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Digital Display Precision Predictor: the prototype of a global
biomarker model to guide treatments with targeted therapy
and predict progression-free survival
Vladimir Lazar 1,18✉, Shai Magidi1,18, Nicolas Girard2, Alexia Savignoni 2, Jean-François Martini3, Giorgio Massimini4,
Catherine Bresson1, Raanan Berger5, Amir Onn5, Jacques Raynaud6, Fanny Wunder1, Ioana Berindan-Neagoe 7,8, Marina Sekacheva9,
Irene Braña10, Josep Tabernero 10, Enriqueta Felip10, Angel Porgador11, Claudia Kleinman12, Gerald Batist12, Benjamin Solomon13,
Apostolia Maria Tsimberidou 14, Jean-Charles Soria15, Eitan Rubin11,18, Razelle Kurzrock 16,18 and Richard L. Schilsky 17,18

The expanding targeted therapy landscape requires combinatorial biomarkers for patient stratification and treatment selection. This
requires simultaneous exploration of multiple genes of relevant networks to account for the complexity of mechanisms that govern
drug sensitivity and predict clinical outcomes. We present the algorithm, Digital Display Precision Predictor (DDPP), aiming to
identify transcriptomic predictors of treatment outcome. For example, 17 and 13 key genes were derived from the literature by
their association with MTOR and angiogenesis pathways, respectively, and their expression in tumor versus normal tissues was
associated with the progression-free survival (PFS) of patients treated with everolimus or axitinib (respectively) using DDPP. A
specific eight-gene set best correlated with PFS in six patients treated with everolimus: AKT2, TSC1, FKB-12, TSC2, RPTOR, RHEB,
PIK3CA, and PIK3CB (r= 0.99, p= 5.67E−05). A two-gene set best correlated with PFS in five patients treated with axitinib: KIT and
KITLG (r= 0.99, p= 4.68E−04). Leave-one-out experiments demonstrated significant concordance between observed and DDPP-
predicted PFS (r= 0.9, p= 0.015) for patients treated with everolimus. Notwithstanding the small cohort and pending further
prospective validation, the prototype of DDPP offers the potential to transform patients’ treatment selection with a tumor- and
treatment-agnostic predictor of outcomes (duration of PFS).
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INTRODUCTION
The application of personalized medicine to oncology has resulted
in prominent successes that have led to approved, molecularly
specific, biomarker-defined indications for targeted therapies. As
examples, the use of EGFR mutation/erlotinib1, KIT mutation/
imatinib2, BRAF mutation/vemurafenib3, ALK translocation/crizoti-
nib4, and high tumor mutation burden or microsatellite instability
high/pembrolizumab5–8, have dramatically changed the treatment
landscape in many cancers including, but not limited to
melanoma, non-small cell lung carcinoma (NSCLC), colorectal
carcinoma (CRC), and head and neck (HN) cancers.
However, despite the advent of personalized precision oncol-

ogy, cancer remains one of the leading causes of deaths all over
the world. Globally, 9.6 million deaths are attributed to cancer,
representing 13% of all deaths9.
Extending the application of precision medicine requires a

deeper understanding of tumor biology. Furthermore, improve-
ment in the ability to select patients is needed, both with respect
to identifying sensitive versus resistant tumors and in pinpointing
patients at risk for severe toxicities.
With the number of validated drug targets increasing, testing

each patient’s tumor for all markers related to all possible targeted

therapies becomes infeasible due to the limited amount of tissue
usually obtained by biopsies, pointing out the limitation of the
classic companion diagnostic approach.
A comprehensive analysis of all relevant genes in a single assay

would enable the exploration of all drug targets simultaneously to
inform therapeutic options for patients. Furthermore, the com-
plexity of cancer biology requires investigation of multiple genes
in networks of pathways to understand the variability of clinical
outcomes observed, that cannot be achieved by investigating
single genes (as performed with most companion diagnostic
tests).
We report the Digital Display Precision Predictor (DDPP), a

biomarker strategy and tool, able to predict duration of
progression-free survival (PFS) for multiple targeted treatments,
based on the comprehensive investigation of the whole
transcriptome. The DDPP prototype presented here was derived
from analysis of transcriptomic and clinical outcomes in patients
with advanced cancer enrolled in the WINTHER clinical trial and
treated with: everolimus (mTOR inhibitor), axitinib (VEGFR
receptors inhibitor), afatinib (pan-HER inhibitor), trametinib (MEK
inhibitor), FGFR inhibitors, and anti-PD-1/PDL-1 antibodies (pem-
brolizumab, nivolumab and atezolizumab). The WINTHER trial (NCT
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01856296) explored, for the first time in a prospective clinical trial,
the use of differences in gene expression between tumor and
analogous organ-matched normal tissues to guide treatment
selection10. The trial demonstrated that transcriptomic analysis,
based on tumor/normal tissue comparison, was feasible and
increased, by about one third, the number of patients that could
be matched to a targeted therapy as compared to genomic
analysis alone.

RESULTS
DDPP strategy and objectives
The objective of the DDPP was to build a predictor of the PFS as a
continuous variable, in contrast with current binary predictive
biomarkers that predict if patients will respond to a specific
therapeutic regimen or not. The DDPP transcriptomic-based
biomarker strategy is based on three pillars: (1) gene selection—
literature review was used to identify a list of key genes governing
the sensitivity for a given therapeutic regimen and the exploration
of their differential expression in tumor compared to analogous
normal tissues. Comprehensive transcriptomic analysis of the
whole transcriptome (~20,000 genes) in a single assay requiring a
very small amount of tissue, which enables the exploration of all
targets simultaneously to inform therapy options for patients.
Reducing the number of features (genes) for consideration
reduces the chances of overfitting and allows useful predictions
to be made regardless of the size of the patient cohort; (2) ranking
each of the genes from the identified list of relevant genes, based
on their relative association with PFS. Different conventional
ranking methods were considered, including Cox univariate and
multivariate regression models, multiple linear regression (MLR),
or parametric (Pearson) and nonparametric (Spearman) correlation
tests. We selected the Pearson correlation with PFS, since it
outperformed all other ranking methods (presented in “Methods”
and in Supplemental Notes); and (3) building a PFS predictor.
Once the relevant genes were ranked, we applied an empirical
summation approach, comparing the performance of every set of
genes with the top K genes (K= 1..N, where N is the number of
genes in the list identified in step (1) above) in predicting PFS. For
every subset with the top-ranking K genes, four summation
methods were used to predict PFS: mean, median, product, and
absolute product.

DDPP investigations of patients treated with everolimus
We applied the DDPP method to build a PFS predictor for
everolimus treatment: Supplemental Table 1 describes the
currently recognized 17 key genes of the mTOR pathway11,12:
upstream regulators of MTOR: PIK3CA, PIK3CB, AKT1, AKT2, PTEN,
TSC1, TSC2, RHEB, and FKB-12 (FKBP1A) plays a key role as it binds
to everolimus and interacts with MTOR, resulting in the formation
of the inhibitory complex MTORC1 (MTOR, MLST8, and RPTOR) and
MTORC2 (MTOR, MLST8, and RICTOR); downstream effectors: S6K1
(RPS6KB1), 4EBP1 (EIF4EBP1), HIF1 (HIF1A), and VEGFA.
In six patients treated with everolimus, the fold changes

measuring the differential tumor versus normal gene expression
of each of the 17 key genes, creates 17 different coordinates
defined by the fold changes in tumor and the steady-state levels
of mRNAs in tumor and normal tissues. The main clinical and
outcome characteristics of the patients treated with everolimus
are described in Table 1, together with next-generation sequen-
cing Foundation One test (Foundation Medicine) performed
during the WINTHER study. Results of the WINTHER trial have
been previously published10. One patient treated with everolimus
(ID 203) had an exceptional response lasting in excess of
60 months and PFS was therefore censored at this timepoint. It
should be noted that the genomic profile could not explain the
variation in PFS observed in the everolimus monotherapy group;

indeed, the two patients with the longest PFS, both with GI tract
neuroendocrine tumors, had no mutations (ID 203) or no genomic
alterations in the PI3K/AKT/mTOR pathway (ID 148), respectively.
In contrast, the patients with much shorter PFS (ID 227, ID 6, ID 90,
and ID 117) did have alterations in the PI3K/AKT/mTOR pathway,
albeit accompanied by co-alterations that might have driven
resistance13. Since DNA biomarkers could not explain variations in
clinical outcome, we further investigated whether transcriptomics
and DDPP could provide a deeper insight. Figure 1 shows the
DDPP profile of the 17 key genes of the six patients treated with
everolimus as monotherapy. It should be noted that the DDPP
profile is highly variable between the six patients. While MTOR has
the same steady-state level in both tumor and normal tissues, Fig.
1e, f suggests a trend of greater overexpression of upstream
regulators of MTORC1 complex (in particular TSC1 and AKT2) in
patients with longer PFS (ID 148 and ID 203), as compared with
the patients with shorter PFS (ID 090, ID 227, ID 117, and ID 006).
The relative impact on the PFS of each individual gene was

determined through Pearson correlations between differential
gene expression and PFS for each of the 17 genes were AKT2
(r= 0.75, p= 0.087), TSC1 (r= 0.74, p= 0.094), FKB-12 (r=−0.67,
p= 0.149), TSC2 (r= 0.63, p= 0.178), RPTOR (r= 0.61, p= 0.198),
RHEB (r=−0.49, p= 0.325), PIK3CA (r= 0.43, p= 0.4), PIK3CB (r=
−0.41, p= 0.414), AKT1 (r=−0.35, p= 0.496), MLST8 (r=−0.34,
p= 0.509), VEGFA (r= 0.27, p= 0.604), HIF1 (r= 0.27, p= 0.606),
PTEN (r=−0.16, p= 0.759), 4EBP1 (r=−0.16, p= 0.77), RICTOR
(r= 0.14, p= 0.788), MTOR (r= 0.13, p= 0.807), and S6K1 (r=
−0.04, p= 0.936). We further explored the combined differential
expression in tumor versus normal tissues of the most contributive
key genes involved in the everolimus pathway. For each of the
correlations with PFS, we built a vectorial summation using a
“step-in” method, starting with AKT2, which was identified as the
most contributive gene according to the Pearson correlations, and
adding successively a single gene at each step in the order of their
significance: AKT2-TSC1; AKT2-TSC1-FKB12, then AKT2-TSC1-FKB12-
TSC2 and so forth, obtaining in total 17 different vector
summations. Each combined vector was correlated with the
observed PFS.
Figure 2a shows that the optimal performance was obtained by

the vectorial summation of the eight most contributive genes
AKT2, TSC1, FKB-12, TSC2, RPTOR, RHEB, PIK3CA, and PIK3CB, which
showed the most significant correlation with PFS, among the 17
possibilities: (r= 0.99, p= 5.67E−05). The higher the relative
expression of these key genes in tumor tissue, the longer the
PFS is under treatment with everolimus. The linear regression
model for the correlation with PFS is Y= 1.499E−13X+ 3.134
(Equation 1), where X= the absolute value of the fold of log2(fold
change tumor versus normal) multiplied by log1.1 (Intensity_Tu-
mor) of each value for each of the eight genes, and Y= PFS in
months. Allelic frequency of mutations was not taken into
account, as mutations could not explain variations in PFS. Allelic
frequency was not available as transcriptomics was performed
with microarray technology. It should be noted that the most
contributive genes, AKT2, TSC1, FKB-12, TSC2, RPTOR, and RHEB are
key for direct interaction with MTOR and its upstream regulation
(TSC1, TSC2, and RHEB). Furthermore, FKB-12 binds everolimus and
associates to MTOR forming together with RPTOR the MTORC1
complex.
Figure 2b shows that when only the tumor biopsy was

investigated (as is usually done in the current biomarker studies
in oncology practice or translational research), the significance of
the correlation dropped to r= 0.24, p= 0.65, suggesting the
critical importance of the new strategy of assessing tumor versus
normal analogous organ-matched dual biopsy.
In order to assess the prognostic versus the predictive value

of the DDPP data in our analyses, we tested the specific
predictor of the PFS for everolimus (n= 6 patients) generated
by eight genes (AKT2, TSC1, FKB-12, TSC2, RPTOR, RHEB, PIK3CA,
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and PIK3CB) and cross-correlated their combined differential
expression with the PFS of patients under axitinib treatment
(n= 5, Table 1). Figure 2c demonstrates that the subset of
genes identified for everolimus was highly specific to the
everolimus regimen, as the cross correlation with PFS of
patients treated with axitinib was not significant (r= 0.29, p=
0.637), suggesting that the DDPP findings are consistent with
the known biology of the MTOR pathway and the mechanism of
action of everolimus.
To interrogate whether the findings of these analyses could be

used as predictors, and address the potential for overfitting, we

performed leave-one-out analyses, reiterating six combinatorial
analyses. At each investigation, one patient was discarded, and a
correlator/predictor was identified based on the remaining five
patients applying the same methodology. The correlator was then
used as a predictor to predict the PFS of the patient left out. Figure
2d depicts the six correlations obtained in the reiterative
experiments, and Fig. 2e shows the correlation between the
observed PFS and the leave-one-out predicted PFS. At each
reiteration, the predictor is generated by different subsets of
genes, suggesting a high impact of the composition of the cohort
when small number of patients are investigated.

Table 1. Characteristics of the patients treated in WINTHER trial investigated with DDPP.

Study ID Age Sex Cancer site Prior lines PFS months DNA—list of molecular alterations (Foundation Medicine
report)a

Drug_given

203 67 F GI/NE 1 60.0+ No mutation Everolimus

148 82 M GI/NE 2 11.6 BCOR N1652fs*34; CDKN1B E126fs*1 Everolimus

6 64 F UP 1 8.1 TSC1 splice site 913+ 1G > T; BRCA1 truncation, intron 11;
CDKN2A/B loss; DNMT3A R882H; LRP1B loss

Everolimus

117 34 M HN 2 1.9 TSC2 S1431L; TP53 G245S; BCOR K374fs*19; SMARCA4 R1135W Everolimus

227 56 M LS 4 1.7 STK11 F354L; STK11 F354L; TERT promoter —124C > T Everolimus

90 74 M HN 2 1.3 PIK3CA Q546R; EP300 D1154fs*30; NOTCH1 L1746fs*40 Everolimus

83 59 M HN 4 8.8 MTOR L2209V; ETV6 trunc intron 5; CIC S333fs*36; MLL2 G3698
fs*51

Axitinib

223 65 F HN 3 7.1 CCND1 T2861 Axitinib

259 53 F HN 4 6.2 PDGFRA amp Axitinib

25 65 M HN 2 5.3 TP53 I195F; KDM6A L725fs*4; MSH6 K1358fs*2; NFE2L2 R18Q Axitinib

88 56 M Lung 1 2.9 DNMT3A R635P; KRAS G12C; TP53 Y220C; MLL2 T1246M Axitinib

149 54 F CRC 5 7.4 KRAS G12V; ARID1A SPLICE SITE 2733-1G > A Trametinib

100 43 M Lung 2 6.6 BRAF A598_T599insT; IDH1 R132C Trametinib

118 78 F Lung 3 3.1 KRAS G12C; CDKN2A/B loss; TP53 V157F, Y220 fs*27;
MUTYH G382D

Trametinib

156 71 F Lung 2 14.3 EGFR E746_A750del, T790M; CDKN2A/B loss; CTNNB1 S33F; MYC
amplification; SMAD4 P186fs*6; STAG2 splice site 1535-
12_1630del108

Afatinib+ cetuximab

235 60 F Lung 1 11.3 ERBB2 A775_G776insYVMA Afatinib

136 79 M Lung 3 0.4 ERBB3 amp; MET splice site 3028+ 1G > A; STK11 Q100* ATM
L2450fs*11; BRCA1 E23fs*17; CDK4 amp; CDKN2A/B loss; MDM2
amp; APC I1307K; KDM5C truncation; MAP3K1 S1475*

Afatinib

237 47 M HN 6 19.3 CCND1 amp; FGFR2 amp; CDKN2A/B loss; FGF19 amp; FGF4
amp; BAP1 trunc exon 3; FGF3 amp; MAGI2 Q1077*; PBRM1
E1155fs*17

NCT01004224 BGJ398

247 67 M Esophagus 2 1.6 FGFR2 amp; CDKN2A/B loss; TP53 W91*; ASXL1 splice site 472-
2A > G

NCT02052778 TAS-120

228 38 M CRC 5 0.7 FGFR1 amp; TP53 C176F; APC E1322*, R213*; SMAD4 loss; SOX9
V163fs*21

NCT02052778 TAS-120

183 66 M CRC 2 61.0+ RBB3; V104M; MAP2K1; E203K; CDKN2A/B loss; FBXW7 R465C;
PIK3CA E39K; PIK3R1 R348*, R639*; PTEN R233*, splice site 801+
2T > G; TP53 R158H, R273H; APC R1450*, R499*; ARID1A
P1115fs*46, Q1306fs*17; ATRX Q2422*; CDH1 D433N; EP300
R2263*; FAM123B R631*; FAT1 A4305V; FLCN H429fs*39; MSH6
L1330fs*12, S279fs*12

Pembrolizumab
(TMB: 74.8)
(MSI: +)

294 57 M HN 1 1.7 BRCA2 K3408* Nivolumab
(TMB: 0)
(MSI: −)

270 76 F CRC 3 0.9 FLT4 amp; FLT3 amp equivocal; BARD1 C53fs*5; MYC amp; PARK2
loss exons 3–5; TP53 R175H; APC T1556fs*3; BCL2L1 amp; CDK8
amp; ETV6 rearrangement intron 5; FAM123B R497*; GATA6 amp
equivocal; KDM6A-Y215*; MUTYH-Y165C; NOTCH1 Q2123*

Atezolizumab
(TMB: 10.4)
(MSI: −)

Foundation Medicinea10; ID 203, PFS 60+ and OS60+ are censored values, updated from the WINTHER trial Supplemental Table 3, Abbreviations: GI
gastrointestinal, NE neuroendocrine, HN head and neck, UP unknown primary, LS liposarcoma, TMB tumor mutation burden, MSI microsatellite instability, amp
amplification, del deletion, trunc truncation.
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This observation pinpoints the need to validate the DDPP on a
larger cohort of patients. Nevertheless, the concordance between
the real PFS of the patients left out, and the predicted PFS using
the correlator obtained at each reiteration on the remaining five
patients is significant, with r= 0.9, p= 0.015.
We evaluated the performance of the predictive method by an

independent method assessing the root mean squared error
(RMSE) that was 16.82. The mean absolute error that measures the
magnitude of the error without taking into consideration the
direction of the error unlike the RMSE was 9.32. Given the small
number n= 6, these data suggest a good performance of the
predictive model. These preliminary observations suggest the
realistic possibility of obtaining a stable predictor, using a higher
number of patients, to obtain a validated tool that may be useful
to accurately estimate the PFS in a prospective clinical setting.
In order to assess the potential of the DDPP method for

biomarker discovery, we performed random selections of eight
genes (number corresponding to the optimal number of genes of
the specific everolimus predictor) across the whole transcriptome
(~20,000 genes), and correlated their vectorial summation with
PFS of the six patients who received single agent everolimus
treatment. This analysis was repeated 100,000 times, randomly
selecting a different set of eight genes at each reiteration. Setting
the threshold of significance at the same value as the one
observed for the predictor (r= 0.99, p= 5.67E−05), the percen-
tage of random significant correlations with PFS was 0.994%. The

observation that randomly selected sets of genes generated
significant correlations with PFS suggests that (i) specificity of
correlations could be increased only with a larger number of
patients used as training and test datasets, and (ii) DDPP could
potentially be used for identification of new genes/biomarkers, if
used not in a random selection manner, but rather in a systematic
selection manner.

DDPP tested as a biomarker discovery method. The most
significant correlation between the differential expression of a
new identified gene and PFS of patients treated with everolimus
was observed for UBAP1 (ubiquitin associated protein 1): r= 0.99,
p= 7.56E–07 (Fig. 2f). UBAP1 (NAG20) is a component of the
ESCRT-I complex, a regulator of vesicular trafficking that could be
potentially involved in degradation of MTORC2 and directly linked
to MTOR pathway14.

DDPP and prediction of outcome with axitinib
At nanomolar concentrations, axitinib specifically inhibits VEGFR1,
VEGFR2, and VEGFR3. Thirteen key genes involved in the control of
angiogenesis were selected and investigated with DDPP metho-
dology: FLT1 (VEGFR1), KDR (VEGFR2), FLT4 (VEGFR3), and their
ligands VEGFA, VEGFB, VEGFC, and FIGF, PDGFRA, PDGFRB, PDGFA,
PDGFB, KIT, and KITLG15,16. Four patients had HN carcinoma, and
one patient had a lung adenocarcinoma. Table 1 shows the

Fig. 1 DDPP intensity plots profiles for patients treated with everolimus. DDPP tumor/normal intensity plots profiles of differential gene
expression of the everolimus key genes for the six patients treated with everolimus in monotherapy. Clinical outcome is described in Table 1.
a ID 090, head and neck carcinoma, PFS= 1.3 months (progressive disease), third therapy line. b ID 227, liposarcoma, PFS= 1.7 months
(progressive disease) in fifth therapy line. c ID 117, head and neck carcinoma, PFS= 1.9 months (progressive disease), third therapy line. d ID
006, unknown primary origin, PFS= 8.1 months (stable disease) in second therapy line. e ID 148, neuroendocrine tumor of small gut PFS=
11.6 months (stable disease) in third therapy line. f ID 203, neuroendocrine tumor of small intestine, PFS= 60+ months (partial response
disease) in second therapy line. Y axis: intensity of the expression in tumors, X axis: intensity of the expression in normal matched tissue.
Intensities are measured as relative fluorescence unit (RFU) signal as assessed with Agilent microarray technology. Overexpression for a given
mRNA in the tumor as compared to the normal is denoted in red points, underexpression is denoted in green, and no change is denoted in
black. Data source WINTHER trial10.
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different PFS under treatment with axitinib observed in the
WINTHER trial.
The differential tumor versus normal expression of KIT and of its

ligand KITLG was identified as being the major driver of the
correlation with the PFS of the patients treated with axitinib
(Supplemental Fig. 1a, b), and their combined vector KIT-KITLG
generated the optimal performance in the correlation with PFS: r
= 0.99, p= 4.68E−04 (Supplemental Fig. 1c). The linear regression
model is Y= 2.014e−02X+ 4.36 (Equation 2), where X= the sum
of log2(fold change tumor versus normal) multiplied by log1.1
(Intensity_Normal) of each value for each of the two genes, and Y
= PFS in months).
Random selections of two genes across the whole transcrip-

tome and correlation of their vectorial summation with PFS of the
five patients treated with axitinib was repeated 100,000 times.
Using the same threshold as the specific predictor (r= 0.99, p=
4.68E−04) the percentage of significant correlations was 0.059%.

Leave one out experiments. We performed (using the same “step-
in” vectorial summation methodology) five leave-one-out reitera-
tions, discarding at each experiment one patient and building a
predictor on the remaining four to address potential overfitting.
We observed again an instability of the predictors and depen-
dence on the composition of the cohorts at each reiteration. The
concordance between real PFS of the patients left out, and the

predicted PFS using the correlator obtained at each reiteration
was lower than for the everolimus example (r=−0.81, p= 0.1)
likely related to a lower number of patients in each reiteration.
These data suggest again that performance and accuracy of the
prediction of the PFS could be increased only with a higher
number of patients in the training and validation datasets.

DDPP and other examples of TKIs PFS predictors
Trametinib. Thirteen key genes were investigated: MEK1
(MAP2K1), MEK2 (MAP2K2), ARAF, BRAF, RAF1, ERK1 (MAPK3), ERK2
(MAPK1), MAPK10, KRAS, HRAS, NRAS, KSR1, and RAP1A. The
combined differential tumor versus normal tissue expression of
nine genes and their vectorial summation correlated with the PFS
of three patients treated with trametinib as monotherapy (Table 1
and Supplemental Fig. 2a–c): ERK2, ARAF, CRAF, MEK1, MEK2, HRAS,
ERK1, MAPK10, and KSR1 (r=−0.99, p= 0.026); the linear
regression model is Y=−6.872e−15X+ 7.745 (Equation 3), where
X= the fold of log2(fold change tumor versus normal) multiplied
by log1.1 (Intensity_Tumor) of each values for each of the nine
genes, and Y= PFS in months.

Afatinib. Thirteen key genes were investigated: EGFR, ERBB2,
ERBB3, ERBB4 and their ligands EGF, TGFA, AREG, EREG, HBEGF, BTC,
NRG1, NRG2, and NRG4. The combined differential tumor versus

Fig. 2 DDPP correlation with PFS for patients treated with everolimus. a Pearson correlation plots of the eight-gene predictor: AKT2, TSC1,
FKB-12, TSC2, RPTOR, RHEB, PIK3CA, and PIK3CB with the PFS of six patients treated with everolimus as monotherapy: one patient out of these
six had censored PFS (ID 203). X axis: absolute fold value of log2 based fold-changes tumor versus normal multiplied by log 1.1 based of the
intensities in tumor values for each of the eight genes selected; Y axis: PFS under treatment with everolimus as monotherapy in months.
b Pearson correlation plots of the eight-gene predictor: AKT2, TSC1, FKB-12, TSC2, RPTOR, RHEB, PIK3CA, and PIK3CB with the PFS of six patients
treated with everolimus as monotherapy when only the tumor biopsy is investigated; X axis: absolute fold value of log 1.1 based of the
intensities in tumor values for each of the eight genes selected; Y axis: PFS under treatment with everolimus as monotherapy in months.
c Shuffle experiment: Pearson correlation plots of the 8 gene specific predictor for everolimus (AKT2, TSC1, FKB-12, TSC2, RPTOR, RHEB, PIK3CA,
and PIK3CB) with the PFS of five patients treated with axitinib as monotherapy (Table 1); X axis: absolute fold value of log2 based fold-changes
tumor versus normal multiplied by log 1.1 based of the intensities in normal values for each of the eight genes selected; Y axis: PFS under
treatment with axitinib as monotherapy in months. d Leave-one-out experiments: each reiteration generates a predictor used to calculate PFS
of the patient discarded. e Pearson correlation between leave-one-out predicted PFS and the observed PFS; X axis: predicted PFS as defined
by leave-one-out (in months); Y axis: PFS under treatment with everolimus as monotherapy in months observed in WINTHER trial. f Pearson
correlation plot for UBAP1 (NAG20) with the PFS of six patients treated with everolimus. X axis: log2 based fold-changes tumor versus normal
multiplied by log 1.1 based of the intensities in tumor; Y axis: PFS under treatment with everolimus as monotherapy in months.
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normal tissue expression of two genes and their vectorial
summation correlated with the PFS of three patients treated with
afatinib as monotherapy (Table 1 and Supplemental Fig. 2d–f):
NRG4 and NRG2 (r=−1 p= 8.4E−04). The linear regression model
is Y=−4.558e−02X+ 2.549 (Equation 4), where X= the sum of
log2(fold change tumor versus normal) multiplied by log1.1
(Intensity_Tumor) of each value for each of the two genes, and Y
= PFS in months.

FGFR inhibitors. Nineteen key genes investigated: FGFR1, FGFR2,
FGFR3, FGFR4, and the FGF ligands 1, 2, 3, 4, 5, etc.). The differential
expression and vectorial summation of five genes correlated with
the PFS of three patients treated with FGFR inhibitors BGJ398 or
TAS-120 as monotherapy (Table 1 and Supplemental Fig. 2g–i):
FGF10, FGF16, FGF5, FGF2, and FGF13 (r=−1, p= 3.27E−03). The
linear regression model is Y=−5.273e−02X+ 5.135 (Equation 5),
where X= the sum of log2(fold change tumor versus normal)
multiplied by log1.1 (Intensity_Normal) of each value for each of
the five genes, and Y= PFS in months.

DDPP and prediction of outcome after IO treatment
Although the most advanced knowledge has been generated
around the therapies targeting PD-1/PDL-1 or CTLA-4, there are
multiple other important pathways that may impact the immune

response to cancer involving many genes, in particular LAG-3, TLR-
4, VISTA, TIM-3, TIGIT, ICOS, OX40, and GITR5. Among them LAG-3
and TLR-4 may be particularly important, as described in
Supplemental Table 2. Given the current status of knowledge,
the IO-specific DDPP gene set focuses on PDL-1, PDL-2, PD-1, CTLA-
4, CD28, CD80, CD86, LAG-3, and TLR-4, together with specific
markers of the presence of effector tumor-infiltrating immune
cells: CD8A (cytotoxic lymphocytes T), CD16 (natural killer cells),
and FOXP3 (T-regs cells). Many types of immune cells are involved
in the activation and regulation of the immune system attack
against tumor cells (APC, LyT, CD4+, etc.), but we focused on
specific markers for infiltrating LyTc, NK, and T-regs that have the
ability to recognize directly the tumor cells’ neoantigens coupled
with major histocompatibility complex 1 (CMH1) and are directly
targeting tumor cells.
A Pearson correlation analysis between differential gene

expression of the selected genes, and the PFS was performed
for the three patients treated with anti-PD-1 antibodies (Table 1) in
the WINTHER trial. The example provided in Fig. 3a–c shows the
DDPP intensity plots of three patients treated with IO (pembro-
lizumab (anti-PD-1), atezolizumab (anti-PDL-1), and nivolumab
(anti-PD-1)); two patients had colon cancer (CRC) and one HN
cancer. Their clinical outcomes were ID 183 (CRC) PFS 61+months
(the patient is in complete clinical remission and no longer
receiving pembrolizumab), ID 294 (HN) PFS 1.7 months, and ID 270

Fig. 3 DDPP intensity plots and correlation with PFS for patients treated with anti-PD-1 therapies. a–c DDPP profiles of three patients
treated with anti-PDL-1/PD-1 antibodies, with different PFS under treatment. Data source WINTHER trial11. a colon cancer: PFS= 0.9 months
under treatment with atezolizumab, in fourth therapy line; b head and neck cancer: PFS= 1.7 months under treatment with nivolumab in
second therapy line; c colon cancer: PFS= 61+ months under treatment with pembrolizumab, in third therapy line; Y axis: intensity of the
expression in tumors; X axis: intensity of the expression in normal matched tissue. d Pearson correlation between a vectorial summation of 6
genes: TLR-4, PDL-2, PDL-1, CD16 (specific marker of NK), CTLA-4, and CD28; X axis: fold value of log2(fold change tumor versus normal)
multiplied by intensity in normal values for each of the six genes selected; Y axis: PFS in months. e Pearson correlation between the vectorial
summation of the six genes specific anti-PD-1: TLR-4, PDL-2, PDL-1, CD16 (specific marker of NK), CTLA-4, and CD28, and the PFS of three
patients treated with IO when only tumor biopsy information is investigated; X axis: fold value of log2(intensity in tumor) values for each of
the six genes selected; Y axis: PFS in months. f Shuffle experiment: Pearson correlation between the vectorial summation of the six genes
specific anti-PD-1: TLR-4, PDL-2, PDL-1, CD16 (specific marker of NK), CTLA-4, and CD28, and the PFS of three patients treated with afatinib; X axis:
fold value of log2(fold change tumor versus normal) multiplied by log 1.1(intensity in normal) values for each of the six genes selected; Y axis:
PFS of three patients under afatinib treatment (months).
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(CRC) PFS 0.9 months. DDPP profiling identified that the higher
the level of TLR-4 fold change in tumor versus normal tissues, the
shorter the survival under treatment with anti-PD-1. Considering
that all three treatments are directed to leverage the PDL-1/PD-1
negative blockade, and considering that the mechanisms may be
agnostic of tumor type, we performed the investigations aiming to
explain the variations in PFS. The relative contribution of each of
the key 12 genes was evaluated by correlating their differential
expression with the PFS in patients treated with IO. Pearson
correlations between differential gene expression and PFS for
each of the 17 genes were: TLR-4 (r=−0.99, p= 0.103), PDL-2 (r=
0.97, p= 0.143), PDL-1 (r= 0.90, p= 0.294), CD16 (NK) (r= 0.77, p
= 0.445), CTLA-4 (r= 0.60, p= 0.588), CD28 (r=−0.50, p= 0.665),
CD80 (r=−0.49, p= 0.67), CD86 (r=−0.42, p= 0.721), LAG-3 (r=
0.34, p= 0.776), CD8A (LyTCD8+) (r=−0.30, p= 0.803), FOXOP3
(T-regs) (r=−0.21, p= 0.862), and PD-1 (r=−0.18, p= 0.882).
We further explored the combined differential expression in

tumor versus normal tissues of the most contributive key genes
involved in the IO pathway. For each of the correlations with PFS,
we built a vectorial summation using a “step-in” method, starting
with TLR-4 and adding successively a gene in the order of their
significance: TLR-4-PDL-2, TLR-4-PDL-2-PDL-1, then TLR-4-PD-L2-
PDL-1-CD16 and so forth, obtaining in total 12 different vector
summations. Each combined vector was correlated with PFS.
Figure 3d shows that the optimal performance was obtained by
the summation of the six most contributive genes: TLR-4, PDL-2,
PDL-1, CD16 (NK), CTLA-4, and CD28, to obtain the most significant
correlation with PFS, among the 12 possibilities: (r= 1, p= 8.15E
−04). The linear regression model for the correlation with PFS is Y
= 7.856e−10X – 1.583 (Equation 6), where X= the value of the
fold of log2(fold change tumor versus normal) multiplied by log1.1
(Intensity_Normal) of each value for each of the six genes, and Y
= PFS in months.
These data suggest that the main factors explaining differences

in PFS under anti-PD-1 therapy are the degree of activation of TLR-
4, and the balance between PDL-1, PDL-2, and CTLA-4 activation
of the negative immune-blockade. These results might be specific
to this cohort (two colon and HN tumors). Figure 3e shows that
when only the tumor biopsy was investigated (as usually in the
current biomarker studies in oncology practice or translational
research), the significance of the correlation dropped to r=−0.45,
p= 0.704, suggesting the importance of the new strategy of
tumor versus normal analogous organ-matched dual biopsy.
In order to assess the prognostic versus the predictive value of

the DDPP data for IO in our analyses, we tested the specific
predictor of the PFS (with the six genes (TLR-4, PDL-2, PDL-1, CD16
(NK), CTLA-4, and CD28)) for anti-PD-1 treatments (n= 3 patients)
and cross-correlated their combined differential expression with
the PFS of patients under afatinib treatment (n= 3, Table 1).
Figure 3f demonstrates that the subset of genes identified for anti-
PD-1 did not correlate with the PFS of the patients treated with
afatinib (r= 0.61, p= 0.578), suggesting high specificity for IO
regimen. Further random selections of six genes (number
corresponding to the optimal number of genes of the specific
anti-PD-1 predictor) across the whole transcriptome (~20,000
genes), and correlation of their DDPP vectorial summation with
the PFS of the three patients who were under anti-PD-1 treatment
was repeated 100,000 times, randomly selecting a different set of
six genes at each reiteration. Setting the threshold of significance
at the same value as the one observed for the predictor (r= 1, p=
8.15E−04), the percentage of random significant correlations with
PFS was 0.356%.
Based on the six genes identified, we assessed “in silico” the

predicted PFS of the 82 patients from the WINTHER trial (for whom
no information was missing), agnostic of tumor type and
independent of the number of prior lines of therapy, if they were
treated with anti-PD-1 therapies. For 57 patients (59.5%), the
predicted PFS under anti-PD-1 treatment was ≤6 months (with a

majority <3 months); for 25 patients (30.5%) the predicted PFS
under anti-PD-1 treatment was ≥6 months (of which 16 (19.5%)
had predicted PFS > 24 months).

DISCUSSION
The expanded targeted and immune-oncology therapeutic land-
scape has revolutionized cancer care, as well as clinical drug
development and requires the development of new combinatorial
biomarker strategies to overcome the complexity of cancer,
improve patients’ stratification and better individualize treatment
selection.
Indeed, the investigation of networks of genes would con-

tribute to improving the selection of drugs targeting major hubs
that may collapse a network of dysregulated genes17,18. Compa-
nion diagnostic (CDx) tests currently used in oncology practice to
select therapies19 (e.g., used to detect specific DNA aberrations),
have three main limitations: (1) CDx tests usually investigate single
genes, outside of the context of pathways: for example, sensitizing
mutations of EGFR provide an indication for the use of EGFR
inhibitors, such as erlotinib1, however the presence of a sensitizing
mutation does not necessarily predict response to the treat-
ment20,21; (2) the increasing number of drug targets requires
testing of multiple genes that quickly becomes unfeasible given
the small amount of tissue typically obtained by needle biopsies;
and (3) they provide a binary prediction whether patients might
respond or not to a specific therapeutic regimen.
In an attempt to overcome the limitations of current oncology

biomarkers, our transcriptomic approach allows (1) the exploration
of the whole transcriptome (~20,000 genes), providing insight
about the status of activation of almost all drug targets in the
context of the network of genes or pathways; (2) the data can be
obtained from a single assessment requiring very small amount of
tumor and analogous normal tissues; and (3) the prediction of the
duration of the PFS under a specific therapeutic regimen, as a
continuous variable in contrast with binary predictions.
One of the main challenges of finding such new biomarkers is

the small size of the available datasets, often involving fewer than
10 patients treated with the same drug, for whom both molecular
profiles (from tumor and analogous normal tissues) and PFS data
are available.
The work presented here overcomes the above mentioned

limitations of current biomarker strategies and identifies the genes
and generates linear regression that correlate with clinical
outcome. In particular, the specific contribution of the DDPP and
the features that distinguish it from other existing methods such
as MLR or multiple Cox regression (MCR) consists in the use of
nonparametric combination of the relative expression of multiple
genes. Indeed, MLR and MCR investigate in the same model not
only expression data, but also apply simultaneously coefficients to
better differentiate genes impacting outcomes, compared to
those that do not. The learning process defining such coefficients
is a major limiting factor to these methodologies when using small
datasets. DDPP on the other hand, in order to overcome this
limitation empirically decides (1) how many features (genes) to
include in the predictors rather than stopping when the fit is no
longer improved, and (2) which basic parameter-free summation
method best predicts the outcome. The final result of the DDPP
model consists in defining the equations that link gene expression
features to clinical outcome.
However, it is important to emphasize the limitation of the

linear regression equations presented here, which are based on a
prototype version of the DDPP. Indeed, the DDPP tools presented
have the purpose of illustrating the concept and will require
validation in a larger prospectively obtained dataset to confirm
whether its empirical approach and applicability in any cohort size
can be confirmed. Prospective studies will indeed assess the
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ability of DDPP algorithm to test multiple summation methods in
cohorts of different sizes.
One of the pillars, and potential limitations of the DDPP

methodology is the investigation of tumor and analogous organ-
matched normal tissue biopsies from the same patient, which is
not the current practice in standard of care or in translational
research and clinical trials. This raises the legitimate question of
what is the likelihood of these findings to apply to routine
oncology practice. This will be possible only if the DDPP predictor
will demonstrate superiority to existing/current biomarkers
models and provide a direct benefit for patients.
Use of matched tumor and normal biopsies is essential for

accurate interpretation of the transcriptomic data, as it discards
the transcriptomic genetic variability background noise in each
patient, and lowers significantly the variance of transcriptomic
measurements22,23. We were able to use such transcriptomic and
PFS data from the WINTHER trial database. The WINTHER trial
remains the only clinical trial that used transcriptomics in a
prospective clinical setting in addition to conventional DNA
sequencing to help inform the treatment decision for patients
with advanced cancer. WINTHER is also the first and only trial that
used the dual biopsy strategy and proved its feasibility and safety,
investigating both tumor and analogous normal tissue from the
same patient, across a variety of solid tumors10. The importance of
obtaining good quality tumor and normal tissue biopsies enabling
accurate transcriptomic investigations should be noted. All the
biopsies used in this study passed stringent histology and RNA
quality controls10.
With the small cohort available, we explored the DDPP to assess

correlations with PFS associated with the drugs everolimus,
axitinib, trametinib, afatinib, experimental FGFR inhibitors, and
anti-PD-1/PDL-1 therapies received by patients in the WINTHER
trial. Remarkably, for all drugs tested, DDPP enabled identification
of significant correlations between the differential expression of
subsets of key genes and the PFS for each drug investigated. Our
preliminary observations show that the DDPP biomarkers seem to
be specific to the therapeutic regimens. It should be noted that
the DDPP was agnostic of tumor type and independent of the
number of prior lines of therapy and could also provide important
insight in better understanding the clinical outcomes by identify-
ing the genes with the highest contributing weight driving the
correlations. Random testing performed for all drugs and in
particular the data obtained from the leave-one-out experiments
performed for everolimus, suggest that DDPP predictions are not
likely to be statistical artefacts. Moreover, our data suggest that
the subsets of genes selected, and the correlations obtained by
their combined differential tumor versus normal tissues expres-
sion (vector summation) with the PFS for each therapeutic
regimen may be specific for each drug and have a predictive
value rather than a prognostic value, although this requires
confirmation in larger studies.
Taken together, the data suggest the possibility that using a

larger number of patients will allow us to generate a validated tool
that may be useful to estimate with accuracy the PFS in a
prospective clinical setting. Indeed, many drugs investigated in
this report, have a narrow spectrum of approved clinical uses,
given the prevalence of their pathways in tumor growth and
spread, and the reason is probably related to the lack of reliable
biomarkers to select patients who might have a therapeutic
benefit.
To our knowledge potential biomarkers based on transcrip-

tomics do not exist for the clinical use of everolimus11,20 or
axitinib17,24–26. Indeed, DDPP may provide a methodology and
tools that would enable prediction of PFS for any drug (IO, or non-
IO targeted therapeutics) or tumor type and in any therapy line.
DDPP predictors could be used (pending further validation) to
identify the patients who could have clinical benefit from the

treatment with everolimus and axitinib that was not predicted by
genomic alterations in the WINTHER trial10.
The DDPP concept and methodology was tested also on other

drugs: trametinib, afatinib, and two experimental FGFR inhibitors
(BGJ398 and TAS-120), with a similar mechanism of action.
However, the number of patients treated with each of these
drugs (n= 3), limits our ability to draw firm conclusions and the
results are presented only to exemplify that DDPP concept and
methodology may apply to any drug, and that similar trends were
obtained as in the everolimus and axitinib examples.
We investigated a small cohort (n= 3) of patients that received

anti-PDL-1 therapies. Preliminary observations suggest that the
main factors explaining differences in PFS under anti-PD-1 therapy
are the degree of activation of TLR-4, and the balance between
PDL-1, PDL-2, and CTLA-4 activation of the negative immune-
blockade, together with the level of infiltration of the tumor by
natural killer cells. Both DDPP intensity plots and vectorial
summation correlative analyses identified TLR-4 as the most
contributive gene to explain variations in PFS. Our preliminary
observation suggests that the current panel of biomarkers used in
clinical practice (tumor mutation burden, microsatellite instability,
and PDL-1 status) could be complemented with other potential
biomarkers, such as TLR-4. Persistent activation of TLR-4-induced
inflammatory signaling in chronic inflammatory conditions can
also contribute to carcinogenesis27. Experimental evidence
suggests association of anti-TLR-4 with anti-PDL-1 treatments
could be of interest with the aim to increase the fraction of
patients who could benefit from IO treatments.
Validation of DDPP will require further prospective investiga-

tion, ideally using biospecimens and clinical data obtained from
patients participating in prospective clinical trials28, in which
implementation of dual tumor and normal biopsy and integration
of transcriptomics are feasible10.
In conclusion, the clinical records available from the WINTHER

trial, and the unique transcriptomic dataset obtained from tumor
and organ-matched normal tissue biopsies were essential to
enable correlations with clinical outcome under treatment, with
TKI inhibitors and IO. The DDPP is potentially a new global
biomarker model that can apply to any type of drug (IO or non-IO
targeted drugs) alone or in combination, agnostic of tumor type,
and can lead, pending further prospective validation, to a new
approach to optimal treatment selection for patients with cancer.

METHODS
Dataset
The DDPP prototype was developed exploiting the transcriptomics data
from the WINTHER trial (NCT 01856296—approved in France (ANSM),
Spain (Agencia Espanola de Medicamentos y productos sanitarios), Israel
(Ministry of Health), Canada (Health Canada), and USA (FDA)). The full
methodology of transcriptomic assessment and patient treatment is
described in the WINTHER trial published in Nature Medicine10. Detailed
clinical and biological information for each patient selected for this study is
available in Table 1.
Patients who had provided written consent underwent a dual biopsy

from the metastasis and from the histologically matched normal tissue.
The interventional radiologist selected for biopsy one of the non-necrotic
and >2 cm metastatic lesions. The image-guided biopsies were performed
under standard operating rules and guidelines using adequate devices,
such as trucut 18 gauges needles placed at the periphery of the lesion
biopsied. For example, in the case of a liver metastasis biopsy from a rectal
adenocarcinoma, the matched normal tissue was the rectal mucosa
obtained separately by rectal endoscopy. All biopsies obtained were stored
in cryogenic tubes containing RNALater, a stabilizing reagent preventing
degradation of nucleic acids (without the need for freezing in the imaging
facilities), and preserving structural morphology to enable pathology
review. Biopsies were embedded in OCT wax. Slices of 0.5 microns were
cut and stained with hematoxylin and eosin, in order to assess the
percentage of tumor cells and identify any contamination with adjacent
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tissues. When necessary, microdissection was performed to enrich tumor
content to the required threshold (≥50% of tumor content).
Tissue biopsies that had passed quality control were then lysed with a

polytron, homogenized in a lysis buffer RLT Plus provided in the kit, and
DNA was obtained with a specific affinity silica matrix column, specifically
retaining the DNA, whereas RNAs and proteins were collected from the
through flow. DNA was washed and eluted. The through flow containing
RNAs was mixed with tri-reagent, and subsequently RNA was obtained by
isopropanol precipitation. This procedure enables collection of all types
of RNAs, including messenger RNAs and small microRNAs species. RNAs
pelleted through centrifugation were washed will ethanol 75%, and
solved in nuclease-free water. Quality control for DNAs and RNAs was
performed using spectrophotometry absorbance (Nanodrop) and
through electrophoresis, using lab-on-a-chip technology from Agilent
Technologies.
Gene expression direct comparison of tumor tissue and normal tissue

RNAs was performed using Agilent ink jet printing 8× 60k oligo-arrays and
dual color technology, using standard operating procedures and reagents
supplied by Agilent Technologies. A total of 100 ng of each tumor and
normal tissue total RNA was used to generate double-stranded comple-
mentary DNA, using MMLV Reverse transcriptase and oligo DT primers
coupled with the promoter sequence of T7 RNA. Probe labeling and linear
amplification were generated using Agilent Technologies reagents and T7
RNA pol that generated labeled complementary labeled RNAs (tumor
labeled with Cy5 and normal with cRNAs with Cy5). After fragmentation
and purification of labeled cRNA, hybridizations were performed as dual
dye swapped (direct and inversed labeling) experiments with direct co-
hybridization of equal amounts of labeled tumor and normal probes. After
washing drying, microarrays were read using Agilent 2000 scanner version
C. After processing with Agilent Feature extractions software, data were
used for direct comparison of intensities and editing of a report containing
a data quality information, identity of mRNAs differentially expressed
(overexpressed or underexpressed in tumor versus normal, and providing
for each gene fold changes and intensities together with p values for each
measure, type of structural abnormalities (amplifications/deletions), thresh-
old, fold changes, and intensities).

DDPP algorithm
The concept of DDPP algorithm is derived from the Euclidian linear
hyperspace model, in which the distance between different outcomes can
be defined using multiple vectors (or coordinates). The cornerstone of the
Euclidian model’s application to precision oncology and to DDPP is the
identification and summation of the optimal coordinates, which are
defined as the mechanism-based key genes that govern sensitivity to each
of the targeted medications investigated. The DDPP methodology that
applies to any type of drugs is based on the following steps:

1. Identification from the literature, of the key genes governing the
sensitivity for a given therapeutic regimen and exploring their
differential expression in tumor compared to analogous normal
tissue. This dramatically reduces the number of features (genes) that
are considered in subsequent steps. As we observed only six
instances (patients with known PFS values under treatment with
everolimus), this is a crucial stage: without dramatic decrease in the
number of genes, overfitting (i.e., the development of a perfect
model that is specifically tailored to the given dataset used for
training), is almost guaranteed. Identification of key genes involved
in drug’s mechanisms of action, based on recent literature and
based on the FDA US Prescribing Information (USPI).

a. Everolimus—key genes: PIK3CA, PIK3CB, AKT1, MTOR, FKBP1A,
RPS6KB1, EIF4EBP1, HIF1A, TSC1, TSC2, AKT2, RPTOR, PTEN, RHEB,
MLST8, RICTOR, and VEGFA.

b. Axitinib—key genes: VEGFA, VEGFB, VEGFC, PDGFA, PDGFB, FLT1
(VEGFR1), KDR (VEGFR2), FLT4 (VEGFR3), PDGFRA, PDGFRB, KIT,
KITLG, and FIGF.

c. Trametinib—key genes: MEK1 (MAP2K1), MEK2 (MAP2K2), ARAF,
BRAF, RAF1, ERK1 (MAPK3), ERK2 (MAPK1), MAPK10, KRAS, HRAS,
NRAS, KSR1, and RAP1A.

d. Afatinib—key genes: EGFR, ERBB2, ERBB3, ERBB4 and their ligands
EGF, TGFA, AREG, EREG, HBEGF, BTC, NRG1, NRG2, NRG4.

e. FGFR inhibitors: FGFR1, FGFR2, FGFR3, FGFR4 and the FGF ligands
1, 2, 3, 4, 5, etc.

f. Anti-PD-1/PDL-1—key genes: PDL-1, PDL-2, PD-1, CTLA-4, CD28,

CD80, CD86, LAG-3, and TLR-4, together with specific markers of
the presence of effector tumor-infiltrating immune cells: CD8A
(cytotoxic lymphocytes T), CD16 (natural killer cells), and FOXP3
(T-regs cells).

2. Selection of the patients with available transcriptomics data and
clinical outcome (PFS) under treatment with each drug available.
Minimum three patients are required. Everolimus (n= 6); axitinib
(n= 5);

a. Preferably, patients with non-censored PFS were selected for
investigations.

b. Only two patients had censored PFS under treatment (ID 203
treated with everolimus and ID 183 treated with pembrolizumab
who had exceptional PFS >60 months, and were still under
treatment). We did not discard them from the analysis, but
considered them de-censored.

3. Comparing (empirically) the performance of all top-ranking subsets:
our method is based on ranking each of the selected features
(genes), based on their relative association with the dependent
variable (i.e., PFS). This step can be performed in multiple ways:
genes can be ranked by the strength of their univariate linear
regression with PFS using parametric (e.g., Pearson) or nonpara-
metric (e.g., Spearman) correlation, or by using Cox univariate
regression model for each gene, which also has the advantage of
including patients with censored PFS. Each of these methods can
rank all investigated genes (17 for everolimus or 13 for angiogen-
esis) based on their R2 and/or p value, when using univariate linear
regression with PFS. We then propose to generate from this ranked
list all subsets that include the genes by their rank. Given that the
first step identifies K genes, this means checking the top 1, 2, 3, … K
features sets. This is only realistic when K is a small number. If K is
large, it becomes too likely the one of the many subsets that are
created happen to give good correlation with the outcome by
chance (the multiple testing problem) in small cohorts. As a result,
this approach depends on step 1 to choose a small subset (keeping
K small).

4. Predictive model development: in this step the chosen features are
combined into a single prediction of the outcome.

A common regression method is MLR. In MLR, this step is typically
achieved with the step-in approach. In this approach, features are
first ranked by the individual linear association with the dependent
class. The most correlated feature is introduced to the model.
Features are added sequentially choosing the feature (gene) that
most significantly improves the accuracy of the MLR model
developed with the new set of features. The process is stopped
when none of the features significantly improves that MLR model.
Since modeling requires estimating k+ 1 parameters for k features,
deciding to add the kth feature requires a good estimate of k+ 2
parameters from the data. This result in an equation of the form yi=
β0+ β1xi1+ β2xi2+…+βkxik+ ϵ, where yi is the prediction for
individual i, xi1, xi2 … xik are the values of the first, second, and kth
features for individual i, β0, β1..βk are coefficients (constants) that are
learned during the training of the MLR model, and ε is an error term.
In essence, the algorithm sums k features to a single prediction by
using a linear sum of the features, each weighted with the same β1–
βk coefficients, and the algorithm chooses these coefficients (as well
as β0, the intercept of the model) to minimize the differences
between predicted and actual outcomes.
Another commonly used regression method is MCR, which is often
more suitable for irreversible events (such as progression). This
approach is very similar to MLR, differing from MLR mostly in the
model that connects feature value (gene expression) with the
dependent target variable (PFS): MCR works in a logarithmic and not
linear space. Otherwise, features selection can be achieved the same
way, considering the significance of improvement in fit between the
predicted and actual outcomes (PFS). MCR builds a model that
connects the outcome variable (in our case, PFS) with a very similar
approach to MLR, by seeking the values of k+ 1 parameters
β0 � βkð Þ except that it maximizes the fit to a different equation,
namely yi ¼ β0 � eðβ1 ´ i1þβ2þi2þ¼þβk ´ ik Þ.

We note that neither MLR nor CMR are expected to perform well in this
task, considering the small number of samples that are under
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investigation, both methods are too likely to over fit the model to the data.
As both rely on parametric linear combination for combining the features
into a single method.
We propose the Digital Display Precision Predictor (DDPP) algorithm, as

an alternative way for features summation that is parameter free. DDPP is
different from these approaches as it empirically chooses the summation
method that gives the best model, considering in the current version five
basic, parameter-free summation methods: sum, mean, product, absolute
product, and scalar median. It differs from the methods described above in
not trying to estimate any coefficients in the summation step, making it
especially suitable for small datasets, as it is less likely to over fit.
In conclusion, DDPP is unique in two levels:

● It empirically decides how many features (genes) to include in the
predictors rather than stopping when the fit is no longer improved.

● It empirically decides which basic parameter-free summation method
best predicts the outcome.

5. Combined gene expression (parameter-free feature summation): in a
previous publication10, we explain how we derive Fi,g from two color
arrays. Briefly Equation (1) describe how feature i is calculated for
gene g .

Fi;g ¼ log2
Ti;g
Ni;g

� log1:1 Ii;g;tumor (1)

where Fi,g is used as the measurement for gene g in individual i, Ti,g,
and Ni,g are the measured intensity of gene g in individual i
correspondingly. In order to get a single value from multiple
features (genes), we combined for each individual i all genes values
(Fi,g1, Fi,g2… Fi,gN) using different approaches: (1) mean: Fi;g ; (2) sum:PN

x¼1 Fgx ; (3) median; (4) fold:
QN

x¼1 Fgx , and (5) fold_abs:
QN

x¼1 Fgx
�
�

�
�.

6. To define the optimal “n” genes investigated we interrogated the
correlation between gene expression and the PFS: for each drug, a
Pearson correlation test was performed between Fg, the fold change
multiplied by the intensity (of tumor and normal) of a single gene g
(gene from the list of key genes of the drug) with the PFS for all the
patients treated with the drug.

Fg ¼ log2 fch tumor vs: normalð Þ � log1:1 tumorð Þ or

Fg ¼ log2 fch tumor vs: normalð Þ � log1:1 normalð Þ

The Fg with the most significant correlated gene (by p value and
correlation coefficient r) was driven to decision whether to continue
with fold change multiplied by the intensity of the tumor or fold
change multiplied by the intensity of the normal matched tissue.
The key genes were then ranked based on the Pearson p value and
correlation coefficient r such that the gene with the highest
correlation between Fg and the PFS was ranked first. Then, we added
single genes by the following manner: the second most ranked gene
was added to the first most ranked and the Fg1,g2. This resulted with
vector space which contains two vectors. Similarly, the third most
ranked gene was added to the second highest ranked genes, and
resulted with vector space with three vectors. The vector summation
continued in a similar manner until we obtain n different
combinations of genes, while n is the number of genes in the set
and each combination denotes a vector space with n vectors in it. In
order to get a single value for each vector space, we tested the five
different basic mathematical operations on the vectors in each
vector space mentioned above.
Then, a Pearson correlation test was performed between the

calculated transcriptomic value for each vector space with the PFS of
the patients treated with the drug. The Pearson correlation results
were ranked again by p value and correlation coefficient r. The
number of genes in the set which was the most correlated with the
PFS was indicated as the optimal “n” coordinates. In order to assess
the likelihood of getting a significant correlator by “n” genes, we run
an analysis with 100 K random “n” genes and tested how the
transcriptomic value derived from a vector space which includes Fg1,
…gn of these genes were correlated with the PFS. Significant results
were considered by a threshold of absolute R value of 0.9 or above,
and p value of 0.05 and below.
Applying any of the mathematical operations listed above

resulted with a single value that combines the transcriptomic
expression of all targetable genes for each patient. These values
were used in order to generate the linear regression model with the

PFS observed.
7. Selecting the best correlators with PFS for each drug and computing a

linear regression model to transform the best correlator into a predictor
for a single drug. Supplemental Table 3 shows the log2 fold change
(intensity in tumor versus intensity in normal) multiplied by the
intensity of tumor of selected eight genes for patients treated with
everolimus. The expression values were used to calculate DDPP
values based on fold_abs, which is absolute value of the multi-
plication of all the gene’s values in each patient. The DDPP values
are shown in Supplemental Table 4. Then, we used the DDPP values
and the real PFS values as shown in Supplemental Table 5 for
Pearson correlation with 95% confidence interval analysis and linear
regression model analysis (which provided the linear equation). The
results of these analyzes are shown in Supplemental Fig. 3.

8. Linear regression equations developed to link gene expression with
clinical outcome under specific treatments:

● Everolimus—Equation 1: Y= 1.499e−13X+ 3.134, where X= the
absolute value of the fold of log2(fold change tumor versus
normal) multiplied by log1.1 (Intensity_Tumor) of each value for
each of the eight genes (AKT2, TSC1, FKB-12, TSC2, RPTOR, RHEB,
PIK3CA, and PIK3CB) and Y= PFS in months.

● Axitinib—Equation 2: Y= 2.014e−02X+ 4.36, where X= the sum
of log2(fold change tumor versus normal) multiplied by log1.1
(Intensity_Normal) of each value for each of the two genes (KIT-
KITLG), and Y= PFS in months.

● Trametinib—Equation 3: Y=−6.872e−15X+ 7.745, where X=
the fold of log2(fold change tumor versus normal) multiplied by
log1.1 (Intensity_Tumor) of each values for each of the nine genes
(ERK2, ARAF, CRAF, MEK1, MEK2, HRAS, ERK1, MAPK10, and KSR1),
and Y= PFS in months.

● Afatinib—Equation 4: Y=−4.558e−02X+ 2.549, where X= the
sum of log2(fold change tumor versus normal) multiplied by
log1.1 (Intensity_Tumor) of each value for each of the two genes
(NRG4 and NRG2), and Y= PFS in months.

● FGFR inhibitors—Equation 5: Y=−5.273e−02X+ 5.135, where X
= the sum of log2(fold change tumor versus normal) multiplied by
log1.1 (Intensity_Normal) of each value for each of the five genes
(FGF10, FGF16, FGF5, FGF2, and FGF13), and Y= PFS in months.

● Anti-PD-1—Equation 6: Y= 7.856e−10X – 1.583, where X= the
value of the fold of log2(fold change tumor versus normal)
multiplied by log1.1 (Intensity_Normal) of each value for each of
the six genes (TLR-4, PDL-2, PDL-1, CD16 (NK), CTLA-4, and CD28),
and Y= PFS in months.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
Expanded clinical and biological information for each patient is available in the data
file Patient_demographic_clinical_data.csv29 which expands on the information
presented in Table 1. The data file DPP_WINTHER_Expression_Data.csv29 supports
Figs. 1–3, Supplementary Tables 1, 3–5, and Supplementary Figs. 1–3. The
transcriptomic expression data are available from Gene Expression Omnibus:
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