Socioeconomic Analysis of Selected Interbasin Transfers in Texas

DRAFT REPORT

prepared for
TEXAS WATER DEVELOPMENT BOARD

Contact:
Mr. Jack E. Stowe, Jr., Principal / Director R.W. Beck, Inc. 1300 E Lookout Dr., Suite 145
Richardson, Texas 75082
P (972) 994-0300
F (972) 994-0301

RWM HEX

November 17, 2006

Mr. Stuart Norvell
Texas Water Development Board
1700 N Congress Avenue
Austin, Texas 78711-3231

Dear Mr. Norvell:
In July 2006, Texas Water Development Board contracted with R.W. Beck to perform a Socioeconomic Analysis of Selected Interbasin Transfers in Texas. Attached, please find our completed draft report which details the study methodology, a discussion of the analysis performed, and our findings and conclusions.

We appreciate the opportunity to provide our professional services to the Texas Water Development Board and would like to express our sincere appreciation to you and the other Texas Water Development Board Staff members who assisted us during the course of this engagement.

Should you or other Texas Water Development Board Staff members require additional information or clarification regarding the attached report, please do not hesitate to contact Mr. Jack E. Stowe, Jr. or Mr. Chris Ekrut at (972) 994-0300. We look forward to receiving your comments and incorporating them into the final report.

Very truly yours,
R.W. Beck, Inc.

Socioeconomic Analysis of Selected Interbasin Transfers in Texas

Prepared by:
R.W. Beck, Inc.

Table of Contents
Letter of Transmittal
Table of Contents
Executive Summary
Section 1. Introduction and Background
1.1 Introduction and Purpose of Research 1-1
1.2 Background on Interbasin Transfers 1-1
1.3 Regional Planning Perceptions 1-7
1.4 Research Questions 1-9
Section 2. Findings and Conclusions
2.1 Findings and Conclusions 2-1
2.2 Legislative Recommendations 2-7
Section 3. Study Methodology
3.1 Study Preparation 3-1
3.2 Analysis
3.2.1 Cost Comparisons 3-2
3.2.2 Socioeconomic Impact Analysis 3-4
3.2.3 Market Survey of Water Rights Transactions 3-6
Section 4. Bedias Reservoir Interbasin Transfer
4.1 Introduction and Background 4-1
4.2 Cost Comparison
4.2.1 Bedias Reservoir Interbasin Transfer 4-3
4.2.2 Additional Contracted Supply from San Jacinto River Authority 4-5
4.2.3 Freeport Desalination Project 4-6
4.3 Socioeconomic Impact Analysis 4-8
4.4 Findings and Conclusions 4-19
Section 5. Toledo Bend Interbasin Transfer
5.1 Introduction and Background 5-1
5.2 Cost Comparison
5.2.1 Toledo Bend Interbasin Transfer 5-2
5.2.2 Gulf of Mexico Seawater Desalination 5-3
5.3 Socioeconomic Impact Analysis. 5-5
5.4 Findings and Conclusions 5-11
Section 6. Lower Guadalupe Water Supply Project
6.1 Introduction and Background 6-1
6.2 Cost Comparison
6.1.1 Lower Guadalupe Water Supply Project 6-3
6.1.2 SAWS Gonzales - Carrizo Project 6-5
6.1.3 Seawater Desalination 6-6
6.2 Socioeconomic Impact Analysis 6-8
6.3 Findings and Conclusions 6-12
Section 7. Market Survey of Water Rights Transactions
7.1 Introduction and Background 7-1
7.2 Analysis 7-1
7.3 Findings and Conclusions 7-3
Appendices
Appendix A - TCEQ Listing of Interbasin Transfers
Appendix B - Analysis of Bedias Reservoir Interbasin Transfer Map of Proposed Bedias Reservoir Figure 1
Cost Comparison of Bedias Reservoir Interbasin Transfer. Schedule 1
Socioeconomic Impact Analysis of Bedias Reservoir Interbasin Transfer Schedule 2
Appendix C - Analysis of Toledo Bend Interbasin Transfer
Map of Proposed Toledo Bend Interbasin Transfer. Figure 1
Cost Comparison of Toledo Bend Interbasin Transfer Schedule 1
Socioeconomic Impact Analysis of
Toledo Bend Interbasin Transfer Schedule 2
Appendix D - Analysis of Lower Guadalupe Water Supply Project
Map of Proposed Lower Guadalupe Water Supply Project Figure 1
Cost Comparison of Lower Guadalupe Water Supply Project Schedule 1
Socioeconomic Impact Analysis of Lower Guadalupe Water Supply Project Schedule 2
Appendix E - Water Right Market Survey Results

List of Tables

Table 2-1
Comparison of Participants Current Outstanding Debt to Estimated Debt Principal Incurred for Toledo Bend Interbasin Transfer 2-3
Table 4-1
Present Cost per Acre-Foot Comparison of Bedias Reservoir Interbasin Transfer and Selected Alternative Strategies 4-2
Table 4-2
Present Value Cost Analysis of Bedias Reservoir Interbasin Transfer. 4-5
Table 4-3
Present Value Cost Analysis of Additional Contracted Supply from San Jacinto River Authority 4-6
Table 4-4
Present Value Cost Analysis of the Freeport Desalination Project 4-8
Table 4-5
Estimated Socioeconomic Impact of the Bedias Reservoir Interbasin Transfer 4-9
Table 4-6
Bedias Reservoir Estimated Mitigation 4-11
Table 4-7
Forestry Information for Bedias Reservoir Interbasin Transfer Basin of Origin Counties 4-13
Table 4-8
Per Capita Income Assumptions and Economic Factors for Bedias Reservoir Interbasin Transfer Basin of Origin Counties 4-17
Table 5-1
Present Cost per Acre-Foot Comparison of Toledo Bend Interbasin Transfer and Selected Alternative Strategies 5-2
Table 5-2
Present Value Cost Analysis of Toledo Bend Interbasin Transfer 5-3
Table 5-3
Present Value Cost Analysis of Desalinated Seawater for Region C 5-5
Table 5-4Estimated Socioeconomic Impact of the Toledo Bend Interbasin Transfer5-6
Table 5-5
Per Capita Income Assumptions and Economic Factors for Toledo Bend Interbasin Transfer Basin of Origin Counties 5-7
Table 5-6
Estimated Economic Benefit to Toledo Bend Interbasin Transfer Basin of Origin from New Residents 5-7
Table 6-1
Present Cost per Acre-Foot Comparison of Lower Guadalupe Water Supply Project and Selected Alternative Strategies 6-2
Table 6-2
Present Value Cost Analysis of Lower Guadalupe Water Supply Project (Interbasin Transfer) 6-4
Table 6-3
Present Value Cost Analysis of Lower Guadalupe Water Supply Project (In-basin Transfer) 6-5
Table 6-4
Present Value Cost Analysis of SAWS Gonzales - Carrizo Project 6-6
Table 6-5
Present Value Cost Analysis of Desalinated Seawater for Region L 6-7
Table 6-6
Estimated Socioeconomic Impact of the Lower Guadalupe Water Supply Project 6-8
Table 6-7
Economic Factors for Counties within Lower Guadalupe Water Supply Project Basin 6-10

List of Figures

Figure 4-1
Cost Comparison of Bedias Reservoir Interbasin Transfer and Selected
Alternative Strategies ... 4-3
Figure 5-1
Cost Comparison of Toledo Bend Interbasin Transfer and Selected
Alternative Strategies .. 5-2
Figure 6-1
Cost Comparison of Toledo Bend Interbasin Transfer and Selected
Alternative Strategies .. 6-3

This report has been prepared for the use of the client for the specific purposes identified in the report. The conclusions, observations and recommendations contained herein attributed to R. W. Beck, Inc. (R.W. Beck) constitute the opinions of R. W. Beck. To the extent that statements, information and opinions provided by the client or others have been used in the preparation of this report, R. W. Beck has relied upon the same to be accurate, and for which no assurances are intended and no representations or warranties are made. R. W. Beck makes no certification and gives no assurances except as explicitly set forth in this report.

Copyright 2006, R. W. Beck, Inc.
All rights reserved.

EXECUTIVE SUMMARY

In July of 2006, the Texas Water Development Board (TWDB) contracted with R.W. Beck, Inc. (R.W. Beck) to perform a research study to examine the Socioeconomic Impacts of Major Interbasin Transfers in Texas. The impetus for this study was to examine the effect of Senate Bill 1, as passed during the regular session of the $75^{\text {th }}$ Texas Legislature, which reduced the legal status of water rights transferred out of their Basin of Origin.
As the legal status of a water right changes, it is perceived by many that its economic value also changes. Because of the legislation passed in Senate Bill 1, and its effect on water rights, there is a perception throughout the state that the economic value of interbasin transfers has diminished; therefore, alternative water management strategies have been relied upon in regional planning to the exclusion of potential interbasin transfers (IBTs). This over-reliance on alternative strategies may potentially tax other limited sources of water and lead to the inability to provide water for future generations of Texans.

Despite the perceived change in their economic value, interbasin transfers represent a viable, and in some cases the only feasible, water management strategy. As such, any legislation that negatively impacts their use by regional water planning groups must be scrutinized. Specifically, the socioeconomic impact of such transfers (i.e., the economic and social value of water transferred) must be considered so as to determine the impact this legislation has, if any, on citizens of the State of Texas.
The goal of the study was to answer four specific research questions as follows:

1. Is the junior priority provision as contained within Texas Water Code Section 11.085 negatively impacting the consideration of interbasin transfers by the regional water planning groups in the state?
2. Are there other readily identifiable factors which are impacting the consideration of interbasin transfers in the regional planning process?
3. What is the economic impact of selected interbasin transfers, and are they viable water management strategies as compared to alternative strategies considered by the regional water planning groups?
4. Has the junior priority provision negatively impacted the marketing of water rights in the state?

In performing this study, R.W. Beck examined the following three specific interbasin transfers as chosen by TWDB Staff:

- Bedias Reservoir Interbasin Transfer
- Toledo Bend Interbasin Transfer
- Lower Guadalupe Water Supply Project

The study performed by R.W. Beck encompassed three specific points of analysis. First, to examine the factors that are considered in regional planning which may effect the reliance of regional water planning groups on interbasin transfers, R.W. Beck's Project Team performed cost comparisons between the identified interbasin transfers and alternative management strategies as selected by TWDB Staff. The objective of this analysis was to examine the cost factors associated with each interbasin transfer and the selected alternatives to each transfer to determine the present value unit cost of each strategy.
Second, the Project Team performed a socioeconomic analysis of each selected interbasin transfer. The goal of this analysis was to determine the economic costs and benefits that accrue to the Basin of Origin and the Receiving Basin resulting from the conveyance of water. Additionally, when possible, R.W. Beck identified the social impacts that would accrue to each area. The objective of this analysis was to determine, to the greatest extent possible, the positive or negative economic impact to society resulting from the selected interbasin transfers.
Third, R.W. Beck's Project Team performed a market survey of water rights transactions in Texas. This element of the study was designed to attempt to determine the effect, if any, the junior priority provision has on the value of water rights within the State.

Based upon the analysis conducted, the Project Team offers the following findings and conclusions:

- In the regional plans examined, there is a heavy, if not sole, reliance on interbasin transfers. In addition, nearly all of the regional water planning groups studied noted the importance of interbasin transfers.
- It is the Project Team's conclusion that the junior priority provision has not negatively impacted the consideration of interbasin transfers in the regional planning process. However, R.W. Beck would recommend that further study be performed on whether the junior priority provision has impacted the implementation of interbasin transfers.
- Other factors which appear to influence the regional planning groups' decisions in regards to interbasin transfers include the significant costs associated with such transfers and the environmental impact, coupled with public opposition, of interbasin transfers.
- There is significant net economic benefit associated with interbasin transfers. However, despite this significant net benefit, there are negative impacts to the Basin of Origin. While the economic impacts are more than offset by the economic benefits which accrue to the Basin of Origin, all competing policy objectives must be considered in pursuing such transfers.
- It is the Project Team's conclusion that interbasin transfers do represent a viable water management strategy in terms of total economic benefit; however, they are not necessarily the first choice when considered with a purely cost-based focus.
- It is the Project Team's opinion that the market for water rights in Texas is not sufficiently developed so as to draw any affirmative conclusions regarding the impact of the junior priority provision.

It is R.W. Beck's overall conclusion that the junior priority provision is not adversely affecting the consideration of interbasin transfers in Texas. However, the provision may potentially have a minor impact on specific projects. R.W. Beck recommends that this policy issue continue to be researched, reviewed, and scrutinized in the coming years to verify that the provision does not impact interbasin transfer as they begin to be more heavily utilized as water management strategies.

In terms of legislative recommendations, R.W. Beck recommends that, at this time, no change be made to Texas Water Code Section 11.085. Specifically, the junior priority provision should be left intact until verifiable evidence exists that it is truly having a negative impact on interbasin transfers in the State.
R.W. Beck would however strongly encourage policymakers during the next legislative session to give consideration to potential state participation in funding interbasin transfers. As discussed and reiterated by the regional water planning groups, interbasin transfers represent a critical water management strategy in meeting the future need of water in the state. However, without financial assistance or funding alternatives, it is likely that water suppliers will not actively pursue major interbasin transfers.

Section 1

Introduction and Background

1.1 Introduction and Purpose of Research

In July of 2006, the Texas Water Development Board (TWDB) contracted with R.W. Beck, Inc. (R.W. Beck) to perform a research study to examine the Socioeconomic Impacts of Major Interbasin Transfers in Texas. The impetus for this study was to examine the effect of Senate Bill 1, as passed during the regular session of the $75^{\text {th }}$ Texas Legislature, which reduced the legal status of water rights transferred out of their Basin of Origin.
As the legal status of a water right changes, it is perceived by many that its economic value also changes. Because of the legislation passed in Senate Bill 1, and its effect on water rights, there is a perception throughout the state that the economic value of interbasin transfers has diminished; therefore, alternative water management strategies have been relied upon in regional planning to the exclusion of potential interbasin transfers (IBTs). This over-reliance on alternative strategies may potentially tax other limited sources of water and lead to the inability to provide water for future generations of Texans.
Despite the perceived change in their economic value, interbasin transfers represent a viable, and in some cases the only feasible, water management strategy. As such, any legislation that negatively impacts their use by regional water planning groups must be scrutinized. Specifically, the socioeconomic impact of such transfers (i.e., the economic and social value of water transferred) must be considered so as to determine the impact this legislation has, if any, on citizens of the State of Texas.

1.2 Background on Interbasin Transfers

Title 2, Subtitle B, Chapter 11, Subchapter A, Section 11.085 of the Texas Water Code which governs interbasin transfers, defines an interbasin transfer as the taking or diverting of state water from a river basin and transferring such water to any other river basin. According to Texas Water Code § 11.002 (11), a river basin does not include water originating in the bays and arms of the Gulf of Mexico. Based upon this statute, it is R.W. Beck's interpretation, and agreed to by TWDB Staff, that water taken from the Gulf of Mexico does not constitute an interbasin transfer.

Key elements of an interbasin transfer include the:

- Basin of Origin - The river basin or body of water from which the water originates
- Receiving Basin - The river basin or body of water which receives the water
- Conveyance system - The means by which the water is conveyed from the Basin of Origin to the Receiving Basin. Conveyance systems can be composed of natural or man-made features.

Interbasin transfers are by no means a new phenomenon in the State. They have been critical to meeting water demands in the State for many years. Interbasin transfers are necessary in as much as population growth and the related demand for water in certain parts of the state has exceeded available supplies. Should policy makers choose to sustain growth, and to reap the economic benefits associated with growth, transferring underutilized water resources from one area of the state to another where it can be fully utilized is necessary.
Section 11.085 of the Texas Water Code has been amended by four pieces of legislation which include the following:

- S.B. 1139, 65th Regular Session of the Texas Legislature
- S.B. 1, 75th Regular Session of the Texas Legislature
- S.B. 2, 77th Regular Session of the Texas Legislature
- S.B. 312, 77th Regular Session of the Texas Legislature

The following discusses the impact each piece of legislation had on the laws governing interbasin transfers.

S.B. 1139

S.B. 1139, passed during the $65^{\text {th }}$ legislature, created the Texas Department of Water Resources (TDWR). As part of this act, Section 11.085 of the Texas Water Code was created to govern interbasin transfers (then referred to as interwatershed transfers). Under the statutes as passed, no person could take water from one basin (stream, watercourse, or wastershed) and transfer it to another basin (stream, watercourse, or watershed) if it would prejudice anyone currently situated in the originating basin. According to Texas Courts, this meant that "a balancing test between the determents to the Basin of Origin and the benefits to the Receiving Basin" had to be performed. ${ }^{1}$ Additionally, no transfer could occur without first receiving permit for such a transfer from the Texas Water Commission (a Predecessor to the Texas Commission on Environmental Quality (TCEQ)). Such a permit would only be granted after a hearing of the Commission in which they reviewed how the rights of others would be affected by the transfer. Additionally, the statutes as passed set out penalties and fines for anyone violating the provisions of this section.

[^0]
S.B. 1

With the passage of S.B. 1 during the $75^{\text {th }}$ legislative session, the statutes governing interbasin transfers changed significantly. Prior to S.B. 1, the only standard for not granting an interbasin transfer was if it prejudiced someone in the basin of origin. As previously discussed, this meant that the TCEQ must perform a balancing test between the detriments to the basin of origin and the benefits to the receiving basin. S.B. 1 further codified the requirements of this test by requiring the Commission to grant interbasin transfers only when the detriments to the basin of origin were less than the benefits to the receiving basin and only when the application contained drought contingency and water conservation plans. S.B. 1 also required the Commission to consider the following when granting interbasin transfers:

- the need for the water in the basin of origin and in the proposed receiving basin based on the period for which the water supply is requested, but not to exceed 50 years;
- the availability of feasible and practicable alternative supplies in the receiving basin to the water proposed for transfer;
- the amount and purposes of use in the receiving basin for which water is needed;
- proposed methods and efforts by the receiving basin to avoid waste and implement water conservation and drought contingency measures;
- proposed methods and efforts by the receiving basin to put the water proposed for transfer to beneficial use;
- the projected economic impact that is reasonably expected to occur in each basin as a result of the transfer;
- the projected impacts of the proposed transfer that are reasonably expected to occur on existing water rights, instream uses, water quality, aquatic and riparian habitat,
- proposed mitigation or compensation, if any, to the basin of origin by the applicant; and
- the continued need to use the water for the purposes authorized under the existing permit, certified filing, or certificate of adjudication, if an amendment to an existing water right is sought.

In addition to these requirements, SB 1 added additional administrative requirements in applying for a permit for an interbasin transfer. Applicants must now provide:

- the contract price of the water to be transferred;
- a statement of each general category of proposed use of the water to be transferred and a detailed description of the proposed uses and users under each category;
- the cost of diverting, conveying, distributing, and supplying the water to, and treating the water for, the proposed users; and
- the projected effect on user rates and fees for each class of ratepayers.

Additionally, the Commission must take the following administrative actions:

- Hold at least one public meeting to receive comments in both the Basin of Origin and the Receiving Basin
- If the application is contested, the Commission must post notice and conduct an evidentiary hearing
- Notice of application must be mailed to the following, located in part or in whole, within the Basin of Origin
- all holders of permits, certified filings, or certificates of adjudication
- each county judge
- each mayor of a City with a population of 1,000 or more
- all groundwater conservation districts
- each state legislator in both basins
- Notice must be published in general circulation newspapers meeting specific requirements and must be paid for by the applicant
- Request review and comment on the application by each county judge of a county located in part or in whole within the basin of origin
Possibly the most controversial section of S.B. 1 amends Section 11.085 of the Texas Water Code to make the water transferred in an interbasin transfer junior in priority to water rights granted prior to the interbasin transfer application. This provision, commonly referred to as the junior priority provision, is important in as much as the State of Texas uses a "first in time, first in right" method of allocating surface water. Under this provision, in times of drought, older or "senior" water rights would have priority access to their water right allotment before holders of newer or "junior" water rights permits would be able to access their allotment. Essentially, this makes junior water rights from an interbasin less reliable, and potentially less valuable.

Finally, unlike S.B. 1139, S.B. 1 does exclude certain transfers of water from the provisions of Texas Water Code 11.085. These include transfers of less than 3,000 acre-feet annual; an emergency transfer; a transfer from a basin to its adjoining coastal basin; and a transfer from a basin to a county or municipality either wholly or partially within the same basin.
As noted by a briefing memorandum of the Texas Senate Select Committee on Water Policy, "Since the passage of Senate Bill 1 in 1997, interbasin transfers have been the subject of endless discussions and the focus topic of innumerable water law conferences, legislative hearings, water policy seminars and symposiums, state agency agendas, work sessions and briefings, and a wide range of other public policy forums." ${ }^{2}$ This extensive consideration is likely due to the polarized opinions water industry professionals have regarding this piece of legislation. Supporters of S.B. 1

[^1]claim that it provides the TCEQ with specific guidelines to follow when granting interbasin transfers and should help to minimize litigation on such issues.

Supporters also assert that the additional notice and hearing requirements provide greater opportunity for public input. Compensation provisions within the bill are also championed by supporters as this would help to offset any impacts to the Basin of Origin. Finally, supporters claim that the term limitations with S.B. 1, that is limiting the term of the transfer to the term of the associated water supply contract, helps to avoid conflict and is more equitable for both basins.

Opponents of S.B. 1 claim that the junior priority provision will limit or end transfers of water in Texas and ultimately damage water management within the State. In other words, this provision provides a disincentive which will result in consideration of other water management strategies to the exclusion of interbasin transfers. As stated in the House Research Organization's analysis of S.B. 1, dated May 21, 1997, "Few cities or other entities would be willing to pay the substantial infrastructure expenses to facilitate an interbasin transfer if they knew that their claim could be preempted by senior water rights holders just when they needed the water the most, such as in a time of drought." Opponents also claim that junior rights provision will make it impossible to market water rights in the state as the value of such rights would diminish as their priority date is amended. Finally, opponents assert that the substantial administrative requirements place too many barriers to successfully achieving a water transfer and that the provisions do not apply equally between the basins. For example, the Receiving Basin is required to implement conservation measures while the Basin of Origin is not.

Another group of opponents to S.B. 1 claim that interbasin transfers should not be granted at all as they pose too great a risk to the Basin of Origin, adjoining basins, and downstream flows. These opponents also cite the potential adverse impact to economic development in the Basin of Origin that cannot be foreseen. Finally, this group of opponents to S.B. 1 claim that the TNRCC (now the TCEQ) should be required to weight the projected impacts of the transfer on existing water rights in the Basin of Origin. S.B. 1 only requires an analysis based upon historical use, not a consideration as if the existing water rights in the Basin of Origin were being fully utilized. Failure to consider these circumstances may impair the rights of users that have purchased water to meet future needs.

S.B. 2

During the $77^{\text {th }}$ regular session, the Texas Legislature passed S.B. 2. Many consider S.B. 2 to simply be an addition to S.B. 1 passed during the $75^{\text {th }}$ legislative session as it clarified and reemphasized certain aspects of the earlier piece of legislation. Interbasin transfers are only given brief mention in this bill. First, the legislation amends Section 11.085 to state that "a river basin may not be redesignated in order to allow a transfer or diversion of water." Under S.B. 1, this clause stated that "a basin may not be redesignated." It appears that the word "river" was added to clarify the original provisions of S.B. 1.

Much to the dismay of opponents, S.B. 2 did reemphasize the importance of retaining the junior water rights provision related to interbasin transfers as originally enacted in S.B. 1. Supporters continue to assert that this provision protects water resources for communities during times of drought and "ensures that supplies are not sold off to the highest bidder." ${ }^{3}$ Additionally, supporters claim that this provision brings more parties to the negotiating table as "dealing with junior water rights requires the participation of parties other than the water supplier and purchaser." ${ }^{4}$

Opponents of S.B. 2, similar to the supporters, continue their arguments based upon the retention of the junior water rights provision. They continue to claim that the junior water rights provision will eliminate interbasin transfers in the state because of the lack of assurance associated with the water being transferred. By maintaining this provision, which they claim would eliminate the consideration of interbasin transfers, opponents claims that this legislation does not address the future water needs of Texas.

S.B. 312

S.B. 312 , also passed during the $77^{\text {th }}$ regular session, contains the same language as that contained in S.B. 2 related to the redesignation of river basins. This bill relates to the Sunset Commission's review of the Texas Water Development Board and does not have a significant impact on section 11.085 of the Texas Water Code.

Legislative Intent

According to Wasinger and Mason, it appears that the TNRCC Regulatory Document entitled "A Regulatory Guidance Document for Applications to Divert, Store or Use State Water" encapsulates the intent of S.B. 1 and the rules currently governing interbasin transfers ${ }^{5}$. This document outlines several water resource management principles including the following:

- Is water available?
- Is there a need for the water?
- What are the impacts on existing water rights, instream uses and environmental water needs?
- Is the public welfare protected?

In adopting the previously discussed legislative changes to Texas Water Code Section 11.085 , it appears that the legislature's intent was to codify these principles into laws which governed the transfer of water. However, opponents of the current rules claim that the legislature went too far in applying these principles. The main arguments offered by opponents assert that:

[^2]- The junior rights provision as adopted in S.B. 1 provides disincentive and will result in the abandonment of interbasin transfers as a water management strategy
- The administrative provisions that applicants must adhere to obtain a permit to engage in an interbasin transfer provide further disincentive to pursue an application

1.3 Regional Planning Perceptions

Within the regional planning documents that were reviewed as part of this study, it was discovered that the perceptions that exist regarding Section 11.085 tend to align with those who are opposed to S.B. 1 and the additional requirements placed on interbasin transfers. For example, the 2006 Region C water plan states:
"The effect of these changes is to make obtaining a permit for interbasin transfers significantly more difficult than it was under prior law and thus to discourage the use of interbasin transfers. This is undesirable for several reasons:

- Interbasin transfers have been used extensively in Texas and are an important part of the state's current water supply. For example, current permits allow interbasin transfers of over 600,000 acre-feet per year from the Red, Sulphur, Sabine, and Neches Basins to meet needs in the Trinity Basin in Region C. This represents almost one-third of the region's reliable water supply.
- Current supplies greatly exceed projected demands in some basins, and the supplies already developed in those basins can only be used through interbasin transfers.
- Senate Bill One water supply plans for major metropolitan areas in Texas (Dallas-Fort Worth, Houston, and San Antonio) rely on interbasin transfers as a key component of their plans.
- Texas water law has always regarded surface water as belonging to the people of the state, to be used for the benefit of the state as a whole.
- The current requirements for permitting interbasin transfers provide an unnecessary barrier to development of the best, most economical, and most environmentally acceptable water supplies.
- Since no contested interbasin transfer permits have been granted under these new requirements, the meaning of some of the provisions and the way in which they will be applied by TCEQ are undefined. ${ }^{" 6}$

Based on these arguments, the Region C plan goes on to recommend the legislature revisit Section 11.085 of the Texas Water Code and remove some of "the unnecessary and counterproductive barriers to such transfers."

[^3]The Region H water plan essentially affirms the same arguments as proffered by Region C, and specifically addresses the junior priority provision. The Region H Plan states "under the current Texas Water Code, water rights developed as a result of an interbasin transfer become junior to other water rights granted before the interbasin transfer permit. The effect of this change is to make obtaining a permit for interbasin transfer significantly more problematic than it was under prior law and thus discourages the use of interbasin transfers for water supply. This is undesirable for several reasons:

- Current supplies greatly exceed projected demands in some basins, and the supplies already developed in those basins can only be used via interbasin transfers (Trinity Basin within Region H).
- Interbasin transfers have been used extensively in Texas and are an important part of the state's current water supply. For example, three of the five Region H Major Water Providers (City of Houston, Trinity River Authority, and San Jacinto River Authority) maintain current permits for interbasin transfers collectively of over $1,000,000$ acre-feet per year. Virtually all future water demands within the San Jacinto basin (Harris County in particular) of Region H must rely on interbasin transfers.
- Emerging regional water supply plans for major metropolitan areas in Texas (Dallas-Fort Worth and San Antonio) rely on interbasin transfers as a key component of their plans. It is difficult to envision developing a water supply for these areas without significant new interbasin transfers." ${ }^{7}$

The Region H Plan, similar to the Region C plan, goes on to recommend that the legislature "revise the current law on interbasin transfers and remove the unnecessary and counterproductive barriers to such transfers."
The Region L plan presents both sides of the debate concerning the current interbasin transfer statutes. As part of the regional planning process, Region L members considered both the positive and negative impacts of the changes made to Section 11.085 of the Texas Water Code by S.B. 1. The Region L plan states, "Among the negative impacts cited by some members are these:

- It imposes limitations on surface water rights permits that have previously been issued, possibly diminishing the value of some permits to the owners.
- It forces greater use of groundwater supplies, and potentially, encourages the mining of aquifers.
- It can result in construction of new reservoirs that would not be needed if seniority of rights and existing environmental flow requirements were preserved in interbasin transfers because of the need to provide reliable water supplies in the plans.
Other members of the Region L planning group cite the following positive effects of the new interbasin transfer provisions:

[^4]- "The junior water rights provision protects municipalities and other water users, especially in cases where the interbasin transfer of senior water rights would put junior water rights at risk.
- Bays and estuaries and instream flows have added protection from the impact of water exportation.
- Establishing the seniority of Basin of Origin water rights over those used for export preserves the economic value of the resource for the future development of the Basin of Origin" ${ }^{8}$
Based on these arguments, the Region L planning group chose not to make a recommendation regarding legislative changes to Texas Water Code Section 11.085.

1.4 Research Questions

As a result of the aforementioned discussion, the analysis performed by R.W. Beck's Project Team was designed to answer the following questions:

1. Is the junior priority provision as contained within Texas Water Code Section 11.085 negatively impacting the consideration of interbasin transfers by the regional water planning groups in the state?
2. Are there other readily identifiable factors which are impacting the consideration of interbasin transfers in the regional planning process?
3. What is the economic impact of selected interbasin transfers, and are they viable water management strategies as compared to alternative strategies considered by the regional water planning groups?
4. Has the junior priority provision negatively impacted the marketing of water rights in the state?
The ultimate goal of this study is to provide an opinion regarding the current legislation governing interbasin transfers, including a determination of the impact of the junior priority provision as it currently pertains to interbasin transfers.
This report has been structured to be of greatest assistance to policymakers in the state. As such, Section 2 of this report provides our findings and conclusions from the study and our legislative recommendations. The remainder of the report, which discusses the analysis conducted, is outlined as follows:

- Section 3 of this report discusses the methodology employed by R.W. Beck's Project Team in conducting the various facets of this study.
- Sections 4, 5, and 6, discuss the three interbasin transfers considered during the course of this study and the analysis performed for each interbasin transfer.
- Section 7 discusses the market survey of water rights transactions performed by the Project Team.

[^5]
Section 1 - Introduction and Background

Appendices to this report have also been included to illustrate the results of our analysis and to further clarify our findings and recommendations.

Section 2
 Findings and Conclusion

2.1 Findings and Conclusions

As previously discussed, R.W. Beck's analysis was designed to answer specific research questions. What follows are our findings and conclusions for each specific question.

1. Is the junior priority provision as contained within Texas Water Code Section 11.085 negatively impacting the consideration of interbasin transfers by the regional water planning groups in the state?

During our review of the 2001 and 2006 regional water plans for Regions C, H, and L, the Project Team noted that there is a heavy, if not sole, reliance on interbasin transfers to meet the projected needs of the regional water planning groups. In fact, nearly all of the regional water planning groups studied noted the importance of interbasin transfers and stressed how interbasin transfers have been relied upon during the regional planning process.

To further illustrate the reliance on interbasin transfers, TWDB Staff initially selected the Interbasin Transfer from the proposed Lake Ralph Hall reservoir as a candidate for study. However, based on R.W. Beck's review of comparable alternative water management strategies by the probable sponsor of the lake and pipeline, the Upper Trinity Regional Water District, the only available options were alternative interbasin transfers. A key tenet of this study was to compare the selected interbasin transfer with alternative water management strategies that did not consist of interbasin transfers. In order to determine if other management strategies existed, R.W. Beck met with representatives of the Upper Trinity Regional Water District who confirmed our findings and reiterated the critical importance of interbasin transfers to meeting the needs of their customers.

Despite this reliance on interbasin transfers, the transfers considered as part of this study have not been recommended as water management strategies. The Bedias Reservoir Interbasin Transfer has been listed as an alternative management strategy and will likely not be implemented within the foreseeable future. The Toledo Bend Interbasin Transfer is listed as a long-term supply strategy, but is not recommended for near-term implementation. Finally, the Lower Guadalupe Water Supply Project is not listed as a recommended strategy and has been modified to meet the needs of GBRA's statutory district as opposed to the projected needs in Bexar County.

Based on the analysis conducted, it is the Project Team's conclusion that the junior priority provision has not negatively impacted the consideration of interbasin transfers in the regional planning process. On the contrary, interbasin transfers
represent a heavily replied upon water management strategy by all of the regional planning groups studied. While the junior priority provision may have an impact in certain situations, this impact is not wide-spread and does not appear to diminish the reliance on interbasin transfers in meeting projected needs.
R.W. Beck would however recommend that the question be altered to address whether the junior priority provision has impacted the implementation of interbasin transfers. During the market survey, as discussed in Section 6, the TCEQ provided Project Team members a listing of all current interbasin transfers and whether those transfers were subject to the provisions of S.B. 1, in other words the junior priority provision. This listing is provided herein as Appendix A. As can be seen in this listing, out of the current interbasin transfers in the state, twenty (20) are subject to the provisions of S.B.1. However, out of these twenty (20) transfers, all but one were applied for and granted as exempt from the junior priority provision.

Based on these results, one could potentially conclude that of those interbasin transfers which have been applied for and granted since the passage of S.B. 1, most have been modified so as to achieve the requirements necessary to be exempt from the junior priority provision. As this element lies beyond the scope of this particular study, R.W. Beck would recommend that TWDB undertake a study to verify whether the junior priority provision has caused water providers to modify their implementation of interbasin transfers so as to be granted an exemption, and thereby circumvent, the junior priority provision.

2. Are there other readily identifiable factors which are impacting the consideration of interbasin transfers in the regional planning process?

As part of this analysis, R.W. Beck attempted to identify if there were any other verifiable factors which are impacting the consideration of interbasin transfers in the regional planning process. However, based on the above discussion, it was discovered that consideration during the regional planning process is not the primary issue. Interbasin transfers still remain a significant part of the regional planning process regardless of the junior priority provision.

Despite the above finding, R.W. Beck did focus its efforts to determine if any identifiable factors were present which caused the interbasin transfers considered as part of this study to not be relied upon as, or considered solely as long-term, water management strategies. During the course of the study, several key issues regarding the interbasin transfers in question continued to arise. First, there appears to be significant concern regarding the cost of interbasin transfers. The movement of water from one area to another is often associated with significant infrastructure investment and related cost. In undertaking such an effort, and for it to make fiscal sense, significant amounts of water must be transferred. At present, and as illustrated by the cost comparisons within this study, there still exist water management strategies that are significantly more economical on a per unit basis than interbasin transfers. While many of these alternative strategies cannot provide the same amount of water as an interbasin transfer, they can meet
immediate needs at a lower cost. Until the projected need is realized, and until that need cannot be met by more financially feasible strategies, it is likely that interbasin transfers will serve as the water supply strategy of last resort. Additionally, without some form of financial assistance at the state or federal levels, it is likely that interbasin transfers will only be relied upon as long-term strategies, or as strategies of last resort.

To further illustrate this concern, the Project Team researched the current outstanding debt associated with raw water supply of the major water providers who are currently listed as potential participants in the Toledo Bend Interbasin Transfer. Table 2-1 below compares the outstanding debt associated with raw water supply with the debt service principal cost each party would incur according to the figures in the current Region C Plan.

Table 2-1
Comparison of Participants Current Outstanding Debt to Estimated Debt Principal Incurred for Toledo Bend Interbasin Transfer

Participant	Current Outstanding		Estimated Debt Principal
	$\underline{\text { Debt }}$		Incurred from Transfer ${ }^{1}$
Dallas Water Utilities	$\$ 7.2$ million	$\$ 851$ million	
North Texas Municipal Water District	$\$ 376$ million	$\$ 854$ million	
Tarrant Regional Water District	$\$ 473$ million	$\$ 1.05$ billion	

As illustrated in the table above, the Toledo Bend Interbasin Transfer would result in a significant increase in each participant's outstanding debt. Additionally, it should be noted that these figures only include the cost of debt service and does not include the operation and maintenance costs of the project or cost of raw water; therefore, the actual cost to each participant will be even higher. Without some measure of financial assistance from the State and/or Federal level, it is unlikely that a water supplier would engage in a major interbasin transfer in the short-term when more economical and cost effective options are available.
Second, there appears to be significant opposition to the construction of new reservoirs, as recommended in the case of the Bedias Reservoir. In reviewing the public comments made regarding the 2001 and 2006 regional plans, there is a significant and vocal opposition to the construction of reservoirs prior to full utilization of existing water resources. Opposition to new reservoirs stems primarily from the environmental impact of flooding land to create such reservoirs and the impact the building of reservoirs would have on privately held property.

Third, there is significant opposition to interbasin transfers, particularly the Lower Guadalupe Water Supply Project (LGWSP), due to the environmental impact of the transfer. In the case of the LGWSP, there is public concern regarding the impact the project would have on inflows to other bays and estuaries below the

[^6]Guadalupe Saltwater Barrier. There is also some concern as to the impact this project may have on endangered wildlife habitats.
R.W. Beck would note that the opposition to the Lower Guadalupe Water Supply Project is substantial, particularly when compared with the other two interbasin transfers considered as part of this study. During the Region L planning process, a public meeting was held in Victoria and attended by over 500 individuals opposed to this project. Forty-eight written and oral comments were received addressing "the aversion to a pipeline for ground and surface water, concerns over groundwater availability and modeling results, and concerns over surface water availability as well as the impacts to bays and estuaries." ${ }^{2}$ Based on this opposition, one sponsor of this project, San Antonio Water System (SAWS), pulled out of the project and began seeking other water supply alternatives.

Based on our review of regional planning documents and our analysis during the course of this study, it appears that the cost of interbasin transfers are a key factor which affects the consideration of transfers by regional planning groups. It is likely that until the need for water is sufficient enough to merit investment in the infrastructure necessary to transfer water, or until other financing options or financial assistance is provided for these projects, regional water planning groups will likely continue to implement more economical water supply projects, while considering interbasin transfers to meet long-term needs. However, it should be noted that this method of operation only postpones the inevitable. Interbasin transfers are essential to meeting the future water needs present throughout the state.
R.W. Beck would also cite the perceived environmental impact of interbasin transfers as another factor which effects the consideration of interbasin transfers by regional water planning groups. By far, those opposed interbasin transfers on the basis of the environmental impact are some of the most vocal participants in the regional water planning process.
3. What is the economic impact of selected interbasin transfers, and are they viable water management strategies as compared to alternative strategies considered by the regional water planning groups?

Findings:

Based on the analysis conducted by the Project Team, there appears to be a significant net economic benefit of all of the interbasin transfers selected for study. This impact ranges from a low of approximately $\$ 68$ billion to a high of approximately $\$ 1.3$ trillion.

Despite the significant net economic benefit, and the positive economic benefits that accrue to the Receiving Basin and Basin of Origin, there are also economic costs to the Basin of Origin. While these costs are more than offset by the benefits that accrue to the Basin of Origin, one cannot discount these negative impacts. In

[^7]particular, the negative social impacts, which could not be quantified as part of this study, should be considered by regional water planning groups as they look to interbasin transfers to meet projected needs.

As was discussed earlier in regards to the Lower Guadalupe Water Supply Project, it appears that the regional planning group members have indeed considered these negative impacts when considering water management strategies. In the case of the LGWSP, the regional planning group members listened to the opposition who felt the negative social impacts of the project were significant enough to oppose the strategy. Despite the economic benefits that would accrue, the regional planning group chose to meet the projected water needs through other means, including a modified version of the LGWSP.

Ultimately, the decision to pursue an interbasin transfer is a policy issue that must consider all of the competing objectives. If the most important objective is increasing total economic benefit, then the regional planning groups should consider the interbasin transfers analyzed in this study. If the most important objective is providing water at the most economical price, then interbasin transfers should not be considered as a viable water management strategies in the shortterm.

Based upon the above analysis, it is the Project Team's conclusion that the total net economic impact of interbasin transfers is beneficial and significant. This economic benefit accrues not only to the parties to the water transaction, but also to the state as a whole.

It should however be noted that not all impacts of interbasin transfers are positive. There are negative economic and social impacts, many of which cannot be quantified. The decision to pursue interbasin transfers is thus a policy decision in which competing objectives must be compared, and difficult decisions made.

It is also the Project Team's conclusion that interbasin transfers do represent a viable water management strategy in terms of total economic benefit; however, they are not necessarily the first choice when considered with a purely cost-based focus. Other water management strategies have a lower unit cost, thus making them more attractive to water suppliers. However, in the long-term, as the projected need for water increases, it is likely that the need for water will outweigh the cost of interbasin transfers.

4. Has the junior priority provision negatively impacted the marketing of water rights in the state?

During the course of our analysis, the Project Team was unable to find transactions which fit the research criteria. As such, our findings on this particular question are limited. While some transactions are occurring, R.W. Beck has found only limited transactions in which the priority date of the water right changed, and, in the cases where these transactions were discovered, the change in the priority date did not have an effect as the water rights senior to the transferred water right were already owned by the same entity. The Project Team did find a limited water market in

Texas, but this market is limited to small transactions and involved very few surface water transactions.

At the present time, the market for water rights in Texas is not sufficiently developed so as to draw any affirmative conclusions regarding the impact of the junior priority provision. Without comparable transactions, it is not possible, under the methodology employed by the Project Team and endorsed by TWDB Staff, to affirm or deny the impact of the junior priority provision. As the water market in Texas matures, further study will be required to determine if the junior priority provision does have the impact its opponents claim.
R.W. Beck would conclude, based on the fact that there are limited surface water transactions, that those holding surface water rights consider those rights more valuable than what individuals are willing to pay for those rights. As the projected water needs are realized in the state, it is likely that more surface water transactions will in fact occur, and that the purchase price for this rights will be significant.

Based upon our analysis and our findings to date, R.W. Beck's overall conclusion is that the junior priority provision is not adversely affecting the consideration of interbasin transfers in the state. In all of the regional planning documents reviewed by the Project Team, interbasin transfers represent the majority, if not the only, viable water management strategy in the future.
The Project Team would note however that the provision may potentially have a minor impact on specific projects. For example, in the LGWSP, it is possible that the junior priority provision had a minor impact in this project's demise. However, this impact is limited to the existing water rights and is in no way associated with the new water right appropriation and the groundwater associated with firming up the project yield. It is likely that the public opposition to this project is what ultimately led to its dismissal and revision as a recommended water management strategy. It is the Project Team's opinion that this project would likely have been dismissed based on factors other than the junior priority provision.
R.W. Beck recommends that this policy issue continue to be researched, reviewed, and scrutinized in the coming years to verify that the provision does not impact interbasin transfer as they begin to be more heavily utilized as water management strategies. Specifically, it appears at this time that some water providers may be structuring interbasin transfers to be exempt from the provisions of Texas Water Code Section 11.085. If that is the case, then the provisions in the code should be changed so as to allow water providers to meet the needs in their basin without significant hindrance. R.W. Beck also recommends that this topic continue to be addressed in future TWDB research studies.

2.2 Legislative Recommendations

At this time, R.W. Beck recommends that no changes be made to Texas Water Code Section 11.085 . Specifically, the junior priority provision should be left intact until verifiable evidence exists that it is truly having a negative impact on interbasin transfers in the State.
R.W. Beck would however strongly encourage policymakers during the next legislative session to give consideration to potential state participation in funding interbasin transfers. As discussed and reiterated by the regional water planning groups, interbasin transfers represent a critical water management strategy in meeting the future need of water in the state. However, without financial assistance or funding alternatives, it is likely that water suppliers will not actively pursue interbasin transfers. As demonstrated in this report, the financial impact of such transfers is significant, and can have a detrimental effect on a water supplier without direct assistance at the state or federal level.

Interbasin transfers represent an important and necessary means by which the need for water will be met in the state in the coming years. As the needs projected by the regional water planning groups are realized, lawmakers must make certain that any unnecessary hindrances to the interbasin transfer of water are removed. The being said, it will also be important to balance the need for interbasin transfers with the means to protect the Basin of Origin. This will not be an easy balance to achieve, and one that will need to be refined for years to come.
The issue of interbasin transfers will not diminish, nor will the voices of the opponents and supporters of such mechanisms. The legislative approach to interbasin transfers must consider and balance the needs of all citizens of this State, while ensuring that water is available for future generations of Texans.

Section 3
 Study Methodology

The following section discusses the methodologies utilized in conducting the study. Whenever possible, TWDB guidelines and assumptions employed in the regional planning process were utilized.

3.1 Study Preparation

Prior to beginning the analysis required for this study, R.W. Beck's Project Team held several meetings with TWDB Staff. The purpose of these meetings was to define the goals and objectives of the study as well as to narrow and refine the research questions. Another goal of these meetings was to determine which interbasin transfers would be examined as part of the Project Team's analysis. Upon the completion of these meetings, TWDB Staff selected the following interbasin transfers for consideration

- Bedias Reservoir Interbasin Transfer
- Toledo Bend Interbasin Transfer
- Lower Guadalupe Water Supply Project

Each of these projects is discussed more thoroughly in the corresponding section of this report.
As previously mentioned, TWDB Staff also initially selected for study the interbasin transfer from the proposed Lake Ralph Hall in the Sulfur River Basin to users in Denton and Collin Counties. However, based on R.W. Beck's review of comparable alternative water management strategies by the probable sponsor of the lake and pipeline, the Upper Trinity Regional Water District, the only available alternatives included other interbasin transfers. A key tenet of this study was to compare the selected interbasin transfer with alternative water management strategies that did not consist of interbasin transfers. In order to determine if other management strategies existed, R.W. Beck met with representatives of the Upper Trinity Regional Water District who confirmed our findings and reiterated the critical importance of interbasin transfers to meeting the needs of their customers. Based upon these discussions, and with the approval of TWDB Staff, the interbasin transfer from the proposed Lake Ralph Hall Reservoir was dropped from further study.

3.2 Analysis

In addition to determining which interbasin transfers would be considered, R.W. Beck presented TWDB Staff with its proposed scope of work and the methodologies that
would be employed during the study. The following methodologies were ultimately approved by TWDB Staff and employed by the Project Team.

3.2.1 Cost Comparisons

To examine the factors that are considered in regional planning which may effect the reliance of regional water planning groups on interbasin transfers, it was necessary to compare each interbasin transfer with alternative water management strategies which do not constitute interbasin transfers. To determine the alternatives to be compared, R.W. Beck examined the 2001 and 2006 regional water plans and compiled a list of the water management strategies considered, in addition to the identified interbasin transfer, by each respective planning group considering one of the selected interbasin transfers. This list was then annotated to note the strategies which could supply the same or similar yield of water as the interbasin transfers in question. Once compiled, members of R.W. Beck's Project Team met with TWDB staff to determine which alternatives would be compared to each respective interbasin. TWDB Staff members ultimately selected the following alternatives for comparison with the subject interbasin transfer.

- Bedias Reservoir Interbasin Transfer
R.W. Beck considered two alternative water management strategies with respect to this transfer. The first involves obtaining additional contracted raw water supply for Montgomery County from San Jacinto River Authority (SJRA). The second involves obtaining water from the Freeport Water Desalination Project. Currently, Montgomery County, which would be served by the Bedias - SJRA Interbasin Transfer, has not been considered as a recipient of water from the Freeport Water Desalination Project. However, this is the only potential water management strategy that is not an interbasin transfer which could supply a similar quantity of water to Montgomery County.
- Toledo Bend Interbasin Transfer
R.W. Beck's Project Team considered an alternative water supply consisting of desalinated water from the Gulf of Mexico as the alternative to this transfer.
- Lower Guadalupe Water Supply Project (LGWSP)

Alternatives chosen for comparison with this transfer included a supply of groundwater from the Carrizo aquifer, also known as the SAWS Gonzales - Carrizo Project, and seawater desalination.

Each of these alternatives is more fully discussed within the section of this report which corresponds to the appropriate transfer.

The objective of the cost comparisons was to provide an analysis of the different strategies with specific economic factors taken into account including
an assumed construction time period, time value of money, and realizable firm yield of each strategy over a 50 year time frame. As part of this analysis, and to ensure accurate comparisons, the Project Team applied the same base assumptions to each strategy.

The strategies presented in the regional plans and evaluated by the Project Team varied, in that some of the strategies included the estimated cost to distribute the water and/or treat the water at its final destination while a number of the strategies include only the cost of transmitting the water to the local wholesale provider and do not include the final treatment costs. Based upon TWDB Staff recommendation, any identifiable costs associated with additional treatment and/or distribution by the wholesale water supplier were omitted from the comparison. However, treatment costs for desalination projects were included in the cost comparisons as the saltwater must be treated before it is conveyed to the wholesale providers.

It was also necessary when determining the present value cost per acre-foot, for comparative purposes, to assume that at the time the respective project comes online, the full yield of acre-feet would be utilized. The amount supplied by the projects in the cost comparisons will not necessarily be consumed in equal amounts for every year of the project life. The amount supplied to each water supplier will be based upon their need, and the amount of water needed from each project to fill that respective need. Therefore, by assuming the full amount of yield will be utilized in every year in developing the calculation, the present value cost per acre foot reflects the total estimated amount of cost that would be incurred to produce every acre-foot of water throughout the 50 year time horizon on a uniform comparable basis.

Once the alternative water management strategies were finalized for comparison, R.W Beck's Project Team utilized the 2001 and 2006 regional water plans to acquire cost information for each transfer as well as each alternative water management strategy. In most cases, this information was provided in second quarter 2002 dollars. At the request of TWDB staff, R.W. Beck's Project Team updated all costs to second quarter 2005 dollars utilizing the Construction Cost Index published by Engineering News - Record ("ENR") or other appropriate indices which included the Producer Price Index, Operations and Maintenance percentage allocations illustrated in the TWDB water management strategy reports, and the Handy-Whitman Index of Public Utility Construction Costs. The construction costs were escalated by the actual ENR index factors from mid-year 2002 to mid-year 2005. Escalations in construction costs beyond 2005 were applied to the historical average percentage increase illustrated in the ENR index.

Once the cost data was updated, R.W. Beck then performed a 50 -year present value cost analysis of the life-cycle costs for each transfer. In this analysis, the Project Team considered annual debt service, operation and maintenance costs, and water source costs, where applicable. When possible to separately identify, the cost categories below were inflated annually based on the following indices:

- Electricity cost were escalated utilizing the producer price index for industrial electrical power
- Chemical costs were escalated utilizing the producer price index for industrial chemicals
- Treatment cost associated with desalinated seawater were escalated based upon the average annual increase in NARUC Account 320 (Large Treatment Plant Equipment) according to the HandyWhitman Index of Public Utility Construction Costs (Water Utility Construction), South Central Region
- Any costs which could not be unbundled were escalated annually utilizing an assumed 3% inflation factor

For this analysis, the 30 -year nominal treasury interest rate for 2005 was employed as the discount factor. Additionally, R.W. Beck assumed that there would be a time-lag between when the projects began construction and when water would first be available. Based on conversations with our engineering staff, the Project Team assumed the following construction lag times.

- Strategies involving pipeline construction only - 3 years
- Strategies involving desalination plants - 5 years
- Strategies involving the construction of reservoirs - 20 years ${ }^{1}$

Upon completing the present value cost analysis, the value of each alternative was analyzed in total and on a per unit basis of water supplied calculated utilizing the estimated firm yield multiplied by the number of years the project will be online during the 50 year life.

3.2.2 Socioeconomic Impact Analysis

As water is transferred from one basin to another, economic costs and benefits also accrue to each area. For example, as water is received by the Receiving Basin, it supports additional population growth and related economic activity from this increased population. Likewise, when an interbasin transfer calls for the construction of the Basin of Origin, there will be an economic loss as farm land is removed from production.

In addition to those costs and benefits that can be quantified, other costs and benefits accrue that cannot be quantified. For example, if a transfer of water negatively impacts the bays and estuaries of a specific area, wildlife habitats may be impacted. As wildlife habitats are negatively impacted, there is a social loss to society; however, it is difficult if not impossible to quantify this social impact.

To the extent possible, R.W. Beck's Project Team has sought to quantify the net economic impact of each respective interbasin transfer. The purpose of

[^8]such analysis is to determine, if an interbasin transfer is not considered because of the junior priority provision, what will the positive or negative economic impact be to society.

As each interbasin transfer is different and relies upon different assumptions, each respective analysis is discussed within the corresponding section of this report. It should be noted that in developing the socioeconomic impact for each interbasin transfer, R.W. Beck's Project Team used the actual projected water shortages by year as estimated by the TWDB Regional Water Plans to determine the additional population that could be supported as a result of the interbasin transfer. This differs from our cost comparison methodology in which the full yield of each project was realized on an annual basis regardless of need.

At its most simplistic level, the socioeconomic impact analysis involves determining the costs and benefits of each interbasin transfer and projecting these impacts to the region. One key element of this analysis is the economic multiplier effect, named after the multiplicative effect that takes place in an economy following some initial stimulus. For example, an increase in construction activity will have a direct impact on the economy, but will also lead to an increase in output of supplying industries (material suppliers, engineering and consulting firms, food and lodging providers, etc.). This combined increase in industry output will lead to the creation of jobs, resulting in additional household income. To determine the economic multipliers, economic impact assessment software created by IMPLAN (Impact Analysis for Planning) has been used. ${ }^{2}$ This software is employed by the Army Corps of Engineers in assessing the economic impact of proposed projects.

The IMPLAN software, as described by the Minnesota Implan Group, applies Input-Output-Analysis as a means of examining relationships within an economy, both between businesses and between businesses and final consumers. It captures monetary market transactions for consumption in a given time period using actual data from local economies. It considers social security tax and income tax leakage, institution savings, and commuting. It also accounts for inter-institutional transfers.

There are two phases in the input-output analysis:

1. Descriptive modeling
2. Predictive modeling

Descriptive Model

A descriptive model includes information about local economic interactions known as regional economic accounts. This model describes a local economy in terms of the flow of dollars from purchasers to producers within the region. Trade flows are also part of the descriptive model. They describe the

[^9]movements of goods and services within a region and outside world. Nonindustrial transactions such as payment of taxes by businesses and households are estimated by creating social accounting data.

Predictive Model

The regional economic accounts are used to construct local level multipliers which represent the predictive model. Purchases for final demand (final use) drive an input-output model. Industries producing goods and services for consumption purchase goods and services from other producers. These other producers in turn purchase goods and services. The indirect purchases (indirect effects) continue until leakages from the region (imports, wages, profits) stop the cycle. The indirect effects and the effects of increased household spending (induced effects) are calculated as a set of multipliers. The multipliers describe the change of output for each industry caused by a one dollar change in final demand for any given industry. ${ }^{3}$
Once the positive and negative impacts have been determined and projected for each region involved in the interbasin transfers in questions, they are netted to determine the total positive or negative impact of each interbasin transfer considered.

3.2.3 Market Survey of Water Rights Transactions

The third leg of R.W. Beck's study, as requested by TWDB Staff, was designed to attempt to determine the effect, if any, the junior priority provision, as contained within Texas Water Code Section 11.085, has on the value of water rights. In an effort to quantify this difference, R.W. Beck's Project Team attempted to study water rights transactions which occurred under either of the following two scenarios.

1. Assuming the priority date of a water right changed as a result of a transaction, in other words, made junior to other existing water rights.
2. Assuming a water right maintained its original priority date after a transaction.

To obtain the necessary water right transaction information needed to conduct this analysis, R.W. Beck contacted the TCEQ and obtained information on water rights acquisitions that have occurred in the state. The transaction listings provided by TCEQ contained transactions occurring since April 2001. Additionally, TCEQ was also able to provide a database containing water rights that are connected with a current interbasin transfer, and whether those water rights are subject to the provisions of S.B. 1, and thus the junior priority provision.

To augment the information, R.W. Beck obtained issues of "Water Strategist" dating back to January 1999. "Water Strategist" as published by Stratecon,

[^10]Inc. provides information and analysis concerning marketing, legislation, litigation, and financial information of water resources. ${ }^{4}$ Each issue of the "Water Strategist" contains information on current water rights transactions that have occurred in 17 western states. R.W. Beck reviewed each issue and compiled data concerning water transactions that have occurred within Texas.
Once compiled, R.W. Beck removed transactions that did not fit the criteria of the study. This included:

- Groundwater transactions;
- Water leases;
- Transaction in which only the name of the water right owner changed;
- Water right transactions that are currently in process; and
- Transactions that are currently contested.

Once all the data was compiled and filtered, R.W. Beck took a sample of the transactions contained on the list and attempted to contact the buyer and/or the seller in an effort to obtain information on the transaction. In constructing the sample, the Project Team focused on transactions that involved public entities, so as to obtain data that is already in the public domain. Once contacted, the buyer and/or seller were asked for the following information:

- The purchase price of the transaction;
- The acre-feet of water involved in the transaction;
- The priority date of the right; and
- Whether the right changed as a result of the transaction.

To gain additional information and insight as to the water market in Texas, R.W. Beck also contacted water marketing professionals throughout the State. These contacts included water marketers, lawyers, consultants, and educators in the state. These individuals provided valuable insight to the current state of the water market in Texas and the information they provided was essential in guiding R.W. Beck's analysis as well as our findings and conclusions.

Once the Project Team obtained information on each of the water rights transactions contained within our random sample, the results were compiled and analyzed to determine if a conclusion could be drawn based on available data and, if so, what could be garnered from the results of the survey. Our analysis is further discussed in Section 7 of this report.

[^11]
Section 4 Bedias Reservoir Interbasin Transfer

4.1 Introduction and Background

The Bedias Reservoir Interbasin transfer has been considered as a potential water management strategy for Montgomery County, located in Planning Region H. According to regional planning documents, it is estimated that Montgomery County demand will begin to exceed its available supply by 2020. To meet this demand, it is proposed that the San Jacinto River Authority (SJRA) and / or the Trinity River Authority develop the Bedias Creek Reservoir, which would be located in the Trinity River Basin. SJRA would also construct a pipeline that would ultimately carry water from this reservoir to a tributary of the West Fork of the San Jacinto River, which ultimately flows into Lake Conroe. From Lake Conroe, these supplies could then be used to meet SJRA's northern and southern basin demands, specifically those within Montgomery County.

In the 1997 State Water Plan, it was stated that the San Jacinto River Authority had obtained 50,000 acre-feet of water supplies from the Trinity Basin via the Devers Canal. This supply was slated to be used to meet the needs of east Harris County, thereby freeing water in Lake Conroe for use in Montgomery County. The Plan noted the expected shortage in Montgomery County for the City of Conroe, and stated that the City should plan to use more water from Lake Conroe beginning in 2010, institute re-use by 2040, and contract with SJRA for a portion of Lake Houston water by 2050.

In the 2001 Region H Plan, the Lake Bedias to Lake Conroe Interbasin Transfer was first considered as a potential water management strategy. The Bedias reservoir and the associated interbasin transfer were recommended for implementation at this time.

In the 2006 Region H Plan, the development of the Bedias Reservoir and Interbasin Transfer to Lake Conroe was again considered as a potential water management strategy. In the 2006 plan, the need for interbasin transfers was emphasized within Region H. At that time, it was also stated, referring to the junior rights provision that "because reliability is partially based on the seniority of a water right, [the junior rights provision] in the water code makes new interbasin transfers difficult to accomplish." ${ }^{1}$ While considered in 2006, the Bedias Reservoir and interbasin transfer were not recommended for implementation, but were maintained as an alternative water management strategy. In its place, it was recommended that the Luce Bayou Conveyance from the Trinity River to Lake Houston be pursued.

Based on conversations with representatives of both San Jacinto River Authority and Trinity River Authority, it appears that the Bedias Reservoir, and the associated

[^12]interbasin transfer were never considered on more than a hypothetical basis. A Bureau of Reclamation Study was performed for the proposed Bedias Reservoir Site; however, according to Trinity River Authority, nothing more has been done beyond this initial planning stage. Additionally, according to a news article dated July 13, 2005, then San Jacinto River Authority General Manager Jim Adams told Madison County Commissioners that while the Bedias Reservoir was a quality site, due to a lack of anticipated water shortages, the Bedias Reservoir is now only being considered as an alternative management strategy. ${ }^{2}$

4.2 Cost Comparisons

As requested by TWDB Staff, R.W. Beck's Project Team performed a cost comparison with two additional water management strategies. The goal of this analysis was to determine the cost effectiveness of the Bedias Reservoir Interbasin Transfer as compared with alternative water management strategies. Based upon the analysis performed, Table 4-1 summarizes the present cost per acre foot of each strategy. Figure 4-1 graphically illustrates the annual cost of each strategy as well as the present cost per acre foot.

Table 4-1
Present Cost per Acre-Foot Comparison of Bedias Reservoir Interbasin Transfer and Selected Alternative Strategies

Bedias Reservoir Interbasin Transfer	
Cost per Acre Foot	$\$ 125$
Additional Contracted Water Supply from SJRA	
Cost per Acre Foot	$\$ 49$
Freeport Desalination Project	
Cost per Acre Foot	$\$ 460$

[^13]Figure 4-1
Cost Comparison of Bedias Reservoir Interbasin Transfer and Selected Alternative Strategies

The information below briefly discusses the water management strategies chosen for comparison and the assumptions made by the Project Team in developing the cost comparisons.

4.2.1 Bedias Reservoir Interbasin Transfer

To develop the cost for the Bedias Reservoir Interbasin Transfer, R.W. Beck relied upon the technical memorandum concerning the project prepared by the Region H planning team as part of the 2006 regional water planning process. In performing this cost comparison, it was necessary to understand how the construction of the reservoir would be structured between the Basin of Origin, managed by the Trinity River Authority (TRA), and the Receiving Basin, managed by the San Jacinto River

Authority (SJRA). Conversations with representatives of both TRA and SJRA emphasized that the project was still conceptual; however, the most likely scenario would see the reservoir developed by TRA, with SJRA paying TRA for the complete cost of development. As an incentive for developing the reservoir, TRA would receive 30% of the firm yield of the reservoir and SJRA would receive 70%.

Working under this scenario, R.W. Beck assumed that SJRA would receive 63,490 acre-feet annually, or 70% of the estimated 90,700 acre-feet yield of the reservoir. In addition, SJRA would pay the full debt service and operations and maintenance cost associated with the reservoir as well as the full debt service and operations and maintenance cost associated with the planned conveyance system.

The technical memorandum prepared by Region H illustrated the cost of developing both the reservoir and the conveyance system in 2002 dollars. To escalate these costs into 2005 dollars, R.W. Beck utilized the Construction Cost Index published by Engineering News Record ("ENR"). In addition, to escalate the cost category of "Engineering, Financial \& Legal Services, and Contingencies," R.W. Beck assumed that this cost would be equivalent to 30% of the pipeline costs and 35% of the pump station and stilling basin costs. Finally, to escalate the cost category of "Interest During Construction," the Project Team applied the same percentage used in 2002 to the updated 2005 construction cost total.
Once the costs for the Bedias to Lake Conroe Transfer were escalated, the Project Team further assumed that it would take 20 years to construct the associated reservoir and necessary conveyance facilities. As such, it was necessary to estimate the potential project cost in 2025. To project the cost of developing the reservoir, R.W. Beck applied the general inflation factor to the reservoir cost illustrated in Appendix B to Chapter 4 of the Region H Water Management Strategies report. After escalating the cost to year 2025 it was assumed that a debt instrument would be issued with a 30 year time period and a rate of 6% to pay for the construction cost of the reservoir. The conveyance system cost was escalated utilizing the ENR index.
Upon developing the assumed future cost of the project, R.W. Beck performed a present value cost analysis. This analysis assumed a 50 year time span beginning in 2005, with the project coming on-line in 2025. In performing this analysis, the operations and maintenance costs associated with the reservoir were escalated by an assumed inflation rate of 3% annually. The escalation in the estimated conveyance system annual operation and maintenance cost was derived using percentages given in the Bedias Cost Summary Region H report. The discount factor utilized in this analysis was equivalent to the 30 -year nominal treasury interest rate in August 2006. Additionally, half year convention was utilized in performing the present value cost analysis beginning in mid-year 2005.
Table 4-2 illustrates the results of the present value cost analysis:

Table 4-2
Present Value Cost Analysis of Bedias Reservoir Interbasin Transfer

Total Present Value Cost	$\$ 237,219,187$
Annual Acre-Foot Yield	63,490
Years of Operation in Analysis	30
Total Acre-Foot Yield	$1,904,700$
Present Value Cost per Acre-Foot	$\$ 125$

4.2.2 Additional Contracted Supply from San Jacinto River Authority

A strategy adopted by the Region H water planning group that could supply a similar amount of water to Montgomery County as the Bedias Reservoir Interbasin Transfer would be new raw water contracts with the San Jacinto River Authority. This strategy is estimated to provide 96,000 of acre-feet annually.
However, in examining this project, it appears that in order to supply these new contracts, it will be necessary for San Jacinto River Authority to utilize new water supplies to free-up already contracted supplies. Based on our understanding of the Region H plan, these additional supplies would come from Lake Livingston, which is located in the Trinity River Basin. As this water is slated to be used in the San Jacinto River Basin, this would necessitate an interbasin transfer. While one of the key tenets of this study is to compare the cost of an interbasin transfer with the cost of a project that does not involve an interbasin transfer, the Project Team continued its examination of this strategy despite failing to achieve the desired comparison parameters.

In an effort to determine the cost of this water management strategy, R.W. Beck contacted representatives of the San Jacinto River Authority. Upon conversations with these representatives, it was noted that SJRA is currently undergoing a cost of service study to determine if adjustments to its current raw water system rate are necessary. The results of this study will not be available until after the first of the year. As such, developing the estimated unit cost of raw water at this time proved challenging. To provide an approximation, the Project Team requested information regarding current charges to water suppliers in Montgomery County. At present, SJRA supplies one entity in Montgomery County, The Woodlands Joint Powers Agency, with chlorinated groundwater. The current charge for this supply is $\$ 0.85$ per 1,000 gallons.

As this supply does not represent raw water service to a retail water supplier exclusive of treatment and/or distribution, this rate was not considered for use in developing the cost comparison. As an alternative, R.W. Beck relied upon the estimated raw water system charge by SJRA, $\$ 75.00$ per acre-foot, as contained in the 2001 Region H Plan.

This is in contrast to the $\$ 45.00$ per acre-foot that is currently estimated for this particular water management strategy in the 2006 Region H Plan. R.W. Beck utilized the higher charge in recognition of the fact that an interbasin transfer is involved in this water management strategy, and that the retail water providers will most likely be asked to bear some portion of the interbasin transfer conveyance system costs.
The $\$ 75.00$ per acre-foot was escalated at the general inflation rate of 3% and then applied to the discount factor previously discussed. Because it assumed in the Region H plan that the additional water could simply be contracted, R.W. Beck began the present value cost analysis in 2005. However, as previously mentioned, after further research it appears that this strategy will most likely be subject to an interbasin transfer and the conveyance system associated with that transfer, prolonging the estimated time until this water management strategy would feasibly come online.

Table 4-3
Present Value Cost Analysis of Additional Contracted Supply from San Jacinto River Authority

Total Present Value Cost	$\$ 233,493,267$
Annual Acre-Foot Yield	96,000
Years of Operation in Analysis	50
Total Acre-Foot Yield	$4,800,000$
Present Value Cost per Acre-Foot	$\$ 49$

4.2.3 Freeport Desalination Project

As discussed in the previous section, under current plans, it is not possible for SJRA to provide additional contracted water to Montgomery County without an interbasin transfer. To find a project that could deliver a similar quantity of water as the Bedias Reservoir Interbasin Transfer, and that does not involve an interbasin transfer, TWDB Staff suggested an examination of the Freeport Desalination Project. Because this project involves desalinated seawater, it is not subject to statutes governing interbasin transfers.

Currently, water from the potential Freeport Desalination Project is only slated for use in Brazoria County, located in the Brazos River Basin. Should the project be pursued and found to be successful, it was assumed that its use might be considered further inland, such as to meet the projected and potential need in Montgomery County. To consider this hypothetical scenario, R.W. Beck obtained the detailed technical memorandum on the project as contained in the 2005 Region H plan, as well as the final project report as prepared by CDM.
As previously mentioned, it is estimated that the Bedias Reservoir Interbasin Transfer will provide 63,490 acre-feet of water on an annual basis. For a desalination plant to provide this same quantity of water, it would need to be sized to produce at least 57

MGD. As part of the CDM report on the Freeport Project, the estimated capacity and commodity costs (i.e., unit cost of water produced) associated with providing desalinated seawater were prepared for a variety of scenarios including desalination plants rated at 50 and 100 MGD. To provide a comparison of the Bedias to Lake Conroe Transfer, R.W. Beck assumed the construction of a 50 MGD plant.

As part of the CDM report, detailed commodity and capacity cost data (i.e., unit cost of water) was only developed for the planned 10 MGD plant. Utilizing the data provided by CDM, R.W. Beck extrapolated this data to the assumed 50 MGD plant and developed a unit cost per 1,000 gallons for the following categories:

- Debt Service
- Chemicals
- Membrane Replacement
- Power
- Labor
- Maintenance
- Sludge Disposal
- Miscellaneous

Once extrapolated, this data, which was originally provided by CDM in 2004 dollars, was escalated to 2005 dollars. To perform this escalation, R.W. Beck utilized the following methods:

- Chemical costs were escalated utilizing the industrial chemicals category of the producer price index
- Membrane Replacement was escalated utilizing the change in Account 320 - Large Treatment Plant Equipment as illustrated in the Handy-Whitman Index of Public Utility Construction Costs for water utilities
- Power costs were escalated utilizing the industrial electrical power category of the producer price index
- Labor was escalated using the service providing industries - trade, transportation, and utilities category of the employment cost index
- Sludge Disposal and other miscellaneous costs were escalated assuming a general 3\% inflation factor
- Debt Service was estimated at 6% for 30 years on the construction cost after it was applied ENR Construction Cost Index to escalate it to mid-year 2010

The developed unit cost of water was then applied to the same quantity of annual acrefeet that a 50 MGD plant is estimated to produce. It should be noted that while R.W. Beck considered the cost of a 50 MGD Plant, only 40 MGD would be available to meet the needs in Montgomery County, as 10 MGD is already committed to suppliers in Brazoria County. Additionally, this cost comparison only encompasses the cost of
water as produced at a plant sized to produce 50 MGD. This analysis does not specifically identify the incremental cost associated with increasing the plant size from the currently planned 10 MGD plant to a 50 MGD plant, nor does this analysis consider the associated cost of the conveyance system needed to move the water to Montgomery County.

Once the costs for the Freeport Desalination Project were escalated, the Project Team further assumed that it would take 5 years to construct the plant and conveyance facilities. As such, it was necessary to estimate the potential project cost in 2010. To project the cost of constructing the water treatment plant and conveyance system, R.W. Beck applied the methodologies and indices previously discussed.

Upon developing the assumed future cost of the project, R.W. Beck performed a present value cost analysis. This analysis assumed a 50 year time span beginning in 2005 , with the project coming on-line in 2010. In performing this analysis, the same indices used to escalate the cost from 2004 to 2005 were used as an annual inflation factor over the life of the project. As previously mentioned, the discount factor utilized in this analysis was equivalent to the 30 -year nominal treasury interest rate in August 2006 of 5.0\%.

Table 4-4 illustrates the results of the present value cost analysis
Table 4-4
Present Value Cost Analysis of the Freeport Desalination Project

Total Present Value Cost	$\$ 1,160,327,775$
Annual Acre-Foot Yield	56,007
Years of Operation in Analysis	45
Total Acre-Foot Yield	$2,520,324$
Present Value Cost per Acre-Foot	$\$ 460$

Again, it should be noted that R.W. Beck only compared the treatment cost of desalinated water as it is produced. This cost comparison does not take into account the cost associated with conveying this water to Montgomery County. As the present value cost per acre-foot for the Freeport Desalination Project is already over 2.5 times that of the Bedias to Lake Conroe Transfer, the additional conveyance facility cost would only increase this variance.

Appendix B, Schedule 1 illustrates the detailed cost comparison analysis and present value cost calculations for each water supply alternative discussed in section 4.2.

4.3 Socioeconomic Impact Analysis

The construction of the Bedias Reservoir and its conveyance system will create costs and benefits for both the areas in the Basin of Origin (Madison, Grimes and Walker Counties) and the Receiving Basin (Montgomery County). Table 4-5 below shows the
net present worth analysis of these costs and benefits for the period from 2005 through 2045.

Table 4-5
Estimated Socioeconomic Impact of the Bedias Reservoir Interbasin Transfer

Impacts to the Basin of Origin	
Economic Costs	
Loss of Commerce (Farm Production)	\$ 277,933,728
Loss of Agricultural Subsidies	1,585,717
Loss of Commerce (Forestry)	429,377,711
Subtotal	\$ 708,897,156
Economic Benefits	
Construction of Lake (Local Payroll)	\$ 401,473
Commerce from Lake Visitors	296,806,376
Commerce from New Residents	1,164,118,532
Subtotal	\$ 1,461,326,381
Total Net Economic Impact to the Basin of Origin	\$ 752,429,225
Impacts to the Receiving Basin	
Economic Benefits	
Construction of Lake (Local Payroll)	\$ 3,602,603
Increased Commerce from New Residents	67,478,558,415
Total Net Economic Impact to the Receiving Basin	\$ 67,482,161,018
Total Net Economic Impact of Bedias Reservoir Interbasin Transfer	\$ 68,234,590,243

4.3.1 Basin of Origin-Impacts Due to Economic Losses

Loss of Commerce from Farm Production

The construction of the Reservoir (Lake) itself, and the residential and commercial development that is anticipated to occur around the Lake, will occupy acreage that is currently available for agricultural and forestry use. There are approximately 27,400 acres within the Lake's take-line, of which there are 7,300 acres of Bottomland Hardwood Forests, 7,000 acres of Post Oak-Elm-Hackberry Forests, and approximately 7,000 acres of grasslands. By assuming that the grasslands would eventually become Farmland, a ratio of Farmland (33\%) and Forests (67%) can be calculated. Using these ratios, the 6,100 acres of Non Identified Land (from the original 27,400 acres of Land Impacted) can be allocated towards either Farmland (2,005 acres) or Forests (4,095 acres). Thus a total of 9,005 acres of land will be lost from agricultural production whereas 19,387 acres of forest will be unavailable for logging and other Forestry-related commerce. It is assumed that one-fourth of this acreage will be removed from agricultural use upon start of Lake property acquisition in 2010, one-half in 2011, three-fourths in 2012 and all the acreage within the Lake's take-line area will be removed from agricultural use from 2013 through the remainder of the analysis period.

The area available for development around the Lake is assumed to include all acreage within one-half ($1 / 2$) mile of the Lake's take-line. This development area includes approximately 58,991 acres. It is recognized that this acreage will be removed from agricultural and forestry use and developed over a period of several years. The impact of this development will be minimal initially, but will increase as land is removed from agricultural/forestry use and utilized for development. It is assumed that an annual loss of 2% of agricultural land to development will occur starting in 2015 upon completion of the construction of the Lake.

A study was published in 1990 by the Texas Parks and Wildlife Department entitled "An Assessment of Direct Impacts to Wildlife Habitat from Future Water Development Projects." ${ }^{3}$ which lists projected impacts to wildlife from the proposed development of 44 Texas reservoirs. This report provides preliminary data on the land acquisition necessary to achieve full wildlife habitat compensation for unavoidable losses to wildlife resources. Over 851,000 acres of wildlife habitat would be directly impacted by the 44 reservoirs. The proposed Bedias Reservoir was included in this study, and the acreage suggested for mitigation by the study is shown in Table 4-6 below.

[^14]Table 4-6
Bedias Reservoir Estimated Mitigation

Cover Type	Acres Lost	Compensation Requirements		
		Maximum	Moderate	Minimum
Mixed Bottomland Hardwood Forest	7,328	87,238	43,968	21,984
Grasses, Parks	7,036	65,667	32,833	16,417
Post Oak - Elm - Hackberry Forest	6,851	70,741	35,236	16,718
Other	3,460			
Total	24,675	223,646	112,037	55,119

The acreage required for mitigation varies according to the management option selected (Minimum, Moderate, or Maximum). Since the study emphasizes that it does not represent the product of detailed analyses of potentially affected areas and is not intended to supplant environmental studies on individual projects, the Moderate management level was selected to project the mitigation acreage required. It is assumed that the land acquisition for the mitigation will mirror the timing of the construction of the Lake itself, with 25% of the mitigated land being purchased in a series of 4 years, beginning in 2010.

When analyzing the economic impacts of the land involved in the reservoir itself, the development within a half-mile of the Lake's perimeter, and the acreage required for wildlife habitat mitigation, the location within the impacted counties is calculated from the footprint of the Lake itself. For this analysis, the Lake is considered to be 51% in Madison County, 30% in Grimes County, and 19% in Walker County ${ }^{4}$. Details of these three affected counties' agricultural and forestry related commerce have been used to assess the overall economic impact of this land required for the Bedias Reservoir.

Farms within Madison County sold agricultural products with an estimated average market value of $\$ 271$ per acre in 2005, while Walker County's agricultural products averaged $\$ 134$ per acre and Grimes County's agricultural products averaged $\$ 84 .{ }^{5}$ The market value per acre for agricultural products sold was applied to the acreage (approximately 9,005 acres) of farmland lost due to the Lake's construction, resulting in an annual impact loss of $\$ 1,698,394$ in 2005 dollars, and to the farmland acreage within the development area (approximately 19,387 acres), resulting in an annual impact of $\$ 3,656,542$ in 2005 dollars. The annual impact for the land required for

[^15]mitigation is $\$ 6,192,698$. These costs and their allocation to the three affected counties are shown on Appendix B, Schedule 2, Page 17. ${ }^{6}$

The market values for the Counties' farmland commerce per acre represent the gross revenues generated by farms. Since this represents the gross revenue generated and not the net income of the farms, gross revenue incorporates more than the lost income to the farm owner. For example, gross revenue would be available for payments that include, but are not limited to, farm supplies and supplements purchased within the County, wages paid to farm laborers residing within the County, and property taxes.

In order to recognize the multiplicative effect of the loss of agricultural commerce, IMPLAN software has been used to calculate multiplier effects on the three Counties' economies. Including the multiplier effects, total economic losses total $\$ 277,933,728$ annually in 2005 dollars with the removal of 61,224 acres from agricultural use.

Loss of Income from Farm and Ranch Subsidies

In addition to the loss of commerce due to loss of product sales from the acreage removed from agricultural use, there is also a loss of income currently received as government subsidies for this same acreage. USDA subsidies to Grimes, Madison and Walker County farms from 1995 to 2004 ranged from a low of $\$ 99,969$ in 1998 to a high of $\$ 2,302,479$ in 1999. The average annual USDA subsidy over this period was $\$ 294,069$ for Madison County, $\$ 467,852$ for Grimes County, and $\$ 184,346$ for Walker County (all in 2005 dollars) ${ }^{7}$. The USDA subsidy per acre can be determined for each County by dividing these average subsidies by the total farm acreage per County. ${ }^{8}$ Madison County received $\$ 1.20$ per acre in government subsidies while Grimes County received $\$ 1.13$ per acre and Walker County received $\$ 0.67$ per acre in subsidies. The subsidy revenues lost due to the removal of approximately 9,005 acres of agricultural land within the Lake's take-line area, removal of approximately 19,387 acres of agricultural land within the development area, and revenues lost from the removal of 32,833 acres for wildlife mitigation are estimated to be $\$ 9,708, \$ 20,900$, and $\$ 35,397$, respectively as shown on Appendix B, Schedule 2, Page 18. As with the "Loss of Commerce from Farm and Ranch Production", it is assumed that one-fourth of the 9,005 acres within the Lake's take-line combined with the 32,833 acres required for mitigation will be removed from agricultural use upon start of Lake property acquisition in 2010, one-half in 2011, three-fourths in 2012 and all the acreage within the Lake's take-line area will be removed from agricultural use by 2013. Also, for the 19,387 acres within the development area, it is assumed an annual loss of 1% of agricultural land to development will occur starting in 2015 with the completion of the construction of the Lake.

[^16]
Loss of Income from Forestry Production

In addition to the loss of farmland commerce, income currently received from forestry production will also be precluded from use due to the Bedias Reservoir construction. Of the 27,400 impacted acres, 7,300 acres are classified as Bottomland Hardwoods while 7,000 acres are Post Oak-Elm-Hackberry Forests. Of the 6,100 acres that were not identified specifically, 4,095 acres have been assigned to forests through a proportional allocation, for a total of 18,395 acres of forests being removed within the Lake's take line. Using the same allocation procedures as utilized in the farmland analysis, it was estimated that 39,604 acres will be removed from production by the lakeside development and 79,204 acres of forests will be removed as required for mitigation.

The market values for the forestry impact have been determined by utilizing the 2005 statistics for Walker County only. Currently, 50% of Walker County's accessible forests are utilized for forestry production. Grimes County currently generates less than $10 \%(\$ 1,487,000)$ of the revenue that Walker County generates $(\$ 26,011,000)$ from Forestry related production, while Madison County generates less than 2\% $(\$ 288,000)$ of Walker County's revenue from forestry products. ${ }^{9}$ Table 4-7 below demonstrates these variances between counties, but it should be noted that the "Accessible Forest" measurement is not the value required to determine a reasonable market value of forestry products per acre. Instead, the acreage used in forestry production, not all available forests, is required. Walker County's Extension Office has captured that information, demonstrating that in 2005, Walker County generated $\$ 25$ million dollars from 164,443 acres. As information could not be obtained for all three counties individually, R.W. Beck used the information from Walker County to estimate a value per acre (\$152.03), which is then used to forecast the commerce lost in all three (3) counties due to the construction of the Bedias Reservoir.

Table 4-7
Forestry Information for Bedias Reservoir Interbasin Transfer Basin of Origin Counties

	Madison		Grimes
Value of Harvest	$\$ 288,000$	$\$ 1,487,000$	Walker
Accessible Forest (acres)	82,080	$\$ 26,011,000$	

The assumptions utilized in timing the loss of commerce from forestry production are the same as that used in calculating the farming commerce and agricultural subsidy losses, with the exception of Madison County. For this County, R.W. Beck has assumed a 10 year lag to acknowledge Madison County's relatively slow development of forestry production. ${ }^{10}$ As utilized in determining the economic impact from lost commerce from farm production, the acreage within the Lake and set aside for

[^17]mitigation efforts will be phased in over a four year period. Likewise, the acreage lost from forestry production due to lake development is escalated by 2% annually.

4.3.2 Basin of Origin-Benefits to the Basin

Short-Term Benefits

Direct Construction Benefit (Payroll)

The construction cost of the Lake is estimated at $\$ 142,690,000$, and the construction cost of the conveyance system is estimated to be $\$ 72,429,804 .{ }^{11}$ The payroll for local construction workers is estimated to be approximately 15\% (\$32,267,971 in 2002 dollars) of the construction costs as shown on Appendix B, Schedule 2, Page 20. ${ }^{12}$ To calculate the total short term benefits resulting from the Lake's construction, the following approach has been utilized.

In considering the local construction efforts related to the Lake and conveyance system, the economic influence of Harris County should be taken into account so as not to overstate the economic benefit to the Basin of Origin and Receiving Basin. As such, the $\$ 75$ million local payroll and construction materials are assumed to be distributed between five counties (Madison, Grimes, Walker, Montgomery and Harris Counties), in the same proportion of their populations. The local payroll and construction materials associated with Harris County is excluded from the analysis as it lies outside the Basin of Origin and the Receiving Basin, while the benefits associated with Montgomery County are accounted for as economic benefits to the Receiving Basin.

The information obtained from the IMPLAN software demonstrates that the three counties, although similar, have slightly different economic characteristics. Disposable income in Madison County, Grimes County, and Walker County is estimated to be $88.4 \%, 90.0 \%$ and 86.0%, respectively. ${ }^{13}$ Residents in Madison County buy 45.0% of products from local sources and spend 55.0% on goods imported from outside Madison County. Grimes and Walker County residents spend 42.2% and 51.5% of disposable income locally, respectively. The multiplier effects for spending in Madison, Grimes, and Walker Counties is 1.16, 1.16, and 1.21, respectively. These differences result in a total economic benefit for all three counties in the Basin of Origin of $\$ 401,473 .{ }^{14}$ The estimated physical construction of the Lake is assumed during the years 2010 through 2014. For purposes of this analysis, it is also assumed that one-fifth of the construction dollars will be spent in each of these years.

[^18]
Long-Term Benefits

The Fort Worth District of the US Army Corps of Engineers (USACE) publishes selected data related to visitors and employment at the USACE-operated lakes within Texas. ${ }^{15}$ Data from selected USACE lakes was used as the basis for projecting some of the long-term benefits of the Lake construction. The two lakes chosen for comparison were similar in size, and/or similar in location (especially concerning their relative location to Galveston). For purposes of these benefit projections, the data from Addicks Dam and Somerville Lake were used.

Commerce from Lake Visitors

Based on the data from the selected USACE lakes noted above, an average of approximately $1,565,950$ visitors can be expected annually. ${ }^{16}$ The average spending for a visitor at these selected lakes is $\$ 14.59$ per visit, less 6.25% sales tax (State's sales tax rate), resulting in actual spending of $\$ 13.73$ per visitor. ${ }^{17}$ Some of this visitor spending at the Lake will not be from new economic sources, but will come from existing Basin residents. The estimated portion of annual visitor commerce from Basin of Origin residents (\$748,421 in 1999 dollars), based on visitor survey data of a state park on one of the USACE lakes used for comparison (Somerville State Park) from Texas A\&M Recreation, Park \& Tourism Sciences, was removed from total annual visitor commerce. ${ }^{18}$ Based upon average spending, average number of visitors at these selected lakes, and the removal of existing local resident spending, the total annual commerce from non-local visitors at Bedias Reservoir is estimated as $\$ 20,752,073$ in 1999 dollars as shown on Appendix B, Schedule 2, Page 21. ${ }^{19}$ This visitor commerce will create additional activity among supplying industries. The multiplier for these activities has been calculated utilizing IMPLAN as 1.16 for Madison and Grimes Counties and 1.21 for Walker County and applied to the estimated non-local visitor annual commerce. It is also assumed that the number of visitors to the Lake will initially be 5% of the estimated annual visitors starting in 2025 and increasing at 5% annually over the next twenty years.

Employment for Lake-Related Activities

Two forms of employment will develop from lake-related activities, direct employment and indirect employment. Direct employment consists of employment directly related to supporting lake-related activities, which may include lake operations personnel and employees at such establishments as marinas, bait and tackle shops, gas stations, cabins and motels, etc. Indirect employment is a result of a

[^19]"spillover" or "leakage" of local spending on lake-related activities. As the economic support for this employment will come from lake visitors, the economic benefits associated with this employment are directly embedded within the economic benefit from lake visitors.

Commerce from New Residents

The potential development area within one-half (1/2) mile of the Lake's take-line has been defined as approximately 19,387 acres. Development in close proximity to the Lake is anticipated to be on one acre to one-half acre parcels. Development at a greater distance from the Lake is anticipated to be on larger parcels. For the purposes of estimating the number of new residents in the development area, it is assumed that the average development parcel will be 2.0 acres in size, and that there will be an average of 2.5 people per parcel at full development. Based on these assumptions, it is estimated that the population of the area could increase by approximately 76,688 . However, a large part of the development will attract "weekend" residents and not "full-time" residents. Therefore, a population equivalent was calculated based upon 25% of the increased population being full-time residents with the remaining population projection reduced by a factor of $2 / 7$ (2 days per week at the residence). The calculated population equivalent is approximately 35,600 , and will be used as the basis for estimating increased spending from new residents.

The per capita income for Madison, Grimes, and Walker County residents for 2003, and as shown on the table below, was $\$ 21,322, \$ 18,712$ and $\$ 17,839$, respectively. ${ }^{20}$ Using the portion of disposable income spent locally and estimated multiplier effects as calculated using IMPLAN, commerce from new residents would result in a total economic benefit of $\$ 1,164,118,532$ (in 2005 dollars) assuming a population equivalent of 35,600 . It is recognized that this annual increase in commerce will not be realized immediately, but will occur incrementally over an extended period; therefore, an assumption of an annual incremental increase of 2% is used, beginning in 2025 with the filling of the Lake. However, there is a possibility that there could be an overlap of the benefits identified from Commerce from Lake Visitors with the benefits from Commerce from New Residents. Therefore, in order to prevent a potential overstatement in benefits to the Basin of Origin, Commerce from New Residents was conservatively estimated by reducing the net present value benefits of Commerce from New Residents by the net present value benefits of Commerce from Lake Visitors.

[^20]Table 4-8
Per Capita Income Assumptions and Economic Factors for Bedias Reservoir Interbasin Transfer Basin of Origin Counties

	Madison		Grimes
Per Capita Income	$\$ 21,322$	$\$ 18,712$	Walker
\% disposable	88.4%	89.9%	$\$ 17,839$
\% locally spent	45.0%	42.2%	85.9%
Subtotal	$\$ 11,403$	$\$ 9,683$	51.5%
Multiplier	1.16	1.16	$\$ 9,520$
Per Capita Economic Benefit	$\$ 15,167$	$\$ 11,716$	1.21

In addition, it should be noted that, as a conservative measure, the three Counties' disposable income was assumed for all new residents. It is likely that many of the weekend residents will continue to work in localities where disposable incomes are higher than these Counties', which would allow for higher levels of spending in the Basin of Origin, consequently increasing the economic benefit.

Construction-related Benefits from New Housing

There are related benefits to the Basin of Origin due to the construction activities associated with new housing that will be built as a result of the Lake's construction. However, due to the uncertainty of the economic activity, and in order to conservatively estimate the total benefits to the Basin of Origin, there was no attempt to quantify these housing construction related benefits.

4.3.3 Receiving Basin - Benefits to the Basin

Increased Commerce from New Residents

It is assumed that the increased water supply to Montgomery County will support an incremental population increase beginning in 2025. To project the population that the additional water would support, TWDB Regional Water Plan demand projections were employed. The incremental water, provided annually to Montgomery County, was divided by the appropriate TWDB demand projections, to arrive at the estimated total project increase in population of 508,209 . Additionally, to conservatively estimate the increase in population supported by the additional water supply, 20% of the water slated to be delivered was assumed to be lost and unaccounted for.

The economic impact on the local economy has been estimated by multiplying the per capita income of $\$ 32,068$ (in 2003 dollars) for Montgomery County residents by the Montgomery County disposable income factor of 83.5% to get the disposable income
per capita. ${ }^{21}$ The population in Montgomery County buys 56.8% of its products from local sources and spends 43.2% on goods imported from outside Montgomery County, resulting in total disposable income per capita spent locally of $\$ 15,208$. The multiplier effect for household spending in Montgomery County is 1.36 , resulting in an economic benefit per capita of $\$ 20,733$. Based on these assumptions, the total present value economic benefit from increased commerce from new residents in the Receiving Basin is estimated at $\$ 67,478,558,415$.

Appendix B, Schedule 2 illustrates the detailed socioeconomic analysis and present value calculations as discussed in section 4.3.

[^21]
4.4 Findings and Conclusions

Based on the above analysis, R.W. Beck offers the following findings and conclusions:

1. Out of the two water supply alternatives chosen for analysis, the Bedias Reservoir Interbasin Transfer costs less on a per unit basis than the Freeport Desalination Project, but significantly more than contracted water supplied by SJRA. These differences are driven by the significant cost of desalination and the construction cost associated with the Bedias Reservoir. It should be noted that R.W. Beck assumed that SJRA would only receive 70% of the total yield of the Bedias Reservoir. While regional planning documents indicated SJRA would receive either the full yield or 85% of the full yield of the reservoir, conversations with representatives of TRA indicated that this percentage could be as low as 70%. In order to produce a conservative estimate of the per unit cost of the project, the Project Team assumed that 70% of the yield will be received by SJRA. However, should SJRA receive more water from the Bedias Reservoir, the unit cost of water will decrease, possibly making this strategy more competitive with contracted water from SJRA.

However, no matter how competitive these two water strategies may be, based on the Project Team's understanding of the current Region L plan, an interbasin transfer will be necessary to supply this additional contracted water or to free up already contracted supplies. R.W. Beck's cost comparison assumes $\$ 75$ per acre/foot for these additional contracted supplies. However, the Project Team was unable to determine how this planning number was developed. If this assumed rate does not take into account the additional costs associated with the interbasin transfer of water, then the unit cost of the additional contracted supplies from SJRA may be higher, making it more competitive with the Bedias Reservoir Interbasin Transfer. In sum, this situation, at minimum, demonstrates the importance of interbasin transfers and the extent of their reliance in the regional planning process.
2. While this water management strategy is no longer being pursued as a recommended strategy by the regional planning group, should it be necessary to meet future needs, the Bedias Reservoir Interbasin Transfer carries with it a significant economic benefit. Based upon the Project Team's analysis, it is estimated that the net economic benefit to the Basin of Origin would be approximately $\$ 752$ million while the net economic benefit to the Receiving Basin would be approximately $\$ 67$ billion. It is the opinion of the Project Team that both basins would see significant economic benefit from the implementation of this strategy. As conservative estimates were used during the analysis, and several short-term benefits were not quantified due to uncertainty, it is possible that the total economic benefit of the project would be higher.
While economic benefits will accrue to the Basin of Origin and the Receiving Basin, there are economic costs to the Basin of Origin. The Project Team
estimates that just under $\$ 709$ million in economic losses will accrue to the Basin of Origin. While this loss is more than offset by the projected economic benefits, these losses must be noted by policymakers. Additionally, the social losses due to the environmental impact of the reservoir, which could not be quantified, must also be considered. While the economic benefits of this project would support its implementation, other priorities and competing objectives may need to be considered.
3. It is the conclusion of the Project Team that the junior priority provision did not play a role in the regional planning group's decision not to pursue the Bedias Reservoir Interbasin Transfer. As this would be a new reservoir and a new water right appropriation, the only manner in which the junior priority provision would affect this particular project is in the sizing of the reservoir. When the reservoir is built, it would need to be large enough to accommodate all down stream water rights during the drought of record while still maintaining the yield contracted to SJRA.
It is the Project Team's belief that the key factors which lead the regional planning group to consider this solely as a long-term strategy include:

- The cost associated with building the reservoir and conveyance system;
- The environmental impact of building this new reservoir; and
- The failure of the projected water needs to be realized.

Section 5

Toledo Bend Reservoir Interbasin Transfer

5.1 Introduction and Background

The Toledo Bend Reservoir is the largest man-made body of water in the South and the fifth largest in the United States in terms of surface acreage. ${ }^{1}$ It is also the nation's only public water conservation and hydroelectric power project undertaken without federal participation in its permanent financing. The Reservoir has a controlled storage capacity of 4.477 million acre-feet or 1.448 trillion gallons of water.

The Toledo Bend Reservoir was originally constructed by the Sabine River Authority (SRA) of Texas and the Sabine River authority of Louisiana for the purposes of hydroelectric power generation, and recreation. There is approximately 1.5 million acre-feet of water permitted in the Toledo Bend Reservoir, of which 1 million acrefeet is allocated as Texas' share. The Sabine River Authority of Texas holds approximately 750,000 acre-feet of water in the Toledo Bend Reservoir.

The transfer of water from the Toledo Bend reservoir to the Region C water planning group was not considered as a potential water management strategy in the 1997 Water State Plan or the 2001 Regional Water Plan. The 2006 Region C plan did consider this as a feasible long-term supply option, indicating that the maximum supply that could be obtained from the Toledo Bend transfer for use in Region C is 600,000 acrefeet per year.
Several parties are currently pursuing this potential interbasin transfer including the Sabine River Authority of Texas (SRA), Tarrant Regional Water District (TRWD), Dallas Water Utilities (DWU), and North Texas Municipal Water District (NTMWD). Several engineering and financial feasibility studies have been conducted regarding this potential interbasin transfer; however, to date, no specific action has been taken.

5.2 Cost Comparisons

As requested by TWDB Staff, R.W. Beck's Project Team performed a cost comparison between the Toledo Bend Interbasin Transfer and an alternative water management strategy, desalinated seawater from the Gulf of Mexico. Based upon the analysis performed, Table 5-1 summarizes the present cost per acre foot of each strategy. Figure 5-1 graphically illustrates the annual cost of each strategy as well as the present cost per acre foot.

[^22]Table 5-1
Present Cost per Acre-Foot Comparison of Toledo Bend Interbasin Transfer and Selected Alternative Strategies

Toledo Bend Interbasin Transfer	
Cost per Acre Foot	$\$ 249$
Seawater Desalination	
Cost per Acre Foot	$\$ 705$

Figure 5-1
Cost Comparison of Toledo Bend Interbasin Transfer and Selected Alternative Strategies

5.2.1 Toledo Bend Reservoir Interbasin Transfer

Currently, TRWD, DWU, and NTMWD are all slated to each receive 200,000 acrefeet of water from the Toledo Bend Interbasin Transfer according to Cost Estimate U17 in the 2006 TWDB Region C report. While the cost for the project will be shared by these three entities, the total project cost and yield have been considered for comparative purposes.

In performing this comparison the Project Team reviewed and relied upon information contained in the Region C plan. This data, provided in 2002 dollars, was first escalated to 2005 dollars. All capital costs were escalated utilizing the Construction

Cost Index History as published by Engineering News Record (ENR). Costs associated with right-of-way easements for the transmission pipelines were calculated at 30% of the escalated transmission pipeline costs excluding permitting and mitigation. Engineering and Contingency costs were calculated at 30% of the escalated pipeline costs and/or 35% of all storage tank costs, excluding permitting and mitigation, as described in Exhibit B of the TWDB planning guidelines. All other Non-capital costs were escalated utilizing the same percentage they reflected of capital costs in 2002.

All annual costs (i.e., operation and maintenance costs) were calculated utilizing U-3 Assumptions for Annual Costs from the 2006 Region C Plan.
Once the costs for the Toledo Bend Project were escalated, the Project Team further assumed that it would take 3 years to construct the necessary conveyance facilities. As such, it was necessary to estimate the potential project cost in 2008. To project the cost of constructing the conveyance system, R.W. Beck utilized the historical average of the ENR index on all costs excluding engineering and contingencies. Engineering and contingencies were calculated by applying the identical percentages that were used to escalate the expenditures from 2002 to 2005 as discussed above.

Upon developing the assumed future cost of the project, R.W. Beck performed a present value cost analysis. This analysis assumed a 50 year time span beginning in 2005, with the project coming on-line in 2008. In performing this analysis, the same indices used to escalate the cost from 2005 to 2008 were used as an annual inflation factor over the life of the project. The discount factor utilized in this analysis was equivalent to the 30-year nominal treasury interest rate in August 2006.

Table 5-2 illustrates the results of the present value cost analysis of the project:
Table 5-2
Present Value Cost Analysis of Toledo Bend Interbasin Transfer

Total Present Value Cost	$\$ 7,008,550,245$
Annual Acre-Foot Yield	600,000
Years of Operation in Analysis	47
Total Acre-Foot Yield	$28,200,000$
Present Value Cost per Acre-Foot	$\$ 249$

5.2.2 Seawater Desalination

As requested by TWDB Staff, R.W. Beck compared the Toledo Bend Interbasin Transfer to Desalinated Water from the Gulf of Mexico. While this was not adopted in the 2001 or 2006 regional plans, it does remain a long-term option to meet projected needs in Region C and represents the only potential strategy that is not an interbasin transfer that could yield the same or similar amount of water as the Toledo Bend transfer to a single wholesale supplier.

It should be noted that the Toledo Bend cost estimate analyzed in this study is scheduled to deliver 200,000 acre-feet of water to three (3) wholesale suppliers, for a total yield of 600,000 acre-feet delivered to Region C annually. On the other hand, the seawater desalination strategy is only slated to deliver 200,000 acre-feet annually. The resulting difference of 400,000 acre-feet delivered annually is the foremost contributing factor which results in a similar annual cost but differing unit cost between the two projects. In other words, the treatment and conveyance cost associated with desalination is approximately three times that of the Toledo Bend Transfer, but this increased treatment cost creates a supply which approximates a third of the total yield of the Toledo Bend Interbasin Transfer.

In performing this comparison, the Project Team first escalated the costs contained in the Region C plan from 2002 to 2005 dollars. All capital costs were escalated utilizing the Construction Cost Index History as published by ENR. Engineering and Contingency costs were calculated at 30% of the escalated pipeline costs and or 35% of all pump station costs, excluding right of way easements. Engineering and Contingency costs associated with the water treatment facilities were calculated by applying 35% to the capital cost of the treatment plant as described by TWDB Exhibit B. All other non-capital costs were calculated by assuming the same percentage of total capital cost after escalation.
Costs described in U-2 Assumptions for Capital Cost in the Region C Plan associated with right of way easements for the transmission pipelines were escalated applying a 3% inflation factor. After escalation, the said cost per acre described in the Region C Plan was applied to the calculated number of rural and urban acres used in the Gulf of Mexico Desalination cost estimate.

All annual costs (i.e., operation and maintenance costs) were calculated utilizing U-3 Assumptions for Annual Costs from the 2006 Region C Plan. Electricity costs were escalated using the Industrial Electrical Power Category of the Producer Price Index. The costs associated with water treatment were escalated based upon the increase in Account 320 - Large Treatment Plant Equipment as illustrated in the Handy-Whitman Index of Public Utility Construction Costs for water utilities. Per conversations with representatives from Freese and Nichols Ft. Worth Office, reject water disposal cost was held constant at $\$ 0.05$ per 1,000 gallons of treated water.

Once the costs for the desalinated seawater project were escalated, the Project Team further assumed that it would take 5 years to construct the necessary treatment and conveyance facilities. As such, it was necessary to estimate the potential project cost in 2010. To project the cost of developing the treatment plant and conveyance system, R.W. Beck applied the identical indices used to escalate the costs from 2002 to 2005 dollars.

Upon developing the assumed future cost of the project, R.W. Beck performed a present value cost analysis. This analysis assumed a 50 -year time span beginning in 2005, with the project coming on-line in 2010. In performing this analysis, the same indices used to escalate the cost from 2002 to 2010 were used as an annual inflation factor over the life of the project. In determining the present value cost, the discount
factor utilized was equivalent to the 30-year nominal treasury interest rate in August 2006.

Table 5-3 illustrates the results of the present value cost analysis of the project
Table 5-3
Present Value Cost Analysis of Desalinated Seawater for Region C

Total Present Value Cost	$\$ 6,341,778,112$
Annual Acre-Foot Yield	200,000
Years of Operation in Analysis	45
Total Acre-Foot Yield	$9,000,000$
Present Value Cost per Acre-Foot	$\$ 705$

Appendix C, Schedule 1 illustrates the detailed cost comparison analysis and present value cost calculations for each water supply alternative discussed in section 5.2.

5.3 Socioeconomic Impact Analysis

As previously mentioned SRA, DWU, TRWD, and NTWDM, hereafter referred to as the Toledo Bend Group, are currently pursuing the Toledo Bend Interbasin Transfer as a long-term water supply strategy. As requested by TWDB, R.W. Beck performed a socioeconomic analysis of this proposed interbasin transfer. In conducting the socioeconomic impact of this transfer, R.W. Beck's Project Team considered both the costs (negative impacts) and benefits (positive impacts) to the Basin of Origin and the Receiving Basin. In developing this analysis, it was understood that there would be both long-term and short-term benefits to the Basin of Origin, in this case, SRA. Short-term benefits will occur as a result of the construction of the Toledo Bend Pipeline, and will increase the total benefits of the proposed project. Such short-term benefits will likely include, but will not be limited to, increased commerce from local construction payroll and direct purchase of construction materials from local venders. As the Toledo Bend Project is still in the planning stages, and to conservatively estimate the impact of the proposed project, no attempt was made to quantify the short-term benefits that will accrue as a result of the project.

Table 5-4 below shows the estimated net present worth analysis of the economic costs and benefits associated with the Toledo Bend Interbasin Transfer for the period from 2005 through 2045.

Table 5-4
Estimated Socioeconomic Impact of the Toledo Bend Interbasin Transfer

Impacts to the Basin of Origin	
Economic Benefits	
Commerce from New Residents	\$ 10,439,527,592
Economic Development	110,839,376
Subtotal	\$ 10,550,366,968
Total Net Economic Impact to the Basin of Origin	\$ 10,550,366,968
Impacts to the Receiving Basin	
Economic Benefits	
Increased Commerce from New Residents	\$ 1,300,687,942,173
Total Net Economic Impact to the Receiving Basin	\$ 1,300,687,942,173
Total Net Economic Impact of Bedias Reservoir Interbasin Transfer	\$ 1,311,238,309,142

5.3.1 Economic Benefits to the Basin of Origin (SRA)

Increased Commerce from New Residents

Construction of the Toledo Bend Pipeline will allow SRA to expand water provision within its service area. This provision of water will support additional residents, which will increase economic activity through new commerce. For the purposes of estimating the number of new residents this additional water will support, it is assumed that SRA will receive 100,000 acre-feet of water from the project. ${ }^{2}$ It is further assumed that 80% of this water will be delivered to Harrison County, 10% to Rusk County, and 10% to Wood County. ${ }^{3}$ In order to conservatively estimate the amount of water to be delivered within the service area, it was further assumed that 12% of the water would be lost and unaccounted for.

It was also assumed that the economic benefit to SRA of the annual population increase would be equivalent to the portion of per capita, disposable income ${ }^{4}$ that is locally spent ${ }^{5}$ by each new resident in their respective county of origin. Disposable income is commonly defined as the income left for individuals to spend after taxes.

[^23]This income, spent locally by residents, has a multiplicative effect in the local economy. Using IMPLAN, the estimated multipliers can be calculated and applied to determine an estimate of the economic impact each additional resident will have to their respective county. Table 5-5 below illustrates the per capita income assumption for each county, as well as the percentage of that income that is disposable and then spent in the local economy, and the multiplier effect of that spending.

Table 5-5
Per Capita Income Assumptions and Economic Factors for Toledo Bend Interbasin Transfer Basin of Origin Counties

	Harrison		Rusk
Per Capita Income	$\$ 24,053$	$\$ 22,698$	Wood
\% disposable	89.7%	91.6%	94.3%
\% locally spent	52.8%	46.6%	48.5%
	$\$ 11,403$	$\$ 9,683$	$\$ 9,520$
Multiplier	1.33	1.21	1.29
Economic Benefit	$\$ 15,167$	$\$ 11,711$	$\$ 12,253$

Based on the estimated economic benefits of each new resident and the projected population increase, the total present value of the economic benefits to SRA created by commerce from new residents is represented on Appendix C, Schedule 2, Page 1 and is estimated as follows:

Table 5-6
Estimated Economic Benefit to Toledo Bend Interbasin Transfer Basin of Origin from New Residents

Harrison	$\$ 5,665,848,006$
Rusk	$2,818,769,202$
Wood	$1,954,910,384$
Total Economic Benefit	
from New Residents	$\$ 10,439,527,592$

Economic Development

As SRA is responsible for the maintenance and operation of the Toledo Bend Reservoir, it will be compensated based on its water provision to DWU, NTMWD, and TRWD. While there has been dialogue between the parties concerning the level of compensation to SRA, no firm numbers have been developed. As of 2004, the parties had contemplated that an annual maintenance fee and interbasin transfer fee will be paid to SRA by the aforementioned entities. ${ }^{6}$ In this analysis, R.W. Beck has included a projection of SRA's compensation based upon previous assumptions;

[^24]however, the parties have not agreed to these numbers and they are presented herein as estimates only.

Based on conversations with SRA officials, it is assumed that a portion of this additional revenue will be used for economic development grants within the SRA service area. It should be recognized that this will be an incremental source of revenue, based on the actual water delivered to DWU, NTMWD, and TRWD as well as the maintenance of a balanced budget by SRA.

To determine the economic benefit of the payments to SRA, the projected payments to SRA were calculated based on the unexecuted initial draft memorandum of understanding between the parties. ${ }^{7}$ It was further assumed that SRA is operating under a balanced budget, and that all additional revenue would be used for the purposes of economic development. This incremental revenue was then allocated to counties within the SRA service area based on the percentage of the respective county that falls within the Sabine Basin. ${ }^{8}$ Once allocated, the counties' respective multiplier effect was applied to the grants, resulting in a total net present value benefit of $\$ 110,839,376$ (in 2005 dollars).

5.3.2 Economic Benefits to the Receiving Basin (DWU, NTMWD, and TRWD)

The impetus for the Toledo Bend project is a projected water supply shortfall by all participating entities within the coming decades. This shortfall, projected by the Region C state water plan, is due to the rapid expansion of the Dallas-Ft. Worth area and the associated increased demand on water resources. ${ }^{9}$ While a substantial population increase is projected, it will only come to fruition if the supply of water is sufficient to support the increase. The TBG was formed to assure that sufficient water supplies exist to serve current and future customers.

Currently, it is assumed that DWU, NTMWD, and TRWD will all receive water incrementally from the Toledo Bend Reservoir as required to meet demand. Eventually, each entity will receive a total of 200,000 acre-feet of water annually, while SRA will receive 100,000 acre-feet from the transfer. ${ }^{10}$ The water deliveries will be progressive, increasing incrementally based on the need of the members of the TBG.

Similar to the benefits accrued to SRA, the other entities of the TBG, including DWU, NTMWD, and TRWD, will see economic benefits from the increased population supported by the additional water supply. In an effort to quantify and project the

[^25]economic benefits, each entity was considered separately in order for appropriate assumptions to be made. The following is a brief discussion of the methodology used in projecting the economic benefits to the region.

Economic Benefits to DWU

It is assumed that the increased water supply to DWU will support an incremental population increase beginning in 2008. To project the population that the additional water would support, TWDB Regional Water Plan demand projections were employed. The incremental water, provided annually to DWU, was divided by the appropriate TWDB demand projections, to arrive at the total projected increase in population of 666,469 . Additionally, to conservatively estimate the increase in population supported by the additional water supply, 20% of the water slated to be delivered was assumed to be lost and unaccounted for, thereby decreasing the actual number of new residents supported. The 20% lost and unaccounted for factor was applied as opposed to the 12% employed in the SRA economic analysis because the transmission of water from Toledo Bend to DWU will involve the use of bed and banks (transferring the water into another river or reservoir) which exposes the water to evaporation.

To quantify the economic benefit of the increased population, it was assumed that the demographics for Dallas County are indicative of all communities taking water from DWU. The per capita income for Dallas County, $\$ 36,617^{11}$, was adjusted for the percentage of disposable income, $76.1 \%^{12}$, that is locally spent, $70.2 \% .^{13}$ The calculated multiplier of 1.49^{14} was then applied to the adjusted per capita income, resulting in a per capita annual impact of $\$ 29,154$. Assuming a total population increase of 666,469 , the total present value economic benefit to DWU is estimated be approximately $\$ 435$ billion dollars (in 2005 dollars).

Economic Benefits to NTMWD

NTMWD, located in Collin County, stands to gain the most from the Toledo Bend project. The entity currently serves the City of McKinney, recently named the fastest growing city in the United States with a population over 50,000. ${ }^{15}$ In addition, the population of Collin County is projected to more than double in the next 15 years. ${ }^{16}$

To project the population that the additional water would support, TWDB Regional Water Plan demand projections were employed. The incremental water, provided

[^26]annually to NTMWD, was divided by the appropriate TWDB demand projections to arrive at the annual projected increase in population. This resulted in a total projected population increase of 627,744 . To conservatively estimate the increase in population supported by the additional water supply, 20% of the water slated to be delivered to NTMWD was assumed to be lost and unaccounted for.

The demographics for Collin County were used in the process of quantifying the economic benefits of the additional water. The per capita income for Collin County, $\$ 39,941^{17}$, was adjusted for the percentage of disposable income, $78.1 \%{ }^{18}$, that is locally spent, $59.5 \%{ }^{19}$. The calculated multiplier of 1.39^{20} was then applied to the adjusted per capita income, resulting in a per capita annual impact of $\$ 25,851$. Assuming a total population increase of 627,744 , the total present value economic benefit to NTMWD is estimated be approximately $\$ 401$ billion dollars (in 2005 dollars).

Economic Benefits to TRWD

To project the population that additional water from the Toledo Bend Interbasin Transfer would support for TRWD, TWDB Regional Water demand projections were used. The incremental water from Toledo Bend reservoir was divided by the appropriate TWDB demand projections to arrive at the annual projected increase in population. This results in a total projected population increase of 757,510. To conservatively estimate the increased population supported by the additional water supply, 20% of the water slated to be delivered to TRWD was assumed to be lost and unaccounted for.

The demographics for Tarrant County were used in the process of quantifying the economic benefits of the additional water to the TRWD service area. The per capita income for Tarrant County, $\$ 31,054^{21}$ was adjusted for the percentage of disposable income, $80.9 \%^{22}$, that is locally spent, $70.2 \%^{23}$. The calculated multiplier of 1.55^{24} was then applied to the adjusted per capita income, resulting in a per capita annual impact of $\$ 27,322$. Assuming a total population increase of 757,510 , the total present value economic benefit to NTMWD is estimated be approximately $\$ 464$ billion dollars (in 2005 dollars).

Appendix C, Schedule 2 illustrates the detailed socioeconomic analysis and present value calculations as discussed in section 5.3.

[^27]
5.4 Findings and Conclusions

Based on the above analysis, R.W. Beck offers the following findings and conclusions:

1. When compared to desalinated seawater, the Toledo Bend Interbasin Transfer appears to be significantly more cost effective. This variance is likely due to the increased treatment costs associated with desalination, as well as the increased distance desalinated water would have to be conveyed so as to supply Region C. While desalinated seawater was the only option requested for comparison by TWDB Staff, it is possible the other more cost effective, short-term options are still available to Region C, thus explaining why the Toledo Bend Interbasin Transfer is only considered as a long-term supply option. However, despite its cost effectiveness as compared to desalinated seawater, it should be realized that the costs associated with the Toledo Bend Interbasin Transfer are, in the opinion of the Project Team, significantly greater than other more conventional supply options.
2. Should the Toledo Bend Interbasin Transfer be implemented, significant benefits will accrue to both the Basin of Origin and the Receiving Basin. Additionally, as noted above, R.W. Beck's analysis only takes into account the long-term impacts of the transfer. With the inclusion of the short-term impacts, it is likely that the net economic benefit of the project will be even greater.
It should be noted that the Project Team's analysis does not include any negative economic impacts to either the Basin of Origin or the Receiving Basin. While the potential for such impacts does exist, it is the opinion of the Project Team that these impacts will be minimal, and that they are more than offset by the economic benefits of the project. Additionally, there does exist the potential for negative social impacts, such as the disturbance of wildlife habitats during the construction of the Toledo Bend Pipeline and changes to current waterways from the use of bed and banks conveyance. R.W. Beck recommends that further qualitative study be undertaken to determine if negative impacts exist which are not encompassed within this analysis. However, even if negative impacts of this project should be found and quantified, the net economic benefit of this project will still be substantial.
3. It is the conclusion of the Project Team that the junior priority provision did not play a role in the regional planning group's decision to consider the Toledo Bend Interbasin Transfer solely as a long-term water management strategy. The significant costs of this project have likely been the driving force that has led to the delay in implementation of this strategy. As long as more cost effective options are available to the Region C planning group, and until some measure of financial assistance is provided, it is likely that the implementation of the Toledo Bend Interbasin Transfer will continue to be delayed.

Section 6
 Lower Guadalupe Water Supply Project

6.1 Introduction and Background

According to the 2001 and 2006 Region L water plans, Bexar County is already experiencing water shortages. To help meet demand, it has been proposed that the Lower Guadalupe Water Supply Project be developed. This project involves the construction of an intake and pump station at the pool formed by the Guadalupe River Saltwater Barrier. This water would then be transmitted through a 120 -inch pipeline to off-channel reservoirs and a well field. From the off-channel reservoir, an additional pipeline will be constructed to transmit the water to a terminal storage facility in Southern Bexar County, a water treatment plant, and supplemental facilities for integration into the public water supply. Sources of water for this strategy include underutilized water rights from the Guadalupe-Blanco River Authority (GBRA), a new surface water appropriation, and groundwater from the Gulf Coast Aquifer.

Prior to S.B. 1 and the establishment of Regional Water Planning Groups (RWPG), the South Central Texas RWPG was split between two water planning regions, the Southern Edwards Zone and the Mid-Coast Region. Because of this division, this specific interbasin transfer was not considered an option in the 1997 water plan. The plan does indicate that San Antonio Water System (SAWS) would likely experience shortages in the future, and recommended the development and conveyance of water supplies from the Guadalupe River to Bexar County by 2010. However, where these supplies would be developed and how they would be conveyed was left unanswered.
In the 2001 Region L water plan, the Lower Guadalupe Water Supply Project (LGWSP) was originally adopted as a water management strategy (then referred to as Lower Guadalupe River Diversions). At the time of adoption in the 2001 plan, the LGWSP was slated for development in 2010.
In 2006, Region L failed to adopt its regional water plan before the statutory deadline and has not been adopted by the TWDB; however, the plan given to the State is considered herein as if it was an adopted plan. In 2006, the Lower Guadalupe Water Supply Project was considered as a potential strategy, but was ultimately not adopted by the RWPG to meet the needs of Bexar County. A modified version of the LGWSP was considered and adopted to increase GBRA's ability to supply water to its statutory district which includes Calhoun, Refugio, and Victoria counties. As the LGWSP will now be used to meet the needs with GBRA's statutory district, it appears that it is no longer considered a viable option for meeting the future water needs of Bexar County.

6.2 Cost Comparisons

As requested by TWDB Staff, R.W. Beck's Project Team performed a cost comparison between the Lower Guadalupe Water Supply Project and two alternative water management strategies: the Saws Gonzales - Carrizo Project and desalinated seawater. Based upon the analysis performed, Table 6-1 summarizes the present cost per acre foot of each strategy. Figure 6-1 graphically illustrates the annual cost of each strategy as well as the present cost per acre foot.

Table 6-1
Present Cost per Acre-Foot Comparison of Lower Guadalupe Water Supply Project and Selected Alternative Strategies

Lower Guadalupe Water Supply Project (Interbasin)
Cost per Acre Foot \$641
Lower Guadalupe Water Supply Project (In-basin)
Cost per Acre Foot
\$ 423
SAWS Gonzales - Carrizo Project
Cost per Acre Foot \$ 405
Seawater Desalination
Cost per Acre Foot $\quad \$ 719$

Figure 6-1
Cost Comparison of Lower Guadalupe Water Supply Project and Selected Alternative Strategies

\square Lower Guadalupe (Interbasin Transfer)
\square Lower Guadalupe (In-basin Use)
\square Regional Carrizo
\square Seawater Desalination

6.2.1 Lower Guadalupe Water Supply Project

As previously mentioned, the development of the Lower Guadalupe Water Supply Project would involve extensive capital development. As discussed in the Region L Technical Memorandum, facilities needed for the project would include an intake and pump station from the Basin of Origin, a 120 -inch pipeline to two 25,000 acre-foot reservoirs, a well field capable of producing 41,400 acre-feet annually, and a 91.5 mile, 54 -inch transmission pipeline. While the cost for this project would ultimately have been shared between the three project participants, San Antonio Water System (SAWS), San Antonio River Authority (SARA), and the Guadalupe-Blanco River Authority (GBRA), in order to facilitate a true comparison of the project cost with other water management strategies, R.W. Beck considered the total cost associated with this management strategy.

In addition, this project is unique in as much as water flows from the San Antonio River into the reservoir created by the Guadalupe River Saltwater Barrier. The water from this reservoir is slated to be used within the San Antonio River Basin, which would not normally be considered an interbasin transfer. However, current TWDB rules states that the San Antonio River Basin only extends to the confluence of the San

Antonio River and the Guadalupe River, which is slightly upstream from the reservoir created by the saltwater barrier. As such, this project is an interbasin transfer. While the existing GBRA water rights are not considered firm, even if the project were considered as an in-basin transfer, the application of the junior priority provision to this interbasin transfer further decreases the reliability of these water rights, which ultimately reduces the total yield of the project, and thus increases the unit cost of the project when considered as an interbasin transfer. To illustrate the impact of the junior priority provision, R.W. Beck's analysis includes a consideration of the project as an interbasin transfer as well as if the project were considered for in-basin use.
In performing this comparison, the Project Team first escalated the costs from 2002 to 2005 dollars. All capital costs were escalated utilizing the Construction Cost Index History as published by ENR. Non-capital costs were escalated utilizing the same percentage they reflected of capital costs in 2002. All annual costs (i.e., operation and maintenance costs) were escalated by a general 3% inflation factor except for electricity. This was escalated utilizing the industrial electrical power cost category of the Produced Price Index.

Once the costs for the LGWSP were escalated, the Project Team further assumed that it would take 20 years to construct the off-channel storage reservoirs as well as the necessary well-field and conveyance facilities. As such, it was necessary to estimate the potential project cost in 2025 . To project the cost of developing the reservoirs, well field, and conveyance system, R.W. Beck utilized the identical percentages that were applied to the costs in order to escalate the said costs from 2002 to 2005.

Upon developing the assumed future cost of the project, R.W. Beck performed a present value cost analysis. This analysis assumed a 50 year time span beginning in 2005, with the project coming on-line in 2025. In performing this analysis, the same indices used to escalate the cost from 2002 to 2005 were used as an annual inflation factor over the life of the project. As previously mentioned, the discount factor utilized in this analysis was equivalent to the 30 -year nominal treasury interest rate in August 2006.

Table 6-2 illustrates the results of the present value cost analysis of the project if considered an interbasin transfer. Table 6-3 illustrates the results of the present value cost analysis of the project if considered for in-basin use.

Table 6-2
Present Value Cost Analysis of LGWSP (Interbasin Transfer)

Total Present Value Cost	$\$ 973,316,866$
Annual Acre-Foot Yield	50,636
Years of Operation in Analysis	30
Total Acre-Foot Yield	$1,519,080$
Present Value Cost per Acre-Foot	$\$ 641$

Table 6-3
Present Value Cost Analysis of LGWSP (In-basin use)

Total Present Value Cost	$\$ 1,327,061,223$
Annual Acre-Foot Yield	104,471
Years of Operation in Analysis	30
Total Acre-Foot Yield	$3,134,130$
Present Value Cost per Acre-Foot	$\$ 423$

6.2.2 SAWS Gonzales - Carrizo Project

An alternative water strategy, and one that is currently being pursued by members of Region L, is developing water from the Carrizo aquifer to supply water to Bexar County through the SAWS Twin Oaks facility. This strategy involves the development of four well fields, totaling 42 wells in all, in Gonzales, Wilson, and Bexar Counties and 98 miles of raw water pipeline and 37 miles of treated water pipeline to convey this water to the necessary water treatment / distribution facilities. Under this strategy, approximately 62,600 acre-feet of water will be supplied to Bexar County. While the project is currently planned in three phases, it is considered in this analysis at final build-out.

While this project is currently being undertaken, it is not without controversy. The wholesale water provider involved in this strategy, San Antonio Water System, must operate within the rules and management plans sets forth by the local groundwater districts, Evergreen Underground Water Conservation District (EUWCD), and Gonzales County Underground Water Conservation District (GCUWCD). At present, part of the supply developed by this project allegedly exceeds the water that GCUWCD states is available. The projected water supply to be met with this project cannot be completed until these differences are resolved between SAWS and GCUWCD and the conservation district agrees to grant SAWS the necessary permits under current statutory guidelines. While this controversy does affect the potential yield of the project, R.W. Beck considered the project as contained within the Technical Memorandum as presented in the Region L plan. Based upon the final outcomes of this current dispute, the assumptions to this analysis may need to be revisited.

In performing this comparison, the Project Team first escalated the costs from 2002 to 2005 dollars. All capital costs were escalated utilizing the Construction Cost Index History as published by ENR. Non-capital costs were escalated utilizing the same percentage they reflected of capital costs in 2002. The costs category of contingency and inflation associated with the water supply was calculated as 18% of the updated capital costs, per the Region L cost comparison, excluding costs for integration/distribution.

All annual costs (i.e., operation and maintenance costs) were escalated by a general 3% inflation factor except for electricity. This was escalated utilizing the industrial electrical power cost category of the Produced Price Index. The leases associated with the purchase of the groundwater were escalated by using the same percentage of capital cost applied in 2002.
Once the costs for the SAWS Gonzales-Carrizo Projects were escalated, the Project Team further assumed that it would take 3 years to construct the necessary well fields and conveyance facilities. As such, it was necessary to estimate the potential project cost in 2008. To project the cost of developing the well fields and conveyance system, R.W. Beck utilized the Construction Cost Index History as published by ENR.

Upon developing the assumed future cost of the project, R.W. Beck performed a present value cost analysis. This analysis assumed a 50 year time span beginning in 2005 , with the project coming on-line in 2008. In performing this analysis, the same indices used to escalate the cost from 2002 to 2005 were used as an annual inflation factor over the life of the project. As previously mentioned, the discount factor utilized in this analysis was equivalent to the 30 -year nominal treasury interest rate in August 2006.
Table 6-4 below illustrates the results of the present value cost analysis of the project. Detailed schedules illustrating the Project Team's analysis are included in Appendix D.

Table 6-4	
Present Value Cost Analysis of SAWS Gonzales - Carrizo Project	
Total Present Value Cost	$\$ 1,190,387,503$
Annual Acre-Foot Yield	62,588
Years of Operation in Analysis	47
Total Acre-Foot Yield	$2,941,636$
Present Value Cost per Acre-Foot	$\$ 405$

6.2.3 Seawater Desalination

Another alternative management strategy that is being considered for long-term development for Region L is a desalination facility in the vicinity of San Antonio Bay to provide water to the major metropolitan area of Bexar County. While still conceptual, this plan calls for a 25 to 100 MGD desalination facility near the City of Seadrift with diffusion of concentrated brine into deep water in the Gulf of Mexico. Capital facilities required for this project, in addition to the desalination plant, include a water intake, brine transmission and off-shore disposal system, and 126 miles of treated water transmission pipeline with associated pump stations to southern Bexar County. Presently under the Region L Plan, this strategy is not slated for development until 2060.

In order to facilitate a close comparison with both the LGWSP and the SAWS Gonzales - Carrizo Project, R.W. Beck assumed that the 50 MGD plant would be developed. As such, the treated water line facilities in this comparison are assumed to be 60 -inches in size.

In performing this comparison, the Project Team first escalated the costs from 2002 to 2005 dollars. All capital costs were escalated utilizing the Construction Cost Index History as published by ENR. Non-capital costs were escalated utilizing the same percentage they reflected of capital costs in 2002. The costs associated with water treatment were escalated based upon the increase in Account 320 - Large Treatment Plant Equipment as illustrated in the Handy-Whitman Index of Public Utility Construction Costs for water utilities. Costs associated with Engineering, Legal and Contingencies reflect 30% of the capital cost associated with the pipeline and 35% of all other capital cost, as recommended by TWDB, Exhibit B to the regional planning guidelines.
All annual costs (i.e., operation and maintenance costs) were escalated by a general 3% inflation factor except for electricity. This was escalated utilizing the industrial electrical power cost category of the Produced Price Index.

Once the costs for the Desalination Project were escalated, the Project Team further assumed that it would take 5 years to construct the necessary treatment plant and conveyance facilities. As such, it was necessary to estimate the potential project cost in 2010. To project the cost of developing the treatment plant and conveyance system, R.W. Beck utilized the identical percentages applied to escalate the costs from 2002 to 2005.

Upon developing the assumed future cost of the project, R.W. Beck performed a present value cost analysis. This analysis assumed a 50 year time span beginning in 2005, with the project coming on-line in 2010. In performing this analysis, the same indices used to escalate the cost from 2004 to 2005 were used as an annual inflation factor over the life of the project. As previously mentioned, the discount factor utilized in this analysis was equivalent to the 30 -year nominal treasury interest rate in August 2006.

Table 6-5 illustrates the results of the present value cost analysis of the project:
Table 6-5
Present Value Cost Analysis of Desalinated Seawater for Region L

Total Present Value Cost	$\$ 1,811,932,992$
Annual Acre-Foot Yield	56,007
Years of Operation in Analysis	45
Total Acre-Foot Yield	$2,520,324$
Present Value Cost per Acre-Foot	$\$ 719$

Appendix D, Schedule 1 illustrates the detailed cost comparison analysis and present value cost calculation for each water supply alternative discussed in section 6.2.

6.3 Socioeconomic Impact Analysis

As requested by TWDB, R.W. Beck performed a socioeconomic impact analysis of the Lower Guadalupe Water Supply Project. The relocation of water from the pool formed by the Guadalupe River Saltwater Barrier to Bexar County will create economic impacts to the locales in and around the respective basin. The following is a brief discussion of the assumptions and methodology used to project these impacts. A net present worth analysis of these benefits was performed for the period from 2005 through 2054 and is summarized below in Table 6-6.

Table 6-6
Estimated Socioeconomic Impact of the Lower Guadalupe Water Supply Project

Impacts to the Basin	
Economic Benefits	$\$ 315,096,330$
Construction: Local Payroll \& Materials	$90,803,675,039$
Commerce from New Residents	$\$ 91,118,771,369$
\quad Subtotal	$\$ 91,118,771,369$

The socioeconomic analysis of the Lower Guadalupe Water Supply Project performed by the Project Team is unique from the other analysis presented in this report in two ways. First, for this particular water management strategy, there is no distinct Basin of Origin or Receiving Basin. While the reservoir created below the confluence of the San Antonio River and the Guadalupe River by the Guadalupe River Saltwater Barrier is, by rule, outside of the San Antonio River Basin, geographically the economic impacts of this project will most likely accrue, in majority, to this River Basin. As such, R.W. Beck has not identified a specific Basin of Origin or Receiving Basin for economic analysis purposes. Instead, the economic impacts are assumed to accrue entirely within the San Antonio River Basin.

Second, within our analysis, the Project Team was unable to obtain sufficient and reliable information with which to quantify the negative impacts that will accrue to the basin as a result of this project. While they are not quantified here, negative impacts will occur. These include, but are not limited to, the following:

- Loss of commerce from productive farm and ranch land permanently and/or temporarily removed for the construction off-channel storage reservoirs, well-fields, and the necessary conveyance system; and
- Loss of commerce from farm and ranch subsidies related to the permanent or temporary loss of productive farm and ranch land.

Additionally, negative social impacts may also occur which include, but are not limited to, the impact to wildlife habitats and the impact to the bays and estuaries below the reservoir formed by the saltwater barrier. However, despite the potential for negative economic and social impacts to accrue, it is the opinion of the Project Team that, when considered on a net basis, the total economic benefit of this project would be significant.

The remainder of this section discusses the quantification of the economic benefits which will accrue to the basin.

6.3.1 Benefits to the Basin

Short-Term Benefits

Direct Construction Benefit (Payroll and Materials)

The construction cost of the Lower Guadalupe Water Supply Project is estimated at $\$ 784,979,000$, but this estimate includes treatment and distribution components that are not required to deliver raw water to Bexar County. By removing the cost of the Water Treatment Plant ($\$ 43,197,000$), the Integration into the existing SAWS water system ($\$ 63,139,000$), and proportional costs of related Engineering, environmental, legal and interest during construction ($\$ 43,589,308$), the adjusted Project Costs become $\$ 653,053,692$ as shown in Appendix D, Schedule 2, Page 9. ${ }^{1}$ The payroll for local construction workers is estimated to be approximately 15\% ($\$ 95$ million in 2002 dollars) of the construction costs while the local purchase of materials is estimated to be 20% of the project cost, or $\$ 127$ million. ${ }^{2}$ To calculate the total short term benefits resulting from the Lower Guadalupe Water Supply Project's construction, the following approach has been employed.

The $\$ 95$ million local payroll combined with the $\$ 127$ million locally purchased materials is assumed to be distributed between six (6) counties - the four (4) counties housing the pipelines plus Victoria County where the diversion point (the saltwater barrier pool) exists and the termination point in Southern Bexar County. The local payroll and materials are assumed to be distributed within these six (6) counties in the same proportion as their populations. According to Implan Software, the six (6) counties, although similar, have distinct economic characteristics. Disposable income in Karnes County is measured to be 93.5% available for spending whereas Bexar County exhibits an 85.3% spending availability. The other four (4) counties in the analysis demonstrate disposable income spending availabilities between those two

[^28]ranges. ${ }^{3,4}$ The population in Goliad County buys only 38.4% of its products from local (County) sources while Bexar County residents spend 68.4% of their income locally. These differences in spending behaviors from county to county are important factors when assessing the benefits of the Lower Guadalupe Water Supply Project to the basin. The table below illustrates the different economic factors assumed for each county.

Table 6-7
Economic Factors for Counties within Lower Guadalupe Water Supply Project Basin

	$\frac{\text { Refugio }}{}$	$\underline{\text { Goliad }}$		Karnes		Wilson
92.5%	$\underline{B e x a r}$	$\frac{\text { Victoria }}{93.5 \%}$	$\frac{90.8 \%}{85.3 \%}$	87.4%		
\% disposable	92.8%	98.4%	45.5%	38.7%	68.4%	60.0%
\% locally spent	40.6%	38.4%	1.13	1.18	1.12	1.54
Multiplier	1.12	1.13		1.35		

When applied to the local payroll and purchase materials distributions, these economic factors result in a total economic benefit for all six (6) counties of approximately \$139 million. ${ }^{5}$ The project is scheduled for construction during the years 2010 through 2014. For purposes of this analysis, it is assumed that one-fifth of the construction dollars will be spent in each of these years.

Long-Term Benefits

Increased Commerce from New Residents

For purposes of this analysis, it is assumed that the Lower Guadalupe Water Supply Project will begin to deliver the full project yield in 2025, and that this increased water supply to Bexar County will support an incremental population increase beginning at that time. To project the population that the additional water would support, TWDB Regional Water Plan demand projections were employed. The incremental water, provided annually to Bexar County, was divided by the appropriate TWDB demand projections, to arrive at the estimated total project increase in population of 451,854 . Additionally, to conservatively estimate the increase in population supported by the additional water supply, 12% of the water slated to be delivered was assumed to be lost and unaccounted for to reflect the evaporation from on-channel and storage reservoirs.

The economic impact on the local economy has been estimated by multiplying the per capita income of $\$ 27,810$ (in 2003 dollars) for Bexar County residents by the Bexar

[^29]County disposable income factor of 85.3% to get the disposable income per capita. ${ }^{6}$ The population in Bexar County buys 68.4% of its products from local sources and spends 31.6% on goods imported from outside Bexar County, resulting in total disposable income per capita spent locally of $\$ 16,230 .^{7}$ The multiplier effect for household spending in Bexar County is 1.54 resulting in an economic benefit per capita of $\$ 24,984 .^{8}$ By utilizing these County factors, the present value of the economic benefit from Commerce from new Bexar Residents is estimated at over $\$ 90$ billion.

Appendix D, Schedule 2 illustrates the detailed socioeconomic analysis and present calculations as discussed in section 6.3.

[^30]
6.4 Findings and Conclusions

Based on the above analysis, R.W. Beck offers the following findings and conclusions:

1. Out of the water supply alternatives chosen for comparison, the SAWS Gonzales - Carrizo Project appears to have the most economical per unit cost. The most expensive supply alternative, even excluding the necessary conveyance facilities, is desalinated seawater. Due to the unique nature of the LGWSP, R.W. Beck chose to compare this alternative as both as an interbasin transfer and for in-basin use. When considered for in-basin use, the Lower Guadalupe Water Supply Project could be considered to be competitive with the SAWS Gonzales - Carrizo Project. However, when considered as an interbasin transfer, the unit cost of this alternative is significantly higher, affirming the SAWS Gonzales - Carrizo Project as the most cost effective alternative.

As an interbasin transfer, the LGWSP's annual costs diminish, but the unit cost increases significantly. This disparity is due to the fact that, as an interbasin transfer, and thus subject to the junior priority provision, a reduced amount of water can be taken. This also serves to explain the reduction in annual costs, as a smaller pipeline and associated infrastructure is needed to move a smaller amount of water. As this project has a significant amount of fixed costs involved, these fixed costs drive-up the unit cost when considered as an interbasin transfer. It is clear in this case that the junior priority provision does impact the unit cost of this particular project, and serves to reduce its competitiveness with other water management strategies. The Project Team would however note that even as an interbasin transfer, this project is still more economical than the provision of desalinated seawater.
2. While the LGWSP has since been modified and used solely to serve the needs of GBRA, had it been implemented as an interbasin transfer, with conveyance of water to Bexar County, it is the Project Team's opinion that significant economic benefits would have accrued to the San Antonio River Basin.

It should be noted that the Project Team's analysis does not project any negative economic impacts of this project. This is due to the fact that sufficient and reliable information was not available with which to project these impacts. While negative economic impacts will be present, the Project Team believes that the economic benefits will more than offset any negative economic impacts experienced.
3. While it is clear that the junior priority provision has an impact on the costs of this project, based on public comments and discussions with representatives of SAWS, SARA, and GBRA, it appears that this provision was only one of many variables which led to this particular strategy being modified and used only to meet the projected needs within GBRA's statutory district. Other variables included the environmental impact, including concern about wildlife habitats, and the use of groundwater to firm up the supply. Had circumstances
been such that this project could have been pursued as an in-basin transfer, it is still likely that concerns regarding the project's impact to the environment and to existing ground and surface water supplies would have led to the same result.

Section 7
 Market Survey of Water Rights

7.1 Introduction and Background

Opponents of the changes made to Texas Water Code Section 11.085 by S.B. 1 claim that the junior priority provision will hinder the marketing of water rights in Texas. The foundation of this argument is based on the assumption that the value of a water right is tantamount to the reliability of that right. In other words, a purchaser of a water right will pay more for a right which can be relied upon during a period of drought. For those rights that are junior to other upstream or downstream rights, the purchase price will, presumably, reflect that in a period of drought, other water right appropriations will be met first.

In an effort to determine the merit of the above argument, the third component of this study was designed to attempt to determine the effect, if any, the junior priority provision, as contained within Texas Water Code Section 11.085, has on the value of water rights. In an effort to quantify this difference, R.W. Beck's Project Team attempted to study water rights transactions which occurred under either of the following two scenarios.

1. Assuming the priority date of a water right changed as a result of a transaction, in other words, made junior to other existing water rights.
2. Assuming a water right maintained its original priority date after a transaction.

The premise of the above methodology is that, if a right loses its priority date, or in other words made junior, as a result of the transaction, the transaction price paid for that right will likely be less than that of another water right whose priority date did not change as a result of the transaction.

7.2 Analysis

Working with the TCEQ and other water marketing stakeholders throughout the state, R.W. Beck assembled a database of over approximately 1,200 water right transactions/changes dating back to April of 2001. This effort also included a review of past issues of the "Water Strategist," as published by Stratecon, Inc. which contained additional data on water transactions. This review included issues dated back to January of 1999. Once compiled, these transactions were filtered to exclude transactions which met the following parameters:

- groundwater transactions;
- water leases;
- transactions in which only the name of the water right owner changed;
- water rights transaction that are currently in process; and
- transactions that are currently contested.

It should be noted that R.W. Beck's Project Team diligently pursued transactions dating back prior to the adoption of S.B. 1 in 1997 from TCEQ, but was only able to obtain information from 2001 to the present. While this information would help to produce a more thorough analysis, the study methodology as constructed by the Project Team overcomes this deficiency by looking at all water rights transactions whose priority date would change as a result of the transaction, not simply water rights transactions that are involved in interbasin transfers.

Once obtained, the Project Team used sampling techniques on the filtered data to develop a representative sample of the transaction database. As part of developing this sample, the Project Team focused solely on those transactions involving public entities in an effort to utilize and obtain data that is already in the public domain. Once the sample was developed, Project Team members contacted either the buyer and/or the seller involved in the transaction and requested the following information:

- Quantity of the water transacted;
- Purchase price of the transaction;
- Priority Date of the water right after the transaction; and
- Whether the priority date of the water right changed as a result of the transaction.

Through telephone and e-mail contact, R.W. Beck was able to obtain data on a limited number of transactions, the results of which are illustrated in Appendix E. It should be noted that in the process of contacting these transaction participants, several more transactions were excluded from the analysis as they did not fit the research parameters. Additionally, the response rate of those entities contacted was very poor. Once completed, our analysts were only able to obtain quality information on a limited number of transactions.

Upon looking at the transactions for which information was obtained, it was concluded that not a single transaction involved a water right whose priority date changed as a result of the transaction. In an effort to find transactions which did fit the defined criteria, the Project Team contacted leading water marketers throughout the state. However, these individuals were only able to provide one transaction which met the defined criteria, and this transaction was not useful as the entity that purchased the junior water right already owned the water rights that were senior to the right purchased. Essentially, this entity was simply enhancing the reliability of their own existing rights through this purchase.

One expert suggested that we refine our methodology by randomly picking two transactions and, by using water availability models (WAM), determine which transaction involved the more reliable water right. Then, based upon the transaction data obtained, determine the price of the two modeled water rights. Conducting this analysis multiple times could theoretically lead you to the conclusion that, if in every
iteration of the analysis the purchase price of the more reliable water right was higher, then reliability, and a senior water right, is valued higher. Thus, it would logically follow, that the junior priority provision does in fact impact water marketing.

However, the key flaw in this analysis is that it excludes other factors that may impact the purchase price of the water. For example, the need or demand for water also greatly impacts the price a buyer is willing to pay. If the need for water is urgent enough and supply options are limited, an individual may be willing to pay a price for water which is not commensurate with the water's priority. In economic terms, if the need for water is significant enough, the individual's demand will be more price inelastic.

Based upon the above analysis and the results of our market survey, R.W. Beck estimates the value of water rights in the state averages just under $\$ 1,000$ per acre-foot (weighted average of $\$ 634$ per acre-foot), with a range per acre-foot of $\$ 15.00$ to $\$ 2,600.00$, approximately. However, R.W. Beck would note that the price of every individual transaction will vary based on the unique circumstances of the transaction.

7.3 Findings and Conclusions

Based upon our analysis and the difficulties previously discussed, it is the conclusion of the Project Team that the water market in Texas is still not sufficiently developed to draw any firm conclusions as to the impact of the junior priority provision. Sufficient transactions do not exist, and those transactions that do exist do not provide a complete picture by which to draw causal relationships. R.W. Beck does recommend that, as the water market in Texas matures, further study should be undertaken to determine the impact reliability has on transaction prices. Should reliability be found to be a significant determining factor, then lawmakers might consider amending or removing the junior priority provision.
R.W. Beck would conclude that two circumstances may currently exist which impact the number of surface water right transactions. First, the cost of conveying surplus surface water to the area where it is needed carries significant cost. At the present time, other water management strategies are still more cost effective, causing water suppliers to seek other alternatives than purchasing water rights from distant geographical areas. Additionally, there is limited financial assistance available to water suppliers to assist in bearing the cost of the additional conveyance infrastructure required to achieve a transfer of surface water. Until such time as the transfer of water becomes a more cost effective option, in light of other supply alternatives, or until additional funding mechanisms are available, it is likely that there will continue to be very few surface water right transactions.
Second, those in the state who do possess surplus surface water are most likely to lease that water as opposed to selling the water right. This is likely in anticipation of the projected water needs of the state being realized. As demand increases, so will the compensation associated with the purchase of water rights. As the need for water grows, it is likely that a proportional increase in water marketing activity will also be seen, assuming that sufficient infrastructure financing alternatives are available.

Texas Water Development Board
Socioeconomic Analysis of Selected Interbasin Transfers in Texas
TCEQ Listing of Interbasin Transfers

WR	Owner	Basin From	Source	Basin To	Amount	Priority	Use	Subject to SB1	Junior Date?
3782	Canadian River Municipal Water Authority	CANADIAN	Lake Meredith	Red, Brazos, Colorado	151,200	1956	municipal/industrial	No	No
3985	City of Lubbock	CANADIAN	Lake Meredith	Brazos	22,910	1983	industrial/irrigation	No	No
4301	Greater Texoma Utility Authority	RED	Lake Texoma	Trinity, Sabine	25,000	2006	multiple	Yes	Yes
4898	Red River Authority of Texas	RED	Lake Texoma	Trinity	2,000	1974	multiple	No	No
4899	Red River Authority of Texas	RED	Lake Texoma	Trinity	250	1967	municipal	No	No
4881	City of	RED	Fish Creek	Trinity	4,500	1962	municipal	No	No
	Gainesville				3,240	2006		Yes	No (E)
4940	City of Paris	RED	Pat Mayse Lake	Sulphur	21,115	1964	municipal/industrial	Yes	No (E)
4943	City of Paris	RED	Lake Crook	Sulphur	12,000	1922	municipal	No	No
4961	City of Texarkana	RED	Bringle Lake	Sulphur	2,220	1928	municipal	No	No
5003	North Texas Municipal Water District	RED	Lake Texoma	Sabine, Trinity	84,000	1985	municipal	No	No
5144	City of Wichita Falls	RED	Lake Kickapoo	Brazos	1,120	1984	municipal	No	No
5145	City of Megargel	RED	Megargel Creek Lake	Brazos	70	1962	municipal	No	No
5146	City of Olney	RED	Olney Lake, Lake Cooper	Brazos	450	1935	municipal	No	No
					810	1953	municipal	No	No

Texas Water Development Board
Socioeconomic Analysis of Selected Interbasin Transfers in Texas
TCEQ Listing of Interbasin Transfers

WR	Owner	Basin From	Source	Basin To	Amount	Priority	Use	Subject to SB1	Junior Date?
					35	1980	irrigation	No	No
5211	MacKenzie Municipal Water Authority	RED	Lake MacKenzie	Brazos	2,600	1982	municipal/industrial	No	Yes
4797	Sulphur River Municipal Water District (Upper Trinity Regional Water District)	SULPHUR	Lake Chapman	Trinity	16,106	1965	municipal/industrial	No	No
	North Texas Municipal Water District			Sabine, Trinity	3,214	1965	municipal	No	No
4798	North Texas Municipal Water District	SULPHUR	Lake Chapman	Sabine, Trinity	54,000	1965	municipal	No	No
4799	City of Irving	SULPHUR	Lake Chapman	Trinity	54,000	1965	municipal/industrial	No	No
4811	Sulphur Springs Water District	SULPHUR	Lake Sulphur Springs	Sabine	2,000	1951	municipal	No	No
					7,800	1968	municipal/industrial	No	No
4836	City of Texarkana	SULPHUR	Lake Wright Patman	Cypress	9,000	1981	municipal/industrial	No	Yes
				Red	11,500	1981	municipal/industrial	No	Yes
5873	Red River Redevelopment Authority	SULPHUR	Caney and Elliot Creeks	Red	2,960	2006	Municipal	Yes	No^{5}
4560	Franklin County Water District	CYPRESS	Lake Cypress Springs	Sulphur, Sabine	4,000	1970	municipal	No^{6}	Yes
					173	1980		No^{6}	Yes
					2,012	1980		No^{6}	Yes
					2,200	1980		No ${ }^{6}$	Yes

Texas Water Development Board
Socioeconomic Analysis of Selected Interbasin Transfers in Texas
TCEQ Listing of Interbasin Transfers

WR	Owner	Basin From	Source	Basin To	Amount	Priority	Use	Subject to SB1	Junior Date?
					1,000	1966		No	Yes
4590	Northeast Texas Municipal Water District	CYPRESS	Lake O' the Pines	Sabine	20,000	1957	municipal/industrial	No	No
4614	City of Marshall	CYPRESS	Cypress Creek	Sabine	7,558	1947	municipal/industrial	Yes	No (E)
					8,442	1956		Yes	No (E)
4658	Sabine River Authority of Texas	SABINE	Sabine River	Neches	80,000	1958	municipal/industrial	No	No
4662	Sabine River Authority of Texas	SABINE	Sabine River	Neches	30,000	1946	multiple	No	No
4669	Sabine River Authority of Texas	SABINE	Lake Fork	Trinity	120,000	1983	municipal	No	Yes
					5,048	1992		No	Yes
4670	Sabine River Authority of Texas	SABINE	Lake Tawakoni	Trinity	207,765	1955	municipal	No	No
				Sulphur	8,396	1986		No	Yes
				Trinity	20,000	1986		No	Yes
4693	City of Van	SABINE	Van Lake	Neches	150	1949	municipal	No	No
					250	1976		No	No
4724	Hide-Away- Lake Club	SABINE		Neches	180	1970	irrigation	Yes	No (E)
					179.42	1994		Yes	No (E)
3254	Upper Neches River Municipal Water Authority	NECHES	Lake Palestine	Sabine, Trinity	114,337	1972	municipal/industrial	Yes	No (E)
					18,000	1983		Yes	No (E)

Texas Water Development Board
Socioeconomic Analysis of Selected Interbasin Transfers in Texas
TCEQ Listing of Interbasin Transfers

WR	Owner	Basin From	Source	Basin To	Amount	Priority	Use	Subject to SB1	Junior Date?
3256	Athens Municipal Water Authority	NECHES	Lake Athens	Trinity	8,500	1955	municipal	No ${ }^{6}$	No
3879	Texaco	NECHES	Neches River	Neches-Trinity	12,900	1982	industrial	No	No
4404	City of Center	NECHES		Sabine	Authorizes return flows to Sabine River Basin			No	No
4411	Lower Neches Valley Authority	NECHES	Sam Rayburn Reservoir, Neches River and Pine Island Bayou	Neches-Trinity	219,252	1913	irrigation	No	No
					107,108			No	No
					820,000	1963	multiple	Yes	No (E)
4415	City of Beaumont	NECHES	Neches River	Neches-Trinity	6,570	1915	municipal	No	No
					49,897	1925		No	No
4228	Angelina and Neches River Authority	NECHES	Lake Columbia	Sabine	2,200	1985	municipal	No	No
4853	City of Tyler	NECHES	Lake Tyler	Sabine	40,325	1947	municipal/industrial	No	No
2319	City of Saint Jo	TRINITY	Elm Fork Trinity River	Red	330	1957	municipal	No	No
3356	City of Weatherford	TRINITY	Lake Weatherford	Brazos	5,220	1954	municipal/industrial	No	No
4248	Trinity River Authority	TRINITY	Lake Livingston	Neches, Neches-Trinity	351,600	1959	industrial/irrigation	No^{6}	No
				San Jacinto	51,600		industrial	No^{6}	No
4261	City of Houston	TRINITY	Lake Livingston	Trinity-San Jacinto	31,600	1913	industrial	No	No
				San Jacinto	13,400		irrigation	No	No
				Neches-Trinity	28,000	1959	industrial	No	No

Texas Water Development Board
Socioeconomic Analysis of Selected Interbasin Transfers in Texas
TCEQ Listing of Interbasin Transfers

Texas Water Development Board
Socioeconomic Analysis of Selected Interbasin Transfers in Texas
TCEQ Listing of Interbasin Transfers

WR	Owner	Basin From	Source	Basin To	Amount	Priority	Use	Subject to SB1	Junior Date?
5155	Brazos River Authority	BRAZOS	Possum Kingdom Reservoir	Trinity	5,240	1986	municipal	No	No
5156	Brazos River Authority	BRAZOS	Lake Granbury	Trinity	2,600	1986	municipal	No ${ }^{6}$	Yes
					17,400			No^{6}	Yes
5167	Brazos River Authority	BRAZOS	Brazos River	San JacintoBrazos	200,000	Nonpriority	municipal/industrial	No	No
5168	Gulf Coast Water Authority	BRAZOS	Brazos River	San JacintoBrazos	99,932	1926	multiple	No	No
5171	Brazos River Authority	BRAZOS	Brazos River	San JacintoBrazos	75,000	1939	multiple	No	No
					50,000	1950	municipal/industrial	No	No
5287	Bi-Stone Municipal Water Supply District	BRAZOS	Lake Mexia	Trinity	2,952	1957	municipal	No	No
5291	City of Teague	BRAZOS	Teague City Lake	San JacintoBrazos	605	1952	municipal	No	No
5322	Chocolate Bayou Water Company	BRAZOS	Brazos River	San Jacinto, San Jacinto- Brazos	40,000	1929	irrigation	No^{6}	No
					40,000	1955		No^{6}	No
					75,000	1983		No^{6}	No
5328	Dow Chemical Company	BRAZOS	Brazos River	San Jacinto- Brazos	20,000	1929	industrial	No	No
					150,000	1942	municipal/industrial	No	No
					110,000	1960	industrial	No	No
					3,136	1976	municipal	No	No
5366	Brazosport Water Authority	BRAZOS	Brazos River	San JacintoBrazos, BrazosColorado	45,000	1960	municipal	No	No
1002	Colorado River Municipal	COLORADO	Lake J.B. Thomas	Brazos	30,000	1946	multiple	No	No

Texas Water Development Board
Socioeconomic Analysis of Selected Interbasin Transfers in Texas
TCEQ Listing of Interbasin Transfers

WR	Owner	Basin From	Source	Basin To	Amount	Priority	Use	$\begin{aligned} & \text { Subject } \\ & \text { to SB1 } \\ & \hline \end{aligned}$	Junior Date?
	Water District								
1031	City of Sweetwater	COLORADO	Oak Creek Reservoir	Brazos	9,328	1949	municipal/industrial	No	No
1660	City of Clyde	COLORADO	Lake Clyde	Brazos	200	1985	municipal	No	Yes
3676	Colorado River Municipal Water District	COLORADO	O.H. Ivie Reservoir	Brazos	15,000	1978	municipal	Yes	No (E)
4007	City of Cedar Park	COLORADO	Lake Travis	Brazos	18,000	1938	municipal	Yes	No (E)
	Lower Colorado River Authority			Brazos- Colorado, Colorado- Lavaca, Lavaca	133,000			No	No
5434	City of Corpus Christi	COLORADO	Colorado River	Colorado- Lavaca, Lavaca, San Antonio, Nueces, Lavaca- Guadalupe, San Antonio- Nueces, Nueces-Rio Grande	35,000	1900	multiple	No	Yes ${ }^{8}$
5437	Lower Colorado River Authority and STPNOC	COLORADO	Colorado River	Colorado- Lavaca	102,000	1974	industrial	No	No
5471	City of Austin	COLORADO	Lake Austin	Brazos, Guadalupe	249,000	1913	municipal	No	No
			Town Lake		22,403	1914		No	No
5475	Lower	COLORADO	Eagle Lake	Brazos-	52,500	1901	irrigation	No	No

Texas Water Development Board
Socioeconomic Analysis of Selected Interbasin Transfers in Texas
TCEQ Listing of Interbasin Transfers

WR	Owner	Basin From	Source	Basin To	Amount	Priority	Use	$\begin{aligned} & \text { Subject } \\ & \text { to SB1 } \end{aligned}$	Junior Date?
	Colorado River Authority			Colorado, ColoradoLavaca	78,750	1987		No	No
5476	Lower Colorado River Authority	COLORADO	Colorado River	Brazos- Colorado, Colorado- Lavaca	228,570	1900	irrigation	No	No
					33,930	1987		No	No
5477	Lower Colorado River Authority	COLORADO	Colorado River	Brazos- Colorado, Colorado- Lavaca	110,000	1907	irrigation	No^{6}	No
5677	Lower Colorado River Authority	COLORADO	Lake Travis	Brazos	6,400	1938	municipal	Yes	No (E)
5715	Lower Colorado River Authority	COLORADO	Colorado River (Lometa Reservoir)	Brazos	476	1938	municipal	Yes	No (E)
5730	Brazos River Authority	COLORADO	Colorado River and Lake Travis	Brazos	25,000	1938	multiple	Yes	No (E)
3978	J.H. Robinson	LAVACA	Lavaca River	LavacaGuadalupe	1,800	1983	irrigation	No	No
				San Antonio,	46,518	1972	municipal	No	No
2095	Lavaca Navidad River Authority	LAVACA	Lake Texana	Nueces, San Antonio- Nueces, Nueces-Rio Grande	7,500	2003	multiple	Yes	No^{5}
5584	County of Jackson	LAVACA and LAVACAGUADALUPE	Lavaca River, Garcitas Creek, Venado	Lavaca, LavacaGuadalupe	2	1997	industrial	No	No

Texas Water Development Board
Socioeconomic Analysis of Selected Interbasin Transfers in Texas
TCEQ Listing of Interbasin Transfers

| WR | Owner | Basin From | Source | Basin To | Amount | Priority | Use | Subject
 to SB1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | Junior
 Date? | | | | | |
| 2074 | Guadalupe-
 Creek | | | | | | | |

Texas Water Development Board
Socioeconomic Analysis of Selected Interbasin Transfers in Texas
TCEQ Listing of Interbasin Transfers

WR	Owner	Basin From	Source	Basin To	Amount	Priority	Use	Subject to SB1	Junior Date?
	Authority								
5175	GuadalupeBlanco River Authority	GUADALUPE	Guadalupe River	LavacaGuadalupe	940	1951	industrial/irrigation	No	No
5176	$\begin{aligned} & \hline \text { Guadalupe- } \\ & \text { Blanco River } \\ & \text { Authority } \\ & \hline \end{aligned}$	GUADALUPE	Guadalupe River	LavacaGuadalupe	9,944	1951	multiple	No	No
5177	GuadalupeBlanco River Authority	GUADALUPE	Guadalupe River	LavacaGuadalupe	42,615	1944	multiple	No	No
					8,632	1948	irrigation	No	No
5178	GuadalupeBlanco River Authority	GUADALUPE	Guadalupe River	LavacaGuadalupe	106,000	1952	multiple	No	No
5466	City of Victoria	GUADALUPE	Guadalupe River	LavacaGuadalupe	20,000	1993	municipal	No	No
2130	BMA WCID	$\begin{aligned} & \hline \text { SAN } \\ & \text { ANTONIO } \end{aligned}$	Medina Lake	Nueces	65,830	1910	irrigation	No	No
2131	BMA WCID	$\begin{aligned} & \hline \text { SAN } \\ & \text { ANTONIO } \end{aligned}$	Medina Lake	Nueces	2,000	1912	irrigation	No	No
5489	Jess Womack	$\begin{aligned} & \text { SAN } \\ & \text { ANTONIO } \end{aligned}$	Elm Bayou	Guadalupe	750	1994	wetland	No ${ }^{6}$	No
2466	$\begin{aligned} & \text { Nueces County } \\ & \text { WCID \#3 } \end{aligned}$	NUECES	Nueces River	Nueces-Rio Grande	8,606	1909	municipal/irrigation	No	No
					2,940	1921		No	No
2464	City of Corpus Christi	NUECES	Lake Corpus Christi	Nueces-Rio Grande	675	1913	municipal	No	No
					4,054	1914	municipal	No	No
					300,026	1925	municipal/industrial	No	No
4092	City of Taft	NUECES	Taft Drainage Ditch	San AntonioNueces	600	1983	irrigation	No	No
5736	City of Corpus Christi	NUECES	Nueces River	San AntonioNueces	8,000	2001	wetland	No	No

Texas Water Development Board

Socioeconomic Analysis of Selected Interbasin Transfers in Texas
 TCEQ Listing of Interbasin Transfers

Notes:

1. The owner of the water right is the owner listed on the authorizations as available December 31, 2004
2. Some use types may have changed as a result of amendments granted after SB1 1997.
3. It should be noted that many water rights include authorization for interbasin transfer where the amount to be transferred is not specified. If the amount was not specified in the water right, it was assumed that the entire amount would be transferred
4. This table does not include 9 of the 11 water rights owned by the Brazos River Authority that are authorized to release water to be diverted downstream for subsequent interbasin transfer pursuant to the System Operations Order.
5. Some water rights did not receive a new priority date for the interbasin transfer because the water right was a new appropriation of water and was junior anyway
6. These water rights were subsequently amended after SB1 for additional exempt authorizations.
7. (E) represents water rights that applied for and were granted exempt interbasin transfers
8. The portion of the water right granted to Corpus Christi was made one day junior to LCRA's rights pursuant to an agreement between the parties.

Texas Water Development Board Socioeconomic Analysis of Selected Interbasin Transfers in Texas Comparison of Bedias Reservoir to Alternative Strategies						
	Bedias Reservoir		SJRA Contracts		Freeport Desalination ${ }^{(2)}$	
Total Project Cost (2005 Dollars)	\$	150,716,252	\$	-	\$	243,865,778
Annual Cost (2005 Dollars)						
Operation and Maintenance	\$	778,100	\$	-	\$	28,183,310
Debt Service		5,973,260		-		15,225,989
Water Cost		12,931,695		7,200,000		
Total Annual Cost	\$	19,683,054	\$	7,200,000	\$	43,409,300
PV (50 year life)	\$	$237,219,187$	\$	$233,493,267$	\$	$1,160,327,775$
Acre Feet over 50 year life		$1,904,700$		$4,800,000$		$\begin{array}{r} 2,520,324 \\ \hline \end{array}$
PV Per Acre Foot	\$	125	\$	49	\$	460

Notes:
(1) Reservoir Debt Service and O\&M
(2) Considers only water production, exclusive of any conveyance costs

Texas Water Development Board Socioeconomic Impact of Selected Interbasin Transfers in Texas Bedias Reservoir Interbasin Transfer Cost Escalation						
CONSTRUCTION COST SUMMARY (CONVEYANCE)		2002		$2005{ }^{(1)}$		$25{ }^{(1)}$
Pump Stations	\$	13,939,711	\$	15,824,090	\$	29,006,581
Pipelines		32,472,000		36,861,586		67,569,673
Pipeline Crossing		847,500		962,066		1,763,529
Stilling Basins		375,348		426,088		781,046
TOTAL CONSTRUCTION COST SUMMARY (CONVEYANCE)	\$	47,634,559	\$	54,073,830	\$	99,120,829
PROJECT COST SUMMARY						
Construction (Capital) Cost - Conveyance Only	\$	47,634,559	\$	54,073,830	\$	99,120,829
Engineering, Financial \& Legal services, and Contingencies ${ }^{(2)}$		15,006,121		17,034,658		31,225,630
Land \& Easements		2,820,000		3,201,209		5,868,024
Environmental - Studies and Mitigation		1,500,000		1,702,771		3,121,289
CONSTRUCTION TOTAL	\$	66,960,680	\$	76,012,468	\$	139,335,773
Interest During Construction ${ }^{(3)}$	\$	5,469,124	\$	6,208,444	\$	11,380,479
Interest Dung Constuction		5,460,124		6,208,44		1,380,479
TOTAL CAPITAL COST	\$	72,429,804	\$	82,220,912	\$	150,716,252
ANNUAL COSTS						
OPERATION \& MAINTENANCE COST SUMMARY ${ }^{(4)}$						
Reservoir O\&M ${ }^{(5)}$	\$	1,445,000	\$	1,578,991	\$	2,851,833
Pump Stations		348,493		395,602		725,165
Pipelines		324,720		368,616		675,697
Pipeline Crossings		8,475		9,621		17,635
Stilling Basins		3,753		4,261		7,810
ANNUAL OPERATION \& MAINTENANCE COST	\$	2,130,441	\$	2,357,090	\$	4,278,140
Reservoir Debt Service	\$	10,366,273	\$	11,352,704	\$	20,810,241
Debt Service		5,261,946		5,973,260		10,949,372

Notes:
(1) All costs are inflated based upon factors contained in the Construction Cost Index History by ENR (Engineering News-Record) unless otherwise noted
(2) Calculated by applying 30% to pipeline costs and 35% to pump station and stilling basin costs
(3) Interest During Construction calculated by applying the same percentage used to calculate Interest During Construction in 2002
(4) Calculated using percentages given in "Bedias Cost Summary" in the TWDB Region H Report unless otherwise noted
(5) Escalated utilizing a 3\% general inflation factor

Texas Water Development Board Socioeconomic Impact of Major Interbasin Transfers in Texas Additional SJRA Contracts Present Value Calculation				
Year	Source Cost ${ }^{(1)}$	Total	PV ${ }^{(2)}$	
2005	\$ 7,200,000	\$ 7,200,000	\$	7,200,000
2006	7,416,000	7,416,000		7,062,857
2007	7,638,480	7,638,480		6,928,327
2008	7,867,634	7,867,634		6,796,358
2009	8,103,663	8,103,663		6,666,904
2010	8,346,773	8,346,773		6,539,915
2011	8,597,177	8,597,177		6,415,345
2012	8,855,092	8,855,092		6,293,148
2013	9,120,745	9,120,745		6,173,279
2014	9,394,367	9,394,367		6,055,693
2015	9,676,198	9,676,198		5,940,346
2016	9,966,484	9,966,484		5,827,197
2017	10,265,478	10,265,478		5,716,202
2018	10,573,443	10,573,443		5,607,322
2019	10,890,646	10,890,646		5,500,516
2020	11,217,365	11,217,365		5,395,745
2021	11,553,886	11,553,886		5,292,968
2022	11,900,503	11,900,503		5,192,150
2023	12,257,518	12,257,518		5,093,252
2024	12,625,244	12,625,244		4,996,238
2025	13,004,001	13,004,001		4,901,071
2026	13,394,121	13,394,121		4,807,717
2027	13,795,945	13,795,945		4,716,142
2028	14,209,823	14,209,823		4,626,311
2029	14,636,118	14,636,118		4,538,190
2030	15,075,201	15,075,201		4,451,749
2031	15,527,457	15,527,457		4,366,953
2032	15,993,281	15,993,281		4,283,773
2033	16,473,079	16,473,079		4,202,178
2034	16,967,272	16,967,272		4,122,136
2035	17,476,290	17,476,290		4,043,619
2036	18,000,578	18,000,578		3,966,598
2037	18,540,596	18,540,596		3,891,044
2038	19,096,814	19,096,814		3,816,929
2039	19,669,718	19,669,718		3,744,225
2040	20,259,810	20,259,810		3,672,907
2041	20,867,604	20,867,604		3,602,947
2042	21,493,632	21,493,632		3,534,319
2043	22,138,441	22,138,441		3,466,999
2044	22,802,594	22,802,594		3,400,961
2045	23,486,672	23,486,672		3,336,180
2046	24,191,272	24,191,272		3,272,634
2047	24,917,010	24,917,010		3,210,298
2048	25,664,521	25,664,521		3,149,150
2049	26,434,456	26,434,456		3,089,166
2050	27,227,490	27,227,490		3,030,325
2051	28,044,315	28,044,315		2,972,604
2052	28,885,644	28,885,644		2,915,983
2053	29,752,214	29,752,214		2,860,441
2054	30,644,780	30,644,780		2,805,956
Total			\$	233,493,267
Notes: (1)	$\$ 45$ per acre foot inflated at	Acre Feet/year		96,000
		Years		50
	\#\#	Total Acre Feet		4,800,000
	Mid-year convention applied to PV calculation	PV/ acre foot	\$	48.64

Texas Water Development Board Socioeconomic Analysis of Selected Interbasin Transfers in Texas Freeport Desalination Present Value Calculation ${ }^{(1)(2)}$										
Year	Debt Service	Chemicals ${ }^{(3)}$	Membrane Replacement ${ }^{(4)}$	Power ${ }^{(5)}$	Labor ${ }^{(6)}$	Maintenance ${ }^{(7)}$	Sludge Disposal ${ }^{(7)}$	Miscellaneous ${ }^{(7)}$	Total Cost of Water	Present Value
2005	\$		\$	\$	\$	\$	\$	\$	\$	\$
2006			-		-				-	
2007			-						-	
2008									-	
2009										
2010	17,716,583	3,867,295	1,194,076	13,549,669	5,646,079	3,640,243	4,037,999	1,888,054	51,539,997	40,382,936
2011	17,716,583	3,991,291	1,242,115	14,169,715	5,828,825	3,749,450	4,159,139	1,944,695	52,801,813	39,401,526
2012	17,716,583	4,119,262	1,292,086	14,818,136	6,017,486	3,861,933	4,283,913	2,003,036	54,112,435	38,456,697
2013	17,716,583	4,251,336	1,344,068	15,496,228	6,212,253	3,977,791	4,412,430	2,063,127	55,473,817	37,546,863
2014	17,716,583	4,387,644	1,398,141	16,205,351	6,413,324	4,097,125	4,544,803	2,125,021	56,887,993	36,670,508
2015	17,716,583	4,528,323	1,454,390	16,946,924	6,620,904	4,220,039	4,681,147	2,188,772	58,357,082	35,826,186
2016	17,716,583	4,673,512	1,512,901	17,722,433	6,835,202	4,346,640	4,821,582	2,254,435	59,883,288	35,012,518
2017	17,716,583	4,823,357	1,573,766	18,533,429	7,056,436	4,477,039	4,966,229	2,322,068	61,468,908	34,228,188
2018	17,716,583	4,978,006	1,637,080	19,381,537	7,284,831	4,611,350	5,115,216	2,391,730	63,116,335	33,471,940
2019	17,716,583	5,137,613	1,702,942	20,268,456	7,520,619	4,749,691	5,268,673	2,463,482	64,828,058	32,742,575
2020	17,716,583	5,302,338	1,771,453	21,195,961	7,764,038	4,892,182	5,426,733	2,537,386	66,606,673	32,038,949
2021	17,716,583	5,472,345	1,842,720	22,165,909	8,015,336	5,038,947	5,589,535	2,613,508	68,454,882	31,359,970
2022	17,716,583	5,647,802	1,916,854	23,180,243	8,274,767	5,190,115	5,757,221	2,691,913	70,375,499	30,704,597
2023	17,716,583	5,828,885	1,993,971	24,240,994	8,542,596	5,345,819	5,929,937	2,772,671	72,371,456	30,071,835
2024	17,716,583	6,015,773	2,074,190	25,350,287	8,819,093	5,506,193	6,107,835	2,855,851	74,445,806	29,460,733
2025	17,716,583	6,208,654	2,157,637	26,510,341	9,104,540	5,671,379	6,291,071	2,941,526	76,601,731	28,870,387
2026	17,716,583	6,407,719	2,244,440	27,723,481	9,399,225	5,841,521	6,479,803	3,029,772	$78,842,544$	28,299,929
2027	17,716,583	6,613,167	2,334,736	28,992,135	9,703,449	6,016,766	6,674,197	3,120,665	81,171,699	27,748,535
2028	17,716,583	6,825,202	2,428,665	30,318,844	10,017,520	6,197,269	6,874,423	3,214,285	83,592,791	27,215,414
2029	17,716,583	7,044,035	2,526,372	31,706,265	10,341,756	6,383,187	7,080,655	3,310,714	86,109,568	26,699,814
2030	17,716,583	7,269,884	2,628,010	33,157,175	10,676,487	6,574,683	7,293,075	3,410,035	88,725,933	26,201,014
2031	17,716,583	7,502,975	2,733,738	34,674,481	11,022,051	6,771,923	7,511,867	3,512,336	91,445,955	25,718,328
2032	17,716,583	7,743,540	2,843,718	36,261,220	11,378,801	6,975,081	7,737,223	3,617,706	94,273,873	25,251,098
2033	17,716,583	7,991,817	2,958,124	37,920,570	11,747,097	7,184,334	7,969,340	3,726,237	97,214,102	24,798,699
2034	17,716,583	8,248,055	3,077,132	39,655,853	12,127,315	7,399,864	8,208,420	3,838,025	100,271,246	24,360,530
2035	17,716,583	8,512,508	3,200,928	41,470,545	12,519,838	7,621,860	8,454,673	3,953,165	103,450,099	23,936,020
2036	17,716,583	8,785,441	3,329,704	43,368,278	12,925,067	7,850,515	8,708,313	4,071,760	106,755,661	23,524,621
2037	17,716,583	9,067,124	3,463,661	45,352,854	13,343,411	8,086,031	8,969,562	4,193,913	110,193,139	23,125,812
2038	17,716,583	9,357,839	3,603,007	47,428,246	13,775,296	8,328,612	9,238,649	4,319,730	113,767,962	22,739,092
2039	17,716,583	9,657,875	3,747,959	49,598,610	14,221,159	8,578,470	9,515,809	4,449,322	117,485,788	22,363,984
2040	-	9,967,531	3,898,743	51,868,292	14,681,454	8,835,824	9,801,283	4,582,802	103,635,929	18,788,187
2041	-	10,287,115	4,055,593	54,241,837	15,156,647	9,100,899	10,095,321	4,720,286	107,657,699	18,587,900
2042	-	10,616,946	4,218,753	56,723,998	15,647,221	9,373,926	10,398,181	4,861,895	111,840,920	18,390,632
2043	-	10,957,352	4,388,478	59,319,745	16,153,673	9,655,144	10,710,126	5,007,751	116,192,269	18,196,333
2044	-	11,308,672	4,565,030	62,034,276	16,676,517	9,944,798	11,031,430	5,157,984	120,718,708	18,004,950
2045	-	11,671,257	4,748,685	64,873,027	17,216,285	10,243,142	11,362,373	5,312,724	125,427,492	17,816,434
2046	-	12,045,467	4,939,729	67,841,682	17,773,522	10,550,436	11,703,244	5,472,105	130,326,186	17,630,735
2047	-	12,431,675	5,138,459	70,946,185	18,348,796	10,866,949	12,054,342	5,636,268	135,422,674	17,447,806
2048	-	12,830,265	5,345,184	74,192,753	18,942,690	11,192,958	12,415,972	5,805,356	140,725,179	17,267,599
2049	-	13,241,636	5,560,226	77,587,888	19,555,806	$11,528,746$	12,788,451	5,979,517	146,242,271	17,090,067
2050	-	13,666,196	5,783,919	81,138,388	20,188,767	11,874,609	13,172,105	6,158,903	151,982,886	16,915,165
2051	-	14,104,369	6,016,611	84,851,362	20,842,215	12,230,847	13,567,268	6,343,670	157,956,341	16,742,847
2052	-	14,556,591	6,258,665	88,734,245	21,516,813	12,597,772	13,974,286	6,533,980	164,172,351	16,573,070
2053		15,023,312	6,510,456	92,794,813	22,213,245	12,975,706	14,393,514	6,729,999	170,641,046	16,405,790
2054	-	15,504,997	6,772,378	97,041,197	22,932,219	13,364,977	14,825,320	6,931,899	177,372,987	16,240,965
Notes: Total Present Value $\quad \$ 1,160,327,775$ (1) Calculated assuming 56,007 acre/feet annual firm yield										
(3) Escalated using Producer Price Index, Industrial Chemicals								Acre / Feet produce	d per Year	56,007
(4) Escalated using Handy-Whitman Index of Public Utility Construction Costs for Water Utilities, Account 320 - Large Treatment Plant Equipme(5) Escalated using Producer Price Index, Industrial Electrical Power								Total Yield		2,520,324
								(5) Escalated using Producer Price Index, Industrial Electrical Power		
(6) Escalated using Employment Cost Index, Service Providing Industries - Trade, Transpostration, and Utilitie(7) Escalated utilizing general 3\% inflation factor								Present Value per Acre Foot		460.39

Texas Water Development Board

Socioeconomic Impact of Selected Interbasin Transfers in Texas Socioeconomic Impact of Bedias Reservoir Interbasin Transfer Present Value Summary

Basin of Origin Impacts		
Loss of Commerce from Farm Production:		
Acreage within Lake	\$	52,139,856
Acreage for Lake Development		35,681,057
Acreage for Mitigation		190,112,815
Loss of Government Income for Agricultural Subsidies:		
Acreage within Lake		297,478
Acreage for Lake Development		203,574
Acreage for Mitigation		1,084,665
Loss of Commerce from Forestry:		
Acreage within Lake		72,496,976
Acreage for Lake Development		44,733,126
Acreage for Mitigation		312,147,609
Total Impacts (discounted)	\$	708,897,156
Basin of Origin Benefits		
Construction: Local Payroll \& Materials	\$	401,473
Commerce from Lake visitors		296,806,376
Commerce from New Residents		1,164,118,532
Total Benefits (discounted)	\$	1,461,326,381
Basin of Destination Benefits (Montgomery County)		
Construction: Local Payroll	\$	3,602,603
Commerce from New Residents (Montgomery County)		67,478,558,415
Total Benefits Montgomery County (discounted)	\$	67,482,161,018
TOTAL NET ECONOMIC IMPACT (discounted to Year 2005)	\$	68,234,590,243

Total Impacts

anNual calculation

Basin of Origin Impacts	
Loss of Commerce from Farm Production:	
Acreage within Lake	
Grimes County	
Madison County	
Walker County	
Subtotal	
Acreage for Lake Development	
Grimes County	
Madison County	
Waker County	
	Subtotal
Acreage for Mitigation	
Grimes County	
Madison County	
Walker County	
	Subtotal
Loss of Govermment Income for Agricultural Subsidies:	
Acreage within Lake	
Grimes County	
Madison County	
Waker County	
	Subtotal
Acreage for Lake Development	
Grimes County	
Madison CountyWalker County	
Subtotal	
Acreage for Mitigation	
Grimes County	
Madison County	
Waker County	
	Subtotal
Loss of Commerce for Forestry Products:	
Acreage within Lake	
Grimes County	
Madison County	
Wakker County	
	Subtotal
Acreage for Lake Development	
Grimes County	
Madison County	
Walker County	
	Subtotal
Acreage for Mitigation	
Grimes County	
Madison County	
Walker County	
	Subtotal
Total Impacts	

annual calculation

Basin of Origin Impacts	
Loss of Commerce from Farm Production:	
Acreage within Lake	
Grimes County	
Madison County	
Walker County	
Subtotal	
Acreage for Lake Development	
Grimes County	
Madison County	
Waker County	
Subtotal	
Acreage for Mitigation	
Grimes County	
Madison County	
Waker County	
	Subtotal
Loss of Govermment Income for Agricultural Subsidies:	
Acreage within Lake	
Grimes County	
Madison County	
Waker County	
	Subtotal
Acreage for Lake Development	
Grimes County	
Madison County	
Walker County	
	Subtotal
Acreage for Mitigation	
Grimes County	
Madison County	
Waker County	
	Subtotal
Loss of Commerce for Forestry Products:	
Acreage within Lake	
Grimes County	
Madison County	
Waker County	
	Subtotal
Acreage for Lake Development	
Grimes County	
Madison County	
Waker County Subtotal	
Acreage for Mitigation	
Grimes County	
Madison County	
Walker County	
Total Impacts	

	2024		2025		2026		2027		2028		2029		2030		2031		2032		2033		2034		2035
\$	$\begin{array}{r} 459,466 \\ 2,533,666 \\ 487,006 \\ \hline \end{array}$	\$	$\begin{array}{r} 473,250 \\ 2,609,676 \\ 501,616 \\ \hline \end{array}$	\$	487,448 2,687,966 516,665	\$	$\begin{array}{r} 502,071 \\ 2,768,605 \end{array}$ $532,165$	\$	$\begin{array}{r} 517,133 \\ 2,851,663 \\ 548,130 \\ \hline \end{array}$	\$	$\begin{array}{r} 532,647 \\ 2,937,213 \\ 564,574 \\ \hline \end{array}$	\$	$\begin{array}{r} 548,627 \\ 3,025,330 \\ 581,511 \\ \hline \end{array}$	\$	$\begin{array}{r} 565,086 \\ 3,116,090 \\ 598,956 \\ \hline \end{array}$	\$	$\begin{array}{r} 582,038 \\ 3,209,572 \\ 616,925 \\ \hline \end{array}$	\$	$\begin{array}{r} 599,499 \\ 3,305,859 \\ 635,433 \\ \hline \end{array}$	\$	617,484 3,405,035 654,496	\$	$\begin{array}{r} 636,009 \\ 3,507,186 \\ 674,131 \\ \hline \end{array}$
\$	3,480,139	\$	3,584,543	\$	3,692,079	\$	3,802,841	s	3,916,927	\$	4,034,434	\$	4,155,467	\$	4,280,131	\$	4,408,535	\$	4,540,791	\$	4,677,015	\$	4,817,326
\$	$\begin{array}{r} 197,841 \\ 1,090,967 \\ 209,699 \end{array}$	\$	$\begin{array}{r} 224,154 \\ 1,236,065 \\ 237,589 \end{array}$	\$	$\begin{array}{r} 251,867 \\ 1,388,888 \\ 26,664 \end{array}$	\$	$\begin{array}{r} 281,042 \\ 1,549,767 \\ 297,887 \end{array}$	\$	$\begin{array}{r} 311,740 \\ 1,719,050 \\ 330,426 \end{array}$	\$	344,028 1,897,094 364,648	\$	$\begin{array}{r} 377,972 \\ 2,084,274 \\ 400,627 \end{array}$	\$	$\begin{array}{r} 413,643 \\ 2,280,978 \\ 438,436 \\ \hline \end{array}$	\$	$\begin{array}{r} 451,114 \\ \text { 2,487,607 } \\ 478,153 \end{array}$	\$	$\begin{array}{r} 490,461 \\ 2,704,582 \\ 519,859 \end{array}$	\$	$\begin{array}{r} 531,763 \\ 2,932,336 \\ 563,636 \\ \hline \end{array}$	\$	$\begin{array}{r} 575,102 \\ 3,171,322 \\ 609,573 \end{array}$
\$	1,498,507	\$	1,697,808	\$	1,907,719	\$	2,128,696	\$	2,361,215	\$	2,605,770	\$	2,862,873	\$	3,133,056	\$	3,416,874	\$	3,714,902	\$	4,027,735	\$	4,355,996
\$	1,675,310 9,238,276 1,775,727	\$	1,725,570 9,515,424 1828,998	\$	$\begin{aligned} & \text { 1,777,337 } \\ & 9,800,887 \end{aligned}$	\$	1,830,657 10,094,913 1,940,384	\$	1,885,576 10,397,761 1,998,596	\$	1,942,144 10,709,694 2.058,554	\$	2,000,408 11,030,984 $2,120,310$	\$	$\begin{array}{r} 2,060,420 \\ 11,361,914 \\ 2,183,920 \\ \hline \end{array}$	\$	$\begin{array}{r} 2,122,233 \\ 11,702,771 \\ \hline 249437 \end{array}$	\$	$\begin{array}{r} 2,185,900 \\ 12,053,855 \end{array}$	\$	$\begin{array}{r} 2,251,477 \\ 12,415,470 \end{array}$ 2,386,428	\$	$\begin{array}{r} 2,319,021 \\ 12,787,934 \\ 2,458,021 \end{array}$
s	12,689,313	\$	13,069,992	\$	13,462,092	\$	13,865,955	\$	14,281,933	\$	14,710,391	\$	15,151,703	\$	15,606,254	\$	16,074,442	\$	16,556,675	\$	17,053,375	\$	17,564,97

\$	6,175	\$	6,360	\$	6,551	\$	6,748	\$	6,950	\$	7,159	\$	7.373	\$	7.595	\$	7,822	\$	8.057	\$	8,299	\$	8,548
	11,266		11,604		11,952		12,311		12.680		13,061		13,453		13.856		14,272		14,700		15,141		15,595
	2,414		2,487		2,561		2,638		2,717		2,799		2,883		2,969		3,058		3,150		3,244		3,342
\$	19,856	\$	20,451	s	21,065	\$	21,697	s	22,348	s	23,018	\$	23,709	s	24,420	s	25,152	s	25,907	\$	26,68	s	27,485

\$	2,659	\$	3,013	\$	3,385	\$	3,777	\$	4,190	\$	4,624	\$	5,080	\$	5,559	\$	6,063	\$	6,592	\$	7,147	\$	7,729
	4,851		5,496		6,176		6,891		7,644		8,436		9,268		10,143		11,061		12,026		13,039		14,102
\$	1,040	\$	1,178	\$	1,323	\$	1,477	\$	1,638	\$	1,808	\$	1,986	\$	2,173	\$	2,370	\$	2.577	\$	2,794	\$	3,022
\$	8,550	\$	9,687	\$	10,884	\$	12,145	\$	13,472	\$	14,867	\$	16,334	s	17,875	\$	19,495	\$	21,195	\$	22,980	\$	24,853
\$	22,515	\$	23,191	\$	23,887	\$	24,603	\$	25,341	\$	26,102	\$	26,885	\$	27,691	\$	28,522	\$	29,378	\$	30,259	\$	31,167
	41,079		42,312		43,581		44,888		46,235		47,622		49,051		50,522		52,038		53,599		55,207		56,863
	8.803		9,067		9,339		9,619		9,907		10,205		10,511		10,826		11,151		11,485		11,830		12,185
\$	72,397	\$	74,569	\$	76,806	\$	79,111	\$	81,484	\$	83,928	\$	86,446	s	89,040	\$	91,711	\$	94,462	\$	97,296	\$	100,215

\$	1,700,682	\$	551,702	\$	1,804,253	\$	1,858,381	\$	1,914,132	\$	1,971,556	\$	2,030,703	\$	2,091,624	\$	2,154,373	\$	2,219,004	\$	2,285,574	\$	2,354,141
	2,909,485		996,769		3,086,6		3,179,272		3,274,650		3,372,890		3,474,077		3,578,299		3,685,648		3,796,217		3,910,104		4,027,407
	1,126,628		160,427		195,239		1,231,097		1,268,030		1,306,070		1,345,253		1,385,61		1,427,178		994		1,514,094		16
\$	5,736,794	\$	5,908,898	\$	6,086,165	\$	6,268,750	\$	6,456,812	\$	6,650,517	\$	6,850,032	\$	7,055,533	\$	7,267,199	\$	7,485,215	\$	7,709,77	\$	7,941,065
\$	732,294	\$	829,689	\$	932,268	\$	1,040,256	\$	1,153,884	\$	1,273,393	\$	1,399,035	\$	1,531,069	\$	1,669,766	\$	1,815,406	\$	1,968,283	\$	2,128,698
			129,037		265,817		410,687		564,010		726,163		897,538		1,078,541		1,269,597		1,471,146		1,683,645		1,907,569
\$	485,113	\$	549,633	\$	617,587	\$	689,124	\$	764,398	\$	843,568	\$	926,800	\$	1,014,267	\$	1,106,147	\$	1,202,628		1,303,902	\$	1,410,170
\$	1,217,406	\$	1,508,359	\$	1,815,673	s	2,140,068	\$	2,482,292	\$	2,843,125	s	3,223,373	\$	3,623,877	\$	4,045,510	\$	4,489,180	\$	4,955,829	\$	5,446,437
\$	7,322,564	\$	7,542,241	\$	7,768,508	\$	8,001,564	\$	8,241,610	\$	8,488,859	\$	8,743,525	\$	9,005,830	\$	9,276,005	\$	9,554,285	\$	9,840,914	\$	10,136,141
	12,527,262		12,903,080		13,290,173		13,688,878		14,099,544		14,522,530		14,958,206		15,406,952		15,869,161		16,345,236		16,835,593		17,340,661
	4,850,881		4,996,407		5,146,299		5,300,688		5,459,709		5,623,500		5,792,205		5,965,971		6,144,951		6,329,299		6,519,178		6,714,753
\$	24,700,707	s	25,441,728	\$	26,204,980	\$	26,991,130	\$	27,800,863	\$	28,634,889	s	29,493,936	\$	30,378,754	\$	31,290,117	\$	32,228,820	\$	33,195,685	\$	34,191,555
\$	49,423,668	\$	51,316,035	\$	53,277,463	s	55,310,392	\$	57,417,347	\$	59,600,939	\$	61,863,872	\$	64,208,940	\$	66,639,035	s	69,157,147	\$	71,766,371	s	74,469,907

anNual calculation

tal Impacts

\$	8.804	\$	9.068	\$	9,340	\$	9.620	\$	9,909	\$	10,206	\$	10,513	\$	10,828	\$	11,153	\$	11,487	\$	11,832	\$	12,187
	16,063		16,545		17,041		17,553		18,079		18,621		19,180		19,756		20,348		20,959		21,587		22,235
	3,442		3,545		3,652		3,761		3,874		3,990		4,110		4,233		4,360		4,491		4,626		4,765
\$	28,309	s	29,158	s	30,033	s	30,934	\$	31,862	\$	32,818	\$	33,803	\$	34,817	\$	35,861	\$	36,93	\$	38,04	\$	39,187

\$	8,340	\$	8,981	\$	9,652	\$	10,356	\$	11,094	\$	11,866	\$	12,674	\$	13,521	\$	14,407	\$	15,334	\$	16,303	\$	317
	15,216		16,385		17,611		18,895		20,240		21,649		23,124		24,669		26,285		27,976		29,745		,595
\$	3.261	s	3.511	\$	3.774	\$	4.049	\$	4.337	\$	4.639	\$	4.955	\$	5,286	\$	5.632	\$	5.995	\$	6.374	\$	6,770
\$	26,817	s	28,877	s	31,037	s	33,300	\$	35,671	\$	38,154	\$	40,754	\$	43,476	s	46,324	s	49,304	s	52,422	s	55,68

\$	32,102	\$	33,065	\$	34,057	\$	35,078	\$	36,131	\$	37,215	\$	38,331	\$	39,481	\$	40,665	\$	41,885	\$	43,142	\$	44,436
	58,569		60,326		62,136		64,000		65,920		67,898		69,935		72,033		74,194		76,420		78,712		81,073
	12,55		12,927		13,315		13,714		14,12		14,54		14,98		15,435		15,899		16,375		16,867		17,373
\$	103,221	\$	106,318	\$	109,507	\$	112,793	\$	116,176	\$	119,662	\$	123,252	\$	126,949	\$	130,758	\$	134,680	\$	138,721	\$	142,882

ANNUAL CALCULATION

Basin of Origin Impacts	
Loss of Commerce from Farm Production: Acreage within Lake	
Grimes County	
Madison County	
Walker County	
Subtotal	
Acreage for Lake Development	
Grimes County	
Madison County	
Walker County	
Subtotal	
Acreage for Mitigation	
Grimes County	
Madison County	
Walker County	
Subtotal	
Loss of Govermment Income for Agricultur	
Acreage within Lake	
Grimes County	
Madison County	
Walker County	
Subtotal	
Acreage for Lake Development	
Grimes County	
Madison County	
Walker County	
Subtotal	
Acreage for Mitigation	
Grimes County	
Madison County	
Walker County	
Subtotal	
Loss of Commerce for Forestry Products:	
Acreage within Lake	
Grimes County	
Madison County	
Walker County	
Subtotal	
Acreage for Lake Development	
Grimes County	
Madison County	
Walker County	
Subtotal	
Acreage for Mitigation	
Grimes County	
Madison County	
Subtotal	
Total Impacts	

	2048		2049		2050		2051		2052		2053		2054		Total
\$	934,000	\$	962,020	\$	990,881	\$	1,020,608	\$	1,051,226	\$	1,082,762	\$	1,115,245	\$	27,699,889
	5,150,421		5,304,934		5,464,082		5,628,004		5,796,844		5,970,750		6,149,872		152,747,354
	989,983		1,019,683		1,050,273		1,081,782		1,114,235		1,147,662		1,182,092		29,360,190
\$	7,074,405	\$	7,286,637	\$	7,505,236	+	7,730,393	\$	7,962,305	\$	8,201,174	\$	8,447,210	\$	209,807,432
\$	1,367,377	\$	1,449,821	\$	1,535,982	\$	1,626,008	\$	1,720,053	\$	1,818,277	\$	1,920,846	\$	27,839,119
	7,540,217		7,994,847		8,469,970		8,966,404		9,485,002		10,026,645		10,592,251		153,515,121
	1,449,336		1,536,722		1,628,047		1,723,469		1,823,151		1,927,262		2,035,980		29,507,765
\$	10,356,929	\$	10,981,391	\$	11,633,999	\$	12,315,881	\$	13,028,205	\$	13,772,184	\$	14,549,076	\$	210,862,005
\$	3,405,561	\$	3,507,728	\$	3,612,960	\$	3,721,348	\$	3,832,989	\$	3,947,978	\$	4,066,418	\$	100,999,586
	18,779,513		19,342,898		19,923,185		20,520,881		21,136,507		21,770,602		22,423,720		556,948,787
	3,609,686		3,717,977		3,829,516		3,944,402		4,062,734		4,184,616		4,310,154		107,053,390
\$	25,794,760	\$	26,568,603	\$	27,365,661	\$	28,186,631		29,032,230	\$	29,903,196	\$	30,800,292	\$	765,001,763

\$	18,377	\$	19.485	\$	20.643	\$	21.853	\$	23,117	\$	24,437	\$	25.815	\$	374,146
	33,529		35,550		37,663		39,870		42,176		44,585		47,100		682,626
\$	7,185	\$	7,618	\$	8,071	\$	8.544	\$	9,038	\$	9,554	\$	10,093		146,276
\$	59,090	s	62,653	\$	66,376	s	70,267	\$	74,331	s	78,576	\$	83,008	\$	1,203,047
\$	45,769	\$	47,142	\$	48,557	\$	50,013	\$	51,514	\$	53,059	\$	54,651	\$	1,357,390
	83,506		86,011		88,591		91,249		93,986		96,806		99,710		2,476,549
	17,894		18,431		18,984		19,553		20,140		20,744		21,366		530,685
\$	147,169	\$	151,584	\$	156,131	\$	160,815	\$	165,640	\$	170,609	\$	175,727	\$	4,364,624

\$	3,457,136	\$	3,560,850	\$	3,667,676	\$	3,777,706	\$	3,891,037	\$	4,007,768	\$	$\begin{aligned} & 4,128,001 \\ & 7,062,083 \end{aligned}$	\$	102,529,161 152,341,167
	5,914,383		6,091,814		6,274,569		6,462,806		6,656,690		6,856,391				
	2,290,202		2,358,908		2,429,676		2,502,566		2,577,643		2,654,972		2,734,621		67,921,116
\$	11,661,721	\$	12,011,573	\$	12,371,920	\$	12,743,078	s	13,125,370	\$	13,519,131	\$	13,924,705	\$	322,791,444
	5,061,247	\$	5,366,410	\$	5,685,329	\$	6,018,552	\$	6,366,652	\$	6,730,221	\$	7,109,875	\$	103,044,512
	6,111,993		6,557,659		7,024,564		7,513,582		8,025,619		8,561,616		9,122,549		108,573,998
\$	3,352,856	\$	3,555,014	\$	3,766,283	\$	3,987,029	\$	4,217,630	\$	4,458,479	\$	4,709,983		68,262,513
\$	14,526,096	\$	15,479,083	\$	16,476,176	\$	17,519,163	s	18,609,901	\$	19,750,316	\$	20,942,407		279,881,024
	14,885,265	\$	15,331,823	\$	15,791,778	\$	16,265,531	\$	16,753,497	\$	17,256,102	\$	17,773,785	\$	441,456,101
	25,465,345		26,229,305		27,016,184		27,826,670		28,661,470		29,521,314		30,406,954		655,929,852
	9,860,842		10,156,667		10,461,367		10,775,208		11,098,464		11,431,418		11,774,361		292,445,492
\$	50,211,452	\$	51,717,795	\$	53,269,329	\$	54,867,409	\$	56,513,431	\$	58,208,834	\$	59,955,099	\$	1,389,831,444
\$	119,871,985	\$	124,300,893	\$	128,887,650	\$	133,637,742	\$	138,556,841	\$	143,650,812	\$	148,925,720	\$	3,184,939,814

annual calculation

Basin of Origin Benefits	
Construction: Local Payroll \& Materials	
Grimes County	
Madison County	
Walker County	
	Subtotal

Commerce from Lake Visitors
Grimes County
Madison County
Waker County Subtotal

Commerce from New Residents
Grimes County
Madison County
Subtotal

\$-Value per year	(Applicable for income only)		$\begin{aligned} & \text { Multiplier } \\ & \text { effect (ME) } \end{aligned}$	$\underbrace{}_{\substack{\$ \text {-Value per year } \\ \mathrm{w} / \mathrm{ME}}}$	Year of Value	First Year of Impact	$\begin{gathered} \text { Last Year of } \\ \text { Impact } \end{gathered}$
	disposable	locally spent					
\$ 200,384	90.0\%	42.2\%	1.16	87,864	2002	2010	2014
110,095	88.4\%	45.0\%	1.16	50,966	2002	2010	2014
525,446	86.0\%	51.5\%	1.21	281,362	2002	2010	2014
835,926				\$ 420,193			
\$ 6,450,148			1.16	7,456,450	1999	2025	2054
10,965,252			1.16	12,756,310	1999	2025	2054
4,085,094			1.21	4,939,574	1999	2025	2054
\$ 21,500,494				\$ 25,152,334			
\$ 199,846,373	90.0\%	42.2\%	1.16	\$ 87,628,537	2005	2025	2054
387,119,278	88.4\%	45.0\%	1.16	179,209,049	2005	2025	2054
120,661,305	86.0\%	51.5\%	1.21	64,610,774	2005	2025	2054
\$ 707,626,956				\$ 331,448,360			

Benfits

Basin of Destination Benefitss (Montgomery County)
onstruction: Local Payroll \& Materials
Montgomery County
Per Capita Income (disposable, locally spent) Assumed Increase in Population
Commerce from New Residents (Montgomery County)

Income			Multipliereffect (ME)	$\begin{gathered} \text { Income per year } \\ \mathrm{w} / \mathrm{ME} \end{gathered}$	Year of Value	First Year of	$\begin{array}{\|c\|} \hline \text { Last Year of } \\ \text { Impact } \\ \hline \end{array}$
	disposable	locally spent					
\$5,831,984	83.5\%	56.8\%	1.36	\$3,770,584	2002	2010	2014
\$32,068	83.5\%	56.8\%	1.36	\$20,733	2005		

Total Benefits
anNuAL CALCULATION

ANNUAL CALCULATION

Basin of Origin Benefits	202			2025		2026		2027		2028		2029		2030		2031		2032		2033		2034		2035	
Construction: Local Payroll \& Materials																									
Grimes County	\$		-	\$	-	\$		\$		\$	-	\$		\$		\$	-	\$	-	\$.	\$	-	\$	-
Madison County			-		-		-		-		-		-		-		-		-		-		-		-
Waker County			.																						
Subtotal	s		-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	\cdot	\$	-
Commerce from Lake Visitiors																									
Grimes County	\$		-	\$	804,026	\$	1,656,293	\$	2,558,973	\$	3,514,322	\$	4,524,690	\$	5,592,517	\$	6,720,341	\$	7,910,802	\$	9,166,641	\$	10,490,712	\$	11,885,976
Madison County			-		1,375,507		2,833,545		4,377,827		6,012,216		7,740,728		9,567,540		11,496,994		13,533,604		15,682,064		17,947,251		20,334,235
Waker County			-		532,632		1,097,222		1,695,208		2,328,086		2,997,411		3,704,800		4,451,934		5,240,562		6,072,502		6,949,641		7,873,943
Subtotal	s		-	\$	2,712,165	\$	5,587,060	\$	8,632,008	\$	11,854,624	\$	15,262,829	\$	18,864,856	\$	22,669,269	\$	26,684,968	\$	30,921,207	\$	35,387,604	\$	40,094,155
Commerce from New Residents																									
Grimes County	\$		-	\$	3,165,338	\$	6,520,596	\$	10,074,320	\$	13,835,400	\$	17,813,077	\$	22,016,964	\$	26,457,051	\$	31,143,729	\$	36,087,796	\$	41,300,478	\$	46,793,441
Madison County			-		6,473,430		13,335,265		20,602,984		28,294,765		36,429,510		45,026,874		54,107,294		63,692,014		73,803,122		84,463,572		95,697,228
Waker County			.		2,333,885		4,807,803		7,428,055		10,201,196		13,134,040		16,233,674		19,507,464		22,963,072		26,608,460		30,451,904		34,502,008
Subtotal	s		-	\$	11,972,652	\$	24,663,663	\$	38,105,360	\$	52,331,361	\$	67,376,627	\$	83,277,511	\$	100,071,809	\$	117,798,816	\$	136,499,378	\$	156,215,954	\$	176,992,676
Total Benefits	\$		-	s	14,684,817	\$	30,250,724	\$	46,737,368	\$	64,185,985	\$	82,639,456	\$	102,142,368	\$	122,741,079	\$	144,483,784	\$	167,420,585	\$	191,603,558	\$	217,086,831
Basin of Destination Benefits (Montgomery County)																									
Construction: Local Payroll \& Materials																									
Montgomery County	\$		-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Per Capita Income (disposable, locally spent)	\$			\$	37,446	\$	38,569	\$	39,726	\$	40,918	\$	42,146	\$	43,410	\$	44,712	\$	46,054	\$	47,435	\$	48,858	\$	50,324
Assumed Increase in Population			-		11,421		23,456		36,139		49,504		63,587		78,960		90,927		103,371		116,308		129,760		143,747
Commerce from New Residents (Montgomery County)			.		427,666,001		904,686,242		1,435,660,657		2,025,593,580		2,679,928,623		3,427,647,614		4,065,579,368		4,760,604,272		5,517,127,309		6,339,876,572		7,233,926,500
Total Benefits	\$			\$	427,666,001	\$	904,686,242	\$	1,435,660,657	\$	2,025,593,580	\$	2,679,928,623	\$	3,427,647,614	\$	4,065,579,368	\$	4,760,604,272	\$	5,517,127,309	\$	6,339,876,572	\$	7,233,926,500

ANNUAL CALCULATION

		2036		2037		2038		2039		2040		2041		2042		2043		2044		2045		2046		2047
Basin of Origin Benefits																								
Construction: Local Payroll \& Materials																								
Grimes County	\$	-	\$		\$	-	\$	-	\$		\$	-	\$	-	\$	-	\$	-	\$		\$	-	\$	-
Madison County		-		-		-		-		-		-		-		-		-				-		-
Waker County		-		.		-		-		-		-		-		-		.		.		-		
Subtotal	\$		\$		\$	-	\$	-	\$		\$	-	\$	-	\$		\$	-	\$	-	\$	-	\$	
Commerce from Lake Visitors																								
Grimes County	\$	13,355,515	\$	14,902,529	\$	16,530,344	\$	18,242,415	\$	20,042,333	\$	21,933,829	\$	23,920,775	\$	26,007,199	\$	28,197,279	\$	29,043,197	\$	29,914,493	\$	30,811,928
Madison County		22,848,286		25,494,880		28,279,705		31,208,674		34,287,930		37,523,853		40,923,073		44,492,475		48,239,209		49,686,386		51,176,977		52,712,286
Waker County		8,847,449		9,872,278		10,950,635		12,084,808		13,277,175		14,530,209		15,846,475		17,228,639		18,679,472		19,239,856		19,817,052		20,411,564
Subtotal	\$	45,051,250	\$	50,269,687	\$	55,760,683	\$	61,535,897	\$	67,607,439	\$	73,987,891	\$	80,690,323	\$	87,728,313	\$	95,115,960	\$	97,969,439	\$	100,908,522	\$	103,935,778
Commerce from New Residents																								
Grimes County	\$	52,578,812	\$	58,669,191	\$	65,077,672	\$	71,817,859	\$	78,903,888	\$	86,350,443	\$	94,172,777	\$	102,386,736	\$	111,008,777	\$	120,055,992	\$	129,546,132	\$	139,497,631
Madison County		107,528,885		119,984,314		133,090,293		146,874,645		161,366,276		176,595,219		192,592,668		209,391,028		227,023,957		245,526,410		264,934,688		285,286,489
Waker County		38,767,710		43,258,303		47,983,441		52,953,155		58,177,866		63,688,402		69,436,010		75,492,373		81,849,626		88,520,371		95,517,695		102,855,191
Subtotal	\$	198,875,407	s	221,911,809	\$	246,151,406	\$	271,645,659	\$	298,448,031	\$	326,614,063	\$	356,201,455	\$	387,270,138	\$	419,882,360	\$	454,102,772	\$	489,998,515	\$	527,639,310
Total Benefits	\$	243,926,658	s	272,181,495	\$	301,912,089	\$	333,181,556	\$	366,055,469	\$	400,601,954	\$	436,891,778	\$	474,998,450	\$	514,998,320	\$	552,072,211	\$	590,907,037	\$	631,575,088
Basin of Destination Benefitis (Montgomery County)																								
Montgomery County	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Per Capita Income (disposable, locally spent)	\$	51,834	\$	53,389	\$	54,991	\$	56,640	\$	58,339	\$	60,090	\$	61,892	\$	63,749	\$	65,662	\$	67,631	\$	69,660	\$	71,750
Assumed Increase in Population		158,289		173,409		189,130		205,476		222,995		239,755		257,127		275,134		293,799		313,147		333,202		353,990
Commerce from New Residents (Montgomery County)		8,204,722,776		9,258,108,995		10,400,355,242		11,638,188,700		13,009,435,305		14,406,773,206		15,914,165,701		17,539,524,211		19,291,309,383		21,178,568,671		23,210,976,468		25,398,876,965
Total Benefits	\$	8,204,722,776	s	9,258,108,995	\$	10,400,355,242	\$	11,638,188,700	\$	13,009,435,305	\$	14,406,773,206	\$	15,914,165,701	\$	17,539,524,211	\$	19,291,309,383	\$	21,178,568,671	\$	23,210,976,468	\$	25,398,876,965

ANNUAL CALCULATION

		2048		2049		2050		2051		2052		2053		2054		Total
Basin of Origin Benefits																
Construction: Local Payroll \& Materials																
Grimes County	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	118,185
Madison County		-		-		-		-		-		-				68,555
Waker County				-		-		-		-		-		-		378,457
Subtotal	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	565,197
Commerce from Lake Visitiors																
Grimes County	\$	31,736,285	\$	32,688,374	\$	33,669,025	\$	34,679,096	\$	35,719,469	\$	36,791,053	\$	37,894,785	\$	580,905,215
Madison County		54,293,655		55,922,465		57,600,139		59,328,143		61,107,987		62,941,227		64,829,463		993,798,325
Waker County		21,023,911		21,654,628		22,304,267		22,973,395		23,662,597		24,372,475		25,103,649		384,824,473
Subtotal	\$	107,053,851	\$	110,265,467	\$	113,573,431	\$	116,980,633	\$	120,490,052	\$	124,104,754	\$	127,827,897	\$	1,959,528,013
Commerce from New Residents																
Grimes County	\$	149,929,627	\$	160,861,996	\$	172,315,370	\$	184,311,171	\$	196,871,636	\$	210,019,849	\$	223,779,770	\$	2,663,363,517
Madison County		306,620,956		328,978,735		352,402,020		376,934,623		402,622,019		429,511,418		457,651,821		5,446,842,520
Waker County		110,546,970		118,607,687		127,052,554		135,897,366		145,158,520		154,853,036		164,998,580		1,963,766,419
Subtotal	\$	567,097,554	\$	608,448,417	\$	651,769,945	\$	697,143,160	\$	744,652,175	s	794,384,303	\$	846,430,171	s	10,073,972,456
Total Benefits	\$	674,151,405	\$	718,713,884	\$	765,343,375	\$	814,123,793	\$	865,142,228	\$	918,489,057	\$	974,258,067	\$	12,034,065,666
Basin of Destination Benefits (Montgomery County)																
Construction: Local Payroll \& Materials																
Montgomery County	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	5,071,778
Per Capita Income (disposable, locally spent)	\$	73,903	\$	76,120	\$	78,403		80,755	\$	83,178	\$	85,673	\$	88,244		
Assumed IIcrease in Population		375,539		397,875		421,546		442,235		463,562		485,547		508,209		
Commerce from New Residents (Montgomery County)		27,753,329,927		30,286,159,581		33,050,608,553		35,712,893,718		38,558,222,368		41,598,457,174		44,846,210,136		480,075,183,819
Total Benefits	\$	27,753,329,927	\$	30,286,159,581	\$	33,050,608,553		35,712,893,718	s	38,558,222,368	\$	41,598,457,174	s	44,846,210,136	\$	480,080,255,597

PRESENT VALUE CALCULATION

		2010		2011		2012		2013		2014		2015		2016		2017		2018		2019		2020		2021		2022		2023
Basin of Origin Impacts																												
Loss of Commerce trom Farm Production:																												
Acreage within Lake	\$	450,681	\$	884,192	\$	1,301,026	\$	1,701,660	\$	1,669,247	\$	1,637,452	\$	1,606,262	\$	1,575,667	\$	1,545,654	\$	1,516,213	\$	1,487,333	\$	1,459,003	\$	1,431,212	\$	1,403,951
Acreage for Lake Development		-						-		-		70,507		138,328		203,539		266,216		326,432		384,257		439,761		493,010		544,072
Acreage for Mitigation		1,643,276		3,223,951		4,743,813		6,204,606		6,086,423		5,970,492		5,856,768		5,745,210		5,635,778		5,528,430		5,423,126		5,319,829		5,218,499		5,119,099
Loss of Govermment Income for Agricultural Subsidies:																												
Acreage within Lake		2,571		5,045		7,423		9,709		9,524		9,342		9,164		8,990		8,819		8,651		8,486		8,324		8,166		8,010
Acreage for Lake Development		-		-		-		-		-		402		789		1,161		1,519		1,862		2,192		2,509		2,813		3,104
Acreage for Mitigation		9,376		18,394		27,065		35,400		34,725		34,064		33,415		32,779		32,154		31,542		30,941		30,352		29,774		29,206
Loss of Commerce from Forestry																												
Acreage within Lake		366,139		718,329		1,056,970		1,382,450		1,356,118		1,330,287		1,304,948		1,280,092		1,255,709		1,231,791		1,519,190		1,795,194		2,060,133		2,314,327
Acreage for Lake Development		-				-		-		-		57,281		112,379		165,358		216,277		265,197		312,175		357,267		400,528		442,011
Acreage for Mitigation		1,576,471		3,092,885		4,550,959		5,952,366		5,838,988		5,727,769		5,618,668		5,511,646		5,406,662		5,303,678		6,541,123		7,729,503		8,870,238		9,964,713
Total Impacts (discounted)	\$	4,048,513	\$	7,942,796	\$	11,687,257	\$	15,286,190	\$	14,995,025	\$	14,837,595	\$	14,680,722	\$	14,524,442	\$	14,368,789	\$	14,213,796	\$	15,708,824	\$	17,141,741	\$	18,514,372	\$	19,828,493
Basin of Origin Benefits																												
Construction: Local Payroll \& Materials	\$	83,412	\$	81,823	\$	80,265	\$	78,736	\$	77,236	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$.	\$	-
Commerce from Lake Visitors		-		.		.		-		-		-		-		-		-		-		-		-		-		-
Commerce from New Residents		-		-		.		-		-							
Total Benefits (discounted)	\$	83,412	\$	${ }^{81,823}$	\$	${ }^{80,265}$	\$	78,736	\$	77,236	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Basin of Destination Benefits (Montgomery County)																												
Construction: Local Payroll \& Materials	\$	748,497	\$	734,240	\$	720,254	\$	706,535	\$	693,077	\$	-	\$	-	\$	-	\$	-	\$	-	\$	\checkmark	\$	-	\$	-	\$	-
Commerce from New Residents (Montgomery County)		-						-		-		.		-		.				.		.						
Total Benefits Montgomery County (discounted)	s	748,497	\$	734,240	\$	720,254	\$	706,535	\$	693,077	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	
Total Net Present Value	\$	$(3,216,604)$	\$	$(7,126,733)$	s	(10,886,738)	s	(14,500,919)	s	(14,224,711)	\$	(14,837,595)	\$	(14,680,722)	\$	(14,524,442)	\$	(14,368,789)	\$	(14,213,796)	\$	(15,708,824)	\$	(17,141,741)	s	(18,514,372)	\$	(19,828,493)

PRESENT VALUE CALCULATION

Basin of Origin Impacts	2024		2025		2026		2027		2028		2029		2030		2031		2032		2033		2034		2035	
Loss of Commerce from Farm Production:																								
Acreage within Lake	\$	1,377,209	\$	1,350,976	\$	1,325,244	\$	1,300,001	\$	1,275,239	\$	1,250,949	\$	1,227,121	\$	1,203,747	\$	1,180,819	\$	1,158,327	\$	1,136,264	\$	1,114,621
Acreage for Lake Development		593,010		639,886		684,761		727,695		768,744		807,966		845,414		881,143		915,204		947,648		978,523		1,007,879
Acreage for Mitigation		5,021,592		4,925,943		4,832,115		4,740,075		4,649,788		4,561,220		4,474,340		4,389,114		4,305,512		4,223,502		4,143,055		4,064,139
Loss of Government Income for Agricultura Subsidies:																								
Acreage within Lake		7,857		7,708		7,561		7,417		7,276		7,137		7,001		6,868		6,737		6,609		6,483		6,359
Acreage for Lake Development		3,383		3,651		3,907		4,152		4,386		4,610		4,823		5,027		5,222		5,407		5,583		5,750
Acreage for Mitigation		28,650		28,104		27,569		27,044		26,529		26,023		25,528		25,042		24,565		24,097		23,638		23,187
Loss of Commerce from Forestry																								
Acreage within Lake		2,270,244		2,227,002		2,184,582		2,142,971		2,102,153		2,062,112		2,022,834		1,984,303		1,946,507		1,909,431		1,873,061		1,837,383
Acreage for Lake Development		481,769		568,485		651,722		731,582		808,163		881,562		951,871		1,019,182		1,083,583		1,145,161		1,204,000		1,260,183
Acreage for Mitigation		9,774,909		9,588,720		9,406,078		9,226,914		9,051,163		8,878,760		8,709,641		8,543,743		8,381,005		8,221,367		8,064,770		7,911,155
Total Impacts (discounted)	\$	19,558,624	\$	19,340,474	\$	19,123,538	\$	18,907,850	\$	18,693,440	\$	18,480,339	\$	18,268,573	\$	18,058,170	\$	17,849,154	\$	17,641,548	\$	17,435,376	s	17,230,657
Basin of Origin Benefits																								
Construction: Local Payroll \& Materials	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Commerce from Lake Visitors		-		1,022,187		2,005,433		2,950,851		3,859,526		4,732,513		5,570,844		6,375,522		7,147,524		7,887,803		8,597,288		9,276,883
Commerce from New Residents		-		3,490,180		6,847,401		10,075,462		13,178,064		16,158,817		19,021,236		21,768,747		24,404,691		26,932,320		29,354,803		31,675,231
Total Benefits (discounted)	\$	-		\#REF!		\#REF!		\#REF!	\$	17,037,590	\$	20,891,330	\$	24,592,080	\$	28,144,269	\$	31,552,215	\$	34,820,123	\$	37,952,091	\$	40,952,114
Basin of Destination Benefits (Montgomery County)																								
Construction: Local Payroll \& Materials	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$		\$	-	\$	-	\$	-	\$	-		-
Commerce from New Residents (Montgomery County)		-		161,182,818		324,730,219		490,780,411		659,475,147		830,959,868		1,012,193,841		1,143,406,529		1,275, 119,852		1,407,384,072		1,540,249,689		1,673,767,457
Total Benefits Montgomery County (discounted)	\$	-	\$	161,182,818	\$	324,730,219	\$	490,780,411	s	659,475,147	\$	830,959,868	\$	1,012,193,841	\$	1,143,406,529	\$	1,275,119,852	\$	1,407,384,072	\$	1,540,249,689	\$	1,673,767,457
Total Net Present Value	\$	(19,558,624)		\#REF!		\#REF!		\#REF!	\$	657,819,296	\$	833,370,859	\$	1,018,517,348	\$	1,153,492,629	\$	1,288,822,913	\$	1,424,562,646	\$	1,560,766,405	\$	1,697,488,914

PRESENT VALUE CALCULATION	2036		2037		2038		2039		2040		2041		2042		2043		2044		2045		2046		2047	
Basin of Origin Impacts																								
Loss of Commerce from Farm Production:																								
Acreage within Lake	\$	1,093,390	\$	1,072,563	\$	1,052,133	\$	1,032,093	\$	1,012,434	\$	993,149	\$	974,232	\$	955,675	\$	937,472	\$	919,616	\$	902,099	\$	884,916
Acreage for Lake Development		1,035,762		1,062,216		1,087,287		1,111,018		1,133,449		1,154,624		1,174,580		1,193,358		1,210,993		1,227,524		1,242,986		1,257,414
Acreage for Mitigation		3,986,727		3,910,790		3,836,298		3,763,226		3,691,546		3,621,230		3,552,255		3,484,593		3,418,219		3,353,110		3,289,242		3,226,589
Loss of Govermment Income for Agriculural Subsidies:																								
Acreage within Lake		6,238		6,119		6,003		5,888		5,776		5,666		5,558		5,452		5,349		5,247		5,147		5,049
Acreage for Lake Development		5,909		6,060		6,203		6,339		6,467		6,588		6,701		6,809		6,909		7,003		7,092		7,174
Acreage for Mitigation		22,746		22,313		21,888		21,471		21,062		20,660		20,267		19,881		19,502		19,131		18,766		18,409
Loss of Commerce from Foresty																								
Acreage within Lake		1,802,386		1,768,054		1,734,377		1,701,341		1,668,935		1,637,146		1,605,962		1,575,372		1,545,365		1,515,930		1,487,055		1,458,730
Acreage for Lake Development		1,313,788		1,364,894		1,413,576		1,459,908		1,503,963		1,545,810		1,585,516		1,623,150		1,658,774		1,692,453		1,724,246		1,754,215
Acreage for Mitigation		7,760,466		7,612,648		7,467,645		7,325,404		7,185,873		7,048,999		6,914,732		6,783,023		6,653,823		6,527,083		6,402,758		6,280,800
Total Impacts (discounted)	\$	17,027,411	\$	16,825,657	\$	16,625,411	\$	16,426,688	\$	16,229,504	\$	16,033,872	\$	15,839,804	\$	15,647,313	\$	15,456,407	\$	15,267,097	\$	15,079,391	\$	14,893,296
Basin of Origin Benefits																								
Constuction: Local Payroll \& Materials	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Commerce from Lake Visitors		9,927,470		10,549,906		11,145,029		11,713,653		12,256,572		12,774,558		13,268,364		13,738,724		14,186,352		13,916,136		13,651,067		13,391,046
Commerce from New Residents		33,896,610		36,021,874		38,053,877		39,995,402		41,849,157		43,617,782		45,303,847		46,909,857		48,438,248		50,587,202		52,636,718		54,589,803
Total Benefits (discounted)	\$	43,824,080	s	46,571,781	\$	49,198,907	\$	51,709,055	\$	54,105,729	\$	$56,392,340$	\$	58,572,212	\$	60,648,581	\$	62,624,600	\$	64,503,338	\$	66,287,784	\$	67,980,849
Basin of Destination Benefitis (Montgomery County)																								
Constuction: Local Payroll \& Materials	\$	-	\$	-	\$		\$		\$		\$	-	\$	-	\$	-	\$	-	\$		\$		\$	-
Commerce from New Residents (Montgomery County)		1,807,988,403		1,942,963,845		2,078,745,415		2,215,385,078		2,358,484,239		2,487,436,215		2,616,855,910		2,746,783,586		2,877,259,564		3,008,324,237		3,140,018,085		3,272,381,685
Total Benefits Montgomery County (discounted)	\$	1,807,988,403	\$	1,942,963,845	\$	2,078,745,415	\$	2,215,385,078	\$	2,358,484,239	\$	2,487,436,215	\$	2,616,855,910	\$	2,746,783,586	\$	2,877,259,564	\$	3,008,324,237	\$	3,140,018,085	\$	3,272,381,685
Total Net Present Value	\$	1,834,785,072	\$	1,972,709,968	\$	2,111,318,911	\$	2,250,667,445	\$	2,396,360,463	\$	2,527,794,683	\$	2,659,588,318	\$	2,791,784,855	\$	2,924,427,757	\$	3,057,560,478	\$	3,191,226,479	\$	3,325,469,238

	2048		2049		2050		2051		2052		2053		2054		Total	
Basin of Origin Impacts																
Loss of Commerce from Farm Production:																
Acreage within Lake	\$	868,061	\$	851,526	\$	835,307		819,396		803,788	\$	788,478		773,460		52,139,856
Acreage for Lake Development		1,270,841		1,283,300		1,294,824		1,305,442		1,315,187		1,324,087		1,332,170		35,681,057
Acreage for Mitigation		3,165,131		3,104,842		3,045,703		2,987,689		2,930,781		2,874,956		2,820,195		190,112,815
Loss of Govermment Income for Agricultural Subsidies:																
Acreage within Lake		4,953		4,858		4,766		4,675		4,586		4,499		4,413		297,478
Acreage for Lake Development		7,251		7,322		7,387		7,448		7,504		7,554		7,601		203,574
Acreage for Mitigation		18,058		17,714		17,377		17,046		16,721		16,403		16,090		1,084,665
Loss of Commerce from Forestry																
Acreage within Lake		1,430,945		1,403,688		1,376,952		1,350,724		1,324,996		1,299,758		1,275,000		72,496,976
Acreage for Lake Development		1,782,416		1,808,906		1,833,741		1,856,973		1,878,655		1,898,837		1,917,569		44,733,126
Acreage for Mitigation		6,161,166		6,043,811		5,928,690		5,815,763		5,704,987		5,596,320		5,489,724		312,147,609
Total Impacts (discounted)	\$	14,708,820	\$	14,525,968	\$	14,344,746		14,165,156	\$	13,987,204	\$	13,810,892		13,636,222		708,897,156
Basin of Origin Benefits																
Construction: Local Payroll \& Materials	\$	-	\$	-	\$	-		-	\$	-	\$	-		-		401,473
Commerce from Lake Visitors		13,135,979		12,885,770		12,640,326		12,399,558		12,163,376		11,931,693		11,704,422		296,806,376
Commerce from New Residents		56,449,387		58,218,324		59,899,393		61,495,299		63,008,676		64,442,089		65,798,036		1,164,118,532
Total Benefits (discounted)	\$	69,585,366	\$	71,104,094	\$	72,539,719		73,894,857	\$	75,172,052	\$	76,373,782		77,502,459		1,461,326,381
Basin of Destination Benefits (Montgomery County)																
Construction: Local Payroll \& Materials	\$		\$		\$	-					\$.				3,602,603
Commerce from New Residents (Montgomery County)		3,405,455,727		3,539,281,021		3,678,417,350		3,785,447,994		3,892,422,258		3,999,363,403		4,106,294,498		67,478,558,415
Total Benefits Montgomery County (discounted)	\$	3,405,455,727	\$	3,539,281,021	\$	3,678,417,350		3,785,447,994	\$	3,892,422,258	\$	3,999,363,403		4,106,294,498		67,482,161,018
Total Net Present Value	\$	3,460,332,272	\$	3,595,859,147	\$	3,736,612,323		3,845,177,695	\$	3,953,607,106	\$	4,061,926,293		4,170,160,735		68,234,590,243

Table 1

Loss of Commerce from Farm Production

Acres of Farmable Land in the Lake Site
Acres of Farm Land Removed from Production by Lakeside Development
Acres of Farm Land Required for Mitigation

Total Acres of Land Removed from Agricultural Use

Annual Agr. Related Commerce/Acre, 3 counties

Annual Agr. Related Commerce Lost (within the lakesite)
Annual Agr. Related Commerce Lost (lakeside development)
Annual Agr. Related Commerce Lost (mitigation)
Total Annual Agr. Commerce Lost

	Madison	Grimes	Walker
$9,005^{(1)}$	4,592	2,701	1,711
$19,387^{(2)}$	9,887	5,816	3,683
$32,833^{(3)}$	16,745	9,850	6,238
$61,224^{(4)}$	31,224	18,367	11,633
$\$ \quad 94,057^{(5)}$	$\$$	270.46	$\$$
		83.91	$\$$
$\$ 1,698,394^{(6)}$	$\$ 1,242,040$	$\$ 226,665$	$\$ 229,689$
$\$ 3,656,542^{(7)}$	$\$ 2,674,039$	$\$ 487,996$	$\$ 494,506$
$\$ 6,192,698^{(8)}$	$\$ 4,528,738$	$\$ 826,467$	$\$ 837,493$
$\$ 11,547,634^{(9)}$	$\$ 8,444,817$	$\$ 1,541,128$	$\$ 1,561,689$

Notes:
(1) Estimated Number of Farmable Acres within Proposed Take-line
(2) Estimated Farm Land Adjacent to Proposed Take-line Available for Residential Development
(3) Mitigation acreage estimated to be moderate: Texas Department Wildlife, 1990
(4) Estimated Number of Acres Removed from Agricultural Use
(5) Estimated Market Value of Agricultural Products per Acre, US Department of Agriculture Census 2002, escalated to 2005
(6) Estimated Market Value of Agricultural Commerce Lost (within lakesite)
(7) Estimated Market Value of Agricultural Commerce Lost (lakesite development)
(8) Estimated Market Value of Agricultural Commerce Lost (mitigation)
(9) Estimated Total Market Value of Agricultural Products Lost, US Department of Agriculture Census 2002, escalated to 2005

Table 2

Loss of Income from Agricultural Subsidies

Acres of farmable land in the lake site
Acres of land removed from production by lakeside development
Acres of Land Required for Mitigation
Total acres of land removed from Agr. use.
Subsidies per acre
Annual Loss from Agricultural Subsidy (within lakesite)
Annual Loss from Agricultural Subsidy (lakeside development)
Annual Loss from Agricultural Subsidy (mitigation)
Total Annual Loss in Income from Government Agricultural Subsidy

	Madison		Grimes		Walker	
9,005 ${ }^{(1)}$		4,592		2,701		1,711
$19,387{ }^{(2)}$		9,887		5,816		3,683
32,833 ${ }^{(3)}$		16,745		9,850		6,238
$61,224{ }^{(4)}$		31,224		18,367		11,633
(5)	\$	1.20	\$	1.13	\$	0.67
\$9,708 ${ }^{(6)}$	\$	5,523	\$	3,046	\$	1,139
\$20,900 ${ }^{(7)}$	\$	11,890	\$	6,558	\$	2,451
\$35,397 ${ }^{(8)}$	\$	20,138	\$	11,107	\$	4,152
\$66,005 ${ }^{(9)}$	\$	37,551	\$	20,712	\$	7,742

Notes:
(1) Estimated Number of Farmable Acres within Proposed Take-line
(2) Area Adjacent to Proposed Take-line Available for Residential Development
(3) Mitigation acreage estimated to be moderate: Texas Department Wildlife, 1990
(4) Estimated Number of Acres Removed from Agricultural Use
(5) Estimated Subsidy/acre, EWG.org, 10 year average in 2005 \$
(6) Estimated Annual Loss from Agricultural Subsidy (within lakesite)
(7) Estimated Annual Loss from Agricultural Subsidy (lakeside development)
(8) Estimated Annual Loss from Agricultural Subsidy (mitigation)
(9) Estimated Total Annual Value of Government Income Lost

Table 3

Loss of Commerce from Forestry

Acres of Forests in the Lake Site
Acres of Forests Removed from Production by Lakeside Development
Acres of Forests Required for Mitigation

Total Acres of Land Removed from Forestry Use

Annual Forestry Related Commerce/Acre, 3 counties

Forestry Commerce Lost in the Lake Site
Forestry Commerce Lost from Production by Lakeside Development
Forestry Commerce Lost for Mitigation
Annual Forestry Related Commerce Lost
$18,395^{(1)}$
$39,604{ }^{(2)}$
$79,204^{(3)}$
$137,203{ }^{(4)}$

(5)
$\$ 2,796,612$
$\$ 12,020,940$
$\$ 20,858,821{ }^{(6)}$

Notes:

(1) Estimated Number of Forest Acres within Proposed Take-line
(2) Estimated Forest Adjacent to Proposed Take-line Available for Residential Development
(3) Mitigation acreage estimated to be moderate: Texas Department Wildlife, 1990
(4) Estimated Number of Acres Removed from Forestry Use
(5) Estimated Market Value of Forestry Products per Acre, Walker County Extension
(6) Estimated Market Value of Forestry Commerce Lost

Table 4

Short Term Benefits From Construction

Percent of Total Value
Projected Lake Construction Cost
Direct Construction Employment (Local Payroll)
Commerce from Construction
Total Short Term Benefits from Construction
Madison
.3\%
Grimes
0.6\%

\$32,267,971 ${ }^{\text {(2) }}$
$\frac{\$ 43,023,961}{\$ 75,291,931}{ }^{(3)}$
\$110,095
(4)

Walker
1.6\%
\$200,384
\$525,446

Notes:

(1) Estimated Project Cost Region H 2006, 2002 Dollars
(2) Estimated Construction Based Local Payroll, RSMeans Manuals
(3) Estimated Construction Based Materials, RS Means Manuals
(4) Benefits distributed by county population 2000 Census

Table 5

Commerce from Lake Visitors

Estimated visitors per year
Estimated spending/visitor per visit
Estimated spending/visitor per visit less State Sales Tax
Annual visitor commerce
Estimated non-local visitors

Estimated non-local visitor annual commerce
Estimated local visitor annual commerce

	Madison	Grimes	Walker
$1,565,950^{(1)}$	798,635	469,785	297,531
$\$ 14.59^{(2)}$	$\$ 14.59$	$\$ 14.59$	$\$ 14.59$
$\$ 13.73^{(3)}$	$\$ 13.73$	$\$ 13.73$	$\$ 13.73$
$\$ 21,500,494^{(4)}$	$\$ 10,965,252$	$\$ 6,450,148$	$\$ 4,085,094$
$97 \%^{(5)}$	97%	97%	97%
$\$ 20,752,073^{(6)}$	$\$ 10,583,557$	$\$ 6,225,622$	$\$ 3,942,894$
$\$ 748,421^{(7)}$			

Notes:

(1) Average Estimated Number of Visitors for Selected Lakes, USACE 1999 Summary (Addicks, Somerville)
(2) Estimated Spending/Visitor per visit, Average for Selected Lakes, USACE 1999 Summary (Addicks, Somerville)
(3) Estimated Spending/Visitor per visit Less 6.25% Texas State Sales Tax
(4) Estimated Total Annual Visitor Commerce
(5) Estimated \% of out-of-town Lake Visitors for Somerville State Park, Texas A\&M Recreation, Park \& Tourism Sciences (Adjusted)
(6) Estimated Non-Local Visitor Annual Commerce, 1999 Dollars
(7) Estimated Local Visitor Annual Commerce

Table 6

Commerce from New Residents

Estimated population increase
Estimated annual per capita income

Estimated residential commerce
$\$ 707,626,956{ }^{(3)}$

Madison
$35,600{ }^{(1)}$
(2) $\$$

18,156

21,322 \$
\$ 387,119,278

Grimes
10,680
Walker

18,712 \$

Notes:

(1) Estimated Increase in Population Due to Adjacent Residential Development
(2) IMPLAN Professional Software, Analysis 2003
(3) Estimated Increase in New Resident Commerce

Table 7

Short Term Benefits From Construction

	Percent of Total	Value	
Projected Lake Construction Cost		\$215,119,804	(1)
Direct Construction Employment (Local Payroll)	15\%	\$32,267,971	(2)
Local Purchase of Construction Materials	20\%	\$43,023,961	${ }^{(3)}$
Total Short Term Benefits from Construction		\$75,291,931	
Montgomery	7.7\%	\$5,831,984	(4)

Notes:

(1) Estimated Project Cost Region H 2006, 2002 Dollars
(2) Estimated Construction Based Local Payroll, RSMeans Manuals
(3) Estimated Construction Based Materials, RS Means Manuals
(4) Benefits distributed by county population 2000 Census

Appendix C, Figure 1
Toledo Bend Concept Map
Source: North Texas Municipal Water District

	Texas Water Development Board Socioeconomic Impact of Selected Interbasin Transfers in Texas Sumpary of Toledo Bend Interbasin Transfer Cost Comparison	

Notes:
(1) Includes all Operation and Maintenance costs

Texas Water Development Board Socioeconomic Analysis of Selected Interbasin Transfers in Texas Toledo Bend Interbasin Transfer Cost Escalation						
CONSTRUCTION COSTS						
TRANSMISSION FACILITIES						
Pipeline						
Pipeline - TB1	\$	586,973,000	\$	666,320,391	\$	729,725,922
Pipeline - TB2		385,762,000		437,909,558		479,580,034
Pipeline - A1		144,881,000		164,466,108		180,116,328
Pipeline - A2		42,279,000		47,994,303		52,561,331
Pipeline - A3 (rural)		41,473,000		47,079,347		51,559,310
Pipeline - A3 (urban)		5,655,000		6,419,447		7,030,306
Pipeline - A4		95,064,000		107,914,813		118,183,741
Pipeline - A5 (rural)		48,680,000		55,260,594		60,519,066
Pipeline - A5 (urban)		9,996,000		11,347,266		12,427,046
Pipeline - B1		49,817,000		56,551,294		61,932,587
Pipeline - B2		107,735,000		122,298,687		133,936,352
Pipeline - B3 (rural)		154,396,000		175,267,352		191,945,393
Pipeline - B3 (urban)		88,966,000		100,992,482		110,602,696
Pipeline - B4 (urban)		49,662,000		56,375,341		61,739,890
Right of Way Easements (rural)		5,559,000		6,074,469		6,637,737
Right of Way Easements (urban)		510,000		557,291		608,967
Less Cost of B2 without TB water (Table R-__)		$(61,736,000)$		$(70,081,513)$		$(76,750,310)$
Less Cost of B3 without TB water (Table R-__)		$(158,318,000)$		$(179,719,530)$		$(196,821,231)$
Less Cost of B4 without TB water (Table R-__)		$(38,471,000)$		$(43,671,535)$		$(47,827,219)$
Permitting \& Mitigation		18,634,000		21,152,956		23,165,823
Engineering and Contingencies (30\%) ${ }^{(2)}$		465,844,200		528,817,321		579,138,373
Subtotal of Pipeline	\$	2,043,361,200	\$	2,319,326,442	\$	2,540,012,144
Pump Stations						
Intake and Pump Station - TB1	\$	35,140,000	\$	39,890,248	\$	43,686,113
Booster Pump Station - TB1		26,000,000		29,514,697		32,323,248
Booster Pump Station - TB2		18,250,000		20,717,047		22,688,434
Intake and Pump Station - A1		25,136,000		28,533,901		31,249,122
Booster Pump Station - A2		8,550,000		9,705,795		10,629,376
Intake and Pump Station - A4		19,430,000		22,056,560		24,155,412
Intake and Pump Station - A5		13,520,000		15,347,642		16,808,089
Pump Station - B1		8,020,000		9,104,149		9,970,479
Intake and Pump Station - B2		20,060,000		22,771,724		24,938,629
Ennis Booster Pump Station - B3		16,490,000		18,719,129		20,500,399
Waxahachie Booster Pump Station - B3		16,490,000		18,719,129		20,500,399
Less Cost of B2 without TB water (Table R-__)		$(14,378,000)$		$(16,321,627)$		$(17,874,756)$
Less Cost of Boosters without TB water (Table R-__)		$(29,160,000)$		$(33,101,868)$		$(36,251,766)$
Permitting \& Mitigation --		1,963,000		2,228,360		2,440,405
Engineering and Contingencies (35\%) ${ }^{(3)}$		57,241,800		64,979,784		71,163,112
Subtotal of Pump Station	\$	222,752,800	\$	252,864,668	\$	276,926,694
Storage Tanks						
Storage - TB1	\$	14,000,000	\$	15,892,529	\$	17,404,826
Storage - TB2		11,000,000		12,486,987		13,675,220
Storage - A2		4,200,000		4,767,759		5,221,448
Earthen Storage - A3		2,000,000		2,270,361		2,486,404
Storage - A5		4,200,000		4,767,759		5,221,448
Storage - B1		4,200,000		4,767,759		5,221,448
Storage - B3		11,000,000		12,486,987		13,675,220
Permitting and mitigation		439,000		498,344		545,766
Engineering and Contingencies (35\%) ${ }^{(4)}$		17,710,000		20,104,049		22,017,105
Subtotal of Storage Tanks	\$	68,749,000	\$	78,042,534	\$	85,468,884
CONSTRUCTION TOTAL	\$	2,334,863,000	\$	2,650,233,645	\$	2,902,407,722
Interest During Construction ${ }^{(5)}$	\$	284,082,622	\$	322,453,747	\$	353,135,749
TOTAL CONSTRUCTION COST	\$	2,618,945,622	\$	2,972,687,391	\$	3,255,543,471
ANNUAL COSTS						
Debt Service (6\% for 30 years)	\$	190,013,000	\$	215,962,503	\$	236,511,689
Operation and Maintenance ${ }^{(6)}$		25,058,208		28,445,593		31,152,411
All Other Annual Costs ${ }^{(7)}$		100,275,792		103,284,066		106,382,588
TOTAL ANNUAL COSTS	\$	315,347,000	\$	347,692,162	\$	374,046,688

Notes:
Notes:
(1) All costs are inflated based upon factors contained in the Construction Cost Index History by ENR (Engineering News-Record) unless otherwise noted
(2) Cost adjusted to exclude Right of Way Easements in percentage calculation; Calculated by applying 30% to all Pipeline Costs excluding Right of Way Easements and Permitting \& Mitigation
(3) Calculated by applying 35% to all Pump Station Costs excluding Permitting \& Mitigation
(4) Cost adjusted to include Storage - TB1 in percentage calculation; Calculated by applying 35% to all Storage Tanks Costs excluding Permitting \& Mitigation
(5) Interest During Construction calculated by applying the same percentage used to calculate Interest During Construction in 2002
(6) Calculated using percentages given in "U-3 Assumptions for Annual Costs"
(7) All other costs inflated at a 3% inflation rate

Texas Water Development Board Socioeconomic Analysis of Selected Interbasin Transfers in Texas Seawater Desalination Cost Escalation						
CONSTRUCTION COSTS						
TRANSMISSION FACILITIES ${ }^{\text {a }}$						
Pipeline						
Pipeline Rural (2 pipelines)	\$	1,066,975,000	\$	1,211,209,373	\$	1,409,333,167
Pipeline Urban (2 pipelines)		66,938,000		75,986,722		88,416,264
Right of Way Easements (Rural)		8,076,000		8,824,863		10,230,435
Right of Way Easements (Urban)		3,630,000		3,966,599		4,598,375
Engineering and Contingencies (30\%) ${ }^{(2)}$		340,174,000		386,158,829		449,324,829
Subtotal of Pipeline	\$	1,485,793,000	\$	1,686,146,386	\$	1,961,903,071
Pump Stations						
Intake and Pump Station at Gulf	\$	17,800,000	\$	20,206,216	\$	23,511,451
Booster Pump Station		89,250,000		101,314,873		117,887,472
Ground Storage Tanks (covered)		30,000,000		34,055,419		39,626,041
Engineering and Contingencies (35\%) ${ }^{(3)}$		47,968,000		54,451,778		63,358,737
Subtotal of Pump Stations	\$	185,018,000	\$	210,028,286	\$	244,383,701
Terminal Storage and Permitting						
Ground Storage Tanks (covered)	\$	22,800,000	\$	25,882,119	\$	30,115,791
Permitting and Mitigation		12,937,600		14,686,513		17,088,862
Permitting of Treatment Plant and Reject Stream		7,538,400		8,557,446		9,957,232
Subtotal Terminal Storage and Permitting	\$	43,276,000	\$	49,126,078	\$	57,161,885
WATER TREATMENT FACILITIES						
Treatment Plant with RO	\$	532,200,000	\$	604,143,141	\$	702,965,966
Engineering and Contingencies (35\%) ${ }^{(4)}$		186,270,000		211,450,100		246,038,088
Subtotal of Water Treatment	\$	718,470,000	\$	815,593,241	\$	949,004,054
CONSTRUCTION TOTAL	\$	2,432,557,000	\$	2,760,893,991	\$	3,212,452,711
Interest During Construction ${ }^{(5)}$	\$	295,969,662	\$	335,918,485	\$	390,859,718
TOTAL CAPITAL COST	\$	2,728,526,662	\$	3,096,812,476	\$	3,603,312,430
ANNUAL COSTS						
Debt Service (6\% for 30 years)	\$	206,047,351	\$	224,980,055	\$	261,776,726
Electricity ${ }^{(6)}$		37,722,000		42,117,058		52,676,903
Facility Operation and Maintenance ${ }^{(7)}$		18,402,456		20,890,112		24,307,216
Water Treatment ${ }^{(8)}$		97,755,300		104,950,487		127,830,131
Reject Water Disposal ${ }^{(9)}$		3,258,510		3,258,510		3,258,510
TOTAL ANNUAL COSTS	\$	363,185,617	\$	396,196,222	\$	469,849,486

Notes:

(1) All costs are inflated based upon factors contained in the Construction Cost Index History by ENR (Engineering News-Record) unless otherwise noted
(2) Calculated by applying 30% to all Pipeline Costs excluding Right of Way Easements
(3) Calculated by applying 35% to all Pump Station Costs
(4) Calculated by applying 35% to Treatment Plant with RO
(5) Interest During Construction calculated by applying the same percentage used to calculate Interest During Construction in 2002
(6) Cost escalated using the Producer Price Industrial Electric Power Index; 2002 cost estimated at $\$ 0.06$ kwh per Exhibit B of the TWDB planning guidelines
(7) Calculated using percentages given in "U-3 Assumptions for Annual Costs"
(8) Water Treatment cost escalated using the Handy-Whitman NARUC - account 320; 2002 cost estimated at $\$ 1.50$ per 1,000 gallons per Region C Plan appendix U-19
(9) Held constant at $\$ 0.05$ per 1,000 gallons per discussions with Freese and Nichols

Texas Water Development Board Socioeconomic Impact of Selected Interbasin Transfers in Texas Seawater Desalination Present Value Calculation										
Operations \& Maintenance Cost										
Year	Debt Service	Electricity ${ }^{(1)}$	Misc. ${ }^{(2)}$	Water Treatment ${ }^{(3)}$	Reject Water ${ }^{(4)}$		Total		PV ${ }^{(5)}$	
2005	\$	\$	\$	\$	\$	-	\$	-	\$	-
2006	-	-	-	-				-		
2007			-	-				-		
2008			-					-		
2009	-	-	-	-				-		-
2010	261,776,726	52,676,903	24,307,216	24,307,216		3,258,510		366,326,571		287,026,454
2011	261,776,726	55,087,451	25,036,432	25,285,117		3,258,510		370,444,237		276,431,193
2012	261,776,726	57,608,308	25,787,525	26,302,361		3,258,510		374,733,430		266,316,052
2013	261,776,726	60,244,522	26,561,151	27,360,528		3,258,510		379,201,438		256,658,459
2014	261,776,726	63,001,372	27,357,986	28,461,267		3,258,510		383,855,861		247,436,910
2015	261,776,726	65,884,378	28,178,725	29,606,290		3,258,510		388,704,629		238,630,923
2016	261,776,726	68,899,313	29,024,087	30,797,378		3,258,510		393,756,014		230,220,986
2017	261,776,726	72,052,215	29,894,809	32,036,385		3,258,510		399,018,645		222,188,512
2018	261,776,726	75,349,396	30,791,654	33,325,238		3,258,510		404,501,523		214,515,794
2019	261,776,726	78,797,460	31,715,403	34,665,942		3,258,510		410,214,042		207,185,966
2020	261,776,726	82,403,311	32,666,865	36,060,585		3,258,510		416,165,997		200,182,960
2021	261,776,726	86,174,169	33,646,871	37,511,335		3,258,510		422,367,611		193,491,469
2022	261,776,726	90,117,585	34,656,278	39,020,450		3,258,510		428,829,549		187,096,912
2023	261,776,726	94,241,456	35,695,966	40,590,278		3,258,510		435,562,936		180,985,397
2024	261,776,726	98,554,040	36,766,845	42,223,262		3,258,510		442,579,383		175,143,690
2025	261,776,726	103,063,971	37,869,850	43,921,943		3,258,510		449,891,000		169,559,186
2026	261,776,726	107,780,282	39,005,946	45,688,962		3,258,510		457,510,426		164,219,874
2027	261,776,726	112,712,416	40,176,124	47,527,071		3,258,510		465,450,847		159,114,312
2028	261,776,726	117,870,249	41,381,408	49,439,128		3,258,510		473,726,021		154,231,599
2029	261,776,726	123,264,110	42,622,850	51,428,110		3,258,510		482,350,305		149,561,351
2030	261,776,726	128,904,799	43,901,536	53,497,109		3,258,510		491,338,679		145,093,674
2031	261,776,726	134,803,611	45,218,582	55,649,347		3,258,510		500,706,776		140,819,142
2032	261,776,726	140,972,360	46,575,139	57,888,171		3,258,510		510,470,905		136,728,774
2033	261,776,726	147,423,396	47,972,393	60,217,064		3,258,510		520,648,090		132,814,015
2034	261,776,726	154,169,639	49,411,565	62,639,652		3,258,510		531,256,091		129,066,713
2035	261,776,726	161,224,596	50,893,912	65,159,702		3,258,510		542,313,446		125,479,101
2036	261,776,726	168,602,395	52,420,729	67,781,136		3,258,510		553,839,496		122,043,781
2037	261,776,726	176,317,809	53,993,351	70,508,033		3,258,510		565,854,430		118,753,700
2038	261,776,726	184,386,289	55,613,152	73,344,636		3,258,510		578,379,312		115,602,142
2039	261,776,726	192,823,990	57,281,546	76,295,357		3,258,510		591,436,130		112,582,706
2040	-	201,647,809	58,999,993	79,364,789		3,258,510		343,271,101		62,231,716
2041	-	210,875,415	60,769,993	82,557,707		3,258,510		357,461,624		61,718,400
2042	-	220,525,286	62,593,092	85,879,078		3,258,510		372,255,966		61,212,145
2043	-	230,616,744	64,470,885	89,334,072		3,258,510		387,680,211		60,712,801
2044	-	241,169,997	66,405,012	92,928,063		3,258,510		403,761,582		60,220,219
2045	-	252,206,178	68,397,162	96,666,644		3,258,510		420,528,493		59,734,257
2046	-	263,747,385	70,449,077	100,555,631		3,258,510		438,010,603		59,254,776
2047	-	275,816,730	72,562,549	104,601,075		3,258,510		456,238,864		58,781,642
2048	-	288,438,380	74,739,426	108,809,272		3,258,510		475,245,587		58,314,725
2049	-	301,637,609	76,981,608	113,186,768		3,258,510		495,064,496		57,853,898
2050	-	315,440,849	79,291,057	117,740,375		3,258,510		515,730,790		57,399,036
2051	-	329,875,738	81,669,788	122,477,177		3,258,510		537,281,214		56,950,022
2052	-	344,971,182	84,119,882	127,404,546		3,258,510		559,754,120		56,506,739
2053	-	360,757,409	86,643,478	132,530,147		3,258,510		583,189,544		56,069,073
2054	-	377,266,030	89,242,783	137,861,955		3,258,510		607,629,278		55,636,915
Total									\$	341,778,112
Notes;							Acre Feet / year			200,000
(1)							Years			45
(2)	Inflated by the Industrial Electric Power indexInflated by the inflation factor							Acre-Feet		9,000,000
(3)	Inflated by the Handy-Whitman Large Treatment Facility Index									
(4)	Held constant at \$0.05 per thousand gallons per conversation with Freese and Nichols							cre-foot	\$	704.64
(5)	Half ye	plied to PV calc	tion							

Texas Water Development Board
Socioeconomic Impact of Selected Interbasin Transfers in Texas Socioeconomic Impact of Toledo Bend Interbasin Transfer Present Value Summary

Basin of Origin Benefits (SRA)		
Commerce from New Residents		
Harrison	\$	5,665,848,006
Rusk		2,818,769,202
Wood		1,954,910,384
Economic Development ${ }^{(1)}$		
Upper Basin		90,741,428
Lower Basin		20,097,948
Total Benefits (discounted)	\$	10,550,366,968
Receiving Basin Benefits (DWU, NTMWD, TRWD)		
Commerce from New Residents		
Dallas Water Utilities		435,376,917,179
North Texas Municipal Water District		401,203,678,455
Tarrant Regional Water District		464,107,346,540
Total Benefits to the Receiving Basin (discounted)	\$	1,300,687,942,173
TOTAL NET ECONOMIC IMPACT (discounted to Year 2005)	\$	1,311,238,309,142

Notes:
(1) Reflects payment to SRA by DWU, NTWMD, and TRWD as calculated by R.W. Beck These numbers are estimates and have not been agreed to by the parties.

ANNUAL CALCULATION - SRA

Benefits to SRA

Commerce from New Residents ${ }^{(1)}$
 SRA - Harrison
 Per Capita Income (disposable, locally spent)
 Assumed increase in population

Commerce from New Residents

SRA - Rus

Per Capita Income (disposable, locally spent)
Assumed increase in population
Commerce from New Residents

SRA - Wood
Per Capita Income (disposable, locally spent) Assumed increase in population
Commerce from New Residents

Total Benefits

Economic Development ${ }^{(2)}$
Upper Basin
Collin
Rockwal
Hunt
Kaufman
Van Zandt
Rains
Hopkins
Wood
Smith
Franklin
Upshur
Gregg
Rusk
Harrison
Panola
Total Upper Basin Benefits
Lower Basin
Shelby
San Augustine
Sabine
Jasper
Newton
Orange

otal Lower Basin Benefits

1) SRA Comprehensive Sabine Watershed Management Plan (Dec 1999), 80% of water to Harrison, 10% to Rusk, 10% to Wood
(2) It is assumed that the Maintenance and Interbasin Transfer fee will be used for Economic Development in the Sabine Basin

ANNUAL CALCULATION - SRA

	2005		2006		2007		2008		2009		2010		2011	
Benefits to SRA														
Commerce from New Residents ${ }^{(1)}$														
SRA - Harrison														
Per Capita Income (disposable, locally spent)							\$	19,789	\$	20,383	\$	20,995	\$	21,624
Assumed increase in population								517		1,035		1,552		2,069
Commerce from New Residents							\$	10,238,030	\$	21,090,341	\$	32,584,577	\$	44,749,485
SRA - Rusk														
Per Capita Income (disposable, locally spent)							\$	15,281	\$	15,739	\$	16,211	\$	16,698
Assumed increase in population								333		667		1,000		1,333
Commerce from New Residents							\$	5,093,437	\$	10,492,481	\$	16,210,883	\$	22,262,947
SRA - Wood														
Per Capita Income (disposable, locally spent)							\$	15,988	\$	16,467	\$	16,961	\$	17,470
Assumed increase in population								221		442		663		884
Commerce from New Residents								3,532,469		7,276,885		11,242,788		15,440,095
Total Benefits							\$	18,863,936	\$	38,859,708	\$	60,038,248	\$	82,452,527
Economic Development ${ }^{(2)}$														
Upper Basin														
Collin	\$	212,689.48	\$	218,515.87	\$	224,517.06	\$	230,698.28	\$	237,064.94	\$	339,779.90	\$	346,291.79
Rockwall		56,933		58,493		60,099		61,754		63,458		90,953		92,696
Hunt		295,831		303,935		312,282		320,880		329,735		472,602		481,660
Kaufman		17,365		17,841		18,331		18,835		19,355		27,741		28,273
Van Zandt		111,212		114,258		117,396		120,628		123,957		177,665		181,070
Rains		53,998		55,477		57,001		58,570		60,186		86,264		87,917
Hopkins		49,123		50,468		51,854		53,282		54,752		78,475		79,979
Wood		209,896		215,646		221,568		227,669		233,952		335,318		341,744
Smith		509,266		523,217		537,586		552,386		567,631		813,573		829,165
Franklin		2,485		2,553		2,624		2,696		2,770		3,971		4,047
Upshur		50,361		51,741		53,162		54,626		56,133		80,454		81,996
Gregg		615,600		632,463		649,833		667,724		686,151		983,445		1,002,293
Rusk		120,511		123,812		127,213		130,715		134,322		192,521		196,211
Harrison		148,330		152,393		156,578		160,889		165,329		236,962		241,504
Panola		117,093		120,301		123,605		127,008		130,513		187,061		190,646
Total Upper Basin Benefits	\$	2,570,693.39	\$	2,641,114.69	\$	2,713,648.62	\$	2,788,358.58	\$	2,865,309.83	\$	4,106,784.83	\$	4,185,491.51
Lower Basin														
Shelby	\$	105,444.15	\$	108,332.67	\$	111,307.85	\$	114,372.29	\$	117,528.66	\$	168,451.21	\$	171,679.58
San Augustine		3,413		3,507		3,603		3,702		3,804		5,453		5,557
Sabine		42,692		43,861		45,066		46,306		47,584		68,201		69,508
Jasper		102,246		105,047		107,932		110,903		113,964		163,342		166,473
Newton		68,022		69,885		71,804		73,781		75,817		108,667		110,750
Orange		247,556		254,337		261,322		268,517		275,927		395,480		403,060
Total Lower Basin Benefits	\$	569,372.38	\$	584,969.70	\$	601,034.95	\$	617,582.15	\$	634,625.77	\$	909,594.99	\$	927,027.41

(1) SRA Comprehensive Sabine Watershed Managem
(2) It is assumed that the Maintenance and Interbasin T

ANNUAL CALCULATION - SRA

	2012		2013		2014		2015		2016		2017		2018	
Benefits to SRA														
Commerce from New Residents ${ }^{(1)}$														
SRA - Harrison														
Per Capita Income (disposable, locally spent)	\$	22,273	\$	22,941	\$	23,630	\$	24,338	\$	25,069	\$	25,821	\$	26,595
Assumed increase in population		2,587		3,104		3,621		4,139		4,656		5,174		5,691
Commerce from New Residents	\$	57,614,963	\$	71,212,094	\$	85,573,199	\$	100,731,880	\$	116,723,066	\$	133,583,065	\$	151,349,612
SRA - Rusk														
Per Capita Income (disposable, locally spent)	\$	17,199	\$	17,715	\$	18,246	\$	18,793	\$	19,357	\$	19,938	\$	20,536
Assumed increase in population		1,667		2,000		2,333		2,667		3,000		3,333		3,667
Commerce from New Residents	\$	28,663,544	\$	35,428,140	\$	42,572,815	\$	50,114,285	\$	58,069,928	\$	66,457,806	\$	75,296,694
SRA - Wood														
Per Capita Income (disposable, locally spent)	\$	17,994	\$	18,534	\$	19,090	\$	19,663	\$	20,253	\$	20,860	\$	21,486
Assumed increase in population		1,105		1,326		1,547		1,768		1,989		2,210		2,430
Commerce from New Residents		19,879,123		24,570,596		29,525,666		34,755,927		40,273,430		46,090,703		52,220,767
Total Benefits	\$	106,157,629	\$	131,210,830	\$	157,671,680	\$	185,602,092	\$	215,066,424	\$	246,131,574	\$	278,867,074
Economic Development ${ }^{(2)}$														
Upper Basin														
Collin	\$	353,404.20	\$	360,669.63	\$	367,668.63	\$	375,286.92	\$	383,503.32	\$	391,445.38	\$	472,366.81
Rockwall		94,600		96,544		98,418		100,457		102,657		104,782		126,444
Hunt		491,552		501,658		511,393		521,989		533,417		544,464		657,018
Kaufman		28,854		29,447		30,018		30,640		31,311		31,959		38,566
Van Zandt		184,789		188,588		192,248		196,231		200,527		204,680		246,993
Rains		89,722		91,567		93,344		95,278		97,364		99,380		119,925
Hopkins		81,622		83,300		84,916		86,676		88,574		90,408		109,097
Wood		348,763		355,933		362,840		370,358		378,467		386,305		466,163
Smith		846,195		863,591		880,350		898,591		918,264		937,281		1,131,040
Franklin		4,130		4,215		4,296		4,385		4,481		4,574		5,520
Upshur		83,680		85,401		87,058		88,862		90,807		92,688		111,849
Gregg		1,022,879		1,043,908		1,064,165		1,086,215		1,109,996		1,132,984		1,367,199
Rusk		200,241		204,357		208,323		212,640		217,295		221,795		267,646
Harrison		246,464		251,531		256,412		261,725		267,455		272,994		329,429
Panola		194,562		198,562		202,415		206,609		211,132		215,505		260,055
Total Upper Basin Benefits	\$	4,271,456.34	\$	4,359,270.74	\$	4,443,864.83	\$	4,535,944.18	\$	4,635,252.55	\$	4,731,245.03	\$	5,709,310.23
Lower Basin														
Shelby	\$	175,205.67	\$	178,807.62	\$	182,277.49	\$	186,054.38	\$	190,127.79	\$	194,065.18	\$	234,183.25
San Augustine		5,671		5,788		5,900		6,022		6,154		6,282		7,580
Sabine		70,936		72,394		73,799		75,328		76,978		78,572		94,815
Jasper		169,892		173,385		176,749		180,412		184,361		188,179		227,081
Newton		113,025		115,348		117,587		120,023		122,651		125,191		151,071
Orange		411,338		419,795		427,941		436,808		446,371		455,615		549,802
Total Lower Basin Benefits	\$	946,067.41	\$	965,517.06	\$	984,253.46	\$	1,004,647.74	\$	1,026,643.15	\$	1,047,904.13	\$	1,264,531.80

(1) SRA Comprehensive Sabine Watershed Manageme
(2) It is assumed that the Maintenance and Interbasin TI

ANNUAL CALCULATION - SRA

	2019		2020		2021		2022		2023		2024		2025	
Benefits to SRA														
Commerce from New Residents ${ }^{(1)}$														
SRA - Harrison														
Per Capita Income (disposable, locally spent)	\$	27,393	\$	28,215	\$	29,061	\$	29,933	\$	30,831	\$	31,756	\$	32,709
Assumed increase in population		6,208		6,726		7,243		7,760		8,278		8,795		9,312
Commerce from New Residents	\$	170,061,928	\$	189,760,768	\$	210,488,483	\$	232,289,076	\$	255,208,264	\$	279,293,544	\$	304,594,254
SRA - Rusk														
Per Capita Income (disposable, locally spent)	\$	21,152	\$	21,787	\$	22,440	\$	23,113	\$	23,807	\$	24,521	\$	25,257
Assumed increase in population		4,000		4,333		4,667		5,000		5,333		5,667		6,000
Commerce from New Residents	\$	84,606,104	\$	94,406,311	\$	104,718,385	\$	115,564,218	\$	126,966,554	\$	138,949,022	\$	151,536,169
SRA - Wood														
Per Capita Income (disposable, locally spent)	\$	22,131	\$	22,795	\$	23,478	\$	24,183	\$	24,908	\$	25,655	\$	26,425
Assumed increase in population		2,651		2,872		3,093		3,314		3,535		3,756		3,977
Commerce from New Residents		58,677,153		65,473,923		72,625,690		80,147,636		88,055,537		96,365,778		105,095,384
Total Benefits	\$	313,345,185	\$	349,641,002	\$	387,832,558	\$	428,000,930	\$	470,230,355	\$	514,608,344	\$	561,225,806
Economic Development ${ }^{(2)}$														
Upper Basin														
Collin	\$	478,980.83	\$	485,725.77	\$	492,285.58	\$	499,652.96	\$	506,826.32	\$	514,154.97	\$	521,967.35
Rockwall		128,214		130,020		131,775		133,748		135,668		137,629		139,721
Hunt		666,218		675,599		684,723		694,971		704,948		715,142		726,008
Kaufman		39,106		39,657		40,193		40,794		41,380		41,978		42,616
Van Zandt		250,451		253,978		257,408		261,260		265,011		268,843		272,928
Rains		121,604		123,316		124,982		126,852		128,673		130,534		132,517
Hopkins		110,625		112,183		113,698		115,399		117,056		118,749		120,553
Wood		472,690		479,347		485,820		493,091		500,170		507,403		515,112
Smith		1,146,877		1,163,027		1,178,734		1,196,374		1,213,550		1,231,098		1,249,804
Franklin		5,597		5,676		5,753		5,839		5,923		6,008		6,100
Upshur		113,415		115,012		116,565		118,310		120,008		121,743		123,593
Gregg		1,386,343		1,405,865		1,424,851		1,446,175		1,466,938		1,488,149		1,510,761
Rusk		271,393		275,215		278,932		283,106		287,171		291,323		295,750
Harrison		334,041		338,745		343,320		348,458		353,461		358,572		364,020
Panola		263,696		267,409		271,021		275,077		279,026		283,061		287,362
Total Upper Basin Benefits	\$	5,789,251.26	\$	5,870,774.74	\$	5,950,060.52	\$	6,039,107.12	\$	6,125,808.72	\$	6,214,387.18	\$	6,308,812.27
Lower Basin														
Shelby	\$	237,462.25	\$	240,806.17	\$	244,058.29	\$	247,710.79	\$	251,267.10	\$	254,900.39	\$	258,773.50
San Augustine		7,686		7,795		7,900		8,018		8,133		8,251		8,376
Sabine		96,142		97,496		98,813		100,291		101,731		103,202		104,770
Jasper		230,260		233,503		236,656		240,198		243,646		247,169		250,925
Newton		153,186		155,343		157,441		159,797		162,091		164,435		166,934
Orange		557,501		565,351		572,986		581,562		589,911		598,441		607,534
Total Lower Basin Benefits	\$	1,282,237.61	\$	1,300,293.91	\$	1,317,854.59	\$	1,337,577.16	\$	1,356,780.34	\$	1,376,399.23	\$	1,397,313.05

(1) SRA Comprehensive Sabine Watershed Manageme
(2) It is assumed that the Maintenance and Interbasin TI

ANNUAL CALCULATION - SRA

	2026		2027		2028		2029		2030		2031		2032	
Benefits to SRA														
Commerce from New Residents ${ }^{(1)}$														
SRA - Harrison														
Per Capita Income (disposable, locally spent)	\$	33,690	\$	34,701	\$	35,742	\$	36,814	\$	37,918	\$	39,056	\$	40,228
Assumed increase in population		9,830		10,347		10,864		11,382		11,899		12,416		12,934
Commerce from New Residents	\$	331,161,641	\$	359,048,937	\$	388,311,426	\$	419,006,520	\$	451,193,839	\$	484,935,291	\$	520,295,156
SRA - Rusk														
Per Capita Income (disposable, locally spent)	\$	26,014	\$	26,795	\$	27,599	\$	28,427	\$	29,279	\$	30,158	\$	31,063
Assumed increase in population		6,333		6,667		7,000		7,333		7,666		8,000		8,333
Commerce from New Residents	\$	164,753,490	\$	178,627,469	\$	193,185,607	\$	208,456,470	\$	224,469,717	\$	241,256,148	\$	258,847,742
SRA - Wood														
Per Capita Income (disposable, locally spent)	\$	27,218	\$	28,034	\$	28,875	\$	29,742	\$	30,634	\$	31,553	\$	32,500
Assumed increase in population		4,198		4,419		4,640		4,861		5,082		5,303		5,524
Commerce from New Residents		114,262,036		123,884,103		133,980,657		144,571,509		155,677,229		167,319,179		179,519,536
Total Benefits	\$	610,177,168	\$	661,560,509	\$	715,477,690	\$	772,034,498	\$	831,340,785	\$	893,510,617	\$	958,662,433
Economic Development ${ }^{(2)}$														
Upper Basin														
Collin	\$	529,927.26	\$	538,041.66	\$	546,639.60	\$	555,385.51	\$	564,287.00	\$	573,351.88	\$	582,910.10
Rockwall		141,851		144,024		146,325		148,666		151,049		153,475		156,034
Hunt		737,080		748,366		760,325		772,490		784,871		797,479		810,774
Kaufman		43,266		43,928		44,630		45,344		46,071		46,811		47,592
Van Zandt		277,090		281,333		285,829		290,402		295,056		299,796		304,794
Rains		134,538		136,598		138,781		141,002		143,262		145,563		147,990
Hopkins		122,392		124,266		126,251		128,271		130,327		132,421		134,628
Wood		522,968		530,976		539,461		548,092		556,876		565,822		575,255
Smith		1,268,863		1,288,293		1,308,880		1,329,821		1,351,135		1,372,840		1,395,726
Franklin		6,193		6,287		6,388		6,490		6,594		6,700		6,812
Upshur		125,478		127,399		129,435		131,506		133,614		135,760		138,024
Gregg		1,533,800		1,557,286		1,582,171		1,607,485		1,633,249		1,659,486		1,687,151
Rusk		300,260		304,857		309,729		314,685		319,728		324,864		330,280
Harrison		369,571		375,230		381,226		387,326		393,534		399,856		406,521
Panola		291,744		296,211		300,945		305,760		310,660		315,651		320,913
Total Upper Basin Benefits	\$	6,405,020.57	\$	6,503,096.11	\$	6,607,015.99	\$	6,712,724.38	\$	6,820,313.09	\$	6,929,876.70	\$	7,045,403.16
Lower Basin														
Shelby	\$	262,719.75	\$	266,742.59	\$	271,005.15	\$	275,341.08	\$	279,754.13	\$	284,248.18	\$	288,986.82
San Augustine		8,504		8,634		8,772		8,912		9,055		9,201		9,354
Sabine		106,368		107,997		109,723		111,478		113,265		115,084		117,003
Jasper		254,752		258,653		262,786		266,990		271,269		275,627		280,222
Newton		169,480		172,075		174,824		177,621		180,468		183,367		186,424
Orange		616,799		626,243		636,251		646,430		656,791		667,342		678,467
Total Lower Basin Benefits	\$	1,418,621.83	\$	1,440,344.19	\$	1,463,360.98	\$	1,486,773.89	\$	1,510,603.28	\$	1,534,870.07	\$	1,560,457.56

(1) SRA Comprehensive Sabine Watershed Manageme
(2) It is assumed that the Maintenance and Interbasin TI

ANNUAL CALCULATION - SRA

	2033		2034		2035		2036		2037		2038		2039	
Benefits to SRA														
Commerce from New Residents ${ }^{(1)}$														
SRA - Harrison														
Per Capita Income (disposable, locally spent)	\$	41,435	\$	42,678	\$	43,958	\$	45,277	\$	46,635	\$	48,034	\$	49,475
Assumed increase in population		13,451		13,968		14,486		15,003		15,521		16,038		16,555
Commerce from New Residents	\$	557,340,171	\$	596,139,621	\$	636,765,432	\$	679,292,267	\$	723,797,622	\$	770,361,936	\$	819,068,690
SRA - Rusk														
Per Capita Income (disposable, locally spent)	\$	31,994	\$	32,954	\$	33,943	\$	34,961	\$	36,010	\$	37,090	\$	38,203
Assumed increase in population		8,666		9,000		9,333		9,666		10,000		10,333		10,666
Commerce from New Residents	\$	277,277,701	\$	296,580,495	\$	316,791,906	\$	337,949,080	\$	360,090,571	\$	383,256,398	\$	407,488,093
SRA - Wood														
Per Capita Income (disposable, locally spent)	\$	33,475	\$	34,479	\$	35,513	\$	36,579	\$	37,676	\$	38,806	\$	39,970
Assumed increase in population		5,745		5,966		6,187		6,408		6,629		6,849		7,070
Commerce from New Residents		192,301,327		205,688,457		219,705,745		234,378,950		249,734,812		265,801,085		282,606,573
Total Benefits	\$	1,026,919,198	\$	1,098,408,573	\$	1,173,263,083	\$	1,251,620,296	\$	1,333,623,005	\$	1,419,419,419	\$	1,509,163,356
Economic Development ${ }^{(2)}$														
Upper Basin														
Collin	\$	592,627.03	\$	600,944.58	\$	526,679.13	\$	537,372.00	\$	548,385.66	\$	559,729.72	\$	571,414.11
Rockwall		158,635		160,861		140,982		143,844		146,792		149,829		152,957
Hunt		824,289		835,858		732,562		747,435		762,753		778,532		794,784
Kaufman		48,385		49,064		43,001		43,874		44,773		45,699		46,653
Van Zandt		309,875		314,224		275,392		280,983		286,742		292,673		298,783
Rains		150,457		152,568		133,714		136,428		139,224		142,105		145,071
Hopkins		136,873		138,794		121,641		124,111		126,655		129,275		131,973
Wood		584,844		593,052		519,762		530,315		541,184		552,379		563,910
Smith		1,418,992		1,438,908		1,261,086		1,286,689		1,313,060		1,340,223		1,368,200
Franklin		6,925		7,022		6,155		6,280		6,408		6,541		6,677
Upshur		140,324		142,294		124,709		127,241		129,849		132,535		135,302
Gregg		1,715,276		1,739,350		1,524,399		1,555,348		1,587,225		1,620,059		1,653,878
Rusk		335,786		340,499		298,419		304,478		310,718		317,146		323,766
Harrison		413,298		419,099		367,306		374,763		382,444		390,355		398,504
Panola		326,262		330,841		289,956		295,842		301,906		308,151		314,584
Total Upper Basin Benefits	\$	7,162,847.83	\$	7,263,378.80	\$	6,365,761.72	\$	6,495,002.21	\$	6,628,119.91	\$	6,765,231.14	\$	6,906,455.71
Lower Basin														
Shelby	\$	293,804.14	\$	297,927.70	\$	261,109.44	\$	266,410.59	\$	271,870.79	\$	277,494.79	\$	283,287.50
San Augustine		9,510		9,644		8,452		8,623		8,800		8,982		9,170
Sabine		118,953		120,623		105,716		107,863		110,073		112,350		114,696
Jasper		284,893		288,892		253,190		258,331		263,625		269,079		274,696
Newton		189,532		192,192		168,441		171,860		175,383		179,011		182,748
Orange		689,777		699,458		613,018		625,464		638,283		651,487		665,087
Total Lower Basin Benefits	\$	1,586,469.90	\$	1,608,736.09	\$	1,409,926.55	\$	1,438,551.50	\$	1,468,035.20	\$	1,498,403.40	\$	1,529,682.66

(1) SRA Comprehensive Sabine Watershed Manageme
(2) It is assumed that the Maintenance and Interbasin TI

ANNUAL CALCULATION - SRA

	2040		2041		2042		2043		2044		2045		2046	
Benefits to SRA														
Commerce from New Residents ${ }^{(1)}$														
SRA - Harrison														
Per Capita Income (disposable, locally spent)	\$	50,959	\$	52,488	\$	54,063	\$	55,685	\$	57,355	\$	59,076	\$	60,848
Assumed increase in population		17,073		17,590		18,107		18,625		19,142		19,659		20,177
Commerce from New Residents	\$	870,004,525	\$	923,259,347	\$	978,926,455	\$	1,037,102,655	\$	1,097,888,394	\$	1,161,387,885	\$	1,227,709,246
SRA - Rusk														
Per Capita Income (disposable, locally spent)	\$	39,349	\$	40,530	\$	41,745	\$	42,998	\$	44,288	\$	45,616	\$	46,985
Assumed increase in population		11,000		11,333		11,666		12,000		12,333		12,666		13,000
Commerce from New Residents	\$	432,828,759	\$	459,323,125	\$	487,017,608	\$	515,960,368	\$	546,201,379	\$	577,792,486	\$	610,787,478
SRA - Wood														
Per Capita Income (disposable, locally spent)	\$	41,169	\$	42,405	\$	43,677	\$	44,987	\$	46,337	\$	47,727	\$	49,159
Assumed increase in population		7,291		7,512		7,733		7,954		8,175		8,396		8,617
Commerce from New Residents		300,181,169		318,555,895		337,762,942		357,835,711		378,808,860		400,718,345		423,601,472
Total Benefits	\$	1,603,014,453	\$	1,701,138,367	\$	1,803,707,004	\$	1,910,898,735	\$	2,022,898,633	\$	2,139,898,716	\$	2,262,098,195
Economic Development ${ }^{(2)}$														
Upper Basin														
Collin	\$	583,449.03	\$	595,845.00	\$	608,612.85	\$	621,763.73	\$	635,309.14	\$	649,260.91	\$	663,631.23
Rockwall		156,178		159,496		162,914		166,434		170,060		173,795		177,641
Hunt		811,523		828,765		846,524		864,816		883,656		903,062		923,049
Kaufman		47,636		48,648		49,690		50,764		51,870		53,009		54,182
Van Zandt		305,076		311,557		318,233		325,110		332,193		339,488		347,002
Rains		148,126		151,274		154,515		157,854		161,293		164,835		168,483
Hopkins		134,753		137,616		140,565		143,602		146,730		149,953		153,272
Wood		575,787		588,020		600,620		613,598		626,966		640,734		654,916
Smith		1,397,017		1,426,698		1,457,269		1,488,758		1,521,191		1,554,597		1,589,006
Franklin		6,818		6,963		7,112		7,266		7,424		7,587		7,755
Upshur		138,151		141,086		144,110		147,223		150,431		153,734		157,137
Gregg		1,688,711		1,724,590		1,761,544		1,799,608		1,838,813		1,879,194		1,920,787
Rusk		330,585		337,609		344,843		352,295		359,970		367,875		376,017
Harrison		406,897		415,542		424,447		433,618		443,065		452,795		462,816
Panola		321,210		328,034		335,063		342,303		349,760		357,441		365,353
Total Upper Basin Benefits	\$	7,051,917.02	\$	7,201,742.16	\$	7,356,062.06	\$	7,515,011.56	\$	7,678,729.54	\$	7,847,359.06	\$	8,021,047.47
Lower Basin														
Shelby	\$	289,254.01	\$	295,399.50	\$	301,729.36	\$	308,249.12	\$	314,964.47	\$	321,881.27	\$	329,005.59
San Augustine		9,363		9,562		9,767		9,978		10,195		10,419		10,649
Sabine		117,111		119,599		122,162		124,802		127,521		130,321		133,206
Jasper		280,481		286,440		292,578		298,900		305,412		312,119		319,027
Newton		186,597		190,561		194,644		198,850		203,182		207,644		212,240
Orange		679,094		693,523		708,383		723,690		739,456		755,695		772,421
Total Lower Basin Benefits	\$	1,561,900.29	\$	1,595,084.45	\$	1,629,264.13	\$	1,664,469.20	\$	1,700,730.43	\$	1,738,079.49	\$	1,776,549.03

(1) SRA Comprehensive Sabine Watershed Manageme
(2) It is assumed that the Maintenance and Interbasin TI

ANNUAL CALCULATION - SRA

	2047		2048		2049		2050		2051		2052		2053	
Benefits to SRA														
Commerce from New Residents ${ }^{(1)}$														
SRA - Harrison														
Per Capita Income (disposable, locally spent)	\$	62,673	\$	64,554	\$	66,490	\$	68,485	\$	70,540	\$	72,656	\$	74,835
Assumed increase in population		20,694		21,211		21,729		22,246		22,763		23,281		23,798
Commerce from New Residents	\$	1,296,964,639	\$	1,369,270,418	\$	1,444,747,275	\$	1,523,520,401	\$	1,605,719,641	\$	1,691,479,667	\$	1,780,940,147
SRA - Rusk														
Per Capita Income (disposable, locally spent)	\$	48,394	\$	49,846	\$	51,342	\$	52,882	\$	54,468	\$	56,102	\$	57,785
Assumed increase in population		13,333		13,666		14,000		14,333		14,666		15,000		15,333
Commerce from New Residents	\$	645,242,156	\$	681,214,406	\$	718,764,273	\$	757,954,040	\$	798,848,304	\$	841,514,066	\$	886,020,810
SRA - Wood														
Per Capita Income (disposable, locally spent)	\$	50,633	\$	52,152	\$	53,717	\$	55,328	\$	56,988	\$	58,698	\$	60,459
Assumed increase in population		8,838		9,059		9,280		9,501		9,722		9,943		10,164
Commerce from New Residents		447,496,939		472,444,894		498,486,978		525,666,387		554,027,922		583,618,050		614,484,960
Total Benefits	\$	2,389,703,735	\$	2,522,929,718	\$	2,661,998,527	\$	2,807,140,827	\$	2,958,595,867	\$	3,116,611,783	\$	3,281,445,917
Economic Development ${ }^{(2)}$														
Upper Basin														
Collin	\$	678,432.67	\$	693,678.15	\$	709,380.99	\$	725,554.91	\$	742,214.06	\$	759,372.98	\$	777,046.66
Rockwall		181,604		185,684		189,888		194,217		198,677		203,270		208,001
Hunt		943,637		964,842		986,683		1,009,179		1,032,351		1,056,217		1,080,800
Kaufman		55,391		56,635		57,917		59,238		60,598		61,999		63,442
Van Zandt		354,741		362,713		370,923		379,381		388,091		397,063		406,305
Rains		172,241		176,111		180,098		184,204		188,434		192,790		197,277
Hopkins		156,690		160,211		163,838		167,573		171,421		175,384		179,466
Wood		669,523		684,568		700,065		716,026		732,467		749,400		766,842
Smith		1,624,446		1,660,950		1,698,549		1,737,276		1,777,165		1,818,251		1,860,569
Franklin		7,928		8,106		8,290		8,479		8,673		8,874		9,080
Upshur		160,642		164,252		167,970		171,800		175,744		179,807		183,992
Gregg		1,963,628		2,007,754		2,053,204		2,100,017		2,148,234		2,197,898		2,249,052
Rusk		384,404		393,042		401,939		411,103		420,543		430,265		440,279
Harrison		473,139		483,771		494,722		506,002		517,620		529,587		541,912
Panola		373,501		381,895		390,540		399,444		408,615		418,062		427,792
Total Upper Basin Benefits	\$	8,199,946.53	\$	8,384,212.56	\$	8,574,006.57	\$	8,769,494.40	\$	8,970,846.87	\$	9,178,239.91	\$	9,391,854.75
Lower Basin														
Shelby	\$	336,343.63	\$	343,901.82	\$	351,686.75	\$	359,705.22	\$	367,964.25	\$	376,471.06	\$	385,233.06
San Augustine		10,887		11,132		11,384		11,643		11,910		12,186		12,469
Sabine		136,177		139,237		142,389		145,635		148,979		152,423		155,971
Jasper		326,143		333,472		341,020		348,796		356,804		365,053		373,549
Newton		216,974		221,850		226,872		232,044		237,372		242,860		248,512
Orange		789,649		807,394		825,671		844,496		863,886		883,858		904,429
Total Lower Basin Benefits	\$	1,816,172.65	\$	1,856,984.98	\$	1,899,021.68	\$	1,942,319.48	\$	1,986,916.22	\$	2,032,850.86	\$	2,080,163.53

(1) SRA Comprehensive Sabine Watershed Manageme
(2) It is assumed that the Maintenance and Interbasin TI

ANNUAL CALCULATION - SRA

	2054		Total	
Benefits to SRA				
Commerce from New Residents ${ }^{(1)}$				
SRA - Harrison				
Per Capita Income (disposable, locally spent)	\$	77,080		
Assumed increase in population		24,315		
Commerce from New Residents	\$	1,874,245,924	\$	30,087,031,797
SRA - Rusk				
Per Capita Income (disposable, locally spent)	\$	59,519		
Assumed increase in population		15,666		
Commerce from New Residents	\$	932,440,596	\$	14,968,350,461
SRA - Wood				
Per Capita Income (disposable, locally spent)	\$	62,273		
Assumed increase in population		10,385		
Commerce from New Residents		646,678,629		
Total Benefits	\$	3,453,365,149	\$	55,436,432,161
Economic Development ${ }^{(2)}$				
Upper Basin				
Collin	\$	795,250.56		25,424,272
Rockwall		212,873		6,805,594
Hunt		1,106,120		35,362,799
Kaufman		64,928		2,075,760
Van Zandt		415,823		13,293,926
Rains		201,899		6,454,730
Hopkins		183,670		5,871,966
Wood		784,807		25,090,375
Smith		1,904,156		60,876,146
Franklin		9,293		297,099
Upshur		188,302		6,020,052
Gregg		2,301,741		73,586,981
Rusk		450,593		14,405,533
Harrison		554,608		17,730,885
Panola		437,814		13,996,969
Total Upper Basin Benefits	\$	9,611,878.02		307,293,086
Lower Basin				
Shelby	\$	394,257.93		12,604,481
San Augustine		12,762		407,990
Sabine		159,624		5,103,217
Jasper		382,300		12,222,199
Newton		254,334		8,131,104
Orange		925,617		29,592,100
Total Lower Basin Benefits	\$	2,128,895.59		68,061,090

(1) SRA Comprehensive Sabine Watershed Managem ϵ
(2) It is assumed that the Maintenance and Interbasin T

PRESENT VALUE CALCULATION - SRA

\square
$2005 \quad 2006$
2007
$2008 \quad 2009$ 20092010 2012 $2013 \quad 2014$ 2015

Benefits to SRA Commerce from New Residents

Commerce from New Residents
SRA - Harrison
Commerce from New Residents
Commerce from New Residents
SRA - Rusk
Commerce
SRA - Wood
$\begin{array}{llllllllllll}\$ 8,843,995 & \$ 17,351,076 & \$ & 25,530,869 & \$ & 33,392,755 & \$ & 40,945,878 & \$ & 48,199,148 & \$ & 55,161,247\end{array} \mathbf{\$ 1 , 8 4 0 , 6 3 6}$

SRA - Wood
Cone from New Residents

Economic Development																						
Upper Basin	\$	2,570,693	\$	2,515,347	\$	2,461,359	\$	2,408,689	\$	2,357,297	\$	3,217,773	\$	3,123,278	\$	3,035,644	\$	2,950,526	\$	2,864,555	\$	2,784,676
Lower Basin		569,372		557,114		545,156		533,491		522,108		712,691		691,762		672,352		653,500		634,459		616,767
Total Benefits	\$	3,140,066	\$	3,072,461	\$	3,006,516	\$	2,942,180	\$	2,879,406	\$	3,930,465	\$	3,815,040	\$	3,707,997	\$	3,604,026	\$	3,499,013	\$	3,401,443

PRESENT VALUE CALCULATION - SRA

\qquad $2017 \quad 2018$
2020 2021 \qquad
2023
2024
$\frac{\text { Benefits to SRA }}{\text { Commerce from New Residents }}$
Commerce from New Residents
SRA - Harrison
Commerce from New Residents
SRA-Rusk
Commerce from New Residents
SRA - Wood
Commerce from New Residents
Economic Development
Economic Develo
Upper Basin
Lower Basin

$\begin{array}{llllllllllllllllllll}\$ & 68,245,559 & \$ 74,384,049 & \$ & 80,263,931 & \$ & 85,892,830 & \$ & 91,278,174 & \$ & 96,427,199 & \$ 101,346,954 & \$ 106,044,305 & \$ 110,525,939 & \$ 114,798,371 & \$ 118,867,943\end{array}$ $\begin{array}{llllllllll}33,952,284 & 37,006,193 & 39,931,445 & 42,731,832 & 45,411,050 & 47,972,699 & 50,420,285 & 52,757,226 & 54,986,846 & 57,112,388\end{array} 59,137,007$ | $23,547,041$ | $25,665,028$ | $27,693,788$ | $29,635,949$ | $31,494,076$ | $33,270,665$ | $34,968,148$ | $36,588,894$ | $38,135,211$ | $39,609,345$ | $41,013,486$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $125,744,884$ | $\$ 137,055,270$ | $\$ 147,889,163$ | $\$ 158,260,611$ | $\$ 168,183,300$ | $\$ 177,670,563$ | $\$ 186,735,388$ | $\$ 195,390,425$ | $\$ 203,647,996$ | $\$ 211,520,104$ | $\$ 219,018,436$ |

$\begin{array}{llllllllllllllllllllllll}\$ & 2,710,136 & \$ & 2,634,534 & \$ & 3,027,769 & \$ & 2,923,965 & \$ & 2,823,943 & \$ & 2,725,791 & \$ & 2,634,842 & \$ & 2,545,400 & \$ & 2,459,244 & \$ & 2,377,725 & \$ & 2,299,033\end{array}$

PRESENT VALUE CALCULATION - SRA

| 2030 | 2031 |
| :--- | :--- | :--- |

2

Benefits to SRA
Commerce from New Residents
SRA - Harrison
Commerce from New Residents
SRA-Rusk
Commerce from New Residents
SRA-Wood
Total Benmercits from New Residents
Economic Development
Upper Basin
Lower Basin
$\begin{array}{rlrlrlrlrr}2,223,083 & \$ & 2,151,055 & \$ & 2,081,400 & \$ & 2,014,057 & \$ & 1,948,964 & \$ \\ 492,381 & & 476,428 & & 461,001 & & 446,085 & & 431,668 & \\ 417,966\end{array}$ \qquad 827,197
404,698 7 \$

1,764,611

| $\$ 122,740,833$ | $\$ 126,423,058$ | $\$ 129,920,476$ | $\$ 133,238,791$ | $\$ 136,383,558$ | $\$ 139,360,183$ | $\$ 142,173,931$ | $\$ 144,829,928$ | $\$ 147,333,161$ | $\$ 149,688,487$ | $\$ 151,900,632$ | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $61,063,777$ | $62,895,690$ | $64,635,662$ | $66,286,529$ | $67,851,056$ | $69,331,932$ | $70,731,777$ | $72,053,140$ | $73,298,503$ | $74,470,282$ | $75,570,828$ | |
| | | | | | | | | | | | |
| $42,349,765$ | $43,620,257$ | $44,826,986$ | $45,971,917$ | $47,056,969$ | $48,084,006$ | $49,054,845$ | $49,971,254$ | $50,834,955$ | $51,647,622$ | $52,410,888$ | |
| $\$ 226,154,375$ | $\$ 232,939,006$ | $\$ 239,383,124$ | $\$ 245,497,238$ | $\$ 251,291,583$ | $\$ 256,776,121$ | $\$ 261,960,553$ | $\$$ | $266,854,322$ | $\$ 271,466,619$ | $\$ 275,806,391$ | $\$ 279,882,348$ | Total Benefits

PRESENT VALUE CALCULATION - SRA

\qquad

		203		2039		2040		204		2042		2043		2044		2045		2046		2047		2048
Benefits to SRA																						
Commerce from New Residents																						
SRA - Harrison																						
Commerce from New ResidentsSRA - Rusk																						
Commerce from New Residents		76,602,430		77,567,314		78,467,649		79,305,543		80,083,049		80,802,162		81,464,825		82,072,928		82,628,309		83,132,755		83,588,006
SRA - Wood																						
Commerce from New Residents		53,126,338		53,795,518		54,419,930		55,001,037		55,540,263		56,038,992		56,498,571		56,920,311		57,305,486		57,655,336		57,971,068
Total Benefits	\$	283,702,964	\$	287,276,488	\$	290,610,948	\$	293,714,152	\$	296,593,703	\$	299,256,993	\$	301,711,217	\$	303,963,373	\$	306,020,268	\$	307,888,524	\$	309,574,580
Economic Development																						
Upper Basin	\$	1,352,184	\$	1,314,677	\$	1,278,444	\$	1,243,434	\$	1,209,599	\$	1,176,891	\$	1,145,267	\$	1,114,683	\$	1,085,100	\$	1,056,478	\$	1,028,780
Lower Basin		299,490		291,182		283,157		275,403		267,909		260,665		253,660		246,887		240,334		233,995		227,860
Total Benefits		1,651,674		1,605,859		1,561,601		1,518,837		1,477,508		1,437,556		1,398,927	\$	1,361,570	\$	1,325,435	\$	1,290,473		1,256,640

PRESENT VALUE CALCULATION - SRA	2049		2050		2051		2052		2053		2054		Total	
Benefits to SRA														
Commerce from New Residents														
SRA - Harrison														
Commerce from New Residents	\$	168,835,094	\$	169,562,502	\$	170,200,943	\$	170,753,544	\$	171,223,342	\$	171,613,291	\$	5,665,848,006
SRA - Rusk														
Commerce from New Residents		83,995,752		84,357,639		84,675,264		84,950,184		85,183,909		85,377,910		2,818,769,202
SRA - Wood														
Commerce from New Residents		58,253,853		58,504,834		58,725,118		58,915,784		59,077,880		59,212,426		1,954,910,384
Total Benefits	\$	311,084,700	\$	312,424,974	\$	313,601,325	\$	314,619,511	\$	315,485,131	\$	316,203,627	\$	10,439,527,592
Economic Development														
Upper Basin	\$	1,001,970	\$	976,014	\$	950,880	\$	926,536	\$	902,953	\$	880,101	\$	90,741,428
Lower Basin		221,922		216,173		210,607		205,215		199,991		194,930		20,097,948
Total Benefits	\$	1,223,892	\$	1,192,187	\$	1,161,486	\$	1,131,751	\$	1,102,944	\$	1,075,031	\$	110,839,376

ANNUAL CALCULATION

Benefits to Receiving Basin Commerce from New Residents

 DwuPer Capita Income (disposable, locally spent)
Assumed increase in population
Commerce from New Residents
NTMWD
Per Capita Income (disposable, locally spent) Assumed increase in population ${ }^{(2)}$
Commerce from New Residents
TRWD
Per Capita Income (disposable, locally spent)
Assumed increase in population ${ }^{(3)}$
Commerce from New Residents

Income			Multiplier effect (ME)	Income per year w/ ME	Year of Value	First Year of Impact	Last Year of Impact
per capita	disposable	locally spent					
36,617	76.1\%	70.2\%	1.49	\$ 29,154	2005		
						$\begin{aligned} & 2008 \\ & 2008 \end{aligned}$	$\begin{aligned} & 2054 \\ & 2054 \end{aligned}$
\$ 39,941	78.1\%	59.5\%	1.39	\$ 25,851	2000		
						$\begin{aligned} & 2008 \\ & 2008 \end{aligned}$	$\begin{aligned} & 2054 \\ & 2054 \end{aligned}$
\$ 31,054	80.9\%	70.2\%	1.55	\$ 27,322	2000		
						$\begin{array}{r} 2008 \\ 2008 \\ \hline \end{array}$	$\begin{array}{r} 2054 \\ 2054 \\ \hline \end{array}$

Total Benefits

PRESENT VALUE CALCULATION

Benefits to Receiving Basin

Commerce from New Residents
Dallas (DWU)
Commerce from New Residents Collin (NTMWD)
(This ssection intentionally left blank)
Commerce from New Residents

arrant (TRWD)

Commerce from New Residents

otal Benefits

Notes:
(1) Freese \& Nichols Technical Report, December 2003. Population increase projected until 2040
(2) Freese \& Nichols Technical Report, December 2003. Population increase projected until 2038
(3) Freese \& Nichols Technical Report, December 2003. Population increase projected until 2051

ANNUAL CALCULATION		2008		2009		2010		2011		2012		2013		2014
Benefits to Receiving Basin														
Commerce from New Residents														
DWU														
Per Capita Income (disposable, locally spent)	\$	31,858	\$	32,813	\$	33,798	\$	34,812	\$	35,856	\$	36,932	\$	38,040
Assumed increase in population ${ }^{(1)}$		341,680		348,244		354,522		361,333		368,274		375,349		382,560
Commerce from New Residents	\$	10,885,116,239	\$	11,427,057,793	\$	11,982,050,360	\$	12,578,605,403	\$	13,204,861,366	\$	13,862,296,980	\$	14,552,464,600
NTMWD														
Per Capita Income (disposable, locally spent)	\$	32,747	\$	33,729	\$	34,741	\$	35,783	\$	36,857	\$	37,963	\$	39,102
Assumed increase in population ${ }^{(2)}$		276,506		283,851		287,307		294,938		302,773		310,815		319,071
Commerce from New Residents	\$	9,054,702,945	\$	9,574,078,346	\$	9,981,373,615	\$	10,553,902,604	\$	11,159,271,707	\$	11,799,364,624	\$	12,476,173,104
TRWD														
Per Capita Income (disposable, locally spent)	\$	34,610	\$	35,649	\$	36,718	\$	37,820	\$	38,954	\$	40,123	\$	41,326
Assumed increase in population ${ }^{(3)}$		338,800		345,259		341,330		347,838		354,470		361,228		368,115
Commerce from New Residents	\$	11,725,950,889	\$	12,307,997,578	\$	12,532,989,494	\$	13,155,095,548	\$	13,808,081,380	\$	14,493,479,785	\$	15,212,899,642
Total Benefits	\$	31,665,770,073	\$	33,309,133,717	\$	34,496,413,469	\$	36,287,603,554	\$	38,172,214,453	\$	40,155,141,389	\$	42,241,537,346
PRESENT VALUE CALCULATION														
		2008		2009		2010		2011		2012		2013		2014
Benefits to Receiving Basin														
Commerce from New Residents														
Dallas (DWU)														
Commerce from New Residents	\$	9,402,972,672	\$	9,401,068,726	\$	9,388,249,985	\$	9,386,349,020	\$	9,384,448,440	\$	9,382,548,244	\$	9,380,648,434
Collin (NTMWD)														
Commerce from New Residents		7,821,792,847		7,876,617,949		7,820,667,404		7,875,484,618		7,930,686,060		7,986,274,424		8,042,252,423
Tarrant (TRWD)														
Commerce from New Residents		10,129,317,257		10,125,820,067		9,819,925,213		9,816,534,842		9,813,145,642		9,809,757,611		9,806,370,751
Total Benefits	\$	17,224,765,519	\$	17,277,686,675	\$	17,208,917,389	\$	17,261,833,637	\$	17,315,134,500	\$	17,368,822,669	\$	17,422,900,857

Notes:
(1) Freese \& Nichols Technical Report, December 2003. P
(2) Freese \& Nichols Technical Report, December 2003. F
(3) Freese \& Nichols Technical Report, December 2003. P
Appendix C
Schedule 2
DRAFT
Texas Water Development Board
Socioeconomic Impact Analysis of Selected Interbasin Tr

$\begin{array}{lllllllllllll}\$ & 44,436,826,697 & \$ & 46,746,719,579 & \$ & 49,177,227,015 & \$ 51,734,676,854 & \$ & 54,425,730,549 & \$ & 57,792,603,970 & \$ & 60,798,183,416\end{array}$

8,400,353,786

	2015		2016		2017		2018		2019		2020		2021
\$	9,378,749,008	\$	9,376,849,967	\$	9,374,951,310	\$	9,373,053,038	\$	9,371,155,150	\$	9,559,789,169	\$	9,557,853,470
	8,098,622,787		8,155,388,266		8,212,551,630		8,270,115,668		8,328,083,188		8,341,883,227		8,400,353,786
	9,802,985,060		9,799,600,538		9,796,217,184		9,792,834,998		9,789,453,980		9,897,558,257		9,894,141,083
\$	17,477,371,795	\$	17,532,238,233	\$	17,587,502,940	\$	17,643,168,706	\$	17,699,238,338	\$	17,901,672,396	\$	17,958,207,256

ANNUAL CALCULATION		2022		2023		2024		2025		2026		2027		2028
Benefits to Receiving Basin														
Commerce from New Residents														
DWU														
Per Capita Income (disposable, locally spent)	\$	48,188	\$	49,633	\$	51,122	\$	52,656	\$	54,235	\$	55,863	\$	57,538
Assumed increase in population ${ }^{(1)}$		454,523		463,255		472,154		481,225		490,470		499,892		509,496
Commerce from New Residents	\$	21,902,339,473	\$	22,992,799,843	\$	24,137,551,391	\$	25,339,297,134	\$	26,600,874,664	\$	27,925,262,849	\$	29,315,588,869
NTMWD														
Per Capita Income (disposable, locally spent)	\$	49,533	\$	51,019	\$	52,549	\$	54,126	\$	55,749	\$	57,422	\$	59,145
Assumed increase in population ${ }^{(2)}$		391,433		401,831		412,505		423,462		434,710		446,258		458,111
Commerce from New Residents	\$	19,388,719,697	\$	20,500,851,606	\$	21,676,775,112	\$	22,920,149,283	\$	24,234,843,073	\$	25,624,947,356	\$	27,094,787,658
TRWD														
Per Capita Income (disposable, locally spent)	\$	52,351	\$	53,922	\$	55,539	\$	57,206	\$	58,922	\$	60,689	\$	62,510
Assumed increase in population ${ }^{(3)}$		433,032		441,288		449,701		458,275		467,012		475,916		484,990
Commerce from New Residents	\$	22,669,723,080	\$	23,794,991,074	\$	24,976,114,540	\$	26,215,866,002	\$	27,517,155,606	\$	28,883,037,951	\$	30,316,719,258
Total Benefits	\$	63,960,782,250	\$	67,288,642,524	\$	70,790,441,044	\$	74,475,312,420	\$	78,352,873,343	\$	82,433,248,156	\$	86,727,095,785
PRESENT VALUE CALCULATION														
		2022		2023		2024		2025		2026		2027		2028
Benefits to Receiving Basin														
Commerce from New Residents														
Dallas (DWU)														
Commerce from New Residents	\$	9,555,918,163	\$	9,553,983,248	\$	9,552,048,725	\$	9,550,114,593	\$	9,548,180,853	\$	9,546,247,505	\$	9,544,314,548
Collin (NTMWD)														
Commerce from New Residents		8,459,234,181		8,518,527,285		8,578,235,990		8,638,363,211		8,698,911,879		8,759,884,950		8,821,285,398
Tarrant (TRWD)														
Commerce from New Residents		9,890,725,089		9,887,310,274		9,883,896,638		9,880,484,181		9,877,072,902		9,873,662,800		9,870,253,876
Total Benefits	\$	18,015,152,344	\$	18,072,510,533	\$	18,130,284,715	\$	18,188,477,804	\$	18,247,092,733	\$	18,306,132,455	\$	18,365,599,946

Notes:
(1) Freese \& Nichols Technical Report, December 2003. P
(2) Freese \& Nichols Technical Report, December 2003. F
(3) Freese \& Nichols Technical Report, December 2003. P

ANNUAL CALCULATION		2029		2030		2031		2032		2033		2034		2035
Benefits to Receiving Basin														
Commerce from New Residents														
DWU														
Per Capita Income (disposable, locally spent)	\$	59,265	\$	61,043	\$	62,874	\$	64,760	\$	66,703	\$	68,704	\$	70,765
Assumed increase in population ${ }^{(1)}$		519,284		540,167		550,544		561,121		571,901		582,887		594,085
Commerce from New Residents	\$	30,775,135,595	\$	32,973,161,216	\$	34,614,808,933	\$	36,338,190,008	\$	38,147,373,733	\$	40,046,631,999	\$	42,040,449,381
NTMWD														
Per Capita Income (disposable, locally spent)	\$	60,919	\$	62,746	\$	64,629	\$	66,568	\$	68,565	\$	70,622	\$	72,740
Assumed increase in population ${ }^{(2)}$		470,280		491,472		504,527		517,928		531,686		545,809		560,307
Commerce from New Residents	\$	28,648,937,617	\$	30,838,105,239	\$	32,606,970,919	\$	34,477,298,273	\$	36,454,907,117	\$	38,545,951,089	\$	40,756,936,798
TRWD														
Per Capita Income (disposable, locally spent)	\$	64,385	\$	66,317	\$	68,306	\$	70,356	\$	72,466	\$	74,640	\$	76,879
Assumed increase in population ${ }^{(3)}$		494,236		507,331		517,004		526,861		536,906		547,142		557,574
Commerce from New Residents	\$	31,821,564,896	\$	33,644,646,242	\$	35,314,681,799	\$	37,067,613,718	\$	38,907,556,765	\$	40,838,829,954	\$	42,865,966,684
Total Benefits	\$	91,245,638,108	\$	97,455,912,697	\$	102,536,461,650	\$	107,883,101,999	\$	113,509,837,615	\$	119,431,413,042	\$	125,663,352,862
PRESENT VALUE CALCULATION														
		2029		2030		2031		2032		2033		2034		2035
Benefits to Receiving Basin														
Commerce from New Residents														
Dallas (DWU)														
Commerce from New Residents	\$	9,542,381,983	\$	9,737,065,899	\$	9,735,094,304	\$	9,733,123,109	\$	9,731,152,313	\$	9,729,181,916	\$	9,727,211,918
Collin (NTMWD)														
Commerce from New Residents		8,883,116,219		9,106,577,951		9,170,408,466		9,234,686,386		9,299,414,848		9,364,597,010		9,430,236,051
Tarrant (TRWD)														
Commerce from New Residents		9,866,846,129		9,935,357,288		9,931,927,064		9,928,498,024		9,925,070,168		9,921,643,495		9,918,218,005
Total Benefits	\$	18,425,498,202	\$	18,843,643,850	\$	18,905,502,770	\$	18,967,809,495	\$	19,030,567,161	\$	19,093,778,926	\$	19,157,447,969

Notes:

(1) Freese \& Nichols Technical Report, December 2003. P
(2) Freese \& Nichols Technical Report, December 2003. F
(3) Freese \& Nichols Technical Report, December 2003. P

ANNUAL CALCULATION		2036		2037		2038		2039		2040		2041		2042
Benefits to Receiving Basin														
Commerce from New Residents														
DWU														
Per Capita Income (disposable, locally spent)	\$	72,888	\$	75,075	\$	77,327	\$	79,647	\$	82,036	\$	84,497	\$	87,032
Assumed increase in population ${ }^{(1)}$		605,498		617,130		628,986		641,070		663,402		663,402		663,402
Commerce from New Residents	\$	44,133,533,731	\$	46,330,827,293	\$	48,637,518,372	\$	51,059,053,585	\$	54,422,912,506	\$	56,055,599,881	\$	57,737,267,878
NTMWD														
Per Capita Income (disposable, locally spent)	\$	74,923	\$	77,170	\$	79,485	\$	81,870	\$	84,326	\$	86,856	\$	89,461
Assumed increase in population ${ }^{(2)}$		575,191		590,470		606,154		606,154		618,417		618,417		618,417
Commerce from New Residents	\$	43,094,744,071	\$	45,566,647,360	\$	48,180,338,378	\$	49,625,748,529	\$	52,148,587,214	\$	53,713,044,831	\$	55,324,436,176
TRWD														
Per Capita Income (disposable, locally spent)	\$	79,186	\$	81,561	\$	84,008	\$	86,528	\$	89,124	\$	91,798	\$	94,552
Assumed increase in population ${ }^{(3)}$		568,204		579,037		590,077		601,327		615,968		627,711		639,679
Commerce from New Residents	\$	44,993,725,378	\$	47,227,100,658	\$	49,571,335,066	\$	52,031,931,370	\$	54,897,720,948	\$	57,622,705,640	\$	60,482,951,714
Total Benefits	\$	132,222,003,180	\$	139,124,575,311	\$	146,389,191,816	\$	152,716,733,484	\$	161,469,220,668	\$	167,391,350,352	\$	173,544,655,767
PRESENT VALUE CALCULATION														
		2036		2037		2038		2039		2040		2041		2042
Benefits to Receiving Basin														
Commerce from New Residents														
Dallas (DWU)														
Commerce from New Residents	\$	9,725,242,319	\$	9,723,273,119	\$	9,721,304,317	\$	9,719,335,914	\$	9,866,345,338	\$	9,678,414,951	\$	9,494,064,190
Collin (NTMWD)														
Commerce from New Residents		9,496,335,175		9,562,897,605		9,629,926,590		9,446,499,417		9,454,032,257		9,273,955,452		9,097,308,681
Tarrant (TRWD)														
Commerce from New Residents		9,914,793,699		9,911,370,574		9,907,948,631		9,904,527,870		9,952,423,496		9,948,987,379		9,945,552,449
Total Benefits	\$	19,221,577,494	\$	19,286,170,724	\$	19,351,230,907	\$	19,165,835,331	\$	19,320,377,595	\$	18,952,370,402	\$	18,591,372,871

Notes:
(1) Freese \& Nichols Technical Report, December 2003. P
(2) Freese \& Nichols Technical Report, December 2003. P
(3) Freese \& Nichols Technical Report, December 2003. P

ANNUAL CALCULATION		2043		2044		2045		2046		2047		2048		2049
Benefits to Receiving Basin														
Commerce from New Residents														
Dwu														
Per Capita Income (disposable, locally spent)	\$	89,643	\$	92,332	\$	95,102	\$	97,955	\$	100,894	\$	103,921	\$	107,038
Assumed increase in population ${ }^{(1)}$		663,402		663,402		663,402		663,402		663,402		663,402		663,402
Commerce from New Residents	\$	59,469,385,914	\$	61,253,467,491	\$	63,091,071,516	\$	64,983,803,662	\$	66,933,317,771	\$	68,941,317,305	\$	71,009,556,824
NTMWD														
Per Capita Income (disposable, locally spent)	\$	92,145	\$	94,910	\$	97,757	\$	100,690	\$	103,710	\$	106,822	\$	110,026
Assumed increase in population ${ }^{(2)}$		618,417		618,417		618,417		618,417		618,417		618,417		618,417
Commerce from New Residents	\$	56,984,169,261	\$	58,693,694,339	\$	60,454,505,169	\$	62,268,140,324	\$	64,136,184,534	\$	66,060,270,070	\$	68,042,078,172
TRWD														
Per Capita Income (disposable, locally spent)	\$	97,389	\$	100,310	\$	103,320	\$	106,419	\$	109,612	\$	112,900	\$	116,287
Assumed increase in population ${ }^{(3)}$		651,875		664,303		676,968		689,875		703,028		716,432		730,091
Commerce from New Residents	\$	63,485,173,204	\$	66,636,417,413	\$	69,944,081,452	\$	73,415,929,609	\$	77,060,111,570	\$	80,885,181,551	\$	84,900,118,378
Total Benefits	\$	179,938,728,379	\$	186,583,579,242	\$	193,489,658,137	\$	200,667,873,594	\$	208,129,613,874	\$	215,886,768,925	\$	223,951,753,374
PRESENT VALUE CALCULATION														
		2043		2044		2045		2046		2047		2048		2049
Benefits to Receiving Basin														
Commerce from New Residents														
Dallas (DWU)														
Commerce from New Residents	\$	9,313,224,872	\$	9,135,830,112	\$	8,961,814,301	\$	8,791,113,076	\$	8,623,663,303	\$	8,459,403,050	\$	8,298,271,563
Collin (NTMWD)														
Commerce from New Residents		8,924,026,611		8,754,045,152		8,587,301,435		8,423,733,788		8,263,281,716		8,105,885,874		7,951,488,048
Tarrant (TRWD)														
Commerce from New Residents		9,942,118,705		9,938,686,146		9,935,254,773		9,931,824,584		9,928,395,579		9,924,967,758		9,921,541,121
Total Benefits	\$	18,237,251,483	\$	17,889,875,264	\$	17,549,115,735	\$	17,214,846,864	\$	16,886,945,019	\$	16,565,288,924	\$	16,249,759,611

Notes:
(1) Freese \& Nichols Technical Report, December 2003. P
(2) Freese \& Nichols Technical Report, December 2003. P
(3) Freese \& Nichols Technical Report, December 2003. P

ANNUAL CALCULATION		2050		2051		2052		2053		2054		Total
Benefits to Receiving Basin												
Commerce from New Residents												
DWU												
Per Capita Income (disposable, locally spent)	\$	110,250	\$	113,557	\$	116,964	\$	120,473	\$	124,087		
Assumed increase in population ${ }^{(1)}$		666,469		666,469		666,469		666,469		666,469		
Commerce from New Residents	\$	73,477,967,680	\$	75,682,306,711	\$	77,952,775,912	\$	80,291,359,189	\$	82,700,099,965	\$	1,850,921,962,227
NTMWD												
Per Capita Income (disposable, locally spent)	\$	113,327	\$	116,727	\$	120,229	\$	123,836	\$	127,551		
Assumed increase in population ${ }^{(2)}$		627,744		627,744		627,744		627,744		627,744		
Commerce from New Residents	\$	71,140,383,535	\$	73,274,595,041	\$	75,472,832,892	\$	77,737,017,879	\$	80,069,128,416	\$	1,750,007,107,946
TRWD												
Per Capita Income (disposable, locally spent)	\$	119,776	\$	123,369	\$	127,070	\$	130,882	\$	134,809		
Assumed increase in population ${ }^{(3)}$		743,338		757,510		757,510		757,510		757,510		
Commerce from New Residents	\$	89,033,856,465	\$	93,453,273,006	\$	96,256,871,196	\$	99,144,577,332	\$	102,118,914,652	\$	2,031,576,491,375
Total Benefits	\$	233,652,207,681	\$	242,410,174,758	\$	249,682,480,000	\$	257,172,954,400	\$	264,888,143,032	\$	5,632,505,561,549
PRESENT VALUE CALCULATION												
		2050		2051		2052		2053		2054		Total
Benefits to Receiving Basin												
Commerce from New Residents												
Dallas (DWU)												
Commerce from New Residents	\$	8,177,841,285	\$	8,022,072,880	\$	7,869,271,491	\$	7,719,380,606	\$	7,572,344,785	\$	435,376,917,179
Collin (NTMWD)												
Commerce from New Residents		7,917,676,330		7,766,863,448		7,618,923,192		7,473,800,845		7,331,442,734		401,203,678,455
Tarrant (TRWD)												
Commerce from New Residents		9,909,157,400		9,905,736,221		9,717,055,531		9,531,968,759		9,350,407,450		464,107,346,540
Total Benefits	\$	16,095,517,615	\$	15,788,936,328	\$	15,488,194,683	\$	15,193,181,451	\$	14,903,787,519	\$	836,580,595,634

Notes:
(1) Freese \& Nichols Technical Report, December 2003. P
(2) Freese \& Nichols Technical Report, December 2003. F
(3) Freese \& Nichols Technical Report, December 2003. P

Appendix D, Figure 1
Lower Guadalupe Water Supply Project
Source: 2006 Region L Water Plan

Texas Water Development BoardSocioeconomic Analysis of Selected Interbasin Transfers in TexasComparison of Lower Guadalupe Water Supply Project (LGWSP) to Alternative Strategies								
	Lower Guadalupe Water Supply Project Inter-Basin In-Basin Use				SAWS Gonzales-Carrizo Project		Seawater Desalination	
Total Project Cost (2005 Dollars)	\$	1,360,398,744	\$	1,727,099,468	\$	427,168,338	\$	758,552,894
Annual Cost (2005 Dollars)								
Operation and Maintenance	\$	30,013,288	\$	48,575,924	\$	13,629,412	\$	37,557,194
Debt Service		98,831,488		125,471,896		31,033,315		55,108,042
Water Cost		8,387,743		8,387,743		4,966,591		-
Total Annual Cost	\$	137,232,519	\$	182,435,563	\$	49,629,318	\$	92,665,236
PV (50 year life)	\$	$973,316,866$	\$	1,327,061,223	\$	1,190,387,503	\$	1,811,932,992
Acre Feet over 50 year life		$1,519,080$		3,134,130		2,941,636		2,520,324
PV Per Acre Foot	\$	641	\$	423	\$	405	\$	719

Texas Water Development BoardSocioeconomic Analysis of Selected Interbasin Transfer in TexasCost Escalation Lower Guadalupe Water Supply Project (Interbasin Transfer)						
	2002		$2005{ }^{(1)}$		$2025{ }^{(1)}$	
Off-Channel (2-25,000 acft reservoirs) and Terminal Storage (10,570 acre feet)	\$	82,534,000	\$	93,691,000		171,741,666
Intake and Pump Station at Guadalupe River (259 MGD)		17,461,000		19,821,389		36,333,889
Pipeline from Guadalupe River to Off-Channel Storage (120 in dia., 19 miles)		68,309,000		77,543,055		142,141,438
Intake and Pump Station at Off-Channel Storage (48 MGD)		16,709,000		18,967,733		34,769,083
Transmission Pipeline to Bexar County (54 in dia., 101 miles)		117,204,000		133,047,713		243,885,068
Transmission Pump Station(s)		14,250,000		16,176,324		29,652,249
Well Fields		40,397,000		45,857,893		84,060,485
Total Capital Cost	\$	356,864,000	\$	405,105,107	\$	742,583,880
Non-Capital Cost ${ }^{(2)}$						
Engineering, Legal Costs and Contingencies	\$	152,844,000	\$	173,505,551	\$	318,046,904
Environmental \& Archaeology Studies and Mitigation		8,274,000		9,392,485		17,217,032
Study Period Costs		8,771,000		9,956,669		18,251,220
Land Acquisition and Surveying (4,118 acres)		43,533,000		49,417,819		90,586,061
Interest During Constraction (4 years)		83,481,676		94,766,783		173,713,647
Total	\$	296,903,676	\$	337,039,308	\$	617,814,865
Total Project Cost	\$	653,767,676	\$	742,144,415	\$	1,360,398,744
Annual Costs ${ }^{(3)}$						
Debt Service ${ }^{(4)}$	\$	47,495,510	\$	53,915,984	\$	98,831,488
O\&M - Intake, Pipeline, Pump Station		4,067,000		4,444,121		8,026,576
O\&M - Dam and Reservoir		1,238,000		1,352,796		2,443,300
Energy Costs ${ }^{(5)}$		7,153,000		7,986,409		19,543,412
Purchase of Water		4,250,000		4,644,090		8,387,743
Total Annual Cost	\$	64,203,510	\$	72,343,399	\$	137,232,519

Notes:

(1) All costs are inflated based upon factors contained in the Construction Cost Index History by ENR (Engineering News-Record) unless otherwise noted
(2) Non-Capital cost are esculated based the allocation percentage used in 2002
(3) Annual costs are esculated by a 3\% inflation factor unless otherwise noted
(4) Debt Service includes Reservoir Debt and assumes a 30 year note at 6%
(5) Cost escalated using the Producer Price Industrial Electric Power Index; 2002 cost estimated at $\$ 0.06 \mathrm{kwh}$ per Exhibit B of the TWDB planning guidelines

Texas Water Development Board Socioeconomic Impact of Selected Interbasin Transfers in Texas Present Value Calculation of Lower Guadalupe Water Supply Project (Interbasin Transfer)								
		Operations and Maintenance			Source Cost	Total	PV ${ }^{(3)}$	
Year	Debt Service	Intake, Pipeline, Pump Station ${ }^{(1)}$	Dam \& Reservoir ${ }^{(1)}$	Energy ${ }^{(2)}$	Puchase of Water ${ }^{(1)}$			
2005	\$	\$	\$	\$	\$	\$	\$	-
2006	-	-	-	-	-	-		-
2007	-	-	-	-	-	-		-
2008	-	-	-	-	-	-		-
2009	-	-	-	-	-	-		-
2010	-	-	-			-		-
2011	-	-	-	-	-	-		-
2012	-	-	-	-	-	-		-
2013	-	-	-	-	-	-		-
2014	-	-	-	-	-	-		-
2015	-	-	-	-	-	-		-
2016	-	-	-	-	-	-		-
2017	-	-	-	-	-	-		-
2018	-	-	-	-	-	-		-
2019	-	-	-	-	-	-		-
2020	-	-	-	-	-	-		-
2021	-	-	-	-	-	-		-
2022	-	-	-	-	-	-		-
2023	-	-	-	-	-	-		-
2024	-	-	-	-	-	-		-
2025	98,831,488	8,026,576	2,443,300	19,543,412	8,387,743	137,232,519		51,721,493
2026	98,831,488	8,267,374	2,516,599	20,437,738	8,639,375	138,692,574		49,782,640
2027	98,831,488	8,515,395	2,592,097	21,372,989	8,898,556	140,210,526		47,930,950
2028	98,831,488	8,770,857	2,669,860	22,351,039	9,165,513	141,788,756		46,162,351
2029	98,831,488	9,033,982	2,749,956	23,373,845	9,440,478	143,429,749		44,472,963
2030	98,831,488	9,305,002	2,832,454	24,443,455	9,723,693	145,136,092		42,859,090
2031	98,831,488	9,584,152	2,917,428	25,562,012	10,015,403	146,910,484		41,317,212
2032	98,831,488	9,871,676	3,004,951	26,731,756	10,315,866	148,755,737		39,843,974
2033	98,831,488	10,167,827	3,095,099	27,955,028	10,625,341	150,674,783		38,436,179
2034	98,831,488	10,472,862	3,187,952	29,234,278	10,944,102	152,670,681		37,090,780
2035	98,831,488	10,787,047	3,283,591	30,572,068	11,272,425	154,746,619		35,804,878
2036	98,831,488	11,110,659	3,382,099	31,971,076	11,610,598	156,905,919		34,575,706
2037	98,831,488	11,443,979	3,483,562	33,434,105	11,958,915	159,152,048		33,400,630
2038	98,831,488	11,787,298	3,588,069	34,964,083	12,317,683	161,488,620		32,277,141
2039	98,831,488	12,140,917	3,695,711	36,564,074	12,687,213	163,919,403		31,202,845
2040	98,831,488	12,505,144	3,806,582	38,237,283	13,067,830	166,448,327		30,175,465
2041	98,831,488	12,880,299	3,920,779	39,987,059	13,459,865	169,079,490		29,192,828
2042	98,831,488	13,266,708	4,038,403	41,816,907	13,863,661	171,817,166		28,252,864
2043	98,831,488	13,664,709	4,159,555	43,730,491	14,279,570	174,665,813		27,353,603
2044	98,831,488	14,074,650	4,284,342	45,731,642	14,707,958	177,630,079		26,493,165
2045	98,831,488	14,496,890	4,412,872	47,824,367	15,149,196	180,714,813		25,669,759
2046	98,831,488	14,931,796	4,545,258	50,012,858	15,603,672	183,925,073		24,881,679
2047	98,831,488	15,379,750	4,681,616	52,301,497	16,071,782	187,266,133		24,127,298
2048	98,831,488	15,841,143	4,822,064	54,694,866	16,553,936	190,743,497		23,405,067
2049	98,831,488	16,316,377	4,966,726	57,197,758	17,050,554	194,362,903		22,713,508
2050	98,831,488	16,805,868	5,115,728	59,815,184	17,562,070	198,130,339		22,051,215
2051	98,831,488	17,310,044	5,269,200	62,552,387	18,088,933	202,052,052		21,416,846
2052	98,831,488	17,829,346	5,427,276	65,414,847	18,631,601	206,134,557		20,809,122
2053	98,831,488	18,364,226	5,590,094	68,408,296	19,190,549	210,384,653		20,226,824
2054	98,831,488	18,915,153	5,757,797	71,538,728	19,766,265	214,809,431		19,668,792
Total							\$	973,316,866
Notes:						Acre Feet/year		50,636
(1)	Inflated by General In	lation				Years		30
(2)	Inflated by the Indust	al Electric Power index				Total Acre Feet		1,519,080
(3)	PV calculation repres	ents mid-year cost						
						PV/ acre foot	\$	640.73

Texas Water Development BoardSocioeconomic Impact of Selected Interbasin Transfers in TexasPresent Value Calculation of Lower Guadalupe Water Supply Project (In-basinTransfer)						
	2002		$2005{ }^{(1)}$		$2025{ }^{(1)}$	
Capital Cost						
Off-Channel (2-25,000 acft reservoirs) and Terminal Storage (10,570 acre feet)	\$	82,534,000	\$	93,691,000	\$	171,741,666
Intake and Pump Station at Guadalupe River (259 MGD)		17,461,000		19,821,389		36,333,889
Pipeline from Guadalupe River to Off-Channel Storage (120 in dia., 19 miles)		68,309,000		77,543,055		142,141,438
Intake and Pump Station at Off-Channel Storage (98 MGD)		25,975,000		29,486,317		54,050,328
Transmission Pipeline to Bexar County (78 in dia., 101 miles)		200,453,000		227,550,367		417,114,549
Transmission Pump Station(s)		20,343,000		23,092,980		42,330,927
Well Fields		40,397,000		45,857,893		84,060,485
Total Capital Cost	\$	455,472,000	\$	517,043,001	\$	947,773,283
Non-Capital Cost ${ }^{(2)}$						
Engineering, Legal Costs and Contingencies	\$	210,091,000	\$	238,491,238	\$	437,169,874
Environmental \& Archaeology Studies and Mitigation		8,283,000		9,402,701		17,235,760
Study Period Costs		8,771,000		9,956,669		18,251,220
Land Acquisition and Surveying (4,118 acres)		43,543,000		49,429,171		90,606,870
Interest During Constraction (4 years)		103,833,273		117,869,522		216,062,462
Total	\$	374,521,273	\$	425,149,301	\$	779,326,185
Total Project Cost	\$	829,993,273	\$	942,192,302	\$	1,727,099,468
Annual Costs ${ }^{(3)}$						
Debt Service ${ }^{(4)}$	\$	60,298,108	\$	68,449,245	\$	125,471,896
O\&M - Intake, Pipeline, Pump Station		5,684,000		6,211,060		11,217,866
O\&M - Dam and Reservoir		1,238,000		1,352,796		2,443,300
Energy Costs ${ }^{(5)}$		12,779,000		14,267,904		34,914,758
Purchase of Water		4,250,000		4,644,090		8,387,743
Total Annual Cost	\$	84,249,108	\$	94,925,095	\$	182,435,563

Notes:

(1) All costs are inflated based upon factors contained in the Construction Cost Index History by ENR (Engineering News-Record) unless otherwise noted
(2) Non-Capital cost are esculated based the allocation percentage used in 2002
(3) Annual costs are esculated by a 3% inflation factor unless otherwise noted
(4) Debt Service includes Reservoir Debt and assumes a 30 year note at 6%
(5) Cost escalated using the Producer Price Industrial Electric Power Index; 2002 cost estimated at $\$ 0.06$ kwh per Exhibit B of the TWDB planning guidelines

Texas Water Development Board Socioeconomic Impact of Selected Interbasin Transfers in Texas Cost Escalation of SAWS Gonzales - Carrizo Project						
	2002		$2005{ }^{(1)}$		$2008{ }^{(1)}$	
Capital Costs						
Wells	\$	39,992,000	\$	45,398,145	\$	49,718,129
Well Field Piping		25,514,000		28,962,999		31,719,052
Pipeline		95,208,000		108,078,279		118,362,762
Pump Station		14,831,000		16,835,864		18,437,927
SCADA and Telemetry (Supply)		2,138,000		2,427,016		2,657,966
Electric Power Infrastructure Improvements (Supply)		2,672,000		3,033,203		3,321,835
Contingency and Inflation (Supply) (18\%) ${ }^{(2)}$		36,279,540		41,183,832		45,102,791
Total Capital Costs	\$	216,634,540	\$	245,919,338	\$	269,320,462
Non-Capital Costs ${ }^{(3)}$						
Engineering, Legal, and Program Management (19\%)	\$	41,160,563	\$	46,724,674	\$	51,170,888
Environmental \& Archaeology Studies, Mitigation, and Permitting		4,877,000		5,536,276		6,063,095
Land Acquisition and Surveying		9,731,000		11,046,443		12,097,597
Groundwater Lease Acquisition		6,176,000		7,010,876		7,678,015
Interest During Construction		39,064,260		44,344,992		48,564,761
Mitigation Reserve for Possible Impacts to Local Wells		12,002,000		13,624,438		14,920,909
Test Drilling Programs and Concept Studies		13,958,000		15,844,852		17,352,611
Total Non-Capital Costs	\$	126,968,823	\$	144,132,551	\$	157,847,876
Total Project Cost	\$	343,603,363	\$	390,051,888	\$	427,168,338
Annual Costs ${ }^{(4)}$						
Debt Service ${ }^{(5)}$	\$	24,962,410	\$	28,336,845	\$	31,033,315
Groundwater Leases		3,532,000		4,009,458		4,390,989
District Export Fee		463,000		525,589		575,602
Maintenance - Pipelines, Tanks, Wells		2,092,000		2,374,798		2,600,778
Maintenance - Pump Stations, SCADA		759,000		861,602		943,590
Power (Pumping) ${ }^{(6)}$		7,898,000		8,818,210		10,085,043
Total Annual Cost	\$	39,706,410	\$	44,926,502	\$	49,629,318

Notes:

(1) All costs are inflated based upon factors contained in the Construction Cost Index History by ENR (Engineering News-Record) unless otherwise noted
(2) Calculated at 18% of all capital costs excluding integration/Distribution
(3) Non-Capital cost are escalated based the allocation percentage used in 2002
(4) Annual costs are escalated by a 3% inflation factor unless otherwise noted
(5) Debt Service on Total Project Cost assumed at 6\% interest for 30 years
(6) Cost escalated using the Producer Price Industrial Electric Power Index; 2002 cost estimated at $\$ 0.06$ kwh per Exhibit B of the TWDB planning guidelines

Texas Water Development Board Socioeconomic Impact of Selected Interbasin Transfers in Texas Present Value Calculation of SAWS Gonzales - Carrizo Project									
Operations and Maintenance									
Year	Debt Service	Pipelines, Tanks, Wells ${ }^{\text {(1) }}$	Pump Stations, SCADA ${ }^{(1)}$	Water Treatment ${ }^{(2)}$	Power ${ }^{(3)}$	Groundwater Leases ${ }^{(1)}$ Direct Export Fee ${ }^{(1)}$			
2005				\$ -	\$ -	\$	\$	Total	$\mathrm{PV}^{(4)}$
2006					-	-			
2007	-	-		-	-	-			
2008	31,033,315	2,600,778	943,590	4,676,752	10,085,043	4,390,989	575,602	54,306,070	46,911,625
2009	31,033,315	2,678,802	971,898	4,864,902	10,546,545	4,522,719	592,871	55,211,051	45,422,268
2010	31,033,315	2,759,166	1,001,055	5,060,622	11,029,166	4,658,400	610,657	56,152,380	43,996,859
2011	31,033,315	2,841,941	1,031,086	5,264,215	11,533,871	4,798,152	628,976	57,131,557	42,632,447
2012	31,033,315	2,927,199	1,062,019	5,475,999	12,061,673	4,942,097	647,846	58,150,147	41,326,224
2013	31,033,315	3,015,015	1,093,880	5,696,304	12,613,627	5,090,360	667,281	59,209,781	40,075,510
2014	31,033,315	3,105,465	1,126,696	5,925,471	13,190,839	5,243,070	687,299	60,312,157	38,877,754
2015	31,033,315	3,198,629	1,160,497	6,163,858	13,794,465	5,400,363	707,918	61,459,046	37,730,523
2016	31,033,315	3,294,588	1,195,312	6,411,836	14,425,714	5,562,373	729,156	62,652,294	36,631,499
2017	31,033,315	3,393,426	1,231,171	6,669,790	15,085,849	5,729,245	751,031	63,893,826	35,578,473
2018	31,033,315	3,495,229	1,268,106	6,938,122	15,776,192	5,901,122	773,562	65,185,647	34,569,341
2019	31,033,315	3,600,085	1,306,150	7,217,249	16,498,127	6,078,156	796,768	66,529,849	33,602,095
2020	31,033,315	3,708,088	1,345,334	7,507,605	17,253,098	6,260,500	820,671	67,928,611	32,674,824
2021	31,033,315	3,819,331	1,385,694	7,809,643	18,042,617	6,448,315	845,292	69,384,206	31,785,704
2022	31,033,315	3,933,911	1,427,265	8,123,832	18,868,265	6,641,765	870,650	70,899,002	30,933,000
2023	31,033,315	4,051,928	1,470,083	8,450,661	19,731,696	6,841,018	896,770	72,475,470	30,115,055
2024	31,033,315	4,173,486	1,514,185	8,790,639	20,634,638	7,046,248	923,673	74,116,184	29,330,291
2025	31,033,315	4,298,690	1,559,611	9,144,295	21,578,899	7,257,636	951,383	75,823,829	28,577,204
2026	31,033,315	4,427,651	1,606,399	9,512,178	22,566,372	7,475,365	979,925	77,601,204	27,854,360
2027	31,033,315	4,560,480	1,654,591	9,894,861	23,599,031	7,699,626	1,009,322	79,451,227	27,160,392
2028	31,033,315	4,697,295	1,704,229	10,292,941	24,678,947	7,930,614	1,039,602	81,376,942	26,493,997
2029	31,033,315	4,838,214	1,755,356	10,707,035	25,808,280	8,168,533	1,070,790	83,381,522	25,853,934
2030	31,033,315	4,983,360	1,808,016	11,137,789	26,989,293	8,413,589	1,102,914	85,468,276	25,239,019
2031	31,033,315	5,132,861	1,862,257	11,585,872	28,224,350	8,665,997	1,136,001	87,640,653	24,648,122
2032	31,033,315	5,286,847	1,918,125	12,051,983	29,515,924	8,925,976	1,170,081	89,902,251	24,080,167
2033	31,033,315	5,445,452	1,975,668	12,536,845	30,866,603	9,193,756	1,205,184	92,256,822	23,534,128
2034	31,033,315	5,608,816	2,034,938	13,041,213	32,279,089	9,469,568	1,241,339	94,708,279	23,009,028
2035	31,033,315	5,777,080	2,095,987	13,565,873	33,756,213	9,753,655	1,278,579	97,260,703	22,503,933
2036	31,033,315	5,950,393	2,158,866	14,111,641	35,300,931	10,046,265	1,316,937	99,918,347	22,017,955
2037	31,033,315	6,128,904	2,223,632	14,679,365	36,916,337	10,347,653	1,356,445	102,685,651	21,550,244
2038	-	6,312,772	2,290,341	15,269,929	38,605,665	10,658,083	1,397,138	74,533,928	14,897,286
2039	-	6,502,155	2,359,051	15,884,252	40,372,299	10,977,825	1,439,052	77,534,635	14,759,090
2040	-	6,697,219	2,429,823	16,523,290	42,219,776	11,307,160	1,482,224	80,659,493	14,622,782
2041	-	6,898,136	2,502,718	17,188,037	44,151,796	11,646,375	1,526,691	83,913,752	14,488,331
2042	-	7,105,080	2,577,799	17,879,528	46,172,226	11,995,766	1,572,491	87,302,890	14,355,706
2043	-	7,318,232	2,655,133	18,598,837	48,285,113	12,355,639	1,619,666	90,832,621	14,224,876
2044	-	7,537,779	2,734,787	19,347,086	50,494,688	12,726,308	1,668,256	94,508,905	14,095,811
2045	-	7,763,913	2,816,831	20,125,436	52,805,376	13,108,097	1,718,304	98,337,957	13,968,482
2046	-	7,996,830	2,901,336	20,935,101	55,221,803	13,501,340	1,769,853	102,326,263	13,842,861
2047	-	8,236,735	2,988,376	21,777,339	57,748,808	13,906,380	1,822,949	106,480,587	13,718,918
2048	-	8,483,837	3,078,027	22,653,461	60,391,451	14,323,572	1,877,637	110,807,986	13,596,628
2049		8,738,352	3,170,368	23,564,831	63,155,025	14,753,279	1,933,966	115,315,820	13,475,961
2050	-	9,000,503	3,265,479	24,512,866	66,045,062	15,195,877	1,991,985	120,011,771	13,356,891
2051	-	9,270,518	3,363,443	25,499,040	69,067,350	15,651,754	2,051,745	124,903,850	13,239,393
2052	-	9,548,633	3,464,346	26,524,890	72,227,941	16,121,306	2,113,297	130,000,414	13,123,440
2053	-	9,835,092	3,568,277	27,592,011	75,533,164	16,604,946	2,176,696	135,310,185	13,009,007
2054	-	10,130,145	3,675,325	28,702,062	78,989,637	17,103,094	2,241,997	140,842,261	12,896,069
Total									\$ 1,190,387,503
Notes	Inflated by General Inflation							Acre Feet/year	62,588
(1)								Years	47
(2)	Water Treatment cost escalated using the Handy-Whitman NARUC - account 320							Total Acre Feet	2,941,636
(3)	Escalated using Producer Price Index, Industrial Electrical Power								
(4)	Half year convention applied to PV calculation							PV/ acre foot	\$ 404.67

Texas Water Development Board Socioeconomic Impact of Selected Interbasin Transfers in Texas Cost Escalation of Desalinated Seawater						
	2002		$2005{ }^{(1)}$		$2010{ }^{(1)}$	
Capital Costs						
${ }^{(2)}$ Water Treatment Plant (Pretreatment and Desal) ${ }^{(2)}$	\$	129,272,000	\$	138,786,944	\$	169,043,077
Concentrate Disposal		43,279,000		49,129,483		57,165,848
Transmission Pump Stations		23,524,000		26,703,990		31,072,100
Transmission Pipeline		169,196,000		192,068,025		223,485,587
Total Capital Cost	\$	365,271,000	\$	406,688,442	\$	480,766,611
Non-Capital Cost ${ }^{(3)}$						
${ }^{(4)}$ Engineering, Legal, and Contingencies ${ }^{(4)}$	\$	142,607,550	\$	159,099,286	\$	187,767,892
Environmental \& Archaeology Studies, Mitigation, and Permitting		11,559,000		12,869,655		15,213,858
Land Acquisition and Surveying (673 acres)		6,693,000		7,451,908		8,809,270
Interest During Construction (2.5 years)		50,141,076		55,826,486		65,995,262
Total Non-Capital Cost	\$	211,000,626	\$	235,247,334	\$	277,786,283
Total Project Cost	\$	576,271,626	\$	641,935,776	\$	758,552,894
Annual Costs						
Debt Service ${ }^{(5)}$	\$	41,865,506	\$	46,635,935	\$	55,108,042
O\&M Pipeline, Pump Stations, Tank, Distribution ${ }^{(6)}$		3,437,000		3,901,616		4,539,823
Water Treatment Plants Excluding Electricity ${ }^{(2)}$		13,481,000		14,473,256		17,628,487
WTP Energy Cost ${ }^{(7)}$		6,413,000		7,160,190		8,955,437
Finished Water Pumping Energy Cost ${ }^{(7)}$		4,607,000		5,143,770		6,433,447
Total Annual Cost	\$	69,803,506	\$	77,314,768	\$	92,665,236

Notes:

(1) All costs are inflated based upon factors contained in the Construction Cost Index History by ENR (Engineering News-Record) unless otherwise noted
(2) Water Treatment cost escalated using the Handy-Whitman NARUC - account 320
(3) Non-Capital cost are esculated based the allocation percentage used in 2002 unless otherwise noted
(4) Calculated utilizing engineering, legal, and contingency percentages provided in Exhibit B of the TWDB planning guidelines
(5) Debt Service on Total Project Cost assumed at 6\% interest for 30 years
(6) Calculated utilizing the same percentage of O\&M as that which was used in 2002
(7) Cost escalated using the Producer Price Industrial Electric Power Index; 2002 cost estimated at $\$ 0.06$ kwh per Exhibit B of the TWDB planning guidelines

Texas Water Development Board
Socioeconomic Impact of Selected Interbasin Transfers in Texas Socioeconomic Impact of Lower Guadalupe Water Supply Project Present Value Summary

Economic Benefits to the Basin

Construction: Local Payroll \& Materials	$\$$	$315,096,330$
Commerce from New Residents (Bexar County)		$90,803,675,039$
Total Benefits (discounted)	$\$$	$\mathbf{9 1 , 1 1 8 , 7 7 1 , 3 6 9}$
TOTAL NET ECONOMIC IMPACT (discounted to Year 2005)	$\mathbf{\$}$	$\mathbf{9 1 , 1 1 8 , 7 7 1 , 3 6 9}$

ANNUAL CALCULATION

Basin Benefits

Construction:
Local Payroll and Materials
Refugio County
Goliad County
Karnes County
Wilson County
Bexar County
Victoria County
Subtotal
Commerce from New Residents
Per Capita Income (disposable, locally spent) Assumed Increase in Population
Commerce from New Residents (Bexar County)

Total Benefits

PRESENT VALUE CALCULATION

Basin Benefits
 Construction:

Local Payroll and Materials
(This section intentionally left blank)
Commerce from New Residents
Total Benefits (discounted)

ANNUAL CALCULATION

Basin Benefits
Construction:
Local Payroll and Materials
Refugio County
Goliad County
Karnes County
Wilson County
Bexar County
Victoria County

Commerce from New Residents
Per Capita Income (disposable, locally spent)
Assumed Increase in Population
Commerce from New Residents (Bexar County)

Total Benefits

PRESENT VALUE CALCULATION

Basin Benefits
 Construction:
 Local Payroll and Materials
 Commerce from New Residents

Total Benefits (discounted)

ANNUAL CALCULATION

	2016			2017			2018			2019			2020			2021			2022			2023			2024			2025		2026	
Basin Benefits																															
Construction:																															
Local Payroll and Materials																															
Refugio County	\$		-	\$		-	\$		-	\$		-	\$		-	\$		-	\$		-	\$		-	\$		-	\$	-	\$	\$
Goliad County			-			-			-			-			-			-			-			-			-		-		-
Karnes County			-			-			-			-			-			-			-			-			-		-		-
Wilson County			-			-			-			-						-			-			-			-		-		-
Bexar County			-			-			-			-						-			-			-			-		-		-
Victoria County			-			-			-			-			-			-			-			-			-		-		-
Subtotal	\$		-	\$		-	\$		-	\$		-	\$		-	\$		-	\$		-	\$		-	\$		-	\$	-		\$
Commerce from New Residents																															
Per Capita Income (disposable, locally spent)	\$		-	\$		-	\$		-	\$		-	\$		-	\$		-	\$		-	\$		-	\$		-	\$	45,123	\$	\$ 46,477
Assumed Increase in Population			-			-			-			-			-			-			-			-			-		18,612		37,703
Commerce from New Residents (Bexar County)			-			-			-			-			-			-			-			-			-		839,819,212		1,752,296,445
	\$		-	\$		-	\$		-	\$		-	\$		-	\$		-	\$		-	\$		-	\$		-	\$	839,882,947		1,752,380,624
Total Benefits	\$		-	\$		-	\$		-	\$		-	\$		-	\$		-	\$		-	\$		-	\$		-	\$	839,882,947		1,752,380,624
PRESENT VALUE CALCULATION																															
		2016			2017			2018			2019			2020			2021			2022			2023			2024			2025		2026
Basin Benefits																															
Construction:																															
Local Payroll and Materials	\$		-	\$		-	\$		-	\$		-	\$		-	\$		-	\$		-	\$		-	\$		-	\$	-	\$	\$
Commerce from New Residents			-			-			-			-			-			$-$			-			-			-		316,519,029		628,973,430
Total Benefits (discounted)	\$		-	\$		-	\$		-	\$		-	\$		-	\$		-	\$		-	\$		-	\$		-	\$	316,519,029		-628,973,430

ANNUAL CALCULATION

ANNUAL CALCULATION

		2035		2036		2037		2038		2039		2040		2041		2042
Basin Benefits																
Construction:																
Local Payroll and Materials																
Refugio County	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Goliad County		-		-		-		-		-		-		-		-
Karnes County		-		-		-		-		-		-		-		-
Wilson County		-		-		-		-		-		-		-		-
Bexar County		-		-		-		-		-		-		-		-
Victoria County		-		-		-		-		-		-		-		-
Subtotal	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Commerce from New Residents																
Per Capita Income (disposable, locally spent)	\$	60,642	\$	62,461		64,335		66,265	\$	68,253	\$	70,300	\$	72,409	\$	74,581
Assumed Increase in Population		193,345		208,873		224,661		240,712		257,032		273,898		286,016		298,277
Commerce from New Residents (Bexar County)		11,724,759,483		13,046,399,303		14,453,474,138		15,950,708,444		17,543,070,446		19,255,078,055		20,710,177,019		22,245,921,525
	\$	11,725,013,470	\$	13,046,670,637		14,453,763,133	\$	15,951,015,421	\$	17,543,395,730	\$	19,255,422,253	\$	20,710,535,445	\$	22,246,294,383
Total Benefits	\$	11,725,013,470	\$	13,046,670,637	\$	14,453,763,133	\$	15,951,015,421	\$	17,543,395,730	\$	19,255,422,253	\$	20,710,535,445	\$	22,246,294,383
PRESENT VALUE CALCULATION																
		2035		2036		2037		2038		2039		2040		2041		2042
Basin Benefits																
Construction:																
Local Payroll and Materials	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Commerce from New Residents		2,712,844,935		2,874,897,700		3,033,295,211		3,188,108,605		3,339,407,659		3,490,758,595		3,575,765,621		3,658,022,187
Total Benefits (discounted)	\$	2,712,844,935	\$	2,874,897,700	\$	3,033,295,211	\$	3,188,108,605	\$	3,339,407,659	\$	3,490,758,595	\$	3,575,765,621	\$	3,658,022,187

ANNUAL CALCULATION

		2043		2044		2045		2046		2047		2048		2049		2050
Basin Benefits																
Construction:																
Local Payroll and Materials																
Refugio County	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Goliad County		-		-		-		-		-		-		-		-
Karnes County		-		-		-		-		-		-		-		-
Wilson County		-		-		-		-		-		-		-		-
Bexar County		-		-		-		-		-		-		-		-
Victoria County		-		-		-		-		-		-		-		-
Subtotal	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Commerce from New Residents																
Per Capita Income (disposable, locally spent)	\$	76,819	\$	79,123	\$	81,497	\$	83,942	\$	86,460	\$	89,054	\$	91,726	\$	94,478
Assumed Increase in Population		310,683		323,235		335,935		348,785		361,787		374,943		388,254		401,836
Commerce from New Residents (Bexar County)		23,866,290,520		25,575,448,072		27,377,751,695		29,277,761,039		31,280,246,966		33,390,201,026		35,612,845,342		37,964,454,391
	\$	23,866,678,021	\$	25,575,850,430	\$	27,378,169,127	\$	29,278,193,766	\$	31,280,695,214	\$	33,390,665,023	\$	35,613,325,321	\$	37,964,950,704
Total Benefits	\$	23,866,678,021	\$	25,575,850,430	\$	27,378,169,127	\$	29,278,193,766	\$	31,280,695,214	\$	33,390,665,023	\$	35,613,325,321	\$	37,964,950,704
PRESENT VALUE CALCULATION																
		2043		2044		2045		2046		2047		2048		2049		2050
Basin Benefits																
Construction:																
Local Payroll and Materials	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Commerce from New Residents		3,737,589,132		3,814,526,070		3,888,891,419		3,960,742,422		4,030,135,168		4,097,124,619		4,161,764,627		4,225,311,237
Total Benefits (discounted)	\$	3,737,589,132	\$	3,814,526,070	\$	3,888,891,419	\$	3,960,742,422	\$	4,030,135,168	\$	4,097,124,619	\$	4,161,764,627	\$	4,225,311,237

ANNUAL CALCULATION

	2051		2052		2053		2054		Total	
Basin Benefits										
Construction:										
Local Payroll and Materials										
Refugio County	\$	-	\$	-	\$	-	\$	-	\$	641,857
Goliad County		-		-		-		-		540,799
Karnes County		-		-		-		-		1,505,999
Wilson County		-		-		-		-		2,479,658
Bexar County		-		-		-		-		416,361,118
Victoria County		-		-		-		-		22,066,150
Subtotal	\$	-	\$	-	\$	-	\$	-	\$	443,595,580
Commerce from New Residents										
Per Capita Income (disposable, locally spent)	\$	97,312	\$	100,231	\$	103,238	\$	106,335		
Assumed Increase in Population		414,144		426,582		439,151		451,854		
Commerce from New Residents (Bexar County)		40,301,091,748		42,756,802,184		45,337,160,429		48,047,990,341		611,329,879,061
	\$	40,301,603,204	\$	42,757,328,997	\$	45,337,702,818	\$	48,048,548,530	\$	611,329,879,061
Total Benefits	\$	40,301,603,204	\$	42,757,328,997	\$	45,337,702,818	\$	48,048,548,530	\$	611,773,474,641
PRESENT VALUE CALCULATION										
		2051		2052		2053		2054		Total
Basin Benefits										
Construction:										
Local Payroll and Materials	\$	-	\$	-	\$	-	\$	-	\$	315,096,330
Commerce from New Residents		4,271,781,731		4,316,265,592		4,358,810,219		4,399,462,023		90,803,675,039
Total Benefits (discounted)	\$	4,271,781,731	\$	4,316,265,592	\$	4,358,810,219	\$	4,399,462,023	\$	91,118,771,369

Table 1
 Short Term Benefits From Construction

	Percent of Total		Value
Projected Construction Cost		\$	635,053,692 ${ }^{(1)}$
Direct Construction Employment (Local Payroll)	15\%	\$	95,258,054 ${ }^{(2)}$
Local Purchase of Construction Materials	20\%	\$	127,010,738 ${ }^{(3)}$
Total Short Term Benefits From Construction		\$	222,268,792 ${ }^{(4)}$
Distribution to Counties in Basin			
Refugio County	0.5\%	\$	1,130,090 ${ }^{(5)}$
Goliad County	0.4\%	\$	1,000,162
Karnes County	1.0\%	\$	2,229,864
Wilson County	2.1\%	\$	4,678,586
Bexar County	90.5\%	\$	201,090,711
Victoria County	5.5\%	\$	12,139,378

(1) Estimated Project Cost Region L 2006 for Raw Water Only, 2002 Dollars
(2) Estimated Construction Based Local Payroll, RSMeans Manuals
(3) Estimated Value of Local Construction Commerce, RSMeans Manuals
(4) Estimated Value of Short Term Benefits from Project Construction
(5) U.S. Census, Population Figures, 2000

Texas Water Development Board Socioeconomic Impact of Selected Interbasin Transfers in Texas Results of Market Survey of Water Rights Transactions						
Seller	Buyer	Priority Date	Yield in Acre-Feet	$\frac{\text { Transaction }}{\text { Price }}$	$\frac{\text { Price per }}{\text { Acre - Foot }}$	
Brazos Electric Cooperative	Brazos River Authority	2/7/1949	38,000	550,000	\$	14
Pierce Ranch in Wharton County	Lower Colorado River Authority	2/1/2000	55,000	17,000,000		309
CL-Ranch \& Lynch Brothers	El Paso Water Utilities	6/1/2002	17,831	8,200,000		460
Raymond D. Hegwar, et	Canyon Regional Water Authority	6/4/1951	86	43,000		500
Lipscomb; et	City of Victoria	8/15/1951	260	130,000		500
Jess Yell Womack II	Guadalupe Blanco River Authority	3/1/1951	3,000	1,800,000		600
The Nature Conservancy	City of Laredo	6/1/2002	350	490,000		1,400
Private Landowners	Schertz/Seguin Local Gov. Corp.	6/1/2001	20,000	51,040,000		2,552
New Mexico Farmers	El Paso Water Utilities	12/1/2001	3,080	8,000,000		2,597
	Simple Average				\$	993
	Weighted Average				\$	634

[^0]: ${ }^{1}$ Senate Select Committee on Water Policy, Interim Report to the $79^{\text {th }}$ Legislature, December 2004, Appendix F, Page 2.

[^1]: ${ }^{2}$ Senate Select Committee on Water Policy, Interim Report to the $79^{\text {th }}$ Legislature, December 2004, Page 6

[^2]: ${ }^{3}$ House Research Organization, Bill Analysis of S.B. 2, 5/21/2001
 ${ }^{4}$ Ibid
 ${ }^{5}$ Wasinger, Bruce and Thomas Mason, "Interbasin Transfers - A Problem Resolved? Basin of Origin
 Protection," Texas Water Law Institute, Senate Bill 1 - "A New Chapter in Texas Water Law," October 23-24, 1997

[^3]: ${ }^{6} 2006$ Region C Water Plan, Page 8.16 to 8.17

[^4]: ${ }^{7} 2006$ Region H Water Plan, Page 8-20

[^5]: ${ }^{8} 2006$ South Central Texas Regional Water Plan, Page 8-3 to 8-4

[^6]: ${ }^{1}$ Estimates calculated according to figures contained within 2006 Region C Plan

[^7]: ${ }^{2} 2006$ Region L Plan, Page 10-28

[^8]: ${ }^{1}$ Assumes the time period from initial planning and permitting to delivery of water from completed and filled reservoir.

[^9]: ${ }^{2}$ Olson, Doug and Scott Lindall, "Implan Professional Software, Analysis, and Data Guide, Minnesota IMPLAN Group, Inc.

[^10]: ${ }^{3}$ Olson, Doug and Scott Lindall, "Implan Professional Software, Analysis, and Data Guide, Minnesota IMPLAN Group, Inc.

[^11]: ${ }^{4}$ http://www.waterstrategist.com/body.html

[^12]: ${ }^{1} 2006$ Region H Water Plan, Page 4-6

[^13]: ${ }^{2}$ Madisonville Meteor, July 13, 2005

[^14]: ${ }^{3}$ Roy G. Frye and David Curtis, "Texas Water and Wildlife: An Assessment of Direct Impacts of Wildlife Habitat from Future Water Development Projects (Austin: TPWD, Resource Protection Division, 1990)

[^15]: ${ }^{4}$ Footprint of Bedias Reservoir assumed from 2006 Region H Water Planning Documents
 ${ }^{5}$ U.S. Department of Agriculture 2002 Census of Agriculture, escalated to 2005 by assuming 3\% inflation.

[^16]: ${ }^{6}$ For purposes of this analysis, all dollar values determined in a particular year were escalated by an annual inflation rate of 3% to the appropriate years under consideration within each element of the analysis.
 ${ }^{7}$ Environmental Working Group Farm Subsidy Database
 ${ }^{8}$ Total farm acreage in 2002, www.nass.usda.gov/census02

[^17]: ${ }^{9}$ Forestry Inventory Mapmaker, National Information Management System (NIMS-CS), 2005.
 ${ }^{10}$ Walker and Grimes Counties experiences losses beginning in year 2010 while Madison experiences losses beginning in year 2020 .

[^18]: ${ }^{11}$ Texas Water Development Board, 2006 Regional Water Plan, Region H.
 ${ }^{12}$ RS Means Manuals
 ${ }^{13}$ Olson, Doug and Scott Lindall, "IMPLAN Professional Software, Analysis, and Data Guide"; Minnesota IMPLAN Group, Inc.
 ${ }^{14}$ Ibid

[^19]: ${ }^{15}$ U.S. Army Engineer Research and Development Center, Expenditures and Associated Economic Effects of Recreation Visitors to Corps of Engineers Projects, Technical Report, 2003 (Data from 1999)
 ${ }^{16}$ Ibid
 ${ }^{17}$ Ibid
 ${ }^{18}$ Texas A\&M Recreation, Park \& Tourism Sciences survey results
 ${ }^{19}$ For purposes of this analysis, all dollar values determined in a particular year were escalated by an annual inflation rate of 3% to the appropriate years under consideration within each element of the analysis.

[^20]: ${ }^{20}$ Olson, Doug and Scott Lindall, "IMPLAN Professional Software, Analysis, and Data Guide"; Minnesota IMPLAN Group, Inc.

[^21]: ${ }^{21}$ Olson, Doug and Scott Lindall, "IMPLAN Professional Software, Analysis, and Data Guide"; Minnesota IMPLAN Group, Inc.

[^22]: ${ }^{1}$ http://www.sra.dst.tx.us/projects/tbp.asp

[^23]: ${ }^{2}$ Freese \& Nichols Technical Plan, December 2003
 ${ }^{3}$ SRA Comprehensive Sabine Watershed Management Plan, December 1999.
 ${ }^{4}$ Olson, Doug, and Scott Lindall, "IMPLAN Professional Software, Analysis, and Data Guide"; Minnesota IMPLAN Group, Inc.
 ${ }^{5}$ Ibid

[^24]: ${ }^{6}$ Toledo Bend Water Supply Project, Memorandum of Understanding, December 2004.

[^25]: ${ }^{7}$ Toledo Bend Water Supply Project, Memorandum of Understanding, December 2004.
 ${ }^{8}$ SRA Comprehensive Sabine Watershed Management Plan, December 1999.
 ${ }^{9}$ TWDB 2006 Regional Water Plan
 ${ }^{10}$ Freese \& Nichols Technical Plan, December 2003

[^26]: ${ }^{11}$ Olson, Doug, and Scott Lindall, "IMPLAN Professional Software, Analysis, and Data Guide"; Minnesota IMPLAN Group, Inc.
 ${ }^{12}$ Ibid
 ${ }^{13}$ Ibid
 ${ }^{14}$ Ibid
 ${ }^{15}$ City of McKinney, Press Release, 2004.
 ${ }^{16}$ Texas Water Development Board, 2006 Region C Water Plan

[^27]: ${ }^{17}$ Texas Water Development Board, 2006 Region C Water Plan
 ${ }^{18}$ Ibid
 ${ }^{19}$ Ibid
 ${ }^{20}$ Ibid
 ${ }^{21}$ Olson, Doug, and Scott Lindall, "IMPLAN Professional Software, Analysis, and Data Guide"; Minnesota IMPLAN Group, Inc.
 ${ }^{22}$ Ibid
 ${ }^{23}$ Ibid
 ${ }^{24}$ Ibid

[^28]: ${ }^{1}$ Lower Guadalupe Water Supply Project Costs from Region L TWDB Water Plan 2006.
 ${ }^{2}$ RS Means Manuals

[^29]: ${ }^{3}$ For purposes of this analysis, all dollar values determined in a particular year were escalated by an annual inflation rate of 3% to the appropriate years under consideration within each element of the analysis.
 ${ }^{4}$ Olson, Doug and Scott Lindall, "IMPLAN Professional Software, Analysis, and Data Guide"; Minnesota IMPLAN Group, Inc.
 ${ }^{5}$ Ibid

[^30]: ${ }^{6}$ Olson, Doug and Scott Lindall, "IMPLAN Professional Software, Analysis, and Data Guide"; Minnesota IMPLAN Group, Inc.
 ${ }^{7}$ Ibid
 ${ }^{8}$ Ibid

