement in Low Frequency Response.

These waveforms were taken through amplifier stages employing RC (Resistance-Capacitance) coupling.

In general, a rounding off or dropping of the leading edge of the wavefront points toward deficiencies in high-frequency characteristics, while similar characteristics in the trailing edge can be interpreted as deficiencies in the amplifier's lowfrequency response.

At the time of writing, we have not completed our experiments in either the RC field, or more particularly, the inductively coupled systems. In terms of either accentuation or attenuation of bands of frequencies, inductively coupled systems are far more likely to have such characteristics.

Additionally, since inductively coupled systems have sharper resonance properties, we can expect to find greater tendencies toward oscillation in the waveform.

We intend to continue presenting the results of our experiments in this and allied fields as they are available. Again, we make no attempt to formulate conclusions from this material; rather, we are interested in providing a basis for study and experimentation on behalf of those interested in this activity.

PARTS LIST

Item	Description	
V1	Type 6SN7GT Tube	Sylvania or equivalent
V2	Type 6AL5 Tube	Sylvania or equivalent
V3	Type 6SJ7 Tube	Sylvania or equivalent
R1	500 K Ohm Input Control	(IRC Q13-133 (Clarostat AG060-Z, (FS-3 (Centralab B-60
R2	100 K Ohm Output Control	$\begin{aligned} & \text { (IRC Q13-128 } \\ & \text { (Clarostat AG-51-Z, } \\ & \text { (FS-3 } \\ & \text { (Centralab B-41 } \end{aligned}$
R3	4700 Ohm 1/2 Watt	IRC BTS - 4700
R4	220 K Ohm $1 / 2$ Watt	IRC BTS - 220 K
R5	470 K Ohm $1 / 2$ Watt	IRC BTS - 470 K
R6	27 K Ohm 1/2 Watt	IRC BTS - 27 K
R7	47 K Ohm 1/2 Watt	IRC BTS - 47 K
R8	1.5 Megohm 1/2 Watt	IRC BTS - 1.5 Meg.
R9	47 K Ohm 1/2 Watt	IRC BTS -47 K
R10	4700 Ohm 1/2 Watt	IRC BTS - 4700
C1	10 Mfd . @ 25 Volts	```(Aerovox PRS 25/10 (Cornell-Dubilier (BR102A (Sprague TVA-1204```
C2, C3	16 Mfd . @ 450 Volts	$\begin{aligned} & \text { (Aerovox PRS 450/16 } \\ & \text { (Cornell-Dubilier } \\ & \text { (BR1645A } \\ & \text { (Sprague TVA-1707 } \end{aligned}$
C4	. 05 Mfd . @ 600 Volts	(Aerovox P688-05 (Cornell-Dubilier (PTE 6S5 (Sprague 6TM-S5
T1 I	Interstage Transformer 1 to 3 pri. to sec. ratio	(Stanco A-4155* (Merit A-2912* (Chicago IN-15*

* Additional cathode resistance may be necessary if DC resistance of primary winding is less than 1100 ohms. If resistance must be added, connect between low side of primary winding and ground, and bypass the resistor with 10 Mfd . @ 25 volt electrolytic capacitor.

Famous for Firsts

DR. HIDETSUGU YAGI

World fomous scientist.
originator of the YAGI
antenna principle.
Analyzing the Ward engineered YAGI TV antenna design, Dr. Yagi recently wrote:
"The low numerical value of Voltage Standing Wave Ratio as recorded is . . .the proof of the exact matching between circuit elements. In this regard, I highly esteem the excellent ability of your engineers."

Ward antennas are the result of over 20 years of design and production experience. Ward, the oldest and largest exclusive manufacturer, builds the world's fin-

THE WARD PRODUCTS CORP.
Division of the Gabriel Co. 1523 East 45th Street Cleveland 3, Ohio

+ More or Less -

On behalf of our entire organization, we would like to extend sincere thanks to all those who filled out and returned questionnaires enclosed with the first issue of PHOTOFACT INDEX and TECHNICAL DIGEST.

We appreciate how difficult it is to find time in a busy day, or in the rarely uninterrupted evenings, to give the amount of consideration to this matter, which is evident in the extent of the replies and in the detail of their contents.

You know a lot of firms in all sorts of endeavors use the questionnaire approach as a means of obtaining statistics. Immediately upon their return, someone is assigned to assemble an impressive stack, a posed photograph produced, and suitable figures turned over to the Sales and Advertising Departments for blow-up or dissemination.

If that were our objective in sending out the questionnaire, then we in no way would be worthy of the generous response which we have received from you.

We simply would like to go on record that we had a genuine interest in finding out what the service field needed in terms of technical help and general information and it is gratifying to us to find the same genuineness in your expressions.

We can tell you quite frankly that it was our original intention (and will continue to be) to fashion PF INDEX and TECHNICAL DIGEST to the interests and desires of the service technician. The start you have given us should guarantee the success of this policy.

Just in case you're curious about how your preferences compare with nationwide averages of questionnaires analyzed to date, here is the ranking of the first ten subject treatments most requested. Also listed are their percentages of total requests.

Subject	\% of Total
1. Test Instrument Applications	
2. TV Receiver Difficulties and General	
Trouble Shooting	
3. General Circuit Analysis	9.7
4. Short Cuts in Servicing	8.3
5. Fringe Area Information (Antennas,	6.0
Boosters, Installations, Alignment)	
6. Waveform Analysis (What we see, not what	6.0
we should see)	4.86
7. TV Receiver Conversions	4.3
8. Latest Circuit Designs	4.3
9. TV Tuner Data (more)	4.0
10. Color Television	4.0

To all those who included some form of inquiry in the returned questionnaires, may I say that we are handling them just as fast as possible. If you have not already received a reply, you will in the near future. While we are attempting to make individual analyses of each questionnaire returned, and to forward individual replies, I believe you can realize the size of this undertaking and the consequent length of time that may be required to complete the job.

Please, then, let this column express an overall 'Thank you" until individual correspondence can catch up.

Be sure of your fuse! Ycu know you are getting original component quality when your fuses come in the handy green dispenser box

Be sure of your fuse by the handy fuse size guide on every LITTELFUSE dispenser box

The only improvement in fuse packaging in 25 years. Another LITTELFUSE first. One at a t me dispensing. No lost covers. LITTELFUSE INC., 47:7 Ravenswood, Chicago 40. LOngbeach 1-497C

[^0]: *The voltage developed in the circuit (Figure $2-4 \mathrm{~B}$) is equal to the signa voltage (E_{s}) times the amplification factor (mu) of the tube or mu B_{S}. The current that will flow in the circuit is limited by R_{p} and Z_{t}, therefore the current in the circuit can be stated as:

 $$
 I_{p}=\frac{m u E_{s}}{\bar{R}_{p}+Z_{t}} \quad \quad \text { (Equation } 2-1 \text {) }
 $$

 The voltage out (E_{o}) equals the current through the load times the load impedance or:
 $\mathrm{E}_{\mathrm{o}}=\mathrm{I}_{\mathrm{p}} \mathrm{X} \mathrm{Z}_{\mathrm{t}}$

 (Equation 2-2)

[^1]: - Audio-tone 78.1 Test Record. **RCA $12-5-31 V$ Test Record.

[^2]: 'Now that all our neighbors have their own TV Sets, let's get that out of here."

