

Actually, you can duplicate almost any concentric dual carbon control shown in Photofacts Index-with IRC's new CONCENTRIKIT. And you can do it in just a few minutes! This kit of specially designed parts-plus a wide selection of shaft ends and base assembliesgives you a full range of concentric duals for auto radios, home receivers, TV sets.

No More Searching and Waiting for Exact Duplicates

IRC's CONCENTRIKIT is the sure-fire answer to your concentric dual inventory problems. Now, instead of stocking a shelf-full of slow-moving controls you may need someday - or shopping and waiting for exact duplicates-you can quickly and easily assemble the exact special control replacement you want. That's going to save you time and inventory investment, and speed up your service. And that's going to put more profit in your pocket.

bushings. These are purchased sepa-rately-as you need them. But because they all are standard with IRC, there's no difficulty in getting what you want when you want it. And because they are so adaptable, you save by buying only what you need.
The parts of CONCENTRIKIT have been made as universal as possible. The control coupler permits positioning of terminals in 16 different positions to duplicate the terminal location of original controls. The outer shaft is channeled to the right depth for most flats so you can apply them with a minimum of filing. Width of channel has been selected to give you proper guide for slotting. Inner shaft employs the wellknown IRC Tap-in Shaft attachment to provide easier assembly for universal use.

A Wide Variety of Shafi Ends and Base Elements

The majority of inner knobs on concentric duals require a special fitting known as a shaft end. IRC makes three available to cover a wide range of needs. Also, two base elements are required for each concentric dual. These are available in a wide assortment of resistance values, tapers and tapped units. Select the proper shaft end and base-elements when you purchase CONCENTRIKIT.

For many concentric duals, you'll need a switch-and for some (such as auto replacements) you'll need sleeve bushings. IRC provides both single and double-pole switches (Type 76-1 and 76-2) to give you substantial coverage of all your switch requirements. Sleeve bushings come in three adaptable types. are out of date. Yet, at the same time, CONCENTRIKIT lets you service outmoded sets without looking all over the landscape for suitable concentric duals.

[^0]With TV sets constantly being improved, and using more and more concentrics, the problem of obsolescence is almost as bad as that of finding exact duplicates. CONCENTRIKIT is your insurance against being "stuck" with specials that

NEW TV CONTROL MANUAL

IRC's new up-to-date TV Control Manual is scheduled for release in April. Includes comprehensive listing of replacements for vast majority of TV sets. Also lists complete replacement detail on concentric dual controls-including not only TV but also home radio and auto sets as far back as they have been used. Features complete section on use of Concentrikit, providing many tips and short cuts on its use. Order this valuable IRC TV Control Manual (Form SO86A) from your IRC Distributor.

Pick of the Trade

Don'f Buy Geiger Counters Buy Battery Portables

The word around McGraw-Hill, source of much information-most of it wellinformed, is: DON'T buy a geiger counter. You probably couldn't understand what it was telling you and, even if you could, it wouldn't do you much good. DO buy a battery radio. That will give you official and operational information and instructions when it's all over and, presumably, the power is too.

Will give it to you, that is, if there is anyone left to hand it out and a station able to push it out AND if you're there to hear it.
Have fun, chums, and keep your eye on that wild blue yonder.
-Electronics Markets-January, 1951

Aufo Radio Servicing

With listening-in while you ride now firmly accepted as a four-season habit, and over 18 -million involved in dial spinning, auto radio servicing has become quite a round-the-year affair, offering bright income-building possibilities throughout the year.

Lewis Winner, Editor Service Magazine, See January, 1951 Issue

$$
\star \star \star
$$

Paul Galvin of Motorola says, "set manufacturers at the end of 1950 have the capacity to produce $55,000,000$ radio sets as compared with $12,000,000$ radio sets in 1940 ." That gives a pretty good idea of what we've got right now in plant capacity.
$\star * *$
Defaulting service contractors give the service industry a black eye. This can be prevented by letting associations insure the contracts of their members.

> Maurice de Angeli, Editor
> Radio and Television Maintenance See January, 1951 Issue

* *

National emergency pulls the teeth of the FCC's colortelevision decision: producing black-and-white sets will be difficult enough. By the time the question comes up again technical advances will have altered the picture and, from what we have seen and heard recently in Washington, compatibility will be part and parcel of it.
The industry has, in a sense, been saved by the bell.
W. W. MacDonald, Managing Editor Electronics
See February, 1951 Issue

* * *

Service technicians, in the year ahead, have their greatest opportunity. Millions of television sets are not giving proper performance in the home, and authorities have estimated that approximately 70% of all television sets now in use are in need of proper realignment and other adjustments in their circuitry. Speaking of shortages, no one will challenge the statement that we still are in need of many thousands of trained television technicians, not only to take care of the $10,000,000$ sets now in use, but as replacements for industry technicians called into service. Never before, and perhaps never again, will there be such an opportunity. Yes, 1951 should be a boom year for the technician.

Oliver Read, Editor
Radio \& Television News See January, 1951 Issue

AND TECHNICAL DIGEST

JAMES R. RONK, Edilor

Editorial Staff: Merle E. Chaney - Robert B. Dunham W. William Hensler • Amn W. Jones • Glenna M. McRoan

Art Directors: Anthony M. Andreone - Thomas Culver
Production: Archie E. Cutshall
Printed by: The PHOTOFACT Press; Joseph C. Collins, Manager
Photofact and PF Index Trademarks, Reg. U. S. Pat. Office Circulation: First Printing, 75,000 Copies

CONTENTS

Shop Talk

Milton S. Kiver4

High, Wide, and Handsome

Merle E. Chaney 5

Dallar and Sense Serviaing

John Markus 11

Television Tuning Units (Part 2)

W. William Hensler

As I See It
Walter R. Jones19

Keyed AGC Operation

W. W. Hensler and R. B. Dunham

PHOTOFACT CUMULATIVE INDEX
No. 25 Covering PHOTOFACT
Folder Sets Nos. 1-127 Inclusive 29
The "Thing" 54

HOWARD W. SAMS, Publisher

COPYRIGHT 1951•Howard W. Sams \& Co., Inc. 2201 East 46 th Street - Indianapolis S, Indiana

The PF (PHOTOFACT) INDEX is published every other month by Howard W. Sams a Co., at 2201 E. 46 th Sireet, Indianapolis S, Indinna, and is available from 1,015 PHOTO. FACT Distributors in the Uniled States and Conada.

ABOUT THE COVER: The photograph is of Martin G. Moody, owner, Martin's Radio Shop, 5517 N. Clark Street, Chicago 40, Illinois. Mr. Moody writes: "Just a few words to express my thanks for the help you are giving the radio and television serviceman with your Photofact Folders. I believe that a complete set of Photofact Folders is as necessary to the radio and television service shop as adequate and accurate test equipment. With today's varied and complex receivers we must have correct and easy to use information at hand. Photofact Folders are certainly complete, and all data is very well presented. I have gotten into the habit of using the appropriate folder on each repair job, not only the tough ones, and I feel that each job has been done a little better and certainly a lot faster. You can be sure that my collection of folders will be kept up to date."

WHAT DO WE DO NOW? To the seasoned TV serviceman, what to do when he is given a TV set to repair is second nature. But there are unquestionably more novices than experienced veterans in the field and to them 'What Do You Do Now?' is a frightening question. While it is not possible to set down a strict step-by-step procedure in this limited space, a general approach can be outlined.

When a TV set is first taken to the bench for repair, read the customer's complaints carefully. (If you are inspecting the set in the home, determine all you can concerning set behavior before even touching the set. This not only helps you, but gives the customer a chance to tell what he knows. And it makes for wonderful customer relations.)

The next step is to turn the set on and permit it to warm up. (If the set fuse is blown or does blow when the power is turned on, a short circuit is indicated and this should be located before the power is once more applied to the set.) With an antenna connected to the set, observe what indications are obtained. Examine the screen, listen to the sound, and then check the operation of the various front panel controls. Do this carefully because it will tell you much concerning set operation. Does the picture remain in sync over the normal rotation range of the horizontal and vertical hold controls? If both controls are critical, then the trouble normally exists in some circuit leading to the vertical and horizontal sweep systems and not in the sweep systems themselves. If only one system appears to be affected, then the trouble can be assumed to be situated here.

How effective is the contrast control? Is there sufficient leeway in the fine-tuning control to permit a station to be properly tuned in? Does the sound and the picture come in at the same setting of this control? Does the set display the same defect on all stations?

This line of self-questioning, while done conciously at first, becomes, with repetition, second nature. Learn to observe and you've taken a long stride toward becoming an experienced serviceman.

From the symptoms demonstrated by the set through its sound and picture, plus what you have learned from rotating the various controls, you should have some inkling of the approximate location of the trouble. (This information is given in standard television texts.) Let us say that it is the horizontal sweep system. Locate the tubes in this section of the receiver and substitute in their place tubes known to be good. Substitute one tube at a time. (A set of special testing tubes kept specifically for this purpose is a great time saver.) Checking each suspected tube individually in a tube tester is time-consuming and may not always reveal the defective tube.

It is only after it has been determined that the tubes are okay that the circuits themselves are
checked. In the amplifier stages following the video second detector, in the sync separator stages, and in the deflection systems, the writer likes to check waveform first. In all other stages, voltage checks are made at the start. This procedure is admittedly a matter of preference, but it seems to work out quite well.

Determine from the service manual, or from an experienced serviceman, whether the wave patterns or the voltage values obtained are normal. 10 to 15 per cent variations in voltage (and resistance) readings can be accepted; discrepancies greater than this should be checked carefully. Test condensers by bridging across them other units of equal (or closely similar) value. Look for the obvious and don't take too much for granted.

Here, then, in outline form is a time-tested and proven method of approach. It is simple, direct, and works with the percentages. After you hawe gained experience and service poise you will undoubtedly modify it to suit yourself. But it will get you started in the beginning.

For any TV receiver servicing in the home, a small pocket-size tube manual and a booklet showing tube layouts for various TV sets will prove of immense value. The tube layout book (such as Sams' "Television Tube Location Guide") will help you trace the signal path through the receiver while the tube manual will, if nothing else, identify the various pins of the socket and give you a rough idea of the voltages that should be present. Surprisingly enough, it is generally the so-called "old timer" who forgets (either purposely or unconsciously) these two booklets and then finds himself stumped by a new set or a new tube.

In this rapidly changing field of television, new tubes and new chassis are appearing constantly and the service technician cannot afford to adopt the "I know it" attitude. There is just too much to keep abreast of.

A NOTE ON SERVICE STUMPERS. Every television receiver is a well-ordered, carefully-designed mechanism that operates according to a certain set of rules. From a knowledge of these rules, we can, with a fair degree of accuracy, generally trace a defect to a certainsection of the receiver from a study of the symptoms. This is the familiar pattern of approach for all TV servicemen.

There are times, however, when the serviceman encounters troubles which appear to bear little or no relationship to the symptoms they produce. Thus, for example, in the Capehart CX-33 receiver, failure of a video amplifier tube causes the high voltage on the C. R. T. to disappear. Your first impulse, upon receiving such a set, is to note the absence of high voltage and thereafter to confine your attention to the

High, Wide and Handsome

by MERLE E. CHANEY

The conversion of television receivers using $10^{\prime \prime}$ or $12^{\prime \prime}$ picture tubes to those employing $14^{\prime \prime}$, $16^{\prime \prime}$, or larger, represents a new field in which the television technician can supplement his income. The trend toward larger picture tube sizes does not antiquate the $10^{\prime \prime}$ or $12^{\prime \prime}$ set by any means, but there is a desire on the part of the television viewer to own a set with a larger screen. A television set represents a good-sized investment and most people cannot afford to sacrifice their initial investment by purchasing a new receiver. The answer to this is the conversion of the older set so that a larger picture tube can be used. This places the service technician in a position to perform additional services for the customer, creating good will and, at the same time, broadening his sources of income.

Obviously, all conversion work must be profitable and several items should be taken into consideration before entering into this field. First, it must be remembered that a conversion job takes much more time than a regular service job. In almost every case several parts must be removed from the chassis and new parts must be installed. This may require some metal work to fabricate mounting brackets for the new parts, which is a time consuming job. Considerable work will be required on the cabinet to accommodate the new tube. Even under the best conditions it is estimated that a satisfactory conversion will take a service technician a day to complete the job, and in some cases a little longer. In other words, in a one-man service shop, the regular service work would be stopped for at least a day, or perhaps longer, which in most cases could not be tolerated. Remember, the repair and maintenance of radio and television sets is the real backbone of your business and to insure its future, this work should not be slighted in any way.

When a customer's set fails he brings it to your shop for repair and, when you accept the job, he expects you to complete it as soon as possible. This necessitates the repair of the sets in proper sequence. It would be economically unsound to refuse any repair jobs which can be done by your shop. Also it would be unsound to accept conversion jobs if they were to interfere with your regular repair work.

This does not mean, however, that there is no place in the one-man shop for conversion work. Past experience has shown that there may be certain periods when there will be feuer sets brought into the shop for repair. It is during these periods that it would be possible to complete a conversion job.

The time when a conversion job is to be done, in most cases, can be controlled. Since the customer's set is operating he is more willing to wait a few days, if necessary, for the conversion job, than he would be if his set had failed and required service. Thus the set could be scheduled to be picked up at a time when the work would fit into the schedule of the service shop. In every case it is recommencied that the set not be picked up until you are ready to start the conversion work. This means that the set will be in your shop for a minimum of time, with greater satisfaction to the customer.

Service shops employing two or more technicians should be in a better position to handle conversion work than in the case of the smaller shop. The

Fig. 1. 630-Type TV Chassis with Deflection Yoke and Focus Coil Removed.
very fact that several technicians are required to do the service work, indicates that considerable work is being done by that shop. Caution must be exercised here too, to guard against the acceptance of conversion jobs interfering with the regular service work. Because of this it might be wise to set up a separate department for the handling of conversion work. Personnel could be assigned to do this work and after a period should develop methods and techniques for streamlining the operation. By cutting down on the time required for doing the job, more conversions could be made, resulting in more profit for the shop.

So far our discussion has dealt with the time element of doing this type of work. It is of great importance and is the first obstacle that must be hurdled. If you feel that you are getting maximum output from your shop now, and that the acceptance of additional work would place a burden on your organization, no conversion work should be accepted. If you decide to enter into the field, on a limited basis, keep it on a limited basis. It is awfully hard to turn down jobs, but if you do not have the time to complete them, accepting them would be the same as selling merchandise which you do not have. It is much easier to explain to the would-be customer that you simply do not have the time to do the job at the moment, than to have him on your neck for not turning out the job on schedule. Your frankness may make him a potential customer for future repair work or you might even find that he will be willing to wait for the conversion job until such a time as you can handle it.

Assuming that you have decided to do conversion work, either on a large or small scale, the next step is to decide what receivers are going to be accepted. From the cabinet standpoint, there are three distinct groups. The first would be the case where the customer is going to mount his receiver in a custom installation or in a new cainbet, with this work being done by someone other than yourself. Obviously, this is the most desirable course since it does not place the responsibility of the cabinet work on you.

The second group would be those receivers that are to be mounted in the original cabinet. The cabinet in this case is the limiting factor as to how large a tube can be used. Be sure that sufficient data is available or that past experience has shown that the tube which the customer wants will fit into the cabinet before you contract to do the job. It is suggested, when doing a conversion job for the first time on any model, that no alterations be made on the cabinet until the chassis is converted and that it is definitely established that the new tube will fit into the cabinet. Also, notes should be listed to be used as a guide for any future work on that same model. After the work on the cabinet is completed, a template should be made to make the next job easier.

The third group can be classified as those sets which are to be mounted in custom installations or in new cabinets with the responsibility of the installation given to you. This obviously requires more work than in either of the preceding groups. Since the average service shop is not set up to do cabinet work of this caliber, it might be possible in some cases

Fig. 2. Schematic of Horizontal and Vertical Sweep Circuits before Conversion.

Fig. 3. Original Wiring in HV Compartment.
to contact a local cabinet maker and engage him to do this work for you. This would also apply to group two listed above. Any arrangement of this type should be entered into cautiously, however, making sure that both parties will benefit.

The three groups listed should serve as a guide to help you select what receivers you are going to accept as far as the cabinet work is concerned.

The next thing to consider is which chassis can be converted from an electrical standpoint. First of all, the series filament type sets can present several problems in making a conversion and therefore it might be wise to not accept them for conversion. This does not mean that they cannot be converted, but unless specific data is available outlining the correct procedure, several problems might arise during the conversion which could result in a loss instead of a profit.

Usually a little more power will be required to sweep the larger tube. Consequently those sets having power supplies that are already working at maximum capacity may cause trouble after the conversion is made. This information can be obtained from service data which gives the current drain on the power transformer. The next actor is the general layout of the chassis. If the affected parts are crowded, making the work difficult, the set should not be accepted for conversion. Again this does not mean that a set of this type cannot be converted, but it might be economically sound not to attempt it. It is hard to draw the line where sets will or will not be accepted, but usually a careful study of the circuit and photographs of the chassis layout, will aid in making a decision. If, after a job is accepted, it is found that the conversion is more difficult than anticipated, with resulting higher costs, any future requests for conversion of the model should not be accepted.

The maintenance of an adequate supply of parts for carrying on this work is very important. By having the parts on hand before the job is started, much time will be saved and you will have the assurance that the job can be completed. This is especially true since the supply of parts is rather uncertain at this time. The maintenance of a parts supply includes not only the electrical components but also the mechanical parts such as stock for making brackets, tube escutcheons and bezels. If any one of the re-
quired items are not on hand when the job is started, it may hold up its completion for some time - much to the dissatisfaction of the customer.

Whenever possible it is an aid in selling conversion jobs to tablish a set price for the conversion of any specific model. This price can then be quoted to the customer and he knows exactly what it is going to cost him. The established price also gives the customers added confidence, helping in selling the job. If, after quoting a price on a certain model, it is found that the price is too low or too high, it may be revised before accepting another job on the same model.

There are times when it would be logical to suggest a conversion job to the customer from a financial standpoint. If a set with a small-size picture tube is in the shop for repair, and it is found that the picture tube or a major component in the deflection circuit is defective, the customer might be interested in having the set converted. Since one of the costlier components, such as picture tube, horizontal output transformer, or deflection yoke, needs replacement, the net cost to the customer for the conversion job would be less.

It is suggested that an explanation be made to the customer as to the extent of the guarantee of the receiver after the conversion has been made. This may avoid misunderstanding in the future in the event of failure of components not associated with the deflection circuits.

Following is an account of the work done on one of the models converted in our laboratory. It should provide an idea of the extent of work required to do the job. Keep in mind too, that this particular model is very well suited for conversion and that there are many sets in the field which would require additional work.

CONVERTING THE 630-TYPE TV CHASSIS

In this conversion a 630-type TV chassis, illustrated in Figure 1, was used. This chassis is used in many models which have cabinets too small to accommodate a larger tube, and if it is not desired to use a new cabinet, a conversion cannot be made.

Fig. 4. New HV Transformer and Width Coil.

Fig. 5. New Deflection Yoke.
If, however, the chassis is to be mounted in a new cabinet or in a custom installation, a conversion to a larger tube is practical.

Conversion to $14^{\prime \prime}, 16^{\prime}$, or $17^{\prime \prime}$ Picture Tube

A partial schematic, showing the horizontal and vertical deflection circuits as they are wired in the original circuit, is given in Figure 2. This may be referred to when removing the old parts.

The first step was the removal of the deflection yoke and focus coil. The leads to the deflection yoke and focus coil were unsoldered, at the chassis end, and these units and their brackets removed. An octal socket was then installed on the chassis and leads from the horizontal and vertical circuits were connected to the socket. These leads were connected to the same terminals on the chassis from which the deflection coil leads were removed. They may be terminated at the octal socket at any of the terminals but it is suggested that a sketch be made of the connections so that it can serve as a guide for connecting the leads from the deflection yoke to the plug, which
will be made later. In this particular conversion the deflection yoke socket was positioned near the back of the chassis as shown in Figure 7. With this socket on the top of the chassis it is easily accessible even though the chassis may be mounted in close quarters. All four leads, two from the vertical circuit and two from the horizontal circuit, should be dressed close to the chassis to prevent pulses from being fed to the synchronizing circuits, which might result in erratic sync. By carefully dressing the leads near the chassis, no trouble was experienced.

Next, the two focus coil leads were terminated at the socket, again making a notation of which terminals were used. We then had all six leads which are required to feed the signals and voltages to the deflection yoke and focus coil, terminated at the socket.

The use of this socket is optional. In those cases where the picture tube is to be mounted directly on the chassis it would not be required. When the tube is to be mounted separately from the chassis the socket should be employed.

The next step was the removal of the old components from the high voltage compartment. After taking off the removable section of the HV compartment, terminals 1, 4, 5, and 6, as shown in Figure 3, were unsoldered. The screws mounting the horizontal transformer to the side of the HV compartment were removed, as well as all the screws holding the HV compartment to the chassis. The HV compartment was then removed, which gave access to the HV rectifier filament leads which were then unsoldered. By disconnecting the leads from the top caps of the 1B3 and 6BG6G tubes, the horizontal transformer could then be removed.

Since the original HV filter capacitor is only a 10 KV unit, it was removed so that a unit with a

Fig. 6. Schematic of Horizontal Sweep Circuit after Conversion.

Fig. 7. HV Compartment Showing New Components.
higher rating could be employed. The leads to the damping resistor (See Figure 3) were then unsoldered, as this unit is not required in the new deflection circuit. The high voltage lead was also unsoldered and removed. The old width coil was then removed from its bracket which completed the removal of the parts which were not to be used in the new circuit. The chassis was then ready for the mounting of the new components. A complete parts list of all components required for this conversion is provided, following the step by step procedure given later.

First, the new 15 or 20 KV filter capacitor was mounted in the same hole as was the original. It may be necessary to enlarge the hole slightly to accommodate the new unit. If the terminal on the new unit is not threaded, the hole should be enlarged only enough to permit a tight fit of the terminal in the hole. After seating the capacitor in the hole, it may be soldered to the chassis on the underneath side.

The next step was the mounting of the new horizontal output transformer and width coil, which are shown in Figure 4. The Merit type HVO-6 horizontal transformer was mounted on the chassis by first drilling three new mounting holes. The transformer was positioned close to the HV rectifier tube mount ing bracket as shown in Figure 7. This is very important since mounting of the transformer too far from the bracket will make it impossible to connect the HV rectifier filament leads to the proper terminals. After the transformer is mounted, the filament leads were connected to the same terminals of the rectifier socket as were the original, again taking care that no sharp points are left after the solder operation.

The next operation was the mounting of the new width coil. The original width coil has an inductance of approximately .035 to .12 MH which cannot be used with the HVO-6 transformer. Any attempt to use the original width coil will result in the effective shorting of one-fourth of the secondary of the HVO-6 transformer which will prevent operation. The Merit type

MWC -1 , which has an inductance of 3 to 27 MH , was used. It was mounted on the same bracket as the original width coil, but due to its larger diameter, the hole required a little reaming. Do not attempt to mount this coil any other place than in the HV compartment, as the strong field radiated by it may affect the operation of the set. After the width coil was mounted, the side and front section of the HV compartment was put back in place. The width coil was then connected to the proper terminals as shown in the schematic of the new circuit given in Figure 6.

The Merit type HVO-6 horizontal transformer is a aniversal type. It will provide sufficient sweep for the large picture tubes and can be used with standard type horizontal output tubes. In this particular circuit it was found that the original 6BG6G provided adequate sweep for a $14^{\prime}, 16^{\prime}$, or 17^{\prime} ' picture tube. The primary of the HVO-6 was connected the same as the original transformer. Terminal 1 was connected to $B+b o o s t$; terminal 2 to the top cap of the 6 BG 6 G and terminal 3 to the top cap of the 1B3. These connections are shown in the schematic of Figure 6. With the exception of the new HV filter capacitor, the HV circuit remains the same as the original circuit. The leads which were disconnected from the secondary terminals of the old horizontal transformer were then connected to the proper terminals of the new transformer per the schematic of Figure 6. The damper tube plates should be connected to terminal 5 of the transformer. Normally this will provide proper damping and sufficient boost voltage. If, after putting the set in operation, however, it is found that insufficient sweep is obtained, the damper plates may be connected to terminal 4 of the horizontal transformer.

This completed all the connections on the chassis and the rest of the HV compartment was put in place. The next step was the connection of the deflection yoke and focus coil to the plug. A Merit type MD70-F, which is a 70 degree unit, was used. Three resistors and one capacitor must be added to the yoke. The values and the connections of these components are given in the schematic of Figure 6 and instructions for mounting them are given in an instruction sheet packed with the new yoke. Figure 5 illustrates this yoke after the components and leads are wired in. Connect whatever length leads are required to extend from the deflection yoke to the socket on the chassis. Allow plenty of length for the leads. If they are tight when the installation is made, the yoke may be held in a cocked position. Terminate these leads in an octal plug at the proper terminals which can be determined from the sketch made earlier when the deflection socket was wired. The focus coil leads were then extended and terminated at the proper terminals in the plug. In many cases the original focus coil may be used on the $14^{\prime}, 16^{\prime}$,

Fig. 8. Complete Unit after Conversion.

"CAC" SERIES CRYSTAL CARTRIDEES

The Model CAC-J is the cartridge which Astatic developed in conjunction with the Engineering Research and Development Department of CBS to match precisely the recording characteristics of LP records. It is internally equalized to follow Columbia Records. Inc., ideal frequency response for the recording characteristics of LP records. Aluminum housing with standard $1 / 2^{\prime \prime}$ mounting holes. Will fit most tone arms. Includes adapter plate to mount in RCA and similar 45 RPM record changers. Performance quality . . . with equal fidelity on either $331 / 3$ or 45 RPM records ... truly sets today's standard of perfection, and has been so acclaimed by an increasing number of impartial experts. Other models available (see table) with AllGroove or three-mil styli tips to modernize a broad variety of phonographs, to meet the demands of the quality market of perfectionists and serious musiclovers, where the CAC Series found its first ready acceptance. All models except the CAC-AG-J are available with diamond styli (those which have the letter " X " in the model designations).

MODELS FOR PLUG-IN HEADS

Shown beside a typical plug-in type tone arm head are the special.terminals and fittings which adapt the models CAC. W-J and CAC-78W-J for speedy replacement in such equipment.

FITS RCA 45 RPM CHANGERS AND IS STANDARD FOR COLUMBIA 102 AND 103 PLAYERS

Model	List Price	Minimum Needle Pressure	Output Voltage 1000 c.p.s. 0.5 Meg. Load	Frequency Range c.p.s.	Needle Type*	For Record	Approx. Net Wt. in Grams	Code
CAC-J	\$ 7.50	6 gr.	$1.0 \dagger$	30-11,000	$\begin{aligned} & \text { Q-33 (J) } \\ & (1-\mathrm{mill} \text { tip) } \end{aligned}$	$331 / 3$ and 45 RPM	5	ASW22
CAC-X	31.00	6 gr.	$1.0 \dagger$	30-11,000	$\begin{gathered} \text { Q-33 (X) } \\ (1 \text {-mil tip) } \end{gathered}$	$331 / 3$ and 45 RPM	5	ASXDN
CAC-W-J	7.50	(Same as CA installation	except equipped cord changer ton	th special to rms with plu	nals and fit n heads.)	for easy	5	ASWYB
CAC.W-X	31.00	(Same as CA installation	excapt equipped cord changer ton	th special te rms with pl	inals and fit n heads.)	for easy	5	ASXDM
CAC-78-J	7.50	15 gr.	1.35+	30-11,000	$\underset{(3-\mathrm{mil} \text { tip) }}{Q(0)}$	78 RPM	5	ASWZY
CAC-78.X	31.00	15 gr.	$1.35+$	30.11.000	$\begin{gathered} Q(X) \\ (3-\mathrm{mil} \text { tip }) \end{gathered}$	78 RPM	5	ASXDL
CAC-78W-J	7.50	(Same as C inatallation	-I except equipp cord changer ton	with special arms with pl	rminale and in heads.)	ngs for easy	5	ASWYA
CAC-78W-X	31.00	(Same as CA installation	7-X except equipp cord changer ton	with specia arms with pl	minale and in heads.)	ting: for easy	5	ASXDK
CAC-AG-J	7.50	10 gr.	$1.35++$	30-11.000	Q-AG (J)**	$331 / 3.45$ and 78 RPM	5	ASWZX

+RCA 12-5-31-V Test Record or equivalent. "ul" gtands for Sapphire Tip. "X" for Diamond Tip.
HAudiotone 78-1 Test Record. \quad-All-Groove Needle Tip of special design and size to play $331 / 3,45$ and 78 RPM Records.

TRENDS IN TV SERVICING. Shorter service contracts are coming, particularly for renewals, because of the unknown future costs of labor and parts. Many eastern contractors are favoring the 90 -day contract for this reason.

Downward drop in percentage of contracts bought by purchasers of sets may be stopped, even turned upward by fear of parts shortages. Set-owners hope that a contract will give them priority on scarce, allocated tubes and parts. If you can handle a few more contracts, this is a legitimate and effective argument. An individual desperately in need of one scarce part is going to find it pretty tough going without a contract.

Stretching of strategic cobalt, nickel, copper, aluminum and steel is the order of the day among manufacturers, to make as many sets as possible with what they've got. This means taking off metal gadgets, decorations and nonfunctioning parts or changing to plastics.

Boosters of FM radio are going to find the going still tougher in the months ahead, because the FM tuner is one thing that can be left off on TV sets and consoles with little or no complaints from purchasers. Making FM optional is the first step in this direction by some manufacturers.

Circuit design trends to be looked for: Fewer tubes per set, with reduced sensitivity and hence reduced usefulness in fringe areas; selenium rectifiers in voltage-doubler circuits replacing power transformers, to save copper and silicon steel; smaller Alnico magnets in speakers; no more built-in antennas, since they're rarely used anyway; electrostatoc picture tubes (not for many months, though), to save deflecting-coil copper.

GRAY MARKET PARADOX. In the New York metropolitan area, large service organizations are being besieged with phone calls offering needed 300 -ohm twin-lead, tubes and other scarce parts in quantities at prices actually lower than from regular distributors. It's high quality merchandise, too -not distress junk. One possible explanation is that the boys who borrow cash to buy and hoard for a rise in the market can't hang on and pay their interest for long, hence have to dump when servicemen refuse to pay their inflated prices.

Some of the scarcest replacement receiving and picture tubes are being peddled at fantastically high prices by speculators. Generally these tubes are in bulk packages normally used only for set manufacturers. This indicates either that tubes are getting side-tracked out of normal channels or that smaller set-makers are quietly going out of business and releasing their stocks of parts through the usual radio-row channels of New York City.

Though older almost-obsolete picture tubes are scarce here and there, the most-needed large modern tubes are generally plentiful and even coming down in price. Two years ago, a tube engineer predicted that picture tubes would someday cost little more than a sealed-beam auto headlight bulb; maybe he wasn't pipe-dreaming, after all. Such is this business we're in - now, yesterday and forever screwy.

SMALL TV SETS. During the first three post war years ($1946-48$) some $1,200,000$ TV sets with 12 -inch and smaller screens were sold. DuMont sales chief Walter Stickel estimates that almost a million of these will be replaced in 1951 because their screens are now considered to be too small for good viewing. These sets will have to be reconditioned for resale, rental or conversion to bigger picture tubes. Since the work can be done during slack periods, it's one way of keeping down the idletime overhead expense. At resale, the table model 10 -inchers are bringing from $\$ 50$ to $\$ 100$ in the New York area. At rental, one service organization is getting \$12 a month including use of an indoor antenna. As-is sets available at around $\$ 25$ may well be worth picking up to rob for tubes and parts, as many servicemen are already doing.

COLOR. Looks now as if it's black and white for the duration. Even the public has forgotten.

CATS AND DOGS. In this true story, an 80pound German short-haired 户ेंointer stepped on an empty box on the stairs while chasing the cat downstairs at full speed. The mutt slid down the rest of the way on his nose, hit the polished living room floor, and crashed into the leg of the card table that was temporarily supporting a newly acquired DuMont metal-cabinet TV set. The table leg broke, the card table fell on the dog, and the TV set crashed end-over to the floor. The cat got away. The dog limped away. There was no implosion. Our heart finally got back into sync. The set? It worked perfectly after being turned right-side-up, and has only a few hairline scratches to show for the incident. But there's a quarter-inch-deep gouge in the oak floor, there's a chunk of plaster out of the wall, there's a card table waiting for fixing that never gets done, and we're in the doghouse because it was our idea to get that cute little puppy!

The new 1951 MERIT

CATALOG \#5111 shows complete up-to-date specifications on the entire Merit line of TV, Radio, Amateur and Industrial Transformers. The Merit TV line is as complete as current and advance information will permit.
You'll need the DEC. 1950 MERIT TV REPL GUIDE \& CATALOG for soving time in selecting the correct replacements for all popular television receivers. This handy, easy-to-use popular guide lists model and part numbers of 70 manufacturers, covering 800 models and chassis. First two pages list all TV Transformers and Specs.
DEALER PRICE SHEET-FORM No. 2, dated DEC. 30, 1950 shows the part No., Net price and List price of over 280 parts.
AUTO VIBRATOR TRANSFORMER SHEET-FORM No. 3, dated DEC. 30, 1950, shows model No., Net, List prices and Specs. of VIBRATOR TRANSFORMERS for FORD-GMMOTOROLA and MOPAR car radios. Also simple easy-to-read replacement guide covering 30 manufacturers.
MERIT OUTPUT TRANSFORMER CHART-FORM No. 4, single sheet shows proper Merit output transformer for use with all popular output tubes. Both MERIT specific and universal types are shown. Mounting style is included for further convenience.

MERIT TV COMPONENTS-FORM No. 5, dated JULY 1950 -illustrated descriptive sheet on MERIT "FLYBACKS" "DEFLECTION YOKES," "FOCUS COILS" and WIDTH LINEARITY COIL WITH AGC.

MERIT comparative part number sheet for TV \& RADIO FORM No. 10 -shows numerical listing of MERIT part Nos. to competitive Nos. on TV- on Radio, competitive Nos. to MERIT, for easy conversion.
REFER TO MERIT'S LISTING IN SAMS PHOTOFACTS See Your Jobber or Write Direct to

Television Tuning Units

by W. William Hensler

Research materiol contributed by: Wayne R. Ayers -
Eugene L. Bowden • Merie E. Chaney •
Garland Mowry - William D. Renner

A description of Circuits, Characteristics, Servicing Methods, and Alignment Procedures for commercially employed television tuners.

PART II

THE GENERAL INSTRUMENT TUNER MODEL 44

The General Instrument Model 44 TV Tuner is a capacitively tuned unit providing continuous tuning over two ranges. One range covers the low band TV channels, 2 through 6, and the other range covers the high band channels, 7 through 13. Switching between bands is achieved through the use of a slide switch which extends the full length of the tuner. The use of the long switch permits the mounting of the tuned circuit coils directly on the slide switch near the proper tube sockets and associated components. With this arrangement the lead lengths can be kept at a minimum and components are accessible for checking or replacement.

Figure 1-11A illustrates the General Instrument Model 44 TV Tuner.

The slide switch is actuated by a cam mounted at the end of a shaft concentric to the tuning shaft. A 5 to 1 reduction is provided from the tuning shaft to the tuning capacitor. A second concentric shaft, for mounting the channel indicator, is linked to the tuning capacitor shaft by a dial string which is cemented to the pulleys on both shafts to prevent slippage. A spring loaded pulley takes up the slack to minimize backlash.

The tuner is so designed that the slide switch is near the center of the unit with the tubes and most of the components on one side of the switch and the tuning capacitor on the other. A terminal strip is located at the rear of the unit for making connections to the rest of the receiver. A shield is provided for the oscillator tube and an external shield slides over the bottom of the unit, shielding the bottom and two sides. The top and ends are shielded by the frame of the tuner, thus providing complete shielding of the tuner.

Two RF stages are employed. Type 6AG5.or 6BC5 tubes are used in these stages and a 6 J 6 serves as the mixer and oscillator. All replacements of the RF amplifier tubes should be made with type 6BC5 rather than the 6AG5 tubes. Higher transconductance

Fig. 1-11A. General Instrument Model 44 TV Tuner.
is provided in the 6BC5, which is interchangeable with the 6AG5, and no wiring change is required.

Proper bandpass is achieved in the General Instrument Model 44 by stagger tuning the two RF stages. In both high and low channel ranges the plate circuit of the first RF amplifier is tuned to the low side of the band, while the plate circuit of the second RF amplifier is tuned to the high side of the band.

The input circuit consists of two double tuned bandpass circuits. The low range circuit has sufficient bandpass to cover channels 2 through 6 while the high range circuit covers channels 7 through 13. The proper circuit is selected by the range switch. The primaries of L1 and L2 (see Figure $1-11 \mathrm{~K}$) are center-tapped to ground and designed to match a 300 ohm balanced input. The primaries are trimmed by capacitors mounted on top of the tuner. The secondaries are tuned by the distributed capacity of the circuit and the input capacity of the RF tube. C1 couples the signal to the RF amplifier grid and R1 serves as the grid load, which is returned to the AGC line to control the gain of the stage.

The tuned plate circuit of the 1st RF amplifier, in the high range, consists of L4, A3, the output cap-

acity of V 1 , and one section of the variable capacitor in series with C8. In the low range position L 4 and C8 are shorted out by the range switch and L5 is placed in the circuit. R3 is connected across L5 to reduce the " Q " of the circuit to broaden the bandpass on the low channels. R 4 and C 5 make up a decoupling network for the first RF stage. In order to reduce the loading effect of the input resistance of the second RF amplifier upon the 1st RF tuned plate circuit, during high channel operation, the coupling capacitor, C6, is connected to a tap on L4. On some units C6 was connected to the junction of L4 and L5, and C7 was connected as shown dotted on the schematic. When connected in this manner C6 and C7 form a capacitive voltage divider which accomplishec the same purpose as the tapped coil. R5 is the grid luad for the second RF amplifier and R6 is the cathode resistor which permits self biasing of the second $R F$ amplifier. C 9 bypasses the cathode resistor to prevent degeneration in the stage.

The tuned plate circuit of the second RF amplifier is identical to that of the first RF amplifier except for the value of the low band coil shunt, R7, which is 1500 ohms. The coupling capacitor, C12, is always connected to a tap on L6 instead of to a capacitive divider network as used in some units in the first RF amplifier circuit.

C13 and R8 form a decoupling network for the second RF stage. Note that an additional capacitor; C11, parallels C13. Physically C13 is connected to the switch terminal to which L7 is mounted and C11 is connected directly to terminal 6 of the second RF amplifier tube socket. There is a possibility that the inductance in the lead connecting these two points may cause degeneration if only one bypass capacitor were used. The leads on both C11 and C13 are very short, further decreasing the lead inductance. Two capacitors are also used on the first RF stage for the same reason.

C12 couples the RF signal to the triode mixer, one section of a 6 J 6 dual triode. R9 and R10 make up the grid load for the mixer. The junction of resistors R9 and R10 is terminated at the top of the tuner, point A , for scope connection during alignment. R9 isolates the mixer grid from the scope input.

Fig. 1-11B. General Instrument Model 44 Tuner Alignment Points.

The schematic shows a series-tuned mixer plate circuit. L10 is trimmed by the output capacity of the mixer, C19, and the input capacity of the first IF stage. This circuit will vary according to the requirements of the receiver in which it is used. The mixer plate coil may be left off the tuner entirely. When a double tuned IF system is employed, two coils may be mounted on the tuner, usually one on top and one inside the unit. A sound trap, located on top of the tuner, may be added on non-intercarrier receivers. The mixer plate circuit is actually the first IF coil and for its adjustment the IF alignment instructions of the receiver should be consulted.

The second half of the 6J6 is connected in a modified Colpitts oscillator circuit. The third section of the tuning capacitor connects to the plate circuit for tuning. The slide switch is shown in the high range position on the schematic and the tracing out of the oscillator circuit in this position, shows that L8, the high range oscillator coil, has one end connected to the plate of the oscillator tube and the other end returned to the grid. C16, the tuning capacitor, and C18 are in series; and placed across L8. The circuit is trimmed by A1. C18 and the rotor of the tuning capacitor are returned to ground. This ground point governs the amount of feedback voltage applied to the oscillator. Note that in this circuit the value of capacity added from plate to ground, and from grid to ground is large as compared to the interelectrode capacity of the oscillator tube. This minimizes oscillator drift during warmup and also allows replacement tubes to have a greater tolerance in interelectrode capacities without necessitating oscillator realignment. L11 isolates the tuned circuit from the B+ line. C15 and R19 make up the grid leak network and C20 couples the oscillator signal to the mixer grid.

In the low range position C16 and L8 are shorted out and L9 is placed in the circuit. Also the parallel combination of C17 and A2 is connected in parallel with C18 to provide a variable padder on the low range. In some units a 13 mmf . capacitor is used instead of C17 and A2. The operation of the low range oscillator is exactly the same as in the high range position. The tuning capacitor, trimmed by A1, and the parallel network of C18, C17 and A2 are in

Fig. 1-11C. General Instrument Model 44 Tuned Circuit Coils.

"When didi you

last change your

Now for better playing record saving performance REPLACE...MODERNIZE
with easy-to-install E.V Cartridges. Exclusive features of E-V Torque Drive make it ideal for fast and slow speed records. Has extra. high voltage-compliance ratio. No bearings or bushings to deteriorate. Simplified design permits moximum replacements with fewer models Single and dual needle types. Used today in original equipment of many leading manufacturers.

REPLACEMENT CHART

Large, complete Chart for wall or binder use. Gives handy cross-reference and valuable data. Tells when to replace a cortridge, what type to use, how to sell replacements Ask your E.V Distributor or send for it now

Make the Finger-Tip Compliance Test

Old style, stiff-acting needle system

Modern, compliant needle system

E-V is your Guarantee!

These modern Electro-Voice PhonoCartridges guarantee your customers finer reproduction, longer recora and needle life. They replace most cartridges in Photofact Folders.

423 CARROLL STREET - BUCHANAN, MICHIGAN Exporf: 13 Easf 40ih Sl., Now York 16, N.Y., U.S.A. Cables: Arlab PHONO-PICKUPS • MICROPHONES • HI-FI SPEAKERS • TV BOOSTERS

Fig. 1-11J. Dial Drive Stringing.
series and are placed across L9, the low range oscillator coil. The high and low ranges of the oscillator circuits, as well as the RF stages, have a certain amount of overtravel to assure coverage of all channels. The amount of overtravel is given in the alignment instructions for this tuner.

In addition to the alignment point $* A$, another test point (the junction of R1 and R2) is brought out to the top of the tuner. It may be used to check the AGC voltage applied to the tuner. This point is des ignated as Point B on the schematic and on the tuner photograph (Figure 1-11B).

The recommended supply voltage for the tuner is 135 to 150 volts. AGC or some form of bias is applied to the AGC terminal at the rear of the unit. With 1.5 volts on the AGC line normal current drain for the tuner is 35 to 40 ma .

If the sensitivity of the receiver is low, the oscillator injection voltage should be checked at point - A. Normal reading is a minimum of -2 volts, meas-
ured with a VTVM having a 10 K ohm isolating resistor in series with the DC probe. If the reading is less than -2 volts, replace the 6 J 6 and recheck the voltage. In the event of oscillator tube replacement, a slight adjustment of the oscillator trimmer, A1, may be required to compensate for a variation of interelectrode capacity in the replacement tube. The procedure for adjusting the oscillator is given in the accompanying alignment instructions.

Erratic operation is usually caused by faulty switch contacts or tube sockets. The tube pins should be checked for dirt or corrosion, or bent pins which might prevent proper contact to the socket terminals. A slight pressure on the switch contacts may disclose a faulty connection due to a dirty or bent contact. If noise is experienced when the tuning capacitor is rotated, check for dirt or foreign material on the plates, or on the clips which ground the tuning capacitor shaft. They should exert considerable tension on the shaft and should be clean. Five clips are used and the end of each of them is soldered to the frame of the capacitor as well as to a grounding strap which

TV Picture Quality

 *Reissue Fetont Ne. 23,273

TV ANTENNAS

OUTSTANDIME mECHAMICAL SPECIFICATIONS

Port	Morerial	$\begin{gathered} \text { Yeeld } \\ \text { Streagith } \end{gathered}$	Sise	
		pri	-4.	Well
Most (tselv.l	\%" Phinwoll Steot Condui!	32.000	$0.92{ }^{\circ}$.049
terge Folded Dipole	35 y m Al.	19.000	500*	049°
Small Folded Dipole	35 ym M Al.	19.000	. 375°	.0490'
tonoctor		19,000	. $500{ }^{\circ}$.0180*
Crosserm	35 m Al .	26.000	.175***	. 065^{-}
Conior support \& I Costing	A. Alloy 43.000 pri lentile strengin			

EXCELLENT RABIATION PATTERNS
These are the radiation patterns of the AMPHENOL Inline antenna at $58 \mathrm{mc}, 66$ $\mathrm{mc} .$, and 88 mc ., in the low band, and $174 \mathrm{mc} ., 194 \mathrm{mc}$. , and 215 mc . in the high band. Notice the uniformity of these lobes at all frequencies. The lack of lobes off the siden and negligible ones off the back maintains high front-to-back and front-to-side ratios necessary for the rejection of various interferences. The

presence of a single forward lobe is us. ually a very desirable feature, especially when it is wide enough to provide adequate interception area for some differences in transmitter location, changes in the wave front's direction of travel, or physical movement of the antenna in high winds. Furthermore, it is not too critical of orientation. It is necessary only to aim it and forget it.
HIGHER GAIN

These gain curves of the AMPHENOL Inline antenna represent the intercepted voltage of the AMPHENOL Inline An. tenna as plotted against the intercepted voltage of a reference tolded dipole cut to the frequency being compared. There is no channel in either the low band or high band where there is more than a three decible change within the channel that can cause picture modulation or "fuzziness." Gain of the AMPHENOL Inline antenna is quite flat over all channels.

You will tind more gain designed into the high band because of greater need for it, due to higher losses at these frequencies, Also, notice the drop-off on channel six. This is at the edge of the FM band and is subject to FM inter. ference, so the Inline's gain is purposely held down at that frequency.

The excellent broadband character istics, impedance match, single forward lobe radiation patterns on all channels. maximum gain, lightning protection, and superior mechanical features of the AMPHENOL Inline Antenna make it the antenna for greatest TV picture quality!

YOURS FOR THE ASKING
Send for "The Antenna Story" - a sincere dis. cussion of TV antennas based on actuas field fests.

AMERICAN PHENOLIC CORPORATION
1830 SOUTH 54th AVENUE - CHICAGO 50, ILIINOIS

AC-DC RECTIFIER PROBLEMS

It is common practice to find that the rectifier tube in an AC-DC receiver is the tube which most frequently needs replacing. The defect usually indicated is that of an open heater. If the tube types involved are 35 Z 5 GT or 35 W 4 , the open heater generally occurs at the tap. When this represents the total trouble, the substitution of a new tube remedies the situation and the receiver is back in service.

There are situations which can and do arise in a receiver of this type where an analysis of the rectifier tube will indicate that an open heater exists, but actually there are also other defects present. In such cases, the substitution of a new rectifier tube will result in the complete destruction of the tube within the first few minutes of operation. In these days of tube shortages this might become a very serious situation. Let us examine these possibilities in greater detail.

Figure 1
Examination of Figure 1, shows a circuit diagram of the rectifier circuit of an AC-DC receiver shown in Photofact Set No. 117, Folder No. 5. The rectifier tube used is type 35W4. The most serious problem facing a rectifier tube involves a shorted filter capacitor. Let us assume that in some manner a short circuit develops between point $\bullet A$ and ground. The plate of the rectifier is tied directly to the power line and thus the tube has the entire line voltage impressed across it. An enormous current will flow through the tube since the only limitation will be the spacing of the tube itself. All data sheets for this type of rectifier indicate that the minimum value of effective plate supply impedance should be 15 ohms . This schematic indicates that this requirement has not been met, with the result that the short circuit current will be high enough to cause serious damage to the rectifier tube itself and probably to the electrolytic capacitor as well. The capacitor may then appear as a short circuit to the next rectifier tube which is used as a replacement, and consequently the tube will fail as soon as the cathode has been heated sufficiently to pass current.

An analysis of a rectifier tube which has failed because of a short circuit may lead to erroneous conclusions unless it is checked for shorts as well as
for an open heater. The effects of the short circuit will usually lead to a short between the heater and cathode, an open heater, and possibly a short between plate and cathode. When the circuit is similar to that in Figure 1, the following steps should be taken before inserting a new rectifier tube in the receiver:

1. Check point $\bullet A$ for a short circuit.
2. Check electrolytic capacitor at A.
3. Insert resistor of at least 15 ohms between point \rightarrow A and the cathode terminal of the rectifier socket to limit current in case of another short in the filter circuit. The physical location of the resistor in the receiver must be carefully selected, because it will operate at a fairly high temperature. The wattage rating may be one-half watt.

Figure 2 shows a circuit diagram of the rectifier circuit of an AC-DC receiver shown in Photofact Set No. 117, Folder No. 9. This receiver employs the same type of rectifier, the 35 W 4 , but the circuit shown is already provided with a 27 ohm resistor located between the filter circuit and the cathode of the rectifier, where it was suggested that a 15 ohm resistor be added in Figure 1. The effect of the additional resistance over the minimum value recommended by the tube manufacturer will serve to limit the current to a slightly lower value, thus reducing the probability of the electrolytic capacitor or other components in the receiver being damaged. When replacing a rectifier tube in a receiver having a circuit wired as indicated in Figure 2, it will be wise to check the tube for an open heater, and for

Figure 2
short circuits between heater and cathode and also between plate and cathode. If a short circuit appears at either point then the "surge limiter" as the 27 ohm resistor is called, should be checked to see if there is any indication of an overload having occurred. If the slightest doubt exists the resistor should be replaced. Should any indication of overloading appear, point © A should then be checked for a short.

There is another method which is often employed to provide the safety factor afforded by the "surge limiter," and that is the use of a circuit
is returned to the chassis. Since the tuner is well shielded, very little dirt or dust will get into the unit under normal operating conditions. If the receiver is located in a spot where considerable dust or dirt is in the air, however, erratic operation may result after a long period of time. The obvious remedy in such a case would be the cleaning of the affected parts.

In the event either dial string comes unwound, it should be restrung according to the instructions which follow in Figure 1-11J. Improper stringing will result in excessive wear, slippage and excessive torque. If the pointer cord has broken, make up a new one of the fibre glass core, nylon braid variety, to the length specified. Set the tuning capacitor fully meshed, and with the tuning shaft at the position indicated, loop the cable around the pointer sleeve pulley. Lift the knot forward over the rim of the pulley, dropping the cord in the cord locking slots. Bring the cord on the right side of the pulleyup to the tuning capacitor shaft pulley. Feed the cord through the slot and loop it around the shaft and back through the slot. Continue in a clockwise direction around the pulley, then pull the slack cord down over the anti-backlash pulley. The cord should then be cemented at the points indicated.

The drive cord is strung in a conventional manner, having the cord wound around the drive pulley $1-1 / 2$ turns with the knot in the cord hooked in a spring inside the pulley to take up the slack. Refer to Figure 1-11J which shows the stringing in detail.

If, after replacing the pointer cord the pointer is improperly positioned, it will be necessary to unsolder the pointer ferrule from the shaft and rotate it to its proper position. It should then be tack-soldered to the pointer shaft. The pointer is correct when it is pointing to the number 13 when the receiver is tuned to that channel (air check or by signal generator).

The alignment instructions, schematic diagram and dial stringing information for the General Instrument Model 44 TV Tuner appear in Figures 1-11B through 1-11J and the tabular alignment charts.

ALIGNMENT INSTRUCTIONS
 general instrument model 44 TV TUNER.

ALIGNMENT INSTRUCTIONS-READ CAREFULIY BEFORE ATTEMPTING ALIGNMENT

Two marker generators are required to align the circuits of this tuner. Marker No. 1 is coupled through 22 or 3 MMrD capacitor to the grid of the first video IF amplifier. The frequency to which marker No. 1 is tuned will be indicated in the table by an asterisk (${ }^{\text {I }}$).
Marker generator No. 2 is connected across the sweep generator at the antenna terminals. If the sweep generator has a built in marker, it may be used for marker No.2. The frequency to which marker No. 2 is tuned will be indicated in the table by a dagger (\dagger).
Duringalignmentit is necessary to switch the scope between alignment point A and the detector circuit connected to the tuner output. It is recommended that a single pole, double throw switch be used for switching the oscilloscope input, connected as shown in figure l-ilD. All connecting leads should be shielded and kept as short as possible.
The sound and video IF frequencies are used as reference points to align the oscillator and for iracking adjustments, therefore it is necessary to determine these frequencies used in the receiver employing this tuner.
Connect the negative lead of a 3 volt battery to the AGC terminal on the tuner, connect the positive lead to chassis or common negative in transformerless recelvers.
Remove the second video IF amplifier tube Irom tis socket to prevent feedback from the video IF amplifier.
The sweep generator output lead shouid be terminated with its characteristic impedance, usually 50 ohms.
HGGH BAND OSCILLATOR ALIGNMENT ${ }^{\top}$

	Turn the band switch to "high band" (counter-clockwise). Leave bottom cover in place while performing step 1.							
	$\begin{array}{\|c\|} \text { DUMMYY } \\ \text { ANTENNA } \end{array}$	SWEEP GENERATOR COUPLING	SWEEP GENERATOR FREQUENCY	$\begin{aligned} & \text { MARKER } \\ & \text { GENERATOR } \\ & \text { FREQUENCY } \end{aligned}$	CHANNEL	CONNECT SCOPE	ADJUST	REMARKS
1.	Direct	High side to either antenna terminal. Low side to chassis.	$\begin{gathered} 215 \mathrm{MC} \\ (10 \mathrm{MC} \text { SWP) } \end{gathered}$	$\begin{aligned} & \text { Video IF } \\ & \text { Frequency } \\ & \dagger 212.75 \mathrm{MC} \end{aligned}$	Tuning gang fully open.	Vert. amp. thru detector to lst video IF grid. Low side to chassis.	Al	Adjust Al to make the two markers coincide as shown in figure l-1IE.
2.	"	"	$\begin{aligned} & \text { 175MC } \\ & (10 M C \text { SWP) } \end{aligned}$	$\begin{aligned} & \text { Video IF } \\ & \text { Frequency } \\ & \dagger 172.75 \mathrm{MC} \end{aligned}$	Tuning gang fully closed.	*	L8	Use a non-metallic tool to adjust L8. Turn spacing so that markers coincide. Replace bottom cover. If markers separate, make slight readjustment of $L 8$ so that marker will colncide with cover in place. Repeat steps 1 and 2 until High Band oscillator covers the proper range.
LOW BAND OSCLLLATOR ALIGNMENT								
	Turn the band switch to "low band" (clockwise). Remove the bottom cover of the tuner.							
	DUMMY ANTENNA	SWEEP GENERATOR COUPLING	SWEEP GENERATOR FREQUENCY	MARKER GENERATOR FREQUENCY	CHANNEL	$\begin{aligned} & \text { CONNECT } \\ & \text { SCOPE } \end{aligned}$	ADJUST	REMARKS
3.	Direct	High side to elther antenna terminal. Low side to chassis.	$\begin{aligned} & \text { 87MC } \\ & \text { (10MC SWP) } \end{aligned}$	- Video IF Frequency $\uparrow 84.75 \mathrm{MC}$	$\begin{aligned} & \text { Tuning } \\ & \text { gang fully } \\ & \text { open } \end{aligned}$	Vert. amp. thru detector to lst video IF grid. Low side to chassis.	LO	Use a non-metallic tool to adjust L9. Turn spacing until markers coincide.
4.	"	${ }^{11}$	$\begin{gathered} 56 \mathrm{MC} \\ (10 \mathrm{MC} \text { SWP) } \end{gathered}$	*Video IF Frequency $\dagger 54.25 \mathrm{MC}$	$\begin{aligned} & \text { Tuning } \\ & \text { gang fully } \\ & \text { closed } \\ & \hline \end{aligned}$	*	A2	Adjust A2 so that markers coinctde. Repeat steps 3 and 4 until no further improvement can be made.

Before attempting the RF Alignment the oscillator should first be aligned as outined in steps 1 thru 4.
Replace tuner shield and turn the band switch to "high band" (counter-clockwise).
Feed the channel 13 video carrier frequency (2 LH .25 MC) into the antenna terminals, and the video $1 \mathbf{F}$ frequency into the first video If amp. grid. With the oscilloscope connected through the detector circuit to the video $\mathbf{I F} \mathbf{a m p}$. grid, adjust the tuning gang until the markers coincide (see figure 1-11D equipment set up).
Leave at this setting throughout step 5.
For step 6 adjust the tuning gang in a similar manner, except that frequencies used are the channel 7 video carrier (83.25MC) and the video IF frequency. Leave at this setting throughout step 8 .
5.

DUMMY ANTENNA	SWEEP GENERATOR COUPLING	SWEEP GENERATOR FREQUENCY	$\begin{array}{\|l\|} \hline \text { MARKER } \\ \text { GENERATOR } \\ \text { REQUENCT } \end{array}$	CHANNEL	$\begin{aligned} & \text { CONNECT } \\ & \text { SCOPE } \end{aligned}$	ADJUST	REMARKS
Direct	High side to ether antenna terminal. Low side to chassis.	$\begin{array}{\|c} 213 M C \\ (10 M C ~ S W P) \end{array}$	$\begin{aligned} & \dagger 211.25 \mathrm{MC} \\ & \dagger 215.75 \mathrm{MC} \end{aligned}$	$\begin{gathered} 13 \\ \text { (See notes } \\ \text { above) } \end{gathered}$	Vert. amp. thru $10 \mathrm{~K} \Omega$ to point A. Low side to chassis.	A3, 44	Adjust A3 for maximum amplitude at the 211.25MC marker. Adjust A4 for maximum amplitude at the 215.75 MC marker. Repeat adjustments until satisfactory band pass is achieved. Figures 1-11F, G, and H give acceptable response waveforms.
"	''	$\begin{aligned} & \text { 177MC } \\ & \text { (10MC SWP) } \end{aligned}$	$\begin{aligned} & \dagger 175.25 \mathrm{MC} \\ & \dagger 179.75 \mathrm{MC} \end{aligned}$	7 (See notes above)	"	L4, L6	Using non-metallic tool, adjust spacing of winn of LA for maximum amplitude at the 75.25MC marker. Adjust L6 for maximum amplitude at the 179.75 MC marker. Repeat adjustments until satisfactory band pass is achieved. See Iigures 1-11F, G or H. Repeat steps 5 and 6 untll no further improvement can be made.

LOW BAND RF ALIGNMENT
Turn the band switch to "low band" (clockwise). Remove tuner shield.
Set the tuning gang to channel 8 in the manner outlined under high band RF alignment, using channel 6 video carrier frequency (83.25 MC) and the video IF frequency of the receiver.
Leave at this setting for step 7
For step 8 set the tuning control to channel 2 using the channel 2 video carrier frequency (55.25 MC) and the video If frequency. Leave at this setting for step 8.
7.

DUMMY ANTENNA	SWEEP GENERATOR COUPLING	SWEEP GENERATOR FREQUENCY	MARKER GENERATOR FREQUENCY	CHANNEL	CONNECT SCOPE	ADJUST	REMARKS
Direct	High side to either antenna terminal. Low side to chassis.		$\begin{aligned} & \dagger 83.25 \mathrm{MC} \\ & \dagger 87.75 \mathrm{MC} \end{aligned}$	6 (See notes above)	Vert. amp. thru 10 KR to point A. Low side to chassis.	L5, L7	Adjust spacing of turns of L5 of maximum amplitude at the 83.25MC marker. Adjust L7 for maximum amplitude at the 87.75 MC . Repeat these adjustments until proper band pass is obtained.
"	*	$\begin{gathered} \text { 57MC } \\ (10 \mathrm{MC} \text { SWP) } \end{gathered}$	$\begin{array}{\|l} \hline 155.25 \mathrm{MC} \\ \text { †59.75MC } \end{array}$	2 (See notes above)	"	L5, L7	Adjust spacing turns of $\mathbf{L 5}$ for maximum amplitude at the 55.25 MC marker. Adjust LT Ior maximum amplitude at the 59.75 MC marker. Repeat steps 7 and 8. A compromist adjustment of L5 and L7 may be necessary to satisiy both steps 7 and 8.

ANTENNA PASS RAND ALIGNMENT
The antenna primary trimmers are adjusted at the factory with a wide range sweep oscillator and a delay line. The coupling is also carefully adjusted and should not be disturbed. Only in cases where these adjustments have been accidently or otherwise changed alignment be attempted.

HGH BAND ANTENNA PRIMARY ALIGNMENT
Replace tuner shield and turn band switch to High Band (counter-clockwise).
Replace tuner shield and turn band switch to High Band (counter-clockwise).
Set tuning capacitor to channel 13 position as outlined in notes under High Band RF Alignment.
9.

DUMMY ANTENNA	SWEEP GENERATOR COUPLING	SWEEP GENERATOR FREQUENCY	MARKER GENERATOR FREQUENCY	CHANNEL	CONNECT SCOPE	ADJUST	REMARKS
Direct	High side to either antenna terminal. Low side to chassis.	$\begin{array}{\|l\|} \hline 213 \mathrm{MC} \\ \text { (10MC SWP) } \end{array}$	Not used	13	Vert. amp. thru $10 \mathrm{~K} \Omega$ to point A. Low side to chassis.	A5	Turn A5 counter-clockwise to a reduced capacity setting. Then turn A5 clockwise observing the wave form. The amplitude will increase to a certain point and then the wave shape will start to change shown in figure 1-1II. Back off A5 to a maximum amplitude and minimurn "cutting in" point.

LOW BAND ANTENNA PRIMARY ALIGNMENT
Turn band switch to Low Band (clockwise).
Set tuning capacitor to channel 6 position as outlined in notes under Low Band RF Alignment.
10.

$\begin{aligned} & \text { DUMMY } \\ & \text { ANTENNA } \end{aligned}$	SWEEP GENERATOR COUPLING	SWEEP GENERATOR FREQUENCY	MARKER GENERATOR FREQUENCY	CHANNEL	CONNECT SCOPE	ADJUST	REMARKS
Direct	High side to either antenna terminal. Low side to chassis.	$\begin{aligned} & 85 \mathrm{MC} \\ & \text { (10MC SWP) } \end{aligned}$	Not used	6	Vert. amp. thru 10k Ω to point A. Low side to chassis.	A6	Turn A6 counter-clockwise to a reduced capacity setting. Then turn A6 clockwise observing the wave form. The amplitude will increase to a certain point and then the wave shape will start to change as shown in figure 1-11 I. Back off A6 to a maximum amplitude and minimum "cutting in" point.

Professional engineers everywhere specify "HICKOK" for quality, dependability and lasting accuracy.

HICKOK developed the first practical TV Alignment Generator over $4 \frac{1}{2}$ years ago. The Model 610-A, constantly improved, is still the "1st Choice". Absolute linearity, stability and accuracy of marker frequencies provide quicker, more accurate alignment.

Now watch for the new " 650 Videometer", and "Crystal Calibrator" for front-end work. Both will be announced soon.

Constant pioneering with instruments such as these has gained HICKOK its unexcelled leadership in the field of fine test equipment.

See your jobber or write today for full information on the complete line of HICKOK Professional Test Instruments.

THE HICKOK ELECTRICAL INSTRUMENT CO.

Fig. 1-11K. Schematic of General Instrument Model 44 TV Tuner.

THE HALLICRAFTERS PRINTED CIRCUIT TUNER

Fig. 1-12A. Hallicrafters Printed Circuit Tuner.
The Hallicrafters printed circuit tuner is a two-tube, turret-type unit employing printed circuit coils. These coils are contained on insulated segment strips which are mounted on the turret. Each of the twelve segments used has an RF mixer and oscillator coil. Switching between channels is accomplished by turning the channel selector switch to connect the
desired coils. This tuner is illustrated in Figure 1-12A.

The segments are clip-mounted in slots in each end of the turret, and a spider-type spring at one end maintains tension to hold them in place. The printed circuit coils are situated on the outside surface of the segments and are connected to rivet-type contacts. As the turret is turned to select the desired channel, the contacts on the rotor connect to the spring-type stationary contacts. An additional stationary contact in the tuner connects the adjacent mixer coil to ground to increase shielding and minimize any tendency for parasitic oscillation being set up in the adjacent miker coil.

The turret is held in place in the tuner by two lengths of spring wire, one at each end, which press against grooves in bearings on the turret shaft. The turret is easily taken out by removing the two spring wires. Since the printed circuit coils are on the outside surface of the segments, it isn't necessary to remove the turret to inspect them. If closer inspection is desired, the segments may be removed individually by releasing the tension of the spider spring with the thumb nail, moving the segment slightly toward the spring, and lifting out. These segments may be rearranged on the turret so that local channels are covered with less turning of the channel selector switch. The segments are numbered 2 through 13 for identification.

ADJUST-A-CONE Suspension
Permits precision centering of voice coil in final production operation.

Special Volce Coll Impedances Speakers used in Intercommunications systems have voice coil impedances that vary from the standard 3.2 Ohms. Quam Speakers with these special impedances can be furnished promptly.

U-Shaped Coll Pot

Provides an unbroken flux path of sufficient cross section to carry full energy of magnetic field

Universal Brackef

Furnished with all $3 \frac{1}{2}$ " to $6 \frac{1}{2 \prime} 2^{\prime \prime}$ speakers, this bracket simplifies the most difficult installations. May be attached to any two of the four mounting holes in the pot.

WRITE FOR COMPLETE CATALOG

HOME RECEIVERS • AUTO RECEIVERS • T.V. SETS • INTER-COM. SYSTEMS • OUTDOOR THEATRES

Engineered for the replacement and public address fields, Quam Adjust-A-Cone Speakers are offered in a complete line of EM and P.M. Speakers in the following sizes: $31 / 2^{\prime \prime}, 4^{\prime \prime}, 5^{\prime \prime}, 51 / 4^{\prime \prime}, 6 \frac{1}{2 \prime}, 7^{\prime \prime}, 8^{\prime \prime}, 10^{\prime \prime}, 12^{\prime \prime}, 4^{\prime \prime} \times 6^{\prime \prime}, 5^{\prime \prime} \times 7^{\prime \prime}$ and $6^{\prime \prime} \times 9^{\prime \prime}$. Public Address P. M. Speakers in $8^{\prime \prime}, 10^{\prime \prime}$ and $12^{\prime \prime}$ sizes with 6-8 Ohm Voice Coil Impedance. Coaxial Speakers in $12^{\prime \prime}$ and $15^{\prime \prime}$ sizes. Television Speakers in $5^{\prime \prime}$, $4^{\prime \prime} \times 6^{\prime \prime}$ and $61 / 2^{\prime \prime}$ sizes with 62 and 95 Ohm Field Resistance, and 3.2 Ohm Voice Coil Impedance. Special Field Resistances supplied promptly when T.V. circuits demand it.

FOCAMNTZER

trade mark

FOR REPLACEMENY OF WIRE WOUND FOCUS COILS
The perfect units for replacement or rebuilding television sets for larger tubes, now used as original equipment in many leading sets. The Quam Focalizer* Unit provides sharper focus of the television picture and is unaffected by temperature and voltage fluctuations. No wiring required. Kits are available for anode voltages up to 12 KV and for 12 KV and up, and are furnished complete with centering handle and mounting plate for easy and simple installation.

- Continued from page 9 -
if proper focus cannot be obtained, a new 470 ohm , thin type unit will be required.

The leads to the picture tube socket were then extended to the proper length. These leads should be long enough so that no strain is placed on the neck of the tube when the installation is made. If these leads are quite long, they may be taped at regular intervals to form a sort of cable. If the leads are taped, however, the grid lead should be left free, as taping it close to the rest of the leads will increase the distributed capacity and may degrade the picture.

When the deflection yoke and focus coil are mounted in a bracket which is not connected to the chassis, a ground lead should be connected between the chassis and the bracket. This is especially true when a glass tube with an outside aquadag coating is used.

This completed the conversion and the new tube was installed. A new single type ion trap was used instead of the old double type. The set was then turned on and was carefully watched for any symptoms of shorts or over-heated parts, which might have been caused by improper wiring. After warm up, the service controls were adjusted for proper width, height and linearity. In the event that proper height and vertical linearity cannot be obtained, the method for correcting height and vertical linearity for $19^{\prime \prime}$ and $20^{\prime \prime}$ tubes, which follows, should be tried.

Conversion to a $19{ }^{\prime \prime}$ or 20^{\prime} ' Picture Tube

The 630-type chassis may be converted to use 19^{\prime} ' or 20^{\prime} ' tubes by following the same procedure as given for $14^{\prime \prime}, 16^{\prime}$, or $17^{\prime \prime}$ tubes, with some additional changes to get adequate sweep and improve vertical linearity.

To gain additional sweep, the plates of the damper tube were connected to terminal 4 of the horizontal output transformer, which provides additional $\mathrm{B}+$ boost voltage.

To improve vertical linearity $\mathrm{R} 98,56 \mathrm{~K}$ ohms (see Figure 2), was disconnected from the $B+$ boost voltage and connected to the junction of C4A and the vertical centering control. R179 was changed to 2.2 K ohms. The 6 K 6 GT vertical output tube was changed to a type 6V6GT tube. The focus coil was changed from the original, which measured 250 ohms, to a thin type, which is especially designed for use on short neck tubes. The new unit has a DC resistance of 470 ohms. This gives additional flux density for proper focusing within the range of the original focus control.

STEP-BY-STEP INSTRUCTIONS FOR MAKING PICTURE TUBE CONVERSION

1. Unsolder deflection yoke and focus coil leads.
2. Remove yoke, focus coil, and mounting brackets.
3. Install octal socket and solder connecting leads to deflection output and focus circuits (see text).
4. Remove side and rear of HV compartment shield. Unsolder leads 1, 4, 5, and 6 on horizontal output transformer. Remove screws holding horizon-
tal output transformer to HV compartment shield. Remove this portion of HV shield.
5. Unsolder filament leads from HV rectifier and remove horizontal output transformer.
6. Remove HV filter capacitor and install new unit (see text).
7. Mount new horizontal output transformer as shown in Figure 7 (see text).
8. Solder HV rectifier leads, and connect new HV filter capacitor.
9. Replace side and front portion of HV shield.
10. Ream out width coil mounting hole and mount new coil.
11. Connect new HV lead (see text).
12. Make necessary connections to horizontal output transformer, per text and Figure 6, and replace side and back HV shield.
13. Install necessary components in deflection yoke, as recommended by the manufacturer, and connect leads of required length to yoke and focus coil. Solder these leads to a plug, if an octal socket is used, or directly to the appropriate circuits.
14. Change vertical deflection circuit as given for $19^{\prime \prime}$ or $20^{\prime \prime}$ tubes, if vertical linearity cannot be obtained.
15. Turn set on and adjust size and linearity control for the best picture.

PARTS LIST

1-Horiz. Output Trans. Merit HVO-6
1 - Width Coil Merit MWC-1
1 - Deflection Yoke (Merit MD70 or'MD70-F
(Stancor DY-7
1-15KV or 20 KV Filter
Capacitor
(Aerovox HV20C
(CRL TV2-502
2-560 ohm @ 1/2w
Resistors
1-1000 ohm @ $1 / 2 w$ Resistor
1-47 mmf. Capacitor
RC BTS - 1000
1-Octal Socket \& Plug and HV Lead

ADDITIONAL PARTS REQUIRED
 IN SOME APPLICATIONS

1-6VGT Tube
$1-2.2 \mathrm{~K} \mathrm{ohm} \mathrm{@} 1 \mathrm{w}$ Resistor
1 - Focus Coil for Short Neck Tubes
1 - Single Magnet Ion Trap
Any methods or techniques that are offered here should be considered as suggestions rather than recommendations, since they may not necessarily be the easiest way to effect the conversion. However, our experiments on various models of receivers have enabled us to present data which should be helpful.

Keyed AGC Operation

by ROBERT B. DUNHAM and W. WILLIAM HENSLER

One of the most significant features which has been employed in TV receivers is a keyed automatic gain control circuit. Not only is the performance of the set improved with this circuit, but the operation is greatly simplified. In a large percentage of the first post-war receivers, the contrast control varied the gain of the video IF amplifier. This was accomplished by varying the bias applied to the IF stage, or by increasing or decreasing the resistance in the cathode circuit of the video IF amplifiers. The setting of the control was quite critical and its misadjustment might result in overload of the video IF or the video amplifiers. This not only caused poor picture reproduction, but in many instances resulted in clipping of the sync pulses and loss of synchronization. In weak signal areas this type of contrast circuit is especially objectionable since the signal level may vary constantly, requiring frequent adjustment of the contrast control. If some circuit could be added to provide bias to the video IF strip which is proportional to the signal strength, automatic control of the gain would be accomplished.

The first attempts at accomplishing this were patterned after the automatic volume control (AVC) circuits used for many years in radio applications. Several advantages were afforded by this system over that of the manual operation, but it still presented several problems peculiar to TV reception. In sampling the DC voltage across the detector diode load, as is done in radio, the time constant of the AGC filter must be long enough to filter out the lowest frequency present. The nature of the video signal is such that considerable 60 cycle signal is present, due to the blanking signal during vertical retrace time. An efficient filter at this frequency must necessarily have a long time constant, which results in a slow acting AGC system. A fast fading signal, such as that experienced from airplane reflections, causes the receiver to "breathe," sometimes so rapidly that it approaches a flutter. In order to overcome this fading, a fast AGC system is required.

Another disadvantage of the conventional type AGC is the fact that all signals, including noise, that are rectified by the video detector, are filtered and fed to the AGC line. This is objectionable since these noise pulses will decrease the sensitivity of the receiver. Figure 1 illustrates an $A G C$ circuit of this type. The rectified video signal is filtered by R4 and C2, and then applied to the proper circuits. The time constant of this filter is 112,500 micro-seconds, or approximately one-ninth of a second. This is too long a time constant to properly react to airplane "flutter." The obvious thing to do to make the filtering of the AGC signal easier would be to increase the sampling rate. Also, if some means were employed to sample the signal level for only a short period of time, the effect of noise bursts on the AGC level would be lessened.

Through the use of a keyed AGC system, the above requirements are fulfilled. The horizontal scanning frequency is used as the sampling rate which makes possible the use of a much shorter time constant in the AGC filter. Also by sampling the signal level during the horizontal sync pulse only, much greater noise immunity is achieved. The keying tube can conduct only during the sync pulse, which represents slightly less than one-twelfth of the horizontal line time. Thus it can be said that this type system should be twelve times more immune to noise bursts or pulses than the conventional AGC system.

The most universally used keyed AGC system is the type which employs a 6AU6 tube having a positive going video signal applied to the grid and pulses from the horizontal output being fed to the plate. Such a circuit is given in Figure 2. The only plate voltage which is available for the AGC tube is that which is derived from the horizontal output circuit during retrace time. Thus the tube could conduct only at this time. In addition, the positive going video signal, which is direct coupled to the grid of the tube, holds the tube near cutoff except during horizontal retrace time.

Various methods have been employed to obtain the pulse voltage to be applied to the plate circuit of the keyed AGC tube. One is by capacitively coupling the pulse voltage present on the plate of the horizontal output tube to the AGC tube. Since the peak amplitude of these pulses is quite high, the capacitor used in this application must have a rather high voltage rating. Also there is a possibility that un-

Figure 1. Conventional AGC Circuit.
desirable radiation may be experienced, especially if the AGC tube is located at a distance from the hor izontal output tube. Consequently the most often used method is that of inductively coupling the pulse. voltage by adding an additional winding on the width coil. A shielded cable is used to couple the pulses to the AGC tube, as shown in Figure 2. Note that the cable shield is bypassed to chassis by C10A, thus preventing radiation which might cause erratic operation.

Another means of obtaining the pulse voltage is through the use of an additional winding on the horizontal transformer. This requires the use of a special transformer, therefore the use of the AGC winding on the width coil is more frequently employed.

For the AGC tube to conduct, the horizontal sweep circuit must be synchronized with the received signal. By referring to Figure 2 it can be seen that the AGC tube is directly coupled to the resistive load of the video IF amplifier tube. R135 is placed in the circuit to prevent loading of the AGC tube on the video signal. The plate current of the video amplifier tube, flowing down through R50, holds the AGC tube cutoff, except during sync pulse time. The amplitude of the sync pulse, therefore, controls the conduction of the AGC tube. The greater the signal amplitude, the greater the conduction of the AGC tube, a nd vice versa. The AGC voltage is developed across R139 and R140, with C104 serving as the filter capacitor. All of this voltage may be applied as AGC voltage or
only a portion of it, depending upon the requirements of the receiver. Note that the discharge path of C104 is through R139 and R140. This circuit has a time constant of 50,000 micro-seconds, which is considerably less than that of the circuit of Figure 1. The time constant of the charge path of C104 is even less, since the only resistance in series with it is the plate resistance of the tube. With this circuit arrangement the potential on the AGC line can vary at a rapid rate, reducing fading or flutter, which is characteristic of the older type contrast circuit.

Several methods are employed for controlling the contrast of the receiver when an AGC circuit is used. The contrast control, as connected in the circuit of Figure 2, varies the screen potential of the video amplifier to control the contrast. In some receivers the contrast control may be placed in the cathode circuit of the video amplifier which also varies the gain of the video amplifier.

When operating a receiver employing a keyed AGC system, it is seldom necessary to adjust the contrast control when changing from one station to another. Nor is it necessary to readjust the controls even though the signal strength may be continuously varying, providing, of course, the signal does not drop below the useable level.

The keyed AGC circuit shown in Figure 2 is directly adaptable to the 630 -type ch assis and instructions for incorporating it in this chassis will be included in a subsequent issue of the Technical Digest.

Figure 2. Keyed AGC Circuit.

HERE'S THE BEST FOR EVERY TEST Sylvania Radio and TV Testing Equipment

Television Oscilloscope

An exceptionally High-Gain, WideBand Oscilloscope Designed for Television. Accurately displays any TV pulse or wave-shape on a large, eyesaving 7" screen. Sensitivity: 0.01 v./in. Vert. response useful to 4.0 mc . Hardtube sweeps to 50 kc ; phasing control; pos. or neg. sync. control; many other outstanding features. Recommended for servicemen; laboratories; advanced schools and industry. Price $\$ 249.50$.

General Purpose Oscilloscope
A Versatile 7" 'Scope with Many Features Found in Type 400 above, priced as low as oscilloscopes with smaller screens. Sensitivity: $0.1 \mathrm{v} . / \mathrm{in} . ;$ freq. response: exceeds 7 cps. to 70 kc . Widely used by servicemen, schools and industry for AM-FM-TV testing. Price: $\$ 149.50$.

Type 400

Type 132 Z

Tube Tester Type 220 Made by a Tube Manufacturer for Tube Users, these instruments test for ALL usual faults - not just one particular characteristic. New and exclusive ohm-meter-type shorts/leakage test indicates "GOOD" or "REPLACE," directly on the illuminated meter. Gas and special heater-cathode leakage tests made in single operation.
Single composite dynamic test for emission, trans-conductance and relative tube life. Panel-mounted rollerchart; convenient switches; provisions for future tubes. Portable Type 220 has durable metal case and handle; removable cover. Size: $6^{\prime \prime} \times 111 / 4^{\prime \prime} \times 17^{\prime \prime}$. Price: $\$ 114.50$.

Tube Tester Type 219 The counter Type 219 is electrically equivalent to the portable type. Attractively housed in a streamlined wood and metal cabinet. Adaptable to any surroundings. Occupies small counter space. Size: $53 / 4^{\prime \prime} \times 13^{\prime \prime} \times 183 / 4^{\prime \prime}$. Price: $\$ 1 \mathbf{1 4 . 5 0}$.

TV Sweep Signal Generator An ALL ELECTRONIC Sweep Generator for TV and FM. Fundamental center frequencies: 2-25, 20-64, 60-120, and $140-230 \mathrm{mc}$. Two adjustable sweep widths: $0-600 \mathrm{kc} . / 15 \mathrm{mc}$.; excellent sweep linearity; output 0.1 v. Edgelighted dial; simplified controls; small size: $111 / 2^{\prime \prime} \times 81^{\prime \prime \prime} \times 7^{\prime \prime}$. May be used with any 'scope and marker, including those shown above and below. Price: $\$ 139.50$.

FM-AM Signal Generator Useful as a TV Marker. A versatile AM-FM generator, doubly useful for peaking alignment of TV and as a TV marker. Calibrated to 0.05%. Fundamentals 80 kc to 120 mc ; harmonics to 240 mc . Modulation: $0-100 \%$ AM; 0-30/150/700 kc FM. 1.0 volt max. output. Low leakage. Builtin circuit for external crystal. Price: \$139.50.

Type 216

Polymeter-TV Vacuum-Tube Voltmeter A Sensitive DC, AC and RF Vacuum-Tube Voltmeter, Ohmmeter and DC Current Meter. The basic instrument for every TV, FM and AM shop. Ranges: if to 300 volts (only $3 \mu \mu \mathrm{f}$ shunt capacity) ; ac and dc to 1000 volts (10 or 30 kv dc using h.v. probes) ; dc current from 50 micro-amperes to 10 amperes; and resistance from 0.5 ohms to 1000 megohms. Frequency range to 300 meg . acycles. High input impedance on all voltage ranges. Size identical to TV generator at left. Price: $\mathbf{\$ 9 9 . 5 0}$.

Type 221 z

Type 145
Audio Oscillator An Accurate Sine-Wave Generator for Better Equipped Shops and Sound Specialists. Maximum output: 22.5 volts, $20-20,000 \mathrm{cps}$, flat within 2 db . Price: $\$ 129.50$.

For full information about Sylvania's complete line of quality testing equipment, write today to: Sylvania Electric Products Inc., Dept. R-2803 Emporium, Penna.

INDEX to PHOTOFACT
 radio and television service data folders

HOW TO USE THIS INDEX: To find the PHOTOFACT Folder you need, look for the name of the receiver in the alphabetical listing below. Then find the required model number under the receiver name. Opposite the model you will find the number of the Set in which it appears and the Folder number. For example, under ADMIRAL, Chassis 3A1. the reference is 2-24. The bold 2 identifies the PHOTOFACT Set number in which the Folder appears. The light face number, 24, identifies the individual Folder. It's easy to find the set you need.

IMPORTANT: The suffix ketter " A " following the Set or Folder Number in the index listing below indicates a "Preliminary Data Folder." These Folders are designed to provide the service techaiciar. immediafely with preliminary basic data on Television Receiv-ers-pending their complete coverage in the standard, uniform Рнотоғact Folder Set presentation.

Sol Folder No. No.	Set Folder No. No.	Set Folder No. No.	Set Folder No. No.	Sot Folder No. No.
ADAPTOL	ADMIRAL-Cont.	ADMIRAL-Cont.	ADMIRAL-Cont.	ADMIRAL-Cont.
	Chassis 20VI Tel. Rec. (Soe Ch. 2011)....... 117	Madels $4 \mathrm{H} 165,4 \mathrm{H} 16$ (C or (N) Tel. Rec	Model 7106, 7 T12	Models 26R25A, 26R26A
ADMIRAL	(Se0 Ch. 2071). 117 Chossis 20V1 Tel. Rec.	(C or CN) Tel. Rec. (See Ch. 20A1) \qquad	(See Ch. 4B1] Model 7 T10, 7114,775	$\begin{aligned} & \text { Tel. Rec. } \\ & \text { (See Ch. 21B1) } 118 \end{aligned}$
Chassis ULSKI (See Chossis 5K1)..... 30	Pred. Chge. Bul. 15. . 126-1 Chossis 20X1, 20Y1, 2021	models 4H165, 4H16 4H167 (S or SN)	(See Ch. 5K11. Model: 8C11, 8C12, $8 \mathrm{Cl}^{2}$	Models 26R35, 26R36. 26 R37 Tel. Rec. (Se
Chassis UI7CI [See Chassis	isel. Rec. hossis 2021	Rec. (See Chassis 3081). 71 odels 4R11, 4R12	[Soe Chassis 30A1 (S 57) ond 801 (Set 67)	Ch. 24011103
Chassis 341 2-24	Prod. Chge. Bul. 7.... 110 m	(See Ch. AR1)	Tel. Rec.	odels 26R35A, 26R36A, 26R37A Tel. Rec.
Chassis 3Cl (See Ch. 207I) 117	Chassis 21A1 Tel. Rec.... 77-1 Chonsis 2181, 21C1, 2101	```Models 5F11, 5F12...... 57 (See Ch. 5F1)```	Models $8 \mathrm{Cl} 4,8 \mathrm{ClS}, 8 \mathrm{Cl} 6$. 8 Cl (See Ch. 801)... 67	$\begin{aligned} & \text { (Soe Ch. } 2181 \text {........ } 118 \\ & \text { Modeli } 26 \times 35,26 \times 36 \text {. } \end{aligned}$
Chassis 3C1 Prod. Chge. Bul. 15 \qquad	$\begin{aligned} & \text { Tol, Roc. } \\ & \text { Chassis 21F1, } 21 \mathrm{Gi} \end{aligned}$	$\begin{aligned} & \text { Models SR11, SR12, 5R13. } \\ & \text { SR14 (See Ch. SRl).... } 59 \end{aligned}$	Models 8D15, 8D16 (See Ch. 8DI). \qquad	26×37 Tel. Rec. (See Ch. 24D1)
Chassis 4A1 ${ }^{\text {3-31 }}$	Tel. Rec. 127-1A	Model STI2 (Ch. STI).... 68	Madel 8 8PP4	
	Chossis 21H1, 21 JJ Tel	Models $5 W 11.5 W 12$ (Soe	(See Cho	Rec. (See Ch. 2401)... 103
Chassis 4D1 49-1	Rec. (See Ch. 2181) . . 118		B1	dels $26 \times 55,26 \times 56$,
Chossis 4HI [See Chossiz 3081]. 71	Chossis 21K1, 21 LI Tel. Rec. (Soe Ch. 21F1) ...127-1A	$\begin{aligned} & \text { Models } 5 \times 11,3 \times 12 ; 5 \times 13, \\ & 5 \times 14 \text { (} 50 \text { Ch. } 5 \times 11 \ldots, 76 \end{aligned}$	(See Ch. 981). odels PE15, 9E16,	26×57 Tel. Rec. (See Ch. 24DI). 103
Chossis 41, ${ }^{\text {4K }}$ (Soe Ch. 20Al)........ 77	Chashis 21P1, 2101 Tel. Rec. (See Model 21F1) . 127-1A	Models 6A21, 6A22, 6A23 [See Ch. 6A2).......... 103	9 El 7 (Soe Ch . PE	Models 26X55A, 26X56A, 26×574 Tol Rec
Chossis 411, 451........ 100-1	Chassis 2401, 24E1, 24F1,	Model 6Cll (See Ch. 6Ci) 53	Rec. (See Ch. 20×1)... 100	26x57A ${ }^{\text {(See Ch. }}$ 2181)...... . . 118
Chassis 4R1. 10\%-3	24G1, 24H1 Tel. Rec... 103-2	Model 6C7l (See Ch. 10A1) ${ }^{3}$	odeli lakil, 14R12	Models $26 \times 65,26 \times 66$
Chassis S81	hansis 24DI, 24EI, 24FI,	Madels 6F10, 6F11, 6F12	Rec. (See Ch. 201	26×67 Tel. Rec.
(See Madel 6T02) Chassis 581 Phono.		Model GEIN SP32 (See Ch.	odels 16R11, 16R1	(See Ch. 24D1)....... . 103 del: 26X65A, 26×664
,	2	Models 6011,6012,6013	models 17K1, 17K12 tol.	867A Tel. Rec.
Chossis 582	Chossls 3041, 30Cl	6014 (See Ch, 601)... 78	Rec. (See Ch. 21F1) ...127-1	(Soe Ch. 2181)...... 118
Chassis SD2 (See Ch. 21B1)........ 118	30D1 Tel. Rec......... . 71-2 Model 4D11, 4D12, 4D13	Model 6 R11 (Soe Ch. 6R1) 54	Modela 19AlIS, 19AlISN.	odels 26X75, 26
Chassis 5FI 57	(Soe Ch. 4D1)........ 49	2	25	Rec. ${ }^{\text {a }}$ (sex 26×75
Chassis 5H1 20	Models 4H15, 4HI6, 4HI7	dels 6 RT	Ch. 19A1) Tel. Rec.... 59	10
Chassis 5K1 30	(A or $\mathrm{B}^{\text {S }}$) Tol. Rec.	(See Ch. 581 Phono)... 4	odels $20 \times 11,20 \times 12$ Toi. ${ }^{\text {a }}$	(See Ch.
Chossis 5N1	(So0 Ch. 20A1)....... 77	odel SRTAIA, 6RT42A		odels 27 K 12 Tel .
Chassis 5R1 59	Models 4H15, 4H16, 4HI7.	SRTA3A (See Ch. 381A) 18	Model 20X122	(Soe Ch. ${ }^{21 F 11}$)
Chassis 5T1 68-1	4H18, $4 \mathrm{HI9}$ (5 or SN)	Medel 6RT44 (Soe Ch. 781) 18 Models 6S11, 6S12	(See Ch. 20x1)........ 100	Models 27K15, 27K16. 27 K 17 Tel . Rec.
Chassis 5 WW1 79- ${ }^{76-3}$	Tel. Rec. (See Chossis 30811 71	Models 6511 . 6512 ISee Ch. $651) ~$	Model 20X136 Tel. Rec.	27 K 17 Tel. Rec. (See Ch. 21F1)...
Chassis 6A1 [See Model	Models 4HI8, 4H19 (C or CNITEI Rec (See Ch		(See Ch. 20x1). odels 20x145, 20x146,	Models 27K25, 27K26, 27 K 27 Tel. Rec.
Chossis 642 103 -	20 All 77	Madel 670S (See Ch. 6all)	20×147 Tel. Rec.	(Soe Ch. 21F1)....... 127
Chassls 681 48-2	Models iHIIS, 4Hil6.	Medel 6T06, 6 TO7	(5ee Ch. 20x1).... Model 22×12 Tel. Rec.	Modals $27 \mathrm{~K} 35,27 \mathrm{~K} 36$
Chossis 6C1 . WE........ ${ }^{\text {53-1 }}$	4HIIT (S or SN)	(See Ch. 4Al). Model 6711		Tel. Rec. (See Ch. 21F1)
Chassis ofl		1See Model 6T02).	Models $22 \times 25,22 \times 2$	odels 27 K 46 Teli.
Chossis 811 20-2		Medel oti2 (See Ch. 4A1)	7 Tel. Rec.	(500 Ch. 21F1) 127
Chassis 6M1	20A1) 77	Models 6 VII , 6 V 12		Models $29 \times 15,29 \times 16$.
Chassls 601 7	Model $4 \mathrm{HI26}$ (S or SN)	(See Ch. 6VI)......... 62	Rec. (See Ch. 20A1)... 77	29×17 Tel. Rec. (See Ch. 24D1)
Chossis 6S1 107	Tel. Rec. (See Ch. 30B1) 71	Chossis owil)........ . 71	Model 244125 Tel. Rec.	(See Ch. 24D1)...... . 103 odels $29 \times 25,29 \times 26$,
Chassiz 6V1 62	Models 4 HI 137 (A or b) Tel. Rec. (Soe Ch. 20 Al) 77	dels oris, ori' isee	(Soe Ch. 20Al)	29×27 Tel. Rec.
Chossis 6w1 71	Model 4 HI 37 (S or SN) 77	Chassls 6Y1)......... 75	AAl2SAN Te	(See Ch. 2401)....... 103
Chassis 6Y1 ${ }^{75-1}$	Tel. Ree. (Soe Ch. 3081) 71	Model 7C608, $7 \mathrm{C6OM}$	(5ee Ch. 20×1)...... 100	Model 29x25A Tal. Rec.
Chassis 781 18-2	Models 4H146, 4HI 47	C60W (500 Ch. 681).: ${ }^{48}$	models 24A126, ${ }^{\text {(See }} \mathrm{Ch}$ 20Al) ${ }^{\text {ana }}$	(Soe Ch .2181$) \ldots \ldots . .118$
Chossis 7C1 25	(A or Bl Tel. Rec.	Medel 7C61, 7C62, 7C62UL	(See Ch. 20A1) Tel. Rec. 77	Models 30A12, 30A13
Chassis Ch (El	(See Ch. 20al)....... 77		Tol	$\begin{aligned} & (5 \text { or SN) Tel Rec. } \\ & \text { (See Ch. } 30 A 1 \text {)........ } 57 \end{aligned}$
Chassis 881	Models 4MI45, 4 H146	(Ch. ${ }^{\text {(Cl) }}$		dels 30A14, 30Al
Chassis 8Cl (See Ch. 8DI) 67	(C or CN) Tel. Rec. (soe Ch. 20A1)....... 77	Model 7C64... Models 7C658, 7	(5ee Ch. 20Al). odels 24R11, 24R12 Tel.	30A16, Television Receivers (See Ch. 30Al).
Chassis 9A1 ${ }^{\text {Com }}$	H1s	7C65W (Se¢ Ch. 7E1) .. 36	Rec. (Seo Ch. 2011). . 11	
Chassis 981 49-2	4H147 (S	- ${ }^{\text {del }} 7 \mathrm{C73}$ (Soe Ch. 9A1) 12	de	30817 (S or SN)
Chossis 9E1 6	Rec. (See Chassis 3081). 71	Medels 7G11, 7G12,	24	Tel. Rec. (Soe Ch. 3081) 71
Chassis 10A1 ${ }^{3-30}$	odels: $4 \mathrm{HIS5}, 4 \mathrm{HIS6}$,	615,7	ec. (Soe Ch. 100	odels 30C15, 30Cl 6.
Chassis 19A1 Tel. Rec.... 59-2	dHIS7 (A or b) Tel. 77	1500 Ch. $7 \mathrm{Gl11......}$.	20x1 and 4(1). 100	30 Cl 7 (5 or SN) 3011
Chassis 19Al Tel. Rec. Prod. Chge. Bul. 5. . . . 106-1	Rec. (Soe Ch. 20A1). . . 77 models 4HI55, 4HI56.	Model 7P32, 7P33, 7P34, 7P35 (See Ch. 5HI) ... 26	Models 2SA1S, 25A16. $25 A 17$ Tel. Rec.	Tel. Rec. (See Ch. 3081) 71 Models 30F1s. A, 30F16.
Chassis 20A1, 2081.	1157 (S or SN) J	Model 7RT41, 7RT42	(5ee Ch. 20al).	
	Rec. (See Chassis 3081). 71	7RT43 (See Ch. 611)... 26	Models 26 R11, 26812 Tel.	(See Ch. 20A1).... 77
Chassis 20II Tel. Rec.....117-2 Chossis 20T1 Tel. Rec. Prod. Chge. Bul. 15 ... 126-1	Models 4HI65, 4HI66. 4H167 (A or b) Tol. Rec. (See Ch. 20A1)... 77	Models 7TOI, 7TOIM.UL, 7104, $7104 . U L$ (S00 Ch. SN1) 31	Rec. (See Ch. 2181)...118 Models 26R25, 26R26 Tel. Rec. (See Ch. 24DI). . 103	Models $32 \times 15,32 \times 16$ Tel. Rec. (See Ch. 20xI and 451) 100

* REGULAR PHOTOFACT SUBSCRIBERS MAY OBTAIN SPECIFIC SERVICING DATA ON THIS RECEIVER PRIOR TO ITS COVERAGE IN A PHOTOFACT FOLDER BY SENDING THE SERIAL NUMBER, CHASSIS DESIGNATION, NAME AND MODEL NUMBER, TO US

This Service is Free to Regular PHOTOFACT Subscribers

Please request-Schematic, Alignment Data, or whatever you require.
Please accompany your request with a statement giving the number of the last PHOTOFACT Volume or Set Number that you have purchased and the name of the Parts Jobber who sees to it that you receive each Set of PHOTOFACT Folders as they are published.

BE A REGULAR PHOTOFACT SUBSCRIBER. instruct Your Parts JObBER TO SEND Photofact sets to you regulaily as they are pullished. ask ABOUT THE EASY PAY PLAN.

Production Change Bulletins contain data which is supplementary to previously issued Photofact Folders, and are listed in this Index immediately following the listing of the initial coverage of the same models or chassis.

AIRCASTLE-Cont.	AIRLINE-Cont.	AIRLINE-Cont.
${ }_{5015.1}$	05WG-3031A Tol. Rec.....109-1	74WG.1803A (Soe Model
5020 16-3	05WG.3031B Tol. Rec.... *	74WG.1802A A 25
${ }_{5024} \times 1$.		74WG-1804C (ISee Models S4WG-1804A, B)
5025 24-2	05WG-3039A, B Tol. Rec,	74WG.1807A
5027 49	05WG.3040 fol, Rec.	18078 (SoC' Models
5028 44	OSWG-3042A Tol. Rec.	64WG.1807A, B)
5029 51-1	05WG-3045A Tel. Rec.	74WG-2002A
5035 46-2	54BR-1501A, 54BR.1502A. 2-26	74WG-2004A …….. 27
5036 72-2	54BR.1503A, B,	74WG.200
5044 121 1-2	S4BR.1504A, B, C..... 3-4	2007 C (Sog Models
	54BR.1505A, Bi 54BR-	64WG. 2007A, BI
${ }_{5052}$. \ldots............ ${ }^{\text {45-2 }}$	$1506 A^{\text {B B }}$........... 2-34	74WG.20098 (Soe Models
5056.A 120-2	54kP-1209A, B......... 8-1	64 WG-2009
6042	54WG.1801A, S4WG.	AWG-2010A ISo0 Model
6050 74	18018 ….......... \&-33	64WG-2010B) 18
${ }_{6053}^{6051}$.............. 97-1	54WG. 2500A, S4WG -	74WG-20108 18
	2700A 4-15	74WG. 2500A (See Mo
6541 …............. 17-2	64BR.916A ……...... 3-34	$54 \mathrm{WG-2500A)}$
	64BR.9108 (See Madel $748 \mathrm{P} .916 \mathrm{~B})$	74WG.2504A ${ }^{\text {74WG-2504B, }}$ Jiw
	7488.916 Bl SABR 917	74WG-2504B, 74WG
	64BR-917A 64BR9178 (See Model	${ }_{7}^{2504 C} 74$ (So0 Model
7000, 7001 14-3	648R917A) 10	74WG-2505A 18 -
7004 19	64BR-1051A 2-32	74WG-2700A, 74WG.
7014, 7015 57-3	64BR1051B (Soc model	27008 (500 Model
7015 Eorly... 47-2	oabriosia) aino. 2	54WG. 2700 Al
7^{553}...0............ 45-3	64BR.1205A, 64BR-1206A. 10-3	WG-2704A, 74W
90081, 9008w 99-2	64BR.1208A …....... 16-4	2704B, 74WG-2704C
90091; 9009W 97-2	64BR-15038, 6ABR.150AB	(See Model
90121, 9012W 94-1	ISeo Models Sabr.	74WG-2504A)
	1504A, B, ¢, C)....	74WG.2705A, 74WG. 2705 (Se Model
10005 62-3	64ER-15i3A	74WG.250SA) 18
10021.1, 10022-1 59-3	6ABr-151AA,	74WG.2709A 26
10023 58-1	648R.1808A ……... 16-5	74Wg-2711A (See model
${ }^{10024-1} \ldots$	64BR-2200A (Soe Model	74wG-2505A) 18
108014, 108504 57-4	OA8R-1208A ${ }^{\text {a }}$....... 16	84 BR -1065a
${ }^{121104}$.............. 73-1	648R.7000A 51-2	84BR-15030, 848R-15040
121124 61-2	6ABR-7100A, 6ABR.7110A,	84BR-1515A. 84ER-1516A
		84ER-1517A. 84BR.1518A
	64BR-7300A, 64BR-7310A, 64BR-7320A …..... 54-4	84BR-1815B, 84BR.1816B. 5\$ 84BR-2005A
138104 54-3	64BR.7810A, GABR.7820A 53-3	848 R -271 SB
138124 64	64WG.1050A 10-2	84BR-2719A
139144 59-4	64WG-1050B, B4WG.	84BR-2726B
147114 . 71.7 ${ }^{56-3}$	1050C, , WWG-10500	$848 \mathrm{~B}-3004$
149654, 150084 71-4	(Soe modet	84GAA3967A 91-3
159144 (See Model	64WG-1050A) 10	${ }^{81 G C B}$-1062A \ldots........ ${ }^{\text {52-26 }}$
$138144)$............ 59	6aWG-1052A 9-2	84 CDC.9638 $51-3$
	64WG-10328 (Soe Madel	84COC.987A 53-4
AIR Chilif (See Firestone)	6WWG-1052A)	8^{86} GHM-9268 55
Alr king		84GSE-2730A
A. 400 (Ch. 470)	1511B, 64WG-15	84GSE-3011A Tol, Rec. ... 82
A.403 20.2	64WG.15128......... s-s	84HA.1527A, 84HA.1528A
A-410 \ldots^{34-1}	64WG.1801C ISoe Models	(Soe Model 94MA-1527C) 67
A. 110 (Revised) 40-1	54Wg-1801A, B)	84HA1529A, 84HAI 530A. 85-2
A.426 43-1	64WG-1804A, B \&-27	84 HA .1810
A-430 $\ldots . .6$	64WG-1804C (Soe Model	84HA-1810C 69-2
A.301, A-502 (Ch. 465.4) 31-3 ${ }_{\text {A }}$	\%4WG.1804A)	84HA-2727A
	${ }_{64 W G-18078 ~}^{\text {6/...... 5-4 }}$	84HA-3002A, 84HA-3002B ${ }_{\text {del Rec. }}$
A.520 ${ }^{49}$-4	WW.1809A, S4WG	84 HA 3007 A
A.600 ${ }^{26-3}$	18098 (Seo Models	84 HA -3010A
A.604 81 812 $^{\text {2 }}$	64WG-1511A, B; SAWG.	Tel. Rec. 9 9
	1512A, B) s	84MA-3010a, B. C
$8800 . \ldots \ldots \ldots \ldots . .1$	${ }_{\text {SUWG-2007A }}^{\text {64WG-2007 }}$......... 5-6	Rec. Prod. Chgo Bul. 11
A. 1000 , A. 1001	64WG.2009A,	
Tel. Recteiver	64WG.20098	84KR-1520A
Al001A Tal. Rec........ 75-2	64WG-20108	$8_{84 K R-2511 A ~}^{\text {a }}$............ 88-4
Al016 Tol. Rec.......... 91 912	64WG-2500A (Soe	84WG-1060A 42
A2000, A2001, A2002	Model ($54 \mathrm{WG-2500A}$)	84WG. 1060 C (So. Model
Tel. Rec. (See Model	WG. 2700 A	4WG 1060
	64WG-27008 (Sap Models S	84WG-2015A
M Model A1001A) 75	54WG-2700A) 4	B4WG-2506 (See Model 84WG-2721A)
A. 2012 Tel. Rec, iseo	74BR.9168 \ldots........... 17-5	84WG.2506B
Model AlOM1 . .l. 75	748R-1053A	84 WG -2712A
16C1, 16C2, 16 C 3	74BR. 1055 Sa	B4WG.27128 1sa0 Model
	748R.15018, 748 CR . 15028.	84WG.2712A1
16 Ml Tel. Rec. (See Model 16C1) 121	7ABR-1507, 74BR-1508A.	84WG-2714A
(6T1, Tol. Rec.	(Seo Models 6 ABR.	84WG-2714F, G,
(Sae Model 16C1) 121	1513A, B; 64BR.	84WG-2718A, 84WG. 27188, , 84G-2720A .. 45-5
19 Cl Tel. Rec.	1514A, 8) \ldots......... 24	$\begin{aligned} & 27188,84 W G-2720 A . . .45-5 \\ & \text { 84WG-2721A, B 46- } 3 \end{aligned}$
(See Model 718 Tel . Rec		
(Se0 Model 16C1) 121	7ABR-18128 \ldots......... 22.2	Mode1 84WG-2718A) .. 45
$\begin{aligned} & 2017 R \text { Tel. Rec.......... III-2 } \\ & 4601 \text { ISee Modal } 46091 \text { II } \end{aligned}$	74BR-2001A (Soce Model	${ }^{81}$ WGWG-2718A, $^{\text {a }}$
${ }_{4601}^{601}$ (See Model	748R-20018) 748 BR 20018	84WG-2720A) …... 45
4604 \&-25 25	74BR-2003A \ldots.......... ${ }^{\text {a }}$	84WG-2732A, B (5 ee
46040 (Se0 Modal 4604).. 4	7488-2701A …….... 24-5	Model 8 WGG-2712A,
	748R-2702A (See Model $748 \mathrm{Br}-2702 \mathrm{~B}$	84WG-2718A, B;
		84WG-2720A)
4609, 4610 11-2	748R-2707A	
	748R-2708A ${ }_{\text {l }}$	(500\% Modol 94 WG
	748RR2715A	3006 A) Tel. Rec. 72
4705,4706 9-1	74GSG-8400A,	94BR. 1525 AA
4708 (See Model 4704)... 12	$7^{76 S G-8700 A}$. 60-3	
AIR KNIGHT (SKY KNIGHT)	74GSG-8810A 74GSG-8B2OAA	9488.2740A.
CA.500 17-4	$74 \mathrm{Ha} \cdot \mathrm{B200A}$	2711
CB-5000 17-31		
N5-RD291 17-3	74KR-27068 74 R 2713A	94Br-3017A Tel. Rec...... 89-2
airline	74WG-925A 24-6	9ABR.30178 Tol. R
OSbr-30218 Tol. Recticher	74WG-1050C, D (Seo	Prod. Chgo. Bu
05br-30248 fol. Rec.....		
05br.3027A Tal. Rec...... *		94GAA3654A……..... 95-1
	74WG.1054A 22-1	94GCB-1064A 96-2
OSGSE.3020A Tol. Rec....117-3	74WG.10548 (See Modai	94GCB-3023A, B,
OSGSE-3037A Tel. Rec.... **	74WG.1054A) 22	
OSWG. 18118 (Sere Modet	74WG.1056A 29 2-1	
	64WG.12078) 18	2730A ….......... 72-3
Model 94 WG-2748A).	74WG. 1509 A . 27 ,	OAGSE-3011, B (500 Modal
(See Model 94WG-3006A		
Set 72 and Set 110	64WG.151AA, Bi	94GSE-3025A Tol. Rec..... ${ }^{\text {a }}$
$\begin{aligned} & \text { older }{ }^{2} \text { (} \mathrm{C}-3030 \end{aligned}$		94GSE-3033A Tol. Rec.... 94HA-1527C, 94HA.1528C

AIRLINE-Cont.
94HA1529A, 94HA1530A

AMC	
$\begin{aligned} & 125 P . \\ & 126 \ldots \end{aligned}$	$\therefore 1^{3-27}$
AMERICAN (5ee Lib	COMMUNICATIONS erty)
AMPLIFIER OF MMERI	CORP. $\mathbf{C A}$
$A C A-1000 \mathrm{C}$ $8100 \mathrm{~V}$	ACA-100GE. 63-2

ACA. 10
8100 V

ANDREA

BT-VK12 Tol. Rec......... 76-5
CO-U15 27-3
CO-VK15. Covkisich.
VK1516) Tol. Rec. 103-4
CO-VK16 Tol. Rec.
CO-VK16 Tel. Rec.
Prod. Chge. Bul, $8 \ldots$. . . 112-1 COVK.i2s Tel. Rec.
(See Model BTVK12). . 76
COVL. 16 (Ch. VLI6)
Tel Re. 125-3
C-VKio Tel.

CO-VK16) Prod. Chge. I12-1
Bul. 8
CVK-126 iol. i............. 112
(See Mode1 BTVKK12). 76
CVI-16 (Ch. V(16)
CVI-16 (Ch. VIl6)
Tel. Rer. (See
Model COVI.16
P. 16
TIG
T.U1
T T.U1

T-U1
T.U16
T.VK
T.VK12 Tol. Rec.
(S.Vee Model BT-VK12).. 76
TVK. 727 M M Tol Rec.

TVK.127B. M TII. REC. 76
(See Model BT-VK12)... 76
TVL-12 Tet. Rec. 123-3
TVL-12 Tet. Rec.
TVI-16 (Ch. VL.16)
Tol. Rec. ISee
Model COVL. 16
vJ-12, vJ-12-2 Tol. :.e.... 125
VJ-15 Tel. Rec............
Ch. VKIS16 (Soe Mode)

ANSLEY

APPROVED ELECTOONIC
INSTRUMENT CORP.

554.1.61A 7-2

ARTHUR ANSLEY

BENDIX-Cont.	CAPEHART-CONF.
6003 Tel. Rec. (See Model 2051)	3001, 3002 (Ch. CX-30A-2, Prod. C-272) Tol. Rec.. 99A-2
Prod. Chge. Bul 16 ... 126	$3004 . \mathrm{M}$ (Ch. Cx-31, Prod.
6100 Tel . Rec,	${ }_{3005}^{\text {C.268) }} \mathrm{Ch}$ Tel Cx32, Rec...... 93A-5
(See Model 2081).... 111	3005 (Ch. Cx32, Prod. ${ }_{\text {C.279) }}$
$6100 \mathrm{Tel}, \mathrm{Rec}$. (See Model 2051)	
(See Model 2051)	C. m (Ch. CX.31, C.274) fol. Rec.
7001 Tel. Rec.	Model 3004-M) 93A
(See Model 2051) 111	3007 (Ch. Cx. 30, Prod.
7001 Tel. Rec.	C-276) 99A-2
(See Model 2051)	3008 (Ch, CX-32, Prod.
Prod. Chge. Bul. 16 ... 126	C.278 Tel. Rec. (See
	Model 3005
BOGEN (See Devid Bogen)	30118, M, 30128,
BREWSTER	(Ch. Cx-33) Tel.
9.1084, 9.1085, 9.1086. 2-13	$4001 . \mathrm{M}$ (Ch. CX.31.
	C-268) Tol. Rec.
BROOK	Model 3004.m) 93A
10 C	4002.M (Ch. CX-31, Prod.
10C2-A 43-7	C-274) Tel, Rec.
10C3 72-5	Modal 3004-M) 93A
100 (See Model MOC).... 41	Ch. CX-33, CX-33F
12A 89-3	(See Model 323M).... 112
BROWNING	CAPITOL
PF-12, RJ-12	D.17 30
RJ-12A, RJ.1 iA 6	T.13 28-5
RJ-20, R1-22 ${ }^{\text {67-5 }}$	U-24 29-6
RV-10, RV-11 46-6	CARDWEL, ALEEN D.
BRUNSWICK	CE.26 14-6
BJ. 6836 "Tuicany. C. 3300 " Darby	CENTURY (Also See
D.1000, D-1100 56-7	Industrial Television)
D-6876 "'Buckingham"' (See Model T. 4000) 29	$\text { 226, } 326 \text { (Ch. 1T-26R, }$
T.4000, T.40001/2 'Buck-	Tel. Rec. 99a.7
inghom" ${ }^{\text {a }}$ (........ 29-5	721, 821, 921,1021 (Ch.
T-4400, T-44001/2 61-4	IT.21R) Tel. Rec....... 97A-8
6000, $\mathrm{T} .60001 / 9$	
T-60005, T.60005S,	CENTURY (20th)
T-60005x, "Glescow" 29	100x, 101, 104......... 12-5
(5ee Model T-4000)... 29	200 21-5
T-9000 (See Model D.1000) 56	
$512,513 \mathrm{Tel}$. Roc.	
$812 \mathrm{Tol} . \mathrm{Rec}$.	CHALEENGER
816 Tel. Rec.	
911 Tel. Rec.	CC18 . 67-7
9228, ${ }_{5000}$ Tel. Rec. ${ }^{\text {a }}$	CC30 68-6
5125 Tol, Rec...	CC60 70-3
6165 Tel . Rec	CC618
8125 Tel, Rec.	CD6 6 . 65
8165 Tel, Rec.	20R 69-5
	60R 62-7
BUICK	200 (See Model 20R).... 69
980690, 980733 18-9	600 (See Model 60R).... 62
980744, 980745 ${ }^{\text {c- }}$ 19-5	
980782 62-6	CHANCELOR (See madionic)
980797, 980798 59-6	35P 30-25
98	
BUTLER EROS.	98579
(\$ee Air Knight or \$ky Rover)	985793 ${ }^{\text {. }}$ 19
CADILLAC	985986
	986067 90 9-2
$\begin{aligned} & 7241938 \\ & 7253207 \end{aligned}$	986146
7256609 ….......... 60 -8	986241 … ${ }^{\text {58-7 }}$
7258155	986388 104

CHRYSLER (See Mopar)

cisco

CLARION

CLEAMSONIC

(See U. S. Television)
COLLINS AUDIO PRODUCTS

COLINS RADIO
COMMANDE IN
Commonder 3 rube 17

CONCORD-EMERSON

CONCORD

CD61P 19-9	
IN434, IN435, IN 436 (Similor to Chossis).	
IN549 (Similar to Chassis)	
(N551 (Similor to Chossin)	
IN554, IN555 (Similar to	
IN556, IN557	
IN559 (Similar to Chorsii)	
JN560 (Similar to Cho	
IN561, IN562	
(Similor to Chossis). . . 97-8 (Nat9 (Similar to Chassis) 69-7	
6C518 19-	
6C51W (See Modet 6C31B)	
6ES18	20
6F26W 19-10	
6R3ARC	
7R3APW (See Modet	
6R3ARC)	
$6161 W$	22
7G26C 20	
1.402, 1.403	
1.411	
1.501 (See 6E518)	20
1.504 55.	
1-509, 1-510 (See 6C51B) 19	
1.516, 1.517	49
1.601, 1.602, 1.603	
(5ee 7G26C)	
1.606 45	
1-608 (5ee 6F2	
1-609 (5ee 67	
1.611	
1.1201 55-7	
2-200, ${ }^{2-201}{ }^{2-218}$,	
2.219, 2-232, 2-235,	
2-236, 2-237, 2-238,	
2-239, 2-240	62
$315 \mathrm{WL}, 315 \mathrm{Wm}$.	
$325 \mathrm{WL}, 325 \mathrm{WM}$	
(5ee 2-106)	54

CONRAC
36, 39, Tel. Rec. 110 -4
CONTINENTAL ELECTRONICS (See skyweight)
CONVERSA-FONE
MS.5 (Moster Station)
SS-S (Sub-Station) 16-7
CO-OP
6AWC2, GAWC3,
OAATWCR, OAATWT,
OA4TWTR S6-8
CORONADO

ORONADO-COnt.	
94RAI.43.7605A	
94RA1.43.7656A,	
94RA1.43.7657A	73
94RA1-43-7751A	87-3
94RA1.43.85104.	71-7
94RA1-43-85108,	
94RA1-43-8511B	75-6
94RA4.43-8129A,	
94RA4-43-8130A,	
94RA4-43-81308,	
94RA4-43-8131A,	
94RA4.43.81318	62-10
94RA31-43-8115A, B,	
94RA31-43-8116A	81
94RA31-43-9841A$94 R A 33.43-8130 C$	
94RA33-43-8131C 日2-3	
94TV1-43-9002A tel. Rec.	
94TV2.43.8970A,	
94TV2.43.8971A,	
94TV2.43.8972A,	
94TV2-43-8973A,	
94TV2-43-8985A,	
94 94V2-43-89884,	
94TV2-43-8993A,	
94TV2-43-8994A,	
Tol. Rec.	
94TV6-43-8933A Tel. Rec. 106	
197, 197U (See Model	
CORONET	
C2 6 . ${ }^{\text {6 }}$	
CRESCENT	
H-16A1 76-8	
CROMWELL (Mercentile Stores)	
	2
1020	8

ECA

ECHOPHONE
(Also See Hallierafters)

EC-1A	3-13
EC-306	14-8
EC.403, EC. 404	22-14
EC. 600	4-18
EX-102, EX-103	64-5
EX. 306 (500 Madel EC-306)	14
EDWARDS	
Fidelotuner	33-4
ELCAR	
602	5-19
ELECTONE	
75753	12-34
ELECTRO	
820	14-9
ELECTROMATIC	
APH301-A, APH301-C 606A 607A	$\begin{aligned} & 711 \\ & 5-32 \end{aligned}$

$\begin{array}{lll}555 \\ 706, & 712 & \text { (See Model } 535)_{1}^{13}\end{array}$
ELECTRONIC CORP.

ELECTRONIC SPECIALTY CO.

(Se Ranger)
E/L (ELECTRONIC LaES.)
75 (Sub-Station) (See

$7108,710 \mathrm{M}, 710 \mathrm{Or}, 710 \mathrm{w}$.

EMERSON
501,502 (Ch. 120000,

EMERSON-GENERAL ELECTRIC

EMERSON-COnt.	ERSON-Cont.
627 (Ch. 1201078)	Ch. 1200028 (See Model
Tel. Rec. isee Modal	${ }^{529)}$............... 18
${ }_{628} 571 \mathrm{Ch}^{\text {Ch. }} 12000888 \mathrm{~B}$) 76	${ }_{5} 120003$ (See Mod
Tel. Rec. ISee	Chossis 1200238 (See
Model 621).......... 108	Model 586)
${ }_{12012009}^{629}$ (Ch.	Ch. 120043 (Soo Modal
120120) Tol. Rec.	5371 …......... 23
639 D (Ch. 1201248) Tel. Rec. 116 - 5	Chossis 1200838 (See Model 386).......
630 (Ch. 1200998)	EMppess
(1al Rec. (500 - 108	Empress
${ }^{\text {mod (Ch. } 120109) ~ T s i ~} 108$	56............... 7-14
Rec. 93A-6	ESPEY (Also see Philharmonic)
632 (Ch. 120096B)	RR13, RR13L 13-17
33 (Ch. 120114)	
Rec. (See Model 631). 931	31
6348 (Ch. 1200978).....111-4	512
${ }^{633}$ (Ch. 120108$)$...... 92-1	
636A (Ch. 120106A) 99-7	524 (500
37, B, BC, C Ch. 120110.	10
$8{ }^{8}$ BC	621 10-17
	041, $642 \ldots \ldots \ldots \ldots \ldots$. 8-11
M	
Rec.	652, 653 (Seo Model 651)
(Ch. 200870) Tel.	751 (5eo Model
	, 6
Rec. (Soe Model 600)	$6514,6516,6517$.
(Ch. 120103-8) Tol.	
ic. Prod. Chao, Bul. 9.114	
	6540, 6541 8-12
${ }_{642}(\mathrm{Ch} .120117 \mathrm{~A}){ }^{\text {a }}$ 98-3	6542 (Ch. Ff97)
6434 (Ch. 1201114)..... 91	(Soe Model ${ }^{\text {b }}$
644, B, BC, C (Ch. 120113.	${ }_{6543} 65 \mathrm{Ch}$.
	6346 (Ch. FJ97) (See Model 651)
(chodel $61414{ }^{97}$	6547 (See Models
45 (Ch. 120113) 94	$6340.6341)$
64 (Ch. 120121 A),	5560 (Ch. FS
	(50e Model 651
c.	6611. $6612,6613$.
(See Model 614)........ 97	6631
88 (Ch. 120110E)	
((See Model 614)	754
T9A (Ch, 120004A)	7552 (Soo Model 188).... 90
Tel. Rec.......	
(${ }^{\text {(Ch. 1201188) }}$	ESQuire
OOD ich. 12	50.10, 65.4
tel. Rec. . .i.l. 109 -3	FADA
${ }^{650 F}$ (Ch. 120138-8)	0.925 Tol
crin Rec.	P8O
${ }^{6} 518 \mathrm{Cch}$.	
Rec. (Soe Model 629 B) 119	P100 27-10
Rec. ISed Model $6311 .$. 93a	R. 1025 Tel. Rec. 114
$1 c^{\text {c (}}$ Ch. 120124) Tal.	R. 1030 Tot. Rec.
Rec. (See Model 6290) 116	Sa0 Model R-1025).... 114
6510 ($\mathrm{Ch} .120124, \mathrm{~B})$ Tol.	$54 \mathrm{C2O} \mathrm{Tol}. \mathrm{Rec}$.
Rec. (See Model ©290) 116	Stald
652 ($\mathrm{Ch}, 120032 \mathrm{~B}$)	54730 Tol. Rec.
(Seq Model 642)....... 98	51015 Tol. Rec.
3 (Ch. 1200808)	51020 Tol. Rec.
(Sou, Model 642).	Model 51015)
Rec. (Soe Model 650).	51030 Tel. Rec.
Rec. (See Model 650) 654D (Ch. 120123.B)	s. Model S1015)
Tol. Ro	S. 1080 Tel. Re
Model 8500) 109	TV30 Tel. Rec.
54F (Ch. 120138-8)	602
	805.
Tol. Rec. ISoo	
Model 6500) 109	
655 F ($\mathrm{Ch} .120138-\mathrm{B}$)	${ }_{7}^{652}$ Series ${ }^{1-23}$
Tel. Rec............	${ }_{71} 700{ }^{\text {a }}$
6568, 6578 ($\mathrm{Ch}, 1201228$) 111 -	711, 740 28
${ }^{6588}$ (Ch. 120124, B) Tol.	
Reec. (Soe Model 6290) 116	795
658 C (Ch. 120124) Tol. Rec. (See Model 629D) 116	
$658 \mathrm{CD}(\mathrm{Ch} .120124 \mathrm{~B})$	830 97
Tal. Rec.	845
6608 ($\mathrm{Ch}, 120133 \mathrm{~B}$)	835
Tol. Rec. 121-1A	880 Tel. Rec............ 934
6618 (Ch. 120134.8)	899 Tel. Rec. (See Model TV301
	925 (See Model ci. 92
20128-B) Tol. Rec. . . 125	930, 940 Mol Rec.
48, (Cn. 201338)	965 is Moe Modal G.925)... 79
Tol. Rec. $12130135-\mathrm{B}$)	1000 Serist
Tell Rec.	1001 17-15
${ }^{6678}$ (Ch. 12	Farnsworth
6088 (Ch, 120134 -8)	EC.260 7-15
98	EK-081, EK-082, Ek-083.. 26-13
	EK-262, EK-263BL
	E.263WL.
6710 (Ch. 120137 D)	Model EC-260)
Tol. Rec. 1500	EK-681 (S00 Modol Ek.08i) 26
Modal 6718) ${ }^{\text {c }}$ (.....118	ET.060, ET-O61, ET-063.. 6-11
${ }^{6738}$ (Ch .1201338)	ET-064. ET-065, ET-06
Tol. Rec. 313303	100. GK-102
(tat. Rec. 20134 Bl	GK.103, GK.104 $23-$
75 B (Ch. $120129-\mathrm{B}$)	Gk-1i4, Gk-1i
Tol. Rec. (SSe	K-140, GK-141, GK
Model 66981. ${ }^{\text {a }}$	GK.143, GK.144 … 24-18
${ }^{6768}$ (Ch. ${ }^{\text {col Rec. }} 1201408$)	GT.030, GT.051, GT.052. 35-
78. 7788 (Ch. 1201318$)$	
Toi. Rac.	GV220, GV240, GV26
6800, 6818 (Ch. 1201408)	Tel. Rec
	K-267, K-669 (Se0 Model
Toi. Rec.)	Ch. 150 (soe Model
880 (Ch. 120140B)	ET.000)
rel. Rec. 88, 6898,	${ }_{\text {EC-260) }}^{132}$ (53 (Soe Modal
88.689 120129	157 isoe Modal
(S00 Model 6698) 126	Ek.081)
03 (S eo Mo.............. 1002 . 16	$\text { Ch. } 158,15$

freed eiseman GALVIN (See Mosorole)	

GAMBLE-SKOGMO
(See Coronado)

GAROD

4.A. 2 (Cade
4-A. 3 (Code No.
297.6-LMFU.134)
297.6-LMFU.134) 31 - 13

FEDERAL MFG. CO.

4

$3 A$
30
50
50
$3 R$
$6 A$
$6 A$
6 B
6 D
10

Tel. Rec. (See,
Model 10T21), 12723.60
122220, 12TZ21, 60
121223 Tel

 4
 4
 4

4.

Television Receiver ... 50-7
$1042 \mathrm{G}, 1043 \mathrm{GT}$ Tel. Rec.. . 99A.5
1042 T 1 1043 T Tel. Rec. . 93A-7
1100 Series Tet, Rec.
1100 Series Tel. Rec.
(See Model 900)...... 50
1142.1143 Tel. Rec.....
${ }^{1200}$ Series Tel. Rec.
(See Mode1 900)....... 30
1244G, 1245G Tel. Rec.
(See Model 1042G).... 99A
1244 , 1245T Tol. Rec.
(See Model 1042T).
(See Model 1042 T). ... 93
1344,1345 Tel. Rec.....
1546G, $1547 \mathrm{G}, 1548 \mathrm{G}$.

1646, 1647, 1648, 1649
Tol. Rec.
1671 (98. Series) Tel. Rec. 97A-
1672, 1673, 1674, 1675

1974, 975 Mec. (See Model 16CT4) 97A
2042T, 2043r Tel. Rec.
(See Model 1042T). 93A
(Se0 Model 1042T)
$25467,25477,25487$,
(See Model 1042 T) ... 93A
3912 TVFMP, 3915TVFMP
Tel. Rec.95A. 6

GENERAL ELECTRIC

hallicrafters-Cont.	mofrman-Cont.
810 C Tel. Rec. (See Model 805)125-1A	Chossis 114 (See Model 1000) \qquad 20
815 Tel. Rec.	Chantis 119
(Soes Model 8104) $\ldots . .124$	(See Model A202)..... 11
(See Model 810A) 124	Chossis 123 (See Model C504). 47
832, 833 Tel. Rec.121-1A	Ch .138 isoe modelis
	$912,913)$
	Ch. 140 (Seo Modol (10)
(Soe Model 810 a) 124	Ch .143 (See Model 820) 95A
${ }^{880}$ (Soel. Model bioal 124	Ch. 116 (Soe Modol 820)
HAMILTON ELECTRONICS	Ch. 150 See Model 144 97A
H.15.S	Ch. 151 (See model 830) 97A
H-50-25 16-18	Ch. 152 (See Model 917) 97A
	ch. 133 (Se0 Mod
MAITON (See olympic)	
	Ch. 156 (See Model 847).. 97A
hammarlund	Ch. 157 (See Model 860).. 97A
HQ-129-X	$\mathrm{Ch} \mathrm{Ch}^{164} 1$ (Soes Model 946) . . 97a
SP.400-X 10-20	(See Model 630)
harvey-wells	
AT-38.6, AT-38.12 32-11	Ch. 173 (Soe Model 630
ATR.3-6, ATR-3-12 36-14	Ch .173 (S00 Model 630
HEATM	Ch. 176 (See Model 930). 127
MRR-5 24-20	howard
HOFFMAN	${ }^{472 A C} 472 \mathrm{C}$ 472F
A-200 (Ch. 103) \&-23	47
A-202 (Ch. 119) $11-11$	475 TV Tel. Rec.
A.300	Photofoct Sarvicer
A-309 (Ch. 119)	481B. 481C. 481M....... 67-11
(Soge Model A-202) 11	482. 482A
A.401 (Ch. $1021 . \ldots . . .{ }^{\text {a }}$ 11-12	$901 \mathrm{~A}-\mathrm{E}, 901 \mathrm{~A}-\mathrm{H}, 901 \mathrm{~A}-1$.
A-300 (Ch. 107) , ${ }_{\text {and }}{ }^{34}$	901A-M, 901A-W ISoe
A. 700 (Ch. 1085)	
A-700 (ch. lios)	901 A Serie
8.400 \ldots.............. 17	901AP 10
${ }^{8-1000}$............. $20-14$	
$\mathrm{c}_{\text {-503 }}$................. s0-9	920....................: ${ }^{\text {s }}$
C.504 (Ch. 123)......... 47-10	
C.506, C.507 49-10	HUDSON
	O847 (Foct. No. 6MHO99) 25 -16
C-512 (See Model (-502) ${ }^{\text {S }}$	Ob48 (foct. No. бмнв
C-513 (See Model C-303) 50	JdSON ELECTRONICS
C-514 (See Model C-504) 47	
C.518 $\mathrm{Cl}^{\text {c............ 61-13 }}$	347BL
	330 120
Ст.800, СТ.801, ст-900,	industrial electronic
cT-901 (Tol. Res.).... 63-11	CORP. (See simplon)
600, 601 (Ch. 154, 155)	Industrial television
Tol. Rec.	(A)
610 (ch. 140) Tal	
${ }^{612}$ (Sch. Model 6101.	1T-40R, 1T-42R (Ch. IT-26R,
613 (Ch. 149$)$ Tal. Re	Tol. Roc.
(See Model alol.	IT-48R Tol. Rec
	Jackso
630. 631 ich. 'ijoj	5000, 3050 Tel. Rec...... 88
Tot. Rec............ 117 -1A	5200, 5250 (500 Mode
22. 633 (Ch. 160)	30001 Tol. Rec.
Tel. Rece 633 ich izi)	
	5000) Tol. Rec......... 88
820, 821, 822 (Ch. 1460	JEFFERSON-TRAVIS
826, 827, 828 (Ch. 143) Tel. Rec 95 A-8	MR3 17 19-19
830, 831 (Ch. isi) Toi.	JEWEL
Rec...isio......... 97A-d	
832 (Ch. 151) Tol. Rec. ... 974 (Soe Modal 830)......	
836, 837 (Ch. 153) Tol.	
Rec. . .1.7........ 93A-8	304A, B, C; 505A, i, C 15-14
840 (Ch. 133) Tel. Rec.	
(Sob Modol 836)	801 (Trixie) 4 4-14
(See Model 830)...... 97a	
847, 848, 849 (Ch. 156)	915 (300.......iol Moiol
1. Rec. O.......... 97A-7 $^{\text {a }}$	920 ….............. s5-10
Tal. Rec. (Soe Model	${ }_{9}^{939}$ (Soe Model 920).... ${ }^{51}$
7) 97a	
${ }^{866,867,868 ~(C h, ~ 173) ~}$	960 …................ 97
876, 877, 878 (ch. i>ii	50570 109-7
	Kalser-Frazer
Til. Rec. \ldots..........117-1A	${ }_{200002}^{20001}$. 3 35-13 ${ }^{36-13}$
912.913 ch. 147) tol.	200002 $36-13$
Rec. [Soe Model 826].. 95A	KAPPLER
Rec. (Soe Model $6101 . .$. 97a	1027 54-10
917. 918 ($\mathrm{Ch}, 152$) fol .	karadio
Rec. (See Model 830).	
(Soe model 930)...... 97a	1275, i275A............. 85-7
946, 947, 948 (Ch. 164)	1276 115
Rec. (See Model \qquad	Kaye-malbert
930, 951, 932 (Ch, 1721.	231, 232, 233, 234, 233,
950A, 951A, 952A (Ch. 174) Tol. Rec. ... 127-6	236, 237. 238, 239. 240, 241 Tel Rec.
960, 961, 962, (Ch, 176)	242 Tol. Roc
Pect 15	731 Tol. Rec
Chodel 9301 127	
Chossis 102 (See Madel A401)..... 11	$821-C, 0821-7 ~ T e l . ~ R e c ~$
Chassis 103	1621-C, 1621 -T Tol. Rec..
$\mathrm{Ch}^{\text {(Sasee Mis Model } 107}$ A200)..... 4	kay musical
(See Model A500).	instrument co.
Chanis 1085T	77 42-
	kitchenaire
(See Model A700)..... 12	5 Tube Rodio 6-

GIC TONE	SSTIC-	OLA-C	MECK-Cont.	mon
500. 501 5-40	16 KI (94 Series)	R463W 4-29	Mmblic, T Tal. Rec.	M-403 (Foct. No. 470.2) . 22-20
304 (Botto Recreiver) ${ }^{22-18}$	Tol. Rec. (Seo Model	R643-PM, R643W 4-29	(Soe Model MM614C) . 117	
508 (Keg Rodio)........ 38 -9	12(4) ${ }^{\text {a }}$ (1)......... 97A	R652, R652N \ldots........ 9-22	oc, ${ }^{\text {c T Tel. Ro }}$	M.510 (Fast. No. 472) ... 23 23-15
${ }^{310}$.................. ${ }^{\text {52-10 }}$	1672, 1613 Tol. Rec. 1500 100	R654.PM, R654.PV ${ }^{\text {3-3 }}$. Chge. Bul. 12... 120	
900 (So0 Model 508)..... 38	del 12C4) $\cdot \cdots108$		MMO19C Tol, Rec.	$\text { RA. } 50$
	170A. 17GA, 17Ha		Soe Model Mmola	TA
magnavox	(Ch. 1011 Tol. Rec. ...127-7	PM, R66	C Toll. Rec	
Chosis Amp-101A. 43-12	, 121,1218 (Ch. 99)	P. 7	PM-SC5-DWIU	(See Airline)
Chossis AMP-108A. 43-12	Tel. Roce. (Soes			
AMP-108B 41-10	141,1418 (Ch. 100)		RC-6A7.P9	MOPAR
Chasis AMP-109	lalc (Ch. 101). 142	$\mathrm{R}_{\mathrm{R} 75152} \ldots \ldots \ldots \ldots \ldots \ldots . .3$ 38-10	SA-10, SA. $20 . \ldots \ldots \ldots .10101$	602 (Coloniol Model
Chassis AMP-110	1428 (Ch. 100) Tol.	R.75343 (See Model 75143$) 39$	XA.701 Tel. Rec.......... 61-16	S71A) 19.-20
Amp.111A, B, C........ 68	Rec. (See Model 17DA) 127	R-76143 (Soe Model 2486) 25	XE.705 (See Model	${ }^{003}$
Chosis Amp. 110	160, 1608, 162, 163	R. 76162 40	-7011.	$106-9$
Chossis CR-188 (1558 Regency Symphonyl ... 18-22	, 1011 Tol. Rec. 127	2 ifo	XF.777 Tol. Pec.......... 101	802 (Philco C-4608) 18-24 802 (Philco C-4608)
Chosis CR190A, CR1908, 46-14	170 (Ch. 101) Tol. Rec. ${ }^{\text {a }} 127$		XN-752 Tai. Roc.	(Revised) 42-19
Chostis CR-192A, CR-192B 41-11	(500 Modal 170A) 127	11	-1 XF.7771 101	803 (Philco PD-4908) 66-12
Chossis CR-197C 37-11	902.903 (Ch. 103)	2486	XOB Tol. Rec. 1500	804 67
Chosis CR.198A, B,	Tol. Rec. (See	92.520, 92-521, 92-522... 68-11	Modal MMS10T).	${ }^{805}$
(Heppolewhite, Modern 17	Model 17DA) - 127		P-775, XQ-776, XOA.776	${ }_{808}^{806,807}$ (See Model 1803) 66
Chossis CR.199 63-13	, ${ }^{\text {a }}$ (1) (Ch. 103		1	
Chasis CR-200A, B, c, ${ }_{\text {c }}$ o.	Model İDA) 127	92303. ${ }_{\text {Modela }}$	XOA, XOR Tol. Roc.	
F	A2, G, GU, T,	92505.92506	Model MMSiot)...... 110	motor
${ }_{\text {Chossis }}^{\text {Chassis }}$ CR-202 ${ }_{\text {CR } 203} \ldots \ldots . . .$.	G, GU, T Tel. Reci. . ${ }^{\text {cosel }}$	Models R664PM.	A, XRPP TR1. Rec. (500	AR.96-23 (M-S)
Chossis CR-204	1142,1143 Tol. Rec.		XR.778, xS.786, xi-783 ${ }^{\text {m }}$	BKO-A (See Ch, 10A).... 106
Chossis CR-206	(Soe Model 12C4).	92752'	Tel. Rec. (iso	BK. ${ }^{\text {(Buick }}$) $\ldots \ldots \ldots \ldots 10$
Chossis CR-207A, B, C, D. 41	. G. GU, T, TX,		XF-777) 101	BK8, BK8X (Soe Ch. 8A)
Chossis CR-200A		MARK SIMPSON (See Masco)	A Tel. Roc.	${ }^{\text {CR. }} 6.6$ (Ch
Chosis CR-20	(See Model 12C4)		Model MM5107). 110	CR.76.
Chasis Models CR-210A, CR.2108	1348 Tel. Rec. (See	masco		CTO (See Model CT9).... 82
Chanis CR-2iiA	1400,14008 (ch. ${ }^{\text {m }}$	jmp , 31-17	xSE Tel. Rec	CT8 (50e Ch. 8A)........ ${ }^{46}$
(Soer Ch. AMp-111A)... 68	1401 ($\mathrm{Ch},{ }^{\text {103) }}$	5	Prod. Chgo. Bul. 12... 120	CIPA (See Ch. 10A)..... 106
Chasis CR. 213		IR ISU	SpT Tol.	
Chastis CR.213	Modol 170A) -i.i... 127	MA.SNO	ISee Modet MMSIOT . . . 110	FD. 6 (Ford)
Chorir CR-216	1546. G, GU, T,	MA-8N.	XTA, XTR	FD7 (Ford) (See
Chatis CR. 21		MA. 1		
orsis CR. 223		MA.IOEX	xx900 Tal. Rec. (See 110	
Choriar CR-229	Rec. (Soe Modal 12C	MA.12HF 51	ms107)... ... 110	GMOT (Soe Ch. 10A
Chosis CT-214, CT-218.	1600, 16008 (ch. 101)			GM99 (See Ch. 8A) ... ${ }^{46}$
	Tel. Rec. (See 127			
		MA. 17 l (Soo Model MA-17) 14 MA. 17 PN (Soo Model		HNO, HNS (See Ch. PA) . 106
	Toi. Rec. (Sos)			Itoíc (Soo Ch. 10A).... 106
(Seo Ch. CT-214)..... 62	Model 17DA1 127	MA-20HF		KR8, KR9 (Seo Ch. 8A) . . 46
Chosir CT-222 Tel. Rec.	1610. 16108 lch .	Ma.25 16-	Rec	KR9A (See Ch. 10a) 106
(Soe Ch. CT-219)...... 2		MA-25EX 60-13	$616 \mathrm{C}, \mathrm{T}$ (Ch. 9018)	NHo (Nosh).
Chassis CI-224 Tol. Rec... 97A-8	del 1704) 127	MA-25HF 54-13	1.	NH8 (Soe\% Ch. 8A)....... 406
Chorsis CI. 232 Trol Rec... 93A.9	1046, 1647, 1048, 1649	MA.25N \ldots............ 43-14	619 C (Ch. 9018)	OEO (Se0 Ch. 10a) ... ${ }^{106}$
Iosis CT-233	Tel. Rec. (See		Tol. Rec.	OE2 (Soe Ch. 8A)...... 46
(Soe Ch. CT-22	del	MA.25P (Soe modol M		OE6 (Oidrmobile)
Chatsis CT-236 Tel. Rec. (See Model CT- 232) 934	1671 (98 Soriel) Tel. Rec. $1672,1673,1674,1675$	-25PN (See Model	MEDCO (5	
	1672 Tei. Rec. Rec.	MA-25N	NER	PCO (S00 Ch. 10 A) 106
Rer 1 Sum,	1710 Ch. 1011		TV.1 (Ch. 24TV) Tel. Rec.. 56-15	$\mathrm{FC2}^{\text {(See Ch. }} 8 \mathrm{~A}$)...... 46
	(e0 Model 17DA) 127	MA.35RC is		${ }^{\text {PCo }}$ (Fontioc)
Chosis CT239 Tol. Rec. 93a	1900 Tel. Rect.......... 95A-10	MA-351 21	571)	
	1974, 1975 Tol. Rec...... ${ }^{\text {c }}$	MA. 50 . 3 30-16	6H (500 Moguire	
CT246 Tol. Rec.	(Soe Model l2C4)...... 108	$\begin{aligned} & \text { MA-30N (Se } \\ & \text { MA-SNO) } \end{aligned}$	8C ${ }^{661}$. 12 37-12	SROA (Ch. O8)
(See Ch. CT232)..... 93A	2546T, 25477, 2548	MA-50NR ${ }^{3}$	9A1123-9	SR6. SRB, SR9 (Sez Ch.
Chorsis CT232, CT233	2549 T Tel. Rec.	MA-60 119	9.1065	
Tol. Rec.	Model 12(4) 108	MA.75 ${ }^{\text {28-22 }}$	$9-1091$ A, 9.10918 ${ }^{35-15}$	SR9A (Soe Ch. 10A) ... 106
$\mathrm{Cl}^{2} 39$ CT230 Tol. Rec. 119	Chis 3801 A	MA.7SN ${ }^{\text {52-27 }}$		
Chossi, MCT228 Tol, Rec.. 95A.9			$164 . \ldots105^{-6}$	VFi03, VFIO3M (Ch, TS-8)
	iSco Model SAK731)... 28	MAP.	24TV Tel. Rec.	Tel. Rec. .,.......... 73-8
MAGUIRE	Ch. 68020	MAP.18 59-12	(See Model TV1)...... 56	Vk101, M Pel. Rec...... 51-14
30081, $5008 \mathrm{~W}, 500 \mathrm{DI}$,	(See Modal 6FM714)... 50	MAP-105 ${ }^{\text {25-18 }}$	${ }_{23 T 4} 3$ Tel. Rec.	VK106 (Ch. TS-9D)
300 DW	Ch. 68110	$\mathrm{MAPP}_{\text {MAP } 1205 \mathrm{~N}}$ M........ ${ }^{\text {52-12 }}$	574 ISee Maguire Mod 3711	Rec. Photofact Servicer. VKIO6, VKIO6B, VK106M
			3711 661 (See Mequire Model	Tol. Rec. [Soe Model
	Chisce Model 7YR732)... 29		8611 12	Vr103) ${ }^{\text {a }}$ \% \ldots..... 67
1.6614............. 12-18			61 Series 27	K106, Vkio
700^ ${ }^{7-18}$	(Saem Model 7YR772)... 42		meacury	
700E 15-17	Ch. 7809Al			Tel. Rec. \qquad $55^{\circ}-16$
MAJESTIC	(See Model 7YR753		${ }_{\text {Model }}$ SMF780) 62	VT.73. VT, 73A IChoriis ${ }^{\text {V }}$
	(See Model 7 7M887)... 56	MC-25PN, MC-25RC ... 57-11	8MM890 (Ch. BE90)	PS.41 Lorel Tol. Rec.... 71 - ${ }^{12}$
$5 \mathrm{SA30}(\mathrm{Ch} .4504) \ldots . .1-30$	Ch. 7C25A	MC.126, MC.126P111-. ${ }_{\text {M }}$	(8M-18805.8) … 49-13	VT105 (Ch. IS.90) Jol.
54445, 34445R 23-12		MHP-110x 115		Rec. Photofoct Sorvicer. 82
	Ch. 8.060 (See Model 8FM744) ... 30		8ММ991-E (8ММ.18®0ㅇ) . 83-4	T103, VT105M (Ch, TS-
5AK731, 3AK7BO. (Ch. 5BO5A) 28-19	Ch. 88070 ${ }^{\text {coil }}$		midiand	
6fM7I4 (Ch. 68020)..... 50-10			M68 2-	T107 (Ch. IS-901
		RK.5 \quad............... ${ }^{33-11}$	MIDWEST	Rec. Phoiofact Servicer. 32
781758 (Se0 Model 7 JK777R) 27	Ch 8CO7D ${ }^{\text {P }}$		MIDWEST	VTIO7, VT107M Pel. Rec. (Soe Model Vilos)... 67
$7{ }_{7} 432$ (ch. 47061				VT121 (Ch. TS.15)
	Chis iocz Modet 10FM981)	76, 711 20-20	(Ch. RGL-i2) 44-12	Toll. Rec.
	Ch 12826E		R.12. RG. 12 R R. 12	WRO (Ch. HS-18) WR7 WRE (Soe Model
	(Saee Model 12FM475).. 28	MASON		WR7 WRE (See Model
71866 (Ch. 7C25A)..... 60-14			(Ch. RGT.i6) 45-16	5A1 ICh. HS.6)......... 2-11
			58. ST-8. TM-8 $\cdots \cdots \cdots$.	SAS (Ch. HS-15) 3-11
75433, 75450, 75470	Ch. 18CPO, 18C91 (See Model 7TV850), .. .	45-5 (See Model 45-1A) 14	(Ch. Sim.8) 15-19	
7TV830, 7 TV832 1 lch .	Ch ${ }^{1501}$	MAYFAIR	S.12, SG.12. SGT. i2) 21-23	$\mathrm{scl}^{\text {(Ch. }} \mathrm{HS}$-228)...... 116
	(See Model Ch. 4504	310, $310 \mathrm{~W}, 520,520 \mathrm{~W}$,	$\text { S.16, SG.15, ST. } 16$	${ }_{\text {SC2 }}^{\text {(Ch. HS-238) }}$ (See Model SCl) $\ldots \ldots .116$
7YR752 (Ch. 7804A)..... 29-13 7YR753	(See Model 5A430)....		(Ch. SGT-16) 21-24	
7 RR772 (Ch. 7B09A) .. 42-17	$\mathrm{Ch}^{1506}{ }^{4506}$	350, 550W 24-22	(Seo model S-16) 21	${ }^{\text {3 (50e Model }}$ (511)..... 116
$8^{8 F M 744}$ (Ch. 88060) 30-15		Grade		${ }^{(1)}$ (Ch. H5-270)
M773 (Ch. 8B080). 8FM776 (Ch. 8807D) .. 29-14	[iSoos Miodel 75433).... 22	(............... 16	Minerva	(See Model SC1). 116 5C5 (Ch. HS-271)
8Fm889 (Ch. 8C070) 54-12	Ch. 4703			(500 Model Scl)...... 116
$8 \mathrm{st885}$ (Ch. 48108).... 47-11	(1909 Model 7P420).... 26	MECK (Trail Elazer-Plymouth)	W.117. Tropic Motier 6-17	3 Cb (Ch. H5-272)
85152, 85473 (Ch. 4810) 8-19	$\mathrm{Ch}_{\text {iseos }}{ }^{4706}$	CD. 300 (PX-3C5-EW-19) . 33-12	W.117.3 11-14	(Soel Model SC1) 116
10FM891 (See Model 10FM9811	$\mathrm{Ch}^{1508700^{\text {Model }} \text { (}}$	CE. 500 CM. 500 (5C5.P12 (507-W18)		
	(Soen Model 7Ci47).... 14	$\mathrm{CR}_{\text {CR-300 }}$ (10............ 38	W710, w710A (wil9) .a s-25	511 (Ch. HS-230),
C4. 12 CS Tel. Rec.....108-7	Ch. 4708R	cW .500 ${ }^{40-11}$	W.718, 411 41-14	311 U (Ch. H5-224) 100
12FM475, $12 \mathrm{FFM778}$		cx.500 . 302 48-13		$511 \text { (Ch. HS 250), } 5110$
$12 \mathrm{FM779}(\mathrm{Ch} .41201) \cdot 28-20$ $2 F M 893$ (Ch, 12C22E).. 59-11	Ch. 4810 (See Model 85432)		729 (Portapal) 23-14	(Ch. HS-224) (Soo Model 5 Il) 100
$1272,12 T 3$ Tol. Rec. (500		EF-730, EG-73	MIRRORTONE (See Mack)	SM1, 5M1U, SM2 SM20
Model 12C4) 108	(See Model 8 Ch. 41201	Ch. 100031 104-8	ichell	(Ch, HS-249, HS-223). . 101 RIIA 3R12A 3R13A
(See Mode1 12T2). 108	Model 12F	мstor, mimsiz	1250, 1251 55-14	SR1AA, SRISA, SRİGA
	MANTOLA (E. F. Goodrich Co.)	MMSILC, MMSIGT	1268R127-9	(Ch, H5-280) ${ }^{\text {(500 }}$
16CS Tol. Rec. ${ }^{\text {mabe }}$	R630-RP 3-22	MmbiAC, Rect Tol. Rec......117-8	D insula	
Model 12C4) 16CT4, 16 CTS TeI. Re	$\begin{aligned} & \text { Ro43-PM }(\text { See Modei } \\ & \text { RSA3W) } \end{aligned}$	MM6 Pro	MR.6 (Wirtane) \qquad	5R14U, 5R15U, 5R16U (Ch, MS-242) 115 - 6

MOTOROLA-MUNTZ

PHILCO-Cont.

PLYMOUTH (50e Mapar)

PLYmouth

policalarm
PR. 8
PR.31
P......................103-12
12
PONTIAC

PORTO BARADIO (
PA. 510 (9008-A).

PORTO PRODUCTS

SR-600 (Ch. 9040A

premier

1stw
PURE OH (See Puritan)

pulitan

501 (Ch. $5015 W G$), 502 501 X (Ch. 5015w.i],
$502 \times$ (Ch. SD25WG)

S04 (Ch. SABSWG)....
SOAW (Seo Modal 504).
$4-5$
$4-26$
$10-25$
$5-38$

RItan－Con	aca victor－Cont	OR
508 （60155W）．	88x65（See Model 88×6）． 44	54b1， 548 Bl －${ }^{\text {c }}$ 5482，
		5413（Ch．RC589）\cdots ．．．．${ }^{\text {7 }}$ 7－22
500x 506 ）．．．．（500 Model	8PCSACSAIC（Ch．KCS2AB－）．	55AU（Ch．RC1017）．．．．．． 2
508 （Code 7A35SW）．．．．．．－31	KRK1A．1，KRKA，	35 U （See Modal 53AU）．
	KRS20A－1，KRS208－1	${ }^{35 F}$（Ch．RC． 1004 E ）．
25－24	KRS21A．1，RS．123C）	35 FA ISoe Mod
radio apparatus corp．	8R71．Reh Re． 10000 I．．．．．90－9	$56 \times, 56 \times 2,56 \times 3$ （Ch．RC． 1011 ）
（See Policolarm）	8R72（Ch．RC－1080A）．．53－20	56x5（500 Model 56×10 ）
RCA VICTOR	8R74，8R75，8R78（Ch．	$56 \times 10 \mathrm{ich} . \mathrm{RC}$
AAPU．1	A） $88711 \ldots$.	$58 \mathrm{AV}, 58 \mathrm{~V}$（Ch．RC．604］：1－32
A5S（Ch．RC－1087）	87241，87243， 87244	${ }_{63 E}(\mathrm{C}$＇，RS－127）．．．．．．． 28
A106（Ch．RC．622）．．．．．．．97－12	iCh．KCS28）Tal．Rec．．．74－8	64F1，64F2（Ch．RC1037）．
B1．A，B1．8，B1－C（Ch．	${ }^{81270}$ ICh．KCS29，	64F3（Ch．RC1037A）．．．4－16
KCS24－1，KRK1－1．	KCS29A）Tol．Rec．．．．．．．85－13	65bR9（Ch．RC－1045）．．．．23－16
KRS20－1，KRS21－11	8 8T270，81C271（Ch	65F（Soo Model 35
	KCS29，KCS29A）${ }^{\text {P }}$	$65 A U$（Ch．No．RC．1017A）14－23
－ $\mathrm{C}^{\text {a }}$ 82．F	Rec．（Soe Modol 81270） 85	65U， 650.1 （See Model
（Ch，KCS24－1，KRK	87 K 29 （Ch．KCS32，	osau）
KRS20－1，KRS21．1）	KCS32A，KCS32B，	$65 \times 1,63 \times 2$（Ch．RC－1034）－ 30
Tol．	KCS32C，RK135，	65×1， 65×2（Ch．RC．1064）31－26
83－A，83－8	RK135A）Tel．Rec．．．．．88－9	${ }_{65 \times 8}{ }^{50} 505 \times 9$（See Model
B4．A．B4．B．	87 K 320 （Ch．KCS33A．1）	65×11
B5－A，${ }^{\text {B5－}}$	（Rodio Ch．RK－135A－1）	8 BX （Ch．RC－
Bx6（Ch．RC－1082）．．．．${ }^{103-13}$	Tol．Rec．（See Model	RC． 1040 A）
Ex 35 （Ch．RC－1088），Bx57	8T270）．．．．．．．．．．．．．．． 85	66E（Ch．RS．126）．．．．．．． 17
（Ch．RC． 1088 A）．．．．．．102－11	8TR29（Ch．KCS32，	$66 \times 1,66 \times 2,66 \times 3,66 \times 4 . .17023$
M－1222，MI－12224A ．．．81－12	KCS32A，KCS32B，	66x7， $66 \times 8,68 \times 9$
M1－12236，A，－B，C，	KCS32C，RK135．	（See Model 66x1
M1． 122	35A	$6 \mathrm{XI} 1 \mathrm{ICh}. \mathrm{RC}$.
M1－12238，${ }^{\text {A }}$ ，	（See model 87K29）．．．． 88	66x12（Ch．RC． 104
	${ }^{81530}$ Tol．Rec． 1500	66x13， $06 \times 14,86 \times 15$
M1－12287，M1－12288．．．．59－12	model 63075）．．．．．．． 54	（Ch．RC－10468）．．．．．．． 27
M1．12289，M1．12290．．．80－12	8TV41（Ch．KCS23D－1，	V1，67avi
M1－12291，M1－12292，	KCS25E．2，RK117	（Ch．RC．606）．．．．．．．．9－27
M1－12293，M1－12294 ．．86－8	R5．123A）Tol Rec	68R1，68R2，68R3，68R4
1－12295		Ch．RC．6081 ．．．．．．．23－17
（Soe Model M1－12287）． 89	8TV323，8TV323B	$75 \times 11,75 \times 12$
	kCS30．1）（Rodio Ch	（Ch．RC－1050）．．．．．．．．33－21
${ }_{1}^{1500}{ }_{-12999}$	RC6168，C，J，K）Tol．	$75 \times 14,75 \times 151 \mathrm{Ch}$
（See Model Ml－12287）．	Rec．（See Model 81241） 74	${ }_{75 \times 111}$ RC－1050）（Soe Modal
M13159 ．．．．．．．．．．．．．．10－26	$7{ }^{\text {（ Ch．RC．615）（Soe }}$	$75 \times 1675 \times$
M1－13167 ．．．．．．．．．．．．．．35－19	8V90 Moil RC． 61	75×19（Ch．RC． 1030 B ）
PPAU． 1	－RC－61日A），8V	（Seo Model 75×11 ）．．．． 33
RV151 ICh，RK12IC．	RC．618A，RC． 616 H ）．．．56－20	$77 \mathrm{O}(\mathrm{Ch} . \mathrm{RC}$－1057A）．．．．．38－17
	8VIll，${ }^{\text {PVII2（Ch．RC－616）58－18 }}$	
S1000（Ch．Kcs31－1，	8VI51（See Model RVISI） 61	77 V 2 （Ch．RC－606．C）．．．． 39
R（6178）Tel．Rec．．．．．．91A．11 00 （Ch．KCS．38）	$8 \times 53(\mathrm{Ch} . \mathrm{RC}-1064) \ldots . .39-17$	610 V 1 （ $\mathrm{Ch} . \mathrm{RC610C)}$ ）31－27
Tol．Rec．．．．．．．．．．．． 93 9－9	8x71， 8×72（RC－1070）．．．63－15	$612 \mathrm{V1}, 812 \mathrm{~V} 2,612 \mathrm{~V} 3 . .31-27$
20，T121（Ch．KCS 34	8x521（RC．1086）．	（Ch．RK．121，RS－123）．． 17
Toi．Rec．ISee Model	$\begin{array}{r} 8 \times 522 \text { (RC-1 } \\ 8 \times 541,8 \times 542 \end{array}$	612Va（Soe Model 612 VI$)$
	（Ch．＇ RC － $1065, \mathrm{RC} .1065 \mathrm{~A}$ ）59－16	621 Ts（Ch．KCS21－1）
Tol，Rec，．．．．．．．．．．．．．109－11	$\times 544,8 \times 545,8 \times 346$ ，	630 TCS Toi．Rec．
TA． 128 （Ch，KCS42A）	8×547（See Model $8 \times 541) 59$	（See Model b30TS）
TA．129（Ch．KCSA 1	$8 \times 681,8 \times 682$	
		641 TV（Ch．KCS25A1．
Ch．RK135D）	（500 Model 88×5 ）．．．． 46	RS．123A）Tol．Rec．．．．．91A－11
Tol．Rec．．．．．．．．．．．108－10	98x36（Ch．RC．1068）．．．．79－13	648 PTK （Ch．KCS24
124，TC125，TC127（Ch．	9EY31，9EY32 ．．．．．．．．．．98－10	KRK1－1，KRS20－1．
1.		KRS21A．1，RK－121A，
（500 Model 1100）．．．． 93	KCS22C．1，D，KRK． 4 ，	RS．123A）Tol．
165．TC166．TC167，	KRS208－1，KRS21A．1．	（See Model PPCS41）．．． 90
${ }_{\text {ReC }}$（SCSAOA）	RS．123C）Tol．	（Ch KCS2
Mo．Redel Ti64）．．．	（S900 Modol 8PCSA1）．．． 90	KRK
$2 \mathrm{SS1}$（Ch．KCSAS）		KRS21A．1，RK－12la，
Tol．Rec．${ }^{\text {a }}$（3i．．．．．．．111－11	9 T 77 （ $\mathrm{Ch} . \mathrm{KCSA9}$ ，A ，	（Sob Modol BPCSA1）．．． 90
$2 \mathrm{S31}$（ Ch．KCs－43）	，T）Tel Rec	710 V （ Ch, RC－613A）．．．． 40
Tal．Rec．Prod． Chgo，Bul． li，	（S50 Model 19157$) \ldots .122$	71 Vl （See Model 711 Vz$) 22$
$\begin{aligned} & \text { Chge. Bul. } 11 \text {. } \\ & \hline 60 \text { (Ch. KCS.45A) } \end{aligned}$	9179 （Ch．KCS49，A， AT．T）Tel．Rec．	
Tel．Rec．Prod．	（Soo Modol 91571 ．．．． 122	RK．117 \＆RS．123）．．．．．．22－24
Chgo．Bul． $11118-1$	9289 （Ch．KCS60，A，${ }^{\text {a }}$	
2160 （Ch．KCSASA）Tel． Rec．（See Model 2T31）． 111	AT，T）Tol Rec． 122	$730 \mathrm{TV11}$ ．．．．．．．．．．．． 70
2181 （Ch．KCSA8，Rodio		$730 \mathrm{TV1} 1 \mathrm{Ch}, \mathrm{KCS27}$ ，
Ch．RC． 1090 ）Tol．Rec．	Tel．Rec．（Sos Model	730 TV2（Ch．KCS27．
（ 33 （Ch．RCS47AT，	${ }^{81211) ~} 74$	RCO108）Tol．Rece．
（Soe Model 6TS4）．． 1113	ReC．（See Model 81241） 74	（See Model 730 TV1）．．． 70
6153（Ch．KCSA7AI，${ }^{\text {（）}}$	97246 （Ch．KC538）Tol．	KRKIA－1，KRS20A－1
Tel．Rec．Prod． Chge．Bul．12．．．．．．．．．120－1	Rec．（See Model T100）	KRS21A-i, RS-123Ci
$6 T 34 \text { Ch. }$	Roc．（So0 Model Tlooi．．93	Tel．Rec．（Se Model 8PCS
KCSA7，A）Tel．Rec．．．． 113 －7	97270 （Ch．KCS 29.	
If Tol．Rec．Prod．${ }^{\text {a }}$	KCS29C）Tel．Rec． （See Model 812701 \qquad	（ 5 Ke Model 63075 ）
	9 TC 240 （Ch．KC5288）${ }^{\text {a }}$	Ch．KCS－208－1
64， 6763 （Ch．KCS47． A）Tel．Rec．	Tel．Rec．（See Model 872411	
（Soe Model（TS4）．．． 113		（Sob Model 8TS30）．
64， 6765 ［Ch．KCS47，A， AT，II Tel．Rec．	Rec．（Soc Model Tlool： 93	
Prod．Chge．Bul，12．．．120－1		Ch，KCS24．1
71 Ch ．KCSA7，A）Tel． 113	9 PC 249 （Ch．KCS34，B1 Tei．	${ }^{\text {（Soou Model }}$ SPCS
Rec．（See Model 6754）． 113 6171 （Ch．KCSA7，A，AT．		
T）Tel．Rece Prod．${ }^{\text {a }}$		Ch ．KCS248－1
Chge．Bul． $12 \ldots \ldots . .120-1$	（5see Model $812701 . . .85$	${ }^{\text {（Soo Model }}$ MPCS
72 （Ch．KCS 408） Tel．Rec．（See	9 TW309（Ch．KCS41．1．	
Modol 7164）．．．．．．．．． 109	9rw333（Ch．KCs 30.1 ，	Ch．KCS240
6174，6175， 6178 （Ch．KCS47，A）Tel．Re	Rodio Ch．RColonitot．	（Soe Model 8 PCS 41）．
（Soe Model © ors i）$\ldots . .113$	Rec．（See Model 8T241）． 74 91W390（Ch．KCS31．1．	
6T74，6T75， 6176 ［Ch． KCS47．A，AT，T）Tol．	R（6）7A）Tel．Rec．	． $\mathrm{KCS23C-2}$
KCS47．A，AT，T）Tol． Rec．Prod．Chge．	（Seod Model S1000）．．．．91A	（Soe Model 641 TV ）．
Bul． 12.1		Ch．KCS25D．1 （See Model 8TV4）
84 （Ch．KCS48，Rodio Ch．RC－1090 or	IC． CC －61BC）．．．．．．．73－10	$\mathrm{Ch}, \mathrm{KCS23E-2}$
RC-1092) Tel. Rec.	9W106（Ch．RC．622）	
6780,5787 Ch． $\mathrm{CLSS48}$ ，	（Se0 Model Alob）．	
Rodio Ch．RCl090 or RCl 092）Tel．Rec．	9 562 （ $\mathrm{Ch} . \mathrm{RC}$－1079C） $101-9$	Ch．KCs27
81）（Ch．RC－1069），	$9 \times 531(\mathrm{Ch} . \mathrm{RC.1079)}$	（S00 Model 730 TV I）．．． 70
8842 （Ch．RC．1069A），	9×572（Ch．RC． 1079 A） 107 —7 9×641（Ch．RC－1080），	（SCob Model 8T2A1）．．．． 74
816（Ch．RC－1069C）．． 76	9×642（Ch． $\mathrm{RC}-10 \mathrm{BOA}) .87$－9	KCS28，A，B，
${ }^{\text {（Sese Model } 1881) ~} 76$	9x651（Ch．RC．1083），	（See Model 81241 ）．．．． 74
	9x652（Ch．RC．1085A）．104－9	Ch．KCS 29，KCS29A
		KCS Model 8 8T270）．．．．． 85
	$\text { 45-EY-3 } 126-11$	81270)

RCA VICTOR－Cont．

RCA VICTOR－Cont
Ch．KCS30－1

 ．

Ch．KCS31．1（Soe Model 9 ． 914
Sh．KCS32，KCS32A．．．．．
Ch．KCS32，KCS32A
KCS32B；KCS32C
Model $81 K 29$ ）
Model 81K2
Ch．KCS33A－1
（See Model
．．． 5
Ch．KCS34，it
（Soe Model $T 100$ ）．．．．．． 93
h．KCS．38，C
（Soe Model T 100 ）．．．．． 93
Ch．KCS40，A，（S．．．．．．．．．．．
Model T164）．．．．．．． 10
Ch．KCSA1．1（Se
Ch．KCSA2A（Soe
Model TA 1 28$). ~$
110 110
Ch．KCS43（See
Model TA169）．．．．．．．． 10
iSoe Model 25S1）．．．．．． 111
Ch，KCS47，A，AT，Y
iSee Model 8754 ）．．．．． 1113
Ch．KCSA8 ${ }^{\text {I }}$ ．

Ch．KRK－1A
（S00 Modei 9 P89）．．．． 122
（See Model sPCSA1）．．． 90
Ch．KRKI－1
Ch．KRKIA－1
（Soe Model BPCS41）．．． 90
（Sae Model apCSA1）．．． 90
Ch．KRS20．1
（Soe Model BPCS41）．．． 00
Ch.
C
C
C
C
C
C
C
C
C

（SC610A．RC6108
（See Madel
Ch．RC610C ${ }^{\text {Mod }}$ 730TVII．．． 70
\pm
む む む U
Ch．RC－6160，RC－616C
Ch Model RT2411．

Ch．RC－ 616 N
（See MT2
8T1）．．．． 7
Ch．RCo17A（See Model
Ch．RC6178
（See Model S1000）
Ch．RC－618，RC－618A
isee Model 8 V90）．
Chossis RC－618 B，C
（See Model 9W1O1）．．． 73
（S．C022 Model A 106）．．．．． 97
Ch．RC－1004E
（S．R．Model 55F）．．．．．．．
Ch．RC． 1011

©
Ch．RC． 1017 A
（Sob Model bSAU）．．．．． 1
Ch．RC． 10239
（See Model 56×10 ）．．．．
Ch．RC－1034
（See Model 65×1 ）．．．．
（See Model 65X1）．．．．．
Ch．RC－1037，RC．1037A
（Se－Model 64F1）．．．．．．
（See Model RF43）．．．．．． 97
C_{h} RC－1038，RC－1038A
（See Model $66 \times 11 \ldots .$.
（See Model 66日X）．．．．．． 14
（See Model 88x6）．．．．． 44
（See Model 658R9）．．．．． 23
Ch．RC－1046，A， 8 in ．．．． 27
Ch．RC－104
Ch．RC．1050，RC－10500
（See．Model 75×11 ）．．．． 33
isee Model 77U
Chassis RC． 1057 B （See
Model
Model 9 Y7）
75
（See Model 88x5）．．．．．
Ch．RC－1060 98×5 ）．．．．． 46

RAYTHEON-CONT.	Cont.
$R C=1403 \text { (Ch. 14AX21) }$	510 103-14
RC-1618A (Ch. 160 AY2ii),	
${ }^{\text {RC. } 16188(C h . ~}{ }^{\text {c }}$ (6AY24)	
Tel. Rec. (See Model $\text { C-1615A) } 124$	and Model 8008 Set 800st Tol. Rec. Prod.
-1619A (Ch. 16AY2il),	Chgo. Bul. 4.......... 105
RC. 16198 (Ch. 16AY28)	scort (H. H.)
	$210 . \mathrm{A}$
RC.17188, RC.17198 (Ch.	
17AY2i) Tel. Rec. (See Model C-1615A)	SEARS-ROEDUCK
$70 \times 21,70 \times 22 \mathrm{P}$ Tel. Roc. ${ }^{\text {a }}$ 1-1	
10axpiz Tol. Ree.	SENTINEL
(Soe Modol A-100×24). 75	- U-284GA (Soe Model
10axf43, 100x22	
Rec. Prod. Chge. Bul, 1. 103-19	2841, 1 U .284 N
AXF44 Tol. Rec, [5	1 U
Modol C. 1102 (Set 94)	(See Model 2841)
	U.2
1501	293CT (Soe
(See Model A-100 $\times 24$). 75	293C1)
$100 \times 24 \mathrm{Tol}$ Rec	2931.
(See model A-10DX24). 75	294 Sariol)
180×214 Toil	$14.2941,1 U-294 N$
(500 70x21)	IU-2945 [Se Model
Ch. 10A $\times 22$ ISeo Model	294 Soriat
M7011	IU312PG, 14312PW 103
Ch. $12 \mathrm{~A} \times 22$ (See Model	U-3131, 1U-313W
C1102)	(Soe Modal 3131)
Ch. 14Ax21 fol. rec.....	IU.314E, 1U.3141.
Model cio	1 U .31
Model	31
161518 ${ }^{\text {d }}$	
	ISoe Model 316 P
Ch. 16 AY211 1500 Model	U-335PG, P1, PM
1615A) 124	U338.1. ${ }^{10153}$
17ar21 (Soe Model	14339.k
C-1714B)........	1U416 Yoi. Rec. 117 - 12
h. 17AY24 (See Modol	1 L 419 1U420 fol. Rec... 115
c.1715A)124	IU4208 Tel. Rec. 124
RECORDIO (Wilcox-Gay)	IUA23. 10424
6A10, 6A20 (Ch. 6A) 10	ISoe Model
6810, 6820.68	
7042, 70	10428 rel.
7EA0, 7EA4	modol
${ }^{8110} 8130$........... $62-17$	IU432 Tel. Rec. (See
$9 \mathrm{Cl10}$.............. 91	
$9 \mathrm{G40M}, 9 \mathrm{G42}$......... ${ }^{60}$	-28.419
	2841
Ch. 7DI (See Model 7Da2) 52	
REGAL (TOK-FO	(S00 Model 2841) 1
Tok-Fone (20-woll Amp.) - 13-27	285P
${ }^{4} .16731$ Te	286P, 286PR 23-20
AP40, ARP400, ARPA50 .. 15-26	2895
	292k
CD31	293 Serios
${ }^{15808}$ Model 16731).... 80	293.ct 29-22
	2931, 2
	-0
1.78 ${ }^{50}$-18	4 Serios
w700 isee Model wsool. 14	2941, 294N, 294T
W800, w80	
w900, w901 13-28	2968, 2969 46 - 22
16731 Tel. R	302-1, 30
16736 Fol. Re	305-1, 305 -1.3, 305
19 C 36 Tol. Rec. 20	
	${ }^{30} 51.1509$
747 27 27-22	${ }^{3129 P G} 312$ PW iSou. Model ${ }^{\text {2s-30 }}$
m7 53-21	
1007 Tol. Rec. 83-9	313-1, 31
1030, 1031	314.E, 314.1, 314.w.... 38-21
1 1590 Modal	315-1, 315-W 40-19
1049 17-28	316PM, 316PT 48-22
	332 (Seo Model 31
	333 (See Model 315-1)... 40
1230 Tol. Rec.	335PG, PI, PM, PW
(Soo Modal	
1500	Model luj38) 122
(Sob Mol	
1749 28-29	1See Model 103
7152 $70{ }^{70-8}$	401 , 402 Sories Tol. Roc... 70-9
${ }_{7162}$............... 69-12	$405 \mathrm{~S}^{1} \mathrm{Mm}$ Tol. Rec.
7163 666^{60-14}	(Seo Model 400 TV 73
7251 40-16	Sories Tol.
REmbrandt	(Soe Model 401 So
80	407 Sories
\%	409 Sorios
721, 1606, 1506-15, 1950 Tel. Rec......... . . 65-11	$4{ }^{\text {4 }}$ (Soer Model 401 Rec. Sories)
nemisk	
mps.5.3 …........... ${ }^{\text {2 }}$-28	Tei', Rec, 100-11
53008, 530081, 33001 .. 23-18	412, 413, 414, 4
5310 -10........... ${ }^{\text {40-17 }}$	Rec. Prod. Chge. Bul. 4, 105
5400, 3410 44-19	¢ ${ }^{\text {Tol }}$
3500 "Scottio Pup ". 27-23	(See Model 1U416).... 117
\$505, 5 S10, 5315	
3520,5330 - 'scottio Jun.	
ior: [See Model 5500] 27	$1042081 \ldots \ldots . . .$
6000 77-9	423, 424 Tel. Rec. (See
renard	Model 1U42083124
(-1A, PT-1A, IB5t-1 9-28	425 Tol ${ }^{\text {model }}$
Scort (E, He)	428 Tol. Rec. [Soo Mod
Musicole 44-20	$1 \mathrm{U425)}$.
sic Control, Dynomic	432 Tel. Rec. (See Mode IU425)
Noise Supprosior 46-21	
11, otila Tolevisi	SETChEL-CARLSON
Roceiv	116
1, bl1A	427 21-29
13A Toi. Rec.............	
160 40-18	
300 Tol. Recres	469
100 Tol Re	570 97
400 Tel. Rec. Prod. Chge. Bul. 4	SHERIDAN ELECTRONICS (5ee Vogue)

IGNAL	silvertone-Cont.
AF2S2 \ldots. 37	7145 (Ch. 436.200) 23-21
141 44-21	7148 (Ch. 431.188$)$,
241 ${ }^{33-25}$	7148A (Ch. 431.188-1) 23-22
39	7152 (Ch. 109.626) 25
25	7153 (Ch. 109.627) 26-30
	$71651 \mathrm{Ch} .101 .823-4$
SILVERTONE	7166 (Ch. 101.823,
1. 2 (Ch. 132.878) 101-	101.823-1) $\ldots . \ldots \ldots$... 10-29
33 (Ch. 548.363)111-13	7210 (Ch. 101.820) 32
41, 41A (Ch, 135.245).. 101	
51, 53 ($\mathrm{Ch}+132.887) \ldots .112-8$	7226 (Ch. 101.819 A$)$
54, 56 (Ch. 132.883) ...115-10	$7230(\mathrm{Ch} .101 .802-2 \mathrm{~A})$
64. 63 (Ch. 101.839-2)	(See 6230)
$101{ }^{1 / C h}$	7300 (Ch. 335.240$)$
(Ch. 549.100 .1) Tol.	7330 (Ch. 435.410) 38-22
105 (Ch. 132.882)	
Tel. Roc.	7353 isee Mod
106 (Ch. 132.889$)$	${ }_{8000}$ (Ch. 132.838) \ldots... $31-29$
	8003 (Ch. 132.818-1).... 53-22
Rec. (See Model 101). . 102	8004 (S8ee Model 8003$) \ldots 53$
112 (Ch. 478.289$)$	
	8011 (See Model 8010).. 40
1201015	8020 (Ch. 132.841)..... 43-17
122 (Ch. 478.289)	${ }_{8022}^{8021}$ (Ch. 132,868)..... $70-10$
125 (Ch, 478.2357$)$	8024, 802s ich.
133 (Ch. 100.043)	8050 CM .101 .813
Tol. Roc.	8051 (Ch. 101.839)..... 49-19 8052 (Ch. 101.808. C)... 68-15
143A \|Ch. $100 . \mathrm{iij}$	Soe Model 805
Tel. Rec. 121-12	70 (Ch. 101.817-1A)
159 (Ch. 478.309) T	8071 Moder 7070)..... 30-20
Rec. (Soon Model 120). . 115	8072 (ch. i01.834) 34-19
	8073 (Ch. 135.243)...... 84
$161-16$ (Ch. 100.1 i 2 j	8080 (Ch. 101.852)...... 52
	$8083,8083 \mathrm{AlCh}$
$\left.179.16 \mathrm{ICh}^{\text {che }} 132.890\right)$	101.809-1A) (S.e
	Model 7080) 38
180-16 (Ch. 132.890)	
194.10 /Ch. 132.8900	Model 70801 58
Tol. Rec.	8086 (Ch. 101.814.5C).. 61-18
195.16 (Ch. 132.890)	8086A, 80868 (Ch .
Tol. Rec. $13 . \ldots \ldots$.	101.814-6C) (Soe
10 (Ch. 132.8801	Model 8080
215 (Ch. 528.174).	8090 (Ch.
${ }_{225} 220$ (Ch. 528.171 .11 . ${ }^{\text {a }}$ (107-13	
239 (Ch. $348.360 \cdot \cdots$)115-12	(500 Modal 7119 62
245 (Ch. 548.358.	8100 (Ch. 101.829)...... 51-
246 (Ch. 137.906) 111	$8101,8101 \mathrm{~A}, 8101 \mathrm{~B}$,
249 (Ch. 548.360 .11$)$	8101 C ICh. 101,809
500 Modal	-
$1300-1(\mathrm{Ch} .319 .200-1) 90-10$	
1301 (Ch. 319.1901...... 91-11	8102A ($\mathrm{Ch}, 101.814 .3 \mathrm{~B})$
1304 (Ch. 185.70	(See Model B086)
${ }^{6002}$ (Ch. 132.818) 5-35	${ }^{81028}$ ($\left.\mathrm{Ch} .101 .814-28\right)$
6011 (Ch. 132.816),	(Soe Model 8086).
6012 (Ch. 132.816 A$)$.. 15-27	8103 (Ch. 110.473)
6016 (Ch. 132.820) 27 24 6050 (Ch. 132.825.4)	$\begin{aligned} & 8104 \text { (See Model } 808 \\ & 8105,8105 \mathrm{~A} \end{aligned}$
8051 Ch .110 .4514	(Ch. 101.8331 35-20
8052 (Ch. 110.82) ... 13-29	8106, 8106A (ch.
	101.833-1A)
6092 (Ch. 101.67218$)$	8107A 8108, 8108A 1 C̈.
6093 (Ch. 101.672.1A) 10-28	101.8511. 8109
$6100(\mathrm{Ch} .101 .060-1 \mathrm{~A})$.. 6-29	101.851.1)
6104 (Ch. 101.662 .2 D)	8112,8113 (500
	Model 1815
6111 (Ch. 101.662 3)	101.825.4), 811
See Model 10	.829.3
114 (Ch. 101.602.5F)	101.825-3F)
(Sae Model 0106 A) .i. 29	101
6203 (Ch. 101.800 A)	$101.831 \mathrm{~A}, \mathrm{Ch}$.
Seo model (200A).	101.831-1) (S00
	${ }_{8127}$ Model A B, C C Ch.
6230 (Ch. 101.807),	101.831 A), $8128, A, B$,
6230 (Ch. 101.802-1).. 11-21	C (Ch. 101.831
6285A (Ch 101.666.18) - 20-28	Recorder Amp. ICh.
${ }^{6290}$ (Ch. 101.677 .8) \ldots... 20- 29	$8130.773)$............ 1
${ }_{6295}(\mathrm{Ch} .528 .6293) \ldots . . .9^{\text {92-12 }}$	${ }_{81} 132(\mathrm{Ch}, 101.854)$
6685 (Ch. 138.13C,	Tol. Rec. 66-15
Ch. 139.150-1).	8133 iCh .101 .82
Power Shifter ${ }^{\text {13 }}$ 130	$101.846)$ Tol. R
7011	${ }^{\text {(Soes moder }}$ 8132).... ${ }^{66}$
7012	${ }_{81} 145$ (Ch. 109.631$)$ ….. 45- ${ }^{\text {a }}$
7013	8148 (ch. 109.632) 44-22
7016	8149 (Ch. 109.633)..... 48-23
7017	8150 (Ch. 109.634) 32-22
7020 (See Model 7021	8152 (Ch. 109.635)
7021 1Ch. 101.807. $101.807 A)$	(See Model 8153)..... 42
7025 (Ch. 132.807 2) 29-24	${ }^{8153 A}$ (Ch .109 .635 .1$)$ 42-22
	8155 (Ch. 463.153)..... 57-17
${ }_{7070} 7080$ Ch. 101.817$) \ldots . .33^{30-26}$	8160 (Ch. 109.636$)$
7080 (Ch. 101.809) 16-32	8160 A (Ch .109 .636 A$)$. 50-17
	8168 (Ch. 109.638)..... 46-23
7085 70 Ch .101 .8141	8169 (Ch. 109.638) (See Model 8168). 46
	8200 (Ch. $101.800-2 \mathrm{E}$)
7095 (Ch. 101.820)	
(Se0 Model 7115) 16	${ }^{201}$ (Sea Model 6200A). 65
	8210 (Ch. 101.820-1A) ... 71-13
(S00 Modol 70859 30	220,8221 (ch.
7103 (Ch .110 .466 .1$)$	$101.801-3 \mathrm{D} \text {), } 8222$
${ }_{\text {150e }}$ Modal 7084) ${ }^{27}$	
	8231 (See Model 8230). . 59
7115 (Ch. 101.825)	8260 (Ch. 101.823-28)
101.825	(So0 Models 7163, 7166) 10-29
7119 (Ch, iol.825.2C) .. 62-18	8270 A (Ch .101 .822 A$)$. . $57-1$

SHVERTONE-Cont.	
9000 (Ch. 132,857).....	
9034 (Ch. 101.849)..... 63-16	
$9073,9073 \mathrm{~A}$ (Ch. 135.244), 90738	
(Ch. 135.244.1)	83-10
9073 C (Ch. 133.243 .1	
9082 (Ch. 135.245) (500	
Model 41$)$	
9101 (Ch .101 .809 .3 C$)$	
9102 (see Model 70	
9105 (Ch. 132.875)	
(Ch. $478.22 i 1)$ Toi. Rec.. 97	
9119.9120 (Ch.	
91204 (Ch. 101.865.1)	
${ }^{9121}$ (Ch. 101.867$)$	
${ }^{9122 A}$ (Cat. Rec. 101.868)	
(Ch. 110.499.1), 9126	
ICh. 110.499	
${ }^{9123}$ (${ }_{\text {chel }}$ Rec. 478.252)	
125A (Ch. 478.253$)$ Tol.	
31 ich 178301	
lil (Ch. 478.210)	
$\begin{aligned} & 9133,9134 \text { (Ch. } 101.866, \\ & \text { Radio } \mathrm{Ch} .101 .859) \end{aligned}$	
9153 (Ch .435 .417$) \ldots . . .67-16$	
9161 (Ch. 5488.358$) \ldots .$. . $81 .-10$	
270 (Ch. 547.245)...... $22-11$	
9280 (Ch. 328.168	
(S500 Model 133)	
Ch. 100.111 (See Model 143A) 121	
Chi 100.112 (See Model	
Ch. $101.161 .660 .1 \mathrm{Ha}^{\text {a }}$........ 991	
101.662-20, 101.662-3C (5ee Model 6105).	
is (See Mod Ch. 101.6778	
Chi ${ }^{1508}$ Model 6200	
$\left.\mathrm{Ch}^{(500} 101.80 \mathrm{Mol}, 101.82004\right) \ldots$	
(isob Modol 6220)....	
(5ee Model 6230) Ch. 101.807, 101.807A	
Ch. 101.808	
Ch. ${ }^{101.808-1 C, ~} 1501.808$.	
${ }^{\text {chi }}$ isol Model	
Ch .101 .813	
(Soe Moder 8050).....	
Ch. $101.814,101.814 .1 \mathrm{~A}$	
Chi 101.819A 7070)..... 30	
(Soe) Model	
(See Model 7210)..... 32	
(500 Model 8090).	
$\begin{gathered} \text { Ch. } 101.823,101.823 \mathrm{~A}, \\ \text { io1.823-1, } 101.823 .1 \mathrm{~A} \\ \text { (Soo Model } 7186) . . . \end{gathered}$	
Ch. $101.825,101.825 .14$, 101.825-18 (See Model 7115)	
$\begin{array}{r} \mathrm{Ch} .101 .825-2 \mathrm{C}, 101.825 . \\ 30,101.825-3 E \end{array}$	
(Sope Modol 7119 62	
Ch. 101.829 (See Model 8100)..... $\$ 1$	
. 101.829.1	
(See Model 8132)..... 66 h. 101.831, 101.831A, 101.831.1 (See Model 8127) 41	

Silvertone-Conf.	SHVERTONE-COMf.
Ch. 101.833	$\mathrm{Ch}, 319.200,319.200 .1$
Ch. (Se8. Model 8103) 35	
(See Model 8072)..... 34	(580 Modél 7148)..... 23
Ch. 101.835 (See Model 8230). ... 59	Ch. ${ }_{\text {ises }}{ }^{431.199}$ Model
Ch. 101.839 820).....	Ch .431 .202
(S5ee Model 8051)..... 49	(500 Model 8130)..... 49
	Ch. 434. 140 (See Model 7111). 30
	Ch. 435.240
Ch 101.850	$\mathrm{Ch}_{\text {H }} 1335.410$
(See Model 9260) 51	(500 Model 7350). 38
(See Model 8107A).... 64	Ch. 435.417 (See Model 9153). . . . 67
Ch. 101.852 2	Ch. 136.200
	(See Mode1 7145)..... 23
(See Model 8132). 86	Ch. 463.155 (See Model 8155). 57
Ch. 101.859 9131 95	Ch. 478.206 .1
(Soed Model 9133) 95	$\mathrm{Ch}{ }^{(508} 48.210$ Model 8024)..... 80
Ch. 101.859-2 (See Model 64)........ 113	Ch. 478.210 (See Model 9131)..... E4
Ch 101.864 1 66	$\mathrm{Ch}^{4} 878.221$
$\mathrm{Ch}^{\text {(508) Model }} 101.865$ 9122)..... 66	Ch. 478.224
(Sot. Model 9119).	(See Model 9115)
Ch. 101.865.-1	Ch .478 .252
$\mathrm{Ch}^{(508}$. 101.868 Modal 91204).	Ch .478 .253
(Seo Model 9133)...... . 95	(50e Model 125).... 104
Ch. 101.867	$\mathrm{Ch}^{178.257}$
	Ch .478 .289
(Soe Madel 9122	(Soe Model 112)
h. 109.626	Ch. 478.309
Ch. ${ }_{\text {(S08. Model }} \mathbf{1 0 9 . 6 2 7}$ 7132)..... 25	Ch .178 .311
(Sei Model 7153)..... 26	(500 Modol 120)...... 115
Ch. 109.631 , 45	(Sese Model 9280). 94
	Ch. 528.171.1 1500
${ }^{\text {C }}$ Soe Model 8148).... 44	Modol 2251
Ch. 109.633	${ }^{\text {Ch. }} \mathbf{}$ Model 2280) 1110
(500 Model 8149)..... 48	Ch. 528.174
Ch. 109.634 (See Model 8150)..... 12	(See Model 215)
Ch. 109.035, 109.635.1	(Seo Model $^{6293) ~} 99$
(Soe modol 8153$) \ldots . .42$	Ch. 528.6293
Ch. 109.636, 109,636A	Se0 Model 62951. 98
Ch. 109.638	Ch. 547.245 (See Model 9270)..... 2
(Sop Model 8168).	$\mathrm{Ch}, 548.358$
Ch. $110.451,110.452$ (See Modal 6051)..... 13	
Ch. 110.454	
(Soe Model 6072).... 13	$\mathrm{Ch} .548 .360-1$
Ch. $110.466,110.466-1$ (See Model 7086)..... 27	Ch ${ }_{\text {(580 }} 48.363$ Model 239). 1115
Ch. 110.473	(Soe model 33). 111
(Soe Modal 8103)..... 36	Ch. 549.100, 349.100.1
$\mathrm{Ch}, 110.499$ 91231 79	(5 eo Model 101).....
(Soe: Model 9123)..... 79	Ch. $349.100 \cdot 3$
	(Soo Model 13
Ch. 110.499 .2	Chisoe Modei 1 60.12).... 97a
${ }^{1508}$ Modol 132.80726	sim
(5900 Model 7025).... 29	SIMPLON
Ch. $132.816,132.810 A^{\prime}$	CA.5 22-27
iSoo Modal $60111 .$.	
Ch. 132.818	SKY KNIGHT (See alir Knight)
Ch. 132.818.1 ${ }^{\text {chen }}$	SKYRIDER (See Mallicrafters)
Ch. 132.820 ${ }^{\text {a }}$ (${ }^{\text {a }}$	SKYROVER
(500 Model 6016)..... 27	SkYROVER
Ch .132 .825 .4	
	NS.RO295 (Ch. 5A7) $\ldots . .21 \mathbf{2 l}^{-31}$
(5 ee Model 6071)..... 15	SKY WEIGHT
Chi 1308 Model 8000).... 31	818 20-30
Ch. 132.839	82 13-13
(Soe Model 8005)..... 33	SONOGRAPH
${ }^{\text {Chisom Model } 80101 ~} 40$	BH00 122-10
Ch. 132.841	
(Sop Model 8020)..... 43	SONORA
	RRU-1767) 5-31
Ch. 132.868	RE-207(See Model RB-176) ${ }_{\text {RCU }} \mathbf{5}$
(Soe Model 8021)..... 70	
$\mathrm{Ch}^{132.871}$, 7	
	RGMF-212, RGMF-230... 27 27-26
	RKRU-215 RMR-219 (Ch. RKRU)
Ch. 132.878	RMk.220, RMR.245
	(Soen Model RMR.219).. 19
Model 2101 109	
Ch. 132.882	RX-223 ${ }^{\text {19-29 }}$
	WAU.243 ….......... 27-27
$\mathrm{Ch}_{\text {(Sos M Model }} \mathbf{1 3 2 . 8 8 7}$). 112	W8RU-239 \ldots.......... $32-23$
Ch. 132.888 ,	WCU.246 ${ }^{\text {W }}$ W......... ${ }^{36-22}$
(5 ¢00 Model 54)....... 115	WDU. 233 WDU. 249 W
Ch. 132.889	WEU-262 ….......... $33=28$
Ch . 132.890	WGFU.241, WGFU-242 .. $24-25$
(Se9 Model 179.16).	WJU-232 WKRU.25iA
Ch. 135.243	WIRU-219A \cdots........... 37-21
Ch. 135.243.1	WLRU-220A (Soeo Model $^{\text {a }}$
iSoe Model 9073) 83	WIRU-245A (Seo Model ${ }^{3}$
$\mathrm{Ch}^{\text {1 }} 135.244,133.244 .1$	WIRU-219A) …… 37
	WXTU.700, WXTUA.700A
(Soo Model 41). 101	Y8.299,112
Ch. 137.906 (See Model 246)....... 111	100 41-21
Ch. 139.150, 139.150.1	102 ….............. 53-23
(500 Model 6685) 15	171 …............ 109-13
	172 (Se0 Model 171).... 109
$\mathrm{Ch}^{\text {C }} 3190.190$	

TEWART-WARNER-Cont.	SWANK	TELEQUIP
B92CR1, 892CR2, 892 CR 3.	3 Tube Rodio-phone	Ch. 12TR, 14T, 14 TR, 16 T .
$92 \mathrm{CR4,892CR8}$.	1011) ${ }^{\text {5- }}$-31	16 TR, 197, 191R
	1 17	S135, S136, Silioal..... 11 - 24
K, L. M)............ 63-14	sylvania	TELESONIC (Medeo)
CSIV (Code 9034.A) A1-22	1.075 (Ch. 1.1391 Tel. Rec. 92-8	1635 NIC (Medco) 20.22
	1.076 ((Ch. 1-108) 7el. Rec. 96-11	${ }_{1636}^{1635} \ldots \ldots{ }^{\text {a }}$ 20-22 ${ }^{21}$
7.711 Tol, Rec. ${ }^{\text {code }}$	(1.076 (Ch. (1.108) Tol.	
71 (M (Code 9031.AM)	Bul. 2 ….......... 103-20	1643 21-34
Rec.	1.090 (Ch. 1.168) Tol. Rec. 99-17	TELE-TONE
odel T -7		TV149 Television Rec...... 56-22
	(500 Model 1.073)	TV-170 Tel. Rec......... . 83-12
(See Mader (-71) 93a	$1.124,1.12510$	TV.208 tal. Rec........... 90-11
(RC. 721 (Code 9037.A) ${ }^{\text {a }}$	$1.125 .1(\mathrm{Ch} .1 .186)$	TV208TR Tal. Rec.......... 95-6
$\mathrm{T} \pm 1 . \mathrm{Rec}$.	Pa	TV. 209 Tel
1508		(S000 Mode
51T56 (Code 9024.C) .. 39-24	Rec. (Soe Model 1-076). \%	TVV-220 Tol. Recter
S1T36 (code 9024.C) .. 39-24	129 (Ch. 1-108) Tol.	(Soe Model iv208TR).. 95
126 (Code 9018.C).	Rec. Prod. Chge. 103-20	TV-245, 246 Tel. Rec.... **
S17146 (Code 9018.H),		TV-249 Tolevision Roc.... 57-31
\$17176 (Code 9018.8) . 15-35	073)	TV-250 Jol. Rec......... 91-13 13
T16 (Code 9022-A	1.197 (Ch. 139) Tol Rec... **	TV
61726 (Code 9022-8).. 1-6	1.197.1 (Ch. 1.186)	(5e0 Model TV. 250).... 91
Code 9023.C)	Rec	w.235, NV .
	(Soe Model 1.125-1)... 113	TV259, Tol. Rec.
62 T 26 (Code 9023.E). 621C36 (Code 9023-F).	(.210 (Ch. 1.139) Tol). ${ }_{\text {Rec }}$ (Sob Modal 1.075). 92	${ }_{\text {(Soe Model }}$ MV249).... 37
72CR16, $72 \mathrm{CR26}$....... 18	1.245, 1.246 (Ch. 139)	TV-282 Tal. Rec......... 71-14
		TV-283 Tol. Rec
9001-C, D, E, F	245-1, 1-246.1 (Ch,	${ }^{(5009}$ Model TV-283) 37
02.A $9002 \cdot \mathrm{R}$ 902.	1-186) Tol. Re	TV.284 Tol. Rec......... ${ }^{\text {P3-10 }}$
	${ }_{1.247}$ (Se0 Model 1.125	TV.286, 287 , 288 Tiol. ${ }^{\text {N-28, }}$
$9007 .{ }^{\text {A }}$,	- Model 1 1.0901	193
Model: 91	1.247.1 (Ch. 1.231)	TV-300, TV-301 (Ch. TAA,
		99A. 12
9100F, 91006 , 9100H 73-15	1.251, 1-252	TV-300, Tw. 30
Tel. Rec, 9103.B.C 9104.A.B.C		TV.30i, TV. 305 (Ch. TAÄ.
,	(Ch. 1.2	
106A, B Tel. Rec....... 118 - 10	103	1500 M
08a	$5408.540 \mathrm{H}, 540 \mathrm{~m}119$ - 11	TV. $304, \mathrm{TV} .305$ (Ch
Rec		Tol. Rec. S0\% 107
${ }^{9113 A}$ Tel. Roc.	Tol. Rec. ${ }^{\text {a }}$ - 13.	,
(Soe Model 9106A).	$4130 \mathrm{t} .4130 \mathrm{E}, 4130 \mathrm{~m}$.	
Rec.	Tel. Rec. (Soe Model	
9151.A $\ldots10 .100^{-14}$	4120M) ${ }^{124}$	TV.308 (Ch. TAC)
9152.A.-B.-C102-14	51308, M, W (Ch, 1-290)	
9153.A108-12	Tol, Rec.120-10	TV314 (Ch. TAJ) Tel. Rec. 125-12
Stratovox	Roc. (Soe Model Si 308) 120	TV. 315 (Ch. TAA, TAB)
579.1-58A 6-32	$6110 \times(\mathrm{Ch}, 1.261)$ Tol.	
	Rec. (See Model 4120 M)	TV318 (Ch. TAM)
StROMBERG-CARLSON	$61208,6120 \mathrm{~m}, 6120 \mathrm{~W}$	Tel. Rec. 124-11 TV322, TV323 (Ch. TAM)
AU-29 123-11	(Ch. 1.261) Tol. Rec.	Tel. Rec. (See M
AV.38 126-13	${ }_{6} 1308.6130 \mathrm{~m}, 6130 \mathrm{~W}{ }^{\text {a }}$	VV318)
	(Ch. 1-261) Tell. Rec.	TV324, TV323, TV326
Chge. Bul. 1.......... 103-19		TAP.21) Tol, Rec. .e...127-12
		322, TV329 CCh, TAP,
TC. 125 Tel. Rec.......... 93A-13 TS.15, TS.16, TS. 125	$7110 x \text { (Ch. } 1.366$	TAP. 1. TAP
S-15, TS.16, RS. To. 72-12	1.366-66) Tol. Rec. (Soe	Rec. (See Model 127
TV.101, TV.101W (112020)		
Tol. Rec. ………	(Ch. 1.366, 1-366-68)	TAP-1, TAP-2)
TV.10PM, TV. 10 PY (112025,	Ch.	(Seo Model TV
$112022)$ Tol.	$4120 \mathrm{M})$........... 124	330 ICh. TAP.
photofact Servicer . at	308, $7130 \mathrm{M}, 7130 \mathrm{~W}$	TAP-2) Tol Rec.
TV. 125 (Ch. TV. $121 . \ldots . .68$-16	Tel. Rec. (See Model	TV345 (Ch. TAP, TA
$16 . \mathrm{CA}_{1} \text { 16.CM, } 16 \cdot \mathrm{RPM} \text {, }$		TAP.2) Tel. Rec.
Tol, Rec. ${ }^{\text {co...........123-1A }}$		
17 Series Tol. Rec.	${ }_{51308}{ }^{\text {a }}$, 120	(Ch. Serier A)........ 39-26
${ }_{32}^{4}$ Soriber Tel. Rec. $\cdot \cdots \cdot$, 11-	1.186	109 Ch. Series
${ }_{116} 32$ Seriar Tai. Rec........ 11-23	(Sees Model 1.125.1)... 113	110 (Soe Model 117 -A)
110 Sories Tal. Rac.......	$\mathrm{Ch}_{\text {che }} 1.215$	111.113 (saoe Mo
1020 (Soe) Model 1220	1.200 isee model	17.
	4120M1 124	1.0
$1100 . \mathrm{H}, 1100 . \mathrm{HI} \ldots . . .20-31$	Ch. 1-261 isoo modol	122, 123 (Seee Model 100) 39
$1101-\mathrm{H} \% 1101-\mathrm{HI}$	$\text { hizoM) } 124$	124 (Soe Model 117-A)... 1
(Ch. 112002), 11.	Ch. 1.271	125 (Soe Model 100).... 39
(Ch. 112001).	$\begin{aligned} & \text { See Mod } \\ & 1.290 \end{aligned}$	127130.131
01-HPW	(Soe Madel 5130B) ... 120	(Som Model 100) 39
1105 (Series 10.11) 18-29		
$1110 \cdot \mathrm{HW}, 1110 . \mathrm{PTW}$ (Series 10) 18-30	Model 4120 M) 124	
1120 (Sae Model 1220	TELECHRON	
	8H67 "Muralorm" 44-21	
M2-W, M2-Y, PFM, PFW,		${ }_{\text {14) }}(500$ Modol 135) ... 14
PGM, PGW, PIM, PLW, PSM (Series 10.11-12) . 10-31	MSTSA 25 -28	$142,143.144$ (Soe Model 145).
${ }^{1133 . P F M, ~ 1135 . P L M, ~}$		
1135.PLW (Series 10.11) 23-26	TELE-KING	148 (Ch. Seriea 5) $24-26$
1200 ision ioi.......... ${ }^{1202}$ 37-20	C716x Tel. Rec	149 (Ch. Seriser ${ }^{\text {H/ }}$
	T. 316 Tol. $16 C 03 C 8$.	
$1210 \mathrm{~m} 2 \mathrm{M}, 1210 \mathrm{~m} 2 \mathrm{~W}$,	114 Tal. Rec.	151 (Ch. Soriea s) $\cdots \cdots . . .38$
$1210 \mathrm{mz} . \mathrm{Y}, 1210 \mathrm{OGM}$,	116, 116C, 117, ilic.	(500 Model 148) 24
1210PLM, 1210PGW (Series 10.11) 37-23		152 (Ch. Series R) (500 Model 14)
1220 Sories $30-19$	162 Tol .	156 (Cm. Serier U$) \ldots . . .3{ }^{\text {a }} 35-23$
	201, 202 Tal.	157 (Cm. Serifes H$)$
1400 (See Model 1200)... 57	${ }^{210} 1^{\circ}$ Tol. Rec.	
1407 PFM, 1407 PLM $58-23$ $1409 \mathrm{~m} 2 \mathrm{M}, 1409 \mathrm{M} 2 . \mathrm{Y}$.	310 Tell Rec............	
1409 $109 \mathrm{M}-2 \mathrm{~W}, 1409 \mathrm{M} 3$ - ${ }^{\text {a }}$		
$1409 \mathrm{~m} 3 \mathrm{~m}, 1409 \mathrm{PG} . \mathrm{M}$.	310	160 (Ch. Series y)...... 36-24
1409PG.W 62-20	Model $4101 . \ldots .$. . 8	161, 162 (Ch. Seri
	2 Tol . Rec.	, mial
Studeeaker	(Sae Model 410)...... 58	${ }^{163,164 ~(C h, ~ S o r l e s ~ H) ~}$
S.4624, 5.4625 $21-32$	${ }^{612 \text { Tol. Rec. }}$ (Ssel Model 410)...... 88	163 (Ch. Sederier AG)..... 30 30-20
5.4626, 5.4627 19-32	710 Tel. Rec.	$166 \text { (Ch. AE) }$
SUPREME (Lipan)	(See Model 410).	
17	(Seo Model 410) 18	Ti (Soó model 150).... 38
		2 (Ch. Series U)
		$174{ }^{\text {(}} \mathrm{Ch}$. Sories ${ }^{\text {T }}$)
	19	(Soe Mode

Wora	2-31
T.31WIOA	30
${ }^{\text {T.31w10-AX }}$	57-22
T.31W23A	
T.31 W50A	
T-32W00, T.32W10 ..	76
TONE PAK	
АСвм¢	24-28
TRANSVISION	
Chassis Model A Tel. Rec.. WRS-3 Tel. Rec..	$\begin{aligned} & 107-11 \\ & 112-10 \end{aligned}$
transvue	
601 (Ch. 16AX23, 25, 26)	*
Tal. Rec.	*
TRAV-LER	
10t Tel. Rec	86-11
12t50, A Tal. Rec	08
12 T Tel. Rec. (See Model 10 T)	86
14850, A, 14C50, A	
Tel. Rec. (Soe	
Modal	
modal 12tsol.	
Tel. Rec. (See	
Model 12 (50).	108
OT Tel. R	
(50e Model	
5000 (S*e Model 5000 50001	11
5002 Serie	
${ }_{5007}^{5002} 500085$	
Ch. 10	6
5010, 5011 , 5012	
Ch. 105)	
5015	
5020 (Ch. 800)	11-28
3021	
5022	01
5027	31-30
5028	
5029	33-29
5030, 5031	32-25
3036	34-19
5049	45-24
5051	32-26
5054	
5036-A	
5080, 506	16-11
5066	42-24
6040	49-25
6050	
7000, 7001	39-21
7003 (Ch, 5011	12-29
7014 (So0 Modal	
7016, 7017	4
7023	83-13
7036	,
Chassis 104	
(See Model 5007).	1
Chatsis 105	
(Soe Model	2
(Soe Madel 5002).	12
hastis 501	
(Soe Model 7003).	12
(See Model 5021).	11
trela	
HW301	14-28
truetone	
D1034B, C	
(Soe Modal DI	
D1046A	
D1046C, D	
(Soe Model 1	
D1090 fal. Rec.	
	28-34
D1644	12-30
D1645 (Faclory 26476.650)	
D1747, 01748	32-27
D1752 (Factory 7901-14)	34-25
D1835 (Factory Model	
25A86-856)	44-25
D1836, D1836A IFactory	
26Aas-856)	45-25
1840 (Foct. No.	
$138 \mathrm{PCXM})$	
D1845	31-31
D1846A, B, C	40-23
D1850 (Series	31-23
D1949	60-20
D1950, D1931 (S	
Model D1850)	31
D1932 (See Model D1949)	60
D1990, D1992 (Factory No.	
7AF22) Tol. Rec	69-13
1991, B, D1993,	
D1994	77-11
1996 Tel. Roc	
(See Model D2983)	
D1997A Tel. Rec.	
D19984 Tol.	
D2017, D2018 ..	01-15
D2020	
D2025A ifact. Mod	
26A95.906)	83-14
D2027A	
d2050A Tel. Rec.......	
D2603 (Factory No. 461).	13-33
D2604	13-34
D2605 (Factory Mod	
2AW21	-34
02606	5
D2612 (Code SW-9022-G)	
02813	13-37
D2615 Model 60110	

VAN－CAMP 7	ouse
－29	H2078（DX）（Ch．
VIDEO CORP．OF Amenica （See Videola）	$\begin{aligned} & V-2110-210 x \text { or } \\ & v-130220 x \text { ond Rod } \end{aligned}$
VIDEODYNE	
$10 \mathrm{Fm}, 10 \mathrm{FV}$ ， $12 \mathrm{Fm}, 12 \mathrm{TV}$	
Tol．Rec．．．．．．．．．69－15	
diola	62
	2i03．31
V5．168 VS－160，V5－167， （See Model vs－160） ．．． 92	H－210，
WIONE	H－217， $\mathrm{H}-217 \mathrm{~A}$（ Ch
RC－201A，RRC－201 ．．．．．．11－32	
viz	H． 21
R5－1 ．．．．．．．．．．．．．．．．．14－31	${ }_{\text {31 }}^{3140-110 x_{0}}$
vocue	， 217
WARwIek（Soo clarion）	H．220（soo Modioi i－iiooi： 99
	V－2130．3
	v－2130．320x）Tel．Roc．
${ }_{1581}$ ．．．．．．．．．．．．．．．．．${ }^{3}$	${ }^{\text {（Soc }}$
${ }_{4782}^{488}$	． 226 ICh． 2140.210 x ．
4800 ……．．．．．．．．．．．．43－23	Tol．Rec．（So0 Modal
webster－chicago	$\mathrm{H}-231$ 1－C． 2150.51 and
	v．2137．35，v－2149－21
	Tal．Rec．ailo．．．．．99A－14
$1000.62!$ 130.1	H－242（Ch．2150－31）Toll． 97 A .14
${ }_{161-1}$ ．．．．．．．．．．．．．．．．．${ }^{\text {35－23 }}$	
${ }_{760}^{362}$ ．．．．	${ }^{\text {H30075 }}$
762 （s．00 Modol 362 ）．．．． 105	
WELSTER（Tolehome）	
	н－30995， H －309psi
WESTERN AUTO（So	
WESTINGHOUSE	H．3．311its．
${ }_{\text {H－1 }}$ 104， $\mathrm{H}-10 \mathrm{~S}$	（ch．v．21il
${ }_{\text {H－10，}}^{\text {H－10，}}$ ， $\mathrm{H}-105$	
H－113，н－ili	v－2 153.11
	H．316C7（Ch．V．2136－1）．112－13
	（So0 Model H316C7）．． 112
${ }^{228}$	
H－125，H－126 ${ }^{\text {a }}$	
	U）（Soe Model H－31875） 117
	（Ch．v－2i 57.1
	H－3235，（soe model $\mathrm{H}-31$
H－148A（soo Modol $\mathrm{H}-148)$	$\mathrm{H}=3247 \mathrm{~T}$ ， H －32577， U
H．153， $\mathrm{H} \cdot 1233 \mathrm{~A}$	（Th．v．2136－2）．．．．．．113－13
	H－3271157．34）．．．．．．．．．126－14
	V．2150．41 Toil Roc．
	（500 Modol －6000716］．． 98
${ }^{166 .}$ H． $\mathrm{H}-167$	
	． 2150.91 A
（Ch．v－21119）（500	4．609710，509 951．．．．．99A－14
	H－605712（Ch）T－2150．101）Rot．Rec．．．97－19
Moder（－153）	H－607k12（Ch．v－2150．
H．178（ch．ve．ll	111，Al Tol Roci
H－182（Ch．v．2i2i）．	H－608\％12（Ch，V－21 52－01，
	（ 50.0 Modol $\mathrm{H}-603 \mathrm{Cl}$（2）． 100
－184（（S50 Modil H－153） 35	H－609710 ich
－185（ch ${ }^{\text {V－2131．il }}$	
H－188M，M－1187	
	H－¢⿴囗⿰丨丨⿹⿺⿻⿻一㇂㇒丶幺小）
	H－61 3K16 ICh．V－21 1 Sol
	H－614172 ich．V－ 2150
198A（CHV－2i30．ij）${ }^{\text {a }}$	（Soe Model H6iorl2）． 105
	H－615C12（ch，v－2152．16）
（oxi）ich．．．．．．．．．${ }^{\text {s }}$	Modol H－611C12）．．．． 112
V－2130．110x。	H． 17 TT12（Ch．V． 2150.
	17\％，U，v－2150．177u）
	． 116
	H－618716（Ch．V－2150．
	H－61712）． 10
V－2130．110x or	（Soe Model H－
	Prod．
（See Model H196A ［DX］）	176，U）Tel．Rec．

G. 2322 (Ch. 23G22)	
G23222 (Ch. 23G24) Tol. Rec. \qquad	
G-232221 (Ch. 23G2421)	
G23272 (Ch. 23G24)	
Tol. Rec.	
(Soe. Model G23222). ${ }_{\text {chen }}$	
Tel. deac. ISeo Model	
G23221	98
G2340RZ, Z (Ch. 23G24)	
(So0 Model G23222)	910
G2346R (Ch. 23 G 221	
Tol. Rec. (See Model	
G2322)	
G2346R2 (Ch. 23G24)	
G23s0R2, 1 (Ch. 23G24)	
G2353E (Ch. 23G22)	
G2322)	
G2353EZ (Ch. 23G24)	
(s30. Model G23227) ... 91a	
G2353E21 (Ch. 23 C 2421)	
G2356E2 (Ch. 23G24)	
(Seo Model G23227)	91
G2420E (Ch. 24G20)	
Tol. Rec.	93-11
G2220.EOX (Ch.	
(500 Modei G2420E). . ${ }^{2}$	
G2420R (Ch. 24 G 20)	
(Seo Modol G2420E)... 93	
G2420.ROX (CC	
G2441 (Ch. 24G24) Tol.	
G2441R (Ch. 24G22/23) Tel. Rec.	
(See Model G2322)....	98
G2441R2, 2 (Ch. 24G26)	
Yel Rec. ${ }_{\text {(Soel }}$ Model G2437R2).	
G244121, R21 (Ch.	
G2442E, R (Ch. 24G23/23)	
2442R2 (Ch. 24G2	
Tol. Rec. (Sen Model G2437RZ)	
G2442E21, R21 (Ch.	
G2322) 98	
24882 (Ch. 24G26)	
(Som Model G2437R7).. $91 /$	
G2454R (Ch. 24G21) Tol, Rec.	
(See Model G2420E)	93
G2951, G2951R, G2953R.	
G2957R (Ch. 23 G 23 s Radio Ch. 6662011 Tol.	
Rec. (50e M	
G2P58R (Ch. ${ }^{\text {23G33 }}$ 2	
Radio (h. 66201) Tol. Rec. (See Model G2322)	
G3059R (Ch. $24 \mathrm{G} 24 / 25$ \&	
Rodio Ch. 6G20) 7ol. Rec. (See Model G2322) 98	

ADDITIONAL BENEFITS. From time to time, PHOTOFACT Folder Seis include valuable "banus" materials, as well as useful data of a special nature. FROM PHOTOFACTS The fallowing useful materials are extra benefits available in the Sets indicaled at no addifianal cost.

Sot Na.	Sot Na,	Set No.
1-RMA Production Source Code (July 1, 1946)	O-Record Changer Cross Reference by manufacturer and Model. \qquad	12-Certificate entitling subscriber to PHOTO. FACT Volume Lobels for Vols. 11-20. . . 102
2-RMA Production Source Code (Jon. 1, 1949).	7-Mica Copacitor Color Codes. 68.82	13-Certificote entilling subscriber to 100 Door Knob Hangers. 80
3-RMA Production Source Code	9--"Let's Look ot the Sync Pulses". 64	14-Photofact Television Course appearing serially in. 38-51, 54
- (Revisions os of July 1, 1949) 92	10-Replacement of Disc \& Plate Type	15-CR Tube Dimension Chort.............. 112
-Trade directory-	Ceramic Copacitors................ 68	16-CR (Electromagnetic) Tube
Parts Monufacturers. 12	11-Certifcate entilling subscriber to PHOTO-	Characteristics Chart 112
5-Notional Electrical Code on Antennos.... 88	FACT Volume Labels for Vols. 1-10... 62	1\%-CR Tube Interchangeability Chort....... 112

（CM－1）indicates service data alsa available in Howord W．Sams 1947 Record Changer Manual．（CM－2）indicates service data available in Howard W．Sams 1948 Record Changer Manwal．（CM－3）indicates service data available in Maward W．Sams 1949.1950 Record Changer Manual．

ADMIRAL	
RC－150 ．．．．．．．．（CM－1）	26－31
RC． 160, RC－160A，RC－161， RC－161A（Supplement to	
RC－170，RC－170A．．（CM－1）	$21-37$ $31-2$
RC－180，RC－181 ．．（CM－2）	76－1
RC－182 Supplement（ CM －2）	76－2
RC． 200 ．．．．．．．．．（CM－1）	9
RC210，RC211，RC212	
（CM－3）	72－1
RC－221，RC． 222 ．．．（CM．3）	79－1
RC220，RC221，RC222	
Changes ．．．．．（CM－3）	108－2
RC320，RC321，RC322（500	
Model RC220	
RC400．．．．．．．．．．．．．．．．．104－1	
AEta	
46A ．．．．．．．．．．．．．（CM－1）	19－34
47A ．．．．．．．．．．．．．（CM－2）	77－2
Aviola	
100 ．．．．．．．．．．．．（cm－1）	31－32
ELEMONT	
C－9 ．．．．．．．．．．．．．（CM－2）	34－31
columbla	
104 ．．．．．．．．．．．．．．．．． 1	124－2
CRESCENT	
C－200 ．．．．．．．．． CM－1）$^{\text {c }}$	20－37
6 Saries ．．．．．．．．．（cm．3）	89－4
250 Series ．．．．．．．（CM－2）	
350 Series ．．．．．．．．（CM－2）	80－3

FARNSWORTM	
	13－36
GARPAD	
㫙－60 ．．．．．．．．．（CM－2）	81－7
GENERAL ELECTRIC	
P6 ．．．．．．．．．．．．．．（CM－2）	79－8
OENERAL INDUSTRIES	
QC1301 ．．．．．．．．．）（CM－1）	22－33
OENERAL INSTRUMENT	
204 ．．．．．．．．．．．．．（CM－1）	23－34
205 ．．．．．．．．．．．．．（CM－1）	
LEAR	
PC－2064 ．．．．．．．．（CM－1）	18－33
maculat	
ARC－1 ．．．．．．．．．．．（CM－I）	7
MARKEL	
70． $71(C M-2)$	84－8
74， $75(6 M .3)$	91－
MILWAUKEE ERWOOD	
10700 ．．．．．．．．．．．（CM－1）	16－37
11200 ．．．．．．．．．．．（（CM－2）	16－6
11600 ．．．．．．．．．．．．．（CM－3）	72－7
motorola	
B24RC， $825 R C$	
	10－9

THORENS	WEESTER－Cont．
CD．40 ．．．．．．．．．．（CM－1）39—29	246 ．．．．．．．．．．．．．（CM－2）74－11
Thav－LEt	256 ．．．．．．．．．．．．．（Cm－2）部－13
A ．．．．．．．．．．．．．）（CM－3）72－13	346 ， $35(C M \cdot 3) 100-12$
UNIVIRSAL CAMERA	356， 357 ．．．．．．．．（cm．3）106－16
100 ．．．．．．．．．．．．（CM－1）36－30	WESTINGHOUSE
UTAM	V4914 ．．．．．．．．．．．（Cn－2）47－26
550 ．．．．．．．．．．．．．（CM－1）	V4944 ．．．．．．．．．．．（C4．2）86－13
650 ．．．．．．．．．．．（CM－1）22－34	
7000 ．．．．．．．．．．．．（CM－1）27－31	2ENITH
7001 ．．．．．．．．．．．（CM－2）3－15	\＄11468 ．．．．．．．．．（CM－1）23－35
V－0．	511880 ．．．．．．．．．（CM－1）27－32
	\＄14001 ．．．．．．．．（CM－2）75－17
	\＄13675， 514002.
400 （1006）．．．．．．．（CM－2） $90-13$	514006， 514008 （ $\mathrm{CM}-2)$ 象 $5-15$
402，400C …．．．．（cm．2）22－12	\＄14004， 514007 ．．（CM－2）79－18
402D $400 \mathrm{D} \times . .(\mathrm{CM}-2)$ 7－14	\＄14012， 514014 （CM－3）110－14
404 （See Model 405）	\＄14022 ．．．．．．．．．（CM－3）112－15
（CM－3） 73	\＄14023 ．．．．．．．．．（CM－3）105—14
405 ．．．．．．．．．．．．（Cm－3）73－14	514024， 514025 （5e\％
406， $407 \ldots(C M-3)$ 102－16	Model \＄14022）（CM－3） 112
800 ．．．．．．．．．（ $\mathrm{Cm}-1)$ 21－38	514026 （50e Model
800－D ．．．．．．．．．（CM－2）24－12	\＄14023）．．．．．．．（CH－3） 105
$802(C M-3) ~ 77-12$	514027 （500 Model
910 ．．．．．．．．．．．．（CM．3）115－14	514022）．．．．．．．（CM－3） 112
950 ．．．．．．．．．．．．（CM－3）107－13	
WEESTE	MISCELLANEOUS
50 ．．．．．．．．．．．．．（cm－1）24－35	Series 700F ．．．．．．（CM－2）80－9
56 ．．．．．．．．．．．．．$(\mathrm{Cm}-1)$ 17－36	Series 700F 33／45（Cat－3）75－11
70 ．．．．．．．．．．．．（CM－1）29－28	Series 700FIP ．．．（CM－2）101－6
$133(C M .2) ~ 22-13 ~$	Series 700F5 ．．．．（CM－2）104－8
148 ．．．．．．．．．．．．．（CM－2）86－12	Series 700R ．．．．．（CM－2）91－8

RECORDERS

CRESCENT－Cont．
M－2000，M－3000 Series ．． 120 － 4 1000 Series …．．．．（CM－2）
1000 Series Revised（CM－3）77－4 CRESTWOOD
CP． 201 ．．．．．．．．．．．（CM－3） $118-4$
EICOR
$1000^{2}(C M-3) 90$－ 4
GENERAL INDUSTRIES R70，R90 ．．．．．．．．．（CM－1）38－28

INTERATIONAL ELECTRONICS	
PT3 ．．．．．．．．．．．．（CM－2）	18－4
LEAR DYNAPORT	
WC－311－D ．．．．．．（CM－2）	10－8
MAGNECORD AUDIAD	
AD．1R ．．．．．．．．．．（CM－2）	3－－7
masco	
375 ．．．．．．．．．．．．（CM－3） 1	117－7

RCA
M1－12875 ．．．．．．．．（CM．2）85－12
REELEST
C14 ．．．．．．．．．．．．．．．．．．．．．123－13

SILVERTONE

70 （Ch．587．230，


```
ST．OROREE
1100 Series
Wire Recorder ．．（Cn－1）40－24
WEESTER－CHICAGO
79－80 Wire kecorder
```



```
WEESTE ERECTRIC
Ekotape ．．．．．．．．．（CM 3）116－12
WIRE RECORDING CORP．
``` WP ．．．．．．．．．．．．．．．（CM－2） \(76-19\)

\section*{＂SHOP TALK＂（Continued from page 4）}
high－voltage circuits and the horizontal deflection system．This is indeed the most logical method of approach to the problem．But in this instance it will seemingly not lead you anywhere．

Whenever you come up against a really tough servicing job，it has been the writer＇s habit to put the set aside，concentrate on the set schematic，and try to determine whether any apparently unrelated section of the set is affiliated somehow with the section to which the symptoms point．In the Capehart set men－ tioned，such perusal will reveal that the cathode of the 6BG6 horizontal output amplifier and the cathode of the 6AH6 video amplifier both connect to the same -90 volt point in the \(B+\) power supply．What happens is simply this：The cathode of the 6AH6 is biased 90 volts negative．The filament of this miniature tube has one side grounded．If the 6AH6 has a slight de－ fect in construction，a difference of potential this large between filament and cathode will be powerful enough to break down the insulation between these elements and effectively ground out the 90 volts．With the proper biasing voltages removed from the 6BG6， it ceases to operate normally and no high voltage is produced．Replacement of the 6AH6 video amplifier tube corrects the situation．
＂Hidden Ball＂service defects have many par－ allels in radio receivers．Thus，it frequently happens that cases of severe hum arise because of leakage
between filter capacitors which，while located in the same container，actually serve different sections of the receiver．Hence，what we encounter in television is not something radically new，but a familiar friend disguised in new clothes．

Another lesson to learn from the foregoing is that whenever there exists a large difference of potential between filament and cathode of a tube，there also exists the very definite possibility of a voltage breakdown．This is especially true of miniature tubes．

FIELD STRENGTH METERS．A very useful instrument，for any man who is going to do any amount of outside service or installation work，is a field strength or a field intensity meter．The uses for such an instrument are numerous，not only for your－ self，but for customer relations as well．With such a meter，it is possible to locate the best position and the optimum height for an antenna，to compare the attenuation of one lead－in against another，to deter－ mine conclusively which antenna is best suited for your particular purpose，and to know precisely how much signal is actually reaching the set．

A major factor in determining just how good a picture you get is the amount of signal that you feed the set．If the sensitivity of the set is high，you may be able to overcome some loss in signal，but generally the limits in this respect are quite narrow because you have the noise that the set itself generates to contend with．In 9 receivers out of 10 ，operating a
set within 75 per cent of its maximum sensitivity will give you a picture which is too spotty to watch unless you live so far from a station that you have no other choice. Thus, the only solution is to get as much signal to your set as possible and only with a field intensity meter can you be sure.

The common practice of stationing one man at the receiver screen is generally good for spotting ghosts and checking gross differences in signal strength. But after 5 minutes of concentrating on the screen, this man is usually unable to differentiate between signals as far apart as 500 microvolts in strength. The same two man installation crew can do a better job in less time with a field intensity meter.

Finally, there is the very useful job in public relations that such a meter can perform. Any sign of poor performance on the part of a set is often erroneously blamed on a poor installation, i. e., the wrong antenna was used, or the antenna was not properly positioned, or the lead-in has too high an attenuation, etc. With a reliable field intensity meter indicating the strength of the signal reaching the set, there is very little room for argument.

And, as every serviceman is only too well aware, a customer must be given as much attention (if not more) as the set. To get a customer on your side is sometimes worth many times the cost of the meter.

A servicing job recently came up that could have been solved with a field intensity meter. A serviceman found that a set was overloading on channels 4 and 5, but apparently operating satisfactorily on channels 7 and 9 . The first guess, of course, was the tuner, but after everything that could be done to this unit had been done, the symptoms remained. Valuable time went by while every conceivable test was made on the chassis. Finally it was noted that the A. G. C. voltage was not negative enough, permitting the controlled tubes to operate at almost full gain. As a result, normal signals were amplified to such an extent that sync clipping occurred, producing all the symptoms of overloading. For weak signals, which in this case turned out to be true of channels 7 and 9 , the excessive amplification was not quite as noticeable and therefore escaped attention.

Some clue to the source of this trouble (i.e., defective A. G. C. action) could have been obtained by using a field strength meter to measure the intensity of the incoming signals. A properly functioning A. G. C. system should not permit the set to overload with any but excessively strong signals.

REVIEW: The article selected for review this month concerns insurance protection for servicemen. After reading the article, "Servicemen Need Protection," you will agree that indeed they do.

\section*{SERVICEMEN NEED PROTECTION by Herbert S. Brier \\ RADIO and TELEVISION MAINTENANCE (August 1950)}

\section*{Copyright 1950 by}

International Publishing Corporation, 16 Union Street, Somerville, New Jersey

Subscription Price \(\$ 2.00\) per year in U. S. A. and Possessions, \(\$ 3.00\) per year in Canada

Above and beyond the technical knowledge that a man must possess in order to successfully operate a radio and television service shop, he must also have a fair grasp of business. He must know how to operate efficiently, he must know how to build up his business, and, above all, he must know how to protect what he does have. And the only satisfactory method of protection lies in insurance.

For the radio or television service shop owner, insurance may be divided into two broad general classifications. First, there is insurance against actual property loss, as from fire, windstorm, boiler explosion, automobile collision, and theft, as well as health, accident, and life insurance. Secondly, there is liability insurance, or the protection you get when some one sues you for damage you have supposedly caused them.

Now, let us consider only insurance against actual property loss. Your prime objective, with any type of insurance, is to obtain as extensive a coverage as possible. In the case of fire insurance, for example, you want protection not only from the actual ravages of the fire itself, but from such accompanying destructive effects as loss caused by water and other agents used in fighting fires. And generally, for a slight addition to your premium, you can obtain protection against losses caused by windstorms, cyclones, hail, vehicles, aircraft, riot, etc. Maybe you are a little skeptical about some of the items listed. Remember, however, that the additional cost is usually very small and it takes only one cyclone, or one riot, or one windstorm to put you out of business.

On a par with not having the right type of insurance coverage is not having enough. Don't look for bargains in insurance. The rates of all reputable companies are very much alike and if some agent comes along with a fast deal involving (supposedly) greater coverage at considerably less cost, BEWARE: Fine print and fast deals have put more men out of business than you can count in a month of Sundays. If you are the least bit doubtful about an insurance company, its financial rating \(\mathrm{c} a \mathrm{n}\) be obtained by writing to the state insurance board at your state capitol.

Another form of insurance against property loss that may become more and more important as parts and equipment become scarcer is theft or dishonesty insurance. Dutside losses are covered by various forms of robbery, burglary, theft, and open stock insurance; employee dishonesty is coverable by fidelity bonds.

Fidelity bonds are usually available in two forms. In one, each employee is bonded, and in the other, one bond covers all employees. With individual position bonds, losses caused by the collusion of several employees are covered up to the sum of their individual bonds. But with a blanket bond, protection extends only to the amount of the bond, no matter how large the loss or how many are involved; but in that case it is not necessary to prove that a bonded employee is guilty. An indirect advantage of bonding employees is that insurance companies investigate those whom they bond and may save you from hiring a dishonest one.

Liability Insurance: Liability insurance is the second general classification previously mentioned

A TURN OF THE DIAL GIVES THE CORRECT REPLACEMENT MODEL OF ALL SHURE CARTRIDGES AND MOST OTHER MAKES

Ask your Shure Distributor for a "Guide" -or write direct, giving us his name.

\author{
SHURE BROTHERS, INC. \\ Microphones and Acoustic Devices \\ 225 West Huron Street • Chicago 10. Illinois
}

and in many respects, the most important form of insurance. While property losses are limited to the value of the property, it is difficult to set a definite value on a human injury.

Suppose a customer trips over a loose floor board in your shop and wrenches her back; suppose one of your trucks runs over a small boy playing in the street; suppose a customer's son picks up the wrong end of your hot soldering iron: How much injury has been done in each instance? In the case of a suit, a jury would decide - and juries are as variable in their verdicts as a loose antenna mast flapping in the wind. The only way to remove this potential sleep-killing load from your shoulders is by the proper type of liability insurance. You can purchase medical liability insurance, property damage liability, and many other forms of liability insurance in separate policies. However, many of these liability policies may be combined in a general or comprehensive liability policy. The maindifference between a specific and a comprehensive liability policy is that the specific policy covers only those liabilities actually mentioned in the policy, and no others. On the other hand, a comprehensive policy covers every liability not specifically mentioned. Usually the comprehensive policy is preferable.

To keep the cost of insurance premiums low, while still enjoying as much coverage as you feel is necessary, it is suggested that insurance policies be bought for a period of from three to five years. Another way to lower premium costs is by eliminating a fire hazard, or installing a few fire extinguishers. Again, there are such cost-saving measures as burglar alarms, better locks, or removing valuable papers and money from your shop to a bank safety deposit box. And accepting a higher deduction clause in automobile collision and similar policies written with a "deductible" clause will also reduce premiums, but will require you to absorb small losses while losses which could prove fatal to your business.

For greater detail on insurance problems study the original text and similar article appearing in the August 1950 Radio and Television News Magazine. Both are well worth while.

THIS BOOK GUARANTHES TO SAVE YOU TIME, MONEY AND POSSIBLE LAWSUITS

Our pledge to you. Order a copy of "TV Technician's Handbook on Customer Relations!' today. If you're not complefely satisfied with its oufstanding, never-be-fore-published material, send the book bock to us and we'll refund double the original purchase price.

ONLY \$100
POSTFAID
HANDY POCKET SIZE

100 PAGES

With a foreword by noted TV writer, Milton S. Kiver, "TV Technician's Handhook on Customer Relations" contains three outstanding sections: 1. Getting the Customer on Your Side. 2. Policies on C.O.D. and Warrant Calls. 3. What is the Customer Basically Worried About?
Its 15 chapters, thoroughly e:overing every phase of customer relations will enable you to answer every question and cope with any problem concerning this phase of service work. And . . . by forewarning you of the legal aspects involved, will greatly lessen your chances of being sued by a customer.
Develoned from the experiences of one of the largest installation companies in the country, "TV Technician's Handbook on Customer Relations" was written hy a committee composed of the hest talent in the servicing indastry in conjunction with the staff psychologist of the University of Chicago.

MAIL YOUR ORDER TOEAY

Send in your order today for "TV Techniclan's Handbook on Customer Relattons."

Send \(\$ 1,00\) (check or money or.jer) for each copy wanted, to:

What's New in Television Bookshell, 679 N. Michigan Ave., Chicago 11, III.

Be sure to mention that you saw this advertisement in the -

PHOTOFACT INDEX

Under each of the printed circuit oscillator coils is a small plate of non-magnetic material, mounted on a screw, which varies the frequency of the local oscillator. The screw adjustment is accessible from the front end of the tuner.

Some components of the tuner are available for observation through an opening in the right side of the assembly. The turret must be removed to inspect the remaining components.

The arrangement of components has made it possible to hold lead lengths to a minimum. It is extremely important, when replacing a defective part, that the location and lead length exactly duplicate the original. At the same time, avoid moving other components any more than necessary.

A shaft concentric with the channel selector switch shaft operates the fine tuning trimmer. Fine tuning is accomplished by moving a cam-shaped piece of material between two fixed plates, thus changing capacity by varying the dielectric.

To minimize the presence of stray RF fields, shielding in this tuner is provided by several means. Both tubes have shields, with an additional lead shield around the 6J6 to reduce microphonics. Inside the tuner a metal shield separates grid and plate circuits of the RF tube. Another shield is placed between the plate circuit components of the RF tube and the grid circuit components of the mixer tube. An additional stationary contact connects the mixer coils on the adjacent channel strip to ground, providing further shielding.

The turret is so constructed that shields are placed between the printed circuit coils, and ears extending from the shields aid in locking the channel segments securely in position.

In order that the turret is correctly replaced in the tuner, the following procedure should be used. The spiral spring is placed on the turret shaft and the

Fig. 1-12B. Hallicrafters Printed Circuit' Tuner Alignment Points.
concentric fine tuning shaft is put in position. The turret shaft and the fine tuning shaft each have a grooved bearing which fits into slots in opposite ends of the tuner. At the same time that the turret is placed in the tuner the cam shaped dielectric is fitted between the fixed plates of the fine tuning trimmer. Care should be taken that the dielectric is not damaged, which might result if placed outside the fixed plates. The two lengths of spring wire are then put in place so that they press on the edge of the bearings rather than the turret or fine tuning shafts. Undue wear and stiffness in operation may result if the spring wires are allowed to rest on the shafts instead of on the bearings.

A 6CB6 tube is used in the single RF stage. This tube provides high gain, low noise, and has low interelectrode capacity. The second tube is a 6J6; one triode section is used as the mixer, the other serves as the local oscillator.

A low-pass pi network is used in the grid circuit of the RF amplifier, while a double-tuned bandpass network is employed in the plate circuit. The oscillator is of the Colpitts type.

Referring to the schematic diagram, Figure 1-12G, antenna coil L1 is designed to match a 300 ohm input line and has its primary center-tapped to ground. The low side of the secondary is grounded and the high side connected in series with L2, C1, and C2. The junction of C1 and C2 is connected in series with the printed circuit RF coil, L3, and A1 to ground. The junction of L3 and A1 is connected to the grid of V1. The tuned grid circuit of V1 consists of C2, the printed circuit RF coil, L3, A1, the distributed capacity of the circuit elements, and the interelectrode capacity of the tube.

The correct bandpass on the low channels, as observed on a scope, is obtained by adjusting A1 for maximum amplitude between sound and video markers. A2 is adjusted for maximum amplitude on the high channels. R1 is the grid return to the AGC line,

Fig. 1-12C. Hallicrafters Printed Circuit Tuner Alignment Points.

SIR JOHN
AMBROSE FLEMING
Invented the first electron tube, 1904, known as the Fleming Valve, opening the field for present day electronic developments.

\section*{20 amous for First,}

Many electrical and mechanical designs, now accepted as "musts" in antennas are firsts... developed by Ward. Experience gained through years of exclusively building antennas pays dividends to jobbers, dealers and installers through Ward's leadership in engineering and design. Only at Ward do you find a complete line of antennas for TV-FM-AutomotiveSPP and AM.

THE WARD PRODUCTS CORPORATION
Division of The Gabriel Co. 1523 East 45th Street Cleveland 3, Ohio

\section*{}

\section*{Compiled from}

\section*{information supplied by}

HOWARD W. SAMS \& CO., INC. especially for UXICD

A concise up-to-date summary of all phonos by year and model number, cartridge and needle.

Walco makes ALL of these needles for record-player manufacturers as well as for replacement. For economy, quality and service, insist on Walco. Order the Walco replacement needles manual from
your jobber now. You'll find it every bit as important to you as your tube manual!

TRADE NAME OF
ELECTROVOX CO., INC. EAST ORANGE, NEW JERSEY
and C4 is an AGC filter. C2 bypasses the filament of V1 to ground.

The coupling between V1 and V2 is an M-derived bandpass filter. The tuned circuit portion consists of L5, A6, the printed circuit mixer coils, A4, C7, A8, C8, A7, and L6, and the interelectrode capacity of V1 and V2. A3, A4, and A5 are adjusted for the correct bandpass on channel 13. A6 and A7 are adjusted for correct bandpass on channel 7. Low channel bandpass is obtained by adjusting A8.

Three printed circuit coils are used in the coupling network of V1 and V2. Coil Z, C7 and A4, or A8 and C8, function as a common impedance coupling between the plate circuit of the RF amplifier and the mixer grid network. Coils \(X\) and \(Y\) are shielded from each other. The signal developed across coil \(\mathrm{Z}, \mathrm{A} 4\), and C7 is common to the plate circuit section of the RF amplifier and the grid circuit of the mixer. Changing the capacity of A4 or A8 varies the impedance of the common impedance coupling network and thus controls the bandpass. A4 is adjusted for correct bandpass on high channels, and A8 controls bandpass on low channels.

In the screen circuit of the RF amplifier, a small amount of inductance, L4, is placed in series with the screen bypass, C5, to increase input resistance of the tube and, thereby, reduce loading of the grid circuit, particularly on the high channels.

The mixer is one triode section of a \(6 J 6\) tube. The series network of R5 and R6 makes up the mixer grid load. The junction of these resistors is brought out to the top of the tuner for alignment purposes. The local oscillator signal is coupled to the grid circuit of the mixer through C 2, a 2.2 mmf . capacitor.

The other triode section of the 6 J 6 tube is used in a modified Colpitts oscillator circuit. The printed
circuit oscillator coil of each channel is placed in series with L9 as the turret is rotated. The tuned portion consists of the printed circuit oscillator coil, L9, C14, A22, C16, and the fine tuning trimmer. A22 and C16 provide the necessary feedback. The value of these capacitors is large compared to the inter electrode capacity of the oscillator tube; therefore, realignment should not be necessary when the 6J6 tube is replaced. This also decreases oscillator drift during warmup.

C15 serves as a DC blocking capacitor, and R9 is the grid return. The plate load for the oscillator is R10 and the parallel combination of L8 and R11. R12 and C17 decouple the oscillator from B+, while C12 and R8 decouple the mixer plate circuit.

Troubles which might be encountered in servicing the tuner may involve dirty contacts. If errat ic operation is encountered on some of the channels when the turret is rotated, the fault may lie in dirty contacts or insufficient tension from one of the stationary contacts. If the trouble is still present after cleaning the contacts, an instrument, such as an insulated alignment tool, can be gently pressed against each of the stationary spring contacts to determine which one is at fault. If one is found which makes poor contact, remove one of the channel segments and rotate the turret until the blank space is beneath the spring contacts. The faulty contact is then bent slightly, with the alignment tool, to obtain the proper tension.

Complete alignment instructions for this tuner are given in this section, including Figures 1-12B through 1-12F.

We wish to acknowledge the cooperation of the Hallicrafters Co. in supplying us with technical data and samples which were used in this presentation.

Fig. 1-12G. Schematic of Hallicrafters Printed Circuit Tuner.

\title{
ALIGNMENT INSTRUCTIONS \\ HALLICRAFTER TV TUNER
}

AUIGNMENT INSTRUCTIONS-READ CAREFULIY BEFORE ATTEMPTING ALIGNMENT
Connect the negative lead of a 1.5 volt battery to the AGC terminal on the tuner, connect the positive lead to B-.
The sweep generator output lead should be terminated with its characteristic impedance, usually 50 ohms.
1.
2.
3.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{ANTENNA ALIGNMENT} \\
\hline DUMMY ANTENNA & SWEEP
GENERATOR
COUPLING & \[
\begin{aligned}
& \text { SWEEP } \\
& \text { GENERATOR } \\
& \text { FREQUENCY }
\end{aligned}
\] & MARKER
GENERATOR
FREQUENCY & CHANNEL & CONNECT SCOPE & ADJUST & REMARKS \\
\hline Two \(120 \Omega\) carbon resistors & Across antenna terminals with 1200 in each lead. & \[
\begin{aligned}
& 85 \mathrm{MC} \\
& (12 \mathrm{MCSWP})
\end{aligned}
\] & \[
\begin{aligned}
& 83.25 \mathrm{MC} \\
& 87.75 \mathrm{MC}
\end{aligned}
\] & 6 & Vert. amp. thru detector (fig. 1-12D) to pin 5 (plate) of 6CB6 RF amp. & Al & Adjust for maximum amplitude between the channel 6 sound and video markers. \\
\hline " & " & \begin{tabular}{l}
177MC \\
(10MC SWP)
\end{tabular} & \[
\begin{aligned}
& 175.25 \mathrm{MC} \\
& 179.75 \mathrm{MC}
\end{aligned}
\] & 7 & \({ }^{\prime \prime}\) & A2 & Adjust for maximum amplitude between the channel 7 sound and video markers. \\
\hline \multirow[t]{4}{*}{"} & \multirow[t]{4}{*}{"} & \[
\begin{aligned}
& 79 \mathrm{MC} \\
& \text { (12MC SWP) }
\end{aligned}
\] & \[
\begin{aligned}
& 77.25 \mathrm{MC} \\
& 81.75 \mathrm{MC}
\end{aligned}
\] & 5 & \multirow[t]{4}{*}{*} & & \multirow[t]{4}{*}{Check all low band channels for reaponse curve similar tofigure l-12E. If necessary retouch Al for best compromise across the low band channels.} \\
\hline & & \[
\begin{aligned}
& 69 \mathrm{MC} \\
& \text { (12MC SWP) }
\end{aligned}
\] & \[
\begin{aligned}
& 67.25 \mathrm{MC} \\
& 71.75 \mathrm{MC}
\end{aligned}
\] & 4 & & & \\
\hline & & \[
\begin{aligned}
& 63 \mathrm{MC} \\
& \text { (12MC SWP) }
\end{aligned}
\] & \[
\begin{aligned}
& 61.25 \mathrm{MC} \\
& 65.75 \mathrm{MC}
\end{aligned}
\] & 3 & & & \\
\hline & & \[
\begin{aligned}
& 57 \mathrm{MC} \\
& \text { (12MC SWP) }
\end{aligned}
\] & \[
\begin{aligned}
& 55.25 \mathrm{MC} \\
& 59.75 \mathrm{MC}
\end{aligned}
\] & 2 & & & \\
\hline \multirow[t]{6}{*}{"} & \multirow[t]{6}{*}{"} & \[
\begin{aligned}
& \text { 183MC } \\
& \text { (12MC SWP) }
\end{aligned}
\] & \[
\begin{aligned}
& 181.25 \mathrm{MC} \\
& 185.75 \mathrm{MC}
\end{aligned}
\] & 8 & \multirow[t]{6}{*}{"} & & \multirow[t]{6}{*}{Check all high band channels for response similar to figure l-12E. If necessary retouch A2 for best compromise across the high band channels.} \\
\hline & & \[
\begin{aligned}
& \text { 189MC } \\
& \text { (12MC SWP) }
\end{aligned}
\] & \[
\begin{aligned}
& 187.25 \mathrm{MC} \\
& 191.75 \mathrm{MC}
\end{aligned}
\] & 9 & & & \\
\hline & & \[
\begin{aligned}
& \text { IgSMC } \\
& \text { (12MC SWP) }
\end{aligned}
\] & \[
\begin{aligned}
& 193.25 \mathrm{MC} \\
& 197.75 \mathrm{MC}
\end{aligned}
\] & 10 & & & \\
\hline & & \[
\begin{aligned}
& 201 \mathrm{MC} \\
& (12 \mathrm{MC} \text { swP) }
\end{aligned}
\] & 189.25 MC
203.75 MC & II & & & \\
\hline & & \[
\begin{aligned}
& 207 \mathrm{MC} \\
& (12 \mathrm{MC} \text { SWP) }
\end{aligned}
\] & \[
\begin{aligned}
& 205.25 \mathrm{MC} \\
& 209.75 \mathrm{MC}
\end{aligned}
\] & 12 & & & \\
\hline & & \[
\begin{aligned}
& 213 M C \\
& \text { (10MC SWP) }
\end{aligned}
\] & \[
\begin{aligned}
& 211.25 \mathrm{MC} \\
& 215.75 \mathrm{MC}
\end{aligned}
\] & 13 & & & \\
\hline
\end{tabular}

RF ALIGNNENT
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline DUMMY ANTENNA & \[
\begin{aligned}
& \text { SWEEP } \\
& \text { GENERATOR } \\
& \text { COUPLING } \\
& \hline
\end{aligned}
\] & SWEEP GENERATOR FREQUENCY & \begin{tabular}{l}
MARKER \\
GENERATOR \\
FREQUENCY \\
\hline 2II
\end{tabular} & CHANNEL & \[
\begin{aligned}
& \text { CONNECT } \\
& \text { SCOPE }
\end{aligned}
\] & ADJUST & REMARKS \\
\hline Two 1202 carbon resistors & Across antenna terminals with 1200 in each lead. & \[
\begin{aligned}
& 213 \mathrm{MC} \\
& \text { (12MC SWP) }
\end{aligned}
\] & \[
\begin{aligned}
& 211.25 \mathrm{MC} \\
& 215.75 \mathrm{MC}
\end{aligned}
\] & 13 & Vert. amp. to Point A. Low side to chassis. & \[
\begin{aligned}
& \mathrm{A} 3, \mathrm{A4}, \\
& \mathrm{~A} 5
\end{aligned}
\] & Adjust for response curve similar to fig. l-12F. \\
\hline " & " & \[
\begin{aligned}
& \text { 177MC } \\
& \text { (12MC SWP) }
\end{aligned}
\] & \[
\begin{aligned}
& 175.25 \mathrm{MC} \\
& \text { 179.75MC }
\end{aligned}
\] & 7 & * & A6, A7 & * \\
\hline " & " & \[
\begin{aligned}
& 85 \mathrm{MC} \\
& \text { (12MC SWP) }
\end{aligned}
\] & \[
\begin{aligned}
& 83.25 \mathrm{MC} \\
& 87.75 \mathrm{MC}
\end{aligned}
\] & 6 & " & A8 & " \\
\hline " & " & \begin{tabular}{|l}
\hline 79 MC \\
(12MC sWP) \\
\hline 69 MC \\
(12 MC SWP) \\
\hline 63 MC \\
(12MC SWP) \\
\hline 57 MC \\
(12MC SWP) \\
\hline
\end{tabular} & \begin{tabular}{l}
77.25 MC \\
81.75 MC \\
\hline 67.25 MC \\
71.75 MC \\
\(\mathbf{6 1 . 2 5 \mathrm { MC }}\) \\
65.75 MC \\
55.25 MC \\
59.75 MC
\end{tabular} & 5
4
3
2 & " & & Check all low band channels for response similar to figure 1-12F. Li necessary retouch A6, A7 and A8 for best compromise over the low band channels. \\
\hline " & " & \begin{tabular}{l}
207MC \\
(12MC SWP) \\
\hline 201 MC \\
(12MC SWP) \\
\hline 195 MC \\
(12MC SWP) \\
\hline 189 MC \\
(12MC SWP) \\
\hline 183 MC \\
(10MC SWP) \\
\hline
\end{tabular} & \begin{tabular}{l}
205.25 MC \\
204.75 MC \\
199.25 MC \\
203.75 MC \\
\hline 193.25 MC \\
197.75 MC \\
\hline 187.25 MC \\
191.75 MC \\
\hline 181.25 MC \\
185.75 MC
\end{tabular} & 12
11
10
9
8 & " & & Check all high band channels for response similar to figure 1-12F. If necessary retouch A3, A4 and A5 for best compromise over the high band channels. \\
\hline TO SCOPE & & I2D & & \[
\rightarrow \text { TO PL }
\] & & & \\
\hline
\end{tabular}

\section*{OSCILLATOR ALIGNMENT}

The overall oscillator adjustments (A21 and A22), have been pre-set at the factory and should not normally require adjustment in the field. However, If it is known that the adjustments have been tampered with, or if any of the channel strip adjustments shows insufficient range, they may be adjusted as follows.

A2l should be adjusted on channel 13 with the channel strip adjustment near the center of its range.
A22 should be adjusted on channel 2 with the channel strip near the center of its range.
A21 affects primarily the high channels and A22 affects primarily the low channels, bowever they are interacting and if either is changed, all channels should be rechecked to see if they have been seriously affected.

SEPARATE SOUND FF RECEIVER OSCILLATOR ALIGNMENT
10.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{SEPARATE} \\
\hline \multicolumn{7}{|l|}{\begin{tabular}{l}
In the receivers which employ a separate sound channel the oscillator can most conveniently be aligned by feeding the channel sound carrier frequency into the antenna and adjusting for sero voltage reading on the VTVM connected to the sound detector output. \\
The signal generator output lead should be terminated with its characteristic impedance, usually 50 ohms. \\
Set the fine tuning control to the mid-position of Its range.
\end{tabular}} \\
\hline DUMMY ANTENNA & SICNAL GENERATOR COUPLING & SIGNAL GENERATOR FREQUENCY & CHANNEL & CONNECT VTVM & ADJUST & REMARKS \\
\hline \multirow[t]{12}{*}{Two 1200 carbon resistors} & \multirow[t]{12}{*}{Across antenna terminals with 1200 in each lead.} & \[
\begin{gathered}
59.75 \mathrm{MC} \\
\text { (Unmod.) }
\end{gathered}
\] & 2 & Across sound detector output. & A9 & \multirow[t]{12}{*}{Adjust for zero reading. A positive and negative reading will be cubtained on either side of the correct setting.} \\
\hline & & 65.75 MC & 3 & \multirow[t]{11}{*}{} & Al0 & \\
\hline & & 71.75MC & 4 & & A II & \\
\hline & & 81.75 MC & 5 & & Al2 & \\
\hline & & 87.75 MC & 6 & & Al3 & \\
\hline & & 179.75MC & 7 & & A14 & \\
\hline & & 185.75MC & 8 & & Al5 & \\
\hline & & 181.75MC & 8 & & A16 & \\
\hline & & 197.75MC & 10 & & A17 & \\
\hline & & 203.75MC & 11 & & A18 & \\
\hline & & 209.75MC & 12 & & A19 & \\
\hline & & 215.75MC & 13 & & A20 & \\
\hline
\end{tabular}

\section*{INTERCARRIER RECEIVER OSCILLATOR ALIGNMENT}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{The most convenient meihod of oscillator alignment to use vith this receiver is the beat frequency method. To employ this method it becomes necessary to determine exactly one of the IF frequencies used in the receiver. The video IF frequency is usually given in the alignment instructions and is therefore used in the following example, although the sound IF frequency could be used in a similar manner. After the video IF frequency is determined it is necessary to add the video IF frequency to the channel video carrier frequency to determine at what frequency the oscillator operates on each channel.} \\
\hline DUMAY ANTENNA & & SIGNAL
GENERATOR
FREQUENCY & CHANNEL & CONNECT SCOPE & ADJUST & REMARKS \\
\hline Two 1208 carbon resistors & Across antenna terminals with 1200 in each lead. & 55. 25MC plus video IF frequency & 2 & Vert. amp. to tuner output. (lst video IF amp. grid) & A8 & Adjust for zero beat indication on scope. This will be indicated by a narrow trace between two wide traces. \\
\hline " & " & See paragraph above & 3 thru 13 & " & \[
\begin{aligned}
& \text { A10 thru } \\
& \text { A20 }
\end{aligned}
\] & * \\
\hline
\end{tabular}
"AS I SEE IT" (Continued from page 19)

Figure 3
shown in Figure 3, where an 18 ohm resistor is connected in series with the plate of the rectifier to limit the current in case of a short circuit. The resistor connected in this position is called a "rectifier ballast." The circuit diagram shown in Figure 3 is taken from Photofact Set No. 118, Folder No. 6, and is as effective for most purposes as though the resistor were connected as shown in Figure 2. The same examinations of both the defective rectifier tube and the resistor suggested for the circuit illustrated in Figure 2 should be made for receivers wired as indicated in Figure 3.

Occasionally receivers are built which incorporate both "surge limiters" and "rectifier ballasts" and such a receiver schematic is shown in Figure 4, which is taken from Photofact Set No. 118, Folder No. 3. The same precautions should be taken when replacing the rectifier tube, which in this particular
case is a 35Z5GT, as have been suggested for the other circuits.

When the rectifier tube in an \(A C-D C\) receiver must be replaced, it is advisable to analyze the tube for open heater as well as possible short circuits, realizing that if the heater wire breaks, then there is always the possibility that one end might touch the cathode and indicate a short. If this has happened, however, there will be no evidence of a short circuit at A , or of a defective electrolytic capacitor, if the defective tube has been removed.

If the circuit is similar to that shown in Figure 1 , it is wise to add the resistor provided room can be found where it can be safely mounted. Even though the receiver may be of the latest type it will pay to check the circuit diagram since the four circuits shown are used in current receivers. Parts are both scarce and expensive, so that an analysis of the type and condition of rectifier circuit employed may pay worthwhile dividends in AC-DC service work.

Figure 4
GOOD TIPS

\section*{ON SCREWDRIVING}
- by -

YOU WOULDN'T USE THE WRONG TYPE TUBE IN A SET !! When driving Phillips screws, don't use anything but a genuine XCELITE Phillips driver. The WRONG tool can damage BOTH THE TIP AND THE SCREW! XCELITE makes the screwdriver to fit every recognized type and size screw. Al-

\section*{XrELITE} ,
\(\qquad\)
 ways use the tool designed for the job!! PARK METALWARE CO., INC. Dept. Q Orchard Park, N. Y.
billings need boosting?

\section*{V-M tri-o-matic RECORD CHANGERS!}

There's good maney to be made, in selling and installing V-M tri-o-matic* replacement changers - the ideal unit to replace obsolete one- and two-speed record changers. - Original Equipment in Most Top-Brand Combinations
- Nationally Advertised
- Exclusive Features
- Easy Installation (precut mounting boards availabla)
- Minimum Mounting Space - 13 3/16 \({ }^{\prime \prime}\) \(\times 117 / 8^{\prime \prime}\) deep, overall height \(71 / 4^{\prime \prime}\)
For a demonstration and full details about the
amazing V.M tri-o-matic, contact your V-M jabber

V-M corporation • Benton Harbor, Mich.
*Registered Spindle Design Potented

\section*{thevision high voltaor COROWA DOPE}

Used by manufacturers and servicemen to prevent corona shorts on high voltage circuits in television sets. Easy to apply, airLasy to
drying.
No. 47-2.......2-0z.
TELEVISION

\section*{APPROVED}
by Service Technicians
More and more service technicians rate RADIO-ELECTRONICS as the No. 1 servicing magazine in radio, relevision and audio. Features like Radio Set and Service Review, Television Service Clinic, Technotes, and New Devices plus practical articles by service technician-writers make RADIO-ELECTRONICS required reading every month for progressive service technicians.

\section*{SUBSCRIPTION RATES}

1 Year \(\$ 3.50 \quad 2\) Years \(\$ 6.00 \quad 3\) Years \(\$ 8.00\) Also on Sole at Parts Distributors and Newsstonds

\section*{RADIO-ELECTRONICS}

25 West Broodway New York 7, N. Y.

IMPLOSIONS. What happens when the expressman drops a television set? The accompanying photo tells the story - - the picture tube implodes and makes pretty patterns on the safety -glass window. Not too clearly shown, though, is the inward bellying of the safety glass toward where the picture tube was. The inrush of air to fill the vacuum of the tube volume sucked the glass inward, proving that these big tubes implode instead of explode.

RANGE OF TV STATIONS. FCC engineers used to specify the range of a TV station as 0.5 millivolt per meter, but now they simply say "As far as the station can be received." Programs are going way farther than they're technically supposed to. Recognizing this, stations are revising their sets-in-use figures for program-selling purposes to include all sets within their \(0.1 \mathrm{mv} / \mathrm{m}\) contour. Roughly this extends the coverage out to 60 miles from the station, whereas 40 miles was considered the limit for good reception heretofore. Some stations even claim good viewing out to the \(0.025 \mathrm{mc} / \mathrm{m}\) contour, even though this is usable only by sets having the corresponding sensitivity of 25 microvolts (which a few do). New coverage figures are backed by engineering tests and by mail from TV set owners, so you're safe in quoting 60 miles to your customers for average locations. The technical explanation for all this is that people in fringe areas are going to a great deal of trouble and expense to get a picture, and generally are willing to accept considerably less than optimum quality when nothing better is possible.

LIGHT-BULB INTERFERENCE. If the complaint is a horizontal black band blotting out part of the picture, it may be oscillation from one of the old unfrosted electric lamps with the pointed tips, in use in the same house or nearby. Look for them in cellars and out-of-the-way places where the bulbs get so little use that they haven't gotten around to burning out yet. Favorite carrier frequencies of these bulbs fall right in the low-band TV channels.

HIGHER IF VALUES. So far in the current TV models, only Arvin, GE and Westinghouse have gone to \(45.75-\mathrm{mv}\) intermediate-frequency values. Teletone uses 37.3 mc on some of their sets, while all the rest of the makes are still down around 25 mc .

THREE-SPEED DOLLARS. Despite the loud original predictions of pandemonium, three speeds have been good for the record business. Now the serviceman is coming in for his benefits. All the publicity, plus some 1.5 million brand-new threespeed changers going into 1950 phono combinations, has made many realize that their prewar hard-to-fix \(78-\mathrm{rpm}\) changers are as obsolete as a model T Ford. As a result, more changers were made in 1950 than in any previous year in history. Simplification and improvement in design and manufacture have made the modern changer stand up under terrific punishment in the hands of the kiddies, and the few that do go bad are no longer causing ulcers among servicemen. Don't be scared of a 3 -speed job; just dig up the Photofact Folder with the correct exploded view of the works, and in no time at all you'll find the right lever to bend or the right screw to turn.

SALTED TV LINES. Right on the seashore, twin-lead can become useless for television in just a few days because of the high moisture and salt content of the air. The salt deposits on the line, then the night fog wets it to form a practically perfect conducting sheath that changes both impedance and attenuation characteristics drastically. Even ten blocks inland, lines go bad within a few months, with the effect most noticed beyond about 20 miles from the TV station. Suggested partial remedies include putting the twin-lead inside large plastic tubing, using open-air 300 -ohm line and coating the spacers with silicone grease to shed water, and using air or nitro-pressurized flexible copper coaxial line in really bad locations. Ordinary coax is of course the answer where its own increased attenuation is acceptable. Runs of 100 feet of coax in a fringe location can be just as bad for the picture as salted standard line. For more details on choice and installation of lines along the coast, read "TV by the Sea' in February 1951 Radio-Electronics.

IN LIGHTER VEIN. In an esteemed high-brow society journal, a scientist proposes as a definition for communication, "the discriminatory response of an organism to a stimulus." Now look at the communications cartoon below for your sign-off chuckle. It must be Love:

The above cartoon appeared in the December 1950 issue of TELEVISION MIS-INFORMATION, published by Sheldon Electric Company, Irvington, New Jersey.

\section*{Jis yo Your Aldartage} yo \%he
ERIE CERAMICONS

They are compact in size ... Impervious to humidity ... Rugged in construction ...
\(100 \%\) tested to assure highest quality ... Conservatively rated

A wide range of capacitance values and temperature characteristics available in molded and dipped insulated types . . . Especially adaptable to replace paper and molded micas

Economically priced ...
Available through distributors everywhere

"GP" Molded Insulated Ceramicon

"GP" Dipped Insulated Ceramicon

\section*{More About the "Thing"}

While we have the opportunity, perhaps a brief description of the makeup of the "Thing" and its application to articles current or projected, appearing in the "Technical Digest" would be in order.

As previously outlined, the "Thing" consists of a rugged rack system with suitable electrical connection features to distribute power to any number or assembly of individual chassis. In the TV field, for example, we have more than twenty such chassis \(2^{\prime} \times 5^{\prime \prime} \times 7^{\prime \prime}\), each of which is representative of a typical function or popular circuit design. These chassis range from TV tuning units, sound or video IF's and video amplifiers through sync separators, blocking oscillators, vertical and horizontal output, etc. Selection of proper chassis enables operation of a particular TV system design, with ready observation or measurement on any component stage or assembly. You can readily appreciate the value of noting the results of simulated failures or maladjustments, or the ability to substitute chassis functions of the "Thing" for similar portions of existing receivers.

One of the first problems we faced in our original plans for the project was the necessity for providing a filament and plate power source capable of handling requirements extending from those of 2 or 3 tube sub-assemblies, to complete 30 -or-more tube receiver systems.

In addition to the heavy duty requirement, means had to be provided for flexible application. Voltage outputs must range from 100 to 450 volts and remain substantially constant regardless of load. Frequently one design needs multiple voltage values without the necessity of dividing resistors within the individual chassis.

Our final answer to the problem is pictured at the top of this column. The power supply shown provides filament voltage of 12.6 volts center-tapped at currents up to 10 amperes. The plate or B supply has three regulated and metered outputs, each of which can supply up to 250 ma. current in the following ranges: High - 300 to 450 volts; Medium - 200 to 300 volts; Low -100 to 175 volts. Additionally, a regulated negative supply of 150 volts is available for bias or similar applications.

The power unit employs \(2-5\) R4GY HV rectifiers, a 5Y3GT bias rectifier, 4-6AS7G pass tubes, 1 - OD3/VR150 and 1 - OB3/VR90 voltage regulators, and 3-6AU6 control tubes. The circuit arrangement is a little special. We'll try and include it later when space permits.

\section*{A BETIER DEAL}

You demand TV
Snap On Holders Ten to a Box

No. 094025
Time saver for pigtail replacement. Snap on blown pigtail, then use regular fuse in other side. No soldering. Demand item with servicemen. Bígger TV profits.
\(\$ 3.00\) per box, list

\section*{LITTELFUSE}

4757 N. RAVENSWOODAVE., CHICAGO 40 , ILLINOIS

TO:

\title{
BURGESS Contrialab \\ C BC \\ CONTROLS \\ RESISTORS
}

PHONO-CARTRIDGES PHONO.NEEDLES

CAPACITORS

ATTEREUSE
FUSES

Select your replacement needs from these high quality product lines listed in Photofact Folders.

Aerovox Corporation
The Astatic Corporation Burgess Battery Company Centralab Div.
Chicago Transformer Div. Clarostat MIg. Co., Inc. Cornell-Dubilier Electric Corp. Electro-Voice, Inc. Erie Resistor Corporation International Resistance Company Jensen Manufacturing Company

Littelfuse, Incorporated Meissner Manufacturing Division Merit Transformer Corp. National Carbon Division Quam-Nichols Company The Radiart Corporation Radio Receptor Company, Inc. Shure Brothers, Incorporated Sprague Products Company Standard Transformer Company Sylvania Electric Products, Inc.

\section*{Adjuntalone
SPEAKERS}

\section*{sylvania}

CONTROLS
llensell
SPEAKERS

> TUBES SELENIUM RECTIFIERS

```


[^0]:    Only 11 Universal Parts—plus
    Shaft Ends and Base Elements SAVE BY BUYING ONLY WHAT YOU NEED Each CONCENTRIKIT contains 11 IRC universal parts-common to all IRC Type Q Concentric Duals. It does not include inner shaft ends, control BaseElement assemblies, switches or sleeve

