

SNAS688C-FEBRURAY 2017-REVISED MAY 2018

LMK04832

LMK04832 Ultra Low-Noise JESD204B Compliant **Clock Jitter Cleaner With Dual Loop PLLs**

Features

- Maximum Clock Output Frequency: 3255 MHz
- Multi-Mode: Dual PLL, Single PLL, and Clock Distribution
- Ultra-Low Noise, at 2500 MHz:
 - 54 fs RMS Jitter (12 kHz to 20 MHz)
 - 64 fs RMS Jitter (100 Hz to 20 MHz)
 - 157.6 dBc/Hz Noise Floor
- Ultra-Low Noise, at 3200 MHz:
 - 61 fs RMS Jitter (12 kHz to 20 MHz)
 - 67 fs RMS Jitter (100 Hz to 100 MHz)
 - 156.5 dBc/Hz Noise Floor
- PLL2
 - PLL FOM of –230 dBc/Hz
 - PLL 1/f of –128 dBc/Hz
 - Phase Detector Rate up to 320 MHz
 - Two Integrated VCOs: 2440 to 2580 MHz and 2945 to 3255 MHz
- Up to 14 Differential Device Clocks
 - CML, LVPECL, LCPECL, HSDS, LVDS, and 2xLVCMOS Programmable Outputs
- Up to 1 Buffered VCXO/XO Output
 - LVPECL, LVDS, 2xLVCMOS Programmable
- 1-1023 CLKout Divider
- 1-8191 SYSREF Divider
- 25-ps Step Analog Delay for SYSREF Clocks
- Digital Delay and Dynamic Digital Delay for Device Clock and SYSREF
- Holdover Mode With PLL1
- 0-Delay with PLL1 or PLL2
- Supports 105°C PCB Temperature (Measured at Thermal Pad)

2 Applications

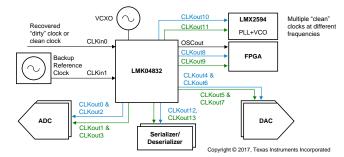
- **Test and Measurement**
- **RADAR**
- Microwave Backhaul
- **Data Converter Clocking**

3 Description

The LMK04832 is an ultra-high performance clock conditioner with JEDEC JESD204B support and is also pin compatible with the LMK0482x family of devices.

The 14 clock outputs from PLL2 can be configured to drive seven JESD204B converters or other logic devices using device and SYSREF clocks. SYSREF can be provided using both DC and AC coupling. Not limited to JESD204B applications, each of the 14 outputs can be individually configured as high performance outputs for traditional clocking systems.

The LMK04832 can be configured for operation in dual PLL, single PLL, or clock distribution modes with or without SYSREF generation or reclocking. PLL2 may operate with either internal or external VCO.


The high performance combined with features like the ability to trade off between power and performance, dual VCOs, dynamic digital delay, and holdover make the LMK04832 ideal for providing flexible high performance clocking trees.

Device Information⁽¹⁾

PART NUMBER	DESCRIPTION	BODY SIZE (NOM)
LMK04832NKDT LMK04832NKDR	WQFN (64)	9.00 mm × 9.00 mm

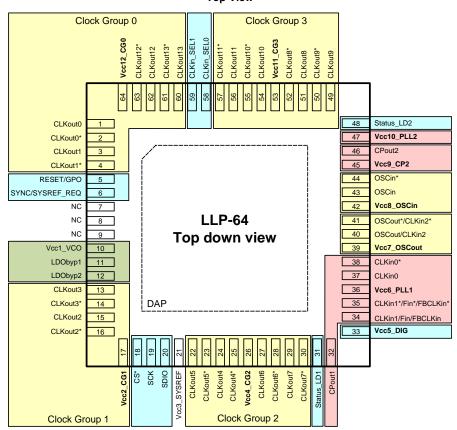
- (1) For all available packages, see the orderable addendum at the end of the data sheet.
- (2) T = Tape; R = Reel

Simplified Schematic

Table of Contents

1	Features 1	8.3 Feature Description	29
2	Applications 1	8.4 Device Functional Modes	41
3	Description 1	8.5 Programming	44
4	Revision History2	8.6 Register Maps	45
5	Pin Configuration and Functions	9 Application and Implementation	90
6	Specifications	9.1 Application Information	90
U	·	9.2 Typical Application	93
	6.1 Absolute Maximum Ratings	9.3 Do's and Don'ts	97
	6.3 Recommended Operating Conditions	10 Power Supply Recommendations	97
	6.4 Thermal Information	10.1 Current Consumption	97
	6.5 Electrical Characteristics 6	11 Layout	
	6.6 Timing Requirements	11.1 Layout Guidelines	
	6.7 Timing Diagram	11.2 Layout Example	
	6.8 Typical Characteristics – Clock Output AC	12 Device and Documentation Support 10	
	Characteristics	12.1 Device Support1	
7	Parameter Measurement Information	12.2 Community Resources	
•	7.1 Charge Pump Current Specification Definitions 20	12.3 Trademarks 1	
	7.2 Differential Voltage Measurement Terminology 21	12.4 Electrostatic Discharge Caution	
8	Detailed Description	12.5 Glossary1	
•	8.1 Overview	13 Mechanical, Packaging, and Orderable	
	8.2 Functional Block Diagram	Information	00

4 Revision History


NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision B (January 2018) to Revision C	Page
Changed device status from ADVANCED INFORMATION to PRODUCTION DATA	1
Changes from Revision A (August 2017) to Revision B	Page
Updated features: Jitter, Noise Floor, PLL Performance, and VCO Range	1
Updated the Electrical Characteristics table	5
Updated the Detailed Description section	22
Changes from Original (February 2017) to Revision A	Page
Changed device status from PRODUCT PREVIEW to ADVANCED INFORMATION	

5 Pin Configuration and Functions

NKD Package 64-Pin WQFN Top View

Pin Functions

	1 III 1 dilottotis					
	PIN	I/O TYPE		DESCRIPTION ⁽¹⁾		
NO.	NAME	1/0	IIPE	DESCRIPTION		
1	CLKout0	0	Dua sua sa sa ab la	Clock output 0. For JESD204B systems suggest Device Clock.		
2	CLKout0*	0	Programmable	Programmable formats: CML, LVPECL, LCPECL, or LVDS.		
3	CLKout1	0	Drogrammable	Clock output 1. For JESD204B systems suggest SYSREF Clock.		
4	CLKout1*	0	Programmable	Programmable formats: CML, LVPECL, LCPECL, LVDS, or 2xLVCMOS.		
5	RESET/GPO	I	CMOS	Device reset input or GPO		
6	SYNC/SYSREF_ REQ	I	CMOS	Synchronization input or SYSREF_REQ for requesting continuous SYSREF.		
7						
8	NC	_	_ _	Do not connect.		
9						
10	Vcc1_VCO		PWR	Power supply for VCO and clock distribution.		
11	LDObyp1		ANLG	LDO Bypass, bypassed to ground with 10-µF capacitor.		
12	LDObyp2		ANLG	LDO Bypass, bypassed to ground with a 0.1-µF capacitor.		
13	CLKout3	0	Dua ana asas ab la	Clock output 3. For JESD204B systems suggest SYSREF Clock.		
14	CLKout3*	0	Programmable	Programmable formats: CML, LVPECL, LCPECL, LVDS, or 2xLVCMOS.		

(1) See *Pin Connection Recommendations* for recommended connections.

Pin Functions (continued)

	PIN			(4)	
NO.	NAME	1/0	TYPE	DESCRIPTION ⁽¹⁾	
15	CLKout2			Clock output 2. For JESD204B systems suggest Device Clock.	
16	CLKout2*	0	Programmable	Programmable formats: CML, LVPECL, LCPECL, or LVDS.	
17	Vcc2_CG1		PWR	Power supply for clock outputs 2 and 3.	
18	CS*	ı	CMOS	Chip Select	
19	SCK	I	CMOS	SPI Clock	
20	SDIO	I/O	CMOS	SPI Data	
21	Vcc3_SYSREF		PWR	Power supply for SYSREF divider and SYNC.	
22	CLKout5	_		Clock output 5. For JESD204B systems suggest SYSREF Clock.	
23	CLKout5*	0	Programmable	Programmable formats: CML, LVPECL, LCPECL, LVDS, or 2xLVCMOS.	
24	CLKout4	_		Clock output 4. For JESD204B systems suggest Device Clock.	
25	CLKout4*	0	Programmable	Programmable formats: CML, LVPECL, LCPECL, or LVDS.	
26	Vcc4_CG2		PWR	Power supply for clock outputs 4, 5, 6 and 7.	
27	CLKout6	_		Clock output 6. For JESD204B systems suggest Device Clock.	
28	CLKout6*	0	Programmable	Programmable formats: CML, LVPECL, LCPECL, or LVDS.	
29	CLKout7	_		Clock output 7. For JESD204B systems suggest SYSREF Clock.	
30	CLKout7*	0	Programmable	Programmable formats: CML, LVPECL, LCPECL, LVDS, or 2xLVCMOS.	
31	Status_LD1	I/O	Programmable	Programmable status pin.	
32	CPout1	0	ANLG	Charge pump 1 output.	
33	Vcc5_DIG		PWR	Power supply for the digital circuitry.	
	CLKin1			Reference Clock Input Port 1 for PLL1.	
34	FBCLKin	ı	ANLG	Feedback input for external clock feedback input (0-delay mode).	
	Fin1			External VCO Input or clock distribution input.	
	CLKin1*		Reference Clock Input Port 1 for PLL1.	Reference Clock Input Port 1 for PLL1.	
35	FBCLKin*	- 1		Feedback input for external clock feedback input (0-delay mode).	
	Fin1*			External VCO Input or clock distribution input.	
36	Vcc6_PLL1		PWR	Power supply for PLL1, charge pump 1, holdover DAC	
37	CLKin0		ANILO	Defended Cleak Innet Deat Of an DI I 4	
38	CLKin0*	,	ANLG	Reference Clock Input Port 0 for PLL1.	
39	Vcc7_OSCout		PWR	Power supply for OSCout port.	
40	OSCout	1/0	Drogrammable	Buffered output of OSCin port.	
40	CLKin2	I/O	Programmable	Reference Clock Input Port 2 for PLL1.	
41	OSCout*	I/O	Drogrammable	Buffered output of OSCin port.	
41	CLKin2*	1/0	Programmable	Reference Clock Input Port 2 for PLL1.	
42	Vcc8_OSCin		PWR	Power supply for OSCin	
43	OSCin		ANII C	Foodback to DLL1 and reference input to DLL2 AC coupled	
44	OSCin*	1	ANLG	Feedback to PLL1 and reference input to PLL2. AC-coupled.	
45	Vcc9_CP2		PWR	Power supply for PLL2 Charge Pump.	
46	CPout2	0	ANLG	Charge pump 2 output.	
47	Vcc10_PLL2		PWR	Power supply for PLL2.	
48	Status_LD2	I/O	Programmable	able Programmable status pin.	
49	CLKout9	0	Programmable	Clock output 9. For JESD204B systems suggest SYSREF Clock.	
50	CLKout9*	J	1 Togrammable	Programmable formats: CML, LVPECL, LCPECL, LVDS, or 2xLVCMOS.	
51	CLKout8	0	Programmable	Clock output 8. For JESD204B systems suggest Device Clock.	
52	CLKout8*		i rogrammable	Programmable formats: CML, LVPECL, LCPECL, LVDS, or 2xLVCMOS.	
53	Vcc11_CG3		PWR	Power supply for clock outputs 8, 9, 10, and 11.	

Submit Documentation Feedback

Pin Functions (continued)

	PIN		TVDE	DESCRIPTION ⁽¹⁾		
NO.	NAME	1/0	TYPE	DESCRIPTION		
54	CLKout10	0	Dragrammable	Clock output 10. For JESD204B systems suggest Device Clock.		
55	CLKout10*	U	Programmable	Programmable formats: CML, LVPECL, LCPECL, LVDS, or 2xLVCMOS.		
56	CLKout11	0	Programmable	Clock output 11. For JESD204B systems suggest SYSREF Clock.		
57	CLKout11*		Programmable	Programmable formats: CML, LVPECL, LCPECL, LVDS, or 2xLVCMOS.		
58	CLKin_SEL0	I/O	Programmable	grammable Programmable status pin.		
59	CLKin_SEL1	I/O	Programmable	nable Programmable status pin.		
60	CLKout13	0	Drogrammable	Clock output 13. For JESD204B systems suggest SYSREF Clock.		
61	CLKout13*	U	Programmable	Programmable formats: CML, LVPECL, LCPECL, LVDS, or 2xLVCMOS.		
62	CLKout12		Dua sua sa sa ab la	Clock output 12. For JESD204B systems suggest Device Clock.		
63	CLKout12*	0	Programmable	Programmable formats: CML, LVPECL, LCPECL, or LVDS.		
64	Vcc12_CG0		PWR	WR Power supply for clock outputs 0, 1, 12, and 13.		
DAP	DAP		GND	DIE ATTACH PAD, connect to GND.		

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

		MIN	MAX	UNIT
V _{CC}	Supply voltage (2)	-0.3	3.6	V
V _{IN}	Input voltage	-0.3	(V _{CC} +0.3)	V
TL	Lead temperature (solder 4 seconds)		260	°C
T _J	Junction temperature		150	°C
I _{IN}	Differential input current (CLKinX/X*, OSCin/OSCin*)		±5	mA
MSL	Moisture sensitivity level		3	
T _{stg}	Storage Temperature	-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
V _(ESD)		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	±2000	
	Electrostatic discharge	Machine Model (MM)	±150	V
	_ioonociano alconargo	Charged device model (CDM), per JEDEC specification JESD22-C101, all pins (2)	±250	·

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 500-V HBM is possible with the necessary precautions. Pins listed as ±2000 V may actually have higher performance.

⁽²⁾ Never to exceed 3.6 V

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 250-V CDM is possible with the necessary precautions. Pins listed as ±250 V may actually have higher performance.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
TJ	Junction Temperature			125	°C
T _A	Ambient Temperature	-40	25	85	°C
T _{PCB}	PCB Temperature (measured at thermal pad)			105	°C
V _{CC}	Supply Voltage	3.15	3.3	3.45	V

6.4 Thermal Information

		LMK04832	
	THERMAL METRIC ⁽¹⁾	NKD (WQFN)	UNIT
		64 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance (2)	24.3	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance (3)	6.1	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance (4)	3.5	°C/W
Ψ_{JT}	Junction-to-top characterization parameter (5)	0.1	°C/W
Ψ_{JB}	Junction-to-board characterization parameter (6)	3.5	°C/W
R _θ JC(bot)	Junction-to-case (bottom) thermal resistance (7)	0.7	°C/W

- For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.
- (2) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, High-K board, as specified in JESD51-7, in an environment described in JESD51-2a.
- (3) The junction-to-case(top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC-standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.
- (4) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB temperature, as described in JESD51-8.
- (5) The junction-to-top characterization parameter, Ψ_{JT}, estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining RΘ_{JA}, using a procedure described in JESD51-2a (sections 6 and 7).
- (6) The junction-to-board characterization parameter, Ψ_{JB} estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining RΘ_{JA}, using a procedure described in JESD51-2a (sections 6 and 7).
- (7) The junction-to-case(bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.

6.5 Electrical Characteristics

 $(3.15 \text{ V} < \text{V}_{CC} < 3.45 \text{ V}, -40 ^{\circ}\text{C} < \text{T}_{A} < 85 ^{\circ}\text{C}$. Typical values at $\text{V}_{CC} = 3.3 \text{ V}, \text{T}_{A} = 25 ^{\circ}\text{C}$, at the *Recommended Operating Conditions* are not assured.)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
CURRENT CONSU	JMPTION ⁽¹⁾					
I _{CC_PD}	Power Down Supply Current			1.5	3	mA
I _{CC_JESD204B_ALL}	Supply Current for JESD204B use case during JESD204B synchronization VCO = 2949.12 MHz Dual Loop (2)	4 CML 32 mA clocks in bypass 3 LVDS clock /12 4 SYSREF as LCPECL 3 SYSREF as LVDS		930	1120	mA
I _{CC_JESD204B_LOW}	Supply Current for JESD204B use case during JESD204B steady state while holding SYSREF as low in DC coupled configuration. (2)	4 CML 32 mA clocks in bypass 3 LVDS clock /12 4 SYSREF as LCPECL (low state) 3 SYSREF as LVDS (low state)		780	940	mA
ICC_JESD204B_VCM	Supply Current for JESD204B use case during JESD204B steady state while setting SYSREF outputs as Vcm. (2)	4 CML 32 mA clocks in bypass 3 LVDS clock /12 7 SYSREF outputs powered down		675	810	mA

(1) Use the TICS Pro tool to calculate Icc for a specific configuration.

(2) LCPECL clocks have 120 Ω emitter resistors. OSCout LVPECL clock uses 240 Ω ohm emitter resistors. Other settings include CLKoutX_Y_IDL = 0, CLKoutX_Y_ODL = 0, DCLKX_Y_DCC = 0. SCLK_X_Y_ADLY_EN = 0.

 $(3.15 \text{ V} < \text{V}_{CC} < 3.45 \text{ V}, -40 ^{\circ}\text{C} < \text{T}_{A} < 85 ^{\circ}\text{C}$. Typical values at $\text{V}_{CC} = 3.3 \text{ V}, \text{T}_{A} = 25 ^{\circ}\text{C}$, at the *Recommended Operating Conditions* are not assured.)

	PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNIT
CLKin0/0*, CLKin	1/1*, and CLKin2/2* INPUT CLOCK SP	ECIFICATIONS			
f _{CLKinX_LOS}	Clock Input LOS (CLKin0/1/2)	LOS_EN = 1	0.001	250	MHz
f _{CLKin0_PLL1_MOS}	Clock Input Frequency for PLL1	CLKin0_OUT_MUX = 2 (PLL1)			MHz
f _{CLKin1_PLL1_MOS}	Reference (CLKin0/1/2)	CLKin1_OUT_MUX = 2 (PLL1)	0.001	250	MHz
f _{CLKin2_PLL1_MOS}		OSCout_FMT = 0 (Power down)			MHz
f _{CLKin0_PLL1}	Clock Input Frequency for PLL1	CLKin0_OUT_MUX = 2 (PLL1)			
f _{CLKin1_PLL1}	Reference (CLKin0/1/2) CLKinX_TYPE = 0 (Bipolar)	CLKin1_OUT_MUX = 2 (PLL1)	0.001	750	MHz
f _{CLKin2_PLL1}		OSCout_FMT = 0 (Power down)			
f _{CLKin0_PLL2}	Clock Input Frequency for PLL2 Reference (CLKin0/1/2) CLKinX_TYPE = 0 (Bipolar)	CLKin0_OUT_MUX = 2 (PLL1) PLL2R_CLK_MUX = 1 (PLL1 CLKinX)			
f _{CLKin1_PLL2}		CLKin1_OUT_MUX = 2 (PLL1) PLL2R_CLK_MUX = 1 (PLL1 CLKinX)		500	MHz
f _{CLKin2_PLL2}		OSCout_FMT = 0 (Power down) PLL2R_CLK_MUX = 1 (PLL1 CLKinX)			
f _{CLKin1_FB}	Clock Input Frequency for 0-delay with external feedback (CLKin1)	CLKin1_OUT_MUX = 1 (FB Mux) CLKin1_TYPE = 0 (Bipolar)	0.001	750	MHz
f _{CLKin1_Fin}	Clock Input Frequency for external VCO or distribution mode (CLKin1)	CLKin1_OUT_MUX = 0 (Fin) CLKin1_TYPE = 0 (Bipolar)	0.001	3250	MHz
SLEW _{CLKin}	Clock Input Slew Rate (3)	20% to 80%	0.15	0.5	V/ns
V _{ID} CLKin_AC	Differential Clash Innut Valtage (4)	A.C. accorded	0.125	1.55	V
V _{SS} CLKin_AC	Differential Clock Input Voltage (4)	AC-coupled	0.25	3.1	Vpp
V_{CLKin}	Clock Input Single-ended Input Voltage	AC-coupled to CLKinX; CLKinX* AC-coupled to Ground CLKinX_TYPE = 0 (Bipolar)	0.5	2.4	Vpp
	DC offset voltage between	Each pin AC-coupled, CLKin0/1/2 CLKinX_TYPE = 0 (Bipolar)		0	mV
V _{CLKinX-offset}	CLKinX/CLKinX* (CLKinX* - CLKinX)	Each pin AC-coupled, CLKin0/1 CLKinX_TYPE = 1 (MOS)		55	mV
	DC offset voltage between CLKin2/CLKin2* (CLKin2* - CLKin2)	Each pin AC-coupled CLKinX_TYPE = 1 (MOS)		20	mV
$V_{CLKin}V_{IH}$	High Input Voltage	DC-coupled to CLKinX;	2	Vcc	V
$V_{CLKin}V_{IL}$	Low Input Voltage	CLKinX* AC-coupled to Ground CLKinX_TYPE = 1 (MOS)	0	0.4	V

⁽³⁾ In order to meet the jitter performance listed in the subsequent sections of this data sheet, the minimum recommended slew rate for all input clocks is 0.5 V/ns. This is especially true for single-ended clocks. Phase noise performance will begin to degrade as the clock input slew rate is reduced. However, the device will function at slew rates down to the minimum listed. When compared to single-ended clocks, differential clocks (LVDS, LVPECL) will be less susceptible to degradation in phase noise performance at lower slew rates due to their common mode noise rejection. However, it is also recommended to use the highest possible slew rate for differential clocks to achieve optimal phase noise performance at the device outputs.

(4) See Differential Voltage Measurement Terminology for definition of V_{ID} and V_{OD} voltages.

 $(3.15 \text{ V} < \text{V}_{CC} < 3.45 \text{ V}, -40 ^{\circ}\text{C} < \text{T}_{A} < 85 ^{\circ}\text{C}$. Typical values at $\text{V}_{CC} = 3.3 \text{ V}, \text{T}_{A} = 25 ^{\circ}\text{C}$, at the *Recommended Operating Conditions* are not assured.)

	PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
PLL1 SPECIFICA	TIONS				
f _{PD1}	PLL1 Phase Detector Frequency			40	MHz
		V _{CPout1} = Vcc/2, PLL1_CP_GAIN = 0	50		
		V _{CPout1} = Vcc/2, PLL1_CP_GAIN = 1	150		
I _{CPout1} SOURCE	PLL1 Charge Pump Source	V _{CPout1} = Vcc/2, PLL1_CP_GAIN = 2	250		
ICPout1SOURCE	Current ⁽⁵⁾				μA
		V _{CPout1} = Vcc/2, PLL1_CP_GAIN = 14	1450		
		V _{CPout1} = Vcc/2, PLL1_CP_GAIN = 15	1550		
I _{CPout1} SINK I		V _{CPout1} = Vcc/2, PLL1_CP_GAIN = 0	-50		
		V _{CPout1} = Vcc/2, PLL1_CP_GAIN = 1	-150		
	PLL1 Charge Pump Sink Current ⁽⁵⁾	V _{CPout1} = Vcc/2, PLL1_CP_GAIN = 2	-250		μA
	FLET Charge Fullip Slink Current				μΑ
		V _{CPout1} = Vcc/2, PLL1_CP_GAIN = 14	-1450		
		V _{CPout1} = Vcc/2, PLL1_CP_GAIN = 15	-1550		
I _{CPout1} %MIS	Charge Pump Sink / Source Mismatch	V _{CPout1} = Vcc/2, T _A = 25 °C	1%	10%	
I _{CPout1} %V _{TUNE}	Magnitude of Charge Pump Current Variation vs. Charge Pump Voltage	0.5 V < V _{CPout1} < V _{CC} - 0.5 V T _A = 25 °C	4%		
I _{CPout1} %TEMP	Charge Pump Current vs. Temperature Variation		4%		
I _{CPout1} TRI	Charge Pump TRI-STATE Leakage Current	0.5 V < V _{CPout1} < V _{CC} - 0.5 V		5	nA
	PLL 1/f Noise at 10 kHz offset.	PLL1_CP_GAIN = 50 μA	-113		
PN10 kHz ⁽⁶⁾	Normalized to 1 GHz Output	PLL1_CP_GAIN = 450 µA	-117		dBc/ Hz
	Frequency	PLL1_CP_GAIN = 1550 μA	-119		112
		PLL1_CP_GAIN = 50 μA	-217		
PN1 Hz ⁽⁷⁾	Normalized Phase Noise Contribution	PLL1_CP_GAIN = 450 μA	-224		dBc/ Hz
	Contribution	PLL1_CP_GAIN = 1550 μA	-225		112

(5) This parameter is programmable

(7) A specification modeling PLL in-band phase noise. The normalized phase noise contribution of the PLL, L_{PLL_flat}(f), is defined as: PN1 HZ = L_{PLL_flat}(f) - 20 log(N) - 10 log(f_{PDX}). L_{PLL_flat}(f) is the single side band phase noise measured at an offset frequency, f, in a 1 Hz bandwidth and f_{PDX} is the phase detector frequency of the synthesizer. L_{PLL_flat}(f) contributes to the total noise, L(f).

Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

⁽⁶⁾ A specification in modeling PLL in-band phase noise is the 1/f flicker noise, L_{PLL_flicker}(f), which is dominant close to the carrier. Flicker noise has a 10 dB/decade slope. PN10 kHz is normalized to a 10 kHz offset and a 1 GHz carrier frequency. PN10 kHz = L_{PLL_flicker}(10 kHz) - 20 log(Fout / 1 GHz), where LPLL_flicker(f) is the single side band phase noise of only the flicker noise's contribution to total noise, L(f). To measure L_{PLL_flicker}(f) it is important to be on the 10 dB/decade slope close to the carrier. A high compare frequency and a clean crystal are important to isolating this noise source from the total phase noise, L(f). L_{PLL_flicker}(f) can be masked by the reference oscillator performance if a low-power or noisy source is used. The total PLL in-band phase noise performance is the sum of L_{PLL_flicker}(f) and L_{PLL_flat}(f).

(3.15 V < V_{CC} < 3.45 V, -40 °C < T_A < 85 °C. Typical values at V_{CC} = 3.3 V, T_A = 25 °C, at the Recommended Operating Conditions are not assured.)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OSCin INPUT CI	LOCK SPECIFICATIONS					
f _{OSCin}	PLL2 Reference Input				500	MHz
SLEW _{OSCin}	PLL2 Reference Clock minimum slew rate on OSCin ⁽³⁾	20% to 80%	0.15	0.5		V/ns
V _{OSCin}	Input Voltage for OSCin or OSCin*	AC coupled; Single-ended (Unused pin AC-coupled to GND)	0.2		2.4	Vpp
V _{ID} OSCin	Differential voltages average(4)	AC country	0.2		1.55	V
V _{SS} OSCin	Differential voltage swing (4)	AC-coupled	0.4		3.1	Vpp
V _{OSCin-offset}	DC offset voltage between OSCin/OSCin* (OSCinX* - OSCinX)	Each pin AC-coupled		20		mV
f _{doubler_max}	Doubler input frequency	EN_PLL2_REF_2X = 1 ⁽⁸⁾ ; OSCin Duty Cycle 40% to 60%			320	MHz
PLL2 SPECIFICA	ATIONS					
f _{PD2}	Phase Detector Frequency				320	MHz
1	PLL2 Charge Pump Source	V _{CPout2} = V _{CC} /2, PLL2_CP_GAIN = 2		1600		μA
I _{CPout2} SOURCE	Current ⁽⁵⁾	$V_{CPout2} = V_{CC}/2$, PLL2_CP_GAIN = 3		3200		μΑ
l	PLL2 Charge Pump Sink Current ⁽⁵⁾	$V_{CPout2} = V_{CC}/2$, PLL2_CP_GAIN = 2		-1600		μA
I _{CPout2} SINK	FLLZ Charge Fump Sink Current	$V_{CPout2} = V_{CC}/2$, PLL2_CP_GAIN = 3		-3200		μΑ
I _{CPout2%MIS}	Charge Pump Sink / Source Mismatch	V _{CPout2} = Vcc/2, T _A = 25 °C		1%	10%	
I _{CPout2%VTUNE}	Magnitude of Charge Pump Current Variation vs. Charge Pump Voltage	0.5 V < V _{CPout2} < VCC - 0.5 V T _A = 25 °C		4%		
I _{CPout2%TEMP}	Charge Pump Current vs. Temperature Variation			4%		
I _{CPout2} TRI	Charge Pump TRI-STATE Leakage Current	0.5 V < V _{CPout2} < V _{CC} - 0.5 V			10	nA
PN10 kHz ⁽⁶⁾	PLL 1/f Noise at 10 kHz offset. Normalized to 1 GHz Output Frequency	PLL2_CP_GAIN = 3200 μA		-128		dBc/ Hz
PN1 Hz ⁽⁷⁾	Normalized Phase Noise Contribution	PLL2_CP_GAIN = 3200 μA		-230		dBc/ Hz

⁽⁸⁾ The EN_PLL2_REF_2X bit enables/disables a frequency doubler mode for the PLL2 OSCin path.

 $(3.15 \text{ V} < \text{V}_{CC} < 3.45 \text{ V}, -40 ^{\circ}\text{C} < \text{T}_{A} < 85 ^{\circ}\text{C}$. Typical values at $\text{V}_{CC} = 3.3 \text{ V}, \text{T}_{A} = 25 ^{\circ}\text{C}$, at the *Recommended Operating Conditions* are not assured.)

	PARAMETER	TEST CONDITIONS		MIN TYP	MAX	UNIT
INTERNAL V	CO SPECIFICATIONS					
,	LMK04000 VOO Tuudaa Daasa	VCO0		2440	2580	
f _{VCO}	LMK04832 VCO Tuning Range	VCO1		2945	3255	MHz
		VCO0	2440 MHz	-11.8		
V	LMK04832 Vtune Tuning Sensitivity	VC00	2580 MHz	-14.5		MHz
< _{vco}	LIVINO4632 VIUITE TUTIITIG SETISITIVITY	VCO1	2945 MHz	-22.9		V
		VCOT	3255 MHz	-31.4		
ΔTCL	Allowable Temperature Drift for Continuous Lock ⁽⁹⁾		ing for lock, no changes to tition are permitted to us lock		125	°C
			1 kHz	-55		
			10 kHz	-86.3		Ī
		VCO0 at 2440 MHz	100 kHz	-115.2		dBo Hz
		2440 WII 12	800 kHz	-136.3		112
			1 MHz	-137.6		
			1 kHz	-53.3		
		1,000	10 kHz	-85		
		VCO0 at 2580 MHz	100 kHz	-114.3		dBc/ Hz
		2000 1411 12	800 kHz	-135.3		
(f)	Onen leen phase noise		1 MHz	-136.9		
.(f) _{VCO}	Open-loop phase noise		1 kHz	-49.2		
		V004	10 kHz	-81.1		
		VCO1 at 2945 MHz	100 kHz	-111.1		dBc/ Hz
		2040 111112	800 kHz	-133.8		
			1 MHz	-135.9		
			1 kHz	-46.6		
		V004 -1	10 kHz	-78.9		
		VCO1 at 3250 MHz	100 kHz	-108.9		dBc/ Hz
		0200 WII IZ	800 kHz	-131.7		112
			1 MHz	-133.3		

⁽⁹⁾ Maximum Allowable Temperature Drift for Continuous Lock is how far the temperature can drift in either direction from the value it was at the time that the 0x168 register was last programmed with PLL2_FCAL_DIS = 0, and still have the part stay in lock. The action of programming the 0x168 register, even to the same value, activates a frequency calibration routine. This implies the part will work over the entire frequency range, but if the temperature drifts more than the maximum allowable drift for continuous lock, then it will be necessary to reload the appropriate register to ensure it stays in lock. Regardless of what temperature the part was initially programmed at, the temperature can never drift outside the frequency range of – 40 °C to 85 °C without violating specifications.

 $(3.15 \text{ V} < \text{V}_{CC} < 3.45 \text{ V}, -40 ^{\circ}\text{C} < \text{T}_{A} < 85 ^{\circ}\text{C}$. Typical values at $\text{V}_{CC} = 3.3 \text{ V}, \text{T}_{A} = 25 ^{\circ}\text{C}$, at the *Recommended Operating Conditions* are not assured.)

	PARAMETER	TEST CO	ONDITIONS	MIN TYP	MAX	UNIT
CLOCK OUTP	UT NOISE FLOOR					
L(f) _{CLKout}		LVDS	CLKoutX_Y_ODL=1	-159.5		
L(f) _{CLKout}		HSDS 6 mA	CLKoutX_Y_ODL=1	-161.5		
L(f) _{CLKout}		HSDS 8 mA	CLKoutX_Y_ODL=1	-162.5		
L(f) _{CLKout}		LCPECL	CLKoutX_Y_ODL=1	-162.5		
L(f) _{CLKout}		LVPECL 1.6 Vpp	CLKoutX_Y_ODL=1	-162		
L(f) _{CLKout}		LVPECL 2 Vpp	CLKoutX_Y_ODL=1	-163		
L(f) _{CLKout}	245.76 MHz Noise Floor 20 MHz Offset	CML 16 mA, odd CLKoutY DC bias: 50 Ω to Vcc	CLKoutX_Y_ODL=1	-162.5		dBc/ Hz
L(f) _{CLKout}		CML 24 mA, odd CLKoutY DC bias: 50 Ω to Vcc	CLKoutX_Y_ODL=1	-162.5		
L(f) _{CLKout}		CML 32 mA, odd CLKoutY DC bias: 50 Ω to Vcc	CLKoutX_Y_ODL=1	-163		
L(f) _{CLKout}		LVCMOS	CLKoutX_Y_ODL=1	-160		
L(f) _{CLKout}		CML 16 mA, even CLKoutX DC bias: 68 nH to 20 Ω to Vcc	CLKoutX_Y_IDL=1	-155.5		
L(f) _{CLKout}	3.2 GHz Noise Floor 20 MHz Offset	CML 24 mA, even CLKoutX DC bias: 68 nH to 20 Ω to Vcc	CLKoutX_Y_IDL=1	-156		dBc/ Hz
L(f) _{CLKout}		CML 32 mA, even CLKoutX DC bias: 68 nH to 20 Ω to Vcc	CLKoutX_Y_IDL=1	-156.5		
CLKout CLOS	ED LOOP PHASE NOISE SPECIFICATION	ONS				•
		Offset = 1 kHz		-125		
I (f)	VCO0 SSB Phase Noise 245.76 MHz ⁽¹⁰⁾	Offset = 10 kHz		-134		dBc/
L(f) _{CLKout}	Doubler disabled	Offset = 100 kHz		-137		Hz
		Offset = 1 MHz		-154		
		Offset = 1 kHz		-125		
I (f)	VCO1 SSB Phase Noise 245.76 MHz ⁽¹⁰⁾	Offset = 10 kHz		-135		dBc/
L(f) _{CLKout}	Doubler disabled	Offset = 100 kHz		-137		Hz
	202.3. diodolod	Offset = 1 MHz		-151		

⁽¹⁰⁾ Dual Loop, OSCin reference is a 122.88 MHz Crystek 603281 VCXO. Data collected using a MACOM H-183-4 Hybrid Junction for differential to single ended converstion. PLL2_CP = 3.2 mA. PLL2 Loop filter is C1i = 60 pF, C1 (external) = 4.7 pF, R2 = 820 Ω (external), C2 = 3.9 nF (external), R3 = 2.4 k Ω , C3 = 50 pF, R4 = 200 Ω , C4 = 10 pF. PLL1_CP = 450 μ A with a narrow loop bandwidth. CLKoutX_Y_IDL = 0, CLKoutX_Y_ODL = 1. Even CLKout with LVPECL20 format using 120- Ω to GND.

 $(3.15 \text{ V} < \text{V}_{CC} < 3.45 \text{ V}, -40 ^{\circ}\text{C} < \text{T}_{A} < 85 ^{\circ}\text{C}$. Typical values at $\text{V}_{CC} = 3.3 \text{ V}, \text{T}_{A} = 25 ^{\circ}\text{C}$, at the *Recommended Operating Conditions* are not assured.)

PARAMETER		TEST CONDITIONS	MIN TYP	MAX U	NIT
CLKout CLOS	SED LOOP JITTER SPECIFICATIONS				
	VCO0, f _{CLKout} = 2500 MHz ⁽¹¹⁾	PDF = 312.5 MHz BW = 12 kHz to 20 MHz	54		fs ms
	Integrated RMS Jitter	PDF = 312.5 MHz BW = 100 Hz to 100 MHz	64		fs ms
JCLKout	VCO1, f _{CLKout} = 3200 MHz ⁽¹¹⁾	PDF = 320 MHz BW = 12 kHz to 20 MHz	61		fs ms
	Integrated RMS Jitter	PDF = 320 MHz BW = 100 Hz to 100 MHz	67		fs ms
	VCO0, f _{CLKout} = 2457.6 MHz Integrated RMS Jitter ⁽¹⁰⁾	PDF = 245.76 MHz (Doubler enabled) BW = 12 kHz to 20 MHz	55		fs ms
ı	VCO0, f _{CLKout} = 2457.6 MHz Integrated RMS Jitter ⁽¹⁰⁾	PDF = 122.88 MHz BW = 12 kHz to 20 MHz	70	-	fs ms
JCLKout	VCO1, f _{CLKout} = 2949.12 MHz Integrated RMS Jitter ⁽¹⁰⁾	PDF = 245.76 (Doubler enabled) BW = 12 kHz to 20 MHz	60		fs ms
	VCO1, f _{CLKout} = 2949.12 MHz Integrated RMS Jitter ⁽¹⁰⁾	PDF = 122.88 MHz BW = 12 kHz to 20 MHz	75		fs ms
DEFAULT PO	WER on RESET CLOCK OUTPUT FREQUE	ENCY			
f _{OSCout}	OSCout default frequency (12)			500 M	ИHz
CLOCK SKEV	N ⁽¹³⁾				
T _{SKEW}	Maximum skew CLKoutX to CLKoutX ${\rm F_{CLK}}$ = 1.6 GHz, ${\rm R_L}$ = 100 Ω ACcoupled	Any even CLKoutX, same format ⁽¹⁴⁾ Device Clock DCLKX_Y_BYP = 1	60	Ip	ps
T _{SKEW}	Maximum skew for CLKoutX to CLKoutX or CLKoutY to CLKoutY $F_{CLK} = 250 \text{ MHz}, \ R_L = 100 \ \Omega \text{ ACcoupled}$	Even to even or odd to odd clock, same format (15) Device clock DCLKX_Y_BYP = 0 DCLKX_Y_DIV = 12	60	Ip	ps
T _{SKEW}	Maximum skew for any CLKoutX or Y to any CLKoutX or Y F_{CLK} = 250 MHz, R_{L} = 100 Ω ACcoupled	Any output, same format ⁽¹⁵⁾ Device clock DCLKX_Y_BYP = 0 DCLKX_Y_DIV = 12	100	lp	ps
T _{SKEW}	Delay from CLKoutX to CLKoutY in same pair $F_{\text{CLK}} = 250 \text{ MHz}, \ R_{\text{L}} = 100 \ \Omega \text{ AC-coupled}$	Same pair of device clocks, same format (15)	35	р	ps

⁽¹¹⁾ Single Loop, OSCin reference is R&S SMA100B Signal Generator with option SMAB-B711 through Prodyn BIB-100G Balun to OSCin. Data collected using a MACOM H-183-4 Hybrid Junction for differential to single ended converstion. PLL2 Loop filter is C1 = 60 pF, R2 = 470 Ω (external), C2 = 150 nF (external), R3 = 2.4 kΩ, C3 = 50 pF, R4 = 200 Ω, C4 = 10 pF, PLL2_CP = 3.2 mA. CLKoutX_Y_IDL = 1, CLKoutX_Y_ODL = 0; Even CLKout with CML 32 mA format using DC bias 68-nH to 20-Ω to Vcc.

Submit Documentation Feedback

⁽¹²⁾ OSCout will oscillate at start-up at the frequency of the VCXO attached to OSCin port.

⁽¹³⁾ Equal loading and identical clock configuration on each clock input and/or output is required for skew, setup, and hold specifications to

⁽¹⁴⁾ Valid for CML 32 mA, CML 24 mA, CML 16 mA. CML DC bias is 50 ohms to Vcc or 68 nH to 20 Ω to Vcc.

⁽¹⁵⁾ Valid for HSDS 8 mA, HSDS 6 mA, LVDS. LVPECL20, LVPECL16, LCPECL with 120 Ω emitter resistor to ground.

 $(3.15 \text{ V} < \text{V}_{CC} < 3.45 \text{ V}, -40 ^{\circ}\text{C} < \text{T}_{A} < 85 ^{\circ}\text{C}$. Typical values at $\text{V}_{CC} = 3.3 \text{ V}, \text{T}_{A} = 25 ^{\circ}\text{C}$, at the *Recommended Operating Conditions* are not assured.)

	PARAMETER	TEST CO	NDITIONS	MIN	TYP	MAX	UNIT
CML 32 mA (CLOCK OUTPUTS (CLKoutX/Y)						
T _R / T _F	20% to 80% Output Rise/Fall	R_L = AC-coupled 100 Ω , 250 MHz Odd CLKoutY, CLKoutX_Y_ODL = 1 DC Bias, 50 ohm to Vcc			135		ps
V _{OH}	Output High Voltage				Vcc		
V _{OL}	Output Low Voltage	T = 25 °C, DC measurement Termination 50-Ω pull up to Vcc			Vcc - 1.66		V
V_{OD}	Differential Output Voltage				1660		mV
		DC bias is $50-\Omega$ pull up to Vcc $R_L = AC$ -coupled $100~\Omega$	250 MHz ⁽¹⁶⁾		1070		
V_{OD}	Differential Output Voltage	DC bias is 68-nH to	2.5 GHz ⁽¹⁷⁾		765		mV
		$20-\Omega$ to Vcc	2.5 GHz ⁽¹⁸⁾		550		
		$R_L = AC$ -coupled	3.2 GHz ⁽¹⁷⁾		610		
		100 Ω	3.2 GHz ⁽¹⁸⁾		385		
CML 24 mA	CLOCK OUTPUTS (CLKoutX/Y)						•
T _R / T _F	20% to 80% Output Rise/Fall	R _L = AC-coupled 100 Odd CLKoutY, CLKo DC Bias, 50 ohm to	utX_Y_ODL = 1		125		ps
V _{OH}	Output High Voltage				Vcc		
V _{OL}	Output Low Voltage	T = 25 °C, DC meas Termination 50-Ω pu			Vcc - 1.26		V
V_{OD}	Differential Output Voltage				1260		mV
		DC bias is $50-\Omega$ pull up to Vcc $R_L = AC$ -coupled $100~\Omega$	250 MHz ⁽¹⁶⁾		815		
V_{OD}	Differential Output Voltage	DC bias is 68-nH to	2.5 GHz ⁽¹⁷⁾		595		mV
		$20-\Omega$ to Vcc	2.5 GHz ⁽¹⁸⁾		445		
		R _L = AC-coupled	3.2 GHz ⁽¹⁷⁾		480		
	100 Ω	100 77	3.2 GHz ⁽¹⁸⁾		330		

⁽¹⁶⁾ For even and odd outputs CLKoutX_Y_IDL=0. For even outputs CLKoutX_Y_ODL=X and for odd CLKoutX_Y_ODL=1.
(17) Even clock outputs (CLKoutX). CLKoutX_Y_IDL=1, CLKoutX_Y_ODL=X.
(18) Odd clock outputs (CLKoutY). CLKoutX_Y_IDL=X, CLKoutX_Y_ODL=1

 $(3.15 \text{ V} < \text{V}_{CC} < 3.45 \text{ V}, -40 ^{\circ}\text{C} < \text{T}_{A} < 85 ^{\circ}\text{C}$. Typical values at $\text{V}_{CC} = 3.3 \text{ V}, \text{T}_{A} = 25 ^{\circ}\text{C}$, at the *Recommended Operating Conditions* are not assured.)

	PARAMETER	TEST CO	NDITIONS	MIN TYP	MAX	UNIT
CML 16 mA	CLOCK OUTPUTS (CLKoutX/Y)					
T _R / T _F	20% to 80% Output Rise/Fall	Odd CLKoutY, CLKo	R_L = AC-coupled 100 Ω , 250 MHz Odd CLKoutY, CLKoutX_Y_ODL = 1 DC Bias, 50 ohm to Vcc			ps
V _{OH}	Output High Voltage			Vcc		
V _{OL}	Output Low Voltage	T = 25 °C, DC mease Termination is 50-Ω		Vcc - 0.84		V
V_{OD}	Differential Output Voltage			840		mV
V_{OD}		DC bias is $50-\Omega$ pull up to Vcc $R_L = AC$ -coupled 100 Ω	250 MHz ⁽¹⁶⁾	550		
V_{OD}	Differential Output Voltage	DC bias is 68-nH to	2.5 GHz ⁽¹⁷⁾	400		mV
V _{OD}		$20-\Omega$ to Vcc	2.5 GHz ⁽¹⁸⁾	325		
V_{OD}		$R_L = AC$ -coupled	3.2 GHz ⁽¹⁷⁾	325		
V_{OD}		100 Ω	3.2 GHz ⁽¹⁸⁾	250		
LVPECL CLO	OCK OUTPUT (CLKoutX/Y, OSCout)					
T_R / T_F	20% to 80% Output Rise/Fall	R _L = AC-coupled 100	R_L = AC-coupled 100 Ω , 250 MHz			ps
LVPECL 200	00 mVpp CLOCK OUTPUTS (CLKoutX/Y	', OSCout)				
V_{OH}	Output High Voltage	DC Macaurament	DC Measurement Termination = 50-Ω to V _{CC} - 2.0 V			V
V_{OL}	Output Low Voltage					V
V_{OD}	Output Voltage ⁽⁴⁾					mV
			250 MHz ⁽¹⁹⁾	925		·
			2.5 GHz ⁽²⁰⁾	585		
V_{OD}	Differential Output Voltage	Termination = AC-	2.5 GHz ⁽²¹⁾	545		mV
		coupled 100 Ω	3.2 GHz ⁽²⁰⁾	415		
			3.2 GHz ⁽²¹⁾	370		
	00 mVpp CLOCK OUTPUTS (CLKoutX/Y	', OSCout)				
V _{OH}	Output High Voltage			V _{CC} - 1		V
V _{OL}	Output Low Voltage	DC Measurement Termination = $50-\Omega$ t	o V _{CC} - 2.0 V	V _{CC} - 1.8		V
V_{OD}	Output Voltage ⁽⁴⁾			800		mV
			250 MHz ⁽¹⁹⁾	760		·
		$Em = 120 \Omega$ to	2.5 GHz ⁽²⁰⁾	510		·
V_{OD}	Differential Output Voltage	ground Termination = AC-	2.5 GHz ⁽²¹⁾	480		mV
		coupled 100 Ω	3.2 GHz ⁽²⁰⁾	370		
		3.2 GHz ⁽²¹⁾		340		
LCPECL CL	OCK OUTPUT (CLKoutX/Y, OSCout)					
T_R / T_F	20% to 80% Output Rise/Fall	$R_L = AC$ -coupled 100 DC bias = 120 Ω to 0		135		ps
V_{OH}	Output High Voltage	DC Measurement		1.6		V
V_{OL}	Output Low Voltage	Termination = $50-\Omega$ t	o 0.5 V	0.6		V
V_{OD}	Output Voltage (4)			1000		mV
HSDS 8 mA	CLOCK OUTPUTS (CLKoutX/Y)					
T_R / T_F	20% to 80% Output Rise/Fall	$R_L = 100 \Omega, 250 MHz$	Z	170		ps

⁽¹⁹⁾ CLKoutX_Y_IDL=X and CLKoutX_Y_ODL=X.

Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

⁽²⁰⁾ Even clock outputs (CLKoutX). CLKoutX_Y_IDL=X, CLKoutX_Y_ODL=1.

⁽²¹⁾ Odd clock outputs (CLKoutY). CLKoutX_Y_IDL=X, CLKoutX_Y_ODL=1

 $(3.15~V < V_{CC} < 3.45~V, -40~^{\circ}C < T_{A} < 85~^{\circ}C.$ Typical values at $V_{CC} = 3.3~V, T_{A} = 25~^{\circ}C,$ at the Recommended Operating Conditions are not assured.)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{OH}	Output High Voltage			V _{CC} - 0.95		V
V _{OL}	Output Low Voltage	DC Measurement		V _{CC} - 1.7		V
V _{OD}	Output Voltage (4)	Termination = $50-\Omega$ to V_{CC} - 1.64 V		750		mV
ΔV_{OD}	Change in Magnitude of V _{OD} for complementary output states		-115		115	mV
HSDS 6 mA (CLOCK OUTPUTS (CLKoutX/Y)					
T_R / T_F	20% to 80% Output Rise	R _L = 100 Ω, 250 MHz		170		ps
V _{OH}	Output High Voltage			V _{CC} - 0.9		V
V _{OL}	Output Low Voltage	DC Measurement		V _{CC} - 1.5		V
V _{OD}	Output Voltage (4)	Termination = $50-\Omega$ to V_{CC} - 1.42 V		600		mV
ΔV_{OD}	Change in Magnitude of V _{OD} for complementary output states		-80		80	mV
LVDS CLOCK	K OUTPUTS (CLKoutX/Y, OSCout)					,
T_R / T_F	20% to 80% Output Rise	$R_L = 100 \Omega, 250 \text{ MHz}$		175		ps
V_{OD}	Differential Output Voltage			400		mV
ΔV_{OD}	Change in Magnitude of V _{OD} for complementary output states	T = 25 °C, DC measurement	-60		60	mV
V _{OS}	Output Offset Voltage	AC-coupled to receiver input $R_1 = 100-\Omega \text{ differential termination}$	1.125	1.25	1.375	V
ΔV _{OS}	Change in V _{OS} for complementary output states				35	mV
I _{SA} I _{SB}	Output short circuit current - single- ended	Single-ended output shorted to GND T = 25 °C -24		24	mA	

 $(3.15 \text{ V} < \text{V}_{CC} < 3.45 \text{ V}, -40 ^{\circ}\text{C} < \text{T}_{A} < 85 ^{\circ}\text{C}$. Typical values at $\text{V}_{CC} = 3.3 \text{ V}, \text{T}_{A} = 25 ^{\circ}\text{C}$, at the *Recommended Operating Conditions* are not assured.)

	are not assured.) PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
LVCMOS CI	LOCK OUTPUTS (CLKout8/10/Y, OSCout)	120. 0010110110	.71114		111717	J.411
f _{CLKout}	Maximum Frequency	5 pF Load	250			MHz
V _{OH}	Output High Voltage	1 mA Load	Vcc - 0.1			V
V _{OL}	Output Low Voltage	1 mA Load	0.1		0.1	V
I _{OH}	Output High Current (Source)	V _{CC} = 3.3 V, V _O = 1.65 V		-28	0.1	mA
I _{OL}	Output Low Current (Sink)	$V_{CC} = 3.3 \text{ V}, V_{O} = 1.65 \text{ V}$		28		mA
DUTY _{CLK}	Output Duty Cycle (22) (23)	$V_{CC}/2$ to $V_{CC}/2$, $F_{CLK} = 100$ MHz, $T = 25^{\circ}$ C		50		%
	ITPUTS (CLKin_SELX, Status_LDX, and RE			- 00		70
V _{OH}	High-Level Output Voltage	I _{OH} = -500 μA CLKin_SELX_TYPE = 3 or 4 Status_LDX_TYPE = 3 or 4 RESET_TYPE = 3 or 4	V _{CC} - 0.4			V
V _{OL}	Low-Level Output Voltage	I _{OL} = 500 μA CLKin_SELX_TYPE = 3, 4, or 6 Status_LDX_TYPE = 3, 4, or 6 RESET_TYPE = 3, 4, or 6			0.4	V
DIGITAL OU	ITPUTS (SDIO)					
V _{OH}	High-Level Output Voltage	I_{OH} = -500 μA; During SPI read. V_{CC} - SDIO_RDBK_TYPE = 0 0.4				V
V _{OL}	Low-Level Output Voltage	I _{OL} = 500 μA; During SPI read. SDIO_RDBK_TYPE = 0 or 1			0.4	V
DIGITAL INF	PUTS (CLKinX_SEL, RESET/GPO, SYNC, S	CK, SDIO, and CS*)				
V _{IH}	High-Level Input Voltage		1.2			V
V _{IL}	Low-Level Input Voltage				0.5	V
DIGITAL INF	PUT (CLKinX_SEL)					
		CLKin_SELX_TYPE = 0 (High Impedance)	-5		5	
I _{IH}	High-Level Input Current $V_{IH} = V_{CC}$	CLKin_SELX_TYPE = 1 (Pull up)	-5		5	μΑ
		CLKin_SELX_TYPE = 2 (Pull-down)	10		80	
		CLKin_SELX_TYPE = 0 (High Impedance)	-5		5	
I _{IL}	Low-Level Input Current $V_{IL} = 0 V$	CLKin_SELX_TYPE = 1 (Pull up)	-40		-5	μΑ
		CLKin_SELX_TYPE = 2 (Pull-down)	-5		5	
DIGITAL INF	PUT (RESET/GPO)					,
I _{IH}	High-Level Input Current $V_{IH} = V_{CC}$	RESET_TYPE = 2 (Pull-down)	10		80	μΑ
		RESET_TYPE = 0 (High Impedance)	-5		5	
I _{IL}	Low-Level Input Current $V_{IL} = 0 V$	RESET_TYPE = 1 (Pull up)	-40		-5	μΑ
		RESET_TYPE = 2 (Pull-down)	-5		5	
DIGITAL INF	PUT (SYNC)	·				
I _{IH}	High-Level Input Current	$V_{IH} = V_{CC}$			25	μΑ
I _{IL}	Low-Level Input Current	V _{IL} = 0 V	-5		5	μΑ
DIGITAL INF	PUTS (SCK, SDIO, CS*)					
I _{IH}	High-Level Input Current	$V_{IH} = V_{CC}$	-5		5	μΑ
I _{IL}	Low-Level Input Current	V _{IL} = 0 V	-5		5	μΑ

⁽²²⁾ For OSCout when driven by OSCin, assumes OSCin has 50% input duty cycle.

⁽²³⁾ For any device clock with an odd divide value, assumes selected clock output has DCLKX_Y_DCC = 1 to enable duty cycle correction.

6.6 Timing Requirements

	DIGITAL INPUT TIMING	MIN	NOM	MAX	UNIT
td _S	Setup time for SDI edge to SCLK rising edge	20			ns
td _H	Hold time for SDI edge to SCLK rising edge	10			ns
t _{SCLK}	Period of SCLK	200(1)			ns
t _{HIGH}	High width of SCLK	60			ns
t_{LOW}	Low width of SCLK	60			ns
tcs	Setup time for CS* falling edge to SCLK rising edge	20			ns
tc _H	Hold time for CS* rising edge from SCLK rising edge	20			ns
td _V	SCLK falling edge to valid read back data		·	60	ns

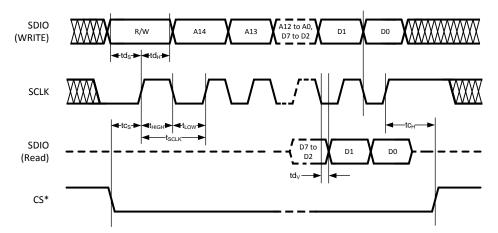
^{(1) 5} MHz

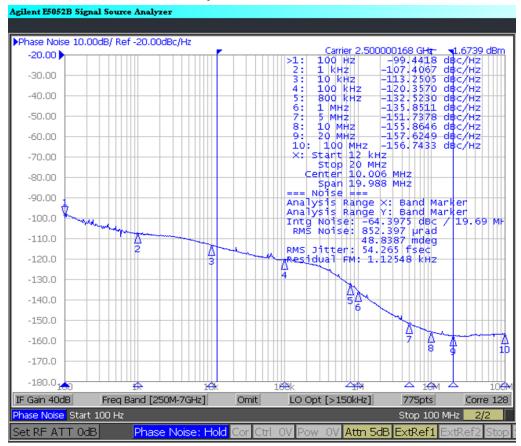
6.7 Timing Diagram

Register programming information on the SDIO pin is clocked into a shift register on each rising edge of the SCK signal. On the rising edge of the CS* signal, the register is sent from the shift register to the register addressed. A slew rate of at least 30 V/µs is recommended for these signals. After programming is complete the CS* signal should be returned to a high state. If the SCK or SDIO lines are toggled while the VCO is in lock, as is sometimes the case when these lines are shared with other parts, the phase noise may be degraded during this programming.

4-cwire mode read back has same timing as SDIO pin.

R/W bit = 0 is for SPI write. R/W bit = 1 is for SPI read.




Figure 1. SPI Timing Diagram

Copyright © 2017–2018, Texas Instruments Incorporated

Submit Documentation Feedback

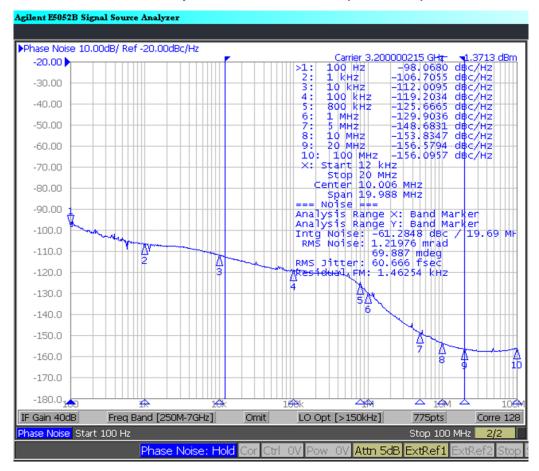
TEXAS INSTRUMENTS

6.8 Typical Characteristics – Clock Output AC Characteristics

Jitter from 100 Hz to 100 MHz = 63.6 fs rms.

Output is CLKout4 as CML 32 mA with 68-nH to $20-\Omega$ DC bias.

Other settings are CLKout4_5_IDL = 1 and CLKout4_5_BYP = 1.


PLL2 Loop Filter R2 = 470 Ω , C2 = 150 nF, Charge Pump = 3200 μ A.

Reference is R&S SMA100B Signal Generator with option SMAB - B711 through Prodyn BIB-100G Balun to OSCin.

Figure 2. PLL2 with VCO1 Performance at 2500 MHz With 312.5-MHz OSCin/Phase Detector Frequency

Typical Characteristics – Clock Output AC Characteristics (continued)

Jitter from 100 Hz to 100 MHz = 67 fs rms.

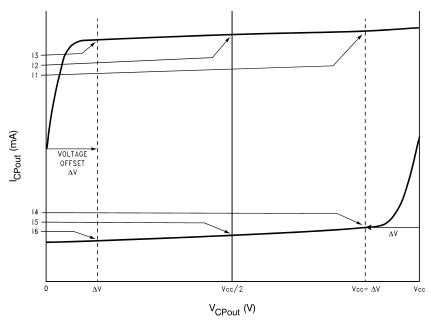
Output is CLKout4 as CML 32 mA with 68-nH to 20- Ω DC bias.

Other settings are CLKout4_5_IDL = 1 and CLKout4_5_BYP = 1.

PLL2 Loop Filter R2 = 470 Ω , C2 = 150 nF, Charge Pump = 3200 μ A.

Reference is R&S SMA100B Signal Generator with option SMAB - B711 through Prodyn BIB-100G Balun to OSCin.

Figure 3. PLL2 with VCO1 Performance at 3200 MHz With 320-MHz OSCin/Phase Detector Frequency


Copyright © 2017–2018, Texas Instruments Incorporated

Submit Documentation Feedback

TEXAS INSTRUMENTS

7 Parameter Measurement Information

7.1 Charge Pump Current Specification Definitions

I1 = Charge Pump Sink Current at $V_{CPout} = V_{CC} - \Delta V$

I2 = Charge Pump Sink Current at $V_{CPout} = V_{CC}/2$

I3 = Charge Pump Sink Current at $V_{CPout} = \Delta V$

I4 = Charge Pump Source Current at $V_{CPout} = V_{CC} - \Delta V$

I5 = Charge Pump Source Current at $V_{CPout} = V_{CC}/2$

I6 = Charge Pump Source Current at $V_{CPout} = \Delta V$

 ΔV = Voltage offset from the positive and negative supply rails. Defined to be 0.5 V for this device.

7.1.1 Charge Pump Output Current Magnitude Variation vs Charge Pump Output Voltage

$$I_{CPout} \ Vs \ V_{CPout} = \frac{||1| - ||3|}{||1| + ||3|} \times 100\%$$
$$= \frac{||4| - ||6|}{||4| + ||6|} \times 100\%$$

7.1.2 Charge Pump Sink Current vs Charge Pump Output Source Current Mismatch

$$I_{CPout}$$
 Sink Vs I_{CPout} Source =
$$\frac{||2| - ||5|}{||2| + ||5|} \times 100\%$$

7.1.3 Charge Pump Output Current Magnitude Variation vs Ambient Temperature

$$I_{CPout} \text{ Vs } T_{A} = \frac{|I_{2}||_{T_{A}} - |I_{2}||_{T_{A} = 25^{\circ}C}}{|I_{2}||_{T_{A} = 25^{\circ}C}} \times 100\%$$

$$= \frac{|I_{5}||_{T_{A}} - |I_{5}||_{T_{A} = 25^{\circ}C}}{|I_{5}||_{T_{A} = 25^{\circ}C}} \times 100\%$$

Product Folder Links: *LMK04832*

20

7.2 Differential Voltage Measurement Terminology

The differential voltage of a differential signal can be described by two different definitions causing confusion when reading data sheets or communicating with other engineers. This section will address the measurement and description of a differential signal so that the reader will be able to understand and distinguish between the two different definitions when used.

The first definition used to describe a differential signal is the absolute value of the voltage potential between the inverting and noninverting signal. The symbol for this first measurement is typically V_{ID} or V_{OD} depending on if an input or output voltage is being described.

The second definition used to describe a differential signal is to measure the potential of the noninverting signal with respect to the inverting signal. The symbol for this second measurement is V_{SS} and is a calculated parameter. Nowhere in the IC does this signal exist with respect to ground, it only exists in reference to its differential pair. V_{SS} can be measured directly by oscilloscopes with floating references, otherwise this value can be calculated as twice the value of V_{OD} as described in the first description.

Figure 4 illustrates the two different definitions side-by-side for inputs and Figure 5 illustrates the two different definitions side-by-side for outputs. The V_{ID} and V_{OD} definitions show V_A and V_B DC levels that the noninverting and inverting signals toggle between with respect to ground. V_{SS} input and output definitions show that if the inverting signal is considered the voltage potential reference, the noninverting signal voltage potential is now increasing and decreasing above and below the noninverting reference. Thus the peak-to-peak voltage of the differential signal can be measured.

V_{ID} and V_{OD} are often defined as volts (V) and V_{SS} is often defined as volts peak-to-peak (V_{PP}).

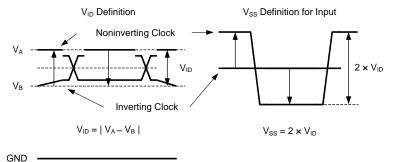


Figure 4. Two Different Definitions for Differential Input Signals

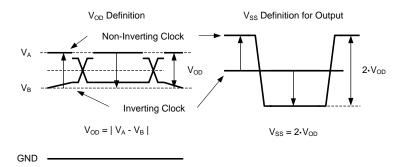


Figure 5. Two Different Definitions for Differential Output Signals

Refer to application note AN-912 Common Data Transmission Parameters and their Definitions (SNLA036) for more information.

8 Detailed Description

8.1 Overview

The LMK04832 device is very flexible to meet many application requirements. Use cases include dual loop, dual loop 0-delay nested, dual loop 0-delay cascaded, single loop, single loop 0-delay, and clock distribution.

The device may be used in JESD204B systems by providing a device clock and SYSREF to target devices, however traditional (non-JESD204B) systems are possible by programming pairs of outputs to share the clock divider or any mix of JESD204B and traditional.

8.1.1 Differences to LMK0482x

The LMK04832 is pin-to-pin compatible with LMK0482x. The LMK04832 can be substituted directly into an existing LMK0482x hardware design. However, if a CML output is to be used on LMK04832, then $50-\Omega$ pullups to V_{CC} are required. For higher amplitude on high frequency CML outputs, use 68 nH on each output pin to a common to 20 ohms to Vcc. The LMK04832 does support LVPECL20 and LVPECL16 modes, but best performance is achieved with CML outputs in bypass mode. Division of up to 1023 is supported by DCLKx_DIV and each output clock can be a DEVCLK or a SYSREF. In addition, some programming updates are required from LMK04828 to LMK04832, particularly for controlling the clock output groups.

8.1.2 Jitter Cleaning

The dual loop PLL architecture of the LMK04832 provides the lowest jitter performance over a wide range of output frequencies and phase noise integration bandwidths. The first stage PLL (PLL1) is driven by an external reference clock and uses an external VCXO to provide a frequency accurate, low phase noise reference clock for the second stage frequency multiplication PLL (PLL2).

PLL1 typically uses a narrow loop bandwidth (typically 10 Hz to 200 Hz) to retain the frequency accuracy of the reference clock input signal while at the same time suppressing the higher offset frequency phase noise that the reference clock may have accumulated along its path or from other circuits. This cleaned reference clock provides the reference input to PLL2.

The low phase noise reference provided to PLL2 allows PLL2 to operate with a wide loop bandwidth (typically 50 kHz to 200 kHz). The loop bandwidth for PLL2 is chosen to take advantage of the superior high offset frequency phase noise profile of the internal VCO and the good low offset frequency phase noise of the reference VCXO.

Ultra-low jitter is achieved by allowing the phase noise of the external VCXO to dominate the final output phase noise at low offset frequencies and the phase noise of the internal VCO to dominate the final output phase noise at high offset frequencies. This results in best overall phase noise and jitter performance.

8.1.3 JEDEC JESD204B Support

The LMK04832 provides support for JEDEC JESD204B. The LMK04832 clocks up to 7 JESD204B targets using 7 device clocks and 7 SYSREF clocks.

The LMK04832 allows every clock output to be configured as a device clock or SYSREF clock.

8.1.4 Clock Inputs

NOTE

CLKin1 can be used as a reference for dual loop, single loop, or clock distribution mode, providing flexibility configuring the device for different operation modes from one clock input..

8.1.4.1 Three Redundant PLL1 Reference Inputs

The LMK04832 has up to three reference clock inputs for PLL1. They are CLKin0, CLKin1, and CLKin2. Automatic or manual switching can occur between the inputs.

CLKin0, CLKin1, and CLKin2 each have their own PLL1 R dividers allowing clock switching references of different frequencies.

Overview (continued)

CLKin1 is shared for use as an external 0-delay feedback (FBCLKin), or for use with an external VCO (Fin).

CLKin2 is shared for use as OSCout. To use CLKin2 as an input power down OSCout, see VCO_MUX, OSCout_FMT.

Fast manual switching between reference clocks and holdover is possible with external pins CLKin_SEL0 and CLKin_SEL1.

8.1.4.2 PLL2 Reference Inputs

In dual loop configurations, the PLL2 reference is from OSCin. However, in single PLL2 loop operation, it is also possible to use any of the three CLKins of PLL1 as a reference to PLL2.

8.1.4.3 Clock Distribution Reference Input

For clock distribution mode, a reference signal is applied to the Fin1 pins for clock distribution. CLKin0 can be used to distribute a SYSREF signal through the device. In this use case, CLKin0 is re-clocked by CLKin1.

8.1.5 VCXO Buffered Output

The LMK04832 provides OSCout, which by power-on default is a buffered copy of the PLL1 feedback and PLL2 reference input at OSCin. This reference input is typically a low noise VCXO or XO. This output can be used to clock external devices such as microcontrollers, FPGAs, CPLDs, and so forth, before the LMK04832 is programmed.

The OSCout buffer output type is programmable to LVDS, LVPECL, or LVCMOS.

The VCXO buffered output can be synchronized to the VCO clock distribution outputs by using Cascaded 0-Delay Mode.

8.1.6 Frequency Holdover

The LMK04832 supports holdover operation to keep the clock outputs on frequency with minimum drift when the reference is lost until a valid reference clock signal is re-established.

8.1.7 Internal VCOs

The LMK04832 has two internal VCOs. The output of the selected VCO is routed to the Clock Distribution Path. This same selection is also fed back to the PLL2 phase detector through a prescaler and N-divider.

8.1.8 External VCO Mode

The Fin1 input allows an external VCO to be used with PLL2 of the LMK04832. Using Fin1 input for external VCO prevents use of CLKin1 for other purposes.

8.1.9 Clock Distribution

The LMK04832 features a total of 14 PLL2 clock outputs driven from the internal or external VCO.

All clock outputs have programmable output types. They can be programmed to CML, LVPECL, LVDS, HSDS, or LCPECL. All odd clock outputs plus CLKout8 and CLKout10 may be programmed to LVCMOS.

If OSCout is included in the total number of clock outputs the LMK04832 is able to distribute up to 15 differential clocks. OSCout may be a buffered version of OSCin, DCLKout6, DCLKout8, or SYSREF. Its output format is programmable to LVDS, LVPECL, or LVCMOS.

The following sections discuss specific features of the clock distribution channels that allow the user to control various aspects of the output clocks.

8.1.9.1 Clock Divider

The LMK04832 has 7 clock dividers. In a traditional clocking system each divider can drive two outputs. The divider range is 1 to 1023. Duty cycle correction may be enabled for the output. When the divider is used even clocks may not output CML.

Overview (continued)

In a JESD204B system, one clock output is a device clock driven from the clock divider and the other paired clock is from the SYSREF divider. For connectivity flexibility, either the even or odd clock output may be driven by the clock divider or be the SYSREF output.

8.1.9.2 High Performance Divider Bypass Mode

Even clock outputs (CLKoutX) of the LMK04832 may bypass the clock divider to achieve the best possible noise floor and output swing. In this mode, the only usable output format is CML.

8.1.9.3 SYSREF Clock Divider

The SYSREF divider supports a divide range of 8 to 8191 (even and odd). There is no duty cycle correction for the SYSREF divider. The SYSREF output may be routed to all clock outputs.

8.1.9.4 Device Clock Delay

The device clocks support digital delay for phase adjustment of the clock outputs.

The digital delay allows outputs to be delayed from 8 to 1023 VCO cycles. The delay step can be as small as half the period of the clock distribution path. For example, a 3.2-GHz VCO frequency results in 156.25-ps steps.

The digital delay value takes effect on the clock output phase after a SYNC event.

8.1.9.5 Dynamic Digital Delay

The device clock dividers support a dynamic digital delay feature which allows the clock to be delayed by one full device clock cycle. With a single programming, an adjustment of up to 255 one cycle delays may occur. When making a multi-step adjustment, the adjustments are periodically applied to reduce impact to the clock.

Dynamic phase adjustments of half a clock distribution cycle are possible by half step.

The SYSREF digital delay value is reused for dynamic digital delay. To achieve a one cycle delay program the SYSREF digital delay value to one greater than half the SYSREF divide value.

8.1.9.6 SYSREF Delay: Global and Local

The SYSREF divider includes a digital delay block which allows a global phase shift with respect to the device clocks.

Each clock output pair includes a local SYSREF analog and digital delay for unique phase adjustment of each SYSREF clock.

The local analog delay allows for approximately 21-ps steps. Turning-on analog delay adds an additional 124ps of delay in the clock path. The digital delay step can be as small as half the period of the clock distribution path. For example, a 3.2-GHz VCO frequency results in 156.25-ps steps.

The local digital delay and half step allows a SYSREF output to be delayed from 1.5 to 11 clock distribution path cycles.

8.1.9.7 Programmable Output Formats

All LMK04832 clock outputs can be programmed to an LVDS, HSDS, LVPECL, or LCPECL output type. Odd clock outputs in addition to CLKout8 and CLKout10 may also be programmed to LVCMOS. All odd clock outputs can also be programmed to CML. When in bypass mode the even clock output may only be CML.

The OSCout can be programmed to an LVDS, LVPECL, or LVCMOS output type.

Any HSDS output type can be programmed to 6-mA or 8-mA amplitude levels.

Any LVPECL output type can be programmed to 1600-mVpp or 2000-mVpp amplitude levels. The 2000-mVpp LVPECL output type is a Texas Instruments proprietary configuration that produces a 2000-mVpp differential swing for compatibility with many data converters and is also known as 2VPECL.

LCPECL allows for DC-coupling SYSREF to low voltage JESD204B targets.

Overview (continued)

8.1.9.8 Clock Output Synchronization

Using the SYNC input causes all active clock outputs to share a rising edge as programmed by fixed digital delay.

The SYNC event must occur for digital delay values to take effect.

8.1.10 0-Delay

The LMK04832 supports two types of 0-delay.

- 1. Cascaded 0-delay
- 2. Nested 0-delay

Cascaded 0-delay mode establishes a fixed deterministic phase relationship of the phase of the PLL2 input clock (OSCin) to the phase of a clock selected by the feedback mux. The 0-delay feedback uses internal feedback from the CLKout6, CLKout8, or SYSREF. The 0-delay feedback can also be from an external feedback through the FBCLKin port. The FB_MUX selects the feedback source. Because OSCin has a fixed deterministic phase relationship to the feedback clock, OSCout will also have a fixed deterministic phase relationship to the feedback clock. In this mode, PLL1 input clock (CLKinX) also has a fixed deterministic phase relationship to PLL2 input clock (OSCin); this results in a fixed deterministic phase relationship between all clocks from CLKinX to the clock outputs.

Nested 0-delay mode establishes a fixed deterministic phase relationship of the phase of the PLL1 input clock (CLKinX) to the phase of a clock selected by the feedback mux. The 0-delay feedback uses internal feedback from the CLKout6, CLKout8, or SYSREF. The 0-delay feedback can also be from an external feedback through the FBCLKin port. The FB MUX selects the feedback source.

Without using 0-delay mode, there will be n possible fixed phase relationships from clock input to clock output depending on the clock output divide value.

Using an external 0-delay feedback reduces the number of available clock inputs by one.

8.1.11 Status Pins

The LMK04832 provides status pins which can be monitored for feedback or in some cases used for input depending upon device programming. For example:

- The CLKin SEL0 pin may indicate the LOS (loss-of-signal) for CLKin0.
- The CLKin SEL1 pin may be an input for selecting the active clock input.
- The Status_LD1 pin may indicate if the device is locked.
- The Status_LD2 pin may indicate if PLL2 is locked.

The status pins can be programmed to a variety of other outputs including PLL divider outputs, combined PLL lock detect signals, PLL1 Vtune railing, readback, and so forth. Refer to the *Register Maps* section of this data sheet for more information.

8.2 Functional Block Diagram

Figure 6 illustrates the high level LMK04832 block diagram.

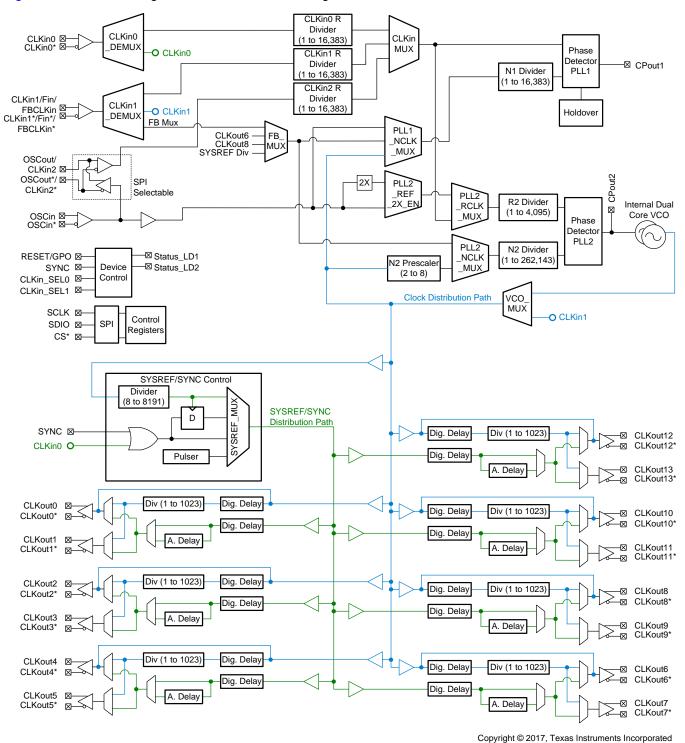
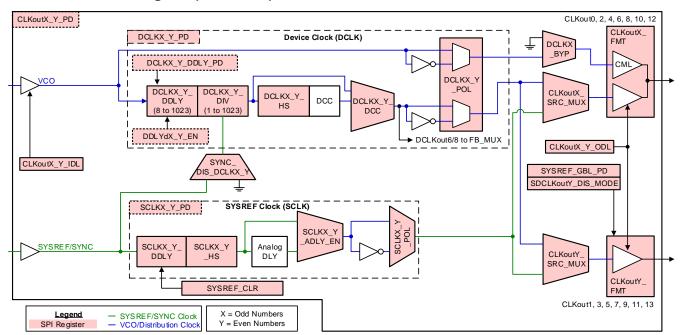
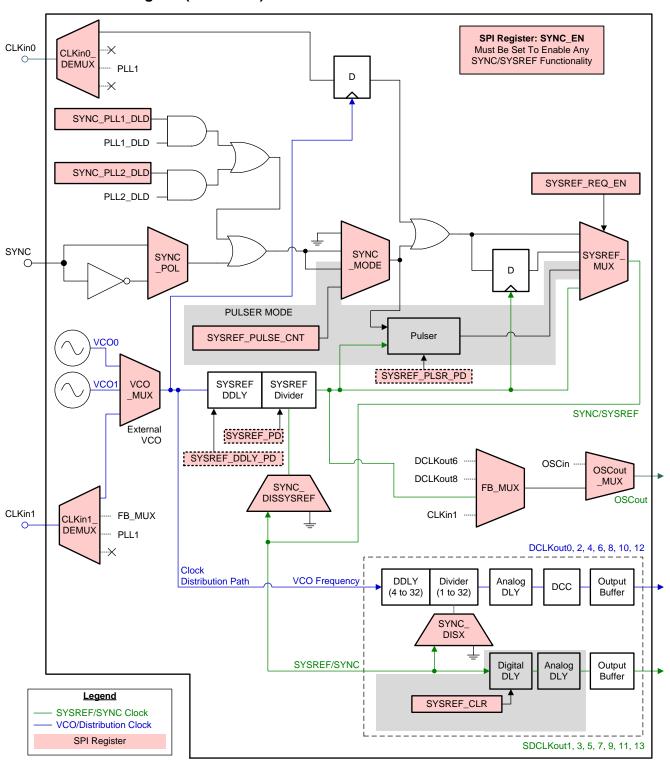



Figure 6. High Level LMK04832 Block Diagram

Submit Documentation Feedback

Functional Block Diagram (continued)



Copyright © 2017, Texas Instruments Incorporated

Figure 7. Device and SYSREF Clock Output Block

Functional Block Diagram (continued)

Copyright © 2017, Texas Instruments Incorporated

Figure 8. SYNC/SYSREF Clocking Paths

8.3 Feature Description

8.3.1 Synchronizing PLL R Dividers

In some cases, it is necessary to synchronize PLL R dividers to enable determinism of clocks outputs to inputs. This typically is required when the fraction Total PLL N divide / Total PLL R divide does not reduce to N / 1

8.3.1.1 PLL1 R Divider Synchronization

It is possible to use the CLKin0 or SYNC pin to synchronize the PLL1 R divider. In either case, the PLL1 R divider is armed for reset, then the rising sync edge arrives from either SYNC pin or CLKin0. After the PLL1 R divider is armed, PLL1 is unlocked until the synchronization edge arrives and allows the divider to operate and the PLL to lock. The procedure to synchronize PLL1 R is as follows:

- 1. Setup device for synchronizing PLL1 R:
 - PLL1R_SYNC_EN = 0x1
 - PLL1R_SYNC_SRC = 0x1 (SYNC pin) or 0x2 (CLKin0)
 - CLKin0 DEMUX = 0x2 (PLL1)
 - CLKin1_DEMUX = 0x2 (PLL1)
 - CLKin0_TYPE = 0x1 (MOS) for DC-coupled or CLKin0_TYPE = 0x0 (Bipolar) for AC-coupled
- 2. Arm PLL1 R divider for synchronization
 - $PLL1R_RST = 1$, then 0.
 - PLL1 is unlocked.
- 3. Send rising edge on SYNC pin or CLKin0.
 - PLL1 R divider is released from reset and PLL1 relocks.

It is necessary to meet a setup and hold time when CLKin0 or SYNC pin goes high to ensure deterministic reset of the PLL1 R divider.

The SYNC POL bit has no effect on SYNC polarity for PLL1 R synchronization.

8.3.1.2 PLL2 R Divider Synchronization

The SYNC pin must be used to synchronized the PLL2 R divider. When PLL2R_SYNC_EN = 1, as long as the SYNC pin is held high, the PLL2 R divider is held in reset. When the SYNC pin is returned low, the divider is allowed to continue dividing. While PLL2R SYNC EN = 1 and SYNC pin is high PLL2 is unlocked.

It is necessary to meet a setup and hold time when SYNC pin goes low to ensure deterministic reset of the PLL2 R divider.

The SYNC_POL bit has no effect on SYNC polarity for PLL2 R synchronization.

Feature Description (continued)

8.3.2 SYNC/SYSREF

The SYNC and SYSREF signals share the same SYNC/SYSREF Clock Distribution path. To properly use SYNC and/or SYSREF for JESD204B it is important to understand the SYNC/SYSREF system. Figure 7 illustrates the detailed diagram of a clock output block with SYNC circuitry included. Figure 8 illustrates the interconnects and highlights some important registers used in controlling the device for SYNC/SYSREF purposes.

To reset or synchronize a divider, the following conditions must be met:

- 1. SYNC EN must be set. This ensures proper operation of the SYNC circuitry.
- SYSREF_MUX and SYNC_MODE must be set to a proper combination to provide a valid SYNC/SYSREF signal.
 - If SYSREF block is being used, the SYSREF_PD bit must be clear.
 - If the SYSREF Pulser is being used, the SYSREF_PLSR_PD bit must be clear.
 - For each CLKoutX or CLKoutY being used for SYSREF, the respective SCLKX_Y_PD bit must be cleared.
- DCLKX_Y_DDLY_PD and SYSREF_DDLY_PD bits must be clear to power up the digital delay circuitry used during SYNC to cause deterministic phase between the device clock dividers and the global SYSREF divider.
- 4. The SYNC_DISX bit must be clear to allow SYNC/SYSREF signal to divider circuit. The SYSREF_MUX register selects the SYNC source which resets the SYSREF/CLKoutX dividers provided the corresponding SYNC DISX bit is clear.
- 5. Other bits which impact the operation of SYNC such as SYNC_1SHOT_EN may be set as desired.
- 6. After these dividers are synchronized, the DCLKX_Y_DDLY_PD and SYSREF_DDLY_PD bits may be set to save current. Clearing them to power up may disrupt the output clock phase.

Table 1 illustrates the some possible combinations of SYSREF_MUX and SYNC_MODE.

Table 1. Some Possible SYNC Configurations

NAME	SYNC_MODE	SYSREF_MUX	OTHER	DESCRIPTION
SYNC Disabled	0	0	CLKin0_DEMUX ≠ 0	No SYNC will occur.
Pin or SPI SYNC	1	0	CLKin0_DEMUX ≠ 0	Basic SYNC functionality, SYNC pin polarity is selected by SYNC_POL. To achieve SYNC through SPI, toggle the SYNC_POL bit.
Differential input SYNC	X	0 or 1	CLKin0_DEMUX = 0	Differential CLKin0 now operates as SYNC input.
JESD204B Pulser on pin transition.	2	2	SYSREF_PULSE_CNT sets pulse count	Produce SYSREF_PULSE_CNT programmed number of pulses on pin transition. SYNC_POL can be used to cause SYNC through SPI.
JESD204B Pulser on SPI programming.	3	2	SYSREF_PULSE_CNT sets pulse count	Programming SYSREF_PULSE_CNT register starts sending the number of pulses.
Re-clocked SYNC	1	1	SYSREF operational, SYSREF Divider as required for training frame size.	Allows precise SYNC for n-bit frame training patterns for non-JESD converters such as LM97600.
External SYSREF request	0	2	SYSREF_REQ_EN = 1 Pulser powered up	When SYNC pin is asserted, continuous SYSERF pulses occur. Turning on and off of the pulses is synchronized to prevent runt pulses from occurring on SYSREF.
Continuous SYSREF	Х	3	SYSREF_PD = 0 SYSREF_DDLY_PD = 0 SYSREF_PLSR_PD = 1	Continuous SYSREF signal.

SCLKX_Y_PD = 0 as required per SYSREF output. This applies to any SYNC or SYSREF output on SCLKX_Y when SCLKX_Y_MUX = 1 (SYSREF output)

Feature Description (continued)

Table 1. Some Possible SYNC Configurations (continued)

NAME	SYNC_MODE	SYSREF_MUX	OTHER	DESCRIPTION
Re-clocked SYSREF distribution	0	0	SYSREF_DDLY_PD = 1 SYSREF_PLSR_PD = 1 SYSREF_PD = 1.	Fan-out of CLKin0 reclocked to the clock distribution path.

NOTE

Because the SYNC/SYSREF signal is reclocked by the Clock Distribution Path, an active clock must be present on the Clock Distribution Path (either from VCO or CLKin1/Fin pins in distribution mode) for SYNC to take effect.

NOTE

Any device clock divider or the SYSREF divider which does not have the SYNC_DISX bit or SYNC_DISSYSREF bit set will reset while SYNC/SYSREF Distribution Path is high. This is especially important for the SYSREF divider which has the ability to reset itself if the SYNC_DISSYSREF = 0! Be sure to set SYNC_DISX/SYNC_DISSYSREF bits as required.

NOTE

While using Divide-by-2 or Divide-by-3 for DCLK_X_Y_DIV, SYNC procedure requires to first program Divide-by-4 and then back to Divide-by-2 or Divide-by-3 before doing SYNC.

8.3.3 JEDEC JESD204B

8.3.3.1 How to Enable SYSREF

Table 2 summarizes the bits needed to make SYSREF functionality operational.

Table 2. SYSREF Bits

REGIS TER	FIELD	VALUE	DESCRIPTION
0x140	SYSREF_PD	0	Must be clear, power-up SYSREF circuitry including the SYSREF divider.
0x140	SYSREF_DDLY_ PD	0	Must be clear to power-up digital delay circuitry. Must be powered up during initial SYNC to ensure deterministic timing to other clock dividers.
0x143	SYNC_EN	1	Must be set, enable SYNC.
0x143	SYSREF_CLR	1 → 0	Do not hold local SYSREF DDLY block in reset except at start. Anytime SYSREF_PD = 1 because of user programming or device RESET, it is necessary to set SYSREF_CLR for 15 VCO clock cycles to clear the local SYSREF digital delay. Once cleared, SYSREF_CLR must be cleared to allow SYSREF to operate.

Enabling JESD204B operation involves synchronizing all the clock dividers with the SYSREF divider, then configuring the actual SYSREF functionality.

8.3.3.1.1 Setup of SYSREF Example

The following procedure is a programming example for a system which is to operate with a 3000-MHz VCO frequency. Use CLKout0 and CLKout2 to drive converters at 1500 MHz. Use CLKout4 to drive an FPGA at 150 MHz. Synchronize the converters and FPGA using a two SYSREF pulses at 10 MHz.

- 1. Program registers 0x000 to 0x555 (refer to *Recommended Programming Sequence*). Key to prepare for SYSREF operations:
 - a. Prepare for manual SYNC: SYNC_POL = 0, SYNC_MODE = 1, SYSREF_MUX = 0
 - b. Setup output dividers as per example: DCLK0_1_DIV and DCLK2_3_DIV = 2 for frequency of 1500 MHz. DCLK4 5 DIV = 20 for frequency of 150 MHz.

- c. Setup output dividers as per example: SYSREF_DIV = 300 for 10 MHz SYSREF
- d. Setup SYSREF: SYSREF_PD = 0, SYSREF_DDLY_PD = 0, DCLK0_1_DDLY_PD = 0, DCLK2_3_DDLY_PD = 0, DCLK4_5_DDLY_PD = 0, SYNC_EN = 1, SYSREF_PLSR_PD = 0, SYSREF_PULSE_CNT = 1 (2 pulses). SCLK0_1_PD = 0, SCLK2_3_PD = 0, SCLK4_5_PD = 0
- e. Clear Local SYSREF DDLY: SYSREF CLR = 1.

2. Establish deterministic phase relationships between SYSREF and Device Clock for JESD204B:

- a. Set device clock and SYSREF divider digital delays: DCLK0_1_DDLY, DCLK2_3_DDLY, DCLK4_5_DDLY, and SYSREF_DDLY.
- b. Set device clock digital delay half steps: DCLK0 1 HS, DCLK2 3 HS, DCLK4 5 HS.
- c. Set SYSREF clock digital delay as required to achieve known phase relationships: SCLK0_1_DDLY, SCLK2_3_DDLY, and SCLK4_5_DDLY. If half step adjustments are required SCLK0_1_HS, SCLK2_3_HS, and SCLK4_5_HS.
- d. To allow SYNC to affect dividers: SYNC_DIS0 = 0, SYNC_DIS2 = 0, SYNC_DIS4 = 0, SYNC_DISSYSREF = 0
- e. Perform SYNC by toggling SYNC_POL = 1 then SYNC_POL = 0.
- Now that dividers are synchronized, disable SYNC from resetting these dividers. It is not desired for SYSREF to reset it's own divider or the dividers of the output clocks.
 - a. Prevent SYNC (SYSREF) from affecting dividers: SYNC_DIS0 = 1, SYNC_DIS2 = 1, SYNC_DIS4 = 1, SYNC_DISSYSREF = 1.

4. Release reset of local SYSREF digital delay.

 a. SYSREF_CLR = 0. Note this bit needs to be set for only 15 clock distribution path clocks after SYSREF_PD = 0.

5. Set SYSREF operation.

- a. Allow pin SYNC event to start pulser: SYNC_MODE = 2.
- b. Select pulser as SYSREF signal: SYSREF_MUX = 2.
- 6. Complete! Now asserting the SYNC pin, or toggling SYNC_POL will result in a series of 2 SYSREF pulses.

8.3.3.1.2 SYSREF_CLR

The local digital delay of the SCLKX_Y_DDLY is implemented as a shift buffer. To ensure no unwanted pulses occur at this SYSREF output at start-up, when using SYSREF, requires clearing the buffers by setting SYSREF_CLR = 1 for 15 VCO clock cycles. After a reset, this bit is set, so it must be cleared before SYSREF output is used.

If the SYSREF pulser is used. It is also required to set SYSREF_CLR = 1 for 15 VCO clock cycles after the SYSREF pulser is powered up.

8.3.3.2 SYSREF Modes

8.3.3.2.1 SYSREF Pulser

This mode allows for the output of 1, 2, 4, or 8 SYSREF pulses for every SYNC pin event or SPI programming. This implements the gapped periodic functionality of the JEDEC JESD204B specification.

When in SYSREF Pulser mode, programming the field SYSREF_PULSE_CNT in register 0x13E will result in the pulser sending the programmed number of pulses.

8.3.3.2.2 Continuous SYSREF

This mode allows for continuous output of the SYSREF clock.

NOTE

Continuous operation of SYSREF is not recommended due to crosstalk from the SYSREF clock to device clock. JESD204B is designed to operate with a single burst of pulses to initialize the system at start-up, after which it is theoretically not required to send another SYSREF because the system will continue to operate with deterministic phases.

Product Folder Links: LMK04832

Copyright © 2017–2018, Texas Instruments Incorporated

8.3.3.2.3 SYSREF Request

This mode allows an external source to synchronously turn on or off a continuous stream of SYSREF pulses using the SYNC/SYSREF REQ pin.

Setup the mode by programming SYSREF_REQ_EN = 1 and SYSREF_MUX = 2 (Pulser). The pulser does not need to be powered for this mode of operation.

When the SYSREF_REQ pin is asserted, the SYSREF_MUX will synchronously be set to continuous mode providing continuous pulses at the SYSREF frequency until the SYSREF_REQ pin is unasserted and the final SYSREF pulse will complete sending synchronously.

8.3.4 Digital Delay

Digital (coarse) delay allows a group of outputs to be delayed by 8 to 1023 clock distribution path cycles. The delay step can be as small as half the period of the clock distribution path cycle by using the DCLKX_Y_HS bit. There are two different ways to use the digital delay:

- 1. Fixed digital delay
- Dynamic digital delay

In both delay modes, the regular clock divider is substituted with an alternative divide value.

8.3.4.1 Fixed Digital Delay

Fixed digital delay value takes effect on the clock outputs after a SYNC event. As such, the outputs will be LOW for a while during the SYNC event. Applications that cannot accept clock breakup when adjusting digital delay during application run time should use dynamic digital delay to adjust phase.

8.3.4.1.1 Fixed Digital Delay Example

Assuming the device already has the following initial configurations, and the application should delay CLKout2 by one VCO cycle compared to CLKout0.

- VCO frequency = 2949.12 MHz
- CLKout0 = 368.64 MHz (DCLK0_1_DIV = 8, CLKout0_SRC_MUX = 0 (Device Clock))
- CLKout2 = 368.64 MHz (DCLK2 3 DIV = 8, CLKout2 SRC MUX = 0 (Device Clock))

The following steps should be followed

Copyright © 2017-2018, Texas Instruments Incorporated

- 1. Set DCLK0 1 DDLY = 8 and DCLK2 3 DDLY = 9. Static delay for each clock.
- 2. Set DCLK0 1 DDLY PD = 0 and DCLK2 3 DDLY PD = 0. Power up the digital delay circuit.
- 3. Set SYNC_DIS0 = 0 and SYNC_DIS2 = 0. Allow the outputs to be synchronized.
- 4. Perform SYNC by asserting, then unasserting SYNC. Either by using SYNC_POL bit or the SYNC pin.
- 5. Now that the SYNC is complete, to save power it is allowable to power down DCLK0_1_DDLY_PD = 1 and/or DCLK2_3_DDLY_PD = 1.
- 6. Set SYNC_DIS0 = 1 and SYNC_DIS2 = 1. Prevent the output from being synchronized, very important for steady-state operation when using JESD204B.

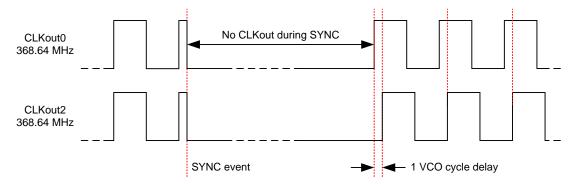


Figure 9. Fixed Digital Delay Example

8.3.4.2 Dynamic Digital Delay

Dynamic digital delay allows the phase of clocks to be changed with respect to each other with little impact to the clock signal.

For the device clock dividers this is accomplished by substituting the regular clock divider with an alternate divide value of one larger than the regular divider for one cycle. This substitution will occur a number of times equal to the value programmed into the DDLYd_STEP_CNT field for all outputs with DDLYdX_EN = 1.

For the SYSREF divider an alternate divide value will be substituted for the regular divide value. This substitution will occur a number of times equal to the value programmed into the DDLYd_STEP_CNT if DDLYd_SYSREF_EN = 1. To achieve one cycle delay as is done for the device clock dividers, set the SYSREF_DDLY value to one greater than SYSREF_DIV+SYSREF_DIV/2. For example, for a SYSREF divider of 100, to achieve 1 cycle delay, SYSREF_DIV = 100 + 50 + 1 = 151.

While using the Dynamic Digital Delay feature, CLKin_OVERRIDE must be set to 0.

- By programming a larger alternate divider (delay) value, the phase of the adjusted outputs are delayed with respect to the other clocks.
- By programming a smaller alternate divider (delay) value, the phase of the adjusted outputs are advanced with respect to the other clocks.

8.3.4.3 Single and Multiple Dynamic Digital Delay Example

In this example, two separate adjustments are made to the device clocks. In the first adjustment, a single delay of 1 VCO cycle occurs between CLKout2 and CLKout0. In the second adjustment, two delays of 1 VCO cycle occur between CLKout2 and CLKout0. At this point in the example, CLKout2 is delayed 3 VCO cycles behind CLKout0.

Assuming the device already has the following initial configurations:

- VCO frequency: 2949.12 MHz
- CLKout0 = 368.64 MHz, DCLK0 1 DIV = 8
- CLKout2 = 368.64 MHz, DCLK2_3_DIV = 8

The following steps illustrate the example above:

- 1. Set DCLK2 3 DDLY = 4. First part of delay for CLKout2.
- 2. Set DCLK2_3_DDLY_PD = 0. Enable the digital delay for CLKout2.
- 3. Set DDLYd0 EN = 0 and DDLYd2 EN = 1. Enable dynamic digital delay for CLKout2 but not CLKout0.
- 4. Set DDLYd_STEP_CNT = 1. This begins the **first adjustment**.

Before step 4, CLKout2 clock edge is aligned with CLKout0.

After step 4, CLKout2 counts nine clock distribution path cycles to the next rising edge, one greater than the divider value, effectively delaying CLKout2 by one VCO cycle with respect to CLKout0. **This is the first adjustment.**

5. Set DDLYd STEP CNT = 2. This begins the **second adjustment**.

Before step 5, CLKout2 clock edge was delayed 1 clock distribution path cycle from DCLKout0.

After step 5, CLKout2 counts nine clock distribution path cycles twice, each time one greater than the divide value, effectively delaying CLKout2 by two clock distribution path cycles with respect to CLKout0. **This is the second adjustment.**

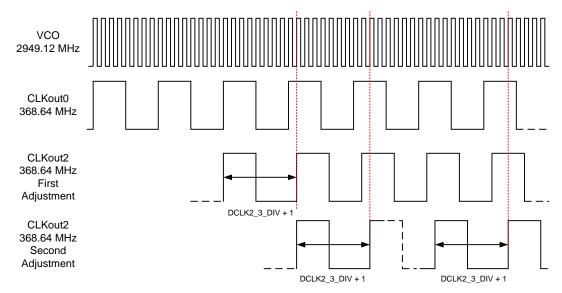


Figure 10. Single and Multiple Adjustment Dynamic Digital Delay Example

8.3.5 SYSREF to Device Clock Alignment

To ensure proper JESD204B operation, the timing relationship between the SYSREF and the Device clock must be adjusted for optimum setup and hold time as shown in Figure 11. The global SYSREF digital delay (SYSREF_DDLY), local SYSREF half step (SCLKX_Y_BDLY), local SYSREF half step (SCLKX_Y_HS), and local SYSREF analog delay (SCLKX_Y_ADLY, SCLK2_3_ADLY_EN) can be adjusted to provide the required setup and hold time between SYSREF and Device Clock. It is also possible to adjust the device clock digital delay (DCLKX_Y_DDLY) and half step (DCLK0_1_HS, DCLK0_1_DCC) to adjust phase with respect to SYSREF.

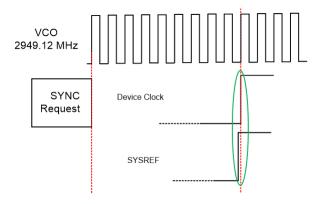


Figure 11. SYSREF to Device Clock Timing alignment

Depending on the DCLKout_X path settings, local SCLK_X_Y_DDLY might need adjustment factor. Following equation can be used to calculate the required Digital Delay Values to align SYSREF to the corresponding DCLKout:

Table 3. DCLK_DIV_ADJUST

DCLKX_Y_DIV	DCLK_DIV_ADJUST
>6	0
6	-1

Table 3. DCLK_DIV_ADJUST (continued)

DCLKX_Y_DIV	DCLK_DIV_ADJUST
5	3
4	0
3 (1)	-2
2 (1)	-2

(1) Refer to the SYNC requirement SYNC/SYSREF

Table 4. DCLK_HS_ADJUST

DCLK & HS	DCLK_HS_ADJUST
0	0
1	1

For example, DCLKX_Y_DIV = 32, DCLKX_Y_DDLY = 10,DCC&HS = 1; $SYSREF_DDLY=10 - 1 + 0 + 1 - 2 = 8$

Submit Documentation Feedback

8.3.6 Input Clock Switching

Manual, pin select, and automatic are three different kinds clock input switching modes can be selected according to the combination of bits as illustrated in Figure 12.

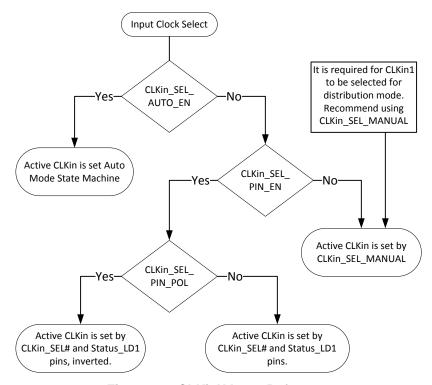


Figure 12. CLKinX Input Reference

The following sections provide information about how the active input clock is selected and what causes a switching event in the various clock input selection modes.

8.3.6.1 Input Clock Switching - Manual Mode

When CLKin_SEL_AUTO_EN = 0 and CLKin_SEL_PIN_EN = 0, the active CLKin is selected by CLKin_SEL_MANUAL. Programming a value of 0, 1, or 2 to CLKin_SEL_MANUAL causes CLKin0, CLKin1, or CLKin2, respectively, to be the selected active input clock. In this mode, the EN_CLKinX bits are overriden such that the CLKinX buffer operates even if CLKinX is disabled with EN_CLKinX = 0.

If holdover is entered in this mode by setting CLKin_SEL_MANUAL = 3, then the device will re-lock to the selected CLKin upon holdover exit.

8.3.6.2 Input Clock Switching - Pin Select Mode

When CLKin_SEL_AUTO_EN = 0 and CLKin_SEL_PIN_EN = 1, the active CLKin is selected by the CLKin SEL# and Status LD1 pins.

Configuring Pin Select Mode

The CLKin_SEL0_TYPE must be programmed to an input value for the CLKin_SEL0 pin to function as an input for pin select mode.

The CLKin_SEL1_TYPE must be programmed to an input value for the CLKin_SEL1 pin to function as an input for pin select mode.

The polarity of the clock input select pins can be inverted with the CLKin SEL PIN POL bit.

The pin select mode overrides the EN_CLKinX bits such that the CLKinX buffer operates even if CLKinX is disabled with EN_CLKinX = 0. To switch as fast as possible, keep the clock input buffers enabled (EN_CLKinX = 1) that could be switched to.

Submit Documentation Feedback

8.3.6.3 Input Clock Switching - Automatic Mode

When CLKin_SEL_AUTO_EN = 1, LOS_EN = 1, and HOLDOVER_EXIT_MODE = 0 (Exit based on LOS), the active clock is selected in priority order with CLKin0 being the highest priority, CLKin1 second, and CLKin2 third.

For a clock input to be eligible to be switched to, it must be enabled using EN_CLKinX. The LOS_TIMEOUT should also be set to a frequency below the input frequency.

To ensure LOS is valid for AC-coupled inputs, the MOS mode must be set for the CLKin and no termination is allowed to be between the pins unless DC blocked, for example, no $100-\Omega$ termination across CLKin0 and CLKin0* pins on IC side of AC-coupling capacitors.

8.3.7 Digital Lock Detect

Both PLL1 and PLL2 support digital lock detect. Digital lock detect compares the phase between the reference path (R) and the feedback path (N) of the PLL. When the time error, which is phase error, between the two signals is less than a specified window size (ε) a lock detect count increments. When the lock detect count reaches a user specified value, PLL1_DLD_CNT or PLL2_DLD_CNT, lock detect is asserted true. Once digital lock detect is true, a single phase comparison outside the specified window will cause digital lock detect to be asserted false. This is illustrated in Figure 13.

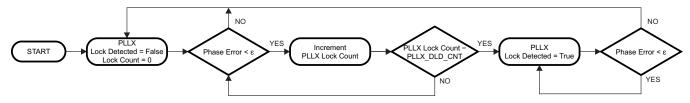


Figure 13. Digital Lock Detect Flowchart

This incremental lock detect count feature functions as a digital filter to ensure that lock detect is not asserted for only a brief time when the phases of R and N are within the specified tolerance for only a brief time during initial phase lock.

See *Digital Lock Detect Frequency Accuracy* for more detailed information on programming the registers to achieve a specified frequency accuracy in ppm with lock detect.

The digital lock detect signal can be monitored on the Status_LD1 or Status_LD2 pin. The pin may be programmed to output the status of lock detect for PLL1, PLL2, or both PLL1 and PLL2.

8.3.7.1 Calculating Digital Lock Detect Frequency Accuracy

See *Digital Lock Detect Frequency Accuracy* for more detailed information on programming the registers to achieve a specified frequency accuracy in ppm with lock detect.

The digital lock detect feature can also be used with holdover to automatically exit holdover mode. See *Exiting Holdover* for more info.

8.3.8 Holdover

Holdover mode causes PLL2 to stay locked on frequency with minimal frequency drift when an input clock reference to PLL1 becomes invalid. While in holdover mode, the PLL1 charge pump is TRI-STATED and a fixed tuning voltage is set on CPout1 to operate PLL1 in open loop.

8.3.8.1 Enable Holdover

Program HOLDOVER_EN = 1 to enable holdover mode.

Holdover mode can be configured to set the CPout1 voltage upon holdover entry to a fixed user defined voltage (EN_MAN_DAC = 1) or a tracked voltage (EN_MAN_DAC = 0).

8.3.8.1.1 Fixed (Manual) CPout1 Holdover Mode

By programming MAN_DAC_EN = 1, then the MAN_DAC value will be set on the CPout1 pin during holdover.

The user can optionally enable CPout1 voltage tracking (TRACK_EN = 1), read back the tracked DAC value, then re-program MAN_DAC value to a user desired value based on information from previous DAC read backs. This allows the most user control over the holdover CPout1 voltage, but also requires more user intervention.

8.3.8.1.2 Tracked CPout1 Holdover Mode

By programming MAN_DAC_EN = 0 and TRACK_EN = 1, the tracked voltage of CPout1 is set on the CPout1 pin during holdover. When the DAC has acquired the current CPout1 voltage, the *DAC_Locked* signal is set which may be observed on Status_LD1 or Status_LD2 pins by programming PLL1_LD_MUX or PLL2_LD_MUX, respectively.

Updates to the DAC value for the Tracked CPout1 sub-mode occurs at the rate of the PLL1 phase detector frequency divided by (DAC_CLK_MULT × DAC_CLK_CNTR).

The DAC update rate should be programmed for ≤ 100 kHz to ensure DAC holdover accuracy.

The ability to program slow DAC update rates, for example one DAC update per 4.08 seconds when using 1024-kHz PLL1 phase detector frequency with DAC_CLK_MULT = 16,384 and DAC_CLK_CNTR = 255, allows the device to *look-back* and set CPout1 at a previous *good* CPout1 tuning voltage values before the event which caused holdover to occur.

The current voltage of DAC value can be read back using RB DAC VALUE, see RB DAC VALUE.

8.3.8.2 During Holdover

PLL1 is run in open-loop mode.

- PLL1 charge pump is set to TRI-STATE.
- · PLL1 DLD is unasserted.
- · The HOLDOVER status is asserted
- During holdover, if PLL2 was locked prior to entry of holdover mode, PLL2 DLD continues to be asserted.
- CPout1 voltage is set to:
 - a voltage set in the MAN_DAC register (MAN_DAC_EN = 1).
 - a voltage determined to be the last valid CPout1 voltage (MAN_DAC_EN = 0).
- PLL1 attempts to lock with the active clock input.

The HOLDOVER status signal can be monitored on the Status_LD1 or Status_LD2 pin by programming the PLL1_DLD_MUX or PLL2_DLD_MUX register to *Holdover Status*.

8.3.8.3 Exiting Holdover

Holdover mode can be exited in one of two ways.

- Manually, by programming the device from the host.
- Automatically, when the LOS signal unasserts for a clock that provides a valid input to PLL1.

8.3.8.4 Holdover Frequency Accuracy and DAC Performance

When in holdover mode, PLL1 runs in open loop and the DAC sets the CPout1 voltage. If *fixed CPout1* mode is used, then the output of the DAC is dependant upon the MAN_DAC register. If *tracked CPout1* mode is used, then the output of the DAC is approximately the same voltage at the CPout1 pin before holdover mode was entered. When using Tracked mode and MAN_DAC_EN = 1, the DAC value during holdover is loaded with the programmed value in MAN_DAC and not the tracked value.

When in Tracked CPout1 mode, the DAC has a worst-case tracking error of ± 2 LSBs once PLL1 tuning voltage is acquired. The step size is approximately 3.2 mV, therefore the VCXO frequency error during holdover mode caused by the DAC tracking accuracy is ± 6.4 mV \times Kv, where Kv is the tuning sensitivity of the VCXO in use. Therefore, the accuracy of the system when in holdover mode in ppm is:

Holdover accuracy (ppm) =
$$\frac{\pm 6.4 \text{ mV} \times \text{Kv} \times 1e6}{\text{VCXO Frequency}}$$
 (2)

As an example, consider a system with a 19.2-MHz clock input, a 153.6-MHz VCXO with a Kv of 17 kHz/V. The accuracy of the system in holdover in ppm is:

$$\pm 0.71 \text{ ppm} = \pm 6.4 \text{ mV} \times 17 \text{ kHz/V} \times 166 / 153.6 \text{ MHz}$$
 (3)

It is important to account for this frequency error when determining the allowable frequency error window to cause holdover mode to exit.

8.3.9 PLL2 Loop Filter

PLL2 has an integrated loop filter of C1i = 60 pF, R3 = 2400 Ω , C3 = 50 pF, R4 = 200 Ω and C4 = 10 pF as shown in Figure 14. Loop filter components C1, C2, and R2 can be solved using TI software. See *Device Support* for more information.

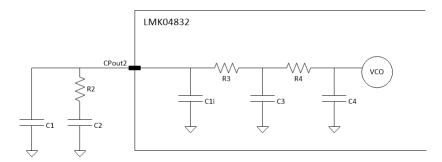


Figure 14. PLL2 On-Chip Loop Filter

0 Submit Documentation Feedback

8.4 Device Functional Modes

The following section describes the settings to enable various modes of operation for the LMK04832.

The LMK04832 is a flexible device that can be configured for many different use cases. The following simplified block diagrams help show the user the different use cases of the device.

8.4.1 DUAL PLL

8.4.1.1 Dual Loop

Figure 15 illustrates the typical use case of the LMK04832 in dual loop mode. In dual loop mode, the reference to PLL1 is from CLKin0, CLKin1, or CLKin2. An external VCXO is used to provide feedback for the first PLL and a reference to the second PLL. This first PLL cleans the jitter with the VCXO by using a narrow loop bandwidth. The VCXO may be buffered through the OSCout port. The VCXO is used as the reference to PLL2 and may be doubled using the frequency doubler. The internal VCO drives up to seven divide/delay blocks which drive up to 14 clock outputs.

Hitless switching and holdover functionality are optionally available when the input reference clock is lost. Holdover works by forcing a DAC voltage to the tuning voltage of the VCXO.

It is also possible to use an external VCO in place of PLL2's internal VCO. In this case one less CLKin is available as a reference as CLKin1 is used for external Fin input.

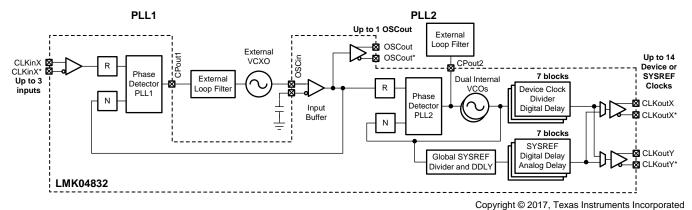


Figure 15. Simplified Functional Block Diagram for Dual Loop Mode

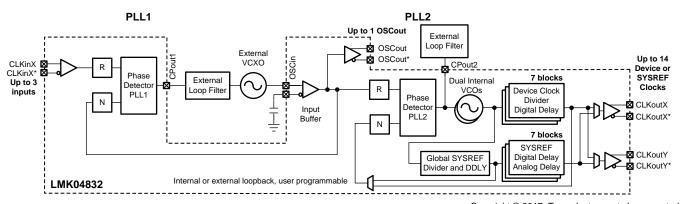

8.4.1.2 Dual Loop With Cascaded 0-Delay

Figure 16 illustrates the use case of cascaded 0-delay dual loop mode. This configuration differs from dual loop mode Figure 15 in that the feedback for PLL2 is driven by a clock output instead of the VCO output directly.

It is also possible to use an external VCO in place of the internal VCO of the PLL2, but one less CLKin is available as a reference and the external 0-delay feedback is not available.

Device Functional Modes (continued)

Copyright © 2017, Texas Instruments Incorporated

Figure 16. Simplified Functional Block Diagram for Cascaded 0-Delay Dual Loop Mode

8.4.1.3 Dual Loop With Nested 0-Delay

Figure 17 illustrates the use case of nested 0-delay dual loop mode. This configuration is similar to the dual PLL in Figure 15 except that the feedback to the first PLL is driven by a clock output. The PLL2 reference OSCin is not deterministic to the CLKin or feedback clock.

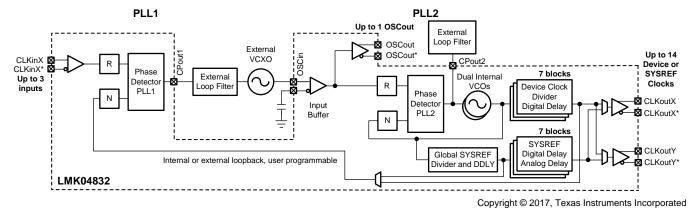


Figure 17. Simplified Functional Block Diagram for Nested 0-Delay Dual Loop Mode

Submit Documentation Feedback

Device Functional Modes (continued)

8.4.2 Single PLL

8.4.2.1 PLL2 Single Loop

Figure 18 illustrates the use case of PLL2 single loop mode. When used with a high-frequency clean reference performance as good as dual loop mode may be achieved. Traditionally the OSCin is used as a reference to PLL2, but it is also possible to use CLKinX as a reference to PLL2.

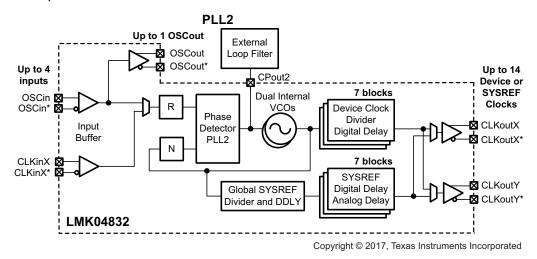


Figure 18. Simplified Functional Block Diagram for Single Loop Mode

8.4.2.2 PLL2 With External VCO

Adding an external VCO is possible using the CLKin1/Fin input port. The input may be single-ended or differential. At high frequency the input impedance to Fin is low, a resistive pad is recommended for matching.

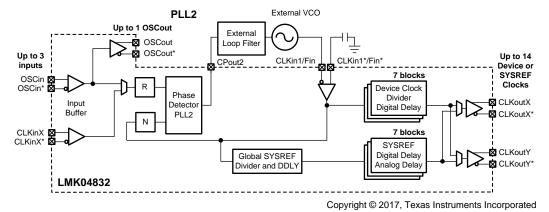


Figure 19. Simplified Functional Block Diagram for Single Loop Mode With External VCO

Device Functional Modes (continued)

8.4.3 Distribution Mode

Figure 20 illustrates the use case of distribution mode. As in all the other use cases, OSCin to OSCout can be used as a buffer to OSCin or from clock distribution path via CLKout6, CLKout8, or the SYSREF divider.

At high frequency, the input impedance to Fin is low and a resistive pad is recommended for matching.

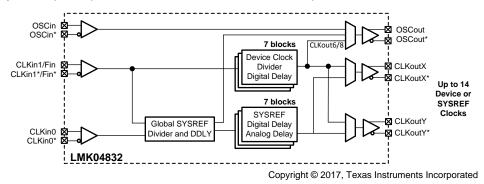


Figure 20. Simplified Functional Block Diagram for Distribution Mode

8.5 Programming

The LMK04832 device is programmed using 24-bit registers. Each register consists of a 1-bit command field (R/W), a 15-bit address field (A14 to A0) and a 8-bit data field (D7 to D0). The contents of each register is clocked in MSB first (R/W), and the LSB (D0) last. During programming, the CS* signal is held low. The serial data is clocked in on the rising edge of the SCK signal. After the LSB is clocked in, the CS* signal goes high to latch the contents into the shift register. It is recommended to program registers in numeric order (for example, 0x000 to 0x555 with exceptions noted in the Recommended Programming Sequence). Each register consists of one or more fields which control the device functionality. See the *Electrical Characteristics* section and Figure 1 for timing details.

8.5.1 Recommended Programming Sequence

Registers are generally programmed in numeric order with 0x000 being the first and 0x555 being the last register programmed. The recommended programming sequence from POR involves:

- 1. Program register 0x000 with RESET = 1.
- 2. Program defined registers from 0x000 to 0x165.
- 3. If PLL2 is used, program 0x173 with PLL2 PD and PLL2 PRE PD clear to allow PLL2 to lock after PLL2 N is programmed.
- 4. Continue programming defined registers from 0x166 to 0x555.

NOTE

When using the internal VCO, PLL2 N registers 0x166, 0x167, and 0x168 must be programmed after other PLL2 dividers are programed to ensure proper VCO frequency calibration. This is also true for PLL2_N_CAL registers 0x163, 0x164, 0x165 when PLL2 NCLK MUX = 1. So if any divider such as PLL2 R is altered to change the VCO frequency, the VCO calibration must be run again by programming PLL2_N.

Power up PLL2 by setting PLL2 PRE PD = 0 and PLL2 PD = 0 in register 0x173 before programming PLL2 N.

8.6 Register Maps

8.6.1 Register Map for Device Programming

Table 5 provides the register map for device programming. Any register can be read from the same data address it is written to.

Table 5. LMK04832 Register Map

ADDRESS [14:0]				DATA	A[7:0]			
23:8	7	6	5	4	3	2	1	0
0x000	RESET	0	0	SPI_3WIRE _DIS	0	0	0	0
0x002	0	0	0	0	0	0	0	POWER DOWN
0x003				ID_DEVI	CE_TYPE			
0x004				ID_PRO	DD[15:8]			
0x005				ID_PR	OD[7:0]			
0x006				ID_MA	SKREV			
0x00C				ID_VN	DR[15:8]			
0x00D				ID_VN	DR[7:0]			
0x100				DCLK0_1	_DIV[7:0]			
0x101				DCLK0_1_	_DDLY[7:0]			
0x102	CLKout0_1_PD	CLKout0_1_OD L	CLKout0_1_IDL	DCLK0_1_DDL Y_PD	DCLK0_1	_DDLY[9:8]	DCLK0_1	_DIV[9:8]
0x103	0	1	CLKout0_SRC_ MUX	DCLK0_1_PD	DCLK0_1_BYP	DCLK0_1_DCC	DCLK0_1_POL	DCLK0_1_HS
0x104	0	0	CLKout1_SRC_ MUX	SCLK0_1_PD	SCLK0_1_	DIS_MODE	SCLK0_1_POL	SCLK0_1_HS
0x105	0	0	SCLK0_1_ADL Y_EN	SCLK0_1_ADLY				
0x106	0	0	0	0		SCLK0_	1_DDLY	
0x107		CLKout	1_FMT			CLKou	t0_FMT	
0x108				DCLK2_3	B_DIV[7:0]			
0x109				DCLK2_3_	_DDLY[7:0]			
0x10A	CLKout2_3_PD	CLKout2_3_OD L	CLKout2_3_IDL	DCLK2_3_DDL Y_PD	DCLK2_3_	_DDLY[9:8]	DCLK2_3	3_DIV[9:8]
0x10B	0	1	CLKout2_SRC_ MUX	DCLK2_3_PD	DCLK2_3_BYP	DCLK2_3_DCC	DCLK2_3_POL	DCLK2_3_HS
0x10C	0	0	CLKout3_SRC_ MUX	SCLK2_3_PD	SCLK2_3_	DIS_MODE	SCLK2_3_POL	SCLK2_3_HS
0x10D	0	0	SCLK2_3_ADL Y_EN			SCLK2_3_ADLY		
0x10E	0	0	0	0		SCLK2_	3_DDLY	
0x10F		CLKou	3_FMT			CLKou	t2_FMT	
0x110				DCLK4_5	5_DIV[7:0]			
0x111				DCLK4_5_	_DDLY[7:0]			
0x112	CLKout4_5_PD	CLKout4_5_OD L	CLKout4_5_IDL	DCLK4_5_DDL Y_PD	DCLK4_5	_DDLY[9:8]	DCLK4_5	5_DIV[9:8]
0x113	0	1	CLKout4_SRC_ MUX	DCLK4_5_PD	DCLK4_5_BYP	DCLK4_5_DCC	DCLK4_5_POL	DCLK4_5_HS
0x114	0	0	CLKout5_SRC_ MUX	SCLK4_5_PD	SCLK4_5_	DIS_MODE	SCLK4_5_POL	SCLK4_5_HS
0x115	0	0	SCLK4_5_ADL Y_EN	SCLK4_5_ADLY				
0x116	0	0 0 0 SCLK4_5_DDLY						
0x117		CLKout5_FMT CLKout4_FMT						
0x118		DCLK6_7_DIV[7:0]						
0x119				DCLK6_7	_DDLY[7:0]			

Register Maps (continued)

Table 5. LMK04832 Register Map (continued)

ADDRESS [14:0]					\[7:0]	•			
23:8	7	6	5	4	3	2	1	0	
0x11A	CLKout6_7_PD	CLKout6_7_OD L	CLKout6_7_IDL	DCLK6_7_DDL Y_PD			DCLK6_7	DCLK6_7_DIV[9:8]	
0x11B	0	1	CLKout6_SRC_ MUX	DCLK6_7_PD	DCLK6_7_BYP	DCLK6_7_DCC	DCLK6_7_POL	DCLK6_7_HS	
0x11C	0	0	CLKout7_SRC_ MUX	SCLK6_7_PD	SCLK6_7_I	DIS_MODE	SCLK6_7_POL	SCLK6_7_HS	
0x11D	0	0	SCLK6_7_ADL Y_EN			SCLK6_7_ADLY			
0x11E	0	0	0	0		SCLK6_	7_DDLY		
0x11F		CLKout	7_FMT			CLKout	t6_FMT		
0x120				DCLK8_9)_DIV[7:0]				
0x121				DCLK8_9_	DDLY[7:0]				
0x122	CLKout8_9_PD	CLKout8_9_OD L	CLKout8_9_IDL	DCLK8_9_DDL Y_PD	DCLK8_9_	_DDLY[9:8]	DCLK8_9	9_DIV[9:8]	
0x123	0	1	CLKout8_SRC_ MUX	DCLK8_9_PD	DCLK8_9_BYP	DCLK8_9_DCC	DCLK8_9_POL	DCLK8_9_HS	
0x124	0	0	CLKout9_SRC_ MUX	SCLK8_9_PD	SCLK8_9_I	DIS_MODE	SCLK8_9_POL	SCLK8_9_HS	
0x125	0	0	SCLK8_9_ADL Y_EN			SCLK8_9_ADLY			
0x126	0	0	0	0		SCLK8_	9_DDLY		
0x127		CLKout	9_FMT			CLKou	t8_FMT		
0x128					1_DIV[7:0]				
0x129				_	_DDLY[7:0]				
0x12A	CLKout10_11_P D	CLKout10_11_ ODL	CLKout10_11_I DL	DCLK10_11_D DLY_PD	_	_DDLY[9:8]		1_DIV[9:8]	
0x12B	0	1	CLKout10_SRC _MUX	DCLK10_11_PD	DCLK10_11_BY P	DCLK10_11_D CC	DCLK10_11_P OL	DCLK10_11_HS	
0x12C	0	0	CLKout11_SRC _MUX	SCLK10_11_PD	SCLK10_11	_DIS_MODE	SCLK10_11_P OL	SCLK10_11_HS	
0x12D	0	0	SCLK10_11_AD LY_EN		;	SCLK10_11_ADLY			
0x12E	0	0	0	0			11_DDLY		
0x12F		CLKout	11_FMT			CLKout	10_FMT		
0x130					3_DIV[7:0]				
0x131					B_DDLY[7:0]				
0x132	CLKout12_13_P D	CLKout12_13_ ODL	CLKout12_13_I DL	DCLK12_13_D DLY_PD	_	3_DDLY[9:8]		3_DIV[9:8]	
0x133	0	1	CLKout12_SRC _MUX	DCLK12_13_PD	DCLK12_13_BY P	DCLK12_13_D CC	DCLK12_13_P OL	DCLK12_13_HS	
0x134	0	0	CLKout13_SRC _MUX	SCLK12_13_PD	SCLK12_13	_DIS_MODE	SCLK12_13_P OL	SCLK12_13_HS	
0x135	0	0	SCLK12_13_AD LY_EN		SCLK12_13_ADLY				
0x136	0	0	0	0	SCLK12_13_DDLY				
0x137		CLKout		CLKout12_FMT					
0x138 0x139	0	0 VCO_	_MUX 0	OSCout_MUX SYSREF_REQ_			F MUX		
				EN STINC_BTPASS 0 STSREF_WOX					
0x13A	0	0	0			SYSREF_DIV[12:8	J		
0x13B	6	SYSREF_DIV[7:0]							
0x13C	0	0	0	0)/25==		YSREF_DDLY[12:	٥J		
0x13D		_			DDLY[7:0]	=-	/ODEE 5: " == =	\.T	
0x13E	0	0	0	0	0	S	SREF_PULSE_C	NI	

Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Register Maps (continued)

Table 5. LMK04832 Register Map (continued)

ADDRESS [14:0]	DATA[7:0]							
23:8	7	6	5	4	3	2	1	0
0x13F	PLL2_RCLK_ MUX	0	PLL2_NCLK_ MUX	PLL1_NC	CLK_MUX	FB_	MUX	FB_MUX_EN
0x140	PLL1_PD	VCO_LDO_PD	VCO_PD	OSCin_PD	SYSREF_GBL_ PD	SYSREF_PD	SYSREF_DDLY _PD	SYSREF_PLSR _PD
0x141	DDLYd_ SYSREF_EN	DDLYd12_EN	DDLYd10_EN	DDLYd8_EN	DDLYd6_EN	DDLYd4_EN	DDLYd2_EN	DDLYd0_EN
0x142				DDLYd_S	TEP_CNT			
0x143	SYSREF_CLR	SYNC_1SHOT_ EN	SYNC_POL	SYNC_EN	SYNC_PLL2_ DLD	SYNC_PLL1_ DLD	SYNC_	_MODE
0x144	SYNC_DISSYS REF	SYNC_DIS12	SYNC_DIS10	SYNC_DIS8	SYNC_DIS6	SYNC_DIS4	SYNC_DIS2	SYNC_DIS0
0x145	0	PLL1R_SYNC_ EN	PLL1R_S	YNC_SRC	PLL2R_SYNC_ EN	0	0	0
0x146	CLKin_SEL_PIN _EN	CLKin_SEL_PIN _POL	CLKin2_EN	CLKin1_EN	CLKin0_EN	CLKin2_TYPE	CLKin1_TYPE	CLKin0_TYPE
0x147	CLKin_SEL_ AUTO_ REVERT_EN	CLKin_SEL_ AUTO_EN	CLKin_SEL	_MANUAL	CLKin1_	_DEMUX	CLKin0_	_DEMUX
0x148	0	0	1	CLKin_SEL0_MU>	((CLKin_SEL0_TYPE	≣
0x149	0	SDIO_RDBK_ TYPE		CLKin_SEL1_MU>	((CLKin_SEL1_TYPE	≣
0x14A	0	0		RESET_MUX			RESET_TYPE	
0x14B	LOS_TI	MEOUT	LOS_EN	TRACK_EN	HOLDOVER_ FORCE	MAN_DAC_EN MAN_DAC[9:8]		
0x14C				MAN_D	AC[7:0]			
0x14D	0	0			DAC_TF	RIP_LOW		
0x14E	DAC_CL	K_MULT			DAC_TR	RIP_HIGH		
0x14F					K_CNTR			I
0x150	0	CLKin_OVERRI DE	HOLDOVER_ EXIT_MODE	HOLDOVER_ PLL1_DET	LOS_EXTERNA L_INPUT	HOLDOVER_ VTUNE_DET	CLKin_SWITCH _CP_TRI	HOLDOVER_ EN
0x151	0	0				DLD_CNT[13:8]		
0x152				HOLDOVER_	DLD_CNT[7:0]			
0x153	0	0			CLKin0	_R[13:8]		
0x154				CLKin()_R[7:0]			
0x155	0	0				_R[13:8]		
0x156				CLKin1	_R[7:0]			
0x157	0	0				_R[13:8]		
0x158				CLKin2	2_R[7:0]			
0x159	0	0		D		N[13:8]		
0x15A	DI 14 14	UD 0175	DILLA OD TDI		_N[7:0]	DI 4 C	D CAIN	
0x15B	PLL1_Wi	_	PLL1_CP_TRI	PLL1_CP_POL	DI 1 DI D		P_GAIN	
0x15C	0	0	PLL1_DLD_CNT[13:8]					
0x15D	0	0	PLL1_DLD_CNT[7:0]					
0x15E 0x15F	0	0	0 HOLDOVER_E PLL1_LD_MUX		FDOVEK_EXIT_N	PLL1_LD_TYPE		
0x160	0	0	0 0 PLL1_R					
0x160	J	3	0 0 0 PLL2_R PLL2_R					
0x162		PLL2_P		0	_	_FREQ	PLL2_XTAL_EN	PLL2_REF_2X_ EN
0x163	0	0	0	0	0	0	PII2 N (CAL[17:16]
0x164	Ü	Ü	<u> </u>		CAL[15:8]			
0x165								
07100	PLL2_N_CAL[7:0]							

Register Maps (continued)

Table 5. LMK04832 Register Map (continued)

ADDRESS		DATA[7:0]						
[14:0]								
23:8	7	6	5	4	3	2	1	0
0x166	0	0	0	0	0	0	PLL2_N	N[17:16]
0x167				PLL2_	N[15:8]			
0x168				PLL2_	_N[7:0]			
0x169	0	PLL2_WI	ND_SIZE	PLL2_C	P_GAIN	PLL2_CP_POL	PLL2_CP_TRI	PLL2_DLD_EN
0x16A	0	0			PLL2_DLD	_CNT[13:8]		
0x16B		PLL2_DLD_CNT[7:0]						
0x16C	0	0	0	0	0	0	0	0
0x173	0	PLL2_PRE_PD	PLL2_PD	0	0	0	0	0
0x177			PLL1R_RST					
0x182	0	0	0	0	0	0	CLR_PLL1_LD_ LOST	CLR_PLL2_LD_ LOST
0x183	0	0	0	0	RB_PLL1_DLD_ LOST	RB_PLL1_DLD	RB_PLL2_DLD_ LOST	RB_PLL2_DLD
0x184	RB_DAC_VALUE[9:8]		RB_CLKin2_ SEL	RB_CLKin1_ SEL	RB_CLKin0_ SEL	RB_CLKin2_ LOS	RB_CLKin1_ LOS	RB_CLKin0_ LOS
0x185		RB_DAC_VALUE[7:0]						
0x188	0	x	RB_ HOLDOVER	Х	RB_DAC_RAIL	RB_DAC_HIGH	RB_DAC_LOW	RB_DAC_ LOCKED
0x555				SPI_	LOCK			

Product Folder Links: LMK04832

48

8.6.2 Device Register Descriptions

The following section details the fields of each register, the Power-On-Reset Defaults, and specific descriptions of each bit.

In some cases similar fields are located in multiple registers. In this case specific outputs may be designated as X or Y. In these cases, the X represents even numbers from 0 to 12 and the Y represents odd numbers from 1 to 13. In the case where X and Y are both used in a bit name, then Y = X + 1.

8.6.2.1 System Functions

8.6.2.1.1 RESET, SPI_3WIRE_DIS

This register contains the RESET function and the ability to turn off 3-wire SPI mode. To use a 4-wire SPI mode, selecting SPI Read back in one of the output MUX settings. For example CLKin0_SEL_MUX or RESET_MUX. It is possible to have 3-wire and 4-wire readback at the same time.

Table 6. Register 0x000

BIT	NAME	POR DEFAULT	DESCRIPTION	
7	RESET	0	0: Normal operation 1: Reset (automatically cleared)	
6:5	NA	0 Reserved		
4			Disable 3-wire SPI mode. 0: 3 Wire Mode enabled 1: 3 Wire Mode disabled	
3:0	NA	NA Reserved		

8.6.2.1.2 **POWERDOWN**

This register contains the POWERDOWN function.

Table 7. Register 0x002

BIT	NAME	POR DEFAULT	DESCRIPTION		
7:1	NA	0	Reserved		
0	POWERDOWN	0	0: Normal operation 1: Power down device.		

8.6.2.1.3 ID_DEVICE_TYPE

This register contains the product device type. This is read only register.

Table 8. Register 0x003

BIT	Γ NAME POR DEFAULT		DESCRIPTION	
7:0	ID_DEVICE_TYPE	6	PLL product device type.	

8.6.2.1.4 ID_PROD

These registers contain the product identifier. This is a read only register.

Table 9. ID_PROD Field Registers

MSB	LSB		
0x004[7:0] / ID_PROD[15:8]	0x005[7:0] / ID_PROD[7:0]		

Table 10. Registers 0x004 and 0x005

REGISTER	BIT	FIELD NAME	POR DEFAULT	DESCRIPTION
0x004	7:0	ID_PROD[15:8]	209 (0xD1)	MSB of the product identifier.
0x005	7:0	ID_PROD[7:0]	99 (0x63)	LSB of the product identifier.

8.6.2.1.5 ID_MASKREV

This register contains the IC version identifier. This is a read only register.

Table 11. Register 0x006

BIT	NAME	POR DEFAULT	DESCRIPTION
7:0	ID_MASKREV	112 (0x70)	IC version identifier for LMK04832.

8.6.2.1.6 ID_VNDR

These registers contain the vendor identifier. This is a read only register.

Table 12. ID_VNDR Field Registers

MSB	LSB		
0x00C[7:0] / ID_VNDR[15:8]	0x00D[7:0] / ID_VNDR[7:0]		

Table 13. Registers 0x00C, 0x00D

REGISTER	BIT	NAME	POR DEFAULT	DESCRIPTION
0x00C	7:0	ID_VNDR[15:8]	81 (0x51)	MSB of the vendor identifier.
0x00D	7:0	ID_VNDR[7:0]	4 (0x04)	LSB of the vendor identifier.

8.6.2.2 (0x100 - 0x138) Device Clock and SYSREF Clock Output Controls

8.6.2.2.1 DCLKX_Y_DIV

The device clock divider can drive up to two outputs, an even (X) and an odd (Y) clock output. Divide is a 10 bit number and split across two registers.

Table 14. DCLKX_Y_DIV Field Registers

MSB	LSB
0x0102[1:0] = DCLK0_1_DIV[9:8]	0x100[7:0] = DCLK0_1_DIV[7:0]
0x010A[1:0] = DCLK2_3_DIV[9:8]	0x108[7:0] = DCLK2_3_DIV[7:0]
0x0112[1:0] = DCLK4_5_DIV[9:8]	0x110[7:0] = DCLK4_5_DIV[7:0]
0x011A[1:0] = DCLK6_7_DIV[9:8]	0x118[7:0] = DCLK6_7_DIV[7:0]
0x0122[1:0] = DCLK8_9_DIV[9:8]	0x120[7:0] = DCLK8_9_DIV[7:0]
0x012A[1:0] = DCLK10_11_DIV[9:8]	0x128[7:0] = DCLK10_11_DIV[7:0]
0x0132[1:0] = DCLK12_13_DIV[9:8]	0x130[7:0] = DCLK12_13_DIV[7:0]

Table 15. Registers 0x100, 0x108, 0x110, 0x118, 0x120, 0x128, and 0x130 0x102, 0x10A, 0x112, 0x11A, 0x122, 0x12A, 0x132

REGISTER	BIT	NAME	POR DEFAULT	DESCRIPTION	
0x102, 0x10A, 0x112,	1:0	DCLKX_Y_DIV[9:8]		DCLKX_Y_DIV sets the divide valumay be even or odd. Both even or cycle clock if duty cycle correction	odd divides output a 50% duty
0x11A, 0x122.	1.0	DOLIVI_1_DIV[0.0]		Field Value	Divider Value
0x12A, 0x132				0 (0x00)	Reserved
0x100,		X_ X_ X_Y_Y		1 (0x01)	1 (1)
0x108, 0x110,				2 (0x02)	2
0x118,	7:0				
0x120, 0x128, and				1022 (0x3FE)	1022
0x126, and 0x130				1023 (0x3FF)	1023

⁽¹⁾ Duty cycle correction must also be enabled, DCLKX_Y_DCC = 1.

8.6.2.2.2 DCLKX_Y_DDLY

This register controls the digital delay for the device clock outputs.

Table 16. DCLKX_Y_DDLY Field Registers

MSB	LSB
0x0102[2:3] = DCLK0_1_DDLY[9:8]	0x101[7:0] = DCLK0_1_DDLY[7:0]
0x010A[2:3] = DCLK2_3_DDLY[9:8]	0x109[7:0] = DCLK2_3_DDLY[7:0]
0x0112[2:3] = DCLK4_5_DDLY[9:8]	0x111[7:0] = DCLK4_5_DDLY[7:0]
0x011A[2:3] = DCLK6_7_DDLY[9:8]	$0x119[7:0] = DCLK6_7_DDLY[7:0]$
0x0122[2:3] = DCLK8_9_DDLY[9:8]	0x121[7:0] = DCLK8_9_DDLY[7:0]
0x012A[2:3] = DCLK10_11_DDLY[9:8]	0x129[7:0] = DCLK10_11_DDLY[7:0]
0x0132[2:3] = DCLK12_13_DDLY[9:8]	0x131[7:0] = DCLK12_13_DDLY[7:0]

Table 17. Registers 0x101, 0x109, 0x111, 0x119, 0x121, 0x129, 0x131 0x102, 0x10A, 0x112, 0x11A, 0x122, 0x12A, 0x132

REGISTER	BIT	NAME	POR DEFAULT	DESCRIPTION	
0x102,				Static digital delay which takes effect after a SYNC.	
0x10A, 0x112,			10 (0x0A)	Field Value	Delay Values
0x11A,	2:3	DCLKX_Y_DDLY[9:8]		0 (0x00)	Reserved
0x122, 0x12A, 0x132				1 (0x01)	Reserved
0X12A, 0X132					
0v404	7:0	DCLKX_Y_DDLY[7:0]		7 (0x07)	Reserved
0x101, 0x109,				8 (0x08)	8
0x111,				9 (0x09)	9
0x119, 0x121,					
0x129, 0x131				1022 (0x3FE)	1022
				1023 (0x3FF)	1023

Depending on the DCLK divide value, there may be an adjustment in phase delay required. Table 18 illustrate the impact of different divide values on the final digital delay.

Table 18. Digital Delay Adjustment based on Divide Values

Divide Value	Digital delay Adjustment
2, 3	-2 ⁽¹⁾
4, 7 to 1023	0
5	+3
6	+1

⁽¹⁾ Before SYNC, program divider to Divide-by-4, then back to Divide-by-2 or Divide-by-3 to ensure '-2' delay relationship.

For example, Table 19 illustrates a system with clock outputs having divide values /2,/4,/5 and /6 to share a common edge.

Table 19. Digital Delay Adjustment Illustration

Divide Value	Programmed DDLY	Actual DDLY
2	13	11
4	11	11
5	8	11
6	10	11

$8.6.2.2.3 \quad \textbf{CLKoutX_Y_PD, CLKoutX_Y_ODL, CLKoutX_Y_IDL, DCLKX_Y_DDLY_PD, DCLKX_Y_DDLY[9:8], DCLKX_Y_DIV[9:8]}\\$

Table 20. Registers 0x102, 0x10A, 0x112, 0x11A, 0x122, 0x12A, 0x132

BIT	NAME	POR DEFAULT	DESCRIPTION	
7	CLKoutX_Y_PD	1	Power down the clock group defined by X and Y. 0: Enabled 1: Power down entire clock group including both CLKoutX and CLKoutY.	
6	CLKoutX_Y_ODL	0	Sets output drive level for clocks. This has no impact for the even clock output in bypass mode. 0: Normal operation 1: Higher current consumption and lower noise floor.	
5	CLKoutX_Y_IDL	0	Sets input drive level for clocks. 0: Normal operation 1: Higher current consumption and lower noise floor.	
4	DCLKX_Y_DDLY_PD	0	Powerdown the device clock digital delay circuitry. 0: Enabled 1: Power down static digital delay for device clock divider.	
3:2	DCLKX_Y_DDLY[9:8]	0	MSB of static digital delay, see DCLKX_Y_DDLY.	
1:0	DCLKX_Y_DIV[9:8]	0	MSB of device clock divide value, see Table 15.	

8.6.2.2.4 CLKoutX_SRC_MUX, CLKoutX_Y_PD, DCLKX_Y_BYP, DCLKX_Y_DCC, DCLKX_Y_POL, DCLKX_Y_HS

These registers control the analog delay properties for the device clocks.

Table 21. Registers 0x103, 0x10B, 0x113, 0x11B, 0x123, 0x12B, 0x133

BIT	NAME	POR DEFAULT	DESCRIPTION	
7	NA	0	Reserved	
6	NA	1	Reserved	
5	CLKoutX_SRC_MUX	0	Select CLKoutX clock source. Source must also be powered up. 0: Device Clock 1: SYSREF	
4	CLKoutX_Y_PD	0	Power down the clock group defined by X and Y. 0: Enabled 1: Power down enter clock group X_Y.	
3	DCLKX_BYP	0	Enable high performance bypass path for even clock outputs. 0: CLKoutX not in high performance bypass mode. CML is not valid for CLKoutX_FMT. 1: CLKoutX in high performance bypass mode. Only CML clock format is val	
2	DCLKX_Y_DCC	0	Duty cycle correction for device clock divider. Required for half step. 0: No duty cycle correction. 1: Duty cycle correction enabled.	
1	DCLKX_Y_POL	0	Invert polarity of device clock output. This also applies to CLKoutX in high performance bypass mode. Polarity invert is a method to get a half-step pha adjustment in high performance bypass mode or /1 divide value. 0: Normal polarity 1: Invert polarity	
0	DCLKX_Y_HS	0	Sets the device clock half step value. Must be set to zero (0) for a divide of No effect if DCLKX_Y_DCC = 0. 0: No phase adjustment 1: Adjust device clock phase -0.5 clock distribution path cycles.	

8.6.2.2.5 CLKoutY_SRC_MUX, SCLKX_Y_PD, SCLKX_Y_DIS_MODE, SCLKX_Y_POL, SCLKX_Y_HS

These registers set the half step for the device clock, the SYSREF output MUX, the SYSREF clock digital delay, and half step.

Table 22. Registers 0x104, 0x10C, 0x114, 0x11C, 0x124, 0x12C, 0x134

BIT	NAME	POR DEFAULT	DESCR	RIPTION		
7:6	NA	0	Reserved	Reserved		
5	CLKoutY_SRC_MUX	0	Select CLKoutX clock source. Source m 0: Device Clock 1: SYSREF	** = *****		
4	SCLKX_Y_PD	1	Power down the SYSREF clock output 0: SYSREF enabled 1: Power down SYSREF path for clock	,		
			Set disable mode for clock outputs cont assert when SYSREF_GBL_PD = 1.	rolled by SYSREF. Some cases will		
	SCLKX_Y_DIS_MODE	0	Field Value	Disable Mode		
			0 (0x00)	Active in normal operation		
3:2			1 (0x01)	If SYSREF_GBL_PD = 1, the output is a logic low, otherwise it is active.		
			2 (0x02)	If SYSREF_GBL_PD = 1, the output is a nominal Vcm voltage for odd clock channels ⁽¹⁾ and low for even clocks. Otherwise outputs are active.		
			3 (0x03)	Output is a nominal Vcm voltage ⁽¹⁾		
1	SCLKX_Y_POL	0	Sets the polarity of clock on SCLKX_Y when SYSREF clock output is selected with CLKoutX_MUX or CLKoutY_MUX. 0: Normal 1: Inverted			
0	SCLKX_Y_HS	0	Sets the local SYSREF clock half step value. 0: No phase adjustment 1: Adjust device SYSREF phase -0.5 clock distribution path cycles.			

⁽¹⁾ If LVPECL mode is used with emitter resistors to ground, the output Vcm will be approximately 0 V, each pin will be approximately 0 V. If CML mode is used with pullups to V_{CC} , the output V_{CM} will be approximately V_{CC} V, each pin will be approximately V_{CC} V.

8.6.2.2.6 SCLKX_Y_ADLY_EN, SCLKX_Y_ADLY

These registers set the analog delay parameters for the SYSREF outputs.

Table 23. Registers 0x105, 0x10D, 0x115, 0x11D, 0x125, 0x12D, 0x135

BIT	NAME	POR DEFAULT	DESCRIPTION			
7:6	NA	0	Reserved	Reserved		
5	SCLKX_Y _ADLY_EN	0	Enables analog delay for the SYSREF output. 0: Disabled 1: Enabled			
	SCLKX Y		SYSREF analog delay in approximately adds an additional 125 ps in propagatio			
			Field Value	Delay Value		
			0 (0x0)	125 ps		
			1 (0x1)	146 ps (+21 ps from 0x00)		
4:0	_ADLY	0	2 (0x2)	167 ps (+42 ps from 0x00)		
			3 (0x3)	188 ps (+63 ps from 0x00)		
			14 (0xE)	587 ps (+462 ps from 0x00)		
			15 (0xF)	608 ps (+483 ps from 0x00)		

8.6.2.2.7 SCLKX_Y_DDLY

Table 24. Registers 0x106, 0x10E, 0x116, 0x11E, 0x126, 0x12E, 0x136

BIT	NAME	POR DEFAULT	DESCRIPTION
7:4	NA	0	Reserved
3:0	SCLKX_Y_DDLY	0	Set digital delay value for SYSREF clock (minimum 8)

8.6.2.2.8 CLKoutY_FMT, CLKoutX_FMT

The difference in the tables is that some of the clock outputs have inverted CMOS polarity settings.

Table 25. Registers 0x107 (CLKout0_1), 0x11F (CLKout6_7), 0x12F (CLKout10_11)

BIT	NAME	POR DEFAULT	DESCRIPTION		
			Set CLKoutY clock format		
			Field Value	Outp	out Format
			0 (0x00)	Powerdown	
			1 (0x01)	LVDS	
			2 (0x02)	HS	DS 6 mA
			3 (0x03)	HS	DS 8 mA
			4 (0x04)	LVPE	CL 1600 mV
			5 (0x05)	LVPE	CL 2000 mV
7:4	CLKoutV EMT	0	6 (0x06)	L	CPECL
7.4	CLKoutY_FMT	0	7 (0x07)	CN	1L 16 mA
			8 (0x08)	CN	1L 24 mA
			9 (0x09)	CN	1L 32 mA
			10 (0x0A)	CMC	OS (Off/Inv)
			11 (0x0B)	CMOS	S (Norm/Off)
			12 (0x0C)	CMC	OS (Inv/Inv)
			13 (0x0D)	CMOS (Inv/Norm)	
			14 (0x0E)	CMOS	S (Norm/Inv)
			15 (0x0F)	CMOS	(Norm/Norm)
		CLKoutX_FMT 0	Set CLKoutX clock format		
			Field Value	Output Format DCLKX_BYP = 0	Output Format DCLKX_BYP = 1
			0 (0x00)	Powerdown	Reserved
			1 (0x01)	LVDS	Reserved
			2 (0x02)	HSDS 6 mA	Reserved
			3 (0x03)	HSDS 8 mA	Reserved
			4 (0x04)	LVPECL 1600 mV	Reserved
			5 (0x05)	LVPECL 2000 mV	Reserved
3:0	CLKoutX_FMT		6 (0x06)	LCPECL	Reserved
			7 (0x07)	Reserved	CML 16 mA
			8 (0x08)	Reserved	CML 24 mA
			9 (0x09)	Reserved	CML 32 mA
			10 (0x0A)	CMOS (Off/Inv) ⁽¹⁾	Reserved
			11 (0x0B)	CMOS (Norm/Off) ⁽¹⁾	Reserved
			12 (0x0C)	CMOS (Inv/Inv) ⁽¹⁾	Reserved
			13 (0x0D)	CMOS (Inv/Norm) ⁽¹⁾	Reserved
			14 (0x0E)	CMOS (Norm/Inv) ⁽¹⁾	Reserved
			15 (0x0F)	CMOS (Norm/Norm) ⁽¹⁾	Reserved

⁽¹⁾ Only valid for CLKout10.

Table 26. Registers 0x10F (CLKout2_3), 0x117 (CLKout4_5), 0x127 (CLKout8_9), 0x137 (CLKout12_13)

BIT	NAME	POR DEFAULT	DESCRIPTION		
			Set CLKoutY clock format		
			Field Value	Outp	out Format
			0 (0x00)	Po	werdown
			1 (0x01)	LVDS	
			2 (0x02)	HS	DS 6 mA
			3 (0x03)	HS	DS 8 mA
			4 (0x04)	LVPE	CL 1600 mV
			5 (0x05)	LVPE	CL 2000 mV
7:4	CLKoutY_FMT	0	6 (0x06)	L	CPECL
7.4	CLROULT_FINIT	0	7 (0x07)	CM	1L 16 mA
			8 (0x08)	CM	1L 24 mA
			9 (0x09)	CM	1L 32 mA
			10 (0x0A)	CMOS	G (Off/Norm)
			11 (0x0B)	CMC	OS (Inv/Off)
			12 (0x0C)	CMOS	(Norm/Norm)
			13 (0x0D)	CMOS	OS (Off/Norm) MOS (Inv/Off) OS (Norm/Norm) OS (Norm/Inv) OS (Inv/Norm) MOS (Inv/Inv) Output Format DCLKX_BYP = 1 Reserved
			14 (0x0E)	CMOS	S (Inv/Norm)
			15 (0x0F)	CMC	OS (Inv/Inv)
			Set CLKoutX clock format		
			Field Value	Output Format DCLKX_BYP = 0	Output Format DCLKX_BYP = 1
			0 (0x00)	Powerdown	Reserved
			1 (0x01)	LVDS	Reserved
			2 (0x02)	HSDS 6 mA	Reserved
			3 (0x03)	HSDS 8 mA	Reserved
			4 (0x04)	LVPECL 1600 mV	Reserved
			5 (0x05)	LVPECL 2000 mV	SDS 6 mA SDS 8 mA ECL 1600 mV ECL 2000 mV LCPECL ML 16 mA ML 24 mA ML 32 mA OS (Off/Norm) IOS (Inv/Off) S (Norm/Norm) OS (Inv/Norm) OS (Inv/Norm) OS (Inv/Norm) ROS (Inv/Norm) OS (Inv/Norm) ROS (Inv/Norm) OR (Inv/Inv)
3:0	CLKoutX_FMT	0	6 (0x06)	LCPECL	Reserved
			7 (0x07)	Reserved	CML 16 mA
			8 (0x08)	Reserved	CML 24 mA
			9 (0x09)	Reserved	CML 32 mA
			10 (0x0A)	CMOS (Off/Norm) ⁽¹⁾	Reserved
			11 (0x0B)	CMOS (Inv/Off) ⁽¹⁾	Reserved
			12 (0x0C)	CMOS (Norm/Norm) ⁽¹⁾	Reserved
			13 (0x0D)	CMOS (Norm/Inv) ⁽¹⁾	Reserved
			14 (0x0E)	CMOS (Inv/Norm) ⁽¹⁾	Reserved
			15 (0x0F)	CMOS (Inv/Inv) ⁽¹⁾	Reserved

⁽¹⁾ Only valid for CLKout8.

8.6.2.3 SYSREF, SYNC, and Device Config

8.6.2.3.1 VCO_MUX, OSCout_MUX, OSCout_FMT

Table 27. Register 0x138

BIT	NAME	POR DEFAULT	DESCRIPTION	
7	NA	0	Reserved	
			Selects clock distribution path source fro	om VCO0, VCO1, or CLKin (external
			Field Value	VCO Selected
6:5	VCO_MUX	2	0 (0x00)	VCO 0
			1 (0x01)	VCO 1
			2 (0x02)	Fin1 / CLKin1 (external VCO)
			3 (0x03)	Reserved
4	OSCout_MUX	0	Select the source for OSCout: 0: Buffered OSCin 1: Feedback Mux	
			Selects the output format of OSCout. W used as CLKin2.	hen powered down, these pins may be
			Field Value	OSCout Format
			0 (0x00)	Power down (CLKin2)
			1 (0x01)	LVDS
			2 (0x02)	Reserved
			3 (0x03)	Reserved
			4 (0x04)	LVPECL 1600 mVpp
0.0	000 / 5147		5 (0x05)	LVPECL 2000 mVpp
3:0	OSCout_FMT	4	6 (0x06)	LVCMOS (Norm / Inv)
			7 (0x07)	LVCMOS (Inv / Norm)
			8 (0x08)	LVCMOS (Norm / Norm)
			9 (0x09)	LVCMOS (Inv / Inv)
			10 (0x0A)	LVCMOS (Off / Norm)
			11 (0x0B)	LVCMOS (Off / Inv)
			12 (0x0C)	LVCMOS (Norm / Off)
			13 (0x0D)	LVCMOS (Inv / Off)
			14 (0x0E)	LVCMOS (Off / Off)

8.6.2.3.2 SYSREF_REQ_EN, SYNC_BYPASS, SYSREF_MUX

This register sets the source for the SYSREF outputs. Refer to Figure 8 and SYNC/SYSREF.

Table 28. Register 0x139

BIT	NAME	POR DEFAULT	DESCRIPTION		
7:6	NA	0	Reserved		
5	NA	0	Reserved		
4	SYSREF_REQ_EN	0	Enables the SYNC/SYSREF_REQ pin to force the SYSREF_MUX = 3 for continuous pulses. When using this feature enable pulser and set SYSREF_MUX = 2 (Pulser).		
3	SYNC_BYPASS	0	Bypass SYNC polarity invert and other circuitry. 0: Normal 1: SYNC signal is bypassed		
2	NA	0	Reserved		
			Selects the SYSREF source.		
			Field Value	SYSREF Source	
4.0	CYCDEE MUY	0	0 (0x00)	Normal SYNC	
1:0	SYSREF_MUX	0	1 (0x01)	Re-clocked	
			2 (0x02)	SYSREF Pulser	
			3 (0x03)	SYSREF Continuous	

Submit Documentation Feedback

8.6.2.3.3 SYSREF_DIV

These registers set the value of the SYSREF output divider.

Table 29. SYSREF_DIV[12:0]

MSB	LSB
0x13A[4:0] = SYSREF_DIV[12:8]	0x13B[7:0] = SYSREF_DIV[7:0]

Table 30. Registers 0x13A and 0x13B

REGISTER	BIT	NAME	POR DEFAULT	DESCRIF	PTION
0x13A	7:5	NA	0	Reserved	
				Divide value for the SYSREF out	puts.
0x13A	4.0	CVCDEE DIV[40:0]	40	Field Value	Divide Value
	4:0	SYSREF_DIV[12:8]	12	0 to 7 (0x00 to 0x07)	Reserved
				8 (0x08)	outs. Divide Value
0x13B				9 (0x09)	9
	7.0	CVCDEE DIVIZ-01	0		
	7:0	SYSREF_DIV[7:0]	0	8190 (0x1FFE)	8190
				8191 (0X1FFF)	8191

8.6.2.3.4 SYSREF_DDLY

These registers set the delay of the SYSREF digital delay value.

Table 31. SYSREF Digital Delay Register Configuration, SYSREF_DDLY[12:0]

MSB	LSB
0x13C[4:0] / SYSREF_DDLY[12:8]	0x13D[7:0] / SYSREF_DDLY[7:0]

Table 32. Registers 0X13C and 0X13D

BIT	NAME	POR DEFAULT	DESCRI	PTION
7:5	NA	0	Reserved	
			Sets the value of the SYSREF d	igital delay.
4.0	CVCDEE DDI V(40.0)	0	Field Value	Delay Value
4:0	SYSKEF_DULY[12:8]	U	0x00 to 0x07	Reserved
			8 (0x08)	8
			9 (0x09)	9
7.0	0,00000 001,017.01	0		
7:0	SYSKEF_DDLY[/:0]	8	8190 (0x1FFE)	8190
			8191 (0X1FFF)	8191
		7:5 NA 4:0 SYSREF_DDLY[12:8]	7:5 NA 0 4:0 SYSREF_DDLY[12:8] 0	7:5 NA 0 Reserved Sets the value of the SYSREF d Field Value 0x00 to 0x07 8 (0x08) 9 (0x09) 7:0 SYSREF_DDLY[7:0] 8 8190 (0x1FFE)

8.6.2.3.5 SYSREF_PULSE_CNT

This register sets the number of SYSREF pulses if SYSREF is not in continuous mode. See SYSREF_REQ_EN, SYNC_BYPASS, SYSREF_MUX for further description of SYSREF's outputs.

Programming the register causes the specified number of pulses to be output if "SYSREF Pulses" is selected by SYSREF_MUX and SYSREF functionality is powered up.

Table 33. Register 0x13E

BIT	NAME	POR DEFAULT	DESCRIPTION		
7:2	NA	0	Reserved		
			Sets the number of SYSREF pulses get See SYSREF_REQ_EN, SYNC_BYPAS on SYSREF modes.	nerated when not in continuous mode. SS, SYSREF_MUX for more information	
			Field Value Number	Number of Pulses	
1:0	SYSREF_PULSE_CNT	3	0 (0x00)	1 pulse	
			1 (0x01)	2 pulses	
			2 (0x02)	4 pulses	
			3 (0x03)	8 pulses	

8.6.2.3.6 PLL2_RCLK_MUX, PLL2_NCLK_MUX, PLL1_NCLK_MUX, FB_MUX, FB_MUX_EN

This register controls the feedback feature.

Table 34. Register 0x13F

BIT	NAME	POR DEFAULT	DESCRIPTION		
7	PLL2_RCLK_MUX	0	Selects the source for PLL2 reference. 0: OSCin 1: Currently selected CLKin.		
6	NA	0	Reserved		
5	PLL2_NCLK_MUX	0	Selects the input to the PLL2 N Divider 0: PLL2 Prescaler 1: Feedback Mux		
4:3	PLL1_NCLK_MUX	0	Selects the input to the PLL1 N Divider. 0: OSCin 1: Feedback Mux 2: PLL2 Prescaler		
			When in 0-delay mode, the feedback mux back into the PLL1 N Divider.	selects the clock output to be fed	
			Field Value	Source	
2:1	FB_MUX	0	0 (0x00)	CLKout6	
	_		1 (0x01)	CLKout8	
			2 (0x02)	SYSREF Divider	
			3 (0x03)	External	
0	FB_MUX_EN	0	When using 0-delay, FB_MUX_EN must be set to 1 power up the feedback mux. 0: Feedback mux powered down 1: Feedback mux enabled		

$8.6.2.3.7 \quad PLL1_PD, VCO_LDO_PD, VCO_PD, OSCin_PD, SYSREF_GBL_PD, SYSREF_PD, SYSREF_DDLY_PD, SYSREF_PLSR_PD$

This register contains power down controls for OSCin and SYSREF functions.

Table 35. Register 0x140

BIT	NAME	POR DEFAULT	DESCRIPTION
7	PLL1_PD	1	Power down PLL1 0: Normal operation 1: Power down
6	VCO_LDO_PD	1	Power down VCO_LDO 0: Normal operation 1: Power down
5	VCO_PD	1	Power down VCO 0: Normal operation 1: Power down
4	OSCin_PD	0	Power down the OSCin port. 0: Normal operation 1: Power down
3	SYSREF_GBL_PD	0	Power down individual SYSREF outputs depending on the setting of SCLKX_Y_DIS_MODE for each SYSREF output. SYSREF_GBL_PD allows many SYSREF outputs to be controlled through a single bit. 0: Normal operation 1: Activate Power down Mode
2	SYSREF_PD	0	Power down the SYSREF circuitry and divider. If powered down, SYSREF output mode cannot be used. SYNC cannot be provided either. 0: SYSREF can be used as programmed by individual SYSREF output registers. 1: Power down
1	SYSREF_DDLY_PD	0	Power down the SYSREF digital delay circuitry. 0: Normal operation, SYSREF digital delay may be used. Must be powered up during SYNC for deterministic phase relationship with other clocks. 1: Power down
0	SYSREF_PLSR_PD	0	Powerdown the SYSREF pulse generator. 0: Normal operation 1: Powerdown

8.6.2.3.8 DDLYdSYSREF_EN, DDLYdX_EN

This register enables dynamic digital delay for enabled device clocks and SYSREF when DDLYd_STEP_CNT is programmed.

Table 36. Register 0x141

BIT	NAME	POR DEFAULT	DESCRIPTION			
7	DDLYd _SYSREF_EN	0	Enables dynamic digital delay on SYSREF outputs			
6	DDLYd12_EN	0	Enables dynamic digital delay on DCLKout12			
5	DDLYd10_EN	0	Enables dynamic digital delay on DCLKout10			
4	DDLYd8_EN	0	Enables dynamic digital delay on DCLKout8	0: Disabled		
3	DDLYd6_EN	0	Enables dynamic digital delay on DCLKout6	1: Enabled		
2	DDLYd4_EN	0	Enables dynamic digital delay on DCLKout4			
1	DDLYd2_EN	0	Enables dynamic digital delay on DCLKout2			
0	DDLYd0_EN	0	Enables dynamic digital delay on DCLKout0			

8.6.2.3.9 DDLYd_STEP_CNT

This register sets the number of dynamic digital delay adjustments occur. Upon programming, the dynamic digital delay adjustment begins for each clock output with dynamic digital delay enabled. Dynamic digital delay can only be started by SPI.

Other registers must be set: SYNC_MODE = 3

Table 37. Register 0x142

BIT	NAME	POR DEFAULT	DESCRIPTION		
			Sets the number of dynamic digital dela	ay adjustments that will occur.	
			Field Value	Dynamic Digital Delay Adjustments	
			0 (0x00)	No Adjust	
			1 (0x01)	1 step	
7:0	DDLYd_STEP_CNT	0	2 (0x02)	2 steps	
			3 (0x03)	3 steps	
			254 (0xFE)	254 steps	
			255 (0xFF)	255 steps	

Submit Documentation Feedback

8.6.2.3.10 SYSREF_CLR, SYNC_1SHOT_EN, SYNC_POL, SYNC_EN, SYNC_PLL2_DLD, SYNC_PLL1_DLD, SYNC_MODE

This register sets general SYNC parameters such as polarization, and mode. Refer to Figure 8 for block diagram. Refer to Table 1 for using SYNC_MODE for specific SYNC use cases.

Table 38. Register 0x143

BIT	NAME	POR DEFAULT	DESC	RIPTION	
7	SYSREF_CLR	0	Except during SYSREF Setup Procedure (see <i>SYNC/SYSREF</i>), this bit should always be programmed to 0. While this bit is set, extra current is used. Refer to .		
6	SYNC_1SHOT_EN	0	SYNC one shot enables edge sensitive SYNC. 0: SYNC is level sensitive and outputs will be held in SYNC as long as SYNC is asserted. 1: SYNC is edge sensitive, outputs will be SYNCed on rising edge of SYNC. This results in the clock being held in SYNC for a minimum amount of time.		
5	SYNC_POL	0	Sets the polarity of the SYNC pin. 0: Normal 1: Inverted		
4	SYNC_EN	0	Enables the SYNC functionality. 0: Disabled 1: Enabled		
3	SYNC_PLL2_DLD	0	0: Off 1: Assert SYNC until PLL2 DLD = 1		
2	SYNC_PLL1_DLD	0	0: Off 1: Assert SYNC until PLL1 DLD = 1		
			Sets the method of generating a SYNO	event.	
			Field Value	SYNC Generation	
		SYNC_MODE 1	0 (0x00)	Prevent SYNC Pin, SYNC_PLL1_DLD flag, or SYNC_PLL2_DLD flag from generating a SYNC event.	
			1 (0x01)	SYNC event generated from SYNC pin or if enabled the SYNC_PLL1_DLD flag or SYNC_PLL2_DLD flag.	
1:0	SYNC_MODE		2 (0x02)	For use with pulser - SYNC/SYSREF pulses are generated by pulser block via SYNC Pin or if enabled SYNC_PLL1_DLD flag or SYNC_PLL2_DLD flag.	
			3 (0x03)	For use with pulser - SYNC/SYSREF pulses are generated by pulser block when programming register 0x13E (SYSREF_PULSE_CNT) is written to (see).	

8.6.2.3.11 SYNC_DISSYSREF, SYNC_DISX

SYNC_DISX will prevent a clock output from being synchronized or interrupted by a SYNC event or when outputting SYSREF.

Table 39. Register 0x144

BIT	NAME	POR DEFAULT	DESCRIPTION
7	SYNC_DISSYSREF	0	Prevent the SYSREF clocks from becoming synchronized during a SYNC event. If SYNC_DISSYSREF is enabled it will continue to operate normally during a SYNC event.
6	SYNC_DIS12	0	
5	SYNC_DIS10	0	
4	SYNC_DIS8	0	Prevent the device clock output from becoming synchronized during a SYNC
3	SYNC_DIS6	0	event or SYSREF clock. If SYNC_DIS bit for a particular output is enabled then it will continue to operate normally during a SYNC event or SYSREF
2	SYNC_DIS4	0	clock.
1	SYNC_DIS2	0	
0	SYNC_DIS0	0	

8.6.2.3.12 PLL1R_SYNC_EN, PLL1R_SYNC_SRC, PLL2R_SYNC_EN

These bits are used when synchronizing PLL1 and PLL2 R dividers. Refer to Synchronizing PLL R Dividers for more information.

Table 40. Register 0x145

BIT	NAME	POR DEFAULT	DESC	CRIPTION	
7	NA	0	Reserved		
6	PLL1R_SYNC_EN	0	Enable synchronization for PLL1 R divider 0: Not enabled 1: Enabled		
			Select the source for PLL1 R divider s	synchronization	
			Field Value	Definition	
E · 1	5:4 PLL1R_SYNC_SRC	0	0 (0x00)	Reserved	
5.4			1 (0x01)	SYNC Pin	
			2 (0x02)	CLKin0	
			3 (0x03)	Reserved	
3	PLL2R_SYNC_EN	0	Enable synchronization for PLL2 R di comes from the SYNC pin. 0: Not enabled 1: Enabled	vider. Synchronization for PLL2 R always	
2:0	NA	0	Reserved		

8.6.2.4 (0x146 - 0x149) CLKin Control

8.6.2.4.1 CLKin_SEL_PIN_EN, CLKin_SEL_PIN_POL, CLKin2_EN, CLKin1_EN, CLKin0_EN, CLKin2_TYPE, CLKin1_TYPE, CLKin0_TYPE

This register has CLKin enable and type controls. See *Input Clock Switching* for more info on how clock input selection works.

Table 41. Register 0x146

	Table 411 Register extra					
BIT	NAME	POR DEFAULT	DESC	RIPTION		
7	CLKin_SEL_PIN_EN	0	Enables pin control according to Figure	e 12.		
6	CLKin_SEL_PIN_POL	0	Inverts the CLKin polarity for use in pin 0: Active High 1: Active Low	select mode.		
5	CLKin2_EN	0	Enable CLKin2 to be used during auto- 0: Not enabled for auto mode 1: Enabled for auto clock switching mo	J		
4	CLKin1_EN	1	Enable CLKin1 to be used during auto-switching. 0: Not enabled for auto mode 1: Enabled for auto clock switching mode			
3	CLKin0_EN	1	Enable CLKin0 to be used during auto-switching. 0: Not enabled for auto mode 1: Enabled for auto clock switching mode			
2	CLKin2_TYPE	0		There are two buffer types for CLKin0,		
1	CLKin1_TYPE	0		1, and 2: bipolar and CMOS. Bipolar is		
0	CLKin0_TYPE	0	recommended for differential inputs like LVDS or LVPECL. CMOS is recommended for DC-coupled single ended inputs. When using bipolar, CLKinX and CLKinX* must be AC-coupled. When using CMOS, CLKinX and CLKinX* may be AC or DC-coupled the input signal is differential. If the input signal is single-ended the use input may be either AC or DC-couple and the unused input must AC grounded.			

$8.6.2.4.2 \quad \textbf{CLKin_SEL_AUTO_REVERT_EN}, \\ \textbf{CLKin_SEL_AUTO_EN}, \\ \textbf{CLKin0_DEMUX}, \\ \textbf{CLKin0_DEMUX}$

Table 42. Register 0x147

BIT	NAME	POR DEFAULT	DESCRIPTION		
7	CLKin_SEL_ AUTO_REVERT_EN	0	When in auto clock switching mode. If active clock is detected on higher priority clock, the clock input is immediately switched. Highest priority input is lowest numbered active clock input.		
6	CLKin_SEL_AUTO_EN	0	Enables pin control according to Figure	12.	
			Selects the clock input when in manual	mode according to Figure 12.	
			Field Value	Definition	
5:4	CLKin SEL MANUAL	4	0 (0x00)	Definition CLKin0 CLKin1 CLKin2 Holdover	
5.4	CLKIII_SEL_WANUAL	ı	1 (0x01)		
			2 (0x02)	CLKin2	
			3 (0x03)	Holdover	
			Selects where the output of the CLKin1 buffer is directed.		
			Field Value	CLKin1 Destination	
2.2	CLICIA DEMILY	0	0 (0x00)	Fin	
3:2	CLKin1_DEMUX	U	1 (0x01)	Feedback Mux (0-delay mode)	
			2 (0x02)	PLL1	
			3 (0x03)	Off	

Table 42. Register 0x147 (continued)

BIT	NAME	POR DEFAULT	DESCRIPTION		
		Selects where the output of the CLKin0 buffer is directed.			
			Field Value	CLKin0 Destination	
1:0	CLIVING DEMLIY		0 (0x00)	SYSREF Mux	
1.0	CLKin0_DEMUX	3	1 (0x01)	Reserved	
			2 (0x02)	PLL1	
			3 (0x03)	Off	

8.6.2.4.3 CLKin_SEL0_MUX, CLKin_SEL0_TYPE

This register has CLKin_SEL0 controls.

Table 43. Register 0x148

BIT	NAME	POR DEFAULT		DESCRIPTION	
7:6	NA	0	Reserved		
			This set the output valu	ue of the CLKin_SEL0 pin. Thi set to an output mode	s register only applies if
			Field Value	Output	Format
			0 (0x00)	Logic	Low
			1 (0x01)	CLKin	0 LOS
5:3	CLKin_SEL0_MUX	0	2 (0x02)	CLKin0	Selected
			3 (0x03)	DAC I	_ocked
			4 (0x04)	DAC	t Format c Low n0 LOS Selected Locked C Low
			5 (0x05)	DAC High	
			6 (0x06)	SPI Re	adback
			7 (0x07)	Rese	erved
			This sets the IO type of	f the CLKin_SEL0 pin.	
			Field Value	Configuration	Function
			0 (0x00)	Input	Function Input mode, see Input Clock Switching - Pin Select Mode for description of input mode. Output modes; the CLKin_SEL0_MUX register for description of
			1 (0x01)	Input with pullup resistor	
2:0	CLKin_SEL0_TYPE	2	2 (0x02)	Input with pulldown resistor	
			3 (0x03)	Output (push-pull)	
			4 (0x04)	Output inverted (push-pull)	CLKin_SEL0_MUX
			5 (0x05)	Reserved	
			6 (0x06)	Output (open-drain)	'

8.6.2.4.4 SDIO_RDBK_TYPE, CLKin_SEL1_MUX, CLKin_SEL1_TYPE

This register has CLKin_SEL1 controls and register readback SDIO pin type.

Table 44. Register 0x149

BIT	NAME	POR DEFAULT		DESCRIPTION	
7	NA	0	Reserved		
6	SDIO_RDBK_TYPE	1	Sets the SDIO pin to open drain when during SPI readback in 3 wire mode. 0: Output, push-pull 1: Output, open drain.		
			This set the output value CLKin_SEL1_TYPE is se	of the CLKin_SEL1 pin. Thiet to an output mode.	s register only applies if
			Field Value	Output	Format
			0 (0x00)	Logic	Low
			1 (0x01)	CLKin	1 LOS
5:3	CLKin_SEL1_MUX	0	2 (0x02)	CLKin1	Selected
			3 (0x03)	DAC I	_ocked
			4 (0x04)	DAC Low	
			5 (0x05)	DAC High	
			6 (0x06)	SPI Readback	
			7 (0x07)	Rese	erved
			This sets the IO type of the	he CLKin_SEL1 pin.	
			Field Value	Configuration	Function
			0 (0x00)	Input	Input mode, see Input
			1 (0x01)	Input with pullup resistor	Clock Switching - Pin Select Mode for
2:0	2:0 CLKin_SEL1_TYPE	2	2 (0x02)	Input with pulldown resistor	description of input mode.
			3 (0x03)	Output (push-pull)	
			4 (0x04)	Output inverted (push-pull)	Output modes; see the CLKin_SEL1_MUX
			5 (0x05)	Reserved	register for description of outputs.
			6 (0x06)	Output (open-drain)	·

8.6.2.5 RESET_MUX, RESET_TYPE

This register contains control of the RESET pin.

Table 45. Register 0x14A

BIT	NAME	POR DEFAULT		DESCRIPTION	
7:6	NA	0	Reserved		
			This sets the output val RESET_TYPE is set to	lue of the RESET pin. This repair an output mode.	gister only applies if
			Field Value	Output	Format
			0 (0x00)	Logic	c Low
	DECET 1411/		1 (0x01)	Res	erved
5:3	RESET_MUX	0	2 (0x02)	CLKin2	Selected
			3 (0x03)	DACI	Locked
			4 (0x04)	DAC	t Format ic Low ierved Selected Locked C Low C High eadback Function Reset Mode Reset pin high = Reset Output modes; see the
			5 (0x05)	DAC High	
			6 (0x06)	SPI Re	eadback
			This sets the IO type of	f the RESET pin.	
			Field Value	Configuration	Function
			0 (0x00)	Input	
			1 (0x01)	Input with pullup resistor	
2:0	RESET_TYPE	2	2 (0x02)	Input with pulldown resistor	Served 2 Selected Locked C Low C High Readback Function Reset Mode Reset pin high = Reset Output modes; see the RESET_MUX register for
			3 (0x03)	Output (push-pull)	
			4 (0x04)	Output inverted (push- pull)	Output modes; see the RESET_MUX register for
			5 (0x05)	Reserved	
			6 (0x06)	Output (open-drain)	

Submit Documentation Feedback Copyright © 2017–2018, Texas Instruments Incorporated

8.6.2.6 (0x14B - 0x152) Holdover

8.6.2.6.1 LOS_TIMEOUT, LOS_EN, TRACK_EN, HOLDOVER_FORCE, MAN_DAC_EN, MAN_DAC[9:8]

This register contains the holdover functions.

Table 46. Register 0x14B

BIT	NAME	POR DEFAULT	DESCR	IPTION	
			This controls the amount of time in which no activity on a CLKin forces a clock switch event.		
			Field Value	Timeout	
7:6	LOS_TIMEOUT	0	0 (0x00)	5 MHz typical	
			1 (0x01)	25 MHz typical	
			2 (0x02)	100 MHz typical	
			3 (0x03)	200 MHz typical	
5	LOS_EN	0	Enables the LOS (Loss-of-Signal) timeout control. Valid for MOS clock inputs. 0: Disabled 1: Enabled		
4	TRACK_EN	0	Enable the DAC to track the PLL1 tuning voltage, optionally for use in holdover mode. After device reset, tracking starts at DAC code = 512. Tracking can be used to monitor PLL1 voltage in any mode. 0: Disabled 1: Enabled, will only track when PLL1 is locked.		
3	HOLDOVER _FORCE	0	This bit forces holdover mode. When holdover mode is forced, if MAN_DAC_EN = 1, then the DAC will set the programmed MAN_DAC value. Otherwise the tracked DAC value will set the DAC voltage. 0: Disabled 1: Enabled.		
2	MAN_DAC_EN	1	This bit enables the manual DAC mode. 0: Automatic 1: Manual		
1:0	MAN_DAC[9:8]	2	See MAN_DAC for more information on	the MAN_DAC settings.	

8.6.2.6.2 MAN_DAC

These registers set the value of the DAC in holdover mode when used manually.

Table 47. MAN_DAC[9:0]

MSB	LSB
0x14B[1:0]	0x14C[7:0]

REGISTER	BIT	NAME	POR DEFAULT	DESCRIPTION			
0x14B	7:2			See LOS_TIMEOUT, LOS_EN, TRACK_EN, HOLDOVER_FORCE, MAN_DAC_EN, MAN_DAC[9:8] for information on these bits.			
				Sets the value of the manual DAC when in manual DAC mode.			
0x14B	1:0	MAN_DAC[9:8]	2	Field Value	DAC Value		
						0 (0x00)	0
						1 (0x01)	1
				2 (0x02)	2		
0::440	7.0	MAN DAGIZO			•••		
0x14C	7:0	MAN_DAC[7:0] 0	0	1022 (0x3FE)	1022		
				1023 (0x3FF)	1023		

8.6.2.6.3 DAC_TRIP_LOW

This register contains the high value at which holdover mode is entered.

Table 48. Register 0x14D

BIT	NAME	POR DEFAULT	DESCRIPTION	
7:6	NA	0	Reserved	
5:0	DAC_TRIP_LOW	0	Voltage from GND at which holdover is entered if HOLDOVER_VTUNE_DET is enabled.	
			Field Value	DAC Trip Value
			0 (0x00)	1 x Vcc / 64
			1 (0x01)	2 x Vcc / 64
			2 (0x02)	3 x Vcc / 64
			3 (0x03)	4 x Vcc / 64
			61 (0x17)	62 x Vcc / 64
			62 (0x18)	63 x Vcc / 64
			63 (0x19)	64 x Vcc / 64

8.6.2.6.4 DAC_CLK_MULT, DAC_TRIP_HIGH

This register contains the multiplier for the DAC clock counter and the low value at which holdover mode is entered.

Table 49. Register 0x14E

BIT	NAME	POR DEFAULT	DESC	RIPTION	
			This is the multiplier for the DAC_CLK_CNTR which sets the rate at which the DAC value is tracked.		
			Field Value	DAC Multiplier Value	
7:6	DAC_CLK_MULT	0	0 (0x00)	4	
			1 (0x01)	64	
			2 (0x02)	1024	
			3 (0x03)	16384	
	DAC_TRIP_HIGH	DAC_TRIP_HIGH 0	Voltage from Vcc at which holdover is enabled.	entered if HOLDOVER_VTUNE_DET is	
			Field Value	DAC Trip Value	
			0 (0x00)	1 x Vcc / 64	
			1 (0x01)	2 x Vcc / 64	
5:0			2 (0x02)	3 x Vcc / 64	
			3 (0x03)	4 x Vcc / 64	
			61 (0x17)	62 x Vcc / 64	
			62 (0x18)	63 x Vcc / 64	
			63 (0x19)	64 x Vcc / 64	

8.6.2.6.5 DAC_CLK_CNTR

This register contains the value of the DAC when in tracked mode.

Table 50. Register 0x14F

BIT	NAME	POR DEFAULT	DESCRIPTION		
			This with DAC_CLK_MULT set the rate at which the DAC is updated. The update rate is = DAC_CLK_MULT * DAC_CLK_CNTR / PLL1 PDF		
			Field Value	DAC Value	
		AC_CLK_CNTR 127	0 (0x00)	0	
	DAC_CLK_CNTR		1 (0x01)	1	
7:0			2 (0x02)	2	
			3 (0x03)	3	
			253 (0xFD)	253	
			254 (0xFE)	254	
			255 (0xFF)	255	

$8.6.2.6.6 \quad \textbf{CLKin_OVERRIDE}, \ \textbf{HOLDOVER_EXIT_MODE}, \ \textbf{HOLDOVER_PLL1_DET}, \ \textbf{LOS_EXTERNAL_INPUT}, \\ \ \textbf{HOLDOVER_VTUNE_DET}, \ \textbf{CLKin_SWITCH_CP_TRI}, \ \textbf{HOLDOVER_EN}$

This register has controls for enabling clock in switch events.

Table 51. Register 0x150

BIT	NAME	POR DEFAULT	DESCRIPTION
7	NA	0	Reserved
6	CLKin _OVERRIDE	0	When manual clock select is enabled, then CLKin_SEL_MANUAL = 0/1/2 selects a manual clock input. CLKin_OVERRIDE = 1 will force that clock input. CLKin_OVERRIDE = 1 is used with clock distribution mode for best performance. 0: Normal, no override. 1: Force select of only CLKin0/1/2 as specified by CLKin_SEL_MANUAL in manual mode. Dynamic digital delay will not operate.
5	HOLDOVER_ EXIT_MODE	0	Exit based on LOS status. If clock is active by LOS, then begin exit. Exit based on PLL1 DLD. When the PLL1 phase detector confirming valid clock.
4	HOLDOVER _PLL1_DET	0	This enables the HOLDOVER when PLL1 lock detect signal transitions from high to low. 0: PLL1 DLD does not cause a clock switch event 1: PLL1 DLD causes a clock switch event
3	LOS_EXTERNAL_INPUT	0	Use external signals for LOS status instead of internal LOS circuitry. CLKin_SEL0 pin is used for CLKin0 LOS, CLKin_SEL1 pin is used for CLKin1 LOS, and Status_LD1 is used for CLKin2 LOS. For any of these pins to be valid, the corresponding _TYPE register must be programmed as an input. 0: Disabled 1: Enabled
2	HOLDOVER_ VTUNE_DET	0	Enables the DAC Vtune rail detector. When the DAC achieves a specified Vtune, if this bit is enabled, the current clock input is considered invalid and an input clock switch event is generated. 0: Disabled 1: Enabled
1	CLKin_SWITCH_CP_TRI	0	Enable clock switching with tri-stated charge pump. 0: Not enabled. 1: PLL1 charge pump tri-states during clock switching.
0	HOLDOVER_EN	0	Sets whether holdover mode is active or not. 0: Disabled 1: Enabled

8.6.2.6.7 HOLDOVER_DLD_CNT

Table 52. HOLDOVER_DLD_CNT[13:0]

MSB	LSB
0x151[5:0] / HOLDOVER_DLD_CNT[13:8]	0x152[7:0] / HOLDOVER_DLD_CNT[7:0]

This register has the number of valid clocks of PLL1 PDF before holdover is exited.

Table 53. Registers 0x151 and 0x152

REGISTER	BIT	NAME	POR DEFAULT	DESCRIPTION	
0x151	7:6	NA	0	Reserved	
			2	The number of valid clocks of PI mode is exited.	L1 PDF before holdover
0x151	5:0	HOLDOVER _DLD_CNT[13:8]		Field Value	Count Value
				0 (0x00)	0
				1 (0x01)	1
		7:0 HOLDOVER _DLD_CNT[7:0]	0	2 (0x02)	2
0.450	7.0				
0x152	7:0			16382 (0x3FFE)	16382
				16383 (0x3FFF)	16383

8.6.2.7 (0x153 - 0x15F) PLL1 Configuration

8.6.2.7.1 CLKin0_R

Table 54. CLKin0_R[13:0]

MSB	LSB
0x153[5:0] / CLKin0_R[13:8]	0x154[7:0] / CLKin0_R[7:0]

These registers contain the value of the CLKin0 divider.

Table 55. Registers 0x153 and 0x154

REGISTER	BIT	NAME	POR DEFAULT	DESCRI	IPTION
0x153	7:6	NA	0	Reserved	
			0	The value of PLL1 N counter wh	nen CLKin0 is selected.
0.452	5:0	CLKin0_R[13:8]		Field Value	Divide Value
0x153				0 (0x00)	Reserved
				1 (0x01)	1
0x154	7:0	7:0 CLKin0_R[7:0]	120	2 (0x02)	2
					•••
				16382 (0x3FFE)	16382
				16383 (0x3FFF)	16383

8.6.2.7.2 CLKin1_R

Table 56. CLKin1_R[13:0]

MSB	LSB
0x155[5:0] / CLKin1_R[13:8]	0x156[7:0] / CLKin1_R[7:0]

These registers contain the value of the CLKin1 R divider.

Table 57. Registers 0x155 and 0x156

REGISTER	BIT	NAME	POR DEFAULT	DESCRI	PTION
0x155	7:6	NA	0	Reserved	
			0	The value of PLL1 N counter wh	en CLKin1 is selected.
0x155	5:0	CLKin1_R[13:8]		Field Value	Divide Value
UX155				0 (0x00)	Reserved
				1 (0x01)	1
	6 7:0 CLKin1_R[7:0] 150			2 (0x02)	2
0,456		450			
0x156		CLKIN1_R[7:0]	150	16382 (0x3FFE)	16382
				16383 (0x3FFF)	16383

8.6.2.7.3 CLKin2_R

Table 58. CLKin2_R[13:0]

MSB	LSB
0x157[5:0] / CLKin2_R[13:8]	0x158[7:0] / CLKin2_R[7:0]

Table 59. Registers 0x157 and 0x158

REGISTER	BIT	NAME	POR DEFAULT	DESCR	IPTION
0x157	7:6	NA	0	Reserved	
	5:0		0	The value of PLL1 N counter wh	nen CLKin2 is selected.
0.457		CLKin2_R[13:8]		Field Value	Divide Value
0x157				0 (0x00)	Reserved
				1 (0x01)	1
	7:0	7:0 CLKin2_R[7:0]	150	2 (0x02)	2
0x158					
				16382 (0x3FFE)	16382
				16383 (0x3FFF)	16383

8.6.2.7.4 PLL1_N

Table 60. PLL1_N[13:0]

MSB	LSB
0x159[5:0] / PLL1_N[13:8]	0x15A[7:0] / PLL1_N[7:0]

These registers contain the N divider value for PLL1.

Table 61. Registers 0x159 and 0x15A

REGISTER	BIT	NAME	POR DEFAULT	DESCR	IPTION
0x159	7:6	NA	0	Reserved	
		5:0 PLL1_N[13:8]	0	The value of PLL1 N counter.	
0×150	F.O.			Field Value	Divide Value
0x159	5.0			0 (0x00)	Not Valid
				1 (0x01)	1
	0x15A 7:0 PLL1_N[7:0] 120		2 (0x02)	2	
0x15A		PLL1_N[7:0]	120		
				4,095 (0xFFF)	4,095

8.6.2.7.5 PLL1_WND_SIZE, PLL1_CP_TRI, PLL1_CP_POL, PLL1_CP_GAIN

This register controls the PLL1 phase detector.

Table 62. Register 0x15B

BIT	NAME	POR DEFAULT	DESCR	RIPTION	
			PLL1_WND_SIZE sets the window size used for digital lock detect for P the phase error between the reference and feedback of PLL1 is less that specified time, then the PLL1 lock counter increments.		
			Field Value	Definition	
7:6	PLL1_WND_SIZE	3	0 (0x00)	4 ns	
			1 (0x01)	9 ns	
			2 (0x02)	19 ns	
			3 (0x03)	43 ns	
5	PLL1_CP_TRI	0	This bit allows for the PLL1 charge pump output pin, CPout1, to be placed into TRI-STATE. 0: PLL1 CPout1 is active 1: PLL1 CPout1 is at TRI-STATE		
4	PLL1_CP_POL	1	PLL1_CP_POL sets the charge pump polarity for PLL1. Many VCXOs use positive slope. A positive slope VCXO increases output frequency with increasing voltage. A negative slope VCXO decreases output frequency with increasing voltage. 0: Negative Slope VCO/VCXO 1: Positive Slope VCO/VCXO		
			This bit programs the PLL1 charge pump output current level.		
			Field Value	Gain	
			0 (0x00)	50 μΑ	
			1 (0x01)	150 μA	
2.0	DILLA CD CAIN	4	2 (0x02)	250 μΑ	
3:0	PLL1_CP_GAIN	PLL1_CP_GAIN 4	3 (0x03)	350 μA	
			4 (0x04)	450 μA	
			14 (0x0E)	1450 μΑ	
			15 (0x0F)	1550 µA	

8.6.2.7.6 PLL1_DLD_CNT

Table 63. PLL1_DLD_CNT[13:0]

MSB	LSB
0x15C[5:0] / PLL1_DLD_CNT[13:8]	0x15D[7:0] / PLL1_DLD_CNT[7:0]

This register contains the value of the PLL1 DLD counter.

Table 64. Registers 0x15C and 0x15D

rable of model and oxide						
REGISTER	BIT	NAME	POR DEFAULT	DESCRI	PTION	
0x15C	7:6	NA	0	Reserved		
0x15C	5:0	PLL1_DLD	32	The reference and feedback of F window of phase error as specifi this many phase detector cycles detect is asserted.	ed by PLL1_WND_SIZE for	
UXISC	5.0	_CNT[13:8]	32	Field Value	Delay Value	
				0 (0x00)	Reserved	
				1 (0x01)	1	
				2 (0x02)	2	
		7:0 PLL1_DLD	1_DLD 0	3 (0x03)	3	
0x15D	7:0					
		_0((1[7.0]		16,382 (0x3FFE)	16,382	
				16,383 (0x3FFF)	16,383	

8.6.2.7.7 HOLDOVER_EXIT_NADJ

Table 65. Register 0x15E

BIT	NAME	POR DEFAULT	DESCRIPTION
7:5	NA	0	Reserved
4:0	HOLDOVER_EXIT_NADJ	30	When holdover exists, PLL1 R counter and PLL1 N counter are reset. HOLDOVER_EXIT_NADJ is a 2s complement number which provides a relative timing offset between PLL1 R and PLL1 N divider.

8.6.2.7.8 PLL1_LD_MUX, PLL1_LD_TYPE

This register configures the PLL1 LD pin.

Table 66. Register 0x15F

BIT	NAME	POR DEFAULT	DESCRIPTION		
			This sets the output value of the Status	_LD1 pin.	
			Field Value	MUX Value	
			0 (0x00)	Logic Low	
			1 (0x01)	PLL1 DLD	
			2 (0x02)	PLL2 DLD	
			3 (0x03)	PLL1 & PLL2 DLD	
			4 (0x04)	Holdover Status	
			5 (0x05)	DAC Locked	
			6 (0x06)	Reserved	
			7 (0x07)	SPI Readback	
7:3	PLL1_LD_MUX	1	8 (0x08)	DAC Rail	
			9 (0x09)	DAC Low	
			10 (0x0A)	DAC High	
			11 (0x0B)	PLL1_N	
			12 (0x0C)	PLL1_N/2	
			13 (0x0D)	PLL2_N	
			14 (0x0E)	PLL2_N/2	
			15 (0x0F)	PLL1_R	
			16 (0x10)	PLL1_R/2	
			17 (0x11)	PLL2_R ⁽¹⁾	
			18 (0x12)	PLL2_R/2 ⁽¹⁾	
			Sets the IO type of the Status_LD1 pin.		
			Field Value	TYPE	
			0 (0x00)	Input for External CLKin2 LOS	
			1 (0x01)	Input for External CLKin2 LOS (pullup)	
2:0	PLL1_LD_TYPE	PLL1_LD_TYPE 6	2 (0x02)	Input for External CLKin2 LOS (pulldwn)	
			3 (0x03)	Output (push-pull)	
			4 (0x04)	Output inverted (push-pull)	
			5 (0x05)	Reserved	
			6 (0x06)	Output (open-drain)	

⁽¹⁾ Only valid when PLL2_LD_MUX is not set to 2 (PLL2_DLD) or 3 (PLL1 & PLL2 DLD).

Submit Documentation Feedback

Product Folder Links: LMK04832

8.6.2.8 (0x160 - 0x16E) PLL2 Configuration

8.6.2.8.1 PLL2_R

Table 67. PLL2_R[11:0]

MSB	LSB
0x160[3:0] / PLL2_R[11:8]	0x161[7:0] / PLL2_R[7:0]

This register contains the value of the PLL2 R divider.

Table 68. Registers 0x160 and 0x161

REGISTER	BIT	NAME	POR DEFAULT	DESCR	IPTION
0x160	7:4	NA	0	Reserved	
				Valid values for the PLL2 R divi	der.
0.460	2.0	DLI 0 D[44.0]		Field Value	Divide Value
0x160 3:0 PLL2_R[11:8]	PLLZ_K[11.0]	0	0 (0x00)	Not Valid	
				1 (0x01)	1
				2 (0x02)	2
				3 (0x03)	3
0x161	7:0 PLL2_R[7:0] 2	2			
			4,094 (0xFFE)	4,094	
				4,095 (0xFFF)	4,095

8.6.2.8.2 PLL2_P, OSCin_FREQ, PLL2_REF_2X_EN

This register sets other PLL2 functions.

Table 69. Register 0x162

BIT	NAME	POR DEFAULT	DESCF	RIPTION	
			The PLL2 N Prescaler divides the output of the VCO as selected by Mode_MUX1 and is connected to the PLL2 N divider.		
			Field Value	Value	
			0 (0x00)	8	
			1 (0x01)	2	
7:5	PLL2_P	2	2 (0x02)	2	
			3 (0x03)	3	
			4 (0x04)	4	
			5 (0x05)	5	
			6 (0x06)	6	
			7 (0x07)	7	
			The frequency of the PLL2 reference in (OSCin/OSCin* port) must be programm of the frequency calibration routine which frequency.	ned in order to support proper operation	
			Field Value	OSCin Frequency	
4:2	OSCin EREO	OSCin_FREQ 3	0 (0x00)	0 to 63 MHz	
4.2	OSOIII_I INEQ		1 (0x01)	>63 MHz to 127 MHz	
			2 (0x02)	>127 MHz to 255 MHz	
			3 (0x03)	Reserved	
			4 (0x04)	>255 MHz to 500 MHz	
			5 (0x05) to 7(0x07)	Reserved	
1	NA	0	Reserved		
0	PLL2_REF_2X_EN	1	Enabling the PLL2 reference frequency doubler allows for higher phase detector frequencies on PLL2 than would normally be allowed with the given VCXO frequency. Higher phase detector frequencies reduces the PLL2 N values which makes the design of wider loop bandwidth filters possible. 0: Doubler Disabled 1: Doubler Enabled		

Copyright © 2017–2018, Texas Instruments Incorporated
Product Folder Links: *LMK04832*

8.6.2.8.3 PLL2_N_CAL

PLL2_N_CAL[17:0]

PLL2 never uses 0-delay during frequency calibration. These registers contain the value of the PLL2 N divider used with PLL2 pre-scaler during calibration for cascaded 0-delay mode. Once calibration is complete, PLL2 will use PLL2_N value. Cascaded 0-delay mode occurs when PLL2_NCLK_MUX = 1.

Table 70. PLL2_N_CAL[17:0]

MSB	_	LSB
0x163[1:0] / PLL2_N_CAL[17:16]	0x164[7:0] / PLL2_N_CAL[15:8]	0x165[7:0] / PLL2_N_CAL[7:0]

Table 71. Registers 0x163, 0x164, and 0x165

REGISTER	BIT	NAME	POR DEFAULT	DESCRIPTION	
0x163	7:2	NA	0	Reserved	
0462	4.0	DI I O NI ONI (47:40)	0	Field Value	Divide Value
0x163	1:0	PLL2_N _CAL[17:16]	0	0 (0x00)	Not Valid
0464		•	1 (0x01)	1	
0x164	7:0	PLL2_N_CAL[15:8]	0	2 (0x02)	2
0405	7.0	DILO NI ONITTO	12		
0x165	7:0	PLL2_N_CAL[7:0]		262,143 (0x3FFFF)	262,143

8.6.2.8.4 PLL2_N

This register disables frequency calibration and sets the PLL2 N divider value. Programming register 0x168 starts a VCO calibration routine if PLL2_FCAL_DIS = 0.

Table 72. PLL2_N[17:0]

MSB	_	LSB
0x166[1:0] / PLL2_N[17:16]	0x167[7:0] / PLL2_N[15:8]	0x168[7:0] / PLL2_N[7:0]

Table 73. Registers 0x166, 0x167, and 0x168

REGISTER	BIT	NAME	POR DEFAULT	DESCRIF	PTION		
0x166	7:3	NA	0	Reserved			
0.400	4.0	DLI 0. N[47.40]	0	Field Value	Divide Value		
0x166	1:0	PLL2_N[17:16]	0	0 (0x00)	Not Valid		
0.407	7.0	DI I O NI (5 0)	7.0 DI I 2 NI[45.0]			1 (0x01)	1
0x167	7:0	PLL2_N[15:8]	0	2 (0x02)	2		
0100	7.0	DI LO NIZ-01	12				
0x168	7:0	PLL2_N[7:0]		262,143 (0x3FFFF)	262,143		

8.6.2.8.5 PLL2_WND_SIZE, PLL2_CP_GAIN, PLL2_CP_POL, PLL2_CP_TRI

This register controls the PLL2 phase detector.

Table 74. Register 0x169

BIT	NAME	POR DEFAULT	DESCR	RIPTION	
7	NA	0	Reserved		
			PLL2_WND_SIZE sets the window size the phase error between the reference specified time, then the PLL2 lock coun		
6:5	PLL2_WND_SIZE	2	Field Value	Maximum Phase Detector Frequency / Window Size	
0.5	PLL2_WIND_SIZE	2	0 (0x00)	Reserved	
			1 (0x01)	320 MHz / 1 ns	
			2 (0x02)	240 MHz / 1.8 ns	
			3 (0x03)	160 MHz / 2.6 ns	
			This bit programs the PLL2 charge pur also illustrates the impact of the PLL2 T PLL2_CP_GAIN.	np output current level. The table below RISTATE bit in conjunction with	
		3	Field Value	Definition	
4:3	PLL2_CP_GAIN		0 (0x00)	Reserved	
			1 (0x01)	Reserved	
			2 (0x02)	1600 µA	
			3 (0x03)	3200 μΑ	
2	PLL2 CP POL	0	PLL2_CP_POL sets the charge pump prequires the negative charge pump polar positive slope. A positive slope VCO increases output negative slope VCO decreases output f	arity to be selected. Many VCOs use frequency with increasing voltage. A	
			Field Value	Description	
			0	Negative Slope VCO/VCXO	
			1	Positive Slope VCO/VCXO	
1	PLL2_CP_TRI	0	PLL2_CP_TRI TRI-STATEs the output of the PLL2 charge pump. 0: Disabled 1: TRI-STATE		
0	PLL2_DLD_EN	PLL2 DLD circuitry is enabled when the PLL2 DLD is used to provide to a lock detect status pin. PLL2_DLD_EN allows enabling the PLL2 circuitry without needing to provide PLL2 DLD to a status pin. This er		EN allows enabling the PLL2 DLD 2 DLD to a status pin. This enables SPI while allowing the Status pins to	

8.6.2.8.6 PLL2_DLD_CNT

Table 75. PLL2_DLD_CNT[13:0]

MSB	LSB
0x16A[5:0] / PLL2_DLD_CNT[13:8]	0x16B[7:0] / PLL2_DLD_CNT[7:0]

This register has the value of the PLL2 DLD counter.

Table 76. Registers 0x16A and 0x16B

REGISTER	BIT	NAME	POR DEFAULT	DESCR	RIPTION
0x16A	7	NA	0	Reserved	
0.404	5:0	PLL2_DLD _CNT[13:8]	32	The reference and feedback of window of phase error as speci PLL2_DLD_CNT cycles before asserted.	fied by PLL2_WND_SIZE for
0x16A				Field Value	Divide Value
				0 (0x00)	Not Valid
				1 (0x01)	1
				2 (0x02)	2
		PLL2_DLD_CNT	0	3 (0x03)	3
0x16B	7:0				
				16,382 (0x3FFE)	16,382
				16,383 (0x3FFF)	16,383

8.6.2.8.7 PLL2_LD_MUX, PLL2_LD_TYPE

This register sets the output value of the Status_LD2 pin.

Table 77. Register 0x16E

BIT	NAME	POR DEFAULT	DESCR	IPTION
			This sets the output value of the Status	_LD2 pin.
			Field Value	MUX Value
			0 (0x00)	Logic Low
			1 (0x01)	PLL1 DLD
			2 (0x02)	PLL2 DLD
			3 (0x03)	PLL1 & PLL2 DLD
			4 (0x04)	Holdover Status
			5 (0x05)	DAC Locked
			6 (0x06)	Reserved
			7 (0x07)	SPI Readback
7:3	PLL2_LD_MUX	0	8 (0x08)	DAC Rail
			9 (0x09)	DAC Low
			10 (0x0A)	DAC High
			11 (0x0B)	PLL1_N
			12 (0x0C)	PLL1_N/2
			13 (0x0D)	PLL2_N
			14 (0x0E)	PLL2_N/2
			15 (0x0F)	PLL1_R
			16 (0x10)	PLL1_R/2
			17 (0x11)	PLL2_R ⁽¹⁾
			18 (0x12)	PLL2_R/2 ⁽¹⁾
			Sets the IO type of the Status_LD2 pin.	
			Field Value	TYPE
			0 (0x00)	Reserved
			1 (0x01)	Reserved
2:0	PLL2_LD_TYPE	6	2 (0x02)	Reserved
			3 (0x03)	Output (push-pull)
			4 (0x04)	Output inverted (push-pull)
			5 (0x05)	Reserved
			6 (0x06)	Output (open drain)

⁽¹⁾ Only valid when PLL1_LD_MUX is not set to 2 (PLL2_DLD) or 3 (PLL1 & PLL2 DLD).

8.6.2.9 (0x16F - 0x555) Misc Registers

8.6.2.9.1 PLL2_PRE_PD, PLL2_PD

Table 78. Register 0x173

BIT	NAME	POR DEFAULT	DESCRIPTION
7	N/A	0	Reserved
6	PLL2_PRE_PD	1	Powerdown PLL2 prescaler 0: Normal Operation 1: Powerdown
5	PLL2_PD	1	Powerdown PLL2 0: Normal Operation 1: Powerdown
4:0	N/A	16	Reserved

8.6.2.9.2 PLL1R_RST

Refer to PLL1 R Divider Synchronization for more information on synchronizing PLL1 R divider.

Table 79. Register 0x177

			_
BIT	NAME	POR DEFAULT	DESCRIPTION
7:6	NA	0	Reserved
5	PLL1R_RST	0	When set, PLL1 R divider will be held in reset. PLL1 will never lock with PLL1R_RST = 1. This bit is used in when synchronizing the PLL1 R divider. 0: PLL1 R divider normal operation. 1: PLL1 R divider held in reset.
4:0	NA	0	Reserved

8.6.2.9.3 CLR_PLL1_LD_LOST, CLR_PLL2_LD_LOST

Table 80. Register 0x182

BIT	NAME	POR DEFAULT	DESCRIPTION
7:2	NA	0	Reserved
1	CLR_PLL1_LD_LOST	0	To reset RB_PLL1_LD_LOST, write CLR_PLL1_LD_LOST with 1 and then 0. 0: RB_PLL1_LD_LOST will be set on next falling PLL1 DLD edge. 1: RB_PLL1_LD_LOST is held clear (0). User must clear this bit to allow RB_PLL1_LD_LOST to become set again.
0	CLR_PLL2_LD_LOST	0	To reset RB_PLL2_LD_LOST, write CLR_PLL2_LD_LOST with 1 and then 0. 0: RB_PLL2_LD_LOST will be set on next falling PLL2 DLD edge. 1: RB_PLL2_LD_LOST is held clear (0). User must clear this bit to allow RB_PLL2_LD_LOST to become set again.

8.6.2.9.4 RB_PLL1_LD_LOST, RB_PLL1_LD, RB_PLL2_LD_LOST, RB_PLL2_LD

For PLL2 DLD read back to be valid, either PLL2 DLD or PLL1 + PLL2 DLD signal must be output from the status pins, or PLL2_DLD_EN bit must be set = 1.

Table 81. Register 0x183

BIT	NAME	POR DEFAULT	DESCRIPTION
7:4	N/A	0	Reserved
3	RB_PLL1_LD_LOST	0	This is set when PLL1 DLD edge falls. Does not set if cleared while PLL1 DLD is low.
2	RB_PLL1_LD	0	Read back 0: PLL1 DLD is low. Read back 1: PLL1 DLD is high.
1	RB_PLL2_LD_LOST	0	This is set when PLL2 DLD edge falls. Does not set if cleared while PLL2 DLD is low.
0	RB_PLL2_LD	0	PLL1_LD_MUX or PLL2_LD_MUX must select setting 2 (PLL2 DLD) for valid reading of this bit. Read back 0: PLL2 DLD is low. Read back 1: PLL2 DLD is high.

8.6.2.9.5 RB_DAC_VALUE (MSB), RB_CLKinX_SEL, RB_CLKinX_LOS

This register provides read back access to CLKinX selection indicator and CLKinX LOS indicator. The 2 MSBs are shared with the RB_DAC_VALUE. See RB_DAC_VALUE section.

Table 82. Register 0x184

BIT	NAME	POR DEFAULT	DESCRIPTION
7:6	RB_DAC_VALUE[9:8]		See RB_DAC_VALUE section.
5	RB_CLKin2_SEL		Read back 0: CLKin2 is not selected for input to PLL1. Read back 1: CLKin2 is selected for input to PLL1.
4	RB_CLKin1_SEL		Read back 0: CLKin1 is not selected for input to PLL1. Read back 1: CLKin1 is selected for input to PLL1.
3	RB_CLKin0_SEL		Read back 0: CLKin0 is not selected for input to PLL1. Read back 1: CLKin0 is selected for input to PLL1.
2	N/A		
1	RB_CLKin1_LOS		Read back 1: CLKin1 LOS is active. Read back 0: CLKin1 LOS is not active.
0	RB_CLKin0_LOS		Read back 1: CLKin0 LOS is active. Read back 0: CLKin0 LOS is not active.

8.6.2.9.6 RB_DAC_VALUE

Contains the value of the DAC for user readback.

Table 83. RB_DAC_VALUE[9:0]

MSB	LSB	
0x184 [7:6] / RB_DAC_VALUE[9:8]	0x185 [7:0] / RB_DAC_VALUE[7:0]	

Table 84. Registers 0x184 and 0x185

REGISTER	BIT	NAME	POR DEFAULT	
0x184	7:6	RB_DAC_ VALUE[9:8]	2	DAC value is 512 on power on reset, if PLL1 locks upon
0x185	7:0	RB_DAC_ VALUE[7:0]	0	power-up the DAC value will change.

8.6.2.9.7 RB_HOLDOVER

Table 85. Register 0x188

BIT	NAME	POR DEFAULT	DESCRIPTION
7:5	N/A		Reserved
4	RB_HOLDOVER		Read back 0: Not in HOLDOVER. Read back 1: In HOLDOVER.
3:0	N/A		Reserved

8.6.2.9.8 SPI_LOCK

Prevents SPI registers from being written to, except for 0x555.

This register cannot be read back.

Table 86. Register 0x555

BIT	NAME	POR DEFAULT	DESCRIPTION
7:0	SPI_LOCK	0	0: Registers unlocked. 1 to 255: Registers locked.

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

To assist customers in frequency planning and design of loop filters, Texas Instruments provides Clock Architect and PLLatinum Sim and on ti.com.

9.1.1 Digital Lock Detect Frequency Accuracy

The digital lock detect circuit is used to determine PLL1 locked, PLL2 locked, and holdover exit events. A window size and lock count register are programmed to set a ppm frequency accuracy of reference to feedback signals of the PLL for each event to occur. When a PLL digital lock event occurs, the digital lock detect of the PLL is asserted true. When the holdover exit event occurs, the device will exit holdover mode when HOLDOVER_EXIT_MODE = 1 (Exit based on DLD).

Table 87. Digital Lock Detect Related Fields

EVENT	PLL	WINDOW SIZE	LOCK COUNT
PLL1 Locked	PLL1	PLL1_WND_SIZE	PLL1_DLD_CNT
PLL2 Locked	PLL2	PLL2_WND_SIZE	PLL2_DLD_CNT
Holdover exit	PLL1	PLL1_WND_SIZE	HOLDOVER_DLD_CNT

For a digital lock detect event to occur, there must be a *lock count* number of phase detector cycles of PLLX during which the time and phase error of the PLLX_R reference and PLLX_N feedback signal edges are within the user programmable *window size*. Because there must be at least one *lock count* phase detector event before a lock event occurs, a minimum digital lock event time can be calculated as *lock count* / f_{PDX} where X = 1 for PLL1 or 2 for PLL2.

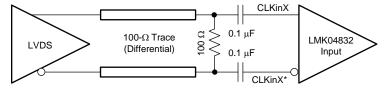
By using Equation 4, values for a *lock count* and *window size* can be chosen to set the frequency accuracy required by the system in ppm before the digital lock detect event occurs:

$$ppm = \frac{1e6 \times PLLX_WND_SIZE \times f_{PDX}}{PLLX_DLD_CNT}$$
(4)

The effect of the *lock count* value is that it shortens the effective lock window size by dividing the *window size* by *lock count*.

If at any time the PLLX_R reference and PLLX_N feedback signals are outside the time window set by window size, then the lock count value is reset to 0.

9.1.1.1 Minimum Lock Time Calculation Example


To calculate the minimum PLL2 *digital* lock time given a PLL2 phase detector frequency of 40 MHz and PLL2 DLD CNT = 10,000. Then, the minimum lock time of PLL2 will be 10,000 / 40 MHz = $250 \mu s$.

9.1.2 Driving CLKin AND OSCin Inputs

9.1.2.1 Driving CLKin and OSCin PINS With a Differential Source

CLKin and OSCin pins can be driven by differential signals. TI recommends setting the input mode to bipolar (CLKinX_BUF_TYPE = 0) when using differential reference clocks. The LMK04832 internally biases the input pins so the differential interface should be AC-coupled. The recommended circuits for driving the CLKin pins with either LVDS or LVPECL are shown in Figure 21 and Figure 22.

Copyright © 2017, Texas Instruments Incorporated

Figure 21. CLKinX/X* or OSCin Termination for an LVDS Reference Clock Source

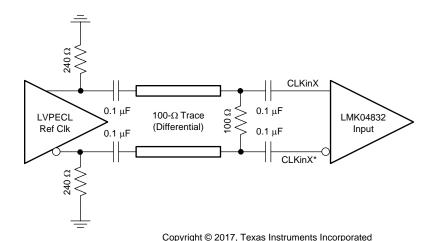
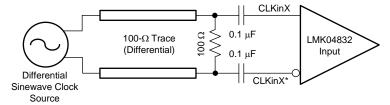
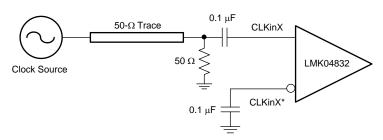



Figure 22. CLKinX/X* or OSCin Termination for an LVPECL Reference Clock Source

Finally, a reference clock source that produces a differential sine wave output can drive the CLKin pins using the following circuit. Note: the signal level must conform to the requirements for the CLKin pins listed in the *Electrical Characteristics*.

Copyright © 2017, Texas Instruments Incorporated

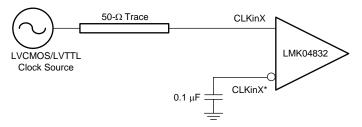
Figure 23. CLKinX/X* or OSCin Termination for a Differential Sinewave Reference Clock Source


9.1.2.2 Driving CLKin Pins With a Single-Ended Source

The CLKin and OSCin pins of the LMK04832 can be driven using a single-ended reference clock source, for example, either a sine wave source or an LVCMOS/LVTTL source. CLKin supports both AC coupling or DC coupling. OSCin must use AC coupling. In the case of the sine wave source that is expecting a $50-\Omega$ load, TI recommends using AC coupling as shown in Figure 24 with a $50-\Omega$ termination.

NOTE

The signal level must conform to the requirements for the CLKin or OSCin pins listed in the *Electrical Characteristics*.


To support LOS functionality, CLKinX_BUF_TYPE must be set to MOS mode (CLKinX_BUF_TYPE = 1) when AC-coupled. When AC coupling, if the $100-\Omega$ termination is placed on the IC side of the blocking capacitors, then the LOS functionality will not be valid.

Copyright © 2017, Texas Instruments Incorporated

Figure 24. CLKinX/X* Single-Ended Termination

If the CLKin pins are being driven with a single-ended LVCMOS/LVTTL source, either DC coupling or AC coupling may be used. If DC coupling is used, the CLKinX_BUF_TYPE should be set to MOS buffer mode (CLKinX_BUF_TYPE = 1) and the voltage swing of the source must meet the specifications for DC -oupled, MOS-mode clock inputs given in the *Electrical Characteristics*. If AC coupling is used, the CLKinX_BUF_TYPE should be set to the bipolar buffer mode (CLKinX_BUF_TYPE = 0). The voltage swing at the input pins must meet the specifications for AC-coupled, bipolar mode clock inputs given in the *Electrical Characteristics*. In this case, some attenuation of the clock input level may be required. A simple resistive divider circuit before the AC-coupling capacitor is sufficient.

Copyright © 2017, Texas Instruments Incorporated

Figure 25. DC-Coupled LVCMOS/LVTTL Reference Clock

9.1.3 OSCin Doubler for Best Phase Noise Performance

PLL2 OSCin input path includes an on-chip Frequency Doubler. To have the best phase noise performance, it is recommended to maximize the PLL2 phase detector frequency. For example, using 122.88MHz VCXO , PLL2 phase detector frequency can be increased to 245.76MHz by setting PLL2_REF_2X_EN. Doubler path is a high performance path for OSCin clock. For configuration where doubler cannot be used, it is recomended to use Doubler and PLL2_RDIV=2. To have deterministic phase relationship between input clock and output clocks, 0-delay modes should be used (nested 0-delay mode for dual loop configuration instead of cascaded 0-delay mode).

9.2 Typical Application

This design example highlights using the available tools to design loop filters and create programming map for LMK04832.

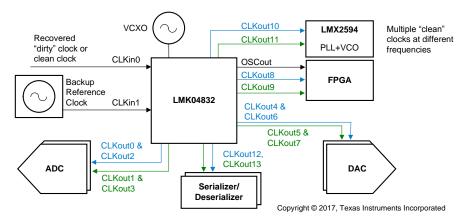


Figure 26. Typical Application

9.2.1 Design Requirements

Clocks outputs:

- 1x 245.76-MHz clock for JESD204B ADC, LVPECL.
 - This clock requires the best performance in this example.
- 2x 2949.12-MHz clock for JESD204B DAC, CML.
- 1x 122.88-MHz clock for JESD204B FPGA block, LVDS
- 3x 10.24-MHz SYSREF for ADC (LVPECL), DAC (LVPECL), FPGA (LVDS).
- 2x 122.88-MHz clock for FPGA, LVDS

For best performance, the highest possible phase detector frequency is used at PLL2. As such, a 122.88-MHz VCXO is used.

9.2.2 Detailed Design Procedure

NOTE

This information is current as of the date of the release of this datasheet. Design tools receive continuous improvements to add features and improve model accuracy. Refer to the software instructions or training for latest features.

9.2.2.1 Device Selection

Enter the required frequencies into the tools. In this design, the LMK04832 VCO0 and LMK04832 VCO1 both meet the design requirements. VCO0 offers a relatively improved VCO performance over VCO1. In this case, choose LMK04832_VCO0 for improved RMS jitter in the 12-kHz to 20-MHz integration range.

9.2.2.1.1 Clock Architect

Under the advanced tab of Clock Architect, filtering of specific parts can be done using regular expressions in the Part Filter box. [LMK04832.*] will filter for only the LMK04832 device (without brackets). More detailed filters can be given such as the entire part name LMK04832_VCO0 to force an LMK04832 using VCO0 solution if one is available.

Typical Application (continued)

9.2.2.2 Device Configuration and Simulation

The tools automatically configure the simulation to meet the input and output frequency requirements given, and make assumptions about other parameters to give some default simulations. However, the user may chose to make adjustments for more accurate simulations to their application. For example:

- Entering the VCO Gain of the external VCXO or possible external VCO used device.
- Adjust the charge pump current to help with loop filter component selection. Lower charge pump currents
 result in smaller components but may increase impacts of leakage and at the lowest values reduce PLL
 phase nosie performance.
- Clock Architect allows loading a custom phase noise plot for reference or VCXO block. Typically, a custom
 phase noise plot is entered for CLKin to match the reference phase noise to device; a phase noise plot for the
 VCXO can additionally be provided to match the performance of VCXO used. For improved accuracy in
 simulation and optimum loop filter design, be sure to load these custom noise profiles for use in application.
- PLLatinum Sim can also be used to design and simulate a loop filter.

9.2.2.3 Device Programming

Using the clock design tools configuration the TICS Pro software is manually updated with this information to meet the required application.

Frequency planning for assignment of outputs:

- To minimize crosstalk perform frequency planning / CLKout assignments to keep common frequencies on outputs close together.
- It is best to place common device clock output frequencies on outputs sharing the same V_{CC} group. For example, these outputs share Vcc4_CG2. Refer to *Pin Configuration and Functions* to see the V_{CC} groupings the clock outputs.

In this example, the 245.76-MHz ADC output needs the best performance. CLKout2 on the LMK04832 provides the best noise floor / performance. The 245.76 MHz is placed on CLKout2 with 10.24-MHz SYSREF on CLKout3.

- For best performance the input and output drive level bits may be set. Best noise floor performance is achieved with CLKout2_3_IDL = 1 and CLKout2_3_ODL = 1.
- The CLKoutX_Y_ODL bit has no impact on even clock outputs in high performance bypass mode.

In this example, the 983.04-MHz DAC output is placed on CLKout4 and CLKout6 with 10.24-MHz SYSREF on paired CLKout5 and CLKout7 outputs.

These outputs share Vcc4 CG2.

In this example, the 122.88-MHz FPGA JESD204B output is placed on CLKout10 with 10.24-MHz SYSREF on paired CLKout11 output.

Additionally, the 122.88-MHz FPGA non-JESD204B outputs are placed on CLKout8 and CLKout9.

• When frequency planning, consider PLL2 as a clock output at the phase detector frequency. As such, these 122.88-MHz outputs have been placed on the outputs close to the PLL2 and Charge Pump power supplies.

Once the device programming is completed as desired in the TICS Pro software, it is possible to export the register settings from the Register tab for use in application.

Typical Application (continued)

9.2.3 Application Curves

The phase noise plots collected with loop filter values of C1 = open, C2 = 150 nF, R2 = 470 Ω .

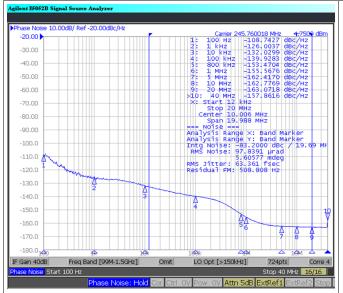


Figure 27. CLKout0 = 245.76 MHz, VCO = 2457.6 MHz CLKout0_1_IDL = 1, CLKout0_1_ODL = 1 LVPECL20 With 240-Ω Emitter Resistors

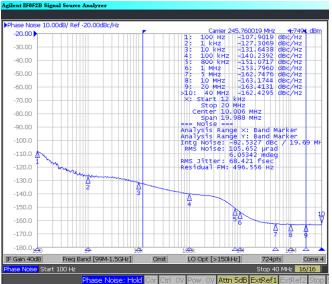


Figure 28. CLKout0 = 245.76 MHz, VCO = 2949.12 MHz CLKout0_1_IDL = 1, CLKout0_1_ODL = 1 LVPECL20 With 240-Ω Emitter Resistors

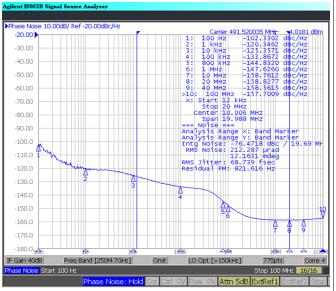


Figure 29. CLKout2 = 491.52-MHz, VCO = 2949.12 MHz CLKout2_3_IDL = 1, CLKout2_3_ODL = 1 LVPECL16 With 120- Ω Emitter Resistors

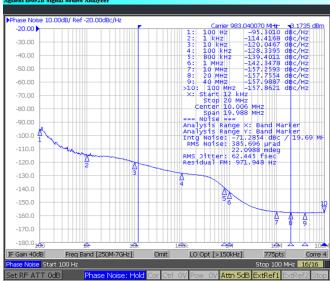


Figure 30. CLKout2 = 983.04-MHz, VCO = 2949.12 MHz CLKout2_3_IDL = 1, CLKout2_3_ODL = 1 LVPECL16 With 120-Ω Emitter Resistors

TEXAS INSTRUMENTS

Typical Application (continued)

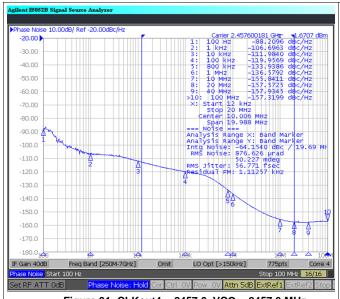


Figure 31. CLKout4 = 2457.6, VCO = 2457.6 MHz CLKout4_5_IDL = 1, CLKout4_5_ODL = 0 CML 32mA, 68 nH Inductor - 20 Ω Resistor

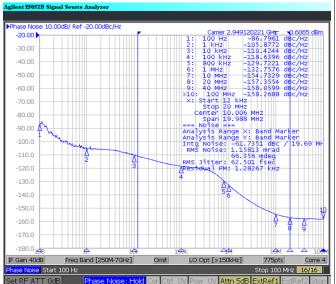


Figure 32. CLKout4 = 2949.12, VCO = 2949.12 MHz CLKout4_5_IDL = 1, CLKout4_5_ODL = 1 LVPECL, 68 nH Inductor - 20 Ω Resistor

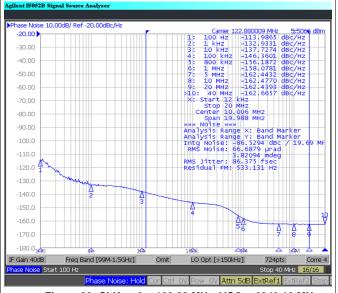


Figure 33. CLKout3 = 122.88 MHz, VCO = 2949.12 MHz CLKout2_3_IDL = 1, CLKout2_3_ODL = 1 With 120- Ω Emitter Resistors

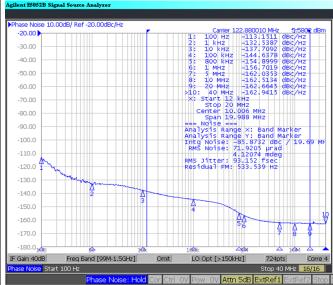
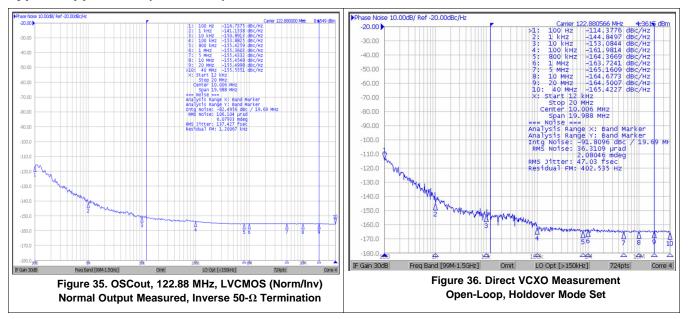



Figure 34. CLKout9 = 122.88 MHz, VCO = 2949.12 MHz, HSDS 8 mA CLKout8_9_IDL = 1, CLKout8_9_ODL = 1

Submit Documentation Feedback

Typical Application (continued)

9.3 Do's and Don'ts

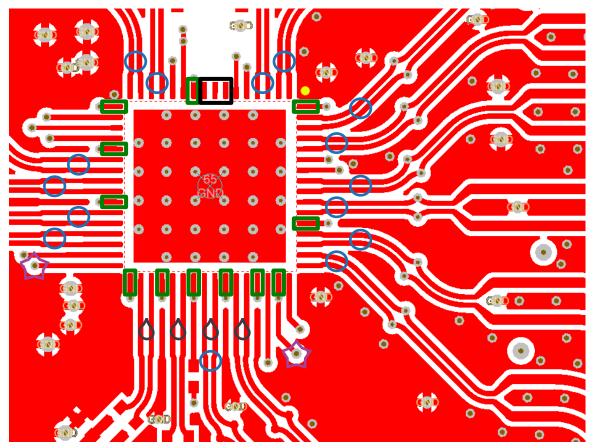
9.3.1 Pin Connection Recommendations

- V_{CC} Pins and Decoupling: all V_{CC} pins must always be connected.
- Unused Clock Outputs: leave unused clock outputs floating and powered down.
- · Unused Clock Inputs: unused clock inputs can be left floating.

10 Power Supply Recommendations

10.1 Current Consumption

TI recommends using the TICS Pro software to calculate the current consumption estimate based on programmed configuration.


11 Layout

11.1 Layout Guidelines

11.1.1 Thermal Management

Power consumption of the LMK04832 can be high enough to require attention from thermal management. For reliability and performance reasons the die temperature should be limited to a maximum of 125°C. That is, as an estimate, T_A (ambient temperature) plus device power consumption times $R_{\theta,JA}$ should not exceed 125°C.

11.2 Layout Example

For any pins not connected, ensure that the exposed copper is of the same area as other pins to contribute to healthy solderdown joint

For CLKout Vccs in JESD204B application, place ferrite beads then 1 μ F capacitor. The 1 μ F capacitor supports low frequency SYSREF switching/turning on. For CLKout Vccs in traditional applications, place ferrite bead on top layer close to pins to choke high frequency noise from via.

合

Charge pump output – shorter traces are better. Place all resistors and caps close to IC.

CLKouts/OSCouts – Differential signals should be routed tightly coupled to minimize PCB crosstalk.

For LVPECL/LCPECL/CML place components resistors close to IC.

OSCout shares pins with CLKin2 and is programmable for input or output

CLKin and OSCin – If differential input (preferred) route traces tightly coupled. If single ended, have at least 3 trace width (of CLKin/OSCin trace) separation from other RF traces.

Place terminations close to IC.

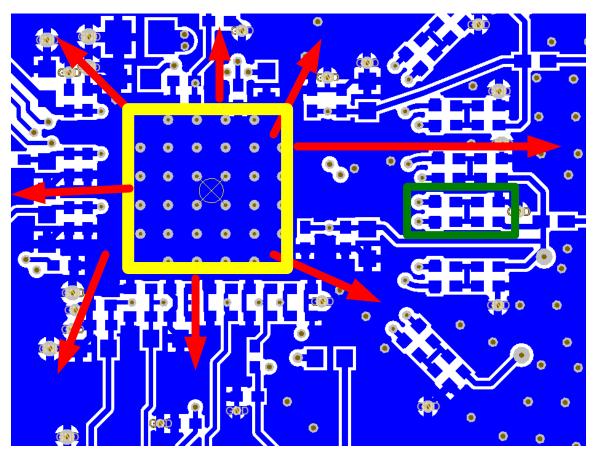

CLKin2 and OSCout share pins and is programmable for input or output.

Figure 37. LMK04832 Layout Example, Top Layer

Submit Documentation Feedback

Layout Example (continued)

Expose copper under the PCB to provide direct copper to air interface to dissipate heat

Provide areas of connect copper to allow heat to escape from directly below PCB. Do not let components block all thermal escape from ground pad.

A flexible termination / PCB layout for either CML requiring a pull-up to Vcc or LVPECL/LCPECL requiring a pull-down to ground, or for any other format is the H configuration as illustrated in layout above and schematic below. R1/R2 allow connection to Vcc or ground. When using CML with inductors (in position R3 and R4), R1 allows the use of an additional series resistor.

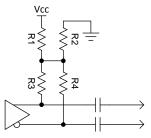


Figure 38. LMK04832 Layout Example, Bottom Layer

Copyright © 2017–2018, Texas Instruments Incorporated

Submit Documentation Feedback

12 Device and Documentation Support

12.1 Device Support

12.1.1 Development Support

12.1.1.1 Clock Architect

Part selection, loop filter design, simulation.

To run the online Clock Architect tool, go to www.ti.com/clockarchitect.

12.1.1.2 PLLatinum Sim

Supports loop filter design and simulation. All simulation is for a single loop, to perform dual loop simulations, the result of the first PLL sim must be loaded as a reference to the second PLL sim.

To download PLLatinum Sim tool, go to www.ti.com/tool/PLLATINUMSIM-SW

12.1.1.3 TICS Pro

EVM programming software. Can also be used to generate register map for programming and calculate current consumption estimate.

For TICS Pro, go to www.ti.com/tool/TICSPRO-SW

12.2 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.3 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

12.4 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.5 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This data is subject to change without notice and revision of this document.

PACKAGE OPTION ADDENDUM

10-Dec-2020

PACKAGING INFORMATION

www.ti.com

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
LMK04832NKDR	ACTIVE	WQFN	NKD	64	2000	RoHS & Green	SN	Level-3-260C-168 HR	-40 to 85	K04832NKD	Samples
LMK04832NKDT	ACTIVE	WQFN	NKD	64	250	RoHS & Green	SN	Level-3-260C-168 HR	-40 to 85	K04832NKD	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

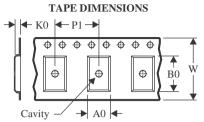
PACKAGE OPTION ADDENDUM

10-Dec-2020

OTHER QUALIFIED VERSIONS OF LMK04832:

• Space: LMK04832-SP

NOTE: Qualified Version Definitions:


• Space - Radiation tolerant, ceramic packaging and qualified for use in Space-based application

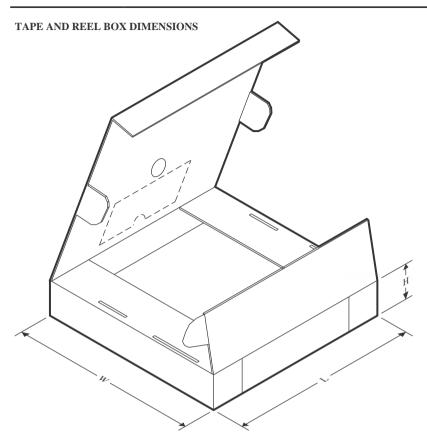
PACKAGE MATERIALS INFORMATION

www.ti.com 3-Jun-2022

TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

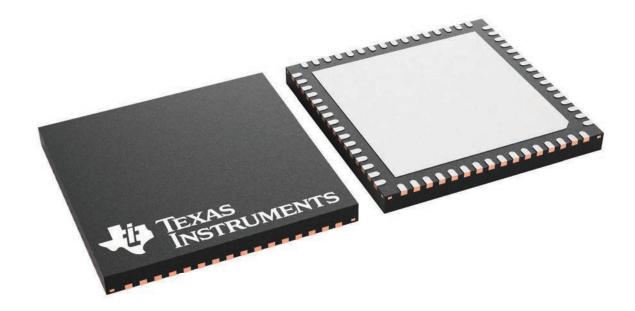


*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LMK04832NKDR	WQFN	NKD	64	2000	330.0	16.4	9.3	9.3	1.3	12.0	16.0	Q2
LMK04832NKDT	WQFN	NKD	64	250	178.0	16.4	9.3	9.3	1.3	12.0	16.0	Q2

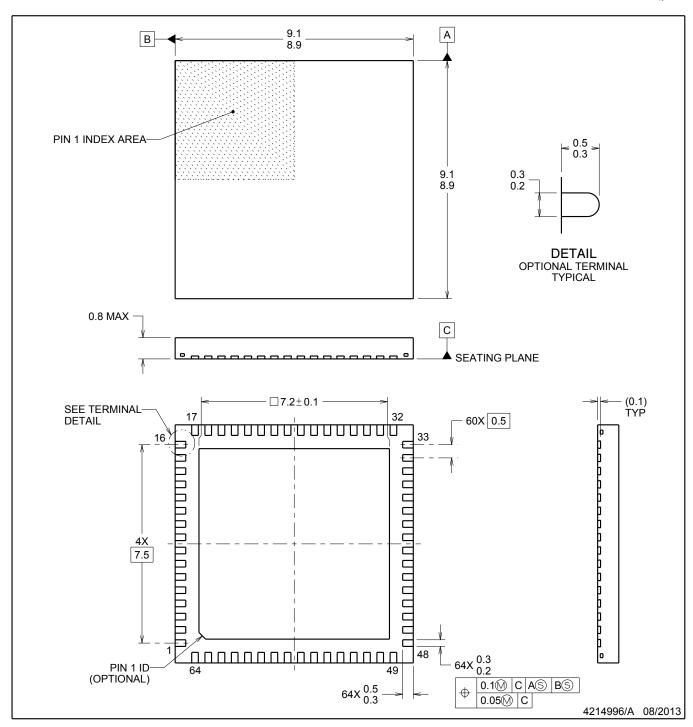
PACKAGE MATERIALS INFORMATION

www.ti.com 3-Jun-2022


*All dimensions are nominal

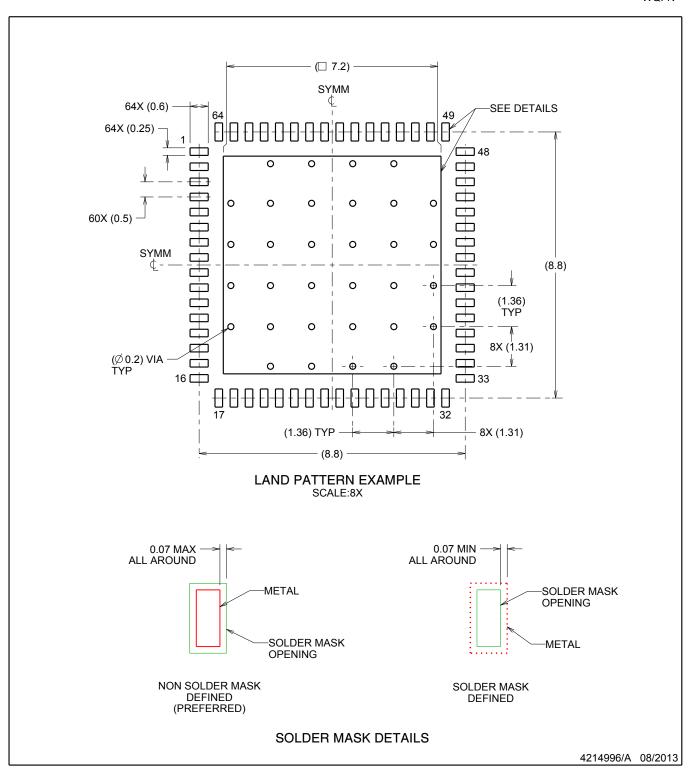
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LMK04832NKDR	WQFN	NKD	64	2000	356.0	356.0	35.0
LMK04832NKDT	WQFN	NKD	64	250	208.0	191.0	35.0

9 x 9, 0.5 mm pitch


PLASTIC QUAD FLATPACK - NO LEAD

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

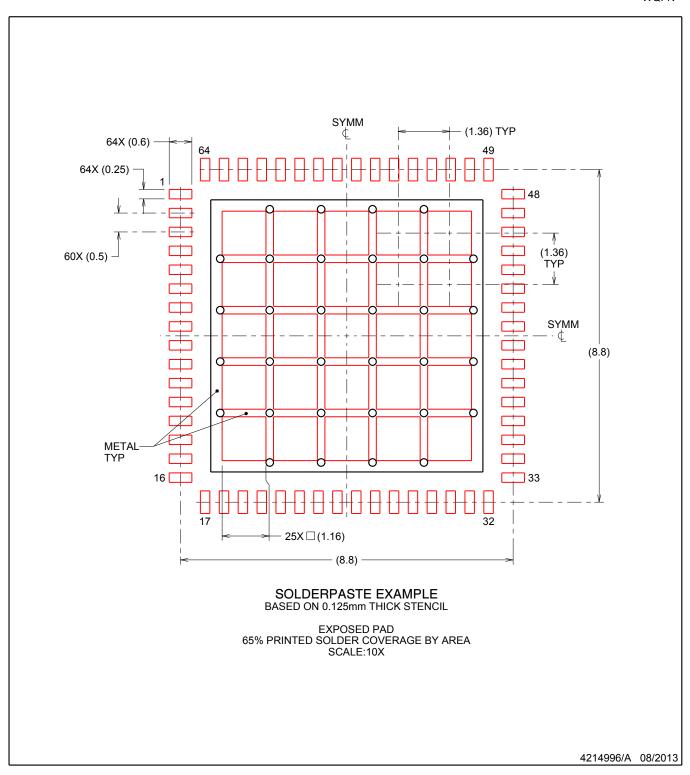
WQFN



NOTES:

- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

WQFN



NOTES: (continued)

4. This package is designed to be soldered to a thermal pad on the board. For more information, refer to QFN/SON PCB application note in literature No. SLUA271 (www.ti.com/lit/slua271).

WQFN

NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated